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Preface

R by Example is an example-based introduction to the R [40] statistical com-
puting environment that does not assume any previous familiarity with R or
other software packages. R is a statistical computing environment for statis-
tical computation and graphics, and it is a computer language designed for
typical and possibly very specialized statistical and graphical applications.
The software is available for unix/linux, Windows, and Macintosh platforms
under general public license, and the program is available to download from
www.r-project.org. Thousands of contributed packages are also available
as well as utilities for easy installation.

The purpose of this book is to illustrate a range of statistical and proba-
bility computations using R for people who are learning, teaching, or using
statistics. Specifically, this book is written for users who have covered at least
the equivalent of (or are currently studying) undergraduate level calculus-
based courses in statistics. These users are learning or applying exploratory
and inferential methods for analyzing data and this book is intended to be a
useful resource for learning how to implement these procedures in R.

Chapters 1 and 2 provide a general introduction to the R system and
provide an overview of the capabilities of R to perform basic numerical and
graphical summaries of data. Chapters 3, 4, and 5 describe R functions for
working with categorical data, producing statistical graphics, and implement-
ing the exploratory data analysis methods of John Tukey. Chapter 6 presents
R procedures for basic inference about proportions and means. Chapters 7
through 10 describe the use of R for popular statistical models, such as re-
gression, analysis of variance (ANOVA), randomized block designs, two-way
ANOVA, and randomization tests. The last section of the book describes the
use of R in Monte Carlo simulation experiments (Chapter 11), Bayesian mod-
eling (Chapter 12), and Markov Chain Monte Carlo (MCMC) algorithms to
simulate from probability distributions (Chapter 13).

One general feature of our presentation is that R functions are presented
in the context of interesting applications with real data. Features of the useful
R function lm, for example, are best communicated through a good regres-
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vi Preface

sion example. We have tried to reflect good statistical practice through the
examples that we present in all chapters. An undergraduate student should
easily be able to relate our R work on, say, regression with the regression
material that is taught in his statistics course. In each chapter, we include
exercises that give the reader practice in implementing the R functions that
are discussed.

The data files used in the examples are available in R or provided on our
web site. A few of the data files can be input directly from a web page, and
there are also a few that found in the recommended packages (installed with
R) or contributed packages (installed by the user when needed). The web
page for this book is personal.bgsu.edu/~mrizzo/Rx.

Remarks or tips about R are identified by the symbol Rx to set them apart
from the main text. In the examples, R code and output appears in bold
monospaced type. Code that would be typed by the user is identified by the
leading prompt symbol >. Scripts for some of the functions in the examples
are provided in files available from the book web site; these functions are
shown without the prompt character.

The R manuals and examples in the help files use the arrow assignment
operators <- and ->. However, in this book we have used the equal sign =

operator for assignment, rather than <-, as novice users may find it easier to
type the = symbol.

R functions and keywords are collected at the beginning of the Index.
Examples are also indexed; see the entry ‘Example’ in the Index.

Bowling Green, Ohio Jim Albert
Maria Rizzo
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Chapter 1

Introduction

R is a statistical computing environment. It is free (open source) software for
statistical computation and graphics [40] and a computer language designed
for typical statistical and graphical applications. The R distribution includes
the ability to save and run commands stored in script files, and an integrated
editor in the R Graphical User Interface (R-GUI). It is available for most
platforms including unix/linux, PC, and Macintosh platforms. Thousands
of contributed packages are available, and users are provided tools to make
packages.

At the core of R is an interpreted computer language. This language pro-
vides the logical control of branching and looping, and modular programming
using functions. The base R distribution contains functions and data to imple-
ment and illustrate most common statistical procedures, including regression
and ANOVA, classical parametric and nonparametric tests, cluster analysis,
density estimation, and much more. An extensive suite of probability distribu-
tion functions and generators are provided, as well as a graphical environment
for exploratory data analysis and creating presentation graphics.

On the history and evolution of R, see the R-FAQ [26] and resources on
the R home page at http://www.R-project.org/.

1.1 Getting Started

R is an interpreted language; that is, the system processes commands entered
by the user, who types the commands at the command prompt, or submits
the commands from a file called a script. We assume that our readers use
R at a graphics workstation running a windowing system, such as Windows,
Macintosh, or X window systems. In a window system, users interact with
R through the R console. Except for the simplest operations, most users will
prefer to type commands in a script (see Section 1.1.3) to save retyping and

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__1,
© Springer Science+Business Media, LLC 2012
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2 1 Introduction

to separate commands from results. However, let us begin by working directly
at the command prompt.

When we use the command line interface, each command or expression
to be evaluated is typed at the command prompt, and immediately evalu-
ated when the Enter key is pressed at the end of a syntactically complete
statement. It is helpful to remember the following tips.

� Press the up-arrow key to recall commands and edit them.
� Use the Esc (Escape) key to cancel a command.

1.1.1 Preliminaries

Remarks or tips about R are identified by the symbol Rx to set them apart
from the main text.

Rx 1.1 The right-to-left assignment operators are the left arrow <- and equal
sign =. For example, borrowing a line from Example 1.3, either method below

> x = c(109, 65, 22, 3, 1)

> x <- c(109, 65, 22, 3, 1)

creates the vector (109,65,22,3,1) and assigns it to x. Borrowing another line
from Example 1.3, either method below

> y = rpois(200, lambda=.61)

> y <- rpois(200, lambda=.61)

assigns the result of the rpois function to y. Notice that the equal sign in-
side the parentheses is not an assignment operator; it passes the value of an
argument (lambda) to the function rpois.

The R manuals and examples in the help files use the arrow assignment
operators <- and ->. However, in this book we have used the equal sign =

operator for assignment, rather than <-, as novice users may find it easier to
type the = symbol.

In the examples, R code and output appears in bold monospaced type
as in the remark Rx 1.1 above. Code that would be typed interactively by
the user or submitted from an R script is identified by the leading prompt
symbol >. Scripts for some of the functions in the examples are provided in
files available from the book web site; these functions are shown in the book
without the prompt character.

Data files and scripts used in the examples are available on our web site
at personal.bgsu.edu/~mrizzo/Rx. Some data files can be downloaded di-
rectly from a connection to a url.
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1.1.2 Basic operations

Some basic operations with vectors are illustrated in the following example.
The R commands are entered at the prompt in the R console window. The
prompt character is > and when a line is continued the prompt changes to
+. (The prompt symbols can be changed.)

Example 1.1 (Temperature data). Average annual temperatures in New Haven,
CT, were recorded in degrees Fahrenheit, as

Year 1968 1969 1970 1971
Mean temperature 51.9 51.8 51.9 53

(This data is part of a larger data set in R called nhtemp.) The combine
function c creates a vector from its arguments, and the result can be stored
in user-defined vectors. We use the combine function to enter our data and
store it in an object named temps.

> temps = c(51.9, 51.8, 51.9, 53)

To display the value of temps, one simply types the name.

> temps

[1] 51.9 51.8 51.9 53.0

Suppose that we want to convert the Fahrenheit temperatures (F) to Celsius
temperatures (C). The formula for the conversion is C = 5

9 (F − 32). It is
easy to apply this formula to all of the temperatures in one step, because
arithmetic operations in R are vectorized ; operations are applied element by
element. For example, to subtract 32 from every element of temp, we use

> temps - 32

[1] 19.9 19.8 19.9 21.0

Then (5/9)*(temps - 32) multiplies each difference by 5/9. The tempera-
tures in degrees Celsius are

> (5/9) * (temps - 32)

[1] 11.05556 11.00000 11.05556 11.66667

In 1968 through 1971, the mean annual temperatures (Fahrenheit) in the state
of Connecticut were 48, 48.2, 48, 48.7, according to the National Climatic
Center Data web page. We store the state temperatures in CT, and compare
the local New Haven temperatures with the state averages. For example,
one can compute the annual differences in mean temperatures. Here CT and
temps are both vectors of length four and the subtraction operation is applied
element by element. The result is the vector of four differences.

> CT = c(48, 48.2, 48, 48.7)

> temps - CT

[1] 3.9 3.6 3.9 4.3
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The four values in the result are differences in mean temperatures for 1968
through 1971. It appears that on average New Haven enjoyed slightly warmer
temperatures than the state of Connecticut in this period.

Example 1.2 (President’s heights). An article in Wikipedia [54] reports data
on the heights of Presidents of the United States and the heights of their
opponents in the presidential election. It has been observed [53, 48] that
the taller presidential candidate typically wins the election. In this example,
we explore the data corresponding to the elections in the television era. In
Table 1.1 are the heights of the presidents and their opponents in the U.S.
presidential elections of 1948 through 2008, extracted from the Wikipedia
article.

Table 1.1 Height of the election winner in the Electoral College and height of the
main opponent in the U.S. Presidential elections of 1948 through 2008.

Year Winner Height Opponent Height
2008 Barack Obama 6 ft 1 in 185 cm John McCain 5 ft 9 in 175 cm
2004 George W. Bush 5 ft 11.5 in 182 cm John Kerry 6 ft 4 in 193 cm
2000 George W. Bush 5 ft 11.5 in 182 cm Al Gore 6 ft 1 in 185 cm
1996 Bill Clinton 6 ft 2 in 188 cm Bob Dole 6 ft 1.5 in 187 cm
1992 Bill Clinton 6 ft 2 in 188 cm George H.W. Bush 6 ft 2 in 188 cm
1988 George H.W. Bush 6 ft 2 in 188 cm Michael Dukakis 5 ft 8 in 173 cm
1984 Ronald Reagan 6 ft 1 in 185 cm Walter Mondale 5 ft 11 in 180 cm
1980 Ronald Reagan 6 ft 1 in 185 cm Jimmy Carter 5 ft 9.5 in 177 cm
1976 Jimmy Carter 5 ft 9.5 in 177 cm Gerald Ford 6 ft 0 in 183 cm
1972 Richard Nixon 5 ft 11.5 in 182 cm George McGovern 6 ft 1 in 185 cm
1968 Richard Nixon 5 ft 11.5 in 182 cm Hubert Humphrey 5 ft 11 in 180 cm
1964 Lyndon B. Johnson 6 ft 4 in 193 cm Barry Goldwater 5 ft 11 in 180 cm
1960 John F. Kennedy 6 ft 0 in 183 cm Richard Nixon 5 ft 11.5 in 182 cm
1956 Dwight D. Eisenhower 5 ft 10.5 in 179 cm Adlai Stevenson 5 ft 10 in 178 cm
1952 Dwight D. Eisenhower 5 ft 10.5 in 179 cm Adlai Stevenson 5 ft 10 in 178 cm
1948 Harry S. Truman 5 ft 9 in 175 cm Thomas Dewey 5 ft 8 in 173 cm

Section 1.5 illustrates several methods for importing data from a file. In
this example we enter the data interactively as follows. The continuation
character + indicates that the R command is continued.

> winner = c(185, 182, 182, 188, 188, 188, 185, 185, 177,

+ 182, 182, 193, 183, 179, 179, 175)

> opponent = c(175, 193, 185, 187, 188, 173, 180, 177, 183,

+ 185, 180, 180, 182, 178, 178, 173)

(Another method for entering data interactively is to use the scan function.
See Example 3.1 on page 79.) Now the newly created objects winner and
opponent are each vectors of length 16.

> length(winner)

[1] 16
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The year of the election is a regular sequence, which we can generate using
the sequence function seq. Our first data value corresponds to year 2008, so
the sequence can be created by

> year = seq(from=2008, to=1948, by=-4)

or equivalently by

> year = seq(2008, 1948, -4)

According to the Washington Post blog [53], Wikipedia misstates “Bill
Clinton’s height, which was measured during official medical exams at 6 foot-
2-1/2, making him just a tad taller than George H.W. Bush.”We can correct
the height measurement for Bill Clinton by assigning a height of 189 cm to
the fourth and fifth entries of the vector winner.

> winner[4] = 189

> winner[5] = 189

The sequence operator : allows us to perform this operation in one step:

> winner[4:5] = 189

The revised values of winner are

> winner

[1] 185 182 182 189 189 188 185 185 177 182 182 193 183 179 179 175

Are presidents taller than average adult males? According to the National
Center for Health Statistics, in 2005 the average height for an adult male
in the United States is 5 feet 9.2 inches or 175.768 cm. The sample mean is
computed by the mean function.

> mean(winner)

[1] 183.4375

Interestingly, the opponents also tend to be taller than average.

> mean(opponent)

[1] 181.0625

Next, we use vectorized operations to compute the differences in the height
of the winner and the main opponent, and store the result in difference.

> difference = winner - opponent

An easy way to display our data is as a data frame:

> data.frame(year, winner, opponent, difference)

The result is displayed in Table 1.2. Data frames are discussed in detail in
Section 1.4.

We see that most, but not all, of the differences in height are positive,
indicating that the taller candidate won the election. Another approach to
determining whether the taller candidate won is to compare the heights with
the logical operator >. Like the basic arithmetic operations, this operation is
vectorized. The result will be a vector of logical values (TRUE/FALSE) having
the same length as the two vectors being compared.
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Table 1.2 Data for Example 1.2.

> data.frame(year, winner, opponent, difference)

year winner opponent difference

1 2008 185 175 10

2 2004 182 193 -11

3 2000 182 185 -3

4 1996 189 187 2

5 1992 189 188 1

6 1988 188 173 15

7 1984 185 180 5

8 1980 185 177 8

9 1976 177 183 -6

10 1972 182 185 -3

11 1968 182 180 2

12 1964 193 180 13

13 1960 183 182 1

14 1956 179 178 1

15 1952 179 178 1

16 1948 175 173 2

> taller.won = winner > opponent

> taller.won

[1] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

[10] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

On the second line, the prefix [10] indicates that the output continues with
the tenth element of the vector.

The table function summarizes discrete data such as the result in the
vector taller.won.

> table(taller.won)

taller.won

FALSE TRUE

4 12

We can use the result of table to display percentages if we divide the result
by 16 and multiply that result by 100.

> table(taller.won) / 16 * 100

taller.won

FALSE TRUE

25 75

Thus, in the last 16 elections, the odds in favor of the taller candidate winning
the election are 3 to 1.

Several types of graphs of this data may be interesting to help visualize
any pattern. For example, we could display a barplot of differences using the
barplot function. For the plot we use the rev function to reverse the order
of the differences so that the election year is increasing from left to right. We
also provide a descriptive label for both axes.
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> barplot(rev(difference), xlab="Election years 1948 to 2008",

+ ylab="Height difference in cm")

The barplot of differences in heights is shown in Figure 1.1.
It would also be interesting to display a scatterplot of the data. A scatter-

plot of loser’s heights vs winner’s height for election years 1798 through 2004
appears in the Wikipedia article [54]. A simple version of the scatterplot (not
shown here) can be obtained in R by

> plot(winner, opponent)

Chapter 4 “Presentation Graphics” illustrates many options for creating a
custom graphic such as the scatterplot from the Wikipedia article.

Election years 1948 to 2008
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Fig. 1.1 Barplot of the difference in height of the election winner in the Electoral
College over the height of the main opponent in the U.S. Presidential elections. Height
differences in centimeters for election years 1948 through 2008 are shown from left to
right. The electoral vote determines the outcome of the election. In 12 out of these
16 elections, the taller candidate won the electoral vote. In 2000, the taller candidate
(Al Gore) did not win the electoral vote, but received more popular votes.

Example 1.3 (horsekicks). This data set appears in several books; see e.g.
Larsen and Marx [30, p. 287]. In the late 19th century, Prussian officers
collected data on deaths of soldiers in 10 calvary corps recording fatalities
due to horsekicks over a 20 year period. The 200 values are summarized in
Table 1.3.

To enter this data, we use the combine function c.
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Table 1.3 Fatalities due to horsekick for Prussian calvary in Example 1.3

Number of deaths, k Number of corps-years in
which k fatalities occurred

0 109
1 65
2 22
3 3
4 1

200

> k = c(0, 1, 2, 3, 4)

> x = c(109, 65, 22, 3, 1)

To display a bar plot of the frequencies, we use the barplot function. The
function barplot(x) produces a barplot like Figure 1.2, but without the
labels below the bars. The argument names.arg is optional; it assigns labels
to display below the bars. Figure 1.2 is obtained by.

> barplot(x, names.arg=k)

0 1 2 3 4

0
20

40
60

80
10

0

Fig. 1.2 Frequency distribution for Prussian horsekick data in Example 1.3.

The relative frequency distribution of the observed data in x is easily com-
puted using vectorized arithmetic in R. For example, the sample proportion
of 1’s is 65/200 = 0.545. The expression x/sum(x) divides every element of
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the vector x by the sum of the vector (200). The result is a vector the same
length as x containing the sample proportions of the death counts 0 to 4.

> p = x / sum(x)

> p

[1] 0.545 0.325 0.110 0.015 0.005

The center of this distribution can be estimated by its sample mean, which
is

1
200

200∑
i=1

xi = 109(0)+65(1)+22(2)+3(3)+1(4)
200 .

= 0.545(0)+0.325(1)+0.110(2)+0.015(3)+0.005(4).

The last line is simply the sum of p*k, because R computes this product
element by element (“vectorized”). Now we can write the sample mean formula
as the sum of the vector p*k. The value of the sample mean is then assigned
to r.

> r = sum(p * k)

> r

[1] 0.61

Similarly, one can compute an estimate of the variance. Apply the computing
formula for variance of a sample y1, . . . ,yn:

s2 = 1
n−1

n∑
i=1

(yi −y)2.

Here the sample mean is the value r computed above and

s2 = 1
n−1

{
109(0− r)2 +65(1− r)2 +22(2− r)2 +3(3− r)2 +1(4− r)2} ,

so the expression inside the braces can be coded as x*(k-r)^2. The sample
variance v is:

> v = sum(x * (k - r)^2) / 199

> v

[1] 0.6109548

Among the counting distributions that might fit this data (binomial, ge-
ometric, negative binomial, Poisson, etc.) the Poisson is the one that has
equal mean and variance. The sample mean 0.61 and sample variance 0.611
are almost equal, which suggests fitting a Poisson distribution to the data.
The Poisson model has probability mass function

f(k) = λk e−λ

k! , k ≥ 0, (1.1)
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where λ =
∑∞

k=0 kf(k) is the mean of the distribution. The sample mean 0.61
is our estimate of the population mean λ. Substituting the sample mean for
λ in the density (1.1), the corresponding Poisson probabilities are

> f = r^k * exp(- r) / factorial(k)

> f

[1] 0.5433509 0.3314440 0.1010904 0.0205551 0.0031346

R has probability functions for many distributions, including Poisson. The R
density functions begin with “d” and the Poisson density function is dpois.
The probabilities above can also be computed as

> f = dpois(k, r)

> f

[1] 0.5433509 0.3314440 0.1010904 0.0205551 0.0031346

Rx 1.2 R provides functions for the density, cumulative distribution func-
tion (CDF), percentiles, and for generating random variates for many com-
monly applied distributions. For the Poisson distribution these functions are
dpois, ppois, qpois, and rpois, respectively. For the normal distribution
these functions are dnorm, pnorm, qnorm, and rnorm.

How well does the Poisson model fit the horsekick data? In a sample of size
200, the expected counts are 200f(k). Truncating the fraction using floor

we have

> floor(200*f) #expected counts

[1] 108 66 20 4 0

> x #observed counts

[1] 109 65 22 3 1

for k = 0,1,2,3,4, respectively. The expected and observed counts are in close
agreement, so the Poisson model appears to be a good one for this data.

One can alternately compare the Poisson probabilities (stored in vector
f) with the sample proportions (stored in vector p). To summarize our com-
parison of the probabilities in a matrix we can use rbind or cbind. Both
functions bind vectors together to form matrices; with rbind the vectors be-
come rows, and with cbind the vectors become columns. Here we use cbind
to construct a matrix with columns k, p, and f.

> cbind(k, p, f)

k p f

[1,] 0 0.545 0.5433509

[2,] 1 0.325 0.3314440

[3,] 2 0.110 0.1010904

[4,] 3 0.015 0.0205551

[5,] 4 0.005 0.0031346

It appears that the observed proportions p are close to the Poisson(0.61)
probabilities in f.
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1.1.3 R Scripts

Example 1.3 contains several lines of code that would be tedious to retype
if one wants to continue the data analysis. If the commands are placed in a
file, called an R script, then the commands can be run using source or copy-
paste. Using the source function causes R to accept input from the named
source, such as a file.

Open a new R script for editing. In the R GUI users can open a new script
window through the File menu. Type the following lines of “horsekicks.R”
(below) in the script. It is a good idea to insert a few comments. Comments
begin with a # symbol.

Using the source function, auto-printing of expressions does not happen.
We added print statements to the script so that the values of objects will
be printed.

horsekicks.R
# Prussian horsekick data

k = c(0, 1, 2, 3, 4)

x = c(109, 65, 22, 3, 1)

p = x / sum(x) #relative frequencies

print(p)

r = sum(k * p) #mean

v = sum(x * (k - r)^2) / 199 #variance

print(r)

print(v)

f = dpois(k, r)

print(cbind(k, p, f))

At this point it is convenient to create a working directory for the R scripts
and data files that will be used in this book. To display the current working
directory, type getwd(). For example, one may create a directory at the
root, say /Rx. Then change the working directory through the File menu or
by the function setwd, substituting the path to your working directory in the
quotation marks below. On our system this has the following effect.

> getwd()

[1] "C:/R/R-2.13.0/bin/i386"

> setwd("c:/Rx")

> getwd()

[1] "c:/Rx"

Save the script as “horsekicks.R” in your working directory. Now the file can
be sourced by the command

source("horsekicks.R")

and all of the commands in the file will be executed.

Rx 1.3 Unlike Matlab .m files, an R script can contain any number of func-
tions and commands. Matlab users may be familiar with defining a function



12 1 Introduction

by writing an .m file, where each .m file is limited to exactly one function.
Function syntax is covered in Section 1.2.

Rx 1.4 Here are a few helpful shortcuts for running part of a script.

� Select lines and click the button ‘Run line or selection’ on the toolbar.
� Copy the lines, and then paste the lines at the command prompt.
� (For Windows users:) To execute one or more lines of the file in the R

GUI editor, select the lines and type Ctrl-R.
� (For Macintosh users:) One can execute lines of a file by selecting the lines

and typing Command-Return.

Example 1.4 (Simulated horsekick data). For comparison with Example 1.3,
in this example we use the random Poisson generator rpois to simulate 200
random observations from a Poisson(λ = 0.61) distribution. We then com-
pute the relative frequency distribution for this sample. Because these are
randomly generated counts, each time the code below is executed we obtain
a different sample and therefore the results of readers will vary slightly from
what follows.

> y = rpois(200, lambda=.61)

> kicks = table(y) #table of sample frequencies

> kicks

y

0 1 2 3

105 67 26 2

> kicks / 200 #sample proportions

y

0 1 2 3

0.525 0.335 0.130 0.010

Comparing this data with the theoretical Poisson frequencies:

> Theoretical = dpois(0:3, lambda=.61)

> Sample = kicks / 200

> cbind(Theoretical, Sample)

Theoretical Sample

0 0.54335087 0.525

1 0.33144403 0.335

2 0.10109043 0.130

3 0.02055505 0.010

The computation of mean and variance is simpler here than in Example 1.3
because we have the raw, ungrouped data in the vector y.

> mean(y)

[1] 0.625

> var(y)

[1] 0.5571608

It is interesting that the observed Prussian horsekicks data seems to fit the
Poisson model better than our simulated Poisson(λ = 0.61) sample.
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1.1.4 The R Help System

The R Graphical User Interface has a Help menu to find and display online
documentation for R objects, methods, data sets, and functions. Through the
Help menu one can find several manuals in PDF form, an html help page,
and help search utilities. The help search utility functions are also available
at the command line, using the functions help and help.search, and the
corresponding shortcuts ? and ??. These functions are described below.

� help("keyword") displays help for “keyword”.
� help.search("keyword") searches for all objects containing “keyword”.

The quotes are usually optional in help, but would be required for special
characters such as in help("["). Quotes are required for help.search. When
searching for help topics, keep in mind that R is case-sensitive: for example,
t and T are different objects.

One or two question marks in front of a search term also search for help
topics.

� ?keyword (short for help(keyword)).
� ??keyword (short for help.search("keyword")).

Try entering the following commands to see their effect.

?barplot #searches for barplot topic

??plot #anything containing "plot"

help(dpois) #search for "dpois"

help.search("test") #anything containing "test"

The last command above displays a list including a large number of statistical
tests implemented in the R.

One of the features of R online help is that most of the keywords doc-
umented include examples appearing at the end of the page. Users can try
one or more of the examples by selecting the code and then copy-paste to
the console. R also provides a function example that runs all of the exam-
ples if any exist for the keyword. To see the examples for the function mean,
type example(mean). The examples are then executed and displayed at the
console with a special prompt symbol (mean>) that is specific to the keyword.

> example(mean)

mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10))

[1] 8.75 5.50
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mean> mean(USArrests, trim = 0.2)

Murder Assault UrbanPop Rape

7.42 167.60 66.20 20.16

>

For many of the graphics functions, the documentation includes interesting
examples. Try example(curve) for an overview of what the curve function
can do. The system will prompt the user for input as it displays each graph.

A glossary of R functions is available online in “Appendix D: Function and
Variable Index” of the manual “Introduction to R” [49], and the “R Refer-
ence Manual” [41] has a comprehensive index by function and concept. These
manuals are included with the R distribution, and also available online on
the R project home page1 at the line “Manuals” under “Documentation”.

1.2 Functions

The R language allows for modular programming using functions. R users
interact with the software primarily through functions. We have seen several
examples of functions above. In this section, we discuss how to create user-
defined functions.

The syntax of a function is

f = function(x, ...) {

}

or

f <- function(x, ...) {

}

where f is the name of the function, x is the name of the first argument (there
can be several arguments), and ... indicates possible additional arguments.
Functions can be defined with no arguments, also. The curly brackets enclose
the body of the function. The return value of a function is the value of the
last expression evaluated.

Example 1.5 (function definition). R has a function var that computes the
unbiased estimate of variance, usually denoted by s2. Occasionally, one re-
quires the maximum likelihood estimator (MLE) of variance,

σ̂2 = 1
n

n∑
i=1

(xi −x)2 = n−1
n

s2.

A function to compute σ̂2 can be created as follows.

1 www.r-project.org

http://www.r-project.org
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var.n = function(x) {

v = var(x)

n = NROW(x)

v * (n - 1) / n

}

The NROW function computes the number of observations in x. The value v *

(n-1)/n evaluated on the last line is returned. Note: it would also be correct
(but unnecessary) to replace the last line of the function var.n with

return(v * (n - 1) / n)

Before this user-defined function can be used, one must input the code
so that the function, in this case var.n, is an object in the R workspace.
Normally, one places functions in a script file and uses the source function
(or copy and paste to the command line) to submit them. Here is an example
that computes s2 and σ̂2 for the temperature data of Example 1.1.

> temps = c(51.9, 51.8, 51.9, 53)

> var(temps)

[1] 0.3233333

> var.n(temps)

[1] 0.2425

Example 1.6 (functions as arguments). Many of the available R functions re-
quire functions as arguments. An example is the integrate function, which
implements numerical integration; one must supply the integrand as an argu-
ment. Suppose that we need to compute the beta function, which is defined
as

B(a,b) =
∫ 1

0
xa−1(1−x)b−1 dx,

for constants a > 0 and b > 0. First we write a function that returns the
integrand evaluated at a given point x. The additional arguments a and b
specify the exponents.

f = function(x, a=1, b=1)

x^(a-1) * (1-x)^(b-1)

The curly brackets are not needed here because there is only one line in the
function body. Also, we defined default values a = 1 and b = 1, so that if a or
b are not specified, the default values will be used. The function can be used
to evaluate the integrand along a sequence of x values.

> x = seq(0, 1, .2) #sequence from 0 to 1 with steps of .2

> f(x, a=2, b=2)

[1] 0.00 0.16 0.24 0.24 0.16 0.00

This vectorized behavior is necessary for the function argument of the in-

tegrate function; the function that evaluates the integrand must accept a
vector as its first argument and return a vector of the same length.

Now the numerical integration result for a = b = 2 can be obtained by
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> integrate(f, lower=0, upper=1, a=2, b=2)

0.1666667 with absolute error < 1.9e-15

Actually, R provides a function beta to compute this integral. We can com-
pare our numerical integration result to the value returned by the beta func-
tion:

> beta(2, 2)

[1] 0.1666667

See ?Special for more details on the beta and other special functions of
mathematics.

Rx 1.5 The integrate function is an example of a function syntax with
extra arguments (...). The complete function syntax is

integrate(f, lower, upper, ..., subdivisions=100,

rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,

stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)

The three dots are additional arguments to be passed to the integrand function
f. In our example, these extra arguments were a and b.

Example 1.7 (graphing a function using curve). R provides the curve func-
tion to display the graph of a function. For example, suppose that we wish
to graph the function

f(x) = xa−1(1−x)b−1

for a = b = 2, which is the integrand in Example 1.6. This is easily obtained
as

> curve(x*(1-x), from=0, to=1, ylab="f(x)")

See Figure 1.3 for the result. The function argument in curve is always writ-
ten as a function of x. The optional argument ylab specifies the label for the
vertical axis.

1.3 Vectors and Matrices

A vector in R contains a finite sequence of values of a single type, such as
a sequence of numbers or a sequence of characters. A matrix in R is a two
dimensional array of values of a single type.

Common operations on vectors and matrices are illustrated with the fol-
lowing probability example. A more detailed introduction to vectors and ma-
trices in R is provided in the Appendix.

Example 1.8 (Class mobility). The following model of class mobility is dis-
cussed in Ross [42, Example 4.19, p. 207]. Assume that the class of a child
(lower, middle, or upper class) depends only on the class of his/her parents.
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Fig. 1.3 Plot of the beta function for parameters a = 2, b = 2 in Example 1.7.

The class of the parents is indicated by the row label. The entries in the ta-
ble below correspond to the chance that the child will transition to the class
indicated by the column label.

lower middle upper
lower 0.45 0.48 0.07
middle 0.05 0.70 0.25
upper 0.01 0.50 0.49

To create a matrix with these transition probabilities, we use the matrix

function. First, the vector of probabilities probs is constructed to supply the
entries of the matrix. Then the matrix is defined by its entries, number of
rows, and number of columns.

> probs = c(.45, .05, .01, .48, .70, .50, .07, .25, .49)

> P = matrix(probs, nrow=3, ncol=3)

> P

[,1] [,2] [,3]

[1,] 0.45 0.48 0.07

[2,] 0.05 0.70 0.25

[3,] 0.01 0.50 0.49

Notice that the values are entered by column; to enter the data by row,
use the optional argument byrow=TRUE in the matrix function. Matrices can
optionally have row names and column names. In this case, row names and
column names are identical, so we can assign both using

> rownames(P) <- colnames(P) <- c("lower", "middle", "upper")

and the updated value of P is
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> P

lower middle upper

lower 0.45 0.48 0.07

middle 0.05 0.70 0.25

upper 0.01 0.50 0.49

In the matrix P = (pij), the probability pij in the i-th row and j-th column
is the probability of a transition from class i to class j in one generation.

This type of matrix has rows that sum to 1 (because each row is a prob-
ability distribution on the three classes). This fact can be verified by the
rowSums function.

> rowSums(P)

lower middle upper

1 1 1

Another approach uses the apply function. It requires specifying the name of
the matrix, MARGIN (row=1, column=2), and FUN (function) as its arguments.

> apply(P, MARGIN=1, FUN=sum)

lower middle upper

1 1 1

It can be shown that the transition probabilities for two generations are
given by the product P 2 = PP , which can be computed by the matrix mul-
tiplication operator %*%.

> P2 = P %*% P

> P2

lower middle upper

lower 0.2272 0.5870 0.1858

middle 0.0600 0.6390 0.3010

upper 0.0344 0.5998 0.3658

Rx 1.6 Here we did not use the syntax P^2 because P^2 squares every element
of the matrix and the result is the matrix (p2

ij), not the matrix product.

To extract elements from the matrix, the [row, column] syntax is used. If
the row or column is omitted, this specifies all rows (columns). In two gener-
ations, the probability that descendants of lower class parents can transition
to upper class is in row 1, column 3:

> P2[1, 3]

[1] 0.1858

and the probability distribution for lower class to (lower, middle, upper) is
given by row 1:

> P2[1, ]

lower middle upper

0.2272 0.5870 0.1858

After several generations, each row of the transition matrix will be approx-
imately equal, with probabilities p = (l,m,u) corresponding to the percent-
ages of lower, middle, and upper class occupations. After eight transitions,
the probabilities are P8:
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> P4 = P2 %*% P2

> P8 = P4 %*% P4

> P8

lower middle upper

lower 0.06350395 0.6233444 0.3131516

middle 0.06239010 0.6234412 0.3141687

upper 0.06216410 0.6234574 0.3143785

It can be shown that the limiting probabilities are 0.07, 0.62, and 0.31. For
the solution p, see Ross [42, p. 207].

Rx 1.7 To enter a matrix of constants, as in this example, it is usually easier
to enter data by rows using byrow=TRUE in the matrix function. Compare the
following with the example on page 17.

> Q = matrix(c( 0.45, 0.48, 0.07,

+ 0.05, 0.70, 0.25,

+ 0.01, 0.50, 0.49), nrow=3, ncol=3, byrow=TRUE)

> Q

[,1] [,2] [,3]

[1,] 0.45 0.48 0.07

[2,] 0.05 0.70 0.25

[3,] 0.01 0.50 0.49

The “by row” format makes it easier to see (visually) the data vector as a
matrix in the code.

Rx 1.8 Matrix operations for numeric matrices in R:

1. Elementwise multiplication: *
If matrices A = (aij) and B = (bij) have the same dimension, then A*B is
evaluated as the matrix with entries (aijbij).

2. If A = (aij) is a matrix then A^r is evaluated as the matrix with entries
(ar

ij).
3. Matrix multiplication: %*%

If A = (aij) is an n × k matrix and B = (bij) is a k × m matrix, then
A %*% B is evaluated as the n×m matrix product AB.

4. Matrix inverse:
If A is a nonsingular matrix, the inverse of A is returned by solve(A).

For eigenvalues and matrix factorization, see eigen, qr, chol, and svd.

1.4 Data Frames

Data frames are special types of objects in R designed for data sets that are
somewhat like matrices, but unlike matrices, the columns of a data.frame

can be different types such as numeric or character. Several data sets are
installed with R; a list of these data sets can be displayed by the command
data(). Most data sets that are provided with R are in data frame format.
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1.4.1 Introduction to data frames

The data frame format is similar to a spreadsheet, with the variables corre-
sponding to columns and the observations corresponding to rows. Variables in
a data frame may be numeric (numbers) or categorical (characters or factors).

To get an initial overview of a data frame, we are usually interested in
knowing the names of variables, type of data, sample size, numbers of missing
observations, etc.

Example 1.9 (USArrests). The USArrests data records rates of violent crimes
in the US. The statistics are given as arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. The percentage of the
population living in urban areas is also given. Some basic functions to get
started with a data frame are illustrated with this data set.

Display all data

To simply display the data, type the name of the object, USArrests.

Display top of data

To display the first few lines of data:

> head(USArrests)

Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2

Alaska 10.0 263 48 44.5

Arizona 8.1 294 80 31.0

Arkansas 8.8 190 50 19.5

California 9.0 276 91 40.6

Colorado 7.9 204 78 38.7

The result shows that we have four variables named Murder, Assault, Ur-
banPop, and Rape, and that the observations (rows) are labeled by the name
of the state. We also see that the states appear to be listed in alphabetical
order. All of the variables appear to be quantitative, which we expected from
the description above.

Sample size and dimension

How many observations are in this data set? (NROW, nrow, or dim)

> NROW(USArrests)

[1] 50

> dim(USArrests) #dimension

[1] 50 4
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The dimension (dim) of a data frame or a matrix returns a vector with the
number of rows and number of columns. NROW returns the number of ob-
servations. We have 50 observations corresponding to the 50 states in the
U.S.

Names of variables

Get (or set) names of variables in the data frame:

> names(USArrests)

[1] "Murder" "Assault" "UrbanPop" "Rape"

Structure of the data

Display information about the structure of the data frame (str):

> str(USArrests)

�data.frame�: 50 obs. of 4 variables:

$ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...

$ Assault : int 236 263 294 190 276 204 110 238 335 211 ...

$ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...

$ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...

The result of str gives the dimension as well as the name and type of each
variable. We have two numeric type and two integer type variables. Although
we can think of integer as a special case of numeric, they are stored differently
in R.

Rx 1.9 For many data sets, like USArrests, all of the data are numbers and
in this case the data can be converted to a matrix using as.matrix. But in
order to store the data in a matrix, all variables must be of the same type so
R will convert the integers to numeric. Compare the result in matrix form:

> arrests = as.matrix(USArrests)

> str(arrests)

num [1:50, 1:4] 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...

..$ : chr [1:4] "Murder" "Assault" "UrbanPop" "Rape"

This output shows that all of the data was converted to numeric, listed on the
first line as num. The attributes (attr) are the row and column names (dim-
names). The conversion preserved the row labels and converted the variable
names to column labels. We used names to get the names of the variables in
the data frame, but we would use rownames, colnames or dimnames (to get
both) to get the row and/or column names. These last three functions can
also be used on data frames.
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Missing values

The is.na function returns TRUE for a missing value and otherwise FALSE.
The expression is.na(USArrests) will return a data frame the same size as
USArrests where every entry is TRUE or FALSE. To quickly check if any of the
results are TRUE we use the any function.

> any(is.na(USArrests))

[1] FALSE

We see that USArrests does not contain missing values. A data set with
missing values is discussed in Example 2.3 on page 53.

1.4.2 Working with a data frame

In this section we illustrate some operations on data frames, and some basic
statistics and plots.

Example 1.10 (USArrests, cont.).

Compute summary statistics

Obtain appropriate summary statistics for each variable using summary. For
numeric data, the summary function computes a five-number summary and
sample mean.

> summary(USArrests)

Murder Assault UrbanPop Rape

Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30

1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07

Median : 7.250 Median :159.0 Median :66.00 Median :20.10

Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23

3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18

Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00

If there were any missing values, the number of missing values would be
included in the summaries; see e.g. Example 2.3 on page 53. If any of our
variables were categorical, summary would tabulate the values for those vari-
ables.

From the summary it appears that the mean and median are approxi-
mately equal for all variables except Assault. The mean for Assault is larger
than the median, indicating that the assault data is positively skewed.
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Extract data from a data frame

The simplest way to extract data from a data frame uses the matrix-style
[row, column] indexing.

> USArrests["California", "Murder"]

[1] 9

> USArrests["California", ]

Murder Assault UrbanPop Rape

California 9 276 91 40.6

Extract a variable using $

Variables can be extracted using the $ operator followed by the name of the
variable.

> USArrests$Assault

[1] 236 263 294 190 276 204 110 238 335 211 46 120 249 113

[15] 56 115 109 249 83 300 149 255 72 259 178 109 102 252

[29] 57 159 285 254 337 45 120 151 159 106 174 279 86 188

[43] 201 120 48 156 145 81 53 161

Histograms

In the summary of the USArrests data frame, we observed that the distribu-
tion of assaults may be positively skewed because the sample mean is larger
than the sample median. A histogram of the data helps to visualize the shape
of the distribution. We show two versions of the histogram of Assault. The
result of

> hist(USArrests$Assault)

is shown in Figure 1.4(a). The skewness is easier to observe in the second
histogram (Figure 1.4(b)), obtained using

> library(MASS) #need for truehist function

> truehist(USArrests$Assault)

There are obvious differences in the histograms; one is that the vertical scales
differ. Another is that there are a different number of bins. Figure 1.4(a) is a
frequency histogram, and Figure 1.4(b) is a probability histogram.

Rx 1.10 Try the following command and compare the result with truehist

in Figure 1.4(b):

hist(USArrests$Assault, prob=TRUE, breaks="scott")

The two histogram functions hist and truehist have different default meth-
ods for determining the bin width, and the truehist function by default pro-
duces a probability histogram. The optional arguments of hist above match
the defaults of truehist.
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Histogram of USArrests$Assault
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Fig. 1.4 Frequency histogram (a) using hist and probability histogram (b) using
truehist for the assault data in USArrests.

Attaching a data frame

If we attach the data frame, the variables can be referenced directly by
name, without the dollar sign operator. For example, it is easy to compute
the percent of crimes that are murders using vectorized operations.

> attach(USArrests)

> murder.pct = 100 * Murder / (Murder + Assault + Rape)

> head(murder.pct)

[1] 4.881657 3.149606 2.431702 4.031150 2.764128 3.152434

If a data frame is attached, it can be detached when it is no longer needed
using the detach function.

An alternative to attaching a data frame is (sometimes) to use the with

function. It is useful for displaying plots or summary statistics. However,
variables created using with are local to it.

> with(USArrests, expr={

+ murder.pct = 100 * Murder / (Murder + Assault + Rape)

+ })

> murder.pct

Error: object �murder.pct� not found

The documentation for with states that “assignments within expr take place
in the constructed environment and not in the user’s workspace.” So all com-
putations involving the variable murder.pct created in the expr block of the
with function would have to be completed within the scope of the expr block.
This can sometimes lead to unexpected errors in an analysis that can easily
go undetected.
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Rx 1.11 Is it good programming practice to attach a data frame? A disad-
vantage is that there can be conflicts with names of variables already in the
workspace. Many functions in R have a data argument, which allows the vari-
ables to be referenced by name within the list of arguments, without attaching
the data frame. Unfortunately, some R functions (such as plot) do not have
a data argument. The use of with could lead to unexpected programming er-
rors, especially for novices. Overall, we find that attaching a data frame is
sometimes helpful to make code more readable.

Scatterplots and correlations

In the USArrests data all of the variables are numbers, so it is interesting
to display scatterplots of different pairs of data to look for possible relations
between the variables. We can display a single scatterplot using the plot

function. Recall that above we have attached the data frame using attach so
the variables can be referenced directly by name. To obtain a plot of murders
vs percent urban population we use

> plot(UrbanPop, Murder)

and the result is shown in Figure 1.5. The plot does not reveal a very strong
relation between murders and percent population. The pairs function can
be used to display an array of scatterplots for each pair of variables.

> pairs(USArrests)

The pairs plot shown in Figure 1.6 conveys much information about the data.
There appears to be a positive association between murder and assault rates,
but weak or no association between murder and percent urban population.
There is a positive association between rape and percent urban population.

The correlation statistic measures the degree of linear association between
two variables. One can obtain correlation for a pair of variables or a table
of correlation statistics for a group of variables using the cor function. By
default it computes the Pearson correlation coefficient.

> cor(UrbanPop, Murder)

[1] 0.06957262

> cor(USArrests)

Murder Assault UrbanPop Rape

Murder 1.00000000 0.8018733 0.06957262 0.5635788

Assault 0.80187331 1.0000000 0.25887170 0.6652412

UrbanPop 0.06957262 0.2588717 1.00000000 0.4113412

Rape 0.56357883 0.6652412 0.41134124 1.0000000

All of the correlations are positive in sign. The small correlation of r
.= 0.07

between Murder and UrbanPop is consistent with our interpretation of the
scatterplot in Figure 1.5. There is a strong positive correlation (r = 0.80)
between Murder and Assault, also consistent with the plot in Figure 1.6.
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Fig. 1.5 Scatterplot of murder rate vs percent urban population in USArrests.

1.5 Importing Data

A preliminary task for data analysis is to import data into R. Data sets may
be found on the web, in plain text (space delimited) files, spreadsheets, and
many other formats. R contains utility functions to import data in a variety
of formats. When a data set is imported into R, typically we store it in an
R data.frame object. See the examples of Section 1.4.

In this section we cover various methods of importing data, including:

� Entering data manually.
� Importing data from a plain text (ASCII) local file.
� Importing data given in tabular form on a web page.

1.5.1 Entering data manually

In the first few examples of this chapter we have seen how to enter data
vectors using the c (combine) function. The scan function is sometimes useful
for entering small data sets interactively. See Example 3.1 “Flipping a Coin”
in Chapter 3 for an example.

The concept for this book was originally inspired by students’ questions in
a statistics course. After learning some R basics, students were eager to try
their textbook problems in R, but typically needed help to enter the data.
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Fig. 1.6 An array of scatterplots produced by pairs for the USArrests data.

The next example shows how to enter a very small data set that one might
find among the exercises in a statistics textbook.

Example 1.11 (Data from a textbook). A table of gas mileages on four new
models of Japanese luxury cars is given in Larsen & Marx [30, Ques-
tion 12.1.1], which is shown in Table 1.4. The reader was asked to test if
the four models give the same gas mileage, on average.

Table 1.4 Gas mileage on four models of Japanese luxury cars, from a problem in
Larsen & Marx [30, 12.1.1].

Model
A B C D
22 28 29 23
26 24 32 24

29 28
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To solve the stated problem, we need to enter the data as two variables
(gas mileage and model). One method of doing so is shown below. The rep

(replicate) function is used to create the sequences of letters.

> y1 = c(22, 26)

> y2 = c(28, 24, 29)

> y3 = c(29, 32, 28)

> y4 = c(23, 24)

> y = c(y1, y2, y3, y4)

> Model = c(rep("A", 2), rep("B", 3), rep("C", 3), rep("D", 2))

We see that y and Model have been entered correctly:

> y

[1] 22 26 28 24 29 29 32 28 23 24

> Model

[1] "A" "A" "B" "B" "B" "C" "C" "C" "D" "D"

The data frame is created by

> mileages = data.frame(y, Model)

The character vector Model is converted to a factor by default when the data
frame is created. We can check that the structure of our data frame is correct
using the structure (str) function.

> str(mileages)

�data.frame�: 10 obs. of 2 variables:

$ y : num 22 26 28 24 29 29 32 28 23 24

$ Model: Factor w/ 4 levels "A","B","C","D": 1 1 2 2 2 3 3 3 4 4

and

> mileages

y Model

1 22 A

2 26 A

3 28 B

4 24 B

5 29 B

6 29 C

7 32 C

8 28 C

9 23 D

10 24 D

Our data set is ready for analysis, which is left as an exercise for a later
chapter (Exercise 8.1).

1.5.2 Importing data from a text file

It is often the case that data for analysis is contained in an external file (ex-
ternal to R) in plain text (ASCII) format. The data is typically delimited
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or separated by a special character such as a space, tab, or comma. The
read.table function provides optional arguments such as sep for the sepa-
rator character and header to indicate whether or not the first row contains
variable names.

Example 1.12 (Massachusetts Lunatics). Importing data from a plain text
file can be illustrated with an example of a data set available on the website
“Data and Story Library” (DASL). The Massachusetts lunatics data is avail-
able at http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.html.

These data are from an 1854 survey conducted by the Massachusetts Com-
mission on Lunacy. Fourteen counties were surveyed. The data can be copied
from the web page, and simply pasted into a plain text file. Although the
result is not nicely formatted, it is space delimited (columns separated by
spaces). The data is saved in “lunatics.txt” in our current working directory.
This data set should be imported into a data frame that has 14 rows and six
columns, corresponding to the following variables:

1. COUNTY = Name of county
2. NBR = Number of lunatics, by county
3. DIST = Distance to nearest mental health center
4. POP = County population , 1950 (thousands)
5. PDEN = County population density per square mile
6. PHOME = Percent of lunatics cared for at home

Use the read.table function to read the file into a data frame. The argu-
ment header=TRUE specifies that the first line contains variable names rather
than data. Type ?read.table for a description of other possible arguments.

> lunatics = read.table("lunatics.txt", header=TRUE)

The str (structure) function provides a quick check that 14 observations of
six variables were successfully imported.

> str(lunatics)

�data.frame�: 14 obs. of 6 variables:

$ COUNTY: Factor w/ 14 levels "BARNSTABLE","BERKSHIRE",..

$ NBR : int 119 84 94 105 351 357 377 458 241 158 ...

$ DIST : int 97 62 54 52 20 14 10 4 14 14 ...

$ POP : num 26.7 22.3 23.3 18.9 82.8 ...

$ PDEN : int 56 45 72 94 98 231 3252 3042 235 151 ...

$ PHOME : int 77 81 75 69 64 47 47 6 49 60 ...

Now since lunatics is a relatively small data set, we can simply print it to
view the result of read.table that we used to import the data. Typing the
name of the data set causes it to be printed (displayed) at the console.

> lunatics

COUNTY NBR DIST POP PDEN PHOME

1 BERKSHIRE 119 97 26.656 56 77

2 FRANKLIN 84 62 22.260 45 81

3 HAMPSHIRE 94 54 23.312 72 75

4 HAMPDEN 105 52 18.900 94 69

http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.html
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5 WORCESTER 351 20 82.836 98 64

6 MIDDLESEX 357 14 66.759 231 47

7 ESSEX 377 10 95.004 3252 47

8 SUFFOLK 458 4 123.202 3042 6

9 NORFOLK 241 14 62.901 235 49

10 BRISTOL 158 14 29.704 151 60

11 PLYMOUTH 139 16 32.526 91 68

12 BARNSTABLE 78 44 16.692 93 76

13 NANTUCKET 12 77 1.740 179 25

14 DUKES 19 52 7.524 46 79

The Massachusetts lunatics data set is discussed in Example 7.8 of our re-
gression chapter.

In the example above, the data in the file “lunatics.txt” is delimited by
space characters. Often data is found in a spreadsheet format, delimited by
tab characters or commas.

For tab-delimited files, simply change the sep argument to the tab charac-
ter \t. An example appears in Chapter 5 on exploratory data analysis, where
the tab-delimited data file “college.txt” is imported using the command

dat = read.table("college.txt", header=TRUE, sep="\t")

Rx 1.12 The simplest way to import spreadsheet data is to save it in .csv
format (comma separated values) or a tab-delimited format. The worksheet
should contain only data and possibly the header with names. For .csv files,
use the read.table function with sep="," as shown below

> lunatics = read.table("lunatics.csv", header=TRUE, sep=",")

or use read.csv for this type of file:

> lunatics = read.csv("lunatics.csv")

1.5.3 Data available on the internet

Many of the interesting data sets that one may wish to analyze are available
on a web page. R provides an easy way to access data from a file on the
internet using the URL of the web page. The function read.table can be used
to input data directly from the internet. This is illustrated in the following
example.

Example 1.13 (Digits of π). The data file“PiDigits.dat”contains the first 5000
digits of the mathematical constant π = 3.1415926535897932384 . . . . The data
is one of the Statistical Reference Datasets provided by the National Institute
of Standards and Technology (NIST).2 Documentation is inserted at the top
of the file, and the digits start on line 61. We use the read.table function

2 http://www.itl.nist.gov/div898/strd/univ/pidigits.html

http://www.itl.nist.gov/div898/strd/univ/pidigits.html
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with the complete URL3 (web address) and skip=60 to read the data starting
at line 61. We display the first six digits to check the result:

pidigits = read.table(

"http://www.itl.nist.gov/div898/strd/univ/data/PiDigits.dat",

skip=60)

head(pidigits)

V1

1 3

2 1

3 4

4 1

5 5

6 9

Here although we have only one variable, our data pidigits is a data
frame. The data frame was automatically created because we used read.table
to import the data and a default label of V1 assigned to the single variable.

Are the digits of π uniformly distributed? The digits can be summarized
in a table by the table function and summarized graphically in a plot.

> table(pidigits)

pidigits

0 1 2 3 4 5 6 7 8 9

466 531 496 461 508 525 513 488 491 521

For easier interpretation, it is more convenient to summarize proportions. We
can convert the table to proportions in one step by dividing by 5000; this is
another example of vectorized operations.

> prop = table(pidigits) / 5000 #proportions

> prop

pidigits

0 1 2 3 4 5 6 7 8 9

0.0932 0.1062 0.0992 0.0922 0.1016 0.1050 0.1026 0.0976 0.0982 0.1042

Recall that the variance of a sample proportion is p(1 − p)/n. If the true
proportion is 0.1 for every digit, then the standard error (se) is

> sqrt(.1 * .9 / 5000)

[1] 0.004242641

However, if the true proportions are unknown, the sample estimates of pro-
portions are used. In this case we obtain slightly different results for se. In the
calculation of se the constants 0.1 and 0.9 are replaced by vectors of length
10, so the result is a vector of length 10 rather than a scalar. We can display
the sample proportion plus or minus two standard errors using vectorized
arithmetic. The rbind function is handy to collect the results together into a

3 The URL should be enclosed in quotes and on a single line; otherwise an error
message “cannot open the connection” occurs.

http://www.itl.nist.gov/div898/strd/univ/data/PiDigits.dat
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matrix for display. We round the result and include the estimate of standard
error in the display.

> se.hat = sqrt(prop * (1-prop) / 5000)

> round(rbind(prop, se.hat, prop-2*se.hat, prop+2*se.hat), 4)

0 1 2 3 4 5 6

prop 0.0932 0.1062 0.0992 0.0922 0.1016 0.1050 0.1026

se.hat 0.0041 0.0044 0.0042 0.0041 0.0043 0.0043 0.0043

0.0850 0.0975 0.0907 0.0840 0.0931 0.0963 0.0940

0.1014 0.1149 0.1077 0.1004 0.1101 0.1137 0.1112

7 8 9

prop 0.0976 0.0982 0.1042

se.hat 0.0042 0.0042 0.0043

0.0892 0.0898 0.0956

0.1060 0.1066 0.1128

Here we see that none of the sample proportions falls outside of the interval
0.1±2 ŝe.

A barplot helps to visualize the tabulated data. A horizontal reference line
is added through 0.1 using abline. The plot is shown in Figure 1.7.

barplot(prop, xlab="digit", ylab="proportion")

abline(h = .1)
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Fig. 1.7 Barplot of proportion of digits in the mathematical constant π.
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1.6 Packages

R functions are grouped into packages, such as the base package, datasets,
graphics, or stats. A number of recommended packages are included in the
R distribution; some examples are boot (bootstrap), MASS [50], and lattice

(graphics). In addition, thousands of contributed packages are available to
install. Type the command

library()

to display a list of installed packages. For example, on our system currently
this command produces a list starting with

Packages in library �C:/R/R-2.13.0/library�:

base The R Base Package

boot Bootstrap R (S-Plus) Functions (Canty)

bootstrap Functions for the Book "An Introduction to the

Bootstrap"

...

Each of these packages is currently installed on our system. The base and
boot packages were automatically installed. We installed the bootstrap pack-
age [31] through the Packages menu. Although there is excellent support for
bootstrap in the boot package, we also want to have access to the data sets
for the book An Introduction to the Bootstrap by Efron and Tibshirani [14],
which are available in the bootstrap package.

Example 1.14 (Using the bootstrap package). Suppose that we are interested
in the examples related to the “law” data in the bootstrap package. Typing
law at the prompt produces the following error because no object named
“law” is found on the R search path.

> law

Error: object �law� not found

We get a similar warning with

> data(law)

Warning message:

In data(law) : data set �law� not found

In order to use law we first install the bootstrap package. This can be
done in the R GUI using the Packages menu, or by typing the command

install.packages("bootstrap")

The system will prompt the user to select a server:

--- Please select a CRAN mirror for use in this session ---

and after the server is selected, the package will be installed. The only time
that the package needs to be re-installed is when a new version of R is in-
stalled. A list of data files in the bootstrap package is displayed by
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> data(package="bootstrap")

However, to use the objects in the package, one first needs to load it using
the library function,

> library(bootstrap)

and then the objects in the package will be available. Loading the package
with the library function typically needs to be done once in each new R
session (each time the program is opened). Another useful feature of the
library function is to get help for a package: either of the following display
a summary of the package.

library(help=bootstrap)

help(package=bootstrap)

Finally, we want to use the law data, which is now loaded and accessible in
the R workspace.

> library(bootstrap)

> law

LSAT GPA

1 576 339

2 635 330

3 558 281

4 578 303

5 666 344

6 580 307

7 555 300

8 661 343

9 651 336

10 605 313

11 653 312

12 575 274

13 545 276

14 572 288

15 594 296

For example, we may want to compute the sample means or the correlation
between LSAT scores and GPA.

> mean(law)

LSAT GPA

600.2667 309.4667

> cor(law$LSAT, law$GPA)

[1] 0.7763745

After installing R, and periodically thereafter, one should update packages
using update.packages or the Packages menu.

Searching for data or methods in packages

With thousands of contributed packages available for R, it is likely that what-
ever method one would like to apply has been implemented in an R package.
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Many well known data sets can also be found in R packages. To search any
installed packages, use help.search or ??. Keep in mind that help.search
and ?? do not search outside of the current R installation.

For example, suppose that we are trying to find a data set on heights of
fathers and sons. We can try ??height but none of the hits seem relevant.
Next we go to the R homepage at www.r-project.org and click on Search.
Using the R site search we get several relevant hits. The data set galton

in package UsingR [51] is relevant (“Galton’s height data for parents and
children”) and we also find a link to the data set father.son in UsingR,
which is exactly what we were looking for. We can install the package UsingR
and the father.son data will be available after loading the package with
library(UsingR).

One way to find an implementation of a particular method is to search
on the R home page at www.r-project.org. A good general resource is to
consult one or more of the Task Views (see page 38).

1.7 The R Workspace

When the user ends an R session by closing the R GUI or typing the quit
command q(), a dialog appears asking “Save workspace image?”. Usually one
would not need to save the workspace image. Data is typically saved in files
and reusable R commands should be saved in scripts.

One can list the objects in the current workspace by the command ls() or
objects(). Starting with a new R session and no previously saved workspace,
ls() returns an empty list.

> ls()

character(0)

After running the script “horsekicks.R” on page 11, a few objects have been
added to the workspace. These objects will persist until the R session is ended
or until removed or redefined by the user.

> source("/Rx/horsekicks.R")

[1] 0.545 0.325 0.110 0.015 0.005

[1] 0.61

[1] 0.6109548

k p f

[1,] 0 0.545 0.543350869

[2,] 1 0.325 0.331444030

[3,] 2 0.110 0.101090429

[4,] 3 0.015 0.020555054

[5,] 4 0.005 0.003134646

The ls function displays the names of objects that now exist in the R
workspace.

> ls()

[1] "f" "k" "p" "r" "v" "x"

http://www.r-project.org
http://www.r-project.org
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To remove an object from the workspace use the rm or remove function.

> rm("v")

> ls()

[1] "f" "k" "p" "r" "x"

> remove(list=c("f", "r"))

> ls()

[1] "k" "p" "x"

If the workspace is saved upon exiting at this point, k, p, and x will be
saved. However, saving a workspace combined with human error can lead to
unnoticed serious programming errors. A typical example is when one forgets
to define an object such as x but because it was already in the workspace
(unintended and incorrect values for x) the R code may run without any
reported errors. The unsuspecting user may never know that the analysis
was completely wrong.

Finally to restore the R workspace to the “fresh” condition with no user-
defined objects in the workspace, we can use the following code. This removes
all objects listed by ls() without warning.

rm(list = ls())

This is best done at the beginning or the end of a session. Wait until the end
of this chapter to try it.

1.8 Options and Resources

The options function

For more readable tables of data, we may want to round the displayed data.
This can be done by explicitly rounding what is to be displayed:

> pi

[1] 3.141593

> round(pi, 5)

[1] 3.14159

Alternately, there is an option that governs the number of digits to display
that can be set. The default is digits=7.

> options(digits=4)

> pi

[1] 3.142

To see the current values of options, type options(). Another option that
helps to control the display is width; it controls how many characters are
printed on each line. Illustrated below are two ways to get the current value
of the width option, and changing the width option.
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> options()$width #current option for width

[1] 70

> options(width=60) #change width to 60 characters

> getOption("width") #current option for width

[1] 60

Graphical parameters: par

Another set of options, for graphical parameters, is controlled by the par

function. A useful one to know is how to change the “prompt user for next
graph” behavior. It can be turned on/off by changing the graphics parameter
ask; for example, to turn this prompt off:

par(ask = FALSE)

Another option that we use in this book is mfrow or mfcol to control how
many figures are displayed in the current graphics window. For example,
par(mfrow=c(2, 2)) will present figures in a 2 by 2 array, by row. The
graphical parameters that can be set using par are described in the help
topic ?par.

Rx 1.13 There are so many possible parameters to graphics functions, that
usually only a subset of them are listed in the documentation. For example,
the plot help page starts with

Generic function for plotting of R objects. For more

details about the graphical parameter arguments, see �par�.

The par help page contains further documentation for plot and other graph-
ics functions.

Graph history

In Windows, when a graphics window is active (on top), one can select Record-
ing from the History menu. This has the effect of storing any graphs that
are subsequently displayed, so that the user can use the page up/page down
keys to page through the graphs.

If you construct multiple plots on a Macintosh, then with the graph se-
lected, you can go Back or Forward from the Quartz menu to see previous
graphs.
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Other resources

In addition to the manuals, frequently asked questions (FAQ), and online
help included with R, there are many contributed files and web pages with
excellent tutorials, examples, and explanations. A list is available on the R
web site.4

Task Views

“Task Views” for different types of statistical analyses are available on CRAN.
Go to the R project home page at www.r-project.org and click on CRAN,
then choose a mirror site near you. The CRAN page has a link to Task
Views on several subjects. A Task View lists functions and packages that
are related to the named task, such as “Bayesian”, “Multivariate” or “Time
Series”. A direct link is http://cran.at.r-project.org/web/views/.

External resources

In addition to materials found on the R project website, there are many
useful materials to be found on the web. There is an interesting collection of
information and examples in R Wiki,5 including the list of examples in the
R Graph Gallery. There is also a list of other R Wiki’s. A nicely organized
external resource is “Quick R: for SAS/SPSS/Stata Users” at http://www.
statmethods.net/index.html.

The R Graph Gallery and R Graphical Manual

For more experienced R users, a great resource for graphics is the R Graph
Gallery.6 We display the Gallery’s home page and click on ‘Thumbnails’ to
view small images of the graphs. Each graph includes the corresponding R
code to produce the graph. Alternately one can select graphs by keyword
or simply browse. The R Graphical Manual7 illustrates thousands of graphs
organized by image, task view, data set, or package.

4 Contributed documentation, http://cran.r-project.org/other-docs.html
5 R Wiki, http://rwiki.sciviews.org/doku.php
6 R Graph Gallery, http://addictedtor.free.fr/graphiques/
7 R Graphical Manual, http://rgm2.lab.nig.ac.jp/RGM2/images.php?show=all

http://www.r-project.org
http://cran.at.r-project.org/web/views/
http://www.statmethods.net/index.html.
http://cran.r-project.org/other-docs.html
http://rwiki.sciviews.org/doku.php
http://addictedtor.free.fr/graphiques/
http://rgm2.lab.nig.ac.jp/RGM2/images.php?show=all
http://www.statmethods.net/index.html.
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1.9 Reports and Reproducible Research

Most data analysis will be summarized in some type of report or article.
The process of “copy and paste” for commands and output can lead to errors
and omissions. Reproducible research refers to methods of reporting that
combine the data analysis, output, graphics, and written report together in
such a way that the entire analysis and report can be reproduced by others.
Various formats for reports may include word processing documents, LATEX,
or HTML.

The Sweave function in R facilitates generating this type of report. There
is a LATEX package (Sweave) that generates a .tex file from the Sweave
output. Various other packages such as R2wd (R to Word), R2PPT (R to
PowerPoint), odfWeave (open document format), R2HTML (HTML), can be
installed. Commercial packages are also available (e.g. RTFGen and Infer-
ence for R). For more details see the Task View “Reproducible Research” on
CRAN.8

Exercises

1.1 (Normal percentiles). The qnorm function returns the percentiles
(quantiles) of a normal distribution. Use the qnorm function to find the 95th

percentile of the standard normal distribution. Then, use the qnorm function
to find the quartiles of the standard normal distribution (the quartiles are
the 25th, 50th, and 75th percentiles). Hint: Use c(.25, .5, .75) as the first
argument to qnorm.

1.2 (Chi-square density curve). Use the curve function to display the
graph of the χ2(1) density. The chi-square density function is dchisq.

1.3 (Gamma densities). Use the curve function to display the graph of the
gamma density with shape parameter 1 and rate parameter 1. Then use the
curve function with add=TRUE to display the graphs of the gamma density
with shape parameter k and rate 1 for 2,3, all in the same graphics window.
The gamma density function is dgamma. Consult the help file ?dgamma to see
how to specify the parameters.

1.4 (Binomial probabilities). Let X be the number of “ones” obtained in
12 rolls of a fair die. Then X has a Binomial(n = 12,p = 1/3) distribution.
Compute a table of binomial probabilities for x = 0,1, . . . ,12 by two methods:

a. Use the probability density formula

P (X = k) =
(

n

k

)
pk(1−p)n−k

8 http://cran.at.r-project.org/web/views/ReproducibleResearch.html.

http://cran.at.r-project.org/web/views/ReproducibleResearch.html
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and vectorized arithmetic in R. Use 0:12 for the sequence of x values and
the choose function to compute the binomial coefficients

(n
k

)
.

b. Use the dbinom function provided in R and compare your results using
both methods.

1.5 (Binomial CDF). Let X be the number of “ones” obtained in 12 rolls
of a fair die. Then X has a Binomial(n = 12,p = 1/3) distribution. Compute
a table of cumulative binomial probabilities (the CDF) for x = 0,1, . . . ,12 by
two methods: (1) using cumsum and the result of Exercise 1.4, and (2) using
the pbinom function. What is P (X > 7)?

