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Preface

Empirical time series analysis and modeling has been deviating, over the last 40 years
or so, from the linear paradigm with the aim of incorporating nonlinear features. In-
deed, there are various occasions when subject-matter, theory or data suggests that
a time series is generated by a nonlinear stochastic process. If theory could provide
some understanding of the nonlinear phenomena underlying the data, the modeling
process would be relatively easy, with estimation of the model parameters being all
that is required. However, this option is rarely available in practice. Alternatively,
a particular nonlinear model may be selected, fitted to the data and subjected to a
battery of diagnostic tests to check for features that the model has failed adequately
to approximate. Although this approach corresponds to the usual model selection
strategy in linear time series analysis, it may involve rather more problems than in
the linear case.

One immediate problem is the selection of an appropriate nonlinear model or
method. However, given the wealth of nonlinear time series models now available,
this is a far from easy task. For practical use a good nonlinear model should at least
fulfill the requirement that it is general enough to capture some of the nonlinear
phenomena in the data and, moreover, should have some intuitive appeal. This
implies a systematic account of various aspects of these models and methods.

The Hungarian mathematician John von Neumann once said that the study of
nonlinear functions is akin to the study of non-elephants.! This remark illustrates
a common problem with nonlinear theory, which in our case is equivalent to non-
linear models/methods: the subject is so vast that it is difficult to develop general
approaches and theories similar to those existing for linear functions/models. Fortu-
nately, over the last two to three decades, the theory and practice of “non-elephants”
has made enormous progress. Indeed, several advancements have taken place in the
nonlinear model development process in order to capture specific nonlinear features
of the underlying data generating process. These features include symptoms such as

LA similar remark is credited to the Polish mathematician Stanislaw M. Ulam saying that using
a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant
animals; Campbell, Farmer, Crutchfield, and Jen (1985), “Experimental mathematics: The role of
computation in nonlinear science”. Communications of the ACM, 28(4), 374-384.

vii
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non-Gaussianity, aperiodicity, asymmetric cycles, multi-modality, nonlinear causal
relationships, nonstationarity, and time-irreversibility, among others. Additionally,
considerable progress has been made in the development of methods for real, out-
of-sample, nonlinear time series forecasting.?

Unsurprisingly, the mass of research and applications of nonlinear time series
analysis and forecasting methods is scattered over a wide range of scientific discip-
lines and numerous journal articles. This does not ensure easy access to the sub-
ject. Moreover, different papers tend to use different notations making it difficult to
conceptualize, compare, and contrast new ideas and developments across different
scientific fields. This book is my attempt to bring together, organize, extend many
of the important ideas and works in nonlinear time series analysis and forecasting,
and explain them in a comprehensive and systematic statistical framework.

While some mathematical details are needed, the main intent of the book is
to provide an overview of the current state-of-the-art of the subject, focusing on
practical issues rather than discussing technical details. To reach this goal, the
text offers a large number of examples, pseudo-algorithms, empirical exercises, and
real-world illustrations, as well as other supporting additions and features. In this
respect, I hope that the many empirical examples will testify to the breadth of the
subject matter that the book addresses. Some of the material presented in the
book is my own or developed with co-authors, but a very large part is based on the
contributions made by others. Extensive credit for such previously published work
is given throughout the book, and additional bibliographic notes are given at the
end of every chapter.

Who is this book for?

The text is designed to be used with a course in Nonlinear Time Series Analysis,
Statistical System Processing or with a course in Nonlinear Model Identification that
would typically be offered to graduate students in system engineering, mathematics,
statistics, and econometrics. At the same time, the book will appeal to researchers,
postgraduates, and practitioners in a wide range of other fields. Finally, the book
should be of interest to more advanced readers who would like to brush up on
their present knowledge of the subject. Thus, the book is not written toward a
single prototypical reader with a specific background, and it is largely self-contained.
Nevertheless, it is assumed that the reader has some familiarity with basic linear
time series ideas. Also, a bit of knowledge about Markov chains and Monte Carlo
simulation methods is more than welcome.

The book is selective in its coverage of subjects, although this does not imply
that a particular topic is unimportant if it is not included. For instance, Bayesian
approaches — that can relax many assumptions commonly made on the type and
nature of nonlinearity — can be applied to all models. Of course, the extensive list of

2Throughout the book, I will use the terms forecast and prediction interchangeably, although
not quite precisely. That is, prediction concerns statements about the likely outcome of unobserved
events, not necessarily those in the future.



Preface ix

references allows readers to follow up on original sources for more technical details
on different methods. As a further help to facilitate reading, each chapter concludes
with a set of key terms and concepts, and a summary of the main findings.

What are the main features?
Here are some main features of the book.

e The book shows concrete applications of “modern” nonlinear time series ana-
lysis on a variety of empirical time series. It avoids a “theorem-proof” format.

e The book presents a toolbox of discrete-time nonlinear models, methods, tests,
and concepts. There is usually, but not in all cases, a direct focus on the “best”
available procedure. Alternative procedures that boast sufficient theoretical
and practical underpinning are introduced as well.

e The book uses graphs to explore and summarize real-world data, analyze the
validity of the nonlinear models fitted and present the forecasting results.

e The book covers time-domain and frequency-domain methods both for the
analysis of univariate and multivariate (vector) time series. In addition, the
book makes a clear distinction between parametric models on the one hand,
and semi- and nonparametric models/methods on the other. This offers the
reader the possibility to concentrate exclusively on one of these ways of time
series analysis.

e One additional feature of the book are the numerous algorithms in pseudo
code form which streamline many ideas and material in a systematic way. Thus
readers can rapidly obtain the general gist of a method or technique. Moreover,
it is relatively easy to convert a pseudocode to programming language.

Real data

It is well known that real data analysis can reduce the gap between theory and
practice. Hence, throughout the book a broad set of empirical time series, originating
from many different scientific fields, will be used to illustrate the main points of the
text. This already starts off in Chapter 1 where I introduce five empirical time series
which will be used as “running” examples throughout the book. In later chapters,
other concrete examples of nonlinear time series analysis will appear. In each case,
I provide some background information about the data so that the general context
becomes clear. It may also help the reader to get a better understanding of specific
nonlinear features in the underlying data generating mechanism.

About the chapters

The text is organized as follows. Chapter 1 introduces some important terms and
concepts from linear and nonlinear time series analysis. In addition, this chapter
offers some basic tools for initial data analysis and visualization. Next, the book is
structured into two tracks.
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The first track (Chapters 2, 3, 5 — 8, and 10) mainly includes parametric non-
linear models and techniques for univariate time series analysis. Here, the overall
outline basically follows the iterative cycle of model identification, parameter es-
timation, and model verification by diagnostic checking. In particular, Chapter 2
concentrates on some important nonlinear model classes. Chapter 3 introduces the
concepts of stationarity and invertibility. The material on time-domain linearity
testing (Chapter 5), model estimation and selection (Chapter 6), tests for serial
dependence (Chapter 7), and time-reversibility (Chapter 8) relates to Chapter 2.
Although Chapter 7 is clearly based on nonparametric methods, the proposed test
statistics try to detect structure in “residuals” obtained from fitted parametric mod-
els, and hence its inclusion in this track. If forecasting from parametric univariate
time series models is the objective, Chapter 10 provides a host of methods. As a part
of the entire forecasting process, the chapter also includes methods for the construc-
tion of forecast intervals/regions, and methods for the evaluation and combination
of forecasts.

When sufficient data is available, the flexibility offered by many of the semi-
and nonparametric techniques in the second track may be preferred over parametric
models/methods. A possible starting point of this track is to test for linearity and
Gaussianity through spectral density estimation methods first (Chapter 4). In some
situations, however, a reader can jump directly to specific sections in Chapter 9
which contain extensive material on analyzing nonlinear time series by semi- and
nonparametric methods. Also some sections in Chapter 9 discuss forecasting in a
semi- and nonparametric setting. Finally, both tracks contain chapters on multivari-
ate nonlinear time series analysis (Chapters 11 and 12). The following exhibit gives
a rough depiction of how the two tracks are interrelated.

Univariate Multivariate

Parametric

Semi- and nonparametric

Each solid directed line, denoted by a — b, represents a suggestion that Chapter
a be read before Chapter b. The medium-dashed lines indicate that some specific
chapters can be read independently. Chapters 2, 7, and 9 are somewhat lengthy,
but the dependence among sections is not very strong.

At the end of each chapter, the book contains two types of exercises. Theory
exercises illustrate and reinforce the theory at a more advanced level, and provide
results that are not available in the main text. The chapter also includes empir-
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ical and simulation exercises. The simulation questions are designed to provide
the reader with first-hand information on the behavior and performance of some
of the theoretical results. The empirical exercises are designed to obtain a good
understanding of the difficulties involved in the process of modeling and forecasting
nonlinear time series using real-world data.

The book includes an extensive list of references. The many historical references
should be of interest to those wishing to trace the early developments of nonlinear
time series analysis. Also, the list contains references to more recent papers and
books in the hope that it will help the reader find a way through the bursting
literature on the subject.

Reading roadmaps
I do not anticipate that the book will be read cover to cover. Instead, I hope that
the extensive indexing, ample cross-referencing, and worked examples will make it
possible for readers to directly find and then implement what they need. Neverthe-
less, those who wish to obtain an overall impression of the book, I suggest reading
Chapters 1 and 2, Sections 5.1 — 5.5, Sections 6.1 — 6.2, Sections 7.2 — 7.3, and
Chapters 9 and 10. Chapter 3 is more advanced, and can be omitted on a first read-
ing. Similarly, Chapter 8 can be read at a later stage because it is not an essential
part of the main text. In fact this chapter is somewhat peripheral.

Readers who wish to use the book to find out how to obtain forecasts of a
data generating process maybe “expected” to have nonlinear features, may find the
following reading suggestions useful.

e Start with Chapter 1 to get a good understanding of the central concepts
such as linearity, Gaussianity, and stationarity. For instance, by exploring
a recurrence plot (Section 1.3.4) one may detect particular deviations from
the assumption of strict stationarity. This information, added to the many
stationarity tests available in the literature, may provide a starting point for
selecting and understanding different nonlinear (forecasting) models.

e To further support the above objectives, Sections 2.1 — 2.10 are worth reading
next. It is also recommended to read Section 6.1 on model estimation.

e Section 3.5 introduces the concept of invertibility, which is directly linked to
the concept of forecastability. So this section should be a part of the reading-
list.

e Continue by reading Sections 5.1 on Lagrange multiplier type tests. These tests
are relatively easy to carry out in practice, provided the type of nonlinearity is
known in advance. The diagnostic tests of Sections 5.4, and the tests of Section
5.5, may provide additional information about potential model inadequacies.

e Next, continue reading Section 6.2.2 on model selection criteria.

e Finally, reading all or parts of the material in Chapter 10 is a prerequisite for
model-based forecasting and forecast evaluation. Alternatively, readers with

an interest in semi- and nonparametric models/methods may want to consult
(parts of) Chapter 12.
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Do it yourself ... with a little help from software code

It is likely that the reader is tempted to reproduce the presented results, and also
apply some of the nonlinear methods described here to other time series data. This
suggest the need of writing ones own programming code. Fortunately, many re-
searchers and specialists have already carried out this task, and results are freely
available through the Internet. In addition, there are many user-friendly software
packages, often with a graphical interface, that fit the need of a nonlinear time series
analyst and, moreover, are easy to use by non-specialists and students. Hence, I de-
cided not to integrate any software package in the text. Rather, at the end of each
chapter I provide references to websites where relevant, sometimes even complete
programs and /or toolboxes are available for downloading. In doing so, I am certainly
taking a risk; Internet is a dynamic environment and sites may change, move, or
even disappear. Despite this potential risk, I believe that the benefits of providing
links outweighs the aforementioned drawbacks. After all, scientific knowledge is only
advancing by making data, software and other material publicly accessible.

Some software programs written for MATLAB and the R system have been kindly
made available by researchers working in the field. If appropriate, the Solutions
Manual contains the whole source-code of many of the examples and the empir-
ical /simulation exercises. In some cases, however, I have simplified the code and
added explanatory text. It goes without saying that the available code and func-
tions are to be used at one’s own risk.

The data sets are stored at the website http://extras.springer.com/. My
personal web page http://www.jandegooijer.nl contains computer codes, data
sets, and other information about the book; see also the link on the book’s website.
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Chapter

INTRODUCTION AND SOME BASIC
CONCEPTS

Informally, a time series is a record of a fluctuating quantity observed over time that
has resulted from some underlying phenomenon. The set of times at which observa-
tions are measured can be equally spaced. In that case, the resulting series is called
discrete. Continuous time series, on the other hand, are obtained when observations
are taken continuously over a fixed time interval. The statistical analysis can take
many forms. For instance, modeling the dynamic relationship of a time series, ob-
taining its characteristic features, forecasting future occurrences, and hypothesizing
marginal statistics. Our concern is with time series that occur in discrete time and
are realizations of a stochastic/random process.

The foundations of classical time series analysis, as collected in books such as
Box et al. (2008), Priestley (1981), and Brockwell and Davis (1991), to name just a
few, is based on two underlying assumptions, stating that:

e The time series process is stationary, commonly referred to as weak or second-
order stationarity, or can be reduced to stationarity by applying an appropriate
transformation;

e The time series process is an output from a linear filter whose input is a purely
random process, known as white noise (WN), usually following a Gaussian, or
normal, distribution. A typical example of a stationary linear Gaussian process
is the well-known class of autoregressive moving average (ARMA) processes.

Although these twin assumptions are reasonable, there remains the rather prob-
lematic fact that in reality many time series are neither stationary, nor can be
described by linear processes. Indeed, there are many more occasions when subject-
matter, theory or data suggests that a stationarity-transformed time series is gen-
erated by a nonlinear process. In addition, a large fraction of time series cannot
be easily transformed to a stationary process. Examples of nonstationary and/or
nonlinear time series abound in the fields of radio engineering, marine engineering,

© Springer International Publishing Switzerland 2017 1
J.G. De Gooijer, Elements of Nonlinear Time Series Analysis and Forecasting,
Springer Series in Statistics, DOI 10.1007/978-3-319-43252-6 1
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servo-systems, oceanography, population biology, economics, hydrology, medical en-
gineering, etc.; see, e.g., the various contributions in the books by Galka (2000),
Small (2005), and Donner and Barbosa (2008).

Before focusing on particular models and methods, we deem it useful to intro-
duce some of the basic concepts and notions from linear and nonlinear time series
analysis. Specifically, in Section 1.1 we start off by discussing the notion of linearity,
and thus nonlinearity, to attempt to reduce potential misunderstandings or disagree-
ments. In Section 1.2, as a prelude to a more detailed analysis in later sections, we
discuss five real data sets taken from different subject areas. These series illustrate
some of the common features of nonlinear time series data. Each data set is accom-
panied with some background information. Next, in Section 1.3, we introduce some
techniques for initial data analysis. These techniques are complemented with tests
for exploratory data analysis.

1.1 Linearity and Gaussianity

There are various definitions of a linear process in the literature. Often it is said
that {Y:,t € Z} is a linear process with mean zero if for all ¢t € Z

o0 o0
Y = Z Yier—;, where Z P? < oo, {e} "= (0,02), (1.1)

1=—00 1=—00

i.e., {e:} is a sequence of independent and identically (i.i.d.) random variables with
mean zero and finite variance o2. Such a sequence is also referred to as strict white
noise as opposed to weak white noise, which is a stationary sequence of uncorrelated
random variables. Obviously the requirement that {e;} is i.i.d. is more restrictive
than that this sequence is serially uncorrelated. Independence implies that third and
higher-order non-contemporaneous moments of {&;} are zero, i.e., E(e;es—ie4—j) =0
Vi, j # 0, and similarly for fourth and higher-order moments. When {¢;} is assumed
to be Gaussian distributed, the two concepts of white noise coincide.

More generally, the above concepts of white noise are in increasing degree of
“whiteness” part of the following classification system:

(i) Weak white noise:
{1} ~ WN(0,02),
ie., E(gy) =0, 7(¢) = E(gse44¢) = 02 if £ =0 and 0 otherwise (¢ € Z).
(ii) Stationary martingale difference:
E(e|Fi—1) =0, and E(e?) = 02, Vt € Z,

where F; is the o-algebra (information set) generated by {es, s < t}.
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(iii) Conditional white noise:

E(Et’ft—l) == 0, and ]E(E?|ft_1) = 0'2

(o)

vVt € Z.

(iv) Strict white noise:
{e:} "= (0,02).
(v) Gaussian white noise:
{er} "= N(0,02).

The process {Y;,t € Z} is said to be linear causal if 1; = 0 for i < 0, i.e., if

oo [ee]
Yi=¢e+ Zdﬂist,i, where Zzbf < o0, {er} "X (0,02). (1.2)
i=1 i=1

This infinite moving average (MA) representation should not be confused with the
Wold decomposition theorem for purely nondeterministic time series processes. In
(1.2) the process {e;} is only assumed to be i.i.d. and not weakly WN as in the
Wold representation. The linear representation (1.2) can also be derived under
the assumption that the spectral density function of {Y;,t € Z} is positive almost
everywhere, except in the Gaussian case when all spectra of order higher than two
are identically zero; see Chapter 4 for details. Note that a slightly weaker form of
(1.2) follows by assuming that the process {e;} fulfills the conditions in (iii).

Time series processes such as (1.2) have the convenient mathematical property
that the best H-step ahead (H > 1) mean squared predictor, or forecast, of Y,
denoted by E(Yiym|Ys, —00 < s < t), is identical to the best linear predictor; see,
e.g., Brockwell and Davis (1991, Chapter 5). This result has been the basis of an
alternative definition of linearity. Specifically, a time series is said to be essentially
linear, if for a given infinite past set of observations the linear least squares predictor
is also the least squares predictor. In Chapter 4, we will return to this definition of
linearity.

Now suppose that {&;} ~ WN(0,02) in (1.2). In that case the best mean square
predictor may not coincide with the best linear predictor. Moreover, under this
assumption, the complete probabilistic structure of {£;} is not specified: thus, nor
is the full probabilistic structure of {Y;}. Also, by virtue of {g;} being uncorrelated,
there is still information left in it. A partial remedy is to impose the assumption
that {Y;,t € Z} is a Gaussian process, which implies that the process {e;} is also
Gaussian. Hence, (1.2) becomes

o [o.¢]
Y; = + Zwﬂt—i, where Zwlz < oo, e} Y N(0,02). (1.3)

i=1 i=1
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Figure 1.1: Quarterly U.S. unemployment rate (in %) (252 observations); red triangle up
= business cycle peak, red triangle down = business cycle trough.

Then, the best mean square predictor of {Y;,t € Z} equals the best linear predictor.
So, in summary, we classify a process {Y;,t € Z} as nonlinear if neither (1.1) nor
(1.2) hold.

Finally, we mention that it is common to label a combined stochastic process,
such as (1.1) or (1.2), as the data generating process (DGP). A model should be
distinguished from a DGP. A DGP is a complete characterization of the statistical
properties of {Y;,t € Z}. On the other hand, a model aims to provide a concise and
reasonably accurate reflection of the DGP.

1.2 Examples of Nonlinear Time Series

Example 1.1: U.S. Unemployment Rate

It has long been argued that recessions in economic activity tend to be steeper
and more short-lived than recoveries. This implies a cyclical asymmetry
between the two main phases, expansion and contraction, of the business
cycle. A typical example is the quarterly U.S. civilian unemployment rate,
seasonally adjusted, covering the time period 1948(i) — 2010(iv) (252 obser-
vations) shown in Figure 1.1.! The series displays steep increases that end in
sharp peaks and alternate with much more gradual and longer declines that
end in mild troughs. Time series that exhibit such strong asymmetric beha-
vior cannot be adequately modeled by linear time series models with normally
distributed innovations. Such models are characterized by symmetric joint
conditional density functions and that rules out asymmetric sample realiza-
tions. The vertical (short dashed) red lines in Figure 1.1 denote the business
cycle contractions that run from peak to trough as dated by the U.S. National
Bureau of Economic Research (NBER).

'Most of the figures in this book are obtained using Sigmaplot, a scientific data analysis and
graphing software package. Sigmaplot™ is a registered trademark of Systat Software, Inc.
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Figure 1.2: (a) EEG recordings in wvoltage (uV') for a data segment of 631 observations
(just over 3 seconds of signal), and (b) the reversed data plot.

The NBER uses many sources of information to determine business cycles,
including the U.S. unemployment rate. To know the duration and turning
points of these cycles it is important to accurately forecast unemployment
rates. This applies particularly during contractionary periods.

Example 1.2: EEG Recordings

An electroencephalogram (EEG) is the recording of electrical potentials (activ-
ity) of the brain. Special sensors (electrodes) are uniformly distributed over
the scalp and linked by wires to a computer. EEG signals are analyzed ex-
tensively for diagnosing conditions like epilepsy, memory impairments, and
sleep disorder. In particular, a certain type of epileptic EEG, called spike and
wave activity, has attracted the attention of many researchers due to its highly
nonlinear dynamics.

Figure 1.2(a) shows a short approximately stationary, segment of only 631
observations of an EEG series from an 11-year-old female patient suffering
from generalized epilepsy, with absence of seizures. Scalp recordings were
obtained at the F3 derivation (F means frontal, and 3 is the location of a
surface electrode). The sampling frequency was 200 hertz (Hz), or 5-msec
epoch. This is common in EEG data analysis. Further a low-pass filter from
0.3 to 30 Hz was used, which removes high frequency fluctuations from the
time series. Most of the cerebral activity oscillation observed in the scalp EEG
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falls in the range 1 — 20 Hz. Activity below or above this range is likely to be
an artifact of non-cerebral origin under standard normal recording techniques.

The spike and wave activity is clearly visible with periodic spikes separated
by slow waves. Note that there are differences in the rate at which the EEG
series rises to a maximum, and the rate at which it falls away from it. This is
an indication that the DGP underlying the series is not time-reversible.

A strictly stationary process {Y;,t € Z} is said to be time-reversible if its
probability structure is invariant with respect to the reversal of time indices;
see Chapter 8 for a more formal definition. If such invariance does not hold, the
process is said to be time-irreversible. All stationary Gaussian processes are
time-reversible. The lack of time-reversibility is either an indication to consider
a linear stationary process with non-Gaussian (non-normal) innovations or a
nonlinear process. No point transformation, like the Box—Cox method, can
transform a time-irreversible process into a Gaussian process because such a
transformation only involves the marginal distribution of the series and ignores
dependence.

One simple way to detect departures from time-reversibility is to plot the time
series with the time axis reversed. Figure 1.2(b) provides an example. Clearly,
the mirror image of the series is not similar to the original plot. Thus, there is
evidence against reversibility. In general, looking at a reverse time series plot
can reinforce the visual detection of seasonal patterns, trends, and changes in
mean and variance that might not be obvious from the original time plot.

Example 1.3: Magnetic Field Data

The Sun is a source of continuous flows of charged particles, ions and electrons
called the solar wind. The terrestrial magnetic field shields the Earth from
the solar wind. Changes in the magnetic field induce considerable currents
in long conductors on the Earth’s surface such as power lines and pipelines.
Other undesirable effects include power blackouts, increased radiation to crew
and passengers on long flights, and effects on communications and radio-wave
propagation.

The primary scientific objectives of the NASA satellite Ulysses are to invest-
igate, as a function of solar latitude, the properties of the solar wind and the
interplanetary magnetic field, of galactic cosmic rays and neutral interstellar
gas, and to study energetic particle composition and acceleration. Onboard
data processing yields hourly time series measurements of the magnetic field.
Field vector components are given in units of nanoteslas (nT) and in RTN
coordinates, where the R axis is directed radially way from the Sun through
the spacecraft (or planet). The T (tangential) axis is the cross product of the
solar rotation axis and the R axis. The N (north) axis is the cross product of
R and T. Figure 1.3 shows the daily averages of the T component, covering
the time period February 17, 1992 — June 30, 1997.
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Figure 1.3: Magnetic field data set, T component (in nT units) in RTN coordinate system.
Time period: February 17, 1992 — June 30, 1997 (1,962 observations).

We see relatively large interplanetary shock waves at the beginning of the series
followed by a relatively stable period. Then, a considerable increase in wave
activity occurs on and around January 11, 1995. In general there is a great
variability in the strength of the magnetic field at irregular time intervals. No
linear model can account for these effects in the data.

Example 1.4: ENSO Phenomenon

The El Nino-Southern Oscillation phenomenon (ENSO) is the most import-
ant source of interannual climate variability. Studies have shown that ENSO
events have a tendency to amplify weather conditions such as droughts or ex-
cess precipitation in equatorial and subequatorial regions of the globe. Figure
1.4(a) shows the Nino 3.4 index for the time period January 1950 — March
2012 (748 observations) which is the departure in sea surface temperature
(SST) from its long-term mean, averaged over the area of the Pacific Ocean
between 5°N — 5°S and 170°W — 120°W. Based on this index ENSO events are
commonly defined as 5 consecutive months at or above the +0.5° C anomaly
for warm (EI Nifio) events and at or below the —0.5"C anomaly for cold (La
Nina) events. Figure 1.4(b) shows the 5-month running average of the Nino
3.4 index with the ENSO events identified by this method.

There is no indication of nonstationarity in the time series plot of the index.
However, we see from Figure 1.4(b) that there is a pronounced asymmetry
between El Nino and La Nina, the former being very strong. There is obviously
a time of year effect, i.e. El Nino and La Nina events typically develop around
spring (autumn) in the Northern (Southern) Hemisphere and these events
occur every three to five years. These observations suggest that the DGP
underlying ENSO dynamics may well be represented by a nonlinear time series
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Figure 1.4: (a) Plot of the Nino 3.4 index for the time period January 1950 — March 2012
(748 observations); (b) 5-month running average of the Nino 3.4 index with El Nino events
(red triangle up) and La Nina events (green triangle down).

model that allows for a smooth transition from an El Nino to a La Nina event,
and vice versa.

Example 1.5: Climate Change

One of the major uncertainties associated with the “greenhouse effect” and
the possibility of global warming lies within the ocean. To gain a better
understanding of how the ocean responds to climate change, it is important to
explore and quantify patterns of deep ocean circulation between 3 and 2 million
years ago, the interval when significant northern hemisphere glaciation began.
To this end the oxygen isotope §'80 is often used as an indicator of global ice
volume. Another important climate variable is the carbon isotope §'3C which
mainly reflects the strength of North Atlantic Deep Water formation.

One of the longest and most reliable data records comes from the Ocean
Drilling Program (ODP) site 659, located on the Cape Verde Plateau west
of Africa. The sample period corresponds to the past 5,000 ka (1 ka = 1,000
years). The available data set is divided into four distinctive climatic periods:
with some climate variability in the oldest period (5,000 — 3,585 ka), but not
as strong as the glaciation of the Northern Hemisphere which came in the
late Pliocene between 3,885 and 2,625 ka. Then the early Pleistocene started
(2,470 — 937 ka) with a time of gradual cooling and additional build-up of ice.
Subsequently, after a relatively abrupt increase of global ice volume (the mid-
Pleistocene Climatic Transition), the late Pleistocene ice ages started (since
894 ka). Below, and in forthcoming examples, we focus on climatological vari-
ables observed during the youngest period.
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Figure 1.5: Cave plot of the 6'°C (top, awis on the right) and 650 (bottom, axis on the
left) time series. Time interval covers 896 — 2 ka (1 ka = 1,000 years); T = 216.

Figure 1.5 shows two plots of the univariate time series §'*C (denoted by
{Y1+}) and 680 (denoted by {Y2.}), both of length T' = 216, for the late
Pleistocene ice ages.? The graph is called a cave plot since the visual distance
between the two curves resembles the inside of a cave. The cave plot is con-
structed so that if the dependence of {Y7+} on {Y5;} is linear and constant
over time then the visual distance between the curves is constant. In the
present case, this is accomplished by a linear regression of the series {Y5;} on
{Y1+} and obtaining the “transformed” series {Y7 .} as the fitted values.?

From the plot we see that the difference between the curves is not constant
during this particular climatic period. This feature makes the data suitable
for nonlinear modeling. In addition, we notice a clear correlation between
series, with values of §'3C increasing when 680 decreases, and vice versa.
This suggests some nonlinear causality between the two series. In general,
these graphs can give a useful visual indication of joint (non)linear short- and
long-term periodic fluctuations, even if the two series are observed at irregular
times as in the present case.

1.3 Initial Data Analysis

In any data analysis, it is good practice to start with some fairly simple descriptive
techniques which will often detect the main features of a given series. For analysis
of nonlinear time series, a host of formal and informal statistical methods and visu-

2The delta (§) notation refers to the relative deviation of isotope ratios in a sample
from a reference (ref) standard. For example, %0 (%o vs. ref) = {{(**0/"O)sampte —

£;80/16O)ref}/(lso/lﬁo)ref} x 1,000. An analogous definition gives 6'3C in terms of *C and
C

3Transformation used: —0.1136 (intercept), and —0.7628 (slope).
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alization techniques have been proposed for this purpose. Here, we discuss a small
subset of methods which we recommend for addition to the reader’s basic toolkit.

1.3.1 Skewness, kurtosis, and normality

Independent data: Jarque—Bera test

Departures from normality often take the form of asymmetry, or skewness. Let
pr,x = E[(X — pux)"] be the rth (r € N) central moment of a continuous random
variable X with mean px and standard deviation ox. Assume that the first four
moments exist. Then a measure (one of many) of symmetry is given by the third
central moment p3 x. The fourth central moment, p4 x, measures the tail behavior
of X. Normalizing 3 x by og’(, and 4 x by a‘)l( gives rise to the skewness and
kurtosis of X, defined as

_isx _ E[(X — px)’] oo = ax _ E[(X — 1ix)*]
ok T EX —px)?P2 T ek T R —pux)

For a symmetric distribution ps x = 0, and thus 7x will be zero. The kurtosis for
the normal distribution is equal to 3. When kx > 3, the distribution of X is said
to have fat tails.

Let {X;}j_, denote an ii.d. random sample of X of size n. Then p,x can be
consistently estimated by the sample moments i, x = n~'Y."  (X; — X)", where
X=n"! >, X;. Sample analogues of 7x and kx are given by

- 1 = - 1 =
x=—7 > (X=X}, Rx=—7) (Xi—X)* (1.4)
noy = noy =
where
1o =
A)% = ﬁQ,X = ﬁ Z(Xl *X)Q
1=1
If {X;} "= N(0,0%) then, as n — oo,

AR)=(((58) os

Using this asymptotic property, we can perform a Student ¢-test for testing the null
hypothesis Hy: 7x = 0, or testing Hy: kx — 3 = 0, separately. A joint test of the
null hypothesis Hp: 7x = 0 and kx — 3 = 0, is often used as a test statistic for
normality. This leads to the so-called JB (Jarque and Bera, 1987) test statistic, i.e.,

~2 ~ a2
JB _n(Tg +(“X2—43)), (1.6)

which has an asymptotic x3 distribution under Hy, as n — oo .
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Independent data: Lin—Mudholkar test

The Lin-Mudholkar test statistic is based on the well-known fact that the sample
mean X and sample variance S% = ng3%/(n — 1) of a random sample {X;}" | are
independent if and only if the parent distribution is normal. The practical com-

putation involves three steps. First, obtain the n pairs of leave-one-out estimates
—1

()_( ,(S)}i)Q),Where
P 1 ,i 1 —il/2
T s [ ST e
J7FT JF

Next, apply the approximately normalizing cube-root transformation Y; = (S;)Q/ 3,
and compute the sample correlation coefficient

Y (X = X)(Yi =)
VI (X - X)2 Y (Y - V)2

Xy =

as a measure of dependence between X and Sgg. Finally, in view of the robustness
and skewness reducing character of the Fisher z-transform, obtain the test statistic

1 14+ rxy
log (—)

-
2 1—rxy

S (1.7)

If the series {X;}!", consists of i.i.d. normal variables, then it can be shown (Lin
and Mudholkar, 1980) that Z, is asymptotically normally distributed with mean 0
and variance 3/n.

Within a time series framework, the JB and Z5 test statistics are typically applied
to the residuals, usually written simply as &, of a fitted univariate (non)linear time
series model as a final diagnostic step in the modeling process. A drawback of the JB
test is that the finite-sample tail quantiles are quite different from their asymptotic
counterparts. Alternatively, p-values of the JB test can be determined by means
of bootstrapping (BS) or Monte Carlo (MC) simulation. A better-behaved JB test
statistic can be obtained using exact means and variances instead of the asymptotic
mean and variance of the standardized third- and fourth moments (cf. Exercise 1.5).
Nevertheless, the JB and Zs tests only rely on the departure of the symmetry of
possible alternatives to the normal distribution. However, the question whether
for instance a positive skewness in the original series is reproduced by the fitted
nonlinear model cannot be answered by analyzing the residuals alone.

Example 1.6: Summary Statistics

Table 1.1 reports summary statistic for the series introduced in Section 1.2.
Except for the U.S. unemployment rate, for which we take the first differences,
we consider the original data. Note from the last column that the sample
kurtosis of the U.S. unemployment rate and the magnetic field data are much
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Table 1.1: Summary statistics for the time series introduced in Section 1.2.

Series T Mean Med. Min. Max. Std. Dev. Skewness Kurtosis
U.S. unemployment rate (1) 252 0.023 -0.033 -0.967 1.667 0.399 1.113  5.741
EEG recordings 631 28.003 194 -1890 1955 630 -0.617 3.233
Magnetic field data 1,962 -0.004 -0.003 -3.448 4.094 0.572 0.337 10.226
ENSO phenomenon 748 -0.024 -0.090 -2.320 2.520 0.845 0.264 3.045
Climate change §'3C 216 -0.103 -0.105 -1.020 0.630 0.392 -0.095 2.115

5180 216 -0.035 0.005 -1.470 1.050 0.538 -0.342 2.571

(1) First differences of original data.

larger than the kurtosis for a normal distribution, indicating that both series
have heavy tails. Further, the sample skewness of the series indicates no
evidence of asymmetry. Below we search for more evidence to support these
observations, using a skewness-kurtosis test statistic that is able to account
for serial correlation.

Weakly dependent data: A generalized JB test

For testing normality in time series data, we need to introduce some additional
notation similar to that given above. In particular, let {Y;,t € Z} be an ergodic
strictly stationary process (see Chapter 3 for a formal definition of ergodicity) with
mean jy, rth central moment y,y = E[(Y; —py)"], and lag ¢ (¢ € Z) autocovariance
function (ACVF) vy (¢) = E[(Y; — ,uy)(YHg )] Given a set of T' observations
the correspondlng sample statistics areY = T~ 1 Zt Yi, fipy =T71 Zthl(Y} —)_/)7",
and Ay (¢) = T~! Z ( Y)(Yiqr —Y), respectively.

Assume that {1, t € Z} is a Gaussian short memory or weakly dependent pro-
cess, i.e. > 72 [y (€)| < co. Then it can be shown (Lomnicki, 1961; Gasser, 1975)
that, as T — oo,

13,y D 0 6F3y 0
() 2 ((0) (70 iy ) o

o)

Fy= Y (w®), (r=34).

{=—o00

where

A consistent estimator of F,.y is given by F\ny = Em T (ﬁy(ﬁ))T, and hence a
generalized JB (GJB) statistic for testing normality in weakly dependent data is
given by

ThSy | T(fsy — 3fiay)*
GIB — li3,Y I (Ha,y _ f2,y) 7 (1.9)
613y 24F,y
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which has an asymptotic x3 distribution under the null hypothesis (Lobato and
Velasco, 2004). Moreover, the test statistic is consistent under the alternative hy-
pothesis.

Comparing (1.6) and (1.9), we see that asymptotically the GJB test statistic
reduces to the JB test statistic if the DGP is i.i.d., since 7y (¢) — 0, V£ # 0, and
Ay (0) = iz y # 0. Also observe that with positive serial correlation in the first few
lags, the denominator in (1.9) will be larger than in JB. Consequently, the chance
of rejecting normality will decrease when using the GJB test statistic.

Weakly dependent data: A robust JB test
Consider the coeflicient of skewness and its sample analogue, respectively defined as

3/2 ~ —~ ~3/2
Ty = /1«3,Y/M2,y7 Ty = N3,Y/N27y~

Let Z; = ((Y} —py ) — sy, (Vi — py), (Ve — py)? — 012/)/ be a 3 x 1 vector. Then,
under the null hypothesis that 7 = 0 (or, equivalently, puzy = 0), it can be shown
(Bai and Ng, 2005) that, as T'— oo,

T
VTR 2w (0, 2122,
Oy

where o = (1,—30%)" is a 2 x 1 vector, and T'sy is the first 2 x 2 block matrix of

T = limy_.o TE(ZZ') with Z the sample mean of {Z;}.

In applications, a can be consistently estimated by its sample counterpart a =
(1, —3352/)’ . A consistent and robust estimate, say f‘gg, of the long-run covariance
matrix T'yy can be obtained by kernel-based estimation. Let s(7y) = (&'Tg20:/ o)z,
Then, under the null hypothesis 7v = 0, the limiting distribution of the estimated
coefficient of skewness is given by

- VT7y p
Y = —F=~ —
s(Ty)
where it is assumed that E(Y,%) < co.

Also, Bai and Ng (2005) develop a statistic for testing kurtosis. Similar to the
i.i.d. case, the coefficient of kurtosis and its sample analogue are defined as

N(0,1), (1.10)

2 ~ ~ ~2
Ry = :U'4,Y/M27Ya Ry = M4,Y/N2,Y-

Suppose that E(Y,®) < co. Let Wy = ((Y; — py)* — pay, (Yo — py ), (Yo — py )? — 0)2,),
be a 3 x 1 vector. Then, under the null hypothesis ky = 3, and as T' — o0, it can
be shown that

'Q
VT(y - 3) 2 N (0,258,
Oy
where 8 = (1, —4pusy, —60%)" is a 3 x 1 vector, and £ = limy_, TE(WW') with
W the sample mean of {W;}.
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!/

In practice, 8 can be consistently estimated by ,@ = (1,—4p13y, —603)". Let

PPN ~
s(Ry) = (BRB/55)/? where Q denotes a consistent estimate, using kernel-based
estimation of €. This result implies that, as T" — oo, under the null hypothesis
Ry = 3,

VT (Ry —3) D,
s(ky)

N(0,1). (1.11)

Ty =

Moreover, it can be shown that 73y and 74y are asymptotically independent under
normality. Thus, combining both test statistics, a robust generalization of the JB
test statistic (1.6) to dependent data is

%347}/ :%32’)/"‘%42’)/, (112)

which is asymptotically distributed as x3.

Note that the first component of {W;} depends on the fourth moment of (Y; —
py)?, which is a highly skewed random variable even if {Y;,¢ € Z} is not skewed.
This will have a considerable impact on the finite-sample properties of both test
statistics 74y and 734y, even with fairly large samples (7" > 1,000), and may lead to
incorrect decisions in applied work. Another limitation of both test statistics is that
asymptotic theory assumes the existence of moments up to order eight. However,
it is a stylized fact that many financial time series are leptokurtic and have heavy-
tailed marginal distributions. Thus, the existence of high-order moments cannot
taken for granted and should generally be verified.

Example 1.7: Summary Statistics (Cont’d)

Table 1.2 reports values for the sample skewness 73y, the sample kurtosis 74y,
the normality tests 734y, and the GJB test statistic for the series introduced
in Section 1.2. At the 5% nominal significance level, we find no evidence
of skewness in the magnetic field series, the ENSO data, and the two series
o13C and 6'0. We fail to reject the null hypothesis of kurtosis in the EEG
recordings, the ENSO data, and the 6’0 time series. Interestingly, with 734y
only three time series (U.S. unemployment rate, EEG recordings, and magnetic
field data) reject very strongly the null hypothesis of normality (symmetry)
with a critical value of x3 = 5.991 at the 5% nominal significance level. The
GJB test statistic confirms these results.

1.3.2 Kendall’s (partial) tau

For linear time series processes, the sample autocorrelation function (ACF) and
sample partial autocorrelation function (PACF) are useful tools to determine a value
for the time lag, or delay, ¢ (¢ € Z). Often these statistics are used in conjunction
with the asymptotic Bartlett 95% confidence band, which for a time series of length
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Table 1.2: Test statistics for serially correlated data. The long-run covariance matrices
of the test statistics T3y, Tay, and Tzay are estimated by the kernel method with Parzen’s
lag window; see (4.18).

Series Skewness Kurtosis Normality GJB
(@ay)  (Fay) (R3a,y)

U.S. unemployment rate® 2.602  2.032 6.943 89.400
EEG recordings -2.805 0.337 8.873 5.731
Magnetic field data 0.927 2.630 7.267 2127
ENSO phenomenon 1.212 0.070 1.488 1.547
Climate change 6**C -0.508  -2.005 5.280 4.150

§'*0 -1.805  -0.794 3.609 3.720

() First differences of original data.

T is given by +1.96/ VT. However, using Bartlett’s formula can lead to spurious
results (Berlinet and Francq, 1997) as it is derived under the precise assumptions
of linearity of the underlying DGP and vanishing of its fourth-order cumulants (cf.
Exercise 1.3).

Kendall’s tau test statistic

One simple nonparametric measure for capturing the complete dependence, includ-
ing nonlinear dependence if present, is Kendall’s 7 test statistic. It is defined as
follows. For pairs of observations {(X;,Y;)} ; (n > 3), define the second-order
symmetric kernel function h(z,j) to be

h(i, j) = h(j,1) = sign[(X; — Xi)(Y; = Y3)],

where sign(u) =1 (—1, 0) if and only if u > (<, =) 0. Then Kendall’s 7 test statistic
is defined as

P= (1) on - - (1.13)

1<J

Here N, (c for concordant) is the number of pairs for which h(i, ) is positive, and
N, (d for disconcordant) is the number of pairs for which h(i, ) is negative.

It is immediately verifiable that (1.13) always lies in the range —1 < 7 < 1,
where values 1, —1, and 0 signify a perfect positive relationship, a perfect negative
relationship, and no relationship at all, respectively. The null hypothesis, Hy, is that
the random variables X and Y are independent while the alternative hypothesis, Hy,
is they are not independent. For large samples, the asymptotic null distribution of
7 is normal with mean zero and variance 2(2n + 5)/9n(n — 1) ~ 4/9n. Note that
one of the properties of 7 is that one of its variables of (X;,Y;) can be replaced
by its associated ranks. The resulting test statistic is commonly known as the
Mann—Kendall test statistic, which has been used as a nonparametric test for trend
detection and seasonality within the context of linear time series analysis.
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To obtain a version of Kendall’s 7 test statistic suitable for testing against serial
dependence in a time series {Y;}7_,, simply replace {(X;, i)}, by {(Ri, Riye)}1f
where {R;} are the ranks of {Y;}. Then Kendall’s 7 test statistic may be defined as

() =1- 2Nd(€)/<T2_£> =1- T ;)](\;i(f)g 5y (1.14)

with

N

—LT—¢
Nd(é) = I(Ri < Rj, RiJrg > Rj+g).
1 1

N

7

<.
Il

Using the theory of U-statistics for weakly dependent stationary processes (see Ap-
pendix 7.C), it can be shown (Ferguson et al., 2000) that under the null hypothesis
of serial independence v/T7(1) is asymptotically distributed as a normal random
variable with mean zero and variance 4/9 for T' > 4. For ¢ > 1, explicit expressions
for Var (?(6)) are rather cumbersome to obtain. However, under the null hypothesis
of randomness, any K-tuple of the form 3vT(7(1),...,7(K))'/2 is asymptotically
multinormal, with mean vector zero and unit covariance matrix.

Table 1.3: Indicator patterns of the sample ACF and values of Kendall’'s T test statistic.

Lag ¢
Series 1 2 3 4 5 6 7 8 9 10
U.S. unemployment rate ACF(®) 4% 4* — _—» _* _» _ _* _ _
?(f) (2) +. +0 + . _e _ e e _
EEG recordings ACF 4 - -

?(6) _"_. _"_0 +0 +0 +0 +' +c +c +c +.

Magnetic field data ACF T T L L L A L R
?(4) +. +. +. +. +. +. +. +. +. +'

ENSO phenomenon ACF 44 4 4 4 4
?(4) +. +. +. +. +. +. +. +. +. +'

Climate change §'3C ACF 4+ 4 4 4 4 4+ 4+ 4+
7(€) +* 4+ 4+ +

580 ACF T T

?(4) +. +. +. +. + _ _ _. _. _'

() 4+ indicates a sample ACF value greater than 1.967~ /2 —*
indicates a value less than —1.9677/2, and + (—) indicates a
positive (negative) value between —1.967~/2 and 1.967 /2.

2 ¢ marks a p-value smaller than 5%, and + (—) marks a positive

(negative) value of the test statistic with a p-value larger than 5%.
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Example 1.8: Sample ACF and Kendall’s tau test statistic

Table 1.3 contains indicator patterns of the sample ACFs and Kendall’s 7 test
statistic for the time series introduced in Section 1.2. A number of observations
are in order.

e For the U.S. unemployment series the sample ACF suggests, as a first
guess, a linear AR(8) model with significant parameter values at lags 1,
2,4 — 6, and 8. The results for 7(¢) match those of the sample ACF.

e The sample ACF of the EEG recordings suggests a linear AR(6) model.
On the other hand, Kendall’s 7(¢) test statistics are all significant up
to and including lag ¢ = 10. So it is hard to describe the series by a
particular (non)linear model.

e Both the sample ACF and 7(¢) are not very helpful in identifying pre-
liminary models for the magnetic field data and the monthly ENSO time
series. Clearly, the fact that normality is strongly rejected for the mag-
netic field data has an impact on the significance of the series’ test results.
The sample ACF of the ENSO series has a significant negative peak (5%
level) at lag 21 and a positive (insignificant) peak at lag 56. This reflects
the fact that ENSO periods lasted between two and five years in the last
century.

e The sample ACFs of the 6'3C and §'%0 series indicate that both series
can be represented by a low order AR process, but there are also some

significant values at lags 8 — 10. The test results for 7(¢) match those of
the sample ACFs.

Kendall’s partial tau test statistic

A variation on Kendall’s 7 test statistic (1.13), commonly referred to as Kendall’s
partial tau (Quade, 1967), is a nonparametric measure of the association between
two random variables X and Y while controlling for a third variable Z. Given a
time series sequence {Y;}Z_; and its associated ranks { R;}7_,, Kendall’s partial T test
statistic is the correlation obtained after regressing R; and R;1¢ on the intermediate
observations R;i1,..., R;y¢—1. By analogy with (1.14), it may be defined as

~ AN, (£)
20 =1- T 0 -1 (1.15)

Here N, (¢) is the number of pairs {(R;, Ri+r) iT;f such that ||Z; — Z;|| < Tz, for
Ty a predefined “tolerance” (e.g. Ty = 0.2T), with Z; = (Ri41,..., Rize—1)" (i =
1,...,7—¥), and || - || is a norm. The statistic 7,,(¢) has similar properties as 7(¢).
Moreover, it can be shown that 7,(¢) has an asymptotically normal distribution
under the null hypothesis of no serial dependence.
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1.3.3 Mutual information coefficient

Granger and Lin (1994) develop a nonparametric statistic for measuring the com-
plete dependence, including nonlinear dependence if present, based on the mutual
information coefficient. Let X be a continuous random variable with probability
density function (pdf) fx(z). Mutual information is directly related to the Shan-
non entropy, defined as

H(X) = - / log{fx (2)} fx (x) dz, (1.16)

which is just the mathematical expectation of — log fx (), i.e., —E( log fX(x)) Sim-
ilarly, for a pair of random variables (X, Y") with joint pdf fxy (z,y) the joint entropy
is defined as

H(X,Y) jf fxy(z,y)log fxy(z,y) dedy. (1.17)

The mutual information, also called Kullback—Leibler (KL) divergence or relative
entropy, is defined as

1(X,Y) = [ log ( fxy (@, ?Z)))fxy(x y) dady. (1.18)

The mutual information measures the average information contained in one of the
random variables about the other. It is a symmetric measure of dependence between
X and Y as becomes obvious after expressing (1.18) in terms of entropies:

IY(X,Y) = H(X)+ H(Y) — H(X,Y). (1.19)

The mutual information is invariant not only under scale transformations of X and
Y, but more generally, under all continuous one-to-one transformations. It is also
non-negative, I**(X,Y) > 0, with equality if and only if fxyv(z,v) = fx(z)fy(y)
(cf. Exercise 1.4).

If there exists perfect dependence between X and Y, I*"(X,|Y) — oco. However,
this property is not very attractive for developing a test statistic. Indeed, an ideal
measure for testing (serial) dependence should take values in the range [0, 1] or
[—1, 1]. Moreover, for interpretation purposes it is useful to relate the measure to the
correlation coefficient pxy = E(XY)//E(X?)E(Y?) when (X,Y) has a standard
bivariate normal distribution. One way to establish these objectives, is to transform
I*"(X,Y) as follows

R(X,Y) =[1 — exp{—2I""(X,Y)}]'/?, (1.20)

which takes values in the range [0, 1], with values increasing with I*“(-); R(-) = 0 if
and only if X and Y are independent, and R(-) = 1if X and Y are exact functionally
related. Further, it can be shown (Pinsker, 1964, p. 123) that

1
I9(X,Y) = log | ————
( ) VT oxy
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so that R(X,Y) = |pxv]|.

In a time series framework, R(-) can be used to measure the strength of associ-
ation between lagged values of an observed time series {Y;}_;. More specifically,
the analogue to (1.20) at lag ¢ is given by

R(Y:, Yisr) = Ry (€) = [1 — exp{=2I""(Y;, Yi1.0)}]"/*. (1.21)

The corresponding sample estimate, say Ey(ﬁ), follows from estimating function-
als of density functions. No distributional theory is currently available for ﬁy(-),
but empirical critical values may be computed for specific choices of T and ¢
see, e.g., Granger and Lin (1994, Table IIT). Simulations show that Ry (£) has
a positive bias. One way to avoid such a bias is to redefine (1.21) as Ry (¢) =
1 — exp{—2I""(Y;, Yis0)}.

1.3.4 Recurrence plot

An appealing and simple graphical tool that enables the assessment of stationarity
in an observed time series is the recurrence plot due to Beckman et al. (1987). The
recurrence plot is a two-dimensional scatter diagram where a dot is placed at the
point (¢1,t2) whenever Y;, is “close” to Yi,, given some pre-specified threshold h,
usually not larger than 1/10 of the standard deviation. It can be mathematically
expressed as

Riyuy = (1Y =YD < h), (t1,t2=1,...,T),

where Ygg) is an m-dimensional (m € Z%) lag ¢ (¢ € Z) delay vector,*? also called
a state or reconstruction vector, given by

l
Yt( ) = ()/%7 5/;*57 et 7}/;7(77171)[)/,

and ||| is a norm."

If {Y;,t € Z} is strictly stationary, the recurrence plot will show an approximately
uniform density of recurrences as a function of the time difference t; — t2. However,
if {Y;,t € Z} has a trend or another type of nonstationarity, with a behavior that
is changing over time, the regions of Y,ﬁf) visited will change over time. The result
will be that there are relatively few recurrences far from the main diagonal in the
recurrence plot, that is for large values of |t; —t2|. Also, if there are only recurrences

“In the analysis of deterministic chaos, i.e. irregular oscillations that are not influenced by
random inputs, m is often called the embedding dimension. Within that context, it is important to
choose m sufficiently large, such that the so-called m-dimensional phase space enables for a “proper”
representation of the dynamical system.

5In economics and finance, but not in other fields, it is common to fix £ at one. So m takes over
the role of £. In that case we write Y, suppressing the dependence on /.

SIn fact, the supremum norm is very popular for recurrence plots; see Appendix 3.A for more
information on vector and matrix norms.
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near t; = to and for values of |t; — t5| that are of the order of the total length T,
{Y},t € Z} can be considered nonstationary. Obviously, in alliance with the choice
of ¢ and m, visual interpretation of recurrence plots requires some experience.
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Figure 1.6: Upper panel: a time series {Y;}?°9 generated by (1.22) with a = 4. Middle
panel: number of recurrences for the recurrence plot in (b) of the lower panel. Lower panel:
(a) a plot of Ry, ., for a time series following an ii.d. U(0,1) distribution, (b) a plot of
Ry, 1, for {Yi}, and (c) a recurrence plot for the time series Y; +0.005¢; m =3 and ¢ = 1.

Example 1.9: The Logistic Map

The logistic map may be interpreted as a simple biological, completely de-
terministic, model for the evolution of a population size Y of some species
over time. Due to limited natural resources there is a maximum population
size which in suitable units is equal to unity. The population size must be
larger than or equal to zero. The evolution rule is

Y =aY1(1- Y1), (t=1,2,...), (1.22)

where a > 1 denotes the growth rate at time ¢ of the species in the case
of unlimited natural sources. The factor (1 — Y;_1) describes the effect of
over-population. In some cases, a particular solution of (1.22) can be found,
depending on the value of a and the starting value Yj.
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Figure 1.7: (a) Directed scatter plot at lag 1 for the EEG recordings, and (b) a scatter plot
with the two largest and two smallest values connected with the preceding and the following
observations.

Figure 1.6, top panel, shows the first 200 observations of a time series {Y;}
generated with (1.22) for @ = 4. The plot shows an erratic pattern, akin to
that of a realization from some stochastic process. Still, the evolution of {Y;}
is an example of chaos. The recurrence plot for {Y;}?% is shown in the bottom

panel of Figure 1.6(b).

It is interesting to contrast the main features of graph (b) with the charac-
teristic features of graph (a), showing a recurrence plot of an ii.d. U(0,1)
distributed time series, and with the patterns in graph (c), showing a re-
currence plot of the time series Y; + 0.005¢. Graph (a) has a homogeneous
typology or pattern, which is an indicator that the series originated from a
stationary DGP. In contrast, a non-homogeneous or disrupting typology, as
with the recurrence plot in graph (c), indicates a nonstationary DGP. Finally,
graph (b) shows a recurrence plot with a diagonal oriented periodic struc-
ture due to the oscillating patterns of {Y;}. This is supported by the plot in
the middle panel. The white areas of bands in the recurrence plots indicate
changes in the behavior of a time series, perhaps due to outliers or structural
shifts. As an exercise the reader is recommended to obtain recurrence plots
for higher values of the embedding dimension m, and see whether or not the
overall observations made above remain unchanged.

1.3.5 Directed scatter plot

This is a scatter diagram, at lag ¢ (¢ € Z), of an observed time series {Y;}1_; (vertical
axis) against Y;_y (horizontal axis) with straight lines connecting the adjacent obser-
vations, such as (Y;_y,Y;) and (Y;_g11, Yey1). The plot can reveal clustering and/or
cyclical phenomena. Also, any asymmetries around the diagonal are an indication
of time-irreversibility.”

"An obvious three-dimensional extension is to plot (Yi,Yi_¢,Yi_p) (€ # €50 = £ = 1,2,...).
For this purpose the function autotriples in the R-tsDyn package can be used. Alternatively, the
function autotriples.rgl displays an interactive trivariate plot of (Y;—1, Y:—2) against Y;.
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Example 1.10: EEG Recordings (Cont’d)

Figure 1.7(a) provides a directed scatter plot of the EEG recordings, denoted
by {Y: ?211, of Example 1.2. The spirals indicate some cyclical pattern within
the series. This becomes more apparent in Figure 1.7(b) where the obser-
vations for the two largest negative and two largest positive values of {Y;}
are connected with the preceding and the following observations. The anti-
clockwise route indicated by the arrows suggests a stochastically perturbed
cycle.

1.4 Summary, Terms and Concepts

Summary

In this chapter we described some nonlinear characteristics of times series, arising
from a variety of real-life problems. Using graphical tools for explanatory data
analysis one can recognize a nonlinear feature of a particular data set. Generally, we
noticed that a nonlinear time stationary series has a more complex behavior than
a linear series. Further we introduced some terms and statistical concepts that are
needed later in the book. Finally, we provided a brief treatment of test statistics for
skewness, kurtosis and normality for initial data analysis, both for independent and
weakly dependent data.

Terms and Concepts

cave plot, 9 logistic map, 20
(dis)concordant, 15 mutual information, 18
cyclical asymmetry, 4 phase space, 19

data generating process, 4 recurrence plot, 19
directed scatter plot, 21 Shannon entropy, 18
essentially linear, 3 skewness, 10

Gaussian white noise, 1 time-reversible, 6
Kendall’s tau, 14 weak white noise, 2

kurtosis, 10

1.5 Additional Bibliographical Notes

Section 1.1: The definition that a time series process is linear if the linear predictor is
optimal is due to Hannan (1979); see also Hannan and Deistler (2012). It is considered to
be the minimum requirement. The definition has been used in the analysis of time series
neural networks; see, e.g., Lee et al. (1993).

Section 1.3.1: The univariate JB normality test of residuals, has been known among
statisticians since the work by Bowman and Shenton (1975). Doornik and Hansen (2008)
transform the coefficients of skewness and kurtosis such that they are much closer to the
standard normal distribution, and thus obtain a refinement of the JB test (see, e.g., the R-
normwhn.test package). Brys et al. (2004) and Gel and Gastwirth (2008) suggest some robust
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versions of the JB-test in the i.i.d. case. Koizumi et al. (2009) derive some multivariate JB
tests. Fiorentini et al. (2004) show that the JB test can be applied to a broad class of
GARCH-M processes. Boutahar (2010) establishes the limiting distributions for the JB test
statistic for long memory processes. Kilian and Demiroglu (2000) find that the JB test
statistic applied to the residuals of linear AR processes is too conservative in the sense that
it hardly will reject the null hypothesis of normality in the residuals. Using the same setup
as with the Lin-Mudholkar test statistic, Mudholkar et al. (2002) construct a test statistic
based on the correlation between the sample mean and the third central sample moment.

Section 1.3.2: Nielsen and Madsen (2001) propose generalizations of the sample ACF and
sample PACF for checking nonlinear lag dependence founded on the local polynomial regres-
sion method (Appendix 7.A). Some of the methodology discussed in that paper is implemen-
ted in the MATLAB and R source codes contained in the zip-file comp_ex_1_scrips_2011.zip,
which can be downloaded from http://www2.imm.dtu.dk/courses/02427/.

If {Y;}1, follows a linear causal process, as defined by (1.2), but now the &;’s are i.i.d.
with mean zero and infinite variance rather than i.i.d. with finite variance, then the sample
ACF for heavy tailed data, defined as py (¢) = tT;lZ YiYite/ Zthl Y2, still converges to
a constant py (€) = Y00 Yithiye/ Do ? (¢ € Z). However, for many nonlinear models
py (£) converges to a nondegenerate random variable. Resnick and Van den Berg (2000a,b)
use this fact to construct a test statistic for (non)linearity based on subsample stability of
py (£); see the S-Plus code at the website of this book.®

Section 1.3.3: Several methods have been proposed for the estimation of the mutual in-
formation (Kullback—Leibler divergence) such as kernel density estimators, nearest neighbor
estimators and partitioning (or binning) the XY plane. This latter approach, albeit in a
time series context, is available through the function mutual in the R-tseriesChaos package.
Khan et al. (2007) compare the relative performance of four mutual information estimation
methods. Wu et al. (2009) discuss the estimation of mutual information in higher dimensions
and modest samples (500 < T' < 1,000).

1.6 Data and Software References

Data

Example 1.1: The quarterly U.S. unemployment rate can be downloaded from various
websites, including U.S. Bureau of Labor Statistics (http://data.bls.gov/timeseries/
LNS14000000), the website of the Federal Reserve Bank of St. Louis (http://research.
stlouisfed.org/fred2/release?rid=202&s0id=22), or from the website of this book.
The series has been widely used in the literature to exhibit certain nonlinear characteristics,
however, often covering a much shorter time-period; see, e.g., Montgomery et al. (1998).

Example 1.2: The EEG recordings have been analyzed by Tohru Ozaki and his co-workers
in a number of papers; see, e.g., Miwakeichi et al. (2001) and the references therein. The
data set can be downloaded from the website of this book. A link to other EEG time series
is: http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3; see
Stam (2005) for a review.

Example 1.3: The daily averages of the T component of the interplanetary magnetic field
have been analyzed by Terdik (1999). The complete data set (24 hourly basis) can be

8S-Plus is a registered trademark of Insightful Corp.
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downloaded from http://nssdc.gsfc.nasa.gov/ along with further information on the
magnetic field measurements. Also, the data set is available at the website of this book.

Example 1.4: The ENSO anomaly, Nino 3.4 index, is derived from the index tabulated
by the Climate Prediction Center at the National Oceanic and Atmospheric Administration
(NOAA);http://wuw.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.ascii.The
series is available at the website of this book. The complete data set has been analyzed by
Ubilava and Helmers (2013). Ubilava (2012) investigates a slightly different version of
the ENSO data set. To replicate the main results of that study, R code is available at
http://onlinelibrary.wiley.com/doi/10.1111/3j.1574-0862.2011.00562.x/suppinfo.
The 5-month running average in Figure 1.4(b) is used to smooth out variations in SSTs.
Unfortunately, there is no single definition of an El Nino or La Nina event.

Example 1.5: Extensive information about the Ocean Drilling Program, including books,
reports, and journal papers, can be found at http://www-odp.tamu.edu/publications/
citations/cite108.html. The §'3C and §'®0 time series plotted in this example were
made available by Cees Diks; see also Diks and Mudelsee (2000). The data for all four
climatic periods can be downloaded from the website of this book.

Software References

Section 1.2: Becker et al. (1994) introduce the cave plot for comparing multiple time
series. The plot in Figure 1.5 is produced with an S-Plus function written by Henrik Aalborg
Nielsen; see the website of this book. Alternatively, cave plots can be obtained using the R-
grid package. Note, McLeod et al. (2012) provide an excellent overview of many R packages
for plotting and analyzing, primarily linear, time series.

Section 1.3.1: The Jarque-Bera test statistic is a standard routine in many software
packages. The generalized JB test statistic can be easily obtained from a simple modification
of the code for the JB test. GAUSS? code for the Bai-Ng tests for skewness, kurtosis,
and normality is available at http://www.columbia.edu/~sn2294/research.html. A
MATLAB! function for computation of theses test statistics can be downloaded from the
website of this book.

Section 1.3.2: FORTRANTY7 subroutines for calculating Kendall’s (partial) tau for uni-
variate and multivariate (vector) time series, created by Jane L. Harvill and Bonnie K. Ray,
are available at the website of this book.

Section 1.3.4: The results in Figures 1.6(a) — (¢) can be reproduced with the function recurr
in the R-tseriesChaos package. Alternatively, one can analyze the data with the function
recurrencePlot in the R-fNonlinear package. The R-tsDyn package contains functions for
explorative data analysis (e.g. recurrence plots, and sample (P)ACFs), and nonlinear AR
estimation.

User-friendly programs for delay coordinate embedding, nonlinear noise reduction, mutual
information, false-nearest neighbor, maximal Lyapunov exponent, recurrence plot, determ-
inism test, and stationarity test can be downloaded from http://www.matjazperc.com/
ejp/time.html. Alternatively, http://staffhome.ecm.uwa.edu.au/~00027830/ contains
MATLAB functions to accompany the book by Small (2005). Another option for applying
nonlinear dynamic methods is the TISEAN package. The package is publicly available from

9GAUSS is a registered trademark of Aptech Systems, Inc.
OMATLARB is a registered trademark of MathWorks, Inc.
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http://www.mpipks-dresden.mpg.de/~tisean/. The book by Kantz and Schreiber (2004)
provides theoretical background material. Similar methods are available in the comprehens-
ive MATLAB package TSTOOL: http://www.physik3.gwdg.de/tstool/. The package
comes with a complete user manual including a large set of bibliographic references, which
makes it useful for those researchers interested in getting started with nonlinear time series
analysis methods from a dynamic system perspective.

Exercises

Theory Questions

1.1

1.2

1.3

1.4

1.5

Let the ARCH(1) process {Y;,t € Z} be defined by Y;|(Y;—1,Y;—2,...) = oye¢ where
02 =g+ o Y2, and {e;} "< N(0,1).10 Assume o > 0 and 0 < ay < 1. Rewrite
{Y?2,t € Z} in the form of an AR(1) process. Then show that the error process of the
resulting model does not have a constant conditional variance, i.e. {Y;?,¢ € Z} is not
a weakly linear time process.

Consider the process Y; = fY;_oes—1 + &4, where {£;} is an i.i.d. sequence such that
E(g;) = E(e}) = 0, E(¢?) = 02, and E(¢}) < oo, and where 3 is a real constant such
that * < 1. Let &g = 0 and Y_; = Yy = 0 be the starting conditions of the process.

(a) Show that {Y;,t € Z} is an uncorrelated process. Is it also a weak WN process?
(b) Show that {Y;?,t € Z} is an uncorrelated process.

Consider the estimator Jy (1) = T Y1 V;Viyy of vy (1) = E(Y;Yiy1). If {e;} ~
WN(0,02), the theoretical ACF is zero for all lags ¢ > 1. Then Bartlett’s for-
mula for the asymptotic covariance between sample autocovariances implies that
772(0)Var(VTH:(1)) — 1, as T — oo.

Show that the ARCH process in Exercise 1.1 does not satisfy the white noise condi-
tion, i.e. limp_ o 752 (0)Var(v/T9y (1)) increases monotonically from 1 to oo, as oy
increases from 0 to 1/ V3.

Consider the divergence measure I*“(X,Y") as defined by (1.18).

(a) Show that I*M(X,Y) is non-negative, and 0 if and only if X and Y are inde-
pendent.

(b) Suppose there exists a functional h(-) such that X = h(Y). Show that I*“(X,Y)
= 00.

Suppose {Y;}7; is a sequence of i.i.d. random variables of ¥ with mean zero. If
the 7th moment of Y exists, then the semi-invariants or cumulants are defined by
the identity in ¢ exp{Z;il k,(it)? /pl} = ¢(t) with ¢(t) the characteristic function.

" Throughout the book, we assume that the reader is familiar with the class of so-called (gener-
alized) autoregressive conditional heteroskedastic (abbreviated as (G)ARCH) models; see, e.g., the
excellent, and up-to-date, book by Francq and Zakoian (2010).


http://www.physik3.gwdg.de/tstool/
http://www.mpipks-dresden.mpg.de/~tisean/
http://www.mpipks-dresden.mpg.de/~tisean/
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Figure 1.8: Climate change data set. (a) Recurrence plot of the 6*>C time series, and (b)
recurrence plot of the §'%0 time series. Embedding dimension m =3, and £ = 1.

Subject to conditions of existence of moments, k, can be expressed in terms of the
central sample moments as

n n’ n?[(n+ Djiay —3(n — Digy]

My /<i3=( yHBY ks= (= 1(n = 2)(n—3)

ko= n—1)(n—2

In normal samples it can be shown that Y, f2y and ﬁy,yﬁ;}%ﬂ (v = 3,4,...) are
independent, and hence that

k3 \ 6n(n —1) kay 24n(n — 1)
Var(kg/z) T -2+ 1)(n+3) Var(z?g) T -3 (n—2)(n+3)(n+5)

(a) Using the above results, show that the ezact mean and variance of the sample
coefficient of skewness 7y and the sample coefficient of kurtosis Ky are, respect-
ively, given by

6(n —2)
(n+1)(n+3)’

24n(n — 2)(n — 3)
(n+1)2(n+3)(n+5)

E(7y) =0, Var(ry)=

3(n—1)
n+1

E(k\y) = 5 Var(?-%y) =

(b) Given the results in part (a) define an alternative for the JB test statistic (1.6).

Empirical and Simulation Questions

1.6 Figure 1.8(a) displays the recurrence plots of the §'3C and §'80 time series, respect-
ively; see Example 1.5. Provide a global characterization of each plot, in terms of
homogeneity, periodicity, and trend or drift.
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1.7 Figure 1.9 shows raw data plots of length T" = 100, together with corresponding
directed scatter plots, for three simulated time series processes:

i) Yi=e¢, (Gaussian white noise),
i) Y =0.6Yi_1611 + e, (a stationary BL process; see Section 2.2),
iii) Y, = oy&4, 0 =1+ 1.2Y2,, (a nonstationary ARCH(1) process),

where in all cases {g;} "= A/(0,1). The graphs are listed in random order. Which
set of graphs corresponds to the listed processes?

(a)
6 6
4 a
2 A 2
> o
o o
> 4 >
-4 - -4
O 10 20 30 40 50 60 70 80 90 100 -4 -2 o 2 a4 6
§ (b) Yo
3 3
> 2
1 1
> > °
o
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-2
-2
O 10 20 30 40 50 60 70 80 90 100 -2 -1 o 1 2 3
t Y
(c) t-1
15 15
10 10
5 5
o o
— -5 —~ -5
>
-10 -10
-15 -15
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t Yo

Figure 1.9: Three time series plots and associated directed scatter plots.

1.8 Consider the 6*3C time series, denoted by {Y;}?18 and introduced in Example 1.5.
Download the data from the website of this book.

(a) Obtain the reversed time series, say {Y;*}216. Plot both time series, i.e. {Y;}
and {Y;*}. Is the process {Y;,t € Z} time-reversible?

(b) Obtain the series X;(¢) = Y; —Y;_p for £ = 1 and 2. Draw histograms of {X;(¢)}
with superimposed Gaussian distributions using sample means and standard
deviations of the two series. Is the process {Y;,t € Z} time-reversible?

(c) Compute the JB and GJB test statistics and compare the results with the graphs
plotted in part (b).



Chapter

CLASSIC NONLINEAR MODELS

In Section 1.1, we discussed in some detail the distinction between linear and non-
linear time series processes. In order to make this distinction as clear as possible,
we introduce in this chapter a number of classic parametric univariate nonlinear
models. By “classic” we mean that during the relatively brief history of nonlinear
time series analysis, these models have proved to be useful in handling many non-
linear phenomena in terms of both tractability and interpretability. The chapter
also includes some of their generalizations. However, we restrict attention to uni-
variate nonlinear models. By “univariate”, we mean that there is one output time
series and, if appropriate, a related unidirectional input (exogenous) time series. In
Chapter 11, we deal with vector (multivariate) parametric models in which there
are several jointly dependent time series variables. Nonparametric univariate and
multivariate methods will be the focus of Chapters 4, 9 and 12.

The chapter is organized as follows. In Section 2.1, we introduce a general non-
linear time series model followed by a representation as a so-called state-dependent
model (SDM). The SDM builds upon the basic structure of the linear ARMA model.
In particular, it generalizes the ARMA model to the nonlinear version by allowing
the coefficients to take on more complex, and hence, flexible forms. As we will
see in Sections 2.2 — 2.5, by imposing appropriate restrictions on the parameters of
the SDM several important classes of nonlinear models emerge. In Section 2.6, we
introduce the class of regime switching threshold models. Basically, these models
can be regarded as piecewise linear approximations to the general nonlinear time
series model of Section 2.1. Next, to allow for slow changes between various states
of the DGP, we discuss smooth transition models in Section 2.7. In Section 2.8,
we introduce some nonlinear non-Gaussian models. Section 2.9 deals with artificial
neural networks (ANNs) which are useful for DGPs that have an unknown functional
form. In Section 2.10, we focus on Markov switching models where the regimes are
determined by an unobservable process. In the final section, we illustrate a number
of practical issues of ANN modeling via a case study.

In addition, the chapter contains two appendices. In Appendix 2.A, we briefly in-
© Springer International Publishing Switzerland 2017 29
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troduce the concept of (non)linear impulse response functions. We will see that these
response functions are a convenient tool for illustrating the dynamics of (non)linear
time series models. Appendix 2.B provides a list of abbreviations for threshold-type
nonlinear models which have been introduced in the literature since the early 1970s.

2.1 The General Univariate Nonlinear Model

2.1.1 Volterra series expansions

One of the purposes of univariate time series analysis is to study the dependence
structure of a given sample realization. This is usually done by considering some
functional form that describes the relationship between past and present values, say
(..., Y19, Y;1,Y}), of a time series process in such a way that an observed time
series {Y;} is filtered into a strict WN process {e;}. Let h(:) denote a suitably
smooth (usually analytic) real-valued function. Then a general form for modeling
{Y;,t € Z} can be expressed as

WYy, Yie1,Yiea,...) = &, (2.1)

which is independent of future observations and due to its generality may be con-
sidered as a nonlinear model. Model (2.1) is also referred to as causal or non-
anticipative in the sense that future values, which typically are not available, do not
participate in the functional form of the model.

Now we face the problem of finding A(-) such that (2.1) is causally invertible, i.e.
it can be “solved” for Y; as a function of {...,e;_2,61—1,¢¢},

Y: = h(eg,e0-1,6-2, .. .). (2.2)

In addition, while maintaining their generality, the functions h(-) and h(-) must be
tractable for the purpose of statistical analysis. However, as (2.2) stands not much
can be said or done as far as analysis of a given time series is concerned. Therefore,
we assume that h(-) is a sufficiently well-behaved function so that we can expand
(2.2) in a Taylor series about some fixed time point — say 0 = (0,0,...)". Then we
can write

00 et s
Yi=p+ Z JuEt—u +Z Juv€t—uEt—v + Z JuowEt—uEt—vEt—w + (2.3)
u=0 ’U,,UZO ’u,,’U,U)ZO
where
oh o"h
— 0 , — (—) S, ey ( ) .
ol g( ) Guy agt—ul o Guy,...,upn 85t—u1 L. 85t—un 0

This expansion is known as the discrete-time Volterra series, a nonparametric rep-
resentation, where the sequences {gu}, {guv}, {Guow},... are called the Volterra
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kernels.! The first two terms in (2.3) correspond to a linear causally invertible
model.

One may also consider the dual Volterra series, which is obtained by a Taylor
series expansion applied to (2.1) — assuming invertibility of ﬁ() and smoothness of
h(-) — to obtain

o0 oo o0
5t:,ul + Zg;}/tfu +Z gq/vatquvtfv + Z gqlwwyvtfuyvtfvnfw +eey (24)
u=0 u,v=0 u,v,w=0
where the sequences {¢,,},{g.v}, {9how}; - - - are defined in a similar way as above.

Next, to obtain a more parsimonious representation, we truncate the sequences of
Volterra kernels in (2.3) and (2.4) at the fixed points g and p, respectively. Then,
by combining (2.3) and (2.4), we get

p p p
;u/ + Zg;}/tfu +Z gf:vatquvtfv + Z g;ywyvtfuyvtfv}/tfw +--=

u=0 u,v=0 u,v,w=0
q q q
®+ g GuEt—u + § JuvEt—uEt—y T § JuvwEt—uEt—vEt—w + (25)
u=0 u,v=0 u,v,w=0

which can be expressed more generally as,
R (Ye, ..., Yip) = g% (et, .. €1—¢q)- (2.6)
A further generalization, assuming h*(-) is invertible, is given by
Yi=GYi—1,....Yip.€t, .- €1—q)- (2.7)

Note that (2.7) treats {e;} as an observable input; therefore, the input-output rela-

tionships are expressed in terms of a finite number of past inputs and outputs.?
When {e;} is unobservable and instead is taken as a random variable, we may

reduce the observed time series {Y;} into a strict WN series by redefining G(-) as

Y; = G(Y}/,l,...,n,p,&:t,l,...,gt,q) + &¢. (28)

With G(-) so defined, {e;} is considered as the innovation process for {Y;}, while G(-)
defines the relevant information on Y; which is contained in past values of {Y;} and its
innovation process {&;}. Observe that E(Y;|F;—1) = é(Yt,h o Y B, El—g)-
Clearly, the above formulation is not restricted to the case where {g;} is unobserv-
able. It can also be adopted to the case where {£;} is a controlled input variable

which may enter the model linearly as a factor influencing current output {Y;}.

!Named in honor of Vito Volterra, who studied integral equations involving kernels of this form
in the first half of the 20th century.

2In neural network studies the Volterra expansion with finite sums is often called the
Kolmogorov—Gabor polynomial, or alternatively the Ivakhnenko polynomial.
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2.1.2 State-dependent model formulation

Let (2.8) serve as the basis for the general nonlinear finite-dimensional model, and
assume that G(-) is a sufficiently well-behaved function; then, we may proceed by
expanding the right-hand side of (2.8) in a Taylor series about the fixed time point

(0,0,...,0)". For simplicity we shall retain only the first term in the series expansion,
i.e.
p q
Yy =pu(Se-1) + > fi(Se-1)Yisi + > g5(Se—1)er—j + e, (2.9)
i=1 j=1
where
St = (Y;b s aY;*p+17 Etyenn 7€t*(1+1)/7

/‘L(Stfl) = G(thla s 7Y7t*p7 Et—1y--- 751‘/*(])’

= (), o= (),

8€t_j
Rewriting (2.9) in ARMA-like notation gives,
p q
Y = p(Se—1) + Z $i(St—1)Yi—i + e + Z 0;(St—1)et—j- (2.10)
i=1 j=1

Model (2.10) has been introduced by Priestley (1980). It is called the state-
dependent model (SDM) of order (p,q) and may be regarded as a local linearization
of the general nonlinear model (2.9). The unknown parameters of the model are
¢i(-) (i =1,...,p), 0;(-) ( =1,...,q), the “local mean” p(-), all of which depend
on the state S of the process at time ¢ — 1, and o2.3

Due to the characterization of the SDM as a locally linear ARMA model we
impose a pair of ‘identifiability’ like conditions of the following form.

(i) The polynomials {1—Y""_, ¢;(x)z'} and {1+ E§:1 0;(x)2z’} have no common
factors for all fixed vectors x, and all their roots lie outside the unit circle.

(ii) ¢p(x) # 0 and 6,4(x) # 0 Vx.

The generality of (2.10) becomes more apparent as one imposes certain restric-
tions on u(-), ¢i(-), and 6;(-). One simple case is to take all these parameters as
constants, i.e. independent of S;_;. Then (2.10) becomes the well-known linear
ARMA (p, q) model. Some more elaborate characterizations of (2.10) are introduced
in the following Sections.

3In fact, an equivalent vector state space representation of (2.10) is easily written down.
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Figure 2.1: (a) A realization of {e,};% with {e,} '~ N(0,1), and (b) a realization of the
BL(1,0,1,1) model (2.14), for parameter combination (¢ = 0.5,¢ = 0.2), with the generated
WN series in panel (a) as input.

2.2 Bilinear Models

Let u(S¢-1) = ¢o, ¢i(St—1) = ¢; (i = 1,...,p), i.e. a sequence of constants,
and let 6;(S;—1) = 6; + > 1 ¥juYi—w (j = 1,...,q), i.e. a linear combination of
Yi—1,Yi—2,...,Yi—g (Q > 1). Then (2.10) becomes

¢O+Z¢1Yt z+at+20 et ]+ZZ¢]UYt Eto. (2.11)

j=1lv=1

This is a special case of a general bilinear (BL) model of order (p,q, P,Q) where P
is constrained to be equal ¢. The general BL model* is defined as

¢O+Z¢1Yt Z+et+29 e ﬁZZwWYt wEtv- (2.12)

u=1v=1

This model is linear in the Y;’s and also in the &;’s separately but not in both. In
other words, provided 1y, # 0, the ARMA(p, ¢) model is nested within (2.12). The
following example illustrates this feature.

Example 2.1: A BL Time Series
Consider the BL(1,0,1,1) model
Yi=oYi1 +e+¢Yioiea, (2.13)
4There are several alternative ways to define a BL model. Since we are concerned with input-

output model representations, we adopt definition (2.12) throughout this book unless it is explicitly
noted otherwise.
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where ) = 9)17. This process is stationary and ergodic if ¢? + 1?02 < 1; see
Chapter 3. Its mean is E(Y;) = ¢o2. Notice that (2.13) can be rewritten as

Y = (¢ + ver—1)Yio1 + & (2.14)

Equation (2.14) looks like a linear AR(1) process except that the AR parameter
¢ + e is now time dependent, i.e. it may be viewed as a random variable
with mean ¢. If ¢ is positive, the AR parameter will increase with positive
values of ;1 and decrease with negative values of ;1. However, positive
shocks will be more persistent than negative shocks in the sense that they
have a more sizeable effect on the conditional variability of {Y;,t € Z}.

To illustrate this point, we simulate (2.14) with parameter combinations (¢ =
0.5,9 = 0.2) and (¢ = 0.5,% = 0), with the second process nested within
the BL process. For both processes, we generate an identical set of i.i.d.
N(0,1) random numbers. Figures 2.1(a) — (b) show T = 500 realizations of,
respectively, {e;} and the BL process {Y;,t € Z}. Since v is positive, it can be
seen that the value of {£,_1} has a direct effect on the value of {Y;} but that
this effect is larger for positive than for negative shocks, with values of {Y;}
in the range [—3.45, 5.59]. In contrast, the AR(1) process is having values in
the range [—3.70, 3.45].

By focusing completely on the nonlinear structure, i.e. setting p = ¢ = ¢9 = 0,

(2.12) becomes the complete BL model:

P Q
Yi=¢e + Z Z YuwYt—uEt—v- (215)

u=1v=1

Three special cases are of interest:

o If 1y, = 0 Yu # v, model (2.15) is called diagonal.

o If ¢y, = 0 Yu > v, (2.15) is called superdiagonal. Here the multiplicative

terms with non-zero coefficients are such that the input variable ¢,_, occurs
after Y;_, so that these terms are independent. This fact makes analysis
somewhat easier.

e Model (2.15) is said to be subdiagonal if 1, = 0 Yu < v. In this case the

variable Y;_,, occurs strictly after e;_,, making analysis more difficult.’

SThe terms super and sub are not quite natural, because it is purely by convention if lags in

{Y:,t € Z} correspond to the first index (u) and lags in {e;} correspond to the second index (v).
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Figure 2.2: (a) - (d) Realizations of the processes (2.16) — (2.19), respectively; (e) Gen-
eralized impulse response functions (GIRFs) for both diagonal and subdiagonal models (blue
medium dashed line), and superdiagonal model (red solid line) for a unit-shock at t = 1; (f)
GIRFs for both diagonal and superdiagonal models (blue medium dashed line) and subdiag-
onal model (red solid lines) for a permanent shock § of magnitude —0.01, 0.02, and 1 at

timet = 1.

Example 2.2:

Comparing BL Time Series
Some of the differences between the three special cases of the BL model can
be seen by considering the following specifications:

Yi=9Y 1 +¢

Yi=0Yi_1+ et +¢Yiosi
Yi=0Yi_1+e + Y1601
Y = oY1+ +YYiqgi-2

(linear AR(1))
(subdiagonal)
(diagonal)
)

(superdiagonal

with ¢ = 0.99 and ¢ = —0.5, and where {g,} "= N(0,1).

Figures 2.2(a) — (d) show plots of the time series. The linear AR (1) model, as
a simple “baseline” specification, exhibits some evidence of long-term drift-like
behavior, consistent with the fact that this model is close to a random walk.
In marked contrast, model (2.17) exhibits two large, highly localized bursts;
similar to the extreme peaks in Figure 1.3. Also, note that the series seems
to have a sample mean zero, which is consistent with the result E(Y;) = 0
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established in Exercise 1.2. The series generated by the diagonal model also
exhibits a sample mean zero, but here the general character of the series is
quite different from the subdiagonal case. In particular, we see many isolated
negative bursts, occurring frequently enough to achieve a non-zero (specifically,
negative) sample mean, which is agreement with the fact that E(Y;) = —0.5.

Example 2.3: Dynamic Effects of a BL Model

Consider the BL time series models (2.17) — (2.19) with Yy = 0. It is useful
to compare these models through the effect of a one-unit shock on Y; at time
t=1,ie.e1 =1,andey =3 = ... =0, given the history w;_1. As discussed in
Appendix 2.A, this can be measured by the difference between the conditional
expectation with and without the shock (called generalized impulse response
function (GIRF)) and in this case given by

GIRFy(t, 1,wt,1) = E[Kg’&l == 1,52 = 0,63 == 0, .. ] *E[th|€1 = 0,82 == 0, .. ]

Iterating each BL model, we get the following response functions for the three
models:

GIRF(sub) — (251‘,717 GIRF(diag) — ¢t717 GIRF(super) _ ¢t72(¢+¢)’ (t Z 2)

Figure 2.2(e) shows these responses for the case ¢ = 0.99 and ¢» = —0.5. Note,
the series generated by the superdiagonal model appears to exhibit somewhat
similar behavior to the diagonal model. In contrast, the GIRF of the superdi-
agonal model defined by equation (2.19) is different from the other two mod-
els. In fact, the response functions of models (2.16) — (2.18) are identical (blue
medium dashed line). For the superdiagonal model the term —0.5Y;_1e;_9
is non-zero for ¢ = 2, and hence has a direct effect on the impulse response
function for ¢ > 2 (red solid line).

Figure 2.2(f) presents a global picture of what happens when each of the three
BL models are hit by a permanent shock ¢ at time £ = 1. The step responses for
6 = —0.01, 0.02, and 1 for the diagonal and superdiagonal models are identical
(blue medium dashed line). In fact, both step responses are described by an
equivalent AR(1) process with parameter ¢ + 16. The subdiagonal model
(2.17), on the other hand, exhibits much faster step responses (red solid lines).
There is a slight overshoot for this model, reflecting the fact that its equivalent
linear model is an AR(2) process, i.e. Y; =0.99Y;_1 — 0.50Y;_9 + &;.

2.3 Exponential ARMA Model

Let pu(S¢—1) = ¢o, 0;(S;
di+E&iexp(—Y2 ), (i =

—1) = 9j + Tj eXp(_ﬂYY?—d) (] = 11 s >Q)7 and ¢i(st—1) =
1,...,p). Then (2.10) yields the exponential autoregressive
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moving average (ExpARMA) model of order (p,q) and delay d (d < p):

P q
Yi :¢O+Z{¢z‘+& exp(—yY2 )} Yii + Z{ej +7; eXp(_’YYVt%d)}Et*j + e, (2.20)
i=1 Jj=1
where the parameter v > 0 denotes a scaling factor.

Essentially this model changes smoothly between two extreme linear models,
since for large |Y;_4[, the coefficients of (2.20) are almost ¢;’s and 6;’s. For small
values of |Y;_g4|, they are ¢; + ¢ and 6; + 7; and the exponential function changes
smoothly between these two extreme values. A sufficient condition for strict sta-
tionarity for the ExpARMA process (2.20) is that all the roots of the associated
characteristic equation

PPl e =0 (2.21)

are inside the unit circle, where ¢; = max{|¢;|, |¢; + &|} (¢ = 1,...,p). Hence, the
characteristic roots of (2.20) are amplitude-dependent, instead of constant. Con-
sequently, {Y;} can be locally small or large. For this reason, (2.20) is also referred
to as amplitude-dependent ExpARMA process.

One of the purposes of proposing (2.20) is to reproduce certain features of non-
linear random vibrations through a nonlinear time series model. Originally (2.20),
with p fixed at zero, p = 2, and ¢ = 0, was derived from the stochastic second-order
differential equation X (t) 4+ f(X(t)) + g(X(t)) = n(t), where f(-) (the “damping
force”) and g(-) (the “restoring force”) are nonlinear functions, and X () and X (t)
denote the first and second derivatives of the stochastic response X (t) respectively.
The function 7(t) is an external random input, or external force, representing non-
linear random vibrations.

The asymptotic solution of the nonlinear homogeneous differential equation
X(t) + f(X(t) + g(X(t) = 0 is a periodic function called limit cycle. A limit
cycle refers to the phenomenon that the trajectories of X (¢) do not wind into a sin-
gular point, but they eventually go round on closed loops, leaving an interior region
untraversed if they wind from outside, or leaving an exterior region untraversed if
they wind from inside. Sometimes a limit cycle is self-excited, i.e., it remains “act-
ive” under zero input. Some nonlinear time series models with this property can
produce useful long-term forecasts, as opposed to stationary linear models that have
an “eventual forecast function” which gradually approaches a constant for increasing
forecast horizons. In other cases a limit cycle requires a certain input to “excite” it.
A formal definition of a limit cycle is as follows.

Let {Y,t € Z} denote an m-dimensional state vector satisfying the equation

Y:=f(Yio1), YoeR™
A set A = (cy,...,cn) is called a limit cycle of period N € Z*1 if (i) IYo € A, {Y:}
will ultimately fall into A as ¢ increases, and (ii)
ci=flc—1) (E=1,....,N+1),
flen) =c1, and f(¢;) #c1 (i=2,...,N).



38 2 CLASSIC NONLINEAR MODELS

(a) (b)

& AN o N o
o A N O N » O

0 20 40 60 80 100 0 20 40 60 80 100
Time Time

12 4

10 4

o N A O ®

Figure 2.3: (a) A realization of the ExpAR(1) model (2.23) with £ = —0.95 and corres-
ponding histogram; (b) A realization of the ExpAR model (2.23) with € = 0.95 and corres-
ponding histogram; T = 100.

In addition to (2.21), a necessary (but not sufficient) condition for the existence
of a limit cycle of the ExpAR(p) process is that at least one of the roots of

(&) = (G &) =0 (2.22)

lies outside the unit circle. Example 2.4 illustrates this feature of the ExpAR process
via MC simulation.

Example 2.4: ExpAR Time Series
Consider the ExpAR(1) model

Y = {09+ exp(~Y2 ) WYir +e,  {e} = N(0,1). (2.23)

Figure 2.3 shows T' = 100 observations from (2.23) with £ = —0.95 and ¢ =
0.95, respectively, with corresponding histograms below each graph. Both time
plots demonstrate the two types of amplitude-dependent frequency, i.e. in-
creasing and decreasing frequency. For both values of ¢ condition (2.21) is sat-
isfied. However, only in the case £ = —0.95, a limit cycle exists. Indeed, it fol-
lows directly from the above definition that the skeleton of (2.23), i.e., its noise-
free (e; = 0) representation, has a limit cycle (71, 72) = (—1.50043, 1.50043).
Still the up- and down patterns in both time series plots are very similar.
Both histograms show a bimodal distribution with light and short tails, which
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is a characteristic of some distributions in the ExpAR family. The second
histogram is slightly more peaked than the first histogram.

Note that if |Y;—1] — 0, the exponential term in (2.23) approaches 1. So
for £ = —0.95 behaves increasingly like an explosive (nonstationary) process,
and for £ = 0.95 as a stationary linear AR(1) process. In the latter case the
impulse response of the ExpAR model will be approximated by the impulse
response function of this linear process, which for a shock ¢; = ¢ is readily
determined to be (0.05)!/2§ if ¢ is even, and 0 otherwise. Conversely, if |V;_|
is sufficiently large, the exponential term is small, so the process behaves like
a stationary AR(1) process for both values of €. Its impulse response function
is (—0.9)!/2§ if t is even, and 0 otherwise.

2.4 Random Coefficient AR Model

Let pu(S¢—1) = p as constant, 0;(S¢;—1) = 0 Vj, and ¢;(S;—1) = {¢; + Bi+}. Then
(2.10) reduces to,

P
Yi=p+> {¢i+Bie}Yioi+e, (2.24)

i=1
where {B; = (B1¢,...,0p)'} is a sequence of i.i.d. random vectors with zero mean

E(B;) = 0 and Cov(B;) = X3, and {B;} is independent of {&;}.

Model (2.24) is termed a random coefficient AR (RCAR) model of order p. If
p = 1, a necessary and sufficient condition for second-order stationarity is that
¢* + 0% < 1; see Andeél (1976, 1984) for more complicated stationarity conditions
when p > 1. Note, by introducing random coefficients to an ARMA model, we
can generalize the RCAR model. Alternatively, by assuming the coefficients (;;
are not independent but follow an arbitrary strictly stationary stochastic process
(say an MA process) defined on the same probability space as {£;}, one obtains the
so-called doubly stochastic model (Tjostheim, 1986a,b).

2.5 Nonlinear M A Model

Let u(S¢—1) = 0, ¢;(St—1) = 0 Vi, and with a slight change of notation we define
{6;(-)} as,

Zgzo /621Q ,7 = 17
Zzlzo Z’LQ:O ﬁi17i25t_i2 ] = 27

05, (St—1) =

fozo Zgzo e Zg:o Bisjinyyiq€t—in " Et—ig J = q-
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Figure 2.4: (a) A realization of the NLMA model (2.26) with {e,} '~ N(0,1), 8 = 0.5
and T = 250; (b) Four permanent step response functions.

With these restrictions, (2.10) becomes

q
Y, = + Z 0;i (Stfl)gtfjil

i=1
Q Q Q
=+ Y Bucti+ D > Biuisi-inEtai +
11=0 11=012=0

Q @ Q
=+ Z Z ce Z ﬁil,iz,“.,iqgt—izgt—i:i e €t—7]iq7 (225)

i1=0i2=1  iq=0

where 7 is the highest order of summations. The model is termed nonlinear moving
average (NLMA) of order (Q, q).

Note, a similar NLMA representation follows from restricting the Volterra ex-
pansion (2.5).

Example 2.5: Dynamic Effects of an NLMA Model

To illustrate the general range of qualitative behavior seen in an NLMA model,
consider the following model

Y, =¢ + ,3(675_1 +E&t—2 + 5t—3) — EtEt—4. (2.26)

The response of (2.26) to a one-unit shock at ¢ = 1 is easily seen to be g for
t = 2 and 3, and 0 otherwise. For a sequence of permanent shocks of size 9,
starting at ¢t = 1, we get the following response function: 6(1 + (¢t — 1)) for
t=2,3,4, and §(1 +33) — 6% for t > 5.

Figure 2.4(a) shows a typical realization of model (2.26) with § = 0.5. The
interesting feature of this model lies in its potential to produce large values
of {Y;} given large values of ¢; and ;4. Figure 2.4(b) shows the response
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function of (2.26) to a sequence of permanent shocks of magnitude +0.5 and
+1. As with a single-step impulse response, these step responses all reach
their steady-state values in finite time (here, 5 time steps). In contrast to
the impulse response, however, these step responses give clear evidence of the
asymmetric nature of the nonlinearity.

2.6 Threshold Models

Threshold models are a very general class of models, which can capture certain
nonlinear features, such as limit cycles, asymmetries, and jump phenomena. The
essential idea underlying this class of models is the piecewise linear approximation
of the general nonlinear model (2.8) by the introduction of thresholds. Thresholds
follow from partitioning the real line R into k& > 1 non-overlapping intervals, or
regimes, R such that UleR(i) =R and RO NRE) = () if s # i/. Bach interval R®
is given by R() = (ri—1,7i], where ro = —o0, 71,...,7-1 € R, and r, = oco. The
values ro < 11 < -+ < rp_1 < rp are called thresholds. These values determine the
actual regimes, or mix of regimes. The ordering of the thresholds guarantees the
identifiability of the model. The regime-switching dynamics can be driven by the
observed time series {Y;} itself, the model is said to be self-exciting. Alternatively,
the transition from one member of the set of thresholds to another can be driven by
an external (exogenous) time series variable. Further, the transition can be abrupt or
follow some smooth function over time. These observations have resulted in several
versions of threshold models, some of which we discuss below.

2.6.1 General threshold ARMA (TARMA) model

Let {Y:,t € Z} be a strictly stationary time series process, and {J;} be a random
(indicator) variable taking values in {1,2,...,k}. Given this setup, there are vari-
ous equivalent ways to write down a threshold model each having its advantages,
depending on the context and purpose. One general definition, due to Tong and
Lim (1980), of a TARMA(p, ¢) model for the process {(Yz, J;),t € Z} is given by

p q
Y=o + 3 o0 utea+ Y 0, (2.27)

u=1 v=1

where {g;} "= (0,02), and the coefficients qbqg‘]t) (u=1,...,p), ol (v=1,...,q)

are constants. For each ¢, the process {J;} acts as the switching mechanism between

the k regimes. The process can be observable, hidden, or a combination of both.
Writing Yy = (Y3, ..., Yi—p+1), a canonical (vector) form of (2.27) is given by

Y, =CY) 4 ey, | 4+ @, (2.28)
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where, for J; = i,

0 op at (A A ) (wommon
I, 0(p—1)x1 matrix)
. (4) (@)
el =% % s &= (et Et—gt1)s
O(p-1)xq

and e; is independent of {Y} (s < 1).

2.6.2 Self-exciting threshold ARMA model

The general setting (2.28) includes as a special case the so-called self-exciting threshold
ARMA (SETARMA) model of order (k;p1,...,pk,q1,--.,qx) and delay parameter
d € ZT. Taking &) @), C as above, with the additional conditions that, for
1=1,...,k,

¢z(j) =0foru=p;+1,pi+2,...,p, and p = max(p, ..., px, d),
0) =0forv=qi+1,¢;+2,...,q, and ¢ = max(qu,...,q)

Assume that the indicator variable J; takes the value i if Y;_; € R(®.6 Then the
general SETARMA is defined as

k ) pi ) ] qi ' A '

Y; = Z <¢(()Z) + Z ¢1(Z)Y%—u + 8%2) -+ Z 91(}2)€§2U>I(K7d c R(Z)% (229)
=1 u=1 v=1

(4) 2

where €, = o2¢;, and {g;} "<" (0,1). Note that (2.29) may be viewed as a general-

ization of a nonhomogeneous linear ARMA model since the noise variances Var(sgi))
are different for different 3.

Example 2.6: Dynamic Effects of a SETAR Model

To illustrate the effect of a one-unit shock or a permanent shock on {Y;,t € Z},
it is instructive to consider the SETAR/(2; 1,0) model with threshold parameter
r and delay d =1, i.e.

2V 1 4e i Y| <7

Y, = . — 2.30

t { €t if |[Yi—q| >, ( )

where {g;} "= (0,02). We see that the model switches between a locally

nonstationary process and a locally stationary process. Globally, however, the
process is stationary, as may be deduced from Figure 2.5(a).

