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Preface

The idea of writing a book on sequential experimentation in clinical trials arose
25 years ago when Lai was at Columbia University, collaborating with Dan
Anbar of Abbott Laboratories on a university-industry cooperative research project,
“Sequential Statistical Methods in Biopharmaceutical Research,” funded by the
National Science Foundation. Anbar and Lai, together with Gordon K.K. Lan and
Anastasio Tsiatis (at that time, at the NIH and Harvard, respectively), formed a
focused research group that held a week-long meeting every 2 months and organized
an annual workshop, with invited speakers from academia, industry, and the FDA
and NIH, and dedicated to the development and discussion of sequential methods
in the design and analysis of clinical trials. Although substantial progress was made
by the group to advance this new area that attracted considerable attention from
the pharmaceutical industry after the early termination of the Beta-Blocker Heart
Attack Trial in 1981, the book project could not materialize when Lai moved to
the West Coast in 1987, joining Stanford University, while the other collaborators
remained on the East Coast but were busy with their own moves to new positions.
On the other hand, the group members continued their separate research efforts in
this area. These efforts and those by other researchers led to major advances and
eventual widespread use of group sequential designs and interim analysis methods
by the pharmaceutical industry and their acceptance by the FDA.

At the turn of the new century, the monograph by Jennison and Turnbull (2000)
appeared, giving a comprehensive overview of group sequential methods developed
up to that time. Besides continual developments in interim analysis and group
sequential methods, the past decade has also witnessed new developments and grow-
ing interest in adaptive designs of clinical trials. The books by Proschan et al. (2006),
Chow and Chang (2006), Chang (2007), and Berry et al. (2011) describe some of
these developments and their applications. However, as pointed out in Chap. 8, there
is substantial disagreement in the literature concerning the appropriateness of these
adaptive designs, which either use inefficient test statistics that are not supported by
mainstream statistical principles to adjust for the adaptation in maintaining the Type
I error of the test or use Bayesian posterior probabilities that do not guarantee the
prescribed Type I error. Chapter 8 describes our recent work that provides a new
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viii Preface

class of adaptive designs which are both flexible and efficient, thereby resolving the
dilemma between efficiency and flexibility in the adaptive design literature. Prior
to this work, we have also developed a comprehensive methodology of flexible and
efficient group sequential designs, to which Chap. 4 is devoted. In fact, the new
adaptive designs in Chap. 8 are modifications of the corresponding group sequential
designs in Chap. 4, and a unified approach is provided for the methodology and
implementation of group sequential and adaptive designs.

Besides giving an up-to-date account of these flexible designs, we also present
in Chap. 7 a comprehensive overview, including the most recent developments
of inference after the termination of these clinical trials. Chapter 6 describes the
Beta-Blocker Heart Attack Trial as an example for the design and analysis of
clinical trials with failure-time endpoints and interim analyses. The material in
Chaps. 4, 6, 7, and 8 can be used for short courses on group sequential and adaptive
designs. We have given short courses based on this material in the First Joint
Biostatistics Symposium in Beijing, July 2010, the Applied Statistics Symposium
of the International Chinese Statistical Association in New York, June 2011, and the
Workshop on the Design and Analysis of Clinical Trials at National University of
Singapore, October 2011. We were greatly encouraged by the enthusiastic response
and stimulating comments of the participants.

This book has also benefited from the Third International Workshop in Sequential
Methodologies at Stanford University, June 2011. The workshop was very well
attended and was truly international in nature. There it was pointed out that despite
a resurgence of interest in sequential analysis, the subject was not in the graduate
curriculum of most statistics departments. One reason that was mentioned was the
lack of textbooks that could present the material in an appealing way to today’s
graduate students. In fact, only a handful of such books had been written and they
were published more than 20 years ago. Although there are more recent books
which we have mentioned in the second paragraph of this preface, they all deal
with the specialized topics of group sequential and adaptive designs rather than
general methods and principles in sequential analysis. Another reason that came
up during workshop discussions was that sequential methods and adaptive designs
seemed to involve special techniques and ideas that are detached from mainstream
topics taught in the modern graduate statistics curriculum, e.g., likelihood inference,
regression analysis, resampling, semiparametric theory, to name a few. Spurred
by these comments, we have made particular efforts to change this perception
in the selection and presentation of the materials. To make it suitable for an
introductory course on sequential analysis, the book covers the much broader
subject of sequential experimentation that includes group sequential and adaptive
designs of Phase II and III clinical trials, which have attracted much attention in the
past three decades. In particular, the broad scope of design and analysis problems
in sequential experimentation clearly requires a wide range of statistical methods
and models from nonlinear regression analysis, experimental design, dynamic
programming, survival analysis, resampling, and likelihood and Bayesian inference.
The background material in these building blocks is summarized in Chaps. 2 and 3
and certain sections in Chaps. 6 and 7. Besides group sequential tests and adaptive
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designs, we also introduce sequential change-point detection methods in Chap. 5
in connection with pharmacovigilance and public health surveillance. Together with
dynamic programming and approximate dynamic programming in Chap. 3, the book
therefore covers all basic topics for a graduate course in sequential analysis.

Different parts of the book can be used for short courses on clinical trials,
translational medical research, and sequential experimentation. Lai has used an early
draft of the book to teach a course on innovative clinical trial designs and statistical
methods for second-year Ph.D. students in the Department of Statistics at Stanford
University. The course has led to supplements and exercises for various chapters and
also to the web site for the book, http://meichiun.web.stanford.edu/clinicaltrials/, to
which different parts of the book refer for links to software.

We thank the teaching assistant Alex Deng and the students in the aforemen-
tioned course for their stimulating interest and helpful comments on a first draft of
the book that was used as lecture notes. In particular, we want to mention Olivia
Liao who subsequently wrote her Ph.D. thesis on the subject and contributed to
some recent publications that we have referenced. We also thank our collaborators
Philip Lavori, Zheng Su, Ray Zhu, Joe Heyse, Jie Chen, Sam Wong, and Hock Peng
Chan for working with us on related projects and for their valuable suggestions. We
are particularly grateful to Balasubramanian Narasimhan who has been helping us
develop open-source software for the innovative designs and analyses that will be
posted at the book’s web site and to Cindy Kirby who has put together the separate
chapters in an efficient and timely fashion. We also acknowledge grant support for
the research projects related to this book by the National Science Foundation (DMS-
0907241 and 0403105 for Bartroff and 1106535 and 0805879 for Lai), the National
Institutes of Health (GMS-068968 for Bartroff and 1 P30 CA124435 for Lai), the
U.S. Department of Veterans Affairs Cooperative Studies Program (for Shih), and
the Stanford Center for Clinical and Translational Education and Research (for Lai
and Shih).

Los Angeles, California Jay Bartroff
Stanford, California Tze Leung Lai
Stanford, California Mei-Chiung Shih

http://meichiun.web.stanford.edu/clinicaltrials/
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Chapter 1
Introduction

This chapter gives an overview of (a) the prevalence of sequential experimentation in
translational medical research and (b) developments of statistical methods to design
and analyze these sequential experiments in evidence-based medical research. In
this connection it also gives an outline of the topics covered in the subsequent chap-
ters and discusses the complementary roles of Bayesian and frequentist approaches
to sequential design and analysis.

1.1 Sequential Experimentation in Translational Medical
Research

“From bench to bedside,” a maxim of translational medical research, reflects
the sequential nature of the experiments involved. “Bench” refers to laboratory
experiments to study new biochemical principles and discover novel treatments. The
experiments with promising results are followed by preclinical animal studies. After
understanding the effect of the treatment (say, a new drug) on animals (e.g., rodents),
the next stage of drug development consists of clinical trials that involve human
subjects, starting with Phase I studies to determine a safe dose or dosage regimen
and to collect information on the pharmacokinetics (PK) and pharmacodynamics
(PD) of the drug. PK is concerned with the concentration versus time curve that is
associated with the kinetics of drug absorption, distribution, and elimination. PD is
concerned with the steady-state relationship of drug concentration at an effector site
to the effect/response produced. The information collected and the dosage regimen
determined from Phase I studies are used to design Phase II clinical trials to evaluate
the efficacy of the drug for particular indications (endpoints) in patients with the
disease. Phase II trials are precursors of Phase III trials whose goal is to demonstrate
effectiveness of the drug for its approval by the regulatory agency (the Food and
Drug Administration in the United States) and to provide adequate evidence for
its labeling. Besides testing efficacy, Phase III trials also collect safety information
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from the relatively large samples of patients accrued to the trial. The safety of the
drug is evaluated from the data obtained from all three phases of clinical trials
prior to marketing approval of the drug and continues to be evaluated through post-
marketing Phase IV trials.

Despite the sequential nature of Phase I–III trials, the trials are often planned sep-
arately, treating each trial as an independent study whose design depends on results
from studies in previous phases. An advantage of this is that the reproducibility
of the results of the trial can be evaluated on the basis of the prescribed design,
without worrying about the statistical variability of the results of earlier-phase trials
that determine the prescribed design. A disadvantage lies in the fact that the sample
sizes of the trials are often inadequate because of the separate planning. A different
strategy is to expand a trial seamlessly from one phase into the next phase; the Phase
II–III cancer trial design in Sect. 6.7 is an example. Although Phase II–III design,
which is an active area of current research undergoing new advances, is beyond the
scope of this book, we give a brief introduction in Sect. 6.7 to show the power of an
overarching sequential experimentation approach to translational medicine.

This book focuses on sequential methods for the design and analysis of Phase I,
II, and III clinical trials, thereby providing the background for understanding and
developing the new advances. Although these methods are developed in the context
of clinical trials, they are also applicable to other fields that involve sequential
experimentation. We therefore give an introduction to the statistical methods and the
underlying principles and also relate them to basic topics taught in typical graduate
statistics programs that assume the data to be generated by nonsequential designs.
For example, while Chap. 2 considers Phase I clinical trials, it starts with nonlinear
regression and experimental design before relating them to basic pharmacologic
principles and models underlying dose determination.

1.2 Sequential Analysis: From Weapons Testing
to Confirmatory Clinical Trials

The subject named sequential analysis, which also includes sequential design
of experiments, was born in response to demands for more efficient testing of
antiaircraft gunnery during World War II, which led to Wald’s development of the
sequential probability ratio test (SPRT) in 1943 (Wallis 1980). Let X1,X2, . . . be
i.i.d. random variables with common density function f . To test H0 : f = f0 versus
H1 : f = f1, the SPRT stops sampling at stage

N = inf

{
n ≥ 1 :

n

∏
i=1

(
f1(Xi)

/
f0(Xi)

)
/∈ (A,B)

}
, (1.1)

where 0 < A < 1 < B are the stopping boundaries. When stopping occurs, H0 or H1

is rejected according to whether the likelihood ratio ∏N
i=1( f1(Xi)/ f0(Xi)) crosses



1.2 Sequential Analysis: From Weapons Testing to Confirmatory Clinical Trials 3

the upper boundary B or the lower boundary A. In Chap. 3 we give a summary of
the theory of sequential tests of hypotheses, beginning with the SPRT on testing
a simple null versus a simple alternative hypothesis and describing important
subsequent developments that led to a relatively complete theory for composite
hypotheses.

Within a few years after Wald’s introduction of the SPRT, it was recognized that
sequential hypothesis testing might provide a useful tool in clinical trials to test the
efficacy of new medical treatments. A number of papers appeared during the 1950s
on modifications of the SPRT for the design of clinical trials, and an overview of
these developments was given in Armitage (1960). In 1969, Armitage et al. proposed
a new alternative to the SPRT and its variants, called the repeated significance test
(RST). The underlying motivation for the RST is that, since the strength of evidence
in favor of a treatment from a clinical trial is conveniently indicated by the results
of a conventional significance test, it is appealing to apply the significance test, with
nominal significance level α , repeatedly during the trial. Noting that the overall
significance level α∗, which is the probability that the nominal significance level
is attained at some stage, is larger than α , they developed a recursive numerical
algorithm to compute α∗ in the case of testing a normal mean θ with known
variance σ2, for which the RST of H0 : θ = 0 is of the form

T = inf
{

n ≤ M : |Sn| ≥ aσ
√

n
}
, (1.2)

rejecting H0 if T < M or if T = M and |SM| ≥ aσ
√

M, where Sn = X1 + · · ·+Xn.
Haybittle (1971) proposed the following modification of the RST to increase its
power. The stopping rule has the same form as (1.2) but the rejection region is
modified to T < M or |SM| ≥ cσ

√
M, where a(≥ c) is so chosen that the overall

significance level is equal to some prescribed number. In particular, a =∞ gives the
fixed sample size test while a = c gives the RST.

In double-blind multicenter clinical trials, it is not feasible to arrange for
continuous examination of the data as they accumulate to perform the RST. This
led Pocock (1977) to introduce a “group sequential” version of (1.2), in which the
Xn represents an approximately normally distributed statistic of the data in the nth
group (instead of the nth observation) and M represents the maximum number of
groups. Instead of the square-root boundary aσ

√
n, O’Brien and Fleming (1979)

proposed to use a constant stopping boundary in

T = inf{n ≤ M : |Sn| ≥ b} , (1.3)

which corresponds to the group sequential version of an SPRT.
While sequential analysis had an immediate impact on weapons testing when it

was introduced during World War II to reduce the sample sizes of such tests (Wallis
1980), its refinements for testing new drugs and treatments received little attention
from the biomedical community until the Beta-Blocker Heart Attack Trial (BHAT)
that was terminated in October 1981, prior to its prescheduled end in June 1982.
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The main reason for this lack of interest is that the fixed sample size (i.e., the number
of patients accrued) for a typical trial is too small to allow further reduction while
still maintaining reasonable power at the alternatives of interest. On the other hand,
BHAT, which was a multicenter, double-blind, randomized placebo-controlled trial
to test the efficacy of long-term therapy with propranolol given to survivors of an
acute myocardial infarction, drew immediate attention to the benefits of sequential
methods not because it reduced the number of patients but because it shortened a
4-year study by 8 months, with positive results for a long-awaited treatment for MI
patients.

The “success story” of BHAT paved the way for major advances in the develop-
ment of group sequential methods in clinical trials and for the steadily increasing
adoption of group sequential design. Chapter 4 gives a review of these advances
and describes the current methodology that has moved far beyond the Pocock
and O’Brien–Fleming boundaries (1.2) and (1.3). Chapter 6 presents the design
details of BHAT and the interim analysis results considered by its Data and Safety
Monitoring Board. Inspired by the statistical issues raised by BHAT, a number of
important and difficult problems concerning the design and analysis of clinical trials
with failure-time endpoints and interim analyses have been resolved in the past 2
decades, and Chap. 6 also describes the “time-sequential” methodology developed
in this connection. Chapter 5, however, shows that the fully sequential methodology
summarized in Chap. 3 has recently emerged as a standard for prelicensure (Phase
III) vaccine safety trials and post-marketing (Phase IV) safety studies.

Analysis of the data at the conclusion of a clinical trial typically involves tests
and confidence intervals not only for the primary endpoint but also for different
secondary endpoints. The use of a stopping rule whose distribution depends on
these parameters introduces substantial difficulties for such inference. Siegmund
(1978) developed a method, based on ordering the sample space in a certain
way, to construct confidence intervals for its mean of a normal population with
known variance following a RST. Alternative orderings of the sample space were
subsequently introduced for group sequential tests by Rosner and Tsiatis (1988)
and Emerson and Fleming (1990). By making use of resampling methods, Chuang
and Lai (1998, 2000) developed a general resampling approach to constructing
accurate confidence intervals following sequential tests. Subsequently, Lai and
Li (2006) introduced a general ordering scheme that can be used in conjunction
with resampling to completely solve the long-standing problem of constructing
valid confidence intervals for the primary endpoint of a group sequential trial.
Chapter 7 summarizes these developments and describes the methods. Analysis
of secondary endpoints following a group sequential trial is also considered in
Chap. 7, which reviews the bias-correction approach of Whitehead (1986), Liu et al.
(2000), Whitehead et al. (2000), and Hall and Yakir (2003) and describes the hybrid
resampling methods of Lai et al. (2009).
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1.3 Adaptation and Sequential Optimization

After sequential analysis was introduced in response to more efficient testing of
weapons during World War II, it was soon realized that sequential methods could
be used to address statistical problems for which there are no solutions with fixed
sample sizes. While Dantzig (1940) had shown that no fixed sample size test exists
for the problem of testing the null hypothesis H0 : μ = μ0, with prescribed error
probabilities α and β at μ0 and μ0 + δ , for the mean μ of a normal distribution
whose varianceσ2 is unknown, Stein (1945) showed that a two-stage procedure that
uses the first stage to estimate σ2 and thereby to determine an appropriate second-
stage sample size can have power independent of σ . Stein’s two-stage design is
the first example to show that one can use data during the course of an experiment
to learn about the unknown parameters and thereby adapt the experimental design
(which is the sample size in Stein’s example) as the experiment progresses. It
also paved the way for the next generation of adaptive designs in clinical trials
in the 1990s that are described in Chap. 8. These adaptive designs, however, are
inefficient because they do not incorporate the uncertainties of the parameter
estimates at the end of the first stage. Chapter 8 also describes a new class of adaptive
designs, introduced by Bartroff and Lai (2008a,b), which use an additional stage to
accommodate the uncertainties in the first-stage estimates.

Adaptation via sequential learning of unknown parameters is also a central idea
in the theory of nonlinear optimal experimental design. As shown in Sect. 2.3, the
optimal design measure involves the unknown parameter vector θ in a nonlinear
regression model. To circumvent these difficulties, Fedorov (1972) and others
proposed that designs be constructed sequentially, using observations made to date
to estimate θ and choosing the next design point by replacing the unknown θ in
the optimal design by the current estimate. Lai et al. (2012c) have recently shown
the advantages of adaptation in an integrated plan for developing a new drug, which
is mentioned earlier in the second paragraph of Sect. 1.1. In the development of a
new drug, an important component of the effort and costs involves clinical trials
to provide clinical data to support a beneficial claim of the drug and, in case such
claim is not valid, to support the termination of the development. The clinical trials
progress in steps and are labeled Phase I, II, and III trials, as we have already
noted in Sect. 1.1. A project team steers their operations in which intensity, cost,
and duration increase with the phase; in particular, Phase III often involves over
3000 professionals, several years to reach completion, and over $100 million in
cost. In addition, there is a core team that makes decisions guided by a clinical
development plan (CDP). The CDP maps out the clinical development pathway,
beginning with first-in-man studies and ending with submission to the regulatory
agency or termination of development. It defines the number and type of clinical
studies and their objectives, determines the time sequence of the studies, some of
which may be carried out in parallel, identifies key risk areas, and sets key decision
points and go/no-go criteria. Julious and Swank (2005) have noted that statistical
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methods for clinical trial design have focused primarily on “optimizing individual
clinical trials” but are lacking “at a more global level in the optimization of clinical
development plans.” In practice, however, it is often difficult to specify in advance
the cost of each clinical trial in the sequence and the prior probabilities of a go or
no-go decision to perform the optimization of CDPs “at a more global level.” Lai
et al. (2012c) use ideas from adaptive design of clinical trials, in particular, seamless
Phase II–III designs, to adapt a CDP to information acquired during the course of
its execution.

Optimization is an important technique in formulating and computing statistical
procedures, which can be regarded as statistical decision rules. When the decision
rule consists of a sequence of actions, determination of the optimal rule involves
dynamic programming. In Chap. 3 we give an introduction to dynamic programming
and use it to prove the optimality of the SPRT for simple hypotheses and to
derive approximately optimal tests based on generalized likelihood ratio statistics
for composite hypotheses. We also give an introduction to recent advances in
approximate dynamic programming and apply it to address the treatment versus
experimentation dilemma in Phase I cancer trial designs.

1.4 Two Time Scales and Time-Sequential Survival Analysis

As pointed out in Sect. 1.2, the early termination of BHAT paved the way for
major advances in the development of group sequential designs. These advances
are summarized in Chap. 4, but BHAT and other trials with failure-time endpoints
require more subtle methods than those described in Chap. 4. In Chap. 6 we describe
these methods that address two time scales in time-sequential survival analysis.
“Time-sequential” means that interim analyses are conducted over calendar times,
rather than on the time scale measured by the number of subjects at each interim
analysis as in group sequential methods in Chap. 4, for which the number of subjects
is proportional to the variance (under the null hypothesis) of the test statistic. We
begin Chap. 6 with a review of traditional (nonsequential) survival analysis, focusing
on how the variances of the commonly used test statistics can be derived with
relative ease, despite the complexities due to right censoring, by making use of
martingale theory. In the time-sequential setting, calendar time is one time scale, and
the other time scale is “information time,” which is measured by the null variance
of the test statistic at the time of interim analysis. There is no simple connection
between the two time scales and it has been a long-standing problem concerning
how to address the difficulties caused by the two time scales in the design and
analysis of time-sequential clinical trials with failure-time endpoints.

In Sect. 6.5 we discuss these difficulties and describe the methods that have been
developed to address them. These include a comprehensive asymptotic distribution
theory for time-sequential censored rank statistics, relatively simple and yet efficient
modified Haybittle–Peto tests, and interim Bayesian estimation of the maximum
information at the scheduled end of the trial for futility stopping. Section 6.7
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describes some recent advances, including the Phase II–III cancer trial designs that
we have mentioned in Sect. 1.2 and a method that allows multiple test statistics
to increase power if the trial should proceed to its scheduled end. Sections 7.3
and 7.5 describe an innovative hybrid resampling approach to statistical inference
from survival data following a time-sequential trial.

1.5 Bayesian and Frequentist Approaches and Associated
Software

Berry et al. (2011, p. 1) say that a primary purpose of their book is to describe the
Bayesian approach as an alternative to the traditional frequentist approach, which
is “the standard statistical approach to designing and analyzing clinical trials and
other medical experiments.” They find the “flexibility in both design and analysis”
and the “decision-oriented” underpinning of the Bayesian approach particularly
suited to sequential analysis and adaptive design of clinical trials. On the other
hand, they acknowledge that for Phase III confirmatory trials, which are “typically
overseen and judged by a regulatory agency,” the statistical hurdle for regulatory
approval of the new treatment is “to get a statistically significant result at a specified
type I error,” and the type I error of an adaptive Bayesian design is “extremely
difficult, if not impossible, to calculate” and has to be computed by Monte Carlo
simulations. Their approach is to adjust the rejection threshold of the Bayesian
adaptive/sequential test by using the Monte Carlo simulations carried out under
some chosen parameter configuration(s) belonging to the null hypothesis. However,
for a composite null hypothesis, there is no guarantee that the worst parameter
configuration in the null hypothesis has been chosen for these simulations. An
example is given by Lai et al. (2012a, Sect. 4.4) in their comparison of the Phase II–
III design described in Chap. 6 with the Bayesian counterpart developed by Huang
et al. (2009). Their numerical study shows that because the Bayesian design uses
simulations under certain assumed survival rates to control the type I error, the type
I error can be substantially inflated under other survival rates belonging to the highly
composite null hypothesis. In contrast, the frequentist semiparametric approach
used in their design and analysis is shown to maintain the prescribed type I error.

The argument of Berry et al. (2011, Chap. 1) that the Bayesian approach can
handle adaptation and sequential learning much more efficiently than the frequentist
approach is fair for the prevailing frequentist methods cited in their references, but
it overlooks the possibility that suitably chosen frequentist methods can work as
well, if not better. In fact, there is already a versatile arsenal of statistical methods
and theories, including likelihood inference, semiparametric models for censored
survival data, bootstrap, and other resampling methods, for nonsequential settings.
We shall show in the subsequent chapters how these time-tested methods can
be extended to sequential experiments and adaptive designs. In fact, in Chap. 3,
we show that these extensions can also be derived as approximations to Bayes
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rules. Our viewpoint, therefore, is that Bayesian and frequentist approaches should
complement each other. One may start with a Bayesian formulation and end up
with a frequentist implementation that may be more convenient and appropriate
for the problem at hand, for example, confirmatory testing for drug approval. This
idea is illustrated in Sect. 3.7 that starts with Bayes sequential tests of one-sided
hypotheses and ends up with sequential generalized likelihood ratio tests which have
approximately optimal Bayesian and frequentist properties and are also convenient
for implementation and description. Another example, which is beyond the scope of
this book, is the classical multiarmed bandit problem; see the survey in Lai (2001,
pp. 337–339) which shows that while the Bayesian formulation of the infinite-
horizon version of the problem has a solution in terms of the “Gittins index”
for each arm, a closed-form approximation of the Gittins index yields an upper
confidence bound for the arm’s mean parameter. Not only does this frequentist
approximation provide an intuitive interpretation of the Bayes solution but it also
leads to approximately optimal solutions of finite-horizon bandit problems with a
frequentist formulation. Conversely, one may start with a frequentist problem and
ends up with a Bayes solution. A classic example is the optimality theorem of Wald’s
SPRT in Sect. 3.6. As explained in Sect. 3.3, Wald conjectured this result on the basis
of certain lower bounds for the expected sample sizes under the simple null and
alternative hypotheses. Section 3.6 shows that the proof of the conjecture requires
solving an auxiliary Bayes problem to which dynamic programming can be applied.

Other than Bayesian designs for Phase I trials, which usually have small sample
sizes, considered in Chap. 2 and Sect. 3.8, and the interplay between Bayesian and
frequentist approaches to sequential hypothesis testing discussed in Chap. 3, we
focus in the subsequent chapters on the frequentist approach and refer readers to
the comprehensive treatment of Bayesian methods for clinical trials in Berry et al.
(2011). On the other hand, we want to discuss here an irreconcilable difference,
which is widely recognized and somewhat controversial, between frequentist and
Bayesian inference at the conclusion of a clinical trial with a group sequential
or adaptive design. Bayesian inference (e.g., credible sets for parameters) is
based on the posterior distribution given the randomly stopped sample, and no
adjustment is needed for early stopping or adaptive randomization. In contrast,
frequentist inference such as confidence sets has to make adjustments to ensure
the correctness of the prescribed coverage probability. In nonsequential designs, the
difference between credible and confidence intervals is small for large sample sizes
because of the central limit theorem and higher-order expansions of the posterior
distribution (Johnson 1970) and the sampling distribution (Gross and Lai 1996) of
the approximate pivot used to construct credible or confidence intervals. However,
for group sequential designs, this large-sample theory no longer holds, and in fact,
an approximate pivot in the fixed sample size case is no longer approximately pivotal
in the group sequential setting, as will be explained in Chap. 7 which also describes
how valid confidence intervals can be constructed by a resampling procedure,
similar to Efron’s (1987) bootstrap method to construct confidence intervals based
on samples of fixed size.
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A particularly attractive feature of the Bayesian designs in Berry et al. (2011) is
that software programs are available at the book’s website for users to implement
the design and analysis. This is what we try to emulate for the novel procedures
described in our book. Open-source software is being developed and tested and will
be posted at the website mentioned in the Preface. The introduction of flexibility
in the timing of interim analysis by using the Lan–DeMets spending function and
other flexible group sequential methods described in Sect. 4.1 made the application
of these methods feasible in practice. A major obstacle for wide use of group
sequential methods has been the lack of statistical software for performing the
needed calculations. Programming code was developed by individual researchers
for their own use but was not widely accessible to the clinical trials community
until the mid-1990s when the commercial and academic worlds became connected
via the Internet. A brief but fairly exhaustive review of the software packages
available as of 2006 can be found in Wassmer and Vandemeulebroecke (2006).
In 2000, University of Wisconsin at Madison made available, free of charge, an
interactive FORTRAN program developed by Reboussin, DeMets, Kim, and Lan
that enabled users to design group sequential trials, including those with failure-time
endpoints under the assumption of proportional hazards. Its usage required certain
sophistication. A similar package, focusing exclusively on failure-time endpoints
but with considerably more options for the user, was developed by Gu and Lai
(1999) and is downloadable from Gu’s website at the Chinese University of Hong
Kong, but the package has not been maintained and will be replaced by the R
package currently being developed for Chap. 6. Other FORTRAN code has been
made available by various researchers to provide design tools to facilitate the
use of specific methodology. An example is the FORTRAN code available from
Christopher Jennison of the University of Bath, United Kingdom. SAS R© provides a
number of design PROCs for calculating a variety of group sequential boundaries. R
offers similar functionality. S+ contains a module S+ SeqTrial R© that offers a wide
variety of group sequential methods, point, and interval estimation options at the
end of a group sequential trial under a variety of distributional assumptions.

The first package that was made available commercially on the market was
PEST developed at Lancaster University, UK, by John Whitehead (formerly at the
University of Reading, UK) and his collaborators. The latest version of PEST, PEST
4.4, is written in C. The software provides tools for calculating group sequential
triangular boundaries for binary, normal, and time-to-failure variables. There are a
number of stand-alone packages today that are available commercially. The best
known are (a) East R© developed by Cytel Statistical Software and Services; (b)
ADDPLAN Adaptive Designs—Plans and Analyses R©, currently available in Re-
lease 3.1, developed initially at the University of Köln, Germany, and commercially
offered under different licensing agreements; (c) PASS 2005 R© distributed by NCSS,
Inc.; and (d) STOPP R© developed by Edward Lakatos and licensed commercially
by BiostatHaven, Inc. PASS offers the traditional tools for the design of group
sequential trials but does not offer analysis and trial monitoring tools as do the
other packages. The most established and widely used commercial package is East.
In its most current version, Version 5, East contains a broad menu of stopping
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boundaries for group sequential testing for normal, binary, and time-to-failure
variables. Both ADDPLAN and East offer graphical user interfaces enabling the
user to obtain outputs in tabular as well as graphical format. Both offer design
as well as analysis and simulation tools. Recently, Cytel Corporation released
two additional modules EastSurv R© and EastAdapt R©. EastSurv offers design and
analysis capabilities outside of the proportional hazards framework through simula-
tions. EastAdapt offers a tool for sample size recalculations using three different
conditional power approaches. It also offers a simulation tool for verifying the
model performance. Both EastSurv and EastAdapt are offered in addition to the
core East package under separate licenses for additional fees. ADDPLAN offers a
similar scope of procedures as East but its focus is more on adaptive trials rather
than the more traditional group sequential designs that are the core of East. STOPP
offers the same design tools as East except that its survival methodology is based on
methods which do not assume proportional hazards and do not rely on simulations.
As discussed above, there are at least two commercially available software packages
that offer a wide variety of group sequential and adaptive designs. However, as
Wassmer and Vandemeulebroecke (2006) commented in their review of existing
packages, “further developments of packages or add-on modules that include, e.g.,
the planning, simulation and analysis of adaptive seamless designs are mandatory
when the rapid development in this area is taken into account.”



Chapter 2
Nonlinear Regression, Experimental Design,
and Phase I Clinical Trials

In typical Phase I studies in the development of relatively benign drugs, the drug is
initiated at low doses and subsequently escalated to show safety at a level where
some positive response occurs, and healthy volunteers are often used as study
subjects. In Sect. 2.2 we describe some basic pharmacologic principles and models
underlying dose determination. These models are typically nonlinear in certain
parameters and therefore nonlinear regression models are used. Section 2.1 gives an
introduction to nonlinear regression and also describes in this connection nonlinear
mixed effects models (NONMEMs), which play a central role in population
pharmacokinetics and pharmacodynamics in Sect. 2.2. In connection with Phase I
studies, Sect. 2.3 gives an overview of the theory of optimal experimental design.
The design and analysis of Phase I studies are described in Sect. 2.4.

This paradigm in Sect. 2.4 does not work for diseases like cancer, for which
a non-negligible probability of severe toxic reaction has to be accepted to give
the patient some chance of a favorable response to the treatment. Moreover, in
many such situations, the benefits of a new therapy may not be known for a
long time after enrollment, but toxicities manifest themselves in a relatively short
time period. Therefore, patients (rather than healthy volunteers) are used as study
subjects, and given the hoped-for (rather than observed) benefit for them, one aims
at an acceptable level of toxic response in determining the dose. The objective of
Phase I cancer trials is to find a maximum tolerated dose (MTD) with the ethical
constraint of protecting the study subjects from toxicities in excess of what they
can tolerate. To address this constraint, 3+ 3 designs are often used and they are
described in Sect. 2.5.1. However, simulation studies by O’Quigley et al. (1990)
showed the performance of these designs to be “dismal,” for which they provided
the following explanation: “Not only do (these designs) not make efficient use of
accumulated data, they make use of no such data at all, beyond say the previous
three, or sometimes six, responses.” They proposed an alternative design, called
the continual reassessment method (CRM), which uses parametric modeling of
the dose–response relationship and a Bayesian approach to estimate the MTD, or
more generally the dose level x such that the probability F(x) of a toxic event is

J. Bartroff et al., Sequential Experimentation in Clinical Trials,
Springer Series in Statistics 298, DOI 10.1007/978-1-4614-6114-2 2,
© Springer Science+Business Media New York 2013
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p (1/3 in the case of MTD). Section 2.5.2 describes the CRM and other model-
based designs. However, because of the ethical demands for treating patients in the
study at safe doses even though they may not be effective, 3+3 designs and their
variants are still widely used despite their inadequacy in generating dose-toxicity
information for the posttrial estimate of the MTD, for which the model-based
designs are more efficient. Bartroff and Lai (2010) have provided a mathematical
representation of this dilemma between safe treatment of current patients in the
dose-finding cancer trial and efficient experimentation to gather information about
the MTD for future patients. The next chapter will describe their formulation of a
stochastic optimization problem that addresses this dilemma and summarize their
solution of the problem, leading to a class of hybrid designs.

2.1 Nonlinear Regression Models

2.1.1 Nonlinear Least Squares

As in linear regression models, the method of least squares is commonly used to
estimate the unknown parameter vector θθθ in the nonlinear regression model

y j = fθθθ (xxx j)+ ε j, j = 1, . . . ,n, (2.1)

in which fθθθ (·) is a given nonlinear function of θθθ and ε j are unobservable
independent random errors with zero means and

(a) var(ε j) = σ2 (constant variance error models), or
(b) var(ε j) = f 2

θθθ (xxx j)σ2 (constant coefficient of variation error models), or
(c) var(ε j) = fθθθ (xxx j)σ2 (Poisson-type error models).

We can estimate θθθ by generalized least squares (GLS), that is, by minimizing

S(θθθ) =
n

∑
j=1

wj[y j − fθθθ (xxx j)]
2, (2.2)

where the weights are inversely proportional to var(ε j).
To compute the minimizer θ̂θθ of (2.2), we write fθθθ (xxx j) = f (θθθ ,xxx j), initialize with

θ̂θθ (0) and approximate f (θθθ ,xxx j) after the kth iteration, which yields θ̂θθ (k), by

f (θθθ ,xxx j)≈ f
(
θ̂θθ (k),xxx j

)
+
(
θθθ − θ̂θθ (k)

)T
∇f
(
θ̂θθ (k),xxx j

)
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so that (2.1) can be approximated by the linear regression model

y j − f
(
θ̂θθ
(k)
,x j

)
=
(
θθθ − θ̂θθ (k)

)T
∇f
(
θ̂θθ
(k)
,x j

)
+ ε j. (2.3)

The GLS estimate θ̂θθ (k+1)
of θθθ in (2.3) is given explicitly, and the iterative scheme

is called the Gauss–Newton algorithm.

The Gauss increment δk+1 := θ̂θθ (k+1) − θ̂θθ (k) may produce an increase in S(θθθ)
when it is outside the region where the linear approximation holds. To ensure a

decrease in S(θθθ), use a step factor 0 < λ ≤ 1 so that S(θ̂θθ
(k)

+λδ (k)) < S(θθθ (k)). A
commonly used method is to start with λ = 1 and halve it until we have S(θθθ (k+1))<

S(θθθ (k)). A commonly used criterion for numerical convergence is the size of the
parameter increment relative to the parameter value. Another criterion is that the
relative change in S(θθθ) be small. A third criterion is that Y − η(θθθ (k)) be nearly
orthogonal to the tangent space of η(θθθ ) := ( f (θθθ ,xxx1), . . . , f (θθθ ,xxxn))

T at θθθ (k). The
Gauss–Newton algorithm is aborted at the kth step when one gets a singular (or
nearly singular) coefficient matrix in the linear equation defining GLS. It may also
stop after reaching a prescribed upper bound on the number of iterations without
convergence. When one does not get an answer from the Gauss–Newton algorithm,
one should choose another starting value and repeat the algorithm.

2.1.2 Nonlinear Mixed Effects Models

As will be explained in the next section, two important pharmacologic models are
the poly-exponential model fθθθ (t)=∑K

k=1αke−λkt , with θθθ =(α1, . . . ,αk,λ1, . . . ,λk)
T

and t denoting time, and the Michaelis–Menten model fθθθ (u) = νu/(α + u), with
θθθ = (ν,α)T and u denoting drug concentration. A Phase I trial collects data from
I subjects, yielding (yi j,xi j), i = 1, . . . , I, j = 1, . . . ,ni. In the analysis of these data,
it is more flexible to allow subject-specific parameters θθθ i in (2.1). This leads to a
NONMEM of the form

yi j = fi(ti j ,θθθ i)+ εi j, θθθ i = ggg(xxxi,βββ)+ bbbi (1 ≤ j ≤ ni, 1 ≤ i ≤ I), (2.4)

in which θθθ i is a 1×r vector of the ith subject’s parameters whose regression function
on the subject’s observed covariate xxxi is given by ggg(xxxi,βββ ) with 1×s parameter vector
βββ , which is the “fixed effect” to be estimated. The “random effects” bbbi in (2.4) are
assumed to be independent and identically distributed, having common distribution
G with mean 0. The ith subject’s response yi j at ti j has mean fi(ti j,θθθ i), in which
fi is a known function and ti j may represent time or some covariate value (such
as drug concentration) at that time. Given θθθ i, the random errors εi j are assumed
to be normal with mean 0 and standard deviation σw(θθθ i), in which w is a given
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function and σ is an unknown parameter. The regression function ggg relates θθθ i

to the ith subject’s physiologic characteristics that constitute the covariate vector
xxxi in (2.4). The first equation of (2.4) is often called the individual measurement
model and the second equation the population structure model. The population
distribution G is usually assumed to be normal with mean 0 and covariance matrix
ΣΣΣ so that βββ , σ , ΣΣΣ can be estimated by maximum likelihood. However, unlike
linear mixed effects (LME) models in which the normal assumption on G yields
closed-form expressions of the likelihood, the normality of G in NONMEM leads
to computationally intensive likelihoods that involve I integrals. A commonly used
approach, as adopted in the software package NONMEM (Beal and Sheiner 1992)
or the nlme procedure in R, is to develop iterative schemes based on first-order
approximations of fi(ti j,ggg(xxxi,βββ )+ bbbi) in (2.4), so that the normal assumption on G
can be used to reduce the problem to that of a linear Gaussian mixed effects model
at each iterative step.

Unless otherwise stated, we shall assume throughout the sequel that the random
errors εi j in model (2.4) have common variance σ2 (so w(θθθ ) ≡ 1). The likelihood
function L(βββ ,σ ,ΣΣΣ ) is proportional to

|ΣΣΣ |−I/2
I

∏
i=1

∫
Rr
σ−ni exp

{
− 1

2σ2

ni

∑
j=1

[yi j − fi(ti j,ggg(xxxi,βββ )+ bbbi)]
2 − 1

2
bbbiΣΣΣ−1bbbT

i

}
dbbbi,

(2.5)

where |ΣΣΣ | denotes the determinant of ΣΣΣ . For the case of more general w(θθθ i),
simply replace σ in (2.5) by σw(ggg(xxxi,βββ)+bbbi). Computing the maximum likelihood
estimate of (βββ ,σ ,ΣΣΣ) via numerical integration and nonlinear optimization becomes
prohibitively difficult for large I. Letting ηηη = (σ ,ΣΣΣ), Lindstrom and Bates (1990)
proposed the following iterative procedure that involves successive linear approxi-
mations to fi(ti j,ggg(xxxi,βββ )+bbbi). At the mth iteration, the Lindstrom–Bates procedure
consists of a pseudo-data step and a LME step:

(a) The pseudo-data step
Given the current estimate η̂ηη(m) of ηηη , compute β̂ββ

(m)
= β̂ββ (η̂ηη(m)) and b̂bb

(m)
i =

b̂bbi(η̂ηη(m)), 1 ≤ i ≤ I, that jointly minimize

I

∑
i=1

{
(σ̂ (m))−2 Si(βββ ,bbb)+ bbbi

(
Σ̂ΣΣ (m)

)−1
bbbT

i

}
, (2.6)

where

Si(βββ ,bbb) =
ni

∑
j=1

[yi j − fi(ti j ,ggg(xxxi,βββ )+ bbb)]2 .

This can be carried out by modifying a standard nonlinear least squares routine;
see Sect. 6.1 of Lindstrom and Bates (1990). Define the s×ni, r×ni, and 1×ni

matrices
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XXX (m)
i =

(
∂ fi

∂βββ

(
ti j,ggg(xxxi,βββ )+ b̂bb

(m)
i

)∣∣∣∣
βββ=β̂ββ

(m)

)
1≤ j≤ni

,

ZZZ(m)
i =

(
∂ fi

∂bbbi

(
ti j,ggg

(
xxxi, β̂ββ

(m))
+ bbbi

)∣∣∣∣
bbbi=b̂bb

(m)
i

)
1≤ j≤ni

,

YYY (m)
i =

(
yi j − fi

(
ti j,ggg

(
xxxi, β̂ββ

(m))
+ b̂bb

(m)
i

))
1≤ j≤ni

+ β̂ββ
(m)

XXX (m)
i + b̂bb

(m)
i ZZZ(m)

i .

(b) The LME step
Linear approximation to fi(ti j ,ggg(xxxi,βββ ) + bbbi) around (β̂ββ

(m)
, b̂bb

(m)
i ) leads to the

LME model

YYY (m)
i = βββXXX (m)

i + bbbiZZZ
(m)
i +(εi1, . . . ,εini). (2.7)

The integrals in (2.5) for the likelihood function of the LME model (2.7)
(instead of (2.4)) have closed-form expressions, yielding maximum likelihood
estimates of the form

β̂ββ =

(
I

∑
i=1

YYY (m)
i VVV−1

i,m XXX (m)T
i

)(
I

∑
i=1

XXX (m)
i VVV−1

i,m XXX (m)T
i

)−1

, (2.8)

where VVV i,m = ZZZ(m)T
i Σ̂ΣΣZZZ(m)

i + σ̂2IIIni and η̂ηη =(σ̂ , Σ̂ΣΣ) is computed via the Newton–
Raphson algorithm to maximize the likelihood.

Wolfinger (1993) derives the above pseudo-data step by using Laplace’s approx-
imation arguments. Vonesh (1996) directly approximates the integrals in (2.5) with
σ ,βββ ,ΣΣΣ fixed, by using Laplace’s asymptotic formula

∫
Rr

e�i(bbb) dbbb ∼ (2π)r/2
{

det
(
−�̈i(b̂bbi)

)}−1/2
e�i(b̂bbi), (2.9)

where b̂bbi is the maximizer of �i(bbb) and �̈i is the Hessian matrix of second partial
derivatives of �i with respect to the components of bbb. Noting that Laplace’s
approximation to an integral corresponds to adaptive Gaussian quadrature with one
quadrature point, Pinheiro and Bates (1995) use adaptive Gaussian quadrature with
q quadrature points to compute the integrals in (2.5). Lai and Shih (2003b) have
developed a hybrid method that uses (2.9) if the minimum eigenvalue λmin(−�̈i(b̂bbi))
exceeds a prescribed threshold and uses Monte Carlo simulations otherwise. Lai
et al. (2006b) introduce importance sampling to refine the Monte Carlo component
of the hybrid method. They also point out the importance of approximating the
likelihood function adequately with relative ease for selecting good predictive
models ggg(xxxi,βββ ).
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Since the normality assumption on G only provides numerically tractable
maximum likelihood estimates after various approximations, a natural alternative
is to try estimating G nonparametrically by a distribution with finite support, with
the number of support points depending on the sample size. However, even for the
simple case ni ≡ n and fi(ti j ,θθθ i) = θθθ i with known βββ and σ , it is difficult to estimate
G well since the optimal rate of convergence of the estimate to G is very slow when
G has a smooth density function, as pointed out by Fan (1991). Lai and Shih (2003a)
have developed a nonparametric maximum likelihood estimator (MLE) of G when
there are I′ ≤ I subjects whose θθθ i can be well estimated by the nonlinear least
squares estimator θ̃θθ i based on {(yi j, ti j) : 1 ≤ j ≤ ni}. Because of the low resolution
in estimating G nonparametrically, however, the nonparametric approach does not
yield a better estimate of f (·, ·) in the simulation study reported by Lai and Shih
(2003a) who consider the case of fi being all equal (to f ).

2.2 Pharmacokinetics and Pharmacodynamics

The nonlinear regression and NONMEM in the preceding section are basic sta-
tistical methods in pharmacology, which is the science dealing with interactions
between living systems and molecules, especially chemicals introduced from
outside the system. This broad definition includes clinical pharmacology (whose
objective is to prevent, diagnose, and treat diseases with drugs) and the pathogenesis
of diseases due to chemicals in the environment; see Katzung (1995). A drug is
defined as a small molecule that, when introduced into the body, alters the body’s
function. The component of a cell or organism that interacts with a drug and initiates
the chain of biochemical events leading to the drug’s therapeutic and toxic effects is
called a receptor. The receptor concept has become the central focus of investigation
of pharmacodynamics (PD), which is the study of drug effects and their mechanisms
of action. The relation between the dose of a drug and its clinically observed effects
can be quite complex. In carefully controlled in vitro systems, however, the relation
between the concentration of a drug at the site(s) of action and its effects can often
be described by relatively simple mathematical models. How a drug dose produces
its effects involves not only pharmacodynamics but also pharmacokinetics (PK).
The latter is concerned with the concentration–time curve that is associated with the
following “history” of a single administration of a drug:

(a) Absorption phase of the drug into the body: Transfer of the drug from its site of
administration (via oral, or inhalational, or intravenous, or other route) into the
bloodstream.

(b) Distribution phase: Distribution of the drug to different compartments of the
body, including receptor-binding sites in the target tissue, and resulting in rapid
decline in plasma concentration.

(c) Elimination phase: Excretion of chemically unchanged drug or elimination
via metabolism that converts the drug into one or more metabolites (e.g., at
the liver).
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Drug administration can be divided into two phases, a PK phase in which
the kinetics of drug absorption, distribution, and elimination translate into drug
concentration–time relationships in the body, and a PD phase in which the drug
concentration at the site(s) of action leads to the response/effects produced. Knowl-
edge of both phases is important for the design of a dosage regimen to achieve the
therapeutic objective. Since both the desired response and toxicity of the drug are
functions of the drug concentration at the site(s) of action, the therapeutic objective
can be achieved only when the drug concentration lies within a “therapeutic
window,” outside which the therapy is either ineffective or has unacceptable toxicity.
Drug concentrations, however, can rarely be measured directly at the sites of
action and are typically measured at the plasma, which is a more accessible site.
An optimal dosage regimen can therefore be defined as one that maintains the
plasma concentration of a drug within the therapeutic window. This can be achieved
for many drugs by giving an initial dose to yield a plasma concentration within the
therapeutic window and then maintaining the concentration within this window by
periodic doses to replace the drug lost over time.

A basic goal of PD models is to describe and quantify the steady-state
relationship of drug concentration (C) at an effector site to the drug effect (E).
The simplest PD model for one drug is the so-called Emax model defined by
E = emaxC/(C+ c50), where emax is the maximum effect that the drug can produce
and c50 is the concentration that yields 50 % of emax. This equation is the same as
the Michaelis–Menten model in enzyme kinetics. A generalization to incorporate
the baseline effect e0 leads to

E = e0 + emaxC/(C+ c50). (2.10)

A convenient surrogate for the drug concentration at an effector site, which is
difficult to measure directly, is dose (D). In empirical studies, C and c50 in (2.10)
are replaced by D and ED50.

There is a large literature on PK models, which can roughly be classified as
“mechanistic” and “empirical”; see Rowland and Tozer (1989). In mechanistic
models, the body is viewed in terms of kinetic compartments between which
the drug distributes and from which elimination occurs. The kinetics is often
described by a linear system of ordinary differential equations, which have explicit
solutions involving exponential functions. On the other hand, the rate constants of
a compartmental model may be functions of the concentration of the drug itself
or another metabolite/interacting drug, leading to a system of nonlinear differential
equations that have to be solved numerically. Empirical PK models are typically
poly-exponential models of the form ∑αie−λit . One such model that is commonly
used is the one-compartment model

y j =
Dka

V (ka − ke)
(e−ket j − e−kat j )+ ε j, 1 ≤ j ≤ n, (2.11)

in which y j is the concentration at time t j after the administration of a single oral
dose D. Here V , ka, ke are the volume of distribution, absorption rate constant,



18 2 Nonlinear Regression, Experimental Design, and Phase I Clinical Trials

and elimination rate constant, respectively. Note that (2.11) has the form of a
bi-exponential model α1e−λ1t +α2e−λ2t with α1 =−α2.

So far we have considered estimation of the PK/PD parameters of a subject
from the data in a study on the subject. In many PK/PD studies, however, data
are collected from a number of subjects, some of whom may have intensive blood
sampling while others only have sparse data. A primary objective of these studies is
to study the PK/PD characteristics of the entire population, such as how they vary
with certain covariates. This requires embedding the individual parametric PK/PD
models in a population model. For example, the y j in (2.11) are now replaced by
yi j, where i denotes the subject number. Since the dose, volume of distribution,
absorption, and elimination rate constants may vary from subject to subject, we
also have to replace D,V,ka,ke,n by Di,Vi,kai,kei, and ni in (2.11). Let θθθ i be the
vector consisting of the logarithms of the PK parameters Vi,kai,kei. The unknown
θθθ i may vary with certain covariates, such as the subject’s age and body weight.
How can the individual subjects’ data be used to analyze such relationships for
the target population, of which the subjects can be regarded as a sample? The
NONMEM provides a valuable tool to address this problem. The subject’s data are
often too sparse to provide an adequate estimate θ̂θθ i of θθθ i so that h(θ̂θθ i) can be used
to estimate h(θθθ i). If βββ , σ , and G are known, then a natural estimate of h(θθθ i) in the
mixed effects model is the posterior mean Eβββ ,σ2,G[h(θθθ i) |subject i’s data]. Without

assuming βββ , σ2, and G to be known, the empirical Bayes approach replaces them
by their estimates β̂ββ , σ̂2, and Ĝ from the I studies so that h(θθθ i) is estimated by

ĥ(θθθ i) = Eβ̂ββ ,σ̂2,Ĝ[h(θθθ i) |subject i’s data].
Returning to the PD model (2.10), the variable C refers to concentration at an

effector site. It is usually impossible to measure C directly, so some surrogate for
C has to be used. On the other hand, if one has a kinetic model for C, then it can
be used to impute the value of C from the blood/urine measurements. Chapter 9
of Davidian and Giltinan (1995) illustrates how population PK/PD models can be
synthesized for such tasks.

2.3 Theory of Optimal Design

The conditions under which an experiment is performed affect the quality of
information arising from the experiment. Optimal design of experiments (or simply
optimal design) concerns how to choose these conditions, or “settings,” in order
to maximize the amount of information coming from an experiment and thus
optimize the quality of statistical inference that is possible. In the context of clinical
trials, these settings may be the treatment dose or dosing regimen, the treatment
type, or the characteristics of the patient who may be randomized into one of
multiple treatment groups. In what follows we give a brief introduction to the theory
emphasizing general concepts over technicalities; for a more complete mathematical
treatment, see Fedorov (1972) or Silvey (1980).
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2.3.1 Optimal Design Theory in Linear Regression Models

Consider a random variable Y ∼ p(y|xxx,θθθ ,σ) such that Var(Y |xxx,θθθ ,σ) = σ2 and

E(Y |xxx,θθθ ,σ) = θθθT xxx, (2.12)

where xxx=(x1, . . . ,xk)
T ∈X , the design space, is a vector of control variables which

may be chosen by the experimenter and θθθ = (θ1, . . . ,θk)
T and σ are unknown

parameters. The linear regression model Y ∼ N(θθθT xxx,σ2) will be referred to as
the normal case for which the linearity of (2.12) in θθθ greatly simplifies the
problem of choosing xxx in order to get the maximal information about θθθ out of Y .
Before proceeding to the problem, we make two remarks about the assumptions.
First, (2.12) can be extended to E(Y |xxx,θθθ ,σ) = θ1 f1(xxx) + · · ·+ θk fk(xxx), where
fff = ( f1, . . . , fk) and the fi are known functions. Replacing xxx by fff and the design
space X by fff (X ) reduces to the original problem. Second, the variance σ2 could
be replaced by σ2v(xxx) for any known function v because this case can again be
reduced to the original one with Ỹ = Y/

√
v(xxx) replacing Y .

Suppose we are planning to perform n independent experiments with input
variables xxx1, . . . ,xxxn which will result in the independent observations Y1, . . . ,Yn. The
least squares estimator θ̂θθ of θθθ , or equivalently the MLE in the normal case, has
covariance matrix

σ2

(
n

∑
i=1

xxxixxx
T
i

)−1

(2.13)

when the xxx1, . . . ,xxxn are such that∑n
i=1 xxxixxxT

i is invertible. Two key properties of (2.13)
are that it does not depend on θθθ , which is a direct result of the linear structure
of (2.12), and that it depends on σ but in a special way such that the minimizer of
any function of (2.13) does not depend on σ . If the desire is to make (2.13) “small”
in some sense, then this is equivalent to making the information matrix

MMM = MMM(xxx1, . . . ,xxxn) =
n

∑
i=1

xxxixxx
T
i (2.14)

“large.” Since MMM is a matrix, there are various criteria for judging MMM to be “large”
so that the optimal design problem is to find the xxx1, . . . ,xxxn that maximizeΨ(MMM), for
some real-valued functionΨ . Some popular choices forΨ include the following:

D-optimality: Under the normality assumption, the volume of the confidence
ellipsoid for θθθ is proportional to (detMMM)−1/2, and minimizing this is equivalent
to maximizingΨ(MMM) = logdet(MMM).

ccc-optimality: For a given k-vector ccc, the least squares estimate (or MLE in
the normal case) of the linear combination cccTθθθ is cccT θ̂θθ , which has variance
proportional to

cccT MMM−1ccc, (2.15)

hence,Ψ(MMM) =−cccT MMM−1ccc is the function to be maximized for this criterion.
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E-optimality: Closely related to ccc-optimality is the criterion which seeks to
minimize the maximum of (2.15) over all ccc in the k-dimensional unit sphere,
that is, to minimize

max
ccc:||ccc||=1

cccT MMM−1ccc.

Kiefer (1974) showed that this is equivalent to maximizing the minimum
eigenvalue of MMM, whichΨ is taken to be for this criterion.

Because of the discreteness of the problem of maximizingΨ(MMM) over all choices
for xxx1, . . . ,xxxn, standard numerical optimization techniques often have difficulty,
especially when n is large. Moreover, the value of n itself may not be well motivated
in the experimenter’s mind prior to the experiment. An elegant solution comes
with the identification of xxx1, . . . ,xxxn to a certain probability measure over the design
space X , that is, the discrete measure placing mass 1/n on each point xxx1, . . . ,xxxn,
and enlarging the search to include all such probability measures has led to the
approximate theory of linear optimal design (Kiefer 1974). Letting μ denote a
probability measure on X and

MMM(μ) = Eμ
(
x̃xxx̃xxT ) , (2.16)

where x̃xx denotes the random variable with distribution μ , the optimization problem
is equivalent to finding the measure μ that maximizes Ψ(MMM(μ)). Closed-form
analytic solutions are available in some cases, but in general, iterative algorithms
are necessary to find optimal designs; see Fedorov (1972, Sect. 2.10).

2.3.2 Elfving’s Method for c-Optimal Design

In order to give concrete examples we next focus on ccc-optimal designs because, in
low dimensions, optimal designs can often be found exactly by using an elegant
geometric method of Elfving (1952). Assume that a linear model (2.12) is given and
that the design space X ⊆ R

k is compact, that is, closed and bounded. For a given
vector ccc ∈ R

k, the problem is to find the measure μ on X maximizing

Ψ(MMM(μ)) =−cccT MMM(μ)−1ccc

(or equivalently, minimizing cccT MMM(μ)−1ccc), where MMM(μ) is given by (2.16). It
follows from the facts that Ψ is a concave function (of matrices), the space of all
matrices MMM(μ) is convex, and Carathéodory’s theorem (see Silvey 1980, p. 72) that a
maximizer ofΨ(MMM(μ)) can be found among the measures μ with at most k support
points, that is, μ of the form

μ =
k

∑
i=1

piδxxxi , where ∑
i=1

pi = 1, xxxi ∈ X and pi ≥ 0 for all i = 1, . . . ,k, (2.17)
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in which δxxx is the degenerate measure putting mass 1 at xxx. Therefore, we can restrict
our search for a maximizer ofΨ(MMM(μ)) to probability measures of the form (2.17).

Elfving’s (1952) method for finding this discrete measure is the following. Let
X − = {−xxx : xxx ∈ X } denote the reflection of X through the origin, and let S
denote the convex hull of X ∪X−, that is, S is the collection of all points of the
form∑k

i=1 pizzzi, where∑k
i=1 pi = 1, pi ≥ 0 and zzzi ∈ X ∪X− for all i = 1, . . . ,k. Extend

a ray from the origin through the point ccc and let sss∗ ∈ S be the point where this ray
pierces the boundary of S . By the definition of S , sss∗ can be written as

sss∗ =
k

∑
i=1

±pixxxi

for some choice of signs, where the pi and xxxi satisfy the conditions in (2.17). Then
the design measure ∑k

i=1 piδxxxi is ccc-optimal, that is, the design that places weight pi

at point xxxi, i = 1, . . . ,k; see Chernoff (1972) for a sketch of the proof.

Example 2.1. Suppose that independent responses Yi to a drug with dose xi ∈ [0,a]
(a > 0 the known “maximum dose”) are given by

Yi = αxi +βx2
i + εi, i = 1, . . . ,n,

where the εi are i.i.d. N(0,σ2) random variables. This model fits into the form (2.12)
by taking xxx = (x,x2)T , θθθ = (α,β )T , and k = 2. Not worrying for the moment about
what value of n to use, suppose that the ultimate objective of the n measurements
to be taken is to estimate optimally the mean response at some critical dose x0,
0< x0 ≤ a. Thus, it is appropriate to consider the ccc-optimal design with ccc=(x0,x2

0)
T

for optimal estimation of the mean responseαx0+βx2
0 = cccTθθθ at dose x0. The design

space

X = {(x,x2) ∈ R
2 : 0 ≤ x ≤ a},

as well as X −, are truncated parabolas. Let γ =
√

2− 1 = .4142136 . . . .

Case 1. If 0 < x0 ≤ γa, then the ray in direction (x0,x2
0) pierces S at the point

(
a2γ(1− γ)

a(γ2 + 1)− x0(γ+ 1)
, x0 · a2γ(1− γ)

a(γ2 + 1)− x0(γ+ 1)

)
. (2.18)

Setting (2.18) equal to

p(γa,γ2a2)+ (1− p)(−a,−a2)

and solving for p gives
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p =
1− x0(γ+ 1)+ aγ

(γ+ 1)[a(γ2 + 1)− x0(γ+ 1)]
. (2.19)

Thus, the ccc-optimal design is μ = pδ(γa,γ2a2)+(1− p)δ−(a,a2) which, in other words,
puts the fraction p of observations at dose x = γa and the remaining fraction 1− p
at dose x = a. Note that the design may not be implementable in practice, since
np, with p given by (2.19), may not be an integer. This is a consequence of using
the optimal design formulation that uses a probability measure rather than a discrete
collection of n design points to represent a design. In practice, if np is not an integer,
then choose the closest integer.

Case 2. If γa ≤ x0 ≤ a, then the ray in direction (x0,x2
0) pierces S precisely at

(x0,x2
0); hence, the ccc-optimal design is simply δ(x0,x2

0)
, that is, the design that puts

all measurements at dose x = x0.

2.3.3 Extension to Nonlinear Models

A key feature of the linear design theory in the previous section is that the
information matrix (2.14) does not depend on θθθ . In this section we consider the
more general case where

Y ∼ p(y|xxx,θθθ ) and E(Y |xxx,θθθ ) = η(θθθ ,xxx) (2.20)

for some function η , where we have absorbed the parameter σ of the previous
section into θθθ for notational simplicity since the distinction between parameters of
interest and nuisance parameters does not matter in the nonlinear case. To generalize
the notion of information matrix used above, we note that (2.13) is the inverse of the
Fisher information matrix of independent observations Y1, . . . ,Yn, and therefore it is
natural to define MMM(μ) = MMM(μ ,θθθ ) in the nonlinear case as the Fisher information
of the design μ

MMM(μ ,θθθ ) =
∫

X
E

[
−∂

2 p(Y |xxx,θθθ )
∂θi∂θ j

]
dμ(xxx), (2.21)

where the expectation in (2.21) is taken over Y . As the notation suggests, the
information matrix MMM(μ ,θθθ ) depends on θθθ in general. The problem of optimal
design now becomes more difficult as the optimal design for inference about θθθ
now depends on θθθ itself. Application of linear optimal design theory leads to
locally optimal designs, that is, designs that are optimal for a given value of θθθ .
A globally optimal design for nonlinear models has to proceed in a sequential
fashion, computing a locally optimal design at the current estimate of θθθ to obtain a
new measurement or measurements, and then updating the estimate and repeating
the process until the criterion function or sequence of estimates is judged to
converge; see Fedorov (1972, Sect. 4.4). Here, the role of prior information about
θθθ is important, particularly for beginning the sequential process. If there is prior
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information about the true value of θθθ , then the sequential process can begin at that
value. Such information may be present if the current experiment is a continuation
of a previous experiment or if theoretical knowledge about the current or similar
settings is available, and in either of these situations, the prior information may be
encoded in a prior distribution on θθθ in the Bayesian sense, from which an estimate
of the true value of θθθ can be obtained. In the absence of such prior information,
“preliminary” observations should be performed using some nondegenerate design
so that an estimate of θθθ can be obtained from them, and then the sequential
procedure described above can begin.

Closely related to this sequential approach is the Bayesian approach which puts
a prior distribution Π on θθθ and maximizes

∫
Ψ(MMM(μ ,θθθ ))dΠ(θθθ ) (2.22)

rather than simply Ψ (MMM(μ , θ̂θθ )), where θ̂θθ is the current estimate of θθθ . In order to
produce Bayesian designs for clinical trials that control the chance of overdosing,
Haines et al. (2003) propose to modify the Bayesian criterion (2.22) by including
a penalty for high doses. That is, for scalar doses x and an unknown target dose
x∗ with prior distribution ρ induced by Π , the problem becomes to find the design
measure μ maximizing (2.22) subject to the constraint

Pμ,ρ(x ≥ x∗) =
∫

X
ρ({x∗ : x ≥ x∗})dμ(x)≤ ε,

for some small chosen value of ε > 0. For clinical trials in which patients are
assigned doses sequentially, Haines et al. (2003) further extend their method by
adding a sequential aspect by replacing the Bayesian information (2.22) by the
sequential analog at the (k + 1)st stage, given by finding the (k + 1)st dose xk+1

maximizing

∫
Ψ({kM(μk,θθθ )+M(δxk+1 ,θθθ)}/(k+ 1))dΠk(θθθ) subject to

Pρk(xk+1 ≥ x∗) = ρk({x∗ : xk+1 ≥ x∗})≤ ε,

where μk is the empirical measure of the first k doses, δx is the degenerate measure
at x, and Πk and ρk are the posterior distributions based on the first k doses and
responses.

2.4 Phase I Clinical Trials for Relatively Benign Drugs

The primary objective of a Phase I clinical trial is to determine the dose and dosing
regimen of a new drug and to collect information about drug-related side effects.
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The secondary objective is to use the data collected to evaluate the effectiveness of
the treatment. Before the Phase I trial, preclinical in vitro and animal studies are
conducted to evaluate toxicity and the pharmacologic actions of the drug, thereby
coming up with estimates of a good starting dose for Phase I trials with human
subjects. Because of safety considerations for subjects in the trial, the drug is usually
initiated at a low, safe dose and sequentially escalated to show safety at a level where
some therapeutic response occurs. As noted in Sect. 2.2, the PK/PD models are
nonlinear, and nonlinear design theory described in Sect. 2.3.3 is particularly suited
for efficient estimation of the model parameters. On the other hand, the ultimate
goal is not just estimation of these parameters per se, but to find a dose within
the therapeutic window. For relatively benign drugs, Phase I trials involve healthy
volunteers from whom intensive blood sampling is conducted over time. The next
section describes a different paradigm for Phase I trials of cytotoxic treatments in
cancer.

Although intersubject variability is seldom considered at the design stage of
Phase I trials, such variability should be examined in the analysis of the data.
Thus, while a nonlinear regression model of the type (2.1) with the same θθθ for
all subjects is assumed at the design stage, nonlinear mixed models of the type (2.4)
with subject-specific θθθ i can be used to analyze the data. An example is given by
Lai et al. (2006b), in which an orally administered cancer drug, temozolomide, was
given to 65 adult patients with advanced cancer in four Phase I trials sponsored
by the Schering–Plough Research Institute. Once such trial for treating patients
who had advanced cancer that was refractory to standard forms of therapy was
reported by Newlands et al. (1992). Each of these 65 patients had 10–15 drug
concentration measurements from 10 min to 16 h after a single dose, and a total
of 756 concentration measurements were collected. These concentrations were
modeled by the one-compartment open model (2.11) to identify the influence of
patient characteristics on the PK; the patient covariates forming the vector xxxi in the
analysis were body surface area, gender, age, and creatinine clearance.

2.5 Early Phase Clinical Trials for Cytotoxic Cancer
Treatments

2.5.1 Up-and-Down and Related Designs

Up-and-down designs are sequential (or cohort-by-cohort) designs for a discrete
dose set in which the “next” dose is always equal or adjacent (the next higher or
lower) to the current dose, hence the name “up-and-down.” The original idea is often
credited to Dixon and Mood (1948), but an earlier paper by Wilson and Worcester
(1943) proposed the idea for clinical uses. These designs have a wide range of
applications such as for bioassays, explosives testing, metallurgy, and educational
testing. In the dose-finding setting, they have the intuitive appeal of not making
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large jumps within the dose space. Most up-and-down designs are random walk
rules, sometimes called first-order Markov procedures, which choose the next dose
based only on the most recent dose and observation. Because of this simplicity, the
properties of random walk rules such as the limiting stationary distribution of the
dose allocation and its speed of convergence can be obtained exactly using random
walk theory.

Example 2.2. The biased coin design of Durham and Flournoy (1994) for estimat-
ing the pth quantile, 0 < p ≤ 1/2, of a response curve using available dose set

d1 < d2 < · · ·< dL (2.23)

utilizes a biased coin that lands heads with probability p/(1− p) and chooses the
(k+ 1)st dose xk+1 as follows: If the kth dose and observed toxicity are xk = d� and
yk ∈ {0,1}, respectively, then

xk+1 =

⎧⎪⎪⎨
⎪⎪⎩

d(�−1)∨1 if yk = 1,

d(�+1)∧L if yk = 0 and the coin lands heads,

d� if yk = 0 and the coin lands tails.

Durham and Flournoy (1994) show that, if F(d) := P(yk = 1|xk = d) is non-
increasing in d, the limiting distribution of the dose allocation of this up-and-down
rule is unimodal with mode essentially equal to the pth quantile of F(x).

To derive the limiting distribution and to understand up-and-down designs more
generally, describe an up-and-down design by its transition probabilities

p�,m = P(xk+1 = dm|xk = d�), �,m ∈ {1, . . . ,L},

which is the probability of stepping to the mth dose dm, given that the current dose
is d�. For random walk rules in which dose levels are never skipped, we will have
p�,m = 0 whenever |�−m|> 1 and hence

p�,�−1111{� > 1}+ p�,�+ p�,�+1111{� < L}= 1.

As a Markov chain, the random walk {xk} has a tri-diagonal transition probability
matrix PPP = {p�,m}L

�,m=1. Given any initial treatment distribution

(P(x1 = d1),P(x1 = d2), . . . ,P(x1 = dL))

and a PPP such that any dose level in (2.23) can be eventually reached from any other,
the limiting treatment distribution π� = limk→∞P(xk = d�), � = 1, . . . ,L, can be
found by solving L linear balance equations

π� = π�−1 p�−1,�111{� > 1}+π�p�,�+π�+1p�+1,�111{� < L}, �= 1, . . . ,L, (2.24)
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or equivalently, PPPTπππ = πππ , where πππ = (π1, . . . ,πL)
T . The unique solution is

π� ∝
L−1

∏
j=�

p j+1, j

p j, j+1
, �= 1, . . . ,L, (2.25)

with the convention∏L−1
j=L = 1, and the proportionality constant in (2.25) is

πL =

(
1+

L−1

∑
�=1

L−1

∏
j=�

p j+1, j

p j, j+1

)−1

. (2.26)

The form (2.25) of the solution can be used to find the mode of the limiting
distribution πππ since it implies that π� ≥ π�−1 if and only if p�−1,� ≥ p�,�−1. In
particular, for Durham and Flournoy’s (1994) biased coin design,

p�−1,� = [1−F(d�−1)]p/(1− p) and p�,�−1 = F(d�),

hence

π� ≥ π�−1 ⇐⇒ F(d�)
1−F(d�−1)

≤ p
1− p

,

which shows that this design’s limiting distribution has its mode at the discrete pth
quantile of F(x).

3+3 Designs

The widely used 3+3 design (see Korn et al. 1994) can be viewed as a truncated
mixture of two up-and-down designs. There are many variations on the 3+3 design,
but in its simplest form, the design begins at the lowest dose d1 and, treating patients
in cohorts of 3, escalates to the next highest dose level if 0 of 3 experiences toxicity,
stays at the same level if 1 of 3 experiences toxicity, and de-escalates or stops the
trial if at least 2 of 3 experience toxicity. As pointed out earlier by Storer (1989),
these designs are difficult to analyze since even a strict quantitative definition of
MTD is lacking, “although it should be taken to mean some percentile of a tolerance
distribution with respect to some objective definition of clinical toxicity,” and the
“implicitly intended” percentile seems to be the 33rd percentile (related to 2/6). In
particular, the 3+3 design tends to not have the reliable convergence properties of
random walk designs and has been widely criticized in dose-finding clinical trials,
such as Reiner et al. (1999) who conclude that its “risk of choosing the incorrect
level is large.”
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Stochastic Approximation

Another class of designs related to up-and-down designs consists of stochastic
approximation procedures (Lai and Robbins 1979; Robbins and Monro 1951), one
distinguishing feature being that dose selection under a stochastic approximation
procedure will typically converge to a point, whereas random walk up-and-down
design points converge to a distribution, as mentioned above. If F(x) = E(y|x)
is the mean of the outcome y = y(x) at level (e.g., dose) x, then the goal of
stochastic approximation is to produce a sequence {xn} of estimates converging
to the unique root x∗ of the equation F(x) = y∗, for given y∗. Robbins and Monro
(1951) introduced stochastic approximation procedures of the form

xn+1 = xn − (yn − y∗)
nb

for some constant b > 0 and established that xn → x∗ in probability under the as-
sumption supx E[y(x)2]< ∞. Moreover, if b < 2F ′(x∗), then

√
n(xn − x∗) converges

to the N(0,σ2/[b(2F ′(x∗)− b)]) distribution, where σ2 = limx→x∗ Var[y(x)], and
the choice of b is thus crucial to the performance of this stochastic approximation
procedure (Sacks 1958). Since the optimal choice of b depends on the unknown
slope F ′(x∗), Lai and Robbins (1979) proposed an adaptive stochastic approxima-
tion scheme in which b is replaced by an adaptively chosen sequence bn that is
strongly consistent for F ′(x∗). They also study the global cost

N

∑
n=1

(xn − x∗)2 (2.27)

of the stochastic approximation sequence {xn}N
1 and show that it is of order

σ2 logN as long as b < 2F ′(x∗). Although this suggests that adaptive stochastic
approximation may be a good choice to use in Phase I dose finding, its “out of the
box” application to finite dose spaces and logistic regression models has been less
than successful than model-based methods, since it is essentially nonparametric and
the sample sizes of Phase I studies are typically small. For example, Bartroff and Lai
(2010, 2011) have shown that myopic model-based methods perform considerably
better than stochastic approximation in terms of “global” cost functions like (2.27)
for N patients and that the performance can be further improved by utilizing
approximate dynamic programming techniques, as will be discussed further in
Sect. 3.8.
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2.5.2 Model-Based Designs

Even though 3+3 designs and their variants are widely used in Phase I cancer
trials, it has also been widely recognized as unsatisfactory on both ethical and
efficiency grounds because it results in mostly subtherapeutic doses and inadequate
information to estimate the MTD for a subsequent Phase II trial. To address this
difficulty, Eisenhauer et al. (2000) suggest to use (a) methods to determine more
informative starting doses, (b) pharmacokinetics-guided dose-escalation methods,
and (c) model-based methods for dose determination, which are discussed next.

In model-based methods, a patient’s response y to treatment at dose level x is
usually modeled by a binary random variable taking values 0 or 1, such that y = 1
indicates a DLT and whose distribution depends on x and an unknown vector θθθ of
parameters through the function

Fθθθ (x) = P(y = 1|dose = x).