1.6 (Presidents’ heights). Refer to Example 1.2 where the heights of the
United States Presidents are compared with their main opponent in the pres-
idential election. Create a scatterplot of the loser’s height vs the winner’s
height using the plot function. Compare the plot to the more detailed plot
shown in the Wikipedia article “Heights of Presidents of the United States
and presidential candidates” [54].

1.7 (Simulated“horsekicks”data). The rpois function generates random
observations from a Poisson distribution. In Example 1.3, we compared the
deaths due to horsekicks to a Poisson distribution with mean λ = 0.61, and
in Example 1.4 we simulated random Poisson(λ = 0.61) data. Use the rpois
function to simulate very large (n = 1000 and n = 10000) Poisson(λ = 0.61)
random samples. Find the frequency distribution, mean and variance for the
sample. Compare the theoretical Poisson density with the sample proportions
(see Example 1.4).

1.8 (horsekicks, continued). Refer to Example 1.3. Using the ppois func-
tion, compute the cumulative distribution function (CDF) for the Poisson
distribution with mean λ = 0.61, for the values 0 to 4. Compare these proba-
bilities with the empirical CDF. The empirical CDF is the cumulative sum of
the sample proportions p, which is easily computed using the cumsum func-
tion. Combine the values of 0:4, the CDF, and the empirical CDF in a matrix
to display these results in a single table.

1.9 (Custom standard deviation function). Write a function sd.n simi-
lar to the function var.n in Example 1.5 that will return the estimate σ̂ (the
square root of σ̂2). Try this function on the temperature data of Example
1.1.

1.10 (Euclidean norm function). Write a function norm that will compute
the Euclidean norm of a numeric vector. The Euclidean norm of a vector
x = (x1, . . . ,xn) is

‖x‖ =

√√√√ n∑
i=1

x2
i .

Use vectorized operations to compute the sum. Try this function on the vec-
tors (0,0,0,1) and (2,5,2,4) to check that your function result is correct.



1.9 Reports and Reproducible Research 41

1.11 (Numerical integration). Use the curve function to display the

graph of the function f(x) = e−x2
/(1 + x2) on the interval 0 ≤ x ≤ 10. Then

use the integrate function to compute the value of the integral∫ ∞

0

e−x2

1+x2 dx.

The upper limit at infinity is specified by upper=Inf in the integrate func-
tion.

1.12 (Bivariate normal). Construct a matrix with 10 rows and 2 columns,
containing random standard normal data:

x = matrix(rnorm(20), 10, 2)

This is a random sample of 10 observations from a standard bivariate normal
distribution. Use the apply function and your norm function from Exercise
1.10 to compute the Euclidean norms for each of these 10 observations.

1.13 (lunatics data). Obtain a five-number summary for the numeric vari-
ables in the lunatics data set (see Example 1.12). From the summary we can
get an idea about the skewness of variables by comparing the median and
the mean population. Which of the distributions are skewed, and in which
direction?

1.14 (Tearing factor of paper). The following data describe the tearing
factor of paper manufactured under different pressures during pressing. The
data is given in Hand et al. [21, Page 4]. Four sheets of paper were selected
and tested from each of the five batches manufactured.

Pressure Tear factor
35.0 112 119 117 113
49.5 108 99 112 118
70.0 120 106 102 109
99.0 110 101 99 104
140.0 100 102 96 101

Enter this data into an R data frame with two variables: tear factor and
pressure. Hint: it may be easiest to enter it into a spreadsheet, and then
save it as a tab or comma delimited file (.txt or .csv). There should be 20
observations after a successful import.

1.15 (Vectorized operations). We have seen two examples of vectorized
arithmetic in Example 1.1. In the conversion to Celsius, the operations in-
volved one vector temps of length four and scalars (32 and 5/9). When we
computed differences, the operation involved two vectors temps and CT of
length four. In both cases, the arithmetic operations were applied element
by element. What would happen if two vectors of different lengths appear
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together in an arithmetic expression? Try the following examples using the
colon operator : to generate a sequence of consecutive integers.
a.

x = 1:8

n = 1:2

x + n

b.

n = 1:3

x + n

Explain how the elements of the shorter vector were “recycled” in each case.



Chapter 2

Quantitative Data

2.1 Introduction

This chapter covers some basic numerical and graphical summaries of data.
Different numerical summaries and graphical displays would be appropriate
for different types of data. A variable may be classified as one of the following
types,

� Quantitative (numeric or integer)
� Ordinal (ordered, like integers)
� Qualitative (categorical, nominal, or factor)

and a data frame may contain several variables of possibly different types.
There may be some structure to the data, such as in time series data, which
has a time index. In this chapter we present examples of selected numerical
and graphical summaries for various types of data. Chapter 3 covers sum-
maries of categorical data in more detail. A natural continuation of Chapters
2 and 3 might be Chapter 5, “Exploratory Data Analysis.”

2.2 Bivariate Data: Two Quantitative Variables

Our first example is a bivariate data set with two numeric variables, the
body and brain size of mammals. We use it to illustrate some basic statistics,
graphics, and operations on the data.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__2,
© Springer Science+Business Media, LLC 2012
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2.2.1 Exploring the data

Body and brain size of mammals

There are many data sets included with the R distribution. A list of the
available data sets can be displayed with the data() command. MASS [50] is
one of the recommended packages that is bundled with the base R package,
so it should already be installed with R. To use the data sets or functions in
MASS one first loads MASS by the command

> library(MASS) #load the package

> data() #display available datasets

After the MASS package is loaded, the data sets in MASS will be included in
the list of available datasets generated by the data() command.

Example 2.1 (mammals). In the result of the data() command, under the
heading “Data sets in package MASS:” there is a data set named mammals.
The command

> ?mammals

displays information about the mammals data. This data contains brain size
and body size for 62 mammals. Typing the name of the data set causes the
data to be printed at the console. It is rather long, so here we just display
the first few observations using head.

> head(mammals)

body brain

Arctic fox 3.385 44.5

Owl monkey 0.480 15.5

Mountain beaver 1.350 8.1

Cow 465.000 423.0

Grey wolf 36.330 119.5

Goat 27.660 115.0

This data consists of two numeric variables, body and brain.

Rx 2.1 In the display above it is not obvious whether mammals is a matrix
or a data frame. One way to check whether we have a matrix or a data frame
is:

> is.matrix(mammals)

[1] FALSE

> is.data.frame(mammals)

[1] TRUE

One could convert mammals to a matrix by as.matrix(mammals) if a matrix
would be required in an analysis.
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Some basic statistics and plots

The summary method computes a five number summary and mean for each
numeric variable in the data frame.

> summary(mammals)

body brain

Min. : 0.005 Min. : 0.14

1st Qu.: 0.600 1st Qu.: 4.25

Median : 3.342 Median : 17.25

Mean : 198.790 Mean : 283.13

3rd Qu.: 48.203 3rd Qu.: 166.00

Max. :6654.000 Max. :5712.00

If there were any missing data, these would appear in the summary as NA.
The five number summaries are difficult to interpret because there are some
extremely large observations (the means exceed not only the medians but
also the third quartiles). This is clear if we view the five number summaries
as side-by-side boxplots.

> boxplot(mammals)

The boxplots are shown in Figure 2.1(a). A scatterplot helps to visualize the
relation between two quantitative variables. For a data frame with exactly
two numeric variables like mammals, a scatterplot is obtained with the default
arguments of plot.

> plot(mammals)

The scatterplot, shown in Figure 2.2(a), is not as informative as it could be
because of the scale. A log transformation may produce a more informative
plot. We display the scatterplot for the full mammals data set (on log-log scale)
in Figure 2.2(b). (The log function computes the natural logarithm.)

> plot(log(mammals$body), log(mammals$brain),

+ xlab="log(body)", ylab="log(brain)")

In the second plot command we have also added descriptive labels for the
axes.

Rx 2.2 We have seen that mammals consists of two numeric variables, body
and brain, so the operation log(mammals) applies the natural logarithm func-
tion to the two numeric variables, returning a data frame of two numeric
variables (log(body), log(brain)). This is a convenient shortcut, but of course
it would not work if the data frame contained variables for which the logarithm
is undefined.

The summaries for the logarithms of body size and brain size are

> summary(log(mammals))

body brain

Min. :-5.2983 Min. :-1.966

1st Qu.:-0.5203 1st Qu.: 1.442
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Median : 1.2066 Median : 2.848

Mean : 1.3375 Mean : 3.140

3rd Qu.: 3.8639 3rd Qu.: 5.111

Max. : 8.8030 Max. : 8.650

and the corresponding side-by-side boxplots of the transformed data shown
in Figure 2.1(b) are obtained by

boxplot(log(mammals), names=c("log(body)", "log(brain)"))

The default labels on the boxplots in Figure 2.1(b) would have been the
variable names (“body”, “brain”), so we added more descriptive labels to the
plot with names.
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Fig. 2.1 Box plots of mammals brain size vs body size on (a) original and (b) log-log
scale in Example 2.1.

2.2.2 Correlation and regression line

In Figure 2.2(b) we can now observe a linear trend; logarithms of body and
brain size are positively correlated. We can compute the correlation matrix
of the data on the log-log scale by

> cor(log(mammals))

body brain

body 1.0000000 0.9595748

brain 0.9595748 1.0000000

or compute the correlation coefficient by
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Fig. 2.2 Scatterplots of mammals brain size vs body size on (a) original and (b)
log-log scale in Example 2.1.

> cor(log(mammals$body), log(mammals$brain))

[1] 0.9595748

Simple linear regression is covered in Chapter 7. However, the code to add a
fitted straight line to the log-log plot is quite simple. The lm function returns
the coefficients of the line, and the line can be added to the log-log plot by
the abline function (see Figure 2.3.)

> plot(log(mammals$body), log(mammals$brain),

+ xlab="log(body)", ylab="log(brain)")

> x = log(mammals$body); y = log(mammals$brain)

> abline(lm(y ~ x))

Rx 2.3 A fitted line was added to the scatterplot in Figure 2.3 by the code
abline(lm(y ~ x)). lm is a function and y ~ x is a formula. This is one
of many examples where the formula syntax is used in this book. A formula

can be recognized by the tilde operator ∼, which connects a dependent vari-
able on the left and predictor variable(s) on the right. Formulas will appear
as arguments of some types of plot functions, and in the model specification
argument for regression and analysis of variance model fitting. See the box-

plot function that is used to produce Figure 2.4 below for an example of a
formula argument in a plotting function.
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Fig. 2.3 Scatterplot on log-log scale with fitted line in Example 2.1.

2.2.3 Analysis of bivariate data by group

IQ of twins

Example 2.2 (IQ of twins separated near birth). The data file “twinIQ.txt”
contains IQ data on identical twins that were separated near birth. The data
in the file is also available as a data set in the UsingR package [51] as twins.
There are 27 observations on 3 variables:

Foster IQ for twin raised with foster parents
Biological IQ for twin raised with biological parents
Social Social status of biological parents

The data set, which is shown in Table 2.1, can be imported using

> twins = read.table("c:/Rx/twinIQ.txt", header=TRUE)

and we display the first few observations with

> head(twins)

Foster Biological Social

1 82 82 high

2 80 90 high

3 88 91 high

4 108 115 high

5 116 115 high

6 117 129 high
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Next, we compute appropriate numerical summaries for each variable using
summary.

> summary(twins)

Foster Biological Social

Min. : 63.00 Min. : 68.0 high : 7

1st Qu.: 84.50 1st Qu.: 83.5 low :14

Median : 94.00 Median : 94.0 middle: 6

Mean : 95.11 Mean : 95.3

3rd Qu.:107.50 3rd Qu.:104.5

Max. :132.00 Max. :131.0

The summary function displays five number summaries and means for the two
IQ scores, which are numeric, and a frequency table for the factor, Social.
The five number summaries of the IQ scores are very similar.

Table 2.1 IQ of twins separated near birth. The data is given in three columns in
the file “twinIQ.txt”.

Foster Biological Social Foster Biological Social Foster Biological Social
82 82 high 71 78 middle 63 68 low
80 90 high 75 79 middle 77 73 low
88 91 high 93 82 middle 86 81 low

108 115 high 95 97 middle 83 85 low
116 115 high 88 100 middle 93 87 low
117 129 high 111 107 middle 97 87 low
132 131 high 87 93 low

94 94 low
96 95 low

112 97 low
113 97 low
106 103 low
107 106 low
98 111 low

We can display side-by-side boxplots of the difference in IQ scores by social
status for comparison, using the formula Foster - Biological ∼ Social.

> boxplot(Foster - Biological ~ Social, twins)

The boxplot shown in Figure 2.4 suggests that there could be differences
in IQ for twins raised separately, but it is not clear whether the differences
are significant. Another way to view this data is in a scatterplot, with the
social status indicated by plotting character or color. This type of plot can
be displayed by creating an integer variable for Social and using it to select
the plotting characters (pch) and colors (col).

> status = as.integer(Social)

> status

[1] 1 1 1 1 1 1 1 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

> plot(Foster ~ Biological, data=twins, pch=status, col=status)
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The scatterplot is shown in Figure 2.5. Note that the levels of the factor
Social are converted in alphabetical order: high=1, low=2, middle=3. To
add the legend to the plot we used

> legend("topleft", c("high","low","middle"),

+ pch=1:3, col=1:3, inset=.02)

(On a color display, the symbols for high, low, and medium appear in colors
black, red, and green, respectively.) To add the line Foster=Biological to the
plot, we used abline with intercept 0 and slope 1:

> abline(0, 1)

Figure 2.5 does not reveal any dramatic differences by social status, although
the high social status group may correspond to higher IQ scores for twins
with their biological parents.

high low middle
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−
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10
15

Fig. 2.4 Boxplots of the differences in twins IQ scores (Foster-Biological) in Example
2.2.

2.2.4 Conditional plots

Continuing with the twins data, we illustrate a basic conditional plot dis-
played with the coplot function. Instead of displaying the data in different
colors or plotting characters, coplot displays several scatterplots, all on the
same scale. We set this up with a formula y ∼ x | a, which indicates that
the plots of y vs x should be conditional on variable a.
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Fig. 2.5 Scatterplot of twins IQ in Example 2.2.

> coplot(Foster ~ Biological|Social, data=twins)

The coplot is shown in Figure 2.6. The order of the plots is from the bottom
and from the left (corresponding to increasing values of a, typically). In our
coplot, Figure 2.6, that order is: high (lower left), low (lower right), middle
(top left), because they are in alphabetical order.

Another version of this type of conditional plot is provided by the function
xyplot in the lattice package. The lattice package is included in the R
distribution so it should already be installed. To use the function xyplot we
first load the lattice package using library. The basic syntax for xyplot
in this example is

xyplot(Foster ~ Biological|Social, data=twins)

The above command displays a conditional plot (not shown) that is similar
to the one in Figure 2.7, but with the default plotting character of an open
blue circle. To obtain Figure 2.7 we used the following syntax that specifies
a solid circle (pch=20) in the color black (col=1).

> library(lattice)

> xyplot(Foster ~ Biological|Social, data=twins, pch=20, col=1)

Neither of the conditional plots in Figures 2.6 or 2.7 reveal an obvious
pattern or dependence on the conditioning variable social status.
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Fig. 2.6 Conditional plot (coplot) of twins IQ by social status of biological parents,
in Example 2.2.

2.3 Multivariate Data: Several Quantitative Variables

Example 2.3 (Brain size and intelligence).
Data from a study comparing brain size and intelligence is available on the

DASL web site [12]. Willerman et al. [56] collected a sample of 40 students’
IQ and brain size measured by MRI. There are 8 variables:

Variable Description
Gender Male or Female
FSIQ Full Scale IQ scores based on four Wechsler (1981) subtests
VIQ Verbal IQ scores based on four Wechsler (1981) subtests
PIQ Performance IQ scores based on four Wechsler (1981) subtests
Weight Body weight in pounds
Height Height in inches
MRI Count total pixel Count from the 18 MRI scans
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Fig. 2.7 Conditional scatterplot (using xyplot in the lattice package) of twins IQ
by social status of biological parents, in Example 2.2.

2.3.1 Exploring the data

After reading in the data using read.table we use the summary function to
display summary statistics.

> brain = read.table("brainsize.txt", header=TRUE)

> summary(brain)

Gender FSIQ VIQ PIQ

Female:20 Min. : 77.00 Min. : 71.0 Min. : 72.00

Male :20 1st Qu.: 89.75 1st Qu.: 90.0 1st Qu.: 88.25

Median :116.50 Median :113.0 Median :115.00

Mean :113.45 Mean :112.3 Mean :111.03

3rd Qu.:135.50 3rd Qu.:129.8 3rd Qu.:128.00

Max. :144.00 Max. :150.0 Max. :150.00



54 2 Quantitative Data

Weight Height MRI_Count

Min. :106.0 Min. :62.00 Min. : 790619

1st Qu.:135.2 1st Qu.:66.00 1st Qu.: 855919

Median :146.5 Median :68.00 Median : 905399

Mean :151.1 Mean :68.53 Mean : 908755

3rd Qu.:172.0 3rd Qu.:70.50 3rd Qu.: 950078

Max. :192.0 Max. :77.00 Max. :1079549

NA�s : 2.0 NA�s : 1.00

The summary function displays appropriate summary statistics for each
type of variable; a table is displayed for the categorical variable Gender, and
the mean and quartiles are displayed for each numerical type of variable. The
summaries show that there are some missing values of Weight and Height.

2.3.2 Missing values

There are several options for computing statistics for data with missing val-
ues. Many basic statistics functions such as mean, sd, or cor return missing
values when missing values are present in the data. For example,

> mean(brain$Weight)

[1] NA

The help topic for a particular function explains what options are available.
For the mean the optional argument is na.rm, which is FALSE by default.
Setting it to TRUE allows the computation of the mean with the missing
value(s) removed.

> mean(brain$Weight, na.rm=TRUE)

[1] 151.0526

This result is the same as the mean reported by summary on page 53.

2.3.3 Summarize by group

There are 20 males and 20 females in this data set, and on average males have
larger bodies than females. Larger body size may be related to larger brain
size, as we saw in Example 2.1. It may be informative to display statistics sep-
arately for males and females, which is easily done using the by function. The
basic syntax for the by function is by(data, INDICES, FUN, ...) where the
dots indicate possible additional arguments to the function named by FUN.
This provides a place for our na.rm=TRUE argument to the mean function. For
data we want to include all but the first variable using either brain[, -1]

or brain[, 2:7]. This syntax, which omits the row index, indicates that we
want all rows of data.
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> by(data=brain[, -1], INDICES=brain$Gender, FUN=mean, na.rm=TRUE)

brain$Gender: Female

FSIQ VIQ PIQ Weight Height MRI_Count

111.900 109.450 110.450 137.200 65.765 862654.600

------------------------------------------------------------

brain$Gender: Male

FSIQ VIQ PIQ Weight Height MRI_Count

115.00000 115.25000 111.60000 166.44444 71.43158 954855.40000

As expected, the average weight, height, and MRI count is larger for males
than for females.

A way to visualize the MRI counts by gender is to use a different color
and/or plotting symbol in a scatterplot. The plot command is simpler if we
first attach the data frame so that the variables can be referenced directly
by name. A plot of MRI_Count by Weight is obtained by

> attach(brain)

> gender = as.integer(Gender) #need integer for plot symbol, color

> plot(Weight, MRI_Count, pch=gender, col=gender)

It is helpful to add a legend to identify the symbol and color for each gender.
The levels of Gender are numbered in alphabetical order when gender is
created, so 1 indicates “Female” and 2 indicates “Male”.

> legend("topleft", c("Female", "Male"), pch=1:2, col=1:2, inset=.02)

The plot with the legend is shown in Figure 2.8. In this plot it is easy to see
an overall pattern that MRI_Count increases with Weight and that MRI_Count
for males tend to be larger than MRI_Count for females.

2.3.4 Summarize pairs of variables

A pairs plot displays a scatterplot for each pair of quantitative variables. We
want to display scatterplots for all pairs excluding the first variable (gender)
in the data frame.

> pairs(brain[, 2:7])

In the pairs plot shown in Figure 2.9, each of the pairs of IQ plots have points
that are clearly clustered in two groups. It appears that perhaps a group of
lower IQ and higher IQ individuals were selected for this study. Consulting
the online documentation1 for this data, we find that: “With prior approval
of the University’s research review board, students selected for MRI were
required to obtain prorated full-scale IQs of greater than 130 or less than
103, and were equally divided by sex and IQ classification.”

1 http://lib.stat.cmu.edu/DASL/Stories/BrainSizeandIntelligence.html

http://lib.stat.cmu.edu/DASL/Stories/BrainSizeandIntelligence.html
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Fig. 2.8 Scatterplot of MRI count vs weight in Example 2.3.

The pairs plot in Figure 2.9 reveals that some variables such as the IQ
scores (FSIQ, VIQ, PIQ) have positive correlation. A table of Pearson cor-
relation coefficients can be displayed using the cor function; here we round
the table to two decimal places.

> round(cor(brain[, 2:7]), 2)

FSIQ VIQ PIQ Weight Height MRI_Count

FSIQ 1.00 0.95 0.93 NA NA 0.36

VIQ 0.95 1.00 0.78 NA NA 0.34

PIQ 0.93 0.78 1.00 NA NA 0.39

Weight NA NA NA 1 NA NA

Height NA NA NA NA 1 NA

MRI_Count 0.36 0.34 0.39 NA NA 1.00

There are strong positive correlations between each of the IQ scores, but
many of the correlations could not be computed due to the missing values in
the data.

For computing covariances and correlations for data with missing values,
there are several options. Here is one possible option that can be specified
by the use argument in cor: if use="pairwise.complete.obs" then the
correlation or covariance between each pair of variables is computed using all
complete pairs of observations on those variables.
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Fig. 2.9 Pairs plot of brain size and IQ measurements in Example 2.3.

> round(cor(brain[, 2:7], use="pairwise.complete.obs"), 2)

FSIQ VIQ PIQ Weight Height MRI_Count

FSIQ 1.00 0.95 0.93 -0.05 -0.09 0.36

VIQ 0.95 1.00 0.78 -0.08 -0.07 0.34

PIQ 0.93 0.78 1.00 0.00 -0.08 0.39

Weight -0.05 -0.08 0.00 1.00 0.70 0.51

Height -0.09 -0.07 -0.08 0.70 1.00 0.60

MRI_Count 0.36 0.34 0.39 0.51 0.60 1.00

(For another approach see the function complete.cases.)
The pairs plot (Figure 2.9) and the correlation matrix suggest a mild

positive association (r = 0.36) between brain size and IQ. However, the MRI
count is also correlated with body size (weight and height). If we control for
body size as measured by say, weight,

> mri = MRI_Count / Weight

> cor(FSIQ, mri, use="pairwise.complete.obs")

[1] 0.2353080
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the sample correlation of mri with FSIQ (r = 0.235) is smaller than the cor-
relation of MRI_Count with FSIQ (r = 0.36).

One could test whether the correlation is significant using the correlation
test cor.test. Before adjusting for body size, we have

> cor.test(FSIQ, MRI_Count)

Pearson�s product-moment correlation

data: FSIQ and MRI_Count

t = 2.3608, df = 38, p-value = 0.02347

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.05191544 0.60207414

sample estimates:

cor

0.357641

The correlation test is significant at α = 0.05. However, if we adjust for body
size (using the transformed variable mri), the p-value is not significant at
α = 0.05.
> cor.test(FSIQ, mri)$p.value

[1] 0.1549858

For most statistical tests in R, the p-value of the test can be extracted like
the example above.

2.3.5 Identifying missing values

This data frame (brain) has some missing values. The summary on page 53
indicates that there are two missing heights and one missing weight in the
data. To identify these observations, we can use which and is.na.

> which(is.na(brain), arr.ind=TRUE)

row col

[1,] 2 5

[2,] 21 5

[3,] 21 6

When using which on an object like a data frame or matrix we need
arr.ind=TRUE to get the row and column numbers. Observations 2 and 21
have missing data in column 5 (height), and observation 21 has missing data
in column 6 (weight). The missing observations are in rows 2 and 21, which
we can extract by

> brain[c(2, 21), ]

Gender FSIQ VIQ PIQ Weight Height MRI_Count

2 Male 140 150 124 NA 72.5 1001121

21 Male 83 83 86 NA NA 892420
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For example, one could replace missing values with the sample mean as
follows.

> brain[2, 5] = mean(brain$Weight, na.rm=TRUE)

> brain[21, 5:6] = c(mean(brain$Weight, na.rm=TRUE),

+ mean(brain$Height, na.rm=TRUE))

The updated rows 2 and 21 in the data frame are

> brain[c(2, 22), ]

Gender FSIQ VIQ PIQ Weight Height MRI_Count

2 Male 140 150 124 151.0526 72.5 1001121

22 Male 97 107 84 186.0000 76.5 905940

2.4 Time Series Data

Example 2.4 (New Haven temperatures). The R data set nhtemp contains the
average yearly temperatures in degrees Farenheit for New Haven, Connecti-
cut, from 1912 to 1971. This is an example of a time series. The temperature
variable is indexed by year.

> nhtemp

Time Series:

Start = 1912

End = 1971

Frequency = 1

[1] 49.9 52.3 49.4 51.1 49.4 47.9 49.8 50.9 49.3 51.9 50.8 49.6

[13] 49.3 50.6 48.4 50.7 50.9 50.6 51.5 52.8 51.8 51.1 49.8 50.2

[25] 50.4 51.6 51.8 50.9 48.8 51.7 51.0 50.6 51.7 51.5 52.1 51.3

[37] 51.0 54.0 51.4 52.7 53.1 54.6 52.0 52.0 50.9 52.6 50.2 52.6

[49] 51.6 51.9 50.5 50.9 51.7 51.4 51.7 50.8 51.9 51.8 51.9 53.0

To visualize the pattern of temperatures over the years 1912 to 1971, we can
easily display a time series plot using the plot function. For time series data,
plot displays a line plot with time on the horizontal axis. The time plot is
shown in Figure 2.10.

> plot(nhtemp)

One may be interested in identifying any trend in mean annual tempera-
tures over the years represented by this data. One way to visualize possible
trends is by fitting a smooth curve. One method of fitting a smooth curve
is provided by the lowess function, which is based on locally-weighted poly-
nomial regression. Below we plot the data again, this time including a more
descriptive label for temperature, and add a horizontal reference line through
the grand mean using abline. The smooth curve is added to the current plot
with lines. (See Figure 2.11.)

> plot(nhtemp, ylab="Mean annual temperatures")

> abline(h = mean(nhtemp))

> lines(lowess(nhtemp))
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Fig. 2.10 Time plot of mean annual temperatures in New Haven, Connecticut.

For modeling, one often wishes to transform a time series so that the mean
is stable over time. When a mean appears to have an approximately linear
trend over time as in Figure 2.11, first differences often remove the trend.
If X1,X2, . . . is the time series, then we can obtain the time series of first
differences X2 −X1,X3 −X2, . . . using the diff function.

> diff(nhtemp)

Time Series:

Start = 1913

End = 1971

Frequency = 1

[1] 2.4 -2.9 1.7 -1.7 -1.5 1.9 1.1 -1.6 2.6 -1.1 -1.2 -0.3

[13] 1.3 -2.2 2.3 0.2 -0.3 0.9 1.3 -1.0 -0.7 -1.3 0.4 0.2

[25] 1.2 0.2 -0.9 -2.1 2.9 -0.7 -0.4 1.1 -0.2 0.6 -0.8 -0.3

[37] 3.0 -2.6 1.3 0.4 1.5 -2.6 0.0 -1.1 1.7 -2.4 2.4 -1.0

[49] 0.3 -1.4 0.4 0.8 -0.3 0.3 -0.9 1.1 -0.1 0.1 1.1

A time plot for the differenced series of temperatures with a reference line
through 0 and lowess curve is obtained by the code below and shown in
Figure 2.12.

> d = diff(nhtemp)

> plot(d, ylab="First differences of mean annual temperatures")

> abline(h = 0, lty=3)

> lines(lowess(d))

Figure 2.12 suggests that the mean of the differenced series is stable over
time; notice that the lowess curve (solid line) is nearly horizontal and very
close to the dotted horizontal line through 0.
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2.5 Integer Data: Draft Lottery

Example 2.5 (The 1970 Draft Lottery Data ).
During the VietnamWar, the Selective Service System of the United States

held a draft lottery on December 1, 1969 to determine the order of draft
(induction) into the Army. The 366 birthdays (including leap year birthdays)
were drawn to determine the order that eligible men would be called into
service. Each birthday was matched with a number from 1 to 366 drawn from
a barrel. The lowest numbers were drafted first. For an interesting discussion
of statistical questions about this lottery see Fienberg [18] and Starr [46].2

The data and information about the lottery is available from the Selective
Service System web site3. We converted it into a tab delimited file, which can
be read into an R data frame by

> draftnums = read.table("draft-lottery.txt", header=TRUE)

This data frame is a table that contains the lottery numbers by day and
month. The names of the variables are

> names(draftnums)

[1] "Day" "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul"

[9] "Aug" "Sep" "Oct" "Nov" "Dec"
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Fig. 2.11 Time plot of mean annual temperatures in New Haven, Connecticut. A
horizontal reference line is added to identify the grand mean and a smooth curve is
added using lowess.

2 http://www.amstat.org/publications/jse/v5n2/datasets.starr.html
3 http://www.sss.gov/LOTTER8.HTM

http://www.amstat.org/publications/jse/v5n2/datasets.starr.html
http://www.sss.gov/LOTTER8.HTM
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Fig. 2.12 Time plot of first differences of mean annual temperatures in New Haven,
Connecticut. A smooth curve is added using lowess.

To find the draft number for a January 15 birthday, for example, we read the
15th observation of column “Jan”,

> draftnums$Jan[15]

[1] 17

and find that the corresponding draft number is 17.
Assuming the numbers were drawn randomly, we might expect that the

medians of draft numbers for each month were near the number 366/2 = 183.
To display a table of medians for the draft numbers by month we “apply” the
median function to the months (columns). The sapply function is a ‘user-
friendly’ version of apply. However, by default the median function returns
a missing value if there are missing values in the data.

> months = draftnums[2:13]

> sapply(months, median)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

211 NA 256 NA 226 NA 188 145 NA 201 NA 100

Rx 2.4 The syntax draftnums[2:13] extracts the second through thirteenth
variable from the data frame draftnums. It would be equivalent to use the
syntax draftnums[, 2:13] or draftnums[, -1].

Our data has missing values for months with less than 31 days, so we
use na.rm=TRUE in the median function. In sapply, the extra argument to
median is simply listed after the name of the function.
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> sapply(months, median, na.rm=TRUE)

Jan Feb Mar Apr May Jun Jul Aug Sep

211.0 210.0 256.0 225.0 226.0 207.5 188.0 145.0 168.0

Oct Nov Dec

201.0 131.5 100.0

The sample medians by month are less uniformly near 183 than one might
expect by chance. A time plot of the medians by month can be obtained as
follows.

> medians = sapply(months, median, na.rm=TRUE)

> plot(medians, type="b", xlab="month number")

In this plot we used type="b" to obtain both points and lines, and added
a descriptive label “month number” on the horizontal axis. The plot (Figure
2.13) reveals an overall decreasing trend by month.
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Fig. 2.13 Medians of 1970 draft lottery numbers by month of birthday.

Rx 2.5 The result of sapply in Example 2.5 is a vector of medians in the
order of the columns (months) January, . . . , December. Then Figure 2.13 is a
plot of a vector of data. When the plot function is used with a single variable,
a time plot of the data is displayed, with an index variable shown along the
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horizontal axis. The index values 1 through 12 in this case correspond to the
month numbers.

A boxplot by months of the draft numbers is helpful for comparing the
distributions of numbers for birthdays in different months.

> months = draftnums[2:13]

> boxplot(months)

The parallel boxplots shown in Figure 2.14 look less uniformly distributed
across months than we might expect due to chance. The December birthdays
appear to have lower draft numbers than birthdays in some other months. In
fact, the numbers in the last two months of the year seem to be lower than
other months overall. For a possible explanation, more draft lottery data, and
further discussion of the lottery, see Starr [46] and “The Vietnam Lotteries”
at http://www.sss.gov/lotter1.htm.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0
10

0
20

0
30

0

Fig. 2.14 Boxplots comparing 1970 draft lottery numbers by month of birthday.

http://www.sss.gov/lotter1.htm
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2.6 Sample Means and the Central Limit Theorem

Example 2.6 (Sample means). The data frame randu contains 400 triples of
successive random numbers that were generated using an algorithm called
RANDU. In this example we investigate the distribution of the sample mean
of each triple of numbers. We know that if the numbers are truly from a
continuous Uniform(0, 1) distribution, their expected value is 1/2 and the
variance is 1/12 = 0.08333. First let us compute some basic sample statistics.

> mean(randu)

x y z

0.5264293 0.4860531 0.4809547

> var(randu)

x y z

x 0.081231885 -0.004057683 0.004637656

y -0.004057683 0.086270206 -0.005148432

z 0.004637656 -0.005148432 0.077860433

Here, because randu is a data frame with three variables, the means are
reported separately for each of the three variables, and the var function
computes a variance-covariance matrix for the three variables. Each of the
three sample means is close to the uniform mean 1/2. The diagonal of the
variance-covariance matrix has the three sample variances, which should be
close to 0.08333 under the assumption that RANDU generates Uniform(0, 1)
data.

> diag(var(randu))

x y z

0.08123189 0.08627021 0.07786043

The off-diagonal elements in the variance-covariance matrix are the sample
covariance, and theoretically the covariances should be zero: the numbers
in columns x, y, and z should be uncorrelated if in fact the RANDU table
represents independent and identically distributed (iid) numbers. The sample
correlations are each close to zero in absolute value:

> cor(randu)

x y z

x 1.00000000 -0.04847127 0.05831454

y -0.04847127 1.00000000 -0.06281830

z 0.05831454 -0.06281830 1.00000000

Remark 2.1. Although the randu data (x,y,z) have correlations close to zero,
in fact there is a linear relation that can be observed if we view the data in
a 3-D plot. Try displaying the following plot to see that a pattern can be
observed in the data (it is not quite random).

library(lattice)
cloud(z ~ x + y, data=randu)
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See Chapter 4 for the plot (Figure 4.19, page 125) and further discussion of
the cloud function.

We are interested in the distribution of the row means. Each row is assumed
to be a random sample of size 3 from the Uniform(0,1) distribution. We can
extract the row means using apply:

> means = apply(randu, MARGIN=1, FUN=mean)

Here MARGIN=1 specifies rows and FUN=mean names the function to be applied
to the rows. Alternately one could use

rowMeans(randu)

to obtain the vector of means. Now means is a vector of 400 sample means.
We plot a frequency histogram of the sample means using hist.

> hist(means)

Histogram of means

means
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Fig. 2.15 Frequency histogram produced with the default arguments to the hist

function, for the sample means in Example 2.6.

The histogram of means shown in Figure 2.15 is mound shaped and somewhat
symmetric. According to the Central Limit Theorem, the distribution of the
sample mean tends to normal as the sample size tends to infinity. To compare
our histogram with a normal distribution, however, we need a probability
histogram, not a frequency histogram. A probability histogram (not shown)
can be displayed by

> hist(means, prob=TRUE)
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A density estimate can be displayed by:

> plot(density(means))

The density estimate is shown in Figure 2.16. It looks somewhat bell-shaped
like a normal distribution.
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Fig. 2.16 Density estimate for the sample means in Example 2.6.

By default the truehist function in the MASS package displays a proba-
bility histogram. We show the result of truehist below in Figure 2.17. Sup-
pose we want to add a normal density to this histogram. The mean should

be 1/2 and the variance of the sample mean should be 1/12
n = 1/12

3 = 1/36.
> truehist(means)

> curve(dnorm(x, 1/2, sd=sqrt(1/36)), add=TRUE)

From the histogram and normal density shown in Figure 2.17 one can observe
that the distribution of sample means is approaching normality even with a
sample size as small as three.

A normal-QQ plot compares the quantiles of a normal distribution with
sample quantiles. When the sampled population is normal, the QQ plot
should be close to a straight line. The plot and reference line are obtained by

> qqnorm(means)

> qqline(means)

The normal-QQ plot in Figure 2.18 is consistent with an approximately
normal distribution of sample means.
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Fig. 2.17 Histogram produced with truehist in MASS package for the sample means
in Example 2.6. The normal density is added with curve.

2.7 Special Topics

2.7.1 Adding a new variable

Example 2.7 (mammals, cont.). In Example 2.1, suppose that we wish to
create two categories of mammals, large and small. Say a mammal is “large”
if body weight is above the median. A factor variable can be added to the
data frame to indicate whether the mammal’s body weight is above or below
the median. We compute the median body size and use the ifelse function
to assign “large” or “small” levels.

> m = median(mammals$body)

> mammals$size = ifelse(mammals$body >= m, "large", "small")

It is easy to understand ifelse; if the condition is true it returns the first
value “large” and otherwise the second value “small”.

Rx 2.6 The code

mammals$size = ifelse(mammals$body >=m, "large", "small")

assigns the “large” or “small” values to the variable size in the mammals data
frame. Since the variable size does not yet exist in this data frame, a new
variable size is created in this data frame.

We use head to display the first six rows of the data frame:
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Fig. 2.18 Normal-QQ plot of the sample means in Example 2.6.

> head(mammals)

body brain size

Arctic fox 3.385 44.5 large

Owl monkey 0.480 15.5 small

Mountain beaver 1.350 8.1 small

Cow 465.000 423.0 large

Grey wolf 36.330 119.5 large

Goat 27.660 115.0 large

The new variable size makes it easy to carry out an analysis for the data
separately for large and small mammals. For example,

subset(mammals, size=="large")

will return a data frame containing the large mammals only. The == operator
is logical equality, not assignment.

2.7.2 Which observation is the maximum?

The variables body and brain can be referenced by mammals$body and
mammals$brain. We can identify observation numbers using the which func-
tion. For example, here we identify the largest animals.

> which(mammals$body > 2000)

[1] 19 33

> mammals[c(19, 33), ]
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body brain size

Asian elephant 2547 4603 large

African elephant 6654 5712 large

The which function returned the row numbers of the mammals for which
mammals$body > 2000 is TRUE. Then we extracted these two rows from the
data frame.

The maximum body size is

> max(mammals$body)

[1] 6654

Suppose that we want to identify the animal with the maximum body size,
rather than the maximum value. A function that can be used to identify the
largest mammal is which.max. It returns the index of the maximum, rather
than the value of the maximum. The which.min function returns the index
of the minimum. We can then use the results to extract the observations with
the maximum or the minimum body size.

> which.max(mammals$body)

[1] 33

> mammals[33, ]

body brain size

African elephant 6654 5712 large

> which.min(mammals$body)

[1] 14

> mammals[14, ]

body brain size

Lesser short-tailed shrew 0.005 0.14 small

The African elephant has the greatest body size of 6654 kg, while the lesser
short-tailed shrew has the smallest body size (0.005 kg) in this data set.

2.7.3 Sorting a data frame

Example 2.8 (Sorting mammals). Clearly the mammals are not listed in order
of increasing body size. We could sort or rank the body size variable, but
these functions do not help us to order the entire data frame according to
body size. To list the mammals in a particular order, we first obtain the
ordering using the order function. The order function will return a sequence
of integers that sorts the data in the required order. To see how this works,
let us take a small subset of the mammals data.

> x = mammals[1:5, ] #the first five

> x

body brain size

Arctic fox 3.385 44.5 large



2.7 Special Topics 71

Owl monkey 0.480 15.5 small

Mountain beaver 1.350 8.1 small

Cow 465.000 423.0 large

Grey wolf 36.330 119.5 large

We want to sort the observations by body size.

> o = order(x$body)

> o

[1] 2 3 1 5 4

The result of order saved in the vector o indicates that in order of increasing
body size we require observations 2, 3, 1, 5, 4. Finally using the result from
order we re-index the data. We use the [row, column] syntax with o for
the row and leave the column blank to indicate that we want all columns.

> x[o, ]

body brain size

Owl monkey 0.480 15.5 small

Mountain beaver 1.350 8.1 small

Arctic fox 3.385 44.5 large

Grey wolf 36.330 119.5 large

Cow 465.000 423.0 large

The code to sort the full mammals data frame by body size is similar:

> o = order(mammals$body)

> sorted.data = mammals[o, ]

We display the last three observations of the sorted data frame using tail,
and find the three largest body sizes with their corresponding brain sizes.

> tail(sorted.data, 3)

body brain size

Giraffe 529 680 large

Asian elephant 2547 4603 large

African elephant 6654 5712 large

2.7.4 Distances between points

In this section we discuss the dist function for computing distances between
points. We return to the mammals data introduced in Example 2.1 and con-
tinued in Examples 2.7-2.8, which contains body size and brain size of 62
mammals and a categorical variable size that we created in Example 2.7.

Example 2.9 (Distances between points). The original mammals data (body,
brain) is an example of a bivariate (two-dimensional) data set. Distances
between observations are defined only for numeric variables, so we begin by
first reloading the data to restore the mammals data frame to its original form.

> data(mammals)
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Suppose that we are interested in annotating the plot in Figure 2.2(b) with
line segments representing the distances between some of the observations.
The Euclidean distance between points x = (x1, . . . ,xd) and y = (y1, . . . ,yd)
in a d-dimensional space is given by

‖x−y‖ =

√√√√ d∑
k=1

(xk −yk)2.

In two dimensions, as we have here, the distance is just the length of the line
segment connecting the two points (the length of the hypotenuse of a right
triangle). The distance matrix of a sample contains the distance between the
ith and jth observation in row i, column j. A triangular table of distances is
returned by dist; because the distance matrix is symmetric with zeroes on
the diagonal, the dist object stores and displays it in a compact way. We
illustrate with a small subset of mammals.

> x = mammals[1:5, ]

> dist(x)

Arctic fox Owl monkey Mountain beaver Cow

Owl monkey 29.145137

Mountain beaver 36.456841 7.450966

Cow 596.951136 617.928054 622.184324

Grey wolf 81.916867 110.005557 116.762838 525.233490

By default, the dist function returns Euclidean distances, but dist can
optionally compute other types of distances as specified by the method argu-
ment.

For many applications, we require the full distance matrix. The as.matrix
function converts a distance object to a matrix.

> as.matrix(dist(x))

Arctic fox Owl monkey Mountain beaver Cow Grey wolf

Arctic fox 0.00000 29.145137 36.456841 596.9511 81.91687

Owl monkey 29.14514 0.000000 7.450966 617.9281 110.00556

Mountain beaver 36.45684 7.450966 0.000000 622.1843 116.76284

Cow 596.95114 617.928054 622.184324 0.0000 525.23349

Grey wolf 81.91687 110.005557 116.762838 525.2335 0.00000

The scatterplot for the full mammals data frame (Figure 2.19) was created
with this command:

> plot(log(mammals$body), log(mammals$brain),

+ xlab="log(body)", ylab="log(brain)")

Next, to display a few of the distances, we add line segments correspond-
ing to the distances (cow, wolf), (wolf, human) and (cow, human). First we
extract these three observations from mammals and store them in y. The three
points form a triangle, so it is easy to draw the segments between them using
polygon.
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> y = log(mammals[c("Grey wolf", "Cow", "Human"), ])

> polygon(y)

(To add the segments one at a time, one could use the segments function.)
Labels are added using text. The labels will be centered at coordinates of
the points in y if we use:

text(y, rownames(y))

The placement of the text labels can be adjusted. Here we used

> text(y, rownames(y), adj=c(1, .5))

for better placement of the labels. Also see Example 4.2 for an interactive
method of labeling points using the identify function.

From the plot shown in Figure 2.19 we see that if measuring by the Eu-
clidean distances of logarithms of brain and body size, humans are somewhat
closer to cows than to wolves. The actual distances are

> dist(y)

Grey wolf Cow

Cow 2.845566

Human 2.460818 2.314068

2.7.5 Quick look at cluster analysis

Example 2.10 (Cluster analysis of distances). Distance matrices are often
computed for cluster analysis. Cluster analysis is often applied to reveal pos-
sible structure in data. Although an in depth discussion of cluster analysis is
beyond the scope of this book, in this section we take a quick look at how to
implement a simple cluster analysis. A function that implements hierarchical
cluster analysis is hclust. For example,

> d = dist(log(mammals))

> h = hclust(d, method="complete")

performs a hierarchical cluster analysis based on furthest neighbors. Using
method="complete", beginning with the singletons (individual observations),
the two clusters with the smallest maximum pairwise distance are joined
at each step. Clearly the distances in Figure 2.19 show that “cow” is not
the nearest point to “cat” or to “human”. Another widely applied method is
Ward’s minimum variance, obtained with the squared distance matrix and
method=ward in hclust. Several other popular clustering methods are also
implemented in hclust. A good reference on hierarchical cluster analysis is
Everitt, Landau, and Leese [15].

In this example we will work with the largest half of the mammals. We
extract the larger half by the subset function:

> big = subset(mammals, subset=(body > median(body)))
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Fig. 2.19 Scatterplot with distances between three of the mammals labeled in Ex-
ample 2.1.

Then we compute distances and the clustering for the large animals:

> d = dist(log(big))

> h = hclust(d, method="complete")

The result of hclust can be plotted in a tree diagram called a dendrogram.

> plot(h)

The dendrogram is shown in Figure 2.20. The lowest branches to be clustered
are the“nearest”according to this algorithm, while nodes that join at a higher
level are less alike. For example, we see that the two elephants cluster together
early, but are not joined with other clusters until much later. Note that this
analysis is based entirely on brain and body sizes, so clusters represent relative
size of the animal in some sense.

Let’s see which pair of animals are the closest according to this clustering
algorithm (the first pair to be merged into a cluster). That would be the pair
with the smallest distance. That pair will be identified by the values returned
in h$merge.



2.7 Special Topics 75

> head(h$merge)

[,1] [,2]

[1,] -22 -28

[2,] -25 -57

[3,] -21 -29

[4,] -8 -12

[5,] -9 -62

[6,] -41 -60

We see that the logarithms of the 22nd and 28th observations have the small-
est distance and therefore were the first cluster formed. These observations
are:

> rownames(mammals)[c(22, 28)]

[1] "Horse" "Giraffe"

and their logarithms are

> log(mammals)[c(22, 28), ]

body brain

Horse 6.255750 6.484635

Giraffe 6.270988 6.522093

Note that the cluster analysis will be different if the distances are computed
on the original mammals data rather than the logarithms of the data, or if a
different clustering algorithm is applied.

Exercises

2.1 (chickwts data). The chickwts data are collected from an experiment
to compare the effectiveness of various feed supplements on the growth rate
of chickens (see ?chickwts). The variables are weight gained by the chicks,
and type of feed, a factor. Display side-by-side boxplots of the weights for
the six different types of feeds, and interpret.

2.2 (iris data). The iris data gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of three species of iris. There are four numeric variables
corresponding to the sepal and petal measurements and one factor, Species.
Display a table of means by Species (means should be computed separately
for each of the three Species).

2.3 (mtcars data). Display the mtcars data included with R and read the
documentation using ?mtcars. Display parallel boxplots of the quantitative
variables. Display a pairs plot of the quantitative variables. Does the pairs
plot reveal any possible relations between the variables?

2.4 (mammals data). Refer to Example 2.7. Create a new variable r equal
to the ratio of brain size over body size. Using the full mammals data set, order



76 2 Quantitative Data

W
at

er
 o

po
ss

um
N

in
e−

ba
nd

ed
 a

rm
ad

ill
o

Ye
llo

w
−

be
lli

ed
 m

ar
m

ot
R

oc
k 

hy
ra

x−
b

V
er

be
t

R
ed

 fo
x

A
rc

tic
 fo

x
R

ac
co

on
R

oe
 d

ee
r

P
at

as
 m

on
ke

y
R

he
su

s 
m

on
ke

y
B

ab
oo

n
A

si
an

 e
le

ph
an

t
A

fr
ic

an
 e

le
ph

an
t

G
re

y 
w

ol
f

G
oa

t
K

an
ga

ro
o

G
ia

nt
 a

rm
ad

ill
o

P
ig

B
ra

zi
lia

n 
ta

pi
r

G
re

y 
se

al
C

hi
m

pa
nz

ee
S

he
ep

Ja
gu

ar H
um

an
O

ka
pi

D
on

ke
y

G
or

ill
a

C
ow

H
or

se
G

ira
ffe

0
2

4
6

8
10

Cluster Dendrogram

hclust (*, "complete")
d

H
ei

gh
t

Fig. 2.20 Cluster dendrogram of log(mammals) data by nearest neighbor method
in Example 2.1.

the mammals data by the ratio r. Which mammals have the largest ratios of
brain size to body size? Which mammals have the smallest ratios? (Hint: use
head and tail on the ordered data.)

2.5 (mammals data, continued). Refer to Exercise 2.5. Construct a scat-
terplot of the ratio r = brain/body vs body size for the full mammals data
set.

2.6 (LakeHuron data). The LakeHuron data contains annual measure-
ments of the level, in feet, of Lake Huron from 1875 through 1972. Display a
time plot of the data. Does the average level of the lake appear to be stable
or changing with respect to time? Refer to Example 2.4 for a possible method
of transforming this series so that the mean is stable, and plot the resulting
series. Does the transformation help to stabilize the mean?



2.7 Special Topics 77

2.7 (Central Limit Theorem with simulated data). Refer to Example
2.6, where we computed sample means for each row of the randu data frame.
Repeat the analysis, but instead of randu, create a matrix of random numbers
using runif.

2.8 (Central Limit Theorem, continued). Refer to Example 2.6 and Ex-
ercise 2.7, where we computed sample means for each row of the data frame.
Repeat the analysis in Exercise 2.7, but instead of sample size 3 generate a
matrix that is 400 by 10 (sample size 10). Compare the histogram for sample
size 3 and sample size 10. What does the Central Limit Theorem tell us about
the distribution of the mean as sample size increases?

2.9 (1970 Vietnam draft lottery). What are some possible explanations
for the apparent non-random patterns in the 1970 draft lottery numbers in
Example 2.5? (See the references.)

2.10 (“Old Faithful” histogram). Use hist to display a probability his-
togram of the waiting times for the Old Faithful geyser in the faithful data
set (see Example A.3). (Use the argument prob=TRUE or freq=FALSE.)

2.11 (“Old Faithful” density estimate). Use hist to display a probability
histogram of the waiting times for the Old Faithful geyser in the faithful data
set (see Example A.3) and add a density estimate using lines.

2.12 (Ordering the mammals data by brain size). Refer to Example
2.1. Using the full mammals data set, order the data by brain size. Which
mammals have the largest brain sizes? Which mammals have the smallest
brain sizes?

2.13 (mammals data on original scale). Refer to the mammals data in
Example 2.7. Construct a scatterplot like Figure 2.19 on the original scale
(Figure 2.19 is on the log-log scale.) Label the points and distances for cat,
cow, and human. In this example, which plot is easier to interpret?

2.14 (mammals cluster analysis). Refer to Example 2.10. Repeat the
cluster analysis using Ward’s minimum variance method instead of near-
est neighbor (complete) linkage. Ward’s method is implemented in hclust

with method="ward" when the first argument is the squared distance matrix.
Display a dendrogram and compare the result with the dendrogram for the
nearest neighbor method.

2.15 (Identifying groups or clusters). After cluster analysis, one is often
interested in identifying groups or clusters in the data. In a hierarchical cluster
analysis such as in Example 2.10, this corresponds to cutting the dendrogram
(e.g. Figure 2.20) at a given level. The cutree function is an easy way to find
the corresponding groups. For example, in Example 2.10, we saved the result
of our complete-linkage clustering in an object h. To cut the tree to form five
groups we use cutree with k=5:
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g = cutree(h, 5)

Display g to see the labels of each observation. Summarize the group sizes
using table(g). There are three clusters that have only one mammal. Use
mammals[g > 2] to identify which three mammals are singleton clusters.



Chapter 3

Categorical data

3.1 Introduction

In this chapter, we introduce R commands for organizing, summarizing, and
displaying categorical data. We will see that categorical data is conveniently
expressed by a special R object called a factor. The table function is use-
ful in constructing frequency tables and the plot and barplot functions are
useful in displaying tabulated output. The chi-square goodness-of-fit test for
assessing if a vector of counts follows a specified discrete distribution is imple-
mented in the chisq.test function. The cut function is helpful in dividing a
numerical value into a categorical variable using a vector of dividing values.
The table function with several variables can be used to construct a two-
way frequency table and the prop.table function can be used to compute
conditional proportions to explore the association pattern in the table. Side-
by-side and segmented bar charts of conditional probabilities are constructed
by the barplot function. The hypothesis of independence in a two-way ta-
ble can be tested by the chisq.test function. A special graphical display
mosaicplot can be used to display the counts in a two-way frequency table
and, in addition, show the pattern of residuals from a fit of independence.

3.1.1 Tabulating and plotting categorical data

Example 3.1 (Flipping a coin).
To begin, suppose we flip a coin 20 times and observe the sequence

H,T,H,H,T,H,H,T,H,H,T,T,H,T,T,T,H,H,H,T.

We are interested in tabulating these outcomes, finding the proportions of
heads and tails, and graphing the proportions.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__3,
© Springer Science+Business Media, LLC 2012
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A convenient way of entering these data in the R console is with the scan
function. One indicates by the what=character argument that character-type
data will be entered. By default, this function assumes that“white space”will
be separating the individual entries. We complete entering the outcomes by
pressing the Enter key on a blank line. The character data is placed in the
vector tosses.

> tosses = scan(what="character")

1: H T H H T H H T H H T T

13: H T T T

17: H H H T

21:

Read 20 items

We can tabulate this coin flipping data using the table function. The
output is a table of frequencies of the different outcomes, H and T.

> table(tosses)

tosses

H T

11 9

We see that 11 heads and 9 tails were flipped. To summarize these counts,
one typically computes proportions or relative frequencies. One can obtain
these proportions by simply dividing the table frequencies by the number of
flips using the length function.

> table(tosses) / length(tosses)

tosses

H T

0.55 0.45

There are several ways of displaying these data. First, we save the relative
frequency output in the variable prop.tosses:

> prop.tosses = table(tosses) / length(tosses)

Using the plot method, we obtain a line graph displayed in Figure 3.1(a).

> plot(prop.tosses)

Alternately, one can display the proportions by a bar graph using the barplot
function shown in Figure 3.1(b).

> barplot(prop.tosses)

The line graph and bar graph both give the same general impression that we
obtained similar counts of heads and tails in this coin-tossing experiment.

3.1.2 Character vectors and factors

In the previous section, we illustrated the construction of a character vector
which is a vector of string values such as “H” and “T.”When one has a vector
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Fig. 3.1 Two displays of the proportions of heads and tails from 20 flips of a coin.

consisting of a small number of distinct values, either numerical or character,
a factor is a useful way of representing this vector. To define a factor, we start
with a vector of values, a second vector that gives the collection of possible
values, and a third vector that gives labels to the possible values.

Example 3.2 (Rolling a die).
As a simple example, suppose we wish to collect several rolls of a die. We

observe seven rolls of the die and save the rolls in the vector y.

> y = c(1, 4, 3, 5, 4, 2, 4)

For die rolls, we know that the possible rolls are 1 through 6 and we store
these in the vector possible.rolls:

> possible.rolls = c(1, 2, 3, 4, 5, 6)

We wish to label the rolls by the words “one”, ..., “six” – we place these labels
in the vector labels.rolls:

> labels.rolls = c("one", "two", "three", "four", "five", "six")

We now are ready to construct the factor variable fy using the function
factor:

> fy = factor(y, levels=possible.rolls, labels=labels.rolls)

By displaying the vector fy, we see the difference between a character
vector and a factor.

> fy

[1] one four three five four two four

Levels: one two three four five six
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Note that the numerical roll values in y have been replaced by the factor labels
in fy. Also, note that the display of the factor variable shows the levels, the
possible values of the die roll. Suppose we construct a frequency table of the
factor.

> table(fy)

fy

one two three four five six

1 1 1 3 1 0

Note that frequencies of all possible rolls of the die are displayed. In many
situations, we wish to display the frequencies of categories such as “six” that
are possible but have not been observed.

In the example to follow, a datafile is read that contains a character vari-
able. When a data frame is created in R (say, using the read.table function),
by default all variables consisting of character values are automatically con-
verted to factors.

3.2 Chi-square Goodness-of-Fit Test

Example 3.3 (Weldon’s dice).
“Weldon’s Dice” is a famous data set published in Karl Pearson’s 1900

paper [39] that introduced the chi-square goodness-of-fit test. At that time
(before electronic computers) the English biologist Walter F. R. Weldon used
dice to generate random data, recording the results of 26,306 rolls of 12
dice. See “Weldon’s Dice, Automated” [29] for more details and results of an
automated version of the experiment.

In the results, Weldon considered five or six dots showing among the 12
dice to be “successes” and other results “failures.” If a single die is fair, then
each face is equally likely to occur, so that the probability of a success (five
or six) is 1/3. The total number of successes among 12 fair dice is a binomial
random variable with success probability 1/3. The binomial probabilities are
given by the dbinom function:

> k = 0:12

> p = dbinom(k, size=12, prob=1/3)

In 26,306 rolls of 12 fair dice, the expected outcomes (rounded to the nearest
integer) would be:

> Binom = round(26306 * p)

> names(Binom) = k

Labels for the binomial counts were applied with the names function. The
“Weldon’s Dice” data are entered below.

> Weldon = c(185, 1149, 3265, 5475, 6114, 5194, 3067,

+ 1331, 403, 105, 14, 4, 0)

> names(Weldon) = k
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The binomial counts, data, and deviations between the binomial and ob-
served counts can be summarized for display several ways; here we use the
data.frame function. To combine data in a data frame we simply list the data
vectors separated by commas. Here we also assigned a name “Diff” for the
difference between the observed (Weldon) and expected (binomial) counts.

> data.frame(Binom, Weldon, Diff=Weldon - Binom)

Binom Weldon Diff

0 203 185 -18

1 1216 1149 -67

2 3345 3265 -80

3 5576 5475 -101

4 6273 6114 -159

5 5018 5194 176

6 2927 3067 140

7 1255 1331 76

8 392 403 11

9 87 105 18

10 13 14 1

11 1 4 3

12 0 0 0

A visual comparison of the observed and expected counts can be made in
several ways. To display the two bar plots of frequencies side by side we
combine our data into a matrix using cbind and specify beside=TRUE in the
barplot function.

> counts = cbind(Bin, Weldon)

> barplot(counts, beside=TRUE)

Binom Weldon
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00
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Fig. 3.2 Bar plots of expected and observed frequencies in Weldon dice example.
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The barplots in Figure 3.2 appear to agree approximately. For a compar-
ison of observed and fitted data, however, it is somewhat easier to interpret
the data on a single plot. Another possible plot for comparing the observed
and expected counts is produced by:

> plot(k, Binom, type="h", lwd=2, lty=1, ylab="Count")

> lines(k + .2, Weldon, type="h", lwd=2, lty=2)

> legend(8, 5000, legend=c("Binomial", "Weldon"),

+ lty=c(1,2), lwd=c(2,2))

The extra arguments for plotting the binomial counts are type="h" (plot
vertical lines like a barplot), lwd=2 (line width is doubled), and lty=1 (choose
a solid line type). The lines function is used to overlay vertical lines for the
corresponding observed counts. These lines are drawn slightly to the right of
the expected count lines by adding a small value of 0.2 to the variable k and
drawn using the alternative line type lty=2. This plot is shown in Figure 3.3.
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Fig. 3.3 Line plot of expected and observed frequencies in Weldon dice example.

A chi-square goodness-of-fit test can be applied to test whether the data
are consistent with the ‘fair dice’ binomial model. However, as we learn in
basic statistics, the expected cell counts should be large — say, at least 5 for
all cells. For a chi-square test we should collapse the categories corresponding
to 10, 11, and 12 successes into a single category. This is accomplished with
the following code.

> cWeldon = c(Weldon[1:10], sum(Weldon[11:13]))

> cWeldon

0 1 2 3 4 5 6 7 8 9

185 1149 3265 5475 6114 5194 3067 1331 403 105 18
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One can now apply a chi-square goodness-of-fit test. We find the binomial
probabilities for the first nine categories using the vector of probabilities
stored in p. The sum of probabilities must equal 1, and this determines the
probability for the final category. We use the chisq.test function to test the
null hypothesis that the true model is binomial.

> probs = c(p[1:10], 1 - sum(p[1:10]))

> chisq.test(cWeldon, p=probs)

Chi-squared test for given probabilities

data: cWeldon

X-squared = 35.4943, df = 10, p-value = 0.0001028

The test computes a p-value of less than 0.001. Therefore, we conclude the ex-
perimental results that Weldon obtained are not consistent with the binomial
model.

To better understand why the test rejects the binomial model, it is helpful
to examine the Pearson residuals defined by

residual = observed−expected√
expected

,

where observed and expected denote respectively the observed and expected
counts in a particular cell. To obtain these residuals, we save the results of the
chi-square test in the variable test and the component residuals contains
the vector of residuals. Using the plot function, we display the residuals as
a function of k and overlay (using the abline function) a horizontal line at
zero.

> test = chisq.test(cWeldon, p=probs)

> plot(0:10, test$residuals,

+ xlab="k", ylab="Residual")

> abline(h=0)

We see from Figure 3.4 that the observed Weldon counts are smaller than
the binomial expected for values of k four or smaller, and larger than the
expected counts for values of k larger than 4. One possible explanation for
this conclusion is that the dice are not perfectly balanced.

3.3 Relating Two Categorical Variables

3.3.1 Introduction

Example 3.4 (The twins dataset).
Ashenfelter and Krueger [3] describe an interesting study to address the

question “how much will an additional year of schooling raise one’s in-
come?” There are several difficulties in learning about the relationship be-
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Fig. 3.4 Graph of the Pearson residuals from the chi-square test for the Weldon
example.

tween schooling and income. First, there are many variables besides school-
ing that relate to a person’s income such as gender, socioeconomic status,
and intelligence, and it is difficult to control for these other variables in this
observational study. Second, it can be difficult to obtain truthful informa-
tion about a person’s schooling; people are more likely to report a higher
level than they actually attain. The errors in obtaining actual educational
levels can lead to biased estimates of the relationship between schooling and
income. To address these concerns, these researchers interviewed twins, col-
lecting information about income, education, and other background variables.
Monozygotic twins (twins from one egg) have identical family backgrounds
and they provide a good control for confounding variables. Also information
about a person’s education was obtained from a twin (self-reported) and also
from his/her twin (cross-reported). By having two education measurements,
one is able to estimate the bias from not getting a truthful response.

3.3.2 Frequency tables and graphs

We illustrate several statistical methods for categorical variable as a prelim-
inary exploration of this twins dataset. We begin by reading in the dataset
twins.dat.txt and storing it in the data frame twn:

> twn = read.table("twins.dat.txt", header=TRUE,

+ sep=",", na.strings=".")
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There were 183 pairs of twins who were interviewed in this study. In each pair
of twins, one twin was randomly assigned to “twin 1” and the other is called
“twin 2.” The variables EDUCL and EDUCH give the self-reported education (in
years) for twin 1 and twin 2. (In the variable definition, the last letter of “L”
refers to twin 1 and “H” refers to twin 2.) We can obtain frequency tables of
the education years of the twins by two applications of the table function.

> table(twn$EDUCL)

8 10 11 12 13 14 15 16 17 18 19 20

1 4 1 61 21 30 11 37 1 10 3 3

> table(twn$EDUCH)

8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 2 1 65 22 22 15 33 2 11 2 5

The education years for both twins show much variation and the year values
with large frequencies are 12, corresponding to a high school degree, and 16,
corresponding to a college degree.

Since there are so many educational year values, it is useful to categorize
this variable into a smaller number of more meaningful levels. Suppose we
say that a person’s educational level is “high school” if he/she has 12 years of
education, “some college” if the years are between 13 and 15, “college degree”
for 16 years, and “graduate school” if the years are greater than 16. The cut
function is very helpful for creating these new categories. In cut, the first
argument is the variable to be changed, the argument breaks is a vector
defining the breakpoints for the categories, and the argument labels is a
character vector with the labels for the new categories. We use this function
twice, once for twin 1’s educational years and again for twin 2’s educational
years.

> c.EDUCL = cut(twn$EDUCL, breaks=c(0, 12, 15, 16, 24),

+ labels=c("High School", "Some College", "College Degree",

+ "Graduate School"))

> c.EDUCH = cut(twn$EDUCH, breaks=c(0, 12, 15, 16, 24),

+ labels=c("High School", "Some College", "College Degree",

+ "Graduate School"))

We tabulate the the educational levels for twin 1 using the table function,
find relative frequencies by the prop.table function, and construct a bar
graph of the relative frequencies using the barplot function. The resulting
graph is shown in Figure 3.5. We see that approximately 70% of the first
twins fall within the high school or some college levels.

> table(c.EDUCL)

c.EDUCL

High School Some College College Degree Graduate School

67 62 37 17

> prop.table(table(c.EDUCL))

c.EDUCL

High School Some College College Degree Graduate School

0.36612022 0.33879781 0.20218579 0.09289617

> barplot(prop.table(table(c.EDUCL)))
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Fig. 3.5 Bar graph of the educational levels for the first twin in the twins study

An alternative graphical display of table counts, a mosaic plot, is con-
structed using the function mosaicplot. In this display (shown in Figure
3.6), the total count, represented by a solid rectangle, is divided into verti-
cal regions corresponding to the counts for the different educational levels.
(Friendly [17] gives some history of this display.) Both the mosaic plot and the
bar graph tell the same story – most of the first twins are in the high school
and some college categories – but we will shortly see that the mosaic plot
is especially helpful when we classify people with respect to two categorical
variables.

