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Preface

Panel count data occur in studies that concern recurrent events, or event
history studies, when study subjects are observed only at discrete time points.
By recurrent events, we mean the event that can occur or happen multiple
times or repeatedly. In other words, study subjects could experience recur-
rences of the same event and the resulting data are usually referred to as
event history data. Examples of recurrent events include disease infections,
hospitalizations or tumor occurrences in medical studies and warranty claims
of automobiles or system break-downs in reliability studies. There also exist
many other fields that often yield event history data such as demographic
studies, economic studies and social sciences.

The event history study can be generally classified into two types. One is
the studies that monitor study subjects continuously and the resulting data
are usually referred to as recurrent event data (Cook and Lawless, 2007). In
this case, the times of all occurrences of the event of interest are recorded.
That is, one has complete data or sample paths on the underlying point or
recurrent event process that characterizes the occurrence of the recurrent
event of interest. The other is the studies in which study subjects are ob-
served only at discrete time points and thus they produce panel count data.
In this situation, one knows only the numbers of occurrences of the event
between observation times and thus has incomplete data or sample paths on
the underlying recurrent event process. The occurrence of panel count data
could be due to many different reasons. For example, it may be too expensive,
impossible, or not realistic to conduct continuous follow-ups.

For the analysis of recurrent event data, there exists a great deal of
literature, especially a couple of excellent books. For example, Andersen
et al. (1993) provide a comprehensive coverage of counting process approaches
for the analysis of recurrent event data. Cook and Lawless (2007) give a
relatively complete and thorough review of the recent literature on recur-
rent event data. Comparatively, only sparse literature exists on the analysis
of panel count data. It is of interest and helpful to mention that in addi-
tion to the amount of relevant information available being different between
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recurrent event data and panel count data, yet another key difference is the
observation process. In the case of the former, the observation process means
the length of the whole follow-up, while in the case of the latter, it also in-
cludes a sequence of consecutive observation times. Also to analyze recurrent
event data, it is common and convenient to characterize the occurrences of
recurrent events by point processes and to model the intensity process of the
point process. On the other hand, for the analysis of panel count data, it is
usually more convenient to work directly on the mean function of the point
processes due to the incomplete nature of the observed information.

This book is intended to provide an up-to-date reference for those who
are conducting research on the analysis of panel count data as well as those
who need to analyze panel count data to answer practical questions. It can
also be used as a text for a graduate course in statistics or biostatistics that
has basic knowledge of probability and statistics as a prerequisite. The main
focus of the book is on methodology, but some applications of the methods
to real data are also provided.

Chapter 1 contains introductory material and surveys basic concepts and
point process models commonly used for the analysis of panel count data.
Examples of panel count data as well as recurrent event data are discussed,
and some key features of panel count data are described. Chapter 2 discusses
some Poisson assumption-based models and inference procedures with the
focus on parametric approaches. To be complete, regression analysis of simple
count data is first briefly considered.

Chapters 3–6 concern nonparametric and semiparametric approaches for
panel count data. Specifically, Chap. 3 deals with one-sample analysis of panel
count data with the focus on nonparametric estimation of the mean function
of the underlying recurrent event process of interest. In Chap. 4, the two-
sample comparison problem for panel count data and some nonparametric
procedures are discussed. Regression analysis of panel count data is the topic
of Chaps. 5 and 6. In Chap. 5, we discuss the situation where the observation
process is independent of the underlying recurrent event process given co-
variate processes. In this case, the inference can be made conditional on the
observation process. Chapter 6 considers the situation where the observation
process may be related to the underlying recurrent event process, and some
joint modeling inference procedures are described.

Through Chaps. 2–6, it is assumed that there exists only one recurrent
event process of interest. Sometimes there may exist several related recur-
rent event processes of interest and in this case, we have multivariate panel
count data. Chapter 7 considers the analysis of multivariate panel count data
with the focus on nonparametric treatment comparison and semiparametric
regression analysis. To keep the book at a reasonable length, many important
topics about panel count data cannot be investigated in details. Chapter 8
provides some brief investigation on several such topics. They include variable
selection with panel count data, the analysis of mixed recurrent event and
panel count data, and the analysis of panel count data arising from multi-



Preface ix

state models. In addition, some discussions are given on Bayesian approaches
for the analysis of panel count data and the analysis of panel count data
arising from mixture models or with measurement errors.

In all chapters except Chap. 8, we have used references sparsely except in
the last section of each chapter, which provides bibliographical notes includ-
ing related references. Also we have chosen not to provide in-depth coverage
of the asymptotic results related to the approaches described in the book as
well as counting process and martingale theory needed for the derivation of
the asymptotic results.

We owe thanks to many persons who have contributed directly and indi-
rectly to this book. First we are indebted to Xin He, Yang Li, Do-Hwan Park,
Hui Zhao and Qingning Zhou, who either read parts of the draft and gave
their important comments or provided great computational help. We want
to thank many of our collaborators on the subject over the years including
Narayanaswamy Balakrishnan, Richard Cook, Joan Hu, Jack Kalbfleisch, Ni
Li, Liuquan Sun, Xingwei Tong, LJ Wei, and Liang Zhu, whose collabora-
tions and contributions to the field made this book possible. Also, we would
like to express our thanks to Howard Bailey and KyungMann Kim for kindly
providing the skin cancer panel count data.

Finally, we thank our family and especially Xianghuan (Jianguo’s wife)
and Feng (Xingqiu’s husband) for their patience and support during this
project.

Columbia, MO, USA Jianguo Sun
Hong Kong, China Xingqiu Zhao





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Event History Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Failure Time Data on Remission Times of Acute
Leukemia Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Recurrent Event Data on Times to Mammary Tumors 4
1.2 Panel Count Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Reliability Study of Nuclear Plants . . . . . . . . . . . . . . . . . 5
1.2.2 National Cooperative Gallstone Study . . . . . . . . . . . . . . 6
1.2.3 Bladder Cancer Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Skin Cancer Chemoprevention Trial . . . . . . . . . . . . . . . . 9

1.3 Some Notation and Basic Concepts About
Counting Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Counting Processes and Martingales . . . . . . . . . . . . . . . . 10
1.3.2 Some Commonly Used Models and Counting Processes 12

1.4 Analysis of Recurrent Event Data . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Nonparametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Nonparametric Treatment Comparison . . . . . . . . . . . . . . 16
1.4.3 Regression Analysis Under the Cox Intensity Model . . . 17

1.5 Analysis of Panel Count Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 Some Features of Panel Count Data . . . . . . . . . . . . . . . . 19
1.5.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Poisson Models and Parametric Inference . . . . . . . . . . . . . . . . . 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Regression Analysis of Count Data . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Likelihood-Based Procedures . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Estimating Equation-Based Procedures . . . . . . . . . . . . . 26
2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Parametric Maximum Likelihood Estimation of Panel Count
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Analysis Under Poisson Models . . . . . . . . . . . . . . . . . . . . 29

xi



xii Contents

2.3.2 Analysis Under Mixed Poisson Models . . . . . . . . . . . . . . 30
2.3.3 An Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Regression Analysis with Piecewise Models . . . . . . . . . . . . . . . . 34
2.4.1 Likelihood-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Estimating Equation-Based Approach . . . . . . . . . . . . . . . 39
2.4.3 An Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Bibliography, Discussion, and Remarks . . . . . . . . . . . . . . . . . . . . 44

3 Nonparametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Likelihood-Based Estimation of the Mean Function . . . . . . . . . 48

3.2.1 Non-homogeneous Poisson Process-Based Estimator . . 49
3.2.2 Other Likelihood-Based Estimators . . . . . . . . . . . . . . . . . 50

3.3 Isotonic Regression-Based Estimation of the Mean Function . 52
3.3.1 Isotonic Regression Estimator . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Generalized Isotonic Regression-Based Estimation of the
Mean Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Generalized Isotonic Regression Estimators . . . . . . . . . . 57
3.4.2 Determination of the GIRE . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.3 An Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Estimation of the Rate Function . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.1 Raw Estimators of the Rate Function . . . . . . . . . . . . . . . 62
3.5.2 Smooth Estimators of the Rate Function . . . . . . . . . . . . 64
3.5.3 Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Bibliography, Discussion, and Remarks . . . . . . . . . . . . . . . . . . . . 69

4 Nonparametric Comparison of Point Processes . . . . . . . . . . . 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Two-Sample Comparison of Cumulative Mean Functions . . . . 72

4.2.1 Nonparametric Test Procedure I . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Nonparametric Test Procedure II . . . . . . . . . . . . . . . . . . . 74
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 General p-Sample Comparison of Cumulative Mean Functions 77
4.3.1 NPMPLE-Based Nonparametric Procedures . . . . . . . . . 77
4.3.2 NPMLE-Based Nonparametric Procedures . . . . . . . . . . . 78
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Numerical Comparison and Illustration . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Analysis of National Cooperative Gallstone Study . . . . 82
4.4.2 Numerical Comparison of the Test Procedures . . . . . . . 82



Contents xiii

4.5 Comparison of Cumulative Mean Functions with Different
Observation Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Bibliography, Discussion, and Remarks . . . . . . . . . . . . . . . . . . . . 89

5 Regression Analysis of Panel Count Data I . . . . . . . . . . . . . . . 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Analysis by the Likelihood-Based Approach . . . . . . . . . . . . . . . . 92

5.2.1 A Semiparametric Maximum Pseudo-likelihood
Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 A Semiparametric Spline-Based Maximum Likelihood
Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Analysis by the Estimating Equation Approach I . . . . . . . . . . . 97

5.3.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Estimation of All Regression Parameters . . . . . . . . . . . . 99
5.3.3 Estimation with Same Follow-Up Times . . . . . . . . . . . . . 102

5.4 Analysis by the Estimating Equation Approach II . . . . . . . . . . 103
5.4.1 A Conditional Estimating Equation Procedure . . . . . . . 103
5.4.2 An Unconditional Estimating Equation Procedure . . . . 106
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Analysis with Semiparametric Transformation Models . . . . . . . 109
5.5.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.2 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.3 Determination of Estimators . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.4 A Goodness-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Analysis of National Cooperative Gallstone Study . . . . . . . . . . 116
5.7 Bibliography, Discussion, and Remarks . . . . . . . . . . . . . . . . . . . . 119

6 Regression Analysis of Panel Count Data II . . . . . . . . . . . . . . 121
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Analysis by a Joint Modeling Procedure . . . . . . . . . . . . . . . . . . . 122

6.2.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Analysis by a Robust Estimation Procedure . . . . . . . . . . . . . . . 129
6.3.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.2 Inference Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.3 Analysis of Bladder Cancer Study . . . . . . . . . . . . . . . . . . 133
6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Analysis with Semiparametric Transformation Models . . . . . . . 136
6.4.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.2 Inference Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



xiv Contents

6.4.3 An Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5 Analysis with Dependent Terminal Events . . . . . . . . . . . . . . . . . 142
6.5.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.2 Estimation of Regression Parameters . . . . . . . . . . . . . . . . 145
6.5.3 Reanalysis of Bladder Cancer Study . . . . . . . . . . . . . . . . 149
6.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 Bibliography, Discussion, and Remarks . . . . . . . . . . . . . . . . . . . . 152

7 Analysis of Multivariate Panel Count Data . . . . . . . . . . . . . . . 155
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2 Nonparametric Comparison of Cumulative Mean Functions . . 156

7.2.1 Two-Sample Nonparametric Test Procedures . . . . . . . . . 157
7.2.2 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.3 Regression Analysis with Independent Observation Processes . 161
7.3.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3.2 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3.3 Analysis of Psoriatic Arthritis Data . . . . . . . . . . . . . . . . . 166
7.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.4 Joint Regression Analysis with Dependent Observation
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.4.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.4.2 Inference Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4.3 Analysis of Skin Cancer Chemoprevention Trial . . . . . . 175
7.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5 Conditional Regression Analysis with Dependent
Observation Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5.1 Assumptions and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5.2 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.5.3 Determination of Estimators . . . . . . . . . . . . . . . . . . . . . . . 181
7.5.4 Reanalysis of Skin Cancer Chemoprevention Trial . . . . 183
7.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.6 Bibliography, Discussion, and Remarks . . . . . . . . . . . . . . . . . . . . 186

8 Other Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2 Variable Selection with Panel Count Data . . . . . . . . . . . . . . . . . 190

8.2.1 Assumptions and Penalty Functions . . . . . . . . . . . . . . . . 191
8.2.2 Variable Section Procedure . . . . . . . . . . . . . . . . . . . . . . . . 192
8.2.3 An Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3 Analysis of Mixed Recurrent Event and Panel Count Data . . . 199
8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3.2 Regression Analysis of Mixed Data . . . . . . . . . . . . . . . . . 200



Contents xv

8.3.3 Analysis of the Childhood Cancer Survivor Study . . . . 202
8.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.4 Analysis of Panel Count Data from Multi-state Models . . . . . . 205
8.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.4.2 Maximum Likelihood Estimation with Homogeneous

Finite State Markov Models . . . . . . . . . . . . . . . . . . . . . . . 207
8.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.5 Bayesian Analysis and Analysis of Nonstandard Panel Count
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.5.1 Bayesian Analysis of Panel Count Data . . . . . . . . . . . . . 212
8.5.2 Analysis of Panel Count Data with Measurement

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.5.3 Analysis of Panel Count Data from Mixture Models . . 217

8.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

9 Some Sets of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267



1

Introduction

1.1 Event History Studies

The event history study refers to the study concerning the patterns of the
occurrences of certain events and is often seen in many fields. Among them,
two that have seen or used such studies most are probably medical research
and social sciences (Allison, 1984; Kalbfleisch and Prentice, 2002; Klein and
Moeschberger, 2003; Nelson, 2003; Vermunt, 1997; Yamaguchi, 1991). In
medical research, the event under study can be the occurrence of a disease
or death, the hospitalization of certain patient, or the occurrence of some
infection. In social sciences, examples of the subjects for event history studies
include occurrence rates of births, deaths, marriages and divorces in demo-
graphic studies, and the employment or unemployment history of certain
populations in social studies. In addition to these two, other fields that
often see event history studies include reliability studies and tumorigenicity
experiments.

The events concerned in event history studies can be generally classified
into two types. One is the type of events that can occur only once and the
other is the type of events that can occur repeatedly, which are usually re-
ferred to as recurrent events. For the first type of events, it can be the case
that the event itself can indeed occur only once such as death. It can also
happen that the event itself may occur repeatedly but the focus or objective
is the first occurrence of the event such as the first marriage. There exists a
great deal of literature on statistical methods for dealing with the first type
of events, in particular in medical context (Kalbfleisch and Prentice, 2002;
Klein and Moeschberger, 2003). A typical example of this is described below.
Examples of recurrent events include occurrences of the hospitalizations of
intravenous drug users (Wang et al., 2001), occurrences of the same infection
such as recurrent pyogenic infections among inherited disorder patients (Lin
et al., 2000), repeated occurrences of certain tumors, and warranty claims for
an automobile (Kalbfleisch et al., 1991). A specific example of such data on
tumor occurrences is given below.
With respect to the event history data on recurrent events, they can also be
generally classified into two types. One is from the event history studies that
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2 1 Introduction

monitor study subjects continuously and consequently provide information
on the times of all occurrences of the events. These data are usually referred
to as recurrent event data (Cook and Lawless, 2007). The other type is the
so-called panel count data, the focus of this book, and they arise when study
subjects are examined or observed only at discrete time points (Kalbfleisch
and Lawless, 1985; Sun, 2009; Zhao et al., 2011a). In this case, only the
numbers of occurrences of the events between subsequent observation times
are available, and the exact occurrence times of the events are unknown. The
panel count data could occur for various reasons. For example, they may arise
because continuous observation is too expensive or impossible, or when it is
not practical to conduct continuous follow-ups of the subjects under study.

A special case of panel count data that often occurs in practice is that
each subject is observed only once and such data are commonly referred to
as current status data (Diamond and McDonald, 1991; Sun and Kalbfleisch,
1993). In this situation, only available information about the recurrent event
of interest is the total number of the occurrences of the event up to the ob-
servation time. A common example of current status data arises in tumori-
genicity experiments that concern the occurrence rate of certain tumors. In
these experiments, it is often the case that only the number of tumors that
have occurred before the death or sacrifice of the animal is known. Another
area that frequently produces current status data is demographic studies
(Diamond and McDonald, 1991). Note that in the statistical literature, cur-
rent status data are sometimes also used to refer to the data from the event
history study concerning an event that can occur only once and in which study
subjects are observed only once (Sun, 2006). A more complete terminology for
this latter type of data that is often used is current status failure time data.

Extensive literature has been developed for the analysis of both the event
history study in which the event can occur only once and the study that
gives rise to recurrent event data. This is especially the case for the former
case and the resulting data are usually referred to as failure time or survival
data. For example, among many others, Kalbfleisch and Prentice (2002) and
Klein and Moeschberger (2003) give two excellent books on the topic. Among
the existing literature for the latter (Cook and Lawless, 1996; Lawless and
Nadeau, 1995; Lin et al., 2000; Pepe and Cai, 1993; Wang and Chen, 2000),
there also exist two great books. One is Andersen et al. (1993), which provides
a comprehensive coverage of counting process approaches for the analysis of
recurrent event data. The other is Cook and Lawless (2007), which gives a rel-
atively complete and thorough review of the recent literature. Comparatively,
only sparse literature exists on the analysis of panel count data.

A key and distinguishing feature of failure time data is censoring and
truncation, which may or may not exist in event history studies on recur-
rent events. One main difference between recurrent event data and panel
count data is the amount of relevant information available and another key
difference is the observation process. In the case of the former, the observa-
tion process means the length of the whole follow-up, while in the case of
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the latter, it also includes a sequence of consecutive observation times. This
observation process may or may not be independent of the underlying point
process generating the observed data. To analyze recurrent event data, it is
common and convenient to characterize the occurrences of recurrent events
by counting processes and to model the intensity process of the counting
process (Andersen et al., 1993). On the other hand, for the analysis of panel
count data, it is usually more convenient to work directly on the mean func-
tion of the counting processes due to the incomplete nature of the observed
information. More discussion on this is given below.

Note that in practice, one could regard panel count data as a special type
of longitudinal data and apply the methodology developed for general longi-
tudinal data. However, a major drawback in this approach is that one would
miss the special structure of panel count data. Moreover, some questions of
interest in panel count data cannot be answered from the longitudinal data
point of view.

To give a better idea about the types of the event history data described
above, we describe two examples below. The first one is about failure time
data and the second one is on recurrent event data. Examples of panel count
data are provided in the next section.

1.1.1 Failure Time Data on Remission Times of Acute Leukemia
Patients

Freireich et al. (1963) and Gehan (1965) discussed a set of data arising from
a clinical trial on acute leukemia patients. The data, presented in Table 1.1,
give the remission times in weeks for 42 patients in 2 treatment groups. One
treatment is the drug 6-mercaptopurine (6-MP) and the other is the placebo
treatment. The study was performed over a 1-year period and the patients
were enrolled into the study at different times. The main goal of the study
is to compare the two treatments with respect to their ability to maintain
remission. In other words, it is of interest to know if the patients with drug
6-MP had significantly longer remission times than those given the placebo
treatment.

Table 1.1. Remission times in weeks for acute leukemia patients

Treatment Survival times in weeks

6-MP 6, 6, 6, 6∗, 7, 9∗, 10, 10∗, 11∗, 13, 16, 17∗, 19∗, 20∗, 22, 23, 25∗
32∗, 32∗, 34∗, 35∗

Placebo 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

This is a typical set of failure time data. For the observed information
given in the table, the starred numbers represent censoring times or censored
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remission times. That is, such an observation is the amount of time from
when the patient entered the study to the end of the study. These remission
times were censored because these patients were still in the state of remission
at the end of the trial. Thus their actual remission times were known only to
be greater than the censoring times. For the other patients, their remission
times were observed exactly. This situation commonly occurs in failure time
studies, and the resulting data are usually referred to as right-censored failure
time data. In addition to Freireich et al. (1963) and Gehan (1965), many
other authors discussed this set of right-censored failure time data such as
Kalbfleisch and Prentice (2002).

Table 1.2. Times to tumor for 48 female rats (# in parentheses are # of tumors)

Treatment group Control group

ID Times to tumor ID Times to tumor (in days)

1 182 1 63, 102, 119, 161(2), 172, 179
2 2 88, 91, 95, 105, 112, 119(2), 137, 145, 167, 172
3 63, 68 3 91, 98, 108, 112, 134, 137, 161(2), 179
4 152 4 71, 174
5 130, 134, 145, 152 5 95, 105, 134(2), 137, 140, 145, 150(2)
6 98, 152, 182 6 68(2), 130, 137
7 88, 95, 105, 130, 137, 167 7 77, 95, 112, 137, 161, 174
8 152 8 81, 84, 126, 134, 161(2), 174
9 81 9 68, 77, 98, 102(3)
10 71, 84, 126, 134, 152 10 112
11 116, 130 11 88(2), 91, 98, 112, 134(2), 137(2), 140(2), 152(2)
12 91 12 77, 179
13 63, 68, 84, 95, 152 13 112
14 105, 152 14 71(2), 74, 77, 112, 116(2), 140(2), 167
15 63, 102, 152 15 77, 95, 126, 150
16 63, 77, 112, 140 16 88, 126, 130(2), 134
17 77, 119, 152, 161, 167 17 63, 74, 84(2), 88, 91, 95, 108, 134, 137, 179
18 105, 112, 145, 161, 182 18 81, 88, 105, 116, 123, 140, 145, 152, 161(2), 179
19 152 19 88, 95, 112, 119, 126(2), 150, 157, 179
20 81, 95 20 68(2), 84, 102, 105, 119, 123(2), 137, 161, 179, 182
21 84, 91, 102, 108, 130, 134 21 140
22 22 152, 182(2)
23 91 23 81

24 63, 88, 134
25 84, 134, 182

1.1.2 Recurrent Event Data on Times to Mammary Tumors

Table 1.2 presents a set of data on the times to mammary tumors in days
for 48 female rats, reproduced from Gail et al. (1980). The data arose from
a carcinogenicity experiment on the times to the development of mammary
tumors in two treatment groups. At the beginning of the experiment, the
rats were exposed to a carcinogen for 60 days and then randomized to receive
either retinoid treatment or control. The total follow-up period is 122 days



1.2 Panel Count Data 5

after randomization and during the period, the rats were examined every few
days for the development of new tumors. A given animal may experience any
number of tumors and one of the main objectives is to compare the tumor
growth rates between the two treatment groups.

As mentioned above, for the recurrent event data such as these given in
Table 1.2, the observed information includes the time of each occurrence of
the event of interest during the follow-up period. As can be seen, the number
of the occurrences of the event and the occurrence times differ from subject
to subject, and there are two rats who never developed tumors during the
follow-up. Note that sometimes one may be interested only in the occurrence
time of the first tumor, and in this case, the data become right-censored
failure time data on the time to the first tumor as these given in Table 1.1.
For more discussion on this data set, readers are referred to as Cook and
Lawless (2007) among others.

1.2 Panel Count Data

As described above, panel count data arise from event history studies in which
study subjects are examined or observed only at discrete time points. Thus
they give only the numbers of occurrences of the recurrent events of interest
between subsequent observation times. In particular, the exact occurrence
times of the events are unknown. In the following, we discuss four examples
of panel count data. The first three examples concern univariate panel count
data, while the last one discusses a set of panel count data that involves two
types of related recurrent events, that is, bivariate panel count data.

1.2.1 Reliability Study of Nuclear Plants

Table 1.3 presents a set of panel count data arising from a reliability study of
30 nuclear plants on the loss of feedwater flow. The data are reproduced from
Gaver and O’Muircheartaigh (1987) and Sun and Kalbfleisch (1995). They
give the observation time (one per plant) and the corresponding observed
number of losses of feedwater flow for each nuclear plant. In other words,
only one observation was taken for each study subject and we actually have
current status data.

Among others, one objective of this reliability study is to estimate the
mean or average number of losses of feedwater flow based on the observed
data. For this, one simple approach is to assume that the number of loss of
feedwater flow follows a parametric model such as the Poisson distribution,
and one can then carry out the maximum likelihood estimation. More gener-
ally, one may want to apply some nonparametric procedures. Among others,
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Gaver and O’Muircheartaigh (1987) and Sun and Kalbfleisch (1995) analyzed
this set of data.

Table 1.3. Observed numbers of loss of feedwater flow from 30 nuclear plants

Observation time ti (in years) and observed number ni

Plant ti ni Plant ti ni Plant ti ni Plant ti ni

1 15 4 9 4 13 17 2 11 25 1 1
2 12 40 10 3 4 18 2 1 26 3 10
3 8 0 11 4 27 19 2 0 27 2 5
4 8 10 12 4 14 20 1 3 28 4 16
5 6 14 13 4 10 21 1 5 29 3 14
6 5 31 14 2 7 22 1 6 30 11 58

7 5 2 15 3 4 23 5 35
8 4 4 16 3 3 24 3 12

1.2.2 National Cooperative Gallstone Study

The National Cooperative Gallstone Study is a 10-year, multicenter, double-
blinded, placebo-controlled clinical trial on the use of the natural bile acid
chenodeoxycholic acid, cheno, for the dissolution of cholesterol gallstones. The
original study consists of a total of 916 patients randomized into each of three
treatments, placebo, low dose, and high dose, and they were treated for up to
2 years. One of the primary objectives of the study is to assess the impact of
the treatments on the incidence of digestive symptoms commonly associated
with the gallstone disease. The symptoms range from milder episodes of nau-
sea/vomiting, dyspepsia, and diarrhea to more severe episodes of digestive
colic, i.e., severe pain, and cholecystitis, i.e., digestive obstruction.

The data set I of Chap. 9, reproduced from Thall and Lachin (1988) and
Sun (2006), gives the observed information on the incidence of nausea over
the first 52 weeks follow-up on 113 patients with floating gallstones in high-
dose (65) and placebo (48) groups. Nausea is an unpleasant sensation vaguely
referred to the epigastrium and abdomen, often culminating in vomiting. It
is very commonly associated with the gallstone disease and it is important
for the investigators to determine whether there exists a significant differ-
ence between the incidence of nausea for the patients in the two groups. It
was hypothesized that any treatment effect should be observed shortly after
patients achieved maximal dose (usually by 3 months). The effect might later
begin to dissipate.

During the study, the patients were scheduled to return for clinic observa-
tions at 1, 2, 3, 6, 9, and 12 months during the first year follow-up. However,
actual visit or observation times differ from patient to patient. For exam-
ple, the first observation times range from 3 to 9 weeks, and some patients
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dropped out of the study early. At each visit, they were asked to report the
total number of each type of symptom that had occurred between successive
visits such as the number of the incidences of nausea. That is, the observed
data include actual visit times and the numbers of the incidences or occur-
rences of nausea between the visits, and we have panel count data on the
occurrence of nausea. For the analysis of the data here, several questions can
be of interest. One is to estimate the pattern or average rate of the inci-
dences of nausea and then to compare the patterns or average rates between
the treatment groups. Also one may want to conduct regression analysis of
these panel count data for treatment comparison and estimation of some
covariate effects.

Table 1.4. Current status data for the placebo group of bladder cancer study

Initial # of initial Follow-up # of Initial # of initial Follow-up # of
ID size tumors time tumors ID size tumors time tumors

1 3 1 1 0 25 6 1 30 3
2 1 2 4 0 26 3 1 31 6
3 1 1 7 0 27 2 1 32 0
4 1 5 10 0 28 1 2 34 0
5 1 4 10 1 29 1 2 36 0
6 1 1 14 0 30 1 3 36 8
7 1 1 18 5 31 2 1 37 0
8 1 1 18 0 32 1 4 40 16
9 3 1 18 2 33 1 5 40 16
10 3 1 23 9 34 2 1 41 0
11 1 1 23 24 35 1 1 43 3
12 1 3 23 10 36 6 2 43 1
13 3 3 23 0 37 1 2 44 12
14 3 2 24 27 38 1 1 45 12
15 1 1 25 5 39 1 1 48 1
16 1 8 26 8 40 3 1 49 0
17 4 1 26 12 41 1 3 51 1
18 2 1 26 0 42 7 1 53 1
19 2 1 28 3 43 1 3 53 15
20 4 1 29 0 44 1 1 47 0
21 2 1 29 0 45 2 3 52 19
22 1 4 29 0 46 3 1 53 23
23 5 1 30 10 47 3 2 52 17
24 1 2 30 13

1.2.3 Bladder Cancer Study

Table 1.4 gives a set of panel count data on the patients in the placebo group
of the bladder cancer study conducted by the Veterans Administration Co-
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operative Urological Research Group (Byar, 1980; Byar et al., 1977). The
study consists of the patients who had superficial bladder tumors when they
entered the study, and they were randomly assigned to each of the three treat-
ment groups, placebo, thiotepa and pyridoxine. For all patients, their initial
tumors were removed transurethrally, and they had multiple recurrences of
tumors during the study. To give a quick idea about panel count data and
another example of current status data, the data in Table 1.4 are actually
the summary data from the patients in the placebo group. Specifically, they
only give the follow-up time and the total number of bladder tumors that oc-
curred during the follow-up for each study subject. In other words, we have
a set of current status data on the occurrence of bladder tumors, and this
would be the case if each subject was examined only once. In addition, for
each patient, the observed data also provide information on two potentially
important baseline covariates. They are the size of the largest initial tumor
and the number of initial tumors.

For each patient in the bladder cancer study, the observed data actually
include a sequence of clinical visit times and the numbers of recurrent tumors
that occurred between the visits. As the initial tumors, the recurrent tumors
were also removed transurethrally at the patient’s clinic visits. The data set
II of Chap. 9, reproduced from Andrews and Herzberg (1985) and Sun and
Wei (2000), gives the observed data on 85 patients in the placebo (47) and
thiotepa (38) groups. Note that the data on the third treatment pyridoxine
are not included here as many authors have showed that it did not have
significant effect. The unit for observation times is a month with the largest
observation time being 53 months.

For the analysis of this set of panel count data, several issues may be of
interest as those for the data arising from the National Cooperative Gallstone
Study discussed in the previous subsection. These include treatment compar-
ison and regression analysis, and many authors have discussed these and oth-
ers (He et al., 2009; Hu et al., 2003; Huang et al., 2006; Sun et al., 2007b; Sun
and Wei, 2000; Wellner and Zhang, 2007; Zhang, 2006). In addition, among
others, Sun and Wei (2000) noted that the observation process seems to de-
pend on the treatment and covariates. Furthermore, He et al. (2009) and Sun
et al. (2007b) pointed out that the underlying counting process representing
the occurrence of bladder tumors may be related to the observation times.
More discussion on this is given below.
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1.2.4 Skin Cancer Chemoprevention Trial

Lee (2008) and Li (2011) discussed a set of panel count data arising from a
skin cancer chemoprevention trial, funded by a NCI R01 grant and conducted
by the University of Wisconsin Comprehensive Cancer Center in Madison,
Wisconsin. It is a double-blinded and placebo-controlled randomized phase
III clinical trial. The primary objective of this trial is to evaluate the effective-
ness of 0.5 g/m2/day PO difluoromethylornithine (DFMO) in reducing new
skin cancers in a population of the patients with a history of non-melanoma
skin cancers: basal cell carcinoma and squamous cell carcinoma. The study
consists of 291 patients randomized to either the placebo group (147) or the
DFMO group (144). During the study, the patients were scheduled to be as-
sessed or observed every 6 months for the development of new skin cancers
of the two types.

The observed information is presented in data set III of Chap. 9, kindly
provided by Dr. Howard Bailey, the PI of the study. For each patient, it gives
a sequence of observation times and the numbers of occurrences of both basal
cell carcinoma and squamous cell carcinoma between the observation times.
As expected, these real observation times differ from patient to patient and
so as the follow-up times. One difference between this set of panel count
data and the data discussed in the previous examples is that here there exist
two types of recurrent events defined by the two types of skin cancers. It is
obvious that the incidences or occurrences of these two types of skin cancers,
basal cell carcinoma and squamous cell carcinoma, are correlated. In other
words, we have a set of bivariate panel count data.

The data set III of Chap. 9 actually includes only 290 skin cancer patients
as one patient who did not give any observation was removed. It can be seen
that among these patients, the number of observations ranges from 1 to 17.
With respect to the number of the recurrent events, the number of new basal
cell carcinoma ranges from 0 to 16, while the number of new squamous cell
carcinoma ranges from 0 to 23. For each patient, in addition to the treatment
indicator, information is also available on three baseline covariates. They are
patient’s gender, age at the diagnosis and the number of prior skin cancers
from the first diagnosis to randomization. For the analysis, a simple and naive
approach is to assess the treatment effects on each of the two types of skin
cancers by conducting two separate analyses of univariate panel count data.
It is clear that this would not be efficient and one may prefer some joint
analysis of the two types of skin cancers together.

More examples of panel count data and their analyses are given throughout
the book. In the next section, we introduce some notation and basic concepts
about counting processes that are commonly used in practice and throughout
the book.
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1.3 Some Notation and Basic Concepts About
Counting Processes

In this section, we introduce some notation and review some basic concepts
and models about counting processes. They are the foundation of many ap-
proaches developed for the analysis of panel count data and also used through-
out the book.

1.3.1 Counting Processes and Martingales

Counting processes have been playing an essential role in the development of
statistical models and inferential procedures for event history analysis. Some
of the early and significant contributions to this were given by Aalen (1975,
1978) and Andersen and Borgan (1985). They and others established the con-
nection between counting process and event history analysis and showed how
the theory of multivariate counting processes can provide a general frame-
work and a useful tool for event history analysis. In particular, Andersen and
Gill (1982) proposed the Cox type intensity model for counting processes,
developed the partial likelihood estimation procedure for regression parame-
ters, and established the large sample theory for the resulting estimators. For
detailed description and discussion on these and general stochastic processes,
readers are referred to Andersen et al. (1993) and Cox and Miller (1965) in
addition to the references mentioned above.

Let (Ω,F ,P) be a probability space and T = [0, τ) a continuous time
interval, where τ is a given terminal time, 0 < τ ≤ ∞. A stochastic process
X is a family of random variables {X(t) : t ∈ T }. A filtration or history
(Ft : t ∈ T ) is an increasing right-continuous family of sub-σ-algebras of F
such that Ft contains all the information generated by the stochastic process
X on [0, t]. The process X is said to be adapted to the filtration if X(t) is
Ft-measurable for every t ∈ T . A process X is predictable with respect to Ft

if X(t) is known given the history Ft− generated by {X(s) : 0 ≤ s < t}.
A counting process is a stochastic process {N(t); t ≥ 0} with N(0) = 0 and

N(t) < ∞ almost surely such that the path is right-continuous with proba-
bility one, piecewise constant, and has only jump discontinuities with jumps
of size +1. To model a counting process, one usually employs its intensity
process defined as

λ(t) = lim
Δt↓0

P{N(t+Δt−)−N(t−) = 1|Ft−}
Δt

and imposes some assumptions on its format. Given λ(t), one can obtain

the so-called cumulative intensity process Λ(t) =
∫ t

0 λ(s)ds and could di-
rectly model Λ(t) too. Suppose that there exists a vector of covariate process
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denoted by Z(t). Let Ft denote the history generated by {N(s),Z(s) : 0 ≤
s < t} and λZ(t) the intensity process of N(t) associated with Ft. That is,

E{ dN(t)|Ft } = λZ(t) dt ,

where dN(t) denotes the increment N((t+ dt)−) − N(t−) of N(t) over the
small interval [t, t+ dt).

Of course, in practice, one usually faces more than one counting pro-
cess. A K-dimensional multivariate counting process is a stochastic process
{N1(t), . . . , NK(t); t ≥ 0 } with K components such that each component
Nk(t) is a counting process having jumps of size +1, no two components can
jump simultaneously, and each Nk(∞) is almost surely finite. That is, mul-
tiple events cannot occur. The process defined above can be thought of as
counting the occurrences ofK different types of recurrent events. As the single
counting process, the multivariate counting process is governed by its inten-
sity process {λ1(t), . . . , λK(t); t ≥ 0 }, where λk(t) corresponds to Nk(t). For
this, Aalen (1978) introduced the multiplicative intensity model defined as

λk(t) = αk(t)Yk(t) . (1.1)

Here αk(t) is a non-negative deterministic function and Yk(t) a non-negative
predictable stochastic process, k = 1, . . . ,K. Usually one can regard αk(t) as
an individual intensity for the occurrence of the kth type of recurrent events
and Yk(t) the risk indicator or the number of subjects at risk of experiencing
the kth type of recurrent events at t−. If α1(t) = . . . = αK(t) = α0(t) in

model (1.1), then it is easy to see that N(t) =
∑K

k=1 Nk(t) is a counting

process with the intensity process α0(t)Y (t), where Y (t) =
∑K

k=1 Yk(t).
One major reason that counting processes have played fundamental and

important roles for the analysis of event history studies is their link with
martingales. The use of martingale methods makes it possible for the devel-
opment and derivation of various statistical procedures. Let M(t) denote an
integrable stochastic process, that is, E{ |M(t)|} < ∞ for all t, and Ft the
associated history up to time t. We say that M(t) is a martingale if

E{M(t)|Fs } = M(s)

for all s ≤ t. Let the Nk(t)’s and λk(t)’s be defined as above and define

dMk(t) = dNk(t) − λk(t) dt ,

k = 1, . . . ,K. Then the processes

Mk(t) = Nk(t) −
∫ t

0

λk(s) ds , k = 1, . . . ,K

are martingales. In particular, we have E{Mk(t) } = 0.
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For a martingale M(t), its variance process is usually defined through

d < M > (t) = V ar{ dM(t)|Ft− } .

For the martingales Mk(t)’s defined above, one can show that

d < Mk > (t) = V ar{dNk(t)|Ft− } ≈ λk(t) dt

and thus

< Mk > (t) =

∫ t

0

λk(s) ds ,

k = 1, . . . ,K. LetM1(t) and M2(t) denote two martingales. Their covariance
process < M1,M2 > is defined by the increments

d < M1,M2 > (t) = Cov{ dM1(t), dM2(t)|Ft− }

and we say that they are orthogonal if < M1,M2 >= 0. One can show that
the martingales Mk(t)’s defined above are orthogonal. For more discussion
on martingales and in particular on the martingale central limit theorems
commonly used in event history studies, the readers are referred to the book
Andersen et al. (1993).

1.3.2 Some Commonly Used Models and Counting Processes

For the analysis of recurrent event data, one of the most commonly used
models on λZ(t), the intensity process given the covariate process Z(t), is
the Cox type intensity model

λZ(t) = λ0(t) exp{βTZ(t)} , (1.2)

proposed by Andersen and Gill (1982). In the above, λ0(t) denotes an un-
specified continuous function and β is a vector of regression parameters. In
practice, the Cox intensity model (1.2) may be too restrictive (Lin et al.,
2000) and corresponding to this, one may want to model the mean or rate
function r(t) of N(t) defined by

E{ dN(t) } = r(t) dt .

Given r(t), the mean function μ(t) can be calculated as μ(t) =
∫ t

0 r(s)ds.
Note that it is easy to see that the mean or rate function cannot completely
specify the counting process N(t) and they are sometimes referred to as the
marginal cumulative intensity or intensity function. One major advantage of
dealing with the mean or rate function is that less assumptions are usually
needed in modeling them compared to modeling the intensity process. As
a consequence, one can expect more robust inferential procedures. Also it
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is apparent that they can be more intuitive than the intensity function in
practice.

Given Z(t), a commonly used model for the rate function is the so-called
proportional rate model

rZ(t) dt = E{ dN(t)|Z(t)} = r0(t) exp{βTZ(t)} dt , (1.3)

where r0(t) denotes an unknown baseline rate function and β regression pa-
rameters as above. Assume that Z is time-independent. Then from model
(1.3), one can derive

μZ(t) = E{N(t)|Z } = μ0(t) exp(β
TZ) , (1.4)

where μ0(t) =
∫ t

0 r0(s) ds. This is often referred to as the proportional mean
model (Cook and Lawless, 2007; Lawless and Nadeau, 1995; Lin et al., 2000).
One advantage of model (1.4) is that it is applicable to any counting process
or can be used to model point processes with positive jumps of arbitrary sizes.
In contrast, model (1.2) requires the Poisson structure (Lin et al., 2000). Of
course, one could apply model (1.4) to time-dependent covariates too.

For an event history study concerning transitions among finite states, a
commonly used model is the finite state Markov Chain model. Suppose that
{X(t) : t ≥ 0 } is a continuous stochastic process with right continuous sam-
ple paths and state space S = { 1, . . . ,m }. Let { qij(t) : i �= j = 1, . . . ,m }
be nonnegative left continuous functions satisfying

∫ t

0
qij(s) ds < ∞ for all

t > 0. The process {X(t) } is said to be a continuous time Markov Chain
with intensities qij(t) if

P{X(t) = j|X(t− h) = i,X(s), 0 ≤ s < t− h}
= P{X(t) = j|X(t− h) = i} = qij(t)h+ o(h)

for small h > 0 and all i �= j. Define qii(t) = −
∑

j �=i qij(t). Then
Q(t) = ( qii(t) )m×m is usually referred to as the transition intensity ma-
trix and often the target for inference. Given Q(t), it is easy to see that
one can determine the transition probability matrix P (s, t) = ( pij(s, t) ) for
t > s, where pij(s, t) = P (X(t) = j|X(s) = i). If qij(t) = qij , independent
of time t, for all (i, j), we usually say that the Markov Chain X(t) is time
homogeneous. In this case, we usually write Q(t) = Q and P (s, t) depends
only on the difference t − s.

Let X(t) be a continuous Markov Chain with the state space S =
{ 1, . . . ,m } as defined above. For each pair (i, j), define Nij(t) to be the
cumulative number of transitions from state i to state j up to time t,
i �= j = 1, . . . ,m. Then {Nij(t) } is a m (m − 1)-dimensional multivari-
ate counting process. That is, one can transfer Markov Chain problems to
counting process problems. Among the continuous Markov Chains, a simple
and commonly used one is the three-state model. In this case, the three states
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could represent, for example, a health status, a disease status and death. Of
course, in practice, one could also simply use a finite state model or the three-
state model without imposing the Markov assumption. More discussion on
Markov Chains and the three-state model is given in Sect. 8.4.

Among counting processes, the most commonly used one is perhaps the
Poisson process {N(t); t ≥ 0} defined by

P{N(t+ dt)−N(t) = 1|Ft−} = λ(t)dt + o(dt)

and
P{N(t+ dt)−N(t) ≥ 2|Ft−} = o(dt)

with λ(t) being a left-continuous function. The definition above says that
the Poisson process N(t) has at most one jump over a small time interval
and does not depend on its history. The process defined above is commonly
referred to as a non-homogeneous Poisson process. If λ(t) is a constant, the
process is usually called a homogeneous Poisson process. For a Poisson process
{N(t) : t ≥ 0}, we have that at each t, N(t) follows the Poisson distribution

with E{N(t)} = Λ(t) =
∫ t

0
λ(s)ds. That is, Λ(t) is also the mean function

of the process and in this situation, we have that r(t) = λ(t) = dΛ(t)/ dt.
Suppose that N(t) is the non-homogeneous Poisson process defined above

and let Tk denote the time to the occurrence of the kth event. Then it can
be shown that T1 has the density function

f1(t) = λ(t) exp{−Λ(t) }

and given Tk−1 = tk−1, Tk has the density function

fk(tk) = λ(tk) exp[−{Λ(tk)− Λ(tk−1)} ]

for tk > tk−1, k ≥ 2. Also given N(τ) = n, the joint density function of
T1, . . . , Tn has the form

f(t1, . . . , tn) =
n!
∏n

i=1 λ(ti)

{Λ(τ)}n , 0 < t1 < . . . < tn < τ .

If N(t) is homogeneous, that is, λ(t) = λ, then T1, T2 − T1, T3 − T2, . . . are
independent exponential variables with mean λ−1.

1.4 Analysis of Recurrent Event Data

To help the discussion on the analysis of panel count data, we first in this
section give a brief review of some of the commonly asked questions and
the corresponding available approaches in the literature for the analysis of
recurrent event data. This is because many of these questions are often of
interest in the case of panel count data too. In addition, the ideas behind
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some of these approaches have been or can be easily generalized to the latter
situation. Of course, as discussed above, there exist several differences be-
tween the two types of event history data, and as a consequence, there also
exist some questions that are unique to panel count data.

Consider a study concerning a single type of recurrent events and con-
sisting of n independent subjects. Define Ni(t) to be the counting process
representing the number of occurrences of the event over the interval [0, t] for
subject i, i = 1, . . . , n. Assume that each subject is observed continuously up
to time min(Ci, τ), where Ci denotes the observation period or follow-up time
for subject i and τ the study length. That is, we have recurrent event data
on the Ni(t)’s. Define the left-continuous function Yi(t) = I(t ≤ min(Ci, τ)),
indicating whether subject i is under observation at time t, i = 1, . . . , n.
Here we assume that the follow-up time Ci is independent of the counting
process Ni(t) completely or given covariates. In the following, we confine our
discussion on three topics or questions, nonparametric estimation, nonpara-
metric treatment comparison and regression analysis under the Cox intensity
model.

1.4.1 Nonparametric Estimation

For the analysis of recurrent event data, one of the basic questions is to eval-
uate or estimate the occurrence rate of the recurrent event of interest. To
address this, assume that all study subjects come from a homogeneous popu-
lation and the intensity process λi(t) forNi(t) has the form λi(t) = α(t)Yi(t),
where α(t) is a nonnegative deterministic function. Then the estimation of the
occurrence rate becomes estimating the function α(t) or more conveniently

the corresponding cumulative function Λ(t) =
∫ t

0 α(s)ds. For this, motivated

by the fact that Ni(t) −
∫ t

0
α(s)Yi(s) ds is a martingale, a commonly used

estimator is given by the so-called Nelson-Aalen estimator

Λ̂(t) =

∫ t

0

J.(s) dN.(s)

Y.(s)
(1.5)

(Andersen et al., 1993). In the above,N.(t) =
∑n

i=1Ni(t), Y.(t) =
∑n

i=1 Yi(t)
and J.(t) = I(Y.(t) > 0). It is easy to see that N.(t) and Y.(t) denote the total
number of occurrences of the event up to time t and the number of subjects
still under observation at time t, respectively.

Let t1 < t2 < · · · denote the sequence of all distinct occurrence times
of the recurrent events of interest. Then the Nelson-Aalen estimator can be
rewritten as

Λ̂(t) =
∑

j:tj≤t

ΔN.(tj)

Y.(tj)
,
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where ΔN.(tj) = N.(tj) − N.(tj−1). Given Λ̂(t), it is obvious that one can
estimate α(t) by

α̂(t) =
ΔN.(t)

Y.(t)
, (1.6)

or more generally by a kernel estimator

α̂K(t) =
1

h

∫ t+h

t−h

K

(
t− s

h

)

dΛ̂(s) , (1.7)

where K(t) is a kernel function and h is a positive constant called the band-
width (Wand and Jones, 1995). It is easy to see that the estimator α̂K(t) is
the average or smooth version of the raw estimator α̂(t), and one can control
the degree of the smoothness by choosing appropriate K and h.

In the case that the Ni(t)’s are non-homogeneous Poisson processes, one
can easily show that the estimator Λ̂(t) is actually the nonparametric max-
imum likelihood estimator of the mean function of the processes (Cook and
Lawless, 2007). Also some robust variance estimation for the Nelson-Aalen
estimator can be developed (Cook and Lawless, 2007).

1.4.2 Nonparametric Treatment Comparison

To describe the treatment comparison problem, assume that one has a multi-
variate counting process {N1(t), . . . , NK(t); t ≥ 0 } satisfying the multiplica-
tive intensity model (1.1). Also assume that one is interested in testing the
hypothesis

H0 : α1(t) = . . . = αK(t) .

Define Ak(t) =
∫ t

0 αk(s) ds and A(t) =
∫ t

0 α(s) ds, where α(t) denotes the

common function of the αk(t)’s under H0, k = 1, . . . ,K. Let Âk(t) denote
the Nelson-Aalen estimator defined in (1.5) with replacing N.(s), Y.(s) and
J.(s) by Nk(s), Yk(s) and Jk(s) = I(Yk(s) > 0), respectively, k = 1, . . . ,K.
Also define

Â(t) =

∫ t

0

J(s)

Y (s)
dN(s)

and

Ãk(t) =

∫ t

0

Jk(s) dÂ(s) =

∫ t

0

Jk(s)

Y (s)
dN(s) ,

where Y (t) =
∑K

k=1 Yk(t), N(t) =
∑K

k=1 Nk(t) and J(t) = I(Y (t) > 0).
To test the hypothesis H0, Andersen and Gill (1982) proposed to use the

statistic {U1(τ), . . . , UK(τ) }, where

Uk(t) =

∫ t

0

Wk(s) d (Âk − Ãk)(s)
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with the Wk(t)’s being some locally bounded predictable weight processes.
Furthermore, they showed that the Uk(t)’s converge weakly to a K-variate
Gaussian martingale under H0 and {U1(τ), . . . , UK(τ) } is asymptotically
multinormally distributed with mean zero. Hence one can perform a chi-
squared test on the hypothesis H0. It is easy to see that the basic idea behind
the test statistics above is to compare the two estimators of Ak(t). One is
the estimator Ãk(t) obtained under the hypothesis H0 and the other is the
estimator Âk(t) independent of the hypothesis H0. In the case of two-sample
situations (K = 2), instead of the test statistic above, one could equivalently
apply the statistic

∫ τ

0

W (t) d (Â1 − Â2)(t) ,

where W (t) is a bounded predictable weight process as Wk(t).
In practice, in addition to the hypothesisH0, one may be interested in some

other hypotheses about the αk(t)’s too. For example, again for the two-sample
situation, a model of practical interest is the proportional intensity model

α1(t) = θ α2(t) ,

and sometimes one may be interested in testing θ = 1. Also as discussed
above, instead of the intensity function, sometimes one may want to focus
on the rate or mean functions of the underlying counting processes. Thus the
hypothesis could be about the rate or mean functions. In these situations,
one approach for the construction of test statistics is to directly apply the
idea above to compare two sets of estimators of the rate or mean functions
obtained with and without the hypothesis.

1.4.3 Regression Analysis Under the Cox Intensity Model

Let the Ni(t)’s and Yi(t)’s be defined as before. Suppose that in addition,
there exists a vector of covariate processes denoted by Zi(t) for subject i,
i = 1, . . . , n, and the goal is to make inference about covariate effects. For
this, assume that the intensity process of Ni(t) has the form

λi(t) = Yi(t)λ0(t) exp{βTZi(t)} , (1.8)

where λ0(t) and β are defined as in model (1.2). To estimate β, Andersen and
Borgan (1985) suggested to use the solution to the equation ∂C(τ ;β)/∂β =
0, where

C(t;β) =

n∑

i=1

∫ t

0

βTZi(s) dNi(s) −
∫ t

0

log

{
n∑

i=1

Yi(s) exp{βTZi(s)}
}

dN̄(s)

with N̄(t) =
∑n

i=1 Ni(t).
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Let U(t;β) = ∂C(t;β)/∂β and

S(j)(t;β) =
1

n

n∑

i=1

Yi(t) exp{βTZi(t)}Zj
i (t) ,

j = 0, 1. Then we have

U(t;β) =
n∑

i=1

∫ t

0

Zi(s) dNi(s) −
∫ t

0

S(1)(s;β)

S(0)(s;β)
dN̄(s)

=

n∑

i=1

∫ t

0

{
Zi(s)− Z̄(s;β)

}
Yi(s) dNi(s) , (1.9)

where Z̄(t;β) = S(1)(t;β)/S(0)(t;β). Let β̂ denote the estimator of β de-

fined above. Given β̂, one can estimate Λ0(t) =
∫ t

0
λ0(s) ds by

Λ̂0(t; β̂) =

n∑

i=1

∫ t

0

Yi(s) dNi(s)

nS(0)(s; β̂)
. (1.10)

Note that in the discussion above, it was assumed that there exists only
one type of recurrent events. Sometimes there may exist K types of recurrent
events and in this case, we could have a n × K-dimensional multivariate
counting process {Nki(t), k = 1, . . . ,K, i = 1, . . . , n, t ≥ 0 }. Here Nki(t)
represents the cumulative numbers of the occurrences of the kth type of
recurrent events from subject i up to time t. To model covariate effects, it is
straightforward to generalize model (1.8) to

λki(t) = Yi(t)λk0(t) exp{βTZi(t)} ,

where the λk0(t)’s are unspecified type-specific underlying intensities as λ0(t).
In the model above, one could also allow Yi(t) and Zi(t) to depend on the
type of the recurrent event. Andersen and Borgan (1985) considered this
generalized intensity model and developed an estimation procedure for β,
which includes the estimation procedure described above for model (1.8) as a
special case. Furthermore, they also discussed the situation where the λk0(t)’s
can be described by some parametric models.

1.5 Analysis of Panel Count Data

As discussed above, in event history studies, the event of interest may occur
only once or can occur multiple times. For the latter case, the event is usually
referred to as a recurrent event. In the case that the event can occur only
once or one is only interested in the first occurrence of a recurrent event, the
resulting data are usually referred to as failure time data. Failure time data
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can occur in several formats and the two formats commonly seen in practice
are right-censored data and interval-censored data (Kalbfleisch and Prentice,
2002; Sun, 2006). The latter type of data arises when study subjects are
observed only at discrete time points instead of continuously. One can see
that the structure difference between recurrent event data and panel count
data is actually similar to that between the two types of failure time data.

1.5.1 Some Features of Panel Count Data

Compared to failure time data and recurrent event data, panel count data
have some similarities as well as some unique features. In terms of the
data structure or sampling scheme, panel count data are similar to interval-
censored data as in both case, study subjects are observed only at discrete
time points. As a consequence, one only knows the numbers of the occurrences
of the event between observation times (Kalbfleisch and Lawless, 1985; Sun
and Wei, 2000). Thus panel count data are also sometimes referred to as
interval count data or interval-censored recurrent event data (Lawless and
Zhan, 1998; Thall, 1988). One major difference between failure time data
and the data on recurrent events is that with the former, the random vari-
able of interest is always the time to an event and the event is treated as
an absorbing event. This is clearly not the case in the latter situation. As a
consequence, censoring plays a much more important role in the analysis of
failure time data than that in the analysis of the data on recurrent events.

Let N(t) be defined as in the previous section, a counting process denoting
the number of occurrences of a recurrent event up to and including time
t. In the case of recurrent event data, the whole sample path of N(t) is
known, while for panel count data, only the values of N(t) at observation
time points are known. In particular, we do not know the time points at
which N(t) jumps. It is easy to see that compared to recurrent event data,
panel count data contain much less relevant information about the underlying
recurrent event process. Some of the resulting consequences are that the
inference for the latter is much harder than for the former, and also the
models and inference goals for the latter often differ from these for the former.
To give an example, consider an extreme and also simple case where all study
subjects are observed only at one single time point t0. In this case, it is clear
that the only inference that one could make about the underlying recurrent
event process is its behavior at t0. On the other hand, if one has recurrent
event data over the interval [0, t0], it is apparent that one would know or can
say much more about the recurrent event process of interest.

Let λ(t) and μ(t) denote the intensity process and mean function of N(t)
as before, respectively. It is obvious that if possible, one would prefer to know
or make inference about λ(t) as the intensity process completely determines
the process N(t). In general, this is possible if one has recurrent event data as
discussed in the previous section. On the other hand, this would be difficult
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or impossible with panel count data. To see this, again consider the simple
case discussed above where all study subjects are observed only at one single
time point t0. In this case, one can definitely estimate μ(t) at t = t0, but
it is clear that the data provide no definite information at all about λ(t).
Due to the same reason, for the analysis of panel count data, one usually
focuses only on the mean function of the underlying recurrent event process.
On the other hand, for the analysis of recurrent event data, one could choose
to directly model either the intensity process or the mean function.

Assume that one observes panel count data and let T1 < . . . < Tm denote
the potential observation time points on N(t). Define H̃(t) =

∑m
j=1 I(t ≥

Tj), which is often referred to as the observation process on N(t). In practice,
there usually also exists a follow-up time denoted by C, meaning that the
subject is followed up to time C. As the result, the real observation process
is H(t) = H̃(min(t, C)), and with panel count data, one faces both the
process of interest N(t) and the observation process H(t) in addition to the
variable C or the count process I(t ≤ C). In other words, panel count data
involve three processes and in contrast, recurrent event data involve only two
processes N(t) and I(t ≤ C). Of course, if all three processes are independent
of each other, one only needs to focus on the recurrent event process N(t) and
can conduct the analysis conditional on the other two processes. In practice,
however, it can happen that the recurrent event process of interest N(t)
and the observation process H̃(t) are related. In this case, the analysis is
much more difficult and the resulting panel count data are often referred to
as panel count data with informative or dependent observation processes.
More discussion on this is given below, particularly in Chap. 6. Also some
discussion is given below for the case where the follow-up process I(t ≤ C)
may be related with them as well.

1.5.2 Outline

As can be seen from the contents, this book discusses six different topics
on the analysis of panel count data in details. In Chap. 2, we first consider
the situation where the data can be described by non-homogeneous Poisson
processes with the focus on parametric inference procedures. In other words,
N(t) or the Ni(t)’s defined above are Poisson processes, and it is reasonable to
make some parametric assumptions about the intensity process λ(t), the rate
function r(t) or the mean function μ(t). A key advantage of this assumption
is that one can derive or write out the resulting likelihood function and thus
can apply the maximum likelihood approach for inference. Note that this
is also the major difference between Chap. 2 and most other parts of the
book where it is difficult or impossible to employ the maximum likelihood
approach. Also in this chapter, to make the book relatively complete, some
discussion is provided on regression analysis of simple count data.

Chapters 3 and 4 are on nonparametric analysis of panel count data with
the focus on the mean function of the underlying recurrent event process
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of interest. Specifically, Chap. 3 considers nonparametric estimation of the
mean function μ(t) and several commonly used approaches are discussed
and compared. Some simple estimators of the rate function r(t) including
kernel estimators are also described. In Chap. 4, we investigate the treatment
comparison problem or the testing of the hypothesis formulated by the mean
functions. Here it is assumed that study subjects are given several different
treatments or there exist several different recurrent event processes, and the
goal is to compare them in terms of their mean functions. For the problem,
we discuss several procedures. The key idea behind all the procedures is to
compare the estimated mean functions obtained under the null hypothesis
and without the hypothesis, respectively.

Regression analysis of panel count data is the focus of Chaps. 5 and 6.
In Chap. 5, we first consider the situation where the underlying recurrent
event process and the observation process are independent completely or
conditionally given covariate processes. Chapter 6 discusses the case where
the two processes may be related or the observation process may contain
relevant information about the recurrent event process of interest. For both
cases, the focus is on estimation of the effects of covariates on the mean
function of the recurrent event process. In other words, unlike in the analysis
of recurrent event data, we model covariate effects through the mean function
rather than the intensity process. To describe the relationship between the
recurrent event process of interest and the observation process in Chap. 6,
we consider both the joint modeling approach and the conditional modeling
approach. For inference about or estimation of covariate effects, we mainly
employ the estimating equation approach. Note that it is not hard to see that
the maximum likelihood approach is not available here in general.

In all of the previous chapters, it has been assumed that there exists only
one type of recurrent events of interest. Chapter 7 considers the situation
where there exist two or more related types of recurrent events of interest,
that is, the analysis of multivariate panel count data. As discussed before, in
this case, one important issue that does not exist with univariate panel count
data but needs to be taken into account is the relationship among different
types of events. For the analysis of multivariate panel count data, the discus-
sion mainly focuses on two problems, nonparametric treatment comparison
and regression analysis. In both cases, as with univariate panel count data,
we formulate the problems by using the mean functions of the underlying re-
current event processes. For inference, we focus on the robust methods that
leave the relationship among different types of recurrent events arbitrary as
it is usually difficult or unrealistic to model such relationship in general.

Chapter 8 briefly discusses several topics on the analysis of panel count
data that are not touched in other chapters. These include variable selection,
the analysis of mixed recurrent event and panel count data, and the anal-
ysis of panel count data arising from multi-state models. In addition, some
discussions are also given on Bayesian approaches for the analysis of panel
count data and the analysis of panel count data arising from mixture models
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or with measurement errors. For each of these topics, we mainly review the
existing literature and discuss possible directions for future research. Note
that most of these topics have been extensively discussed in some other fields
but are relatively new in the area of panel count data. For example, there
exists a great deal of literature on variable selection in the field of general-
ized linear model or on Bayesian approaches for the analysis of failure time
data. Also note that for all these topics except the panel count data from
multi-state models, the focus of the investigation is the same as with other
chapters in terms of inference goals, the occurrence pattern of the recurrent
events of interest. But for latter, one is usually interested in how long a sub-
ject stays at certain states or how often a subject transfers from one state
to another state. In other words, a major target in this case is to estimate
or make inference about the transition intensity or probability matrix. The
chapter concludes with some final remarks for the book, including possible
directions for future research and available software packages for the analysis
of panel count data.
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Poisson Models and Parametric
Inference

2.1 Introduction

It is well-known that for the analysis of count data, Poisson model is perhaps
the most commonly used model or assumption (Breslow, 1984, 1990; Cameron
and Trivedi, 1998). Thus for the analysis of panel count data, it is helpful to
first consider Poisson-based approaches for the motivation of more general
inference procedures and their comparison. As mentioned before, the focus
of this chapter is on parametric approaches, which also can be seen as a
motivation to many semiparametric inference procedures discussed later.

To be complete, we start with the discussion on regression analysis of sim-
ple count data in Sect. 2.2. Count data can be seen as a special case of panel
count data in which all study subjects are observed only once at the same
time point. They occur in many fields including actuarial studies, demogra-
phy, economics, political and social sciences, and reliability studies. Examples
of count data include the occurrences of certain tumors and the frequency
of recurrent events such as auto accidents and visits to doctor’s offices or
clinics. For inference about regression parameters, both the likelihood-based
method and the estimating equation-based method are described. The former
is developed under the Poisson assumption and the latter can be regarded
as a generalization of the former. Section 2.3 considers regression analysis of
panel count data with the focus on the maximum likelihood approach. For
this, two situations are discussed. One is that the underlying recurrent event
processes of interest are non-homogeneous Poisson processes and the other is
that the recurrent event processes are mixed Poisson processes (Dean, 1991;
Lawless, 1987a,b).

As mentioned above, the focus of this book is on nonparametric and
semiparametric inference procedures. One reason for the discussion of
parametric methods is that the development of the former is often moti-
vated by the latter. Of course, the latter itself could be useful too when
the parametric assumption used is reasonable. Sometimes one may prefer
some approaches or compromises between the two types of procedures.
One such type of approaches is piecewise procedures that are essentially
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parametric methods but can be made to be close to nonparametric or semi-
parametric inference methods. Section 2.4 describes two piecewise approaches
for regression analysis of panel count data. Similar to the two methods dis-
cussed in Sect. 2.2 for count data, one is a likelihood-based method and the
other is an estimating equation-based method. In Sect. 2.5, some bibliograph-
ical notes and remarks are given. Throughout the chapter, it is assumed that
the observation process is independent of the underlying recurrent event
process of interest.

2.2 Regression Analysis of Count Data

Consider a recurrent event study that consists of n independent subjects and
in which the observed information from each subject is only the number of
the events that have occurred over some time interval. For subject i, let Ni

denote the observed count and suppose that there exists a vector of covariates
Zi, i = 1, . . . , n. Then the observed data are { (Ni,Zi); i = 1, . . . , n }. It is
assumed that the main goal is to make inference about the effects of covariates
on the occurrence rate of the event of interest.

To describe the covariate effects, we assume that given Zi, the conditional
mean of Ni has the form

E(Ni|Zi ) = exp(βTZi) , (2.1)

where β denotes the vector of regression parameters. Note that an alternative
or a more natural choice is to assume E(Ni|Zi ) = α exp(βTZi), a special
case of the proportional mean model (1.4), where α is an unknown parameter.
It is easy to see that model (2.1) includes this latter choice as a special case
by setting the first component of Zi as one. For inference about β, in the
following, we first discuss some likelihood-based procedures developed for
the situation where the Ni’s follow the Poisson distribution. Some estimating
equation-based procedures are then presented that do not require the Poisson
assumption and followed by some discussions.

2.2.1 Likelihood-Based Procedures

In this subsection, we suppose that the Ni’s follow Poisson distributions with
the mean given by model (2.1). Then it is easy to see that the log-likelihood
function of β is proportional to

l(β) =

n∑

i=1

{
Ni β

TZi − exp(βTZi)
}
.

It follows that the maximum likelihood estimator, denoted by β̂P , of β is
given by the solution to the score estimating equation
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n∑

i=1

Zi

{
Ni − exp(βTZi)

}
= 0 . (2.2)

It is easy to show that β̂P is consistent and its distribution can be approxi-
mated by the normal distribution with mean β0, the true value of β, and the
covariance matrix

VML(β) = n−1

{
n∑

i=1

ZiZ
T
i exp(βTZi)

}−1

with β replaced by β̂P .
Under the Poisson assumption, we have that V ar(Ni|Zi) = E(Ni|Zi)

and it is well-known that this often does not hold in practice. To relax this
restriction, one common approach is to assume that there exists a latent
variable νi and given νi, Ni follows the Poisson distribution with the mean

E(Ni|Zi , νi ) = νi exp(β
TZi) , (2.3)

i = 1, . . . , n. That is, the Ni’s follow the mixed Poisson distribution. Here it
is assumed that the νi’s are i.i.d. with E(νi) = 1 and V ar(νi) = σ2

ν . Under
the model above, it is easy to show that

E(Ni|Zi ) = μi = exp(βTZi) , V ar(Ni|Zi) = μi (1 + σ2
ν μi) .

That is, the variance of Ni can be equal to or larger than its mean.
Now we assume that the νi’s follow the Gamma distribution with the

density function

g(ν; γ) =
γ−1/γ

Γ (γ−1)
νγ

−1−1 e−ν/γ ,

where Γ (a) =
∫∞
0

ta−1 exp(−t) dt, the Gamma function. In this case, we
have σ2

ν = γ. Then the marginal density function of Ni is given by

f(Ni|β, γ) =
Γ (γ−1 +Ni)

Γ (γ−1)Γ (Ni + 1)

(
γ−1

γ−1 + μi

)γ−1 (
μi

μi + γ−1

)Ni

.

That is, Ni follows the negative binomial distribution. It follows that the log
likelihood function of β and γ is proportional to

l(β, γ) =

n∑

i=1

{ Ni−1∑

j=0

log(j + γ−1) − (Ni + γ−1) log(1 + γμi)

+Ni log γ + Ni β
TZi

}

.

Let β̂NB and γ̂NB denote the resulting maximum likelihood estimators of β
and γ, respectively. Then they can be obtained by solving the score equations
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n∑

i=1

Ni − μi

1 + γμi
Zi = 0

and

n∑

i=1

⎧
⎨

⎩
1

γ2

⎛

⎝log(1 + γμi) −
Ni−1∑

j=0

1

j + γ−1

⎞

⎠ +
Ni − μi

γ(1 + γμi)

⎫
⎬

⎭
= 0

together. One can easily show that β̂NB and γ̂NB are consistent. Further-
more, their joint distribution can be asymptotically approximated by the
multivariate normal distribution with mean (βT

0 , γ0)
T and the covariance

matrix determined by

V ar(β̂NB) = n−1

(
n∑

i=1

μ̂i

1 + μ̃i
ZiZ

T
i

)−1

,

V ar(γ̂NB) = n−1

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝log(1 + μ̃i)−
Ni−1∑

j=0

1

j + γ̂−1
NB

⎞

⎠

2

+
μ̂i

γ̂2NB(1 + μ̃i)

⎫
⎪⎬

⎪⎭

−1

and Cov(β̂NB, γ̂NB) = 0. That is, β̂NB and γ̂NB are asymptotically inde-
pendent. In the above, again β0 and γ0 denote the true values of β and γ,

respectively, μ̂i = exp(β̂
T

NBZi) and μ̃i = γ̂NB μ̂i.

2.2.2 Estimating Equation-Based Procedures

As mentioned above, under the negative binomial model, the variance of
Ni does not have to be equal to its mean as under the Poisson model, but
cannot be smaller than its mean. It is obvious that this may still be too
restrictive in reality. In this subsection, we assume that the Ni’s still satisfy
model (2.1) but do not make any assumption about the distribution of the
Ni’s. By following the estimating equation theory, it is clear that one can still
employ the estimating Eq. (2.2) and to use its solution, denoted by β̂PP , to
estimate β. Again by using the estimating equation theory (White, 1982), one

can show that β̂PP is consistent and its distribution can be asymptotically
approximated by the normal distribution with mean β0 and the covariance
matrix

V ar(β̂PP )=n−1

(
n∑

i=1

μ̂iZiZ
T
i

)−1 ( n∑

i=1

wiZiZ
T
i

) (
n∑

i=1

μ̂iZiZ
T
i

)−1

,

(2.4)
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where μ̂i = exp(β̂
T

PPZi) and wi = V ar(Ni|Zi), i = 1, . . . , n. The estimator

β̂PP is often referred to as the Poisson pseudo- or quasi-maximum likelihood
estimator.

To use the formula (2.4), one usually needs to specify the variance function
wi’s. For this, one common choice is to let

wi = φμi , (2.5)

where φ is an unknown parameter. In this case, the formula reduces to

V ar(β̂PP ) =
φ

n

(
n∑

i=1

μ̂iZiZ
T
i

)−1

and one can estimate φ empirically by

φ̂ =
1

n− p

n∑

i=1

(Ni − μ̂i)
2

μ̂i
,

where p denotes the dimension of β. Another common choice for the wi’s is
to assume that

wi = μi + αμ2
i (2.6)

with α being an unknown parameter as φ. Under the model above, we have

V ar(β̂PP )=n
−1

(
n∑

i=1

μ̂iZiZ
T
i

)−1( n∑

i=1

(μ̂i+αμ̂
2
i )ZiZ

T
i

)(
n∑

i=1

μ̂iZiZ
T
i

)−1

and one can also estimate α empirically by

α̂ =
1

n− p

n∑

i=1

{(Ni − μ̂i)
2 − μ̂i}

μ̂2
i

.

Of course, sometimes one may not want to impose any form on the wi’s. In
this case, assuming that we can treat { (Ni,Zi) }ni=1 as i.i.d., one can estimate

V ar(β̂PP ) by the robust estimator

n−1

(
n∑

i=1

μ̂iZiZ
T
i

)−1 ( n∑

i=1

(Ni − μ̂i)
2ZiZ

T
i

) (
n∑

i=1

μ̂iZiZ
T
i

)−1

. (2.7)

2.2.3 Discussion

There exists extensive literature on the analysis of count data (Cameron and
Trivedi, 1998; Vermunt, 1997). For example, Cameron and Trivedi (1998)
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discussed the count data arising from natural and social sciences. Also they
gave a relatively complete review of the analysis approaches commonly used
in the field. In particular, in these books, one can find some real count data
and the applications of the methods discussed above to real count data. As
mentioned before, the main purpose of this section is to give some introduc-
tion of the existing literature as the count data can be regarded as a special
case of panel count data. More importantly, the methods described above
serve as a motivation to many inference procedures discussed below for the
analysis of panel count data.