SThere is no loss of generality in assuming d < p, since if d > p we can introduce additional
coefficients ¢ =0 foru =p+1,...,d.
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Figure 2.5: (a) A realization of model (2.30) with r = 2, T = 250, and {e;} "= (0,1); (b)
Impulse response function for a one-unit shock at time t = 1; (¢) Permanent step responses
for 6 =0.1 and § = 1; (d) Permanent step responses for § =2 and § = 10.

Figure 2.5(b) shows the impulse response function of (2.30) for a one-unit
shock at time t = 1 when r = 2, and Yy = 0. More generally, for an impulse
response of magnitude J, initially Y; = 0 for ¢ < 0, while Y7 = §. Next, for
0 < § < r, the resulting responses are {2§,225,...,2"6,0,...,0}, where n is
the largest integer satisfying 29 < r. If § > r, it follows that Y7 = § and
Y; =2Y; 1 +e& =0 for t > 2. Consequently, the impulse response function
exhibits a one sample duration for § > r.

Given a threshold value r = 2, Figures 2.5(c) — (d) show responses to steps of
four different magnitudes §. Since ; = § Vt > 1, the process does not remain
in the domain of the unstable first-order linear model Y; = 2Y;_1 + &; but is
periodically driven into the domain of Y; = &, where it “switches back” to
the initial unstable model. So, for |§| < 2 the step response function oscillates
with a period determined by the magnitude of the step input, between the
two regimes. Note that the time required to “escape” from the lower regime
depends on the input value §. If |§] > 2 the step response function is simply
the input step e, = § Vt > 1.
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2.6.3 Continuous SETAR model

Clearly, the SDM formulation (2.10) does not contain (2.29), because the passage
from one regime to the another is not smooth, the conditional distribution of the
process is discontinuous. More formally, consider a two-regime SETAR model of
order (p,p). Let ¢; = (qb((f), gz), .. .,qbg))’ be the corresponding coefficient vector
(¢ = 1,2). Then the model is said to have a discontinuous AR function if there
exists Z, = (1,Zp—_1,...,2y)’, where Z,_q = r, such that (¢1 — ¢2)'Z, # 0. In
this case, the threshold parameter r constitutes the jump point of the AR function.
Otherwise, that is, if (¢p1 — ¢p2)'Z, = 0 for all Z, satisfying the above condition, the
model has a continuous AR function.

It is easy to see that the latter case is equivalent to the requirement that qu}) =
gﬁq(f) (I < u # d < p), and that d)él) + Tgﬁ((jl) = cZJ(()Q) + rgb((f). Therefore, in the
continuous case, the SETAR model can be written as

p
Vi=¢o+ Y ¢uViut (2.31)

{ ¢, (Yieqg—7)+o1ee ifY,_g <,
u=1,u#d

¢y (Yi—a—1)+oser ifYi_q>r,

where

do =8 +1o, o7 = 97 = 6P and ¢, = ¢ for u £ d.

We use the acronym CSETAR to distinguish (2.31) from discontinuous SETAR
models. This distinction is important because the asymptotics of the conditional
least squares (CLS) estimator of the parameter 8 = (¢!, @5, r,d)" is different in both
cases.” While, for a time series of length T, the CLS estimator qgi,T of ¢; always
converges to a normal distribution with mean zero at rate /T, the asymptotic
covariance matrix depends upon whether the model is continuous or not. In fact,
we shall see in Section 6.1.2 that in the discontinuous case the CLS estimator 71
of r converges to a nonstandard distribution at a rate T (super-consistent), and is
asymptotically independent of cng For CSETAR models, 7 converges to a normal
distribution at the usual rate v/T and is asymptotically correlated with QELT; see
Chan and Tsay (1998).

The conditional expectation of model (2.31) is given by

p
E(Yi;0|Fi1)=do+ Y. ¢Viutdy(Yica—1) +65(Vica—1)", (232)
u=1,u#d

where F; is the o-algebra generated by {Ys,s < t}, and where (y)~ = min(0,y)
and (y)T = max(0,y). Observe that the right-hand side of (2.32) can be written as
S b gu(Yy) where g,(-) (u # d) are linear functions and g4(-) is piecewise linear.

"The class of CSETAR(MA) models should not be confused with the class of continuous-time
threshold ARMA models which may be viewed as a continuous-time analogue of (2.29); see, e.g.,
Brockwell (1994).
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Figure 2.6: Scatter plot of a typical realization of the CSETAR model (2.33) with the true
AR functions overlaid (black solid lines); T = 500.

Thus, the CSETAR model is additive. In fact, it is a subclass of the nonlinear
additive functional-coefficient models to be discussed in Section 9.2.5, and a special
case of the multivariate adaptive regression splines model of Section 9.2.3.

Example 2.7: A Simulated CSETAR Process
Consider the CSETAR(2;1, 1) model

0.5(1@71 — 0.7) + &t if ;1 <0.7,

—0.5(Y;_1 — 0.7) + 25 if Yy > 0.7, (2.33)

m:1+{

where {e,} "~ N(0,1). Figure 2.6 shows a scatter plot of Y; versus Y;_; for a
typical simulated time series of length 7" = 500, and the true AR functions are
overlaid. Given (2.32), the CLS parameter estimates follow from minimizing
the sum of squared residuals following similar steps as in Algorithm 6.2; see
also Chan and Tsay (1998). For the simulated series, we obtain the fitted

model
= 056 5 (1/%_1 - 072 0.21 ) lf }/;5_1 S 072 0.21)>
Y, =1.02 + (0.06) (o2n)] (021) 2.34
¢ (0.11) { —0.48(0.12) (}/;5_1 — 072(021)) if }/t_l > 0.72(0‘21), ( )

where the asymptotic standard errors of the parameter estimates are in paren-
theses. The standard errors of the residuals are o1 = 1.08 and o9 = 3.98. The
sample sizes for the two regimes are 303 and 196, respectively. Comparing
(2.33) and (2.34), we see that the two models are similar. The closeness in
absolute value of the two lag-one coefficients in (2.34) is indicative of using a
CSETAR model; see Gonzalo and Wolf (2005) for a formal test statistic.

2.6.4 Multivariate thresholds

The dynamics of the SETARMA model (2.29) are controlled by the single threshold
variable Y;_ 4 with d > 0. A more flexible self-exciting threshold model can be
obtained by introducing multivariate thresholds, assuming the relationships between



46 2 CLASSIC NONLINEAR MODELS

the threshold variables is linear, but unknown. For ease of explanation we formulate
the resulting model in terms of a SETAR specification. First, we introduce a general
framework.

Consider an m-dimensional Euclidean space R and a point x in that space.
Let w = (w1,...,wy,)" denote an m-dimensional unknown parameter vector. These
parameters define a hyperplane as follows H = {x € R™|w'x = r}, where r is a
scalar. The direction of w determines the orientation of the hyperplane whereas r
represents the position of the hyperplane in terms of its distance from the origin.
The hyperplane H induces a partition of the space into two regions defined by the
half spaces H™ = {x € R™|w'x < r} and H = {x € R™|w'x > r}. In terms of the
indicator function I(-), this partition is given by I(x) = 1 if x € H™ and 0 otherwise.

Now, assume that an m-dimensional space is spanned by the vector of time

series values it,l = (Y;_1,...,Y:—n)". Further, suppose that there are k functions
I(wiXi—1 <) (i=1,...,k) where w; = (wgl), . ,w,(ﬁ))/ and r; are real parameters.

Thus, each of these functions defines a threshold. Then a SETAR model with m
(1 <m < p) thresholds and order (k;p,...,p), denoted by SETAR(k;p,...,p)m, 1S
defined as

D k P
Yi= g0+ Y 0uYimu+ D {& + D DV I X1 < 1i) 4
u=1 =1 u=1

k
=Xy 1+ XK T (WX 1) +ey (2.35)

i=1

where

¢) = (¢07 .. '7¢p)/7 El — (f(()z)a DRI ](;i))/a and thl — (]-athlv .. 'aYthp),'

Note that (2.35) is not identified. For identification purpose, we impose the restric-
tion 71 < .-+ < rg. Further, due to the fact that I(z) = 1 — I(—x), a convenient
normalization condition is to set one element of w; equal to unity.

Example 2.8: A Simulated SETAR(2;1,1); Model
Consider the SETAR(2;1,1)2 model

Y; = 0.5+ 0.9Y,_; — 1.8Y;_ 1 J(w| X1 < 0) — I(whXy_1 <0)+ep, (2.36)

where w1 = (1, —1)/, we = (0, 1), and X, 1 = (Yi—1,Y;—2)’. Thus the
dynamics of (2.36) is controlled by two threshold functions. The first one is
a bi-dimensional threshold when Y;_; — Y;_2 = 0. The second one is a single
threshold when Y;_5 = 0. Figure 2.7(a) shows the threshold boundaries.®

8Tiao and Tsay (1994) generalize the single threshold SETAR to a similar model as in (2.36)
with known parameters w; (i = 1,2).
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Figure 2.7: (a) Threshold boundaries of model (2.36); (b) Scatter plot of Y;—o versus Yi_1
Lid.

with two separating hyperplanes (red solid lines); T = 500, {e;} ~ N(0,1).

Rewriting (2.36) in four separate regimes gives

—05—-09Y,_14¢e, I ifY,1—Y; 9<0andY; ,<O0,
v ) 054+09Ytep, Ik if Vi —Y, 5> 0and Y5 <0,
t= 0.5—09Y,_1+¢e, NI ifY, ;1 —Y, 5<0and Y, 5 >0,
054+0.9Y; 1+, IV:ifY, 1 —Y, 5>0andY, »>0.

If we reconsider the U.S. unemployment series of Example 1.1 in terms of
the above model specification the four regimes (I — IV) have a direct mean-
ing. Regime I indicates that the economy changed from a contraction period
(Y;—2 <0) to an even worse one (Y;—1 < Y;_2). In Regime II, the economy is
still in recession (Y;_9 < 0), but improving (Y;—; > Y;_2). Regime III can be
viewed as a contraction period with negative growth. Finally, Regime IV is
an expansion period with positive growth. Figure 2.7(b) shows a scatter plot
of Y;_y versus Y;_; based on one realization of (2.36) with {e;} "~ N(0,1),
and 7" = 500. The solid lines denote the two separating hyperplanes.

2.6.5 Asymmetric ARMA model

A strictly stationary time series {Y;,t € Z} is said to follow an asymmetric autore-

gressive moving average model of order (p, q), or for short asARMA(p, q), if it takes
the form

p p q q
Yi=do+ D> ¢V +D o7V e+ 07l ) 07, (237)
i=1 i=1 j=1 =1
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Time

Figure 2.8: Impact of a maintained unit shock from zero to one onwards from t = 10
(MA(+), asMA(+), blue solid lines) and a corresponding negative unit shock (MA(—),
asMA(—), red solid lines ) on the series {Y;}. From Brannés and De Gooijer (1994).

Here YtjE and £§E denote the asymmetric component processes, defined as
Y, =Y I(e,<0), Y, =Yil(e,>0), & =e&l(e,<0), & =¢el(e>0),

with {e;} ~ WN(0,02). If p # 0 and ¢ = 0, (2.37) reduces to an asymmetric AR(p)
(asAR) model. It is called an asymmetric MA(q) (asMA) model for p = 0 and ¢ # 0.
Note that (2.37) has four filters, two for positive innovations and two for negative
innovations.

An alternative way to write (2.37) is

p q
Vi=> (¢ +uil(eri > 0)Yiite+ Y (05 +BiI(e—j>0))ey, (2.38)
i=1 j=1

where a; = ¢ — ¢, (i=1,...,p), B; = 9;-“ -0, (= 1,...,q).2 We see that the
asAR and asMA parts add two weighted sums of positive innovations to a conven-
tional ARMA model. In addition, we see that (2.38) belongs to the class of threshold
models with I(e;—; > 0) (¢ = 1,...,max(p, ¢)) controlling the transition between the
two regimes.

Example 2.9: Dynamic Effects of an asMA Model
Consider the asMA model

Y; = 0.01 + &, +0.69¢;" | + 0.34e/ , 4+ 0.22e , — 0.1 5, + 1.12¢/"

+0.61g;, | +0.642; o — 0.07e, 4 + 0.482, 5, — 0.35¢; o,. (2.39)

Bréannés and De Gooijer (1994) fitted the above model successfully to quarterly
growth rates in U.S. real GNP, using first differences of logged values of the
original series. Evidence of asymmetry may be noted from the sign and mag-
nitude of the parameter values. For instance, at lag 22 the response to a

9If there is a threshold value  # 0 in the sf‘: functions, it can be accounted for by including a
constant term in (2.38) and retaining » = 0 as a threshold value.
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positive innovation is stronger than to a negative shock. In addition, the re-
sponses are of the same sign. Figure 2.8 shows this phenomenon in a slightly
different way. The accumulated effect of a permanent positive or negative unit
change from ¢ = 10 onwards from a value zero in {g;} is displayed for model
(2.39) and a best fitted MA(3) model which is given by

Y; =0.01 +& +0.385; 1 + 0.348; o + 0.175; 3,

where &; denotes the tth residual. For the MA(3) model a positive or negative
shock has, apart from a change in sign, a similar effect on {Y;}. On the other
hand, for model (2.39), asymmetry is clearly present in the resulting series.
There is a more rapid decline to a lower level for a negative shock than there
is an increase to a higher level for a positive shock.

Note that the graph only gives the two most extreme outcomes out of 52 = 25
possible parameter combinations. Each combination corresponds to a partic-
ular sequence of positive and negative innovations. There is equal probability
for each combination when the innovations are i.i.d. from a symmetric distri-
bution. Each combination of an asMA model can be given a corresponding
AR representation. With 25 combinations, equally many AR representations
will arise. These can be seen as a reasonable approximation to, for instance,
a STAR model, discussed in Section 2.7.

2.6.6 Nested SETARMA model

The general setting (2.27) can be extended to allow for regime-switches controlled
by multiple observable input variables. One general class of models suitable for this
purpose is the so-called nested SETARMA (NeSETARMA) model of Astatkie et al.
(1997). Suppose, without loss of generality, that a strictly stationary process {Y;,t €
Z} (output) has two input variables {X;,t € Z} and {Z;,t € Z}. Moreover, assume
that the regime-switching is conditional on the values of the delayed observable
variables Y; and X;. Using these variables the complete dynamic system is divided
in two subsystems, or stages. Each stage consists of regimes, with the second stage
regimes nested within those of the first stage. The regimes are formed in such a
way that there is a linear relationship between Y; and its lagged values, and a linear
relationship between Y; and lagged values of X;. If Y; is used as regime-switching
variable in the first stage, then X; will be used in the second stage and the resulting
model is called an output-input NeSETARMA model. On the other hand, if X; is
used in the first stage and Y; in the second, then the model is called an input-output
NeSETARMA model. The (possibly lagged) relationship between Y; and Z; may be
linear or quadratic.

Below we focus on an output-input NeSETARMA model. Before defining its
structure, we introduce some notation.

e Let k1 > 1 be the number of first-stage regimes formed by partitioning the
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values of Y;_4, into non-overlapping intervals with di € ZT the first-stage
delay.

Let RO = (ri—1,r;] denote the ith (i = 1,..., k) interval with ro = —oo and
ri, = oo. The parameters r1,...,7r;,—1 are the first-stage thresholds.

Let ;2 > 1 (i =1,...,k1) be the number of second-stage regimes formed by
using X;_g4, as a threshold variable with do € Z the second-stage delay.

Let R = (rij—1,mij] (0 =1,...,ki;5 = 1,...,¢;2) denote the jth second-
stage regime within the ith first-stage regime with r; o = —oco and r; 4, , = oo.
The set {r;1,... ,Ti,gizfl} represents the second-stage thresholds.

Given the above setup, a general NeSETARMA model is defined as

where {Et b )}
Several (non)linear models emerge as special cases of (2.40):

k1 Lo
V= {3 (A i+ el
=1 j=1
FY 7 4 S et—w)nxt_@ e RO 1(i_y, € ROD),

(2.40)

i.i.d.

0,1). Clearly, (2.40) consists of k1 l; 5 regimes.
( y izq li2 Teg

o lf ky =lio=1,¢s #0, & = n = 0, and 0, # 0 Vs,u,v,w, then the

NeSETARMA model reduces to an ARMA model.

Ifhki =lip=105s#0,& #0,1n =0, and 0, # 0 Vs,u,v,w, then the
NeSETARMA reduces to an ARMAX (loosely speaking a transfer function)
model.

Ifkp > 1,42 =1V, and §, =1, = 0, and 0, # 0 Vs,u,v,w, then the
NeSETARMA becomes a SETARMA model.

Ifky =1, ¢s #0, & # 0, and 1, = 0y, = 0 Vs, u,v,w, then (2.40) reduces
to the so-called open-loop SETAR (or TARSO) model of Tong (1990). This
model is defined as

”+Z¢ Y_S+Z§ Xy +eV (2.41)

conditional on X;_4 € RU) (j =1,...,¢). We fit a (subset-) TARSO model to
an empirical time series in Section 6.4. Exercise 2.10 shows estimation results
for a NeSETAR model.
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2.7 Smooth Transition Models

For some time series processes, it may not seem reasonable to assume an abrupt
change in the regimes. Instead the speed of transition may be smooth over time. Let
G(-) denote a smooth continuous function, the so-called transition function. Then
a (two-regime) smooth transition autoregressive (STAR) model of order (2;p,p) is
defined as

p p
Vi= {6 + 3 6V 1 = GE)) + {6 + 3 0w }Gla) + 20,
u=1 u=1
p p
= ¢0 + Z Cbuy;ﬁfu + {50 + qu}/tfu}G(zt) + &, (242)
u=1 u=1

where ¢, = gb&l) and &, = gb&z) — (;51(}) (u=0,1,...,p). The transition function G(-)
allows the conditional expectation of the model to change smoothly from E(Y;|Ys; s <
t) = o+ h_1 duYiou to B(Yi|Yass < t) = do+ D h_) duYiut+ {0+ 20 EuViu}
with Y;.

Various formulations for G(-) have been proposed in the literature. For example,
one may use G(zt) = G(Yi_g4;7,¢) = ®(v{Y;_q — ¢}), where ®(-) is the cumulative
distribution function (CDF) of the standard normal distribution. Here, d > 1 is
again the delay parameter, c is a location value, indicating when the transition is
occurring, whereas v > 0 is a slope parameter. The role played by « in ®(-) is that
of smoothing. When the value of ~ increases, the transition is completed in a short
period of time, and ®(y{Y;_4—c}) approaches the indicator function I(Y;_4—c). In
that case (2.42) reduces to a SETAR(2; p,p) model. On the other hand, when 7 is
sufficiently close to zero (2.42) may be well approximated by a linear AR(p) model.

Two plausible alternative transition functions are the logistic function and the
exponential function. The logistic function is defined as

1
1+ exp{—y(Yi_g—c)}’

and the resulting model is then called logistic smooth transition autoregressive
(LSTAR). The exponential function is specified as

G(Y;ﬁfd; s C) v >0, (243)

G(Yi_ag;7,¢) =1 —exp{—y(Yi_q — ¢)*}, ~>0, (2.44)

and the resulting model is referred to as exponential smooth transition autoregressive
(ESTAR) model. If ¢ = 0 and d = 1, then the ESTAR(p) becomes identical to the
ExpAR(p) model.

Figure 2.9 shows some examples of the relationship between v, Y;_4 for (a) the
logistic transition function (2.43), and for (b) the exponential transition function
(2.44) where, for ease of interpretation, we set ¢ = 0 and d = 1. Some observations
are in order:
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Figure 2.9: Effects of various values of the smoothness parameter v on (a) the logistic
transition function (2.43), and (b) the exponential transition function (2.44). Both functions
withc=0 and d = 1.

e In the limit, as v — 0, both transition functions switch between 0 and 1 very
smoothly and slowly. Both models reduce to an AR(p) model as v becomes
small, with G(-) — 0.5 for the LSTAR(p) model, and with G(-) — 0 for the
ESTAR(p) model.

e For the LSTAR(p) model, as v — oo, G(Y;—1;7,¢) — I(Yi—1 > ¢). Hence,
the LSTAR(p) model approaches a SETAR(2;p,p) model. In contrast, as
v — 00, (2.44) approaches the indicator function I(Y;—; = ¢), and consequently
the ESTAR model does not nest the SETAR model as a special case.

e The ESTAR transition function is symmetric about ¢ in the sense that the local
dynamics are the same for high as for low values of Y;_1, whereas the mid-range
behavior, for values close to ¢, is different. Thus, the distance between Y;_1
and ¢ matters, but not the sign. For the LSTAR model, the local dynamics
depends on the distance between Y;_1 and ¢, as well as the sign.

Note that an asMA model of Section 2.6.5, contains 29 separate MA(q) re-
gimes. In some cases, it may also seem plausible to think of a continuum of MA
regimes and that the transition from one extreme regime to the other is smooth.
This requires modifying the transition function I(e;—; > 0) into a smooth function
Gj(ver—j) (v > 0;4 = 1,...,q). Since the transition function multiplying e;_; has
€¢—j; as its argument V7, the resulting nonlinear model is additive in structure. For
instance, setting p = 0, an additive smooth transition moving average (ASTMA)
model of order ¢ is given by

q
Yi=ei+ D (0 +0,Gi(ve0-5) )ers. (2.45)
j=1

In Example 3.7, we discuss the invertibility of this process.
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2.8 Nonlinear non-Gaussian Models

In an attempt to capture the behavior of, possibly observed, nonlinear time series
processes with explicit non-Gaussian marginal distributions a number of nonlinear
non-Gaussian models have been introduced. In the following subsections we shall
briefly discuss two models which seem to be promising to use in practice and have
known statistical properties.

2.8.1 Newer exponential autoregressive models

To introduce this class of models, let {J;,t € Z}, and {e¢,t € Z}, be two independ-
ent sequences of i.i.d. discrete random variables. Consider the SDM (2.10) with
1(Si—1) =0, 0;(S¢—1) = 0V, and ¢;(S;—1) = BV (i = 1,...,p) where {J;} has the

following distribution

0 with prob. ag,

1 with prob. aj,
Je=4q . . .

p with prob. a.

Here {Oéi}f:o is a non-negative sequence whose elements sum up to one. Let B(O)(E
0), 3, ..., 3®) be p+ 1 constants, satisfying 0 < 3U) <1 (1 < j < p). Under the
above restrictions the SDM reduces to

Y, = BYY;_y, + e (2.46)

If the {Y},t € Z} process is assumed to have an exponential marginal distribution
function then (2.46) is known as newer exponential AR (NEAR) model of order
p, NEAR(p). Note that the NEAR(p) model is a special case (sub-class) of the
RCAR model (2.24). It is obvious how the concept of “switching” comes into play
in (2.46). The degree of AR dependence structure may switch among several, p,
possibilities which are controlled by an external (unobserved) random variable Jy,
which is independent of past values of the process {Y;,t € Z}.

Example 2.10: NEAR(1) Model
The NEAR(1) is defined as,

_ BY;_1 with prob. a,
Yi=et { 0 with prob. 1—a,
= BJiYi 1 + ey, (2.47)

where

_ ) B with prob. p1=(1-23)/(1-(1-a)p)
e { (1 —«a)BE; with prob. 1—p;=af/(1—-(1—-a)p) (2.48)
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[ 0 with prob. (1—a)
Je _{ 1 with prob. a, (2.49)

where {E;,t € Z} is a sequence of i.i.d. unit mean exponential random vari-
ables. The form of the ¢,’s is chosen to ensure that the marginal distribution of
{Y};,t € Z} is exponential with mean unity, i.e. fy(y) = exp(—y) (0 < y < c0).
The parameters o and 3 are allowed to take values over the domain defined by
0<a,0<1with a =3 # 1. We note that due to the distributional assump-
tion underlying { E;}, the innovation process is not allowed to take on negative
values, i.e. P(E; < 0) = 0. Again, the “switching” characteristic of (2.47) is
evident. Due to the AR(1) setup of the model, (2.47), and the restricted do-
main of the parameters, it follows that for Yy ~ Exp(1) and being independent
of {E¢,t > 0}, the process {Y};,t € Z} is stationary — by construction.

Setting « =1, 0 < # < 1 in (2.47) yields the so-called exponential AR model
of order 1, or EAR(1) (Lawrence and Lewis, 1980),'9 where fixing 8 = 1,
0 < o < 1 give rise to the so-called transposed EAR (TEAR) model of or-
der 1 (Lawrance and Lewis, 1981).11 Both are extreme cases of a NEAR(1)
process.'> The main properties are: the ACF at lag ¢ € Z is given by
py(£) = (af)?, and the regression curve E(Y;11|Y; = y) = By, which is
thus linear. This makes maximum likelihood (ML) estimation of a and [
possible by numerical optimization. Another interesting feature, is that the

NEAR(1) process is not time-reversible (cf. Exercise 2.5).

2.8.2 Product autoregressive model

As a natural extension of the linear AR(1) model, McKenzie (1982) proposes the
so-called product AR model of order 1, or PAR(1). It consists of an exponentiation
of a strictly stationary AR(1) process {Y;,t € Z} such that the additive form is
being transformed into a linear form. Specifically,

V=YV, (0<a<1), (2.50)
where the log-transform is given by

logV; = alogY;—1 +log V4,

'%This acronym should not be confused with the ExpAR model defined in Section 2.3.

" Corresponding to the EAR(1) model is the EMA(1), which takes the form Y; = yE; with
probability ~, and Y; = vE: + E;—1 with probability 1 —~ (0 <~ < 1). By bringing together the
EAR(1) and EMA(1) processes, the EARMA(1,1) process can be defined.

'2Both the EAR(1) and TEAR(1) models are somewhat limited in scope for practical application
due to the sample paths these models generate. In particular, for the EAR(1) model large values
arise when E} is included (i.e. J; = 1), which are followed by runs of decreasing value, with the
runs having geometrically distributed lengths. For the TEAR(1) model the behavior of the sample
paths, for a large «, shows geometrically distributed runs of rising values (i.e. J; = 1) followed by
sharp declines when the selection J; = 0 is made. One can overcome these shortcoming by using
high-order models.



2.8 NONLINEAR NON-GAUSSIAN MODELS 55

() (b)

1.1

0.4 4
1.0 1
0.9 1 0.2 7TT7| ,,,,,,,,,
0.8 1 0.0 AJ lﬁ ||| ||| T
0.6 1
-0.4
0.5 1
0 100 200 300 400 500 0 5 10 15 20
Time Lag

Figure 2.10: (a) A realization of the PAR(2) model Y; = (0.3Y,-9° 4 0.5Y,24)e;, with

{e.} "X N(1,0.1), and T = 500; (b) Sample ACF of the time series in (a) with 95%
asymptotic confidence limits (blue medium dashed lines).

with {V;} a sequence of i.i.d. nonnegative random variables, and Y} is independent
of V1. We may classify the PAR(1) model as an intrinsically linear model, i.e. a
nonlinear model which can be linearized. It differs from the NEAR models which
cannot be linearized due to their switching nature.

Writing Y; = {Hf:(l) Wofi}Yto_‘[Z. Then, dropping unnecessary subscripts, we have
E(Y,Y,—¢) = {[['ZLE(VEREY ). From (2.50), E(Y*) = E(Y*)E(V*), and
therefore

=By § E(Y)E(Y+)
EViYie) = [[{ ok deyersty = BB 7D o g
¢ H) {E(Ya ) } E(Y« )

Hence, the ACF at lag / is given by

© = E(V){E(Y) - BV )E(Yi-e)}
S E(Y,) Var(Y;) |

Note, the ACF depends only on the moments of the stationary marginal distribu-
tion. In the particular case of the gamma distribution such moments exist, and this
distribution is the only one for which the PAR(1) model has the same ACF structure
as an AR(1) process (McKenzie, 1982), hence its name.

More generally, the PAR(p) (p > 2) model with non-additive noise is defined as

p
vi=Vi( Y ey, (2.52)

i=1
Figure 2.10(a) shows a realization of a PAR(2) process, and 2.10(b) its corresponding

sample ACF. We see that the pattern of the sample ACF is compatible with the
sample ACF of an AR(2) model.
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2.9 Artificial Neural Network Models

The artificial neural network (ANN) has been widely used for nonlinear processes
with unknown functional form. Probably the most commonly used ANN architecture
is the multi-layer perceptron (MLP), also known as feed-forward network. MLPs
receive a vector of inputs @, the explanatory variables, and compute a response or
output y(a) by propagating & through the interconnected processing elements, called
neurons or nodes. The processing elements are arranged in layers and the data, x,
flows from each layer to the successive one. Within each layer or “hidden unit”
(processing element), @ is nonlinearly transformed by so-called nonlinear activation-
level functions and propagated to the next layer. Finally, at the output layer y(x),
which can be scalar — or vector-valued, is computed. Thus, information flows only in
one direction (feed-forward) from input to output units. Without loss of generality
we focus here on single layer ANNs.

Figure 2.11 shows the basic architecture of a single hidden layer perceptron with
two input units, three hidden units, and one output unit, called a 2-3-1 feed-forward
network. The hidden (middle) layer performs a weighted summation of the input
units. In fact, the jth node in the hidden layer is defined as

hj =G; (aoj + Zwijxi), (2.53)

i—]

where z; is the value of the ith input node, ag; is a constant (the “bias”), the
summation ), ; eans summing over all input nodes feeding to j, and w;; are the
connecting weights. The nonlinearity enters the model through the activation-level
function G;(-), usually a “smooth” transition function such as the logistic function
in (2.43).

For the output layer, the node is defined as

0= ¢(a00 + Z wjohj>, (2.54)
j—o

where 1(+) is another activation-level function, which is almost always taken to be
either linear or an indicator function. Combining (2.53) and (2.54), the output of a
single-layer feed-forward ANN can be written as

o=1 [0400 + Z w;joGj (aoj + wa:rzﬂ ) (2.55)
j—o imj

Let m be the number of input units, and k the number of nodes in the hidden
layer. Then, the network weight vector, say @, consists of a (k+1) x 1 vector of biases

(apo, atgj)’, an mk x 1 vector of input layer to hidden layer weights (w/, ..., w}) with
wj = (Wij,...,wm;) (j=1,...,k), and a k x 1 vector of hidden layer to output layer
weights (wie, - .., wko)’. Thus, for an m-k-1 network the total number of weights,

or dimension of 0, is equal to r = (m + 1)k + (k + 1). Usually the weight vector 0
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Figure 2.11: The architecture of a single hidden layer ANN with two input units, three
hidden units, and one output unit, a so-called m —k —1 =2 — 3 — 1 feed-forward network
with 13 weights.

is assumed to take values in the weight space O, a subset of the finite-dimensional
space R". That means, the ANN considered has bounded model complexity and
contains a finite number of hidden units k and a finite number of input units m.

In time series applications one also allows an ANN to have so-called skip-layer,
or direct, connections from inputs to outputs. Then, the output of a feed-forward
ANN becomes

o=1 [a(]o + Z QioXi + Z w;joGj (aoj + Zw”wl)} . (2.56)

i—0 j—o i—]

Thus, when 9 (-) is a linear activation-level function, there are direct linear connec-
tions from the input to the output nodes.

The weights 0 are the adjustable parameters of the network, and they are ob-
tained through a process called training. Let {(x;,y;)}}, denote the training set,
where x; denotes a vector of inputs, and ¥; is the variable of interest. The object-
ive of training is to determine a mapping from the training set to a set of possible
weights so that the network will produce predictions 7;, which in some sense are
“close” to the y;’s. For a given network, let o(x;;0) be the output for a given ;.
Then by far the most common measure of closeness is the ordinary least squares
function, i.e.

N
Ly(6) = > {yi — olw:: 0)}>
=1

Assume that the network weight space © is a compact subset of the r-dimensional
Euclidean space R”, which ensures that the true ANN model is locally unique with
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regard to the objective function used for training. Then the weights are found as:
6 = in{Ly(6
arg min{Ly(6)},

using some kind of iterative minimization scheme. A popular method is the back-
propagation algorithm, i.e. a gradient descent algorithm where the computations are
ordered in a simple fashion by taking advantage of the special structure of an ANN.

2.9.1 AR neural network model

The autoregressive neural network (AR-NN) of order p with k regimes and a single
output, denoted by AR-NN(k;p, ..., p),'3 is defined as

Y = h(Xy-1;0) + &y,

k
= g0+ ¢ X1+ GG(WXi1 —¢) + e, (2.57)
=1

where h(-) denotes a hidden layer containing k nodes, with no activation-level func-
tion at the output unit, with hidden activation-level function G(-): R — R, a Borel-
measurable function of the input vector X¢—; = (Y;—1,..., Y;—,)’, and with the
network weight vector 8 € RPT25+P+1 defined as

0 = (d)/u 5/7 w/) Clv ¢0)/7
where

¢:(¢la"'7¢p),’ 52(61)"'7€k)/5 c:(clv"'ack)/a

w=(W,...,w}), with w; = (w1j,...,wp), (G=1,...,k).

In ANN terminology the elements of the p x 1 vector ¢ are called the shortcut
connections, the k x 1 vector & consists of the hidden unit to output connections,
the elements of the k x 1 vector ¢ are called the hidden unit “bias” weights, and
the elements of the pk x 1 vector w are the so-called input unit to hidden unit
connections. Thus, jointly with the intercept ¢¢, the dimension r of the network
weight vector 0 is equal to (p + 2)k + p + 1. Note, (2.57) does not include lags of
{e¢} in the set of input variables, and therefore is a feed-forward ANN.

Now, assume that the activation-level function is bounded, i.e. is |G(z)| < § < o0
Vx € R. Let ¢(z) be the characteristic function associated with the shortcut connec-
tions. Then it can be shown (Trapletti et al., 2000) that the condition ¢(z) # 0 Vz,
|z| <1 is sufficient, but not necessary for the ergodicity of the Markov chain {Y;}.
Furthermore, if this condition holds, then {Y;,t € Z} is geometrically ergodic (see

13 Analogue to the notation introduced for SETAR models, we refer to the number of regimes
k first, and to the order p,...,p of the AR-NN model second. In contrast, some books use the
notation AR-NN(p, k).
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Figure 2.12: Skeleton h(X¢—1; 0) of the AR-NN(2;0,1) model (2.58) for 25 iterations of
{Y:} for each value of € =1,1.1,...,24.9,25.15

Section 3.4.2) and the associated AR-NN process is called asymptotically stationary.
Typical choices for G(-) are the hyperbolic tangent (tanh) function and the logistic
function.

Certain special cases of the AR-NN model are of interest. If the sum in (2.57)
vanishes, then the model reduces to a linear AR(p) model. For k£ > 0, this can be
achieved by either setting {; = 0 or w; = 0 Vj. For the latter case, the sum is a
constant, independent of X;_1, and can be absorbed in the intercept ¢yg.

Example 2.11: Skeleton of an AR-NN(2;0,1) Model
Consider the single hidden layer feed-forward AR-NN(2;0, 1) model

Y, = 0.15 + £ tanh(Y;_1 — 1) — Etanh(Y,_y — 1.5) + &y, (2.58)

where tanh(z) = (exp(2z) — 1)/(exp(2z) + 1), and with initial condition Yy =
0.1. Thus, in terms of model specification (2.57), we have ¢ = 0, and & =
& =€), c=(1,1.5), and w = (1, 1)".

To illustrate that a relative simple AR-NN model can generate complex dy-
namical patterns, we consider the skeleton h(X;_1;8), i.e. the noise-free (g, =
0) representation of (2.58) with £ = 1, 1.1,...,24.9, 25. For each &, we per-
form 2,000 iterations of (2.58). Figure 2.12 shows a scatter plot of the values
of {Y;} versus ¢ after discarding the first 1,975 iterations. For approximately
1 < ¢ < 3.4 the model converges to a stable fixed point. Then, for approxim-
ately 3.4 < £ < 4.5 we see a local stable oscillation of period 2. The oscillation
period is doubled for 4.5 < & < 5.8. At about £ = 5.8, the plot hints at
deterministic chaos, i.e. the model looses predictability.

5This type of graph is commonly referred to as a bifurcation diagram in the chaos literature.
The skeleton is the underlying dynamical system, i.e. the process without noise.
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Example 2.12: Skeleton of an AR-NN(3;1,1,1) Model

Consider the single hidden layer feed-forward AR-NN(3;1,1,1) model com-
posed of one linear and three logistic activation-level functions

3
WX 130) =1-05Y, 1+ > G(Vi1;wij), (2.59)
j=1

where

G(Yi-1;w11) = (1 + exp(—10[Y;—1 —2])) ",
G(Yi—1;wi2) = (1 +exp(—2Y;_1)) 7,
G(Yi-1;w13) = (1 + exp(—20[Y;—1 —1])) .

Figure 2.13 shows (2.59) as a function of the input series {Y;_1}, with Y;_;
taking values in the set {—3,—-2.9,...,2.9,3} (blue solid line). The values of
the activation-level functions G(Y;—1;wi;) (j = 1,2,3) are displayed as blue
dashed-dotted, dashed-doted-doted, and dotted lines, respectively.

For Y;—1 < —1 all three logistic activation-level functions are approximately
equal to zero in value, so the behavior of (2.59) is determined largely by the
slope of the linear activation-level function. For approximately —1 < Y; 1 <
0.7 the function G(Y;_1;wi2) slowly starts increasing, but the values of the
functions G(Y;—1;w11) and G(Y;—1;wi3) remain approximately equal zero. As
a result, the downward trend of h(X;_1;0) levels off. At about Y;—; = 0.8,
the function G(Y;—1;wi3) changes from 0 to 1 fairly rapidly, and the value
of the skeleton increases. Next, for approximately 1.2 < Y;_; < 1.7, the
skeleton resumes its gradual declining, owing to the fact that G(Yi—1;wi2)
and G(Y;—1;w13) essentially achieve their maximum values while the function
G(Y;—1;w11) is still not very active. Then, at about Y;_; = 1.8, the function
G(Yi—1;w11) begins to activate, resulting in a slow increase of h(X;_1;60) up
till about the point Y;_1 = 2.3. Finally, for Y;_1 > 2.4 all three logistic
functions are approximately equal unity. So, once again, the linear activation-
level function causes the gradual decline of the function h(X;_1;8).

In general, the AR-NN model can be either interpreted as a semi-parametric ap-
proximation to any Borel-measurable function, or as an extension of the threshold
class of models (SETAR and LSTAR) where the transition variable can be a linear
combination of stochastic variables. For instance, assume that the variable con-
trolling the switching is composed of a particular subset, say X;—1 = (Yi—1,...,Yi—q)
(1 < q < p) of the elements of X;_1. Then, using the indicator function as activation-
level function, i.e. G(-) = I(-), it is easy to see that (2.55) reduces to (2.35) with
k=m.

Note that the AR-NN model (2.57) is, in principle, neither globally nor locally
identified. Three characteristics of the model cause non-identifiability. First, due
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Figure 2.13: Skeleton h(X;_1;0) of an AR-NN(3;1,1,1) model (2.59) (blue solid line).
The values of the logistic functions G(Yi—1;wi;) (§ = 1,2,3) are shown as blue dashed-dotted,
dashed-dotted-dotted, and dotted lines, respectively.

to the symmetries in the ANN architecture the value of the likelihood function
remains unchanged if the hidden units are permuted, resulting in k! possibilities for
each one of the coefficients of the model. This problem is resolved by imposing the
restrictions ¢; < -+ < ¢ or & > -+ > &. The second characteristic is caused
by the fact that G(z) = 1 — G(—=x), where G(-) is the logistic function. This
problem can be circumvented, for instance, by imposing the restriction wi; > 0
(j =1,...,k). Finally, the presence of irrelevant hidden units in the nonlinear part
of the AR-NN model can be eliminated by assuming that each hidden unit makes
a unique non-trivial contribution to the overall AR-NN process, i.e. { # 0, w; # 0
Vi(j=1,...,k), and (W}, ¢;) # j:(w;»,cj) Vi#j (4,7 =1,...,k). In practice, these
latter assumptions are a part of the model specification stage, applying statistical
inference techniques.

2.9.2 ARMA neural network model

The autoregressive moving average network ARMA-NN of order (k;p,q) is defined
as

Y = h(Xi—1,€-1:0) + &4, (2.60)

where

k
h(Xt_l, (ST 9) = qb() + ¢/Xt_1 + ¢’et_1 + ijG(w;-Xt_1 + 19;et_1 — Cj)
j=1

with the activation-level function G(-) as introduced in Section 2.9.1, an observed in-
put vector X;_1 = (Y;—1,...,Y;—,), and a ¢ x 1 input vector e;—1 = (e¢—1,...,€1—q)
with a feedback through a linear MA-polynomial ¥; (j = 1,..., k) for filtering past
residuals. In ANN terminology this feature means that the ARMA-NN network is
recurrent: future network inputs depend on present and past network outputs.
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Figure 2.14: A typical recurrent ARMA-NN(3;2,1) model with two lagged variables Y;_1
and Y;_o and one recurrent variable e;_1 in the set of inputs; o, denotes the network output
at time t, and B is the backward shift operator.

The network weight vector 8 € RPTa+2)ktrtatl s composed of various sub-
vectors in an analogous way as given in Section 2.9.1 for an AR-NN(k;p) model.
Indeed, for p <1 and ¢ = 0, the ARMA-NN(k; p, q) model reduces to (2.57). Fig-
ure 2.14 displays the architecture of a single hidden recurrent layer feed-forward
ARMA-NN(3;2,1) model.

2.9.3 Local global neural network model

Another member of the regime switching family, derived from ANNSs, is the local
global neural network (LGNN) model. The central idea of LGNN is to express
the input-output mapping of a single hidden layer feed-forward ANN, containing k
nodes, by a piecewise structure. In particular, the LGNN output describes a com-
bination of pairs of smooth continuous functions, each composed of a p-dimensional
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nonlinear approximation function L: RP — R of X;—; = (Y;—1,...,Y;—,), and
a ¢g-dimensional activation-level function B: R? — R of f(t_l = (Y1,...,Yiy)
(1< ¢<p). The resulting model, denoted by LGNN(k;p),, is defined as
k ~ ~
Yy =) L(X;1;0.,)B(Xi-1;05,) + &, (2.61)
j=1

where B ()Nit,l; 0 B;) is defined as the difference between two opposed logistic func-
tions, i.e.

S 1
B(X,_1:05) = —( i
’ 14 exp(— (@) X1 — c1j))
1
- L ) (2.62)
1+ exp(—;[w;Xi—1 — ca5])
and where 01, = (w’,7j,c15,¢25)" With w;j = (wij,...,wp;)', 75 the slopeNpara—
meter, and (cij,c2;) (j = 1,...,k) the location parameters. Similarly, 6p, =
((:3;-,’)/]', Clj,CQj)/ with (;VJj = (wlj, e ,wqj)’.

Let ¢ = p. Then a special case of (2.61) is the local linear global neural network
of order p, or L2GNN(k; p) model, where the approximation functions are assumed
to be linear, that iS, L(Xt_l;GLj) = f()j + €}Xt—1 with £j = (§1j7 ce 7§pj)/' The
L2GNN(k; p) model resembles the structure of the AR-NN(k;p) model (2.57), and
is defined as

k
Vi = (€0 + & X 1)B(X4-1505,) + &, (2.63)
j=1
where, similar to the AR-NN of Section 2.9.1, restrictions on the parameters need
to be imposed to ensure identifiability. Further, it is easy to verify that (2.61) is
related to the SETAR(k;p, ..., p)m model of Section 2.6.4, with a similar geometric
interpretation.

Example 2.13: A Simulated L2GNN(2;1,1) Time Series
Consider the single hidden layer feed-forward L2GNN(2;1, 1) model
Y = L(Y;-1;01,)B(Yi-1:0B,) + L(Yi—1;01,) B(Yi-1;0p,) + 1, (2.64)

where
L(Yi-1;60r,) =1-1.2Y, 1, L(Yi-1;607,) = 1 - 0.5Y,1,
1 1
B(Y;_1;0 = —( - >’
(Yi—1;0p,) 14+ exp(10(Y;_1 +6)) 1+ exp(10(Y;_; — 1))
1 1
B(Y;_1;0p,) = —( - )
(Y;-1;0p,) 1+exp(5(Yie1 +2)) 1+exp(5(Yim1 —2))
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Figure 2.15: (a) Skeleton (the combined approximation and activation-level function) of
the L2GNN(2; 1, 1) model (2.64) (blue solid line) with activation-level functions B(Y;—1;05,)
(blue medium dashed line) and B(Y;—1;60p,) (blue dotted line); (b) A typical realization of
the L2GNN(2;1,1) model (2.64); T = 200.

ii.d.

and {g;} "~ N(0,1). Note that (2.64) is composed of a nonstationary AR(1)
process, given by the linear approximation function L(Y;_1;67r,), and a sta-
tionary AR(1) process.

Figure 2.15(a) shows the skeleton of (2.64), i.e. the values of the combined
approximation and activation-level function as a function of the input series
{Yi-1} (blue solid line). The values of B(Y;—1;0p,;) (j = 1,2) are displayed
near the bottom of Figure 2.15(a). For approximately Y;_; < —6.5 both
activation-level functions are almost equal to zero. Around the point Y;_1 =
—6.5, the function B(Y;_1;6p,) changes rapidly from 0 to 1, causing a steep
increase in L(Y;—1;0r,)B(Y;—1;0p,) when —6.5 < Y;_; < —5.6. Then, when
—5.6 < Y;_1 < —2.2, the values of the skeleton drop, due to L(Y;_1;6r,).
At Y;_1 = —2.2, there is a slight increase in the values of the skeleton when
the function B(Y;—1;0p,) begins to activate. Next, at Y;_; = —1.7 a further
decline sets in, with a small increase in the values of the skeleton when the
function B(Y;—1;60p,) begins to deactivate. Finally, the skeleton goes to zero
at about Y;_1 = 2.

In general, as {Y;} grows in absolute value, the functions B(Y;—1;0p,) — 0 (i =
1,...,k), and thus {Y;} is driven back to 0. By imposing some weak conditions
on the parameters w;, and using the above result, it can be proved (Suérez—
Farifias et al., 2004) that the L?GNN model is asymptotically stationary with
probability one, even if the model is a mixture of one or two explosive AR
processes.
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Figures 2.15(b) shows a T = 200 realization from the L2GNN model (2.64).
We observe that the series is fluctuating around a fixed sample mean of
—10.780, with a standard deviation of 9.978, suggesting that the process is
asymptotically stationary. There are, however, occasional large negative val-
ues (max{Y;} = 10.109; min{Y;} = —38.428), indicating local nonstationarity.

NCTAR(k;p, ...,p)q: N
Y=o+ ¢ X1 + 0, (boj + € Xim1)G(Xi—1: @5, ¢5) + ¢

Po =
eI o) = Be)

SETAR(k;p,...,p)q| |LGNN(k;p,...,p),

q=p q=p q=p g=1

;=0 Xy1=Y 4

v v v
SETAR(k;p,...,p) L2GNN(k;p) | | AR-NN(k;p)| |LSTAR(k;p)
§oj =0
£ =0 & =0 ¢ =
(or w; =0)

v

AR(p): Y, =¢o+ 0 CENEE,

Figure 2.16: Flow diagram of various relationships between (non)linear AR, models.

2.9.4 Neuro-coefficient STAR model

The neuro-coefficient smooth transition autoregressive (NCSTAR) model is a gen-
eralization of some of the previously described models and can handle multiple
regimes and multiple smooth transition functions, using a logistic g-dimensional
activation-level function G(-). In particular, the NCTAR model of order p with ¢
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activation-level functions, denoted by NCTAR(k; p)g, is defined as

k
Y=o+ ¢ X1+ Y (€05 + &KX 1)G(Xy15@5,¢5) + 4, (2.65)
j=1

where
G(Xi-15@;,¢;) = (1+ exp(—[@)Xs 1 — ¢]) 7,
with
Xio1 = (Yicts- o Yip), Xim1 = (Yiet, ..., Yieg)'
@j = (@15, 0g5)s & = (Exjr-- 2 &py)s (G=1,...,k).

Imposing the same parameter restrictions for the AR-NN model given in Section
2.9.1 guarantees identifiability of the NCTAR model. Figure 2.16 shows a flow
diagram of various relationships between the (non)linear AR models.

2.10 Markov Switching Models

Markov chains have received wide attention in many areas of science. Before discuss-
ing Markov switching models, we introduce some basic notions. As is well known, a
Markov chain {S;} is a discrete stochastic process S; € {1,...,k}, satisfying

P(S; = j|Si—1 = 0,512 =1,...) = P(S; = j|Si—1 = i) = psj,

k
=1

Loosely speaking, a Markov process is called irreducible if any state j can be reached
from state ¢ in a few steps, and it is termed aperiodic if the number of steps it needs
to return to a state has no period. Furthermore, a Markov chain is ergodic if it is
irreducible and aperiodic.

Any Markov chain has a stationary distribution {m; = P(S; = j )};?:1 satisfying

k
=D Wi, (2.66)
j=1

or in matrix form w = P’swr where w = (71, ..., )" is the k x 1 vector of steady-state
probabilities, and P = (p;;) is the k x k transition probability matriz. For an ergodic
Markov chain, 7; = lim,—.o P(S, = j|S1 = 1) (independent of 7).

Markov switching ARMA model
Consider a univariate time series process {Y;, ¢t € Z} that is influenced by a hidden
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discrete stochastic Markov process {S;}. Then a Markov-switching ARMA (MS—
ARMA) is defined as

k
= ou(ef +Z¢ Yiou+ el +Z€ &) (2.67)
i=1
where

5ti:{ 1 lfSt:’L,

0 otherwise,

with €§ D= 02, and {g;} "X (0,1), independent of {S;}. So, S; denotes the regime

or state prevailing at time ¢, one of k possible cases, i.e. it plays the role of {J;}
n (2.27). In the case k = 1 there is only one state and {Y;,t € Z} degenerates
to an ordinary ARMA process. Adding exogenous variables, such as trends, is a
straightforward extension of (2.67). Another extension of the model is to allow for
generalized autoregressive conditional heteroskedastic (GARCH) errors. Multivari-
ate modeling, including modeling cointegrated processes, is also an option.
Emphasis has been on two-state (k = 2) Markov switching AR (MSA or MSAR)
models with ¢; =0 (i = 1,...,k) and wy = p12, wa = pa1. The resulting process is
ergodic, with no absorbing states, if 0 < w; < 1 and 0 < ws < 1. The stationary
probabilities are m = wa/(w1 + w2) and m = wi/(w; + wa) (cf. Exercise 2.7).
Moreover, the system stays in regime ¢ for geometrically distributed time with mean

Example 2.14: A Two-regime Simulated MS—AR(1) Time Series
Consider a two-regime (k = 2) MS—-AR(1) process given by

{ 6V, +ore, i S =1,
}/t pu—

2.68
¢52)th1 +o9ep if Sp =2, (2.68)

where

M= 6P =009, 02 =1, 62=0.25, p11 = 0.8, and py = 0.9.

ii.d.

Figure 2.17(a) shows a realization of (2.68) with {e;} "~ AN (0,1). A scatter
plot of Y; versus Y;_1 (not shown here) depicts two linear relationships: one
showing a positive relationship and one with a negative linear relationship
between the two variables.

There are various ways to estimate the MS-AR model. Because {S;} is not
observed, the model does not directly give a likelihood function. Let 8 =
(¢§1)7 ¢>§2), U%,O’%,pn,pgg)/ be the vector of parameters, and F; the o-algebra
generated by {Y, s <t}. Maximum likelihood (ML) estimation requires

2
FYIFe1;0) =Y FYVilFi1, S = §; O)P(Se = j|Fi130), (2.69)

i=1
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Figure 2.17: (a) A realization of the MS—-AR(1) model (2.67), T = 500; (b) Estimated
smoothed probabilities in state 1 and 2 are plotted as blue and green solid lines, respectively.

A fowas

0

0 0

where f(Y;|Fi—1,S: = j;0) follows directly from the model, and P(S; =
J|Fi—1;0) can be obtained recursively from Bayes’ rule:

2
P(S; = j|F1-1;60) = > P(Si-1 = i|Fi_1; 0)pij, (2.70)
=1
. J(Yy, Sy =i Fi1;0)
P(Sy = i|F;0) =
(S =70 = T E )

f(Ye|Feor,Se = 1;0)P(S; = i| Fi—1;0)

F : | . 2)
Yoic1 S| Fio1, S = 4, 0)P(S, = i| Fy-150)

Starting from the initial stationary probability

w2

P(S; =1|F1) =m = =1-P(S; =2|F3),

w1 + wo
we can construct the quasi log-likelihood function by evaluating (2.70), (2.69)
and (2.71) iteratively for ¢ = 2,...,7. This is known as the Hamilton
(Hamilton, 1994, Chapter 22) filter (closely related to the Kalman filter). Un-
der stationarity conditions, the quasi maximum likelihood (QML) estimator 0
of 8 has the usual asymptotic properties. After maximizing the likelihood func-
tion, a similar Bayesian argument can be used to produce estimated smoothed
probabilities

~ ~

P(S; =1|Fr;0) =1—-P(S; =2|Fp;0), t=1,...,T.
For the simulated data of Figure 2.17(a), we obtain the parameter estimates

351) = 0.93(0.02) %2) = —0.88(0.02) 07 = 0.94(0.12), 05 = 0.28(0.02);
P11 = 0.78, p2e = 0.89,
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with asymptotic standard errors of the parameter estimates in parentheses.
The expected duration (length of stay) in the first regime is 1 /(1 —p11) =~ 4.56
time periods, and in the second regime 1/(1 — pa2) &~ 9.33 time periods. In
conjunction with this result, Figure 2.17(b) shows the estimated smoothed
state probabilities.

2.11 Application: An AR-NN model for EEG Record-
ings

To illustrate the application of a single hidden layer feed-forward AR-NN model,
we reconsider the EEG recordings (epilepsy data). Let {Y;}%3} denote the time
series under study. The aim will be to reconstruct the dynamics underlying {Y;}
and to predict future values. From the discussion in Example 1.2 it is reasonable
to treat {Y;} as a realization of a stationary process. If, however, this is not the
case we recommend to transform the series to a stationary series if possible (e.g. by

differencing) before training an ANN on it.

Implementation
Implementing an AR-NN model requires several decisions to be made. First, we
need to decide whether the data need scaling. Rescaling the data is linked to initial
values of the weights w; (j =1,...,k). These weights must vary over a reasonable
range, neither too wide nor too narrow, compared with the range of the data. If
this is not the case, the criterion function will have a number of local minima.
Although, it is difficult to offer a general advice on the choice of scaling, the data in
the training set is often standardized to have zero mean and variance one. Still it is
recommended to train an AR-NN a couple of times, using different initial weights.
For the EEG recordings we decided to use the original data. Since the values of the
inputs are large, but centered around zero, we followed a recommendation in the R
documentation of the nnet package to take the initial values of the weights randomly
from a uniform [—1/max{|Y;|, 1/ max{|Y;|}] (¢ =1,..., N) distribution with N the
size of the training data set, also called the total number of in-sample observations.
The next issue is the choice of G(-). A commonly used activation function is the
logistic function, which we adopt here. Furthermore, we need to choose the number
p of input (lagged) variables, and the number of hidden units k. Various strategies
have been proposed for this purpose. One strategy is to perform a grid search over a
pre-specified range of pairs (p, k) and select the AR-NN on the basis of minimizing
a model selection criterion. Recall, » = (p + 2)k + p + 1 denotes the number of
parameters fitted in the model. Then Akaike’s information criterion (AIC) and the
Bayesian information criterion (BIC) are, respectively, given by

AIC = Nlog(c?) + 2r, BIC = Nlog(6?) + r In(N),

where 52 denotes the residual variance.
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Table 2.1: Comparison of various AR-NN models applied to the EEG recordings; T = 631.
Blue-typed numbers indicate minimum values of a number of “key” statistics.

Measures of fit Forecast accuracy
E p r G2 AIC BIC RMSFE MAFE
0 7 8  3875.15 7937.34 7971.73 65.76  51.29
1 7 17 3833.37 7949.44 8022.53 65.76  51.91
2 7 26 385246 7970.15 8081.92 65.27  51.20
3 7 35 3807.98 7981.83 8132.29 65.24  51.60
4 7 44 3744.84 7990.73 8179.89 63.76  49.87
5 7 53 3490.68 7970.50 8198.34 63.80 50.17
0 8 9  3146.67 7810.71 7849.38 51.99  40.43
1 8 19 3091.29 7821.07 7902.71 52.76  40.33
2 8 29  3041.18 7832.19 7956.81 52.23  39.75
3 8 39 3118.29 7865.79 8033.38 51.77  39.95
4 8 49 2702.61 7808.10 8018.66 51.25  39.12
5 8 59  2653.02 7818.05 8071.58 53.04  43.26

An alternative strategy is to select a linear AR(p) model first, using AIC or BIC.
In the second stage hidden units are added to the model. Then, the improvement
in fit is measured again by the AIC and BIC. In practice, we recommend the use
of both order selection criteria. The reason is that the number of parameters in an
AR-NN model is typically much larger than in traditional time series models, the
ordinary AIC does not penalize the addition of extra parameters enough in contrast
to the BIC. Section 6.2.2 contains some alternative versions of AIC which, for large
values of p, penalize extra parameters (much) more severely than AIC.

Subsamples

Since the time-interval between oscillations in the original time series of EEG record-
ings is about 80, we divide the data into two subsamples. The first subsample, used
for modeling, consists of a total of 551 observations. The remaining 80 observations
are used in the second sample for out-of-sample forecasting.

Table 2.1, columns 4 — 6, contains values of 52, AIC, and BIC for subselection
of AR-NN models fitted to the data in the first subsample. Blue-typed numbers
denote minimum values of these statistics. BIC selects an AR-NN(0; 8) model. This
result is in line with the linear AR(8) model preferred by AIC on the basis of the
complete data set of 631 observations. In particular, the resulting estimated model
is given by

Y;g :16.96(98_42) + 2'71(0.06)}/2*1 — 3.21(0_11)}/;72 + 2'52(0.16)Y2*3 — 1.89(0'19)Y274
+0.84(0.19)Yi—5 + 0.68(0.16) Yi—6 — 1.14(0.11) Y7 + 0.46(0.04) Yi—s + &,

where asymptotic standard errors of the parameters are in parentheses, and where
the residual variance is given by o2 = 3080.48. In contrast, AIC picks the AR~
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Table 2.2: EEG recordings. Biases and weights of the best fitted AR-NN(4;8,...,8) model.

Output
Hidden layer layer
hi ha h3 ha 0

Bias Qo — -0.19  0.00 1.03 -0.01 -78.85
Input layer i1 — -16.57 19.59 -4.32 3.19 2.70
ig — -1.74 10.80 -3.88 2.43 -3.25

i3 — -10.14  5.88 0.63 2.51 2.63

14 — -6.17  3.40 2.97 1.69 -2.03

i5 — 242 -2.65 4.96 0.61 0.96

ig — -10.64 -4.51 -0.74 1.22 0.56

i7 — -10.87 -1.57 -7.31 1.62 -1.05

i85 — 7.66 -4.56 -17.27 1.69 0.46

Hidden layer h1 — 25.84
ho — 50.01

hs — 49.15

hy — 29.31

NN(4;8,...,8) model and gives much results in terms of residual variance than

BIC.

Table 2.2 shows the biases and weights of the single-layer AR-NN(4;8,...,8)
model. Evidently, the weights correspond to the coefficients in the logistic activation-
level functions G(-) (j = 1,...,4). As can be seen from the values of wj, (j = 1,2),
the first two neurons h; and he have much more effect on the output than the third
and fourth neurons. The inputs at lags 1, 2, 3, 6, 7 and 8 have the largest effect, in
absolute value, on the first hidden layer hy, whereas all inputs contribute less to the
second hidden layer hy. Clearly, all inputs have an effect on hs, but less on hy. The
signs tell us the nature of the correlation between the inputs to a neuron and the
output from a neuron. The negative values of w;; at lags i =2 (j = 1,2,4), i =4
(j=1,2,3),and i = 7 (j = 1,2, 3) match the signs of the parameter estimates in the
fitted linear AR(8) model. This is about all that can be said about the weights here.
Indeed, it is unwise to try to interpret the weights any further, unless we reduce the
influence of local minima by using different initial weights.

Forecasting
We consider the forecast performance of the AR-NN(k;p,p) models in a “rolling”
forecasting framework with parameter estimates based on a (551 — p) x p matrix

consisting of the in-sample observations: {Yt}?i%, {Y; i’i%:ll, Y 550 (=1) (here,

p =T and p = 8); see Section 10.4.1 for details on various forecastmg schemes. We
evaluate the fitted model on the basis of H = 1 to H = Hp.x = 80-steps ahead
forecasts. So, we use an 80 X p matrix consisting of the out-of-sample observa-

tions: {V;}939. (Vo0 L ... {Y}}f?’%m(p (;) 1) Finally, the 80 forecast errors are

summarized in two accuracy measures: the sample root mean squared forecast error
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(RMSFE) and the sample mean absolute forecast error (MAFE); see the last two
columns of Table 2.1. Note that the difference between the AR-NN(5;8,...,8) and
AR-NN(0; 8) models is minimal, in terms of RMSFE and MAFE.

2.12 Summary, Terms and Concepts

Summary

In this chapter we summarized the main features of various classic and popular
nonlinear model classes introduced in the literature and some of the generaliza-
tions/extensions of these models. Much of the material should be familiar to re-
searchers and practitioners already working in the field, but it is worth reviewing.
Specifically, the chapter may be viewed as a useful basis for discussing the statistical
properties of a number of these models in later chapters. One important practical
point about these nonlinear models is that many model classes relate to one another,
either through the Volterra representation or via the SDM. In addition, we have seen
that some simple specializations of these models can produce interesting qualitative
nonlinear behavior. More specializations will be examined throughout the rest of
this book.

Terms and Concepts

activation-level, 56 neurons (nodes), 56

aperiodic, 66 periodic function, 37
asymptotically stationary, 59 random coefficient, 39
back-propagation, 58 recurrent, 61

doubly stochastic, 39 regimes, 41

exponential function, 51 self-exciting, 41

feed-forward, 56 shortcut connections, 58

hidden unit, 56 skip-layer, 57

hyperplane, 46 state-dependent model (SDM), 32
impulse response function, 36 super (sub) diagonal, 34
innovation process, 31 threshold, 41

irreducible, 66 training, 57

limit cycle, 37 transition probability matrix, 66
logistic function, 51 Volterra, 30

multi-layer perceptron (MLP), 56

2.13 Additional Bibliographical Notes

Section 2.1: The beginning of nonlinear time series has been attributed to Volterra (1930);
see, e.g., Brockett (1976). Wiener (1958) suggests a linear combination of nonlinear functions
using high order moments and high order polynomial models. The use of Wiener’s approach
died out in the 1960s largely due to the complexity of the proposed model and associated
problems of parameter estimation.
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Section 2.2: D’Alessandro et al. (1974) provide a set of necessary and sufficient conditions
for a Volterra series to admit a BL realization and showed there is a clear-cut method for
determining the Volterra series for a BL system. Brockett (1977) links Volterra series and
geometric control theory by proving that over a finite time interval, a BL. model, which is
itself a special case of Wiener’s model, can approximate any “nice” Volterra series with an
arbitrary degree of accuracy. Priestley (1988) discusses how BL models may be regarded
as the natural nonlinear extension of the ARMA model. A considerable amount of research
deals with various properties of BL models; see, e.g., the monographs by Granger and
Andersen (1978a), and Subba Rao and Gabr (1984).

Section 2.3: Haggan and Ozaki (1980, 1981) propose the ExpAR model when p = 2, d = 1,
and ¢y = 0. Earlier, Ozaki and Oda (1978) investigate the ExpAR(1) model with ¢y = 0
and d = 1. Jones (1978) considers methods for approximating the stationary distribution of
nonlinear AR(1) processes, including ExpAR(1) processes.

Section 2.4: The monograph by Nicholls and Quinn (1982) provides a good source of
the early works on RCAR models. These authors also generalize Andel’s (1976) results to
multivariate RCAR models. Amano (2009) proposes a G-estimator (named after Godambe)
for RCAR models. Aue et al. (2006) deal with QML estimation of an RCAR(1) model.
Pourahmadi (1986) presents sufficient conditions for stationarity and derives explicit results
for double stochastic AR(1) processes with log(/37 ;) in (2.24) following a stationary Gaussian
process, an AR(1) process, and an MA(q) process.

Section 2.5: Robinson (1977) and Lentz and Mélard (1981) consider estimation of simple
nonlinear MA models using moment methods and ML, respectively. Ashley and Patterson
(2002) use GMM to obtain estimates of the coefficients of a quadratic MA model. Ventosa—
Santaularia and Mendoza—Veldzquez (2005) propose a nonlinear MA conditional heteroske-
dastic (NLMACH) model with similar properties as the ARCH-class specifications.

Sections 2.6.1 — 2.6.2: Tong (1977, 1980, 1983, 1990) explores (self-exciting) TAR models
in a number of papers, and two subsequent books; see also Tong (2007). Other influential
publications are: Petruccelli (1992), who shows that threshold ARMA (TARMA) models,
with and without conditional heteroskedastic (ARCH) errors, can approximate SDMs al-
most surely; Tong and Lim (1980), who demonstrate the versatility of SETAR models in
capturing nonlinear phenomena; and K.S. Chan and Tong (1986), who discuss the problem
of estimating the threshold parameter. Nevertheless, as noted by Tong (2011, 2015), these
early publications did not attract many followers. Indeed, the real exponential growth of
the threshold approach, and its extensions took off only in the late 1990s. The impact of
Tong’s SETAR models is enormous across many scientific fields. For instance, Hansen (2011)
provides an extensive list of 75 papers published in the economics and econometrics literat-
ures, which contribute to both the theory and application of the SETAR model. Similarly,
Chen et al. (2011b) review the vast and important developments of the threshold model in
financial applications.

Section 2.6.3: Gonzalo and Wolf (2005) propose a subsampling method for construct-
ing asymptotically valid confidence intervals for the threshold parameter in (dis)continuous
SETAR models. Stenseth et al. (2004) consider an extension of the CSETAR model, which
they call functional coefficient threshold AR model, that specifies some coefficients of the
SETAR model to be functions of some covariates.

Section 2.6.4: Medeiros et al. (2002b) propose SETAR models with unknown multivariate
thresholds. For most practical problems a search over all possible threshold combinations
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is infeasible. Therefore these authors propose a procedure based on a greedy randomized
adaptive search procedure (GRASP) which solves optimization problems which have a high
number, but not infinite, of possible solutions; see, e.g., Feo and Resende (1995).

Section 2.6.5: Wecker (1981) introduces the class of asMA models, and Brannés and De
Gooijer (1994) extend this class to ARasMA models combining a linear AR with an asMA
part. Further extensions include asMA models with an analogously defined asymmetric
parameterization of the conditional variance (Brénnds and De Gooijer, 2004), and vector
ARasMA models with asymmetric quadratic ARCH errors (Brannés et al., 2011). Guay and
Scaillet (2003) introduce a TMA model, as an asMA model which allows for contemporan-
eous asymmetry, and which does not restrict the threshold to be equal to zero.

Section 2.6.6: Astatkie et al. (1996) and Astatkie (2006) apply NeSETAR to time series
data of daily streamflow. Hubrich and Terdsvirta (2013) discuss a vector nested SETAR
(VNSETAR or VNTAR) version of (2.40) with only two regimes in each stage, and implicitly
assuming that R(»7) = RU (4,5 = 1,2). An application of a special type of vector NeSTAR
(called structural break TVAR) is in Galvao (2006).

Section 2.7: An early reference to the term smooth transition is Bacon and Watts (1971),
which deals with the problem of two-phase regressions. K.S. Chan and Tong (1986) intro-
duce STAR models into the nonlinear time series literature. The STAR, family of models are
popularized by, for instance, Granger and Terasvirta (1992a) and Terdsvirta (1994). Van
Dijk et al. (2002) provide a survey of various extensions and modifications of STAR models.
Lopes and Salazar (2006) discuss Bayesian STAR models. The ASTMA model was intro-
duced in Brénnés et al. (1998). Aznarte et al. (2007) establish the functional equivalence
between STAR models and fuzzy rule-based systems.

Chini (2013) proposes a generalized STAR (GSTAR) model which allows the STAR family
to capture the dynamic asymmetry in the conditional mean of a time series process, by using
a particular generalization of the logistic smooth transition function.

Section 2.8.1: Raftery (1980) and Lawrance and Lewis (1985) derive properties and limit
theorems of the NEAR(p) (p = 1,2) model. Chan (1988) obtains a necessary and suffi-
cient condition for the existence of an “innovation” process and a stationary ergodic process
satisfying a NEAR(p) model (p > 1). Smith (1986), Karlsen and Tjgstheim (1988), and
Perera (2002, 2004) consider the problem of estimating the NEAR(1) and NEAR(2) models.
Raftery (1982) proposes various modifications of the NEAR(1) model. He also introduces
three nonstationary generalizations of the NEAR(1) model, including one which is appro-
priate when a seasonal effect is present. Moreover, he points out how the NEAR(1) model
can be extended into a multivariate specification. Lawrence and Lewis (1977) develop the
EMA(1) model, and Jacobs and Lewis (1977) introduce the EARMA(1,1) model.

Section 2.8.2: The PAR(1) may be viewed as a special case of the multiplicative error model
for modeling non-negative processes of Engle (2002). Both McKenzie (1982) and Abraham
and Balakrishna (2012) provide an algorithm for the simulation of PAR(1) models in the
case of a gamma marginal distribution. Jose and Thomas (2012) study the properties of a
PAR(1) model with a log-Laplace marginal distribution. Further, they consider multivariate
extensions.

Section 2.9: A good understanding of neural networks can be obtained from, for instance,
the (text)books of Hertz et al. (1992) and Ngrgaard et al. (2000). Recurrent neural network
models were introduced by Elman (1990). The motivation to consider a single hidden layer
feed-forward ANNs with W(-) a linear activation-level function stems from the fact that,
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under certain regularity conditions, it can provide arbitrarily accurate approximations to
any measurable function in a variety of normed function spaces, given sufficiently many
hidden units; see, e.g., Hornik et al. (1989). This also unveils the main weakness of the
ANNSs since they may end up fitting the noise in the data rather than the underlying DGP.

Sections 2.9.1 — 2.9.3: Lapedes and Farber (1987) propose an AR-NN model for time
series prediction. Recurrent ARMA-NNs are defined by Connor et al. (1994). Aznarte
and Benitez (2010) establish the functional equivalence between AR-NN time series models
and fuzzy rule-based systems. Sudrez—Farifias et al. (2004) present the LGNN and L2GNN
models of Section 2.9.3. They consider parameter estimation by concentrated ML, and
introduce a model building strategy. Furthermore, they address the fundamental differences
between their model and the stochastic neural network model of Lai and Wong (2001) and
the NCTAR model of Section 2.9.4.

Section 2.9.4: Medeiros and Veiga (2002a, 2005) propose the NCSTAR model. The model
is related to the functional-coefficient AR model of Section 9.2.5, and to the single-index
coefficient regression model of Section 9.2.6. Medeiros and Veiga (2003) address the issue of
NCSTAR model evaluation by presenting a number of diagnostic (LM-type) test statistics.

Section 2.10: Kim and Nelson (1999) and Frithwirth-Schnatter (2006) provide an ex-
tensive introduction and discussion of MS models. Ephraim and Merhav (2002) present a
detailed overview of many statistical and information-theoretic aspects of hidden Markov
chains, including switching AR processes with Markov regime. Franke (2012) reviews the
latest developments, and discusses various estimation methods, including Gibbs sampling.
Bayesian estimation of MS-ARMA-GARCH models is the subject of a number of papers;
see, e.g., Henneke et al. (2011). Davidson (2004) gives recursive formulae for multi-step
point forecasts of MS models with ARMA (o0, ¢q) dynamics and ARCH(co) errors. Both
Timmermann (2000) and Zhang and Stine (2001) derive the autocovariance structure of MS
processes. The assumption of fixed transition probabilities have been relaxed by a number
of authors; see, e.g., Bazzi et al. (2014) and the references therein.

2.14 Data and Software References

Exercise 2.10: The Jokulsd Eystri riverflow data set were made available by Tess Astatkie.
The flow series is also listed in Tong (1990, Appendix 3). The complete data set can be
downloaded from the website of this book. Related to this data set, and also available
for downloading, is a set with three years series of daily data (January 1988 — December
1990) on flow, precipitation, and temperature of the Oldman River near Brocket in Alberta,
Canada. In analogy with the results in Exercise 2.10, Astatkie et al. (1996) fit a NeSETAR
to this data set.

Section 2.6: The R-tsDyn package contains a host of functions for testing and modeling
univariate and multivariate threshold- and smooth transition type models. An R function
programmed by K.S. Chan was used to obtain the fitted CSETAR model in (2.34). The
code is available at the website of this book. Marcelo Medeiros contributed MATLAB code
for estimating SETARs with multivariate thresholds using GRASP; see the website of this
book.

Section 2.7: Chapter 18 in the book by Zivot and Wang (2006) covers some popular non-
linear time series models and methods. Examples include SETAR, STAR, Markov-switching
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(MS-)AR, and MS-state space models. S-Plus script files, using the S-Plus FinMetrics mod-
ule, are available at http://faculty.washington.edu/ezivot/MFTS2ndEditionScripts.
htm. R scripts are available at http://faculty.washington.edu/ezivot/MFTSR.htm. The
R-MSwM package deals with univariate MS—AR models for linear and generalized models
using the EM algorithm.

The website https://sites.google.com/site/marcelocmedeiros/Home/codes offers a
set of MATLAB codes to estimate logistic smooth transition regression models with and
without long memory; see McAleer and Medeiros (2008).

Section 2.9: MATLAB offers a toolbox for the analysis of ANNs. The toolbox NNSYSID
contains a number of m-files for training and evaluation of multi-layer perceptron type
neural networks; see http://www.iau.dtu.dk/research/control/nnsysid.html. There
are functions for working ordinary feed-forward networks as well as for identification of
nonlinear dynamic systems and time series analysis. Various ANN packages are available in
R. For instance, nnet, neuralnet, RSNNS, and darch.

Section 2.10: MS_Regress is a MATLAB package for estimating Markov regime switching
models written by Marcelo Perlin and available at https://sites.google.com/site/
marceloperlin/. He also wrote a lighter version of the package in R which, however,
is no longer being maintained; search for FMarkovSwitching on R-forge. The MATLAB
code MS_Regress_tvtp is for estimating Markov-switching (MS) models with time varying
transition probabilities. Its implementation is based on the code written by Perlin.

Data and software (mainly GAUSS code) for estimating MS models is available from James
D. Hamilton’s website at http://econweb.ucsd.edu/~jhamilton/software.htm. The site
also offers links to software code written by third parties. The R-MSBVAR package includes
methods for estimating MS Bayesian VARs.

Appendix

2.A Impulse Response Functions

Impulse response analysis consists in evaluating and examining the time evolution of the
output sequence of a model when a particular input sequence changes in a very short time.
Using the Wold decomposition, the dynamic behavior of a linear strictly stationary time
series process {Y;,t € Z} is commonly described by an impulse response function defined as
the difference between two realizations of Y; 1y (H > 1). Both realizations start from the
same history w;_1, but one realization assumes that between t and t + H the process is hit
by a shock of size § at time t (i.e. &, = §), while in the other realization (called benchmark
profile) no shock occurs at time ¢. Furthermore, all shocks in intermediate time periods
between t and t + H are set equal to zero in both realizations, such that the “traditional”
impulse (TI) response function is defined by

TIy([‘I7 5,wt_1) = E[Y'H_H|Et = 5, Et41 = " = E+H — O,wt_1]
—E[Yiyuler = 0,6041 = - = €44 = 0,wp ], (H>1). (A1)

Nonlinear time series models do not have a Wold representation, however. In these
models, the impact at time ¢ + H of a shock that occurs at time ¢ typically depends on the
history of the process up to the time the shock occurs, on the sign and the size of the shock,
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and on the shocks that occur in intermediate periods t+1,...,t4+ H. This may, for instance,
be deduced from the discrete-time Volterra series expansion (2.3). To avoid these problems,
a natural thing to do is to use the expectation operator conditioned on only the history
and/or shock. Given this choice, the benchmark profile for the impulse response function is
then defined as the conditional expectation given only the history of the process w;_1. This
approach leads to the GIRF, originally developed by Potter (1995, 2000) in a univariate
framework and by Koop et al. (1996) in the multiple time series case. For a specific current
shock, e; = §, and history w;_1, the GIRF is defined as

GIRFY(H, 5, (.A.)t_l) = E[}/t+H|€t = 5, wt_l] — E[K+H|wt_1], (H Z 1) (A2)

It is easily seen that for linear models (A.2) is equivalent to (A.1).

Clearly, the GIRF in (A.2) depends on § and w;_1, which are realizations of the random
variables g; and F;_; the o-field generated by {Ys,s < ¢t — 1}. Hence, GIRFy (T, d,w;_1)
itself is a realization of the random variable given by

GIRFY(H7 Et,ftfl) = ]E[}Q+H‘Et,ft71} — E[Y;+H‘ft71], (H 2 1) (A?))

In general, the GIRF can be defined as a random variable conditional on particular subsets
of shocks (e.g. only negative shocks) and histories (e.g. Y;—1 < 0).16

Note, the above impulse response analysis concerns a single, transitory, shock ¢ at time
t. An alternative scenario is to measure the effect of a sequence of deterministic shocks
{61,92,...,8¢,...} on {e1,e2,...,e1,...}. Recall that a strictly stationary nonlinear time
series process {Y;,t € Z} may be plausibly described by a discrete-time Volterra expansion,
which can be expressed as

Y% = G(gtvgtflv s 781150)7

where {&,} "= N(0,1), €9 = (0,6_1,...), and G(-) is a suitably smooth real-valued func-
tion. Again, the goal is to summarize the effect of the shocks on the time evolution of Y; by
a single measure. Since, however, future innovations are unknown, both the benchmark pro-
file and the profile after the arrival of a shock are random variables. Let {ef,5,...,¢€f,...}
denote a future path for the innovations, where §,¢5,...,¢§, ... are i.i.d. (0, 1) conditional
on €g. The random benchmark profile, or benchmark path, is equal to

Y (eo) = G(ef,e5_1,...,€5,...,€0),
whereas the time path after the shock arrival is given by
Y;S((S,é'o) = G(Ef —+ 575’5?_1 =+ (St_1, e ,6? —+ (51, ey 60),

where d = (1,02,...,d,...). Then the difference of expectations, conditional on g9 = 0, of
the two time paths of the responses is given by

E[Y; (8, £0)leo = 0] — E[¥;(e0)leo = 0. (A4)

16Unlike the linear case there are no general analytic expressions for the conditional expectations
in the GIRF for nonlinear models. However, assuming the nonlinear model is completely known,
MC simulation or BS can be used to obtain estimates of the impulse response measures; see, e.g.,
Exercise 2.11. Appendix 11.B describes the procedure to estimate the GIRF from multivariate
nonlinear time series models along the lines of Koop et al. (1996).
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Observe that this approach ignores the dependence between the benchmark and perturbed
paths, accounted by the joint distribution of (Y;*(eo), Y;*(d,€0),t > 1). Moreover, since the
distribution of {e;} is symmetric, positive and negative shocks will have the same infin-
itesimal occurrence. We refer to Gouriéroux and Jasiak (2005) for an alternative impulse
response analysis, using the concept of nonlinear innovations, which eliminates these prob-
lems and provides straightforward interpretation of transitory or symmetric shocks.

Example A.1: Impulse Response Analysis

As a simple example, consider the BL model Y; = (¢ + te;)Y;—1 + &1 where {e;} R
N(0,1). The effect of a shock § that occurs at time ¢ = 1 is given by the perturbed
path Y;(8) = (¢+ve)Yi—1(8) +e¢ (t > 2). The difference (D) between the benchmark
path and the perturbed path is equal to

VP (0) = Yi(8) =Y = (¢ +¢e1)Y;21(9)

= [1 (6 +ver) (1 + 9Y¥0)(3e1).

T=2

So that, for all ¢ > 2, the effect of a shock as measured by the conditional expectation
of the process {Y,;°(9),t € Z} is given by

E[Y,?(6)[Yo] = ¢'' (1 + ¢Yo) (0e1).

Clearly, this effect converges toward zero if |¢| < 1, which is a more stringent condition
than the necessary and sufficient condition for stationarity of this model, i.e. E[log(¢+
Yey)] < 0; see Chapter 3.

2.B Acronyms in Threshold Modeling

The TAR model has become a standard in nonlinear time series analysis. Many elaborate ex-
tensions/generalization of this model have been introduced since Tong (1977). Broadly these
offsprings can be classified in two groups: TAR-related models with nonlinearities in the con-
ditional mean, and models which extend the threshold idea to include both conditional mean
and conditional heteroskedastic effects in a time series.'” Against this background there is a
growing use of acronyms and catchy abbreviations. Below, we provide a short list of abbre-
viations, including some key-references, without pretending to be complete. In case a model
is introduced for the first time in the book, we include a reference to the appropriate section.
For compactness, we exclude STAR-type models and Markov regime switching models from
the list.

Conditional mean models

as utoregressive) Asymmetric model. en the switching

AR)asMA A ive) A ic MA model. When th itchi
dynamics in a threshold MA model depends on lagged values of
the noise process; Brannéds and De Gooijer (1994) and Section
2.6.5.

"Tong (1990) refers to a second-generation model when nonlinear features in both the conditional
mean and the conditional variance are combined, as opposed to a first-generation model which
concentrates on the conditional mean.
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BAND-TAR

C-(M)STAR

CSETAR
EDTAR

EQ TAR

GTM

LTVEC

M-TAR

MSETAR

MUTARE

NeTARMA

PLTAR

Q-SETAR

A TAR model with the characteristic feature that the time series
process returns to an equilibrium band rather than an equilib-
rium point; Balke and Fomby (1997).

Contemporaneous (multivariate) STAR model. When the mix-
ing weights are determined by the probability that contem-
poraneous latent variables exceed certain threshold variables;
Dueker et al. (2011).

Continuous SETAR; Section 2.6.3.

Endogenous delay TAR model. The model differs from the
standard TAR implementation by using previously unexploited
information about the length of time spent in regimes. This
allows the construction of “sub-regimes” with “major” regimes.
Parsimony is maintained by tightly restricting parameters across
the sub-regimes; Pesaran and Potter (1997), Koop and Potter
(2003), and Koop et al. (1996).

Equilibrium TAR. When the process tends towards an equilib-
rium value when it moves outside the threshold bounds; Balke
and Fomby (1997).

Generalized threshold mixed model. A generalization of the
TARX model to take account of non-Gaussian errors; Samia et
al. (2007).

Level TVEC model. When the equilibrium error process is
different in each regime; De Gooijer and Vidiella-i-Anguera
(2003b).

Momentum TAR, with the thresholding based on the differences
of the time series; Enders and Granger (1998).

Multivariate SETAR model. The model allows the threshold
space to be equal to the dimension of the multivariate process us-
ing lagged values of the vector input series; Arnold and Giinther
(2001).

Multiple SETAR model. The threshold variable is applied to
all the historical observations with a hierarchical substructure
imposed upon the submodels; Hung (2012).

Nested SETARMA model. The model defines primary level sep-
arated regimes using a threshold function which depends on one
source and within each regime of the first stage, two more re-
gimes are nested that are defined by a threshold function which
depends on another source; Section 2.6.6.

Piecewise linear threshold AR model. When the coefficients of
the SETAR model are linear functions of the state vector Y;_4
for some delay d; Baragona et al. (2004a).

Quantile SETAR model. When the existence of different re-
gimes depends on the quantile of the series to be modeled. By
estimating a sequence of conditional quantiles, the model de-
scribes the dynamics of the conditional distribution of a time
series, not just the conditional mean; Cai and Stander (2008).
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RD-TAR Returning drift TAR model. Where a unit root is present in
every regime, but the drift parameters move the process back to
the equilibrium band when the process is outside the threshold;
Balke and Fomby (1997).

RETAR REduced-rank TAR model whose principal component process
is a piecewise linear vector-valued function of past lags of the
panel of time series variables; Li and Chan (2007).

SBTVAR Structural break threshold VAR model. A special case of a two-
regime VNTAR model; Galvao (2006).

SEASETAR Seasonal SETAR model (both multiplicative and additive); De
Gooijer and Vidiella-i-Anguera (2003a).

SEMTAR SETAR model with multivariate thresholds: Section 2.6.4.

SEMI-TAR Semiparametric TAR; Gao (2007) and Gao et al. (2013).

SETARMA Self-exciting threshold ARMA. When parameter values depend
on lagged values of series being explained; Section 2.6.2.

SSETARMA Subset SETARMA model; Baragona et al. (2004b).

(SS)TARSO (Subset) open-loop threshold AR (TAR) system with observable
(O) input; Section 2.6.6 and Knotters and De Gooijer (1999).

TARMA (X) Threshold ARMA (eXogenous) model. ARMA model with a
step function having time-varying parameters; Section 2.6.1.

TARSV Threshold AR stochastic volatility. When the leverage effect
in a financial time series is described by an open-loop TAR(1)
process; Breidt (1996), and Diop and Guégan (2004).

TVEC Threshold vector error correction. When the cointegrating rela-
tionship is inactive inside a given range and then becomes active
once the process gets too far from the equilibrium relationship;
Balke and Fomby (1997) and Section 11.2.4.

VASTAR(X) Vector adaptive spline threshold AR (eXogenous) model; Sec-
tion 12.2.1.

VNTAR Vector nested TAR model; Hubrich and Terasvirta (2013).

VSETAR Vector SETAR model with a single component series or exo-
genous variable to determine the different regimes (also called
multivariate SETAR (MSETAR) model); Section 11.2.2.

VTARMA Vector threshold ARMA; Section 11.2.2.

Conditional mean and variance models
ANST-GARCH Asymmetric smooth transition-GARCH model; Anderson et al.

asMA-asQGARCH

DT(G)ARCH

(G)SSAR(I)-ARCH

(1999).

Asymmetric MA — asymmetric quadratic GARCH model;
Brannés and De Gooijer (2004).

Double threshold (generalized) AR(MA) conditionally hetero-
skedastic (also abbreviated as SETAR-(G)ARCH). When the
conditional mean is specified as a linear AR(MA) process and
the driving random component in the (G)ARCH part is not ob-
servable, but rather linked to the innovations of the TAR(MA)
model; Li and Li (1996) and Section 6.1.3.

(Generalized) simultaneous switching (integrated) AR models
with ARCH errors. When the switching dynamics depends on
lag-one values of the time series; Kunitomo and Sato (2002).
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H(G)AR(CH) Hysteretic (or buffered) GARCH model (also called buffered

AR (BAR)). When the switching back and forth between two
regimes depends on two different thresholds; Zhu et al. (2014).

SETAR-(G)ARCH  SETAR with (generalized) ARCH structure for conditional het-

eroskedasticity; Section 3.3.

SETAR-THSV SETAR with threshold stochastic volatility; So et al. (2002).
TCAV x) Threshold conditional autoregressive Value-at-Risk (CAViaR)

with two regimes, and if appropriate an exogenous (X) threshold
variable; Gerlach et al. (2011).

T-CAViaR-1G A two-regime TCAV with an indirect GARCH(1, 1) model; Ger-

lach et al. (2011).

TDAR Threshold double AR model. When both the conditional mean

and the conditional variance specifications are piecewise linear
AR processes but with the conditional variance specified as a
function of the observations, rather than the innovations; Li et

al. (2016).
T(G)ARCH Threshold (G)ARCH; Rabemananjara and Zakolan (1993),
Zakolan (1994), and Exercise 2.8.
TIG Threshold indirect GARCH(1, 1) model; Yu et al. (2010).
TRIG Threshold range indirect GARCH(1,1) model: A two-regime

TCAV model which replaces return data with range data; Chen
et al. (2012a).

TRV Threshold range value. A two-regime TCAV model which allows

for different responses to high and low ranges in return data;
Chen et al. (2012a).

Exercises

Theory Questions

2.1

2.2

2.3

Show that any BL(p,q, P,Q) model may be “converted” into a superdiagonal BL
model by replacing ¢; with w; = €44 for some L € N. Take as examples models
(2.17) and (2.18).

Consider the ExpARMA (p, ¢) model in (2.20) with d = 1. Let {&:} LR (0,02) with
a density function which is strictly positive on RP*9. Assuming that the DGP is
completely known, express {Y;,¢t € Z} as a convergent series via repeated substitu-
tion. Discuss briefly how this representation can be used to prove that the process is
invertible if maxi<;j<q(|6;| + |75]) < 1.

A Markov process {Y;} is said to be ergodic if starting at any point Y; = y, the distri-
bution of Y converges to a stationary distribution 7(z) = limr_ o, P(Yr < z|Y] = y),
independent of y. It is called geometrically ergodic if this convergence occurs at an ex-
ponential rate. Geometric ergodicity is a concept of stability of the process; it excludes
explosive or trending behavior; see Chapter 3. For the SETAR(2; 1, 1) process

Y, = 01Yio1 +e if Y1 <0,
T oY e i Y >0,
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necessary and sufficient conditions for geometric ergodicity are ¢; < 1, ¢o < 1 and
¢1¢2 < 1. These conditions imply the following three possible cases:

() 2l <1 and |gof <1;

(i) ¢2<—1 and —1< - <¢1<1;

(i) ¢1 <1 and —1< - <¢p <1l

Note that in each case, at least one of the two regimes is stationary (|¢;| < 1).

(a) Suppose that, in cases (ii) or (iii), the system starts in a nonstationary regime
(i.e., ¢; < —1). Explain (intuitively) why the system will always move to the
other (stationary) regime in a few steps, i.e., the probability that it will stay in
the nonstationary regime for the next 7T periods goes to zero as T' — oco. Assume

{ee} "= N(0,02).
(b) Explain why the system will not be stable if ¢; = —1.25 and ¢ = —0.8 (even
though the second regime is stationary).

(¢) Consider a SETAR(k;1,1) process. It has been proved that the conditions for
geometric ergodicity are ¢1 < 1, ¢ < 1 and ¢1¢ < 1. Explain, using the
appropriate versions of (i) — (iii), why the values of the AR parameters in the
intermediate regimes (¢a, . .., ¢r_1) are irrelevant for the stability of the process.

2.4 Consider the SETAR(2;1,1) model

v, — oYe 1+ Y <0,
! —¢Y,1+e ifYiq >0,

where 0 < ¢ < 1, and {g;} "~ A(0,1). The stationary marginal pdf of {Y;,t € Z} is
given by

£ =2(UE) P e { - S0 - 02 o)

with ®(-) the standard normal distribution function.

(a) Prove that f(y) is a solution of the equation
0
fly) = \/% /_DO exp { - %(y ~ 60)? }f(2)da
[Tl L 21 f(y
s [ e { = ju+o?}

(b) Prove that the mean and variance of {Y;,t € Z} are respectively given by

E(Y,) = —(2/m)"26(1 - )72, Var(vy) = (1 - %) (1~ 2%52)

[Hint:
/_Z u®(au 4 b)p(u)du = /i i = L'0(\/1 b+ o2 )’
/_Oo w*(au +b)p(u)du = ‘I’(\A i =) - \/1a+ba2‘p(¢1 b+ =)

with the standard normal pdf ¢(u) = (27)~Y/2 exp(—u?/2).]
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2.5 Consider the asMA(1) model

A +0%eiy ife;—1 >0,
t= et +0 i1 if ;1 <0,

where {g,} "< N(0,1).

(a) Prove that the mean and variance are respectively given by

+ _ —
py = E(Y;) = eﬁf Var(v) = 1+ (0 + (07)?) 5 — -

(b) Assuming stationarity, it is easy to see that the conditional pdf of {Y;,¢ € Z},
given g;_1 = u > 0, is normally distributed with mean py = E(Y;|Ju) = 61u
and variance unity. Similarly, the conditional pdf of {Y;}, given £;_1 = u < 0,
is normally distributed with mean p_ = —f~w and variance unity. Given these
results, prove that the marginal pdf of {Y;,t € Z} is given by

- 1 —y? 0y
fly) = 1+ (9+)2}1/2me’(p{2{1 + (0+)2}}¢({1 + (9+>2}>

1 2 —9-
+aree e e ares)

(c) Consider the case 6t = —0~ = 6. Using part (b), prove that the marginal pdf
of {Y;,t € Z} is identical to the marginal pdf of the SETAR(2;1,1) model in
Exercise 2.3 with ¢ = 0/(1 + 6%)/2.

2.6 (a) Verify the statement in Section 2.8.1 that the NEAR(1) process is not time-
reversible using the third order cumulants of the process; see for cumulants
(4.2).
(b) Consider the PAR(1) process (2.50) with an exponential marginal distribution
of unit mean. Similar as in part (a), show that the process {Y;,t € Z} is not
time-reversible.

2.7 Let S; € {1,2} follow a two-state Markov chain with switching probabilities 0 < wy <
1land 0 < we < 1.

(a) Show that the stationary probabilities are m; = ws /(w1 +ws) and m9 = wy /(w1 +
wa), so that p =E(S;) =1+ 7 = 2wy + w2) /(w1 + w2).

(b) Show that the process {S; — 1} is an i.i.d. Bernoulli sequence if wy + wy = 1.

(c¢) Show that E(S¢|St—1,S:—2,...) = u(l — @) + ¢St_1, with ¢ = 1 — wy — wa, so
that {S;} follows an AR(1) process.

2.8 Let {P;} denote the price of an asset at time ¢ (not paying dividend), then the con-
tinuously compound return, or log-return (often called return), is defined as

P,
r = log(1 + R;) = log P L

=Pt — DPt—-1,
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where Ry = (P, — P,—1)/P;—1 is the one-period simple return, and p; = log P;. The k-
period return is the sum of the one-period log-returns: r[k] = pr — pr—x = Ej;é Ti_j
(k=1,2,...). Now, assume that {r,t € Z} follows the TGARCH(1,1) model r; =
Y, = oeq, with 07 = ap + (a1 + I(Yie1 < 0))Y2, + Bro7; and {&;} SE(0,1),
independent of oy, with E(¢) = 0. The parameters satisfy ag > 0, a3 > 0, 1 > 0
and v > 0. Assume that the parameters also satisfy conditions such as 0% = Var(Y;)
and E(|Y;]3) < oc.

(a) Show that the (one-period) returns r[1] = r, = Y; have skewness zero, i.e.

E(Y?
Ty = (St):O.
Oy

(b) Obtain an expression for the skewness of the two-period returns r[2] = Y;+Y;_1,
and show that it is negative if v, > 0.

Empirical and Simulation Questions

2.9

2.10

2.11

The file eeg.dat contains the EEG recordings used to estimate the AR-NN models in
Section 2.11. Use the data to replicate the results reported in Tables 2.1 and 2.2.

[Note: The results need not be exactly as shown in both tables since they depend heav-
ily on the initial weights chosen by random in the R-function nnet, unless set.seed(1).]

Consider the quarterly U.S. unemployment rate in Example 1.1, which we denote by
{U}252. If we were to work directly with this series, the assumption of a symmetric
error process would be inappropriate. Various instantaneous data transformations
have been employed in the analysis of {U;}. These include the logistic transformation,
first differences, the logarithmic transformation, and log-linear detrended. Because
{U;} takes values between 0 and 1, we adopt the logistic transformation, i.e., {Y; =
log (Uy/(1 — Uy;))}#23. The transformed series (see Figure 6.2(a)) is now unbounded,
and it is reasonable to assume that the error process {e;,t € Z} of the nonlinear
DGPs considered below is conditionally Gaussian distributed. The data are in the file
USunemplmnt_logistic.dat.

(a) Estimate a SETAR(2;2,2) model with delay d = 2.
[Hint: Use the R-tsDyn-package.]

(b) Estimate a CSETAR(2;2,2) model with delay d = 2 and compare the results
with the SETAR results obtained in part (a).

(¢) The 250 x 3 matrix USunemplmnt_matrix.dat contains the transformed (logistic
transform) U.S. unemployment data in the first column. The first- and second
lags of the data are in columns 2 and 3. Estimate a two-state MS—AR model,
and compare the estimation results with the SETAR results obtained in part
(a).

[Hint: Use the R-MSwM-package.]

Astatkie et al. (1997) develop a NeSETAR model for an Icelandic streamflow system
for the years 1972 — 1974, i.e. the Jokulsa Eystri in north-west Iceland. The dynamic
system consists of daily data on flow (Q;), precipitation (F;), and temperature (7}).
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After some experimentation, it was found that the best-fitting NeSETAR model for
Q¢ is

4.820.68) + 0.82(0.03)Qt—1 if Q2 <92m®/s and T, < —2°C,
1.320.06)Qt—1 — 0.32(0.06) Qt—2 B
+0.20(0.03) Pi—1 + 0.5200.10y Ty if Q-2 < 92m®/s and —2°C <T; < 1.8°C,
Qi = 1.15(0.04)Qt—1 — 0.180.04)Q¢—2 + 0.01(0.00) P71 B

+1.22(0.13 7 — 0.890.17 Tr—s  if Qi—2 < 92m?/s and T; > 1.8 C,

49(13.6) + 0.45(0.12) Q11

+3.47 155 Tt + 3751 71)Ti—1 — 6.08(1.43y Ti—3  if Qe—2 > 92m? /s,

(2.72)

where Ty = (Ti—1 + Ti—2 + Ti—3)/3, and with asymptotic standard errors of the
parameter estimates in parentheses. The model includes 16 parameters and produces
a pooled residual variance of 27.4[m?/s]?. As a comparison, Tong et al. (1985) and
Tong (1990, Section 7.4.4) use a TARSO model with 42 parameters to the describe
the streamflow data, resulting in a residual variance of 31.8[m3/s]?.