> mosaicplot(table(c.EDUCL))

3.3.3 Contingency tables

The exploration of years of schooling in the previous section raises an interest-
ing question. Is the educational level of twin 1 related to the educational level
for twin 2? One can answer this question by constructing a contingency table
of the educational levels for the two twins. This is easily constructed by the
table function with the two variables c.EDUCL and c.EDUCH as arguments.

> table(c.EDUCL, c.EDUCH)

c.EDUCH

c.EDUCL High School Some College College Degree Graduate School

High School 47 16 2 2
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table(c.EDUCL)

c.EDUCL

High School Some College College Degree Graduate School

Fig. 3.6 Mosaic plot of the educational levels for the first twin in the twins study

Some College 18 32 8 4

College Degree 5 10 18 4

Graduate School 1 1 5 10

Note from the contingency table that there are large counts along the
diagonal of the table where the twins have the same self-reported educational
levels. What proportion of twins have the same level? We store the table in
the variable T1 and extract the diagonal counts using the diag function:

> T1=table(c.EDUCL, c.EDUCH)

> diag(T1)

High School Some College College Degree Graduate School

47 32 18 10

We can compute the proportion of “same educational level” twins by two
applications of the sum function, one on the vector of diagonal elements, and
a second on the entire table.

> sum(diag(T1)) / sum(T1)

[1] 0.5846995

We see that about 58% of the twins have the same educational level.
One can graphically display the table by a mosaic plot constructed using

the plot method for a table. (See Figure 3.7.)

> plot(T1)

This display is constructed in a two-step process. As in the first example,
one first partitions a grey square into vertical bars where the widths of the
bars correspond to the educational level counts for twin 1. Then each of the
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vertical bars is divided into pieces where the heights of the pieces correspond
to the education counts for the second twin. The areas of the regions in the
mosaic plot correspond to the counts in the contingency table. Observe from
Figure 3.7 that the two largest areas correspond to the “high school, high
school” and “some college, some college” counts. This means that most of the
twins either both had a high school or both had “some college” background.
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Fig. 3.7 Mosaic plot of the educational levels for the twins in the twins study.

3.4 Association Patterns in Contingency Tables

3.4.1 Constructing a contingency table

The purpose of the twins study was to explore the relationship of educational
level with salary. We do some initial exploration by focusing on the data for
the first twin. The variable HRWAGEL contains the hourly wage (in dollars). If
one graphs the hourly wages by say, a histogram, one will observe the shape
of the wages is right-skewed. We divide the wages into four groups using the
cut function with break points 0, 7, 13, 20, and 150. We chose these break
points so we would have roughly the same number of twins in each class
interval. We assign the categorized wage to the variable c.wage.

> c.wage = cut(twn$HRWAGEL, c(0, 7, 13, 20, 150))

We construct a frequency table of the categorized wage by the table function.



3.4 Association Patterns in Contingency Tables 91

> table(c.wage)

c.wage

(0,7] (7,13] (13,20] (20,150]

47 58 38 19

There were 21 twins who did not respond to the wage question, so there were
183−21 = 162 recorded wages.

To investigate the relationship of education with salary, we construct a
two-way contingency table by another application of table; the first variable
will appear as rows in the table and the second variable as columns.

> table(c.EDUCL, c.wage)

c.wage

c.EDUCL (0,7] (7,13] (13,20] (20,150]

High School 23 21 10 1

Some College 15 23 12 5

College Degree 7 12 14 3

Graduate School 2 2 2 10

We see that there were 23 people with a high school educational level and
who are earning $7 or less per week, there were 21 people with a high school
level and who are earning between $7 and $13 per week, and so on.

To quantify the relationship between education and salary, one can com-
pute the proportion of different wage categories (column) for each educational
level (row). This can be done using the prop.table function. The arguments
are the table and the margin; if we use margin = 1, the proportions of each
row of the table will be computed, and margin = 2 the proportions of each
column will be computed. Since we wish to compute proportions of different
wages for each educational level, we first save the table in the variable T2,
and use prop.table with arguments T2 and margin = 1.

> T2 = table(c.EDUCL, c.wage)

> prop.table(T2, margin=1)

c.wage

c.EDUCL (0,7] (7,13] (13,20] (20,150]

High School 0.41818182 0.38181818 0.18181818 0.01818182

Some College 0.27272727 0.41818182 0.21818182 0.09090909

College Degree 0.19444444 0.33333333 0.38888889 0.08333333

Graduate School 0.12500000 0.12500000 0.12500000 0.62500000

Of the high school students, we see from the table that 42% earned between
0 and $7, 32% earned between $7 and $13, and 18% earned between $13
and $20. Likewise, the table shows the proportions of students earning the
different wage categories for each of the “Some College,” “College Degree,”
and “Graduate School” educational levels.
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3.4.2 Graphing patterns of association

There are several useful graphs for displaying the conditional proportions in
this contingency table. One way of displaying a proportion vector is a seg-
mented bar chart where one divides a single bar into regions where the region
areas correspond to the proportions. The barplot function, when applied to
a matrix, will construct segmented bar charts for the column vectors of the
matrix. If P denotes the variable containing our proportion matrix, we are
interested in graphing the row (not column) vectors of P. So we first take the
transpose of P (using the t function) and then apply the barplot function.
We add several arguments in this function: we add a label of “PROPOR-
TION” along the y-axis, and add a legend that indicates the color of each of
the four wage categories. The resulting display is shown in Figure 3.8.

> P = prop.table(T2, 1)

> barplot(t(P), ylim=c(0, 1.3), ylab="PROPORTION",

+ legend.text=dimnames(P)$c.wage,

+ args.legend=list(x = "top"))

Note the areas of the lighter colored regions, corresponding to higher wages,
get larger from left to right, indicating that higher educational levels have
higher wages.
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Fig. 3.8 Segmented bar chart of the wage categories for people in four educational
levels.

Another useful display are side-by-side barplots, where the proportions
for a single educational level are displayed as a bar chart. This display is
constructed using the barplot using the beside=TRUE argument; see Figure
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3.9. As in the previous graph, we add a legend that indicates the color of the
bars corresponding to the four wage categories. Lower wages are colored using
darker bars. We see that the darkest bars, corresponding to the lowest wage
category, are predominant for the High School and Some College categories,
and are unlikely for the Graduate College category.

> barplot(t(P), beside=T, legend.text=dimnames(P)$c.wage,

+ args.legend=list(x="topleft"), ylab="PROPORTION")
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Fig. 3.9 Side-by-side bar charts of the wage categories for people in four educational
levels.

3.5 Testing Independence by a Chi-square Test

In the previous section, several methods for exploring the relationship be-
tween educational level and wage were illustrated. A more formal way of
investigating the relationship between the two categorical variables is by a
test of independence. If the variables educational level and wage are inde-
pendent, this means that the probabilities of a twin earning the four wage
categories will not depend on his/her education background. Based on our
exploratory work, we strongly suspect that educational level and wage are
not independent – a higher educational background appears to be associated
with higher wages – but we will see that this statistical test will give new
insight on how education and income are related.
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The traditional test of independence is based on Pearson’s chi-square
statistic. If we test the hypothesis

H : education background and wage are independent,

we compute estimated expected counts under the assumption that H is true.
If we let observed denote the table of counts and expected denote the table
of expected counts, then the Pearson statistic is defined by

X2 =
∑

allcells

(observed−expected)2

expected
.

The Pearson statistic measures the deviation of the observed counts from
the expected counts and one rejects the hypothesis of independence for large
values of the statistic X2. If the hypothesis of independence is true, then
X2 will have, for large samples, an approximate chi-square distribution with
degrees of freedom given by df = (number of rows − 1) × (number of columns
− 1). Suppose that the computed value of X2 for our data is equal to X2

obs.
The p-value is the probability of observing X2 at least as extreme as X2

obs;
applying the chi-square approximation, this p-value is the probability that a
chi-square(df) random variable exceeds X2

obs:

p−value = Prob(χ2
df ≥ X2

obs).

In R, recall we have the first twin’s educational level stored in the variable
c.EDUCL and the wage category stored in c.wage. The contingency table
classifying twins by educational level and wage is stored in the variable T2:

> T2 = table(c.EDUCL, c.wage)

We perform a test of independence using the chisq.test function with the
table T2 as the sole argument. We save the test calculations in the variable
S.

> S = chisq.test(T2)

Warning message:

In chisq.test(T2) : Chi-squared approximation may be incorrect

The warning tells that the accuracy of the chi-square approximation is in
doubt due to a few small expected counts in the table. The results of the test
are obtained by simply printing this variable.

> print(S)

Pearson�s Chi-squared test

data: T2

X-squared = 54.5776, df = 9, p-value = 1.466e-08

It is instructive to confirm the calculations of this statistical test. One first
computes the estimated expected counts of the table under the independence
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assumption – these expected counts are stored in the component expected
of S that we display.

> S$expected

c.wage

c.EDUCL (0,7] (7,13] (13,20] (20,1e+03]

High School 15.956790 19.691358 12.901235 6.450617

Some College 15.956790 19.691358 12.901235 6.450617

College Degree 10.444444 12.888889 8.444444 4.222222

Graduate School 4.641975 5.728395 3.753086 1.876543

The observed counts are stored in the table T2. We can compute the test
statistic by perfoming the operation “observed minus expected squared di-
vided by expected” for all counts and summing over all cells.

> sum((T2 - S$expected)^2 / S$expected)

[1] 54.57759

Our answer, 54.57759, agrees with the displayed value of X-squared from
the chisq.test output. Also we can check the computation of the p-value.
The function pchisq computes the cdf of a chi-square random variable. Here
the number of rows and number of columns of the table are both 4, and the
degrees of freedom is equal to df = (4 − 1)(4 − 1) = 9. Since the distribution
of the test statistic X2 has approximately a chi-square(9) distribution under
independence, the p-value is (approximately) the probability a χ2(9) variate
exceeds 54.57759 which is given by

> 1 - pchisq(54.57759, df=9)

[1] 1.465839e-08

This also agrees with the p-value given in the chisq.test output. This p-
value is very small, so clearly the hypothesis of independence of educational
level and wage category is rejected.

All of the calculations related to this chi-square test are stored in the
variable S. One can view all components of S using the names function.

> names(S)

[1] "statistic" "parameter" "p.value" "method" "data.name" "observed"

[7] "expected" "residuals"

One useful component is residuals – this contains the table of Pearson
residuals, where a particular residual is defined by

residual = observed−expected√
expected

,

and observed and expected are, respectively, the count and the estimated
expected count in that cell. By displaying the table of Pearson residuals, we
see where the counts deviate from the independence model.

> S$residuals

c.wage

c.EDUCL (0,7] (7,13] (13,20] (20,150]
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High School 1.7631849 0.2949056 -0.8077318 -2.1460758

Some College -0.2395212 0.7456104 -0.2509124 -0.5711527

College Degree -1.0658020 -0.2475938 1.9117978 -0.5948119

Graduate School -1.2262453 -1.5577776 -0.9049176 5.9300942

Informally, any residual larger than 2 in absolute value indicates a “signifi-
cant” deviation from independence. It is interesting that using this criterion,
there are two“large”residuals given in the rightmost column of the table. The
residual of −2.14 indicates that there are fewer High School people earning
wages over $20 than anticipated by the independence model. In addition, the
residual of 5.93 indicate there are more Graduate School people earning over
$20 that we would expect for independent variables. We can summarize the
association by saying that educational level matters most in the highest wage
category.

One can display the significant residuals by means of a mosaic plot. The
mosaicplot function is first applied with the shade=FALSE (default) argu-
ment and the areas of the rectangles in the display in Figure 3.10(a) corre-
spond to the counts in the table classifying twins by educational level and
wage category.

> mosaicplot(T2, shade=FALSE)

If the shade=TRUE argument is used, one obtains an extended mosaic plot
displayed in Figure 3.10(b). The border type and the shading of the rectan-
gles relate to the sizes of the Pearson residuals. The two shaded rectangles
correspond to the same two large residuals that we found by inspection of
the table of residuals.

> mosaicplot(T2, shade=TRUE)

Exercises

3.1 (Fast food eating preference). Fifteen students in a statistics class
were asked to state their preference among the three restaurtants Wendys,
McDonalds, and Subway. The responses for the students are presented below.

Wendys McDonalds Subway Subway Subway Wendys

Wendys Subway Wendys Subway Subway Subway

Subway Subway Subway

a. Use the scan function to read these data into the R command window.
b. Use the table function to find the frequencies of students who prefer the

three restaurants.
c. Compute the proportions of students in each category.
d. Construct two different graphical displays of the proportions.

3.2 (Dice rolls). Suppose you roll a pair of dice 1000 times.



3.5 Testing Independence by a Chi-square Test 97

T2

c.EDUCL

c.
w

ag
e

High School Some College College Degree Graduate School

(0
,7

]
(7

,1
3]

(1
3,

20
]

0,
15

0]

(a)

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

−
4

−
4:

−
2

−
2:

0
0:

2
2:

4
>

4

T2

c.EDUCL

c.
w

ag
e

High School Some College College DegreeGraduate School

(0
,7

]
(7

,1
3]

(1
3,

20
]

0,
15

0]

(b)

Fig. 3.10 Mosaic plots of the table categorizing twin 1 by educational level and
wage category. The left plot displays a basic mosaic plot and the right plot shows
an extended mosaic plot where the shaded rectangles in the lower left and lower
right sections of the graph correspond to large values of the corresponding Pearson
residuals.

a. One can simulate 1000 rolls of a fair die using the R function sample(6,

1000, replace=TRUE). Using this function twice, store 1000 simulated
rolls of the first die in the variable die1 and 1000 simulated rolls of the
second die in the variable die2.

b. For each pair of rolls, compute the sum of rolls, and store the sums in the
variable die.sum.

c. Use the table function to tabulate the values of the sum of die rolls. Com-
pute the proportions for each sum value and compare these proportions
with the exact probabilities of the sum of two die rolls.

3.3 (Does baseball hitting data follow a binomial distribution?).
Albert Pujols is a baseball player who has n opportunities to hit in a single
game. If y denotes the number of hits for a game, then it is reasonable to
assume that y has a binomial distribution with sample size n and probability
of success p = 0.312, where 0.312 is Pujols’ batting average (success rate) for
the 2010 baseball season.

a. In 70 games Pujols had exactly n = 4 opportunities to hit and the num-
ber of hits y in these 70 games is tabulated in the following table. Use
the dbinom function to compute the expected counts and the chisq.test
function to test if the counts follow a binomial(4, 0.312) distribution.

b. In 25 games Pujols had exactly n = 5 opportunities to hit and the number
of hits y in these 25 games is shown in the table below. Use the chisq.test
function to test if the counts follow a binomial(5, 0.312) distribution.
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Number of hits 0 1 2 3 or more
Frequency 17 31 17 5

Number of hits 0 1 2 3 or more
Frequency 5 5 4 11

3.4 (Categorizing ages in the twins dataset). The variable AGE gives
the age (in years) of twin 1.

a. Use the cut function on AGE with the breakpoints 30, 40, and 50 to create
a categorized version of the twin’s age.

b. Use the table function to find the frequencies in the four age categories.
c. Construct a graph of the proportions in the four age categories.

3.5 (Relating age and wage in the twins dataset). The variables AGE
and HRWAGEL contain the age (in years) and hourly wage (in dollars) of twin
1.

a. Using two applications of the cut function, create a categorized version
of AGE using the breakpoints 30, 40, and 50, and a categorized version of
HRWAGEL using the same breakpoints as in Section 3.3.

b. Using the categorized versions of AGE and HRWAGEL, construct a contin-
gency table of the two variables using the function table.

c. Use the prop.table function to find the proportions of twins in each age
class that have the different wage groups.

d. Construct a suitable graph to show how the wage distribution depends on
the age of the twin.

e. Use the conditional proportions in part (c) and the graph in part (d) to
explain the relationship between age and wage of the twins.

3.6 (Relating age and wage in the twins dataset, continued).

a. Using the contingency table of the categorized version of AGE and HRWAGEL

and the function chisq.test, perform a test of independence of age and
wage. Based on this test, is there significant evidence to conclude that age
and wage are dependent?

b. Compute and display the Pearson residuals from the test of independence.
Find the residuals that exceed 2 in absolute value.

c. Use the function mosaicplot with the argument shade=TRUE to construct
a mosaic plot of the table counts showing the extreme residuals.

d. Use the numerical and graphical work from parts (b) and (c) to explain
how the table of age and wages differs from an independence structure.

3.7 (Dice rolls, continued). Suppose you roll a pair of dice 1000 times and
you are interested in the relationship between the maximum of the two rolls
and the sum of the rolls.
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a. Using the sample function twice, simulate 1000 rolls of two dice and store
the simulated rolls in the variables die1 and die2.

b. The pmax function will return the parallel maximum value of two vectors.
Using this function, compute the maximum for each of the 1000 pair of
rolls and store the results in the vector max.rolls. Similarly, store the
sum for each pair of rolls and store the sums in the vector sum.rolls.

c. Using the table function, construct a contingency table of the maximum
roll and the sum of rolls.

d. By the computation of conditional proportions, explore the relationship
between the maximum roll and the sum of rolls.

3.8 (Are the digits of π random?). The National Institute of Standards
and Technology has a web page that lists the first 5000 digits of the irrational
number π. One can read these digits into R by means of the script

pidigits =

read.table("http://www.itl.nist.gov/div898/strd/univ/data/PiDigits.dat",

skip=60)

a. Use the table function to construct a frequency table of the digits 1
through 9.

b. Construct a bar plot of the frequencies found in part (a).
c. Use the chi-square test, as implemented in the chisq.test function, to

test the hypothesis that the digits 1 through 9 are equally probable in the
digits of π.

http://www.itl.nist.gov/div898/strd/univ/data/PiDigits.dat


Chapter 4

Presentation Graphics

4.1 Introduction

One of the most attractive aspects of the R system is its capability to produce
state-of-the-art statistical graphics. All of the chapters of this book illustrate
the application of a variety of R functions for graphing quantitative and cat-
egorical data for one or several dimensions. The purpose of this chapter is to
describe methods for adjusting the attributes of the graph and for interact-
ing with the graph that will enable the user to produce a publication-level
graphical display. We focus on the methods that we have found useful in our
own work.

The book by Murrell [37] provides a good description of the traditional
graphics system. Sarkar [43] and Wickham [52] provide overviews respectively
of the lattice and ggplot2 packages for producing graphics that will be
introduced at the end of this chapter.

Example 4.1 (Home run hitting in baseball history).
We begin with an interesting graph that helps us understand the history

of professional baseball in the United States. Major League Baseball has been
in existence since 1871 and counts of particular baseball events, such as the
number of hits, doubles, and home runs, have been recorded for all of the
years. One of the most exciting events in a baseball game is a home run (a
batted ball typically hit out of the ballpark) and one may be interested in
exploring the pattern of home run hitting over the years.

The data file ”batting.history.txt” (extracted from the
baseball-reference.com web site) contains various measures of hitting for
each season of professional baseball. We read in the dataset and use the
attach function to make the variables available for use.

> hitting.data = read.table("batting.history.txt", header=TRUE,

+ sep="\t")

> attach(hitting.data)

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__4,
© Springer Science+Business Media, LLC 2012
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The variables Year and HR contain respectively the baseball season and
number of home runs per game per team. We construct a time series plot of
home runs against season using the plot function in Figure 4.1.

> plot(Year, HR)

Generally we see that home run hitting has increased over time, although
there are more subtle patterns of change that we’ll notice in the following
sections.
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Fig. 4.1 Display of the average number of home runs hit per game per team through
all of the years of Major League Baseball.

4.2 Labeling the Axes and Adding a Title

To communicate a statistical graphic, it is important that the horizontal and
vertical scales are given descriptive labels. In addition, it is helpful to give a
graphic a good title so the reader understands the purpose of the graphical
display. In this example, we think that “Season” is a better label than “Year”
for the horizontal axis, and we want to more precisely define what HR means
on the vertical axis. We add these labels using the xlab and ylab arguments
to plot and we create a graph title using the main argument. Using these
labels, we create a better display as shown in Figure 4.2.

> plot(Year, HR, xlab="Season", ylab="Avg HR Hit Per Team Per Game",

+ main="Home Run Hitting in the MLB Across Seasons")
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Fig. 4.2 Home run hitting graph with axis labels and title added.

Rx 4.1 By default, a high-level graphics function (such as plot) will over-
write the previous graph. One can avoid overwriting graphs by opening a
new graphics window using the windows function on a Windows computer
or quartz function on a Macintosh. Alternatively, after a graph is created,
choose Recording from the History menu for a Windows interface. Then one
can view different graphs by choosing “Next” and “Previous” from the History
menu.

4.3 Changing the Plot Type and Plotting Symbol

By default, the plot function produces a scatterplot of individually plotted
points. Using the type argument option, one can connect the points with
lines using type = "l", show both points and connecting lines using type

= "b", or choose to show no points at all using type = "n". In Figure 4.3,
we illustrate the use of the type = "b" option which may be appropriate for
some time series data.

> plot(Year, HR, xlab="Season", type="b",

+ ylab="Avg. Home Runs Hit by a Team in a Game",

+ main="Home Run Hitting in the MLB Across Seasons")

Using the pch argument in plot, one can specify the symbol of the plotting
character. To see what symbols are available, Figure 4.4 draws all of the
different plotting symbols together with the corresponding values of pch. The
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Fig. 4.3 Home run hitting graph using type = b option.

following R code to produce Figure 4.4 illustrates how one can modify the
usual plotting axes. In the plot function, the horizontal and vertical domains
of the plotting region are controlled using the xlim and ylim arguments.
The type = "n" option indicates that nothing is plotted, and the xaxt =

"n" and yaxt = "n" arguments indicate that no axes are to be drawn. The
labels on the x and y axes are suppressed using the xlab = "" and ylab =

"" arguments. The different plotting symbols are overlaid on the current plot
using the points function. The row and col vectors indicate the plotting
position of the points, the pch argument indicate the plotting symbols to be
drawn, and the cex = 3 argument magnifies the symbols to three times their
usual size. Last, the text function allows one to display text on the current
graph. Here we use the text function to overlay the numbers 0 through 20
next to the corresponding plotting symbols. These numbers are drawn 50%
larger than their usual size (cex = 1.5) and they are positioned to the right
of the symbol (pos = 4) about two character spaces away (offset = 2). The
title function allows one to add a title after the graph has been drawn.

> row = rep(1:3, each=7)

> col = rep(1:7, times=3)

> plot(2, 3, xlim=c(.5,3.5), ylim=c(.5,7.5),

+ type="n", xaxt = "n", yaxt = "n", xlab="", ylab="")

> points(row, col, pch=0:20, cex=3)

> text(row, col, 0:20, pos=4, offset=2, cex=1.5)

> title("Plotting Symbols with the pch Argument")
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Plotting Symbols with the pch Argument

Fig. 4.4 Display of 21 different shapes of plotting points using the pch argument
option. The number next to the symbol shape is the corresponding value of pch.

Returning to our home run hitting graph, suppose we wish to use a solid
circle plotting symbol (pch = 19) drawn 50% larger than default (cex =

1.5). Figure 4.5 shows the revised graph of the home run rates across seasons.

> plot(Year, HR, xlab="Season", cex=1.5, pch=19,

+ ylab="Avg. Home Runs Hit by a Team in a Game",

+ main="Home Run Hitting in the MLB Across Seasons")

4.4 Overlaying Lines and Line Types

To better understand the general pattern in a time series graph, it is helpful to
apply a smoothing function to the data. A general, all-purpose lowess smooth-
ing algorithm (Cleveland [10]) is implemented using the lowess function. In
the following R code, the script lowess(Year, HR) will implement the lowess
smoothing algorithm and the lines function overlays the smoothed points
as a connected line on the current graph. One obtains the graph shown in
Figure 4.6.

> plot(Year, HR, xlab="Season",

+ ylab="Avg. Home Runs Hit by a Team in a Game",

+ main="Home Run Hitting in the MLB Across Seasons")

> lines(lowess(Year, HR))

Looking at Figure 4.6, this smooth does not appear to be a good rep-
resentation of the pattern of changes in the home run rates. The degree of
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Fig. 4.5 Home run hitting graph with the choices pch = 19 and cex = 1.5 argu-
ments in the plot function.

smoothness in the lowess algorithm is controlled by the smoother span pa-
rameter f , and it seems that the default choice f = 2/3 has oversmoothed
the data. This comment suggests that one should try several smaller values
for the smoothness parameter f and see the effect of these choices on the
smooth on this particular dataset.

If one wishes to overlay several smoothing lines on the scatterplot, one
should use different line patterns so that one can distinguish the different
lines. One specifies the line style by the lty argument option. Six possible
styles are numbered 1 through 6, that are equivalent to the strings “solid,”
“dashed,”“dotted,”“dotdash,”“longdash,” and “twodash.”Figure 4.7 displays
these six line styles using the following R code. As in the display of the point
types, we first set up an empty graph with horizontal and vertical ranges
from −2 to 2 and suppress the printing of the axes and the axes labels.
We draw lines with the abline function with slope b = 1 and intercepts a
of 2,1,0,−1,−2,−3 with corresponding line styles 1 through 6. We use the
legend function so the reader can match the line style with the values of lty.
In the legend function, we indicate that the legend box is to be drawn in the
“topleft”portion of the graph, the legend labels are to be the six values “solid,
“dashed,” “dotted,” “dotdash,” “longdash,” and “twodash,” and the lty and
the lwd parameters indicate the line type and thickness of the lines associated
with the labels. In this example, we decide to use thicker lines (lwd = 2), so
that the five line types are distinguishable.

> plot(0, 0, type="n", xlim=c(-2, 2), ylim=c(-2, 2),

+ xaxt="n", yaxt="n", xlab="", ylab="")



4.4 Overlaying Lines and Line Types 107

●

●
●

●

●
●●●

●●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●●●

●

●

●●●●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

1880 1900 1920 1940 1960 1980 2000

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Home Run Hitting in the MLB Across Seasons

Season

A
vg

. H
om

e 
R

un
s 

H
it 

by
 a

 T
ea

m
 in

 a
 G

am
e

Fig. 4.6 Home run hitting graph with overlaying lowess fit using the default smooth-
ing parameter.

> y = seq(2, -3, -1)

> for(j in 1:6)

+ abline(a=y[j], b=1, lty=j, lwd=2)

> legend("topleft", legend=c("solid", "dashed", "dotted",

+ "dotdash", "longdash", "twodash"), lty=1:6, lwd=2)

> title("Line Styles with the lty Argument")

Using the different line styles, we will redraw our home run graph with
three lowess fits corresponding to the smoothing parameter values f = 2/3
(the default value), f = 1/3, and f = 1/12 in Figure 4.8. After constructing
the basic graph by plot, we use the lines function three times to overlay
the smooths on the graph using the line style values lty ="solid" (the
default), lty = "dashed", and lty = "dotdash". We add a legend, so the
reader will be able to connect the line style with the smoothness parameter
value. Comparing the three smooths, it appears that the lowess smooth with
the value f = 1/12 is the best match to the pattern of increase and decrease
in the scatterplot. From this smoothed curve, we see that home run hitting
increased from 1940 to 1960, decreased from 1960 to 1980, and increased
again from 1980 to 2000.

> plot(Year, HR, xlab="Season",

+ ylab="Avg. Home Runs Hit by a Team in a Game",

+ main="Home Run Hitting in the MLB Across Seasons")

> lines(lowess(Year, HR), lwd=2)

> lines(lowess(Year, HR, f=1 / 3), lty="dashed", lwd=2)

> lines(lowess(Year, HR, f=1 / 12), lty="dotdash", lwd=2)
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solid
dashed
dotted
dotdash
longdash
twodash

Line Styles with the lty Argument

Fig. 4.7 Display of six different line styles using the lty argument option.

> legend("topleft", legend=c("f = 2/3", "f = 1/3",

+ "f = 1/12"), lty=c(1, 2, 4), lwd=2, inset=0.05)

4.5 Using Different Colors for Points and Lines

We have focused on the selection of different point shapes and line styles, but
it may be preferable to distinguish points and lines using different colors. R
has a large number of color choices that are accessible by the col argument
to graphics functions such as plot or hist. One can appreciate the large
number of available plotting colors by simply typing

> colors()

[1] "white" "aliceblue" "antiquewhite"

[4] "antiquewhite1" "antiquewhite2" "antiquewhite3"

[7] "antiquewhite4" "aquamarine" "aquamarine1"

[10] "aquamarine2" "aquamarine3" "aquamarine4"

[13] "azure" "azure1" "azure2"

[16] "azure3" "azure4" "beige"

...

As a simple example, suppose you wish to graph the following ten points
(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 2), (7, 3), (8, 4), (9, 3), (10, 2) using
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Fig. 4.8 Home run hitting graph with three lowess fits with three choices of the
smoothing parameter.

a variety of colors. Try the following R code (output not shown) to see the
display of colors. To make the colors more visible, the plot function uses the
(cx = 5, pch = 19) arguments to draw large solid points.

> plot(1:10, c(5, 4, 3, 2, 1, 2, 3, 4, 3, 2),

+ pch=19, cex=5,

+ col=c("red", "blue", "green", "beige", "goldenrod",

+ "turquoise", "salmon", "purple", "pink", "seashell"))

One can also specify colors by numbers. By typing the following R code
(output not shown), one can see the default mapping of the numbers 1
through 8 to colors.

> palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"

[8] "gray"

The argument col = 1 corresponds to black, col = 2 corresponds to red,
and so on. The following R code displays four lines drawn using the line
styles lty = 1, ..., lty = 4. (The graph is not shown.)

> plot(0, 0, type="n", xlim=c(-2, 2), ylim=c(-2, 2),

+ xaxt="n", yaxt="n", xlab="", ylab="")

> y = c(-1, 1, 0, 50000)
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> for (j in 1:4)

+ abline(a=0, b=y[j], lty=j, lwd=4)

If one adds the additional argument col=j to abline, one will see four lines
drawn using contrasting line types and contrasting colors.

4.6 Changing the Format of Text

One has fine control over the style and placement of textual material placed
on a graph. Specifically, one can choose the font family, style, and size of text
through arguments of the text function. We illustrate some of these options
through a simple example.

We begin by setting up an empty plot window where the horizontal limits
are −1 and 6 and the vertical limits are −0.5 and 4. We place the text "font
= 1 (Default)" at the coordinate point (2.5, 4). As the label suggests, this
text is drawn using the default font family and size. (See the top line of text
in the box in Figure 4.9.)

> plot(0, 0, type="n", xlim=c(-1, 6), ylim=c(-0.5, 4),

+ xaxt="n", yaxt ="n", xlab="", ylab="",

+ main="Font Choices Using, font, family and srt Arguments")

> text(2.5, 4, "font = 1 (Default)")

One can change the style of the text font using the font argument option.
The values font = 2, font = 3, and font = 4 correspond respectively to
bold, italic, and bold-italic styles. Using the srt argument, one can rotate
the text string by an angle (in degrees) in a counter-clockwise direction. We
illustrate rotating the last string 20 degrees. (See the three lines of text on
the left side of the box in Figure 4.9.)

> text(1, 3, "font = 2 (Bold)", font=2, cex=1.0)

> text(1, 2, "font = 3 (Italic)", font=3, cex=1.0)

> text(1, 1, "font = 4 (Bold Italic), srt = 20", font=4,

+ cex=1.0, srt=20)

One can control the size of the text using the cex option. In the R code,
we use the cex = 1.0 which corresponds to the default size. One can double
the text size using cex = 2 or decrease the text size using cex = 0.5.

The argument family is used to select the font family of the text. One can
choose the alternative serif, sans, and mono families by the use of the "serif",
"sans", and "mono" values for family. The following R code illustrates using
text with these three common families and Figure 4.9 shows the results on the
right hand side inside the box. The Hershey font families are also available. In
the last line of code, we illustrate using the "HersheyScript" family, drawn
at two and a half times the usual size using cex = 2.5, and drawn in red using
col = "red".
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Font Choices Using, font, family and srt Arguments

font = 1 (Default)

font = 2 (Bold)

font = 3 (Italic)

font = 4 (Bold Italic), srt = 20

family = "serif"

family = "sans"

family = "mono"

Fig. 4.9 Illustration of the use of different font, family, and srt arguments in the
text function.

> text(4, 3, �family="serif"�, cex=1.0, family="serif")

> text(4, 2, �family="sans"�, cex=1.0, family="sans")

> text(4, 1, �family="mono"�, cex=1.0, family="mono")

> text(2.5, 0, �family = "HersheyScript"�, cex=2.5,

+ family="HersheyScript", col="red")

4.7 Interacting with the Graph

One helpful function is identify that allows a person to interact with a
graph. Here we use identify to label interesting points in a scatterplot.

Example 4.2 (Home run hitting in baseball history (continued)).
We described the basic pattern in the home run hitting graph by a lowess

smooth. We are next interested in examining the residuals, the vertical devi-
ations of the points from the fitted points. In the following R script, we first
save the lowess fit calculations in the variable fit. The component fit$y

contains the fitted points and the residuals (actual HR values minus the fit-
ted values) are computed and stored in the vector Residual. We construct
a scatterplot of Residual against Year by the plot function and overlay a
horizontal line at zero using the abline function.

> fit = lowess(Year, HR, f=1 / 12)

> Residual = HR - fit$y

> plot(Year, Residual)

> abline(h=0)
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Looking at this graph (Figure 4.10), we notice two unusually large resid-
uals, one positive and one negative. The identify function can be used to
learn which seasons corresponded to these unusual residuals. This function
has four arguments: the x and y plotting variables (Year and Residual), the
number of points to identify (n = 2), and the vector of plotting labels to use
(Year). After this function is executed, a crosshair appears when one moves
the mouse over the graphics window. One identifies the points by clicking the
mouse near the two points and the years corresponding to these points will
appear. We see that the unusually large positive and large negative residuals
correspond respectively to the 1987 and 1968 seasons. (The 1987 baseball
season is notable in that players used steroids to help their hitting and the
1968 was a season where pitching was unusually dominant.) The output of
identify is a vector with values 98 and 117 which are the row numbers of
the data frame corresponding to these identified points.

> identify(Year, Residual, n=2, labels=Year)

[1] 98 117
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Fig. 4.10 Residual graph from lowess fit with two outliers identified.

4.8 Multiple Figures in a Window

Sometimes it is desirable to put several graphs in the same plot window. In
the traditional graphics system, this can be accomplished using the mfrow
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and mfcol parameter settings (the mnemonic is mf for “multiple figure”).
Suppose one wishes to divide the window into six plotting regions in a grid
with three rows and two columns. This will be set up by typing

> par(mfrow=c(3, 2))

Then a succession of six graphs, say using the plot function, will be displayed
in the six plotting regions, where the the top regions are used first. If one
wishes to restore the display back to a single plotting region, then type

> par(mfrow=c(1, 1))

In our example, suppose we wish to have two regions, where the home run
rates and the lowess fit are displayed in the top region, and the residual graph
is displayed in the bottom region. We begin using the par function with the
mfrow=c(2,1) argument, and then follow with two plot functions displayed
in the two regions (see Figure 4.11).

> par(mfrow=c(2, 1))

> plot(Year, HR, xlab="Season",

+ ylab="Avg HR Hit Per Team Per Game",

+ main="Home Run Hitting in the MLB Across Seasons")

> lines(fit, lwd=2)

> plot(Year, Residual, xlab="Season",

+ main="Residuals from Lowess Fit")

> abline(h=0)

4.9 Overlaying a Curve and Adding a Mathematical
Expression

Example 4.3 (Normal approximation to binomial probabilities).
We use a new example to illustrate a few additional useful R graphics func-

tions. It is well known that binomial probabilities can be closely approximated
by the normal distribution. We wish to demonstrate this fact graphically by
displaying a set of binomial probabilities and overlaying the approximating
normal curve.

As our example, consider binomial probabilities for an experiment with
sample size n = 20 and probability of success p = 0.2. We set up a grid of
possible values for the binomial variable y, compute the corresponding prob-
abilities using the R dbinom function, and store the probabilities in the vector
py.

> n = 20; p = 0.2

> y = 0:20

> py = dbinom(y, size=n, prob=p)
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Fig. 4.11 Home run hitting graph with fit and residual plot.

We construct a histogram or vertical line style display using plot with the
type = "h" argument option. We decide to plot thick lines with the lwd=3

option, and limit the horizontal plotting range to (0, 15) by the xlim ar-
gument. Using ylab, we give a descriptive label for the vertical axis. The
resulting display is shown in Figure 4.12.

> plot(y, py, type="h", lwd=3,

+ xlim=c(0, 15), ylab="Prob(y)")

Next we wish to overlay a matching normal curve to this plot. We compute
the mean and standard deviation of the binomial distribution and use the
curve function to overlay the normal curve. The function to be plotted by
curve (in this case the dnorm normal density function) is always written as a
function of x. Here x is a formal argument and does not reference a particular
object in the workspace. Using the add=TRUE argument, we indicate that we
wish to add this curve to the current plot and the lwd and lty arguments
change the line thickness and line style of the displayed curve.

> mu = n * p; sigma = sqrt(n * p * (1 - p))

> curve(dnorm(x, mu, sigma), add=TRUE, lwd=2, lty=2)

To display the equation of the normal density on the graph, we can apply
text, a general function for adding textual material to the current plot. The
function expression can be used to add mathematical expressions. In the
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Fig. 4.12 Display of the binomial probability distribution for n = 20 and p = 0.2.

following R code, we indicate that we wish to place the text at the location
(10, 0.15) on the plot, and use expression to enter in the normal density
formula. The syntax inside expression is similar to Latex syntax – frac

indicates a fraction, sqrt indicates a square root, and sigma refers to the
Greek letter σ. The paste function is used to concatenate two character
strings.

> text(10, 0.15, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

+ e^{frac(-(y-mu)^2, 2*sigma^2)})), cex = 1.5)

A descriptive title is added to the graph using the title function.

> title("Binomial probs with n=2, p=0.2, and matching normal curve")

The manual page giving a more complete description of the syntax for ex-
pression is found by typing

?plotmath

Last, we wish to draw a line that connects the normal density equation to
the curve. This is conveniently done using the locator function. If we use
locator(2), a cross-hair will show on the graph and we choose two locations
on the grid by clicking the mouse. The x and y locations of the chosen points
are stored in the list locs. The arrows function draws a line between the
two locations on the current display; the resulting display is shown in Figure
4.13.

> locs = locator(2)

> arrows(locs$x[1], locs$y[1], locs$x[2], locs$y[2])
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Fig. 4.13 Display of the binomial probability distribution for n = 20 and p = 0.2.with
text and title added.

4.10 Multiple Plots and Varying the Graphical
Parameters

We use a snowfall data example to illustrate constructing multiple plots using
the layout function and modifying some of the graphical parameters using
the par function.

The website http://goldensnowball.blogspot.com describes the Golden
Snowball Award given to the city in New York State receiving the most snow-
fall during the winter season. The variables snow.yr1 and snow.yr2 contain
the 2009-10 and 2010-11 snowfalls (in inches through February 24, 2011) for
the cities Syracuse, Rochester, Buffalo, Binghamton, and Albany.

> snow.yr1 = c(85.9, 71.4, 68.8, 58.8, 34.4)

> snow.yr2 = c(150.9, 102.0, 86.2, 80.1, 63.8)

We wish to construct a scatterplot and a difference plot in the same plot-
ting window. We use the windows function to open a new graphics device of
size 5 inches by 7 inches. The layout divides this device into two regions; the
matrix argument divides the device into two regions of a single column and
the relative heights of the two regions are 6 and 4.

> windows(width=5, height=7)

> layout(matrix(c(1, 2), ncol=1), heights=c(6, 4))

With the default settings, the figure region is the entire region of the graph-
ics device and the plot region is the region where the data is graphed. The

http://goldensnowball.blogspot.com


4.10 Multiple Plots and Varying the Graphical Parameters 117

default location of the plot region can be displayed by showing the plt ar-
gument of par; the four values are represented in terms of fractions of the
figure region. The region goes from 0.117 to 0.940 in the horizontal direction
and 0.146 to 0.883 in the vertical direction.

> par("plt")

[1] 0.1171429 0.9400000 0.1459315 0.8826825

We wish to construct a scatterplot in the top region. We modify the plt

and xaxt arguments to par. The values for plt result in a figure region with
extra space on the right and less space below, and the xact="n" argument
suppresses the plotting of the x axis. We use the plot function to construct
a scatterplot of the two year snowfall amounts, use the abline function to
overlay a line where the two snowfalls are equal, and label Syracuse’s snowfall
by the text function. The resulting display is shown in Figure 4.14.

> par(plt=c(0.20, 0.80, 0, 0.88), xaxt="n")

> plot(snow.yr1, snow.yr2, xlim=c(30, 100), ylim=c(30, 155),

+ ylab="2010-11 Snowfall (in)", pch=19,

+ main="Snowfall in Five New York Cities")

> abline(a=0, b=1)

> text(80, 145, "Syracuse")

The snowfall is measured in inches and we want to also display centime-
ters on the right axis to better communicate this graph to a non-American
audience. We first save information about the current y tick mark locations
(stored in the yaxp argument) in the variable tm. We use this information to
compute the tick mark locations. Then we use the axis function to draw a
right vertical axis; note that we compute the centimeter values by multiply-
ing the inch values by 2.54 and rounding to the nearest 10 to make the tick
labels more readable. Last, we use the mtext function to write a label on this
new axis.

> tm = par("yaxp")

> ticmarks = seq(tm[1], tm[2], length=tm[3]+1)

> axis(4, at=ticmarks,

+ labels=as.character(round(2.54 * ticmarks, -1)))

> mtext("2010-11 Snowfall (cm)", side=4, line=3)

We next construct a scatterplot of the increase in snowfall (from 2009-10
to 2010-11) in the bottom region. The plot region is modified (using the plt
argument) so that it matches the first graph horizontally and there is little
space between the two regions. The xaxt="s" argument turns on the plotting
of the x-axis. We plot the increase in snowfall against the 2009-10 amount
and again identify the point corresponding to Syracuse. A right vertical axis
corresponding to centimeters is again constructed using the same commands
as in the top region.

> par(plt=c(0.20, 0.80, 0.35, 0.95), xaxt="s")

> plot(snow.yr1, snow.yr2 - snow.yr1, xlim=c(30, 100),
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Fig. 4.14 Two graphs to display the snowfall of five New York cities for two con-
secutive seasons. This display uses the layout function to divide the graphics device
into unequal areas, the plt argument to par adjusts the figure regions, and the axis

function is used to add a second axis to the plots.

+ xlab="2009-10 Snowfall (in)", pch=19,

+ ylab="Increase (in)")

> text(80, 60, "Syracuse")

> tm=par("yaxp")

> ticmarks=seq(tm[1], tm[2], length=tm[3] + 1)

> axis(4, at=ticmarks,

+ labels=as.character(round(2.54 * ticmarks, -1)))

> mtext("Increase (cm)", side=4, line=3)

The message from this plot is that all five New York cities had more snow
during the 2010-11 season. The bottom plot focuses on the change in snowfall;
Syracuse had over 60 inches more snowfall in 2010-11 and the remaining cities
had an additional 25 inches of snow.
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4.11 Creating a Plot using Low-Level Functions

Many graphics commands in R are high-level functions that will take care
of all aspects of graph construction including drawing the axes, plotting the
tick marks and tick labels, and choosing the points and lines to be displayed.
In some situations one wishes to create a special-purpose graph with finer
control over the construction process. Here we illustrate a simple example of
constructing a graph from scratch.

Example 4.4 (Graphing a circle with labels).
In Chapter 13, in our introduction of Markov Chains, in Figure 13.5, we

constructed a graphical display of a circle on which six locations, numbered
1 through 6, are displayed. Since we don’t want the plot axes to show, this
is a good opportunity to illustrate some of the lower-level plotting functions
in R.

To begin, one needs to open a new graphics frame – this is accomplished
by the plot.new function.

> plot.new()

A coordinate system is set up using the plot.window function. The minimum
and maximum values of the horizontal and vertical scales are controlled by
the xlim and ylim arguments . The pty argument indicates the type of plot
region – the choice pty = "s" generates a square plotting region.

> plot.window(xlim=c(-1.5, 1.5), ylim=c(-1.5, 1.5), pty="s")

Now that the coordinate system has been set up, it is convenient to use
polar coordinates to graph a circle. One defines a vector of angles theta

equally spaced from 0 to 2π and the coordinates of the circle are the cosine and
sine functions evaluated at these angles. The function lines with arguments
x and y adds a line graph to the current graph. (The work is displayed in
Figure 4.15.)

> theta = seq(0, 2*pi, length=100)

> lines(cos(theta), sin(theta))

Next, suppose one wishes to draw large solid plotting points at six equally-
spaced locations on the circle. Six angle values are defined and stored in the
vector theta. The function points adds points to the current graph. The
arguments cex = 3 plots the symbols at three times the usual size, and pch

= 19 uses a solid dot plotting symbol.

> theta=seq(0, 2*pi, length=7)[-7]

> points(cos(theta), sin(theta), cex=3, pch=19)

The points will be labelled outside of the circle using large numbers 1
through 6. To get precise control over the plotting locations, the locator

function graphically select the locations. The text function places the labels
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one through six at these locations and the labels are drawn at two and one
half times the usual size by specifying cex = 2.5. The plot is completed by
drawing a box around the display with the box function.

> pos = locator(6)

> text(pos, labels=1:6, cex=2.5)

> box()

Figure 4.15 shows the completed graph. Using these low-level plot functions,
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Fig. 4.15 Graphical display of a circle with labeled locations constructed using low-
level graphics functions in R.

the user has much control over the axes display and characteristics of the
drawn lines and points. Using these tools, it is possible in principle to create
many new types of graphical displays.

4.12 Exporting a Graph to a Graphics File

After creating a graph with R, one often wishes to export the graph to a
graphics format such as pdf, gif, or jpeg, so the graph can be included in a
document or web page. There are several ways of exporting graphics that we
will outline through an example.

Example 4.5 (Home run hitting in baseball history (continued)).
Suppose we wish to export the R graph in Figure 4.8 that displays the

home run rates together with three lowess fits. In the Windows system, one
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can simply save graphs using menu commands. After the graph has been
constructed, select the graph and select the menu option “Save as” under the
File menu. One selects the graphics format (metafile, postscript, pdf, png,
bmp, or jpg) of interest and gives a name to the graphics file.

Alternatively, one can use functions to export graphs. For example, sup-
pose we wish to save the same graph in the current working directory in a pdf
format. In the R code, one first uses the function pdf to open the graphics de-
vice. The argument is the name of the saved graphics file, although one does
not need to specify a name; the default name for saved files is “Rplots.pdf”
that will overwrite any existing file with the same name. One next includes
all of the functions for producing the graph. Then the dev.off function will
close the graphics device and save the file.

> pdf("homerun.pdf")

> plot(Year, HR, xlab="Season",

+ ylab="Avg. Home Runs Hit by a Team in a Game",

+ main="Home Run Hitting in the MLB Across Seasons")

> lines(lowess(Year, HR))

> lines(lowess(Year, HR, f=1 / 3), lty=2)

> lines(lowess(Year, HR, f=1 / 6), lty=3)

> legend("topleft", legend=c("f = 2/3", "f = 1/3", "f = 1/6"), lty=c(1, 2, 3))

> dev.off()

Rx 4.2 It is a common mistake to forget to type the dev.off() function at
the end. If this function is not included, the graphics file will not be created.

There are similar functions such as postscript and jpeg for saving the graph
using alternative graphics formats. See ?Devices for more details.

4.13 The lattice Package

Almost all of the graphs illustrated in this book are based on the traditional
graphics system provided in the graphics package in R. Although this pack-
age provides much flexibility in producing a variety of statistical graphics,
there are some alternative graphics systems available that extend and im-
prove the traditional system. In this section we give a brief overview of the
graphics available in the lattice package developed by Sarkar [43].

The graphics package contains a number of useful functions such as plot,
barplot, hist, and boxplot for constructing statistical graphs. The lattice
package contains a collection of plotting functions such as xyplot, barchart,
histogram, and bwplot that produce similar types of graphs. By typing

> help(package=lattice)

one sees a display of functions and objects in the lattice package. Why
should one use lattice functions instead of the traditional R graphing func-
tions? First, there are several graphing functions in lattice that are not
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available in the traditional system. Second, the default appearance of some
of the lattice graphs is sometimes better than the default appearance of
the traditional graphs. Last, the lattice package provides some attractive
extensions of the basic R graphics system and these extensions will be the
focus of this section.

Example 4.6 (Gas consumption of cars).
To illustrate the lattice graphics functions, consider the dataset mtcars

which contains the fuel consumption and other measures of design and per-
formance for a group of 32 cars. Suppose one wishes to construct a scatterplot
of miles per gallon against the weight of the car (lbs divided by 1000). In the
lattice package, the basic syntax of the scatterplot function is

xyplot(yvar ~ xvar, data)

where data is the data frame containing the two variables. In the R script,
the lattice package is loaded (using the library function) and a scatterplot
of mpg and wt is constructed. Axis labels and a title are added by the same
arguments as the traditional graphics system. The resulting graph is in Figure
4.16.

> library(lattice)

> xyplot(mpg ~ wt, data=mtcars, xlab="Weight",

+ ylab="Mileage",

+ main="Scatterplot of Weight and Mileage for 32 Cars")

Scatterplot of Weight and Mileage for 32 Cars
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Fig. 4.16 Scatterplot of weight and mileage for a sample of cars using the lattice

xyplot function.
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From the scatterplot one understands that the mileage of a car depends
on the number of cylinders in the engine. If one controls for the number of
cylinders, is there still an association between mileage and weight? One nice
extension offered by the lattice package is the availability of conditional
graphs, that is, graphs conditional on the values of a third variable. In the
case of a scatterplot, this conditional plot has the basic syntax

xyplot(yvar ~ xvar | cvar, data)

where cvar is a third variable with a limited number of values. In this ex-
ample, the variable cyl is number of cylinders in the engine, and xyplot

function is used to construct a separate scatterplot of mileage and weight for
each possible number of cylinders. To help in visualizing the plotting symbols
in Figure 4.17, solid plotting symbols (pch = 19) are drawn one and a half
times larger than the usual size (cex = 1.5).

> xyplot(mpg ~ wt | cyl, data=mtcars, pch=19, cex=1.5,

+ xlab="Weight", ylab="Mileage")
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Fig. 4.17 Scatterplot of weight and mileage conditional on the number of cylinders
using the lattice xyplot function.

Since the scaling is the same for all three plots, one can easily compare the
three scatterplots. The panels in the lower left, lower right, and upper left
sections of the figure correspond respectively to four, six, and eight cylinders.
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For the 4-cylinder cars, there seems to be a relatively strong relationship
between mileage and weight. In contrast, for 8-cylinder cars, the relationship
between mileage and weight seems weaker.

The lattice package also allows for graphical displays that allow for com-
parisons between different data groups. Suppose that one is interested in com-
paring the weights of 4-cylinder, 6-cylinder, and 8-cylinder cars. A density
plot is an estimate of the smooth distribution of a variable. One can construct
density plots of different groups of data using the syntax

> densityplot(~ yvar, group=gvar, data)

where yvar is the continuous variable of interest, and gvar is the grouping
variable. This type of graph can be used to compare the distributions of
weights of the three types of cars. (See Figure 4.18.) The auto.key option
will add a legend above the graph showing the line color of each group.

> densityplot(~ wt, groups=cyl, data=mtcars,

+ auto.key=list(space="top"))
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Fig. 4.18 Density plots of car weights for 4-cylinder, 6-cylinder, and 8-cylinder cars
using the lattice densityplot function with the groups argument option.

Looking at this graph, one sees the variability of weights for each group of
cars. Four-cylinder cars tend to weigh between 1000-4000 pounds and six-
cylinder cars between 2000-4000 pounds. The eight-cylinder cars appear to
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cluster in two groups, one group weighing 3000-4000 pounds and a second
group between 5000-6000 pounds.

Example 4.7 (Sample means).
In Chapter 2, we considered collections of triples of random numbers gen-

erated using the the RANDU algorithm. Although this algorithm is supposed
to produce uncorrelated triples, it has been well-documented that the simu-
lated numbers have an association pattern. This can be easily shown using a
a three-dimensional scatterplot drawn by the lattice cloud function.

> library(lattice)

> cloud(z ~ x + y, data = randu)

x
y

z

Fig. 4.19 Cloud plot of RANDU random number triples using the lattice package.

Looking carefully at Figure 4.19, one sees groups of points (x,y,z) that follow
linear patterns of the type

z = ax+ by

for constants a and b. The algorithm RANDU was used as the random number
generation algorithm for the early personal computers, but currently alter-
native algorithms (without this dependence problem) are used for simulating
random numbers in modern computers.
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4.14 The ggplot2 Package

A second alternative to traditional graphics in R is the ggplot2 package
described in Wickham.[52] This system is based on a different way of thinking
about graphics. Specifically, ggplot2 is an R implementation of the“grammar
of graphics” described in Wilkinson [55]. This alternative graphics system is
described in the context of an interesting sports example.

Example 4.8 (World records in the mile run ).
Professional athletes are continuously setting new world records in many

sports such as running, jumping, and swimming, and it is interesting to ex-
plore the patterns of these world records over time. The data set
“world.record.mile.csv” contains the world record times in the mile run for
men and for women. Obviously, the world record times have decreased over
time, but we are interested in learning about the pattern of decrease, and
seeing if the pattern of decrease is different for men and women.

We read in the dataset using the read.csv function. We are interested in
only the record times that were obtained in the year 1950 or latter; we use
the subset function to create a new data frame mile2 containing the times
for these recent world records.

> mile = read.csv("world.record.mile.csv")

> mile2 = subset(mile, Year >= 1950)

Wilkinson [55] describes a statistical graphic as a combination of inde-
pendent components. Variables in a dataset are assigned particular roles or
aesthetics; the aesthetic for one variable might be the plotting position along
the horizontal axis and the aesthetic for a second variable might be the color
or shape of the plotting point. Once the aesthetics for a set of variables are
defined, then one uses a geometric object or geom to construct a graph. Ex-
amples of geoms are points, lines, bars, histograms, and boxplots.

One thinks of constructing a graph by overlaying a set of layers on a grid.
To construct a scatterplot, one overlays a set of point geoms on a Cartesian
coordinate system. If one is interested in summarizing the pattern of points,
then one might wish to overlay a smoothing curve on the current graph. A
lowess smoother is an example of a statistic, a transformation of the data
that you wish to graph.

There are many choices how the variables are mapped to the aesthetic
properties. For example, variables may be graphed on a log scale, or one
wishes to map a variable using a specific range of colors. These mappings are
called scales and there are many choices for scales in the ggplot2 package.
The graphics system also allows for position adjustments, fine tune positioning
of graphical objects such as jittering and stacking, and faceting, plotting
subsets of the data on different panels.

For our example, we first load in the ggplot2 package. The ggplot func-
tion is used to initialize the graph – the first argument is the name of the
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data frame mile2 and the second argument ase() defines the aesthetics that
map variables in the data frame to aspects of the graph. We indicate in the
aes argument that Year is to be plotted along the horizontal (x) axis, sec-
onds is to be plotted along the vertical (y) axis, and the variable Gender will
be used as the color and shape aesthetics. We store this graph initialization
information in the variable p.

> library(ggplot2)

> p = ggplot(mile2, aes(x = Year, y = seconds,

+ color = Gender, shape = Gender))

The function ggplot does not perform any plotting – it just defines the
data frame and the aesthetics. We construct a plot by adding geom and
statistic layers to this initial definition. A scatterplot is constructed using the
geom_point function; the size = 4 arguments indicates that the points will
be drawn twice the usual size of 2. Then we add a smoothing lowess curve
using the geom_smooth function.

> p + geom_point(size = 4) + geom_smooth()

Figure 4.20 displays the resulting graphical display. Since the variable Gen-
der has been assigned to the color and shape aesthetics, note that the male
and female record times are plotted using different colors and shapes and a
legend is automatically drawn outside of the plotting region. Note that since
Gender has a color aesthetic, the smoothing curves are graphed for each gen-
der. The record times appear to be linearly decreasing as a function of year for
both genders this time period, although the rate of decrease is much greater
for the women times.

Although the“grammar”of the ggplot2 system may seem odd at first look,
one can construct attractive and useful graphics using a limited amount of
R code. The book Hadley [52] provides a comprehensive description of the
ggplot2 package and many graphics examples are displayed on the accom-
panying website had.co.nz/ggplot2.

Exercises

4.1 (Speed and stopping distance). The data frame cars in the datasets
package gives the speed (in mph) and stopping distance (in ft) for 50 cars.

a. Use the plot function to construct a scatterplot of speed (horizontal)
against dist (vertical).

b. Revise the basic plot by labeling the horizontal axis with “Speed (mpg)”
and the vertical axis with “Stopping Distance (ft),”Add a meaningful title
to the plot.

c. Revise the plot by changing the plot symbol from the default open circles
to red filled triangles (col="red", pch=17).
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Fig. 4.20 Scatterplots of world record running times for the mile for the men and
women using the ggplot2 package. Smoothing lines are added to show the general
pattern of decrease for each gender.

4.2 (Speed and stopping distance (continued)). Suppose that one
wishes to compare linear and quadratic fits to the (speed,dist) observations.
One can construct these two fits in R using the code

fit.linear = lm(dist ~ speed, data=cars)

fit.quadratic = lm(dist ~ speed + I(speed^2), data=cars)

a. Construct a scatterplot of speed and stopping distance.
b. Using the abline function with argument fit.linear, overlay the best

line fit using line type “dotted” and using a line width of 2.
c. Using the lines function, overlay the quadratic fit using line type “long-

dash” and a line width of 2.
d. Use a legend to show the line types of the linear and quadratic fits.
e. Redo parts (a) - (d) using two contrasting colors (say red and blue) for

the two different fits.

4.3 (Speed and stopping distance (continued)).

a. Construct a residual plot for the linear fit by typing

plot(cars$speed, fit.linear$residual)

b. Add a blue, thick (lwd=3) horizontal line to the residual plot using the
abline function.

c. There are two large positive residuals in this graph. By two applications
of the text function, label each residual using the label “POS” in blue.

Year

se
co

nd
s

240

260

280

300

ll
l

l
lll

l

l

l
l
l l

l

l

l
lll

ll l l
l

l

l
lllllllllllllllllllllllllllllllllll

l
lll
l l

l

ll

l
llllllll lllll

lll
ll l

l

1960 1970 1980 1990

Gender
ll female

male



4.14 The ggplot2 Package 129

d. Label the one large negative residual in the graph with the label “NEG”
in red.

e. Use the identify function to find the row numbers of two observations
that have residuals close to zero.

4.4 (Multiple graphs). The dataset mtcars contains measurements of fuel
consumption (variable mpg) and other design and performance characteristics
for a group of 32 automobiles. Using the mfrow argument to par, construct
scatterplots of each of the four variables disp (displacement), wt (weight), hp
(horsepower), drat (rear axle ratio) with mileage (mpg) on a two by two ar-
ray. Comparing the four graphs, which variable among displacement, weight,
horsepower, and rear axle ratio has the strongest relationship with mileage?

4.5 (Drawing houses). The following function house plots an outline of a
house centered about the point (x, y):

house=function(x, y, ...){

lines(c(x - 1, x + 1, x + 1, x - 1, x - 1),

c(y - 1, y - 1, y + 1, y + 1, y - 1), ...)

lines(c(x - 1, x, x + 1), c(y + 1, y + 2, y + 1), ...)

lines(c(x - 0.3, x + 0.3, x + 0.3, x - 0.3, x - 0.3),

c(y - 1, y - 1, y + 0.4, y + 0.4, y - 1), ...)

}

a. Read the function house into R.
b. Use the plot.new function to open a new plot window. Using the plot.window

function, set up a coordinate system where the horizontal and vertical
scales both range from 0 to 10.

c. Using three applications of the function house, draw three houses on the
current plot window centered at the locations (1, 1), (4, 2), and (7, 6).

d. Using the ... argument, one is able to pass along parameters that mod-
ify attributes of the line function. For example, if one was interested in
drawing a red house using thick lines at the location (2, 7), one can type

house(2, 7, col="red", lwd=3)

Using the col and lty arguments, draw three additional houses on the
current plot window at different locations, colors, and line types.

e. Draw a boundary box about the current plot window using the box func-
tion.

4.6 (Drawing beta density curves). Suppose one is interesting in display-
ing three members of the beta family of curves, where the beta density with
shape parameters a and b (denoted by Beta(a,b)) is given by

f(y) = 1
B(a,b)ya−1(1−y)b−1, 0 < y < 1.

One can draw a single beta density, say with shape parameters a = 5 and
b = 2, using the curve function:
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curve(dbeta(x, 5, 2), from=0, to=1))

a. Use three applications of the curve function to display the Beta(2, 6),
Beta(4, 4), and Beta(6, 2) densities on the same plot. (The curve function
with the add=TRUE argument will add the curve to the current plot.)

b. Use the following R command to title the plot with the equation of the
beta density.

title(expression(f(y)==frac(1,B(a,b))*y^{a-1}*(1-y)^{b-1}))

c. Using the text function, label each of the beta curves with the correspond-
ing values of the shape parameters a and b.

d. Redraw the graph using different colors or line types for the three beta
density curves.

e. Instead of using the text function, add a legend to the graph that shows
the color or line type for each of the beta density curves.

4.7 ( lattice graphics). The dataset faithful contains the duration of
the eruption (in minutes) eruptions and the waiting time until the next
eruption waiting (in minutes) for the Old Faithful geyser. One is interested
in exploring the relationship between the two variables.

a. Create a factor variable length that is “short” if the eruption is smaller
than 3.2 minutes, and “long” otherwise.

faithful$length = ifelse(faithful$eruptions < 3.2,

"short", "long")

b. Using the bwplot function in the lattice package, construct parallel box-
plots of the waiting times for the “short” and “long” eruptions.

c. Using the densityplot function, construct overlapping density plots of
the waiting times of the “short” and “long” eruptions.

4.8 ( ggplot2 graphics). In Exercise 4.7, the waiting times for the Old
Faithful geysers were compared for the short and long eruptions where the
variable length in the faithful data frame defines the duration of the erup-
tion.

a. Suppose a data frame dframe contains a numeric variable num.var and a
factor factor.var. After the ggplot2 package has been loaded, then the
R commands

ggplot(dframe, aes(x = num.var, color = factor.var))

+ geom_density()

will construct overlapping density estimates of the variable num.var for
each value of the factor factor.var. Use these commands to construct
overlapping density estimates of the waiting times of the geysers with
short and long eruptions.

b. With a data frame dframe containing a numeric variable num.var and a
factor factor.var, the ggplot2 syntax
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ggplot(dframe, aes(y = num.var, x = factor.var))

+ geom_boxplot()

will construct parallel boxplots of the variable num.var for each value of
the factor factor.var. Use these commands to construct parallel boxplots
of the waiting times of the geysers with short and long eruptions.



Chapter 5

Exploratory Data Analysis

5.1 Introduction

Exploratory data analysis is the process by which a person manipulates data
with the goal of learning about general patterns or tendencies and finding
specific occurrences that deviate from the general patterns. Much like a de-
tective explores a crime scene, collects evidence and draws conclusions, a
statistician explores data using graphical displays and suitable summaries to
draw conclusions about the main message of the data.

John Tukey and other statisticians have devised a collection of methods
helpful in exploring data. Although the specific data analysis techniques are
useful, exploratory data analysis is more than the methods – it represents
an attitude or philosophy about how data should be explored. Tukey makes
a clear distinction between confirmatory data analysis, where one is primar-
ily interested in drawing inferential conclusions, and exploratory methods,
where one is placing few assumptions on the distributional shape of the data
and simply looking for interesting patterns. Good references on exploratory
methods are Tukey [47] and Hoaglin et al. [22].

There are four general themes of exploratory data analysis, namely Rev-
elation, Resistance, Residuals, and Reexpression, collectively called the four
R’s. There is a focus on revelation, the use of suitable graphical displays in
looking for patterns in data. It is desirable to use resistant methods – these
methods are relatively insensitive to extreme observations that deviate from
the general patterns. When we fit simple models such as a line, often the
main message is not the fitted line, but rather the residuals, the deviations
of the data from the line. By looking at residuals, we often learn about data
patterns that are difficult to see by the initial data displays. Last, in many
situations, it can be difficult to see patterns due to the particular measuring
scale of the data. Often there is a need to reexpress or change the scale of the
data. Well-chosen reexpressions, such as a log or square root, make it easier
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to see general patterns and find suitable data summaries. In the following
example, we illustrate each of the four “R themes” in exploratory work.

5.2 Meet the Data

Example 5.1 (Ratings of colleges).
It can be difficult for an American high school student to choose a college.