To relax the Poisson assumption used in Sect. 2.2.1, instead of using the
mixed Poisson model, an alternative is to develop a latent class-based Poisson
model as follows (Wedel et al., 1993). Suppose that study subjects are from
K unknown classes and each subject belongs to one and only one class. Let
αk denote the unknown probability that a subject belongs to class k with∑K

k=1 αk = 1. It is assumed that conditional on subject i belonging to class
k, Ni follows the Poisson distribution with mean

λi|k = exp(βT
kZi) ,

where βk is a vector of unknown regression parameters as β, i = 1, . . . , n,
k = 1, . . . ,K. Then the likelihood function of the βk’s and αk’s has the form

L(β′
ks, α

′
ks) =

n∏

i=1

K∑

k=1

αk exp
{
− exp(βT

kZi)
} exp(Niβ

T
kZi)

Ni!
.

It follows that one can naturally estimate the βk’s and αk’s by their maximum
likelihood estimators.

For estimation of β in model (2.1) without making a distribution assump-
tion, instead of the estimating Eq. (2.2), one can use its weighted version
given by

n∑

i=1

wiZi

{
Ni − exp(βTZi)

}
= 0 ,

where the wi’s are some weights. One can easily show that the estimator of
β given by the solution to the equation above is consistent. Furthermore, one
can asymptotically approximate its distribution by the normal distribution
with mean β0 and the covariance matrix

n−1

(
n∑

i=1

wiμ̂iZiZ
T
i

)−1 ( n∑

i=1

w2
i (Ni − μ̂i)

2ZiZ
T
i

) (
n∑

i=1

wiμ̂iZiZ
T
i

)−1

with β replaced by its estimator. It is easy to see that the estimator above
reduces to (2.7) if one takes wi = 1 for all i.
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2.3 Parametric Maximum Likelihood Estimation
of Panel Count Data

Consider an event history study concerning certain recurrent events that in-
volves n independent subjects and in which each subject gives rise to a count-
ing process Ni(t). Here Ni(t) represents the total number of the occurrences
of the recurrent event of interest from subject i up to time t, i = 1, . . . , n.
For each subject, as before, suppose that there is a p-dimensional vector Zi

of covariates whose effects on Ni(t) are of main interest. Also suppose that
Ni(t) is observed only at finite time points ti,1 < · · · < ti,mi , where mi de-
notes the number of observation times, i = 1, . . . , n. That is, we only observe
panel count data given by

{ (ti,j , ni,j = Ni(ti,j),Zi) ; j = 1, . . . ,mi, i = 1, . . . , n } .

For estimation of the effects of covariates on the Ni(t)’s, in the following,
we first consider the situation where it is reasonable to assume that theNi(t)’s
are non-homogeneous Poisson processes. A more general situation where the
Ni(t)’s are mixed Poisson processes is then discussed and followed by an
illustrative example and some discussions.

2.3.1 Analysis Under Poisson Models

In this subsection, we assume that the Ni’s are non-homogeneous Poisson
processes with the rate function

E { dNi(t)|Zi } = r(t;β,Zi) dt = r0(t;β1) exp(β
T
2 Zi) dt , (2.8)

i = 1, . . . , n. In the above, β = (βT
1 ,β

T
2 )

T denotes the unknown parameters
and r0(t;β1) is a function of t known up to β1. Some simple and commonly
used choices for r0(t;β1) include r0(t;β1) = βT

1 φ(t) and

r0(t;β1) = exp
{
βT
1 φ(t)

}
. (2.9)

In the above, φ(t) is a vector of known functions of t such as φ(t) =
(1, t, log(t))T or

φ(t) = (1, t, . . . , tq)T (2.10)

with q being a known integer.
It is apparent that under the formulation (2.9), the rate function r(t;β,Zi)

can be rewritten as

r(t;β,Zi) = exp
{
βTZ∗

i (t)
}
,
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where Z∗
i (t) = (φT (t),ZT

i )
T . Also the likelihood function of β is

proportional to

L(β) =

n∏

i=1

Li(β)

=
n∏

i=1

mi∏

j=1

exp {−Δμi,j(β) } {Δμi,j(β) }Δni,j

=

n∏

i=1

exp {−μi(β) }
mi∏

j=1

{Δμi,j(β) }Δni,j ,

where Δμi,j(β) =
∫ ti,j
ti,j−1

r(t;β,Zi) dt, μi(β) =
∫ ti,mi

0
r(t;β,Zi) dt and

Δni,j = ni,j − ni,j−1 with ti,0 = 0 and ni,0 = 0. It follows that one
can obtain the maximum likelihood estimator of β, which is consistent and
asymptotically has a normal distribution. The determination of the estima-
tor is discussed in more details in the next subsection for a more general
situation.

Suppose that t1,m1 = · · · = tn,mn . That is, all subjects have the same
last observation time point. In this case, for inference about β2, a conditional
likelihood can actually be derived as

Lc(β) = exp

(
n∑

i=1

ni,mi β
T
2 Zi

) {
n∑

i=1

exp(βT
2 Zi)

}− ∑n
i=1 ni,mi

.

It is easy to see that for this simple situation, the inference about β2 depends
only on the observed numbers of the events at the last observation time or the
total numbers of occurrences of the events during the whole follow-up period.
In other words, the number of observations and observation times before the
last observation time do not contain relevant information about β2.

2.3.2 Analysis Under Mixed Poisson Models

Similar to the situation considered in Sect. 2.2, the Poisson process assump-
tion used in the previous subsection may be questionable in practice, and one
way to relax it is to consider mixed Poisson processes (Thall, 1988). More
specifically, assume that there exists a latent variable νi and given νi and Zi,
Ni(t) is a non-homogeneous Poisson process with the rate function

E { dNi(t)|Zi , νi } = νi r(t;β,Zi) dt = νi r0(t;β1) exp(β
T
2Zi) dt . (2.11)

Here β and r0(t;β1) are defined as in model (2.8). Furthermore, it is assumed
that the νi’s are i.i.d. with the density function g(ν;α) known up to the
unknown vector of parameters α. Then it is easy to see that the likelihood
function of θ = (βT ,αT )T is proportional to
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L(θ) =
n∏

i=1

Li(θ)

=

n∏

i=1

∫ ∞

0

mi∏

j=1

exp {− ν Δμi,j(β)} {ν Δμi,j(β)}Δni,j g(ν;α) dν

=

n∏

i=1

∫ ∞

0

exp {− ν μi(β)}
mi∏

j=1

{ν Δμi,j(β)}Δni,j g(ν;α) dν .

It follows that one can estimate both β and α by maximizing the likelihood
function above.

Suppose that the baseline rate function r0(t;β1) has the form (2.9) and the
latent variables νi’s follow the gamma distribution with the density function

g(ν;α1, α2) =
να1−1

αα1
2 Γ (α1)

exp(−ν/α2) , ν > 0 .

That is, the Ni(t)’s are negative binomial processes (Lawless, 1987b). Then
one can show that Li(θ) is equivalent to

Li(θ) =
Γ (α1 + ni,mi)

Γ (α1)
α−α1
2 (μi(β) + α−1

2 )−(ni,mi
+α1)

mi∏

j=1

(Δμi,j(β))
Δni,j .

Define aTi = (Δμi,1, . . . , Δμi,mi), a
T = (aT1 , . . . , a

T
n ),

W =
∂ logL(θ)

∂a
= (WT

1 , . . . ,W
T
n )T

with Wi = ∂ logL(θ)/∂ai, and

D =
∂a

∂β
=

⎡

⎢
⎣

D1

...
Dn

⎤

⎥
⎦ =

⎡

⎢
⎣

∂a1/∂β
...

∂an/∂β

⎤

⎥
⎦ =

⎡

⎢
⎣

diag(a1)X1

...
diag(an)Xn

⎤

⎥
⎦ ,

where Xi = (Z∗T
i (ti,1), . . . ,Z

∗T
i (ti,mi)). Then we have

logLi(θ) ∝ I(ni,mi > 0)

ni,mi
−1∑

k=0

log(α1 + k) − α1 log(α2)

− (ni,mi + α1) log
(
μi,mi + α−1

2

)
+

mi∑

j=1

Δni,j log(Δμi,j) ,

i = 1, . . . , n. It follows that the score function U(β) = ∂ logL(θ)/∂β has
the form
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U(β) = DT W =
n∑

i=1

DT
i Wi

=

n∑

i=1

XT
i

(

Δni − ni,mi + α1

μi,mi + α−1
2

ai

)

since

Wi,j =
Δni,j

Δμi,j
− ni,mi + α1

μi,mi + α−1
2

,

where Δni = (Δni,1, . . . , Δni,mi)
T . The computation of the score function

U(α) = ∂ logL(θ)/∂α is straightforward.
It follows that one can obtain the maximum likelihood estimators, denoted

by β̂MPL and α̂MPL, of β and α by solving the score equations U(β) = 0

and U(α) = 0 together. By the standard maximum likelihood theory, β̂MPL

and α̂MPL are consistent and have joint asymptotic normal distribution with
their covariance matrix consistently estimated by the observed Fisher infor-
mation matrix. Note that in general, there is no closed form for the integration
involved in the likelihood function L(θ) and thus some numerical algorithms
have to be used. Some discussions on this can be found in Thall (1988) among
others.

2.3.3 An Illustration

To illustrate the maximum likelihood estimation procedures described above,
we apply them to a set of current status data arising from a tumorigenicity
experiment on multiple incidental tumors. The experiment consists of 99
female and 100 male rats. The observed data, presented in Table 2.1 and
reproduced from Ii et al. (1987) and Sun and Kalbfleisch (1993), give the
total numbers of the tumors that each rat had developed up to the 10-week
interval within which they died. In other words, each animal is observed only
once at the death and the death times are given by 10-week intervals. For the
convenience, it is assumed below that the observation is at the endpoint of
each 10-week interval. The number in the table denotes the number of rats
which died in the ith interval and in which k tumors were found. Note that
the term incidental means that the presence of such tumors has no effect on
the death rate. In other words, the death or observation time is independent
of the occurrences of the tumors.

To compare the tumor occurrence rates between female and male rats, let
Ni(t) denote the number of tumors that have occurred up to time t for the ith
animal and define Zi = 1 if animal i is male and 0 otherwise, i = 1, . . . , 199.
Suppose that the Ni(t)’s are mixed Poisson processes with the rate function

E { dNi(t)|Zi , νi } = νi exp(β1 + β2Zi) dt .
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Table 2.1. Observed number of k-tumored animals at interval i

(a) Males (b) Females
k k

Week Interval i 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1–10 1
11–20 2
21–30 3
31–40 4 3
41–50 5 11 9 1
51–60 6 2 1
61–70 7 17 1 12 2
71–80 8 2
81–90 9 3 1 2

91–100 10 5 3 1 1 1 2 2
101–110 11 5 7 1 2 5 4 1 2
111–120 12 8 5 2 1 9 5 3 1
121–130 13 6 1 1 4 3 3
131–140 14 1 4 1 1 2 5 4 3 1 1
141–150 15 3 2 2 1 1 2 1 3

In the above, the νi’s are defined as in model (2.11) with the density func-
tion g(ν;α1, α2) given in the previous subsection. The application of the

maximum likelihood estimation procedure given above yields β̂∗
MPL,1 =

exp(β̂MPL,1) = 0.421 and β̂MPL,2 = −0.601 with the estimated standard
errors of 0.066 and 0.165, respectively. This indicates that the male rats
seem to have a significantly lower tumor occurrence rate than the female
rates. By assuming E( νi ) = 1 for all i, we obtain β̂∗

MPL,1 = 0.120 and

β̂MPL,2 = −0.601 with the estimated standard errors being 0.011 and 0.155,
which give the same conclusion.

2.3.4 Discussion

The focus of this section has been on the Poisson process and parametric
analysis. It is apparent that it is straightforward to generalize the inference
procedures described above to or develop similar parametric inference pro-
cedures under different parametric models. Some references on this include
Albert (1991), Lawless (1987a), Thall (1988) and Thall and Lachin (1988).

It is well-known that in general, parametric models and analyses should
be preferred than nonparametric and semiparametric models and analyses if
there is some evidence indicating or suggesting that the parametric models
are reasonable or appropriate. In addition to being more efficient, paramet-
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ric analyses are usually more straightforward than nonparametric and semi-
parametric analyses. On the other hand, in many situations, there may not
exist such evidence or appropriate parametric models, or there do not exist
data or information that can be used to assess the appropriateness of an as-
sumed parametric model. In consequence, one may want to employ or rely on
nonparametric and semiparametric models and the corresponding inference
procedures. One advantage is that they could avoid making assumptions on
parametric models and give more reasonable and/or robust analysis results.
It is apparent that these general arguments apply to the analysis of panel
count data considered here.

In addition to the two types of procedures mentioned above, sometimes
one may prefer a third type of models or procedures or a compromise between
the two. One such procedure is described in the next section, which models
the baseline rate function r0(t) in model (1.3) or r0(t;β1) in model (2.8) by
using a piecewise constant function (Lawless and Zhan, 1998). It is obvious
that by controlling the number of steps, one can push the resulting analysis
procedure more similar to either a parametric procedure or a semiparametric
procedure. As another compromise between parametric and semiparametric
procedures, instead of using the piecewise step function, one can employ some
smooth functions such as monotone splines (Lu et al., 2009). More discussions
on this are given below. Of course, as mentioned above, nonparametric and
semiparametric procedures for the analysis of panel count data are discussed
in later chapters.

2.4 Regression Analysis with Piecewise Models

In this section, we consider the same problem and also the same type of
inference procedures in nature as those discussed in the previous section. On
the other hand, as mentioned above, the inference procedures to be described
can also be regarded as compromises between parametric and semiparametric
procedures. Specifically, consider a recurrent event study for which we only
observe panel count data. Let the Ni(t)’s, Zi’s, ti,j ’s, mi’s, ni,j ’s and Δni,j ’s
be defined as in the previous section and suppose that one is mainly interested
in estimating the effects of the covariates Zi’s on the Ni(t)’s as before.

To describe the effects of the covariates, we assume that there exist i.i.d.
latent variables { νi }ni=1 with E(νi) = 1 and given νi and Zi, the rate
function of Ni(t) has the form

E { dNi(t)|Zi , νi } = νi r0(t) exp(β
TZi) dt , (2.12)
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i = 1, . . . , n. In the above, r0(t) denotes an unknown baseline rate function
and β is a vector of regression parameters. Furthermore, it is assumed that
there exists a prespecified partition 0 = s0 < · · · < sk < ∞ such that
r0(t) = αl for t ∈ Sl = (sl−1, sl], where the αl’s are unknown constants.
That is, the baseline rate function r0(t) is a step function. It is apparent that
the model above can be seen a special case of model (2.11) and implies the
proportional rate model (1.3).

For estimation of the regression parameter β in model (2.12), in the follow-
ing, we consider two inference procedures. First we assume that the Ni(t)’s
are non-homogeneous Poisson processes and develop the maximum likelihood
estimation procedure. A generalized estimating equation procedure is then
discussed and followed by an illustration and some discussions.

2.4.1 Likelihood-Based Approach

In this subsection, we assume that the Ni(t)’s are non-homogeneous Poisson
processes with the rate function given by model (2.12). It follows that we
have

E{Ni(t)|Zi, νi } = νi μ0(t) exp(β
TZi) , (2.13)

where μ0(t) =
∑k

l=1 αl ul(t) with ul(t) = max{0,min(sl, t) − sl−1}, repre-
senting the length of the intersection of the two intervals (0, t] and Sl. For
each (i, j), define μi,j = μ0(ti,j) exp(β

TZi) and

Δμi,j = μi,j − μi,j−1 = μ0,i,j exp(βTZi) ,

j = 1, . . . ,mi, i = 1, . . . , n. Here μ0,i,j =
∑k

l=1 αl ul(i, j) and

ul(i, j) = max { 0,min(sl, ti,j) − max(sl−1, ti,j−1) } ,

denoting the length of the intersection of the two intervals (ti,j−1, ti,j ] and
Sl, l = 1, . . . , k. Then under the assumption above, one can easily show that

E{Ni(ti,j) − Ni(ti,j−1)|Zi, νi } = νiΔμi,j .

For the simplicity, we assume that the νi’s follow the gamma distribution
with the density function g(ν; γ) given in Sect. 2.2.1. That is, the νi’s have
the mean one and variance γ. It follows that the likelihood function of β,
α = (α1, . . . , αk)

T and γ is proportional to

L(β,α, γ) =

n∏

i=1

∫ ∞

0

mi∏

j=1

exp(−νiΔμi,j) (νiΔμi,j)
Δni,j g(νi; γ) dνi
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or

L(β,α, γ) =

n∏

i=1

⎛

⎝
mi∏

j=1

Δμ
Δni,j

i,j

⎞

⎠ Γ (ni,mi + 1/γ) γni,mi

Γ (1/γ) (1 + γ μi,mi)
ni,mi

+1/γ
.

The resulting log likelihood function has the form

l(β,α, γ) =

n∑

i=1

{ mi∑

j=1

(Δni,j logΔμi,j ) + ni,mi log γ + logΓ

(

ni,mi +
1

γ

)

− logΓ

(
1

γ

)

−
(

ni,mi +
1

γ

)

log(1 + γμi,mi)

}

.

For the determination of the maximum likelihood estimators of β, α and
γ, we need their score functions, which have the form

∂l(β,α, γ)

∂β
=

n∑

i=1

ni,mi − μi,mi

1 + γ μi,mi

Zi , (2.14)

∂l(β,α, γ)

∂αl
=

n∑

i=1

mi∑

j=1

(Δni,j −Δμi,j)ul(i, j) exp(β
TZi)

Δμi,j

−
n∑

i=1

γ(ni,mi − μi,mi)ul(i,+) exp(βTZi)

1 + γμi,mi

, (2.15)

and

∂l(β,α, γ)

∂γ
=

n∑

i=1

{
ni,mi − μi,mi

γ(1 + γμi,mi)
+ γ−2 log(1 + γμi,mi)

}

− γ−1
n∑

i=1

ni,mi∑

s=1

{1 + γ(s− 1)}−1 ,

respectively, where ul(i,+) =
∑mi

j=1 uj(i, j), l = 1, . . . , k. Thus it is natural
to solve the score equations

∂l(β,α, γ)

∂β
= 0 ,

∂l(β,α, γ)

∂αl
= 0 ,

∂l(β,α, γ)

∂γ
= 0 , l = 1, . . . , k

together by using, for example, the Newton-Raphson algorithm. As an
alternative, one could apply the EM algorithm (Dempster et al., 1977) given
below and developed by Lawless and Zhan (1998).

To define the pseudo-complete data, assume that one observes the νi’s
and cijl, the number of the occurrences of the recurrent event of interest
within the intersection of Sl and (ti,j−1, ti,j ], j = 1, . . . ,mi, i = 1, . . . , n,
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l = 1, . . . , k. Define uijl = αl ul(i, j) exp(β
TZi). Then the log likelihood

function based on the pseudo-complete data νi’s and cijl’s can be written as

lpl(β,α, γ) = lpl,1(γ) + lpl,2(β,α) ,

where

lpl,1(γ) = −n
{

logΓ

(
1

γ

)

+
log γ

γ

}

+ γ−1
∑

i

(log νi − νi)

and

lpl,2(β,α) =
n∑

i=1

mi∑

j=1

k∑

l=1

cijl log uijl −
n∑

i=1

νi μi,mi .

Denote θ = (βT ,αT , γ)T . The EM algorithm can be carried out as follows.

Step 1. Choose an initial estimator θ(0).
Step 2. E-step. At the mth iteration, compute

l
(m)
pl,1(γ | θ

(m−1)) = E
{
lpl,1(γ |n′

i,js, θ
(m−1))

}

= −n
{

logΓ

(
1

γ

)

+
log γ

γ

}

+ γ−1
∑

i

(
˜log νi

(m)
− ν̃i

(m)

)

and

l
(m)
pl,2(β,α | θ(m−1)) = E

{
lp,2(β,α |n′

i,js, θ
(m−1))

}

=

n∑

i=1

mi∑

j=1

k∑

l=1

c̃ijl
(m)

log uijl −
n∑

i=1

ν̃i
(m) μi,mi .

In the above,
˜log νi

(m)
= Φ(C

(m)
i1 )− log(C

(m)
i2 ) ,

ν̃i
(m) =

C
(m)
i1

C
(m)
i2

,

and

c̃ijl
(m)

=
Δni,j α

(m−1)
l ul(i, j)

∑k
b=1 α

(m−1)
b ub(i, j)

,

where

C
(m)
i1 = ni,mi +

1

γ(m−1)
, C

(m)
i2 = μ

(m−1)
i,mi

+
1

γ(m−1)

and Φ(t) = d logΓ (t)/dt.

Step 3. M-step. Maximize l
(m)
pl,1(γ | θ

(m−1)) and l
(m)
pl,2(β,α | θ(m−1)) with re-

spect to θ to obtain the estimator θ(m).
Step 4. Repeat Steps 2 and 3 until the convergence.
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To implement the EM algorithm above, one needs to choose an initial
estimator θ(0) and a convergence criterion. For the former, a simple and
natural approach is to set νi = 1 for all i and the αl’s to be identical in
(2.13) and then to employ the resulting estimators as the initial estimators
of β and α. For the parameter γ, one can use the moment estimator given by

1

n

n∑

i=1

{
ni,mi

μ0(t) exp(β
TZi)

− 1

}2

with replacing μ0(t) and β by their initial estimators. In practice, of course,
one may want to employ several different initial estimators to hope that
they all result in the same final estimators. For the convergence criterion, a
common one is to compare the consecutive values of the estimators θ(m−1)

and θ(m) or the values of the log likelihood function lpl(β,α, γ) at θ(m−1)

and θ(m). More specifically, for given positive numbers ε1 and ε2, one can
stop the iteration if

max
l

| θ(m)
l − θ

(m−1)
l | ≤ ε1

or

| lpl(θ(m)) − lpl(θ
(m−1)) | ≤ ε2 ,

where the maximum above is over all components of θ. An alternative,
suggested by Lawless and Zhan (1998), is to use

max
l

| θ(m)
l − θ

(m−1)
l |

| θ(m−1)
l |+ 10−5

≤ ε1

and

| lpl(θ(m)) − lpl(θ
(m−1)) |

| lpl(θ(m−1)) |+ 10−5
≤ ε2

together.

Let θ̂L = (β̂
T

L, α̂
T
L, γ̂L)

T denote the maximum likelihood estimator of
θ obtained above. Then it follows from the standard maximum likelihood
theory that θ̂L is consistent and asymptotically follows a multivariate normal
distribution. Furthermore, its covariance matrix can be consistently estimated
by the observed Fisher information matrix or the negative second derivative
of the log likelihood function l(β,α, γ) calculated at the maximum likelihood
estimator. For this, one can directly find the second derivative or use the EM
algorithm (Louis, 1982).
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2.4.2 Estimating Equation-Based Approach

As discussed in Sect. 2.2, the Poisson process or mixed Poisson process
assumption may not hold in practice, and one way to address it is to
employ the estimating equation or generalized estimating equation approach
(McCulluagh and Nelder, 1989). The general idea behind the latter approach
is to only model the mean function and the covariance matrix of the
underlying response process or the recurrent event process, and the result-
ing estimation procedure is usually robust. Also to follow the idea discussed
in Sect. 2.2, for estimation of β and α, one could directly employ the score
functions given in (2.14) and (2.15) and solve the estimating equations

∂l(β,α, γ)

∂β
= 0 ,

∂l(β,α, γ)

∂αl
= 0 , l = 1, . . . , k

while ignoring the mixed Poisson process assumption. In the following, we
describe this using the generalized estimating equation theory (McCulluagh
and Nelder, 1989).

In this subsection, we use the same notation defined in the previous sub-
section. Also define Y i = (Δni,1, · · · , Δni,mi)

T , ai = (Δμi,1, · · · , Δμi,mi)
T

as in Sect. 2.3.2, and bi = diag(ai), i = 1, . . . , n. Then it is easy to see that
the covariance matrix of Y i under the mixed Poisson model specified in the
previous subsection has the form

Vi = bi + γ ai a
T
i . (2.16)

Now assume that the recurrent event processes Ni(t)’s only satisfy (2.13) and
(2.16), and let Di = ∂ai/∂(β

T ,αT ) and Si = Y i − ai. Then by following
the generalized estimating equation theory, for estimation of β and α, we
have the generalized estimating equations

U1(β,α, γ) =
n∑

i=1

DT
i V−1

i Si = 0 . (2.17)

One can easily show that

U1(β,α, γ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂l(β,α,γ)

∂β

∂l(β,α,γ)
∂α1

· · ·
∂l(β,α,γ)

∂αk

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

That is, the equations defined in (2.17) are the same as those used in the
previous subsection for estimation of β and α. Note that Vi given in (2.16)
is a working covariance matrix, which may be correct or may not, and also
one may use other forms. For the estimation of β and α, a simple approach
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is to adopt (2.16) and solve the Eqs. (2.17) based on a given value of γ such
as γ = 0. Alternatively and more generally, one may want to develop an
additional estimating equation for γ and estimate all parameters together.

One such estimating equation for γ is the simple moment equation

U2(β,α, γ) =

n∑

i=1

wi

{
(ni,mi − μi,mi)

2 − σ2
i

}
= 0, (2.18)

suggested by Lawless and Zhan (1998), where

σ2
i = Var(ni,mi) = μi,mi + γ μ2

i,mi

and the wi’s are some weights. Some simple choices for the weights include
wi = 1, wi = 1/σ2

i and wi = μ2
i,mi

/σ4
i . Now one can estimate β, α and γ

by iteratively solving the Eqs. (2.17) and (2.18) as follows.

Step 1. Choose an initial estimator θ(0).
Step 2. At the mth iteration, obtain the updated estimators of β and α as

(
β(m)

α(m)

)

=

⎧
⎨

⎩

(
β

α

)

+

(
n∑

i=1

DT
i V−1

i Di

)−1

×
(

n∑

i=1

DT
i V−1

i Si

)}
∣
∣
∣β=β(m−1)

,α=α(m−1),γ=γ(m−1)
.

Step 3. Also at the mth iteration, obtain the updated estimator of γ as

γ(m) = γ(m−1) −
{(

∂U2

∂γ

)−1

U2

}
∣
∣
∣β=β(m)

,α=α(m),γ=γ(m−1)
.

Step 4. Repeat Steps 2 and 3 until the convergence.
It is apparent that the discussion on the selection of initial estimators

and the convergence criterion given in the previous subsection applies here.

Let θ̂E = (β̂
T

E , α̂
T
E , γ̂E)

T denote the estimator of θ defined above. Then it
can be shown by using the estimating equation theory that under some mild
conditions, β̂E and α̂E are consistent and their joint distribution can be
asymptotically approximated by a multivariate normal distribution (Lawless
and Zhan, 1998; Liang and Zeger, 1986; White, 1982). These results hold no
matter whether the covariance matrices Vi’s specified by (2.16) are correct
or not.

For estimation of the covariance matrix of β̂E and α̂E , define

Σn(β,α, γ) =

(
Σn,11 Σn,12

Σn,21 Σn,22

)
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and

Γn(β,α, γ) =

(
Γn,11 Γn,12

Γn,21 Γn,22

)

.

In the above,

Σn,11 =
1

n
E

{

− ∂U1

∂(βT ,αT )

}

=
1

n

n∑

i=1

DT
i V−1

i Di

Σn,12 =
1

n
E

(

− ∂U1

∂γ

)

= 0 ,

Σn,21 =
1

n
E

{

− ∂U2

∂(βT ,αT )

}

=
1

n

n∑

i=1

wi (1 + 2 γ μi,mi)
∂μi,mi

∂(βT ,αT )
,

Σn,22 =
1

n
E

(

− ∂U2

∂γ

)

=
1

n

n∑

i=1

wi μ
2
i,mi

,

Γn,11 =
1

n

n∑

i=1

DT
i V−1

i Si S
T
i V−1

i Di ,

Γn,12 =
1

n

n∑

i=1

wi

{
(ni,mi − μi,mi)

2 − σ2
i

}
DT

i V−1
i Si ,

Γn,22 =
1

n

n∑

i=1

w2
i

{
(ni,mi − μi,mi)

2 − σ2
i

}2
,

and Γn,21 = ΓT
n,12. Then if the covariance matrices Vi’s specified in (2.16)

are correct, one can consistently estimate the asymptotic covariance matrix

of
√
n
(
θ̂E − θ0

)
by

Σ−1
n (β̂

T

E , α̂
T
E , γ̂E)Γn(β̂

T

E , α̂
T
E , γ̂E)Σ

−T
n (β̂

T

E , α̂
T
E , γ̂E) .

In the above, θ0 denotes the true value of θ and Σ−T
n the transpose of the

inverse of the matrix Σn. In this case, γ̂E is also consistent.
In general, as mentioned above, the specification given in (2.16) may not be

correct. In this case, a robust estimator of the asymptotic covariance matrix
of β̂E and α̂E is given by

Σ−1
n,11(β̂

T

E , α̂
T
E , γ̂E)Γn,11(β̂

T

E , α̂
T
E , γ̂E)Σ

−T
n,11(β̂

T

E , α̂
T
E , γ̂E) .

To implement both the likelihood-based and estimating equation-based
procedures described above, one also needs to choose the number of parti-
tions k and the partition points sl’s. For the selection of the sl’s, a com-
mon approach is to choose them such that they divide the observed data
evenly. For k, which determines the smoothness of the baseline rate function,



42 2 Poisson Models and Parametric Inference

Lawless and Zhan (1998) suggested the range of 4–10 if the main goal is
estimation of regression parameters. On the other hand, it is apparent that
if one wants a smoother estimator of the baseline rate function, some large k
should be used.

2.4.3 An Illustration

To illustrate the two estimation procedures described above, we apply them
to the bladder tumor data discussed in Sect. 1.2.3 and given in the data set
II of Chap. 9. As mentioned before, this is a set of panel count data arising
from 85 patients with superficial bladder tumors. The patients belong to two
treatment groups, the placebo (47) and thiotepa (38) groups. In addition
to the information on the observation times and the numbers of recurrences
of bladder tumors, the observed data also include the information on two
baseline covariates. They are the number of initial tumors and the size of the
largest initial tumor.

Table 2.2. Estimated covariate effects for the bladder tumor data

Method I Method II

β̂L (SD) β̂E (SD) β̂L (SD) β̂E (SD)

β1 −1.2191 (0.399) −1.1749 (0.317) −1.2200 (0.403) −1.2387 (0.326)
β2 0.3792 (0.109) 0.3716 (0.086) 0.3786 (0.108) 0.3818 (0.088)
β3 −0.0103 (0.140) −0.0094 (0.104) −0.0100 (0.141) −0.0086 (0.105)

For the analysis, we first define the covariates Zi = (Zi1, Zi2, Zi3)
T such

that Zi1 = 1 if subject i is in the thiotepa treatment group and 0 otherwise,
and Zi2 and Zi3 denote the number of initial tumors and the size of the largest
initial tumor, respectively, i = 1, . . . , 85. To apply the two estimation pro-
cedures described above, we need to partition the whole observation period.
In the following, we consider two methods for this. One, which is referred to
as Method I below, is to divide the period (0, 53] into five intervals with the
sl’s being 0, 5.5, 15.5, 25.5, 40.5 and 53. The other, referred to as Method II
below, is to divide the period (0, 53] into eight intervals with the sl’s equal
to 0, 5.5, 10.5, 15.5, 20.5, 25.5, 30.5, 40.5 and 53.

Tables 2.2 and 2.3 present the estimated covariate effects and recurrence
rates of bladder tumors, respectively, given by the two estimation procedures.
One can see that the results seem to be quite consistent with respect to both
the partition method and the estimation procedure. In particular, they sug-
gest that the patients in the thiotepa group seem to have a lower recurrence
rate of bladder tumors than the patients in the placebo group. That is, the
thiotepa treatment had some significant effects in reducing the recurrence
rate of bladder tumors. On the two baseline covariates, the results indicate
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Table 2.3. Estimated recurrence rates of the bladder tumors

Method I Method II

Interval α̂L (SD) α̂E (SD) α̂L (SD) α̂E (SD)

1 0.1329 (0.060) 0.1329 (0.057) 0.1341 (0.061) 0.1338 (0.059)
2 0.0790 (0.036) 0.0791 (0.040) 0.0722 (0.034) 0.0722 (0.038)
3 0.0991 (0.045) 0.0992 (0.047) 0.0895 (0.042) 0.0896 (0.054)
4 0.1053 (0.048) 0.1047 (0.051) 0.0657 (0.033) 0.0658 (0.037)
5 0.0426 (0.023) 0.0424 (0.029) 0.1424 (0.067) 0.1421 (0.073)
6 0.0798 (0.041) 0.0789 (0.042)
7 0.1176 (0.055) 0.1167 (0.061)
8 0.0430 (0.024) 0.0427 (0.029)

that the tumor recurrence rate seems to be positively related to the num-
ber of initial tumors, but has no significant correlation with the size of the
largest initial tumor. With respect to the estimation of the parameter γ, all
approaches suggest that γ is significantly away from zero. That is, the latent
variables νi’s indeed have non-zero variance. For example, the likelihood-
based procedure gives γ̂L = 2.3632 and 2.3697 with the estimated standard
errors of 0.465 and 0.528 with the use of Methods I and II, respectively.

2.4.4 Discussion

As mentioned above, the piecewise model approaches discussed in this sec-
tion are essentially parametric procedures as those investigated in Sect. 2.3.
On the other hand, they are usually more flexible than fully or typical para-
metric procedures as one can easily change the number of partition points
and thus the smoothness of the baseline rate function. The flexibility of the
former can also be seen in that it is often regarded as approximate parametric
procedures in the sense that the piecewise model simply provides an approx-
imation to the underlying baseline rate function. Among others, Lawless and
Zhan (1998) provided some discussion on this. In particular, they showed
through a simulation study that the approaches perform well and give stable
results about the regression parameters and mean function with respect to
the number of partitions or steps used.

Note that instead of the baseline rate function, one can alternatively and
equivalently model the baseline mean function using the piecewise constant
function. For example, one could start with model (2.13) and assume that
μ0(t) has the form

μ0(t) =

k∑

l=1

αl I(sl−1 < t ≤ sl) .
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That is, it is a step function that jumps only at the time points sl’s. For
estimation of regression parameters, one can develop both likelihood-based
and estimating equation-based approaches similarly as above.

With respect to the comparison of the two estimation procedures discussed
above, it is apparent that the likelihood-based approach should be used if the
mixed Poisson process assumption is reasonable. In general, it may be difficult
to assess the assumption and thus one may prefer the estimating equation-
based approach. Of course, one may also question the appropriateness of
another assumption behind both approaches, the piecewise model assumption
for the baseline rate function. To relax it, one way is to allow the number
of partitions k to change with the sample size n and develop a data-driven
procedure for the selection of k. Another general method is to leave the
baseline rate function r0(t) or mean function μ0(t) arbitrary and to develop
semiparametric estimation procedures, the subject in the following chapters.

2.5 Bibliography, Discussion, and Remarks

In addition to those mentioned above, other references that investigated the
problems similar to the ones discussed in this chapter include Hinde (1982)
and Breslow (1984), and both considered the log-linear model for the event
rate. More specifically, the former developed the maximum likelihood ap-
proach when the model error follows a normal distribution, while the latter
proposed an iterative reweighted least squares approach. More on these meth-
ods can be found in Cameron and Trivedi (1998). As mentioned before, the
focus of the book is not about Poisson-based models or parametric inference
procedures. On the other hand, it is not difficult to generalize the methods
discussed here to more complicated situations. One such situation is that
there exists some truncation (Hu and Lawless, 1996), and another one is that
the observation process depends on covariates or is informative about the
underlying recurrent event process of interest as discussed later.

The Poisson process plays a major role in the parametric inference proce-
dures discussed in this chapter. Some authors have also investigated nonpara-
metric or semiparametric procedures under the Poisson process. For example,
Staniswalls et al. (1997) considered the situation where the Ni(t)’s are mixed
Poisson processes and the rate function satisfies model (2.12) with the base-
line rate function r0(t) completely unspecified. For inference, they employed
some smoothing techniques and the generalized profile likelihood method
(Severini and Wong, 1992) for estimation of the baseline rate function and
regression parameters, respectively. Also one can find some discussion about
the comparison of parametric and semiparametric inference procedures in
Staniswalls et al. (1997). In particular, they showed through an example that
as expected, the parametric approach may not fully capture some patterns of
the underlying rate function. In contrast, the semiparametric approach can
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provide substantive insights that would not be revealed by the parametric
approach. More discussions on the nonparametric and semiparametric meth-
ods developed under the Poisson process assumption for the analysis of panel
count data are given in both Chaps. 3 and 5.

It is worth to emphasize again that throughout the chapter, it has been as-
sumed that the observation process or the process generating the observation
times ti,j ’s is independent of the recurrent event process Ni(t) of interest. As
discussed before and also again in later chapters, this may not be true some-
times and in this situation, the methods described above would give biased
results. In other words, some new inference procedures are needed.



3

Nonparametric Estimation

3.1 Introduction

This chapter discusses one-sample analysis of panel count data with the focus
on nonparametric estimation of the mean function of the underlying recurrent
event process. As discussed above, one main objective of recurrent event
studies is to investigate the recurrence pattern or shape of the recurrent event
of interest. Although not completely determining the underlying process, the
mean function does provide some insights about the recurrence patterns or
shapes. Also it can be used for a graphical presentation of the underlying
process as survival functions for failure time processes. Of course, it would be
ideal to estimate the corresponding intensity process, but as discussed before,
this is not possible for panel count data in general without some restrictive
assumptions.

Consider a recurrent event study that involves n independent subjects
from a homogeneous population and in which each subject gives rise to a
counting process Ni(t). Suppose that only panel count data are available for
the Ni(t)’s. Specifically, let 0 < ti,1 < · · · < ti,mi denote the observation time
points for subject i and define ni,j = Ni(ti,j), the observed value of Ni(t) at
time ti,j , j = 1, . . . ,mi, i = 1, . . . , n. That is, subject i is observed mi times
and the observed data are

{ ( ti,j , ni,j ) ; j = 1, . . . ,mi, i = 1, . . . , n } . (3.1)

Define μ(t) = E{Ni(t) }, the mean function of the processes Ni’s, and
suppose that the goal is to estimate μ(t). To motivate the general estimation
procedures described below, first assume that we have a simple situation
where m1 = · · · = mn = m and ti,j = sj for all j and i. That is, all study
subjects have the same number of observations and the same observation time
points. This can occur if all subjects follow exactly a prespecified observation
schedule. In this case, it is easy to see that one can estimate only the values of
the mean function μ(t) at s1 < · · · < sm and a natural and simple estimator
of μ(sj) is given by

J. Sun and X. Zhao, Statistical Analysis of Panel Count Data, Statistics
for Biology and Health 80, DOI 10.1007/978-1-4614-8715-9 3,
© Springer Science+Business Media New York 2013
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μ̂(sj) =
1

n

n∑

i=1

ni,j =
1

n

n∑

i=1

Ni(sj) , (3.2)

the sample mean at sj , j = 1, . . . ,m. In reality, of course, real observation
numbers and times tend to differ from subject to subject, and thus the ques-
tion of interest is how to generalize the sample mean estimator described
above.

In Sect. 3.2, we first discuss some likelihood-based procedures for non-
parametric estimation of the mean function μ(t). In particular, we describe
an estimator that is derived under the non-homogeneous Poisson process as-
sumption. The estimator applies to more general situations and is consistent
without the Poisson assumption. Section 3.3 presents an isotonic regression-
based estimator, which can be seen as a direct generalization of the sample
mean estimator given in (3.2) and is derived without the use of the Poisson
assumption. A key advantage of the estimator is its simplicity and it can be
relatively easily determined. In Sect. 3.4, we generalize the isotonic regression
estimator by applying the generalized least squares method. The new class
of estimators allow more flexibility and could be more efficient depending on
the selection of appropriate weight functions.

In addition to estimating mean functions, sometimes one may also be
interested in estimating the rate function of an underlying recurrent event
process. It is well-known that the rate function could reveal some aspects
of the process that cannot be seen from the mean function. Also one could
directly derive an estimator of the mean function based on an estimated rate
function. Section 3.5 discusses several simple procedures for nonparametric
estimation of the rate function. In Sect. 3.6, we give some bibliographic notes
and discuss some issues and open problems that are not touched in the pre-
vious sections. In this chapter, as in Chap. 2, we assume that the observation
process or the process generating the observation times ti,j ’s is independent
of the underlying recurrent event process.

3.2 Likelihood-Based Estimation of the Mean Function

Let the Ni(t)’s and μ(t) be defined as above and suppose that the observed
data have the form (3.1). In the following, we first present the nonparametric
maximum likelihood estimator of the mean function μ(t) derived under the
non-homogeneous Poisson assumption on the Ni(t)’s. The estimator can be
applied to more general situations and was first studied by Wellner and Zhang
(2000). A couple of other likelihood-based estimators, also under the Poisson
process assumption, are then briefly discussed.
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3.2.1 Non-homogeneous Poisson Process-Based Estimator

To derive the non-homogeneous Poisson-based estimator of μ(t), we need to
pretend that the Ni(t)’s are non-homogeneous Poisson processes. Then the
resulting log full likelihood function is proportional to

l(μ) =
n∑

i=1

mi∑

j=1

(ni,j − ni,j−1) log {μ(ti,j) − μ(ti,j−1) } −
n∑

i=1

μ(ti,mi) ,

where ti,0 = 0 and ni,0 = 0, and it is natural to estimate μ(t) by maximizing
l(μ). Let s1 < . . . < sm denote the ordered distinct observation times in the
set { ti,j ; j = 1, . . . ,mi, i = 1, . . . , n }. Also let bl =

∑n
i=1 I(ti,mi = sl) for

l = 1, . . . ,m and

ñl,l′ =

n∑

i=1

mi∑

j=1

(ni,j − ni,j−1) I(ti,j = sl, ti,j−1 = sl′) ,

for 0 ≤ l′ < l ≤ m, where s0 = 0. Then the log likelihood function l(μ) can
be rewritten as

l(μ) =

m−1∑

l′=0

m∑

l=l′+1

ñl,l′ log {μ(sl) − μ(sl′ ) } −
m∑

l=1

bl μ(sl) . (3.3)

It is apparent that only the values of μ(t) at the sl’s can be estimated.
This suggests that one can define the nonparametric maximum likelihood
estimator (NPMLE) of μ(t), denoted by μ̂F (t), as the non-decreasing step
function with possible jumps only at the sl’s that maximizes (3.3). Thus
the maximization of l(μ) over functions μ(t) becomes maximizing l(μ) over
m-dimensional parameter vectors μ = (μ1, . . . , μm)T with μ1 ≤ . . . ≤ μm,
where μl = μ(sl), l = 1, . . . ,m. Of course, other definitions for μ̂F (t) be-
tween the sl’s can be used too. Also it can be easily seen that there is no
closed solution for the maximizer of l(μ).

For the determination of μ̂F (t), for l = 1, . . . ,m, define

φl(μ) =
∂l(μ)

∂μl
, φll(μ) =

∂2l(μ)

∂μ2
l

.

Also define

Δl,l′(μ) =

∑l
j=l′ {φj(μ) − μj φjj(μ)}
∑l

j=l′ {−φjj(μ)}
,

1 ≤ l′ ≤ l ≤ m. Let μ̂F,l = μ̂F (sl), l = 1, . . . ,m. By using the Fenchel
duality theorem, it can be shown that μ̂F = (μ̂F,1, . . . , μ̂F,m)T satisfies
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m∑

l=1

φl(μ̂F ) μ̂F,l = 0

and
m∑

j=l

φl(μ̂F ) ≤ 0

for all l = 1, . . . ,m. From these, Wellner and Zhang (2000) give the following
iterative convex minorant algorithm. Let ε > 0 be a prespecified number.

Step 1. Choose an initial estimator μ
(0)
F = (μ

(0)
F,1, . . . , μ

(0)
F,m)T .

Step 2. At the kth iteration, obtain the updated estimator by

μ
(k)
F,l = max

j′≤l
min
j≥l

Δj,j′ (μ
(k−1)
F ) , l = 1, . . . ,m ,

where μ
(k−1)
F = (μ

(k−1)
F,1 , . . . , μ

(k−1)
F,m )T denotes the estimator from the (k −

1)th iteration.
Step 3. If

∣
∣
∣
∣
∣

m∑

l=1

φl(μ
(k)
F )μ

(k)
F,l

∣
∣
∣
∣
∣
> ε

or

max
1≤l≤m

m∑

j=l

φl(μ
(k)
F ) > ε ,

return to Step 2. Otherwise stop and set μ̂F,l = μ
(k)
F,l .

To implement the iterative convex minorant algorithm described above,
one needs to choose an initial estimator and for this, one choice is the sample
mean of available observations at each observation time point. Note that
although the algorithm described above works well in many applications,
sometimes the resulting estimator may not be the globe maximizer. More
discussion on this can be found in Wellner and Zhang (2000). As mentioned
above, although the estimator μ̂F (t) is derived under the non-homogeneous
Poisson process assumption, it is consistent and can be applied without the
assumption. If the Poisson process assumption does hold, one can expect that
the NPMLE should be efficient, but for other situations, it may not be effi-
cient. Also it is easy to see that the determination of the NPMLE may not be
easy in computation. More comments on these are given in the next section.

3.2.2 Other Likelihood-Based Estimators

As discussed above, the NPMLE has the advantage that it could be efficient if
the underlying recurrent event process is indeed a non-homogeneous Poisson
process. On the other hand, it does have some shortcomings. To address
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these shortcomings, in this subsection, we briefly introduce two other Poisson
process-based estimators of the mean function μ(t).

First as in the previous subsection, we still pretend that the Ni(t)’s are
non-homogeneous Poisson processes. Let Sl denote the set of the indices of
the subjects who are observed at sl and define wl = |Sl|, the number of
elements in Sl. Instead of the log likelihood function l(μ), consider the log
likelihood function

lp(μ) =
n∑

i=1

mi∑

j=1

{ni,j log μ(ti,j) − μ(ti,j) } =
m∑

l=1

wl ( n̄l logμl − μl ) ,

(3.4)
where n̄l =

∑
i∈Sl

Ni(sl)/wl, the average of all observations made at time sl.
It is not hard to see that lp(μ) is not a real likelihood function, but the
likelihood function if one ignores the dependency of {Ni(tij) , j = 1, . . . ,mi}
for each i. Wellner and Zhang (2000) call it the log pseudo-likelihood function
of μ(t) and the resulting estimator as the nonparametric maximum pseudo-
likelihood estimator (NPMPLE). It will be seen that the estimator given by
lp(μ) can be easily determined and furthermore, it actually has a closed form.
The detailed discussion on this is given in the next section.

It is well-known that although it is handy, the Poisson process assumption
may be restrictive in practice and it would be more realistic to relax it or
employ some general processes. As discussed in Chap. 2, one such process
that is commonly used is the mixed Poisson or negative binomial process.
Specifically, for subject i, assume that there exists a gamma-frailty random
variable νi ∼ Gamma(α, 1/α), and given νi, Ni(t) is a non-homogeneous
Poisson process with the mean function

E{Ni(t)|νi } = νi μ(t) .

It is easy to see that E(νi) = 1 and E{Ni(t) } = μ(t). To estimate μ(t)
based on the panel count data (3.1), Zhang and Jamshidian (2003) suggested
to treat the data as cluster data and the counts within each cluster or from
the same subject being independent. Among others, Lawless (1987b) and
Thall (1988) considered the same approach.

Under these assumptions, one can show that the ni,j ’s follow the negative
binomial distribution and the resulting likelihood function has the form

Ln(μ) =

n∏

i=1

mi∏

j=1

[
Γ (ni,j + α−1)

Γ (α−1)

{αμ(ti,j)}ni,j

ni,j ! {1 + αμ(ti,j)}ni,j+α−1

]

.

Zhang and Jamshidian (2003) proposed to estimate μ(t) by maximizing the
likelihood function above and developed an EM-algorithm for the maximiza-
tion. Furthermore, they show through simulation that as the NPMLE, the
estimator defined above also applies to more general situations and could be
more efficient than the NPMPLE. On the other hand, also as the NPMLE,
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the determination of the new estimator is more involved numerically than
that of the NPMPLE. In addition, the theoretical study of its asymptotic
behavior is not easy.

3.3 Isotonic Regression-Based Estimation of the Mean
Function

In this section, we present a new and different estimator, the isotonic regres-
sion estimator (IRE), of the mean function μ(t). The key idea behind the IRE
is to directly generalize the sample mean estimator defined in (3.2) by apply-
ing the isotonic regression technique. Unlike the NPMLE, it does not need the
Poisson process assumption and was first proposed by Sun and Kalbfleisch
(1995). In the following, we first introduce the IRE and then present two
illustrative examples for both the NPMLE and IRE. Some discussion on the
two estimators is then followed.

3.3.1 Isotonic Regression Estimator

To describe the isotonic regression estimator, we start with a simple situation,
but more general than the case discussed in Sect. 3.1. Specifically, suppose
that all subjects have the same observation time points but the numbers of
observations may be different. That is, we have ti,j = sj for all i = 1, . . . , n
and j = 1, . . . ,mi with mi ≤ m. This can be the case in a follow-up study in
which all subjects follow exactly the prespecified observation schedule except
that some may drop out of the study early. For the case, it is easy to see that
a natural generalization of the estimator (3.2) is to estimate μ(sl) by

∑n
i=1 I(sl ≤ smi)Ni(sl)∑n

i=1 I(sl ≤ smi)
=

∑n
i=1 I(sl ≤ smi)ni,l∑n

i=1 I(sl ≤ smi)
,

the sample mean of observed values of the Ni(sl)’s from the subjects still
under study. One can easily show that the sample mean or estimator above
can be rewritten as

l∑

j=1

∑n
i=1 I(sj ≤ ti,mi) {Ni(sj) − Ni(sj−1) }∑n

i=1 I(sj ≤ ti,mi)

or
∫ sl

0

∑n
i=1 I(s ≤ ti,mi) dNi(s)∑n

i=1 I(s ≤ ti,mi)
. (3.5)

The latter is the Nelson-Aalen estimator given in (1.5) (Andersen et al.,
1993).
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Now we consider the situation where subjects may not have identical ob-
servation times. In this case, the estimator given above is not available. How-
ever, we can still define the sample mean at each time point sl based on
available observations. But, unlike the simple situation above, this approach
may give an estimator that does not share the non-decreasing property of
μ(t). To fix this, let wl and n̄l denote the number and mean value, respec-
tively, of the observations made at sl, l = 1, . . . ,m. The IRE, denoted by
μ̂I = (μ̂I,1, . . . , μ̂I,m)T , of μ(t) at the sl’s is defined as μ = (μ1, . . . , μm)T

that minimizes the weighted sum of squares

LI(μ) =

m∑

l=1

wl ( n̄l − μl )
2 (3.6)

subject to the order restriction μ1 ≤ · · · ≤ μm (Sun and Kalbfleisch, 1995).
Given μ̂I , the IRE of μ(t) denoted by μ̂I(t) can be defined as the non-
decreasing step function with possible jumps only at the sl’s and μ̂I(sl) =
μ̂I,l, l = 1, . . . ,m.

The estimator μ̂I defined above is in fact the isotonic regression of
{n̄1, . . . , n̄m} with weights {w1, . . . , wm} (Robertson et al., 1988). It follows
from the isotonic regression theory that the IRE μ̂I actually has a closed
form given by

μ̂I,l = max
r≤l

min
s≥l

∑s
v=r wv n̄v∑s
v=r wv

= min
s≥l

max
r≤l

∑s
v=r wv n̄v∑s
v=r wv

using the max-min formula (Barlow et al., 1972; Robertson et al., 1988). In
practice, several algorithms such as the pool-adjacent-violators and the up-
and-down algorithms can be used to determine μ̂I . Obviously if n̄1 ≤ . . . ≤
n̄m, μ̂I,l = n̄l, l = 1, . . . ,m, and for the simple situation discussed above, the
IRE reduces to the Nelson-Aalen estimator (3.5).

It can be shown that the minimization of (3.6) is equivalent to the maxi-
mization of lp(μ) given in (3.4) (Robertson et al., 1988; Wellner and Zhang,
2000). In other words, the IRE is the same as the NPMPLE. Furthermore, the
IRE is also the same as the NPMLE if each subject is observed only once as
in cross-sectional or some reliability studies. That is, mi = 1, i = 1, . . . , n,
or we have current status data. In this case, it is easy to see that the two
likelihood functions l(μ) and lp(μ) are identical.

3.3.2 Illustrations

Now we illustrate the NPMLE and IRE using the two examples discussed in
Sect. 1.2. First we apply the two methods to the panel count data arising from
the reliability study of nuclear plants described in Sect. 1.2.1 and then the
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gallstone data in Sect. 1.2.2. Note that the first set of panel count data is really
current status data and thus the two approaches give the same estimators.

For the reliability data, as mentioned before, they concern the loss of
feedwater flow in nuclear plants and consist of 30 observations from 30 plants,
one observation per plant. One can see from Table 1.3 that there are a total
of 10 different observation time points, giving m = 10. Assume that the
numbers of the losses of feedwater flow for all 30 nuclear plants follow the
same counting process. To determine the IRE of the mean or average number
of losses of feedwater flow based on the observed data, we first calculate the
wl’s and n̄l’s. That is, we need to obtain the number of observations and the
sample mean of the numbers of the observed losses of feedwater flow at each
observation time point. Figure 3.1 presents the IRE of the average number of
losses of feedwater flow given by the max-min formula. As mentioned above,
for the data, the NPMLE and IRE are identical. The figure suggests that
the loss of feedwater flow seems to increase linearly during the first and
third 4-year periods but it does not seem to occur during the second 4-year
period. For comparison and understanding the IRE, Fig. 3.1 also includes the
sample means, the dots, of the numbers of observed losses (n̄l vs sl). It can
be clearly seen that the IRE is obtained by pooling the n̄l’s according to the
order restriction.
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Fig. 3.1. IRE of the average number of losses of feedwater flow

Now we consider the gallstone data, and as mentioned above, one of the
primary objectives of the study is to assess the impact of the treatments on
the incidence of digestive symptoms commonly associated with the gallstone
disease. The data contain the observed information on nausea, one of the
symptoms commonly associated with the gallstone disease and whose occur-
rence incidences may depend on or be related to the treatment. Figure 3.2
displays the estimated average cumulative numbers of the occurrences of
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nausea for the patients in the placebo and high dose groups, respectively,
obtained by using the NPMLE and IRE. These estimators indicate that the
patients in the placebo group seem to have higher incidences of nausea than
those in the high dose group over the first 40 weeks. Most of this difference
seems due to an early difference over the first 10 weeks. After 40 weeks, the
incidence of nausea for the patients in the high dose group seems to catch
up that for those in the placebo group. A possible reason for this is that the
treatment, cheno, may only have short-term effects.
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Fig. 3.2. Estimators of the average cumulative counts of episodes of nausea

It is interesting to note that for the patients in the high dose group, the
NPMLE and IRE are quite close to each other, especially for the period of the
first 40 weeks. In contrast, the two estimators for those in the placebo group
differ and the NPMLE gives a higher estimate of the incidence of nausea.
Also one can see from the figure that the incidence rate for the patients in
the high dose group seems to change gradually, while the incidence rate for the
patients in the placebo group seems to change relatively less. More comments
on this are given below from the point of the estimated rate functions.

By looking at the data carefully, one can see that there exist several pa-
tients who seem to have experienced relatively larger numbers of nausea than
the others. Specifically, there are four in the high dose group (patients 13, 25,
50 and 57) and three in the placebo group (patients 78, 89 and 109). To see
their effects on the estimation, Fig. 3.3 gives the IRE of the average cumu-
lative numbers of the occurrences of nausea for the patients in the placebo
and high dose groups, respectively, based on the reduced data, the data after
removing these seven patients. For comparison, it also includes the IRE based
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Fig. 3.3. IRE of the average cumulative counts of episodes of nausea based on
reduced data

on the whole data given in Fig. 3.2. One can see that the two estimators for
the placebo group are basically identical. On the other hand, the new esti-
mator for the high dose group suggests a higher occurrence rate of nausea
than the old one, although the difference may not be significant.

3.3.3 Discussion

So far we have discussed four nonparametric estimators of the mean function
μ(t) of the recurrent event process of interest in this chapter and some com-
ments and discussion on their comparison are clearly needed. As pointed out
above, the NPMPLE and IRE are actually the same although they are de-
rived from different points of view. In terms of the comparison with the IRE,
the other likelihood-based estimator discussed in Sect. 3.2.2 is similar to the
NPMLE and thus in the following, we focus on the NPMLE and IRE only.

If the underlying recurrent event process of interest is indeed a
non-homogeneous Poisson process, it is easy to see that the NPMLE should
be more efficient than the IRE in general. Wellner and Zhang (2000) show
through simulation that this could be true even when the recurrent event
process is some other counting processes. A disadvantage of the NPMLE is
that its implementation is much more involved in terms of programming and
requires much more computing time than that of the IRE. In general, one may
want to use the IRE if the main interest is to have a general idea about the
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shape of the mean function μ(t), or when the number of observations for each
subject is small. The NPMLE should be used if efficiency is the main concern.

With respect to the asymptotic properties of the NPMLE and IRE,
Wellner and Zhang (2000) prove that under some regularity conditions, both
estimators are consistent in L2. Furthermore, for fixed t, both n1/3 { μ̂F (t) −
μ(t) } and n1/3 {μ̂I(t) − μ(t) } converge in distribution to the maximum
point of a two-sided Brownian motion process multiplied by some constants.
Discussion about this limit distribution can be found in Groeneboom and
Wellner (2001). Note that these asymptotic results do not rely on the non-
homogeneous Poisson assumption. However, the asymptotic properties of the
other estimator discussed in Sect. 3.2.2 are still unknown.

Finally we remark that all methods discussed above are similar in that
they all directly estimate the mean function μ(t), which needs to take into
account the monotonic property of μ(t). An alternative is to estimate the
rate function dμ(t) first and then to estimate μ(t) by the integral of the rate
function estimator. Among others, Thall and Lachin (1988) considered this
approach and more discussion on this is given below.

3.4 Generalized Isotonic Regression-Based Estimation
of the Mean Function

As discussed above, one of the main advantages of the IRE is its simplicity.
However, it may not be efficient in general. To address this, in this section,
we present a class of estimators that are generalizations of the IRE, which
will be referred to as the generalized isotonic regression estimator (GIRE).
The estimators were first investigated by Hu et al. (2009a), who also refer
them as generalized least squares monotonic estimators.

3.4.1 Generalized Isotonic Regression Estimators

Again let the Ni(t)’s and μ(t) be defined as above and suppose that the
observed data have the form (3.1). Also let the sl’s and Sl be defined as
before. To present the GIRE, first note that we can rewrite the function
LI(μ) given in (3.6) as

LI(μ) =

m∑

l=1

∑

i∈Sl

{ni,l − μ(sl) }2 −
m∑

l=1

∑

i∈Sl

{ni,l − n̄l }2

=

n∑

i=1

mi∑

j=1

{ni,j − μ(ti,j) }2 −
m∑

l=1

∑

i∈Sl

{ni,l − n̄l }2 .
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This suggests that the minimization of LI(μ) is equivalent to the minimization
of

L∗
I(μ) =

n∑

i=1

mi∑

j=1

{ni,j − μ(ti,j) }2 =
n∑

i=1

mi∑

j=1

{Ni(ti,j) − μ(ti,j)}2 ,

which would give the least squares estimator of μ = (μ(s1), . . . , μ(sm) )T =
(μ1, . . . , μm)T without considering the order restriction.

For estimation of μ(t) or μ, motivated by L∗
I(μ) and the weighted least

squares estimation, it is natural to consider the following weighted least
squares function

LGI(μ|W ) =
n∑

i=1

mi∑

j1=1

mi∑

j2=1

w(ti,j1 , ti,j2)
{
Ni(ti,j1)− μ(ti,j1)

}{
Ni(ti,j2 − μ(ti,j2)

}

=
n∑

i=1

mi∑

j1=1

mi∑

j2=1

w(ti,j1 , ti,j2)
{
ni,j1 − μ(ti,j1)

} {
ni,j2 − μ(ti,j2)

}
.

Here W = {w(sj , sl) } is a given m ×m symmetric weight matrix or func-
tion. Let μ̂GI = (μ̂GI,1, . . . , μ̂GI,m)T denote the value of μ that minimizes
LGI(μ) subject to the order restriction μ1 ≤ · · · ≤ μm. As μ̂I(t), we define
the GIRE, denoted by μ̂GI(t), of μ(t) as the non-decreasing step function
with possible jumps only at the sl’s and μ̂GI(sl) = μ̂GI,l, l = 1, . . . ,m.
It is apparent that if taking W = Im×m, the identity matrix, we have
LGI(μ|W ) = L∗

I(μ) and the GIRE μ̂GI(t) reduces to the IRE μ̂I(t).
The GIRE gives a class of estimators of the mean function μ(t) depending

on the selection of the weight matrixW and in theory, any symmetric matrix
could be used. On the other hand, it is apparent that some weight matrices
yield more efficient estimators than others. To determine the weight matrix
that may result in a better estimator, note that by using the identity matrix,
the resulting estimator, the IRE, treats the observed counts ni,j ’s equally.
Also it makes use of only the information given by the counts themselves,
not the correlation or relationship among them. This suggests the following
two simple choices for the weight matrix.

The first one, again motivated by the weighted least squares estimation,
is to take W = W 1, where W 1 is a diagonal matrix with different diagonal
elements w(sj , sj)’s. In this case, LGI(μ|W ) becomes a weighted least squares
function and a well-known choice for them is to take w(sj , sj) to be the
inverse of the variance of ni,j or its approximation. A specific choice is to
let w(sj , sj) = 1/μ(sj), motivated by the fact that μ(t) is the variance of
Ni(t) if Ni(t) is a Poisson process. To minimize LGI(μ|W ) with such weight
matrix, Hu et al. (2009a) suggest to use the following iterative algorithm.

Given μ̂
(k−1)
GI (t) from the (k − 1) iteration, take w(k)(sj , sj) = 1/μ̂

(k−1)
GI (sj)

and minimize LGI(μ|W (k)) to obtain μ̂
(k)
GI (t). Then repeat this process until

the convergence.
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Another simple choice for the weight matrix is to letW = W 2 = ΣT Σ,
where Σ = (σj,l ) is a m × m matrix with

σj,l =

⎧
⎨

⎩

1 for l = j with j = 1, . . . ,m,
−1 for l = j − 1 with j = 2, . . . ,m,
0 otherwise.

Note that although the weight matrix W 1 is not the identity matrix, it is
still a diagonal matrix, and hence the resulting object function LGI(μ|W )
still does not take into account the correlation among the observed counts
ni,j ’s from the same subject. In contrast, with the use of W 2, the resulting
object function depends on the observed increments ΔNi(ti,j) = Ni(ti,j) −
Ni(ti,j−1), j = 2, . . . ,mi, i = 1, . . . , n.

Some other weight matrices can be found in Hu et al. (2009a) and espe-
cially, they considered

(Cov{Ni(sj) , Ni(sl) } )−1
,

motivated by the construction of generalized estimating equations. Of course,
the covariance involved above is generally unknown and one needs to approx-
imate or estimate it. The selection of the optimal weight matrix is still an
open question.

3.4.2 Determination of the GIRE

Now we discuss the procedure for the minimization of the weighted least
squares function LGI(μ|W ) or the determination of μ̂GI given a weight ma-
trixW . For this, defineN i = (Ni(s1), . . . , Ni(sm))T and δi(sl) = 1 if ti,j =
sl for some j = 1, . . . ,mi and 0 otherwise. Also define Δi = diag{ δi(sl) },
a m×m diagonal matrix, and W i to be the mi ×mi matrix given by parts
of W corresponding to the observation times ti,j . Then LGI(μ|W ) can be
rewritten as

LGI(μ|W ) =

n∑

i=1

(N i − μ)
T
ΔT

i W iΔi (N i − μ) .

Furthermore, we can decompose LGI(μ|W ) as

LGI(μ|W ) =

n∑

i=1

(N i − μ̃GI)
T
ΔT

i W iΔi (N i − μ̃GI)

+ (μ̃GI − μ)
T
Bn(W ) (μ̃GI − μ) , (3.7)

where
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Bn(W ) =
n∑

i=1

ΔT
i W iΔi , μ̃GI = B−1

n (W )
n∑

i=1

ΔT
i W iΔiN i .

It is easy to see from (3.7) that μ̃GI minimizes LGI(μ|W ) and we would
have μ̂GI = μ̃GI if μ̃GI satisfies the order restriction. However, μ̃GI may not
satisfy the order restriction in general. To determine μ̂GI , let L

∗
GI(μ|W ) =

LGI(μ|W )/2 and define

πl(μ) =
∂L∗

GI(μ|W )

∂μl
, πll(μ) =

∂2L∗
GI(μ|W )

∂μ2
l

.

One can show that Bn(W ) = d2L∗
GI(μ|W ) and that πl(μ) and πll(μ) are

actually the lth component of

dL∗
GI(μ|W ) = −

n∑

i=1

ΔT
i W iΔi (N i − μ) = −Bn(W ) (μ̃GI − μ)

and the (l, l) element of the matrix Bn(W ), respectively. Also it can be shown
that as μ̂F , μ̂GI satisfies the following equation

m∑

l=1

πl(μ̂GI) μ̂GI,l = 0

and the inequalities
m∑

j=l

πj(μ̂GI) ≥ 0 .

It is apparent that one could determine or find μ̂GI by solving the equation
and inequalities above. However, this may be difficult in general. Correspond-
ing to this and as with μ̂F , Hu et al. (2009a) give the following iterative con-

vex minorant algorithm. Specifically, let μ
(0)
GI = (μ

(0)
GI,1, . . . , μ

(0)
GI,m)T denote

the initial estimator. Then at the kth iteration, define the updated estimator

μ
(k)
GI = (μ

(k)
GI,1, . . . , μ

(k)
GI,m)T as

μ
(k)
GI,l = max

u≤l
min
v≥l

∑v
j=u πjj(μ

(k−1)
GI )μ

(k−1)
GI,j − πj(μ

(k−1)
GI )

∑v
j=u πjj(μ

(k−1)
GI )

, (3.8)

l = 1, . . . ,m, and continue the process until convergence.
To understand the GIRE and the iterative convex minorant algorithm

above, define L∗∗
GI(μ|W ) = (μ̃GI − μ)

T
Bn(W ) (μ̃GI − μ) /2. Then it fol-

lows from (3.7) that the GIRE μ̂GI minimizes L∗∗
GI(μ|W ) under the order

restriction. Also it can be shown that the kth step estimator μ
(k)
GI defined in

(3.8) is the left derivative of the greatest convex minorant of the cumulative
sum diagram
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⎛

⎝
l∑

j=1

bjj(μ) ,

l∑

j=1

aj(μ)

⎞

⎠
∣
∣
∣μ=μ(k)

GI

,

l = 1, . . . ,m. In the above, bjj(μ) is the (j, j) element of the matrix Bn(W )
and aj(μ) the jth component of the vector

Bn(W ) μ̃GI + { diag(Bn(W )) − Bn(W )}μ .

If Bn(W ) is a diagonal matrix, the GIRE μ̂GI is actually the isotonic re-
gression of μ̃GI with respect to the weights given by the diagonal elements
of Bn(W ). In other words, μ̂GI could be regarded as a generalized isotonic
regression of μ̃GI with the weight matrix Bn(W ).
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Fig. 3.4. GIRE of the average cumulative counts of episodes of nausea

3.4.3 An Illustration

For the illustration of the estimation procedure described above, we apply it
to the gallstone data discussed in Sect. 3.3.2 again with the focus on compar-
ing the recurrence rates of nausea between the two groups. For the application
of the procedure, in addition to the weight matricesW 1 andW 2 given above,
we also consider W 3 = ΣT Σ with Σ = (σj,l ) being a m × m matrix and

σj,l =

⎧
⎨

⎩

1 for j = l with l = 1, . . . ,m,
−1 for j = min{k; l < k < m, δi(sk) = 1 for some i ∈ Sl},
0 otherwise.
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Note that the motivation behind the matrix W 2 is to take into account the
possible correlation between the observations at two successive observation
time points sj−1 and sj . On the other hand, it is easy to see that for a given
subject observed at sj−1, the person may not be observed at sj . This leads
to the consideration of the weight matrix W 3.

Figure 3.4 presents the GIRE of the average cumulative numbers of the
occurrences of nausea for the patients in the placebo and high dose groups,
respectively. It is interesting to see that the estimators with different weight
matrices are similar to each other for both groups. Note that this may not be
the case in general. Also the estimators are similar to those given in Fig. 3.2.

3.5 Estimation of the Rate Function

As discussed above, sometimes one may also be interested in estimating the
rate function of the underlying recurrent event process of interest. One reason
for this is that the rate function could reveal some aspects of the process that
cannot be seen from the mean function. In addition, one could also use an
estimator of the rate function to derive an estimator of the corresponding
mean function. As with the estimation of a hazard function in failure time
analysis, a raw estimator of the rate function may often be unstable or jumpy.
Thus a smooth estimator may be preferred in general.

Consider a recurrent event study that consists of n independent subjects
from a homogeneous population. Let the Ni(t)’s and μ(t) be defined as above
and r(t) denote the rate function of the recurrent event processes Ni(t)’s.
That is, r(t) dt = dμ(t). Suppose that we observe only panel count data
given in (3.1) with the sl’s denoting all ordered distinct observation time
points as before. In the following, we first discuss direct or raw estimation of
the rate function r(t) and three simple procedures are described. The smooth
estimation of r(t) is then considered with the focus on the kernel estimation
(Hart, 1986; Wand and Jones, 1995), which is followed by two illustrations.

3.5.1 Raw Estimators of the Rate Function

To estimate r(t), let μ̂(t) denote one of the estimators of μ(t) given in the
previous sections of this chapter. Then by the definition of r(t) and the fact
that μ̂(t) is a step function with jumps only at the sl’s, it is natural to define
an estimator of r(t) as

r̂1(sl) = Δμ̂(sl) = μ̂(sl)− μ̂(sl−) , l = 1, . . . ,m ,

and r̂1(t) = 0 for all other t �= sl. Or it may be more natural to define

r̂∗1(t) =
Δμ̂(sl)

sl − sl−1
, for sl−1 < t < sl ,
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l = 1, . . . ,m. It is easy to see that the resulting estimator of μ(t) from r̂1(t)
gives exactly the estimator μ̂(t), but the one from r̂∗1(t) does not as the latter
is not a step function.