We assume that Fθθθ (x) is an increasing function of x, approaching 0 as x → −∞
and 1 as x → ∞. In a sequential trial with n patients, we assume that y1, . . . ,yn are
independent, except possibly through the choice of the dose levels x1, . . . ,xn, since
xk+1 will typically be chosen as a function of the previous doses and responses
(x1,y1), . . . ,(xk,yk). As defined above, the MTD is then the pth quantile of Fθ , that
is, MTD = F−1

θ (p). Because of its prevalence in the literature and for simplicity,
here we take as our working model the two-parameter logistic regression model

Fθθθ (x) = 1
/(

1+ e−(α+β x)
)

(2.28)

where θθθ = (α,β ). For the two-parameter logistic model, MTD= [log(p/(1− p))−
α]/β . The methods that follow are not restricted to the model (2.28) and can be
applied to other models such as the probit, gamma, and hyperbolic tangent models
(see e.g., O’Quigley et al. 1990).

Noting that the nonparametric approach in stochastic approximation seems too
ambitious for moderate sample sizes, Wu (1985) proposed to use a parametric
modification of the stochastic approximation scheme in Sect. 2.5.1, taking xk+1 to be
the pth quantile of Fθ̂θθk

, where θ̂θθ k is the MLE of θ based on the doses and responses
of the first k patients. O’Quigley et al. (1990) proposed a similar design but from a
Bayesian point of view, called the CRM, that estimates the MTD at each stage by the
posterior mean of θθθ with respect to a chosen prior distribution. O’Quigley (2002)
extends CRM to allow early stopping through the use of a sequential stopping rule.

Babb et al. (1998) pointed out that the CRM dose, being the mean of the MTD’s
posterior distribution, can be viewed as the Bayesian design with respect to squared
error loss. That is, letting Fk denote the information set generated by the first k doses
and responses, that is, by (x1,y1), . . . ,(xk,yk), CRM chooses the (k+1)st dose xk+1

to be that minimizing E[h(xk+1)|Fk], for

h(x) = (x−MTD)2. (2.29)
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Babb et al. (1998) suggested that the symmetric nature of the squared error loss or its
close relative, the absolute error loss, may not be appropriate for modeling the toxic
response to a cancer treatment and proposed the “escalation with overdose control”
(EWOC) method, which is a Bayesian design with respect to the asymmetric loss
function

h(x) =

{
ω(MTD− x) if x ≤ MTD

(1−ω)(x−MTD) if x ≥ MTD
(2.30)

where the chosen constant 0 < ω < 1/2 is the so-called feasibility bound. Note
that this loss function penalizes an overdose x = MTD+ δ more than an underdose
x = MTD− δ of the same magnitude δ > 0. EWOC can be shown to be equivalent
to estimating the MTD at each stage by the ω th quantile of the posterior distribution
of the MTD. In the examples in Babb et al. (1998), ω is chosen to be slightly less
than p.

Whereas the step-up/down design in traditional Phase I cancer trials focuses
on the safety of patients in the study at the expense of being inefficient for the
posttrial estimate of the MTD, there has also been much work on c- and D-optimal
experimental designs for such estimation from binary responses. Haines et al. (2003)
proposed sequential Bayesian c- and D-optimal designs, subject to a prescribed
upper-bound ε on the probability of doses exceeding the MTD, as described in the
last paragraph of Sect. 2.3.3.

Despite their shortcomings and the development of alternative Bayesian ap-
proaches since 1990, conventional dose-escalation designs are still widely used
in Phase I cancer trials because of the ethical issue of safe treatment of patients
currently in the trial. However, a Phase I design also has the goal of determining the
MTD for a future Phase I cancer trial, and needs an informative experimental design
to meet this goal. Von Hoff and Turner (1991) have documented that the overall
response rates in Phase I trials are low and that substantial numbers of patients
are treated at doses that are retrospectively found to be nontherapeutic. Eisenhauer
et al. (2000, p. 685) have pointed out that “with a plethora of molecularly defined
antitumor targets and an increasingly clear description of tumor biology, there are
now more antitumor candidate therapies requiring Phase I study than ever” and
that “unless more efficient approaches are undertaken, Phase I trials may be a rate-
limiting step in the process of evaluation of novel anticancer agents.” The hybrid
designs of Bartroff and Lai (2010) that will be described in Sect. 3.8 were motivated
by developing one such “more efficient” approach.

2.6 Supplements and Problems

1. Asymptotic theory of nonlinear least squares and Levenberg–Marquardt
shrinkage.
Let θ̂θθ be the least squares estimate of θθθ in the nonlinear regression model (2.1).
Let θθθ 0 denote the true value of θθθ . Assuming wj ≡ 1 in (2.2), we have
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E[S(θθθ)] =
n

∑
t=1

[ f (θθθ ,xxxt)− f (θθθ0,xxxt)]
2 + nσ2, (2.31)

recalling that E(εt) = 0 and Var(εt) = σ2. Therefore,

E[S(θθθ)]− nσ2

{
= 0 if θθθ = θθθ 0

→ ∞ if θθθ �= θθθ 0

(2.32)

under the assumption

∞

∑
t=1

[ ft(θθθ )− ft(θθθ 0)]
2 = ∞ for θθθ �= θθθ 0, (2.33)

where ft(θθθ ) = f (θθθ ,xxxt). In the linear case ft(θθθ ) = θθθT xxxt , (2.33) is equivalent to
the convergence of (∑n

t=1 xxxtxxxT
t )

−1 to 000. Since θ̂θθ is the minimizer of S(θθθ), (2.32)
suggests that θ̂θθ is consistent. A rigorous proof involves considering S(θθθ) as a
random function of θθθ and requires additional assumptions.

Consistency of θ̂θθ leads easily to its asymptotic normality since we can
approximate ft(θ̂θθ ) by ft (θθθ 0)+(θ̂θθ−θθθ0)

T∇ ft (θθθ 0) when θ̂θθ is near θθθ 0, assuming
that ∇t f (θθθ ) is uniformly continuous in t and θθθ belonging to some neighbor-
hood of θθθ 0. The asymptotic properties of θ̂θθ are therefore the same as those of
ordinary least squares (OLS):

θ̂θθ ≈ N

⎛
⎝θθθ 0,σ2

(
n

∑
t=1

x̂xxt x̂xx
T
t

)−1
⎞
⎠ , (2.34)

where x̂xxt = ∇ ft (θ̂θθ). Moreover, σ2 can be consistently estimated by

σ̂2 =
n

∑
t=1

(
yt − ft

(
θ̂θθ
))2/

n. (2.35)

For smooth real-valued functions g(θθθ 0), we apply the Taylor expansion g(θ̂θθ)−
g(θθθ0)

.
= (∇g(θθθ0))

T (θ̂θθ−θθθ0) to approximate g(θ̂θθ)−g(θθθ 0) by a linear function,
providing the asymptotic normality of g(θ̂θθ) with mean g(θθθ0) and covariance
matrix

σ2 (∇g(θθθ 0))
T

(
n

∑
t=1

x̂xxt x̂xx
T
t

)−1

(∇g(θθθ0)) . (2.36)
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The square root of (2.36) also gives the estimated standard error for g(θ̂θθ)
if we replace the unknown σ and θθθ 0 in (2.36) by σ̂ and θ̂θθ . The adequacy
of this normal approximation to construct confidence intervals for g(θθθ0) is
questionable for highly nonlinear g, as the one-term Taylor expansion can be
quite poor. An alternative to the asymptotic approximations is the bootstrap
method, which uses Monte Carlo simulations to obtain standard errors and
confidence intervals.

The nonlinear least squares procedure is implemented by many numerical
software packages. The following are functions in R: nls.lm, nls. Since the

Gauss–Newton scheme is aborted whenever∑n
t=1 x̂xx(k)t x̂xx(k)Tt is singular or nearly

singular, where x̂xx(k)t =∇ ft(θ̂θθ
(k)
) and θ̂θθ (k) is defined in Sect. 2.1.1. It is desirable

to avoid such difficulties in matrix inversion. This has led to the modification
that replaces ∑n

t=1 x̂xx(k)t x̂xx(k)Tt by ∑n
t=1 x̂xx(k)t x̂xx(k)Tt +κDDD for the OLS estimate in the

kth iteration of the Gauss–Newton algorithm, corresponding to using shrinkage
as in ridge regression. Here DDD is a diagonal matrix whose diagonal elements are

the same as those of ∑n
t=1 x̂xx(k)t x̂xx(k)Tt , proposed by Marquardt as a refinement of

an earlier proposal DDD = III by Levenberg.
2. Generalized linear mixed models.

The NONMEM in Sect. 2.1.2 have their counterparts for generalized linear
models. These are called generalized linear mixed models (GLMM) and
were introduced by Breslow and Clayton (1993) for longitudinal data Yit

to enhance generalized linear models by allowing subject-specific regression
parameters bbbi, called “random effects,” thereby extending mixed effects models
in linear regression to GLMM. The GLMM assumes the yit to be conditionally
independent given the observed covariates xxxit and zzzit and such that yit has a
conditional density of the form

f (y|bbbi,zzzit ,xxxit) = exp{[yθit −ψ(θit)]/σ + c(y,σ)} , (2.37)

in which σ is a dispersion parameter and μit = dψ/dθ |θ=θit satisfies

μit = g−1
(
βββ T xxxit + bbbT

i zzzit

)
, (2.38)

where g−1 is the inverse of a monotone link function g, as in the standard
generalized linear models for which μit = g−1(βββT xxxit). The case g = dψ/dθ
is called the “canonical link,” The random effects bbbi can contain an intercept
term ai by augmenting the covariate vector to (1,zzzit) in case ai is not included
in bbbi; βββ is a vector of fixed effects and can likewise contain an intercept
term. The density function (2.37) with σ = 1 is that of an exponential family,
which includes the Bernoulli and normal distributions as special cases. Brelow
and Clayton assume the bbbi in (2.38) to have a common normal distribution
with mean 0 and covariance matrix ΣΣΣ that depends on an unknown parameter
vector ααα .
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The likelihood function of the GLMM defined by (2.37) and (2.38) is of the
form∏n

i=1 Li(σ ,ααα,βββ ), where

Li(σ ,ααα,βββ ) =
∫ { T

∏
t=1

f (yit ;θit ,σ)

}
φααα(bbb)dbbb, (2.39)

in which φααα denotes the normal density function with mean 0 and covariance
matrix depending on an unknown parameter ααα . Analogous to NONMEM
described in Sect. 2.1.2, there are three methods to compute the likelihood
function, the maximizer of which gives the MLE of σ , ααα , and βββ :

(a) Laplace’s approximation. Letting eli(bbb|σ ,ααα,βββ ) be the integrand in the right-
hand side of (2.39), Laplace’s asymptotic formula for integrals yields the
approximation

∫
eli(bbb|σ ,ααα,βββ )dbbb ≈

(2π)q/2
{

det
[
−l̈i
(

b̂bbi|σ ,ααα,βββ
)]}−1/2

exp
{

li
(

b̂bbi|σ ,ααα,βββ
)}

, (2.40)

where q is the dimension of bbbi, b̂bbi = b̂bbi(σ ,ααα ,βββ) is the maximizer of
li(bbb|σ ,ααα,βββ ) and l̈i denotes the Hessian matrix consisting of second partial
derivatives of li with respect to the components of bbb. The R package
lme4 computes the MLE by using the Laplace approximation (2.40) or the
restricted pseudo-likelihood approach proposed by Wolfinger and O’Connell
(1993), as the user-specified option.

(b) Gauss–Hermite quadrature. Laplace’s asymptotic formula (2.40) is de-
rived from the asymptotic approximation of li by a quadratic function
of bbb in a small neighborhood of b̂bbi as λmin(−l̈i(b̂bbi|σ ,ααα,βββ ) → ∞, where
λmin(·) denotes the minimum eigenvalue of a symmetric matrix. Therefore,
such formula may produce significant approximation error for Li if the
corresponding λmin(−l̈i(b̂bbi|σ ,ααα,βββ )) is not sufficiently large. One way to
reduce the possible approximation error is to compute Li by using an
adaptive Gauss–Hermite quadrature rule, as in Liu and Pierce (1994). The
software package SAS uses adaptive Gauss–Hermite quadrature in the
NLMIXED procedure to compute (2.39); the R package lmer() also uses
Gaussian quadrature to compute (2.39) but only for certain special cases of
the exponential family (2.37). The numerical integration procedures demand
a much higher computational effort and become computationally infeasible
when n or q is large. To circumvent the issue of high-dimensional numerical
integration, some authors propose putting prior distributions on the unknown
parameters and estimate them by the Markov chain Monte Carlo (MCMC)
method in a Bayesian way; see Berry et al. (2011) for logistic mixed models.
The performance of the MCMC method, however, depends on how the prior
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parameters are set as well as the convergence rate of the Markov chain to its
stationary distribution, which may not even exist. Yafune et al. (1998) use
direct Monte Carlo integration but point out that the computational time may
be too long to be of practical interest.

(c) Hybrid method. This is basically the same as the hybrid method for
NONMEM, as pointed out by Lai and Shih (2003b, Sect. 5).

3. Dose individualization and population PK/PD.
Several physiologic (e.g., maturation of organs in infants) and pathologic
(e.g., kidney failure, heart failure) processes require dosage adjustments in
individual patients to modify specific PK parameters. Two basic parameters in
this connection are clearance (a measure of the ability of the body to eliminate
the drug) and volume of distribution (a measure of the apparent space in the
body available to contain the drug). Drug clearance principles are similar to
clearance concepts in renal physiology, in which creatinine or urea clearance is
defined as the rate of elimination of the compound in the urine relative to the
plasma concentration. Thus, clearance CL of a drug is the rate of elimination
by all routes relative to the concentration C of the drug in a biologic fluid; it is
perhaps the most important PK parameter to be considered in defining a rational
drug dosage regimen. In most cases, the clinician would like to maintain steady-
state drug concentrations Css within a known therapeutic window. Steady state
will be achieved when the dosing rate (rate of active drug entering the systemic
circulation) equals the rate of drug elimination. Therefore,

Dosing rate = CL×Css.

The two major sites of drug elimination are the kidneys and the liver. Clearance
of unchanged drug in the urine represents renal clearance. Within the liver,
drug elimination occurs via biotransformation of the drug to one or more
metabolites, or excretion of unchanged drug into the bile, or both. When no
other organs are involved in elimination of the drug, CL = CLrenal +CLliver

since the liver and kidneys work in parallel. The volume of distribution (V ) is
defined as

V = Amount of drug in body/C,

where C is the concentration of the drug in blood or plasma, depending on
the fluid measured. It reflects the apparent space available in both the general
circulation and the tissue of distribution. It does not represent a real volume
but should be regarded as the size of the pool of blood fluids that would be
required if the drug were distributed equally throughout all parts of the body.
From mass balance and steady-state considerations,V is related to clearance via
CL = keV , where ke is the elimination rate constant. Note that both V and the
elimination rate ke appear in the one-compartment open model (2.11). Allowing
these parameters and the absorption rate ka in (2.11) to be subject-specific leads
to a NONMEM that is used in the second paragraph of Sect. 2.4.
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Dose individualization is a major practical goal of population PK. Since the
efficacy and toxicity of a drug are directly related to drug concentrations at a
target site, which are generally not available but for which blood concentrations
are often good surrogates, criteria for determining the dose and dosing regimen
for a specific subject often involve functions of the subject’s concentrations
or functions of the subject’s parameter vector θθθ = g(xxx,βββ ) + bbb in (2.4). The
subject’s blood samples are often too sparse to provide an adequate estimate
of θθθ . The empirical Bayes approach considered by Lai et al. (2006b) borrows
information from healthy volunteers in Phase I studies who have undergone in-
tensive blood sampling and also from clinical patients for whom intensive blood
sampling is not feasible. Combining an individual patient’s characteristics (as
measured by xxx) and sparse concentration data with a large database from other
subjects is one of the main motivations for building population PK models.
Making use of the hybrid method, the last two paragraphs of Sect. 2.2 discuss
how empirical Bayes estimates of h(θ ) can be computed from (a) the patient’s
data and (b) the population model fitted from other subjects’ data.

An emerging trend in cancer therapeutics is to use biomarkers to personalize
the treatment and treatment strategy for cancer patients; see Lai et al. (2012b).
Personalization (or individualization) of treatments again falls in the domain of
nonlinear/generalized LME models. Biomarker-guided personalized therapies
for cancer require innovations in design and analysis of early phase and Phase
III confirmatory clinical trials and may eventually lead to major breakthroughs
in the methodology.

4. In the model Y = α + βx+ ε , where ε ∼ N(0,σ2) and −1 ≤ x ≤ 1, sketch
the convex hull S and use Elfving’s method to find the optimal design for
estimating (a) the slope β and (b) the mean response α + βx0 at x = x0, for
arbitrary −1 ≤ x0 ≤ 1.

5. In the setting of the example in Sect. 2.3.2, fix a value of a > 0 and compute the
value of

cccT MMM(μ̃)−1ccc
cccT MMM(μ∗)−1ccc

for x0 = i ·a/5, i = 1, . . . ,5,

where μ̃ is the design putting weight 1/3 at each of the points x = 0,a/2, and
a, and μ∗ is the ccc-optimal design found in the example.

6. Verify (2.18) and (2.19), and show that p given by (2.19) is in [0,1] for arbitrary
a > 0 and all 0 < x0 ≤ γa.

7. In the example in Sect. 2.3.2, find the ccc-optimal design if x0 is allowed to exceed
a.

8. Find the Fisher information matrix

E

[
−∂

2 p(Y |xxx,θθθ )
∂θi∂θ j

]

for the logistic regression model
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P(Y = 1|xxx,θθθ ) = 1/(1+ e−(α+β x)), P(Y = 0|xxx,θθθ ) = 1−P(Y = 1|xxx,θθθ ),

where xxx = (1,x)T and θθθ = (α,β )T .
9. Making use of the asymptotic theory of nonlinear least squares described

in (2.34) and (2.36), explain how optimal linear design theory can be used to
construct locally optimal designs in nonlinear regression models.

10. Discrete dose levels in Phase I cancer trials.
As pointed out in Sect. 2.5, because of the traditional practice of using up-and-
down designs in Phase I cancer trials, the dose levels in dose-finding studies of
cancer drugs are usually chosen before the trial as a finite set Λ = {λ1, . . . ,λd}
of possible doses, where λ1 < λ2 < · · · < λd , unlike the continuous doses we
have assumed in Sect. 2.5.2. In this case the MTD has to be redefined as

η =

{
max{λ ∈Λ : Fθθθ (λ )≤ p} if Fθθθ (λi)≤ p for some i,

λ1 otherwise.
(2.41)

In many dose-finding trials, the number of discrete dose levels is relatively
small, so one can use more robust order-restricted models of toxicity versus
dose than the logistic regression model (2.28). Yin and Yuan (2009) have
proposed a Bayesian model averaging design based on the monotone dose–
toxicity relationship.



Chapter 3
Sequential Testing Theory and Stochastic
Optimization Over Time

The first seven sections of this chapter give an overview of the theory of fully
sequential tests, starting with simple hypotheses involving likelihood ratio statistics
and then extending the theory to composite hypotheses via generalized likelihood
ratio (GLR) statistics. This theory is of particular relevance to Sect. 5.2 on vaccine
clinical trials. The theory is modified in Sect. 3.5 for group sequential designs and
later for adaptive designs in Sect. 8.2.3. The classic result of Wald and Wolfowitz
on the optimality of the sequential probability ratio test is derived in Sect. 3.6 by
using dynamic programming that is also introduced in that section for general
stochastic optimization over time. Dynamic programming is often difficult to
implement directly for nonlinear models and approximate dynamic programming
(ADP) methods have been developed to overcome the computational and analytical
difficulties. Section 3.8 introduces approximate programming and applies it to
resolve the treatment versus experimentation dilemma in Phase I cancer trials.

3.1 Likelihood Ratio Statistics and Likelihood Ratio Identity

Let X1,X2, . . . be observations drawn from a probability measure under which g1

is the marginal density of X1 and for i ≥ 2, the conditional distribution of Xi given
X1, . . . ,Xi−1 has density function gi(·|X1, . . . ,Xi−1) with respect to some measure νi.
To test a simple null hypothesis H0 : gi = pi versus a simple alternative hypothesis
H1 : gi = qi, the likelihood ratio test based on a sample X1, . . . ,Xn of fixed size n
rejects H0 if

Ln =
n

∏
i=1

{qi(Xi|X1, . . . ,Xi−1)/pi(Xi|X1, . . . ,Xi−1)} (3.1)

J. Bartroff et al., Sequential Experimentation in Clinical Trials,
Springer Series in Statistics 298, DOI 10.1007/978-1-4614-6114-2 3,
© Springer Science+Business Media New York 2013

37



38 3 Sequential Testing Theory and Stochastic Optimization Over Time

exceeds the threshold c for which the type I error probability P0{Ln ≥ c} is equal
to some prescribed level α . The Neyman–Pearson lemma says that among all
tests whose type I error probabilities do not exceed α , the likelihood ratio test is
most powerful in the sense that it maximizes the probability of rejecting the null
hypothesis under the alternative hypothesis. One can also control the type II error
probability (or 1−power) of the likelihood ratio test by choosing the sample size n
appropriately. Instead of using a fixed sample size n, an alternative approach is to
continue sampling until Ln shows enough evidence against H0 or H1. In the case of
i.i.d. Xt , this is the idea behind Wald’s SPRT in Sect. 1.2.

The likelihood ratio statistics in (3.1) are closely related to change of measures;
in fact, (3.1) is the likelihood ratio (Radon–Nikodym derivative) of the measure Q
(with conditional densities qi) relative to the measure P (with conditional densities
pi). The optimality of the likelihood ratio test (Neyman–Pearson lemma) is a
consequence of this change of measures. Regarding a test of H0 versus H1 as a
function ϕ from the sample space X into [0,1] (i.e., ϕ(X1, . . . ,Xn) is the probability
of rejecting H0), the likelihood ratio test ϕ∗ can be characterized by ϕ∗ = 1 if Ln > c
and ϕ∗ = 0 if Ln < c. Since (ϕ∗−ϕ)(Ln − c)≥ 0, E0{(ϕ∗−ϕ)Ln} ≥ cE0(ϕ∗ −ϕ).
Changing the measures from P1 to P0 then yields

E1(ϕ∗ −ϕ) = E0 {(ϕ∗ −ϕ)Ln} ≥ cE0(ϕ∗ −ϕ), (3.2)

in which the equality is a special case of Wald’s likelihood ratio identity described
below. From (3.2), it follows that if the type I error of ϕ does not exceed that of ϕ∗
(i.e., E0ϕ ≤ E0ϕ∗), then E1ϕ∗ ≥ E1ϕ , proving the Neyman–Pearson lemma.

Wald (1945) extended the preceding argument involving change of measures to a
likelihood ratio identity, which can be stated generally as follows. A stopping time
T is a positive integer-valued random variable such that the event {T = n} depends
on the observations X1, . . . ,Xn up to time n. Let F be an event that depends on the
observations X1, . . . ,XT up to a stopping time T . The likelihood ratio identity states
that

Q(F ∩{T < ∞}) = EP
{

LT IF∩{T<∞}
}
,

P(F ∩{T < ∞}) = EQ
{

L−1
T IF∩{T<∞}

}
.

(3.3)

Not only does (3.3) provide a powerful tool to analyze error probabilities in
sequential analysis but it also plays a basic role for importance sampling in Monte
Carlo computation of the probabilities of rare events under the measure P. Direct
Monte Carlo may fail to generate the event after many simulation runs, but changing
the measure to Q can generate the event in a manageable number of simulations.

3.2 Wald’s SPRT and Its Error Probabilities

In the first paragraph of Sect. 1.2, we have described Wald’s SPRT which was
introduced by Wald to test a simple null hypothesis versus a simple alternative
hypothesis based on i.i.d. observations. Like the Neyman–Pearson test, the SPRT
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also uses likelihood ratio statistics. But instead of using a fixed sample size as in
the Neyman–Pearson test, the SPRT uses a stopping rule N given by (1.1), in which
the stopping boundaries A and B for the likelihood ratio statistics depend on the type
I and type II error probabilities α and β . Wald (1945) developed simple formulas
for α and β in terms of A and B, from which he could solve for A and B when α
and β are given. These formulas are corollaries of the likelihood ratio identity and
therefore apply to more general settings than the i.i.d. case considered in (1.1). In
fact, we can generalize (1.1) to N = inf{n ≥ 1 : Ln /∈ (A,B)}, in which Ln is defined
by (3.1) for general, not necessarily independent Xi. In this general framework, if
Pi(N < ∞) = 1 for i = 0,1, then (3.3) yields

P0{LN ≥ B} ≤ B−1P1{LN ≥ B}, P1{LN ≤ A} ≤ AP0{LN ≤ A}, (3.4)

and ≤ can be replaced by = in (3.4) if LN has to fall on either boundary exactly
(i.e., there is no “overshoot”). Ignoring overshoots, (3.4) treated as the approximate
equalities can be used to solve for the error probabilities α = P0{LN ≥ B} and β =
P1{LN ≤ A}:

α ≈ 1−A
B−A

, β ≈ A

(
B− 1
B−A

)
. (3.5)

Writing (3.5) as equations of (A,B) in terms of α and β yields the explicit solutions
for the stopping boundaries:

A ≈ β
1−α , B ≈ 1−β

α
. (3.6)

3.3 Wald’s Equation and Lower Bounds of Wald
and Hoeffding

Besides the likelihood ratio identity, another tool developed by Wald to analyze the
SPRT is Wald’s equation

E

(
T

∑
i=1

Xi

)
= μET, (3.7)

in which X1,X2, . . . , are i.i.d. random variables with mean μ and T is a stopping
time such that ET < ∞ in the case μ = 0. To prove (3.7), note that

E

(
T

∑
i=1

Xi

)
= E

(
∞

∑
i=1

XiI{T≥i}

)
=

∞

∑
i=1

(EXi)P(T ≥ i),

since Xi is independent of {T < i} that only involves X1, . . . ,Xi−1. From this and
μ = EXi, (3.7) follows.



40 3 Sequential Testing Theory and Stochastic Optimization Over Time

Let T be the stopping rule of a test of H0 versus H1 with error probabilities α,β ,
and let δ denote its terminal decision rule (δ = j if Hj is accepted, j = 0,1). Wald’s
likelihood ratio identity yields

α = P0(δ = 1) = E1
{

L−1
T I(δ = 1)

}
= E1{e− logLT |δ = 1}P1(δ = 1)

≥ exp{−E1(logLT |δ = 1)}P1(δ = 1)

= exp
{−E1 [(logLT )I(δ = 1)]

/
(1−β )}(1−β ),

in which ≥ follows from Jensen’s inequality. Therefore,

−E1 [(logLT )I(δ = 1)]≤ (1−β ) log(α/(1−β )) .

A similar argument also gives −E1[(logLT )I(δ = 0)]≤ β log((1−α)/β ). Adding
the two inequalities then yields

(1−β ) log
α

1−β +β log
1−α
β

≥−E1(logLT ) =−E1

(
T

∑
t=1

log
f1(Xt)

f0(Xt)

)
=−μ1E1T,

by Wald’s equation (assuming that E1T < ∞), where μi = Ei[log( f1(X1)/ f0(X1))].
This yields lower bound for E1(T ), and a similar argument can be used to prove that
for E0(T ), that is,

E1(T )≥ μ−1
1

{
(1−β ) log

(
1−β
α

)
+β log

(
β

1−α
)}

,

E0(T )≥ (−μ0)
−1
{
(1−α) log

(
1−α
β

)
+α log

(
α

1−β
)}

,

(3.8)

noting that μ1 > 0 > μ0 under the assumption Pi{ f1(X1) �= f0(X1)}> 0 for i = 0,1.
Since the right-hand sides of (3.8) are Wald’s approximations, ignoring overshoots,
to E1(N) and E0(N), Wald (1945) conjectured the following optimality theorem: The
SPRT minimizes both E0(T ) and E1(T ) among all tests that have type I and type II
errors α and β , respectively. This theorem was later proved by Wald and Wolfowitz
(1948) by dynamic programming arguments that will be described in Sect. 3.6.

Hoeffding (1960) extended Wald’s arguments to derive lower bounds for E(T )
when the sequential test of H0 versus H1 has error probabilities α and β , under
another measure that has density function f with respect to ν . One such lower bound
involves the Kullback–Leibler information number

I( f , fi) = E[log( f (X1)/ fi(X1))]. (3.9)
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Let τ2 = E{log[ f1(X1)/ f0(X1)]− I( f , f0)+ I( f , f1)}2, ζ = max{I( f , f0), I( f , f1)}.
Hoeffding’s lower bound is

E(T )≥
{[−ζ log(α+β )+ (τ/4)2]1/2 − τ/4

}2/
ζ 2. (3.10)

3.4 Lorden’s 2-SPRT and Sequential GLR Tests

For fixed sample size tests, a first step to extend the Neyman–Pearson theory from
simple to composite hypotheses is to consider one-sided composite hypotheses of
the form H0 : θ ≤ θ0 versus H1 : θ > θ0 in the case of parametric families with
monotone likelihood ratio in a real parameter θ . In this case, the level-α Neyman–
Pearson test of H : θ = θ0 versus K : θ = θ1(> θ0) does not depend on θ1 and
therefore can be used to test H0 versus H1. In the sequential setting, however, we
cannot reduce the optimality considerations for one-sided composite hypotheses
to those for simple hypotheses even in the presence of the monotone likelihood
ratio. This led Kiefer and Weiss (1957) to consider the problem of minimizing the
expected sample size at a given parameter θ ∗ subject to error probability constraints
at θ0 and θ1. Using dynamic programming arguments that will be described in
Sect. 3.7, Lorden (1976) showed that a nearly optimal solution to the Kiefer–Weiss
problem is a 2-SPRT with stopping rule of the form

T ∗ = inf

{
n :

n

∏
i=1

(
fθ∗(Xi)/ fθ0(Xi)

)≥ A0 or

n

∏
i=1

(
fθ∗(Xi)/ fθ1(Xi)

)≥ A1

}
, (3.11)

rejecting H : θ = θ0 if ∏T ∗
i=1( fθ∗ (Xi)/ fθ0(Xi)) ≥ A0 and rejecting K : θ = θ1 if

the other boundary is crossed upon stopping. He also showed that the 2-SPRT
asymptotically attains Hoeffding’s lower bound for Eθ∗(T ) and provided numerical
results showing that Eθ∗(T ∗) exceeds the lower bound by at most 10%.

Ideally, θ ∗ in (3.11) should be chosen to be the true parameter value θ which is,
however, unknown. Consider the exponential family of density functions fθ (x) =
exp{θx−ψ(θ )} with respect to some measure on the real line. Replacing θ by its
maximum likelihood ratio estimate θ̂n at stage n leads to the sequential GLR test of
H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 that stops sampling at stage

τ = inf

{
n : θ̂n > θ0 and

n

∏
i=1

(
fθ̂n

(Xi)/ fθ0(Xi)
)
≥ A(n)

0 or

θ̂n < θ1 and
n

∏
i=1

(
fθ̂n

(Xi)/ fθ1(Xi)
)
≥ A(n)

1

}
. (3.12)
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Note that the first likelihood ratio in (3.12) is the GLR statistic for testing θ0 and
the second one is that for testing θ1. The test rejects Hi upon stopping if the GLR

statistic for testing θi exceeds A(n)
i (i = 0,1). The test, with A(n)

0 = A(n)
1 = 1/c, has

been derived by Schwarz (1962) as an asymptotic solution to the Bayes problem of
testing H0 versus H1 with 0–1 loss and cost c per observation, as c → 0 while θ0

and θ1 are fixed. For the case of a normal mean θ , Chernoff (1961, 1965) derived a
different and considerably more complicated approximation to the Bayes test of H ′

0 :
θ < θ0 versus H ′

1 : θ > θ0. In fact, setting θ1 = θ0 in Schwarz’s test does not yield
Chernoff’s test. This disturbing discrepancy between the asymptotic approximations
of Schwarz (assuming an indifference zone) and Chernoff (without an indifference
zone separating the one-sided hypotheses) was resolved by Lai (1988), who gave a
unified solution (to both problems) that uses a stopping rule of the form

N(g,c) = inf

{
n : max

[
n

∑
i=1

log
fθ̂n

(Xi)

fθ0(Xi)
,

n

∑
i=1

log
fθ̂n

(Xi)

fθ1(Xi)

]
≥ g(cn)

}
(3.13)

for testing H0 versus H1 and setting θ1 = θ0 in (3.13) for the test of H ′
0 versus

H ′
1. The function g in (3.13) satisfies g(t) ∼ logt−1 as t → 0 and is the boundary

of an associated optimal stopping problem for the Wiener process. By solving the
latter problem numerically, Lai (1988) also gave a closed-form approximation to
the function g. Further details are given in Sect. 3.7, where applications of Wald’s
likelihood identity and Hoeffding’s lower bound, and connections between GLR
statistics and posterior probabilities of the null hypothesis, are also given.

This unified theory for composite hypotheses provides a bridge between asymp-
totically optimal sequential and fixed sample size tests. In the fixed sample size case,
the Neyman–Pearson approach replaces the likelihood ratio by the GLR, which is
also used in (3.13) for the sequential test. Since the accuracy of θ̂n as an estimate of
θ varies with n, (3.13) uses a time-varying boundary g(εn) instead of the constant
boundary in (3.11) (with A0 = A1) where θ is completely specified. Simulation
studies and asymptotic analysis have shown that N̂ is nearly optimal over a broad
range of parameter values θ , performing almost as well as (3.11) that assumes θ
to be known; see Lai (1988). This broad range covers both fixed alternatives, at
which the expected sample size is of the order O(| logε|), and local alternatives
θ approaching θ0 as ε → 0, at which the expected sample size divided by | logε|
tends to ∞. In other words, N(g,c) can adapt to the unknown θ by learning it
during the course of the experiment and incorporating the diminishing uncertainties
in its value into the stopping boundary g(εn). Lai and Zhang (1994) have extended
these ideas to construct nearly optimal sequential GLR tests of one-sided hypotheses
concerning some smooth scalar function of the parameter vector in multiparameter
exponential families, with an indifference zone separating the null and alternative
hypotheses and also without an indifference zone. Lai (1997) has provided further
extension to a general class of loss functions and prior distributions.
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In practice, one often imposes an upper bound M and also a lower bound m on
the total number of observations. With M/m → b > 1 and logα ∼ logβ , we can
replace the time-varying boundary g(cn) in (3.13) by a constant threshold c since
g(t)∼ logt−1 and logn = logm+O(1) for m ≤ n ≤ M. The test of H : θ = θ0 with
stopping rule

Ñ = inf

{
n ≥ m :

[
n

∏
i=1

fθ̂n
(Xi)

]/[
n

∏
i=1

fθ0(Xi)

]
≥ ec

}
∧M, (3.14)

which corresponds to (3.13) with θ1 = θ0, g(cn) replaced by c, and n restricted
between m and M, is called a repeated GLR test. The test rejects H if the GLR
statistic exceeds ec upon stopping. The repeated significance test of Armitage et al.
(1969) described in Sect. 1.2 is a repeated GLR test. Whereas (3.14) considers the
simple null hypothesis θ = θ0 in the univariate case, it is straightforward to extend
the repeated GLR test to multivariate θ and composite null hypothesis H0 : θ ∈Θ0,
by simply replacing∏n

i=1 fθ0(Xi) in (3.14) by supθ∈Θ0∏
n
i=1 fθ (Xi).

3.5 Modifications for Group Sequential Testing

Lai and Shih (2004) have modified the preceding theory for group sequential tests
in a one-parameter exponential family fθ (x) = eθx−ψ(θ) of density functions, for
which Hoeffding’s lower bound (3.10) can be expressed as

Eθ (T )≥−ζ−1 log(α+β )− (ζ−2σ/2
){(σ/4)2 − ζ log(α +β )}1/2

+ ζ−2σ2/8 (3.15)

where σ2 = (θ1 − θ0)
2ψ ′′

(θ ) = Varθ{(θ1 − θ0)Xi}, ζ = max{I(θ ,θ0), I(θ ,θ1)},
and

I(θ ,λ ) = Eθ [log{ fθ (Xi)/ fλ (Xi)}] = (θ −λ )ψ ′(θ )− (ψ(θ )−ψ(λ )) (3.16)

is the Kullback–Leibler information number. The lower bound (3.15) does not take
into consideration the fact that T can assume only several possible values in the
case of group sequential designs. The first step of Lai and Shih (2004, p. 509) is
to take this into consideration by providing an asymptotic lower bound for T in the
following theorem. Let n0 = 0.

Theorem 3.1. Suppose the possible values of T are n1 < · · ·< nk, such that

liminf(ni − ni−1)/| log(α+β )|> 0 (3.17)
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as α+β → 0, where α and β are the type I and type II error probabilities of the test
at θ0 and θ1, respectively. Let mα ,β (θ ) = min{| logα|/I(θ ,θ0), | logβ |/I(θ ,θ1)}.
Let εα ,β be positive numbers such that εα ,β → 0 as α +β → 0, and let ν be the
smallest j(≤ k) such that n j ≥ (1− εα ,β )mα ,β (θ ), defining ν to be k if no such j
exists. Then for fixed θ ,θ0 and θ1 > θ0, as α+β → 0,

Pθ (T ≥ nν)→ 1.

If furthermore ν < k, |mα ,β (θ )− nν |/m1/2
α ,β (θ )→ 0 and

limsup
mα ,β (θ )

max{| logα|/I(θ ,θ0), | logβ |/I(θ ,θ1)} < 1,

then Pθ (T ≥ nν+1)≥ 1
2 + o(1).

The n j in Theorem 3.1 can in fact be random variables independent of X1,X2, . . . .
In this case the preceding argument can still be applied after conditioning on
(n1, . . . ,nk). The next step of Lai and Shih (2004, p. 510) is to extend Lorden’s
result on the asymptotic optimality of the 2-SPRT to the group sequential setting in
the following.

Theorem 3.2. Let θ0 < θ ∗ < θ1 be such that I(θ ∗,θ0) = I(θ ∗,θ1). Let α+β → 0
such that logα ∼ logβ .

(i) The sample size n∗ of the Neyman–Pearson test of θ0 versus θ1 with error
probabilities α and β satisfies n∗ ∼ | logα|/I(θ ∗,θ0).

(ii) For L ≥ 1, let Tα ,β ,L be the class of stopping times associated with group
sequential tests with error probabilities not exceeding α and β at θ0 and θ1

and with k groups and prespecified group sizes such that (3.17) holds and
nk = n∗+L. Then, for given θ and L, there exists τ ∈Tα ,β ,L that stops sampling
when

(θ −θ0)Sni − ni{ψ(θ )−ψ(θ0)} ≥ b

or (θ −θ1)Sni − ni{ψ(θ )−ψ(θ1)} ≥ b̃ (3.18)

for 1 ≤ i ≤ k− 1, with b ∼ | logα| ∼ b̃, and such that

Eθ (τ)∼ inf
T∈Tα,β ,L

Eθ (T )∼ nν +ρ(θ )(nν+1 − nν), (3.19)

where ν and mα ,β (θ ) are defined in Theorem 3.1 and 0 ≤ ρ(θ )≤ 1.

Whereas the group sequential 2-SPRT in Theorem 3.2 requires specification of
θ , the group sequential GLR in Sect. 4.2 replaces θ at the ith interim analysis by
the maximum likelihood estimate θ̂ni , similar to (3.12) for the fully sequential case.
In Sect. 4.2.2 we describe a group sequential GLR test introduced by Lai and Shih
(2004, pp. 511–512) and show that it attains the asymptotic lower bound (3.19) at
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every fixed θ and that its power is comparable to the upper bound 1−β at θ1, under
the assumption that the group sizes satisfy (3.17) with nk ∼ | logα|/I(θ ∗,θ0), as
α+β → 0 such that logα ∼ logβ .

3.6 Optimality of SPRT and Dynamic Programming

In this section we prove the Wald–Wolfowitz theorem on the optimality of the SPRT
and introduce the principle of dynamic programming that is used not only to prove it
but also to solve much more general sequential optimization problems. Optimization
provides an important tool in formulating and computing statistical procedures.
Nonlinear least squares and optimal experimental designs covered in Chap. 2 and
maximum likelihood estimators and Bayes rules are all optimization problems, and
so are regularization methods for sparse high-dimensional regression such as Lasso
and elastic net which amount to convex optimization (Boyd and Vandenberghe
2004). Whereas linear programming is concerned with optimal choice of the
variables of a linear objective function subject to linear constraints, dynamic
programming (DP) is concerned with optimal sequential choice of variables of the
summands of an objective function that is the sum of cost functions of the variables
over successive periods. In the case where these costs are random variables specified
by some stochastic dynamic system (usually Markovian), DP amounts to stochastic
optimization over time. In describing the stochastic costs, it is useful to distinguish
the variables, called “controls,” that can be chosen to minimize the total cost from
the other variables, called “states,” that undergo stochastic dynamics which depend
on the controls chosen.

3.6.1 Dynamic Programming: Finite-Horizon Case

Consider the problem of choosing the controls ut ∈U sequentially so as to minimize
E{∑N

t=1 ct(xt ,ut)+cN(xN)}, with state variables xt . Here ct are given functions, and
N is called the “horizon” of the problem. The control ut affects the dynamics of
the future states xt+1, . . . ,xN and depends on the information set Ft consisting of
xt ,ut−1,xt−1, . . . ,u1,x1. The summand ct(xt ,ut) represents the immediate cost and
cN(xN) the terminal cost; no control is exercised at time N because it only affects
the states after N. Noting that the choice of ut can only depend on Ft , we use the
“tower property” of conditional expectations to write

E {ct(xt ,ut)+Vt+1}= E {E [ct(xt ,ut)+Vt+1|Ft ]} , (3.20)

where Vt+1 involves the information set Ft+1 and will be defined below. The tower
property suggests the following backward induction algorithm to choose ut for t =
N − 1,N− 2, . . . ,1, and to define Vt , initializing with VN = cN(xN):
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ut = argmin
u∈U

{ct(xt ,u)+E(Vt+1|Ft)} , Vt = ct(xt ,ut)+E(Vt+1|Ft). (3.21)

The functions Vt are called value functions. We have assumed that the minimizer
exists in (3.21) to define ut+1. Although this is indeed the case in our applications,
we actually do not need this assumption in the definition of the value functions,
which we can define more generally by

Vt = inf
u∈U

{ct(xt ,u)+E(Vt+1|Ft)} . (3.22)

The optimal control ut in (3.21) is a function of xt ,ut−1,xt−1, . . . ,u1,x1. When xt is a
controlled Markov chain so that the conditional probability of xt+1 given xs,us (s ≤
t) depends only on xt ,ut , the optimal control ut can be chosen to depend only on xt .

3.6.2 Infinite-Horizon Dynamic Programming

Letting N → ∞ in the finite-horizon case leads to the infinite-horizon problem
of minimizing E{∑∞t=1 ct(xt ,ut)} when the infinite series is summable. The case
ct(x,u) = β t c(x,u) is called the discounted problem, with discount factor 0< β < 1.
When xt is a controlled Markov chain with state space S and stationary transition
probabilities

P{xt+1 ∈ A|xt = x, ut = u}= Px,u(A) (3.23)

for all t ≥ 0, u ∈U , x ∈ S, and A ⊂ S, the value function

V (x) := sup
u1,u2,...

E

{
∞

∑
t=1

β tc(xt ,ut)|x0 = x

}

is the solution of the dynamic programming equation

V (x) = inf
u∈U

{
c(x,u)+β

∫
S
V (y)dPx,u(y)

}
, (3.24)

which can be derived by letting the horizon N in the finite-horizon equation (3.22)
approach ∞. The sequence uuu = (u1,u2, . . . ) is called a control policy. From (3.24),
it follows that the optimal control policy is a stationary policy in the sense that
ut = g(xt) for some time-invariant function g.

There are two commonly used methods to solve (3.24) for V and for the
stationary policy. One is value iteration. Starting with an initial guess v0 of V , it
uses successive approximations

vk+1(x) = min
u∈U

{
c(x,u)+β

∫
S

vk(y)dPx,u(y)

}
.



3.6 Optimality of SPRT and Dynamic Programming 47

The minimizer u = uk(x) of the right-hand side yields an approximation to the
stationary policy at the kth iteration. The other is policy iteration, which can be
applied when the state space S is finite as follows. Denote the states of S by 1, . . . ,m,
and let

cccg = (c(1,g(1)), . . . ,c(m,g(m))T , PPPg =
(
Px,g(x)(y)

)
1≤x≤m,1≤y≤m

.

Note that PPPg is the transition matrix of the controlled Markov chain with stationary
control policy g that is specified by the vector (g(1), . . . ,g(m))T . Minimization over
g, therefore, is the same as minimization of Rm. In view of (3.24), we define the
affine transformation Tg(xxx) = cccg +βPPPg(xxx) for xxx ∈ R

m. Letting T (xxx) = ming Tg(xxx)
and vvv = (V (1), . . . ,V (m))T , note that (3.24) can be written as vvv = T (vvv). This
suggests the following policy iteration scheme that initializes with a preliminary
guess g0 of the optimal g∗. At the kth iteration, after determining gk, solve the
linear system vvv = Tgk(vvv) and denote the solution by vvvk. If T (vvvk) = vvvk, stop and
set g∗ = gk. Otherwise solve the linear system Tg(vvvk) = T (vvvk) for (g(1), . . . ,g(m))T

and set gk+1 = g.
In the case where the control ut consists of whether to stop at time t, the stochastic

optimization problem is called an optimal stopping problem. Note that unlike more
general stochastic control problems, the stopping rule does not change the dynamics
of xt . The control policy reduces to a stopping rule τ in this case. Suppose the costs
are c(xt) prior to stopping and h(xτ) upon stopping, and ct(xt) = 0 for t > τ . The
transition matrix (3.23) now has the form

P{xt+1 ∈ A|xt = x}= Px(A) for 0 ≤ t < τ, u ∈U, x ∈ S, and A ⊂ S.

The value function V (x) := supτ E{∑t<τ c(xt)+h(xτ)|x0 = x} satisfies the dynamic
programming equation

V (x) = min

{
h(x),c(x)+

∫
S
V (y)dPx(y)

}
. (3.25)

The notation supτ above refers to supremum over all stopping rules τ , and the right-
hand side of (3.25) refers to either stopping when state x is observed and incurring
cost h(x) or continuing after paying cost c(x) and then proceeding optimally
thereafter. The minimum in (3.25) refers to choosing continuation or stopping
according to which has a smaller expected cost. The optimal stopping rule is a
stationary policy of the form τ = inf{n ≥ 0 : h(xt)≤V (xt)}.

3.6.3 Bayes Sequential Tests of Simple Null Versus Simple
Alternative

In this section we apply optimal stopping theory to sequential hypothesis testing
in which one has to decide whether to accept the null hypothesis upon stopping.
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Consider the problem of testing the simple null hypothesis H0 : f = f0 versus
H1 : f = f1 based on i.i.d. observations X1,X2, . . . as in Sect. 3.2. There are two
probability measures in this problem, one involving f0 and the other f1. Dynamic
programming, however, involves a single measure and expectation with respect to
that measure. A Bayesian formulation that puts prior probabilities of H0 and H1

would yield a single measure. Let 0 < π < 1 be the prior probability in favor of H0

so that 1−π is that in favor of H1. Let 0 < w < 1 be the loss of wrongly rejecting
H0, and let 1−w be that of wrongly accepting it (when H1 is true). In addition, there
is a cost c for each observation taken so that the Bayes risk of a sequential test with
stopping rule τ and terminal decision rule δ (taking the value 0 or 1 according to
whether H0 is accepted or not) is

r(τ,δ ) = E
(
wI{δ=1, H0 is true}+(1−w)I{δ=1, H1 is true}+ cτ

)
, (3.26)

where E denotes expectation with respect to the measure under which the 0-1
variable θ has probabilityπ of being equal to 0 and X1,X2, . . . are i.i.d. with common
density fθ given θ . As noted in Sect. 1.5, the optimal Bayes decision rule δ ∗ does not
depend on the stopping rule and accepts H0 or H1 according to which has the smaller
posterior risk. Thus, for any stopping rule τ , δ ∗ accepts H1 if wπτ ≤ (1−w)(1−πτ)
and accepts H0 otherwise, where

πn = π f0(X1) . . . f0(Xn)/{π f0(X1) . . . f0(Xn)+ (1−π) f1(X1) . . . f1(Xn)} (3.27)

is the posterior probability in favor of H0. Putting δ = δ ∗ in (3.26) and applying the
tower property of conditional expectations, we obtain

r(τ,δ ∗) = E{h(πτ)+ cτ}, where h(p) = min{wp,(1−w)(1− p)}. (3.28)

From (3.27), it follows that πn ∝ π f0(X1) . . . f0(Xn) and therefore

πn = πn−1 f0(Xn)/{πn−1 f0(Xn)+ (1−πn−1) f0(Xn)} .

Note that conditional on πn−1, θ = 1 (or 0) with probability 1− πn (or πn) and
Xn has density fθ . Hence πn is a stationary Markov chain on state space S =
(0,1). Therefore, as shown in the preceding section, the optimal stopping rule is
a stationary policy of the form

τ = inf{n ≥ 1 : h(πn)≤V (πn)}. (3.29)

For 0≤ p≤ 1, h(p) is the minimum of the linear functions wp and (1−w)(1− p).
Moreover, V (p) is the infimum over τ of

r(τ,δ ∗; p) = p{wP0(δ ∗ rejects H0)+ cE0(T )}
+(1− p){(1−w)P1(δ ∗ accepts H0)+ cE1(T )} ,
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π π

Fig. 3.1 The functions V (p)
and h(p)

which is a linear function of p for given τ . Therefore, V (p) is a concave function of
p with V (0) = c = V (1), and there exist 0 < π ′ < π ′′ < 1 such that h(p)≤ V (p) if
and only if p ≤ π ′ or p ≥ π ′′; see Fig. 3.1. Therefore, the stopping rule (3.29) can
be written as

τ = inf
{

n ≥ 1 : πn ≤ π ′ or πn ≥ π ′′
}

= inf

{
n ≥ 1 : Ln ≤ π

1−π
1−π ′′
π ′′

or Ln ≥ π
1−π

1−π ′
π ′

}
,

since πn = 1/{1+ 1−π
π Ln} by (3.27) and (3.1). Hence, the optimal Bayes solution

is the SPRT with stopping boundaries

A =
π

1−π
1−π ′′
π ′′

, B =
π

1−π
1−π ′
π ′

, (3.30)

in which π ′ and π ′′ depend on w and c.
Using π ′(w,c), π ′′(w,c), and V (p;w,c) to represent π ′, π ′′, and V (p) as functions

of w and c, it can be shown that for fixed w, π ′ is nondecreasing and continuous
in c. Moreover, as the sampling cost c per observation approaches 0, the error
probabilities can be made arbitrarily small by using the Neyman–Pearson test with
sample size n that is large enough. Therefore, V (p;w,c) → 0 as c → 0, for fixed p
and w. Since h(p) does not depend on c, it then follows that for fixed w, π ′(w,c)→ 0
as c → 0. Similarly, for fixed w, π ′′(w,c) is nonincreasing and continuous in c and
π ′′(w,c) → 1 as c → 0. We next use these properties of π ′ and π ′′ to prove the
Wald–Wolfowitz theorem on the optimality of SPRT.
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3.6.4 Auxiliary Bayes Problem and Optimality of the SPRT

As pointed out in Sect. 3.3, based on the fact that, assuming Wald’s approximations
which ignore overshoots to be exact, the SPRT attains the lower bound (3.8) for the
expected sample size of sequential tests of a simple null versus a simple alternative
subject to type I and type II error probability constraints, Wald (1945) conjectured
the following optimality theorem of the SPRT.

Theorem 3.3. For the problem of testing H0 : f = f0 versus H1 : f = f1 based on
i.i.d. observations X1,X2, . . . with common density function f , the SPRT with type
I error probability α and type II error probability β minimizes E0(T ) and E1(T )
among all tests (sequential or fixed sample size) with stopping time T , which has
finite expectation under H0 and H1, and error probabilities P0(Reject H0) ≤ α and
P1(Accept H0)≤ β .

The theorem, which considers the frequentist optimality of the SPRT, was proved
by Wald and Wolfowitz (1948) by showing that the SPRT is the Bayes rule in an
auxiliary Bayes problem. Given the stopping boundaries A and B of the SPRT, the
auxiliary Bayes problem is concerned with choosing π , c, and w so that π , π ′(w,c)
and π ′′(w,c), satisfy (3.30). This is the content of the following.

Lemma 3.1. Given ε > 0 and 0 < A ≤ 1 ≤ B, there exists (π ,c,w) with 0<π<ε
such that (3.30) holds for π , π ′(w,c), and π ′′(w,c). Moreover, there also exists
another triple (π ,c,w) with 1− ε < π < 1 satisfying (3.30).

Proof. Fix w so that 1−w < Aε and note that

π ′(w,c)
(
1−π ′′(w,c))/{π ′′(w,c)(1−π ′(w,c))} (3.31)

is a continuous function of c and approaches 0 as c → 0; see the last paragraph of
Sect. 3.6.3. Moreover, (3.31) is equal to 1 for sufficiently large c for which π ′ = π ′′
(see Fig. 3.1). Hence, there exists c such that (3.31) is equal to A/B. With this choice
of c, let π = π ′(w,c)/{A+(1−A)π ′(w,c)}. Then

1−π
π

= A
1−π ′(w,c)
π ′(w,c)

= B
1−π ′′(w,c)
π ′′(w,c)

, (3.32)

in which the second equality follows from that (3.31) is equal to A/B by the choice
of c. Note that (3.32) is the same as (3.30). Since π ′ ≤ 1−w ≤ π ′′ (see Fig. 3.1), it
follows that

π =
π ′(w,c)

A+(1−A)π ′(w,c)
≤ π ′(w,c)

A
≤ 1−w

A
< ε,

recalling that w has been chosen such that 1−w < Aε . An obvious modification of
this idea can also yield another triplet (w,c,π) with π > 1− ε .
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Proof (Proof of Theorem 3.3). By Lemma 3.1, there exists (π ,c,w) such that the
SPRT with stopping rule (1.1) is Bayes with prior probability π in favor of H0.
Since it minimizes the Bayes risk,

π{wα+ cE0(N)}+(1−π){(1−w)β+ cE1(N)}

≤ π {wα̃+ cE0(T )}+(1−π)
{
(1−w)β̃ + cE1(T )

}

for any test (T,δ ) that has type I error α̃ ≤ α and type II error β̃ ≤ β . This implies

π {E0(T )−E0(N)}+(1−π){E1(T )−E1(N)} ≥ 0.

Since π can be chosen less than any ε > 0 by Lemma 3.1, it follows that E1(T ) ≥
E1(N). Similarly, since π can also be chosen arbitrarily close to 1, E0(T )≥ E0(N).

3.7 Approximations to Bayes Sequential Tests
and Operating Characteristics

3.7.1 Derivation of Lorden’s 2-SPRT as an Approximate
Bayes Rule

The Kiefer–Weiss problem in Sect. 3.4 involves three probability measures, with
density functions fθ0 , fθ1 , and fθ∗ . To solve the problem by dynamic programming,
Lorden (1976) uses first a Bayesian argument to combine the three measures into a
single measure after putting prior probabilities on θ0, θ1, and θ ∗ and then a change
of measures to Pθ∗ , which will be denoted simply by P∗ (as Pi has been used to
denote Pθi). This enables him to express the Bayes risk in the form

inf
τ

E∗
{
τ+min(uL0

τ ,u
′L1
τ )
}
, where Lj

n =
n

∏
i=1

[
fθ j (Xi)/ fθ∗(Xi)

]
, (3.33)

j = 0,1. In (3.33), it is assumed that c (the cost per observation) times the prior
probability of θ ∗ is equal to 1 as the Kiefer–Weiss problem is concerned with
the expected sample size only at θ ∗, that the loss for wrongly rejecting H0 times
the prior probability of H0 is u, and that the loss for wrongly rejecting H1 times the
prior probability of H1 is u′. Note that Lj

n is the likelihood ratio associated with the
change of measures from Pj to P∗ so that the expectation can be taken under P∗,
in view of Wald’s likelihood ratio identity (3.3). The Bayes terminal decision rule
rejects H0 or H1 according to which gives a smaller posterior risk, and leads to the
term min(uL0

τ ,u
′L1
τ) in (3.33).
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The dynamic programming problem associated with (3.33) involves a
two-dimensional Markov chain xxxn = (uL0

n,u
′L1

n) with stationary transition
probabilities, For xxx = (x1,x2), define h(xxx) =min(x1,x2). As explained in Sect. 3.6.2,
the optimal stopping rule has the form

τ = inf{n ≥ 1 : h(xxxn)≤V (xxxn)} , (3.34)

in which V is the value function. However, unlike (3.29) that can be reduced to
the stopping time of the SPRT with constant stopping boundaries A and B for
the likelihood ratio statistics Ln = ∏n

i=1( f1(Xi)/ f0(Xi)), the stopping boundaries
for (3.34) which involve the likelihood ratio pairs (L0

n,L
1
n) are nonlinear curves.

When fθ is the N(θ ,1) density, logLθn is a normal random walk, and Lai (1973)
studied the optimal stopping problem and found that the nonlinear boundaries can be
well approximated by Anderson’s test with triangular boundaries for normal random
walks.

Lorden noticed that Anderson’s test is simply a 2-SPRT, which suggested the pos-
sibility of approximating (3.34) by a 2-SPRT. This led to his approach that uses the
stopping rule T ∗ defined by (3.11) in lieu of the stopping rule (3.34) and evaluates
asymptotically the Bayes risk E∗{T ∗ +min(uL0

T ∗ ,u′L1
T ∗)} as min(A−1

0 ,A−1
1 ) → 0,

with u and u′ determined by the boundaries A0 and A1 of (3.11). This asymptotic
analysis yields his theorem that the 2-SPRT solves the Kiefer–Weiss problem up to
O(1) error.

Theorem 3.4. Let α and β denote the error probabilities of the 2-SPRT (3.11). Let
n(A0,A1) denote the infimum of E∗(T ) over all tests satisfying P0(Reject H0) ≤ α
and P1(Reject H1)≤ β . If

E∗
{[

log( fθ∗(X1)/ fθ0(X1))
]2
+
[
log( fθ∗(X1)/ fθ1(X1))

]2}
< ∞,

then E∗T ∗ = n(A0,A1)+ o(1) as A0 → ∞ and A1 → ∞.

3.7.2 Approximation of Bayes Sequential Tests of One-Sided
Hypotheses in an Exponential Family by Sequential
GLR Tests

In Sect. 3.4 we have referred to the Bayes problem of testing one-sided composite
hypotheses of the form H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 for the parameter of an
exponential family fθ (x) = exp(θx−ψ(θ )) with respect to some measure ν on the
real line. Given a prior distribution G on θ , a loss l(θ ) of accepting the incorrect
hypothesis, and a cost c per observation, the Bayes risk of a sequential test (T,δ )
with stopping rule T and terminal decision rule δ is
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r(T,δ ) = c
∫

Eθ (T )dG+

∫
θ≤θ0

l(θ )Pθ{δ accepts H1}dG

+

∫
θ>θ1

l(θ )Pθ{δ accepts H0}dG. (3.35)

The support of G is assumed to be contained in the natural parameter spaceΘ = {θ :∫
eθxdν(x) < ∞} and to satisfy

∫
l(θ )dG(θ ) < ∞. The optimal δ ∗ does not depend

on the stopping rule and accepts the Hi that has smaller posterior risk. However, it
is difficult to solve this infinite-horizon DP problem for the optimal stopping rule in
this general case because the optimal policy is no longer stationary.

A well-known asymptotic solution to the Bayes problem of minimizing r(T,δ )
is due to Schwarz (1962). Let B(c) denote the continuation region of the Bayes rule
(which continues sampling at stage n+ 1 if and only if (n,Sn) ∈ B(c)). Assuming
that l(θ ) > 0 for θ /∈ (θ0,θ1) and that G(I) > 0 for every open interval I ⊂ Θ ,
Schwarz’s asymptotic theory leads to the following limiting continuation region of
the Bayes rule: As c → 0,

B(c)
| logc| −→

{
(t,w) : 1+ min

i=0,1
(θiw− tψ(θi))> sup

θ
(θw− tψ(θ ))

}
. (3.36)

Thus, writing n = t| logc| and Sn = w| logc|, an asymptotic approximation to the
Bayes rule is to continue sampling at stage n+ 1 if only if

logc−1 + min
i=0,1

{θiSn − nψ(θi)}> sup
n
{θSn − nψ(θ )}, (3.37)

or, equivalently, to stop sampling at stage

Nc = inf

{
n ≥ 1 : max

[
n

∏
i=1

fθ̂n
(Xi)

fθ0(Xi)
,

n

∏
i=1

fθ̂n
(Xi)

fθ1(Xi)

]
≥ c−1

}
, (3.38)

where θ̂n is the maximum likelihood estimate of θ . The terminal decision rule δ ∗ is
to accept H1 (or H0) if ∏Nc

i=1 fθ1(Xi)> (or ≤)∏Nc
i=1 fθ0(Xi).

There are two main steps in Schwarz’s derivation of the above asymptotic
approximation to the Bayes rule. The first step involves upper and lower bounds
for the Bayes continuation region B(c). Let

L(n,x) =
mini=0,1

∫
Θi

l(θ )exp{θx− nψ(θ )}dG(θ )∫
Θ exp{θx− nψ(θ )}dG(θ )

(3.39)

be the stopping risk, which is the posterior loss due to the wrong decision of the
Bayes test if stopping occurs at stage n and Sn = x. Let R(c) = {(n,x) : L(n,x)≥ c}.
Schwarz showed that for sufficiently small c > 0,

R(c)⊃ B(c)⊃ R(3�−1c| logc|), (3.40)
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where � = ψ(θ0)+ψ(θ1)− 2ψ((θ0 +θ1)/2). The next step is to apply Laplace’s
asymptotic formula (see Sects. 2.1.2 and 3.7.3) to evaluate the integrals in (3.39),
leading to the asymptotic approximation

logL(n,Sn)∼ min
i=0,1

{θiSn − nψ(θi)}−{θ̂nSn − nψ(θ̂n)}. (3.41)

Combining (3.41) and (3.40) gives the “asymptotic shape” (3.37) for the Bayes
continuation region B(c).

A different asymptotic theory in Bayes sequential tests was developed by
Chernoff (1961, 1965) in the context of testing H0 : θ < 0 versus H1 : θ > 0 for
the mean θ of a normal distribution with unit variance. Instead of assuming an
indifference zone (θ0,θ1) and a general loss function l(θ )> 0 for θ /∈ (θ0,θ1) as in
Schwarz’s theory, Chernoff’s theory considers the special loss function l(θ ) = |θ |
for θ �= 0 and assumes a normal prior distribution G with mean 0 and variance σ2.
The Bayes terminal decision rule accepts H0 (or H1) according as Sn ≤ 0 (or Sn > 0)
when stopping occurs at stage n. Thus, the Bayes problem reduces to the optimal
stopping problem of finding a stopping rule to minimize

r(T ) = c
∫ ∞
−∞

Eθ (T )dG+

∫ 0

−∞
|θ |Pθ{ST > 0}dG+

∫ ∞
0
θPθ{ST ≤ 0}dG. (3.42)

To study the optimal stopping rule, Chernoff (1961) introduced the normalization

t = c2/3(n+σ−2), w = c1/3Sn, (3.43)

which is different from Schwarz’s normalization t = n/| logc| and w = Sn/| logc|.
With the normalization (3.43) for the problem, Chernoff obtained a limiting
continuation region of the form {(t,w) : |w| < f (t)} as c → 0. The stopping
boundary f (t) arises as the solution of the corresponding continuous-time stopping
problem involving the Wiener process.

It seems somewhat artificial that there should be two different kinds of asymp-
totic approximations to Bayes tests of one-sided hypotheses, depending on whether
there is an indifference zone. A more natural asymptotic theory should have the
property that the approximation in the absence of an indifference zone can be
obtained as the limit of the approximations with shrinking indifference zones. To
see the feasibility of this unified approach, Lai (1988) studied the problem of testing
sequentially H0 : μ ≤−γ versus H1 : μ > γ (with an indifference zone (−γ,γ)) and
H ′

0 : μ < 0 versus H ′
1 : μ > 0 (without an indifference zone) for the drift coefficient

μ of a Wiener process {w(t), t ≥ 0}, assuming the 0−1 loss, a flat prior on μ , and
a cost of t for observing the process for a period of length t. Note that the Bayes
terminal decision rule for either problem accepts the null, or alternative, hypothesis
according as w(t) < 0 or w(t)> 0 when stopping occurs at time t. For the problem
of testing H ′

0 : μ < 0 versus H ′
1 : μ > 0, the posterior loss L0(t,w) of stopping at

time t if w(t) = w is observed and H ′
0 or H ′

1 is accepted according as w < 0 or w > 0
is given by
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L0(t,w) = t +Φ(−|w|t−1/2), (3.44)

where Φ is the standard normal distribution function. For the problem of testing
H0 : μ ≤−γ versus H1 : μ ≥ γ , the corresponding posterior loss is

Lγ (t,w) = t +Φ(−|w|t−1/2 − γt1/2). (3.45)

Thus, (3.44) can be regarded as a special case of (3.45) with γ = 0.
Lai (1988) derived asymptotic expansions, as t → 0 and t → ∞, for the optimal

stopping boundaries of the continuous-time optimal stopping problems for the
Wiener process with loss functions (3.44) and (3.45), respectively. He also computed
the optimal stopping boundaries numerically and thereby derived closed-form
approximations to the optimal stopping boundaries ±hγ(t) for γ = 0, 0 < γ ≤ 20
and γ > 20 and over different ranges of t. In particular, he showed that

hγ(t) =
{

2t
[
logt−1 + 1

2 loglogt−1 − 1
2 log4π+ o(1)

]}1/2
(3.46)

as t → 0, for fixed γ ≥ 0. He then considered the problem of testing (a) H ′
0 : θ < 0

versus H ′
1 : θ > 0 and (b) H0 : θ ≤ −� versus H1 : θ ≥� for the mean θ of i.i.d.

normal random variables X1,X2, . . . . Define

t = cn, w(t) = c1/2Sn, μ = c−1/2θ , γ = c−1/2�.

Since c1/2θn = μt, w(t) is a Wiener process with drift coefficient μ and with t
restricted to the set Ic = {c,2c, . . .}. As c→ 0, Ic becomes dense in [0,∞). Moreover,
for any prior distribution G on θ such that G has a positive continuous density G′,
the density function πc of μ = c−1/2θ is

πc(x) = c1/2G′(c1/2x)∼ c1/2G′(0) as c → 0,

and thereby the family of probability measures with densities πc converges to
Lebesgue measure (flat prior). This suggests using the flat-prior continuous-time
Bayes stopping boundaries h0 and hγ as approximations to the Bayes tests of H ′

0
versus H ′

1 and of H0 versus H1, respectively.
Lai (1988) also extended these approximations from the normal distribution to

the exponential family fθ (x) = exp(θx−ψ(θ )). Of particular importance in the
extension is the Kullback–Leibler information number I(θ ,λ ) in (3.16). Note that in
the case of a normal distribution with mean θ and variance 1, I(θ ,λ ) = (θ −λ )2/2,
and θ̂n = X̄n (when A = (−∞,∞)). Moreover, letting gγ(t) = (hγ(t)+ γt)2/(2t) for
γ ≥ 0, it follows that

|w(t)| ≥ hγ(t)⇐⇒ (|w(t)|+ γt)2

2t
≥ gγ(t)
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⇐⇒ (|Sn|+�n)2

2n
≥ gγ(cn)

⇐⇒ max
{

I
(
θ̂n,θ0

)
, I
(
θ̂n,θ1

)}≥ n−1gγ(cn),

where θ1 =�=−θ0 in the case H0 : θ ≤−� versus H1 : θ ≥� and θ1 = 0 =−θ0

in the case H ′
0 : θ < 0 versus H ′

1 : θ > 0. This explains the stopping rule (3.13) in
which g = gγ , with γ ≥ 0. Note that in the exponential family fθ (x) = eθx−ψ(θ),
ψ ′(θ̂n) = X̄n and the logarithm of the GLR statistic can therefore be expressed in
terms of the Kullback–Leibler information number:

n

∑
i=1

log
(

fθ̂n
(Xi)/ fθ0(Xi)

)
= nI

(
θ̂n,θ0

)
.

3.7.3 Laplace’s Asymptotic Formula and Approximations
to Operating Characteristics

In the preceding section we consider the optimal stopping problem associated with
a Bayes test of one-sided composite hypotheses and have developed approximations
to solve that problem. As pointed out in the derivation of (3.41), a key idea is the
approximation of the integrals in (3.39) using Laplace’s method. We begin with a re-
view of Laplace’s method for asymptotic evaluation of the integral

∫ ∞
−∞u(θ )eav(θ)dθ

as a → ∞, where u and v are continuous functions on R such that v has unique
maximum at θ ∗ and is twice continuously differentiable in some neighborhood of
θ ∗, limsup|θ |→∞ v(θ ) < min{v(θ ∗),0} and limsup|θ |→∞ |u(θ )|eAv(θ) < ∞ for some
A > 0. Since v′(θ ∗) = 0, v′′(θ ∗)< 0 and

eav(θ) = eav(θ∗) exp
{

a
[
v′′(θ ∗)+ o(1)

]
(θ −θ ∗)2/2

}
as θ → θ ∗, (3.47)

and since the assumptions on u and v imply that for every ε > 0, there exists ηε > 0
such that as a → ∞,

(∫ θ∗−ε
−∞

+

∫ ∞
θ∗+ε

)
u(θ )eav(θ) dθ = O(exp(a [v(θ ∗)−ηε ])) ,

it follows that∫ ∞
−∞

u(θ )eav(θ) dθ ∼ u(θ ∗)eav(θ∗) (−av′′(θ ∗)
)−1/2

∫ ∞
−∞

e−t2/2 dt

=

√
2π

a|v′′(θ ∗)|u(θ
∗)eav(θ∗) (3.48)
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as a → ∞, using the change of variables t = (−av′′(θ ∗))1/2(θ − θ ∗). Laplace’s
asymptotic formula (3.48) relates the integral

∫ ∞
−∞u(θ )eav(θ)dθ to the maximum of

eav(θ) over θ , which explains why the posterior loss in (3.39) can be approximated
by GLR statistics. Laplace’s formula also holds in R

d , as in (2.9), and for more
general regions Θ for which it involves a tubular neighborhood of the maximizing
set; see Chan and Lai (2000).

Note that Laplace’s asymptotic formula involves |v′′(θ ∗)|, which it assumes
implicitly to be bounded away from 0 and ∞. The likelihood function exp{n(X̄n −
ψ(θ ))} is maximized at θ̂n with ψ ′(θ̂n) = X̄n. Since Laplace’s asymptotic formula
involves ψ ′′, Lai (1988) assumes that θ is known to belong to an open interval
A ⊂ Θ such that ψ ′′ is bounded away from 0 and ∞ and is uniformly continuous
on A and that θ0 and θ1 belong to A and G is a probability distribution on A. The
maximum likelihood estimator in this case is θ̃n := (θ̂n ∨ a1)∧ a2, where −∞ ≤
a1 < a2 ≤ ∞ are the boundaries of A. Applying Laplace’s method to the likelihood
ratio identity (3.3) with suitably chosen P and Q and making use of Hoeffding’s
lower bound (3.10), Lai (1988) proved the following asymptotic approximations to
the operating characteristics of the sequential GLR test with stopping rule (3.13),
in which θ̂n is replaced by θ̃n, and with terminal decision rule that rejects H0 if
θ̃N(g,c) > θ ∗, where θ ∗ ∈ (θ0,θ1) is such that I(θ ∗,θ0) = I(θ ∗,θ1). Note that if
θ̃N(g,c) > θ ∗, then I(θ̃N(g,c),θ0)> I(θ̃N(g,c),θ1) and θ̃N(g,c) > θ0.

Lemma 3.2. Let g be a nonnegative function on (0,∞) such that

g(t)∼ logt−1 and g(t)≥ log t−1 + ξ loglog t−1 +O(1) as t → ∞, (3.49)

for some real number ξ . Let α = Pθ0{θ̃N(g,c) > θ ∗} and β = Pθ1{θ̃N(g,c) ≤ θ ∗}, and
let T (α,β ) denote the class of sequential tests of H0 : θ ≤ θ0 versus H1 : θ ≥ θ1

such that Pθ (Reject H0)≤ α for θ ≤ θ0 and Pθ (Reject H1)≤ β for θ ≥ θ1.

(i) For fixed θ0 and θ1, as c → 0, logα ∼ logβ ∼ logc, and for every bounded
subset B of A,

EθN(g,c)∼ | logc|
J(θ )

∼ inf
(T,δ )∈T (α ,β )

EθT uniformly in θ ∈ B, (3.50)

where J(θ ) = max{I(θ ,θ0), I(θ ,θ1)}.
(ii) As c → 0 and θ1 → θ0 such that (θ1 −θ0)

2/c → ∞,

logα ∼ logβ ∼ log
( c

d2

)
, where d = θ1 −θ0, (3.51)

sup
θ

EθN(g,c)∼ 8d−2(logc−1d2)

ψ ′′(θ0)
∼ inf

(T,δ )∈T (α ,β )
sup
θ

EθT. (3.52)

Moreover, for every distribution function G on A having a positive continuous
derivative G′ in some neighborhood of θ0,
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∫
EθN(g,c)dG(θ )∼

(
8G′(θ0)

ψ ′′(θ0)

)
d−1 log

(
d2

c

)

∼ inf
(T,δ )∈T (α ,β )

∫
EθT dG(θ ).