To help in this college selection process, U.S. News and World Report (http:
//www.usnews.com) prepares a yearly guide America’s Best Colleges. The
2009 guide ranks all of the colleges in the United States with respect to a
number of different criteria. The dataset college.txt contains data in the
guide collected from a group of “National Universities.” These are schools in
the United States that offer a range of degrees both at the undergraduate
and graduate levels. The following variables are collected for each college:

a. School – the name of the college
b. Tier – the rank of the college into one of four tiers
c. Retention – the percentage of freshmen who return to the school the fol-

lowing year
d. Grad.rate – the percentage of freshman who graduate in a period of six

years
e. Pct.20 – the percentage of classes with 20 or fewer students
f. Pct.50 – the percentage of classes with 50 or more students
g. Full.time – the percentage of faculty who are hired full-time
h. Top.10 – the percentage of incoming students who were in the top ten

percent of their high school class
i. Accept.rate – the acceptance rate of students who apply to the college
j. Alumni.giving – the percentage of alumni from the college who contribute
financially

We begin by loading the dataset into R using the function read.table

and saving it in the data frame dat. Note that the sep argument indicates
there are tabs separating the columns in the data file.

> dat = read.table("college.txt", header=TRUE, sep="\t")

There are some colleges where not all of the data were collected. The R
function complete.cases will identify the colleges where all of the variables
have been collected and the subset function is used to create a new data
frame college containing only the colleges with “complete” data.

> college = subset(dat, complete.cases(dat))

http://www.usnews.com
http://www.usnews.com
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5.3 Comparing Distributions

One measure of the quality of a college is the variable Retention, the per-
centage of freshmen who return to the college the following year. We wish to
display the distribution of the retention rates and compare the distribution
of rates across different college subgroups.

5.3.1 Stripcharts

One basic graph of the retention rates is a stripchart or one-dimensional
scatterplot constructed using the stripchart function. Using the method =

"stack" option, the dots in the graph will be stacked, and the option pch =

19 will use solid dots as the plotting character.

> stripchart(college$Retention, method="stack", pch=19,

+ xlab="Retention Percentage")
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Fig. 5.1 Stripchart of the retention percentages of all National universities.

From Figure 5.1, we see much variability in the retention rates from 55%
to near 100% and wonder which variables are helpful in explaining this vari-
ation. One of the general measures of a school’s quality is its Tier (either
1, 2, 3, or 4) and a next step might be to construct parallel stripcharts of
the retention rates by Tier. This graph is constructed by a slight variation of
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stripchart – the argument Retention ∼ Tier indicates that we wish sepa-
rate displays of retention for each of the four tiers. Note that we don’t use the
college$Retention syntax, since we have indicated by the data=college

argument that the data frame college is being used.

> stripchart(Retention ~ Tier, method="stack", pch=19,

+ xlab="Retention Percentage",

+ ylab="Tier", xlim=c(50, 100), data=college)
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Fig. 5.2 Parallel stripcharts of the retention percentages of all National universities
grouped by tier.

It is clear from Figure 5.2 that the retention percentage differs among the
four groups of colleges. For the Tier 1 schools, the percentages primarily fall
between 90 and 100; in contrast, most of the retention percentages of the Tier
4 schools fall between 65 and 80.

5.3.2 Identifying outliers

The parallel stripcharts are helpful in seeing the general distribution of reten-
tion percentages for each tier. Also from the graph, we notice a few schools
with retention percentages that seem set apart from the other colleges in the
same tier. The identify function is helpful in identifying the schools with
these unusual percentages. In this function, we give the x and y variables
of the plot, indicate by the n=2 option that we wish to identify two points,
and the labels=college$School option indicates that we wish to label the
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points by the school names. When this function is executed, a cross-hair will
appear over the graph and one moves the mouse and clicks at the locations
of the two outliers. At each click, the name of the school will appear next to
the plotting point. In the R console window, the row numbers of the data
frame corresponding to these two schools are displayed.

> identify(college$Retention, college$Tier, n=2,

+ labels=college$School)

[1] 158 211

We see in Figure 5.3 that the two schools with unusually small retention
percentages (relative to the other schools in the same tier) are Bridgeport in
Tier 4 and South Carolina State in Tier 3.
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Fig. 5.3 Parallel stripcharts of the retention percentages of all National universities
grouped by tier. Two outliers are identified by the school name.

5.3.3 Five-number summaries and boxplots

The parallel stripchart display shows differences in the retention percentages
among the four tiers of colleges, and a next step is to summarize these differ-
ences. A good collection of summaries of a dataset is the median, the lower
and upper quartiles, and the low and high values. This group of summaries
is called (for obvious reasons) the five-number summary and a boxplot is a
graph of these five numbers. The boxplot function will compute five-number
summaries for each group and display parallel boxplots (see Figure 5.4). As
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in the stripchart function, the Retention ∼ Tier formula indicates that
we wish to construct boxplots of retention by tier, and the horizontal=TRUE
argument indicates the boxplots will be displayed in a horizontal style. As
in the stripchart function, the data=college argument indicates that the
variables are part of the data frame college. The resulting boxplot display
is shown in Figure 5.4. The locations of the median retention values for the
four tiers are shown by the dark lines in the boxes, and the spreads of the
four graphs are reflected by the widths of the boxes. Using an EDA rule for
flagging outliers, the display shows four schools (indicated by separate points)
whose retention percentages are unusually small for their associated tiers.

> b.output = boxplot(Retention ~ Tier, data=college, horizontal=TRUE,

+ ylab="Tier", xlab="Retention")
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Fig. 5.4 Boxplots of the National university retention percentages grouped by Tier.

The output of boxplot has been saved to the variable b.output, a list with
the different components of the boxplot computations. One can display the
five-number summaries by the stats component of b.output:

> b.output$stats

[,1] [,2] [,3] [,4]

[1,] 90.0 79 69 62

[2,] 93.5 84 76 69

[3,] 96.0 86 79 72

[4,] 97.0 89 82 74

[5,] 99.0 93 88 79

attr(,"class")

1

"integer"
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A column of b.output$stats corresponds to the five-number summary of
the retention rates for a particular tier. We see the five-number summaries of
tiers 3 and 4 are respectively (69, 76, 79, 82, 88) and (62, 69, 72, 74, 79). One
can measure the spread of the two groups of data by the quartile spread, the
distance between the two quartiles. The quartile spread of the retentions for
Tier 3 schools is 82 − 76 = 6 and the quartile spread of the Tier 4 schools is
74−69 = 5. Since the spreads of the two groups are similar, one can compare
the medians – the median for the Tier 3 retentions is 79 and the median for
the Tier 4 retentions is 72. We observe that the retention percentages tend
to be 79 − 72 = 7 points higher for Tier 3 than for Tier 4. In addition to the
five-number summaries, information about the outliers is also stored. The
out and group components of b.output give the outlying values and their
corresponding groups.

> b.output$out

[1] 88 65 61 61 54

> b.output$group

[1] 1 3 4 4 4

From Figure 5.4, there were two visible outliers in tier 4, but the output
indicates that there are actually three outliers in this tier, corresponding to
retention percentages of 54, 61, and 61.

5.4 Relationships Between Variables

5.4.1 Scatterplot and a resistant line

Since it is reasonable to believe a school’s first-year retention percentage will
affect its graduation percentage, we next look at the relationship between the
variables Retention and Grad.rate. Using the plot function, we construct
a scatterplot and the resulting graph is shown in Figure 5.5. As expected,
we see a strong positive association between first-year retention rate and the
graduation rate.

> plot(college$Retention, college$Grad.rate,

+ xlab="Retention", ylab="Graduation Rate")

For exploratory work, it is useful to fit a line that is resistant or not sensitive
to outlying points. One fitting method of this type is Tukey’s “resistant line”
implemented by the function line. Essentially, the resistant line procedure
divides the scatterplot into left, middle, and right regions, computes resistant
summary points for each region, and finds a line from the summary points.
We fit this resistant line to these data and the fitting calculations are stored
in the variable fit. In particular, the coefficients of the fitted line are stored
in fit$coef:
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> fit = line(college$Retention, college$Grad.rate)

> coef(fit)

[1] -83.631579 1.789474

The fitted line is given by

GraduationRate = −83.63+1.79×RetentionRate.

The slope of this line is 1.79 – for every one percent increase in the reten-
tion rate, the average graduation rate increases by 1.79%. The line on the
scatterplot is added by the abline function in Figure 5.5.

> abline(coef(fit))
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Fig. 5.5 scatterplot of the graduation rates and retention rates for the National
universities. A resistant best-fitting line is placed on top of the graph.

5.4.2 Plotting residuals and identifying outliers

In exploratory work, we wish to look beyond the obvious relationship between
retention and graduation rates by examining schools deviating from the gen-
eral straight-line pattern. We look further by considering the residuals, the
differences between the actual graduation rates and the values predicted from
the fitted resistant line. The set of residuals are stored in the list element
fit$residuals and the plot function is used to construct a scatterplot of
residuals against the retention rates in Figure 5.6. A horizontal line at zero
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is added using abline to help in interpreting this plot. Positive residual val-
ues correspond to observed graduation rates that are larger than the values
predicted from the straight-line relation, and negative residuals correspond
to graduate rates smaller than the predicted rates.

> plot(college$Retention, fit$residuals,

+ xlab="Retention", ylab="Residual")

> abline(h=0)

We learn some new things from inspecting this residual plot. There is a fan-
shaped appearance in the graph, indicating that the spread of the residuals
is higher for low retention schools than for high retention schools. Most of
the residuals fall between −20 and 20 percentage points, indicating that the
observed and predicted graduation rates fall within 20 points for most schools.
We do notice two unusually large residuals, and we identify and label these
residuals using the identify function.

> identify(college$Retention, fit$residuals, n=2,

+ labels=college$School)

When this function is executed, a crosshair will appear on the graph. One
clicks at the locations of the two large residuals and the names of the schools
appear next to the plotting points. (See Figure 5.6.) The two large residuals
correspond to the schools Bridgeport and New Orleans. Although Bridgeport
has a relatively low retention percentage, it has a large positive residual which
indicates that its graduation percentage is large given its retention percent-
age. Perhaps Bridgeport’s actual retention percentage is higher than what
was recorded in this dataset. In contrast, New Orleans has a large negative
residual. This school’s graduation percentage is lower than one would predict
from its retention percentage. This suggests that another variable (a so-called
lurking variable) may explain New Orleans’ low graduation percentage.

5.5 Time Series Data

5.5.1 Scatterplot, least-squares line, and residuals

Example 5.2 (Enrollment growth at a university).
Bowling Green State University celebrated its centennial in 2010 and it

published online its enrollment counts for the years 1914 through 2008. The
dataset “bgsu.txt” contains the enrollment counts for the significant growth
years 1955 through 1970. We read in the dataset and use the plot function
to construct a scatterplot of Enrollment against Year. (See Figure 5.7.)

> bgsu = read.table("bgsu.txt", header=TRUE, sep="\t")

> plot(bgsu$Year, bgsu$Enrollment}
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Fig. 5.6 Plot of the residuals of a resistant fit to the graduation percentages by the
retention percentages for the National universities. Two unusually large residuals are
labeled with the corresponding college name.
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Fig. 5.7 scatterplot of BGSU enrollment against year for the growth period 1955 to
1970.
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To help us understand the pattern of growth of enrollment, we fit a line.
The lm function is used to fit a least-squares line with the calculations stored
in the variable fit. The fitted line is placed on the scatterplot using the
abline function with the argument fit. The vector of residuals is stored in
the component residuals of fit and the plot function is used to construct
a scatterplot of the residuals against year. The abline function is used with
the h=0 argument to add a horizontal line at zero to the residual plot. Figure
5.8 shows the two plots.

> fit = lm(Enrollment ~ Year, data=bgsu)

> abline(fit)

> plot(bgsu$Year, fit$residuals)

> abline(h=0)
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Fig. 5.8 Least-squares fit to enrollment data (a) and residual plot (b). There is a clear
curvature pattern to the residuals, indicating that the enrollment is not increasing in
a linear fashion.

Looking at the residual graph, there is a clear curvature pattern in the resid-
uals, indicating that BGSU’s enrollment is not increasing in a linear way. An
alternative model may better describe the enrollment growth.

5.5.2 Transforming by a logarithm and fitting a line

Suppose instead that the BGSU enrollment is increasing exponentially. This
means that, for some constants a and b, the enrollment follows the relationship

Enrollment = aexp(bY ear).
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If we take the logarithm of both sides of the equation, we obtain the equivalent
linear relationship between the log of enrollment and year

logEnrollment = loga+ bY ear.

We can find suitable constants a and b by fitting a line to the (Year,
log Enrollment) data. In the following R code, we define a new variable
log.Enrollment containing the log enrollment values.

> bgsu$log.Enrollment = log(bgsu$Enrollment)

Rx 5.1 The syntax bgsu$log.Enrollment on the left side of the assignment
creates a new variable log.Enrollment in the bgsu data frame. The loga-
rithm of enrollment is then assigned to this new variable.

We construct a scatterplot of the reexpressed data against year, and use the
lm function to fit a line to these data. Figure 5.9 displays the least-squares fit
to the log enrollment data, and plots the corresponding residuals. Generally,
it seems that a linear pattern is a closer fit to the log enrollment than for the
enrollment. Looking at the residual graph, there is a “high, low, high, low”
pattern in the residuals as one looks from left from right, but we do not see
the strong curvature pattern that we saw in the residuals from the linear fit
to the enrollment.

> plot(bgsu$Year, bgsu$log.Enrollment)

> fit2 = lm(log.Enrollment ~ Year, data=bgsu)

> fit2$coef

(Intercept) Year

-153.25703366 0.08268126

> abline(fit2)

> plot(bgsu$Year, fit2$residuals)

> abline(h=0)

From the R output, we see that the least-squares fit to the log enrollment
data is

logEnrollment = −153.257+0.0827Y ear.

This is equivalent to the exponential fit

Enrollment = exp(−153.257+0.0827Y ear) ∝ (1.086)Y ear,

where ∝ means “is proportional to.” We see that BGSU’s enrollment was
increasing approximately 8.6% a year during the period between 1955 and
1970.
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Fig. 5.9 Least-squares fit to the log enrollment data (a) and the residual plot (b).
Since there is no strong curvature pattern in the residuals, a linear fit seems more
appropriate for the log enrollment than for the enrollment.

5.6 Exploring Fraction Data

5.6.1 Stemplot

Example 5.3 (Ratings of colleges (continued)).
One measure of quality of a university is the percentage of incoming stu-

dents who graduated in the top ten percent of their high school class. Suppose
we focus our attention at the “Top Ten” percentages for the Tier 1 colleges.
We first use the subset function to extract the Tier 1 schools and put them
in a new data frame college1:

> college1 = subset(college, Tier==1)

A stemplot of the percentages can be produced using the stem function.

> stem(college1$Top.10)

4 | 3

5 | 589

6 | 344468

7 | 355599

8 | 02445556777888

9 | 00223334566677777889

10 | 0
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5.6.2 Transforming fraction data

Since the percentages are left-skewed with a cluster of values in the 90’s, it is
a little difficult to summarize and hard to distinguish the schools with high
percentages of “top ten” students. This suggests that we might be able to
improve the display by an appropriate reexpression. For percentage data or
equivalently fraction data that are piled up at the extreme values of 0 and 1,
Tukey suggests the use of several reexpressions. The folded fraction is defined
by

ff = f − (1−f).

This reexpression expands the scale from the interval (0, 1) to the interval
(−1,1); a fraction f = 0.5 is a folded fraction of ff = 0. The folded root or
froot is defined as

froot =
√

f −
√

1−f

and the folded log or flog is defined as

flog = log(f)− log(1−f).

Figure 5.10 displays the values of these reexpression for particular values of
the fraction f . This figure was created using the following R code:

f = c(0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95)

ff = f - (1 - f)

froot = sqrt(2 * f) - sqrt(2 * (1 - f))

flog = 1.15 * log10(f) - 1.15 * log10(1 - f)

D = data.frame(f, ff, froot, flog)

matplot(t(as.matrix(D)), 1:4, type="l", lty=1, lwd=1,

xlab="FRACTION", ylab="TRANSFORMATION",

xlim=c(-1.8, 2), ylim=c(0.5, 4.3))

matplot(t(as.matrix(D[c(1, 4, 7), ])),

1:4, type="l", lwd=3, lty=1, add=TRUE)

lines(D[c(1, 7), 1], c(1, 1), lwd=2)

lines(D[c(1, 7) ,2], 2 * c(1, 1), lwd=2)

lines(D[c(1, 7), 3], 3 * c(1, 1), lwd=2)

lines(D[c(1, 7), 4], 4 * c(1, 1), lwd=2)

text(c(1.8, 1.5, 1.3, 1.3, 0, 0.5 ,1),

c(4, 3, 2, 1, 0.8, 0.8, 0.8),

c("flog", "froot", "ff", "f", "f=.05", "f=.5", "f=.95"))

Figure 5.10 illustrates several desirable properties of these reexpressions.
First, they are symmetric reexpressions in the sense that the ff or froot or
flog of f will be the negative of the ff or froot or flog of 1−f . Also the froot
and flog rexpressions have the effect of expanding the scale for fractions close
to 0 or 1.

We compute these reexpressions of the Top Ten percentages. To avoid
problems with computing logs at percentages of 0 and 100, a value of 0.5 is
added to the percentages of Top Ten and “not Top Ten” before the flog is
taken.
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Fig. 5.10 Display of three different reexpressions for fraction data. The bottom line
(labelled f) displays fraction values of 0.05, 0.10, 0.30, 0.50, 0.70, 0.90, 0.95, and the
ff, froot, and flog lines display the fractions on the folded fraction, folded root, and
folded log scales.

> froot = sqrt(college1$Top.10) - sqrt(100 - college1$Top.10)

> flog = log(college1$Top.10 + 0.5) - log(100 - college1$Top.10 + 0.5)

Stemplots of the froot and flog Top 10 percentages are displayed. Both re-
expressions have the effect of making the Top 10 percentages more symmetric
and spreading out the schools with high values.

> stem(froot}

The decimal point is at the |

-0 | 0

0 | 7139

2 | 000363777

4 | 3358223335777999

6 | 338800025888

8 | 11111559

10 | 0
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> stem(flog)

The decimal point is at the |

-0 | 3

0 | 234566677

1 | 01113345667778999

2 | 000224455579

3 | 1113333377

4 | 2

5 | 3

What is the benefit of taking these strange-sounding reexpressions? On the
froot scale, the percentages are approximately symmetric, and symmetric
data has a clear “average.” On the froot scale, a typical Top Ten percentage
is 5.7. Also this reexpression can help to equalize spreads between groups,
and provide a simple comparison. To illustrate, we use the subset function
to create a data frame college34 with data from the Tier 3 and Tier 4
colleges. (The “|” symbol is the logical “or” operator; here we wish to include
colleges that are either in Tier 3 or Tier 4.) We compute froots of the Top
Ten percentages and use parallel boxplots to compare the two Tiers.

> college34 = subset(college, Tier==3 | Tier==4)

> froot = sqrt(college34$Top.10) - sqrt(100 - college34$Top.10)

> boxplot(froot ~ Tier, data=college34, horizontal=TRUE,

+ xlab="Froot(Top 10 Pct)", ylab="Tier")
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Fig. 5.11 Parallel boxplots of the froot Top 10 percentages of the Tier 3 and Tier 4
National universities.
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We see from the display in Figure 5.11 that the Top 10 percentages, on the
froot scale, have similar spreads that we measure by the quartile spread. One
can compute the medians of the Top 10 froot percentages to be respectively
−4.3 and −5.2. Therefore, on the froot scale, the Top Ten percentages for the
Tier 3 schools tend to be −4.3− (−5.2) = 0.9 higher than the Tier 4 schools.

Exercises

5.1 (Exploring percentages of small classes). The variable Pct.20 in
the college dataset contains the percentage of “small classes” (defined as 20
or fewer students) in the National Universities.

a. Construct a dotplot of the small-class percentages using the stripchart

function. To see the density of points, it is helpful to use either the
method=stack or method=jitter arguments. What is the shape of this
data?

b. There is a single school with an unusually large small-class percentage.
Use the identify function to find the name of this unusual school.

c. Find the median small-class percentage and draw a vertical line (using the
abline function) on the dotplot at the location of the median.

5.2 (Relationship between the percentages of small classes and large
classes). The variables Pct.20 and Pct.50 in the college dataset contain
respectively the percentage of “small classes” (defined as 20 or fewer students)
and the percentage of “large classes” (defined as 50 or more students) in the
National Universities.

a. Use the plot function to construct a scatterplot of Pct.20 (horizontal)
against Pct.50 (vertical).

b. Use the line function to find a resistant line to these data. Add this
resistant line to the scatterplot constructed in part a.

c. If 60% of the classes at a particular college have 20 or fewer students, use
the fitted line to predict the percentage of classes that have 50 or more
students.

d. Construct a graph of the residuals (vertical) against Pct.20 (horizontal)
and add a horizontal line at zero (using the abline function).

e. Is there a distinctive pattern to the residuals? (Compare the sizes of the
residuals for small Pct.20 and the sizes of the residuals for large Pct.50.)

f. Use the identify function to identify the schools that have residuals that
exceed 10 in absolute value. Interpret these large residuals in the context
of the problem.

5.3 (Relationship between acceptance rate and “top-ten” percent-
age). The variables Accept.rate and Top.10 in the college dataset contain
respectively the acceptance rate and the percentage of incoming students in
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the top 10 percent of their high school class in the National Universities.
One would believe that these two variables are strongly associated, since, for
example, “exclusive” colleges with small acceptance rates would be expected
to have a large percentage of “top-ten” students.

a. Explore the relationship between Accept.rate and Top.10. This explo-
ration should include a graph and linear fit that describe the basic pattern
in the relationship and a residual graph that shows how schools differ from
the basic pattern.

b. Schools are often classified into “elite” and “non-elite” colleges depending
on the type of students they admit. Based on your work in part a, is there
any evidence from Accept.rate and Top.10 that schools do indeed cluster
into “elite” and “non-elite” groups? Explain.

5.4 (Exploring the pattern of college enrollment in the United
States). The U.S. National Center for Education Statistics lists the total
enrollment at Institutions of Higher Education for years 1900-1985 at their
website http://nces.ed.gov. Define the ordered pair (x,y), where y is the
total enrollment in thousands in year x. Then we observe the data (1955,
2653), (1956, 2918), (1957, 3324), (1959, 3640), (1961, 4145), (1963, 4780),
(1964, 5280), (1965, 5921), (1966, 6390), (1967, 6912), (1968, 7513), (1969,
8005), (1970, 8581).

a. Enter this data into R.
b. Use the lm function to fit a line to the pattern of enrollment growth in

the period 1955 to 1970. By inspecting a graph of the residuals, decide if
a line is a reasonable model of the change in enrollment.

c. Transform the enrollment by a logarithm, and fit a line to the (year, log
enrollment) data. Inspect the pattern of residuals and explain why a line
is a better fit to the log enrollment data.

d. By interpreting the fit to the log enrollment data, explain how the college
enrollment is changing in this time period. How does this growth compare
to the growth of the BGSU enrollment in Section 5?

5.5 (Exploring percentages of full-time faculty). The variable Full.time
in the college dataset (see Example 5.3) contains the percentage of faculty
who are hired full-time in the group of National Universities.

a. Using the hist function, construct a histogram of the full-time percentages
and comment on the shape of the distribution.

b. Use the froot and flog transformations to reexpress the full-time percent-
ages. Construct histograms of the collection of froots and the collection of
flogs. Is either transformation successful in making the full-time percent-
ages approximately symmetric?

c. For data that is approximately normally distributed, about 68% of the
data fall within one standard deviation of the mean. Assuming you have
found a transformation in part (b) that makes the full-time percentages

http://nces.ed.gov
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approximately normal, find an interval that contains roughly 68% of the
data on the new scale.

5.6 (Exploring alumni giving rates). The variable Alumni.giving con-
tains the percentage of alumni from the college who make financial contribu-
tions.

a. Construct a “stacked” dotplot of the alumni giving percentages using the
stripchart function.

b. Identify the names of the three schools with unusually large giving per-
centages.

c. It can be difficult to summarize these giving percentages since the dis-
tribution is right-skewed. One can make the dataset more symmetric by
applying either a square root transformation or a log transformation.

roots = sqrt(college$Alumni.giving)

logs = log(college$Alumni.giving)

Apply both square root and log transformations. Which transformation
makes the alumni giving rates approximately symmetric?

5.7 (Exploring alumni giving rates (continued)). In this exercise, we
focus on the comparison of the alumni giving percentages between the four
tiers of colleges.

a. Using the stripchart function with the stacked option, construct parallel
dotplots of alumni giving by tier.

b. As one moves from Tier 4 to Tier 1, how does the average giving change?
c. As one moves from Tier 4 to Tier 1, how does the spread of the giving

rates change?
d. We note from parts (b) and (c), that small giving rates tend to have

small variation, and large giving rates tend to have large variation. One
way of removing the dependence of average with spread is to apply a
power transformation such as a square root or a log. Construct parallel
stripcharts of the square roots of the giving rates, and parallel boxplots of
the log giving rates.

e. Looking at the two sets of parallel stripcharts in part (d), were the square
root rates or the log rates successful in making the spreads approximately
the same between groups?



Chapter 6

Basic Inference Methods

6.1 Introduction

Example 6.1 (Sleeping patterns of college students).
To illustrate some basic inferential methods, suppose a college instructor

is interested in the sleeping patterns of students in a particular mathematics
class. He has read that the recommended hours of sleep for a teenager is nine
hours each night. That raises several questions:

� Is the median sleeping time for students in this course nine hours?
� If the answer to the first question is no, what proportion of students do

get at least nine hours of sleep in a particular night?
� What is a reasonable estimate of the average number of hours these math

students get per night?

The instructor decides to collect some data from one representative class
to answer these questions. Each student is asked what time he or she got to
bed the previous night, and what time he or she woke up the next morning.
Based on the answers to these questions, the instructor computes the number
of hours of sleep for each of 24 students in his class. The sleeping times are
placed in the vector sleep.

> sleep = c(7.75, 8.5, 8, 6, 8, 6.33, 8.17, 7.75,

+ 7, 6.5, 8.75, 8, 7.5, 3, 6.25, 8.5, 9, 6.5,

+ 9, 9.5, 9, 8, 8, 9.5)

In the next sections, this data is analyzed to investigate the sleeping patterns
of students.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__6,
© Springer Science+Business Media, LLC 2012
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6.2 Learning About a Proportion

6.2.1 Testing and estimation problems

Let M denote the median hours of sleep for the population of students who
take this math course. We are interested in testing the hypothesis H that
M = 9 hours. This testing problem can be restated as a test of a population
proportion. Let p denote the proportion of students who get at least nine
hours of sleep on a particular night. If the population median is M = 9 hours,
then the proportion p = 0.5. So we are interested in testing the hypothesis

H : p = 0.5.

In the event that H is rejected, one typically is interested in learning about
the location of the proportion, and one constructs an interval estimate that
contains p with a given confidence.

6.2.2 Creating group variables by the ifelse function

The relevant data for this hypothesis test is the sample size and the number
of students in the sample who get at least nine hours of sleep. Using the
ifelse function, we define a new variable nine.hours that records for each
observation if the student got at least nine hours of sleep (“yes”) or didn’t
(“no”). Then we tabulate this “yes, no” data by the table function.

> nine.hours = ifelse(sleep >= 9, "yes", "no")

> table(nine.hours)

nine.hours

no yes

19 5

Only five out of 24 students indicated that they had at least nine hours
of sleep. If H is true, the number of yes’s has a binomial(n = 24,p = 0.5)
distribution with mean np and variance np(1 − p). In addition, if n is large,
this variable is approximately normally distributed.

6.2.3 Large-sample test and estimation methods

The traditional test for a proportion is based on the assumption that, when
the population proportion is p = 0.5, the number of yes’s y in a sample of n is
approximately normally distributed with mean n/2 and standard deviation√

n/4. The Z statistic
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Z = y −np√
np(1−p)

,

is approximately standard normal. One computes the statistic zobs from the
sample and one decides whether to accept or reject H by computing the lower
tail probability P (Z ≤ zobs). If the alternative hypothesis is that p < 0.5, the
p-value is equal to the lower tail probability; if the alternative is two-sided
where p 	= 0.5, the p-value is double the lower-tail probability.

This traditional Z test is implemented using the prop.test function. We
first define y to be the number of yes’s and n to be the sample size. In
the prop.test function, we indicate by the p=0.5 argument that we are
testing the hypothesis that the proportion is equal to 0.5, and correct=FALSE

indicates that no continuity correction is used in the calculation of the Z
statistic. The summary of this test is displayed by printing the variable Test.

> y = 5; n = 24

> Test = prop.test(y, n, p=0.5, alternative="two.sided",

+ correct=FALSE)

> Test

1-sample proportions test without continuity correction

data: y out of n, null probability 0.5

X-squared = 8.1667, df = 1, p-value = 0.004267

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.09244825 0.40470453

sample estimates:

p

0.2083333

The variable Test contains all of the calculations of the test and we request
components of Test to obtain specific quantities of interest. A vector of the
names of components is obtained using the names function.

> names(Test)

[1] "statistic" "parameter" "p.value" "estimate" "null.value"

[6] "conf.int" "alternative" "method" "data.name"

The estimate of the proportion p is the sample proportion of students y/n
obtained by asking for the component estimate.

> Test$estimate

p

0.2083333

The component statistic gives the value of the chi-square statistic z2
obs (the

square of the observed Z statistic) and p.value gives the associated p-value.
It is a two-sided p-value since we indicated the alternative was two-sided.

> Test$statistic

X-squared

8.166667

> Test$p.value

[1] 0.004266725



156 6 Basic Inference Methods

Since the p-value is close to zero, we have strong evidence to say that the
proportion of “nine hours or greater” sleepers among the students is not 0.5.

In the case where the hypothesis p = 0.5 is rejected, a next step is to
estimate the proportion by a confidence interval. The component conf.int
displays a 95% confidence interval. This particular interval, the Wilson score
interval, is found by inverting the score test for the proportion.

> Test$conf.int

[1] 0.09244825 0.40470453

attr(,"conf.level")

[1] 0.95

We are 95% confident that the interval (0.092, 0.405) contains the proportion
of heavy sleepers.

6.2.4 Small sample methods

One problem with the traditional inference method is that the Z statistic
is assumed to be normally distributed, and the accuracy of this normal ap-
proximation can be poor for small samples. So there are several alternative
inferential methods for a proportion that have better sampling properties
when the sample size n is small.

One “small-sample” method is to adjust the Z for the fact that y is a
discrete variable. In our example, the “continuity-adjusted” Z statistic for
testing the hypothesis H : p = 0.5 is based on the statistic

Zadj = y +0.5−np√
np(1−p)

.

This test is implemented using the prop.test function with the cor-

rect=TRUE argument.

> y = 5; n = 24

> Test.adj = prop.test(y, n, p=0.5, alternative="two.sided",

+ correct=TRUE)

> c(Test.adj$stat, p.value=Test.adj$p.value)

X-squared p.value

7.04166667 0.00796349

Note that we obtain slightly different values of the chi-square test statistic
Z2 and associated p-value. The result of 5 successes in 24 trials is slightly
less significant using this test.

A second alternative testing method is based on the underlying exact bino-
mial distribution. Under the hypothesis H : p = 0.5, the number of successes
y has a binomial distribution with parameters n = 24 and p = 0.5 and the
exact (two-sided) p-value is given by
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2×P (y ≤ 5|p = 0.5).

This procedure is implemented using the function binom.test. The inputs
are the number of successes, the sample size, and the value of the proportion
under the null hypothesis.

> Test.exact = binom.test(y, n, p=0.5)

> c(Test.exact$stat, p.value=Test.exact$p.value)

number of successes p.value

5.000000000 0.006610751

One can check the computation of the p-value using the binomial cumulative
distribution function pbinom. The probability that y is at most 5 is given by
pbinom(5, size=24, prob=0.5) and so the exact p-value is given by

> 2 * pbinom(5, size=24, prob=0.5)

[1] 0.006610751

which agrees with the output of binom.test. One can also obtain the “ex-
act” 95% Clopper-Pearson confidence interval by displaying the component
conf.int.

> Test.exact$conf.int

[1] 0.07131862 0.42151284

attr(,"conf.level")

[1] 0.95

This particular confidence interval is guaranteed to have 95% coverage, but
it can be a bit longer than other computed “95% intervals.”

A third popular “small-sample” confidence interval was developed by
Agresti and Coull [2]. A 95% interval is constructed by simply adding two
successes and two failures to the dataset and then using the simple formula

p̃−1.96se, p̃+1.96se,

where p̃ = (y + 2)/(n + 4) and se is the usual standard error based on the
modified data se =

√
p̃(1− p̃)/(n+4). There is no R function in the base

package that computes the Agresti-Coull interval, but it is straightforward
to write a function to compute this interval. In the user-defined function
agresti.interval below, the inputs are the number of successes y, the sam-
ple size n, and the confidence level.

agresti.interval = function(y, n, conf=0.95){

n1 = n + 4

y1 = y + 2

phat = y1 / n1

me = qnorm(1 - (1 - conf) / 2) * sqrt(phat * (1 - phat) / n1)

c(phat - me, phat + me)

}

After this function has been read into R, one computes the interval for our
data by typing
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> agresti.interval(y, n)

[1] 0.0896128 0.4103872

(The function add4ci in the PropCIs package will also compute the Agresti-
Coull interval.)

We have illustrated three methods for constructing a 95% interval estimate
for a proportion. In the following code, we create a data frame in R that gives
the method, the function for implementing the method, and the lower and
upper bounds for the interval.

> cnames = c("Wilson Score Interval", "Clopper-Pearson",

+ "Agresti-Coull")

> cfunctions = c("prop.test", "binom.test", "agresti.interval")

> intervals = rbind(Test$conf.int, Test.exact$conf.int,

+ agresti.interval(y, n))

> data.frame(Name=cnames, Function=cfunctions,

+ LO=intervals[ , 1], HI=intervals[ , 2])

Name Function LO HI

1 Wilson Score Interval prop.test 0.09244825 0.4047045

2 Clopper-Pearson binom.test 0.07131862 0.4215128

3 Agresti-Coull agresti.interval 0.08961280 0.4103872

In terms of interval length, the shortest interval is the Wilson score interval,
followed in order by the Agresti-Coull interval and the Clopper-Pearson in-
terval. Although it is desirable to have short intervals, one wants the interval
to have the stated 95% coverage probability. In Chapter 13, we will explore
the coverage probability of these three procedures.

6.3 Learning About a Mean

6.3.1 Introduction

In the previous section, we focused on the proportion of students who got at
least nine hours of sleep and learned that this proportion was quite small.
Next it is reasonable to return to the original collection of observed sleeping
times and learn about the mean μ of the population of sleeping times for all
college students.

6.3.2 One-sample t statistic methods

The R function t.test performs the calculations for the traditional inference
procedures for a population mean. If the observations represent a random
sample from a normal population with unknown mean μ, the statistic
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T =
√

n(ȳ −μ)
s

has a t distribution with n − 1 degrees of freedom, where ȳ, s, and n are
respectively the sample mean, sample standard deviation, and sample size.

To illustrate this function, suppose we wish to test the hypothesis that the
mean sleeping time is 8 hours and also construct a 90% interval estimate for
the population mean. Before we use t.test, we should check if it is reasonable
to assume the sleeping times are normally distributed. A histogram of the
times is constructed by the hist function. The qqnorm function produces a
normal probability plot of the times and the qqline function overlays a line
on the plot passing through the first and third quartiles. The resulting graphs
are displayed in Figure 6.1.

> hist(sleep)

> qqnorm(sleep)

> qqline(sleep)
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Fig. 6.1 Histogram and normal probability plot of the sleeping times of college
students.

Looking at the graphs in Figure 6.1, it is clear that there is one unusually
small sleeping time (about 3 hours) that is not consistent with the normal
distribution assumption. There are several ways one could handle this prob-
lem. If there was some mistake in the recording of this particular time, one
could remove the outlier and apply the t methods to the modified data. Al-
ternatively, one could apply a different inferential procedure that rests on a
more general assumption about the distribution of the population. Here we
will illustrate both approaches.
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We identify the position of the outlier by constructing an index plot of the
sleeping times by the plot function. From the display in Figure 6.2, it is clear
that the 14th observation is the outlier, and in further examination, we find
that this observation was incorrectly coded. A new data vector sleep.new is
defined that is the original dataset with the 14th observation deleted.

> plot(sleep)

> sleep.new = sleep[-14]
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Fig. 6.2 Index plot of the sleeping times. This helps identify the outlier as the 14th
observation.

With the outlier removed, the assumption that the data comes from a
normal population seems reasonable, and we can apply the procedures based
on the t distribution. The general form of the t.test function is given by

t.test(x, y=NULL,

alternative=c("two.sided", "less", "greater"),

mu=0, paired=FALSE, var.equal=FALSE,

conf.level=0.95, ...)

For single sample inference, the data is contained in the vector x. We indicate
by the mu argument what value of the population mean is to be tested and the
alternative argument indicates if the alternative hypothesis is two-sided,
less than the population mean value, or greater than the mean value. Also
the conf.level argument indicates the confidence interval for our interval
estimate. In our example, we are interested in testing the hypothesis μ =
8 hours, the alternative is two-sided (the default value), and we wish to
construct a 90% interval. The form of the t.test function is as follows.
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> t.test(sleep.new, mu=8, conf.level=0.90)

One Sample t-test

data: sleep.new

t = -0.4986, df = 22, p-value = 0.623

alternative hypothesis: true mean is not equal to 8

90 percent confidence interval:

7.516975 8.265633

sample estimates:

mean of x

7.891304

The output gives the value of the t-test statistic and the two-sided p-value
for testing the hypothesis that μ = 8. Since the p-value is large, there is
insufficient evidence from the data to conclude the mean sleeping time of
students is not equal to 8 hours. From a frequentist perspective, we are 90%
confident that the interval (7.52, 8.27) contains the mean μ.

6.3.3 Nonparametric methods

If we wish to use the complete sleeping dataset, it would be inappropriate
to use the t procedures due to the single outlier. But there are alternative
inferential procedures we can use based on less restrictive assumptions about
the population of sleeping times. The Wilcoxon signed rank procedure makes
the general assumption that the population is symmetric about a median
M . In this setting, if one wishes to test the hypothesis that the median
sleeping time M = 8 hours, then the test statistic is obtained by ranking
the absolute values of the differences of each sample value from 8, and then
computing the sum of the ranks of the differences that are positive. If the
actual median is different from 8, then the sum of ranks corresponding to
the positive differences will be unusually small or large, so one rejects the
hypothesis in the tail region of the null distribution of the Wilcoxon statistic.

The Wilcoxon signed rank method is implemented as wilcox.test with
the following general syntax.

wilcox.test(x, y=NULL,

alternative=c("two.sided", "less", "greater"),

mu=0, paired=FALSE, exact=NULL, correct=TRUE,

conf.int=FALSE, conf.level=0.95, ...)

The arguments are similar to those in t.test. The vector x is the sample of
observations, the constant mu is the value to be tested, and the alternative
argument indicates the direction of the alternative hypothesis. By indicating
conf.int = TRUE, one can have the function compute the Wilcoxon signed-
rank interval estimate for the median and conf.level indicates the desired
probability of coverage.
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We can test the hypothesis M = 8 with a two-sided alternative and obtain
a 90% interval estimate for the median of sleeping times (with the original
dataset) using the command

> W = wilcox.test(sleep, mu=8, conf.int=TRUE, conf.level=0.90)

Warning messages:

1: In wilcox.test.default(sleep, mu = 8, conf.int = TRUE, conf.level = 0.9) :

cannot compute exact $p$-value with ties

> W

Wilcoxon signed rank test with continuity correction

data: sleep

V = 73.5, p-value = 0.3969

alternative hypothesis: true location is not equal to 8

90 percent confidence interval:

7.124979 8.374997

sample estimates:

(pseudo)median

7.749961

We see that a warning message is produced when we execute this function.
For small samples (such as this one), the wilcox.test will compute exact p-
values and interval estimates, but these exact methods cannot be used when
there are ties in the dataset. When there are ties, as in this sample of sleeping
times, the function will give p-values and interval estimates based on a normal
approximation to the signed-rank statistic.

Using the names function, one can see the names of the components of the
object producted by the wilcox.test function.

> names(W)

[1] "statistic" "parameter" "p.value" "null.value" "alternative"

[6] "method" "data.name" "conf.int" "estimate"

The statistic component gives the value of the Wilcoxon test statistic,
the p.value component gives the (two-sided, in this case) p-value and the
conf.int component contains the interval estimate.

> W$statistic

V

73.5

> W$p.value

[1] 0.3968656

> W$conf.int

[1] 7.124979 8.374997

attr(,"conf.level")

[1] 0.9

Comparing with the output from t.test, both the t and Wilcoxon methods
indicate insufficient evidence that the “average” sleeping time from the popu-
lation is not 8 hours. The 90% Wilcoxon interval estimate for the population
median is wider than the t interval estimate for the population mean.
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6.4 Two Sample Inference

6.4.1 Introduction

Example 6.2 (The twins dataset (continued)).
A basic inferential problem is to compare the locations of two continuous-

valued populations. To illustrate different “two-sample”methods, we consider
data from Ashenfelter and Krueger [3] who were interested in relating people’s
education and income. It can be difficult to learn about the effect of education
on income since there are many variables associated with income, such as a
person’s natural ability, his family background, and his innate intelligence. To
control for possible confounding variables, the authors collected information
on education, income, and background from a group of twins. Since twins have
similar family backgrounds, they provide a useful control for confounding
variables in this problem. (This particular dataset was previously used in
Chapter 3 to illustrate statistical methods for categorical data.)

The datafile twins.txt contains information about 183 pairs of twins for
sixteen variables. We read the data into R by the read.table function and
store the data frame in the variable twins.

> twins = read.table("twins.txt", header=TRUE)

Each pair of twins was randomly assigned the labels “twin 1” and “twin 2.”
The variable HRWAGEH gives the hourly wage for twin 2. If one graphs the
wages, one finds that they are strongly right-skewed and one can remove the
skewness by a log transformation; the variable log.wages contains the log
wages.

> log.wages = log(twins$HRWAGEH)

6.4.2 Two sample t-test

The variable EDUCH contains the self-reported education of twin 2 in years.
Suppose one is interested in comparing the log wages of the “high school”
twins with 12 or fewer years of education with the log wages of the “college”
twins with more than 12 years of education. We define a new categorical
variable college using the ifelse function that is “yes” or “no” depending
on the years of education.

> college = ifelse(twins$EDUCH > 12, "yes", "no")

A first step in comparing the log wages of the two groups is to construct
a suitable graph and Figure 6.3 displays parallel boxplots of the log wages
using the boxplot function. Both groups of log wages look approximately
symmetric with similar spreads and the median log wage of the college twins



164 6 Basic Inference Methods

appears approximately 0.5 larger than the median log wage of the high school
twins.

> boxplot(log.wages ~ college, horizontal=TRUE,

+ names=c("High School", "Some College"), xlab="log Wage")
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Fig. 6.3 Parallel boxplots of the log wages for the high school and college twins.

Let μH and μC denote respectively the mean log wage of the population of
high school twins and college twins. The standard t-test of the hypothesis H
that μH = μC is implemented by the function t.test. The argument has the
form log.wages ∼ college where the log.wages is the continuous response
variable and college categorizes the response into two groups.

> t.test(log.wages ~ college)

Welch Two Sample t-test

data: hs.log.wages and college.log.wages

t = -2.4545, df = 131.24, p-value = 0.01542

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.42999633 -0.04620214

sample estimates:

mean in group no mean in group yes

2.282119 2.520218

From the output, we see that:

� The value of the t-test statistic is −2.4545.
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� Using the Welch procedure for unequal population variances, the t statistic
is approximately distributed as t with 131.24 degrees of freedom under the
assumption of equal population means.

� The two-sided p-value is 0.01542, so there is significant evidence that the
means are different.

� The 95% confidence interval for the difference in means μH − μC is
(−0.430,−0.046).

The traditional t-test for the difference of means assumes the population
variances are equal. One can implement this traditional test using the
var.equal=TRUE argument.

> t.test(log.wages ~ college, var.equal=TRUE)$p.value

[1] 0.01907047

In this example, the Welch test and the traditional t-test give approximately
the same p-value.

6.4.3 Two sample Mann-Whitney-Wilcoxon test

A nonparametric alternative to the two-sample test is the Mann-Whitney-
Wilcoxon test. One tests the general hypothesis that two independent samples
come from the same continuous population. If one denotes the two samples
as x and y, the test statistic is equal to

W = the number of pairs (xi,yj) where xi > yj.

This method is implemented using the wilcox.test function with the same
argument format (response by grouping variable) as the t.test function.

> wilcox.test(log.wages ~ college, conf.int=TRUE)

Wilcoxon rank sum test with continuity correction

data: hs.log.wages and college.log.wages

W = 2264, p-value = 0.01093

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.44266384 -0.06455011

sample estimates:

difference in location

-0.2575775

The value of the W statistic for our dataset is 2264. The two-sided probability
of getting a value as extreme as 2264 if the two samples come from the
same continuous population is 0.01093. This p-value is very close to the value
obtained using the two-sample t-test.
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By specifying the argument option conf.int = TRUE, wilcox.test will
also display a 95% confidence interval for the difference of location parame-
ters of the two populations. Comparing the output of wilcox.test with the
output of t.test, we see this confidence interval is similar to the interval for
the difference of population means.

6.4.4 Permutation test

Another testing procedure for comparing two independent samples is a per-
mutation test. As before, we define a variable log.wages that contains the
log wages for the first twin and a vector college that indicates if the first
twin had some college education or not.

> log.wages = log(twins$HRWAGEH)

> college = ifelse(twins$EDUCH > 12, "yes", "no")

Using the table function, we see that there are 112 college and 71 no-
college twins in our sample.

> table(college)

college

no yes

71 112

Consider the hypothesis that college education has no impact on the wages
of the twins. Under this hypothesis, the labeling of the twins into the college
and no-college categories is not helpful in understanding the variability of
the log wages. In this case, the distribution of any test statistic, say the t-
test, will be unchanged if we arbitrarily change the labels of the twins in the
college/no-college classification. One obtains an empirical distribution of the
test statistic under the null hypothesis by

� Randomly allocating the 71 college and 112 no-college labels among the
183 twins.

� Computing the value of the test statistic for the randomly permuted data.
� Repeating this process a large number of iterations.

The collection of test statistics provides an estimate of the sampling distribu-
tion of the statistic when the null hypothesis is true. (Figure 6.4 is a picture
of this sampling distribution.) The observed value of the test statistic (for
our original sample) is then compared to the distribution of the permutation
replicates. To make this comparison, one computes the probability that the
test statistic under the randomization distribution is at least as extreme as
the observed statistic. If this p-value is sufficiently small, this gives evidence
against the assumption that the labeling of the twins into the two groups is
not informative.
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This testing procedure is straightforward to program by writing a short
function. The function resample is written which randomly permutes the
college labels (using the sample function) and returns the value of the t-test
statistic from the t.test function.

> resample = function()

+ t.test(log.wages ~ sample(college))$statistic

One repeats resample using the replicate function. There are two argu-
ments to replicate, the number of iterations and the name of the function
to be replicated. The values of the t statistic from the 1000 iterations is stored
in the vector many.T.

> many.T = replicate(1000, resample())

The value of the t statistic from the observed data is obtained by the t.test
function using the labels from the vector college.

> T.obs = t.test(log.wages ~ college)$statistic

> T.obs

t

-2.454488

To see if the observed test statistic of −2.45 is extreme, we use the hist

function to construct a histogram of the t statistics from the randomized
distribution in Figure 6.4. We use the abline function to add a vertical line
at the observed t statistic.

> hist(many.T)

> abline(v=T.obs)

The (two-sided) p-value is twice the probability of obtaining a t statistic
smaller than T.obs.

> 2 * mean(many.T < T.obs)

[1] 0.024

This computed p-value from the permutation test is similar to the values
computed using the t-test and Wilcoxon procedures.

6.5 Paired Sample Inference Using a t Statistic

In the above analysis, we were comparing the wages of two groups of people
with different educational levels. It is difficult to get precise estimates of the
effect of education on wage since there are many other confounding variables
such as family background, natural ability, and innate intelligence that may
also explain the differences between the two groups. This particular study
took a sample of twins. By considering the wages of twins who differ in edu-
cational level but are similar with respect to other important variables such
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Fig. 6.4 Simulated randomization distribution of the two sample t statistic under
the null hypothesis in the permutation test. The vertical line gives the location of the
observed t statistic.

as intelligence and family background, one might more accurately estimate
the effect of education. Here we illustrate methods of comparing two means
from paired data.

In the dataframe twins, the variables EDUCL and EDUCH give the educa-
tional levels for twin 1 and twin 2. We first create a new data frame consist-
ing only of the twins with different educational levels. This new data frame
twins.diff is created using the subset function.

> twins.diff = subset(twins, EDUCL != EDUCH)

(The != symbol means“not equal.”) Since there are twins with missing values
of educational level, we use the complete.cases function to remove any rows
from the dataframe where any of the variables contain a NA code.

> twins.diff = twins.diff[complete.cases(twins.diff), ]

For these twins with different educational levels, we let log.wages.low

be the log hourly wage for the twin with the lower educational level and
log.wages.high the log hourly wage for the twin with the higher educa-
tional level. We compute these new variables using of the ifelse function.
For example, if the condition EDUCL < EDUCH is true, then log.wages.low

will be equal to log(HRWAGEL); otherwise log.wages.low will be equal to
log(HRWAGEH). A similar conditional expression is used to compute the vari-
able log.wages.high.

> log.wages.low = with(twins.diff,

+ ifelse(EDUCL < EDUCH, log(HRWAGEL), log(HRWAGEH)))
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> log.wages.high = with(twins.diff,

+ ifelse(EDUCL < EDUCH, log(HRWAGEH), log(HRWAGEL)))

When we are done with this data cleaning, we have data on log wages
for 75 pairs of twins. We combine the twins data by the cbind function and
display the log wages for the first six pairs of twins using of the head function.

> head(cbind(log.wages.low, log.wages.high))

log.wages.low log.wages.high

1 2.169054 2.890372

2 3.555348 2.032088

3 2.484907 2.708050

4 2.847812 2.796061

5 2.748872 3.218876

6 2.079442 2.708050

Let μL and μH denote respectively the mean log wages for the twins with
the lower and higher educational levels. Due to the paired design, one can
perform a test for the difference in means d = μL − μH by working with
the single sample of paired differences log.wages.low - log.wages.high.
We use the hist function to construct a histogram of the paired differences
in Figure 6.5. Since the paired differences in log wages look approximately
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Fig. 6.5 Histogram of the paired differences to see the effect of education on log
wages.

normal, it is reasonable to apply a t-test on the differences by the t.test

function. To construct a test based on the paired differences, the argument
option paired = TRUE is used.
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> t.test(log.wages.low, log.wages.high, paired=TRUE)

Paired t-test

data: log.wages.low and log.wages.high

t = -4.5516, df = 74, p-value = 2.047e-05

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.3930587 -0.1537032

sample estimates:

mean of the differences

-0.2733810

Here the observed difference in means is clearly statistically significant and a
95% confidence interval for the difference is (−0.393,−0.154). In an exercise,
one will be asked to rerun the t.test function on this dataset without using
the paired = TRUE option and comment on the difference in the confidence
intervals for the difference in means using the two options.

Exercises

6.1 (Gender of marathoners). In 2000, the proportion of females who
competed in marathons in the United States was 0.375. One wonders if the
proportion of female marathoners has changed in the ten-year period from
2000 to 2010. One collects the genders of 276 people who competed in the
2010 New York City Marathon – in this sample, 120 were women.

a. If p denotes the proportion of 2010 marathoners who are female, use the
prop.test function to test the hypothesis that p = 0.375. Store the calcu-
lations of the test in the variable Test.

b. From the components of Test, construct a 95% interval estimate for p.
c. Using the function binom.test, construct an exact-test of the hypothesis.

Compare this test with the large-sample test used in part (a).

6.2 (Ages of marathoners). The datafile “nyc.marathon.txt” contains the
gender, age, and completion time (in minutes) for 276 people who completed
the 2010 New York City Marathon. It was reported that the mean ages of
men and women marathoners in 2005 were respectively 40.5 and 36.1.

a. Create a new dataframe “women.marathon” that contains the ages and
completion times for the women marathoners.

b. Use the t.test function to construct a test of the hypothesis that the
mean age of women marathoners is equal to 36.1.

c. As an alternative method, use the wilcox.test function to test the hy-
pothesis that the median age of women marathoners is equal to 36.1. Com-
pare this test with the t-test used in part (b).

d. Construct a 90% interval estimate for the mean age of women marathoners.
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6.3 (Ages of marathoners, continued). From the information in the 2005
report, one may believe that men marathoners tend to be older than women
marathons.

a. Use the t.test function to construct a test of the hypothesis that the mean
ages of women and men marathoners are equal against the alternative
hypothesis that the mean age of men is larger.

b. Construct a 90% interval estimate for the difference in mean ages of men
and women marathoners.

c. Use the alternative Mann-Whitney-Wilcoxon test (function wilcox.test)
to test the hypothesis that the ages of the men and ages of the women come
from populations with the same location parameter against the alternative
that the population of ages of the men have a larger location parameter.
Compare the result of this test with the t-test performed in part (a).

6.4 (Measuring the length of a string). An experiment was performed
in an introductory statistics class to illustrate the concept of measurement
bias. The instructor held up a string in front of the class and each student
guessed at the string’s length. The following are the measurements from the
24 students (in inches).

22 18 27 23 24 15 26 22 24 25 24 18

18 26 20 24 27 16 30 22 17 18 22 26

a. Use the scan function to enter these measurements into R.
b. The true length of the string was 26 inches. Assuming that this sample of

measurements represents a random sample from a population of student
measurements, use the t.test function to test the hypothesis that the
mean measurement μ is different from 26 inches.

c. Use the t.test function to find a 90% confidence interval for the popula-
tion mean μ.

d. The t-test procedure assumes the sample is from a population that is
normally distributed. Construct a normal probability plot of the measure-
ments and decide if the assumption of normality is reasonable.

6.5 (Comparing snowfall of Buffalo and Cleveland). The datafile “buf-
falo.cleveland.snowfall.txt” contains the total snowfall in inches for the cities
Buffalo and Cleveland for the seasons 1968-69 through 2008-09.

a. Compute the differences between the Buffalo snowfall and the Cleveland
snowfall for all seasons.

b. Using the t.test function with the difference data, test the hypothesis
that Buffalo and Cleveland get, on average, the same total snowfall in a
season.

c. Use the t.test function to construct a 95% confidence interval of the
mean difference in seasonal snowfall.
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6.6 (Comparing Etruscan and modern Italian skulls). Researchers
were interested if ancient Etruscans were native to Italy. The dataset“Etruscan-
Italian.txt” contains the skull measurements from a group of Etruscans and
modern Italians. There are two relevant variables in the dataset: x is the skull
measurement and group is the type of skull.

a. Assuming that the data represent independent samples from normal dis-
tributions, use the t.test function to test the hypothesis that the mean
Etruscan skull measurement μE is equal to the mean Italian skull mea-
surement μI .

b. Use the t.test function to construct a 95% interval estimate for the dif-
ference in means μE −μI .

c. Use the two-sample Wilcoxon procedure implemented in the function
wilcox.test to find an alternative 95% interval estimate for the difference
μE −μI .

6.7 (President’s heights). In Example 1.2, the height of the election winner
and loser were collected for the U.S. Presidential elections of 1948 through
2008. Suppose you are interested in testing the hypothesis that the mean
height of the election winner is equal to the mean height of the election loser.
Assuming that this data represent paired data from a hypothetical population
of elections, use the t.test function to test this hypothesis. Interpret the
results of this test.



Chapter 7

Regression

7.1 Introduction

Regression is a general statistical method to fit a straight line or other model
to data. The objective is to find a model for predicting the dependent variable
(response) given one or more independent (predictor) variables.

The simplest example is a simple linear regression model of Y on X, defined
by

Y = β0 +β1X +ε, (7.1)

where ε is a random error term. The word “simple” means that there is one
predictor variable in the model. The linear model (7.1) describes a straight
line relation between the response variable Y and predictor X.

In least squares regression the unknown parameters β0 and β1 are esti-
mated by minimizing the sum of the squared deviations between the observed
response Y and the value Ŷ predicted by the model. If these estimates are
b0 (intercept) and b1 (slope), the estimated regression line is

Ŷ = b0 + b1X.

For a set of data (xi,yi), i = 1, . . . ,n, the errors in this estimate are yi − ŷi,
i = 1, . . . ,n. Least squares regression obtains the estimated intercept b0 and
slope b1 that minimizes the sum of squared errors:

∑n
i=1(yi − ŷi)2.

A multiple linear regression model has more than one predictor variable
(multiple predictors). Linear models can describe many relations other than
straight lines or planes. Any model that is linear in the parameters is consid-
ered a linear model. Thus a quadratic relation y = β0 +β1x+β2x2 corresponds
to a linear model with two predictors, X1 = X and X2 = X2. The exponential
relation y = β0eβ1x is not linear, but the relation can be expressed by tak-
ing the natural logarithm of both sides. The corresponding linear equation is
lny = lnβ0 +β1x.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__7,
© Springer Science+Business Media, LLC 2012
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7.2 Simple Linear Regression

7.2.1 Fitting the model

Example 7.1 (cars). Consider a set of paired observations of speed and stop-
ping distance of cars. Is there a linear relation between stopping distance and
speed of a car?

The data set cars is one of the data sets installed with R. We attach

the data set cars, and from the help page for cars (displayed using ?cars),
we learn that there are 50 observations of speed (mph) and dist (stopping
distance in feet), and that this data was recorded in 1920. Our first step in
the analysis is to construct a scatterplot of dist vs speed, using the plot

function.

> attach(cars) #attach the data

> ?cars #display the help page for cars data

> plot(cars) #construct scatterplot

The scatterplot displayed in Figure 7.1 reveals that there is a positive associa-
tion between distance dist and speed of cars. The relation between distance
and speed could be approximated by a line or perhaps by a parabola. We
start with the simplest model, the straight line model. The response variable
in this example is stopping distance dist and the predictor variable speed is
speed. To fit a straight line model

dist = β0 +β1 speed+ε,

we need estimates of the intercept β0 and the slope β1 of the line.

The lm function and the model formula

The linear model function is lm. This function estimates the parameters of a
linear model by the least squares method. A linear model is specified in R by
a model formula.

The R formula that specifies a simple linear regression model dist = β0 +
β1speed+ε is simply

dist ∼ speed

The model formula is the first argument to the lm (linear model) function.
In this example, the estimated regression model is obtained by

> lm(dist ~ speed)

The lm command above produces the following output.

Call:

lm(formula = dist ~ speed)
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Fig. 7.1 Scatterplot of stopping distance vs speed in Example 7.1.

Coefficients:

(Intercept) speed

-17.579 3.932

The function lm displays only the estimated coefficients, but the object re-
turned by lm contains much more information, which we will explore below.
As we want to analyze the fit of this model, it is useful to store the result:

> L1 = lm(dist ~ speed)

> print(L1)

In this case the value of L1 will be displayed after we type the symbol L1 or
print(L1). The result will be as shown above.

The fitted regression line is: dist = −17.579+3.932 speed. According to this
model, average stopping distance increases by 3.932 feet for each additional
mile per hour of speed. The abline or curve functions can be used to add
the fitted line to the scatterplot. See Figure 7.2(a).

> plot(cars, main="dist = -17.579 + 3.932 speed", xlim=c(0, 25))

> #line with intercept=-17.579, slope=3.932

> abline(-17.579, 3.932)

> curve(-17.579 + 3.932*x, add=TRUE) #same thing

Rx 7.1 A shortcut to add a simple linear regression line to a plot is to supply
the result of lm as the first argument to abline. In the above example, we
could have used abline(lm(dist ~ speed)) or abline(L1) to add the fitted
line to the plot in Figure 7.2(a).
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Fig. 7.2 Regression lines for speed vs dist in Examples 7.1–7.2. Figure (a) dis-
plays the data with the fitted line ŷ = −17.579 + 3.932x from Example 7.1. Figure
(b) displays the same data with the regression-through-the-origin fit, ŷ = 2.909x from
Example 7.2.

7.2.2 Residuals

The residuals are the vertical distances from the observed stopping distance
dist (the plotting symbol) to the line. The paired observations are (xi,yi) =
(speedi,disti), i = 1, . . . ,50. The residuals are

ei = yi − ŷi,

where ŷi denotes the value of stopping distance predicted by the model at
speed xi. In this problem, ŷi = −17.579+3.932xi. One can observe in Figure
7.2(a) that the model tends to fit better at slow speeds than at higher speeds.
It is somewhat easier to analyze the distribution of the errors using a residual
plot. Figure 7.3 is a scatterplot of residuals vs fitted values. One way to
generate the residual plot is to use the plot method for the lm result. The
which=1 argument specifies the type of plot (residuals vs fitted values). The
add.smooth argument controls whether a certain type of curve is fitted to
the residuals.

> plot(L1, which=1, add.smooth=FALSE)

The residual plot (Figure 7.3) has three unusually large residuals labeled;
observations 23, 35, and 49. One can also observe that the residuals are
closer to zero at slow speeds; the variance of the residuals is not constant
across all speeds, but increasing with speed. Inference (tests or confidence
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intervals) about the model is usually based on the assumption that the errors
are normally distributed with mean zero and constant variance.
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Fig. 7.3 Scatterplot of residuals vs fitted values for the cars data in Example 7.1.

7.2.3 Regression through the origin

Example 7.2 (cars, cont.). The cars data includes speeds as slow as 4 mph,
and the estimated intercept should correspond to the expected distance re-
quired to stop a car that is not moving; however, our estimated intercept is
-17.579 feet. The model with intercept zero

Y = β1X +ε

can be estimated by explicitly including the intercept 0 in the model formula.
Then lm(dist ~ 0 + speed) sets intercept equal to zero and estimates the
slope by the least squares method.

> L2 = lm(dist ~ 0 + speed)

> L2

Call:

lm(formula = dist ~ 0 + speed)

Coefficients:

speed

2.909
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The estimated slope for this model is 2.909. For each additional one mph of
speed, the estimated average stopping distance increases 2.909 feet. The fitted
line plot for this model is in Figure 7.2(b). It is generated by the following
code.

> plot(cars, main="dist = 2.909 speed", xlim=c(0,25))

> #line with intercept=0, slope=2.909

> abline(0, 2.909)

Again we observe that the fit is better at slow speeds than at faster speeds.
A plot of residuals vs fitted values for this model can be generated by

> plot(L2, which=1, add.smooth=FALSE)

as described above. This plot (not shown) looks very similar to Figure 7.3.
A quadratic model could be considered for this data; see Exercise 7.8.
The cars data can be detached when it is no longer needed, using

> detach(cars)

7.3 Regression Analysis for Data with Two Predictors

In the next example there are two predictor variables. One could fit a simple
linear regression model with either of these variables, or fit a multiple linear
regression model using both predictors.

7.3.1 Preliminary analysis

Example 7.3 (Volume of Black Cherry Trees). The data file “cherry.txt”
can be obtained from StatSci at http://www.statsci.org/data/general/
cherry.html and can also be found in Hand et al. [21]. The data were col-
lected from 31 black cherry trees in the Allegheny National Forest, Pennsyl-
vania, in order to find an estimate for the volume of a tree (and therefore the
timber yield), given its height and diameter. The data set contains a sample
of 31 observations of the variables

Variable Description
Diam diameter in inches
Height height in feet
Volume cubic feet

This data set is also available in R as trees. It is identical to “cherry.txt”
except that the diameter variable is named “Girth”. We use the R data and
rename the diameter as Diam, creating a new data frame called Trees, then
attach the data frame.

http://www.statsci.org/data/general/cherry.html
http://www.statsci.org/data/general/cherry.html
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> Trees = trees

> names(Trees)[1] = "Diam"

> attach(Trees)

The pairs function generates an array of scatterplots for each pair of vari-
ables. This type of plot (Figure 7.4) helps visualize the relations between
variables.
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Fig. 7.4 Pairs plot of cherry tree data in Example 7.3.

In the pairs plot (Figure 7.4) the variables Diam and Volume appear to
have a strong linear association, and Height and Volume are also related.

We also print a correlation matrix.

> pairs(Trees)

> cor(Trees)

Diam Height Volume

Diam 1.0000000 0.5192801 0.9671194

Height 0.5192801 1.0000000 0.5982497

Volume 0.9671194 0.5982497 1.0000000

The correlation between diameter and volume is 0.97, indicating a strong
positive linear relation between Diam and Volume. The correlation between
height and volume is 0.60, which indicates a moderately strong positive linear
association between Height and Volume.

As a first step, let us fit a simple linear regression model with diameter as
the predictor:

Y = β0 +β1X1 +ε,
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where Y is the volume, X1 is the diameter, and ε is random error; call this
Model 1. The lm function is used to fit the model and we store the result in
M1. The intercept term is included in the formula by default.

> M1 = lm(Volume ~ Diam)

> print(M1)

Call:

lm(formula = Volume ~ Diam, data = Trees)

Coefficients:

(Intercept) Diam

-36.943 5.066

The estimated intercept is -36.943 and the estimated slope is 5.066. According
to this model, the average volume increases by 5.066 cubic feet for each
additional 1 inch in diameter.