The file jokulsa.dat contains the series stored in a 1,086 x 32 matrix with variables
(Qta Qtfl, ey Qt—lo, Pt7 Ptfla o 7Pt7107Tt7Tt717 e aTt79)~

(a) Using the notation introduced in Section 2.6.6, specify the structure of the Ne-
SETAR model (2.72). Interpret the fitted relationship.

(b) Using the supersmoother (function R-supsmu) proposed by Friedman (1984),
regression estimates of QQ; on Q;_1 and QQ;_o reveals that there are two linear
pieces in the data, with a threshold estimate 7; = 92 m3/s.

Using the same method as above, verify the estimated second-stage threshold
?2,1 = -2 C.

(c) Form subset data sets for each regime, and estimate the final model by least
squares. Plot the sample ACF and sample PACF of the normalized residuals
and comment.

2.12 Counsider the simple SETAR(2;1,1) model

Yi=01Yio1+¢2l(Yie1 <0) 4+, {e} R N(0,1).

(a) Derive an explicit expression for the one-period TI response function (A.1).
Comment on the resulting time path.

(b) Use bootstrapping to compute the GIRF in (A.3) for horizons H = 1,...,10,
and § = {1, —1}. Set ¢ = 0.9, ¢ = —0.5, and B = 1,000 replicates. Assume
the model is completely known.

Comment on the resulting time path. Also compare the GIRF with the analytic
expression for the TT response function of the AR(1) process Y; = ¢Y;_1 + &;
with parameter ¢ = (0.9 — 0.5) = 0.4.

[Hint: The total number of draws for an initial history is (B — 1)(H + 1). The
relevant computer code should include a loop through the data to change the
initial condition, and a loop through each horizon of impulses: one with the ini-
tial condition based on a bootstrap draw, and one based on ¢; +0. Next, average
over each horizon, for each initial condition. Finally, average over histories.]



Chapter

PROBABILISTIC PROPERTIES

From the previous two chapters we have seen that the richness of nonlinear models is
fascinating: they can handle various nonlinear phenomena met in practice. However,
before selecting a particular nonlinear model we need tools to fully understand the
probabilistic and statistical characteristics of the underlying DGP. For instance,
precise information on the stationarity (ergodicity) conditions of a nonlinear DGP
is important to circumscribe a model’s parameter space or, at the very least, to
verify whether a given set of parameters lies within a permissible parameter space.
Conditions for invertibility are of equal interest. Indeed, we would like to check
whether present events of a time series are associated with the past in a sensible
manner using an NLMA specification. Moreover, verifying (geometric) ergodicity is
required for statistical inference.

In this chapter, we address the above topics. To find a balance between the
many works on stationarity and ergodicity of nonlinear DGPs and yet to achieve
results of general practical interest, we first discuss in Section 3.1 the existence of
strict stationarity of processes embedded within the class of stochastic recurrence
equations (SREs). Associated with the SRE, we define the notion of a Lyapunov
exponent which measures the “geometric drift” of a process. This notion plays a
central role throughout the rest of this chapter. In Section 3.2, we briefly mention
a criterion for checking second-order stationarity. Next, in Section 3.3, we focus
on the stationarity (ergodicity) of the class of nonlinear AR-(G)ARCH models as a
special case, and application of the class of SREs. In Section 3.4, we collect some
Markov chain terminologies and relevant results ensuring not only ergodicity, but
also geometric ergodicity of a DGP. In Section 3.5, we discuss ergodicity, global and
local invertibility of NLMA models with special emphasis on the SETMA model.
This section also contains an empirical method to assess the notion of invertibility
in practice.

Two appendices are added to the chapter. Appendix 3.A reviews some basic
properties of vector and matrix norms, while Appendix 3.B discusses the spectral
radius of a matrix.

© Springer International Publishing Switzerland 2017 87
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3.1 Strict Stationarity

Suppose {Y;,t € Z} is a stochastic process. Then, in a multivariate setting, a
stochastic recurrence equation (SRE) is defined as

Y, =A/Y; 1+B;, tezZ, (31)

where Yy = (Y3,...,Y;—m41) and By are random vectors in R™, A, are random
m x m matrices, and {(Ay,B;),t € Z} is an i.i.d. sequence. Clearly, (3.1) is the
defining equation of a vector AR(1) process with random coefficient matrix A;.
Hence, it is also called a generalized (multivariate) random coefficient AR process
or RCA for short. The process (3.1) is Markovian with transition probability P(y, )
(y € R™) equal to the distribution of A;y + B;. The SRE embeds many of the
nonlinear DGPs introduced in Chapter 2.

Now a sequence {Yy,t € Z} of random vectors in R is said to be strictly (or
strongly) stationary if the joint distributions of (Yy,,...,Y:,) and (Y, 14y .-, Ya, +0)
are the same for all n,h € N, t1,...,t, € Z. Of course, it is not a priori clear for
which distributions of {(A¢, B¢)} a strictly stationary solution to (3.1) exists. Below
we give a sufficient condition in terms of the so-called top (or upper, or max-plus)
Lyapunov exponent. However, first we introduce some additional notation: Let || - ||
be any vector norm in R™; see also Appendix 3.A. For a matrix A € R™*™  the
corresponding matrix norm ||A||s (s € [1,00)) is defined as

Ay

Al = sup 1AV (3.2)
yeRmy#£0 [[¥lls

Then, for an i.i.d. sequence of m x m matrices {A,,,n € Z} with E(log™||A1]|) < oo,

we define the associated top Lyapunov exponent ~y(-) by

. 1 a.s. . 1
v(A) = inf —E(log||A1As---A,l) = lim —log||A1As--- A, (3.3)
neNn n—oo N
where the last equality (Furstenberg and Kesten, 1960) shows that () is independ-
ent of the chosen norm.
By recursive substitution of the lagged values of Yy, (3.1) can be rewritten as

s s i—1

Y, = (HAt_i)Yt_s_l +y (H At_j>Bt_z-, Vs € N, (3.4)
i=0 i=0  j=0

with the usual convention Hj_:lo Ay =1, If limg . (Hf:o At,,-)Yt,s,l =0,

holds, then it is reasonable to hope that (3.4) has a solution process {Y¢,t € Z} that

is stationary. Indeed, suppose that v(A) < 0. Then, under some mild conditions,

the series

o
Y, =B+ > AA 1A 1B, (3.5)

s=1
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Figure 3.1: Strict stationarity parameter region (I U II) based on estimates of the top
Lyapunov exponent, and second-order stationarity parameter region (II) for model (3.6)

with {e,} "= N(0,1).

converges a.s., and the process {Yy,t € Z} is a non-anticipative stationary solution
to (3.4); Brandt (1986). Here, non-anticipative (or causal) means that {Yy,t € Z}
is independent of {(A¢ipn, Bi1r), h € N} for each t. Further, the condition v(A) < 0
is sufficient when {(A, B;)} is strictly stationary and ergodic (Bougerol and Picard,
1992).

Note that v(A) < 0 holds if E(log|[A1]]) < 0 (take n = 1 in the definition of
7()). Now assume m = 1. Then, {Y;,t € Z} as in (3.5) is the unique strictly
stationary solution of (3.1) provided —oo < E(log|A1]) < 0 and E(log™ |By]) < oo.
These two conditions are easy to check, and vy(A) = E(log|A1|) can be obtained
explicitly.

Example 3.1: Evaluating the Top Lyapunov Exponent

Consider the stochastic process
Y, =&+ BiYimig-1 + BoYioet 5, {e} N (0,02). (3.6)
Then (3.6) can be written in the form of the SRE (3.1) with

- Y; [ Biet-1 Pegl, [ &
Yt_()/%_1>7 At_< 1 0 ) Bt_ 0 .

When (3 = 0 (i.e., m = 1), the strict stationarity condition based on the top
Lyapunov exponent takes the simple form vy(A) = E(log|51e¢|) = log |1] +
E(logle]) < 0. If {g;} "= N(0,02), the condition reduces to o.|f1] <
V2exp(C/2) = 1.8874-- -, where C' is Euler’s constant.

When m > 1, closed form expressions for y(A) are hard to obtain, and one
has to resort to MC simulations. Figure 3.1 shows parameter regions for
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strict stationarity (I U II), based on estimates of v(A) (using sequences of
length 10,000), and for second-order stationarity (I7), based on the constraint

2R (e2) 4+ B2E(e}) < 1, for model (3.6) with {g,} "< A(0,1). Note, the
parameter region /1 is much smaller than the region for strict stationarity. In
the case of strict-stationarity the curve for v(A) = 0 passes through the points
(81, 32) = (0, £3.7748) and (f1, B2) = (£1.8874, 0).

3.2 Second-order Stationarity

A sequence {Y,t € Z} of random vectors in R™ is called second-order stationary,
or weakly stationary, if E[|Y||> < oo for all t € Z, E(Y,;) € R™ is independent of
t € 7Z, and the covariance matrices satisfy

COV(Yt1+h, Yt2+h) = COV(-th1 R Ytz)a th, tQ, heZ.

Clearly, every strictly stationary process which satisfies E||Y,|| < oo is also second-
order stationary. In the sequel, we focus on the m-vector time series {Y;,t € Z}
generated by (3.1).

Given the strict stationary solution in (3.5), the vector process {Y;,t € Z} is a
Cauchy sequence in Ls if and only if || (Hj;(l) A, ;)B;_;||2 exists and converges to 0
at an exponential rate as s — oo. Using the i.i.d. property of {(A¢, B¢),t € Z} and
Kronecker product notation, we have

E[[A-- A op1Br o =E(B}_ A} 1 AlA - A 1By )
=E{B;_,®B;_HE(A; @A)} vecL,.

Now, the spectral radius p(M) of a square matrix M (see Appendix 3.B) is defined
as

p(M) = sup{|A| : A is eigenvalue of M}.

Then, provided E||B;||? < oo, it can be deduced (see, e.g., Nicholls and Quinn, 1982;
Tjostheim, 1990) that

p(E(A; ®Ay)) <1 (3.7)

is a necessary and sufficient condition for the moments of order two to exist. This
condition has a similar implication as that the characteristic polynomial associated
with a linear AR process has no roots on and within the unit circle. If; in addition
A has finite moments of order 2m (m > 1), then a necessary and sufficient condition
ensuring finiteness of higher-order moments is p[E{(A;)®?"}] < 1, where M®™ =
M®---®@M (m factors); see, e.g., Pham (1986, Lemma 2). Finally, if {A = A} is
a deterministic process, then from (3.9) it follows that v(A) = log p(A).
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3.3 Application: Nonlinear AR—-GARCH model

Stability and stationarity of the class of conditionally heteroskedastic nonlinear AR
models have been the focus of many papers; see, e.g., Meitz and Saikkonen (2010)
and the references therein. These works often establish geometric ergodicity us-
ing conditions which overly restrict the parameter space. Unfortunately, the SRE
framework does not allow for nonlinear AR models with (G)ARCH-type conditional
heteroskedasticity. In fact, the random coefficients embedding of these models in
(3.1) leads to “coefficients” that are no longer independent nor can one assume a
priori that the process {(A¢,By),t € Z} is stationary. This requires a more subtle
approach than evaluating the asymptotic behavior of random matrices as in (3.3);
see Cline and Pu (1999a,b, 2004).

The m-dimensional Markov (state space) representation of a nonlinear AR~
GARCH time series model is of the form

Y1

Y, = B(—,
Y1l

5t> [Yi1]l + C(Yi-1,e0), (3.8)

where 0 < || B(y/|lyll,w)| < b(1 + |u|) and ||C(y,u)|| < &(y)(1 + |u|) for finite b and
¢(z) = o(|lyll), and where {£,} are i.i.d. random variables with a density symmetric
about 0 and positive on the real line. We also presume that E(|e;]") < oo for
some r > 0. Note, (3.8) includes the SRE in (3.1). Cline (2007c) provides explicit
expressions for B(y /||y, «)|y| in the case of a SETAR model with GARCH errors
depending on past squared values of {Y;}, a nonlinear AR-GARCH model, and a
nonlinear AR model with (possibly nonlinear) GARCH errors.

For stability of (3.8) we need a tool which measures the geometric “drift” of the
process when ||Y;_1]| is large (and C(Y_1,¢¢) is negligible). To this end, we define
the top Lyapunov exponent of the process {Y;,t € Z} as

e 1 14+ Y5
= lim inf lim su —E(lo (—) ‘Y = ) 3.9
TR e VBT )/ T (3:9)

Under some regularity conditions v < 0 implies geometric ergodicity while the con-
verse v > 0 ensures that {Yy,¢ € Z} is transient (explosive); Cline and Pu (1999a,
2001).

Evaluating the double limit in (3.9) by MC simulation is difficult. However, by
establishing ergodicity for a process associated with {Y;,t € Z}, one can express
in terms that are more easy to compute. In particular, observe that only the first
term on the right in (3.8) is homogeneous in Y;_1, and it dominates the behavior
of Yy when ||'Y;_1|| is very large. To exploit this characteristic, and following Cline
(2007c), we consider the homogeneous version of (3.8). That is

Y*
Y = B(%,st) et (3.10)
! Y74l -
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where Y = (Y7,..., Y, ,1). Let © = {|ly|| € R™: |ly|| = 1} be the unit sphere
in R™. Furthermore, define

o,
w(@,u) = |BO, )|, n(0,u) = IIBE ugn for € ©, u € R.
The homogeneous process can be collapsed to O:
Y;
0 = — o; : 3.11
t HY*H 77( tflvgt) ( )

Also, let
Wi =w(0_ ;&)

Evidently the collapsed process {6} } is Markovian. More importantly, {8;} is uni-
formly ergodic (Cline, 2007¢) with some stationary distribution, say 7. Then the
Lyapunov exponent for {Y,,t € Z}

’yz/@E(long\H’S:O)w(dG):/ E(logw(0,e))n(d8)  (3.12)

(S}

is finite. Specifically,

v = lim —Zloth

n—oo N

Thus, we can estimate v simply by simulating the collapsed process and obtaining
the sample average of {log W;}. Alternatively, v may be determined numerically
through an iterative procedure; see, e.g., Example 3.3.

Example 3.2: An Explicit Expression for v (Cline, 2007b)
As a special case of (3.8), consider the Markov chain on R given by

Yia

Y= A0 2 B

at)m 1+ C(Yit, 1), (3.13)

where the process {e;} '~ "(0,1), |B(y/lyl,w)| < b(1 + |ul) and C(y,u) <
¢(1+ |u|) for finite b, e. Furthermore, we have the two-regime SETAR-ARCH
model of order 1 and delay 1:

(1)y-2 /2., ifY. <0
th:A(}/t—la5l):{ (2) ¢ ( 0 i til) t t—1 > )

Y2 ) 2% Y >0,
(3.14)

with each a{”) >0 (i = 1,2;5j = 0,1). Then, by setting

B(—1,u) = ={" + (a{")?u, B(1,u) = ¢ + (af)!/2u,
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and

C(y,u) = A(y,u) — B(y/lyl,w)|yl,

we can decompose (3.14) in the form (3.13), where B(-) and C(-) are respect-
ively a homogeneous and a locally bounded function in Y;_;. Now, analogous
to (3.11), the homogeneous form of (3.13) can be collapsed to the process
{0f = n(0;_,,e¢)} which is a two-state Markov chain on [—1, 1]. Let

pij =P(07 = jl65 =) =P(n(i,e1) =34), i.j€{-1, 1}

Then, the stationary distribution of {6;} is given by my = 1—-7_1 = p_1.1/(p1,-1
+p_1,1) (cf. Exercise 2.7). To establish the uniform ergodicity of {6}, Cline
(2007a) shows that there exists a function v: {—1, 1} — R and a constant ~
which solve the following identity, also known as the Poisson equation,

E(v(0) — v(0)) + log Wi|05 = i) =, i=+1.
The solution is given by

E(log Wy|05 = 1) — E(log W05 = —1)
2(p1,—1+p-11)

o(£1) = +

)

with Lyapunov exponent

v =n_1E(log|B(—1,e1)|) + mE(log|B(1,e1)]). (3.15)

Example 3.3: Numerical Evaluation of v (Cline, 2007c¢)
Consider the two-regime SETAR-ARCH model of order 2 and delay 1:

Y, = o) + X0y oY+ (af) + 7 afVYE )2y i Y <0,
‘Z)(()Q) +37, ¢z(2)yt—i + (a(()Q) +3 7, 0%(2)1/;52—1‘)1/2516 if Y1 >0,
(3.16)
where {g;} "~ (0,1), and each ozgl) >0(i=1,2;5=0,1,2). In this case we
have the state vector Y; = (V;,Y;—1)" and the collapsed process {0;} takes
values on the unit circle in R%. In addition, there are thresholds located
at arc(f) = +m/2 on the unit circle. Since m > 1, one can only evaluate
the Lyapunov exponent either by direct MC simulation or by numerically
analyzing a uniformly ergodic process. Below we show results for v obtained
by solving numerically an equilibrium equation given by

v(8) = E((6]) + logl|w(8,<1)[|65 = 6) — 1. s.t./ V(0)d6 = 0. (3.17)
(S)
Simply stated, the solution follows from a one-dimensional numerical integ-
ration method combined with an iteration step for linear interpolation of a
piecewise continuous function with linear extensions beyond the knots near a
discontinuity point and at the extremes.
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Figure 3.2: Strict stationarity parameter regions (black solid line) for a SETAR-ARCH
model, parameter regions for checking the existence of the first moment (blue medium dashed
lines) and second moment (red medium dashed lines), and parameter regions for second-order
stationarity (green solid lines) of {Y, = (Y;,Yi—1)',t € Z}.

Suppose 7 < 0, then it is often useful to determine which moments are finite
for the stationary distribution of {Y;,t € Z}. For general nonlinear AR-GARCH
processes it can be shown (Cline, 2007a) that the rth moment exists when there is
a bounded, positive function A(@) such that

%
sup E(w(Wf)T‘OS = 0) <1 forr>0. (3.18)
0co \ A(0)

A solution of (3.18) may be obtained by a numerical procedure analogous to eval-
uating v through (3.17). For the quadrature (numerical integration) the results
presented below are based on 100 evenly spaced points in (=5, 5), and 200 points
are used for interpolating v(-) and A(-). Only eight parameters are critical for the
stability of {Y¢,t € Z}. Their values are:

oV =03, ¢ =02, ¢ = —04, ¢Y = —0.1,
ol =072 ol = (0.2)2, al? = (0.3)2, and of? = (0.1)2.

Figures 3.2(a) and (b) show parameter regions for strict stationarity (black solid
lines) of the SETAR-ARCH model in (3.16) with in each case six parameters fixed
and the remaining two parameters varying over a range of values. The figures also
contain parameter regions for checking the existence of the first- and second moments
of {Y,t € Z}. Obviously, both regions are contained within the strict-stationarity
region though covering a more restrictive set of parameter values. Indeed, we observe
that for strict-stationarity the leading coeflicient (;Sgl) can be quite negative provided
the other leading coefficient is not too big. Note that the stability region in Figure
3.2(b) closely resembles the stability region of a SETAR(2; 1, 1) model given in Figure
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3.3(a). Presumably the values of qbgl) and gbgm dominate the general pattern of the
stability region while the other parameters have hardly any effect.

Figures 3.2(a) and (b) also show the parameter regions for second-order station-
arity (green solid lines). The corresponding condition follows from (3.7) in Section
3.2, and is given by

(max(|¢)], 16P]) + max(|6y”, |657]))? + max{al’, o{?}
+ max{a”, 0P} < 1. (3.19)

We see that (3.19) is far too restrictive compared to the strict stationarity condition.
Imposing them would unduly limit the dynamics permitted by the SETAR-ARCH
model. In fact, as we see from the shape of the region enclosed by the red medium
dashed lines, some parameters may have values much bigger than one, while the
second moment still is finite.

3.4 Dependence and Geometric Ergodicity

3.4.1 Mixing coefficients

For i.i.d. sequences, the laws of large numbers and the central limit theorem are
the cornerstone for making statistical inferences. In the context of analyzing time
series, the i.i.d. assumption is practically always violated. Therefore, there is a
continuous search for conditions weaker than independence for proving the above
limit theorems, or variants thereof. Weak dependence is often quantified in terms of
mixing conditions. Roughly speaking, mixing means that the future behavior of a
time series becomes “almost independent” of the past, as time goes by. There exist
several notions of mixing; see, e.g., Doukhan (1994). Here we concentrate on two
standard dependence structures.

Let {Y¢,t € Z} be a strictly stationary time series in R™ defined on the probabil-
ity space (€, F,P). Denote by F° __ and F3° the o-algebras generated by {Y, s < 0}
and {Y,, s > t} respectively. For each k > 1, define the following dependence coef-
ficients

alk) = sup |P(AN B) — P(A)P(B)], (3.20)

0
Aer) ,BeFy

I J
sup YD IB(AiN By) — B(A)P(B))], (3.21)

0
FlooBi€F i=1 j=1

B(k) =

1
2 A€

where in the definition of (k) the supremum is taken over all pairs of finite partitions
{A1,...,As} and {By,..., By} of Q such that A4; € F° __ for each i and B; € F°
for each j.

The quantities a(k) and (k) are called mizing coefficients. The process {Yy,t €
Z} is called strongly mizing (or a-mizing) if limg_,oo a(k) = 0, and [-mizing (or
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absolutely regular mizing) if limy_,o, G(k) = 0. Additionally, the process is said to be
strongly mixing with geometric rate if {Yy,¢ € Z} is a-mixing (or [-mixing) with
exponentially decaying coefficients. Since a(k) < (1/2)5(k), f-mixing implies a-
mixing. The a-mixing is the weakest condition among all currently available mixing
conditions. One way of checking mixing or stationarity conditions is to express
(or approximate) the nonlinear model as a suitably chosen Markov chain and use
Markov chain theory. This will be the focus of Section 3.4.2.

Mixing conditions are helpful in proving limit theorems. For instance, for the
special case of strongly mixing sequences, these conditions imply the following central
limit theorem (CLT) (Herrndorf, 1984, Corollary 1). Let {¥;}{2; be a zero-mean
univariate stochastic process, where

sup|[Villara < oo and Y {a(k)}¥@™ < oo for some a € (0,00).
t k=1

Assume that 02 = limp_o Var(T—1/2 Zle Y;) > 0. Then, T~/ ZleYt D,

N(0,0%), as T — oo; see also Rio (1993). The generalization of this CLT to a
centered vector-valued stochastic process {Yy,t € Z} is obvious.

3.4.2 Geometric ergodicity

Feigin and Tweedie (1985) develop a way of checking sufficient conditions for strong
mixing. We adopt their notation and terminology. So we let {Y;,t € N} be a
temporarily homogeneous Markov chain taking values in (E, £), where E C R™ and
& is the Borel o-algebra on E. We denote its tth step transition probability by
Pl(y, ), i.e.

Pl(y,0) =P(Y:€C|Yo=y), yeR™ Ce€E€,

with P(y,C) = P(Y1 € C[Yy = y) = P'(y,C), and where P is the probability
measure on the underlying probability space on which Yy is defined. A measure 7
is an invariant measure for the Markov chain {Yy,t € Z} if

m(A) :/]EP(X,A)(dy). (3.22)

Assume 7(E) = 1. If there exists a finite measure with property (3.22) and we run
a Markov chain with initial probability distribution =, then the resulting process is
stationary and its marginal distribution is 7 at any time point ¢.

It is of course not yet clear whether the distribution of {Y;,t € Z} converges
towards an invariant distribution 7. If such a convergence happens with respect to
the total variation norm || - ||y, and with a fixed geometric rate, the Markov chain
{Y:,t € Z} is called geometrically ergodic. This means that there exists a constant
0 < p < 1 such that Yy € R™,

Jlim p~![PH(y, ) — 7 ()lly =0 (3.23)
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for almost all initial states y € R™ provided 7(-) < oo. Thus, a geometrically ergodic
stationary Markov chain is also strongly mixing with geometric rate. More precisely,
for a(k) as defined by (3.20), we have a(k) < Kp¥ for some constants K > 0 and
€ (0, 1). If (3.23) holds when p = 1, then {Yy,t € Z} is said to be Harris ergodic.
As usual in the theory of Markov chains, we restrict attention to the case of
irreducible Markov chains. Let ¢ be a non-trivial (i.e. p(R™) > 0) o-finite measure
on (R™,&). Then the Markov process defined above is called ¢-irreducible if VC € €
with ¢(C) > 0, Vy € R™,

> Ply.C) > 0.
t=1

This simply states that almost all parts of the state space are accessible from all
points y of R™. Further, a Markov chain is a (weak) Feller chain if for every bounded
continuous function g(-) on E = R the function

E{g(Y)[Yi-1 =y} (3.24)

is also continuous in y € E.

Next, we state a result due to Feigin and Tweedie (1985, Thm. 1) which ensures
geometric ergodicity. Suppose that (i) {Y¢, ¢ € Z} is a Feller chain, and there exist
a measure ¢ and a compact set C' with ¢(C') > 0 such that

(ii) {Y+,t > 0} is p-irreducible;

(iii) There exists a non-negative continuous function V: E — R satisfying V(y) > 1
Vy € C and for some § > 0,

E{V(Y)| Y1 =y} <(1-0)V(y), y€&C.

Then {Yy,t € Z} is geometrically ergodic.

As already mentioned, for a @-irreducible Markov chain geometric ergodicity and
strict stationarity are equivalent. Thus, verification of the conditions of the above
result will not only ensure the existence of a unique strictly stationary solution of
{Y:,t € Z} but also the geometric rate of convergence of the marginals to the
stationary distribution if the chain is not initially in its stationary regime. The
function V(-) is the so-called test (or Lyapunov) function which is set in advance.
In the vector case, a fashionable choice is V(y) = 1 + y'Qy, where Q is a suitably
positive definite matrix. Condition (iii) is a drift condition for non-explositivity.

Example 3.4: Geometric Ergodicity of the SRE (Basrak et al., 2002)
Consider the SRE in (3.1) with either A; or B; having a strictly positive
density over R". Moreover, suppose there exists an € > 0 such that E||A{||¢ <
1 and E|B1|¢ < oo. It is clear that {Y;,¢ € N} is a Markov chain. We will
show that the process {Yy,t € Z} is geometrically ergodic by checking the
conditions (i) — (iii) above.
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Figure 3.3: Stationarity region of a SETAR(2;1,1) model; (a) d =1, and (b) general d.

(i) Lebesgue’s dominated convergence theorem ensures that for any bounded
continuous function V(-), E{V(Y)|Y:—1 = y} is continuous in y, and
hence the Markov chain is Feller.

(ii)) Given Yo = y, the law of Y; = Ajy + B; admits a strictly positive
density with respect to Lebesgue measure p*, and so the chain is ¢-
irreducible with ¢ = g1

(iii) The condition E||A;]|¢ < 1 for some € > 0 implies E(log||A1||) < 0, using
Jensen’s inequality. Now, without loss of generality, let € € (0, 1] and

Viy)=1+lylY yeR™
Obviously,

E{V(Y:)|Yi1 =y} < 1+E[Ay[ + E[By|°
< 1+E[|A]|y|* + E[Bi[
=E[A[V(y) + (L +EBi|* = E[Aq[[).

Choose C' as the closed ball in R™ with center 0 and radius M > 0 so
large that ¢(C) > 0 and

E{VIY) Y1 =y} <(1-0)V(y), lyl>M

for some constant 1 — 9 > E||A;||°. This proves the so-called drift condi-
tion and completes the argument.

Thus, the stationary solution (3.5) of the SRE is geometrically ergodic, and
hence strongly mixing with geometric rate.

!Lesbesgue measure ,uLEb is a unique positive measure on the class R of linear Borel sets. It is
specified by the requirement: p™*"(a,b] = b—a Va,b € R (a < b). Lebesgue measure on the class
R™ of m-dimensional Borel sets is constructed similarly using the area of bounded rectangles as a
basic definition; see, e.g., Billingsley (1995, Chapter 2).
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Example 3.5: SETAR Geometric Ergodicity

Figure 3.3(a) shows the geometric ergodicity (strict stationarity) region for
SETAR(2;1,1) models with d = 1; see Table 3.1. Note that in contrast with
the stationarity of linear AR models, the region is unbounded. Moreover, we
see a much larger region of stationarity than the region |¢1| < 1 and |¢pa| < 1
which would result if only sufficient conditions for stationarity were applied.
Figure 3.3(b) shows the stationarity region in the parameter space implied by
SETAR(2;1,1) models with d > 2. Comparing these two plots, we see clearly
the effect of the delay parameter d.

In Markov chain terminology, it can be proved (Guo and Petruccelli, 1991)
that the SETAR(2;1,1) model with d > 1 is positive Harris recurrent in the
blue-striped “interior” and “boundary” areas; and it is transient (explosive)
in the “exterior” of the parameter space. The SETAR(2;1,1) model is null
recurrent on the boundaries, and regular in the strict interior parameter space
which in this case implies that the process {Y;,t € Z} is geometrically ergodic.
In other words, the limit cycle behavior of the SETAR model arises from the
alternation of explosive, dormant, and rising regimes.

Table 3.1 gives an overview of necessary and sufficient conditions for geometric
ergodicity of some threshold models. The proofs are given under the assumption that
{e¢} is i.i.d. with positive pdf over the real line R and E|e;| < oo. If appropriate, it is

also assumed that for each 7 {et } are i.i.d. and {5t ),z =1,...,k} are independent.
Finally, note that for the general SETARMA model d < p, since if d > p one can
introduce additional coefficients ¢§1) =0 for 7 > p.

Observe that for the SETARMA model, stationarity is completely determined
by the linear AR pieces defined on the two boundary threshold regimes. That is, the
MA part of the model does not affect stationarity. In fact, a pure SETMA model
is always stationary and ergodic as is the linear MA model. Another interesting
feature of SETARMA models is that overall (global) stationarity does not require
the model to be stationary in each regime. The ergodicity conditions given by Liu
and Susko (1992) and Lee and Shin (2001) illustrate this remark; see, also, Exercise
2.2. In general, distinguishing between local and global stationarity and between
local and global invertibility (see Section 3.5) is important for physical motivation
and for application of nonlinear time series models. However, it is quite complicated
to derive explicit (analytical) conditions for local stationarity and local invertibility.
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Table 3.1: Necessary and sufficient conditions for geometric ergodicity of SETAR(MA)
models.

Reference Model Ergodicity conditions
Petruccelli and Woolford (1984) SETAR(2;1,1): Yi=¢11(Yi—1 <0) ¢1 <1,¢02 <1, p1¢p2 <1
+¢2I(Yiz1 > 0) + & (necessary and sufficient)
Chan et al. (1985) SETAR(K; 1,...,1): i=3F {6{? o < 1,6 <1, and ¢\ <1
+¢li)Yt_1 + agi)}I(Yt_l e R(™) (sufficient)
Chen and Tsay (1991) (1) SETAR(2;1,1): Vi=¢11(Yi_a <0) 1 <1,¢162 <1, 5795t <1,
42l (Yieg > 0)+¢er (d>2) fdpd < 1 where tq,sq € N,

tg =sq+1, and sq = 12,33, 74, 15,
316,637, 18,339, 310
(necessary and sufficient)

Brockwell et al. (1992) (2) SETAR(k;p,...,p) - MA(q): p(maxi{|A(i)|}) <1l (i=1,...,k)
Yi=YF {68 +6Yica + e with A() =
(%) (%)
+39 ey MY,y € RO 1 D
Z]_l Viee— H(Yi—a ) I, 1 0(p—1)x1
(sufficient)
Liu and Susko (1992) Vi=Yk (68 + 6V a4+ g <1, 68 <1, gV <1

+ 30 el H(Yioa €RW) (sufficient)
¢§1) <1 and ¢§k) <1 (necessary)

Amendola et al. (2009a) SETAR(2; p,q,p, q): max; {p(A)} <1 (i=1,2)
Y: = E?zl{zi)(()i) + Z?:l ¢§-i)Yt,j + et (sufficient, but weaker than
+ 30, e} (Yiq € R®) p(max; {|AD[}) < 1)
Niglio and Vitale (2010a) SETARMA (k; 1,q,...,1,q): e <1 i=1,.. k),
Y, =% {6V g+ where p; = E[I(Y;_q € R®)], with
+300 el e M (Vg € RD) 0<p; <1 and Tk p; =1
(sufficient)
Lee and Shin (2000) MTAR(2;1,1): Yi=¢1 Vi 1I(Yi1  ¢1 <1, da < 1, rha < 1,13 < 1,
>Yi2) + ¢2Vi11(Yi—1 < Yi—g) and ¢Tge <1
+e¢ (sufficient)
Lee and Shin (2001) MTAR(2;1,1) with partial unit (¢1 =1, |¢2]| < 1) or
roots
(If1] <1, 92 =1)

(necessary and sufficient)

() Lim (1992) derives necessary and sufficient conditions for stability of the deterministic
SETAR(2;1,1) model with general d.

() Ling (1999) shows that a sufficient condition for strict stationarity of the
SETARMA (k;p,q,...,p,q) model is given by Z§:1 max; |¢§~1)| <1(t=1,...,k) which is
equivalent to the condition given by Brockwell et al. (1992).

(3) The k-regime SETARMA model becomes a linear ARMA model when p; = 1, and a
k*-regime SETAR model (k* < k) when p; = 0.
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3.5 Invertibility

The classical invertibility concept for univariate linear time series processes loosely
says that a time series process is invertible when we are able to express the noise
process {€:} as a convergent series of the observations {Y;}, given that the DGP is
completely known. From the theory of linear time series it is well known that the
invertibility concept is pivotal when one tries to recover the innovations from the
observations of a DGP. Indeed, invertibility assures that there is a unique repres-
entation of the model which can be used for forecasting. In this section, we discuss
conditions for the global and local invertibility of nonlinear DGPs, where in the
latter case the boundary region is a part of the possible parameter space.

3.5.1 Global

To begin with, suppose {Y;,t € Z} is generated by the stationary and ergodic
NLARMA (p, q) model

th :g(n*h”’7Yrt*p75tfla"')5t*q;0)+5t7 (325)

where {e;} "% (0,02), and g(-;0) is a known real-valued function for a known
parameter vector 8. For nonlinear time series there exist (at least) three concepts
of invertibility.

(i) Granger-Andersen invertibility (Granger and Andersen, 1978a,b)
Suppose that ¢ initial values, say ; (j = —¢ + 1,...,0), of the process in
(3.25) are given and that all Y; are known. Let {&;,¢ € Z} be a sequence of
innovations (or residuals) generated by

g=Yr—gYi1,....Ysp,Et—1,...,E1—q; 0), (3.26)
where €; = g; for i < 0. Define the reconstruction errors as
e = €1 — &;. (3.27)
Then the model (3.25) is said to be invertible, if

E[e?] -0 as t— oo. (3.28)

A more general form of (3.28) requires that
Ele;/" =0 as t—o0, (r=1,2,...), (3.29)

provided the ¢ initial values €; (j = —¢ + 1,...,0) are arbitrarily chosen. If
(3.25) involves estimated parameters, which are obtained from an earlier finite
length of data and not updated, condition (3.29) becomes

Ele:|" — ¢ as t— oo, (3.30)
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Table 3.2: Necessary and sufficient conditions for invertibility of NLMA-type models ™).

Reference Model Condition
Ling and Tong (2005)  SETMA(2;p,q): Yi=3"_, dict—i P_1léil <1l,and 35V i +pi] < 1
+ Zgzl Vil (Yi_g <T)er—q + et where ; = 0 for ¢ > ¢
(sufficient)
. . RV k NPy (ri)—Fy (ri—1) (2)
Ling et al. (2007) SETMA(k;1,...,1): Yi={vo TTis {|vo + ¥4 }<1
+ Zle Yil(ric1 < Yic1 <ry)ler—a and not invertible if
+et H§:1{|'¢0+¢i‘FY(Ti)—FY(7‘i71)}> 1,

where Fy (-) is the CDF of {Y;,t € Z}
(necessary and sufficient) (3)

Niglio and Vitale (2010b)SETMA (k; q, . ..,q): Y: = & k. p(\IJ@)()%;i < 1 with ;
i . . i . i
3 (D0 Ve ) I(Yiea € RO)BO = (Y1 L, o Qﬁ_) )
and p; = E[[(Y;_q € RWD)] (0 <p; < 1)
(sufficient)

Marek (2005) RCMA(1)): Yi=A¢ 06t + Ag,160-1 Elog|A¢,1] < Elog|A¢,0| where {A; 1}
where {A;_; 1}72 and {e;_py; };?‘;0 (k=0,1) is a stationary and ergodic
are independent (kK =0,1) process

(sufficient)

(1) Assuming {Y;,t € Z} is strictly stationary and ergodic, and {e;} L (0,02).

(2) This condition is much weaker than the one of Ling and Tong (2005). A similar result can be found in
Ling (1999).

(3) It remains to prove that the model is not invertible when Hf:1{|¢0 + | Furid = Fy(ric)} = 1,

where ¢ < oo is some constant. Clearly, the concept of invertibility is intimately
related to the estimation of parameters. If some least squares method is used
for this purpose, it is appropriate to set r = 2, i.e. consider the mean-square
error convergence of the reconstruction errors. Most studies focus on this case,
and we refer to {Y;,t € Z} as invertible if and only if

E[e?] -0 as t— oo, (3.31)
for any initial £; (j = —¢ +1,...,0).

(ii) Generalized invertibility (Hallin, 1980)
Suppose that a realization of the process has been observed from time a — p,
and the innovations & are generated by (3.26) with £,_; = €,—;, and g,
(j = 1,...,q) are arbitrarily chosen initial values. Define the reconstruction
errors as in (3.27). Then (3.25) is said to be invertible, if

E[e?] -0 asa— —oo, Vt€LZ. (3.32)

Hallin (1980) shows that in nonlinear models with constant coefficients defini-
tions (i) and (ii) are equivalent. When the coefficients are not time dependent
and the DGP is linear, (3.32) coincides with the classical invertibility condi-
tion.
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(iii) Pham—Tran invertibility (Pham and Tran, 1981)

Suppose that {V;,t € Z} in (3.25) admits an equivalent first-order Markovian
representation {Z;}. Let 6 be some guess or estimate of the true parameter
vector 6. In that case the innovations can be computed recursively from the
Markovian representation of the NLARMA model with 6 replaced by 6. Con-
ditional on a chosen initial value zy for Z;, we denote the resulting value by
£1(6]20), to indicate its dependence on 6. Then the process (3.25) is said to be
invertible at @ relative to {Yt,tA € Z} if there exists a stationary process, say
{€4(0)}, such that €;(0|zy)—e+(0) converges to 0 in some sense as t — oco. Thus,
this invertibility concept is “open”, as we may choose an appropriate meas-
ure of convergence. In contrast, the Granger—Andersen invertibility concept
requires only that the second moment of e; — &; tends to a limit.

Table 3.3: Necessary and sufficient conditions for stationarity and invertibility of BL
models. In all cases {e;} R (0,02) unless otherwise specified.

Reference Model Condition

Quinn (1982) Yi=¢e¢+¢Yi_uet—ov (u,v > 0), log |¥| + Elog |Y;| < 0 (necessary and sufficient)
with Elog|e| < oo
Yi=et+Yi—uet—w (u,0 > 0,u >v) |Ploe < 1/v/2 =0.7071
Yi=et+UYi wet—o (u,0 > 0,u > v), |[¢|oe < {2exp C/(1+2exp C)}1/2=0.8836

with {e;} "&" A(0,02)

Liu (1985)  Yi=3_1_, ¢;Yi—i+et+0ei—1 Ellogf 4+ C’'BY;| < 01 with
. 0---0
+ 21?21 V1w Yi—u€t—1 B= ( Y11 Ole >7
(s—1)xs
Y=, Yi—s41)’, C=(1,0,---,0), and
5 = max(p, Q)
(sufficient)
Liu (1990) Yi=Y0 | ¢iYei +et + 041 E{logHH?zl B(t—j)|I} <0 with
Q Q
+25:1 Z’l?:l Yuv Yi—uEt—v B(t):( d)Il +20m1 V1ot b Jrgz'u:l YpvEt—v )
-1 —1)x1
with E{log? |e1|} < oo ! (sufficient) (=%
Marek (2005) Yi= et+(a+ BYi—2)et—1, B2%02 < (1—a?)/2
Yi=(atBer)er acr, o] < |a] and B < (la] — |a])/3
(a#0,a#0,8>0), |e¢] < 1 (sufficient)

(1) The condition reduces to the sufficient condition of Subba Rao (1981) for a BL(p, 0, p, 1) model.
In the case p = Q = 1 the condition becomes |¢| < exp(—Elog |Y¢|), earlier obtained by
Pham and Tran (1981).

Assuming that {Y;,t € Z} is an ergodic strictly stationary process, together with
some additional assumptions on {e;}, it is possible to find sufficient conditions for
invertibility for various NLMA- and BL-type models. Tables 3.2 and 3.3 summarize
some of the theoretical works for these models. Note, most invertibility conditions
are only sufficient and are written in general terms. Indeed, apart from a few simple
cases, explicit conditions for the invertibility of nonlinear models are sparse. From
Table 3.2 we see that, in contrast with the stationarity of SETAR models, all regimes
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Figure 3.4: Invertibility regions of the RCMA(1) model with A, following respectively a
U(a—0,a+0) distribution (blue solid curve), a N'(a,8?) distribution (red solid curve), and
a Student tg(a,0) distribution (green solid curve).

play a role to ensure invertibility of the SETMA model. For the SETMA model there
is no difficulty in extending the results to the case where the data are generated by
a SETARMA model.

Example 3.6: Invertibility of an RCMA (1) Model

Consider the RCMA(1) model of the form
Vi=er+ (a+0Yi o)1, {er} = (0,02), (3.33)

where a, and 6 > 0 are real-valued parameters, {Y;,t € Z} is a stationary and
ergodic process. Thus, in the general notation of the RCMA model (see Table
ii.d.

3.2), Ayp=1and A1 = a+ 0Y;_9. Assume that {41} ~ U(a—0,a+0).
Then it is easy to see that

1
E(log [A¢1]) = % [((a+0)log|a+ 0] — (a—0)log|a— 6] —26]. (3.34)

If {As1} "= N(a, 6?), we have

2
— a
E(log|A;1|) = log 6 + / Ty} log |y + a‘dy. (3.35)

——ex
o V2T
Figure 3.4 shows the parameter regions for both sequences {A;;} using the
invertibility condition E(log|A¢1|) < 0. Note that in the case of (3.34) the
blue solid curve passes through the point (a, ) = (0, e), while in the case of
(3.35) the red solid curve goes through the point (0, 1.8874---).
Figure 3.4 also includes the parameter region for invertibility of the RCMA(1)

model when {A;;} "X tg(a,0) distributed (green solid curve), which is a
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Figure 3.5: Proportion of ASTMA(1) models classified as non-invertible as a function of
¥ (horizontal azis); T = 100, 1,000 MC replications.

location-scale transformation of a standard Student t¢ distribution with 6 de-
grees of freedom. Clearly, this invertibility region is smaller than the ones
enclosed by the previous two distributions with a notable part indicating the
heavy tails of the ¢¢ distribution when 6 | 0 and |a| > 1.

As a practical and operational alternative to the conditions in Tables 3.2 and
3.3, good sufficient conditions for invertibility can be obtained by MC simulation.
Indeed, given definition (3.31), De Gooijer and Brannés (1995) propose the following
ready-to-use method.

Algorithm 3.1: Empirical invertibility of an NLARMA (p, ¢) model

(i) Generate a random sample of i.i.d. innovations {&};_,, from the known
distribution function (e.g., normal) of the residual series {£;}7_,, where N is
some large value, say N = 1,000.

(ii) Replace e; by &; fort =T +1,..., N and use past values Y;_ (k=0,...,p),
and &4, (k=0,...,q), to generate a new set of observations {Y;}/_ 1 ;.

(i) Calculate {&, = Y; — }Aft}i\LT 41, where Y, are the out-of-sample fitted values.
Estimate E(e?) by (r—T)"' >/, , €. Iffor all values of 7 = T+1,..., N,
this sequence does not exceed a pre-fixed value the process {Y;,t € Z} is said
to be empirically invertible, otherwise it suggests non-invertibility.

Example 3.7: Invertibility of an ASTMA (1) Model

Consider an additive smooth transition MA(1), or ASTMA(1), model of the
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form
Vi = e+ B + OF (e—1)e—1,  {e} = N(0,1), (3.36)

where F(g;_1) = [1 + exp(—ve,_1)]7!, and v > 0. No explicit invertibility
conditions have yet been derived for this model.

For T = 100, we generated 1,000 time series {Y;}1%. Dropping the first 150
observations to avoid start-up effects and using Algorithm 3.1 with NV = 1,000,
we computed a sequence of estimates of E(e?). Next, the process was classified
as empirically invertible if for all values 7 = T 4+ 1,..., N the values of the
sequence did not exceed 10710,

Figures 3.5(a) and (b) show curves of the proportion of non-invertible models
as a function of the parameter ¢ for three different values of +. Note that
the empirical invertibility region remains the same as ~ increases when § = 0,
while the region reduces when 8 = 0.8. For v = 0.5 the width of the empirical
region is about the same in both figures. For larger values of ~ the size of
the invertibility region becomes smaller when $ = 0.8. Moreover, the curves
show a clear difference in the proportion of non-invertible models for ¢ > 0 as
opposed to ¥ < —2.

Throughout the previous part, we assumed that (3.25) is an ergodic strictly
stationary process. Within a Markov chain framework this requires verifying the
irreducibility condition as a part of the Feigin—Tweedie result to establish geometric
ergodicity. For general nonlinear MA models this is a non-trivial problem. Interest-
ingly, Li (2012) derives an explicit/closed form of the unique strictly stationary and
ergodic solution to the multiple-regime SETMA model without resorting to Markov
chain theory. Using a different approach, his work generalizes results of Li, Ling,
and Tong (2012) for two-regime SETMA models. The main idea is to re-formulate
the model as a SRE and adopt the notion of the top Lyapunov exponent as we
discussed in Section 3.1.

Consider a k-regime SETMA model of order ¢ which we write in the form

=al® 4+ Z — N I(Y,_q € RO), (3.37)

where

q
=y tea+ Y Wy, (i=1,...,k).
j=1
Here, {e;} is assumed to be a strictly stationary and ergodic process rather than the
usual and more restrictive assumption that {e;} is i.i.d. It follows from (3.37) that

1(Y; e R =I(af? e RO+ {I(af” € RD)—I(a{") € RD)}I(Y;_g € RD),

(i=1,....k—1). (3.38)
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To represent (3.38) as a SRE, we define
L= (I(Y; e RWD) . 1(v; e RED))  a, = (1™ e RW), ... 1(a? e RE-D)),
and
Ay = (ai4) with aj; = I(a!”) e RO~ 1(a® e RD) (4,5 =1,... .k —1).
Then
I = Ad, g +a;. (3.39)

Observing that ||A;|| takes values 0, 1, or 2, we have E(log™ (|| A4]|) < 2 < .
Moreover, it is easy to see that P(||A¢|| = 0) > 0. Thus, the associated top Lyapunov
exponent v(A) defined by (3.9) is —oo since E(log||A¢||) = Z?zo(log DP([[A¢]| = 1) =
—o00. Then, following similar arguments as in Section 3.1, v(A) < 0 is a sufficient
condition for equation (3.39) to have a unique strictly stationary and ergodic solution
given by

s—1

L=> ([[Ai)a—ss as., (3.40)
=0

s=1 4=

which is of the form (3.5). So, a unique strictly stationary and ergodic solution of
{Y;,t € Z} is given by

Y, = agk) + (agl) - agk), . ,agkfl) - agk))lt_d, a.s., (3.41)
where I;_4 = Z?il(nf;ll A;_9)a;_sq. It is immediate that (3.41) does not require
any restriction on the coefficients of the process, which is different from SETAR
models.

3.5.2 Local

Within the setting of a nonlinear stochastic difference equation, it is possible (Chan
and Tong, 2010) to link local invertibility with the stability (in a suitable sense)
of an attractor in a dynamical system. Let e, = (ey,.. .,et_q+1)' be the vector
of reconstruction errors, and e; = (e¢,...,e1—g+1)" (¢ > 1). Then (3.25) can be
rewritten as a homogeneous (deterministic) equation associated with the SRE (3.1)
in which By is replaced by the zero vector, i.e.

€y = F(etfla €t—1; 9)

= (Q(Et—la - Et—qs 9) - g(et—1 +Et—1,.--,€t—q T Et—gi 9)7 Et—1y---, 6t—q+1)/7
(3.42)

where F': R? — R? is a vector function. Since 0 = F(0,¢;0) for all € and with
0 € RY, it is clear that the origin is an equilibrium (limit) point. Then invertibility
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implies that the origin is an asymptotically globally attractor, in probability. Local
invertibility can be established by a linear approximation of {e;} around e; = 0, i.e.

t
er =0+ (J] Fs)eo, (3.43)
s=1
where F, = OF (es,€5;0)/0es evaluated at e; = 0.

Note that (3.43) is the deterministic counterpart of the product of random
matrices in the case of the SRE. Stability of (3.43) implies the existence of a
suitable Lyapunov exponent ~(-). Hence, in analogy with the preceding results,
if E(log™||F1]|) < oo, a necessary condition for non-explosiveness (invertibility) is
given by

t
1 . )
lim —1 Fi|| = ~(F). 3.44
fm 7 ol [T .l =~ (3.44)

When ¢ = 1, 7(F) = E(log||F1|)), by the independence of the F,’s. For ¢ > 1 a
sufficient local invertibility condition can be obtained using the following property
of a matrix norm: ||[[, As| < [[,||As]| for a sequence of regular matrices A in
R?%4, Then, assuming that {FS} is a function of a stationary and ergodic process,
we have

t1E log( HHFSH) < e pB(log(I [ F,1) + B Qog(1F11),
7j=1

where t = mp + r, and p and r are integers with 0 < r < m.

Thus, ¢t~ IE(log(HHs (Fyl) = 0ast 7 oo. So, by the independence of the
F.’s, the NLMA (q) model (3.25) is locally invertible if E(log(||F1]|) < 0, and locally
non-invertible if E(log(|F1]|) > 0. More generally, these results apply to stationary
NLARMA (p, q) processes, for which F(-) is a function of (e;, Y;—1,...,Y;—p, 115 0).
For typical SETARMA models where h(-) is conditionally linear in the innovations
given Y;’s, local invertibility analysis is equivalent to global invertibility analysis.

Example 3.8: Invertibility of a SETMA Model
Consider a SETMA(2;¢, ..., q) model of the form
q q 2)
Vi=eot+ (Y @M ) IVa<r)+ (Y vPe ;) (1 - 1(Yieg < 1)),
7=1 7j=1
(3.45)

where {g;} "= (0,02). From (3.41), we know that {Y;,t € Z} is strictly
stationary. The reconstruction errors satisfy the stochastic difference equation
e; = Fie;_1, where F; is a companion matriz with its first row equal to

P + @ = ) IViea < 7)o 0P+ 00 = ) (Vi < 7).
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Figure 3.6: Plot of a strictly stationary and ergodic time series generated by a globally
invertible, but locally non-invertible SETMA(2;2,2) model; T' = 5,000.

Ling et al. (2007) show that for the SETMA(k;1,...,1) model Y; = {4 +
Zi?:l il (ric1 < Yio1 < r;)}ei—1 + &4 the spectral radius p(F) is given by

k
p(B) = exp (1(F)) = [ [ {0 + w00 vy,
i=1
where 0 < Fy (r;) = P(Y; < ;) = p; < 1. The process {Y;,¢ € Z} is (locally)
invertible if p(F) < 1, and is not invertible if p(F) > 1. The case p(F) =1 is
undecided, but Ling et al. (2007) conjectured non-invertibility.

When ¢ > 1, a strictly stationary and ergodic SETMA(k;q,...,q) process
is invertible if the spectral radius of each sub-MA(q) processes is less than
one (see, e.g., Amendola et al., 2009b). Verifying this condition is rather
straightforward. Consider, for instance, the SETMA(2;2,2) process

Y =er + ( 9&4 + ¢£1)5t72)l(}/t71 <0)
+ (%2)&—1 + ¢£2)€t—2)(1 —I(Y;—1 £0)),
where i = 1.4, Y = —0.7, ¢\ = 1.5, P = —0.5, and {g,} "< N (0, 1);
see Figure 3.6 for a typical realization. The corresponding 2 x 2 companion
matrices W) (i = 1,2) (see Table 3.2) have eigenvalues )\51% = 0.7 £ 0.4583¢

and )\52% = 0.75+0.25, respectively. So, the MA process in the first (Y;—; < 0)
regime is invertible. When Y;_; > 0, the MA process is not invertible with
one root on the unit circle and one root less than one. However, the process
{Y:,t € Z} is globally invertible even though it is locally non-invertible in the
upper regime. Indeed, with p(®(1)) = 0.7 + 0.4583i| = 0.8367 and p(¥?) =
|0.75 4+ 0.25| = 1, we have

p(BOYIP1 5 p(B@)Pr = (0.8367)04984 ¢ (1)0-5016 1

where p; = 0.5016 is an estimate of py = E(Y;—; < 0). If the stationary
probability p; of the lower regime approaches 0, as r — 0o, the SETMA(2;2,2)
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process degenerates to a linear MA(2) process with the well-known invertibility
condition p(®M)) < 1.

3.6 Summary, Terms and Concepts

Summary

We reviewed some of the important probabilistic properties of a Markov chain on a
general state space. Necessary and sufficient conditions for stationarity and invertib-
ility were also mentioned. The link between stability and ergodicity was investigated
for the deterministic skeleton of the SRE. Furthermore, we discussed the use of the
associated Lyapunov exponent in inferring stationarity and stability. Conditions for
local and global invertibility were achieved. Verifying the invertibility requirement
is essential when an NLMA model is used to forecast. Consequently, we provided a
practical procedure for this purpose. Unfortunately, explicit/closed form expressions
for the stationarity and invertibility of nonlinear models have been found only in a
few simple cases.

Terms and Concepts

collapsed Markov chain, 92 mixing coefficients, 95

empirically invertible, 105 non-anticipative, 89

Feller chain, 97 Poisson equation, 93

globally (non-)invertible, 101 reconstruction errors, 101
generalized random coefficient AR, 88 stochastic recurrence equation, 88
geometric ergodic, 96 strong mixing, 95

Harris ergodic, 97 top Lyapunov exponent, 88

locally (non-)invertible, 108

3.7 Additional Bibliographical Notes

Section 3.1: Most of the properties of a SRE are well known, including conditions for
the existence and uniqueness of a stationary solution, or for the existence of moments for a
stationary distribution, cf. Pourahmadi (1988). In the context of SREs, Kristensen (2009)
gives necessary and sufficient conditions for stationarity of two broad classes of (non)linear
GARCH models in terms of (-). Ispdny (1997) does the same for an additive BL state
space model.

Akamanam et al. (1986) show the existence of strict stationarity and ergodicity of BL time
series models of the form (2.12) with v > v. Bhattacharaya and Lee (1995) and An and
Chen (1997) consider (geometric) ergodicity of a general NLAR model.

Section 3.2: As a special case of the MS-ARMA model (2.67), Holst et al. (1994) give a
sufficient condition for the switching AR with Markov regime to be second-order station-
ary. Francq and Zakofan (2005) derive necessary and sufficient conditions for existence of
moments of any order of GARCH models with Markov regime switching. For these models,
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the regime switching depends directly on a hidden Markov chain and only indirectly on the
current state of the process itself, i.e. the process {(A:,B;),t € Z} in (3.1) is no longer i.i.d.

Section 3.3: Goldsheid (1991) provides a CLT which may be used to construct asymp-
totic confidence bands for estimators of the top Lyapunov exponent, while Gharavi and
Anantharan (2005) derive an upper bound for «(-). In a review paper, Lindner (2009) ad-
dresses the question of strictly stationary and weakly stationary solutions for pure GARCH
processes.

Section 3.4: In the early 80s the most part of the literature consider sufficient, and rarely
necessary, conditions for stationarity and ergodicity for nonlinearities in the conditional
mean; see, e.g., Chan and Tong (1985), Liu (1989a, 1995), Pham (1986), Pham and Tran
(1985), Liu and Brockwell (1988) and the references therein. During the last two decades
the focus is mainly on studying conditions for combined models with nonlinearities in both
the conditional mean and the conditional variance; see, e.g., Fonseca (2004) and Chen et al.
(2011b) for references to the main contributions. More recent developments are by Chen
and Chen (2000), Ferrante et al. (2003), Fonseca (2005), Liebscher (2005) and Meitz and
Saikkonen (2008, 2010), among others.

Section 3.4.2: Meyn and Tweedie (1993, Appendix B) propose a four-step procedure to
classify a SETAR model as being ergodic, transient, and null recurrent. This procedure may
also serve as a template for analyzing other nonlinear time series models.

Section 3.5: In the case when (3.25) has time dependent coefficients, Hallin (1980) gener-
alizes the notion of invertibility in (3.31). Using the solution to the SETMA process (3.41),
Li (2012) and Li, Ling, and Tong (2012) derive explicit expressions for the moments and
ACF of some special TMA models. Amendola et al. (2006a, 2007) give examples of moment
and ACF expressions of SETARMA models. Chen and Wang (2011) investigate some prob-
abilistic properties of a combined linear—nonlinear ARMA model with time dependent MA
coefficients.

3.8 Data and Software References

Section 3.3: R code (ctarch.eigen.r) for evaluating the Lyapunov exponent -+ in the case of
SETAR-ARCH models (Example 3.3) is available at the website of this book.

Section 3.5.1: MATLAB code for checking the empirical invertibility (Algorithm 3.1) of a
BL model is available at the website of this book. The code can be quite easily modified to
assess invertibility of other nonlinear models.

Exercise 3.8: Initially the West German data set was downloaded from datamarket.
Description: Monthly unemployment figures in West Germany 1948 — 1980. DataMarket
became a part of Qlik® in the year 2014; http://www.qlik.com/us/products/qlik-
data-market.


http://www.qlik.com/us/products/qlikdata-market
http://www.qlik.com/us/products/qlikdata-market
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Appendix

3.A Vector and Matrix Norms

Vector norms:

At various places in this book we require some method to measure the size of a vector or a
matrix. We refer to these measures collectively as norms. Given a vector/linear space V,
then a vector norm, denoted by ||x]| is a function x — ||x|| that assigns a nonnegative real
number [|x|| to every vector x € V with the following properties.

%[l >0, ¥x # 0, (|[0] = 0) (A1)
lox[| = |af [[x[|, « € R (A.2)
1%+ yll < lIx[[+llyll- (A.3)

The inequality (A.1) requires the size to be positive, and property (A.2) requires the size to
be scaled as the vector x is scaled. Property (A.3) is known as the triangle inequality.

Any mapping of an n-dimensional vector space onto a subset of R that satisfies (A.1) —
(A.3) is a norm. The following are some basic examples of norms.

(i) The normed linear space:
Let x = (x1,...,2,) be a vector in V' = R™ (Euclidean space). Then an obvious
definition of a norm is
n

Il = (1) =1 (A4)

=1

The function x — ||x||, is known as the L,-normed linear space. The most common
linear spaces are the one-norm, Ly, and the two-norm, Lo, where p = 1 and p = 2,
respectively.

(ii) The infinity-norm:
Let x = (x1,...,2,)" be a vector in R™. Another standard norm is the infinity, or
mazimum, or supremum, norm given by the function

= ). A
oo = e (i) (45)
The vector space R™ equipped with the infinity norm is commonly denoted L.

(iii) Continuous linear functionals:
Let V = Cla,b] be the space of all continuous functionals f(-) on the finite interval
[a,b]. Then a natural norm is

b 1/p
19 = ([ rpds) ™ p =1, (A6)
a
with p =1 and p = 2 the usual cases, and || f||cc = max,<z<p |f(2)].

Matrix norms:
Suppose {R"™, ||x||,} is a normed linear space with ||x||, some norm. Let A = (ai;)mxn be
a real matrix. Then the norm of A, subordinate to the vector norm ||x||,, is defined as

Ax
1Al = sup ””X””P = sw [Ax], xR AxeR” (A7)
X P X|lp=
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So, ||A]|p is the largest value of the vector norm of Ax in the space V' = R” normalized over
all non-zero vectors x. In particular,
Al = maXZ laij|, ||Allz = (maximum eigenvalue of (A’A))l/Q.
=
7

The norm ||A||2 is often called the spectral norm. When p = 1 and 2, the matrix norm
satisfies the following four properties:

Positivity: oo > [|A]l, >0, YA # 0, except [|0]], =0, (A.8)
Homogeneity: laAll, = |af |A]lp, o €R, (A.9)
Triangle inequality: ||A + B, <|A[l, + [|Bllp, (A.10)
Compatibility: | Axl, < [Ally x| (A1)

Here, (A.8) — (A.10) are generalizations of the three properties (A.1) — (A.3). Property
(A.11) is a direct consequence of the definition (A.4). A special case of (A.11) is

IAB], < [[Allp [[Bllp, (A.12)
which is a simple but often useful property. Another special case of (A.11) is

lais] <IAl, Vi, (A.13)

An important use of matrix norms is in proving convergence of powers of matrices.

Suppose A1, As,... is a sequence of square matrices. Then,
lim ||A;],=0 <= lim A; — 0, (A.14)
11— 00 11— 00

where 0 is a square matrix consisting of zeros. Now, suppose A; is given as a product of
another sequence of matrices B1,Bs, ..., so that A; = Hz-zl B;. In that case the desired
conclusion of (A.14) will follow if there exists a p such that for all j, || B;||< p < 1. However,
within the context of formulating conditions for (multivariate) stationarity and invertibility,
we will encounter the case where the B; are block matrices. In particular, for n x n matrices
C,;(u=1,...;p)and D, (v=1,...,p— 1), we will see the block structure

u,j
Cij Co5 - Cpay Gy
Dl On><n e Onxn Onxn
Bj = Onxn Do
0n><n Dpfl Onxn

If some or all of the matrices D, = I,,, as with the so-called companion matriz, then by
(A.13), ||B,||> 1. So, the condition leading to (A.13) is not fulfilled. One can get around
this problem by multiplying together sufficiently many B;’s before taking the norm.
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3.B Spectral Radius of a Matrix

A quantity associated with matrices is the spectral radius of a matrix. A square matrix
A = (@ij)nxn has n eigenvalues A\; (i = 1,...,n). The spectral radius of A, which we
denote by p(A), is defined as

p(A) = max (|\). (B.1)

1<i<n
Note that p(A) > 0 for all A # 0. Furthermore,
p(A) < [|A], (B.2)

for all subordinate matrix norms. This property can be easily proved. Note that p(A) is
not a norm since it can be shown that p(A + B) £ p(A) + p(B).

The following properties are often useful. For any positive integer m, and a constant
¢ > 0, we have

(A™)ij] < e(p(A)™, Viyj (B.3)
< | < . )
p(A) < max Zl jaisl < max g, (B.4)
=
p(A®A) <1 if and only if p(A) < 1. (B.5)
Also, it is easy to prove that
A3 = p(A'A), (B.6)

i.e. the maximum eigenvalue of the symmetric matrix A’A.

In Chapter 11, we mention briefly the concept of joint spectral radius which is a gener-
alization of the notion of spectral radius of a matrix, to sets of matrices. Consider a set of
bounded square matrices A C R"*". The joint spectral radius is defined by

1/p
p(A) =timsup (sup [l4]1) (B.7)

p—00 AeAP)

where AP) = {A A, - A, A;e Aji=1,...,p} and || - || can be any matrix norm; see,
e.g., Liebscher (2005) for more results about the joint spectral radius.
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Exercises
Theory Questions
3.1 Consider an EXPAR(1) model of the form
Yo = {6+ Eexp(— Y2 )}Yeor +er (9] <1<,7>0),
where {&;} are i.i.d. random variables, each having a strictly positive and continuous
density f(z) = (1/2)exp(—|z|). Prove that {Y;, ¢t € Z} is geometrically ergodic and
ElY,"| < 0o Vm € Z*.
3.2 Consider the k-regime asymmetric MA(1) model
Yi = e+ Y(et-1) €1,

where ¥(e) = Zle B Fy (e) with Fe) () the characteristic function of set R(?)
(i=1,...,k). Assume |3®| <y < 1 and E|g;|™ < ¢ < 0o (m € ZT), where v and ¢
are real positive constants. Furthermore, assume that the residual g = 0.

Show that the process {Y;, t € Z} is invertible in the sense that limsup,_, . E|e:|™ <
c*, where {e;} are the reconstruction errors, and ¢* < oo is some constant.

3.3 Consider the quadratic MA(1) model
Yi=¢ 75@%—1) {st} £ N(Ovl)a

where 8 # 0. Granger and Andersen (1978a, p. 28) claim that this model is never
invertible with respect to the non-zero value of the parameter f.

(a) Show that under the condition |5] < (C'+log2)/4 the model is locally invertible
where C' is Euler’s constant.

(b) Consider Algorithm 3.1 with N = 1,000. Set T' = 50 and 7" = 100. Then,
using 1,000 MC replications, show that the model is empirically invertible for
| 8| values smaller than approximately 0.85.

3.4 Consider the first-order BL(1,0, 1, 1) model
Y=oV +yYias 1 +e, {e} = N(0,02). (3.46)

Using the above model, Terdik (1999, p. 207) obtains the following estimation results
for the magnetic field data (Example 1.3):

Y, = 0.5421Y;_1 4 0.0541Y; 18,1 + &, 02 = 0.2765. (3.47)

(a) Verify that the fitted BL model is a weakly (second-order) stationary process,
assuming it is first-order stationary.

(b) Show that (3.46) is invertible if ¢ and v satisfy the condition

21+ AN +2(1 — N2 — (1 —9)2(1+¢) <0, \=o.. (3.48)
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(c¢) Using (3.48), verify that the fitted model is invertible.

3.5 Consider the BL model

P q Q P
Vi=go+ Y oiYisi+ Y e+ > tiViijeri, {ei} (0, 02).
i=1

j=1 i=1 j=0
Show that the model can be represented as
Yy = Z1,4—1 + boey,

where the process Z; = (Z14,...,2Zn)" € R, with n = max(p, P + ¢, P + Q), solves
the SRE representation Z; = A;Z;_1 + B; and where the A; € R"*" and B; € R"
is a random matrix, and a random vector of polynomials in {e;} of degree 1 and 2
respectively.

(Kristensen, 2009)

Empirical and Simulation Questions
3.6 Consider the asMA(1) model

Yt :Et+ﬁ+5t+—l +5_5;—1a {Et} i.}-\c’L N(07U?)’
where ¢, = I(g; > 0)g; and ¢, = I(g; < 0)ey.

(a) Using Algorithm 3.1 with N = 1,000, obtain a graphical representation of the
empirical invertibility region for a simulated time series of size T" = 100, using
1,000 MC replications.

(b) Wecker (1981) derives the following sufficient invertibility conditions: [37] < 1
and |87| < 1. Compare and contrast the resulting invertibility region with
the one obtained in part (a). Suggest a necessary and sufficient condition for
invertibility.

3.7 (a) Consider the asMA(1) model in Exercise 3.6. Rewrite the model in the form
Vi=p(t-1)Y,1=B(t =18 - 2)Yia+ =Bt —1)-- B(1)Y1+ey,

where 3(T —1)--- (1) = (BY)(B7) T3 (j=0,...,T —1).

(b) Using the specification in part (a), suggest an alternative notion of invertib-
ility for the asMA(1) model. Give a graphical representation of the resulting
invertibility region.

(c) Now, rewrite the asMA(1) model as follows:
Yi = e+ B(et-1),

where B(g;—1) = Yoo, Bil(g4-1 € Si)er—1 with By = B+, B2 = 57, 1 = [0, 00)
and Sy = (—o0, 0). Verify the invertibility condition E|e;| — 0 as ¢ — oco. Show
that the corresponding invertibility region is given by

|ﬁ1‘ <1, |ﬁg| <1, and |51| + |/62| < 1.
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3.8 Subba Rao and Gabr (1984, pp. 211 — 212) consider the monthly West German unem-
ployment data (X;) for the time period January 1948 — May 1980 (389 observations).
They use the first 365 observations of the series Y; = (1 — B)(1 — B'?)X; for fitting
a subset BL model, and the last 24 observations for out-of-sample forecasting. It is
therefore vital that the fitted model is invertible. The best fitted subset BL model is

given by
Y; — 0.0874Y;_1 + 0.1261Y;_5 — 0.0426Y;_g — 0.2556Y;_11 + 0.5067Y;_12
= —4598.325 — 0.1315 x 107 4Y;_1&_10 — 0.1279 x 107°Y;_9&,_5

—0.3790 x 107%Y; 58, _4 + 0.1902 x 107°Y;_115,_7

+0.1513 x 107°Y;_ 19844 — 0.2267 x 107 °Y;_19E;_o

—0.9507 x 107%Y;_4&,_10 — 0.1948 x 107°Y;_10Es_s

+0.2715 x 107°Y; 189, 02 = 0.36665 x 10*.
Assuming the above model is correctly specified, check the empirical invertibility of the

fitted BL model using Algorithm 3.1 with N = 1,000. The complete (undifferenced)
data set (German_unemplmnt.dat) is available at the website of this book.



Chapter

FREQUENCY-DOMAIN TESTS

The specification and estimation of a nonlinear model may be difficult in practice
and sometimes no substantial improvements in forecasting accuracy can be achieved
by using a nonlinear model instead of a familiar ARMA model. Therefore, one
may wish to start the model building from a linear model and abandon it only if
sufficiently strong evidence for a nonlinear alternative can be found. This approach
can be applied using a linearity test, often in combination with a test for Gaussianity.
Several test statistics, both in the time domain and frequency domain, have been
proposed for this purpose.

In this chapter, we will restrict attention to frequency-domain linearity and Gaus-
sianity test statistics. These tests are nonparametric, or model-free, having an al-
ternative hypothesis that only states that the DGP is nonlinear, and not specifying
the type of nonlinearity. Within the frequency domain the simplest higher-order
spectrum is the second-order spectrum, or bispectrum. Based on the asymptotic
properties of the estimated normalized bispectrum, we introduce various test stat-
istics. Most tests follow a two-stage approach. The first stage tests if a time series
process has a zero third-order cumulant function, but is often interpreted as a test
of white noise. If a process is WN then the second-order covariances and second-
order spectra will contain all the useful information. In that case all its higher-order
moments, or higher-order spectra, are identically zero. If on the other hand the null
hypothesis of zero third-order cumulant function is rejected in stage one, then the
second stage is to test for linearity.

The outline of the rest of this chapter is as follows. In Section 4.1 we define
the normalized bispectrum and indicate how it motivates tests of Gaussianity and
linearity. Next, in Sections 4.2 and 4.3, we introduce two “classical” methods, the
Subba Rao and Gabr (1980) and the Hinich (1982) test statistics, and discuss their
major shortcomings. In fact, the Hinich and the Subba Rao—Gabr tests for Gaus-
sianity and linearity are only useful when large amounts of data are available, and
rely on the asymptotic normality of the estimator of the bispectrum which may be a
poor approximation for small sample sizes. Between the two, Hinich’s test statistics
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have long been preferred in applications. However, these test statistics tend to have
low power and require the specification of a smoothing or window-width parameter.
Consequently, various improvements and modifications of the Hinich bispectral test
statistics have been proposed; see Section 4.4 for a brief overview. First, in Sec-
tion 4.4.1, we apply goodness-of-fit techniques to the asymptotic properties of the
estimated bispectrum, resulting in new test statistics with increased power. In the
following subsection, we describe a method to eliminate the arbitrariness concern-
ing the selection of the smoothing parameter. In Section 4.4.3, we discuss another
improvement based on a bootstrap algorithm, which approximates the finite-sample
null distribution of Hinich’s test statistics.

As we saw in Section 1.1, the differences between linear and nonlinear DGPs can
also be defined in terms of mean squared forecast errors (MSFEs). In Section 4.5, we
discuss a frequency domain linearity test statistic based on an additivity property
of the bispectrum of the innovation process of a stationary linear Gaussian process.
The bispectrum is used to check if the best predictor of an observed time series is
linear, and the series is deemed to be linear if this null hypothesis is not rejected
against the alternative hypothesis that the best forecast is quadratic. Section 4.6
contains a summary of numerical studies related to the size and power of most of the
test statistics discussed in this chapter. Finally, in Section 4.7, we apply a number
of test statistics to the six time series introduced in Chapter 1.

4.1 Bispectrum

Apart from Section 4.5, throughout this chapter we assume that {Y;}1; is a time
series arising from a real-valued third-order strictly stationary stochastic process
{Y;,t € Z} that — for ease of notation — is assumed to have mean zero. One basic
tool for quantifying the inherent strength of dependence is the ACVF given by
vy (0) = E(Y:Yi1e) (¢ € Z). For testing nonlinearity and non-Gaussianity, another
useful function is the third-order cumulant, defined as vy (¢1,02) = E(YiYire, Yite,)s
(01,02 € Z). Both functions are time invariant and unaffected by permutations in
their arguments, which creates the symmetries

Yy (£) = vy (1), (4.1)
’yy(fl,fz) = Vy(EQ,fl) = ’}/y(—fl,ég — fl) = ’}/y(fl — fg, —52). (4.2)

The spectral density function, or spectrum, of {Y;,t € Z} is formally defined as the
discrete-time Fourier transform (FT) of the ACVF, i.e.,

o0

frw)= > w@exp(-2miwt), wel0,1], (4.3)

{=—00

where w denotes the frequency. A sufficient, but not necessary, condition for the
existence of the spectrum is that > ,° |y ()| < oc.
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If, in addition, ZgiéF—oo |7y (€1, 42)| < oo, then the bispectral density function,
or bispectrum, exists and is defined as the bivariate, or double, F'T of the third-order
cumulant function,

fy(wl,wg) = Z ’yy(gl,fg)exp{—Qﬂ'i(lel +W2£2)}, (wl,wg) S [0, 1]2.
{1 lo=—00

(4.4)

Note that in a similar fashion higher-order spectral functions can be defined whose
corresponding multi-dimensional F'T's are termed polyspectra. The spectrum is real-
valued and nonnegative. In contrast, the bispectrum and higher-order spectra are
complex-valued.

In view of (4.1) — (4.4), we have the relations,

fy (W) = fr(-w), (4.5)
4.6

Jy (Wi w2) = fy(wa,wi) = fy(wi, —wi —wa) = fy(—wi — wa,wo).

The third-order cumulant and the bispectrum are mathematically equivalent, as are
the spectrum and the ACVF. Clearly fy(w) is symmetric about 0.5. From (4.4),
and due to the periodicity of the FT (4.3), the bispectrum in the entire plane can
be determined from the values inside one of the twelve sectors shown in Figure 4.1.
Therefore, it is sufficient to consider only frequencies in the first triangular region
(cf. Exercise 4.1), which we define as the principal domain

D= {(wl,LUQ) W1 = W2, W1 = 0, w1 = (1 — w2)/2}; (47)

recall that we have assumed a normalized sampling frequency of 1 Hz.

If {X;,t € Z} and {Y;,t € Z} are two statistically independent processes and
Zy = X; +Y,, then vz(41,02) = vx(61,02) + vy (€1, 02), and hence fz(wi,ws) =
fx(wi,w2) + fy (w1, we). If {Xy,t € Z} is Gaussian and i.i.d., then yx(¢1,¢2) = 0,
V(l1,42), and fx(w1,w2) = 0, V(w1,ws), so fz(wi,ws) = fy(w1,ws), in other words
symmetric noise is suppressed in the bispectrum.

Another useful property of the bispectrum is that its imaginary part (denoted
by 3(:)), should be zero for a time-reversible process. In that case, the third-
order cumulant function of {Y;,¢ € Z} has the additional symmetry property that
vy (01, 02) = vy (—L1, —{2), and hence

[e.9]

S{fy(wiw)t = Y v(lite,)sin2m(wity + waly)

01 ,la=—00
00

= Z ’}/y(fl, fg){SiH 27T(u)1f1 + wgfg) + sin 271'(*&)121 — CUQEQ)}
01 0a=0

=0 (4.8)
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Figure 4.1: Values of fy(w1,ws) defined over the entire plane, as completely specified by
the values over any one of the twelve labeled sectors.

using the identity sin A + sin B = 2sin AJQFB cos A*TB.

For reasons to be apparent soon, a convenient normalization for the bispectrum
is obtained by simply dividing the modulus of fy (w1, w2) by the appropriate spectra,
giving the normalized bispectrum, defined by

Wi, w fY(wl’WZ) wi,w
S Y oy ey o M )

The third-order cumulant of the general linear causal process (1.2) is given by

oo 0 XX

y (b, 62) = (Z oD byt f’)

] O]/ OJN 0

= ]E(&?) Z ¢jw‘j+€1 ¢j+é2 .

=0
Hence, the bispectrum becomes
o0 o0

fr(whwe) =E(e) D brberebese, exp{—2mi(wily + walo)}

1 fa=—00 €=0
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= E(E?) Z Z wéﬂ/]égwf exp{—2m’(w1 (51 — 5) + w2(£2 — 5))}

£y la=—00 £=0

=E(e}) Z Yy, exp{—2miwi 1} Z Yy, exp{—2miwals}

£1=0 lo=0

X Z Wy exp{2mi(w1 + w2)l}

=0
= E(E?)H(Wl)H(WQ)H*(W1 +U)2), (4.10)

where H(w) = > 1; exp(—2miw;) is known as the transfer function, and H*(w) =
H(—w) its complex conjugate. Furthermore, it is well known that if {Y;,t € Z} is
linear, then the spectral density function in (4.3) reduces to

fy(w) = 0§|H(w)|2. (4.11)

Combining (4.10) and (4.11), the square modulus of the normalized bispectrum,
called frequency bicoherence, is simply
3\12 2
| By (w1, ws)|? = M = 'uiﬁ’s, (wi,wz) € D, (4.12)
UE UE
where p3. = E(¢}). This fundamental property is the basis of frequency-domain
tests for Gaussianity and linearity which we detail in the next sections.

Note that the right-hand side of (4.12) is the squared skewness of the process
{et,t € Z}. 1If {Y;,t € Z} is linear, and the distribution of {g;} is symmetric, then
p3e = 0 and so |By (w1, w2)|?> = 0, V(wi,w2) € D. However, this is also true for
linear Gaussian time series processes. Thus the skewness function is a constant if
{Y}:,t € Z} is linear and that constant is zero if {Y;, ¢ € Z} is Gaussian. Consequently,
the null hypotheses of interest are, respectively,

H((]l) : fy(wl,wQ) = 0, V(wl,WQ) € D; and (4.13)
H :  |By(wi,ws)|? = constant, V(wi,ws) € D. (4.14)

Given actual data of size T', consistent estimates of the spectrum and bispectrum
can be obtained through various techniques. Broadly these techniques can be clas-
sified into three categories: nonparametric or conventional methods, parametric or
model-based methods (e.g. AR modeling), and criterion-based methods (e.g. Burg’s
(1967) maximum entropy algorithm). The first category includes two classes: the
direct method which is based on computing the third-order extension of the sample
periodogram, known as the third-order periodogram, and the indirect method, which
is the extension of the FT of the sample ACVF to the third-order cumulant. Both
methods are easy to understand and easy to implement, but are limited by their
resolving power when T is small, i.e., the ability to separate two closely spaced
harmonics. Nevertheless, conventional methods dominate the literature.
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The (sample) periodogram, as a natural estimator of the spectrum, is defined as
the discrete FT of the sample ACVF, i.e.

T—1
1
In(w)= > Ay(0)exp{-2miwt}, we]o, 5 (4.15)
=—(T-1)

where Jy (¢) = T! ZtT:_f Y;Y;1e. The periodogram, however, is not a consistent
estimator of fy(w). Similarly, the third-order periodogram, is an inconsistent es-
timator of fy (wi,ws). Consistent estimators of fy(w) and fy(wq,ws) are obtained
by “smoothing” the periodogram and third-order periodogram, and the resulting
estimators are defined as

M
A= A(%)@Y(@exp(—zmo, welo, %], (4.16)
=M
n - by o o .
fy(wi,w2) = Z )\(M7M)’Yy(fl,@)exp{—%l(mﬁl + walo)},
01 fo=— M
(wl,wg) e D, (4.17)

where Fy (01,02) = TS Yi¥ii0,Yige,, with 8 = max{0,01,02}, (1,0 =
0,1,...,7—1)and 1 < M < T (truncation point).

The function A(+) is a lag window, satisfying A(0) = 1 and the symmetry condition
(4.1). Furthermore, A(-,-) is a two-dimensional lag window satisfying the same
symmetries as the third-order moment, and is real-valued and finite. A standard
window is Parzen’s lag window, which is defined as

AMw) =4 20— ), lul<1, (4.18)

A two-dimensional lag window can be constructed from any one-dimensional
window, and is given by A({1,ls) = A(1)A(l2)A\(¢y — £3). In general, M = M(T)
is chosen such that as T — oo then M — oo, but the ratio M?/T — 0. A large
value of M will increase the variance and decrease the bias of the estimates of the
spectrum and bispectrum.

Example 4.1: Third-order Cumulant and Bispectrum

Suppose the series {Y;}Z_; is generated by a diagonal BL(0,0,1,1) process of
the form

Y = BYi160-1 + &, (4.19)
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Figure 4.2: (a) A realization of the diagonal BL(0,0,1,1) process Y; = 0.4Y; 1611 +&¢

ii.d.

with {e;} "~ N(0,1); (b) Three-dimensional plot of vy (u,v); (¢) Contour plot of the fre-
quency bicoherence estimates of the BL process in (a); (d) Contour plot of the bicoherence
of a series generated by the AR(1) process Y; = 0.4Y;_1 + &¢ with {e,} "= N(0,1). Super-
imposed is a plot of the principal domain (4.7); T = 100.

where {e;} "= N(0,02). To ease notation, it is convenient to define A = fo..
The process is stationary and ergodic if |[A| < 1. According to Kumar (1986),

the third-order cumulant is given by

vy (1, l2) =

(

\

3 _3(4+45)\2
2\ 05( %

20802 (1+A24+21)

1-X

)

2 Y
43308 (14202024301 0d)

3 6 1-A2
P

68221221 (1422 90)

)

1-22

0,

otherwise.

(4.20)

Figure 4.2(a) shows a plot of a realization of the BL(0,0,1,1) process with
B = 0.4. The plot gives an indication of the series periodicity, stationarity,
and also whether there are any intermittent periods. Figure 4.2(b) shows a
plot of vy (¢1,4s) for (f1,03) = —3,...,3, with 02 = 1. Note the peak in the
third-order cumulant at (¢1,¢2) = (1,1). For a diagonal BL(0,0,p,p) (p > 0)
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zero-mean process, vy (¢1, f2) will have a peak in the third-order cumulant at
(¢1,02) = (p,p). Then the modulus of the bispectrum will be periodic on the
manifolds wy = 0 and we = 0 with frequency inversely proportional to p.

Figure 4.2(c) shows a contour plot of the bicoherence using the direct fast FT
based estimation method. We see peaks at (wi,w2) = (0, 0) and the 11 other
symmetric locations indicative of nonlinear phenomena. Figure 4.2(d) gives
the bicoherence for a realization of a stationary AR(1) process with the same
parameter value as the simulated BL process. The plot also includes the first
triangular region, i.e., the principal domain (4.7). We see, that in contrast
to the BL process, the bicoherence is constant, indicating that the process is
linear, and possibly Gaussian, or normally, distributed.

4.2 The Subba Rao—Gabr Tests

A first heuristic step of assessing non-Gaussianity (or more broadly asymmetry), and
nonlinearity is to examine the real and imaginary parts of the bispectrum, as well
the modulus of the bispectrum estimates by a three-dimensional plot or by a contour
plot. This can be a useful exercise, but like interpreting a plot of the sample ACF it
is an inexact art. A number of formal frequency domain tests for non-Gaussianity
and nonlinearity have been based on the frequency bicoherence result (4.12). In
this section, we discuss two test statistics proposed by Subba Rao and Gabr (1980,
1984).

4.2.1 Testing for Gaussianity

Subba Rao and Gabr (1980) suggest testing for Gaussianity first by forming an
estimate of fy(wi,w2) on a set of lattice frequencies in the principle domain D,
and then testing those quantities for constancy, by estimating |By (w1,ws)|?. The
procedure for computing the Gaussianity test statistic consists of the following steps.

Algorithm 4.1: The Subba Rao—Gabr Gaussianity test
(i) Choose M, and estimate fy (w) by (4.16).

(ii) Construct a set of estimators v (wj,wr) at a “coarse” grid of designated
frequencies (wj,wy) € D, with w; = j/K, (j = 1,...,|2K/3]), wp = k/K,
(k=j+1,...,K—|j/2|—1). Here, K must be chosen such that K < T and

its value lies inside D. This is accomplished by defining a “fine” grid of N =
4r + 1 frequencies w;, = w; + %, (p=-r,—r+1,...,-1,0,1,...,7r = 1,7),

Wk, = wk—l—%, (q=—-r,—r+1,...,—1,1,... ,r—1,r), which extend vertically
and horizontally from each of the (w;,ws).
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(i)

Algorithm 4.1: The Subba Rao—Gabr Gaussianity test (Cont’d)

(Cont’d)
The distance d between the new frequencies is such that the bispectral estim-
ates at neighboring points on this fine grid are approximately uncorrelated.

Use (4.17) at each of the (w;,,wy,) in the finer grid, to obtain fy(wjp,wkq),
as N unbiased, approximately uncorrelated, estimates of fy (w;,wr).

Place each of the fy(wjp7wkq) ina P x N matrix D = (&,...,&y) where
& = (Criye o pi) (i=1,...,N) with & = fy(w;,,ws, ), suitably relabeled,
and where P = Z?:Ii/?’} (K —|i/2] —1—14). The P row vectors of this matrix
are asymptotically complex Gaussian with mean m, a vector of length N,

and variance-covariance matrix X, say. Under H(()l), n =0.

The test statistic for Gaussianity is developed as a complex analogue of Ho-
telling’s T2 test statistic. Specifically, calculate the statistic 72 = N*A~17),
where A = NS ¢ and * denotes complex conjugate. For practical application,
it is recommended to use the test statistic

2(N — P)
F = TTE. (4.21)

Under H(()l), and as T — oo,
n-2F, ., (4.22)

with degrees of freedom 14 = 2P and v = 2(N — P).

Example 4.2: Principal Domain of the Subba Rao—Gabr Gaussianity

Test

The choice of K has a direct effect on the selected frequencies in the principal
domain. Suppose T'= 250, K =6,d =28, and r = 2.! Then, N =4r +1=09,
and P = (6 —2)+ (6 —4)+ (6 —5) = 7, resulting in 63 frequency pairs (w1, w2)
from the total of approximately (1/3){(T/2)+1}? = 5,292 in D. Figure 4.3(a)
shows a plot of the corresponding principal domain. Figure 4.3(b) displays
similar results for K = 7 (P = 10). Observe that there is a lack of selected
frequencies near the left and bottom edges of D in both figures. So, in practice,
the Subba Rao—Gabr Gaussianity test statistic can be sensitive to small, or
missing, values of the estimates of fy (w;,ws) in certain areas of D.

LChoosing K as a multiple of T results in ordinates that directly match the Fourier frequencies.
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Figure 4.3: (a) Principal domain for the bispectrum with frequency pairs (w;,,wr,) (blue
dots) (p=—2,—1,0,1,...,2;qg = —2,—1,1,2) and designated frequency pairs (red stars) for
d=8,T=250; (a) K=6, and (b) K =17.

4.2.2 Testing for linearity

If the symmetry null hypothesis H(()l) is rejected, Subba Rao and Gabr (1980) consider
testing H(()z). As in the Gaussianity test, estimates of |By (wj,,ws,)| are constructed
at the N points in the fine grid (wjp,wkq). Place these NP estimates in a P x N
matrix. Average the values in the columns of this matrix to obtain a random sample
of N estimates of the P x 1 mean vector Z = (Z1,...,Zp)’, suitably relabeled.

These estimates, denoted by Z7,...,7Z}%;, are asymptotically normally distributed

(Brillinger, 1965). If H(()Q) is “true” then all the elements of the mean vector Z are
identical. Equality of the means under the null hypothesis can be expressed as P —1
comparisons, i.e. Z; — Z;—1 =0 (i = 1,..., P — 1). This expression can be written in
matrix form. To this end, define a (P — 1) x 1 column vector 3 such that 3 = BZ,
where B is the (P — 1) x P matrix:

1 -1 0 0 0

0 1 -1 0 O
B = i

0 0 O 1 -1

Under the null hypothesis H(()2), B is asymptotically jointly normally distributed with
mean 0, and variance-covariance matrix BX ;B’.

Given the above results, the remaining part of the procedure to compute the test
statistic goes as follows.
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Algorithm 4.2: The Subba Rao—Gabr linearity test
(i) Compute
B=BZ and S=BS,B,
where
— N ~ N — —
Z=N"'>7; and Sy;=N"' (Z -Z)(Z; -Z)
i=1 i=1
are the ML estimates of the mean and variance-covariance matrix, respect-
ively.

(ii) Compute the likelihood ratio test statistic

 N—-P+1

2
Fy = ——5——T5, (4.23)

where T§ = N@lg_l,@. Under ng), and as T — oo,

P2 F, (4.24)

1,V2

with degrees of freedom vy = P—1and vo = N — P+ 1.

4.2.3 Discussion

There are some drawbacks to the test statistics (4.21) and (4.23). Typically the
user has to decide on the choice of the lag window, the truncation point M, and
the placing of the grids, i.e., the parameters d, K, and r. Based on 500 generated
BL(2,1,1,1) time series W.S. Chan and Tong (1986) note that the results of the
Subba Rao—Gabr linearity test statistic is sensitive to the choice of the lag window.
The choice of the truncation point M is another delicate issue; see, e.g., Subba Rao
and Gabr (1984, Section 3.1) for various suggestions. One recommendation is that
M < T'2. A more formal approach is to minimize the mean squared error (MSE)
of the bispectral estimate, which is a function of fy(w1), fy(w2) and fy(w1,w2),
with respect to M.

The parameters d, K, and r should be chosen as follows. First, it is required
that N x [2K/3] < T, where [-] denotes the integer part; see step (iv) of Algorithm
4.1. Next, to ensure that the spectral and bispectral estimates at different points
of the grid are effectively uncorrelated, it is necessary to choose d such that d/T is
larger than the spectral window corresponding to the lag window A(s). Similarly, r
should be chosen such that r/T is less than the lag window. Finally, to ensure that
points in different fine grids do not overlap, it is essential that d < T'/{K(r+1)}. In
summary, great skill is necessary in applying both test statistics (4.21) and (4.23)
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because of the large number of parameters involved.

4.3 Hinich’s Tests

Hinich (1982) modifies the Subba Rao—Gabr tests to use all the bispectrum Four-
ier frequency gridpoints. However, rather than using the windowed sample ACVF
method, or indirect method, the test statistics are based on a consistent estimator
of the bispectrum at frequency pair (wy,,w,) obtained by smoothing the third-order
periodogram over adjacent frequency pairs.

The general framework can be summarized as follows. Let w; = (j — 1)/T
(j =1,...,[T/2) + 1). For each pair (j,k) (j,k € Z), define the complex random
variable

Py (wjwi) = Y (w))Y (W)Y (wjs0) /T, (4.25)

where

T

Y(w;) = Yyexp{—2miw;(t — 1)},
t=1

Since Y (wjir) =Y (w;) and Y (wr—;) =Y *(wj), the principal domain of Fy (w;,wy)
is the triangular set

A={(Gk):0<j<T/2,0<k<j 2j+k<T} (4.26)

assuming 7' is even. A straightforward approach to obtain a consistent estimate of
the bispectrum is to average the Fy (wj,wy) in a square of M 2 points, where the
centers of the squares are defined by a lattice £ of points such that £ € A; see
Figure 4.4 for two examples. Then the resulting direct estimator of fy (wi,ws) is
given by

mM—1

-~ 1
fY(mewn) = W Z FY(OJ]‘,Wk)7 (427)
Jk=(m—-1)M

with M = |T¢] (% < ¢ < 1). The complex variance of this estimator, assuming
the terms in the summations are restricted to A\, excluding the manifolds w,, = 0,
W = Wy, is given by

Var{Fy (wmwn)} = 377 @ () (5) fy (G ) + O(M/T),

where 6, = (20 — 1)M/(2T) and Q, is the number of (j, k) in the squares that
are in /A, but not on the boundaries j = k or (25 + k) = T', plus twice the number
on these boundaries. Note, TM ~*Q,, < TM~2 = T'72¢ — 0 if T — oo, since
Qm,n < M2
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(a) (b)

“ | A
g
o
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Figure 4.4: (a) Lattice in the principal domain for the bispectrum with K = 10, and
r =5; (b) Lattice L in the principal domain of the bispectrum for estimating Hinich’s test
statistics; T = 144 and ¢ = 1/2.

It can be shown (Hinich, 1982) that the asymptotic distribution of each estimator
is complex normal, and that the estimators are asymptotically independent inside
the principal domain. Therefore, the distribution of the statistic

By (W, wn) = Afy(w”l’ “n) =
{T1740Qm7nfy(5m)fy ((5n)fY(5m+n)}l/2

(4.28)

is complex normal with unit variance, with fy() the estimator of the spectral dens-
ity function constructed by averaging M adjacent periodogram ordinates. Now
2| By (wm, wy)|? is approximately distributed as X5(Am.n), i-e. a noncentral chi-square
distribution with two degrees of freedom and noncentrality parameter

A = 2T Q) | By (Wi, wn)|? > 27271 By (win, wn) % (4.29)

Thus, the value of (4.29) increases when a smaller set of frequency pairs (wy,,wy) is
considered.

The choice of the parameter ¢ controls the trade-off between the bias and variance
of Ey(-, -). The smallest bias is obtained for ¢ = 1/2, whereas the smallest variance
is for ¢ = 1. The power of the test for a zero bispectrum depends on T%/2 when
T'~¢ is large, c should be slightly larger than 1/2 to give a consistent estimate.

4.3.1 Testing for linearity
Assume {Y;,t € Z} follows the zero-mean stationary linear (L) process (1.2). Then,

for all squares in A, so that Qp, p, = M 2 the noncentrality parameter reduces to

2
)\mm == 2T2C_luié€ = )\0.
g

)



132 4 FREQUENCY-DOMAIN TESTS

Thus, the noncentrality parameter becomes a constant. Since E(|§y(wm,wn)\2)
=14 A\ n/2, it follows from (4.29) and the asymptotic properties of By (w,,wn,)
that the parameter Ay can be consistently estimated by

- (mzn):d Qo ( 1By (o)~ 1), (4.30)

where P, the number of (m,n) in £, is approximately T%/(12M?). Consequently,
the distribution x3 (Xo) converges to a x3(\g) variate, as T — oo.

If H((]2) is true, expression (4.30) shows that the noncentrality parameter of the
asymptotic distribution of the statistic Z\EY (Wi, wn)|? is constant V(m,n) € £, and
squares wholly in A. If the null hypothesis is false, the noncentrality parameter
will be different for different values of m and n. As a result, the sample dispersion
of 2|§y(wm,wn)|2 will be larger than expected under the null hypothesis. This
dispersion can be measured in many ways.

One way to proceed is to use the asymptotic normality of the interquartile range,
say IQR/, of the 2]§y (W, wy)|’s entirely within the principle domain. Let gp 25 and
qo.75 denote respectively the first and third quartile of a x3()\g) random variable, and

let go.75 —qo.25 be the IQR from this distribution. Then, under H(()z), the approximate
distribution of IQR s, as deduced from the theory of order statistics, is given by

TQRy, — (9075 —
Zty = B = (@075 Zd02) Dy 1) a5 T oo, (4.31)

g0

where

3[f12(00) (@0.25)] 2 =2[f,3(30) (40.25) [z (2) (90.75)] T +3[fy2(00) (90.75)]

16 P ’
(4.32)

oi=

and [,z 2o) () is the density function of a x3(X\o) random variable. It is not difficult
to estimate qo.25, qo.75, and (4.32) for a given value of \g. In practice, the estimator
(4.30) is used in the computations of these values.

4.3.2 Testing for Gaussianity

If the error process {&,t € Z} in the linear DGP (1.2) is Gaussian (G), then A9 = 0.
In that case the following test statistic may be used

T¢=2 > |By(wm.wn)l? (4.33)
(m,n)eL

which is asymptotically distributed as a central X% p variate under ]HI(()Q), with P ~
T?/(12M?); see (4.30). Note that (4.33) is essentially the Subba Rao-Gabr test
statistic T%, i.e., instead of using an estimate of the bispectral density in the sum of
squares (4.33) uses an estimate of the normalized bispectrum.
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4.3.3 Discussion

For relatively large sample sizes Ashley et al. (1986) examine in an MC simulation
study the size and power of Hinich’s linearity and Gaussianity test statistics. Over-
all, the sizes of these test statistics are satisfactory. What seems more important,
however, is that the power of the linearity test statistic is disturbingly low in distin-
guishing between linear and nonlinear time series processes. In particular, this seems
to be the case for ExpAR and SETAR behavior. Furthermore, Harvill and Newton
(1995) show that uncommonly large time series sample sizes are necessary before
the normal distribution in (4.32) is reliable for calculating p-values. Additionally,
these authors point out that the asymptotics of this problem are present in three
interwoven forms: the length T' of the observed time series, the number of points
M used to estimate the normalized bispectrum, and the number P of normalized
bispectral estimates used in calculating the IQR. For instance, to have P = 100
requires a series of length 7' = 1,200 when using M = |T"/?].