(3.53)

Lai (1988) makes use of Lemma 3.2 to prove that the GLR test is asymptotically
Bayes risk efficient as the cost c per observation approaches 0. This is the content
of the following.

Theorem 3.5. Let G be a prior distribution on A, and let r(T,δ ) be the Bayes
risk (3.35) of a test of H0 : θ ≤ θ0 versus H1 : θ ≥ θ1, with cost c per observation
and loss l(θ ) for the wrong decision such that

∫
l(θ )dG(θ ) < ∞ and

l(θ )≥� for all θ /∈ (θ0,θ1) and some �> 0. (3.54)

Let g be a nonnegative function on (0,∞) such that (3.49) holds for some ξ >
−1/2.

(i) Assume that G([θ0 − t,θ0]) > 0 and G([θ1,θ1 + t]) > 0 for all t > 0 and that
for some ρ > 0 and ε > 0,

G([x,y])≤ ρ(y− x) for all x,y ∈ [θ0 − ε,θ0]∪ [θ1,θ1 + ε] with x < y.

Then for fixed θ0 and θ1, as c → 0,

r(N(g,c),δ ∗)∼ c| logc|
∫

A

dG(θ )
J(θ )

∼ inf
(T,δ )

r(T,δ ).

(ii) Assume that G has a positive continuous density G′ in some neighborhood of
θ0. Then as c → 0 and θ1 → θ0 such that (θ1 −θ0)

2/c → ∞,

r(N(g,c),δ ∗)∼ 8G′(θ )
ψ ′′(θ )

c(θ1 −θ0)
−1 log

[
(θ1 −θ0)

2

c

]
∼ inf

(T,δ )
r(T,δ ).

(iii) Suppose that l(θ )→ 1 as (θ−θ0)I{θ<θ0}+(θ−θ1)I{θ>θ1} → 0. Let 0≤ γ <∞
and gγ(t) = (hγ(t)+γt)2/(2t). Then gγ satisfies condition (3.49) with ξ = 1/2.
Assume that G has a positive continuous density G′ in some neighborhood of
θ0. Then as c → 0 and θ1 → θ0 such that (θ1 −θ0)/(2c1/2)→ γ ,

inf
(T,δ )

r(T,δ )∼ r(N(gγ ,c),δ ∗)∼ c1/2G′(θ0)

(ψ ′′(θ0))1/2

{∫ ∞

−∞
E(τγ |μ)dμ

+

∫ −γ

−∞
P{w(τγ )> 0|μ}dμ+

∫ ∞
γ

P{w(τγ )< 0|μ}dμ
}
,
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where w(t), t ≥ 0, denotes the Wiener process with drift μ under P(·|μ) and
τγ = inf{t > 0 : |w(t)| ≥ hγ (t)}, in which hγ(·) is introduced in (3.46).

Lemma 3.2 reveals an interesting connection between the sequential GLR test
with stopping rule N(g,c) and the 2-SPRT discussed in Sect. 3.7.1. Since the ideal
value θ ∗ in the 2-SPRT is the true parameter θ that is unknown, it is natural to
try replacing θ by its maximum likelihood estimator θ̃n. The accuracy of θ̃n as an
estimate of θ varies with n, and the stopping rule N(g,c) takes this into account
by using simple time-varying boundary g(cn). Thus, the sequential GLR test with
stopping rule N(g,c) can be viewed as an adaptive 2-SPRT, with the value of
θ ∗ being chosen adaptively and with a corresponding adjustment of the stopping
boundary to account for the uncertainty in the estimate θ̃n. Lemma 3.2 shows that
this idea still leads to a first-order asymptotically optimal solution in ignorance
of θ for fixed θ0 and θ1, although the conclusion is weaker than the higher-order
asymptotically optimum character given by Theorem 3.4 for the 2-SPRT with θ ∗
equal to the true parameter θ . Moreover, even as θ1 → θ0, Lemma 3.2 shows that
if (θ1 − θ0)

2/c → ∞, then the test (N(g,c),δ ∗) asymptotically minimizes not only
the maximal expected sample size supθ EθT but also

∫
EθTdGθ for a large class of

prior distributions G, among all tests that satisfy the prescribed error constraints.
This first-order asymptotic optimality of the sequential GLR translates easily

into its asymptotic Bayes risk efficiency, by integrating the error probabilities and
expected sample size at given θ over the prior distribution, yielding Theorem 3.5(i)
and (ii). Only in the case θ1 − θ0 = O(

√
c) considered in Theorem 3.5(iii) do

we need to solve the Bayes problem directly, instead of relying on asymptotic
approximations to the error probabilities and expected sample size and applying
Hoeffding’s lower bound. But even that case can be approximated by an optimal
stopping problem for a Wiener process, which in turn can be solved by analytic and
numerical methods. Not only does this approach provide an approximate solution
to the Bayes problem of testing H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 with an indifference
zone but it also gives a unified method to treat the one-sided hypotheses H ′

0 : θ ≤ θ0

versus H ′
1 : θ > θ0, which Lai (1988) used to prove the following.

Theorem 3.6. Let G be a prior distribution on A such that G has a positive
continuous density G′ in some neighborhood of θ0 (∈ A). For a sequential test
(T,δ ) of H ′

0 : θ ≤ θ0 versus H ′
1 : θ > θ0, define the Bayes risk (3.35) in which∫

θ≥θ1
is replaced by

∫
θ>θ0

and l(θ ) = 1 for the wrong decision. Let Tc = inf{n≥ 1 :

nI(θ̃n,θ0) ≥ g0(cn)}, where g0 = h2
0/(2t) and h0(·) is introduced in (3.46). Let δ ∗

denote the terminal decision rule that accepts H ′
0 or H ′

1 according as θ̃Tc < θ0 or
θ̃Tc > θ0. Then as c → 0,

inf
(T,δ )

r(T,δ ) ∼ r(T ∗
c ,δ ∗)∼

c1/2G′(θ0)

(ψ ′′(θ0))1/2

{∫ ∞
−∞

E(τ0|μ)dμ

+

∫ 0

−∞
P[w(τ0)> 0|μ)dμ+

∫ ∞
0

P[w(τ0)< 0|μ)dμ
}
,

where τ0 = inf{t > 0 : |w(t)| ≥ h0(t)}.
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Lai (1997) has further extended this approach to more general loss functions
and prior distributions. Lai and Zhang (1994) and Chan and Lai (2000) have
also provided extensions to sequential GLR tests in multiparameter exponential
formulas.

3.8 ADP and Applications to Phase I Cancer Trial Designs

Section 3.6 has introduced dynamic programming (DP) to solve sequential stochas-
tic optimization problems. In particular, we used DP to prove the optimality of
Wald’s SPRT for simple hypotheses based on i.i.d. observations and to formulate
the optimal stopping problems associated with Bayes sequential tests of composite
hypotheses. The latter problems are much harder to solve by directly applying DP,
and we have resorted to approximations. Some systematic methods to approximate
DP solutions have been developed in the past 2 decades under the rubric of ADP.
In this section we give an introduction to some ADP methods and describe how
Bartroff and Lai (2010) made use of them to resolve the dilemma between two
conflicting goals in a Phase I cancer trial: (a) determination of the MTD for a future
Phase II trial and (b) safe treatment of current patients in the trial, preferably at
doses near the unknown MTD, and thereby to improve the Phase I cancer trial
designs in Sect. 2.5. We begin by formulating the stochastic optimization problem
that incorporates this dilemma. We then introduce some basic ADP techniques and
apply them to address the stochastic optimization problem.

3.8.1 A Stochastic Optimization Problem Related
to the Treatment Versus Experimentation Dilemma

While the widely used 3+3 dose finding schemes seem reasonable for an initial
group of patients that are the first human subjects to ever receive the treatment,
they are very inefficient designs for estimating the MTD to be used in a subsequent
Phase II trial. Moreover, even if the investigators should be content with getting IRB
approval to try the treatment on human patients and thereby obtain some data and
experience, there is the ethical dilemma that patients in the trial are treated at sub-
therapeutic albeit safe doses. Bartroff and Lai (2010) recommend beginning with a
3+3 design that is used to initialize the trial before switching to the Bayes rule in a
two-stage design, the second stage of which is related to minimizing a global risk
function defined below.

Following Babb et al. (1998), Bartroff and Lai (2010) specify the prior
distribution on θθθ := (α,β ) in the logistic regression model (2.28) by first specifying
a range [xmin,xmax] of possible dose values believed to contain the MTD, with xmin
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believed to be a conservative starting value. Rather than directly specifying the
prior distribution π for the unknown parameter θθθ of the working model to be
used in the second stage, which may be hard for investigators to do in practice,
an upper bound q > 0 on the probability ρ = Fθθθ (xmin) of toxicity at xmin can be
elicited from investigators; uniform distributions over [xmin,xmax] and [0,q] are then
taken as the prior distributions for the MTD and Fθ (xmin), respectively. Let Fk

denote the information set generated by the first k doses and responses, that is, by
(x1,y1), . . . ,(xk,yk). Letting η denote the MTD, it is convenient to transform from
the unknown parameters (α,β ) in the two-parameter logistic model (2.28) to (ρ ,η)
via the formulas

α =
xmin log(1/p− 1)−η log(1/ρ− 1)

η− xmin
(3.55)

β =
log(1/ρ− 1)− log(1/p− 1)

η− xmin
(3.56)

giving

α+βx =
(x−η) log(1/ρ− 1)− (x− xmin) log(1/p− 1)

η− xmin
= ψ(x,ρ ,η). (3.57)

Assuming that the joint prior distribution of (ρ ,η) has density π(ρ ,η) with support
on [0,q]× [xmin,xmax], the Fk-posterior distribution of (ρ ,η) has density

f (ρ ,η |Fk) =C−1
k

∏
i=1

[
1

1+ e−ψ(xi,ρ ,η)

]yi
[

1

1+ eψ(xi,ρ ,η)

]1−yi

π(ρ ,η) (3.58)

where

C =

∫ xmax

xmin

∫ q

0

k

∏
i=1

[
1

1+ e−ψ(xi,ρ ,η)

]yi
[

1

1+ eψ(xi,ρ ,η)

]1−yi

π(ρ ,η)dρ dη

is the normalizing constant. The marginal Fk-posterior distribution of η is then

f (η |Fk) =

∫ q

0
f (ρ ,η |Fk)dρ . (3.59)

The CRM and EWOC doses based on Fk described in Sect. 2.5.2 are the mean and
the ω-quantile of (3.59), respectively.

Note that using EWOC or CRM amounts to the “myopic” policy of dosing the
(k+ 1)th patient at the dose xk+1 = x that minimizes E[h(x,η)|Fk], in which
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h(x,η) =

{
(x−η)2 for CRM

ω(η− x)++(1−ω)(x−η)+ for EWOC
(3.60)

where x+ = max(x,0) and

E[h(x,η)|Fk] =

∫ xmax

xmin

h(x,η) f (η |Fk)dη .

Since the information about the dose–toxicity relationship gained from xk+1 and
the response yk+1 affects the ability to safely and effectively dose the other patients
k+ 2,k+ 3, . . . ,n, one potential weakness of these myopic policies is that they may
be inadequate in generating information on θ for treating the rest of the patients, as
well as the post-experimental estimate of the MTD to be used for future patients.
To incorporate these considerations in a Phase I trial, x1,x2, . . . ,xn should be chosen
sequentially in such a way as to minimize the global risk

E

[
n

∑
i=1

h(xi,η)+ g(η̂ ,η)

]
, (3.61)

in which the expectation is taken over the joint distribution of (ρ ,η ;x1,y1, . . . ,xn,yn).
Note that (3.61) measures the effect of the dose xk on the kth patient through
h(xk,η), its effect on future patients in the trial through ∑n

i=k+1 h(xi,η), and its
effect on the posttrial estimate η̂ through g(η̂,η). It can therefore be used to
address the dilemma between safe treatment of current patients in the study and
efficient experimentation to gather information about η for future patients.

Dynamic programming is a standard approach to the finite-horizon problem of
minimizing the global risk (3.61), which can in principle be solved by backward
induction. Specifically, define

hk(x) =

{
E [h(x,η)|Fk] 0 ≤ k < n− 1

E [h(x,η)+ g(η̂(x1, . . . ,xn−1,x),η) |Fn−1] k = n− 1.
(3.62)

To minimize (3.61), dynamic programming solves for the optimal design x∗1, . . . ,x
∗
n

by backward induction that determines x∗k by minimizing

hk−1(x)+E

[
n

∑
i=k+1

hi−1(x
∗
i )

∣∣∣∣∣Fk−1,xk = x

]
(3.63)

after determining the future dose levels x∗k+1, . . . ,x
∗
n. Note that (3.63) involves

computing the conditional expectation of ∑n
i=k+1 hi−1(x∗i ,η) given the dose x at

stage k and the information set Fk−1 and that x∗k is determined by minimizing such
conditional expectation over all x. For i ≥ k+1, since x∗i is a complicated nonlinear
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function of the past observations and of yk,x∗k+1,yk+1, . . . ,x∗i−1,yi−1 that are not yet
observed, evaluation of the aforementioned conditional expectation is a formidable
task. To overcome this difficulty, Bartroff and Lai (2010) use ADP techniques
introduced below to tackle the problem of minimizing the global risk (3.61) via
a hybrid design.

3.8.2 Some ADP Methods

Rollout

To begin with, consider the problem of minimizing (3.61) with g = 0 and h(x;α,β )
= (α + βx − y∗)2 in the linear regression model yk = α + βxk + εk with i.i.d.
normal errors εi having mean 0. Assuming a normal prior distribution of (α,β ), the
posterior distribution of (α,β ) given Fi−1 is also bivariate normal with parameters
Ei−1(α), Ei−1(β ), Ei−1(α2), Ei−1(β 2), Ei−1(αβ ), in which Ei−1 denotes condi-
tional expectation given Fi−1. These conditional moments have explicit recursive
formulas; see Sect. 4 of Han et al. (2006). The myopic policy that chooses x at stage
i to minimize E[(α+βx− y∗)2|Fi−1] is given explicitly by

x̂i = Ei−1 {(y∗ −α)β}
/

Ei−1(β 2) = {y∗Ei−1(β )−Ei−1(αβ )}
/

Ei−1(β 2).

Although the myopic policy is suboptimal for the global risk function (3.61), Han
et al. (2006) use it as a substitute for the intractable x∗i for k+1 ≤ i ≤ n in (3.63), in
which the conditional expectation can then be evaluated by Monte Carlo simulation.
This method is called rollout in ADP. The idea is to approximate the optimal policy
x∗k by minimizing (3.63) with x∗k+1, . . . ,x

∗
n replaced by some known base policy

x̂k+1, . . . , x̂n, which ideally is some easily computed policy that is not far from the

optimum. Specifically, given a base policy x̂xx = (x̂1, . . . , x̂n), let x̂(1)k be the x that
minimizes

hk−1(x)+E

[
n

∑
i=k+1

hi−1(x̂i)

∣∣∣∣∣Fk−1, x̂k = x

]
, (3.64)

and the expectation in the second term in (3.64) is typically evaluated by Monte

Carlo simulation. The policy x̂xx(1) = (x̂(1)1 , . . . , x̂(1)n ) is called the rollout of x̂xx and has
been used for stochastic control problems arising in a variety of applications; see
Sect. 2.1 of Han et al. (2006). The rollout x̂xx(1) may itself be used as a base policy,
yielding x̂xx(2), and in theory, this process may be repeated an arbitrary number of
times, yielding x̂xx(1), x̂xx(2), x̂xx(3), . . . . Letting R(xxx) = E[∑n

i=1 hi−1(xi)], Bayard (1991)
showed that, regardless of the base policy, rolling out n times yields the optimal
design and that rolling out always improves the base design, that is, that
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R(x̂xx)≥ R(x̂xx(1))≥ R(x̂xx(2))≥ ·· · ≥ R(x̂xx(n)) = R(xxx∗) (3.65)

for any policy x̂xx, where xxx∗ denotes the optimal policy.
For the global risk function (3.61) associated with Phase I designs, with h

given by (3.60), one can use the myopic design EWOC or CRM as the base
design in the rollout procedure. In contrast with the explicit formula for the
case of a linear regression model with normal errors εt , the posterior distribution
with density function (3.58) does not have finite-dimensional sufficient statistics,
and the myopic design involves (a) bivariate numerical integration to evaluate
E[hi(xi+1)|Fk−1, xk = x] for i ≥ k and (b) minimization of the conditional
expectation over x. Although (3.65) says that rolling out a base design can improve
it and rolling out n times yields the dynamic programming solution, in practice it
is difficult to use a rollout (which is defined by a backward induction algorithm
that involves Monte Carlo simulations followed by numerical optimization at every
stage) as the base policy for another rollout. To overcome this difficulty, we need
a tractable representation of successive rollouts, which we develop by using other
ideas from ADP.

Combining Least Squares with Monte Carlo

The conditional expectation in (3.63), as a function of x, is called the cost-to-go
function in dynamic programming. An ADP method, which grew out of the machine
learning literature, is based on two statistical concepts concerning the conditional
expectation. First, for given x and the past information Fk−1, the conditional
expectation is an expectation and therefore can be evaluated by Monte Carlo
simulations, if one knows how hk(x∗k+1), . . . ,hn−1(x∗n) are generated. The second
concept is that, by (3.62), hi(xi+1) is a conditional expectation given Fi, which is
a regression function (or minimum-variance prediction) of hi(xi+1), with regressors
(or predictors) generated from Fi. Based on a large sample (generated by Monte
Carlo), the regression function can be estimated by least squares using basis function
approximations, as is typically done in nonparametric regression. Combining least
squares (LS) regression with Monte Carlo (MC) simulations yields the following
LS-MC method for Markov decision problems. Let {st , t ≥ 0} be a Markov chain
whose transition probabilities from state st to st+1 depend on the action xt at time
t, and let ft (s,x) denote the cost function at time t, incurred when the state is s and
the action x is taken. Consider the statistical decision problem of choosing x at each
stage k to minimize the cost-to-go function

Qk(s,x) = E

{
fk(s,x)+

n

∑
t=k+1

ft(st ,xt)

∣∣∣∣∣sk = s,xk = x

}
, (3.66)

assuming that xk+1, . . . ,xn have been determined. Let

Vk(s) = min
x

Qk(s,x), x∗k = argmin
x

Qk(s,x). (3.67)



3.8 ADP and Applications to Phase I Cancer Trial Designs 65

These functions can be evaluated by the backward induction algorithm of dynamic
programming: Vn(s) = minx fn(s,x), and for n > k ≥ 1,

Vk(s) = min
x

{ fk(s,x)+E[Vk+1(sk+1)|sk = s,xk = x]} , (3.68)

in which the minimizer yields x∗k . Assuming the state space to be finite-dimensional
(e.g., Rn), the LS-MC method uses basis functions φ j, 1 ≤ j ≤ J, to approximate
Vk+1 by V̂k+1 = ∑J

j=1 ak+1, jφ j , and uses this approximation together with B Monte
Carlo simulations to approximate

E [Vk+1(sk+1)|sk = s, xk = x]

for every x in a grid of representative values. This yields an approximation Ṽk to Vk

and also x̂k to x∗k . Moreover, using the sample

{
(sk,b,Ṽk(sk,b),1 ≤ b ≤ B

}
(3.69)

generated by the control action x̂k, we can perform least squares regression of
Ṽk(sk,b) on (φ1(sk,b), . . . ,φJ(sk,b)) to approximate Ṽk by V̂k = ∑J

j=1 ak, jφ j. Further
details of this approach can be found in Chap. 6 of Bertsekas (2007).

Approximation in Policy Space

Although the problem (3.63) can be viewed as a Markov decision problem with the
Ft+1-posterior distribution being the state st , the state space of the Markov chain
at hand is infinite-dimensional, consisting of all bivariate posterior distributions
of the unknown parameter vector (α,β ). Unlike the preceding paragraph for
finite-dimensional state space, in the infinite-dimensional case, there is no such
simple choice of basis functions of posterior distributions, which are the states.
As pointed out in Sect. 6.7 of Bertsekas (2007), an alternative to approximating
the value functions Vk as in the preceding paragraph, called approximation in value
space, is to approximate the optimal policy by a parametric family of policies so
that the total cost can be optimized over the parameter vector. This approach is
called approximation in policy space, and most of its literature has focused on
finite-state Markov decision problems and gradient-type optimization methods that
approximate the derivatives of the costs, as functions of the parameter vector, by
simulation.

Bartroff and Lai (2010) have introduced a new method for approximation in
policy space, which uses iterated rollouts to optimize the parameters in a suitably
chosen parametric family of policies. The choice of the family of policies should
involve domain knowledge and reflect the kind of policies that one would like to
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use for the actual application. One would therefore start with a set of real-valued
basis functions of the state st of the Markov chain with general, possibly infinite-
dimensional, state space, on which the family of chosen policies will be based. The
control policies in this family can be represented by πt(φ1(st), . . . ,φm(st );βββ ), which
is the action taken at time t (after st has been observed and the basis functions
φ1(st), . . . ,φm(st ) have been evaluated) and in which βββ is a parameter to be chosen
iteratively by using successive rollouts, with

{
πt(φ1(st), . . . ,φm(st );βββ ( j)), 1 ≤ t ≤ n

}

being the base policy for the rollout xxx( j+1). Using the simulated sample

{
(sk,b,x

( j+1)
k,b ), 1 ≤ b ≤ B

}
,

in which sk,b denotes the bth simulated replicate of sk, least squares regression

of x( j+1)
k,b on πk(φ1(sk,b), . . . ,φm(sk,b);βββ ) is performed to estimate βββ by βββ ( j+1);

nonlinear least squares is used if πk is nonlinear in βββ . In view of (3.65), each
iteration is expected to provide improvements over the preceding one. A concrete
example of this method in a prototypical Phase I setting is given in the next section,
where linear regression splines are used in iterated rollouts. In this setting the state
variable st represents the complete treatment history up to time t in the trial—all
prior distributions, doses, and responses up to that time—and the cost function
ft(st ,x) will be replaced by ht(x) given by (3.62).

3.8.3 Hybrid Designs Derived by ADP

As pointed out in Sect. 3.8.1, the objective function of the dynamic programming
problem (3.61) involves both experimentation (for estimating the MTD) and
treatment (for the patients in the study). Consider the kth patient in a trial of length
n (≥ k). If the kth patient were the last patient to be treated in the trial (n = k), the
best dose to give him/her would be the myopic dose mk that minimizes the future
risk hk−1(xk). On the other hand, early on in the trial, especially if n−k is relatively
large, one expects the optimal dose to be perturbed from mk in the direction of a dose
that provides more information about the dose–response model, for the relatively
large number of doses that will have to be set for the future patients. Since the
optimal design theory for learning the MTD under overdose constraints, developed
by Haines et al. (2003), yields a c- or D-optimal design �k (see Sect. 2.3.3), Bartroff
and Lai (2010) propose to use the following hybrid design representation of the
optimal dose sequence:

x∗k = (1− εk)mk + εk�k (3.70)
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where �k is the chosen “learning design.” Of course any dosing policy admits the
representation (3.70) with

εk =
x∗k −mk

�k −mk
·111{�k �=mk}.

However, we will show that it is possible to use rollouts to choose εk of a simple
form, not depending on x∗k , such that the resulting hybrid design given by right-hand
side of (3.70) is highly efficient.

Choice of the Information-Driven Design

The theory of optimal experimental designs in generalized linear (in particular,
logistic) regression models is concerned with choosing the design levels to give
the estimate with the smallest determinant or some other function of the asymptotic
matrix at the end of an experiment whose objective is to generate information about
(or “learn”) the unknown parameters; see Sects. 2.3 and 2.6. Since the asymptotic
covariance matrix involves the unknown regression parameters for nonlinear mod-
els, one has to use adaptive or sequential designs to achieve optimality. Bartroff and
Lai (2010) use the Bayesian c-optimal design with c = (0,1)′ as the learning design
�k in (3.70), giving c′θ = c′(α,β )′ = β , which is optimal for learning about β or,
equivalently, about the slope

∂
∂x

E(y|x)
∣∣∣∣
x=η

=
∂
∂x

(
1

1+ e−(α+β x)

)∣∣∣∣
x=η

= β p(1− p)

of the dose response curve (2.28) at the MTD, with p = 1/3.

Using Iterated Rollouts in ADP to Determine εεεk

Since the treatment versus experimentation dilemma discussed in Sect. 3.8.1 stems
from the uncertainty in the current estimate of the MTD η , it is natural to expect
that the amount of perturbation from the myopic dose mk depends on the degree
of such uncertainty, using little perturbation when the posterior distribution of η is
peaked and much more perturbation when it is spread out. This suggests choosing
εk as a function of the posterior variance ν2

k−1 = Var(η |Fk−1), whose reciprocal is
called the precision of E(η |Fk−1) in Bayesian parlance. Bartroff and Lai (2010)
use functions of sk = νk−1/ν0 as basic features of the posterior distribution of η to
approximate the εk in (3.70). They use the rollout algorithm in ADP to determine
the functions εk = εk(sk).

The idea behind the rollout algorithm is iterative policy improvement, beginning
with a base policy x̂xx=(x̂1, . . . , x̂n), for which Bartroff and Lai (2010) choose EWOC.
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Let x̂(1)k be the x that minimizes

hk−1(x)+E

[
n

∑
i=k+1

hi−1(x̂i)

∣∣∣∣∣Fk−1, x̂k = x

]
(3.71)

and the expectation in the second term in (3.71) is typically evaluated by Monte

Carlo simulation. The policy x̂xx(1) = (x̂(1)1 , . . . , x̂(1)n ) is called the rollout of x̂xx. Thus,
Monte Carlo simulations are performed to obtain the rollout xxx(1) of EWOC, yielding
a simulated sample {(ek,b,sk,b), 1 ≤ b ≤ B}, where ek,b is the bth simulated
replicate of

ek =
x(1)k −mk

�k −mk
·111{�k �=mk}, (3.72)

which is essentially the same as (3.70) with (x∗k ,εk) replaced by (x(1)k ,ek).
Another technique in ADP that Bartroff and Lai (2010) use is based on

two statistical concepts concerning conditional expectations. First, for given x
and the past information Fk−1, the conditional expectation is an expectation
and therefore can be evaluated by Monte Carlo simulations, if one knows how
hk(x∗k+1), . . . ,hn−1(x∗n) are generated. The second concept is that, by (3.62), hi(xi+1)
is a conditional expectation given Fi, which is a regression function (or minimum-
variance prediction) of hi(xi+1), with regressors (or predictors) generated from Fi.
Based on a large sample (generated by Monte Carlo), the regression function can be
estimated by least squares using basis function approximations, The basis function
approximation used by Bartroff and Lai (2010) is a truncated linear function

f1(s) = min

{
1,
(
β (0)

k +β (1)
k s
)+}

, for s∗ ≤ s ≤ s∗, (3.73)

where s∗ and s∗ are the minimum and maximum of the sample values sk,b, 1≤ b≤B,
which they extend beyond the range [s∗,s∗] by

f1(s) =

{
s f1(s∗)/s∗ 0 ≤ s ≤ s∗
f1(s∗) s ≥ s∗.

(3.74)

This agrees with the constraint f1(0) = 0 and ensures that the weight assigned to
experimentation does not exceed f1(s∗). A further simplification is to group the
data into K blocks so that εk = εk(s) does not vary with k within each block, since
it is expected that the amount of experimentation for the initial stages depends
mostly on the uncertainty about η while for the final stages, experimentation would
only benefit the posttrial estimate of η . Regressing ek,b on sk,b yields the estimated
regression function f1. Letting êk = f1(sk), the hybrid design xk = (1− êk)mk + êk�k

can then be used as the base policy to form the rollout xxx(2), and this procedure can
be repeated to obtain the iterated rollouts xxx(3),xxx(4), . . . .



3.8 ADP and Applications to Phase I Cancer Trial Designs 69

Table 3.1 Risk, bias, and RMSE of the final MTD estimate, DLT rate, and overdose (OD)
rate of EWOC, rollout of EWOC, and 1st and 2nd hybrid approximations

Design Risk Bias RMSE DLT OD

EWOC 0.84 (0.01) −0.20 (0.010) 0.31 (0.04) 29.8% (0.7%) 21.9% (0.6%)

Rollout 0.75 (0.01) −0.04 (0.009) 0.22 (0.03) 33.0% (0.7%) 31.2% (0.7%)

Hybrid 1 0.75 (0.02) −0.14 (0.012) 0.29 (0.06) 33.5% (1.5%) 37.5% (1.5%)

Hybrid 2 0.71 (0.01) −0.04 (0.005) 0.22 (0.04) 31.24% (0.9%) 27.8% (0.9%)

Example 3.1. Bartroff and Lai (2010) illustrate the preceding method with the
following example, in which n = 10 and [xmin,xmax] is transformed to [0,1] by
location and scale changes. Independent uniform priors on [0,q] and [0,1] are
used for ρ = Fθ (xmin) and the MTD η , respectively. In this example, q = 1/3
and the EWOC loss is used with ω = 1/4 in (3.60), and the squared error loss

g(η̂ ,η) = (η̂ − η)2 is used in (3.61). Since n is relatively small, (β (0)
k ,β (1)

k ) in
(3.73) can be assumed not to vary with k so that the common (β (0),β (1)) can be
estimated by applying least squares regression to the sample

{
(ek,b,sk,b) : 1 ≤ k ≤ n, 1 ≤ b ≤ B

}
;

moreover, (3.73) is used for all s without performing the extrapolation beyond
[s∗,s∗]. Rolling out EWOC as the base design and using B = 2000 simulations, the
preceding method yielded (β (0),β (1)) = (0.096,0.02). Putting

εk = min
{

1,(0.096+ 0.02νk−1/ν0)
+
}

(3.75)

in the hybrid design x(1)k = (1− εk)mk + εk�k, Bartroff and Lai (2010) used xxx(1)

as the base policy of a second rollout, for which the preceding procedure yielded
(β (0),β (1)) = (−0.72,0.94). Here we used the sequential c-optimal design with
c = [0,1]′ as the learning design �k. Table 3.1 contains the operating characteristics,
explained below, of EWOC and its rollout, the first hybrid design xxx(1) with εk given
by (3.75) and the second hybrid design xxx(2) in which (0.096,0.02) in (3.75) is
replaced by (−0.72,0.94). Each result is based on 2000 simulation runs. Figure 3.2
plots the cumulative risk Rk = ∑k

i=1 E[hi−1(xi)] of the EWOC, rollout, and hybrid
designs for k = 1, . . . ,n(= 10). The operating characteristics in Table 3.1 are the
Monte Carlo estimates of overall risk R10, the bias and root mean squared error
(RMSE) of the terminal MTD estimate η̂10, the DLT rate P(y = 1), and the overdose
(OD) rate, which is the expected proportion of patients treated at doses higher than
η . Standard errors are given in parentheses.

The first hybrid design, which is an approximation to the rollout design,
provides more than 10% improvement in terminal risk R10 over the myopic policy.



70 3 Sequential Testing Theory and Stochastic Optimization Over Time

1 2 3 4 5 6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

k

Rk

6 7 8 9 10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

k

Rk

EWOC
Rollout
Hybrid 2

Fig. 3.2 Cumulative risk Rk for EWOC, rollout of EWOC, and hybrid design

The second hybrid design provides an additional 5% improvement in the terminal
risk R10 and also smaller values of the DLT and OD rates than the rollout design.
The Monte Carlo simulations used to evaluate the operating characteristics and
to fit the hybrid designs were performed by using rejection sampling to simulate
from the posterior distribution. At each stage, the posterior distribution of (ρ ,η)
is continuous and supported on the compact set [0,q]× [xmin,xmax]; hence, the joint
uniform distribution on [0,q]× [xmin,xmax] is a natural candidate for the instrumental
distribution in rejection sampling.

3.8.4 A Two-Stage Modification

When one may have concerns about the validity of the Bayesian parametric model
in this model-based approach, one can readily incorporate the hybrid designs as
the second stage of a two-stage design. For the first stage of such a the two-
stage design, the first stage of which escalates the doses cautiously using the
traditional 3+3 design. For the batches of three in the traditional 3+3 design, we
propose to combine the nonparametric approach with a parametric model-based
dose determining scheme, thereby checking the parametric model to be used for
model-based escalation in the second stage. This modification of the traditional 3+3
design uses a specified set of dose levels

xmin = λ1 < λ2 < · · · ≤ xmax. (3.76)
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Set d1 = λ1 = xmin. In the kth group of three patients, two patients will be treated
at the same dose dk = λ j and one patient at the EWOC dose mk, computed given
the doses and responses of the previous 3(k− 1) patients. If no DLTs occur in the
group of three patients, dk+1 is increased to λ j+1. If one DLT occurs, dk+1 stays the
same at dk = λ j. Otherwise, 2 or 3 DLTS have occurred so the trial is stopped if
dk = xmin and otherwise continued with dk+1 lowered to λ j−1. (Alternatively, it may
be desired to stop when 3 toxicities occur, regardless of what dk was.) Otherwise,
the EWOC dose mk+1 is updated and the process is repeated with next group of
three patients. This process repeats until a certain fraction of the total number n of
patients has been treated, provided the first stage has not been stopped for excess
toxicities. Simulation studies have shown that switchover points around n/3 or n/4
seem to strike a balance between enough time for conservative dose escalation and
model checking during the first stage, while leaving enough time for efficient dose
escalation in the second stage. The benefit of a first stage of conservative dose
escalation occurs when the prior model is misspecified, as shown in the following
example of Bartroff and Lai (2010).

Example 3.2. Babb et al. (1998) used EWOC to design a Phase I trial to determine
the MTD, with p= 1/3, of the antimetabolite 5-fluorouracil (5-FU) for the treatment
of solid tumors in the colon, when taken in conjunction with fixed levels of the
agents leucovorin (20 mg/m2) and topotecan (0.5 mg/m2). In this setting, a toxicity
is considered a grade 4 hematologic or grade 3 or 4 non-hematologic toxicity
within 2 weeks. As mentioned above, EWOC involves specifying pretrial a set of
possible dose values (3.76) believed to contain the MTD, where xmin is taken as
the starting value. Based on preliminary studies of 5-FU given in conjunction with
topotecan, a dose of xmin = 140 mg/m2 of 5-FU was believed to be safe when given
with 0.5 mg/m2 of topotecan. Also, a previous trial concluded that the MTD of 5-
FU was 425 mg/m2 when administered without topotecan, so xmax was taken to
be 425 mg/m2 since 5-FU has been observed to be more toxic when given with
topotecan than alone. The two-parameter logistic model (2.28) was chosen based on
previous experience with the agents, and uniform prior distributions over [xmin,xmax]
and [0,0.2] were chosen for the MTD and the probability Fθ (xmin), respectively. A
feasibility bound of ω = 0.25 was chosen for EWOC and p = 1/3.

Bartroff and Lai (2010) first compare previous designs, which are single stage,
with the rollout (abbreviated by ROLL) of the EWOC design, assuming that m = 0
in ROLL in a single-stage trial of length n = 24. Besides EWOC and its rollout
ROLL, the Bayesian designs they consider include CRM, the constrained D-optimal
design (abbreviated by D-opt) of Haines et al. (2003) with constraint ε = 0.05 and
the unconstrained sequential Bayesian c-optimal design (abbreviated by c-opt) with
c being the vector (0,1)T . The prior density is assumed to be uniform:

π(ρ ,η) = [q(xmax − xmin)]
−1 ·1{(ρ ,η) ∈ [0,q]× [xmin,xmax]} (3.77)
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Table 3.2 Risk, bias, and RMSE of the final MTD estimate, DLT rate, and MTD overdose (OD)
rate, with SEs in parentheses, of various designs with the MTD fixed at the lower 15th percentile
of the misspecified prior

Design Risk Bias RMSE DLT OD

ROLL (a) 1.64 (0.02) −0.031 (0.003) 0.142 (0.025) 30.32% (1.03%) 39.38% (1.09%)
(b) 1.39 (0.02) −0.025 (0.003) 0.145 (0.026) 27.41% (1.00%) 33.39% (1.05%)

Hybrid 1 (a) 1.82 (0.05) −0.032 (0.002) 0.151 (0.027) 36.90% (1.52%) 42.31% (1.56%)
(b) 1.69 (0.04) −0.027 (0.003) 0.131 (0.036) 35.70% (1.51%) 41.11% (1.56%)

EWOC 2.29 (0.02) −0.034 (0.003) 0.155 (0.028) 35.33% (1.07%) 45.98% (1.11%)

CRM 3.83 (0.02) 0.037 (0.004) 0.179 (0.032) 44.18% (1.11%) 65.12% (1.07%)

3+310 1.87 (0.01) 0.060 (0.003) 0.138 (0.024) 17.06% (0.84%) 0.85% (0.21%)

with q = 0.2. The performance of these designs is first evaluated in terms of the
global risk (3.61), in which the squared error g(η̂ ,η) = (η̂ − η)2 for the MTD
estimate η̂ = η̂(xi,yi, . . . ,xn,yn). We then evaluate performance exclusively in terms
of the bias and RMSE of η̂ without taking into consideration the risk to current
patients, noting that the c- and D-optimal designs focus on errors of posttrial
parameter estimates. Finally, since safety of the patients in the trial is the primary
concern of traditional 3+3 designs, performance is also evaluated in terms of the
DLT. Their results show that the effects of considering the “future” patients is
large, with ROLL and Hybrid 1 substantially reducing the global risk from previous
designs in the literature. Moreover, ROLL and Hybrid 1 have DLT rates of 27.68%
and 24.68%, respectively, well below 33% in the simulation study.

If the true MTD falls in the left tail of the prior distribution of η , then the prior
information about the MTD is biased upward, which can cause overdoses. In this
situation, including an initial stage of modified dose escalation, like the modified
3+3 scheme, provides additional safety by refining the prior to be more accurate
when it begins to be used in the second stage. Focusing on the EWOC, CRM,
ROLL, and Hybrid 1 designs, Table 3.2 contains the results of a simulation study
that zeroes in on a situation such as this, where the true MTD is the lower 15th
percentile of the MTD’s nominal uniform prior distribution on [xmin,xmax]. That
is, the data are generated with η fixed at the 15th percentile of [xmin,xmax] and ρ
uniformly distributed over [0,q], with q = .2. The nominal prior for (ρ ,η) used
by the Bayesian procedures in Table 3.2 is (3.77). To see the effects of the first
stage of more conservative dose escalation, the operating characteristics of ROLL
are recomputed using a first stage of length n/4 = 6; the dose levels (3.76) used by
the modified 3+3 design, described in the first paragraph of this section and denoted
3+310, are ten uniformly spaced levels in [xmin,xmax] = [140,425]. Adding this first
stage to ROLL and Hybrid 1 substantially reduces the risk, DLT, and overdose rates,
as shown in Table 3.2, in which (a) refers to the case of n = 24 dose levels without
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the modified 3+3 first stage and (b) refers to the two-stage design using a first stage
of length n/4= 6 consisting of the modified 3+3 design using 10 uniformly spaced
dose levels in [xmin,xmax] = [140,425].

3.9 Supplements and Problems

1. Overshoots, renewal theory, and boundary crossing probabilities.
Wald (1945) ignored the overshoots (LN/B)I{LN≥B} and (A/LN)I{LN≤A} in (3.4)
to arrive at the approximations (3.5) to the error probabilities. Since Pi(N <∞) =
1 for i = 0,1, the likelihood ratio identity in fact gives

P0{LN ≥ B}= E1(L
−1
N I{LN≥B}) = B−1E1e−(lN−b)I{lN≥b},

where ln = logLn = ∑n
i=1 log(qi(Xi|X1, . . . ,Xi−1)/pi(Xi|X1, . . . ,Xi−1)) and b =

logB. In Wald’s setting of i.i.d. Xi, ln is a random walk and renewal theory gives
the limiting distribution of lN − b as b → ∞. Siegmund (1985) introduces this
kind of methods to develop analytic approximations to error probabilities for
sequential tests based on random walks with linear or curved boundaries; the
curved boundaries require nonlinear renewal theory described in his Chap. IX.
Lai (2004, Sect. 4) shows how the likelihood ratio identity can be used to develop
(a) asymptotic approximations to error probabilities in the dependent case and (b)
importance sampling techniques for numerical computation of boundary crossing
probabilities by importance sampling methods.

2. Prove (3.28) and (3.33).
3. Stationary policies and a two-step look-ahead rule.

As shown in Sect. 3.6.2, the optimal policy in an infinite-horizon discounted cost
problem is a stationary policy, which is a time-invariant function of the state at
every time t. In the context of model-based Phase I cancer trials, the state is
the posterior distribution of the parameter θθθ = (α,β ) in the logistic regression
model (2.28). Note that the dose xn for the nth patient in CRM or EWOC depends
only on the posterior distribution Πn−1, that is, xn is a functional f (Πn−1) of
Πn−1. This functional defines {Πk : k ≥ 0} as a Markov chain whose states are
distributions on the parameter space Θ and whose state transitions are given
by the following: Given current state Π (which is a prior distribution of θθθ ),
let x = f (Π) and generate first θθθ from Π and then y ∼ Bern(Fθθθ (x)). The new
state is the posterior distribution of θθθ given (x,y). The functional x = f (Π) for
CRM is EΠ (η), which minimizes the expected squared error loss EΠ [(η− x)2].
EWOC with feasibility bound ω uses the functional x = x(Π) that minimizes the
asymmetric loss function EΠ [�(η ,x)], where

�(η ,x) =

{
ω(η− x) if x ≤ η ,
(1−ω)(x−η) if x ≥ η .
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For the problem of minimizing the global risk (3.61), the optimal doses xi depend
on n − i, where the horizon n is the sample size of the trial, and therefore
are not of the form xi = f (Πi−1). In terms of “individual” and “collective”
ethics, note that (3.61) measures the individual effect of the dose xk on the
kth patient through h(η ,xk) and its collective effect on future patients through
∑i>k h(η ,xi)+ g(η̂n,η). Bartroff and Lai (2011) note that by using a discounted
infinite-horizon version of (3.61), one can still have solutions of the form xi =
f (Πi−1) for some functional f that only depends on Πi−1. Specifically, take a
discount factor 0 < δ < 1 and replace (3.61) by

EΠ0

[
∞

∑
i=1

h(η ,xi)δ i−1

]
(3.78)

as the definition of global risk. This global risk measures the individual effect of
the dose xk on the kth patient through h(η ,xk) and its collective effect on future
patients through ∑i>k h(η ,xi)δ i−k. Hence, the myopic dose xk that minimizes
EΠk−1 [h(η ,x)] for treating the kth patient has to be perturbed such that it also
helps to create a more informative posterior distributionΠk that is used for dosing
future patients. Note that (3.78) does not have the term g(η̂n,η) appearing in the
finite-horizon problem (3.61), but even without this term, the global risk (3.78)
still captures the collective effect of the doses, as indicated above. The dynamic
programming equation (3.24) now becomes

V (Π) = inf
x

EΠ
{

h(η ,x)+ δEΠV (Π+{x})
}
, (3.79)

where Π+{x} is the new posterior distribution of θ after (x,y) is observed, with
y ∼ Bern(Fθθθ (x)) and θθθ ∼Π , by the Bayesian updating scheme.

The main complexity of the infinite-horizon problem is that the dose x for
the next patient involves also consideration for future patients who will receive
optimal doses themselves; these future doses depend on the future posterior
distributions. To reduce the complexity, Bartroff and Lai (2011) consider two
(instead of infinitely many) future patients. This amounts to choosing the next
dose x to minimize EΠ �(η ,x;Π) when the current distribution of θ is Π , where

�(η ,x;Π) = h(η ,x)+λEΠ
{

EΠ [h(η ′,x′)|x1 = x,y1]
}
, (3.80)

in which η ′ = F−1
θθθ ′ (p) with θθθ ′ ∼ Π ′, and Π ′ and x′ are defined below. The first

summand in (3.80) measures the (toxicity) effect of the dose x on the patient
receiving it. The second summand considers the patient who follows and receives
a myopic dose x′ that minimizes the patient’s posterior loss; the myopic dose is
optimal because there are no more patients involved in (3.80). The effect of x
on this second patient is through the posterior distribution Π ′ that updates Π
after observing (x1,y1), with x1 = x. Since y1 is not yet observed, the expectation
outside the curly brackets is taken over y1 ∼ Bern(Fθθθ (x)), with θθθ ∼ Π . Unlike
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0 < δ < 1 in the discounted infinite-horizon problem, the choice of λ > 0
in (3.80) can exceed 1 and reflects the balance between the collective ethics in
generating information for future patients and the individual ethics for the patient
receiving the dose. Even though a single patient is used to represent all patients
following the one receiving the next dose, because the posterior distributions also
change successively, the doses are functionals of these posterior distributions.
Bartroff and Lai (2011) describe how to compute EΠ �(η ,x;Π) and its minimizer.
They also provide a simulation study in the same setting as that in Example 3.2,
showing that the proposed method performs better than EWOC and CRM.

4. Dynamic programming to minimize global risk over discrete dose set.
If one follows the traditional practice of choosing a finite set of doses before
the trial and defines the MTD by (2.41), then dynamic programming, which
is described in (3.62) and (3.63), can be carried out to minimize the global
risk (3.61) when n and the size of the dose set are relatively small. Azriel
(2012) has done this to compare with various myopic model-based designs. His
numerical results show only small improvement (within 3%) over the myopic
designs, unlike those in Tables 3.1 and 3.2 for continuous doses. This suggests
that fixing a small dose set in advance may severely limit learning and exploration
even with a model-based approach and that it may be much better to determine
the doses sequentially from the full dose range, at least for the second stage of
the two-stage modification, described in Sect. 3.8.4, of the hybrid design.



Chapter 4
Group Sequential Design of Phase II
and III Trials

In standard (nonsequential) designs of Phase II or III clinical trials, the sample size
is determined by the power at a given alternative. In practice, especially for new
treatments about which there is little information concerning the magnitude of the
treatment effect before actual data are collected, it is often difficult for investigators
to specify a realistic alternative at which sample size determination can be based.
On the other hand, economic considerations related to funding and duration for
the trial and administrative considerations related to other trials that compete for
patients and investigators impose constraints on the sample size. A sequential
design that can “self-tune” its sample size to the increasing information on the
unknown parameters during the course of the trial, under prespecified constraints
on the maximum sample size and type I error probability, can be used to resolve the
difficulty in calculating a realistic sample size at the design stage for the trial. Unlike
fixed sample size (FSS) trials which unblind the randomization and analyze the data
after trial termination, fully sequential designs involve continuous examination
of the data as they accumulate and often encounter administrative difficulties.
A compromise between fully sequential and FSS designs is a group sequential
design involving interim analyses of the data. As many later-phase trials have Data
and Safety Monitoring Committees (DSMC) who conduct periodic reviews of the
trial, interim analyses can be conveniently carried out by the DSMC.

As noted in Sect. 1.2, there has been steady growth of the methodology and appli-
cations of group sequential designs since the 1980s. The monographs by Jennison
and Turnbull (2000) and Proschan et al. (2006) give an overview of the literature
and describe a variety of group sequential methods, which are first developed for
the “prototypical” problem of testing a normal mean when the variance is known
and then are extended to more complicated problems by appealing to multivariate
central limit theorems. We give a summary of these methods in Sect. 4.1 dealing
with the prototypical problem. Section 4.2 describes a somewhat different approach,
introduced by Lai and Shih (2004), that modifies the relatively complete theory
of fully sequential tests of composite hypotheses for the group sequential setting,
thereby deriving a class of flexible and efficient group sequential designs that can

J. Bartroff et al., Sequential Experimentation in Clinical Trials,
Springer Series in Statistics 298, DOI 10.1007/978-1-4614-6114-2 4,
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self-tune to the unknown parameters. Section 4.3 describes implementation of group
sequential tests, and Sect. 4.4 summarizes the simulation studies of Lai and Shih
(2004) comparing different group sequential tests.

4.1 Group Sequential Tests for a Normal Mean

4.1.1 The Pocock, O’Brien–Fleming, and Wang–Tsiatis Group
Sequential Boundaries

Section 1.2 has introduced the Pocock and O’Brien–Fleming group sequential tests
of H0 : θ = 0 for the mean θ of i.i.d. normal Xi with known variance σ2; see (1.2)
and (1.3) which assume equal group sizes. Let m be the group size so that M = km,
where k is the number of groups, and let ni = im be the total sample size at the ith
interim analysis. Let Sn = X1 + · · ·+Xn. As in FSS tests, the maximum sample size
M is so chosen that the test has power 1−β at prespecified alternative θ1 or −θ1.
Wang and Tsiatis (1987) introduced a more general class of tests that stop and reject
H0 as soon as ∣∣∣∣ Sni√

ni

∣∣∣∣≥ σb

(
i
k

)δ− 1
2
, (4.1)

where 0 ≤ δ ≤ 0.7. The special case δ = 1
2 corresponds to Pocock’s test with the

square-root boundary |Sni | ≥ bσ√ni, while the case δ = 0 corresponds to the test of
O’Brien and Fleming with horizontal boundary |Sni | ≥ bσ

√
M, noting that ni = im.

Wang and Tsiatis (1987) recommended choosing δ to minimize the expected sample
size Eθ1(T )(= E−θ1(T )) in this class of tests. The minimization can be carried out
by a grid search.

4.1.2 One-Sided Group Sequential Tests: Power Family
and Triangular Tests

The preceding two-sided tests, with symmetric stopping boundaries, reject H0 : θ =
0 if |Sni | exceeds some threshold that depends on i. To test the one-sided hypothesis
H ′

0 : θ ≤ θ0, group sequential designs have been developed to stop not only when Sni

exceeds an upper boundary (leading to rejection of H0) but also when Sni falls below
a lower boundary (suggesting “futility” in continuing for eventual evidence against
H0). The futility boundary can be determined by considering an alternative θ1 > θ0.
By shifting the origin, we shall assume without loss of generality that θ0 = −θ1.
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Emerson and Fleming (1989) and Pampallona and Tsiatis (1994) have proposed the
following power family of group sequential tests: stop sampling at stage i ≤ k− 1
if Sni + θ1ni ≥ biσ , rejecting H0, or if Sni + θ1ni ≤ aiσ , accepting H0. If stopping
does not occur before stage k, reject H0 only when Snk +θ1nk ≥ bkσ . The lower and
upper boundaries involve a parameter 0 ≤ δ ≤ 1

2 and are defined by

bi = c1(δ )iδm1/2, ai =
{

2iθ1/σ − c2(δ )iδ
}

m1/2, (4.2)

where c1(δ ), c2(δ ), and m are chosen to yield the prescribed error probabilities at
θ0 and θ1 and to yield ak = bk. The case δ = 0 corresponds to a modified version,
incorporating a futility boundary, of the one-sided O’Brien–Fleming test, and δ = 1

2
corresponds to that of the one-sided Pocock test.

Letting M be the smallest mk, that is, integral multiple of k, such that

mk ≥
(
σ
θ1

)2
[{

(0.583)2

k
+ 2log

(
1

2α

)}1/2

− 0.583

k1/2

]2

, (4.3)

Whitehead and Stratton (1983) proposed to stop at stage i ≤ k − 1 if |Sni | ≥ biσ ,
where

bi =

(
σ
θ1

)
log

(
1

2α

)
− 0.583m1/2− imθ1

2σ
.

When stopping occurs at stage i (1 ≤ i ≤ k), reject H0 if Sni > 0. These “triangular”
tests are in fact a special case of Lorden’s 2-SPRT described in Chap. 3; the term
0.583 in (4.3) arises from a diffusion approximation to the error probabilities.

The power family of tests can be easily extended to two-sided tests of H0 :
θ=0, allowing early stopping not only to reject H0 (demonstrating the treatment’s
efficacy) but also to accept H0 (due to futility of continuing). Specifically, stop at
stage i≤ k−1 if |Sni | ≥ biσ , rejecting H0, or if |Sni | ≤ aiσ , accepting H0. If stopping
does not occur before stage k, reject H0 if |Snk | ≥ bkσ , recalling that ak = bk.
The triangular test has also been extended in this way by Whitehead and Stratton
(1983) as follows. Define M as the smallest mk satisfying (4.3) with θ1 replaced by
θ̃1/2, where

θ̃1 =
2Φ−1(1−α/2)

Φ−1(1−α/2)+Φ−1(1−β ) θ1.

The stopping rule is the same as that of the power family, except that we now define

bi =
(
σ/θ̃1

)
log(1/α)− 0.583m1/2+

(
θ̃1/4σ

)
ni

ai =−(σ/θ̃1
)

log(1/α)+ 0.583m1/2+
(
3θ̃1/4σ

)
ni.

(4.4)
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4.1.3 The Lan–DeMets Error Spending Approach

The assumption of equal group sizes is too restrictive in practice since clinical trial
protocols usually specify the calendar times of interim monitoring, for which the
number ni of subjects available for the ith interim analysis is unknown in advance
and the group sizes ni − ni−1 may be quite uneven. To address this difficulty, Lan
and DeMets (1983) note that (Sn/

√
σ2M, 1 ≤ n ≤ M) has the same distribution

as (W (t), t ∈ {1/M, . . . ,1}). Therefore, given any stopping rule τ associated with
a sequential test of the drift of continuous-time Wiener process, one can obtain a
corresponding stopping rule for testing the common mean θ of the Xi. In particular,
for the null hypothesis that W (t) has zero drift (corresponding to θ = 0), Lan and
DeMets (1983) regard π(t) := P0(τ ≤ t) for t < 1 as the type I error spent, up to time
t, in early stopping to reject the null hypothesis. Given an error spending function
π(t), they propose to transform it to stopping boundaries for Sni via

P0
{|Sni | ≥ ani ,

∣∣Sn j

∣∣< an j for 1 ≤ j < i
}
= π(ni/M)−π(ni−1/M) (4.5)

for 1 ≤ i < k−1; the right-hand side of (4.5) can be regarded as how the type I error
is spent at the ith interim analysis. Letting π(1) = α , they extend (4.5) to cover the
case i = k as well, which means spending whatever is left in the kth analysis so that
the overall type I error is α . Kim and DeMets (1987) and Jennison and Turnbull
(1990) suggest to use error spending functions of the form π(t) = αmin(tρ ,1),
with ρ > 0.

4.2 Group Sequential Generalized Likelihood Ratio
Tests with Modified Haybittle–Peto Boundaries

The Lan–DeMets approach provides a flexible method to modify a continuous-time
stopping rule for the group sequential setting. In view of the relatively complete
theory of fully sequential tests described in Chap. 3, a more direct approach is to
modify this theory for the group sequential setting, taking into consideration its two
distinguishing features, namely, maximum sample size and uneven group sizes. This
approach was used by Lai and Shih (2004) who developed a corresponding theory
for group sequential tests, first in a one-parameter exponential family

fθ (x) = exp(θx−ψ(θ )) (4.6)

of densities, with respect to some measure on the real line, and then in
multiparameter exponential families and more general situations. Although the
normal family with known variance 1 and unknown mean θ , which is a special
case of (4.6) with ψ(θ ) = θ 2/2, is usually chosen to be the prototype in the group
sequential literature, Lai and Shih (2004) consider the more general model (4.6)
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because linearity of ψ ′ in the normal case obscures the general form of nearly
optimal test statistics and stopping boundaries. Moreover, (4.6) includes the
binomial, Poisson, and other commonly used parametric families as special cases,
and its generalization including covariates leads to generalized linear models and
GLMM; see (2.37) and (2.38).

4.2.1 Maximum Sample Size and the Alternative Implied by It

To test the one-sided hypothesis H0 : θ ≤ θ0 in the exponential family (4.6), suppose
the significance level is α and no more than M observations are to be taken
because of funding and administrative constraints on the trial. The FSS test that
rejects H0 if SM ≥ cα has maximal power at any alternative θ > θ0. Although
funding and administrative considerations often play an important role in the choice
of M, justification of this choice in clinical trial protocols is typically based on
some prescribed power 1−β at an alternative θ (M) “implied” by M. The implied
alternative is defined by that M and can be derived from the prescribed power 1−β
at θ (M). Lai and Shih (2004) use this implied alternative to construct the futility
boundary in the group sequential test described below.

4.2.2 Group Sequential GLR Tests with Nearly Optimal
Power and Expected Sample Size

As pointed out in the introductory paragraph of this chapter, one often does
not have much information, prior to a clinical trial, on which to guide the
choice of a realistic alternative for determining the sample size of the trial.
Under the resource constraint of M on the sample size, it is desirable to
adapt to the information on the actual θ gathered during the course of the
trial, allowing early stopping at times of interim analysis, so that the test has
nearly optimal power and expected sample size properties. To achieve these
goals in a group sequential test with k groups and group sizes n1,n2 − n1, . . . ,
nk − nk−1 so that nk = M, we use a rejection region of the form

Snk ≥ c (4.7)

at the kth analysis, where c > cα but c does not differ much from cα . As in the
Lan–DeMets error spending approach, the group sizes can be uneven and need not
be known in advance.

Clearly efficiency of a group sequential test depends not only on the choice of the
stopping rule but also on the test statistics used. For the prototypical normal family
with known variance σ2, S2

n/(2σ2n) is the logarithm of the generalized likelihood
ratio (GLR) statistic for testing H0 : θ = 0, and the sample mean X̄n = Sn/n is the



82 4 Group Sequential Design of Phase II and III Trials

maximum likelihood estimate (MLE) of θ . The GLR statistic for testing θ in the
exponential family (4.6) is nI(θ̂n,θ ), where θ̂n is the MLE of θ given by ψ ′(θ̂n) =
X̄n, and I(γ,θ ) is the Kullback–Leibler information number

I(γ,θ ) = Eγ
[
log
{

fγ (Xi)/ fθ (Xi)
}]

= (γ−θ )ψ ′(θ )−{ψ(γ)−ψ(θ )} . (4.8)

The theory of fully sequential tests in Chap. 3 shows that to test H0 : θ ≤ θ0

versus H1 : θ ≥ θ (M), a sequential GLR test with stopping rule of the form (3.12)
asymptotically minimizes the expected sample size at every θ . When there is a
sample size constraint that imposes an upper bound M and a lower bound m, which
is some fraction of M, the stopping boundaries in (3.12) can be chosen to be time-
invariant (i.e., not varying with n), as noted in (3.14). This suggests the following
group sequential test in Lai and Shih (2004, p. 511): for the ith interim analysis with
1 ≤ i ≤ k− 1, stop the trial if

θ̂ni > θ0, niI(θ̂ni ,θ0)≥ b, (4.9)

or

θ̂ni < θ (M), niI{θ̂ni ,θ (M)} ≥ b̃, (4.10)

for 1 ≤ i ≤ k − 1. If (4.9) holds, reject H0 upon stopping. If stopping occurs
with (4.10), accept H0. In case stopping does not occur in the first k− 1 analyses,
reject H0 if Snk ≥ c, as in (4.7). The thresholds b, b̃, and c are so chosen that
Pθ0 (test rejects H0) = α and the power of the test at θ (M) does not differ much
from its upper bound 1−β .

To determine b, b̃, and c satisfying these properties, Lai and Shih (2004) choose
0 < ε < 1

2 and define b̃ by the equation

Pθ(M)

{
θ̂ni < θ (M) and niI

(
θ̂ni ,θ (M)

) ≥ b̃ for some 1 ≤ i ≤ k− 1
}
= εβ .

After determining b̃, define b and then c by the equations

k−1

∑
j=1

Pθ0

{
θ̂n j > θ0 and n jI(θ̂n j ,θ0)≥ b, niI

(
θ̂ni ,θ0

)
1{θ̂ni>θ0} < b and

niI
(
θ̂ni ,θ (M)

)
1{θ̂ni<θ(M)} < b̃ for i < j

}
= εα,

Pθ0

{
Snk ≥ c, niI

(
θ̂ni ,θ0

)
1{θ̂ni>θ0} < b and

niI
(
θ̂ni ,θ (M)

)
1{θ̂ni<θ(M)} < b̃ for i < k

}
= (1− ε)α.

Because the threshold at the last analysis differs from that used in the previous
k − 1 analyses, the test is similar in spirit to that of Haybittle’s modification of
the repeated significance test for a normal mean described in Sect. 1.2. Actually
Haybittle (1971) and later Peto et al. (1976) specifically proposed using a = 3
in (1.2) and conventional critical values of c for the final test when the number k
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of interim analyses is small. Whereas this does not ensure that the overall type I
error is α , the preceding modified Haybittle–Peto boundary chooses the thresholds
b and c so that Pθ0 (test rejects H0) = α and Pθ(M) (test rejects H0) does not differ
much from the power 1−β of the FSS test at θ (M).

Like Armitage’s repeated significance test (1.2), the Haybittle–Peto test is
actually a two-sided test of H ′

0 : θ = 0, rejecting H ′
0 if |Sn|/

√
σ2ni (or equivalently,

if S2
n/(2σ2ni)) is too large. Here, we consider the one-sided hypothesis H0 : θ ≤ θ0,

and the lower boundary that allows early stopping if (4.10) holds is actually a
futility boundary. Note that (4.10) basically asserts enough evidence against the
implied alternative θ (M) that the fixed sample test uses to determine the sample
size M, and therefore leads to curtailing the test for futility in demonstrating
the alternative hypothesis. Although smaller alternatives than θ (M) may still be
compatible with the data, the maximum sample size M suggests inadequate power
to demonstrate these smaller alternatives. Theorem 3.3 in Chap. 3 shows that the
above group sequential GLR test with modified Haybittle–Peto boundaries attains
the asymptotically minimal value, at each fixed θ , of the expected sample and also
has power at θ (M) comparable to its upper bound 1−β .

In Sect. 3.5, an asymptotic analog of Hoeffding’s lower bound (3.15) is given in
Theorem 3.1, and Lorden’s 2-SPRT and its asymptotic optimality are established in
Theorem 3.2. The ideal choice of θ in the 2-SPRT is the true parameter value, which
is unknown in practice. By making use of Theorem 3.1, Lai and Shih (2004) have
shown that the modified Haybittle–Peto test also attains the asymptotic lower bound
in Theorem 3.1. Specifically, let τ̃ denote the sample size of the modified Haybittle–
Peto test and pθ denote its power at θ > θ0. Let α+β → 0 such that logα ∼ logβ .
Suppose that the k group sizes satisfy (3.17) with nk =M ∼ | logα|/I(θ ∗,θ0), where
θ0 < θ ∗ < θ (M) is defined by I(θ ∗,θ0) = I(θ ∗,θ (M)). Lai and Shih (2004) have
shown that for every fixed θ ,

Eθ (τ̃)∼ nν +ρ(θ )(nν+1 − nν), (4.11)

where ν and ρ(θ ) are the same as in Theorem 3.2 with θ1 = θ (M). They have also
shown that pθ(M) is close to the power of the Neyman–Pearson test whose fixed
sample size M is chosen so that it has power 1−β at θ (M):

pθ(M) = 1−β − (κε+ o(1))β , (4.12)

where κε ∼ {1+(θ (M)−θ ∗)/(θ ∗ −θ0)}ε as ε → 0.
Because stopping can only occur at a few sample sizes, the optimal stopping

rule can be computed numerically by the backward induction algorithm of finite-
horizon dynamic programming described in Sect. 3.6.1. For the relatively simple
prototypical case of a normal mean θ when the variance is known, the optimal group
sequential boundaries that minimize

∫
Eθ (T )dG(θ ) for some normal distribution

(possibly degenerate) G on the real line, subject to prescribed error probabilities at
θ0 and θ1, can be transformed, via Lagrange multiplier, to a Bayes problem that
has prior distribution which is a mixture of G and degenerate distributions at θ0 and
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θ1. Unlike the fully sequential case considered in Sect. 3.7.2, the Bayes problem
for this group sequential setting is computationally tractable. This is similar to the
global risk minimization problem with a discrete set of doses discussed at the end of
Sect. 3.9 versus that with a continuous dose interval in Sect. 3.8. Eales and Jennison
(1992, 1995) have carried this out for several choices of G. Section 4.4 gives a
comparative study of the Eales–Jennison and Lai–Shih approaches.

4.2.3 Two-Sided Tests with or Without Futility Boundaries

To test H0 : θ = θ0 based on a sample of fixed size M, the GLR test rejects H0

if MI(θ̂M ,θ0) exceeds some threshold cα , where Pθ0{MI(θ̂M,θ0) ≥ cα} = α . This
test has power 1− β at the implied alternatives θ+(M) > θ0 and θ−(M) < θ0. A
group sequential test, with k groups and group sizes n1,n2 − n1, . . . ,nk − nk−1 so
that nk = M, having power near 1 − β at θ+(M) and θ−(M) and asymptotically
optimal expected sample size at every given θ , can be constructed by extending
the ideas of the preceding section, as shown by Lai and Shih (2004, p. 512). The
rejection region at the kth analysis has the form nkI(θ̂nk ,θ0) ≥ c, and the stopping
region during the first k− 1 interim analyses has the form

niI
(
θ̂ni ,θ0

)≥ b (4.13)

or

niI
(
θ̂ni ,θ0

)
< b, niI

(
θ̂ni ,θ−(M)

) ≥ b̃− and niI
(
θ̂ni ,θ+(M)

) ≥ b̃+, (4.14)

where c, b, b̃−, and b̃+ will be specified below. If (4.13) occurs, reject H0 upon
stopping. If stopping occurs with (4.14), accept H0.

As in the one-sided case of Sect. 4.2.2, let 0 < ε < 1
2 and define b̃+, b̃− by

Pθ+(M)

{
niI
(
θ̂ni ,θ+(M)

) ≥ b̃+ for some 1 ≤ i ≤ k− 1
}
= εβ ,

Pθ−(M)

{
niI
(
θ̂ni ,θ−(M)

) ≥ b̃− for some 1 ≤ i ≤ k− 1
}
= εβ .

After determining b̃+ and b̃−, define b and then c by the equations

k−1

∑
j=1

Pθ0

{
n jI
(
θ̂n j ,θ0

)≥ b, niI
(
θ̂ni ,θ0

)
< b and

niI
(
θ̂ni ,θ+(M)

)
1{niI(θ̂ni ,θ−(M))≥b̃−} < b̃+ for i < j

}
= εα,

Pθ0

{
nkI(θ̂nk ,θ0)≥ c, niI

(
θ̂ni ,θ0

)
< b and

niI
(
θ̂ni ,θ+(M)

)
1{niI(θ̂ni ,θ−(M))≥b̃−} < b̃+ for i < k

}
= (1− ε)α.
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The inner wedge of the stopping region defined by (4.14) is targeted toward
early stopping under the null hypothesis and nearby alternatives. Similar inner
wedges have been proposed for normal Xi by Whitehead and Stratton (1983) and
Pampallona and Tsiatis (1994); see the last paragraph of Sect. 4.1.2. On the other
hand, the Pocock, O’Brien–Fleming, and Wang–Tsiatis group sequential tests of
H0 : θ = 0 in Sect. 4.1.1 do not have inner futility boundaries. If we remove the
futility boundary (4.14) from the stopping rule, then during the first k− 1 analyses,
we stop and reject H0 as soon as (4.13) holds. In this case, the threshold b in (4.13)
and the critical value c for nkI(θ̂nk ,θ0) are given by

k−1

∑
j=1

Pθ0

{
n jI
(
θ̂n j ,θ0

)≥ b and niI
(
θ̂ni ,θ0

)
< b for i < j

}
= εα,

Pθ0

{
nkI
(
θ̂nk ,θ0

)≥ c and niI
(
θ̂ni ,θ0

)
< b for i < k

}
= (1− ε)α.

4.2.4 Extensions to Multiparameter and Multiarmed Problems

The group sequential tests for the univariate exponential family can be readily
extended to the multiparameter and multiarm settings, as shown by Lai and Shih
(2004, pp. 513–514) in the context of the multiparameter exponential family of
densities fθθθ (xxx) = exp(θθθT xxx −ψ(θθθ)) with respect to some measure ν on R

d , in
which θθθ and xxx are d × 1 vectors belonging to R

d . To test the null hypothesis
H0 : u(θθθ ) = u0, where u is a continuously differentiable real-valued function on the
natural parameter spaceΘ := {θθθ ∈ R

d :
∫

exp(θθθT xxx)dν(xxx) < ∞}, the GLR statistic
based on XXX1, . . . ,XXXni is

Λi = ni

{
θ̂θθ

T
ni

X̄XXni−ψ
(
θ̂θθ ni

)}
− sup

u(θθθ)=u0

ni

{
θθθT X̄XXni−ψ(θθθ )

}
= inf

u(θθθ)=u0

niI
(
θ̂θθ ni ,θθθ

)
,

(4.15)

in which I(θθθ ,λλλ ) is given by (4.8) with ψ ′ denoting the gradient vector∇∇∇ψ of partial
derivatives with respect to the components of θθθ and θ̂θθ ni is the MLE of θθθ given by
∇∇∇ψ(θ̂θθni) = X̄XXni . The modified Haybittle–Peto test of H0 : u(θθθ) = u0 without futility
boundaries again has a stopping region of the form Λi ≥ b during the first k − 1
interim analyses, and its rejection region at the kth analysis has the form Λk ≥ c,
where b and c are determined as in the last paragraph of Sect. 4.2.3.

To test the one-sided hypothesis H0 : u(θθθ) ≤ u0, suppose I(γγγ,θθθ) is increasing
in |u(θθθ )− u(γγγ)| for every fixed γγγ . Then given the maximum sample size nk = M,
we can still define the alternative uM implied by M, that is, uM > u0 is the alternative
at which the fixed sample size GLR test with type I error probability α and sample
size M has power infθθθ :u(θθθ)=uM

Pθθθ{Reject H0} equal to 1−β . Therefore, the group
sequential test in Sect. 4.2.2 can be readily extended to test H0 : u(θθθ)≤ u0.
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A special case of particular interest in clinical trials involves I independent
populations having density functions exp{θix − ψ̃(θi)} with respect to some
measure on the real line, so that θθθT xxx−ψ(θθθ )=∑{θixi−ψ̃(θi)}. The null hypothesis
of equality of population means can be represented by u(θθθ) = 0, where u(θθθ) =
∑{ψ̃ ′(θi)− ψ̃ ′(θ1)}2. In multiarmed clinical trials, for which different numbers of
patients are assigned to different treatments, the GLR statistic Λ̃ j at the jth interim
analysis has the form

Λ̃ j =
I

∑
i=1

ni j
{
θ̂i,ni j X̄i,ni j − ψ̃

(
θ̂i,ni j

)}− sup
u(θ1,...,θI)=u0

I

∑
i=1

ni j
{
θiX̄i,ni j − ψ̃(θi)

}
,

(4.16)

in which ni j is the total number of observations from the ith population up to the
time of the jth interim analysis.

4.3 Implementation and Computational Methods

4.3.1 Asymptotic Normality and Recursive Numerical
Integration

First, consider the prototypical model in which the Xi are independent N(θ ,1), and
let τ = min{i ≤ k : Sni �∈ (ai,bi)}∧ k. Let fi(x) = (d/dx)Pθ{τ > i, Sni ≤ x}, and let
φ and Φ denote the standard normal density and distribution function, respectively.
Then f1(x) = φ((x− n1θ )/

√
n1) for a1 < x < b1, and for i > 1 and ai < x < bi,

fi(x) =
∫ bi−1

ai−1

fi−1(y)φ
(

x− y−θ (ni− ni−1)√
ni − ni−1

)
dy. (4.17)

Moreover,

P(τ = i) =
∫ bi−1

ai−1

fi−1(y)

{
Φ
(

ai − y−θ (ni− ni−1)√
ni − ni−1

)
+ 1

−Φ
(

bi − y−θ (ni− ni−1)√
ni − ni−1

)}
dy.

The recursion is the essence of the recursive numerical integration algorithm of
Armitage et al. (1969). It reduces direct multiple integration to evaluate P(τ = i) by
an i-fold integral to univariate integrals whose integrand is calculated recursively.
Numerical evaluation of the univariate integral involves a quadrature rule that
replaces an integral by a weighted sum, and therefore fi(x) in (4.17) only needs
to be computed on a grid of points. Details are given in Sect. 19.2 of Jennison and
Turnbull (2000).
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A major reason why a normal random walk is used as a prototypical case
in the group sequential literature is that the multivariate distribution of many
group sequential test statistics has a limiting normal distribution with independent
increments; see Sect. 4.5. The adequacy, however, of this normal approximation may
be questionable for many test statistics, even for k = 1. On the other hand, there is
extensive numerical evidence that the signed-root likelihood ratio statistic

Wi = sign
(
u(θ̂θθni)− u0

)√
2niΛi, (4.18)

where Λi is defined in (4.15), is approximately normal with mean 0 and variance
ni under H0 : u(θθθ) = u0 and that the increments Wi −Wi−1 are approximately
independent under H0. We can therefore approximateWi by a sum Sni of independent
standard normal random variables under H0 and thereby determine the thresholds b,
b̃, and c in the modified Haybittle–Peto test in Sect. 4.2; see Sect. 4.5 for details.