Another simple estimator of the rate function r(t) is given by the empirical
estimator

r̂2(t) =
1

∑n
i=1 I(t ≤ ti,mi)

n∑

i=1

r̂2i(t)

=
1

∑n
i=1 I(t ≤ ti,mi)

n∑

i=1

mi∑

j=1

ni,j − ni,j−1

ti,j − ti,j−1
I(ti,j−1 < t ≤ ti,j) (3.9)

(Thall and Lachin, 1988). Here r̂2i(t) can be regarded as the estimated rate
function from subject i and r̂2(t) the average of the estimated rate functions
over all subjects. One can easily show that in the case of recurrent event
data, the estimator above reduces to the estimator given in (1.6) resulting
from the Nelson-Aalen estimator.

Note that all estimators of both mean and rate functions described so
far are essentially step functions with the jump points determined by the
observed data. Motivated by this, we can employ a different but similar ap-
proach that assumes that the rate function r(t) is a piecewise consistent
function. Specifically, suppose that 0 = a0 < a1 < . . . < ak < ∞ is a
prespecified sequence of time points and r(t) = αl for t ∈ Al = (al−1, al],
where the αl’s are some parameters, l = 1, . . . , k. It follows that for the
corresponding mean function μ(t), we have

μ(t) =

k∑

l=1

⎧
⎨

⎩

l−1∑

j=1

αj (aj − aj−1) + αl (t − al−1)

⎫
⎬

⎭
I(al−1 < t ≤ al) ,

(3.10)

where we define
∑0

j=1 = 0.
To estimate r(t) or the αj ’s, by using the relationship (3.10) given above,

one could employ any of the likelihood-based estimation procedures described
in the previous sections for estimation of the mean function μ(t). For example,
corresponding to the NPMPLE or IRE, we can consider the log pseudo-
likelihood function lp(μ) given in (3.4). By plugging in the relationship (3.10),
we obtain the following estimating equations

∂lp(μ)

∂αj
=

∂lp(α
′
js)

∂αj
=

m∑

l=1

wl

(
n̄l

μl
− 1

)
∂μl

∂αj
= 0 , j = 1, . . . , k

for the αj ’s, where

∂μl

∂αj
= (sl − aj−1) I(aj−1 < sl ≤ aj) + (aj − aj−1) I(sl > aj)
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and the sl’s and μl’s are defined as before. Given the aj ’s, one can develop a
Newton-Raphson or EM algorithm to solve the equations above.

For the implementation of the likelihood-based procedure described above,
one needs to choose the sequence of partition points aj ’s. It is apparent that
the larger the number of partitions k, the closer the resulting estimator is
to the nonparametric estimator of r(t) such as r̂1(t) or r̂∗1(t). Of course, for
larger k, the implementation is more time consuming too. For a given set of
panel count data, it is natural and also simple to take k = m and aj = sj ,
j = 1, . . . ,m. As mentioned above, instead of lp(μ), one could use l(μ) or
Ln(μ) to develop an estimation procedure for r(t) similarly as with lp(μ).

3.5.2 Smooth Estimators of the Rate Function

In this subsection, we consider the smooth estimation of a rate function
r(t) with the focus on kernel estimation. A kernel estimator is essentially
the weighted average of an existing estimator. A major advantage of the
kernel estimation approach is its simplicity and flexibility as it can be easily
implemented given an existing estimator. On the other hand, the inference
on kernel estimators may not be straightforward.

Let K(t) be a nonnegative function symmetric about t = 0 and suppose
that

∫∞
−∞ K(t) dt = 1. It is usually referred to as a kernel function. Also let

h be a positive parameter called the bandwidth parameter, which determines
how large a neighborhood of t is used to calculate the local average. Suppose
that there exists an estimator r̂(t) of the rate function r(t) that is not equal
to zero only at finite time points, a step function with finite jump points,
or a discontinuous function with finite discontinuous time points. To save
the notation, we use s1 < . . . < sm to denote these time points. Define
r̂l = r̂(sl),

w∗
l (t, h) = h−1K{ (t− sl) /h }

and

wl(t) =
w∗

l (t, h)∑m
u=1 w

∗
u(t, h)

,

l = 1, . . . ,m. Then given K(t) and h as well as r̂(t), the kernel estimator of
r(t) is defined to be

r̂K,1(t) =

m∑

l=1

wj(t) r̂l , (3.11)

the weighted averages of the r̂l’s.
As discussed above, the estimation of mean and rate functions can be ex-

changeable. The kernel estimator given above is constructed based on the
direction estimation of a rate function. Similarly one could derive a ker-
nel estimator of r(t) based on the estimation of its corresponding mean
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function. Specifically, let μ̂(t) denote an estimator of the mean function

μ(t) =
∫ t

0 r(s) ds. Then a kernel estimator of r(t) can be derived as

r̂K,2(t) =
1

h

∫ t+h

t−h

K

(
t− s

h

)

dμ̂(s) , (3.12)

the average or smooth version of the raw estimator dμ̂(t) of r(t) dt.
To obtain the smooth estimator of r(t) described above, one needs to

choose the kernel function K and the bandwidth parameter h, which together
control the degree of the smoothness of the estimator. For the kernel function,
there are many choices. One simple one is

K1(t) = I( |t| ≤ 1 )

and under this kernel function, the estimators r̂K,1(t) and r̂K,2(t) are moving
average estimators. At time t, only these r̂l’s and the jumps of μ̂(sl) with
|sl − t| ≤ h contribute to their corresponding estimators, respectively. In
other words, r̂K,1(t) and r̂K,2(t) are simply the averages of the contributing
components. Another commonly used kernel function is

K2(t) = (2 π)−1/2 exp(− t2 /2 ) ,

which is usually referred to as the Gaussian kernel. Under this function, all
components r̂l’s and the whole function μ̂(t) contribute to their resulting
estimators at each time point t. The degrees of contributions depend on the
closeness of each time point to the given t and the closer, the larger the
contribution. More comments about these two kernel functions are given in
the next subsection through illustrations.

For the selection of the bandwidth parameter h, one way is to apply the
methods commonly used for kernel estimation of density functions (Bean and
Tsokos, 1980; Wand and Jones, 1995). Suppose that the goal is to provide a
simple, graphical presentation of the rate function. In this case, the trial and
error method seems to be a natural choice. It is obvious that h cannot be too
small or large, and the appropriate range for h depends on specific problems.

3.5.3 Illustrations

For the illustration of the procedures discussed above for estimation of the
rate function, we consider the same two examples used in Sect. 3.3.2. First we
apply them to the reliability data on the loss of feedwater flow collected from
30 nuclear plants. In this case, as mentioned before, only one observation
is available for each plant and thus we have current status data. Figure 3.5
presents the estimated rate functions given by the empirical estimator (3.9)
and the kernel estimator (3.12) based on the Gaussian kernel function K2(t)
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Fig. 3.5. Estimated loss rates of feedwater flow

with h = 0.5, 1 or 2 and the use of the IRE shown in Fig. 3.1. It is interesting
to see that all four estimators suggest that the loss rate of feedwater flow
seems to decrease with time and there are two peak periods about the loss
rates. However, the two different procedures tell us different peak periods or
points although they are close. Note that it is apparent that one may not
easily see these from the estimated mean function given in Fig. 3.1. With
respect to the kernel estimators, it is clear that the value of the bandwidth
h determines the smoothness of the estimator.
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Now we apply the estimation procedures discussed above to the panel
count data arising from the National Cooperative Gallstone Study. First
Fig. 3.6 displays the estimated occurrence rates of nausea given by the em-
pirical estimator (3.9) and the kernel estimator (3.12) based on the kernel
function K1(t) with h = 20. One can easily see that both methods indicate
that the occurrence rate for the placebo group was higher than that for the
high-dose group initially, but the relationship reversed later. This is consistent
with what one can see from the estimated mean function given before. One
explanation for the higher occurrence rate in the high-dose group in the later
period could be that it is due to the small number of the patients available.
Note that the empirical approach seems to be more clear or give more details
than the kernel approach with the kernel function K1(t) about the pattern
or shape of the underlying occurrence rate. For comparison, Fig. 3.7 gives
the estimated occurrence rate by the kernel approach based on the Gaussian
kernel function K2(t) with h = 0.5. It basically tells us the same story about
the patterns of the occurrence rates of nausea as the two other methods. But
it is obvious that this latter method gives a much more clear picture about
the shape or peaks of the underlying occurrence rate of nausea than the other
two methods. Note that here as above, the IRE is used for the determination
of the estimator (3.12).
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Fig. 3.7. Estimated occurrence rates of nausea based on (3.12) with K2(t)

3.5.4 Discussion

As discussed above, a main advantage of kernel estimation is its simplicity and
flexibility. Also it does not depend on any distribution assumption. On the
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other hand, if one is willing to make some assumptions such that the Ni(t)’s
are non-homogeneous Poisson processes, then likelihood-based approaches
can also be used to derive smooth estimators of the rate function r(t).

Suppose that one can write the mean function μ(t) as a function of the
values, denoted by the rl’s, of the rate function r(t) at finite time points such
as the expression (3.10). Let l(μ) denote a log likelihood function used to
estimate μ(t) such as those discussed in Sect. 3.2. Then it is apparent that we
can estimate the rl’s by maximizing the log likelihood function l(r′ls) = l(μ)
with replacing μ(t) by the rl’s. On the other hand, it is well-known that the
resulting estimator of the rl’s or r(t) is usually unstable or not smooth even
if r(t) is indeed a smooth function. To overcome this and obtain a smooth
estimator, a common approach is to construct and maximize a penalized log
likelihood function given by

lg( r(t) ; τ ) = l(r′ls) − τ g{ r(t) } .

In the above, g is a known penalty function measuring the roughness of the
rate function and τ (> 0 ) is an unknown parameter that controls the amount
of smoothing. If τ = 0, lg( r(t) ; τ) = l(r′ls) and there is no smoothing.

Suppose that r(t) is a smooth function. Instead of employing the penalized
likelihood approach, an alternative is to directly model the rate function. For
example, one such model is to assume that r(t) has the form

r(t) =

p∑

j=1

exp(αj)Bj(t) , (3.13)

where {αj ; j = 1, . . . p } are unknown parameters and {Bj(t) ; j = 1, . . . p }
are some known smooth functions. Then for estimation of r(t) or the αj ’s, it
is natural to maximize the log likelihood function

l(α′
js) = l

⎧
⎨

⎩
μ(t) =

∫ t

0

p∑

j=1

exp(αj)Bj(s) ds

⎫
⎬

⎭
.

In practice, instead of modeling r(t) directly, sometimes one may prefer to
model the log rate function such as

log r(t) =

p∑

j=1

αj Bj(t) . (3.14)

Here the αj ’s and Bj(t)’s are the same as defined in (3.13). In this case,
the estimation can be carried out similarly by plugging (3.14) into the log
likelihood function l(μ) instead of (3.13).

For the selection of the smooth functions Bj(t)’s, there are many choices.
A simple one is to take them to be power functions. Another choice, which
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may be more commonly used, is to let them be some spline functions such as
B-splines or M-splines (Rosenberg, 1995). Of course, one can also take them
to be the base functions of a function space.

Note that the penalized likelihood approach described above is to employ a
penalty function to enforce the smoothness of the resulting estimator of a rate
function. Another related approach is first to model the rate function and then
to apply the penalized likelihood approach. That is, one can combine the two
approaches described above together. The local likelihood method is another
likelihood-based approach for smooth estimation, which was proposed by
Tibishirani and Hastie (1987) for smooth estimation of covariate effects in the
context of regression analysis. The method is an extension of the local fitting
technique used in scatterplot smoothing (Cleveland, 1979). To implement the
method, one needs to preselect a set of intervals and to approximate the rate
function by a linear function of time over each interval. The parameters in
the linear function are estimated using the local likelihood contributed by
the data related to the interval over which the linear model is defined.

As a final remark, it should be noted that the likelihood-based proce-
dures discussed above can be applied only if the assumed distribution can
be completely determined by the mean function, or with some assumptions.
Otherwise, no likelihood function is available.

3.6 Bibliography, Discussion, and Remarks

Nonparametric estimation of recurrent event processes has been discussed
by many authors. However, most of the existing literature is on recurrent
event data and the discussion on the case of panel count data is relatively
limited. For the former situation, there exist two types of research. One is on
estimation of the intensity or cumulative intensity process of the underlying
recurrent event process (Andersen et al., 1993), while the other is on estima-
tion of the mean and rate functions of the recurrent event process (Cook and
Lawless, 2007; Lawless and Nadeau, 1995; Lin et al., 2000). For the panel
count data situation, as discussed above, the majority of the existing work is
on the mean and rate functions of the recurrent event process.

One of the early work on nonparametric estimation based on panel
count data is given by Thall and Lachin (1988), who gave a simple em-
pirical estimator of the rate function. Sun and Kalbfleisch (1995) devel-
oped a simple isotonic regression-based estimator, the IRE, of the mean
function and investigated the consistency of the estimator. Following them,
Wellner and Zhang (2000) considered two likelihood-based estimators, the
NPMLE and NPMPLE, of the mean function and established their asymp-
totic properties. In particular, the NPMPLE is the same as the IRE. A
likelihood-based estimator of the mean function was also proposed in Zhang
and Jamshidian (2003). The difference between these estimators is that
the former was derived by using Poisson processes, while the latter em-
ployed mixed Poisson processes. Also following Sun and Kalbfleisch (1995),
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Hu et al. (2009a) proposed a class of generalized isotonic regression-based
estimators, GIRE, of the mean function by using the weighted least squares
criterion.

Other authors who considered nonparametric estimation of the mean or
rate function of the recurrent event process based on panel count include
Lu et al. (2007) and Hu et al. (2009b). The former studied likelihood-based
procedures like those discussed above but with the use of the monotone cubic
I-splines to approximate the mean function. The latter presented two estima-
tion procedures by using two types of self-consistency estimating equations
and by expressing the mean function as a summation of the values of the
rate function at finite time points. In other words, the procedures essentially
estimate the mean function by estimating the rate function. Also one of the
procedures is based on the log likelihood function l(μ) given in (3.3) and
the resulting estimator is actually the NPMLE. In addition, one could also
apply the procedure given by Hu and Lagakos (2007), who investigated the
same problem for a general response process that includes the recurrent event
process as a special case.

It is clear that more research remains to be done for nonparametric es-
timation with panel count data. One such direction or area is that in all
discussion so far, it has been assumed that the observation process is inde-
pendent of the underlying recurrent event process of interest. In practice, as
discussed before, this may not be true sometimes as, for example, the former
may contain relevant information about or depend on the latter. Some discus-
sion on this is given below in the context of regression analysis. Another area
that is difficult and has not been studied much is the asymptotic behavior of
the various estimators discussed in this chapter. A relatively easy problem is
the variance or covariance estimation of these estimators. Also it is useful to
develop some criteria for the optimal weight selection for the GIRE.
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Nonparametric Comparison of Point
Processes

4.1 Introduction

This chapter discusses nonparametric or distribution-free comparison of sev-
eral point or recurrent event processes when one observes only panel count
data. As commented above, in the case of panel count data, it is very diffi-
cult or impossible to estimate the intensity process and in consequence, one
usually focuses on the rate or mean functions of the underlying recurrent
event processes of interest. For the same reason, with respect to the compar-
ison of the processes, it is common and also convenient to formulate the null
hypothesis using the mean functions.

In the following, we consider three situations for the comparison of mean
functions of several recurrent event processes. First we discuss in Sect. 4.2
the two-sample situation where study subjects come from two different pop-
ulations or are given two different treatments. For the comparison, two non-
parametric procedures are discussed. The first procedure is constructed by
treating each subject coming from its own treatment. As a result, it can
also be applied to the situation where there exist more than two samples or
treatments that can be characterized by a scale variable such as animal dose
studies. In comparison, the second procedure is constructed for a general
two treatment comparison problem and thus applies to more general two-
sample situations than the first procedure. Section 4.3 investigates the sec-
ond situation, the general p-sample comparison. For the problem, two types
of nonparametric procedures are discussed. One is based on the use of the
IRE or NPMPLE and the other on the use of the NPMLE. Section 4.4 gives
some numerical comparisons and an illustration of the procedures described
in Sects. 4.2 and 4.3.

As discussed above and also below, in the case of panel count data, one
faces an additional observation process in addition to the underlying recurrent
event process of interest. All nonparametric comparison procedures described
in Sects. 4.2 and 4.3 assume that the observation processes for subjects in all
populations or different treatment groups are identical. It is well-known that

J. Sun and X. Zhao, Statistical Analysis of Panel Count Data, Statistics
for Biology and Health 80, DOI 10.1007/978-1-4614-8715-9 4,
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this may not be true in reality and it has been shown (Sun, 1999; Zhao et al.,
2011a) that without taking this into account, the analysis can yield biased
or misleading results. Section 4.5 discusses this situation and presents a class
of nonparametric test procedures that allow different observation processes
for the subjects in different treatment groups. Section 4.6 concludes with
some bibliographical notes and some future research directions related to the
comparison of recurrent event processes.

4.2 Two-Sample Comparison of Cumulative Mean
Functions

Consider a recurrent event study that consists of n independent subjects and
yields only panel count data. For subject i, as in Chap. 3, let Ni(t) denote
the point process representing the total number of the occurrences of the
recurrent events up to time t and 0 < ti,1 < · · · < ti,mi the observation
times on Ni(t). Define ni,j = Ni(ti,j), the observed value of Ni(t) at time
ti,j , j = 1, . . . ,mi, i = 1, . . . , n. Suppose that all subjects come from two
populations or are given one of two treatments, and the goal is to test if there
is treatment difference based on the observed panel count data.

Let μ1(t) and μ2(t) denote the mean functions of the Ni(t)’s correspond-
ing to the subjects given treatments 1 and 2, respectively. Then the null
hypothesis of interest can be expressed as H0 : μ1(t) = μ2(t) for all t. In the
following, we describe two different nonparametric procedures for testing H0.

4.2.1 Nonparametric Test Procedure I

To present the first nonparametric test procedure, for subject i, define Zi

to be the treatment indicator, being 0 if given treatment 1 and 1 otherwise,
i = 1, . . . , n. Let μ̂I(t) denote the IRE of μ1(t) and μ2(t) under the null
hypothesis H0. Then to test H0, by following the log-rank test for right-
censored failure time data (Kalbfleisch and Prentice, 2002), it is natural to
use the statistic

USF =
1√
n

n∑

i=1

Zi

mi∑

j=1

{ni,j − μ̂I(ti,j) }

(Sun and Fang, 2003). It is easy to see that USF represents the summation
of the differences between the observed numbers of the recurrent event of
interest and the estimated numbers of the event over the treatment group
with Zi = 1.

To further look at the statistic USF , let μ̂I,1(t) denote the IRE of μ1(t)

based on the data from the subjects with Zi = 0. Also let the s
(1)
l ’s and
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w
(1)
l ’s denote the time points and weights associated with μ̂I,1(t) and the sl’s

and wl’s the time points and weights associated with μ̂I(t). Then one can
rewrite USF as

USF =
1√
n

∫
w(1)(t) { μ̂I,1(t) − μ̂I(t) } d N̄ (1)(t) , (4.1)

where w(1)(t) denotes the step function that jumps only at the s(1)’s with

w(1)(s
(1)
l ) = w

(1)
l and N̄ (1)(t) =

∑
l I(t ≥ s

(1)
l ). That is, USF represents the

integrated weighted difference between an individual treatment group esti-
mator μ̂I,1(t) and the overall estimator μ̂I(t) of the common mean function
of the Ni(t)’s under the null hypothesis H0.

Note that in the case of current status data, we have mi = 1 and the
statistic USF reduces to

1√
n

n∑

i=1

Zi {ni,1 − μ̂I(ti,1) } , (4.2)

first discussed in Sun and Kalbfleisch (1993). If we further assume that ti,1 =
t0, then the statistic has the form

1√
n

{
∑

i:Zi=1

Ni(t0) − Z̄
n∑

i=1

Ni(t0)

}

,

where Z̄ =
∑n

i=1 Zi /n. It is worth to note that if the Ni(t)’s are Poisson
processes with the mean functions E{Ni(t) |Zi} = μ0(t) exp(βZi), then the
hypothesis H0 is equivalent to β = 0, and the statistic in (4.2) is exactly the
score statistic for testing β = 0. Here μ0(t) denotes the true mean function
of the Ni(t)’s under H0 and β an unknown parameter.

Suppose that the treatment indicators Zi’s can be regarded as independent
and identically distributed random variables asymptotically. Note that this
is often true in, for example, clinical trials in which randomization is used
to assign study subjects to different groups. Then under some regularity
conditions, Sun and Fang (2003) show that under H0 and as n → ∞, the
statistic USF has a normal distribution with mean 0 and the variance that
can be consistently estimated by

σ̂2
SF =

1

n

n∑

i=1

⎡

⎣ (Zi − Z̄)

mi∑

j=1

{ni,j − μ̂I(ti,j) }

⎤

⎦

2

.

Thus for large n, one can carry out the testing of the null hypothesis H0 using
the statistic U∗

SF = USF /σ̂SF based on the standard normal distribution.
We remark that the discussion and result given above are actually valid for

any asymptotically independent and identically distributed random variables
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Zi’s. In other words, the test procedure described above is applicable to
these situations. One of such situations is the animal dose study that involves
several doses of certain chemicals and where one is interested in testing the
dose effect on tumor growth. In this case, the Zi’s can be defined as the
quantities of the dose given to the animals.

4.2.2 Nonparametric Test Procedure II

Now we describe another statistic for testing the hypothesis H0. For this, let
μ̂I,2(t) denote the IRE of the mean function μ2(t) based on the data from the
subjects with Zi = 1. To motivate the new statistic, note that the procedure
given in the previous subsection requires that the treatment indicators Zi’s
can be treated as independent and identically distributed random variables. It
is apparent that this may not be true in some situations. Also as commented
above, the statistic USF compares the individual estimator to the overall
estimator of the same mean function. An alternative to this that may be
more powerful is to compare directly the two individual estimators of the
two mean functions under the study. These suggest to use the statistic

UPSZ =

√
n1 n2

n

∫ τ

0

Wn(t) { μ̂I,1(t) − μ̂I,2(t) } dGn(t) .

In the above, n1 and n2 denote the numbers of subjects in treatment groups
1 and 2, respectively, τ denotes the largest observation time, Wn(t) is a
bounded weight process that may depend on the observed data, and

Gn(t) =
1

n

n∑

i=1

mi∑

j=1

I(ti,j ≤ t) ,

the empirical observation process.
By plugging Gn(t) into UPSZ , we have

UPSZ =

√
n1 n2

n3

n∑

i=1

mi∑

j=1

Wn(ti,j) { μ̂I,1(ti,j) − μ̂I,2(ti,j) } .

That is, UPSZ is a Wilcoxon-type statistic. Similar statistics are often used in
the analysis of repeated measurement data (Davis and Wei, 1988). Suppose
that there exists a bounded weight process W (t) such that

sup
n
E

∫ τ

0

∣
∣√n {Wn(t) − W (t)}

∣
∣2 dGn(t) < ∞ . (4.3)

Also suppose that n1/n → p1 and n2/n → p2 as n → ∞, where 0 <
p1, p2 < 1 and p1 + p2 = 1. Then Park et al. (2007) show that under some
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regularity conditions and H0, the distribution of UPSZ can be asymptotically
approximated by the normal distribution with mean zero and the variance

σ̂2
PSZ =

n2

n
σ̂2
1 +

n1

n
σ̂2
2 .

In the above,

σ̂2
l =

1

nl

∑

iεSl

⎡

⎣
mi∑

j=1

Wn(ti,j) {Ni(ti,j) − μ̂I,l(ti,j)}

⎤

⎦

2

with Sl denoting the set of indices of the subjects belonging to treatment
group l, l = 1, 2. Thus it follows as above that the test of the null hypothesis
H0 can be performed by using the statistic U∗

PSZ = UPSZ /σ̂PSZ based on
the standard normal distribution.

To apply the test procedure above, one needs to choose the weight process

Wn(t). For this, a simple and natural choice is clearly W
(1)
n (t) = 1. Another

natural choice is W
(2)
n (t) = Yn(t) = n−1

∑n
i=1 I(t ≤ ti,mi) and in this

case, the weights are proportional to the number of the subjects still under
follow-up. A third choice, which is commonly used in both failure time data
and recurrent event data analyses (Cook and Lawless, 2007; Kalbfleisch and
Prentice, 2002), is

W (3)
n (t) =

Yn,1(t)Yn,2(t)

Yn(t)
.

Here Yn,1(t) and Yn,2(t) are defined as Yn(t) but with the summation being
over the subjects only within treatment groups 1 and 2, respectively.

4.2.3 Discussion

To test H0, in addition to the two procedures described above, one may
also apply the procedures proposed in Li et al. (2010) and Thall and Lachin
(1988). The former discussed the current status data situation and suggested
to apply the test statistic

n∑

i=1

(Zi − Z̄ ) {ni,1 − μ̂I(ti,1) }

instead the one given in (4.2). Furthermore, they show numerically that
the newly resulting procedure could be more powerful. In the paramet-
ric procedure given in Thall and Lachin (1988), it transforms the com-
parison problem to a multivariate comparison problem and then applies a
multivariate Wilcoxon-like rank test. For the transformation, however, one
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needs to partition the whole study period into several fixed, consecutive and
non-overlapping intervals. It is apparent that the test result may depend on
these grouping intervals.

Note that in the construction of UPSZ as well as USF , the IRE of the mean
function is employed. Instead of using the IRE, one could develop some non-
parametric test procedures similarly by using other estimators of the mean
functions discussed in Chap. 3 such as the NPMLE. A possible advantage of
using the NPMLE could be the gain of efficiency since it can be more effi-
cient than the IRE. On the other hand, as discussed in Chap. 3, the NPMLE
is much more complicated both theoretically and computationally than the
IRE. In particular, the former has no closed-form expression. In consequence,
the asymptotic distributions of the statistics USF and UPSZ with the IRE
replaced by the NPMLE are still unknown. Alternatively to make use of the
NPMLE of the mean function, Balakrishnan and Zhao (2010a) suggest to use
the statistic

1√
n

n∑

i=1

Zi

[ mi−1∑

j=1

μ̂F (ti,j)

{
Δni,j+1

Δμ̂F (ti,j+1)
− Δni,j

Δμ̂F (ti,j)

}

+ μ̂F (ti,mi)

{

1− Δni,mi

Δμ̂F (ti,mi)

} ]

. (4.4)

In the above, μ̂F (t) denotes the NPMLE of the common mean function of the
Ni(t)’s under the hypothesis H0, Δni,j = ni,j − ni,j−1, and Δμ̂F (ti,j) =
μ̂F (ti,j) − μ̂F (ti,j−1). Furthermore, they give the asymptotic distribution
of the statistic above under the hypothesis H0. More discussion about this
statistic is given below.

Note that the statistic UPSZ represents the integrated weighted difference
between the estimators of μ1(t) and μ2(t) and is expected to be sensitive
especially to stochastically ordered mean functions. Sometimes one may be
more interested in other types of the difference between the two mean func-
tions such as the absolute difference. To address this, instead of UPSZ , one
may want to consider the test statistic

√
n1 n2

n

∫ τ

0

Wn(t) { μ̂I,1(t) − μ̂I,2(t) }2 dGn(t)

or √
n1 n2

n

∫ τ

0

Wn(t) | μ̂I,1(t) − μ̂I,2(t) | dGn(t) .

However, it may be difficult to derive the asymptotic distributions of these
two statistics.
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4.3 General p-Sample Comparison of Cumulative
Mean Functions

Now we discuss the general p-sample comparison of recurrent event processes
based on panel count data. Specifically, we consider the same set-up and
use the same notation defined in the previous section, but assume that study
subjects come from p different populations or are given p different treatments.
Let μl(t) and nl denote the mean function of the Ni(t)’s corresponding to
and the number of the subjects given treatment l and Sl the set of indices of
these subjects, l = 1, . . . , p. Suppose that the goal of interest is to test the
null hypothesis H∗

0 : μ1(t) = · · · = μp(t) for all t.
To test H∗

0 , in the following, we discuss two classes of test statistics, which
give two types of nonparametric test procedures. The first class of test statis-
tics make use of the IRE or NPMPLE of the mean function of recurrent event
processes and are generalizations of the test statistic UPSZ . In contrast, the
second class of test statistics rely on the NPMLE of the mean function of
recurrent event processes and can be regarded as generalizations of the test
statistic given in (4.4).

4.3.1 NPMPLE-Based Nonparametric Procedures

In this subsection, we generalize the test procedure based on the statistic
UPSZ to the general p-sample situation. For this, let μ̂I,l(t) denote the IRE
of the mean function μl(t) based only on the observed data from the subjects
given treatment l, l = 1, . . . , p. Then a natural generalization of UPSZ is
given by UBZ1 = (UBZ1,2, . . . , UBZ1,p)

T , where

UBZ1,l =
√
n

∫ τ

0

Wn,l(t) { μ̂I,1(t) − μ̂I,l(t) } dGn(t) ,

l = 2, . . . , p. In the above, τ and Gn(t) are defined as in the previous section
and the Wn,l(t)’s are bounded weight processes that may depend on the
observed data.

It is obvious that UBZ1 is equivalent to UPSZ if p = 2 and one can rewrite
UBZ1,l as

UBZ1,l =
1√
n

n∑

i=1

mi∑

j=1

Wn,l(ti,j) {μ̂I,1(ti,j) − μ̂I,l(ti,j)} .

For the selection of the weight process Wn,l(t), a simple choice is to

take Wn,l(t) = W
(1)
n (t) or W

(2)
n (t), defined in the previous section. In

corresponding to W
(3)
n (t) given in the previous section, one could use

Wn,l(t) = g{Yn,1(t), Yn,l(t)}, where g is a fixed function and Yn,l(t) =
n−1
l

∑
iεSl

I(t ≤ ti,mi), l = 1, . . . , p.
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Define H̃i(t) =
∑mi

j=1 I(t ≥ ti,j), the observation process on subject i, i =

1, . . . , n. As before, we assume that the H̃i(t)’s follow the same probability
law and nl /n → pl as n → ∞, where 0 < pl < 1 and p1 + · · · + pp = 1.
Also suppose that there exists a bounded function W (t) such that

[∫ τ

0

{Wn,l(t) − W (t)}2 dG(t)
]1/2

= op(n
−1/6) , l = 2, . . . , p , (4.5)

where G(t) = E{ H̃i(t) }. Then Balakrishnan and Zhao (2010b) show that
under some regularity conditions and H∗

0 , UBZ1 asymptotically follows the
multivariate normal distribution with mean zero and the covariance matrix
that can be consistently estimated by

Σ̂BZ1 = H diag(σ̂2
1,1, σ̂

2
1,2, . . . , σ̂

2
1,p)H

T .

In the above,

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−
√

n
n1

√
n
n2

0 · · · 0

−
√

n
n1

0
√

n
n3

· · · 0

· · · · · · · · · · · · · · ·
−
√

n
n1

0 0 · · ·
√

n
np

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(4.6)

and

σ̂2
1,l =

1

nl

∑

i∈Sl

⎡

⎣
mi∑

j=1

Wn,l(ti,j) {Ni(ti,j) − μ̂I,l(ti,j) }

⎤

⎦

2

, l = 1, . . . , p ,

where Wn,1(t) is a specified weight process as the others.
Note that for p = 2, the condition (4.5) is more general than the condition

(4.3). That is, the latter implies the former. Based on the result above, one can
test the null hypothesis H∗

0 by using the statistic U∗
BZ1 = UT

BZ1 Σ̂
−1
BZ1 UBZ1

based on the χ2-distribution with (p − 1) degrees of freedom.

4.3.2 NPMLE-Based Nonparametric Procedures

As commented before, for any statistical or specially test procedure based on
the IRE or NPMPLE of the mean function of recurrent event processes, it is
natural to consider the same or similar procedure based on the NPMLE of the
mean function. In this subsection, we discuss one such class of nonparametric
procedures for testing the null hypothesis H∗

0 . Also as remarked above, due
to the different structures of the two types of estimators, the corresponding
test statistics take different forms. Specifically, to test H∗

0 and similar to the
statistic given in (4.4), Balakrishnan and Zhao (2009) suggest to use the
statistic UBZ2 = (UBZ2,2, . . . , UBZ2,p)

T , where
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UBZ2,l =
1√
n

n∑

i=1

[
mi−1∑

j=1

Wn,l(ti,j)μ̂F (ti,j)

{(
Δμ̂F,1(ti,j+1)

Δμ̂F (ti,j+1)
− Δμ̂F,1(ti,j)

Δμ̂F (ti,j)

)

−
(
Δμ̂F,l(ti,j+1)

Δμ̂F (ti,j+1)
− Δμ̂F,l(ti,j)

Δμ̂F (ti,j)

)}

+Wn,l(ti,mi) μ̂F (ti,mi)

{(

1− Δμ̂F,1(ti,mi)

Δμ̂F (ti,mi)

)

−
(

1− Δμ̂F,l(ti,mi)

Δμ̂F (ti,mi)

)} ]

,

l = 2, . . . , p. In the above, as before, ΔH(ti,j) = H(ti,j) − H(ti,j−1) for any
function H(t) and the Wn,l(t)’s are some bounded weight processes. Also
μ̂F (t) and μ̂F,l(t) denote the NPMLE of the common mean function of the
Ni(t)’s under H∗

0 based on all samples and μl(t) based only on the sample
from the subjects in treatment group l, respectively.

It is apparent that as the one given in (4.4), the test statistics UBZ2,l’s are
much more complicated than those based on the NPMPLE of mean functions.
On the other hand, all test statistics discussed above have similar meanings as
some summations of differences between two estimators of the same function.
In particular, UBZ2,l represents the integrated weighted difference between
the rates of the increases of the estimators μ̂F (t) and μ̂F,l(t) over the ob-
servation period. Also the construction of all test statistics discussed above
actually results from some forms of the functional of either the NPMPLE or
NPMLE that have asymptotic normal distributions (Balakrishnan and Zhao,
2009). For example, the characteristic of the NPMLE μ̂F (t) that plays a key
role in the asymptotic normality of the functional of μ̂F (t) and motivates the
test statistics UBZ2,l’s is

n∑

i=1

[
mi−1∑

j=1

μ̂F (ti,j)

{
Δni,j+1

Δμ̂F (ti,j+1)
− Δni,j

Δμ̂F (ti,j)

}

+ μ̂F (ti,mi)

{

1 − Δni,mi

Δμ̂F (ti,mi)

} ]

= 0 .

Suppose that the weight processesWn,l(t)’s satisfy the condition (4.5) and

max
1≤i≤n

E

⎡

⎣
mi∑

j=1

{Wn,l(ti,j) − W (ti,j) }2
⎤

⎦ −→ 0

for l = 1, . . . , p. Also suppose that nl /n → pl as n → ∞ as before, where
0 < pl < 1 and p1 + · · · + pp = 1. Balakrishnan and Zhao (2009) show that
as UBZ1, under some regularity conditions and H∗

0 , the distribution of UBZ2

can be asymptotically approximated by the multivariate normal distribution
with mean zero and the covariance matrix

Σ̂BZ2 = H diag(σ̂2
2,1, σ̂

2
2,2, . . . , σ̂

2
2,p)H

T .
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In the above, H is defined as in (4.6) and

σ̂2
2,l =

1

n

n∑

i=1

[
mi−1∑

j=1

Wn,l(ti,j) μ̂F (ti,j)

{
Δni,j+1

Δμ̂F (ti,j+1)
− Δni,j

Δμ̂F (ti,j)

}

+Wn,l(ti,mi) μ̂F (ti,mi)

{

1 − Δni,mi

Δμ̂F (ti,mi)

} ]2

,

l = 1, . . . , p. It follows that the null hypothesis H∗
0 can be tested by using

the statistic U∗
BZ2 = UT

BZ2 Σ̂
−1
BZ2 UBZ2 based on the χ2-distribution with

(p − 1) degrees of freedom.
As with UBZ1, the use of UBZ2 needs the selection of the weight processes

Wn,l(t)’s and it is apparent that the discussion on this given in the previous
subsection applies here. In addition, some other choices for Wn,l(t) include

Yn,l(t) ,
Yn,l(t)

Yn(t)
,
Yn,1(t)Yn,l(t)

Yn(t)
,

or

1 − Yn,l(t) ,
1− Yn,l(t)

1− Yn(t)
,
{1− Yn,1(t)}{1− Yn,l(t)}

1− Yn(t)
.

4.3.3 Discussion

There exist a couple of other test statistics similar to either UBZ1 or UBZ2

that have been investigated for testing the null hypothesis H∗
0 . One, similar

to UBZ1,l, is

√
n

∫ τ

0

Wn,l(t) { μ̂I(t) − μ̂I,l(t) } dGn(t)

(Balakrishnan and Zhao, 2010b), where μ̂I(t) denotes the IRE of the common
mean function of the Ni(t)’s under H

∗
0 based on all observed data as before.

Instead of comparing individual estimators of the same mean function under
different conditions as in UBZ1,l, the statistic above compares the individual
estimator to the overall estimator. Also it is apparent that the statistic above
is similar to and can be regarded as a generalization of the statistic USF given
in (4.1). Some discussion on the statistic UBZ1 can also be found in Zhang
(2006) for the situation where the weight processes Wn,l(t)’s are taken to be
identical.

To testH∗
0 , instead of and similar to UBZ2,l, Balakrishnan and Zhao (2009)

also suggest to use the statistic
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1√
n

n∑

i=1

[
mi−1∑

j=1

Wn,l(ti,j) μ̂F (ti,j)

{
Δμ̂F,l(ti,j+1)

Δμ̂F (ti,j+1)
− Δμ̂F,l(ti,j)

Δμ̂F (ti,j)

}

+Wn,l(ti,mi) μ̂F (ti,mi)

{

1 − Δμ̂F,l(ti,mi)

Δμ̂F (ti,mi)

} ]

.

It can be shown that the statistic above has a similar meaning to UBZ2,l

and its asymptotic distribution can be similarly established. In addition, it is
apparent that one can develop a test procedure by using the statistic given
in (4.4) with replacing Zi by a vector of treatment indicators.

In terms of comparison about the test statistics or procedures described
above, the comments given in Chap. 3 about the comparison between the
NPMPLE and NPMLE of the mean function of recurrent event processes ap-
ply. More specifically, a major difference between the two types of procedures
is that the ones based on the NPMPLE are much simpler and can be easily
carried out, while the ones based on the NPMLE could be more efficient.
More comments on this are given in the next section through some numerical
comparison and an illustration.

Note that as the test procedures discussed in the previous section, all non-
parametric procedures described in this section assume that the underlying
point processes generating observation times ti,j ’s are identical. That is, the

observation processes H̃i(t)’s follow the same probability law. It is obvious
that this may not be true in reality. One simple such example is that the
patients receiving a placebo treatment may have more or less clinical visits
than the patients given some effective treatments. As remarked above, if such
difference exists, the test procedure that ignores it can yield misleading or
wrong conclusions. Section 4.5 gives a class of nonparametric procedures that
take such differences into account.

4.4 Numerical Comparison and Illustration

In this section, we compare and illustrate the four nonparametric test proce-
dures, based on the test statistics USF , UPSZ , UBZ1 and UBZ2, respectively,
discussed in the previous two sections. First we apply them to the gallstone
data arising from the National Cooperative Gallstone Study discussed in
Sect. 1.2.2. A comparison based on simulated data is then presented and
followed by some general comments. Note that for the gallstone data, there
exist only two treatments and thus we have p = 2. Also in this case, the two
test procedures based on UPSZ and UBZ1 are equivalent and thus only the
latter is considered.
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4.4.1 Analysis of National Cooperative Gallstone Study

As described before, this study is a 10-year, multicenter, double-blinded,
placebo-controlled clinical trial on the use of cheno for the dissolution of
cholesterol gallstones. The original study consists of three treatments groups,
placebo, low dose, and high dose of cheno, and one of the main objectives of
the study is to compare the treatment groups in terms of the incidence or
occurrence rates of nausea. Also as before, for the analysis here and below, we
confine ourselves to the panel count data observed during the first 52 weeks
on the 113 patients in the placebo and high dose groups.

Table 4.1. Test results for the floating gallstone data

Statistic USF UBZ1 UBZ2

Weight process W
(1)
n W

(2)
n W

(3)
n W

(4)
n W

(1)
n W

(2)
n W

(3)
n W

(4)
n

p-value 0.143 0.454 0.417 0.413 0.891 0.861 0.000 0.000 0.000

Table 4.1 presents the p-values given by the three test procedures based
on USF , UPSZ and UBZ2, respectively, for testing the no treatment difference
between the placebo and high dose groups. Here for the procedures based on
UBZ1 and UBZ2, four weight processes are used with the first three being

those discussed in Sect. 4.2.2 and W
(4)
n (t) = 1 − W

(2)
n (t). One can see from

the table that the procedures based on USF and UBZ1 as well as the one

based on UBZ2 with W
(1)
n (t) suggest no significant difference between the

two groups. On the other hand, the procedure based on UBZ2 with other
three weight processes suggests that the treatment effect was significant. To
explain the difference between the test results here, it is worth noting from
Figs. 3.2 and 3.4 that the estimated mean functions between the two groups
cross each other. As commented below, this makes the selection of weight
processes difficult. In general, one can try to explain the difference from the
use of either different procedures or different weight processes, or both. Some
general comments on the selection of the procedures above are given below.
With respect to the four weight processes used here, note that in comparison

with W
(1)
n (t), all other three emphasize the difference between the estimated

mean functions during the middle period of the follow-up. Figures 3.2 and
3.4 indicate that this happens to be the period where the estimated mean
functions for the two groups have the largest difference.

4.4.2 Numerical Comparison of the Test Procedures

As seen from the example above, for the treatment comparison, a difficult
question that can occur in practice is the selection of an appropriate test pro-
cedure as well as an appropriate weight process. To address this, we conduct a
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Table 4.2. Empirical size and power with non-crossing mean functions

β USF UBZ1 UBZ2

W
(1)
n W

(2)
n W

(3)
n W

(4)
n W

(1)
n W

(2)
n W

(3)
n W

(4)
n

n1 = 40, n2 = 60
0.0 0.045 0.049 0.047 0.048 0.048 0.050 0.057 0.053 0.050
0.1 0.090 0.069 0.069 0.068 0.080 0.109 0.090 0.090 0.107
0.2 0.191 0.154 0.153 0.155 0.160 0.246 0.213 0.213 0.174
0.3 0.357 0.309 0.302 0.302 0.297 0.447 0.411 0.414 0.334

n1 = 80, n2 = 120
0.0 0.042 0.044 0.041 0.041 0.046 0.052 0.051 0.050 0.052
0.1 0.112 0.097 0.094 0.095 0.093 0.140 0.138 0.138 0.124
0.2 0.320 0.282 0.282 0.283 0.282 0.377 0.358 0.355 0.280
0.3 0.643 0.620 0.616 0.615 0.605 0.735 0.687 0.691 0.578

Table 4.3. Empirical power with crossing mean functions

β USF UBZ1 UBZ2

W
(1)
n W

(2)
n W

(3)
n W

(4)
n W

(1)
n W

(2)
n W

(3)
n W

(4)
n

n1 = 40, n2 = 60
3 0.402 0.462 0.394 0.394 0.718 0.849 0.323 0.310 0.989
5 0.061 0.079 0.059 0.058 0.298 0.411 0.065 0.066 0.945
8 0.138 0.115 0.140 0.141 0.047 0.059 0.265 0.272 0.766

n1 = 80, n2 = 120
3 0.668 0.708 0.604 0.601 0.957 0.993 0.491 0.476 1.000
5 0.084 0.104 0.062 0.061 0.472 0.669 0.063 0.064 0.999
8 0.205 0.179 0.237 0.237 0.061 0.083 0.471 0.484 0.968

general comparison by using simulated data with the focus on the two-sample
situation and the three test procedures used in the previous subsection.

To generate panel count data, we assume that Ni(t) is a mixed Poisson
process with the mean function μ(t|νi) given νi, where the νi’s are indepen-
dent and identically distributed random variables from Gamma(2, 1/2). With
respect to observation times, we first generate mi from the uniform distribu-
tion U{1, . . . , 10} and then take ti,1 < · · · < ti,mi to be the order statistics of
mi random variables again from the uniform distribution U{1, . . . , 10}. For
μ(t|νi), we consider two cases. One is to let μ(t|νi) = νi t exp(βZi), where Zi

is the treatment indicator taking value 0 or 1 and β represents the treatment
difference. The other is to take μ(t|νi) = νi t for the subjects with Zi = 0
and μ(t|νi) = νi

√
β t otherwise. Note that for the first case, the two mean

functions do not overlap, while the two mean functions for the latter case
cross over each other.

Tables 4.2 and 4.3 present the empirical size and power of the three test
procedures based on the simulated panel count data. Here the same four
weight processes as those used in the previous subsection are considered and
the sample sizes between the two groups are assumed to be different, being
40 and 60 or 80 and 120. Note that in Table 4.3, only the empirical power
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of the test procedures is included. One can see from Table 4.2 that when the
underlying mean functions do not overlap, all procedures perform reasonably
well and their performance does not seem to depend on the weight process.
As expected, the NPMLE-based procedure (UBZ2) shows larger power than
the NPMPLE-based procedures (USF and UBZ1) in general.

Table 4.3 shows that when the underlying mean functions cross over each
other, the selection of both test procedure and weight process is much more
complicated. One key point in this case is that the NPMPLE-based proce-
dures could have better power in some situations than the NPMLE-based
procedure. Also the results in Table 4.3 and from other simulation studies in-
dicate that the performance or power of a test procedure can heavily depend
on the shapes of mean functions. It is well-known that in practice, it may
not be possible to know the shapes of true mean functions. It is apparent
that for the problem here, an ideal solution is to develop an approach that
automatically selects the appropriate procedure and weight process. On the
other hand, this may be very difficult or impossible. The same issue exists in
other fields too such as failure time data analysis.

4.5 Comparison of Cumulative Mean Functions
with Different Observation Processes

This section discusses the same problem as that considered in the previous
sections. However, unlike in the previous sections, it is assumed that the
processes generating observation times, or the observation processes, may be
different for the study subjects in different treatment groups. In other words,
the observation process may depend on the treatment and sometimes this is
also referred to as with unequal observation processes (Zhao and Sun, 2011).
In the following, we use the same notation as those used in the previous
sections and assume that the goal is to test the null hypothesis H∗

0 . A class
of new statistics is first presented and then followed by an illustration.

4.5.1 Test Statistics

To present the new test statistics for the hypothesis H∗
0 , for l = 1, . . . , p, let

pl = nl /n, πl be the limit of pl, and

Gl(t) = E
{
H̃i(t)

}
for i ∈ Sl , G

∗(t) =

p∑

l=1

πlGl(t) .
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Define
gl(t) = G′

l(t) , g(t) = G′(t) , νl(t) = g(t)/gl(t) ,

and

Gn,l(t) =
1

nl

∑

i∈Sl

mi∑

j=1

I(ti,j ≤ t) ,

the empirical observation process for the subjects in treatment group l. Then
it is apparent that we have

Gn(t) =

p∑

l=1

plGn,l(t) ,

which is the overall empirical observation process. Also define

σ̂2
l =

1

nl

∑

i∈Sl

⎡

⎣
mi∑

j=1

Λl(ti,j) {Ni(ti,j) − μ̂I,l(ti,j) }

⎤

⎦

2

,

and

Ψn,l =

∫ τ

0

Wn(t) μ̂I,l(t) dGn(t) ,

where Wn(t) is a bounded weight process and

Λl(t) =

p∑

j=1

nj

n
Wn(t)

Gn,j(t)−Gn,j(t−)

Gn,l(t)−Gn,l(t−)
,

l = 1, . . . , p. It is easy to see that the statistic Ψn,l can be regarded as a
measure of the summary of the observed information related to treatment l.

To test the hypothesis H∗
0 , Zhao and Sun (2011) suggest to apply the

statistic

UZS =

p∑

l=1

cl
(
Ψn,l − Ψ̄n

)2
,

where cl = nl /σ̂
2
l and Ψ̄n =

∑p
l=1 αl Ψn,l with αl = cl (

∑p
j=1 cj)

−1. Fur-
thermore, they show that under some regularity conditions and H∗

0 , UZS

asymptotically follows the χ2-distribution with (p − 1) degrees of freedom if
there exists a bounded function W (t) such that

∫ τ

0

{Wn(t) − W (t) }2 dGl(t) = op(n
−1/3)

and

max
i∈Sl

E

⎡

⎣
mi∑

j=1

{Wn(ti,j) − W (ti,j)}2
⎤

⎦ → 0

for all l = 1, . . . , p.
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It is easy to see that the test statistic UZS has similar meanings to those
given in the previous sections and constructed based on the IRE or NPMPLE
of the mean function of recurrent event processes, especially the statistic USF .
More specifically, UZS represents the integrated weighted difference among
the estimated mean functions μ̂I,l(t)’s. Actually it is not difficult to show that
the test statistic UBZ1,l with the same weight processes can be expressed as
the difference between Ψn,1 and Ψn,l. For the selection of the weight process

Wn(t), some simple choices include W
(1)
n (t) and W

(2)
n (t) given in Sect. 4.2 as

well as 1 − W
(2)
n (t).

4.5.2 An Application

Now we illustrate the test procedure described above using the bladder tu-
mor data discussed in Sect. 1.2.3 and given in the data set II of Chap. 9. As
mentioned before, the data include the clinical visit or observation times and
the numbers of recurrent bladder tumors that occurred between the visit or
observation times from 85 patients who had superficial bladder tumors. There
exist two treatment groups, placebo (47 patients) and thiotepa (38 patients),
and one objective of the study is to compare the recurrence rates of bladder
tumors between the groups.

To compare the two groups, we first investigate the observation process
corresponding to each of the two groups. For this, note that for the patients
in the placebo and thiotepa groups, the average numbers of clinical visits
or observations are 8.66 and 13.50, respectively. That is, the patients in the
placebo group seem to have the smaller numbers of visits or observations
than those in the treatment group. To give a more complete picture on this,
Fig. 4.1 presents the separate Nelson-Aalen estimators, given by (1.5), of the
cumulative intensity functions of the observation processes corresponding to
the two groups. It is apparent that the patients in the placebo group indeed
seem to have a significantly lower observation rate, which suggests that one
should apply the test procedure discussed in this section.

Table 4.4 gives the p-values yielded by the application of the test statistic

UZS discussed above with the use of three weight processes,W
(1)
n (t), W

(2)
n (t)

and 1 − W
(2)
n (t). Although they are not close, the results indicate that the

two groups seem to have different recurrence rates of bladder tumors. To
further look at this, Fig. 4.2 gives the separate IRE of the mean functions
of the underlying recurrence processes of bladder tumors corresponding to
the patients in the two groups. One can easily see that the recurrence rates
indeed seem to be different, and the patients in the thiotepa treatment group
had a lower recurrence rate than those in the placebo group. In other words,
the thiotepa treatment seems to be effective in reducing the recurrence rate
of bladder tumors. More discussions on this data set are given below.
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Fig. 4.1. The Nelson-Aalen estimators for the observation processes

Table 4.4. Test results based on UZS for the bladder tumor data

Weight process W
(1)
n W

(2)
n 1−W

(2)
n

p-value 0.0477 0.0861 0.00004

4.5.3 Discussion

For the situation discussed in this section, two practical questions naturally
arise. One is how the test procedure given in this section differs from the
procedures given in Sects. 4.2 and 4.3. The other is if one can still apply the
nonparametric procedures discussed in the previous sections to the current
situation. To answer the first one, note that as discussed before, all test statis-
tics are constructed as some kinds of differences among different groups. For
the statistics introduced in the previous sections, the difference is about the
estimated mean functions of the underlying recurrent event processes given
the observation processes. In other words, the difference does not involve or
use the information involved in the observation processes (assumed to be
identical). In contrast, the quantity used to measure the difference in the
test statistic UZS can be seen as a summary measure of the whole system
that involves both the underlying recurrent event process and the observation
process.
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Fig. 4.2. IRE of the cumulative average numbers of bladder tumors

To answer the second question above, Zhao and Sun (2011) conducted
a simulation study to compare the two test procedures based on the test
statistics UBZ1 and UZS , respectively. They show that the procedures perform
similarly when observation processes are the same, but if the observation
processes differ between treatment groups, the former tends to inflate the test
size and power. In other words, in the presence of the difference among the
observation processes, it is necessary or essential to apply the test procedure
discussed in this section to obtain valid results. More comments on this are
given in later chapters.

As discussed in Sect. 4.3, it is not difficult to see that one can construct
some test statistics similar to UZS by replacing the used IRE or NPMPLE
with the NPMLE of the mean function of recurrent event processes. Again
one would face the same problem discussed before. That is, the structure of
the resulting test statistics may have to be different from that of UZS and
the derivation of the null distribution of the new statistics would not be easy.
By still using the IRE, in the case of two treatment groups and instead of
using the test statistic UZS , Zhang (2006) suggested the test statistic

∫ τ

0

{
ĝ−1
1 (t) μ̂I,1(t) dGn,1(t) − ĝ−1

2 (t) μ̂I,2(t) dGn,2(t)
}
,

where ĝ1(t) and ĝ2(t) are kernel estimators of g1(t) and g2(t), respectively.
Note that the statistic above involves estimation of g1(t) and g2(t), which
may not be easy. More importantly, its null distribution is unknown.
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4.6 Bibliography, Discussion, and Remarks

The majority of the existing nonparametric test procedures for comparing
recurrent event processes based on panel count data can be classified into
two types with respect to the estimator of the mean function of the processes
used in test statistics. One is these constructed based on the NPMPLE or IRE
(Balakrishnan and Zhao, 2010b; Li et al., 2010; Park, 2005; Park et al., 2007;
Sun and Fang, 2003; Sun and Kalbfleisch, 1993; Zhang, 2006; Zhao and Sun,
2011) , and the other is these constructed based on the NPMLE (Balakrishnan
and Zhao, 2009, 2010a). As discussed above, the main difference between the
two is that the former may be less powerful than the latter, but the latter
is much more complicated both computationally and theoretically than the
former. In addition to those mentioned above, other authors who investigated
the comparison of recurrent event processes in the case of panel count data
include Sun and Rai (2001) and Thall and Lachin (1988). The former is
commented below and the latter gives a parametric procedure as discussed
above. In addition, Zhao et al. (2013c) gave a class of nonparametric test
procedures for multivariate panel count data and more on it is discussed in
Chap. 7.

The focus in this chapter has been on the situation where observation
processes are identical or different for the subjects in different treatment
groups. In other words, they are independent of the recurrent event processes
of interest completely or given treatments. As remarked above and also below,
sometimes the observation process and the recurrent event process of interest
may be correlated. In this case, the test procedures that do not take the
relationship into account can yield biased or misleading results. In other
words, one needs different and new test procedures for the comparison of
recurrent event processes.

As seen in the discussion above and also is true in general, the inclusion of
some weight functions or processes is a technique commonly used in the con-
struction of test statistics. It allows investigators to put different emphases
on different treatment groups or time periods. For a given alternative hypoth-
esis, a proper selection of them could also improve the power of the resulting
test procedure. On this aspect, a natural question is how or if one can choose
an optimal one or develop some guideline for their selections given a prac-
tical problem. Unfortunately, there does not seem to exist such a procedure
or guideline even for recurrent event data. Another issue on the test proce-
dures discussed above for which there does not seem to exist any literature
is the investigation of the properties of them under alternative hypotheses.
In consequence, they are not ready to be used for sample size calculations.

Finally we remark again that the focus of this chapter and also the litera-
ture on the treatment comparison based on panel count data has been on the
hypothesis formulated by mean functions. This leads to the fact that most
of the existing nonparametric test procedures are based on the comparison
of different estimated mean functions. Of course it is natural to ask if one
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can or could formulate the hypothesis using intensity functions or processes
and develop corresponding test procedures. Sun and Rai (2001) discussed
this under a simple set-up where all study subjects have asymptotically the
same observation times. As discussed in Chap. 3 on nonparametric estima-
tion based on panel count data and in this chapter on the test procedures
based on the NPMLE, one can easily see that the task would be very diffi-
cult or close to impossible. It is worth noting that the way used to develop
test statistics here is actually the same as that used for the case of recurrent
event data (Cook and Lawless, 2007) and also similar for the case of failure
time data (Kalbfleisch and Prentice, 2002). In the latter case, the null hy-
pothesis is usually formulated by using the hazard or survival function, and
the test statistics are commonly constructed by comparing the estimated haz-
ard or survival functions. Also as with recurrent event data and failure time
data, instead of applying the procedures discussed above, an alternative for
comparing different treatment groups is to apply some regression techniques.
Discussions on this are given in later chapters.



5

Regression Analysis of Panel Count
Data I

5.1 Introduction

This chapter discusses regression analysis of panel count data. As discussed
before, unlike recurrent event data, panel count data involve an extra obser-
vation process and this observation process may be independent of or could
be related to the underlying recurrent event process of interest. In this chap-
ter, we consider the situation where the two processes are independent of
each other completely or conditionally given covariates. The situation where
the two processes are related is investigated in the next chapter.

To perform regression analysis of recurrent event data, as remarked above,
it is common to model the intensity process as well as the rate or mean func-
tion of the underlying recurrent event process of interest (Andersen et al.,
1993; Cook and Lawless, 2007). On the other hand, for regression analy-
sis of panel count data, only the rate or mean function is usually used to
model the effects of covariates on the recurrent event process. In this lat-
ter case, of course, one can fit the data to parametric Poisson processes or
mixed parametric Poisson processes as discussed on Chap. 2. Another para-
metric approach is to treat the data as longitudinal count data and to use
the generalized estimating equation approach (Diggle et al., 1994). A main
drawback of all parametric methods is that it is often difficult to determine
or find an appropriate parametric model for a given problem and the data.
In this chapter, we discuss semiparametric approaches with the focus on the
effects of covariates on the mean function of the underlying recurrent event
process.

Consider a recurrent event study and let N(t) denote the underlying re-
current event process of interest as before. Assume that there exists a vector
of covariates denoted by Z and the main goal of the study is to estimate the
effects of Z on N(t). For this, in the following, we begin with considering the
situation where the effects can be described by model (1.4), the proportional
mean model, and discuss two types of inference procedures for estimation of
the regression parameter β. Section 5.2 first describes some likelihood-based

J. Sun and X. Zhao, Statistical Analysis of Panel Count Data, Statistics
for Biology and Health 80, DOI 10.1007/978-1-4614-8715-9 5,
© Springer Science+Business Media New York 2013
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procedures with the use of some assumptions on the counting process N(t).
In particular, we consider the resulting procedure if N(t) can be regarded as
a non-homogeneous Poisson process as in Sect. 3.2. Note that a disadvantage
of the likelihood-based approach is that it usually involves nonparametric es-
timation of unknown functions. This makes its implementation often difficult
and also its validity may require large sample sizes. Corresponding to these,
Sects. 5.3 and 5.4 present two types of estimating equation approaches, which
do not rely on any distribution assumption on N(t) and also do not require
estimation of unknown functions.

Note that the proportional mean model implies that the mean functions
associated with any two sets of covariate values are proportional over time.
It is not hard to see that this restriction could be too strong in practice as
with the proportional hazards model in failure time data analysis (Lin et al.,
2001). Corresponding to this, in Sect. 5.5, we consider a class of semipara-
metric transformation models that include model (1.4) as a special case and
also allow Z(t) to be time-dependent. For estimation of regression param-
eters, some estimating equation procedures are described and in addition,
a procedure is given for testing the goodness-of-fit of the semiparametric
transformation model. In Sect. 5.6, an illustrative example is provided by ap-
plying the described methods to the gallstone data discussed and analyzed in
Sects. 1.2.2 and 4.4.1. Section 5.7 concludes with some bibliographical notes
and remarks on some issues not discussed in the previous sections.

5.2 Analysis by the Likelihood-Based Approach

Consider a recurrent event study that involves n independent subjects and let
Ni(t) and Zi be defined as above but associated with subject i, i = 1, . . . , n.
In this section, we assume that the Zi’s are time-independent. Suppose that
the mean function μZ(t) = E{Ni(t)|Zi } of Ni(t) given Zi can be described
by the proportional mean model (1.4) and one observes panel count data.
Let the ti,j ’s, ni,j ’s, and sl’s be defined as in the previous chapters and then
the observed data have the form

{ ( ti,j, ni,j ,Zi ) ; j = 1, . . . ,mi, i = 1, . . . , n } . (5.1)

In the following, for estimation of regression parameter β in model (1.4), we
first describe in details two non-homogeneous Poisson process-based proce-
dures. Some discussions are then given about some other similar procedures.
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5.2.1 A Semiparametric Maximum Pseudo-likelihood Estimation
Procedure

To estimate the regression parameter β, following the discussion in Sect. 3.2,
we first assume that theNi(t)’s are non-homogeneous Poisson processes. Then
as with lp(μ) given in (3.4), we can similarly derive the following log pseudo-
likelihood function

lp(μ0,β) =
n∑

i=1

mi∑

j=1

{
ni,j logμ0(ti,j) + ni,j β

TZi − μ0(ti,j) exp(β
TZi)

}

(5.2)
by ignoring the dependence of {Ni(ti,j) , j = 1, . . . ,mi } for each i. Thus it
is natural to estimate β by maximizing lp(μ0,β) over μ0(t) and β together.

For the maximization of lp(μ0,β), let the wl’s and n̄l’s be defined as in
Sect. 3.3. Also define

āl(β) =
1

wl

n∑

i=1

mi∑

j=1

exp(βTZi) I(ti,j = sl)

and

b̄l(β) =
1

wl

n∑

i=1

mi∑

j=1

ni,j β
TZi I(ti,j = sl)

for given β, l = 1, . . . ,m. Then the log pseudo-likelihood function lp(μ0,β)
can be rewritten as

lp(μ0,β) =

m∑

l=1

wl

{
n̄l logμ0(sl) − āl(β)μ0(sl) + b̄l(β)

}
.

It is easy to see that as with the estimation of μ(t) in Chap. 3, only the

values of μ0(t) at the sl’s can be estimated. Let μ̂PL(t) and β̂PL denote the
estimators of μ0(t) and β, respectively, given by the maximization of lp(μ0,β)
with μ̂L0(t) being a non-decreasing step function with possible jumps only at
the sl’s. Then their determination is equivalent to maximizing lp(μ0,β) =
lp(μ,β) over the (m + p) unknown parameters μ = (μ1, . . . , μm)T and β
under the restriction μ1 ≤ . . . ≤ μm, where p denotes the dimension of β as
before and μl = μ0(sl), l = 1, . . . ,m.

For the determination of μ̂PL(t) and β̂PL or the maximization of lp(μ,β),
one way is to use a two-step iterative algorithm that maximizes lp over μ
and β alternatively. Specifically, for fixed β, note that the maximization of
lp over μ is equivalent to maximizing

m∑

l=1

wl āl(β)

{
n̄l

āl(β)
log μl − μl

}

,
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which is similar to the log likelihood function given in (3.4). This shows that
for given β, the μ̂PL(sl)’s are the IRE of {n̄1/ā1(β), . . . , n̄m/ām(β)} with
weights {w1ā1(β), . . . , wmām(β)}. Thus they have the closed form

μ̂PL(sl;β) = max
r≤l

min
s≥l

∑s
v=r wv n̄v∑s

v=r wvāv(β)
= min

s≥l
max
r≤l

∑s
v=r wv n̄v∑s

v=r wv āv(β)

given by the max-min formula of the IRE (Barlow et al., 1972; Robertson
et al., 1988). As discussed in Sect. 3.3 with the IRE, in practice, several
algorithms such as the pool-adjacent-violators and up-and-down algorithms
can be used to determine the μ̂PL(sl;β)’s. If n̄1/ā1(β) ≤ . . . ≤ n̄m/ām(β),
then we have μ̂PL(sl;β) = n̄l/āl(β), l = 1, . . . ,m.

For given μ0(t) or μ, one can simply use the Newton-Raphson algorithm for
estimation of β. It can be easily shown that the log pseudo-likelihood function
lp(μ,β) is a concave function of β for given μ0(t) and its value increases after
each iteration (Zhang, 2002). The two-step algorithm described above can be
summarized as follows.

Step 1. Choose an initial estimator β(0) of β.

Step 2. At the kth iteration, determine the updated estimator μ̂
(k)
PL =

(μ̂
(k)
PL(s1;β), . . . , μ̂

(k)
PL(sm;β))T of μ by

μ̂
(k)
PL(sl;β)= max

r≤l
min
s≥l

∑s
v=r wv n̄v

∑s
v=r wv āv(β

(k−1))
= min

s≥l
max
r≤l

∑s
v=r wv n̄v

∑s
v=r wvāv(β

(k−1))
,

l = 1, . . . ,m.

Step 3. Determine the updated estimator, denoted by β̂
(k)

, of β by maximiz-

ing lp(μ
(k)
PL,β) with respect to β using the Newton-Raphson algorithm.

Step 4. Repeat Steps 2 and 3 until convergence.

To check the convergence, one criterion that one can use is

∣
∣
∣
∣
∣
∣

lp(μ̂
(k+1)
PL , β̂

(k+1)
) − lp(μ̂

(k)
PL, β̂

(k)
)

lp(μ̂
(k)
PL, β̂

(k)
)

∣
∣
∣
∣
∣
∣
≤ ε

for a given positive number ε. Another commonly used criterion is to check

the relative difference between the estimators μ̂
(k+1)
PL and β̂

(k+1)
and the

estimators μ̂
(k)
PL and β̂

(k)
.

Note that in the above, we have assumed that the Ni(t)’s are non-
homogeneous Poisson processes for the derivation of the estimators μ̂PL(t)

and β̂PL. In general, on the other hand, Zhang (2002) shows that the two-
step iterative algorithm described above is actually robust and seems always
to converge. He also shows that under some regularity conditions, the esti-
mators μ̂PL(t) and β̂PL are consistent in L2 and the consistency result does
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not depend on the Poisson process assumption. For the variance estimation
of β̂PL, Zhang (2002) suggests to employ the bootstrap procedure. It should
be noted, however, that the procedure could be slow in computation as we
are dealing with a semiparametric maximization problem.

5.2.2 A Semiparametric Spline-Based Maximum Likelihood
Estimation Procedure

As discussed above, the log pseudo-likelihood function lp(μ0,β) is not re-
ally a true likelihood function. Under the non-homogeneous Poisson process
assumption, the true log likelihood function is proportional to

l(μ0,β) =

m−1∑

l′=0

m∑

l=l′+1

ñl,l′ log {μ0(sl) − μ0(sl′) } −
m∑

l=1

bl(β)μ0(sl)

+
n∑

i=1

ni,mi β
TZi .

Here bl(β) =
∑n

i=1 I(ti,mi = sl) exp(β
TZi) and the ñl,l′ ’s are defined as

in Sect. 3.2.1. Thus it is natural that instead of maximizing lp(μ0,β), one
could and may want to estimate β by maximizing l(μ0,β) given above, and
it is easy to see that for current status data, the two log likelihood functions
are identical. In general, on the other hand, the relationship between the two
maximization procedures is actually similar to that between the NPMLE
and IRE discussed in Chap. 3. In particular, although the maximization of
l(μ0,β) may yield more efficient estimators of regression parameters than
the maximization of lp(μ0,β), the former is much more complicated than the
latter (Lu et al., 2009; Wellner and Zhang, 2007). Also both procedures need
a great deal of computing effort.

To reduce the computing burden and give a relatively easy estimation
procedure, in this subsection, we describe an approximate semiparametric
maximum likelihood estimation procedure, developed by Lu et al. (2009).
The basic idea behind the new procedure is that it employs monotone cubic
B-splines (Schumaker, 1981) to approximate the log baseline mean function.
Specifically, assume that μ0(t) in the log scale can be approximated by

log{μ0(t) } =

Kn∑

l=1

αlBl(t)

with α1 ≤ · · · ≤ αKn . Here the αl’s are unknown parameters, the {Bj(t) }Kn

j=1

are the B-spline basis functions, and Kn denotes the number of basis func-
tions that depends on the data. Under the approximation above, model (1.4)
becomes
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E{N(t)|Z } = exp

⎧
⎨

⎩

Kn∑

j=1

αj Bj(t) + βTZ

⎫
⎬

⎭
,

and the log pseudo-likelihood function lp(μ0,β) has the form

lp(α
′
ls,β) =

n∑

i=1

mi∑

j=1

[

ni,j

Kn∑

l=1

αl Bl(ti,j) + ni,j β
TZi

− exp

⎧
⎨

⎩

Kn∑

j=1

αj Bj(t) + βTZi

⎫
⎬

⎭

⎤

⎦ .

Let the α̂l’s and β̂SL denote the maximum likelihood estimators of the
αl’s and β resulting from the maximization of lp(α

′
ls,β) given above. Define

μ̂SL(t) = exp{
∑Kn

l=1 α̂l Bl(t) }, the resulting estimator of the baseline mean
function μ0(t), and assume that the number of basis functions Kn goes to
infinity when n goes to infinity. Then Lu et al. (2009) show that under some

regularity conditions, μ̂SL(t) and β̂SL are consistent and β̂SL asymptotically

follows a normal distribution. In particular, β̂SL is asymptotically equiva-

lent to β̂PL given in the previous subsection. For the determination of the

α̂l’s and β̂SL, Lu et al. (2009) suggest to employ the generalized Rosen algo-
rithm discussed in Jamshidian (2004) and Zhang and Jamshidian (2004). In
practice, the number of basis functions Kn is usually set to be smaller than
the number of the different observation time points m or the dimension of
μ defined in the previous subsection. In consequence, the maximization of
lp(α

′
ls,β) can be much easier than that of lp(μ0,β).

5.2.3 Discussion

As mentioned above, instead of maximizing the log pseudo-likelihood func-
tion lp(μ0,β), one can maximize the true log likelihood function l(μ0,β) for
estimation of model (1.4). The same is true about the procedure described
in Sect. 5.2.2. That is, instead of maximizing the approximate log pseudo-
likelihood function lp(α

′
ls,β), one can maximize the approximate true log

likelihood function l(α′
ls,β) given by replacing μ0(t) in l(μ0,β) with the

monotone cubic B-spline approximation. Lu et al. (2009) show that as β̂SL,
the resulting estimators of regression parameters from this latter approach is
also asymptotically equivalent to the maximum likelihood estimator of the
regression parameters given by l(μ0,β). In other words, with respect to es-
timation of regression parameters in model (1.4), the resulting estimators
with and without using the smooth function approximation have the same
asymptotic properties. On the other hand, the methods based on the mono-
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tone cubic B-splines have the advantage of the computer efficiency, which
makes the bootstrap procedure more feasible in practice. In addition, the
estimation of the baseline mean function with the use of B-splines can also
have a better convergence rate than that without the use of B-splines if the
true baseline mean function is sufficiently smooth (Lu et al., 2009).