Although Hinich’s approach is robust to outliers in the case of linearity, a dis-
advantage of using the IQR is that if the null hypothesis is false and the process is
of a type of nonlinearity which would result in a peak in |By (wp,wy)|?, the range
effectively ignores that distinguishing feature. So the test statistic may differentiate
between linear and nonlinear processes but provides no clue as to the form of non-
linearity. To some extent this may be overcome by visually assessing plots of the
frequency bicoherence.

More importantly, Garth and Bresler (1996) raise some concerns with the as-
sumptions required to form the linearity test statistic. As the number of discrete
FT values of {Y;}, increase as T — oo, the assumption that |l§y(wm,wn)\2 will
converge to the proposed noncentral y3()\g) distribution is violated, as this requires
a finite number of bispectral estimates. Ignoring the finite-dimensionality constraint
leads to a different asymptotic distribution; it can also lead to dependence between
two estimates, smoothed over distinct frequency regions. The dependence is elimin-
ated by summing the discrete FT over a finite subset of points, which is true for the
indirect estimate of the bispectrum. This approach, however, introduces the addi-
tional problem of carefully choosing the spectral bandwidth M, as with the Subba
Rao—Gabr test statistics.

4.4 Related Tests

4.4.1 Goodness-of-fit tests

Recall that under Gaussianity, the noncentrality parameter of the test statistic
2| By (Wi, wn)|? is identically zero V(wy,w,) € £. So the noncentral chi-square dis-
tribution with two degrees of freedom and noncentrality parameter A\g = 0 reduces
to a central x3 distribution, i.e., an exponential distribution with mean 2. This
suggests that a goodness-of-fit (GOF) test statistic might be effective in measuring



134 4 FREQUENCY-DOMAIN TESTS

the difference between the empirical distribution function (EDF) of 2 \Ey (Wrn, wn) |2
and the noncentral x3(\,,») as the null distribution.

Unfortunately, finding the null distribution of the resulting EDF-based test stat-
istic is intractable. Jahan and Harvill (2008) overcome this problem by approximat-
ing the noncentral y3(-) distribution by a normal distribution in the following way.
Let X ~ x2()\). Then a remarkably accurate approximation (Sankaran, 1959) for
the tails of the y2(\) distribution consists of replacing X by Y = (X/(v + \))",
where the exponent h is given by

2(v 4+ M) (v +3X)
h=1- . 4.34
3(v+2N)2 ( )
Specifically, Y has an approximate normal distribution with mean and variance given
respectively by

My:1+h(h—1)%—h(h—l)(2—h)(1—3h)%, (4.35)
o2 = h2% [1 —(1-n)( 3h)%} (4.36)

If X\ is unknown, it is recommended to replace A by the method of moment based
estimator
N { Y—v ifY> v,

0 otherwise, (4.37)

where Y is the sample mean. Under the null hypothesis of Gaussianity, \is a
consistent estimator for .

Stephens (1974) shows that in a wide variety of situations the Anderson-Darling
(AD) GOF test statistic is the most powerful EDF-based test followed by the (one-
sample) Cramér—von Mises (CvM) test statistic. In the case of testing for Gaus-
sianity and linearity, using the bispectrum, these test statistics can be computed
as follows. Let {Q(i)}{;l denote the quantiles computed from the ordered values
2\By( (1) Z(2))]2 (¢t =1,...,P). Note, that for testing Gaussianity, the data are
assumed to come from a fully specified normal distribution. Then a modified form
of the CvM-type test statistics is given by

CvM* = (CvyM — 0.4/P 4 0.6/P?)(1 4 1/P), (4.38)

where

CVM—ﬁ—FZ( 2Z_1)>.

However, for all P > 5, the AD-type test statistic for testing Gaussianity needs no
modification, i.e., its calculation can be based on the formula

AD=-P— % Z (2i — 1) [ 10g Qi) +Tog(1 = Qp1)-1) . (4.39)
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assuming Q)(;) # 0 or 1.
For testing linearity both mean and variance of the transformed random vari-
ables are unknown. In that case these quantities are estimated by By, the sample

1) @2

mean of the B\y(wi ,w;”’) (i =1,...,P), and the sample standard variance (P —

1)t Zil(gy(wi(l),w?)) —Ey)z. Then, according to Stephens (1986, Table 4.9),
the asymptotic upper-tail p-value can be computed from first transforming CvM to
the modified (m) statistic CvM,, = CvM(1+0.5/P) and next calculating a parabolic

approximation, i.e.,
[ exp (0.886 — 31.62 CvM,, + 10.897 (CvM,,)?),  0.051 < CvM,, < 0.092,
P= exp (1.111 — 34.242 GvM,, + 12.832 (CvM,,)?),  CvM,, > 0.092.

For the modified statistic AD,=AD(1+0.75/P +2.25/P?%) (P > 8), the formula for
the asymptotic upper tail p-value is given by

[ exp(0.9177 — 4.279 AD,, — 1.38 (AD,,)?),  0.340 < AD,, < 0.600,
| exp(1.2937 — 5.709 AD,, + 0.0186 (AD,,)?), 0.600 < AD,, < 13.

Below we summarize the two-stage procedure for testing for Gaussianity and
linearity.

Algorithm 4.3: Goodness-of-fit test statistics

(i) Testing for Gaussianity (G):
(a) Compute the quantiles Qu ) (i = 1,...,P) of the ordered
2|§y(wm,fn)|2 values, using the exponential(2) CDF. That is, Q) =
1 —exp(—B;)/2), where By;y are the arranged (ascending order) values
of the 2|§y(w§1),w§2))\2’s.
(b) Apply these quantiles to the expressions in (4.38) or (4.39) to compute
the value of, say, CvMS or ADS.

(¢) Compare the value of the test statistic with the appropriate critical

value.

(ii) Testing for linearity (L):
(a) For each i transform the random variable B(i) into Y; = (B /(2 —&-X)) "
where h is as in (4.34) with v = 2, and replacing A with (4.37).

(b) Standardize the P random variables Y;, using (4.35) and (4.36) with
v =2 and A given by (4.37).

(c) Compute the quantiles Q;y (i = 1,..., P) of these variates, using the
standard normal CDF.

(d) Compute the values of, say, CvME or ADE.

(e) Compare the value of the test statistic with the appropriate critical

value.
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4.4.2 Maximal test statistics for linearity

As noted in Section 4.3.2, Hinich’s Gaussianity and linearity tests involve the selec-
tion of the number of points M. The larger (smaller) M, the smaller (larger) the
finite-sample variance of (4.27) and the larger (smaller) the sample bias. Because
of this trade-off, Rusticelli et al. (2009) compute the maximal values of Hinich’s bi-
spectral test statistic for linearity 2|§y (W, wn)|? over the computationally feasible
range of values for M. The upper bound (M) of this range is set at the total
number of frequency pairs (wy,,wy) € D that at least exceeds one. The lower bound
(M") is determined by the requirement that \g in (4.30) should be positive. Then
a well-sized test, giving the highest power against a wide set of nonlinear DGPs, is
the maximal standardized interdecile (IDR) fractile statistic, MDI];DR, defined as

L _
MDfy, = mas {IDRy}, (4.40)
where
DR — {20 (@0.9) = fx2(am.) (201)} = {fxg(xo)(qgg) - fxg(j\‘o)@().l)}
M j—

00
(4.41)

is the standardized IDR fractile. The estimate 73 of o7 follows from (4.32) with
Fx3(20) () replaced by [ (Xo)(‘)' The use of the IDR rather than the IQR in (4.41) is
2

in line with Hinich et al. (2005) who, from numerous real and artificial applications,
notice that the IDR gives more robust test results.

In an analogous way, maximal test statistics can be defined on the basis of the
IQR, and 80% fractiles of Ey (W, wy). Following the same arguments as in Hinich
(1982), it can be shown that all these maxi-minimal test statistics are asymptotically
distributed as AV/(0,1) under the null hypothesis that {Y;,t € Z} is a linear DGP, as
defined by (1.2).

4.4.3 Bootstrapped-based tests

In finite samples, one cannot assess the validity of Hinich’s linearity test statistic on
the basis of critical values determined from the two asymptotic distributions — the
noncentral x3(\g) distribution and the normal distribution (4.31). Data-dependent
bootstrapping (resampling) the distributions of the linearity test is a way out, and
several approaches have been proposed for this purpose. Often these bootstrap
approaches involve, as a first step, prewhitening the time series by fitting an AR(p)
model to the data, and separating out the residuals of the fit. A more appropriate
approach is to allow the order p to be an increasing function of the sample size
T, thereby creating an approximating sieve of AR models. This is the essence of
the AR-sieve, or AR(oc0) bootstrap, adopted by Berg et al. (2010) to formulate a
bootstrap procedure for Hinich’s linearity and Gaussianity test statistics.
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The proposed bootstrap algorithm is based on a ‘kernelized’ form of Hinich’s
test using the indirect bispectral estimation method. Specifically, asymptotically
unbiased and consistent estimators of fy(w) and fy (w1, ws) are defined respectively
by (4.16) and (4.17). where A(-) and A(-, -) are non-negative one- and two dimensional
lag windows (continuous weight functions), respectively, with compact support. This
latter assumption can be relaxed with a trade-off of a more involved asymptotic
theory. Very often A(-) and A(+,-) are chosen such that they satisfy the symmetry
conditions

Aw) = A(=w),
)\(wl, (.UQ) )\(Q)Q,U}l) )\(—wl,wg - wl). (442)

Clearly, both conditions mimic (4.1) and (4.2), or (4.5) and (4.6). But condition
(4.42) is not required for proving consistency or asymptotic normality of (4.17).

Let wj = (wj(l) (2 )) (j =1,...,P) denote the jth frequency pair in the lattice
L. Then, as already noted in Sectlon 4.2, the kernel estimators fy(w](l),w](?)) as in
(4.17) are approximately complex Gaussian with variance
V. M @y _ M (1) (2) D) 4 @
ar{ fy (i, wi?)} = 7 Wafy(w) )fY( )fY( ) (4.43)
where
<[ (@ 1, (2
Wy = /_OO /_OO )\Q(wj( ),wj(. ))dwj(. )dwg- ). (4.44)
Then define the statistics
=0, (2)
~ Wi w;
Zy (0D, @) = frw; e ) (4.45)

1) 2y _ B _ .
T e We T fy () Fy (0P fr (@ + w2

Hence, the statistics 2|Z\y(w§1),w§2))|2 (j = 1,...,P) are asymptotically dis-
tributed as independent noncentral Xz variates with noncentrality parameter

Ly @ )2 (2 W T) fy (0) fy (@) fr (@8 +w?)). For the purpose of test-
ing linearlty and Gaussianity, the set of randorn varlables 2|2y(w§1),w](-2))|2 for all
(wj(-l), wj(?)) is considered to be a random sample from a continuous distribution with

CDF F(-).
Before detailing the steps involved in the AR(oo)-sieve bootstrap procedure, we
collect the spectral and bispectral density estimators into one long vector, i.e.,

Vr = (J?\Y(w£1)),...,fy(wP )s fy( )""va(wp ), Fy(w (1)+w(2)),_, ’
Pl + o), ol o), Frwl) o).
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W(o)

Figure 4.5: Profiles of the Parzen lag window (black solid line) given by (4.18), and the
trapezoid-shaped lag window (blue medium dashed line) as given by (4.50).

The hypotheses of interest are:

H(()g): Linear but non-Gaussian (L4+nG), (4.46)
H(()4): Linear and symmetric (L+S), and (4.47)
HSS): Gaussian (G). (4.48)

Depending on the purpose of the analysis, one of the above three hypotheses are
considered in the following bootstrap algorithm.

Algorithm 4.4: Bootstrap-based tests

(i) According to some order selection criterion choose p, fit (e.g., via the Yule-
Walker equations) a strictly stationary AR(p) model Y; = >7_, ¢ Yk + &4
to {Y;}{_,, and separate out the residuals of the fit {£,}7_ ;.

(ii) e When testing for Hé?’):
(a) Center the residuals, to obtain & = & — g, where € = (T —
p)~! Dot Et
(b) Draw T +b* independent bootstrap residuals ¢} from the EDF Fr
of {€;}, where b* > 0 denotes the so-called “burn-in” period to
ensure the approximate stationarity of the bootstrap.

(c) Generate, with the AR model found in (i) a series {Y;*}.; of
pseudo-observations, and obtain the corresponding EDF FT3 .

e When testing for H(()4):

(a) Draw T — p independent bootstrap residuals &, from F7(~3).
(b) Transform the &/ ’s into pseudo-observations & = S;e; with
{8} "X U[-1, 1], where U denotes the discrete uniform distri-

bution on —1 and 1.
. . )
(c) Obtain the corresponding EDF F.”.




4.4 RELATED TESTS 139

Algorithm 4.4: Bootstrap-based tests (Cont’d)
(ii) e When testing for H(()5):
(a) Compute the residual variance 52 = (T — p)~' >, (& — &)

(b) Draw T —p independent bootstrap residuals &} from N (0,52), and
obtain the corresponding EDF F7(“5)-

(iii) Compute the vector of pseudo-statistics VT(i) (Y;(b)) (i = 3,4, 5) analogous to
Vr, but with the series {Yt(b)} generated from the fitted AR(p) model with
eITOr process {5Eb)} R Fq(f).

(iv) Repeat steps (ii) — (iii) B times, to obtain {Vj(j)(Y;(b))}f:l (1 = 3,4,5).
The EDF of these bootstrap statistics can then be used to approximate
the distribution of V7 under ng‘) (1 = 3,4,5). In Table 4.1 we label the

corresponding test statistics, based on the IQR, as: ZILC;‘G, Z{gﬁ, and T, I%R.

(v) Reject Hgi) (¢ = 3,4,5) when the p-value is less than a pre-specified signific-
ance level.

Suppose, in addition to the assumptions imposed on ~y (-) and vy (-, ), that

Y Pl () <oo, and > (L+ )y (l,ly) <oo (j=1,2).  (4.49)
l=—00 l1,lp=—00

Then Berg et al. (2010) prove the asymptotic consistency of the bootstrap test
procedure under both the null hypothesis and the alternative hypothesis. They
estimate the spectrum by a trapezoid-shaped lag window function (see Figure 4.5),
and the bispectrum with a right-pyramidal frustum-shaped lag function (see Figure
4.6(a)). These functions are, respectively, defined by

As)=2(1—|sh™ — (1 —2[s)™, (4.50)
AMu,v) = 2X00(u, v) — Ao(2u, 20), (4.51)
where
(1_maX(|‘T|”y|))+’ —].S.fL‘,yéOOI‘OSﬁ,yS].,

(1 — max(|z +yl, |z — y\))+, otherwise,

)\O(x?y) = {

with ()™ = max(0,z). Both infinite-order functions can produce higher-order ac-
curate estimators of the spectral and bispectral densities.

4.4.4 Discussion

Similar to the original Hinich’s test statistics, the user of the AD- and CvM-type
test statistics has to select M (the bispectral bandwidth), and P (the number of
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gridpoints). Consequently, the test statistics may still be sensitive to these user-
specified parameters within the EDF framework. The automatic choice of M in the
maximal test (4.40) reduces the bias-variance trade-off associated with the Hinich
linearity test statistic. However, the resulting MDX . test statistic still relies on the
asymptotic normality of the bispectrum.

On the other hand, no asymptotic distributions are utilized with the bootstrap
based tests which may be viewed as a great advantage over the above test statistics.
The disadvantage of this method is that one has to choose M and P. In addition,
the order p of the AR approximation needs to be selected. One approach is to
adopt order selection criteria as AIC or BIC. Alternatively, a bootstrap method for
AR order selection may be included into the bootstrap algorithm; see, e.g., Zoubir
(1999). Berg et al. (2010) report that, in general, there is not much sensitivity of
the obtained test results due to the selection of the above parameters.

Furthermore, with the bootstrapped-based tests a decision needs to be made
about the number of resamples B. Fortunately with greater computing power, one
can often be very conservative and choose a much larger B than needed without any
statistical consequences. As the number of resamples increases so does the accuracy
of the test results. One simple diagnostic is to run the bootstrap algorithm twice
with the same size B. If the results are adjudged to be similar, and the conclusions
drawn remain the same, then the resample size can be considered to be adequate.

Finally, the bootstrap algorithm uses the direct estimation method of the bi-
spectrum, similar to the Subba Rao—Gabr test statistics. However, a problem with
both the direct and indirect estimate is that leakage may occur when a real frequency
is not matched by a Fourier frequency in the observed data. The effect of this
frequency is then leaked into the closest Fourier frequencies. With the indirect
estimate, which uses a truncated estimate of the third-order cumulant, the influence
of 7y (0,0) on estimated values of the bispectrum at locations other than (0,0) is
potentially greater at lower frequencies. As the estimated value of 7y (0,0) reflects
the skewness of the series {Y;}X_; this is more likely to be an issue for non-symmetric
time series, especially when T is relatively small.

4.5 A MSFE-Based Linearity Test

In Section 1.1, we introduced a second notion of linearity of a time series process,
following the simple definition that a process is linear if the linear forecast is optimal
in the MSE sense. Terdik and Math (1998) and Terdik (1999) use this notion to
propose a linearity test statistic based on one-step ahead forecast errors. Suppose
we are to make a prediction of Y; 1, at origin t. If {Y};,t € Z} is a stationary weakly
linear process, then the one-step ahead (H = 1) least squares (LS), minimum mean
squared error, forecast is given by

0.)
Vi = EYilYs, —oo <s <) =Y+ > iV, (4.52)
=1
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where v; (i = 1,2,...) are to be determined. The process {e, i}, With e, =
Yii1 — th‘l' ; = €t+1, is the one-step ahead forecast error, or innovation process. It

fulfils the conditions:
E(eFi-1) =0, E(e}|Fi-1) = o2, (4.53)

where F, is the o-algebra generated by {es, s < t}.

Many nonlinear predictors exist which do not require an explicit specification of
the type of nonlinearity. Among these predictors, Masani and Wiener (1959) show
that the best forecast which minimizes the one-step ahead mean squared forecast
error (MSFE), i.e. MSFE(H) = E(eerH't) with H = 1, is given by a polynomial of
the observed time series and, under some suitable conditions, can be constructed by
using only the values of the moments. The resulting one-step ahead quadratic (Q)

forecast is given by

oo
t+1|t =Y+ ZCJYtJ chth—th—va (4.54)
j7U:0

where the coefficients ¢; and ¢j, are chosen such that minimum of MSFE(1) is
achieved. If {Y;,t € Z} is non-Gaussian, then the one-step ahead quadratic forecast
has a smaller asymptotic MSFE than the one-step ahead linear forecast (cf. Exercise

4.2(b)).

Null- and alternative hypotheses

For simplicity of notation, we denote the process {e,;1;} by {e:}, and we assume
that {e;} is a strictly stationary process with ACVF satisfying similar conditions as
given by (4.49). In this case it is easy to see that {e;} is an uncorrelated process, and
therefore it will not necessarily satisfy condition (1.3). Now suppose that the best
one-step ahead LS forecast Y?f” , has already been constructed and the objective
is to check the assumption Y;ﬁfl' ;= Yle ¢+ Thus, in terms of the one-step ahead

forecast errors, the null- and alternative hypotheses of interest are:

Ho: E[{Yi1 — Yﬁ”t} —{Yi1 — thut}]Z =BV — }/t(il\t} =0, (4.55)

Hi: E[YS5, -Y3,,)*>0. (4.56)
Assume that the fourth-order moments of {Y;,¢ € Z} exists, and let fy(w)
satisfy the so-called Szegd condition, i.e., [dlog fy(w)dw > —oco, and assume all
finite-dimensional distributions of {Y;,t € Z} have a positive spectrum. Then, in
view of the symmetry relations (4.2), it can be shown (Terdik and Méth, 1993) that
a necessary and sufficient condition for equivalence of Y, +1| , and Yt Tt is that the
bispectrum fe (w1, w2) of the innovation process has the additive form

fe(wl,wg) = H(wl) -+ H(wz) + H*(wl -+ u)g), (457)
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where H(w) = 3772 Ye(J, j) exp(—2miw;). The functions fe(-,-) which satisfy (4.57)
are exactly those for which the following relation holds. For any triplet (a, 3,7)

fe(aw@) + fe('Ya 0) + fe(_a +7,—0— ’Y) = fe(ﬁa')’) + fe(07 - — 6)
+ fe(—a+v,—7). (4.58)

This relationship forms the basis of the proposed linearity test statistic.

Test statistic
Consider the third-order periodogram of {e;}]_;

Fo(wi,ws) = e(wr)e(w2)e™ (w1 + wa) /T,

where e(w;) = ZtT:_Ol e;exp{—2miw;} (j = 1,2). Then, analogous to (4.17), an
asymptotically unbiased and consistent estimator of f.(w1,ws) can be obtained by
smoothing with a two-dimensional window A(-, -), satisfying the symmetry relations
(4.42) while at all frequencies (w1,ws) its values are again in the principal domain
D, the triangle with vertices (0, 0), (0, 1/2), (1/3, 1/3) (see Figure 4.4). Terdik and
Math (1998) choose A(w1,ws2) to be zero for |w;| > 1/2 (j = 1,2). The smoothed
version of f.(w1,ws) is defined by

Fe(wi,wo) = TbT Z Wi (u,v)Fe(u/T,v/T), (4.59)

u,v=1

where b denotes a scale parameter such that br >0, br — 0, Tb% — o0 asT — oo,
and where Wi(u,v) = )\(b} (w1 — u/T), by (w2 — v/T)). Observe that Thy plays
the same role as M in the previous sectlons

The bispectral estimators fe(wl,wg) are asymptotically independent inside D.
On the boundary of D they are correlated (See e.g., Brillinger, 1975). If wy # wo,
wiws # 0, and wy # —2wo, the variance of fe( ,) is

lim T2 Var{ f.(w1,ws)} = (02)3 Wy, (4.60)
which implies
-~ UGWQ -~ O'GWQ
Tlim T3 Var{R(fe(w1,w2))} = 82 and Tlim Tb%Var{%(fe(wl,uJQ))} = 62 ,

where W is given by (4.44). If 0 < wy < 1/2, then

Jim Tv2Var{ f.(w1,0)} = oc%(Wa + Wo1), (4.61)

where Wop = [0 A0, w)dw.
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To obtain a practical test, all frequencies (w1, ws) must be mapped into D. In
view of the symmetry conditions, and without changing the value of the bispectrum
except for complex conjugation, this can be done using the following transformations:

Ti(wi,w2) = (wo,wi), To(wi,w2) = (w1, —ws —wi),
T3(wi,w2) = (w1 — w2, wa), Ty(wr,w2) = (—wi, —ws).

Now, let (a, 3,7) denote a fixed triplet such that the map of T;(-,-) (i =1,...,4) of
the six points

(a75)7 (770)7 (_04"1'77 _6_7)7 (57’7)7 (0,—0&—6), (_O‘+77 _’Y)

is different in D. Then, the following statistic can be defined

Qr(e, 8,7) = fela, B) + fo(7,0) + fel—a +7v, -8 —7) — fe(8,7)
*fe( /3) fe( O‘+’Ya*’7)’ (4'62)

with its asymptotic expectation

Qla, B,7) = fela, B) + fe(7,0) + fe(—a+7, =B =) = (fe(B,7) + fe(0, —a = B)
+ fe(—a+7,-7)).

Under Hy, we have Q(«,3,7) = 0. Moreover, under Hy and as T — oo,
(4.62) is asymptotically complex normal distributed with mean zero and variance
Var{Qr(a, 8,7)} ~ 60SWs/Tb2..

Now, rather than using Qr(«, 3,7) as a test statistic for linearity, Terdik and
Méth (1998) use a standardized form of Qr(«, 3,7). To this end they first define

Rur(0,8,7) = R{Qr (o, 8,7} (3 Var{Qr(a, 7))

Rozr(en 8,7) = ${Qr(a 8,7} (3Var(@r(ae 7))

Next, the entire set of observations is divided into K separate stretches of length T
Let Rg.f)T(a,ﬂ,’y) (t=1,...,K;j = 1,2) denote the (i, 7)th statistic resulting from
this approach. These 2K statistics are asymptotically independent with the same
distribution as R;r(a, 3,7). From this, the standardized real and complex parts of

Qr(a, B,7) are given by
Ve B,y) = K1 Z R} (j=1,2). (4.63)

Under Hl, the expectation and variance of M ( ,3,7) (j = 1,2) are respectively
approximately equal to zero and unity. The resultlng test statistic is given by
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K K K
i) = (M (0, B,9)}2 + ML) (0, B,7)2 (4.64)
Under Hyp, and as T — oo, QFEFK) has a x3 distribution.

Computation

Clearly, (4.64) is computed for only one set of triplets in D. Generalizing to n
sets of triplets, each consisting of K stretches, is direct. The various stages in the
computation of the resulting test statistic can be summarized as follows.

Algorithm 4.5: The MSFE-based linearity test statistic

(i) According to some order selection criterion determine p, and fit an AR(p) to
the observed time series {Y;}7_;. Obtain the residuals {&;}]_;.

(ii) Segment the series {£;}7_; into K stretches of length N = 2% (z > 6,z € Z),
so K = |T/N]. Select a window-width Nby. A recommended choice for
by is N 7949 so Nby = N5 which parallels the choice of M in the bis-
pectral estimator (4.27). Then compute the bispectral estimates ]?g(wj,wk)
Gok=1,...,N).

(iii) Compute the bispectral estimates fg(wj, wr) (J,k=1,...,N). A recommen-
ded choice for the weight function A(-,-) is

4T\/§{1 —4(w} + w3 +wiwa)}, (W 4w +wiws) < 1/4,

: (4.65)
0, otherwise.

)\(wl, wg) = {
The above window is optimal in the sense that it minimizes the MSE of the

bispectral estimate. For this window, evaluation of (4.44) gives Wy = 1.4628.
Figure 4.6(b) shows a plot of the profile of (4.65).

(iv) Using n = 7 triplets (a4, 3;,v:), construct the two 3 x 2 matrices with indices

N o gz N g: Yi 5
64 Vi ' 64 Qg i ,
—a;+% 0% -+ =i

If an index is negative, then add N to its value. Let (u,v); and (u*,v);
(u,u* = 1,2,3;v = 1,2) denote the resulting index for the ith triplet,
corresponding to either the first or the second matrix. For instance, for
N =26 = 64, it is recommended to use the set of n = 7 triplets given by

{(ev, Biyvi) Yi—y = {(17,27,30), (17,21,10), (17,24,27), (18,27, 14),
(18,21, 24), (19,30, 1), (21,27,9)}. (4.66)
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(a) (b)

W(o1,02)
W(01,02)

Figure 4.6: (a) Profile of the flat-top two-dimensional window function (4.51) used with
the bootstrap-based test statistics in Algorithm 4.4; (b) Profile of the two-dimensional lag
window (4.65) used in (4.59).

Algorithm 4.5: The MSFE-based linearity test statistic (Cont’d)

(v) Compute the complex-valued statistic

3
Zfs W(u,1);+15 W(u,2) +1 Z fa( w(u*,l)i+17w(u*,2)i+1)7

(vi) Form the vector Q = (Q1,...,Q,)’, and compute the test statistic

Nbv2
6.7 = K x (g ) lal. (4.67)
where || - || denotes the Euclidean norm. Under Hy, and as T — oo, the
statistic (4.67) has an asymptotic central x? distribution with v = 2n degrees

of freedom.

Note that for the construction of the test it is assumed that the coefficients ; in
(4.52) and the coefficients ¢;, ¢j,, in (4.54) are known. In practice these coefficients
need to be estimated. However, under not too restrictive conditions on {et}, it
can be shown (Matsuda and Huzii, 1997) that the quadratic predictor Y, | +1| , has a
smaller asymptotic MSE than the LS predictor Y, +1| 4> if p > p*, where p and p* are
limits imposed on the infinite summations on the right-hand side of (4.52) and (4.54)
respectively. Thus, Hy can still be tested using the statistic (4.67) if the unknown
parameters are replaced by least squares estimates.

Discussion
One disadvantage of the above method of smoothing the bispectrum into K equal
nonoverlapping records of size N is that information will be lost at lower frequencies,
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the maximum cycle that we can now observe is for frequency N instead of frequency
T. Also, since K = |T/N| will not be an integer in general, some observations
at the end of the series may be left out of the computation of the test statistic.
Clearly, the alternative hypothesis H; presents limitations in that it only examines
second-order features in departures from the null hypothesis. Terdik and Méth
(1998) compare the power of the test statistic (4.31) with Hinich’s linearity test

statistic for a number of (non)linear models, but QT(lKT) only shows an improvement
for linear Hermite polynomial data. Applications of the Terdik—M4&th test statistic
are reported by, for instance, Terdik (1999), Terdik and Math (1993), and Terdik et
al. (2002).

4.6 Which Test to Use?

As stated earlier there are various strengths and weaknesses of frequency-domain test
statistics. This section presents some additional information. Usually the overall
performance of a test is obtained from a size and power study. A number of these
studies have been carried out for the tests discussed above; see Table 4.1 for a
summary. Some general observations are in order.

e The empirical rejection levels (sizes) for linear DGPs with Gaussian distributed
errors from many simulation studies are not always at the nominal rejection
level, which in most studies is preset at 5%. Hence, it is somewhat unfair to
compare the powers of test statistics that have different sizes.

e The bootstrap test statistics give generally better power results than Hinich’s
Gaussianity and linearity tests. The classical Hinich linearity test, Zj, gives
poor answers for very short series as it often has too few independent values

to form an IQR.

e Of the three maximal linearity test statistics the maximal IDR test statistic,
Ztn, has the largest power improvement over the Hinich linearity test, which
reinforces the conjecture that by carefully tweaking the user-specified paramet-
ers some improvement of the Hinich linearity test can be obtained. However,
the overall performance of the IDR test statistic is quite limited for data gener-
ated from a two-state Markov(2, 1) model, an EAR(2, 1) model, and a rational

nonlinear AR model.

e The power of the ADY and CvMS test statistics is comparable with that
achieved by the Hinich test statistic T'¢, but often higher, especially in the
case of data generated from a SETAR(2;1,1) model.

Although there is no frequency-domain test statistic which uniformly outper-
forms all other tests for all DGPs and sample sizes considered in the literature, we
recommend the use of the model-based bootstrap method jointly with the direct es-
timation method of the bispectrum. The method is more powerful than the Hinich
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Table 4.1: Summary of size and power MC simulation studies for some frequency-domain
Gaussianity (G) and linearity (L) test statistics.

DGPs T M Tests Reference

BL(0,0,2,1), NLMA, 256 12 ZILQR, Zoor, TC Ashley et al. (1986)

extended NLMA, 512 16

NLAR, SETAR(2;1,1), 1,024 23

NL-TAR, ExpAR(2)

AR(2), MA(2), ExpAR(1), 104 11 Zior W.S. Chan and Tong (1986) (1)

BL(1,0,1,1),SETAR(2; 1, 1),
2 NLMAs, BL(2;1,1,1)

AR(2), Hermite polynomial ~ 512 12 Zlor: Gas Terdik and Méth (1998)
of order 2, BL(2,0,1,1),

BL(0,0,2,1), homogeneous BL

with Hermite degree 2,

homogeneous BL with

polynomials
iid. M(0,1), AR(2), MA(2), (100 10 TG, ADG, CvM$  Jahan and Harvill (2008) (2)
NLMA, BL(2,1,1,1), 500 22

SETAR(2; 1,1), ESTAR(1),
ExpAR(1), NLAR

NLMA, BL(0,0,2,1), 350 34 ZILQR, ZIR, Zgye, Rusticelli et al. (2009)
ARCH(4), GARCH(1, 1), MD{yR,

SETAR(2;1,1), two state [8—45] (MDD,

Markov(2, 1), EAR(2, 1), MDE.,

rational NLAR, exp. damped

AR(2), logistic(4) map

iid. N(0,1), iid. x3, AR(1), (250 4 TR Berg et al. (2010) (3)
ARMA(2,2), BL(1,0,1,1), 500 6 AT

ARCH(1), GARCH(1, 3), 1,000 8 AT

SETAR(4;1,2,1,1)2

(1) The paper includes a comparison with four time-domain nonlinearity tests.

(2) The paper includes a comparison with five time-domain nonlinearity tests.

(3) The study makes a distinction between the spectral bandwidth (Ms), and the bispectral
bandwidth (M, = M). Asymptotically Ms > M.

(4) Other user-defined parameters are K = 21, M, = 8, p = 15 for T' = 250; K = 36,
Ms =12, p =20 for T = 500; and K = 55, Ms = 15, p = 30 for T' = 1, 000.
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Table 4.2: Indicator pattern of p-values of the Gaussianity (G) and linearity (L) test
statistics; ** marks a p-value < 0.01, x marks a p-value in the range 1% — 5%, and T a
p-value > 0.05.

Gaussianitiy (G) Linearity (L)
GOF Tests(!)  Btstrp(®?) GOF Tests() Btstrp(®) MSFE®)
. (K
Series ADS cvM§ S ADL CvMEL Zfor Zibhr  Zhon gw)
Unemployment rate(4) *k * * T T *ok *ok * t
EEG recordings *k *% *k T T *ok sk Kok Kk
Magnetic field data . * 1 ok T i T T ok
ENSO phenomenon *x T T T T T T T *%
Climate change: 613C 1 ok t i + + + + sk
5180 *k T T T *ok *ok sk T

(1) M = 18 for all series.

(2) Based on 1,000 bootstrap replicates, and M = | T|%6 for all series.

(3) Based on stretch lengths N = 27 (Unemployment, §*3C, and §'80), N = 28 (ENSO)
N =29 (EEG), N = 210 (Magnetic field data); window-width Nby = 8, pmax = 24.

(4) First differences of original series.

test statistics based on the asymptotic properties of the bispectrum. An obvious
extension of the bootstrap method is to allow for an automatic grid search over the
admissible M values, as for instance discussed in Section 4.4.2, to reduce the sensit-
ivity of the tests to the choice of this parameter. Another extension of this method
is to use fourth, or higher-order, polyspectra as a test statistic, using the same test
framework.

4.7 Application: A Comparison of Linearity Tests

We now apply some of the above test statistics to the time series introduced earlier
in Chapter 1. Table 4.2 shows the test results. We see that the GOF test statistics
reject Gaussianity in almost all cases. On the other hand, the bootstrap version of
the Hinich test statistic only rejects Gaussianity for the first differences of the U.S.
unemployment series, and the EEG recordings. Recall from Table 1.2 (Example
1.7), that the parametric normality test statistic 734y flat-out rejected Gaussianity
for the EEG recordings and the magnetic field data. So, in summary, there seems
to be some inconsistencies between the results of these test statistics.

When testing for linearity, we see that all GOF test statistics do not indicate
that the series are nonlinear, except for the magnetic field data. However, the three
bootstrap-based test statistics Zj;,, Zig, and Zg,, identify the first differences
of the U.S. unemployment rate, the EEG recordings, and the 680 series to be
nonlinear. So also in this case the test results vastly differ among the test statistics.
To some extent these differences may be attributable to the choice of user-defined
parameters as, e.g., deciding on an appropriate value of M. This comment also
applies to the MSFE-based test statistic Q%{) which in addition to the choice of the
window bandwidth, also depends on the stretch length N, and the order of the fitted
autoregression.
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4.8 Summary, Terms and Concepts

Summary

In this chapter we introduced the bispectrum and third-order moment as useful tools
for detecting non-symmetry (in terms of the marginal distribution), nonlinearity,
and possibly time-reversibility. We discussed two main estimates of the bispectrum,
namely the direct and indirect method. We reviewed two “traditional” bispectrum-
based test statistics for Gaussianity and nonlinearity, i.e., the Subba Rao—Gabr tests
and the Hinich tests. Further, we indicated some strengths and weaknesses of these
test statistics.

Various modifications and improvements of the Hinich test statistics have been
considered, including two bootstrap-based versions. Also, we provided a brief literat-
ure review of MC simulation studies, comparing the size and power of the Gaussian-
ity and linearity test statistics. Finally, we used several test statistics to investigate
the nonlinear properties of the time series previously introduced in Chapter 1.

An important advantage of bispectral analysis is that tests discussed in this
chapter can be applied either to the raw (original) series or to the residuals of a
fitted model; see, e.g., Ashley et al. (1986). Hence, there is no need to prefilter the
data first, using a fixed causal linear filter, in order to remove possible autocorrela-
tions. This reduces the possibility of a misspecified nonlinear model and distorted
statistical inference.

Terms and Concepts

aliasing, 150 maximal tests, 136
bispectrum, 121 mean squared forecast error (MSFE), 140
bootstrapping, 136 normalized bispectrum, 122
designated frequencies, 126 polyspectrum, 121

(in)direct method, 123 principal domain, 121
Fourier transform (FT), 120 quadratic (Q) forecast, 141
frequency bicoherence, 123 spectrum, 120
goodness-of-fit (GOF) tests, 133 Subba Rao—Gabr tests, 126
Hinich’s tests, 130 third-order cumulant, 124
interdecile range (IDR), 136 third-order periodogram, 123
interquartile range (IQR), 132 transfer function, 123
leakage, 140 truncation point, 124

linear (L) forecast, 140

4.9 Additional Bibliographical Notes

Section 4.1: A rigorous treatment of the bispectrum is given by Brillinger and Rosen-
blatt (1967). Van Ness (1966) proves, under general conditions, that the bispectrum is
asymptotically complex normal. There are several definitions of power spectra in the case of
nonstationary processes; see Priestley (1988) for a review and Priestley and Gabr (1993) for
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a time-dependent definition. Subba Rao and Gabr (1984) update their original frequency
domain tests to include frequencies along the manifold w; = 0. Zoubir and Iskander (1999)
propose a bootstrap-based approach for testing departures from Gaussianity. Their simula-
tion results confirm that the Subba Rao—Gabr test statistic is a test of symmetry and not
pure Gaussianity. Nichols et al. (2009) provide an analytical expression for the bispectrum
and bicoherence functions for quadratically nonlinear DGPs subject to stationary, jointly
non-Gaussian distributed error processes possessing an arbitrary ACF.

Lii and Masry (1995) and Lii (1996) consider estimation of the bispectral density function of
continuous stationary DGPs when the data are obtained on unequally spaced time intervals.
Subba Rao (1997) gives an illustration of the usefulness of bispectra to analyze nonlinear,
unequally spaced, astronomical time series. Related to the analysis of continuous time
series, the problem of aliasing may arise when a real frequency in the series is not matched
by a Fourier frequency in the observed data. Testing for aliasing can be performed by an
amended version of the Hinich bispectrum test statistic for Gaussianity; see Hinich and
Wolinsky (1988).

Harvill et al. (2013) propose a bispectral-based procedure to distinguish among various non-
linear time series processes and between nonlinear and linear time series processes through
application of a hierarchical clustering algorithm.

Barnett and Wolff (2005) advocate the time-domain third-order moment 7y (¢1, ¢2) for test-
ing nonlinearity over using the bispectrum. For a linear stationary time series the estimated
values of the third-order moment are correlated. This complicates the construction of a para-
metric test. They overcome this problem by using the so-called phase scrambled bootstrap
procedure (Theiler et al., 1992), a frequency domain procedure. The method is computa-
tionally less intensive and more powerful than the Hinich test statistic. Three MATLAB files
are available at http://www.mathworks.nl/matlabcentral/fileexchange/16062-test-
of-non-linearity. These files are: third.m (calculates the 3rd-order moment for a time
series), aaft.m (calculates the Amplitude Adjusted FT), and boot.m (calculates a bootstrap
test for nonlinearity).

Section 4.2: Based on the evolutionary second-order spectrum and bispectrum (see, e.g.,
Priestley and Gabr (1993)), Tsolaki (2008) proposes test statistics for Gaussianity and lin-
earity of nonstationary slowly varying time series processes. These test statistics are gener-
alizations of the Subba Rao—Gabr tests for stationary processes.

Section 4.3: The use of a square shaped uniform smoothing window in the direct estim-
ator of the bispectrum in Hinich’s linearity and Gaussianity test statistics may introduce
severely biased estimates in relatively small areas of the bispectrum, and hence may lead to
a false acceptance of the null hypothesis with large probability. To ameliorate this problem,
Birkelund and Hanssen (2009) obtain an improved version of Hinich’s tests by proposing
a hexagonal shaped smoothing window. Yuan (2000a) investigates the effect of estimating
the noncentrality parameter Ay on the asymptotic level of Hinich’s linearity test, and he
introduces a modification. The modified test also uses the IQR, but it tests the equality
of location parameters and its critical value does not depend on any unknown parameters.
In another paper, Yuan (2000b) extends Hinich’s Gaussianity and linearity test statistics to
stationary random fields on Z™ (m =1,2,...).

Section 4.7: Ashley and Patterson (1989), and Hinich and Patterson (1985) apply the
Subba Rao—Gabr test statistics and the Hinich test statistics to various real economic time
series. Brockett et al. (1988) and Patterson and Ashley (2000) present applications of these
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tests with series taken from other areas, including examples from, finance, engineering,
and geophysics. Teles and Wei (2000) investigate the performance of various linearity test
statistics, including Hinich’s linearity test, on time series aggregates. Temporal aggregation
greatly hampers the detection of nonlinear DGPs.

Drunat et al. (1998) compare the Hinich and the Subba Rao-Gabr linearity tests on a set of
exchange rates. A modified version of the original Hinich linearity test statistic forms a part
of a single-blind controlled competition among five linearity tests, and results are reported by
Barnett et al. (1997). Hinich et al. (2005) examine the performance of Hinich’s Gaussianity
and linearity tests and the Hinich-Rothman test statistic for time-reversibility (Chapter 8),
using bootstrap and surrogate data simulation methods. Using knowledge of the asymptotic
distribution of the bispectral density function under the null hypothesis of Gaussianity, Epps
(1987) proposes a large-sample GOF-type test statistic based on the difference between the
sample mean estimate and the ensemble averaged value of the characteristic function of the
time series, measured at some specific points. The AR-sieve bootstrap, discussed briefly in
Section 4.4.3, is reviewed in detail in Kreiss and Lahiri (2011).

4.10 Software References

Section 4.2: A FORTRANT7 program for computing the Subba Rao—Gabr linearity test is
listed as Program 4 on pp. 263 — 269 of Subba Rao and Gabr (1984). An extended version
of this program can be downloaded from the website of this book.

Section 4.3: A public domain FORTRANT77 code for computing the Hinich test stat-
istics can be downloaded from http://www.la.utexas.edu/hinich/. A user-friendly
executable version of this code is contained in the nonlinear toolkit for detecting and
identifying nonlinear time series, and detailed in Patterson and Ashley (2000); see http:
//ashleymac.econ.vt.edu. The toolkit was used to calculate the bootstrap results for
the test statistics 7% and Z" in Table 4.2. The MATLAB toolbox HOSA contains the file
GLSTAT that can be used to calculate Hinich’s Gaussianity and linearity test statistics with
the approximation of the noncentral x3(-) distribution as discussed in Section 4.4.1.

Section 4.4: The empirical results of the AD- and CvM-type Gaussianity and linearity
test statistics (Table 4.2) can be reproduced with the goodnessfit.m MATLAB function
available at the website of this book. Also available is R code for computing the bootstrapped
form of Hinich’s Gaussianity and linearity test statistics of Section 4.4.3; see Exercise 4.4.
Furthermore, Gyorgy Terdik made available TerM.m, a MATLAB module for calculating
the Terdik—-Math test statistic.

Exercises

Theory Questions
4.1 Prove that the triangular principal domain (4.7) of the bispectral density function

fy (w1, w2) is bounded by the manifolds wq = we, w; =0, and w1 = (1 —wa)/2.

4.2 Consider the subdiagonal BL process Y; = 8Y;_oe;_1 + &4, where {g;} R N(0,02)
with 8202 < 1.
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(a) Prove that

W(k){ 02/(1 - Pa?), k=0,

0, otherwise,
Bot/(1—p%02), k=1,(=2,
E(Y;Y,_xYi—¢) = { 0 2 2 otherwise

and

0?(1 + 2ﬁ203)

E(Yt2yt2—1) = (1 — 5203)2

(b) The best one-step ahead quadratic predictor for {Y;,t € Z} is given by

YQ

t+1‘t = 6172}/:‘,Yt—1'

Using the moment results in part (a), prove that the coefficient ¢ 2 is given by

1— B%02

C12 = ﬂm

(¢) Show that the maximum reduction of the one-step ahead MSFE of Yﬁu ;> relative
to E(Y;?) = 0%, is reached at 3?02 = (v/3 —1)/2.

4.3 By assuming that the bispectrum is non-zero over the entire region D, and that
fy (w1, w2) is partially differentiable once with respect to wy, Sakaguchi (1991) shows
that for any triplet (a, 3,7) the bispectrum fy (w;,ws) satisfies the relation

fY(a7ﬂ)fY(’y70)fY(_a +7, _ﬂ - 'Y) = fY(ﬁva)fY(Oa —Q = B)fY(_a +7, _’V) (*)
This relation may be viewed as an alternative to (4.58).

(a) Consider the stationary nonlinear process defined by
Vi =e(l+e1)+ (0] —1),

where {e;} and {n,} are independent and Gaussian i.i.d. processes with zero
mean and unit variance. Show that the bispectrum is given by

Iy (w1, ws) = 2[exp{—2mi(w1 + wa)} + exp(2miwy ) + exp(2mwiws)] + 8,
(UJl,UJQ) S [0, 1]2.

(b) Let « = f = 1/4 and v = 0. Show that for the above nonlinear process the
left-hand side of (x) is equal to 728 while the right-hand side is equal to 600,
indicating that the series is nonlinear.

Empirical and Simulation Questions

4.4 Consider the first differences (USunemplmnt_first_dif.dat) of the quarterly U.S. unem-
ployment rate, earlier introduced in Example 1.1.
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(a)

(b)

Using the R functions in the file Exercise44.r, write an MC simulation program to
compare Hinich’s Gaussianity test and Hinich’s linearity test with bootstrapped
forms of these tests. To evaluate the test statistics consider 1,000 BS replicates,
and take 20 MC simulations across all tests.

Compare the percentage of rejections of the test statistics at the 5% nominal sig-
nificance level. Are the results sensitive to the user-specified parameters (inputs)
in the simulations?

[Inputs: The number of gridpoints K, a discrete uniform random variable taking
values in the set {3, 4,5}. The spectral bandwidth M, = ¢M}, where ¢ ~ U[1.5, 3]
and the bispectral bandwidth M; = 4. The bootstrap AR order parameter p, a
discrete uniform random variable taking values in the set {4,5,...,15}.]

Compare part (a) with the corresponding test results reported in Table 4.2.

4.5 Consider the set of R functions in the file Exercise45.r.

(a)

Generate 100 series of length T' = 250 for the linear Gaussian processes {Y;} kY

N(0,1), and for the linear, but non-Gaussian, process {Y; } R x3. Compute and
compare the percentages of rejections of Hinich’s Gaussianity test and Hinich’s
linearity test with bootstrapped forms of these tests similar as in Exercise 4.4.
Take B = 200, M, =4, My, = 8, p = 15, and set the nominal significance level
at 5%.

[Note: The computations can be time demanding, |

Generate 100 series of length 7' = 250 for the diagonal BL process (4.19) with
B=0.4and {&,} "= N(0,1). Compute the percentages of rejections of the test

statistics similar as in part (a). Comment on the obtained results.



Chapter

TIME-DOMAIN LINEARITY TESTS

Time-domain linearity test statistics are parametric; that is, they test the null hy-
pothesis that a time series is generated by a linear process against a pre-chosen
particular nonlinear alternative. Using the classical theory of statistical hypothesis
testing, time-domain test nonlinearity tests can be based on three principles — the
likelihood ratio (LR), Lagrange multiplier (LM), and Wald (W) principles. LR-
based test statistics require estimation of the model parameters under both the null
and the alternative hypothesis, whereas tests statistics based on the LM principle
require estimation only under the null hypothesis. Application of W-based test stat-
istics implies that the model parameters under the alternative hypothesis need to
be estimated. Hence, in the case of complicated nonlinear alternatives, containing
many more parameters than the model under the null hypothesis, test statistics
constructed from the LM principle are often preferred over test statistics based on
the other two testing principles.

In the first three sections that follow, we introduce these three principles briefly
and show how they yield the most commonly known test statistics for nonlinear-
ity. In Section 5.4, we discuss three test statistics based on a second-order Volterra
expansion. These tests rely on an added variable approach, i.e., nonlinearity can
be seen by examining the strength of the relationship of the residuals of a fitted
linear model with nonlinear terms from a Volterra expansion via an F ratio of sums
of squares of residuals. Evidently, this approach is linked to some of the LM test
statistics proposed in Section 5.1. In Section 5.5, we first introduce the arranged
autoregression principle. Based on this principle, we discuss two test statistics for
SETARs. Then we discuss an F' test statistic that combines the added variable ap-
proach with the arranged autoregression principles. Section 5.6 introduces a simple
test procedure for discriminating among different nonlinear time series models.

Two appendices are added to the chapter. Appendix 5.A presents percentiles of
the LR-SETAR test statistic. Appendix 5.B provides a summary of size and power
studies. It includes some remarks about the strengths and weaknesses of the test
statistics.
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5.1 Lagrange Multiplier Tests

General testing framework

Before we derive LM-based nonlinearity test statistics, it is good to discuss the
general testing framework briefly. Let {Y;}_; be a realization of a strictly stationary
and ergodic nonlinear process defined by

Yi= g(Yimtse o Yieps€imts- s 61-4:0) + &, (5.1)

where g¢(+) is a sufficiently well-behaved function on R, and 6 is a vector of unknown
parameters. We treat the initial values {Y,(pAq)H, ..., Yp} as fixed constants. This
will not affect the distribution of the test statistics in large samples. Furthermore,
we assume that the form of (5.1) nests a linear time series model. This implies that
0 can be partitioned as 6 = (61, 65)", where 8; denotes an v; x 1 parameter vector
of the linear components (i = 1,2) with v = v; + vs.

The null hypothesis we wish to test is 85 = 0. The LM test statistic is based
on parameter estimates of the restricted model. In particular, the Lagrange method
states that the (nonlinear) LS estimates under the null hypothesis, denoted by 6 =
(6,0'), are obtained by minimization of the (unrestricted) Lagrange function

L(0,\) = L7(0) + 2X'0,, (5.2)

where
T

=> () (5.3)
t=1

is the (conditional) sum of squares function and X is an vs X 1 vector of constants,
called Lagrange multipliers. Then, one form of the LM (or score) test statistic for
A = 0 is given by

LMy — <6LT(9) _1 ) <8LT(0)

4
892 892 H())’ (5 )

where 311, 319, o1 and X9 are p X p matrices, representing the respective parti-
tions of the Fisher information matrix.

The LMy test statistic (5.4) is not very illuminating as it stands. It can, however,
be rewritten in a much more illuminating way. Define z;(8) = 0¢(0)/06 and denote
z; = z,(0) and & = £,(0). Partitioning z; conformably to the vector 6 yields
z; = (2y4,25,)". Now, for T' large, we can rewrite (5.4) as

T T
A_ ZA a-la \ 7! ZA ~
LMT =0, 2( Zg,t€t> (222 — 221211 212) ( Z27t6t>, (55)

t=1 t=1

!
) (Bo2 — 21 X' 219)
Ho

where
T
= -/ ~ ~
391 =X, = 72177 4 and E
t=1

tzzt, (1=1,2),

||Mﬂ
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and 72 = T='Ly(). 1If the linearity hypothesis holds and {Y;,t € Z} satisfies
appropriate regularity conditions, (5.5) has an asymptotic chi-square distribution.
In particular, under Hy and as T" — oo, we have

LMy =2 2. (5.6)
Computation of (5.5) can also be based on the auziliary regression

€t = 21481 + 29,82 + s, (5.7)

where 31 and (35 are artificial parameter vectors of dimension v1 and v» respectively,
and {n;,t € Z} is an artificial error process. Let SSE be the residual sum of squares
in the linear regression (5.7), and SSE( for the residual sum of squares under the
null hypothesis B2 = 0. Then, applying standard least squares regression theory,
(5.5) can be written as

SSEq — SSE)

LMz = T( SSE,

(5.8)

We use the above formulation as a first step to derive various variants of LM test
statistics below. These variants depend on the form of the vector zs¢, which is
determined by the type of nonlinearity investigated.

Bilinear case

Consider the BL(p, q, P, @) model (2.12). This model reduces to a linear ARMA(p, q)
model if the last term on the right-hand side of (2.12) is zero, i.e., if 1, = 0 Vu, v.
Thus, the null hypothesis we wish to test is

HY: ¢y =0, (u=1,....,Piv=1,...,Q). (5.9)

Consequently, the vectors z; ¢+ and z2+ are given by

~ ~ ~ -~ -~

~ (86,5(0) 85t( ) 8515(0) 82’:}(0) 8€t(0))’
doo 061 0o, | 08, 08,

(5.10)

and

)’, (5.11)



158 5 TIME-DOMAIN LINEARITY TESTS

where the partial derivatives can be obtained from the recursions

~

9=4(0) I\~ Oz4_4(6)
Do __(H;e‘f 5oy )

=4(8) I\~ Be_0(9) .
— Y—T, — |, == 1,..., 5
g~ (i 05 %
9e.(6) ~ L~ 0e,_0(0) -
= —|&t—5 + 06 ) (]:1,,(]),
26; (8~ ; 26; )
85t(A) ~ O0gy_¢(0 _ _
awuv (1/t vet uwt Z a¢uv )’ ( =5 ’P’U B 1’ ’Q)’

and where the necessary initial values are set to zero.

The above quantities can only be used if the inverses in (5.5) exist, at least for T
sufficiently large. If this is not the case an identification problem occurs, i.e. there is
a perfect linear dependence among the components of z;;. A natural solution is to
reduce the number of v;; coefficients in the model, i.e. restrict some of them to zero.
This means that the dimension of the vector zs; is reduced by deleting some of its
components when necessary. To solve the identification problem it suffices to impose
the following restrictions (Saikkonen and Luukkonen, 1988) on the BL model.

(i) If @ —p < P — g then ¢, # 0 and either @ < p+ 1 or the vector z3; does not
contain partial derivatives de(0)/0;; with i and j satisfying 1 <i < Q —p,
pF+i<j<@Q.

(ii) If P — ¢ < Q — p then 6, # 0 and either P < g + 1 or the vector zy; does not
contain partial derivatives de;(0)/0v;; with ¢ and j satisfying 1 < j < P —gq,
qg+j<i<P.

Now, the asymptotic distribution of the LM test statistic for BL(p, ¢, P, Q) mod-
els can formulated as follows. Let {Y;,t € Z} be generated by (5.1) with E(¢}) < oo.
Assuming conditions (i) and (ii) are fulfilled, define the LM-type test statistic, de-

noted by LMS‘,} ), by substituting (5.10) — (5.11), for the corresponding quantities in
(5.5).1 Assume that the hypothesis of interest is Hél). Then, as T — oo,

1) D
LMY 2 X renyy2n (5.12)

where 7 = max{0, min(P — ¢,Q — p) — 1}.
Note that for the special case of a BL(p,0, P, Q) model zy; is given by z3; =
— (Y181, Yi—281-1, ..., Yi_@E—p)’, and the sufficient condition is given by ¢, # 0,

!Throughout Sections 5.1 — 5.3, we use the numbered superscript notation (-) to indicate the
link between a particular linearity test statistic and its corresponding null hypothesis.
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Q@ <p+ 1. Under H(()l), the corresponding LM-type test statistic is asymptotically
distributed as X%Q' The additional assumption E(ef) < oo is not necessary if it is
assumed that {e;} is Gaussian WN.

Exponential AR case

Consider the ExpARMA model in (2.20) with ¢ = 0. There are two possibilities
to reduce the resulting ExpAR(p) model to a linear AR(p). One can either set the
scaling factor v = 0 or take & = 0 (¢ = 1,...,p). Since it appears that the first
possibility is easier to work with, we introduce the null hypothesis

H: v = 0. (5.13)

Unfortunately, from (2.20) one can immediately see that the ExpAR(p) model is not
identified when H(()Q) holds, i.e. the parameters &1, ..., §, can take any values without
changing the residual sum of squares. As a consequence the relevant inverses in (5.5)
do not exist. To overcome this problem, the idea is to replace exp(-) by a suitable
linear approximation. The resulting test statistic is an LM-type test statistic which
is identical to the LM test statistic for the hypothesis {; = --- = &, = 0 in the
auxiliary regression model (5.7). In this case the vectors z;; and za; are defined as
respectively

/Z\l,t = _(17 }/15—17 ceey }/t—p)/ and /Z\27t = _(}/t—li/;?_(b Yt—2}/t2_d7 ceey Yt—p}/tZ_d)/- (514)

Let LMgﬂ2 ) denote the resulting linearity test statistic. Under H(()2), and provided
E(ef) < oo,
M@ 2,y

127, as T — oo. (5.15)

STAR model
Consider the STAR(2; p, p) model (2.42) with the transition function G(Y;_4;7,¢) =

O({Yi—q —c}), ie.
p p
Y = ¢o + Z OiYi—i + {ﬁo + Z&Y%—z‘}G(thd; v,€) + €. (5.16)
=1 i=1

The null hypothesis we wish to test is given by
HY: o= = =€ =0 5.17
0 =& & = 0. (5.17)

Note that the parameters v, d (1 < d < p), and ¢ are generally unknown. Hence,
under Hég), the STAR(2; p,p) model is not identified. Analogous to the LM-type
test statistic for the ExpAR(p) model one can solve this problem by replacing G(-)
by a suitable linear approximation. In fact, it turns out that LM-type test statistics
can be obtained for a wide class of smooth transition functions G(-) provided the

following conditions are satisfied (Luukkonen et al., 1988a).
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(a) The functions G(-) are odd, monotonically increasing, and possess a nonzero
derivative of order (2s 4 1) in an open interval (—a, a), for a > 0, s > 0.

(b) The functions G(-) are such that G(0) = 0 and (d*G(z)/dz*)|.=¢ # 0 for k
odd and 1 < k <2s+ 1.

Condition (b) is not restrictive. Its purpose is to provide a convenient paramet-
erization for deriving the test statistic. In the case G(0) # 0 one can always redefine
G(-) and use G(-) = G(-) —G(0) instead so that (b) is again satisfied. The condition

is not required for parameter estimation.

STAR model: First-order test procedure

Assume that conditions (a) and (b) hold for s = 0. Let g1 = (dG(z)/dz)|,=0. The
idea is to linearize the STAR(2;p,p) model by using the first-order Taylor series
approximation

Ti(2) = g12. (5.18)

Substituting (5.18) for G(z;) = G(Y;—4;7,¢) into (5.16) yields the auxiliary linear
regression model

P P
Y; = ao + Z a;Yi—i +co(Yiea — ) + Z Citli + Mt (5.19)
=1 =1

where ¢; = vg1&; (j = 0,1,...,p), and wjy = Y;—i(Ys—g —¢) (i = 1,...,p). Under
the null hypothesis, ¢; =0 (j = 0,1,...,p) in (5.19) and 7, = ;. Note, however,
that model (5.19) is not identified, i.e. Y;—1 appears twice on the right-hand side.

One way to overcome this problem is to reorder the components of (5.19) first; this
yields

p p p
Y, = ag+ Z ;Y i+ Z Z BijYi—iYi—j + me. (5.20)

i=1 i=1 j=i
Thus, the null hypothesis of interest is
3* , .
Hé ):Bij:O, (i=1,....,p;j =1y...,D). (5.21)

The steps for computing the corresponding LM-type test statistic are as follows.
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Algorithm 5.1: LM§§*) test statistic

(i) Regress Y; on {1,Y;_1,...,Y;_,} using LS; compute the residuals {&;}]_,,
and the residual sum of squares SSEq = Y, £7.

(i) Regress & on {1,Y;_;,Y; Y, ;i =1,...,p;j = i,...,p}; compute the re-
siduals {7;}{_,, and the residual sum of squares SSE; = >, 7.

(iii) Compute the LM-type test statistic

LM = T(SSE, — SSE; ),/ SSEq. (5.22)
Under H,
3* D
LM 233 ) 25 T — oc. (5.23)

STAR model: Third-order test procedure

Clearly, the test statistic (5.22) does not depend on the form of the function G(-) but
only on the variables Y;_; (i = 1,...,p) and Y;_4. Thus, the same test is obtained
for a wide range of nonlinear models so that its power against some particular
alternative may be questioned. One way to improve the performance of the test
statistic is to replace the function G(-) by appropriate higher order approximations.
A second-order Taylor expansion is not useful because G(-) is odd and thus its second
derivative evaluated under the null hypothesis is zero. However, the use of a third-
order approximation is possible, if conditions (a) and (b) are assumed to hold with
s = 1. Then the third-order Taylor series approximation of G(-) evaluated at z =0
is given by

Ts3(z) = 12+ g32°, g3 = (3))7'[d*G(2)/d="]| _,.

Now, replacing G(-) in (5.16) by T5(v{Y;—q — ¢}) gives the auxiliary model

p p p
Yi=ao+ Y aiYii+co(Yia—¢)+ Y cittig+do(YVimg — ©)* + > diwiy + e,
i—1 i=1 i=1

where ¢; = yq:1&5, dj = 293¢ (5 = 0,1,...,p), wix = Yii(Yi_qg — ¢), and w;; =
Y, i(Y;_g—¢)? (i =1,...,p). Similar as in the case of the first-order test proced-
ure the above model is not identified. Again, we can circumvent this problem by
expanding (Y;_q — ¢)? and reordering terms. The result is the auxiliary regression
model

P PP P P

Yi=oo+ > aiVei+ > > BuYiiVij+ > vgYi Y2+ > kY VP 4
i=1 i=1 j=i ij=1 ig=1

(5.24)
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Thus, the null hypothesis to be tested can be rewritten as

The test procedure consists of the following steps.

(3")

Algorithm 5.2: LM, ’ test statistic

(i) Repeat step (i) of the first-order test procedure (Algorithm 5.1).

(11) Regress gt on {17}@—1'5 }/t—zi/t—]az =1,... 7p7.7 = 4., }/lf—iY;lija Z?.] =
1,...,p;k = 2,3}; compute the residuals {7;}_; and the residual sum of
squares SSE; = >, 17,

(iii) Compute the LM-type test statistic
LM ) = T(SSE, — SSE,)/SSE,. (5.26)
Under H(()g**), and as T — oo,

IMET) 203 (5.27)

(p+1)+2p?°

STAR Model: Augmented first-order test procedure

A problem with the LMFE,? ") test is that in small samples it uses 2p? more degrees of
freedom than the LM? ") test statistic. On the other hand, it may be noted that G4
and 144 are the only parameters in (5.24) which are functions of £;. This suggests
that one might in essence retain the first-order approximation of G(-) and augment
by p third-order terms only when absolutely necessary. This means that instead of

the auxiliary regression model (5.24) we have
P p D P
Yi=ao+ Y aYii+ Y Y ouYiiYij+ > iV +n.
i=1 i=1 j=i i=1
The null hypothesis of interest is
4 . . .
Hé): ¢ij =0, (i=1,....,p;j=14,...,p), ¥; =0, (i=1,...,p). (5.28)
The corresponding LM-type test statistic is given by
LMY = T(SSE, — SSE3)/SSE,, (5.29)

where SSE is as before and SSEg is the residual sum of squares from the least squares
regression of & on {1,Yi_;,Y;—;Y;—jii = 1,...,p,7 = i...,p; Y2 ;i = 1,...,p}.
Under H(()4), and as T — oo,

vy 23

Lp(p+1)4p° (5.30)
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Note that the above three LM-type test statistics do not assume that the delay
parameter d is known. If, however, if d is known, then it can be shown that the
number of degrees of freedom of LM§§*), LMg?M), and LM%) are p, 3p, and p + 1,
respectively. In that case the resulting test statistics will be different from the ones
given above since the residual sum of squares SSE; (i = 1,2,3) will be based on far
fewer independent variables. Hence, prior knowledge about d can be quite valuable
in testing linearity against STAR(2; p, p) models.

AsMA and SETMA models
Recall the asARMA(p, ¢) model (2.37) with p = 0, denoted by asMA(q), and com-
pactly written in the form

q q
Yi=p+e+ Z 0;_875_]‘ + Z 5jI(5t—j < O)Et_j, (5.31)
s =1

where §; = 0, — 9;7. In addition, consider as a special case of the SETARMA model
(2.29), the SETMA(2; ¢, q) model given by

q q
Yi=p+e+ Z ejét_j + Z 5]'](}/%,0{ < T)Et_j. (5.32)
p =1

A notable difference between (5.31) and (5.32) is that with (5.31) the regime switch-
ing is in {&;} whereas the threshold variable in the SETMA model is {Y;_4} (d € ZT)
itself. However, within the LM testing framework, this difference between both
models does not play a role in the development of a linearity test. Hence, below we
consider testing a linear MA model against an asMA(g) model. The procedure for
testing SETMA(2; q,q) types of nonlinearity is completely identical.

Define the parameter vectors @ = (01,...,0,), 6 = (1,...,04), and ¢ =

(1, 0',68',02), where 6; = 9+ Furthermore, assume that there are ¢ starting values
ii.d.

Y_gi1,--+, Yo, and let {g;} <" N(0,02) which is needed to specify the log-likelihood
function. For the asymptotic distribution of the LM-type test statistic this latter
assumption can be relaxed by requiring the existence of certain moments higher
than order two of the process {e¢,t € Z}. Given these specifications, it is apparent
from (5.31) that the null hypothesis of linearity is given by

HY: & =o0. (5.33)

Assume that under H(()E)) the roots of 0(z) = 1+ >, 0r2" lie outside the unit

circle to guarantee (global) invertibility. To derive an LM-type test statistic of H(05)
we need the components of the gradient, or score, vector 0Ly (1))/0v. They are

8LT

agt"“], (j

1
= —O_—g £t |:5t—j + zk: (0 + 0kl (e1—k < 0)) 00;

t=1



164 5 TIME-DOMAIN LINEARITY TESTS

oL 1 & e,
OLr(¥) _ Y ey <0ey+ ; (0 + 64T (-1 < 0)) ggj’“}, (5.35)

t=1

oL 1 & Oer

# = a1 B+ Sl (e < 0)) 2] (5.36)
12 S A H

and

OLr (1) T 1 <&

o7~ 307 T2 25 (%50
€ € € 41

Under H(()5), (5.34) has the form

T

OL7(v) 1 D24 i .
00, o2 ~i 0 =1,...,q). _
6‘9] 0'82 ;gt |:€t J +; k 80] ]7 (] ) ,Q) (5 38)

From (5.38) it follows that (1 + >, 0,.B%)(9e:/00;) = —e1—; (j = 1,...,q), so
that 9e;/00; = —0~'(B)e;—; where B is the backward shift operator. Moreover,
0e¢/06; = =071 (B)I(g4—; < 0)er—j (j = 1,...,q) and 9&¢/Opu = —071(1) = con-
stant, under H(()5). The actual testing can be performed by the following steps.

Algorithm 5.3: F7£5) test statistic
(i) Estimate the parameters of the asMA(g) model (5.31) with 6; = 0 (j =
1,...,q) consistently; compute the residuals {£;}7 ;. The Hannan and Ris-
sanen (1982) procedure, based on first estimating a long AR, is recommended

for computing the MA parameters.

(ii) Regress & on 1 and {(B)&—; (j = 1,...,qA), where £(B) = ZkK=0 &, Bk
(€ = 1) is the Kth order approximation of §~1(B); compute the residuals
{v:}1_,, and SSEo = >, 0.

(iii) Regress v, on 1, §(B)&;—; and {(B)I(E—; < 0)&—; (j = 1,...,q); compute
the residual sum of squares SSE.

(iv) Compute the test statistic

(5) _ (SSEo — SSE)/q
Fro= SSE/(T — K —2¢—1) (5:39)

Under Hé5), and as T — oo,
Y 25 Fy, L, (5.40)

with vy =qand vy =T — K —2¢q — 1.
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An F test is recommended because in small samples its empirical size usually is
close to the nominal significance level while the power is good. The empirical size of
the corresponding x§ distributed test statistic, based directly on asymptotic theory,
may be too large if ¢ happens to be large and T is small.

Note that (5.39) is computed by conditioning on the K first residuals &1, ...,¢x.
Another way to proceed is to obtain the estimates of the partial derivatives in (5.38)
from the recursion

SZt_ (Etj—FZQkagt k), G=1,...,9).

Analogously,

Oz _
a6;

where the required initial values are set to zero. The second and third steps of the
testing procedure can be modified as follows.

Ogy_ .
—(I(at_j < O0)er—j+ > O 8’3?), G=1,...,9),
k J

(ii*) Regress &; on 0¢y/0n and 8@/8@- (j=1,...,q) to obtain {v;} and SSE,.
(iii*) Regress 0; on 02;/0fi, 92,/00; and 02,/90; (j =1,...,q) to get SSE.

In this case the F' test statistic has ¢ and T'— 1 — 2¢q — 1 degrees of freedom.

ASTMA model
Consider the ASTMA model (2.45) which, for ease of exposition, we reproduce as

q
Vi=eit D (0 +0,Gi(ery) ey (5.41)
j=1

If we want to test a linear MA(q) against an ASTMA(gq) model it is not necessary
to parameterize the transition functions G;(-) (j = 1,...,q) in detail. Following
Luukkonen et al. (1988a), it suffices to assume that conditions (a) and (b) for the
STAR model hold. Note that an ASTMA model is not identified under the null

hypothesis of linearity
HY: v =o0. (5.42)

If H(()ﬁ) holds so that G;(0) = 0, the d;’s in (5.41) are not estimable. We can, how-
ever, adopt a similar approach as introduced for the STAR model and approximate
Gj(vei—j) by its first-order Taylor expansion at the origin. With z = ~ve;_; this
expansion yields Tj(z) = G’(0)z. Substitute Tj for I(e;—; < 0) in relations (5.34) —
(5.38). Keep the unidentified 01, ..., d, fixed and replace (5.35) by
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OLyp (v 1 & 01—k 852
= 9 ) (0)6
37 ag;&;[k + 0,GL(0)ef g + G (0) 0 —— B ]
Thus, under ng),
OLr(¥) 1 ey A
N 0 0,G(0
oy o2 ;&; { k oy + 0 G ( )5%4
and
85t 2 - / 2
= Zéka (B)eii = = Y 51Gr(0)E(B)=) 4 (5.43)
Substituting (5.43), evaluated under H((]6), for 0e;/06; (7 =1,...,q) at step (iii*) of

the asMA testing procedure leads to the following modlﬁcatlon.

(iii/) Regress vy on 1, aa/aéj (j = 1,...,q9) and 0&,/07; compute the residual sum of
squares SSEj.

This does not yield a practicable test because the resulting test statistic, say Fj,
depends on the unknown nuisance parameters 6; (7 = 1,...,¢). We may, however,
replace SSE; by infs SSEs so that the test statistic becomes sups Fs. The asymptotic
null distribution of supy Fs is Xg- This is done by treating the ¢ elements in the last
sum in (5.43) as separate variables and performing the following step.

(iii") Regress ¥ on 1, §(B)E—j and £(B)E2; (j = 1,...,q); compute the residual sum of
squares SSE*. Replace SSE by SSE* in step (iv) of Algorithm 5.3.
The resulting test statistic is given by

(SSEy — SSE*)/q
SSE*/(T—-K —2¢— 1)’

FY = (5.44)

Under H(()G), and as T — oo, (5.44) has the same asymptotic distribution as Fq(?).

NCTAR and AR-NN models
Consider the NCTAR(k;p), (1 < ¢ < p) model (2.65) with the logistic activation-
level function G(-) redefined as

1 1

G(Xi1;7), @5, ¢j) = m— — =, (G=1,....k), (5.45)
1+ exp(—y[@ X1 —¢]) 2

where

Xi 1= Yi1,...,Yi o), and @; = (@1, ..., Q)



5.1 LAGRANGE MULTIPLIER TESTS 167

A possible null hypothesis for linearity is Ho: v; =0, (j =1,...,k).

In principle, we can proceed in the same spirit as in the case of the STAR model,
by introducing first- and third-order Taylor approximations of (5.45) under Hy and
redefining the null hypothesis. However, similar to the LM? *)—type test statistic,
all the information about nonlinearity will be lost if a first-order Taylor expansion
is used. Instead, a third-order Taylor expansion of G(-) is recommended. To this
end, consider for simplicity the case k = 1 (i.e. one node). Then, taking a third-
order Taylor expansion of (5.45) about 73 = 0 and substitution in (2.65) gives, after
rearranging and merging terms, the auxiliary regression model

p p—q q
Y;‘,ZQO‘FZOZ}Q z‘i’ZZﬁ'L]K& Yy ]‘}'ZZI/%]Y; Z§/t —j
i=1 i=1 j=i i=1 j=1
q p—q q
+2. 2.2 BV Vi Yie wZZZ%Yt Y Y
i u=j =1 j=1u=j
q q q
+ZZZZ z]uvY;f—iY%—jY%—uY%—v
i=1 j=1i u=j v=u
q
qubzﬂwyvt ¢Y% ]Y;f wYi— v+ N, (5.46)

p—q
+
i=1 j=1u=jv=u

where the vector Y; € RP~Y is formed by the elements of X;_; = (Y;—1,...,Y;—,)

that are not contained in X;_1. The corresponding null hypothesis of linearity is
defined by

" Bij =0, ¥ij =0, Biju=0, Viju =0, Bijuv =0, ¥ijuy = 0. (5.47)

Recall that an NCAR(k;p), model with p = g and &; = 0 (j = 1,...,k), is
equivalent to an AR-NN(k;p) model (see, e.g., Figure 2.16). Then the auxiliary
regression (5.46) reduces to

Y;f—OCO‘i‘Zaz)/t z+ZZﬁng& Y ]++ZZZﬁz]uK& Y ]Y;f ut

=1 j=1 =1 j=1 u=j
p

p p
+ZZZZ§Z]UU}Q ZY% ]Y;f uY;f v 1+ N, (548)

i=1 j=1i u=j v=u

with similar modifications in the specification of the null hypothesis ]HI(()?), and the
degrees of freedom of the resulting tests statistics. Given (5.46) and (5.47), a third-
order LM-type test statistic can be computed by the following steps.
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Algorithm 5.4: LMgZ) test statistic
(i) Regress Y; on {1,Y;_1,...,Y;_,} using LS; compute the residuals {&;}]_,,
and the residual sum of squares SSEq = Y, 2.

(ii) Regress & on {1,Y;_1,...,Y;_,} and on each of the nonlinear regressors of
(5.46); compute the residuals {7;}7_,, and SSEo = Y, 7%

(iii) Compute the LM-type test statistic
LMY = T(SSE, — SSE,) /SSE,. (5.49)

Under H(()7) and standard regularity conditions, complemented with the as-
sumption E(Y? ;) < oo (i = 1,...,p) for some § > 8, the limiting distribution
of (5.49) is given by

LMY 2y 2, (5.50)
where
v= g+ )+ 5@+ 1)a+2)+ 1 (a+a+2)(g+3)
+ - a)(a+ 5la+1)+ g la+1)(a+2).

(iv) Alternatively, compute the associated test statistic:

(SSE() SSE)/Z/
SSE/(T—p—1-v)’

P = (5.51)

which, as T' — oo, has an approximate F, r_,_1_, distribution under Hm

The asymptotic properties of the above two test statistics do not crucially de-
pend on the assumption that the activation-level G(-) function is logistic, provided
conditions (a) and (b) given with the STAR model are satisfied. In practice, the
test statistic (5.51) is preferred over (5.49) since the asymptotic x2 distribution is
likely to be a poor approximation to the finite sample distribution of the LM-type
test statistic if the degrees of freedom v is large.

5.2 Likelihood Ratio Tests

SETAR
Let {Y:,t € Z} be a strictly stationary and ergodic time series. Assume for simplicity,
but without generality, that {Y;,t € Z} is generated by the SETAR(2; p, p) model
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with delay d, i.e.
1 a 1 2 u 2
Vi= ol + 3 o+ {6 + 3 oV fI(Yia <) He (552)
=1 1=1

Suppose, for the moment, that p and d are known (1 < d < p). Further, we assume
that the unknown threshold parameter r takes a value inside a known bounded
closed subset of R say R [r, 7], with 7 and 7 finite constants.

Let ¢; = ( ,...,gbp ) (i =1,2), and 0 = (¢}, ¢,)". We denote the parameter
space by @ = ®¢1 X @g4,, where @4, and O, are compact subsets of RP*L. Suppose
the true parameter vector 6y = (¢, @5,)’, is an interior point of @. The hypotheses
of interest are

H(()S): Pop = 0, Hgs): ¢o0 # 0 for some 7 € R. (5.53)
By temporarily setting {e;} "= N (0,02), the conditional log-likelihood functions
under Hég) and Hgg) are, respectively,

T

T
Lor(¢1) Z&? (¢1), and Lir(a,r) =Y E(¢a,7), (5.54)
=1

where £;(¢p1) = £4(0, —00), and &;(¢2,7) is defined based on the iterative equation
(5.52). For a given r, let

bir = a in L and ¢or = a in L ,T).
o171 rg ,min or(¢1) and ¢ar rg min 17(p2,7)

1€04,
The quasi-LR statistic for testing H((JS) against Hgg) is then defined as

LR7(r) = LRor(d17) — LRir ($2T(7"), r).

Since r is unknown, a natural choice for a test statistic is sup,cgp LRz (7). This
choice, however, is undesirable since the test diverges to infinity in probability as
T — oo. An appropriate alternative test statistic is

LR = (suﬂg {LRor(¢17) — LRi7 (dar(r),7) })/LROT(QASlT)' (5.55)

To describe the asymptotic null distribution of (5.55), we introduce the matrices

Qr) = ( T Zia(r) > —E{ %2t(Bo.) 8a(9°’”}, (5.56)

3o1(r) Xaa(r) 00 00’

and

Qi(r) = (221(7“) - 221(7“)22721(7“)212(7"))71,
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where 3(-), Zo1 () = 5(+), and gz (-) are (p+1) x (p+1) matrices. Let {Go(pi1)(r)}
denote a 2(p+1)-dimensional vector Gaussian process with zero mean and covariance
kernel X, o) — 391 (r)X"1315(7); almost all its paths are continuous. Then, under

H(()S), standard regularity conditions, it can be shown (Chan, 1991) that

1
LRg) A P SUE {gIQ(p+1) (’I“)Ql(?")gg(p_t,_l) (T)}v as T' — oo. (557)
€ reR

Using the Poisson clumping heuristic (Aldous, 1989), it follows that the limiting
null distribution for the test statistic (5.57) is given by

P(5p {Ghp 1) (1) ()G (1)} < ) ~ exp { =21 (@) (5 — 1)
reR p

p+1

dt;
X ;/@Edr}, (5.58)

where ¢; = $log{L;/(1 — L;)}, Vi, £; = Li(r) =E[I(Y, <), 1<i< (p—1), L,
and L, are the roots of 22 — uz +v = 0 with u = E[(1 + Y;2/o2)I(Y; < r)] and
v=E[IY; <n)E[Y2I(Y; <r)/od] —E*[Y2I(Y; < r)/oy]. Here, £, and L1 are
chosen such that they are continuous functions of r.

Note from (5.58) that for p > 1, and assuming d < p, the asymptotic null
distribution of LRg? ) is independent of d. For the special case p = 0, Chan and Tong
(1990) show that the asymptotic distribution of (5.58) reduces to the distribution of

sup We(s)/(s —s?), (0<a<b<l), (5.59)

a<s<b

where {W°(s),0 < s < 1} is a one-dimensional Brownian bridge (a Gaussian ran-
dom function) on (0, 1). By introducing the well-known characterization W°(s) =
W(s) —sW(1), where {W(s),s > 0} is the Wiener-Lévy process, and using Doob’s
transformation U; = e W (e?) the distribution function of (5.59) is available in
closed form; see Appendix 5.A. This appendix also contains asymptotic critical val-
ues of the LR test statistic (5.57) for p > 1.

The assumption {g;} =" N(0,02) is not necessary for the derivation of the

asymptotic distribution of LR§§). In fact, its asymptotics also holds when {g;} ~
WN(0,02); see, e.g., Chan (1990). Indeed, if this is the case we can treat (5.52)
as a regression model with the p + 1 vector of added variables X}1(Y;_4 < r), with
X:=(1,Y—1,...,Y;,), and replace (5.55) by

Fj(,B) _ T(SuPreﬂi {SSEO - SSE1 ($2T(T), ’I“) } ) 7 (560)

inf, . SSE1 (dor(r), )

where SSEq and SSE;(:) are the sum of squares of residuals under H(()g) and Hgg),
respectively.
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Nested SETARSs

It is straightforward to generalize the F test statistic (5.60) to a SETAR(k;p,...,p)
model (k > 2). Let Xy = (1,Y;—1,...,Y;—,)" be a (p+ 1) x 1 vector. Using the
notation introduced in Section 2.6, a convenient way of writing the k-regime SETAR
model is

Y, = ¢\ X IV (e, d) + -+ X I (x,d) + &4, {e1} ~ WN(0,02),  (5.61)

where r = (r1,...,7,_1)", 10 = —00, 1 = 00, and It(z)(r, d) =1I(ri-1 <Yiqg<mry)
(i=1,...,k).

When k& = 1, (5.61) reduces to a linear AR(p), or a SETAR(1;p), model with
zero thresholds, being the most restrictive within the class of k-regime SETAR
models. The models within this class are strictly nested. This simply means that
the i-regime SETAR model being tested, the null hypothesis, is a special case of the
alternative SETAR(j;p,...,p) model (i < j;i = 1,...,k) against which it is being
tested. Here, we implicitly assume that there are no additional different constraints
on the parameters ¢;, and the delay d is the same for both models.

Suppose the parameters of (5.61) are collected in the vector = (¢}, ..., ¢,,r',d)
belonging to the parameter space ®. The LS estimator, say §, of @ solves the
minimization problem

T k
N . ; 2
0 = arg min tE:1 {v; — jgl qb;-XtIt(]) (r',d)}". (5.62)

Let SSE; be the residual sum of squares corresponding to an i-regime SETAR model.
Then the natural analogue of (5.60) for testing an i-regime SETAR against a j-regime
SETAR model is defined by

SSE; — SSE;

(i) _
Fr _T< SSE;

), (i <jii=1,...,k) (5.63)
This is equivalent to the conventional LM-type test statistic (5.8).

We can solve the minimization problem (5.62) sequentially through concentra-
tion. For instance, for the case k = 2, minimization over ¢ = (@, ¢,)" is an LS
regression of Y; on (X;.Tt(l)(r, d),XgIt@)(r, d)) with r € R. Let SSEy(r,d) be the
corresponding residual sum of squares for a given (r,d). Then

~

(r,d) = arg min SSEs(r,d). (5.64)
reR

1<d<p

Next, we can find the LS estimates of ¢ as qg = (/ﬁ(?,c/i\), and obtain SSE, =

SSE, (7, (3\) A natural by-product is the test statistic F}m) = T((SEEl—SSEg)/SSEg)

with SSE; the residual sum of squares of the SETAR(1; p) model.

Hansen (1996) derives the asymptotic null distribution of F:(pl’Q), say 7, which is a

vector mean-zero Gaussian process. To obtain a practical procedure for calculating
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p-values, he replaces all population moments of the asymptotic distribution of 7°
by their sample counterparts. Let u denote a random N (0,I7) vector. Then the
random variable of interest is defined as

T = max 0 (r,d)Xy(r,d)M;" (r,d) X} (r, d)u(r, d), (5.65)

TE]T{,
1<d<p

where

u(r,d) = u— X(X'X) ' X'u,
My (r, d) = X (r,d)Xa(r, d) — (X1(r, )X (r, d)) (X'X)7HX] (r, d) X (1,d))),

with X (r,d) = X;It(l)(r, d) and X is the 7" x (p + 1) matrix whose ith row is X;.
The asymptotic null distribution of 7 follows from a large number of independ-
ent draws from (5.65).2 It can be used to calculate critical values from the quantiles
of these draws. We can also calculate an approximation to the asymptotic p-value
of the test statistic by counting the percentage of draws which exceed the observed
F}M). For k > 2 the procedure is similar, with the additional requirement that each
regime contains at least a sufficient number of observations, say T; (i = 1,...,k).
Alternatively, the steps to bootstrap p-values of the test statistic are as follows.

Algorithm 5.5: Bootstrapping p-values of F}l’i) test statistic

(i) Select a subset R of values of ¥; falling between the r x 100 lower and 7 x 100
upper percentiles of the EDF of {Y;}Z_,.

(ii) Fit a SETAR(1;p) model and a SETAR(4;p,...,p) (i = 2,3) model to the
data. Let ; be the vector of parameter estimates as in (5.62) and SSE; the
corresponding residual sum of squares. Compute the test statistic Fj(}’l).

(iii) Generate {e;}]_; random draws (with replacement) from the LS residuals
of the fitted SETAR(1; p) model.

(iv) With fixed initial values {Yo,Y_1,...,Y_, 1}, recursively generate {Y,*}7_;
using the SETAR(1; p) model with 6;. Select a new set R* falling between
the r x 100 lower and 7 x 100 upper percentiles of the EDF of {V;*} .

(v) Given {Y;*}, calculate the test statistic F:(Fb) using the same method as to
calculate F}l’z).

(vi) Repeat steps (iii) — (v) B times to obtain {F}b)}szl. The bootstrap p-value

is the percentage of simulated F}b) values which exceeds the observed F:(Fl’i).

“Hansen (1999) shows how to calculate the asymptotic distribution of F}l’i) for the case of a
stationary process with possibly heteroskedastic error terms. Several minor modifications in the
formula for the asymptotic approximation (5.65) are needed. Also, for this case, he proposes an
adjusted version of the bootstrap procedure.
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Figure 5.1: ENSO phenomenon. Asymptotic and bootstrap distribution of the F}M) test
statistic.

The above procedures, i.e. via the asymptotic null distribution and bootstrap-
ping, can be extended to the case of testing a two-regime SETAR model against
a three-regime SETAR model. Some caution is needed, however. The problem is
that under the null hypothesis, the parameter 7 has a non-standard asymptotic
distribution (Chan, 1993).

Example 5.1: ENSO Phenomenon (Cont’d)

We illustrate the use of the test statistic (5.63) with an application to the
monthly ENSO series (T' = 748) introduced in Example 1.4. After some
initial exploration, we set p = 5. The estimated AR(5) model is given by

Y;} == —0.00(0.01) + 1.41(0.04)1@,1 — 0.55(0.07)}@72 + 0.15(0_07)1@,3
+0.02(9.06)Yt—4 — 0.11(0.04) Y15 + &t, (5.66)
where the sample variance of the residuals is given by 52 = 4.89 x 1072, and
asymptotic standard errors are given in parentheses. Using (5.64), we find

d =2 and 7 = 0.21. The associated SETAR(2;5,5) model is given by

—0.02(0.02) + 1.34(0.04)Yt—1 — 0.54(0.08) Yi—2 + 0.14(0.09) Y13

yi— ] H0.05008Yims —0.090 05 Yis + et if ;5 < 0.21,
0.06(0.02) + 1.46(0.07)Yt—1 — 0.60(0.12)Yi—2 + 0.16(0.12)Y;—3
~0.02(0.10)Ys-4 — 0.15(0.06) Y5 + & if Yi o > 0.21,

(5.67)

where the sample variances of {5,@} (i = 1,2) are 4.72 x 1072 (T} = 455)
and 4.70 x 1072 (T, = 288) respectively. The F%LZ) statistic for the test
of (5.66) against (5.67) equals 27.99. The asymptotic distribution, based on
1,000 independent draws, gives a p-value of 0.009. The bootstrapped p-value
(B = 1,000) equals 0.014. So, there is sufficient evidence to reject the AR(5)
model.
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Next, we fit a SETAR(3;5,5,5) model to the data, i.e.

—0.190.07) + 1.250.07)Yi—1 — 0.60(0.15)Y:—2 + 0.17(0.16) Y13

+0.00(0.13)Ys—1 — 0.06(0.07) Y5 + L") if Yo < —0.78,

Y, = —0.02(0.02) + 1.40(0.05)Yz—1 — 0.64(0.10)Yi—2 + 0.20(0.10) Yi—3
—0.00(0.10) Yi—4 — 0.08(0.06)Yi—5 + &4 if —0.78 < Y,_» < 0.27,

0.08(0.02) + 1.44(0.07)Y2—1 — 0.54(0.12) Yi—2 + 0.04(0.12) ;3

+0.06(0.10)Yi—a — 0.17(0.06)Ys—5 + £ if Y, o > 0.27,

(5.68)

where the sample variances of {agi)} (i = 1,2,3) are 5.69 x 1072 (T} = 140),
417 x 1072 (T, = 334), and 4.71 x 102 (T = 269) respectively. The F\*)
test statistic equals 38.21. Both the asymptotic and bootstrapped p-values are
0.09. So, there is insufficient evidence to reject the AR(5) model in favor of
the three-regime SETAR model. The F}2’3) test statistic equals 9.85, with a

large bootstrapped p-value. Thus, in summary, it appears that an appropriate
model for the ENSO data is the SETAR(2; 5, 5) model.

Figure 5.1 shows the asymptotic and bootstrap distributions of Fi(pl’z). For
fixed (r,d), the test statistic F}Z ) has an asymptotic X% 1 distribution. Its
density function is plotted for reference. Clearly, the x2 distribution is highly
misleading relative to the other two distributions. The bootstrap procedure
properly approximates the asymptotic distribution in this case.

SETARMA model
Recall the SETARMA(2; p, p, ¢, q¢) model with delay d:

P q
Y, = ¢E)1) + Z sz(‘l)ytfi + Z ¢§‘2)5t7j
i=1 =1

P q
+ {Tl)(()l) + Z YV + Z ?l)](-2)€t—j}f(yt—d <r)+tes, (5.69)
i=1 =1

where, following Li and Li (2011), we assume that &; = 07, where {n;} "= (0, 02).

and o; > 0 is a measurable function with respect to the information set F; =
o(Me,Me—1,...). So, {1} is an uncorrelated error sequence rather than an ii.d. se-
quence. Along the same lines as above, quasi-LR test statistics for SETMA(2; ¢,
q) (Ling and Tong, 2005) and SETMA-TGARCH models (Li and Li, 2008) can be
defined. Not surprisingly, explicit expressions for the asymptotic null distribution
of these LR-based test statistics take a very complicated form even for some simple
cases. Only in the special case when ¢ < d, the limiting distribution of the quasi-
LR test statistic for SETMA(2; ¢, ¢) models is that of (5.59) with W*°(s) replaced
by W;(s), a g-dimensional Gaussian process with mean zero and covariance kernel
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(r As—rs)I,. For more general SETARMA models bootstrap-based approximations
are recommended to calculate p-values.

To avoid a time-consuming optimization in searching for the quasi-LR estimate
for each bootstrapped sample, we discuss a so-called stochastic permutation-based
bootstrap procedure only. First, however, we introduce the following notations.
Lot &= (60, o), ..o, o, 6@y, v = w0, gD g y@y.
and @ = (¢', 7). Denote the parameter space by ® = @4 x ©,, where @, and ©,,
are compact subsets of RPT4*1 Suppose the true parameter vector 8y = (¢}, V)’
is an interior point of the parameter space ®. The hypotheses of interest are

Hég): Py =0, Hgg): 1y # 0 for some r € R. (5.70)

Similar to (5.55), by temporarily assuming normality for {e;}, the quasi-LR test

statistic for testing Hég) against Hgg) is defined as
1 ~
LR{ = = ((sup {LRor(ér) — LRur (8(r).1)} ). (5.71)
O¢ reR

where
62 = LRor(¢7)/T

with ¢ = arg mingee, Lor(¢), and §T(r) = argmingce L17(0,r). Denote Q(r)
as in (5.56) with

Qi(r) = Q (r) — diag(Z71, 0),

where X(-), 291(+) = ¥5(+), X22(-), and 0 are (p+ g+ 1) x (p+ ¢+ 1) matrices,
and where £;(0p,r) is defined based on the iterative equation (5.69).

Let {Go(ptq+1)(7), 7 € R} denote a 2(p+ g+ 1)-dimensional vector Gaussian pro-

cess with zero mean and covariance kernel E{52W%} and almost all its

paths are continuous Assume that all roots of the polynomials 1 —» ", qﬁ z' and

1+ ¢ 2. are outside the unit circle, and these polynomials are coprime. In

addition, assume that the polynomials 1 — Y%, ¢i 2" and 1+ 23:1 1/J](~ )27 are also
coprime. The coprime nature of the polynomials is necessary to uniquely identify
the parameters of the SETARMA model, i.e., the assumption makes the matrix €2(r)
positive definite. Then, under H((]g), some standard regularity conditions, comple-
mented with conditions on the moments of the random variable &;, it can be shown
(Li and Li, 2011) that, as T — oo,

p 1
LRY 2, =5 D (G g1) (VR ()G 441 (1) (5.72)
€ reR

9)

Because distribution theory is not available for the LR’ test statistic for general
SETARMA models, classical bootstrap methods can in principle be used to obtain p-
values. However, computing time will be huge if, for each bootstrap replicate, (5.71)
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needs to be computed. Li and Li (2011) offer a bootstrap procedure that leads
to substantial computational savings since optimization of the SETARMA model
is required only once. Fundamental to the proposed procedure is the established
results that, under H[()g),

sup [{LRor(¢7) — LRz (0r(r), )} — Er () (nér(r)| = 0,(1),  (5.73)

reR

where &7 (1) = \/L’T Z?:l M Clearly, the quantity &(r)2 (r)&r(r) is a quad-
ratic form. Provided any poss1ble dependence on the threshold structure in a ob-
served time series is removed first, we can obtain a bootstrap approximation of LRg? )
by randomly permuting the summand in &p(r). In particular, the bootstrapping

takes place as follows.

(9)

Algorithm 5.6: Bootstrapping p-values of LR}~ statistic

(i) Generate {e;}7H" "X A7(0,1) random draws, with n the number of initial
observations. Generate {Y; tT:Jrl" from a SETARMA(2; p, p, ¢, q¢) model, with
or without possible dependence structure in the errors, using {e;}.

(i) Select a subset R of values Y, falling between the r x 100 lower and 7 x 100
upper percentiles of the empirical distribution of {Y;}71_;.

(iii) Fit an ARMA(p, q) model to {Y;}Z_ ;. Denote the resulting estimate of ¢ by
ér. Compute LRor(dr) = Zthl E2(pr).

(iv) For each value Y; € R set r = Y;, and fit a SETARMA(2; p, p, q,q) model
to {V;}1.,. Let §T(r) be the resulting estimate of 6. Also, for each
r, compute LRy7(07(r),r) = 3,_{&(6r(r),7)}*. Set LR1p(07(7),7) =
min, g LR17(07(r), 7).

(v) Compute the test statistic
LR (7) = T(LROT($T) - LRlT(éT(?),?)) /LRor(r). (5.74)

(vi) Generate a sequence {e; } of i.i.d. random variables with mean zero, variance
unity, and finite fourth moment. Suggested distribution functions are A/(0, 1)
and the Rademacher distribution, which takes values +1 with probability 0.5.

(vii) Let & = f—:vf(éT(A) 7). Remove any possible threshold structure in a
time series by generating Yt =0 Zt + &, where Zt = (1, Yt 1yene Y} P
€t—1,...,Et—q) with & =0 for ¢ <O0.

(viii) Select a new set R* falling between the r x 100 lower and 7 x 100 upper
percentiles of the distribution of {Y;}. Let r be the new threshold parameter.
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Algorithm 5.6: Bootstrapping p-values of LR}Q) statistic (Cont’d)

(xii) Repeat steps (ix) —

xiii) Transform the values {LR'Y(* B into p-values by computing the boot-
T b=1

(ix) Set r =Y; € R*, and compute the vector functions

ast ~2) Og¢
:_Zt Z d) 8¢j

Oe¢(r) 1 A(Q)ast j (r)  0g(r) (0&(r) O&(r)y’
¢“ZIYM<T 9 T _(a¢f’a¢f)’

j=1

where the necessary initial values in the recursions are set to zero. Moreover,

as an estimator of Q(r), compute the outer product of the vector functions,

e, () = F TiLy (557 250

(x) Compute the vector function &r(e*,r) = \F Zf 1 *28656() ) and the stat-

istic

AGKS (ﬁ*l(r) — diag(S1, 0))£T(5*,7")

5252 ’

eYe*

LRY (e*,r) =

where 62 = T- LRy (07 (7),7) and 62. = T~ 27 {e7}2.
(xi) Repeat step (x) B times, to obtain {LR&?) (e*,m)}2,.

xi) for different values of r. Compute LR(Tb)(e*) =

(
~ALRY(e*, 1)} (b=1,...,B).

maXTGR*

strap statistic

B
é S ILRY ) < LRY ().
b=1

Example 5.2: U.S. Unemployment Rate (Cont’d)

Recall, in Example 1.1 we introduced the quarterly U.S. unemployment rate.
Using the first differences of the original series, say {Y;}2! we fit the following

ARMA(1,1) model to the data
}/t = 0.53(0‘07)Y271 + &+ 0-22(0,08)5t71, (575)

where the sample variance of the residuals is given by 52 = 8.91 x 1072, and
asymptotic standard errors are given in parentheses. The p-value of the Ljung—
Box (LB) test statistic is 0.15, based on 40 lags. Although this specification
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can be improved (see Chapter 6), it can well serve as a benchmark for testing
the ARMA(1,1) model against a SETARMA(2;1,1,1,1) model with delay
del,...,6]. Setting B = 10,000, r = 0.1, 7 = 0.9, and generating {&;} (step
(vi)) from an N(0,1) distribution, we fitted various two-regime SETARMA
models to the data. For d = 2 the p-value (0.049) of the LRg?) test statistic is
smaller than the 5% nominal significance level. The associated model is given
by

Y = 0.44(0.08)Yi—1 + 0.48(0.07)€t—1
+(0.24(0.10)Yem1 — 0.71(g.12)80-1)1 (Yi—z < 1.01 x 107%) + &4,  (5.76)

where the sample variance of the residuals is given by 52 = 8.34 x 10~2. So, in
terms of residual variances, (5.76) provides a better fit than the linear model
(5.75).