4.3.2 Monte Carlo and the Bootstrap for Sequential GLR
Statistics

An alternative to numerical quadrature is to use Monte Carlo simulations to evaluate
boundary crossing probabilities. Although this is an obvious idea, it is far from being
clear which distribution from a composite hypothesis should be chosen to simulate
from. Bootstrap theory (see Sect. 7.2.1) provides an answer to this question. An
important ingredient in this theory is an approximate pivot; a function of the data
for which the sampling distribution does not depend on the unknown distribution
generating the data is called a “pivot.” Since the vector of GLR statistics to test a
null hypothesis is an approximate pivot under that hypothesis, we can simulate from
the estimated distribution under the assumed hypothesis. Further discussion is given
in Sect. 4.5. This asymptotically pivotal property of sequential GLR statistics under
the null hypothesis is related to the jointly normal asymptotic distribution of the
statistics (4.18). Accordingly, we can simulate the joint distribution of the sequential
GLR statistics under the parameter estimated by the constrained MLE satisfying
the null hypothesis. The adaptive or group sequential Bayes tests considered in
Sect. 1.5, however, do not make use of these frequentist principles and therefore
cannot guarantee the prescribed type I error probability, which they try to control
by simulating the error probabilities at certain parameter configurations belonging
to the null hypothesis.

4.3.3 Design, Interim Analysis, and Nonparametric Extensions

At the design stage, in order to calculate the early stopping boundaries b and b̃
for the modified Haybittle–Peto test, one needs to specify the number of interim
analyses and the sample size ni at each interim analysis, considering the univariate
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one-sided hypothesis in Sect. 4.2.2 to fix the ideas. The actual ni during the course
of the trial may differ substantially from those assumed at the design stage. This
does not cause under- or over-spending of the prescribed type I error because the
rejection threshold c for the terminal analysis can be specified after the k−1 interim
analyses, and we can use the actual (rather than assume a priori) ni for 1 ≤ i ≤ k−1
to compute c. Thus, although the modified Haybittle–Peto test does not have the
flexibility of the Lan–DeMets error spending approach that does not have to specify
the ni at the design stage, it can still correct for the misspecification of the previous
ni at the terminal analysis.

In fact, c does not even have to be determined explicitly for the terminal analysis
at maximum sample size M if the trial has not stopped earlier. Let τ̃ denote the
sample size of the test, as in Sect. 4.2.2, and let XXX τ̃ = (X1, . . . ,Xτ̃). Let xxxobs and
θ̂obs denote the observed values of XXX τ̃ and θ̂τ̃ , respectively. Checking whether the
observed value of SM = Mψ ′(θ̂M) exceeds the threshold c if the trial has not stopped
prior to M is equivalent to checking

Pθ0

{
τ̃ < M and θ̂τ̃ > θ0, or τ̃ = M and θ̂M ≥ θ̂obs

}≤ α, (4.19)

in which θ̂obs is treated as a nonrandom constant in the probability calculation. In
fact, the definition of c can also be restated as

Pθ0

{
τ̃ < M and θ̂τ̃ > θ0, or τ̃ = M and Mψ ′(θ̂M)≥ c

}
= α, (4.20)

as the event in (4.20) can be decomposed as a union of two disjoint events, one with
probability εα and the other with probability (1− ε)α . The probability in (4.19),
with θ̂obs treated as nonrandom, can be computed in the same way as that in (4.20).
The advantage of using (4.19) is that we do not have to first solve (4.20) for c and
then check Mψ ′(θ̂M)≥ c. Thus, the probability in (4.19) needs only to be computed
once, whereas one has to compute that in (4.20) for many choices of c to find the one
for which the probability is α . For the multiparameter case, the bootstrap method
can be used to evaluate the extension of the left-hand side of (4.19) to the composite
null hypothesis u(θθθ) = u0. The second supplement in Sect. 4.5 provides further
details on the bootstrap method.

He et al. (2012) have shown how the modified Haybittle–Peto test in the
multiparameter exponential family can be extended to nonparametric group sequen-
tial tests of H0 : u(F,G)≤ 0, where F is the distribution function of the outcome of a
new treatment and G is that of the standard treatment (or placebo) and u(F,F) = 0.
Let n′i be the sample size of the new treatment and n′′i be that of the standard
treatment at the ith interim analysis so that ni = n′i + n′′i , and let X1, . . . ,Xn′i and

Y1, . . . ,Yn′′i be the corresponding outcomes. Let F̂n′i be the empirical distribution

function of X1, . . . ,Xn′i , and Ĝn′′i be that of Y1, . . . ,Yn′′i . Commonly used two-sample
nonparametric test statistics can be written in the form of a generalized Chernoff–
Savage statistic
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Ti =

∫ ∞
−∞

Ji(F̂n′i(x), Ĝn′′i (x))dF̂n′i(x), (4.21)

where Ji : {0,1/n′i,2/n′i, . . . ,1}×{0,1/n′′i ,2/n′′i , . . . ,1}→ R satisfies

1
n′i

n′i
∑
l=1

sup
y∈{1/n′′i ,...,1}

∣∣∣∣Ji

(
L
n′i
,y

)
− J

(
L
n
,y

)∣∣∣∣→ 0

as n′i → ∞, and J : [0,1]× [0,1] → R is twice continuously differentiable except
possibly at (0,0) and (1,1) and satisfies certain regularity conditions near (0,0) and
(1,1). In this case, the function u(F,G) in H0 : u(F,G)≤ 0 is given by

u(F,G) =

∫ ∞
−∞

J(F(x),G(x))dF(x). (4.22)

Since subjects are randomly assigned to the new or standard treatment,

n′i/ni
p→ 1/2, i.e., n′′i = n′i(1+ op(1)). (4.23)

Under (4.23), Ti has the representation

Ti = u(F,G)+
1
n′i

n′i
∑
l=1

(ψ(X1)−Eψ(X1))+
1
n′′i

n′′i
∑
l=1

(ψ∗(Y1)−Eψ∗(Y1))+Ri, (4.24)

where Ri = op(1/
√

n′i) and

ψ(x) = J(F(x),G(x))−
∫ x

0

∂J
∂x

(F(t),G(t))dF(t),

ψ∗(y) = −
∫ y

0

∂J
∂y

(F(t),G(t))dF(t); (4.25)

see He et al. (2012). Therefore, under equal randomization to the two treatments,
n′iTi behaves asymptotically like a normal random walk under H0 and under local
alternatives, and the problem of testing H0 : u(F,G) ≤ 0 versus H1 : u(F,G) ≥ δ
can be approximated by that of group sequential testing of H ′

0 : μ ≤ 0 versus H ′
1 :

μ≥δ based on i.i.d. normal random variables Z1,Z2, . . . with mean μ = u(F,G) and
variance

σ2 = VarF=G(ψ(X))+VarF=G(ψ∗(Y )), (4.26)

whereψ and ψ∗ are given by (4.25). Note that F =G is the boundary case of H0 and
that F(X) and G(Y ) are Uniform(0,1) random variables. Under local alternatives,
the asymptotic variance of Ti is the same as that under F = G, and therefore, the
variance formula (4.26) still holds for local alternatives. Therefore, similar to the
signed-root likelihood ratio statistic (4.18), the modified Haybittle–Peto test can
also be applied to the generalized Chernoff–Savage statistics (4.24); see Sect. 4.5.
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4.4 Comparison of Group Sequential Tests

Lai and Shih (2004) have carried out extensive simulation studies to compare the
performance of different group sequential tests for the prototypical problem of
testing the mean θ of normal Xi with known variance 1. Performance is measured
in terms of power and expected sample size at various alternatives, besides the
maximum sample size and expected sample size under the null hypothesis, subject
to a type I error constraint α .

4.4.1 One-Sided Tests

Here, we consider one-sided group sequential tests of H0 : θ ≤ θ0 with error
probability α = 0.05 and θ0 < 0, and with k = 5 groups of equal size m so that
the maximum size is M = km. The alternative chosen for the tests in Sect. 4.1.2 is
taken to be θ1 = |θ0|, which we also choose to be the implied alternative θ (M),
with α̃ = 0.05, for the group sequential test with modified Haybittle–Peto boundary
in Sect. 4.2.2, denoted by ModHP. Besides these group sequential tests, we also
consider the FSS test with sample size n∗ and the tests of Eales and Jennison (1992)
mentioned in the last paragraph of Sect. 4.2.2. Letting

F1 = E0(T ), F2 = Eθ1(T ), F3 = E2θ1(T ), F5 =
∫

Eθ (T )dG(θ ),

where G is normal with mean 0 and standard deviation θ1, Eales and Jennison (1992)
considered the group sequential test F†

i , with five groups of equal size and maximum
sample size tn∗, that minimizes Fi subject to the prescribed error probabilities at θ0

and θ1, i = 1,2,3,5.
To compare the results of Eales and Jennison (1992, Table 2) on the values

of F1/n∗, F2/n∗, F3/n∗, and F5/n∗ for their tests F†
1 , F†

2 , F†
3 , and F†

5 that uses
t = 1.155 with the corresponding values of ModHP, we adjust the ε in Sect. 4.2.2
so that the ModHP has the same error probability α̃ at θ1 and maximum sample
size M = tn∗ for t = 1.155. Let F0 = E−θ1/2(T ) denote the expected sample size
at −θ1/2, which is the midpoint between the null hypothesis −θ1 and 0, where F1

is computed. Table 4.1 gives the values of F0, F1, F2, F3, and F5, normalized by
n∗, and the power functions of these tests. Also given in Table 4.1 for comparison
are (a) the FSS Neyman–Pearson test, (b) ModHP with t = 1, for which ε = 1/3,
(c) the triangular test of Whitehead and Stratton (see Sect. 4.1.2), and (d) tests in
the power family (4.2) with δ = 0, 0.2, 0.4, and 0.5. The results show that all the
group sequential tests have power close to that of the FSS test at the alternatives
considered and that the possibility of early termination, due to crossing either the
efficacy or futility boundary, in the group sequential tests has led to substantial
savings in expected sample size over the FSS test. With 15.5% inflation in maximum
sample size over n∗, ModHP has expected sample sizes close to those of the optimal
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Table 4.1 Maximum and expected sample sizes and power functions of the test with fixed sample
size n∗ and one-sided group sequential tests with maximum sample size tn∗

Power (%) at ηθ1

η
Test t F0/n∗ F1/n∗ F2/n∗ F3/n∗ F5/n∗ 0.154 0.512 0.779 1.000

FSS 1.0 1.000 1.000 1.000 1.000 1.000 60.0 80.0 90.0 95.0
ModHPε=1/3 1.0 0.762 0.814 0.636 0.397 0.678 57.7 78.0 88.4 93.9
Triangular 1.336 0.728 0.783 0.612 0.420 0.656 60.1 80.3 90.1 94.9
F†

1 1.155 0.736 0.792 0.616 0.419 0.662 60.0 80.2 90.1 95.0
F†

2 1.155 0.740 0.801 0.607 0.391 0.658 60.0 80.3 90.1 95.0
F†

3 1.155 0.777 0.845 0.627 0.378 0.683 60.1 80.4 90.2 95.0
F†

5 1.155 0.737 0.796 0.607 0.396 0.657 60.0 80.3 90.1 95.0
ModHP 1.155 0.756 0.822 0.613 0.381 0.668 60.1 80.4 90.2 95.0
PFδ=0.0 1.085 0.772 0.818 0.669 0.494 0.707 60.0 80.0 90.0 95.0
PFδ=0.2 1.169 0.741 0.794 0.628 0.435 0.670 60.0 80.2 90.1 95.0
PFδ=0.4 1.380 0.727 0.787 0.598 0.397 0.649 60.2 80.5 90.3 95.0
PFδ=0.5 1.577 0.735 0.802 0.598 0.401 0.655 60.4 80.7 90.3 95.0

values given by F†
j . In comparison, the triangular test requires 33.6% inflation

of the maximum sample size, while tests in the power family with δ = 0.4, 0.5
require 38.0% and 57.7% inflation of the maximum sample size. Note that ModHP
with ε = 1/3 requires no inflation in maximum sample size, that is t = 1, and has
94% power at θ1. Whereas the theory in (4.13) and (4.14) allows a lot of latitude
in the choice of ε to define modified Haybittle–Peto tests that are asymptotically
optimal as α + α̃ → 0, there is a trade-off between power and expected sample
size in choosing ε for finite sample situations. Choosing small ε increases power
but decreases the chance of early stopping, making the test more like the FSS test.
Simulation studies have shown that choosing ε between 1/3 and 1/2 for ModHP
strikes a good balance between power and expected sample size in practice.

4.4.2 Two-Sided Tests Without Futility Boundaries

Eales and Jennison (1995) developed tests that minimize Eθ1(T ) subject to error
probabilities not exceeding α and α̃ at 0 and θ1, respectively, assuming a maximum
sample size of tn∗, where t > 1 and n∗ is the FSS of the uniformly most powerful
invariant test having these error probabilities. Besides the F†

2 that minimizes F2 =

Eθ1(T ), they also consider the test F†
5 that minimizes F5 =

∫
Eθ (T )dG(θ ), where G

is normal with mean 0 and standard deviation θ1, similarly to the corresponding one-
sided tests in the preceding section. Table III of Eales and Jennison (1995) reports
the values of F2/n∗ and F5/n∗ for their tests F†

2 and F†
5 in the case k = 5. These

values, normalized by n∗, do not depend on θ1. Here, α = α̃ = 0.05 and t = 1.05
or 1.10. To compare with corresponding values in the modified Haybittle–Peto test,
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Table 4.2 Comparison of various two-sided tests without futility boundaries, with n∗ being the
fixed sample size that yields 95% power at θ1

Power (%) at ηθ1

η =

Test t F2/n∗ F5/n∗ 0.614 0.689 0.777 0.831 0.899 1.000

F†
2 1.05 0.634 0.765 59.2 69.5 79.6 84.8 89.9 95.0

F†
5 1.05 0.635 0.764 59.2 69.4 79.6 84.8 89.9 95.0

WTδ=0.195 1.05 0.652 0.778 59.3 69.5 79.7 84.8 89.9 95.0
ModHP 1.05 0.646 0.769 59.2 69.3 79.7 84.8 89.9 95.0

F†
2 1.1 0.611 0.771 58.4 68.8 79.3 84.5 89.8 95.0

F†
5 1.1 0.612 0.770 58.4 68.8 79.3 84.5 89.8 95.0

WTδ=0.195 1.1 0.617 0.774 58.6 68.9 79.3 84.6 89.8 95.0
ModHP 1.1 0.616 0.772 58.5 68.8 79.3 84.6 89.8 95.0

OBF 1.02 0.694 0.795 59.5 69.6 79.7 84.7 89.9 95.0
Pocock 1.19 0.603 0.800 57.1 67.7 78.7 84.1 89.6 95.0
HP 1.02 0.723 0.794 59.8 69.8 80.0 85.0 90.0 95.0
WTδ=0.25 1.06 0.640 0.776 59.3 69.5 79.7 84.8 90.0 95.0
ModHPε=1/3 1.04 0.668 0.774 59.5 69.6 79.8 84.9 90.0 95.0

OBF 1.0 0.685 0.782 58.6 68.7 78.9 84.0 89.2 94.5
Pocock 1.0 0.561 0.698 49.6 59.8 70.9 76.9 83.5 90.7
HP 1.0 0.718 0.784 59.2 69.2 79.4 84.5 89.6 94.7
WTδ=0.25 1.0 0.619 0.737 56.6 66.7 77.1 82.5 88.0 93.7
ModHPε=1/3 1.0 0.657 0.753 58.0 68.1 78.4 83.7 89.0 94.3

we adjust the ε in the last paragraph of Sect. 4.2.3 so that the test has the same error
probability α̃ at θ1 and maximum sample size tn∗. The results are given in Table 4.2.
Also given for comparison are the values of F2/n∗ for the Pocock, O’Brien–Fleming
(OBF), Haybittle–Peto (HP), and Wang–Tsiatis (WT) tests described in Sect. 4.1.1.
The maximum sample sizes of these tests have values other than 1.05n∗ and 1.1n∗.
In addition, we compute F5/n∗ of these tests. Also included in Table 4.2 is the
modified Haybittle–Peto test that uses ε = 1/3, giving a maximum sample size of n∗.
Table 4.2 considers power not only at θ1 but also over a range of alternatives where
the FSS test has a reasonable chance of rejection H0. It can be seen that, when the
maximum sample size is not inflated over the FSS, the power loss, as compared to
the FSS test, is negligible for the O’Brien–Fleming and Haybittle–Peto tests, and
also for ModHPε=1/3, but can be substantial for Pocock’s test. When the maximum
sample size is inflated by 5% or 10%, the modified Haybittle–Peto test performs
nearly as well, in terms of expected sample size and power, as Eales and Jennison’s
optimal tests F†

2 and F†
5 and as the Wang–Tsiatis test. Furthermore, ModHPε=1/3

shows sample size savings over the O’Brien–Fleming test that has similar maximum
sample size and power over the range of alternatives considered.
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Table 4.3 Power (%) and Eθ (T )/n∗ (in parentheses) of various two-sided tests

η FSS ModHPε=1/3 α∗
1 α∗

2 α∗
3 α∗

4 α∗
5

(a) Evenly spaced analyses
1.00 95 (1) 94.3 (0.66) 94.6 (0.70) 91.1 (0.56) 92.3 (0.58) 93.4 (0.60) 93.8 (0.62)
0.90 90 (1) 89.0 (0.72) 89.4 (0.75) 84.0 (0.63) 85.9 (0.64) 87.4 (0.66) 88.3 (0.68)
0.83 85 (1) 83.7 (0.77) 84.2 (0.78) 77.6 (0.67) 79.8 (0.69) 81.3 (0.70) 82.8 (0.72)
0.78 80 (1) 78.4 (0.80) 79.1 (0.81) 71.6 (0.71) 74.1 (0.72) 76.3 (0.74) 77.5 (0.76)
0.69 70 (1) 68.1 (0.85) 68.9 (0.85) 60.5 (0.77) 63.2 (0.78) 65.7 (0.79) 67.1 (0.81)
0.61 60 (1) 58.0 (0.88) 58.9 (0.89) 50.3 (0.81) 53.0 (0.82) 55.5 (0.83) 57.0 (0.85)

(b) More frequent late analyses
1.00 95 (1) 94.5 (0.67) 94.4 (0.71) 91.0 (0.58) 92.2 (0.59) 93.2 (0.62) 93.7 (0.64)
0.90 90 (1) 89.3 (0.73) 89.0 (0.75) 83.9 (0.64) 85.7 (0.65) 87.2 (0.67) 88.0 (0.70)
0.83 85 (1) 84.1 (0.78) 83.8 (0.78) 77.5 (0.68) 79.6 (0.69) 81.5 (0.71) 82.5 (0.73)
0.78 80 (1) 79.0 (0.81) 78.5 (0.81) 71.5 (0.71) 73.9 (0.72) 76.0 (0.74) 77.2 (0.76)
0.69 70 (1) 68.7 (0.85) 68.3 (0.85) 60.5 (0.77) 63.0 (0.78) 65.3 (0.79) 66.7 (0.81)
0.61 60 (1) 58.6 (0.89) 58.2 (0.88) 50.5 (0.81) 53.0 (0.82) 55.3 (0.83) 56.5 (0.85)

(c) More frequent early analyses
1.00 95 (1) 94.0 (0.69) 94.8 (0.77) 91.9 (0.61) 93.0 (0.62) 93.4 (0.65) 94.3 (0.68)
0.90 90 (1) 88.3 (0.76) 89.8 (0.82) 85.1 (0.67) 86.7 (0.69) 88.2 (0.71) 88.9 (0.74)
0.83 85 (1) 82.8 (0.80) 84.7 (0.85) 78.8 (0.72) 80.8 (0.73) 82.7 (0.75) 83.6 (0.78)
0.78 80 (1) 77.5 (0.81) 79.6 (0.87) 72.9 (0.75) 75.3 (0.76) 77.4 (0.79) 78.4 (0.81)
0.69 70 (1) 67.0 (0.87) 69.6 (0.91) 61.9 (0.80) 64.5 (0.81) 66.9 (0.83) 68.1 (0.85)
0.61 60 (1) 56.9 (0.90) 59.6 (0.93) 51.7 (0.84) 54.3 (0.85) 56.9 (0.87) 58.1 (0.89)

Here, each test has maximum sample size n∗, with n∗ being the fixed sample size that yields 95%
power at θ1. The alternatives considered are ηθ1

4.4.3 Unequal Group Sizes That Are Not Prespecified

When the group sizes, not necessarily equal, are unknown at the beginning of the
trial, the modified Haybittle–Peto test can still be applied directly, whereas F†

5 and
the O’Brien–Fleming and Pocock tests have to be implemented via error-spending
functions; see Sect. 4.1.3. Lai and Shih (2004, pp. 519–520, 522–523) have shown
that not only is the modified Haybittle–Peto test more convenient in this case but it
can also outperform the error-spending approach. Consider group sequential trials
for which the maximum sample size is the same as that of the FSS test but the
group sizes are unknown at the beginning of the trial. Kim and DeMets (1987)
considered group sequential tests, generated by five error-spending functions, for
three analysis plans: (a) evenly spaced analyses at n = (0.2,0.4,0.6,0.8,1.0)n∗; (b)
more frequent late analyses at n = (0.3,0.6,0.8,0.9,1.0)n∗; and (c) more frequent
early analyses at n = (0.1,0.2,0.3,0.6, 1.0)n∗, where n∗ is the sample size of the
FSS test that has 95% power at θ1. The first two error-spending functions, α∗

1 and
α∗

2 , generate boundaries similar to those of the O’Brien–Fleming and Pocock tests,
respectively. The other three error-spending functions (α∗

3 ,α
∗
4 ,α

∗
5 ) lie between α∗

1
and α∗

2 . Table 4.3 gives the power functions and expected sample sizes of these
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five tests over the region where the FSS test has power ranging from 0.6 to 0.95.
Also given for comparison are the values for ModHPε=1/3. Each of these results is
based on 10000 simulations. For all three analysis plans, ModHPε=1/3 has power
comparable to that of the α∗

1 test, while its expected sample size, in parentheses and
normalized by n∗, is smaller than that of the α∗

1 test. The α∗
2 test has the smallest

expected sample size for all alternatives, but its power at small alternatives can be
lower than that of the FSS test by as much as 10%.

Lai and Shih (2004) have also applied ModHP to the problem of testing H0 : p1 =
p2 concerning the success probabilities p1 and p2 of two treatments in a randomized
two-armed trial, in which the sample size ni j for the two treatment arms can be
different at the jth interim analysis and the group sizes n j = n1 j + n2 j can vary
over j. Consider the case of known and equal group sizes, for which n j = ( j/k)nk.
Let p̂i j be the proportion of successes for the ith treatment at the jth interim analysis,
and let

p̂ j = (n1 j p̂1 j + n2 j p̂2 j)/n j, σ̂2
j = p̂ j(1− p̂ j)(n

−1
1 j + n−1

2 j ), Zj = (p̂1 j − p̂2 j)/σ̂ j.

(4.27)

Suppose each subject is randomly allocated to either treatment. Then ni j = n j/2+

Op(
√

n j) and therefore σ̂2
j = n−1

j {4p(1− p)+Op(n
−1/2
j )} under H0 : p1 = p2 = p

and under the local alternatives p1 = p, p2 = p+Op(n
−1/2
k ). Hence, {Zj/σ̂ j,1≤ j ≤

k} has asymptotically normal increments under H0 and under the local alternatives
as the common group size becomes infinite, and therefore, group sequential tests of
θ = 0 for the mean θ of a normal distribution can be extended to test H0 : p1 = p2;
see Sect. 4.3.1. In particular, the Pocock and O’Brien–Fleming tests, with maximum
sample size n∗, can be used to test p1 = p2 by replacing Sn j/(σ

√
n j) by Zj.

The equal-probability assignment can also be extended to the following adaptive
treatment allocation scheme that attempts to reduce the expected sample size from
the inferior treatment. Take 1/2 < q < 1. Start with equal-probability assignment to
either treatment. At the jth interim analysis (1 ≤ j ≤ k−1), call the population with
the larger p̂i j the “leading population” and assign it with probability q to subjects
between the jth and ( j+ 1)st analyses. When there is no leading population, that is
p̂1 j = p̂2 j, use equal-probability assignment between the jth and ( j+1)st analyses.
For this adaptive allocation scheme, we still have ni j = n j/2 + Op(

√
n j) under

H0 : p1 = p2, and therefore, the preceding group sequential tests using the normal
approximation to control the type I error probability can still be applied to test H0

with the adaptive treatment allocation scheme.
Suppose the group sizes are unknown at the beginning of the trial. The modified

Haybittle–Peto test can still be applied directly, but the Pocock and O’Brien–
Fleming group sequential tests have to be implemented via their error-spending
functions. The error-spending approach requires specification of the maximum
information, which in the present case is 1/σ̂2

k , where σ̂2
j is defined in (4.27).

Since σ̂2
k is not available until the kth analysis, we need to replace it by some

approximation. Noting that 1/σ̂2
k = nk/{4 p̂ j(1− p̂ j) +Op(n

−1/2
k )} under H0 and
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the assumption liminf n1/nk > 0, we can implement the error-spending approach
by using nk/{4 p̂ j(1 − p̂ j)} at the jth interim analysis as an approximation to
the maximum information under H0. With this approximation, the proportion
of maximum information at the jth interim analysis is 4n1 jn2 j/(n jnk) ≤ n j/nk.
Table 4.4 assumes k = 5 groups and M = 100. Table 4.4a assumes equal group
sizes and adaptive treatment allocation. Table 4.4b considers equal-probability
assignment to either treatment but takes 15, 15, 20, 25, 25 for the five group sizes n1,
n2 −n1, . . . ,n5 −n4. Table 4.4c uses the same group sizes as those in Table 4.4b and
adaptive treatment allocation as in Table 4.4a. The Pocock and O’Brien–Fleming
tests are implemented by the preceding error-spending approach. Each result is
based on 5000 simulations. One reason for the substantial inflation of the type I
error probability for the error-spending methods in Table 4.4 is the difficulty in
estimating the maximum information, which is not yet observable at the time of the
jth interim analysis but is needed in the error-spending approach. Although under
H0 : p1 = p2 random treatment allocation in Table 4.4b suggests approximating n1k

and n2k both by nk/2, sampling fluctuations may result in substantial difference
between n−1

1k +n−1
2k and 4/nk. Moreover, despite their asymptotic equivalence under

H0, 4/nk is no longer asymptotically equivalent to n−1
1k + n−1

2k under alternatives
because of adaptive treatment allocation. This explains why ModHP, which does
not require estimation of the maximum information, outperforms the error-spending
approach to implement the Pocock and O’Brien–Fleming methods (α∗

1 and α∗
2 ,

respectively) because of unknown group sizes at the beginning of the trial.

4.5 Supplements and Problems

1. Limiting joint distributions of group sequential GLR and nonparametric
statistics.
For samples of fixed size ni, the asymptotic normality of the signed-root
likelihood ratio statistic (4.18) under u(θθθ) = u0 is a standard result in likelihood
theory. It is related to the asymptotic normality of the constrained maximum
likelihood estimator and can be proved by linearization of fθθθ around u(θθθ ) =
u0 and approximating the (d − 1)-dimensional hypersurface u(θθθ) = u0 by a
hyperplane at every point belonging to the hypersurface. This linearization
argument shows that (4.18) can be written as a sum of i.i.d. zero-mean and
unit-variance random variables plus a remainder term that is of order op(

√
ni).

Another related consequence of this linearization argument is Wilks’ theorem
that the GLR statistic has a limiting χ2

1 -distribution. For the sequential GLR
statistics W1, . . . ,Wk, their joint asymptotic normality follows from the random
walk approximation, with Wi depending on XXX1, . . . ,XXXni . Since the XXXi are i.i.d.,
the independent increments property of the jointly normal limiting distribution of
(W1, . . . ,Wk) follows. Working with Wi provides a simpler and more transparent
derivation of the joint limiting distribution than working directly with the group
sequential MLEs in Jennison and Turnbull (2000, Sect. 3.1 and Chap. 11).
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For nonparametric test statistics of the type (4.21), a similar linearization
argument together with some technical arguments involving the limiting distribu-
tion of

√
n′i(F̂n′i −F) can be used to prove the random walk approximation (4.24).

2. Bootstrap method for the multivariate extension of left-hand side of (4.19).
The probability in (4.19) under the parameter value θ0, which is the largest value
in the null hypothesis θ ≤ θ0, can be easily computed by Monte Carlo if one
does not want to use normal approximations. For the multivariate null hypothesis
H0 : u(θθθ) ≤ u0, bootstrap theory for tests and confidence intervals, which will
be described more fully in Chap. 7, can be applied to show that the Monte
Carlo simulations can be carried out under Pθ̃θθM

, where θ̃θθM is the constrained
maximum likelihood estimator of θθθ under the constraint u(θθθ) = u0. Chapter 7
also extends this approach to nonparametric and semiparametric tests in more
general models and points out the importance of using appropriate pivots in the
bootstrap approach to tests and confidence intervals.

3. Local alternatives assumed at the design stage.
Finding the implied alternative can be quite difficult in multivariate exponential
families or for nonparametric hypotheses concerning (F,G). As the maximum
sample size for typical confirmatory trials is seldom small, the power calculations
to determine the implied alternative at the design stage can assume local
alternatives under which the test statistics are still approximately normal random
walks. Using normal random walk approximations under both the null and the
implied (local) alternative reduces the problem to that of a locally asymptotically
normal (LAN) family, in which the relationship between the sample size M
and the implied alternative θθθ (M) is relatively simple. Section 6.5.2 will explain
further and illustrate this point in the context of censored rank statistics.

4. Show that the Wilcoxon statistic is a special case of generalized Chernoff–Savage
statistics and write a program to carry out a group sequential Wilcoxon test, with
k = 5 groups, of H0 : u(F,G)≤ 0.5 using modified Haybittle–Peto boundaries and
using equal randomization to the X and Y groups, where u(F,G) = PF,G(X <Y ),
subject to 5% type I error probability and a maximum total size of M = 600.

5. Efficacy and futility stopping.
Early stopping, prior to reaching the maximum sample size M, in the modified
Haybittle–Peto test, is related to either crossing an upper boundary and rejecting
H0, or crossing a lower boundary and accepting H0. The former amounts to
efficacy stopping, claiming that the trial has shown the new treatment to be
efficacious, and the latter is tantamount to futility stopping, making a no-go
decision as there is sufficient evidence that the treatment effect is not large
enough for it to lead to a successful claim at the scheduled end of the trial
with M observations. Although futility stopping does not inflate the type I error,
care must be taken so that there is little loss of power compared to the FSS
test that takes M observations based on the power calculations at the design
stage. In Sect. 4.2, we have assumed the futility stopping to be “binding” in
the sense that the futility stopping boundary is strictly followed. This explains
the “coupled” inequalities for not crossing either boundary in the probabilities
defining b, b̃, and c in Sect. 4.2.
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6. A major reason why we have used a binding stopping rule in Sect. 4.2 is
to provide a group sequential analog of the fully sequential GLR test (3.12).
In practice, one may want to have the flexibility to override the futility stopping
rule during the course of the trial since it does not inflate the type I error. Explain
how you would modify the probability specifications for b, b̃, and c in Sect. 4.2
to make futility stopping nonbinding.

7. Group sequential versus adaptive designs.
Note that the ni are fixed in advance in a group sequential design, whereas
they are determined adaptively from the data in an adaptive design to which we
have referred in Sect. 1.5. For more complex group sequential designs that are
considered in Chaps. 6 and 7, the ni need not be the sample size but may represent
total information, such as total number of events, up to the ith interim analysis.
Note that the information used to represent ni does not include the treatment
difference between the two groups. It can be regarded as information under
the null hypothesis that the treatment and control groups have the same effect.
The error probability calculation, therefore, is more complicated for adaptive
designs in which the ni can depend on the observed outcomes up to ni−1, but still
makes use of the Markov property of the test statistics to carry out recursive
numerical integration or can be evaluated by the bootstrap method that uses
Monte Carlo simulations.

8. Group sequential designs in Phase II cancer trials.
Section 2.5 has introduced typical designs for Phase I cancer trials whose goal is
to find the maximum tolerated dose (MTD). Because the tumor response rate for
a cytotoxic treatment increases with dose, the goal of Phase II trials is to test if
the MTD is effective in treating the tumor. The clinically definitive endpoint for
cancer treatments, however, is survival rather than tumor response and is tested
in Phase III trials. As pointed out by Vickers et al. (2007, p. 927), in a typical
Phase II study of a novel cancer treatment, “a cohort of patients is treated, and
the outcomes are compared to the prespecified target or bar. If the results meet or
exceed the target, the treatment is declared worthy of further study; otherwise,
further development is stopped. This has been referred to as the ‘go/no-go’
decision. Most often, the outcome specified is a measure of tumor response, e.g.,
complete or partial response using Response Evaluation Criteria in Solid Tumors,
expressed as a proportion of the total number of patients. Response can also be
defined in terms of the proportion who have not progressed or who are alive at a
predetermined time (e.g., 1 year) after treatment is started.” Note that the no-go
decision corresponds to futility stopping.

The most widely used designs for these single-arm Phase II trials are Simon’s
(1989) optimal two-stage designs, which allow early stopping of the trial if the
treatment, using the dose chosen at the end of the Phase I trial, has not shown
beneficial effect that is measured by a Bernoulli proportion. These designs are
optimal in the sense of minimizing the expected sample size under the null
hypothesis of no viable treatment effect, subject to type I and type II error
probability bounds. Given a maximum sample size M, Simon considered the
optimal stopping problem involving rules of the form that stops for futility after
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m < M patients if the number of patients exhibiting positive treatment effect is
r1(≤ m) or fewer, and otherwise treats an additional M −m patients and rejects
the treatment if and only if the number of patients exhibiting positive treatment
effect is r2(≤ M) or fewer. Simon’s designs require that a null proportion p0,
representing some “uninteresting” level of positive treatment effect, and an
alternative p1 > p0 be specified. The null hypothesis is H0 : p ≤ p0, where
p denotes the probability of positive treatment effect. The type I and II error
probabilities Pp0{Reject H0}, Pp1{Accept H0} and the expected sample size
Ep0N can be computed for any design of this form, which can be represented
by the parameter vector (m,M,r1,r2). Using computer search over these integer-
valued parameters, Simon (1989) tabulated the optimal designs in his Tables 4.1
and 4.2 for different values of (p0, p1). Note that Simon’s designs are group
sequential designs with two groups and early stopping only for futility; there is
no early stopping for efficacy.

Whether the new treatment is declared promising in a Phase II trial depends
strongly on the prescribed p0 and p1. In their systematic review of 134 papers
reporting Phase II trials in J. Clin. Oncology or Cancer, Vickers et al. (2007)
found 70 papers referring to historical data for their choice of the null or
alternative response rate, and that nearly half (i.e., 32) of these papers did
not cite the source of the historical data used, while only nine gave clearly a
single historical estimate of their choice of p0. Moreover, no study “incorporated
any statistical method to account for the possibility of sampling error or for
differences in case mix between the Phase II sample and the historical cohort.”
The modified Haybittle–Peto test applied to this setting chooses p1 to be the
alternative where the FSS test, with type I error probability α at p0, has power
1−β , that is, choosing p1 to be the solution of FM,p1(F

−1
M,p0

(1−α)) = β , where
FM,p is the distribution function of the Bin(M, p) distribution. The GLR statistic
at the ith stage is

ni

[
p̂ni log

(
p̂ni

p j

)
+(1− p̂ni) log

(
1− p̂ni

1− p j

)]
, j = 0,1.

Because the maximum sample size for a typical Phase II cancer trial is small,
the number k of groups in the modified Haybittle–Peto test is necessarily small.
Bartroff and Lai (2008a) proposed to use k = 3 and determine n2 adaptively
after the first interim analysis. The enhancement of the modified Haybittle–Peto
design is a special case of adaptive designs introduced in Sect. 8.2.1. Its stopping
rule can be stated in terms of the number of cumulative successes Sni at the ith
stage, i = 1,2. Table 4.5 describes the adaptive design (denoted by ADAPT) and
Simon’s (1989) optimal two-stage design (denoted by Sim2) for two choices
of m, M, α, β , and p0, and Table 4.6 contains their operating characteristics,
computed exactly using the Bin(n, p) distribution. ADAPT has expected sample
size close to Sim2 for p near p0, and smaller sample size when p is roughly
midway between p0 and p1 or is larger; p1 = 0.3 in the top panel of Table 4.6 and
p1 = 0.44 in the bottom panel. The expected number of stages shows a similar
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Table 4.5 Description of ADAPT and Sim2 for two cases

Sm ADAPT Sim2 (p1 = 0.3 or 0.44)

(a) m = 10, M = 29, p0 = 0.1, α = 0.05, β = 0.2
≤ 1 Accept H0 Accept H0

2 n2 = M; reject H0 if Sn2 ≥ 6 n2 = M and
3 n2 = 20 reject H0 if SM ≥ 6

(i) If Sn2 ≤ 3, accept H0

(ii) If Sn2 ≥ 6, reject H0

(iii) If 4 ≤ Sn2 ≤ 5 and SM ≥ 6, reject H0

≥ 4 Reject H0 n2 = M; rej. H0 if SM ≥ 6

(b) m = 30, M = 82, p0 = 0.3, α = β = 0.1
≤ 8 Accept H0 Accept H0

9 n2 = 57 Accept H0

(i) If Sn2 ≤ 19, accept H0

(ii) If Sn2 ≥ 24, reject H0

(iii) If 20 ≤ Sn2 ≤ 23 and SM ≥ 32, reject H0

10−13 n2 = M; reject H0 if Sn2 ≥ 31 n2 = M and
≥ 14 Reject H0 reject H0 if SM ≥ 30

Table 4.6 Expected sample size, power (in parentheses), and expected
number of stages (in brackets) of Phase II designs

p ADAPT Sim2

(a) m = 10, M = 29, p0 = 0.1, α = 0.05, β = 0.2
0.05 11.6 (0.3%) [1.1] 11.6 (0.2%) [1.1]
p0 = 0.1 14.5 (5.0%) [1.3] 15.0 (4.7%) [1.3]
0.2 18.8 (43.3%) [1.6] 21.9 (43.1%) [1.6]
p1 = 0.3 18.1 (79.4%) [1.6] 26.1 (79.6%) [1.8]
0.4 14.8 (94.9%) [1.4] 28.1 (95.0%) [2.0]
0.5 12.1 (98.9%) [1.2] 28.8 (98.9%) [2.0]
0.6 10.1 (99.9%) [1.0] 29.0 (99.9%) [2.0]

(b) m = 30, M = 82, p0 = 0.3, α = β = 0.1
0.2 34.9 (0.3%) [1.1] 33.2 (0.03%) [1.1]
p0 = 0.3 51.8 (10.0%) [1.5] 51.4 (10.0%) [1.4]
0.35 60.4 (35.0%) [1.7] 63.4 (36.2%) [1.6]
p1 = 0.44 52.9 (88.7%) [1.5] 77.7 (87.8%) [1.9]
0.5 42.4 (98.4%) [1.3] 80.9 (97.5%) [2.0]
0.6 31.9 (99.9%) [1.0] 82.0 (99.9%) [2.0]

pattern, while their power functions are nearly identical. Note that even though
ADAPT has a maximum of three stages; its expected number of stages is less
than 2 for all p and usually close to 1.



Chapter 5
Sequential Methods for Vaccine Safety
Evaluation and Surveillance in Public Health

In this chapter we describe the applications of sequential testing methodology to
the problem of testing the incidence rates of adverse events in vaccine clinical
trials and post-marketing safety evaluation. Section 5.1 describes typical design
considerations for vaccine safety evaluation and the application of the SPRT and
its other sequential tests that have been applied to test vaccine safety. It also reviews
recent developments in vaccine safety evaluation and the interest in sequential
methods spurred by these developments. Section 5.2 describes the work of Shih
et al. (2010) who introduced a new class of sequential generalized likelihood ratio
(GLR) tests, a key ingredient of which is an exponential family representation of
the rare event sequence under the commonly assumed model of Poisson arrivals
of adverse events. Section 5.3 gives an illustrative example from the Rotavirus
Efficacy and Safety Trial (REST). Section 5.4 describes post-marketing surveillance
for vaccine and drug safety. In Sect. 5.5 we move beyond pharmacovigilance and
describe change-point detection methods in public health surveillance. In particular,
we show how the sequential GLR tests of Chaps. 3 and 4 can be modified into
moving window sequential GLR detection schemes for quick detection of changes,
subject to a constraint on the false-alarm rate.

5.1 Vaccine Safety Evaluation

Despite the significant public health impact seen from the introduction of vaccines,
the safety of vaccines continues to receive considerable attention and has raised a
variety of issues. First, the withdrawal of a rotavirus vaccine (a tetravalent rhesus–
human reassortant rotavirus vaccine, RRV-TV) in 1999 has raised public concerns
on vaccine safety and hence the balance of benefit and risk of a vaccine product;
see Murphy et al. (2001). Second, unlike other therapeutic products, vaccines are
typically given to healthy people and even to vulnerable populations such as infants
and young children. In addition, many vaccines are universally recommended
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and mandated for schooling and some special programs (e.g., military service),
where the tolerance of vaccine risk is low. Hence, ensuring vaccine safety is
important in public health activities and policies. Pre-licensure vaccine clinical
trials usually involve selected populations who receive the vaccine according to
a protocol-defined administration method and who are followed for a limited
period after vaccination. Some commonly encountered adverse events, such as
fever and injection site reaction, are easily observable and documented in vaccine
clinical trials; however, a small number of extremely rare and sometimes potentially
life-threatening adverse events may not be seen in such trials in spite of their
large sample size. Hence, many regulatory agencies require that post-approval
surveillance be implemented to monitor potential safety issues after the introduction
of a new vaccine or vaccine component. Examples of post-approval vaccine safety
surveillance include the Vaccine Adverse Event Reporting System (VAERS) and
Vaccine Safety Datalink (VSD); see Ellenberg et al. (2005), Greene et al. (2011),
and Nelson et al. (2012). Sequential safety monitoring is now common practice in
vaccine clinical trials and post-licensure surveillance; see Davis et al. (2005), Lieu
et al. (2007), and Kulldorff et al. (2011). The goal of sequential monitoring is quick
detection of the association of adverse events that might be caused by the vaccine
so that a confirmatory investigation and/or medical evaluation into the association
can be launched.

5.1.1 Design Considerations for Clinical Trials
to Test Vaccine Safety

Safety profiles of vaccine candidates evolve throughout evaluations in laboratories,
animals, phased human clinical trials, as well as post-marketing surveillance; see
Chen et al. (2005). It is crucial to recognize that vaccines are different from
most pharmaceutical products in many ways; understanding these differences is
important in designing safety studies of vaccines. First, the safety standard is
generally higher for vaccines than for drugs. Unlike therapeutic products, vaccines
are usually administered to healthy populations, some of whom may be vulnerable
children and infants. Some vaccines are universally recommended and as a result are
administered to a large number of people. Hence, “first do no harm” is the widely
accepted principle in public health, and a much lower risk tolerance is expected.
Second, given that the duration of observation in prelicensure clinical trials is often
less than 30 days (sometimes 42 days) after vaccination, the rarity of certain serious
adverse events often necessitates a large sample size. For instance, with an incidence
rate of 1 in 2000 person years and 30 days of postvaccination follow-up period after
each of three-dose vaccinations, a sample of 60,000 subjects is required in order to
observe approximately ten such events. Third, vaccines are biologically derived and
variations in biological activities can occur. This is further complicated by variations
in biological manufacturing processes such as formulation, fermentation, and virus



5.1 Vaccine Safety Evaluation 103

sensitivity to storage condition, which together contribute to the variability of
biologic activities. These factors may contribute to the adverse experience profile of
the vaccine. In addition, many vaccines are combinations of multiple active biologic
agents, and it is generally difficult, if not impossible, to attribute an adverse event
to a particular agent. Finally, unlike drugs for which substitute therapies may be
available, vaccines prevent significant morbidity and mortality and usually do not
have many alternative options. Hence the decision to withdraw a vaccine should be
made with extra care according to risk and benefit balance.

Safety assessment of a vaccine is an ongoing process throughout the product’s
life cycle. Statistical aspects of design and analysis play an important role in
this process. The study design, such as the choice of endpoints, sample size, and
study duration, is driven by the objectives, hypotheses, and prespecified criteria
for success, which may vary depending on whether the vaccine is (a) the first
vaccine for a particular disease or a vaccine for which a safety issue has been
identified for similar vaccine products, or (b) for vulnerable populations, or (c) to
be recommended for universal application. A continuous safety monitoring system
is often used to detect increased risk of targeted adverse events as early as possible.
In addition, it is widely recognized that the trial should have provisions for early
termination due to unsafe outcomes associated with the vaccine during interim
monitoring, which would minimize the risk to study participants.

5.1.2 Application of SPRT and Other Sequential Tests

The design considerations for vaccine safety evaluation described in Sect. 5.1.1 pave
the way for adopting fully sequential tests, beginning with the application of the
SPRT by Davis et al. (2005) and the subsequent introduction of MaxSPRT by Lieu
et al. (2007) and the conditional MaxSPRT by Li and Kulldorff (2010). Suppose
X1,X2, . . . are independent random variables with a common density f and one is
interested in testing H0 : f = f0 versus H1 : f = f1. Let Rn = ∏n

i=1 f1(Xi)/ f0(Xi)
denote the likelihood ratio based on X1, . . . ,Xn. The sequential probability ratio test
(SPRT) stops sampling at stage

T = inf{n ≥ 1 : Rn ≥ B or Rn ≤ A} (5.1)

and accepts H0 (or H1) if RT ≤ A (or RT ≥ B), where A and B are chosen to
satisfy the type I and type II error probability constraints α = P0{RT ≥ B} and
α̃ =P1{RT ≤A}. As shown in Sect. 1.2, the thresholds A and B can be approximated
by using Wald’s approximations to the error probabilities: A ≈ ( α̃

1−α ) and B ≈
( 1−α̃
α ). Dvoretzky et al. (1953) extended the SPRT to continuous-time processes

with independent increments.
To apply the SPRT to vaccine safety testing, Lieu et al. (2007) and Kulldorff

et al. (2011) assume that the number Nt of adverse events within d days following
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vaccination given to m subjects in a clinical trial during the period [0, t] follows a
Poisson process with known mean μt for the population at risk. For subjects who
have received the vaccine, they assume that the mean number of adverse events is
still μt under H0 but increases to ρμt under H1 with known ρ > 1. This is often
called the “Poisson model” in the safety evaluation literature; see Greene et al.
(2011, p. 584). The stopping rule of the continuous-time SPRT in this case is of
the form T = inf{t > 0 : Rt ≥ B or Rt ≤ A}, where the likelihood ratio Rt is the ratio
of the density functions of Nt under Hi (i = 0,1):

Rt =
e−ρμt (ρμt)

Nt/Nt !

e−μtμNt
t /Nt !

= ρNt e−(ρ−1)μt . (5.2)

Because in practice it is often difficult to come up with an appropriate choice of ρ
for the alternative hypothesis, Lieu et al. (2007) maximize (5.2) over ρ ≥ 1, yielding

R̂t = sup
ρ>1
ρNt e−(ρ−1)μt = exp{−(ρ̂t − 1)μt +Nt log ρ̂t} , (5.3)

where ρ̂t =max(1,Nt/μt) is the constrained MLE of ρ (≥ 1) at time t. They propose
to use the stopping rule

T̂ = inf
{

t > 0 : R̂t ≥ B
}

(5.4)

and to reject H0 if R̂T̂ ≥ B; see also Kulldorff et al. (2011). They call the test a
MaxSPRT and use Monte Carlo simulations to determine its type I error probability
and the power at various alternatives. Noting that the SPRT and the MaxSPRT do not
have bounded stopping rules, Lieu et al. (2007) consider a variant of (5.4) that stops
the trial at time T̃ = min(T̂ , t∗) and rejects H0 if R̂T̃ ≥ B, accepting H0 otherwise.

Earlier, Davis et al. (2005) conducted a retrospective study that uses data
submitted by the health maintenance organizations (HMOs) to the VSD from 1995
through 2000. The data are first segmented into weekly cohorts of vaccinated
children. The weekly data are partitioned into a baseline period, which is defined
as a period before the introduction of the new vaccine considered in the study, and
the surveillance period beginning with the introduction of the vaccine. Each week’s
dataset is used to count the number of children receiving the vaccine for that week
and the number diagnosed with adverse events within 30 days after the vaccination.
Thus, Xi in this case is binomial(ni, p), where ni is the number of children vaccinated
in week i and Xi counts how many of them experience adverse events within the 30-
day window. The null hypothesis is H0 : p = p0, where p0 is determined from the
event rate in the baseline period, and the alternative hypothesis is H1 : p = p1, where
p1 is based on the effect size that the study wants to detect, for example, p1 = 2p0.
Davis et al. (2005) propose to use the SPRT to test H0 versus H1 based on the
independent binomial random variables Xi with density function

(ni
Xi

)
pXi(1− p)ni−Xi ,

which belong to an exponential family with natural parameter θ = log(p/(1− p)).
This is often called the “binomial model”; see Greene et al. (2011, p. 585).

Instead of working with the Poisson process Nt , we can work with the interarrival
times Xi between successive adverse events. These are independent exponential
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random variables with means ξi. First, assume that μt = λ t and therefore all the ξi

are equal to ξ = 1/λ . The Xi belong to the exponential family fλ (x) = λe−λ x with
natural parameter θ =−λ . The SPRT for testing H0 : λ ≤ λ0 versus H1 : λ ≥ λ1 is

T = inf{n ≥ 1 : Rn ≥ b or Rn ≤ a}, (5.5)

where Rn = n log(λ1/λ0)− (λ1 −λ0)Sn, Sn =∑n
i=1 Xi. Since the MLE is λ̂n = n/Sn,

the stopping rule of the MaxSPRT is

T̂ = inf{n ≥ 1 : λ0Sn − n− n log(λ0Sn/n)≥ b} (5.6)

for b > 0. From the theory of sequential tests of one-sided hypotheses in Chap. 3, a
more efficient extension of the SPRT is the sequential GLR test with stopping rule

τ = inf

{
n ≥ 1 : max

j=0,1

[
λ jSn − n− n log(λ jSn/n)− b j

]
≥ 0

}
, (5.7)

rejecting Hj upon stopping if λ jSτ − τ− τ log(λ jSτ/τ)≥ b j. The truncated version
of MaxSPRT can be regarded as a sequential GLR test without a lower boundary.
The more general case in which Xi ∼ Exp(λi) have rates λi varying with i, as in
Lieu et al. (2007), can be converted back to the i.i.d. case by considering X ′

i = Xiλi ∼
Exp(1). For more general μt , we can still work with exponential interarrival times Xi

with known means ξi for the population at risk and ρξi for those who have received
the vaccine. The hypotheses can be formulated as H0 : ρ ≥ 1 versus H1 : ρ ≤ 1− ε ,
with ε > 0. In this case, letting λ0 = 1 and λ1 = 1/(1− ε), (5.7) can be generalized
to

τ = inf

{
n ≥ 1 : max

j=0,1

[
λ j

n

∑
i=1

ξ−1
i Xi − n− n log

(
λ j

n

∑
i=1

ξ−1
i Xi/n

)
− b j

]
≥ 0

}
,

and (5.5) and (5.6) can be generalized similarly.
Li and Kulldorff (2010, p. 286) note that in practice the μt in (5.2) are “usually

estimated from historical data collected before the beginning of the surveillance
among a cohort of subjects with no exposure to the vaccine” and that the random
fluctuation in the estimates has not been considered in (5.4) or the MaxSPRT. For the
MaxSPRT, they have found from a simulation study that estimating μt from a
historical cohort with a small number of events can lead to inflation of the type
I error probability. They therefore propose not to require a known baseline mean
function μt for adverse events but to condition the maximized likelihood ratio Lk

(based on the interarrival times of the adverse events up to the time of the kth event
in the surveillance group) on the total number of adverse events in the historical
cohort during that surveillance period. The conditional maximized likelihood has an
explicit form, but its sampling distribution under the null hypothesis of no increase
in adverse event rate for the vaccinated group is complicated and has to be evaluated
by Monte Carlo simulations; see Sect. 5.6 for further details.
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5.2 Sequential GLR Tests in Prelicensure Randomized
Clinical Trials

5.2.1 An Exponential Family Representation
of Sequential GLR Tests

Consider a clinical trial in which subjects are randomized to receiving vaccine or
placebo. Assume that the arrivals of adverse events follow a Poisson process, with
rate λV for vaccine (V) and λC for placebo (C) recipients. This assumption will be
relaxed later by allowing the rates to vary with time. When an event occurs, it is
associated with either V or C and

P(V |event occurs at time t after previous one)

=
λV e−λV t · e−λCt

(λV +λC)e−(λV+λC)t
=

λV

λV +λC
. (5.8)

Suppose adverse events occur at times T1 < T2 < .. . and the event indicator at Ti is
δi = 1 for V or 0 for C. Let τi = Ti −Ti−1. Since the Poisson interarrival times are
i.i.d. exponential, it follows from (5.8) that the likelihood function of (λV ,λC) based
on the observations (Ti,δi), 1 ≤ i ≤ n, is

n

∏
i=1

[(
λV

λV +λC

)δi
(

λC

λV +λC

)1−δi

(λV +λC)e−(λV+λC)τi

]
. (5.9)

The goal of a prelicensure randomized clinical trial is to show that the vaccine
product is safe. This can be formulated as testing H0 : λV/λC ≤ 1 versus H1 :
λV/λC ≥ γ , where γ > 1. Let p = λV

λV+λC
. Then λV/λC ≥ γ if and only if p ≥

γ
1+γ . Let p0 = 1/2 and p1 = γ/(1 + γ). In view of (5.9), the likelihood ratio

statistic for testing H0 versus H1 is ∏n
i=1(

p1
p0
)δi( 1−p1

1−p0
)1−δi . Hence there is no loss

of information in working with the Bernoulli distribution; that is, the actual event
times contain no additional information about λV/λC beyond that provided by the
type (V or C) of the events. This argument also applies to λV,i and λC,i that vary
with i, since ∏n

i=1(λV,i + λC,i)e−(λV,i+λC,i)τi is cancelled out in the likelihood ratio
statistic, as the δi are still independent Bernoulli random variables with means
πi = λV,i/(λV,i +λC,i). The appendix of Shih et al. (2010) describes an algorithm
to implement the GLR test, for which a software package has been developed using
R and is available at the book’s website.

The SPRT for testing H0 : πi ≤ p0 versus H1 : πi ≥ p1 (for all i) is

T = inf{n ≥ 1 : ln ≥ b or ln ≤ a}, (5.10)
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where ln = ∑n
i=1{δi log( p1

p0
)+ (1− δi) log( 1−p1

1−p0
)} and a < 0 < b. The SPRT does

not have a bounded stopping rule. The GLR statistic for testing p j ( j = 0,1) has
logarithm

ln, j =
n

∑
i=1

{
δi log(p̂n/p j)+ (1− δi) log [(1− p̂n)/(1− p j)]

}
, (5.11)

where p̂n =(∑n
i=1 δi)/n. The truncated MaxSPRT has stopping rule T̃ =min{T̂ ,n∗},

where

T̂ = inf{n ≥ 1 : ln,0 ≥ bp̂n > p0}, (5.12)

and rejects H0 if lT̃ ,0 ≥ b.
A more efficient extension to composite hypotheses than the MaxSPRT is the

sequential GLR test

τ = inf{n≥ 1 : ln,0 ≥ b0 and p̂n > p0, or ln,1 ≥ b1 and p̂n < p1}. (5.13)

It is in fact asymptotically efficient for testing H0 : p ≤ p0 versus H1 : p ≥ p1;
see the asymptotic theory of sequential GLRs for testing one-sided hypotheses in
exponential families in Sects. 3.4 and 3.7.3. The stopping rule (5.13) is bounded
above by n∗, where n∗ is the smallest integer n such that nI(p∗) ≥ max(b0,b1) and
p∗ ∈ (p0, p1) is the solution of the equation

p∗ log

(
p∗

p0

)
+(1− p∗) log

(
1− p∗

1− p0

)
= p∗ log

(
p∗

p1

)
+(1− p∗) log

(
1− p∗

1− p1

)
,

whose common value is denoted by I(p∗). Note that (5.13) introduces a lower
boundary into (5.12) to allow early stopping for “futility” in the sense that the
vaccine is unlikely to be shown unsafe by the prescheduled end of the trial (after
observing n∗ adverse events).

5.2.2 Implementation and Example

For a given type I error probability α and type II error probability α̃ , the
thresholds in the stopping rule of the SPRT can be approximated by using Wald’s
approximations. The thresholds of the truncated MaxSPRT test and the sequential
GLR test can be obtained by solving for the largest positive constants that satisfy
the error probability constraints. For example, if Xi ∼ Exp(λ ), the threshold b of the
MaxSPRT truncated at n∗ is the solution of Pλ0

(lT̃ ,0 ≥ b)=α , where T̃ =min(T̂ ,n∗)
and T̂ is given by (5.12); the thresholds b0,b1 of the stopping rule (5.13) of the
sequential GLR test are the solutions of Pλ0

(lτ,0 ≥ b0) = α and Pλ1
(lτ,1 ≥ b1) = α̃ .

Because the Xi are independent, these error probabilities can be computed by
recursive numerical integration using the Markov property of the random walk ln or



108 5 Sequential Methods for Vaccine Safety Evaluation and Surveillance in Public. . .

Table 5.1 Power and expected sample size for various sequential tests of H0 :λV /λC = 1
versus H1 : λV /λC ≥ 3 in a two-armed prelicensure clinical trial

SPRTb
1 SPRTb

2

λV /λC GLRa γ = 2.0 3.0 5.0 γ = 2.0 3.0 5.0 MaxSPRTc
1 MaxSPRTc

2

(a) Expected total number of events

1.0 17.4 37.0 16.2 8.3 35.8 16.2 8.3 957.4 96.5
2.0 29.4 45.2 27.6 14.4 43.4 27.4 14.4 63.8 49.2
3.0 21.8 26.2 20.3 14.2 26.2 20.3 14.2 28.2 24.5
4.0 16.5 20.3 15.9 12.4 20.3 15.9 12.4 19.3 17.1
5.0 13.6 17.6 13.7 11.0 17.6 13.7 11.0 15.4 13.9

(b) Probability of rejecting H0

1.0 0.041 0.044 0.043 0.044 0.042 0.043 0.044 0.050 0.048
2.0 0.642 0.914 0.647 0.398 0.860 0.639 0.398 1.000 0.865
3.0 0.931 0.994 0.926 0.729 0.993 0.925 0.730 1.000 0.998
4.0 0.979 0.999 0.978 0.873 0.999 0.978 0.873 1.000 1.000
5.0 0.991 1.000 0.992 0.932 1.000 0.992 0.932 1.000 1.000
aThe thresholds b0 = 3.466 and b1 = 2.773 are chosen such that pλV /λC=1 (reject H0) ≤
0.05, pλV /λC=3 (accept H0)≤ 0.10
bTruncated at n∗ = 1000 (SPRT1) or n∗ = 100 (SPRT2); γ is the assumed alternative value
of λV /λC in the likelihood ratio statistic. The thresholds a = −2.251 and b = 2.890 are
obtained by using Wald’s approximations to boundary crossing probabilities
cTruncated at n∗ = 1000 (MaxSPRT1, b = 4.130) or n∗ = 100 (MaxSPRT2, b = 3.466).
The threshold b is chosen such that pλV /λC=1( reject H0)≤ 0.05

ln, j. If Xi is discrete, the integration is replaced with summation. When n∗ is large,
it is more convenient to use Monte Carlo simulations instead of recursive numerical
integration to compute the error probabilities.

Example 5.1. Shih et al. (2010) have carried out a simulation study on a
prelicensure randomized clinical trial to test H0 : λV/λC = 1 versus H1 : λV/λC ≥ 3,
with prescribed type I error probability α = 0.05 and type II error probability
α̃ = 0.1 at λV/λC = 3. Table 5.1 gives the expected sample size and power
for the SPRT, MaxSPRT, and the sequential GLR test, whose stopping rules
are given by (5.10), (5.12), and (5.13). The SPRT and MaxSPRT are truncated
at 1000 or 100 events (2 cases); 100 is the maximum number of events for
the sequential GLR test. To determine the thresholds of the stopping rules, the
boundary crossing probabilities of the SPRT are obtained by Wald’s approximations,
and those of MaxSPRT and the sequential GLR test are computed by using
recursive numerical summation. Table 5.1, whose results are computed by recursive
numerical summation, shows the superior performance of the sequential GLR test
in two-armed randomized trials.
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5.2.3 Discussion

As noted in Sect. 1.2, although refinements and modifications of Wald’s SPRT
for the design of clinical trials had been developed in the 1950s, they received
little attention from the biomedical community until the Beta-Blocker Heart Attack
Trial (BHAT). The main reason for this lack of interest is that the sample size
for a typical trial is too small to allow further reduction while still maintaining
reasonable power at the alternatives of interest. The success of BHAT led to the
development and increasing use of group sequential designs in Phase III clinical
trials. The development of vaccine safety tests in the past decade seems to have
given fully sequential methods a surge of interest that had been lacking in clinical
trials since the 1950s. For rare adverse events following vaccination (V) or placebo
(C) injection, the effective sample size is the total number of adverse events in the
sample of a large number of subjects accrued over a number of years. Section 5.2.1
has shown how this effective sample size can be used to develop an efficient
sequential test comparing the event rates of the V and C treatments in a prelicensure
randomized clinical trial. An additional advantage of the information-based design
is that one can adjust, without altering the type I and type II error probabilities,
the total number of subjects accrued per year and the number of years as the trial
progresses, based on the observed adverse event rate of the combined V and C
groups as the trial progresses. Section 5.5.3 will discuss an important difference,
in the formulation of the null hypothesis, between safety evaluation and efficacy
testing for a new drug or vaccine, but the fully sequential and group sequential
methodologies described in Chaps. 3 and 4 are applicable to both kinds of testing
problems.

5.3 The Rotavirus Efficacy and Safety Trial (REST)

The REST is a blinded, placebo-controlled clinical trial conducted in 11 countries
between 2001 and 2004, to assess the efficacy and safety of a pentavalent human–
bovine reassortant rotavirus vaccine (RV5). Infants between 6 and 12 weeks of age
were randomized at a 1:1 ratio to receive either three doses of RV5 or placebo.
All infants were monitored for serious adverse events for at least 42 days after
each dose, which is the typical time frame for observation of adverse events
following live virus vaccines. The primary safety hypothesis was that RV5 would
not increase the risk of intussusception, relative to placebo, within 42 days after
any dose. This concern of potential increased risk of intussusception, which is a
serious yet uncommon illness with a background incidence rate of 18–56 cases
per 100,000 infant years during the first year of life, stems from the withdrawal
of a tetravalent rhesus–human reassortant rotavirus vaccine (RRV-TV) in October
1999 when the post-licensure safety surveillance revealed a substantial short-term
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increase in the risk of intussusception among RRV-TV recipients, primarily in the
exposure window 3–14 days after the first dose; see Murphy et al. (2001, 2003) and
Heyse et al. (2008).

Assuming that the arrivals of intussusception cases follow a Poisson process,
with rate λV for vaccine and λC for placebo recipients, as in Sect. 5.2, Heyse et al.
(2008) made use of the fact that conditional on total number n of cases from both
groups, the number of vaccine cases is binomial(n, p), where p = λV/(λV + λC).
They therefore applied a repeated significance test that terminates the study after n
intussusception cases are observed and declares the vaccine to be unsafe if

P{Binomial(n, p0)≥ #n(V )} ≤ 0.025, (5.14)

where #n(V ) denotes the number of vaccine cases among the n cases and p0 = 1/2.
The study is also terminated and declares the vaccine to be safe if

P{Binomial(n, p1)≤ #n(V )} ≤ 0.025, (5.15)

where p1 = 10/11, corresponding to a ten-fold increase in risk for the vaccine
group. Although the nominal significance level of 0.025 in (5.14) or (5.15) does
not adjust for repeated analysis of the accumulated data, Monte Carlo simulations
(involving 10000 random sequences) showed that the probability for the study to
stop with a positive conclusion regarding vaccine safety is 0.94 for a vaccine with
no increased risk of intussusception, and the probability for the study to declare
the vaccine to be unsafe is almost 1 for relative risks of 6 or greater; see Heyse
et al. (2008). This conservative approach is appropriate given the nature of the
safety evaluation. Section 5.2 provides a methodological innovation that leads to
independent Bernoulli random variables without conditioning on the total number
of events, thereby making conventional sequential tests directly applicable (to these
independent Bernoulli observations).

During the study, all suspected cases of intussusception were promptly reported
to, and adjudicated by, an independent, blinded adjudication committee. The study
stopped enrollment upon the recommendation of the Data and Safety Monitoring
Board (DSMB) when about 70,000 infants had completed their follow-up. At that
time, there were 11 confirmed cases of intussusception, 6 in the vaccine group and
5 in the placebo group. Figure 5.1 summarizes the sequentially accumulated data
and the boundaries of (a) the repeated significance test (5.14)–(5.15) and (b) the
sequential GLR test (5.13). Here, p0 = 1/2 and p1 = 10/11. The lower boundary of
the repeated significance test was crossed, confirming the safety of the vaccine, and
therefore the DSMB recommended to stop the study since the predefined criteria
were met. If the sequential GLR test (5.13) had been used instead, the lower
boundary would also have been crossed at the same time.

In the REST study, the lower “safe” boundary actually used a group sequential
design for the DSMB to conduct interim analysis, starting with a minimum of
60,000 infants and subsequent groups of 10,000 infants. Therefore, stopping at the
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Fig. 5.1 Stopping boundaries of the repeated significance test and sequential GLR test for the
REST study, where the unsafe boundaries are in dashed lines and the safe boundaries in dotted
lines. Also given are the observed data (solid lines)

lower boundary involves the total number of intussusception cases of the vaccine
and placebo recipients up to the time of each interim analysis. The implementation
methods described in Sect. 5.2 can be easily modified to handle this situation.

5.4 Post-marketing Surveillance of Drug Safety

Post-marketing drug or vaccine safety surveillance is essential for public health and
safety as the limited sample size, study duration, and target population reflected in
the inclusion/exclusion criteria of the preapproval clinical trials make it virtually
impossible to detect all possible side effects. Pharmacovigilance systems have been
established in different parts of the world. In the USA, such systems include VAERS
(see the first paragraph of Sect. 5.1) and MedWatch that are passive surveillance
systems accepting voluntary reports on adverse events associated with approved
vaccines and drugs. Active surveillance systems using health plans’ electronic
medical claims data that contain information about both exposure and adverse
events status have also been developed in the past two decades. An example is the
VSD project mentioned in Sect. 5.1, which is a collaborative effort between the
Centers for Disease Control and Prevention (CDC) and eight large health plans.
Another example is the Post-Licensure Rapid Immunization Safety Monitoring
(PRISM) program, established by the FDA in 2009 to monitor the safety of the
H1N1 influenza vaccine using data from national health insurance plans and
immunization registries; see Nguyen et al. (2012). PRISM is now integrated into
the Mini-Sentinel program initiated by the FDA in 2009 as part of its Sentinel
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Initiative. Mini-Sentinel is a collaborative effort between the FDA and 31 academic
and private organizations to use routinely collected electronic healthcare data to
perform active surveillance of the safety of marketed medical products including
drugs, biologics, and medical devices.

Nelson et al. (2012, p. 63) point out that sequential testing offers a “particularly
promising approach” to post-marketing surveillance evaluations of the safety of
regulated medical products by monitoring electronic healthcare records that are
routinely collected by insurance plans. They mention MaxSPRT as an example
that has successfully detected an increased risk of seizure after receiving a new
combination vaccine and Li’s (2009) conditional sequential sampling procedure
(CSSP) as a promising new tool designed specifically to handle confounding of
observational data.

The CSSP is a group sequential method to test if a new drug D leads to an
elevated risk for an adverse event compared with an established drug C. The method
is designed for prospective drug safety surveillance studies in which, for each
considered drug, a summary table with the exposed person-times and the associated
numbers of adverse events within each of the strata (defined by several potential
confounders) is updated periodically using the health plans’ administrative claims
data. It was motivated by a retrospective study using the administrative claims
data collected from 2000 to 2005 by nine large integrated healthcare systems. As
noted in Sect. 5.1.2, the Poisson-based MaxSPRT method requires the availability
of rich historical data to provide reliable estimates of the expected numbers μt of
adverse events for drug D under the null hypothesis. To apply the MaxSPRT in this
retrospective study, all available data for the comparison drug C collected during
the entire study period are used as historical data to obtain an estimate of μt . This
requirement would not be satisfied in prospective studies in which both drugs D and
C are new. To address this issue, CSSP assumes a semiparametric Poisson regression
model for the numbers of adverse events within each stratum for each drug. The
parameter of interest is the relative risk; the nuisance parameters in the model reflect
possible temporal effect on event risks and population heterogeneity. Using the
relative risk as the test statistic, the CSSP test is based on the conditional distribution
of this test statistic given the sufficient statistics of the nuisance parameters, which
are the numbers of adverse events within each stratum during each time period.
By conditioning on sufficient statistics of the nuisance parameters, it preserves
the overall type I error with any specified error spending function and adjusts for
temporal trend and population heterogeneity across strata. The probability of having
more “extreme” outcomes than the observed value is obtained via a sequential
sampling procedure in which independent realizations of the test statistics are
generated under the null hypothesis conditional on the values of the sufficient
statistics of the nuisance parameters.

As pointed out by Platt et al. (2012), Mini-Sentinel is a pilot program that
has developed policies, procedures, and technical specifications for developing and
operating a secure distributed data system comprised of data covering enrollment,
demographics, encounters, diagnosis, procedures, and ambulatory dispensing of
prescription drug. Cook et al. (2012) have recently reviewed four sequential
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testing methods for monitoring post-marketing safety of a medical product in
the Mini-Sentinel pilot program. These methods include (a) the Lan–DeMets
error-spending approach for asymptotically normal test statistics (one such test
statistic is the standardized relative risk estimate in Poisson regression to control
for confounding), (b) MaxSPRT applied to binomial data as in the approach of
Davis et al. (2005) described in Sect. 5.1.2 and using exposure matching to control
for confounding, (c) the CSSP described in the preceding paragraph, and (d) a
group sequential approach applied to the score statistics of a generalized estimating
equation (GEE) that only requires specification of the mean model to adjust for
confounding. Poisson regression is a special case of generalized linear models
(Supplement 2 of Sect. 2.6), to which GEE is also closely related.

Sequential testing requires precise specification of the maximum sample size and
study duration and the null hypothesis on the adverse event rate of subjects treated
by the new medical product. This may be too restrictive in safety monitoring using
continually updated electronic healthcare data. As Cook et al. (2012) point out, the
current statistical methods for post-marketing safety surveillance in their review
“represent a first step toward a general methodology appropriate for the signal re-
finement surveillance setting.” Signal refinement refers to post-marketing evaluation
of prespecified potential adverse events using a prospective observational design
with existing electronic healthcare data to compare event rates in recipients of the
new medical product to a comparable control cohort after adjusting for confounders.

5.5 Sequential Change-Point Detection Methods
for Pharmacovigilance and Public Health Surveillance

There is an extensive literature in engineering and statistics on the subject of
quick detection, with low false alarm rate, of faults or defects in a production or
control system on the basis of sequential observations from the system; see Lai
(1995, 2001). Sonesson and Bock (2003) have given a review and discussion of
the applications of some of those methods to prospective surveillance in public
health. In Sect. 5.5.1 we give an overview of the methodology of sequential change-
point detection, highlighting its connections to sequential testing theory in Chap. 3.
Section 5.5.2 then discusses modifications and extensions of the methodology for
applications to surveillance in public health. In Sect. 5.5.3 we outline some related
work to develop methods for pharmacovigilance.

5.5.1 Sequential Change-Point Detection Methodology:
An Overview

Whereas the theory of sequential testing began with Wald’s SPRT in response to
demands for more efficient testing of weaponry during World War II, the theory
of sequential change-point detection began with Page’s (1954) CUSUM chart and
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the Shiryaev–Roberts chart (Roberts 1966) that were developed to improve the
traditional Shewhart chart in quality control by modifying Wald’s SPRT. As noted
by Lai (2001), the subject of statistical quality control is concerned with monitoring
and evaluation of the quality of products from a continuous production process.
Shewhart (1931) introduced (a) the fundamental concept of a “state of statistical
control,” in which the behavior of some suitably chosen quality characteristics at
time t has a given probability distribution, and (b) a process inspection scheme
that takes samples of fixed size at regular intervals of time and computes from the
sample at time t a suitably chosen statistic Xt , which can be presented graphically
in the form of a control chart. Shewhart’s control chart, therefore, is a “single-
sample” scheme whose decision depends solely on the current sample although the
results of previous samples are available from the chart. To improve the sensitivity
of the Shewhart chart, Page (1954) and subsequently Lorden (1971) considered
a statistical model, denoted by P(ν), that consists of a sequence of independent
random variables X1,X2, . . . such that the Xt have a common specified distribution F0

for t < ν , representing Shewhart’s “state of statistical control,” and such that the Xt

have another common distribution F1 for t ≥ ν . Let P0 denote the alternative model
of perpetual statistical control (corresponding to ν = ∞). Assuming that F0 and F1

have densities f0 and f1 with respect to some measure, Lorden noted that Page’s
CUSUM rule can be written as

N = inf

{
n : max

1≤k≤n

n

∑
i=k

log( f1(Xi)/ f0(Xi))≥ cγ

}
(5.16)

and showed that it minimizes asymptotically the worst-case detection delay in the
following sense. Let cγ be so chosen that E0(N) = γ , and let Fγ be the class of all
monitoring schemes subject to the constraint E0(T )≥ γ . Then E0(N)≥ exp(cγ ) and
that for cγ = logγ ,

sup
ν≥1

ess supE(ν)[(N −ν+ 1)+
∣∣X1, . . . ,Xν−1

]∼ (logγ)/I( f1, f0)

∼ inf
T∈Fγ

{
sup
ν≥1

ess supE(ν)[(T −ν+ 1)+
∣∣X1, . . . ,Xν−1

]}
as γ→ ∞, (5.17)

where I( f1, f0) = E f1{log( f1(X1)/ f0(X1))} denotes the Kullback–Leibler informa-
tion number. Note that in (5.17), ν represents the change-time and (N − ν + 1)+

represents the detection delay so that supν≥1 refers to the worst-case change-
time. The conditional expectation E(ν)[(N−ν+1)+|X1, . . . ,Xν−1] is the conditional
expected delay given all observations prior to the change-point; it is a random
variable depending on these pre-change observations, and essential supremum again
refers to the worst-case scenario over all possible values of (X1, . . . ,Xν−1).