Note that as discussed in Sect. 3.2.2, a drawback of the Poisson process
assumption is that it could be too restrictive in practice and instead, one may
consider the mixed Poisson process. Specifically, assume that the Ni(t)’s are
non-homogeneous Poisson processes with the mean function

E{Ni(t)|Zi, νi } = νi μ0(t) exp(β
TZi)

givenZi and a latent variable νi, where the νi’s follow the gamma distribution
with mean one. Then it can be shown that the ni,j ’s follow the negative
binomial distribution and the resulting likelihood function has the form

Ln(μ0,β)=
n∏

i=1

mi∏

j=1

[
Γ (ni,j+α

−1)

Γ (α−1)

{αμ(ti,j) exp(βTZi)}ni,j

ni,j ! {1+αμ(ti,j) exp(βTZi)}ni,j+α−1

]

.

As with the estimators β̂PL and β̂SL, one could define an estimator of β by
maximizing either the likelihood function Ln(μ0,β) or Ln(μ0,β) with μ0(t)
replaced by the monotone cubic B-spline approximation used above.

Also note that all estimation procedures discussed above involve the esti-
mation of either an unknown function or many extra parameters in addition
to regression parameters. Thus in general, their implementations are usu-
ally expensive in computation. Also it is difficult to study the asymptotic
properties of the resulting estimators, and sometimes one has to employ the
bootstrap procedure for the variance estimation of the resulting estimators.
In these cases, no formal inference about β can be carried out based on these
estimators. In the next three sections, the estimating equation approach is
employed to derive estimators of the regression parameter β. One can see
that the resulting estimation procedures are free of the estimation of un-
known functions or extra parameters, and the asymptotic properties of the
resulting estimators can be relatively easily established.

5.3 Analysis by the Estimating Equation Approach I

To motivate the estimating equation approach given below, note that one fea-
ture of the estimation procedures discussed in the previous section is that they
are conditional approaches with respect to observation processes. In other
words, they condition on observation times or treat them as fixed. The focus
of this chapter is on estimation of the effects of covariates on the underlying
recurrent event process of interest. In the meantime, the same covariates may
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have some effects on observation processes too although the latter may not
be of main interest. As an alternative to the conditional approach, sometimes
it may be convenient or useful to directly model the two processes together
and to make unconditional inference about covariate effects.

This section considers the same problem as in the previous section but
takes the unconditional approach that models together both the process of
interest and the observation process marginally. In addition, the approach
allows one to directly model the possible effects of covariates on the censoring
or follow-up time too. In the following, we first describe the assumptions and
models needed for the estimation procedure to be derived. The estimating
equations are then presented for estimation of all possible effects of covariates
on both the recurrent event process of interest and the observation process
as well as on the follow-up time or process. Finally we consider a special case
where covariates have no effect on the follow-up process.

5.3.1 Assumptions and Models

Consider a recurrent event study that yields panel count data and let the
Ni(t)’s, ti,j ’s, ni,j ’s, and sl’s be defined as in the previous section. Also let

H̃i(t) denote the underlying observation process representing the potential
number of observations up to time t on subject i, i = 1, . . . , n. In addition, for
subject i, assume that there exists a censoring or follow-up time denoted by Ci

and define Hi(t) = H̃i{min(t, Ci)} =
∑mi

j=1 I(ti,j ≤ t), the real observation
process on the subject. Then Ni(t) is observed only at the time points where
Hi(t) jumps, i = 1, . . . , n. The observed data consist of the independent and
identically distributed {Hi(t), Ni(t)dHi(t), Ci,Zi ; t ≥ 0 , i = 1, . . . , n } or
have the form

{ ( ti,j, ni,j , Ci,Zi ) ; j = 1, . . . ,mi, i = 1, . . . , n } . (5.3)

In the following, we assume that Ni(t), H̃i(t), Ci and Zi may be dependent,
but given Zi, Ni(t), H̃i(t) and Ci are independent. Also we assume that the
mean function of Ni(t) is given by model (1.4) as in the previous section.

To model the dependence of H̃i(t) on covariates Zi, as for Ni(t), it is
assumed that the mean function of H̃i(t) has the form

μ̃Zi(t) = E { H̃i(t) |Zi } = μ̃0(t) exp(γ
TZi) (5.4)

given Zi. In the model above, μ̃0(t) is a completely unspecified function as
μ0(t) and γ is a p-dimensional vector of regression parameters representing
the effects of covariates on H̃i(t). As mentioned above, the covariates Zi may
have effects on Ci too. For this, we suppose that given Zi, the hazard function
λ∗i (t) of Ci satisfies the following proportional hazards (PH) model
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λ∗i (t ; Zi) = λ∗0(t) exp(τ
TZi) (5.5)

(Cox, 1972; Kalbfleisch and Prentice, 2002). Here λ∗0(t) is a completely un-
specified baseline hazard function and τ is a p-dimensional vector of regres-
sion parameters denoting the effects of covariates on Ci. Note that here Ci

is always observable unlike in the case of right-censored failure time data. In
the following, for simplicity of presentation, it is assumed that the Zi’s are
centered around zero. Otherwise, one can simply replace Zi by Zi − Z̄n,
where Z̄n =

∑n
i=1 Zi/n.

For estimation of regression parameters β, γ and τ , we first discuss the
general situation where all these parameters are unknown and need to be
estimated. The special case where τ = 0 is then discussed, implying that
the Ci’s follow the same distribution.

5.3.2 Estimation of All Regression Parameters

This subsection considers the estimation of all regression parameters β, γ
and τ together. To motivate the estimating equations derived below, first
consider a simple situation where mi = 1 and γ = τ = 0, i = 1, . . . , n.
That is, one has current status data and the H̃i(t)’s and Ci’s have the same
mean and hazard functions, respectively. Note that in this case, under model
(1.4), we have the following fact that the quantity

E
{
exp(−βTZi)Ni(ti,1)|Zi

}
= E

{

exp(−βTZi)

∫
Ni(t) dHi(t)|Zi

}

is independent of subject index i. This suggests that for given β and if one
is interested in testing model (1.4), a natural method is to use the following
Wilcoxon-type statistic

U∗
0 (β) =

n∑

i=1

n∑

j=1

(Zi − Zj)

{

exp(−βTZi)

∫
Ni(t) dHi(t)

− exp(−βTZj)

∫
Nj(t) dHj(t)

}

= 2n

n∑

i=1

{

Zi exp(−βTZi)

∫
Ni(t) dHi(t)

}

.

It thus follows that a natural estimating equation for estimation of β is
given by

U0(β) = (2n)−1 U∗
0 (β) = 0 .

Note that if mi ≥ 1, we have
∫
Ni(t) dHi(t) =

∑mi

j=1 Ni(ti,j). Thus it is
easy to see that in this case, U0(β) is still an unbiased estimating function
under model (1.4) and can be used for estimation of β with γ = τ = 0.
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Now we consider the general case where γ and τ may not be zero. Let

S0(t) = exp
{
−
∫ t

0
λ∗0(s) ds

}
and define

dM̃i(t) = dHi(t) − I(Ci ≥ t) exp(γTZi) dμ̃0(t) ,

which has mean zero, i = 1, . . . , n. Then one has

∫
Ni(t)dHi(t) =

∫
Ni(t)dM̃i(t) +

∫
Ni(t) exp(γ

TZi) I(Ci ≥ t) dμ̃0(t) ,

and under model (5.4) and conditional on Zi, we have

E

{∫
Ni(t)dHi(t)

}

= exp
{
(β + γ)T Zi

} ∫
μ0(t)Si(t) dμ̃0(t) , (5.6)

where Si(t) = P (Ci ≥ t) = {S0(t−)}exp(τ TZi) under model (5.5). The
equation above shows that U0(β) is biased under the situation considered
and needs to be adjusted.

To have an unbiased estimating function similar to U0(β), it follows from
(5.6) that one could consider the quantity

∫
Ni(t) {S0(t−)}− exp(τ TZi) dHi(t)

instead of
∫
Ni(t)dHi(t). Under model (5.5), this quantity has the

expectation

exp
{
(β + γ)TZi

} ∫
μ0(t) dμ̃0(t) .

This motivates the estimating function

UI(β,γ, τ ) =

n∑

i=1

Zi exp
{
−(β + γ)TZi

}

×
∫
Ni(t)

{
Ŝ0(t−; τ )

}− exp(τ TZi)

dHi(t) (5.7)

for β with fixed γ and τ , where

Ŝ0(t; τ ) = exp

{

−
∫ t

0

d N̄(s)
∑n

i=1 I(Ci ≥ s) exp{τTZi}

}

,

N̄(s) =
∑n

i=1 N̄i(s) and N̄i(s) = I(Ci ≤ s). It can be easily shown that
asymptotically, UI(β,γ, τ ) has expectation zero under the true values of the
parameters (Sun and Wei, 2000).
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To estimate γ in model (5.4), a common approach is to use the estimating
equation Uγ(γ) = ∂L(γ)/∂γ = 0 (Lawless and Nadeau, 1995), where

L(γ) =

∫ n∑

i=1

[

γTZi − log

{
n∑

l=1

I(Cl ≥ t) exp(γTZi)

}]

dHi(t) . (5.8)

For estimation of τ , one can use the partial likelihood score function

Uτ (τ ) =

n∑

i=1

∫ {

Zi −
∑n

l=1 I(Cl ≥ t) exp{τTZl}Zl∑n
l=1 I(Cl ≥ t) exp{τTZl}

}

d N̄i(t) (5.9)

(Kalbfleisch and Prentice, 2002). Let γ̂ and τ̂ denote the estimators of γ and
τ given by the solutions to Uγ(γ) = 0 and Uτ (τ ) = 0, respectively. Then

one can estimate β by the solution, denoted by β̂I , to UI(β, γ̂, τ̂ ) = 0.

Let θ = (βT ,γT , τT )T and θ̂ = (β̂
T

I , γ̂
T , τ̂T )T . Sun and Wei (2000)

show that the estimators β̂I , γ̂ and τ̂ are consistent and unique. For their
asymptotic distributions, let

A(θ)=−∂UI(θ)

∂β
, B(γ)=−∂Uγ(γ)

∂γ
, G(τ )=−∂Uτ (τ )

∂τ
, P (θ)=−∂UI(θ)

∂τ
.

Define

R(t; θ) =
1

n

n∑

i=1

Zi exp{−(β + γ − τ )TZi}
∫ ∞

t

Ni(s)

{Ŝ0(s; τ)}exp(τ TZi)
dHi(s),

and

S(j)(t;γ) =
1

n

n∑

i=1

I(Ci ≥ t) exp{γTZi}Z(j)
i ,

where j = 0, 1, Z
(0)
i = 1, and Z

(1)
i = Zi, i = 1, . . . , n. Also define

ãi(θ) = Zi exp{−(β + γ)TZi}
∫

Ni(t)

{Ŝ0(t; τ )}exp(τ TZi)
dHi(t) ,

b̃i(θ) =

∫
R(t, θ)

S(0)(t; τ )

{

d N̄i(t) − I(Ci ≥ t) exp{τTZi}
nS(0)(t; τ )

d N̄(t)

}

,

d̃i(γ)=

∫ ∞

0

{

Zi −
S(1)(t;γ)

S(0)(t;γ)

} {

dHi(t)−
I(Ci≥t) exp{γTZi}

nS(0)(t;γ)
dH(t)

}

,
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and

d̃i(τ )=

∫ ∞

0

{

Zi − S(1)(t; τ )

S(0)(t; τ )

} {

dN̄i(t) − I(Ci ≥ t) exp{τTZi}
nS(0)(t; τ )

dN̄(t)

}

,

where H(t) =
∑n

i=1 Hi(t), i = 1, . . . , n. Sun and Wei (2000) show that

for large n, the distribution of β̂I − β0 can be approximated by a normal

distribution with mean zero and the covariance matrixD(θ̂)Γ (θ̂)D′(θ̂). Here
β0 denotes the true value of β,

D(θ) =
(
A−1(θ),−B−1(γ),−A−1(θ)P (θ)G−1(τ )

)
,

and

Γ (θ) =

n∑

i=1

⎛

⎝
ãi(θ) + b̃i(θ)

d̃i(γ)

d̃i(τ )

⎞

⎠
(
ãTi (θ) + b̃Ti (θ) , d̃

T
i (γ) , d̃

T
i (τ )

)
.

Let γ0 and τ 0 denote the true values of γ and τ , respectively. Then it can
be easily shown that for large n, the distributions of γ̂ − γ0 and τ̂ − τ 0 can
also be approximated by the normal distributions with mean zero and the
covariance matrices

B−1(γ̂)

{
n∑

i=1

d̃(γ̂) d̃T (γ̂)

}

B−1(γ̂)

and

G−1(τ̂ )

{
n∑

i=1

d̃(τ̂ ) d̃T (τ̂ )

}

G−1(τ̂ ) ,

respectively (Lawless and Nadeau, 1995; Sun and Wei, 2000).

5.3.3 Estimation with Same Follow-Up Times

Sometimes it may be reasonable to assume that the Ci’s are independent and
identically distributed, that is, τ = 0. A simple situation where this holds
is that Ci = c0 for all i, where c0 is a prespecified time point. That is, all
subjects are followed the same length. In this case, of course, one can still
employ the estimation procedure given above, but it is apparent that it may
be less efficient. Instead, one can develop an estimation procedure similar to,
but simpler than the one given above. To see this, note that under the current
situation, Si(t) in (5.6) is independent of subject index i. This suggests an
unbiased estimating function

UI,1(β,γ) =

n∑

i=1

Zi exp
{
−(β + γ)TZi

} ∫
Ni(t) dHi(t)

for estimation of β with given γ.
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Let β̂I,1 denote the estimator of β given by the solution to UI,1(β, γ̂) = 0.

It can be easily shown that β̂I,1 is consistent and unique (Sun and Wei, 2000).

Furthermore, for large n, one can approximate the distribution of β̂I,1 − β0

by the normal distribution with mean zero and the covariance matrix

(
A−1

1 (β̂I,1 + γ̂),−B−1(γ̂)
)
Γ̂1

(
A−1

1 (β̂I,1 + γ̂),−B−1(γ̂)
)T

.

In the above, A1(β) = −∂U0(β)/∂β and

Γ̂1 =

( ∑n
i=1 ZiZ

T
i e

∗2
i e2i ,

∑n
i=1 Zi d̃

T
i (γ̂) e

∗
i ei∑n

i=1 d̃i(γ̂)Z
T
i e

∗
i ei ,

∑n
i=1 d̃i(γ̂) d̃

T
i (γ̂)

)

,

where ei =
∫
Ni(t)dHi(t) and e∗i = exp{− (β̂I,1 + γ̂)

TZi}, i = 1, . . . , n.
It is easy to see that in the simple situation where Ci = c0 for all i, the
estimating function UI(β,γ, τ ) given in (5.7) reduces to UI,1(β,γ). That is,

the two estimators β̂I and β̂I,1 are identical.

5.4 Analysis by the Estimating Equation Approach II

As discussed above, compared to the likelihood-based estimation proce-
dures discussed in Sect. 5.2, one major advantage of the estimating equation
approach described in Sect. 5.3 is that it does not depend on any distribution
assumption. Also for the latter, the asymptotic properties of the resulting
estimator can be easily established and its implementation is quite easy. On
the other hand, the latter may be less efficient. In this section, we describe
two other estimating equation approaches, which may not be as easy in im-
plementation as the one given in Sect. 5.3 but could be more efficient. First
we discuss a conditional method that treats observation times as constants or
fixed. An unconditional method is then given which, as the method given in
Sect. 5.3, models both the recurrent event process of interest and the obser-
vation process together. It is followed by some discussion on the comparison
of the three estimating equation approaches.

5.4.1 A Conditional Estimating Equation Procedure

Let the Ni(t)’s, ti,j ’s, ni,j ’s, sl’s, H̃i(t)’s, Hi(t)’s and Ci’s be defined as
in Sect. 5.3. Also as in Sect. 5.3, suppose that the observed data consist
of independent and identically distributed {Hi(t), Ni(t)dHi(t), Ci,Zi ; t ≥
0 , i = 1, . . . , n } or have the form (5.3). Furthermore, assume that Ni(t),
H̃i(t), Ci and Zi may be dependent, but given Zi, Ni(t), H̃i(t) and Ci are
independent. Suppose that the main goal is to make inference about the
regression parameter β in model (1.4).
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To motivate the new estimating function, note that the estimating function
UI given in (5.7) is essentially constructed based on the summary statistic∫
Ni(t) dHi(t). Corresponding to this, we consider a new process defined as

Ñi(t) =

∫ t

0

Ni(s) dHi(s) , t ≥ 0 ,

which is expected to contain more information than the summary statistic
above, i = 1, . . . , n. It is easy to see that Ñi(t) has possible jumps only
at the observation time points ti,j ’s with respective jump sizes Ni(ti,j)’s.

Furthermore, we actually have recurrent event data on the Ñi(t)’s and one
can show that

E{ dÑi(t)|Hi(s), 0 < s ≤ t;Zi } = μ0(t) exp(β
TZi)dHi(t) . (5.10)

That is, the Ñi(t)’s satisfy the proportional rate model (1.3) and one can
employ the estimation approach developed for recurrent event data.

For each i, define hi(t) = Hi(t)−Hi(t−), indicating whether subject i has
an observation at time t, i = 1, . . . , n. In the following, we use τ to denote
the longest follow-up time and assume E{ hi(t) } = p(t) > 0 for t ∈ T ,
where T is a subset of (0, τ ] including all observation times. The assumption
ensures that for any time point in T , there is more than one subject having
observation when the study size n is large enough. Also define

S
(j)
C (t;β) =

∑n
i=1 I(Ci ≥ t)Z⊗j

i exp(βTZi)hi(t)∑n
i=1 hi(t)

for t with
∑n

i=1 hi(t) > 0 and j = 0, 1, 2. Then for estimation of the regression
parameter β, by following the idea discussed in Lawless and Nadeau (1995)
among others, a natural estimating function is

UC
II(β;w) =

n∑

i=1

∫ τ

0

w(t) I(Ci ≥ t)
{
Zi − Z̄C(t;β)

}
dÑi(t) . (5.11)

Here w(t) is a known weight function and Z̄C(t;β) = S
(1)
C (t;β)

/
S
(0)
C (t;β),

which is defined only for t ∈ [0, τ ] with
∑n

i=1 hi(t) > 0. Note that since
T is finite, the integral in (5.11) and all similar integrals below are finite
summations.

One can show that for any counting process satisfying (5.10), the estimat-
ing function UC

II(β;w) given in (5.11) has mean zero. Thus we can estimate

β by the solution, denoted by β̂
C

II , to U
C
II(β;w) = 0. For the simple situ-

ation where all subjects have just one observation at the same time point
t0 < τ with Ci = τ for all i and w(t) = 1, the estimating function UC

II(β;w)
reduces to
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UC
II(β; 1) =

n∑

i=1

ZiNi(t0) −
{ n∑

i=1

∫ t0

0

1
∑n

j=1 exp(βTZj)
dNi(t)

}

×
{ n∑

i=1

Zi exp(β
TZi)

}
.

To understand the estimating function above, note that

E

{
n∑

i=1

ZiNi(t0)|Z ′
is

}

= μ0(t)

n∑

i=1

Zi exp(β
TZi) .

Thus UC
II(β; 1) represents the quantity

∑n
i=1 ZiNi(t0) minus its estimated

expectation given by replacing μ0(t) with the Breslow estimator (Fleming
and Harrington, 1991).

Let β0 denote the true value of β as above. Define

μ̂C
0 (t;β) =

∑n
i=1 I(Ci ≥ t)Ni(t)hi(t)

∑n
i=1 I(Ci ≥ t) exp(βTZi)hi(t)

and

M̂C
i (t;β) =

∫ t

0

I(Ci ≥ s)
{
Ni(s) − μ̂C

0 (s;β) exp(β
TZi)

}
dHi(s)

for t ∈ [0, τ ]. Note that as Z̄C , μ̂
C
0 (t;β) is also defined only for t ∈ [0, τ ] with∑n

i=1 hi(t) > 0. For the easy of notation, in the remaining of this subsection,
we assume that w(t) = 1 and it is straightforward to generalize the results
given below to the situation with any other deterministic weight function.

Hu et al. (2003) show that the estimator β̂
C

II defined above is consistent and

the distribution of
√
n(β̂

C

II − β0) can be asymptotically approximated by
the normal distribution with mean zero and the covariance matrix Σ̂C

II =

AC (β̂
C

II)
−1BC(β̂

C

II)A
−1
C (β̂

C

II). Here

AC(β) =
1

n

∂UC
II(β; 1)

∂β

= − 1

n

n∑

i=1

∫ τ

0

I(Ci ≥ t)

{
S
(2)
C (t;β)

S
(0)
C (t;β)

− Z̄C(t;β)
⊗2

}

dÑi(t)

and

BC(β) =
1

n

[
n∑

i=1

∫ τ

0

{Zi − Z̄C(t;β)} dM̂C
i (t;β)

]⊗2

.

Note that the estimation approach described above requires E{ hi(t) } =
p(t) > 0 for t ∈ T . Sometimes this may not hold such as in continuous time
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situations and to apply the approach in this case, a simple way is to discretize
the time scale or perform some grouping.

5.4.2 An Unconditional Estimating Equation Procedure

Now we discuss an unconditional estimating equation approach based on the
processes Ñi(t)’s that is similar to the one described in Sect. 5.3. For this,
we assume that the observation processes H̃i(t)’s follow the proportional rate
model

E{ dH̃i(t)|Zi } = exp(γTZi) dμ̃0(t) , (5.12)

where μ̃0(t) and γ are defined as in model (5.4). It then follows from models
(1.4) and (5.12) that we have

E{ dÑi(t)|Zi } = exp(β̃
T
Zi) dμ̃

∗
0(t) ,

where β̃ = β + γ and μ̃∗
0(t) =

∫ t

0
μ0(s) dμ̃0(s).

To estimate β as well as γ, define

S
(j)
M (t; β̃) =

1

n

n∑

i=1

I(Ci ≥ t)Z⊗j
i exp(β̃

T
Zi)

for j = 0, 1, 2 and Z̄M (t; β̃) = S
(1)
M (t; β̃)

/
S
(0)
M (t; β̃). Then similar to the

estimating function UC
II(β;w), a natural estimating function is given by

UM
II (β̃;w) =

n∑

i=1

∫ τ

0

w(t) I(Ci ≥ t)
{
Zi − Z̄M (t; β̃)

}
dÑi(t) ,

where w(t) is a weight function as before. If we take w(t) = 1 and assume
Ci = τ for all i, then the estimating function above reduces to

UM
II,1(β̃; 1) =

n∑

i=1

Zi

∫ τ

0

Ni(t) dHi(t) −
{

n∑

i=1

Zi exp(β
TZi)

}

×
∫ τ

0

∑n
l=1 Nl(t) dHl(t)

∑n
j=1 exp(βTZj)

.

Let γ̂ denote the estimator defined in Sect. 5.3 based on the function defined

in (5.8) and ˆ̃β the estimator of β̃ given by the solution to the equation
UM
II (β̃;w) = 0 for a given w(t). Then it is natural to estimate β by the

estimator β̂
M

II = ˆ̃β − γ̂.
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To describe the properties of β̂
M

II , again we take w(t) = 1 for the easy
of notation as above. It is straightforward to generalize the results below to
situations with general deterministic weight functions. Let Uγ(γ) be defined
as in Sect. 5.3 based on the function given in (5.8) and define

a11i (β̃,γ) =

∫ τ

0

I(Ci ≥ t)

{
S
(2)
M (t; β̃)

S
(0)
M (t; β̃)

− Z̄M (t; β̃)⊗2

}

dÑi(t) ,

and

a22i (β̃,γ) =

∫ τ

0

I(Ci ≥ t)

{
S
(2)
M (t;γ)

S
(0)
M (t;γ)

− Z̄M (t;γ)⊗2

}

dHi(t)

for i = 1, . . . , n. Also define

M̂M
i (t; β̃) =

∫ t

0

I(Ci ≥ s)
{
dÑi(s) − exp(β̃

T
Zi) d ˆ̃μ

∗
0(s; β̃)

}
,

and

M̂H
i (t;γ) =

∫ t

0

I(Ci ≥ s)
{
dHi(s) − exp(γTZi) d ˆ̃μ0(s;γ)

}
.

In the above, ˆ̃μ∗
0(t; β̃) and ˆ̃μ0(t;γ) denote the estimators of μ̃∗

0(t) and μ̃0(t)
given by (1.10) based on the processes Ñi(t)’s and Hi(t)’s, respectively. Note
that as mentioned before, for both processes, we have recurrent event data.

Hu et al. (2003) show that the estimator β̂
M

II is consistent and the distribu-

tion of
√
n (β̂

M

II − β0) can be asymptotically approximated by the normal
distribution with mean zero and the covariance matrix

Σ̂M
II = (Ip,−Ip)A−1

M (ˆ̃β, γ̂) BM (ˆ̃β, γ̂)A−1
M (ˆ̃β, γ̂) (Ip,−Ip)T .

In the above, Ip denotes the p× p identity matrix,

AM (β̃,γ) =
1

n

∂
(
UM

II,1(β̃; 1)
T , Uγ(γ)

T
)T

∂(β̃,γ)
= − 1

n

n∑

i=1

diag

(
a11
i (β̃,γ), a22

i (β̃,γ)

)
,

and

BM (β̃,γ) =
1

n

n∑

i=1

[∫ τ

0 {Zi − Z̄M (t; β̃)} dM̂M
i (t; β̃)∫ τ

0
{Zi − Z̄M (t;γ)} dM̂H

i (t;γ)

]⊗2

.
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5.4.3 Discussion

Given the three estimating equation-based estimators of the regression
parameter β described above, a natural question is how different they are.
It is clear that each has its own advantages and disadvantages and one
basic difference among them is how the observation process is treated. The

estimator β̂
C

II does not require the modeling of the observation process,

while the estimators β̂I and β̂
M

II do need one to specify some models for

the observation process. Also β̂
C

II does not require the knowledge of the
follow-up times Ci’s, while the other two estimators need the values of the
Ci’s. In consequence, the former estimator is readily applicable to situations
with time-dependent covariates. In contrast, the latter two, if extended to
time-dependent covariate cases, need the values of the covariate processes

Zi(t)’s at all observation time points. On the other hand, β̂
C

II can be applied
only to the situation where E{ hi(t) } > 0 for t in at least a finite time point

set, but β̂I and β̂
M

II do not have the same restriction.
Another basic difference among the three estimators is their constructions.

The estimator β̂I is derived based on the summary statistic
∫
Ni(t) dHi(t),

while the estimators β̂
C

II and β̂
M

II are derived based on the processes Ñi(t)’s.
The former estimator is relatively simple and easy to be determined and
allows one to model the effect of covariates on the follow-up times Ci’s, but
the latter two estimators are expected to be more efficient. The estimator

β̂
C

II has another restriction in that for its asymptotic properties described
above to be valid, the distribution, say G(t), of the follow-up times Ci’s has
to satisfy limt↑τ G(t) < 1. That is, G(t) has a mass at the maximum time
point τ . To deal with this in practice, one could artificially choose a finite
time point that is close to but smaller than the maximum of all follow-up
times, and use the point to approximate the follow-up times beyond it or set
τ equal to this point.

Note that all three estimators discussed above are derived under the pro-
portional mean model (1.4). Of course, this model assumption may not hold
in practice and to deal with this, one way is to develop and apply some
model checking techniques as discussed in the next section. Another way is
to consider a more general model. Actually, the proposed methods, with little
modification, apply to the situation in which the conditional mean function
of Ni(t) has the form

E
{
Ni(t)

∣
∣Zi

}
= μ0(t)φ(β;Zi) , (5.13)

where φ is a known and positive function. It is apparent that the model above
includes model (1.4) as a special case. In the next section, we consider another
general class of models for E

{
Ni(t)

∣
∣Zi

}
. With respect to generalization, one

could also generalize model (5.12) to
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E
{
dH̃i(t)

∣
∣Zi

}
= ψ(γ;Zi) dμ̃0(t) (5.14)

and show that the estimation approaches above with little modification are
valid under models (5.13) and (5.14). In the above, as φ, ψ is also a known
and positive function.

For both estimators β̂
C

II and β̂
M

II , one issue of practical interest that has
not been discussed is how to choose an appropriate weight function w(t) or
the optimal weight function for a given set of panel count data. As in many
cases, this is not an easy problem and also it is apparent that the weight
function may not necessarily have to be deterministic. Related to this, one
could also consider to add some weight functions to the estimating functions
Uγ(γ) and Uτ (τ ) defined based on (5.8) and (5.9), respectively. In this case,
it is similar and straightforward to derive some estimators of β and establish
their asymptotic properties as above.

5.5 Analysis with Semiparametric Transformation
Models

This section discusses the same problem as in the preceding sections. How-
ever, instead of using model (1.4) to describe the effects of covariates on
the recurrent event process of interest, we now consider a class of semipara-
metric transformation models. As mentioned above, the proportional mean
model implies that the mean functions associated with any two sets of co-
variate values are proportional over time, which may be too restrictive in
practice (Lin et al., 2001). To relax this, a new class of semiparametric trans-
formation models is first presented in the following. They include model (1.4)
as a special case. For estimation of regression parameters, as in the previous
sections, a class of estimating equation-based estimators are derived. In addi-
tion, a procedure is given for testing the goodness-of-fit of the semiparametric
transformation model and followed by some discussions.

5.5.1 Assumptions and Models

Consider a recurrent event study that yields panel count data and let the
Ni(t)’s, ti,j ’s, ni,j ’s, sl’s, H̃i(t)’s, Hi(t)’s and Ci’s be defined as in Sect. 5.4.
Then similarly as in Sect. 5.4, the observed data are given by independent and
identically distributed {Hi(t), Ni(t)dHi(t), Ci,Zi(t) ; t ≥ 0 , i = 1, . . . , n }
or have the form

{ ( ti,j, ni,j , Ci,Zi(t) ) ; j = 1, . . . ,mi, i = 1, . . . , n } .

Note that here we assume that the covariates Zi(t)’s may be time-dependent.
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To characterize the relationship between the recurrent event process Ni(t)
of interest and the covariate process Zi(t), we assume that given Zi(t), the
conditional mean function of Ni(t) has the form

E{Ni(t)|Zi(t) } = g{μ0(t) exp(β
TZi(t)) } . (5.15)

In the above, g(·) is a known twice continuously differentiable and strictly
increasing function, and μ0(t) and β are defined as in model (1.4), an unspec-
ified smooth function of t and the vector of unknown regression parameters,
respectively.

Model (5.15) is often referred to as the semiparametric transformation
model (Lin et al., 2001) and includes many commonly used models as special
cases. For example, it gives model (1.4) with g(x) = x. If taking g to be the
commonly referred Box-Cox transformation, we have

E{Ni(t)|Zi(t) } =
[μ0(t) exp{βTZi(t) } + 1 ]ρ − 1

ρ
,

where ρ is a constant. In particular, by letting ρ = 0, the model above gives

E{Ni(t)|Zi(t) } = log
[
μ0(t) exp{βTZi(t)} + 1

]
.

Among others, Lin et al. (2001) investigate model (5.15) for regression anal-
ysis of recurrent event data.

To estimate the regression parameter β in model (5.15), we adopt the
unconditional approach used in Sect. 5.4.2. For this, we assume that the ob-
servation processes H̃i(t)’s are non-homogeneous Poisson processes following
the proportional rate model

E{ dH̃i(t)|Zi(t) } = exp{γTZi(t)} dμ̃0(t) , (5.16)

i = 1, . . . , n. In the above, both γ and μ̃0(t) are defined as in model (5.12)
and it is obvious that models (5.12) and (5.16) are same if the Zi(t)’s are
time-independent. In the next subsection, a class of estimators is derived for
estimation of both β and γ.

5.5.2 Estimation Procedure

To derive the estimation procedure for regression parameters β and γ, define
Yi(t) = I(Ci ≥ t) and

Mi(t;β,γ) =

∫ t

0

Yi(u)Ni(u) dHi(u) −
∫ t

0

g{μ0(u) exp(β
TZi(u))}

× Yi(u) exp{γTZi(u)} dμ̃0(u) , (5.17)
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i = 1, . . . , n. Note that under models (5.15) and (5.16), one can easily show
that

E {Yi(t)Ni(t) dHi(t) } = E [E{ Yi(t)Ni(t) dHi(t)|Zi(t)} ]

= E
[
Yi(t) g

{
μ0(t) exp(β

TZi(t))
}

exp{γTZi(t)} dμ̃0(t)
]
.

It then follows that we have E{Mi(t;β,γ) } = 0. That is, the Mi(t;β,γ)’s
are zero-mean stochastic processes. This suggests that if β, γ and μ̃0(t) are
known, one can estimate μ0(t) by the solution to

n∑

i=1

dMi(t;β,γ) =
n∑

i=1

[
Yi(t)Ni(t)dHi(t)

− Yi(t)g
{
μ0(t) exp(β

TZi(t))
}
exp{γTZi(t)}dμ̃0(t)

]
= 0 (5.18)

for 0 ≤ t ≤ τ . For estimation of β, define

UT (β,γ) =

n∑

i=1

∫ τ

0

W (t)Zi(t) dMi(t;β,γ) =

n∑

i=1

∫ τ

0

W (t)Zi(t)

×
[
Yi(t)Ni(t) dHi(t)− Yi(t) g

{
μ0(t) exp(β

TZi(t))
}

exp{γTZi(t)} dμ̃0(t)
]
,

(5.19)

where W (t) is a possibly data-dependent weight function. Then it is easy to
show that E{UT (β,γ)} = 0, which suggests that one can estimate β by
using the estimating equation UT (β,γ) = 0 given γ.

Note that in general, γ and μ̃0(t) are unknown, but we do have recurrent
event data on the H̃i(t)’s as mentioned before. Thus one can estimate γ by
the consistent estimator given by the solution, say γ̂T , to the estimating
equation

n∑

i=1

∫ τ

0

{
Zi(t) − Z̄(t;γ)

}
Yi(t) dHi(t) = 0 (5.20)

(Andersen et al., 1993; Cook and Lawless, 2007). In the above, Z̄(t;γ) =
S1(t;γ)/S0(t;γ) with

Sk(t;γ) =
1

n

n∑

i=1

Yi(t)Z
k
i (t) exp{γTZi(t)} ,

k = 0, 1. Furthermore, μ̃0(t) can be estimated by

ˆ̃μ0(t;γ) =

n∑

i=1

∫ t

0

Yi(u) dHi(u)

nS0(u;γ)
(5.21)

with replacing γ by γ̂T .
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Given γ̂T and ˆ̃μ0(t;γ), define the estimators, denoted by β̂T and μ̂0(t),
of β and μ0(t) to be the solutions to the estimating equations UT (β,γ) = 0
and (5.18) with replacing γ and μ̃0(t) by γ̂T and ˆ̃μ0(t; γ̂T ), respectively.

Li et al. (2010) show that for large n, both β̂T and μ̂0(t) always exist and
are unique and consistent. To describe the asymptotic distribution, define
M̂i(t) to be Mi(t;β,γ) defined in (5.17) with all unknown parameters and
functions replaced by their estimators,

M̂∗
i (t) =

∫ t

0

Yi(u) dHi(u) −
∫ t

0

Yi(u) exp{γ̂T
TZi(u)} d ˆ̃μ0(u; γ̂T ) ,

ÊZ(t) =

∑n
i=1 Yi(t)Zi(t)ġ{μ̂0(t) exp(β̂

T

TZi(t))} exp{β̂
T

TZ(t) + γ̂T
TZi(t)}

∑n
i=1 Yi(t) ġ{μ̂0(t) exp(β̂

T

TZi(t))} exp{β̂
T

TZ(t) + γ̂T
TZi(t)}

,

R̂(t) =
1

n

n∑

i=1

{
Zi(t)− ÊZ(t)

}
Yi(t)g

{
μ̂0(t) exp(β̂

T

TZ(t))
}
exp{γ̂T

TZi(t)} ,

D̂ =
1

n

n∑

i=1

∫ τ

0

{
Zi(t) − Z̄(t; γ̂T )

}⊗2
Yi(t) dHi(t) ,

and

P̂ =
1

n

n∑

i=1

∫ τ

0

W (t)Yi(t) g
{
μ̂0(t) exp(β̂

T

TZ(t))
}

exp{γ̂T
TZi(t)}

×
{
Zi(t) − ÊZ(t)

} {
Zi(t) − Z̄(t; γ̂T )

}T
d ˆ̃μ0(t; γ̂T ) .

In the above, ġ(t) = dg(t)/dt. Li et al. (2010) show that as n → ∞,

n1/2(β̂T − β0) asymptotically follows a multivariate normal distribution with
mean zero and the covariance matrix that can be consistently estimated by
Σ̂T = A−1

T BT A
−1
T . Here

AT =
1

n

n∑

i=1

∫ τ

0

W (t)Yi(t) ġ
{
μ̂0(t) exp(β̂

T

TZ(t))
} {

Zi(t) − ÊZ(t)
}⊗2

× exp
{
β̂
T

TZ(t) + γ̂T
TZi(t)

}
μ̂0(t) d ˆ̃μ0(t; γ̂T ) ,

and

BT =
1

n

n∑

i=1

[∫ τ

0

W (t)
{
Zi(t) − ÊZ(t)

}
dM̂i(t) −

∫ τ

0

W (t)R̂(t)

S0(t; γ̂T )
dM̂∗

i (t)

− P̂ D̂−1

∫ τ

0

{
Zi(t) − Z̄(t; γ̂T )

}
dM̂∗

i (t)

]⊗2

.
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5.5.3 Determination of Estimators

This subsection discusses the determination of the estimators β̂T and μ̂0(t)
described in the previous subsection. For the determination of γ̂T and
ˆ̃μ0(t;γ), the readers are referred to Cook and Lawless (2007) among others.
Let s1 < s2 < . . . < sm denote the distinct ordered observation times
of { ti,j ; j = 1, . . . ,mi, i = 1, . . . , n }. Then at time sj , Eq. (5.18) can be
rewritten as

n∑

i=1

mi∑

l=1

Ni(ti,l) I(ti, l = sj) −
n∑

i=1

g
{
μ0(sj) exp(β

TZi(sj))
}
Yi(sj)

× exp
{
γTZi(sj)

}
dμ0(sj) = 0 ,

j = 1, . . . ,m. Let μ̂0(t;β,γ) denote the solution to the equation above for
given β and γ. Then by replacing γ and μ0(t) with the estimators γ̂T and
μ̂0(t;β, γ̂T ), respectively, the estimating equation UT (β;γ) = 0 has the form

n∑

i=1

mi∑

l=1

W (ti,l)Zi(ti,l)Ni(ti,l) −
m∑

j=1

W (sj)
n∑

i=1

Zi(sj)

× g
{
μ̂0(sj ;β, γ̂T ) exp(β

TZi(sj))
}
Yi(sj) exp

{
γ̂T
TZi(sj)

}
d ˆ̃μ0(sj ; γ̂T ) = 0 .

It is apparent that once β̂T is obtained, we have μ̂0(t) = μ̂0(t; β̂T , γ̂T ).
Note that for a given data set, the estimator μ̂0(t) obtained above may not
be a non-decreasing function sometimes. In this case, one simple approach
is to apply some justification such as defining the estimator at time t as
max { μ̂0(s) ; 0 ≤ s ≤ t }.

In general, there are no closed forms for β̂T and μ̂0(t;β,γ) and some it-
erative algorithms have to be used to solve the equations above. Hence the
computation for the determination of these estimators could be slow, espe-
cially in simulation. The same is true for the determination of the estimated
covariance matrix due to its complexity although it does have a closed form.

On the other hand, for some special situations, the estimators β̂T and
μ̂0(t;β,γ) do have closed forms and thus their determination is straightfor-
ward. For example, assume g(t) = tη, where η is a positive constant. In this
case, we have

g{μ̂0(t;β,γ)} =

∑n
i=1 Yi(t)Ni(t) dHi(t)

∑n
i=1 g{exp(β

TZi(t))} Yi(t) exp{γTZi(t)}
1

dμ̃0(t)
.

That is, μ̂0(t;β,γ) has an explicit expression. Also in this situation,
UT (β; γ̂T ) = 0 becomes

n∑

i=1

∫ τ

0

W (t)
{
Zi(t) − Z̄(t;β, γ̂T )

}
Yi(t)Ni(t) dHi(t) = 0 ,
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where

Z̄(t;β, γ̂T ) =

∑n
i=1 Zi(t)g{exp(βTZi(t))} Yi(t) exp{γ̂T

TZi(t)}
∑n

i=1 g{exp(β
TZi(t))} Yi(t) exp{γ̂T

TZi(t)}
.

Another special case where the determination of β̂T and μ̂0(t;β,γ) is
straightforward is when g(t) = log(t). In this case, the estimator μ̂0(t;β,γ)
also has a closed form that can be obtained by

g{μ̂0(t;β,γ)} =

∑n
i=1 Yi(t)Ni(t) dHi(t)∑n

i=1 Yi(t) exp{γTZi(t)}
1

dμ0(t)

−
∑n

i=1 g{exp(β
TZi(t))} Yi(t) exp{γTZi(t)}∑n

i=1 Yi(t) exp{γTZi(t)}
.

For β̂T , we have

UT (β; γ̂T ) =
n∑

i=1

∫ τ

0

W (t)
{
Zi(t) − Z̄(t; γ̂T )

}
Yi(t)

[
Ni(t) dHi(t)

−βTZi(t) exp
{
γ̂T
TZi(t)

}
d ˆ̃μ0(t; γ̂T )

]
,

where Z̄(t;γ) is the same as defined in the previous subsection. This yields

β̂T =

[ n∑

i=1

∫ τ

0

W (t)
{
Zi(t)− Z̄(t; γ̂T )

}
ZT

i (t)Yi(t)e
γ̂T

TZi(t)d ˆ̃μ0(t; γ̂T )

]−1

×
n∑

i=1

∫ τ

0

W (t)
{
Zi(t) − Z̄(t; γ̂T )

}
Yi(t)Ni(t) dHi(t) .

That is, β̂T has a closed form too.

For the determination of β̂T and μ̂0(t) for a given data set, another issue
is to choose or specify the function g in model (5.15). As seen above, this
can have large effects on the determination. As with the same topic in other
fields such as longitudinal data analysis (Lin et al., 2001) and failure time
data analysis (Zhang et al., 2005), the selection of an appropriate g is a very
difficult issue in general. A common strategy is to try several choices and
compare the obtained estimation results. Similarly as with the selection of g,
one also needs to choose the weight function W (t) and it does not seem to
exist an established procedure in the literature for this. A practical approach
again is to try different choices and compare the results.
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5.5.4 A Goodness-of-Fit Test

As with model (1.4), a natural question about model (5.15) is to assess its
adequacy with a given g. To address this, we now describe a goodness-of-fit
test procedure. Note that of course, one could ask the same question about
model (5.16) and for that, the readers are referred to Cook and Lawless (2007)
and Lin et al. (2000).

To present the test procedure, let the M̂i(t)’s, M̂
∗
i (t)’s, W (t), ÊZ(t), R̂(t),

D̂, P̂ and AT be defined as in Sect. 5.5.2. Motivated by the idea used in Sun
et al. (2007a), we consider the following cumulative sum of residuals process

F(t, z) = n−1/2
n∑

i=1

∫ t

0

I{Zi(u) ≤ z} dM̂i(u) . (5.22)

In the above, I{Zi(u) ≤ z} means that each component of Zi is not larger
than the corresponding component of z. Note that under model (5.15), the
process F(t, z) is expected to fluctuate randomly around zero. Hence it is
natural to construct a goodness-of-fit test based on the supremum statistic
supt,z |F(t, z)|.

To employ the statistic supt,z |F(t, z)|, one needs to know its distribution,
which is usually difficult to derive. For this, we use the following approxima-
tion for the determination of the p-value for the goodness-of-fit test. Define

Ψ̂i(t, z) =

∫ t

0

{
I(Zi(u) ≤ z)− Φ̄(u, z)

}
dM̂i(u)−

∫ t

0

S(u, z)

S0(u; γ̂T )
dM̂∗

i (u)

−Υ̂T
1 (t, z)A−1

T

[∫ τ

0

W (u)
{
Zi(u)− ÊZ(u)

}
dM̂i(u)−

∫ τ

0

W (u)R̂(u)

S0(u; γ̂T )
dM̂∗

i (u)

−P̂ D̂−1

∫ τ

0

{
Zi(u)− Z̄(u; γ̂T )

}
dM̂∗

i (u)

]

− Υ̂T
2 (t, z) D̂−1

∫ τ

0

{
Zi(u)− Z̄(u; γ̂T )

}
dM̂∗

i (u) ,

where

Φ̄(u, z) =

∑n
i=1 I(Zi(u) ≤ z)Yi(u)ġ

{
μ̂0(u)e

ˆβ
T

TZi(u)
}
e
ˆβ

T

TZi(u)+γ̂T

TZi(u)

∑n
i=1 Yi(u)ġ

{
μ̂0(u)e

ˆβ
T

T
Zi(u)

}
e
ˆβ

T

T
Zi(u)+γ̂T

T
Zi(u)

,

S(u, z)=
1

n

n∑

i=1

I(Zi(u)≤z)Yi(u) g
{
μ̂0(u) exp(β̂

T

TZi(u))
}
exp

{
γ̂T
TZi(u)

}
,

Υ̂1(t, z) =
1

n

n∑

i=1

∫ t

0

I(Zi(u) ≤ z)Yi(u) g
{
μ̂0(u) exp(β̂

T

TZi(u))
}

×
{
Zi(u)− ÊZ(u)

}
exp

{
β̂
T

TZi(u) + γ̂
T
TZi(u)

}
μ̂0(u) d ˆ̃μ0(u; γ̂T ) ,
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and

Υ̂2(t, z) =
1

n

n∑

i=1

∫ t

0

{
I(Zi(u) ≤ z)− Φ̄(u, z)

}
Yi(u)g

{
μ̂0(u) exp(β̂

T

TZi(u))
}

× exp
{
γ̂T
TZi(u)

} {
Zi(u)− Z̄(u; γ̂T )

}
d ˆ̃μ0(u; γ̂T ) .

Then by following the arguments similar to those used in Lin et al. (2000),
one can show that the null distribution of F(t, z) can be approximated by
the zero-mean Gaussian process

F̃ (t, z) = n−1/2
n∑

i=1

Ψ̂i(t, z) .

Furthermore, one can approximate the distribution of F̃ (t, z) by the zero-
mean Gaussian process

F̂(t, z) = n−1/2
n∑

i=1

Ψ̂i(t, z)Gi ,

where (G1, . . . , Gn) are a simple random sample of size n from the stan-
dard normal distribution independent of the observed data. This suggests
that the p-value can be obtained by comparing the observed value of
sup0≤t≤τ,z |F(t, z)| to a large number of realizations of sup0≤t≤τ,z |F̂(t, z)|
given by repeatedly generating the standard normal random sample
(G1, . . . , Gn) while fixing the observation data. As a graphical tool, one
could also plot F(t, z) along with a few realizations of F̂(t, z), and an
unusual pattern of F(t, z) would suggest a lack-of-fit of model (5.15).

5.6 Analysis of National Cooperative Gallstone Study

In this section, we illustrate the regression analysis procedures discussed in
the previous sections by applying them to the gallstone data described in
Sect. 1.2.2 and analyzed in Sect. 4.4.1. As discussed before, the study yielding
the data concerns the effects of the use of the natural bile acid chenodeoxy-
cholic acid, cheno, on the dissolution of cholesterol gallstones. The observed
data include the incidences of digestive symptoms commonly associated with
the gallstone disease and in particular, the incidence of nausea. More specifi-
cally, on the occurrences of nausea, the observed information is given by the
form of panel count data. For the analysis, as before, we focus on the data
given in the data set I of Chap. 9 from the 113 patients in the placebo and
high dose groups during the first 52 weeks of the follow-up.
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To perform the regression analysis, let Ni(t) denote the underlying re-
current event process controlling the occurrence of nausea for subject i,
i = 1, . . . , 113. Define Zi = 0 if subject i was in the placebo group and 1
otherwise. To estimate the effect of treatment cheno on the occurrence of nau-
sea, first we assume that the Ni(t)’s are non-homogeneous Poisson processes
satisfying the proportional mean model (1.4). The application of the pseudo-

likelihood estimation procedure described in Sect. 5.2 gives β̂L = −0.533
with the estimated standard error of 0.543 based on 200 bootstrap samples.
This corresponds to the p-value of 0.326 for testing no treatment effect on
the occurrence of nausea. The result suggests that the treatment cheno did
not seem to have a significant effect in reducing the occurrence rate of nausea
for the floating gallstone patients.
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Fig. 5.1. Estimated mean functions of the occurrence processes of nausea under
model (5.15) with g(t) = log(t)

As discussed before, the pseudo-likelihood estimation procedure used
above relies on the Poisson process assumption, which may not hold. To avoid
this, consider the estimation procedures given in Sect. 5.4, which do not re-
quire the assumption but still assume that the Ni(t)’s follow the proportional
mean model (1.4). First we apply the conditional estimation procedure and

obtain β̂C
II = −0.419 with the estimated standard error being 0.537, yield-

ing the p-value of 0.540 for testing no treatment effect. The application of
the unconditional estimation procedure gives β̂M

II = −0.527 and the esti-
mated standard error of 0.628. This result gives the same conclusion as the
conditional estimation procedure as well as the pseudo-likelihood estimation
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procedure. Together with the result above, we also obtain γ̂ = −0.024 with
the estimated standard error of 0.040 for model (5.12). This indicates that
the treatment also did not seem to have any significant effect on the patient’s
visiting process.

Table 5.1. Estimated treatment effects and p-values

Link function β̂T SE(β̂T ) p-value p-value
for β = 0 for model-checking

g(t) = t −0.527 0.533 0.323 0.445
g(t) = t2 −0.263 0.266 0.323 0.077
g(t) = log(t) −1.276 1.419 0.368 0.572

Now we consider the application of the estimation procedure derived based
on the semiparametric transformation model (5.15). For this, note that it is
easy to see from Figs. 3.2 and 3.4 that the proportional mean model (1.4)
could be questionable. Thus it is natural to consider model (5.15). Table 5.1

presents the results obtained on the estimator β̂T based on three different link
functions, g(t) = t, t2 and log(t), respectively. In additional to β̂T , the table
also gives the corresponding estimated standard errors (SE), the p-values for
testing β = 0 in model (5.15), and the p-values given by the goodness-of-fit
test described in Sect. 5.5.4 for testing the adequacy of model (5.15). One can
see that overall the results are similar to those obtained above and indicate
that there is no significant difference between the occurrence rates of nausea
for the patients in the two treatment groups. It is interesting to note that
the semiparametric transformation model (5.15) with either g(t) = t or
g(t) = log(t) seems to be a better or more appropriate choice than that with
g(t) = t2. To give a graphical idea about the estimated treatment effect,
Fig. 5.1 presents the estimated mean functions of the occurrence processes of
nausea for the two groups under model (5.15) with g(t) = log(t).

For the application of the estimation procedures given in Sect. 5.3, note
that they require centered covariates. For this, we redefine Zi = −65/113
for the patients in the placebo group and 48/113 otherwise. For the analysis,
we first consider the fitting of model (5.5) and it gives τ̂ = −0.161 with the
estimated standard error being 0.153. This suggests that one should employ
the estimation procedure described in Sect. 5.3.3, which yields β̂I,1 = −0.409
with the estimated standard error of 0.559. The result again indicates that
the treatment cheno did not have significant effects on the occurrence process
of nausea.
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5.7 Bibliography, Discussion, and Remarks

As mentioned before, there exists a great deal of literature on regression
analysis of simple count data and recurrent event data (Andersen et al. 1993;
Cook and Lawless 2007; Lawless 1987a; Vermunt 1997). In comparison, only
limited literature exists for regression analysis of panel count data, which
can be regarded as dependent count data arising from point processes. For
regression analysis of panel count data, the existing methods can be gen-
erally classified into two types. One is likelihood-based approaches such as
those described in Chap. 2 and Sect. 5.2 and the other is estimating equation-
based approaches such as those discussed in Sects. 5.3–5.5. For the former,
some Poisson-type assumptions are usually needed although they may not
be realistic sometimes. Note that as pointed out before, an alternative to
these two types procedures is to regard panel count data as longitudinal data
and apply the existing methods for regression analysis of longitudinal data
(Diggle et al., 1994; Sun, 2010). However, it is easy to see that the use of
these methods would not take into account the special structure of panel
count data. More importantly, they may not provide direct answers to the
questions that are only of interest for recurrent event processes.

In addition to those mentioned above, other authors who have investigated
regression analysis of panel count data include Cheng and Wei (2000), Cheng
et al. (2011), He (2007), Lawless and Zhan (1998), Lu et al. (2009), Nielsen
and Dean (2008), Staniswalls et al. (1997), Sun and Matthews (1997), and
Wellner et al. (2004). In particular, Sun and Matthews (1997) discussed a
situation where the irregular and real observation process can be described
by a constant or fixed process plus some random effects. Lawless and Zhan
(1998) studied the proportional rate model and suggested to approximate
the baseline rate function by a piecewise constant rate function. For estima-
tion, they gave a Poisson-based likelihood procedure and a GEE-based robust
procedure.

Also Cheng andWei (2000) developed an estimator similar to the estimator

β̂
M

II for β in model (1.4) while assuming that γ = 0 in model (5.12). More
specifically, they defined their estimator using the estimating function

n∑

i=1

∫ τ

0

w(t) I(Ci ≥ t)Zi(t) d

[

Ñi(t) −
∫ t

0

exp
{
βTZi(s)

}
d ˆ̃μ∗

0(s;β)

]

with time-dependent covariates. In contrast to the methods described above,
Lu et al. (2009), Nielsen and Dean (2008) and Staniswalls et al. (1997) gave
some methods that employ some smoothing techniques along with Poisson
process-related assumptions. In particular, Lu et al. (2009) used monotone
B-splines to approximate the baseline mean function in the proportional mean
model, while Nielsen and Dean (2008) modeled smooth intensity functions
by penalized splines.
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With respect to the comparison of Poisson or likelihood-based methods
and estimating equation-based procedures, as discussed before, the former
could be much more complicated than the latter. This is partly because the
former involves estimation of an unknown baseline function. On the other
hand, it is clear that the former could be more efficient than the latter if
the Poisson process-related assumption is valid. Of course, in practice, it
may be difficult to check or verify this assumption without prior information.
Another advantage of the estimating equation-based procedures is that they
give closed-form estimation of the variance.

An issue that is similar to the appropriateness of Poisson process-related
assumptions is the adequacy of model (1.4) or (5.15). For this, one could
apply the goodness-of-fit test given in Sect. 5.5. However, the selection of
an appropriate or the optimal link function g in model (5.15) is generally
difficult as commented above. Also one may ask the sensitivity of estimation
results to the selection of the function g and in general, the estimated effects
of covariates could be biased if there is model misspecification. For this, in
addition to applying model checking procedures as mentioned above, another
method is to develop robust estimation procedures. But of course, in general,
the robust estimators could be less efficient.
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Regression Analysis of Panel Count
Data II

6.1 Introduction

This chapter discusses the same problem as in the previous chapter, but under
different situations. A basic assumption behind the methods described in the
last chapter is that the underlying recurrent event process of interest and the
observation process are independent of each other conditional on covariates.
As pointed out before, sometimes this assumption may not hold. In other
words, the observation process may depend on or contain relevant information
about the recurrent event process. In a study on the occurrence of asthma
attacks, for example, the observations on or clinical visits of asthma patients
may be related to or driven by the numbers of the asthma attacks before the
visits. The same can occur for similar recurrent event studies such as these on
some disease infections or tumor development. In these situations, it is clear
that the methods given in Chap. 5 are not valid as they would lead to biased
estimation or wrong conclusions. The data arising from these cases are often
referred to as panel count data with informative or dependent observation
processes.

For regression analysis of panel count data with dependent observation
processes, in the following, we first describe a simple joint modeling procedure
in Sect. 6.2. The method allows all three processes, the underlying recurrent
event process of interest, the observation process and the follow-up process, to
be correlated with each other even conditional on covariates. The assumption
behind the approach is that their relationship can be characterized through
some latent variables. A three-step procedure involving the use of the EM
algorithm is given for estimation of all involved parameters. A drawback
of the procedure is that it may not be robust to the specified relationship.
To address this, Sect. 6.3 considers a class of much more general models for
the relationship and gives a robust inference procedure for estimation of the
effects of covariates.

In both Sects. 6.2 and 6.3, it is assumed that the effects of covariates on the
underlying recurrent event process of interest can be described by the propor-

J. Sun and X. Zhao, Statistical Analysis of Panel Count Data, Statistics
for Biology and Health 80, DOI 10.1007/978-1-4614-8715-9 6,
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tional mean model. As discussed in Sect. 5.5, the model could be restrictive
in practice. Corresponding to this, Sect. 6.4 generalizes the semiparametric
transformation model (5.15) to allow the dependence between the recurrent
event process and the observation process. The new model is a conditional one
and assumes that the occurrence rate of the recurrent events of interest may
depend on the observation process. For estimation of regression parameters,
an estimating equation approach is described.

In all of the previous discussions, it has been assumed that the censoring
or follow-up time can be either independent of or related to the underlying
recurrent event process of interest. For both cases, the implication is that
the recurrent events of interest can continue to occur after the follow-up
time although not observable. On the other hand, sometimes the follow-up
may be determined by some event whose occurrence stops or terminates
the occurrence of future recurrent events of interest. A simple example of
such events is death and they are often referred to as terminal events. For
example, tumors would not develop after death. In the presence of terminal
events, an important issue arises if the terminal event is correlated with the
recurrent events of interest as well as the observation process. Section 6.5
investigates this situation in more details and discusses how to conduct valid
inference about covariate effects. Section 6.6 gives some bibliographical notes
and discusses some issues not discussed in the previous sections.

6.2 Analysis by a Joint Modeling Procedure

As mentioned above, this section discusses a simple joint modeling approach
for regression analysis of panel count data with dependent observation pro-
cesses. The basic idea behind the approach, borrowed from longitudinal and
failure time data analysis, is to employ some shared frailty models. In the
following, we first discuss the assumptions and models needed for the ap-
proach. A three-step estimation procedure is then presented for estimation
of all concerned parameters and followed by some remarks and discussion.

6.2.1 Assumptions and Models

Consider a recurrent event study that consists of n independent subjects and
yields only panel count data. As in the previous chapters, let the Ni(t)’s
and H̃i(t)’s denote the underlying recurrent event processes of interest and
observation processes, respectively. Specifically, Ni(t) represents the number
of occurrences of the recurrent event of interest up to time t for subject i,
and H̃i(t) is a counting process with jumps at ti,1 < ti,2 < . . ., the potential
observation times on Ni(t). Also as before, suppose that for subject i, there
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exists a vector of covariates denoted by Zi, whose effects on the Ni(t)’s are
of main interest.

Furthermore, assume that there exist two follow-up times C∗
i and τi and

one only observes Ci = min(C∗
i , τi) and δi = I(Ci = C∗

i ). Here it is assumed
that C∗

i may be related to Ni(t) and H̃i(t), but τi is independent of them.
Define Hi(t) = H̃i{min(t, Ci)} =

∑mi

j=1 I(ti,j ≤ t), representing the real

observation process on subject i, where mi = H̃i(Ci) as before, i = 1, . . . , n.
Then Ni(t) is observed only at the time points where Hi(t) jumps and the
observed data consist of the independent and identically distributed

{Hi(t), Ni(t) dHi(t), Ci, δi,Zi ; t ≥ 0 , i = 1, . . . , n } . (6.1)

To describe the possible effects of covariates on Ni(t), H̃i(t) and C∗
i and

the relationship among the three processes or variables, we assume that there
exist two independent latent variables ui and vi and givenZi, ui and vi,Ni(t),
H̃i(t) and C∗

i are independent. Also it is assumed that given Zi, ui and vi,
Ni(t) follows the proportional mean model

E{Ni(t)|Zi, ui, vi } = μ0(t) exp(β
T
1Zi + β2ui + β3vi) . (6.2)

Here as before, μ0(t) is a completely unknown continuous baseline mean
function and β1, β2 and β3 are unknown regression parameters. For H̃i(t)
and C∗

i , it is supposed that given Zi, ui and vi, H̃i(t) is a non-homogeneous
Poisson process with the intensity function

λih(t) = λ0h(t) exp(α
T
1 Zi + ui) , (6.3)

and the hazard function of C∗
i has the form

λic(t) = λ0c(t) exp(γ
T
1Zi + γ2ui + vi) . (6.4)

In the above, λ0h(t) is a completely unknown continuous baseline intensity
function, λ0c(t) denotes an unknown baseline hazard function, and α1, γ1

and γ2 are unknown regression parameters.
Under the models above, it is easy to see that the relationship between the

recurrent event process of interest Ni(t) and the observation process H̃i(t)
is represented by the regression parameter β2. A positive β2 means that the
two are positively correlated and they are negatively correlated if β2 < 0.
Similarly β3 characterizes the relationship between Ni(t) and the follow-up
process defined by C∗

i , while the parameter γ2 represents the relationship
between the observation process and the follow-up process. If β2 = β3 =
γ2 = 0, the three processes are independent given covariates. The parameters
β1,α1 and γ1 represent the effects of covariates on each of the three processes,
respectively, after adjusting for their correlation among the three processes.

As discussed before, there exists a great deal of research in the literature
on the type of model (6.2) and the same is true on both models (6.3) and
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(6.4) as well as their special cases. For example, Huang and Wang (2004) give
a model similar to model (6.3) for regression analysis of recurrent event data,
and model (6.3) reduces to model (1.8) if ui = 0. Model (6.4) without the
latent variables gives the PH model (5.5) and a number of methods have been
developed for model (6.4) with γ2 = 0. Also in the case of ui = vi = 0 for
all i, models (6.2)–(6.4) reduce to models (1.4), (5.4) and (5.5), respectively.
In other words, models (6.2)–(6.4) can be regarded as generalizations of the
models discussed in Sect. 5.3 as well as Sect. 5.4.

In the following, we discuss joint analysis of all three models together
with the focus on estimation of regression parameters β1, α1 and γ1. Let

Λ0h(t) =
∫ t

0 λ0h(s) ds. For the parameter identifiability, we assume that
Λ0h(τ) = 1 and E(ui|Zi) = E(ui), where τ denotes the length of study.
Also for simplicity, we assume that vi ∼ N(0, σ2), where σ2 is an unknown
parameter. The procedure given below still applies for other distributional
assumptions on the vi’s.

6.2.2 Estimation of Parameters

Now we consider estimation of regression parameters β1, α1 and γ1 as well as
other parameters. For this, we describe a three-step procedure, proposed by
He et al. (2009), which is basically a combination of three existing estimation
procedures for models (6.2)–(6.4), respectively. For i = 1, . . . , n, let Z1i =
(ZT

i , ui)
T , Z2i = (ZT

i , ui, vi)
T , β = (βT

1 , β2, β3)
T , α = (αT

1 , 1, 0)
T , and

γ = (γT
1 , γ2)

T . The estimation procedure consists of the following three
steps.

6.2.2.1 Step 1: Estimation of the Parameters in Model (6.3)

First we consider estimation about model (6.3). As in the previous chapters,
let the sl’s denote the ordered and distinct time points of all the observation
times { ti,j }, dl the number of the observation times equal to sl, and nl the
number of the observation times satisfying ti,j ≤ sl ≤ Ci among all subjects.

Define Z3i = (ZT
i , 1)

T , α∗ = (αT
1 , α2)

T = (αT
1 , E(ui))

T . To estimate the
parameters in model (6.3), note that we have recurrent event data on the
model and hence some estimation procedures for recurrent event data can be
used. In particular, Huang and Wang (2004) suggest to estimate Λ0h(t) and
α∗ by

Λ̂0h(t) =
∏

sl>t

(

1 − dl
nl

)
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and the estimating equation

n∑

i=1

wiZ3i

{
mi Λ̂

−1
0h (Ci) − exp(αT

∗Z3i)
}

= 0 , (6.5)

respectively. In the estimating equation above, the wi’s are some weights that
could depend on Zi, Ci and Λ0h.

A key fact used in deriving the estimating equation above is that condi-
tional on (Zi, Ci, ui,mi), the observation times {Ti,1 = ti,1, . . . , Ti,mi = ti,mi}
can be seen as the order statistics of a simple random sample of size mi from
the density function

λ0h(t) exp(α
T
1Zi + ui)

Λ0h(Ci) exp(αT
1Zi + ui)

I(0 ≤ t ≤ Ci) =
λ0h(t)

Λ0h(Ci)
I(0 ≤ t ≤ Ci) .

Let α̂∗ = (α̂T
1 , α̂2)

T denote the estimator of α∗ given by Eq. (6.5). Given
Λ̂0h(t) and α̂∗ and for the estimation of the unobserved ui based on the
observed data, note that conditional on (Zi, Ci, ui), the expected value of mi

is equal to Λ0h(Ci) exp(α
T
1Zi + ui). Thus it is natural to estimate ui by

ûi = log

{
mi

Λ̂0h(Ci) exp(α̂
T
1Zi)

}

. (6.6)

6.2.2.2 Step 2: Estimation of the Parameters in Model (6.4)

Now we discuss the estimation of model (6.4). For this, let Oi =
(Ci, δi,Zi, ui), the observed data related to model (6.4) on subject i assuming
that ui is known, and O = (O1, . . . , On). Also let c1 < · · · < cr denote the

ordered observed C∗
i ’s and assume that we can write Λ0c(t) =

∫ t

0 λ0c(s) ds as

Λ0c(t) =
r∑

j=1

aj I(t ≥ cj) ,

where a = (a1, . . . , ar)
T is a vector of unknown parameters. Define θ =

(aT ,γT , σ2)T . Then the full likelihood function based on the pseudo complete
data O and the vi’s has the form

L(θ) =
n∏

i=1

{
λ0c(Ci)e

γTZ1i+vi
}δi

exp
{
−Λ0c(Ci)e

γTZ1i+vi
}
φ(vi;σ) ,

where φ(·;σ) denotes the density function of N(0, σ2).
To estimate θ, it is natural to maximize L(θ) with replacing the ui’s by

their predicted values given by (6.6). Also it is natural to employ the EM
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algorithm since the maximization of L(θ) has no closed form. To imple-
ment the EM algorithm, we first consider the E-step, which computes the
conditional expectation of the log likelihood function l(θ) = logL(θ) given
the current estimator of θ and the observed data O. To this end, note that
l(θ) can be written as

l(θ) =

n∑

i=1

[
δi
{
log{λ0c(Ci)}+ γTZ1i + vi

}
− Λ0c(Ci)e

γTZ1i+vi + log φ(vi;σ)

]

=
n∑

i=1

δi

[
log{λ0c(Ci)}+ γTZ1i

]
+

n∑

i=1

g(vi;θ) ,

where

g(vi; θ) = δi vi − Λ0c(Ci) exp
{
γTZ1i + vi

}
+ logφ(vi;σ) .

To calculate E{l(θ)|O, θ(k)} given the current estimator θ(k) of θ, one
needs to calculate

Ei

{
g(vi; θ)|Oi, θ

(k)
}

=

∫
g(vi; θ) f(vi|Oi, θ

(k)) dvi . (6.7)

In the above,

f(vi|Oi, θ) =
exp{δivi − Λ0c(Ci) exp(γ

TZ1i + vi)}φ(vi;σ)∫
exp{δiv − Λ0c(Ci) exp(γTZ1i + v)}φ(v;σ) dv

is the conditional density of vi given Oi and θ. It is apparent that the inte-

gration (6.7) has no closed form. For this, let { v(l)i ; i = 1, . . . , n, l = 1, . . . , L }
be L independent and identically distributed samples from N(0, {σ(k)}2) for
sufficiently large L. Then one can approximate the integration (6.7) by

Êi

{
g(vi; θ)|Oi, θ

(k)
}

=

∑L
l=1 bl g(v

(l)
i ; θ)

∑L
l=1 bl

, (6.8)

where
bl = exp

{
δiv

(l)
i − Λ

(k)
0c (Ci) exp(γ

(k)TZ1i + v
(l)
i )

}
.

For the M-step of the EM algorithm, one needs to maximizeE{ l(θ)|O, θ(k)}
with respect to θ. For this, by taking its derivatives with respect to θ and
setting the derivatives equal to zero, we can obtain

a
(k+1)
j =

[ n∑

i=1

Ei

{
exp(γTZ1i + vi) I(Ci ≥ cj)

}
]−1

(6.9)

for j = 1, .., r, σ(k+1) = {n−1
∑n

i=1 Ei(v
2
i )}1/2, and
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n∑

i=1

Ei

[

Z1i

{
δi − Λ0c(Ci) exp(γ

TZ1i + vi)
}
]

= 0 (6.10)

for the updated estimator θ(k+1) of θ. Note that Ei above and Êi below are
defined in (6.7) and (6.8), respectively. For the implementation, one can first

obtain the a
(k+1)
j ’s from (6.9) by letting θ = θ(k) and thus Λ

(k+1)
0c . Then by

replacing Λ0c with Λ
(k+1)
0c , one can obtain the updated estimators {σ(k+1)}2

and γ(k+1) by solving equation (6.10). Let θ̂ denote the estimator of θ at the
convergence. As with the ui’s, one may also want to estimate the vi’s and a
natural one is clearly given by the conditional expectation of vi

v̂i = Êi( vi|Oi, θ̂ ) , (6.11)

which can be approximated by (6.8) again.

6.2.2.3 Step 3: Estimation of the Parameters in Model (6.2)

Now we are ready to estimate the parameters in model (6.2). For this, as
before, define Yi(t) = I(t ≤ Ci) and

Sj(t;β) =
1

n

n∑

i=1

Yi(t) exp
{
(β +α)TZ2i

}
Z⊗j

2i ,

for j = 0, 1, 2. Note that if all the ui’s and vi’s were known and fixed,
the problem considered here would reduce to the one discussed in Chap. 5
and thus one could employ the estimation procedures discussed there. Based
on this fact and by following the estimating function UM

II (β̃, w) defined in
Sect. 5.4, it is natural to consider the following estimating function

UJ(β) =
1√
n

n∑

i=1

∫ τ

0

{

Ẑ2i − Ŝ1(t;β)

Ŝ0(t;β)

}

Ni(t)dHi(t) . (6.12)

In the above, Ẑ2i = (ZT
i , ûi, v̂i)

T with ûi and v̂i given by (6.6) and (6.11),

and Ŝj(t;β) denotes Sj(t;β) with the Z2i’s and α replaced by the Ẑ2i’s and

α̂ = (α̂T
1 , 1, 0)

T , respectively.

Define the estimator β̂J of β as the solution to UJ(β) = 0. Then it is

easy to show that β̂J exists and is unique by noting that

∂UJ(β)

∂β
= − 1√

n

n∑

i=1

∫ τ

0

Ŝ2(t;β) Ŝ0(t;β) − Ŝ1(t;β) Ŝ
T
1 (t;β)

Ŝ2
0(t;β)

Ni(t) dHi(t)
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is strictly negative. For inference, He et al. (2009) suggest that one can ap-

proximate the distribution of
√
n (β̂J − β0) by the multivariate normal dis-

tribution with mean zero, where β0 denotes the true value of β as before.
Note that it is possible to derive a consistent estimator of the covariance
matrix of β̂J , but the estimator could be too complicated to be useful.
Corresponding to this, He et al. (2009) suggest to apply the simple bootstrap

procedure. Specifically, let B be a given integer and β̂
(1)

J , . . . , β̂
(B)

J denote the
proposed estimators of β based on B bootstrap samples of sizes n drawn with
replacement from the observed data. Then one can estimate the covariance
matrix of β̂J by

Σ̂J =
1

B − 1

B∑

b=1

{

β̂
(b)

J − 1

B

B∑

b=1

β̂
(b)

J

}⊗2

.