5.3 Wald Test

ARasMA model

In Section 5.1, we introduced an LM-type test statistic for testing symmetry against
an asMA (¢q) model. For the more general autoregressive-asymmetric moving average
model (ARasMA) of order (p, q) with a linear AR(p) polynomial, an asymmetric MA
polynomial of order ¢, and a constant term ¢y (Briannés and De Gooijer, 1994), the
null hypothesis of symmetry is equivalent to testing the restriction 87 = 8~ where
0+ = (07,....07), and 6~ = (0,...,07). Let 8 = (¢o, ¢, (6%),(07)) denote
the (1 + p+ 2¢) x 1 vector of parameters, with ¢ = (¢1,...,¢,)". Further, let R
denote a restriction matrix of dimension ¢ x (1 + p + 2¢) such that RO = r, and r
is a (1 4+ p+ 2q)-vector. Next, from the partition R = (R;: Rg), where R; = 0 and
Rs is a ¢ X 2¢ matrix, the problem becomes one of testing the null hypothesis

Héw): R20 = 0 against Hglo): R20 # 0. (5.77)

The third classical test, the Wald (W) test, is based exclusively on the unres-
tricted estimates @ of . Assume that the ARasMA model is invertible, and let
{e:} "X N(0,02). Then, for the unrestricted model, the log-likelihood function at
time t (apart from an additive constant term), is given by

1 1
0(0) = —-— ) 7 (0) - 5 log o2, (5.78)
t

where summation is over the range (max(p,q) + 1,T), and
q

p q
5t(0) = ij - d)O - quz}/tfl - Zelijfj,j - Z@;ijg;ij,
Jj=1

i=1 j=1
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Let e; = €4(0). Then the score vector at time t is given by G+(0) = 04,(0)/00 =
—02e,0g4/00, where

Ozy ¢o ¢ ¢ 1+ + + +
90 =—(I+v} Yol Yiptof, el ol el ol
Eim1 T UL g V)

with
q
2(9 IEt k>0)+0 I(Et k<0)>a€t_k/80j
k=

Here, the superscript on v; together with the second subscript indicate the appro-
priate element within the @ vector. The empirical Hessian ﬂT associated with the
log-likelihood function can be approximated by the summed outer product of Gy,
i.e. Hp = S GGy Let 6 be the vector of parameter estimates of 6, and ﬂ;l(é)
the estimate of the corresponding covariance matrix. Then the W test statistic can
be expressed as

~

Wi = (Rgé) [RHT @R } T'R.0. (5.79)

Under H(()IO), and as T — o0, (5.79) has an asymptotic x?] distribution.

5.4 Tests Based on a Second-order Volterra Expansion

In this section we discuss time-domain diagnostic tests statistics. For ease of rep-
resentation we assume that {Y;,t € Z} is generated by a stationary linear AR(p)
process (Hp). The alternative hypothesis (Hj;) states that the process can be ad-
equately approximated by a second-order Volterra expansion of the form

[e9) e
Y;f =p + e+ Z wugt—u + Z wuvgt—ugt—vv {Et} 1’1\? (0703) (580)

U=—00 U,V=—00

Thus H; is quite general. Therefore the resulting test statistics are often termed
portmanteau-type tests.

Obviously, if {Y;,t € Z} is linear, i.e., if ¢y, = 0 Vu, v, then ¢; will be independent
of e;_yet—yp. If, however, {Y;,t € Z} is nonlinear, i.e., if any of the second-order
coeflicients 1, are non-zero, this is not so. Then this nonlinearity will be reflected in
the relationship of the residuals of a fitted linear model with, for instance, Y; _1Y;_o,
a quadratic nonlinear term. This is called the added variable approach. Below, we
discuss three variants.

The Tukey nonadditivity-type test
This test was developed by Keenan (1985) and is an analogue of Tukey’s (T) (1949)
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one degree of freedom test for nonadditivity in analysis of variance. The mechanisms
for computing the test statistic are as follows.

Algorithm 5.7: Tukey’s nonadditivity-type test statistic

(i) Choose an appropriate value p € [4, 8]. Regress ¥; on {1,Y;_1,..., Y}
compute the fitted values {Y;}, the residuals {&}/_,,, and SSE=}", &2.

(i) Regress {Y;2} on {1,Y,_1,..., Yi—p}; compute the residuals {gt}?:pﬂ.
(iii) Regress &; on &.

(iv) From the regression in (iii) calculate the test statistic

o2

(T) _ n
b S SE )T o5

N 1/2
where 7 = 1 ( Do §t2) with 7y the regression coefficient in step (ii).

Under Hy, and as T — oo, FT(T) L, F,, ., with vy =1 and v = (T —p) —

(p+ 1) — 1. The estimated size of (5.81) can be improved by using T — p
instead of T'— 2p — 2 in the denominator of FT(T) (Luukkonen et al., 1988b).
This improvement also applies to the next two F' test statistics.

Keenan (1985) shows that FT(T) is approximately distributed as x? but the F-
version may be preferred in practice because it is computationally convenient and
reasonably powerful in finite samples. An advantage of (5.81) is that it is easy and
quick to implement involving little subjective choice of parameters. On the other
hand, the FT(T) test statistic is only valid for the Volterra expansion, but not all
nonlinear processes possess this expansion.

Original F' test
This F test statistic is a direct modification of the original (O) Tukey nonadditivity-
type test statistic (5.81), and hence its name; see Tsay (1986).3 The test considers
the residuals of regressions that include the individual nonlinear terms and quad-
ratic terms up to third order {Y,2|,Y;-1Y; o, ..., Yi—1Yi—p, Y72, Y oYis,. .., Yt?’_p}
while FT(T) considers the residuals of regressions on only the squared terms.

Let Xy = (Yi—1,...,Y;—,), and define the P = %p(p + 1)-dimensional vector
Z; = vech(X;X}). Further, assume that {g;} ~ WN(0,02) with E(e}) < oo. The
procedure for performing the original F' test statistic is outlined in the following
steps.

3The name given to this test statistic is taken from Tsay (1991). This reference serves also as
the source for the names given to the original, the augmented, and the new F test statistic (Section
5.5) which are discussed below.
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Algorithm 5.8: Fjgo) test statistic

(i) Choose an appropriate even value of p, e.g. p = 4 or p = 8. Regress Y; on
{1,Yi1,..., Yi_}; compute the residuals {&}/_,, .

(ii) Regress the first p+ 1 elements of Z; on {1,Y;_1,...,Y,_,} and obtain the
residuals {€1,¢}/_,, 1.

(iii) Then regress the next p+ 1 elements of Z; on {1,Y;_1,...,Y;_,} and obtain
the residuals {gu}tT:pH.

(iv) Continue with steps (ii) — (iii) until the residuals from all p/2 regressions have
been obtained. From these residuals, form the (p/2) x 1 vector {&}/_,, ;.

(v) Regress &; on é; compute the residual sum of squares Y, 7.

(vi) From the regression in (v) calculate the test statistic FT(O) as the F' ratio of
the mean square of regression to the mean square error, i.e.

£ _ (S&8) (X, &80 (2, 4&)/P
! S@/(T—p-P=1)

(5.82)

Under Hyp, and as T — oo, FT(O) D, F,, ., with degrees of freedom v, =

p(p+1)/2 and vy =T — p(p+ 3) — 1; Tsay (1986).

Note that the test statistic PFT(O) is asymptotically distributed as X%. Using the
LM testing procedure of Section 5.1, it can be easily shown (Luukkonen et al., 1988a)
that both tests (5.81) and (5.82) are LM-type test statistics. Simulation results show
that the FT(,O) is more powerful than the FT(T) test statistic in identifying BL-type
nonlinearity.

Augmented I test

The augmented (A) F test (Luukkonen et al., 1988a) extends the F}O) test statistic
by including the regression of the cubic terms {Y;*} on (1,Y;_1,...,Y;—,) in the set
of regressions in steps (ii) — (iv) of Algorithm 5.7. The ((p/2)+ 1)th set of residuals

{é\(p /2) +1,t}?:p 1 are included in é Call the resulting vector é'\t(A). Perform a linear

regression of & on E}A), and obtain the residual sum of squares Et{u’}t(A)}Q. Then
the associated F' test statistic is given by

FT(A) ) (Zt At(A)af)/(Z(Z;t(A) (gt(A))/) -1 ( > gt(A)gt) /p‘ 55
>{w /(T —p—P—1)

Under Hy of linearity, and as T" — oo, FT(A) 2, F,, v,, where v = %p(p +1)+0p

and o = T — p(p + 3)/2 — 2p. Clearly, if p = 1, the asymptotic distribution of
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(5.83) is identical to the asymptotic distribution of the Tukey nonadditivity-type
test statistic (5.82).

5.5 Tests Based on Arranged Autoregressions

An arranged autoregression is an autoregression where the observed values of the “de-
pendent variable” and the associated design matrix are sorted, or rearranged, accord-
ing to the values of a particular regressor. For SETARMA processes, the regressor
on which to sort is the threshold variable. For example, consider a SETAR(2; p, p)
model with delay parameter d, and nontrivial threshold 7;

5.84
(/5(()2) + > o1 DYy ter Y g>r .

1 1 .
Yt_{ Oyt Y, e i Yig<r,
Given the set of observations {Yt}f:l, the threshold variable Y;_; can assume the
values {Y;}754 where h = max{1,p + 1 —d}. Let 7; be the time index of the
jth smallest observation among {Y;-}iT:_hd. Assume that the recursive autoregressions
begin with a minimum number of start-up values, say nmin > p + 1. Denote the

resulting ordered time series by {Y-. }JT:_ri;:,lﬂ Then we can write (5.84) as

VA (5.85)

0
J (2)

gb(l) + Z'Lpzl ¢7§1)Y’Tj+d—i + eTj-‘rdv (] = NMmin+15-- -, 5))
2 .
o+ 6P Y asi b enaa, (=541, T—d—h+1),

where s satisfies Y, <7 <Y .

This is an arranged autoregression with the first s observations in the first regime
and the remaining observations in the second regime. This effectively separates the
two regimes and also provides a means by which the data points fall into two groups
where all of the observations in each group are generated from the same linear AR(p)
model. If the value of the threshold parameter r is known, consistent estimates of
the parameters can easily be obtained; see Chapter 6. Since, however, in most cases
the value of 7 is not known, estimation of (5.85) is performed sequentially through
recursive LS.

Let the (p + 1) x 1 vector b Tepresent estimates of the parameters in (5.85)
based on the first m cases. Also, denote the corresponding (X'X)~! matrix by P,,.
Let x,,+1be the vector of regressors of the next observation to enter the arranged
autoregression, namely Y, . 4. Then recursive LS estimates can be computed by

m

(Ertel and Fowlkes, 1976; Tsay, 1989):

~ ~ -1 ~
Pm+1 = Gm + Prr1Xmi1 [1-0 + X;n+1mem+1:| [Y7m+1+d - X;n+1¢m] , (5.86)

Pt = Py — PoXonsd [1.0 +x +1mem+1} X, P (5.87)
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The predictive residuals &, ., 44 and standardized predictive residuals e, ., 4 are
given by

é\Tm+1+d = Y;—m+1+d - X;n—‘rl()bm? (588)

N N -1/2

Crmt1+d = Ermyitd 1+ X;n+1Pme+1 : (589)
The LS estimates for the coefficients qﬁS}) (u=1,...,p) are consistent if there are

a large number of observations in the first regime. Moreover, the predictive residuals
are asymptotically WN and independent of the regressors. When, however, j arrives
at and exceeds s, the predictive residuals for the observation with index 7541 +d will
become biased as a result of the model change at time 744144, and the predictive
residuals now become a function of the regressors {YTjer,i;i =1,...,p}. That
is to say, the independence between the predictive residuals and the regressors is
destroyed once the arranged autoregression includes observations whose threshold
value exceeds r. In other words, there is a change at an unknown time-point in
the cumulative sums of the standardized predictive residuals. This calls for a test
statistic having its roots in the analysis of change-points. Typically, the first test
statistic discussed below uses the change-point framework. The mechanics of the
next two test statistics are based on the properties of the one-step ahead predictive
residuals.

CUSUM test for SETAR nonlinearity

Petruccelli and Davies (1986) propose a cumulated sums (CUSUM) test statistic
for SETAR models, using the above recursive LS estimation procedure. The test
statistic can be computed as follows.

Algorithm 5.9: CUSUM test statistic

(i) Choose the AR order p, the lag d, and a minimum number 7y, > p+ 1
of start-up values. In practice npy, = [T/10] + p is recommended to have a
sufficiently large number of observations in the first regime.

(ii) Then, for nyi, < r < T — p, find the recursive LS estimates; compute the
standardized predictive residuals e;, yq (j = min +1,..., T —d—h+1;h =
max{l,p+1—d}).

(iii) Compute the cumulative sums Z; = Zg:nminﬂ €, (J=nmn+1,....7—

d — h+ 1), and the associated CUSUM test statistic

Qr = | Z;| /NT*, (5.90)

nmln+1<]<T d—h+1
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Algorithm 5.9: CUSUM test statistic (Cont’d)

(ii) (Cont’d)
where T* =T —d — h+ 1 — nyin. Clearly, this is a Kolmogorov—Smirnov
type statistic. Under mild conditions on the noise process {e;}, it follows
(MacNeill, 1971) that the limiting distribution of Qr is given by

P((Qr/VT*) < @) = A,

o0

= Y (1Y [@(a(2 + 1)) - ®(a(2j - 1))], (5.91)

j=—o0

where ®(+) is the normal distribution function, and « the nominal significance
level.

(iv) Some upper quantiles are 0.2309 (90%), 0.3011 (92.5%), 0.3245 (95%), 0.3478
(97.5%), and 0.3616 (99%); see Grenander and Rosenblatt (1984, Chapter
6, Table 1) for a partial tabulation. If Qr > A,, then we reject the null
hypothesis of linearity.

It is fairly obvious that the CUSUM test statistic is very simple to implement
since it does not require the estimation of the SETAR model under the alternative
hypothesis. The test statistic can be used to determine both the number and location
of the thresholds. To avoid underfitting, it is recommended to iterate the recursive
LS estimation procedure for different pairs (d, p).

TAR F test for SETAR models

The TAR F test statistic for threshold nonlinearity was developed in Tsay (1989).
The alternative hypothesis is that the series is generated by a two-regime SETAR
model as given in (5.84). The testing procedure consists of the following steps.

Algorithm 5.10: TAR F test statistic

(i) Perform the arranged autoregression, and calculate e, y4.

(ii) Compute a second regression with the predictive residuals on Y; 4 4; i.e.

p
/e\Tj+d:ﬂ()+Z B’L—YT]‘erfi—’_wTjer? (J = Nmin 1 ]-a cee vT —d—h+ 1)
i=1

(iii) Next, compute the associated test statistic

_ E@ oA/t
SN ————

E (5.92)
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Algorithm 5.10: TAR F test statistic (Cont’d)

(iii) (Cont’d)
where &, is the LS residual of the regression in step (ii). Then it can be shown
(Tsay, 1989) that under the null hypothesis of linearity, and as T — oo,

D
*
FT FV1,V27

with degrees of freedom v1 = p+1 and vo = T —d—nyin —p—h. Furthermore,
(p+ 1)F} is asymptotically a x2 random variable with v = p + 1 degrees of
freedom.

Simulation studies show that the TAR F test statistic has consistently higher em-
pirical power than the portmanteau CUSUM test statistic.

New F test for BL, STAR, and ExpAR models

The new F' test statistic combines the idea of an arranged autoregression along with
an added variable approach resulting in a test procedure for detecting three types of
nonlinear behavior. The Hj states that the time series is generated by a stationary
linear AR(p) process. The resulting F' test statistic can be computed as follows.

Algorithm 5.11: New F test statistic
(i) For a given delay d, fit recursively an arranged autoregression of order p to
{vi}L, and calculate the standardized predictive residuals {&;}7_,, ;.

(ii) Calculate SSEq =Y, €2.

(iii) Regress & on {1,Y;_1,....Yip}, {Yiei&t—i,&1—i€—i—1} (i = 1,...,p), and
{Yi_1exp(—Yi_1), ®(2z—q), Vi 1®(Yi_q)}, where z; = (Yi_q — Ygq)/sq with
3_/(1, sq are the sample mean and standard deviation of the Y;_ 4, respectively.
Calculate the residual sum of squares from this regression, SSE; =), o2

(iv) The associated test statistic is given by

() _ (SSE1 —SSEo)/[3(p + 1)]

T = S8BT = rm — 3+ 1)) (5.93)

It can be shown (Tsay, 1991) that under Hy, and as T" — oo,
F’.Z(—'N) i) FV17V27

with 1 =3(p+1) and v =T — nin — 3(p + 1) degrees of freedom.
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5.6 Nonlinearity vs. Specific Nonlinear Alternatives

Li (1993) proposes an LM-type test statistic for discriminating between different non-
nested nonlinear models. Let {e;;} "~ A(0, 01'2,5) (1 =1,2) with €14 independent of
e2,¢. Let Y, be a p;-dimensional state vector (i = 1,2). For simplicity, we consider

the following two hypotheses:
Ho: Y; = f(Y1,:601) +e1s, Ha: Yy =9(Yay:62) +eay,

where f(-) and ¢(-) are two known nonlinear, real-valued functions, having continu-
ous second-order derivatives with respect to the p; x 1 unknown parameter vector ;.
To avoid identification problems, we assume that both families of nonlinear models
are non-overlapping.

Let @ be a consistent estimator of 6;. Denote the corresponding residuals by &; ;
(1 =1,2), and let Y, = 9(Yau; 52) be the fitted values under H,. Then a test of Hy
against H, can be based on considering the null hypothesis Hj: A = 0, where A is a
parameter (the Lagrange multiplier) in the model

Y= f(Y1::61) + Ag(Ya,u;602) + e,

where {&,} "% N(0,02). Thus, the adequacy of the model under H is tested versus
a possible deviation in the direction of H,. Using the LM testing principle, it follows
that the corresponding score form of the LM-type test statistic is given by

T
LMy = TeX/(XX')'Xe/ ) "7, (5.94)
t=1
where X' is a T' x (p1 + 1) matrix of regressors formed by stacking (0e.(0)/06, }Aft),
with Je.(0)/00} evaluated under Hy, and &€ = (€11,...,817). Under Hj the test
statistic LM% has a x? distribution, as T — oco. As before the above test stat-
istic can also be written as TR?, where R? is the coefficient of determination from
the auxiliary regression of £1; on 0e,(0)/00] |, and Y;. Thus, (5.94) is relatively
straightforward to apply, provided de;(6)/90; can be obtained in a simple (recurs-
ive) way.

In practice, it will often be desirable to interchange the role of Hy and H,. It
may, however, result in a situation where both or neither of the hypotheses will be
rejected, giving interpretation problems. On the other hand, this information may
well be used to look for alternative model specifications.

Example 5.3: Interpretation of the LM -type test statistic (Li, 1993)
One attraction of the LM7-type test statistic in this context is its ease of
interpretation following from a direct relation with the method of residual
sum of squares. Consider the two auxiliary linear regressions

0f(Yi—1;01)

Bl =aYy+w, Y= ;
20,

B+, (5.95)
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where wy, 7; are independent zero mean normal random variables; a and 3
are the respective artificial parameters. For simplicity, let 0%78 =1and f; =
f(Yi-1561).

In this case, the score vector under Hy is given by —(0’, Zthl 51,15@)' . Now,
with the respective partitions of the observed information matrix, the LM-type
test statistic under the null hypothesis will take the following form

i = (S ad) (S5 (S hg) (S ggran) (S %ag)]

t
— (Zt 517755}75)2215 i}tQ
Zt}//\? 1— R

where R? is the coefficient of determination for the second auxiliary regres-
sion in (5.95). Note that ), 517,5}?,5/ Dot }/}f = q, the LS estimate of « in the
first auxiliary regression. Suppose the residual sum of squares from the first
regression is denoted by >, ©?. Then from standard linear regression theory
it follows that

Ho

D V5 (D VL VD DL
T~ 1-R2 1- R?

Hence, if Hy is true, the difference between the two residual sums of squares
should be small if T" is sufficiently large, and ), 5127t should be small. On the
other hand, if H, is true ), 5127t should be large while >°, &7 should be small.

5.7 Summary, Terms and Concepts

Summary
In this chapter we have seen a large number of time-domain statistics for testing
nonlinearity. A practitioner may be somewhat bewildered by the wide range of pos-
sibilities. To be of some help, Appendix 5.B reports some strengths and weaknesses
of the available test statistics through reported simulation studies of their size and
power. On the whole a test statistic is effective at identifying the type of nonlinear-
ity it is designed to detect. This is a pleasing result. In addition, the form of the
nonlinear functional relationship in the state-dependent model seems to be less im-
portant with test statistics based on the classical hypothesis testing principles, LR,
LM, and W. Finding the correct dimension (order) of the state vector is more likely
to be the key factor (see, e.g., Pitarakis, 2006). Nevertheless, one should always
consider a linear model first. Occam’s razor tells us that we should not introduce
complexities unless absolutely necessary. Indeed, all the hypothesis tests discussed
in this chapter are concerned with a simple null hypothesis which asserts that the
given data set is a random realization of a specified unique linear DGP.

We have not discussed a testing framework where the null hypothesis is com-
posite. The composite null hypothesis specifies a family of processes, and asserts
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that the actual DGP is a member of that family, but does not specify which one.
This latter situation occurs when artificial, or surrogate,* data are created with MC
simulation methods. Surrogate data sets are often used in studies of nonlinear dy-
namical systems; see, e.g., Theiler et al. (1992), and Theiler and Prichard (1996) for
further insights into this topic.

Terms and Concepts

added variable, 179 nested, 171

arranged autoregression, 182 Occam’s razor, 187
auxiliary regression, 157 portmanteau-type test, 179
simple (composite) hypothesis, 187 stochastic permutation, 175
Lagrange multiplier, 156 surrogate data, 188

5.8 Additional Bibliographical Notes

Section 5.1: The LM-type test statistics for BL, ExpAR, and STAR are due to Saikkonen
and Luukkonen (1988), and Luukkonen et al. (1988a,b); see also Weiss (1986) for an early
contribution. Brénnés et al. (1998) propose the LM-type test statistics for asMA and TMA
nonlinearities. Wong and Li (1997, 2000a) study LM-type test statistics of so-called double-
threshold ARCH models, which may be applied to situations where both the conditional
mean and the conditional variance of the time series process are assumed to be piecewise
linear, given time-delayed observations. Guégan and Wandji (1996) study the local (theor-
etical) power of the LM-type test statistic for a simple subdiagonal BL model.

The LM%7 )—type test statistic for NCTAR is due to Medeiros and Veiga (2005). Medeiros et
al. (2006) apply sequentially LM-type test statistics within the context of AR-NN modeling.
Lee et al. (1993) present an LM-type test statistic for AR-NN models. The test is a special
case of the LM-type test statistic for NCTAR models. MC simulation results show a good
performance in power compared to other competitors. However, the presence of an intercept
in the nonlinear, hidden layer, causes a loss of power compared with other LM-type test
statistics; see, e.g., Lee et al. (1993) and Terésvirta et al. (1993). Also, various versions
of the White (1989, 1992) dynamic information matrix test, a test statistic for neglected
nonlinearity, are commonly used within the NN context.

Kilig (2016) investigates the Taylor series approximations of STAR models around the null
hypothesis of linearity. The approximations may not accurately describe the specific nonlin-
earity of the DGP and, as a result, the LM-type test statistics may fail to detect the correct
form of nonlinearity.

Tong and Yeung (1991a) discuss the identification and estimation of continuous-time two-
regime SETAR models. Tai and Chan (2000) consider a more general class of nonlinear
continuous-time AR (NLCAR) models. In addition, they develop an LM-type test statistic
for this class of models with the linear CAR model under the null hypothesis; see Tai and
Chan (2002) for an extension.

1Surrogate data have no dynamical nonlinearities. By construction a surrogate is equivalent
to passing i.i.d. Gaussian WN through a linear filter that reproduces the linear properties of one
realization of the strictly stationary process {Yz,t € Z}.
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Section 5.2: Asymptotic critical values of the LR test statistic for SETMA(2; ¢, ¢) models
with d > ¢ are the same as that of test statistics for change-points in Andrews (1993).
Empirical implementations of the LR testing approach are reported by K.S. Chan and Tong
(1986). Ling and Tong (2005) suggest a computationally intensive bootstrap method to
calculate p-values of a quasi-LR test for SETMA(2; ¢, ¢) models with d < ¢. Li and Li
(2008) generalize the test in Ling and Tong (2005) to a quasi-LR test statistic for TMA
models with GARCH errors.

Hansen (2000) recommends inverting the LR test statistic to construct confidence intervals
for the threshold parameter of a SETAR process. If the error process in (5.61) is conditionally
heteroskedastic, it is necessary to replace the F}l’l) test statistic with a heteroskedasticity-
consistent Wald or LM-type test statistic; Hansen (1997).

Chen et al. (2012b) propose a LR test statistic to determine the number of regimes in SETAR
models with two regimes.

Section 5.3: The Wald test statistic for symmetry of ARasMA models is due to Brannés
and De Gooijer (1994). For asMA(1) models, the size properties are best for the LM-type
test statistic followed by, in order, the Wald and LR test statistics. The latter two tests are
more powerful than the LM-type test statistic; see also Brannés et al. (1998).

Testing for a linear (near) unit root against (stationary) TAR models is the topic of a large
number of papers in the econometrics literature. For instance, Caner and Hansen (2001)
propose a Wald statistic for testing a two-regime SETAR with stationary but unknown
threshold parameter, Enders and Granger (1998) focus on an F test statistic for an M-TAR
model with known threshold parameter, Lanne and Saikkonen (2002) introduce a stability
test statistic for a TAR model with threshold effects only in the intercept term, Kapetanios
and Shin (2006) consider a Wald statistic for testing a three-regime SETAR model with a
random walk in the middle regime. Pitarakis (2008) comments on the limiting distribution
of the Wald test statistic in Caner and Hansen (2001). Bec et al. (2008) propose a SupWald
test statistic for SETARs with an adaptive set of thresholds, and Seo (2008) considers a
residual-based block bootstrap algorithm for testing the null hypothesis of a unit root in
SETARs.

Charemza et al. (2005) introduce a Student ¢-type test statistic for detecting unit root
bilinearity in a simple BL(1,0,1,1) process. The linearity coefficient in this model may
be estimated by the Kalman filter algorithm, following an approach suggested by Hristova
(2005).

Section 5.4: The RESET test statistic of Ramsey (1969) may be viewed as an earlier, and
more general, version of the Tukey nonadditivity-type test statistic.

Section 5.5: It is easy to verify that (5.91) is identical to the approximate large sample
distribution given by Petruccelli and Davies (1986). Petruccelli (1990) introduces another
CUSUM test statistic for linearity using the reversed predictive residuals, denoted by Q1Y
in Table 5.2. Similarly, Sorour and Tong (1993) examine the performance of the LR test

statistic for SETAR and the CUSUM test statistics in building a TARSO model.

Tong and Yeung (1990, 1991b) apply the CUSUM tests (original and reversed) and the TAR
F' test statistic to investigate nonlinearities in partially observed time series; see also Tsai
and Chan (2000, 2002).

Following the basic structure of Algorithm 5.10, Liang et al. (2015) propose an F-type test
statistic for testing linear MA models versus (rearranged) SETMA models. The procedure
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requires the subjective use of scatter plots to identify the number and locations of potential
threshold values. The MA order follows from inspection of the sample ACF.

Section 5.6: Many studies have been performed investigating power properties of the test
statistics considered in this Chapter. Important contributions published prior to the year
1992 are summarized in the review paper by De Gooijer and Kumar (1992, Exhibit 1).
Terasvirta et al. (1993) study and compare the power of LM-type and ANN test statistics
(see also Lee et al., 1993). de Lima (1997) investigates the robustness of several portmanteau-
type nonlinearity test statistics (e.g. Hinich’s bispectrum test) to moment condition failure.
More recently, Vavra (2013, Chapter 2) examines the robustness of eight nonlinearity test
statistics against non-Gaussian innovations by MC simulation. Overall, there is no clear link
between the performance of the test statistics and their moments requirements. However,
some of the test statistics are not very trustworthy for DGPs with heavy-tailed innovations.

5.9 Software References

Section 5.1: The website https://www.estima.com/procs_perl/mainproclistwrapper.
shtml contains freely available RATS® code (star and regstrtest) for LM-type testing of STAR
models. Also, the website has RATS code for the arranged AR test statistic (tsaytest), the

FT(O) test statistic (tsaynltest), the F' test statistic of Hansen (threshtest), and the Hinich

(frequency-domain) linearity and Gaussianity test statistics (hinichtest). GAUSS code for

)

computing the LM-type test statistic F:(p6 is available at the website of this book.

Section 5.2: A FORTRANT7 program (written by K.S. Chan) for computing the percentiles
of the LR-SETAR test statistic LR%? ) is available at the website of this book. The R-

TSA package contains the FT(T) test (Keenan.test), the FT(O) test (Tsay.test), the Fj(wg) test
(tIrt). Bruce Hansen’s web page at http://www.ssc.wisc.edu/~bhansen/ offers MATLAB,
GAUSS and R code (and data) to replicate some of the empirical work reported in his papers
on SETAR model selection and estimation. Based on papers written by Hansen and his
co-authors, the R-tsDyn package has a host of test statistics for various forms of SETAR
nonlinearity, including the bootstrapped version of the F:(Fm ) test statistic. A special file at
the website of this book contains MATLAB programs to replicate the results of Example
5.1.

Two FORTRANO90 programs (written by Guodong Li) for replicating the results in Li and

Li (2011) and using the LRg?)fSETARMA test statistic summarized in Algorithm 5.6, are
available at the website of this book.

Section 5.4: The function lin.test in the R-nlts package computes the FT(O) test statistic of
Algorithm 5.8 for AR(p) processes up to order p = 5. The nlts.f FORTRANT7 library (largely
written by Jane L. Harvill), available at the website of this book, contains an extensive set
of subroutines for nonlinear time series analysis, including Hinich’s test for linearity, the
CUSUM, TAR-F, New-F, and the Original- and Augmented F test statistics.

SRATS, also called WinRATS, is a registered trademark of Estima, Inc.


http://www.ssc.wisc.edu/~bhansen/
http://www.ssc.wisc.edu/~bhansen/
https://www.estima.com/procs_perl/mainproclistwrapper.shtml
https://www.estima.com/procs_perl/mainproclistwrapper.shtml
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Appendix
5.A Percentiles of LR—SETAR Test Statistic

Critical values c,, at the nominal significance level «, depend on p and on r and 7 only. In
practice, R can be taken as a closed interval with r x 100 and 7 x 100 percentiles of the
empirical distribution of {Y;}Z_, as end points. Table 5.1 provides values of ¢, for a = 0.01,
0.05, and 0.10, p = 1,...,10, and R = [ro, 1 — 7o) for an array of ry values between 0.05
and 0.40. In addition, Table 5.1 covers a much wider range of intervals R than just the
symmetric interval [rg, 1 —rg] through the parameter A = 7(1 —1)/(r(1 —7)). Given a value
of p > 1, this allows one to obtain critical values for some other interval [r, 7] either directly
or by interpolation.

For the special case p = 0, we noted in Section 5.2 that an explicit expression for the
asymptotic distribution of the LRg? ) test statistic is available. In particular, Chan and Tong
(1990) show that, for z — oo,

P( sup |Uy] > z) ~ (2/m)/? exp(—zQ/Q)(t*z — g + é), (5.96)

0<t<t

where

t*—;log{z((ll_(g}, 0<a<b<1l),

and {U;} is a so-called stationary Ornstein-Uhlenbeck process with E(U;) = 0 and E(U,U;) =
exp(—|t — s|).

Tables 1 and 2 in Chan (1991) contain upper 10%, 5%, 2.5%, 1% and 0.1% percentage
points for the null distribution of the Lngg) test statistic for 0 < p < 18 and (a,b) =
(0.25, 0.75) and (0.1, 0.9). For p = 0, it can be seen that the percentage points are close
to that of a x3 distribution, which also follows from comparing (5.96) with the asymptotic
distribution function P(x3 > 2%) ~ (2/m)'/2 exp(—22/2)(z + 1).

5.B Summary of Size and Power Studies

Usually the overall performance of a test statistic is obtained from an MC simulation study
of its size and power. A number of these studies have been carried out for the tests discussed
in this Chapter. Table 5.2 summarizes the main findings in this area. In general one can
say that when a test statistic is used against the alternative hypothesis, which it is designed
to reveal, it is more powerful than when it is used against other alternative hypotheses H,.
Clearly, there is no test which can be used as an overall tool against any type of nonlinearity.
Nevertheless, all LM-type test statistics seem to have reasonable size and power properties.
These tests do not require estimation of the model under H, nor do they depend on the
particular form of H,. Thus, one might expect that for finite sample sizes tests which
explicitly make use of the form of H,, like for example the LR test statistic, are more
powerful. This seems to be the case for SETAR models, but evidence for other types of
nonlinear models is lacking. In addition, it is important to realize that the presence and size
of an intercept in a nonlinear model seems to have a considerable influence on the size and
power of the test statistics when T is not large. Centering data, i.e. analyzing deviations
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Table 5.1: Asymptotic critical values of the LR§§) test statistic for SETAR(2; p, p) models;
A= (1—rg)%/r3.

p=1 p=2 p=3 p=4 p=>5
ro A 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
0.40 225 6.20 85212.79 7.9710.5115.09 9.6512.3717.20 11.25 14.13 19.19 12.81 15.83 21.10
0.35 3.45 7.63 9.6913.81 9.5511.78 16.17 11.34 13.72 18.34 13.04 15.56 20.38 14.69 17.31 22.32
0.30 5.44 8.56 10.52 14.55 10.56 12.67 16.96 12.42 14.66 19.16 14.19 16.54 21.24 15.88 18.34 23.21
0.25 9.00 9.2711.18 15.16 11.34 13.38 17.60 13.25 15.42 19.83 15.07 17.33 21.93 16.80 19.16 23.93
0.20 16.00 9.89 11.75 15.69 12.01 14.00 18.16 13.96 16.07 20.42 15.81 18.02 22.55 17.59 19.88 24.57
0.15 32.11 10.46 12.29 16.20 12.63 14.58 18.70 14.62 16.68 20.98 16.51 18.66 23.13 18.31 20.54 25.17
0.10 81.00 11.0512.85 16.72 13.26 15.18 19.25 15.30 17.31 21.57 17.21 19.32 23.73 19.05 21.23 25.79
0.05 361.00 11.74 13.51 17.35 14.01 15.89 19.92 16.10 18.07 22.27 18.06 20.11 24.47 19.93 22.06 26.56
p=6 p="7 p=38 p=9 p=10
ro A 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
0.40 2.25 14.3217.47 22.93 15.80 19.07 24.70 17.25 20.63 26.43 18.68 22.16 28.13 20.09 23.67 29.78
0.35 3.45 16.28 19.01 24.19 17.84 20.66 26.01 19.36 22.28 27.77 20.85 23.86 29.50 22.32 25.41 31.19
0.30 5.44 17.53 20.08 25.11 19.13 21.77 26.95 20.69 23.42 28.74 22.23 25.03 30.49 23.74 26.61 32.20
0.25 9.00 18.48 20.93 25.85 20.12 22.65 27.71 21.72 24.32 29.52 23.28 25.96 31.29 24.82 27.57 33.02
0.20 16.00 19.30 21.67 26.51 20.96 23.41 28.39 22.58 25.11 30.21 24.17 26.76 32.00 25.74 28.39 33.74
0.15 32.11 20.05 22.36 27.13 21.74 24.12 29.02 23.39 25.84 30.87 25.00 27.52 32.67 26.59 29.16 34.43
0.10 81.00 20.82 23.07 27.77 22.53 24.86 29.69 24.21 26.60 31.55 25.84 28.30 33.36 27.45 29.96 35.14
0.05 361.00 21.73 23.93 28.56 23.48 25.74 30.49 25.18 27.51 32.37 26.84 29.23 34.21 28.48 30.92 36.00

from the sample mean, is not recommended since then the
no longer valid.
Some additional remarks are in order:

(i) With the test statistics Qr,

(i)

(iii)

(iv)

rev
T

asymptotic null distributions are

and LR7 one must fix p and d. The selection of

the order p can be done via, e.g., AIC. Also, the number of thresholds need to be
pre-specified.

The selection of the added variables with many of the LM-type and F-type test
statistics is somewhat arbitrary. For example, one uses p added variables specifically
for the ExpAR(p) model and p + 1 for the STAR(2; p, p) model.

Test statistics based on the recursive LS method require a minimum number of ob-
servations ny,i, used to start the method. However, ni, depends on the order p and
the sample size T'.

The recursive estimation can be done via various algorithms such as the one given by
(5.86) — (5.87), or by the Kalman filter. The latter method appears to be preferable
when there are missing observations in the data.

The empirical power studies in Table 5.2 have been carried out under a wide variety of
alternatives (see the footnotes at the bottom of the table). No fixed set of DGPs has
been used across all studies with the same sample size. So, comparison of the reported
results is difficult. Moreover, power studies are criticized for the fact that test results
are determined by the sample size, i.e. as T increases the empirical power goes to one
under the alternative hypothesis. In contrast, local alternatives make its difference
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Table 5.2: Summary of size and power studies for some time-domain linearity test stat-
istics; equation numbers in parentheses refer to the particular test statistic in the main text.

DGP Test statistic T Power Reference
BLM: (i) Qr (5.90) 50, 100 emarginally Petruccelli and Davies (1986)
outperforms FTST>
FT(T) (5.81) <200 ereasonable only Davies and Petruccelli (1986)
for extreme
BL-DGPs
>200 good for wide
range of
BL-DGPs
(ii) FTET) (5.81) 50, 100, egood Saikkonen and Luukkonen (1988)
200
LM® (5.12) eoutperforms FJST>
(iii) LMTI) (5.12) 50, 75, egood for Saikkonen and Luukkonen (1991)
100, 150 BL-DGPs
(iv) FLO (5.82) 70, 140, 204eoutperforms F\") Tsay (1986)
(v) FTO> (5.82) , 100 eall tests have Tsay (1991)
F}N) (5.93), F;A) (5.83) good power
ExpAR® :  Qr (5.90), K™Y (5.93), 100  egood Tsay (1991)
Fy (5.92) enot powerful
LM§?> (5.15) 50, 100, eoutperforms Saikkonen and Luukkonen (1988)
200  F"and LMY
SETAR®): (i) Qr (5.90) 50, 100  eless powerful Petruccelli and Davies (1986)
than FQST)
(i1) Qr (5.90), 50, 100, eless powerful Moeanaddin and Tong (1988)
150, 200,  than Q1Y
250
F® (5.60) 50, 100  eoutperforms Q
and QY
(iii) Q7Y and LM;? ) (5.26) 100 eoutperforms F%g) Petruccelli (1990)
and Fr,
(iv) FT(T) (5.81) <100  ereasonable only Davies and Petruccelli (1986)
for nearly
nonstationary
DGPs
>100 more satisfactory
v . s eoutperforms Q1 say
CFp(592) 50,100 forms Qp Tsay (1989
(vi) LM%? ) (5.22), LM? ) 50, 100 oLM%ﬁl) is more  Luukkonen et al. (1988b)
(5.26), LMgl) (5.29) powerful; LM;E3 )

and Qr are poor
LSTAR™): (i) F{?) (5.82), F{™ (5.83), 100  eall tests have  Tsay (1991)

Qr g§.90), F;N) (5.93), low power
() LMY (5.22), LMG™) 50,100 eLM{Y is inferior Luukkonen et al. (1988a)
(5.26), LMY (5.29) to LM and

LM LM,
Q7 low power
D (1) Yi = (6 + Yer) Vo1 + er; (i) (219); (i) Yo = pi+ voer_1Ye—s + 21 (i = 1.2)
(iv) Ys = et — 0.4e¢—1 + 0.3e¢—2 + 0.5e¢6¢—2; (v) Yo = 0.5Y:—1 + ¢Yi_16¢—1 + € and
Yy = et +0.5ep—1 + e ;.
@)y} = {¢ + Eexp(—Y2 ) }Yi1 +&r.
®) (i) SETAR(2;1,1) (no intercept); (ii) SETAR(2;1,1) (no intercept); (iii) SETAR(2;1,1),
SETAR(2;3,2) and SETAR(3;1,1,1) (all with intercept); (iv) SETAR(2;1,1) (no intercept);
(v) SETAR(2;1,1) (no intercept); (vi) SETAR(2;1,1) (with intercept).
W (1) Yo =1— Y1 + (¢ 4+ £Yi—1)G(VYio1) + & with G(2) = 1/(1 + exp(—2));
(i) Y2 = —1Yi_ 2 — ¢Yi2G(3Yi_1) + ¢ with G(2) = 1/(1 + exp(—2)).
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with the null hypothesis shrink as T increases. Only a few papers investigate the
local power of linearity tests; see, e.g., Guégan and Pham (1992) for the LM-type test
statistic against a general diagonal BL model.

Exercises

Theory Questions

5.1 Let 7}(,1’2)(6) = Cov(Y;, Y2 ,) denote the bicovariance at lag ¢ of a time series {Y;,t €
Z} generated by an MA(¢) model with mean E(Y;) = 0, and with {g,} "= N(0,02).
Given an observed time series {Y;}]_;, the moment estimator of ’y)(/l 2) (£) equals
%(,1’2) ) = (T -0 ZZ;ZH Y;Y?,. Under the null hypothesis Hy: 'yg,l’z)(f) =0
(¢ =1,2,...), Welsh and Jernigan (1983) show that, as T — oo, the large sample
distribution of the standardized bicovariance is given by

T
WI= 3" V¥2,/\VB(T =) 25 N(0,1).

t=0+1

Show that the WJ test statistic is a special case of the LM-type test statistic of testing
an MA (k) model against an ASTMA (k) model.

5.2 Suppose that the T'x 1 vector of observations y = (Y7, ..., Yr) satisfies the asAR(p)
model

P
Y, = Z (d%- + ol (g > 0))}/2-671' +e,  {ed) e~ N(0,02).
i=1

Let @ = (¢, &) with ¢ = (¢1,...,0p), a = (a1,...,0p), € = (e1,...,e7), L.r =
diag(I(eqy > 0),...,I(ex > 0)) and e = I. re. Construct an LM-type test statistic
for the null hypothesis Hy: a = 0.

5.3 Consider the nonlinear time series model

p

q P
Y, = Z (ai + (bifi(a;Yt))Y;t—i + Z (bj + 9j9j<ﬂ;Yt))Wj,t +et, {et} R N(0,02),

i=1 j=1

where W, is an observable regressor, and Y, is a state vector. Assume that W, =
(Wii,...,Wy) as well as Y, are independent of £, (s > 0). Furthermore, assume
that the functions f;(-) and g;(-) are real-valued possessing continuous derivatives of
at least the first order in some neighborhood of the origin.

(a) The null hypothesis under study is
Ho: a; =0 (i=1,...,p), and B, =0 (j=1,...,q).

How would you carry out an LM-type test?
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(b) Suppose the parameter restrictions o = - - =, = and By =--- =06, =8
are already imposed on the above nonlinear model. The null hypothesis in part
(a) is obviously replaced by

Hj: =0 and B=0.

How would you carry out an LM-type test in this case?

Simulation Question

5.4 In this exercise we evaluate by simulation the power of the Fr}m) test statistic, defined
by (5.63), under model-selection uncertainty. The SETAR(2;2,2) model for the ob-
served time series is formulated as

v = [ 80+ Y +6Yia te i Yia <0,
K B+ 6PV, 4+ 0PV o+ i Yiio >0,

where {g,} "< N(0,1). Consider the following two DGPs:

i) o) =05, ¢V =~ =0.2, ¢ =0.3, 5" = —¢5 = ~0.1; and
(i) o5 =0.5, oY = —¢{® = —0.1, ¢ = —¢F = 0.1.

(a) For T = 200 and 500, generate 2,000 MC replications of the DGPs (i) and (ii).

Next, compute the empirical power of the F}LQ) test statistic, at the 5% nominal
significance level, using (i) a correctly specified SETAR model (setting the true
lag length at two), and (i) the AIC and BIC order selection criteria (setting
the maximum allowed lag order p,,., = 6). You should find the results given in
Table 5.3 (approximately).

Table 5.3: Empirical power (in %) of the F%M) test statistic, at
the 5% nominal significance level, for two SETAR(2;2,2) models;
2,000 MC replications.

DGP T = 200 T = 500
True AIC BIC True AIC BIC
(i) 55.15 33.40 18.35 97.20 83.35 51.00

(ii) 13.45 8.20 5.65 33.75 21.95 12.95

Compare and interpret the results in Table 5.3.
[Hint: Use Bruce Hansen’s GAUSS, R, or MATLAB codes to compute the F:(Fl’z)
test statistic.]

(b) Gonzalo and Pitarakis (2002) introduce the following penalty-based model se-
lection approach for deciding between an AR(p) and a SETAR(2; p, p) model:

e Select the best AR model that minimizes AIC, and the best SETAR model
that minimizes the order selection criterion SC(p, d;r) = T log 52+C(T) (2p
+2) with C(T) = 2 and 52 the residual variance of the SETAR model.
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Table 5.4: Model-selection based correct decision frequencies (in
%) under two SETAR models; 1,000 MC replications.

DGP T = 200 T = 500
AIC  BIC AIC  BIC
(i) 99.8 480  100.0 91.2
(if) 98.9 13.9 99.4 16.4

e Then select the AR(p) model if min, AIC(p) < min, , 4 SC(p,d;r) (1 <p <
Pmax; T € R)d S p)

A similar approach can be based on BIC with C(T) =log T.

For T' = 200 and 500, generate 1,000 replications of the DGPs (i) and (ii). Next,
apply the above two model-selection approaches (AIC and BIC) and record the
number of correct decision frequencies. Table 5.4 provides a summary of the
results you will find.

Compare and contrast the results in Tables 5.4 and 5.3.



Chapter

MODEL ESTIMATION, SELECTION, AND
CHECKING

Model estimation, selection, and diagnostic checking are three interwoven compon-
ents of time series analysis. If, within a specified class of nonlinear models, a par-
ticular linearity test statistics indicates that the DGP underlying an observed time
series is indeed a nonlinear process, one would ideally like to be able to select the
correct lag structure and estimate the parameters of the model. In addition, one
would like to know the asymptotic properties of the estimators in order to make
statistical inference. Moreover, it is evident that a good, perhaps automatic, order
selection procedure (or criterion) helps to identify the most appropriate model for
the purpose at hand. Finally, it is common practice to test the series of standardized
residuals for white noise via a residual-based diagnostic test statistic.

In this chapter, we focus on these three themes within the context of parametric
nonlinear modeling. Specifically, we consider the class of identifiable parametric
stochastic models

}/;f:g(}/i—lao.‘7Yi—p75t—1,...,€t_q;eg)_|_77t (61)
where
M= h(Yie1, ..o, Yicu, €0-1, - Etm0i ) ey

Here {Y;,t € Z} is a strictly stationary and ergodic univariate stochastic process;
g(+;0,) and h(-;0y) are two real-valued measurable (known) functions on RP™? and
R“*? (u < p), respectively; and 6 = (87,0))" is a vector of unknown parameters
that we wish to estimate, and we have available a set of observations {Y;}~; with
which to do so. Further, we assume that h(-;0) is a non-negative function of past
Y:’s and ¢;’s.

The class of models (6.1) covers a wide range of nonlinear models, including many
models introduced earlier in this book. Numerous methods have been proposed
for estimating models contained within this class. Here, we do not provide a full

© Springer International Publishing Switzerland 2017 197
J.G. De Gooijer, Elements of Nonlinear Time Series Analysis and Forecasting,
Springer Series in Statistics, DOI 10.1007/978-3-319-43252-6 6



198 6 MODEL ESTIMATION, SELECTION, AND CHECKING

technical treatment of the subject. Rather we elaborate on some commonly used
estimation methods and, in some cases, their practical implementation. Throughout
the discussion, we assume that (6.1) is completely known. In practice, however,
this is seldom the case and the model structure needs to be specified first. This
is a model selection problem, and there are several ways to approach it. One is
to develop model selection criteria on the basis of the asymptotic properties of
the estimated parameters, and we will therefore spend some time discussing these
criteria here. Alternatively, model selection criteria have been suggested on the basis
of sample reuse such as cross-validation (CV). Since several of the latter criteria are
(asymptotically) linked to criteria in the first group, we include them as well in this
chapter. Similarly, the effect of parameter estimation errors becomes relevant when
checking for model adequacy.

Given the above themes, the chapter consists of three interrelated parts. First,
in Section 6.1.1, we discuss the method of quasi maximum likelihood (QML) estim-
ation and, in particular, nonlinear least squares (NLS) estimation within the general
framework of model (6.1). In Section 6.1.2, we consider the method of conditional
least squares (CLS) estimation tailor-made for SETARMA, subset SETARMA,
STAR, and BL models. In Section 6.1.3, we present an iteratively weighted least
squares algorithm for QML estimation of double threshold ARCH models.

In the second part, we concentrate on model selection rules that are associated
with the QML and NLS estimation methods. Both estimation methods are likely
the most commonly used in practice. Consequently, the associated order selection
rules are of quite general interest. In the third part, we discuss a general class of
standardized-residuals-based correlation test statistics. The proposed tests avoid
potential “size distortion” problems due to estimation uncertainty. Finally, in Sec-
tion 6.4, we bring together elements of (subset) TARSO model estimation, TARSO
model selection and checking, to analyze an important nonlinear time series problem
from the area of hydrology.

6.1 Model Estimation

6.1.1 Quasi maximum likelihood estimator

Consider model (6.1). Let p* = pVu, ¢ = qVuv, Yo = (Yp,...,Y1_p+) be the
initial starting values of the process {Y;,t € Z}, and &9 = (£,...,€1-4+)" be the
starting innovations. In addition, let 6y = (6 ,,6;,)" denote the true value of
the parameter vector 6, and Y; = (Y,...,Y;). We assume that 6y belongs to
© =0y, x Oy, C RPH4 x RUTY,

Under the above assumptions, it is easily seen that the conditional mean and
variance of {Y;,t € Z} given Y;_; and © are

E(Y;’Yt*17 6) = g(i/tflv ey }/;ffpa Et—1y--- 7€t*q; 00,g) = Ht(ao,g)
Var(}/t’Yt—l) 9) = h(Yt—17 ceey Yt—U7 Et—1y-++sEt—vy 00,h)5t = U?(eo,h)'
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Assume that {e;} has density function f.(-). Given Yy, the (conditional) likelihood
function evaluated at 8 € ©, is equal to

T

1 Y; — 1e(0y)
LT(O) - tI:II Ut(eh) fe( O't(eh) ’ )’

assuming o4(0},) # 0.

The above objective function is not operational because f.(-) and Y are gen-
erally unknown. The initial values can be replaced by some fixed constants, e.g.,
zeros. More generally, one can treat Yy and €y as unknown, additional, parameter
vectors and estimate them jointly with other parameters. This approach requires
more intensive computation. In finite samples, it may result in different parameter
estimates, but it will not affect the asymptotic properties of the estimator of 6.

Replacing f-(-) by the N(0,1) density function, and approximating p.(64) by
ﬁt(é)g) = g(Y}_l, cee ,Yl, 0, ce ;99) and O't(eh) by 5t(9h) = h2(Y;g_1, ce ,Yl, 0, ce ;Oh),
the minimizer 87 of Lp(0) is called the quasi ML (QML) estimator of 6y. That is,

Or = arg min Qr(0), (6.2)
where

Y — 11:(0,)

2
= +log 52(0},),
Ut(eh) ) g t( h)

T
Gr@) =20 and G=0(0) = (
t=1

with ¢; the log-likelihood function at time ¢. Furthermore, if 2(0p) =03 >0, ie. a
constant, the QML estimator coincides with the classical NLS estimator.

It is known that a solution to (6.2) exists when the parameter space © is compact,
and the functions 8, — 1,(0,) and 65, — 0+(0}) are continuous. Moreover, under
some regularity conditions, it follows that the QML estimator is strongly consistent,
and asymptotic normally distributed; see, e.g., Tjostheim (1986b). More precisely,

with £,(0) = (Y; — 114(04))*0;2(04) + log 02(65), and as T — oo,

VT (81 — 69) = N (0, (80)Z(80)H ™ (60)), (6.3)
where
2
00 =2(Seatt)). ant 70 = (2002400

Here H(-) denotes the ezpected Hessian matriz, and Z(-) is the expected information
matriz with ¢;(-) evaluated at 6.

Consistent estimates of the standard errors of the QML estimator §T are obtained
as the square root of the diagonal elements of the estimated covariance matrix of
§T, that is

S 1~ a1
Var(Br) = o (HaZy Hr) ™,
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where the empirical Hessian and average information matriz for a sample of size T
are defined as, respectively,

Zazt (0r) 5 _ 1<~ 00(Br) 94,(0r)
0000 T T 060 00

(6.4)

Optimal values of 6y are characterized by the likelihood equation, which is just
the first-order conditions: G(60y) = 0, where the gradient vector, or score vector,
G € RPTITutv g defined by

L. 00,(6)
=2 00

t=1

In practice, it is usually not possible to obtain an analytic solution for ET, es-
pecially when the objective function involves many parameters. In such a situation,
estimates of 6y must be sought numerically using nonlinear optimization algorithms.
The basic idea of nonlinear optimization is to quickly find optimal parameters that
maximize the log-likelihood. This is done by searching much smaller sub-sets of the
multi-dimensional parameter space rather than exhaustively searching the whole
parameter space, which becomes intractable as the number of parameters increases.
Numerical optimization algorithms often involve the following steps.

Algorithm 6.1: Nonlinear iterative optimization

(i) Provide an initial estimate of 8, say ET,O. For instance, these estimates can
be chosen at random or by guessing.

(ii) By an “intelligent” search over the parameter space ©, determine an im-
proved estimate of 87, say Or,;.

(iii) Taking into account the results from step (ii), obtain a new set of estimates
§T,i (1 = 2,3,...) by adding small changes to the previous estimates in
such a way that the new parameter estimates are likely to lead to improved
performance.

(iv) Stop the iterative process in step (iii) if parameters estimates are judged to
have converged, using an appropriately predefined criterion. For instance, if
the relative improvement {@@T’M) - @(ém)}/@(ém) is a small prefixed
number.

It is worth noting that the optimization algorithm does not necessarily guarantee
that the final estimate 67 uniquely maximizes the log-likelihood. Even if G (BT) ~ 0,
the algorithm can prematurely stop and return a sub-optimal set of parameter values.
This is called the local mazima problem. Unfortunately, there exists no general
solution to the local maximum problem. Instead, a variety of remedies have been
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developed in an attempt to avoid the problem (see, e.g., Terésvirta et al., 2010,
Chapter 12), though there is no guarantee of their effectiveness. For example, one
may choose different starting values over multiple runs of the iteration procedure and
then examine the results to see whether the same solution is obtained repeatedly.
When that happens, one can conclude with some confidence that @T is close to a
global optimum. If, however, the changes in the parameter estimates remain large
in multiple iterations the parameters of the model may not be identified.

To assess the performance of the QML estimator of 6 in finite samples, the next
example shows a simulation experiment.

Example 6.1: NLS Estimation

Consider, as a special case of the general ExpARMA model (2.20), an Ex-
pAR(1) model with p =d =1, i.e.,

Y = {¢+ Eexp(—Y2E )}t +e,  {e} = (0,02), (6.5)

where |¢| < 1 and v > 0. Thus, we have [1(0,) = 0, 1(0,) = (¢ +
56_75/’52*1)1/}/71 Vvt > 1, and 52(0,) = o2 ¥Vt > 1. The gradient vector is
G(0y) = Sy (Vi — ()0 (Vi Ve V2, —€Y3 e ),

The DGP is characterized by the parameter vector 8y = (¢g, o,70)" (introdu-
cing the subscript 0), and the so-called nuisance parameter 03’0, that we are
not interested in estimating. We assume that 6y belongs to the interior O of
the parameter space ® = [—¢, @] x [, &] x [v, 7] with |¢o| < <1, |6 <€
and 0 < 7 < 7 < 7. Note that the parameter g is not identified if §, = 0.
That is, there exist parameter vectors 01 4 = 02 4 with [14(01,4) = [1:(02,4) VY%,
then @T(Olyg) = @T(QQ’g) in (6.2), in which case minima need not be unique.
Nonlinear estimation of (6.5) is easier if good initial parameter values are

available. To this end it is convenient to express the model in matrix form.
Let Y = (Ya,...,Yp), B=(0,8), e = (e2,...,e7), and

Y1 Y1 677Y12
X p—

Yro1 Ypoje 7Y
Then we can write (6.5) as
Y =X +e,

which, conditional on 7, is a simple linear regression model. The CLS estimate
,@ = (31, Bz)' of B can be obtained in the usual manner as B = (X'X)"1X"Y.
Its associated covariance matrix is given by Var(B) = 02(X’X)7L. It is easily
checked that 3 is v/T-consistent. Thus, the above approach yields an efficient
initial estimate IB\Tyo.
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In preparation for the MC simulation experiment, it is useful to consider the
deterministic skeleton of (6.5), i.e. the difference equation

= {¢ + EeXp(_’YY;tal)}Y;f_l.

From (2.22) it follows that, if [¢ 4+ &| < 1, {Y;,¢ € Z} will converge to a stable
limit point at zero as t — oo. Otherwise, we may distinguish two cases in the
dynamic behavior of Y;:

e For £ >1—¢ >0, {Y;,t € Z} has twin limiting points at

Y = +{y log (¢/(1 - 9))}'/%, (6.6)

which for £ < (1 — ¢) exp{1/(1 — ¢)} will be stable;
o For ¢ < —(1+¢) <0, {Y;,t € Z} has a limit cycle between the points

Y = +{y og (—&/(1+0))}'", (6.7)

which for —¢ < (1 + ¢)exp{1/(1 + ¢)} will be stable.
Consider model (6.5) with ¢ = —0.8, € =2, v = 2, and {&;} "=~ N(0,1). So,
by (6.6), the skeleton of {Y;,t € Z} has alternative limiting points at +0.2295
which are stable (£ < 3.1372).

In step (i) of the numerical optimization procedure, we use 101 equidistant
grid points of v in the interval [1.75, 2.25] to obtain CLS estimates of 3. Con-
ditional on a value of v, we select the ‘best’ estimate of 3, say ,B* = (3{, 35)’
for which the residual sum of squares attains a minimum, resulting in an ini-
tial estimate 9T,0 Next, in step (ii), we set [—¢, ¢] = [¢ — 2{Var(51)}1/2 o+
2{Var(57)}'/? and [-€, €] = [¢ — 2{Var(35)}'/?, € + 2{Var(35)}'/?). Thus,
with [y, 7] = [1.75, 2.25], © € ©, which is essential to obtain the asymptotic
normality of the QML estimates.

Figure 6.1 shows boxplots of the NLS values of (gg— ?), (E— ), and ( — ),
using the gradient vector G(6,). The plots indicate the consistency of the
estimators and evidence of symmetry. Note the differences between the scales
on the vertical axis for both sample sizes.

6.1.2 Conditional least squares estimator

SETARMA models
Chapter 2 introduced the k-regime SETARMA model (2.29). To economize on
notation, we focus on a special case, i.e., the SETARMA (2; p1, q1, p2, g2) model with
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(a) (b)
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Figure 6.1: Boxplots of (a— ?), (5— €), and ( —); (a) T = 100, and (b) T = 500;
1,000 MC replications.

all white noise variances being equal. The latter model is defined as

p1 q1
00+ 3o e+ gy it Yia<r,
Y; = =1 7=t (6.8)

D2 92
o4 Y Wi et Yoy i Vi
i=1 Jj=1

where {&;} "= (0,02), r € R, p; and ¢; (i = 1,2) are known nonnegative integers,
and d € Z*. Although (6.8) serves as a benchmark to study CLS estimation, the
asymptotic results presented below can be easily extended to k£ > 2 thresholds.

Without loss of generality, we assume that the unknown threshold parameter
r € [r, 7] C R with r and 7 finite constants. In addition, the delay variable d is
an unknown parameter to be estimated, and its true value is dg with 1 < dy < Dy,
where Dy is known. Let ¢; = ((ﬁgi),..., ;E,?)’ and v¥; = (1/19,..., éj))’ (1 =1,2)
and 7 = (¢/17"wbl17 ¢,2a 1»b/2)/ Then7 00 = (Té,?‘o,do), = ( /1,07 "Vl,ov ¢,2,0>¢é,0’r07 dO)/ is
the true value of the parameter vector @ = (7/,r,d)’. Denote the parameter space
by ® = O, x [r, 7] x {1,...,Dg}, where ®, is a compact subset of RP1+pPz+ai+a+2,

Suppose that a sample {Y;}Z_; is available from (6.8) with the true value 6.
Let p = p1 Vp2 and ¢ = ¢q1 V ¢2. Then, given the vector with initial values
Yo = (Yo,---,Yi_(pvDy))’, the (conditional) sum of squared errors function Lz(0) is
defined as

Lr(8) =) £(6), (6.9)
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where
p1 q
0) =¥~ (e + 2o Zw§1’stfj<e>)1<n_d <r)
< (2) + Z¢(2)Y—Z + Zw( )575 ] ) (Y;g,d > 7,).

The CLS estimator 87 = (77, 7r, (i)’ of By are the values which globally minimize
(6.9), that is,

6r = in Lz (6). 6.10
T = argmin 7(0) (6.10)
In practice, the vector of initial values Y is not available and can be replaced by
constants. This will not affect the asymptotic properties of 87. For simplicity, we
assume hereafter that Y is from model (6.8). Since L7 (8) is discontinuous in r and
d, the minimization in (6.10) can be done as follows.

Algorithm 6.2: A multi-parameter grid search
(i) FixreRand d € {1,...,Dp}. Then minimize L1 (), and get its minimizer

Tp(r,d) and the minimum value L%.(r,d) = Lr(0)|r—%,(ra)

(ii) Since Li.(r,d) takes finite possible values only, perform a grid search over
the set of order statistics {Y{1),..., Yy} of {Y1,...,Yr} and {1,..., Do} to
get the minimizer (7r,dr)’ of Lk (r,d).

(iii) Use a plug-in method to obtain Tr(7r, JT) and @T.

Generally, there are infinitely many values r at which Lp(-) attains its global
minimum, the one with the smallest r can be chosen as the estimator of ry. It is
easy to see that 07 is the CLS estimator of 0y. For instance, with a SETAR(2; p, p)
model, simple computation shows that for a given value of r the CLS estimator of
0y is given by

(th )X (r ) (th Yt) (6.11)

where Xy (r) = (X} (Yi—g < 7), X I (Yi—qg > 7)) with Xy = (1,Y;1,...,Y;—p) . With

residuals 5t( ) Yt X (r)0r(r), the corresponding (conditional) residual variance
1T 22

is given by G7(r) =T 35,1 §3(r).

SETARMA models: Asymptotic properties ~
Liet al. (2011), discuss (a) the consistency of the CLS estimator 6r; (b) the limiting
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distributions of 77 (a super-consistent estimator) and 67; and (c) the convergence
rate of T'(rp —1p). A rigorous treatment of the conditions under which these authors
prove the above issues is beyond the scope of this book. However, in case of (c), we
introduce some notation to discuss the numerical method for tabulating the limiting
distribution of 7.

Consider the profile sum of squares errors function

~ _ z z _
LT(Z) :LT<TT(TO+T)’TO+f> —LT(TT(T(]),T()), z € R.
Let e = (1,0,...,0) be a g x 1 vector, and
H,;(0) = H[¢2 + (Y1 = Y ) I (Yieg—ir1 <7)], (5 20),
=1

with the convention []0_; = I,, and

(4) (4)
P = o W . (i=1,2).
Iq—l 0(q—1)><1

Using the asymptotic result in (b) and Taylor expansion, Ly (z) can be approximated
(Li et al., 2011) by

T T
=1(2<0) th(”f(rw% <Yia <70)+1(z20) Y (P I(ro< Y Sro—l—%),
=1 t=1

where

{i [€'Hy+.5,5(B0)e]? }51t2+2(_1)i+1{ i&ﬂ[e'HtHJ(oO)e]}@, (i=1,2),

J=0 J=0

and

5= (850 — 5) + Z(W ) Y_Z+Z Wi — v)er—.

=1

Let Fy(:|r9) be the conditional distribution of C(glj_)l (k=1,2) given Y1 = r9. To
describe the limiting distribution of 77, consider two independent compound Poisson
processes (CPPs) {pM(2),z > 0} and {p?(2),z > 0} with oM (0) = @ (0) = 0
a.s., and with the same jump rate 7(rg) > 0, where 7 (-) is the pdf of Y7, and with
the jump distributions F(-|rg) and Fs(+|rg), respectively. Define a two-sided CPP
{p(z),z € R} as follows

p(2) = I(z < 0)p(~2) + I(2 > 0)p)(2). (6.13)
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Observe that p(z) goes to 0o a.s. when |z| — oo since [ zdF(z|ro) > 0. Therefore,
there exists a unique random interval [M_, M, ) on which the process (6.13) attains
its global minimum and nowhere else. Then, under some mild conditions, it can be
proved (Li et al., 2011) that: (i) T'(Fp —ro) L, M_, as T — oo; and (i) T'(rr — o)
is asymptotically independent of v/T' (7r —7p) and their asymptotic distributions are
the same, regardless whether ry is known or not. In particular,

VT(Fr — T0) = VT (T1(ro) — To) + 0p(1) 2, N(Opyay1q: 02271 as T — oo,
where X = E[(9g4(00)/07) (9:(80)/07")].

SETARMA models: Numerical implementation of M_
The pdf of M_ (left jump) can be obtained as follows.

Algorithm 6.3: The density function of M_

(i) Generate two independent Poisson random variables Nj and N, with the
same intensity parameter 7(rg)N, and N > 0 is a prefixed integer.
(ii) Generate two independent jump time sequences {Ui,...,Un,} and
{(Vi,...,Vx,}, where {U;} "< U[-N,0] and {V;} "< U0, N].
(iii) Generate two independent jump-size sequences: {Yy,...,Yn, } and {Z,...,
Zn, } from Fy(-|rg) and Fy(+|rg), respectively.

(iv) Create a set of equidistant points over the interval [—N, N]. For z € [-N, N],
compute the trajectory of (6.13), i.e., p(z) = I(z < 0) Zi\gl I(U; > 2)Y; +
I(z>0) Z;V:zl I(V; < z)Z;. Find the smallest minimizer of o(z) on [-N, N]
and call it M

(v) Repeat step (iv) B times, to obtain {Mﬁb)}le.

(vi) Use a nonparametric kernel-based estimation method, to obtain the density
function of M_ numerically.

Algorithm 6.3 depends crucially on step (iii). When 6y, 7(r¢), the distribution
F.(-) of {&¢}, and the distribution Gz,(-) of Zo = (Y0, ..., Y1_(pva), 0 ---,€1-4) are

known, the appropriate way to proceed is to first sample {5t}fi21+L independently
from F.(-) where L is some large integer. Next, draw a sample (z1,...,2zx) from
Gz,(-) where K is another large integer, and z; = (Yj, ..., Yi_(pva)+1,€0,- - -, €1-¢) €

RPVD+a (; = 1,...,K). Then, generate {Y;}*}TL by iterating model (6.8) with
the initial values Y7 = rg, Zg = z;, and 1 = r9 — g(2;,60) (i=1,..., K).

Obtain an approximation, say Cé?Lw of Cc(l:_)l (k=1,...,K) by truncating the
infinite sums in (6.12) after L terms. Since |[€Hgi14;i(00)ell2 = O(p?) ass., the
remaining term is negligible when L is large enough. Calculate the conditional
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density function of Y] given Zg = zg, i.e. m(ro|zr) = fe (ro — g(zk,ag)). Draw a U
from a random sample, with replacement, from the integers 1 to T — p + 1, using
a Vector of positive weights 7(ro|zx)/ S 0, 7(ro|zs) (k =1,..., K). Finally, obtain

C AU This last step is asymptotically equivalent to obtalnlng one observation
from Fi(-|ro); Li et al. (2011). In an obvious manner the above procedure can be
modified to obtain one observation from F(-|rg).

It remains to discuss estimation of the pdf of M_ given {V;}1_,. We can use
the estimators §T, and 7(77) in place of the true values since they are consistent.
Here, 7(+) is the kernel density estimator of Y; at rg. Next, calculate the mean-
deleted residuals {gt*}?:ko 41 where kg = max(p, d,q). Then, compute E () = (T —
ko)~ * ZtT:kOH I(g) < z) as the estimator of F.(-), and fa() as the kernel density
estimator of f.(-). Now step (iii) of Algorithm 6.3 can be modified as follows.

Algorithm 6.4: Sampling Y7 from an estimate of Fi(-|rg)
(i) Set % = (i, .. Vi o1, i rBimgr) (i= ko +1,....T).

}d+1+L

(ii) Sample {&;};5 " independently from ﬁg() given {V;}L ;.

(iii) Generate {Yf d+1+L by iterating model (6.8) with the initial values Y3 = 7p,
Zy =7, and &1 = 77— g(2;; 07). Compute Hyy14j;(07) = [[;_ [th2+ (b1 —
2)I(Yi11 < 7r)] as an estimate of Hyy14j,(-).

(iv) Calculate Cd+1 g (k=1,...,K), as an estimate of Cd_H, where
L
1 *
d(+)1 k= {Z e Hd+1+J,J HT) ] }(5d+1)2
Jj=0 L
+ 2{ 26 a1+ Hap1y;,(07)e }}5Z§+1a
7=0
with » q
1 2 " " * n n *
5i1=(05) =)+ Y (0 — Sy ) (@Y = 0Pl
s=1 s=1
and
Y, iz j o i=z2
Yi=q 7" j=1 =4 rr—gZ;0r) j=1,

Yig; 7<0, Eivj

(v) Draw a U from a random sample, with replacement, from the integers 1
to T — p + 1, using a vector of positive weights 7 (7r|z;)/ Zfikoﬂ 7 (rr|z;)
(i:k0+17...,K).

(vi) Obtain ¥; = E;fw.
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Figure 6.2: (a) Plot of the logistic transformed U.S. unemployment rate {Y;}2%2; (b) and
(c) relative frequency histograms of T(7; — r;0) (¢ = 1,2) with r; o the true threshold value.

A probability density estimate, say ]\/Z_, of the density function of M_ follows
from repeating Algorithm 6.3, with the modification in Algorithm 6.4, a large num-
ber of times. It can be shown that, as K — oo (first) and L — oo (second), M-
weakly converges to M_; Li et al. (2011) and Li and Ling (2012).

Example 6.2: U.S. Unemployment Rate (Cont’d)
Consider the quarterly U.S. unemployment rate in Example 1.1. In Exercise
2.10, we analyzed the logistic transformation of the original data, and denoted
the resulting series by {Y;}2°3. Figure 6.2(a) shows a plot of the transformed
series.

Some researchers suggested that a two-regime SETAR model is appropri-
ate for characterizing the asymmetric behavior in the U.S. unemployment
data. Others (e.g., Koop and Potter, 1999) consider a three-regime SETAR.
With this specification, the model allows for the dynamics of the unemploy-
ment rate to differ in “good” times (expansion), “bad” times (recession), or
change little in “normal” (stable) times. Following this suggestion, we fit a
SETAR(3; p1, p2, p3) model, with threshold values 1 and 79, to the time series
{vi}.

Setting mo = max{pi,p2,p3} < 8 and 1 < d < max{l,mg}, we use the AIC
below to determine the order in each regime,

mo

AIC(p1,p2,ps) = »_ {Tilog57, +2(pi + 1)}, (6.14)
=1
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where T; denotes the number of observations that belong to the ith regime,
and 6%_ is the corresponding residual variance. The final SETAR model spe-
cification is given by

—0.55(0.17) + 1.69(0.12) Yi—1 — 0.81(0.14)Yi—2 + 6,21) itY, 5 < —-3.14,
1.470.50y +2.16(0.17) Yi—1—1.11(0.30) Y2—2 — 0.38(0.27) Y3

Y: =< 40.57(0.20)Yiea + 025007 Yies +e7)  if —3.14 < Yi5 < —2.97,  (6.15)
—0.05(0.05) + 1.470.07)Yt—1 — 0.45(0.14) Yi—2 + 0.07(0.14) Yi—3
—0.28(0.13)Yi—4 + 0.18(0.07) Y5 + £ if Yios > —2.97,

where the sample variances of {6,@} (i = 1,2,3) are 0.63 x 1072 (T} = 44),
0.19 x 1072 (Ty = 34), and 0.17 x 1072 (T3 = 172), and where the asymptotic
standard errors of the parameter estimates are in parentheses. The coefficient
estimates of qb:(f), qﬁg), qb(()g), and gbgg) are not statistically different from zero
at the 5% nominal significance level. The p-values of the LB test statistic at
lags 6, 12, and 18 are, respectively, 0.54, 0.17 and 0.08, which suggests that
the fitted SETAR(2;5,5) model is adequate.

To run the simulation approach, we need some additional specifications. In
step (i) of Algorithm 6.3, we set N = 100 and estimate m(r;o) (i = 1,2) by
7(Ti0) = TV Kn(7i0; Vi), where Ky (703 Yy) = (V2rh) 2 exp{— (0 —
Y;)?/2h?} with h = hy > 0 the bandwidth from a Gaussian kernel density
estimate of fy(-).! In step (iv), we create K = 1,000 equidistant points, and
in step (v) we use B = 10,000 replicates. In step (ii) of Algorithm 6.4, we
construct the kernel density estimator fg() of f-(+) as follows

~

fe(x)

t ko+1

Here, we use a Gaussian kernel with an improved bandwidth (see, e.g., Fan
and Yao, 2003, p. 201)

n =hopr(1+ <K+ =T+ —

-~ ( 35 35 385 AQ) —1/5
ort 48 32 1024 ’

where /f;ophT = 1.066(T — ko)~ '/® is the normal reference bandwidth, and &,
7, R are respectively the sample standard deviation, skewness, and kurtosis of
the residuals {é}}?:ko 41

Based on the simulation approach, the 95% confidence intervals of 71 and
roo are (—3.54, —2.75) and (—3.36, —2.58), respectively. The (normalized)
relative frequency histograms of the estimated thresholds are given in Figures
6.2(b) and (c). We see that T'(7; — r;o) is very small, indicating the super-
consistency of the CLS estimators of ;9 (i = 1,2).

1See Appendix 7.A, for details on kernel estimation.
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Subset SETARMA models
Finding a well-specified, while parsimonious, threshold model for a time series is
practically difficult, if not infeasible, due to the variety of model options, the com-
plexity in partitioning the parameter space by appropriate single or multivariate
threshold values, as well as the conventional problems in model structure selec-
tion. Consider, for instance, a SETARMA(2;6,6,6,6) model with maximum delay
dmax = 6, the total number of potentially useful models is dpay x 2P1HP2Ha+a+2 —
402,653,184. This huge number increases even further if seasonal SETARMA mod-
els are considered. To overcome this problem, several local search techniques have
been proposed to efficiently examine the parameter space and find the best subset
of parameters that corresponds to the optimal solution for a given model selection
criterion (objective function). One approach is to use Markov chain Monte Carlo
(MCMC) methods for Bayesian subset model selection; see, e.g., Chen et al. (2011a).
Another approach can be based on genetic algorithms (GAs). GAs are ran-
domized global search techniques that emulate natural genetic operators, such as
reproduction, crossover, and mutation. At each iteration, a GA explores different
areas of the parameter space and then directs the search to a region where there is
a high probability of finding improved performance as measured by a positive real-
valued objective function, called a fitness function, g(-). Following Baragona et al.
(2004a), we briefly outline the working principles of the GA procedure only for sub-
set SETARMA models. With a few simple modifications the GA-based SETARMA
procedure can be applied to PLTAR models (Baragona et al., 2004b), DT(G)ARCH,
and multivariate SETAR models.
A k-regime subset SETARMA model takes the form of (2.29) with some of the
intermediate AR and MA parameters set to zero. To formalize, assume that
OO

WO (i=1,...,k)

B Vo

are non-zero parameters and that {jy), . ,j]gi.)} (pi <p)and {hgi), ce hg.)} (i <q)
are two subsets of the integers 1,...,p; and 1,...,¢; respectively, with p = max; p;
and ¢ = max; ¢;. Then we write a k-regime subset SETARMA model as

Z( Z)+Z¢( - Z>+Z¢h<>5 h()) I(Yi-q € RY), (6.16)

=1

where sgi) =0l (i =1,...,k), {et} RS (0,1), and R®) = (r;_1, 7] with rg = —oco
and 7, = oo. The delay d, the thresholds r;, and the AR and MA lags in each regime
are called structural parameters. They are collected together into the long vector

x* = (dyr1y e Ao 3 3 g B RD i =1, k) (6.17)

Estimating (6.16) by CLS is computationally demanding since for each subset a
nonquadratic optimization has to be done. Partly for this reason, it is recommended
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to use an ARMA-LS estimation method due to Hannan and Rissanen (1982); see,
e.g., step (i) in Algorithm 6.3. Given a set of observations {Yt}?:l, and assuming
x* is known, the CLS estimation procedure is as follows.

Algorithm 6.5: k-regime subset SETARMA—-CLS estimation

(i) For each regime i, fit a high-order AR(n) (1 < n < npax) model to the series
using the Yule-Walker equations. Select n by AIC, and set nyax = (logT)®
(0 < a < ). Calculate {»?,E(Z)}tT:nJrl (i=1,...,k).

(ii) Set the maximum orders P and @ of respectively the AR and MA lags
sufficiently large such that p; <p< P <nand ¢ <q¢<Q.

(iii) Calculate the LS estimates of the ARMA parameters in (6.16) repla-
. (i) (i) ~(3) ~(3) . :
cing {5t7h¥),...,€tihg?} by {6t7h§i>,...,5t7hgii)}, and using observations
{vi}i,,, where ng = n + max(P,Q), and subject to a minimum number

of observations Ty, per regime.

(iv) Find the optimal structural parameter vector by minimizing the normalized
AIC (NAIC) values, that is

k
NAIC(x*) = Z {T;log 7 +2(pi+qi+1)} /(effective samplessize),

i=1

where T; is the number of observations that belong to the ith regime, and
8%1, denotes the corresponding residual variance.

(v) Repeat steps (i) — (iv) for each d €[1, dpax], With dmax & pre-specified integer.

Any vector x*, as defined by (6.17), represents a tentative solution to the problem
of specifying the structural parameters of a k-regime subset SETARMA model lead-
ing to the best choice. The GA has the task of simultaneously finding the optimal
model coefficients, as well as partitioning the parameter space by finding the number
of regimes, and the threshold parameters ry,...,7r,_1. A solution is represented by
a binary coding string, i.e. a transformation of x* to the vector x = (z1,...,z7)
where z; = 1 if Y(7,) is a threshold parameter, while z; = 0 otherwise, and Y{ is
the value at time 7; of the ordered time series {Y(rj)}};y The number of regimes is
given by k =1+ Z]T;; xj; a string is not admissible if & > K.y, where kpayx is the
maximum number of regimes, a pre-specified integer. Below are some guidelines for
developing a simple GA.

Algorithm 6.6: A simple genetic algorithm

(i) Randomly generate an initial population of admissible binary strings
{(xM x@ . x()}
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Algorithm 6.6: A simple genetic algorithm (Cont’d)

(ii) Calculate the fitness function ¢(-) for each string in the population. For
instance, in view of step (iv) in Algorithm 6.5, one may choose g(x) =
exp(—NAIC(x)/C'), where C > 0 is used to scale g(-).

(iii) Keep the best string intact for the next generation and create offspring strings
by three evolutionary operators:

e Selection: Select s times a string from the population with probability
g(x)/ 3577, g(x¥). Replace the population by the selected strings.
This part may include an elitist step by substituting the best string
from the past population for the string having the smallest value of
g(-) in the new population.

e Crossover: Adopt a simple crossover operator to change candidate solu-
tions into new candidate solutions. In particular, with the single point
crossover, [s/2] string pairs are selected at random, and the crossover
operator is applied to each of them with a pre-specified, usually large
(0.8 or 0.9), probability p.. If no crossover takes place, two offspring
strings are formed that are exact copies of their “parents chromosomes”.

o Mutation: Allow any bit x; (j =2,...,T —1) of any string to flip with
probability p,,, usually small (0.001,...,0.01).

(iv) Form the new population using the results of step (iii). If the search aim is
achieved, stop; else go to step (ii).

Example 6.3: U.S. Real GNP

We illustrate the GA procedure by analyzing the first differences of the log-
arithm of quarterly U.S. real GNP, say {X;} (seasonally unadjusted data).
The data covers the time period 1947(i) — 2009(iv). Thus, we consider {Y; =
log X; — log Xt—l}?i%; see Figure 6.3 for a time plot. The series is viewed as a
“test-case” for many nonlinear models and methods. Indeed, quite some at-
tention has focused on fitting pure SETAR models to the data, albeit covering
shorter time periods.

As for the specification of the GA parameters, we set the size of the population
at s = 50, the crossover probability p. = 0.9, the mutation probability p,, =
0.01, the adjusting constant is set C' = 1 in the NAIC-based fitness function,
and the maximum allowed number of iterations is equal to 300. Further, we set
dmax = B, kmax = 3, Nmax = 20, Thin = 30, and the maximum allowed order
of P and @ is set at 10. The number of bits v for the binary representation of
p; and ¢; (i = 1,..., k) varies between 0 and 2¥ — 1. We set v = 3 so that the
maximum allowed number of parameters p and ¢ is 8. The number of bits u
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Figure 6.3: Growth rates of quarterly real U.S. GNP; T = 252.

(1 > v) for the lag values binary representation is constrained to the interval
[1, 2# — 1]. With p = 3, the maximum allowed lag is 7. The length of the
chromosome can be computed as (T — 2T i) + 2kv + {3 (0 + @)}

The best subset SETARMA model with & = 3 regimes and delay d = 2 is

given by
0.45(0.28) + 0.36(0.10) Ye—10 + £, if Y2 < 0.82(0.20),
0.78(0.12) + 0.46(0.12)Yi—1 — 0.21(0.13)Ys—3 + 0.16(0.30) Y29
Y, = +5§2) - 0~19(0A09)€£2,)4 if 0.82(0.29) < Yi—2 < 1.64(0.12),
1.12(0.10) + 0.27(0.09) Yi—1 + 0.11(0.08) Ye—7
+0.10(0.00) Yi o + £ if Yio > 1.64(0.12),

(6.18)

where the sample variances of {551)} (1 = 1,2,3), are 1.34 (17 = 34), 0.31
(T, = 85), and 0.82 (73 = 102), respectively, bootstrap-calculated (1,000
replicates) standard errors of the parameter estimates are given in parentheses
as subscripts, and NAIC = —0.3955.

For comparison, we repeated the GA-based subset SETARMA procedure with
k = 2 regimes. The resulting model, in obvious short-hand notation, has the
form SETARMA(2;(9), (1,6,10);(1,4,6,10),(0)) with NAIC = —0.3069. On
the other hand, if we perform a grid search among pure SETAR(3; p1, p2, p3)
models with max{pi,p2,p3} < 12 and dyax < 12, the best fitted model is
a three-regime SETAR model with order (6,7,10), delay d = 6, and AIC =
—0.2998. These results illustrate that the selected subset SETARMA models
are adequate and more parsimonious compared to the selected pure SETAR
model.

STAR models

Efficient estimation of STAR-type nonlinear models can be carried out by NLS or,
assuming the errors are normally distributed, by QML. Under certain regularity
conditions both methods will result in estimates that are consistent and asymptot-
ically normally distributed. Below we outline nonlinear CLS estimation of LSTAR
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models, but the issues that are addressed also apply to ESTAR, time-varying STAR,
and multiple-regime STAR models.

Recall from Section 2.7 that for a stationary and ergodic time series process
{Y;,t € Z} the LSTAR(2; p, p) model is defined by

P P
Yi=do+ Y biVii+ {fo + Z{th—z}G(YLd; 7. ¢) + e,
i=1 i=1
= ¢/Xt + E/XtG(}/tfd; v, C) + &¢, (619)

where

¢ — (d)O)’ .. a¢p)/7 E] = (503 v 75;0)/5 Xt — (17}/:‘,717 .. 'a}/t*p),v

ii.d.

with {e;} "~ (0,1), and G(-) is a logistic function defined by (2.43). Then, subject
to some initial values, the problem is to minimize the ordinary least squares function

T

Lr(8) =Y Y — /X, — €X,G(Yigiv.0) (6.20)
t=1

with respect to 8 = (@', €’,~,¢). However, joint estimation of € is not an easy task
in general and can result in large v values. One reason is that ~ is not scale invariant,
making it difficult to find a good starting value. To overcome this problem, and to
improve the stability and speed of the numerical optimization procedure, it is usually
preferred to estimate LSTAR models using the following transition function
G(Yiai vy ¢) = {1+ exp(—[Yiea = */59)} ', 7 >0, (6.21)

where 832/ is the sample variance of {Y;_4}. Thus, the original slope parameter = is
transformed into a scale-free parameter.

Note that when the parameters v and ¢ are known and fixed, the LSTAR model
is linear in the AR parameters ¢ and €. Hence, assuming d and p are known, the
parameter vector 7 = (¢’,¢’)" can be estimated by CLS as

T(v,¢) <ZX1§ (7, 0) X} (v, ¢ ) (th (7,¢ Yt) (6.22)

where it(’y, c) = (Xg,X;G(Y}/,d;'y,c))/. Consequently, minimizing (6.20) can be
simplified by concentrating the sum of squares function with respect to 7 as

T
Z{Yt—T (v.0)Xa(y, )}, (6.23)

So, minimization of (6.20) is only performed over v and ¢, which helps to reduce the
computational burden considerably.
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Using (6.23) some cautionary remarks are in order. It is apparent from Figure
2.9 that when the true slope parameter -+ is relatively large, the slope of G(-) at ¢
is steep. In that case a meaningful set of grid values for the location parameter c is
needed (e.g., the sample percentiles of the transition variable Y;_,;) so that the value
of the transition function G(-) varies sufficiently across the whole sample, and the
optimization algorithm converges. Otherwise, the moment matrix of the regression
(6.22) is ill-conditioned and the estimation fails. It is also recommended to have a
large number of observations in the neighborhood of ¢ to estimate v accurately. If
there are not many data values near ¢, v will be poorly estimated, and so convergence
may be slow. This situation may well result in a parameter estimate of v which is
not statistically different from zero as judged by, for instance, a large standard error
and a small Student t-statistic. The calculated t-statistic, however, will not have an
exact Student ¢ distribution under the null hypothesis v = 0, since then the LSTAR
model is no longer identified; see Section 2.7. One implication is that in practice one
should focus upon the end use of the LSTAR model when attempting to evaluate it
and not necessarily on the parameter estimates.

Example 6.4: ENSO Phenomenon (Cont’d)

Recall Example 1.4 where the monthly ENSO series refers to the abnormal
warming (cooling) of the ocean-atmosphere system in the eastern Pacific. Fig-
ure 1.4(b) shows that ENSO dynamics follow a nonlinear process that is mean-
reverting, with the speed of adjustment toward equilibrium varying directly
with the extent of the SST anomaly from its long-run mean. Changes between
FEl Nino and La Nina events, however, occur gradually rather than abruptly.
Within the bands (—0.5"C, 0.5°C), when no ENSO events are identified, small
deviations will not be corrected through the DGP. Ubilava and Helmers (2013)
capture this type of behavior by a reparameterized form of the LSTAR process,
called logistic smooth transition error correction (LSTEC),

p—1
AY; = ag+ BoYi1 + Y 90idYi i + 6'Dy
i1
p—1
+ {041 + Y1+ Z%iAY%—i + 5/Dt}G(Yt7d§% c)+er,  (6.24)
i=1

where AY; =Y, — Y;_; denotes the first-difference of the time series {Y;}, Dy
is a vector of monthly dummy variables, and § the corresponding parameter
vector.

When Y;_4 = ¢, the adjustment process is given by the first term on the right-
hand side of (6.24), and as Y; 4 — 400, the adjustment process is given by
(6.24) with G(-) = 1. Here, the crucial parameters are [y and ;. Since large
deviations are mean-reverting, it implies that 51 < 0 and Gy + 31 < 0, while
Bo > 0 is possible. A linear version of the regression in (6.24), called error
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correction model (ECM), is given by

p—1
AY; = ag+ BoYi1 + > hidY;; + 8Dy + & (6.25)
=1

Below we show estimation results for the series covering the time period Janu-
ary 1952 — December 1990 (7' = 468). Later, in Chapter 10, we employ the
remaining part of the series for a rolling out-of-sample forecasting experiment.
Using a battery of time-domain nonlinearity tests, we obtain the following
best-fitting (in terms of minimum AIC) model for the series

AY; = —0.19¢9.21) — 0.13(0.11)Yi—1 + 0.21(0.18)AY: -1 — 0.07(0.17)AY; 2
+0.110.16)AY2—3 + 0.11(0.16)AY;—4 + 0.06(0.13) AY: 5
+0.22(0.14y D1t + 0.52(0.26) D2t + 0.29(0.17) D3t + 0.19(0.14) Dz
+0.11¢0.12) D5t + 0.15¢0.11) Det + 0.10(0.12) D7t — 0.19(0.14) Dst
—0.26(0.17) Dot — 0.65(0.39y D10,t — 0.23(0.15) D11,¢
+{0.25(0.24) — 0.02(0.09) Yi—1 + 0.28(0.20)AY;—1 — 0.02(0.19)AY; 2
+0.11(0.19)AY; 3 4 0.06(0.18)AY;—4 + 0.10(0.16) AY2—5
— 0.22(0.1m) D1t — 0.71(0.20) Dt — 0.42(0.10) D — 0.32(0.16) Dt
—0.11(0.14) D5t — 0.13(0.13) Det — 0.10(0.15) D7t + 0.24(0.18) Dst
+0.29(0.20) Dot +0.87.43)D10,: +0.280.18) D11,: } G (Yi—157, ¢)

+ €t

where
G(Yi-1;7,¢)= {1 +exp [(—1-95(0.83)/0-82)(1/2—1—(—0-77)(0.33))] }71; (6.26)

with asymptotic standard errors in parentheses. The residual variance &2

2 is
88.8% of that of a corresponding AR(8) model. The JB test statistic (1.6)
does not reject normality of the residuals at the 5% nominal significance level

(p-value = 0.612).

Figure 6.4(a) displays the transition function (6.26) as a function of the trans-
ition variable Y;_1. The red medium dashed line denotes the estimate of the
threshold value ¢, which is centered around —0.77°C of the SST anomaly. We
observe that the majority of observations belongs to the upper regime (El
Nino phase). From (6.26) it is apparent that the low value of v results in a
relatively slow speed of transition. Figure 6.4(b) shows the SST anomaly and
the transition function as a function of time. Clearly, the ENSO dynamics are
captured well by the transition function.

Bilinear models

There are many methods for estimating coefficients of BL models. Among them is
the LS method, which is one of the most frequently applied. However, apart from
some simple BL models, the asymptotic properties of the LS estimates are unknown.
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Figure 6.4: (a) Transition function (6.26) as a function of Y;—1 (blue dots), and an
estimate of the threshold value (red medium dashed line); (b) SST anomaly (blue solid line)
and transition function (6.26) (red dotted line) as a function of time.

In this section, we discuss a CLS approach with known asymptotic properties and
proposed by Grahn (1995) for a special case of (2.12). In particular, we want to
estimate the BL model:

¢O+Z¢1Yt ﬁaﬁZ%at ~ +ZZTM Vi, (6.27)

=1 j=w

where w = (¢ V k) 4+ 1, and {g;} "= (0,02). Below we assume, without loss of

generality, that the process {Y;,t € Z} is standardized such that E(Y;) = 0.

The first step of the CLS procedure consists of estimating the parameter vector
¢ = (¢1,...,9p) by the Yule-Walker equations, given a set of observations {Y;}1_;.
It can be shown that these equations hold for lags s > w* with w* = (¢ + 1) V k.
In the second step, estimates of the other coefficients of (6.27) are obtained using
conditional covariances of the AR-residual process, say {v;,t € Z}. Assuming {Y;,t €
Z} is a stationary, causal and invertible process with E(Y;*) < oo, Grahn (1995)
deduces the following equation

COV(Ut, Ut—s\Et—w7€t—w—17 .- ) = ]E(Uty Ut—s’é“t—w, Et—w—1,-- )
r+s

+Zd YtﬁZZhjn )YijYisn,  (6.28)

j=wn=w

where vy (s) is the ACVF of an MA(q) process with parameters ¢; (7 = 1,...,q)
and o2, and where

w—1+s
d]( ) TSJU + E 7/}17—1 5,7— s+ Vi STZJ)U and h]n § TigTi— Snag)
i=s+1 1=s+1

(J=w,...;,r+s;n=w,...,r),

and ¢; = 0 for i > ¢q and 7;; = 0 Vi, j taking values outside the summation domain.
Thus, Cov(ve, Vi—s|€t—w,Et—w—1,--.) depends on the parameters and a finite set of
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observations {Yt}tT:1 only. As we will see in Algorithm 6.7, this property will be the
basis for the proposed CLS estimation procedure.
Let Bo(s) be the true value of the parameter vector 3(s) at lag s, i.e.

B(s) = (’yy(s), dw(8), .y drys(8), haww(8)s ooy e (8)y ooy R (8), - - hw(s))/.
(6.29)

Hence, in the second step, the aim is to find an estimator ,@(s) of Bo(s). Now,
summarizing the above results, the computation of CLS estimates goes as follows.

Algorithm 6.7: CLS estimation of the BL model (6.27)
(i) Calculate $ as an estimate of ¢ by solving the Yule-Walker equations

C,¢p=c,

where ép is a p x p matrix with elements {¢y (w* — 1+ ¢ — j)}hi<ij<p,
c = (Ey(w*), ey (w4 p))/, and ¢y (-) is the sample ACVF of {Y;}1 ;.
Obtain the AR residuals by v, =Y, — > 7, ¢;Yi_;.

(ii) Minimize the conditional sum of squares

T
PN 2
Z {’l}tUt,S — ]E(/Utvtfsktfwa Et—w—1y- - )} (630)
t=(r )V (p+1)
with respect to B(s) (s = ,w—1), giving rise to B(s). It can be shown
(Grahn, 1995) that B(s ) ( ) a.s., as T — oo.
The remaining task is to identify the parameters 7;; (i =1,...,k;j =w,...,7),

Y (j =1,...,q), and o2 from By(s) (s = 0,1,...,w — 1). Regarding the iden-
tification of the MA parameters, consider the MA(q) process Z; = Z?:o Yig—j,
(1o = 1) where {g;} "% (0,02), and assuming the process {Z;,t € Z} is invertible.
The function 7y (s) can be mterpreted as the ACVF of this process. Therefore,
vy (s) = o2 q S iVj+s. The equations which must be solved to obtain the MA
parameters can be written, in two alternative ways, as

Yo Y1 - g1 Yq o
7r (0)
w | L
=0 : N : : :
(@) S S B W
Yo Y1 o g1 Yg o
0 Yo -+ Y2 YPg-1 (5
i R :
0 O Yo Y1 Pg—1

0 0 0 w() wq
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These equations may be written in summary notation as
vy = 02AFp = o2A9p, (6.31)

where A% is a (¢ +1) x (¢ + 1) matrix with constant skew-diagonals, called Hankel

matrix7 Yy = (7Y(0)77Y<1)7 cee 77Y<q))/7 and 1/) = (¢07¢1’ (KR 7wq)/'
Now, the objective is to solve

f@) =y — ATy =0. (6.32)

Since (6.32) is nonlinear in ), its solution must be found via an iterative procedure.
For instance, we can use the Newton—-Raphson algorithm (see, e.g., Wilson, 1969).
In this case the (u + 1)th approximation, say 1) | o the final solution obtained
from the uth approximation ¥ (u > 0) is given by

YD = ) — L9 (™) /orp} ! f (™),

which is equivalent to
Pt = g 4 (o2 (AT + AN}y — oA ).,

where the subscript u indicates that the elements are to be evaluated at ¢ = (%),
The equation for 7y (s) can be normalized either by setting o2 = 1 or by setting
1o = 1. In the first case, it is reasonable to choose ¢y = vy (0) and ¢p; = --- = 1p; =0
as starting values of the iterative procedure. Once it has converged, the equation
for vy (s) can be re-normalized so that ¢y = 1.

Below we present a procedure for identifying the BL parameters 7;; from d;(s)
(j=w,....,7+s;8s=0,1,...,w — 1). For simplicity, we assume that the equation
for d;(s) is normalized either by setting o2 = 1 or by considering d;(s)/c2. Define
the following two 2w (2r — w + 1) x 1 vectors

T = (TO,wa TO,w+1y -+ T0,ry TLawy TLaw+1s - - -5 TLr+1s -+ -5 Tw—1,w>
1/’w—1,w+1, o 7ww—1,7"+w—1)lv
d = (dw(0),dws1(0),...,dr(0), dw(1), duws1 (1), ..., dry1(1), ..., dy(w — 1),

dy1(w —1),. .. drp1(w — 1)),

Then the equation for d;(s) can be written as

T =d, (6.33)
where
Doy Uo,1 Ug,w—2 Ug,w—1

Lio D oo Upw—2 Upw-
T= . . . .