An important observation by Lorden (1971) is that the CUSUM rule (5.16)
corresponds to stopping when a one-sided SPRT (without the lower boundary) based
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on Xk̂,Xk̂+1, . . . rejects the null hypothesis H0 : f = f0, where k̂ is the maximum
likelihood estimate of the change-time ν . Thus, (5.16) can be expressed as

N = min
k≥1

(Nk + k− 1), (5.18)

where Nk is the stopping time of the one-sided SPRT applied to Xk,Xk+1, . . .. Instead
of the stopping rule of the one-sided SPRT, one can use other stopping rules.
Lorden (1971) showed that if X1,X2, . . . are i.i.d. and τ is a stopping time with
respect to X1,X2, . . . such that P0(τ < ∞) ≤ α , then letting Nk be the stopping
time obtained by applying τ to Xk,Xk+1, . . . and defining N by (5.18), E0(N) ≥
1/α and N is a stopping time. Making use of Lorden’s result with τ = mγ if

∑
mγ
i=1 log( f1(Xi)/ f0(Xi)) ≥ logγ and τ = ∞ otherwise, Lai (1995) showed that the

moving average scheme

N∗ = inf

{
n :

n

∑
i=n−mγ+1

log( f1(Xi)/ f0(Xi))≥ logγ

}
(5.19)

satisfies both E0(N∗) ≥ γ and the asymptotic minimax property (5.17) (with N
replaced by N∗) if the fixed sample size mγ of the Neyman–Pearson test in N∗ is
so chosen that

mγ ∼ (logγ)/I( f1, f0) and
{

mγ − (logγ)/I( f1, f0)
}
/(logγ)1/2 → ∞. (5.20)

Hence the moving average rule (5.19) is asymptotically as efficient as the CUSUM
rule as γ→ ∞ when the window size mγ satisfies (5.20).

In Sect. 3.6.4 we have considered Bayes sequential tests of a simple null
hypothesis f0 versus a simple alternative hypothesis f1 and shown that they are
SPRTs. In this simple versus simple case, the Bayesian problem of sequential
change-point can be formulated by putting a prior distribution on ν . In particular,
if ν has a geometric prior distribution with P(ν = n) = p(1− p)n−1, n = 1,2, . . .,
and there is a loss of 1 for a false alarm before ν and cost of c for each observation
taken after ν , then the optimal stopping rule associated with the Bayes sequential
detection problem has the explicit form

Nq(γ) = inf
{

n ≥ 1 : P(ν ≤ n |X1, . . . ,Xn)≥ γ/(γ+ p−1)
}

= inf
{

n ≥ 1 : Rq,n ≥ γ
}
, (5.21)

where q = 1− p and Rq,n = ∑n
k=1∏

n
i=k{q−1 f1(Xi)/ f0(Xi)}. Note that P(ν ≤ n |X1,

. . . ,Xn) = Rq,n/(Rq,n + p−1). This was first derived by Shiryaev and subsequently
modified by Roberts (1966) to

N(γ) = inf
{

n ≥ 1 : lim
q→1

Rq,n ≥ γ
}
= inf

{
n ≥ 1 :

n

∑
k=1

n

∏
i=k

( f1(Xi)/ f0(Xi))≥ γ
}
,

(5.22)
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which Pollak (1985) proved to be asymptotically Bayes risk efficient as p → 0 and
also asymptotically minimax in the sense of (5.17) as γ → ∞. Note that (5.21)
involves the parameter p in the prior geometric distribution for ν . Letting p→0
corresponds to a flat prior and yields the Shiryaev–Roberts rule (5.22). Both
the CUSUM and the Shiryaev–Roberts rules involve likelihood ratio statistics
∏n

i=k ( f1(Xi)/ f0(Xi)), as in Wald’s SPRT with k = 1. On the other hand, whereas
CUSUM uses the maximum over 1 ≤ k ≤ n for all possible change-times k up to
time n, the Bayesian approach (corresponding to a flat prior) sums over 1 ≤ k ≤ n.

In Sects. 3.3 and 3.7.2, we have extended Wald’s sequential testing theory
to composite hypotheses. Lai (1995, Sect. 3.2) provides a similar extension for
sequential change-point detection, assuming known baseline (in-control) parameters
and unknown post-change parameters for the observations Xt which he does not
assume to be independent. A commonly used performance measure for quality
control charts is the average run length (ARL), which is defined as Eθ (T ) when the
quality parameter remains at a fixed level θ . This explains the background behind
Fγ in (5.17), and Lai’s first step toward this extension is to replace the ARL by more
trackable and yet also sharper performance criteria. The ARL constraint Eθ0(T )≥ γ
stipulates a long expected duration to false alarm under the baseline parameter θ0.
However, a large mean of T does not necessarily imply that the probability of having
a false alarm before some specified time m is small. In fact, it is easy to construct
positive integer-valued random variables T with a large mean γ and also having a
high probability that T = 1. This high probability of false alarm at the initial stage
is clearly unacceptable, and the mean may to too crude a summary of the desired
features of T under Pθ0 . In practice, the system only fails after a very long in-control
period, and we expect many false alarms before the first correct alarm. It is therefore
much more relevant to consider:

(a) The probability of no false alarm during a typical (steady-state) segment of the
baseline period

(b) The expected delay in signaling a correct alarm

instead of the ARL which is the mean duration to false alarm assuming a constant
in-control or out-of-control parameter value.

It is straightforward to extend the CUSUM rule (5.16) to nonindependent and
multivariate observations by simply replacing f j(Xi) in (5.16) by the conditional
density f j(XXXi|XXX1, . . . ,XXXi−1) for j = 0,1. In practice, these densities are usually
modeled by parametric families. An obvious way to modify the CUSUM rule (5.16)
for the case of fθθθ (·|xxx1, . . . ,xxxi−1) with unknown post-change parameter θθθ is to
estimate it by maximum likelihood, leading to the GLR rule

NG = inf

{
n : max

1≤k≤n
sup
θθθ∈Θ

n

∑
i=k

log
fθθθ (XXXi|XXX1, . . . ,XXXi−1)

fθθθ 0
(XXXi|XXX1, . . . ,XXXi−1)

≥ cγ

}
. (5.23)

For the problem of detecting shifts in the mean θθθ of independent normal ob-
servations with known variance, this idea was proposed by Barnard (1959), but
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the statistical properties of the procedures remained a long-standing problem that
was recently solved by Siegmund and Venkatraman (1995), whose asymptotic
approximations to the ARL of the GLR rule under θ0 and under θ �= θ0 show that
the GLR rule is asymptotically optimal in the sense of (5.17).

For practical implementation, the CUSUM rule (5.16) can be written in the
recursive form N = inf{n : �n ≥ cγ}, where �n = {�n−1+ log( f1(Xn)/ f0(Xn))}+ with
�0 = 0. The GLR rule (5.23) does not have such convenient recursive forms, and the
memory requirements and number of computations at time n grow to infinity with
n, which cannot be implemented for on-line fault detection in engineering systems.
A natural modification to get around this difficulty is to replace max1≤k≤n in (5.23)
by maxn−M≤k≤n−M̃; one may need a minimum sample size M̃ for n− k to be able to
estimate the post-change parameter vector. Such window-limited GLR rules were
first introduced by Willsky and Jones (1976) in the context of detecting changes
in linear stochastic systems. Although these window-limited GLR rules have found
widespread applications in fault detection of navigation and other control systems
and in signal processing and tracking of maneuvering targets, how to choose M,
M̃, and cγ appropriately has remained a difficult open problem that was addressed
by Lai (1995). Lai (1995) began by considering the simpler situation of detecting
changes in the mean θ of independent normal observations X1,X2, . . . from a known
baseline value θ = 0. Here, the window-limited GLR rule has the form

NW = inf

{
n : max

n−M≤k≤n
(Xk + · · ·+Xn)

2/(2(n− k+ 1))≥ cγ

}
, (5.24)

and the methods of Siegmund and Venkatraman (1995) to analyze the GLR
rule (5.23) in this independent normal case can be extended to (5.24). In particular,

if we choose M ∼ γ , then we have E0NW ∼ E0NG ∼ Kc−1/2
γ ecγ as c → ∞, where an

explicit formula for K is given in Siegmund and Venkatraman (1995). Therefore,
choosing cγ = logγ+ 1

2 log logγ− logK + o(1) gives E0NW ∼ E0NG ∼ γ . With this
choice of cγ , we also have EθNW ∼ EθNG ∼ min{γ,(2logγ)/θ 2} uniformly in 0 <

|θ | ≤ (logγ)1/2−ε for every ε > 0. The choice M = γ for the window size in (5.24)
requires computation of γ + 1 quantities (Xn−i + · · ·+Xn)

2/(i+ 1), i = 0, . . . ,γ , at
every stage n > γ , and it is desirable to reduce the computational burden for large γ
by using a smaller window size. To develop efficient detection schemes that involve
O(logγ) computations at every stage n, Lai (1995) used an idea similar to that in
the theory of group sequential tests, which is to replace max0≤n−k≤M in (5.24) by
maxn−k+1∈N where N = {1, . . . ,M}∪{[b jM] : 1≤ j ≤ J}, with M ∼ a logγ , b> 1,
and J = min{ j : [b jM]≥ γ} ∼ (logγ)/(logb). Specifically, replacing NW by

ÑW = inf

{
n : max

k:n−k+1∈N
(Xk + · · ·+Xn)

2/(2(n− k+ 1))≥ cγ

}
, (5.25)
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Lai (1995) showed that E0(ÑW )∼ K̃c−1/2
γ ecγ ∼ γ if cγ = logγ+ 1

2 loglogγ− log K̃+

o(1) and that Eθ (ÑW )∼ (2logγ)/θ 2 if |θ |>√2/a while

Eθ (ÑW )≤ (1+ o(1))min{γ,(2b logγ)/θ 2} uniformly in 0 < |θ | ≤√2/a.

Hence, choosing b close to 1 (say b=1.1), there is little loss of efficiency in reducing
the computational complexity of NG by its window-limited modification (5.25).

By using the likelihood ratio identity (3.3) and a change of measures, Lai
(1998) proved an asymptotic lower-bound result for the detection delay subject to
the ARL constraint E0(T ) ≥ γ , similar to Hoeffding’s lower bound for sequential
testing, thereby proving the asymptotic optimality (5.17) of the CUSUM rule for
nonindependent and multivariate observations, in which I( f1, f0) is defined as the
limit (which exists by the strong law for ergodic sequences) of the average of the log-
likelihood ratio statistics. Instead of the ARL constraint E0(T )≥ γ , he introduces a
probability constraint of the form supk≥1 P0{k ≤ T < k+m} ≤ m/γ with m = o(γ)
but m/ logγ → ∞. Then a similar change-of-measure argument gives an asymptotic
lower bound for the detection delay of the form

E(k)(T −k+1)+ ≥{P0(T ≥ k)/I( f1, f0)+o(1)} logγ, uniformly in k ≥ 1. (5.26)

Lai (1995, 1998) has extended the window-limited GLR rule (5.25) from the
normal case to general stochastic systems, but using the GLR statistics in (5.23)
instead of those for the normal case in (5.25). Under certain stability assumptions
on the stochastic systems, he has shown that these window-limited GLR rules
attain the asymptotic lower bounds in the preceding paragraph and are therefore
asymptotically efficient. Moreover, in Markov systems, these window-limited GLR
rules T satisfy

sup
k≥1

Pθθθ0
(k ≤ T < k+m)∼ Pθθθ0

(T ≤ m)∼ m/Eθθθ0
(T ), (5.27)

as Eθθθ0
(T )∼ γ→ ∞ and m/ logγ→∞ but logm = o(logγ). Hence, to determine the

threshold cγ , the ARL constraint Eθθθ0
(T )

.
= γ can be replaced by the probability

constraint Pθθθ0
(T ≤ m)

.
= m/γ , which is much more amenable to Monte Carlo

computation since simulating Pθθθ0
(T ≤ m) involves far fewer random variables

(no more than m in each simulation run) than directly simulating T .
Lai and Xing (2010) have also extended window-limited rules to the case

where pre- and post-change parameters are unknown in multiparameter exponential
families and have established their asymptotic optimality. This provides a complete
analog of sequential testing of composite hypotheses in Sect. 3.7.3 for sequential
change-point detection, showing the important roles of GLR statistics and the
asymptotic optimality of the associated detection rules.
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5.5.2 Sequential Detection in Public Health Surveillance

Timely detection of adverse health events and adoption of public health policies
to rectify the situation or prevent repeated occurrences are beneficial to the
affected individuals and the society. This involves systematic collection, anal-
ysis, and interpretation of large amounts of outcome-specific data by national
public health programs in different countries and international networks; see
Sonesson and Bock (2003, pp. 5–6), who also refer to the literature on retrospective
analysis of these data to estimate disease prevalence or to compare disease patterns
in different regions. They point out, however, that there are many situations where
the sequentially accumulated data can be used prospectively to detect quickly an
increased incidence of a disease so that timely rectifying actions can be taken.
They note that while much of the research on statistical surveillance originated from
engineering applications, as we have reviewed in the preceding section, “the context
of public health surveillance implies specific problems that are not generally present
in the case of industrial production control.” These include problems of seasonal
effects and reporting delays, inherent differences among diseases (such as chronic
conditions versus acute infections), and monitoring not only cases of disease but
also risk factors. Of particular importance in their review of the sequential change-
point detection literature for public health surveillance are (a) detection of a changed
intensity in a Poisson process in their Sect. 5.4 and (b) multivariate surveillance
methods and their modifications for spatial surveillance.

5.5.3 A Hybrid of Sequential Testing and Detection
for Pharmacovigilance

Sections 5.1.2 and 5.4 have described the sequential testing approach to
post-marketing surveillance of vaccine and drug safety. Note that the null hypothesis
actually assumes the medical product is safe, and its rejection means that there is
enough evidence against that assumption, hence also against the medical product.
Such a formulation of the null hypothesis in fact extends to prelicensure safety
testing as in Sects. 5.2 and 5.3. This is unlike the sequential testing for efficacy
studied in Chap. 4, in which the null hypothesis assumes that the new treatment is
no better than the control, and only rejection of the null hypothesis would result in
regulatory approval of the new treatment. The approval allows beneficial claims of
the drug or vaccine in its labeling; this explains why the null hypothesis H0 takes the
form that there is no such benefit so that rejection of H0 suggests enough evidence to
support the claim. For safety testing, the manufacturer of the medical product does
not usually make a claim about its safety but is required by the regulatory agency,
which does not take the position that it is unsafe, to collect data about potential
adverse events. Prelicensure randomized clinical trials for a new vaccine have to
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first establish that the vaccine is efficacious and group sequential tests for efficacy
are often used. If the efficacy bar is passed, the next stage is to test for safety, which
may involve a very large sample size in order to detect rare serious adverse events.
Therefore, the regulatory position is to presume safety of the vaccine unless proven
otherwise in a large randomized trial. This position implicitly assumes that there
is further post-marketing evaluation since acceptance of the null hypothesis does
not have a prescribed probability guarantee that it (i.e., that the vaccine is safe) is
indeed true.

Post-marketing safety monitoring of an approved medical product is a continual
process in view of the active surveillance systems organizing and disseminating
routinely collected electronic healthcare data. In this way it is similar to sequential
detection that involves continual follow-up until faults are detected. On the other
hand, unlike change-point detection, the change-time is known and does not need
to be estimated because it is when the medical product is approved and put to
the market. Lai, Shih, and Hock Peng Chan are developing a hybrid of sequential
testing and sequential fault detection that entails continual safety monitoring of a
vaccine or drug using observational data from VSD or Sentinel or other electronic
healthcare databases. The methodology involves adjustments for confounding from
observational data, GLR statistics for generalized linear models (including Poisson
and logistic regressions), propensity scores and inverse probability weighting, and
control of false alarm and false discovery rates. This work will be posted at the
book’s website when it is complete.

5.6 Supplements and Problems

1. The CMaxSPRT test.
We give here more details of the CMaxSPRT described in Sect. 5.1.2, showing
in particular the explicit form of the test statistic obtained by conditioning
the maximized likelihood ratio on the cumulative person-time in the historical
cohort. In the MaxSPRT defined by (5.3) and (5.4), the number of adverse
events of the surveillance group is considered to be random while the cumulative
person-time or the cumulative number of vaccinations is considered to be fixed.
Hence the expected number of adverse events under the null is assumed to be a
known function of the cumulative person-time and some potential confounders
such as age, sex, and site. For the CMaxSPRT, Li and Kulldorff (2010) condition
on the numbers of adverse events in the historical data and the surveillance
group and regard the cumulative person-time taken to observe the given number
of adverse events as the random variable. Specifically, let c and Q denote the
total number of adverse events and the total person-time in the historical data,
respectively, and let Tk denote the cumulative person-time since the beginning of
the surveillance until the kth adverse event. Here, c and k are fixed numbers while
Q and Tk are random. The intuitive idea is simply to compare the event rates
between the historical cohort and the surveillance group. To fix ideas, assume
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the numbers of events over the cumulative person-time in the historical cohort
and the surveillance group are homogeneous Poisson processes with the event
rates denoted by λh and λv, respectively. Instead of working with the Poisson
process, Li and Kulldorff (2010) work with the exponential interarrival times,
or the “inter-event person-times” as they call them, like what we have done in
Sect. 5.1.2. Thus, the cumulative person-time Tk in the surveillance group since
the beginning of the surveillance until the kth event is a sum of k i.i.d. random
variables from the exponential distribution with rate λv and therefore, has a
gamma distribution with shape parameter k and scale 1/λv. Right after the kth
adverse event in the surveillance group, the likelihood function is

Lk = λ c
h e−λhQλ k

v e−λvTk = λ c
hλ

k
v e−(λhQ+λvTk).

The null hypothesis λh = λv is composite as the common value is unknown.
Therefore the logarithm of the ratio of the maximized likelihood of the composite
alternative to the composite null hypotheses is

Uk = log

(
maxλv≥λh

e−λhQ−λvTkλ c
hλ

k
v

maxλ e−λ (Q+Tk)λ c+k

)

= I{k/c>Tk/Q} log

(
e−c(c/Q)ce−k(k/Tk)

k

e−(k+c)[(c+ k)/(Q+Tk)]c+k

)
.

(a) Show that conditional on c, the only random part of Uk is the ratio Tk/Q.
(b) Show that under the composite null hypothesis H0 : λh = λv = λ with

unknown λ , the conditional distribution of Tk/Q given c does not depend on
λ . Hence, show that under H0, the joint distribution of (U1, . . . ,Uk) depends
only on c and k.

2. Implementation of CMaxSPRT.
A maximum number K of adverse events from the surveillance group is specified.
If K is reached, the test stops; this serves as a truncation bound for CMaxSPRT.
The test is based on the conditional distribution of (U1, . . . ,UK) given the total
number c of adverse events in the historical data, which does not depend on the
unknown value of λh and λv under the null hypothesis and can be determined by
Monte Carlo simulations. Tables of critical values are given in Li and Kulldorff
(2010) for α = 0.05 and different values of c and K.

3. Adjustments for confounding.
Li and Kulldorff (2010, Sect. 4.5) note that the assumption of homogeneous
Poisson arrivals with event rates λh and λv over the historical and surveillance
cohorts may be overly restrictive in view of population heterogeneity; for exam-
ple, men and women may have different event rates. To adjust for confounding,
they propose to stratify the entire population into several subgroups that are
likely to have different risks for adverse events and assign different weights to
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the person-time from different subgroups; the weights are chosen “using either
subject-matter expertise and/or published results from previous studies.”

4. Comparison with randomized clinical trials.
In Sect. 5.2.1, we also use a conditioning argument for the interarrival times of
adverse events for the exposed and unexposed cohorts, V and C in that case.
The conditioning argument in (5.8) is much simpler and also transforms the
testing problem for rare Poisson rates to that of testing a Bernoulli proportion.
The setting of a randomized clinical trial is pivotal to that argument, in which we
consider successive adverse events of the combined V and C groups.

The conditioning argument in CMaxSPRT, therefore, is very different from
that in Sect. 5.2.1. On the other hand, it is similar in principle to that of Fisher’s
exact test in a 2×2 contingency table: Conditional on the margins of the table, the
count in a cell (which is the test statistic used) has a hypergeometric distribution
under the composite null hypothesis. Li and Kulldorff (2010) want to use the
maximized likelihood ratio statistic Uk as the test statistic of the composite
null hypothesis λh = λv. By conditioning on the number of adverse events
c in the historical cohort up to the kth adverse event of the surveillance
group, the distribution of Uk is completely specified under the null hypothesis.
In this connection, note that the conditioning argument in (5.8) also reduces the
composite null hypothesis λV = λC to a simple one: p0 = 1/2.



Chapter 6
Time-Sequential Design of Clinical Trials
with Failure-Time Endpoints

As mentioned in Sect. 1.3, sequential statistical methods received little attention
from the biomedical community until the early termination of the Beta-Blocker
Heart Attack Trial (BHAT) in 1981. In Sects. 6.2 and 6.3, we describe the design
details, interim analyses, and final report of BHAT. As the primary endpoint of
BHAT was survival following at least one heart attack, we give an overview of
survival analysis in Sect. 6.1. However, because of the sequential nature of interim
analyses, traditional survival analysis methodology reviewed in Sect. 6.1 has to be
extended to the sequential setting. This sequential setting also differs from that
in Chap. 4 in that it is time-sequential rather than group sequential. In fact, when
BHAT stopped at the sixth interim analysis, all subjects had been accrued prior to
the fourth analysis. Therefore, unlike the group sequential trials in Chap. 4, early
stopping did not reduce the sample size; what was reduced was the study duration.
Extension of conventional survival analysis to the time-sequential setting, therefore,
involves two time scales to measure the covariance structure of the time-sequential
test statistics. One is the amount of information, as in conventional survival analysis,
accumulated by the time of an interim analysis. The other is calendar time, and the
covariance structure depends on the calendar times at which the interim analyses
are conducted. In Sects. 6.4 and 6.5, we describe several important developments
in group sequential and time-sequential methods following BHAT. Some recent
innovative designs are summarized as supplements in Sect. 6.7. An appendix on
martingale theory that provides important tools for conventional survival analysis
and its extensions to the time-sequential setting is given in Sect. 6.6.

6.1 An Overview of Survival Analysis

Survival analysis is concerned with the statistical analysis of the failure time τ of
an individual from a homogeneous population, or with the comparison of the failure
times of two populations (one receiving a new treatment and the other a standard
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one or placebo), or with regression analysis of τ on covariates. An important feature
of survival analysis is that some subjects in the study may not fail during the
observation period or may have withdrawn from the study during the period. Thus,
the data from these subjects are right censored. This makes the statistical analysis
much more complicated than the case in which all failure times in the sample
are fully observable. The time-sequential setting further increases the complexity
considerably. A theoretical tool to simplify the analytic calculations is martingale
theory. The overview takes advantage of this tool whose background is given in
Sect. 6.6.

6.1.1 Nelson–Aalen and Kaplan–Meier Estimators

Let τ1, . . . ,τn be n independent failure times with common distribution F . If F is
absolutely continuous with density function f , then

λ (t) = lim
h→0+

P(t ≤ τi < t + h |τ ≥ t)/h = f (t)/(1−F(t))

is called the hazard (or intensity) function; its integral Λ(t) =
∫ t

0 λ (s)ds is called
the cumulative hazard function. More generally, the cumulative hazard function is
defined by

Λ(t) =
∫ t

0

dF(s)
1−F(s−)

,

where F(s−) = limt→s− F(t).
The τi are subject to right censoring, which may be due to withdrawal or

the restricted length of the survival study. Thus, there are censoring variables ci,
representing the time in the study during the observation period. The observations,
therefore, are (Ti,δi), i = 1, · · · ,n, where Ti = min(τi,ci) and δi = I{τi≤ci} is the
censoring indicator that indicates whether Ti is an actual failure time or is censored.
Subject i is “at risk” at time s if Ti ≥ s (i.e., has not failed and not withdrawn prior
to s). Let

Y (s) =
n

∑
i=1

I{Ti≥s}, N(s) =
n

∑
i=1

I{Ti≤s, δi=1}. (6.1)

Note that Y (s) is the risk set size and ΔN(s) = N(s)−N(s−) is the number of
observed deaths at time s. The Nelson–Aalen estimator of the cumulative hazard
functionΛ(t) is

Λ̂(t) =∑
s≤t

ΔN(s)
Y (s)

=

∫ t

0

I{Y(s)>0}
Y (s)

dN(s), (6.2)

where we use the convention 0/0 = 0. It is shown in Sect. 6.6 that

{∫ t

0
U(s)[dN(s)−Y (s)dΛ(s)], t ≥ 0

}
is a martingale, (6.3)
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for every left-continuous stochastic process U(s); note that Y (s) is left continuous.
Suppose F is continuous. It then follows from the martingale central limit theorem
(CLT) that as n → ∞,

(Λ̂ (t)−Λ(t))
/{∫ t

0

I{Y(s)>0}
Y 2(s)

dN(s)

}1/2
D−→ N(0,1), (6.4)

where
D−→ denotes convergence in distribution.

Partition time into disjoint intervals I1 = (0, t1], I2 = (t1, t2], etc. A life table in
actuarial science summarizes the mortality results of a large cohort of n subjects as
follows:

n j = number of subjects alive at the beginning of I j,
d j = number of deaths during I j,
l j = number lost to follow-up during I j.

It estimates p j = P(died during I j | alive at the beginning of I j) by p̂ j = d j/(n j −
l j). The actuarial (life-table) estimate of P(τ > tk) is the product

k

∏
j=1

(1− p̂ j) =
k

∏
j=1

(
1− d j

n j − l j

)
.

Without discretizing the failure times, we can likewise estimate S(t) = P(τ > t) by

Ŝ(t) =∏
s≤t

(
1− ΔN(s)

Y (s)

)
. (6.5)

Since N(s) has at most n jumps, the product in (6.5) has finitely many factors.
The estimator Ŝ is called the Kaplan–Meier estimator of S. Note that Ŝ(t) =
∏s≤t(1−ΔΛ̂(s)) by (6.2) and (6.5). In Sect. 6.7, it is shown that analogous to (6.5),

S(t) =∏
s≤t

(1− dΛ(s)) for all t such that Λ(t)< ∞. (6.6)

The product in (6.6) is called the product integral of the nondecreas-
ing right-continuous function Λ(·) on [0, t]; it is defined by the limit of
∏{1− [Λ(ti)−Λ(ti−1)]}, where 0 = t0 < t1 < · · · < tm = t is a partition of
[0, t] and the product is in the natural order from left to right, as the mesh size
max1≤i≤m |ti − ti−1| approaches 0. Moreover, it is also shown in Sect. 6.6 that

(Ŝ(t)− S(t))

/[
Ŝ(t)

{∫ t

0

I{Y(s)>0}
Y 2(s)

dN(s)

}1/2
]

D−→ N(0,1) (6.7)

by the martingale CLT.
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6.1.2 Regression Models for Hazard Functions with Covariates

We have focused so far on the estimation of the survival distribution of a failure
time τ . In applications, one often wants to use a model for τ to predict future
failures from a vector x(t) of predictors based on current and past observations;
x(t) is called a time-varying (or time-dependent) covariate. When x(t) = x does not
depend on t, it is called a time-independent (or baseline) covariate. In practice, some
predictors may be time independent, while other components of x(t) may be time-
varying. Since prediction of future survival using x(t) is relevant only if τ > t, one
is interested in modeling the conditional distribution of τ given τ > t, for example,
by relating the hazard function λ (t) to x(t). Cox (1972) introduced the proportional
hazards (or Cox regression) model

λ (t) = λ0(t)exp(βββT x(t)). (6.8)

Putting x(t) = 0 in (6.8) shows that λ0(·) is also a hazard function; it is called the
baseline hazard.

Instead of assuming a parametric model to estimate the baseline hazard function
λ0(·) as done in the previous literature, Cox (1972, 1975) introduced a semipara-
metric method to estimate the finite-dimensional parameter βββ in the presence of
an infinite-dimensional nuisance parameter λ0(·); it is semiparametric in the sense
of being nonparametric in λ0 but parametric in βββ . Cox’s partial likelihood method
decomposes the likelihood function into two factors, with one involving only βββ
and the other involving both βββ and the baseline cumulative hazard function Λ0.
It estimates βββ by maximizing the partial likelihood, which is the first factor that
only involves βββ and is described below. Order the observed censored failure times
as τ(1) < · · · < τ(m), with m ≤ n. Let Cj denote the set of censored Ti’s in the
interval [τ( j−1),τ( j)), and let ( j) denote the individual failing at τ( j), noting that with
probability 1 there is only one failure at τ( j) because the failure time distributions
have density functions. Let R( j) = {i : Ti ≥ τ( j)} denote the risk set at τ( j).
Then

P
{
( j) |Cj ,(l),Cl ,1 ≤ l ≤ j− 1

}
= P
{
( j) fails at τ( j) |R( j), one failure at τ( j)

}
= exp

(
βββ T x j(τ( j))

)
/ ∑

i∈R( j)

exp
(
βββ T xi(τ( j))

)
. (6.9)

The partial likelihood is ∏m
j=1 P{( j) |Cj ,(l),Cl ,1 ≤ l ≤ j − 1}. Ignoring the other

factors P{Cj+1|(l),Cl ,1 ≤ l ≤ j} in the likelihood function, Cox’s regression

estimator β̂ββ is the maximizer of the partial log-likelihood

l(βββ ) =
m

∑
j=1

⎧⎨
⎩βββ T x j(τ( j))− log

(
∑

i∈R( j)

exp
(
βββ T xi(τ( j))

))⎫⎬
⎭ , (6.10)
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or equivalently, the solution of ∂
∂βββ l(βββ ) = 0.

Letting wi(βββ) = eβββ
T xi(τ( j))/∑l∈R( j)

eβββ
T xl (τ( j)) for i ∈ R( j), note that

∂
∂βββ

l(βββ ) =
m

∑
j=1

{
x j(τ( j))− ∑

i∈R( j)

wi(βββ )xi(τ( j))

}
, (6.11)

−
(

∂ 2

∂βk∂βh
l(βββ )

)
k,h

=
m

∑
j=1

{
∑

i∈R( j)

wi(βββ)xi(τ( j))x
T
i (τ( j))

−
(
∑

i∈R( j)

wi(βββ )xi(τ( j))

)(
∑

i∈R( j)

wi(βββ )xi(τ( j))

)}T

.

(6.12)

Since ∑i∈R( j)
wi(βββ ) = 1, we can interpret the term x̄(τ( j)) := ∑i∈R( j)

wi(βββ )xi(τ( j))

in (6.11) and (6.12) as a weighted average of covariates over the risk set. Each
summand in (6.11) therefore compares the covariate at an observed failure to its
weighted average over the risk set. Moreover, each summand in (6.12) can be
expressed as a sample covariance matrix of the form

∑
i∈R( j)

wi(βββ ){xi(τ( j))− x̄(τ( j))}{xi(τ( j))− x̄(τ( j))}T . (6.13)

Making use of martingale theory, Cox’s regression estimator βββ can be shown
to satisfy the usual asymptotic properties of maximum likelihood estimates even
though partial likelihood is used; see Sect. 6.6. In particular, it can be shown that as
n → ∞,

(−l̈(β̂ββ ))1/2(β̂ββ −βββ 0) has a limiting standard normal distribution, (6.14)

where we use l̇(βββ ) to denote the gradient vector (∂/∂βββ )l(βββ ) and l̈(βββ ) to denote the
Hessian matrix of second partial derivatives (∂ 2/∂βk∂βh)l(βββ ), given by (6.12). One
can perform usual likelihood inference treating the partial likelihood as a likelihood
function and apply likelihood-based selection of covariates. Moreover, even though
β̂ββ is based on partial likelihood, it has been shown to be asymptotically efficient.

When there are no covariates, Λ = Λ0 can be estimated by the Nelson–Aalen
estimator (6.2). Note that (6.2) has jumps only at uncensored observations and that
Y (s) is the sum of 1’s over the risk set {i : Ti ≥ s} at s. When τi has hazard function
exp(βββ T xi(s))λ0(s), we modify Y (s) to

Y (s) = ∑
i∈R( j)

exp(βββ T xi(s)) at s = τ( j), (6.15)

using the same notation as in (6.9)–(6.13). The Breslow estimator of Λ0 in the
proportional hazards regression model (6.8) is again given by (6.2) but with Y (s)
defined by (6.15).
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6.1.3 Rank Tests Based on Censored Survival Data

In randomized clinical trials with survival endpoints, a primary objective is to
compare time to failure between two treatment groups X and Y . Suppose that the
failure times X1, . . . ,Xn′ are independent having a common distribution function
F and the failure times Y1, . . . ,Yn′′ are independent having a common distribution
function G. Let n = n′+ n′′. To test the null hypothesis H0 : F = G or H ′

0 : F ≤ G,
a commonly used method is to evaluate the ranks Ri of Xi (i = 1, . . . ,n′) in
the combined sample X1, . . . ,Xn′ ,Y1, . . . ,Yn′′ and to use rank statistics of the form
�n = ∑n′

i=1ϕ(Ri/n), where ϕ : (0,1] → (−∞,∞). However, because of censoring,
one cannot compute �n in these situations. As noted in Gu et al. (1991), a natural
extension of �n to censored data is the censored rank statistic of the form

Sn =
K

∑
k=1

ψ
(
Hn(Z(k)−)

)
(zk −mk/#k), (6.16)

where Z(1) ≤ ·· ·Z(K) denote the ordered uncensored observations in the combined
sample, zk = 1 if Z(k) is an X and zk = 0 if Z(k) is a Y , #k (resp. mk) denotes the
number of observations (resp. X’s) in the combined sample that are ≥ Z(k), Hn is the
Kaplan–Meier estimate (6.5) based on the combined sample, and ψ is related to ϕ
by the relation

ψ(u) = ϕ(u)− (1− u)−1
∫ 1

u
ϕ(t)dt, 0 < u < 1. (6.17)

Takingψ(u) = (1−u)ρ (ρ ≥ 0) yields the Gρ statistics proposed by Harrington and
Fleming (1982). The case ρ = 0 corresponds to Mantel’s (1966) logrank statistic,
which is a special case of Cox’s score statistic (6.11) at β = 0 since the covariate zk is
binary, and the case ρ = 1 corresponds to the generalization of Wilcoxon’s statistic
by Peto and Peto (1972) and Prentice (1978). Making use of martingale theory, it
can be shown that (6.16) is asymptotically normal under the null hypothesis F = G;
see Sect. 6.6.

6.2 The Beta-Blocker Heart Attack Trial (BHAT)

6.2.1 Trial Design

The primary objective of BHAT was to determine whether regular, chronic admin-
istration of propranolol, a beta-blocker, to patients who had at least one documented
myocardial infarction (MI) would result in significant reduction in mortality from all
causes during the follow-up period. It was designed as a multicenter, double-blind,
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randomized placebo-controlled trial with a projected total of 4200 eligible patients
recruited within 21 days of the onset of hospitalization for MI. The trial was planned
to last for 4 years, beginning in June 1978 and ending in June 1982, with patient
accrual completed within the first 2 years so that all patients could be followed for
a period of 2–4 years. The sample size calculation was based on a 3-year mortality
rate of 18% in the placebo group and a 28% reduction of this rate in the treatment
group, with a significance level of 0.05 and 0.9 power using a two-sided logrank test;
see Beta-Blocker Heart Attack Trial Research Group (1984, p. 388). In addition,
periodic reviews of the data were planned to be conducted by a Data and Safety
Monitoring Board (DSMB), roughly once every 6 months beginning at the end of the
first year, whose functions were to monitor safety and adverse events and to advise
the Steering and Executive Committees on policy issues related to the progress of
the trial.

6.2.2 Trial Execution and Interim Analysis by DSMB

The actual recruitment period was 27 months, within which 3837 patients were
accrued from 136 coronary care units in 31 clinical centers, with 1916 patients
randomized into the propranolol group and 1921 into the placebo group. Although
the recruitment goal of 4200 patients had not been met, the projected power was
only slightly reduced to 0.89 as accrual was approximately uniform during the
recruitment period.

The DSMB arranged meetings at 11, 16, 21, 28, 34, and 40 months to review the
data collected so far, before the scheduled end of the trial at 48 months. Besides
monitoring safety and averse events, the DSMB also examined the normalized
logrank statistics to see whether propranolol was indeed efficacious. The successive
values of these statistics are listed below:

Time (months) 11 16 21 28 34 40

Test statistic 1.68 2.24 2.37 2.30 2.34 2.82

Instead of continuing the trial to its scheduled end at 48 months, the DSMB
recommended terminating it in their last meeting because of conclusive evidence
in favor of propranolol. Their recommendation was adopted, and the trial was ter-
minated on October 2, 1981. It drew immediate attention of the biopharmaceutical
community to the benefits of sequential methods, not because it reduced the number
of patients but because it shortened a 4-year study by 8 months, with positive results
for a long-awaited treatment supporting its immediate use.

Note that except for the first interim analysis at 11 months (when there were
16 deaths out of 679 patients receiving propranolol and 25 deaths out of 683 pa-
tients receiving placebo), all interim analyses showed normalized logrank statistics
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exceeding the critical value of 1.96 for a single 5% two-sided logrank test. The
lack of significance in the first interim analysis seems to be due to the relatively
small number of deaths. In comparison, the last interim analysis at 40 months
had 135 deaths in the propranolol group of 1916 patients and 183 deaths in the
placebo group of 1921 patients. The final report in Beta-Blocker Heart Attack
Trial Research Group (1982) showed more deaths from both groups (138 and 188)
due to additional data that were processed after the interim analysis. The Kaplan–
Meier estimates of the respective survival functions in this final report show that
the mortality distributions were estimable only up to approximately their tenth
percentiles, with the cumulative distribution function for propranolol below that of
placebo.

The critical value of 1.96 for the standardized logrank statistic only applies to
a single analysis. To account for repeated testing, the DSMB used an adjustment
(which has a critical value of 5.46 at the first analysis and 2.23 at the sixth analysis)
for repeated significance testing with independent, identically distributed normal
observations proposed in 1979 by O’Brien and Fleming (1979). Since logrank
statistics (rather than normal observations) were actually used, the Beta-Blocker
Heart Attack Trial Research Group’s (1982) final report of the trial appealed to joint
asymptotic normality of time-sequential logrank statistics that was established by
Tsiatis (1981) shortly before that.

6.2.3 Stochastic Curtailment

The preceding paragraph shows that time-sequential methodology, which was only
at its infancy at that time, was barely adequate to handle the BHAT data. Moreover,
the trial had been designed as a fixed-duration (instead of time-sequential) trial. The
DSMB used some informal arguments based on stochastic curtailment described
below, together with the formal group sequential test described in the preceding
paragraph, to come to the conclusion that the propranolol therapy was indeed
effective, at the time of the sixth interim analysis.

Stochastic curtailment, which was developed during the process of monitoring
BHAT and was later described by Lan et al. (1982), is based on the conditional
power, which is the conditional probability of rejecting the null hypothesis at the
scheduled end of the trial given the current data, along with some speculation about
the future data. The setting assumed was that of a Wiener process W (v), 0 ≤ v ≤ 1,
with drift coefficient μ . Consider the one-sided fixed sample size test of H0 : μ = 0
versus H1 : μ = μ1 (> 0) based on W (1) with type I error probability α and type II
error probability α̃ . Since the conditional distribution of W (1) given {W(v), v ≤ s}
is normal with mean W (s)+μ(1− s) and variance 1− s, the conditional power at μ
given {W(v), v ≤ s} is

βs(μ) = 1−Φ
(
(1− s)−1/2{Φ−1(1−α)−W(s)− μ(1− s)

})
, (6.18)
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where Φ is the standard normal distribution function. Lan et al. (1982) proved
the following basic result for stochastic curtailment for testing simple hypotheses
concerning the drift of a Wiener process. They also appealed to the CLT in extending
this argument to asymptotically normal statistics.

Theorem 6.1. Suppose one curtails the preceding fixed sample size test of the drift
of a Wiener process by stopping and rejecting H0 when βs(0)> ρ and stopping and
rejecting H1 when βs(μ1)< 1− ρ̃, for some ρ and ρ̃ less than but near 1. Then the
type I error probability of the test is ≤ α/ρ , while the type II error probability is
≤ α̃/ρ̃ .

For BHAT, at the sixth interim analysis, the conditional power (6.18) under the
null trend was found to range from 0.8 (for 120 additional deaths) to 0.94 (for 60
additional deaths) and to be 0.89 for the projected number of 80 additional deaths. In
view of Theorem 6.1, the DSMB concluded that the nominal type I error probability
would not be inflated by much if the test should be stochastically curtailed in this
manner. The relevance of the Wiener process to the sequentially monitored logrank
statistics will be explained in Sect. 6.5.1 that gives the asymptotic joint distribution
of sequentially computed logrank statistics under the null hypothesis and under local
alternatives.

6.3 Terminal Analyses of BHAT Data

The final report of the study was published in Beta-Blocker Heart Attack Trial
Research Group (1982), summarizing various results of the final analysis of all the
BHAT data that had been collected up to October 2, 1981, when official patient
follow-up was stopped. After an average follow-up of 25.1 months, 138 patients
in the propranolol group (7.2%) and 188 in the placebo group (9.8%) had died.
Figure 6.1 shows the Kaplan–Meier curves by treatment group. The estimated
survival curve of the propranolol group was above that of the placebo group.
These curves also suggest departures from the proportional hazards model. Using
Müller and Wang’s (1994) kernel-based estimator with locally optimal bandwidths
to estimate the hazard functions, the estimated hazard rates over time are plotted in
Fig. 6.2a, which shows largest decrease of hazard rates during the first month after
a heart attack for both the propranolol and placebo groups and that the propranolol
group has a markedly smaller hazard rate than the placebo group within the first
year, after which the hazard rates tend to stabilize. Figure 6.2b plots the hazard ratio
of propranolol to placebo over time, and it shows that propranolol has the largest
survival benefit over placebo in the first 9 months after a heart attack.
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6.4 Developments in Group Sequential Methods Motivated
by BHAT

6.4.1 The Lan–DeMets Error-Spending Approach

The unequal group sizes that are proportional to the numbers of deaths during
the periods between successive interim analyses in BHAT inspired Lan and
DeMets (1983) to introduce the error-spending approach described in Sect. 4.1.3
for group sequential trials. To extend the error-spending approach to more general
information-based trials, they let v represent the proportion of information accumu-
lated at time t of interim analysis, so that π(v) can be interpreted as the amount of
type I error spent up to time t, with π(0) = 0 and π(1) = α . Analogous to (4.5),
they propose to choose α j = π(v j)−π(v j−1) to determine the stopping boundary
b j ( j = 1, . . . ,K) recursively by

PF=G
{|W1| ≤ b1

√
V1, . . . , |Wj−1| ≤ b j−1

√
Vj−1, |Wj|> b j

√
Vj
}
= α j , (6.19)

where Wi denotes the asymptotically normal test statistic at the ith interim analysis
and Vi denotes the corresponding variance estimate so that vi =Vi/Vk, which will be
explained in Sect. 6.5.1.

The error-spending approach has greatly broadened the scope of applicabil-
ity of group sequential methods. For example, if one wants to use a constant
boundary (1.3) for |Sn| as in O’Brien and Fleming (1979), one can consider the
corresponding continuous-time problem to obtain π(v). The sample sizes at the
times of interim analysis need not be specified in advance; what needs to be specified
is the maximum sample size nK . Lan and DeMets, who had been involved in the
BHAT study, were motivated by BHAT to make group sequential designs more
flexible. Although it does not require prespecified “information fractions” at times of
interim analysis, the error-spending approach requires specification of the terminal
information amount, at least up to a proportionality constant. While this is usually
not a problem for immediate responses, for which total information is proportional
to the sample size, the error-spending approach is much harder to implement for
time-to-event responses, for which the terminal information is not proportional to
nK and cannot be known until one carries the trial to its scheduled end.

6.4.2 Two Time Scales and Haybittle-Type Boundaries

Lan and DeMets (1983) have noted that there are two time scales in interim analysis
of clinical trials with time-to-event endpoints. One is calendar time t and the other
is the “information time” Vn(t), which is typically unknown before time t unless
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restrictive assumptions are made a priori. To apply the error-spending approach
to time-to-event responses, one needs an a priori estimate of the null variance
of Sn(t∗), where t∗ is the pre-scheduled end date of the trial and Sn(t) is the
logrank statistic or the more general censored rank statistic (6.16) evaluated at
calendar time t. Let v1 be such an estimate. Although the null variance of Sn(t)
is expected to be nondecreasing in t under the asymptotic independent increments
property, its estimate Vn(t) may not be monotone, and we can redefine Vn(t j) to be
Vn(t j−1) if Vn(t j) < Vn(t j−1). Let π : [0,v1] → [0,1] be a nondecreasing function
with π(0) = 0 and π(v1) = α , which can be taken as the error-spending function
of a stopping rule τ , taking values in [0,v1], of a Wiener process. The repeated
significance test whose boundary is generated by π(·) stops at time t j for 1 ≤ j < K

if Vn(t j) ≥ v1 (in which case it rejects H0 : F = G if |Sn(t j)| ≥ b jV
1/2
n (t j)) or if

Vn(t j)< v1 and |Sn(t j)| ≥ b jV
1/2
n (t j) (in which case it rejects H0); it also rejects H0

if |Sn(t∗)| ≥ bKV 1/2(t∗), and stopping has not occurred prior to t∗ = tK . Letting α j =
π(v1 ∧Vn(t j))− π(Vn(t j−1)) for j < K and αK = α − π(Vn(tK−1)), the boundary
values b1, . . . ,bK are defined recursively by (6.19), in which α j = 0 corresponds to
b j = ∞.

This test has type I error probability approximately equal to α , irrespective of
the choice of π and the a priori estimate v1. Its power, however, depends on π
and v1. At the design stage, one can compute the power under various scenarios
to come up with appropriate choice of π and v1. The requirement that the trial be
stopped once Vn(t) exceeds v1 is a major weakness of the preceding stopping rule.
Since one usually does not have sufficient prior information about the underlying
survival distributions, the actual accrual rate and the withdrawal pattern, v1 may
substantially over- or underestimate the expected value of Vn(t∗). Scharfstein et al.
(1997) and Scharfstein and Tsiatis (1998) have proposed re-estimation procedures
during interim analyses to address this difficulty, but re-estimation raises concerns
about possible inflation of the type I error probability.

Another approach was proposed by Slud and Wei (1982). It requires the user to
specify positive numbers α1, . . . ,αK such that ∑K

j=1α j = α so that the boundary

b j for |Sn(t j)|/
√

Vn(t j) is given by (6.19). However, there are no guidelines nor
systematic ways to choose the α j . Gu and Lai (1998) proposed to use a Haybittle-
type boundary that first chooses b and then determines c by

P
{
|W (Vn(t j)) | ≥ bV 1/2

n (t j) for some j < K

or |W (Vn(tK)) | ≥ cV 1/2
n (tK)

∣∣∣Vn(t1), . . . ,Vn(tK)
}
= α, (6.20)

where {W (v), v ≥ 0} is a standard Brownian motion. Lai and Shih (2004)
subsequently refined this approach to develop the modified Haybittle–Peto tests that
have been discussed in Sect. 4.2.
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6.4.3 Conditional and Predictive Power

The motivation underlying conditional and predictive power is to forecast the
outcome of a given test, called a reference test, of a statistical hypothesis H0 from the
data Dt up to the time t when such prediction is made. Since the outcome is binary
(i.e., whether to reject H0 or not), the forecast can be presented as the probability
of rejecting H0 at the end of the study given Dt . However, this probability has to
be evaluated under some probability measure. In the context of hypothesis testing
in a parametric family {Pθ , θ ∈ Θ}, Lan et al. (1982) proposed to consider the
conditional power

pt(θ ) = Pθ (Reject H0 |Dt). (6.21)

Subsequently, Choi et al. (1985) and Spiegelhalter et al. (1986) found it more
appealing to put a prior distribution on θ and consider the posterior probability
of rejecting H0 at the end of the trial given Dt , and therefore advocated to consider
the predictive power

Pt = P(Reject H0 |Dt) =

∫
pt(θ ) dπ(θ |Dt), (6.22)

where π(θ |Dt) is the posterior distribution of θ . This idea had been proposed earlier
by Herson (1979).

While the conditional power approach to futility stopping requires specification
of an alternative θ1, the predictive power approach requires specification of a prior
distribution π . It is often difficult to come up with such specification in practice. On
the other hand, one can use Dt to estimate the actual θ by maximum likelihood or
other methods, as suggested by Lan and Wittes (1988). For normal observations Xi

with common unknown mean θ and known varianceσ2, using Lebesgue measure on
the real line as the improper prior for θ yields the sample mean X̄t , as the posterior
mean and also the MLE. In this case, for the fixed sample size test that rejects
H0 : θ = 0 if

√
nX̄n ≥ σz1−α , the predictive power is

Φ
(√

t
n− t

(√
n
σ

X̄t − z1−α
))

, (6.23)

and the conditional power is

pt(X̄t) =Φ
(√

n
n− t

(√
n
σ

X̄t − z1−α
))

, (6.24)

in which Φ denotes the standard normal distribution function and zp =Φ−1(p).
Although using the conditional or predictive power to guide early stopping for

futility is intuitively appealing, there is no statistical theory for such choice of the
stopping criterion. In fact, using the MLE as the alternative already presupposes
that the MLE falls outside the null hypothesis, and a widely used default option
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is to stop when the MLE belongs to H0, which is consistent with (6.24) that falls
below the type I error α in this case. However, this ignores the uncertainty in the
estimate and can lose substantial power due to premature stopping, as shown in
the simulation studies of Bartroff and Lai (2008a,b) on adaptive designs that use
this kind of futility stopping; see also Sect. 8.3. Pepe and Anderson (1992) have
proposed to adjust for this uncertainty by using X̄t +σ/

√
t instead of X̄t to substitute

for θ1 in the conditional power approach.
Instead of estimating the alternative during interim analysis, one can focus on a

particular alternative θ1 and consider the conditional power pt(θ1) or the predictive
power with a prior distribution concentrated around θ1. Although Lan et al. (1982)
have shown that adding futility stopping to the reference test of H0 : θ ≤ θ0 if
pt(θ1) ≤ γ does not decrease the power of the reference test at θ1 by more than
a factor of γ/(1− γ), there is no statistical theory justifying why one should use a
conditional instead of an unconditional test of θ ≥ θ1. Furthermore, as noted earlier,
this approach leaves open the problem of how θ1 should be chosen for stopping a
study due to futility.

6.5 Randomized Clinical Trials with Failure-Time Endpoints
and Interim Analyses

6.5.1 Time-Sequential Censored Rank Statistics
and Their Asymptotic Distributions

Suppose a clinical trial involves n = n′ + n′′ patients with n′ of them assigned to
treatment X and n′′ assigned to treatment Y . Let T ′

i ≥ 0 denote the entry time and
Xi > 0 the survival time (or time to failure) after entry of the ith subject in treatment
group X , and let T ′′

j and Yj denote the entry time and survival time after entry of
the jth subject in treatment group Y . The subjects are followed until they fail or
withdraw from the study or until the study is terminated. Let ξ ′i (ξ ′′j ) denote the
time to withdrawal, possibly infinite, of the ith ( jth) subject in the treatment group
X (Y ). Thus, the data at calendar time t consist of (Xi(t),δ ′i (t)), i = 1, . . . ,n′, and
(Yj(t),δ ′′j (t)), j = 1, . . . ,n′′, where

Xi(t) = min
(
Xi,ξ ′i ,(t −T ′

i )
+
)
, δ ′i (t) = I (Xi(t) = Xi) ,

Yj(t) = min
(
Yj,ξ ′′j ,(t −T ′′

j )
+
)
, δ ′′j (t) = I (Yj(t) = Yj) , (6.25)

where a+ is the positive part of number a. At a given calendar time, on the basis of
the observed data (6.25) from the two treatment groups, one can compute the rank
statistic (6.16) which can be expressed in the present notation as
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Sn(t) =
n′

∑
i=1

δ ′i (t)ψ (Hn,t (Xi(t)))

{
1− m′

n,t(Xi(t))

m′
n,t(Xi(t))+m′′

n,t(Xi(t))

}

−
n′′

∑
j=1
δ ′′j (t)ψ (Hn,t (Yj(t)))

m′
n,t(Yj(t))

m′
n,t(Yj(t))+m′′

n,t(Yj(t))
, (6.26)

where ψ is a nonrandom function on [0,1] and

m′
n,t(s) =

n′

∑
i=1

I (Xi(t)≥ s) , m′′
n,t(s) =

n′′

∑
j=1

I (Yj(t)≥ s) , (6.27)

N′
n,t(s) =

n′

∑
i=1

I
(
Xi ≤ ξ ′i ∧ (t −T ′

i )
+∧ s

)
,

N′′
n,t(s) =

n′′

∑
j=1

I
(
Yj ≤ ξ ′′j ∧ (t −T ′′

j )
+∧ s

)
, (6.28)

1−Hn,t(s) =∏
u<s

{
1− ΔN′

n,t (u)+ΔN′′
n,t(u)

m′
n,t(u)+m′′

n,t(u)

}
, (6.29)

where ∧ denotes minimum. Note that unlike the Kaplan–Meier estimator (6.5), we
take∏u<s in (6.29) instead of∏u≤s. This ensures that Hn,t(s) is left continuous in s,
obviating the need of taking Hn(s−) in (6.16).

Suppose that ψ is continuous and has bounded variation on [0,1] and that the
limits

b′(t,s) = lim
m→∞m−1

m

∑
i=1

P{ξ ′i ≥ s, t −T ′
i ≥ s},

b′′(t,s) = lim
m→∞m−1

m

∑
j=1

P{ξ ′′j ≥ s, t −T ′′
j ≥ s}, (6.30)

exist and are continuous in 0≤ s≤ t. Suppose that the distribution functions G and G
in Sect. 6.1.3 are are continuous, and letΛF =− log(1−F) andΛG =− log(1−G)
denote their cumulative hazard functions. Let

μn(t) =
∫ t

0
ψ (Hn,t(s))

m′
n,t(s)m

′′
n,t(s)

m′
n,t(s)+m′′

n,t(s)
(dΛF(s)− dΛG(s)) .

Note that μn(t) = 0 if F = G. Gu and Lai (1991) have proved the following results
on weak convergence of the time-sequential censored rank statistics Sn(t) in D[0, t∗].
In Sect. 6.6 we provide some background material on weak convergence in D[0, t∗]
and give an outline of the proof of the results.
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Theorem 6.2. Assume that for some 0 < γ < 1,

n′/n → γ as n (= n′+ n′′) → ∞ with 0 < γ < 1. (6.31)

(a) For fixed F and G, {n−1/2(Sn(t)− μn(t)), 0 ≤ t ≤ t∗} converges weakly in
D[0, t∗] to a zero-mean Gaussian process, and n−1μn(t) converges in probability
as n → ∞.

(b) Let {Z(t), 0 ≤ t ≤ t∗} denote the zero-mean Gaussian process in (a) when
F = G. This Gaussian process has independent increments and

Var(Z(t)) = γ(1− γ)
∫ t

0

ψ2(F(s))b′(t,s)b′′(t,s)
γb′(t,s)+ (1− γ)b′′(t,s) dF(s). (6.32)

(c) For fixed F (and therefore ΛF also), suppose that as n → ∞, G → F such that∫ t∗
0 |dΛG/dΛF − 1|dΛF = O(n−1/2) and

√
n(dΛG/dΛF(s)− 1)→ g(s) as n →

∞, uniformly in s ∈ I and sups∈I |g(s)|< ∞ for all closed subintervals I of {s ∈
[0, t∗] : F(s) < 1}. Then {n−1/2Sn(t), 0 ≤ t ≤ t∗} converges weakly in D[0, t∗]
to {Z(t)+ μ(t), 0 ≤ t ≤ t∗}, where Z(t) is the same Gaussian process as that
in (b) and

μ(t) =−γ(1− γ)
∫ t

0

ψ(F(s))g(s)b′(t,s)b′′(t,s)
γb′(t,s)+ (1− γ)b′′(t,s) dF(s). (6.33)

It follows from Theorem 6.2(b), (c) that the limiting Gaussian process of
{n−1/2Sn(t), t ≥ 0} has independent increments under H0 : F = G and under
contiguous alternatives; contiguous alternatives refer to those in (c) that are within
O(n−1/2) from the null hypothesis F = G. Two commonly used estimates Vn(t) of
the variance of Sn(t) under H0 are

Vn(t) =
∫ t

0

ψ2(Hn,t(s))m′
n,t(s)m

′′
n,t(s)

(m′
n,t(s)+m′′

n,t(s))2 d
(
N′

n,t(s)+N′′
n,t(s)

)
(6.34)

and

Vn(t) =
∫ t

0

ψ2(Hn,t(s))
(m′

n,t(s)+m′′
n,t(s))2

{(
m′′

n,t(s)
)2

dN′
n,t(s)+

(
m′

n,t(s)
)2

dN′′
n,t(s)

}
.

(6.35)
As a compromise between these two choices, Gu and Lai (1991, p. 1421) also
considered

Vn(t) = {(6.34)+ (6.35)}/2. (6.36)

For all three estimates, n−1Vn(t) converges in probability to (6.32) under H0 and
under contiguous alternatives. Hence, letting v = n−1Vn(t) and W (v) = n−1/2Sn(t),
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we can regard W (v), v ≥ 0, as the standard Wiener process under H0. Moreover, if
ψ is a scalar multiple of the asymptotically optimal score function, then we can also
regardW (v), v≥ 0, as a Wiener process with some drift coefficient under contiguous
alternatives.

When subjects are randomized to X or Y with probability 1/2, γ = 1/2 and m′
n,t ∼

m′′
n,t under F = G. Therefore, for the logrank statistic for which ψ ≡ 1, (6.34) and

(6.35) are asymptotically equivalent to

Vn(t) = (total number of deaths up to time t)/4, (6.37)

which is the widely used formula for the null variance estimate of the logrank
statistic in randomized clinical trials and was used, in particular, by BHAT.

6.5.2 Modified Haybittle–Peto Tests, Power, and Expected
Savings

As noted in Sect. 6.4, the assumption of specified group sizes in the Pocock and
O’Brien–Fleming boundaries led Lan and DeMets to develop an error-spending
counterpart of these and other boundaries, but error spending is difficult to use in
the time-sequential setting because the information (in terms of the null variance
of the test statistic) at terminal date t∗ is not available at an interim analysis. In
contrast, the modified Haybittle–Peto test in Sect. 4.2 can be easily applied to time-
sequential trials, as shown in (6.20) which considers the two-sided test of F =G. For
one-sided tests, we can clearly still control the type I error probability by replacing
|W (Vn(ti))| in (6.20) by W (Vn(ti)), i = 1, . . . ,K. This is similar to the methodology
in Sect. 4.2.2 except that it does not include stopping for futility in choosing b and
c. He et al. (2012) have noted the difficulties in coming up with a good a priori
estimate of Vn(tK) at the design stage and have developed the following method to
handle futility stopping in time-sequential trials.

To begin with, note that the stopping rule and therefore also the test statistic
have to be specified clearly in the protocol at the design stage when one does not
know the accrual pattern, the withdrawal rate, and the actual survival distributions
of the treatment and control groups. The power of the time-sequential test, however,
depends on these unknown quantities, and staggered entry of the patients further
complicates the power calculations. On the other hand, the time and cost constraints
on the trial basically determine the maximum sample size and the maximum study
duration at the design stage. In view of these considerations, the power calculations
at the design stage for determining the sample size typically assume a working
model in which the null hypothesis F = G is embedded in a semiparametric family
whose parameters are fully specified for the alternative hypothesis, under which the
study duration and sample size of the two-sample semiparametric test are shown to
have some prescribed power. The two-sample test statistic Sn(t) is usually chosen
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to be an efficient score statistic or its asymptotic equivalent in the working model.
As shown in Sect. 6.5.1, the asymptotic null variance nV (ti) of Sn(ti) depends not
only on the survival distribution but also on the accrual rate and the censoring
distribution up to the time ti of the ith interim analysis. The observed patterns,
however, may differ substantially from those assumed in the working model for
the power calculations at the design stage. In addition, the working model under
which the test statistic is semiparametrically efficient (e.g., the proportional hazards
model when a logrank test is used) may not actually hold. In this case, as the sample
size n approaches∞, the limiting distribution of n−1/2Sn(t) is still normal with mean
0 and variance V (t) under F = G and has independent increments, but under local
alternatives, the mean μ(t) of the limiting normal distribution of n−1/2Sn(t) may not
be linear in V (t), and may level off or even decrease with increasing V (t), as will be
shown at the end of this section.

For the futility stopping decision at interim analysis, He et al. (2012) propose
to consider local alternatives, which suggest using the test H0 : μ(ti) ≤ 0 for 1 ≤
i ≤ k versus Hδ : μ(ti)≥ δV (ti) for some i, for the limiting Gaussian process. They
choose the same δ as that used in the design stage to determine the sample size
and trial duration, since one does not want to have substantial power loss at or near
the alternative assumed at the design stage. Even when the working model does
not actually hold, for which μ(t)/V (t) may vary with t, using it to determine the
implied alternative for futility stopping only makes it more conservative to stop
for futility because μ(t) tends to level off or even decrease instead of increasing
linearly with V (t). It remains to consider how to update, at the ith interim analysis,
the estimate of the “maximum information” nV (t∗) (and also nV(t j) for j > i for
future interim analyses) after observing accrual, censoring, and survival patterns
that differ substantially from those assumed at the design stage. He et al. (2012)
propose to replace V (t) by the estimated V̂ (t) for t > ti in the efficient score test of
Hδ that involves these values.

Bayesian modeling provides a natural updating scheme for estimating, at time
ti of interim analysis based on observations up to ti, the null variance Vn(t) of the
score statistic Sn(t) for t > ti. Following Susarla and Van Ryzin (1976), He et al.
(2012) use Dirichlet process priors for the distribution function (F +G)/2 and for
the censoring distribution. Note that the null variance Vn(t) is generated by the
accrual rate, the censoring distribution, and the survival distributions F and G that
are assumed to be equal. The parameter α , which is a finite measure on R+ = (0,∞),
of the Dirichlet process prior can be chosen to be some constant times the assumed
parametric model that is used for power calculation at the design stage, where the
constant is α(R+) that reflects the strength of this prior measure relative to the
sample data. At the ith interim analysis, let ni be the total number of subjects who
have been accrued, and let

Z(i)
j = min(Zj,ξ j , ti −Tj), δ (i)j = I{Z

(i)
j =Zj},
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j = 1, . . . ,ni, where Zj is the actual survival time of the jth patient, Tj is the
patient’s entry time, and ξ j is the censoring time. We basically combine the X and
Y groups in (6.25) into a combined group of survival times Zj and use the same
idea. By rearranging the observations, we can assume without loss of generality that

Z(i)
1 , . . . ,Z(i)

k are the uncensored observation, and let Z(i)
[k+1] < · · · < Z(i)

[m]
denote the

distinct ordered censored observations. Let

Ni(u) =
ni

∑
j=1

I{Z(i)
j ≥u}, N+

i (u) =
ni

∑
j=1

I{Z(i)
j >u},

λi(u) =
ni

∑
j=1

I{Z(i)
j =u,δ j=0}, Z(i)

[k] = 0, Z(i)
[m+1] = ∞.

As shown by Susarla and Van Ryzin (1976), for Z(i)
[l] ≤ u< Z(i)

[l+1], the Bayes estimate

of H = 1− (F +G)/2 at the ith interim analysis is given by

Ĥi(u) =
α(u,∞)+N+

i (u)

α(R+)+ ni
×

l

∏
j=k+1

⎧⎨
⎩

α[Z(i)
[ j] ,∞)+Ni(Z

(i)
[ j] )

α[Z(i)
[ j] ,∞)+Ni(Z

(i)
[ j] )−λi(Z

(i)
[ j] )

⎫⎬
⎭ . (6.38)

Similarly, for updating the estimate Ĉ of the censoring distribution, He et al.
(2012) interchange the roles of Tj and ξ j above and replaceα byαc that is associated
with the specification of the censoring distribution at the design stage. The accrual
rates for the period prior to ti have been observed, and those for the future years
can use what is assumed at the design stage. Since Vn(t) = Vn(ti)+ [Vn(t)−Vn(ti)],
they estimate Vn(t) by Vn(ti)+E[V ∗

n (t)−V ∗
n (ti)|Ĥ,Ĉ], in which the expectation E

assumes the updated accrual rates and can be computed by Monte Carlo simulations

to generate the observations (Z∗
j ,δ ∗j ) that are independent of the (Z(i)

j ,δ (i)j ) observed
up to time ti.

We have noted in the second paragraph of this section that the limiting drift (6.33)
may not be a monotone function of t even for stochastically ordered alternatives. The
following example is given by Gu and Lai (1991) for logrank statistics. Let F0 be
the exponential distribution with constant hazard rate λ > 0, and define for θ > 0,

1−Fθ(x) =

⎧⎨
⎩

exp{−(1−θ )λx} 0 ≤ x ≤ 1,
exp{3θλ/2− (1+θ/2)λx}, 1 < x ≤ 3,
exp{−λx}, x > 3.

Let F = F0 and G = Fθ . Clearly {Fθ ,θ ≥ 0} is stochastically ordered; in fact, Fθ ≥
Fθ ′ for θ ≤ θ ′. For θ > 0, the hazard rate of Fθ is λθ (x) = (1− θ )λ (< λ ) if 0 ≤
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x ≤ 1, λθ (x) = (1+θ/2)λ (> λ ) if 1 < x ≤ 3 and λθ (x) = λ for x > 3. Therefore,
the function g in Theorem 6.2(c), in which θ → 0 at rate n−1/2, is given by

g(x) =

⎧⎨
⎩

−1, 0 ≤ x ≤ 1,
1
2 , 1 < x ≤ 3,
0, x > 3.

Hence, for the time-sequential logrank statistic, the limiting drift μ(t), given by
(6.33) for contiguous alternatives, is increasing for 0 < t < 1, decreasing for 1 <
t < 3, and constant for t ≥ 3, under the assumption that b′(t,u)b′′(t,u) > 0 for all
0 ≤ u < t. This shows that a level-α test of H0 : F = G based on the logrank statistic
Sn(t1) with 1< t1 < 3 can have higher power at the stochastically ordered alternative
(F,G)= (F0,Fθ ) with θ > 0 than that based on Sn(t2) evaluated at a later time t2 > t1,
providing therefore both savings in time and increase in power. Gu and Lai (1998,
pp. 422–425) confirm this in a simulation study.

Another simulation study in Gu and Lai (1998, pp. 425–426) for time-sequential
logrank tests compares the performance of the modified Haybittle–Peto boundaries
(6.20) with several other stopping boundaries, including the O’Brien–Fleming
boundary that was used in the BHAT report, under the same accrual and withdrawal
patterns as those in the BHAT data, and assuming the same times of interim analysis.
The fixed duration test that stops at 48 months is also included for comparison.
It considers the null hypothesis H0 : F = G, the alternative hypothesis H1 that
assumes the proportional hazards model with hazard ratio 0.699 of the treatment
to placebo group that roughly corresponds to the planned number of patients, and
the alternative hypothesis H2 which has time-varying hazard ratios of 0.599, 0.708,
0.615, 1.560, 0.800, and 0.323 for each of the 6-month periods estimated from
the BHAT data. The simulation study shows that all tests have type I error close
to the prescribed level 0.05 and that the power of the time-sequential logrank test
with the modified Haybittle–Peto or O’Brien–Fleming boundary is very close to that
of the fixed-duration logrank test. However, the modified Haybittle–Peto boundary
gives the greatest reduction in trial duration under H1 or H0.

6.6 Appendix: Martingale Theory and Applications
to Sequential/Survival Analysis

6.6.1 Optional Stopping Theorem

A sequence of random variables Sn satisfying E|Sn| < ∞ for all n is called a
martingale if

E(Sn|Fn−1) = Sn−1 a.s. (i.e., almost surely, or with probability 1).
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Here Ft denotes the information set up to time t. (To define conditional expectations
more generally in terms of Radon–Nikodym derivatives of measures, the Ft are
assumed to be σ -fields such that St is Ft -measurable and Ft ⊂ F , where F is
the σ -field containing all the events under consideration.) Martingale theory can be
extended to submartingales for which E(Sn|Fn−1)≥ Sn−1 a.s. and (by multiplying
the Sn by −1) also to supermartingales for which E(Sn|Fn−1) ≤ Sn−1 a.s. If Sn

is a martingale (or submartingale) and E|ϕ(Sn)| < ∞ for all n, then ϕ(Sn) is a
submartingale if ϕ is convex (or convex and nondecreasing). A random variable
N taking values in {1,2, . . .} is called a stopping time if {N = n} ∈Fn for all n. The
stopped σ -field FN is defined by

FN = {A ∈ F : A∩{N ≤ n} ∈ Fn for all n}. (6.39)

Martingale theory has provided an important tool to sequential analysis via the
optional stopping theorem, which roughly says that a martingale (submartingale)
up to a stopping time also remains a martingale (submartingale). By “roughly”
we mean “under some regularity conditions.” Since martingales are defined via
conditional expectations, it is not surprising that these regularity conditions involve
some sort of integrability. In particular, {Sn,n≥ 1} is said to be uniformly integrable
if supn E|Sn|I{|Sn|>a} → 0 as n → ∞. A more precise statement of the optional
stopping theorem is the following.

Theorem 6.3. If N ≤ M are stopping times and

SM∧n is a uniformly integrable submartingale, (6.40)

then SN ≤ E(SM|FN) a.s. and therefore ESN ≤ ESM. In particular, if Sn =∑n
i=1 Xi is

a submartingale and supn E(|Xn|
∣∣Fn−1) ≤ Y for some integrable random variable

Y , then (6.40) holds for all stopping times M.

Since a martingale is both a submartingale and a supermartingale, Theorem 6.3
applied to martingales yields E(SM|FN) = SN for any stopping times M and N. This
result is a generalization of Wald’s equation (3.7), in which the Xi are i.i.d. so that
E(|Xn|

∣∣Fn−1) = E|Xn| and∑n
i=1(Xi−μ) is a martingale, and therefore Theorem 6.3

with N = 1 yields (3.7).
Martingale theory can be readily extended to continuous-time stochastic pro-

cesses if the sample paths are a.s. right continuous, which we shall assume in
the rest of this section. We replace n ∈ {1,2, . . .} in the preceding discrete-time
setting by t ∈ [0,∞). The increasing sequence of σ -fields Fn is now replaced by
a filtration {Ft , t ≥ 0}, and a stopping time T is a random variable taking values
in [0,∞) and such that {T ≤ t} ∈ Ft for all t ≥ 0. The optional stopping theorem
still holds for right-continuous submartingales. Moreover, with probability 1, a right
continuous submartingale has left-hand limits at all t ∈ (0,∞); this follows from
Doob’s upcrossing inequality for right-continuous submartingales.

The stopped field FT can again be defined by (6.39) with n replaced by t. A
filtration {Ft} is said to be right-continuous if Ft = Ft+ := ∩ε>0Ft+ε . It is said
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to be complete if F0 contains all the P-null sets (that have zero probability) in F .
In what follows we shall assume that the process {St , t ≥ 0} is right continuous and
adapted to a right-continuous and complete filtration {Ft} (“adapted” means that
St is Ft -measurable.) Letting Ω denote the sample space, the σ -field generated on
Ω × [0,∞) by the space of adapted processes which are left continuous on (0,∞)
is called the predictable σ -field. A process {St} is predictable if the map (ω , t) �→
St(ω) from Ω × [0,∞) to R is measurable with respect to the predictable σ -field.