To implement the estimation procedure above, one needs to choose con-
stants L and B. In general, for a practical problem, one may start with some
reasonable large values and then increase them until the resulting estimators
are stable. For example, it is common to choose L = 200 and B = 100. On the
other hand, to save computational effort in simulation studies, small values
may be used as long as there is a large number of replications.

6.2.3 Discussion

A main feature of the approach described above is that it allows both ob-
servation process and follow-up process to be related with the underlying
recurrent event process of interest. In the case where the follow-up process
is independent of the other two processes given covariates, two approaches
similar to the one given above have been proposed. In Huang et al. (2006),
they assume thatNi(t) is a non-homogeneous Poisson process whose intensity
function has the form

u∗i λ0(t) exp(β
TZi )

given Zi and a nonnegative latent variable u∗i . Furthermore, they assume
that Ni(t) and H̃i(t) are related only through Zi and u

∗
i but the dependence

of the observation process on u∗i is arbitrary. It is apparent that the model
above and model (6.3) are equivalent.

The other similar approach is given by Sun et al. (2007b), who suggest to
use the model

E{Ni(t)|Zi, u
∗
i } = u∗φi μ0(t) exp(β

TZi) (6.13)

for the conditional mean of Ni(t) instead of model (6.2). In the above, again
u∗i is a nonnegative latent variable and φ is an unknown scale parameter.
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For the observation process, they assume that H̃i(t) is a non-homogeneous
Poisson process with the intensity function

u∗i λ0(t) exp(α
TZi )

given Zi and u
∗
i . It is easy to see that the above two models can be actually

seen as special cases of models (6.2) and (6.3), respectively.
Several remarks are needed for the approach described in this section. For

parameter estimation, sometimes it may be reasonable to assume thatNi(t) is
also a non-homogeneous Poisson process as H̃i(t). In this case, instead of the
three-step procedure given above, one could develop a full likelihood approach
such as those discussed in Sect. 5.2 or a conditional likelihood approach like
the one given in Huang et al. (2006). Furthermore, the EM algorithm and
the approach given in Louis (1982) can be used for the determination of
parameter estimators and variance estimation, respectively. Of course, this
approach can be very computationally intensive. So far in this section, it
has been assumed that covariates are time-independent. For the case with
time-dependent covariates, one can still use model (6.2) and the estimating
function given in (6.12) but may need different estimation procedures with
respect to models (6.3) and (6.4).

With respect to the estimating function UJ(β) given in (6.12), as with the
estimating function given in (6.5), one could also add some weights in the
front of the integration. However, as with (6.5), it may be difficult to estab-
lish some procedures for choosing appropriate or optimal weights. Lastly we
remark that it is not hard to see that sometimes the assumptions and models
described above may not be valid and also it may be difficult or impossible to
verify or assess them. To address this, one way is to conduct some sensitiv-
ity analysis against possible assumption violation or model misspecification.
Another, also more general, approach is to develop some robust estimation
procedures as discussed in the next section.

6.3 Analysis by a Robust Estimation Procedure

For the regression procedure described in the previous section, a couple of
the assumptions used there could be questionable in practice. One is the for-
mat of the latent variables in model (6.2) or (6.13) or the way by which the
latent variables affect the recurrent event process of interest. The other is
the Poisson process assumption on the observation processes H̃i(t)’s. To ad-
dress these, in this section, we first introduce some new models that include
the models considered in the previous section as special cases. A robust esti-
mation procedure is then presented along with a model checking procedure.
The methodology is illustrated along with the method given in the previous
section by the bladder tumor data discussed in Sect. 1.2.3.



130 6 Regression Analysis of Panel Count Data II

6.3.1 Assumptions and Models

Consider a recurrent event study that consists of n independent subjects and
gives panel count data as in the previous section. Also let the Ni(t)’s, H̃i(t)’s,
Hi(t)’s, Zi’s and ti,j ’s be defined and assume that {Ni(t), Hi(t), Ci,Zi, 0 ≤
t ≤ τ }ni=1 are independent and identically distributed as in the previous
section. In this section, for the simplicity, we assume that the follow-up time
Ci is independent of {Ni(t), H̃i(t),Zi }.

To describe the effect of covariates Zi on the recurrent event process of
interest Ni(t), we assume that there exists a positive latent variable ui and
given Zi and ui, the mean function of Ni(t) has the form

E{Ni(t)|Zi, ui } = μ0(t) g(ui) exp(β
TZi) . (6.14)

Here μ0(t) and β are defined as in model (1.4) or (6.13) and g is a posi-
tive, completely unspecified link function. For the observation process, it is
assumed that H̃i(t) satisfies the following proportional rate model

E{ dH̃i(t)|Zi, ui } = ui h(Zi) dμ̃0(t) . (6.15)

In the above, as g in model (6.14), h is a positive, completely unspecified
function and μ̃0(t) is also a completely unspecified continuous function as in
model (5.4).

It is easy to see that model (6.14) includes both models (6.2) and (6.13) as
special cases and model (6.15) can be seen as a generalization of model (5.4) or
(5.12). Also the assumption on H̃i(t) above is much less restrictive than that
used in Sect. 6.2. Model (6.14) allows the latent variable ui to affect the mean
function of Ni(t) in an arbitrary way. It is apparent that one can equivalently
express model (6.15) in the same format as model (6.14) with respect to ui
because it is unobservable and can follow an arbitrary distribution. In the
following, we assume that Ni(t) and H̃i(t) are independent given Zi and ui
and discuss a robust estimation procedure for the regression parameter β in
model (6.14). Also a goodness-of-fit procedure is described for checking the
adequacy of models (6.14) and (6.15).

6.3.2 Inference Procedure

Now we consider estimation of regression parameter β in model (6.14) and
for this, we discuss an approach similar to those given in Sects. 5.3 and 5.4.
Specifically, let Ñi(t) denote the process defined in Sect. 5.4, i = 1, . . . , n.
Then under models (6.14) and (6.15), we have

E
{
Ñi(τ) |Zi

}
= exp(βTZi)h(Zi)E{uig(ui)}

∫ τ

0

P (Ci ≥ t)μ0(t) dμ̃0(t)
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and
E(mi|Zi ) = E(ui)E{ μ̃0(Ci) } h(Zi) .

These yield

E
{
Ñi(τ) |Z i

}
= E(mi|Zi ) exp

(
βTZi + θ

)
, (6.16)

where

θ = log

[
E{uig(ui)}

E(ui)E{μ̃0(Ci)}

∫ τ

0

P (Ci ≥ t)μ0(t) dμ̃0(t)

]

,

an unknown parameter.
Define β1 = (βT , θ)T and Z1i = (ZT

i , 1)
T . For estimation of regression

parameter β or β1, motivated by Eq. (6.16) and the approaches discussed in
Sects. 5.3 and 5.4, we can use the following estimating equation

UR(β1) =
n∑

i=1

wiZ1i

{
Ñi(τ) − mi exp

(
βT
1Z1i

)}
= 0 . (6.17)

In the above, the wi’s are some weights that could depend on Zi as before.

Let β̂1R = (β̂
T

R, θ̂R)
T denote the estimator of β1 given by the solution to

the equation above and β10 = (βT
0 , θ0)

T the true value of β1. Zhao et al.

(2013) show that under some regularity conditions, β̂1R is consistent and√
n( β̂1R − β10) asymptotically follows a multivariate normal distribution

with mean zero and the covariance matrix that can be consistently estimated
by Σ̂R = A−1

R BRA
−1
R . Here

AR =
1

n

n∑

i=1

{
wimiZ1iZ

T
1i exp

(
β̂
T

1 Z1i

)}

and BR = n−1
∑n

i=1 φ̂i φ̂
′
i, where

φ̂i = wiZ1i

{
Ñi(τ) − mi exp

(
β̂
T

1 Z1i

)}
.

As discussed above, sometimes one may question the appropriateness of
postulated regression models in practice. To assess the adequacy of mod-
els (6.14) and (6.15) for a given set of panel count data, we now present a
goodness-of-fit test procedure similar to the one given in Sect. 5.5.4. Define

A(t) =
E{ui g(ui)}

E(ui)E{μ̃0(Ci)}

∫ t

0

P (Ci ≥ u)μ0(u) dμ̃0(u) .

Then under models (6.14) and (6.15), we have
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E
{
Ñi(t)|Zi

}
= E(mi|Zi) exp

(
βTZi

)
A(t) .

It follows that a natural estimator of A(t) is given by

Â(t) =

n∑

i=1

∫ t

0

Ni(u) dHi(u)
∑n

i=1 mi exp(β̂
T

RZi)

and one can define the residual process as

R̂i(t) =

∫ t

0

Ni(u) dHi(u) − mi exp
(
β̂
T

RZi

)
Â(t) .

For the assessment of models (6.14) and (6.15), as the statistic F(t, z)
given in (5.22), it is natural to define a goodness-of-fit test statistic as

Φ(t, z) = n−1/2
n∑

i=1

I(Zi ≤ z) R̂i(t) .

In the above, as before, the event I(Zi ≤ z) means that each of the compo-
nents of Zi is not larger than the corresponding component of z. It is easy
to see that Φ(t, z) is the cumulative sum of R̂i(t) over the values of the Zi’s.
To describe the asymptotic behavior of Φ(t, z), define

S0 =
1

n

n∑

i=1

mi exp
(
β̂
T

RZi

)
,

S(z) =
1

n

n∑

i=1

I(Zi ≤ z)mi exp
(
β̂
T

RZi

)
,

and

B(t, z) =
1

n

n∑

i=1

{
I(Zi ≤ z) − S(z)

S0

}
miZ

T
i exp

(
β̂
T

RZi

)
Â(t) .

Zhao et al. (2013) show that the null distribution of Φ(t, z) can be approxi-
mated by the zero-mean Gaussian process

Φ̂(t, z) =
1√
n

n∑

i=1

{
I(Zi ≤ z) − S(z)

S0

}
R̂i(t)Gi −BT (t, z)

1√
n

n∑

i=1

d̂iGi .

In the above, d̂i is the vector A−1
R φ̂i without the last entry and (G1, . . . , Gn)

are a simple random sample from the standard normal distribution
independent of the data.

The results above suggest that for the distribution of Φ(t, z), we can first
obtain a large number of realizations of Φ̂(t, z) by repeatedly generating the
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standard normal random sample (G1, . . . , Gn) given the observed data. Then
it can be approximated by the empirical distribution of the realizations. For
the assessment of the overall fit of models (6.14) and (6.15) based on Φ(t, z),
one can obtain the p-value by comparing the observed value of supt,z |Φ(t, z)|
to the corresponding realizations of supt,z |Φ̂(t, z)|.

6.3.3 Analysis of Bladder Cancer Study

In this subsection, we illustrate the two estimation procedures described in
the previous and this sections using the bladder tumor data discussed in
Sects. 1.2.3, 2.4.3 and 4.5.2 and given in the data set II of Chap. 9. For the data
set, as mentioned before, the observed information includes discrete clinical
visit or observation times and the numbers of bladder tumors that occurred
between the observation times. Also it involves two treatment groups, placebo
group (47 patients) and thiotepa treatment group (38 patients), and two
covariates, the number of initial bladder tumors and the size of the largest
initial bladder tumor. The main goal here is to determine the treatment effect
on the tumor recurrence as well as the covariate effects.

Before the formal analysis, some preliminary analysis of the data is needed
to investigate the relationship between the underlying tumor recurrence pro-
cess and the observation process. For the patients in the placebo and treat-
ment groups, the average numbers of bladder tumor recurrences are 39.81
and 17.03, while the average numbers of clinical visits or observations are
8.66 and 13.50, respectively. They suggest that the patients in the placebo
group seem to have smaller numbers of observations but larger numbers of tu-
mor recurrences than those in the treatment group. Note that the difference
between the observation processes in the two groups was also discussed in
Sect. 4.5.1 and shown in Fig. 4.1. To further see the relationship between the
tumor recurrence process and the observation process, we divide the patients
into two groups, the rare visit group with at most nine visits and the frequent
visit group with more than nine visits. Figure 6.1 displays the separate IRE
of the cumulative mean functions of the tumor recurrence processes for the
two groups. Plot (a) is for all patients, while the other is for the patients in
the placebo group only. They suggest that the patients in the frequent visit
group seem to have a higher tumor recurrence rate than those in the rare visit
group. That is, the underlying tumor recurrence process and the observation
process seem to be positively correlated.

Now we apply the two estimation procedures discussed above to the data.
For this, define Zi = (Zi1, Zi2, Zi3)

T with Zi1 = 1 if subject i is in the
thiotepa treatment group and 0 otherwise and Zi2 and Zi3 denoting the
number of initial tumors and the size of the largest initial tumor of the ith
patient, respectively, i = 1, . . . , 85. First assume that the recurrence pro-
cess of the bladder tumors, the clinical visit process and the follow-up pro-
cess can be described by models (6.2)–(6.4), respectively. The application of
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Fig. 6.1. The IRE for bladder tumor recurrence processes

the estimation procedure given in the previous section with L = 200 and
B = 100 yields β̂J = (−1.8483, 0.1996, 0.0015)T with the estimated stan-
dard errors of (0.6879, 0.3181, 0.3562)T . The use of large values for both
L and B gives similar results. By assuming that the tumor process and
the observation process follow models (6.14) and (6.15), one can obtain

β̂R = (−1.3862, 0.3282, 0.0000)T with the estimated standard errors of
(0.3282, 0.0668, 0.0956)T.

The results above all suggest that the thiotepa treatment significantly re-
duced the recurrence rate of the bladder tumors. Also the recurrence rate did
not seem to be significantly related with the size of the largest initial tumor.
With respect to the number of initial tumors, the estimator β̂J suggests that
it did not have significant effect on the tumor recurrence rate, but the estima-
tor β̂R tells a different story. For comparison, the application of the estimation

approach discussed in Sect. 5.3 gives β̂I = (−2.0249, 0.6620,−0.1229)T with
the estimated standard errors of (0.4500, 0.2133, 0.2035)T. One can see that
although the results from all three methods are similar, the approach that
does not take into account the correlation between the recurrence and obser-
vation processes overestimates the treatment effect. One possible reason for
this is that the part of the estimated effects given by the latter may be due
to the correlation of the two processes.

Note that the approach discussed in the previous section requires the
Poisson process assumption for the observation process. To assess this,
Fig. 6.2 gives the residual plot obtained after fitting the data on the observa-
tion process to model (6.3). Also the use of a simple Kolomogorov-Smirnov
test statistic procedure (Gibbons and Chakraborti, 2011) gives the p-value of
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Fig. 6.2. The plot of the residuals for fitting model (6.3) to bladder tumor data

0.07 for testing the Poisson process assumption. Both the figure and the test
suggest that the Poisson process assumption with model (6.3) may be ques-
tionable although not significant. For the appropriateness of models (6.14)
and (6.15), one can apply the goodness-of-fit test procedure in the previous
subsection, which gives the p-value of 0.768. This suggests that these models
seem to be appropriate for the bladder cancer data considered here.

6.3.4 Discussion

Compared to the approaches discussed in the previous section, a key advan-
tage of the inference procedure described in this section is that it allows the
correlation between the recurrent event process of interest and the observa-
tion process in a much more general format. In other words, the latter is
robust. This could be very important in practice since the format of the rela-
tionship between the two processes is generally unknown and could be very
complicated. Thus some flexible models and robust procedures may be more
appropriate or preferred unless there exists some prior information. Another
advantage of the approach described in this section is that it does not require
the Poisson assumption, which can be questionable in reality as discussed
in the previous subsection. Also it is apparent that the new methodology is
much easier in its implementation.

For the preceding discussion, we have assumed that the follow-up time Ci

is independent of {Ni(t), H̃i(t),Zi }. Of course this may not be true and in
this case, models such as the one given in (6.4) can be used to model the
relationship between them and an estimation procedure similar to that given



136 6 Regression Analysis of Panel Count Data II

above can be easily developed. Another generalization of the approach given
above is to replace models (6.14) and (6.15) by

E{Ni(t)|Zi, ui } = μ0(t) g1(u1i) exp(β
TZi)

and
E{ dH̃i(t)|Zi, ui } = g2(u2i)h(Zi) dμ̃0(t) ,

respectively. In the above, as g in model (6.14), g1 and g2 are positive, com-
pletely unspecified link functions and u1i and u2i are two correlated latent
variables. For estimation of the regression parameter β in the model above,
an estimating function similar to UR(β1) given in (6.17) can be derived.

As one can easily see and also pointed out above, the methods discussed
in both the previous and this sections are joint modeling procedures. In some
situations, conditional modeling approaches may be preferred depending on
the problems of interest. In the next section, we generalize the conditional
method discussed in Sect. 5.5 to the situation where the recurrent event pro-
cess of interest and the observation process are correlated.

6.4 Analysis with Semiparametric Transformation
Models

In this section, we introduce some generalizations of the models and esti-
mation procedure discussed in Sect. 5.5 for the situation with dependent ob-
servation processes. As in the previous section, we begin with describing the
assumptions and models used in this section. An estimation procedure, a sim-
ple generalization of the one discussed in Sect. 5.5, is then presented. Both
the assumed models and the inference procedure reduce to those given in
Sect. 5.5 if the recurrent event process of interest and the observation pro-
cess are independent conditional on covariates. The approach is illustrated
again by the panel count data arising from the bladder tumor study, which
is followed by some discussion on the comparison of the inference procedures
discussed in the previous sections and this section.

6.4.1 Assumptions and Models

Consider a recurrent event study that consists of n independent subjects
and gives panel count data as in the previous section. Also we employ the
same notation and suppose that {Ni(t), Hi(t), Ci,Zi(t); 0 ≤ t ≤ τ }ni=1 are
independent and identically distributed as in the previous section. Note that
here we assume that the covariates Zi(t)’s may be time-dependent as in
Sect. 5.5. Furthermore, as in Sect. 5.5, we assume that the observation process
H̃i(t) is a non-homogeneous Poisson process satisfying the proportional rate
model (5.16).
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To describe the relationship between the recurrent event process of interest
Ni(t) and the observation process H̃i(t) as well as the covariate process Zi(t),
for subject i, define Fit = { H̃i(s); 0 ≤ s < t }, the history or filtration of the
observation process up to time t−, i = 1, . . . , n. In the following, we assume
that given Zi(t) and Fit, the conditional mean function of Ni(t) is specified
by the following semiparametric transformation model

E{Ni(t)|Zi(t),Fit } = g
{
μ0(t) exp

(
βTZi(t) +α

TQ(Fit)
)}

. (6.18)

Here g(t), μ0(t) and β are defined as in model (5.15), α is a vector of un-
known regression parameters, and Q is a vector of known functions of Fit.
Model (6.18) supposes that the observation process H̃i(t) may be informa-
tive about or affect the underlying recurrent event process Ni(t) through its
mean process, and Ni(t) depends on Fit through α. If α = 0, model (6.18)
reduces to model (5.15). Also in the following, it is assumed that given Zi(t),
Ci is independent of both Ni(t) and H̃i(t) and given Zi(t) and Fit, Ni(t) and
H̃i(t) are independent.

The semiparametric transformation model (6.18) is motivated by the mod-
els used in Lin et al. (2001) and Sun et al. (2005). The former considers a
similar model for point processes with an independent observation process,
while the latter discusses the situation where Ni(t) is a general longitudinal
process whose mean function is given by

E{Ni(t)|Zi(t),Fit} = μ0(t) + βTZi(t) + αTQ(Fit) .

As with model (5.15), model (6.18) allows various types of dependence of the
mean function of Ni(t) on Zi(t) and H̃i(t). By taking g to be the commonly
referred Box-Cox transformation, one obtains

E{Ni(t)|Zi(t),Fit } =
[μ0(t) exp{βTZi(t) +α

TQ(Fit) } + 1 ]ρ − 1

ρ

for ρ > 0 and

E{Ni(t)|Zi(t),Fit } = log
{
μ0(t) exp

(
βTZi(t) +α

TQ(Fit)
)
+ 1

}

with ρ = 0 in the above.
With respect to the function vectorQ in model (6.18), it can have different

forms depending on the dependence of Ni(t) on H̃i(t). For example, one may
take Q(Fit) = H̃i(t−) if it is believed that Ni(t) may depend on the total
number of the observations before time t. This could be the case in a medical
study in which patients may pay more visits to clinics or their doctors because
they feel worse than usual either with or without treatments. A similar choice
is to let Q(Fit) = H̃i(t−) − H̃i(t − a), meaning that Ni(t) may depend
on the number of the observations over the period [t − a, t), where a is a
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constant. That is, instead of the total number of observations, Ni(t) may
depend only on the number of observations over a certain time period right
before the current time. Of course, Ni(t) could depend on both H̃i(t−) and
H̃i(t−) − H̃i(t− a). More discussion on this is given below.

6.4.2 Inference Procedure

For estimation of regression parameters β, α and γ (in model (5.16)) as
well as other parameters, it is straightforward to generalize the estimation
procedure given in Sect. 5.5 to the current situation. Specifically, define

Xi(t) = (ZT
i (t),Q

T (Fit))
T , θ = (βT ,αT )T ,

and

M∗
i (t; θ,γ) =

∫ t

0

Yi(u)Ni(u) dHi(u) −
∫ t

0

g
{
μ0(u) e

βTZi(u)+αTQ(Fiu)
}

× Yi(u) exp
{
γTZi(u)

}
dμ̃0(u) . (6.19)

In the above, Yi(t) = I(Ci ≥ t) as before, i = 1, . . . , n.
Note that the process M∗

i (t; θ,γ) is Mi(t;β,γ) defined in (5.17) with
βTZi(u) replaced by θTXi(u). Under models (5.16) and (6.18), we have
that

E
{
Yi(t)Ni(t) dH̃i(t)

}
= E

[
E{Yi(t)Ni(t) dH̃i(t)|Zi(t),Fit}

]

= E
[
E {Yi(t)|Zi(t)} E {Ni(t)|Zi(t),Fit} E

{
dH̃i(t)|Zi(t)

} ]

= E
{
E
[
Yi(t)g

{
μ0(t)e

βTZi(t)+αTQ(Fit)
}
eγ

TZi(t)dμ̃0(t)|Zi(t),Fit

]}

= E
[
Yi(t)g

{
μ0(t) exp{βTZi(t) +α

TQ(Fit)}
}
eγ

TZi(t)dμ̃0(t)
]
.

i = 1, . . . , n. So as the Mi(t;β,γ)’s, the M
∗
i (t; θ,γ)’s are also zero-mean

stochastic processes and can be used to construct the needed estimating func-
tions as before.

Let γ̂T and ˆ̃μ0(t; γ̂T ) denote the estimators of γ and μ̃0(t) defined in
Sect. 5.5 or given by Eqs. (5.20) and (5.21), respectively. Also let U∗

T (θ,γ)
denote the estimating function UT (β,γ) given in (5.19) with replacing
exp{βTZi(t) } by exp{ θTXi(t) } orMi(t;β,γ) byM

∗
i (t; θ,γ), i = 1, . . . , n.

For estimation of β and α or θ along with μ0(t), similarly as in Sect. 5.5, we
can first estimate μ0(t) by the solution to

n∑

i=1

dM∗
i (t; θ,γ) =

n∑

i=1

[
Yi(t)Ni(t) dHi(t)

− Yi(t) g
{
μ0(t) exp{βTZi(t)+α

TQ(Fit)}
}
exp

{
γ̂T
TZi(t)

}
d ˆ̃μ0(t; γ̂T )

]
=0 .
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Then θ can be estimated by the solution, denoted by θ̂DT = (β̂
T

DT , α̂
T
DT )

T ,
to the estimating equation U∗

T (θ,γ) = 0 with all other unknowns replaced by

their estimators. Li et al. (2010) show that as with β̂T , θ̂DT is consistent. Also

for large n, one can approximate the distribution of n1/2 ( θ̂DT − θ0 ) by the
multivariate normal distribution with mean zero and the covariance matrix
Σ̂DT = A−1

DT BDT A
−1
DT . Here θ0 = (βT

0 ,α
T
0 )

T denotes the true value of θ,

and ADT and BDT are AT and BT defined in Sect. 5.5.2 with exp{βTZi(t) }
replaced by exp{ θTXi(t) }, respectively.

As with the estimation procedure, it is also straightforward to generalize
the goodness-of-fit test procedure discussed in Sect. 5.5.4 to the current sit-

uation. Specifically, one needs to replace Zi(t), β
TZi(t), β̂

T

TZi(t) and z by

Xi(t), θ
TXi(t), θ̂

T

DTXi(t) and x, respectively, in all concerned quantities
or processes, where x is a vector of the same dimension as Xi. For example,
corresponding to the cumulative sum of residuals process F(t, z) defined in
(5.22), we now have

F∗(t,x) =
1√
n

n∑

i=1

∫ t

0

I{Xi(u) ≤ x} dM̂∗∗
i (u) .

In the above, M̂∗∗
i (u) denotesM∗

i (u; θ,γ) with all unknowns replaced by their

estimators defined above. Let F̂∗(t,x) denote the new process corresponding
to F̂(t, z) defined in Sect. 5.5.4. Then for testing the goodness-of-fit of model
(6.18), we first obtain a large number of realizations of F̂∗(t,x) by repeatedly
generating the standard normal random sample while fixing the observation
data. The p-value can then be determined by comparing the observed value
of sup0≤t≤τ,x |F∗(t,x)| to all the realizations of sup0≤t≤τ,x |F̂∗(t,x)|.

6.4.3 An Illustration

To illustrate the methodology discussed above, we apply it to the bladder
cancer panel count data analyzed in Sect. 6.3.3. As discussed before, the data
include the clinical visit or observation times (in months) and the numbers
of bladder tumors that occurred between clinical visits. There are 85 pa-
tients with bladder tumors, 47 in the placebo group and 38 in the thiotepa
treatment group. For the patients in these two groups, the number of obser-
vations ranges from 1 to 38 and the number of new tumors found ranges from
0 to 9. Also the average numbers of observations and new tumors found are
8.66 and 0.70, respectively, for the patients in the placebo group, while the
corresponding numbers for the patients in the thiotepa group are 13.50 and
0.23, respectively. Again as pointed out in Sect. 6.3.3, these numbers suggest
that there seems to exist some correlation between the underlying tumor re-
currence process and the observation process. In addition to the treatment,
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Table 6.1. Estimated regression parameters with Q(Fit) = H̃i(t−)

β̂DT,1 β̂DT,2 α̂DT

Function g(t) SE(β̂DT,1) SE(β̂DT,2) SE(α̂DT )
95%CI for β1 95%CI for β2 95%CI for α

−2.2165 0.2563 0.1095
g(t) = t 0.4532 0.0780 0.0225

(−3.1047 ,−1.3282) (0.1034 , 0.4092) (0.0653 , 0.1537)

−1.1082 0.1281 0.0547
g(t) = t2 0.2266 0.0390 0.0113

(−1.5524 ,−0.6641) (0.0517 , 0.2046) (0.0327 , 0.0768)

−0.9579 0.1832 0.0646
g(t) = log(t) 0.1797 0.0485 0.0284

(−1.3101 ,−0.6057) (0.0882 , 0.2781) (0.0090 , 0.1203)

there exist two baseline covariates, the number of initial tumors and the size
of the largest initial tumor. In the following, for the simplicity, we consider
only the number of initial tumors since the other baseline covariate has been
shown to have no effect on both the underlying tumor recurrence and the
observation processes. We are interested in assessing the effects of thiotepa
treatment (β1) and the number of initial tumors (β2) on the recurrence pro-
cess of bladder tumors as well as the effect of the observation history (α) on
the recurrence process.

For the analysis, define Zi = (Zi1, Zi2)
T with Zi1 = 0 for the patients

in the placebo group and Zi1 = 1 otherwise and Zi2 denoting the number
of initial tumors, i = 1, . . . , 85. We assume that the visiting or observation
process and the recurrence process of the bladder tumors follow models (5.16)
and (6.18), respectively. Note that to apply the approach discussed above,
we need to select the link functions g and Q(Fit) in model (6.18). For the
former, we consider three choices: g(t) = t, g(t) = t2 and g(t) = log(t).
For the latter, two choices are considered and they are Q(Fit) = H̃i(t−)
and Q(Fit) = H̃i(t−)− H̃i(t − 6). The former assumes that the recurrence
rate of bladder tumors may depend on the total number of patient’s visits,
while the latter supposes that the recurrence rate may depend only on the
number of patient’s visits during the 6-month period before. The latter choice
is motivated by the fact that sometimes it is the most recent visits that may
carry information about the response variable. Also note that for the third
choice of the function g above, we define Ni(t) to be the natural logarithm
of the cumulative number of the observed bladder tumors up to time t plus 1
to avoid 0. In contrast, for the other two choices, Ni(t) is defined to be just
the cumulative number of the observed bladder tumors up to time t.

Table 6.1 gives the results obtained on estimation of the three regression
parameters β1, β2 and α for the case of Q(Fit) = H̃i(t−), and the results
based on Q(Fit) = H̃i(t−)− H̃i(t− 6) are presented in Table 6.2. For both

cases, we use W (t) = 1. The results include the point estimates β̂DT and
α̂DT , their estimated standard errors (SE) and the estimated 95% confidence
intervals (CI). They all suggest that the thiotepa treatment significantly re-
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duced the recurrence rate of the bladder tumor after adjusting for the de-
pendent visiting process. Also the recurrence rate was positively significantly
related to the initial number of bladder tumors, and these conclusions are
similar to those given in Sect. 6.3.3. It is interesting to note that the results
on estimation of the effects of the treatment and the initial tumors seem to
be consistent with respect to the function g and Q(Fit) although the mag-
nitudes differ. Note that the magnitudes are expected to be different due to
the scale difference under different g.

In terms of the relationship between the recurrence process of bladder
tumors and the visiting process, it seems that the recurrence rate significantly
depended on both the total number of visits and the number of visits during
the last 6 months. In particular, the results indicate that a higher number
of visits would mean a higher tumor recurrence rate. Also the effect of the
number of visits over the last 6 months on the recurrence rate seems to be
greater than that of the total number of visits. Note that the estimated effects
here are after adjusting for other factors.

To finish the analysis, the goodness-of-fit test procedure described at
the end of Sect. 6.4.2 is applied. It gives the p-values of 0.546, 0.550 and
0.161 for the cases of Q(Fit) = H̃i(t−) with the three g functions consid-
ered above, respectively, based on 1,000 realizations of sup0≤t≤τ,x |F̂∗(t,x)|.
These results suggest that all three functions and their specified relationships
seem to be reasonable for the observed data. The procedure with the use of
Q(Fit) = H̃i(t−)− H̃i(t− 6) gives similar p-values.

6.4.4 Discussion

There exist several differences among the inference procedures discussed in
the previous two sections and this section. A basic one is that the procedures
given in Sects. 6.2 and 6.3 are joint modeling approaches and allow one to

Table 6.2. Estimated regression parameters with Q(Fit) = H̃i(t−)− H̃i(t− 6)

β̂DT,1 β̂DT,2 α̂DT

Function g(t) SE(β̂DT,1) SE(β̂DT,2) SE(α̂DT )
95%CI for β1 95%CI for β2 95%CI for α

−1.7864 0.2501 0.3846
g(t) = t 0.3756 0.0682 0.0898

(−2.5226 ,−1.0502) (0.1163 , 0.3838) (0.2086 , 0.5606)

−0.8932 0.1250 0.1923
g(t) = t2 0.1878 0.0341 0.0449

(−1.2613 ,−0.5251) (0.0582 , 0.1919) (0.1043 , 0.2803)

−0.9013 0.1791 0.1959
g(t) = log(t) 0.1811 0.0465 0.0720

(−1.2562 ,−0.5464) (0.0881 , 0.2702) (0.0548 , 0.3370)
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directly describe or estimate the relationship between Ni(t) and H̃i(t), the
underlying recurrent event process of interest and the observation process. In
contrast, the procedure given in this section is a conditional approach with
respect to the relationship between the two processes and does not allow one
to estimate the relationship quantitatively. Another difference of the three
procedures is that it is easy to see that the one given in Sect. 6.2 could be
more efficient than the other two if the assumed models are appropriate. On
the other hand, it could yield biased results or suffer model misspecification-
related problems more often than the other two. This is because the latter
two employ much more flexible or general models.

In comparison to the robust procedure described in Sect. 6.3, as the proce-
dure given in Sect. 6.2, a limitation of the procedure discussed in this section
is that it requires the observation process H̃i(t) to be a Poisson process. As
discussed above, this could be questionable in practice. On the other hand, as
mentioned before, we have recurrent event data on the H̃i(t)’s, and thus the
assessment of this assumption is relatively easy as discussed in Sect. 6.3.3.

To implement the method described in this section, one needs to choose
the link function g. It is apparent that it would be helpful to develop some
procedures for selecting or estimating it. However, this is generally quite
difficult as in all other similar situations as discussed before. Also as discussed
before, one may ask the sensitivity of the results to the misspecification of g
and the same can be asked about the robust inference procedure discussed in
Sect. 6.3 too. In practice, it may be difficult or impossible to determine the
exact relationship between the recurrent event process and the observation
process. As discussed in the previous subsection, a simple and natural way
is to try different choices for the link function g and see how the resulting
estimators change.

A major motivation behind model (6.18) is to extract or take into ac-
count the relevant information about the underlying recurrent event process
of interest that may exist in or be carried by the observation process. As
mentioned above, the model and the associated inference procedure should
not be used if the goal is to characterize or estimate the relationship between
the two processes. A related and reverse situation that may occur in prac-
tice is that one may be more interested in the observation process than the
recurrent event process. This corresponds to the situation where one faces re-
gression analysis of recurrent event data with the covariate process suffering
incompleteness or missingness. Of course, here the covariate process could be
a general longitudinal process rather than just a recurrent event process.

6.5 Analysis with Dependent Terminal Events

In recurrent event studies, as discussed above, sometimes there may exist
some terminal events. In this case, there are two possibilities with respect
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to the relationship between the recurrent event of interest and the terminal
event. One is that their occurrences are independent of each other and in
this situation, one can simply treat the censoring caused by terminal events
as the ordinary censoring such as in the previous section. The other is that
the events are related and their correlation needs to be taken into account
for the inference about the recurrent event process of interest. An example
of such related situations is that a higher rate of the recurrent events caused
by a disease may be associated with an increased rate of the death, the
terminal event, from the disease. In the literature, such terminal events are
often referred to as dependent terminal events or simply terminal events. It
is apparent that for this latter situation, the inference procedures different
from those discussed above are needed.

There exists considerable work on regression analysis of recurrent event
data with dependent terminal events. For inference in this situation, most of
the existing procedures adopt one of the following two approaches. One is
the marginal model approach that models the marginal occurrences of both
recurrent and terminal events and leaves their correlation arbitrary (Cook
and Lawless, 2007; Ghosh and Lin, 2002; Zhao et al., 2011b; Zhu et al., 2010,
2011a). The other, similar to those discussed in Sects. 6.2 and 6.3, is the
frailty model approach that employs some latent variables to account for the
correlation. In this case, the two event processes are usually assumed to be
independent given the frailty (Huang and Wang, 2004; Liu et al., 2004; Wang
et al., 2001; Ye et al., 2007; Zeng and Cai, 2010).

For regression analysis of panel count data in the presence of dependent
terminal events, the literature is relatively much limited. In this section, we
describe a marginal modeling approach that can be regarded as a generaliza-
tion of the approach described in the previous section. Specifically, as before,
we first introduce the notation and the assumed models, which have great
flexibility and allow for a variety of patterns for the underlying recurrent
event process. For estimation of regression parameters, the estimating equa-
tion approach is adopted. The methodology leaves the correlation between
the recurrent event and the terminal event unspecified. Also it makes use
of the inverse probability weighting technique to take into account the fact
that the subjects who are terminated cannot experience further occurrence
of the events of interest. Then we revisit the bladder tumor panel count data
discussed in Sects. 6.3.3 and 6.4.3 assuming that the recurrence process of
bladder tumors and the death of the patients may be related. It is followed
by some discussion and remarks.

6.5.1 Assumptions and Models

Consider a recurrent event study with the same set-up and the same problem
of interest as in the previous section. Let the Ni(t)’s and H̃i(t)’s along with
all other notation used below be defined too as in the previous section. In
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addition, assume that there exists a terminal event denoted by Di for subject
i that may be related to Ni(t), i = 1, . . . , n. Define N∗

di(t) = Ni(t∧Di) and

H∗
di(t) = H̃i(t ∧Di), which are the terminal event-adjusted recurrent event

process of interest and observation process and shall stay constant after Di.
Of course, the observed recurrent event process and the actual observation
process are Ndi(t) = N∗

di(t ∧ Ci) and Hdi(t) = H∗
di(t ∧ Ci), respectively.

Define Tdi = Ci ∧ Di and δdi = I(Di ≤ Ci), i = 1, . . . , n. Then the
observed data have the form

{Hdi(t), Ndi(t) dHdi(t), Tdi, δdi,Zi(t) ; t ≥ 0 , i = 1, . . . , n } .

To describe the covariate effects on the recurrent event process, define
Zi(t) = {Zi(s); 0 ≤ s ≤ t }, the history of the covariate process. In the
following, we assume that given Zi(t), Fit and Di ≥ t, the conditional mean
function of the adjusted recurrent event process N∗

di(t) has the form

E {N∗
di(t) | Zi(t),Fit, Di ≥ t } = g

{
μ0(t) exp{βTZi(t) +α

TQ(Fit)}
}
.

(6.20)

In the above, all g(·), μ0(t), Q, β and α are defined as with model (6.18). As
discussed before, the link function g(·) can take many forms to account for
various types of dependence of N∗

di(t) on Zi(t) and Fit. For example, g(x) =
x and g(x) = log x give the proportional mean model and the additive mean
model, respectively. Also one can let g(·) to be the Box-Cox transformation
g(x) = {(x + 1)a − 1}/a for a positive constant a and g(x) = log(x + 1).
The discussion in the previous section on the link function vector Q applies
here too.

Note that here we focus on the adjusted mean function and the same idea
can be found in the analysis of recurrent event data (Cook and Lawless, 2007;
Ghosh and Lin, 2002). Assume that the terminal event is death for the time
being. Among others, one advantage for the approach here is that no assump-
tion is needed for the recurrent event process after the death (Luo and Huang,
2010). In contrast, if one simply treats the death as a censoring variable as
with the methods described in the previous sections, the estimation of the
mean function could be biased. In addition, the analysis would not be able
to take into account the fact that the subjects who die can not experience
any further recurrent events. It is obvious that if there does not exist death
or Di = ∞, E{N∗

di(t) | Zi(t),Fit, Di ≥ t } reduces to E{N∗
di(t) | Zi(t),Fit }.

In the presence of death, one can show that

E{N∗
di(t) | Zi(t),Fit } =

∫ t

0

S(u|Zi)E{ dN∗
di(u) | Zi(u),Fiu, Di ≥ u }

given Zi(t) and Fit and after adjusting for the fact that the death precludes
further recurrent events, where S(t|Zi) = P{Di ≥ t|Zi(t) }. It then follows
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that
E{N∗

di(t) | Zi(t),Fit, Di ≥ t } > E{N∗
di(t) | Zi(t),Fit }

for t greater than the first observed death time.
In reality, as discussed above, both the adjusted observation processH∗

di(t)
and the terminal event time Di may also depend on the covariate process
Zi(t). With respect to the former, we assume that given Zi(t), H

∗
di(t) follows

the proportional rate model

E{ dH∗
di(t) | Zi(t) } = exp

{
γTZi(t)

}
dμ̃0(t) . (6.21)

Here γ and μ̃0(t) are defined as in model (5.16). For the terminal event time
Di, it is assumed that it follows the proportional hazards model given by

λd(t|Zi(t)) = λd0(t) exp
{
τ TZi(t)

}
. (6.22)

In the above, as with model (5.5), λd0(t) is an unspecified baseline hazard
function and τ is a vector of unknown regression parameters. Under the
model above, we have

S(t|Zi) = exp

{

−
∫ t

0

λd0(s) exp{τTZi(s)} ds
}

.

It is easy to see that models (5.16) and (6.21) are the same if the covari-
ates Zi(t)’s are time-independent. Also note that model (6.21) is the same
as model (2) of Ghosh and Lin (2002) and it is a marginal model. As an al-
ternative, instead of E{ dH∗

di(t) | Zi(t) }, one may naturally choose to model
E{ dH∗

di(t) | Zi(t), Di ≥ t }, which would be a conditional model. A main ad-
vantage of model (6.21) is that it allows one to focus on the marginal mean of
the cumulative number of observations over time and Ghosh and Lin (2002)
give more comments on this. Some discussion on this can also be found in
Luo and Huang (2010). In the following, it is assumed that N∗

di(t) and H
∗
di(t)

are independent given Zi(t), Di ≥ t and Fit. Also we assume that Ci is
independent of {N∗

di(t), H
∗
di(t), Di } conditional on Zi(t).

6.5.2 Estimation of Regression Parameters

Now we discuss estimation of regression parameters defined in the previous
subsection along with other parameters. Let Xi(t), θ and Yi(t) be defined as
in Sect. 6.4.2 and define

dM∗
di(t; θ,γ) = Ndi(t) dHdi(t) − Yi(t) g

{
μ0(t) exp{θTXi(t)}

}

× exp
{
γTZi(t)

}
dμ̃0(t) ,
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i = 1, . . . , n. Note that under models (6.20) and (6.21) and given the con-
ditional independent assumption for N∗

di(t), H
∗
di(t) and Ci, one can show

that

E{Ndi(t) dHdi(t) } = E
[
E {Yi(t)N∗

di(t) dH
∗
di(t) | Zi(t),Fit }

]

= E
[
E {Yi(t) | Zi(t) } E {N∗

di(t) dH
∗
di(t) | Zi(t),Fit }

]

= E
[
E {Yi(t) | Zi(t) }E {N∗

di(t) | Zi(t),Fit, Di ≥ t } E { dH∗
di(t) | Zi(t) }

]

= E
[
E
{
Yi(t)g

{
μ0(t) exp{θTX i(t)}

}
exp

{
γTZi(t)

}
dμ̃0(t)|Zi(t),Fit

}]

= E
[
Yi(t) g

{
μ0(t) exp{θTXi(t)}

}
exp

{
γTZi(t)

}
dμ̃0(t)

]
.

It follows that the dM∗
di(t; θ,γ)’s are zero-mean stochastic processes and

hence can be used to construct some estimating equations.
On the other hand, note that in practice, Ci is unobservable when Di ≤ Ci

and thus one cannot directly use dM∗
di(t; θ,γ). To overcome this, one way

is to employ the inverse probability weighting technique to replace Yi(t).
Specifically, define ωi(t) = I(Tdi ≥ t)/S(t|Zi) and note that E{ I(Tdi ≥
t)|Zi(t) } = E{ I(Ci ≥ t)|Zi(t) }S(t|Zi) based on the independence between
Ci and Di given Zi(·). It follows that

E{ωi(t) | Zi(t) } = E{ I(Ci ≥ t) | Zi(t) } .

This motivates us to consider

dMdi(t; θ,γ) = Ndi(t) dHdi(t) − ωi(t) g
{
μ0(t) exp{θTXi(t)}

}

× exp
{
γTZi(t)

}
dμ̃0(t) ,

i = 1, . . . , n, and it can be easily shown that the dMdi(t; θ,γ)’s are also zero-
mean stochastic processes. Note that here ωi(t) is still unobservable, but it
can be easily estimated by, for example, ω̂i(t) = I(Tdi ≥ t)/Ŝ(t|Zi). Here

Ŝ(t|Zi) = exp

[

−
∫ t

0

exp
{
τ̂TZi(s)

}
dΛ̂d0(s)

]

,

where τ̂ and Λ̂d0(t) denote the maximum partial likelihood estimator of τ

and the Breslow estimator of Λd0(t) =
∫ t

0
λd0(s)ds, respectively, based on

model (6.22). By following the arguments similar to those in Lin et al. (2001),
one can show that for large n, the estimator ω̂i(t) always exists and is unique
and consistent.

As in the previous section, let γ̂T and ˆ̃μ0(t; γ̂T ) denote the estimators of
γ and μ̃0(t) defined by Eqs. (5.20) and (5.21), respectively. For estimation of
θ and μ0(t) in model (6.20), as discussed before, it is natural to employ the
following estimating equations
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n∑

i=1

[
Ndi(t) dHdi(t)−ω̂i(t)g

{
μ0(t) exp{θTXi(t)}

}
exp

{
γTZi(t)

}
dμ̃0(t)

]
=0

(6.23)
for 0 ≤ t ≤ τ , and

UD(θ,γ) =
n∑

i=1

∫ τ

0

W (t)Xi(t)
[
Ndi(t) dHdi(t) − ω̂i(t)

× g
{
μ0(t) exp{θTXi(t)}

}
exp

{
γTZi(t)

}
dμ̃0(t)

]
= 0 (6.24)

with replacing γ and μ̃0(t) by γ̂T and ˆ̃μ0(t; γ̂T ), respectively. In the above,
as before, W (t) denotes a possibly data-dependent weight function.

Let θ̂D and μ̂D(t; θ̂D, γ̂T ) denote the estimators of θ and μ0(t) given by the
solutions to Eqs. (6.23) and (6.24). For their determination, one can develop a
procedure similar to the one discussed in Sect. 5.5.3 and the comments given
there also apply here. In particular, in general, these estimators have no
closed forms except in some special cases. One such case is when g(t) = tm,
wherem is a positive number, and in this situation, μ̂D(t; θ,γ) has an explicit
expression. Another special case is when g(t) = log t and for this situation,
one can easily derive

θ̂D =
[ n∑

i=1

∫ τ

0

W (t)
{
Xi(t)− X̄(t; γ̂T )

}
XT

i (t) ω̂i(t) e
γ̂T

TZi(t) d ˆ̃μ0(t; γ̂T )
]−1

×
n∑

i=1

∫ τ

0

W (t)
{
Xi(t)− X̄(t; γ̂T )

}
Ndi(t) dHdi(t) ,

and

μ̂D(t; θ,γ) = exp
{ ∑n

i=1 Ndi(t) dHdi(t)
∑n

i=1 ω̂i(t) exp{γTZi(t)} d ˆ̃μ0(t;γ)
− θT X̄(t;γ)

}
,

where

X̄(t;γ) =

∑n
i=1 Xi(t) ω̂i(t) exp{γTZi(t)}∑n

i=1 ω̂i(t) exp{γTZi(t)}
.

With respect to the asymptotic properties of θ̂D, Zhao et al. (2013a) show
that under some regularity conditions, it is consistent. To describe its asymp-

totic distribution, let θ0 denote the true value of θ and M̂
(1)
di (t) beMdi(t; θ,γ)

with all unknowns replaced by their estimates. Define

M̂
(2)
di (t) = Hdi(t) −

∫ t

0

ω̂i(s) exp
{
γ̂T
TZi(s)

}
d ˆ̃μ0(s; γ̂T ) ,

M̂
(3)
di (t) = I(Tdi ≤ t, δdi = 1) −

∫ t

0

Yi(s) exp
{
τ̂ TZi(s)

}
dΛ̂d0(s) ,
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ÊX(t; θ,γ) =

∑n
i=1 Xi(t) ω̂i(t) ġ{μ̂D(t; θ,γ)e

θTXi(t)}eθ
TXi(t)+γTZi(t)

∑n
i=1 ω̂i(t)ġ{μ̂D(t; θ,γ)eθ

TXi(t)}eθ
TXi(t)+γTZi(t)

,

Υ̂ (t; θ,γ)=
1

n

n∑

i=1

{
Xi(t)−ÊX(t; θ,γ)

}
ω̂i(t)g

{
μ̂D(t; θ,γ)eθ

TX i(t)
}
eγ

TZi(t),

R(k)(t; τ ) =
1

n

n∑

i=1

I(Tdi ≥ t) exp
{
τ TZi(t)

}
Zi(t)

⊗k , k = 0, 1, 2,

Â(θ,γ) =
1

n

n∑

i=1

∫ τ

0

W (t)ω̂i(t)g
{
μ̂D(t; θ,γ) exp{θTX i(t)}

}
exp

{
γTZi(t)

}

×
{
Xi(t)− ÊX(t; θ,γ

}{
Zi(t) − Ẑ(t;γ)

}T
d ˆ̃μ0(t;γ) ,

and

Ω̂(γ) =
1

n

n∑

i=1

∫ τ

0

{
Zi(t) − Ẑ(t;γ)

}⊗2

ω̂i(t) exp
{
γTZi(t)

}
d ˆ̃μ0(t;γ) ,

where ġ = dg(t)/dt and Ẑ(t; γ) = S(1)(t;γ)/S(0)(t;γ) with

S(k)(t;γ) =
1

n

n∑

i=1

ω̂i(t)Zi(t)
k exp

{
γTZi(t)

}
, k = 0, 1 .

Also define

B̂1(t) =
1

n

n∑

i=1

eτ̂
TZi(t)

∫ τ

0

I(t < s) B̂∗
i (s) d ˆ̃μ0(s; γ̂) ,

B̂2 =
1

n

n∑

i=1

∫ τ

0

B̂∗
i (t) Ĥ(t;Zi)

T Ω̂−1
τ d ˆ̃μ0(t; γ̂) ,

Q̂1 =
1

n

n∑

i=1

∫ τ

0

{
Zi(t) − Ẑ(t; γ̂T )

}
Q̂3(t;Zi)

T Ω̂−1
τ dM̂

(2)
di (t) ,

and

Q̂2(t) =
1

n

n∑

i=1

exp
{
τ̂ TZi(t)

} ∫ τ

0

{
Zi(u) − Ẑ(u; γ̂T )

}
I(u ≥ t) dM̂

(2)
di (u) ,

where

B̂∗
i (t) = W (t) ω̂i(t) exp

{
γ̂TZi(t)

}
[
{
Xi(t) − ÊX(t; θ̂D, γ̂T )

}
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× g
{
μ̂D(t; θ̂D, γ̂T ) exp{θ̂

T

DXi(t)}
}

− Υ̂ (t; θ̂D, γ̂T )

S(0)(t; γ̂T )

]

,

Ĥ(t;Zi) =

∫ t

0

exp
{
τ̂TZi(u)

} {
Zi(u) − R(1)(u; τ̂ )

R(0)(u; τ̂ )

}
dΛ̂d0(u) ,

Ω̂τ =
1

n

n∑

i=1

∫ τ

0

[
R(2)(t; τ̂ )

R(0)(t; τ̂ )
−
{R(1)(t; τ̂ )

R(0)(t; τ̂ )

}⊗2
]

dM̂
(3)
di (t) ,

and

Q̂3(t;Zi) =

∫ t

0

{
Zi(u) − Ẑ(u; γ̂T )

}
exp

{
τ̂TZi(u)

}
dΛ̂d0(u) .

Under the same regularity conditions mentioned above, Zhao et al. (2013a)

show that the distribution of n1/2 (θ̂D − θ0) can be asymptotically approxi-
mated by the normal distribution with mean zero and the covariance matrix
Â−1(θ̂D, γ̂T ) Σ̂D Â

−1(θ̂D, γ̂T ). Here Σ̂D = n−1
∑n

i=1 (ξ̂1i− ξ̂2i− ξ̂3i)⊗2 with

ξ̂1i =

∫ τ

0

W (t)
{
X i(t) − ÊX(t; θ̂D, γ̂T )

}
dM̂

(1)
di (t) ,

ξ̂2i =

∫ τ

0

[
W (t)Υ̂ (t; θ̂D, γ̂T )

S(0)(t; γ̂T )
+ Â(θ̂D, γ̂T )Ω̂

−1(γ̂T )
{
Zi(t) − Ẑ(t; γ̂T )

}
]

dM̂
(2)
di (t) ,

and

ξ̂3i =

∫ τ

0

[

Â(θ̂D, γ̂T )Ω̂
−1(γ̂T )Q̂1

{
Zi(t)−

R(1)(t; τ̂ )

R(0)(t; τ̂ )

}
+ Â(θ̂D, γ̂T )Ω̂

−1(γ̂T )

× Q̂2(t)

R(0)(t; τ̂ )
+

B̂1(t)

R(0)(t; τ̂ )
+ B̂2

{
Zi(t)−

R(1)(t; τ̂ )

R(0)(t; τ̂ )

}
]

dM̂
(3)
di (t) .

6.5.3 Reanalysis of Bladder Cancer Study

Now we reanalyze the bladder cancer panel count data discussed in
Sects. 6.3.3 and 6.4.3 assuming the existence of a dependent terminal event,
death. For the analysis, as in Sect. 6.4.3, we confine ourselves to the data
from the 85 bladder cancer patients in thiotepa (38) and placebo (47) groups.
Also we consider only the effects of treatment and the number of initial tu-
mors. As mentioned before, all patients had superficial bladder tumors when
they entered the study and all these tumors were removed at the beginning.
During the follow-up, the bladder tumors that were detected at each clinical
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visit were also removed. Of the 85 study subjects, there are 22 patients died
before the end of the follow-up. Here we assume that the death rate may be
related to both the underlying recurrence process of bladder tumors and the
visiting or observation process.

To apply the methodology described above, let Zi be defined as in
Sect. 6.4.3. In this case, unlike before, β1 and β2 denote the effects of the
thiotepa treatment and the number of initial tumors on the terminal event-
adjusted recurrence process of bladder tumors, respectively. Similarly α rep-
resents the effect of the visiting or observation process also on the terminal
event-adjusted recurrent event process. Table 6.3 presents the results ob-
tained with the use of the same three link functions g considered before,
Q(Fi,t) = H̃i(t−) and W (t) = 1. They include the estimated effects β̂D

and α̂D, the 95% confidence intervals and the p-values for testing the corre-
sponding effect being zero. The results with Q(Fi,t) = H̃i(t−)−H̃i(t−6) are
given in Table 6.4 with all other set-ups being the same as in Table 6.3. One
can easily see from the tables that as before, all results again suggest that
both the thiotepa treatment and the initial number of tumors had significant
effects on the recurrence rate of the bladder tumor. In particular, the thiotepa
treatment seems to significantly reduce the recurrence of bladder tumors.

With respect to the relationship between the recurrence process of blad-
der tumors and the visit process, we now have different results compared
with those obtained in Sect. 6.4.3. More specifically, the results here indicate
that both the total number of visits and the number of visits during the last
6 months seem to have no significant effect on the recurrence rate of blad-
der tumors. One possible explanation for the difference is that the significant
relationship detected in Sect. 6.4.3 may be due to the correlation between
the bladder tumor occurrence process and the terminal event, death, which
was assumed to be none. Note that in addition to the two choices considered
above, sometimes one may argue that the recurrence process of bladder tu-
mors could depend on the duration since the last visit. This corresponds to

Table 6.3. Estimated regression parameters with Q(Fit) = H̃i(t−)

β̂D,1 β̂D,2 α̂D

Function g(t) 95%CI for β1 95%CI for β2 95%CI for α
p-value for β1 = 0 p-value for β2 = 0 p-value for α = 0

−1.8955 0.2961 0.0398
g(t) = t (−2.6442, −1.1467) (0.1487, 0.4436) ( −0.0086, 0.0883)

< 0.001 < 0.001 0.1074

−0.9474 0.1481 0.0199
g(t) = t2 (−1.3217, −0.5731) (0.0743, 0.2218) (−0.0043, 0.0441)

< 0.001 < 0.001 0.1075

−4.0501 0.8464 0.0352
g(t) = log t (−5.9544, −2.1459) (0.2636, 1.4292) (−0.1260, 0.1964)

< 0.001 0.0044 0.6683



6.5 Analysis with Dependent Terminal Events 151

Q(Fit) = t − ti,j−1 with ti,j−1 < t ≤ ti,j , and the analysis with the use of
this function actually gives similar results here.

Note that as for model (6.18), a procedure can be derived in the same way
to assess the goodness-of-fit of model (6.20) and more discussion on this is
given in the next subsection. The application of such procedure based on 1,000
realizations yields the p-values of 0.866, 0.857 and 0.594 for the situations
with Q(Fit) = H̃i(t−) and the three link functions g(t) = t, g(t) = t2, and
g(t) = log t, respectively. The use ofQ(Fit) = H̃i(t−)−H̃i(t−6) gives similar
p-values and they all indicate that model (6.20) seems to be reasonable for
the data.

6.5.4 Discussion

The focus of this section has been to take into account the dependent terminal
event in regression analysis of panel count data. As discussed above, the
analysis could give misleading or wrong results or conclusions if one treats
the event as a simple censoring event. For the task, a key issue is how to model
the relationship between the underlying recurrent event process of interest
and the terminal event. It is easy to see that model (6.20) is a generalization
of and reduces to model (6.18) if Di = ∞ or there does not exist the terminal
event. Model (6.20) should be of more clinical interest to some extent because
it directly accounts for the covariate effects on the frequency of the recurrent
events of interest among survivors. In other words, it does not model the
recurrent event process after the terminal events or the correlation between
the rates of recurrent and terminal events.

Instead of model (6.20), one could directly model the marginal mean func-
tion of the unadjusted recurrent event process of interest. An advantage of
this approach is that the interpretation of the results may be easier than the

Table 6.4. Estimated regression parameters with Q(Fit) = H̃i(t−)− H̃i(t− 6)

β̂D,1 β̂D,2 α̂D

Function g(t) 95%CI for β1 95%CI for β2 95%CI for α
p-value for β1 = 0 p-value for β2 = 0 p-value for α = 0

−1.6750 0.2901 0.0764
g(t) = t (−2.3786, −0.9713) (0.1483, 0.4318) (−0.0639, 0.2165)

< 0.001 < 0.001 0.2858

−0.8373 0.1450 0.0382
g(t) = t2 (−1.1890, −0.4854) (0.0742, 0.2159) (−0.0319, 0.1083)

< 0.001 < 0.001 0.2861

−4.1338 0.8492 0.2189
g(t) = log t (−6.2092, −2.0584) (0.2780, 1.4205) (−0.0703, 0.5080)

< 0.001 0.0036 0.1379
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model discussed above. Under the models considered above, if a treatment
reduces the disease-related event recurrence and death rate simultaneously,
it is clearly preferred. The same is true if the treatment reduces the disease-
related event recurrence but has no significant impact on survival. However,
if the treatment reduces the disease-related event recurrence but increases
mortality, then it is more subtle to make a judgment on the treatment and
one may need to do further analysis. In the context of recurrent event data,
many authors have investigated the differences in terms of the uses of different
types of models (Ghosh and Lin, 2000, 2003; Luo and Huang 2010).

As for model (6.18) discussed in Sect. 6.4, one can similarly develop an
omnibus goodness-of-fit test procedure for model (6.20). For the current sit-
uation, the cumulative sum of residuals process corresponding to F∗(t,x) for
model (6.18) has the form

F∗
d (t,x) =

1√
n

n∑

i=1

∫ t

0

I(Xi(u) ≤ x) dM̂ (1)
di (u) ,

and one can base the test on the statistic sup0≤t≤τ,x |F∗
d (t,x)|. To implement

this, again as before, we can apply the approximation technique to obtain the
p-value instead of deriving and using the exact distribution of the test statis-
tic. More specifically, one can first construct a zero-mean Gaussian process
F̂∗

d (t,x) that is a function of a simple random sample of size n from the stan-
dard normal distribution independent of the observed data. The p-value can
then be determined by comparing the observed value of sup0≤t≤τ,x |F∗

d (t,x)|
to a large number of realizations from sup0≤t≤τ,x |F̂∗

d (t,x)|, which can be ob-
tained by repeatedly generating the standard normal random samples given
the observed data.

Of course one can ask the same model checking question about models
(6.21) and (6.22). As pointed out before in other similar situations, for both
models, complete data are available and so are some existing procedures in
the literature (Lin et al., 2000, 1993; Schoenfeld, 1982). Also there exist many
other models in the literature that one could apply for H∗

di(t) and Di instead
of these two models. For modeling the terminal event, for example, some
alternative models include the additive hazards model, the accelerated failure
time model, and the linear transformation model (Kalbfleisch and Prentice,
2002).

6.6 Bibliography, Discussion, and Remarks

As mentioned before, the literature on regression analysis of panel count
data with dependent observation processes is relatively new and limited. The
authors who started the detailed investigation of this area include Huang et al.
(2006), Kim (2006) and Sun et al. (2007b), and they gave some joint modeling
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inference procedures similar to those discussed in Sect. 6.2. Following them,
He et al. (2009), Zhao and Tong (2011) and Zhao et al. (2013) also provided
some joint modeling approaches for the problem. Other references on the
topic include Buzkova (2010), Li (2011), Li et al. (2010), Li et al. (2013) and
Zhao et al. (2013a) and the latter four developed some marginal approaches
by employing semiparametric transformation models.

Also as mentioned before, panel count data can be regarded as a special
type of longitudinal data. Although there exists a great deal of work on re-
gression analysis of longitudinal data, the literature on longitudinal data with
dependent observation processes is also limited (Liang et al., 2009; Lin et al.,
2004; Liu et al., 2008; Sun et al., 2005, 2007a, 2012; Sun and Tong, 2009; Zhu
et al., 2011b). Here by the dependent observation process, we mean that the
longitudinal process of interest and the process that generates observation
times are correlated. On the other hand, many authors have investigated the
situation where there exists a terminal event such as a survival event that is
related to the longitudinal process of interest. For the situation, most of the
developed approaches assume that the longitudinal process and the obser-
vation process are independent of each other completely or given covariates.
Furthermore, they are joint procedures aiming at the joint analysis of lon-
gitudinal and time-to-event data (DeGruttola and Tu, 1994; Elashoff et al.,
2008; Jin et al., 2006; Liu and Ying, 2007; Roy and Lin, 2002; Song et al.,
2002, 2012; Sun et al., 2007a, 2012; Tsiatis and Davidian, 2004).

Given the approaches discussed in the previous sections, a question of
practical interest may be how to choose an appropriate procedure for a given
set of panel count data. It is apparent that this will partly depend on the
questions of interest. The methods described in Sects. 6.2 and 6.3 allow one
to investigate the effects of covariates on all concerned processes, while the
procedures given in Sects. 6.4 and 6.5 focus only on the effects of covariates
on the recurrent event process of interest. A similar question is the selection
of the link functions g and Q in models (6.18) and (6.20). They determine
the patterns of the underlying recurrent event process or the relationship
among the recurrent event process, the observation process and the covariate
process. Both questions are clearly quite difficult in general. On the other
hand, for a given specific model or set of models, as commented above, one
could apply some goodness-of-fit test or model checking procedures.

Finally note that to model two related variables or processes, one can either
model them jointly as in Sects. 6.2 and 6.3, or model one marginally and the
other conditional on the first one. The models discussed in Sects. 6.4 and 6.5
assume that the observation process carries some relevant information about
the recurrent event process of interest and specify how the information affects
the recurrent event process. Sometimes it could be more natural to ask or
model how the observation process depends on the history information of
the recurrent event process. In other words, how the recurrent event process
affects the observation process. To address this, we may want to develop some
models on H̃i(t) conditional on

{
Ni(s) ; 0 ≤ s < t

}
.
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Analysis of Multivariate Panel Count
Data

7.1 Introduction

This chapter discusses statistical analysis of multivariate panel count data,
which arise when there exist several related types of recurrent events and
study subjects are observed only at discrete time points. As remarked before,
in this case, an issue that does not exist for univariate panel count data is the
correlation between different types of events. To deal with it, two approaches
are commonly used as with multivariate failure time data (Hougaard, 2000).
One is the marginal model approach that leaves the correlation arbitrary,
and the other is the joint model approach that characterizes the correla-
tion through the use of some latent or random variables. In this chapter,
we mainly adopt the marginal model approach and consider two problems,
nonparametric comparison of treatments in terms of mean functions and
regression analysis.

As discussed before, for nonparametric or semiparametric analysis of
univariate panel count data, it is usually convenient to focus on or model
the rate or mean functions of the underlying recurrent event processes. This
is the same for the analysis of multivariate panel count data. In the following,
we first consider in Sect. 7.2 the nonparametric treatment comparison prob-
lem with the hypothesis formulated by the mean functions of the processes of
interest as in Chap. 4. To conduct the hypothesis test, a class of test statistics
based on the comparison of the estimated mean functions is presented.

Sections 7.3–7.5 discuss regression analysis of multivariate panel count
data. First we consider in Sect. 7.3 the situation where the recurrent event
processes of interest and the observation process can be assumed to be
independent given covariates. For the problem, a marginal model approach
is described under some general regression models for the mean functions of
both the recurrent event processes and the observation process. The models
can be regarded as generalizations of the proportional mean models (1.4) and
(5.4). Some estimating equations are introduced for estimation of regression
parameters.

J. Sun and X. Zhao, Statistical Analysis of Panel Count Data, Statistics
for Biology and Health 80, DOI 10.1007/978-1-4614-8715-9 7,
© Springer Science+Business Media New York 2013
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Sections 7.4 and 7.5 investigate the regression problem about multivariate
panel count data when the recurrent event processes of interest and the
observation process may be related as in Chap. 6. For this, we first describe a
marginal model approach that is a generalization of the approach discussed
in Sect. 6.3. Specifically, we consider the situation where the marginal mean
functions of each individual recurrent event process of interest and the
observation process can be characterized by models (6.14) and (6.15), respec-
tively. In Sect. 7.5, we discuss situations that are similar to those considered in
Sect. 6.4. More specifically, it is assumed that the conditional marginal mean
function of each individual recurrent event process given the observation
process can be described by model (6.18). For both cases, the estimating
equation approach is employed for estimation of regression parameters of
interest. Finally Sect. 7.6 gives some bibliographical notes and discusses some
issues not touched in the previous sections.

7.2 Nonparametric Comparison of Cumulative
Mean Functions

Consider a recurrent event study that involves n independent subjects and
in which each subject may experience K different types of recurrent events.
Suppose that only panel count data are available for the underlying recur-
rent event processes of interest. In this section, we consider the nonparametric
treatment comparison problem with the focus on the two-sample situation.
The idea described can be easily generalized to general cases and some discus-
sion on it is given below. In the following, it is assumed that the underlying
recurrent event process and the observation process are independent.

For each i and k, let Nik(t) denote the recurrence event process given
by subject i with respect to the kth type recurrent event, i = 1, . . . , n,
k = 1, . . . ,K. In other word, Nik(t) represents the cumulative number of
the occurrences of the kth type recurrent event of interest that subject i has
experienced up to time t. For simplicity, suppose that the first n1 subjects are
in the control group and the remaining n2 are in the treatment group, where
n1 + n2 = n. Furthermore, define μk1(t) = E{Nik(t)} for i = 1, . . . , n1 and
μk2(t) = E{Nik(t)} for i = n1 +1, . . . , n. That is, μk1(t) and μk2(t) are the
mean functions of Nik(t) for subjects in the control and treatment groups,
respectively. Suppose that the goal is to test the null hypothesis

HK
0 : μ11(t) = μ12(t) , . . . , μK1(t) = μK2(t) .

Note that if K = 1, the test problem above reduces the one discussed in
Chap. 4 and thus one can readily employ the approaches discussed there. The
same methods can also be used if one is interested in the treatment effect
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only on one particular type of recurrent events. Otherwise it is apparent that
one needs different procedures as the one described below for an efficient test.

7.2.1 Two-Sample Nonparametric Test Procedures

In this subsection, we describe a class of test statistics for testing the hy-
pothesis HK

0 . For this, let 0 < ti,1 < · · · < ti,mi denote the observation times
on Nik(t) or subject i and ni,k,j = Nik(ti,j), the observed value of Nik(t) at
ti,j , i = 1, . . . , n, k = 1, . . . ,K, j = 1, · · · ,mi. Then the observed data are

{ ti,j , ni,k,j ; j = 1, . . . ,mi, i = 1, . . . , n, k = 1, . . . ,K } .

Note that here for simplicity, we assume that the observation times for dif-
ferent types of recurrent events from the same subject are the same. The
approach given below can be easily generalized to the situation where the
observation times for different types of recurrent events are different.

To present the test statistics, let μ̂I,k1(t) and μ̂I,k2(t) denote the IRE of
μk1(t) and μk2(t) based on the data on type k recurrent events and from
the subjects in the control and treatment groups, respectively, k = 1, . . . ,K.
Then by following the idea used in Sect. 4.2.2 and also commonly employed in
failure time data analysis (Kalbfleisch and Prentice, 2002; Pepe and Fleming,
1989), one can consider the statistic

UZV S =

√
n1 n2

n

K∑

k=1

∫ τ

0

Wn,k(t) { μ̂I,k1(t) − μ̂I,k2(t) } dGn(t) , (7.1)

first proposed in Zhao et al. (2013c). In the above, as before, τ denotes the
largest observation time, Wn,k(t) is a bounded weight process, and

Gn(t) =
1

n

n∑

i=1

mi∑

j=1

I(ti,j ≤ t) ,

the empirical observation process. It is apparent that ifK = 1, UZV S reduces
to the test statistic UPSZ discussed in Sect. 4.2.2 for univariate panel count
data.

One can easily see that as UPSZ , the statistic UZV S compares the esti-
mators of individual mean functions directly and represents the integrated
weighted differences between the estimated mean functions. As mentioned
above, similar test statistics are commonly used in failure time data analysis
for the comparison of survival functions as well as in other fields. Instead of
using the statistic UZV S , one could construct test statistics that compare the
estimators of individual mean functions to the estimator of the overall mean
function under the hypothesis as the statistic USF discussed in Sect. 4.2.1.
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In general, as commented before, it is natural to expect that the statistic
UZV S has better power although the two should be asymptotically equivalent.

The statistic UZV S can be rewritten as

UZV S =

√
n1 n2

n3

n∑

i=1

K∑

k=1

mi∑

j=1

Wn,k(ti,j) {μ̂I,k1(ti,j) − μ̂I,k2(ti,j)} .

UnderHK
0 and some regular condition, Zhao et al. (2013c) show that for large

n, one can approximate the distribution of UZV S by the normal distribution
with mean zero and the variance that can be consistently estimated by

σ̂2
ZV S =

n2

nn1

n1∑

i=1

⎡

⎣
K∑

k=1

mi∑

j=1

Wn,k(ti,j)
{
Nik(ti,j) − μ̂I,k1(ti,j)

}
⎤

⎦

2

+
n1

nn2

n∑

i=n1+1

⎡

⎣
K∑

k=1

mi∑

j=1

Wn,k(ti,j)
{
Nik(ti,j) − μ̂I,k2(ti,j)

}
⎤

⎦

2

.

Hence one can perform the test of the null hypothesis HK
0 by using the

statistic U∗
ZV S = UZV S/σ̂ZV S based on the standard normal distribution.