The fitted model M1 contains the estimated coefficients. We add the line
to the scatterplot of the data using the vector of coefficients M1$coef. The
scatterplot with fitted line is shown in Figure 7.5

> plot(Diam, Volume) #response vs predictor

> abline(M1$coef) #add fitted line
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Fig. 7.5 Scatterplot of cherry tree volume vs tree diameter with fitted regression
line in Example 7.3.

To predict volume for new trees, the predict method can be used. Store
the diameter value for the new tree(s) in a data frame using the name Diam of
the original model formula specified in the lm call. For example, the predicted
volume for a new tree with diameter 16 in. is obtained by
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> new = data.frame(Diam=16)

> predict(M1, new)

1

44.11024

The predicted volume of the new tree is 44.1 cubic feet.
For inference, one requires some assumptions about the distribution of

the error term. We assume that the random errors ε are independent and
identically distributed (iid) as Normal(0,σ2) random variables. Residual plots
help us to assess the fit of the model and the assumptions for ε.

One can obtain residual plots using the plot method for lm; here we are
requesting two plots: a plot of residuals vs fits (1) and a QQ plot to check for
normality of residuals (2).

plot(M1, which=1:2)

The user is prompted for each graph with a message at the console:

Waiting to confirm page change...

The residual plots are shown in Figure 7.6(a) and 7.6(b). In Figure 7.6(a)
a curve has been added. This curve is a fitted lowess (local polynomial
regression) curve, called a smoother. The residuals are assumed iid, but there
is a pattern evident. The residuals have a “U” shape or bowl shape. This
pattern could indicate that there is a variable missing from the model. In
the QQ plot 7.6(b), normally distributed residuals should lie approximately
along the reference line shown in the plot. The observation with the largest
residual corresponds to the tree with the largest volume, observation 31. It
also has the largest height and diameter.

7.3.2 Multiple regression model

A multiple linear regression model with response variable Y and two predictor
variables X1 and X2 is

Y = β0 +β1X1 +β2X2 +ε,

where ε is a random error term. For inference we assume that the errors are
normally distributed and independent with mean zero and common variance
σ2.

Example 7.4 (Model for Volume of Cherry Trees, cont.). Next we consider
the two variable model for predicting volume of cherry trees given diameter
and height. This is a multiple regression model with two predictors; X1 is the
diameter and X2 is the height of the tree. The response variable is Y , the
volume. Call this Model 2.
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Fig. 7.6 Residuals vs fits (a) and normal QQ plot of residuals (b) in Example 7.3
for Model 1.

Least squares estimates of the parameters of multiple linear regression
models are obtained by lm, using similar syntax as for simple linear regression.
The model formula determines which type of model is fit. The model formula
we require is

Volume ∼ Diam+Height

and we fit the model, store it as M2, then print the result with the commands

> M2 = lm(Volume ~ Diam + Height)

> print(M2)

Call:

lm(formula = Volume ~ Diam + Height)

Coefficients:

(Intercept) Diam Height

-57.9877 4.7082 0.3393

The fitted regression model is

Ŷ = −57.9877+4.7082X1 +0.3393X2

or Volume = −57.9877 + 4.7082Diam + 0.3393Height + error. According to
this model, when height is held constant, average volume of a tree increases
by 4.7082 cubic feet for each additional inch in diameter. When diameter is
held constant, average volume of a tree increases by 0.3393 cubic feet for each
additional inch of height.

The residual plots for Model 2 are obtained by

> plot(M2, which=1:2)
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(see the previous section). These residual plots for Model 2 (not shown) look
similar to the corresponding plots for M1 in Figure 7.6(a). The “U” shaped
pattern of residuals in the plot of residuals vs fits (similar to Figure 7.6(a))
may indicate that a quadratic term is missing from the model.

Example 7.5 (Model for Cherry Trees, cont.). Finally, let us fit a model that
also includes the square of diameter as a predictor. Call this Model 3. The
model is specified by the formula

Volume ~ Diam + I(Diam^2) + Height

where I(Diam^2) means to interpret Diam^2 “as is” (the square of Diam)
rather than interpret the exponent as a formula operator. We fit the model,
storing the result in M3.

> M3 = lm(Volume ~ Diam + I(Diam^2) + Height)

> print(M3)

Call:

lm(formula = Volume ~ Diam + I(Diam^2) + Height)

Coefficients:

(Intercept) Diam I(Diam^2) Height

-9.9204 -2.8851 0.2686 0.3764

Then we display the residual plots, which are shown in Figures 7.7(a) and
7.7(b).

plot(M3, which=1:2)
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Fig. 7.7 Residuals vs fits (a) and normal QQ plot of residuals in Example 7.5 for
Model 3.
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For Model 3, the plot of residuals vs fits in Figure 7.7(a) does not have the“U”
shape that was apparent for Models 1 and 2. The residuals are approximately
centered at 0 with constant variance. In the normal QQ plot (Figure 7.7(b)),
the residuals are close to the reference line on the plot. These residual plots
are consistent with the assumption that errors are iid with a Normal(0,σ2)
distribution.

7.3.3 The summary and anova methods for lm

The summary of the fitted model contains additional information about the
model. In the result of summary we find a table of the coefficients with stan-
dard errors, a five number summary of residuals, the coefficient of determi-
nation (R2), and the residual standard error.

Example 7.6 (Cherry Trees Model 3). The summary of our multiple regression
fit stored in M3 is obtained below.

> summary(M3)

Call:

lm(formula = Volume ~ Diam + I(Diam^2) + Height)

Residuals:

Min 1Q Median 3Q Max

-4.2928 -1.6693 -0.1018 1.7851 4.3489

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.92041 10.07911 -0.984 0.333729

Diam -2.88508 1.30985 -2.203 0.036343 *

I(Diam^2) 0.26862 0.04590 5.852 3.13e-06 ***

Height 0.37639 0.08823 4.266 0.000218 ***

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Residual standard error: 2.625 on 27 degrees of freedom

Multiple R-squared: 0.9771, Adjusted R-squared: 0.9745

F-statistic: 383.2 on 3 and 27 DF, p-value: < 2.2e-16

The adjusted R2 value of 0.9745 indicates that more than 97% of the total
variation in Volume about its mean is explained by the linear association
with the predictors Diam, Diam2, and Height. The residual standard error is
2.625. This is the estimate of σ, the standard deviation of the error term ε
in Model 3.

The table of coefficients includes standard errors and t statistics for testing
H0 : βj = 0 vs H1 : βj 	= 0. The p-values of the test statistics are given under
Pr(>|t|). We reject the null hypothesis H0 : βj = 0 if the corresponding p-
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value is less than the significance level. At significance level 0.05 we conclude
that Diam, Diam2, and Height are significant.

The analysis of variance (ANOVA) table for this model is obtained by the
anova function.

> anova(M3)

Analysis of Variance Table

Response: Volume

Df Sum Sq Mean Sq F value Pr(>F)

Diam 1 7581.8 7581.8 1100.511 < 2.2e-16 ***

I(Diam^2) 1 212.9 212.9 30.906 6.807e-06 ***

Height 1 125.4 125.4 18.198 0.0002183 ***

Residuals 27 186.0 6.9

From the ANOVA table, one can observe that Diam explains most of the
total variability in the response, but the other predictors are also significant
in Model 3.

A way to compare the models (Model 1 in Example 7.3, Model 2 in Ex-
ample 7.4, and Model 3 in Example 7.5) is to list all of the corresponding lm

objects as arguments to anova,

> anova(M1, M2, M3)

which produces the following table:

Analysis of Variance Table

Model 1: Volume ~ Diam

Model 2: Volume ~ Diam + Height

Model 3: Volume ~ Diam + I(Diam^2) + Height

Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 524.30

2 28 421.92 1 102.38 14.861 0.0006487 ***

3 27 186.01 1 235.91 34.243 3.13e-06 ***

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

This table shows that the residual sum of squares decreased by 102.38 from
524.30 when Height was added to the model, and decreased another 235.91
from 421.92 when the square of diameter was added to the model.

7.3.4 Interval estimates for new observations

Regression models are models for predicting a response variable given one
or more predictor variables. We have seen how to obtain predictions (point
estimates) of the response variable using predict for lm in Example 7.3 (see
the predict.lm help topic). The predict method for lm also provides two
types of interval estimates for the response:
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a. Prediction intervals for new observations, for given values of the predictor
variables.

b. Confidence intervals for the expected value of the response for given values
of the predictors.

Example 7.7 (Cherry Trees Model 3, cont.).
To predict volume for new trees with given diameter and height, the pre-

dict method can be used. Store the diameter and height values for the new
tree(s) in a data frame using the identical names as in the original model
formula specified in the lm call. For example, to apply the Model 3 fit to
obtain a point estimate for the volume of a new tree with diameter 16 in. and
height 70 ft., we enter

> new = data.frame(Diam=16, Height=70)

> predict(M3, newdata=new)

1

39.03278

The predicted volume of the new tree is 39.0 cubic feet. This estimate is
about 10% lower than the prediction we obtained from Model 1, which used
only diameter as a predictor.

To obtain a prediction interval or a confidence interval for the volume of
the new tree, the predict method is used with an argument called interval

specified. The confidence level is specified by the level argument, which
is set at 0.95 by default. One can abbreviate the argument values. For a
prediction interval specify interval="pred" and for a confidence interval
use interval="conf".

> predict(M3, newdata=new, interval="pred")

fit lwr upr

1 39.03278 33.22013 44.84544

The prediction interval for volume of a randomly selected new tree of diameter
16 and height 70 is (33.2, 44.8) cubic feet. The confidence interval for the
expected volume of all trees of diameter 16 and height 70 is obtained by

> predict(M3, newdata=new, interval="conf")

fit lwr upr

1 39.03278 36.84581 41.21975

so the confidence interval estimate for expected volume is (36.8, 41.2) cubic
feet. The prediction interval is wider than the confidence interval because the
prediction for a single new tree must take into account the variation about
the mean and also the variation among all trees of this diameter and height.

To obtain point estimates or interval estimates for several new trees, one
would store the new values in a data frame like our data frame new. For
example, if we require confidence intervals for diameter 16, at a sequence of
values of height 65 to 70, we can do the following.
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> diameter = 16

> height = seq(65, 70, 1)

> new = data.frame(Diam=diameter, Height=height)

> predict(M3, newdata=new, interval="conf")

which produces the following estimates:

fit lwr upr

1 37.15085 34.21855 40.08315

2 37.52724 34.75160 40.30287

3 37.90362 35.28150 40.52574

4 38.28001 35.80768 40.75234

5 38.65640 36.32942 40.98338

6 39.03278 36.84581 41.21975

7.4 Fitting a Regression Curve

In this section we discuss two examples for which we want to estimate a
regression curve rather than a straight line relation between a response vari-
able Y and a single predictor X. In Example 7.8 the response variable is
linearly related to the reciprocal of the predictor. In Example 7.9, we fit an
exponential model.

Example 7.8 (Massachusetts Lunatics Data).
In Chapter 1, the Massachusetts Lunatics data1 was introduced. These

data are from an 1854 survey conducted by the Massachusetts Commission
on Lunacy. We created the data file “lunatics.txt” from the table on the web.
See Chapter 1 (Example 1.12, page 29) for a detailed explanation of how to
import the data into R. We import the data into a data frame lunatics and
attach it using

> lunatics = read.table("lunatics.txt", header=TRUE)

> attach(lunatics)

The data frame lunatics has 14 rows and six columns, corresponding to the
following variables:

Variable Description
COUNTY Name of county
NBR Number of lunatics, by county
DIST Distance to nearest mental health center
POP County population , 1950 (thousands)
PDEN County population density per square mile
PHOME Percent of lunatics cared for at home

1 Data and Story Library, http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.
html

http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.html
http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.html
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In this example we investigate the relationship between the percentage of
patients cared for at home and distance to the nearest health center.

First we plot PHOME vs DIST to see if a linear relation is a plausible model,
and print the sample correlation.

> plot(DIST, PHOME)

> cor(DIST, PHOME)

[1] 0.4124404

The sample correlation 0.41 measures the linear association between the two
variables. The scatterplot in Figure 7.8(a) suggests that the relation between
PHOME and DIST is nonlinear, perhaps more like a hyperbola. With this in
mind, we create the variable RDIST, the reciprocal of distance, compute sam-
ple correlation, and plot PHOME vs RDIST.

> RDIST = 1/DIST

> plot(RDIST, PHOME)

> cor(RDIST, PHOME)

[1] -0.7577307

Here |cor(RDIST,PHOME)| > |cor(DIST,PHOME)|, indicating a stronger linear
association between RDIST and PHOME than between the original variables
DIST and PHOME. In Figure 7.8(b) a linear relation between PHOME and RDIST

appears to be a plausible model. (The line on the plot is added below after
fitting the model.)
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Fig. 7.8 Percent of lunatics cared for at home vs distance (a) and reciprocal of
distance (b) in Example 7.8.

We fit the simple linear regression model

PHOMEi = β0 +β1RDISTi +εi, i = 1, . . . ,14,
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using the lm function. Typically we want to save the result in an object for
further analysis.

> M = lm(PHOME ~ RDIST)

> M

Call:

lm(formula = PHOME ~ RDIST)

Coefficients:

(Intercept) RDIST

73.93 -266.32

The estimated regression line is PHOME = 73.93−266.32RDIST, and it can
be added to the plot in Figure 7.8(b) with the abline function:

> abline(M)

Although data points for 13 of the 14 counties are close to the fitted line in
Figure 7.8(b), there is one observation that is far from the line. We may also
want to plot the fits for the original data. The fits are points on the curve

PHOME = β̂0 + β̂1
1

DIST
,

where β̂0 and β̂1 are the intercept and slope estimates stored in the $coef

vector of our lm object. The plot in Figure 7.9 is obtained by

> plot(DIST, PHOME)

> curve(M$coef[1] + M$coef[2] / x, add=TRUE)

Again, we observe one observation that is far from the fitted curve. One also
can observe that most of the observed data are above the fitted curve; the
fitted model tends to underestimate the response.

A plot of residuals vs fits is produced by the command

> plot(M$fitted, M$resid, xlab="fitted", ylab="residuals")

We added a dashed horizontal line through 0 to the plot by

> abline(h=0, lty=2)

The plot is shown in Figure 7.10(a). On the residual plot we find that there
is an outlier among the residuals at the lower right corner.

The identify function is helpful to identify which observation is the out-
lier. This function waits for the user to identify n points on the plot, and
optionally labels the points. We want n=1 to identify one point, and we spec-
ify an abbreviation for the COUNTY as the label.

> lab = abbreviate(COUNTY)

> identify(M$fitted.values, M$residuals, n=1, labels=lab)

[1] 13

The identify function returns the row number of the observation(s) identi-
fied on the plot. Row number 13 corresponds to NANTUCKET county, which
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Fig. 7.9 Predicted values of percentage of patients cared for at home in Example
7.8.
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Fig. 7.10 Fitted values vs residuals for the regression of PHOME on RDIST in Example
7.8. In (b), the outlier has been labeled as “NANT” (NANTUCKET county), after
using the identify function.

is labeled on the plot as “NANT” where we clicked (See Figure 7.10(b).) We
can extract this observation from the data set by

> lunatics[13, ]

COUNTY NBR DIST POP PDEN PHOME

13 NANTUCKET 12 77 1.74 179 25
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According to the documentation provided with the data set on the DASL
web site, Nantucket county is an offshore island, which may need to be taken
into account in the model.

Finally, when the data frame is no longer required, it can be detached.

> detach(lunatics)

Example 7.9 (Moore’s Law). In a recent interview,2 Google’s CEO Eric
Schmidt discussed the future of the internet. According to Moore’s Law,
Schmidt said, “in 10 years every computer device you use will be 100 times
cheaper or 100 times faster.” Moore’s Law, named for Intel co-founder Gor-
don Moore [34], states that the number of transistors on a chip (a measure
of computing power) doubles every 24 months. In 1965 Moore predicted that
the number of transistors would double every year, but in 1975 he modified
that doubling time to every two years.

Moore’s Law has been applied to various measurements of computing
power. If the rate of growth in computing power is assumed constant, Moore’s
Law is the model

y = b02b1t, t ≥ 0,

where y is the measurement at time t, b0 is the initial measurement, and 1/b1
is the time to double. That is, taking logarithms base 2 of both sides, we can
write the model as

log2(y) = log2(b0)+ b1t, t ≥ 0, (7.2)

a linear model for logarithm of y at time t.
In this example, we fit an exponential model to computer processor speed.

The data file“CPUspeed.txt”contains the maximum Intel CPU speed vs time
from 1994 through 2004. The variables are:

Variable Description
year calendar year
month month
day day
time time in years
speed Max IA-32 Speed (GHz)
log10speed logarithm base 10 of speed

The following code reads in the data from the file “CPUspeed.txt,”

> CPUspeed = read.table("CPUspeed.txt", header=TRUE)

and head displays the first few observations.

2 http://firstdraftofhistory.theatlantic.com/analysis/internet_is_good.php

http://firstdraftofhistory.theatlantic.com/analysis/internet_is_good.php
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> head(CPUspeed)

year month day time speed log10speed

1 1994 3 7 1994.179 0.100 -1.0000000

2 1995 3 27 1995.233 0.120 -0.9208188

3 1995 6 12 1995.444 0.133 -0.8761484

4 1996 1 4 1996.008 0.166 -0.7798919

5 1996 6 10 1996.441 0.200 -0.6989700

6 1997 5 7 1997.347 0.300 -0.5228787

If Moore’s Law holds (if an exponential model is correct), then we should
expect that the logarithm of speed vs time follows an approximately linear
trend. Here the base 2 logarithm is natural because of the base 2 logarithm in
the proposed model (7.2), so we apply the change of base formula log2(x) =
log10(x)/ log10(2). Since the earliest observation is in year 1994, we compute
the time (years) measured in years since the start of 1994.

> years = CPUspeed$time - 1994

> speed = CPUspeed$speed

> log2speed = CPUspeed$log10speed / log10(2)

We construct scatterplots of speed vs time and log2(speed) vs time (where
time is the time elapsed since 1994).

> plot(years, speed)

> plot(years, log2speed)

The plots are displayed in Figure 7.11(a) and 7.11(b). Figure 7.11(b) suggests
that a linear association may exist between log2speed and years, so we fit
a linear model using the lm function.

> L = lm(log2speed ~ years)

> print(L)

Call:

lm(formula = log2speed ~ years)

Coefficients:

(Intercept) years

-3.6581 0.5637

The fitted model is l̂ny = −3.6581+0.5637 t or

ŷ = 2−3.6581+0.5637t = 0.0792(20.5637t). (7.3)

At time t = 1/0.5637 = 1.774 years, the predicted speed is ŷ = 0.0792(2); thus,
expected speed will double in an estimated 1.774 years. According to this
model, CPU speeds are predicted to increase by a factor of 20.5637(10) ≈ 50
in 10 years (about 50 times faster, rather than 100 times faster as claimed in
the interview).

To add the fitted regression curve to the plot in Figure 7.11(a) the curve
function can be used with the exponential model (7.3).
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Fig. 7.11 Plot of CPU speed vs time (a) and log2(CPU speed) vs time (b) in Ex-
ample 7.9

> plot(years, speed)

> curve(2^(-3.6581 + 0.5637 * x), add=TRUE)

To add the fitted regression line to the plot in Figure 7.11(b) the abline

function can be used.

> plot(years, log2speed)

> abline(L)

These two plots are displayed in Figures 7.12(a) and 7.12(b).

Moore’s Law: residual analysis

The fit of the model appears to be good from a visual inspection of the
fitted line in Figure 7.11(b). The model adequacy can be investigated further
through residual plots.

The residuals are observed errors ei = yi − ŷi, where yi is the observed
response and ŷi is the fitted value for observation i. The lm function returns
an object containing residuals, fitted values, and other values. If we store
the model rather than print it, we can access the residuals and other data
returned by lm. In addition we can use available methods such as summary,
anova, or plot.

The plot method for lm objects displays several residual plots. Using the
argument which=1:2 selects the first two plots.

> plot(L, which=1:2)



194 7 Regression

● ● ● ● ●

● ●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
1

2
3

years

sp
ee

d

(a)

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2

years

lo
g2

sp
ee

d

(b)

Fig. 7.12 Plot of CPU speed vs time with fitted regression curve (a) and log2(CPU
speed) vs time with fitted regression line (b) in Example 7.9

The two residual plots are shown in Figure 7.13. Figure 7.13(a) is a plot of
residuals vs fitted values, with a curve added that has been fit to the data
using a local regression “smoother” (see lowess). Figure 7.13(b) is a normal
QQ plot of residuals.

An assumption for inference in regression is that the errors are independent
and identically distributed (iid) as Normal(0,σ2), but the normal QQ plot
suggests that the residuals are not normal. In Figure 7.13(a) it appears that
the residuals are not iid.

Three larger residuals are identified on the plot of residuals vs fitted values
(observations 16, 26, 27) and the same points are identified on the QQ plot.
These are

> CPUspeed[c(16, 26, 27), ]

year month day time speed log10speed

16 2000 10 20 2000.802 1.5 0.1760913

26 2004 6 21 2004.471 3.6 0.5563025

27 2004 11 15 2004.873 3.8 0.5797836

Observations 26 and 27 are the two most recent, possibly indicating that the
model is not a good fit for the near future.

The summary method produces additional information about the model
fit. Suppose that one only needs the coefficient of determination R2, rather
than the complete output of summary. For simple linear regression extract
$r.squared from the summary, and for multiple linear regression extract
$adj.r.squared (adjusted R2).

> summary(L)$r.squared

[1] 0.9770912
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The coefficient of determination is 0.9770912; more than 97.7% of the total
variation in the logarithm of speed is explained by the model.

On November 13, 2005 the maximum processor speed was 3.8 GHz. What
does the fitted linear regression model predict for expected maximum speed
at this time? The predict method for lm objects returns the predicted values
for the data or new observations. The new observations should be stored in
a data frame, using the same names for the predictor variables as in the
model formula. In this case the data frame has a single variable, years. The
fractional year up to November 13 should be expressed as a decimal. If we
take the fractional year elapsed in 2005 to be 316.5/365, we have

> new = data.frame(years = 2005 + 316.5 / 365 - 1994)

> lyhat = predict(L, newdata=new)

> lyhat

1

3.031005

Recall that the response variable in the fitted model is log2(speed), so the
speed predicted by the model on November 13, 2005 is

> 2^lyhat

1

8.173792

GHz and the error is 8.2 - 3.8 = 4.4 GHz. This illustrates the danger of
extrapolation; note that our latest observation in CPUspeed is about one full
year earlier, Nov. 15, 2004.
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Fig. 7.13 Residual plots from the fitted regression model, log2(CPU speed) vs time,
in Example 7.9.
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Exercises

7.1 (mammals data). The mammals data set in the MASS package records
brain size and body size for 62 different mammals. Fit a regression model to
describe the relation between brain size and body size. Display a residual plot
using the plot method for the result of the lm function. Which observation
(which mammal) has the largest residual in your fitted model?

7.2 (mammals, continued). Refer to the mammals data in package MASS.
Display a scatterplot of log(brain) vs log(body). Fit a simple linear regres-
sion model to the transformed data. What is the equation of the fitted model?
Display a fitted line plot and comment on the fit. Compare your results with
results of Exercise 7.1.

7.3 (mammals residuals). Refer to Exercise 7.2. Display a plot of residuals
vs fitted values and a normal-QQ plot of residuals. Do the residuals appear
to be approximately normally distributed with constant variance?

7.4 (mammals summary statistics). Refer to Exercise 7.2. Use the sum-
mary function on the result of lm to display the summary statistics for the
model. What is the estimate of the error variance? Find the coefficient of
determination (R2) and compare it to the square of the correlation between
the response and predictor. Interpret the value of (R2) as a measure of fit.

7.5 (Hubble’s Law). In 1929 Edwin Hubble investigated the relationship
between distance and velocity of celestial objects. Knowledge of this rela-
tionship might give clues as to how the universe was formed and what may
happen in the future. Hubble’s Law is is

Recession Velocity = H0 ×Distance,

where H0 is Hubble’s constant. This model is a straight line through the origin
with slope H0. Data that Hubble used to estimate the constant H0 are given
on the DASL web at http://lib.stat.cmu.edu/DASL/Datafiles/Hubble.
html. Use the data to estimate Hubble’s constant by simple linear regression.

7.6 (peanuts data). The data file “peanuts.txt” (Hand et al. [21]) records
levels of a toxin in batches of peanuts. The data are the average level of
aflatoxin X in parts per billion, in 120 pounds of peanuts, and percentage
of non-contaminated peanuts Y in the batch. Use a simple linear regression
model to predict Y from X. Display a fitted line plot. Plot residuals, and
comment on the adequacy of the model. Obtain a prediction of percentage
of non-contaminated peanuts at levels 20, 40, 60, and 80 of aflatoxin.

7.7 (cars data). For the cars data in Example 7.1, compare the coefficient
of determination R2 for the two models (with and without intercept term in
the model). Hint: Save the fitted model as L and use summary(L) to display
R2. Interpret the value of R2 as a measure of the fit.

http://lib.stat.cmu.edu/DASL/Datafiles/Hubble.html.
http://lib.stat.cmu.edu/DASL/Datafiles/Hubble.html.
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7.8 (cars data, continued). Refer to the cars data in Example 7.1. Create
a new variable speed2 equal to the square of speed. Then use lm to fit a
quadratic model

dist = β0 +β1speed+β2(speed)2 +ε.

The corresponding model formula would be dist ~ speed + speed2. Use
curve to add the estimated quadratic curve to the scatterplot of the data
and comment on the fit. How does the fit of the model compare with the
simple linear regression model of Example 7.1 and Exercise 7.7?

7.9 (Cherry Tree data, quadratic regression model). Refer to the
Cherry Tree data in Example 7.3. Fit and analyze a quadratic regression
model y = b0 + b1x + b2x2 for predicting volume y given diameter x. Check
the residual plots and summarize the results.

7.10 (lunatics data). Refer to the “lunatics” data in Example 7.8. Repeat
the analysis, after deleting the two counties that are offshore islands, NAN-
TUCKET and DUKES counties. Compare the estimates of slope and intercept
with those obtained in Example 7.8. Construct the plots and analyze the
residuals as in Example 7.8.

7.11 (twins data). Import the data file “twins.txt” using read.table. (The
commands to read this data file are shown in the twins example in Section
3.3, page 85.) The variable DLHRWAGE is the difference (twin 1 minus twin 2)
in the logarithm of hourly wage, given in dollars. The variable HRWAGEL is
the hourly wage of twin 1. Fit and analyze a simple linear regression model
to predict the difference DLHRWAGE given the logarithm of the hourly wage of
twin 1.



Chapter 8

Analysis of Variance I

8.1 Introduction

Analysis of Variance (ANOVA) is a statistical procedure for comparing
means of two or more populations. As the name suggests, ANOVA is a method
for studying differences in means by analysis of the variance components in
the model. In earlier chapters we have considered two sample location prob-
lems; for example, we compared the means of two groups using a two-sample
t test. Let us now consider a generalization to the multi-sample location
problem, where we wish to compare the location parameters of two or more
groups. One-way ANOVA handles a special case of this problem, testing for
equal group means.

The following introductory example provides a context for reviewing ter-
minology and statements about the models that follow.

Example 8.1 (Eye color and flicker frequency).
The data set“flicker.txt”measures ‘critical flicker frequency’ for 19 subjects

with different eye colors.1 From the description of the data on OzDASL [38]
“an individual’s critical flicker frequency is the highest frequency at which
the flicker in a flickering light source can be detected. At frequencies above
the critical frequency, the light source appears to be continuous even though
it is actually flickering.” Is critical flicker frequency related to eye color?

This data set has 19 observations and two variables, Colour (eye color)
and Flicker (critical flicker frequency in cycles per second). The data is listed
in Table 8.1.

Here we have a quantitative variable (Flicker) and a group variable
(Colour). To formulate a model and hypothesis to test, let us ask a more
specific question: Does the mean critical flicker frequency differ by eye color?
The dependent variable or response is Flicker. The explanatory variable is

1 See http://www.statsci.org/data/general/flicker.html, for the description and
data; source [44].

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__8,
© Springer Science+Business Media, LLC 2012
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(a)
Brown Green Blue
26.8 26.4 25.7
27.9 24.2 27.2
23.7 28.0 29.9
25.0 26.9 28.5
26.3 29.1 29.4
24.8 28.3
25.7
24.5

(b)
Colour Flicker
Brown 26.8
Brown 27.9
Brown 23.7
Brown 25.0
Brown 26.3
Brown 24.8
Brown 25.7
Brown 24.5
Green 26.4
Green 24.2
Green 28.0
Green 26.9
Green 29.1
Blue 25.7
Blue 27.2
Blue 29.9
Blue 28.5
Blue 29.4
Blue 28.3

Table 8.1 Two data layouts shown for the “Eye Color and Flicker Frequency” data.
Table (a) on the left is in a spreadsheet-like layout (unstacked). Table (b) on the right
is in stacked format. The response is Flicker (critical flicker frequency) and the factor
is Colour (eye color). The factor Colour has three levels (Brown, Green, Blue).

the group variable, called the treatment or factor, and it has three levels
in this example (Brown, Green, Blue). The null hypothesis is

H0 : the mean response is equal for all groups.

A more general null hypothesis is that the location parameter of each
group is equal; for example, one could test whether the medians differ by
group. Even more general is a null hypothesis that the distribution of the
response variable is identical for all groups. Either of these more general
hypotheses can be tested using methods other than ANOVA, but ANOVA
tests the hypothesis of equal means.

8.1.1 Data entry for one-way ANOVA

Data for one-way ANOVA is usually formatted in one of two ways. When
data is given in a spreadsheet or a table, with each group’s response in a
different column, it is sometimes called “unstacked” or “wide” format. The
same data could be organized in two columns, with the response variable
in one column and the group variable (the factor) in another column; this
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format is sometimes called “stacked” or “long” format. See Table 8.1 for a
comparison of the two formats.

For analysis in most software packages, including R, the data should be
entered in stacked format (see e.g. Table 8.1(b)); that is, two columns corre-
sponding to the two variables (the response and the group variable).2

First we illustrate the basic data entry steps for the flicker data, and do
some exploratory data analysis.

Example 8.2. The information provided with the “flicker” data source indi-
cates that there are two variables, Colour (eye color) and Flicker (critical
flicker frequency). The data is available at http://www.statsci.org/data/
general/flicker.txt, and it is in stacked format, so read.table is a simple
way to enter this data. We need to set header=TRUE to indicate that the first
row contains variable names.

> flicker = read.table(file=

+ "http://www.statsci.org/data/general/flicker.txt",

+ header=TRUE)

Alternately, assuming that the data has been saved into a local file“flicker.txt”
and is located in the current working directory,

flicker = read.table("flicker.txt", header=TRUE)

is an easy way to enter the data.
If the data is not available to read from a connection using read.table, or

if it is not in the correct format, then one could prepare a text file formatted
like Table 8.1(b).

Factors

In R the data will be entered into a data frame, and in order to proceed
with ANOVA, the group variable should be a factor. A factor is a special
type of object in R, used to describe data that can have a finite number of
values; for example, gender, marital status, and eye color are variables that
are typically of the factor type. The different values that a factor can take
are called levels.

Let us verify that the group variable for eye color is a factor and display
some information about it.

> is.factor(flicker$Colour)

[1] TRUE

> levels(flicker$Colour)

[1] "Blue" "Brown" "Green"

At a glance factors may appear to be character vectors, but this is misleading.
Using unclass we can reveal what information is stored in this factor:

2 Example 8.9 shows how to convert from unstacked to stacked format.

http://www.statsci.org/data/general/flicker.txt
http://www.statsci.org/data/general/flicker.txt
http://www.statsci.org/data/general/flicker.txt
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> unclass(flicker$Colour)

[1] 2 2 2 2 2 2 2 2 3 3 3 3 3 1 1 1 1 1 1

attr(,"levels")

[1] "Blue" "Brown" "Green"

Interestingly we see that the levels are stored as integers and the characters
are simply labels for the levels.

Notice that we did nothing special above to convert flicker$Colour to a
factor – how did read.table automatically create Colour as a factor rather
than a character vector when creating the data frame? There is an option
in R (stringsAsFactors) that controls whether character vectors should
automatically be converted to factors in a data frame. The ‘factory-fresh’
default is TRUE, but this can be changed by the user.

Rx 8.1 The “automatic” conversion of character vectors to factors in data
frames obviously will not work for data files where factors have been encoded
with numbers. In this case it is up to the user to convert the group variable
to a factor. This can be accomplished using as.factor or factor; see e.g.
Example 8.8. Also see Chapter 9 for examples.

8.1.2 Preliminary data analysis

Let us now continue with data analysis for the flicker data.

Example 8.3 (Eye color and flicker frequency, cont.). It will be more conve-
nient to attach the data frame so that we can refer to the variables directly:

> attach(flicker)

Side-by-side or parallel boxplots provide a graphical summary of location and
dispersion. For boxplots we supply a formula with the response variable on
the left and the group variable on the right.

> boxplot(Flicker ~ Colour, ylab = "Flicker")

The boxplots are shown Figure 8.1(a).
(Try the command plot(Colour, Flicker). Notice that plot displays

side-by-side boxplots in this case. The plot default behavior depends on the
type of data to be plotted.)

A one-dimensional scatterplot or dotplots of the data can be displayed by
the stripchart function.

> stripchart(Flicker ~ Colour, vertical=TRUE)

The plot is shown in Figure 8.1(b). The plots in Figures 8.1(a)-8.1(b) sug-
gest that the samples are similar with respect to variance, but with possibly
different centers (different location). The blue and brown means are farther
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Fig. 8.1 Box plots and dotplots of critical flicker frequency (cycles per minute) by
eye color, in Example 8.1.

apart than the blue and green or brown and green, but it is not easy to tell
from the plots if these differences are significant. Let us compare the means
and standard deviations of the three groups.

A table of means can be obtained using the by command

by(Flicker, Colour, FUN=mean)

but we would like to customize the function to get both means and standard
deviations. To do this, we define a function, meansd, that computes both
mean and standard deviation, then supply this function name in the FUN

argument of by.

> meansd = function(x) c(mean=mean(x), sd=sd(x))

> by(Flicker, Colour, FUN=meansd)

Colour: Blue

mean sd

28.166667 1.527962

---------------------------------------------------------

Colour: Brown

mean sd

25.587500 1.365323

---------------------------------------------------------

Colour: Green

mean sd

26.920000 1.843095

The standard deviations are close for the three groups, which we observed
from the boxplots. However, the means of the three groups are also close; are
there significant differences among the means?
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8.2 One-way ANOVA

In a one-way ANOVA there is one treatment or factor A with a levels, and
the null hypothesis is

H0 : μ1 = · · · = μa,

where μj is the mean of the population identified by the jth level of the
factor. The alternative hypothesis is that at least two of the means differ.

Sample variance is an average of squared deviations from the sample mean.
The numerator of the sample variance is called the corrected sum of squares
(SS), or sum of squared error about the mean. ANOVA partitions the to-
tal sum of squared error of the response (SS.total) into two components,
the between-sample error (SST) and within-sample error (SSE). (See the ap-
pendix of this chapter for more details.)

If there are no differences among groups, then the mean squared error for
between-sample and within-sample both estimate the same parameter. On
the other hand, if there are differences among group means, then the ex-
pected between-sample mean squared error is larger (it includes the variation
between groups) than when there are no differences. ANOVA tests the null
hypothesis of equal treatment means by computing a ratio (the F statistic)
of the between and within mean squared errors. Details of the formulas and
calculations are illustrated in Example 8.10.

There are several R functions available for one-way ANOVA calculations.
The oneway.test function displays a summary of a hypothesis test of equal
means, and is of course limited to a one-way analysis. The lm function fits
linear models including one-way ANOVA models. The aov function is de-
signed to fit ANOVA models, and it in turn calls lm. Methods to obtain the
hypothesis tests and other analyses are available for both lm and aov. These
functions are illustrated in the following sections.

8.2.1 ANOVA F test using oneway.test

Example 8.4 (Eye color and flicker, cont.). In this example, the null hypoth-
esis is that the mean critical flicker frequency is equal for the three eye colors
brown, green, and blue.

The R oneway.test function is a simple way to obtain the one-way anal-
ysis of variance. It is valid if certain conditions are satisfied: the errors are
NID(0,σ2), where “NID” is an abbreviation for “normally distributed and
independent.” The symbol σ2 is the error variance, and stating that errors
are NID(0,σ2) also means that the variance of random error is equal for all
groups. In the oneway.test function, there is an adjustment made (to de-
grees of freedom for error) for unequal variance. Normal error distribution
can be checked using Normal-QQ plots of residuals (see e.g. Figure 8.2(b)).
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> oneway.test(Flicker ~ Colour)

One-way analysis of means (not assuming equal variances)

data: Flicker and Colour

F = 5.0505, num df = 2.000, denom df = 8.926,

p-value = 0.03412

Here the denominator degrees of freedom is non-integer, because error degrees
of freedom have been adjusted to account for unequal variances. Large values
of F support the alternative. The test statistic is F = 5.0505 and the p-
value= 0.03412 of the test is the area under the F (2,8.926) curve to the right
of the point F = 5.0505. To test for equal means assuming equal variances,
set var.equal=TRUE:

> oneway.test(Flicker ~ Colour, var.equal=TRUE)

One-way analysis of means

data: Flicker and Colour

F = 4.8023, num df = 2, denom df = 16, p-value = 0.02325

The F statistic and denominator degrees of freedom are different than above,
but in this example our conclusion to reject H0 at 5% significance will not
change.

The result of oneway.test is simply a brief report of the ANOVA F test.
This function does not return the ANOVA table, residuals, or fitted values.
Although we have learned that there are some significant differences among
the group means, we have no estimates (from oneway.test) for the means
of groups, and no information about which group means differ.

The examples in Section 8.2.3 and 8.3 illustrate how to obtain a more
detailed analysis using lm and aov functions and their methods.

8.2.2 One-way ANOVA model

In order to understand and interpret more detailed results of a one-way
ANOVA, such as parameter estimates, it is important to understand how
the model is specified in our particular software.

Let us denote the response variable by Y so that yij denotes the i-th
observation in the j-th sample. Our model for critical flicker frequency by
eye color could be written as

yij = μj +εij , i = 1, . . . ,nj , j = 1,2,3,

called the means model. The random error variable εij is assumed to have
mean zero, and common variance σ2, so E[Yij ] = μj , j = 1,2,3. The estimates
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for μ1,μ2,μ3 are the three group means by eye color (ȳ1, ȳ2, ȳ3). Residuals
are the errors yij − ȳj . An estimate for σ2 is the residual mean squared error.
In general, the means model for one-way ANOVA with a groups has a + 1
parameters: μ1, . . . ,μa,σ2.

The effects model for a one-way ANOVA is

yij = μ+ τj +εij , i = 1, . . . ,nj , j = 1, . . . ,a, (8.1)

with the same assumptions for error. In the effects model, τj is a parameter
that depends on group j, called the treatment effect . In this model E[Yij ] =
μ + τj . The null hypothesis of equal treatment means can be stated as H0 :
τj = 0 for all j (all groups have identical means equal to μ).

In the effects model there are a + 2 parameters, so some restrictions are
necessary. One of the a+2 parameters must be a function of the other a+1
parameters, so we need to place some constraints on the parameters of the
effects model. If we take μ = 0 then we have the means model with μj = τj .
For one-way ANOVA in R the effects model is specified and the restriction is
to set τ1 = 0. With this restriction, model (8.1) for three groups has a+1 = 4
parameters: μ,τ2, τ3,σ2, the same number of parameters as the three group
means model.

8.2.3 ANOVA using lm or aov

In Example 8.1, for the boxplot and stripchart functions we have used a
formula that has the general form

response ∼ group

and we specify a one-way ANOVA model in the same way. The R functions
that implement ANOVA are lm (the same function that we used for linear
regression models) and aov (analysis of variance). If the right hand side of
the formula in the call to lm is a single numeric variable, the formula specifies
a simple linear regression model; if the right hand side of the formula is a
factor, the formula specifies a one-way ANOVA model.

The aov function fits an analysis of variance model by calling lm. For one-
way ANOVA either function lm or aov obtains the same fitted model, but
the displayed results are in a different format. See Section 8.3 for an example
using aov.
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8.2.4 Fitting the model

Example 8.5 (Eye color and flicker, cont.).
The ANOVA model for this example is estimated by

lm(Flicker ∼ Colour), and saved in the object L for further analysis.

> L = lm(Flicker ~ Colour)

> L

Call:

lm(formula = Flicker ~ Colour)

Coefficients:

(Intercept) ColourBrown ColourGreen

28.167 -2.579 -1.247

The coefficients are the least squares estimates of the parameters μ,τ2, τ3 in
(8.1). Now compare this table of coefficients returned by lm with the table of
means on page 203 computed with the by command. The intercept is equal
to the sample mean (28.166667) for blue eyes, but the other two coefficients
correspond to the differences between the sample means (25.5875-28.166667,
and (26.92-28.166667). Here μ̂j = μ̂ + τ̂j and the coefficients are μ̂, τ̂2, τ̂3, re-
spectively (recall that the constraint is τ1 = 0).

The fitted values ŷ are the group means, ȳj . The fitted values are stored in
L$fitted.values, which can be abbreviated to L$fit. The predict method
for lm is another way to obtain the fitted values.

> predict(L)

1 2 3 4 5 6 7

25.58750 25.58750 25.58750 25.58750 25.58750 25.58750 25.58750

8 9 10 11 12 13 14

25.58750 26.92000 26.92000 26.92000 26.92000 26.92000 28.16667

15 16 17 18 19

28.16667 28.16667 28.16667 28.16667 28.16667

Here we see that the fitted values are indeed the group sample means for the
three eye colors. Comparing with the table of means on page 203, we can
observe that the predicted response corresponds to the group sample mean
for each observation.

8.2.5 Tables of means or estimated effects

The aov function can also be used to fit a one-way ANOVA model, and aov

has useful methods such as model.tables below, and TukeyHSD, which we
will use in Section 8.3.2. The table of means contains the grand mean, the
group means, and the number of replicates for each group.

> M = aov(Flicker ~ Colour)

> model.tables(M, type="means")
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Tables of means

Grand mean

26.75263

Colour

Blue Brown Green

28.17 25.59 26.92

rep 6.00 8.00 5.00

Another useful table is the table of effects, which is the type of table that
model.tables displays by default.

> model.tables(M)

Tables of effects

Colour

Blue Brown Green

1.414 -1.165 0.1674

rep 6.000 8.000 5.0000

The table of effects contains the estimates yj − y (the differences between
the group means and the grand mean) and the number of replicates for each
group.

8.2.6 ANOVA Table

The ANOVA table is obtained by the anova method applied to the lm object
or summary method applied to the aov object. We might prefer to suppress
printing of significance stars, which can be set through the options function
as shown.

> options(show.signif.stars=FALSE)

> anova(L)

Analysis of Variance Table

Response: Flicker

Df Sum Sq Mean Sq F value Pr(>F)

Colour 2 22.997 11.4986 4.8023 0.02325

Residuals 16 38.310 2.3944

From the ANOVA table, the residual mean squared error (MSE) is 2.3944
with 16 degrees of freedom. This is the least squares estimate σ̂2 of error
variance. (Observe that the F statistic, degrees of freedom for error, and the
p-value match the result of oneway.test with equal variance assumption on
page 205.) For a valid F test it is necessary that the samples are independent,
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and that the errors εij are independent and identically distributed normal
variables with mean 0 and constant variance σ2. If these conditions are satis-
fied then the F test is significant at the 5% level (the p-value 0.02325 is less
than 0.05), indicating that there are some differences in mean critical flicker
frequency among eye color groups.

With such small sample sizes, it is difficult to assess normality and con-
stant variance assumptions, but residual plots may help identify any severe
departure from these assumptions. The fitted values of the model are the
predicted response ŷij = μ̂ + τ̂j = y·j . The residual for observation yij is
eij = yij − ŷij . The fitted model stored in object L contains the residuals
in variables L$residuals and the fitted values in L$fitted.values. A plot
of residuals vs fitted values and a Normal-QQ plot is obtained by:

> #plot residuals vs fits

> plot(L$fit, L$res)

> abline(h=0) #add horizontal line through 0

>

> #Normal-QQ plot of residuals with reference line

> qqnorm(L$res)

> qqline(L$res)
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Fig. 8.2 Residual plots for the one-way ANOVA model in Example 8.4.

The plots are shown in Figures 8.2(a) and 8.2(b). The residuals should be
approximately symmetric about zero and have approximately equal variance.
In the Normal-QQ plot the residuals should lie approximately along the refer-
ence line. The plots do not reveal any severe departure from the assumptions
for this model.
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8.3 Comparison of Treatment Means

Suppose that the null hypothesis of equal treatment means is rejected in a
one-way ANOVA model, as in Example 8.4. Then we concluded that some dif-
ferences exist among treatment means, but have not determined what these
differences are. In this case it may be of interest to proceed with post hoc
analysis, to find significant differences in means. For a one-way ANOVA with
a treatment means there are

(a
2
)

= a(a−1)/2 different pairs of means. There
are many methods available to conduct this analysis, called multiple compar-
ison methods. Two commonly applied multiple comparison procedures are
Tukey’s test and the Fisher Least Significant Difference (LSD) method.

8.3.1 Fisher Least Significant Difference (LSD)

This procedure tests each of the hypotheses H0 : μi = μj vs H1 : μi 	= μj ,
1 ≤ i < j ≤ a, using a two-sample t test. The sample sizes are nj , j = 1, . . . ,a
and the total sample size is n1 + · · ·+na = N .

Under the assumptions of our model, errors are iid and normally dis-
tributed with common variance σ2. The least squares estimate of σ2 is the
residual mean squared error MSE, with N − a degrees of freedom. The pa-
rameter estimates are the sample means yj and V ar(yj) = σ2/nj . Thus the
two-sample t statistic for testing H0 : μi = μj is

T =
yi −yj√

MSE
(

1
n i

+ 1
n j

) .

For a two-sided t test, the pair of means μi and μj are significantly different
if

|yi −yj | > t1−α/2,N−a

√
MSE

(
1
n i

+ 1
n j

)
,

where t1−α/2,N−a is the 100(1 − α/2) percentile of the t distribution with
N −a degrees of freedom. The least significant difference is

LSD = t1−α/2,N−a

√
MSE

(
1
n i

+ 1
n j

)
.

If the design is balanced (all sample sizes are equal to n) then

LSD = t1−α/2,a(n−1)

√
2MSE

n
.
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Example 8.6 (LSD method). The LSD method can be applied to determine
which pairs of means differ in Example 8.4. Recall that we have rejected the
null hypothesis of equal means at 5% significance. Here N = 19 and a = 3.
The sample means are 28.16667, 25.58750, and 26.92000, for blue, brown, and
green eyes, respectively. There are three different pairs of means so there are
three hypothesis tests.

The estimate of σ2 is MSE = 2.3944 with 16 degrees of freedom. We can
compute all pairwise differences between means using the outer function.

> MSE = 2.3944

> t97.5 = qt(.975, df=16) #97.5th percentile of t

> n = table(Colour) #sample sizes

> means = by(Flicker, Colour, mean) #treatment means

> outer(means, means, "-")

Colour

Colour Blue Brown Green

Blue 0.000000 2.579167 1.246667

Brown -2.579167 0.000000 -1.332500

Green -1.246667 1.332500 0.000000

In the balanced design the same LSD would apply to all pairs. In this example
sample sizes differ, but we can also use outer to compute all of the LSD
values:

> t97.5 * sqrt(MSE * outer(1/n, 1/n, "+"))

Colour

Colour Blue Brown Green

Blue 1.893888 1.771570 1.986326

Brown 1.771570 1.640155 1.870064

Green 1.986326 1.870064 2.074650

From the results above we can summarize:

diff LSD
Blue-Brown 2.5792 1.7716
Blue-Green 1.2467 1.9863
Brown-Green -1.3325 1.8701

and conclude that mean critical flicker frequency for blue eyes is significantly
higher than the mean for brown eyes, and no other pair is significantly dif-
ferent at 5%.

Appropriate application of the LSD method:

The multiple t tests or t intervals in the LSD method introduce the problem
that our risk of rejecting a null hypothesis when in fact it is true (type 1
error) is increased. The Fisher LSD method usually refers to the situation
where the comparisons are done only after a significant ANOVA F test. This
restriction tends to avoid the problem of greatly inflated type 1 error rate in
practice. See e.g. Carmer and Swanson [11].
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An easy way to summarize all pairwise t-tests is provided by the function
pairwise.t.test. The p-values of the test are reported in the table. The
default method applies a two-sided test for equal means with pooled standard
deviation, and the p-values are adjusted to control the type 1 error rate.

> pairwise.t.test(Flicker, Colour)

Pairwise comparisons using t tests with pooled SD

data: Flicker and Colour

Blue Brown

Brown 0.021 -

Green 0.301 0.301

P value adjustment method: holm

Of the p-values reported by pairwise.t.test, only the pair (blue, brown)
have significantly different means at α = 0.05.

8.3.2 Tukey’s multiple comparison method

Tukey’s method is based on the distance between the largest and smallest
treatment means, called the range. The studentized range statistic is this
difference divided by the estimated standard error:

q = ymax −ymin√
MSE/n

.

The distribution of q depends on the number of treatment means and the
degrees of freedom for error. To apply Tukey’s test, compute the critical
difference

w = qα(a,df)
√

MSE

n
,

where qα(a,df) is the 100(1−α) percentile of q, a is the number of treatments,
n is the common sample size, and df is the degrees of freedom for error.
Conclude that the pair of means (μi,μj) are significantly different at level α
if |yi −yj | > w. (In the old days, one would refer to a table of critical values of
q to compute the critical difference. With R one can use the qtukey function
for the percentiles of q.)

For balanced designs (equal sample sizes) the confidence level of a (1−α)
Tukey interval is exactly equal to 1 − α. This means that the test procedure
controls type 1 error at level α.

The modification for unequal sample size is the Tukey-Kramer method.
The critical differences are
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w = qα(a,df)

√
MSE

2

(
1
n i

+ 1
n j

)
, i 	= j.

Tukey’s multiple comparison procedure is sometimes called Tukey’s Honest
Significant Difference. It is implemented in the R function TukeyHSD.

Example 8.7 (Tukey’s multiple comparison procedure). In Example 8.4 we
have a = 3 treatment means and there are df = 16 degrees of freedom for
error. Here we have unequal sample sizes so we apply the Tukey-Kramer
method. The range statistic is 2.579167 (difference for blue and brown eyes).
The qtukey function computes q.05(a = 3,df = 16) as

> qtukey(.95, nmeans=3, df=16)

[1] 3.649139

thus the critical differences at α = 0.05 are

w = qα(a,df)

√
MSE

2

(
1
n i

+ 1
n j

)
= 3.649139

√
2.3944

2

(
1
n i

+ 1
n j

)
,

giving w = 2.156 (blue vs brown), w = 2.418 (blue vs green) and w = 2.276
(brown vs green). Refer to the table of differences on page 211. Only the first
pair (blue vs brown) can be declared significantly different at α = 0.05. This
agrees with our results from the LSD method in Example 8.6.

One could also compute Tukey confidence intervals based on the studen-
tized range statistic. For example, the 95% confidence interval for μ2 −μ1 is
given by

ybrown −yblue ±w = −2.579±2.156 = (−4.735,−0.423).

Similarly one could compute confidence intervals for each difference μi −μj .
We can obtain the same result with much less effort using the TukeyHSD

function. This function expects a fitted analysis of variance model as input,
but the model should be fitted using the aov (analysis of variance) function.
Actually, aov calls lm. First let us compare these two methods for one-way
ANOVA.

> L = lm(Flicker ~ Colour)

> anova(L)

Analysis of Variance Table

Response: Flicker

Df Sum Sq Mean Sq F value Pr(>F)

Colour 2 22.997 11.4986 4.8023 0.02325

Residuals 16 38.310 2.3944

> M = aov(Flicker ~ Colour)

> M

Call:

aov(formula = Flicker ~ Colour)
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Terms:

Colour Residuals

Sum of Squares 22.99729 38.31008

Deg. of Freedom 2 16

Residual standard error: 1.547378

Estimated effects may be unbalanced

We see that the two ANOVA tables are equivalent, although aov does not
print the F statistic and p-value. The summary method for aov objects pro-
duces the familiar ANOVA table.

> summary(M)

Df Sum Sq Mean Sq F value Pr(>F)

Colour 2 22.997 11.4986 4.8023 0.02325

Residuals 16 38.310 2.3944

Finally, we can get Tukey HSD confidence intervals by

> TukeyHSD(M)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Flicker ~ Colour)

$Colour

diff lwr upr p adj

Brown-Blue -2.579167 -4.7354973 -0.422836 0.0183579

Green-Blue -1.246667 -3.6643959 1.171063 0.3994319

Green-Brown 1.332500 -0.9437168 3.608717 0.3124225

We can refer to the p value in the rightmost column to determine whether
the difference in means is significantly different from 0. Only the first pair
of means has p-value less than 0.05. Alternately we can look at the lower
and upper confidence limits and check whether 0 is contained in the interval
(lwr, upr). If 0 is inside the interval then the pair of means is not significantly
different at 5%. Notice that we have obtained the same confidence interval
for ‘Brown-Blue’ above by computing it from the Tukey-Kramer formula (see
page 213).

The TukeyHSD function returns an object and there is a plot method for
this object that displays a plot of the confidence intervals. We simply type

> plot(TukeyHSD(M))

and the plot of confidence intervals is displayed as shown in Figure 8.3. From
the plot it is easy to see that only the first pair (top) are significantly different
because only the first interval misses 0.
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Fig. 8.3 Tukey Honest Significant Difference confidence intervals in Example 8.7.

8.4 A Statistical Reference Dataset from NIST

Example 8.8 (SiRstv from NIST).
The data set “SiRstv” is one of the NIST Statistical Reference Datasets for

analysis of variance. The description and the data are linked from the web
page3.

The data are measurements of bulk resistivity of silicon wafers made at
NIST with 5 probing instruments on each of 5 days. The factor or treatment
is the instrument, and there are n = 5 replicates for each instrument. The
statistical model is

yij = μ+ τj +εij , i = 1, . . . ,5, j = 1, . . . ,5,

where yij is the i-th replicate for the j-th instrument. Recall that the con-
straint imposed by R model fitting is τ1 = 0.

The data is available in the two-column (stacked) format, but there is a
description above the data. We copied the data portion and saved it in a text
file “SiRstv.txt”. The file contains the group variable Instrument (encoded
with numbers 1 to 5) and Resistance, the response variable. Assuming that
the data file is located in the current working directory, the data can be
entered as follows.

> dat = read.table("SiRstv.txt", header=TRUE)

> head(dat)

3 http://www.itl.nist.gov/div898/strd/anova/SiRstv.html

http://www.itl.nist.gov/div898/strd/anova/SiRstv.html
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Instrument Resistance

1 1 196.3052

2 1 196.1240

3 1 196.1890

4 1 196.2569

5 1 196.3403

6 2 196.3042

Here the factor levels are numbers, so the variable Instrument would not
have been converted to a factor when read.table created the data frame.
The first step to prepare the data for analysis is to convert Instrument to a
factor.

> #Instrument is not a factor

> is.factor(dat$Instrument)

[1] FALSE

> #convert Instrument to factor

> dat$Instrument = as.factor(dat$Instrument)

> attach(dat)

> str(dat) #check our result

�data.frame�: 25 obs. of 2 variables:

$ Instrument: Factor w/ 5 levels "1","2","3","4",..

$ Resistance: num 196 196 196 196 196 ...

We display boxplots and dotplots of the data, shown in Figures 8.4(a) and
8.4(b), and compute a table of means and standard deviations.

> boxplot(Resistance ~ Instrument)

> stripchart(Resistance ~ Instrument, vertical=TRUE)

> by(Resistance, Instrument, FUN=function(x) c(mean(x), sd(x)))

Instrument: 1

[1] 196.2430800 0.0874733

--------------------------------------------

Instrument: 2

[1] 196.2443000 0.1379750

--------------------------------------------

Instrument: 3

[1] 196.16702000 0.09372413

--------------------------------------------

Instrument: 4

[1] 196.1481400 0.1042267

--------------------------------------------

Instrument: 5

[1] 196.14324000 0.08844797

Rx 8.2 In the by function above, the function is defined ‘inline.’ Compare
this version with the application of by on page 203, where the function is
defined outside of the by function. Try both versions on a data set, to see
that the two versions produce the same result.

The means and standard deviations appear to differ in the boxplots (Figure
8.4(a)), but in the table of means and standard deviations the means do not
differ by more than two standard deviations.
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Next we fit the model using aov and use the summary method to display
the ANOVA table. A set of residual plots is easily displayed by the plot

method.

> L = aov(Resistance ~ Instrument)

>

> summary(L)

Df Sum Sq Mean Sq F value Pr(>F)

Instrument 4 0.051146 0.012787 1.1805 0.3494

Residuals 20 0.216637 0.010832

> par(mfrow=c(2, 2)) #4 plots on one screen

> plot(L) #residual plots

NIST publishes certified results for the ANOVA table, displayed on the
same web page as the data. We compared our result above to the certified
values and they agree with the certified values rounded to the number of
digits reported above. The F statistic is not significant, so we cannot conclude
that there are differences in mean resistivity measurements among the five
instruments used. The residual plots are shown in Figure 8.5. These plots do
not suggest severe departures from model assumptions.

The conclusion of the ANOVA F test is also evident in the plot of confi-
dence intervals using Tukey’s HSD comparisons.

> par(mfrow=c(1, 1)) #restore display to plot full window

> plot(TukeyHSD(L)) #plot the Tukey CI�s

There are
(5

2
)

= 10 pairs of means, so a table can be difficult to interpret,
but the plot in Figure 8.6 gives a nice visual comparison that is easy to
interpret; all of the confidence intervals contain 0, so none of the pairs are
significantly different at 5%.

Rx 8.3 The web page for the SiRstv dataset indicates that the data starts
on line 61, so we can use read.table to read directly from the web page if
we skip the first 60 lines. The command would be

file1 = "http://www.itl.nist.gov/div898/strd/anova/SiRstv.dat"

dat = read.table(file1, skip=60)

When reading a file from a web page, the url is typically a long string, so our
code is usually more readable if we assign the string to a file name as shown
above. The name “file” is an R function so we assigned the value to file1.

8.5 Stacking Data

The next example illustrates data entry for data that is provided in a table,
similar to a spreadsheet layout.

http://www.itl.nist.gov/div898/strd/anova/SiRstv.dat
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Fig. 8.4 Box plots and dotplots of Resistance by Instrument, in Example 8.8.
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Fig. 8.5 Residual plots for the NIST SiRstv data in Example 8.8.
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Fig. 8.6 Tukey HSD confidence intervals for differences in mean resistivity of instru-
ments for the NIST SiRstv data in Example 8.8.

Example 8.9 (Cancer survival times). The data set “PATIENT.DAT” con-
tains the survival times of cancer patients with advanced cancer of the stom-
ach, bronchus, colon, ovary, or breast, whose treatment included supplemental
ascorbate.4 Do survival times differ by the type of cancer (organ)?

In order to analyze the data in a one-way layout, the data entry task is
somewhat more complicated than above, because the data are not stacked.
The data set can be opened with a plain text editor or with a spreadsheet
to learn about the format of the data file. Comparing the data file with the
description [21, p. 255], we see that the data file is organized in columns of
different lengths corresponding to stomach, bronchus, colon, ovary, and breast
cancers, respectively, but there is no header containing the labels. The data
file is shown in Table 8.2.

Here read.table would expect each row to have an equal number of en-
tries, so read.table will stop with an error at line 7. For example, if “PA-
TIENT.DAT” is located in the current working directory,

> read.table("PATIENT.DAT")

Error in scan(file, what, nmax, sep, dec, ...

line 7 did not have 5 elements

4 Source: Hand et al. [21], from Cameron and Pauling [6].



220 8 Analysis of Variance I

Table 8.2 In Example 8.2, the data file “PATIENT.DAT” containing survival times
of cancer patients is organized in columns of different lengths corresponding to the
affected organ: stomach, bronchus, colon, ovary, and breast cancers, respectively. The
entries in each row are separated by tab characters at every fourth character. In this
file there is no header containing the column labels.

124 81 248 1234 1235
42 461 377 89 24
25 20 189 201 1581
45 450 1843 356 1166
412 246 180 2970 40
51 166 537 456 727
1112 63 519 3808
46 64 455 791
103 155 406 1804
876 859 365 3460
146 151 942 719
340 166 776
396 37 372

223 163
138 101
72 20
245 283

To avoid this error, we need to provide more details to read.table about the
file format. This data is separated by tab characters, which can be specified
using the sep="\t" argument.

> times = read.table("PATIENT.DAT", sep="\t")

> names(times) = c("stomach","bronchus","colon","ovary","breast")

Here we used names to assign column names. Alternately, the column names
can be specified using the col.names argument in read.table. The data in
times is shown in Table 8.3 on page 221.

To stack the data one can use the stack function. The result of stack will
retain the NA values.

> times1 = stack(times)

> names(times1)

[1] "values" "ind"

The result of stack generates a ‘long’ data frame with the numeric values of
the response named values and the factor or group variable named ind. Let
us rename the response and factor as time and organ. Also, now that the
data is in stacked format, the NA values are not needed; na.omit removes the
rows with NA.

> names(times1) = c("time", "organ")

> times1 = na.omit(times1)
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Table 8.3 Survival times of cancer patients from the file “PATIENT.DAT” after
reading it into the data frame times in Example 8.2.

> times

stomach bronchus colon ovary breast

1 124 81 248 1234 1235

2 42 461 377 89 24

3 25 20 189 201 1581

4 45 450 1843 356 1166

5 412 246 180 2970 40

6 51 166 537 456 727

7 1112 63 519 NA 3808

8 46 64 455 NA 791

9 103 155 406 NA 1804

10 876 859 365 NA 3460

11 146 151 942 NA 719

12 340 166 776 NA NA

13 396 37 372 NA NA

14 NA 223 163 NA NA

15 NA 138 101 NA NA

16 NA 72 20 NA NA

17 NA 245 283 NA NA

The beginning and end (head and tail) of the resulting data frame is shown
below.

> head(times1, 3)

time organ

1 124 stomach

2 42 stomach

3 25 stomach

> tail(times1, 3)

time organ

77 1804 breast

78 3460 breast

79 719 breast

Next we verify that our group variable organ is a factor, and display a
summary.

> is.factor(times1$organ)

[1] TRUE

> summary(times1)

time organ

Min. : 20.0 breast :11

1st Qu.: 102.5 bronchus:17

Median : 265.5 colon :17

Mean : 558.6 ovary : 6

3rd Qu.: 721.0 stomach :13

Max. :3808.0
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Rx 8.4 An alternate approach to data entry for tabular (spreadsheet-like)
format is to use a spreadsheet to convert the file to tab-delimited (.txt) or
comma-separated values (.csv) format. One advantage to using a spreadsheet
for this type of data is that the data will be aligned in columns, which is often
easier to read than in a data file such as the file “PATIENT.DAT” (Table
8.2). Once the file has been opened a header row can be inserted if desired
for column names. Then after saving it in plain text tab-delimited or comma-
delimited format, read.table or read.csv is convenient to input the data.

> times = read.csv("PATIENT.csv")

> head(times)

stomach bronchus colon ovary breast

1 124 81 248 1234 1235

2 42 461 377 89 24

3 25 20 189 201 1581

4 45 450 1843 356 1166

5 412 246 180 2970 40

6 51 166 537 456 727

Analysis of this data continues in Exercise 8.5.

Exercises

8.1 (Comparing average gas mileage). A table of gas mileages on four
new models of Japanese luxury cars is given in Larsen & Marx [30, Ques-
tion 12.1.1], which is shown in Table 1.4, page 27. See Example 1.11 for a
method of entering this data. Test if the four models (A, B, C, D) give the
same gas mileage, on average, at α = 0.05 significance.

8.2 (Yields of plants). The PlantGrowth data is an R dataset that contains
results from an experiment on plant growth. The yield of a plant is measured
by the dried weight of the plant. The experiment recorded yields of plants for
a control group and two different treatments. After a preliminary exploratory
data analysis, use one-way ANOVA to analyze the differences in mean yield
for the three groups. Start with the exploratory data analysis, and also check
model assumptions. What conclusions, if any, can be inferred from this sample
data?

8.3 (Differences in iris by species). The iris data has 50 observations
of four measurements for each of three species of iris: setosa, versicolor, and
virginica. We are interested in possible differences in the sepal length of iris
among the three species. Perform a preliminary analysis as in Example 8.3.

Write the effects model for a one-way ANOVA. What are the unknown
parameters? Next fit a one-way ANOVA model for Sepal.Length by Species
using lm. Display the ANOVA table. What are the parameter estimates?
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8.4 (Checking model assumptions). Refer to your results from Exercise
8.3. What are the assumptions required for inference? Analyze the residuals
of the model to assess whether there is a serious departure from any of these
assumptions. How can you check for normality of the error variable?