6.6.2 Predictable Variation and Stochastic Integrals

Let Fa be the class of stopping times such that P(T ≤ a) = 1 for all T ∈ Fa. A
right-continuous process {St , t ≥ 0} adapted to a filtration {Ft} is said to be of
class DL if {ST ,T ∈ Fa} is uniformly integrable for every a > 0. If {St ,Ft , t ≥ 0}
is a nonnegative, right continuous submartingale, then it is of class DL. The Doob–
Meyer decomposition says that if a right-continuous submartingale {St ,Ft , t ≥ 0}
is of class DL, then it admits the decomposition

St = Mt +At , (6.41)

in which {Mt ,Ft , t ≥ 0} is a right-continuous martingale with M0 = 0 and At is
predictable, non-decreasing and right-continuous. Moreover, the decomposition is
essentially unique in the sense that if St = M′

t +A′
t is another decomposition, then

P{Mt = M′
t ,At = A′

t for all t} = 1. The process At in the Doob–Meyer decomposi-
tion is called the compensator of the submartingale {St ,Ft , t ≥ 0}.

Suppose {Mt ,Ft , t ≥ 0} is a right-continuous martingale that is square integrable,
that is, EM2

t <∞ for all t. Since M2
t is a right-continuous, nonnegative submartingale

(by Jensen’s inequality), it has the Doob–Meyer decomposition whose compensator
is called the predictable variation process and denoted by 〈M〉t , that is, M2

t −〈M〉t

is a martingale. If {Nt ,Ft , t ≥ 0} is another right-continuous square-integrable
martingale, then (Mt +Nt)

2 −〈M+N〉t and (Mt −Nt)
2 −〈M−N〉t are martingales,

and the predictable covariation process 〈M,N〉t is defined by

〈M,N〉t =
1
4
{〈M+N〉t −〈M−N〉t}, t ≥ 0. (6.42)

Let M2 denote the linear space of all right-continuous, square-integrable martin-
gales M with M0 = 0. Two processes X and Y on (Ω ,F ,P) are indistinguishable if
P(Xt = Yt for all t ≥ 0}= 1. Two martingales M,N belonging to M2 are said to be
orthogonal if 〈M,N〉t = 0 a.s. for all t ≥ 0 or, equivalently, if {MtNt ,Ft , t ≥ 0} is a
martingale. Let M c

2 = {M ∈M2 : M has continuous sample paths} and M d
2 = {N ∈

M2 : N is orthogonal to M for all M ∈M c
2 }. It can be shown that every M ∈M2 has

an essentially unique decomposition
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M = Mc +Md , with Mc ∈ M c
2 and Md ∈ M d

2 . (6.43)

While Mc is called the continuous part of M, Md is called its “purely discontinuous”
part. Note that Mc and Md are orthogonal martingales. We can relax the integrability
assumptions above by using localization. If there exists a sequence of stopping times
Tn such that {MTn∧t ,Ft , t ≥ 0} is a martingale (or a square-integrable martingale,
or bounded), then {Mt ,Ft , t ≥ 0} is called a local martingale (or locally square-
integrable martingale, or locally bounded). By a limiting argument, we can define
〈M〉t , 〈M,N〉t , Mc, and Md for locally square integrable martingales.

We next define the stochastic integral
∫ t

0 XsdYs with integrand X = {Xs, 0≤ s≤ t}
and integrator Y = {Ys, 0 ≤ s ≤ t}. If Y has bounded variation on [0, t], then
the integrand can be taken as an ordinary pathwise Lebesgue–Stieltjes integral
over [0, t]. If Y is a right-continuous, square-integrable martingale and X is a
predictable, locally bounded process such that

∫ t
0 X2

s d〈Y 〉s < ∞ a.s., then
∫ t

0 XsdYs

can be defined by the limit (in probability) of integrals (which reduce to sums)
whose integrands are step functions and converge to X in an L2-sense. In this case,∫

XdY = {∫ s
0 Xu dYu, 0 ≤ s ≤ t} is a locally square-integrable martingale and

〈∫
XdY

〉
t
=

∫ t

0
X2

s d 〈Y 〉s . (6.44)

6.6.3 Rebolledo’s CLT

Rebolledo’s CLT for continuous-time martingales (Andersen et al., 1993,
Sect. II.5.1) provides a basic tool to derive (6.4), (6.7), and Theorem 6.2. The
Skorohod space D[0,∞) (or D[0, t∗]) is the metric space (with the Skorohod metric)
of all right-continuous functions on [0,∞) (or [0, t∗]) with left-hand limits. A
sequence of random variables Xn taking values in a metric space X is said
to converge weakly (or in distribution) to Y in X if limn→∞E f (Xn) = E f (Y )
for all bounded continuous functions f : X → R. Let MMMn(t) be a sequence of
stochastic processes taking values in R

k such that each component is a locally
square-integrable martingale with right-continuous sample paths. Let Mε

n,i(t) =
Mn,i(t)I{|�Mn,i(t)|≥ε} be the truncation of the purely discontinuous part of the ith
component Mn,i of MMMn that ignores jump sizes less than ε . Rebolledo’s CLT gives
conditions under which MMMn converges weakly to a continuous Gaussian martingale
MMM. The martingale property implies that MMM has uncorrelated increments, which
are therefore independent since MMM is Gaussian. Hence MMM is a Gaussian process
with independent increments: MMM(t)−MMM(s) ∼ N(000,VVV (t)−VVV (s)), where VVV (t) is the
covariance matrix of MMM(t). Let T = [0,∞) or [0, t∗].

Theorem 6.4. Let T0 ⊂ T and assume that as n → ∞,

〈MMMn〉t
P→VVV (t) and 〈Mε

n,i〉t
P→ 0 (6.45)
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for every t ∈ T0 and ε > 0. Then

(MMMn(t1), . . . ,MMMn(t�))
D−→ (MMM(t1), . . . ,MMM(t�)) as n → ∞, (6.46)

for all t1, . . . , t� ∈ T0. If furthermore T0 is dense in T and contains t∗ in the case
T = [0, t∗], then MMMn converges weakly to MMM in the Skorohod space (D(T ))k.

If MMMn(t) converges in distribution to the normal random vector MMM(t) that has
covariance matrix VVV (t), then it is natural to expect 〈MMMn〉t to converge in probability
to VVV (t), which is the first assumption in (6.45). Although we have only defined
the predictable variation process 〈M〉t for a univariate locally square-integrable
martingale, we can easily extend to martingale vectors MMM since we have also defined
the predictable covariation process (6.42). If Mn,i converges in distribution to a
continuous process, then it is natural to expect the jumps of Mn,i to be negligible,
and this explains the second assumption in (6.45). Thus, the convergence of finite-
dimensional distributions (6.46) requires minimal assumptions in (6.45). Weak
convergence in D(T ) (or the product space (D(T ))k) entails more than con-
vergence in finite-dimensional distributions, but the martingale structure basically
satisfies that extra condition called “tightness,” yielding Rebolledo’s CLT restated
in Theorem 6.3.

6.6.4 Counting Processes and Applications to Survival
Analysis

The stochastic process N(·) defined in (6.1) is called a counting process. It is non-
negative, right continuous, and nondecreasing and is therefore a submartingale. The
Doob–Meyer decomposition in this case yields

∫ t
0 Y (s)dΛ(s) as the compensator

of N(t), where Y (t) = ∑n
i=1 I{Ti≥t} and Λ is the cumulative hazard functions; see

Sect. 6.1.1. Hence,

M(t) := N(t)−
∫ t

0
Y (s)dΛ(s) is a martingale. (6.47)

Moreover,

〈M〉t =

∫ t

0
Y (s)(1−�Λ(s))dΛ(s); (6.48)

see Andersen et al. (1993, p. 74). Therefore, if U = {U(s), 0 ≤ s ≤ t} is locally
bounded and predictable,

∫
U dM is a locally square-integrable martingale and

〈∫
UdM

〉
t
=

∫ t

0
U2(s)Y (s)(1−�Λ(s))dΛ(s). (6.49)
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If F is continuous, then �Λ = 0, and (6.4) follows from Theorem 6.4 and the
strong law of large numbers. When F has jumps, the standard error estimator of the
Nelson–Aalen estimate in the denominator of (6.4) should be replaced by

{∫ t

0

I{Y (s)>0}(Y (s)−�N(s))

Y 3(s)
dN(s)

}1/2

in view of (6.49); see Andersen et al. (1993, p. 181). This proves the asymptotic
normality of the censored rank statistics (6.16) under the null hypothesis F = G
and of �̇(βββ 0) in the Cox regression model, from which (6.14) follows by the Taylor
expansion 0 = �̇(β̂ββ )≈ �̇(βββ 0)+ �̈(βββ 0)(β̂ββ −βββ 0).

To prove (6.7), let J(t) = I{Y(t)>0}, rewrite (6.5) as Ŝ(t) and modify (6.6) as S̃(t),
where

Ŝ(t) =∏
s≤t

(
1− J(s)

Y (s)
�N(s)

)
, S̃(t) =∏

s≤t

(
1− Λ̃(s)

)
with Λ̃ (t) =

∫ t

0
J(s)dΛ(s).

Then the quotient Ŝ(t)/S̃(t) satisfies Duhamel’s equation

Ŝ(t)

S̃(t)
− 1 =−

∫ t

0

Ŝ(s−)

S̃(s)

J(s)
Y (s)

(
dN(s)−Y (s)dΛ(s)

)
; (6.50)

see Andersen et al. (1993, pp. 91, 257). From (6.47) and (6.50), it follows that
Z(t) := Ŝ(t)/S̃(t)− 1 is a martingale. Since Ŝ/S̃ → 1 on [0, t] with probability 1,
(6.7) follows from (6.48) and Theorem 6.4.

6.6.5 Application to Time-Sequential Censored Rank Statistics

Gu and Lai (1991) proved Theorem 6.2 by making use of Rebolledo’s CLT to
establish convergence of finite-dimensional distributions of Zn(t) := n−1/2(Sn(t)−
μn(t)) in part (a) of the theorem and of Zn(t) := n−1/2Sn(t) in part (c) of the theorem.
To prove tightness, they make use of empirical process theory and exponential
inequalities for martingales. Actually one cannot apply martingale theory directly to
Zn(t) since Zn(t) is not a martingale. The martingales in Sect. 6.6.4 are indexed by
the information time s and not by the calendar time t; see (6.26)–(6.29). Therefore,
instead of Sn(t) and Zn(t), Gu and Lai (1991) consider more generally Sn(t,s) that
replaces∑n′

i=1 and∑n′′
j=1 in (6.26) by∑1≤i≤n′:Xi(t)≤s and∑1≤ j≤n′′:Yj(t)≤s, respectively.

For fixed calendar time t, martingale theory can be applied to the process Sn(t,s).
More generally, given calendar times t1 < · · · < tk ≤ t∗, (Sn(t1,s), . . . ,Sn(tk,s))
is a k-dimensional stochastic process to which Rebolledo’s CLT for multivariate
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continuous-time martingales can be applied, similar to what we have done in
the preceding section for the case k = 1. Hence, Gu and Lai (1991) consider
weak convergence of the stochastic processes (random fields) Z̃n(t,s) with two-
dimensional time parameters (t,s). Since Zn(t) = Z̃n(t, t), Theorem 6.2 follows from
the weak convergence results of the random field Z̃n(t,s).

6.7 Supplements and Problems

1. Suppose F is continuous. Show that the cumulative hazard function Λ is simply
− logS, where S = 1−F is the survival function. Hence, for given Λ , S satisfies
the Volterra integral equation S(t) = 1− ∫ t

0 S(u)dΛ(u). More generally, given a
function Λ of bounded variation on [0,T ] that is right continuous and has left-
hand limits, Volterra’s equation

S(t) = 1−
∫ t

0
S(u−)dΛ(u) (6.51)

has a unique right-continuous solution that has left-hand limits and is given by
the product integral

S(t) =∏
s≤t

(
1− dΛ(s)

)
. (6.52)

In particular, for the cumulative hazard function Λ(t) =
∫ t

0
dF(u)
S(u−) , S clearly

satisfies (6.51) and therefore has the representation (6.52).
2. Extension of classical rank statistics to censored data.

In Sect. 6.1.3 we have discussed nonparametric group sequential tests using rank
statistics of the type �n =∑n′

i=1ϕ(Ri/n), where Ri is the rank of Xi in the combined
sample. Since Ri/n can be expressed in terms of (F̂n′(Xi), Ĝn′′(Xi)), where F̂n′ and
Ĝn′′ are the empirical distribution functions, Sect. 4.3.3 considers somewhat more
general functionals

∫
Jn(F̂n′ , Ĝn′′)dF̂n′ of the empirical distribution functions. Gu

et al. (1991) explain why (6.16), with ψ defined by (6.17), provides a natural
extension of ∑n′

i=1ϕ(Ri/n). Denoteψ(Hn(Z(k))) by pn(Z(k)) and assume F and G
to be continuous so that there are no ties among the uncensored observations. Let
N(z) denote the number of observations in the combined sample that are ≥ z. For
any pair (x,y) of X ,Y values (possibly censored) in the combined sample, define
the weights

w(x,y) =

⎧⎪⎪⎨
⎪⎪⎩
−pn(y)/N(y) if y is uncensored and y ≤ x,

pn(x)/N(x) if x is uncensored and x ≤ y,

0 in all other cases.

(6.53)
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Then (6.16) can be written in the form

Sn =∑
x,y

w(x,y), (6.54)

where ∑x,y denotes summation over all the n′n′′ pairs of X ,Y values in the
combined sample. To prove this, note that if zi = 1, then Z(i) = Xr (uncensored)
for some r and the corresponding summand in (6.16) reduces to

pn(Z(i))(zi −mi/#i) = [pn(Z(i))/#i](#i −mi)

= [pn(Xr)/N(Xr)] · (number of Y ’s ≥ Xr).

Likewise, if zi = 0, then Z(i) = Yt (uncensored) for some t and

pn(Z(i))(zi −mi/#i) =−[pn(Yt)/N(Yt)] · (number of X’s ≥ Yt).

For the special case pn(z) = N(z), we have

w(x,y) =

⎧⎪⎪⎨
⎪⎪⎩
−1 if y is uncensored and y ≤ x,

1 if x is uncensored and x ≤ y,

0 in all other cases.

(6.55)

In this case, the right-hand side of (6.54) is Gehan’s (1965) extension, to censored
data, of the Mann–Whitney statistic ∑x,y w(x,y) for complete data (with w = 1 or
−1 according to x < y or x > y). Gu et al. (1991) call the function pn in (6.53)
a “payment function,” in view of the following two-team game interpretation
of (6.16). Consider a contest between two teams: X , with n′ players, and Y ,
with n′′ players. All n = n′+ n′′ players simultaneously play, say, a videogame.
Once a player makes an error, he is disqualified from further play and pays
an amount pn(z), depending on the length of time z he is in the game, to
be distributed equally among all players in the game at that time (including
himself). In addition, any player can withdraw from further play before he makes
an error (i.e., be “censored”). Thus, the total amount that team X pays team
Y is equal to Sn defined by (6.16). Note that −Sn is the amount that team Y
pays team X and that a negative value of Sn signifies that X is the better team.
The payment function pn(z) = N(z) used by Gehan is inexorably linked to the
censoring pattern. Since censoring is unrelated to the skill of the players, it seems
more reasonable to choose a payment function that is relatively unaffected by
censoring. One such choice is pn(z) = ϕ(Ĥn(z))−Φ(Ĥn(z)), where Φ(u) =∫ 1

u ϕ(t)dt/(1−u) that is used in (6.17). Note that in this two-team contest, w(x,y)
defined in (6.53) represents the amount (not necessarily nonnegative) an X-player
who leaves the game (i.e., either is disqualified or withdraws) at time x pays a Y -
player who leaves the game at time y. This interpretation provides an alternative
explanation of (6.54).
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3. Phase II–III cancer trial designs and time-varying hazard ratios of treatment to
control.
Although randomized Phase II studies are commonly conducted in other thera-
peutic areas, in oncology the majority of Phase II studies leading to Phase III
studies are single-arm studies with a binary tumor response endpoint and the
most commonly used Phase II designs are Simon’s (1989) single-arm two-stage
designs for testing H0 : p ≤ p0 versus H1 : p ≥ p1 where p is tumor response
rate, as described in Supplement 8 of Sect. 4.5. Whether the new treatment is
declared promising in a single-arm Phase II trial, however, depends strongly on
the prespecified p0 and p1. As noted by Vickers et al. (2007), uncertainty in
the choice of p0 and p1 can increase the likelihood that (a) a treatment with no
viable positive treatment effect proceeds to Phase III, for example, if p0 is chosen
artificially small to inflate the appearance of a positive treatment effect when one
exists, or (b) a treatment with positive treatment effect is prematurely abandoned
at Phase II, for example, if p1 is chosen optimistically large. To circumvent
the problem of choosing p0, Vickers et al. (2007) and Rubinstein et al. (2009)
have advocated randomized Phase II designs. In particular, it is argued that
randomized Phase II trials are needed before proceeding to Phase III trials when
(a) there is not a good historical control rate, due to either incomparable controls
(causing bias), few control patients (resulting in large variance of the control rate
estimate), or outcome that is not “antitumor activity”, or when (b) the goal of
Phase II is to select one from several candidate treatments or several doses for use
in Phase III. However, few Phase II cancer studies are randomized with internal
controls. The major barriers to randomization include that randomized designs
typically require a much larger sample size than single-arm designs and that
there are multiple research protocols competing for a limited patient population.
Being able to include the Phase II study as an internal pilot for the confirmatory
Phase III trial may be the only feasible way for a randomized Phase II cancer
trial of such sample size and scope to be conducted.

Although tumor response is an unequivocally important treatment outcome,
the clinically definitive endpoint in Phase III cancer trials is usually time to event,
such as time to death or time to progression. The go/no-go decision to Phase III is
typically based on tumor response because the clinical time-to-failure endpoints
in Phase III are often of long latency, such as time to bone metastasis in prostate
cancer studies. These failure-time data, which are collected as censored data and
analyzed as a secondary endpoint in Phase II trials, can be used for planning the
subsequent Phase III trial. Furthermore, because of the long latency of the clinical
failure-time endpoints, the patients treated in a randomized Phase II trial carry the
most mature definitive outcomes if they are also followed in the Phase III trial.
Seamless Phase II–III trials with bivariate endpoints consisting of tumor response
and time to event are an attractive idea, but up to now only Bayesian statistical
methodologies, introduced by Inoue et al. (2002) and Huang et al. (2009), have
been developed for their design and analysis.

The aforementioned Bayesian approach is based on a parametric mixture
model that relates survival to response. Let zi denote the treatment indicator (0



6.7 Supplements and Problems 151

= control, 1 = experimental), τi denote survival time, and yi denote the binary
response for patient i. Assume that the responses yi are independent Bernoulli
variables and the survival time τi given yi follows an exponential distribution,
denoted Exp(λ ) in which 1/λ is the mean:

yi | zi = z
i.i.d.∼ Bernoulli(πz), (6.56)

τi | {yi = y, zi = z} i.i.d.∼ Exp(λz,y). (6.57)

Then the conditional distribution of τi given zi is a mixture of exponentials:

τi | zi = z
i.i.d.∼ πzExp(λz,1)+ (1−πz)Exp(λz,0). (6.58)

The parametric relationship of response y on survival τ assumed by (6.56) and
(6.57) enables one to use the Bayesian approach to update the parameters so
that various posterior quantities can be used for Bayesian inference. Note that y
is a “causal intermediary” because treatment may affect y and then τ through its
effect on y and may also have other effects on τ . The model (6.56)–(6.57) reflects
this nicely by considering the conditional distribution of y given z and that of τ
given (y,z).

Let μz = E(τi | zi = z) denote the mean survival time in treatment group z.
Inoue et al. (2002) proposed the following Bayesian design, assuming indepen-
dent prior gamma distributions for λz,0 and λz,1 (z = 0,1) and beta distributions
for π0 and π1. Each interim analysis involves updating the posterior probability
p̂ = P(μ1 > μ0 | data) and checking whether p̂ exceeds a prescribed upper
bound pU or falls below a prescribed lower bound pL, which is less than pU .
If p̂ > pU (or p̂ < pL), then the trial is terminated, rejecting (accepting) the
null hypothesis that the experimental treatment is not better than the standard
treatment; otherwise the study continues until the next interim analysis or until
the scheduled end of the study. The posterior probabilities are computed by
Markov chain Monte Carlo, and simulation studies of the frequentist operating
characteristics under different scenarios are used to determine the maximum
sample size, study duration, and the thresholds pL and pU . Whereas Inoue et al.
(2002) considered a more complex scenario in which yi is observable only if
τi > t0, Huang et al. (2009) introduced a more elaborate design that uses the
posterior probability p̂ after an interim analysis for outcome-adaptive random
allocation of patients to treatment arms until the next interim analysis. These
Bayesian designs are called Phase II–III because they involve a small number of
centers for Phase II after which “the decision of whether to stop early, continue
Phase II, or proceed to Phase III with more centers is made repeatedly during a
time interval.”

While (6.58) provides a parametric approach to modeling the response–
survival relationship using mixture of exponential survival times, semipara-
metric methods such as Cox regression are often preferred for reproducibility
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considerations and because of the relatively large sample sizes in Phase III
studies. Efficient time-sequential methods to carry this out are already available,
as shown in this chapter. Moreover, group sequential GLR tests for sample
proportions are also available, as shown in Chap. 4. Lai et al. (2012a) combine
these methods to develop an alternative seamless Phase II–III design that uses a
semiparametric model to relate survival to response and is directly targeted to-
ward frequentist testing with GLR or partial likelihood statistics. Their basic idea
is to replace the stringent parametric model involving exponential distributions
in (6.57) by a semiparametric counterpart that generalizes the Inoue–Thall–Berry
model. Let y denote the response and z denote the treatment indicator, taking the
value 0 or 1. Consider the proportional hazards model

λ (t |y,z) = λ0(t)exp(αy+β z+ γyz). (6.59)

The Inoue–Thall–Berry exponential model is a special case of (6.59), with λ0(·)
being the constant hazard rate of an exponential distribution. Let π0 = P(y =
1 |control) and π1 = P(y = 1 | treatment). Let a = eα , b = eβ , and c = eγ , and
let S be the survival distribution and f be the density function associated with
the hazard function λ0 so that λ0 = f/S. From (6.59), it follows that the survival
distribution of τ is

P(τ > t) =

{
(1−π0)S(t)+π0(S(t))a for the control group (z = 0),
(1−π1)(S(t))b +π1(S(t))abc for the treatment group (z = 1).

(6.60)

The hazard ratio of the treatment to control survival varies with t because of
the mixture form in (6.60). Let πππ = (π0,π1) and ξξξ = (a,b,c). A commonly
adopted premise in the sequenced trials to develop and test targeted therapies
of cancer is that the treatment’s effectiveness on an early endpoint such as
tumor response would translate into long-term clinical benefit associated with
a survival endpoint such as progression-free or overall survival, and conversely,
that failure to improve the early endpoint would translate into lack of definitive
clinical benefit. This explains why the go/no-go decision for Phase III made in a
conventional Phase II cancer trial is based on the response endpoint. Under this
premise, the complement of the set of parameter values defining an efficacious
treatment leads to the null hypothesis H0 : π0 ≥ π1, or π0 < π1 and d(πππ,ξξξ )≤ 0;
see Lai et al. (2012a) for the expression and rationale of d(πππ,ξξξ ) and how the
modified Haybittle–Peto tests in Sects. 4.2 and 6.5.2 can be extended to test H0.

4. Derive from (6.60) the hazard ratio of treatment to control at every t. Show that
it is not constant in t even when S is exponential except for certain values of
(πππ ,ξξξ ). On the other hand, show that as a → 1 and c → 1, the limiting hazard
ratio is constant in t and express the constant as a function of πππ and ξξξ . In fact,
this function is 1− d(πππ,ξξξ ), where d(πππ,ξξξ ) is the same as that given in Lai et al.
(2012a).



Chapter 7
Confidence Intervals and p-Values

Although group sequential methods allow for early termination of a clinical trial
while preserving the overall significance level of the test concerning its primary
endpoint, they introduce substantial difficulties in constructing confidence intervals
for the parameters of interest following the trial. The naive confidence interval that
ignores the data-dependent nature of the sample size needs justification and may be
unreliable. Section 7.1 gives an overview of several developments in the literature
to address this issue. Most of them focus on the simple case of a normal mean μ
with known variance, for which “exact methods” to construct confidence intervals
for μ following a group sequential test of μ ≤ 0 (or of μ = 0) are available.

For samples of fixed size, an important methodology for constructing confidence
intervals without distributional assumptions is the bootstrap method. Chuang and
Lai (1998) have studied bootstrap confidence intervals for a population mean in
a group sequential setting. They have found that the bootstrap method does not
give reliable confidence intervals in a group sequential setting and have developed
a resampling method, called hybrid resampling, to construct confidence intervals
whose coverage probabilities are nearly equal to the nominal ones. The term
“hybrid” refers to a hybrid of the exact and bootstrap methods. Motivated by
applications to time-sequential clinical trials with failure-time endpoints, Lai and
Li (2006) have developed a general ordering scheme in the sample space of the
observed (possibly censored) failure times up to a stopping time. This ordering
scheme, which is described in Sect. 7.3, not only unifies previous exact methods
based on p-values that are implicitly or explicitly associated with orderings of the
sample space, but also resolves a long-standing difficulty due to two time scales in
time-sequential trials noted in Chap. 6. Applying the ordering scheme and hybrid
resampling to time-sequential survival data, Lai and Li (2006) circumvent this
difficulty and construct confidence intervals with accurate coverage probabilities
for hazard ratios in time-sequential clinical trials. Their results are summarized in
Sect. 7.4.

In a sequential clinical trial whose stopping rule depends on the primary
endpoint, inference on secondary endpoints is an important and long-standing
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problem. Ignoring the possibility of early stopping based on the primary endpoint
may result in substantial bias. To address this problem, a commonly used approach,
described in Sect. 7.1.4, is to develop bias correction by estimating the bias in the
case of bivariate normal outcomes and appealing to joint asymptotic normality of
the statistics associated with the primary and secondary endpoints. Lai et al. (2009)
have developed a new approach, described in Sect. 7.5, that uses hybrid resampling.
This approach is shown in Sect. 7.6 to provide accurate inference in complex clinical
trials, including time-sequential trials with survival endpoints and covariates.

7.1 Inference Following a Sequential Trial: Some
Developments

7.1.1 Naive Confidence Intervals, Anscombe’s Theorem,
and Bayesian Methods

For fully sequential tests such as the SPRT based on i.i.d. observations, Anscombe’s
(1952) theorem was used to prove the asymptotic validity of the naive confidence
interval (θ̂T − θ )/ŝe(θ̂T ), where T is the stopping time and ŝe(θ̂T ) denotes the
estimated standard error. This is tantamount to replacing the fixed sample size n
by the random variable T in the traditional confidence interval (θ̂n −θ )/ŝe(θ̂n) for
an unknown parameter θ . Anscombe’s theorem states that if Zn := (θ̂n −θ )/se(θ̂n)
has a limiting standard normal distribution and as n → ∞ and ε ↑ 1,

Tn/n
P→ c, ŝe(θ̂n)/se(θ̂n)

P→ 1, max
εn≤ j≤n

|Zn −Zj| P→ 0 (7.1)

for some nonrandom constant c, then (θ̂Tn −θ )/ŝe(θ̂Tn) also has a limiting standard
normal distribution as n → ∞. We embed the stopping time T in a sequence of
stopping times Tn in (7.1) not only to indicate that the stopping time is large for the
central limit theorem to hold but also to show that it is asymptotically nonrandom,
behaving like cn. Siegmund (1985, p.22) has pointed out the inadequacy of this nor-
mal approximation because early stopping in the fully sequential test may result in a
sample size not large enough to satisfy (7.1) unless an “artificially large” minimum
sample size is enforced for the purpose of estimation, and because (7.1) cannot hold
at certain parameter values, for example, θ where “Eθ{log[ f1(X)/ f0(X)]} ≈ 0” for
the SPRT.

Imposing a minimum sample size is not an issue for group sequential tests,

but the condition Tn/n
P→ c in (7.1) is violated at more parameter values. Chuang

and Lai (1998) have shown that even though
√

n(X̄n − μ) is a pivot in the case
of Xi ∼ N(μ ,1),

√
T (X̄T − μ) is highly non-pivotal for group sequential stopping

times. In the fully sequential case, Siegmund (1985, p.24) has suggested using
Edgeworth-type asymptotic expansions to improve the coverage accuracy of the
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intervals, but notes that derivation of these expansions “seems remarkably difficult,
even for fairly simple stopping rules.” Lai and Wang (1994) have developed these
expansions which are, however, too complicated for practical use because they
involve fluctuation-theoretic quantities for random walks. Woodroofe (1986, 1992)
has developed simpler expansions which will be described in Sect. 7.1.4 and
the second supplement in Sect. 7.7, but these expansions are related to coverage
probabilities integrated with respect to some prior distribution on the parameter
space.

Woodroofe’s use of these prior distributions is for technical reasons to simplify
the expansions of the frequentist coverage probabilities, which involve adjustments
for the randomness of the stopping time T . It is different from the Bayesian approach
that considers credible sets instead of confidence sets. The credible sets do not need
adjustments for the randomness of T as they are defined by a prescribed level for
the posterior probability, given the observations up to T , that θ belongs to the set.
In particular, for the case Xi ∼ N(μ ,1) and μ ∼ N(0,σ2), a (1−α)-level credible
interval for μ is

σ2T X̄T

σ2T + 1
± z1−α/2

σ√
σ2T + 1

,

where zp = Φ−1(p) is the pth quantile of the standard normal distribution. Letting
σ → ∞ (corresponding to the flat prior) yields the naive confidence interval
X̄T ± z1−α/2/

√
T for μ . Since both the naive confidence interval and the Bayesian

credible interval make no adjustments for the sampling fluctuations of T , it is not
surprising that their frequentist coverage probabilities may differ substantially from
the prescribed level.

7.1.2 Exact Confidence Intervals in the Normal Case

For the prototypical problem of Xi ∼ N(μ ,1) in the literature, there is only a
single unknown parameter μ , so one can construct confidence intervals by the exact
method that defines a (1−α)-level lower confidence bound as the set of parameters
μ for which a level-α test of Hμ : μ ′ ≥ μ with the given stopping time T accepts Hμ ;
the (1−α)-level upper confidence bound is defined similarly. Thus, a (1−2α)-level
confidence set can be defined by{

μ : uα(μ)≤
√

T (X̄T − μ)≤ u1−α(μ)
}
, (7.2)

where uα(μ) and u1−α(μ) are the quantiles for every fixed μ :

Pμ
{√

T (X̄T − μ)< uα(μ)
}
= α = Pμ

{√
T (X̄T − μ)> u1−α(μ)

}
. (7.3)

Note that the confidence set (7.2) reduces to an interval whose endpoints are found
by intersecting the line

√
T (X̄T − μ) with the curves uα(μ) and u1−α(μ) if there is
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only one intersection with each curve, which is the case commonly encountered
in practice. Rosner and Tsiatis (1988) propose this exact method to construct
confidence intervals for μ and to use recursive numerical integration as in Sect. 4.3.1
to determine the quantiles uα(μ) and u1−α(μ).

7.1.3 Siegmund’s Ordering and Group Sequential Trials
with Random Group Sizes

As noted in Sect. 4.1.3, the number of subjects available for analysis at the ith
interim analysis is often unknown in advance, and the stopping time T that takes
values in J = {n1,n2, . . . ,nk} is therefore not completely specified to implement
(7.3). This difficulty can be circumvented by using an appropriate ordering scheme
of the sample space of (T,ST ). Under a total ordering ≤ of the sample space, an
exact (1− 2α)-level confidence interval for μ is μα < μ < μ1−α , where μc is the
value of μ such that

Pμ {(T,ST )> (t0,s0)}= c, (7.4)

in which (t0,s0) denotes the observed value of (T,ST ) and > in (7.4) denotes �≤.
Such confidence intervals were first introduced by Siegmund (1978) for stopping
rules of the form

T = min{n ∈ J : Sn ≥ bn or Sn ≤ an} (an < bn). (7.5)

He used the following ordering of the sample space of (T,ST ) : (t,s) > (t̃, s̃)
whenever (1) t = t̃ and s > s̃, or (2) t < t̃ and s ≥ bt , or (3) t > t̃ and s̃ ≤ at̃ .
Emerson and Fleming (1990) proposed to order (T,ST ) according to ST/T . Under
their “sample mean ordering,” (t,s)> (t̃, s̃) whenever s/t > s̃/t̃.

For Siegmund’s ordering, the event {(T,ST ) > (t0,s0)} in (7.4) only involves
sample points that stop before or at t0 unless s0 ≤ at0 , in which case the event
reduces to {T = t0,ST > s0} ∪ {T > t0} ∪ {T < t0,ST > bT}. Since {T > t0} is
the complement of {T ≤ t0}, the sample sizes n j under Siegmund’s ordering need
only be specified for j ≤ j(t0), that is, up to the stopping time t0 which is equal
to n j(t0). We can therefore condition on n1, . . . ,n j(t0) in evaluating the probability
in (7.4) when Siegmund’s ordering is used and thereby still obtain an exact 1− 2α
confidence interval for μ even when it is not known how the n j are generated for
j > j(t0). This important property of Siegmund’s ordering is not shared by the
sample mean ordering, under which the event {(T,ST ) > (t0,s0)} contains sample
points with T > t0 when t0 is smaller than the largest allowable sample size N = nk.
Therefore, unless one imposes assumptions on the probability mechanism, which
is typically unknown, generating the group sizes after t0, one cannot evaluate the
probability in (7.4). For the sample mean ordering, Emerson and Fleming (1990)
proposed to assign the remaining N − n j(t0) observations to a single group in
evaluating the probability in (7.4) after conditioning on the observed n1, . . . ,n j(t0).
This is tantamount to changing the number of groups from k to j(t0)+ 1.
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Instead of using recursive numerical integration, Siegmund (1978) uses analytic
approximations to evaluate (7.4). For the case μ = 0, note the similarity of (7.4) and
(4.19) that considers the particular null hypothesis μ = 0. Rosner and Tsiatis (1988)
call the ordering of (T,ST ) according to

√
T (X̄T − μ), which they used in (7.2),

“the likelihood ratio ordering”. This exact method for constructing (1− 2α)-level
confidence intervals in the present normal setting amounts to running a family of
sequential tests, one for each μ , with stopping rule T .

7.1.4 Bias Correction for A Modified Pivot

Siegmund (1978), Emerson and Fleming (1990), and Whitehead (1986; 1992,
Chap. 5) have introduced bias-corrected or unbiased estimators following sequential
trials. Instead of using bias correction for point estimation, Woodroofe (1992)
uses bias correction to correct the pivot for optional stopping in the case of a
normal population with unknown mean μ and known variance 1. Suppose the
stopping rule is of the form T = min{n0(a),max(ta,n1(a))}, where n0(a) ∼ a/ε0

and n1(a)∼ a/ε1, with 0 < ε0 < ε1, and

ta = inf{n ≥ 1 : ng(Sn/n)≥ a} ,
in which g is continuously differentiable. Let R0(μ) = T 1/2(X̄T − μ). Noting that

a/T
P→ κ(μ) := max{ε0, min(g(μ),ε1)}, Woodroofe (1986) has shown that

ER0(μ)
.
= a−1/2[(d/dμ)κ1/2(μ)] = (κ(μ)/a)1/2b(μ),

where b(μ) = [(d/du)κ1/2(μ)]κ−1/2(μ) = κ̇(μ)/{2κ(μ)}. This suggests the bias-
corrected pivot

R1(μ) = T 1/2(X̄T − μ)−T−1/2b(X̄T ). (7.6)

Section 7.7 gives a (nonparametric) multivariate extension of the modified pivot
(7.6) and Woodroofe’s theory for confidence intervals based on (7.6).

7.1.5 Bivariate Normal Outcomes

A long-standing problem in the terminal analysis of sequential clinical trials
is testing secondary hypotheses. Usually such hypotheses are concerned with
parameters associated with secondary endpoints, whereas the stopping rule of the
trial depends on the primary endpoint. When the primary and secondary endpoints
are correlated, conventional nonsequential inference on a secondary endpoint that
ignores the sequential design for the primary endpoint is invalid. To address this
problem, Liu et al. (2000) and Whitehead et al. (2000) propose to use corrections for
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Table 7.1 Quantiles qα of
√

T (ȲT −θ )/σ
α (in %) 2.5 5 10 20 50 80 90 95 97.5

zα −1.96 −1.65 −1.28 −0.84 0.00 0.84 1.28 1.65 1.96
qα (μ = 0.0) −2.12 −1.72 −1.31 −0.84 0.01 0.86 1.31 1.68 2.04
qα (μ = 0.5) −2.08 −1.69 −1.29 −0.85 0.03 0.97 1.46 1.85 2.17
qα (μ = 1.0) −1.97 −1.64 −1.28 −0.82 0.15 1.06 1.50 1.84 2.14
qα (μ = 1.5) −1.89 −1.56 −1.15 −0.62 0.24 1.04 1.43 1.78 2.05
qα (μ = 2.0) −1.74 −1.41 −1.04 −0.61 0.20 0.99 1.40 1.75 2.06

the bias of the randomly stopped test statistic, based on estimation of the bias in the
prototypical case of bivariate normal endpoints and on joint asymptotic normality
of their test statistics for the primary and secondary hypotheses.

Let (Xi,Yi) be independent bivariate normal with E(Yi) = θ , Var(Yi) = σ2,
E(Xi) = μ , Var(Xi) = 1, and Corr(Xi,Yi) = ρ , where ρ and σ are known and
nonzero, and μ and θ are unknown. Consider the problem of testing H0 : θ ≤ 0
based on a randomly stopped sample {(Xi,Yi),1≤ i≤ T}, where T is a stopping rule
based on X1,X2, . . . . If T is replaced by a fixed sample size n, then

√
n(Ȳn − θ )/σ

is standard normal. However,
√

T (ȲT −θ )/σ has a non-normal distribution, which
depends on μ because the sampling distribution of T depends on μ , as illustrated
by Lai et al. (2009) in which T = inf{m ≤ 75 : X1 + · · ·+ Xm > 2.413

√
m, m is

divisible by 15}, and ρ = 0.8; see Table 7.1. Therefore, whereas the likelihood
ratio test based on a sample of fixed size n rejects H0 if the sample mean Ȳn exceeds
σz1−α/

√
n, the test with stopping rule T should replace z1−α by d1−α that is defined

by

sup
μ

Pμ,0
{√

TȲT
/
σ ≥ d1−α

}
= α, (7.7)

because H0 is composite and the type I error probability constraint is supμ,θ≤0 Pμ,θ
{the test rejects H0} ≤ α . Since the test rejects H0 if

√
TȲT ≥ d1−ασ , the p-value

of the test is

sup
μ

Pμ,0
{√

TȲT ≥√
tȳt

}
, (7.8)

in which (t, ȳt) is the observed value of (T,ȲT ) in the sample. This is the exact
method, which is a generalization of that in Sect. 7.1.2 for the univariate case in
which the Yi are absent. Instead of solving for d1−α , it is more convenient to compute
(7.8) and to reject H0 if (7.8) does not exceed α . The probability in (7.8) for a
given μ can be computed by using the recursive numerical integration method of
Armitage et al. (1969). A standard numerical optimization algorithm can then be
used to maximize the computed probability over μ .

Instead of replacing the incorrect quantile z1−α by its correct version in (7.7),
Liu et al. (2000) propose to adhere to z1−α but to modify

√
TȲT/σ by a bias-

corrected modification
√

T (ȲT − ρσ b̂T )/σ , where b̂T = X̄T − μ̂T and μ̂T is an
unbiased estimate of μ given by Emerson and Fleming (1990) and Liu and Hall
(1999). Their basic idea is that the normal approximation would be applicable to√

T (ȲT − ρσ b̂T − θ )/σ so that z1−α can still be used. Whitehead et al. (2000)
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use a different approach that involves estimating the mean mU and the standard
deviation sU of U =

√
T (X̄T −μ) and using the independence between {X1,X2, . . .}

and {Yi −ρσXi : i ≥ 1} to form an approximate pivot

{√
T (ȲT −θ )/σ −ρmU

}
{

1+ρ2(s2
U − 1)

}1/2
.

As shown by Todd and Whitehead (1996), mU and sU can be estimated by using
X̄T to replace μ in a numerical integration procedure that assumes μ to be known.
Although Whitehead et al. (2000) only use this approximate pivot to construct
confidence intervals for θ , it can also be used to test H0 : θ ≤ 0.

7.1.6 Extensions Beyond the Normal Cases

The traditional literature on group sequential designs focuses on the prototypical
problem of testing for the mean μ of a normal distribution with known variance,
usually assumed to be 1 after normalization, or more generally the mean vector
μμμ of a multivariate normal distribution with known covariance matrix. For more
general test statistics and parameters, the group sequential nature is used to justify
normal approximation of the increments of the test statistics within successive
groups, thereby reducing the problem to that of normal increments; see Jennison
and Turnbull (2000, Chap. 8), Liu et al. (2000), and Whitehead et al. (2000) that
focus primarily on ordering schemes and bias-corrected pivots for group sequential
tests, and confidence intervals following the tests, in the normal and bivariate normal
cases.

7.2 A Hybrid Resampling Approach

7.2.1 A General Formulation of Exact, Bootstrap, and Hybrid
Resampling Methods

Chuang and Lai (2000) have provided the following general framework for the
statistical problem of constructing confidence intervals. Let XXX be a vector of obser-
vations from distribution F in some family F of distributions. For nonparametric
problems, F is the family of distributions satisfying certain prespecified regularity
conditions. For parametric models with parameter η ∈ Γ , we can denote F by
{Fη : η ∈ Γ }. The problem of interest is to find a confidence interval for the real-
valued parameter θ = θ (F). LetΘ denote the set of all possible values of θ .
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Exact method: If F = {Fθ : θ ∈Θ} is indexed by a real-valued parameter θ , an
exact equal-tailed confidence region can always be found by using the well-known
duality between hypothesis tests and confidence regions, which we have described
in Sect. 7.1.2 for the special case of Fθ =N(θ ,1). Suppose one would like to test the
null hypothesis that θ is equal to θ0. Let R(XXX ,θ0) be some real-valued test statistic.
Let uα(θ0) be the α-quantile of the distribution of R(XXX ,θ0) under the distribution
Fθ0 . The null hypothesis is accepted if uα(θ0) < R(XXX ,θ0) < u1−α(θ0). An exact
equal-tailed confidence region with coverage probability 1− 2α consists of all θ0

not rejected by the test and is therefore given by

{θ : uα(θ )< R(XXX ,θ )< u1−α(θ )} . (7.9)

Bootstrap method: The exact method applies only when there are no nuisance
parameters and this assumption is rarely satisfied in practice. The bootstrap method
replaces the quantiles uα(θ ) and u1−α(θ ) by the approximate quantiles u∗α and u∗1−α
obtained in the following manner. Based on XXX , construct an estimate F̂ of F ∈ F .
The quantile u∗α is defined to be α-quantile of the distribution of R(XXX∗, θ̂ ) with XXX∗
generated from F̂ and θ̂ = θ (F̂). Thus, the bootstrap method yields the following
confidence region for θ with approximate coverage probability 1− 2α:

{
θ : u∗α < R(XXX ,θ )< u∗1−α

}
. (7.10)

In particular, when F̂ is the empirical distribution of i.i.d. X1, . . . ,Xn and the root
R(XXX ,θ ) is equal to (θ̂ − θ )/σ̂ for some estimate σ̂ of the standard error of θ̂ , the
bootstrap confidence interval (7.10) is called the bootstrap-t interval.

Hybrid resampling method: The hybrid confidence region is based on reducing the
family of distributions F to another family of distributions {F̂θ : θ ∈ Θ}, which
is used as the “resampling family” and in which θ is the unknown parameter of
interest. This reduction depends on XXX , and some ways for carrying it out are given
in the rest of this chapter. Let ûα(θ ) be the α-quantile of the sampling distribution
of R(XXX ,θ ) under the assumption that XXX has distribution F̂θ . The hybrid confidence
region results from applying the exact method to {F̂θ : θ ∈Θ} and is given by

{θ : ûα(θ )< R(XXX ,θ )< û1−α(θ )} . (7.11)

The construction of (7.11) typically involves simulations to compute the quantiles
as in the bootstrap method. Chuang and Lai (1998, 2000) call this the hybrid
resampling method because it “hybridizes” the exact method (that uses test in-
version) with the bootstrap method (that uses the observed data to determine the
resampling distribution). Note that hybrid resampling is a generalization of the
bootstrap method, which uses the singleton {F̂} as the resampling family {F̂θ}.

In practice, it is often desirable to express a confidence set for θ as an interval.
Although (7.9), (7.10), and (7.11) may not be intervals, it often suffices to give only
the upper and lower limits of the confidence set. Chuang and Lai (2000) describe
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an algorithm, based on method of successive secant approximations, to find the
upper limit of (7.11). Let f (θ ) = R(XXX ,θ )− ûα(θ ) and consider solving the equation
f (θ ) = 0. First, we find a1 < b1 such that f (a1) > 0 and f (b1) < 0. Let f1(θ ) be
linear in θ ∈ [a1,b1] with f1(a1) = f (a1) and f1(b1) = f (b1), and θ1 be the root
of f1(θ ) = 0. If f (θ1) > 0, set a2 = θ1 and b2 = b1. If f (θ1) < 0, set b2 = θ1 and
a2 = a1. Proceeding inductively in this manner, we let fk(θ ) linearly interpolate
f (ak) and f (bk) for ak ≤ θ ≤ bk, and let θk ∈ (ak,bk) be the root of fk(θ ) = 0.
This procedure terminates if θk differs little from θk−1 and the terminal value θk is
taken to be the upper limit of (7.11). Typically f (θ̂ ) > 0, so θ̂ can be chosen as a1.
To find b1, one can start with b′1 = θ̂ + 2σ̂ , where σ̂ is an estimate of the standard
error of θ̂ . If f (b′1)< 0, let b1 = b′1; otherwise let b′2 = b′1 + σ̂/2 and check whether
f (b′2)< 0. This procedure is repeated until one arrives at f (b′h)< 0 and sets b1 = b′h.
The quantiles ûα(θ j) can be computed from independent samples from F̂θ j , as was
done in these examples. It is often possible to try to reuse the same random sample
for all θ values.

7.2.2 Hybrid Resampling Confidence Intervals for Population
Means Following Group Sequential Tests Based
on Sample Means

The hybrid resampling method provides a way to relax the assumption of normally
distributed Xi in the exact method of Sect. 7.1.2 for constructing confidence intervals
for the mean μ of Xi that has known variance 1. Let G denote the common
distribution of Xi − μ , which has mean 0 and variance 1. An obvious estimate
of G is the empirical distribution ĜT of (Xi − X̄T )/σ̂T (1 ≤ i ≤ T ), where σ̂2 =
T−1∑(Xi − X̄T )

2. Let ε1,ε2, . . . be independent with common distribution ĜT , and
let Xi(μ) = μ + εi. Let Tμ be the stopping rule T applied to X1(μ),X2(μ), . . . ,
instead of to X1,X2, . . . . By analogy with (7.3), define the quantiles ûα(μ) and
û1−α(μ) of the distribution of (ε1 + · · ·+ εTμ )/

√
Tμ given ĜT . An approximate

1− 2α confidence set is{
μ : ûα(μ)≤

√
T (X̄T − μ)≤ û1−α(μ)

}
. (7.12)

For every fixed μ , the quantiles ûα(μ) and û1−α(μ) in (7.12) can be computed by
simulation.

A simpler alternative to this resampling method is the bootstrap method. Instead
of using the empirical distribution ĜT of the (Xi− X̄T )/σ̂T to generate εi and thereby
to form Xi(μ) = εi + μ , the bootstrap method uses the empirical distribution F̂T of
Xi (1 ≤ i ≤ T ) and generates X∗

1 ,X
∗
2 , . . . ,X

∗
T ∗ directly from F̂T , where T ∗ is the stop-

ping rule T applied to X∗
1 ,X

∗
2 , . . . , instead of to X1,X2, . . . . Let u∗α and u∗1−α denote

the α- and (1−α)-quantiles of the distribution of
√

T ∗(X̄∗
T∗ − X̄T )/σ̂T , which can

be computed from F̂T by simulation. The bootstrap confidence interval is given by
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X̄T − u∗1−α
/√

T ≤ μ ≤ X̄T − u∗α
/√

T . (7.13)

The bootstrap method is known to give second-order accurate confidence intervals
when the stopping rule T is replaced by a fixed sample size n. In fact, under F̂n, the
distribution

√
n(X̄∗

n − X̄n)/σ̂n differs from the standard normal distribution, which is
the distribution of

√
n(X̄n − μ) in the present example of normal Xi, by an Op(n−1)

term (Hall, 1992). However, this asymptotic theory is no longer valid when n is
replaced by T in the group sequential setting, and

√
T (X̄T − μ) is no longer an

approximate pivot since its distribution changes substantially with μ , as will be
shown in a more general context in Sect. 7.4.1.

The preceding hybrid resampling scheme assumes that the stopping rule T is
completely specified. For group sequential stopping rules, this implies prespecified
sample sizes n1, . . . ,nk at interim monitoring times. As noted in Sect. 7.1.3,
Siegmund’s ordering scheme can be used for normal Xi even when the n j are not
prespecified. Without assuming the Xi to be normal, we approximate Pμ{(T,ST ) ≥
(t0,s0)} by P{(Tμ ,STμ (μ))≥ (t0,s0)}, where Sn(μ) = (μ+ε1)+ · · ·+(μ+εn) and
εi and Tμ are defined above. Thus an approximate (1−2α)-level confidence interval
is μ̂α ≤ μ ≤ μ̂1−α , where μ̂c is the value of μ for which

P
{(

Tμ ,STμ (μ)
)≥ (t0,s0)

}
= c. (7.14)

It can be shown that the probability in (7.14) is an increasing function of μ . This
probability can be computed for any fixed μ using simulation by generating the εi

from the empirical distribution ĜT of (Xj − X̄T )/σ̂T (1 ≤ j ≤ T ).

7.2.3 A Comparative Study

Consider the stopping rule (7.5) with bn = an = 2.413
√

n and J = {n1, . . . ,n5},
in which n1,n2 − n1,n3 − n2,n4 − n3 are independent and uniformly distributed
on {16,17, . . . ,24} and that n5 = 100. Table 7.2a considers the case of normally
distributed Xi with unknown mean μ and known variance 1. The table gives the
coverage errors of upper and lower confidence limits for μ obtained by different
methods with a common nominal coverage error probability α = 0.05. It shows
that the hybrid resampling method, which uses 2000 simulations to compute the
probability in (7.14) by Monte Carlo, has coverage errors that are close to those of
Siegmund’s exact method which is based on the assumption of normal Xi. Also given
for comparison are the Emerson–Fleming method, which also uses the Gaussian
assumption on the Xi, and the naive normal confidence limits that treat

√
T (X̄T −μ)

as if it were normal. The coverage errors of the naive normal confidence limits in
Table 7.2a differ substantially from the nominal value of 5%, and the Emerson–
Fleming upper confidence limit shows a relatively large coverage error of 7.5%
at μ = 3

4 . Whereas Siegmund’s method is exact for normal Xi and the Emerson–
Fleming method is also based on the assumption of normally distributed Xi, the
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Table 7.2 Coverage errors in percentages for four types of lower, L, and upper, U,
confidence limits. (S, Siegmund’s method; H, hybrid resampling method; EF, Emerson–
Fleming methods; N, naive normal method)

μ = 0 μ = 1/8 μ = 1/4 μ = 1/2 μ = 3/4

Method L U L U L U L U L U

(a) Normal mean
S 5.48 4.84 5.24 4.86 4.78 4.92 5.22 4.88 5.26 4.28
H 5.62 4.96 5.14 4.76 4.82 5.00 5.34 4.94 5.32 4.30
EF 5.48 4.84 5.36 4.86 4.98 4.92 5.24 5.68 5.26 7.46
N 6.48 5.86 10.54 5.04 7.10 4.86 5.38 1.56 5.28 3.04

(b) Non-normal mean
S 6.36 3.50 6.70 4.34 5.94 4.38 6.52 4.38 6.36 4.00
H 5.44 4.60 5.66 5.10 5.62 4.96 5.96 4.76 5.88 4.70
EF 6.34 3.50 6.92 4.34 6.46 4.38 6.66 5.40 6.36 7.84
N 7.46 4.50 12.28 4.38 9.14 4.32 7.22 2.26 6.40 2.66

hybrid resampling method is nonparametric in nature. Table 7.2b considers the case
in which Xi−μ+1 is exponential with mean 1, so that Eμ(Xi)= μ and Varμ(Xi)= 1.
It shows that the hybrid resampling method still yields coverage errors close to the
nominal value of 5% and that the other methods perform markedly worse than their
counterparts in Table 7.2a. Each result in Table 7.2 is based on 5000 simulations.

7.3 A General Ordering Scheme and p-Values

7.3.1 Total Ordering of Sample Space for p-Values

Section 7.1.3 has described different ordering schemes of the sample space of
(T,ST ). Since an exact method for constructing confidence regions is based on
inverting a test, such a method is implicitly or explicitly linked to an ordering of
the sample space of the test statistic used. The ordering defines the p-value of the
test as the probability (under the null hypothesis) of more extreme values (under
the ordering) of the test statistic than that observed in the sample. Equivalently, the
test rejects the null hypothesis, one for each given μ , if the test statistic exceeds or
falls below a specified quantile of its null distribution. Thus, the ordering scheme
for (T,ST ) in the exact methods of Siegmund (1978) and Rosner and Tsiatis (1988)
can be associated with corresponding bivariate quantiles of (T,ST ). Under a total
ordering ≤ of the sample space of (T,ST ), Lai and Li (2006) call (t,s) a qth
quantile if

P{(T,ST )≤ (t,s)} = q, (7.15)
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under the assumption that the Xi have a strictly increasing continuous distribution
function, as in the normal case. This is a natural generalization of the qth quantile
of a univariate random variable. For randomly stopped sums of independent normal
random variables with unknown mean μ , the bivariate vector (T,ST ) is sufficient for
μ . For the general setting where a stochastic process XXXu, in which u denotes either
discrete or continuous time, is observed up to a stopping time T , Lai and Lai (2006)
define xxx = {xxxu : u ≤ t} to be a qth quantile if

P{XXX ≤ xxx} ≥ q, P{XXX ≥ xxx} ≥ 1− q, (7.16)

under a total ordering ≤ for the sample space of XXX = {XXXu : u ≤ T}.
For applications to confidence intervals of a real parameter θ , the choice of the

total ordering should be targeted toward the objective of interval estimation. Let
{Ur : r ≤ T} be real-valued statistics based on the observed process {XXXs : s ≤ T}.
For example, let Ur be an estimate of θ based on {XXXs : s ≤ r}. A total ordering on
the sample space of XXX can be defined via {Ur : r ≤ T} as follows:

XXX ≥ xxx if and only if UT∧t ≥ uT∧t , (7.17)

where T ∧ t = min(T, t) and {ur : r ≤ t} is defined from xxx = {xxxr : r ≤ t} in the same
way as {Ur : r ≤ T} is defined from XXX .

In particular, consider the case of independent normal Xi, and let Un be the sample
mean X̄n of X1, . . . ,Xn. Whereas the sample mean ordering of Emerson and Fleming
(1990) defines (T,ST )≥ (t,st) by ST/T ≥ st/t, (7.17) yields the somewhat different
ordering

(T,ST )≥ (t,st) if and only if X̄T∧t ≥ sT∧t/(T ∧ t). (7.18)

With (t,st) being the observed sample values, note that (7.18) is equivalent to ST∧t ≥
sT∧t , which is the same as Siegmund’s ordering for stopping rules T of the type (7.5).
Thus (7.17) can be considered as a generalization of Siegmund’s ordering; it also
relates Siegmund’s ordering to the intuitively appealing ordering via sample means
advocated by Emerson and Fleming (1990). Moreover, if Ur =

√
r(X̄r − μ0), then

(7.18) again holds, and the modified form (7.17) of the likelihood ratio ordering of
Rosner and Tsiatis (1988) is again equivalent to Siegmund’s ordering. The original
Rosner–Tsiatis ordering requires n1, . . . ,nk (or the stochastic mechanism generating
them) to be completely specified; see Fig. 7.1. It has the same difficulties as the
Emerson–Fleming ordering described in the last paragraph of Sect. 7.1.3 if this is
not the case.

Like Siegmund’s ordering, (7.17) has the attractive feature that the probability
mechanism generating Xt needs only to be specified up to the stopping time T in
order to define the quantile. For example, consider the case of a Wiener process
{Wt : t ≥ 0} with drift coefficient θ , and let τ(1) < τ(2) < .. . be a sequence of
positive random variables that are independent of {Wt : t ≥ 0}. Let Xn = Wτ(n) and
let T be a stopping time for {Xn : n ≥ 1}. Given the values of τ(1), . . . ,τ(T ), we do
not need to know the stochastic mechanism generating the τ(n) for n > T in order to
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Fig. 7.1 More extreme values (shaded) of (T,ST ) than the observed (marked by X) under different
orderings of the sample space when the group sizes are prespecified

compute the qth quantile of {Xn : n≤ T} under the ordering (7.17) with for example,
Un = Wτ(n)/τ(n). This is an important advantage of (7.17) that will be used in the
next section.

7.3.2 Bootstrap Methods for p-Values and Hybrid Resampling

In the second paragraph of Sect. 4.3.3, we have described what is tantamount to
a p-value implementation of the modified Haybittle–Peto test of θ = θ0 in (4.19),
or more generally, of u(θθθ) = u0, by the bootstrap method in Sect. 4.3.2. We have
pointed out in Sect. 7.2.1 that hybrid resampling is a hybrid of exact and bootstrap
methods by noting that it captures the essential feature of both methods. Here we
elaborate further on this point. The exact method is related to inverting a family of
tests, one for each θ , to construct confidence intervals. A test, implemented through
p-values, involves an ordering of the sample space. Hybrid resampling basically
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uses the bootstrap method to compute the p-values of these tests, one for each fixed
u0 to determine if u0 should be included in the confidence set; see (7.12) for the case
of the mean μ (= u0) of a normal distribution.

7.4 Hybrid Resampling Approach for Secondary Endpoints

7.4.1 Bivariate Mean Vectors

To extend their approach beyond the bivariate normal case, Liu et al. (2000) apply
their bias-correction method to other statistics than sample means that converge
weakly, after normalization, to a bivariate Wiener process with correlation coeffi-
cient ρ . Lai et al. (2009) have developed an alternative approach which is based
on a generalization of (7.8) for the p-value of an exact test in parametric models
and which uses the hybrid resampling method in Sect. 7.2 to extend the approach to
nonparametric settings. To begin with, suppose the primary and secondary endpoints
X and Y have a joint density function fμ,θ such that the marginal distribution of Y
depends only on θ while that of X depends on μ . Let Un =Un(Y1, . . . ,Yn) be a test
statistic of H0 : θ = θ0 based on a sample {(Xi,Yi),1 ≤ i ≤ n}. Let T be a stopping
time whose distribution depends on μ , as is the case in which stopping is determined
by X1,X2, . . . . The p-value of a one-sided test of H0 is supμ Pμ,θ0(UT ≥ ut), in which
(t,ut) is the observed value of (T,UT ). If a fixed sample size n was used instead of T ,
then the p-value would be Pθ0(Un ≥ un) since the distribution of Un does not depend
on μ . We can therefore regard the supremum over μ as an adjustment for using
a random T whose distribution depends on μ . This adjustment can be carried out
by using numerical integration or Monte Carlo simulations to evaluate the function
Pμ,θ0(UT ≥ ut).

Example 7.1. To compare the power functions of the tests of Liu et al. (2000)
and Whitehead et al. (2000) with those of the exact test whose p-value is given
by (7.8), Lai et al. (2009) simulate group sequential trials with up to five looks at
sample sizes 15, 30, 45, 60, and 75, from the bivariate normal distribution with mean
(μ ,θ ), Var(Xi)=Var(Yi)= 1, and Corr(Xi,Yi)= ρ = 0.8. Letting Sn =X1+ · · ·+Xn,
the trial is stopped at sample size T ∈ {15,30,45,60,75} if ST ≥ 2.413

√
T or if

T = 75, as in Table 7.1. Table 7.3a gives the type I error probability and power
of five tests of H0 : θ ≤ 0, including the tests of Liu et al. (2000) and Whitehead
et al. (2000), the exact test defined by (7.8), the bootstrap, and hybrid resampling
tests. Each entry in Table 7.3 is based on 2000 simulations, with the same simulated
datasets for each method. It shows that the exact test and the hybrid resampling
test maintain the type I error probability, while the other tests inflate it. The type I
error probability is not constant across all values of the primary parameter; instead,
the nominal type I error probability 0.05 is achieved at the least favorable values.
Moreover, the power of the hybrid resampling test is comparable to that of the exact
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test. The naive normal test that ignores early stopping has also been considered in
the simulation study. It inflates the type I error probability even more, and its results
are not included in the table.

7.4.2 Bivariate Nonparametric Functionals

Without assuming a parametric model under which the distribution of UT can be
evaluated, for example, by Monte Carlo, when the parameter values are given, we
can proceed nonparametrically by using hybrid resampling instead of parametric
Monte Carlo. In the nonparametric setting, θ is some functional θ (G) of the
distribution function G of Y , and μ = μ(F) is some functional of the distribution
function F of X that determines the distribution of T . The joint distribution of
(X ,Y ) under the constraints θ (G) = θ0 and μ(F) = μ can be estimated from
{(Xi,Yi),1 ≤ i ≤ T} by empirical likelihood (see see Sect. 3.2 of Chuang and
Lai, 2000) or by simpler methods that use the particular structure of μ(F) and
θ (G) for the problem at hand. Whereas the exact test in the second paragraph of
Sect. 7.1.5 uses the probability measure Pμ,θ0 and the bootstrap approach samples
from PF̂,θ0

, the hybrid resampling approach uses the empirical measure P̂μ,θ0 from
which (X∗

i ,Y
∗
i ), 1≤ i≤ T ∗, are drawn to form the hybrid resample, yielding a hybrid

of the exact and bootstrap tests, as in Sect. 7.2.
The hybrid resampling approach can be extended to handle more general

situations in which the observations are independent random vectors Z1,Z2, . . .
having a common distributionΨ and the stopping rule T depends on the primary
parameter μ(Ψ), where μ is a functional ofΨ . This includes the preceding bivariate
example as a special case with Zi = (Xi,Yi) and μ(Ψ) = μ(F), and it also allows
the primary and secondary parameters to be functions of both Xi and Yi. The
underlying distributionΨ can be nonparametric, parametric, or semiparametric. In
the nonparametric case, the hybrid resampling approach can be implemented by
using empirical likelihood or simpler variants thereof. The parametric approach uses
parametric instead of empirical likelihood. Section 7.5 applies the semiparametric
approach to Cox’s regression models for censored survival data. The preceding
discussion has focused on testing the hypothesis θ = θ0 for a secondary endpoint
following a group sequential trial. Confidence intervals for θ can be constructed
by inverting these tests. We have assumed so far that the group sizes in the group
sequential trial are prespecified constants. When the group sizes n j are random
variables such that n j is unobservable if n j exceeds the stopping time of the
sequential experiment, we can implement the hybrid resampling approach by using
the ordering scheme in Sect. 7.3; details are given at the end of this section. Lai
et al. (2009) have shown that for the hybrid resampling test of H0 : θ ≤ 0,

sup
μ,θ≤0

Pμ,θ{Test rejects H0}= α+O(n−1). (7.19)
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Table 7.3 Type I error and power of tests of H0 : θ = 0 when (a) the primary endpoint X and
the secondary endpoint Y are bivariate normal with mean (μ ,θ ), Var(X) = Var(Y ) = 1, and
Corr(X ,Y ) = 0.8; (b) the secondary endpoint Y ′ = G−1

1+θ (Φ(Y ))− 1, with (X ,Y ) being the same
as in (a) except that Y has zero mean. (BT, bootstrap test; BC, bias-corrected test of Liu et al.; P,
pivot-based test of Whitehead et al.; EX, exact test; H, hybrid resampling test)

θ = 0 θ = 1.0/
√

15 θ = 1.5/
√

15√
15μ BT BC P EX H BT BC P EX H BT BC P EX H

(a) Bivariate normal
−2.0 4.2 10.1 6.1 2.7 3.0 44.3 50.1 48.6 35.3 35.5 62.2 65.2 61.7 54.2 52.9
−1.5 5.2 8.8 5.5 2.9 3.2 48.8 58.2 57.5 42.2 45.9 69.2 74.6 72.5 65.4 65.2
−1.0 4.9 7.1 4.0 2.8 3.5 58.9 69.1 70.3 53.0 57.5 79.9 82.1 80.6 75.2 76.1
−0.5 5.3 5.7 4.2 3.4 3.1 70.8 75.1 73.7 62.3 61.4 88.3 90.9 89.8 86.7 84.6

0.0 4.8 4.9 4.6 3.5 3.7 69.5 73.7 74.1 63.6 63.4 94.8 95.3 96.0 93.7 92.1
0.5 7.4 4.5 6.6 4.9 4.8 66.5 70.6 68.4 64.6 64.5 95.2 96.0 97.1 92.4 93.7
1.0 6.9 5.1 5.7 5.1 4.9 66.3 58.6 62.2 61.1 60.7 93.2 93.4 92.2 92.7 91.9
1.5 6.5 5.9 5.3 4.6 5.2 57.1 38.1 56.5 49.4 48.0 90.6 82.7 88.6 88.3 89.5
2.0 5.8 6.8 4.5 4.3 4.8 44.8 30.8 44.2 34.5 35.1 78.0 62.9 75.9 73.7 73.5

(b) Normal X and exponential Y ′

−2.0 4.4 8.5 6.3 1.3 4.0 39.1 41.8 40.5 20.0 32.7 55.3 53.7 56.8 38.6 48.9
−1.5 4.4 7.0 5.5 2.0 3.4 45.4 49.8 46.3 31.1 42.3 61.4 63.6 60.5 45.6 60.2
−1.0 4.5 4.2 4.1 1.7 3.2 54.6 59.1 57.2 42.9 49.5 74.5 74.1 72.9 66.4 72.1
−0.5 4.7 3.4 3.9 1.7 3.7 63.4 61.3 62.5 42.7 56.6 84.1 83.8 83.6 66.7 82.3

0.0 4.0 2.3 4.8 2.2 3.9 63.5 56.5 60.8 42.8 60.0 87.2 82.0 82.5 75.5 83.2
0.5 6.0 2.8 5.7 2.3 4.4 59.9 50.4 55.3 41.1 54.2 86.9 80.9 84.2 75.6 84.0
1.0 6.4 2.7 6.0 2.1 4.6 58.4 30.8 50.2 37.0 54.8 86.2 70.1 83.8 73.8 82.1
1.5 7.5 3.9 5.5 2.0 5.0 49.8 16.8 45.1 22.7 43.9 76.3 41.3 71.7 54.4 72.4
2.0 5.6 3.8 5.1 1.9 5.1 41.3 14.0 37.9 14.3 31.7 68.5 26.4 62.3 33.9 58.2

Example 7.2. Let (Xi,Yi) be the same as in Example 7.1, and let

Y ′
i = G−1

1+θ (Φ(Yi))− 1,

where Φ is the standard normal distribution function and Gλ (u) = 1− e−u/λ is
the distribution function of the exponential distribution with mean λ . Suppose
the observations are actually (Xi,Y ′

i ). Note that E(Y ′
i ) = θ but Corr(Xi,Y ′

i ) �=
Corr(Xi,Yi). As pointed out in Sect. 7.1.6, to handle the possibility of non-normality
of the bivariate outcomes, Liu et al. (2000) and Whitehead et al. (2000) appeal
to the group sequential nature of the stopping rule so that the sample sums
within each group can be regarded as approximately bivariate normal, thereby
justifying the normal approximation to their test statistics but with the sample
correlation coefficient of (Xi,Y ′

i ) and the sample variance σ̂2
T of the Y ′

i replacing
the corresponding population quantities. This approximate (bivariate) normality
within each group can also be used to justify the use of the exact test that assumes
bivariate normality. Without making such an assumption or approximation, the
hybrid resampling approach draws B resamples from the empirical distribution of
(Xi− X̄T +μ ,(Y ′

i −Ȳ ′
T )/σ̂T ), 1≤ i≤ T , whereas the bootstrap test draws B bootstrap

samples from the empirical distribution of (Xi,(Y ′
i − Ȳ ′

T )/σ̂T ), with B = 2000 for
the results in Table 7.3. Table 7.3b gives the power functions of the tests for this
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non-normal setting. It shows that the hybrid resampling approach maintains the
type I error probability while the exact test, which is exact only under the normal
distribution assumption for Y ′, is conservative and other tests have inflated type I
error probability.

The ordering scheme (7.17) can be applied to the case in which the interim
sample sizes n j of the group sequential test concerning the primary parameter
μ = μ(Ψ) are random variables that are observable only up to the stopping time of
the trial. As in the second paragraph of Sect. 7.4.2, the observations are Z1, . . . ,ZT

and Ψ̂T is the empirical distribution of Z1, . . . ,ZT . Let WT = θ (Ψ̂T ). To test H0 :
θ (Ψ) = θ0 for a secondary parameter at the end of the group sequential trial, we
can use the ordering (7.17) to compute the p-value

sup
μ

P̂μ,θ0 {(T,WT )≥ (τ,wτ )} ,

where (τ,wτ ) denotes the observed value of (T,WT ) and P̂μ,θ0 refers to the
probability measure under which Zi are generated from the nonparametric maximum
likelihood estimator of Ψ subject to the constraints μ(Ψ) = μ and θ (Ψ) = θ0.
In particular, we can apply this ordering, with WT =

√
TȲT , in evaluating the

probability (7.8) when the interim sample sizes n j are random variables instead
of being fixed in advance. In this case, WT∧t ≥ wT∧t is equivalent to ȲT∧t ≥ ȳT∧t .
In Example 7.2, the n j are fixed in advance and therefore the distribution of√

TȲT under E(X) = μ and E(Y ) = 0 can be evaluated by simulation or numerical
integration. On the other hand, if n j are random and one does not know the
probability mechanism generating them except that they are due to the accrual
pattern which is independent of (Xi,Yi), then one can only condition on the observed
n j in evaluating the probability (7.8).

7.5 Applications to Time-Sequential Survival Trials

Lai and Li (2006) apply the ordering scheme (7.17) to construct confidence intervals
following time-sequential tests in Cox regression (proportional hazards model).
The time-sequential trial described in Sect. 6.5 has time to failure as the primary
endpoint, and involves interim analyses of the trial at calendar times t j (1 ≤ j ≤ k),
with 0 < t1 < · · · < tk = t∗, where t∗ is the prescribed duration of the trial.
Suppose n patients enter the trial serially. The data at calendar time t consist of
(Yi(t),δi(t),ziI{Ti≤t}), for i = 1, . . . ,n, where Yi(t) = min{Yi,ξi,(t −Ti)

+}, δi(t) =
I{Yi(t)=Yi}, Ti ≥ 0 denotes the entry time and Yi > 0 the time to failure after entry
of the ith subject, and zi is the subject’s covariate while ξi is the withdrawal time,
possibly infinite. (In Sect. 6.5 we have not included the covariates zi.)

Assume that Ti is independent of (Yi,ξi,zi), that Yi and ξi are conditionally
independent given zi, and that the hazard function of Yi is given by Cox’s (1972)
proportional hazards model, for which
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P{y ≤ Yi ≤ y+ dy |Yi ≥ y,zi}= eβ zi dΛ(y), (7.20)

where β is an unknown parameter and Λ is the baseline cumulative hazard function
that is assumed to be continuous. To test the null hypothesis H0 : β = 0, which
corresponds to no covariate effect on survival, differentiation of the log partial
likelihood for β at β = 0 and calendar time t yields Cox’s score statistic:

Sn(t) =
n

∑
i=1

δi(t)

{
zi −
(
∑

j∈Ri(t)

z j

)/
|Ri(t)|

}
, (7.21)

where Ri(t) = { j : Yj(t)≥ Yi(t)} and |Ri(t)| denotes the size of the “risk set” Ri(t).
The observed Fisher information at calendar time t is

Vn(t) =
n

∑
i=1

δi(t)

⎡
⎣ ∑

j∈Ri(t)

z2
j

/
|Ri(t)|−

{
∑

j∈Ri(t)

z j

/
|Ri(t)|

}2
⎤
⎦ , (7.22)

which provides an estimate of the null variance of Sn(t); see Sect. 6.1.2 where it is
shown that in analogy with (7.5) for the case of normal random walks, one can use
a repeated significance test that rejects H0 at the jth interim analysis (1 ≤ j ≤ k) if

Sn(t j)/V 1/2
n (t j)≥ b j or Sn(t j)/V 1/2

n (t j)≤ a j, (7.23)

and stops the trial as soon as (7.23) occurs, where a j < 0 < b j.