In the above, it is assumed that μ̂I,k1(t) and μ̂I,k2(t) denote the isotonic
regression estimators. Actually one can employ any consistent estimators
of μk1(t) and μk2(t) such as the maximum likelihood estimators discussed
in Chap. 3 and the results given above still hold (Zhao et al., 2013c). To
apply the test procedure above, one needs to choose the weight process
Wn,k(t). It is clear that a simple and natural choice is to set all Wn,k(t)
to be the same such as Wn,k(t) = 1. Another natural choice is to take
Wn,k(t) =

∑n
i=1 I(t ≤ ti,mi) /n. If observation times for different types of

events are different, instead of the latter choice, one could also set Wn,k(t)
to be proportional to the number of subjects under observation at time t for
type k recurrent events. It is apparent that the general comments given in
Chap. 4 on the selection of weight processes apply here.

7.2.2 An Application

Now we illustrate the nonparametric comparison procedure described above
by using the data arising from the skin cancer chemoprevention trial discussed
in Sect. 1.2.4 and given in data set III of Chap. 9. As mentioned before, the
data consist of 290 patients with a history of non-melanoma skin cancers
and they were supposed to be assessed or observed every 6 months. However,
as expected, the real observation and follow-up times differ from patient to
patient. The patients were randomized to either a placebo group (147) or the
DFMO group (143). In addition to the observation times, the observed data
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include the numbers of occurrences of two types of recurrent events, basal
cell carcinoma and squamous cell carcinoma. One of the goals of the trial
is to evaluate the overall effectiveness of DFMO in reducing the recurrence
rates of both types of new skin cancers in these patients.
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Fig. 7.1. Estimated mean functions of the recurrences of the new skin cancers

To apply the test procedure discussed in the previous subsection, for sub-
ject i, define Ni1(t) and Ni2(t) to be the processes representing the cumu-
lative numbers of the occurrences of basal cell carcinoma and quamous cell
carcinoma, respectively, up to time t, i = 1, . . . , 290. Let μ11(t) and μ21(t)
represent the cumulative mean functions of the occurrences of basal cell car-
cinoma and squamous cell carcinoma, respectively, for the patients in the
DFMO treatment group. The functions μ12(t) and μ22(t) have the same
meaning but for the patients in the placebo treatment group. The appli-
cation of the test procedure with Wn,k(t) = 1 gives U∗

ZV S = −1.748. With
the use of Wn,k(t) =

∑n
i=1 I(t ≤ ti,mi) /n, we have U∗

ZV S = −1.660. Both
results indicate that overall the DFMO treatment seems to have some mild
effects in reducing the recurrence rates of basal cell carcinoma and quamous
cell carcinoma.

To give a graphical comparison of the two groups, Fig. 7.1 presents the IRE
of the four mean functions μ11(t), μ12(t), μ21(t) and μ22(t) with the time scale
being days. It suggests that the DFMO treatment seems to have some effects
in reducing the recurrence rate of basal cell carcinoma but does not seem to
have any effect on the recurrence rate of squamous cell carcinoma.

7.2.3 Discussion

As discussed in Chap. 4, the nonparametric treatment comparison based on
univariate panel count data is needed or occurs in many fields including clin-
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ical trials, medical follow-up studies and tumorigenicity experiments. This is
the same for multivariate panel count data. Also as pointed out before, the
test procedure described above is a generalization of that given in Sect. 4.2.2
for univariate panel count data. Actually one could follow the same idea to
generalize other test procedures discussed in Chap. 4. Note that the method
adopted here is essentially a marginal approach in that it leaves the rela-
tionship between different types of recurrent events completely unspecified.
Of course, one could develop some semiparametric or joint model approaches
that involve modeling the correlation between different types of recurrent
events. It is easy to see that the former is usually simpler and preferred in
practice.

The test procedure described above can be easily generalized to general
p-sample situations. To be specific, let μkl(t) denote the mean function of
the recurrent event process for the kth type recurrent event corresponding
to treatment l, l = 1, . . . , p, k = 1, . . . ,K. Suppose that one is interested in
testing the null hypothesis

HK∗
0 : μk1(t) = . . . = μkp(t) for all k .

Let μ̂I,kl(t) denote the IRE of μkl(t) based on the lth sample on the kth
type recurrent event, l = 1, . . . , p, k = 1, . . . ,K. To test the hypothesis
HK∗

0 , similar to the statistic given in (7.1), one can consider the test statistic
U = (U2, . . . , Up)

T with

Ul =

√
n1 nl

n

K∑

k=1

∫ τ

0

Wn,kl(t) { μ̂I,k1(t) − μ̂I,kl(t) } dGn(t) ,

l = 2, . . . , p. In the above, nl denotes the number of study subjects in the
lth sample and the Wn,kl(t)’s are some bounded weight processes as the
Wn,k(t)’s. The asymptotic normality of U under HK∗

0 can be developed by
following the argument similar to that used in Zhao et al. (2013c).

Note that for the test procedure given in the previous subsection, it has
been assumed that the observation times or processes for different types of
recurrent events are the same for simplicity. Although this is usually true for
many recurrent event studies such as the skin cancer trial discussed above,
sometimes different observation times may be used for different types of re-
current events. For this latter situation, the approach given above is actually
still valid except that one needs to redefine the empirical observation process
Gn(t) used in (7.1).

Another assumption behind the test procedure above is that all obser-
vation times follow the same distribution for all subjects in different treat-
ment groups. We remark that this assumption is generally reasonable for
most of medical studies with periodic follow-ups such as clinical trials. In
this situation, subjects are usually scheduled to be observed at prespecified
observation time points. Although actual observation times may vary from
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these prespecified time points and from subject to subject, the variation can
often be regarded as being independent of treatments. On the other hand,
sometimes this may not be true as discussed in Chaps. 4 and 6 and in these
situations, some new test procedures are needed. Also as discussed before,
of course, the distributions of the observation times cannot be completely
different among treatment groups as otherwise, it may not be possible for
nonparametric comparison.

In the next section, we discuss methods for regression analysis of multi-
variate panel count data. For treatment comparison, as with univariate panel
count data, one could also define some treatment indicators and employ the
regression procedures discussed below.

7.3 Regression Analysis with Independent Observation
Processes

This section discusses regression analysis of multivariate panel count data.
For the discussion, we assume that the underlying recurrent event process of
interest and the observation process are independent given covariates. The
problem to be investigated is the same as that considered in Chap. 5 except
that now there exist several related types of recurrent events rather than only
one type of recurrent events as before. For the analysis, we first describe two
marginal mean models for the recurrent event processes of interest and the
observation process, respectively, along with some assumptions. Similar to
the semiparametric transformation model (5.15), the models are quite gen-
eral and include the proportional mean models (1.4) and (5.4) as special
cases. Some estimating equations are then presented for estimation of regres-
sion parameters, and the estimation of the underlying mean functions is also
discussed. The approach is illustrated by using a set of bivariate panel count
data on psoriatic arthritis, collected from the University of Toronto Psoriatic
Arthritis Clinic. It is followed by some discussion on the generalizations of
the presented inference procedure among other issues.

7.3.1 Assumptions and Models

As in the previous section, consider a recurrent event study that involves n
independent subjects and in which each subject may experience K different
types of recurrent events. Also as before, suppose that only panel count data
are available and let Nik(t)’s be defined as in the previous section for 0 ≤ t ≤
τ , where τ is a known constant representing the study length, i = 1, . . . , n,
k = 1, . . . ,K. Furthermore, suppose that for each subject, there exist a
positive random variable Ci representing the censoring or follow-up time on
the subject and a p × 1 vector of covariates denoted by Zi, i = 1, . . . , n.
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Note that here for the simplicity of presentation, we assume that the follow-
up time or observation period and the covariates are the same for different
types of recurrent events. Some comments on them are given below. Also we
assume that the covariates are time-independent and the main goal of the
study is to estimate the effects of Zi on Nik(t).

To describe the observed panel count data, let 0 < tik,1 < . . . < tik,mik

denote the observation times on Nik(t), where mik is the potential or sched-
uled number of observations on the kth type of recurrent events for sub-
ject i, i = 1, . . . , n, k = 1, . . . ,K. For each i and k, define Hik(t) =
H̃ik{min(t, Ci)}, where H̃ik(t) =

∑mik

j=1 I(tik,j ≤ t). It is easy to see that
Hik(t) is a point process characterizing the observation process on subject i
with respect to the kth type recurrent event, and it jumps by one only at the
observation times on Nik(t). Then the observed data have the form

{ tik,j , Nik(tik,j), Ci,Zi ; j = 1, . . . ,mik, i = 1, . . . , n, k = 1, . . . ,K }
(7.2)

or

{Hik(t), Nik(t) dHik(t), Ci,Zi ; t ≤ Ci, i = 1, . . . , n, k = 1, . . . ,K } .
(7.3)

For the effects of covariates on Nik(t), we assume that given Zi, the
marginal mean function of Nik(t) has the form

E{Nik(t) |Zi} = μk(t) gN (ZT
i β) . (7.4)

Here μk(t) is an unknown, positive, strictly increasing and continuous baseline
mean function, β a p × 1 vector of regression parameters representing the
effects of Zi on Nik(t), and gN (·) a known, positive function assumed to
be strictly increasing and twice differentiable. With respect to the effects of
covariates on the observation process, it is assumed that H̃ik(t) is a counting
process with the marginal mean function

E{H̃ik(t) |Zi} = μ̃k(t) gH(ZT
i γ) (7.5)

given Zi. In the above, as with model (7.4), μ̃k(t) is also a completely un-
known, positive, strictly increasing and continuous baseline mean function,
γ denotes the effects of covariates on H̃ik(t), and gH(·) is a known, positive
function also assumed to be strictly increasing and twice differentiable.

It is apparent that models (7.4) and (7.5) withK = 1 include models (1.4)
and (5.4) as special cases, respectively, and different link functions gN(·) and
gH(·) give different models. Model (7.4) assumes that baseline mean functions
can be different for different types of recurrent events, but the effects of
covariates on different types of recurrent events are identical. The same is
true for model (7.5) with respect to the observation process. Some comments
are given below for the situation where the covariate effects may be different
for different types of recurrent events. With respect to the choice of the
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link functions gN (·) and gH(·), a commonly used one is gN(x) = gH(x) =
exp(x), which gives the proportional mean models. Some other choices include
gN(x) = gH(x) = 1 + x and gN (x) = gH(x) = log(1 + ex). Of course, for
a given problem, gN (·) and gH(·) do not have to be identical.

In the next subsection, we describe some estimating equations for estima-
tion of regression parameters β as well as γ. In this chapter, we assume that
the Ci’s follow the same distribution function.

7.3.2 Estimation Procedure

To derive the estimating equations for estimation of regression parameters,
for each i and k, define

N̄ik =

mik∑

j=1

Nik(tik,j) I(tik,j ≤ Ci) =

∫ τ

0

Nik(t) dHik(t) ,

i = 1, . . . , n, k = 1, . . . ,K. Note that conditional on Zi and under models
(7.4) and (7.5), we have

E
{
N̄ik |Zi

}
= αk gN (ZT

i β) gH(ZT
i γ) ,

where αk =
∫ τ

0
μk(t)P (Ci ≥ t) dμ̃k(t). Suppose that the covariates Zi’s are

centered. Then by following the idea used in Sect. 5.3.2, a natural estimating
function is given by

UMI(β,γ) =
1√
n

K∑

k=1

n∑

i=1

Zi N̄ik

{
gN (ZT

i β)
}−1 {

gH(ZT
i γ)

}−1

(7.6)

assuming that γ is known.
Of course, the parameter γ is unknown in reality. For its estimation or

the estimation of model (7.5), note that we have recurrent event data. Define
Yi(t) = I(t ≤ Ci), indicating if subject i is at risk of experiencing recurrent
events at time t, i = 1, . . . , n. Also define

S
(d)
k (t;γ) =

1

n

n∑

i=1

Yi(t)Z
⊗d
i g

(d)
H (ZT

i γ) ,

and

Ek(t;γ) =
S
(1)
k (t;γ)

S
(0)
k (t;γ)

,

d = 0, 1, 2, k = 1, . . . ,K. Suppose that the limits of S
(d)
k (t;γ) and Ek(t;γ)

exist. Cai and Schaubel (2004) suggest to estimate γ by the following esti-
mating equation
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HM (γ) =
1√
n

n∑

i=1

K∑

k=1

∫ τ

0

{

Zi
g
(1)
H (ZT

i γ)

gH(ZT
i γ)

− Ek(s;γ)

}

dHik(s) = 0 ,

where g
(1)
H (·) denotes the derivative of gH(·). It should be noted that the

estimating equation above only makes use of the observed information on the
observation processes Hik(t)’s. Let γ̂M denote the solution to the equation
above. Then it is natural to estimate β by the solution to UMI(β, γ̂M ) = 0.

Let β̂MI denote the estimator of β defined above and β0 and γ0 the true

values of β and γ, respectively. To describe the asymptotic properties of β̂MI

as well as γ̂M , for k = 1, . . . ,K, define

S
(3)
k (t;γ) =

1

n

n∑

i=1

Yi(t)Z
⊗2
i

{
g
(1)
H (ZT

i γ)
}2 {

gH(ZT
i γ)

}−1

,

Vk(t;γ) =
S
(3)
k (t;γ)

S
(0)
k (t;γ)

− Ek(t;γ)
⊗2 ,

and H·k(t) =
∑n

i=1 Hik(t). Assume that the limit of Vk(t;γ) exists. He et al.

(2008) show that under some mild regularity conditions, β̂MI is unique and

consistent. Furthermore, they show that the distribution of
√
n (β̂MI − β0)

can be asymptotically approximated by the multivariate normal distribution
with mean zero and the covariance matrix

Σ̂MI(β̂MI) = F̂−1 Ĝ Γ̂ ĜT {F̂T }−1 .

In the above, Ĝ = ( Ip,−D̂Â−1(γ̂M ) ),

F̂ = − 1

n

n∑

i=1

K∑

k=1

{
gN(ZT

i β̂MI)
}−2

g
(1)
N (ZT

i β̂MI)
{
gH(ZT

i γ̂M )
}−1

N̄ikZiZ
T
i ,

and

Γ̂ =

(
Σ̂U Σ̂UH

Σ̂T
UH Σ̂H

)

,

where Ip denotes the p× p identity matrix,

D̂ = − 1

n

n∑

i=1

K∑

k=1

{
gN (ZT

i β̂MI)
}−1

g
(1)
H (ZT

i γ̂M )
{
gH(ZT

i γ̂M )
}−2

N̄ikZiZ
T
i ,

Â(γ) = − 1

n

K∑

k=1

∫ τ

0

Vk(t;γ) dH·k(t) ,
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Σ̂U =
1

n

n∑

i=1

[
K∑

k=1

Zi N̄ik

{
gN(ZT

i β̂MI)
}−1 {

gH(ZT
i γ̂M )

}−1
]⊗2

,

Σ̂H =
1

n

n∑

i=1

[
K∑

k=1

∫ τ

0

{

Zi
g
(1)
H (ZT

i γ̂M )

gH(ZT
i γ̂M )

− Ek(t; γ̂M )

}

dM̂ik(t; γ̂M )

]⊗2

,

and

Σ̂UH =
1

n

n∑

i=1

[
K∑

k=1

Zi N̄ik

{
gN (ZT

i β̂MI)
}−1 {

gH(ZT
i γ̂M )

}−1
]

×
[

K∑

k=1

∫ τ

0

{

Zi
g
(1)
H (ZT

i γ̂M )

gH(ZT
i γ̂M )

− Ek(t; γ̂M )

}

dM̂ik(t; γ̂M )

]T

with
dM̂ik(t;γ) = dHik(t) − Yi(t) gH(ZT

i γ) d ˆ̃μk(t;γ)

and

ˆ̃μk(t;γ) =

∫ t

0

dH· k(s)

nS
(0)
k (s;γ)

.

Note that the last quantity ˆ̃μk(t;γ) is a generalization of the estimator (1.10)
for the baseline mean function μ̃k(t) given γ, i = 1, . . . , n, k = 1, . . . ,K.

In addition the distribution of β̂MI , in practice, one may also be interested

in or need the distribution of γ̂M or the joint distribution of β̂MI and γ̂M

as well as the estimation of the baseline mean functions μk(t), k = 1, . . . ,K.
For the former, He et al. (2008) prove that one can asymptotically approx-

imate the joint distribution of
√
n (β̂MI − β0) and

√
n (γ̂M − γ0) by the

multivariate normal distribution with mean zero and the covariance matrix

Σ̂MI(β̂MI , γ̂M ) = − F̂−1 Ĝ Γ̂ ĜT
0 .

Here Ĝ0 = ( 0p,−Â−1(γ̂) ) with 0p denoting the p × p zero matrix. For
estimation of μk(t), one way is to apply the isotonic regression approach
discussed in Sect. 3.3. A simpler method is to estimate dμk(t) first by the
estimator similar to that given in (3.9) and then μk(t) by the integration of
the estimated dμk(t). Specifically, given Zi and β and under model (7.4), a
natural estimator of the rate function dμk(t) based on subject i is given by
the empirical estimator

dμ̂ik(t;β)=

mik∑

j=1

Nik(tik,j)−Nik(tik,j−1)

tik,j−tik,j−1

{
gN (ZT

i β)
}−1

I(tik,j−1<t ≤ tik,j),

where tik,0 = 0, i = 1, . . . , n, k = 1, . . . ,K. This gives the empirical esti-
mator
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μ̂k(t; β̂MI) =

∫ t

0

∑n
i=1 dμ̂ik(s; β̂MI)∑n
i=1 I(s ≤ tik,mik

)
(7.7)

for μk(t), 0 ≤ t ≤ max{tik,mik
}, k = 1, . . . ,K.

7.3.3 Analysis of Psoriatic Arthritis Data

In this subsection, we illustrate the methodology described above by using
a set of bivariate panel count data collected from the University of Toronto
Psoriatic Arthritis Clinic on the patients with psoriatic arthritis (Gladman
et al., 1995). During the collection, the patients were examined or assessed
from time to time, and at each assessment time, the number of the joints that
were found to be damaged since the previous assessment time is recorded. In
other words, the event of interest is if a joint is damaged. There exist two dif-
ferent methods for the assessment of patient’s joints, which lead to or define
two types of recurrent events. One is the functional assessment, which was
scheduled annually and means that the patients undergo a detailed physical
examination including a careful assessment of each joint. During the exam-
ination, a joint is classified as damaged if there is evidence of deformity or
ankylosis, if it flails, or if it becomes damaged to the point that surgery is
required. The other assessment method is the radiological assessment, which
was scheduled to be performed on the patients at 2 year intervals. Based on
the obtained films, a joint is classified as damaged if there is evidence of sur-
face erosions of the bone in the joint, joint space narrowing, disorganization
of the joint, or surgery being required.

For the panel count data above, it is apparent that the observation times
are different for the two underlying point processes representing the occur-
rence processes of two types of damaged joints. Actually although each of
the two types of assessments is scheduled at regular times, as expected, the
actual assessment times and frequency of both types of assessments varied
considerably from patient to patient. Also there exist some long periods dur-
ing which no any assessment was made, and occasionally the two types of
assessments did occur at the same time. In addition to the assessment times
and the recorded numbers of damaged joints, the observed data also include
information on three baseline covariates. They are the presence of a family
history of psoriasis (yes/no), arthritis duration (years), and the number of
active (defined as tender or swollen) joints at clinic entry. Our interest here
is to evaluate the effects of the three baseline covariates on the occurrence
rates of damaged joints. Also it is of interest to estimate and compare the
occurrence rates between the two types of damaged joints. The analysis be-
low is based on the 177 female patients who had baseline and at least one
follow-up assessment with complete covariate data.

For the analysis of multivariate panel count data, as discussed above, one
could equivalently conduct univariate analysis if different types of recurrent
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events are not related. For the two types of damaged joints considered here, it
is not hard to see that they are expected to be correlated. To further see this,
we calculate the empirical or sample event rates defined as the total numbers
of the detected damaged joints divided by the last assessment time for all
patients and present them in Fig. 7.2. In the plot, the horizontal direction
represents the sample rates for the functionally damaged joints, while the
vertical direction is for the radiologically damaged joints corresponding to
each subject. To give a reference, a dashed line with slope one is included
in the figure. It suggests that as expected, the two types of recurrent events
considered here are closely correlated. Furthermore, it seems that the rates
of the radiologically damaged joints are higher than these of the functionally
damaged joints although the difference may not be significant.
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Fig. 7.2. Empirical rate functions of two types of damaged joints

To conduct the formal regression analysis, for patient i, define Ni1(t) and
Ni2(t) to represent the cumulative numbers of radiologically and functionally
damaged joints up to time t, respectively, i = 1, . . . , 177. Also for patient
i, define Zi1 = 1 if the patient had a family history of psoriasis and 0
otherwise, and Zi2 and Zi3 to be the arthritis duration and the number of
active joints at clinic entry, respectively. The application of the methodology
described above with gN (x) = gH(x) = exp(x) gives the results presented

in Table 7.1. It includes γ̂M and β̂MI , the estimated effects of the baseline
covariates on both the assessment time processes and the occurrence processes
of damaged joints. For the estimated regression parameters, the table also
gives their estimated standard errors (SE) and the p-values for testing each
of the components equal to zero. For comparison, the univariate analysis,
based on the same method but with setting K = 1, is also performed on
the two types of damaged joints separately and the results are included in
Table 7.1.
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Table 7.1. Estimated effects of covariates on the assessment time processes and
the occurrence processes of the two types of damaged joints

Covariate γ̂M SE(γ̂M ) p-value β̂MI SE(β̂MI) p-value

Multivariate analysis

Family history of psoriasis 0.1689 0.1165 0.1470 −1.4111 0.3913 0.0003
Duration of PsA in years −0.0015 0.0057 0.7936 0.0587 0.0197 0.0029
Number of active joints 0.0030 0.0060 0.6106 0.0669 0.0194 0.0006

Univariate analysis of radiologically damaged joints

Family history of psoriasis 0.1375 0.1403 0.3271 −0.9376 0.3653 0.0103
Duration of PsA in years −0.0043 0.0063 0.4940 0.0340 0.0210 0.1057
Number of active joints −0.0079 0.0075 0.2957 0.0751 0.0182 <0.0001

Univariate analysis of functionally damaged joints

Family history of psoriasis 0.1609 0.1200 0.1799 −1.5467 0.4397 0.0004
Duration of PsA in years −0.0007 0.0058 0.9024 0.0646 0.0206 0.0017
Number of active joints 0.0048 0.0059 0.4154 0.0662 0.0211 0.0017

The multivariate analysis results above indicate that all three baseline
covariates had significant effects on the occurrence rates of the two types
of damaged joints. In particular, it seems that the patients with a family
history of psoriasis tend to have lower occurrence rates of damaged joints,
and the rates are positively related to the duration of psoriatic arthritis and
the initial number of active joints. In contrast, all covariates seem to have no
significant effects on the assessment time processes. With respect to the two
univariate analyses, one can see that the estimated effects across the two are
actually quite close. This indicates that it is reasonable to assume that they
are the same on the two types of damaged joints as implied in the multivariate
analysis. Also the univariate analyses seem to give similar conclusions on all
effects except on the effect of the arthritis duration on the occurrence rate of
radiologically damaged joints. A possible explanation for this is the relatively
higher efficiency of the multivariate analysis than the univariate analysis.

To give a graphical idea about the occurrence rates of the two types of
damaged joints, Fig. 7.3 presents the estimated baseline cumulative mean
functions μ̂k(t; β̂MI) given in (7.7). For comparison, the estimators of the
same mean functions based on the univariate analysis are also obtained and
included in Fig. 7.3. One can see that for both types of damaged joints, the
estimators given by the multivariate and univariate analyses are close to
each other, which again supports the same covariate effect assumption used
in the multivariate analysis. Also it is worth noting that the occurrence rate
of radiologically damaged joints is higher than that of functionally damaged
joints. In other words, a joint is more likely to be identified to be damaged by
the radiological assessment or criteria than by the functional assessment or
criteria. Furthermore, Fig. 7.3 shows that the multivariate analysis suggests
a larger difference between the two assessments than the univariate analysis,
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Fig. 7.3. Estimated baseline mean functions for two types of damaged joints

another indication that the former should be preferred in such situations
rather than the latter.

7.3.4 Discussion

It is easy to see that the method described above is similar to those given
in Sects. 5.3–5.5. As an alternative and similar to that discussed in Sect. 5.2,
one could develop a likelihood-based approach if one is willing to make some
Poisson process-related assumptions on the underlying recurrent event pro-
cesses. For this, of course, some assumptions or models about the relationship
between different types of recurrent event processes are needed. Actually the
idea has been considered in Chen et al. (2005) under a mixed Poisson model
with piecewise constant baseline intensities. For inference, they give both a
likelihood-based approach, which characterizes the relationship through some
log-normal random effects, and a marginal model-based procedure. It should
be noted that the approaches given in Chen et al. (2005) are essentially para-
metric approaches. In contrast, the method described above is semiparametric
and does not rely on the Poisson process and piecewise constant assumptions.

In the method described above, it has been assumed that the covariates
that may affect the recurrent event processes of interest are same for different
types of recurrent events. However, in practice, there may exist type-specific
covariates. Another assumption that is used above and may not be true in
reality is that the covariate effects in models (7.4) and (7.5) on different types
of recurrent events are identical. To address these issues, one could generalize
models (7.4) and (7.5) to

E{Nik(t) |Zik} = μk(t) gN (ZT
ik βk)



170 7 Analysis of Multivariate Panel Count Data

and
E{H̃ik(t) |Zik} = μ̃k(t) gH(ZT

ikγk) ,

respectively, where Zik, βk and γk are type-specific covariates and regression
parameters. Note that by redefining new and larger vectors of covariates, say
Z∗

ik, and regression parameters, say β∗ and γ∗, one could equivalently rewrite
the two models above as

E{Nik(t) |Z∗
ik} = μk(t) gN (Z∗T

ik β
∗)

and
E{H̃ik(t) |Z∗

ik} = μ̃k(t) gH(Z∗T
ik γ

∗) ,

respectively. For these two latter models, an estimation procedure similar
to that given in Sect. 7.3.2 can be easily developed. In addition, sometimes
one may face situations where unlike required above, the distribution of the
follow-up time Ci could depend on covariates. In this case, one way is to spec-
ify a model such as model (5.5) and develop some joint estimation procedures
as in Sect. 5.3.2.

We conclude this section with some more comments on the differences be-
tween multivariate and univariate analyses of multivariate panel count data.
One difference that has not been mentioned before is the fact that the former
is usually used when the main interest is to provide a global assessment of co-
variate effects. In other words, the interest is to obtain the common estimators
of covariate effects across several recurrent event processes. It is obvious that
the univariate analysis cannot be used for this purpose. Among others, Wei
et al. (1989) give some discussion on this in the context of regression analysis
of multivariate failure time data. Also it is easy to see that unlike multivariate
analysis, univariate analysis cannot estimate the correlations between differ-
ent types of recurrent event processes. For a set of given multivariate data,
it is apparent that the main advantage of conducting univariate analyses is
its simplicity. Actually this is also true for the multivariate analysis based on
the model with common covariate effects from the points of interpretation
and discussion. In addition, the common effects can be estimated uniformly
and more precisely as discussed before.

7.4 Joint Regression Analysis with Dependent
Observation Processes

In this section we again discuss regression analysis of multivariate panel count
data, but assume that the underlying recurrent event processes of interest
and observation processes may be related as in Chap. 6. In other words, the
problem to be investigated is the same as that considered in the previous sec-
tion, but one needs to take into account the possible correlation between the
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processes of interest and the observation processes. As in the previous section,
we first describe two marginal models, generalizations of models (6.14) and
(6.15), for the process of interest and the observation process, respectively.
The estimating equation approach is then again employed for estimation of
regression parameters of interest. In addition, as for models (6.14) and (6.15),
the assessment of new models is discussed and a residual-based goodness-of-
fit test procedure is provided. For illustration, we apply the methodology to
the bivariate skin cancer panel count data discussed in Sect. 7.2, followed by
some remarks on generalizations of the methodology.

7.4.1 Assumptions and Models

Consider a recurrent event study that involves n independent subjects and
in which each subject may experience K different types of recurrent events
as in the previous section. Also let Nik(t), tik,j , H̃ik(t), Hik(t), Zi, Ci and
Yi(t) be defined as in the previous section, j = 1, . . . ,mik, i = 1, . . . , n, k =
1, . . . ,K, and suppose that the observed data have the form (7.2) or (7.3).
That is, we have only panel count data. Note that here again for the simplicity
of presentation, we assume that the follow-up time and the covariates are the
same for different types of recurrent event processes.

For regression analysis of the observe data, we follow the same idea used in
the previous section to focus on the marginal models on the mean functions
of both the recurrent event processes of interest and observation processes.
Specifically, for the recurrent event process Nik(t), we assume that there
exists a positive latent variable uik and given covariates Zi and uik, the
marginal mean function of Nik(t) has the form

E{Nik(t)|Zi, uik } = μk(t) gk(uik) exp(Z
T
i β) , (7.8)

i = 1, . . . , n, k = , 1, . . . ,K. In the above, μk(t) is an unknown continuous
baseline mean function, gk(·) a completely unspecified positive function, and
β a vector of regression parameters. Note that here as with model (7.4)
and also for simplicity, the covariate effects are assumed to be identical for
different types of recurrent events. The estimation procedure given below can
be easily generalized to the situation where the effects may differ for different
types of recurrent events.

For the underlying observation process H̃ik(t), we assume that its marginal
mean function satisfies

E{ H̃ik(t)|Zi, uik } = μ̃k(t)uik hk(Zi) (7.9)

given Zi and uik, i = 1, . . . , n, k = 1, . . . ,K. Here μ̃k(t) is a completely
unknown continuous baseline mean function and hk(·) is a completely un-
specified positive function. It is worth to note that in the model above, the
covariates Zi are allowed to affect the observation process in an arbitrary
and different way for different types of recurrent event processes.
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It is easy to see if K = 1, model (7.8) reduces to model (6.14) and
model (7.9) includes model (6.15) as a special case. In the following, it is
assumed that for each k, the uik’s are independent and identically distributed
and given uik, the two processes Nik(t) and H̃ik(t) are independent. Also
it is assumed that one is mainly interested in estimation of the regression
parameter β.

7.4.2 Inference Procedure

For estimation of β, we present a generalization of the estimation procedure
described in Sect. 6.3.2. For this, by following Ñi(t) defined in Sect. 5.4.1 and
used in Sect. 6.3.2, define

Ñik(t) =

∫ t

0

Nik(s) dHik(s) , t ≥ 0 .

Then we have

E{Ñik(t)|Zi}= exp(ZT
i β)hk(Zi)E{gk(uik)uik}

∫ t

0

μk(s)P (Ci≥s) dμ̃k(s)

and
E(mik|Zi) = E(uik)E{μ̃k(Ci)} hk(Zi) .

These give

E{Ñik(t)|Zi} = E(mik|Zi) exp
(
ZT

i β
)
Ak(t) (7.10)

and
E{Ñik(τ)|Zi} = E(mik|Zi) exp

(
ZT

i β + θk

)
, (7.11)

where τ denotes the length of the study as before,

Ak(t) =
E{gk(uik)uik}

E{uik}E{μ̃k(Ci)}

∫ t

0

μk(s)P (Ci ≥ s) dμ̃k(s)

and

θk = log

[
E{gk(uik)uik}

E(uik)E{μ̃k(Ci)}

∫ τ

0

μk(t)P (Ci ≥ t) dμ̃k(t)

]

,

an unknown parameter, k = 1, . . . ,K.
Now we are ready to present the estimating equation for β. For this, define

β2 = (βT , θ1, . . . , θK)T , ek to be the K-dimensional vector of zeros except
its kth entry equal to one, and Zik = (ZT

i , e
T
k )

T . Then by following the
equation given in (6.17) and based on (7.11), it is natural to consider the
estimating equation
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UMR(β2) =

n∑

i=1

K∑

k=1

wik Zik

{
Ñik(τ) − mik exp

(
ZT

ikβ2

)}
= 0 (7.12)

for estimation of β2. Here the wik’s are some weights that could depend
on covariates Zi. It is easy to see that for K = 1, the estimating function
UMR(β2) reduces to UR(β1) defined in (6.17).

Let β̂2MR = (β̂
T

MR, θ̂1, . . . , θ̂K)T denote the estimator of β2 given by the
solution to the estimating equation (7.12) and β20 the true value of β2. Zhang

et al. (2013b) show that under some regularity conditions, β̂2MR is consistent.

Furthermore, the distribution of
√
n (β̂2MR − β20) can be asymptotically

approximated by the normal distribution with mean zero and the covariance
matrix Σ̂MR = A−1

MR BMR A
−1
MR. Here

AMR =
1

n

n∑

i=1

K∑

k=1

wik Z
T
ikZikmik exp

(
ZT

ikβ̂2MR

)
,

and

BMR =
1

n

n∑

i=1

φ̂i φ̂
T
i

with

φ̂i =

K∑

k=1

wik Zik

{
Ñik(τ) − mik exp

(
ZT

ikβ̂2MR

)}
.

For the determination of β̂2MR, in general, some iterative algorithms such
as the Newton-Raphson algorithm are needed. On the other hand, for the
two-sample situation where Zi = 0 or 1, one can easily derive

β̂MR = log

{ ∑n
i=1

∑K
k=1 wik Zi Ñik(τ)

∑n
i=1

∑K
k=1 wik I(Zi = 1)mik exp(θ̂k)

}

given the θ̂k’s.
To finish this subsection, we discuss the generalization of the goodness-

of-fit test procedure given in Sect. 6.3.2 to the situation considered here. For
this, motivated by the residual process R̂i(t) defined in Sect. 6.3.2 and the
Eq. (7.10), we consider the residual process

R̂ik(t) = Ñik(t) − mik exp
(
ZT

i β̂MR

)
Âk(t) ,

i = 1, . . . , n, k = 1, . . . ,K, where

Âk(t) =

{
n∑

i=1

mik exp
(
ZT

i β̂MR

)
}−1 n∑

i=1

Ñik(t) .
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It is easy to see that R̂ik(t) represents the difference between the observed
and model-predicted numbers of the kth type recurrent events experienced
by subject i up to time t. Hence for testing the goodness-of-fit of models (7.8)
and (7.9), it is natural to use the statistic

Φ(t, z) = n−1/2
n∑

i=1

K∑

k=1

I(Zi ≤ z) R̂ik(t) ,

the cumulative sum of R̂ik(t) over the values of the Zi’s. Here as before,
I(Zi ≤ z) means that each of the components of Zi is not larger than the
corresponding component of z.

To establish the distribution of Φ(t, z), define

Sk0(z) =
1

n

n∑

i=1

mik exp
(
ZT

i β̂MR

)
,

Sk(z) =
1

n

n∑

i=1

I(Zi ≤ z)mik exp
(
ZT

i β̂MR

)
,

and

B(t, z) =
1

n

n∑

i=1

K∑

k=1

{

I(Zi ≤ z) − Sk(z)

Sk0(z)

}

Zimik exp
(
ZT

i β̂MR

)
Âk(t) .

Then one can approximate the distribution of Φ(t, z) (Zhang et al., 2013b)
by that of the zero-mean Gaussian process

Φ̂(t, z) =
1√
n

n∑

i=1

K∑

k=1

{

I(Zi ≤ z)−
Sk(z)

Sk0(z)

}

R̂ik(t)Gi

− 1√
n
B(t, z)T

n∑

i=1

d̂iGi .

In the above, d̂i is the vector A−1
MR φ̂i without the last K entries and

(G1, . . . , Gn) are a simple random sample from the standard normal dis-
tribution independent of the observed data. To test the appropriateness of
models (7.8) and (7.9), as discussed in Sect. 6.3.2, a common approach is to
use the statistic supt,z |Φ(t, z)|. For this, based on the results above, the p-
value can be determined by comparing the observed value of supt,z |Φ(t, z)|
to a large number of realizations of supt,z |Φ̂(t, z)| given by repeatedly gen-
erating (G1, . . . , Gn).
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7.4.3 Analysis of Skin Cancer Chemoprevention Trial

To illustrate the inference procedure described above, we consider the bi-
variate panel count data arising from the skin cancer chemoprevention trial
again. As discussed in Sects. 1.2.4 and 7.2.2, the trial consists of 290 patients
who had been suffering two types of skin cancers, basal cell carcinoma and
squamous cell carcinoma. There are two treatments involved, placebo and
DFMO, and one main objective is to evaluate the effectiveness of the DFMO
treatment in reducing the occurrence rates of the two types of skin cancers.
In addition, there exist three baseline covariates and they are gender, age at
the diagnosis and the number of prior skin cancers of the patients.

Before the analysis, as discussed in Sect. 7.3.3, it is worth to first investi-
gate the correlation between the occurrence processes of skin cancers and the
observation process. For this, Fig. 7.4 presents the separate empirical correla-
tion curves for the two types of skin cancers, the pointwise sample correlations
between the cumulative numbers of the occurrences of new skin cancers and
the total numbers of observations at each observation time. Note that here
for the times at which the exact cumulative number is not observed from
a patient still under the follow-up, the nearest cumulative number before is
used as an approximation. It indicates that the two processes seem to be
positively correlated and also the correlations seem to be different for the
two types of skin cancers.
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Fig. 7.4. Estimated pointwise correlations between the cancer occurrence process
and the observation process for two types of skin cancers

For the analysis, define Ni1(t) and Ni2(t) to be the underlying counting
processes controlling the occurrences of basal cell carcinoma and squamous
cell carcinoma from patient i, respectively, i = 1, . . . , 290. Note that for
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the data considered here, we have Hi1(t) = Hi2(t). That is, the observation
processes are the same for the two types of recurrent events. Also for patient
i, define Zi1 = 1 if the patient was in the DFMO group and 0 otherwise, Zi2

and Zi3 to be the number of prior skin cancers and the age of the patient,
and Zi4 = 1 if the patient is male and 0 otherwise. The results given by
the inference procedure described above are presented in Table 7.2, including
the estimated covariate effects as well as the estimated standard errors (SE)
and 95% confidence intervals (CI) of the point estimators. They suggest that
the DFMO treatment did not seem to have any significant effect on reducing
the occurrence rate of the two skin cancers. Also the occurrence rate did not
seem to be significantly related to the age and gender of the patient. But the
occurrence rate seems to be positively related to the number of the prior skin
cancers. Note that the nonparametric test given in Sect. 7.2 suggests that
the DFMO treatment may have some mild effect. However, unlike here, the
test in Sect. 7.2 assumes that the occurrence process of skin cancers and the
observation process are independent.

For comparison, we also apply the estimation procedure discussed in
Sect. 7.3 to the data considered here and the obtained results are included in
Table 7.2 too. Here it is assumed that gN (x) = gH(x) = x. It is interesting
to see that the analysis gives similar conclusions except that it would indicate
that the occurrence rates of skin cancers were significantly different between
the male and female patients. In other words, one could get misleading results
if ignoring the correlation between the underlying recurrent event processes
and the observation process. Finally we apply the goodness-of-fit test pro-
cedure described above to the data and obtain the p-value of 0.508 based
on 1,000 realizations of supt,z |Φ̂(t, z)|. This indicates that models (7.8) and
(7.9) seem to be appropriate for the skin cancer data discussed here.

Table 7.2. Estimated covariate effects for the skin cancer chemoprevention trial

β̂1 β̂2 β̂3 β̂4

(SE(β̂1)) (SE(β̂2)) (SE(β̂3)) (SE(β̂4))
Method 95% CI for β1 95% CI for β2 95% CI for β3 95% CI for β4

−0.2253 0.0784 0.0016 0.2534

β̂MR (0.1831) (0.0090) (0.0087) (0.1942)
(−0.5842, 0.1336) (0.0608, 0.0960) (−0.0155, 0.0187) (−0.1272, 0.6340)

−0.0239 0.1440 −0.0116 0.3807

β̂MI (0.1809) (0.0212) (0.0084) (0.1778)
(−0.3785, 0.3307) (0.1024, 0.1856) (−0.0281, 0.0049) (0.0322, 0.7292)



7.4 Joint Regression Analysis with Dependent Observation Processes 177

7.4.4 Discussion

As mentioned above, the methodology discussed in this section can be seen
as a generalization of that given in Sect. 6.3. A main advantage of them is the
flexibility of the assumed models and in consequence, the resulting estimators
of regression parameters are robust. Of course, the efficiency could be an issue
and needs to be investigated. Also as discussed before, the illustration above
again shows that in the presence of the correlation between the recurrent
event process and the observation process, the use of the methods that ignore
the correlation could yield misleading or wrong conclusions.

It is straightforward to generalize the inference procedure described above
to the general situation where the effects of covariates may be different on
different types of recurrent events. In this case, model (7.8) becomes

E{Nik(t)|Zi, uik} = μk(t)gk(uik) exp
(
ZT

i βk

)

or
E{Nik(t)|Zik, uik} = μk(t)gk(uik) exp

(
ZT

ikβk

)

with βk being regression parameters, k = 1, . . . ,K. Note that the latter
case means that covariates also differ for different types of recurrent events.
Also for the latter case, as discussed in Sect. 7.3.4, the model above can be
equivalently rewritten as

E{Nik(t)|Z∗
ik, uik} = μk(t)gk(uik) exp

(
Z∗T

ik β
∗
)
.

In the above, Z∗
ik and β∗ are some new and larger vectors of covariates and

regression parameters redefined from the original covariates and regression
parameters. For the situation, model (7.9) stays the same with Zi replaced
by Zik or Z∗

ik.
Another situation that is more general than that discussed above and may

occur in practice is that covariates may be time-dependent or their effects
are time-dependent. Of course, both can happen at the same time. In this
case, model (7.8) should have the form

E{Nik(t)|Zi(t), uik} = μk(t) gk(uik) exp
{
ZT

i (t)β
}

or
E{Nik(t)|Zi(t), uik} = μk(t) gk(uik) exp

{
ZT

i (t)β(t)
}
.

It is not hard to see that the estimation procedure given above cannot be
applied to this latter situation and some new procedures are needed although
may not be easy. It is obvious that this is especially the case when covariate
effects are time-dependent. More comments on this are given in Sect. 8.6.
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7.5 Conditional Regression Analysis with Dependent
Observation Processes

For regression analysis of panel count data with dependent observation pro-
cesses, as discussed before, sometimes one may prefer a conditional analysis
rather than a joint analysis. For this, in this section, we generalize the con-
ditional approach discussed in Sect. 6.4 to multivariate panel count data. In
particular, instead of models (7.8) and (7.9), we present a class of conditional
mean models for the underlying recurrent event processes of interest. The new
models are generalizations of the semiparametric transformation model de-
fined in (6.18). With respect to the observation process, the proportional rate
model (5.16) is employed as before. For estimation of regression parameters,
we follow the idea used in the previous section and present some estimat-
ing equations. To give a comparison, the bivariate skin cancer data are used
again to illustrate the methodology. It is followed by some remarks on the
relationship between the approach discussed here and ones given before as
well as on some possible generalizations.

7.5.1 Assumptions and Models

As mentioned above, this section considers exactly the same problem as in
the previous section, but from a different point of view. For this, let Nik(t),
tik,j , H̃ik(t), Hik(t), Zi(t), Ci and Yi(t) be defined as in the previous section,
j = 1, . . . ,mik, i = 1, . . . , n, k = 1, . . . ,K, and suppose that one observes
the panel count data given in (7.2) or (7.3). Note that here we allow the
covariate Zi(t) to be time-dependent, but still assume that they and the
follow-up time Ci are the same for different types of recurrent event processes
for the simplicity of presentation.

To describe the conditional regression model for Nik(t), define Fikt =
{ H̃ik(s), 0 ≤ s < t }, the history or filtration of the observation process
on subject i and type k recurrent events up to time t−, i = 1, . . . , n. In
the following, we assume that given Zi(t) and Fikt, the conditional mean
function of Nik(t) has the form

E{Nik(t)|Zi(t),Fikt } = g
{
μ0k(t) exp{βTZi(t) +α

TQ(Fikt)}
}
. (7.13)

Here as in model (6.18), g is a known twice continuously differentiable and
strictly increasing function, μ0k(t) denotes an unspecified smooth function
of t, β and α are vectors of unknown regression parameters, and Q is a
vector of known functions of Fikt. It is easy to see that model (7.13) reduces
to model (6.18) if K = 1 and means that the observation process Hik(t)
may be informative or contain relevant information about Nik(t) through
the parameter α.
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The comments given in Sect. 6.4 on the function vector Q apply here. In
particular, one simple choice is to let Q(Fikt) = H̃ik(t−), meaning that
Nik(t) may depend on the total number of the observations before time t on
the kth type recurrent event. This could be the case in a medical study in
which a patient may pay more visits to their doctors because they feel worse
than usual. As discussed before, in addition to the effects onNik(t), covariates
may have effects on the observation process too. For this, following the idea
used in Sects. 5.5 and 6.4, we suppose that H̃ik(t) is a non-homogeneous
Poisson process satisfying the proportional rate model

E{ dH̃ik(t) |Zi(t) } = exp
{
γTZi(t)

}
dμ̃0k(t) , (7.14)

i = 1, . . . , n, k = 1, . . . ,K. In the above, as before, γ denotes a vector of
unknown regression parameters and μ̃0k(t) is an arbitrary, unknown nonde-
creasing function. In the following, it is assumed that the main goal is to
make inference about β and α.

7.5.2 Estimation Procedure

Now we describe the estimating equations for estimation of β and α along
with other unknowns. For this, define Zik(t) = (ZT

i (t),Q
T (Fikt))

T and
θ = (βT ,αT )T . Also define

Mik(t; θ,γ) =

∫ t

0

Yi(s)Nik(s) dH̃ik(s)−
∫ t

0

Yi(s)g
{
μ0k(s) exp{θTZik(s)}

}

× exp
{
γTZi(s)

}
dμ̃0k(s) ,

i = 1, . . . , n, k = 1, . . . ,K. It is easy to show that under models (7.13) and
(7.14), Mik(t; θ,γ) is a zero-mean stochastic process for all 1 ≤ i ≤ n and
1 ≤ k ≤ K. Thus it is natural to employ the estimating equation

n∑

i=1

dMik(t; θ,γ) =
n∑

i=1

[

Yi(t)Nik(t) dH̃ik(t)

− Yi(t) g
{
μ0k(t) exp{θTZik(t)}

}
exp

{
γTZi(t)

}
dμ̃0k(t)

]

= 0 , (7.15)

0 ≤ t ≤ τ , for estimation of μ0k(t) and the estimating equation

UMT (θ,γ) =
n∑

i=1

K∑

k=1

∫ τ

0

W (t)Zik(t)
[
Yi(t)Nik(t) dH̃ik(t)

− Yi(t) g
{
μ0k(t) exp{θTZik(t)}

}
exp

{
γTZi(t)

}
dμ̃0k(t)

]
= 0 (7.16)
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for estimation of θ given γ and μ̃0k(t). In the above, as before, τ denotes the
study length and W (t) is a possibly data-dependent weight function.

It is easy to see that the stochastic processMik(t; θ,γ) reduces toM
∗
i (θ,γ)

defined in (6.19) if K = 1, and the estimating function UMT (θ,γ) is gener-
alizations of the estimating functions UT (β,γ) given in (5.19) and U∗

T (θ,γ)
used in Sect. 6.4.2. To use the estimating equations (7.15) and (7.16), it is
apparent that one needs to estimate γ and μ̃0k(t) first. For this, motivated
by the estimating equation (5.20) and the estimator defined in (5.21), it is
natural to estimate γ based on the estimating equation

n∑

i=1

K∑

k=1

∫ τ

0

Yi(t)

{

Zi(t) − S1(t;γ)

S0(t;γ)

}

dH̃ik(t) = 0 , (7.17)

and μ̃0k(t) by

ˆ̃μ0k(t;γ) =

n∑

i=1

∫ t

0

Yi(s) dH̃ik(s)

nS0(s;γ)
(7.18)

for given γ. In the above,

Sj(t;γ) =
1

n

n∑

i=1

Yi(t)Zi(t)
j exp

{
γTZi(t)

}
,

j = 0, 1. Let γ̂MT denote the estimator of γ given by the solution to (7.17),

and μ̂0k(t) and θ̂MT = (β̂
T

MT , α̂
T
MT )

T the estimators of μ0k(t) and θ given
by the solutions to (7.15) and (7.16) with replacing γ and μ̃0k(t) by γ̂MT

and ˆ̃μ0k(t; γ̂MT ), respectively. Also let θ0 = (βT
0 ,α

T
0 )

T and γ0 denote the
true values of θ and γ. Li et al. (2011) show that asymptotically μ̂0k(t) and

θ̂MT always exist and are unique and consistent. To give the asymptotic
distribution of θ̂MT , define

M̂ik(t) =

∫ t

0

Yi(s)Nik(s)dHik(s)−
∫ t

0

Yi(s)g
{
μ̂0k(s) exp{θ̂

T

MTZik(s)}
}

× exp
{
γ̂T
MTZi(s)

}
d ˆ̃μ0k(t; γ̂MT ) ,

M̂∗
ik(t) =

∫ t

0

Yi(s)dHik(s)−
∫ t

0

Yi(s) exp
{
γ̂T
MTZi(s)

}
d ˆ̃μ0k(s; γ̂MT ) ,

Êk(t) =

∑n
i=1 Yi(t)Zik(t) ġ{μ̂0k(t) e

ˆθ
T

MTZik(t)} e
ˆθ
T

MTZik(t)+γ̂T

MTZi(t)

∑n
i=1 Yi(t)ġ{μ̂0k(t) e

ˆθ
T

MTZik(t)} e
ˆθ
T

MTZik(t)+γ̂T

MTZi(t)
,
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R̂k(t) =
1

n

n∑

i=1

Yi(t)
{
Zik(t)− Êk(t)

}
g
{
μ̂0k(t) exp{θ̂

T

MTZik(t)}
}

× exp
{
γ̂T
MTZi(t)

}
,

D̂ =
1

n

n∑

i=1

K∑

k=1

∫ τ

0

Yi(t)

{

Zi(t) − S1(t; γ̂MT )

S0(t; γ̂MT )

}⊗2

dHik(t) ,

and

P̂ =
1

n

n∑

i=1

K∑

k=1

∫ τ

0

W (t)Yi(t)g
{
μ̂0k(t) exp{θ̂

T

MTZik(t)}
}
exp

{
γ̂T
MTZi(t)

}

×
{
Zik(t) − Êk(t)

} {

Zi(t) − S1(t; γ̂MT )

S0(t; γ̂MT )

}T

d ˆ̃μ0k(t; γ̂MT ) .

In the above ġ(t) = dg(t)/dt and υ⊗2 = υυT for a vector υ. Li et al.
(2011) prove that one can asymptotically approximate the distribution of

n1/2 (θ̂MT − θ0) by the multivariate normal distribution with mean zero
and the covariance matrix Σ̂MT = A−1

MT BMT A
−1
MT . Here

AMT =
1

n

n∑

i=1

K∑

k=1

∫ τ

0

W (t)Yi(t) ġ
{
μ̂0k(t) exp{θ̂

T

MTZik(t)}
}

×
{
Zik(t) − Êk(t)

}⊗2

exp
{
θ̂
T

MTZik(t) + γ̂
T
MTZi(t)

}
μ̂0k(t) d ˆ̃μ0k(t; γ̂MT )

and

BMT=
1

n

n∑

i=1

[
K∑

k=1

∫ τ

0

W (t)
{
Zik(t)−Êk(t)

}
dM̂ik(t)−

K∑

k=1

∫ τ

0

W (t)R̂k(t)

S0(t; γ̂MT )

× dM̂∗
ik(t)− P̂ D̂−1

K∑

k=1

∫ τ

0

{

Zi(t) − S1(t; γ̂MT )

S0(t; γ̂MT )

}

dM̂∗
ik(t)

]⊗2

.

7.5.3 Determination of Estimators

For the determination of μ̂0k(t), θ̂MT and γ̂MT or solving the Eqs.
(7.15)–(7.17), note that (7.17) involves γ only. Thus it is natural to de-
termine γ̂MT first, which is also relatively easy as it is based on recurrent
event data (Cook and Lawless, 2007). To simplify the Eqs. (7.15) and (7.16),
let s1 < s2 < . . . < sJ denote the distinct ordered time points of all
observation times { tik,l; l = 1, . . . ,mik, i = 1, . . . , n, k = 1, . . . ,K }. Then
they can be rewritten as
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n∑

i=1

mik∑

l=1

Nik(tik,l) I(tik,l = sj) −
n∑

i=1

Yi(sj)

×g
{
μ0k(sj) exp{βTZi(sj) +α

TQ(Fiksj )}
}
exp

{
γTZi(sj)

}
dμ̃0k(sj) = 0,

(7.19)

j = 1, . . . , J , and

n∑

i=1

K∑

k=1

mik∑

j=1

W (tik,j)Zik(tik,j)Nik(tik,j)−
n∑

i=1

K∑

k=1

J∑

j=1

Yi(sj)W (sj)Zik(sj)

×g
{
μ0k(sj) exp{βTZi(sj) +α

TQ(Fiksj )}
}
exp

{
γTZi(sj)

}
dμ̃0k(sj) = 0,

(7.20)

respectively.
For a set of given data, it is apparent that after obtaining γ̂MT , one should

solve the Eq. (7.19) first to determine μ̂0k(t; θ, γ̂MT ) for fixed θ and by letting

γ = γ̂MT . Then θ̂MT can be determined by solving (7.20) with substituting
μ0k(t) = μ̂0k(t; θ, γ̂MT ) and γ = γ̂MT . In general, the closed forms for

μ̂0k(t; θ, γ̂MT ) and θ̂MT do not exist and one needs to employ some iterative
algorithms. On the other hand, there do exist some situations where their
determination is not difficult.

One such situation is when g(t) = tη, where η is a positive constant. In
this case, the Eqs. (7.15) and (7.16) can be rewritten as

g {μ̂0k(t; θ,γ)} =

∑n
i=1 Yi(t)Nik(t) dHik(t)

∑n
i=1 Yi(t) g{exp(θ

TZik(t))} exp(γTZi(t))

1

dμ̃0k(t)

and

n∑

i=1

K∑

k=1

∫ τ

0

W (t)Yi(t)
{
Zik(t) − Z̄k(t; θ,γ)

}
Nik(t) dHik(t) = 0 ,

respectively, where

Z̄k(t; θ,γ) =

∑n
i=1 Yi(t)Zik(t) g{exp(θTZik(t))} exp(γTZi(t))
∑n

i=1 Yi(t) g{exp(θ
TZik(t))} exp(γTZi(t))

.

Another situation where the Eqs. (7.15) and (7.16) can be easily solved is
when g(t) = log(t). In this case, we have

g {μ̂0k(t; θ,γ)} =

∑n
i=1 Yi(t)Nik(t) dHik(t)∑n
i=1 Yi(t) exp(γ

TZi(t))

1

dμ̃0k(t)

−
∑n

i=1 Yi(t) g{exp(θ
TZik(t))} exp(γTZi(t))∑n

i=1 Yi(t) exp(γ
TZi(t))
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from the Eq. (7.15). The estimating function UMT (θ,γ) becomes

UMT (θ,γ) =

n∑

i=1

K∑

k=1

∫ τ

0

W (t)Yi(t)
{
Zik(t) − Z̄k(t;γ)

}
[

Nik(t) dHik(t)

− θTZik(t) exp
{
γTZi(t)

}
dμ̃0k(t)

]

,

where

Z̄k(t;γ) =

∑n
i=1 Yi(t)Zik(t) exp{γTZi(t)}∑n

i=1 Yi(t) exp{γTZi(t)}
.

It follows that

θ̂MT =

{
n∑

i=1

K∑

k=1

∫ τ

0

W (t)Yi(t)
{
Zik(t)− Z̄k(t;γ)

}
ZT

ik(t) exp
{
γTZi(t)

}

×dμ̃0k(t)

}−1 n∑

i=1

K∑

k=1

∫ τ

0

W (t)Yi(t)
{
Zik(t) − Z̄k(t;γ)

}
Nik(t)dHik(t) .

with replacing γ and μ̃0k(t) by γ̂MT and ˆ̃μ0k(t; γ̂MT ), respectively.

7.5.4 Reanalysis of Skin Cancer Chemoprevention Trial

For illustration and comparison, we now reanalyze the bivariate panel count
data on the occurrence rates of two types of non-melanoma skin cancers
discussed in Sect. 7.4.3. As described before, for each of 290 patients, the
observed data include a sequence of observation or clinic visit times and the
numbers of occurrences of basal cell carcinoma and squamous cell carcinoma
between the observation times. There is also information on four baseline
covariates, treatment indicator (placebo or DFMO), patient’s gender and
age at the diagnosis, and the number of prior skin cancers from the first
diagnosis to randomization. In addition, among the 290 patients, the number
of observations ranges from 1 to 17. With respect to the occurrences of new
skin cancers, the number of basal cell carcinoma ranges from 0 to 16, while
the number of squamous cell carcinoma ranges from 0 to 23. As discussed in
Sect. 7.4.3, the occurrence processes between the two types of skin cancers
seem to be correlated.

To apply the conditional regression tool given above, let Ni1(t) and Ni2(t)
as well as Hi1(t) and Hi2(t) be defined as in Sect. 7.4.3. Note that the two
observation processes Hi1(t) and Hi2(t) are the same for the data. With
respect to the covariates, also let Zi = (Zi1, Zi2, Zi3, Zi4)

T be defined as in
Sect. 7.4.3. To apply the methodology, we need to choose the link functions g
and Q. For this, following the discussion in Sects. 6.4.3 and 6.5.3, we consider
three choices for g, g(t) = t, g(t) = t2 and g(t) = log(t), and two choices for
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Q, Q(Fikt) = Hik(t−) and Q(Fikt) = Hik(t−)−Hik(t− 100). The former
Q assumes that the occurrence rate of skin cancers may depend on the total
number of patient’s visits. On the other hand, the latter Q supposes that the
occurrence rate may depend only on the number of patient’s visits during the
100-day period before.

Tables 7.3 and 7.4 present the estimated effects of the covariates given
by the estimation procedure with W (t) = 1 described above. One is for
the case with Q(Fikt) = Hik(t−) and the other corresponds to Q(Fikt) =

Hik(t−) − Hik(t − 100). They include the estimated parameters β̂MT and
α̂MT , their estimated standard errors (SE), and the estimated 95% confidence
intervals (CI). One can see from the two tables that the analyses essentially
give the same conclusions as those obtained in Sect. 7.4.3 based on the joint
analysis procedure. More specifically, all results indicate that the DFMO
treatment did not seem to have a significant effect on the occurrence rates
of the two types of skin cancers. Also the occurrence rate did not seem to
be significantly related to either the age or gender of the patient. But it
seems that the number of prior skin cancers can be used as a predictor for

Table 7.3. Estimated regression parameters with Q(Fit) = H̃i(t−)

β̂MT,1 β̂MT,2 β̂MT,3 β̂MT,4 α̂MT

Function g(t) SE(β̂MT,1) SE(β̂MT,2) SE(β̂MT,3) SE(β̂MT,4) SE(α̂MT )

CI(β̂MT,1) CI(β̂MT,2) CI(β̂MT,3) CI(β̂MT,4) CI(α̂MT )

−0.2629 0.0697 −0.0016 0.2419 0.1657
g(t) = t 0.1849 0.0080 0.0085 0.1896 0.0469

(−0.63,0.10) (0.05,0.09) (−0.02,0.02) (−0.13,0.61) (0.07,0.26)

−0.1314 0.0348 −0.0008 0.1210 0.0828
g(t) = t2 0.0924 0.0040 0.0043 0.0948 0.0234

(−0.31, 0.05) (0.03,0.04) (−0.01, 0.01) (−0.06, 0.31) (0.04,0.13)

−0.1107 0.0981 −0.0035 0.1478 0.1718
g(t) = log(t) 0.1111 0.0223 0.0047 0.1106 0.0736

(−0.33,0.11) (0.05,0.14) (−0.01,0.01) (−0.07,0.36) (0.03,0.32)

Table 7.4. Estimated regression parameters with Q(Fit) = H̃i(t−)− H̃i(t− 100)

β̂MT,1 β̂MT,2 β̂MT,3 β̂MT,4 α̂MT

Function g(t) SE(β̂MT,1) SE(β̂MT,2) SE(β̂MT,3) SE(β̂MT,4) SE(α̂MT )

CI(β̂MT,1) CI(β̂MT,2) CI(β̂MT,3) CI(β̂MT,4) CI(α̂MT )

−0.3863 0.0774 0.0044 0.2050 −0.7768
g(t) = t 0.2116 0.0095 0.0094 0.2060 0.2744

(−0.80,0.03) (0.06,0.10) (−0.02,0.02) (−0.20,0.61) (−1.31,−0.24)

−0.1932 0.0387 0.0022 0.1025 −0.3884
g(t) = t2 0.1058 0.0048 0.0047 0.1030 0.1372

(−0.40,0.01) (0.03,0.05) (−0.01,0.01) (−0.10,0.30) (−0.66,−0.12)

−0.1418 0.1060 −0.0008 0.1149 −0.4621
g(t) = log(t) 0.1146 0.0247 0.0048 0.1108 0.0983

(−0.37,0.08) (0.06,0.15) (−0.01,0.01) (−0.10,0.33) (−0.65,−0.27)
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the occurrence rate. It is worth noting that the results are consistent with
respect to the choices of both g and Q(Fikt).

With respect to the correlation between the recurrent event process of
interest and the observation process, it is interesting to see from Tables 7.3
and 7.4 that both analyses suggest that they are indeed correlated. In other
words, the patient’s visit process does seem to contain some relevant infor-
mation about the occurrence process of the skin cancer, but the correlation
may depend on the time or follow-up period. More specifically, the analyses
indicate that a higher number of the observations or clinical visits in total
could mean a higher occurrence rate of the skin cancer. On the other hand, a
higher number of the observations or clinical visits over a short period before
a particular time point could mean a lower occurrence rate. One possible ex-
planation is that within a short period, the higher number of the visits may
leave no time for the occurrence of new skin cancers.

7.5.5 Discussion

From the point of the relationship between the underlying recurrent event
processes of interest and observation processes, the approach discussed in
this section is a conditional procedure. In contrast, the approach described
in the previous section is a joint procedure. On the other hand, from the
modeling point of view, both methods are marginal approaches as the method
presented in Sect. 7.2. This is because they all are based on the models on the
mean functions of the event processes of interest. From the relationship point
of view, an alternative to models (7.13) and (7.14) is to model the marginal
mean or rate function of the event process of interest and the conditional
mean or rate function of the observation process given the event process.
One may prefer this alternative if the observation process is the main target.
This can be the case if the observation and event processes are, for example, a
hospitalization process of the patients with certain disease and some marker
process related to the disease.

As discussed before, a major advantage of marginal approaches is that they
leave the correlation between different types of recurrent event processes ar-
bitrary. This method is usually preferred if the main goal of a study is on
estimation of covariate effects. An alternative is to directly model the correla-
tion structure or make specific assumptions on the underlying event processes
like the Poisson process assumption. It is obvious that the alternative would
be appealing if the correlation is of main interest or the efficiency is a major
concern. In this case, of course, the model verification could be much more
difficult than that for the marginal approach discussed above among other
aspects.

Also as mentioned above, the conditional procedure discussed above is
a generalization of the method described in Sect. 6.4. In particular, model
(7.13) is a generalization of model (6.18). Actually, one could also generalize
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model (6.18) to

E{Nik(t)|Zi(t),Fikt } = gk

{
μ0k(t) exp{βTZi(t) +α

TQk(Fikt)}
}

by allowing both link functions gk and Qk to depend on the type of recur-
rent events. In this situation, it is straightforward to develop an estimation
procedure similar to that given above. Of course, sometimes one may also
want to generalize model (7.13) or the model above to allow covariate effects
being time-dependent or different for different types of recurrent events as
discussed in Sect. 7.4.4.

There exist other generalizations that one may be of interest or are useful
sometimes. For example, in the discussion above, it has been assumed that
the observation process H̃ik(t) is a non-homogeneous Poisson process. It is
clear that this may not be true in practice as discussed before and in this case,
one needs some other estimation procedures rather than the one discussed
above. Another direction for more research is to develop some procedures or
generalize the procedures described in Sects. 5.5.4 and 6.4.2 to perform the
goodness-of-fit test on model (7.13). Note that although the analysis results in
Sect. 7.5.4 are consistent with respect to different g, this may not be the case
in general. In order to make the approach less sensitive against the selection
of g, one could allow g to belong to some class of functions characterized by,
say, some link parameters. Some estimation procedures are then needed for
both regression parameters and the link parameters.

7.6 Bibliography, Discussion, and Remarks

As mentioned before, the literature on statistical analysis of multivariate
panel count data is relatively thin. One relatively earlier reference on this is
given by Chen et al. (2005), followed by He et al. (2008). Both investigated
regression analysis of multivariate panel count data for the case with indepen-
dent observation processes. The differences between the two include that the
former is a parametric procedure in nature and the latter is a semiparamet-
ric one. Li et al. (2011) and Zhang et al. (2013b) also studied the regression
analysis problem, but their approaches allow the dependence between the
recurrent event processes of interest and the observation processes. In addi-
tion, Lee (2008) considered the same situation as the one discussed in Chen
et al. (2005) and He et al. (2008) and gave some simple parametric methods.
Zhao et al. (2013c) proposed a class of nonparametric test procedures for the
two-sample comparison based on multivariate panel count data.

For regression analysis of multivariate panel count data, the focus in
this chapter has been on marginal modeling-based or estimating equation-
based approaches. As remarked before, an alternative to these approaches is
likelihood-based methods such as those discussed in Sect. 5.2. A key issue for
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the latter, which does not exist for univariate panel count data, is to spec-
ify or model the correlation structure between different types of recurrent
event processes, which may not be easy. For this, of course, a natural way
is to employ some frailty or latent variables as in Sect. 6.3. Such approaches
have been commonly used for regression analysis of recurrent event data or
longitudinal data with informative follow-ups (Huang and Wang, 2004; Jin
et al., 2006; Liu et al., 2008; Tsiatis and Davidian, 2004; Ye et al., 2007) . On
the other hand, the resulting methods would usually be complicated in both
computation and the derivation of theoretical properties. The assessment of
the assumed correlation structure would be hard too.

For the analysis of multivariate panel count data, one could ask many
questions that have been asked and investigated for the analysis of univariate
panel count data but have not been touched for the multivariate case. One
such question is regression analysis of multivariate panel count data in the
presence of dependent follow-up process or terminal events. As discussed in
Sect. 6.5, this can often happen in the studies yielding panel count data,
and one common example of such terminal events is the death caused by
something related to the recurrent event of interest. To be more specific,
consider the set-up discussed in Sect. 7.5 but with a dependent terminal event.
Let Di and Zi(t) be defined as in Sect. 6.5, denoting the time to the terminal
event and the history of the covariate process, respectively, i = 1, . . . , n. Also
let N∗

dik(t) be defined as N∗
di(t) in Sect. 6.5 but for type k recurrent events

considered here, k = 1, . . . ,K. Then for regression analysis, following model
(6.20), one could consider the following conditional mean model

E{N∗
dik(t) | Zi(t),Fikt, Di ≥ t } = μ0k(t) + β

TZi(t) +α
TQ(Fikt)

or

E{N∗
dik(t) | Zi(t),Fikt, Di ≥ t } = g

{
μ0k(t) exp{βTZi(t) +α

TQ(Fikt)}
}

for the terminal event-adjusted recurrent event process N∗
dik(t). Correspond-

ing to the model above, one may want to impose some models similar to
models (6.21) and (6.22) on the observation process and the terminal event
too, respectively. Actually Zhao et al. (2013b) recently investigated this prob-
lem under model (6.21) and developed an estimating equation procedure for
estimation of regression parameters. In their method, they assumed that ob-
servation processes are non-homogeneous Poisson processes and follow the
proportional rate model (6.21). Furthermore, the D’s were assumed to follow
the proportional hazards model (6.22) as in Sect. 6.5.
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Other Topics

8.1 Introduction

In addition to what discussed in the previous chapters, there exist some other
issues or topics about the analysis of panel count data that have been inves-
tigated in the literature or could occur in practice. In conducting regression
analysis, for example, one can always ask which or if all covariate variables
are important or significant enough to be included in the final model for the
response variable of interest. That is, one faces a variable selection problem.
For the problem, two situations usually occur. One is that the number of
covariate variables is fixed and smaller than the sample size as in usual linear
or nonlinear regression analysis (Johnson and Wichern, 2002). The other is
that the number of covariate or predictor variables is much larger than the
sample size and could be over several thousands or hundred thousands. The
latter has become a huge and important topic in statistical genetic analysis
as well as some other related areas (Beebe et al., 1998; Lee, 2004).

In this chapter, we discuss several topics that have not been touched in
the previous chapters, including variable selection, the analysis of mixed re-
current event and panel count data, and the analysis of panel count data
arising from multi-state models. In addition, some discussions are also given
on Bayesian approaches for the analysis of panel count data and the analysis
of panel count data arising from mixture models or with measurement errors.
First in Sect. 8.2 we consider the variable selection problem mentioned above
with the focus on the first situation mentioned above. It is assumed that the
goal is to choose relevant and important covariates or risk factors among the
observed ones in terms of their effects on the underlying event history or
recurrent event process of interest. More specifically, we confine the discus-
sion to the multivariate panel count data generated from models (7.4) and
(7.5). A general variable selection procedure is introduced that is developed
based on the estimating equation theory and the idea behind the penalized
likelihood approach. It selects variables and estimates regression coefficients
simultaneously, and the resulting estimators of regression parameters have
the so-called oracle properties.

J. Sun and X. Zhao, Statistical Analysis of Panel Count Data, Statistics
for Biology and Health 80, DOI 10.1007/978-1-4614-8715-9 8,
© Springer Science+Business Media New York 2013
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As discussed above, the literature on event history studies of recurrent
events or recurrent event studies mainly focuses on two types of data, recur-
rent event data and panel count data. In practice, however, a third type of
data can occur that involve both recurrent event data and panel count data.
That is, we have mixed recurrent event and panel count data (Zhu et al.,
2013). This happens if study subjects are observed continuously over some
time periods but only at discrete time points over other time periods. In other
words, we have complete information about the occurrences of the event of
interest over some time periods but only incomplete information about the
occurrences over other time periods. In Sect. 8.3, we discuss some issues re-
lated to the analysis of such mixed recurrent event and panel count data.
A procedure for regression analysis of the data is described. Also one set of
such data, arising from a Childhood Cancer Survivor Study, is discussed and
analyzed.

So far the focus has been on the panel count data concerning the occurrence
patterns or rates of certain recurrent events of interest or the recurrent event
processes that control the occurrences of the recurrent events. In practice, a
different type of panel count data may occur that concern how long study
subjects stay in certain states and how often they move from one state to
another state. An example of the states could be different stages of a disease.
Here by panel count data, as above, we mean that the observations on study
subjects occur only at discrete time points. Such data are also often referred to
as panel count data from multi-state models (Bartholomew, 1983; Kalbfleisch
and Lawless, 1985; Singer and Spilerman, 1976a,b; Wasserman, 1980). In
Sect. 8.4, we discuss some inference procedures for the analysis of such panel
count data from continuous-time finite state Markov models.