8.5 (Cancer survival data). The cancer survival data “PATIENT.DAT”
was introduced in Example 8.9. Start with the exploratory data analysis,
and check for NID error model assumptions. Consider a transformation of
the data if the assumptions for error are not satisfied. Complete a one-way
ANOVA to determine whether mean survival times differ by organ. If there
are significant differences, follow up with appropriate multiple comparisons
to determine which means differ and describe how they differ.

8.6 (Comparing waste at different manufacturing plants). The ‘Waste
Run-up’ data ([28, p. 86], [12]) is available at the DASL web site. The data
are weekly percentage waste of cloth by five different supplier plants of Levi-
Strauss, relative to cutting from a computer pattern. The question here is
whether the five supplier plants differ in waste run-up. The data has been
saved in a text file “wasterunup.txt”. The five columns correspond to the five
different manufacturing plants. The number of values in each column differs
and the empty positions are filled with the symbol *. Use na.strings="*"

in read.table to convert these to NA and use stack to reformat the data in
a one-way layout. (Also see Example 10.1.)

Display side-by-side (parallel) boxplots of the data. Are any outliers in the
data? Construct an ANOVA table using lm or aov. Plot residuals vs fits, and
also construct a Normal-QQ plot of residuals using qqnorm and qqline. Do
the residuals appear to satisfy the iid Normal(0,σ2) assumptions required for
valid inference?

8.7 (Verifying ANOVA calculations). Refer to the chapter appendix.
Verify the calculations for the ANOVA table in Exercise 8.3, by computing
the entries of the ANOVA table directly from the formulas for SST and SSE,
as shown in Example 8.10.

8.6 Chapter 8 Appendix: Exploring ANOVA
calculations

In this appendix we discuss the computation of the ANOVA table. Recall
that ANOVA partitions the total (corrected) sum of squared error into two
components, the between-sample error (SST) and within-sample error (SSE).
Recall that a is the number of samples (number of levels of the factor) and
n1, . . . ,na are the sample sizes at each level. The total sum of squared error
is



224 8 Analysis of Variance I

SS.total =
a∑

j=1

nj∑
i=1

(yij −y)2.

The degrees of freedom for SS.total is N −1, where N is the total number of
observations. The within-sample error is

SSE =
a∑

j=1
(nj −1)s2

j ,

where s2
j is the sample variance of the j-th sample. The degrees of freedom

associated with SSE is the sum of the degrees of freedom,
∑a

j=1(nj − 1) =
N −a. The sum of squares for treatments is

SST =
a∑

j=1

nj∑
i=1

(yj −y)2 =
a∑

j=1
nj(yj −y)2.

The degrees of freedom for treatments are a − 1, so df(SST ) + df(SSE) =
N − a = df(SS.total). The squared errors for treatments and error also sum
to the total squared error; that is,

SS.total = SST +SSE.

The mean-squared error is the sum of squared error divided by degrees of
freedom: MSE = SSE/(N −a); MST = SST/(a−1).

The ANOVA F statistic is the ratio

F = MST

MSE
= SST/(a−1)

SSE/(N −a) .

The F ratio will be large if the average between-sample error MSE is large
relative to the mean within-sample error MSE. The expected values are

E[MST ] = σ2 + 1
a−1

a∑
j=1

njτ2
j ,

E[MSE] = σ2,

where τj are the effects in model (8.1). Under the null hypothesis of equal
means, E[MSE] = E[MST ] = σ2, but under the alternative some τj 	= 0
and E[MST ] > σ2. Thus large values of the ratio F = MST/MSE support
the alternative hypothesis that some τj 	= 0. Under null hypothesis and NID
errors, the ratio F = MST/MSE follows an F distribution with degrees of
freedom (a−1,N −a), and the ANOVA F test rejects the null hypothesis for
large values of the F statistic. The p-value of the test is Pr(F (a−1,N −a) >
MST/MSE). For more details refer to e.g. Montgomery [33, Ch. 3].
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Example 8.10 (ANOVA calculations). We have displayed an ANOVA table
for the flicker data in Example 8.4 using the anova method for lm. In this
example we illustrate the basic calculations behind the entries in the ANOVA
table. The preliminary steps to input the data are (see Example 8.1):

> flicker = read.table(file=

+ "http://www.statsci.org/data/general/flicker.txt",

+ header=TRUE)

> attach(flicker)

Then SS.total and SSE are found by:

> n = table(Colour) #sample sizes

> a = length(n) #number of levels

> N = sum(n) #total sample size

> SS.total = (N - 1) * var(Flicker)

> vars = by(Flicker, Colour, var) #within-sample variances

> SSE = sum(vars * (n - 1))

These calculations match the ANOVA table on page 208.

> print(c(a - 1, N - a, N - 1)) #degrees of freedom

[1] 2 16 18

> print(c(SS.total - SSE, SSE, SS.total)) #SST, SSE, SS.total

[1] 22.99729 38.31008 61.30737

Now let us verify that SST=SS.total-SSE for this example by computing SST
from the sample means.

> means = by(Flicker, Colour, mean) #treatment means

> grandmean = sum(Flicker) / N

> SST = sum(n * (means - grandmean)^2)

> print(SST)

[1] 22.99729

This calculation also agrees with the ANOVA table. Finally, the calculation
of the mean squared errors, F statistic, and p-value in the ANOVA table:

> MST = SST / (a - 1)

> MSE = SSE / (N - a)

> statistic = MST / MSE

> p.value = pf(statistic, df1=a-1, df2=N-a, lower.tail=FALSE)

We used the F cdf function pf with lower.tail=FALSE to compute the upper
tail probability for the p-value of the F statistic. Then list is a convenient
way to display the results with labels:

> print(as.data.frame(

+ list(MST=MST, MSE=MSE, F=statistic, p=p.value)))

MST MSE F p

1 11.49864 2.39438 4.802346 0.02324895

Again these calculations match the ANOVA table on page 208.

http://www.statsci.org/data/general/flicker.txt


Chapter 9

Analysis of Variance II

9.1 Introduction

Analysis of Variance (ANOVA) is a statistical procedure for comparing
means of two or more populations. In Chapter 8 we considered one-way
ANOVA models, which help analyze differences in the mean response corre-
sponding to the levels of a single group variable or factor. In this chapter we
consider randomized block designs and two-way ANOVA models. Random-
ized block designs model the effects of a single group variable or factor while
controlling for another source of variation using blocks. Two-way ANOVA
models explain differences in the mean response corresponding to the levels
of two group variables (factors) and their possible interaction.

9.2 Randomized Block Designs

In this section we focus on randomized block designs, which model the effect
of a treatment or factor where the samples are not independent, but matched
by a variable called a block variable.

In experiments some sources of variation are known and controllable. In
Example 9.1 the experimental units are students who have taken a series
of exams. The objective is to compare the student performance on different
types of exams. There is of course, inherent variability among students, but
the effect of this variability on the statistical analysis of exam scores can
be controlled by introducing a variable to identify the student (the block
variable). Other sources of variation may be unknown and uncontrollable.
Randomization is a design technique that guards against this type of varia-
tion.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__9,
© Springer Science+Business Media, LLC 2012
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Example 9.1 (Exam scores). The scor data is provided in the bootstrap

package [31]. It contains exam scores in five subjects for 88 students. The five
exams are

Name Description Type

mec mechanics closed book
vec vectors closed book
alg algebra open book
ana analysis open book
sta statistics open book

The layout of the scor data is shown in Table 9.1. In this example, a one-
way analysis is not appropriate. A one-way ANOVA analyzes a completely
randomized design, where the samples are assumed to be independent. If the
exam topics (mechanics, vectors, algebra, analysis, statistics) are considered
to be the treatments, the exam scores for each topic are not independent
samples because the same 88 students took each exam.

Table 9.1 Layout of the scor data in Example 9.1. There are 88 rows corresponding
to 88 students, and five columns corresponding to five different exam scores for each
student.

mec vec alg ana sta
77 82 67 67 81
63 78 80 70 81
75 73 71 66 81
55 72 63 70 68
63 63 65 70 63
53 61 72 64 73
...
0 40 21 9 14

To use this data set, install the bootstrap package (see the example in
Chapter 1, page 33). Once the bootstrap package is installed, load it using
library. Then the data frame scor is available, and we can print the first
part of the data frame using the head function.

> library(bootstrap)

> head(scor)

mec vec alg ana sta

1 77 82 67 67 81

2 63 78 80 70 81

3 75 73 71 66 81

4 55 72 63 70 68

5 63 63 65 70 63

6 53 61 72 64 73

A table of means by exam can be obtained by sapply:
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> sapply(scor, mean, data=scor)

mec vec alg ana sta

38.95455 50.59091 50.60227 46.68182 42.30682

9.2.1 The randomized block model

Suppose that we want to compare the mean exam scores for different exams.
Then the response is the exam score, and the treatment or factor is the topic
of the exam. Let us assume that the scores are matched by student, so that
each row of the data frame corresponds to an individual student’s scores.
Each row is called a block in this example, and the block variable is the
student.

Let yij denote the score for student j on exam i, i = 1, . . . ,5, j = 1, . . . ,88.
The model for this block design can be written as

yij = μ+ τi +βj +εij , (9.1)

where τi are the treatment effects, βj are the block effects, and εij are iid
normally distributed errors with mean 0 and common variance σ2.

The general formula for this type of model in R has the syntax:

response ∼ treatment+block

Example 9.2 (Exam scores, continued).
In order to proceed with ANOVA using R, we need to reshape the data

so that the response yij is one variable (one column in a data frame), the
treatment label is a factor (another column), and the block label is a factor
(also one column).

Rx 9.1 Another way to reshape the data is to enter it into a spreadsheet and
“manually” reshape the data and create the factors. Save the data in plain
text format (comma or tab delimited) and use read.table or read.csv to
read it into an R data frame. See Example 9.3.

The stack function puts the response in a single column with the column
names as a factor variable (the treatment). We then add the student ID factor
(block variable) to the resulting data frame.

> scor.long = stack(scor)

> block = factor(rep(1:88, times=5))

> scor.long = data.frame(scor.long, block)

It is a good idea to check that the result is correct. The data set is now 440
lines long, so we only show the top and bottom.
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> head(scor.long) #top

values ind block

1 77 mec 1

2 63 mec 2

3 75 mec 3

4 55 mec 4

5 63 mec 5

6 53 mec 6

> tail(scor.long) #bottom

values ind block

435 18 sta 83

436 17 sta 84

437 18 sta 85

438 21 sta 86

439 20 sta 87

440 14 sta 88

Next we rename the variables in scor.long

> names(scor.long) = c("score", "exam", "student")

and check the result using the structure function (str).

> str(scor.long)

�data.frame�: 440 obs. of 3 variables:

$ score : num 77 63 75 55 63 53 51 59 62 64 ...

$ exam : Factor w/ 5 levels "alg","ana","mec",..: 3 3 3 3 3 3 3 3 ...

$ student: Factor w/ 88 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 ...

9.2.2 Analysis of the randomized block model

Now the data is ready for analysis using lm or aov to fit the model (9.1) and
anova or summary to display the ANOVA table. In this chapter we use the
aov function to fit the model.

The main hypothesis of interest is that there is no difference among the
mean exam scores for different exams. We may also test whether there are
differences among students.

> L = aov(score ~ exam + student, data=scor.long)

> summary(L)

Df Sum Sq Mean Sq F value Pr(>F)

exam 4 9315 2328.72 21.201 1.163e-15 ***

student 87 58313 670.26 6.102 < 2.2e-16 ***

Residuals 348 38225 109.84

Recall that large values of the F statistic support the alternative hypoth-
esis. Here the F statistics for both treatment (exam) and block (student) are
very large (the p-values are very small) and both tests are significant. We can
conclude that there are significant differences among the mean exam scores
and significant differences between mean student scores.
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The model.tables function is useful for producing a nicely formatted
table of effect estimates.

> model.tables(L, cterms="exam")

Tables of effects

exam

exam

alg ana mec sta vec

4.775 0.855 -6.873 -3.520 4.764

Here the effect estimates are the differences between the treatment (exam)
means and the grand mean. This can be checked using model.tables to
display a table of means:

> model.tables(L, cterms="exam", type="mean")

Tables of means

Grand mean

45.82727

exam

exam

alg ana mec sta vec

50.60 46.68 38.95 42.31 50.59

The Tukey Honest Significant Difference method for comparing means was
introduced in Chapter 8. Using the TukeyHSD function with the fit from the
aov function, it is easy to display confidence intervals for the differences in
means. Here we specify that confidence intervals should be computed for only
the first factor by which=1. The TukeyHSD function displays a table of 95%
confidence intervals by default.

> CIs = TukeyHSD(L, which=1)

> CIs

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = score ~ exam + student)

$exam

diff lwr upr p adj

ana-alg -3.92045455 -8.2530400 0.41213094 0.0972395

mec-alg -11.64772727 -15.9803128 -7.31514179 0.0000000

sta-alg -8.29545455 -12.6280400 -3.96286906 0.0000026

vec-alg -0.01136364 -4.3439491 4.32122185 1.0000000

mec-ana -7.72727273 -12.0598582 -3.39468725 0.0000152

sta-ana -4.37500000 -8.7075855 -0.04241452 0.0464869

vec-ana 3.90909091 -0.4234946 8.24167639 0.0989287

sta-mec 3.35227273 -0.9803128 7.68485821 0.2131645

vec-mec 11.63636364 7.3037782 15.96894912 0.0000000

vec-sta 8.28409091 3.9515054 12.61667639 0.0000027

From the table displayed by the TukeyHSD function we can identify significant
differences between several pairs of mean exam scores, but note that “vec-
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alg” and “sta-mec” are not significant. Also “ana-alg” and “vec-ana” are not
significant at 5%. The two closed book exams (mechanics and vectors) are
significantly different as are several pairs of the open book mean exam scores.

Optionally we can display the results graphically by: plot(CIs), but the
vertical axis labels are easier to read if we specify horizontal labels by the
las argument:

> plot(CIs, las=1)

The plot produced is displayed in Figure 9.1.
The confidence intervals from top to bottom correspond to the rows of the

matrix returned by TukeyHSD, shown above. The differences in means are not
significantly different at 5% if the confidence interval covers zero.

−15 −10 −5 0 5 10 15

vec−sta

vec−mec

sta−mec

vec−ana

sta−ana

mec−ana

vec−alg

sta−alg

mec−alg

ana−alg

95% family−wise confidence level

Differences in mean levels of exam

Fig. 9.1 Tukey HSD confidence intervals for differences in mean exam scores in
Example 9.2.

To check the assumptions for the distribution of the error term, it is helpful
to plot residuals. Below we display the first two of several available plots, a
scatterplot of residuals and a normal-QQ plot.
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> plot(L, which=1:2)
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Fig. 9.2 Residual plots for the two-way block model fit on scor data.

The Normal QQ plot in Figure 9.2(b) does not reveal a serious departure
from the normality assumptions, although there are some outliers labeled
on the QQ plot. An inspection of the data reveals a zero score and several
very low scores in the ‘vector’ exam, for example. The plot of residuals vs
fits in Figure 9.2(a) has a ‘football’ or elliptical shape, which may indicate
nonconstant error variance. Exam scores are often percentages, which have
nonconstant variance like proportions. Recall that the variance of a sample
proportion is p(1 − p)/n, where p is the true population proportion, and the
variance is largest when p = 1/2.

It is also interesting to look at either the profiles of students’ scores or
other types of plots to compare them. In this case, boxplots (Figure 9.3) are
easier to interpret than line plots for comparing students.

> boxplot(score ~ student,

+ xlab="Student Number", ylab="Score", data=scor.long)

One thing revealed in the boxplots of scores by student is that the vari-
ability in student scores may depend on the ability of the student; students
with high scores tend to have smaller variation in scores.

Some remedies for nonconstant variance include transformation of the re-
sponse, using a different type of model, or a nonparametric method of anal-
ysis. A nonparametric approach based on randomization tests is covered in
Chapter 10.
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Fig. 9.3 Boxplots of exam scores by student.

9.3 Two-way ANOVA

In a two-way factorial design there are two factors and there may be an
interaction between the two factors.

Example 9.3 (Poisons). Table 9.2 gives the survival times in units of 10 hours
for animals exposed to four different poisons. The data appears in Box, Hunter
& Hunter [5, p. 228]. We converted this data to the stacked format by entering
it into a spreadsheet “poison.csv” which can be read into R using

> poison = read.csv("poison.csv")

The poison data frame contains three variables labeled Time, Poison, Treat-
ment. To get a quick summary of the structure of this data frame, we use
str (structure).

> str(poison)

�data.frame�: 48 obs. of 3 variables:

$ Time : num 0.31 0.45 0.46 0.43 0.36 0.29 0.4 0.23 0.22 0.21 ...

$ Poison : Factor w/ 3 levels "I","II","III": 1 1 1 1 2 2 2 2 3 3 ...

$ Treatment: Factor w/ 4 levels "A","B","C","D": 1 1 1 1 1 1 1 1 1 1 ...
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The str command shows that there are 48 observations and 3 variables: Time
(numeric), and factors Poison and Treatment. Notice that characters in data
frames are automatically converted into factor type variables.

Table 9.2 Survival times in units of 10 hours for animals exposed to poisons I, II,
III, and antidotes A, B, C, D.

treatment
poison A B C D

I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56
0.20 0.61 0.35 1.02
0.40 0.49 0.31 0.71
0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33

9.3.1 The two-way ANOVA model

The layout of the poison data (Table 9.2) corresponds to a 3 × 4 factorial
design. It is replicated 4 times. Because there may be interaction between
the type of poison and the type of antidote, an interaction term should be
included in the model. The model can be specified as

yijk = μ+αi +βj +(αβ)ij +εijk, (9.2)

where αi are the poison type effects, βj are the antidote type effects, and
(αβ)ij is the interaction effect for poison i and antidote j. The index k cor-
responds to the replicates so yijk is survival time for the k − th animal who
received the i− th poison and j − th antidote, and errors εijk are iid and nor-
mally distributed with mean 0 and common variance σ2. Interaction terms
are specified in R model formulas using the colon operator. For example,

Time ~ Poison + Treatment + Poison:Treatment

is the model syntax corresponding to model (9.2). A shorter formula for the
same model is specified by

Time ~ Poison * Treatment
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9.3.2 Analysis of the two-way ANOVA model

The analysis of this data is in four parts outlined below.

1. Fit a two way model with interaction, display the ANOVA table, and test
for interaction. If interaction is not significant, test for significant main
effects.

2. Construct interaction plots, and identify any possible sources of interac-
tion.

3. Use Tukey’s multiple comparison method to compare group means. Com-
pare the result with a multiple comparison by pairwise t-tests.

4. Analyze residuals of the model to investigate whether there are any appar-
ent departures from the model assumptions. (This is left as an exercise.)

Example 9.4 (Two-way ANOVA Step 1: Fit the model and display the ANOVA
table).

> L = aov(Time ~ Poison * Treatment, data = poison)

> anova(L)

Analysis of Variance Table

Response: Time

Df Sum Sq Mean Sq F value Pr(>F)

Poison 2 1.03708 0.51854 23.3314 3.176e-07 ***

Treatment 3 0.92012 0.30671 13.8000 3.792e-06 ***

Poison:Treatment 6 0.25027 0.04171 1.8768 0.1118

Residuals 36 0.80010 0.02222

The F statistic for poison-treatment interaction is not significant at α =
0.05 (p-value = 0.1118). The F statistic for main effect of poison is significant
(p-value < .001) and the F statistic for main effect of treatment (antidote) is
significant (p-value < .001).

Example 9.5 (Two-way ANOVA Step 2: Interactions).
Two versions of an interaction plot are generated below and shown in

Figures 9.4(a) and 9.4(b). Since interaction.plot does not accept a data

argument, we use with to specify that the variables are in the poison data
frame.

> with(data=poison, expr={

+ interaction.plot(Poison, Treatment, response=Time)

+ interaction.plot(Treatment, Poison, response=Time)

+ })

Interaction plots are line plots of the group means for one factor vs another
factor. If there is no interaction, the slopes of the line segments should be
approximately equal; the line segments should be approximately parallel. In
Figure 9.4(a), the lines corresponding to antidotes B and D have somewhat
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Fig. 9.4 Interaction plots for Poison and Treatment in Example 9.5.

different slopes than the lines corresponding to antidotes A and C. In Figure
9.4(b), the lines corresponding to poison III have different slopes than poisons
I and II. The ANOVA F test for Poison-Treatment interaction, however,
indicated that interactions are not significant at α = 0.05.

Example 9.6 (Two-way ANOVA (Step 3)).

Step 3. Comparison of means

Tables of means for the main effects and interactions can be displayed using
the model.tables function.

> model.tables(L, type="means")

Tables of means

Grand mean

0.4791667

Poison

Poison

I II III

0.6175 0.5444 0.2756

Treatment

Treatment

A B C D

0.3142 0.6767 0.3925 0.5333
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Poison:Treatment

Treatment

Poison A B C D

I 0.4125 0.8800 0.5675 0.6100

II 0.3200 0.8150 0.3750 0.6675

III 0.2100 0.3350 0.2350 0.3225

Tables of effects can also be displayed using model.tables(L) (not shown).
The larger means correspond to longer survival times. Smaller means corre-
spond to more toxic poisons or less effective antidotes. However, from the
table of means one cannot determine which poisons or antidotes are signifi-
cantly better or worse. Multiple comparison procedures provide a formal test
procedure to determine which poisons or antidotes are significantly better or
worse than others.

Multiple comparison of means using Tukey’s Honest Significant Difference
method is provided in R by the TukeyHSD function. By default, TukeyHSD will
compute comparisons for all factors in the model, including the interaction.
Here the interaction was not significant, so we specify that we only want the
comparisons for main effects by the which argument.

> TukeyHSD(L, which=c("Poison", "Treatment"))

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Time ~ Poison * Treatment)

$Poison

diff lwr upr p adj

II-I -0.073125 -0.2019588 0.05570882 0.3580369

III-I -0.341875 -0.4707088 -0.21304118 0.0000005

III-II -0.268750 -0.3975838 -0.13991618 0.0000325

$Treatment

diff lwr upr p adj

B-A 0.36250000 0.19858517 0.52641483 0.0000046

C-A 0.07833333 -0.08558150 0.24224816 0.5769172

D-A 0.21916667 0.05525184 0.38308150 0.0050213

C-B -0.28416667 -0.44808150 -0.12025184 0.0002320

D-B -0.14333333 -0.30724816 0.02058150 0.1045211

D-C 0.14083333 -0.02308150 0.30474816 0.1136890

Results from Tukey’s HSD procedure indicate that there are significant
differences between mean survival times for Poisons (I, III) and (II, III) and
there is a significant difference between mean survival times for antidotes (A,
B), (A, D), and (B, C). The interpretation is that poison III is the most toxic,
and antidote B is significantly more effective than A or C.

For a nice graphical summary of these results, there is a plot method

> plot(TukeyHSD(L, which=c("Poison", "Treatment")))

which plots confidence intervals for the differences (not shown).
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Remark 9.1. When the interaction is significant, one should only compare
the interaction means for each factor at a fixed level of the other factor. For
example, if poison-treatment interaction was significant, we would compare
the means for the antidotes on poison I, antidotes on poison II, and antidotes
on poison III, separately. Comparisons on the overall poison means or the
overall antidote means would not be meaningful.

Pairwise t-tests for poison and antidote are easily obtained by the
pairwise.t.test function, as shown in Table 9.3.

Table 9.3 Pairwise t-tests for the poison data.

> pairwise.t.test(poison$Time, poison$Poison)

Pairwise comparisons using t tests with pooled SD

data: Time and Poison

I II

II 0.3282 -

III 9.6e-05 0.0014

P value adjustment method: holm

> pairwise.t.test(poison$Time, poison$Treatment)

Pairwise comparisons using t tests with pooled SD

data: Time and Treatment

A B C

B 0.0011 - -

C 0.3831 0.0129 -

D 0.0707 0.3424 0.3424

P value adjustment method: holm

From the pairwise t-tests with Holm’s p-value adjustment we can conclude
that there are significant differences between mean survival times for poison
types (I, III) and (II, III). Average survival time is longest for poisons I and II.
Among antidotes, only the means of types (A, B) and (B, C) are significantly
different at α = 0.05. Antidote B means are significantly higher than A or C.

The conclusions of the pairwise t-tests agree with the Tukey method except
that the pairwise t-test procedure did not find a significant difference between
means of antidotes A and D that was significant using the Tukey method.
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Exercises

9.1 (Rounding first base). The data in “rounding.txt” gives the times
required to round first base for 22 baseball players using three styles: rounding
out, a narrow angle and a wide angle.1 The goal is to determine if the method
of rounding first base has a significant effect on times to round first base.

The data and the format of the data can be viewed using a text editor or
a spreadsheet. With the data file in the current working directory, input the
data using

rounding = read.table("rounding.txt", header=TRUE)

Check using the str function that the data is in stacked format with three
variables: time, method, player, where time is numeric and method and
player are factors.

Analyze the data assuming a randomized block design with time to round
first base as the response, method of rounding first as the treatment, and
player as the block variable. Plot residuals to check whether the assumptions
for the distribution of random error appear to be valid.

9.2 (Speed of light). The morley data in R contains the classical data
of Michaelson and Morley on the speed of light, recording five experiments
of 20 consecutive runs each. The response is the speed of light measure-
ment Speed. The experiment is Expt and the run is Run. See the docu-
mentation (?morley) and also http://lib.stat.cmu.edu/DASL/Stories/

SpeedofLight.html for more details about the experiments and the data
set.

Use the str function to check that there are 100 observations of the re-
sponse Speed, Expt, and Run; all integer variables. Convert Expt and Run to
factors using

morley$Expt = factor(morley$Expt)

morley$Run = factor(morley$Run)

Display a boxplot of Speed by Expt. Speed of light is a constant, so we see
there are some problems because the measurements of speed do not seem to
be consistent across the five experiments.

The data can be viewed as a randomized block experiment. What is the
null hypothesis of interest? Analyze the data and residuals and summarize
your conclusions.

9.3 (Residual analysis for poison survival times). Complete the anal-
ysis (Step 4) of the two-way factorial model for the poison survival times in
Example 9.3. Prepare a plot of residuals against predicted values and any
other plots that may help to assess the validity of the model and model
assumptions.

1 Source: Hollander and Wolfe, [25, Table 7.1, page 274].

http://lib.stat.cmu.edu/DASL/Stories/SpeedofLight.html
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9.4 (Reciprocal transformation for poison survival times). Refer to
Exercise 9.3. The residual plots suggest a reciprocal transformation of the
response (poison survival time), zijk = 1/yijk. Make this transformation, and
repeat the entire analysis of Example 9.3 and Exercise 9.3. Summarize the
analysis and discuss any differences between the original model and the cur-
rent model. Are there any differences evident in the interaction plots?



Chapter 10

Randomization Tests

10.1 Introduction

If the model assumptions for ANOVA do not hold, then the ANOVA F test
is not necessarily valid for testing the hypothesis of equal means. However,
one can compute an ANOVA table and an F statistic; what is in doubt is
whether the “F” ratio has an F distribution.

A randomization test or permutation test provides a nonparametric ap-
proach based on the F statistic that does not require that the test statistic
(F ) has an F distribution. Permutation tests were introduced in the basic in-
ference chapter (Section 6.4.4) for testing the two-sample hypothesis of equal
means. Just as ANOVA generalizes the two-sample t-test test for equal means
to k ≥ 2 samples, the randomization tests discussed in this chapter generalize
the two-sample permutation test discussed in Section 6.4.4. The main idea of
a randomization (permutation) test is explained below in Section 10.3.

10.2 Exploring Data for One-way Analysis

Prior to applying formal methods of statistical inference in any data analysis
problem, it is essential to explore the data with descriptive and graphical
summaries. If the research question is to determine whether groups differ in
location, then the preliminary analysis helps to determine whether a one fac-
tor model is reasonable or whether there may be one or more other variables
that should be included in the model. In the exploratory analysis one can
check informally whether certain parametric model assumptions hold, which
helps to identify the type of analysis (parametric or nonparametric) that is
most suitable for the data at hand.

Example 10.1 (The ‘Waste Run-up’ data). The ‘Waste Run-up’ data ([28,
p. 86], [12]) is available at the DASL web site. The data are weekly percent-

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__10,
© Springer Science+Business Media, LLC 2012
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age waste of cloth by five different supplier plants of Levi-Strauss, relative
to cutting from a computer pattern. The question here is whether the five
supplier plants differ in waste run-up.

The data has been saved in a text file “wasterunup.txt”. The five columns
correspond to the five different manufacturing plants. In the data file, the
numbers of values in each column differ and the empty positions are filled
with the symbol *.

To convert this data into the one-way layout for comparison of groups, we
first need to read the data into R. We use read.table to read the text file
into R. The special “*” character is specified by setting na.strings="*" in
the arguments to read.table. Then the data can be stacked using the stack
function, which places all observations into a single column and creates an
index variable labeled with column names. The result is exactly what we need
except for the NA values, which can be removed by na.omit on the result.

> waste = read.table(

+ file="wasterunup.txt",

+ header=TRUE, na.strings="*")

> head(waste) #top of the data set

PT1 PT2 PT3 PT4 PT5

1 1.2 16.4 12.1 11.5 24.0

2 10.1 -6.0 9.7 10.2 -3.7

3 -2.0 -11.6 7.4 3.8 8.2

4 1.5 -1.3 -2.1 8.3 9.2

5 -3.0 4.0 10.1 6.6 -9.3

6 -0.7 17.0 4.7 10.2 8.0

> waste = stack(waste) #stack the data, create group var.

> waste = na.omit(waste)

Rx 10.1 The argument file="wasterunup.txt" below assumes that the
data file is located in the current working directory, which can be displayed
using getwd() and changed using setwd. Alternately, one could supply a
path name; for example, if data files are in a subdirectory of the current
working directory called “Rxdatafiles” then the filename can be specified as
"./Rxdatafiles/wasterunup.txt".

Now after the stack and na.omit functions are applied, the resulting
data set waste has two variables, values (the response, numeric) and ind

(the plant, categorical), as the summary method shows.

> summary(waste)

values ind

Min. :-11.600 PT1:22

1st Qu.: 2.550 PT2:22

Median : 5.200 PT3:19

Mean : 6.977 PT4:19

3rd Qu.: 9.950 PT5:13

Max. : 70.200
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For the categorical variable ind (the plant), the summary function displays a
frequency table corresponding to the sample sizes for the five plants. Another
way to display the sample sizes is

> table(waste$ind)

PT1 PT2 PT3 PT4 PT5

22 22 19 19 13

To change the variable names, we can use the names function. Below the
name of the second variable “ind” is changed to “plant”.

> names(waste)[2] = "plant"

> names(waste)

[1] "values" "plant"

The group means and five-number summaries can be displayed using the
summary function. First we attach the waste data frame so that variables
can be referenced directly by values and plant rather than waste$values

and waste$plant. Alternately, one could use the with function (see Chapter
9 for an example).

> attach(waste)

> by(values, plant, summary)

plant: PT1

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.200 -0.450 1.950 4.523 3.150 42.700

---------------------------------------------------------------------

plant: PT2

Min. 1st Qu. Median Mean 3rd Qu. Max.

-11.600 3.850 6.150 8.832 8.875 70.200

---------------------------------------------------------------------

plant: PT3

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.900 2.450 4.700 4.832 8.500 12.100

---------------------------------------------------------------------

plant: PT4

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.700 5.150 7.100 7.489 10.200 14.500

---------------------------------------------------------------------

plant: PT5

Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.30 8.00 11.30 10.38 16.80 24.00

Side-by-side boxplots and stripcharts are visual displays that convey the
information in the five-number summaries as well as a measure of dispersion,
the inter-quartile range (IQR). Comparing the range and IQR of the groups is
one way to assess whether groups have approximately equal variances before
fitting a model. Residuals of a fitted one-way model could also be compared
in a boxplot. The R functions to obtain the boxplots and dotplots of the
response variable are:
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> boxplot(values ~ plant)

> stripchart(values ~ plant, vertical=TRUE)

The resulting plots are shown in Figure 10.1(a) and 10.1(b).
Alternately one could analyze the residuals from a fitted one-way model.

The residuals are contained in the returned value of lm, which fits the one-way
model. To check normality, a normal-QQ plot of residuals is useful. A plot of
residuals vs fitted values, a normal-QQ plot of residuals, as well as other plots
are obtained by plot(L). Here we specified which=1:2 in the plot command
to obtain just the first two plots. Notice that the plot of residuals vs fitted
values in Figure 10.1(c) is like the dotplot of the response variable in Figure
10.1(b), except that the horizontal axis has changed. (To obtain a boxplot of
residuals, one could use boxplot(L$resid ~ plant).)

> L <- lm(values ~ plant)

> plot(L, which=1:2) #the first two residual plots

The plots in Figures 10.1(a) through 10.1(d) suggest that the data may
have outliers and possibly that variances differ among the groups. Thus,
the usual assumptions for distribution of errors required for valid inference
with the ANOVA F -test may not hold in this case. Hence the ANOVA F
test is not reliable for inference in this situation. In the following sections
we illustrate two nonparametric approaches that do not require the equal
variance or normality of error conditions for valid inference.

10.3 Randomization Test for Location

The ANOVA F statistic is a ratio that compares the between-sample and
within-sample mean squared error. Whether or not the F ratio has an F
distribution under the null hypothesis, we know that the large values of the
F statistic are more evidence that there are differences among group means
than smaller F values. Therefore even if our F statistic does not have an F
distribution, we can apply an F statistic (not an F test) if we have a correct
reference distribution under the null hypothesis.

The idea of the randomization test for a one-way analysis is simple.
Suppose that there are no differences among treatments or groups. Then
group labels assigned to the response could be randomly mixed-up with-
out changing the sampling distribution of the test statistic. The random-
ization test generates a large number R of samples of the observed re-
sponse with randomly assigned group labels and computes an F ∗ statistic
for each sample. The collection of these F ∗ statistics becomes our estimate
for the distribution of our statistic F when H0 is true. Then our original
observed F statistic is compared to the replicates F ∗. The estimated p-value
is p̂ = Pr(F ≥ F ∗) = #(F ∗ ≤ F )/(R + 1). (We divide by R + 1 because with
the original F we have a total of R +1 statistics.)
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Fig. 10.1 Boxplots and stripchart of “Waste Run-up” response variable, and plots
of residuals from the fitted one-way analysis of variance model.

Example 10.2 (Randomization test). First let us write a function to perform
the randomization test for an arbitrary response and group variable. The F ∗
statistics are generated by the replicate function with these lines:

stats = replicate(R, {

random.labels = sample(group)

oneway.test(response ~ random.labels)$statistic})

The group labels are randomized by the permutation sample(group). The
F ∗ statistics are computed for each sample by oneway.test. The resulting
value of stats is a vector containing the R replicates F ∗. Then we construct
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a function as a convenient user interface containing the simulation of F ∗ and
computation of the p-value for the test.

First let us see the display of oneway.test although we do not want to
use it for inference. We will modify the p-value and the name of the test in
our function but keep the format of the output so that the printed report is
similar to oneway.test.

> oneway.test(values ~ plant)

One-way analysis of means (not assuming equal

variances)

data: values and plant

F = 1.8143, num df = 4.000, denom df = 40.328,

p-value = 0.1449

The description of the test is the method. To avoid any confusion, we will
modify test$method in the return value to indicate that we used a random-
ization test. If the number of replicates is not specified, the default value of
R=199 replicates are generated.

rand.oneway = function(response, group, R=199) {

test = oneway.test(response ~ group)

observed.F <- test$statistic

stats = replicate(R, {

random.labels = sample(group)

oneway.test(response ~ random.labels)$statistic})

p = sum(stats >= observed.F) / (R+1)

test$method = "Randomization test for equal means"

test$p.value = p

test

}

Now let’s apply the randomization test to the waste data.

> rand.oneway(response=values, group=plant, R=999)

Randomization test for equal means

data: response and group

F = 1.8143, num df = 4.000, denom df = 40.328,

p-value = 0.128

Notice that the observed F statistic is unchanged, but the p-value has
changed. If we repeat this test, the reported p-value could vary slightly be-
cause we are generating random permutations. (In the randomization test
the numerator and denominator degrees of freedom are not used.)

Rx 10.2 Randomization tests for the one-way location problem and other
problems are implemented in the coin package (conditional inference) [27].
If coin has been installed, then the following method can be used to obtain a
randomization test based on a different statistic.
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> library(coin)

> oneway_test(values ~ plant, distribution=approximate(B=999))

Approximative K-Sample Permutation Test

data: values by

plant (PT1, PT2, PT3, PT4, PT5)

maxT = 1.3338, p-value = 0.6306

> detach(package:coin)

See the documentation in coin for details.

10.4 Permutation Test for Correlation

Randomization tests can be implemented for a variety of inferential problems.
Here we illustrate the use of a permutation test to provide a nonparametric
alternative to the traditional test of a correlation coefficient.

Example 10.3 (Website counts). One of the authors maintains a website on a
particular book and using Google Analytics, records the number of visits to
this particular website on each day of the year. There are interesting patterns
to these website “hits”. As one might expect, there tend to be more hits on
the website during weekdays than on weekends (Saturday and Sunday). Also
since this book may be used for statistics courses, there appear to be a greater
number of hits during the periods when classes are in session.

To explore the week by week patterns of these website visits, we collected
the number of hits for 35 weeks from April through November, 2009. We
read in the data file “webhits.txt” and construct a scatterplot of the number
of website visits (variable Hits) against the week number (variable Week). As
we look at the scatterplot in Figure 10.2, we see a gradual upward drift in
the website hits for increasing week number. Is this pattern due to a “real”
change in the counts over time, or is this pattern a simple byproduct of chance
variation?

> web = read.table("webhits.txt", header=TRUE)

> plot(web$Week, web$Hits)

One can rephrase this question using a statistical test. Suppose the dis-
tribution of the webhits is unknown and we are uncomfortable making the
assumption that the counts follow a normal distribution. In this case we want
to apply a nonparametric test of association rather than the Pearson correla-
tion test. Let us replace the website counts with their ranks, where a rank of
1 is assigned to the smallest count, a rank of 2 is assigned to the next-smallest
count, and so on. Let Ri denote the rank assigned to the ith website count.
Our null hypothesis is that the sequence of website hit ranks, R1, ...,R35, is
not associated with the week numbers 1 through 35.
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Fig. 10.2 Scatterplot of website counts against week number.

One can measure the association by the correlation between the ranks and
the week numbers

robs = correlation{Ranks, Week Number}.

The R function cor.test implements the Pearson correlation test as well as
tests for two rank based measures of association, Spearman’s ρ and Kendall’s
τ . Each of these tests the null hypothesis that the measure of association is
zero. We can also implement the rank tests as permutation tests. We illustrate
both methods for comparison. For Spearman’s rank test we apply cor.test

with method="spearman".

> cor.test(web$Week, web$Hits, method="spearman")

Spearman�s rank correlation rho

data: web$Week and web$Hits

S = 4842.713, p-value = 0.05945

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.3217489

Warning message:

In cor.test.default(web$Week, web$Hits, method = "spearman") :

Cannot compute exact p-values with ties

There are ties in the counts, so an exact p-value cannot be computed in this
example. An approximate p value is reported. (The warning message could
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be suppressed by adding the argument exact=FALSE in cor.test.) At the
5% significance level we cannot conclude that there is an association between
Week and Hits.

Permutation test approach

If the null hypothesis is true, that is, there is no relationship between the
count numbers and the week numbers, then the distribution of the correlation
should not change if we randomly permute the website counts (or equivalently
the ranks).

This observation motivates a randomization or permutation test of our
hypothesis of no association. We obtain a sampling distribution for the rank
correlation statistic r under the null hypothesis by considering the distribu-
tions of the correlation of (Rank(Hits), Week) over all possible permutations
of the hit counts. There are 35! = 1.03×1040 permutations. One can imagine
computing the correlation r of Week and permutation(Rank(Hits)) for each
permutation, obtaining a null sampling distribution of r.

To see if the observed correlation value robs is consistent with this null dis-
tribution, we compute the p-value, which is the probability that a correlation
under the null distribution exceeds robs.

It is impractical to compute the exact p-value here since the number of per-
mutations in the randomization distribution is too large, but it is practical to
perform this permutation test by simulation. A function rand.correlation

(below) is written to implement this procedure. There are three arguments;
the vectors of paired data x and y, and the number of simulation replica-
tions R. In this function, we initially take the ranks of the two vectors and
compute the observed rank correlation robs. We use the replicate function
to repeatedly take a random permutation of the ranks of y (using the sam-

ple function). The output of the function is the observed correlation and
the p-value, which is the proportion of simulated correlations from the null
distribution that exceed robs.

rand.correlation = function(x, y, R=199) {

ranks.x = rank(x)

ranks.y = rank(y)

observed.r = cor(ranks.x, ranks.y)

stats = replicate(R, {

random.ranks = sample(ranks.y)

cor(ranks.x, random.ranks)

})

p.value = sum(stats >= observed.r) / (R + 1)

list(observed.r = observed.r, p.value = p.value)

}

We run this function for our example using 1000 simulation replications.



252 10 Randomization Tests

> rand.correlation(web$Week, web$Hits, R=1000)

$observed.r

[1] 0.3217489

$p.value

[1] 0.02997003

Here we observe that the rank correlation statistic robs is 0.3217, and it is
the equal to the Spearman rank correlation statistic. The computed p-value
is 0.030, indicating that there is some evidence of a trend of the website hit
counts over time.

Exercises

10.1 (PlantGrowth data). The PlantGrowth data is an R dataset that
contains results from an experiment on plant growth. The yield of a plant is
measured by the dried weight of the plant. The experiment recorded yields of
plants for a control group and two different treatments. Use a randomization
test to analyze the differences in mean yield for the three groups. Start with
the exploratory data analysis. What conclusions can be inferred from this
sample data?

10.2 (flicker data). Refer to the flicker data in Example 8.1. Use a ran-
domization test to compare the critical flicker frequency among groups with
different eye colors. State the null hypothesis and your conclusions carefully.

10.3 (Waste Run-up data). Refer to the Waste Run-up data in Example
10.1 and Exercise 8.6. Write R code using replicate (but without using the
function rand.oneway in this chapter) to implement a randomization test to
determine if mean Waste Run-up differs among plants. Then compare your
randomization test result to the result of the function rand.oneway in this
chapter. The observed F statistics should agree. Explain why the p-values
could differ.

10.4 (airquality data). Consider the response variable Ozone in the airqual-
ity data set in R. Suppose that we are interested in testing the hypothesis
that Ozone differs by Month. Do the assumptions for an ANOVA F -test ap-
pear to hold for this data? Carry out the one-way analysis using appropriate
methods for valid inference.

10.5 (Web hits). Another way of exploring the pattern of website counts
in Example 10.3 is to look for differences between seasons. Weeks 1 through
9 correspond to spring months, weeks 10 through 22 to summer months, and
weeks 23 through 35 to fall months. Implement a randomization test to see
if website counts differ between seasons.
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10.6 (Web hits, cont.). In Example 10.3, revise the rand.correlation

function so that it also displays a probability histogram of the generated
rank statistics in stats. Identify the observed statistic robs on the plot using
abline(v = observed.r).

10.7 (Computing rank correlations). For the website hits data in Exam-
ple 10.3, we could have used the result of Spearman’s rank correlation statistic
(cor with method="spearman") to handle the calculation of the rank corre-
lation statistics. Revise the function rand.correlation in Example 10.3 so
that it uses cor to compute the rank correlation. For example, if our paired
data is in vectors x and y, then we can obtain the rank correlation by

r = cor(x, y, method="spearman")

10.8 (Permutation test for correlation). Generate two independent ran-
dom samples of count data using one of the R probability generators. Indepen-
dent variables are uncorrelated. Write a function to implement a permutation
test for correlation applied to the data (not the ranks of the data) and apply
it to 50 pairs of your randomly generated data. This exercise is similar to
Example 10.3, if we replace the observed web hits and weeks data with two
simulated samples.



Chapter 11

Simulation Experiments

11.1 Introduction

Simulation provides a straightforward way of approximating probabilities.
One simulates a particular random experiment a large number of times, and
a probability of an outcome is approximated by the relative frequency of the
outcome in the repeated experiments. The idea of using chance devices to
model random experiments has a long history. During the Second World War,
physicists at the Los Alamos Scientific Laboratory used simulation to learn
about the characteristics of the travel of neutron through different materials.
Since this work was secret, it was necessary to use a code name and the name
“Monte Carlo” was chosen by the scientists in homage to the famous Monte
Carlo casino. Since that time, the use of simulation experiments to better
understand probability patterns is called the Monte Carlo method.

We focus on two particular R functions that simplify the process of pro-
gramming simulation experiments. The sample function will take samples
with or without replacement from a set, and the replicate function is help-
ful in repeating a particular simulation experiment. We illustrate the use of
these two functions in simulating some famous probability problems.

11.2 Simulating a Game of Chance

Example 11.1 (A coin-tossing game).
Peter and Paul play a simple game involving repeated tosses of a fair coin.

In a given toss, if heads is observed, Peter wins $1 from Paul; otherwise if
tails is tossed, Peter gives $1 to Paul. (This example is described in Chapter 1
of Snell [45].) If Peter starts with zero dollars, we are interested in his change
in fortune as the game is played for 50 tosses.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__11,
© Springer Science+Business Media, LLC 2012
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11.2.1 The sample function

We can simulate this game using the R function sample. Peter’s winning
on a particular toss will be $1 or −$1 with equal probability. His winnings
on 50 repeated tosses can be considered to be a sample of size 50 selected
with replacement from the set {$1, −$1}. This process can be simulated in R
by the sample command; the arguments indicate we are sampling from the
vector (−1, 1), a sample of size 50 is taken, and replace=TRUE indicates
sampling with replacement.

> options(width=60)

> sample(c(-1, 1), size=50, replace=TRUE)

[1] -1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 1 1 1

[19] 1 1 -1 -1 -1 1 1 -1 -1 1 1 1 1 1 1 1 1 1

[37] -1 -1 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1

We see that Peter lost the first three tosses, won the next three tosses, and
so on.

11.2.2 Exploring cumulative winnings

Suppose Peter is interested in his cumulative winnings as he plays this game.
We store his individual toss winnings in the variable win. The function cumsum

will compute the cumulative winnings of the individual values and the cumu-
lative values are stored in cum.win.

> win = sample(c(-1, 1), size=50, replace=TRUE)

> cum.win = cumsum(win)

> cum.win

[1] -1 -2 -3 -2 -1 0 -1 0 -1 -2 -3 -4 -5 -6 -5 -4 -3 -2

[19] -1 0 -1 -2 -3 -2 -1 -2 -3 -2 -1 0 1 2 3 4 5 6

[37] 5 4 5 6 5 6 7 8 7 6 5 6 5 4

In this particular game, we see Peter reaches a negative fortune of −6 during
the early part of the game and rebounds for a positive fortune of 8 towards
the end of the game, finishing with a fortune of 4. Figure 11.1 displays the
sequence of cumulative winnings for four simulated games of heads or tails
using the following R commands. The par(mfrow=c(2,2)) command splits
the graphics window into subwindows with two rows and two columns so one
can display four graphs in one window. After the graphs have been drawn,
the par(mfrow=c(1,1)) command restores the graphics window to the initial
state.

> par(mfrow=c(2, 2))

> for(j in 1:4){

+ win = sample(c(-1, 1), size=50, replace=TRUE)

+ plot(cumsum(win), type="l" ,ylim=c(-15, 15))

+ abline(h=0)
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+ }

> par(mfrow=c(1, 1))
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Fig. 11.1 Graphs of cumulative winnings of Peter in four simulations of the heads
or tails game.

The graphs in Figure 11.1 show that there is much variability in Peter’s
fortune in playing this game. In some games, he tends to break even and his
cumulative winnings fall near the horizontal line at zero. In other games, he
will be fortunate and the cumulative winnings will be positive for all tosses in
the game, and other games he’ll have negative winnings for all tosses. After
one observes a number of these graphs, one can pose the following questions:.

� What is the chance that Peter will break even after 50 tosses?
� What are likely number of tosses where Peter will be in the lead?
� What will be the value of Peter’s best fortune during the game?

Some of these questions (such as the first one) can be found through exact
calculation. Other questions such as the second or third are more difficult to
find analytically and the Monte Carlo method is helpful for finding approxi-
mate answers.
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11.2.3 R function to implement a Monte Carlo
experiment

One can obtain approximate answers to these questions by a Monte Carlo
experiment. In this type of experiment, one simulates the random process
and computes the statistic or statistics of interest. By repeating the random
process many times, one obtains a collection of the statistics. One then uses
the collection to approximate probabilities or expectations that answer the
questions.

Let’s first consider Peter’s fortune F at the end of the game. We write
a function peter.paul that simulates the fortunes for the 50 tosses and
computes F that is equal to the sum of the individual fortunes. To make this
function more general, we define n to be the number of tosses and let the
default value of n be 50.

peter.paul=function(n=50){

win = sample(c(-1, 1), size=n, replace=TRUE)

sum(win)

}

We simulate a single game by typing

> peter.paul()

[1] -6

In this game, Peter finished with a fortune of −6 dollars. To repeat this for
1000 games, we use the replicate function with arguments 1000, the number
of games, and the name of the function peter.paul() to repeat. The output
of replicate is the vector of fortunes for the 1000 games that we assign to
the variable F.

> F = replicate(1000, peter.paul())

11.2.4 Summarizing the Monte Carlo results

Since Peter’s fortune is integer-valued, a convenient way of summarizing the
collection of values of F using the table function.

> table(F)

F

-22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6

2 2 5 10 7 33 37 48 76 94 126 110 109 100 74

8 10 12 14 16 18 20 22 24

63 40 27 18 12 3 2 1 1

We can display the frequencies of F using the plot function applied to the
table output. (See Figure 11.2.)

> plot(table(F))
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Fig. 11.2 Line graph of Peter’s total fortune in 1000 simulated games of heads or
tails.

We see that Peter’s fortune has a symmetric distribution centered about
zero. Note that no games result in an odd-valued fortune, indicating that is
impossible for Peter to finish with a “odd” fortune.

What is the chance that Peter breaks even in the game? We see from
the table that Peter finished with a value of F = 0 in 110 out of the 1000
simulations, and so the probability of breaking even is approximated by

P (F = 0) ≈ 110
1000 = 0.110.

Here an exact answer to this probability is available. Peter breaks even if
there are exactly 25 heads in the binomial experiment of 50 trials with a
probability of success equal to 0.5. Using the R binomial probability function
rbinom, we obtain

> dbinom(25, size=50, prob=0.5)

[1] 0.1122752

This exact probability agrees to within two significant digits with the value
obtained in our simulation.
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11.2.5 Modifying the experiment to learn about new
statistics

We can add additional lines of code to our function peter.paul to compute
several statistics of interest in our experiment. To answer our questions, we
focus on the final fortune F , the number of times Peter is in the lead L, and
the maximum cumulative winning M . In the function, we define the vector
of cumulative winnings cum.win. Here the output of the function is a vector
consisting of the values of F,L, and M . By naming the components (using,
for example, F=sum(win)), one will get more attractive output.

peter.paul=function(n=50){

win=sample(c(-1, 1), size=n, replace=TRUE)

cum.win = cumsum(win)

c(F=sum(win), L=sum(cum.win > 0), M=max(cum.win))

}

We simulate the game once.

> peter.paul()

F L M

-10 3 1

In this game, Peter’s final fortune was −$10, he was in the lead for 3 plays,
and his maximum total winning during the game was $1. To repeat this game
1000 times, we again use replicate and store the output in the variable S.
Since the output of peter.paul is a vector, S will be a matrix of 3 rows and
1000 columns, where the rows correspond to the simulated draws of F , L, and
M . We can verify the dimension of the matrix of S using the dim function.

> S = replicate(1000, peter.paul())

> dim(S)

[1] 3 1000

Recall that we were interested in finding likely values of the number of
times L that Peter was in the lead. The simulated values of L can be found
by accessing the “L”th or second row of S:

> times.in.lead = S["L", ])

We tabulate the simulated values using the table function, and the prop.table
function will find the corresponding relative frequencies. We plot the result
to get a line graph. (See Figure 11.3.)

> plot(prop.table(table(times.in.lead)))

The pattern of this graph for L isn’t what most people would expect. Since it
is a fair game, one might think it would be most likely for Peter to be ahead
in 25 out of the 50 tosses. Instead, the most likely values are the extreme
values L = 0,1,50, and the remaining values of L appear equally likely. So
actually it is relatively common for Peter to always be losing or always be
winning in this game.
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Fig. 11.3 Line graph of the number of times Peter was in the lead in 1000 simulated
games of heads or tails. The overlayed line corresponds to more precise estimates of
the probabilities found using a large number of simulations.

In any simulation, there will be an inherent error in any computed prob-
abilities. To see if the variability in the heights of the lines is due to real
differences or sampling variability, we repeated the simulation experiment
using 100,000 iterations. The dashed line in Figure 11.3 corresponds to the
estimated probabilities for this second simulation that are close to the true
probabilities. We see that the general impression from our first simulation is
correct and the extreme values of L are most likely.

Last, let’s consider the distribution of M , Peter’s maximum winning dur-
ing the 50 plays. We store the 1000 simulated values of M in the variable
maximum.lead, tabulate the values using the table function, and then graph
the values by the plot function.

> maximum.lead = S["M", ]

> plot(table(maximum.lead))

From Figure 11.4, we see that it is most likely for Peter to have a maximum
winning of 3 or 4, but values between −1 and 8 are all relatively likely.
To compute the approximate probability that Peter will have a maximum
winning of 10 or more, we find the number of values of maximum.lead that
are 10 or greater and divide this sum by the number of simulation iterations
1000.

> sum(maximum.lead >= 10) / 1000

[1] 0.149

Since this probability is only about 15%, it is relatively rare for Peter to have
a maximum winning of 10 or more.
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Fig. 11.4 Line graph of the maximum winning of Peter in 1000 simulated games of
heads or tails.

11.3 Random Permutations

Example 11.2 (The hat problem).
We next consider a famous probability problem. In the old days, a man

would wear a top hat to a restaurant and check his hat with a person at the
door. Suppose n men check their hats and the hats are returned to the men
in a random fashion when they leave the restaurant. How many men will
receive their own hats?

11.3.1 Using sample to simulate an experiment

We represent the distinct hats of the n men by the integers 1, ..., n. We first
assume we have n = 10 hats and store these integers in the vector hats.

> n = 10

> hats = 1:n

Randomly mixing the hats corresponds to a random permutation of the in-
tegers that we accomplish using the simple function sample – the vector
of mixed-up integers is stored in the variable mixed.hats. (Note that when
sample is used with only a single vector argument, the result is a random
permutation of the elements of the vector.)

> mixed.hats = sample(hats)
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We display both vectors below and note that in this particular simulation,
the 4th and 9th hats were returned to the correct owners.

> hats

[1] 1 2 3 4 5 6 7 8 9 10

> mixed.hats

[1] 7 1 6 4 3 5 8 10 9 2

11.3.2 Comparing two permutations of a sample

We are interested in computing the number of correct hats returned. If we
use the logical expression

> hats == mixed.hats

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE

we obtain a vector of logical values, where TRUE corresponds to a match and
FALSE corresponds to a mismatch. If we sum these logical values (using the
function sum), TRUE is replaced by a 1, FALSE is replaced by a 0, and the
result is the number of correct matches that is stored in a variable correct.
Displaying this variable, it correctly tells us that two men received their own
hats.

> correct = sum(hats == mixed.hats)

> correct

[1] 2

Rx 11.1 What happens if one incorrectly types this line using a single equals
sign instead of a double equals sign?

> correct = sum(hats = mixed.hats)

> correct

[1] 55

Surprisingly, there is no error reported and an “answer” of 55 is displayed.
What is going on? The argument hats=mixed.hat actually only labels the
individual values of the vector, and the sum functions sums the integers from
1 to 10 which is 55. This is clearly not we wanted to do!

11.3.3 Writing a function to perform simulation

Using the above R commands, we can write a function that performs this
mixed-up hats simulation. We call this function scramble.hats and it has a
single argument n, the number of hats. The function returns the number of
correct matches.
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scramble.hats = function(n){

hats = 1:n

mixed.hats = sample(n)

sum(hats == mixed.hats)

}

We test this function once using n = 30 hats; in this particular simulation,
we see that no correct hats were returned.

> scramble.hats(30)

[1] 0

11.3.4 Repeating the simulation

Let Xn denote the random variable defined as the number of correct matches
for a given number of hats n. To obtain the probability distribution of Xn,
we simulate this experiment (coded in the function scramble.hats) a large
number of times and tabulate the simulated values of Xn. Repeated random
experiments are easily performed in R by the function replicate which has
two arguments, the number of simulations, and the expression or function to
be repeated. If we wish to repeat our hats experiment 1000 times with n = 10
hats, we type

> matches = replicate(1000, scramble.hats(10))

The vector of number of matches in all 1000 experiments is stored in the
variable matches.

To learn about the probability distribution of Xn, we summarize the sim-
ulated draws of Xn in the vector matches. By tabulating the values (using
the table function), we obtain a frequency table of the number of matches
that occurred.

> table(matches)

matches

0 1 2 3 4 5 6

393 339 179 66 19 3 1

By dividing the table frequencies by 1000, we obtain the corresponding rela-
tive frequencies.

> table(matches) / 1000

matches

0 1 2 3 4 5 6

0.393 0.339 0.179 0.066 0.019 0.003 0.001

We see that it is most likely (with estimated probability 0.393) to obtain no
matches and it is relatively uncommon to get 3 or more matches. To obtain
the (approximate) mean or expected value of Xn, we simply find the sample
mean of the simulated draws:
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> mean(matches)

[1] 0.992

On average, we expect that 0.992 of the 10 men will receive his correct hat. It
can be shown that the theoretical mean is indeed E(Xn) = 1 (for all n), so this
simulation has accurately estimated the mean number of correct matches.

Suppose we are interested in seeing how the probability of no correct
matches, P (Xn = 0), changes as a function of the number of men n. We
write a new function prop.no.matches that has a single argument n; the
function simulates this experiment (with n men) 10,000 times and finds the
proportion of experiments where no men received the correct hats.

prop.no.matches = function(n){

matches = replicate(10000, mixed.hats(n))

sum(matches == 0) / 10000

}

We test this function for n = 20 hats:

> prop.no.matches(20)

[1] 0.3712

In this experiment, the chance that no men received their correct hats was
0.3712. The function sapply is a convenient way of applying this function
for a vector of values of n. To compute this probability for values of n from
2 to 20, we use sapply with arguments the vector of values and the function
name of interest. In Figure 11.5 we display the estimated probabilities as a
function of n and add a horizontal line at the value 0.37.

> many.probs = sapply(2:20, prob.no.matches)

> plot(2:20, many.probs,

+ xlab="Number of Men", ylab="Prob(no matches)")

> abline(h=0.37)

In Figure 11.5, the probability of no matches is seen to be large for n = 2,
small for n = 3, and the probability appears to stabilize about the value of
0.37 for large n.

11.4 The Collector’s Problem

Example 11.3 (Collecting baseball cards).
One of the authors collected baseball cards as a youth. The baseball card

company Topps would produce a collection of cards consisting of cards for
each professional player together with some special cards. One would purchase
cards in small packs consisting of ten cards and a stick of bubble gum. (The
author didn’t chew gum and the stick of gum was promptly thrown away.)
One objective was to obtain a complete set of cards. Unfortunately, it was
common to obtain duplicate cards and it seemed that one had to purchase a
large number of cards to obtain a complete set.



266 11 Simulation Experiments

11.4.1 Simulating experiment using the sample

function

One can illustrate this card collecting activity through a simulation. Sup-
pose we represent the complete set by a variable cards, a character vector
consisting of the names of ten great baseball hitters.

> cards = c("Mantle", "Aaron", "Gehrig", "Ruth", "Schmidt",

+ "Mays", "Cobb", "DiMaggio", "Williams", "Foxx")

Assume that each purchased card is equally likely to be one of the values
in cards. Assuming independent draws, a purchase of 20 cards can be con-
sidered a random sample taken with replacement from this vector. This is
accomplished by the sample function; the arguments are the “population”
vector cards, the size of the sample (20), and replace=TRUE, indicating that
the sample is to be taken with replacement. We display the 20 cards that are
purchased.

> samp.cards = sample(cards, size=20, replace=TRUE)

> samp.cards

[1] "Foxx" "DiMaggio" "Aaron" "Schmidt" "DiMaggio"

[6] "Mays" "Mays" "Cobb" "Mantle" "Foxx"

[11] "Schmidt" "Mays" "DiMaggio" "Foxx" "Gehrig"

[16] "Schmidt" "Mantle" "DiMaggio" "Mays" "Foxx"

We note that we obtained some duplicates – for example, we got four
DiMaggio’s and four Foxx’s. Did we purchase a complete set? One way to
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Fig. 11.5 Monte Carlo estimates of the probability of no matching hats as a function
of the number of hats n.
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check is to apply the unique function that finds the unique values in the
vector, and then use the length function to compute the length of this vector.

> unique(samp.cards)

[1] "Foxx" "DiMaggio" "Aaron" "Schmidt" "Mays"

[6] "Cobb" "Mantle" "Gehrig"

> length(unique(samp.cards))

[1] 8

Here we did not purchase a complete set, since there were only eight unique
cards out of a possible ten.

11.4.2 Writing a function to perform the simulation

In general, suppose that a complete set consists of n cards, m cards are
purchased, and we are interested in the probability that a complete set is
obtained. Our author was actively buying baseball cards in 1964 to complete
a Topps set consisting of 586 cards. If he purchased 3000 cards, what is
the chance he would obtain a complete set? We write a function collector

that simulates this process. The complete set is represented by the vector
consisting of the integers from 1 to n. We use the sample function to take
the sample of m cards. The ifelse function is used to check if we have
purchased a complete set; if the number of unique cards in our sample is
equal to n, the function returns “yes,” otherwise the function returns “no.”

collector=function(n,m){

samp.cards = sample(1:n, size=m, replace=TRUE)

ifelse(length(unique(samp.cards)) == n, "yes", "no")

}

To simulate this experiment once, this function is applied with the arguments
n = 586 and m = 3000:
> collector(586, 3000)

[1] "no"

In this experiment, the outcome is “no” – the author did not get a complete
set.

To see if the author was unlucky, we use the replicate function to repeat
this process for 100 experiments. We use the table function to summarize
the outcomes.

> table(replicate(100, collector(586, 3000)))

no yes

97 3

In these 100 experiments, a complete set was found three times and the
estimated probability of purchasing a complete set is 3/100 = 0.03.
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11.4.3 Buying an optimal number of cards

Let’s make this problem a little more interesting. Suppose our card collector
is reluctant to purchase an arbitrarily large number of cards to be sure to
get a complete set. Suppose that the cards from the bubble gum packs cost a
nickel each, but he has the opportunity to purchase individual cards from a
dealer at a cost of 25 cents each. Suppose our collector plans on purchasing a
fixed number of cards with the intention of purchasing “missing” cards from
the dealer to complete the set. On average, what is the cost of this plan? Is
there an optimal number of cards purchased that will minimize the expected
cost?

We write a function collect2 to simulate this card buying process. The
function has a single argument n.purchased, the number of cards purchased.
We assume the cost of a “random” card is cost.rcard = 0.05 and the cost
of a card from the dealer is cost.ncard = 0.25. As in the earlier simulation,
we sample n.purchased cards with replacement from the complete set rep-
resented by the integers from 1 to 586. We compute the number of (random)
unique cards we collect n.cards and the number of cards we haven’t collected
n.missed. Assuming we purchased the remaining cards from the dealer, the
random total cost will be

COST = cost.rcard×n.purchased+cost.ncard×n.missed.

collect2 = function(n.purchased){

cost.rcard = 0.05

cost.ncard = 0.25

samp.cards = sample(1:586, size=n.purchased, replace=TRUE)

n.cards = length(unique(samp.cards))

n.missed = 586 - n.cards

n.purchased * cost.rcard + n.missed * cost.ncard

}

Let’s illustrate using the function collect2 in several ways. Suppose one
decides to purchase 800 cards. What is the expected cost? We can repeat the
random process of purchasing cards using the replicate function – below
this process is repeated 500 times and the vector of total costs is stored in
the variable costs. The distribution of random costs is summarized by the
summary function.

> costs = replicate(500, collect2(800))

> summary(costs)

Min. 1st Qu. Median Mean 3rd Qu. Max.

69.5 76.0 77.2 77.3 78.8 83.8

We see the cost of buying 800 cards has a 50% chance of falling between
$76.00 and $78.80. The expected cost of buying 800 cards is estimated by the
sample mean of $77.30.

Since we are primarily interested in the expected cost, we write a new func-
tion expected.cost that takes 100 samples of cards, each of size n.purchased
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and computes the average total cost. Note that the function replicate is
used to do the repeated simulations and the mean function finds the mean of
the vector of total costs.

expected.cost = function(n.purchased)

mean(replicate(100, collect2(n.purchased)))

Since we are interested in seeing how the total cost varies as a function of
the number purchased, we define a vector N containing plausible numbers of
cards to purchase from 500 to 1500. Using the sapply function, we apply the
function expected.cost to each of the values in N and the resulting average
costs are placed in the vector ECOST. A plot of the expected cost against the
number of cards purchased is constructed in Figure 11.6. (The grid function
adds an overlaid grid to the display to help locate the minimum value of the
function.)