Lw—l,O Lw—l,l Lw—l,w—Q Dw—l
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with
1
0
: 25 0 0
D; = ; UO_] = s
h x (h+ i) 0 2¢; 0 0
G2 20D o BLaxqrp J
o, 0 <o+ 01
N
i1
bj—
J—t 0
0 .
: 0
U, ; = , Li; = ’
s SX 431 | v ' e ¥insn |V
0<i<j<w-=1 Vj+i ogj<zéw—’1
- Yir; O 0
Yjri 0 -0 0 Yy
T T
i+1 it+1

and with Lijg =0,and h=7r— (w—1) =r — (¢ V k).

The solution to the system of equations (6.33) can, for instance, be obtained by
the method of Gaussian elimination which reduces T to an upper-triangular matrix
U whilst d is transformed into some vector x. Once x is available, the transformed
system UT = x can be solved for 7 by a process of back-substitution. Following
this approach, it is easy to prove that the coefficients 7;; are uniquely determined
by the system (6.33). Thus, asymptotically, we can define an estimator T of T by
solving the system

~

T7 =d, (6.34)

where T and d are the estimators of T and d, respectively.

Let @ = (¢',4', 7')" denote the parameter vector defined by the BL model (6.27)
with 7= (75,1 <i < k,w+1 < j < r)’. The DGP is characterized by the true para-
meter vector 8y = (¢, ¥, 73)’, ignoring the nuisance parameter o2,. We assume
that @ € © where © is an open subset of RPHatk(r—w) Tf 0 denotes the estimator
of 8y, where 0 is defined by the estimation procedure described by Algorithm 6.7
and equations (6.30) — (6.33). Then, under some mild regularity conditions and
assuming {e;} is an 8k-th order symmetric innovation sequence, it can be proved
(Grahn, 1995, Thm. 3.3) that

(i) 6 — 6, as.

(ii) \/T(é —6p) is asymptotically normally distributed with mean zero. Moreover,
the law of iterated logarithm holds, i.e. (8 — 6y) = O(St) a.s., with Sp =
{T/loglog T} /2.
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In principle it is possible to derive an analytical expression for the asymptotic
covariance matrix of 8 for BL models. However, as the order of the model increases,
the algebra becomes rather involved. Hence, bootstrapping is recommended in prac-
tice. Below we present a simple example of CLS-based BL model estimation.

Example 6.5: CLS-based Estimation of a BL Model
Consider (6.27) with p = ¢ =0, k = 2, »r = 1, and Gaussian innovations. That
is
Y, =1Yise e, {a} RN(0,02), (6.35)

where 7 = 119. It is easy to see that {Y;,t € Z} is a stationary, ergodic and

causal process if 0% = 02/(1 — 7202) exists, i.e., if 7202 < 1. In that case it

can be shown that {Y;,t € Z} has the unique representation

o) k—1
Y =&+ Z TkEt_Qk H Et—2j—1, (6.36)
k=1 =0

in Ly sense. Moreover, from Chapter 2 it is easily seen that {Y;,t € Z} is
invertible if 7202 < 1/2. From (6.36) it follows that the necessary and sufficient
condition of existence of the 2nth moment of {Y;, ¢ € Z} is (2n—1)!172"¢2" < 1.
If n = 2 then the condition for strong consistency, i.e. E(Y;*) < oo, becomes
ol < 1/3.

From Algorithm 6.7, step (ii), the CLS estimator of 7 follows from minimizing

(6.30) with respect to 3(s) where, with v; = Y;, we have

o2 +71202Y2, ifs=0,
E(Y;Y; slet—2,64-3,...) =< T02Y; o ifs=1,
0 if s > 2.

Thus, in accordance with (6.30), 3(0) = (61(0),ﬁ2(0))/: (d2(0), hgg(O))/, and
B(1) = B2(1) = da(1). This means that for s = 0, step (ii) in Algorithm 6.7
becomes

B(0) = arg mlnz {vy? - )+ B2(0)Y2 ) }2. (6.37)

Similarly, for s = 1, step (ii) consists in estimating

~

Ba(1) —argéng%Z{En 1~ B(1)Yi 2}, (6.38)

Hence B(0) = (Bl( ), B2(0 )) estimates (02, 7202)’ while 3(1) is an estimator
of 7o2. Combining these results, the CLS estimator of 7 is given by
2(1) _ Zt:g, YiYi 1Yo

1 (O) 352 Z?:S }/152—2

(6.39)
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Figure 6.5: Boxplots and Q-Q plots of VT(7 — 1) for 7 = 0.3 (panels (a) and (c)), and
7=20.5 (panels (b) and (d)); 1,000 MC replications.

Clearly, we use three estimators (Bl(()), 32(0), and Bg(l)) to estimate two
unknown parameters (7 and o2). Moreover, we neglect information contained
in the product 7202. Instead of coding this term as 31133, it is only included as
the additional parameter 32(0) in (6.37). These somewhat unfavorable features

of Algorithm 6.7 can be amended by trying to minimize the conditional sum

of squares
d 2 d 2
{ Z {Yf — (62 + 9%921@2_2)} + Z {YY,o1 — 016:Y; 5} }
t=3 t=3

with respect to @ = (61,602)". Obviously, such a refinement overcomes the
disadvantages mentioned above — but the price we have to pay is solving a
nonlinear minimization problem which needs more effort. Hence, in practical
situations, Algorithm 6.7 may be adopted to obtain an estimate of €, which
may serve as a starting guess for a nonlinear optimization algorithm.

To assess the performance of the CLS estimator, we perform a small simulation
experiment with the BL model (6.35). The DGP has parameters 7 = 0.3, 0.5,
and o2 = 1. Figure 6.5 shows boxplots and Q-Q plots of v/T(7 —7) for sample
sizes T = 250, 500, and 1,000. Figure 6.6 shows boxplots of v/T'(62 — ¢2) for
1,000 MC replications.
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Figure 6.6: Boplots of VT(62 — 02) for (a) 7 = 0.3, and (b) 7 = 0.5; 1,000 MC
replications.

Clearly, for increasing values of || the nonlinearity of the generated time series
becomes more prominent, and as a consequence CLS estimation becomes more
difficult. Still, for all values of T, the boxplots in Figure 6.5 look almost sym-
metric and most of them can be interpreted as being sampled from a Gaussian
distribution. The Q-Q plots confirm this observation. However, all distribu-
tions tend to have negative medians as well as negative means. This tendency
reduces with increasing values of T" and is due to the interaction between val-
ues of 7 and values of 2. From Figure 6.6 we see that 52 overestimates
the parameter o2, and this phenomenon is more present as 7 increases from
0.3 to 0.5. According to its definition Bl (0) is a positive quantity, but 32(1)
can be either positive or negative. If Bg(l) > 0, overestimating o2 will imply
that 7 < 7. On the other hand, if 32(1) < 0, 7 < 0. Hence, in both cases,
overestimating o2 results in underestimation of the parameter 7.

6.1.3 Iteratively weighted least squares

Mak (1993) considers an efficient and easy-to-use procedure for iteratively weighted
least squares (IWLS) estimation of general nonlinear models. Below we first sum-
marize the theory. Next, following Mak et al. (1997), we consider an IWLS algorithm
for QML estimation of DTARCH models.

General formulation

Let 6 be an m-dimensional parameter vector of interest. Assume that the actual
value @y generating y, an T' x 1 random vector of observations with corresponding
density function f(y;@), belongs to an open parameter space ® C R™. The ML
estimate 8 of 6y follows from solving

G(y,0) = 0log f(y;0)/06 = 0.
For any 0, 6 € ©, let g(8,0) = E{f(y;0)|0}. Then:
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(i) Fisher’s information matrix is given by dg(6, 8)/06 ‘ Bp

(ii) If 8©) is a given starting value, and deﬁne in the (u 4+ 1)th iteration B(ZH)
(u > 0) as a root of the equation, g(8,0 ™) = (y 6 ) then 8(*) — @ as
6| =

u — 0o. Furthermore, it can be shown that @ () O, (T74/?).
Thus, (ii) implies that if the equation
9(6,0) = G(y,6) (6.40)

can be solved explicitly for 6, the algorithm in (ii) provides sufficient numerical
accuracy in a few iterations. When (6.40) does not have an explicit solution, it is
recommended to use the following linearization

Gly.0) ~ g(0,6) + (%}m‘gze)/(é—(a) _ (%}’9)‘5:0)’(5— 9).

Hence,

6~0+ {(%}’9» 9),}_1G(y,9), (6.41)

and at the (u + 1)th step

glutD) — gl {(M

90 ’§:§<u>>/}_1G(y,§<U>).

In other words, the ML estimate of 6 is constructed via an IWLS algorithm.

IWLS for QML of DTARCH models

In Appendix 2.B, we briefly characterized the general class of (k;,ko)-regime double
self-exciting threshold ARMA conditional heteroskedastic (DTARMACH) model.
The specification consists of a ki-regime SETARMA conditional mean process
combined with a ko-regime TGARCH conditional variance. Here, we consider
IWLS estimation of a special case, i.e. the two-regime DTARCH model also called
SETAR(2; p1,p2)-ARCH(2; ¢1, g2) model, which is given by

65" +Z¢“)n ite if Yig<r,
Y, = e (6.42)
08+ 6P ter if Yia >,
i=1
q1
oz(()l) + Z agl)sf_i if ;g <,
ol = ol (6.43)
a(()Q) + Z agz)ef,i it Vi g >,
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ii.d.

where {&;|Fi—1} '~ N(0,02) with F;_1 = {Y;_1,Y;_2, ...} the available information
set at time ¢t — 1. The conditional mean and conditional variance of {Y;,t € Z} are
given by

2 ) Di ) 2
we=Y (@) + 36y )1, 2= (af Z el )1,
i=1 j=1 i=1 =
where It(l) =1(Y;—qg <7)and It(2) =I(Y;_q > 1), and 0 = (¢}, o, P, oy, r) with

b= (V... 6y and oy = (a”,...,alPY (i =1,2).

Assume d is known. Let p = max(p1,p2,qi,q2). Then, given the initial values
Yo = (Yo,...,Y1—,) and the set of observations {Y;} ,, the conditional log-QML
function (omitting a constant), under conditional normality is

T

2
IO (lomat + )
t

t=1 i=1

l\DIr—l

where g, = Y; — 14(0). For fixed r, differentiating QT(@ with respect to 0 gives
(cf. Exercise 6.3) expressions for G(y,8) and dg(0,0)/00|5_,. Substituting these
expressions in (6.41), it can be shown (Li and Li, 1996) that

T
Z Z/W,X,6( Z ZiW,Z0(r) + > ZyWi Xy, (6.44)
t=1 t=1

where

_( 902/08 (12 0 (Vi)
Zt‘(@m/@@)’wt_( 0 1/e} )0 T Yo )

Next, stacking up by ¢ and denoting the corresponding matrices by Z, W, and X
respectively, the (conditional) IWLS equation is given by

6(r) = 0(r) + (Z'WZ) (ZWX), (6.45)
where an explicit expression for Z follows from direct differentiation.

Example 6.6: Daily Hong Kong Hang Seng Index

The well-known (G)ARCH model has the ability to capture stylized facts of
financial and economic time series, such as excess kurtosis and volatility clus-
tering where large positive and negative returns follow each other. SETARMA
models, on the other hand, can accommodate structural changes or regime
shifts, but they cannot generate volatility pooling or leverage effects. A com-
bination of both models, as in the sub-class of DT(G)ARCH models, can
incorporate the important facets of both.
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Figure 6.7: Time plots of (a) the daily closing prices, and (b) the log-returns for the Hong
Kong Hang Seng Index (HSI) for the year 2010.

To illustrate the application of DTARCH models in financial time series ana-
lysis, we consider the Hong Kong Hang Seng Index (HSI) for the year 2010.
Let {P;}?53 be the daily closing prices at time t. The log-return Y; is defined
as {Y; = 100(log P; — log P,—1)}?2. Figure 6.7 shows time plots of {P;} and
{Y:}, respectively. The LR SETAR test statistic suggests that {Y;} contains
SETAR nonlinearity, and the McLeod—Li test statistic indicates that there are
ARCH effects in the residuals.

We use the IWLS algorithm, combined with the GA-subset threshold model
selection procedure to fit DTARCH models to the data. For the GA para-
meters and the model parameters, we use the same specification as reported

in Example 6.3. Based on minimizing the NAIC, we obtain the following
SETAR(3;1,5,6)-TARCH(3;1, 1, 3) model

0.13 +0.07Y;_; + &'V if ;-1 < 0.16,
—0.47 + 0.69Y;_1 + 0.02Y; 5 + 0.19Y; 3
Vi =1q —0.37Y;_4+041Y,_5+¢c\” if 0.16 < Y,_; < 1.03, (6.46)
0.61 — 0.39Y;_1 + 0.10Y;_ + 0.08Y;_3
+0.09Y;_4 — 0.16Y;_5 + 0.23Y,_¢ + &) if Y,_; > 1.03,
with
1.29 + 0.02¢7_, if ;1 <0.16,
02 =14 09140732, if 0.16 <Y, <1.03, (6.47)
0.24 4+ 0.02¢?_; +0.07e7_, + 0.13e7_5 if Y;—1 > 1.03,

where 6() = o2¢; (i = 1,2,3) and {e;} "~ N(0,1). The sample variances of

{7} are 1.31 (T = 138), 1.18 (T = 58), and 57 (T = 49), respectively. The
sample variances of the volatility equation are 3.41, 1.87, and 76.3, respectively.

The most important feature is clearly the difference in the behavior of the series
in each regime. When Y;_ is between 0.16 and 1.03 the behavior is slower in
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adjusting to shocks than in the third regime. In the first regime the series {P;}
closely approximates a random walk process with a drift term. The behavior
of the conditional variance also varies considerably between regimes; shocks to
the conditional variance are more persistent in the second and third regime,
and weakly persistent in the first regime. Observe, all estimated coefficients in
o? are nonnegative. Negative coefficients are counter-intuitive in (6.43) which

implies that the IWLS algorithm needs to be constrained.

6.2 Model Selection Tools
6.2.1 Kullback—Leibler information

Let f(y; 6o,m) denote the true pdf of the observed observations {Y;}L,, where 0o,m €
©® C R™ is an m-dimensional parameter vector, ® denotes the parameter space,
and with y = (Y1,...,Yr). Furthermore, assume that some generic (or candidate)
model M,, gives a density function f,(+; 0,,) to the observations, where 6,, is a p,-
dimensional parameter. Recall from Section 1.3.3 that the “discrepancy” between
f(-:00,m) and fp(-;0,) can be measured by the Kullback-Leibler (KL) divergence,
defined by

IKL(GO,my am) = EO{log f(y; 90,m)} - EO{IOg fm(Y; em)}
= Eo{log f(y; 0o,m)} + %{ — 2Eo{log fin(y; 0m)}},  (6.48)

where Eg(-) denotes the expectation with respect to y evaluated by the true density.
Hereby it is assumed that Eg{log fy(:;6.,)} exists V6, € ©.

The main property of the KL divergence is that I*"(-) > 0 with equality when
f(500m) = fm(:;60m) a.e. As we have seen in Exercise 1.4, this property can be
obtained from Jensen’s inequality: if x is a non-degenerate random variable and
h(x) is a strictly convex function, then E{h(z)} > h{E(x)}, while an equality holds
when z is degenerate at E(x). As —log(x) is a strictly convex function of =, we find

EO{ ~log (%)} > 1ogE0{ (%) } (6.49)

The expectation on the right-hand side employs the density function f(-;80 ), so
that the right-hand side of (6.49) equals —log1 = 0, and (6.48) is equivalent to

I"(69.m, 0m) >0, VO, € ©. (6.50)

The equality in (6.49) and (6.50) arises if and only if f,,,(+; @,,)/f (+; O0.m ) is degenerate
at Eo{ fin(:;0m)/f(-;600,m)} (= 1), in other words if and only if fy,(+;0m)= f(-;600,m)
a.e. In particular, the equality in (6.49) and (6.50) holds when 6,,, = 0.

The application of Jensen’s inequality clarifies that I*"(-) is determined by the
dispersion of fy,(-;0,,)/f(+; 00m), and this explains why I*"(-) can serve as a meas-
ure of the divergence between the density function f,(-;0,,) and the true density
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function f(-;0p,,). Sometimes (6.49) is referred to as a measure of the distance
between f(-;00.,) and fp(+; 0y,), but we remark that I*"(-) is not a metric on the
space of probability densities, because I*“(00,,0m) # I¥%(0r,, 00,m) and I1°%(:)
does not satisfy the triangle inequality. Nevertheless, the choice of I*"(-) as the loss
function is firmly supported by a most relevant information-theoretic interpretation,
namely [*"(-) can be interpreted as the surprise experienced on average when we
believe that f,,(-;8,,) describes a given phenomenon and we are then informed that
in fact the phenomenon is described by f(-;60.,) (Rényi, 1961).

6.2.2 The AIC, AIC,., and AIC, rules

AIC rule

Given (6.48) as the loss function, the objective is narrowed down to minimizing
I¥:(-) or, equivalently, minimizing —2Eq{log f.(y;0m)} subject to 6,, € ®. When
the density functions fy,(-;60,,) and f(-;00,,) are equal (for almost all y) only
for a unique vector in ® (necessarily 60,, = 6g,,). Then, under perfect know-
ledge, such optimization would yield 6p,,. In practice, however, either objective
function is unknown, because Eg(-) is evaluated by the unknown density function
f(+;600,m). To overcome this hurdle, we introduce a fictitious vector of observations
x = (Xy,..., X7)" with the same pdf as y, but which is independent of y. Let é\T,m
denote a QML estimator of 8y ,, based on y. So, instead of —2Ey{log fm(y;6m)}
itself, we want to minimize the function

I(m) = —2B,E,{log fm(x; 07.m)}, (6.51)

where E,, refers to the dependence of éT,m on the data vector y. Note that (6.51) has
an interesting cross-validatory interpretation: the sample y is used for estimation
and the independent sample x for validation of the so-obtained model’s pdf.

Now, to derive a model selection criterion we decompose I(m) as follows

I(m) = _2Ey{log fm(Y§ é\T,m)} _2Ey{log fm(y; OO,m)} + 2Ey{log fm(y; §T,m)}
Al
—2E,E,{log fin(x: 07,m)} + 2E,{log fu(y; 00.m)} - (6.52)
A2

The term Al on the right-hand side of (6.52) measures the average overfitting of
the QML estimator, since log fn(y;07.m) > log fim(y;0om). The term A2 can be
interpreted as an average cost for using §T7m in lieu of the true parameter vector
00,1, when the model is fitted to an independent replication of the DGP.

Consider the term Al in (6.52). Under assumptions similar to those made in
Section 6.1.1, and in particular the uniqueness of the parameter 6o ,,, we can ex-
pand 2E,{log f.,.(y; é\Tm)} in a second-order Taylor expansion around 6y,,. The

estimator @7, converges to 6y, a.s. Moreover, analogous to (6.3), we have

VI @1 = O0.m) = N (0.1 ()T (¥ M (7)) (6.53)
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where

a.s. q. 1 82 IOg fm (Y; OO,m)
Hn(y) = Jim "0

Hence, the third term on the right-hand side of (6.52) becomes

(5086 ey, VT~ 000} =

tr (Hm(y)Ey{T(é\Tm — O0.n) (7 — ao,m)'}) =tr (T (Y)H3 () + 0p(1). (6.54)

0 log fm(YS HO,m) ) )

1
. Ton(y) = lim —Var( o

T—oo T’
Ey{VT(@r,m ~ 0.m)

Substituting (6.54) into (6.52), we get

2B, {10g f(¥; 07.m)} = 2B, {10g fin(¥; O0.m)} + tr(Zom(y)Hin (v)) +0,(1). (6.55)

Recall that y and x have the same pdf (which implies that H,(y) = Hm(x)) and
that they are independent of each other. Consider the term 2E,E,{log f.(x; 07,m)}
in (6.52). Assuming that E;(-) is sufficiently smooth, and its derivatives under
the expectation sign exist, a second-order Taylor expansion of 2E,{log f,,(x; éTm)}
around 6y, yields

2F, {108 frn(%; 07m) } = 2B, {10g f(; O0.m) }
+2(§T,m - 00,m)/ (

~ O’E.{log f,(x;0)}
. L T g\ X3
+VT(0r.m ~ Bo.m) T( 9600’

= 2, {10g fn (x; 00.1m) } + T(O1mm — O0.m)Hon () (Orm — O0.m) + 0p(1). (6.56)
We deduce from (6.56) that
2K, {Eo{10g fin(X; 01,m)} } =2Eo{10g fu (x; O0.m) } +t1 (T (y) M, (¥)).  (6.57)

Inserting (6.55) and (6.57) in (6.52), yields

Oz {log fm (x; 9)}) ‘
00 0=60.m
1

) ‘ VT (@7 — o) + 0p(1)
9:90,777,

I(m) = *QEy{log fm(Y§ é\T,m)} + 2tr(zm(y)H;11 (Y)) + Op(1)7 (6'58)

which completes the asymptotic approximation of (6.52).

It can be shown (Findley, 1993) that, under some regularity conditions, the
trace term in (6.58) can be approximated by p,,, i.e. the dimension of 8,,. Hence,
minimizing (6.51) is equivalent to

Juin {AIC(m) = ~210g fin(y:07.m) + 2pm } (6.59)
where the acronym AIC stands for Akaike information criterion. Clearly, this model
selection criterion establishes a certain balance between the model-size pp, and the
lack-of-fit measured by —21log f,,(y; @1, ). In other words, it is beneficial to simplify
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the model, by leaving out the less important aspects, as long as the reduction in
model-size outweighs the deterioration of the fit.

The performance of the AIC rule can be judged in different ways. One reasonable
scenario is to assume that the approximating parametric family of models M,,
includes the DGP. This is a strong assumption, but it is also used in the derivation
of AIC. Then it can be shown (see, e.g., McQuarrie and Tsai, 1998) that, under quite
general conditions, the AIC rule is inconsistent and the asymptotic probability of
overfitting is not insignificant, as T" — oco. A more practical scenario is to assume
that the DGP is more complex than any of the candidate models. In such a case the
selected model can be viewed as an approzimation of the DGP, and we can consider,
for instance, the model’s average prediction error as a performance measure of the

AIC rule.

AIC,. rule

Hurwich and Tsai (1989) obtain an approximation of (6.58) for univariate linear
regression and AR time series models that reduces the small sample bias of the AIC
rule. This so-called corrected AIC (AIC.) is given by

2Tpm
T—pym—1
Due to the second term in (6.60), AIC; has a smaller risk of overfitting than AIC
for finite values of T. With this fact in mind, and being pragmatic rather than

theoretical, AIC. can be used as an order selection criterion for more general linear
and nonlinear time series models.

AIC(m) = —210g fm(y; Orm) + (6.60)

AIC, rule

McQuarrie et al. (1997) introduce an alternative criterion for linear regression time
series models which is an approximate unbiased (u) estimate of the KL information
I(m) defined in (6.51). This criterion, denoted by AIC,, is given by

2Tpm
T—pm—1

N T
AICy(m) = —2log fin(y; 0T,m) + + 2T log { T

. (6.61)
— Pm }

However, AIC, is neither a consistent nor an asymptotically efficient criterion. The
criterion has a good performance in finite samples, and hence can be adopted for
more general models than just linear regressions.

6.2.3 Generalized information criterion: The GIC rule

Note that in (6.51) the validation sample x has the same length as the estimation
sample y. Intuitively, the risk of overfitting will decrease if the length T, of x is
much larger than 7T, the length of y. Specifically, assume that T, = vT}, with v > 1.
Since Hop(x) = vHm(y), it is easily seen that an asymptotic approximation of (6.51)
is given by

I(m) = —2E,{ log fn(y; éTm) + (4 1) pu} + 0p(1). (6.62)
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In practice, the term on the right-hand side of (6.62) can be replaced by an unbiased
estimator. The resulting criterion, called generalized information criterion (GIC),
is given by

GIC(m) = —2108 fm(y; O7m) + (v + 1) pu. (6.63)

Clearly, when v = 1, GIC reduces to AIC. Extensive simulation studies (see, e.g.,
Bhansali and Downham, 1977) have empirically shown that for v € [2, 5] the correct
order is found more frequently than AIC. The Bayesian approach of the next section
provides an explicit expression for the term (v + 1).

6.2.4 Bayesian approach: The BIC rule

From a Bayesian point of view it is natural to choose among models by select-
ing the one that maximizes the posterior probability f(M,,|y). Assume that the
parameter vector 6, is a random variable with a given a priori pdf denoted by
f(0,,|M,,) which does not depend on 7. Now, modifying our previous notation,
f ((y; Gm)\/\/lm) denotes the joint pdf of the random variables y and 6,,,. Further-
more, let f(y|0m, My,) denote the conditional distribution. Using this notation and
Bayes’ rule, we can write

fMunly) o< f(y[Mpm)f (M),

where
f(y’Mm) = /f(Y|0maMm>f(9m’Mm)d0mv

and where the symbol o denotes proportionality. Assuming the same prior probab-
ility for all models, Schwarz (1978) derives the following large sample approximation

log f(y| M) = log fin(y; §Tm) — %n log T. (6.64)

Hence, maximizing (6.64) is equivalent to minimizing the Bayesian information cri-
terion (BIC):

BIC(m) = —210g fun(y; 01.m) + pm log T, (6.65)

independently of the chosen prior. It is an interesting fact that the BIC rule can
also be derived within the KL framework. Moreover, it can be shown (see, e.g.,
McQuarrie and Tsai, 1998) that the BIC rule is consistent, that is the probability
of correct detection approaches one as T — .

All five order selection criteria AIC, AIC., AICy, BIC and GIC have a common
form, that is they are members of the family of criteria

Joiny { = 2108 fin(y:07.m) + pmC (T, pm) }, (6.66)
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Figure 6.8: Penalty functions C(T, pym) of AIC (pink solid line), AIC, with p,, =5 (blue
long dashed line), AIC, with p,, = 5 (red dotted line), BIC (green short dashed line), and
GIC with v =3 (cyan medium dashed line).

but with a different penalty function C(T,p,,). Figure 6.8 shows the behavior of
C(T, pm) as a function of T for each selection rule.

Given the above model selection criteria, an obvious question is: Which criterion
to use in practice? Unfortunately, within the context of nonlinear time series this
question has been the subject of only a few papers (cf. Section 6.2.6). Overall,
AIC. outperforms AIC and BIC in small samples. BIC penalizes models which are
over-parameterized and so gives some value to parsimony. For this reason one may
prefer BIC over other criteria. On the other hand, if parsimony is not considered
to be really important, one may use a criterion which picks up any subtle nuance
in the data and as a result the fitted nonlinear model will be inclined to overfit in
sample. In fact, we recommend that any model should be evaluated in terms of its
out-of-sample forecasting ability, and compared with forecasts from linear and other
nonlinear time series models.

6.2.5 Minimum descriptive length principle

The minimum descriptive length (MDL) principle (Rissanen, 1986) allows comparis-
ons between nested, non-nested and misspecified models without requiring restrictive
assumptions. The MDL criterion chooses 8,, so as to minimize

. T =
MDL(m) = ~10g f(y:Or.n) + 2 log o+ log / JE0.,)]d6,,  (6.67)

where Z(-) denotes an estimate of the expected Fisher information matrix. The
second- and third term in (6.67) are often referred to as a complezity penalty. When
the density function f(-) is known, both the MDL and BIC criteria have reasonable
explanations, though the results may not be the same. When, however, f(-) depends
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on a functional form, e.g. a conditional mean function g(-;8,), BIC does not take
this extra complexity into account, while in MDL, this extra bit of uncertainty is
reflected in Z(-). For parametric models an estimator of Z(-) is given by (6.4). The
integration in the last term of (6.67) can be well approximated by MC simulation
methods (see, e.g., Robert and Casella, 2004).

6.2.6 Model selection in threshold models

As k-regime SETAR models are piecewise linear, it seems natural to extend the
various order selection criteria for linear AR models to this class of models, using
knowledge of the asymptotic properties of CLS estimator given in Section 6.1.2.
Indeed, within this context a number of relevant rules arise which can help to decide
how large the number of AR lags should be. First, we consider four members of the
family of order selection criteria (SC) defined by

P1y--5Pk

k
—1

where T; (1 = 1,...,k) denotes the number of observations in each regime, 3%_ the
corresponding (conditional) residual variance, and with penalty function

2 for AIC,
1 Ti(Ti+pi+1)
C(Ty,pi+1) = pitl TiT—E;;j+1)—?) for AIC,,
v - 1 [ Ti(Titpit T,
pi+1 [Ti—(prfl)—Q + T} log {WH for AICy,
log T for BIC.

The generalization of (6.68) to SETARMA models is obvious.

For simplicity of presentation, we consider a SETAR(2; p1,p2) model with un-
known threshold r and delay parameter d. In that case the order selection procedure
can be entertained within the following framework.

Algorithm 6.8: Minimum order selection

(i) Fix the maximum orders (p7,p3), and the maximum delay dpax.

(ii) Assume r € [r, 7] C R with 7 the 0.25x 100% percentile and 7 the 0.75x 100%
percentile of {Y;}1 .

(iii) Let {Y{;)(d)}j—, denote the order statistics of {Y;}/_, for a fixed d €
[1, dmax)- Let I = {[0.25T7,[0.25T] + 1,..., [0.75T1}. Set r = Y{;(d).
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(iv)

Algorithm 6.8: Minimum order selection (Cont’d)

Calculate mini <k, <pr 1<k, <p; {SC(k1,k2)}.Let SC(Y(;)(d)) be the min-
imum. Denote the corresponding model orders giving this minimum as
k; (Y(j)(d)) (i =1,2). Note, in the calculation the first max(d, pj, p}) obser-
vations should be discarded to make the comparison meaningful.

Calculate minjer, SC(Y{;)(d)), and denote the value of Y(;)(d) giving this
minimum as Y, (d).

Calculate minj<g<q SC(Y(’;)(d)), and denote the value of d giving this

max

minimum as d.

The selected delay parameter is C/[/\, the estimate of the threshold parameter

isr= )/G)(C/l\), the selected orders are k; (YG)(E)) (i=1,2).

The second set of order selection criteria is based on the concept of CV. This
comes down to dividing the available data set into two subsets: a calibration set for
estimating a model, and a validation set for evaluating its performance, as we briefly
explained in Section 6.2.3. In principle these subsets may contain different number
of observations. Within the context of SETAR(2; p1, p2) model selection, however,
we focus on the so-called leave-one-out CV-criterion. In that case the order selection
procedure goes as follows.

(i)
(i)

Algorithm 6.9: Leave-one-out CV order selection

Follow steps (i) — (iii) of Algorithm 6.8.

Omit one observation from the available data set {Y;}]_,, and with the
remaining data set obtain the CLS estimates of a SETAR model, using Al-
gorithm 6.2. Let 7(*) be the corresponding estimate of r, and ¢¥)_“ an

estimate of ¢ = ( ((f), cee 1(,?)’ (i=1,2).

Predict the omitted observation and obtain the predictive residual
~ Rt
€t(¢§ﬂ)_17¢77’"ﬁ))-

Repeat steps (ii) — (iii) for all remaining observations.

The final model is the one which minimizes the MSFE over all SETAR mod-
els:
T 2 -
. R .
min {C(n,p2) = 30 D22 (G107 (6.69)

t=s 1=1

where s = max(d, p},p5) + 1.

Under fairly weak conditions it can be proved (Stoica et al., 1986) that

for



6.2 MODEL SELECTION TOOLS 235

linear time series regressions T log{T~'C(-)} = AIC(-) + O(T~'/?). Using this rela-
tionship, De Gooijer (2001) proposes the following CV model selection criteria for
SETAR(k;p,...,p) models

k TZ(T—FpH—l)
 TH(T; i+ 1
Cu_Tlog<§; Tt 1z7%t)))+;ﬂ£(pifl) —)2
T;
+Ti10g{Ti—(pi+1>_1} (6.71)

De Gooijer (2001) and Galeano and Pena (2007) compare by simulation the
performance of various CV- and AIC-type (including BIC) criteria for two-regime
SETAR model selection in case both d and r are unknown. Their results indicate
that AIC, and Cy, have larger frequencies in detecting the true AR orders and delay
parameters than AIC, AIC., and BIC, when the sample size is small to moderate
(T € [30,75]). Since AIC, and C, will tend to select a more parsimonious two-
regime SETAR model than AIC, we recommend to use both criteria rather than
AIC for relatively small samples. The extra computing time Cy needs, as opposed
to the time it takes to estimate a “conventional” criterion like AIC, is negligible
for T' < 75. Otherwise, i.e., in situations with 7" > 100, the improvement of the
modified criteria over AIC diminishes.

Example 6.7: U.S. Unemployment Rate (Cont’d)

It is interesting to compare the performance of the above model selection
criteria using the transformed quarterly U.S. unemployment rate series {Y;}73
plotted in Figure 6.2(a). For two-regime SETAR models, we set the maximum
allowable orders pimax = P2,max = 10. For three-regime SETAR models, we
take P1max = P2,max = P3,max = 6. In both cases, we prefix the maximum
value of the delay at dmax = 10. Parameter estimates are based on CLS.
Candidate threshold values are searched between the 25th and 75th percentiles
of the empirical distribution of {Y;}.

Table 6.1 contains the orders of the selected SETAR models, jointly with se-
lected values of d and estimates of the threshold parameters. We see that AIC
prefers a model with relatively high AR orders in each regime while almost all
other criteria tend to select a more parsimonious model. Of course, the pref-
erence for a less parsimonious or a parsimonious criterion largely depends on
how one weighs these overfitting or underfitting tendencies in a given empirical
situation. Note, that AIC, and BIC favor a SETAR(2;2,2) model with delay
d = 5 while CV, and CVy choose the same model with d = 10. Also, in the
case of selecting a three-regime SETAR model, there is hardly any difference
between the orders selected by AIC., AIC,, BIC, CV, and CV.. One inter-
esting situation occurs with CVy with all orders equal one and d = 1. Clearly,
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Table 6.1: SETAR orders selected for the transformed quarterly U.S. unemployment rate.

Two-regime SETAR Three-regime SETAR

Criterion p1 p2 d A p1 p2 ps d Ty T2

AIC 3 5 b5 -2.98 2 6 b5 10 -3.64 -2.72
AlICc 2 5 5 -2.99 2 3 2 10 -3.64 -2.72
AICqy 2 2 5 -2.99 2 3 2 10 -3.64 -2.72
BIC 2 2 5 -2.88 2 1 2 10 -3.64 -2.72
CV 3 10 5 -2.88 2 1 2 10 -3.64 -2.96
CVe 2 2 10 -3.02 2 1 2 10 -3.64 -2.96
CVu 2 2 10 -3.02 1 1 1 1 -3.64 -3.58

the estimated threshold parameter values are quite near to each other, sug-
gesting that a two-regime rather than a three-regime SETAR model is more
appropriate in this case.

6.3 Diagnostic Checking

6.3.1 Pearson residuals

It is well known that the LB test statistic, can serve as a diagnostic check to see
if the residuals from an estimated ARMA model behave as a (weak) WN process.
Given an estimator §T of the true parameter value 6, the test is based on the
sample ACF of the standardized residuals, also called Pearson residuals, defined by

& =&(0r) = (Vi — E(Yi|Fi, §T))/\/Var(Yt|]:t_1, 7). (6.72)

Unfortunately, the LB test statistic has certain features one may consider undesirable
in a nonlinear time series context. One problem is that the test has a high tendency
to let through models with interesting dependencies (e.g., GARCH) in the residuals.
Interests in a diagnostic tool based on the sample ACF of residuals from nonlinear
relationships started off with the McLeod—Li test statistic which is based on the
sample ACF of the squared standardized residuals of a linear time series model. The
McLeod—-Li test statistic has high power against departures from linearity that have
apparent ARCH structures. The test statistic has little power in detecting other
types of (non)linear dependencies in the residuals; see, e.g., Li and Mak (1994),
and Tse and Zuo (1998). Li (1992) derives the asymptotic distribution of residual
autocorrelations for a general stationary NLAR, process with strict WN errors; cf.
Exercise 6.4.

Chen (2008) presents a general framework for testing Pearson residuals from the
pth-order NLAR model with conditional heteroskedasticity. This model, as a special
case of (6.1), is given by

Y = g(Yi-1;0) +m, me = h(Yi—1;0)?, (6.73)
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where Yi_1 = (Y;—1,Y;—2,...,Y;,)', and @ € © denotes a parameter vector in
a compact parameter space ©@. Here, ¢(-;0) and h(-;0) are twice continuously
differentiable functions, and {e;} is an i.i.d. WN process with moments p; . = 0,
p2e =1, and pg . < 0o, where p, . = E(e}).

Using residual autocorrelations, the objective is to test the null hypothesis

Hy: {e:} is an i.i.d. sequence for some 6, € ©. (6.74)

The resulting test statistic may be based on transformed (e.g. squared) or untrans-
formed standardized (Pearson) residuals. Since we wish to remain agnostic about the
precise form of transformation for the moment, we introduce the following notation.
Let u;(-) and v;(-) be two continuously differentiable functions of {£;} with the finite
moments 11y, = Efui(e0)], o, = E[v;(e0)], 02, = Var[ui(e)], and o2 = Var(v, (/)
(i=1,...,P;j=1,...,Q). Moreover, we introduce the standardized random vari-
ables uj(e¢) = (ui(et) — pu,;) /0w, V5 (er) = (vj(er) — piv;)/0v;. Then, under Ho, the
lag ¢ (¢ € Z) cross-correlation, deﬁned as

p§i7j> (E) = E[u;'k(et)v;(gt—f)]v (Z = 17 s aP;j = 1a R Q)7 (675)

is zero Vi, j, £. Similarly, under Hy, the PQ x 1 vector p(¢) = E[U(e) ® V(g4—¢)]

Et—t
(pgl’l)(ﬁ), e pgl’Q) 0),... ,pgp’l)(ﬁ), . ,pép’Q) (6)) is zero V¢, where U(e;) = (uj(e

. ,u};(et))/ and V(g¢) = (vi(gy), ... ,vz?(et))/.
Naturally, given {Y;}/_,, we replace the above quantities by their correspond-

&)

ing sample statistics with 87 the QML or CLS estimator of 8. Denote the estim-
ated Pearson residuals by & = £,(07) = (YV; — ﬁt)/hi/Z in which g; = g(Y¢-1;67)
and hy = h(Y;-1;07). Let iy, and [iy, (512” and 83]_) be, respectively, the sample
means (variances) of u;(-) and vj(-). Moreover, let Vgg; and Vgh; be, respectively,
the column vectors of partial derivatives of g; and h; with respect to 8. Denote
= (Vog)hy 1%, 20 = (Veho)hi', W = Wilg_g. . % = milg_g, , uf(E) = (wi(E) —
,uul) [Ou;, and v} (&r) = (v;(Er) —Hv; ) /Ov;. The lag ¢ sample cross-correlation of u;(;)
and v;(€;_r) is given by A(W)(E) =(T—-10)" Zt —¢ 41 U; (E¢)V7 (Et—¢) and the sample
1,1 1, P P,
analogue of p(¢) is p(¢) = (ﬁé )(E),...,Aé Q)(ﬁ),..., Aé )(E),...,Aé Q)(E))/. Fi-
nally, to describe the asymptotic behavior of a finite set of p(0) vectors, we define a
PQM x 1 (M < T) vector TI(M) = (p(1),...,p(M))’
Under Hy, and certain regularity conditions, it can be shown (Chen, 2008) that

T
1
T—Fk pl¥) = v _ 1
) = 7=y 2 Flened +oplh),

where
_ 1
‘I’(e’ft,cft_g) = U(Et) (=) V(é’;‘t_g) — A(E)T I[Wt€t + izt(ef — 1)],

1
Y = E[wwy] + §E[ztzg],
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and
A(0) = E[VU(e)] @ E[V(er-o)wi] + 3E[VU()] © EV(e0-0)7)),

where VU(-) denotes the PQ x 1 vector of first derivatives of U(-) with respect to
6. So, under Hy, T — ¢ p(¢) is not asymptotically equivalent to its standardized-
errors-based counterpart ZE:KH U(er) ® V(er—¢)/VT — ¢ unless A(¢) = 0, due to
the effect of estimation uncertainty. Furthermore, it can be shown that

T T
Cov[ Y Wlenerr), Y Wlenep)| = (T —0)[ewlpg + AL L)],  (6.76)
t=0+1 t=0'+1
where
A0 = AOYTIQYTIA() — AN () — AT LA/ (),
Q = Elwew}] + g yts Efwir] + Efrewi] + (s — DElzer],
and

A(l) =E[U(e)e] @ B[V (er-0)wy] + %E[U(St)ef] ® B[V (e1-0)z].

From the proof of this last result it can be deduced that {¥(es, 1—¢)} is a sequence
of uncorrelated elements. Then it follows that the asymptotic null distribution is
given by

T—1p(0) 2 Npo(0, (1), E(6) =Ipg+ AL, ), (6.77)
for any fixed ¢. In addition, as T' — oo, it follows that under Hy:
o~ D —_ —_

VT II(M) = Npom (0,E(M)), E() = Ipgy + B(M), (6.78)
for any fixed M € ZT, where B(M) is a PQM x PQM matrix with elements
{AGJ)} (1,5 =1,..., M),

Given (6.77) and (6.78), the proposed test statistics are

Cr() = (T — )T () S (OT(0), (6.79)
Qr(M) = TTI'(M)E;! (M)TL(M), (6.80)

where 37(¢) and Ep (M) are consistent estimates of 3(¢) and E(M), respectively.
Under Hy, and as T' — oo, it follows that for any fixed ¢, Cp(¥) 2, X%Q, and for

any fixed M, Qp(M) 2, X%QM.
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Table 6.2: Standardized-residuals-based test statistics for diagnostic checking of three
SETAR-type models fitted to the log-returns of the daily Hong Kong Hang Seng Index. The
blue-typed number indicates rejection of Hy at the 5% nominal significance level.(V)

o’ (o) Q7 (M)
(=1¢(=3(=5 M=5

0.56 0.31 0.14 2.26
0.17 0.58 0.00 3.68
2.00 3.21 0.60 6.51
0.52 0.59 2.16 4.05

0.07 0.52 0.26 1.78
0.00 0.14 0.06 1.89
2.07 232 041 6.40
4.68 0.03 0.76 7.59

0.14 0.63 0.30 2.03
0.02 0.60 0.19 2.62
0.83 1.03 0.07 4.10
3.67 0.03 0.61 7.36

Model
SETAR(2;1,1)

~
.
~—

SETAR(2; 1,1)-GARCH(1, 1)

NN = NN = = N DN ==
N = N = N = N = N — DN =

SETAR(2; 1,1)-EGARCH(1, 1)

NN AN N NS SN S S~ |~
—_— o — . — e — — — i

() The 95% critical values of the x7, X3, X2, X>0, and x2, distribution
are approximately 3.84, 7.81, 11.07, 18.31, and 31.41.

We note that under Hy, the asymptotic variance of T — ¢ p(¢) is exactly the
same as the variance of W(e;, e;¢), so that we have a simple estimate of 3(¢), i.e.

T
~ 1 o s,
Xp(l) = T > () T(0), (6.81)
t=0+1
where W;(¢) denotes the sample analogue of W(e;,e,_s) evaluated at 6 = 6.

In addition, T ﬁ(M ) is exactly the same as the variance-covariance matrix of
(\I"(st, Et-1),---, ¥y, st_M))/. So, it can be consistently estimated by

! - STl T/ =y ~,
T — Mt:%:ﬂ (wi(1),..., Uy (M) (Py(1),..., T (M)). (6.82)

[

(M) =

Example 6.8: Daily Hong Kong Hang Seng Index (Cont’d)

To illustrate the performance of the diagnostic test statistics (6.79) and (6.80),
we reconsider the log-returns of the daily Hong Kong Hang Seng Index intro-
duced in Example 6.6, and denoted by {¥;}253. Assuming {e;} "~ N(0, 02),
we fitted three SETAR-type models to the data.? In order to compute the

2As an approximation of I (Yi—1 <), we use the continuously differentiable logistic transition
function (2.43) with ¢ = r and v = 1,000.
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test, we consider the class of power-transformed-based correlations pg’j ) (£)’s

with

(uilee),vi(er—r)) = (hel_,), (3,5 =1,2). (6.83)

Replacing pg’j) (¢) by ﬁ(g” )(5), Table 6.2 shows values of the test statistics
i (e) for £ =1, 3, and 5 and Q7 (5) (4,5 = 1,2). Except for C\¥? (1)
in the case of a SETAR(2;1,1)-GARCH(1,1) model, none of the reported
values are significant at the 5% nominal level; hence, we conclude that the
standardized residuals are serially uncorrelated. This suggests that a simple
SETAR model is capable of describing the DGP. The fit of a more complicated
model, as in Example 6.6, does not seem to be needed.

6.3.2 Quantile residuals

When the conditional distribution of the residual process is asymmetric or mul-
timodal, E(Y;|F;—1,0r) in (6.72) may not be the best forecast of the process {Y;,t €
Z}. Moreover, some nonlinear models may involve unobservable random variables.?
In that case, Pearson residuals will not be the empirical counterparts of the process
{et,t € Z}. In fact, assuming the model is correctly specified, the residual process
{&,t € Z} is a martingale difference sequence with zero mean and unit variance,
and its asymptotic distribution differs from that of the noise process {e¢,t € Z}. As
an alternative, various diagnostic test statistics for parametric nonlinear time series
models can be based on quantile residuals. These quantities are defined as follows.

Following the notation introduced in Section 6.2.1, let f(y;8p,,) be the true
pdf of the observations {Y;}7_,, 0pm € ® CR™, and y = (Y3,...,Y7)". For each
f:® xRT — R*, we can write

T
F(y:0m) = [ fr-1(Yi5 6m), (6.84)
t=1

where fi_1(Y:; 0,,) = f(Yy; 01| Fi—1) is the conditional density function of {Y;,t € Z}
given Fy—1=0(Yo,Y1,...,Y;_1), the o-algebra generated by the random variables
{Yo,Y1,...,Yi_1}, 0, C R™ an m-dimensional parameter vector, and where Y
represents the initial model values. Then, according to Dunn and Smyth (1996), the
theoretical quantile residual is defined by

Rip, =@ ' (F-1(Y3;0m)), (6.85)

where ®71(-) is the inverse CDF of the N(0,1) distribution, and Fy_1(Ys;6,,) =
fff)o fi—1(u; 6,,)du is the conditional CDF of {Y;,t € Z}, also called the probability

3This is, for instance, the case with the mixture AR (MAR) model (see, Exercise 7.7), and the
MAR-GARCH model (Wong and Li, 2000b, 2001).
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integral transform (PIT). The corresponding sample quantile residual is

rg, = P (Fra(Yi; 0r)), (6.86)
where §T (dropping the subscript m) is a QML estimate of 6 ,,. Observe that
quantile residuals of linear and nonlinear AR models with normal errors are identical
to Pearson residuals.

General testing framework

Kalliovirta (2012) develops a general testing framework for detecting different po-
tential departures from the characteristic properties of quantile residuals (Hp). The
framework is based on transformations of R; g, by a continuously differentiable func-
tion g: R* — R™ such that E(g(Rwo)) = 0, where Ry g, = (Rt.0,,-- -, Ri—d+1,0,)"
and d and n are the dimensions of the domain and range of g. Different choices of
g lead to different test statistics.

Conditional on a vector with initial values Yy, and assuming that the condi-
tional density functions f;—1(Y}:;0,,) exist, the log-likelihood function ¢7(y,0) =
ST 4(Y:,8) = ST log fi1(Y4; 0) of the sample follows directly. Then, under
some fairly standard regularity conditions, Kalliovirta (2012) proves the following
CLT

T
1 D
—=> 9(R,5 ) — Na(0,9), (6.87)
(=t
where
Q=GZ(00) 'G' +¥I(6y) 'G' +GZ(6)) ¥ +H, (6.88)

with G = E(9g(Ru,)/00"), H = E(g(Ry9,)9(Re,)'), and where Z(0y) denotes
the expected information matrix evaluated at 6y, and ¥ is a constant matrix. The
first three terms in the asymptotic covariance matrix €2 represent model uncertainty
due to the effect of parameter estimation. If G = 0, there is (asymptotically) no
need to take this uncertainty into account in the resulting test statistic. In general,
however, G # 0 which resembles the case A(¢) # 0 in Section 6.3.1.

Assume that the nonlinear model under study is correctly specified, so that
{Rig,} "~ N(0,1) holds. Let Zr be a consistent estimator of Z(6y). Then a
consistent estimator for €2 is

Qr = G2, G + 12, G + GrZ, W+ Hy, (6.89)
where Gp = T~'Y, dg(r, 5.)/00', Or =T 1S3, g(r, 5 )0(Y;,01)/00', and

Hp=T"" ST 9(r, 5.)9(r, §T)/' Based on (6.87), a general test statistic is defined
as

1 T—d+1 T—d+1

o _VYO-1 R
Sra= gm0y ; g(r, 5.) ; 9(r,5,): (6.90)
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Table 6.3: Three diagnostic test statistics based on univariate quantile residuals, as special
cases of the general test statistic Stq.

Null hypothesis Hg Transformation function g Test statistic
PRy, (0) =0, Vi, g: RE1+1  REy Aq g, = St,q With
(=1,...,Ki; K1 <T) g(rie) = d=K; +1
(Autocorrelation) (r¢,0Tt+1,05--->T+,07¢+K,,0)
PRz, (0)=0, Vt, g: RE2+1 , RK2 Hr k., = St,q with
©.%0

(t=1,...,Ko; Ko KT) g(ree) = d=Ky+1

o . /
(Heteroskedasticity) ((rf’g — 1)rt2+1’9, ceey (rie — 1)7“?_,'_‘,(2,9)
E(R7 g, -1 R}, Rtg, —3) =0,V g:R—R3 Np = Sr,q with
(Normality) g(reo) = (r?’g -1, T§,07 7*2179 - 3) d=1

o R v 4
where r, 5 = (er, e ’Tt—d—i-l,OT) % Under Hp, and as T" — oo, (6.90) has an

asymptotic x? distribution; Kalliovirta (2012).

Table 6.3 shows three diagnostic test statistics, as special cases of (6.90). Note,
that the test statistic for residual autocorrelation is based on uncentered sample
autocovariances (T'—¢) 1 Zf:_lg R The test statistic for conditional hetero-
skedasticity is based on the sample autocovariances (7 —¢) ! ;‘F:_lz(ﬂA -1

t,0p t+£,01
while the normality test statistic builds on ideas suggested by Lomnicki (1961); see,
e.g., Section 1.3.1. Under Hjy these test statistics are asymptotically distributed as

respectively X%ﬁ’ X%(Q, and 3.

6.4 Application: TARSO Model of a Water Table

In lowland areas such as the Netherlands or Belgium, structural changes in the water
table fluctuation will often have impact on agricultural land use and ecology. To
support decision making in these areas, water managers need reliable predictions of
the effects of interventions in the hydrological regime on the water table fluctuations.
Preferably, these effects are expressed in terms of risks or probabilities, which implies
the use of stochastic models and methods. Water table depths {Y;} (output) can be
related to precipitation surplus {X;} (input). Both linear and nonlinear time series
models can be used for this purpose. One form of nonlinearity is caused by the
presence of thresholds which divide the relationship between precipitation surplus
and water table depth into several regimes. These thresholds are, for instance, soil
physical boundaries or drainage levels; see Figure 6.9 for a schematic view.

SSTARSO model
Knotters and De Gooijer (1999) show that subset TARSO (SSTARSO) models for

Tt is known that under Ho, E((Ry,0,)™) = HZL:/T(QZ— 1) (n=2,4,6,...), and 0 elsewhere. Using
this result, it is straightforward to obtain explicit expressions for the matrix H for each of the three
hypotheses in Table 6.3.
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Figure 6.9: Schematic view of a water table relative to the ground surface elevation, called
“water table depth” (denoted by Y;), with as input variable “precipitation excess” (denoted
by X ), i.e. the difference between precipitation and evapotranspiration.

the process {(Yz, X;),t € Z}, with the regime switching depending on Y; rather than
X, can capture the nonlinear relationships of the hydrologic system successfully.
Adopting a similar notation as for the subset SETARMA model in (6.16), a k-regime
SSTARSO model is defined as

+ ¢(1)Yt ju T 1/) @Xt Ry +g I(Y;_4 € RY), 6.91
> (o Z Z N )1 D), (6.91)

=1

where egz) = crizst (i=1,...,k), {et} ey (0,1), and RO = (ri—1, r;) with rg = —oo
and r, = oco. Below we focus on a time series of a semi-monthly observed water
table depth covering the time period 1982 — 1992.

The {Y;} series is measured relative to the ground surface elevation nearby the
observation well. The well is situated in a drained loamy, fine sandy soil. Drains
are present at about —80 centimeter (cm), relative to the ground surface at the well
location. Moreover, at a distance of 50 cm to the well a trench with a bottom at
about —50 cm is present. Therefore, we assume k = 3.

Model selection

We divide the series into a validation and a calibration set,® each set consists of
T = 120 observations. As a model selection criterion we adopt BIC, which for the
SSTARSO model (6.91) is defined as

BIC= min {Z{T log 62, + (pi + i + l)logTi}}, (6.92)

,,,,,,

Q1s~~~v¢1k =1

where T; is the number of observations that belong to the ith regime, and 3% the
corresponding residual variance. If no prior information is used on the values of the

® Calibration refers to the statistical consistency between the distributional forecasts and the
observations, and is a joint property of the forecasts and the observed values.
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thresholds r; (i = 1,...,k — 1), we propose the following procedure for selecting
(SS)TARSO models using BIC.

Algorithm 6.10: Selecting a (SS)TARSO model

(i) Fix the number of regimes k. Fix the maximum orders (P, Q,),. .., (P, Qk)
from which the (SS)TARSO model is selected. Given a delay d, discard the
first max;{d, P;,Q;} (i = 1,..., k) observations to obtain one effective sample
size for all fitted models.

(ii) Select an interval [r, 7] in which the thresholds are searched, or the combin-
ation of threshold values if there are more than two regimes. For instance,
take the 10th percentile and the 90th percentile of the empirical distribution
of {Y;}1_, respectively.

(iii) To guarantee that there are enough observations in each regime, search r’s
at a fixed interval (here 1 cm) between r and 7 such that within each ith
regime T; > 20. This results in a set of, say R (combinations of) candidate
threshold values r1,...,7rp_1

(iv) Select candidate subsets for the non-zero coefficients ¢§f ) and wq(,i), say subsets
{s;}, where j = 1,..., K denotes the jth of K subsets. Assign to these
subsets the lags jii), . ,j;(,?, h(()i), h@, ceey hg,? of the AR terms in the output
and input series in the ith regime. Given k regimes, fixed threshold values,
and a fixed delay, there are S = K* candidate SSTARSO models to represent
the process {Y;, X;}. Below weset P, =3, Q; =2 (i =1,2,3), and K = 25.

(v) Calculate (6.92) over all R x S candidate models using CLS.

Model selection results
The final model fitted to the data in the calibration set is given by

—16.104.17) + 0.58(0.06)Yi—1 + 0.24(0.05)Y1—3 + 6.81(0.43) X¢
+1.86(0.53) X2 + Etl) if Vi1 < —57(_s7,—56),
Vi =< —64.07(2.00) + 7-69(1.00) X + ) if —57(_g7_56) < Yio1 < —4T(_70_aa), (6.93)
—19.10(9.06) + 0.29(0.28)Yi—1 + 0.39(0.12) Yi—3
+3.010.01)X¢ + 1) if Y,o1 > —47(_70 _a1-

The sample standard deviations of the residuals are 7.15, 8.65, and 6.13, respectively.
Thresholds are estimated at —57 ecm and —47 cm. The 95% asymptotic confidence
intervals of 7; (i = 1,2,3) are estimated from 10,000 BS replicates. The skewness
of the intervals is a result of the short distance of the threshold at —47 c¢m to the
upper limit of the range in which thresholds are searched; only 21 observations are
present in regime 3. Similarly, thresholds are selected more often below than above
—57 cm.
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Figure 6.10: Results of SSTARSO model selection in the calibration period. Observed
water table depth (blue dots), intervals in which 95% of the simulated water table depths fall
(black dashed lines), and selected thresholds (red solid lines). From Knotters and De Gooijer
(1999).

It is interesting to note that the estimated threshold values are possibly related
to the drainage level of the trench at about —40 cm. The estimated AR—coefficient
for {X;} in regime 3 is small as compared with those in the other two regimes
(3.01 versus 6.81, 7.69). In physical terms the value 3.01 means that, starting from
equilibrium conditions, a unit change of the precipitation excess at time ¢ causes a
change of 3.01 units in the water table depth {Y;}. Further, note that {X;} is the
average daily precipitation excess between ¢t — 1 and ¢t. A physical explanation of
the relatively small AR—coefficient for {X;} in regime 3 may be that the fluctuation
of the water table in regime 3 is damped by the drainage to the trench. This effect
can be seen in Figure 6.10, which shows a plot of the observed water table depth in
the calibration period and the interval in which 95% of the simulated water table
depths fall, using a set of 720 BS replicates of {Y;}. Note that the graph shows a
clear seasonal behavior, with a seasonality of 24 semi-monthly time steps.

Model-validation

To compare the performance of the SSTARSO model, we employ a transfer function
model with added noise (TFN). Within the present context, it consists of a functional
relationship between Y;" and a noise process NJ. Here Y," denotes that part of the
water table depth Y; which is explained by the precipitation surplus Xy, and N{ is
modeled in its own right by an ARMA process. More specifically, the TFN model
fitted to the data in the calibration period (minimizing BIC) is given by

Yi = V) 4 N}, (6.94)
where

V" = 0.84(0.03)Ye—1 + 6.48(0.42) Xt — 1.78(0.56) X1,
(Ny = 91.20¢1.93)) = 0.56(0.08) (N1 — 91.20(1.93)) + &,
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with residual sample standard deviation o, = 8.57, and asymptotic standard errors
are given in parentheses.

Based on (6.91) and (6.94), we generate 1,000 series of length 7" = 120 and
compute the mean error (ME), the root mean squared error (RMSE) and the mean
absolute error (MAE) using data on {Y;} from the validation period.® The values of
these measures for the SSTARSO model, and in parentheses the fitted TFN model,
are: ME = —0.3 (1.7), RMSE = 15.3 (16.3), and MAE = 12.3 (13.2). Clearly,
the fitted SSTARSO model performs better than the fitted linear TFN model. The
percentages of observations outside the interval in which 95% of the simulated water
table depths fall are 8 (SSTARSO) and 13 (TFN), respectively. Thus, the fitted
SSTARSO model provides an adequate representation. Moreover, the model can be
interpreted with respect to the hydrological conditions at the well location.

6.5 Summary, Terms and Concepts

Summary

In the first part of this chapter, we focused on QML, NLS, and CLS estimation
methods within the framework of model (6.1), with emphasis on the CLS estimator.
Subsequently, we specialized some of these methods to a number of classic nonlinear
time series models. We have not attempted to give a full treatment to the fairly
large literature on the computation of nonlinear estimation methods. Rather, in
Section 6.6, we offer some references to methods not covered by this chapter.

Our treatment of the CLS estimation method was perhaps somewhat detailed.
However, anyone who intends to use this method in empirical work should be aware
of the underlying assumptions. For example, the finite-sample properties of the
CLS method of the threshold parameter in SETAR models depend crucially on
the assumption of symmetry of the error process, and the magnitude and signs of
SETAR coefficients; see, e.g., Kapetanios (2000) and Norman (2008). Another point
worth mentioning is that the CLS estimator is not asymptotically efficient in general.
Chandra and Taniguchi (2001) explore this point via MC simulation. Nevertheless,
there is still a need for simulation studies which are designed to shed light on the
finite-sample properties of CLS and other estimation methods, and their impact on
nonlinear model selection, diagnostic checking, and forecasting.

As we have seen in the second part of this chapter, all estimation methods are
directly tied to a host of model selection criteria. With nonlinear models, the curse
of model complexity and model over-parameterization seems much more prominent
when using AIC than in the linear case. If parsimony is considered to be really
important, then perhaps a “super-parsimonious” order selection criterion may be
helpful; see Granger (1993) for a suggestion.

Finally, within the unifying theme of model estimation, we have discussed
residuals-based diagnostic test statistics for remaining serial correlation. The pro-

5See Knotters and De Gooijer (1999) for details about the design of the MC simulation experi-
ment.
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posed test statistics make an explicit correction for effects of estimation uncertainty.
Modified versions of these test statistics may also be used to check the null hypo-
thesis of serial independence in the original series because the estimation error’s
effect is irrelevant in this case. In the next chapter, we will take up the topic of
testing for serial independence in time series again, this time in a nonparametric
setting.

Terms and Concepts

Akaike information criterion (AIC), 229  Kullback-Leibler (KL) divergence, 227

average information matrix, 200 leave-one-out CV, 234
Bayesian information criterion (BIC), likelihood equation, 200
231 local maxima problem, 200
calibration, 234 log-likelihood, 199
compound Poisson process (CPP), 205 Markov chain Monte Carlo (MCMC),
conditional least squares (CLS), 202 210
crossover, 212 minimum descriptive length (MDL), 232
cross-validation (CV), 198 mutation, 212
empirical Hessian, 199 nonlinear least squares (NLS), 200
expected Hessian matrix, 200 normalized AIC (NAIC), 211
expected information matrix, 199 nuisance parameter, 201
fitness function, 210 Pearson residuals, 236
genetic algorithm (GA), 210 penalty function, 232
generalized information criterion (GIC), probability integral transform (PIT), 241
231 quantile residuals, 240
gradient vector, 200 quasi maximum likelihood (QML), 198
Hankel matrix, 219 score vector, 200
Hellinger distance, 248 selection, 212
iteratively weighted LS (IWLS), 223 structural parameter, 210

Jensen’s inequality, 227

6.6 Additional Bibliographical Notes

Sections 6.1.1 and 6.1.2: Petruccelli (1986) proves strong consistency of the CLS estim-
ator in the case of a SETAR(2; 1, 1) model. Pham et al. (1991) establish strong consistency of
the CLS estimator for a simple non-ergodic SETAR model, so relaxing the stationarity and
ergodicity condition. Chan (1993) develops strong consistency and asymptotic normality
of the CLS estimator in the general SETAR(2; p, p) model, and Qian (1998) obtains strong
consistency of the QML estimate for this model. Asymptotic properties of NLS estimates,
under a set of explicit and easy to check conditions, are discussed in Mira and Escribano
(2006), Sudrez—Farinias et al. (2004), and Medeiros and Veiga (2005) for a general class of
nonlinear dynamic regression models, including STAR-GARCH models.

Liu et al. (2011) study the limiting distribution of the CLS estimators in the case of a
SETAR(2;1,1) model (no intercept) with a unit root in one regime, and in the case of an
explosive SETAR(2;1,1) model (no intercept). In both cases, the limiting behavior of the



248 6 MODEL ESTIMATION, SELECTION, AND CHECKING

estimators is quite different from the CLS estimators based on the linear counterpart of
these models.

De Gooijer (1998) considers ML estimation of TMA models. Under some moderate condi-
tions, Li et al. (2013) show that the estimator of the threshold parameter in a TMA model, is
n-consistent and its limiting distribution is related to a two-sided CPP, while the estimators
of the other coefficients are strongly consistent and asymptotically normal.

Using the rearranged autoregressions, Coakley et al. (2003) introduce an efficient SETAR
model estimation approach which relies on the computational advantages of QR factorization
of matrices. Aase (1983) considers recursive estimation of nonlinear AR models. Zhang et al.
(2011) discuss QML estimation of a two-regime SETAR-ARCH model with the conditional
variance process depending on past time series observations. Koul and Schick (1997) propose
adaptive estimators for the SETAR(2;1,1) and the ExpAR(1) model with known parameter
7, without sample splitting. These estimators have better performance (i.e. smaller MSEs)
than estimators based on the sampling splitting technique.

Hili (1993, 2001, 2003, 2008a,b) considers the minimum Hellinger distance (MHD) (see
Chapter 7) for estimating the parameters of the ExpARMA model (2.20), the simultan-
eous switching AR model, the general BL model (2.12), the SETAR(k;p,...,p) model, and
nonlinear dynamical systems, respectively. Under some mild conditions he establishes con-
sistency and asymptotic normality of the resulting parameter estimates. It is interesting
to note that the practical feasibility of employing the MHD method covers many areas,
including nonparametric ML estimation, and model selection criteria.

The theory of asymptotically optimal estimating function for stochastic models proposed
by Godambe (1960, 1985) has been used as a framework for finite-sample nonlinear time
series estimation. Thavaneswaran and Abraham (1988) construct G estimators (named
after Godambe) for RCAR, doubly stochastic time series, and SETAR models; see also
Chandra and Taniguchi (2001). These latter authors show that G estimators are better than
CLS estimation by simulation. Amano (2009) obtains similar results for NLAR, RCAR,
and GARCH models. Here, it is also appropriate to mention the generalized method of
moments (GMM) developed by Hansen (1982) which is a widely used estimation method
in econometrics. In fact, GMM estimation and Godambe’s estimation function method are
essentially the same. Caner (2002) obtains the asymptotic distribution for the least absolute
deviation estimator of the threshold parameter in a threshold regression model.

For the CLS-based estimator of the BL model in (6.35), an expression for the asymptotic
variance is given by Giordano (2000) and Giordano and Vitale (2003), assuming E(Y;®) < cc.
This condition restricts the permissible parameter space considerably. Kim and Billard
(1990) derive the asymptotic properties of the moment estimators of the parameters in a
first-order diagonal BL model extended with a linear AR(1) term. This model is also the
focus of a study by Ling et al. (2015). These authors propose a GARCH-type ML estimator
for parameter estimation which is consistent and asymptotically normal under only finite
fourth moment of the errors.

Outliers pose serious problems in time series model identification and estimation proced-
ures. Gabr (1998) investigates the effect of additive outliers (AO) on the CLS estimation of
BL models. For SETAR models, Chan and Cheung (1994) modify the class of generalized
Me-estimates. Their approach, however, can lead to inconsistent and very inefficient estim-
ates of the threshold parameter even when the model is correctly specified and the errors
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are normally distributed (Giordani, 2006). Battaglia and Orfei (2005) propose a model-
based method for detecting AO and innovational outliers (I0) in general NLAR time series
processes.

Traditional likelihood analysis of threshold models is complicated because the threshold
parameters can give rise to unknown shifts at arbitrary time points. On the other hand, the
problem of estimating these parameters may be formulated into a Bayesian framework, and
apply the Gibbs sampler (Geman and Geman, 1984), an MC simulation method, to obtain
posterior distributions from conditional distributions. Amendola and Francq (2009, Section
7) briefly review MCMC methods, in particular the Metropolis—Hastings algorithm (Met-
ropolis et al. (1953) and Hastings (1970)) and the Gibbs sampler for fitting STAR models.
These authors also provide tools and approaches for nonlinear time series modeling in econo-
metrics; see the website of this book. The function metrop in the R-mcmc package, and the
function MCMCmetroplR in the R-MCMCpack package can be used to perform a Bayesian
analysis. Gibbs sampling, being a special case of the Metropolis—Hastings algorithm, is in-
cluded in the R-gibbs.met package; see Robert and Casella (2004) for more information on
MCMC methods.

Section 6.2: Sub-section 6.2.2 is partly based on Van Casteren and De Gooijer (1997).
Using knowledge of the asymptotic properties of the CLS estimator for the SETAR model,
Wong and Li (1998) show that AIC. is an asymptotically unbiased estimator for the KL
information. Kapetanios (2001) compares the small-sample performance of KL information-
based model selection criteria for Markov switching, EDTAR, and two-regime SETAR mod-
els. A similar, but more extensive study, is undertaken by Psaradakis et al. (2009). Hamaker
(2009) investigates six information criteria for determining the number of regimes in two-
regime SETAR models. For small samples AICy, should be preferred. Rinke and Sibbertsen
(2016) compare regime weighted and equally weighted information criteria for simultaneous
lag order and model class selection of SETAR and STAR models. Overall, in large samples,
equally weighted criteria perform well.

Simonoff and Tsai (1999) derive and illustrate the AIC, criterion for general regression mod-
els, including semiparametric and additive models. The MDL principle has been successfully
applied to a wide variety of model selection problems in the fields of computer science, elec-
trical engineering, and database mining; see, e.g., Griinwald et al. (2005). Good tutorial
introductions are provided by Bryant and Cordero-Brana (2000), Hansen and Yu (2001),
and Lanterman (2001). Qi and Zhang (2001) investigate the performance of AIC and BIC
in selecting ANNs.

Ohrvik and Schoier (2005) propose three bootstrap criteria for two-regime SETAR model
selection. Chen (1995) considers threshold variable selection in TARSO models. Chen et al.
(1997) propose a unified, but computationally intensive, approach for model estimation via
Gibbs sampling and to select an appropriate (non-nested) nonlinear model; see also Chen et
al. (2011a). However, the correct specification of potentially non-nested nonlinear models
and/or priors is not an easy task (Koop and Potter, 2001).

Based on the superconsistency of the SETAR-CLS threshold estimate established by Chan
(1993), Strikholm and Terésvirta (2006) provide a simple sequential method for determining
the number of thresholds using general linearity tests. In addition, they compare their
method with the approaches suggested by Gonzalo and Pitarakis (2002) (cf. Exercise 5.4(b))
and Hansen (1999).

Olteanu (2006) uses Kohonen maps and hierarchical clustering of arranged autoregressions
to determine the number of regimes in switching AR (TAR and Markov switching) models.
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Bermejo et al. (2011) propose an automatic procedure to identify SETAR models and to
specify the values of thresholds. The method is based on recursive estimation of time-varying
parameters in an arranged autoregression.

Dey et al. (1994) and Holst et al. (1994) consider ML estimation via recursive EM algorithms
of switching AR(MAX) processes with a Markov regime. Krishnamurthy and Yin (2002)
study the convergence and rate of convergence issues of these algorithms; see also Douc et
al. (2014, Chapter 13 and Appendix D) on stochastic approximation EM algorithms.

Section 6.3: Li (2004, Sections 6.3 and 6.4) provides a comprehensive review on various
diagnostic test statistics for ARCH and multivariate ARCH models. Li (1992) derives the
asymptotic distribution of residual autocorrelations for a general NLAR model with strict
WN errors. Hwang et al. (1994) extend this result to NLAR with random coefficients. Baek
et al. (2012) derive the joint limit distribution of the sample residual ACF for NLAR time
series models with unspecified heteroskedasticity. Based on this result they propose a test
statistic which is an analogue of the test statistic Crfpl’l)(f).

An and Cheng (1991) introduce a KS-type test statistic based on the predicted residuals
obtained by the best linear predictor for a NLAR process where the noise process follows
a stationary martingale difference. The limiting distribution of the test statistic depends
on the estimates of the unknown parameters of the AR(p) model considered under the null
hypothesis. As an alternative, Kim and Lee (2002) propose a new KS test statistic and an
associated BS procedure, which outperforms the original one. Hjellvik and Tjgstheim (1995,
1996) develop a nonparametric test statistic based on the distance between the best linear
predictor and a nonlinear predictor obtained by kernel estimates of the conditional mean and
conditional variance. However, to avoid the “curse-of-dimensionality”, the conditional mean
and variance functions only depend on {Y;_;} (i =1,...,p) rather than on {¥;_1,...,Y:_,}.
The difficulty which then emerges is that consistency of the resulting test statistic no longer
holds. Also, Hjellvik et al. (1998) consider local polynomial estimation as a useful alternative
to kernel estimation. Deriving asymptotic properties of the resulting linearity test statistic
is, however, complicated.

An and Cheng (1991) and An et al. (2000) construct a CvM type test statistic which is
simple to compute and partly avoids the curse of dimensionality problem when p is large.
For time series generated by (6.73), Ling and Tong (2011) develop GOF test statistics that
are based on empirical processes marked by certain scores. The tests are easy to implement,
and are more powerful than other, residuals-based, test statistics.

6.7 Data and Software References

Data

Example 6.6: The daily HSI closing prices, adjusted for dividends and splits, for the year
2010 can be downloaded from the website of this book. For the estimation of the DTARCH
model by GAs we used Double Threshold, a C4++ executable program made available by
Roberto Baragona and Domenico Cucina.

Software References

Sections 6.1.1: Tong (1983, Appendices A7 — A21) offers FORTRANT7 functions for
testing, estimation, and evaluation of SETAR models. Some of these functions are rather
dated. They are included in the interactive STAR package, to accompany the book by Tong
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(1990). Unfortunately, the STAR package is no longer available for sale. However, with the
consent of Howell Tong, the DOS-STAR3.2 program as an executable file (32-bit) is made
available at the website of this book. Alternatively, the R-TSA package, supporting results in
the textbook by Cryer and Chan (2008, Chapter 15), may be adopted for analyzing SETAR
models; see also the R-tsDyn package mentioned earlier in Section 2.14.

RSTAR is a package for smooth transition AR modeling and forecasting; see https:
//www . researchgate .net/publication/293486017 _RSTAR_A_Package_for _Smooth_
Transition_Autoregressive_STAR_Modeling_Using_R. Alternatively, smooth transition
regression (STR) models can be specified, estimated and checked in the freely available,
and menu-driven, computer package JMulTi; see also Section 9.5. An EViews’ add-in
for STR analysis is available at http://forums.eviews.com/viewtopic.php?f=23&t=
11597&sid=e01abc77£3732bfcdebcf2bce8dd1888. Another option is the Ox-STR2 pack-
age® (see http://www.doornik.com/download.html) based on Timo Teriisvirta’s GAUSS
code; see, also, http://people.few.eur.nl/djvandijk/nltsmef/nltsmef.htm.

Section 6.2.6: MATLAB code for comparing the performance of the various order selection
criteria discussed in this section is available at the website of this book.

Section 6.3.1: The test results in Table 6.2 are computed using a GAUSS code provided
by Yi-Ting Chen. The code is also available at the Journal of Applied Econometrics
Data Archive.

Section 6.3.2: MATLAB codes for computing the test statistics Ar x, and Hr g, are
available at the website of this book (file: Exercise 77b.zip).

Section 6.4: The paper by Knotters and De Gooijer (1999) contains (SS)TARSO mod-
els for time series of semi-monthly observed water table depths from six observation wells.
The application only shows (SS)TARSO results for the first well. As a companion to the
above paper, the website of this book offers FORTRAN77 codes for (SS)TARSO model
identification and estimation.

Exercises

Theory Questions

6.1 Consider the simple BL model (6.35). Given the series of observation {Y;}7_,, the
CLS estimator 7 of the model parameter 7 is defined by (6.39). Giordano (2000)
proposes another estimator of 7, defined as

?zﬁy(l,Z)/agVar(Yt),

where Fy (i,j) = T3], VY, ;Yi; (Y; = 0, t < 0) is an estimator of the third-
order cumulant E(Y;Y;—;Y;—;) (i = 1,2), and Var(V;) = ¢2/(1 — 7202). Assume o2
and o are known, and let 7*0? < 1/3. Then show that

77 =0 as, and [f-7 = O(Sy),

7E\/iews® (Econometric Views) is a software package for Windows, used mainly for econometric
time series analysis. It was developed by Quantitative Micro Software, now a part of IHS.

80xMetrics? is a commercial package using an object-oriented matrix programming language
with a mathematical and statistical function library; published and distributed by http://www.
timberlake.co.uk/software/oxmetrics.html. The downloadable Ox Console may be freely used
for academic research and teaching purposes.


http://www.timberlake.co.uk/software/oxmetrics.html
http://www.timberlake.co.uk/software/oxmetrics.html
http://qed.econ.queensu.ca/jae/datasets/chen002/
http://qed.econ.queensu.ca/jae/datasets/chen002/
http://people.few.eur.nl/djvandijk/nltsmef/nltsmef.htm
http://www.doornik.com/download.html
http://forums.eviews.com/viewtopic.php?f=23&t=11597&sid=e01abc77f3732bfcdebcf2bce8dd1888
http://forums.eviews.com/viewtopic.php?f=23&t=11597&sid=e01abc77f3732bfcdebcf2bce8dd1888
https://www.researchgate.net/publication/293486017_RSTAR_A_Package_for_Smooth_Transition_Autoregressive_STAR_Modeling_Using_R
https://www.researchgate.net/publication/293486017_RSTAR_A_Package_for_Smooth_Transition_Autoregressive_STAR_Modeling_Using_R
https://www.researchgate.net/publication/293486017_RSTAR_A_Package_for_Smooth_Transition_Autoregressive_STAR_Modeling_Using_R

252

6 MODEL ESTIMATION, SELECTION, AND CHECKING

where St = {T/loglog T} /2.

6.2 Consider the diagonal BL(0,0,1,1) model Y; = 7Y;_1e;_1 +&; with {e;} R N(0,02).
Let A = 7o.. Assume that the stationarity condition holds, i.e., |A| < 1. Then, by
repeated substitution, the process {Y;,t € Z} can be written as

6.3

}/t = Ut,m + Wt,ma

where

Uy,

(a)

(b)

(a)
(b)

m:€t+i(

J 00 J
Tat,g)st,j, Wim = Z (HT&t,g)at,j, (m=1,2,...).
1

j=1 ¢= j=m+1 (=1

Show that E(Y;) = 702 and

21+ X2+ MY /(1-72%), (=0,
w(l) =q 02X €] =1,
0, || > 2.

Compare the ACF of the BL(0,0,1,1) process with the ACF of an invertible
MA(1) process having the same innovation process as above. What do you
conclude?

Show that the BL process is invertible if the condition |[A| < 0.605 holds.

Given the observations {Y;}7_,. Let Up = T Zthl Ui.m. Prove that, as
T — oo,

VIUr = pu) 2 N (0,02 (1402337 0%)),
j=1
where E(Uy ) = pu-
Assume o2 is known. Kim et al. (1990) estimate the parameter 7 by the method
of moments. Their moment estimator 7 is given by

7T=Yr/o?,

where Y, = T Zthl Y;. Using the results in steps (a) and (c), prove that as
T — o0,

1—|—37'2—T4>
1— 172

V(7 -7) 2 N (o,

[Hint: Define Quur = T~V2 " (U — piy) and Ry = T2 Wi,
with py = E(Y;) = 702. Then consider the asymptotic distribution of vT' (Y7 —
py)]

Verify (6.44).

Derive an explicit expression for the matrix Z in (6.45).
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6.4 Consider, as a special case of (6.73), the NLAR(p) model
Y, = g(thl; 0) + &t {Et} e~ (Oa J?)’ (695)

where Y1 = (Y;—1,Yi—0,..., Yt,p)’, and 0 € O is a parameter vector in a compact
parameter space ®. Take P = Q =1 in (6.75), and set (ul(et)ml(at,g)) = (et,&1—0)-

(a) Show the (7, j)th element of the asymptotic variance-covariance matrix 3(¢) =
Ipg + AL, ) in (6.77) becomes

Ei,j(f) = (Sij - JE_QmQV_lmj,
with the p x 1 vector m; = E[g,Vg(Y4i-1;0)], (i =1,...,¢), and where V is a
p X p matrix defined by V = E[(Vg;)(Vg:)'].

(b) Using part (a), suggest a general residuals-based diagnostic test statistic for non-
linearity.

Empirical and Simulation Questions
6.5 Consider the BL model in (6.35). Let A = 7., and in view of the moment condition
when {g,} "= N(0, 02) assume A8 < 1/105. Using the results in Exercise 6.1 it can be
shown (Giordano and Vitale, 2003) that 7, defined by (6.39), and 7 are asymptotically
normally distributed with mean 7 and variances respectively given by

11 1 (1—/\2

Var(?) ~ 7 2 7 1me (T g (

18300 + 42 4 1402 1)),
2

1—/\2)'

1
Var(7) & (1= M%) (1 +22)2 4+ 9722 — 6

Assume o2 = 1. Based on 1,000 MC replications, compute 95% coverage probabilities
of both estimators 7 and 7 for 7' = 1,000, using 7 = +0.1, 0.4 and + 0.6. In addi-
tion, with the above specifications, compute the average length of the 95% confidence
interval for both estimators. Compare and contrast the two estimators on the basis
of the simulation results.

6.6 Consider the BL model of Exercise 6.2. If 02 is known, it follows from E(Y;) = 702
that the moment estimator of 7 is given by Yr/02. The solution of Exercise 6.2(c),
contains an expression for o2 in terms of 7y (0) and vy (1). Using this expression, and
assuming o2 is unknown, Kim et al. (1990) propose the following method of moment
estimator 7 of T

. A
v (0) = Ay (1)} + {33.(0) — 63y (0)3y (1) — 395 (1)}1/2

where Fy (£) = T- T2V, V) (Yiy o —Yr) is the lag £ sample ACVF, with normal-
izing constant 7! instead of (T'—¢)~'. They show that T''/?(7* —7) is asymptotically
normally distributed with mean zero and with a lengthy expression for the variance.

(a) Based on 1,000 MC replications, compute the mean of the moment estimator 7*
for T'= 500 and 1,000, using 7 = £0.2 and 0.4 as the parameters of the DGP.
Also, compute the mean of the CLS estimator 7 of 7.
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(b) For comparison purposes, compute the bootstrap mean and standard deviation
of 7% and 7, using 1,000 BS replicates and with the same data sets and specific-
ations as in part (a). Comment on the obtained simulation results.

6.7 Consider the BL model (6.35) with 7 = 0.6, and o2 = 1.

(a) Let 7 be the estimator of 7 as defined by (6.39). Based on 1,000 MC simulations
obtain the distribution of vT'(7—7) and vVT(52—0?2) for T = 250 and T = 1,000.
Investigate whether 7 is an unbiased and/or consistent estimator of 7.

(b) Also, argue whether or not 52 will be an unbiased and/or consistent estimator
of o2.

6.8 Consider the following LSTAR(2;1, 1) model

Vi =1+40.9Y_1 + (3= 1.7Y_1)/(1 + exp(=10(Y;_1 — 5))) +&¢, {e¢} "= N(0,1).

(a) Using the R-tsDyn package, generate 100 times series of length T" = 200 of this
model, with starting condition Yy = 0. Check the local stationarity of the
LSTAR model.

(b) Compute the sample distribution of the six parameter estimates. Comment on
the outcomes.

(¢) Optional: If the S-Plus FinMetrics commercial software package is available,
repeat part (a). Compare the outcomes with those obtained in part (b).

6.9 As a part of the diagnostic checking stage, it is common to check the normality
assumption. The data file Example62_res.dat contains the SETAR residuals of model
(6.15).

(a) Using the Lin-Mudholkar test statistic (1.7), test the SETAR residuals for nor-
mality.

(b) Doornik and Hansen (2008) propose an omnibus test statistic for testing uni-
variate or multivariate normality; see, e.g., the function normality.testl in the
R-normwhn.test package. Using this test statistic, investigate the normality as-
sumption of the SETAR residuals.

Also, perform the Doornik—Hansen test using the function normality.test2. The
associated test statistic allows for time series variables which are weakly depend-
ent rather than i.i.d. Explain the differences with the results from part (a) if
there are any?

(¢) Relatively little is known about the finite-sample performance of diagnostic test
statistics applied to residuals of fitted nonlinear time series models. This ques-
tion explores this issue through a small MC simulation experiment. In particular,
consider the SETAR(2;1, 1) model

Y, — 0.3—-0.5Y;_1 + o015, ifY;_1 <0,
P71 —0.140.5Y,1 +o9ey if Yy >0,

where (i) 01 = 05 = 1 (homoskedastic case), and (ii) o1 = /2, 03 = 1 (hetero-
ii.d.

skedastic case), and {g;} "~ N(0,1).
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Using bootstrapped CLS-SETAR residuals, compare the empirical size of the
Lin—-Mudholkar normality test statistic and the Doornik—Hansen omnibus nor-
mality test statistics for 7= 100 and 7" = 300, and at nominal significance levels
a = 0.01, 0.025, and 0.05. Set the number of BS replicates at B = 10,000, and
assume that the threshold parameter r = 0 and the delay d = 1 are known.
Also, as a benchmark, compute the empirical size of both test statistics for pure
iid. N(0,1) errors.



Chapter

TESTS FOR SERIAL INDEPENDENCE

Testing for randomness of a given finite time series is one of the basic problems of
statistical analysis. For instance, in many time series models the noise process is
assumed to consist of i.i.d. random variables, and this hypothesis should be testable.
Also, it is the first issue that gets raised when checking the adequacy of a fitted
time series model through observed “residuals”, i.e. are they approximately i.i.d.
or are there significant deviations from that assumption. In fact, many inference
procedures apply only to i.i.d. processes.

In Section 1.3.2, we noted that the traditional sample ACF and sample PACF are
rather limited in measuring nonlinear dependencies in strictly stationary time series
processes. As a result a wide variety of alternative dependence measures have been
proposed, often resulting in test statistics which have appealing statistical properties.
Broadly, these test statistics can be divided into two categories: those designed with
a specific nonlinear alternative in mind — such as the time-domain test statistics
discussed in Chapter 5 — and serial independence tests. When the parameters of the
fitted model are known, these latter tests are useful to detect neglected structure
in residuals. In reality, however, the model parameters are unknown. This has
motivated the development of nonparametric test statistics for serial independence.
In fact, over the past few years, enormous progress has been made in this area.

In this chapter, we consider both historic and more recent work in the area
of nonparametric serial independence tests for conditional mean models. In the
next section, we start off by expressing the null hypothesis of interest in various
forms. In Section 7.2, we introduce a number of distance measures and dependence
functionals. Jointly with a particular form of the null hypothesis, these measures
and functionals are the “backbone” for constructing the test statistics in Sections 7.3
and 7.4. Here, we distinguish between procedures for testing first-order, or single-
lag, serial dependence (two dimensions), and high-dimensional tests. Throughout
the chapter, a number of examples illustrate the performance of the proposed test
statistics on empirical data. In Section 7.5, this is complemented with an application
of high-dimensional serial independence test statistics to a famous data set.
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To facilitate reading, technical details will be kept to a minimum. They are only
provided to understand the main premises underlying the construction of the test
statistics. In particular, three technical appendices are added to the chapter. In Ap-
pendix 7.A, we briefly discuss kernel-based density and regression estimation in the
simple setting of i.i.d. DGPs. Many of the nonparametric methods discussed in this
chapter are direct generalizations of this case. In Appendix 7.B, we present a general
overview of copula theory. Finally, in Appendix 7.C, we provide some information
about the theory of U- and V-statistics. These notions are often mentioned in this
chapter as useful ways to derive asymptotic theory of certain test statistics.

7.1 Null Hypothesis

Let {Y;,t € Z} be a strictly stationary time series process with values in R. The
null hypothesis of interest is

Ho: (Y} % p, (7.1)

where p is some probability measure on the real line associated with {Y;,t € Z}. In
practice, it will not be easy to uniquely determine dependencies in a set of observed
time series data given the above setup. Rather than focusing on a single time series

in R, it is practical to consider a time series process in R™, which at lag /¢, is given
by

Yt(é) = (}/l,h ceey Ym,t), = (}/;57 Yi_f, te 7}/;_(7”_1%),’ (m € Z—i_’ te Z)’
(1)

with probability measure, say p,,”. Then the null hypothesis of serial independence
can be rephrased as

Ho: pfy) = pfy) (meN?), (7.2)

where for any Borel-measurable set A € R™
D) = [ dut) % dulom)

which is invariant under permutations of the m coordinates.!

Alternatively, a more direct formulation of the null hypothesis of serial inde-
pendence, follows from assuming that {Yy),t € Z} admits a common continuous
joint density function f,,(A). Denote the marginal density function by f(y). Then,
if {Y;,t € Z} is i.i.d., the joint density function will be equal to the product of the
individual marginals, and the hypothesis of interest is

Ho: fm(y) = f(y1) X --- X f(ym), Vy €R™. (7.3)

'For continuous distributions, the measure u(y) is zero at a single point y = (y1,...,%m)’, s0
we should consider p(-) on measurable (compact) subsets A of R™.
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Moreover, if {Yie),t € Z} admits a continuous distribution function Fp,(y), the
above hypothesis can also be formulated in terms of joint and marginal distribution
functions, i.e.,

Hy: Fn(y)=F(y1) X -+ X F(ym), Yy €eR™, (7.4)

where F'(y;) is the marginal distribution of {Y,_;_1)} (i =1,...,m).

In view of the one-to-one correspondence between distribution functions and
characteristic functions, it is natural to construct serial independence test stat-
istics on the basis of the difference between the joint characteristic function of
{Yy),t € Z} and the product of its marginal characteristic functions. Specific-
ally, let ¢(u) = Efexp (i(>5, ukY;f—(k—l)|£|))} be the joint characteristic function
where u = (u1,...,u,)" € R™. Then the difference between ¢,(-) and the product
of the marginal characteristic functions ¢(uy) = E{exp(iuiYy)} (k= 1,...,m) can
be expressed as

Dy(u) = ¢o(u) — [ o(ur), €=0,%1,... . (7.5)
k=1

This expression is zero Yu € R™, if and only if there is no serial dependence of order
m — 1 or, equivalently,

Hy: Dg(u) =0, VYue R™. (7.6)

Finally, an equivalent formulation of the null hypothesis of serial independence
can be based on copula functions. To be more specific, consider an m-dimensional
joint CDF F,,(y): R™ — [0, 1], with marginal distributions F'(y;) which are assumed
to be absolutely continuous. According to Sklar’s theorem (see Appendix 7.B), there
exists an m-copula function C(-) of {Yy),t € Z}, such that Vy € R™, F,(y) =
C(F(y1),-..,F(ym)). The corresponding joint pdf is

m

Fn(y) = ¢(F@1), - Fym)) [T £, (7.7)

i=1
where c(u), the density of the copula C(u), is given by

. 8m(C(u) - fm(u) "
IR T N e (7.8)

c(u)
Hence, in terms of copulas, (7.3) corresponds to testing the null hypothesis
Hop: c¢(u) = 1. (7.9)

For each of the null hypotheses specified above any deviation from the corresponding
equality is evidence of serial dependence.
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7.2 Distance Measures and Dependence Functionals

7.2.1 Correlation integral

In view of the null hypothesis (7.2), Grassberger and Procaccia (1983) propose the

so-called correlation integral as a measure of spatial correlation in {Yy),t € Z} with
¢ =1, which we denote by {Y,t € Z}. This measure of distance is characterized by

Coy0) = [ [ Iy =11 D)dpn (3 ), (7.10)
where h is a bandwidth, depending on 7', and || - || a norm (e.g., Euclidean norm).?
If the m-dimensional time series process {Y;,t € Z} clusters in any dimension, then
Chny (k) will take on relatively large values. If, however, the time series process is
i.i.d. the correlation integral factorizes, i.e.

Cmy (h) ={Cry (h)}", (7.11)

and this equality can be used as a basis for a test of serial independence. Note that
for (7.11) no moments of {Y,t € Z} are required.

7.2.2 Quadratic distance

Model fit assessment for i.i.d. (time-independent) data is usually based, explicitly, or
implicitly, on measures of distance A(up, ug) between probability measures pp and
g One particular class of measures is the kernel-based quadratic distance defined
as

Ax(pr, pa) = //’C(Sa t)d(pr — pa)(s)d(pr — pe)(t), (7.12)

where K(s,t) (possibly depending on ) is a bounded, symmetric kernel function on
the two-dimensional sample space. This form is asymmetric in pup and pg, but it is
symmetric with respect to interchanging ur and pg. For computational purposes
(7.12) can be written in the form

AK(”F?MG) = K:(:U‘FaMF) - IC(NFv/JG) - IC(:“G?,UF) + K(MG?MC)?

where (A, B) = [[ K(s,t)dA(s)dB(t).

Clearly, the building block of (7.12) is the kernel function K(-, -). This function is
assumed to be bounded, absolutely integrable, and consequently it has an FT which
does not vanish on any interval. Then, in analogy with matrix theory, its associated
quadratic form [[ K(s,t)do(s)do(t) is called nonnegative definite, for all bounded
signed measures o.

2Within the information theoretic literature the symbol e is often used for the bandwidth, also
called tolerance distance or cut-off threshold.
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Figure 7.1: Three kernel functions (left panel) and their associated FTs (right panel):
Gaussian (black solid line), squared Cauchy (blue medium dashed line), and uniform (red
dotted line).

Example 7.1: Some Kernel Functions and their FTs

Figure 7.1 shows plots of three kernel functions and their associated FTs. In
particular, we have (i) the Gaussian kernel K(z) = e~ and its FT K(w) =
\~/7_Te_‘”2/4; (ii) the squared Cauchy kernel K(z) = 1/(1 + 22)? and its FT
K(w) = 7(jw|] + 1)e~1l; and (iii) the uniform kernel K(z) = I(Jz| < 1) and
its FT K(w) = (2/w)sin(w). Note, that the Gaussian kernel has a Gaussian
density as its F'T, which is everywhere positive. Hence, the Gaussian product
kernel is positive definite and defines a quadratic form suitable for detecting
any differences between a pair of distributions. Similarly, (ii) corresponds,
after normalizing, to a density function. On the other hand, (iii) is not a
positive definite kernel, as its F'T takes negative values for certain frequencies.

A number of classically distances such as Pearson’s chi-square or Cramér—von
Mises (CvM), are quadratic distances; see Lindsay et al. (2008). For instance, within
the context of serial correlation tests, the Lo-norm can be used. Specifically, given
the m-dimensional process {Y;,t € Z}, a quadratic (Q) form measuring the serial
dependence in this process is given by

A%(m) = ||uld) — PP = (D, 1) — 26D, 1) + (12, 12),  (7.13)

where
W = [ Knly =0 ) 0, (17 = 1.2)

with Cp(+) a nonnegative definite, spherically symmetric m-variate kernel function,
and h > 0 a bandwidth parameter. To make the distance calculation explicit and
fast, we recommend kernels that factorize as Kp(z) = [[%; K(z)/h. Here, K(-)
is a one-dimensional kernel function, which is symmetric around zero. It is easily
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seen that the functional (u™M), uM) — (1, 1)) with the ‘naive’ or identity kernel
function Kj(z) = I(]z] < h) corresponds to (7.11).

Because FTs leave the Lo-norm invariant by Parseval’s identity (loosely speaking
the sum or integral of the square of a function is equal to the sum or integral of the
square of its F'T), we can express (7.13) as

//zch —x)d(p) — @) (y)d D — 4@ (x)
= [ Ru©16(1D(©) — 6(u2(€)) 2, (7.14)

Rm

where Kp,(-) is the FT of Kj(-), (ﬁ(u%)(')) the characteristic function of u%)(-), and
| - | the modulus.

Example 7.2: An Explicit Expression for A%(-) (Diks, 2009)

Let {Y;,t € Z} be a strictly stationary time series process with a standard
normal marginal distribution. The joint density function of {Y;,t € Z} is of
the form fyu(y) = (27) ™[R/ exp(—Ly'R-1y) where y = (31, -, ym)’
and R is the m x m correlation matrix of {Yy,t € Z}, which is assumed to be
positive definite. The Gaussian density product kernel is given by Kp(y —x) =
(2y/mh) "™ T2, exp ( — (yi — x;)?/(4h?)), where the factor 4 is chosen for
convenience as it simplifies some of the results given below.

Evaluating the multivariate normal integral in (7.14) can be simplified by
making the transformation z = Vy, where V is an orthogonal matrix and
where, by the spectral decomposition of a positive definite symmetric mat-
rix, R = VDV’, with D = diag(A\?,...,\2)) giving the joint pdf f(z) =
(2m) ™2 T, At exp (—22/(2X?)), with the Jacobian of the transformation
equal to unity. Denote the product of the marginal pdfs of the transformed
process by f°(-). Then, replacing dp,,(y) by dy fm(y), it is easy to see that

m

<u&>,u$n>>/ Kn(r—s)dr £, (r)ds f (s) = — <11 L
m JR™ 2\/_ /h2+)‘12

W= [ [ Kt wss(s

1

1
- 2ymm };[1 \/h2 L2 1)/2

W= [ [ Knlr-s)dnsrdssh(s) - 2meW—

Combining terms gives an explicit, no-integration needed, formula for A?(m).
If, for example m = 2, )\%’2 = 1 4+ p, where p is the correlation coefficient
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Figure 7.2: Distance A?(2) between a bivariate standard normal distribution and a cor-
related bivariate normal distribution with correlation coefficient p, for different values of
h.

between Y; and Y;_1. Consequently,
1
Q(g) = _< — + 5
W\ — 2 JR+ 1P 2/a KA1

(7.15)

1 2 1 )

Figure 7.2 shows AQ(2) for bandwidths h = 0.2, 0.3, 0.5, and 1.0 as a function
of |p|. Note from (7.15) that, as h — 0, the limiting squared distance function
is well-defined which need not be the case for other combinations of kernel
functions and pdfs.