Section 8.5 briefly considers three other topics related to the analysis of
panel count data that have not been touched in the previous chapters. They
are Bayesian approaches for the analysis of panel count data, the analysis of
panel count data with measurement errors, and the analysis of panel count
data arising from mixture models. Here by measurement errors, we mean
that the covariates or risk factors of interest cannot be measured or observed
exactly, while the mixture model means that the underlying recurrent event
process of interest is a mixed point process. Finally, Sect. 8.6 concludes this
chapter and the book with some comments and discussions on the issues re-
lated to the analysis of panel count data that are beyond this book. In addi-
tion, some discussions on a few directions for future research are also provided.

8.2 Variable Selection with Panel Count Data

Variable selection is an important topic in all regression analyses and many
procedures have been developed for it such as the commonly used stepwise
and subset selection procedures. Other commonly used general procedures
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include AIC (Akaike, 1973), Mallow’s Cp (Mallows, 1973) and BIC (Schwartz,
1978). Among those developed more recently, a general type of procedures is
the penalized procedure that adds a penalty function to an objective func-
tion such as a likelihood function (Fan and Li, 2001, 2004; Tibshirani, 1996,
1997). The advantages of penalized procedures over traditional procedures
include easy implementation, stability and flexibility in controlling the struc-
ture of resulting models (Breiman, 1996; Fan and Peng, 2004). In this section,
we discuss such a procedure for the variable selection when one faces mul-
tivariate panel count data. To begin with, we first describe some commonly
used penalty functions after introducing some notation and assumptions. A
penalized estimating function is then derived for both estimation of regres-
sion parameters and variable selection together. In addition, the properties
of the resulting estimators and their determination are discussed. Finally the
methodology is illustrated by using the skin cancer data discussed in Chap. 8,
which is followed by some general discussion.

8.2.1 Assumptions and Penalty Functions

Consider an event history study that involves n independent subjects and
in which each subject may experience K different types of recurrent events
as in Sect. 7.3. Also let the Nik(t), tik,j , H̃ik(t), Hik(t), Zi, Ci and Yi(t) be
defined as in Sect. 7.3, j = 1, . . . ,mik, i = 1, . . . , n, k = 1, . . . ,K, and
suppose that one only observes multivariate panel count data given in (7.2)
or (7.3). Furthermore, assume that the effects of covariates on the recurrent
event process of interest Nik(t) and the observation process H̃ik(t) can be
described by models (7.4) and (7.5), respectively. In the following, we use p
to denote the dimension of Zi and assume that p is fixed. Some comments on
this are given below. Also we use Ω = { j;βj �= 0 } to denote the true model
or the set of indices of the regression parameters that are not zero, and let
s = |Ω|, the size of the true model.

To select significant covariate variables or determine Ω, as mentioned
above, a general type of procedures is the penalized approach that adds a
penalty function to an existing objective function. For this, many penalty
functions have been proposed in the literature (Fan and Lv, 2010). Among
them, an early one is given by Tibshirani (1996) as pλ(|θ|) = λ |θ|, which
leads to the well-known least absolute shrinkage and selection operator
(LASSO) approach. Here λ is a tuning parameter and θ denotes the regres-
sion parameter of interest. Following Tibshirani (1996), Zou (2006) suggests
to use a more general penalty function given by pλ(|θ|) = λω |θ| (ALASSO),
where ω is a data-dependent weight. Also following Tibshirani (1996), Fan
and Li (2001) give the so-called SCAD penalty function defined as

ṗλ(|θ|) = λ sgn(θ)

{

I(|θ| ≤ λ) +
max(aλ− |θ|, 0)

(a− 1)λ
I(|θ| > λ)

}
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for θ �= 0. In the above, it is assumed that pλ(0) = 0, a > 2 is a tuning
parameter as λ, and ṗλ(·) denotes the first derivative of pλ(·). More recently,
Zhang (2010) gives another penalty function, which he refers to as the mini-
max concave penalty (MC+) and has the form

pλ,δ(|θ|) = λ

{

|θ| − |θ|2
2δλ

}

I(0 ≤ |θ| < δλ) +
λ2δ

2
I(|θ| ≥ δλ) .

Here the parameter δ > 0 is used to control the concavity of the function.
In addition to these described above, one could also employ the so-called

seamless-L0 (SELO) penalty function defined as

pλ1,λ2(|θ|) =
λ1

log(2)
log

(
|θ|

|θ|+ λ2
+ 1

)

. (8.1)

In the above, λ1 > 0 and λ2 > 0 are tuning parameters as before with
pλ1,λ2(θ) ≈ λ1 I{θ �=0} for small λ2. The function above is proposed by Dicker
et al. (2012) in the context of fitting the linear model Y = Zθ + ε. Here,
Y is a vector of the observed values of the response variable, Z a design
matrix, θ = (θ1, . . . , θd)

T a vector of unknown parameters, and ε a vector
of measurement errors with mean zero. For estimation of θ, they suggest to
minimize the penalized function

1

2n
||Y − Zθ||2 +

d∑

j=1

pλ1,λ2(|θj |) .

Furthermore they argue that the SELO penalty function usually gives a stable
and computationally feasible penalized procedure. Also they show through
numerical studies that it can outperform the procedures based on other
penalty functions by various metrics.

It is worth to point out that all penalty functions discussed above as well
as the resulting penalized procedures are for general regression, which is quite
different from the problem discussed here. In the next subsection, we intro-
duce a general penalized procedure for multivariate panel count data with
the focus on the use of the SELO penalty function. However, the approach
is applicable or still valid if any other penalty function is used as shown in
Sect. 8.2.3 below.

8.2.2 Variable Section Procedure

To derive an estimation and variable selection procedure using the penalized
approach, first we need to have an objective function. For this, let N̄ik be de-
fined as in Sect. 7.3.2. Then motivated by the estimating function UMI(β,γ)
given in (7.6), it is natural to consider
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l(β,γ) = −
K∑

k=1

n∑

i=1

Zi N̄ik

{
gH(ZT

i γ)
}−1

∫ {
gN(ZT

i β)
}−1

dβ

as the objective function. It thus follows that for estimation of β, we can
minimize the penalized function

lp(β,γ;λ1, λ2) = l(β,γ) + n

p∑

j=1

pλ1,λ2(|βj |) (8.2)

based on the SELO penalty function given in (8.1). It is easy to see that the
derivative of l(β,γ) with respect to β gives −

√
nUMI(β,γ). Furthermore,

the procedure described above with letting the penalty being zero would yield
the same estimator as that defined in Sect. 7.3.2.

For the implementation of the estimation procedure above, of course, we
need to estimate γ as well as λ1 and λ2. For γ, it is apparent that we can
employ the approach discussed in Sect. 7.3.2 and the estimation of λ1 and λ2
is discussed below. Let γ̂M denote the estimator of γ defined in Sect. 7.3.2.
Then it is natural to define the penalized estimator of β as

β̂v = argmin
β

lp(β, γ̂M ;λ1, λ2) . (8.3)

Let β0 denote the true value of β and suppose that it can be written as
β0 = (β01, . . . , β0p)

T = (βT
01,β

T
02)

T , where β01 and β02 denote the nonzero
and zero components of β0, respectively. Also suppose that we can write

β̂v = (β̂v1, . . . , β̂vp)
T = (β̂

T

v1, β̂
T

v2)
T , the same as β0. Let s denote the

dimension of β01 and β̂v1, and assume that the tuning parameters λ1 and λ2
are chosen such that λ1 = O(nρ) and λ2 = O(n−ρ−1/2) with −1/2 < ρ < 0.

Then under some regularity conditions, Zhang et al. (2013a) show that β̂v

exists, it is
√
n-consistent and Pr{ β̂v2 = 0 } → 1 as n → ∞. Note that

this latter fact is often referred to as the sparsity property in the variable
selection literature.

In addition, Zhang et al. (2013a) show that under the same conditions

above, the distribution of β̂v1 can be asymptotically approximated by the
multivariate normal distribution with mean β01 and the covariance matrix

Σ̂v1(λ1, λ2) =
1

n

{
Âv1 + B̂v1(λ1, λ2)

}−1

Γ̂v1

{
Âv1 + B̂v1(λ1, λ2)

}−1

with replacing λ1 and λ2 by their estimators given below. In the above, Âv1,
B̂v1(λ, τ) and Γ̂v1 are the upper-left s× s submatrices of

Âv =
1

n

n∑

i=1

K∑

k=1

N̄ikZiZ
T
i ġN(ZT

i β̂v)
{
gN (ZT

i β̂v)
}−2 {

gH(ZT
i γ̂M )

}−1

,

(8.4)
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B̂v(λ1, λ2) = diag
{
ṗλ1,λ2(|β̂v1|)/|β̂v1|, . . . , ṗλ1,λ2(|β̂vd|)/|β̂vd|

}
, (8.5)

and
Γ̂v = (Id , −ĈvD̂

−1
v ) Φ̂ (Id , −ĈvD̂

−1
v )T ,

respectively. Here

Ĉv =
1

n

n∑

i=1

K∑

k=1

N̄ikZiZ
T
i

{
gN (ZT

i β̂v)
}−1

ġH(ZT
i γ̂M )

{
gH(ZT

i γ̂M )
}−2

,

D̂v =
1

n

n∑

i=1

K∑

k=1

∫ τ

0

Vk(t; γ̂M ) dHik(t) ,

and

Φ̂ =

(
Φ̂U Φ̂UH

Φ̂T
UH Φ̂H

)

,

where

Φ̂U =
1

n

n∑

i=1

[
K∑

k=1

N̄ikZi

{
gN (ZT

i β̂v)
}−1 {

gH(ZT
i γ̂M )

}−1
]⊗2

,

Φ̂H =
1

n

n∑

i=1

[
K∑

k=1

∫ τ

0

{

Zi
ġH(ZT

i γ̂M )

gH(ZT
i γ̂M )

− Ek(t; γ̂M )

}

dMik(t; γ̂M )

]⊗2

,

Φ̂UH =
1

n

n∑

i=1

[
K∑

k=1

N̄ikZi

{
gN (ZT

i β̂v)
}−1 {

gH(ZT
i γ̂M )

}−1
]

×
[

K∑

k=1

∫ τ

0

{

Zi
ġH(ZT

i γ̂M )

gH(ZT
i γ̂M )

− Ek(t; γ̂M )

}

dMik(t; γ̂M )

]′

,

and Vk(t;γ), Ek(t;γ) and dMik(t;γ) are defined as in Sect. 7.3.2.

For the determination of β̂v for given λ1 and λ2, by following Fan and Li
(2001), Zhang et al. (2013a) suggest to use the following Newton-Raphson

algorithm. Let β(0) = (β
(0)
1 , . . . , β

(0)
p )T denote an initial estimator of β that

is assumed to be close to the true value β0. The algorithm is based on the
following two facts. One is that in solving the estimating equation

Uv(β) =
∂lp(β, γ̂M ;λ1, λ2)

∂β
= 0 ,

the penalty function pλ1,λ2(|βj |) can be irregular at the origin and thus may
not have a second derivative at the origin. To address this, one way is to use
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the linear function approximation. Specifically, for each j, if β
(0)
j is not close

to zero, we can use

ṗλ1,λ2(|βj |) sgn(βj) ≈
ṗλ1,λ2(|β

(0)
j |)

|β(0)
j |

βj

and otherwise, set the updated estimator β
(1)
j = 0. The other fact is that

when β is close to β(0), we have

Uv(β) ≈ Uv(β
(0)) + U̇v(β

(0))(β − β(0))

≈ Uv(β
(0)) + n Âv(β

(0)) (β − β(0)) + n B̂v(β
(0);λ1, λ2) (β − β(0)) .

In the above, Âv(β
(0)) and B̂v(β

(0);λ1, λ2) are the matrices Âv and B̂v de-

fined in (8.4) and (8.5), respectively, with replacing β̂v by β(0). It thus follows

from these two facts that for given λ1 and λ2 and the estimator β(k) at the
kth step, one can define the updated estimator as

β(k+1) = β(k) −
{
n Âv(β

(k)) + n B̂v(β
(k);λ1, λ2)

}−1

Uv(β
(k)) ,

and continue this process until convergence.
Now we discuss the determination of the tuning parameters λ1 and λ2. For

this, a few general procedures are available. Among them, one, by following
Dicker et al. (2012), is to minimize the BIC statistic

BIC(λ1, λ2)= log

⎛

⎜⎝
−∑n

i=1

∑K
k=1 N̄ikZi

∫ {
gN (ZT

i β̂v(λ1, λ2))
}−1

dβ̂v(λ1, λ2)

n−ŝ(λ1, λ2)

⎞

⎟⎠

+
log(n)

n
ŝ(λ1, λ2).

In the above, β̂v(λ1, λ2) denotes the estimator defined in (8.3) for given λ1
and λ2, and ŝ(λ1, λ2) the number of the non-zero components of β̂v(λ1, λ2).

8.2.3 An Illustration

To illustrate the variable selection procedure described above, we apply it to
the bivariate panel count data on the occurrence rates of two types of non-
melanoma skin cancers analyzed in Sects. 7.2.2, 7.4.3 and 7.5.4. As described
before, the data are from a double-blinded and placebo-controlled randomized
Phase III clinical trial on the patients with a history of non-melanoma skin
cancers. The primary objective of the trial is to evaluate the effectiveness of
DFMO in reducing the recurrence rates of two types of skin cancers, basal
cell carcinoma and squamous cell carcinoma. In addition to the treatment
indicator, for each patient, there exist three baseline covariates, gender, age at
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Table 8.1. Analysis results of the skin cancer chemoprevention trial

β01 β02 β03 β04

Link function Method (SE) (SE) (SE) (SE)

LASSO 0 0.13758 −0.01030 0
(−) (0.01871) (0.00837) (−)

ALASSO 0 0.12719 0 0
(−) (0.01673) (−) (−)

SCAD 0 0.13758 −0.01030 0
(−) (0.01844) (0.00837) (−)

exp(t) MC+ 0 0.13816 −0.01036 0
(−) (0.01871) (0.00837) (−)

SELO 0 0.14411 0 0
(−) (0.01789) (−) (−)

Best subset 0 0.14397 0 0.38246
(−) ( 0.02226) (−) (0.18900)

β̂MI −0.02391 0.14395 −0.01158 0.38068
(0.18086) ( 0.02121) (0.00836) (0.17779)

LASSO 0 0.20668 0 0
(−) (0.04572) (−) (−)

ALASSO 0 0.24682 0 0
(−) (0.04909) (−) (−)

SCAD 0 0.20676 0 0
(−) (0.04572) (−) (−)

log{1 + exp(t)} MC+ 0 0.20739 0 0
(−) (0.04571) (−) (−)

SELO 0 0.25009 0 0
(−) (0.04939) (−) (−)

Best subset 0 0.26888 0 0.57559
(−) ( 0.05129) (−) ( 0.31230)

β̂MI −0.04181 0.26718 −0.01692 0.56942
( 0.30139) (0.04929) (0.01378) (0.29818)

the diagnosis, and the number of prior skin cancers. The main goal here is to
determine which of these covariates have significant effects on the recurrence
rate.

For the analysis, as in Sect. 7.4.3, for patient i, let Ni1(t) and Ni2(t) denote
the total numbers of the occurrences of basal cell carcinoma and squamous cell
carcinoma, respectively, up to time t, i = 1, . . . , 290. Also as in Sect. 7.4.3,
for patient i, define Zi1 = 1 if the patient is in the DFMO group and 0
otherwise, Zi2 and Zi3 to represent the number of prior skin cancers and the
age of the patient, and Zi4 = 1 if the patient is male and 0 otherwise. With
respect to the penalty function, in addition to the penalty function SELO, a
few other penalty functions are also employed for comparison, including the
LASSO, ALASSO, SCAD and MC+. Also for comparison, the best subset
selection procedure and the estimation procedure given in Sect. 7.3, which
does not employ any penalty function, are considered.
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Table 8.1 gives the estimated covariate effects obtained by all proce-
dures discussed above along with their estimated standard errors (SE). The
top half of the table is for the case with the use of the link functions
gN(t) = gH(t) = exp(t), while the bottom half for the situation with the
use of the link functions gN (t) = gH(t) = log{1 + exp(t)}. It is easy to see
that all penalized procedures essentially give similar results and suggest that
the DFMO treatment seems to have no significant effect on reducing the re-
currence rates of both types of skin cancers. Also the recurrence rates did not
seem to be significantly related to the age and gender of the patient. On the
other hand, the recurrence process of the skin cancers seems to be positively
related to the number of prior skin cancers. Note that these conclusions are
similar to those given by Tables 7.2–7.4. In contrast, the best subset proce-
dure and the procedure in Sect. 7.3 indicate that the gender may have some
effects on the recurrence rate of the skin cancers. Note that the results given
by the procedure in Sect. 7.3 are similar to those given in Table 7.2 based on
the same approach with different link functions.

8.2.4 Discussion

As mentioned above, variable selection based on panel count data is a rel-
atively new topic and there exists only limited literature on it. In addition
to Zhang et al. (2013a), the only other existing reference on it is given by
Tong et al. (2009) on the univariate panel count data arising from the pro-
portional mean model (1.4). Actually the procedure described above can be
seen as a generalization of that proposed in Tong et al. (2009), which has the
same structure as lp(β,γ, λ1, λ2) defined in (8.2). Note that the development
of the penalized function lp(β,γ, λ1, λ2) is based on the estimating function
UMI(β,γ) given in Sect. 7.3. Alternatively one can develop similar penal-
ized functions and variable selection procedure by using other estimating
functions.

It is easy to see that one advantage of the statistical procedure given above
is that it selects variables and estimates covariate effects simultaneously. In
particular, the approach has the oracle property in that it yields estimators
as if the correct submodel was known. Another advantage of the proposed
method is that it leaves the correlation among different types of recurrent
events arbitrary. On the other hand, it is apparent that the method may not
be efficient if some knowledge about the correlation is known. This is similar
to the situation that one faces with respect to the generalized estimating
equation. If some structure of the correlation can be reasonably assumed,
one may want to incorporate or make use of it to construct more efficient
estimating equations. Of course, in general, the correlation structure may be
unknown.

Penalized estimation procedures are usually employed for the situations
where there exists a large number of covariates or regression coefficients. It
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is well-known that one main reason for this is to address the collinearity
that commonly exists in these cases. At the same time, it is apparent that
the collinearity can exist too with the small number of covariates, which
is one of the motivations for the development of the penalized procedure
given above. It is worth noting that although the dimension p of covariates
is assumed to be fixed in the approach above, it can be any number smaller
than n.

To apply the variable selection procedure given above, one needs to choose
a penalty function. Although the different penalty functions considered in
Sect. 8.2.3 give similar results, this may not be true in general. Actually
Zhang et al. (2013a) give some simulation results for comparing the per-
formance of the procedures based on these penalty functions plus the best
subset procedure. They suggest that although all procedures tend to over-
estimate the true model in terms of the model size, the SELO-based pro-
cedure seems to have the highest percentage to select the correct model.
On the other hand, with respect to the false positive and negative rates, the
SELO-based procedure tends to be conservative and always to choose smaller
models than the others. Furthermore, in terms of the bias and efficiency
of the estimated covariate effects, the SELO-based procedure also tends to
outperform the others although no procedure is uniformly better than the
others.

More research is needed for the topic discussed in this section. One di-
rection for future research is to generalize the variable selection procedure
discussed above to the case where there exist some type-specific covariates.
That is, covariate effects on different types of recurrent events are different.
For this, the discussion and generalized models given in Sect. 7.3.4 apply here.
A similar situation is that unlike in models (7.4) and (7.5), covariates may be
time-dependent or their effects are time-varying, and for this, it is apparent
that one also needs new variable selection procedures. In the procedure given
above, it has been assumed that the censoring or follow-up time Ci is inde-
pendent of covariates. As discussed before, this may not be true in practice,
and it would be useful to generalize the procedure to the situation where Ci

may depend on covariates. Note that for this, a common approach is to spec-
ify a regression model such as the proportional hazards model (5.5) for the
dependence. Another assumption used above is the independence between
the underlying event history process of interest and the observation process.
As discussed in Chap. 6, this can be questionable in practice and one may
want to generalize the procedure above to this situation too.
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8.3 Analysis of Mixed Recurrent Event and Panel
Count Data

8.3.1 Introduction

As described above, in addition to recurrent event data and panel count data,
sometimes event history studies concerning some recurrent events may yield
a third type of data, mixed recurrent event and panel count data (Zhu et al.,
2013). Such data occur when study subjects are observed continuously over
some observation periods, but only at discrete time points over other obser-
vation periods. That is, we have recurrent event data over some observation
periods, but panel count data over other observation periods. One situation
that yields such data is the long-term follow-up study on, for example, health
conditions, in which some patients are always observed continuously, while
others are only monitored or observed periodically. Another example of mixed
data is given by the chronic disease study on, for example, medication ad-
herence, in which the adherence is observed daily (continuously) when the
patients are in the hospital, but may be observed only monthly (discretely)
otherwise. Note that in the first example, we have relatively a simple situ-
ation and the study subjects can be classified into two groups, these giving
recurrent event data and these giving only panel count data. Sometimes we
refer such data as to type I mixed data and otherwise, the data such as these
in the second example are referred to as type II mixed data (Zhu et al., 2013).

A third, more specific example of mixed data is given by a Childhood Can-
cer Survivor Study (CCSS), a multi-center longitudinal cohort study (Robi-
son et al., 2002). Starting in 1996, the study distributed a baseline summary
questionnaire to more than 13,000 childhood cancer survivors who were di-
agnosed between 1970 and 1986 and had survived more than 5 years since
diagnosis. The questionnaire was also sent to a random sample of the sib-
lings of the survivors, who served as a control group. The follow-up summary
questionnaires were sent periodically thereafter. The information asked in
these questionnaires includes reports of all pregnancies, the age range at the
beginning of each pregnancy and the outcome. If a pregnancy was reported
in any summary questionnaire, a detailed pregnancy questionnaires would be
sent to the person to ask for the precise age at pregnancy and other informa-
tion. Among others, one objective of the study is to determine the long-term
effects, if any, of childhood cancer and cancer treatments on the subsequent
reproductive function. With respect to the pregnancy, some patients answered
the detailed pregnancy questionnaire and thus provided complete recurrent
event data for the pregnancy process, while some others only returned the
summary questionnaire and gave incomplete panel count data for the process.
Also there are some patients who provided detailed pregnancy and thus the
recurrent event data during some periods, but only panel count data during
some other periods. Note that these periods differ from subject to subject.
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In other words, we only have mixed recurrent event and panel count data on
the pregnancy process, both types I and II mixed data.

For the analysis of type I mixed recurrent event and panel count data, it is
apparent that a simple and naive approach would be to base the analysis on
the subjects giving recurrent event data or panel count data only. Another
naive approach would be to treat the observed data as panel count data
or to generate recurrent event data by using, for example, some imputation
procedures. It is easy to see that both methods could either give biased
results or be less efficient. In the following, we discuss an estimating equation
approach for regression analysis of mixed data that makes use of all available
information but does not rely on the imputation. The approach is illustrated
by the mixed CCSS data discussed above, followed by some discussions.

8.3.2 Regression Analysis of Mixed Data

As before, consider an event history study that concerns some recurrent
events and involves n independent subjects. Also as before, let Ni(t) de-
note the total number of the recurrent events that subject i has experienced
up to time t, and Zi and Ci the vector of covariates and the follow-up time
associated with subject i, respectively, i = 1, . . . , n. Suppose that for each
subject, there exists a sequence of intervals { (ti,j−1, ti,j ] ; j = 1, . . . ,mi }
with ti,0 = 0 < ti,1 < · · · < ti,mi during which the subject is observed
either continuously or only at discrete times over each interval. Also suppose
that the main goal is to estimate covariate effects on the Ni(t)’s.

For subject i, define ri(t) = 1 for t ∈ (ti,j−1, ti,j ] if the subject is ob-

served continuously over (ti,j−1, ti,j ] and 0 otherwise. Also define H̃i(t) =∑mi

j=1 I(t ≥ ti,j), Hi(t) = H̃i(t ∧ Ci) and Yi(t) = I(t ≤ Ci), i = 1, . . . , n.
That is, ri(t) is the data type indicator function. It is easy to see that for
type I mixed data, we have that either ri(t) = 0 or 1 for all t. Furthermore,
one has recurrent event data if ri(t) = 1 for all t and i and panel count data
if ri(t) = 0 for all t and i. Note that the time points ti,j ’s and the process

H̃i(t) defined here have different meanings compared to those defined in the
previous chapters. They become the same if mixed data reduce to panel count
data. In the following, we assume that the mean function of Ni(t) satisfies
the proportional mean model (1.4), and both the observation process H̃i(t)
and the data type indicator function ri(t) are independent of Ni(t) and Ci

given Zi.
For estimation of regression parameter β in model (1.4), define Y ∗

i (t) =

I(t ≤ ti,mi), Ñi(t) =
∫ t

0 Y
∗
i (s)Ni(s) dHi(s), Γ0(t) =

∫ t

0 μ0(s) dE{Hi(s)},
and

Mi(t;β, μ0, Γ0) = ri(t)Mir(t;β, μ0) + {1− ri(t)} Mip(t;β, Γ0) .
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In the above,

Mir(t;β, μ0) = Yi(t)Ni(t) −
∫ t

0

Yi(s) exp
(
βTZi

)
dμ0(s)

and

Mip(t;β, Γ0) = Ñi(t) −
∫ t

0

Y ∗
i (s) exp

(
βTZi

)
dΓ0(s) .

One can easily show that E{Mi(t;β, μ0, Γ0)}=0. That is, theMi(t;β, μ0, Γ0)’s
are zero-mean processes. Thus for estimation of β as well as μ0(t) and Γ0(t),
it is natural to consider the following estimating equations

n∑

i=1

ri(t) dMi(t;β, μ0, Γ0) = 0 , (8.6)

n∑

i=1

{1− ri(t)} dMi(t;β, μ0, Γ0) = 0 , (8.7)

and
n∑

i=1

∫ τ

0

Zi dMi(t;β, μ0, Γ0) = 0 , (8.8)

where τ denotes the longest follow-up time as before.
For given β, the solving of Eqs. (8.6) and (8.7) gives

μ̂0(t;β) =

∫ t

0

∑n
i=1 ri(s)Yi(s) dNi(s)

S
(0)
r (s;β)

(8.9)

and

Γ̂0(t;β) =

∫ t

0

∑n
i=1 {1− ri(s)} dÑi(s)

S
(0)
p (s;β)

, (8.10)

where

S(j)
r (t;β) =

n∑

i=1

ri(t)Yi(t) exp
(
βTZi

)
Z⊗j

i

and

S(j)
p (t;β) =

n∑

i=1

{1− ri(t)} Y ∗
i (t) exp

(
βTZi

)
Z⊗j

i

for j = 0, 1, 2. By plugging the estimators given in (8.9) and (8.10) into the
Eq. (8.8), we obtain

Umix(β) =

n∑

i=1

∫ τ

0

ri(t)
{
Zi − Z̄r(t;β)

}
Yi(t) dNi(t)

+

∫ τ

0

{1− ri(t)}
{
Zi − Z̄p(t;β)

}
dÑi(t) = 0 , (8.11)
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where

Z̄r(t;β) =
S
(1)
r (t;β)

S
(0)
r (t;β)

, Z̄p(t;β) =
S
(1)
p (t;β)

S
(0)
p (t;β)

.

Note that it is easy to see that if one observes recurrent event data, the
estimating function Umix(β) and the estimator given in (8.9) reduce to the
estimating function U(τ ;β) and the estimator given in (1.9) and (1.10), re-
spectively. In the case of panel count data, Umix(β) reduces to the estimating
function used in Cheng and Wei (2000), similar to that given in (5.11).

Let β̂mix denote the estimator of β given by the solution to the Eq. (8.11).

Zhu et al. (2013) show that under some regularity conditions, β̂mix is con-

sistent and one can approximate the distribution of
√
n (β̂mix − β0) by the

multivariate normal distribution with mean zero and the covariance matrix
Σ̂−1

mix(β̂mix) Γ̂mix(β̂mix) Σ̂
−1
mix(β̂mix). Here β0 denotes the true value of β as

before,

Σ̂mix(β) =
1

n

n∑

i=1

[ ∫ τ

0

ri(t)
{
Zi − Z̄r(t;β)

}⊗2
Yi(t)dNi(t)

+

∫ τ

0

{1− ri(t)}
{
Zi − Z̄p(t;β)

}⊗2
dÑi(t)

]

,

and

Γ̂mix(β) =
1

n

n∑

i=1

[∫ τ

0

ri(t)
{
Zi − Z̄r(t;β)

}
dM̂ir(t)

+

∫ τ

0

{1− ri(t)}
{
Zi − Z̄p(t;β)

}
dM̂ip(t)

]⊗2

,

where

M̂ir(t) = Mir(t; β̂mix, μ̂0(t; β̂mix)) , M̂ip(t) = Mip(t; β̂mix, Γ̂0(t; β̂mix)) .

8.3.3 Analysis of the Childhood Cancer Survivor Study

Now we apply the estimation procedure discussed in the previous subsection
to the mixed data arising from the CCSS described above. For the analysis,
we confine ourselves to a subgroup of the female participants who were at
least 25 years old in 1996. It includes 3,966 participants in total, with 2,765
being childhood cancer survivors and the others being their siblings. For the
pregnancy process, there exist some subjects who provided only one type
data, either recurrent event data or panel count data. Also there exist some
subjects who provided recurrent event data over some periods but panel
count data over other periods. That is, we have type II mixed data. However,
for the data collected before 2001, all participant provided only one type of
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Table 8.2. Frequencies of the pregnancy counts of the participants in the CCSS

# of pregnancy 0 (%) 1 (%) 2 (%) ≥ 3 (%)

All observed data

Survivors (n=2,765) 1,057 (38.23) 389 (14.07) 501 (18.12) 818 (29.58)
Siblings (n=1,201) 216 (17.99) 151 (12.57) 319 (26.56) 515 (42.88)
All subjects (n=3,966) 1,273 (32.10) 540 (13.62) 820 (20.68) 1,333 (33.61)

The observed data before 2011

Survivors (n=2,765) 1,146 (41.45) 406 (14.68) 530 (19.17) 683 (24.70)
Siblings (n=1,201) 275 (22.90) 181 (15.07) 338 (28.14) 407 (33.89)
All subjects (n=3,966) 1,421 (35.83) 587 (14.80) 868 (21.89) 1,090 (27.48)

data, either recurrent event data or panel count data. That is, we have type I
mixed data before 2001. In the following, we consider both parts of the data
for comparison. Also it is assumed that one is interested in comparing the
pregnancy processes between the cancer survivors and the siblings.

To give an idea about the observed data and the difference between the
two groups, Table 8.2 presents the frequencies of the pregnancy counts among
the survivors and the siblings. The top part of the table is for the whole data
and the bottom part is for the data before 2001. For the whole data, the
average numbers of the pregnancy per subject are 1.684 and 2.403 for the
cancer survivors and the siblings, respectively. The corresponding numbers
for the data before 2001 are 1.498 and 2.049, respectively. These suggest that
the siblings seem to have a higher pregnancy rate than the survivors.

For the comparison of the pregnancy rates between the cancer survivors
and the siblings, define Zi = 1 if the ith subject is a survivor and 0 oth-
erwise. The application of the estimation procedure discussed above to the
whole data yields β̂mix = −0.247 with the estimated standard error being
0.032. This gives a p-value close to zero for testing no difference between the
two groups. If we only consider the data before 2001, the estimated difference
and the associated standard error are β̂mix = −0.128 and 0.034, respectively,
yielding a p-value of 0.0002 for testing the no difference. Both analyses indi-
cate that as discussed above, the cancer survivors seem to have a significantly
lower pregnancy rate than their siblings. In other words, the childhood cancer
and its treatments indeed seem to have some significantly negative effect on
the subsequent reproductive function.

To give a graphical presentation about the difference between the preg-
nancy rates, we display in Fig. 8.1 the separate estimated cumulative average
numbers of the pregnancy for the two groups given by (8.9) with setting
β = 0. Again it suggests that the siblings had much higher pregnancy rate
than the cancer survivors. On the other hand, one may want to be careful to
interpret these results due to several factors. One is the significantly different
numbers of the subjects in the two groups. Another factor is that the estima-
tion procedure assumes that all participants or subjects are independent. But
it is apparent that the survivors and their siblings could be related although
the correlation may not be strong.



204 8 Other Topics

10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

3.5

Age by Years

C
um

ul
at

iv
e 

nu
m

be
r 

of
 p

re
gn

an
ci

es
Survivors

Siblings

Fig. 8.1. Estimators of the cumulative average numbers of pregnancies

8.3.4 Discussion

As remarked above, the literature on mixed recurrent event and panel count
data is quite limited compared to that for either recurrent event data or panel
count data. In other words, more research remains to be done. One direction
for future research is the development of more efficient estimation procedures
than that discussed above. To see that, note that the estimating function
Umix(β) given in (8.11) is essentially a simple combination of the estimating
functions used for recurrent event data and panel count data, respectively. It
is possible to derive some other more efficient estimating functions and thus
the more efficient estimators of regression parameters. The same is actually
true for nonparametric estimation of the mean function of the underlying
recurrent event process of interest too. For this, as pointed out in Sect. 8.3.3,
one could employ the estimator given in (8.9) with setting β = 0. However,
it is easy to see that this estimator only makes use of the observed informa-
tion over the continuously observed periods. One can expect to obtain more
efficient estimators if all observed information can be used.

In the estimation procedure described above, it is assumed that the mean
function of the underlying event process satisfies the proportional mean model
(1.4). As discussed in Chaps. 5 and 6, the model can be generalized in different
ways. One is to consider the semiparametric transformation model defined in
(5.15) assuming that covariates are time-dependent. Furthermore, one could
also consider the model
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E{Ni(t)|Zi } = g
{
μ0(t) exp{βT (t)Zi(t)}

}

to allow time-varying covariate effects. Under the model above, it is easy to see
that the development of estimation procedures may not be straightforward.

Another assumption used in the estimation procedure above is that the
underlying recurrent event process Ni(t) of interest and the observation pro-
cess H̃i(t) are independent given covariates. As discussed in Chap. 6, this may
not be true in reality. Also the process Ni(t) could be related to the follow-up
time Ci and/or there exists a dependent terminal event such as death. It is
clear that one needs to develop new and different inference procedures for
these situations as well as for the analysis of multivariate mixed recurrent
event and panel count data.

8.4 Analysis of Panel Count Data from Multi-state
Models

8.4.1 Introduction

So far up to this section, the focus has been on panel count data on count-
ing processes or the recurrent event processes of interest with incomplete
or interval-censored observations. In this section, we discuss another type of
panel count data that concern transitions among possible finite states with
the focus on continuous-time finite state Markov models. In other words, we
consider the analysis of the finite state Markov models with incomplete or
interval-censored observations (Chen et al., 2010; Joly et al., 2009; Kalbfleisch
and Lawless, 1985; Titman, 2011).

Multi-state models or Markov models are commonly used in many fields
including engineering, medical research and social sciences (Andersen and
Klein, 2004). In these situations, a main objective is usually to make infer-
ence about the transition probabilities or intensities. In other words, we are
interested in how long a study subject stays or occupies a state among finite
possible states and how often the study subject moves or transfers from one
to another state. Among the commonly used multi-state models, the survival
model can perhaps be seen as the simplest one with two states, a transient
state alive and an absorbing state death. Another simple multi-state model
that has been intensively used and investigated is the three-state or illness-
death model that consists of three states, heath, illness and death. In this
case, one can only transit from health state to illness or death state, or from
illness state to death state (Hsieh et al., 2002; Joly and Commenges, 1999;
Joly et al., 2002). Among others, the illness-death model is commonly used
in tumorigenicity experiments, and in this case, the three states correspond
to tumor-free, tumor-onset and death (French and Ibrahim, 2002; Lagakos
and Louis, 1988; Lindsey and Ryan, 1993).
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A more complicated and specific multi-state model is shown in Fig. 8.2,
reproduced from Andersen and Klein (2007). The model was designed to
describe the recovery process of the patients given a haematopoietic stem
cell transplant or bone marrow transplant (BMT) for leukaemia. Here it is
supposed that an infusion of donor cells or the Donor Leuco-cyte infusion
(DLI) is given to the patients who relapse to use the graft versus tumor
effect of BMT to induce a second remission. The model has six states in total
and three transient states, alive in the first post-BMT remission, alive in the
first relapse and alive in the second remission following DLI. For such studies,
one of the variables of interest is the current leukaemia-free survival function,
the probability that a patient stays in state 0 or 4.

A well-known example of panel count data from a multi-state model is
given in Kalbfleisch and Lawless (1985), arising from a survey study of public
school students on their smoking behavior. In the study, the students starting
their sixth grade in two Ontario counties (Canada) were surveyed four times
during about a 2-year period. At each time point, the smoking status of each
student was asked or recorded, which is that the child has never smoked,
is currently a smoker or has smoked but has now quit. That is, we have a
three-state model like the illness-death model mentioned above. There are
two groups, control group and treatment group consisting of the students
who received educational material on smoking during the first 2 months of
the study. One of the objectives is to compare the two groups to assess the
effect of the training on smoking. One can find another example of panel count
data from the multi-state model in Chen et al. (2010) and Gladman et al.
(1995). They analyzed the panel count data on psoriatic arthritis discussed
in Sect. 7.3.3 by using a four-state Markov model. The states were defined
based on the number of damaged joints determined by the clinical assessment,
corresponding to no damage, mild, moderate and severe damage, respectively.

For the analysis of panel count data from multi-state models, a common
and general procedure is to apply the maximum likelihood approach. In the
following, we first consider the situation where the data arise from continuous-
time, homogeneous finite state Markov models and present the maximum
likelihood procedure. Other situations including non-homogeneous finite state

State 0
Alive and disease free

State 2
Alive in first relapse

State 4
Alive in second remission

after DLI

State 1
Dead in remission

State 3
Dead after first relapse

State 5
Dead or second relaapse

Fig. 8.2. A multi-state model for the recovery process of the patients given BMT
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Markov models and regression analysis are then briefly discussed. In this
section, we assume that the observation process is independent and some
comments on informative observation processes are provided at the end of
the section.

8.4.2 Maximum Likelihood Estimation with Homogeneous Finite
State Markov Models

Consider a follow-up study involving n independent subjects and in which
each subject can stay at one of or move among m possible states denoted by
1, . . . ,m. For subject i, let Xi(t) denote the state where the subject occupies
at time t and suppose that {Xi(t) : t ≥ 0 } is a continuous-time Markov
Chain as defined in Sect. 1.3.2, i = 1, . . . , n. Also for 0 ≤ s ≤ t, let P (s, t) =
{ pjl(s, t) } denote the m×m transition probability matrix with

pjl(s, t) = P{Xi(t) = l|Xi(s) = j } ,

and Q(t) = { qjl(t) } the m × m transition intensity matrix, respectively,
j, l = 1, . . . ,m. Then we have

qjl(t) = lim
Δt→0

pjl(t, t+Δt)

Δt
, j �= l .

In the following, we assume that the processes Xi(t)’s are time-homogeneous.
That is, Q(t) = Q = (qjl) is independent of t and Xi(t) is stationary. Then
we have

P (t) = P (s, s+ t) = P (0, t)

and

P (t) = exp(Q t) =

∞∑

u=0

Qu tl

u!

(Cox and Miller, 1965).
For the estimation of the transition intensity matrix Q, suppose that the

transition intensity qjl = qjl(θ) is known up to p functionally independent
parameters θ1, . . . , θp, where θ = (θ1, . . . , θp)

T . Also suppose that each study
subject is observed only at k+1 distinct time points t0 < t1 < · · · < tk. That
is, we only know the states where each subject occupies at these time points
but do not know when the transitions happen. Usually we set t0 = 0. Define
njlu to be the number of subjects in state j at time tu−1 and state l at time
tu, u = 1, . . . , k. Then it is easy to show that conditional on the distribution
of the state at time t0, the log likelihood function of θ has the form

logL(θ) =

k∑

u=1

m∑

j,l=1

njlu log{ pjl(wu; θ) } , (8.12)
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where wu = tu − tu−1. Thus it is natural to estimate θ by maximizing the
log likelihood function given above.

Let θ̂ denote the maximum likelihood estimator of θ defined above. It is
easy to see that the determination of θ̂ is not straightforward in general due
to the complicated relationship between the pjl(wu; θ) and qjl(θ)’s. For this,
several algorithms have been developed and in the following, we describe the
quasi-Newton procedure originally given in Kalbfleisch and Lawless (1985).

To obtain θ̂, first we need

Sv(θ) =
∂ logL(θ)

∂θv
=

k∑

u=1

m∑

j,l=1

njlu
∂pjl(wu; θ)/∂θv

pjl(wu; θ)
,

v = 1, . . . , p, and

∂2 logL(θ)

∂θv1∂θv2
=

k∑

u=1

m∑

j,l=1

njlu

×
{
∂2pjl(wu; θ)/∂θv1∂θv2

pjl(wu; θ)
− ∂pjl(wu; θ)/partialθv1∂pjl(wu; θ)/∂θv2

p2jl(wu; θ)

}

.

To finish the calculation above, suppose that for a given θ, the transition
intensity matrix Q(θ) has m distinct eigenvalues d1(θ), . . . , dm(θ). Then
we have the canonical decomposition Q(θ) = A(θ)D−1(θ)A−1(θ), where
D(θ) = diag{d1(θ), . . . , dm(θ)} and A(θ) is the m × m matrix whose jth
column is a right eigenvector of Q(θ) corresponding to dj(θ). This along with
the fact that P (t; θ) = exp{Q(θ) t} gives

P (t; θ) = A(θ) diag {exp(d1(θ)t), . . . , exp(dm(θ)t)} A−1(θ) . (8.13)

It follows that
∂P (t; θ)

∂θv
= A(θ)Vv A

−1(θ) ,

v = 1, . . . , p, where Vv is the m×m matrix with the (j, l) element given by

g
(v)
jl {exp(dj(θ)t) − exp(dl(θ)t)}

dj(θ) − dl(θ)
, j �= l,

g
(v)
jj t exp(dj(θ)t) , j = l .

In the above, g
(v)
jl is the (j, l) element in

G(v) = A−1(θ)
∂Q(θ)

∂θv
A(θ) .
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Note that given Sv(θ) and ∂2 logL(θ)/∂θv1∂θv2 , one could employ the

Newton-Raphson algorithm for the determination of θ̂. It is apparent, how-
ever, that this would not be easy as it involves the computations of the
second derivatives. To avoid this, define nj.u =

∑k
l=1 njlu, the number of

the subjects in state j at time tu−1. By using the fact that

∂2pjl(wu; θ)

∂θv1∂θv2
= 0 ,

we have

E

{

− ∂2 logL(θ)

∂θv1∂θv2

}

=

k∑

u=1

m∑

j,l=1

E{nj.u}
pjl(wu; θ)

∂pjl(wu; θ)

∂θv1

∂pjl(wu; θ)

∂θv2
.

It is obvious that the expectation above can be estimated by

σv1v2(θ) =

k∑

u=1

m∑

j,l=1

nj.u

pjl(wu; θ)

∂pjl(wu; θ)

∂θv1

∂pjl(wu;j.u )

∂θv2
.

This suggests the following iterative estimation procedure.
Let θ(b−1) denote the estimator of θ obtained at the (b− 1) iteration, and

define S(θ) = (S1(θ), . . . , Sp(θ))
T and Σ(θ) = (σv1v2 ), a p × p matrix.

Then one can obtain the updated estimator of θ by

θ(b) = θ(b−1) + Σ−1(θ(b−1))S(θ(b−1)) (8.14)

and continue the process above until the convergence. Suppose that the true
value, denoted by θ0, of θ is an interior point of the parameter space. Then
it can be shown that

√
n (θ̂ − θ0) asymptotically follows the multivariate

normal distribution with mean zero and the covariance matrix that can be
consistently estimated by Σ−1(θ̂)/n.

Note that in the discussion above, for simplicity, it has been assumed that
the observation times for all subjects are the same. The approach described
actually applies to the general situation where the observation times differ
from subject to subject. More specifically, let ti,0 < ti,1 < · · · < ti,ki denote
the observation times on the process Xi(t). In this case, the log likelihood
function of θ has the form

logL∗(θ) =

n∑

i=1

ki∑

u=1

m∑

r,s=1

I {Xi(ti,u−1) = r,Xi(ti,u) = s} prs(wi,u; θ) ,

where wi,u = ti,u − ti,u−1. Furthermore, we have

E

{

− ∂2 logL∗(θ)
∂θv1∂θv2

}

=

n∑

i=1

ki∑

u=1

m∑

r,s=1

E{δiur}
prs(wi,u; θ)

∂prs(wi,u; θ)

∂θv1

∂prs(wi,u; θ)

∂θv2
,



210 8 Other Topics

which can be estimated by

σ∗
v1v2(θ) =

n∑

i=1

ki∑

u=1

m∑

r,s=1

δiur
prs(wi,u; θ)

∂prs(wi,u; θ)

∂θv1

∂prs(wi,u; θ)

∂θv2
,

where δijr = I(Xi(ti,j−1) = r). It follows that one can obtain the maximum
likelihood estimator of θ based on L∗(θ) by using the iterative algorithm
similar to that given in (8.14) (Gentlemen et al., 1994). Note that one ad-
vantage of the algorithms discussed above is that they only involve the first
derivatives of the log likelihood function.

8.4.3 Discussion

In the previous subsection, it has been assumed that the Xi(t)’s are homo-
geneous Markov processes and it is apparent that this may not be true in
practice. In other words, the transition intensity matrix Q(t) may depend on
time t and the Xi(t)’s are non-homogeneous. Assume that the Xi(t)’s are
continuous-time non-homogeneous Markov processes and Q(t) = Q(t; θ) is
known up to the vector of unknown parameters θ. Let ti,0 < ti,1 < · · · < ti,ki

denote the observation times on subject i, i = 1, . . . , n. Then the likelihood
function of θ has the form

n∏

i=1

ki∏

u=1

P {Xi(ti,u) = xi,u|Xi(ti,u−1) = xi,u−1 } ,

where xi,0, xi,1, . . . , xi,ki denote the states that subject i occupies at times
ti,0 < ti,1 < · · · < ti,ki , respectively. Thus it is natural to estimate θ by
maximizing the likelihood function above.

On the other hand, the maximization above is usually quite difficult due
to the relationship between the transition probability matrix P (s, t) and the
transition intensity matrix Q(t). More specifically, for the situation, we need
to solve the following Kolmogorov Forward Equations (KFE)

dP (t0, t)

dt
= P (t0, t)Q(t)

subject to the initial condition P (t0, t0) = I (Cox and Miller, 1965). The
general solution to the KFE above is given by

P (t0, t) =

∞∑

k=0

∫ t

t1−t0

∫ t

t2−t1

· · ·
∫ t

tl−tl−1

Q(t1)Q(t2) · · ·Q(tl) dt1dt2 · · · dtl ,
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where l represents the number of jumps made by the Markov chain between
t0 and t, and t1, . . . , tl denote the times of these jumps.

It is easy to see that unlike (8.13) for the homogeneous Markov process, the
relationship above is very difficult or intractable in general. There exist two
exceptions to this. One is that the transition intensities can be assumed to be
piecewise constant functions (Kay, 1986; Titman, 2011). As commented be-
fore, the use of the piecewise constant function allows considerable flexibility
in the form of the time dependence. On the other hand, this implies deter-
ministic discontinuities in the hazard functions, which may not be viewed as
biologically plausible. The other situation where the KFE have an analytic
solution is that the transition intensity matrix has the form

Q(t) = Q0 g(t;λ) .

Here Q0 is a time-independent and unknown intensity matrix and g(t;λ) is
a known, nonnegative function with the parameter λ. For given λ, define
s =

∫ t

0
g(u;λ) du and the stochastic process Y (s) = X(t). Then one can

show that the process { Y (s) : s ≥ 0 } is a homogeneous Markov process
with intensity matrix Q0. It follows that if λ is known and Q0 is known up to
a vector of unknown parameters, one can estimate Q0 by using the maximum
likelihood procedure described in the previous subsection. If λ is unknown,
one may apply the profile likelihood approach to estimate it.

For estimation of non-homogeneous Markov processes in general, one ap-
proach is to employ the discrete-time approximation (Aalen, 1975; Bacchetti
et al., 2010). However, it may not be practical in some situations since it
assumes that there exists only a single possible jump within a time period.
Titman (2011) gives another approach developed based on numerical solu-
tions to differential equations and the use of B-splines to approximate the
transition intensities. It is more flexible than the time transformation method
mentioned above. Also it is biologically more plausible than the piecewise con-
stant intensity method commented before. Although the approach makes use
of only the first derivatives as that described in the previous subsection, it is
still computationally intensive in nature.

As discussed in the previous sections, in many situations, there may exist
some covariates, and one may be interested in estimating or making inference
about the relationship between these covariates and the transition intensities
qjl(t)’s. In this case, as the proportional hazards model in failure time data
analysis or the proportional rate model (1.3), a commonly used model is
given by

qjl(t;Z) = exp
(
βT
jlZ

)

for a homogeneous Markov process (Kalbfleisch and Lawless, 1985; Tuma and
Robins, 1980). In the above, βjl is a vector of unknown regression parameters
and Z denotes the vector of covariates as before but with the first compo-
nent being equal to one. One advantage of the model above is its analytical
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convenience. On the other hand, for a particular application, a different model
such as

qjl(t;Z) = qjl + βT
jlZ

may be more appropriate.
Throughout this section, it has been assumed that the observation process

or the process generating the observation times ti,u’s is noninformative or
independent of the Markov process of interest. As discussed in Chap. 6, this
may not be true sometimes. An example of panel count data with informative
observation processes is discussed in Chen et al. (2010) with the data arising
from a progressive multi-state model. By the progressive multi-state model,
also sometimes referred to as the irreversible multi-state model, we mean that
study subjects can transfer from one to another state in one direction only
(Hsieh et al., 2002; Joly and Commenges, 1999; Joly et al., 2002). An example
of such models is the illness-death model discussed above. In the case of
informative observation processes, one complicated factor is that one cannot
simply construct the likelihood function conditional on the observation times
as above.

8.5 Bayesian Analysis and Analysis of Nonstandard
Panel Count Data

In this section, we briefly discuss three topics related to panel count data that
have not been touched previously. First we consider the Bayesian analysis of
panel count data with the focus on nonparametric estimation. Regression
analysis of panel count data is then investigated when parts of the covariates
of interest are measured or observed with some errors. That is, we do not
know the exact values of some covariates. In this case, it is apparent that the
use of the regression procedures described before may yield biased results or
conclusions, and thus new regression procedures are needed (Carroll et al.,
1995; Kim, 2007; Lin et al., 1993; Prentice, 1982; Zhou and Pepe, 1995).
Finally, we discuss the situation in which instead of only one underlying
recurrent event process, the observed panel count data may arise from one
of several possible underlying recurrent event processes. That is, one faces
mixture models (Mclachlan and Peel, 2000; Nielsen and Dean, 2008; Rosen
et al., 2000; Wang et al., 1996).

8.5.1 Bayesian Analysis of Panel Count Data

Bayesian approach is commonly used in many fields including failure time
data analysis (Gómez et al., 2004; Ibrahim et al., 2001). However, only lim-
ited literature exists on the use of Bayesian approach for the analysis of
panel count data. In the case of parametric analysis, it is apparent that the
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application of Bayesian approaches is straightforward at least in theory. In
the following, we confine the discussion to nonparametric estimation of panel
count data.

Consider a recurrent event study that yields panel count data given in
(3.1), and suppose that one is mainly interested in the nonparametric esti-
mation problem considered in Sect. 3.2. In the following, we use the same
notation as those used in Sect. 3.2. To apply the Bayesian approach, one
needs to specify a prior distribution or process. For the current situation, a
natural way is clearly to directly impose a prior process such as Dirichlet or
gamma process on the intensity or cumulative intensity process of the recur-
rent event processes Ni(t)’s. Another approach, briefly discussed below and
given by Ishwaran and James (2004), is to assume that the mean function
μ(t) has the form

μ(t|P ) =

∫

S

∫ t

0

K(s, v) dsP (dv)

and impose a prior process on P . In the above, K(s, v) denotes a prespecified
kernel function and P is a finite measure over a measurable space (S,A).
To describe the approach, for each i, define Ai,j = (ti,j−1, ti,j ] and Ai =
(0, ti,mi ], j = 1, . . . ,mi, i = 1, . . . , n. Motivated by the likelihood function
given in (3.3), Ishwaran and James (2004) suggest to consider the likelihood
function

L(P ) = exp

{

−
n∑

i=1

∫

S

∫ ∞

0

Yi(t)F (dt|v)P (dv)
}

×
n∏

i=1

mi∏

j=1

Δni,j∏

l=1

∫

S
F (Ai,j |vi,j,l)P (dvi,j,l) .

In the above, F (A|v) =
∫
A
K(s, v) ds for each Borel-measurable set A,

Yi(t) = I(t ∈ Ai), Δni,j = ni,j − ni,j−1, and the vi,j,l’s can be viewed
as missing observations.

For the specification of a prior process on P and the determination of
the resulting posterior process, define v = ( vi,j,l l = 1, . . . , Δni,j , j =
1, . . . ,mi, i = 1, . . . , n ) and

π( dv|P ) =

n∏

i=1

mi∏

j=1

Δni,j∏

l=1

P (dvi,j,l) ,

a conditional measure of v given P . Assume that P has a weighted
gamma prior process denoted by G(·|α, β). More specifically, for each Borel-
measurable set A ∈ A, a measure P in G(·|α, β) has the form

P (A) =

∫

A

β(s) γα(ds) ,
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where β(s) is a positive integrable function over S and γα is a gamma process
over S with shape measure α. That is, for a Borel-measurable set A ∈ A,
γα(A) is a gamma random variable with mean α(A) and variance α(A). Then
it follows from Theorem 3 of James (2003) that for any integrable function
g(v, P ), the resulting posterior is given by

∫
g(v, P )π(dv, dP |D)

∫ ∫
g(v, P )G

⎛

⎝ dP |α+

n∑

i=1

mi∑

j=1

Δni,j∑

l=1

δvi,j,l , β
∗

⎞

⎠ π(dv|D) .

In the above, D represents the observed data, δv denotes a discrete measure
concentrated at v,

π(dv|D) ∝ m0(dv)

n∏

i=1

mi∏

j=1

Δni,j∏

l=1

β∗(vi,j,l)F (Ai,j |vi,j,l) ,

where

β∗(v) =
β(v)

1 + β(v)
∑n

i=1 F (Ai|v)
,

and

m0(dv) =

∫ n∏

i=1

mi∏

j=1

Δni,j∏

l=1

M(vi,j,l)P(dM |α) ,

the Pólya urn density for a Dirichlet process P(·|α) (Ferguson, 1973, 1974).
It is apparent that there is no close form for the posterior given above for

the function g(v, P ) and some approximation has to be used. One approach
is to apply the Blocked Gibbs sampling and one can find the details on this
in Ishwaran and James (2004).

8.5.2 Analysis of Panel Count Data with Measurement Errors

This subsection discusses regression analysis of panel count data as in Chap. 5.
However, we assume that some components of the covariates of interest can-
not be measured or observed exactly. That is, there exist measurement er-
rors on covariates. The problems related to measurement errors occur and
have been discussed in many fields including failure time data analysis (Lin
et al., 1993; Prentice, 1982; Zhou and Pepe, 1995), longitudinal data analysis
(Tsiatis et al., 1995; Wulfsohn and Tsiatis, 1997), and recurrent event data
analysis (Yi and Lawless, 2012). In the following, we use the same notation
as those defined in Sect. 5.2 and discuss the generalization of the estimation
procedure given there to the situation with measurement errors.

Consider a recurrent event study with n independent subjects as in
Sect. 5.2. Also let the Ni(t)’s, Zi’s, ti,j ’s, ni,j ’s, and mi’s be defined as
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there, and suppose that one only observes the data given in (5.1). In the
following, we assume that the covariate Zi can be written in two parts as
Zi = (ZT

i1,Z
T
i2)

T . Here Zi1 denotes the components that can be observed ex-
actly and Zi2 the components that may be measured or observed with errors.
Also we assume that for Zi2, there exists an auxiliary variable Wi and the
recurrent event processes Ni(t)’s follow the proportional mean model (1.4).
Then we have

E {Ni(t)|Zi } = μ0(t) exp
(
βT
1 Zi1 + β

T
2 Zi2

)
,

where μ0(t) and β = (βT
1 ,β

T
2 )

T are defined as before. Here it is supposed
that β is partitioned in the same way as Zi. Define

V = { i : Zi2 is observed without errors} ,
which is usually referred to as the validation set, and let V̄ denotes the
complement of V . Also in the following, it is assumed that the observation
process is independent and given Zi2,Wi is independent of both the recurrent
event process Ni and the observation process.

For estimation of β, we assume that the Ni(t)’s are non-homogeneous
Poisson processes as in Sect. 5.2. Then the log pseudo-likelihood function
lp(μ0,β) given in (5.2) has the form

lp(μ0,β) =
n∑

i=1

mi∑

j=1

{
ni,j logμ0(ti,j) + ni,j (β

T
1Zi1 + β

T
2Zi2)

−μ0(ti,j) exp(β
TZi1 + β

T
2Zi2)

}

=

m∑

l=1

wl

{
n̄l log μ0(sl) − āl(β)μ0(sl) + b̄l(β)

}
.

In the above, the sl’s, wl’s, n̄l’s, āl(β)’s and b̄l(β)’s are defined as in Sect. 5.2
with the latter two terms having the forms

āl(β) =
1

wl

n∑

i=1

mi∑

j=1

exp(βT
1 Zi1 + β

T
2 Zi2) I(ti,j = sl) ,

and

b̄l(β) =
1

wl

n∑

i=1

mi∑

j=1

ni,j (β
T
1Zi1 + β

T
2Zi2) I(ti,j = sl) ,

respectively, l = 1, . . . ,m.
It is obvious that for the current situation, the log pseudo-likelihood func-

tion lp(μ0,β) is not available due to the measurement errors. To see this more
closely, note that we can rewrite āl(β) and b̄l(β) as

āl(β) =
1

wl

∑

i∈V

mi∑

j=1

exp(βT
1Zi1 + β

T
2Zi2) I(ti,j = sl)



216 8 Other Topics

+
1

wl

∑

i∈V̄

mi∑

j=1

exp(βT
1Zi1 + β

T
2Zi2) I(ti,j = sl) ,

and

b̄l(β) =
1

wl

∑

i∈V

mi∑

j=1

ni,j (β
T
1Zi1 + β

T
2 Zi2) I(ti,j = sl)

+
1

wl

∑

i∈V̄

mi∑

j=1

ni,j (β
T
1 Zi1 + βT

2Zi2) I(ti,j = sl) ,

respectively. That is, for i ∈ V̄ , we have an unobserved quantity h(βT
2 Zi2)

which needs to be estimated in order to use lp(μ0,β), where h(x) = x or
exp(x). If the auxiliary covariatesWi’s are categorical variables, at ti,j = sl,

Kim (2007) suggests to estimate h(βT
2Zi2) by

ĥ(βT
2 Zi2) =

∑
k∈V I(tk,mk

≥ sl) I(Wk =Wi)h(β
T
2Zk2)∑

k∈V I(tk,mk
≥ sl) I(Wk =Wi)

.

For the continuous Wi’s, she gives the following kernel estimator

ĥ(βT
2 Zi2) =

∑
k∈V I(tk,mk

≥ sl)Kh(Wk =Wi)h(β
T
2 Zk2)∑

k∈V I(tk,mk
≥ sl) I(Wk =Wi)

for h(βT
2 Zi2), where Kh(t) = K(t/h) with K(t) being some kernel function

satisfying
∫
K(t) dt = 1 and

∫
tK(t)dt = 0, and h > 0 is a bandwidth,

some positive constant. Similar estimators can be found in other fields such
as failure time data analysis.

Define âl(β) and b̂l(β) to be āl(β) and b̄l(β) defined above with h(βT
2 Zi2)

replaced by ĥ(βT
2Zi2). Also define

l̂p(μ0,β) =

m∑

l=1

wl

{
n̄l logμ0(sl) − âl(β)μ0(sl) + b̂l(β)

}
.

Then it is natural to estimate μ0(t) and β by maximizing the estimated log

pseudo-likelihood function l̂p(μ0,β) with the use of the two-step algorithm
described in Sect. 5.2. As in Sect. 5.2, one can estimate the values of μ0(t)
only at the sl’s and the resulting estimator of μ0(t) is a non-decreasing step
function with possible jumps only at the sl’s.

Note that in the discussion above, for the simplicity, it has been assumed
that the Ni(t)’s are non-homogeneous Poisson processes. As commented be-
fore, this assumption may not hold in practice. On the other hand, it is not
difficult to see that it is straightforward to apply the idea discussed here
to other regression procedures described in Chap. 5. Also note that in the
above, no relationship between Zi2’s andWi’s has been assumed. In practice,
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sometimes it may be reasonable to impose some relationship between Zi2’s
and Wi’s (Carroll et al., 1995).

A situation that is closely related to the situation discussed above is that
no auxiliary variable exists. In other words, we have no information about
the Zi2’s for i ∈ V̄ or the Zi2’s are completely missing for some subjects. It
does not seem that there exists any established method for the analysis of
such panel count data.

8.5.3 Analysis of Panel Count Data from Mixture Models

Mixture models are often used in many fields to describe heterogeneity (Chen
and Li, 2009; Chen and Tan, 2009; Rosen et al., 2000; Susko et al., 1998). A
common way to formulate the mixture model problem is to assume that the
population density function has the form

f(x;H) =

∫
f(x; θ) dH(θ) .

In the above, f(x; θ) denotes a density function for given θ and H(θ) is a
mixing cumulative distribution function, which can be discrete or continuous.
A simple example of mixture models is that H is discrete and f(x; θ) is a
normal density function (Chen and Li, 2009). That is, the overall population
is the mixture of several normal subpopulations. In this subsection, we briefly
discuss the use of the mixture models for the analysis of panel count data.

Consider a recurrent event study that consists of n independent subjects
and letNi(t) be defined as before, the recurrent event process given by subject
i, i = 1, . . . , n. In the following, we assume that there exist G subprocesses
or clusters denoted by G1, . . . ,GG, and Ni(t) can be written as

Ni(t) =
G∑

g=1

δgi Cgi(t) . (8.15)

In the above, δgi = I(i ∈ Gg), the indicator function assumed to be unobserv-
able, and Cgi(t) denotes the subprocess corresponding to Gg, g = 1, . . . , G.
Furthermore, we assume that there exist independent latent variables {Vgi }
and given Vgi and the vector of covariates Zi = (Zi1, . . . , Zip)

T , Cgi(t) is a
non-homogeneous Poisson process with the rate function Vgi λgi(t|Zi). Here
λgi(t|Zi) is supposed to have the form

λgi(t|Zi) = exp

{

φg0(t) +

p∑

k=1

φgk(t)Zik

}

with φgk(t) = αT
gk B(t), k = 0, 1, . . . , p. In the above, B(t) is the vector of

cubic B-spline basis functions, and αgk is a vector of group-specific, unknown
coefficients.
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Suppose that one only observes panel count data, and let the ti,0 = 0 <
ti,1 < · · · < ti,mi denote the observation times on subject i and the ni,j ’s be
defined as before, i = 1, . . . , n. Also suppose that the Vgi’s have the density
function hg(ν) with mean 1 and unknown variance σ2

g , g = 1, . . . , G. Then
under the assumptions above, the vector Ni = (ni,1, ni,2−ni,3, . . . , ni,mi−1 −
ni,mi)

T has the marginal distribution

P (Ni) =
G∑

g=1

pg Pg(Ni) .

In the above, pg = P (i ∈ Gg) and

Pg(Ni) =

∫ mi∏

j=1

Pg(Ni,j |Vgi = vgi)hg(vgi) dvgi

with Pg(Nij |Vgi = vgi) denoting the Poisson distribution with the mean
vgi μgij , where

μgij = Λgi(ti,j) − Λgi(ti,j−1) =

∫ ti,j

ti,j−1

λgi(t|Zi) dt .

Let θ = (ψT ,pT )T , denoting all unknown parameters, where ψ =
(ψT

1 , . . . ,ψ
T
G)

T with ψg = (αT
g , σ

2
g)

T and αg = (αT
g0, . . . ,α

T
Gp)

T , and

p = (p1, . . . , pG)
T . For estimation of θ, it is apparent that a natural ap-

proach would be to maximize the likelihood function
∏n

i=1 P (Ni). On the
other hand, it is easy to see that this is not straightforward. In the following,
we describe the estimating equation procedure given by Nielsen and Dean
(2008) assuming that G, the number of hidden subprocesses or clusters, is
known.

For each i = 1, . . . , n and g = 1, . . . , G, define

μgi = (μgi1, . . . , μgimi)
T , Dgi =

∂μgi

∂αT
g

,

Γ−1
gi = diag

(
1

μgij

)

mi×mi

−
σ2
g

1 + σ2
gμgi+

Jmi ,

and rgi = tr( δgiRg ). In the above, Jmi denotes the mi×mi matrix with all
elements equal to 1, μgi+ =

∑mi

j=1 μgij ,

Rg =

(
n∑

i=1

δgiD
T
giΓ

−1
gi Dgi + diag{ξg} ⊗A

)−1( n∑

i=1

δgiD
T
giΓ

−1
gi Dgi

)

,

A =

∫ max{ti,mi
}

0

b(t)bT (t) dt
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with b(t) = ∂B(t)/∂t, and ξg = (ξg0, ξg1, . . . , ξgp)
T are some unknown

parameters satisfying

ξgl =
tr(Rg)

αT
gk Aαgk

.

To estimate θ, assuming that hg(ν) is the gamma density function, Nielsen
and Dean (2008) give the following estimating equations:

Uαg =

n∑

i=1

δgiD
T
gi Γ

−1
gi

(
Ni − μgi

)
−
(
diag{ξg} ⊗A

)
αg = 0 , (8.16)

Uσ2
g
=

n∑

i=1

δgi
(ni,j − μgi+)

2 − μgi+(1 + σ2
gμgi+) + rgi

(1 + σ2
g μgi+)2

= 0 , (8.17)

and

Upg =

n∑

i=1

(
δ∗gi
pg

− δ∗Gi

pG

)

= 0 , (8.18)

where

δ∗gi =
pg Pg(Ni)

∑G
l=1 pl Pl(Ni)

.

Note that each of the Eqs. (8.16) and (8.17) involves G independent func-
tions (g = 1, . . . , G), while the Eq. (8.18) involves only G − 1 independent
functions (g = 1, . . . , G−1). It is easy to see that there are no direct solutions
to the equations above and one has to employ some iterative algorithms. Also
it is easy to see that the Eq. (8.18) is equivalent to

pg =
1

n

n∑

i=1

δ∗gi .

Let θ̂ denote the estimator of θ given by the Eqs. (8.16)–(8.18) and θ0 the
true value of θ. Then it follows from the estimating equation theory (Nielsen

and Dean, 2008; White, 1982) that
√
n ( θ̂ − θ0 ) asymptotically follows a

multivariate normal distribution with mean zero and the covariance matrix
that can be estimated by

E

(
∂Uθ
∂θT

)−1
(

n∑

i=1

U i,θ U
T
i,θ

)

E

(
∂UT
θ

∂θ

)−1 ∣
∣
∣θ=ˆθ

.

In the above,

Uθ =
(
UT
α1
, Uσ2

1
, . . . , UT

αG
, Uσ2

G
, Up1 , . . . , UpG−1

)T
,
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and Ui,θ denotes Uθ based only on the observed information from subject i,
i = 1, . . . , n.

Note that in the estimation procedure above, it has been assumed that
G is known and in practice, this may not be true. Some discussion on the
case where G is unknown can be found in Nielsen and Dean (2008). Another
assumption used above is that the Cgi(t)’s are non-homogeneous Poisson
processes. It is apparent that this may also not be true in practice. That is,
the recurrent event process defined in (8.15) does not have to be a mixture
of Poisson processes.

8.6 Concluding Remarks

The analysis of panel count data is still a relatively new and growing field and
there exist many open problems. Before discussing these open problems or
directions for future research, it is worth to emphasize again that most of the
approaches described in this book are for panel count data with unbalanced
structures. In other words, both observation and follow-up times differ from
subject to subject, and they can be regarded as realizations of some underly-
ing observation and follow-up processes, respectively. For the situation where
observation times or intervals are the same for all subjects, it is easy to see
that the data can be regarded as multivariate data. Hence any method that
accommodates multivariate positive integer-valued response variables can be
used for the analysis. This holds even though some subjects may miss some
intermediate observations and/or drop out of the study early. In this case,
the resulting data can be seen as multivariate data with missing values. On
the other hand, it is apparent that the procedures discussed above are much
more appropriate for the analysis of panel count data than multivariate data
analysis procedures in general.

Similar to treating panel count data as multivariate data, one can also
regard them as a special case of longitudinal data and apply the methods
developed for longitudinal data. However, as mentioned before, these methods
may not be able to take into account the special structure of panel count
data and thus would be less efficient. In addition, some questions of interest
regarding the analysis of panel count data may not appropriately or cannot
be answered from the longitudinal data point of view.

Another general point that has been discussed above and is worth to be
emphasized again is the use of the mean function of underlying recurrent
event processes in modeling and analyzing panel count data. As mentioned
before, a key reason for this is the structure of panel count data and the
amount of observed information. In addition, the mean function is often also
the target of interest similarly as the mean or expectation of a population. Of
course, a drawback is that the mean function itself cannot uniquely determine
the processes in general. An example of this is the nonparametric comparison
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of recurrent event processes discussed in Chap. 4. Also as commented before,
if needed, one could directly model the intensity process or rate function of
the recurrent event processes as often done for the analysis of recurrent event
data. However, one usually has to make certain assumptions about the shape
of the intensity process or rate function such as approximating them by some
smooth functions. In addition, inference procedures would be much harder
or more complicated (Ishwaran and James, 2004; Lawless and Zhan, 1998;
Staniswalls et al., 1997; Sun and Matthews, 1997; Sun and Rai, 2001).

With respect to the directions for future research, it is apparent that in
theory, one could ask almost any question imposed on recurrent event data.
On the other hand, of course, some of them may not make sense or have no
practical meaning. One topic that has been investigated by many authors in
the case of recurrent event data is the gap time of the event, the time between
successive occurrences of the event (Darlington and Dixon, 2013; Huang and
Liu, 2007; Park, 2005; Sun et al., 2006; Wang and Chen, 2000; Zhao and
Zhou, 2012; Zhao et al., 2012). In this case, instead of the occurrence rate
of recurrent events, the distribution of the gap time is usually the target for
inference. However, there seems to exist little research on this in the case of
panel count data. Note that in the literature, the term gap time could also
mean the time between two successive failure events in multivariate failure
time data analysis (Lin and Ying, 2001; Schaubel and Cai, 2004), or the
observation gap in recurrent event data analysis (Zhao and Sun, 2006).