> N=500:1500

> ECOST = sapply(N, expected.cost)

> plot(N, ECOST, xlab="Cards Purchased",

+ ylab="Expected Cost in Dollars")

> grid(col="black")

From the graph, the expected cost appears to be minimized at approximately
950 cards. So the optimal number of cards to purchase is about 950 and the
expected cost using this strategy is about $76.50. If we decide instead to
purchase 1200 cards, the expected cost would be about $79.
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Fig. 11.6 Expected total cost of completing a baseball card collection as a function
of the number of “random” cards purchased where the expected cost is computed by
a Monte Carlo experiment.
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11.5 Patterns of Dependence in a Sequence

Example 11.4 (Streaky hitting in baseball).
Sports fans are fascinated with athletes who exhibit patterns of extreme

performance. Athletes go through periods of time where they are performing
unusually well or unusually poorly, and scorekeepers keep records of these
extreme patterns. In the game of baseball, a batter wishes to get a base hit
during a game, and record keepers keep track of the number of consecutive
games where a player gets a base hit – this is called a hitting streak. During
the 2006 baseball season, Chase Utley of the Philadelphia Phillies had a
hitting streak of 35 games which is one of the best hitting streaks in baseball
history.

But how “significant” is Utley’s 35-game hitting streak? Chase Utley was
a pretty good hitter during this season so one would expect him to have long
hitting streaks. In addition, long runs of heads or tails can be observed in
repeated flips of a fair coin. So perhaps Utley’s 35-game hitting streak was
not as significant as it appears. We will use a Monte Carlo simulation to
better understand the patterns of streaky hitting in baseball.

11.5.1 Writing a function to compute streaks

Suppose we represent a baseball player’s hitting success or failures in a series
of games by a sequence of 0’s and 1’s, where 1 represents a base hit in that
particular game. Consider a hypothetical hitter who plays in 15 games and
observes the following sequence of games with hits and no hits that we store
in the vector y.

> y = c(1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1)

We are interested in recording the lengths of all hitting streaks in this se-
quence. First, we add a 0 to the beginning and end of the sequence to bracket
the strengths and where is a logical vector which is TRUE or FALSE if a 0 or
1 is observed. The vector loc.zeros records the locations in the sequence
where 0’s are observed.

> where = (c(0, y, 0) == 0)

> n = length(y)

> loc.zeros = (0:(n+1))[where]

> loc.zeros

[1] 0 8 9 11 16

We see that this particular hitter did not get a hit in games 0, 8, 9, 11, and
16. The lengths of the hitting streaks are found by computing the differences
in this sequence, subtracting one, and removing the values that are equal to
zero.
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> streak.lengths = diff(loc.zeros) - 1

> streak.lengths = streak.lengths[streak.lengths > 0]

> streak.lengths

[1] 7 1 4

This player had hitting streaks of length 7, 1, and 4. We can find the longest
hitting streak by taking the max of this vector:

> max(streak.length)

[1] 7

We create a function longest.streak that uses the above commands to
compute the longest streak of 1’s in a binary vector y.

longest.streak=function(y){

where = c(0, y, 0) == 0

n = length(y)

loc.zeros = (0:(n+1))[where]

streak.lengths = diff(loc.zeros) - 1

streak.lengths = streak.lengths[streak.lengths > 0]

max(streak.lengths)

}

To check this function, we read in the file “utley2006.txt” that contains the
game by game hitting data for Chase Utley for the 2006 baseball season; this
data is stored in the data frame dat. The variable H gives the number of hits
in each game. We create the binary vector by first finding a logical vector
indicating if H is positive and then using the as.numeric function to convert
TRUEs and FALSEs to 1’s and 0’s. We apply the function longest.streak to
the sequence utley and we confirm that Utley had a 35-game hitting streak
this season.

> dat = read.table("utley2006.txt", header=TRUE, sep="\t")

> utley = as.numeric(dat$H > 0)

> longest.streak(utley)

[1] 35

11.5.2 Writing a function to simulate hitting data

Now we are ready to use a Monte Carlo simulation to understand the “signifi-
cance” of Utley’s hitting streak. In this particular season, Utley played in 160
games and hit in 116 of these games. Suppose that these 116“hit games”were
randomly distributed throughout the sequence of 160 games. What would be
the length of the longest streak of this random sequence? This is easily an-
swered by a simulation that we code in a function random.streak with the
binary sequence y as an argument. This function first randomly permutes the
binary sequence using the sample function; the random sequence is stored in
the vector mixed.up.y. Then the longest streak of 1’s in the random sequence
is computed using the function longest.streak.
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random.streak=function(y){

mixed.up.y = sample(y)

longest.streak(mixed.up.y)

}

We use the replicate function to repeat this simulation in random.streak
10,000 times using Utley’s hitting sequence. We store the longest hitting
streaks in these 10,000 simulations in the vector L. We tabulate the values of
L, graph the tabulated values using the plot function, and overlay Utley’s
longest hitting streak of 35 by a vertical line.

> L = replicate(100000, random.streak(utley))

> plot(table(L))

> abline(v=35, lwd=3)

> text(38, 10000, "Utley")
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Fig. 11.7 Graph of the length of the longest hitting streaks of sequences based on
random permutations of Utley’s hitting sequence. Utley’s actual longest hitting streak
of 35 games is displayed.

What have we learned? If the games where Utley received a hit were ran-
domly distributed through the 160 games of the season, then from Figure
11.7 we see that longest hitting streaks from 8 to 18 are quite common and a
hitting streak of 11 games is most likely. Utley’s 35 game hitting streak is in
the far right tail of this distribution, indicating that his hitting streak would
be very rare among random sequences. One can measure“how extreme”by es-
timating the probability that a random sequence would have a hitting streak
of length 35 or greater. In our particular simulation, one observed 7 hitting
streaks of length 35 or greater so the estimated probability is
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P (hitting streak ≥ 35) ≈ 7
10000 = 0.0007.

For a hitter of Utley’s ability, the estimated chance of observing a hitting
streak at least 35 games is only 0.0007. This conclusion should be made with
some caution, since we chose Utley’s hitting record since he had a long hitting
streak. The chance that some hitter during the 2006 baseball would have a
hitting streak of 35 or more games is a larger probability, since there are more
outcomes involved in the computation.

Exercises

11.1 (Playing Roulette). Suppose one plays roulette repeatedly at a
casino. In a single play, one bets $5 on “red”; the player wins $5 with proba-
bility 18/38 and loses $5 with probability 20/38. If the roulette game (with
the same bet) is played 20 times, then the individual play winnings can be
viewed as a sample of size 20 selected with replacement from the vector (5,
−5), where the respective probabilities are given in the vector (18/38, 20/38).
These play winnings can be simulated using the function sample with the
prob vector that gives the sampling probabilities.

sample(c(5, -5), size=20, replace=TRUE,

prob=c(18 / 38, 20 / 38))

a. Write a short function to compute the sum of the winnings from 20 plays
at the roulette wheel. Use the replicate function to repeat this “20 play
simulation” 100 times. Find the approximate probability that the total
winning is positive.

b. The number of winning plays is a binomial random variable with 20 trials
where the probability of success is 18/38. Using the dbinom function, find
the exact probability that your total winning is positive and check that
the approximate answer in part (a) is close to the exact probability.

c. Suppose you keep track of your cumulative winning during the game and
record the number of plays P where your cumulative winning is positive.
If the individual play winnings are stored in the vector winnings, the
expression cumsum(winnings) computes the cumulative winnings, and the
expression sum(cumsum(winnings)>0) computes a value of P . Adjust your
function from part (a) to compute the value of P . Simulate the process
500 times and construct a frequency table of the outcomes. Graph the
outcomes and discuss which values of P are likely to occur.

11.2 (Checking hats). Suppose that men in the old days wore only two
types of hats, say black and grey, and hats of a particular type are indis-
tinguishable. Assume 20 men with hats visit the restaurant and half of the
men are wearing each type of hat. The hats are randomly mixed, and we are



274 11 Simulation Experiments

interested in the number of men who leave the restaurant with the correct
hat.

a. Modify the function scramble.hats to compute the number of correct
matches in this setting. (The only change is the definition of the vector
hats – if one represents a black hat and a grey hat by 1 and 2, respectively,
then hats consists of ten 1’s and ten 2’s.)

b. Using the function replicate, repeat this simulation for 1000 trials. Store
the number of matches for the 1000 experiments in the vector matches.

c. From the simulated values, approximate the probability that 10 or more
men receive the correct hats. Also, find the expected number of correct
matches.

11.3 (Birthday problem). Suppose you have a class of n students and
you’re interested in the probability that at least two students in the class
share the same birthday. If one assumes that each birthday is equally likely
from the set {1, 2, ..., 365}, then collecting birthdays can be viewed as a
sample of size n chosen with replacement from the set.

a. Write a function with argument n that samples n birthdays and computes
the number of unique birthdays observed.

b. Using the replicate function, repeat this simulation 1000 times for the
special case of n = 30 students.

c. From the output, approximate the probability that there is at least one
matching birthday among the 30 birthdays.

d. It can be shown that the exact probability of a birthday match is given by

P (match) = 1− 365P30
36530 ,

where N Pk is the number of ways of arranging a sample of k of N distinct
items. Compare the approximate probability in part (d) with the exact
probability.

e. The R function pbirthday, with argument n, computes the (approximate)
probability of at least one match among n birthdays. Use this function to
check your answer in part (d).

11.4 (Streakiness). In the chapter, the focus was on the length of the
longest streak in a binary sequence. Another way to measure streakiness in a
sequence is the number of switches from 0 to 1 or from 1 for 0. For example,
if the binary sequence is given by

0 1 0 0 0 1 0 0 1

there are three switches from 0 to 1 and two switches from 1 to 0 and so the
total number of switches is equal to five. If y is a vector containing the binary
sequence, then the R expression

sum(abs(diff(y)))
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will compute the number of switches.

a. Construct a function switches that computes the number of switches for
a binary vector y. Test this function by finding the number of switches in
Chase Utley’s game hitting sequence for the 2006 season.

b. By making a slight change to the function random.streak, construct a
function that computes the number of switches for a random permutation
of the 1’s and 0’s in the vector y.

c. Use the replicate function to repeat the random permutation in part (b)
for 10,000 simulations. Construct a histogram of the number of switches
for these 10,000 random sequences. Is the number of switches in Utley’s se-
quence consistent with the values generated from these random sequences?
Using the number of switches statistic, did Utley display unusually streaky
behavior during this season?

11.5 (Collecting state quarters). In 1999, the United States launched the
50 State Quarters program where each of the 50 states was honored with a
special quarter. Suppose you purchase 100“state”quarters where each quarter
is equally likely to feature one of the 50 states.

a. Write a function using the sample function to simulate the purchase of 100
quarters and record the number of unique quarters that are purchased.

b. Using the replicate function, repeat this process for 1000 purchases.
Construct a table of the number of unique quarters you obtain in these
1000 simulations. Use this table to estimate the probability that you obtain
at least 45 unique quarters.

c. Use the output from part (b) to find the expected number of unique quar-
ters.

d. Suppose you are able to complete your quarter set by purchasing state
quarters from a coin shop for $2 for each quarter. Revise your function
to compute the total (random) cost of completing the quarter set. Using
the replicate function, repeat the quarter-purchasing process 1000 times
and compute the expected cost of completing your set.

11.6 (How many students are excluded?). In [35], Frederick Mosteller
mentioned the following interesting probability question that can be ad-
dressed by a simulation experiment. Suppose there is a class of 10 students
and each student independently chooses two other class members at random.
How many students will not be chosen by any other students?

Here is an outline how one can simulate this experiment, followingMosteller’s
suggestions:

� One represents the students by a vector consisting of the integers 1 through
10.

students = 1:10

� One represents the outcomes of choosing students by a matrix m of 10 rows
and 10 columns consisting of zeros and ones. The (i, j) entry in the matrix
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is equal to one if student i chooses student j. One can initially define the
matrix with all zeros by the R code.

m = matrix(0, nrow=10, ncol=10)

� Student j will choose two other students from the vector students exclud-
ing the value j. This can be done by the sample function – the students
who are sampled are stored in the vector s.

s = sample(students[-j], size=2)

� In the matrix m, one records the selected students by assigning the columns
labeled s in the jth row with the value 1.

m[j, s] = c(1, 1)

� If the above procedure is repeated for each of the 10 students, then one
can represent all selections by the matrix m. Here is the matrix for one
simulation.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 1 0 0 1 0 0 0 0 0

[2,] 0 0 0 1 0 0 1 0 0 0

[3,] 0 0 0 0 0 0 0 1 0 1

[4,] 1 0 0 0 1 0 0 0 0 0

[5,] 0 1 0 0 0 1 0 0 0 0

[6,] 0 0 0 1 1 0 0 0 0 0

[7,] 0 1 0 0 0 1 0 0 0 0

[8,] 0 0 1 0 0 1 0 0 0 0

[9,] 0 1 0 0 0 0 1 0 0 0

[10,] 1 0 0 0 1 0 0 0 0 0

By looking at the sum of the matrix over rows, one can see how many
students were not chosen by any students. (In this example, one student
was not chosen.)

a. Write a function mosteller that will run a single simulation of this ex-
periment.

b. Using the replicate function, repeat this simulation for 100 iterations.
c. Use the table function to tabulate the number of students not chosen over

the 100 experiments.
d. What is the most likely number of students not chosen? What is the ap-

proximate probability of this outcome?



Chapter 12

Bayesian Modeling

12.1 Introduction

There are two general approaches in statistical inference. In the inference
and regression chapters, we have discussed the familiar frequentist inferen-
tial methods such as the t confidence interval, the chi-square test, and the
ANOVA test of equality of means. These are called frequentist methods since
one evaluates the goodness of these methods by their average performance in
repeated sampling. For example a 90% confidence interval has the property
that the random interval will cover the unknown parameter 90% of the time
in repeated sampling. This chapter introduces the second general approach
to inference, the Bayesian method.

Bolstad [4] and Hoff [23] present respectively elementary and intermediate
level introductions to Bayesian thinking. Albert [1] illustrates the use of R to
perform Bayesian computations.

Example 12.1 (Deciding authorship).
This chapter discusses the basic components of a Bayesian analysis using

data from a famous Bayesian analysis from Mosteller and Wallace [36] about
literary style. The Federalist Papers were a series of essays, written in 1787-
1788, to persuade the New York state citizens to ratify the U.S. Constitution.
Of the essays, it is known that Alexander Hamilton was the sole author of
51, James Madison was the sole author of 14, and the two collaborated on
another three. The authorship of the remaining 12 papers has been disputed,
and the main problem addressed by Mosteller and Wallace was to determine
the author of the disputed papers.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__12,
© Springer Science+Business Media, LLC 2012
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12.2 Learning about a Poisson Rate

A first step in the authorship study is to examine the frequency of word use
of the authors Alexander Hamilton and James Madison. One useful class of
words in this study are so-called function words – these are words such as a,
an, by, to, and than that are used to connect or amplify nouns and verbs.

Mosteller and Wallace divided a large amount of the writings of James
Madison into blocks of 1000 words, and the number of occurrences of the
word from was observed in each block. Table 12.1 summarizes the frequency
of use of the word from from 262 blocks of writing. From the table, we see
that there were 90 blocks where the word did not appear, 93 blocks where
the word appeared exactly one time, 42 blocks where the word appeared two
times, and so on.

Table 12.1 Frequency table of the occurrences of the word from in 262 blocks of
text from the writings of James Madison.

Occurrences
0 1 2 3 4 5 6

observed 90 93 42 17 8 9 3

Suppose y represents the number of occurrences of the word from in a
randomly selected block of text fromMadison’s writing. A popular probability
model for y is the Poisson distribution with rate λ with probability function
given by

f(y|λ) = exp(−λ)λy

y! , y = 0,1,2, ...

If this Poisson model is a suitable fit to these data, then one can measure
Madison’s tendency to use this particular word by the rate parameter λ. Since
λ is the mean of the Poisson distribution, λ represents the average number
of occurrences of this particular word in many blocks of Madison writings.

12.3 A Prior Density

In the Bayesian approach, one uses the language of subjective probability
to represent uncertainty about unknown parameters. One uses subjective
probability to express one’s degree of belief about the truth of a “one-time
event”such as the event that one will get married in five years or that man will
visit the planet Mars in the next 20 years. Subjective probability is personal
– an instructor’s belief that a student will get an A in a class will likely
be different than the student’s belief about the same event. Also, a person’s
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subjective probability of an event can change, especially when she obtains
new information. In fact, Bayes’ rule gives us a formal rule for determining
how one’s probabilities will change after observing new information.

Here the unknown parameter is λ that represents the mean number of
occurrences of the word from in a block of writing. Since λ is unknown,
Bayesians regard λ as a random quantity and one’s knowledge about this
parameter is represented using a continuous probability density g(λ). This
is called a prior density since it represents one’s beliefs about the parameter
prior or before any data is collected.

How does one find the prior density? In this example, the researcher is
the person doing the Bayesian inference and she has some beliefs about the
location of this parameter that are represented by a prior density. The re-
searcher has analyzed patterns of word use for authors who lived in the same
era as James Madison and she has some knowledge about possible values
for λ. Specifically, she believes that Madison’s mean rate of from’s is equally
likely to be smaller or larger than 1.0 and she is confident, with probability
0.9, that the mean rate is smaller than 1.5. Using symbols, she believes that

P (λ < 1.0) = 0.5, P (λ < 1.5) = 0.9.

After the researcher states her prior beliefs, next she wishes to construct
a prior density g(λ) that matches this information. There are many possible
choices for this density. The gamma family is a convenient and well-known
probability density for a continuous positive variable; the gamma density with
shape a and rate b is defined by

g(λ) = baλa−1 exp(−bλ)
Γ (a) , λ > 0.

After some trial and error, she finds that the particular gamma density with
shape a = 8.6 and rate b = 8.3

g(λ) = 8.38.6λ8.6−1 exp(−8.3λ)
Γ (8.6) , λ > 0,

has, approximately, a median of 1.0 and a 90th percentile of 1.5, and so
this density is a reasonable approximation to the researcher’s beliefs about
Madison’s average use of the word from.

12.4 Information Contained in the Data: the Likelihood

There are two sources of information about the rate parameter λ – the prior
information modeled by the density g(λ) and the data. One represents the
information contained in the data by the likelihood function.
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Recall that we observe the number of occurrences y of the specific word
in many blocks of text. Assuming independence between observations on
different blocks, the probability of observing a collection of y values is given
by

Prob(data|λ) =
∏

y

f(y|λ),

where f(y|λ) is the Poisson density with rate λ. Substituting the Poisson
formula, we obtain

Prob(data|λ) =
∏
y

f(y|λ)

=
∏
y

exp(−λ)λy

y!

= C exp(−nλ)λs,

where n is the number of blocks, s is the total number of words counted,
and C is a positive constant. In the data displayed in Table 12.1, we see that
n = 262 and s = 323, and this probability is given by

Prob(data|λ) = C exp(−262λ)λ323.

The likelihood is the probability of the data outcome Prob(data|λ) viewed
as a function of the parameter λ. We represent the likelihood by the symbol
L – here

L(λ) = exp(−262λ)λ323.

The likelihood function tells us what values of the parameter λ are likely and
not likely given the observed data set. This function is helpful in comparing
the relative plausibility of different parameter values (given the data), and
multiplying the likelihood by any positive constant won’t change this relative
comparison.

It is informative to plot the likelihood as a function of the parameter λ.
Using the curve function, the likelihood L(λ) is displayed for values of λ
between 0.9 and 1.6. (See Figure 12.1.)

> curve(exp(-262 * x) * x^323, from=0.9, to=1.6,

+ xlab="Lambda", ylab="Likelihood")

We see from the figure that the parameter value λ = 1.2 is close to the most
likely parameter value given this particular data, and, in contrast, parameter
values of λ = 1.0 and λ = 1.5 are not likely values, which means that these
parameter values are not consistent with the observed data.
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Fig. 12.1 Likelihood function for the rate of using the word from in Madison’s
writings.

12.5 The Posterior and Inferences

12.5.1 Computation of the posterior

The prior density g(λ) reflect the expert’s opinion about the rate parameter
before any data is collected. After the data has been observed, one’s opinions
about the parameter will change – the new or updated density is called the
posterior density. Using Bayes’ rule, the posterior density is found by the
simple formula

posteriordensity ∝ likelihood×priordensity.

In our example, the expert’s prior density was given (ignoring constants) by

g(λ) ∝ λ8.6−1 exp(−8.3λ),

and the likelihood function is given by

L(λ) ∝ exp(−262λ)λ323.

So by multiplying the prior density and the likelihood, the posterior density
is given by
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g(λ|data) ∝ [
λ8.6−1 exp(−8.3λ)

]× [
exp(−262λ)λ323]

= λ331.6−1 exp(−270.3λ)

The posterior density reflects the updated or current beliefs about the rate
parameter λ after observing the data. All inferences about the parameter, in-
cluding point and interval estimates, are based on different summaries of this
density. We illustrate Bayesian inference computations using several meth-
ods. The first computational method recognizes that the posterior density is
a familiar functional form and one can summarize the density using special
R functions for this functional form. The second computational method is
based on simulation and motivates a general strategy for summarizing a wide
range of posterior densities.

12.5.2 Exact summarization of the posterior

The gamma density has the functional form

f(y) ∝ λa−1 exp(−bλ), y > 0,

where a and b are respectively the shape and rate parameters. Comparing
this functional form with our posterior density in our example, we recognize
that the posterior for λ is a gamma density with shape a = 331.6 and rate
b = 270.3. Using the R probability functions for the gamma distribution, it is
straightforward to summarize the posterior density.

One communicates a Bayesian inference by simply plotting the posterior
density of the parameter. A graph of the posterior density of λ can be con-
structed using the curve function and the gamma density function dgamma.
By trial and error, the to=1.0 and from=1.5 arguments in curve produce a
good display of the posterior density. We superimposed the likelihood func-
tion on this graph using the curve function with the add=TRUE option. (See
Figure 12.2.) Note that the likelihood and posterior density are very similar,
indicating that the posterior is controlled mainly by the information in the
data and the prior information has a minimal effect on the inference.

> curve(dgamma(x, shape=331.6, rate= 270.3), from=0.9, to=1.6)

> curve(dgamma(x, shape=324, rate=262), add=TRUE, lty=2, lwd=2)

> legend("topright", c("Posterior", "Likelihood"), lty=c(1, 2),

+ lwd=c(1, 2))

A Bayesian point estimate of a parameter is a summary of the posterior
density. One useful point estimate of the rate parameter λ is the posterior
median – this is the value λM such that

P (λ < λM ) = 0.5.
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Fig. 12.2 Posterior and the likelihood function for the rate of using the word from
in Madison’s writings.

We find the posterior median using the gamma quantile function qgamma with
inputs 0.5 (the probability) and the shape and rate parameters.

> qgamma(0.5, shape=331.6, rate=270.3)

[1] 1.225552

Our opinion after observing the data is that Madison’s rate is equally likely
to be smaller or larger than 1.226.

A Bayesian interval estimate for the rate parameter is an interval (λLO,λHI)
that contains λ with a specific probability γ:

P (λLO < λ < λHI) = γ.

Suppose we want a 90% Bayesian interval where γ = 0.90. An “equal-tails”
interval is found by computing the 5th and 95th percentiles of the gamma
posterior density using a second application of the qgamma function:

> qgamma(c(0.05, 0.95), shape=331.6, rate=270.3)

[1] 1.118115 1.339661

The posterior probability that Madison’s rate parameter λ is in the interval
(1.118, 1.340) is 0.90.
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12.5.3 Summarizing a posterior by simulation

Simulation provides an attractive general method of summarizing a posterior
probability distribution. One simulates a large number of draws of the param-
eter from the posterior probability distribution and one performs Bayesian
inference by finding appropriate summaries of the simulated sample.

In our example, the posterior density is a gamma(331.6, 270.3) density, and
we can produce a simulated sample from the posterior density by sampling
from a gamma density. This is conveniently done using the R function rgamma.
A sample of 1000 draws from a gamma(331.6, 270.3) distribution is taken and
stored in the vector sim.post by the R code

> sim.post = rgamma(1000, shape=331.6, rate=270.3)

One can visualize the posterior density by constructing a histogram or
other type of density estimate on the sample of simulated draws. In the
following code, we construct a histogram and overlay the exact gamma density
(see Figure 12.3). The gamma density is a good match to the histogram, which
indicates that the simulated sample is a good representation of the posterior.

> hist(sim.post, freq=FALSE, main="", xlab="Lambda")

> curve(dgamma(x, shape=331.6, rate=270.3), add=TRUE)
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Fig. 12.3 Histogram of a simulated sample from the posterior distribution of Madi-
son’s rate parameter. The exact gamma posterior is drawn on the graph, showing
that the simulated sample seems to match the exact posterior.

One summarizes the posterior distribution of λ using data analysis meth-
ods on the sample of simulated draws from the posterior probability dis-
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tribution. The 5th, 50th and 95th quantiles of the posterior are found by
computing the corresponding sample quantiles of the simulated sample of
parameter values stored in sim.post.

> quantile(sim.post,c(0.05, 0.5, 0.95))

5% 50% 95%

1.118563 1.225402 1.338694

The posterior median is given by the sample median 1.225 and a 90% interval
estimate for λ is bracketed by the 5th and 95th quantiles (1.119, 1.339).

Comment: One notes that the posterior median and interval estimate using
the simulated draws are close to, but not exactly equal to the“exact”summary
values computed using the qgamma function. Actually this will typically be
the case. By simulating from the posterior distribution, we are introducing
some errors due to the simulation procedure. So why do we simulate? There
are a couple of good reasons. First, simulation provides an attractive way
of learning about a probability distribution since we can use data analysis
methods on the simulated sample to learn about the distribution. Second, we
will shortly see that good methods exist for simulating from any posterior
density (even those that are not convenient functional forms), so simulation
provides a general all-purpose method for Bayesian computation.

12.6 Simulating a Probability Distribution by a
Random Walk

12.6.1 Introduction

In our example, the posterior density turned out to be a convenient functional
form (the gamma distribution) and one could use built-in R functions such as
dgamma and qgamma to summarize the density. But in practice, the posterior
density is not a familiar functional form and so one needs a general-purpose
method for simulating from this distribution. In this section, we review one
popular algorithm, the Metropolis-Hastings (M-H) random walk algorithm.
In Chapter 13, we illustrate the use of this algorithm for simulating from a
general sampling density and here we discuss the use of the same algorithm
for simulating from an arbitrary probability distribution of one continuous
parameter.
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12.6.2 The Metropolis-Hastings random walk
algorithm

Let g(θ) denote the posterior density of interest. One simulates a random walk
through the probability distribution consisting of values θ(0),θ(1),θ(2), ... We
specify this random walk by specifying a starting value θ(0), and a rule for
moving from the tth value in the sequence θ(t) to the (t + 1)st value in the
sequence θ(t+1).

a. Starting at θ(t), simulate a candidate value θ∗ uniformly from the interval
(θ(t) −C,θ(t) +C), where C is an assigned constant determining the width
of the proposal density.

b. Compute the posterior density at the current value θ(t) and the candidate
value θ∗ – the values are g(θ(t)) and g(θ∗).

c. Compute the probability

PROB = min
(

1,
g(θ∗)
g(θ(t))

)
d. With probability PROB, the next value in the sequence is the candidate

value θ∗; otherwise the next value in the sequence is the current value θ(t).

This random walk is simulating a special form of Markov Chain. Under gen-
eral conditions, the sequence of simulated values θ(0),θ(1),θ(2), ... will con-
verge to a sample from the posterior density g(θ). This algorithm is very
similar to the random walk M-H algorithm described in Chapter 13. The
only difference is that the algorithm in Chapter 13 uses a symmetric normal
density to find the candidate and here we are using a uniform density.

In this algorithm, a candidate parameter value θ∗ is randomly drawn from
a neighborhood about the current value θ(t). One needs to specify a value of
the constant C that determines the width of this neighborhood. As we will
see in the example to follow, there is a range of suitable values of C that
will produce a simulated sample of draws that are approximately from the
posterior density.

A short function metrop.hasting.rw is written to implement this random
walk algorithm. (This function is very similar to the function of the same
name in Chapter 13.) Before one uses this function, one has to first write a
short function to compute the posterior density. For numerical accuracy, we
compute the logarithm of the posterior density. In our example, the posterior
density has a gamma form with shape 331.6 and rate= 270.3. The function
mylogpost is written to compute the logarithm of this gamma density. The
function has three arguments – the random parameter λ and the shape and
rate parameters. Note that we use the argument log = TRUE in the gamma
density dgamma to compute the logarithm of the density.

mylogpost = function(lambda, shape, rate)

dgamma(lambda, shape, rate, log=TRUE)
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The function metrop.hasting.rw has five arguments: the name of the
function logpost defining the logarithm of the posterior, the starting value
current in the algorithm, the neighborhood width constant C, the simulation
sample size iter, and any additional arguments needed in the function
logpost. Here the additional arguments will be the shape and rate of the
gamma density. Since this function is relatively short, it is instructive to
explain the code of the function, line by line.

� Using the function rep, a vector S is defined with all 0’s to store the
simulated draws. A variable n.accept is defined that will be used to count
the number of candidates that are accepted.

S = rep(0, iter); n.accept = 0

� For each iteration in the loop,

– we simulate a candidate θ∗ in a neighborhood about the current value
θ(t)

candidate = runif(1, min=current - C, max=current + C)

– we compute the probability of accepting the candidate
prob = exp(logpost(candidate, ...) - logpost(current, ...))

– we simulate a uniform random number – if the number is smaller than
the probability, accept="yes"; otherwise accept="no"
accept = ifelse(runif(1) < prob, "yes", "no")

– if we accept, then the new current value is the candidate; otherwise the
new current value remains the same value
current = ifelse(accept == "yes", candidate, current)

– we store the current value in the vector S and keep track of the number
of accepted candidates
S[j] = current; n.accept = n.accept + (accept == "yes")

� The function returns a list with two components: S is the vector of simu-
lated draws and accept.rate is the proportion of accepted candidates.

list(S=S, accept.rate=n.accept / iter)

The entire code for the function metrop.hasting.rw is displayed below.

metrop.hasting.rw = function(logpost, current, C, iter, ...){

S = rep(0, iter); n.accept = 0

for(j in 1:iter){

candidate = runif(1, min=current - C, max=current + C)

prob = exp(logpost(candidate, ...) - logpost(current, ...))

accept = ifelse(runif(1) < prob, "yes", "no")

current = ifelse(accept == "yes", candidate, current)

S[j] = current; n.accept = n.accept + (accept == "yes")

}

list(S=S, accept.rate=n.accept / iter)

}

For our example, recall that the function mylogpost contained the defi-
nition of the logarithm of the gamma posterior density. Suppose we wish to
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start the random walk at λ = 1, simulate 1000 values of the Markov Chain,
and use a scale value of C = 0.2. The final arguments to metrop.hasting.rw

are the shape and rate values used in the mylogpost the function.

> sim = metrop.hastings.rw(mylogpost, 1, 0.2, 1000, 331.6, 270.3)

After one runs the random walk, some checks need to be done to see if
the simulated draws are a “good” sample from the posterior density. In usual
practice, one constructs a trace plot, a scatterplot of the sequence of simulated
values θ(t) against the iteration number t. If there is not a strong dependence
pattern in the sequence and there is no general drift or movement across
iterations, then the sequence will likely be a good simulated sample from
the probability density of interest. Also one displays the acceptance rate, the
rate at which candidates are accepted. Generally, acceptance rates between
20 and 40 percent are believed to produce acceptable simulated samples in
the random walk M-H algorithm.

We illustrate the use of these checks for the algorithms for three different
choices of the scale constant C = 0.02,0.2,1.0. Each of the random walks was
run for 1000 iterations, each starting at the value λ = 1. Table 12.2 shows the
acceptance rates for the three algorithms. If one uses a small neighborhood
with C = 0.02, one is accepting practically all of the candidates; in contrast,
with the scale value C = 1.00, only 10% of the candidates are accepted.

Table 12.2 Acceptance rates for the random walk algorithm using three choices for
the scale C.

C Acceptance Rate
0.02 0.92
0.20 0.49
1.00 0.10

Figure 12.4 displays trace plots of the simulated samples for the three
choices of C. Note that the choice C = 0.02 with a large acceptance rate of 92%
displays a snake-like appearance. The simulated values are very correlated
and one does not quickly explore the region where the density has most of its
probability. In contrast, with the choice C = 1.0, the acceptance rate is 10%
and it is common for the trace plot to have regions where the algorithm stays
at the same value. To see which simulated sample is most accurate, Figure
12.5 displays density estimate plots of the simulated samples for the three
choices of C. The dashed line in each graph is the exact gamma posterior
density. The best simulated sample for representing the posterior density
appears to be the choice C = 0.2, followed by C = 1.0 and C = 0.02.

The Metropolis-Hastings random walk algorithm is a good general-purpose
algorithm for simulating from an arbitrary probability density. But it is not
automatic in that one needs to experiment with several choices of C and
use acceptance rates and trace plots to decide on an appropriate choice of
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Fig. 12.4 Trace plots of the simulated samples of the random walk algorithm using
three choices of the scale constant C.

C. If one has an estimate of the standard deviation σ of the density, then a
reasonable starting guess at the scale is C = 4σ.

12.6.3 Using an alternative prior

One attractive aspect of the Bayesian approach is that there is great flexi-
bility in the choice of models, and the random walk algorithm can be used
to simulate from a general Bayesian model. To illustrate, suppose a second
researcher has different beliefs about Madison’s rate of using the word from.
His best guess at λ is 2 and he is 95% confident that λ falls in the interval
(1.6, 2.4). He represents this information by a normal prior with mean 2 and
standard deviation 0.2. Using the “product of likelihood and prior” recipe,
the posterior density is given (up to a proportionality constant) by

g(λ|data) ∝ exp(−262λ)λ323 × exp
(

− (λ−2)2

2(0.2)2

)
.

This is not a conjugate problem as the posterior density is not a member
of a convenient functional form like the gamma. But this is not a problem
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Fig. 12.5 Density estimate plots of the simulated samples of the random walk al-
gorithm using three choices of the scale constant C. The dashed lines in each graph
correspond to the exact gamma density.

if we use our random walk simulation approach to summarize the posterior
density. A function for computing the log posterior with the normal prior
is displayed below. Since the likelihood is a gamma density with shape 324
and rate 262, we program the log likelihood using the dgamma function with
the log=TRUE and the dnorm function with the log=TRUE option is used to
program the log prior.

mylogpost = function(lambda){

dgamma(lambda, shape=324, rate=262, log=TRUE) +

dnorm(lambda, mean=2.0, sd=0.2, log=TRUE)

}

As an exercise, one is invited to use the function metrop.hasting.rw to
simulate a sample from the posterior density.

12.7 Bayesian Model Checking

In our example, we have been assuming that the number of occurrences of
from in a block of Madison’s writing has a Poisson distribution. The validity
of our inferences rests in our assumptions in the model that includes the
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assumption that we have Poisson sampling and that our beliefs about the
rate parameter can be represented using the prior density g(λ). But how do
we check if the model assumptions are reasonable? Our model checking is
based on the predictive distribution which is defined in the next section.

12.7.1 The predictive distribution

Suppose we have discovered a new sample of Madison’s writings and we are
interested in predicting the number of times the word from appears in this
new sample. We denote this number as y∗ – we use the extra asterisk to refer
to future data or data that has not already been observed. The values of y∗
are unknown and the probability distribution for this future data is called
the predictive distribution.

Suppose we assume that, conditional on the rate λ, the future count y∗
has a Poisson distribution. Also assume that the current beliefs about the
rate λ are represented by a probability density g(λ). Then one can simulate
a value from the predictive density f(y∗) by first simulating a rate from the
density g(λ) – call the simulated value λ∗. Then y∗ is simulated from the
Poisson density f(y∗|λ∗).

In our example, when we used a gamma prior, the posterior density for λ
was gamma(331.6, 270.3). Suppose we’d like to predict the number of from’s
y∗ in a new block of writing. Using R code, we can simulate one value of
y∗ using the rgamma function to simulate a value of λ from its posterior and
then using rpois and the simulated draw λ∗ to simulate a value of y∗.
> lambda = rgamma(1, shape=331.6, rate=270.3)

> ys = rpois(1, lambda)

This simulated draw is said to come from the posterior predictive distribution
since we are using the posterior distribution g(λ|data) to model our current
beliefs about the rate parameter.

Suppose we were interested in predicting the number of from’s in 262 new
blocks of writing. We obtain a vector of word counts in this future sample
by first simulating a single draw lambda from a gamma density and then
simulating a sample of 262 draws from a Poisson distribution with this value
of lambda.

> lambda = rgamma(1, shape=331.6, rate=270.3)

> ys = rpois(262, lambda)

We use the table function to tabulate the count values.

> table(ys)

ys

0 1 2 3 4 5

65 103 66 20 4 4
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In 262 future blocks of writings, we predict that 65 of these blocks have none
of this particular word, 103 blocks have exactly one word, 66 have two words,
etc.

12.7.2 Model checking

When we predict the number of from’s in 262 blocks of writings, we notice
that there are some differences between the counts in the observed sample
and the counts in the predicted sample. For example, there were 90 blocks
in our observed sample where we didn’t find the word, and only 65 blocks
in the predicted sample where we did not observe the word. Also in our
sample, there were 3 blocks which had 6 from’s and there was no block in
our predicted sample with more than 5 occurrences of the word. Of course,
we just simulated a single predicted sample and compared with the observed
data. But if simulated predictions from the model consistently look different
from the observed counts, then this would make us question if our model is a
good fit to the data. (Gelman et al. [19] give a general discussion of the use
of the predictive distribution to check a Bayesian model.)

These observations motivate a method of checking our Bayesian model.
We simulate a number of predicted samples from the posterior predictive
distribution, where the size of each predictive sample is the same as the
observed data. We compare these predictive samples with the observed data.
If we see a pattern where each predictive dataset differs from the observed
counts, then this suggests a lack-of-fit problem with our model.

We perform this comparison of observed with simulated data using the
following R code. First a function sim.y is written to simulate and tabulate
a sample of from’s in 262 writings from the posterior predictive distribution.

sim.y = function(){

lambda = rgamma(1, shape=331.6, rate=270.3)

ys = rpois(262, lambda)

H = hist(ys, seq(-.5,9.5,1), plot=FALSE)

data.frame(y=H$mids, f=H$counts)

}

Then we create a data frame containing the observed frequency counts and
the simulated frequency counts from eight draws from the posterior predic-
tive distributions. The xyplot function from the lattice package is used to
display histograms of the values of y∗ from the actual data and these eight
simulated samples. (See Figure 12.6.)

> D = data.frame(Type="Obs", y=c(0:6),

+ f = c(90, 93, 42, 17, 8, 9, 3))

> for(j in 1:8){

+ sim.out = sim.y()

+ D = rbind(D, data.frame(Type=paste("Sim",j),

+ y=sim.out$y, f=sim.out$f))
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+ }

> library(lattice)

> xyplot(f ~ y | Type, data=D, type="h", lwd=3)

Generally, the histograms of the simulated distributions look similar to the
observed data histogram. But if one focuses on the extreme values, one notes
that is pretty uncommon for the simulated counts to be 4 or larger, and recall
that there were 20 occurrences of 4 or more from’s in the observed blocks of
text.
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Fig. 12.6 Histograms of eight samples from the posterior prediction distribution of
the number of from’s in a future sample. The histogram of the observed data is shown
in the lower left section of the plot.

Based on these comparisons between simulated predicted data and actual
data, we think of a way of measuring the difference between the predicted
and actual data distributions. Since the observed data seems to have more
extreme values, we decide on focusing on the “checking function”

T = number of y′s where y ≥ 4.

For our data, the number of counts at least as large as 4 is

Tobs = 8+9+3 = 20.
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Is it unusual to observe 20 blocks of writing with 4 or more from’s in pre-
dictions from our model? We answer this question by simulating 1000 samples
from the posterior predictive distribution. For each sample, we compute the
value of T , obtaining a sample of 1000 values of T from its posterior pre-
dictive distribution. We construct a histogram of these simulated values and
compare this distribution with the observed value of T , Tobs. If Tobs is in the
tail portion of this distribution, this indicates that the observed data is not
consistent with predictive simulations from the model, and we should look
for an alternative better-fitting model. Figure 12.7 displays a histogram of T
from our 1000 simulations. We see that a typical value of T is about 9 and it
is very likely that T falls between 4 and 16. But, as the graph indicates, we
observed a value of Tobs = 20 which is in the far right tail of the distribution.
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Fig. 12.7 Posterior predictive distribution of blocks of “four or more from’s” in
Madison’s writings. The vertical line corresponds to the number of blocks of four or
more from’s in the observed data.

Using this model checking method, we see that the observed counts of the
specific word in Madison’s blocks of writings has more variability that we
would predict with this Poisson sampling model and the gamma prior. Since
the likelihood function has the most impact on the posterior distribution, the
main problem with our model appears to be the Poisson assumption and we
need to look for an alternative sampling model that can accommodate this
extra variability.



12.8 Negative Binomial Modeling 295

12.8 Negative Binomial Modeling

12.8.1 Overdispersion

Our basic assumption was that the number of occurrences y of a specific word
(like from) follows a Poisson distribution with mean λ. One property of the
Poisson distribution is that the mean and variance are equal:

V ar(y) = E(y).

In our example of counts in blocks of Madison’s writing, one can estimate
V (y) and E(y) by the sample variance and sample mean and one finds

s2 = 1.83, ȳ = 1.23.

Here there is good evidence that the counts are overdispersed which means
in this case that the variance exceeds the mean:

V (y) > E(y).

In this situation, the Poisson sampling assumption seems unreasonable and
one wishes to fit an alternative sampling distribution that allows for overdis-
persion.

One distribution that allows for overdispersion is the negative binomial
with probability function

p(y|a,b) = Γ (y +a)
Γ (a)y!

ba

(b+1)a+y
, y = 0,1,2, ...

where Γ (·) is the complete gamma function. One can show that the mean
and variance are given by

E(y) = a

b
, V ar(y) = a

b

(
1+ 1

b

)
.

If we reparameterize this distribution in terms of the mean μ = a/b and a,
then we can rewrite the probability function as

p(y|μ,a) = Γ (y +a)
Γ (a)y!

(
a

a+μ

)a(
μ

a+μ

)y

, y = 0,1,2, ...

In this new parameterization, the mean and variance are

E(y) = μ, V ar(y) = μ
(

1+ μ

a

)
.
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The parameter a can be viewed as an overdispersion parameter since it de-
termines how much larger the variance is than the mean. As a is allowed to
approach infinity, then the negative binomial model approaches the Poisson
model where the mean and variance are equal.

12.8.2 Fitting the Negative Binomial model

It is more challenging to fit this negative binomial model than the Pois-
son since we have two unknown parameters, the mean parameter μ and the
overdispersion parameter a. But we can use the same basic model-fitting ap-
proach as in the Poisson model. We construct a prior probability distribution
for the parameters (μ,a), compute the likelihood function for the parameters,
and then compute the posterior density by the“prior times likelihood” recipe.

The prior

Suppose that our expert has little knowledge about the location of the pa-
rameters (μ,a) before any data is observed. In this case, one constructs a
prior probability density on these two parameters which has a large spread
that reflects imprecise prior beliefs. Here we assume μ and a are independent,
and each parameter is assigned a standard log-logistic density:

g(μ,a) = 1
(1+μ)2

1
(1+a)2 , μ > 0, a > 0.

For each parameter, the prior median is 1 and a 90% interval estimate is
given by (0.11, 9.0). There are other possible choices for the prior that would
reflect little information about the parameters, but this prior is sufficiently
imprecise so that this prior information will have little impact on the posterior
distribution.

The likelihood

Recall that our observed data were the counts y of the word from in many
writings of James Madison. The likelihood is the probability of obtaining
the observed data from Table 12.1 viewed as a function of the unknown
parameters. If we assume negative binomial sampling, the likelihood is written
as
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L(μ,a) =
∏
y

p(y|μ,a)

=
∏
y

Γ (y +a)
Γ (a)y!

(
a

a+μ

)a(
μ

a+μ

)y

.

Since the data is organized in the frequency table format where y = 0 is
observed 90 times, y = 1 is observed 93 times, we can write the likelihood as

L(μ,a) = p(0|μ,a)90p(1|μ,a)93p(2|μ,a)42p(3|μ,a)17p(4|μ,a)8

× p(5|μ,a)9p(6|μ,a)3,

where

p(y|μ,a) = Γ (y +a)
Γ (a)y!

(
a

a+μ

)a(
μ

a+μ

)y

.

The posterior

Assuming log-logistic priors for (μ,a) and a likelihood based on negative
binomial sampling, the posterior is given, up to an unknown proportionality
constant, by multiplying the likelihood by the prior:

g(μ,a|data) ∝ p(0|μ,a)90p(1|μ,a)93p(2|μ,a)42p(3|μ,a)17p(4|μ,a)8

× p(5|μ,a)9p(6|μ,a)3 × 1
(1+μ)2

1
(1+a)2 .

To learn about the values of (μ,a), we apply the same simulation approach
that we used for the Poisson sampling model. Using a random-walk algorithm,
we simulate a large sample of simulated draws from the posterior probability
distribution of the parameters, and then we summarize this simulated sample
to perform inference.

To make the random walk algorithm more efficient, it helps if we trans-
form the positive parameters μ, a to real-valued parameters using the log
transformation:

θ1 = loga, θ2 = logμ.

The posterior probability distribution of the transformed parameters (θ1,θ2)
is given by

g(θ1,θ2|data) ∝ p(0|θ1,θ2)90p(1|θ1,θ2)93p(2|θ1,θ2)42p(3|θ1,θ2)17p(4|θ1,θ2)8

× p(5|θ1,θ2)9p(6|θ1,θ2)3 × eθ1

(1+eθ1)2
eθ2

(1+eθ2)2 ,

where

p(y|θ1,θ2) = Γ (y +eθ1)
Γ (eθ1)y!

(
eθ1

eθ1 +eθ2

)a(
eθ2

eθ1 +eθ2

)y

.



298 12 Bayesian Modeling

If you look at the posterior density expression, you’ll notice a new factor
exp(θ1 + θ2) – this is a Jacobian term that is necessary when we apply a
nonlinear transformation (such as log(a) and log(μ)) to the parameters a
and μ.

Random walking through the posterior

A straightforward generalization of the one-parameter Metropolis-Hastings
random walk algorithm described earlier can be used to simulate from this
two-parameter posterior density. As before, a starting value is chosen and
the following plan is devised for moving from the tth value of the parameters,

θ(t) = (θ(t)
1 ,θ

(t)
2 ) to the (t+1)st value in the sequence. As before, we let g(θ)

denote the posterior density where θ is the vector of parameters (θ1,θ2).

a. A candidate value θ∗ = (θ∗
1 ,θ∗

2) is simulated uniformly from the rectangle

neighborhood (θ(t)
1 −C1 ≤ θ∗

1 ≤ θ
(t)
1 +C1,θ

(t)
2 −C2 ≤ θ∗

2 ≤ θ
(t)
2 +C2), where

C1 and C2 are suitable constants controlling the size of the proposal region.

b. The posterior densities at the current value θ(t) = (θ(t)
1 ,θ

(t)
2 ) and the can-

didate value θ∗ are computed – the values are denoted by g(θ(t)) and
g(θ∗).

c. The probability P is computed, where

P = min
(

1,
g(θ∗)
g(θ(t))

)
.

d. With probability P , the next value in the sequence is the candidate value
θ∗; otherwise the next value in the sequence is the current value θ(t).

The following R function metrop.hasting.rw2 will implement the M-H
random walk algorithm for a two-parameter probability density. The inputs
are the function logpost2 defining the logarithm of the posterior density,
(2) the starting value at the parameter vector curr, the number of M-H
iterations iter, and a vector of scale parameters scale consisting of the
values of C1 and C2. The final ... inputs refers to any data or other inputs
needed for the function logpost2. This function is very similar to the func-
tion metrop.hasting.rw used for the M-H algorithm in the one-parameter
situation. Two lines are now used to simulate a candidate parameter value in
the rectangle neighborhood of the current vector value. A matrix S is used
to store the vectors of simulated draws – the dimension of this matrix will be
iter by 2 where each row corresponds to a simulated draw of (θ1,θ2).
metrop.hasting.rw2 = function(logpost2, curr, iter, scale, ...){

S = matrix(0, iter, 2)

n.accept = 0; cand = c(0, 0)

for(j in 1:iter){

cand[1] = runif(1, min=curr[1] - scale[1],
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max=curr[1] + scale[1])

cand[2] = runif(1, min=curr[2] - scale[2],

max=curr[2] + scale[2])

prob = exp(logpost2(cand, ...) - logpost2(curr, ...))

accept = ifelse(runif(1) < prob, "yes", "no")

if(accept == "yes") curr=cand

S[j, ] = curr

n.accept = n.accept + (accept == "yes")

}

list(S=S, accept.rate=n.accept / iter)

}

To use the function metrop.hasting.rw2, one writes a short function
lognbpost to compute the logarithm of the posterior density. It is convenient
to use the function dnbinom that computes the negative binomial probability
function. Unfortunately, the negative binomial function in R uses a different
parametrization – the function dnbinom is parameterized in terms of a size n
and a probability p with probability function

f(y;n,p) = Γ (y +n)
Γ (n)y! pn(1−p)y, y = 0,1,2, ...

Comparing with our representation, we see that n = a = eθ1 and
p = a/(a+μ) = eθ1/(eθ1 +eθ2). In the function, the data is represented as
a list consisting of y, a vector of the values of y, and f, a vector of the
corresponding frequencies.

lognbpost = function(theta, data){

sum(data$f * dnbinom(data$y, size=exp(theta[1]),

prob=exp(theta[1]) / sum(exp(theta)), log=TRUE)) +

sum(theta) - 2 * log(1 + exp(theta[1])) -

2 * log(1 + exp(theta[2]))

}

To perform our simulation, we first define the data for our example.

> dat = list(y=0:6, f=c(90, 93, 42, 17, 8, 9, 3))

Then we run the function metrop.hasting.rw2, starting at value (θ1,θ2) =
(1,0), running the M-H algorithm for 10,000 iterations, and using the scale
parameters C1 = 1.0, C2 = 0.2:
> sim.fit = metrop.hasting.rw2(lognbpost, c(1, 0), 10000, c(1.0, 0.2), dat)

The acceptance rate of this algorithm is 27%, which falls within the recom-
mended acceptance rate in the literature for the Metropolis-Hastings random
walk algorithm.

> sim.fit$accept.rate

[1] 0.2739

Based on the inspection of trace plots (not shown) of each parameter, we are
satisfied that the simulated sample is a good approximation to the posterior.
We display the joint posterior of (θ1 = loga,θ2 = logμ) by constructing a
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smoothed scatterplot (using the function smoothScatter) of the simulated
pairs. (See Figure 12.8.) This scatterplot indicates that loga and logμ are
approximately independent parameters, and we can summarize the joint pos-
terior by focusing on the marginal posterior distributions of each parameter.

> smoothScatter(sim.fit$S, xlab="log a", ylab="log mu")
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Fig. 12.8 Smoothed scatterplot of simulated draws of (loga, logμ) from the posterior
distribution in the negative binomial modeling of the word counts from Madison’s
writing.

Inferences about the mean and overdispersion

Recall that we are fitting the negative binomial model since there appears to
be overdispersion in the observed data. We measure the size of the overdis-
persion by means of the parameter a – smaller values of a indicate more
overdispersion.

Our M-H simulation algorithm gives us a sample of values {(θ(s)
1 ,θ

(s)
2 )}

from the posterior distribution of θ1 = loga and θ2 = logμ. The log transfor-
mations were used to facilitate the efficiency of the random walk algorithm,
but we are more interested in learning the location of the overdispersion pa-

rameter a instead of loga. The simulated sample {θ
(s)
1 } is a sample from the

marginal posterior density of loga. If we take the exponential transformation
of these values, we obtain a sample from the posterior density of a.

> a = exp(sim.fit$S[ ,1])
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We display the posterior density of the overdispersion parameter a by con-
structing a density estimate of the simulated values in the vector a. (See
Figure 12.9.)

> plot(density(a), xlab="a", ylab="Density", main="")
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Fig. 12.9 Density estimate of the marginal posterior of the overdispersion parameter
a for Madison writing example.

We see the overdispersion parameter a has a right skewed distribution and
most of the probability mass falls between 1 and 5. Using the quantile

function, a 90% interval estimate for a is constructed.

> quantile(a, c(0.05, 0.95))

5% 95%

1.734907 4.853987

The overdispersion parameter falls in the interval (1.73, 4.85) with probability
0.90.

In a similar fashion, we are interested in the average usage of the word
from that corresponds to the mean parameter μ. By taking the exponential

of the simulated draws {θ
(s)
2 } , we obtain a simulated sample of draws from

the marginal posterior density of μ that we store in the vector mu.

> mu = exp(sim.fit$S[ ,2])

Figure 12.10 displays a density estimate of the marginal posterior of the mean
usage from the simulated sample. A 90% Bayesian interval estimate for μ is
again constructed by finding the corresponding sample quantiles from the
simulated sample.
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Fig. 12.10 Density estimate of marginal posterior of the mean parameter μ for
Madison writing example with negative binomial sampling.

> quantile(mu, c(0.05, 0.95))

5% 95%

1.108965 1.371458

Comparing with the 90% interval estimate of μ obtained with Poisson sam-
pling (1.119, 1.339), the negative binomial interval computed here is a bit
wider. The longer interval is a consequence of the fact that, in negative bi-
nomial sampling, the overdispersion parameter a is unknown and the un-
certainty in this value results in a longer interval estimate. (For a similar
reason, the interval estimate for a mean from a normal population with un-
known variance will be longer than the corresponding interval for a normal
mean when the variance is known.)

Exercises

12.1 (Learning about students sleep habits). In Chapter 6, one is inter-
ested in the mean number of hours μ slept by students at a particular college.
Suppose that a particular professor’s prior beliefs about μ are represented by
a normal curve with mean μ0 = 6 hours and variance τ2

0 = 0.25.

g(μ) ∝ exp
(

− 1
2τ2

0
(μ−μ0)2

)
.
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a. Use the curve and dnorm functions to construct a plot of the prior density.
b. Use the qnorm function to find the quartiles of the prior density.
c. Find the probability (from the prior) that the mean amount of sleep ex-

ceeds 7 hours (Use the pnorm function.)

12.2 (Learning about students sleep habits, continued). Suppose the
number of hours slept by a sample of n students, y1, ...,yn, represent a random
sample from a normal density with unknown mean μ and known variance σ2.
The likelihood function of μ is given by

L(μ) = exp
(

− n

2σ2 (ȳ −μ)2
)

.

If we combine the normal prior density with this likelihood, it can be shown
that the posterior density for μ also has the normal form with updated vari-
ance and mean parameters

τ2
1 =

(
1
τ2

0
+ n

σ2

)−1
, μ1 = τ2

1

(
μ0
τ2

0
+ nȳ

σ2

)
.

a. For the sleeping data collected in Chapter 6, n = 24 students were sampled
and the mean sleeping time was ȳ = 7.688. Assume that we know the
sampling variance is given by σ2 = 2.0. Use these values together with the
prior mean and prior variance to compute the mean and variance of the
posterior density of μ.

b. Using two applications of the curve function, plot the prior and posterior
densities together using contrasting colors.

c. Use the qnorm function to construct a 90% posterior interval estimate of
the mean sleeping time.

d. Find the posterior probability that the mean amount of sleep exceeds 7
hours.

12.3 (Waiting until a hit in baseball). In sports, fans are fascinated with
the patterns of streaky behavior of athletes. In baseball, a batter wishes to get
a “base hit”; otherwise he records an “out.” Suppose one records the number
of outs between consecutive hits (the spacing) for a particular baseball player.
For example, if the player begins the season with the outcomes H, O, O, H,
H, O, O, O, O, H, O, H, H, then the spacings are given by 0, 2, 4, 1, 0 (one
starts counting before the first outcome). One observes the following spacings
for the player Ian Kinsler for the 2008 baseball season:

0 2 0 4 1 0 2 0 1 0 0 1 1 3 1 0 0 0 1

6 0 9 0 4 1 9 1 0 3 4 5 5 1 0 2 4 0 4

0 3 2 1 0 1 3 7 0 3 1 2 14 4 0 1 6 1 10

1 2 0 1 0 4 5 0 7 3 1 2 1 2 1 2 2 4 3

3 1 1 2 1 2 7 0 3 1 2 2 2 2 0 3 4 1 1

0 0 1 1 1 11 2 2 1 3 1 0 1 2 1 1 1 0 0

2 0 10 1 2 2 1 1 3 1 1 0 0 1 0 1 0 1 1
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0 1 0 0 0 2 1 4 5 5 0 0 0 0 2 0 8 5 2

11 8 0 7 1 3 1

Let y denote the number of outs before the next base hit. A basic assumption
is that y has a geometric(p) distribution with probability function

f(y|p) = p(1−p)y, y = 0,1,2, ...

where p is the player’s hitting probability, If we assume independence in
spacings, then the likelihood function of p is given by

L(p) =
∏
y

f(y|p) = pn(1−p)s,

where n is the sample size and s =
∑

y is the sum of the spacings.

a. Compute the values of n and s for Kinsler’s data.
b. Use the curve function to graph the likelihood function for values of p

between 0.2 and 0.5.
c. Based on the graph of the likelihood, which value of the hitting probability

p is “most likely” given the data?

12.4 (Waiting until a hit, continued). Based on Ian Kinsler’s perfor-
mance in previous seasons, a baseball fan has some prior beliefs about
Kinsler’s hitting probability p. She believes that P (p < 0.300) = 0.5 and
P (p < 0.350) = 0.90. This prior information can be matched to a beta density
with shape parameters a = 44 and b = 102.

g(p) = 1
B(44,102)p44−1(1−p)102−1, 0 < p < 1.

If one multiplies this prior density with the likelihood function found in Exer-
cise 12.3, the posterior density for p is given (up to a proportionality constant)
by

g(p|data) ∝ pn+44−1(1−p)s+102−1, 0 < p < 1,

where n is the sample size and s =
∑

y is the sum of the spacings. This is a
beta density with shape parameters a = n + 44 and b = s + 102. (The values
of n and s are found from the data in Exercise 12.3.)

a. Using the curve function, graph the posterior density for values of the
hitting probability p between values 0.2 and 0.5.

b. Using the qbeta function, find the median of the posterior density of p.
c. Using the qbeta function, construct a 95% Bayesian interval estimate for

p

12.5 (Waiting until a hit, continued). In Exercise 12.4, we saw that the
posterior density for Ian Kinsler’s hitting probability is a beta density with
shape parameters a = n+44 and b = s+102. (The values of n and s are found
from the data in Exercise 12.3.)



12.8 Negative Binomial Modeling 305

a. Using the rbeta function, simulate 1000 values from the posterior density
of p.

b. Use the hist function on the simulated sample to display the posterior
density.

c. Using the simulated draws, approximate the mean and standard deviation
of the posterior density.

d. Using the simulated draws, construct a 95% Bayesian interval estimate.
Compare the interval with the exact 95% interval estimate using the qbeta
function.

12.6 (Waiting until a hit, continued). In Exercise 12.4, we saw that the
posterior density for Ian Kinsler’s hitting probability is a beta density with
shape parameters a = n+44 and b = s+102. (The values of n and s are found
from the data in Exercise 12.3.)

The function metrop.hasting.rw described in the chapter can be used
to simulate a sample from the posterior density of the hitting probability p.
The following function betalogpost will compute the logarithm of the beta
density with shape parameters a and b.

betalogpost = function(p, a, b)

dbeta(p, a, b, log=TRUE)

a. Use the function metrop.hasting.rw together with the function betalog-

post to simulate from the posterior density using the Metropolis Hastings
random walk algorithm. Use p = 0.2 as a starting value, take 1000 itera-
tions, and use the scale constant C = 0.1. Construct a trace plot of the
simulated values and find the acceptance rate of the algorithm. Compute
the posterior mean of p from the simulated draws and compare the simu-
lation estimate with the exact posterior mean (n+44)/(n+s+44+102).

b. Rerun the random walk algorithm using the alternative scale constant
values C = 0.01 and C = 0.30. In each case, construct a trace plot and
compute the acceptance rate of the algorithm. Of the three choices for the
scale constant C, are any of the values unsuitable? Explain.



Chapter 13

Monte Carlo Methods

13.1 The Monte Carlo Method of Computing Integrals

13.1.1 Introduction

A general problem in probability and statistical applications is the computa-
tion of an expectation of a random variable. Suppose the random variable X
has a density function f(x) and we are interested in computing the expecta-
tion of a function h(x) which is expressible as the integral

E(h(X)) =
∫

h(x)f(x)dx.

In the case where h(x) = x, this expectation corresponds to the mean μ =
E(X). If h(x) = (x − μ)2, then the expectation corresponds to the variance
var(X) = E[(X − μ)2]. If the function h is the indicator function h(x) = 1
for x ∈ A, and h(x) = 0 elsewhere, then this expectation corresponds to a
probability E(h(X)) = P (A).

Suppose we are able to simulate a random sample of values x(1), ...,x(m)

from the density f(x). Then the Monte Carlo estimate of the expectation
E(h(X)) is given by

h̄ =
∑m

j=1 h(x(j))
m

.

This is a good estimate of the expectation, since h̄ will converge to E(h(X))
as the simulation sample size m approaches infinity. But h̄ is just a sample
estimate of the expectation and so there will be some error in this simulation-
based calculation. The variance of h̄ is given by

V ar(h̄) = V ar(h(X))
m

,

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3__13,
© Springer Science+Business Media, LLC 2012
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where V ar(h(X)) is the variance of each simulated draw of h(x(j)). We esti-
mate V ar(h(X)) by the sample variance of the simulated draws {h(x(j))}:

̂V ar(h(X)) =
∑m

j=1(h(x(j))− h̄)2

m−1 .

Then the associated standard error of this Monte Carlo estimate is given by

seh̄ =
√

V ar(h̄) ≈
√

̂V ar(h(X))
m

.

Example 13.1 (Sleepless in Seattle).
Here is a simple example of the Monte Carlo method for computing in-

tegrals, inspired by the movie Sleepless in Seattle. Sam and Annie have a
rendezvous at the Empire State Building on Valentine’s Day. Sam arrives at
a random time between 10 and 11:30 pm and Annie arrives at a random time
between 10:30 and 12 am. What is the probability that Annie arrives before
Sam? What is the expected difference in the two arrival times?

13.1.2 Estimating a probability

Let A and S denote respectively Annie’s and Sam’s arrival times, where we
measure the arrival time as the number of hours after noon. We are assuming
A and S are independent, where A is uniformly distributed on (10.5, 12) and
S is uniformly distributed on (10, 11.5). We wish to compute the probability
P (A < S) which is expressed as the integral

P (A < S) =
∫

a<s
fA(a)fS(s)dads,

where fA and fS denote the uniform densities for A and S. (By the inde-
pendence assumption, the joint density fA,S(a,s) = fA(a)fS(s).) One can
represent this probability as the expectation

P (A < S) = E [I(A < S)] =
∫

I(a < s)fA(a)fS(s)dads,

where I(a < s) is the indicator function that is equal to one when a < s, and
zero otherwise.

To compute this integral by the Monte Carlo method, we simulate a large
number of values, say 1000, from the distribution of (A,B). Since A and B
are independent, we perform this experiment by simulating 1000 values of A
from the uniform(10.5, 12) density and independently simulating 1000 values
of S from the uniform(10, 11.5) density. These simulations are conveniently
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done using two applications of the runif function – the simulated draws are
stored in the vectors sam and annie.

> sam = runif(1000, 10, 11.5)

> annie = runif(1000, 10.5, 12)

The probability P (A < S) is estimated by the proportion of simulated pairs
(a,s) where a is smaller than s. We count the number of pairs where a < s
by the sum function and divide this by the total number of simulations.

> prob = sum(annie < sam) / 1000

> prob

[1] 0.229

The estimated probability that Annie arrives before Sam is 0.229.
Figure 13.1 illustrates the process to compute this probability. The 1000

simulated pairs {S(j),A(j)} are displayed on a scatterplot and the shaded
region represents the region where A < S. This display was generated using
the R commands

> plot(sam, annie)

> polygon(c(10.5, 11.5, 11.5, 10.5),

+ c(10.5, 10.5, 11.5, 10.5), density=10, angle=135)

(The polygon function adds a shaded polygon to the current graph. The
first two arguments are the vectors of horizontal and vertical coordinates of
the polygon, and the density and angle arguments control the density and
angle of the shading lines.) The Monte Carlo estimate of the probability is
the proportion of points that fall in the shaded region.

Since the Monte Carlo estimate is simply a sample proportion, we can use
the familiar formula for the standard error of a proportion to compute the
standard error of this estimate. The standard error of a proportion estimate
p̂ is given by

sep̂ =
√

p̂(1− p̂)
m

,

where m is the simulation sample size. Applying this formula in R, we obtain

> sqrt(prob * (1 - prob) / 1000)

[1] 0.01328755

Applying a normal approximation for the sampling distribution of p̂, we are
95% confident that the probability Annie will arrive earlier than Sam is be-
tween 0.229−1.96×0.013 and 0.229+1.96×0.013 or (0.203, 0.255).