7.2.3 Density-based measures

Several density-based measures can be used for testing (7.3). Here, we consider the
case of pairwise (m = 2) serial dependence, and suppress the dependence on m for
notational clarity. That is, for a strictly stationary time series process {Y;,t € Z}
with marginal density function f(-) and joint pdf f,(-,-) of (Y, Y;—y) (¢ € Z), we
measure the degree of dependence by A(/) = A(fg(x, Y), f(x)f(y)) It is natural to
require that A(-) has the following basic properties: (i) nonnegativity, (ii) maximal
information, and (iii) invariance under continuous monotonic increasing transforma-
tions. For divergence measures not satisfying (iii), one can obtain scale and location
invariance by simply standardizing {Y;,t € Z}, assuming that the second moments
exist. Or retain invariance under monotonic transformations by transforming the
data to any given marginal density function (e.g. take ranks or transform to a stand-
ard normal marginal). The second moment then doesn’t even need to exists.
The functionals considered below are all of the type

AW = [ BUa.). F@). F)} ol )y (7.16)
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where B(-, -, ) is a real-valued function, and the integrals are taken over the support,
say S2, of (Y,Y;_y)'.

Several functionals have been proposed in the information theory literature.
Roughly, the resulting measures can be classified in four major categories:

e Generalized Kolmogorov (K) divergence measure

850 = { [ |50, = s@rpw|awar} " @ > o)

which for ¢ = 1 is the Li-norm. AF(-) satisfies properties (i) — (ii), but not
(i)

e Csiszar (C) (1967) divergence measure

clpy — fe(z,y)
8%t = [ of ALY o oy
where ¢(-) is some strictly convex function on [0,00). Thus, B{z1, 22,22}

= ¢(Z1/2223).
o Rényi (R) (1961) divergence measure

s [ e} {r@sm} a0 <q<.

AR () =

o Tsallis (T) (1998) divergence measure

L f(@)f(y)\ 1=
AT(0) = 1-¢ /2 {1 B (W’;;) }fz(x,y)dxdy (¢ #1),

q /52 log <ffég)f( ))>fe(x y)dzdy (q=1).

For testing purposes, both Rényi’s measure and Tsallis’ measure satisfy prop-
erties (i) — (iii).
The above list is far from exhaustive. Other possible candidates for meas-

uring statistical (serial) dependence include the difference functional (Skaug and
Tjestheim, 1993a) which, if we set B{z1, 22,23} = 21 — 2923 in (7.16), is given by

= [ Uita) = @) 0) el )y, (717)

and the Hellinger (H) (1909) distance which, with B{z1, z9, 23} = (1—(z1/zgzg)*1/2)2,

is defined as
M@:Ailﬂ flz ) me

)
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It is easy to see that the Hellinger distance is symmetric, and hence it can serve as
a distance measure contrary to other divergences.?

In addition, various relations exist between the divergence measures. For in-
stance, Rényi’s information divergence follows from Csiszdr’s measure by taking
¢(u) = sign(u — u? (u > 0;¢ # 1) which yields Ag(-) = (¢ — 1)_110g|Ag(-)|.
The connection between Rényi’s measure and Tsallis’ measure is given by Ag(-) =
(q—1)"*log[1+(14¢)log A7 (-)]. Clearly, when ¢(-) is taken as the logarithmic func-
tion, Csiszar’s measure is equivalent to the KL information measure I**(-). defined
in (1.18). Moreover, I**(-) = AT (-) and Afm(-) = A"(L).

7.2.4 Distribution-based measures

In view of (7.4), test statistics for pairwise serial independence also have been pro-
posed on appropriate functionals measuring the distance between the joint distri-
bution function Fy(z,y), suppressing the dependence on m, and the product of the
marginal distributions F'(x)F(y). Two useful types of functionals for this purpose
are

Cy(t) = /S A7 (O, y), and CP(0) = suplAT (e, )], (718)

where wy(+, -) is a positive weight function and AZ"(-) is the so-called Cressie-Read
(CR) (1984) divergence measure which, in a time series setting, is defined by

ag(0) = 2P F) (EEL Wy

a Cg+1 Fy(z,y)
+ (1= F@)F(y)) (%)q -1},

The Cressie-Read measure and Rényi’s divergence measure are related:

2 F(x)F(y) 1 - F(z)F(y)
a5 = e [o(85a () + 2 )] -1}
o 0= e [N Ry ) e TRy
By choosing different weight functions in (7.18), a number of “classical” function-
als follow. For instance, using ¢ = 1 and wy(x,y) = Fp(z,y)(1 — Fy(z,y))dF;(z,y)
in Cy(-) gives the CvM functional

st = [ {Pay) - F@Frw)} ame.y.

This measure satisfies the properties of nonnegativity and maximal information,
but is not invariant under continuous monotonic increasing transformations. By
evaluating the integral and replacing the distribution functions by their empirical

3The Hellinger (H) distance satisfies the inequality 0 < Al (¢) < 2. Some authors prefer to have
an upper bound of 1; they include an extra factor of 1/2 in the definition of A™(¢).
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counterparts, the CvM-GOF test statistic (4.38) can be obtained. Another well-
known functional follows from setting ¢ = 1 and wy(z,y) = Fy(z,y)(1 — Fy(z,y)) in
Cmax(.), ie.

q Y Y

(a0) = (suplFile.s) ~ F)Fw)])

where A¥3(-) is the Kolmogorov—Smirnov (KS) divergence measure. This measure
satisfies the basic properties (i) — (iii). Setting ¢ = 1 and wy(z,y) = dFy(z,y) in
Cy(+) generates the Anderson-Darling (AD) functional

a0 (0)= [ (F@P@)~Flwa) F @) (1-Fde)) dFa.)

which, after evaluating the integral and some algebra, leads to (4.39).

All the above measures consider the distance between two-dimensional densities
or two-dimensional distribution functions at a single-lag £. However, for testing
]HI(()E): f(Y, YY) = f(Y1)f(Yi—g), it is possible that two different lags ¢ may give
conflicting conclusions. It is thus desirable to have a multiple-lag testing procedure.
One simple procedure is to form M linear combinations of single-lag two-dimensional
test functionals A(¢), i.e.

M
1
QM) =——> A(), (MeN"), (7.19)
7 &
with corresponding null hypothesis
Hy: A HEY ) (i < - <ipg) (7.20)

Test statistics derived from (7.19) are portmanteau-type tests. Alternatively, one
may use the Bonferroni correction procedure, based on the p-values of the indi-
vidual single-lag serial correlation test statistics. Notice, however, that pairwise
(serial) independence for all combinations of paired random variables does not im-
ply joint (serial) independence in general. Hence, methods for the detection of serial
dependence in m > 2 dimensions are needed; see Section 7.4.

7.2.5 Copula-based measures

From (7.7), we see that factorization of the joint pdf in the product of marginals is
a property of the copula. In this sense the copula contains all relevant information
regarding the dependence structure of {Ygz),t € Z}. Thus, similar as the two-
dimensional density-based measures, it is natural to define m-dimensional copula-
based measures for serial dependence. Moreover, if the invariance property (iii) of
Section 7.2.3 holds, the dependence structure of {Yge),t € Z} is completely captured
by the copula.
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Recall that Tsallis’ divergence satisfies (i) — (iii). In line with its definition in
Section 7.2.3, it is easy to see that an m-dimensional copula-based (denoted by the
superscript ¢) version of Ag() is defined as

= S () Jetwan (@£,

AL () = (7.21)
[, cltosletwian (4=1).

where c(u) is the copula density of {Ygz),t € Z}. It can be shown that ALS(¢) > 0
and Af{fzq(ﬁ) = 0 if and only if the process {Yy),t € Z} is serially independent.
Equivalently, Agfq(@) = 0 if and only if C(u) = II(u), where II(u) = []",u; being
the independence copula (m > 2).

Other m-variate copula-based measures can be obtained in a similar manner as
we previously applied to introduce the four major density-based measures as special
cases of the general functional (7.16). In particular, in terms of the m-dimensional
copula density, we have

AC(0) = /[(J,l]m B{c(u,1,...,1)}du = /[071]m B¢{c(u)}c(u)du (7.22)

as the copula-based version of (7.16).

7.3 Kernel-Based Tests

The distance measures and dependence functionals introduced in Sections 7.2.3 —
7.2.5 are central to many serial independence test statistics. However, the devil is in
the details; i.e., in the way these measures and functionals are made “operational”.
Clearly, the foundation stone is the dependence functional in (7.16). Depending on
the assumptions made on the joint and the univariate marginal distributions, three
general methods for estimating this functional are: parametric, semiparametric (cf.
Exercise 7.3), and nonparametric. In this section, we solely consider nonparametric
testing methods for which f(-) and fy(-, ) are assumed to be unknown under the null
hypothesis of serial independence. Within this framework we need to ask, among
other things:

e What is the most appropriate technique to estimate the densities?
e Which divergence measure should we adopt?

e Should we compute the functional estimates directly, or can we approximate
the integration by a summation?

e Is there a need to include a trimming (weighting) function in the test func-
tional, that is, screening off outliers by bounding the set of observations to
some compact set?
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e What is the most appropriate method of computing p-values: a bootstrap
approach or an MC permutation (random shuffle) approach of the data at
hand?

Searching for answers to these questions, the work of Bagnato et al. (2014)
provides useful guidelines. These authors present an exhaustive MC simulation
comparison of the performance of ten nonparametric serial independence tests, both
single-lag and multiple-lag test procedures, using a wide class of linear and non-
linear models. They conclude that the integrated estimator of the KL functional
(recall I*" = AT) combined with Gaussian kernel density estimation, provides the
best performance in terms of empirical size and power. Also, a permutation-based
approach is to be preferred over BS, and trimming functions are not needed. Below,
we discuss each of these observations and elaborate briefly on possible alternatives.

7.3.1 Density estimators

The Gaussian kernel-based estimator is commonly adopted in the context of non-
parametric serial independence testing. For the univariate density function f(-) it
is defined as

T

F) =7 Kn(y:Y), (7.23)
=1

where K1, (y;Y:) = (vV2rh) 2 exp{—(y — Y;)?/2h?} with h > 0 the bandwidth. Sim-

ilarly, the Gaussian product kernel density is often used for estimating the bivariate

density function fy(-,-), i.e.,

T—¢
o) = 7 S Ko YKl Vi) (7.24)
t=1

Common assumptions on the bandwidth are h = hy — 0, and Thp — oo as T' — oo.
Using the same bandwidth for (7.23) and (7.24) is not necessary, but often simplifies
asymptotic analysis.

One approach to find the optimal bandwidth h is via likelihood cross-validation
(CV) (Silverman, 1986, p. 52). For a marginal density estimator, this approach
comes down to maximizing the loss-function

T T
OV = 3 loa [ S Kn(¥a Vo)l (s £ 1)) (7.25)
t=1 s=1

where the term in curly brackets represents the kernel-based “leave-one-out” density
estimator.* This produces a density estimate which is “close” to the true density in
terms of the KL information divergence.

1As an aside, note that the local marginal density is usually not the main object of interest in
a testing context.
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The boundedness of the support set S of (Y, Y;_¢) in the nonparametric entropy-
based divergence measures Ag™(-) and AT(-) is a key assumption to establish the
asymptotic distribution theory of the resulting test statistics. Gaussian kernel estim-
ation suffers from so-called boundary effects with parts of the window devoid of data.
Such an effect can be diminished by, for instance, modifying the divergence measures
with a trimming function w(z,y) = I{(z,y) € C'} which selects only a compact set
C C S =5%x8Y. Two simple trimming functions, adopted by Fernandes and Néri
(2010) and Bagnato et al. (2014), are based respectively on the compact sets

Cl={u:|lu—1 <25} and C¥={u:&1(v) <u<&ou)}

where u and 7, denote the sample mean and sample standard deviation, while ECI()
(q € (0, 1)) denotes the g-quantile of the empirical distribution. In addition, the
boundary effect can be corrected by using special boundary kernel density estim-
ators. Another widely-known way of nonparametric density estimation is to use
histogram methods. In the next section we discuss the histogram estimator within
the framework of high-dimensional copula estimation.

7.3.2 Copula estimators

Nonparametric estimates of the m-copula function C(u) can obtained in three steps.
First, every univariate marginal distribution function F(y;) of {Y;:}1, (i = 1,...,m)
is estimated by its rescaled empirical counterpart, i.e.,

;11>

T T+1ZI Yi:<y), YyeR (7.26)

Next, the estimated marginal distribution functions are used to obtain the so-called
pseudo-observations, or PITs, U, = (U1 PR Um +) with Uzt = FZT(YM) Note,
residuals are just a special case of pseudo-observations. Finally an estimator of
C(u), called the empirical copula, is defined as

T
1 N
== > 1T <), ueo, 1™ (7.27)
t=1

The factor T+1 in the denominator of (7.26) guarantees that the pseudo-observations
are strictly located in the interior of [0, 1]™. Observe that Cp(u) is actually a

function of the rank R;; of Y;; in the vector (Y 1,...,Y;r)’, since
R T
(T+D)Fr(Yig) =Rig =Y I(Y;i <Yiy), (1<i<ml<t<T).
j=1

Hence, any rank test of serial independence is a function of @T(u). Due to the
invariance property of the ranks, the empirical copula is invariant under strictly
monotonic increasing transformations of the margins.
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In the one-dimensional case, classical histogram methods may be used to con-
struct root-n consistent density estimators with compact support. For m > 2, a
conceptually easy way to obtain a copula-based histogram estimator is to divide the
sample space into hyper-rectangular regions (bins or cells) of equal size. To this end,
let (q1,...,qm)" be an m-dimensional vector of integers, let (v1,...,v,,) denote any
fixed m-vector, and let

1
Bq:{u: lui — (v + qihg)| < 5h(,7 1<i<m}

represent the histogram bin-centered at v; +q;hy. Here, hy is the binwidth, a number
which decreases to zero as T' — oo. Write IV, for the number of sample points ﬁt
which fall into bin B,. Of course, Z?:l Ny =T with @ the total number of bins.
Then, for u € By, the equidistant histogram estimate of the copula density c(u) is
given by

- N,
Chy, (u) = Th(in )
b

(7.28)

and

AT(0) = ZN log ( Thm) - ZN log N, — log(Thi™) (7.29)
T =

is a copula-based estimator of AT(-). The optimal value of hj, minimizing the mean
squared error, is of order O(T~1/(2+mM). ¢f. Silverman (1986).

7.3.3 Single-lag test statistics

Table 7.1 offers a list of eight pairwise (single-lag) serial independence test statistics
along with their corresponding divergence measures. For completeness, we add the
following details.

e The test statistic A%Tl() employs histogram-based density estimators with
equidistant cells while all other tests use kernel-based density estimators.

e The test statistics ﬁ%ﬁ(-), ASTTl(-), ASTT“’(), K%L( ), and A Tq() all make use

of the Gaussian kernel density estimator. In contrast, AZI},W( ) uses “leave-one-
out” marginal and bivariate kernel density estimators, with a special provision
in the kernel function to avoid boundary effects; see Hong and White (2005).

e Apart from E%Tl(), the tests have an asymptotic normal distribution under
the null hypotﬁesis of pairwise serial independence. Under weak regularity
conditions, it can be shown (see the cited references) that all tests are consist-
ent against lag one dependent alternatives. No limiting distribution theory is
available for K%Tl() which has hindered its application in practice.
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Table 7.1: Single-lag (m = 2) serial independence tests.

Reference Divergence measure Test statistic(1)(2)(3)

Density functions

Chan and Tran (1992) AK E%TI(E) = > 1F(Yiee) — FOV) F(Yeo)]
teST(£)
. A 1 F(Ye, Yiog)
Robinson (1991) () KL = AT AR (o) = Ci(vy)log ( =—F—"—
" Tt tESz:(é) (f(Y) f(Yio e))
Skaug and Tjgstheim (1993a) AH 35’?1 ) = ﬁ Z 2:1— j Y, ¥io) }w
teSTr(0) f f(Yt Z
Skaug and Tjgstheim (1996) A* AST2(p) = T ST T, Yy)
teST(£)
—F(V) F(Yig)hwe(6)
- -2 Yi, Yo
Granger and Lin (1994) 1210 AGL(0) =1 —exp [7 Z log (M)]
T_KtGST(Z/)\ FYO)F(Yioe)
~ 1 Yi,Yi
Hong and White (2005) KE=AT  AEV@) = — 3 log M)
T teSr(0) f(Yt)f(Y},e)
—~ 1
- T FN
Fernandes and Néri (2010) Aqe{%7172,4} AL = =T =0 >i
FYV) f(Yimg)\1-4
Z{1<()(t)) }t(f)
teSy(£) f(Yt }/t Z)
Distribution functions T—¢
Skaug and Tjgstheim (1993b) ACM ASTs(0) = T S {F (Y, Yiqr)
1

—F (00, Y1) F(Yyye,00)}?

W) Sp(0) = {t eN: L <t <T,f2Ys, Yimg) > 0, F(¥s) > 0, f(Yi_g) > 0}.

@) Cy(y) =1 —~if tis odd, and Ci(y) =1+ £y if t = 1, mod(£ + 1) and Ci(v) = 1 — v otherwise,
with v € (0, 1).

@) wy () = I{(Ys, Yi_¢) € S?} is a trimming (weight) function.

(1) When £ = 1, Robinson’s (1991) test has the form R(¢) = (1/[2(¢ + 1)(T — 1)7255})1/2327(@ where

s =T~ Thesy Cr(8)(log f(Y0)? — [T Ty, Cr(8) log F(V2)I,
Sp={teN:1<t<T,f(Y:) >0} with § € [0, 1).

e The trimming function w;(f) is generally not needed for AST!(-) and AST2(.).
For i.i.d. data from the uniform distribution, wy(¢) is needed to prevent degen-
eracy, because otherwise the asymptotic variance of the test statistics would
vanish to 0.

e The test statistic A;T*‘ (+) utilizes the following unbiased estimators of the one-
and two-dimensional EDF of {Y;}]_;, respectively,

T T—¢

~ 1 ~ 1

Fr(y) =7 Y IVi<y), Fur(e,y) = T Y IV < a)I(Yie < ).
t=1 t=1

Observe, all test statistics in Table 7.1 have an equivalent integral representa-
tion. Also, using the copula-based measure (7.21) in conjunction with the copula
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estimators of Section 7.3.2, the construction of copula-based serial independence test
statistics is entirely obvious.

The results in Table 7.1 prompt the question: is there a test statistic preferable
over others? Partly, the answer comes from the MC simulation study of Bagnato et
al. (2014) to which we already alluded earlier. These authors recommend using the
KL functional Af"(-) combined with Gaussian kernel density estimation, and with
a slight preference for the integral representation of the resulting test statistic over
its summed counterpart. Simulation results reported by Hong and White (2005)
show that A%W() has much lower power than ASTTQ(-), but it is always better than

or equal to the power of 3527() for all DGPs and sample sizes under consideration.

7.3.4 Multiple-lag test statistics

The test statistics in Section 7.3.3 are informative in revealing serial dependence at
individual lags. On the other hand, as already mentioned in Section 7.2.4, the pair-
wise approach depends on the choice of the lag order. To mitigate this problem, we
introduce the two-dimensional test functional Q(M) jointly with the null hypothesis
(7.20). A portmanteau-type estimator of Q(M) can be defined as

M
> A(0), (M eN"), (7.30)

~

where, except for the test statistic proposed by Chan and Tran (1992), A(-) can
be one of the single-lag test statistics listed in Table 7.1. Hong and White (2005)
consider (7.30) with A(-) replaced by ﬁ%w(), R(-) (see Table 7.1, footnote (4)), and
ASTTQ (). In each case the resulting portmanteau-type test statistic has an asymptotic
normal null distribution. Bagnato et al. (2014) only focus on the integrated Gaussian
kernel estimator of AT(-). These authors conclude that, as opposed to a simultaneous
test based on the Bonferroni procedure, the portmanteau-type test statistic is the
best choice since it preserves size across lags.

Using the CvM functional, Hong (1998) considers a modified version of the

portmanteau-type pairwise serial independence test statistic of Skaug and Tjgstheim
(1993b). That is,

M
(M) = (T — AT (0). (7.31)

Thus, similar as the well-known LB portmanteau-type test statistic for joint signi-
ficance of the first M serial autocorrelation coeflicients, the test statistics KSTT?’ (0)
(¢ =1,...,M) are weighted. A sensible generalization of (7.31) is to include a
symmetric continuous window kernel A(-) with A(0) = 1. This ensures that the
asymptotic bias of the test statistic vanishes.
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Under the null hypothesis of serial independence {(T—E)A;TS £);0=1,...,T—1}
can be viewed as an asymptotically i.i.d. sequence with mean 1/62 and variance
2/902. These results suggest the test statistic

~Ha2

_ S R M{(T - AT () - 1/6%)
V22 M) /902

with the Daniell lag window A(u) = sin(mu)/mu, which is optimal over a class of
window kernels that includes the Parzen window; see (4.18). Based on the theory
of degenerate V-statistics, it can be shown that (7.32) has a limiting N (0, 1) distri-
bution, under the null hypothesis of serial independence. A simple way to obtain
p-values is via the smoothed BS or permutation method; see Section 7.3.6 for details.

(M)

(7.32)

Example 7.3: Magnetic Field Data (Cont’d)

In Example 1.3, we saw that the magnetic field data is highly nonlinear. Terdik
(1999, p. 207) fits the following diagonal BL model to the series {Y; i’f{n

Y; = 0.5421Y,_1 + 0.0541Y;_164_1 + &1,

with residual variance 52 = 0.2765. The sample residual ACF shows significant
(5% level) values at lags ¢ = 3,4,6,7,9, and 10. Clearly, it is likely that the
fitted model is not appropriate. To investigate this in more detail, we consider
ASTTQ (¢) (¢ < T) and a standardized version of this test statistic, namely

Jr(l) = 5~HT — 0)V2A52 (1)

T
STHT - 072 N {F (%, Yir) — FOD) F(Yioo) wn(0),

t=0+1

where S2 is a consistent asymptotic variance estimator. Under Ho, J () D,

N(0,1), as T — oo. For the Gaussian kernel density estimators, we obtain the
bandwidth A through a data-driven bandwidth method; see, e.g., Hong and
White (2005, p. 859) and Bagnato et al. (2014).

Based on 1,000 bootstrap replicates, both test statistics ASTTQ (¢) and Jr(¢)
have nearly zero p-values for all lags ¢ from 1 to 10. Moreover, the multiple-
lag portmanteau-type test statistics have p-values less than 0.05 for M = 2,
4, 6, and 8. All these test results indicate that the residuals are not serially
independent, suggesting that the fitted BL model is far from adequate.

7.3.5 (Generalized spectral tests

Recall from Chapter 4 that the dependence of a strictly stationary time series {Y,t €
Z} can be characterized by the spectral density function fy (w) defined by (4.3), or
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alternatively by its spectral distribution function Fy (w) defined by

Fy(w) =2 Oww fr(w)dw =w+ ZZ’yy(ﬂ)w, w e [0, 1]. (7.33)
(=1

Thus, under the null hypothesis of serial independence Fy (w) = w, which is analog-
ous to a flat spectrum. Flat spectra, however, can result from nonlinear processes
which would be accepted as WN by a test statistic based on (7.33) with a high prob-
ability. For example, the BL process Y; = (g;_151_2 + &1, where {&;} ~ WN(0, 02),
has vy (¢) = 0 for ¢ > 0, hence estimates of the spectrum will be constant over all
frequencies w.

As an alternative, Hong (2000) introduces two test statistics (denoted by the
superscripts Hy and Hy) for pairwise serial independence using a generalized spec-
trum. The key idea of the generalized spectrum is to transform {Y;,t € Z} via a
complex-valued exponential function

Y: — exp(iuY;), u€R,

and then consider the spectrum of the transformed process. Specifically, let ¢(u;) =
E{exp(iu1Y;)} be the marginal characteristic function of the process {Y;,t € Z},
and let ¢p(u1, up) = E{exp (i(u1Y; +uaY;_j))} (€ =0,£1,...) be the pairwise joint
characteristic function of {(Y;,Y;_j¢)}. Then the lag £ ACVF of the transformed
processes is given by

2
Vuyus (£) = Cov (1Y, e2Yemltl) = gy (uy, un) — H d(ug) = Dy(ur,u2), (7.34)
k=1

where Dy(-,) is defined by (7.5). If vy, u,(£) = 0 V(u1,us) € R?, then there is no
serial dependence between Y; and Y;_ |, otherwise there is. In other words, the null
hypothesis of interest is given by (7.6) with m = 2.

Now, suppose that Sup(y, u,)er? 2 _pe oo |Yur,us (€)] < 00, which holds under a
proper mixing condition. Then the FT of 7y, y, (¢)

fy(w,uy,ug) Z Yur us () exp(—2miwl), w € [0, 1], (7.35)

l=—00

exists. Because —0 fy (w,u1, uz)/0u1dus|o,0) = fy (w), (7.35) is called a generalized
spectral density of {Y;,t € Z}, although it does not have the mathematical properties
of a pdf. Similarly, a generalization of (7.33), is given by

sin(rw/)

oo
FY(W’ Ui, u2) = Yui,uz (O)W +2 Z Yur,uz (Z) In )

(=1

€0, 1], (7.36)

which is called a generalized spectral distribution function. However, unlike higher-
order spectra, (7.35) and (7.36) do not require any moment conditions on {Y;,t € Z}.
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A plausible estimator for Fy (-) is

Fr(w,2.9) = 3y (0) +2Tzl(1—£)1/2A (pSn(mt) (7.37)
T w7x7y - ’Y"E7y w — T 7%24 £7T ) .
where R R R R
/Yxﬂl/(g) = F&T(‘TJy) - FT("B7 OO)FT(Oan)v (g = 17 s 7T - 1)7
with
T—
Fyr(z,y) = Z (Y; <) [(Yipe < ).
=1

The factor (1 — £/T)Y/? in (7.37) is a small sample correction for weighting down
higher order lags .

Utilizing the CvM functional, the “summed version” of a test statistic for pair-
wise serial independence is given by

oy T—l/ 1 e~
AFyz;( ( >N A ) (7.38)

t=1 s=1

A second test statistic, based on the KS functional, is given by

T-1 .
~ . V2 sin(rwe)
A, = max = sup ‘ Z(T—ﬁ)m’m v, (£ ) ’

(7.39)
1<t S<T UJE[O 1]

Note that both test statistics do not assume that the lag order M is known a priori.
This may be appealing, since for certain DGPs it is not obvious how to choose the
optimal lag order leading to the highest power of a particular serial independence
test statistic.

Under Hy, and assuming that the stationary process {Y;,¢ € Z} has a continuous
marginal distribution function Fy(-), it can be shown (Hong, 2000) that the test
statistics (7.38) and (7.39) are asymptotically distributed as, respectively,

/\ 1 9
2, Z T G2 2 2o (7.40)
1,,l=1
and
AH2 sup ‘ V2 sin(imwy) V2 sin(jrws) /2 sin(lmws) Zial, (7.41)

(w1,w2,w3)6[0 1] Q=1 (Z‘ﬂ-)2 (jﬂ-)Q (17[')2

where {Z;;;;4,7,1 > 1} are i.i.d. N'(0,1) random variables. Both test statistics enjoy
the nuisance-parameter-free property, which ensures that their critical values and/or
p-values can be obtained by directly simulating A% and Af2 .
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Example 7.4: U.S. Unemployment Rate (Cont’d)
In this example we explore residual serial dependence using the test statistics
(7.38) and (7.39). To this end, we continue our analysis of the quarterly
U.S. unemployment rate (original data), but now for the subperiod 1948 —
1993. Montgomery et al. (1998) fit the following SETAR(2;2,2) model to
the first differences {AY; =Y, — Yt_l}tli‘é (asymptotic standard errors are in
parentheses):

AY, — { 0.01(0.03) + 0.73(0.10)AY;_1 + 0100 12)AY; g + £t if AY; 5 < 0.1,
0.18(0.00) + 0.80(0.12)AY; 1 — 0.56(016)AY; o +&t>) it AY; 5 > 0.1.

The residual variances are respectively 0.076 and 0.165. Note that, apart
from the constant and the AR(2) term in the lower regime, all coefficients are
significantly different from zero at the 5% nominal level.

Significant (5% nominal level) residual autocorrelations were noticed at lags
¢ = 4 and 5, suggesting that the above model specification is not adequate.
To follow along, we selected 100 grid points for computing the frequencies w
and 1,000 BS samples. Using the naive bootstrap, and with 181 observations,
the p-values of 3%‘51 and A%y" are respectively 0.09 and 0.03. Thus, only the
second test statistic reveals that the residuals are not serially independent.

7.3.6 Computing p-values

It has been extensively documented that the normal approximation based on the
asymptotic distribution of many kernel-based test statistics does not perform well
in finite samples. As a possible alternative, one can simulate a large number of
time series satisfying the null hypothesis, and calculate empirical quantiles and/or
p-values from the null distribution of the sampled test statistic. This approach is
suitable only if the marginal distribution under the null hypothesis is known, or if the
distribution of the test statistic is (asymptotically) independent of the (unknown)
marginal distribution. Since these options are generally not available in practice, it
is better to reflect the nonparametric nature of the null hypothesis through the use
of either random permutation or BS approaches.

Bootstrapping

Unfortunately, the naive nonparametric bootstrap cannot be used with many en-
tropy-based serial independence test statistics (e.g., AFY, ATV, and A%\’q) since
their leading term is a degenerate U-statistic under Hy. Consequently, the bootstrap
fails to mimic the limiting distribution of the test statistic. Instead, the following
practical procedure is recommended.

Algorithm 7.1: Bootstrapped p-values for single-lag tests
(i) Compute A (¢) (¢ =1,...,T — 1) using the original data {¥;}7,, and a
kernel density estimator with a fixed bandwidth h. Here A(®) (¢) is any of
the test statistics defined above.
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Algorithm 7.1: Bootstrapped p-values for single-lag tests (Cont’d)

(ii) Draw a bootstrap sample {Y;*}7_, from the smoothed kernel density (7.23)
where Kp,(-) and h are the same as used for the computation of A©) (7).
Then, compute a bootstrap statistic A O (¢), in the same way as A©) 0,
using {¥;"}.

(iii) Repeat step (i) B times, to obtain {A*®)()}B .
(iv) Compute the one-sided bootstrap p-value as

1L (A > AO@)

p() 1+ B

This procedure maintains the asymptotically pivotal character of the entropy-
based test statistics. That is, the distribution of the tests does not depend on any
unknown parameters under the null hypothesis of pairwise serial independence.

Permutation

When testing a composite hypothesis, an exact level MC test statistic can be ob-
tained by conditioning on an observed value of a minimal sufficient statistic under
the null hypothesis (Engen and Lillegard, 1997). By definition, the resulting distri-
bution does not depend on unknown parameters so that it can be used to simulate
data that have the same (exact) conditional distribution as the DGP under the null
hypothesis, given the sufficient statistic. Under the null hypothesis of pairwise serial
independence, the order statistics provide a minimal and sufficient statistic. To be
specific, let A0 (+) denote the value of the dependence functional conditioned on the
original data, and let {ﬁ(i)(-)}f;l be the set of “bootstrapped” test statistics ob-
tained from a random permutation of the original data. Then calculate the one-sided
p-value as

) = L+32, 1(134(:);) > 3(0)(')),

(7.42)

Thus, reject the null hypothesis of pairwise serial independence if p(-) < «, where «
is some pre-specified nominal significance level.

For multiple-lag tests, Diks and Panchenko (2007) advocate the following al-
gorithm.

Algorithm 7.2: Permutation-based p-values for multiple-lag tests

(i) Compute A©(¢) (¢ =1,...,M) using {¥;}7_, and a kernel-based density
estimator with a fixed bandwidth h. Next, construct the 1 x M vector
AO — (RO(1),.... AO(M).
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Algorithm 7.2: Permutation-based p-values (Cont’d)

(ii) Randomly permute B times the data, and build the B x M matrix B whose
blth element is A®(¢) (b =1,...,B;¢ =1,...,M). Then assemble A(®)
and B into the (B + 1) x M matrix

A0
B= .

B

(iii) Transform B into the (B + 1) x M matrix P of p-values with elements

_ + > k=0 ( > ()) ;=0,...,B;4=1,...,M).

pz(g) 1+ B ) (Z

(iv) For each row of P select the smallest p;(¢) and call it T}, i.e.

T.= inf pi(¢), (i=0,...,B).
ée(ll,r.l..,M)p() (i )

(v) Adopt, T say, as a test statistic. Interpret fo as its observed value and
the set {T1,...,Tr} as the values associated with each permutation. Then
calculate an “overall” p-value of T, i.e.

p= 1+ B

For multiple bandwidth selection, the multiple-lag testing procedure can be
easily modified. In particular, in step (i) calculate the vector of values 320) =
(320)(1), c 3,(10)(M))/ for a range of bandwidths h € {h1, ..., h,} with n the num-
ber of elements. With appropriate changes in steps (ii) — (iii), step (iv) becomes
“... select the smallest p-values among all bandwidths and all lags ...”, while step
(v) remains the same. As in the single bandwidth case, the multiple bandwidth
procedure yields an exact a-level (0 < o < 1) test statistic if the null hypothesis
(7.20) is rejected, whenever p < a.

7.4 High-Dimensional Tests

7.4.1 BDS test statistic

Assume that the m-dimensional process {Y;, ¢t € Z} admits a common continuous
joint pdf f,(y) for y = (y1,...,ym). Hence, Cy, y(h) in (7.10) can be rewritten as
E(| Y; =Y, [[< h)]. An estimator of C,, y(h) is Cy,y (h), which is a U-statistic
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of the following form:

-1
Cox)=(3) X HIG=Y,l <), (7.43)

1<i<j<N

where N =T —m + 1 is the number of vectors obtained from a time series {Y;}Z ;.
Now, given the divergence measure Cy, y (h) — {C1y(h)}™, a test statistic for serial
independence in {Y;}]_; is defined as

v Cmar (B) = {Cuy (W}

Om,y (h) ’

where 872n,Y (h) is a consistent estimator of the variance of VN (Cp,y (h)—{C1,y (h)}™).
The specific estimator proposed by Brock et al. (1996) is

Sm,y (h) = (7.44)

15 (B) = mlim = )G (K — Chy) + Koy — Oy
m—1
+2 Y [CH (K — O™y = mCE A Ky — C2y)], (7.45)
7j=1
where
9 N—-2 N-1 N
Kny = 5w =g 2= 2 2 Vi Yl <mI(¥: = Yi <h),

i=1 s=i1+1t=s+1

and where the dependence of the terms in (7.45) on 7" and h has been suppressed
for notational clarity. Under the null hypothesis of serial independence, and by
exploiting the asymptotic theory for U-statistics, it can be shown that, as T" — oo,

Sy (h) 25 N(0,1), Vh € (0,00). (7.46)

The test statistic (7.44) is stated in terms of the data series {Y;}1_,. Brock et
al. (1996) show that the limiting behavior of Sy, y (h), under Hy of no serial depend-
ence, remains the same whether the model parameters are known or estimated in a
root-n consistent fashion. Thus, (7.44) can be adapted to test situations involving
“residuals” {et}g;l. The resulting diagnostic test, called BDS test statistic after its
three originators Brock, Dechert, and Scheinkman, is defined as

(7.47)

—-m -1 T —
Coet = ("0 ) S TT ey = enssl < 1),
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Figure 7.3: (a) Estimated correlation integral log,, a,my(h); (b) Slope estimates B for
a simulated ExpAR(1) process; T = 2,000.

and where 72, .(h) follows from (7.45). Under Hp, the test statistic (7.47) is again
asymptotically standard normal distributed.

The correlation dimension of {e;}{ is defined as

oA
D,, = lim lim —& =met) Cm.e(h)

7.48
h—0T—o00 10g h ’ ( )

indicating that am,e(h) oc hPm. Notice, the dimensionality of the distribution of
{Y+,t € Z} need not be an integer number, which in chaos theory is an indication
of a fractal structure. For a given value m, the relationship between log amﬁ(h)
and log h can be illustrated as the slope of log émye(h) = D,, x logh. The slope
will converge to a stationary value for increasing lengths m of the delay vector Yy,
when the dynamic system is deterministic; when the limit in (7.48) is finite. When
the dynamical system is stochastic, the slope continually increases as m increases;
the limit in (7.48) is infinite.

Rather than using an estimator of the slope for a single value h, Kocenda and
Briatka (2005) propose to use an estimator of the average slope across a range of
values h, which means calculating Em as a consistent estimate of the slope coefficient
B from the LS regression

108 Cone(hi) = i + B log by +us, (i =1,...,n), (7.49)

where «, is an intercept, u; an error term, and n the number of h;’s taken into con-
sideration. However, these authors ignore the fact that éme() is an empirical CDF
(of distances between pairs of points). A regression ignoring this will be inefficient,
as it leads to correlated residuals.

Example 7.5: Dimension of an ExpAR(1) process

Similar as in Example 2.4, we consider the ExpAR(1) process

Vi ={-0.9-095exp(=Y2 )}Yi 1 +er,  {e} = N(0,0.36).  (7.50)
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We showed that the skeleton (deterministic part) of this particular ExpAR
process has a limit cycle (—1.50043, 1.50043) which suggests that the dimen-
sionality of the distribution of {Y;,t € Z} equals two. To investigate this
issue, we generate T = 2,000 observations from the above process. Next, we

compute amy(h) (m = 2,...,10) for 100 consecutive h-values in the range
[0.349, 0.990].

Figure 7.3(a) shows a plot of logy, ém,y(h) versus logqh for m = 2,...,10.
We see that for approximately values of log,oy h < —0.17 there is a clear linear
relationship, indicating that A{Y},t € Z} is concentrated in a low-dimensional
space. Figure 7.3(b) shows (3, as estimates of [3,,. These estimates are cal-
culated by taking the LS values of the lines through three subsequent points,
corresponding to logg hi, log;g hit1, and logghiye (i = 1,...,98). For ii.d.
time series processes [, is equal to m, for small values of h. This is not
the case here, with slope estimates (3,, < m. In fact, it can be shown that

E(B\m) < m; cf. Exercise 7.1(d).

At this point it is appropriate to mention that in finite samples the asymptotic
normality of the BDS test statistic may not be accurate. A naturally alternative is to
use BS methods to approximate the distribution of the test statistic. One fast way of
computing p-values of (7.44) is by randomizing (permuting) the order of the observed
time series values. Because 0, 7(e;h) is a positive constant under randomization,

simulation can be restricted to the non-normalized statistic 6m7e(h) - {él,e(h)}w
For the observed p-values, which are invariant under a scale transformation, this
does not make a difference. Similarly, {C} ¢(h)}"™ is a constant under permutations.

Thus, one may determine p-values by computing the statistic ame(h) only. The

resulting procedure is as follows.

Algorithm 7.3: Bootstrapping p-values of the BDS test statistic

to obtain the series {&;}7_;.
(ii) Compute C’\myg(h).
(iii) Repeat steps (i) — (ii) B times, to obtain {6571;?@(}1)}1)3:1-
(iv) Compute the one-sided p-value as

1+ I(COR(R) 2 Cone()
B 1+ B '

~BDS
p

(i) Compute 5m,e(h) for the standardized residuals {e;}7_;, and permute {e;},

The nuisance-parameter-free property that any root-n consistent estimator of
the model parameters has no impact on the null limit distribution of the BDS test
statistic, under a class of linear and nonlinear conditional mean models, makes the
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test statistic a useful diagnostic tool in the context of nonlinear time series analysis.
On the other hand, the BDS test statistic suffers from some problems (Brock et al.,
1991).

e There is arbitrariness in the choice of h, which may affect both the power and
size of the test. In fact, some choices of h may render the BDS test statistic
inconsistent against certain alternatives. Thus, the probability of rejecting Hy
does not always approach 1, as T" — oo. In practice, h is usually taken as a
fraction of the standard deviation of the time series under study.

e Another problem is that the BDS test statistic, though asymptotically normal
under the null hypothesis, has high rates of Type I error, especially for non-
Gaussian data.’

In the next section various extensions of the BDS test statistic are considered
that are freed from some or all of these drawbacks.

7.4.2 Rank-based BDS test statistics

In an attempt to mitigate the problems with the BDS test statistic Genest et al.
(2007) propose a number of rank-based extensions. The first test statistic is a
circular version of the BDS test statistic Sy, (h) defined in (7.47). In particular, let
ey = e Vt € Nt Write Wy = (Wi, ..., Wit) = (ery... eimms1) (m € Z7T).
Then a circular version of the BDS test statistic (7.43) is given by

Smw (h) = VT C’”’W(h; —;%,)W(h)}m, (7.51)

where am’w(h) and o, (h) are defined in a similar way as respectively (7.43) and
(7.44). In analogy with S, ¢(h) it can be shown that the large-sample distribution
of Sy, w(h) is standard normal under the null hypothesis of no serial dependence.

In a similar fashion, Genest et al. (2007) propose a rank-based analogue of the
BDS test statistic. Let €; = rank(e;)/(T'+ 1) denote the normalized ranks of the
time series {e;}._;. Write Wt = (W1,t, ol Wm,t)/ = (é,.-,€—m+1)’. Then a
rank-based version of S, y(h) may be defined as

~

S W(h):ﬁc’”w(h) i (7.52)

™ w7 (P)

Again, under the Hy of no serial dependence, it follows that .S V~V(h) PN (0,1),
Vh € (0,00), as T' — o0.

This problem does not occur with the permutation-based BDS test statistic (Algorithm 7.2),
as it has exact size.
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Table 7.2: Rank-based BDS test statistics of serial independence using three functionals
(direct integration (D), Kolmogorov—Smirnov (KS), and Cramér-von Mises (CvM)), and
two empirical processes.

Functional Empirical processes (1)(2)

Dr(u) = VT{Br(u) - [T5, Gr(ux)} Bi.(u) = 2VT{Bj (u) - Br(u)}

_ 1 _ _ 1_ ~
b L = [, Db, ))AG(R) o= Bl maGm
—~ ~ % i —~ ~ Q %

KS M. o~ = (D v ( Mr = B, .., ’

mW T T(T+1 T+1) mW e {lory T<T+1 T+1)
CcvM T, &= o Dy (w)|2dB(u) f;w = Joam B2, (u)[2d B (u)

@ ET(U) = (721)71 Zlgigng H?:l I(|Wk,j - Wk,z| <ug) with u = (u1,...,um)" €0, 1]™;
Gr(h) = Br(h,1,...,1) with h € (0, 1].

(&) E}(u) =71 Zf:l H?;l{ﬁ(@k,i + uy) — ﬁ(ﬁ)kl — ug)}, where F(-) is the distribution of a U(0,1)
random variable; E;(u) =T, G(ug) with G(-) a Beta(1,2) distribution.

Clearly, the finite-sample performances of the test statistics (7.51) and (7.52)
depend on the choice of h. A common way to get around this problem is to integrate
out h with regard to some empirical process using various continuous functionals.
Adopting direct integration (D), the KS and CvM functionals, and two empirical
processes, Genest et al. (2007) propose six rank-based BDS test statistics; see Table
7.2. Moreover, they show that under Hy, all six test statistics converge in distribution
to centered Gaussian variables.

1600 A ;
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Time

Figure 7.4: S&P 500 daily stock price index for the time period 1992 — 2003 (3,102
observations) with two subperiods, denoted by vertical red medium dashed lines, from Novem-
ber 2000 — February 2003 (T = 608) and March 2003 — December 2003 (T = 218).

Example 7.6: S&P 500 daily stock price index

Figure 7.3 shows the daily S&P 500 stock price (closing) index from 1992
— 2003. It has long been hypothesized that stock prices, say {P;}, follow a
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Table 7.3: Bootstrap p-values of seven test statistics for serial independence applied to
daily S&P 500 stock returns. Time period November 2000 — February 2003 (T' = 608), and
March 2003 — December 2003 (T = 218); B = 1,000. Blue-typed numbers indicate rejection
of Hy at the 5% nominal significance level.

BDS Rank-based BDS test statistics

Period  m Smr Iz M\ =T 5 I.zM T,z
11/2000 - 2 021 007 014 008 057 053 091
02/2003 4 029 000 0.02 000 030 059 0.09
6 036 000 002 000 030 058 0.01
8 043 000 002 000 029 0.76 0.00
03/2003 - 2 021 091 031 089 033 022 0.00
12/2003 4 030 091 049 080 010 085 0.00
6 036 041 034 048 012 088 0.00
8 046 013 015 015 031 0.75 0.00

(geometric) random walk possibly with drift. We consider two sample sub-
periods. The first one (11/2000 — 02/2003; T' = 608), corresponds to the worst
decline in the S&P 500 index since 1931, with the end of the “dot-com bubble”
around November 2000. The second time period (03/2003 — 12/2003; T' = 218)
corresponds to an upward trend with moderate volatility, indicating the start
of a new bull market in the first quarter of 2003. Using the circular version
of the BDS test statistic, we test for serial independence in the series of daily
stock returns, Ry = log(P;/P;—1), with h = o, i.e. the standard deviation of
{Rt};f:l. In addition, using the six ranked-based test statistics, we investigate
Ry = rank(R,)/(T + 1).

Table 7.3 reports bootstrapped p-values, based on B = 1,000 bootstrap rep-
licates, for each of the seven test statistics. Note that for the first, downward,
period the results of almost all test statistics suggest that the underlying DGP
is not i.i.d. On the other hand, the p-values of the circular BDS test statistic
Sm,r, and the rank-based test statistics fm,ﬁ and Mm,ﬁ are insignificant at
the 5% nominal level for all values of m. The second, upward, period shows
a very different picture. There, except for the test statistics Tm’ 7> almost all
test results suggest that the process {R;,t € Z} is i.i.d., i.e., the S&P 500 daily

stock price index follows a random walk.

7.4.3 Distribution-based test statistics

The pairwise test statistic KS:‘FTS is a special case of a test statistic of multivariate
independence proposed by Blum et al. (1961). These authors consider the differ-
ence between the nonparametric estimator of the joint EDF and the product of
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the nonparametric marginals. In a time series context, with a set of observations
{}Q}?:l drawn from a strictly stationary m-dimensional process {Y;,t € Z}, the
corresponding empirical process is

m
H,, 7 (y) = HF y)}, yER™, (7.53)
where
1 T—m+1 m 1 T—m+1
Fnr(y) == D [[1Msics <), and Fly) = 5 >0 1(Yerio1 < wi),
t=1 =1 t=1
(i=1,...,m).

Various functionals of (7.53) can be used for testing the null hypothesis (7.4). Del-
gado (1996) proposes the CvM functional. When m = 2, the resulting test statistic
ﬁ% o (see Table 7.4) has the same asymptotic null distribution as the test statistic
of Blum et al. (1961) in the bivariate case. However, for m > 2, the asymptotic
covariance function of A%T is not convenient for the tabulation of critical values,
due to the complex nature of the limiting distribution of H,, ().
High-dimensional test statistics leading to considerably simpler asymptotic cov-
ariances under the null hypothesis than BS;% can be based on the Mobius transform-
ation (Rota, 1964), or decomposition, of the process H,, 7(-). Consider an index set
Sm = {A C{1,...,m};|A| > 1}, where |A| is the cardinality of the index set A.
Since |A| = m, S, contains 2™ —m — 1 elements. Now, the Mébius transformation
M decomposes H,, 7(-) into 2™ — m — 1 sub-processes G4 1 = M4 (H,, ), namely

Gar() =Y (-)"PH, r(y) [[ Flw)

BCA icA\B
T—m+1
2 [T{10i <v) —F}. yeB™ (7.54)
t=1 €A

where [[;c4 = 1 by convention. In this case, the characterization of serial independ-
ence of (Yi¢,...,Yny) is equivalent to having Ma(-) =0, for all A C {1,...,m}.

It follows from standard theory (see, e.g., Shorack and Wellner, 1984) that under
the null hypothesis of (serial) independence, G 4 7(-) converges weakly to a continu-
ous centered Gaussian process with covariance function

Cova(x,y) = [T { min{F(2:), Fw)} - F(z)F(v) }, xy € R™,
iI€EA

whose eigenvalues, given by

)\(ilv ’

b)) T w2 Al (g iy a))2 (i1, 70) €N,
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may be deduced from the Karhunen—Loeve decomposition of the Brownian bridge.
Moreover, G4 7(-) and G4/ 7(-) are mutually independent asymptotically whenever
A#£A.

Using the CvM functional, Ghoudi et al. (2001) propose 2™ —m —1 test statistics
of the form

Mgy = / {Gar(y)dFmr(y). (7.55)

When m = 2, (7.55) simplifies to the single test statistic Mg’ 0 2}T which, inter-

estingly, coincides with the test statistic A%TS (¢) at lag ¢ = 1. Thus, a Mdbius
transformation is not needed in this particular case. Under the null hypothesis of
(serial) independence, the limiting distribution of M§¥' is given by

2
Z )‘("lr"’i\AI)Z(il,~~-,i\A\)’

(il,...,i|A‘)€N

where the Z;, _; ,’s are independent N(0,1) random variables; Deheuvels (1981).

Observe that the sets A contribute differently to each of the test statistics Mg"%d,
with the biggest contribution coming from small-sized sets. To avoid this problem
it is convenient to standardize ME’%‘ by the asymptotic mean and variance of & 4|
which are, respectively, given by E(§4) = 1/6M41 and Var(€;,) = 2/90141. The lower
part of Table 7.4 displays the two resulting test statistics, denoted by the short-hand
notation GKR; and GKRs.

An obvious limitation of tests based on the above approach is the dependence
of the asymptotic null distribution of the G r(-)’s on the marginals of H,, 7 ().
To alleviate this problem, the original observations are replaced by their associated
ranks in Section 7.4.4.

7.4.4 Copula-based test statistics

Univariate

Similar as in Section 7.4.3, empirical stochastic processes can be based on the pseudo-
observations {ﬁt = ((A]l,t, . Um,t)/}thl (see Section 7.3.2). To be specific, the
natural analogue of (7.53) is defined as

1 T—m+1 m
Criw = = ; {HI{RtH L < (T + Vus) — Hu} uelo, 1™, (7.56)

=1

where {R;}]_, are the ranks of {Y;}1 ;. Using the M&bius transformation, Genest
and Rémillard (2004) define the 2™ — m — 1 stochastic processes

T—m—+1
G5 r(u ;T S I {tR <@+ 0w} ~Ur)}. (757)
t=1

€A



7.4 HIGH-DIMENSIONAL TESTS 287

Table 7.4: High-dimensional (m > 2) serial independence test statistics.

Reference Test statistic
~ r 2
Delgado (1996) AD Z {Hn (Y0},
1 T—m+1 m T— m+1
where Hynr(y) = = [T1(esima <wi) - H {7 3 1uia<u)}
t=1 =1 t=1
. A GKR
Ghoudi et al. (2001) ATER =3 (MR — (1/6141)) /4/2/90141,
A
GKR2 CvM |A| A
NG, max ‘(M W (1/6141)) /4/2/90] I]
where MCVM J{Ga,r(¥)}?dFm 7 (y)
T m+1
with Ga,r(y) = Z II {I(Yt+z 1<yi) — (yz)}
t=1 4€A

where Ur(+) is the distribution of a discrete random variable U uniformly distributed
ontheset {1/(T'+1),2/(T+1),...,T/(T+1)}, that is Ur(t) = min{[(T+1)t|/T, 1}.

Most conveniently, using the CVM functional, the copula-based version of EV%I is

My = /[O ]m{qu,T(U)}2du- (7.58)

)

Some algebra shows that (7.58) can be computed directly from the ranks as

T—m+1T—m+1
MG = 1 - & H {2T+1 Riyio1(Reyio1 — 1)

t=1 s=1 €A 2T(T - 1)

Ropici(Ropizi — 1) (Rygi1 V Rs+i—1)}
2T(T + 1) T+1 '

(7.59)

_l’_

Since the subset A and its d-translate, say A+J, generate basically the same process,
computation of the test statistic (7.59) can be restricted to subsets A € A, = {A C
Im;l € A,|A| > 1} with cardinality 2™~! — 1. The limiting distribution of M§""

is the same as that of flv%/l

Multivariate

Kojadinovic and Yan (2011) address the generalization of the univariate serial copula
correlation test to the case of continuous multivariate time series. Consider a strictly
stationary ergodic sequence of g-dimensional random vectors Y1, Yo, ..., where the
common distribution function of each Y; = (Yi4,...,Yy)" is denoted by F'(-) and
the associated copula by C(:). Furthermore, let m > 1 be an integer, let T =
T 4+ m — 1, and, for any ¢ € R9, let R;1,...,R; 7 be the ranks associated with
the univariate sequence {th}gl The ranks are related to the univariate empirical
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marginal distribution function FzT( +) through the equalities R;; = T" FzT(Y t)

(t=1,....,Ti=1,...,q) .
To build an empirical copula in the multivariate case, we need to introduce
some notation. First, given the index set B C {1,...,m}, we define the vector

up € [0, 1]™ by

W0 _ [ uY i€ Uiep{(i =D+ 1, g},
B 1 otherwise.

Next, given u € [0, 1]™? and 7 € {1,...,m}, define the sub-vector u; € [0, 1]7 of u
by

ugz;:U(j+(i71)q)7 (Z:177m7j:177q)

Finally, we form the mg-dimensional random vector Y; = (Y},...,Y] imo1) (=
1,...,T). Then, given {Y,;}X ;, and in analogy with (7.26), the serial (s) empirical
(multivariate) copula is defined as

T m q )
T TZHHI( ]T Jyt+i— 1)3 ])> ZHHI(RJ"H_i_lST/uEg;).
t=1i=1j=

t=1i=1j=1

A multivariate extension of the empirical process (7.56) is then
CS(u) = \/T{@ST(u) - H@ST(u@)}, u e [0, 1™ (7.60)
i=1

As noticed by Ghoudi et al. (2001) in the univariate case, it follows from the M&bius
decomposition (transformation) of C%(-), that the limiting distribution of the pro-
cesses VT M 4(C%) and VT M a,5(CS) are roughly the same. Hence, attention can
be restricted to the 2! — 1 processes VT M 4(C%) for A € A,,. Then, after some
tedious algebra, the resulting CvM test statistics are given by

c 1 1 Rijai_ R iz
MCT;AT:fZZH{H[l_( g+ 17\1/ 3,5+ 1)}

1 rm Ritri 1 VR i 1 rom Risii 1 VR 1
_TZH{I_( jit+ 1T/ g, -+ 1)}_fzn{l_( jys+ lT/ Jil+ 1)}

+% Z Z ﬁ [1 B (Rk,r+i—1;/,Rk,s+i—1)} } (7.61)

Unfortunately, adopting the KS functional, an explicit expression for multivariate

serial independence tests statistics is far more difficult to derive. Hence, we focus
CvM,c

on M AqT -
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For ¢ = 1, and using the approximation 7'~ T", (7.61) coincides with (7.59). In
contrast with ij%d “, however, the asymptotic null distribution of MEV;W 7 (g>1)
is no longer distribution free. To overcome this problem, a bootstrap procedure
is recommended. Below we distinguish between computing p-values for each A €
A, and combined p-values across all index sets. In the latter case, and following
Kojadinovic and Yan (2011), two p-value combination methods are considered, one
due to Fisher (F) and one to Tippett (T). For ease of reading, we remove the

. CvM,c
superscripts CvM and ¢ from M ;" .

Algorithm 7.4: Bootstrap-based p-values for multivariate serial in-
dependence tests
(i) Compute the test statistic MggT for |A| < h with h fixed in {2,...,m—1},
using the original time series data {Y;}7_,, and A € A,,.

(ii) Generate B pseudo-random samples of size 17" from a UJ0, 1] distribution,
and let MX”)(LT (b=1,...,B; A€ A,) denote the value of the test statistics
M4 47, where B is some large integer.

(iil) e p-values for each A € A,,:
Compute an approximate p-value for the test statistic MX)qu (Ae An)

as follows
L4 (MY >MO
M, )=2 i (1 D ), i€f{0,1,...,BY.

The factor 1/2 ensures that the p-values are in the open interval (0, 1)
so that transformations by inverse CDFs of continuous distributions
are always well-defined.

e Combined p-values:
For all i € {0,1,..., B}, compute

FO = -2 3 tog (B, 1)),
AcAn,

and

(1) _ (1)
T, = min lo (M
T T el g {p Agq, T)}

Approximate “global” p-values are then given by

& B
1 ~ 1
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Figure 7.5: Dependogram summarizing the results of the multivariate test of serial inde-
pendence for the climate change data set; ¢ =2, m =5. A red star denotes the approximate
critical value.

Example 7.7: Climate Change (Cont’d)

We illustrate the use of the preceding test statistics by revisiting the climate
change data of Example 1.5. It can be verified that the 6'3C and 6'%0 time
series take only 149 and 133 unique values out of 7' = 216 observations, which
means that there is a non-negligible number of ties in the data. Hence, some
artificial smoothing of the series is needed in order to meet the assumption of
continuous marginal distributions of the proposed test statistics. For instance,
the method of jittering (adding random uniform noise to the series) can deal
with this problem. For simplicity, we ignore the ties and focus on the original
data.

To visualize the results of the serial independence tests it is convenient to
use a graphical display, called dependogram. For each subset A, a vertical
bar is drawn of height corresponding to the value of the subset test statistic
Mg:’;f 7. A star denotes the approximate, bootstrapped, critical values of

MXV;A fc . Subsets for which the bar exceeds the critical value are considered to
be composed of serially dependent variables.

Figures 7.5 displays a serial dependogram with ¢ = 2 and m = 5 for ij;\f :’Fc
applied to the time series 6'2C and §'%0O jointly. The global test statistic
takes the value 0.878 x 10™2 with p-value 0.500 x 1073. The combined tests
a la Fisher (Fr) and a la Tippett (Tr) both have a p-value of 0.500 x 1073.
Thus, there is evidence of serial dependence. In fact, the rejection of the
null hypothesis of serial independence appears to be essentially due to subsets
{1,2},...,{1,5}, while the test statistics are not significant for other subsets.

7.4.5 A test statistic based on quadratic forms

In view of the quadratic form A?(-) given by (7.13), a natural way of forming a
high-dimensional test statistic for serial independence is to replace the integrals by



7.5 APPLICATION: CANADIAN LYNX DATA 291

empirical averages of (,ugn),um = Jpm Jpm Knly — x)du(z)( )du(”(x) (i,5 = 1,2).

For two independent m-dimensional processes {Y,t € Z} ~ ugn) and {Yy,t' €

7} ~ ,ug) (t # t') the first term (u,(%), u%)) can be consistently estimated by the
U-statistic estimator

Z Z Kn(Y; i+3 s+j)

= s=1 5=0

—1 T—m+1i—1 m—1
Fan s Hip, 9 )

(2) (2)

using a product kernel. Similarly, the terms ( ,u,(%), ug)) and (g, pm’ ) can be con-
sistently estimated by

T—m+1m—1
@A) = 7 > T Gulvies)
t=1 j=0

m—1 T—m+1

1
22 2y -
(/‘Lm Hum) (T—m—i—l)m ' Z Ch,T Y;‘/Jr] )
7=0 t=1
where
R 1 T—m-+1
Ch,r(y) = Tom+1 > Kn(y,Y2)
=1

is a kernel-based estimate of the one-dimensional correlation integral associated with
the marginal distribution function. Collecting the above expressions together, Diks
and Panchenko (2007) propose the test statistic

Anrr = (A%, B%)) = 2%, 59) + (@), A (7.62)

Note that, for Kp(y) = I(|ly| < h), the estimator (,u%),,u,gn)) coincides with
Cr,1(Y; h) given by (7.32) as an estimator of the correlation integral. So, using
the uniform kernel with the functional ( uﬁ}), ug)) - (uﬁﬁ), ,u%)) will lead to the BDS
test statistic (7.43), after standardizing. The theory of U-statistics can be used
to prove the asymptotic normality of ADP m.r under the null hypothesis of serial in-
dependence. An alternative way of obtamlng critical values and p-values involves

using the bootstrap or the permutation methodology as outlined in Section 7.3.6.

7.5 Application: Canadian Lynx Data

The Canadian annual lynx trappings records (1821 — 1934; 7' = 114) in the MacK-
enzie River district of North-West Canada (i.e. the number of furs harvested by the
Hudson Bay Company), plotted in the upper panel of Figure 7.6, provide an inter-
esting basis for many nonlinear time series techniques. The data exhibits irregular
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Figure 7.6: Upper panel: yearly Canadian lynx data for the time period 1821 — 1934
(blue solid line), and yearly Canadian snowshoe hare data (in thousands) for the time period
1905 — 1934 (red solid line). Lower panel: (a) the sample ACF for the complete lynz series,
and (b) the sample cross-correlation function (CCF) between the lynx series and the snowshoe
hare series for the time period 1905 — 1934. Both plots contain 95% asymptotic confidence
limits (blue medium dashed lines).

periodic fluctuations with sharp and large peaks and relatively small troughs. As
shown in Figure 7.6(a), the pattern of the sample ACF of the data indicates a cyc-
lical behavior of about ten years (a 9.61- year periodicity). The data set is assumed
to represent the relative magnitude of the lynx population and, hence, is of great
interests to ecological researchers. To understand the cyclical behavior in the Ca-
nadian lynx series, the upper panel of Figure 7.6 also shows 30 yearly observations
of the Canadian snowshoe hare series for the time period 1905 — 1934. Snowshoe
hares (prey) constitute a major part of the lynx’s (predator) diet. Note that the
hare series lags behind the lynx series. Indeed, as can be seen from the sample CCF
in Figure 7.6(b) there is a significant relationship between both series, but the lynx—
hare interaction is not instantaneous, rather there is a time delay of about 2 years.
According to McCarthy (2005), a possible cause of the cyclical fluctuations is that
hare populations increase and eat vegetation. In response, the vegetation produces
secondary defence compounds which are less palatable and nutritious. This triggers
a crash of the hare population — hares die in great numbers. However, the lynx con-
tinue to feed on hares, but run out of prey eventually. This is followed by a decline
in the lynx population. Next, the vegetation slowly recovers and this rejuvenates
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Table 7.5: Five models fitted to the Canadian lynx data set; T = 114.

(Pooled)
Reference Model G2
Moran (1953) Y; = 1.0549 4 1.4101Y;_q — 0.7734Y;_ + &4 0.0459
0.546 + 1.032;_1 — 0.173Y;_2 4 0.171Y;_3
. v —0.431Y;_4 + 0.332Y;_5 — 0.284Y; ¢ o
ong (1990, p. 387) Yi =19 o0y . 4 ), Yoo < 3.116 0.0358
2.632 + 1492, — 1.324Y; o + &2, Yioz > 3.116
0.083 + 1.096Y;_1 + =1, Yi_o < 2.373
0.63 4 0.96Y;—1 — 0.11Y;_2
Tsay (1989) Y; ={ +0.23Y; 3 —0.61Y; 4 +0.48Y; 5 0.0348()
—0.39Y;_6 + 0.28Y;_7 +&\2), 2.373 < Y;_5 < 3.154
2.323 + 1.530Y;_1 — 1.266Y; 2 +2\>, 3.154 < Y; o
Ozaki (1982) (3) Y; = [1.167 + (0.316 + 0.982Y;_1) exp(—3.89Y;2 ;)] Yi—1
—[0.437 + (0.659 + 1.26Y;_1) exp(—3.89Y,2 | )]Yi—2 + &¢ 0.0433
Terisvirta (1994) Y = 1.17Y;_1 + (—0.92Y;_5 + 1.00Y;_3 — 0.41Y;_4 + 0.27Y; _g
—0.21Y;—11) x [1 + exp{—1.73 x 1.8(Y;—3 — 2.73)}) "' + &+ 0.0350

M Var(h{") = 0.0259 and Var(h{®)) = 0.0505.

@ Var(h{?) = 0.015, Var(h{?) = 0.025, and Var(h{*) = 0.053.

(3) As suggested by Tong (1990), the parameter 1.167 in the ExpAR(2) model replaces the original
parameter 0.138 given by Ozaki.

the hare population, and so the cycle continues.

It is generally believed that the lynx series is nonlinear, but there is no agreement
on which nonlinear model is most appropriate for the data. Lim (1987) summarizes
the work done in analyzing this time series. Five estimated time series models, for
the log-transformed data (base 10), are reproduced in Table 7.5. The SETAR(2;7,2)
model admits nice biological interpretation; see, e.g., Stenseth et al. (1997). Below
the threshold value the lynx population roughly increases. But above the threshold
value, the population decreases due to the complex interplay between the available
food, the mortality due to overall predation, and the indirect effects of predation by
a suite of predators.

Table 7.6 shows p-values, based on 1,000 BS replicates, of eight high-dimensional
tests for serial independence applied to the residuals of the fitted models. We see that
S, MY 1, Tm,Ty and M, r fail to reject Hy at the 5% nominal significance level
for all moélels, and all values of m. A similar conclusion emerges from the p-values
of A%PT, except for the ExpAR(2) model with m = 2. Interestingly, all p-values
sugges’t that the SETAR(2;7,2) and SETAR(3;1,7,2) models adequately capture
the nonlinear phenomena in the data. This result confirms earlier observations made
in the literature; see, e.g., Tong (1990). For the ExpAR(2) model, we observe that
Hy is rejected at the 5% nominal significance level on the basis of the reported p-
values of the test statistics T,;'; 7, and Ty, p. For the LSTAR(11) model, evidence of

residual dependence can be noted from the p-values of I I* T and T
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Table 7.6: Bootstrap p-values of eight test statistics for high-dimensional serial independ-
ence applied to the residuals of five time series models fitted to the log of the Canadian lynx
time series (see Table 7.5); T = 114, B = 1,000. Blue-typed numbers indicate rejection of
Hy at the 5% nominal significance level.

BDS Rank-based BDS test statistics

Model m Smr Iig Miyp Thp Imor Mpr Tr ADPL
AR(2) 2 025 007 055 004 0.67 054 001 0.23
4 031 00l 038 001 040 012 001 0.29
6 043 001 062 001 056 004 002 0.50
SETAR(2;7,2) 2 026 033 064 034 059 081 021 025
4 034 015 067 013 094 028 0.09 0.4
6 044 025 058 021 063 0.15 0.08 0.60
SETAR(3;1,7,2) 2 025 0.66 038 0.63 098 0.56 0.13 0.50
4 032 040 027 032 092 027 0.15 0.52
6 041 044 017 041 062 015 0.14 0.38
ExpAR(2) 2 025 012 032 00l 012 015 001 004
4 033 014 039 001 014 068 002 0.15
6 043 038 055 000 0.38 032 004 0.33
LSTAR(11) 2 025 002 041 003 023 091 026 037
4 032 00l 020 001 019 099 024 0.09
6 042 0.04 018 004 008 095 030 0.15

Not surprisingly, the lack of fit of Moran’s AR(2) model, and Ozaki’s ExpAR(2)
model has been noted by other researchers. However, the fact that the residuals of
the LSTAR(11) model do not pass all test statistics is new. It suggests that the
model may be further improved. Finally, note that for the AR(2) model no evidence
of residual dependence is detected by T; o when m = 2, while for m = 4 and m = 6
the p-value of this test statistic is smaller than the 5% nominal significance level.
Thus, it is recommended not to rely completely on low-dimensional test results.

7.6 Summary, Terms and Concepts

Summary

Serial independence is central to time series analysis, especially within the context
of checking the adequacy of fitted nonlinear time series models. In this chapter, we
highlighted influential research on nonparametric test statistics for serial depend-
ence in conditional mean. We have not said anything about other types of serial
dependence, for instance, through the conditional variance or through conditional
higher order moments. Readers interested in this topic should consult Su and White
(2008), Huang et al. (2015) and the references therein.

An obvious question is, which serial independence test should one adopt in prac-
tice? Within the context of single-lag and multiple-lag test procedures, we have
already dwelt upon conclusions emerging from the extensive MC simulation study
by Bagnato et al. (2014). Generally speaking, the tests considered by these authors
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have reasonable size and power properties compared with many nonlinear alternat-
ives. We should emphasize, however, that adopting the limiting null distribution of
a test statistic can be hazardous, except for very large sample sizes T. When using
random permutation or bootstrapping approaches the size of a test statistic is often
much closer to its nominal significance level for T" < 500.

On the other hand, it is now generally believed that many empirical time series,
while nonlinear, are generated by high-dimensional processes. Hence, it is natural
to consider test statistics designed for this purpose. In this case, several of the rank-
based extensions of the BDS test statistic discussed in Section 7.4.2, and the copula-
based test statistics of Section 7.4.4 are useful. In particular, these test statistics
are more powerful than their single-lag and multiple-lag counterparts, with fm,T as
the best performing rank-based BDS test.

Terms and Concepts

binwidth, 270 Kolmogorov (K) divergence, 264
boundary effects, 269 mixing proportions, 313

copula density, 267 Mobius transformation, 285
correlation dimension, 280 multiple-lag tests, 272
correlation integral, 260 nuisance-parameter-free property, 275
Cressie-Read (CR) divergence, 265 Parseval’s identity, 262

Csiszar (C) divergence, 264 permutation, 277

Daniell window, 273 portmanteau-type test, 266
dependogram, 290 pseudo-observations, 269
empirical copula, 269 quadratic (Q) distance, 261
Gaussian copula, 307 Rényi (R) divergence, 264
generalized spectral density, 273 single-lag tests, 270

Hellinger (H) distance, 264 Student ¢ copula, 307
high-dimensional tests, 278 Tsallis (T) divergence, 264

independence copula, 267
jittering, 290

7.7 Additional Bibliographical Notes

Sections 7.1 — 7.3: Tjgstheim (1994, 1996) reviews the early literature on (non)parametric
tests of serial independence. An extensive bibliography of permutation, sign, and rank-
based test statistics for serial independence is provided by Dufour et al. (1982). Hallin
and Puri (1992) cover the literature of rank tests. In the context of econometric applica-
tions, Ullah (1996) provides a unified treatment of various entropy, divergence and distance
measures. Giannerini et al. (2015) propose test statistics for pairwise nonlinear depend-
ence under the null hypothesis of general linear dependence rather than serial independ-
ence. The R-package that implements these latter test statistics is available at CRAN
(tseriesEntropy) and at http://www2.stat.unibo.it/giannerini/software.html.


http://www2.stat.unibo.it/giannerini/software.html
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The asymptotic properties of nonparametric estimators of copulas for time series processes
are considered by Fermanian and Scaillet (2003), and Ibragimov (2009), among others.

Section 7.4: Matilla—Garcia and Ruiz—Marin (2008) propose a test statistic for high-
dimensional serial independence using symbolic dynamics and permutation entropy. The
test requires unrealistic large sample sizes for dimensions m > 6. De Gooijer and Yuan
(2016) explore a link between the correlation integral and the Shannon entropy, or second
order Rényi entropy, to derive two nonparametric portmanteau-type test statistics for serial
independence. In commonly used samples, both tests performed similarly as the best per-
forming rank-based BDS test statistics of Section 7.4.2.

Back and Brock (1992a) extend the BDS test statistic to vector time series. Wolff and
Robinson (1994) observe that the estimator of the unnormalized correlation integral has
a limiting Poisson distribution under some moderate assumptions regarding the marginal
distribution. This motivated a nonparametric test procedure with slightly reduced size
distortion compared with the BDS test statistic. de Lima (1996) formulates five conditions
under which the BDS test statistic is asymptotically nuisance-parameter-free.

Within the context of independent component analysis, a concept that is important in signal
processing and neural networks, a subsampling pairwise test statistic for serial independ-
ence has been suggested by Karvanen (2005), based on the test of total independence by
Kankainen and Ushakov (1998). Related to this, is the paper by Wu et al. (2009). They pro-
pose a smoothed bootstrap-based test statistic for high-dimensional serial independence in
multivariate time series data by combining pairwise independence tests for all pairs. Other
recently proposed test statistics suitable for both time-independent and time-dependent com-
ponent analysis have been derived by, among others, Achard (2008), Baringhaus and Franz
(2004), Ferndndez et al. (2008), Székely et al. (2007) (see the R-energy package), Gretton et
al. (2005), and Zhou (2012).

Evidently, many density-based serial correlation tests require the data come from a
continuous population. Although they will no longer be distribution free, some of the dis-
cussed test statistics can also be used in the discrete case. For instance, the Skaug—Tjgstheim
(1993b) test statistic A5 can be applied to continuous as well as to discrete (or discretized)
data, after some slight adjustment of the form of the test. For a stationary sequence of a
categorical variable, high-dimensional serial independence can be checked via a test statistic
developed by Bilodeau and Lafaye de Micheaux (2009).

The so-called k-nearest neighbor density estimator avoids the problem of a pre-defined grid
required to compute the multi-dimensional copula-based histogram estimator discussed in
Section 7.3.2; see Blumentritt and Schmid (2012). Alternatively, for estimating the copula
density, a nonparametric method proposed by Kallenberg (2009) may be adopted.

Exercise 7.7: Various MAR models are available in the literature. Le et al. (1996), and
Wong and Li (2000b, 2001) assume that the mixing proportions are time invariant. More
general (Gaussian) MAR and MAR-GARCH models follow by assuming that the mixing
proportions are functions of observed variables; see, e.g., Lanne and Saikkonen (2003), and
Kalliovirta et al. (2015) and the references therein. Sufficient conditions for strict and second
order stationarity are given by, among others, Zeevi et al. (2000), Wong and Li (2000b), and
Saikkonen (2008).
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7.8 Data and Software References

Data

Section 7.5: The Canadian snowshoe hare data derive from the main drainage of the
Hudson Bay, based on trappers’ questionnaires. The hare data used in this section are
taken from the R-TSA package, and first published by D.A. MacLulich (1937) in the paper
“Fluctuations in the Number of the Varying Hare (Lepus americanus)” (Univ. of Toronto
Press, Ontario, Stud. Biol. Ser. No. 43, 136 pp.) which is not widely available. The paper
by E.L. Leigh (1968) published in M. Gerstenhaber (Ed.) Some Mathematical Problems in
Biology (American Mathematical Society, Providence, pp. 1 — 61) contains yearly hare data
for the time period 1847 — 1903. There are slight differences between this data set and the
data contained in the TSA package. The main source for the Canadian lynx data is Table 4
in the paper by C. Elton and M. Nicholson (J. Anim. Ecol., 1942, 11, pp. 215 — 244). The
data set is on DataMarket (http://data.is/TSDLdemo) at http://data.is/Ky69xY and
can be read directly into R using the rdatamarket package.

Software references
Section 7.3: The entire R code for replicating the simulation study of Bagnato et al. (2014)
is available at the website of this book.

Section 7.4: A windows executable file for computing the values of the slope coefficient
in (7.49) can be downloaded from http://kocenda.fsv.cuni.cz/software.htm. The
copula-based univariate and multivariate serial independence test statistics are implemented
as separate functions in the R-copula package; see, e.g., Exercise 7.5. These functions are
briefly described by Kojadinovic and Yan (2010). Partly overlapping the content of the
R-copula package are the functions for nonparametric testing of mutual serial independence
contained in the R-IndependenceTests package. When applying BS methods to functionals
based on the empirical copula, standard ranking procedures are computationally expensive.
Blumentritt and Grothe (2013) present a pseudocode algorithm that reduces the running
time of these procedures considerably.

A fast MATLAB code for computing the traditional BDS test statistic was developed by
Ludwig Kanzler; see http://papers.ssrn.com/paper.taf?abstract_id=151669. The
code is available at http://econpapers.repec.org/software/bocbocode/t891501 .htm.
Also BDS C++, and BDS MATLAB source codes are available at the address http://
people.brandeis.edu/~blebaron/.

C++ code for computing the rank-based BDS test statistics (made available by Kilani
Ghoudi), Gauss code for computing the Hong-White, the Skaug-Tjgstheim, and Hong’s
generalized spectral test statistics (made available by Yongmia Hong) can be downloaded
from the website of this book. Based on a generalized spectral approach (Section 7.3.5) of
nonlinear model residuals, Hong and Lee (2003) propose some new diagnostic test statistics
for serial independence. Their GAUSS code is available at the website of this book. Also
available is a set of C++ computer routines written by Hans J. Skaug which are based on
the various test statistics introduced in the papers by Skaug and Tjgstheim (1993a,b), and
Skaug and Tjgstheim (1996).

Section 7.4.5: The C++ code of the ﬁ?fT test statistic (7.62) can be downloaded from
Cees Diks’ web page located at http://cendef.uva.nl/people.


http://cendef.uva.nl/people
http://people.brandeis.edu/~blebaron/
http://people.brandeis.edu/~blebaron/
http://people.brandeis.edu/~blebaron/
http://econpapers.repec.org/software/bocbocode/t891501.htm
http://papers.ssrn.com/paper.taf?abstract_id=151669
http://kocenda.fsv.cuni.cz/software.htm
http://data.is/Ky69xY
http://data.is/TSDLdemo
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Figure 7.7: Selected second-order kernel functions.
Appendix

7.A Kernel-based Density and Regression Estimation

In this Appendix, we review some major concepts of kernel density and regression estimation
in the i.i.d. case. Out of necessity, the discussion is cursory. The interested reader can,
for instance, consult Hardle (1990), Wand and Jones (1995), or Li and Racine (2007) for
accounts with greater detail.

Univariate density estimation

Let X € R be a random variable with continuous distribution function F(-) and a proper
density f(-). The goal of kernel density estimation is to approximate f(-) from a random
sample {X;}™ ;. Given this set of realizations, a natural estimator of F(-) is given by
Fo(z) = nt Yo I(X; < x) Va € R. However, differentiating F,(-) with respect to x
would not lead to a useful estimator of a smooth density function f(-). Instead, for small
values of h,, > 0, a two-sided finite difference approximation to f(-) follows from

]?hn (2) = Fo(z+ hn)Q;nFn(x — hy)
! le—h <X, <+ hy) Z (‘X ) (A1)
nh 2 h ' '

Clearly, ﬁn () counts the proportion of observations falling in the neighborhood of z. The
parameter h,, (bandwidth), controls the degree of smoothing: the greater h,,, the greater
the smoothing.

Equation (A.1) is a special case of what is called kernel density estimator with a weight
function, or kernel, K(-) = $I(| - | < 1). The general, basic, kernel estimator may be written
compactly as

ﬁn(x):%zfg(w;jg) :lz;ghn(x_xi), (A.2)

where Ky, (-) = K(-/hy)/hn. Here, K(+) is a so-called kernel function.

Kernel functions
A kernel function K: R — R is any function for which fR u)du = 1. A non-negative
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Table 7.7: Some second-order (v = 2) kernel functions. (")

Kernel Equation R(K) pu2(K) eff(K) C2(K)
Uniform Kpgo(u) = 31(Ju] < 1) 1/2 1/3 1.0758 1.84
Epanechnikov  K[g)1(u) = 2(1 —u?)I(Ju| < 1) 3/5 1/5 1.0000 2.34
Biweight Kp2(u) = 12(1 —u?)?I(Ju] < 1) 5/7  1/7 1.0061 2.78
Triweight Kps(u) = 32(1—w?)’I(Jul <1) 350/429  1/9 1.0135 3.15
Gaussian Kpg],00 (1) = 5= exp(—3u?) 1/2y/7 1 1.0513 1.06

()" All kernels are supported on the interval [—1, 1] except for the Gaussian kernel
which has infinite support.

kernel satisfies K(u) > 0 Vu which ensures that K(-) is a pdf. A symmetric kernel satisfies
K(u) = K(—u) Yu. In this case all odd moments of a kernel are zero, where the moments
of K(-) are defined by

i (K) :/Rqu(u)du.

The use of symmetric and unimodal kernels is standard in nonparametric estimation, and
will henceforth be adopted. The order of a kernel, say v, is defined as the first non-zero
moment, i.e. if po(K)=1and p;(K)=0(j=1,...,v—1), but u,(K) # 0. Some common
second-order kernel functions are listed in Table 7.7 and exhibited in Figure 7.7. The first
four second-order kernels are special cases of the polynomial family

(2p+ 1!

2r+ipl (1 —=u®)PI(jul <1), (p=0,1,2,3).

Ky p(u) =

The Gaussian kernel follows by taking the limit p — oo after re-scaling. Higher-order kernels
are smoother, reducing the order of the bias of the curve estimator provided large sample
sizes (n > 1,000) are available. The basic shape of the kernels are similar. Since, however,
higher-order kernel functions take on negative values, the resultant estimate of f(-) also can
have negative values.

Distance measures and relative efficiency R
A common and convenient measure of evaluating the estimation precision of fy, (-) is the
MSE, which at a single point z, is given by

MSE(ﬁn (m)) = ]E{(fhn (x) — f(x))Z} = Bias(fhn (a:))2 + Var(fhn (x)) (A.3)

If we want to minimize (A.3) with respect to h,, we are confronted with a bias-variance
trade-off as mentioned earlier. Rather than measuring the distance of the kernel density
estimator in terms of the pointwise MSE, a “global” measure is often preferred in practice.
Two most popular measures are the integrated squared error (ISE) and the mean integrated
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squared error (MISE), where

1SE(F (2)) = [ (Fulo) = @) o
MISE(F, (@) = BISE(Fo, 0)] = B[ [ (Fu.@) = 1(@)) aa].

Since we can reverse the order of integration (over the support of X and over the probability
space of X), we have MISE(]?hn (2)) = Jp MSE(]?hn (z))dz so that MISE equals to the
integrated MSE, a measure which does not depend upon the data.

Ideally, we want to pick a bandwidth value h,, such that it minimizes the MISE. How-
ever, the optimal bandwidth that minimizes the MISE depends on the unknown pdf f(-).
In order to make progress under this distance measure, it is usual to employ asymptotic
approximations to bias and variance of the kernel density estimator. The result is called
asymptotic MISE (AMISE), i.e., AMISE(fy, (z)) = [y AMSE(f, (z))dz with AMSE the
asymptotic MSE of fhn() The optimal bandwidth, say A, is the one that minimizes the
AMISE(+), giving rise to AMISE,,(-).

Now, given that we have selected the kernel order v, which kernel should we use? It
is straightforward to verify (cf. Exercise 7.7) that the kernel’s contribution to the optimal
AMISE is the following dimensionless factor:

AMISE,y, (K) o (u2(K)R(K)2)/ Y (A.4)

where R(g) = [ 9%(2)dz is the roughness penalty of the function g(-) (column three of Table
7.7). Then, to compare kernels, the efficiency (eff) of kernel K (-) relative to kernel K*(-) is
defined as

AMISE, (k) )<2u+1>/2u ~( 12 (K) >1/2u R(K)

off(K) = (AMISEDpt(K*) 2(K%))  R(K*)

(A.5)

Usually, the Epanechnikov kernel is taken as a reference kernel since it is optimal in a
minimal variance sense.

The fifth column of Table 7.7 shows the asymptotic relative efficiency of estimating f(-)
with kernel K(-) as compared to estimating it with K[,)1(-). We see, for instance, that
relative to K,y 1(-) the uniform kernel has an asymptotic efficiency loss of about 7% when
v = 2. Similar observations follow for the other kernels. In general, there is no single kernel
that can be recommended for all purposes. One serious candidate is the Gaussian kernel,
however, it is relatively inefficient and has infinite support. Even the Epanechnikov kernel is
not so attractive because it has a discontinuous first derivative, and hence it is inappropriate
for density derivative estimation.

Bandwidth selection

For practical problems the choice of the kernel is not so critical, as compared to the choice of
the bandwidth. The bandwidth depends on the sample size n and has to fulfill h,, — 0 and
nh, — oo when n — oo as a necessary condition for consistency of the density estimator.
Clearly, this result is not very helpful for finite-sample application. Rather, we may use the
AMISE-optimal bandwidth with R(f*)(-)) replaced by R(gg;) (+)) where g, (+) is a plausible
reference density, ox is the sample standard deviation, and f®*)(-) is the vth derivative of
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f(-), assuming it exists. Assume g, (*) = @z, the N'(0,5%) density. It can be shown (cf.
Exercise 7.7) that

V)N—1/(20 ~ Tl 1/ (2v+1)
R(wé\;) 1/(2v+1) _ 2UX (é;)l) . (AG)

Then a rule-of-thumb (rot) bandwidth is given by

heot = 0x Cy (K)n =/ @), (A7)
where
L (VTWDRR(K)\ Y/ v+
Cu(K) = 2(2V(21/)!M%(K)> '

The last column of Table 7.7 shows values of C,(-) when v = 2. If a Gaussian second-
order kernel is used, (A.7) is often simplified to h,,, = & «n~ Y%, Rule-of-thumb bandwidths
are sensitive to outliers. A robust version of the rule-of-thumb bandwidth rule is h,,, =
min{Gx, (IQRy/1.34)}n~'/> where IQRy is the interquartile range computed from the
sample distribution of X.

Rule-of-thumb bandwidths are “pilot” bandwidths, i.e. they are a useful starting point.
A more flexible way for obtaining bandwidths is to use a so-called plug-in bandwidth pro-
cedure. This method is based on considering some type of quadratic error between the true
function and its estimator. Minimizing an asymptotic approximation of the resulting error
and replacing the unknown parameters by estimates gives the optimal (plug-in) bandwidth.
Plug-in methods have been extensively studied for nonparametric univariate density estim-
ation, but for multivariate data the choice of a method is less clear. A flexible and generally
applicable alternative, is CV.

Multivariate density estimation

Multivariate kernel density estimation is a straightforward extension of plain univariate
estimation. Now, suppose that X; is a p-variate i.i.d. random variable and we want to
estimate its density f(x) = f(z1,...,2p) (x € RP), given a set of observations {X;}7_; from
f(). Analogue to (A.2), the multivariate kernel density estimator takes the form

fu(x) = ﬁZK(H_l(X—Xi)) = %ZICH(X—XZ-), (A.8)
i=1 i=1

where H is a p X p symmetric positive definite matrix of bandwidths, and
Ku(x) = [HY2K(H/?x).

Here, K(-) is a p-dimensional kernel function satisfying [ K (x)dx = 1. In practice, a product
of p univariate kernels K, (u;), such as a univariate standard Gaussian density function,
is commonly used for K(-), i.e., K(u) = ?:1 Kuniv(u;). The matrix H is often taken to
be a diagonal matrix with common diagonal elements h,,. As in the univariate case, one
additionally desires that K () > 0 so that K(-) is a proper pdf.

Suppose H = diag(hy,,...,h,). Then, with some algebra, it can be shown that the
optimal (in the sense of minimizing the AMISE) bandwidth is given by

v2pR(K)P ) 1/(2u+p)n71/(2”+p)

hopt _ R(Vuf)fl/@lﬂfp) (( 21/#2 (K) (AQ)
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where

I/

93 55

When the observed data set is from a multivariate normal density ¢, an explicit expres-
sion for R(V”¢p) can be calculated straightforwardly. By replacing R(V" f) by R(V¥¢p) in
(A.9), we obtain the rot-bandwidth

“t

hmt = UjCV’p(K)n_l/(2y+p) (] = 17 2a cee 7p)7 (AlO)
where
ﬂp/22p+y_1(ul>2R(K>p 1/(2v4p)
C,,(K)= ,
= (s o - )

and with o; the standard deviation of the jth variable, which can be replaced by its sample
estimator in practical applications. The constant C, ,(-) is exactly 1 in the bivariate case
(p = 2), with a second-order Gaussian kernel. Numerical values of C, ,(-) for other combin-
ations of kernel functions, p, and v can be obtained directly using the results for R(:) and
iy (+) given in Table 7.7.

Note from (A.8) that, unless X; is distributed more or less uniformly in the p-dimensional
space, there is the risk that for a given bandwidth, no data lies in the neighborhood specified
by H. This problem becomes worse as p increases, and is known as the “curse of dimen-
sionality”. Hence, in practice, multivariate kernel density estimation is often restricted to
dimension p = 2.

Nadaraya—Watson estimator

Let {(X;,Y;)}; represent n independent observations of the random pair (X,Y’), where
X = (X1,,...,Xp:) is a p-variate random variable. To keep things simple, we assume that
such data is generated by the process

Yi = pu(X5) + e, (A.11)

where {¢;} is a sequence of i.i.d. zero mean and finite variance random variables such that
€; is independent of X;, and p: RP — R is an “arbitrary” function called the nonparametric
regression function and it satisfies pu(x) = E(Y]|X = x) (x € RP).

We wish to estimate p(-). If p(-) is a smooth function at point x = (z1,...,xp)’, re-
sponses corresponding to X;’s near x should contain some information about the value of
u(+). Therefore, local averaging of the responses about X = x may yield a meaningful es-
timate of u(-). One particular formulation, called Nadaraya—Watson (NW) kernel estimator
and attributed to Nadaraya (1964) and Watson (1964), uses a kernel function to vary the
weights given to the responses. In particular, a kernel estimate of u(-) is a weighted average
of observations in the neighborhood of x, and is defined as

i (x) = Zizlﬁgéxx_ X ZW (A.12)

with the weights W;(x) = Ka(x — X;)/ > i, Ka(x — X;) summing up to one, and where
H is a p X p symmetric positive definite matrix of bandwidths.
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Figure 7.8: Local averages: (a) based on n = 20 observations from the DGP Y; = X3 +¢;
with {g;} "= N(0,1), and {X;} & Ul[-2,2]; (b) based on n = 100 observations from the
same DGP as in part (a).

The kernel regression estimate can be more formally derived from the regression of X
to Y, ie, pu(x) = [puf(ylx)dy = [puf(x,y)dy/g(x) where the density g(-) is assumed
positive at x. Indeed, estimating these densities using univariate and multivariate kernel
density estimates (all with the same kernel) results in a kernel regression estimate which
matches (A.12). Alternatively, the kernel regression estimator (A.12) can be viewed as a
local constant fit about x which minimizes the weighted sum of squares of the residuals
(weighted by the product kernel Ky, (v) = h,? [V, K(vi/hy,)).

Example A.1: NW Kernel Regression Estimation

Figure 7.8(a) shows two NW kernel smoothed averages based on the series {(X;, Y;)}2%,
generated from the model Y; = X3 +&; with {g;} "= N(0,1), and {X,} <" U[-2,2).
The true regression function y = x2 is shown by the black solid line. Using a Gaussian
kernel with h,, = 0.3, the local averages are shown as a blue medium dashed line, and

the local average corresponding to h,, = 0.1 by the red dotted line.

The kernel discriminates each Y; according to the distance of its corresponding X;
from x and has its greatest value at the origin. Generally, it is positive and symmetric,
and decreases from the origin. In this way, the kernel has the effect of reducing bias
without increasing variance. The bandwidth h,, controls the ‘width’ of the kernel and
is used to ‘tune’ the degree of smoothing: the greater h,, the greater the smoothing.
Clearly, the blue medium dashed line is less ‘wiggly’, and hugs closer to the true
regression curve than the red dotted line. Overall, the NW estimator with h,, = 0.3 is
to be preferred because, intrinsically, its variance and squared bias are better balanced.

As n increases, variance will decrease as more averaging is performed. Then h,, should
be decreased to reduce the amount of local smoothing — thus reducing bias — but not
so much as to effect a comparable increase to the variance, i.e. h,, — 0 as n — oo.
As n becomes large, we may expect the estimate to converge to the true curve at
every point x. Figure 7.8(b) illustrates convergence effects and shows local averages
computed for n = 100.

Optimum convergence of the kernel estimate can be achieved by selecting the bandwidth
hy, using CV. It uses the aptly named leave-one-out estimator 1, " (-) of u(-). At X; = x,
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this estimator is defined as

Al (X)) =Y W (X)), (A.13)

Jj#i

with weights W{i(-) as defined in (A.12); superscript —i indicates the absence of Y; in the
averaging, and h,, the explicit dependence on the bandwidth. The CV function is then
defined as the sample-average MSE that results from adopting the leave-one-out estimator,
ie.,

V() = + 3 (¥ = i (X)) (A.14)
i=1

The (global) bandwidth hev that minimizes (A.14) across a pre-specified range of values h,, is
then used to compute the kernel estimate fip,, (-). Typically, CV(-) has one unique minimum
with no other local minima. In the i.i.d. case, the CV routine produces asymptotically
optimal kernel estimates. For dependent data, convergence results of the CV bandwidth
selection method have been obtained for certain types of mixing processes and univariate
regression functions.

Note that the computation of one value of CV(+) requires n? kernel evaluations, which
may be unacceptable when 7 is large. A variety of refinements of the CV bandwidth selec-
tion method are available to address this problem. For instance, minimizing a generalized
CV function, or minimizing the final prediction error. Another way for obtaining global
bandwidths is to use a plug-in bandwidth procedure.

Local polynomial regression

The locally constant, or NW kernel smoothing method can be extended to allow local poly-
nomial estimation of pu(-) and its partial derivatives. The resulting estimator is obtained
by fitting locally to the data a polynomial of degree d, using multivariate weighted least
squares. Assume that p(-) has derivatives of total order p + 1 at point x. Then, from a
standard Taylor argument, it follows that for (A.11) the local polynomial estimator of pu(-)

is defined as Bo» where (30, Bmu R ﬁmp)’ minimizes
n P 2
S (V= (Got Y By [[XGs = 2)™)) Kn,(x=X0),  (A15)
i=1 1<my o my <d i=1

with K, (v) = hy,? [Tt_, K(v;/hy,). The above minimization problem can be rephrased in
matrix notation to allow for direct computation using weighted least squares. For instance,
with d = 1, the so-called local linear (LL) estimator is given by

A (%) = € (X, Wi X)X, Wiy, (A.16)
where e is a (d+1) x 1 vector having 1 in the first entry and zeros elsewhere, y = (Y1,...,Y,)’
is the vector of responses,

1 (X — Xl)l
X, = | : .

1 (x—X,)
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the n x (d + 1) design matrix, and
Wx = diag(lchn(x - Xl)v ey ’Chn(x - Xn))7

is an n x n matrix of weights.

In general, the local polynomial estimator is more attractive than the NW estimator
because of its better asymptotic bias performance. Moreover, the estimator does not suffer
from boundary effects, and hence does not require modifications in regions near the end
points of the support set. Another useful feature is that the method immediately estimates

the rth derivative, (") () (r = 1,...,d), via the relationship ﬁ;{;?() =718, ().

Some selective background information

The class of kernel estimators was originally defined by Rosenblatt (1956) and generalized
by Parzen (1962) for pdf estimation. Marron (1994) provides a visual understanding of
higher-order kernels. For standard second-order normal kernels, the bandwidth (A.7) is
often termed Silverman’s (1986, p. 48) rule-of-thumb. Hérdle and Marron (1995) show that
the CV routine yields bandwidths which produce asymptotically optimal kernel estimates.
Hansen (2005) derives the exact MISE of several higher-order kernel density estimators. For
multivariate kernel density estimation Zhang et al. (2006) provide a posterior estimate of the
full bandwidth matrix via the use of the MCMC technique. Their technique is applicable to
data of any dimension.

7.B Copula Theory

Let X = (X4,...,X,,)" be an m-dimensional random vector with joint CDF F(z1,...,z,,) =
P(X; < zy,...,X,, < x,) with univariate marginal CDFs F;(z;) (i = 1,...,m). Since it
is usually easier to handle marginal distributions separately, our interests is in a function
that can reconstruct the joint distribution function from its marginals. Such a function is
called copula (Sklar, 1959), i.e. it “couples’ (or links) univariate marginal distributions to a
multivariate joint distribution. Excellent introductions to copulae and related concepts are
given in Nelsen (2006) and Joe (1997), where most of the material below can be found. We
start with the definition of copulas.

Definition B.1 (Copula) Let C: [0, 1]™ — [0, 1] be an m-dimensional distribution function
on [0, 1]™. Then C is a copula if it has uniformly distributed univariate marginal CDFs on
the interval [0, 1].

Another interpretation of a copula function follows from the probability integral transform
(PIT), U; = F;(X;). If the marginal distribution functions Fi,..., F,, of F' are continu-
ous, the random variable U; will have the U(0,1) distribution regardless of the original
distribution Fj, i.e.

Thus, the copula C of X represents the joint CDF of the vector of PITs of the random vector
U= (Uy,...,U,)" and thus is a joint CDF with U(0,1) marginals.

The next theorem is cardinal to the theory of copulas.
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Theorem B.1 (Sklar’s (1959) theorem) Let F' be an m-dimensional joint CDF on
R™ with univariate marginal distribution functions Fy,...,F,,. Then there exists an m-
dimensional copula C such that for all x = (z1,...,2,) € R™,

F(z1,...,2m) = C(Fi(z1),..., Fn(zn)). (B.1)

Moreover, if Fy,. .., Fy, are continuous, then C is unique; otherwise C is uniquely determined
on Ran F; x --- x Ran F,,.
As a direct consequence of Theorem B.1, one can derive a method to specify a parametric

copula, known as the inversion method.

Corollary B.1 (Inversion method) Let F' be an m-dimensional distribution function with

univariate marginal distribution functions Fi,. .., Fy, and corresponding copula C satisfying
(B.1). Assume that Fy,. .., F,, are continuous. Then an explicit representation of C is given
by

C(u) = F(F7 N (w), .., Fyt(um)), u=(ug,...,uy) €[0, 1], (B.2)

where F; ' (u;) = inf{x|Fy(x) > u;} (i=1,...,m).

The behavior of the copulas with respect to strictly monotonic transformations is estab-
lished in the next theorem; see Embrechts et al. (2003, Thm. 2.6). It forms the basis for the
role of copulas in the study of (multivariate) measures of association (dependence).

Theorem B.2 (Invariance) Let X = (Xi,...,X.;)" be an m-dimensional continu-
ous random wvariable with copula C and let Ty,...,T,, be strictly increasing functions
on RanXy,...,Ran X,,, respectively. Then the transformed random wvariable T(X) =

(Ty(X1), .. .,Tm(Xm))/ has ezxactly the same copula C as X.

According to Nelsen (2006, Thm. 2.2.7), the partial derivatives 9 C(u)/0u; of C exist for
almost all w; (i =1,...,m). Then we may define a copula density as follows.