7.5.1 Implementation of the Hybrid Resampling Approach

Lai and Li (2006) consider interval estimation of β following the time-sequential
test (7.23). Let τ denote the calendar time of stopping, that is, τ = min{t j : (7.23)
holds at time t j}. For notational simplicity, denote Sn(t) by S(t) and Vn(t) by V (t).
Letting Ψt = S(t)/V(t), they use the ordering scheme (7.17), which orders the
sample space of (τ,Ψτ) by

(τ1,Ψ
(1)
τ1 )≤ (τ2,Ψ

(2)
τ2 ) if and only if Ψ (1)

τ1∧τ2 ≤Ψ
(2)
τ1∧τ2 . (7.24)

Similarly to the normal-mean case, let p(β ) = Pβ{(τ,Ψτ) > (τ,Ψτ)obs}, where
(τ,Ψτ)obs denotes the observed value of (τ,Ψτ ). Then {β : α < p(β )< 1−α} is a
confidence set for β with coverage probability 1− 2α , and an important ingredient
of the hybrid resampling approach is to replace the unknown nuisance parameters
in p(β ) by suitably chosen estimators. To begin with, suppose that ξi is independent
of zi and has distribution function C. The baseline distribution G = 1− e−Λ in p(β )
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can be estimated by Ĝ = 1−e−Λ̂ , where Λ̂ is Breslow’s estimator of the cumulative
hazard function from all the data at the end of the trial:

Λ̂ (s) = ∑
i:Yi(τ)≤s

{
δi(τ)

/(
∑

j∈Ri(τ)
eβ̂ z j

)}
, (7.25)

in which β̂ is Cox’s (1972) estimate of β that maximizes the partial likelihood at
time τ; see Sect. 6.1.2. Since the ξi are censored by min{Yi,(τ − Ti)

+}, C can be
estimated by the Kaplan–Meier estimator Ĉ. This suggests replacing p(β ) by

p̂(β ) = P
{(
τ(β ),Ψ (β )

τ(β)

)
> (τ,Ψτ )obs

}
, (7.26)

where the superscript (β ) means that the observations are generated by the
proportional hazards model with baseline distribution Ĝ and regression parameter β .
Usually p̂(β ) is monotone in β , so the confidence set {β : α < p̂(β )< 1−α} with
approximate coverage probability 1− 2α can be expressed as an interval, whose
endpoints βL < βU are defined by p̂(βL) = α , p̂(βU) = 1−α , and can be computed
by using the procedure in the last paragraph of Sect. 7.2.1.

Concerning the Monte Carlo evaluation of p̂(β ), note that the observed entry
times Ti and covariates zi are taken as fixed constants in p̂(β ), for which we need
only generate the survival times Y ∗

i and censoring times ξ ∗i . Since Ĝ (or Ĉ) can only
be estimated up to the longest observed survival, or censoring, time, denoted by t ′,
or t ′′, we can only generate Y ∗

i ∧ t ′ and ξ ∗i ∧ t ′′. This suffices, however, for the time-
sequential score statistic (7.21) and its estimated null variance (7.22) for t ≤ τ . To
generate Y ∗

i ∧t ′, note that it has the same distribution as (1− Ĝ)−1[Uexp(−β zi)∨{1−
Ĝ(t ′)}], where U ∼ Uniform [0,1].

We have assumed in the preceding that ξi is independent of (zi,Yi). For
dichotomous covariates, we can easily extend the methodology to the case where
the control group (zi = 0) and the treatment group (zi = 1) have different censoring
distributions C0 and C1, by using separate Kaplan–Meier estimators Ĉ0 and Ĉ1.
Clearly the same idea can be used for discrete covariates that have a finite number
of possible values. For continuous covariates, usually the rate of loss to follow-
up, that is, censoring by the ξi, is small relative to that of administrative censoring
by (τ − Ti)

+. In this case, one can simply use the same Kaplan–Meier estimate Ĉ
as that used under the additional assumption of independence between ξi and zi.
Alternatively we can treat ξi as ancillary and impute the censored ξi by using the
methods of Lai and Li (2006, p. 644).

7.5.2 Tests on Secondary Parameters in the Cox Model

Consider the time-sequential clinical trial with failure-time primary endpoint.
Assuming Cox’s proportional hazards model
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P{y ≤ Yi ≤ y+ dy |Yi ≥ y, xi, uuui}= eβ xi+θθθTuuui dΛ(y), (7.27)

in which Λ is the baseline cumulative hazard function that is assumed to be
continuous, xi is the primary covariate, for example, treatment, and uuui is a
vector of concomitant covariates. In addition, Ti is assumed to be independent of
(Yi,ξi,xi,uuuT

i ), and Yi and ξi are assumed to be conditionally independent of (xi,uuuT
i ).

The log partial likelihood at calendar time t is

lt(β ,θθθ ) =
n

∑
i=1

δi(t)

[
(βxi +θθθTuuui)− log

(
∑

j∈Ri(t)

eβ x j+θθθTuuu j

)]
, (7.28)

where Ri(t) = { j : Yj(t) ≥ Yi(t)}. To test the primary hypothesis β = β0, one can
proceed as follows. Let (β̂t , θ̂θθ t) be the maximizer of lt(β ,θθθ ), and let Vt be the first
diagonal element of (−l̈t(β̂t , θ̂θθ t))

−1, which is an estimate of the asymptotic variance
of β̂t . At the jth interim analysis ( j = 1, . . . ,k), the trial is terminated if

(
β̂t j −β0

)/
V 1/2

t j
≥ b j or

(
β̂t j −β0

)/
V 1/2

t j
≤ a j, (7.29)

rejecting the primary hypothesis β = β0 upon stopping, where a j < 0 < b j are the
stopping boundaries of the repeated significance test.

A commonly used alternative to the preceding Wald statistic is Cox’s score
statistic:

St(β ,θθθ ) =
∂ lt
∂β

=
n

∑
i=1
δi(t)

[
xi − X (1)

it (β ,θθθ )
rit(β ,θθθ )

]
, (7.30)

as in Sect. 6.1.2, where

rit (β ,θθθ) = ∑
j∈Ri(t)

eβ x j+θθθTuuu j , X (1)
it (β ,θθθ ) = ∑

j∈Ri(t)

x je
β x j+θθθTuuu j . (7.31)

At the jth interim analysis ( j = 1, . . . ,k), the trial is terminated if

St j

(
β0, θ̃θθ t j

)/
v1/2

t j
≥ b j or St j

(
β0, θ̃θθ t j

)/
v1/2

t j
≤ a j, (7.32)

rejecting the primary hypothesis β = β0 upon stopping, where a j < 0 < b j are the
stopping boundaries of the repeated significance test and θ̃θθ t is the maximizer of
lt(β0,θθθ ). The estimate vt of the null variance of St(β0, θ̃θθ t) is I11 − I12I−1

22 I21, where
Ii j is the (i, j)th component of −l̈t(β0, θ̃θθ t), as in usual likelihood inference, treating
partial likelihood like usual likelihood. Let

U(1)
it (β ,θθθ) = ∑

j∈Ri(t)

u je
β x j+θθθTuuu j
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U (2)
it (β ,θθθ) = ∑

j∈Ri(t)

eβ x j+θθθTuuu j uuu juuu
T
j

X (2)
it (β ,θθθ) = ∑

j∈Ri(t)

x2
j e
β x j+θθθTuuu j . (7.33)

The components of the Hessian matrix l̈t(β ,θθθ ) are given by

∂ 2lt
∂β 2 = −

n

∑
i=1

δi(t)

⎡
⎣X (2)

it (β ,θθθ)
rit (β ,θθθ)

−
(

X (1)
it (β ,θθθ )
rit(β ,θθθ )

)2
⎤
⎦ ,

∂ 2lt
∂θθθ∂θθθT = −

n

∑
i=1

δi(t)

⎡
⎣U (2)

it (β ,θθθ)
rit(β ,θθθ )

−
(

U (1)
it (β ,θθθ)
rit(β ,θθθ )

)(
U (1)

it (β ,θθθ )
rit(β ,θθθ )

)T
⎤
⎦ ,

∂ 2lt
∂β∂θθθT = −

n

∑
i=1
δi(t)

[
∑ j∈Ri(t) x juuu jeβ x j+θθθTuuu j

rit(β ,θθθ )
−
(

X (1)
it (β ,θθθ)
rit(β ,θθθ )

)(
U (1)

it (β ,θθθ )
rit(β ,θθθ )

)]
,

(7.34)

and ∂ 2l/∂β∂θθθT = (∂ 2l/∂β∂θθθ )T. Making use of (7.29)–(7.34) and the ordering
scheme (7.17), we now proceed to give hybrid resampling tests and confidence
intervals for the secondary parameters in the proportional hazards model (7.27)
following a time-sequential trial with stopping rule (7.29) or (7.32).

In particular, consider the bivariate Cox regression model (7.27) in which θ is

univariate. The Wald test statistic of H0 : θ = θ0 is WT = (θ̂T −θ0)/Ṽ 1/2
T , where T

is the time at which the trial is terminated and the estimate ṼT of the null variance
of θ̂T is the second diagonal element of (−l̈T (β̂T , θ̂T ))

−1. In analogy with (7.8), the
p-value, evaluated by hybrid resampling, of the one-sided test of H0 is

sup
β

P̂β ,θ0
{(T,WT )≥ (τ,wτ )} , (7.35)

in which (τ,wτ ) is the observed value of (T,WT ). The ordering scheme (7.17) is
used in the inequality in (7.35), in which P̂β ,θ0

replaces the baseline distribution

G = 1− e−Λ in Pβ ,θ0
by ĜT = 1− e−Λ̂T , where Λ̂t is Breslow’s estimator of the

cumulative hazard function from all the data up to time t and uses the Kaplan–Meier
estimator or variants thereof to estimate the censoring mechanism in Pβ ,θ0

.
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7.6 Simulation Studies

7.6.1 Confidence Intervals for Primary Endpoint of Hazard
Rate

A standard approach in the literature on time-sequential survival analysis is to
use the space–time Brownian motion approximation of (S(t),V (t)), to which
Siegmund’s ordering can be applied since the stopping rule (7.23) has the form
(7.5) under this approximation; see Whitehead (1992, Chap. 5). However, as will
be shown in this section, using the Brownian motion approximation to treat the
problem as that of a normal mean following a group sequential test may not provide
an adequate approximation to the coverage probability of the confidence interval
based on Siegmund’s ordering unless β is very close to 0. Instead of applying
this Brownian motion approximation directly, an alternative is to apply hybrid
resampling to an extension of Siegmund’s ordering to the present setting. Recalling
the form (7.23) of the stopping rule with a j < 0 < b j, Lai and Li (2006) discuss the
following extensions of Siegmund’s ordering to the sample space of (τ,S(τ),V (τ)):

Extension 1. We have (τ,s,v) > (τ̃, s̃, ṽ) whenever

1. τ = τ̃ and s/
√

v > s̃/
√

ṽ, or
2. τ < τ̃ and s > 0, or
3. τ > τ̃ and s̃ < 0,

in which τ and τ̃ take values in {t1, . . . , tk}. We have used s/
√

v in (i) because the
stopping rule (7.23) involves S(t j)/V 1/2(t j).

Extension 2. Alternatively, by analogy with the Emerson–Fleming mean ordering,
we can use s/v in lieu of s/

√
v, so that (τ,s,v) > (τ̃, s̃, ṽ) whenever

1. τ = τ̃ and s/v > s̃/ṽ, or
2. τ < τ̃ and s > 0, or
3. τ > τ̃ and s̃ < 0.

These extensions of Siegmund’s ordering can be used in conjunction with the
hybrid resampling method to construct confidence intervals for β . However, the
results below show that the confidence intervals thus constructed do not improve the
coverage probabilities of those constructed via Brownian motion approximations.
This illustrates the importance of using hybrid resampling in conjunction with a
suitably chosen ordering scheme.

Lai and Li (2006) have carried out a simulation study comparing different
methods for constructing confidence intervals for β in the proportional hazards
model (7.20) with dichotomous covariates z j, for which θ = eβ corresponds to
the hazard ratio of a new treatment (z j = 1) relative to a control (z j = 0). Since
the patients are randomized to either treatment with probability 1

2 , the score statistic
(7.21) is the log-rank statistic for testing β = 0, and the null variance estimate (7.22)
can be replaced by the more convenient approximation (6.37). The simulation study
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considers a time-sequential trial in which n = 350 subjects enter the trial uniformly
during a 3-year recruitment period. The trial is designed to last for a maximum of
t∗ = 5.5 years, with interim analyses after 1 year and every 6 months thereafter.
The log-rank statistic is used to test H0 : β = 0 at each data monitoring time t j

( j = 1, . . . ,10), and the test is stopped at the smallest t j such that

Vn(t j)≥ 55, (7.36a)

or

Vn(t j)≥ 11, |Sn(t j)|
/

V 1/2
n (t j)≥ 2.85, (7.36b)

or at t10(= t∗) when (7.36) does not occur, where Vn(t) is defined by (6.37). If the

test stops with Vn(t j)≥ 55 or at t∗, reject H0 if |Sn(t∗)|/V 1/2
n (t∗)≥ 2.05. Also reject

H0 if (7.36b) occurs for some j < 10. The threshold 2.05 for the final analysis at t∗
is chosen so that the type I error probability of the test is approximately 5% using
the Brownian motion approximation. It is assumed that there is no loss to follow-up,
that the lifetimes of the control group have an exponential distribution with mean
3 years, and that those of the treatment group have an exponential distribution with
mean 3e−β years, with eβ = 1, 2/3, 1/2. Table 7.4 gives the coverage errors, with
nominal value α = 0.05, of the upper and lower confidence limits for β , and the
coverage probabilities, with nominal value 90%, of two-sided confidence intervals.
Besides the hybrid resampling method with the ordering scheme (7.24), Table 7.4
also considers the following six methods for constructing confidence limits for
β : Siegmund’s ordering and the Emerson–Fleming ordering, both applied to the
space–time Brownian motion approximation of (Sn(t),Vn(t)) and thereby yielding
score-based confidence intervals; the Emerson–Fleming ordering applied to β̂t in
place of the normal mean, with Vn(t j) playing the role of n j, yielding a Wald-
type confidence interval; Extension 1 of the Siegmund’s ordering and its variant
Extension 2 used instead of (7.24) for hybrid resampling; and the naive confidence

interval β̂τ±1.645/V1/2
n (τ), noting that V−1/2

n (t) is the asymptotic standard error of
β̂t ; see (6.14). For the Emerson–Fleming method, if the trial stops at time t j < t10 and
Vn(t j) < 55, then the ordering applied to β̂t , or to Sn(t)/Vn(t), entails consideration
of the event that β̂τ∗ exceeds the observed value of β̂τ , or that Sn(τ∗)/Vn(τ∗) exceeds
the observed Sn(τ)/Vn(τ), where τ∗ is the calendar time at which Vn(τ∗) = 55.
Recall that 4Vn(t) is the total number of deaths up to time t; see (6.37).

Concerning the coverage error of the lower limit βL of the hybrid resampling
confidence interval in Table 7.4, monotonicity of p̂(β ) defined in (7.26) implies that

Pβ{β < βL}= Pβ {p̂(β )< p̂(βL)} = Pβ {p̂(β )< α} , (7.37)

since p̂(βL) = α . To compute (7.37) by Monte Carlo, this suggests that we need
only evaluate p̂(β ) for each simulated dataset and check if it is less than α , without
solving for βL and thereby greatly reducing the computation time in repeated
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Table 7.4 Coverage errors in percentages for lower (L) and upper (U) confidence limits
and coverage probabilities (P) of confidence intervals for β when interim analyses
are performed at fixed calendar times. (H, hybrid resampling method based on the
ordering (7.24); S, Siegmund’s method; EFS, Emerson–Fleming score-based method;
EFW, Emerson–Fleming Wald-type method; HS, hybrid resampling method based on
Extension 1 of the Siegmund ordering; HS′ , hybrid resampling method based on
Extension 2 of the Siegmund ordering; N, naive normal method)

β = 0 β = log(2/3) β = log(1/2)

Method L U P L U P L U P

H 4.45 4.55 91.00 5.25 5.35 89.40 5.05 4.05 90.90
S 4.45 5.05 90.50 4.65 0.35 95.00 5.75 0.00 94.25
EFS 4.45 5.05 90.50 4.65 0.65 94.70 7.40 0.00 92.60
EFW 4.35 4.80 90.85 4.70 0.60 94.70 5.35 0.00 94.65
HS 1.35 6.35 92.30 3.15 6.30 90.55 2.15 3.70 94.15
HS’ 1.10 7.20 91.70 5.50 4.10 90.40 3.75 4.15 92.10
N 4.15 5.05 90.80 5.80 7.75 86.45 3.75 3.15 93.10

simulation runs. The same idea is also used in Table 7.4 for the upper confidence
limit βU of the hybrid resampling interval and for Siegmund’s and Emerson and
Fleming’s confidence limits that are based on test inversion. Each result in Table 7.4
is based on 2000 simulations.

Table 7.4 shows that the hybrid resampling method using the ordering (7.24)
yields quite accurate confidence intervals, with all probabilities within 1% of their
nominal values. In contrast, using Extension 1 or 2 of the Siegmund ordering in con-
junction with the hybrid resampling method produces upper and lower confidence
bounds whose coverage errors differ substantially from 0.05 in Table 7.4. Although
the other methods also perform well at β = 0, they have obvious difficulties with
the upper confidence bound when β < 0. Therefore, using the Brownian motion
approximation to treat the problem as that of a normal mean following a group
sequential test does not seem to provide an adequate approximation unless β is
very close to 0. The Brownian motion approximation induces an ordering scheme
that depends on (S(τ),V (τ)) but ignores the sampling fluctuations in τ . In this
connection, Lai and Li (2006) also point out the following difference between the
ordering (7.24) and Extension 2 of Siegmund’s ordering. Let τ̃ denote the observed
value of τ , let (s̃, ṽ) denote (S(τ),V (τ))obs, and let (s̃t , ṽt) denote (S(t),V (t))obs

at t = t j ≤ τ̃ . Under the ordering (7.24), the event {(τ,Ψτ) > (τ,Ψτ)obs} that is
associated with p(β ) can be expressed as

{(τ,Ψτ)> (τ,Ψτ)obs}=
{
τ > τ̃ and S (τ̃)

/
V (τ̃)> s̃

/
ṽ
}

∪{τ ≤ τ̃ and S(τ)/V(τ)> s̃τ
/

ṽτ
}
. (7.38)

On the other hand, under the ordering of Extension 2, p(β ) is associated with the
event

{τ > τ̃ and s̃ < 0}∪{τ < τ̃ and S(τ)> 0}∪{τ = τ̃ and S(τ)/V(τ) > s̃
/

ṽ
}
.
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The inherent incompatibility between calendar and information time scales is
addressed in the ordering (7.24) by designating values (τ,V (τ),S(τ)) in the sample
space to be more extreme than those in the observed sample if stopping occurs after
τ̃ and S(τ̃)/V (τ̃) exceeds s̃/ṽ or if stopping occurs at or before τ̃ and S(τ)/V (τ)
exceeds s̃τ/ṽτ ; see (7.38). Note that the observed sample consists of not only τ̃ , s̃,
and ṽ but also (s̃t , ṽt) for t = t j < τ̃ . In contrast, Extension 1 or 2 of Siegmund’s
ordering only involves the information time V (τ) when τ = τ̃ , and Table 7.4
shows that it falls short of incorporating the full extent of the randomness of the
information time upon stopping.

7.6.2 Test for Secondary Endpoint in Cox Model

Lai et al. (2009) consider a time-sequential trial in which n = 350 subjects enter the
trial uniformly during a 3-year recruitment period and are randomized to treatment,
x= 1, or control, x= 0, with probability 1/2. A baseline covariate u is also measured
for each subject upon entry. Assume the survival time follows the proportional
hazards model (7.27). Like that in Sect. 7.6.1, the trial is designed to last for a
maximum of t∗ = 5.5 years, with interim analyses after 1 year and every 6 months
thereafter. The Wald statistic is used to test β = 0 at each interim monitoring time
t j( j = 1, . . . ,10). Using the notation of Sect. 7.5.2, the trial is stopped at the smallest
t j such that

V−1
t j

≥ 55 (7.39)

or

V−1
t j

≥ 11 and |β̂t j |/V 1/2
t j

≥ 2.85 (7.40)

or at t10 = t∗ when (7.39) and (7.40) do not occur. If the trial stops with (7.39) or at

t j = t∗, reject β = 0 if |β̂t j |/V 1/2
t j

≥ 2.05. Also reject β = 0 if (7.40) occurs for some
j < 10, similar to Sect. 7.6.1. Lai et al. (2009) compare the type I error probability
and power of the proposed hybrid resampling method for testing H0 : θ = 0 with
those of the naive Wald test that ignores early stopping, an extension of the bias-
correction method of Liu et al. (2000), and the bootstrap test; B = 2000 resamples
are used in the hybrid resampling and the bootstrap approaches. The results are given
in Table 7.5, in which each entry is based on 2000 simulations, with the same 2000
simulated datasets for each method. The table shows that the hybrid resampling
test has type I error probabilities estimated to be at most 0.052 at all values of the
primary parameter β , whereas the type I error probabilities of the other methods
exceed 0.06 at some β values.

For large n, the maximum partial likelihood estimates (β̂t , θ̂t ), after multipli-
cation by −l̈t(β̂t , θ̂t ), behave like a bivariate zero-mean Gaussian process with
independent increments under (β ,θ ) = (0,0). For approximate bias-corrected
inference on a secondary endpoint, Liu et al. (2000) assume weak convergence
of the test statistics, after suitable normalization, to a bivariate Wiener process,
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Table 7.5 Type I error probability and power of different tests of θ = 0. (N, naive
normal method; B, bias-correction method; BOOT, bootstrap method; H, hybrid
resampling method)

Method eβ=0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5 2.0

(a) eθ = 1.0 (θ = 0)
N 4.6 4.4 4.6 6.7 7.0 5.3 5.3 5.8 4.4
B 5.4 5.2 4.3 5.2 5.5 4.5 6.0 6.6 7.2
BOOT 5.7 4.8 4.5 6.4 6.1 5.9 5.2 5.7 5.3
H 4.1 3.7 3.5 5.2 4.7 3.8 4.0 3.8 4.0

(b) eθ = 1.5
N 32.1 42.3 57.5 60.1 61.5 62.2 65.6 43.4 30.8
B 30.6 41.9 59.0 57.8 59.8 60.1 68.1 47.9 33.3
BOOT 33.1 44.8 59.7 58.2 62.3 61.8 63.4 42.0 34.9
H 27.0 37.5 52.3 53.1 54.1 54.0 61.6 37.2 27.1

(c) eθ = 2.0
N 60.6 70.0 86.5 91.6 94.7 96.2 95.7 86.2 61.4
B 58.9 68.7 88.1 90.2 92.9 97.6 95.6 88.8 65.3
BOOT 58.8 68.5 84.9 90.5 94.8 95.8 93.2 85.1 65.2
H 52.7 65.2 79.3 87.3 90.6 90.9 90.8 80.4 58.6

with covariance matrix tΣΣΣ at time t. A simple extension of their method to the
present problem of testing H0 : θ = θ0 is to replace tΣΣΣ by −l̈t(β̂t , θ̂t ), yielding a

bias-corrected test statistic of the form WT − ρ̂T (β̂T − β̄T )/V 1/2
T , where β̄T is the

unbiased estimator of β as in Liu and Hall (1999) and the correlation coefficient ρ̂T

can be determined from (−l̈T (β̂T , θ̂T ))
−1. This is the bias-correction method used

in Table 7.5. However, its asymptotic justification, as n → ∞, requires the limiting
correlation matrix to be equal for all t, as noted by Hall and Yakir (2003, p. 599).

7.7 Supplements and Problems

1. Anscombe’s theorem and fixed-width confidence intervals

The condition maxεn≤ j≤n |Zn − Zj| P→ 0 as n → ∞ and ε ↑ 1 in (7.1) is called
“uniform continuity in probability.” Anscombe’s theorem is applicable to asymp-
totically normal sequences Zn and random times Tn satisfying (7.1). It basically
says that Tn can be treated as nonrandom and no adjustments for stopping are
needed for constructing confidence intervals for θ based on ZTn . Although this
does not work well for stopping times associated with sequential tests of θ , it
has been found to provide adequate approximations when the stopping time is
related to ŝe(θ̂i), as in the case of fixed-width confidence intervals, for which
Tn is of the form inf{i : z1−α ŝe(θ̂i) ≤ dn} so that θ̂Tn ± dn is an approximately
(1− 2α)-level confidence interval, with fixed width 2dn, for θi. Unlike stopping
rules associated with sequential tests of θ , stopping when ŝe(θ̂i) is sufficiently
small typically introduces negligible bias in θ̂Tn . Section 4.1 of Lai (2001) gives a
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review of the literature on fixed-width confidence intervals. Note that the normal
quantile z1−α in the stopping time Tn already presupposes that (θ̂Tn −θ )/ŝe(θ̂Tn)
is approximately standard normal.

2. Woodroofe’s modified pivot following a sequential test
Woodroofe (1986) has shown that the bias-corrected pivot (7.6) satisfies

P(R1(μ)≤ x)
.
=Φ(x)− (2a)−1xφ(x)[(d/dμ)κ1/2(μ)]2 (7.41)

in a very weak sense, that is, the integral of the left-hand side of (7.41) with
respect to ξ (μ)dμ has an asymptotic expansion given by that of the right-
hand side for a large class of prior densities ξ , where φ and Φ denote the
standard normal density and distribution function, respectively. His underlying
idea is that since posterior distributions are unaffected by optional stopping, the
posterior probability can be expanded about a normal limit, for example, by using
Johnson’s (1970) expansions that we have referred to in Sect. 1.5. Note that
the derivation of the bias-corrected pivot is based on frequentist calculations;
in particular, the expectation of R0(μ) in Sect. 7.1.4 is taken under the true
probability measure. Woodroofe’s very weak expansion is for the coverage error,
only in an average sense with ξ centered around the true parameter μ0, of
the confidence interval using the corrected pivot R1(μ). The expansion itself
does not lead to a new pivot. Moreover, since it takes a Bayesian approach
to circumvent difficulties in analyzing the randomly stopped pivot, it does not
suggest corrections for the pivot due to optional stopping.

3. Multivariate and nonparamteric extensions of the pivot R1(μ)
Lai et al. (2006a) have extended Woodroofe’s (1992) arguments to derive the
corrected pivot (7.6) as follows. Let XXX ,XXX1,XXX2, . . . be i.i.d. d × 1 random vectors
with E(XXX) = μμμ , Cov(XXX) = VVV , and E‖XXX‖r < ∞ for some r > 3. Let h : Rd → R

be twice continuously differentiable in some neighborhood of μμμ . Consider the
stopping rule T =min{n0(a),max(ta,n1(a))}, where ta = inf{n≥ 1 : ng(SSSn/n)≥
a} and g : Rd → R is continuously differentiable in some neighborhood of μμμ .
Suppose ε0 < g(μμμ)< ε1. Then application of the strong law of large numbers in
conjunction with Taylor’s theorem yields

√
T{h(X̄XXT )− h(μμμ)}
.
=
√

T (∇∇∇h(μμμ))T(X̄XXT − μμμ)+
√

T (X̄XXT − μμμ)T∇∇∇2h(μμμ)(X̄XXT − μμμ)/2

.
=

1√
a

g1/2(SSST /T )(SSST − μT)T∇∇∇h(μμμ)+
1

2
√

T
{T (X̄XXT − μμμ)T∇∇∇2h(μμμ)(X̄XXT − μμμ)},

(7.42)

in which the last approximate equality follows from Tg(SSST/T )
.
= a (ignoring

overshoot) so that
√

T
.
=

√
a/g1/2(SSST/T )

.
= {a/g(μμμ)}1/2. By Wald’s equation

(3.7), E{g1/2(μμμ)(SSST − μμμT )T∇∇∇h(μμμ)}= 0. Moreover,

g1/2(SSST/T )− g1/2(μμμ) .
= {(∇∇∇g(μμμ))T(SSST −Tμμμ)}/{2g1/2(μμμ)T}. (7.43)
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By Anscombe’s theorem,
√

T (X̄XXT −μμμ) = (SSST −μμμT )/
√

T has a limiting N(000,VVV )
distribution. Combining (7.42) with (7.43) and taking expectation, it can be
shown that

E[
√

T{h(X̄XXT )− h(μμμ)}]

=
(∇∇∇g(μμμ))TVVV∇∇∇h(μμμ)

2(ag(μμμ))1/2
+

1
2

(
g(μμμ)

a

)1/2

tr(∇∇∇2h(μμμ)VVV )+ o(a−1/2). (7.44)

The second term on the right-hand side of (7.44) follows from E(ZZZTAAAZZZ) =
tr(AAAVVV ) if AAA is a nonrandom matrix and ZZZ is a random vector with E(ZZZZZZT) =VVV .

For g(μμμ) < ε0 (or g(μμμ) > ε1), stopping occurs at n0(a) (or n1(a)) with
probability approaching 1, and it can be shown that

E[
√

T{h(X̄XXT )− h(μμμ)}] = 1
2
(ni(a))

−1/2tr(∇∇∇2h(μμμ)VVV )+ o(a1/2), (7.45)

with i = 0 or 1 according as g(μμμ) < ε0 or g(μμμ) > ε1. Let κ(μμμ) = max{ε0,
min(g(μμμ),ε1)}, and note that∇∇∇κ1/2(μμμ) = 1

2∇∇∇g(μμμ)/(g(μμμ))1/2 if ε0 < g(μμμ)< ε1,
and∇∇∇κ1/2(μμμ) = 0 if g(μμμ)< ε0 or g(μμμ)> ε1. Recalling that 1/n0(μμμ)∼ ε0/a and
1/n1(μμμ)∼ ε1/a, Lai et al. (2006a) combine (7.44) and (7.45) into

E[
√

T{h(X̄XXT )− h(μμμ)}] = b(μμμ ,VVV )(κ(μμμ)/a)1/2 + o(a1/2), (7.46)

where

b(μμμ,VVV ) = (∇∇∇κ1/2(μμμ))TVVV∇∇∇h(μμμ)/κ1/2(μμμ)+ tr(∇∇∇2h(μμμ)VVV )/2. (7.47)

For the special case d=1, h(μ)=μ , and V=1, b(μ ,V )=[(d/dμ)κ1/2(μ)]/
κ1/2(μ), which agrees with that in (7.6).

4. Unbiased or bias-corrected estimators following a sequential test
The preceding two supplements consider bias-corrected pivots for confidence
intervals. Bias-corrected maximum likelihood estimators following a sequential
test have been introduced by Siegmund (1978, Sect. 3) and Whitehead (1986).
For group sequential tests involving normal observations with unknown mean
μ and common known variance, Emerson and Fleming (1990) propose to
use the first-stage sample mean as a preliminary unbiased estimator and to
condition it on (T,ST ) when T is associated with the O’Brien–Fleming or
Pocock test, since (T,ST ) is a sufficient statistic for μ ; see Supplement 5. Their
simulation study shows, however, that this has markedly larger mean squared
error than Whitehead’s bias-corrected estimator, even though it is unbiased while
Whitehead’s is not. Liu and Hall (1999) prove that the sufficient statistic (T,ST )
is not complete for μ and that there exist infinitely many unbiased estimators of
μ but none has uniformly minimum variance. They show, however, that there is
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an unbiased estimator that minimizes the variance of unbiased estimators in a
restricted class of so-called “truncation-adaptive” estimators.

5. Sufficiency of (T,ST )

(a) One way to prove sufficiency is to write down the conditional density of
(X1, . . . ,Xm−1) given T = m and Sm = s and show that it does not depend on
μ . Carry this out for T = inf{n ≥ 1 : Sn ≥ bn or Sn ≤ an}∧M with M = 3.

(b) Another way is to argue probabilistically using the fact that conditional on
Sm = s, Xm−1,Xm−2, . . . are normal with mean s/m and therefore do not
depend on μ . Although this does not involve the stopping rule T , the stopping
rule only stipulates that the Xi (1 ≤ i ≤ m− 1) must fall in a certain region
when we evaluate their joint conditional density given T = m and Sm = s,
and this region does not depend on μ . In fact, Siegmund (1985, Sect. IV.2)
uses this idea and a time-reversal argument to compute the type I error of
repeated significance tests.

(c) We can in fact go far beyond normal random walks and stopping rules of
sequential tests. A sequence of statistics SSS j = SSS j(XXX1, . . . ,XXX j) is called a
sufficient sequence for a parameter vector θθθ if for every j, SSS j is sufficient
for θθθ based on XXX1, . . . ,XXX j. Show that if {SSSj} is a sufficient sequence for θθθ ,
then for any stopping time T , (T,SSST ) is sufficient for θθθ in the sense that the
conditional distribution of (XXX1, . . . ,XXXT ) given (T,SSST ) does not depend on θθθ .

6. Coverage errors for bootstrap and hybrid resampling confidence sets
We begin with a review of the theory on second-order accuracy of bootstrap
confidence intervals based on a fixed number of i.i.d. observations X1, . . . ,Xn.
Hall (1992) shows that the essence of this theory lies in comparing the Edgeworth
expansions of (a) the sampling distribution of the approximate pivot used to
construct the confidence interval and (b) the bootstrap distribution of that based
on the empirical distribution (for nonparametric bootstrap) or the estimated para-
metric distribution (usually by maximum likelihood for parametric bootstrap).
Thus, (a) refers to the actual probability measure, which is unknown, and (b)
refers to the estimated measure that is used to generate bootstrap samples.
Hall (1992) focuses on smooth functions of means as the parameter of interest,
for which Edgeworth expansions are available. These expansions in turn yield
Cornish–Fisher expansions for bootstrap quantiles that are used to construct the
bootstrap confidence intervals, and the coverage error of a bootstrap confidence
interval can be evaluated by using the Edgeworth expansion. This approach can
be extended to much more complex settings than smooth functions of means, and
Gross and Lai (1996) have shown how it works in the setting of censored survival
data considered in Sect. 6.1. Carrying this idea out for stopped random walks
is much harder because the stopping time is integer valued and approximating
its lattice distribution by a continuous normal distribution function plus higher-
order correction terms results in certain sawtooth functions that the bootstrap
distribution cannot match to the actual sampling distribution, as shown by Lai
and Wang (1994).
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Lai et al. (2006a) have reported several simulation studies on the coverage
errors of confidence intervals for μ using the pivot R0(μ), the bias-corrected pivot
R1(μ), another modified pivot proposed by Woodroofe (1992), and bootstrap
confidence intervals using R0 and R1, together with hybrid resampling intervals,
in the setting of fully sequential tests for which Woodroofe’s (1986) very
weak expansions and Lai and Wang’s (1994) Edgeworth expansions have been
developed. The finding is that the hybrid resampling method produces coverage
errors close to the nominal values over the range of parameter values of μ studied,
but the other methods may be quite inaccurate at some parameter values.

We next describe how Chuang and Lai (1998) use Edgeworth expansions to
prove the second-order accuracy of hybrid resampling confidence sets (7.12) and
(7.14). Let

T = min{n j : Sn j ≥ γ j or Sn j ≤ λ j} (min /0 = nk), (7.48)

in which n1 < · · · < nk = n are positive integers and λ j < γ j are real numbers.
Here X1,X2, . . . ,Xnk are i.i.d. random variables with common characteristic
function ψ such that for some constant C,

liminf
n→∞ (n j − n j−1)/n > 0 (1 ≤ j ≤ k), (7.49)

E(X1 − μ)4 ≤C, limsup
|t|→∞

|ψ(t)|< 1. (7.50)

The second part of (7.50) is commonly called “Cramér’s condition” for Edge-
worth expansions. Conditions (7.49) and (7.50) ensure that

Pμ
{
λ̃1 < (Sn1 − μn1)/n1/2 < γ̃1, . . . , λ̃ j−1 < (Sn j−1 − μn j−1)/n1/2 < γ̃ j−1,

(Sn j − μn j)/n1/2 ∈ (−∞,z]∩ ((−∞, λ̃ j]∪ [γ̃ j,∞))
}

(7.51)

has an Edgeworth expansion of the form

∫
· · ·
∫

Cj

j

∏
i=1
φ(xi)

{
1+(ni−ni−1)

−1/2Q1(xi)+(ni−ni−1)
−1Q2(xi)

}
dxi+o(n−1)

(7.52)

uniformly in μ , z, λ̃1, γ̃1, . . . λ̃ j, and γ̃ j, where φ is the standard normal density
function, Q1 and Q2 are polynomials, and

Cj =
{
(x1, . . . ,x j) : λ̃l < (n1/n)1/2x1 + · · ·+ {(nl − nl−1)/n}1/2xl < γ̃l (l < j)

and (n1/n)1/2x1 + · · ·+ {(n j − n j−1)/n}1/2x j ∈ (−∞,z]∩ ((−∞, λ̃ j]∪ [γ̃ j,∞))
}
,
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since the Xi have common variance 1; see Lemma 5.4 of Hall (1992). If λ̃l =(λl−
μnl)/n1/2 and γ̃l = (λl − μnl)/n1/2 for 1 ≤ l ≤ j, then (7.51) can be expressed
as Pμ{T = n j,(ST −Tμ)/T 1/2 ≤ z}. Hence Pμ{(ST −Tμ)/T 1/2 ≤ z} is a sum
of probabilities of the form (7.51) which can be approximated by Edgeworth
expansions within an o(n−1) error, uniformly in μ and z. Define ĜT and εi as in
the first paragraph of Sect. 7.2.2. An argument similar to that in Sect. 5.2 of Hall
(1992) shows that

P

{
λ̃1 <

(
n1

∑
i=1
εi

)/
n1/2 < γ̃1, . . . , λ̃ j−1 <

(
n j−1

∑
i=1
εi

)/
n1/2 < γ̃ j−1,

(
n j

∑
i=1
εi

)/
n1/2 ∈ (−∞,z]∩ ((−∞, λ̃ j]∪ [γ̃ j,∞))

∣∣∣∣ ĜT

}

also has the Edgeworth expansion (7.52) with o(n−1) replaced with op(n−1) and
with Q1, Q2 replaced by Q̂1, Q̂2 such that supx |Q̂l(x)−Ql(x)| = Op(n−1/2) for
l = 1,2. Using this and an argument similar to that in Sects. 3.5 and 5.2 of Hall
(1992), Chuang and Lai (1998) obtain the coverage probability 1−2α+O(n−1)
for the hybrid resampling confidence interval (7.12).

Similarly, for the hybrid resampling confidence set (7.14) using Siegmund’s
ordering, note that for s ≥ γ j, Pμ{(T,ST )≥ (n j,s)} is equal to

Pμ
{
λ̃1 < (Sn1 − μn1)/n1/2 < γ̃1, . . . , λ̃ j−1 < (Sn j−1 − μn j−1)/n1/2 < γ̃ j−1,

(Sn j − μn j)/n1/2 ≥ s
}

+
j−1

∑
i=1

Pμ
{
λ̃t < (Snt − μnt)/n1/2 < γ̃t for t < i, (Sni − μni)/n1/2 ≥ γ̃i

}
,

and that for s ≤ λ j, Pμ{(T,ST )≤ (n j,s)} is equal to

Pμ
{
λ̃1 < (Sn1 − μn1)/n1/2 < γ̃1, . . . , λ̃ j−1 < (Sn j−1 − μn j−1)/n1/2 < γ̃ j−1,

(Sn j − μn j)/n1/2 ≤ s
}

+
j−1

∑
i=1

Pμ
{
λ̃t < (Snt − μnt)/n1/2 < γ̃t for t < i, (Sni − μni)/n1/2 ≤ λ̃i

}
.

This shows that the preceding argument involving Edgeworth expansions for
(7.12) can again be used to show that the hybrid resampling confidence set (7.14)
also has coverage probability 1− 2α+O(n−1).
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7. Confidence intervals for median survival in the Cox regression model
Median survival times and their associated confidence intervals are often used to
summarize the survival outcome of patients in clinical trials with failure-time
endpoints. Interval estimation for the median m has been recognized to be a
difficult problem, even when there are no covariates and the sample consists
of fully observable data without censoring. Lai and Su (2006) have reviewed
bootstrap methods to address this estimation problem in the absence of censoring
and covariates and an alternative test-based approach that inverts a generalized
sign test similar to the approach proposed by Brookmeyer and Crowley (1982).
The difficulty is compounded by the presence of covariates and censoring in
survival studies. Lai and Su (2006) have generalized the Brookmeyer–Crowley
confidence interval to that for the median m(xxx) in the Cox model (6.8) with
time-invariant covariate vector xxx. Specifically, m(xxx) is the median of the survival

distribution S(t|xxx) = (S0(t))exp(βββTxxx), where S0 is the survival distribution with
hazard function λ0 given in (6.8). Instead of working directly with S(·|xxx), they
find it more convenient to work with the cumulative hazard function Λ(·|xxx). The
key idea underlying their approach is that it is much easier to find an approximate
pivot

{Λ̂(m|xxx)−Λ(m|xxx)}/σ̂(m|xxx) (7.53)

at given m than finding an approximate pivot that involves the estimated median
m̂(xxx). This explains why they use a test-based confidence set:

{
m : ĉα(m)≤ (Λ̂(m|xxx)− log2)/σ̂(m|xxx)≤ ĉ1−α(m)

}
, (7.54)

in which ĉα(m) and ĉ1−α(m) are the quantiles of the bootstrap distribution of
(Λ̂ (m|xxx)−Λ(m|xxx))/σ̂(m|xxx) for given m, and include m in the confidence set
if the null hypothesis Λ(m|xxx) = log2 (which is equivalent to S(m|xxx) = 1/2
corresponding to median) is accepted.

Lai et al. (2009) subsequently extended this approach to the time-sequential
setting in which a secondary analysis involves estimation of m(xxx). To be specific,
let γγγ = (β ,θθθT )T and xxxi = (xi,uuuT

i )
T in the proportional hazards model (7.27).

Given a covariate vector xxx, let Λ̂t(s|xxx) = Λ̂t(s)eγ̂γγ
T
t xxx be the estimate, at time t, of

the cumulative hazard function Λ(s|xxx), where γ̂γγt = (β̂t , θ̂θθ
T
t )

T and Λ̂t , β̂t , θ̂θθ t are
the same as in Sect. 7.5.2. To construct an upper (1−α)-level confidence bound
for m(xxx) of the survival distribution e−Λ(·|xxx), Lai et al. (2009) use a test-based
approach that considers testing H0 :Λ(m|xxx) = log2 with the test statistic Wt(m),
where

Wt(m) =
{
Λ̂t(m|xxx)−Λt(m|xxx)}/ν̂ 1/2

t (m|xxx), (7.55)

as in (7.53). For a time-sequential trial with stopping rule T of the form (7.32),
we can use the ordering scheme (7.17) to evaluate the p-value, denoted by p̂(m),
of the test based on WT (m):
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Table 7.6 Coverage errors in percentages for lower (L) and upper
(U) confidence limits and coverage probabilities (P) of confidence
intervals for the median survival of subjects with covariates x = 1
and u = 0.5

Naive Normal Hybrid Bootstrap

eβ L U P L U P L U P

(a) eθ = 1.0
1.00 8.3 3.8 87.9 3.7 4.1 92.2 5.7 5.4 88.9
0.90 9.0 3.3 87.7 3.6 3.9 92.5 4.4 4.2 91.4
0.80 9.1 3.1 87.8 4.0 3.9 92.1 5.1 5.6 89.3
0.70 8.1 2.6 89.3 4.1 4.4 91.5 5.7 6.0 88.3
0.60 6.8 3.5 89.7 3.2 3.9 92.9 4.2 5.1 90.7
0.50 6.9 3.0 90.1 4.5 4.7 90.8 6.2 5.1 88.7

(b) eθ = 1.5
1.00 7.2 3.3 89.5 3.7 4.3 92.0 5.8 5.5 88.7
0.90 7.7 3.6 88.7 4.1 4.1 91.8 4.3 5.6 90.1
0.80 7.5 3.0 89.5 3.9 3.6 92.5 6.1 5.5 88.4
0.70 8.1 3.4 88.5 3.5 4.5 92.0 4.8 5.9 89.3
0.60 6.6 3.2 90.2 3.7 3.6 92.7 4.3 4.1 91.6
0.50 6.8 2.8 90.4 4.2 4.7 91.1 5.1 5.5 89.4

(c) eθ = 2.0
1.00 8.2 2.9 88.9 4.0 4.2 91.8 5.7 6.0 88.3
0.90 8.1 3.3 88.6 3.6 4.4 92.0 4.3 4.3 91.4
0.80 7.7 2.8 89.5 3.9 4.2 91.9 5.3 5.8 88.9
0.70 7.4 3.3 89.3 4.3 3.9 91.8 4.4 4.9 90.7
0.60 6.5 3.4 90.1 4.9 3.3 91.8 5.2 4.9 89.9
0.50 7.2 3.2 89.6 3.6 4.3 92.1 6.0 5.6 88.4

p̂(m) = sup
β

P̂β {(T,WT (m))≥ (τ,wτ (m))} , (7.56)

in which (τ,wτ (m)) is the observed value of (T,WT (m)) and P̂β uses θ̃θθT (β )
and ĜT = 1− e−Λ̂T to replace θθθ and G in Pβ ,θθθ , where θ̃θθ t(β ) is the maximizer
of lt(β ,θθθ ) for a given β . The probability in (7.56) can be evaluated by Monte
Carlo simulations. The hybrid resampling confidence set for m(xxx), with nominal
confidence level 1−2α , is {m : α < p̂(m)< 1−α}. When p̂(m) is monotone in
m, the confidence set is an interval, which is typically the case.

For the time-sequential trial in Sect. 7.6.2, Lai et al. (2009) also consider
the problem of constructing confidence intervals for median survival in patients
receiving the new treatment, x = 1, and having risk factor u = 0.5. Table 7.6
gives the coverage errors of the nominal 90% confidence intervals for the median
survival, obtained by (a) the hybrid resampling method, (b) the naive normal
approximation that assumes WT (m) to be approximately normal, with Wt(m)
given by (7.55), and (c) the bootstrap method which resamples from Pγ̂γγT ,Λ̂T

to
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evaluate the p-value. Each result is based on 2000 simulations; the hybrid and
bootstrap methods use B = 2000 resamples. Table 7.6 shows that the hybrid
resampling method maintains the nominal coverage errors of both the lower and
upper confidence limits, and the naive method has substantially larger coverage
errors for the lower confidence limits while the bootstrap method has inflated
coverage errors for some lower and upper confidence limits.



Chapter 8
Adaptive Design of Confirmatory Trials

Because of the ethical and economic considerations in the design of clinical trials
to test the efficacy of new treatments and because of lack of information on the
magnitude and sampling variability of the treatment effect at the design stage,
there has been increasing interest from the biopharmaceutical industry in sequential
methods that can adapt to information acquired during the course of the trial.
Beginning with Bauer (1989), who introduced sequential adaptive test strategies
over a planned series of separate trials, and Wittes and Brittain (1990), who
discussed internal pilot studies, a large literature has grown on adaptive design of
clinical trials. Depending on the topics covered, the term “adaptive design” in this
literature is sometimes replaced by “sample size re-estimation,” “trial extension,”
or “internal pilot studies.” In standard clinical trial designs, the sample size is
determined by the power at a given alternative, but in practice, it is often difficult
for investigators to specify a realistic alternative at which sample size determination
can be based. Although a standard method to address this difficulty is to carry out
a preliminary pilot study, the results from a small pilot study may be difficult to
interpret and apply, as pointed out by Wittes and Brittain (1990), who proposed to
treat the first stage of a two-stage clinical trial as an internal pilot from which the
overall sample size can be re-estimated. The problem of sample size re-estimation
based on observed treatment difference at some time before the prescheduled end
of a clinical trial has attracted considerable attention since the 1990s. Much of the
literature has focused on finding ways to adjust the test statistics after midcourse
sample size modification so that the type I error probability is maintained at
the prescribed level. Section 8.1.1 gives a summary of the major developments
and the methods proposed. Section 8.1.2 describes their extensions to the group
sequential setting.

By making use of a generalization of the Neyman–Pearson lemma, Tsiatis and
Mehta (2003) showed that these adaptive tests of a simple null versus a simple
alternative hypothesis are inefficient because they are not based on likelihood ratio
statistics. Jennison and Turnbull (2003) gave a general weighted form of these test
statistics and demonstrated in simulation studies that the adaptive tests performed
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considerably worse than group sequential tests. Assuming normally distributed
outcomes with known variances, Jennison and Turnbull (2006a) introduced adaptive
group sequential tests that choose the jth group size and stopping boundary on
the basis of the cumulative sample size n j−1 and the sample sum Sn j−1 over the
first j − 1 groups and that are optimal, in the sense of minimizing a weighted
average of the expected sample sizes over a collection of parameter values, subject
to prescribed error probabilities at the null and a given alternative hypothesis. They
showed how the corresponding optimization problem can be solved numerically
by using backward induction algorithms (see Sect. 3.6.1). Jennison and Turnbull
(2006b) found that standard (nonadaptive) group sequential tests with the first stage
chosen optimally are nearly as efficient as their optimal adaptive tests.

Except for Jennison and Turnbull’s optimal adaptive group sequential tests and
the extensions of the sample size re-estimation approach to group sequential testing,
the midcourse sample size re-estimation literature reviewed in Sect. 8.1 has focused
on two-stage designs whose second-stage sample size is determined by the results
from the first stage (internal pilot), following the seminal work of Stein (1945)
in this area. Although this approach is intuitively appealing, it does not adjust for
the uncertainty in the first-stage parameter estimates that are used to determine the
second-stage sample size. Moreover, it considers primarily the special problem of
comparing the means of the two normal populations, using the central limit theorem
for extensions to more general situations. The case of unknown common variance
at a prespecified alternative for the mean difference, which was considered first, is
considered in Sect. 8.1.3.

A unified treatment, developed by Bartroff and Lai (2008a,b), of both cases in the
general framework of multiparameter exponential families is presented in Sect. 8.2.
It uses efficient generalized likelihood ratio (GLR) statistics in this framework
and adds a third stage to adjust for the sampling variability of the first-stage
parameter estimates that determine the second-stage sample size. The possibility
of adding a third stage to improve two-stage designs dated back to Lorden (1983).
Whereas Lorden used crude upper bounds for the type I error probability that are
too conservative for practical applications, Bartroff and Lai (2008a) overcame this
difficulty by modifying the numerical methods in Sect. 4.3 to compute the type I
error probability and also extended the three-stage test to multiparameter and multi-
armed settings, thus greatly broadening the scope of these efficient adaptive designs.
Section 8.3 summarizes the simulation studies of Bartroff and Lai (2008a,b),
comparing their approach to adaptive designs with other approaches in the literature.

The adaptive methods in Sect. 8.2 can be regarded as modifications of the
group sequential GLR tests in Sect. 4.2. In Sect. 8.4 we give another modification,
proposed by Lai et al. (2006c), for adaptive choice between superiority and non-
inferiority objectives of a new treatment during interim analyses of a clinical trial to
test the treatment’s efficacy.
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8.1 Internal Pilot, Midcourse Sample Size Re-estimation
and Trial Extensions

As in group sequential designs considered in Sect. 4.1, most of the literature on
adaptive designs focus on the prototypical problem of testing a normal mean when
the variance is known. The case of unknown variance is also considered when the
“internal pilot” is used to estimate the variance. The canonical problem considered
in this section is testing the hypothesis H0 : μX = μY versus the two-sided alternative
μX �= μY for the mean of two independent normal populations with common,
unknown variance, and based on i.i.d. observations X1,X2, · · · ∼ N(μX ,σ2) and
Y1,Y2, · · · ∼ N(μX ,σ2). Let tν,α denote the upper α-quantile of the t-distribution
with ν degrees of freedom.

8.1.1 Stein’s Two-Stage Procedure, with the First Stage
to Estimate the Variance as an Internal Pilot

After Dantzig’s (1940) results showed that no fixed-sample test of H0 can be
guaranteed to achieve power at a given level if the variance σ2 is unknown, Stein
(1945) developed an elegant solution to the problem in a two-stage test whose power
is independent of the variance. In its first stage, Stein’s test samples n0 observations
from each of the two normal populations and computes the usual unbiased estimate
s2

0 of σ2. In the second stage, the test samples up to

n1 = n0 ∨
[(

t2n0−2,α/2 + t2n0−2,β
)2 2s2

0

δ 2

]
(8.1)

observations from each population, where α is the prescribed type I error probabil-
ity, and 1−β is the prescribed power at the alternatives satisfying |μX − μY | = δ .
The null hypothesis H0 : μx = μY is then rejected if

|X̄n1 − Ȳn1 |√
2s2

0/n1

> t2n0−2,α/2. (8.2)

Stein (1945) showed that the use of the initial variance estimate s2
0 in the final

test statistic (8.2) ensures that the test has type I error probability α and power
at least 1−β . However, this feature also diminishes the practical appeal of the test.
Denne and Jennison (1999) present a way of incorporating the variance estimate s2

1
based on 2n1 observations into the final test statistic while increasing the degrees of
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freedom of the t-distribution so that the desired type I error probability and power
constraints are not violated by much. Specifically, they propose the rejection rule

|X̄n1 − Ȳn1 |√
2s2

1/n1

> t2n0−2+2ε(n1−n0),α/2, (8.3)

where 0 < ε < 1 is a user-specified parameter. Denne and Jennison (2000) extend
this test to a group sequential setting.

Many other modifications of Stein’s initial idea have been proposed. Viewing the
test statistic

|X̄n1 − Ȳn1 |√
2s2

1/n1

as a fixed-sample statistic based on a sample of size n1 from each population, when
μX − μY = δ , this test statistic has the noncentral t-distribution on 2n1 − 2 degrees

of freedom with noncentrality parameter δ
√

n1/(2s2
1), which is a random variable

if the random size (8.1) is used instead. Fixing α , β , and δ , let n(σ2) denote the
smallest n1 for which the probability exceeds 1−β that an observation from this
distribution exceeds the critical value t2n1−2,α/2 in (8.2). Based on a pretrial estimate
σ2

0 of σ2, an estimate of the total desired sample size is n(σ2
0 ). Following a pilot

study of size n0 per arm, which results in the variance estimate s2
0, the total sample

size can be re-estimated as n(s2
0). At this point there are many options for how to

proceed. Wittes and Brittain (1990) recommend taking the maximum of n(σ2
0 ) and

n(s2
0) as the new total sample size, to safeguard against a low value of s2

0 causing
an increase in the type I error probability. Gould and Shih (1992) recommend
retaining n(σ2

0 ) unless n(s2
0) is substantially larger, as well as truncating n(s2

0) to
some practical value, like 2n(σ2

0 ). Birkett and Day (1994) recommend taking the
total sample size per treatment as the maximum of n0 and n(σ2

0 ). Herson and
Wittes (1993) propose a procedure, originally for binary data, in which the sample
size is updated based on estimates from the control group alone. Shih (2001) and
Whitehead et al. (2001) provide useful reviews of these and the other proposals for
this problem.

8.1.2 Midcourse Sample Size Re-estimation

From the viewpoint that the trial is intended as fixed sample size but at some
intermediate time there may be a desire to re-estimate the total sample size in view
of data accumulated so far, Fisher (1998) proposed a method that allows this while
maintaining the original type I error rate in the setting where the variance is known,
as follows. Without loss of generality, take σ2 = 1/2 and let θ = μX −μY . If n is the
original per treatment sample size, then after rn pairs of observations (0 < r < 1),
letting
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S1 =
rn

∑
i=1

(Xi −Yi),

we have

n−1/2S1 ∼ N
(
rθ

√
n,r
)
.

If it is now desired to change the second-stage sample size from (1−r)n to γ(1−r)n,
for some γ > 0, then letting

S2 =
n∗

∑
i=rn+1

(Xi −Yi),

where n∗ = rn+ γ(1− r)n is the new total per treatment sample size, we have that
given the first stage data,

(nγ)−1/2S2 ∼ N ((1− r)θ
√
γn,1− r) . (8.4)

Note that under H0 : θ = 0, (8.4) has the N(0,1− r) distribution regardless of the
(possibly data-dependent) choice of γ , thus Fisher’s (1998) test statistic

n−1/2
(

S1 + γ−1/2S2

)
(8.5)

has a N(0,1) distribution under H0. This test has been called the variance spending
test because the variance 1− r of (8.4) is the remaining part of the total variance 1
not spent in the first stage, and thus the factor γ−1/2 in (8.5) is in place to ensure the
standard normal distribution of the test statistic (8.5). Shen and Fisher (1999) gave a
multistage version of this procedure based on S1,S2, . . . ,Sk in which the sample size
update at each stage may be data dependent.

Denne (2001) proposed a test that also allows data-dependent updates of the
total sample size but maintains the type I error probability by a seemingly different
method. With the preceding notation, Denne’s (2001) test chooses a critical value
for S2 that is a function of the first-stage data S1 = s1 by maintaining the conditional
type I error rate

Pθ=0

(
S1 + S2√

n
> zα

∣∣∣∣ S1 = s1

)
. (8.6)

Jennison and Turnbull (2003) showed that this test, with no stopping after the first
stage, is actually equivalent to Fisher’s (1998) test: Since S2 ∼ N(0,(1− r)n) under
H0 : θ = 0, a simple calculation shows that (8.6) is equal to

A(s1) = 1−Φ
(

zα√
(1− r)

− s1√
(1− r)n

)
,
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and thus Denne’s (2001) rejection rule can be written as

S2√
γ(1− r)n

>Φ−1 (1−A(s1)) ,

which simplifies to

n−1/2
(

S1 + γ−1/2S2

)
> zα ,

which is Fisher’s test statistic (8.5). Jennison and Turnbull (2003) also showed
that the proposal of Cui et al. (1999) is exactly equivalent to Fisher’s test, which
they found to perform poorly in terms of efficiency and power in comparison to
group sequential tests. Tsiatis and Mehta (2003) independently came to the same
conclusion, attributing this inefficiency to the use of the non-sufficient “weighted”
statistic (8.5).

Working in terms of the z-statistic that divides S by its standard deviation,
Proschan and Hunsberger (1995) noted that any nondecreasing function C(z1) with
range [0,1] can be used as a conditional type I error function to define a two-stage
procedure, as long as it satisfies∫ ∞

−∞
C(z1)φ(z1)dz1 = α, (8.7)

and suggested certain choices of C. Having observed the first-stage data Z1, H0 : θ =
0 is rejected in favor of θ > 0 after stage two if Z2 >Φ−1(1−C(z1)). The condition
(8.7) ensures that the type I error probability of any test of this form is α . The tests
proposed earlier by Bauer and Köhne (1994) can also be represented in this common
framework, as noted by Posch and Bauer (1999).

8.1.3 Midcourse Modification of the Maximum Sample Size
in a Group Sequential Trial

Cui et al. (1999) discussed the issue of increasing the maximum sample size after
interim analysis in a group sequential trial. They cited a study protocol, which
was reviewed by the Food and Drug Administration, involving a Phase III group
sequential trial for evaluating the efficacy of a new drug to prevent myocardial
infarction in patients undergoing coronary artery bypass graft surgery. During
interim analysis, the observed incidence for the drug achieved a reduction that was
only half of the target reduction assumed in the calculation of the maximum sample
size M, resulting in a proposal to increase the maximum sample size to M̃ (Nmax in
their notation). Cui et al. (1999) and Lehmacher and Wassmer (1999) extended the
sample size re-estimation approach to adaptive group sequential trials by adjusting
the test statistics as in Proschan and Hunsberger (1995) and allowing the future
group sizes to be increased or decreased during interim analyses so that the overall
sample size does not exceed M̃(> M) and the type I error probability is maintained
at the prescribed level.
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8.1.4 Optimal Adaptive Group Sequential Designs via Dynamic
Programming

Jennison and Turnbull (2006a) introduced adaptive group sequential tests that
choose the jth group size and stopping boundary on the basis of the cumulative
sample size n j−1 and the sample sum Sn j−1 over the first j − 1 groups and that
are optimal in the sense of minimizing a weighted average of the expected sample
sizes over a collection of parameter values subject to prescribed error probabilities
at the null and a given alternative hypothesis. For example, they give the operating
characteristics of the k-stage test minimizing

[E0(T )+Eθ ′(T )+E2θ ′(T )]/3, (8.8)

where T is the total sample size and θ ′ a specified alternative, among all k-stage tests
with given maximum sample size, type I error probability, and power at a given
alternative, for k = 2,3,4. They also showed how the corresponding optimization
problem can be solved numerically by using the backward induction algorithms for
“optimal sequentially planned” designs developed by Schmitz (1993); this is in fact
a special case of finite-horizon dynamic programming introduced in Sect. 3.6.1.
Jennison and Turnbull (2006b) found that standard (nonadaptive) group sequential
tests with the first stage chosen optimally are nearly as efficient as their optimal
adaptive counterparts that are considerably more complicated.

8.2 Efficient Adaptive Design and GLR Tests

Instead of staying within the normal family, Bartroff and Lai (2008a,b) consider
the more general framework of the multiparameter exponential family fθθθ (x) =
exp(θθθT x−ψ(θθθ)) considered in Sect. 4.2.4. Let Λi,0 denote the right-hand side of
(4.14), and let Λi,1 denote the right-hand side of (4.14) with u0 replaced by u1 that
will be specified below.

8.2.1 An Adaptive 3-Stage GLR Test

Whereas Tsiatis and Mehta (2003) consider the case of simple null and alternative
hypotheses θθθ = θθθ j ( j = 0,1) for which likelihood ratio tests are most powerful even
in their group sequential designs, Bartroff and Lai (2008a) use the GLR statistics
Λi,0 and Λi,1 in an adaptive three-stage test of the composite null hypothesis H0 :
u(θθθ)≤ u0, where u is a smooth real-valued function such that

I(θθθ ,λλλ) is increasing in |u(λλλ)− u(θθθ)| for every fixed θθθ . (8.9)
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Let n1 = m be the sample size of the first stage and n3 = M be the maximum total
sample size, both specified before the trial. Let u1 > u0 be the alternative implied by
the maximum sample size M and the reference type II error probability α̃ . That is,
u1(> u0) is the alternative where the fixed sample size (FSS) GLR test with type I
error probability α and sample size M has power infθθθ :u(θθθ)=u1

Pθθθ{Reject H0} equal
to 1− α̃, as in Sect. 4.2.4. The three-stage test of H0 : u(θθθ) ≤ u0 stops and rejects
H0 at stage i ≤ 2 if

ni < M, u
(
θ̂θθ ni

)
> u0, and Λi,0 ≥ b. (8.10)

Early stopping for futility (accepting H0) can also occur at stage i ≤ 2 if

ni < M, u
(
θ̂θθni

)
< u1, and Λi,1 ≥ b̃. (8.11)

The test rejects H0 at stage i = 2 or 3 if

ni = M, u
(
θ̂θθM
)
> u0, and Λi,0 ≥ c, (8.12)

accepting H0 otherwise. The sample size n2 of the three-stage test is given by

n2 = m∨
{

M∧
⌈
(1+ρm)n

(
θ̂θθm
)⌉}

, (8.13)

with

n(θθθ ) = min

{
| logα|

/
inf

λλλ :u(λλλ )=u0

I(θθθ ,λλλ ), | log α̃ |
/

inf
λλλ :u(λλλ )=u1

I(θθθ ,λλλ )
}
, (8.14)

where I(θθθ ,λλλ ) is the Kullback–Leibler information number and ρm > 0 is an
inflation factor to adjust for uncertainty in θ̂m; see the examples in Sect. 8.3. Note
that (8.14) is an asymptotic approximation to Hoeffding’s lower bound (3.15).
Letting 0 < ε, ε̃ < 1, define the thresholds b, b̃, and c to satisfy the equations

sup
θθθ :u(θθθ)=u1

Pθθθ{(8.11) occurs for i = 1 or 2}= ε̃ α̃, (8.15)

sup
θθθ :u(θθθ)=u0

Pθθθ{(8.11) does not occur for i ≤ 2, (8.10) occurs for i = 1 or 2}= εα,
(8.16)

sup
θθθ :u(θθθ)=u0

Pθθθ{(8.10) and (8.11) do not occur for i ≤ 2, (8.12) occurs}= (1− ε)α.
(8.17)

The probabilities in (8.15)–(8.17) can be computed by using the normal approxima-
tion to the signed-root likelihood ratio statistic

�i, j =
{

sign
(

u(θ̂θθni)− u j

)}
(2niΛi, j)

1/2
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(1 ≤ i ≤ 3 and j = 0,1) under u(θθθ) = u j, as in Sect. 4.3.1. When u(θθθ) = u j,
�i, j is approximately normal with mean 0, variance ni, and the increments �i, j −
�i−1, j are asymptotically independent. We can therefore approximate �i, j by a sum
of independent standard normal random variables under u(θ ) = u j and thereby
determine b, b̃, and c. Note that this normal approximation can also be used for
the choice of u1 implied by M and α̃ . Computational details are given in Sect. 8.2.4.

A special multiparameter case of particular interest in clinical trials involves K-
independent populations having density functions exp{θkx− ψ̃k(θk)} so that θθθT xxx−
ψ(θθθ) = ∑K

k=1{θkxk − ψ̃(θk)}. In multiarmed trials, for which different numbers of
patients are assigned to different treatments, the GLR statistic Λi, j for testing the
hypothesis u(θ1, . . . ,θK) = u j ( j = 0 or 1) at stage i has the form

Λi, j =
K

∑
k=1

nki
{
θ̂k,nki X̄k,nki − ψ̃

(
θ̂k,nki

)}− sup
θθθ :u(θ1,...,θK)=u j

K

∑
k=1

nki
{
θkX̄k,nki − ψ̃(θk)

}
,

in which nki is the total number of observations from the kth population up to stage
i. Letting ni = ∑K

k=1 nki, the normal approximation to the signed-root likelihood

ratio statistic is still applicable when nki = pkni +Op(n
1/2
i ), where p1, . . . , pK are

nonnegative constants that sum up to 1, as in random allocation of patients to the K
treatments (for which pk = 1/K); see Lai and Shih (2004, p. 514).

8.2.2 Midcourse Modification of Maximum Sample Size

We now modify the adaptive designs in the preceding section to accommodate the
possibility of midcourse increase of the maximum sample size from M to M̃. Let u2

be the alternative implied by M̃ so that the level-α GLR test with sample size M̃ has
power 1− α̃. Note that u1 > u2 > u0. Whereas the sample size n3 is chosen to be M
in Sect. 8.2.1, we now define

ñ(θθθ ) = min

{
| logα|

/
inf

λλλ :u(λλλ)=u0

I(θθθ ,λλλ ), | log α̃|
/

inf
λλλ :u(λλλ)=u2

I(θθθ ,λλλ )
}
,

n3 = n2 ∨
{

M′ ∧
⌈
(1+ρm)ñ

(
θ̂θθ n2

)⌉}
,

where M < M′ ≤ M̃ and n2 = m∨{M ∧ (1+ρm)ñ(θ̂θθm)}. We can regard the test as
a group sequential test with four groups and n1 = m, n4 = M̃, but with adaptively
chosen n2 and n3. If the test does not end at the third stage, continue to the fourth and
final stage with sample size n4 = M̃. Its rejection and futility boundaries are similar
to those in Sect. 8.2.1. Extending our notation Λi, j to 1 ≤ i ≤ 4 and 0 ≤ j ≤ 2, the
test stops at stage i ≤ 3 and rejects H0 if

ni < M̃, u
(
θ̂θθni

)
> u0, and Λi,0 ≥ b, (8.18)
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stops and accepts H0 if

ni < M̃, u
(
θ̂θθni

)
< u2, and Λi,2 ≥ b̃, (8.19)

and rejects H0 at stage i = 3 or 4 if

ni = M̃, u
(
θ̂θθ M̃

)
> u0, and Λi,0 ≥ c, (8.20)

accepting H0 otherwise. The thresholds b, b̃, and c can be defined by equations
similar to (8.15)–(8.17) to insure the overall type I error probability to be α . For
example, in place of (8.15),

sup
θθθ :u(θθθ)=u2

Pθ{(8.19) occurs for some i ≤ 3}= ε̃α̃. (8.21)

The basic idea underlying (8.21) is to control the type II error probability at u2 so
that the test does not lose much power there in comparison with the GLR test that
has sample size M̃ (and therefore power 1− α̃ at u2).

8.2.3 Asymptotic Theory

For testing one-sided hypotheses H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 in a one-parameter
exponential family, the idea of using a three-stage test to achieve the first-order
asymptotic efficiency of Schwarz’s fully sequential GLR test with stopping rule of
the form (3.12) dated back to Lorden (1983). To prove asymptotic optimality as
α + α̃ → 0, Lorden used crude upper bounds for the error probabilities that make

the thresholds A(n)
0 and A(n)

1 too conservative for practical applications but suffice for
the expected sample size to attain asymptotically Hoeffding’s lower bound (3.15) at
every fixed θ . Bartroff and Lai (2008a,b) have overcome the practical difficulty due
to the overly conservative stopping thresholds of Lorden’s three-stage test by using
a Haybittle–Peto-type boundary and developing numerical methods to compute the
type I error probability as in Sect. 4.2 and have also extended the three-stage test to
multiparameter and multiarmed settings, thus greatly broadening the scope of these
adaptive designs. They establish the asymptotic optimality of the three-stage test in
the following.

Theorem 8.1. Let N denote the sample size of the three-stage GLR test in
Sect. 8.2.1, with m, M, and m∨ [M ∧ �(1+ρm)n(θ̂θθm)�] being the possible values
of N. Let T be the sample size of any test of H0 : u(θθθ) ≤ u0 versus H1 : u(θθθ) ≥ u1,
sequential or otherwise, which takes at least m and at most M observations and
whose type I and type II error probabilities do not exceed α and α̃ , respectively.
Assume that logα ∼ log α̃ ,

m/| logα| → a, M/| logα| → A, ρm → 0 but m1/2ρm/(logm)1/2 → ∞

(8.22)
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as α+ α̃→ 0, with 0 < a < A. Then for every fixed θθθ , as α+ α̃→ 0,

Eθθθ (N)∼ m∨
{

M∧| logα|/
[

inf
λλλ :u(λλλ )=u0

I(θθθ ,λλλ)∨ inf
λλλ :u(λλλ )=u1

I(θθθ ,λλλ )
]}

, (8.23)

Eθθθ (T )≥ [1+ o(1)]Eθθθ(N). (8.24)

Since m ∼ a| logα| and M ∼ A| logα| and since the thresholds b, b̃, and c are
defined by (8.15)–(8.17), Bartroff and Lai (2008b) use an argument similar to the
proof of Theorem 2(ii) of Lai and Shih (2004, p. 525) to show that (8.23) holds.
They then use the following argument to prove (8.24). Let Θ0 = {θθθ : u(θθθ) ≤ u0},
Θ1 = {θθθ : u(θθθ )≥ u1}. For i = 0,1,

inf
λλλ∈Θi

I(θθθ ,λλλ ) = Ii(θθθ ), where Ii(θθθ) = inf
λλλ :u(λλλ )=ui

I(θθθ ,λλλ ). (8.25)

Take any λλλ ∈Θ0 and λ̃λλ ∈Θ1. From (8.25) and Hoeffding’s lower bound (3.15), it
follows that for a test that has error probabilities α and α̃ at λλλ and λ̃λλ and take at
least m and at most M observations, its sample size T satisfies

Eθθθ (T )≥ m∨
{

M∧ [1+ o(1)]| logα|
I0(θθθ)∨ I1(θθθ )

}
(8.26)

as α+ α̃→ 0 such that logα ∼ log α̃ . The second-stage sample size of the adaptive
test is a slight inflation of the Hoeffding-type lower bound (8.26) with θθθ replaced by
the maximum likelihood estimate θ̂θθm at the end of the first stage. The assumption
ρm → 0 but ρm � m−1/2(logm)1/2 is used to accommodate the difference between θθθ
and its substitute θ̂θθm, which satisfies Pθθθ{

√
m‖θ̂θθm −θθθ‖ ≥ r(logm)1/2} = o(m−1) if

m is sufficiently large, by standard exponential bounds involving moment generating
functions.

As noted by Bartroff and Lai (2008b), the adaptive test in Sect. 8.2.2 can be
regarded as a midcourse amendment of an adaptive test of H0 : u(θθθ) ≤ u0 versus
H1 : u(θθθ)≥ u1, with a maximum sample size of M, to that of H0 versus H2 : u(θθθ)≥
u2, with a maximum sample size of M̃. Whereas (8.26) provides an asymptotic lower
bound for tests of H0 versus H1, any test of H0 versus H2 with error probabilities
not exceeding α and α̃ and taking at least m and at most M̃ observations likewise
satisfies

Eθθθ (T )≥ m∨
{

M̃∧ [1+ o(1)]| logα|
I0(θθθ)∨ I2(θθθ )

}
(8.27)

as α + α̃ → 0 such that logα ∼ log α̃ . Note that Θ1 = {θθθ : u(θθθ) ≥ u1} ⊂ Θ2 =
{θθθ : u(θθθ) ≥ u2} and therefore I2(θθθ ) ≤ I1(θθθ). The four-stage test in Sect. 8.2.2,
with M′ = M̃, attempts to attain the asymptotic lower bound in (8.26) prior to the
third stage and the asymptotic lower bound in (8.27) afterwards. It replaces I1(θθθ) in
(8.26), which corresponds to early stopping for futility, by I2(θθθ ) that corresponds to
rejection of H2 (instead of H1) in favor of H0. Thus, the second-stage sample size n2
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corresponds to the lower bound in (8.26) with θθθ replaced by θ̂θθm and I1 replaced by
I2, while the third-stage sample size corresponds to that in (8.27) with θθθ replaced
by θ̂θθ n2 . The arguments used to prove the asymptotic optimality of the three-stage
test in Theorem 8.1 can be readily modified to prove the following.