13.1.3 Estimating an expectation

Let’s consider the second question: what is the expected difference in the
arrival times? Since Annie is more likely to arrive later than Sam, we focus
on computing the expectation E(A−S) that can be expressed as the integral
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Fig. 13.1 Scatterplot of simulated draws of (S,A) for random meeting example. The
shaded region corresponds to the event {A < S} and the proportion of points in the
region is an estimate of the probability P (A < S).

E(A−S) =
∫

(a−s)fA(a)fS(s)dads.

The Monte Carlo estimate of this expectation is given by

̂E(A−S) =
∑m

j=1(A(j) −S(j))
m

,

where {(A(j),S(j))} is a simulated sample from the joint density of (A,S). We
already have simulated a sample from the joint density stored in the vectors
annie and sam. For each pair of simulated values (A(j),S(j)), we compute the
difference A(j) −S(j) and the differences are stored in the vector difference.

> difference = annie - sam

The Monte Carlo estimate of E(A−S) is the mean of these differences. The
estimated standard error of this sample mean estimate is the standard devi-
ation of the differences divided by the square root of the simulation sample
size.

> mc.est = mean(difference)

> se.est = sd(difference) / sqrt(1000)

> c(mc.est, se.est)

[1] 0.50156619 0.01945779
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So we estimate that Annie will arrive 0.50 hours later than Sam; since the
standard error is only 0.02 hours, we are 95% confident that the true difference
is within 0.04 hours of this estimate.

13.2 Learning about the Sampling Distribution of a
Statistic

Example 13.2 (The sampling distribution of a median).
Suppose one observes a random sample y1, ...,yn from the exponential

density with unknown location parameter θ.

f(y|θ) = e−(y−θ), y ≥ θ.

Suppose one only observes the sample median M = median(y1, ...,yn); the
actual observations y1, ...,yn are not available. Using the available data, how
can one construct a 90% confidence interval for θ?

A confidence interval for θ is found using the pivotal quantity method.
Define a new random variable

W = M −θ.

It can be shown that the distribution for W does not depend on the unknown
parameter. So it is possible to find two percentiles for W , w1 and w2, such
that the probability that (w1,w2) covers W is a given probability γ:

P (w1 < W < w2) = γ.

Then it can be shown that a 100γ% confidence interval for θ is given by
(M −w2,M −w1); the probability that this random interval covers θ is γ.

P (M −w2 < θ < M −w1) = γ.

To implement this confidence interval method, one needs to obtain the
sampling distribution of W which represents the sample median of a random
sample of size n taken from the standard exponential density

f(w) = e−w, w ≥ 0.

Unfortunately, the sampling distribution of W has a relatively messy form;
the density in the special case where the sample size n is odd is given by

f(m) = n!(
n−1

2
)
!
(

n−1
2
)
!
e−m

(
1−e−m

)(n−1)/2 (
e−m

)(n−1)/2
, m ≥ 0.
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Since the density does not have a convenient functional form, it is difficult to
find the percentiles w1 and w2.

13.2.1 Simulating the sampling distribution by the
Monte Carlo method

The distribution of the sample median W is easily simulated by a Monte
Carlo experiment. To obtain a single value of W , we use the rexp function
to simulate a sample of size n from a standard exponential distribution, and
then use the median function to compute the sample median. We write a
short function sim.median that will simulate a single value of W given the
sample size n.

> sim.median = function(n)

+ median(rexp(n))

To repeat this simulation a large number of times, it is convenient to use
the replicate function. In the R code, we assume that we observe a sample
of size n = 21 and simulate 10,000 values of the sample median W that are
stored in the vector M.

> M = replicate(10000, sim.median(21))

We display the simulated draws by a histogram computed using the hist

function. (We use the prob=TRUE option so that the vertical axis corresponds
to the probability density scale.)

> hist(M, prob=TRUE, main="")

To confirm that the simulated draws are truly from the sampling density
of M , we first define a function samp.med to compute the exact density.

> samp.med = function(m, n){

+ con = factorial(n) / factorial((n - 1) / 2)^2

+ con * pexp(m)^((n - 1) / 2) * (1 - pexp(m))^((n - 1) / 2) * dexp(m)

+ }

Then we use the curve function to overlay the exact density on the histogram
of the simulated sample. (See Figure 13.2.) Note that the curve is a good
match to the histogram indicating that we have “captured” the density of
interest using the Monte Carlo procedure.

> curve(samp.med(x, 21), add=TRUE, col="red")

13.2.2 Constructing a percentile confidence interval

Recall that we construct the confidence interval for θ by finding two values
w1,w2 that bracket a specific probability γ of the distribution of W . If we



13.2 Learning about the Sampling Distribution of a Statistic 313

M

D
en

si
ty

0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Fig. 13.2 Histogram of the simulated draws from the sampling distribution of the
sample median M from an exponential distribution. The exact sampling density is
plotted on top and it appears that the simulated draws are indeed distributed from
the “correct” density.

desire a 90% confidence interval, then it is convenient to use the 5th and
95th percentiles. These percentiles are estimated by the 5th and 95th sample
percentiles of the simulated sample of W that we find using the quantile

function.

> quantile(M, c(0.05, 0.95))

5% 95%

0.398709 1.118365

Using these values, a 90% confidence interval for θ (for a sample of size 21)
is given by (M −1.118365,M −0.398709).

To illustrate using this confidence interval, suppose we collect the following
21 exponential observations that are stored in the vector y.

> y = c(6.11, 5.04, 4.83, 4.89, 4.97, 5.15, 7.98, 4.62,

+ 6.19, 4.58, 6.34, 4.54, 6.37, 5.64, 4.53, 4.68,

+ 5.17, 4.72, 5.06, 4.96, 4.70)

> median(y)

[1] 4.97

The sample median of this sample (found using the median function) is M =
4.97 and a 90% interval estimate for θ is given by:

> c(4.97 - 1.118365, 4.97 - 0.398709)

[1] 3.851635 4.571291

By the way, this data was simulated from an exponential distribution with
value θ = 4.5, so in this particular case, the confidence interval was successful



314 13 Monte Carlo Methods

in capturing the parameter value. If we repeated this procedure a large num-
ber of times, we would find that approximately 90% of the intervals would
cover θ.

Rx 13.1 It should be noted that this method for constructing a confidence
interval is sample size dependent. If we had observed an exponential sample
for a different value of n, then we would have to use a Monte Carlo experiment
to simulate the sampling distribution of M for that sample size.

Rx 13.2 The endpoints of the confidence interval correspond to simulation-
based estimates of the 5th and 95th percentiles of the distribution of W , and
there will errors in these estimates. One can use a bootstrap procedure to
obtain standard errors for these percentile estimates.

13.3 Comparing Estimators

Example 13.3 (The taxi problem).
A person is wandering the streets of a city and notices the following num-

bers of five taxis that pass by:

34,100,65,81,120.

Can she make an intelligent guess at the number of taxis in the city? This
describes a simple problem in statistical inference where the population of
interest is the collection of taxis that are driven in this city and one wishes
to learn about the unknown number of taxis N .

We assume that the taxis are numbered 1 through N and the observer
is equally likely to observe any one of the N taxis at a given time. So one
observes independent observations y1, ...,yn, where each observation is dis-
tributed according to the discrete uniform distribution

f(y) = 1
N

, y = 1, ...,N.

Consider two possible estimates of N : the largest taxi number observed

N̂1 = max{y1, ...,yn}.

and twice the sample mean
N̂2 = 2ȳ.

Which is a better estimate of the number of taxis N?
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13.3.1 A simulation experiment

We compare these two estimators using a simulation experiment. One simu-
lates taxi numbers from a uniform distribution with a known number of taxis
N and computes the two estimates. By repeating this simulation process
many times, one obtains two empirical sampling distributions. The two esti-
mators can be compared by examining various properties of their respective
sampling distributions.

The function taxi is written to implement a single simulation experiment.
The function has two arguments, the actual number of taxis N and the sam-
ple size n. The sample function simulates the observed taxi numbers and
the values of the two estimates are stored in the variables estimate1 and
estimate2. The function returns the values of the two estimates.

> taxi = function(N, n){

+ y = sample(N, size=n, replace=TRUE)

+ estimate1 = max(y)

+ estimate2 = 2 * mean(y)

+ c(estimate1=estimate1, estimate2=estimate2)

+}

To illustrate this function, suppose the actual number of taxis in the city is
N = 100 and we observe the numbers of n = 5 taxis.

> taxi(100, 5)

estimate1 estimate2

93.0 87.6

Here the values of the two estimates are N1 = 93.0 and N2 = 87.6.
One can simulate this sampling process many times using the replicate

function.

> EST = replicate(1000, taxi(100, 5))

The output variable EST is a matrix of 2 rows and 1000 columns where the
two rows correspond to the simulated draws of the estimates N̂1 and N̂2 for
the 1000 simulated experiments.

Rx 13.3 When one uses replicate with a function with multiple outputs,
then the result is a matrix where the rows correspond to outputs and the
columns correspond to replications. By default, R fills a matrix “by column,”
so the first set of outputs will be stored in the first column, and so on.

13.3.2 Estimating bias

One desirable property of an estimator is unbiasedness which means that the
average value of the estimator will be equal to the parameter in repeated
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sampling. In this setting, an estimator N̂ is unbiased if E(N̂) = N . When an
estimator is biased, one wishes to estimate the bias

Bias = E(N̂)−N.

In the case where one knows the parameter N , then one can estimate the
bias of an estimator N̂ in our simulation experiment by finding the sample
mean of the m simulated draws and subtracting the true parameter value:

̂Bias = 1
m

m∑
j=1

N̂ (j) −N.

The standard error of this simulation estimate is estimated by the standard
deviation of the simulated draws {N (j)} divided by the square root of the
simulation sample size.

In our simulation experiment, the simulated draws of the estimators are
stored in the matrix EST and the true value of the number of taxis is N = 100.
In the following R code, we estimate the bias of the estimators together with
the corresponding standard errors.

> c(mean(EST["estimate1", ]) - 100, sd(EST["estimate1", ]) / sqrt(1000))

[1] -16.1960000 0.4558941

> c(mean(EST["estimate2", ]) -100, sd(EST["estimate2", ]) / sqrt(1000))

[1] -0.4248000 0.8114855

One can gauge the true sizes of the biases by computing 95% confidence inter-
vals. The interval estimate for the bias of N̂1 is (−16.196−2×0.456,−16.196+
2×0.456) = (−17.108,−15.284) and the interval estimate for the bias of N̂2 is
(−0.425 − 2 × 0.811,−0.425 + 2 × 0.811) = (−2.047,1.197). We conclude that
the estimator N̂1 has a negative bias indicating that this estimator consis-
tently underestimates the true number of taxis. In contrast, since the confi-
dence interval for the bias of N̂2 includes the value zero, we cannot conclude
the estimator N̂2 has a negative or positive bias.

13.3.3 Estimating mean distance from the target

Although the estimator N̂2 is preferable to N̂1 from the viewpoint of bias, it is
not clear that it is a better estimator. Since it is desirable for an estimator to
be close to the target parameter, it may be better to compare the estimators
with respect to the mean distance from the parameter N (this is commonly
called the mean absolute error):

D = E(|N̂ −N |).
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The quantity D can be estimated by the average distance of the simulated
estimator values N̂ (1), ..., N̂ (m) from N .

D̂ = 1
m

m∑
j=1

|N̂ (j) −N |.

We compute the absolute errors of the simulated draws of the two estima-
tors N̂1 and N̂2 and store the absolute errors in the matrix absolute.error.
Using the boxplot function, we compare the absolute errors of the two estima-
tors. (Note that we apply the transpose function to convert absolute.error
to a matrix with two columns that is needed for the boxplot function.) From
Figure 13.3 we see that N̂1 = maxy tends to have smaller estimation errors
than N̂2 = 2ȳ.

> absolute.error = abs(EST - 100)

> boxplot(t(absolute.error))
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Fig. 13.3 Comparison of the absolute errors in estimating the number of taxis using
the two estimates N̂1 = max(yi) and N̂2 = 2ȳ. It is clear that N̂1 tends to be closer

than N̂2 to the target parameter value.

Using of the apply function to find the sample mean of the absolute errors,
we estimate the mean distance D of the two estimators.

> apply(t(absolute.error), 2, mean)

estimate1 estimate2

16.7180 20.8172
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A second application of the apply function is used to compute the simulation
standard error of these estimates by the usual “standard deviation divided
by the square root of the sample size” formula.

> apply(t(absolute.error), 2, sd) / sqrt(1000)

estimate1 estimate2

0.4500211 0.5093954

It is clear that the estimator N̂1 is preferable to N̂2 in that it has a smaller
mean absolute error.

13.4 Assessing Probability of Coverage

Example 13.4 (A popular confidence interval method for a proportion).
To learn about the proportion p of successes in a population, suppose one

takes a random sample of size n and computes the sample proportion p̂. The
popular Wald confidence interval for a proportion is based on the asymptotic
normality of p̂. For a given confidence level γ, this confidence interval is given
by

INTW ald =
(

p̂−z

√
p̂(1− p̂)

n
, p̂+z

√
p̂(1− p̂)

n

)
,

where z denotes the corresponding 1 − (1 − γ)/2 percentile for a standard
normal variable.

Since this procedure has confidence level γ, it is desirable that this interval
contains the unknown proportion p with coverage probability γ. That is, for
any proportion value p in the interval (0, 1), we wish that

P (p ∈ INTW ald) ≥ γ.

Unfortunately, this procedure does not have the stated coverage probability.
There are values of p where the actual probability P (p ∈ INTW ald) falls below
the nominal level γ. This comment motivates several questions. Are there
particular regions of the proportion space where the Wald interval has low
coverage probability? Are there alternative confidence interval methods that
are superior to the popular Wald interval from the perspective of coverage
probability?

13.4.1 A Monte Carlo experiment to compute a
coverage probability

To begin, we write a short function wald to compute the Wald interval. The
inputs to the function are the number of successes y, the sample size n, and
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the confidence level prob. The output is a single-row matrix where the first
column contains the lower endpoint and the second column contains the upper
endpoint of the Wald interval. Looking at the code of the function, note that
we use the qnorm function to compute the z value and define p to be the
proportion of successes.

wald = function(y ,n, prob){

p = y / n

z = qnorm(1 - (1 - prob) / 2)

lb = p - z * sqrt(p * (1 - p) / n)

ub = p + z * sqrt(p * (1 - p) / n)

cbind(lb, ub)

}

Suppose we take a sample of 20, observe 4 successes, and desire a 90% interval
estimate for the proportion p. We enter in this function and type

> wald(5, 20, 0.95)

lb ub

[1,] 0.0602273 0.4397727

One nice feature of the function wald is that it can be used to find the Wald
intervals for a vector of values for y. If the argument y is a vector, then the
variables lb and ub will be vectors of lower endpoints and upper endpoints
and the output of wald will be a matrix where the rows give the confidence
interval limits corresponding to the values for y. For example, suppose we
wish to compute 90% Wald intervals for the y values 2, 4, 6, 8 with a sample
size of n = 20.
> y = c(2, 4, 6, 8)

> wald(y, 20, 0.90)

lb ub

[1,] -0.01034014 0.2103401

[2,] 0.05287982 0.3471202

[3,] 0.13145266 0.4685473

[4,] 0.21981531 0.5801847

We’ll see shortly why it is important to permit vector arguments for y in the
wald function.

We are now ready to write a function mc.coverage to compute the actual
probability of coverage of the Wald interval by a Monte Carlo experiment for
a particular proportion value p. The arguments are the value of the proportion
p, the sample size n, the stated confidence prob, and the number of Monte
Carlo iterations iter. This function consists of three lines. First, we use the
rbinom function to simulate iter values of the binomial random variable y
— these simulated draws are stored in the vector y. We compute the Wald
intervals for each of the simulated binomial draws and the intervals are stored
in the matrix c.interval. Last, we compute the fraction of intervals that
actually contain the proportion value p. This is done using logical operators –
p is contained in the interval if the proportion is greater than the left endpoint
and the proportion is smaller than the right endpoint.
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mc.coverage = function(p, n, prob, iter=10000){

y = rbinom(iter, n, p)

c.interval = wald(y, n, prob)

mean((c.interval[ ,1] < p) & (p < c.interval[ ,2]))

}

Note that the function uses iter = 10000 iterations by default. Suppose
we wish to compute the coverage probability of a 90% Wald interval with a
sample size of n = 20 when the true proportion value is p = 0.15. We enter the
function mc.coverage into the R console. Then the Monte Carlo estimate of
the actual coverage probability is computed to be

> mc.coverage(0.15, 20, 0.90)

[1] 0.8005

The standard error of the Monte Carlo estimate of the probability is estimated
by

> sqrt(0.8005 * (1 - 0.8005) / 10000)

[1] 0.003996245

The estimate of the actual probability of coverage is 0.8005 with a standard
error of 0.004. Clearly the probability of coverage is smaller than the nominal
level of γ = 0.90 which is a cause for some concern.

Actually we wish to learn about the probability of coverage of the Wald
interval for all values of the proportion in the unit interval. We can perform
this computation by the use of the sapply function. We write a short function
many.mc.coverage to compute the coverage probability for a vector of values
of p.

many.mc.coverage = function(p.vector, n, prob)

sapply(p.vector, mc.coverage, n, prob)

The only difference between functions mc.coverage and many.mc.coverage

is that many.mc.coverage accepts a vector argument p.vector. The sap-

ply function will apply the Monte Carlo computation for each element of
p.vector and output a vector of estimated coverage probabilities.

Now that we have a function many.mc.coverage for computing the cover-
age probability for a vector argument, we can plot the coverage probability
as a function of the proportion p using the curve function. Below we display
the coverage probability of the Wald interval between the values p = 0.001
and p = 0.999 for the sample size n = 20 and confidence level γ = 0.90. Since
we are interested in comparing the actual coverage probability with the con-
fidence level, we add a horizontal line at 0.90 using the abline function. (See
Figure 13.4.) We see that the Wald interval is not truly a 90% confidence
interval since the probability of coverage is not uniformly greater than 0.90
over the range of proportion values. We see from the figure that the coverage
probability is less than 0.90 for a large interval of proportion values, and the
probability is smallest for extreme proportion values near zero and one. In an
exercise, the reader will use a Monte Carlo experiment to explore the coverage
probability of the improved “plus-four” confidence interval procedure.



13.5 Markov Chain Monte Carlo 321

> curve(many.mc.coverage(x, 100, 0.90), from=0.001, to=0.999,

+ xlab="p", ylab="Coverage Probability",

+ main=paste("n=", 100, ", prob=", 0.90),

+ ylim=c(0.7, 1))

> abline(h=.9)
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Fig. 13.4 Estimated probability of coverage of the Wald interval procedure for the
sample size n = 20 and confidence level γ = 0.90 using a Monte Carlo experiment with
10,000 iterations. The coverage probability is not uniformly over the stated value of
0.90, so this procedure is not a true 90% confidence interval.

13.5 Markov Chain Monte Carlo

13.5.1 Markov Chains

Example 13.5 (A random walk).
Suppose a person takes an unusual random walk on the values 1, 2, 3, 4,

5, 6 arranged in a circle – see Figure 13.5. If the person is currently at a
particular location, in the next second she is equally likely to remain at the
same location or move to an adjacent number. If she does move, she is equally
likely to move left or right. This is a simple example of a discrete Markov
chain. A Markov chain describes probabilistic movement between a number
of states. Here there are six possible states, 1 through 6, corresponding to the
possible locations of the walker. Given that the person is at a current location,
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Fig. 13.5 Six locations on a circle for the random walk example.

she moves to other locations with specified probabilities. The probability that
she moves to another location depends only on her current location and not
on previous locations visited. We describe movement between states in terms
of transition probabilities – they describe the likelihoods of moving between
all possible states in a single step in a Markov chain. We summarize the
transition probabilities with a transition matrix P :

P =

⎡⎢⎢⎢⎢⎢⎢⎣
.50 .25 0 0 0 .25
.25 .50 .25 0 0 0
0 .25 .50 .25 0 0
0 0 .25 .50 .25 0
0 0 0 .25 .50 .25

.25 0 0 0 .25 .50

⎤⎥⎥⎥⎥⎥⎥⎦
The first row in P gives the probabilities of moving to any states 1 through 6 in
a single step from location 1, the second row gives the transition probabilities
in a single step from location 2, and so on.

There are several important properties of this particular Markov chain.
It is possible to go from every state to every state in one or more steps –
a Markov chain with this property is said to be irreducible. Given that the
person is in a particular state, if the person can only return to this state at
regular intervals, then the Markov chain is said to be periodic. This example
is aperiodic since it is not a periodic Markov chain.

We can represent one’s current location as a probability row vector of the
form

p = (p1,p2,p3,p4,p5,p6),
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where pi represents the probability that the person is currently in state i. If
p(j) represents the location of the traveler at step j, then the location of the
traveler at the j +1 step is given by the matrix product

p(j+1) = p(j)P.

Suppose we can find a probability vector w such that wP = w. Then w is said
to be the stationary distribution. If a finite Markov chain is irreducible and
aperiodic, then it has a unique stationary distribution. Moreover, the limiting
distribution of this Markov chain, as the number of steps approaches infinity,
will be equal to this stationary distribution.

We can empirically demonstrate the existence of the stationary distribu-
tion of our Markov chain by running a simulation experiment. We start our
random walk at a particular state, say location 3, and then simulate many
steps of the Markov chain using the transition matrix P . The relative fre-
quencies of our traveler in the six locations after many steps will eventually
approach the stationary distribution w.

We first write a short R function to simulate a discrete Markov Chain.
The arguments are the transition matrix P, the initial location of the chain
starting.state, and steps, number of simulated steps through the chain.
The output of the function is a vector that gives the locations of the chain in
all of the steps. In the function, the function sample is used, together with
the appropriate row of the transition matrix P , to do the sampling.

simulate.markov.chain = function(P, starting.state, steps){

n.states = dim(P)[1]

state = starting.state

STATE = rep(0, steps)

for(j in 1:steps){

state = sample(n.states, size=1, prob=P[state, ])

STATE[j ] = state

}

return(STATE)

}

We use the matrix function to input the transition matrix for our example.

> P = matrix(c(0.50, 0.25, 0, 0, 0,0.25,

+ 0.25, 0.50, 0.25, 0, 0, 0,

+ 0, 0.25, 0.50, 0.25, 0, 0,

+ 0, 0, 0.25, 0.50, 0.25, 0,

+ 0, 0, 0, 0.25, 0.50, 0.25,

+ 0.25, 0, 0, 0, 0.25, 0.50),

+ nrow=6, ncol=6, byrow=TRUE)

> P

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.50 0.25 0.00 0.00 0.00 0.25

[2,] 0.25 0.50 0.25 0.00 0.00 0.00

[3,] 0.00 0.25 0.50 0.25 0.00 0.00

[4,] 0.00 0.00 0.25 0.50 0.25 0.00
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[5,] 0.00 0.00 0.00 0.25 0.50 0.25

[6,] 0.25 0.00 0.00 0.00 0.25 0.50

Then we simulate 10,000 steps through this Markov Chain by the function
simulate.markov.chain with the transition matrix P, the starting state 3,
and 10,000 steps. The vector s contains the locations of the chain in these
10,000 steps.

> s = simulate.markov.chain(P, 3, 10000)

The table function can be used to tabulate the locations of the chain in
the simulation.

> table(s)

s

1 2 3 4 5 6

1662 1663 1653 1662 1655 1705

We can convert these counts to relative frequencies by dividing the output of
table by 10000.

> table(s) / 10000

1 2 3 4 5 6

0.1662 0.1663 0.1653 0.1662 0.1655 0.1705

These relative frequencies approximately represent the stationary distribution
of this Markov Chain. It can be shown, using a separate calculation, that the
stationary distribution of this chain is uniform on the six states.

> w = c(1, 1, 1, 1, 1, 1) / 6

One can confirm that this vector is indeed the stationary distribution by
multiplying this vector by the transition matrix P using the special matrix
multiplication operator.

> w %*% P

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

13.5.2 Metropolis-Hastings algorithm

A popular way of simulating from a general probability density f(y) uses
the Markov chain Monte Carlo (MCMC) algorithm. This method essentially
is a continuous valued generalization of the discrete Markov chain setup de-
scribed in the previous section. The MCMC sampling strategy sets up an irre-
ducible, aperiodic Markov chain for which the stationary distribution equals
the probability distribution of interest. Here we introduce one general method
of constructing a Markov chain called the Metropolis-Hastings algorithm.

Suppose we wish to simulate from a particular density function f(y).
We will simulate a Markov Chain and the simulated draws are denoted by
y(1),y(2),y(3), ... A Metropolis-Hastings algorithm begins with an initial value
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y(0) and a rule for simulating the next value in the sequence y(t+1) given the
current value y(t). The rule for generating the next sequence value x∗ from
the current value x consists of three steps:

a. (Proposal step) Let p(y|x) denote a proposal or candidate density of y
conditional on a value of x. If x denotes the current value, then we simulate
a value y from the proposal density p(y|x).

b. (Acceptance probability) The probability that this proposed value is
accepted is given by the expression

PROB = min
(

f(y)p(x|y)
f(x)p(y|x) ,1

)
.

c. (Simulate the next value) The next value in the sequence x∗ is simu-
lated. It will be the proposed value y with probability PROB; otherwise
the next value x∗ in the sequence will be equal to the current value x.

Under some easily satisfied conditions on the proposal density p(y|x), the se-
quence of simulated draws y(1),y(2),y(3), ... will converge to a random variable
that is distributed according to the probability density f(y).

Example 13.6 (The sampling distribution of a median (continued)).
Let’s revisit the earlier example in this chapter where we were interested in

the sampling distribution of the sample median W from a random sample of
size n from a standard exponential density. One nice feature of the Metropolis-
Hastings algorithm is that we don’t need the normalizing constant of f(y)
since it will cancel out in the computation of the acceptance probability
PROB. If we ignore the normalizing constant, we can write the sampling
density of W (again when the sample size is odd) as

f(y) ∝ e−y
(
1−e−y

)(n−1)/2 (
e−y

)(n−1)/2
, y ≥ 0.

We begin by writing a short function to compute the logarithm of the
density of interest f(y). It is preferable to compute the log density instead of
the density since the logarithm is more stable numerically (the computation
will less likely result in an underflow result). The function has two arguments,
the variable y and the sample size n, and the function uses the exponential
density function dexp and the exponential cdf function pexp.

log.samp.med = function(y, n){

(n - 1) / 2 * log(pexp(y)) + (n - 1) / 2 * log(1 - pexp(y)) +

log(dexp(y))

}

Next, we need to think of a suitable choice for the proposal density p(y|x).
There are many suitable choices for p. Indeed one of the attractive features
of this simulation algorithm is that it works for a large class of densities.
Since the support of the density is positive values, we will try an exponential
density – we let p be an exponential density with rate parameter x:
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p(y|x) = xe−xy, y > 0.

With this choice of proposal density, the probability that a candidate value
y will be accepted (given that the current value is x) is given by

P = min
(

f(y)ye−yx

f(x)xe−xy
,1
)

.

Now we are ready to write a function metrop.hasting.exp to implement
this Metropolis-Hastings algorithm using the exponential proposal density.
There are four arguments to this function: logf is the name of the function
that computes the logarithm of the density f of interest, current is the initial
value of the Markov Chain, iter is the number of steps of the chain, and ...
refers to any parameters (such as n) that are needed in the function logf.

metrop.hasting.exp = function(logf, current, iter, ...){

S = rep(0, iter); n.accept = 0

for(j in 1:iter){

candidate = rexp(1, current)

prob = exp(logf(candidate, ...) - logf(current, ...) +

dexp(current, candidate, log=TRUE) -

dexp(candidate, current, log=TRUE))

accept = ifelse(runif(1) < prob, "yes", "no")

current = ifelse(accept == "yes", candidate, current)

S[j] = current; n.accept = n.accept + (accept == "yes")

}

list(S=S, accept.rate=n.accept / iter)

}

Since this function is short, it is worthwhile to discuss the individual lines.

� Using the rep function, we allocate a vector of length iter that will store
the simulated draws. Also we initialize the number of accepted draws
n.accept to zero.

� We write a loop to repeat the basic Metropolis-Hastings step iter times.
In each step,

– We use the rexp function to simulate a candidate draw from an expo-
nential distribution where the rate is the current value.

– We compute the probability that the candidate will be accepted. We
compute logf(x), logf(y), logp(y|x), logp(x|y) (using the logf and
dexp functions), combine them and take the exponential, and the ac-
ceptance probability is stored in the variable prob.

– We wish to accept the candidate with probability prob. We do this by
simulating a uniform variable on the interval (0, 1) (using the runif

function), and accepting the candidate if the uniform variate is smaller
than prob. The variable accept will either be “yes” or “no” depending
on the result runif(1) < prob.

– If we accept, the new current value is the candidate; otherwise, the new
current value is the old current value.
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– We store the new current value in the vector S and update the number
of accepted draws

� The function returns a list with two components: S is the vector of simu-
lated draws in the Markov Chain and accept.rate is the observed fraction
of times the candidates were accepted.

Suppose we are interested in simulating the sampling distribution of the
median for a given sample size n = 21, we plan on starting the Markov Chain
at the value 1 and simulate 10,000 iterations of the Markov Chain. We perform
this sampling by typing

> mcmc.sample = metrop.hasting.exp(log.samp.med, 1, 10000, 21)

By displaying the acceptance rate, we see that approximately 28% of the
candidate draws were accepted in this algorithm

> mcmc.sample$accept.rate

[1] 0.2782

A MCMC simulation will, by theory, eventually converge to the density f
of interest. But this theoretical result says nothing about the speed of this
convergence. In practice, one should be concerned about the length of the
burn-in period, the number of iterations where the chain takes to reach the
stationary distribution. Also, one would like the simulated sample to quickly
explore the entire region where the density f has most of its probability. If a
MCMC simulation has this characteristic, we say that it has good mixing. In
practice, it is helpful to construct a trace plot where one plots the simulated
draws {y(t)} against the iteration number. In this example, we construct a
trace plot of all simulated draws by typing

> plot(mcmc.sample$S)

The resulting display in shown in Figure 13.6.
In this example, we do not see any trend in the sequence of simulated

draws, indicating that the length of the burn-in period is short. Also the
simulated draws seem to have a wide range, indicating that the chain has
mixed well and visited the “important” region of the density f .

Does this method work? Since we have the exact sampling density avail-
able, we can compare the sample of simulated draws with the exact density.
The following R code displays a density estimate of the simulated draws and
overlays the exact sampling density. (See Figure 13.7.) The two densities are
very similar, indicating that this Monte Carlo algorithm has approximately
converged to the density of interest.

> plot(density(mcmc.sample$S), lwd=2, main="", xlab="M")

> curve(samp.med(x, 21), add=TRUE, lwd=2, lty=2)

> legend("topright", c("Simulated", "Exact"), lty=c(1, 2),lwd=c(2, 2))
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Fig. 13.6 Index plot of the simulated draws from the Metropolis-Hastings algorithm
for the median example with an exponential proposal density.

13.5.3 Random walk Metropolis-Hastings algorithm

Different Metropolis-Hastings algorithms are constructed depending on the
choice of proposal density p(y|x). One popular choice is to let p have the form

p(y|x) = h(y −x),

where h is a symmetric density about the origin. For example, suppose h is
the symmetric normal density with mean 0 and standard deviation C. Then
the proposal density has the form

p(y|x) = 1√
2πC

exp
(

− 1
2C2 (y −x)2

)
.

In this case, the candidate value y is chosen from a neighborhood of the
current value x, where the width of the neighborhood is controlled by the
normal standard deviation parameter C. If a “small” value of C is chosen,
then the candidate value will likely be close to the current value and the
acceptance rate of the algorithm will be high. In contrast, a large value of C
will result in the candidate being chosen in a wide interval about the current
value, lowering the acceptance rate of the method.

When the proposal density has this symmetric form, then p(y|x) and p(x|y)
are equal and the acceptance probability has the simple form
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Fig. 13.7 Density estimate of 10,000 simulated draws from the Metropolis-Hastings
algorithm for the median example with an exponential proposal density. The exact
sampling density is drawn with a dashed line.

PROB = min
(

f(y)
f(x) ,1

)
.

It is straightforward to write a function metrop.hasting.rw to implement
the random walk Metropolis-Hastings algorithm with the normal proposal
density by modifying a few lines of our earlier program. The only changes are
that the candidate value is generated from a normal density with mean equal
to the current value and standard deviation C, and there is a simplified form
for the acceptance probability.

metrop.hasting.rw = function(logf, current, C, iter, ...){

S = rep(0, iter); n.accept = 0

for(j in 1:iter){

candidate = rnorm(1, mean=current, sd=C)

prob = exp(logf(candidate, ...) - logf(current, ...))

accept = ifelse(runif(1) < prob, "yes", "no")

current = ifelse(accept == "yes", candidate, current)

S[j] = current; n.accept = n.accept + (accept == "yes")

}

list(S=S, accept.rate=n.accept / iter)

}

Example 13.7 (The sampling distribution of a median (continued)).
To use this random walk algorithm, one inputs a value of the scale pa-

rameter C. Below we simulate two MCMC samples for the median sampling
problem, one with a value of C = 1 and the second with a value of C = 0.05.
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> mcmc.sample1 = metrop.hasting.rw(log.samp.med, 1, 1, 10000, 21)

> mcmc.sample2 = metrop.hasting.rw(log.samp.med, 1, 0.05, 10000, 21)

Figure 13.8 displays traceplots of the simulated samples of the two samplers
and the titles of the plots display the corresponding acceptance rates.

> plot(mcmc.sample1$S, type="l", main=paste(

+ "Scale C = 1, Acceptance rate =",

+ round(mcmc.sample1$accept.rate,2)))

> plot(mcmc.sample2$S, type="l", main=paste(

+ "Scale C = 0.05, Acceptance rate =",

+ round(mcmc.sample2$accept.rate,2)))

When a small value of C = 0.05 is chosen, the acceptance rate is large (93%)
which results in simulated draws that are strongly positively correlated, and
the algorithm slowly explores the region of the target density. In contrast,
with the choice C = 1, the acceptance rate is small (26%), the simulated
values are less correlated, and the algorithm is more able to move across the
region where the density has large probability.
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Fig. 13.8 Trace plots of the simulated draws of the random walk Metropolis-Hastings
algorithm using two choices for the scale parameter C. Note that the choice C = 0.05
leads to a high acceptance rate, a snake-like appearance of the trace plot, and poorer
movement through the variable space.
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13.5.4 Gibbs sampling

Gibbs sampling is an attractive method of designing a MCMC algorithm
based on sampling from a set of conditional distributions. In the simplest
setting, suppose one is interested in constructing a MCMC algorithm to sim-
ulate from a vector of variables (x,y) distributed according to a joint density
g(x,y). Suppose it is convenient to sample from the conditional densities
g(x|y) and g(y|x). Here “convenient” means that both of these conditional
densities have familiar functional forms and can be simulated using standard
simulation methods in R (such as rnorm, rbeta, rgamma, etc.).

Suppose that we start the MCMC algorithm at x = x(0). Then one cycle
of the Gibbs sampler simulates

� y(1) from the conditional density g(y|x(0))
� x(1) from the conditional density g(x|y(1))

We continue sampling in this manner. We successively simulate from the two
conditional densities g(y|x) and g(x|y), where in each case, we are condition-
ing on the most recently simulate draw of the other variable.

The Gibbs sampler defines a Markov chain and, under general conditions,
the distribution of the variables after t cycles (x(t),y(t)), as t approaches
infinity, will converge to the joint distribution of interest g(x,y). In many
problems, the convergence will be pretty quick and so the sample of simulated
draws (x(1),y(1)), ...,(x(m),y(m)) can be regarded as an approximate sample
from the joint distribution of interest.

Example 13.8 (Flipping a random coin).
Suppose a hypothetical box contain a large amount of pennies. Each penny

has a different chance of landing heads when flipped and the probabilities of
heads follow a uniform density on the interval (0, 1). You select a coin at
random and flip it 10 times, obtaining 3 heads. You continue to flip the same
coin 12 more times. What is the probability that you obtain exactly 4 heads?

In this problem, there are two unknown quantities – the probability p that
the coin lands heads, and the number of heads y that we obtain in the final
12 flips. We can write down the joint density of (p,y) from the description of
the experiment – it is given by

g(p,y) =
(

10
3

)
p3(1−p)7 ×

(
12
y

)
py(1−p)12−y, 0 < p < 1,y = 0,1, ...,12.

To implement Gibbs sampling, one has to identify two conditional distri-
butions, the density of p conditional on y and the density of y conditional on
p. To find g(p|y) we collect all of the terms in the variable p and regard y as
a constant – we find that

g(p|y) ∝ py+3(1−p)19−y, 0 < p < 1.
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If we rewrite the density as

g(p|y) ∝ py+4−1(1−p)20−y−1, 0 < p < 1,

we recognize this conditional density as a beta density with shape parameters
a = y+4 and b = 20−y. To get the second conditional density, we collect terms
in y, regarding the probability p as a constant. We obtain that

g(y|p) ∝
(

12
y

)
py(1−p)12−y, y = 0,1, ...,12,

which we recognize as a binomial distribution with sample size 12 and prob-
ability of success p.

We write a short function random.coin.gibbs to implement the Gibbs
sampling algorithm for this example. The function has two inputs – p is the
starting value of the probability p and m is the number of Gibbs sampling
cycles. In the function, the matrix S is defined to store the simulated sample;
for ease of identification, we label the two columns of the matrix using “p”
and “y.” A loop is set up; inside the loop, we successively sample y from the
binomial density (using the rbinom function) and p from the beta density
(using the rbeta function).

random.coin.gibbs = function(p=0.5, m=1000){

S = matrix(0, m, 2)

dimnames(S)[[2]] = c("p", "y")

for(j in 1:m){

y = rbinom(1, size=12, prob=p)

p = rbeta(1, y+4, 20-y)

S[j, ] = c(p, y)

}

return(S)

}

We run the Gibbs sampler with the default starting value p = 0.5 and 1000
cycles by typing random.coin.gibbs with no arguments.

> sim.values = random.coin.gibbs()

The variable sim.values contains the matrix of simulated draws from the
joint distribution of (p,y). One can draw a scatterplot of this distribution by
the plot function. (See Figure 13.9.)

> plot(sim.values)

In this example, after inspection of trace plots of the simulated draws {p(t)}
and {y(t)} (not shown), the burn-in period appears to be short and there is
good mixing of the chain. Assuming the matrix sim.matrix is an approxi-
mate simulated sample from the joint probability distribution of (p,y), the
samples from the individual columns represent samples from the marginal
distributions of p and y. At the beginning of this section, we asked about the
probability P (y = 4). We tabulate the simulated values of y by the table

function.
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Fig. 13.9 Scatterplot of simulated sample of (p,y) from Gibbs sampling algorithm
for random coin example.

> table(sim.values[ ,"y"])

0 1 2 3 4 5 6 7 8 9 10 11

47 92 135 148 168 152 85 81 55 22 11 4

In the sample of 1000 draws of y, we observed 168 fours, so P (y = 4) ≈
168/1000 = 0.168. Other properties of the marginal density of y, such as the
mean and standard deviation, can be found by computing summaries of the
sample of simulated draws of y.

13.6 Further Reading

Gentle [20] provides a general description of Monte Carlo methods. Chib and
Greenberg [9] gives an introduction to the Metropolis-Hastings algorithm and
Casella and George [8] give some basic illustrations of Gibbs sampling. Albert
[1] provides illustrations of MCMC algorithms using R code.

Exercises

13.1 (Late to class?). Suppose the travel times for a particular student from
home to school are normally distributed with mean 20 minutes and standard
deviation 4 minutes. Each day during a five-day school week she leaves home
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30 minutes before class. For each of the following problems, write a short
Monte Carlo simulation function to compute the probability or expectation
of interest.

a. Find the expected total traveling time of the student to school for a five-
day week. Find the simulation estimate and give the standard error for the
simulation estimate.

b. Find the probability that the student is late for at least one class in the
five-day week. Find the simulation estimate of the probability and the
corresponding standard error.

c. On average, what will be the longest travel time to school during the five-
day week? Again find the simulation estimate and the standard error.

13.2 (Confidence interval for a normal mean based on sample quan-
tiles). Suppose one obtains a normally distributed sample of size n = 20 but
only records values of the sample median M and the first and third quartiles
Q1 and Q3.

a. Using a sample of size n = 20 from the standard normal distribution, sim-
ulate the sampling distribution of the statistic

S = M

Q3 −Q1
.

Store the simulated values of S in a vector.
b. Find two values, s1,s2, that bracket the middle 90% probability of the

distribution of S.
c. For a sample of size n = 20 from a normal distribution with mean μ and

standard deviation σ, it can be shown that

P

(
s1 <

M −μ

Q3 −Q1
< s2

)
= 0.90.

Using this result, construct a 90% confidence interval for the mean μ
d. In a sample of 20, we observe (Q1,M,Q3) = (37.8,51.3,58.2). Using your

work in parts (b) and (c), find a 90% confidence interval for the mean μ.

13.3 (Comparing variance estimators). Suppose one is taking a sample
y1, ...,yn from a normal distribution with mean μ and variance σ2.

a. It is well known that the sample variance

S =
∑n

j=1(yj − ȳ)2

n−1

is an unbiased estimator of σ2. To confirm this, assume n = 5 and perform
a simulation experiment to compute the bias of the sample variance S.
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b. Consider the alternative variance estimator

Sc =
∑n

j=1(yj − ȳ)2

c
,

where c is a constant. Suppose one is interested in finding the estimator
Sc that makes the mean squared error

MSE = E
[
(Sc −σ2)2]

as small as possible. Again assume n = 5 and use a simulation experiment
to compute the mean squared error of the estimators S3,S5,S7,S9 and
find the choice of c (among {3, 5, 7, 9}) that minimizes the MSE.

13.4 (Evaluating the “plus four” confidence interval). A modern
method for a confidence interval for a proportion is the “plus-four” interval
described in Agresti and Coull [2]. One first adds 4 imaginary observations
to the data, two successes and two failures, and then apply the Wald interval
to the adjusted sample. Let ñ = n + 4 denoted the adjusted sample size and
p̃ = (y + 2)/ñ denotes the adjusted sample proportion. Then the “plus-four”
interval is given by

INTP lus−four =
(

p̃−z

√
p̃(1− p̃)

ñ
, p̂+z

√
p̃(1− p̃)

ñ

)
,

where z denote the corresponding 1 − (1 − γ)/2 percentile for a standard
normal variable.

By a Monte Carlo simulation, compute the probability of coverage of the
plus-four interval for values of the proportion p between 0.001 and 0.999.
Contrast the probability of coverage of the plus-four interval with the Wald
interval when the nominal coverage level is γ = 0.90. Does the plus-four in-
terval have a 90% coverage probability for all values of p?

13.5 (Metropolis-Hastings algorithm for the poly-Cauchy distribu-
tion). Suppose that a random variable y is distributed according to the
poly-Cauchy density

g(y) =
n∏

i=1

1
π(1+(y −ai)2 ,

where a = (a1, ...,an) is a vector of real-valued parameters. Suppose that n = 6
and a = (1,2,2,6,7,8).
a. Write a function to compute the log density of y. (It may be helpful to use

the function dcauchy that computes the Cauchy density.)
b. Use the function metrop.hasting.rw to take a simulated sample of size

10,000 from the density of y. Experiment with different choices of the
standard deviation C. Investigate the effect of the choice of C on the
acceptance rate, and the mixing of the chain over the probability density.
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c. Using the simulated sample from a “good” choice of C, approximate the
probability P (6 < Y < 8).

13.6 (Gibbs sampling for a Poisson/gamma model). Suppose the vec-
tor of random variables (X,Y ) has the joint density function

f(x,y) = xa+y−1e−(1+b)xba

y!Γ (a) , x > 0,y = 0,1,2, ...

and we wish to simulate from this joint density.

a. Show that the conditional density f(x|y) has a gamma density and identify
the shape and rate parameters of this density.

b. Show that the conditional density f(y|x) has a Poisson density.
c. Write a R function to implement Gibbs sampling when the constants are

given by a = 1 and b = 1.
d. Using your R function, run 1000 cycles of the Gibbs sampler and from

the output, display (say, by a histogram) the marginal probability mass
function of Y and compute E(Y ).



Appendix A

Vectors, Matrices, and Lists

A.1 Vectors

A.1.1 Creating a vector

Vectors can be created in several ways. We have already seen two methods,
the combine function c and the colon operator : for creating vectors with
given values. For example, to create a vector of integers 1 through 9 and
assign it to i, we can use either of the following.

i = c(1,2,3,4,5,6,7,8,9)

i = 1:9

To create a vector without specifying any of its elements, we only need to
specify the type of vector and its length. For example,

y = numeric(10)

creates a numeric vector y of length 100, and

a = character(4)

creates a vector of 4 empty character strings. The vectors created are

> y

[1] 0 0 0 0 0 0 0 0 0 0

> a

[1] "" "" "" ""

A.1.2 Sequences

There are several functions in R that generate sequences of special types and
patterns. In addition to :, there is a sequence function seq and a repeat rep
function. We often use these functions to create vectors.

J. Albert and M. Rizzo, R by Example, Use R, DOI 10.1007/978-1-4614-1365-3,
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The seq function generates ‘regular’ sequences that are not necessarily
integers. The basic syntax is seq(from, to, by), where by is the size of the
increment. Instead of by, we could specify the length of the sequence. To
create a sequence of numbers 0,0.1,0.2, . . . ,1, which has 11 regularly spaced
elements, either command below works.

> seq(0, 1, .1)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> seq(0, 1, length=11)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The rep function generates vectors by repeating a given pattern a given
number of times. The rep function is easily explained by the results of a few
examples:

> rep(1, 5)

[1] 1 1 1 1 1

> rep(1:2, 5)

[1] 1 2 1 2 1 2 1 2 1 2

> rep(1:3, times=1:3)

[1] 1 2 2 3 3 3

> rep(1:2, each=2)

[1] 1 1 2 2

> rep(c("a", "b", "c"), 2)

[1] "a" "b" "c" "a" "b" "c"

A.1.3 Extracting and replacing elements of vectors

If x is a vector, x[i] is the ith element of x. This syntax is used both for
assignment and extracting values. If i happens to be a vector of positive
integers (i1, . . . , ik), then x[i] is the vector containing xi1 , . . . ,xik

, provided
these are valid indices for x.

A few examples to illustrate extracting elements from a vector are:

> x = letters[1:8] #letters of the alphabet a to h

> x[4] #fourth element

[1] "d"

> x[4:5] #elements 4 to 5

[1] "d" "e"

> i = c(1, 5, 7)

> x[i] #elements 1, 5, 7

[1] "a" "e" "g"

Examples illustrating assignment are:
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> x = seq(0, 20, 2)

> x[4] = NA #assigns a missing value

> x

[1] 0 2 4 NA 8 10 12 14 16 18 20

> x[4:5] = c(6, 7) #assigns two values

> x

[1] 0 2 4 6 7 10 12 14 16 18 20

> i = c(3, 5, 7)

> x[i] = 0 #assigns 3 zeros, at positions i

> x

[1] 0 2 0 6 0 10 0 14 16 18 20

Sometimes it is easier to specify what to “leave out” rather than what to
include. In this case, we can use negative indices. An expression x[-2], for
example, is evaluated as all elements of x except the second one. The negative
sign can also be used with a vector of indices, as shown below.

> x = seq(0, 20, 5)

> x

[1] 0 5 10 15 20

> i = c(1, 5)

> y = x[-i] #leave out the first and last element

> y

[1] 5 10 15

A.2 The sort and order functions

The sort function sorts the values of a vector in ascending order (by default)
or descending order. At times, one wants to sort several variables according
to the order of one of the variables. This can be accomplished with the order
function.

Example A.1 (The order function). Suppose that we have the following data
for temperatures and ozone levels

> temps = c(67, 72, 74, 62)

> ozone = c(41, 36, 12, 18)

and wish to sort the pairs (ozone, temps) in increasing order of ozone. The
expression order(ozone) is a vector of indices that can be used to rearrange
ozone into ascending order. This is the same order required for temps, so this
order is what we need as an index vector for temps.

> oo = order(ozone)

> oo

[1] 3 4 2 1

> Ozone = sort(ozone) #same as ozone[oo]
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> Temps = temps[oo]

> Ozone

[1] 12 18 36 41

> Temps

[1] 74 62 72 67

Rx A.1 In Example A.1 we used sort to sort the values of ozone; however,
it is not really necessary to sort (again) because order(ozone) contains the
information for sorting ozone. In this example, sort(ozone) is equivalent to
ozone[oo].

See Section 2.7.3 for an example of sorting a data frame.

A.3 Matrices

A.3.1 Creating a matrix

A matrix can be created using the matrix function. The basic syntax is
matrix(x, nrow, ncol), where x is a constant or a vector of values, nrow
is the number of rows and ncol is the number of columns. For example, to
create a 4 by 4 matrix of 0’s, we use

> matrix(0, 4, 4)

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 0 0 0

To create a matrix with specified elements, supply those elements in a vector
as the first argument to matrix.

> X = matrix(1:16, 4, 4)

> X

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

The number of rows, number of columns, and dimension of a matrix that
is already in the R workspace is returned by the functions nrow (or NROW),
ncol, and dim, respectively.

> nrow(X)

[1] 4

> NROW(X)

[1] 4

> ncol(X)
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[1] 4

> dim(X)

[1] 4 4

Rx A.2 (NROW, nrow, length) It is helpful to know when to use NROW, nrow,
or length. length gives the length of a vector, and nrow gives the number of
rows of a matrix. But length applied to a matrix does not return the number
of rows, but rather, the number of entries in the matrix. An advantage of
NROW is that it computes length for vectors and nrow for matrices. This is
helpful when the object could be either a vector or a matrix.

Notice that when we supply the vector x=1:16 as the entries of the matrix
X, the matrix was filled in column by column. We can change this pattern
with the optional argument byrow=TRUE.

> matrix(1:16, 4, 4)

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> A = matrix(1:16, 4, 4, byrow=TRUE)

> A

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

[4,] 13 14 15 16

The row and column labels of the matrix also indicate how to extract
each row or column from the matrix. To extract all of row 2 we use A[2,].
To extract all of column 4 we use A[,4]. To extract the element in row 2,
column 4, we use A[2, 4].

> A[2,]

[1] 5 6 7 8

> A[,4]

[1] 4 8 12 16

> A[2,4]

[1] 8

A submatrix can be extracted by specifying a vector of row indices and/or
a vector of column indices. For example, to extract the submatrix with the
last two rows and columns of A we use

> A[3:4, 3:4]

[,1] [,2]

[1,] 11 12

[2,] 15 16

To omit a few rows or columns we can use negative indices, in the same way
that we did for vectors. To omit just the third row, we would use
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> A[-3, ]

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 13 14 15 16

The rows and columns of matrices can be named using the rownames or
colnames. For example, we can create names for A as follows.

> rownames(A) = letters[1:4]

> colnames(A) = c("FR", "SO", "JR", "SR")

> A

FR SO JR SR

a 1 2 3 4

b 5 6 7 8

c 9 10 11 12

d 13 14 15 16

Now one can optionally extract elements by name. To extract the column
labeled ”JR” we could use A[, 3] or

> A[, "JR"]

a b c d

3 7 11 15

A.3.2 Arithmetic on matrices

The basic arithmetic operators (+ - * / ^) on matrices apply the operations
elementwise, analogous to vectorized operations. This means that if A = (aij)
and B = (bij) are matrices with the same dimension, then A*B is a matrix
of the products aijbij . Multiplying a matrix A above with itself using the *

operator squares every element of the matrix.

> A = matrix(1:16, 4, 4, byrow=TRUE)

> A

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

[4,] 13 14 15 16

> A * A

[,1] [,2] [,3] [,4]

[1,] 1 4 9 16

[2,] 25 36 49 64

[3,] 81 100 121 144

[4,] 169 196 225 256

The exponentiation operator is also applied to each entry of a matrix. The
R expression A^2 is evaluated as the matrix of squared elements a2

ij , not the
matrix product AA.
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> A^2 #not the matrix product

[,1] [,2] [,3] [,4]

[1,] 1 4 9 16

[2,] 25 36 49 64

[3,] 81 100 121 144

[4,] 169 196 225 256

Matrix multiplication is obtained by the operator %*%. To obtain the square
of matrix A (using matrix multiplication) we need A %*% A.

> A %*% A #the matrix product

[,1] [,2] [,3] [,4]

[1,] 90 100 110 120

[2,] 202 228 254 280

[3,] 314 356 398 440

[4,] 426 484 542 600

Many of the one-variable functions in R will be applied to individual el-
ements of a matrix, also. For example, log(A) returns a matrix with the
natural logarithm log(aij) as its entries.

> log(A)

[,1] [,2] [,3] [,4]

[1,] 0.000000 0.6931472 1.098612 1.386294

[2,] 1.609438 1.7917595 1.945910 2.079442

[3,] 2.197225 2.3025851 2.397895 2.484907

[4,] 2.564949 2.6390573 2.708050 2.772589

The apply function can be used to apply a function to rows or columns
of a matrix. For example, we obtain the vector of column minimums and the
vector of column maximums of A by

> apply(A, MARGIN=1, FUN="min")

[1] 1 5 9 13

> apply(A, MARGIN=2, FUN="max")

[1] 13 14 15 16

Row means and column means can be computed using apply or by

> rowMeans(A)

[1] 2.5 6.5 10.5 14.5

> colMeans(A)

[1] 7 8 9 10

The sweep function can be used to sweep out a statistic from a matrix.
For example, to subtract the minimum of the matrix and divide the result
by its maximum we can use

> m = min(A)

> A1 = sweep(A, MARGIN=1:2, STATS=m, FUN="-") #subtract min

> M = max(A1)

> A2 = sweep(A1, 1:2, M, "/") #divide by max
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> A2

[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.06666667 0.1333333 0.2000000

[2,] 0.2666667 0.33333333 0.4000000 0.4666667

[3,] 0.5333333 0.60000000 0.6666667 0.7333333

[4,] 0.8000000 0.86666667 0.9333333 1.0000000

Here we specified MARGIN=1:2 indicating all entries of the matrix. The default
function is subtraction, so the "-" argument could have been omitted in the
first application of sweep.

The column mean can be subtracted from each column by

> sweep(A, 2, colMeans(A))

[,1] [,2] [,3] [,4]

[1,] -6 -6 -6 -6

[2,] -2 -2 -2 -2

[3,] 2 2 2 2

[4,] 6 6 6 6

Example 1.8 in Section 1.3 illustrates matrix operations.

A.4 Lists

One limitation of vectors, matrices, and arrays is that each of these types of
objects may only contain one type of data. For example, a vector may contain
all numeric data or all character data. A list is a special type of object that
can contain data of multiple types.

Objects in a list can have names; if they do, they can be referenced using
the $ operator. Objects can also be referenced using double square brackets
[[ ]] by name or by position.

Example A.2 (Creating a list). If the results of Example 1.3 (fatalities due to
horsekicks) are not in the current workspace, run the script “horsekicks.R”
discussed in Section 1.1.3. Now suppose that we would like to store the data
(k and x), sample mean r and sample variance v, all in one object. The data
are vectors x and k, both of length 5, but the mean and variance are each
length 1. This data cannot be combined in a matrix, but it can be combined
in a list. This type of list can be created as

> mylist = list(k=k, count=x, mean=r, var=v)

The contents of the list can be displayed like any other object, by typing the
name of the object or by the print function.

> mylist

$k

[1] 0 1 2 3 4

$count

[1] 109 65 22 3 1
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$mean

[1] 0.61

$var

[1] 0.6109548

Names of list components can be displayed by the names function.

> names(mylist)

[1] "k" "count" "mean" "var"

All of the components of this list have names, so they can be referenced
by either name or position. Examples follow.

> mylist$count #by name

[1] 109 65 22 3 1

> mylist[[2]] #by position

[1] 109 65 22 3 1

> mylist["mean"] #by name

$mean

[1] 0.61

A compact way to describe the contents of a list is to use the str func-
tion. It is a general way to describe any object (str is an abbreviation for
structure).

> str(mylist)

List of 4

$ k : num [1:5] 0 1 2 3 4

$ count: num [1:5] 109 65 22 3 1

$ mean : num 0.61

$ var : num 0.611

The str function is particularly convenient when the list is too large to read
on one screen or the object is a large data set.

Many functions in R return values that are lists. An interesting example
is the hist function, which displays a histogram; its return value (a list) is
discussed in the next example.

Example A.3 (The histogram object (a list)). One of the many data sets in-
cluded in the R installation is faithful. This data records waiting time be-
tween eruptions and the duration of the eruption for the Old Faithful geyser in
Yellowstone National Park, Wyoming, USA. We are interested in the second
variable waiting, the waiting time in minutes to the next eruption.

We construct a frequency histogram of the times between eruptions using
the hist function, displayed in Figure A.1. The heights of the bars correspond
to the counts for each of the bins. The histogram has an interesting shape.
It is clearly not close to a normal distribution, and in fact it has two modes;
one near 50-55, and the other near 80.
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Fig. A.1 Histogram of waiting times between Old Faithful eruptions in Example
A.3.

Typically one is only interested in the graphical output of the hist func-
tion, but some useful information is returned by the function. That informa-
tion can be saved if we assign the value of the function to an object. Here
we saved the result of hist in an object H. The object H is actually a list; it
stores a variety of information about the histogram such as the bin counts,
breaks (endpoints), midpoints of intervals, etc.

> H = hist(faithful$waiting)

> names(H)

[1] "breaks" "counts" "intensities" "density"

[5] "mids" "xname" "equidist"

The endpoints of the intervals (the breaks) are

> H$breaks

[1] 40 45 50 55 60 65 70 75 80 85 90 95 100

The frequencies in each interval (the bin counts) are

H$counts

[1] 4 22 33 24 14 10 27 54 55 23 5 1

The help topic for hist describes each of the components of the list H in the
Value section.

To create a list, use the list function; a simple example is at the beginning
of this section (Example A.2). There are several other examples throughout
this book that illustrate how to create lists.
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A.5 Sampling from a data frame

To draw a random sample of observations from a data frame, use the sample
function to sample the row indices or the row labels, and extract these rows.
Refer to the USArrests data introduced in Example 1.9 on page 20. To obtain
a random sample of five states,

> i = sample(1:50, size=5, replace=FALSE)

> i

[1] 30 1 6 50 3

> USArrests[i, ]

Murder Assault UrbanPop Rape

New Jersey 7.4 159 89 18.8

Alabama 13.2 236 58 21.2

Colorado 7.9 204 78 38.7

Wyoming 6.8 161 60 15.6

Arizona 8.1 294 80 31.0

Alternately, we could have sampled the row labels:

> samplerows = sample(rownames(USArrests), size=5, replace=FALSE)

> samplerows

[1] "North Dakota" "West Virginia" "Montana" "Idaho"

[5] "Virginia"

> USArrests[samplerows, ]

Murder Assault UrbanPop Rape

North Dakota 0.8 45 44 7.3

West Virginia 5.7 81 39 9.3

Montana 6.0 109 53 16.4

Idaho 2.6 120 54 14.2

Virginia 8.5 156 63 20.7
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dendrogram, 74
density estimate, 67
density estimate plot, 288
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Two-way ANOVA, 236, 237
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Using the bootstrap package, 33
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expected outcomes, 82
exponential density, 311, 325
exponential fitting, 144
exporting graph, 120

faceting: ggplot2 package, 126
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264, 278, 324
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gamma density, 279, 282, 286
gamma quantile, 283
geoms: ggplot2 package, 126
grammar of graphics, 126
graph history, 37
graphical parameters, 37
graphics device, 121
graphics frame

opening, 119
group comparison
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help system, 13
histogram, 23, 66, 67, 159, 284, 292, 312
Holm’s p-value adjustment, 239
hypothesis test

about a median, 161

importing data, 26
inline, 216
inter-quartile range, 245
interaction, 234, 235
interaction plot, 236
interval estimate

Bayesian, 301

Jacobian of a transformation, 298

labeling outliers, 141
least squares, 173
least-squares line, 143
legend

in a plot, 107
levels, 199
likelihood function, 279, 296
line graph, 80, 260
line styles, 106
linear model, 173
lists, 344–346

log-logistic density, 296
lowess, 60
lowess smoother, 105
LSD, 210

Mann-Whitney-Wilcoxon test, 165
marginal posterior density, 300
marginal probability distribution, 332
Markov chain simulation

discrete case, 321
mathematics

displaying, 114
matrix, 16, 340

arithmetic, 342
converting to, 21
creating, 17, 19, 340
diagonal, 65
extracting elements, 18, 341
multiplication, 18, 343
negative indices, 341
operations, 19
row and column names, 17, 342

maximum, 70
mean absolute error

of estimator, 316
mean squared error, 204
median, 62
median split, 68
Metropolis-Hastings algorithm, 285, 298

acceptance rate, 288, 327
burn-in period, 327
good mixing, 327
standard deviation parameter, 328
trace plot, 327

missing values, 54, 56, 58
model formula, 174
Monte Carlo estimate

of a mean, 307, 310
of a probability, 309
standard error, 308, 309

Monte Carlo experiment, 258
coverage probability of an interval

estimate, 319
Moore’s Law, 191–195
mosaic plot, 88, 89, 96
MSE, 208
multiple comparisons, 210–214
multiple graphs in window, 256

negative binomial density, 299
negative binomial distribution, 295
normal density

as a prior, 289
normal distribution, 113
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normal probability plot, 159
normal-QQ plot, 209

one-dimensional scatterplot, 135
options, 36
outliers, 139

identifying, 112, 136
overdispersion parameter, 300

p-value, 58, 85, 94, 155, 161, 162, 165,
167

p-value adjustment, 212
pairs plot, 55–57
Pearson residuals, 85, 95, 96
Pearson’s chi-square test, 94
permutation

random, 262
permutation test, 243

for comparing two samples, 166
plot, 178, 180
plot region, 116
plotting character, 103
Poisson

density, 9
distribution, 9
probability functions, 10

Poisson density, 291
Poisson distribution, 278
position adjustments: ggplot2 package,

126
posterior density, 281, 297
posterior distribution

by simulation, 284
posterior median, 282
posterior predictive distribution, 292
prediction interval, 186
predictive distribution, 291
predictor, 173
prior density, 279, 296

construction, 279
prompt character, 3
PropCIs package, 158

QQ plot, 67, 194, 232, 246
quantiles

posterior, 285
quartile spread, 139

R Graph Gallery, 38
R Graphical Manual, 38
R Wiki, 38
Randomization test, 246
randomization test, 243
randomized block design, 227

regression, 173, 174, 188
adjusted R2, 184
ANOVA, 185
confidence interval, 185, 186
fitted line plot, 176
multiple linear regression, 181
plot fitted line, 175, 178
prediction, 180
prediction intervals, 185
QQ plot of residuals, 181
residual plot, 181, 189
residual plots, 194
residual standard error, 184
through the origin, 177, 178

relative frequencies, 80
relative frequency, 87
replicate, 247
reproducible research, 39
residual analysis, 193
residual plot, 85, 140, 143, 176
residual plots, 232, 246
residuals, 176–177, 193
resistant line, 139
response, 173, 199, 229
row proportions, 91

sampling
with replacement, 256, 266

sampling density
of a median, 311

sampling distribution, 315
empirical, 315

scale parameter
for Metropolis-Hastings algorithm,

299
scales: ggplot2 package, 126
scatterplot, 25, 50, 55, 72, 332

lattice, 122
scripts, 10–12
segmented bar chart, 92
sequence, 5, 337
side-by-side bar plots, 83
side-by-side barplots, 92
simple linear regression, 173
smoother, 194
sort, 71
Spearman’s rank test, 250
stacked format, 201
stacking data, 220
standard error

of a Monte Carlo estimate, 316, 318
stationary distribution, 323
statistic: ggplot2 package, 126
stemplot, 145, 147
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stripchart, 135
stripcharts

parallel, 135
studentized range statistic, 212, 213
subjective probability, 278
sum of squared error, 204
sum of squares, 204

t statistic
for a mean, 158

t-test
for paired differences, 169
traditional for two samples, 165
Welch for two samples, 165

t-test statistic
in permutation test, 167

tab character, 30, 134, 220
Task Views, 38
test

of a normal mean, 160
test of independence, 93
testing hypothesis

about proportion, 154
textttNROW, 14
textttrownames, 342
time plot, 60
time series, 59
time series plot, 102
trace plot, 288

transformation
parameter, 300

transforming
logarithm, 144
parameters, 297

transition probability matrix, 322
treatment, 199, 229
treatment effect, 206
Tukey Honest Significant Difference, 231
Tukey’s Honest Significant Difference,

213, 217, 238
Tukey’s multiple comparison method,

212–214
Tukey-Kramer method, 212

unbiased estimator, 315
uniform distribution, 308

discrete, 314
unstacked format, 201

variance, 14
variance-covariance matrix, 65
vectorized operations, 3
vectors, 16
vertical line plot, 84

Wilcoxon signed rank method, 161
Wilson score interval, 156
working directory, 11
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