For all regression models discussed in this book, a basic assumption is that
covariate effects are time-independent. As mentioned before, this may not be
true in reality as, for example, the effects of treatments or medicines for a
disease may change, or be more or less effective as time changes. The topic of
regression analysis with time-varying covariate effects has been considered in
many areas. They include longitudinal data analysis (Song and Wang, 2008;
Sun et al., 2005; Sun and Wu, 2005), failure time data analysis (Cai and Sun,
2003; Scheike and Martinussen, 2004; Yan and Huang, 2012), and recurrent
event data analysis (Sun et al., 2009b; Zhao et al., 2011b). For the case of
panel count data, one reference on it is given by Sun et al. (2009a), who
generalized the proportional mean model (1.4) to

E{N(t)|Z1(t),Z2(t) } = μ0(t) exp
{
βT
1 (t)Z1(t) + βT

2 Z2(t)
}
.

In the above, μ0(t) is defined as in model (1.4), Z1(t) and Z2(t) represent the
parts of covariates whose effects are time-dependent and time-independent,
respectively, and β1(t) and β2 denote the corresponding effects. Furthermore,
they developed an estimating equation procedure for estimation of β1(t) =∫ t

0 β1(s) ds and β2. It is easy to see that more work needs to be done in this
area. For example, as discussed above, the proportional mean model may not
fit panel count data well sometimes. Another issue is that Sun et al. (2009a)
only considered the situation where the observation process is independent,
and again as discussed above, this may not be true in practice.
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Again on regression analysis of panel count data, another basic assump-
tion behind all methods discussed in this book is that accurate and complete
data on covariates are available. One exception is the procedure described in
Sect. 8.5.2, which allows measurement errors on covariates. In reality, some-
times covariates may have missing values (Chen and Little, 1999; Little and
Rubin, 1987). Also they could suffer some censoring (Gómez et al., 2003;
Langohr et al., 2004). For example, Chen and Cook (2003) considered re-
gression analysis of recurrent event data where the observations on covariates
are interval-censored. More specifically, the covariate considered there is actu-
ally a marker process and also a recurrent event process. On the other hand,
there does not seem to exist an established method for regression analysis of
panel count data under these situations.

Software for and the implementation of the existing methods are always
an important issue in almost every statistical area. For the analysis of panel
count data, unfortunately, there does not seem to exist any specifically de-
veloped R or SAS package yet although there exists some effort. For ex-
ample, two R packages were developed but are not available at the time
when the book is written. They are the packages panel and spef. The former
aims to implement the maximum likelihood estimation procedure discussed
in Sect. 8.4.2, while the latter aims to implement some regression procedures
discussed in Chap. 5. On the other hand, two R functions, isoreg andmonoreg,
can be used for the determination of the IRE discussed in Sect. 3.3. The latter
belongs to the package fdrtool.
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Some Sets of Data

The following sets of data are used for the examples and discussion at various
places of the book.

Data set I, given in Table 9.1, arises from the National Cooperative
Gallstone Study. It is a 10-year, multicenter, double-blinded, placebo-
controlled clinical trial of the use of the natural bile acid chenodeoxycholic
acid (cheno) for the dissolution of cholesterol gallstones. The data are
discussed in Sect. 1.2.2 and analyzed in Sects. 3.3–3.5, 4.4 and 5.6. The table
includes the successive visit times in study weeks and the associated counts
of episodes of nausea for the 113 patients in the high-dose cheno and placebo
groups during the first 52 weeks of the study.

Data set II, given in Table 9.2, arises from a bladder cancer study con-
ducted by the Veterans Administration Cooperative Urological Research
Group. It is discussed in Sect. 1.2.3 and analyzed in Sects. 2.4, 4.5,
and 6.3–6.5. In the table, dot means no visit and the number represents
the number of bladder tumors that occurred between the previous and cur-
rent visits. The second column gives the size of the largest initial tumor, and
the number of initial tumors (at month 0) is given in column 3.

Data set III, given in Table 9.3, arises from a skin cancer chemoprevention
trial conducted by the University of Wisconsin Comprehensive Cancer Center
in Madison, Wisconsin. It is a double-blinded and placebo-controlled ran-
domized phase III clinical trial to evaluate the effectiveness of 0.5 g/m2/day
PO difluoromethylornithine in reducing new skin cancers in a population
of the patients with a history of non-melanoma skin cancers. The data are
discussed in Sect. 1.2.4 and analyzed in Sects. 7.2, 7.4, 7.5, and 8.2. In the
table, t denotes the observation time, N1(t) and N2(t) represent the num-
bers of the occurrences of basal cell carcinoma and quamous cell carcinoma,
respectively, between the observations. The column Covariates refers to three
covariates, the number of prior skin cancers, age and gender.

J. Sun and X. Zhao, Statistical Analysis of Panel Count Data, Statistics
for Biology and Health 80, DOI 10.1007/978-1-4614-8715-9 9,
© Springer Science+Business Media New York 2013

223



224 9 Some Sets of Data

Table 9.1. Data set I—Visit times in weeks and the observed counts of episodes
of nausea for 113 patients with floating gallstones in the National Cooperation
Gallstone Study

Patient Visit times and episodes of nausea
ID t1 N1 t2 N2 t3 N3 t4 N4 t5 N5 t6 N6 t7 N7 t8 N8 t9 N9

High-dose cheno group
1 4 0 8 0 13 0 26 0 38 0 51 0 . . . . . .
2 4 0 9 3 13 0 26 0 39 0 51 0 . . . . . .
3 4 0 8 0 12 0 24 0 38 0 51 0 . . . . . .
4 4 0 8 0 12 0 26 0 38 0 51 0 . . . . . .
5 4 0 8 0 13 0 26 0 38 0 52 0 . . . . . .
6 4 0 8 0 12 0 25 0 39 0 51 0 . . . . . .
7 4 0 9 0 14 0 26 0 39 0 52 0 . . . . . .
8 4 0 9 0 14 0 28 0 39 0 . . . . . . . .
9 4 0 9 1 14 0 27 1 38 1 . . . . . . . .
10 4 0 9 0 13 0 17 0 22 0 26 0 38 0 43 0 . .
11 3 0 8 0 13 0 26 0 40 4 . . . . . . . .
12 4 0 8 0 13 1 27 0 39 0 52 0 . . . . . .
13 4 20 10 2 14 2 17 10 28 0 41 0 . . . . . .
14 5 1 9 0 13 0 26 0 38 0 52 0 . . . . . .
15 5 0 9 0 15 0 27 0 39 0 51 0 . . . . . .
16 4 0 9 0 13 0 26 0 38 0 52 0 . . . . . .
17 4 0 8 0 12 0 27 0 39 0 51 0 . . . . . .
18 4 0 8 0 12 0 26 0 37 0 48 0 . . . . . .
19 4 0 9 0 14 0 28 0 38 0 52 0 . . . . . .
20 9 0 22 0 31 0 38 0 . 0 . . . . . . . .
21 5 0 10 0 13 0 25 0 50 2 . . . . . . . .

22 4 0 9 0 12 0 25 0 39 0 50 0 . . . . . .
23 5 0 8 0 13 0 25 0 40 0 . . . . . . . .
24 4 0 9 0 13 0 26 0 38 0 51 0 . . . . . .
25 4 0 9 0 13 0 26 0 38 0 52 99 . . . . . .
26 4 0 9 1 13 0 26 0 39 0 . . . . . . . .
27 3 0 8 0 13 1 25 0 40 0 51 0 . . . . . .
28 4 0 8 0 13 0 24 0 38 0 52 0 . . . . . .
29 3 0 9 0 12 5 26 0 38 0 50 0 . . . . . .
30 4 0 10 0 15 1 28 0 41 0 . . . . . . . .
31 3 0 8 0 13 0 26 0 39 0 52 0 . . . . . .
32 3 1 9 3 13 0 26 0 38 0 52 0 . . . . . .
33 4 0 10 0 16 0 29 0 41 0 . 6 . . . . . .
34 3 0 7 0 12 0 25 0 38 0 51 0 . . . . . .
35 4 0 9 0 13 0 26 0 39 0 51 0 . . . . . .
36 5 0 9 2 13 0 26 0 39 0 51 0 . . . . . .
37 6 0 12 6 16 0 28 0 41 0 . . . . . . . .
38 4 0 9 0 13 0 25 0 38 0 51 0 . . . . . .
39 4 0 8 0 12 0 26 0 40 0 . . . . . . . .
40 4 0 8 0 12 10 26 0 39 0 52 0 . . . . . .
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Data set I (Continued)

Patient Visit times and episodes of nausea
ID t1 N1 t2 N2 t3 N3 t4 N4 t5 N5 t6 N6 t7 N7 t8 N8 t9 N9

41 5 0 9 0 14 0 27 0 39 0 52 0 . . . . . .
42 5 0 9 0 13 0 26 0 36 2 38 0 51 0 . . . .
43 4 0 10 0 14 0 26 0 39 0 53 0 . . . . . .
44 4 0 9 0 16 2 28 4 39 0 51 0 . . . . . .
45 5 0 10 0 15 0 29 0 40 0 55 0 . . . . . .
46 4 0 9 0 13 0 26 0 37 0 51 0 . . . . . .
47 4 0 8 0 13 0 26 0 38 0 51 0 . . . . . .
48 5 0 10 0 13 0 25 0 39 0 . . . . . . . .
49 3 0 7 0 13 2 25 0 36 5 49 3 . . . . . .
50 3 0 8 0 13 0 25 8 37 20 . . . . . . . .
51 6 0 9 0 13 0 26 0 40 0 51 0 . . . . . .
52 5 0 8 0 12 0 25 0 38 0 51 0 . . . . . .
53 4 0 8 0 13 0 25 0 41 0 . . . . . . . .
54 4 0 8 0 15 0 27 0 40 0 51 10 . . . . . .
55 4 0 8 1 12 0 27 0 41 0 . . . . . . . .
56 5 0 12 0 16 0 29 0 41 0 52 0 . . . . . .
57 5 0 11 4 16 0 30 5 44 24 51 40 . . . . . .
58 3 0 9 0 14 0 26 0 . . . . . . . . . .
59 3 0 . . . . . . . . . . . . . . . .
60 3 0 . . . . . . . . . . . . . . . .
61 4 0 9 0 13 0 25 0 38 0 . . . . . . . .
62 4 0 8 0 14 0 18 0 20 0 . . . . . . . .
63 4 0 8 0 13 0 17 0 23 0 27 0 32 0 . . . .
64 3 0 10 0 26 0 . . . . . . . . . . . .
65 8 5 19 0 28 0 . . . . . . . . . . . .

Placebo group
66 4 0 8 0 12 0 25 0 38 0 52 0 . . . . . .
67 4 0 8 0 13 0 27 0 40 0 44 0 . . . . . .
68 4 0 11 0 14 0 26 0 39 0 52 0 . . . . . .
69 4 0 9 0 12 0 25 0 40 0 52 0 . . . . . .
70 4 0 8 0 14 0 27 0 40 0 52 0 . . . . . .
71 5 1 9 0 13 0 26 1 40 0 . . . . . . . .
72 4 0 8 0 13 0 24 0 37 0 50 0 . . . . . .
73 4 1 9 0 14 4 28 3 41 1 . . . . . . . .
74 3 0 9 0 13 0 25 0 38 0 50 0 . . . . . .
75 5 0 9 0 13 0 27 0 38 0 51 0 . . . . . .
76 4 0 8 0 13 0 27 0 38 0 51 0 . . . . . .
77 4 3 9 0 14 0 25 0 39 0 51 0 . . . . . .
78 3 8 8 0 11 1 17 4 24 0 38 2 42 0 46 0 51 20
79 4 0 9 0 13 0 25 0 39 0 51 0 . . . . . .
80 4 0 8 0 13 0 24 0 38 0 51 0 . . . . . .
81 4 0 9 0 13 0 26 0 40 0 51 0 . . . . . .
82 4 0 9 0 14 0 28 0 40 0 51 0 . . . . . .
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Data set I (Continued)

Patient Visit times and episodes of nausea
ID t1 N1 t2 N2 t3 N3 t4 N4 t5 N5 t6 N6 t7 N7 t8 N8 t9 N9

Placebo group
83 5 0 8 0 16 0 28 0 36 0 . . . . . . . .
84 5 0 7 0 12 0 25 2 38 0 . . . . . . . .
85 5 0 10 0 15 0 29 0 41 0 . . . . . . . .
86 4 0 9 0 13 0 25 0 35 0 . . . . . . . .
87 4 0 9 0 13 0 28 0 39 0 . . . . . . . .
88 4 0 9 3 12 0 24 0 37 0 51 0 . . . . . .
89 4 0 8 60 13 0 24 0 40 1 . . . . . . . .
90 3 0 8 1 14 0 26 0 38 0 . . . . . . . .
91 5 0 9 0 13 0 27 0 40 0 . . . . . . . .
92 3 0 8 0 11 0 25 0 37 0 51 0 . . . . . .
93 3 1 7 4 11 0 24 0 38 0 . . . . . . . .
94 3 5 8 0 13 0 25 0 38 0 52 0 . . . . . .
95 4 0 9 0 13 0 26 3 39 0 52 0 . . . . . .
96 4 0 9 0 14 0 26 0 39 0 52 0 . . . . . .
97 4 6 9 0 18 1 28 0 39 0 54 0 . . . . . .
98 5 0 9 0 15 0 27 0 39 0 . . . . . . . .
99 4 0 9 0 13 2 25 0 38 0 50 0 . . . . . .
100 3 3 7 0 12 0 25 6 38 0 52 0 . . . . . .
101 4 0 7 0 12 0 25 0 38 1 . . . . . . . .
102 4 0 8 0 13 0 26 0 39 0 51 0 . . . . . .
103 4 0 8 0 13 0 26 0 40 0 52 0 . . . . . .
104 4 3 . . . . . . . . . . . . . . . .
105 4 0 8 2 . . . . . . . . . . . . . .
106 5 0 9 0 13 0 17 0 21 0 28 1 39 1 . . . .
107 3 0 . . . . . . . . . . . . . . . .
108 6 0 . . . . . . . . . . . . . . . .
109 3 25 8 30 14 20 . . . . . . . . . . . .
110 4 0 9 0 13 12 . . . . . . . . . . . .
111 4 0 9 0 13 1 . . . . . . . . . . . .
112 5 0 9 0 14 0 26 0 . . . . . . . . . .
113 4 0 9 0 14 0 25 0 . . . . . . . . . .
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Table 9.2. Data set II—Observed numbers of bladder tumors along with the num-
bers of initial tumors and the size of the largest initial tumor from a bladder cancer
study

Patient Size Months
ID 0 10 20 30

Placebo group
1 3 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 2 0 . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . .
3 1 1 . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . . .
4 1 5 . . 0 . . . . . 0 0 . . . . . . . . . . . . . . . . . . . .
5 1 4 0 . . 0 . 1 0 . . 0 . . . . . . . . . . . . . . . . . . . .
6 1 1 . . 0 . . . . . . 0 . . . 0 . . . . . . . . . . . . . . . .
7 1 1 . 0 . . . . . . . 0 . 2 . . . 3 . 0 . . . . . . . . . . . .
8 1 1 . . 0 . . . . . . . . . . 0 . . . 0 . . . . . . . . . . . .
9 3 1 . . . . 2 . . . . 0 . 0 . . . . . 0 . . . . . . . . . . . .
10 3 1 . . 0 . . . 0 . . 6 . . . . 3 . . . 0 . . . 0 . . . . . . .
11 1 1 0 . 8 . . . . 0 . 0 . . 0 . . 8 . . 0 . . . 8 . . . . . . .
12 1 3 . . 1 . . 0 . . 1 0 . . 0 . 0 . 0 . . 0 8 . 0 . . . . . . .
13 3 3 . . 0 . . 0 . . 0 . 0 . . 0 . . . 0 . . . . 0 . . . . . . .
14 3 2 . . 0 . . . 8 . . 7 . . 0 . . 5 . . . . . . . 7 . . . . . .
15 1 1 . . 1 . . 0 . . 0 . . 0 . . 1 . 0 . . 0 . 0 . . 3 . . . . .
16 1 8 8 . . 0 . . 0 . . . 0 . . 0 . . 0 . . 0 . . . . 0 0 . . . .
17 4 1 . 4 . . . 0 . . . . . . . . . . . . . . . . . . . 8 . . . .
18 2 1 . . 0 . . 0 . . . . . . 0 . . 0 . . . . . 0 0 . . 0 . . . .
19 2 1 . . . . . 0 . . . . . . . . . . . . . . . . . . 3 . . 0 . .
20 4 1 . . . . 0 . . 0 . . . . . . . . 0 . . . . . . . . . . . 0 .
21 2 1 . . 0 . . 0 . . . . . . . 0 . . . . . . . . . . . . . . 0 .

22 1 4 . 0 . . 0 . . 0 . . 0 . . . . . . 0 . . . . . 0 . . . . 0 .
23 5 1 . 4 . . . . . . . 0 . . . . . . 2 . . . . 4 0 . . . . 0 . 0
24 1 2 . . 1 . . 3 . 3 . . . 3 0 . 0 0 0 0 . . . 0 0 . . 3 . . . 0
25 6 1 . 0 . . 0 0 . . 0 . . . 0 . . . . . . . . 0 . . . . . 2 . 1
26 3 1 0 . 0 0 . 0 . . 0 . . 2 . . 3 . . 0 . . . . . 1 . . . 0 . .
27 2 1 . . 0 . . 0 . . 0 . . 0 . 0 . . 0 . . 0 . . . . . 0 . . . .
28 1 2 . . . 0 . . . 0 . 0 . . . 0 . . . . . . . 0 . . . . . . . 0
29 1 2 . . 0 . . 0 . . 0 . 0 . . 0 . . 0 . . 0 . . 0 . . . . . . 0
30 1 3 . . . . . . . . 0 . . . . . . . . . . 0 . . . . . . . . 8 .
31 2 1 0 . . 0 . . . . . 0 . . . . . . 0 . . . . . . 0 . . . . . .
32 1 4 . 0 . . . . . . 8 . . . . 0 . . 2 . . . . 5 . 1 . . . 0 . .
33 1 5 . 0 . 0 0 . . 0 . . 0 . . . 0 1 . . 8 . . . 1 . . 0 . . 2 .
34 2 1 . . 0 . . 0 . . 0 . 0 . . 0 . . 0 . . 0 . . 0 . . 0 . . 0 .
35 1 1 . . 3 . 0 . 0 . . 0 . . . 0 . . . . . 0 . . . . . . 0 . . 0
36 6 2 . . 0 . . 1 0 0 . . 0 . . 0 . 0 0 . . 0 . . 0 . . . . . . .
37 1 2 . . 5 . 0 3 . . 4 . . . . 0 . . 0 . . 0 . . 0 . . . 0 . . 0
38 1 1 . 0 . . . 0 . . 1 . 3 . 0 . . . 0 . . 1 . . 0 . . 4 . . . 3
39 1 1 . . 0 . . 0 . . 0 . 0 . . . 0 . . 1 . . . 0 . . 0 . . 0 . .
40 3 1 . . . . . 0 . 0 . . . 0 . . . . 0 . . . . . 0 . . . . . . 0
41 1 3 . 0 . . 0 . . . . . 0 . . . . . 0 . . . . . 0 . . . . . 0 .
42 7 1 . . 0 . . . . . . 0 . . 0 0 . . 1 . . . 0 . . 0 . . 0 . . 0
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Data set II (Continued)

Patient Size Months
ID 0 10 20 30

43 1 3 . . 7 . . . . . . . 0 . . . 2 . . . . . . . . . . 0 . . . .
44 1 1 0 . . 0 . . 0 . . 0 . . 0 . . 0 . . 0 . . 0 . . . . . 0 . .
45 2 3 . 1 . . 0 . 0 . . 0 . . 0 . 3 . . . 0 . . . . 4 . . 0 . . 3
46 3 1 . 0 . . 3 . . 0 . . 0 . . 4 . . . 0 2 0 . . 0 . . . 5 . 0 .
47 3 2 . 1 . . 0 . . 3 . . . 6 2 . . . 2 . . . 1 . 0 0 . . 0 . . 0

Thiotepa group
48 3 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49 1 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50 1 8 . . . . 8 . . . . . . . . . . . . . . . . . . . . . . . . .
51 2 1 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . .
52 1 1 . . . . . 0 . . . 0 . . . . . . . . . . . . . . . . . . . .
53 1 1 . . 0 . . . . . . . . . 0 . . . . . . . . . . . . . . . . .
54 6 2 . . 1 . 0 . . . 0 . 0 . . 0 . . . . . . . . . . . . . . . .
55 3 5 5 . 2 . 5 . 2 . . 2 . . 0 . . 0 0 . . . . . . . . . . . . .
56 3 1 . . . . 0 . . . . . 0 . . . . . 2 0 . . . . . . . . . . . .
57 1 5 . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . .
58 1 5 0 2 0 . . . . . . . . . . . . . . . 0 . . . . . . . . . . .
59 1 1 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 1 . 1 . 0 . . . . . . . . .
60 1 1 . 0 . . 0 . . . . 0 . . . . 0 . . 0 . . . 0 . . . . . . . .
61 3 1 0 0 0 . . . . 0 . . . 0 . . . . . 0 . . 0 . . . 0 . . . . .
62 5 1 0 . . . . . . . 0 . 0 . . . . . . . 0 . . . . . 0 . . . . .
63 1 1 0 0 0 0 0 0 0 0 0 0 . 0 . 0 0 . . 0 0 . . 0 0 . 0 . . . . .
64 1 1 0 0 0 0 0 2 . . . 0 0 3 1 . . . . . . 0 . . 0 . . 0 . . . .
65 1 1 0 . 0 . . 1 . . . 0 . . 0 . . 0 . . . . 0 . . . . . 0 . . .
66 1 2 . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .
67 3 8 . . 0 . . 0 . . 0 . . . . . . . . . . 0 . 0 0 . . 3 . . 0 .
68 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 . . . .
69 1 6 0 0 0 1 . . 0 0 0 0 0 0 0 0 . 3 . 0 0 . 0 0 3 . 0 0 3 . 0 .
70 1 1 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 . 0 0 0 . 2 1 0 0 . 2 0 . .
71 1 3 . . . . 0 . . . . . . . . 0 . . 0 . . . . . . 3 . 2 . . 1 .
72 2 3 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0
73 1 1 0 0 0 0 . . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .
74 1 1 1 . 0 . . . 0 . . . . . 0 . . . 0 0 0 . 0 0 0 0 . 0 1 . 0 0
75 1 1 . . . . . . . 0 . . . . . . . . . . . . . . . 0 . . . . . .
76 1 6 0 2 . 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 1 . . 2 . . . 1 0 . 0
77 2 1 . . 0 . . 0 . . 0 . . 0 . . 0 . . . . . 0 . 0 . . . 0 . . .
78 4 1 0 1 0 . . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . 0 . .
79 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 3 3 . . . . . . . . . . 0 . . . 0 . . . . . . . . 0 . . . . 0 .
81 1 4 . . . 1 . . . 0 . . . . 0 . . . . . . . 0 . . 1 . . . . . .
82 1 1 0 0 . . . . . . . . . . . . . . . . . 0 . . . . 0 . . . . .
83 1 2 0 . 0 0 0 0 . 0 . . 0 . 0 0 . . 0 . . 0 . . 0 . . 0 . . 0 .
84 4 3 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

85 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 0 . 0 0 0 . 0 0 0 0 0 0 0
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Data set II (Continued)

Patient Months
ID 31 40 50 53

Placebo group
1 . . . . . . . . . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . . . . . . . . . .
3 . . . . . . . . . . . . . . . . . . . . . . .
4 . . . . . . . . . . . . . . . . . . . . . . .
5 . . . . . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . . . . . . . . . . .
10 . . . . . . . . . . . . . . . . . . . . . . .
11 . . . . . . . . . . . . . . . . . . . . . . .
12 . . . . . . . . . . . . . . . . . . . . . . .
13 . . . . . . . . . . . . . . . . . . . . . . .
14 . . . . . . . . . . . . . . . . . . . . . . .
15 . . . . . . . . . . . . . . . . . . . . . . .
16 . . . . . . . . . . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . . . . . . . . .
18 . . . . . . . . . . . . . . . . . . . . . . .
19 . . . . . . . . . . . . . . . . . . . . . . .
20 . . . . . . . . . . . . . . . . . . . . . . .
21 . . . . . . . . . . . . . . . . . . . . . . .
22 . . . . . . . . . . . . . . . . . . . . . . .
23 . . . . . . . . . . . . . . . . . . . . . . .
24 . . . . . . . . . . . . . . . . . . . . . . .
25 . . . . . . . . . . . . . . . . . . . . . . .
26 0 . . . . . . . . . . . . . . . . . . . . . .
27 . 0 . . . . . . . . . . . . . . . . . . . . .
28 0 . 0 0 . . . . . . . . . . . . . . . . . . .
29 . . . . . 0 . . . . . . . . . . . . . . . . .
30 . . . . . 0 . . . . . . . . . . . . . . . . .
31 0 . . . . . 0 . . . . . . . . . . . . . . . .
32 0 . . . . 0 . . . 0 . . . . . . . . . . . . .
33 . 0 . 1 . . 0 . . 3 . . . . . . . . . . . . .
34 . . . . 0 0 . . . . 0 . . . . . . . . . . . .
35 . . . 0 . . 0 . . . . . 0 . . . . . . . . . .
36 . 0 . . 0 . . . . . . . 0 . . . . . . . . . .
37 . . 0 . . 0 . . 0 . 0 . . 0 . . . . . . . . .
38 . 0 . . 0 . . . 0 . . 0 . . 0 . . . . . . . .
39 0 . . 0 . . 0 . 0 . . . . . 0 . . 0 . . . . .
40 . . . . 0 . . . . . 0 . . . 0 . . . 0 . . . .
41 . . . . 1 . . . . . . . . 0 . . . 0 . . 0 . .
42 . . 0 . 0 . 0 . . . 0 . . 0 . . 0 . . . . . 0
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Data set II (Continued)

Patient Months
ID 31 40 50 53

43 0 . . . 0 . . . . . 0 . . . . 3 . . . . 2 . 1
44 . . . . 0 . . . . . 0 . 0 . . . 0 . . . . . .
45 . . . 4 . . 0 . 1 . . . 1 . . 0 . . 1 . . 1 .
46 . . 0 . . 0 . . . . 9 . . 0 0 0 . . 0 . . . 0
47 . . 1 . . . 0 . . . 0 . . . 0 . . . 1 . . 0 .

Thiotepa group
48 . . . . . . . . . . . . . . . . . . . . . . .
49 . . . . . . . . . . . . . . . . . . . . . . .
50 . . . . . . . . . . . . . . . . . . . . . . .
51 . . . . . . . . . . . . . . . . . . . . . . .
52 . . . . . . . . . . . . . . . . . . . . . . .
53 . . . . . . . . . . . . . . . . . . . . . . .
54 . . . . . . . . . . . . . . . . . . . . . . .
55 . . . . . . . . . . . . . . . . . . . . . . .
56 . . . . . . . . . . . . . . . . . . . . . . .
57 . . . . . . . . . . . . . . . . . . . . . . .
58 . . . . . . . . . . . . . . . . . . . . . . .
59 . . . . . . . . . . . . . . . . . . . . . . .
60 . . . . . . . . . . . . . . . . . . . . . . .
61 . . . . . . . . . . . . . . . . . . . . . . .
62 . . . . . . . . . . . . . . . . . . . . . . .
63 . . . . . . . . . . . . . . . . . . . . . . .
64 . . . . . . . . . . . . . . . . . . . . . . .
65 . . . . . . . . . . . . . . . . . . . . . . .
66 . . . . . . . . . . . . . . . . . . . . . . .
67 . 0 . . 3 0 . . . . . . . . . . . . . . . . .
68 . . . . . . . 0 . . . . . . . . . . . . . . .
69 . . 8 . 0 9 8 . 0 . . . . . . . . . . . . . .
70 . 3 . 0 . . . . 0 . . . . . . . . . . . . . .
71 . . . . . . . . . 2 . . . . . . . . . . . . .
72 0 0 0 0 . 0 0 . . . 0 . . . . . . . . . . . .
73 0 0 0 0 0 . . . . . 0 . . . . . . . . . . . .
74 . 0 0 . . 0 0 . . . . . 0 . . . . . . . . . .
75 . . . . . . . . . . . . . 0 . . . . . . . . .
76 . . . . . . . 8 . . 0 . . 0 . . . . . . . . .
77 . . 0 . . . . . 0 . . . . . 0 . . . . . . . .
78 . . . 0 . . . . . 0 . . . . . 0 . . . . . . .
79 . 0 0 0 0 0 . . . . . . . . . 0 . . . . . . .
80 . . . . . . . . . . . 0 . . . . . . 0 . . . .
81 0 . 0 . . 0 . . . . . . 0 . . . 1 . . 0 . . .
82 . 0 . . . . . 0 . . . . . 0 . . 0 . . 0 . . .
83 . 0 . . . . . 2 . . 0 . . . 0 . . 0 . . 0 . .
84 0 0 0 0 . 0 . . 0 . . 0 . . 0 . . 0 . . . . .

85 0 0 0 0 0 . . . . . 0 . . . . . . . . . . . .
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Table 9.3. Data set III—Observed information for the skin cancer trial: observa-
tion times in days (t) and # of new skin cancers (N)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

DFMO group

1 (2, 56, M) t 180 350 538 742 924 1,100 1,287 1,498 1,680 1,778
N1 0 0 0 0 0 0 1 0 0 2
N2 0 0 0 0 0 0 0 0 0 0

2 (9, 76, M) t 180 370 412 543 606 747 873 1,337
N1 0 0 0 0 0 0 0 0
N2 1 4 0 6 0 0 0 0

3 (7, 76, F) t 264 362 633 721 994 1,357 1,440 1,788
N1 0 0 0 0 0 0 0 0
N2 0 0 1 0 1 1 1 0

4 (1, 49, F) t 99 131 188 342 523 722 910 1,085 1,275 1,457 1,793
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

5 (5, 64, F) t 154 352 532 632 820 1,213 1,409 1,453 1,621 1,795
N1 0 0 0 0 1 0 0 1 0 0
N2 0 0 0 1 0 0 0 0 1 0

6 (1, 82, M) t 44 179 371 511 840
N1 0 0 0 0 0
N2 0 0 0 0 0

7 (3, 53, M) t 179 364 378 544 728 908 1,118 1,309 1,489 1,670 1,770
N1 0 0 0 0 0 0 1 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

8 (3, 50, M) t 151 350 515 718 900 1,068 1,257 1,460 1,656 1,797
N1 0 0 0 0 2 0 0 0 0 0
N2 0 0 0 0 1 0 0 0 0 0

9 (2, 80, F) t 182 229 264 462 550 1,280 1,698
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

10 (4, 60, F) t 176 233 393 575 759 939 1,120 1,304 1,367 1,493 1,688 1,759
N1 0 0 0 0 0 0 0 2 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

11 (2, 59, F) t 168 373 538 723 910 1,108 1,288 1,499 1,682 1,778
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

12 (1, 56, F) t 173 229 355 523 728 916 1,120 1,296 1,370 1,405 1,832
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

13 (3, 75, M) t 745 937 1,107 1,288 1,658 1,847
N1 0 1 0 0 0 0
N2 1 0 1 0 4 3

14 (13, 51, M) t 25 181 284 662 840 1,050 1,391 1,573
N1 1 0 0 2 1 0 1 0
N2 0 0 0 0 0 0 0 0

15 (2, 57, M) t 152 256 328 517 711 894 1,070 1,250 1,293 1,432 1,622 1,777
N1 1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 1 0 0 0 0 0 0 0



232 9 Some Sets of Data

Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

16 (1, 56, M) t 180 344 543 732 921 1,183 1,306 1,517 1,789
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

17 (4, 52, M) t 167 349 756 1,660
N1 0 0 0 0
N2 0 0 0 1

18 (3, 72, F) t 155 295 343 364 377 523 712 896 1,065 1,247 1,358 1,441
N1 0 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

19 (2, 68, F) t 186 413 442 781 965 1,189 1,412
N1 0 1 0 0 0 0 1
N2 0 0 0 1 0 0 1

20 (1, 69, F) t 209 288 389 425 454 579 643 840
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

21 (3, 76, M) t 187 369 541 573 751 901 937
N1 0 0 0 0 0 0 1
N2 0 0 0 0 0 0 0

22 (5, 61, F) t 155 190 344 526 568 599 722 925 1,100 1,109 1,379 1,554
N1 0 0 0 0 0 0 0 1 0 0 0 1
N2 0 0 0 0 0 0 0 0 0 0 0 0

23 (14, 70, F) t 187 376 511 684 699 720 869 939 992 1,174 1,288 1,344
N1 0 0 0 0 0 0 0 0 2 0 0 0
N2 2 0 0 1 1 1 0 3 2 4 1 0

24 (4, 70, F) t 73 182 416 612 806 868 1,052 1,201 1,239 1,253 1,421 1,596
N1 0 0 0 2 0 1 0 0 0 0 2 1
N2 0 0 0 0 0 0 0 0 0 0 0 0

25 (3, 73, M) t 184 364 554 735 918 1,142 1,176 1,415 1,599 1,779
N1 0 0 0 0 1 0 1 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

26 (7, 67, M) t 167 204 246 363 951 1,455 1,826
N1 0 0 0 0 0 0 1
N2 0 0 0 0 0 0 0

27 (1, 50, F) t 182 362 545 910 1,645
N1 0 0 0 0 0
N2 0 0 0 0 0

28 (5, 77, F) t 11 149 507 604 766 952 1,325 1,689
N1 0 0 0 1 0 0 0 0
N2 0 0 0 0 0 0 0 0

29 (1, 49, M) t 73 358 972
N1 0 0 0
N2 0 0 0

30 (6, 72, F) t 126 188 271 289 471 652 870 1,237 1,602 1,723

N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 1 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

31 (6, 65, M) t 171 318 559 775 784 997 1,413 1,461 1,690 1,708
N1 0 0 0 2 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 1 0 0

32 (1, 69, M) t 148 330 512 524 577 694 823
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

33 (1, 76, F) t 182 369 553 770 846 993 1,008 1,082
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

34 (2, 75, F) t 179 354 568 799 839 981 1,188 1,420 1,602 1,783
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 1 0 0 0 0 0

35 (1, 56, M) t 182 357 546 728 903 1,092 1,129 1,227 1,274 1,800
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

36 (4, 66, F) t 126 176 290 338 547 729 909 1,091 1,282 1,463 1,651 1,798
N1 0 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 1 0 0

37 (7, 61, M) t 181 364 547 730 821 925 944 1,211 1,770
N1 1 0 1 0 0 1 0 1 1
N2 0 0 0 0 0 0 0 0 0

38 (2, 69, F) t 54 76 168 532 690 1,047 1,726
N1 0 0 0 1 1 0 0
N2 0 0 0 0 0 0 0

39 (2, 51, F) t 193 425 640 838 1,033 1,223 1,452 1,641 1,795
N1 0 0 0 0 1 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

40 (2, 52, M) t 177 365 587 804 986 1,170 1,350 1,532 1,700
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

41 (1, 58, M) t 199 379 540 729 899 1,081 1,262 1,444 1,682 1,794
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

42 (2, 41, F) t 65 177 366 520 554 707 903 1,098 1,318 1,498 1,709 1,827
N1 0 0 0 0 1 0 0 0 0 0 0 0
N2 0 0 0 0 1 0 0 0 0 0 0 0

43 (1, 40, F) t 83 189 371 581 763 969 1,168 1,358 1,547 1,722
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

44 (1, 54, M) t 181 363 428 552 1,141 1,741
N1 0 0 0 0 0 0
N2 0 0 0 0 0 0

45 (1, 59, M) t 81 175 260 557 922 1,230 1,483 1,791

N1 0 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

46 (2, 44, M) t 184 365 554 800 1,023 1,205 1,304 1,492 1,695 1,786
N1 0 2 3 0 1 2 1 0 0 1
N2 0 0 0 0 0 0 0 0 0 0

47 (1, 50, F) t 186 364 546 963 1,155 1,358 1,547 1,722
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

48 (1, 47, M) t 180 584 963 1,328 1,693
N1 0 0 0 0 0
N2 0 0 0 0 0

49 (1, 70, M) t 186 355 383 479 1,125 1,775
N1 0 0 0 0 1 1
N2 0 0 0 0 0 0

50 (2, 52, M) t 152 334 1,368 1,608
N1 0 0 0 0
N2 0 0 0 0

51 (1, 56, M) t 189 371 588 765 792 968 1,148 1,330 1,506 1,694 1,780
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

52 (1, 71, M) t 176 357 394 432 607 686 1,283 1,373 1,741
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 1 0

53 (2, 50, F) t 167 350 379 533 714 895 1,260 1,632 1,715
N1 0 1 0 0 1 0 0 2 0
N2 0 0 0 1 0 0 0 0 0

54 (5, 78, M) t 69 104 112 238 567 894
N1 0 1 0 0 1 1
N2 0 0 0 0 0 0

55 (11, 63, M) t 158 347 397 529 657 700 840 963 979 1,707
N1 0 0 0 1 0 0 0 0 0 0
N2 0 0 0 1 0 0 0 0 0 0

56 (1, 77, M) t 90 190 428 538 720 764 926 1,108 1,114 1,311 1,520 1,723
N1 0 0 0 0 0 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

57 (6, 59, M) t 172 361 405 475 476 607 698 775 873 963 1,070 1,160
N1 1 0 0 1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

58 (10, 75, M) t 174 339 363 587 817 1,049 1,231 1,417 1,599 1,796
N1 0 0 0 1 1 0 0 0 0 0
N2 0 0 0 1 1 0 1 1 0 0

59 (11, 67, M) t 191 372 386 573 762 924 1,106 1,261 1,442 1,652 1,793
N1 1 1 0 1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 1 0 0

60 (1, 55, M) t 140 322 504 686 868 1,115 1,310 1,493 1,674 1,786

N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

61 (2, 69, M) t 161 229 263 334 358 518 700 748 873 1,070 1,281 1,516
N1 0 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

62 (1, 69, M ) t 199 381 595 623 778 967 1,200 1,374 1,556 1,737
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

63 (3, 56, M) t 196 375 567 749 931 1,127 1,351 1,519 1,708
N1 0 0 0 0 0 0 0 1 0
N2 1 0 0 0 0 0 0 0 0

64 (2, 46, F) t 20 30 176 548 1,674
N1 0 0 0 0 0
N2 0 0 0 0 0

65 (1, 71, F) t 274 530 698 897 1,139
N1 0 0 0 0 0
N2 0 0 0 0 0

66 (3, 42, M) t 20 146 158 326 507 692 866 1,053 1,235 1,417 1,600 1,781
N1 0 1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

67 (1, 55, F) t 221
N1 0
N2 0

68 (2, 45, M) t 191 357 799
N1 0 0 0
N2 0 0 0

69 (3, 44, F) t 189 371 562 685 745 911 1,093 1,339 1,520 1,707 1,787
N1 0 0 0 0 0 0 1 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

70 (1, 75, M) t 182 365 570 750 947 1,130 1,317 1,499 1,681 1,788
N1 0 0 0 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

71 (2, 70, M) t 161 336 539 718 910 1,084 1,201 1,470 1,665
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

72 (2, 63, M) t 168 259 349 546 624 671 727 891 1,072 1,291 1,476 1,659
N1 0 0 0 0 0 0 0 0 0 1 0 0
N2 0 0 1 1 0 0 0 0 0 0 0 0

73 (2, 70, M) t 179 383 580 767 949 971
N1 0 0 0 0 0 0
N2 0 0 1 0 0 0

74 (9, 64, M) t 177 188 202 379 743 1,113 1,666
N1 1 0 0 0 0 1 0
N2 0 0 0 0 0 1 1

75 (3, 78, M) t 96 198 439 637 1,037 1,405

N1 0 0 0 0 0 0
N2 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

76 (2, 49, M) t 184 364 402 567 770 786 952 1,141 1,323 1,505 1,688
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

77 (2, 72, M) t 191 371 406 569 751 931 1,114 1,294 1,477 1,658 1,793
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

78 (1, 67, M) t 181 364 554 719 901 1,083 1,279 1,450 1,632 1,791
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 1 1 0 0 0

79 (3, 61, M) t 182 365 573 754 936 1,121 1,204 1,308 1,540 1,741
N1 0 0 0 0 0 0 0 0 1 0
N2 0 0 0 0 0 0 0 0 0 0

80 (5, 63, F) t 181 292 658 1,190 1,642
N1 0 1 0 0 2
N2 0 0 0 0 0

81 (2, 44, M) t 213 360 584 767 949 1,102 1,279 1,470 1,659
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

82 (2, 67, M) t 34 62 94 336 700 1,710
N1 0 0 0 0 0 0
N2 0 0 0 0 0 0

83 (5, 63, M) t 182 364 406 545 721 895 1,252 1,469 1,611 1,674 1,820
N1 0 0 0 0 0 0 0 0 0 1 0
N2 0 0 1 0 1 0 0 0 0 0 2

84 (2, 71, F) t 182 376 573 754 936 1,038 1,091 1,323 1,503 1,685
N1 0 0 0 0 0 0 0 0 0 0
N2 1 0 0 0 0 0 0 0 0 0

85 (1, 63, M) t 181 330 356 523 707 894 1,078 1,258 1,469 1,667 1,797
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 1 0 0 0 0 0 0 0 0 0

86 (2, 76, F) t 161 176 210 238 595 959
N1 0 0 0 0 0 0
N2 0 0 0 0 0 0

87 (1, 49, F) t 186 368 551 665 956 1,134 1,314 1,490 1,670
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

88 (1, 52, M) t 189 371 549 735 918 1,099 1,247 1,479 1,617
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

89 (15, 67, F) t 175 357 539 742 924 1,142 1,323 1,505 1,695
N1 1 0 1 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0 0

90 (1, 66, M) t 176 400 430 456 591 592 1,326 1,578

N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

91 (1, 51, F) t 86 91 112 163 394 582 763 953 1,137 1,330 1,513 1,695
N1 1 1 0 0 2 0 0 0 0 0 0 0
N2 0 0 0 0 2 0 0 0 0 0 0 0

92 (3, 55, F) t 175 392 581 770 959 1,141 1,330 1,512 1,694
N1 0 0 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0 0

93 (2, 53, F) t 135 316 506 680 717 871 884 1,079 1,276 1,424 1,598
N1 0 0 0 0 0 0 0 0 0 0 2
N2 0 0 0 0 0 0 0 0 0 0 0

94 (1, 59, F) t 175 386 583 763 959 1,141 1,323 1,512 1,694
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

95 (2, 76, F) t 62 160 334 517 692 817 874 1,042 1,407
N1 0 0 1 0 1 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

96 (6, 78, M) t 140 344 539 762 972 1,282 1,483
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 2 1

97 (2, 59, M) t 210 385 575 756 939 1,125 1,309 1,532
N1 0 0 0 0 1 0 0 0
N2 0 0 0 0 1 0 0 0

98 (4, 62, M) t 239 428 593 776 978 1,160 1,344 1,526 1,721
N1 1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

99 (1, 53, F) t 27 188 379 559 743 945 1,127
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

100 (12, 74, M) t 183 249 338 521 688 875 1,086 1,281 1,463 1,666
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 1 0 0

101 (1, 69, M) t 120 303 340 716 744 877 1,051 1,296 1,492 1,681
N1 0 0 0 0 0 0 0 1 0 1
N2 0 0 0 0 0 0 0 0 0 0

102 (3, 67, M) t 56 201 218 391 701
N1 0 0 0 0 0
N2 0 0 0 0 0

103 (27, 73, F) t 168 350 582 596 764 940 1,106 1,322 1,496 1,658
N1 0 0 0 0 0 1 0 1 1 0
N2 0 0 1 0 0 0 0 0 0 0

104 (6, 53, M) t 147 329 490 672 854
N1 0 0 0 1 0
N2 0 0 0 0 0

105 (6, 73, F) t 121 309 485 749 1,126 1,181 1,547

N1 0 0 0 0 0 0 0
N2 0 0 0 0 1 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

106 (2, 77, M) t 172 398 516 699 1,064 1,290 1,395
N1 0 1 0 0 0 1 0
N2 0 0 0 0 0 1 0

107 (4, 79, M) t 188 377 553 594 733 861 936 1,077 1,336
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 1

108 (1, 45, M) t 62 188 365 573 762 941
N1 0 0 0 0 0 0
N2 0 0 0 0 0 0

109 (7, 71, M) t 159 359 546 730 912 1,092 1,274 1,498
N1 0 1 0 1 0 0 1 0
N2 0 0 0 0 0 0 0 0

110 (2, 66, M) t 181 363 533 712 894 1,077 1,261 1,441 1,630
N1 0 0 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0 0

111 (1, 70, M) t 180 371 552 733 914 1,098 1,279 1,463
N1 0 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0

112 (1, 64, F) t 168 355 538 721 896 1,083 1,260 1,441 1,623
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

113 (2, 56, M) t 175 364 733 971
N1 0 0 0 0
N2 0 0 0 0

114 (1, 66, F) t 181 229 356 420 504 1,433
N1 0 0 0 0 0 0
N2 0 0 0 0 0 0

115 (3, 73, F) t 177 358 552 749 937 1,115 1,295 1,458
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

116 (1, 58, M) t 154 247 335 517 699 884 1,073 1,302 1,437
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

117 (3, 53, M) t 79 108 118 252 301 489 785
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

118 (1, 66, M) t 180 363 544 762 971 1,169 1,351 1,538
N1 0 1 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0

119 (2, 46, M) t 175 358 650 679 791
N1 0 1 3 1 3
N2 0 0 0 0 0

120 (2, 54, M) t 174 296 316 357 680 752 1,081 1,276

N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

121 (4, 44, M) t 168 350 534 721 896
N1 0 0 0 0 0
N2 0 0 0 0 0

122 (2, 50, F) t 152 335 515 713 903 1,085 1,251 1,434
N1 0 0 1 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

123 (3, 49, M) t 202 391 581 763 958 1,139 1,321 1,506
N1 1 0 1 0 0 0 0 0
N2 0 1 0 0 0 0 1 0

124 (4, 59, M) t 188 314 616 812 866 1,364 1,545
N1 0 0 1 1 1 0 0
N2 0 0 0 0 0 0 0

125 (8, 62, F) t 108 290 458 638 837 987 1,228 1,465
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

126 (1, 73, F) t 141 351 419
N1 0 0 0
N2 0 0 0

127 (1, 68, F) t 180 390 424 600 964 1,224 1,418
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

128 (2, 47, F) t 175 365 559 756 939 1,121 1,303 1,477
N1 0 0 1 0 0 0 0 0
N2 0 0 1 0 0 0 0 0

129 (3, 50, F) t 222 383 572 742 855 943 1,126 1,307 1,477
N1 0 0 0 2 0 0 0 1 0
N2 0 0 0 0 0 0 0 0 0

130 (2, 56, F) t 180 197 363 370 559 725 755 943 1,148 1,349 1,495
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

131 (1, 66, F) t 166 358 516 698 896 1,091 1,273 1,471
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

132 (1, 44, M) t 182 409
N1 0 0
N2 0 0

133 (1, 51, M) t 159 516 698 880 1,062 1,244 1,426
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

134 (4, 37, F) t 359 604 623 996 1,018 1,226
N1 1 1 2 1 0 1
N2 1 0 0 0 0 0

135 (2, 55, F) t 173 350 578 760 944 1,085 1,355

N1 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

136 (6, 67, M) t 195 378 562 626 748 1,163 1,294
N1 0 0 0 0 0 0 0
N2 0 1 2 0 0 1 1

137 (35, 67, M) t 189 349 425 574 867
N1 2 1 1 0 0
N2 0 0 0 0 0

138 (1, 63, M) t 167 350 553 560 742 971 1,168 1,337
N1 0 0 1 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

139 (2, 71, M) t 178 332 517 719 899 1,088 1,270
N1 0 0 0 0 0 0 0
N2 0 0 0 0 1 0 0

140 (7, 48, M) t 178 379 440 540 722 764 885 1,084 1,253 1,431
N1 0 0 0 0 1 1 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

141 (4, 44, F) t 158 356 530 570 740 900 1,063 1,242
N1 0 0 2 0 0 0 0 1
N2 0 0 0 0 0 0 0 0

142 (34, 73, M) t 103 162 163 253 343 525 705 833 1,083 1,212
N1 0 0 1 1 2 0 0 0 0 0
N2 0 0 0 0 0 0 0 2 0 0

143 (7, 73, F) t 110 117 124 135 183 190 219 254 386 589 617 798
N1 0 0 0 0 0 0 0 0 0 0 0 2
N2 0 0 0 0 0 0 0 0 0 0 0 0

Placebo group

144 (2, 61, M) t 125 179 363 531 735 915 1,103 1,296 1,476 1,663 1,784
N1 0 1 0 0 0 0 1 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

145 (11, 65, M) t 182 364 546 728 912 955 1,138 1,323 1,519 1,743
N1 1 1 0 4 0 2 1 0 1 0
N2 0 0 0 0 0 0 0 0 0 0

146 (3, 62, F) t 210 216 337 713 1,031
N1 0 0 0 0 0
N2 0 0 0 0 0

147 (7, 56, M) t 190 383 490 566 756 972 1,002 1,240 1,412 1,601 1,631 1,792
N1 0 0 0 0 1 1 0 0 0 0 1 1
N2 0 0 0 0 0 0 0 0 0 0 0 1

148 (1, 40, M) t 190 372 567 763 945 1,127 1,309 1,541 1,723
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

149 (1, 67, M) t 186 362 564 755 925 1,120 1,301 1,483 1,665 1,791
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

150 (6, 75, M) t 204 302 499 707 911 1,102 1,256 1,470 1,702 1,793
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 1
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

151 (2, 57, F) t 176 364 545 743 925 1,106 1,288 1,470 1,651 1,794
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

152 (16, 78, M) t 183 366 569 757 940 1,011 1,024
N1 1 0 0 0 1 0 0
N2 0 0 0 0 0 0 0

153 (2, 51, M) t 21 188 370 552 734 918 1,457 1,709
N1 0 0 0 0 0 0 1 0
N2 0 0 0 0 0 0 0 0

154 (1, 66, M) t 182 362 533 695 901 1,268 1,343 1,531 1,713
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 1 1 0

155 (3, 74, M) t 179 392 586 614 642 837 893 1,372 1,798
N1 0 0 1 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

156 (26, 63, M) t 177 282 357 393 610 792 996 1,183 1,394 1,575 1,772
N1 1 0 0 1 0 0 0 0 0 2 0
N2 0 0 0 0 0 0 0 0 0 0 0

157 (1, 51, F) t 135 323 504 686 903 1,099 1,309 1,484 1,669 1,799
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

158 (1, 50, M) t 62 188 191 197 230 238 268 387 517 545 692 818
N1 0 2 0 0 1 0 0 0 3 0 0 0
N2 0 2 0 0 0 0 0 1 0 0 0 1

159 (1, 75, F) t 180
N1 0
N2 0

160 (6, 52, M) t 126 313 501 693 868 1,049 1,230 1,421 1,610 1,747 1,777
N1 1 1 1 0 2 0 1 1 0 0 1
N2 0 0 0 1 0 0 0 0 0 0 0

161 (2, 76, F) t 193 375 559 621 741 936 1,119 1,153 1,187 1,250 1,302 1,370
N1 0 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

162 (17, 73, M) t 182 357 549 589 661 745 939 1,088 1,129 1,282 1,336 1,449
N1 0 0 0 0 0 0 0 0 1 1 0 1
N2 0 1 0 1 0 0 1 1 0 0 0 1

163 (12, 71, F) t 188 357 538 733 916 1,098 1,281 1,484 1,671 1,783
N1 0 0 1 1 0 1 1 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

164 (3, 42, F) t 127 314 502 698 796 866 1,048 1,204 1,390 1,579 1,747
N1 0 0 0 1 0 0 0 0 0 0 0
N2 0 1 0 0 0 0 0 0 0 0 0

165 (34, 47, F) t 189 302 414 525 718 903 1,098 1,191 1,299 1,461 1,657 1,799

N1 0 0 0 0 2 0 2 0 0 3 0 0
N2 1 0 0 0 0 1 0 3 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

166 (3, 78, M) t 180 374 430 441 559 600 644 700 740 776 884 1,075
N1 0 0 0 0 0 0 0 0 0 0 0 0
N2 0 1 0 0 0 0 0 0 0 0 0 0

167 (9, 49, F) t 185 367 549 731 947 1,156 1,284 1,415 1,599 1,781
N1 2 2 3 2 0 2 1 2 0 2
N2 0 0 0 0 0 0 0 0 0 0

168 (7, 61, M) t 113 177 324 371 772
N1 0 0 0 0 0
N2 1 0 0 0 0

169 (1, 60, M) t 181 323 532 705 876 1,051 1,231 1,412 1,595 1,776
N1 0 0 0 0 0 0 0 1 0 1
N2 0 0 0 0 0 0 0 0 0 0

170 (2, 62, F) t 180 362 559 748 910 1,090 1,335 1,519 1,762
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

171 (6, 75, F) t 197 379 581 633 763 945 1,129 1,309 1,480 1,669 1,799
N1 0 0 0 0 0 0 0 0 0 1 1
N2 0 0 0 0 0 0 0 0 0 0 0

172 (3, 48, M) t 196 337 519 701 889 1,065 1,247 1,435 1,618 1,799
N1 0 0 2 0 0 0 0 0 1 0
N2 0 0 0 0 0 0 0 0 1 0

173 (1, 72, F) t 104 189 287 477 653 835 1,008 1,197 1,358 1,583 1,766
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 2 0 0 0 0 0 0 0

174 (8, 56, F) t 194 302 393 567 757 820 960 1,146 1,316 1,497 1,674 1,797
N1 0 0 0 0 1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 1 0

175 (8, 64, F) t 175 221 364 553 735 840 917 1,099 1,281 1,470 1,652 1,778
N1 0 0 0 2 0 0 0 0 3 0 0 0
N2 0 0 0 0 0 0 0 0 1 0 0 0

176 (7, 56, M) t 172 344 522 732 900 1,091 1,259 1,440 1,616 1,791
N1 1 0 0 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0 1 0

177 (1, 58, F) t 153 336 517 699 882 1,071 1,252 1,434 1,616 1,793
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

178 (1, 50, M) t 180 344 505 686 855 1,055 1,281 1,503 1,706
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

179 (1, 64, F) t 188 368 545 733 826 978 1,180 1,285 1,469 1,650 1,785
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

180 (2, 56, F) t 154 197 334 516 698 883 1,065 1,246 1,427 1,608

N1 0 0 0 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

181 (1, 46, F) t 162 308 490 675 724 857 1,052 1,232 1,417 1,631 1,787
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

182 (4, 42, F) t 71 162 343 547 730 923 1,105 1,301 1,483 1,675 1,808
N1 1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

183 (8, 63, M) t 147 246 261 352 569 674 855 1,045 1,234 1,282 1,415 1,494
N1 1 0 0 0 1 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 1 0 0 1 1 0

184 (6, 64, M) t 113 200 382 564 746 932 1,114 1,299 1,469 1,665
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

185 (1, 51, M) t 173 354 389 431 465 558 658 770 922
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

186 (9, 67, F) t 199 381 595 623 778 967 1,200 1,247 1,374 1,737
N1 0 0 0 1 0 0 0 0 1 0
N2 0 0 0 0 0 0 0 0 0 0

187 (3, 77, M) t 191 387 583 784 986 1,169 1,350 1,532 1,792
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

188 (9, 61, F) t 111 305 462 486 671 851 1,063 1,301 1,488 1,677 1,795
N1 0 0 0 0 0 2 0 0 2 1 1
N2 0 0 0 0 0 0 0 0 0 0 0

189 (2, 44, F) t 38 176 225 339 394 541 750 1,044 1,204 1,386 1,568 1,879
N1 0 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

190 (21, 64, M) t 119 295 476 660 686 826 1,017 1,204 1,386 1,575 1,771
N1 0 0 0 0 0 0 0 0 0 0 0
N2 1 0 1 0 0 0 0 1 0 1 1

191 (1, 67, M) t 182 364 567 744 890 1,098 1,282 1,485 1,637 1,850
N1 0 0 0 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 1 0 1

192 (1, 45, M) t 175 357 572 755 935 1,141 1,327 1,510 1,701
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 1 0 0 0 0

193 (15, 70, F) t 157 337 533 642 745 934 1,122 1,309 1,492 1,674 1,779
N1 1 0 0 0 1 0 1 2 2 1 0
N2 0 1 0 0 0 0 0 0 0 0 0

194 (1, 69, M) t 149 329 518 703 893 1,068 1,253 1,449 1,633 1,660 1,793
N1 0 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 1 0

195 (4, 69, M) t 174 356 552 726 929 1,127 1,302 1,505 1,674

N1 0 0 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

196 (4, 65, M) t 43 88 170 239 358 394 533 714 876 1,054 1,078 1,269
N1 0 0 0 0 1 0 1 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

197 (1, 47, F) t 168 350 548 737 911 1,093 1,275 1,457 1,638 1,779
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

198 (3, 62, M) t 154 322 525 707 860 1,058 1,253 1,443 1,686
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 1 0 1 1

199 (1, 39, M) t 165 347 539 719 902 1,111 1,294 1,483 1,666 1,791
N1 0 0 0 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

200 (21, 55, M) t 193 378 566 784 959 1,148 1,319 1,510 1,699 1,789
N1 1 1 0 1 2 0 0 2 0 0
N2 0 0 0 0 0 0 0 0 1 0

201 (2, 55, M) t 44 177 359 554 721 958 1,122 1,283 1,465 1,645 1,792
N1 0 0 0 1 0 0 2 0 0 1 0
N2 0 0 0 0 0 1 0 0 0 0 0

202 (2, 76, F) t 140 321 351 517 707 882 979 1,014 1,084 1,611
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 2 0

203 (6, 63, F) t 160 342 532
N1 1 1 1
N2 0 0 0

204 (1, 54, F) t 176 329 528 696 920 1,095 1,277 1,464 1,646 1,781
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

205 (2, 76, M) t 167 386 531 714 883 1,078 1,259 1,437 1,617 1,812
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

206 (3, 73, F) t 180 364 551 736 757 826 924 1,111 1,293 1,394 1,736
N1 0 0 0 0 0 0 0 0 0 1 0
N2 0 0 0 0 0 0 0 0 0 0 1

207 (2, 60, F) t 145 175 356 537 747 938 1,112 1,303 1,483 1,671
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

208 (2, 49, M) t 208 385 574 754 944 1,125 1,309 1,489 1,672
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

209 (2, 63, F) t 138 526
N1 0 0
N2 0 0

210 (1, 63, F) t 175 357 538 709 890 1,077 1,259 1,448 1,623 1,787

N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

211 (2, 78, M) t 147 328 524 707 887 1,069 1,252 1,434 1,616
N1 0 0 0 0 0 0 1 0 0
N2 1 0 0 0 0 0 0 0 0

212 (2, 40, M) t 179 389 657 844 1,026 1,217 1,399 1,586 1,768
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

213 (3, 57, M) t 104 286 468 655 832 1,014 1,203 1,399 1,488 1,555
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

214 (1, 43, M) t 152 334
N1 0 0
N2 0 0

215 (7, 68, F) t 55 68 173 424 446 705 783 1,529
N1 0 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0

216 (2, 76, F) t 145 327 552 590 618 698 1,091 1,280 1,476 1,715
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 1 0

217 (2, 62, M) t 180 377 569 616 706 756 936 1,135 1,328 1,511 1,708
N1 0 1 1 0 0 0 0 0 0 1 0
N2 0 0 0 0 0 0 0 0 0 0 0

218 (3, 52, F) t 188 404 574 784 973 1,168 1,355 1,540 1,720
N1 0 0 0 0 1 1 0 1 1
N2 0 0 0 0 0 0 0 0 0

219 (2, 59, M) t 175 407 589 778 960 1,066 1,149 1,338 1,527 1,736
N1 2 0 0 0 0 1 0 0 0 1
N2 0 1 0 0 0 0 0 0 0 0

220 (1, 52, F) t 175 329 511 708 890 1,072 1,268 1,443 1,646
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

221 (1, 78, M) t 314 563 650 752 754 1,185 1,704
N1 0 0 0 0 0 0 2
N2 0 0 0 0 0 0 0

222 (1, 59, F) t 308 663
N1 0 0
N2 0 0

223 (17, 74, M) t 168 399 582 672 743 882 919 1,185 1,345 1,526
N1 3 1 0 1 2 0 1 2 0 0
N2 0 0 0 1 0 0 0 0 0 1

224 (1, 55, M) t 140 336 518 707 946 1,128 1,310 1,518 1,672
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

225 (12, 63, M) t 42 124 208 420 502 637 819 1,006 1,070 1,188 1,370 1,558

N1 1 0 1 0 0 0 1 0 1 0 0 1
N2 0 0 0 1 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

226 (1, 49, F) t 182 364 546 735 917 1,099 1,279 1,463 1,650
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

227 (2, 75, M) t 172 355 545 699 741 811 923 1,399
N1 0 0 1 0 1 0 0 0
N2 0 0 0 0 0 1 0 0

228 (10, 51, M) t 183 372 539 728 749 910 1,087 1,281 1,464 1,652
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

229 (5, 69, M) t 78 152 519 1,380 1,581
N1 0 0 0 1 0
N2 0 0 0 0 0

230 (2, 79, M) t 154 336 511 698 957 1,393
N1 0 0 0 0 0 0
N2 0 0 0 1 0 0

231 (2, 58, M) t 175 359 386 548 729 945 1,128 1,379 1,548
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

232 (1, 73, M) t 107 182 358 540 640 679 723 904 1,093 1,270 1,451 1,654
N1 1 0 0 0 0 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

233 (1, 60, M) t 182 364 567 734 918 1,088 1,282 1,468 1,651
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

234 (2, 68, M) t 21 28 73 164 352 541 553 722 904 1,185 1,360 1,533
N1 0 1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0 0

235 (2, 53, M) t 65 245 427 610 829 1,032 1,197 1,401 1,589
N1 0 0 0 0 0 0 0 0 1
N2 0 0 0 0 0 0 0 0 0

236 (6, 55, M) t 174 364 547 727 924 1,135 1,315 1,499
N1 1 1 0 0 1 0 0 1
N2 0 0 0 0 0 0 0 0

237 (7, 73, F) t 82 89 112 187 370 517 734 1,139 1,504 1,545
N1 0 0 0 0 1 0 0 0 0 0
N2 1 0 0 0 0 1 0 0 0 0

238 (2, 63, M) t 118 313 490 769 979 1,167 1,376
N1 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0

239 (4, 67, M) t 64 254 329 583 737 918 923 1,100 1,282
N1 0 0 1 0 0 0 0 0 0
N2 1 1 0 0 0 0 0 0 1

240 (3, 74, M) t 185 368 571 754 886 1,055 1,244 1,426 1,615

N1 0 1 0 1 1 2 0 0 0
N2 0 0 0 1 0 0 0 1 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

241 (1, 58, F) t 93 175 379 406 548 798 974 1,131 1,309
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

242 (9, 79, F) t 82 145 365 511 700 1,069 1,310
N1 0 0 0 1 0 0 0
N2 0 0 0 0 0 1 1

243 (5, 54, M) t 203
N1 0
N2 0

244 (22, 54, M) t 61 69 279 326 572 818 1,140 1,329 1,510
N1 2 0 1 0 0 1 0 1 0
N2 0 0 2 0 2 0 1 2 1

245 (6, 57, M) t 150 297 329 472 668 852 1,032 1,217 1,399 1,588
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

246 (2, 59, F) t 162 393 400 590 760 772 792 794 856 927 1,312
N1 0 0 0 0 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0 0 0 0

247 (12, 76, F) t 179 361 544 726 908 1,097 1,273 1,454
N1 0 0 0 0 3 0 0 0
N2 0 0 0 0 0 0 0 0

248 (1, 66, M) t 141 331 519 750 987 1,154 1,359 1,575
N1 0 1 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

249 (4, 69, F) t 225 575 734 980 1,239
N1 0 0 0 0 0
N2 0 0 0 1 0

250 (2, 46, F) t 32 144 360 520 564 702 882 1,085 1,148 1,382
N1 0 1 0 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0 0 0

251 (2, 60, M) t 205 384 582 610 790 833 972 1,102 1,154 1,336 1,518
N1 0 0 1 0 0 1 0 0 0 1 0
N2 0 0 0 0 0 1 0 0 0 0 0

252 (6, 68, M) t 194 377 552 733 957 1,141 1,323 1,511
N1 0 0 0 0 0 0 0 0
N2 0 0 1 0 0 0 0 0

253 (10, 66, F) t 209 384 573 776 973 1,154 1,337 1,546
N1 0 0 4 0 0 1 2 0
N2 1 0 0 0 0 0 0 0

254 (5, 71, F) t 134 315 509 693 873 1,064 1,245 1,427
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

255 (1, 48, F) t 196 370 565 747 936 1,126 1,308 1,503

N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

256 (2, 52, M) t 187 378 600 782 971 1,151 1,335 1,522
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

257 (1, 39, M) t 190 380 580 813 1,063 1,266 1,420
N1 0 0 0 0 0 0 0
N2 0 1 0 0 0 0 0

258 (6, 54, F) t 127 334 509 743 894 1,051 1,219 1,414
N1 2 0 0 0 1 0 0 0
N2 0 0 0 0 0 0 0 0

259 (8, 75, M) t 182 362 583 679 817 1,163
N1 0 0 2 0 1 1
N2 0 0 0 1 0 0

260 (3, 77, F) t 133 322 323 503 693 861 938
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

261 (1, 40, M) t 182 353
N1 0 0
N2 0 0

262 (9, 64, M) t 239 380 386 430 483 604 793 1,038 1,219 1,442
N1 0 0 0 0 0 0 0 0 0 0
N2 0 1 0 0 1 0 0 0 0 0

263 (10, 58, M) t 181 194 370 549 728 859 888 1,041 1,187 1,369
N1 0 1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

264 (11, 65, M) t 70 196 379 567 573 663 825 846 1,034 1,293
N1 1 0 0 2 0 0 0 0 0 1
N2 0 0 0 0 0 0 0 0 0 0

265 (2, 46, F) t 182 357 519 700 892 1,137 1,312 1,459
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

266 (1, 57, F) t 47 170 215 335 537 769 889 1,023 1,225 1,386
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

267 (8, 66, M) t 168 202 332 421 477 686 833 1,050 1,101 1,273 1,427
N1 0 1 0 2 1 0 1 0 0 0 1
N2 0 0 0 0 0 0 1 1 0 0 0

268 (2, 49, M) t 191 384 405 566 957 1,097
N1 0 0 0 0 0 1
N2 0 0 0 0 0 0

269 (2, 67, M) t 201 383 579 762 962 1,137 1,321
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

270 (1, 71, M) t 175 334 516 712 901 1,090 1,252 1,433

N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

271 (2, 67, F) t 226 405 587 772 946 1,129 1,309
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

272 (1, 51, M) t 176 364 472 659 855 1,037 1,213 1,379
N1 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

273 (2, 47, M) t 183 309 497 596 776 968 1,161 1,308
N1 0 0 1 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

274 (9, 34, M) t 195 378 566 692 1,061
N1 0 1 4 3 1
N2 0 0 0 0 0

275 (7, 42, F) t 152 341 515 698 866 1,081 1,265 1,440
N1 0 0 0 0 0 1 0 0
N2 0 0 0 0 0 0 0 0

276 (5, 67, M) t 181 203
N1 1 0
N2 0 0

277 (17, 51, M) t 138 154 315
N1 0 0 0
N2 0 3 0

278 (2, 48, F) t 145 332 403 509 669 885 1,075 1,292 1,440
N1 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0

279 (1, 52, F) t 185 369 381 551 731 913 1,095 1,284
N1 0 0 1 0 0 0 1 0
N2 0 0 0 0 0 0 0 0

280 (3, 66, M) t 138 321 334 502 630 790 973 1,111 1,258 1,420
N1 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 0 0

281 (4, 68, M) t 175 349 510 691 873 1,055 1,237 1,419
N1 0 0 0 0 0 0 0 1
N2 0 0 0 0 0 0 0 0

282 (1, 77, F) t 115 242 354
N1 1 0 0
N2 0 0 0

283 (1, 42, F) t 179 368 544 731 906 1,096 1,280
N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0

284 (2, 54, M) t 125 146 153 308 568 869
N1 0 0 0 0 0 0
N2 0 0 0 0 0 0

285 (1, 52, F) t 124 300 469 882 1,064 1,246 1,433

N1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0
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Data set III (Continued)

Observation number

ID Covariates 1 2 3 4 5 6 7 8 9 10 11 12

286 (2, 52, F) t 128 314 499 679 860 1,042 1,224 1,420
N1 1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0

287 (1, 41, M) t 182 420 600 805 986 1,260
N1 0 0 0 0 0 0
N2 0 0 0 0 0 0

288 (10, 63, M) t 161 301 487 637 802 945 1,063
N1 0 0 0 0 0 0 1
N2 0 0 0 0 0 0 0

289 (4, 50, M) t 178 360 670 949 1,210
N1 0 0 1 0 0
N2 0 0 0 0 0

290 (28, 75, M) t 12 206 238 318 381 592 753 958 1,046 1,102 1,326 1,403
N1 1 1 0 0 0 0 2 1 1 0 0 0
N2 0 2 0 0 1 1 1 3 2 2 3 0



9 Some Sets of Data 251

Data set III (Continued)

Observation number

ID Covariates 13 14 15 16 17

DFMO group

18 (3, 72, F) t 1,622 1,793

N1 0 0
N2 0 0

22 (5, 61, F) t 1,765
N1 0
N2 0

23 (14, 70, F) t 1,560 1,729
N1 0 0
N2 1 0

24 (4, 70, F) t 1,778
N1 3
N2 0

57 (6, 59, M) t 1,257 1,517 1,622
N1 0 0 0
N2 0 0 0

61 (2, 69, M) t 1,713
N1 0
N2 0

72 (2, 63, M) t 1,765
N1 0
N2 0

143 (7, 73, F) t 896 1,002 1,107 1,694
N1 0 0 0 2
N2 1 0 0 0
Placebo group

158 (1, 50, M) t 1,014 1,352 1,766
N1 0 0 1
N2 0 0 1

162 (17, 73, M) t 1,631 1,791
N1 0 1
N2 1 0

166 (3, 78, M) t 1,440 1,742
N1 0 0
N2 1 0

183 (8, 63, M) t 1,647 1,794
N1 0 1
N2 0 1

196 (4, 65, M) t 1,458 1,640 1,823
N1 0 0 0
N2 1 0 0

290 (28, 75, M) t 1,419 1,466 1,508 1,704 174
N1 0 0 0 0 0
N2 3 1 2 1 1
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