Theorem 8.2. Let N∗ denote the sample size of the four-stage GLR test in
Sect. 8.2.2, with M′ = M̃. Assume that logα ∼ log α̃ as α + α̃ → 0, that (8.22)
holds, and that M̃/| logα| → Ã with 0 < a < A < Ã. Then

Eθθθ (N
∗)∼

⎧⎨
⎩m∨ [1+ o(1)]| logα|/I0(θθθ ) if I0(θθθ)> A−1,

m∨
{

M̃∧ [1+ o(1)]| logα|/[I0(θθθ )∧ I2(θθθ )]
}

if I0(θθθ)< A−1.

8.2.4 Implementation via Normal Approximation
or Monte Carlo

To begin with, suppose the Xi are N(θ ,1) and u(θ ) = θ . We write θ j instead of u j,
and, without loss of generality, we shall assume that θ0 = 0. The thresholds b, b̃,
and c of the three-stage test in Sect. 8.2.1 can be computed by solving in succession
(8.15), (8.16), and (8.17). Univariate grid search or Brent’s method (Press et al.,
1992) can be used to solve each equation. Since I(θ ,λ ) = (θ − λ )2/2, we can
rewrite (8.15) as

Pθ1

{
Sm −mθ1 >−(2b̃m

)1/2
, Sn2 − n2θ1 ≤−(2b̃n2

)1/2
}

+Pθ1

{
Sm −mθ1 ≤−(2b̃m

)1/2
}
= ε̃ α̃, (8.28)

and (8.16) and (8.17) as

P0

{
Sm
/
(2m)1/2 ≥ b1/2

}
+P0

{
Sm −mθ1 >−(2b̃m)1/2,Sm

/
(2m)1/2 < b1/2, Sn2

/
(2n2)

1/2 ≥ b1/2, n2 < M
}
= εα ,

(8.29)

P0

{
Sm −mθ1 >−(2b̃m)1/2,Sm

/
(2m)1/2 < b1/2, n2 < M,

Sn2 −n2θ1 >−(2b̃n2)
1/2,Sn2

/
(2n2)

1/2 < b1/2, SM
/
(2M)1/2 ≥ c1/2

}
+P0

{
Sm −mθ1 >−(2b̃m)1/2,Sm

/
(2m)1/2 < b1/2, n2 = M, SM

/
(2M)1/2 ≥ c1/2

}
= (1− ε)α .

(8.30)
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The probabilities involving n2 can be computed by conditioning on the value of
Sm/m, which completely determines the value of n2, denoted by k(x). For example,
the probabilities under θ = 0 can be computed via

P0

{
Sn2 ≥ (2bn2)

1/2 |Sm = mx
}

= P

{
N(0,1)≥

[
(2bn2)

1/2 −mx
]/

[k(x)−m]1/2
}
, (8.31)

P0{Sn2 ∈ dy,SM ∈ dz |Sm = mx}
= ϕk(x)−m(y−mx)ϕM−k(x)(z− y)dydz, (8.32)

where ϕv is the N(0,v) density function, that is, ϕv(w) = (2πv)−
1
2 exp(−w2/2v).

The probabilities under θ1 can be computed similarly. Hence standard recursive
numerical integration algorithms can be used to compute the probabilities in
(8.15)–(8.17); see Sect. 4.3.1. More generally, for the general multiparameter
exponential family, this method can be used to compute the thresholds b, b̃, and c
for (8.10)–(8.12) since the problem can be approximated by that of testing a normal
mean, as discussed in Sect. 8.2.1.

For midcourse modification of the maximum sample size in Sect. 8.2.2, the
preceding recursive numerical algorithm can be modified to handle the randomness
of n2 and n3. The basic idea is that conditional on Sm/m = x, the value of n2 is
completely determined as k(x) and conditional on Sm/m = x and Sn2/n2 = y, the
value of n3 is completely determined as h(x,y). Therefore, analogous to (8.32), we
now have

P{Sn3 ∈ du,SM̃ ∈ dw |Sm/m = x,Sn2/n2 = y}
= ϕh(x,y)−k(x)(u− yk(x))ϕM̃−h(x,y)(w− u)dudw (8.33)

and can use bivariate recursive numerical integration. For the general exponential
family, normal approximation to the signed-root likelihood ratio statistic can again
be used.

An alternative to normal approximation is to use Monte Carlo similar to that
used in bootstrap tests. As noted in Sect. 4.3.2, bootstrap theory suggests that we
can simulate from the estimated distribution under the assumed hypothesis as the
GLR statistic is an approximate pivot under that hypothesis. Since the “estimated
distribution” needs data to arrive at the estimate, we make use of the first-stage
data to determine b and b̃ and then use the second-stage data to determine c for the
three-stage test in Sect. 8.2.1. Specifically, the Monte Carlo method to determine
b, b̃, and c proceeds as follows. At the end of the first stage, compute the maximum
likelihood estimate θ̂m, j under the constraint u(θ ) = u j, j = 0,1. Determine b̃,b, and
c successively by solving
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Pθ̂m,1
{(8.11) occurs for i = 1 or 2}= ε̃ α̃, (8.34)

Pθ̂m,0
{(8.11) does not occur for i ≤ 2, (8.10) occurs for i = 1 or 2}= εα, (8.35)

Pθ̂n2,0
{(8.10)–(8.11) do not occur for i ≤ 2, (8.12) occurs}= (1− ε)α, (8.36)

noting that c does not have to be determined until after the second stage when n2

observations become available for the updated estimate θ̂n2,0. The probabilities in
(8.34)–(8.36) can be computed by Monte Carlo simulations, similarly, to determine
thresholds b, b̃, and c of the adaptive test in Sect. 8.2.2.

8.3 Comparison of Adaptive Designs

Bartroff and Lai (2008a,b) carried out comprehensive simulation studies of the
performance, measured in terms of the expected sample size and power functions,
of the adaptive tests in Sect. 8.2 and compared them with those in Sect. 8.1. In the
case of normal mean with known variance and type I and II error constraints under
the null and a given alternative hypothesis, they showed that the adaptive test in
Sect. 8.2.2 is comparable to the benchmark optimal adaptive test of Jennison and
Turnbull (2006a,b), which is superior to the existing two-stage adaptive designs.
On the other hand, whereas the benchmark optimal adaptive test needs to assume a
specified alternative, these adaptive two-stage tests and the adaptive tests in Sect. 8.2
do not require such assumptions as they consider the estimated alternative at the end
of the first stage. In their recent survey of adaptive designs, Burman and Sonesson
(2006) pointed out that previous criticisms of the statistical properties of two-
stage adaptive designs may be unconvincing in some situations when flexibility
and not having to specify parameters that are unknown at the beginning of a trial
(like the relevant treatment effect or variance) are more imperative than efficiency
or being powerful. The adaptive designs in Sect. 8.2 can therefore fulfill the
seemingly disparate requirements of flexibility and efficiency on a design. Rather
than achieving exact optimality at a specified collection of alternatives through
dynamic programming, they achieve asymptotic optimality over the entire range
of alternatives, resulting in near optimality in practice. They are based on efficient
test statistics of the GLR type, which have an intuitively “adaptive” appeal via
estimation of unknown parameters by maximum likelihood, ease of implementation,
and freedom from having to specify the relevant alternative.

8.3.1 Normal Mean with Known Variance

We consider the special case of normal Xi with unknown mean θ and known
variance 1 and compare a variety of adaptive tests of H0 : θ ≤ 0 in the liter-
ature with the tests proposed in Sect. 8.2. In this normal setting, θ̂n = X̄n and
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I(θ ,λ ) = (θ − λ )2/2. It is widely recognized that the performance of adaptive
tests is difficult to evaluate and compare because it depends heavily on the choice
of first-stage and maximum sample sizes, the number of groups (stages) allowed,
and the parameter values at which the tests are evaluated. For this reason, the
tests evaluated here use the same first-stage and maximum sample sizes, except
for a few illustrative examples discussed below. In addition, we report a variety of
operating characteristics for each test—power, mean number of stages, and the 25th,
50th, and 75th percentiles in addition to the mean of the sample size distribution—
over a wide range of θ values. We also include the uniformly most powerful FSS
test with the same maximum sample size and type I error probability α , which
provides the appropriate benchmark for the power of any test of H0. Another relevant
comparison—especially given their widespread use in clinical trials—made here is
with standard (nonadaptive) group sequential tests having a similar number of stages
as the adaptive test.

To test H0 : θ ≤ 0, Proschan and Hunsberger (1995) proposed a two-stage test,
based on the conditional power criterion, which uses the usual z-statistic but with a
data-dependent critical value to maintain the type I error at a prescribed level α; see
the last paragraph of Sect. 8.1.1. The test allows early stopping to accept (or reject)
the null hypothesis if the test statistic is below a user-specified upper normal quantile
zp∗ (or above some level k) at the end of the first stage. Choosing a data-dependent
critical value is tantamount to multiplying the z-statistic by a data-dependent factor
and using a fixed critical value. Li and Shih (2002) proposed to use the z-statistic
with a fixed critical value c while still determining the second-stage sample size by
conditional power and maintaining the type I error at α . Their test stops after the first
stage if the test statistic falls below h or above k. For each h and conditional power
level, their test has a maximum allowable k, which they denote by k∗1(h). Fisher
(1998) proposed a “variance spending” method for weighting the observations so
that the type I error of his test does not exceed α . To avoid a very large second-stage
sample size if the first-stage estimate of θ lies near the null hypothesis, Shen and
Fisher (1999) proposed early stopping due to futility whenever the upper 100(1−
α0)% confidence bound for θ falls below some specified alternative θ1 > 0.

Table 8.1 compares these tests, a FSS test, and two standard group sequential
tests with the adaptive test described in Sect. 8.2. The values of the user-specified
parameters of the tests are summarized in the list below. The user-specified
parameters are chosen so that they have the same first-stage sample size m = 40
(except for the FSS test), maximum sample size M = 120 (except for SF′; see the last
paragraph of this section), type I error not exceeding α = .025, and nominal power
(or conditional power level in the case of conditional power tests) equal to 0.9.

• ADAPT: The adaptive test described in Sect. 8.2.1 that uses b = 3.26, b̃ = 1.99,
and c = 2.05 corresponding to ε = ε̃ = 1/3 in (8.15)–(8.17) and ρm = 0.1
(see Sect. 8.2.4 for details).

• FSS120: The FSS test having sample size 120.
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Table 8.1 Power (italics), expected sample size (italics), sample size quantiles Tq, expected
number of stages (bold), and efficiency ratio (at θ > 0) with respect to ADAPT, of FSS, adaptive,
and group sequential tests with maximum sample size M = 120 except for SF′ that uses 5M

Test ADAPT FSS120 OBFPF OBFSC PH L SF SF′

θ =−.03 1.1% 1.0% 0.9% 1.0% 1.5% 1.3% 0.6% 0.9%
68.5 120.0 72.3 91.7 40.8 41.4 41.3 72.3

T.25 40 120 40 80 40 40 40 40
T.5 40 120 80 80 40 40 40 40
T.75 120 120 80 120 40 40 40 40
# 1.53 1.00 1.81 2.29 1.01 1.03 1.03 1.14

θ = 0 2.5% 2.5% 2.3% 2.5% 2.4% 2.5% 1.2% 2.2%
75.1 120.0 77.8 96.4 41.1 42.2 41.2 82.3

T.25 40 120 80 80 40 40 40 40
T.5 60 120 80 80 40 40 40 40
T.75 120 120 80 120 40 40 40 40
# 1.64 1.00 1.94 2.41 1.02 1.05 1.05 1.20

θ = .15 35.6% 37.6% 35.7% 37.1% 18.7% 20.9% 13.8% 36.1%
98.6 120.0 98.9 110.2 44.5 48.3 47.2 115.3

T.25 71 120 80 120 40 40 40 40
T.5 120 120 120 120 40 40 40 47
T.75 120 120 120 120 40 40 40 146
# 2.05 1.00 2.47 2.76 1.09 1.22 1.22 1.53
Rθ (T,N) 100 78.5 99.5 86.4 332 289 358 84.5

θ = .20 57.2% 60.0% 57.9% 59.5% 30.2% 33.2% 24.8% 53.5%
99.4 120.0 101.4 108.0 45.9 50.8 50.6 124.3

T.25 76 120 80 80 40 40 40 40
T.5 120 120 120 120 40 40 40 65
T.75 120 120 120 120 40 51 52 157
# 2.07 1.00 2.54 2.70 1.11 1.30 1.86 1.66
Rθ (T,N) 100 88.5 99.7 97.2 98.1 99.3 70.1 73.1

θ = .26 77.4% 80.0% 78.0% 79.6% 44.2% 47.5% 38.2% 67.5%
95.2 120.0 99.8 102.0 46.6 52.7 52.9 120.2

T.25 59 120 80 80 40 40 40 41
T.5 120 120 80 120 40 40 40 68
T.75 120 120 120 120 40 60 60 145
# 2.00 1.00 2.47 2.55 1.13 1.38 1.47 1.78
Rθ (T,N) 100 84.7 96.8 98.6 91.4 88.4 67.4 62.7

θ = θ1 = .3 88.8% 90.0% 88.6% 89.5% 55.2% 58.0% 49.1% 75.5%
89.2 120.0 94.5 96.4 46.8 53.3 54.0 111.8

T.25 40 120 80 80 40 40 40 43
T.5 118 120 80 80 40 40 42 65
T.75 120 120 120 120 40 62 62 128
# 1.91 1.00 2.36 2.41 1.14 1.42 1.58 1.85
Rθ (T,N) 100 77.5 93.8 94.7 82.6 77.5 61.5 55.6

(continued)
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Table 8.1 (continued)

Test ADAPT FSS120 OBFPF OBFSC PH L SF SF′

θ = .33 94.0% 95.0% 94.1% 94.7% 63.5% 66.5% 57.3% 80.8%
83.0 120.0 90.1 91.1 46.7 53.3 54.3 103.5

T.25 40 120 80 80 40 40 40 43
T.5 89 120 80 80 40 40 44 61
T.75 120 120 120 120 40 62 62 114
# 1.81 1.00 2.25 2.28 1.13 1.44 1.65 1.89
Rθ (T,N) 100 72.8 92.6 94.3 76.4 71.8 56.9 52.0

• OBFPF, OBFSC: O’Brien and Fleming’s (1979) one-sided group sequential tests
having three groups of size 40. OBFPF uses power family futility stopping
(Δ = 1 in Jennison and Turnbull, 2000, Sect. 4.2), and OBFSC uses stochastic
curtailment futility stopping (γ = 0.9 in Jennison and Turnbull, 2000, Sect. 10.2).
Both OBFPF and OBFSC use reference alternative θ1 = 0.3; see below.

• PH: Proschan and Hunsberger’s (1995) test that uses p∗ = 0.0436 and k = 2.05.
• L: Li and Shih’s (2002) test that uses h = 1.63 and k = k∗1(h) = 2.83.
• SF, SF′: Two versions of Shen and Fisher’s (1999) test; SF uses α0 = 0.425 and

SF′ uses α0 = 0.154.

The tests are evaluated at the θ values where FSS120 has powers 0.01, 0.025,
0.6, 0.8, 0.9, and 0.95, and at θ = 0.15, the midpoint of θ = 0 and θ = θ1 = 0.3,
the alternative implied by M = 120 since FSS120 has power 1 − α̃ = 0.9 there.
This is also the alternative used by the OBF tests for futility stopping. Each entry
in Table 8.1 is computed by Monte Carlo simulation with 100,000 replications.
To compare tests T , T ′ with type I error probability α but with different type II
error probabilities α̃T (θ ), α̃T ′(θ ) and expected sample sizes EθT , EθT ′ at θ > 0,
Jennison and Turnbull (2006a) defined the efficiency ratio of T to T ′:

Rθ (T,T
′) =

(zα + zα̃T (θ))
2/EθT

(zα + zα̃T ′ (θ))
2/EθT ′ × 100, (8.37)

noting that (zα + zα̃T (θ))
2/θ 2 is the sample size of the FSS test with the same type

I error probability and power as T . Table 8.1 contains Rθ (T,N) for all tests T and
θ > 0, where N is the sample size of ADAPT.

ADAPT has power comparable to FSS120 at all values of θ while achieving
substantial savings in sample size, as shown by the percentiles and mean of the
sample size. The three-stage OBF tests have power comparable to ADAPT and
FSS120, but ADAPT has sample size savings over the OBF tests, especially for
larger θ > 0, reflected by the efficiency ratio. The mean number of stages (denoted
by #) reveals that although ADAPT allows for the possibility of three stages, most
frequently it uses only one or two stages.

The conditional power tests PH, L, SF, and SF′ are underpowered at values of
θ > 0 in Table 8.1. In particular, PH, L, and SF all have power less than 0.6 at
θ1 = 0.3, where ADAPT, FSS120, and the OBF tests have power around 0.9. The lack
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Table 8.2 Expected sample
size of ADAPT, optimal
adaptive, and group
sequential tests, with
α = 0.025, power 0.8 at θ ′,
first group size m, and
maximum sample size
M = 120 for normal data with
known variance

Test m E0N Eθ ′N E2θ ′N

ADAPT 29 58.1 81.2 41.5
T ∗

3 29 54.9 78.9 39.5
OGS(3) 34 58.2 78.1 43.0
T ∗

2 43 64.0 85.3 49.0
OGS(2) 43 64.6 86.2 48.9
T ∗

4 24 50.9 75.2 36.0
OGS(4) 29 55.1 74.8 39.8

of power of PH, L, and SF shown by Table 8.1 is caused by stopping too early for
futility. For example, the PH test stops for futility after the first stage if Sm/

√
m falls

below zp∗ = 1.71. But Pθ1{Sm/
√

m < 1.71} = 0.44, well exceeding the nominal
type II error of 0.1. On the other hand, such stringent futility stopping is necessary
to control the sample size of conditional power tests. For example, the 0.025-level
PH test that stops for futility only when θ̂m ≤ 0 (i.e., with p∗ = 0.5) has expected
sample size greater than 107 at all values of θ in Table 8.1, yet power less than 0.9 at
θ1. SF and SF′ provide another example of this behavior. Since these tests stop for
futility at the first stage when Sm/m≤ θ1−zα0/

√
m, the choice of α0 determines the

maximum sample size. For maximum sample size M = 120, SF uses α0 = 0.425, a
high rate of first-stage futility stopping which results in small expected sample sizes,
low power, and a reduced type I error of 0.012, which is α = 0.025 in the absence of
futility stopping. In contrast, SF′ uses less stringent futility stopping withα0 = 0.154
that corresponds to maximum sample size 5M = 600, which results in a type I error
closer to 0.025 and better power, though it is still underpowered and its expected
sample size exceeds 120 at 0.2 ≤ θ ≤ 0.26. The smallest α0 that does not perturb
the type I error of 0.025 of Shen and Fisher’s test is α0 = 0.039, but the resultant
test has expected sample size 1856 at θ = 0 and maximum sample size 52341.

The efficiency ratios relative to ADAPT in Table 8.1 are all less than 100 with
the exception of PH, L, and SF at θ = 0.15, but it is not clear that the efficiency
ratio has much meaning in this case where the power of these tests is so low. For the
other cases, it is natural to ask if much more improvement is possible. A benchmark
for answering this question is provided by the optimal adaptive tests of Jennison
and Turnbull (2006a,b) that minimize the expected sample size averaged over a
collection of θ values, subject to a given type I error probability and power level at
a prespecified alternative θ ′. Table 8.2 contains the expected sample size of T ∗

k , the
k-stage test minimizing

[E0(T )+Eθ ′(T )+E2θ ′(T )]/3 (8.38)

among all k-stage tests with maximum sample size M = 120, type I error probability
α = 0.025 and power 0.8 at θ ′, and the alternative where FSS100 has power 0.8,
from Jennison and Turnbull (2006b, Table III). To this benchmark, we compare
ADAPT with the same first group size m = 29 as T ∗

3 , M = 120, θ1 fixed at θ ′, and
b = 2.94, b̃ = 0.7, and c = 2.05 corresponding to ε = 1/2, ε̃ = 3/4. Also included
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in Table 8.2 is the optimal k-stage “ρ-family” group sequential test (denoted by
OGS(k)) with M = 120, groups 2, . . . ,k of size (M −m)/(k− 1), and with m and ρ
chosen to minimize (8.38). Jennison and Turnbull (2006b) concluded that OGS(k)
is a computationally easier alternative to T ∗

k , and Table 8.2 shows that their expected
sample sizes are close at θ = 0, θ ′, 2θ ′. Note that ADAPT has expected sample size
close to OGS(3) and T ∗

3 even though the probability that ADAPT uses only one or
two stages is 96.4%, 83.1%, and 98.4% for θ = 0, θ ′, and 2θ ′, respectively, showing
that ADAPT very often behaves like a two-stage test. ADAPT has substantially
smaller expected sample size than T ∗

2 and OGS(2), however. On the other hand,
T ∗

4 is more efficient than ADAPT, but this is due in part to its smaller first group
of m = 24, afforded by its additional stage. Here, we have matched the first group
m=29 of ADAPT to that of T ∗

3 for the purpose of comparison, but in practice there is
flexibility in its choice of m. The T ∗

k and OGS(k) tests, on the other hand, are rigid in
their choice of m that is determined by dynamic programming from the prespecified
alternative θ ′, about which there may be some uncertainty before the trial.

8.3.2 Difference of Means with Unknown Variances

Let X1,X2, . . . and Y1,Y2, . . . be independent normal observations with unknown
means μX ,μY and variances σ2

X ,σ2
Y , respectively. Table 8.3 reports a simulation

study of Bartroff and Lai (2008b) to compare the performance of the adaptive test in
Sect. 8.2.1 (denoted by ADAPT) with Stein’s test, denoted by S, and the modified
versions of Wittes and Brittain (1990, denoted by WB), Birkett and Day (1994,
denoted by BD), and Denne and Jennison (1999, denoted by DJ) in the context of
a Phase II hypercholesterolemia treatment efficacy trial described by Facey (1992).
In this trial, patients were randomized into treatment and placebo groups, and serum
cholesterol level reductions, Xi and Yi, assumed to be normally distributed, were
measured after 4 weeks of treatment. A difference in reductions of serum cholesterol
levels, in mmol/liter, between the treatment and placebo groups of 1.2 was of clinical
interest. Based on previous studies, it was anticipated that the standard deviation of
the reductions would be about 0.7 for both groups. If the standard deviation were
known to be σ0 = 0.7, the size of the fixed sample t-test with error probabilities
α = α̃ = 0.05 at mean difference 0 and δ = 1.2 is 9 per group. Following Denne
and Jennison (1999), we assume a first-stage per-group sample size of m = 5,
approximately half of 9. If the standard deviation were in fact 2σ0 = 1.4, the
per-group sample size of the same t-test is 31, which we take as a reasonable
maximum sample size M for our three-stage test with ρm = 0.1 and ε = ε̃ = 1/3.
Table 8.3 contains the power and per-group expected sample size of ADAPT and
the aforementioned procedures in the literature, evaluated by 100,000 simulations
at various values of μX − μY ∈ [0,δ ] and σ = σX = σY . Whereas the Stein-type
tests require this assumption of equal variances, the three-stage tests defined in
Sect. 8.2.1 do not, so for comparison we also include in Table 8.3 the three-stage
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Table 8.3 Power and per-group expected sample size of tests of H0 : μX ≤ μY

(μX −μY ,σ )
I S WB BD DJ ADAPT ADAPT�=
(0,σ0/2) 5.0% 4.9% 5.0% 5.0% 1.6% 1.8%
I = 0 5.0 9.0 5.0 5.0 5.0 5.0

(0,σ0) 5.0% 5.4% 6.0% 5.6% 4.0% 4.1%
I = 0 10.1 10.1 10.1 10.3 9.4 10.2

(δ/2,σ0) 53.0% 59.5% 55.4% 57.3% 65.0% 68.1%
I = 0.169 10.1 10.1 10.1 10.3 15.5 13.7

(δ ,σ0) 96.6% 98.0% 95.8% 96.4% 97.8% 98.5%
I = 0.551 10.1 10.1 10.1 10.3 9.4 8.0

(0,2σ0) 5.0% 5.5% 5.5% 4.6% 5.0% 5.3%
I = 0 38.2 38.2 38.2 30.7 22.1 22.7

(δ/2,2σ0) 50.3% 50.0% 49.7% 53.8% 44.0% 44.5%
I = 0.045 38.1 38.2 38.2 30.7 25.5 26.0

(δ ,2σ0) 95.2% 89.1% 91.3% 92.9% 91.9% 91.4%
I = 0.169 38.1 38.2 38.2 30.7 22.1 20.2

(0,3σ0) 5.0% 5.3% 5.3% 4.6% 5.1% 5.2%
I = 0 85.2 85.2 85.3 67.7 26.3 26.7

(0,5σ0) 5.0% 5.4% 5.4% 4.7% 5.2% 5.1%
I = 0 236 235 236 186 27.6 28.6

(0,10σ0) 5.0% 5.4% 3.8% 4.9% 5.1% 5.1%
I = 0 942 940 943 754 28.7 29.3

test that does not assume σX = σY , which we denote by ADAPT �=. The Kullback–
Leibler information number I = min{I((μX ,μY ,σ2),(μ̃X , μ̃Y , σ̃2)) : μ̃X − μ̃Y = 0}
is also reported in the first column. When the true standard deviations σX and σY

are equal to the specified value σ0, ADAPT and ADAPT �= have similar power but
smaller expected sample size than the other tests for values of μX −μY near 0 and δ .
When the standard deviations σX and σY are larger than the specified value σ0, the
adaptive tests have much smaller expected sample sizes than the Stein-type tests,
whose second-stage sample size increases without bound as a function of the first-
stage sample variance; in particular, see the last three rows of Table 8.3.

An alternative approach to Stein-type designs has been used by Proschan and
Hunsberger (1995) and Li and Shih (2002), who simply replace the σ2 in their
two-stage tests that assume known variance with its current estimate at each stage.
To compare ADAPT with these tests, which rely on stable variance estimates, we
allow a larger first-stage sample size of m = 20. Table 8.4 contains the power
and per-group expected sample size of Proschan and Hunsberger’s test (denoted
by PH), two choices of the early stopping boundaries (h,k) in Table 1 of Li and
Shih (2002) for their test, which we denote by L1 and L2, and our three-stage
test ADAPT, for various values of μX − μY and σ , each entry being the result of
100,000 replications. To compare these tests on equal footing, we have chosen the
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Table 8.4 Maximum sample
size M, power, and per-group
expected sample size for the
tests L1 and L2 of Li et al.,
Proschan and Hunsberger
(PH), and ADAPT

(μX −μY ,σ )
I L1 L2 PH ADAPT

(0,1) 5.5% 5.3% 5.5% 4.8%
I = 0 26.3 25.5 25.9 56.5

(0,2) 5.3% 5.3% 5.4% 5.4%
I = 0 26.2 26.3 25.9 93.5

(1/4,1) 29.9% 29.3% 29.0% 48.3%
I = 0.016 32.8 31.0 31.6 76.1

(3/8,1) 49.5% 48.7% 48.3% 77.5%
I = 0.035 34.5 32.7 33.1 73.5

(1/2,1) 67.8% 66.4% 66.4% 92.8%
I = 0.061 34.3 32.8 32.7 63.3

(1/2,2) 12.0% 29.9% 28.9% 56.1%
I = 0.016 29.1 32.9 31.7 98.7

(3/4,2) 49.8% 48.5% 48.1% 85.6%
I = 0.035 34.5 32.7 33.2 87.0

maximum sample size M = 121 for ADAPT because this is the maximum sample
size of L1 and is quite close to the maximum sample sizes of PH and L2, which are
122 and 104, respectively. The PH, L1, and L2 tests are designed to achieve type I
error probability 0.05, and they choose the sample size of their second stage based
on a conditional power level of 80%. The threshold values b = 2.68, b̃ = 1.75,
and c = 1.75 used by ADAPT are thus computed using α = 0.05 and α̃ = 0.20.
The results in Table 8.4 show that the true power of L1, L2, and PH falls well below
their nominal conditional power level of 80%. When σ = 2, the L1, L2, and PH tests
have power less than 50% for all values of μX − μY considered, which is caused
by stopping prematurely for futility at the end of the first stage; see in particular
the rows in Table 8.4 that correspond to μX − μY = 0. Since the conditional power
criterion is not valid when the estimated difference of means is near zero, the L and
PH tests must stop for futility when this occurs even though the true difference of
means may be substantially greater than zero.

8.3.3 Comparison of Tests Allowing Midcourse Modification
of Maximum Sample Size

As pointed out in Sect. 8.1.3, Cui et al. (1999) have proposed a method to modify
the group size of a given group sequential test of H0 : θ ≤ 0 in response to protocol
amendments during interim analyses. In the example considered by Cui et al. (1999,
p. 854), the maximum sample size is initially M = 125 for detecting θ1 = 0.29 with
power 0.9 and α = 0.025 but can be subsequently increased up to M̃ = 500; their
sample sizes are twice as large because they consider variance 2. They consider
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modifying the group size at the end of a given stage L if the ratio of conditional
power at the observed alternative θ̂nL to the conditional power at θ1 is greater than
1 or less than 0.8, in which case the group size is then modified so that the new
maximum sample size is

M̃∧M
(
θ1
/
θ̂nL

)2
. (8.39)

If (8.39) is less than the already sampled nL, error spending can be used to end
the trial. The crux of this method is that the original critical values can be used for
the weighted test statistic without changing the type I error probability regardless
of how the sample size is changed. Table 8.5 compares their proposed adaptive
group sequential tests with FSS tests, standard (nonadaptive) group sequential tests,
and the adaptive test described in Sect. 8.2.2. Each result is based on 100,000
simulations. All adaptive tests in Table 8.5 use the first-stage sample size m = 25,
maximum sample size initially M = 125 with the possibility of extension up to
M̃ = 500, and type I error probability not exceedingα = 0.025, matching the setting
considered in Sect. 2 of Cui et al. (1999). Since the maximum sample size can vary
between M = 125 and M̃ = 500, the two relevant implied alternatives are θ1 = 0.29,
where FSS125 has power 1− α̃ = 0.9, and θ2 = 0.15, where FSS500 has power 0.9.
The values of the user-specified parameters of the tests in Table 8.5 are summarized
as follows:

• ADAPT: The adaptive test, described in Sect. 8.2.2, that uses b = 3.48, b̃ = 2.1,
and c = 2.31 corresponding to ε = ε̃ = 1/2, ρm = 0.1, and M′ = 250.

• FSS125, FSS500: The FSS tests having sample sizes M = 125 and M̃ = 500,
respectively.

• OBF5
SC: A one-sided O’Brien–Fleming group sequential test having five groups

of size 100 and that uses stochastic curtailment futility stopping (γ = 0.9 in
Sect. 10.2 of Jennison and Turnbull, 2000) with reference alternative θ2 = 0.15;
see below.

• C4, C5: Two versions of the adaptive group sequential test of Cui et al. (1999)
that adjusts the group size at the end of the first stage; C4 uses four stages and C5

uses five stages.
• C5

SC, C5
PF: Two modifications of C5 to allow for futility stopping; C5

SC uses
stochastic curtailment futility stopping (γ = 0.9 in Sect. 10.2 of Jennison and
Turnbull, 2000) and C5

PF uses power family futility stopping (Δ = 1 in Sect. 4.2
of Jennison and Turnbull, 2000). Both C5

SC and C5
PF use reference alternative

θ2 = 0.15.

Since OBF5
SC, C5

SC, and C5
PF have maximum sample size M̃ = 500, the futility

stopping boundaries of these tests are designed to have power 0.9 at θ2. We have
also included C4 because our adaptive test uses no more than four stages. The tests
are evaluated at the θ values where FSS125 has power 0.01, 0.025, 0.7, 0.8, and 0.9
and where FSS500 has power 0.7, 0.8, and 0.9.

Even though the C tests have maximum sample size M̃ = 500, they are
underpowered at 0 < θ ≤ θ2, the alternative implied by M̃, when compared with
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Table 8.5 Power (italics), expected sample size (italics), sample size quantiles Tq, expected
number of stages (bold), and efficiency ratio (at θ > 0) with respect to ADAPT, of FSS,
adaptive, and group sequential tests with maximum sample size M = 120 except for SF′, which
uses 5M

Test ADAPT FSS120 OBFEF OBFSC PH L SF SF′

θ =−0.03 1.1% 1.0% 0.9% 1.0% 1.5% 1.3% 0.6% 0.9%
68.5 120.0 72.3 91.7 40.8 41.4 41.3 72.3

T.25 40 120 40 80 40 40 40 40
T.5 40 120 80 80 40 40 40 40
T.75 120 120 80 120 40 40 40 40
# 1.53 1.00 1.81 2.29 1.01 1.03 1.03 1.14

θ = 0 2.5% 2.5% 2.3% 2.5% 2.4% 2.5% 1.2% 2.2%
75.1 120.0 77.8 96.4 41.1 42.2 41.2 82.3

T.25 40 120 80 80 40 40 40 40
T.5 60 120 80 80 40 40 40 40
T.75 120 120 80 120 40 40 40 40
# 1.64 1.00 1.94 2.41 1.02 1.05 1.05 1.20

θ = 0.15 35.6% 37.6% 35.7% 37.1% 18.7% 20.9% 13.8% 36.1%
98.6 120.0 98.9 110.2 44.5 48.3 47.2 115.3

T.25 71 120 80 120 40 40 40 40
T.5 120 120 120 120 40 40 40 47
T.75 120 120 120 120 40 40 40 146
# 2.05 1.00 2.47 2.76 1.09 1.22 1.22 1.53
Rθ (T,N) 100 78.5 99.5 86.4 332 289 358 84.5

θ = 0.20 57.2% 60.0% 57.9% 59.5% 30.2% 33.2% 24.8% 53.5%
99.4 120.0 101.4 108.0 45.9 50.8 50.6 124.3

T.25 76 120 80 80 40 40 40 40
T.5 120 120 120 120 40 40 40 65
T.75 120 120 120 120 40 51 52 157
# 2.07 1.00 2.54 2.70 1.11 1.30 1.86 1.66
Rθ (T,N) 100 88.5 99.7 97.2 98.1 99.3 70.1 73.1

θ = 0.26 77.4% 80.0% 78.0% 79.6% 44.2% 47.5% 38.2% 67.5%
95.2 120.0 99.8 102.0 46.6 52.7 52.9 120.2

T.25 59 120 80 80 40 40 40 41
T.5 120 120 80 120 40 40 40 68
T.75 120 120 120 120 40 60 60 145
# 2.00 1.00 2.47 2.55 1.13 1.38 1.47 1.78
Rθ (T,N) 100 84.7 96.8 98.6 91.4 88.4 67.4 62.7

θ = θ1 = 0.3 88.8% 90.0% 88.6% 89.5% 55.2% 58.0% 49.1% 75.5%
89.2 120.0 94.5 96.4 46.8 53.3 54.0 111.8

T.25 40 120 80 80 40 40 40 43
T.5 118 120 80 80 40 40 42 65
T.75 120 120 120 120 40 62 62 128
# 1.91 1.00 2.36 2.41 1.14 1.42 1.58 1.85
Rθ (T,N) 100 77.5 93.8 94.7 82.6 77.5 61.5 55.6

(continued)
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Table 8.5 (continued)

Test ADAPT FSS120 OBFEF OBFSC PH L SF SF′

θ = 0.33 94.0% 95.0% 94.1% 94.7% 63.5% 66.5% 57.3% 80.8%
83.0 120.0 90.1 91.1 46.7 53.3 54.3 103.5

T.25 40 120 80 80 40 40 40 43
T.5 89 120 80 80 40 40 44 61
T.75 120 120 120 120 40 62 62 114
# 1.81 1.00 2.25 2.28 1.13 1.44 1.65 1.89
Rθ (T,N) 100 72.8 92.6 94.3 76.4 71.8 56.9 52.0

T.25 40 120 80 80 40 40 40 43
T.5 89 120 80 80 40 40 44 61
T.75 120 120 120 120 40 62 62 114
# 1.81 1.00 2.25 2.28 1.13 1.44 1.65 1.89
Rθ (T,N) 100 72.8 92.6 94.3 76.4 71.8 56.9 52.0

ADAPT, FSS500, and OBF5
SC. In particular, the C tests have power less than 0.65

at θ2. Since C4 and C5 use no futility stopping, this suggests that their updated
maximum sample size (8.39) (with L = 1) has contributed to the power loss.
The large expected sample sizes of C4 and C5 at θ ≤ 0 reveal another problem with
this sample size updating rule: It does not consider the sign of θ̂m; a negative value
of θ̂m could result in the same sample size modification as a positive one, causing a
large increase in the group size when it should be decreased toward futility stopping.
ADAPT has only a slight loss of power in comparison with FSS500 and the five-stage
OBF5

SC at θ > 0, with substantially smaller expected sample size. The mean number
of stages of ADAPT at θ1 = 0.29 shows that it behaves like a two- or three-stage
test there. OBF5

SC, on the other hand, has the largest expected sample size at θ ≥ 0
of the tests in Table 8.5 other than FSS125.

8.3.4 Coronary Intervention Study

The National Heart, Lung and Blood Institute (NHLBI) type II Coronary Inter-
vention Study (Brensike et al., 1982) was designed to investigate the cholesterol-
lowering effects of cholestyramine on patients with type II hyperlipoproteinemia
and coronary artery disease. Patients were randomized into cholestyramine and
placebo groups, and coronary angiography was performed before and after five
years of treatment. It was found that the disease had progressed in 20 of 57 in the
placebo group and 15 of 59 in the cholestyramine group. Proschan and Hunsberger
(1995) and Li and Shih (2002) have considered how this study could have been
extended by using their two-stage tests for the difference in two normal means
with common unknown variance. To apply these tests to the NHLBI study, they
assumed the first-stage sample size to be 58 = (57+ 59)/2 for the normal problem
and used the arcsine transformation so that the difference between the transformed
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binomial frequencies, p1 for the placebo group and p2 for the treatment group,
is approximately normally distributed; details are given in the next paragraph.
As an alternative we apply the three-stage test in Sect. 8.2.1 to two binomial
populations. In the notation of Sect. 8.2, to test H0 : p2 ≤ p1 we have θ = (p1, p2)

T ,
u(θ ) = p2 − p1, u0 = 0, and the test statistic infθ :u(θ)=δ nI(θ̂n,θ ) takes the form

n

{
p̂1,n log

(
p̂1,n

pδ ,n

)
+ q̂1,n log

(
q̂1,n

1− pδ ,n

)

+ p̂2,n log

(
p̂2,n

pδ ,n + δ

)
+ q̂2,n log

(
q̂2,n

1− pδ ,n− δ
)}

, (8.40)

where p̂i,n is the maximum likelihood estimator of pi based on n observations,
q̂i,n = 1 − p̂i,n, and pδ ,n is the maximum likelihood estimator of p1 under the
assumption p2 − p1 = δ . The treatment and placebo groups are assumed to have
the same per-group sample size during interim analyses, following Proschan and
Hunsberger (1995) and Li and Shih (2002).

Letting Sn denote the sum of independent normal random variables with mean μ
and variance 1, following a pilot study of size m resulting in Sm = sm, Proschan and
Hunsberger’s (1995) test chooses n2 and critical value c to satisfy the conditional
power criterion

P
{

Sn2

/
n1/2

2 > c
∣∣Sm = sm,μ = sm

/
m1/2

}
≥ 1− α̃ (8.41)

and type I error constraint

P0

{
Sn2

/
n1/2

2 > c
∣∣Sm = sm

}
= α. (8.42)

In order to solve for n2 and c, a parametric form for the probability in (8.42) is
assumed, which contains a user-specified futility boundary h and critical value k
for the internal pilot. Li and Shih (2002) introduce a modification of Proschan
and Hunsberger’s (1995) test in which the critical value c is specified before the
internal pilot study but h, k, and n2 are chosen to satisfy (8.41) and (8.42) after the
internal pilot study. This modification allows approximations to the probabilities
in (8.41) and (8.42) to be used in lieu of a specific parametric form. For the
coronary intervention study, Proschan and Hunsberger (1995) and Li and Shih
(2002) propose using these tests with the variance-stabilizing transformation Sn =

(2n)1/2{arcsin(p̂1/2
1,n )− arcsin(p̂1/2

2,n )}.
Table 8.6 gives the power, per-group expected sample size, and efficiency ratio

(8.37), using the normal approximation, relative to ADAPT (for alternatives p2 >
p1) of the following tests for various values of p1, p2 near 15/59 = 0.254 and
20/57 = 0.351, the values observed in the NHLBI study (Brensike et al., 1982).

• L: Li and Shih’s (2002) test with h = 1.036, k = 1.82, c = 1.7, α = .05,
conditional power level 0.8, and first-stage size m = 58.
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Table 8.6 Power, expected sample size, and efficiency ratio (in parenthe-
ses and at p2 > p1) of the tests of H0 : p2 ≤ p1

p1 p2 L PH ADAPT

0.20 0.15 0.7% 0.7% 0.3%
63.4 63.0 98.6

0.20 5.2% 5.2% 5.0%
75.8 74.5 158.2

0.30 53.0% 51.8% 81.8%
102.0 (89.7) 97.2 (90.8) 206.1 (100)

0.35 77.1% 76.2% 97.4%
95.3 (73.3) 90.7 (75.1) 160.5 (100)

0.25 0.20 0.8% 1.0% 0.4%
64.7 64.5 111.2

0.25 5.2% 5.1% 5.0%
77.3 75.8 171.2

0.35 48.3% 47.0% 79.2%
97.7 (90.5) 93.3 (91.9) 213.1 (100)

0.40 72.7% 71.7% 96.7%
94.1 (74.1) 89.7 (76.3) 170.3 (100)

0.30 0.25 0.9% 0.9% 0.4%
65.5 64.7 122.2

0.30 5.1% 5.0% 5.0%
75.1 73.7 177.0

0.40 45.3% 44.3% 76.6%
96.4 (92.7) 92.0 (95.1) 218.3 (100)

0.45 70.9% 69.9% 96.2%
96.1 (75.2) 91.4 (77.6) 176.9 (100)

The italicized numbers represent those at the NHLBI parameter values,
where L and PH are markedly under-powered

• PH: Proschan and Hunsberger’s (1995) test with h = 1.036, k = 1.82, α = 0.05,
conditional power level 0.8, and first-stage size m = 58.

• ADAPT: The adaptive test described in a previous paragraph with m = 58, M =
302 (the maximum sample size of L), and thresholds b = 2.36, b̃ = 1.1, and
c = 1.55 corresponding to α = 0.05, α̃ = 0.2, and ε = ε̃ = 1/2.

All three tests use the same first-stage size m = 58. ADAPT matches the
maximum sample size M = 302 of L, and the parameters of PH determine its
maximum sample size to be slightly larger at 354. The actual power of L and PH
is around 50% for the values of p1 and p2 in Table 8.6 with p2 − p1 = 0.1, and is
less than 50% when p1 = 0.254 and p2 = 0.351 where they were designed to have
conditional power 80%. This is caused in part by premature stopping for futility at
the end of the first stage. Indeed, L and PH use the same futility boundary and their
probability of stopping at the end of the first stage when p1 = 0.254 and p2 = .0351
is 0.47, well exceeding the nominal type II error probability 0.2. One might ask if
a conditional power test can avoid this phenomenon by using a larger first-stage
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sample size so that the estimate p̂2 − p̂1 is near 0 less often after the first stage when
the true difference p2 − p1 is substantially greater than 0. If the first-stage sample
size of L is raised to 162 (raising the maximum sample size to 1331), the resultant
test has power 79% when p1 = 0.254 and p2 = 0.351, approximately equal the
power of ADAPT. However, the expected sample size of this version of L is 264
at this alternative, compared to the expected sample size 213.1 of ADAPT. Similar
oversampling also occurs for the values of p1 and p2 in Table 8.6 with p2− p1 > 0.1,
where the power of L and PH is closer to the nominal conditional power level of
80%, but the efficiency ratio drops to around 75%.

8.4 Adaptive Choice Between Superiority and
Non-inferiority Objectives via a Flexible Group
Sequential Design

In the design of controlled clinical trials comparing a new treatment with an
active control, one often has to choose between two different study objectives:
either a superiority or a non-inferiority hypothesis that the new treatment is more
effective, or no worse (within certain indifference limits) than, the active control.
The following example concerning the clinical trial design of a new antimicrobial
drug in Lai et al. (2006c) illustrates some of the issues in the choice between these
two study objectives, at the design stage when there is not enough information to
decide on which objective has a better chance of success. Let p1 and p2 denote the
response rates of the new and control drugs, respectively. The null hypothesis is
H0 : p1 − p2 ≤−γ for a non-inferiority trial and is H ′

0 : p1− p2 ≤ 0 for a superiority
trial. The γ is chosen by the FDA that requires two trials to prove non-inferiority and
only one trial to establish superiority. The pharmaceutical company developing the
new drug does not have a good feel of the magnitude of p1 − p2 to decide whether
it should perform two non-inferiority trials or one superiority trial and would like
to have a flexible design which can adapt to the information about p1 − p2 during
interim analyses so that it can switch from the superiority to the non-inferiority
objective, if needed.

For the simpler problem of choosing between a superiority and only one
(as opposed to two) non-inferiority group sequential tests after specifying H1 :
p1 − p2 > −γ (or H ′

1 : p1 − p2 > 0) as the alternative hypothesis of non-inferiority
(or superiority), a different adaptive group sequential strategy has been proposed by
Wang et al. (2001). Their approach, described in Sect. 8.4.2, uses a conditional
power criterion to decide whether one should switch from the superiority to
non-inferiority alternative during interim analyses and involves modifying the
studentized test statistics along the lines introduced by Cui et al. (1999) to avoid
inflation of the type I error due to such data-dependent switch; see Sect. 8.1.3. In this
section we present a more efficient procedure, proposed by Lai et al. (2006c), that
uses the group sequential GLR tests in Sect. 4.2. The basic idea is first described
in exponential families and then specialized to the Bernoulli case, for which it is
compared with the test of Wang et al. (2001).
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As noted by Jennison and Turnbull (2006b), standard group sequential tests with
the first stage chosen optimally are nearly as efficient as their optimal adaptive tests.
Instead of using an adaptive design of the type in Sect. 8.2, we use a group sequential
design that conveniently combines a sequential GLR test of superiority with that
of non-inferiority. We begin by considering the problem of adaptively choosing
between testing H0 : θ ≤ θ0 and the larger null hypothesis H ′

0 : θ ≤ θ ′0 in a one-
parameter exponential family fθ = exp(θx−ψ(x)), with θ ′0 > θ0 and significance
level α . For the special case of θ0 = −δ and θ ′0 = 0 related to a normal mean θ ,
the alternative hypotheses H1 : θ > −δ and H ′

1 : θ > 0 are often used as the non-
inferiority and superiority alternatives. Let M be the maximum allowable sample
size for testing non-inferiority (i.e., H0 : θ ≤ θ0 versus H1 : θ > θ0), with k interim
analyses so that nk = M. Let M′ = nk′ be the maximum allowable sample size for
testing superiority (H ′

0 versus H ′
1), with k′ interim analyses.

8.4.1 Adaptation and Group Sequential Tests of H0 or H ′
0

When M′ ≤ M

In practice the non-inferiority margin, which is prescribed by the regulatory agency,
is often smaller than the distance between θ ′0 and the alternative under which
superiority is considered for sample size determination, resulting in M′ < M and
therefore also k′ < k. In this case, we can modify the group sequential test in
Sect. 4.2.2 as follows to allow concurrent testing of (i) H0 : θ ≤ θ0 versus H1 : θ > θ0

and (ii) H ′
0 : θ ≤ θ ′0 versus H ′

1 : θ > θ ′0. We start the study by testing superiority in the
first k′ stages. If the superiority null hypothesis H ′

0 is not rejected during the first k′
stages, the test switches to testing non-inferiority (H0 versus H1) thereafter. During
these k′ stages and after stage k′, the test can also terminate early with acceptance of
H0 if the lower futility boundary of H0 versus the alternative θ = θ ′0 in H1 is crossed.

Specifically, the test uses the GLR statistics niI(θ̂ni ,θ0) and niI(θ̂ni ,θ ′0) in
conjunction with a stopping rule of the form

θ̂ni > θ
′
0 and niI

(
θ̂ni ,θ

′
0

)≥ b′ if 1 ≤ i ≤ k′ − 1, (8.43a)

or Snk′ ≥ c′ or θ̂nk′ > θ0 and nk′ I
(
θ̂nk′ ,θ

′
0

)≥ b, (8.43b)

or θ̂ni > θ0 and niI
(
θ̂ni ,θ0

)≥ b if k′ < i < k, (8.43c)

or θ̂ni < θ
′
0 and niI

(
θ̂ni ,θ

′
0

)≥ b̃ if 1 ≤ i < k. (8.43d)

If (8.43a) holds, the test rejects H ′
0 (in favor of the superiority alternative) upon

stopping. If stopping occurs at the k′th interim analysis, the test rejects H ′
0 (in favor

of the superiority alternative) when Snk′ ≥ c′, and rejects H0 (in favor of the non-
inferiority alternative) when Snk′ < c′ and the other event in (8.43b) occurs. If
stopping occurs with (8.43c), the test rejects H0 (in favor of the non-inferiority
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alternative) upon stopping. Early stopping (due to futility) with acceptance of H0

occurs with (8.43d). If stopping does not occur during the first k−1 interim analyses,
the test rejects H0 (in favor of the non-inferiority alternative) when Snk ≥ c at the kth
interim analysis.

The thresholds b̃, b′, c′, b, and c in the preceding test are determined as
follows to ensure that the test has probability no larger than α for wrongly claiming
superiority when H ′

0 is true (and equal to α at θ ′0) and for wrongly claiming either
non-inferiority or superiority when H0 is true (and equal to α at θ0). Let 0 ≤ ε < 1

2
and define b̃, b′, and then c′ by

Pθ ′0
{
θ̂ni < θ ′0 and niI

(
θ̂ni ,θ ′0

)≥ b̃ for some i ≤ k− 1
}
= εα̃, (8.44)

Pθ ′0
{
θ̂ni > θ ′0 and niI

(
θ̂ni ,θ ′0

)≥ b′ for some i ≤ k′ − 1
}
= εα, (8.45)

Pθ ′0
{

Test terminates with (8.43a) for some i ≤ k′ − 1 or Snk′ ≥ c′
}
= α. (8.46)

Note that the test switches the null hypothesis from H0 to H ′
0 at the k′th interim

analysis if H ′
0 is not rejected and stopping has not occurred by that time. Letting

Ak′−1 = {niI(θ̂ni ,θ ′0)1{θ̂ni>θ
′
0} < b′ and niI(θ̂ni ,θ ′0)1{θ̂ni<θ

′
0} < b̃ for all i ≤ k′ − 1},

define b and c by the equations

Pθ0{Test rejects H ′
0}+

k−1

∑
j=k′

Pθ0

[{
Snk′ < c′

}∩Ak′−1

∩
{
θ̂n j > θ0 and n jI

(
θ̂n j ,θ0

)≥ b, niI
(
θ̂ni ,θ0

)
1{θ̂ni>θ0} < b

and niI
(
θ̂ni ,θ

′
0

)
1{θ̂ni<θ

′
0} < b̃ for k′ ≤ i < j

}]
= εα, (8.47)

Pθ0

[{
Snk′ < c′

}∩Ak′−1 ∩
{

Snk ≥ c, niI
(
θ̂ni ,θ0

)
1{θ̂ni>θ0} < b

and niI
(
θ̂ni ,θ

′
0

)
1{θ̂ni<θ

′
0} < b̃ for k′ ≤ i ≤ k− 1

}]
= (1− ε)α. (8.48)

From (8.45)–(8.48), it follows that Pθ ′0(Test rejects H ′
0) = α and Pθ0(Test rejects

H ′
0 or H0) = α . By monotonicity, the test has probability no larger than α for

wrongly claiming superiority when H ′
0 is true, and its probability of wrongly

claiming a positive result (either superiority or non-inferiority) when H0 holds also
does not exceed α . The lower futility boundary in (8.43d) is chosen in (8.44) so that
the power to reject the non-inferiority null hypothesis H0 at the alternative θ = θ ′0
does not differ much from 1− α̃ , which is the power of the fixed sample size test
(with sample size M). Note that early stopping due to futility is incorporated in the
determination of c′, b, and c via (8.46)–(8.48).

The preceding adaptive strategy assumes a larger maximum sample size M for
testing non-inferiority than the corresponding M′ for testing superiority. It is still
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applicable to the case M = M′ (and therefore k = k′), for which the stopping rule
has the simpler form:

θ̂ni > θ
′
0 and niI

(
θ̂ni ,θ

′
0

)≥ b′ if 1 ≤ i ≤ k− 1, (8.49a)

or

θ̂ni < θ
′
0 and niI

(
θ̂ni ,θ

′
0

)≥ b̃ if 1 ≤ i ≤ k− 1. (8.49b)

Note that (8.49a) corresponds to (8.43a) with k′ = k, while (8.49b) corresponds
to (8.43d). If (8.49a) holds, the test rejects H ′

0 (in favor of the superiority alternative)
upon stopping. Early stopping (due to futility) with acceptance of H0 occurs with
(8.49b). If stopping does not occur in the first k−1 interim analyses, then at the final
analysis, the test rejects H ′

0 (in favor of superiority) if Snk > c′, rejects H0 (in favor
of non-inferiority) if θ̂nk > θ0 and nkI(θ̂nk ,θ0)≥ c, or accepts H0 otherwise. Letting
0 < ε < 1

2 and defining Ak′−1 as before but with k′ = k, the thresholds b̃, b′, c′, and
c are determined by

Pθ ′0
{
θ̂ni < θ ′0 and niI

(
θ̂ni ,θ ′0

)≥ b̃ for some i ≤ k− 1
}
= εα̃, (8.50a)

Pθ ′0
{
θ̂ni > θ ′0 and niI

(
θ̂ni ,θ ′0

)≥ b′ for some i ≤ k− 1
}
= εα, (8.50b)

Pθ ′0
{

Test terminates with (8.49a) for some i ≤ k− 1 or Snk ≥ c′
}
= α, (8.50c)

Pθ0{Test rejects H ′
0}

+Pθ0

[
Ak−1 ∩{Snk < c′}∩{θ̂nk > θ0 and nkI

(
θ̂nk ,θ0

)≥ c
}]

= α. (8.50d)

As noted in Sect. 4.2.4, the group sequential GLR test of the form (8.43) can
be readily extended to multiparameter and multiarmed settings. Therefore, the
group sequential test of H0 or H ′

0 described above can be similarly extended to
the multiparameter exponential family and to multiarmed clinical trials. It can also
be modified for the case M < M′ (and therefore k < k′), as shown by Lai et al.
(2006c, p. 1159–1161).

8.4.2 Binary Responses and a Comparative Study

Suppose there are m = 2 treatment groups and the responses Xi,n are Bernoulli
random variables with P{Xi,n = 1} = pi = 1−P{Xi,n = 0}, i = 1,2. In this case,
θi = log{pi/(1− pi)} and

I(θ ,θ ′) = p log(p/p′)+ (1− p) log
{
(1− p)/(1− p′)

}
. (8.51)
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Letting p1 denote the response probability of the experimental treatment and p2

that of the control treatment, testing for superiority (respectively non-inferiority)
of the experimental treatment involves the null hypothesis H ′

0 : d ≤ 0 (respectively
H0 : d ≤ −γ), where d = p1 − p2 and γ > 0 denotes a prescribed non-inferiority
margin. In this case, the GLR statistic for testing p1 − p2 = δ at the jth interim
analysis can be expressed explicitly as

Λ j(δ ) =
2

∑
i=1

ni j
{

p̂i, j log
(

p̂i, j
/

p̄i, j(δ )
)
+(1− p̂i, j) log

[
(1− p̂i, j)

/
(1− p̄i, j(δ ))

]}
,

(8.52)

where p̂i, j = X̄i,ni j , p̄1, j(δ ) = p+δ , and p̄2, j(δ ) = p, in which p is the minimizer of
(8.52) (over such values of p̄1, j(δ ) and p̄2, j(δ )). In particular, p̄1, j(0) = p̄2, j(0) =
(∑2

i=1 ni jX̄i,ni j)/(n1 j + n2 j). For δ = −γ , the minimization problem leads to a
nonlinear equation in p. Since γ is typically small, we can replace it by the linear
approximation

p̄2, j(−γ) =
{

n2 jX̄2,n2 j + n1 j

(
X̄1,n1 j + γ

)}/
(n2 j + n1 j). (8.53)

The GLR statistics (8.52) with δ = 0,−γ can be applied to the group sequential test
of superiority and non-inferiority.

Wang et al. (2001) also assume that M′ < M and that the treatment responses
are Bernoulli random variables. Instead of GLR statistics, they use the studentized
statistics Zj = �̂ j/σ̂ j prior to switching from the superiority to the non-inferiority
alternative, where �̂ j = p̂1, j − p̂2, j and

σ̂2
j = p̂1, j

(
1− p̂1, j

)/
n1 j + p̂2, j

(
1− p̂2, j

)/
n2 j. (8.54)

Moreover, in place of the modified Haybittle–Peto stopping boundaries, they use
the O’Brien–Fleming error-spending function (see Sect. 4.1.3). A major difference
between their approach and ours lies in how they switch from the superiority to
the non-inferiority alternative during the course of the trial. Whereas our procedure
makes the switch at the k′th interim analysis, where 2M′ = 2nk′ is the maximum
sample size for testing the superiority alternative p1− p2 = γ̃(> 0) at which the fixed
sample size (FSS) GLR test attains some prescribed power, they make the switch
at the first interim analysis at which the conditional power in favor of the non-
inferiority alternative p1 − p2 > −γ exceeds that of the superiority alternative
p1 − p2 > 0. Specifically, at the jth interim analysis with j < k, consider the
conditional probability CPS(�) at p1 − p2 = �, given (p̂1, j, p̂2, j), that the FSS
test with sample size 2M′ rejects H ′

0 : p1 − p2 ≤ 0. Also compute the conditional
probability CPNI(�) at p1− p2 =�, given (p̂1, j, p̂2, j), that the FSS test with sample
size 2M rejects H0 : p1 − p2 ≤−γ but accepts H ′

0. The conditional power approach
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computes these conditional probabilities at � = �̂ j, and the adaptive strategy
in Wang et al. (2001) switches from the superiority alternative (with maximum
sample size 2M′) to the non-inferiority alternative (with maximum sample size 2M)
when CPS(�̂ j) < CPNI(�̂ j). To circumvent the possibility of an inflated type I
error probability due to such data-dependent switch, Wang et al. (2001, p. 1907–
1908) modify both the times of interim analyses and the test statistics after the
interim analysis at which such switch is made. Making use of previous work of
Cui et al. (1999), they have shown that this modification indeed yields a type I error
probability that is asymptotically no larger than α . The modified statistics, however,
are not sufficient statistics and are similar to those in Cui et al. (1999) which have
been found to be inefficient. In contrast, the procedures of Lai et al. (2006c) use
efficient GLR statistics for the switching, stopping, and terminal decision rules.

Wang et al. (2001) reported a simulation study demonstrating the advantages
of their adaptive strategy over the FSS and some other group sequential methods.
The superiority alternative in their study is at p2 = 0.25, p1 = 0.35, at which the level
α = 0.025 FSS test of H ′

0 : p1 − p2 ≤ 0 with power 0.8 requires a sample size of
M′ = 330 from each population. The non-inferiority alternative is at p1 = p2 = 0.25,
at which the level α = 0.025 FSS test of H0 : p1 − p2 ≤ −0.05 with power 0.8
requires a sample size of M = 1200 from each population. Their group sequential
tests involve k = 5 interim analyses, and of particular interest is their adaptive group
sequential design that uses the above conditional power criterion to switch from the
superiority to non-inferiority objective.

The simulation results of Wang et al. (2001) show that at the prespecified
superiority alternative (p2 = 0.25, p1 = 0.35), their adaptive procedure has power
0.947 and an expected sample size of 428 (which exceeds 330 for the FSS test)
from each population. For comparison, we have computed corresponding operating
characteristics of our group sequential test by Monte Carlo involving 50,000
simulations. The test of Lai et al. (2006c) (described in the first paragraph of this
section with ε = 1/3) also uses k = 5 analyses, with k′ = 3, n j−n j−1 = 110 (for j ≤
3) or 435 (for j = 4,5). It has type I error probability 0.024 of falsely rejecting H ′

0 at
p1 = p2 = 0.25, which is close to the corresponding value of 0.0258 for the test of
Wang et al. (2001). At the superiority alternative p2 = 0.25, p1 = 0.35, it has power
0.785 (which is close to the target power 0.8, whereas the adaptive test of Wang
et al. (2001) is substantially overpowered) and expected sample size of 299 from
each population. At the prespecified non-inferiority alternative (p1 = p2 = 0.25),
the adaptive test of Wang et al. (2001) has power 0.768 and expected sample size
1144 (from each population), whereas that of Lai et al. (2006c) has power 0.784
and expected sample size 1013. The type I error probability of falsely rejecting
H0 : p1 − p2 ≤ −0.05 at p2 = 0.25, p1 = 0.2 is 0.024 for the test of Lai et al. and
0.0253 for that of Wang et al. (2001).
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8.4.3 Adaptive Choice Between One Superiority and Two
Non-inferiority Trials

To begin with, we explain the background for the clinical trial mentioned in the
first paragraph of Sect. 8.4. A pharmaceutical company that developed a new
antimicrobial drug had planned to conduct two independent non-inferiority trials,
as required by the FDA, with the same (fixed) sample size to demonstrate the
drug’s non-inferiority relative to an active control. This plan had to be reconsidered
when the FDA required a substantially smaller non-inferiority margin than what
was assumed in the plan. A major issue was whether the increased total sample size
for the two non-inferiority trials due to the decreased non-inferior margin would
already suffice to establish superiority of the drug since the FDA only required a
single trial to demonstrate superiority. Following the notation of Sect. 8.4.2, the null
hypothesis is H0 : p1 − p2 ≤−γ to test for non-inferiority and is H ′

0 : p1 − p2 ≤ 0 to
test for superiority, where p2 is the response probability of the active control and p1

is that of the new drug. The narrower non-inferiority margin required by the FDA
was γ = 0.1, and the response rate p2 of the active control was estimated to be 0.7
from previous studies. Thus, to have 90% power at the alternative p1 = p2(= 0.7),
a level α = 0.025 test of H0 requires a sample size of 882 (i.e., 441 per treatment
arm), which means a total sample size of 1764 for two non-inferiority trials.

Because it could only make rough a priori guesses of p1 and was also con-
cerned that the estimate 0.7 might differ substantially from the actual p2, the
pharmaceutical company was unable to decide whether it should perform two non-
inferiority trials or one superiority trial with the same number of subjects. It would
prefer to make that decision during the course of the trial when accumulating data
would provide information on the feasibility of demonstrating non-inferiority or
superiority of the new drug at the end of the trial. How should this be done without
inflating the overall type I error? Moreover, 1764 was already considered to be
somewhat too large for the total sample size because of the eligibility criterion that
made it difficult to enroll subjects. The company, therefore, would also like to be
able to terminate the study if interim analysis of the data would suggest “futility” of
a trial with a maximum sample size of 1764. This led Lai et al. (2006c) to develop
a group sequential design that can “self-tune” to the unknown (p1, p2) and thereby
choose adaptively among testing for superiority at level α (with no more than 1764
subjects), testing for non-inferiority (with two independent trials each of level α , as
required by the FDA), and early termination due to futility. The test statistics are
the GLR statistics Λ j(δ ) in (8.52), with δ = 0 for superiority and δ = −0.1 for
non-inferiority. The sequential design involves k = 5 groups with n1 = 300 (or 150
patients per arm), n2 = 600, n3 = 882 (which is the fixed sample size of the non-
inferiority trial), n4 = 1320, and n5 = 1764. The group sequential trial terminates
early at the jth analysis with the superiority claim (rejecting H ′

0) for j ≤ 4 if

p̂1, j > p2, j and Λ j(0)≥ b′. (8.55)
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It can also terminate during the first two interim analyses due to futility (accepting
H0) if for j = 1 or 2,

p̂1, j < p2, j and Λ j(0)≥ b̃. (8.56)

At the third interim analysis (with total sample size 882), assuming termination has
not occurred, if H ′

0 is not rejected, continue the trial if

p̂1,3 − p̂2,3 >−0.1 and Λ3(−0.1)≥ b, (8.57)

otherwise accept H0 and stop (for futility). At the final analysis ( j = 5), reject H ′
0

(claiming superiority) if

(p̂1,5 − p̂2,5)
/
σ̂5 ≥ c′, (8.58)

where σ̂2
j is defined in (8.54), otherwise reject H0 (claiming non-inferiority) only if

(p̂1 − p̂2 + 0.1)
/
σ̂ ≥ c, (8.59)

where p̂1 = ∑882+nD
i=883 X1i/nD, p̂2 = ∑882+nC

i=883 X2i/nC, σ̂2 = p̂1(1− p̂1)/nD + p̂2(1−
p̂2)/nC, and nD(nC) denote the number of subjects receiving the new drug (active
control) between the third and fifth analyses (representing the second non-inferiority
trial required by the FDA) so that nD + nC = 882. Letting 0 < ε < 1

2 , the thresholds
b′, b̃, and then b, c′, and c are determined by the equations

P0{(8.55) holds for some j ≤ 4}= εα, (8.60a)

P0{(8.56) holds for some j ≤ 2}= εα̃, (8.60b)

P−0.1{Test terminates at jth analysis with (8.55) for some j ≤ 3

or continues at the third analysis with (8.57)}= α,
(8.60c)

P0{Test terminates with (8.55) for some j ≤ 4, or (8.58) holds}= α, (8.60d)

P−0.1{(8.59) holds, or (8.55) holds for j = 4}= α. (8.60e)

From (8.60c)–(8.60e), it follows that P0(Test claims superiority)=α and P−0.1(Test
claims either non-inferiority or superiority) = α . Note that early stopping due to
futility is incorporated in (8.60c)–(8.60e) for the determination of b, c′, and c.
The major difference between this group sequential design and that in Sect. 8.4.2,
where only one trial is needed to establish non-inferiority, is that the design has
to allow the option of two independent non-inferiority trials required by the FDA
for a non-inferiority claim, under the maximum sample size constraint of 1764.
In this connection, note that (8.59) represents the rejection region of the second non-
inferiority trial involving a new set of 882 subjects accrued after the third interim
analysis. Since superiority testing (which is based on all subjects that have entered
the trial) can still proceed after the third interim analysis, (8.60) gives the probability
of a false positive claim in the second non-inferiority trial.
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Table 8.7 Type I error (in boldface) and power of FSS tests and the group
sequential test that chooses adaptively between one superiority and two non-
inferiority trials

ModHP FSS1 FSS2

p2 p1 P(NI) P(S) P(+) E(T ) P(S) P(NI2)

0.70 0.70 0.786 0.025 0.811 1664 0.025 0.810
0.60 0.001 0.000 0.001 693 0.000 0.001
0.65 0.124 0.000 0.124 1144 0.000 0.125
0.73 0.706 0.275 0.981 1680 0.287 0.980
0.75 0.363 0.634 0.997 1529 0.653 0.998
0.77 0.094 0.906 1.000 1251 0.916 1.000
0.80 0.002 0.998 1.000 792 0.998 1.000

0.60 0.60 0.709 0.025 0.734 1626 0.025 0.736
0.50 0.001 0.000 0.001 713 0.000 0.001
0.55 0.108 0.000 0.108 1130 0.000 0.107
0.63 0.712 0.244 0.956 1679 0.253 0.956
0.65 0.429 0.563 0.992 1569 0.584 0.992
0.67 0.150 0.849 0.999 1339 0.864 0.999
0.70 0.008 0.992 1.000 911 0.993 1.000

0.80 0.80 0.895 0.025 0.920 1715 0.025 0.922
0.70 0.001 0.000 0.001 646 0.000 0.001
0.75 0.183 0.000 0.183 1198 0.000 0.186
0.83 0.645 0.351 0.997 1662 0.368 0.997
0.85 0.225 0.775 1.000 1425 0.791 1.000
0.87 0.025 0.975 1.000 1039 0.978 1.000
0.90 0.000 1.000 1.000 584 1.000 1.000

Table 8.7 gives the results of a simulation study on this group sequential
design with α = 0.025 and ε = 1/3. Each result is based on 50,000 simulations.
The expected sample size E(T ) and the probabilities P(S) of claiming superiority,
P(NI) of claiming non-inferiority (but not superiority), and P(+) = P(S)+P(NI) of
a positive claim for the new drug are given for a variety of parameter configurations.
Note that P(NI) = P{Test terminates at the fifth analysis with rejection of H0

because of (8.59)}, so the non-inferiority claim is supported by the first set of 882
subjects who result in (8.57) at the third analysis and by a second set of 882 subjects
yielding (8.59) at the fifth analysis. Also given in Table 8.7 are (a) the power P(S) of
a level-α FSS test of H ′

0 with sample size 1764, denoted by FSS1, and (b) the power
P(NI2) of two independent level-α FSS tests of H0, denoted by FSS2, with sample
size 882 for each test so that NI2 represents non-inferiority claims for both tests.
Table 8.7 shows that our group sequential design has markedly smaller expected
sample size than 1764 while having better power than FSS1 or FSS2. Although
P(+) and P(NI2) seem to differ little, note that P(+) = P(S)+P(NI) and that the
probability P(S) of a superiority claim by the group sequential test can be quite high,
whereas FSS2 can only claim non-inferiority with probability P(NI2).
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8.4.4 Discussion

A major drawback of the commonly used conditional power approach to two-stage
designs is pointed out in Sect. 8.3.2. The actual power can be much lower than
the conditional power since the estimated alternative at the end of the first stage
can be quite different from the actual alternative. In particular, if the estimated
alternative falls in the region of the null hypothesis and misleads one to stop for
futility, there can be substantial loss of power. On the other hand, early stopping for
futility is critical for keeping the sample size of a conditional power test within a
manageable bound M. The three-stage test in Sect. 8.2.1 makes use of M to come
up with an implied alternative which is used to choose the rejection and futility
boundaries appropriately so that the test does not lose much power in comparison
with the (most powerful) fixed sample size test of the null hypothesis versus the
implied alternative. This idea underlying (8.15)–(8.17) that define the stopping
boundaries of three-stage tests is similar to that underlying efficient group sequential
tests in Sect. 4.2.

8.5 Supplements and Problems

1. Verify that if X1,X2, . . . are i.i.d. N(θ ,1) random variables, then equations (8.15)–
(8.17) can be written as (8.28)–(8.30), respectively.

2. Verify formulas (8.31), (8.32), and (8.33).
3. Let X1, . . . ,Xn and Y1, . . . ,Yn be independent normal observations with unknown

means μX ,μY and common unknown variance σ2.

(a) Find an expression for the Kullback–Leibler information number

I
(
(μX ,μY ,σ2),

(
μ̃X , μ̃Y , σ̃2))

for arbitrary μX ,μY ,σ2, μ̃X , μ̃Y , σ̃2.
(b) For a given constant δ , find an expression for

inf
(μ̃X ,μ̃Y ,σ̃):μ̃X−μ̃Y=δ

I
(
(μX ,μY ,σ2),

(
μ̃X , μ̃Y , σ̃2))

for arbitrary μX ,μY ,σ2.

4. In the setting of two binomial populations in Sect. 8.3.4, verify that the test
statistic infθθθ :u(θθθ)=δ nI(θ̂θθn,θθθ ) takes the form (8.40).

5. Adaptation beyond sample size re-estimation
Chapter 5 of Berry et al. (2011) gives a comprehensive overview of Bayesian

design and analysis of confirmatory Phase III trials. It uses the posterior
probability of the trial ending with a beneficial claim for the treatment, based
on the data available at interim analysis, to determine adaptively the additional
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sample size, which may be 0 if the posterior probability is sufficiently high
(for efficacy stopping) or low (for futility stopping). Thus, it is similar to the
conditional power approach reviewed in Sect. 6.2.3, except that it uses posterior
probability instead of conditional power. The Bayesian approach via posterior
probabilities is also used to select arms in an adaptive multiarmed trial that
starts with multiple treatment arms and makes a midcourse decision concerning
which arm is appropriate to carry forward for confirmatory testing. “This type of
confirmatory trial is referred to as a seamless Phase II/III trial,” and the Bayesian
design is “prospectively” adaptive in the sense that the design is completely
specified in the protocol before the start of the trial, and although the interim
results can change the trial’s features, the changes are “by design, not ad hoc
retrospective changes.” (Berry et al. 2011, p. 194–195). Monte Carlo simulations
of the frequentist type I error probabilities are used to determine the threshold
for early stopping to claim efficacy of the new treatment. These simulations are
carried out at certain parameter values belonging to the null hypothesis. However,
as pointed out in Sect. 1.5, there is no guarantee that the type I error is actually
maintained since the null hypothesis is highly composite. Frequentist approaches
to adaptive designs of confirmatory trials with interim arm selection have also
appeared in the past decade; see Bretz et al. (2006) for a review. Like adaptive
sample size re-estimation reviewed in Sect. 8.1.2, these methods control the type
I error probability by using inefficient test statistics that are similar to (8.5). By
making use of techniques from multiarmed bandit theory which Sect. 1.5 has
alluded to, Lai and Liao (2012) have recently developed asymptotic lower bounds
for the expected sample sizes from the respective arms, subject to type I error and
power constraints, and have developed adaptive allocation rules and sequential
GLR tests that achieve these bounds. Fully sequential rules are used, similar to
those in Chap. 3, and their group sequential or multistage modifications, similar
to those in Sects. 4.2 and 8.2, are under investigation.
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