Definition B.2 (Copula density) Suppose C(u) is a copula function of a continuous m-
dimensional random variable, then the copula density c(u) is defined as c(u) = 0™ C(u)/(Ouq
Differentiating (B.1) with respect to x; (i =1,...,m), yields the joint pdf:

m

f(x):C(Fl(xl)a"'va(xm))Hfi(xi)a (BS)

i=1

where f;(z;) is the density associated with the marginal CDF F;(z;). This representation
is particularly useful for copula ML parameter estimation because it provides an explicit
expression for the likelihood function in terms of the copula density and the product marginal
densities.

Every m-dimensional copula C (m > 2) is bounded in the following sense:

W(u) = max{uy + -+ + tupy — (m —1),0} <C(u) <min{uq,...,up} = M(u),
Vue [0, 1™, (B.4)
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Figure 7.9: Contour plots of three bivariate copula densities: (a) Gaussian copula with
p=0.5, (b) Student t, copula with p = 0.9 and v =15 degrees of freedom, and (c) Student
t, copula with p = 0.9 and v =1 degree of freedom.

where M(-) and W(-) are the Fréchet-Hoeffding bounds. The upper bound M(-) is also
known as the comonotonic copula. It represents the copula of X, if each of the random
variables Xi,..., X,, can (a.s.) be represented as a strictly functional relationship between
X, and X; (¢ # j). This copula is also said to describe perfect positive dependence. The
lower bound W () is a copula only for dimension m = 2.

Example B.1: Gaussian and Student ¢ copulas

A wide range of copulas exists. The most commonly used copulae are the Gumbel
copula for extreme distributions, the Gaussian copula for linear correlation, and the
Archimedean copula and the Student t copula for dependence in the tail. A multivari-
ate Gaussian distribution ®(-) with m x m correlation matrix R yields the Gaussian
copula

Cou) =@ (@ (u1),..., 2 (um))

@7 (u1) S (um) 1 1,
2/ / Wexp(—§yR y)dy.

— 00 — 00

where ®71(+) is the quantile function of an A/(0, 1) distribution.

The ¢ copula provides a more sophisticated model to analyze the association between
a multivariate distribution and its univariate marginal distribution functions. In the
same way as C%(u), the ¢ copula is derived from the multivariate ¢ distribution with
correlation matrix R and degrees of freedom v, i.e.

Chu) =t (6, (w), -, b, (um))

to 1 (ur) to ! (um) F(V+m)|R|71/2 1 _vitm
= . -2 JPH 1 - /R—l 2 d
[ Emmr (YR Y)
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where t;;1(-) denotes the quantile function of a standard univariate Student ¢, distri-
bution. The multivariate Gaussian copula may be thought of as a limiting case of the
multivariate ¢ copula as v — co Vu € [0, 1]™.

Based on three MC simulation samples of T" = 10,000 observations, Figure 7.9 shows
contour plots of (a) a bivariate Gaussian copula density with correlation coefficient
p = 0.5, (b) a bivariate ¢t copula density with p = 0.9 and v = 15, and (c) a bivariate
Student t, copula density with p = 0.9 and ¥ = 1. We see that the copulas have
symmetric tail dependencies. The lower- and upper tail dependencies are better
captured with the ¢,-1 copula than the one with v = 15 degrees of freedom.

7.C U- and V-statistics

In this appendix, we briefly introduce the notions of U- and V-statistics which are men-
tioned throughout the book as a mean to derive consistent estimators of certain parameters
of interest. For a more thorough discussion on these notions, we refer the reader to the
originating papers cited below, and to the books by Serfling (1980, Chapters 5 and 6) and
Lee (1990).

Definitions

Let X;, Xo,... be i.i.d. random variables with distribution function F' taking values in an
m-~dimensional Euclidean space R™. Consider a measurable kernel function h: R” — R
(r € N), that is symmetric in its arguments. Suppose we wish to derive a minimum-
variance unbiased estimator of an estimable parameter (alternatively, statistical functional),
say 0 = 0(F). That is,

0(F) = E[h(X1,....X,)] = / Wz, .. 2, )dF (@) - dF(z,).

Then, given a (possibly multivariate) sequence {X;}? ; (n > r), the U-statistic of order r
(the letter U stands for unbiased) is given by

U, = (7:)1 3 h(Xi,,. .. Xi).

1<iy <ig<--<ip<n

The basic theory of U-statistics is due to Hoeffding (1948) as a generalization of the notion
of forming an average. One well-known example is the sample variance with h(zy,22) =
(z1 — 22)?/2. Another example is Kendall's 7 statistic (1.13) with h((z1,y1), (z2,12)) =
2I(x1 < wo,y1 < y2) + 2L(x2 < x1,y2 < y1) — 1. Also, it is easy to see that the correlation
integral (7.10) is a U-statistic with h(x,y) = I(||x — y|| < h).

Closely related to the U-statistic is the V-statistic for estimating 0(F), defined by

Vp,=n""
i1

Observe that
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where F,(z) = n~'> " I(X; < z). This is an example of a differentiable statistical
functional, a class of statistics introduced by von Mises (1947) (hence the letter V). Clearly,
V,, is a biased statistic for » > 1, because the sum in the defining equation contains some
terms in which 4q,...,4, are not all distinct. However, the bias of V,, is asymptotically
negligible (O(n™1)). Also, for a fixed sample size n, the variance of V,, satisfies V,, =
U, + O(n=2). So, in terms of MSE, V,, may be preferred over U,,.

A U-statistic (or V-statistic) of order r and variances 07 < 03 < --- < 02 has a de-
generacy of order k if 02 = ... = U,% = 0 and oi_H > 0 (k < r). Many examples exist
of exact or approximate (as n — oo) degenerate U- or V-statistics. For instance, it is
easy to prove that CvM-GOF type test statistics (see, e.g., Section 4.4.1) are degenerate
V-statistics, i.e. [°3 h(z,y)dF(y) = 0 Vz, where h(z,y) = [ (I(z < z) — F(2))(I(y <

z) — F(2)) (w(F(2))dF(z) with w(-) a non-negative weight function on (0,1).

Asymptotic distribution theory

As a prelude to discussing the asymptotic distribution theory of the U- and V-statistics, we
introduce some notation. For a given estimable parameter, § = 6(F'), and corresponding
symmetric kernel, h(zq, ..., z,) satisfying Var(h(Xl, e ,XT)) < 00, we define a sequence of
functions h.(-) (¢=0,1,...,r) related to h(-) as follows

he(z1,. .. xe) =Elh(z1, ..o 20, Xeg1, o X)),

where X.11,...,X, are i.i.d. random variables from the distribution F. In fact, h.(-) is (a
version of) the conditional (hence the subscript letter ¢) expectation of h(Xj,...,X,) given
X1,..., X,

Since hg = 0 and h,(z1,...,2,) = h(xy,...,2,), the functions h.(-) all have expectation
0. Further, note that the variance of the U-statistic U,, depends on the variances of the
h.(+). Without loss of generality we may take o2 = 0. Moreover, for ¢ = 1,...,r, we define

0?2 = Var(ho(X1,..., X.)),

so that o2 = Var(h(Xl, e ,Xr)). Using these preliminaries, it can be shown (Hoeffding,
1948) that the variance of U, is given by

wiva= (1) S ()60

If 02 < oo, then Var(U,,) ~ r?0% /n + O(n=2) as n — oo.
Asymptotic theory for U-statistics is based on the so-called “projection” of U,,, say U,,
which is in terms of hq(+) is defined as

~ r n
With the projection ﬁn, one can decompose U,, as

U, = Un + Ry,

where the remainder R,, — 0, as n — oo. Thus, U, can be approximated by a sum of
i.i.d. random variables, so that the asymptotic distribution of U,, follows from classical limit
theory for sums.
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Yoshihara (1976, Thm. 1) and Denker and Keller (1983, Thm. 1(c)) relax the assumption
of i.i.d. random variables X; to accommodate strictly stationary weakly dependent processes.
Specifically, for a non-degenerate symmetric kernel h: R"” — R, and assuming that {X;} is
([-mixing, these authors showed that

Vi (U, — 0) =2 N(0,7202), asn — oo.
This result can easily be applied to the correlation integral (7.10). As before, consider the
m-dimensional time series {Y;,t € Z} for which each random variable is assumed to be

generated from the distribution F,(-). Likewise, let the kernel be the indicator function,
and note then that

hi(Ye) = E[p(Yr, XX = x)] = /Rm I([ly = %[l < h)dFm(x).

Let hyi(y;h) = h1(y), so that the dependence on the bandwidth h of hy(-) is made explicit.
Then the asymptotic distribution of the estimator C, r(Y;h), defined by (7.43), can be
expressed as

ViCo (Y3 h) ~ N (Cry (h), 402, 7(Y5 1)),

where
02,2 (Yih) = E[ (b1 (Y15h) = Cn(Y; 1))
T
+23 (m(Y15h) = Gy (h)) (1 (Y h) — Cm,y(h))] .
t=1
In the case of a degenerate symmetric kernel h(-) of order ¢ (¢ = 1,...,7 — 1), the

asymptotic distribution of U, is given by
D r >
n(U, —0) — (c) z;/\j(Zf —1), asn— oo,
=

where Z; are independent N(0, 1) random variables, and \; are the eigenvalues for the kernel

ho(z1, 22)—6. This result also applies to the V-statistic, since v/n(U, —V,,) P, 0, under the
additional assumption that Z;‘;l Aj < 0o. A more general version of this asymptotic result
is given by Beutner and Zahle (2014) using a new representation for U- and V-statistics.
In fact, their continuous mapping approach not only encompasses most of the results on
the asymptotic distribution known in literature, but also allows for the first time a unifying
treatment of non-degenerate and degenerate U- and V-statistics.

Exercises

Theory Questions

7.1 Let {Y:} be an i.i.d. process with distribution function F(y). An equivalent form of
the one-dimensional correlation integral is given by Cy y (h) = P(|Y: =Y, < h) (t # s).
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(a) Show that
Cry (b c/ F(y+h) - Fy — hdF(y).

(b) Show that

N if|t—s/ =1,

IP’(|K:—3G|<h7|Yt+1—Ys+1|<h):{ 2 it —s|>1

where N = [7 [F(y +h) — F(y — h)]*dF(y).
(¢c) Show that limy—_.o E[Cay (h)] = {C1y (h)}?2, where

T—-11i-1
~ 2
Coy(h) = g ;;nm — Y| < WI(|Yis1 = Y| < h).

7.2 Suppose {Y;,t € Z} is a strictly stationary process generated by the following two
models:

ARCH(1): Y=oy, 02 =1+0Y72,,

sign AR(1): Y, = 0sign(Yi—1) + V1 — ey,
where 0 < 6 < 1, and {&;} "~ N(0,1). Given a set of observations {Y;}Z_,, the para-
meter § can be estlmated semiparametrically by maximizing the pseudo log-likelihood
for the copula density ¢(F(Y;6), F(Y;—1;6);6) where F(Y;6) is the EDF. For test-
ing the null hypothesis of serial independence the associated semiparametric (denoted
by the superscript SP) score-type test statistic, apart from a normalizing-factor, is

defined as
L Olog c(@y, 13 0)
SP __ ty Ut—1,
@ = Z 00 ‘9:0’
t=2
where 4, are the realizations of Ut (Y}, 0).

(a) Show for the ARCH(1) model, that the SP score-type test statistic is given by

w3 (e @) (2 @n)

t=2

where ®1(+) is the quantile function of a standard normal distribution.
(b) Similar as in part (a), show that for the sign AR(1) (sAR) model

P = ZSlgn( )@ ).

7.3 ASTT"‘ (£) is the weighted functional A*(¢) = [ { fe(z,y)— f(2)f(y)} fe(z,y)dady given
in Section 7.2.3. Let {Y;,t € Z} be a Gaussian zero-mean stationary process. Show
that A*(-) satisfies the nonnegativity property A*(-) > 0, where the equality holds if

and only if Y; and Y;_, are independent.
(Skaug and Tjgstheim, 1993a)
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7.4 Let {e;}1; be the residuals from a fitted time series model. Consider the least squares
regression (7.49). The slope coefficient [3,, can be estimated as

B _ don <logh —@) <long,T(e;h) —log Cp (€ h))

: Zh(IOgh_@)Z

)

where log h is the logarithm of the tolerance distance, log Cy, r(e; h) is the logarithm
of the sample correlation integral, m is the embedding dimension, and where the bars
denote the means of their counterparts without bars. Show that

E[Bm] < m.

(This was first proved by Cutler (1991), and later by Kocenda (2001)).

Empirical and Simulation Questions

7.5 In Section 2.11 we fitted a RBF-AR/(8) model to the EEG recordings (epilepsy data).
The data file epilepsyMR.dat contains the residual series {e;}%23.

(a) Make a time series plot of the residuals. Also make a plot of the sample ACF
of the residuals (30 lags), and a histogram. What conclusions do you draw from
these graphs?

e R-copula package contains the copula-base v est statistic T for
(b) The R-copul kage contains th la-based CvM test statistic M7 f

testing univariate serial independence M""¢ introduced in Section 7.4.4; see
Ghoudi et al. (2001) and Genest and Rémillard (2004). In this part, we invest-
igate the null hypothesis of serial independence of the residuals in a more formal
way.

e First, simulate the distribution of the CvM test statistic, the distribution
of the combined test statistic a la Fisher, and the distribution of the com-
bined test statistic ¢ la Tippett. Use the function seriallndepTestSim with
lag.max=5, and fix the number of bootstrap replicates at 1,000 (default
value). [Note: The computations can be time demanding.]

e Next, using the function seriallndepTest, compute approximate p-values of
the test statistics with respect to the EDF's obtained in the previous step.

e Finally, display the dependogram.

Use the above results, to investigate the type of departure from residual serial
independence, if any.

7.6 Tong (1990, p. 178) fits the following SETAR(2;2,2) model to the (logig) Canadian
lynx data of Section 7.5:

[ 0.6241.25Y, 1 —0.43Y; 5 + eV if Y,_5 < 3.25,
¢ 2.25 4+ 1.52Y;_1 — 1.24Y; o +&\” if Yi_o > 3.25,

where {5%1)} and {5,(52)} are independent sequences of i.i.d. random variables with
{1 A(0,0.0381) and {82} K A(0,0.0621).
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(a) Obtain the residual series {&;}25'? for this model. Next, compute p-values,
based on 100 BS replicates, using the rank-based BDS test statistics defined in
Section 7.4.2 with m = 2, 4, and 6.

(b) What conclusions do you draw from the obtained p-values for each computed
test statistic?

7.7 Wong and Li (2000b) fit a so-called Gaussian mizture AR (MAR) model to the log-
transformed Canadian lynx series {Y;}4. For a time series process {Y;,t € Z}, the
K-component MAR model of order (pl, ..., PK), denoted by MAR(K;p1,...,pK), is
defined by

— 050 — i1 Ye1 — — Gip Yip,
P = 3 (et pYicp)

g

where F; is the o-algebra generated by {Y;,s < t}, ®(-) is the CDF of the A/(0,1)
distribution, ¢; 0, ¢i1,...,¢:p, and o; are the AR parameters of the ith component
of the mixtures, and {m;}X, is a set of so-called mizing proportions which satisfy
m; > 0 and Zfil m; = 1. A characteristic feature of the MAR model is that both its
conditional and unconditional marginal distributions are nonnormal and they can be
multimodal.

The BIC model selection criterion is given by BIC = —2¢p(y;07) + mlog(T — n),
where {7 (y; §T) is the value of the maximized log-likelihood function of the sample,
m is the dimension of the parameter vector 8, and n is the number of initial values.
Using this criterion, the best fitted MAR model is

Y:; — 0.7107 —1.1022 Y 0.2835 Yi_
F(Yi|Fi-1, oT)_03163<1>( i (0.1798) (0.0621) Ye—1 + (0.0826) Y2 z)

(0.0810) 0.0887(0,0202)
Y; —0.9784 — 1.5279 Y- 0.8817 Y-
" O.6837<I>( t (0.1564) (0.0884) Yt—1 + (0.0869) Yt 2)7
(0.0810) 0.0887(0_0202)

where asymptotic standard errors of the parameter estimates are given in parentheses, and
the value of BIC is —198.82.

(a) Check the adequacy of the fitted MAR model by computing the first 20 sample auto-
correlations of the Pearson residuals defined by (6.72). Repeat this step for the squared
Pearson residuals.

(b) Check the adequacy of the fitted MAR model by computing the first two diagnostic
test statistics in Table 6.3 (Ar,x, and Hr,k,) using quantile residuals, and with K; =
K, = {5, 10, 15, 20, 25, 30}. Compare and contrast the results with those obtained in
part (a).

[Hint: Replace the covariance estimator €7 in (6.89) by an estimator ﬁf using nu-

merical derivatives for both the log-likelihood function and quantile residuals given a
set of T' = 20,000 simulated observations (Kalliovirta, 2012, p. 365)].

Theoretical Question for Appendix 7.A

7.8 Assume that: (i) the density f(-) has (v + 1) continuous derivatives, which are square
integrable and monotone; (ii) the bandwidth A = h,, is a non-random sequence of
positive numbers such that lim, ., h = 0, and lim,,_,,, nh” = oo; (iii) the kernel
K(-) is a bounded pdf having finite jth (j < ) order moment and symmetric about
the origin.
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Show that the bias and variance of f,(z), defined in (A.2), satisfy

Bias (7, () = E(fu(2)) — £(2) = 270 ) () + of1"),
Var(Fi(a)) = = F@)RK) + o),

where f(*)(.) denotes the vth derivative of f(-), assuming it exists. Comment
on the difference in bias between second- and higher-order kernels.

Combine the results in part (a), to obtain the asymptotic MSE (AMSE) of f(-).
Comment on the bias-variance trade-off.

Derive an expression for the AMISE of fh()

Show that by differentiating AMISE (fh(x)) with respect to h, and setting the
derivative equal to zero, the optimal bandwidth is given by

- 2 1/(2v+1)
_ (v)) —1/(2v+1) (V)°R(K) —1/(2v+1)
o R(f ) ( 22 (K) ) " '

Comment on the difference between the optimal bandwidth for second-order
kernels and for higher-order kernels.

) Verify (A.5).

Verify (A.6).



Chapter

TIME-REVERSIBILITY

Time-reversibility (TR) amounts to temporal symmetry in the probabilistic struc-
ture of a strictly stationary time series process. In other words, a stochastic process
is said to be TR if its probabilistic structure is unaffected by reversing (“mirror-
ing”) the direction of time. Otherwise, the process is said to be time-irreversible,
or non-reversible. Confirmation of time-irreversibility is important because, accord-
ing to Cox (1981), it is a symptom of nonlinearity and/or non-Gaussianity. In the
analysis of business cycles, for instance, the peaks and troughs of a business time
series differ in magnitude, not just in sign, as the dynamics of contractions in an
economy are more violent but also more short-lived than the expansions, indicating
asymmetric cycles. Time irreversible behavior may also naturally arise in stochastic
processes considered in, for instance, quantum mechanics, biomedicine, queuing the-
ory, system engineering, and financial economics. Time-irreversibility automatically
excludes Gaussian linear processes, or static nonlinear transformations of such pro-
cesses, as possible DGPs.

In Example 1.2, we discussed a graphical technique to detect departures from
TR, at least in extreme cases. In this chapter we follow a more formal approach,
that is, the focus is on test statistics for assessing TR. First, in Section 8.1, we
review various general definitions of TR for stationary DGPs. In Section 8.2, we
introduce time-domain TR tests which satisfy certain symmetry conditions of the
probability distribution of the stochastic process under study. In Section 8.3, we
consider two frequency-domain TR tests. These tests are motivated by the property
that the imaginary part of all polyspectra is zero for TR processes; see Chapter 4. In
Section 8.4, we discuss three nonparametric tests statistics. First, in Section 8.4.1,
we present a copula-based TR test statistic applicable to stationary Markov chains.
Next, in Section 8.4.2 and Section 8.4.3 respectively, we discuss a kernel-based and
a sign TR test statistic for high-dimensional stationary DGPs. We illustrate the use
of various TR test statistics in Section 8.5, with an application to the set of time
series introduced in Chapter 1. We conclude with a short summary, and offer some
concluding remarks.

© Springer International Publishing Switzerland 2017 315
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8.1 Preliminaries

A strictly stationary stochastic process {Y;,t € Z} is defined to be TR if, for any
integer m and for all integers t1,...,t, (—00 < t; < -+ < t, < ), the vectors
(Yo, Yoi,, ... Yor ) and (Y_ty4ms Y—totms - - - Y—t,+m) have the same joint prob-
ability distribution. Letting m = t; +t,, we see that for a strictly stationary process
{Y;,t € Z} time reversibility implies that

D
(Y2, Vi, ?Y;ﬁn)/ ~ (Y, }/vtn+(t17t2)7 cr Y;h)/’ (8.1)

where & denotes equal in distribution. For causal linear ARMA processes, it is well
known that TR is essentially restricted to processes having Gaussian innovations.
For stationary univariate and multivariate non-Gaussian linear processes, TR re-
quires some regularity conditions on the coefficients of the model representing the
DGP.

Test statistics for TR are often devised for bivariate or trivariate random vari-
ables because of the complexities associated with multi-dimensional distributions.
Indeed, several proposed tests statistics are based on the following, less exhaustive,
definition of TR. That is, {Y;,t € Z} is said to be a TR process if (Y, Y;_s) R
(Y;_¢, Y1) (¢ € N). In consequence, for any (a,b) € R? and each ¢ € N we have
Fy,y, ,(a,b) = Fy,y, ,(b,a). Let A(z) = {(a,b): b —a < z}, and B(x) = {(a,b):
b—a > —x}, where z is a real number. Then, for every z, we can write the distri-
bution of the stochastic process {X;({) =Y, — Y;_y,t € Z} as

Fxt(e)(sv):/ dFYz,Y;e(avb)Z/ dFy,y, ,(a,b)
A(x) B(z)

=1- /A( )an,n%(a,b) =1- Fx,o)(—). (8.2)

Thus, the one-dimensional marginal distribution of {X;(¢),t € Z} is symmetric

about zero, i.e., Xo(¥) 2 —X0(¢). This implication of TR is the basis of the two test
statistics introduced in Section 8.2.

It is well known that many nonlinear DGPs are stationary Markov chains or
can be rephrased as a Markov chain. The dynamic properties of Markov chains
may be conveniently modeled via copula functions. Let {Y;,t € Z} be a stationary
real-valued Markov chain with invariant CDF Fy: R — [0, 1] which is assumed to
be continuous. Sklar’s theorem (Appendix 7.B) ensures the existence of a unique
bivariate copula function C: [0, 1]> — [0, 1] characterizing the relationship between
Y; and Y;y; for any t € Z. Let H: R?> — [0,1] denote the joint CDF of Y; =
(Y, Y1) Then we have H(y1,y2) = C(Fy(yl),Fy(yg)), Y(y1,y2) € R? and all
t € Z. Therefore, the following two statements provide equivalent formulations of
TR for stationary first-order Markov chains:

(i) H(yi,y2) = H(y2,11), V(y1,42) € R?,
(ii)  C(u,v) = C(v,u), ¥(u,v) €0, 1]%
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Figure 8.1: (a) Scatter plot at lag 1 of the time series {X; = Y1, + Y271001_t}i’=0{)0, where
{Yi 1, t € Z} (i = 1,2) are two independent realizations of the logistic map (1.22) with a = 4;
(b) Scatter plot at lag 1 of the time series {X; = Yy 4+ Yo, } 1200,

Property (i) is sometimes referred to as detailed balance equations. A copula satis-
fying (ii) is said to be exchangeable, commutative or symmetric.

Example 8.1: Exploring a Logistic Map for TR

Figure 8.1(a) shows a scatter plot at lag 1 of the time series {X; = Yj ¢+ +
Y271’001_t}%’:0?0, where {Y;;,t € Z} (i = 1,2) are two independent realizations
of the logistic map (1.22) with a = 4. Note that the scatter plot is symmetric
along the main diagonal, suggesting that the DGP is symmetric. For the
same logistic map, Figure 8.1(b) shows a scatter plot at lag 1 of a time series
{XF =Y+ + th}tl’zof O We see that the distribution of {X}} is asymmetric.
Hence, the series { X/} is not a realization of a static transformation of a linear
Gaussian DGP.

8.2 Time-Domain Tests

8.2.1 A bicovariance-based test

Since the condition of TR implies the equivalence of various distributions, it also
implies the equality of various subsets of moments from the joint distribution of
(Yiy, ..., Ys,), where they exist. Autocovariances, however, are by definition sym-
metric. Also the spectral density function and its time-reversed version are identical.
So, we need higher-order moments to detect irreversibility. Assume, for ease of nota-
tion, that {Y;,¢ € Z} has mean zero. Then a sufficient, but not necessary, condition
for TR is the equality

E(Y/Y? ) =E(Y/Y{,), VY(i,j) €N and V(€ Z. (8.3)

Pomeau (1982) and Steinberg (1986) use (8.3) with ¢ = 1 and j = 3 to examine
TR. Later, Ramsey and Rothman (1996) consider the case i = 1, j = 2. In partic-
ular these authors investigate the difference between two bicovariances, termed the
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symmetric-bicovariance function, and defined as follows
2,1 1,2
Uy () =W (0 =52 (0), (8.4)

where 7}(,1’])(5) = IE(Yt’Ytj_g) If a strictly stationary process {Y;,t € Z} is TR, then
1/Jy<€) =0V eZ.

Ramsey and Rothman (1996) note that, within the context of stationary DGPs,
TR can stem from two sources. First, the model representing the DGP may be
nonlinear even though the innovations {e;} follow a symmetric (perhaps Gaussian)
probability distribution. They refer to this case as “Type I” time-irreversibility.
Second, {e;} is a sequence of i.i.d. non-Gaussian random variables while the model
is linear. This latter case is called “Type II” time-irreversibility. Note, however, that
nonlinearity does not imply Type I time-irreversibility; there exist stationary revers-
ible nonlinear time series models; see, e.g., McKenzie (1985), Lewis et al. (1989),
and Exercise 8.4. So, a test for Type I time-irreversibility is not fully equivalent to
a test for nonlinearity.

Using moment estimates of the bicovariances, the TR test statistic is based on
the estimator

Dy (0) =380 =320, (Lem),

where ‘y\g’j)(é) = (T - 01 EtT:@H YtiY;j_e with (i,5) = (1,2).! One can easily
show that ‘y\i(/” )(E) is an unbiased and consistent estimator of ’yg’j )(6). Moreover, if
{Y;,t € Z} is a zero-mean i.i.d. process with E(Y,?) < 00, it is easy to verify (Exercise

8.2(a)) that an exact expression of the variance of 1y (¢) is given by

2(pay b2y — 13 y) B 23 y (T — 20)
(T -0 (T —1)?

Var{ipy ()} = (8.5)

Replacing 3y and pay by their sample counterparts leads to @‘{{ﬂ\y(@}, i.e., the
sample analogue of (8.5). Then the TR test statistic is defined by

TR(0) = By (€) /\/ Var{dy (0)}. (8.6)

Under Hy: ¢y (¢) = 0, it can be shown that TR(¢) 2, N(0,1) as T — oo. The
pre-requisite of the test statistic is that {Y;,¢ € Z} must possess at least a finite
six-order moment. Note that this condition may often be viewed as too restrictive
for DGPs without higher-order moments, which typically is the case with financial
data.

Ramsey and Rothman (1996) recommend the following two-stage procedure for
testing Type I and II time-irreversibility.

!The idea of using the difference ﬁg’l) 6) —Q(YI’Q) (¢) as a measure for TR is comparable to using
the difference between lag ¢ sample cross-correlations of standardized residuals, e.g. ﬁ(;‘l)(ﬁ) -

ﬁ(§1’2)(£) (see Example 6.8) as an alternative (omnibus-type) test statistic for diagnostic checking.
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Algorithm 8.1: The Ramsey—Rothman TR test

Stage 1: Type I and II time-irreversibility
(i) Standardize the time series under study, and compute ¢y (¢) for £ =1,2,....

(i) Fit a causal ARMA(p,q) model to the standardized series {Y;}]_,, using
an order selection criterion to find the optimal values of p and ¢. Obtain
the residuals and compute (8.5), replacing g,y by fipy = 1! Zthl Y/
(r=2,3,4).

(iii) Generate a new time series {Y;*}L_; using the fitted model in step (ii), and
with {e;}7; generated as a sequence of i.i.d. A'(0,1) random variables. Ob-
tain the corresponding value of ¢y« (f). Repeat this step a large number of
times.

(iv) Compute the sample standard deviation of ¥y (¢) via its simulated distri-
bution. Using the result in step (i), compute TR(¢) for £ =1,2,....

(v) To avoid possible interdependence among the computed test statistics at
different lags, estimate the p-value of max, |TR(¢)| running a second MC
simulation. Rejection of Hy is consistent with both Type I and II time-

irreversibility.

Stage 2: Distinguishing Type I and Type II time-irreversibility

(vi) Given a rejection in Stage 1, repeat steps (i) and (ii) above. Next, compute
TR(¢) (¢ =1,2,...). Finally, estimate the p-value of max, |TR(¢)| running a
single MC simulation. If the DGP is Type II, i.e., the model is ARMA with
non-Gaussian innovations, the residuals will be approximately TR. Thus, Hj
will not be rejected.

Two comments are in order. First, with some fitted linear ARMA models, direct
computation of the variance formula (8.5) may result in negative estimates. Step (iii)
overcomes this potential problem by simulating the distribution function of ’(Ey(f).
A second, and more serious problem, is that the ARMA prewhitening in step (ii)
may destroy TR since it induces a phase shift in the series; see Hinich et al. (2006).
As a consequence, the TR test statistic (8.6) could lead to false rejections of the null
hypothesis.

8.2.2 A test based on the characteristic function

A distribution of a continuous random variable X is symmetric if and only if the
imaginary part of its characteristic function, S{¢x (w)} say, is zero for all real num-
bers w. In view of (8.2), and using the fact that there is a one-to-one correspondence
between distribution functions and characteristic functions, it seems natural to con-
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struct a TR test statistic for the null hypothesis
Ho: S{¢x(w)} =Efsin (w(X¢(¢)))} =0, VweR". (8.7)

This result forms the basis of a TR test statistic proposed by Chen et al. (2000).

Let g(-) be a weighting function such that [§° g(w)dw < oco. More specifically,
g(-) should be chosen such that ¢y ,(-) will not be integrated to zero when the
distribution of {X(¢),t € Z} is asymmetric. A necessary condition is

/O ~ b s(w)g(w)dw= / h ( /0 h sin(th(E))g(w)dw)dFXM —0, WEZ (88)

—00

By changing the order of integration, (8.8) is equivalent to
o() = B[y (i (0)] = | ()P () =0, (5.9

where t,(2) = [§° sin(wr)g(w)dw. Given an observable segment {Y;}7_; of {V;,t €
Z}, and by abuse of notation, a natural point estimator of (8.9) is given by

T
b, (0) = ﬁ > g (Yi(0)). (8.10)
t=0+1

Because 1,4(+) is a static transformation, {X;(¢)} and {t4(X;(¢))} are also strictly
stationary processes for each fixed ¢ € Z. Then, under a minimal mixing condition
(see, e.g., White, 1984, Thm. 5.15), it is easy to show that, as T' — oo,

T ¢ ('g(e) - Mg(z)) LN (0,02, (1)), (8.11)

where

T— .
+2 lim < . <1—ﬁ)Cov{wg(Xt(ﬁ)),wg(Xt_i(ﬁ))}>.

This leads to the following test statistic for Hy:

Cy(l) = VT — 1 (;}j(fz)) (8.12)

where ?fﬁg (¢) is a consistent estimator for O’ig (¢). Its form is given by

T—0-1

5o (0 =Ty, (0)+2 > Wre(§)F, (7).
j=1
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where 7, (j) is the lag-j sample autocovariance of {1, (X;(1));£+1 <t < T} and

Wre(j) = (1 - T{ g){l - Q(T_lg)l/i% }j

+ Tj—e{l Y : )1/3 }T_é_j: (j €N). (8.13)

T—7¢

The weight function (8.13) ensures that Eig (¢) is always non-negative. Its form
is motivated by the lag window used in the stationary bootstrap method of Politis
and Romano (1994) and adopted by Chen et al. (2000) and Chen (2003). These
latter authors further suggest to take g(w) = (1/8)exp(—w/f3) (w > 0), for some
B € (0, 00), so that 1y(z) = Bz/(1 + B%2?). By adjusting the parameter j3, the
resulting test statistic is flexible to capture various types of asymmetry. The test
statistic (8.12) seems to have high empirical power with =1 and 3 = 2.

Observe that (8.12) essentially is a general test statistic for detecting symmetry of
the marginal distribution of the observed time series {Y;}1_ . It is a TR test statistic
when applied to {X;(¢)}[_,, ;. A useful feature of Cy(¢) is that the test statistic can
be used without any moment assumptions.? Indeed, simulations provided by Chen
et al. (2000) confirm that this test statistic is quite robust to the moment property
of the DGP being tested.

Unfortunately, the test statistic (8.12) is a check for unconditional symmetry
using the observed time series {Yt}tT:l. From an application perspective, however,
conditional symmetry is often of more interest. This implies that we need to replace
{Y;,t € Z} by some residual series {&;}. In that case, Chen and Kuan (2002)
suggest to modify the computation of E?pg (¢) by bootstrapping from the standardized
residuals of a time series model, using a model-free bootstrap approach. Provided the
first four moments of the error process {e;} exist, the resulting TR test statistic is still
asymptotically normally distributed under the null hypothesis that E(wg(et)) = 0.

Example 8.2: Exploring a Simulated SETAR Process for TR

A simple way to explore an observed time series {Y;g}tT:1 for TR is to detect
asymmetries in plots of the sample distributions of X;(¢) = Y — Y,y (¢ =
1,2,...). As an illustration, consider the stationary SETAR(2;1, 1) process
051 +&  if Vg <0,
Y= { —04Y; 1 +& ifY1>0, (8.14)
where {g;} "= N(0,1). Figure 8.2(a) shows a plot of a typical subset of
length T" = 100 of a simulated time series of 10,000 observations. Figure
8.2(b) displays the kernel smoothed densities of {W;(¢) = Y; — Yt,g}tlg’foo
(¢ =1,...,5), using a normal kernel. It is visually clear that the distributions
are not symmetric about the origin, indicating the SETAR, process is time-
irreversible.

2This feature trivially holds for the kernel-based TR, test statistic S 7(m) of Diks et al. (1995),
to be discussed in Section 8.4.2, since the adopted Gaussian kernel is bounded.
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Figure 8.2: (a) A typical subset {Y;}1%9 of the simulated SETAR(2;1,1) process (8.14);
(b) Simulated marginal distributions of {W;(£) =Y, — Y;_¢};20% for £ =1,...,5.

8.3 Frequency-Domain Tests

8.3.1 A bispectrum-based test

In Section 4.1, we showed that, under the null hypothesis of TR, ${ fy (wi,w2)} =0
V(wy,w2) € D where D is the principal domain (4.7). Hinich and Rothman (1998)
use this result to define a frequency-domain TR test statistic based on the imaginary
part of the normalized estimated bispectrum By (w1, ws), say S{By (w1, ws)}. The
computation of the corresponding test statistic involves the following steps.

Algorithm 8.2: The bispectrum-based TR test

(i) Divide the series {Y;}/_, into K mnonoverlapping stretches, or frames, of
length N so that K = |T/N|. Define the discrete Fourier frequencies w; =
Jj/N (j=1,...,N).

(ii) Calculate the discrete FT Y} (wj):ZiV:l Yot (h—1)n exp{—2miw;(tHk—1)N)},
and the periodogram of the kth frame N~!Yj(w;)[? = N~V (w;)Vi(w—;),
(k=1,...,K).

(iil) Compute the averaged estimate of the spectrum at frequency wj, i.e.,
fy(wj) =T lzk 1|Yk(wj)| , since T ~ KN. In addition, calculate
fY (wjl’wh) =N"! Zk 1 Yk(wjl )Yk(wh)Yk( Wiy — sz)- Then the normal-
ized estimated blspectrum is

~

5 fY(wJu‘sz)

By (wj, ,wj,) .
\/fY w]l w]z)fY(wjl +wj2)
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Algorithm 8.2: The bispectrum-based TR test (Cont’d)
(iv) Compute the test statistic

Ser =27%"1 N~ [S{By (wj,,wi) . (8.15)

(wjy wjy) €D
Under Hy: ${By (wj,,wj,)} =0, and as T — oo,
D
Str — X1, (8.16)

with degrees of freedom M = [N?2/16]. Hinich and Rothman (1998) prove
consistency of Str.

8.3.2 A trispectrum-based test

Similar to the bispectrum (4.4), we can define the trispectrum as the triple FT of
the fourth-order cumulant function of a stationary time series process {Y;,t € Z},
ie.,

o0

fy(wl,WQ,w?)): Z ’yy(€1,€2,€3) exp{—27ri(w1€1 + woly +w3€3)}, (8.17)

£1,€2,£3=—00

where (w1, ws,ws3) € [0, 1] are normalized frequencies, and the third-order cumulant
function is defined as vy (41,02, 03) = E(Y:Yiyr, Yitr, Yite,). Owing to symmetry re-
lations, the trispectrum need to be calculated only in a subset of the complete
(w1, we, ws)-space; see, e.g., Dalle Molle and Hinich (1995) for a description of nonre-
dundant regions of (8.17), including its principal domain.

The normalized magnitude of the trispectrum, known as the squared tricoher-
ence, can be expressed as

Ty (w1, wa,w3)|? =
|fy(W1,W2,W3)|2
fy (w1, —w1) fy (w2, —w2) fy (w3, —w3) fy (w1 + wao + w3, —w1 — w2 — w3)’

(8.18)

If a stationary DGP can be represented as a linear convolution of a sequence of
ii.d. random variables, then (8.18) is a constant for all points in the stationary
set. If, moreover, the process is Gaussian, then this constant is equal to zero for
all points belonging to the principal domain, say 2. Thus, as in Chapter 4, global
test statistics for Gaussianity and linearity can be defined at a particular frequency
triple (wi,ws,ws) € €.

Dalle Molle and Hinich (1995) consider a frame-averaging procedure for estim-
ating (8.17), similar as the one given in Section 8.3.1 for the bispectrum-based TR
test statistic. In particular, start with steps (i) and (ii) of Algorithm 8.2. Also,
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compute fy(wj) =71 25:1 Yy (w;)|? with T~ KN. Next, replace steps (iii) and
(iv) in Algorithm 8.2 by the following steps.

Algorithm 8.3: The trispectrum-based TR test

(iii*) Compute, as a consistent estimator of (8.17),

~

o~

Fr (i wi wi) = > Ye(w)y) Yi(wjy ) Ve (wsy) Ya(—wj, —wj, —wj,).

k=1

1
T
Then the normalized estimated trispectrum is

= Iy (Wi, Wiy Wis)

Ty (wjy , wjp, wiy) = ——= — — = '
VI @) Py @3 Ty @3) Ty (@5, + s +w3)

This normalization standardizes the variance of the trispectrum estimate
using the estimated asymptotic variance in place of the true variance.

(iv*) Compute the TR test statistic

~ 1
St =21 Y S{Fy e} (G <e<l). (319)

Wip Wig Wiz €Q

Under Hy: {Ty (wj,,wj,,w;,)} =0, and as T — oo,

« D
Str — X?w (8.20)

with M™* the number of frequency triples in 2. This number is automatically
computed in the available software code; see Section 8.7.

The test statistic Siy is applicable if the one-dimensional marginal distribution of
{Y;,t € Z} has a finite eighth moment. Like the bispectrum-based TR test statistic
Str, this moment requirement rules out many economic and financial time series
encountered in practice.

8.4 Other Nonparametric Tests

The frequency-domain TR test statistics discussed in Section 8.3 are nonparametric
in nature. They may be computationally demanding, and require special care when
the boundary (nonredundant) bispectral lags are included. Here, we discuss three
nonparametric TR test statistics which are computationally more attractive.
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8.4.1 A copula-based test for Markov chains

In Section 8.1, we briefly introduced the notion of exchangeability. A measure for
the “amount” or “degree” of nonexchangeability of each pair (X,Y") of identically
distributed random variables (see, e.g., Klement and Mesiar, 2006; Nelsen, 2007) is
given by

dc=3 sup |C(u,v) — C(v,u)|. (8.21)
(u,w)€l0,1]2

This measure takes values in [0, 1] for any copula with the lower and upper bounds
attainable. Based on (8.21), Beare and Seo (2014) propose a TR test statistic for
the null hypothesis Hy: dc = 0. Using the notation in Section 8.1, let 6 € [0, 1/3]
be given by

6= sup |H(yi,y2) — H(y2, 1)l
(y1,y2)€ER2

which, in view of (8.21), implies that § = dc. Given a set of observations {Y;}]_;,
a natural empirical analogue of 6 is

Or = sup |Hr(yi,y2) — Hr(y2,y1)/, (8.22)
(y1,y2)€R?

where Hrp(-,-) is the joint EDF

1 T-1

Hr(y1,y2) = 77— > IV <1, Yier < ).
=1

Under Hy and fairly weak regularity conditions, it can be shown (Beare and Seo,
2014) that 67 is asymptotically distributed as

D
VTOr — sup |B(y1,y2) — B(ya,y1)|, as T — oo, (8.23)
(y1,y2)€R?

where B(-, ) is a continuous centered Gaussian process with covariance kernel

Cov{B(y1,42), B(y1,v5)} = > _Cov{I(Yo <y1,Y1 < 9), [(Vi< 9, Yir1 < 43) }-
tEZL

In addition, Ve € R, T~1/207 > ¢ with probability approaching one, as T — ooc.
Thus, for a fixed value ¢, vTOr is consistent against any violation of TR. One can
easily generalize (8.23) so that it applies to stationary pth-order (p > 2) Markov
chains. But the factor of 3 in (8.21) does not hold for higher-dimensional copulas,
and a different constant is needed.

For practical implementation critical values of the limiting distribution of v/T0r
are required. These values can be obtained via the local bootstrap for strictly sta-
tionary pth-order Markov processes of Paparoditis and Politis (2002). In particular,
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conditional on the observed data {Yt}f:l, the objective is to generate bootstrap
pseudo-replicates Y{*,..., Y  from which the statistic of interest, in the present case
(8.22), can be calculated.

For a first-order Markov chain the local resampling algorithm generating the
bootstrap replicates may be applied in the following way.

Algorithm 8.4: Resampling scheme

(i) (Initialization step)
Select an initial state Y7*, and the so-called resampling width b = by > 0 of
the neighborhood of a given state.

(ii) Let us suppose that for some ¢t € {1,...,T — 1} that Y;*,..., Y is already
sampled. Now, for the (¢ + 1)th bootstrap observation set Y, = Y 1,
where J is a discrete random variable with probability mass function (pmf)

B(J = §) = Kn(¥7 —¥3)/ S Kn(¥e —¥i), (=1, T 1)

Here, Kp(-) = K(-/h)/h with K(-) a one-dimensional, nonnegative and sym-
metric kernel function with mean zero.

Recursive application of step (ii) yields the pseudo-time series {Y;*}1_;. Notice
that the above procedure resamples the observed time series in a way according to
which the probability of Y; being selected is higher the closer is its preceding value
Y;_1 to the last generated bootstrap replicate Y,* ;.

One practical aspect is the choice of the initial bootstrap observation Y. A
simple approach is to draw at random from the entire set of observations {Yt}tT:1
with equal probability. Another issue concerns the selection of h. One simple rule-of-
thumb approach is to use the ‘optimal’ resampling width, in the sense of minimizing
the AMSE of the bootstrap one-step transition distribution function; see Paparoditis
and Politis (2002). Assume that {Y;}7_, is generated by an AR(1) process Y; =
oo + ¢1Yi—1 + ¢ with {g;} an i.i.d. sequence of random variables. Then, under the
simplifying assumption that {e;} N (0,02), it can be proved that the optimal
resampling width h = h(y) is given by

o4 ]1/5

“ |Th ey vomcgy 0 WER) (8.24)

h(y)

where, with a Gaussian kernel, K1 = 1/(2y/7), C1(y) = ¢10y°(y —py) and Cy = ¢2.
A sample version of h(y) can be easily obtained by fitting an AR(1) model to the
data, and replacing the unknown quantities in (8.24) by their sample estimates.
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8.4.2 A kernel-based test

The above TR test statistics are all devised in a two-dimensional state space by
considering only distributions, or higher-order moments, of pairs (Y3, Y;_y). Using
the delay vector Ygz) = (Y,Yit,- -, Yie(mo1)e) (m € Z*, £ € Z), TR can also
be formulated in a state space framework via the joint density function f,,(y) of
{Yie), t € Z}, i.e., the process is invariant under time reversal for all m and ¢ if and
only if,

fm(Py) = fm(y), VyeR™, (8.25)

where P denotes an m x m matrix operator with elements Pj; = d;,,41—;, and
0;; is Kronecker’s delta. Note that this characterization of TR is related to the
classical two-sample problem of testing the equivalence of two multi-dimensional
distributions for independent samples. This equivalence suggests a test statistic
based on the distance between fp,(y) and f,,(Py). Diks et al. (1995) develop such
a test using a quadratic measure of dependence.

Assume that the delay vectors {Yf@}é\;h with finite variance, are sampled inde-
pendently according to fy,(y), with N =T — (m — 1)¢. Let f (y) be a smoothed
pdf defined as the convolution of f,,(y) with a multivariate Gaussian kernel p(+),
ie.,

Fan) = [ Kty = 15n()de, (3.26)
where

Kn(x) = (V2rh) ™ exp{~||x|*/2h*},
with A > 0 the bandwidth, and || - || the Euclidean norm. The convolution process

has the symmetry-preserved property that f(y) = f(Py) Vy € R under the
null hypothesis Hy: fi,(y) = fm(Py). Then a quadratic measure to evaluate the
difference between the smoothed densities is defined as

Qulm) = 50" [ (1) = F(Py) dy

= A" [ (050 - L5 EPY)dy, 620)

m

which is always positive-semidefinite and equals zero if and only if £ (y) = f (Py).
Substituting (8.26) in (8.27), using integration by parts and a change of variables,
gives the expression

Qulm) = [ ute) [ (expt—lr—sl/an)

—exp{—||r — Ps|? /(4h2)}) Fin(s)dsdr. (8.28)
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Replacing the integrals by an average of contributions from different pairs of m-
dimensional delay vectors {Y;} and {Y;} (i # j) results in the following, unbiased,

estimator Q (a U-statistic)? of Q:

Qn,r(m) = <];[> h > wij, (8:29)

i<j
where
wij=exp{—|lyi—y;lI*/(4h*)} — exp{—|ys—Py;||*/(4h*)}. (8.30)

Under Hl, the expected value of @hj(m) is zero and its variance is given by

var(@uato) = (3) X,

i<j

Therefore, the test statistic is defined as follows

Snir(m) = Qur(m) /\/Var(Qnr(m), (8:31)

which, approximately, has a mean zero and a standard deviation one, if the m-
dimensional processes {Y;,i € Z} and {Y;,j € Z} are independent.

In applications of the test statistic S, r(m), an important question is how to
select the bandwidth h. In kernel-based estimation it is well known that selecting
h too small leads to a higher variance of the kernel estimator, called undersmooth-
ing. On the other hand, choosing a bandwidth that is too large increases the bias
(oversmoothing) of the estimator. In practice, both factors are often balanced via
CV.

Another issue concerns the dependence among delay vectors. Diks et al. (1995)
suppress this effect by dividing the (4, j) plane of indices into squares of size 7 x T,
with 7 some fixed number larger than the typical time scale, and next replacing w;;
by wj, ;= 772 > p=1 2g=1 Wi'r+p,j'r+q- LThis method is supposed to provide more
reliable estimates of the standard deviation of Sy 7(m). Clearly, the influence of the
parameter 7 on the performance of this test statistic is comparable to the bandwidth
influence. Moreover, since the parameters 7 and h are bound together, the selection
of their optimal values should be carried out simultaneously, for instance by using

CV.

8.4.3 A sign test

The projection of the m-dimensional delay vectors on each bi-dimensional plane
(Y,Y;—y) ({=1,...,m —1) can be readily evaluated by exploiting the fact that for

3Strictly speaking this U-statistic is unbiased for a finite sample size only if the {Y;,i € Z} are
independent.
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Figure 8.3: Boxplots of R(m) based on 1,000 MC replications of series of length T = 5,000
generated from the time-delayed Hénon map with dynamic noise process (8.35), and with (a)
=1 and (b) L =2.

a strictly stationary and TR stochastic process {X;(¢) =Y, — Y;_4,t € Z}, we have

1

B(Xo(t) > 0) = P(Xo(f) <0) = 3, (£=1,...,m—1).

The object of interest is thus the probability 7(¢) = P(Xo(¢) > 0), which may
be thought of as a simple measure of deviation from zero of the one-dimensional
distribution of {X;(¢),t € Z}. A natural point estimator of m(¢) is

T
() = ﬁtzg;ll(&(ﬁ) >0), ((=1,...,m—1). (8.32)

Psaradakis (2008) proves that, for each fixed ¢ € N, as T' — oo,

T—(7(0) — =(0)) = N (0,0%(0)), (8.33)

0% (0) = () (1 — 7 () + 27 (¢ Z{P (X:(€) > 0)|Xo(€) > 0) —7w(£)}.  (8.34)

The circular block bootstrap procedure of Politis and Romano (1992) for stationary
processes may be used to obtain an estimate of (8.34). A practical difficulty with
this approach is the choice of the block length. Another possibility is to approximate
the sampling distribution of (8.32) by subsampling, which requires the selection of
a subsample size. Below we present an example of the TR test statistic 7(¢) applied
to data generated by a nonlinear high-dimensional stochastic process.

Example 8.3: Exploring a Time-delayed Hénon Map for TR

Consider the stochastic process

Y, =1-14Y2,+0.3Yi_o_1 + 1, {e} = U(=0.01,0.01).  (8.35)
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Table 8.1: P-values of siz TR test statistics. Blue-typed numbers indicate rejection of the
null hypothesis of TR, at the 5% nominal significance level.

Time domain Frequency Nonparametric (4
maxy—1,....10 |TR(Y)] domain (3 Sh,r(m)
Series Type I & 1IN Type I1(2)  Srp St fOr m=2m=3m=4 m=35
Unemployment rate(5) 0.000 0.010 0.000 0.000 0.338 0.164 0.123 0.239  0.190
EEG recordings 0.004 0.000 0.133 0.000 1.000 0.639 0.085 0.022  0.008
Magnetic field data 0.000 0.004 0.000 0.000 0.010 0.445 0.203 0.176  0.120
ENSO phenomenon 0.026 0.010 0.000 0.000 0.713 0.217 0.193 0.401 0.639
Climate change: 613C 0.516 0.815 0.739 0.000 0.780 0.806 0.977 0.999  0.999
5180 0.002 0.016 0.095 0.000 0.828 0.086 0.130 0.405  0.483

(1) Based on 1,000 MC estimated standard errors, and 1,000 MC simulations to estimate the

p-value.

(2) Test results are based on i.i.d. standard errors using (8.5), and 1,000 MC simulations to

estimate the p-value.

() M =25 (see Chapter 4) for all series and both test statistics; no prewhitening.
(4) p-values of 01 are based on 400 bootstrap replicates, using the resampling scheme of Section 8.4.1.

p-values of Sy, 7(m) are based on 1,000 MC simulations with h = 0.5, and 7 = 20.

(5) First differences of the original data.

This is a “clothed”, or randomized, version of the time-delayed deterministic
(its skeleton) Hénon map. Time series generated by the Hénon map are known
to be irreversible. We generated 1,000 replications of (8.35) for series of length
T = 5,000. Subsequently, with m = 2,...,15, we computed the measure

m—1
R(m) = ﬁ > 105 = 7(8)] x 100, (8.36)
/=1

where 7(¢) is given by (8.32).

Figures 8.3(a) and (b) show boxplots at lags ¢ = 1 and 2, respectively, of
1,000 R(m) values. In the case ¢ = 1, the median values of R(2) and R(3)
are approximately equal to zero, and hence irreversibility is not detected. In
contrast, all median values of R(m) (m > 3) depart from zero significantly,
indicating that the DGP (8.35) is actually time-irreversible. A similar pic-
ture emerges from Figure 8.3(b). Thus, TR cannot be consistently tested by
considering only distributions of pairs (Y7, Y;_¢).

8.5 Application: A Comparison of TR Tests

Table 8.1 presents p-values of six TR test statistics. Columns 2 — 3 provide evidence
of time-irreversibility, using the Ramsey—Rothman statistic maxy—; 10 |TR(¢)|. The
AR order selection was done using BIC with pyax = 10. The only series that fails
to display evidence of both Type I and Type II time-irreversibility is the climate
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Table 8.2: Results of TR test statistic C,({), as defined by (8.12), for lags ¢ =1,...,10.()
Blue-typed numbers indicate rejection of the null hypothesis of TR at the 5% nominal signi-
ficance level.

Time lag ¢
Series 1 2 3 4 5 6 7 8 9 10
Unemployment rate(®2)  1.512 2.122 2.183 1.684 1.605 0.809 0.407 0.226 0.622 0.489
EEG recordings -0.257 -0.241 -0.285 -0.224 -0.222 -0.173 -0.104 -0.019 0.081 0.116
Magnetic field data -0.610 -0.479 -0.541 0.040 -0.286 -0.397 -0.334 -0.081 0.757 0.549
ENSO phenomenon 1.258 1.182 1.282 1.195 1.141 1.209 1.321 1.378 1.362 1.287

Climate change: §'3C  0.571 -0.299 -0.122 0.370 -0.016 -0.469 -0.384 -0.730 -0.622 -0.342
58 O -0.548 -1.288 -1.660 -1.620 -1.320 -1.156 -1.104 -0.971 -0.574 -0.593

(1) Based on the exponential density function g(w) = (1/8) exp(—w/8) (w > 0) with 3 set at
the reciprocal of the sample standard deviation of each series.
(2) First differences of original series.

change 6'3C time series. For the remaining five series, TR is rejected at the 5%
nominal significance level. The p-values of the frequency-domain test statistic Sty
(column 4) differ considerably from those of S, (column 5). For all time series TR is
strongly rejected on the basis of S}, while with Stg, evidence of time-irreversibility
is restricted to three series. Thus, the p-values of Si; rule out linear models with
Gaussian distributions for all series. Note, however, that these test results can be
sensitive to the choice of M see also the discussion in Section 4.4.4.

Except for the magnetic field data, the copula-based test statistic 67 (column 6)
does not reveal evidence of time-irreversibility, at the 5% nominal significance level.
This may be due to the first-order Markov chain assumption used in the construction
of the test statistic; that is higher-order Markov chains may well provide a better
representation of the DGP underlying the time series, and consequently may change
the outcome of the test statistic.

The p-values of Sy, r(m) differ considerably across the values of m. For m = 2
and 3 all p-values do not reject TR at the 5% nominal significance level. For m = 4
and 5, we see that there is evidence of time-irreversibility in the EEG recordings.
Thus, it seems worthwhile not to rely completely on low-dimensional test results.

Table 8.2 presents test results of Cy4(¢) for £ = 1,...,10. Only in one case the
test statistic rejects the TR null hypothesis, i.e. the U.S. unemployment series at
lags ¢ = 2 and 3. In all other cases, the null hypothesis is not rejected at the
5% nominal significance level. Characterization of the U.S. unemployment series as
time-irreversible through the various TR test statistics suggest asymmetric behavior
consistent with the steepness asymmetry business cycle hypothesis, elaborated upon
in the introductory paragraph of this chapter. Also time-irreversibility of the EEG
recordings, as we observed in Table 8.1, is an indicator of nonlinear dynamics.
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8.6 Summary, Terms and Concepts

Summary

Gaussianity and TR suggest a linear model for the data under study. These are two
fundamental properties of DGPs which must be checked before adopting a nonlinear
model. A large number of potential approaches to testing for TR have been pro-
posed in the literature. In this chapter, we provided a brief overview of some of the
major developments in this area. Broadly, the TR test statistics were divided into
three categories. The first of these is those based on higher-order cumulants and
characteristic functions in the time domain, having close relationships with general,
non-temporal, tests of symmetry. In the second category we included test statistics
based on the symmetry property of cumulants in the frequency domain. These lat-
ter tests are computationally more demanding than time-domain TR tests, and are
applicable only if high-order moments exist. In addition, we focused on nonpara-
metric TR test statistics which have been designed to avoid specific assumptions
about the underlying marginal distribution of the DGP under the null hypothesis of
TR. Finally, we provided empirical evidence comparing the performance of various
TR test statistics.

In closing this chapter, we should mention that practically all existing test stat-
istics are only able to detect specific forms of TR. Moreover, many test procedures
regard time-irreversibility as a “complementary test hypothesis”. Few papers, con-
sider the notion of TR in its own right, and try to characterize the nature of TR
when it is present. One notable exception is McCausland (2007) who proposes an
index for certain types of TR, applicable to finite regular stationary Markov chains.
Another exception is Beare and Seo (2014) who use a so-called circulation density
function to measure the degree of temporal irreversibility in a stationary Markov
chain.

Terms and Concepts

Anosov diffeomorphism, 335 oversmoothing, 328

BGAR(1) process, 335 resampling width, 326

Beta-Gamma transformation, 335 squared tricoherence, 323
commutative, 317 symmetric-bicovariance function, 318
copula functions, 316 time-irreversible, 315

directionality, 333 trispectrum, 323

detailed balance equations, 317 Type I and II time-irreversibility, 318
exchangeability, 317 undersmoothing, 328

local bootstrap, 325

8.7 Additional Bibliographical Notes

The literature of TR is quite large and dates back to the mid-1930s, starting with Hostinsky
and Potocek (1935) and Kolmogorov (1936). As Dobrushin et al. (1988) note, the founder
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of the theory of temporal reversibility for Markov processes is considered to be Kolmogorov.
Reversibility, or directionality, appears to be mentioned first by Daniels (1946) in the context
of analyzing time series processes. Lawrance (1991) reviews the state of the theoretical
research up to 1990s. Breidt and Davis (1992) and Cheng (1992, 1999) study TR and
related problems in the context of general linear processes. Tong and Zhang (2005) and
Chan et al. (2006) derive conditions of TR, of multivariate non-Gaussian linear processes.

Hoover (1999) describes TR from the perspective of computer simulation with many ex-
amples and concepts taken from dynamical-systems theory. Also, time-irreversibility has
gained a lot of attention in the analysis of human heart rate variability (beat-to-beat time
series); see, e.g., Casali et al. (2008) and Hou et al. (2011).

Rothman (1992) compares the power of the Ramsey—Rothman TR test statistic with the
power of the BDS and Hinich’s bispectrum test against some simple SETAR alternatives.
In a similar vein, the study by Belaire-Franch and Contreras (2003) compares the Ramsey—
Rothman TR test statistic and the Chen et al. (2000) TR test statistics for time series
generated by BL, SETAR, and GARCH models. Fong (2003) applies the Chen et al. (2000)
TR test statistic to daily stock closing prices and trading volume of the 30 component
series representing the Dow Jones Industrial Index. Giannakis and Tsatsanis (1994) propose
a time-domain analogue of the trispectrum-based TR test statistic of Section 8.3. Their
simulation study includes comparisons with the TR test statistic of Algorithm 8.3, and
application to real seismic data.

In addition to the test statistics reviewed in this chapter, several alternative test statistics
of TR have been put forward in the literature. Both Robinson (1991) and Racine and
Maasoumi (2007) introduce entropy-based test statistics which can be used for testing TR;
see, e.g., Exercise 8.6. The asymptotic distribution associated with these test statistics,
however, imposes strong regularity conditions on the DGP. Darolles et al. (2004) propose a
test statistic based on nonlinear canonical correlation analysis. Their approach comes down
to testing whether a given pair of canonical directions are equal to one another. Sharifdoost
et al. (2009) design a test statistic of TR applicable to finite state Markov chains. Kessler and
Sgrensen (2005) study the case when martingale estimating functions and other unbiased
estimating functions have the same structure as the score function for a TR Markov process.

Symbolization converts continuous-valued time series observations into a stream of discrete
symbols. Using this concept, Daw et al. (2000) propose a specific method for TR without the
need for generating surrogate data. Steuber et al. (2012) introduce two Markov chain-based
time reversibility tests. The test statistics are based on observed deviations of transition
sample counts between each pair of states in a sequence sampled from a stationary time-
homogeneous Markov chain.

8.8 Software References

Section 8.2: Philip Rothman contributed FORTRAN7Y7 code to calculate the first and
second stage of the Ramsey—Rothman TR test statistic, which can be found at the website
of this book; see Rothman (1996) for documentation. A GAUSS program for running the
Chen-Chou-Kuan TR test statistic C,(¢) was kindly made available by Yi-Ting Chen.

Section 8.3: The Hinich-Rothman bispectrum-based test and the trispectrum-based test
can be computed using the BISPEC and TRISPEC programs, respectively, both coded in
FORTRANT7 by the late Melvin J. Hinich; see http://www.la.utexas.edu/hinich/.
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Section 8.4: Brendan Beare and Juwon Seo have made available MATLAB code for com-
puting the copula-based TR test statistic for Markov chains. The C++4 source code and
a Linux/Windows executable of the kernel-based TR test statistic Sy r(m) (Section 8.4.2)
can be downloaded from Cees Diks’ web page, located at http://cendef .uva.nl/people.

Exercises
Theory Questions

8.1 Let {Y;,t € Z} be a strictly stationary i.i.d. process with mean zero, uzy = E(Y;}) =
0, and finite moments oy = E(Y;?) and pyy = E(Y,?). Verify (8.5).

8.2 Suppose that {f(t),t € Z} is a strictly stationary time series process with mean zero,
defined on the interval [T}, T»]. The bicovariance function of f(t) can be approximated
by

Gy = — L - O+ 0)dt, (i # §il € Z).
70 =0 =T ) F@OF (E+0dt, (i # s )

Show that the bicovariance function 'y%;j )(6) of the time-reversed stochastic function
is not necessarily equal to v(%7)(£), except when f(t) obeys time reversal, i.e. frg(t) =
f(=t) = f(t+¢&), where ¢ is an adjustable parameter that fixes the origin of the time
axis.

8.3 Consider the strictly stationary, zero-mean, stochastic process {X;(¢) =Y; —Y;_¢,t €
Z, £ € N}. Let p2'V(0) = E(Y2Y, o) /E(Y2)Y?, and i) (0) = E(ViY; ) /E(V?).

(a) Show the standardized third-order cumulant of {X;,t € Z} can be expressed as

EX) _ 3 20— (0

E(X2)*?  2v2 {1 pY (032

(b) Assume that the functions pg’l)(ﬁ) and pg/l’l)(ﬂ) are differentiable on [0, c0).
Show the above expression is approximately given by
EGXD) 3 (o)
B T VA A0

where ph;(0) and pf;(0) denote the first non-zero derivatives of pg’l)(ﬂ) and

pg,l’l)(ﬂ) at the origin, respectively.

(¢) Using part (b), argue that as £ | 0 time-irreversibility is most apparent for small
values of /.

(Cox, 1991)

8.4 The Gamma distribution is often used to model a wide variety of positive valued
time series variables. Applications include fields such as hydrology (river flows), met-
eorology (rainfall, wind velocities), and finance (intraday durations between trades).
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Within this context, Lewis et al. (1989) introduce the simple first-order Beta-Gamma
autoregressive (BGAR(1)) process

Y, =BY, 1 +Gy, (teZ),

where {B;} and {G,} are mutually independent sequences of i.i.d. random variables
with Beta(kp, k(1—p)) and Gamma(k(1—p), ) distributions, respectively, with shape
parameter k > 0, rate parameter 5 > 0, and p (0 < p < 1) describes the dependency
structure of the process. It is easily established, using moments of Beta variables,
that p(¢) = pl¥l (¢ € 7).

(a) Let Y and B be independent Gamma(k, 3) and Beta(kp, k(1 — p)) random vari-
ables respectively. Then it can be shown that BY and (1— B)Y are independent
Gammal(kp, §) and Gamma(k(l -p), ﬁ) variables. Using this result, prove that
the Laplace—Stieltjes transform of the random variable (v+ Bu)X (v > 0,u > 0)

is given by
E(e_(U+BU)X) - (ﬂ f— v)k(lip) (ﬂ —1—5 + u)kp'

When v = 0, this result is known as the Beta-Gamma transformation.

(b) For the stationary BGAR(1) process {Y;,t € Z}, let Ly, y, ,(u,v) denote the
joint Laplace—Stieltjes transform of (Y, Y;_1). Then, using part (a), show that

8 Ié] )k(l—l))( Ié] )kp’

X
B+v+u

L:Yh}/t—l(u?v) = (ﬁ_‘_u 6"’11

(¢) Given the result in part (b), state your conclusion about the TR of the BGAR(1)
process.

8.5 Consider the stationary stochastic process {Y;,t € Z}
Y, =Y,-1+Y,2+¢e) (modl),

where {e;} is a sequence of i.i.d. random variables with a continuous marginal distri-
bution. The process {Y;,t € Z} may be viewed as a stochastic version of the so-called
Anosov diffeomorphism on a two-dimensional torus, i.e.

(2 )=(1a)(%) oo

which is a chaotic nonlinear deterministic system.

Let fim(y1,---,ym) be the joint pdf of Yy = (Y3, Yi1,..., Y my1) (m € NT). The
following statements are claimed.

(a) {Y:,t € Z} has a unique invariant joint probability measure.

(b) The process is time-irreversible, as the joint distribution of the process {Y4,t €
Z} for dimension m > 2 is not symmetric with respect to reversing the time
order of the variables. So, (8.25) does not hold for m > 3.
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(¢) The joint distribution of each of the pairs (Y;_¢,Y;) (¢ > 1) is symmetric with
respect to the matrix operator P, defined as P(y1,y2) = (y2,91)-

Sketch a proof of each of the above statements.
(Based on private communication with C. Diks)

Empirical and Simulation Question

8.6. Let {Y;,t € Z} be a strictly stationary time series process with marginal density
function f(y) and joint pdf fi(z,y) of (Yy,Yi—e) (¢ € Z). Granger et al. (2004)
consider a normalization of the Hellinger distance of dependence (Section 7.2.3) given
by S(¢) = (1/2) ffomffooo{fél/g(x, y) — (f(:v)f(y))l/z}dedy.4 Replacing the unknown
densities in S(¢) with kernel-based estimators yields the test statistic S(£); see the
function npunitest in the R-np package.

(a) Investigate the six time series in Table 8.1 for the presence of TR using S (0), i.e.
test the null hypothesis Héo) : f(y) = f(—y) Yy. To reduce the computational
burden, set the number of BS replicates at 99.

(b) Repeat part (a), but now test the null hypothesis H(()l) f(Y, Y1) = f(Yeo1, Ya).
Are there any marked difference between the test results in parts (a) and (b)?

1Also known as the Bhattacharyya—Matusita-Hellinger measure of dependence; see Bhat-
tacharyya (1943), and Matusita (1955).



Chapter

SEMI- AND NONPARAMETRIC
FORECASTING

The time series methods we have discussed so far can be loosely classified as para-
metric (see, e.g., Chapter 5), and semi- and nonparametric (see, e.g., Chapter 7). For
the parametric methods, usually a quite flexible but well-structured family of finite-
dimensional models are considered (Chapter 2), and the modeling process typically
consists of three iterative steps: identification, estimation, and diagnostic checking.
Often these steps are complemented with an additional task: out-of-sample fore-
casting. Within this setting, specification of the functional form of a parametric
time series model generally arrives from theory or from previous analysis of the
underlying DGP; in both cases a great deal of knowledge must be incorporated in
the modeling process. Semi- and nonparametric methods, on the other hand, are
infinite-dimensional. These methods assume very little a priori information and
instead base statistical inference mainly on data. Moreover, they require “weak”
(qualitative) assumptions, such as smoothness of the functional form, rather than
quantitative assumptions on the global form of the model.

For all these reasons, a practitioner is often steered into the realm of semi- and
nonparametric function estimation or “smoothing”. However, the price to be paid is
that parametric estimates typically converge at a root-n rate, while nonparametric
estimates usually converge at a slower rate. Also, semi- and nonparametric methods
acknowledge that fitted models are inherently misspecified, which implies specifica-
tion bias. Increasing the complexity of a fitted model typically decreases the absolute
value of this bias, but increases the estimation variance: a feature known as the bias-
variance trade-off. The bandwidth or tuning parameter controls this trade-off, i.e.
its choice is often critical to implementation and practical consideration.

In this chapter, we deal with various aspects of semi- and nonparametric mod-
els/methods with a strong focus on forecasting. The desire for forecasting future
time series values, along with frequent misuse of methods based on linear or Gaus-
sian assumptions, motivates this area of interest. Based on results in Appendix 7.A,
the first half of this chapter is concerned with kernel-based methods for estimat-
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ing the conditional mean, median, mode, variance, and the complete conditional
density of a time series process. We examine and compare the use of single-stage
versus multi-stage quantile prediction. Further, we describe kernel-based methods
for jointly estimating the conditional mean and the conditional variance. This part
also includes methods for estimating multi-step density forecasts using bootstrap-
ping, and methods for nonparametric lag selection.

The second half of the chapter deals with semiparametric models/methods. It
is well known that conventional nonparametric estimators can suffer poor accuracy
for data of dimension two and higher. In fact, the number of observations needed
to attain a fixed level of estimate confidence grows exponentially with the number
of dimensions. This problem is called the curse of dimensionality and presents
a dilemma for the effective and practical use of nonparametric forecast methods.
One way to circumvent this “curse” is to use additive models. These models make
the assumption that the underlying regression function may have a simpler, additive
structure, comprising of several lower-dimensional functions. As such, they fall in the
class of semiparametric models/methods, combining parametric and nonparametric
features. In Section 9.2, we discuss several additive (semiparametric) models for
time series prediction with emphasis on conditional mean and conditional quantile
forecasts. Then, in Sections 9.2.5 and 9.2.6, we introduce two restricted, and closely
related, forms of a semiparametric AR model.

9.1 Kernel-based Nonparametric Methods

9.1.1 Conditional mean, median, and mode

Preliminaries

In what follows, we are going to discuss kernel-based predictors for a strictly sta-
tionary time series process {Y;,t € Z} which is assumed to be a Markovian process
of order p.! Let {Y;}]_, be a sequence of observations on the process {Y,t € Z}.
Our objective is to predict the unobserved real random variable Ypr,g where H
(1 < H <T — p) denotes the forecast horizon. For this purpose, we construct the
associated process {(X, ¢, Zp¢),t € Z} denoted as {(Xy, Z;)} € RP x R where

Xe =LY, Yiep1), Ze=Yirmipa, (t=1,...,nsn=T—H —p+1).
(9.1)

Let {(X4, Z:),t € Z} be a sequence of random variable with common probability
density function with respect to the Lebesgue measure on RPT!. Now the problem
of predicting Y7, g, or equivalently Z7_,11, consists of finding the closest (with
respect to a certain norm) random variable knowing all the past. Suppose that
there exists a function p(-) modeling the relationship between the response Z; and

Bosq (1998, Section 3.4.2) notes that kernel-based prediction methods can still be used if there
is a simple form of nonstationarity in the data. For instance in case the data exhibit a slowly
varying trend and/or there is a periodic function with a known period (seasonal component).
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the covariate Xy, and that p(-) is defined through the conditional distribution. Given
a loss function L(-) with a unique minimum, define p(-) such that it minimizes the
conditional mean E(L(Z; — a)|X; = x) with respect to a, i.e.

u(a) = arg I;IGiHIgE(L(Zt — a)|X; = x). (9.2)

Then estimating nonparametrically x(-) by f(-) and calculating 11(Xq_p41) gives
ET,pH. In this way, we obtain the H-step ahead forecast value }A/TJFH‘T as an
estimator of Y7 g7 = E(Yry g Xr).

Using the above principle, we define three predictors, i.e. the conditional mean,
the conditional median, and the conditional mode, each depending on a particular
form of the function L(-). These predictors will be expressed as a sum of products
between functions of {Y;} and weights W;(x), depending on the values of Xy, i.e.
the weights are defined as

Wt(x):K(X;Xt)/zn:K(X;Xt>, (n=T—H—p+1). (9.3)
T "

In practice, K(-) is often assumed to be a product kernel. For ease of readability,
we denote the bandwidth by h without explicitly indicating its dependence on n.

It is well known that L(u) = u® leads to the conditional mean function p(x) =
E(Z;|X¢ = x). Using the NW kernel density approach (see, e.g., Chapter 7, expres-
sion (A.12)), an estimator of u(x) can be constructed as

AN (x) = ZWi(x). (9.4)
t=1

Hence, given {Y;,t < T'}, the H-step ahead nonparametric estimator of the condi-
tional mean is defined as

n

edir = Y ZWi(Xr_pia). (9.5)
t=1

Under certain mixing conditions of the process {(Xy, Z¢),t € Z}, Collomb (1984)

~ 3 Mean
shows uniform convergence of Y2* HiT"

Conditional median

When the conditional distribution of Z; given X; is heavy-tailed or asymmetric, it
may be sensible to use the conditional median rather than the conditional mean to
generate future values, as the median is highly resistant against outliers. In this
case the loss function is given by L(u) = |ul|, and the solution of (9.2) leads to the
conditional median function {(x) = inf{z: F'(z|x > 1/2)}. Here, F(+|-) is the CDF
of Z; given X; = x. Estimating £(-) nonparametrically gives

-~

£(x) = inf {z: N Wix)I(Z < 2) = 1/2}. (9.6)
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Hence, given {Y;,t < T}, the H-step ahead nonparametric estimator of the condi-
tional median, denoted by YTI‘ﬁ‘:;I‘T, is defined as

~

’}ﬁi;ﬂT = inf {Z‘ Z Wi(Xp—py1)I(Z < 2) > 1/2}. (9.7)
t=1

Under certain mixing conditions, uniform convergence of ?jﬁ‘f;ﬂT can be proved; see,
e.g., Gannoun (1990), and Boente and Fraiman (1995).

Conditional mode

Collomb et al. (1987) propose a method to produce nonparametric predictions based
on the conditional mode function. In this case, we have a non-convex loss function
with a unique minimum L(u) = 0 when v = 0, and L(u) = 1 otherwise. The
solution of (9.2) leads to the conditional mode function 7(x) = arg max,cgr f(2]x),
where f(-|x) denotes the conditional density function of Z; given X; = x. Estimating
7(+) nonparametrically gives

T(x) = arg max Zn: K(Z *th ) Wi(x). (9.8)
t=1

Consequently, given {Y;,t < T'}, the H-step ahead nonparametric estimator of the
conditional mode is given by

Z—Zt

n
TMJ?%T = argmax Z K( ) Wi(Xr—p+1)- (9.9)
t=1
Under some mixing conditions on {(Xy, Z;),t € Z}, Collomb et al. (1987) show the

3 V" Mode
uniform convergence of Y? HIT"

The predictors defined above are direct estimators since they use direct smooth-
ing techniques. Clearly, these predictors are point estimates of a particular loss
function L(-) at some x. However, they do not estimate the whole loss function. In
fact, the H-step ahead conditional mean, median, and mode all ignore information
contained in the intermediate variables Xii1,..., X (g_1). In Section 9.1.2, we
introduce a nonparametric kernel smoother which uses such information.

Choice of the bandwidth

As we saw in Appendix 7.A, the main problem in the implementation of nonpara-
metric kernel-based smoothing methods is the selection of the bandwidth in finite
samples. Let us suppose that the kernel function K(-) is symmetric, second-order,
Lipschitz continuous and has absolutely integrable FT.? Under the assumption that

2A function f: R? — R is said Lipschitz continuous on D C RP? if there exists a finite constant
C, such that |f(z1) — f(z2)| < Clz1 — x2| Vo1, 22 € D. The Lipschitz requirement is necessary for
proving uniform convergence results.
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the DGP is Markovian, and imposing proper (regularity) conditions, the leave-one-
out CV method can be extended to time series processes.

Table 9.1 gives leave-one-out estimators of the conditional mean, median, and
mode with corresponding CV measures. The optimal bandwidth follows from hopt =
argming, {C'V ) (h)}, where the superscript (-) denotes one of the three predictors.
Then, given hopt, the H-step ahead nonparametric predictor follows directly. When
a time series is strongly correlated, it is reasonable to leave out more than just one
observation. For nonparametric density estimation of i.i.d. observations, the plug-in
bandwidth hy = oy T~/ ®+4) can be used with &y the standard deviation of {Y, L.
This choice is a simplified version of expression (A.10) in Chapter 7, with v = 2. It
guarantees an optimal rate of convergence with respect to the MISE. However, hg is
not optimal in all cases since it does not take into account the mixing condition of
the stochastic process. Nevertheless, it may serve as an initial pilot for CV methods.

Choice of the Markov coefficient

The performance of a kernel-based forecasting method depends on the Markov coef-
ficient p. Intuitively, we would like to have p as large as possible in order not to lose
too much information about the past. However, as p increases, the data available for
forecasting decreases. Matzner—Lgber et al. (1998) propose the following empirical

procedure. For p € {1,...,pmax} compute the functions
T T )
Z t+1|t (2, h)], Z t+1|t( P,
t=T—k t=T—k
and
fs(p) = sup|¥i = ¥, (0, ), (9.10)
where Yt(Jr)l' ,(p, h) denotes the one-step ahead kernel-based predictor (i.e. conditional

mean, median, or mode) depending on the Markov coefficient p and the bandwidth h.
The value of p is chosen as follows. For a fixed h, obtain p; = arg min,, f;(p) for each
J, and subsequently p = max;p; (j = 1,2,3). For series with 7" > 100 observations,
it is recommended to take k = [T'/5], and k = [T'/4] otherwise. This procedure
is simple and quick. Nevertheless, there is a need for its theoretical underpinning.
Section 9.1.6 discusses alternative methods of lag selection.

9.1.2 Single- and multi-stage quantile prediction

In addition to the three conditional predictors introduced in Section 9.1.1, condi-
tional quantiles are of interest in various time series applications. Suppose that the
conditional distribution function of Z; given X; = x, F'(:|x), has a unique quantile
of order ¢ € (0, 1) at a point &;(x). Then the conditional gth quantile is defined by

& (x) =inf{z: F(z|x) > ¢}. (9.11)
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Table 9.1: Leave-one-out estimators of the conditional mean, the conditional median, and
the conditional mode with corresponding CV measures.

Predictor Leave-one-out estimator (1) Cross-validation
n
Mean (X)) = > Z;WH(Xy) CyMean(p, Z{zt X1)}2
j=1
P .
Median ~ £%(X;) = inf{z|F~%(z|X:) > 1/2} cvMdn(py = Z{Zt X:)}?

(Mdn) with n
FoieIXe) = 30 HZ5 < 2}W; (X0

j=1

Mode — 7i(Xy) = argjéfgﬂé( FieXe) cvMede () = LS 7, - 7t(x,))?
w1th
(21%e) = Z (= Zyw; i)
J#l

O W0 = K(R) [ Dy K (B2 )in =T - H —p 41

Equivalently, &,(x) can also viewed as any solution to the following problem
§g(x) = arg ranelﬂ% E{pq(Z: — a)| Xy = x},

where pg(u) = |u|+(2¢—1)u is the so-called check function. Note that & /5(x) = £(x),
i.e. the conditional median.

Now, given the observations {(Xt,Zt)}t 1, an estimator fq( x) of £,(x) can be
defined as the root of the equation F( |x) = g where F( |x) is an estimator of F'(+[x).
Thus, a predictor of the gth conditional quantile of Yr, f is given by §q (X7r—H—pt+1)-
Of course, in practice a nonparametric estimate of the conditional distribution func-
tion is needed. Omne possible estimator is the NW smoother which in a time series
setting is given by

= doiey K{(x = X4)/h}(Z < 2)

F(z|x) = , m=T—H—-p+1). (9.12)
2oy K{(x — X4)/h}
We shall refer to the solution of the equation
F(z]x) = ¢ (9.13)

as the single-stage conditional quantile predictor and denote this by @W(x). Altern-
atively, we may use the local linear (LL) conditional quantile estimator; see Section
9.1.3 for its definition.

Note that the conditional quantile predictor in (9.13) uses only the information
in the pairs {(X¢, Z;)}}-, and ignores the information contained in

H-1)

ng) = Xit1, W§2) =Xiy2, .-, Wt( = Xy (H-1)- (9.14)
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Below we illustrate the impact of the data contained in (9.14) on multi-step ahead
prediction accuracy.
Let Gi(w) = E(I(Zt < z)]W(H b= w) For j = 2,...,H — 1, also define

Gi(w) = E(G;_ (W=D w9 —

. Hence,

Var[gj(WEH*j ] = Var[E(g;(WH =) wH =1y
—i—E[Var(gJ( (H J )]W(H i 1))]‘

For j =1,..., H—2, we have G, (W 77Dy — E(G, (W) Wi 77D) | Thus,
Var(G 1 (Wi 77)] < Var[g; (Wi =9))]. (9.15)

Likewise, it is easy to see that
Var[Gr (W)X, = x] < Var[I(Z, < 2)|X, = x]. (9.16)

Exploiting the Markovian property of {Y;,t € Z}, we can rewrite E(I(Z; < 2)|X; =
x) in such a way that the information in (9.14) is incorporated, i.e.

E(I(Yy < y)|X; = x) = E(G, (W™ >|Xt —x

)
_ (112

= E(Gn1(W{)X; =x).

Observe that as we go down line by line in (9.17) more and more information is
utilized. Recalling the two previous inequalities, (9.15) and (9.16), we can see that as
more information is used, the prediction variance gets smaller and hence prediction
accuracy in terms of MSFE improves. Thus, at least in theory, it pays off to use all
the ignored information.

Based on the above recursive setup, we now introduce a kernel-based estimator
of F'(z|x). First the estimators of G(w) and G;(w), (j =2,..., H —2) are defined,
respectively, as follows.

S K{w - W) 12 < 2)
S E{(w - W) gy
> K {(w— W) 3G (W0
S K{(w — W) n gy '

Then, using Gy—1(w), compute F(z|x) by

Stage 1:  Gy(w) =

Stage j: aj(w) =

iy KA = Xi) [hia}Gu (W)

Stage H: F(z]x) = ooy K{(x—Xy)/hu}

(9.18)
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We shall refer to the root of the equation ﬁ(z|x) = ¢ as the multi-stage gqth condi-
tional quantile predictor EgW(x).

To compare the AMSE of E}jw(x) (multi-stage) with the AMSE of glq\“"’(x) (single-
stage), we assume for simplicity of notation that H = 2, and p = 1. From {Y},t € Z},
let us construct the associated process Uy = (X3, Wy, Z;)" defined by

X =Yy, Wi =W =Y, Z = Yigo.

We suppose that the random variables {(X¢, W;)}, respectively {(W;, Z;) }, have joint
densities fx w(:,-), respectively fw. z(-,-). Let g(x), g(2), and g(w) be the marginal
densities of {X;}, {Z;}, and {W:}, and f(-|z) = fx z(z,-)/g(z) be the conditional
density function. Furthermore, we assume that some regularity conditions on the
process {Uy,t € Z} are satisfied, and that nh — oo as n — oo, nhy — 0o as n —
and hi1 = o(hs).

For y € R, define o%(y, z) = Var(Y; < y|X; = z), v1(y, ) = Var(G1(W;)| X; = z)
and vy (y, ) = E[Var(1(Y; < y)|W;)|X; = 2]. Then it can be shown (De Gooijer et
al., 2001) that for all x € R the best possible asymptotic MSE of E};W(x) and @;W (z)
are respectively given by

AMSE{&NY (z)} ~ 5T s (&4(x),2) D}/° (4(x), ) (9.19)
L A R |
AMSE{E™ (@)} = — " b3 (¢ (), 2) DV (&, (), ) (9.20)
T AR (G ()la) P T ‘
where
: 2F 10 (y[a) g™ () \ 2
Dily, ) = k(KL FEO (o) + =—— ==}
O'2 A v xr
Dafy) = STy y,0) = i) ),
with
FOI)(t)s) = %, and g (z) = dil?,

and where R(K) is the roughness function, as defined in Appendix 7.A. Con-
sequently, the ratio of the best possible AMSEs of the single-stage estimator {i™ (z)

and the two-stage estimator @;W(:c) is given by

v2(&(2), ) }4/5,

T(gq(x)"r) - {1 + U1 (gq(m)’x)

(9.21)

which takes values > 1.
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Figure 9.1: Ratio of asymptotic best possible AMSEs (1) versus the quantile level q. From
De Gooijer et al. (2001).

It is easy to verify that Var (fq(:v), x) = ¢q(1 — q). Further, note that
Var(&4(z), ) = v1(&(2), ) + va(&g(2), z) with vy < ¢(1 — ¢). Thus, we may re-
express (9.21) as follows: 7(&,(x), ) = {q(1—q)/(q(1—q) —vg(gq(x),:n))}4/5. Figure
9.1 shows a plot of r versus ¢ (0.1 < ¢ < 0.9) for vo = 0.05 and 0.08. Clearly, r
increases sharply as we go to the edge of the conditional distribution. This illus-
trates theoretically that the improvement achieved by Eq(a;) is more pronounced for
quantiles in the tails of F'(-|x).

From asymptotic theory it follows that the optimal bandwidth for both predictors
depends on ¢. Thus, the amount of smoothing required to estimate different parts of
F(-|x) may differ from what is optimal to estimate the whole conditional distribution
function. This is particularly the case for the tails of F'(-|x). We can, however, turn
to the following rule-of-thumb calculations based on assuming a normal (conditional)
distribution as an appropriate approach:

(a) Select a primary bandwidth, say he.., suitable for conditional mean estima-
tion. For instance, one may use h,, as given by (A.7) in Appendix 7.A with
a Gaussian second-order kernel. Alternatively, various ready-made bandwidth
selection methods for kernel-type estimators of p(-) are available in the liter-
ature.

(b) Adjust hpe.. according to the following rule-of-thumb

hg = huean[{a(1 — @)} /{0 (271(q)) *}H P+, (9.22)

where ¢(-) and ®(+) are the standard normal density and distribution functions,

respectively, and p refers to the order of the Markovian process. In particular,
when q = 1/2, hy /g = huean(2/m) Y+ using o(971(1/2))” = (27) 71,

Example 9.1: A Comparison Between Conditional Quantiles

Consider the simple, Markovian-type, NLAR(1) process

Y, = 0.23Y,_1(16 — Y;_1) + 0.4z, (9.23)
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Figure 9.2: (a) - (c) Percentile plots of the empirical distribution of the squared errors for
model (9.23) for the single-stage predictor EY'V(-) (blue solid line), and the multi-stage (here
two) predictor E;VW(-) (black solid line); (d) — (f) Boxplots corresponding to the percentile

plots (a) — (c), respectively; T = 150, and 150 MC replications. From De Gooijer et al.
(2001).

where {e;} N (0,1) random variables with the standard normal distribution

truncated in the interval [—12, 12]. The objective is to estimate two and five
steps ahead g-conditional quantiles using both & (x) and £V (x) (¢ = 0.25
and 0.75; z = 6 and 10), and compare their prediction accuracy.

Clearly, a proper evaluation of the accuracy of both predictors requires know-
ledge about the “true” conditional quantile &,(z). This information is obtained
by generating 10,000 independent realizations of (Y;1g|Y; = x) (H = 2 and 5)
iterating the DGP (9.23) and computing the appropriate quantiles from the
empirical conditional distribution function of the generated observations.

From (9.23), we generate 150 samples of size T' = 150. Based on these estim-
ates, we compute for each replication j (j = 1,...,150) the following error
measures:

o _{E@-4@y o _ 1@ - &@)

A £,(7)? &) £,(7)?2 ’
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where Nt(zj)(x) and At(]])(x) denote the jth estimators {gW(:n) and @;W(:c), re-
spectively. Next, we compute percentile values from the empirical distributions
of these two error measures. Figures 9.2(a) — (¢) show that the percentiles of
the squared errors from the 2-stage predictions (black solid line) lie overall be-
low the corresponding percentiles of the squared errors from the single-stage
predictions (blue solid line). This implies that the conditional quantile predic-
tions made by £ () are more accurate than those made by §;™ (). Boxplots
corresponding to the percentile plots (a) — (c) are given in Figures 9.2(d) — (f).
It is clear from these plots that the multi-stage quantile predictor has a much
smaller variability while its bias is nearly the same as that of the single-stage
quantile estimator, supporting asymptotic results.

9.1.3 Conditional densities

Let {(X;,Y;),t € Z} be a RP xR valued strictly stationary process with a common pdf
f(-) as (X,Y). In a univariate time series context, X; typically denotes lagged values
of {Y;}. Also assume that X; admits a marginal density g(-). Suppose we are given
{(X¢,Y;)}1 observations of {(X,Y),t € Z} with n = T'—p. We wish to estimate the
conditional density function of Y; given X; = x, i.e. f(y|x) = f(x,y)/g(x), where g(-)
is assumed positive at x. The conditional density function can be a useful statistical
tool in several ways. The most obvious need for estimating conditional densities
arises when exploring relationships between a response and potential covariates.

Example 9.2: Old Faithful Geyser

To motivate ideas and as an illustration we consider, as a classical example for
the analysis of bimodal time series data, the waiting time between the starts of
successive eruptions and the duration of the subsequent eruption for the Old
Faithful geyser in Yellowstone National Park, Wyoming, USA. The average
interval between eruptions is about 72.3 minutes (median = 76 minutes) with
a standard deviation of about 13.9 minutes. Figure 9.3(a) shows a scatter plot
of the duration time and the waiting time. Both variables are transformed
to have mean zero and variance one. From the plot it is clear than when
there has been a relatively short waiting time between eruptions, the duration
of the next eruption is relatively long. When, however, the waiting time
between eruptions is longer than about —0.17 (or 70 minutes in the scale of
the untransformed data), the duration of the next eruption is more or less
a mixture of short and long durations. This interesting observation can be
nicely summarized by the conditional density function.

Figure 9.3(b) gives the estimated conditional density. Notice that when the
waiting time to eruption is more than —0.17, the conditional density function
of eruption duration conditional on waiting time to eruption is bimodal. On
the other hand, for waiting times below —0.17, the conditional density function
is unimodal.
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Figure 9.3: Old Faithful geyser data set: (a) Duration of eruption plotted against waiting
time to eruption, and (b) conditional density estimates of eruption duration conditional on
the waiting time to eruption. Time period: August 1, 1985 — August 15, 1985 (T = 299).
From De Gooijer and Zerom (2003).

In the sequel, we first discuss two existing kernel-based smoothers of the condi-
tional density: the NW estimator and the LL estimator. Next, following De Gooijer
and Zerom (2003), we introduce a simple kernel smoother which combines the bet-
ter sides of both estimators. For simplicity, we shall consider the case p = 1, i.e.
{Xy,t € Z} is a univariate process.

Nadaraya—Watson (NW) and local linear (LL) estimators

Let the kernel K(-) be a symmetric density function on R. Let h; and he denote
two bandwidths. As h; — 0 when n — o0, it is easy to see from a standard Taylor
argument that

E{Kn (y = Y)|X =z} ~ f(ylo),

where KCp(-) = K(-/h)/h. This suggests that the estimation of f(y|z) can be viewed
as a nonparametric regression of Kp(y — Y;) on {X;}. In fact, it is based on this
particular idea that the NW kernel smoother of f(y|x) was first proposed. Within
the current setting, the natural NW estimator of f(y|z) is given by

F¥le) =" K, (y = Y)W (@), (n=T—p), (9.24)
t=1
where
WtNW(x) . ICh2 (m — Xt)

DY EPHCED O}

Now, suppose that the second derivative of f(y|z) exists. Also, introduce the
short-hand notation f7)(y|z) = 917 f(y|x)/02'0y?. In a small neighborhood of a
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point x, we can approximate f(y|z) locally by a linear term

Fylz) = fyle) + O (yla) (2 — x)
=a+b(z —x).

In this sense, one can also regard the estimation of f(y|x) as a nonparametric
weighted regression of Ky, (y — Y;) against (1, (x — X;)) using weights ICh2 (r — X3).
Considerations of this nature suggest the following LS problem. Let ( ﬁo, ﬁl) minim-
ize

n

> (’Chl(y =Y:) = Bo — Bi(z — Xt)>2lch2 (x — X¢).

t=1

The LL estimator of f(y|x), here denoted by fLL(y|x), is defined as [y. Simple
algebra (Fan and Gijbels, 1996) shows that f™(y|z) can be expressed as

Hyle) = Z’Chl y = Y)Wt (z), (n=T —p), (9.25)
t=1
where
WtLL( ) Kh2($_Xt){Tn2_(w_Xt) nl}

(Tr0Tn2 — T 1)

with Ty, ; = > 1y Kpy (@ — Xyo)(z — X3)? (=0,1,2).

From the definition of the two estimators, we can see that fNW(y]a;) ap-
proximates f(y|x) locally by a constant while f LL(y|$) approximates f(y|z) locally
by a linear model. To appreciate why the extension of the local constant fitting to
the local linear alternative is interesting, we now compare the two estimators via
their respective moments. To keep the presentation simple, we assume without loss
of generality, that h; = hy = h. When the process {(X¢,Y:),t € Z} is a-mixing it
can be shown (Chen et al., 2001) that the approximate asymptotic bias and variance
of fNW(y|x) is given by

—~ (1,0)
Bias (" (410)) = 5ua (K2 [120 k) + £O2 ole) +22 L8 110 o)
(9.26)
and
~ 1
Var(F¥(yla)) = R*(K)— féz(“’g) (9.27)
where p3(K) = [pu?K(u)du and R(K) = [, K?(z)dz are defined earlier in Ap-

pendix 7.A. Slmllarly, 1t can be shown (Fan and Gljbels, 1996, Thm. 6.2) that the
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asymptotic bias and variance of f”“ (y|z) are given by

Bias(F*(yl)) = gua(K)* 1O o) + FO2 (gl (9.28)
_ 1 f(ylz)
Var( M(ylz)) = RQ(K)W o) (9.29)

Note that the two variances are identical and the differences in the AMSEs
between the two estimators depend only on their respective biases. We see that the
bias of fNW(y|x) has an extra term (g(1%) (:U)/g(x))f@o) (y|z). The bias of fNW(y|x)
is large if either |¢(10) (z)/g(z)| or |f10) (y|z)| is large, but neither term appears in
(9.28). For example, when the marginal density function of X (design density) is
highly clustered, the term g% (x)/g(z)| becomes large. Of course, when g(z) is
uniform, the biases of the two estimators are the same. Thus, the fact that f - (y|z)
does not depend on the density of X makes it design adaptive (see, e.g., Fan, 1992).
Now, let’s consider |f(10 (y|z)|. For simplicity, suppose that the conditional density
of Y depends on = only through a location parameter, say the conditional mean
u() and hence f(yl2) = £(y — u(@)). Then F1O(yla) = u (@) FA (y — u(a) o)
where p(M)(-) denotes the first derivative of p(-). In this setup when, for example,
p(x) = a+bx with large coefficient b, the bias of fNW(\x) gets large. When, however,
p(x) is flat or has maximum or minimum, or inflection point at z, the biases of the
two estimators become the same.

The above theoretical comparisons suggest that the LL estimator is more at-
tractive than the NW alternative because of its better bias performance and design
adaptation. It is also possible to show that both in the interior and near the bound-
ary of the support of g(-), the asymptotic bias and the variance of f"“(:|z) are of
the same order of magnitude. On the other hand, f~W(:|z) has a bias of order h
for  in the boundary. So, at least in theory, the LL smoother does not suffer from
boundary effects and hence does not require modifications at the boundaries.

Re-weighted Nadaraya—Watson (RNW) estimator

From LS theory, we see that the LL weights satisfy: >, (x — X)W} (z) = 0. On
the other hand, this moment condition is not fulfilled for the NW weights . One way
to overcome this difficulty is to force the weights W,V (-) to resemble W/} (-). To this
end, let 7;(z) denote the “probability-like” weights with properties that 7 (z) > 0,

Yoy e(x) =1, and

D mil@) (@ — X)Knp(x — Xp) = 0. (9.30)
t=1
Next, we define the RNW conditional density estimator as

FE(yle) = Z’Ch y = Y)W (x), (9.31)
t=1



9.1 KERNEL-BASED NONPARAMETRIC METHODS 351

where
Tt(CL')K:h(JZ - Xt)
2o (@)K (2 — X)
From a computational perspective the RNW smoother is easy to implement. In
particular, we choose to look for the unique solution of 74(z) by maximizing its

empirical likelihood ;" log 7¢(x), subject to the constraints on 7;(z), via Lagrange
multipliers. That is,

:Zloth(x)+n<1—ZTt($)) —n/\ZTt (x — Xp)Kp(z — Xy).
t=1

Setting IL,(+,)/0m(x) = 0, we obtain 7(x) = 1/{k + n\(x — X{)Kp(z — X;)}. In
addition, summing 0L, (+,-)/0m(z) and employing (9.30), we can see that k = n.
Hence,

Wit (@) =

3

-1

() =n {1+ Ma — X)Kn(z — X;)} (9.32)

Substituting (9.32) into (9.30), we obtain

- (x — X)Kn(z — X;)

Now, notice that —G/(-) is just the gradient with respect to A of

Ln(A) = = log{1l + Az — X;)Kp(z — X0)}.
t=1

So, a zero of G(-) is a stationary point of L,(:). The implication is that, in prac-
tice, one can compute A as the unique minimizer of L,(-). De Gooijer and Zerom
(2003) suggest that a line search algorithm is a suitable choice to compute A. The
conditional density function displayed in Figure 9.3(b) is computed via the RNW
smoother.

It is straightforward to show (De Gooijer and Zerom, 2003) that [A] < O,(h).
Moreover, the bias and variance of fRNW(~) are identical to the bias and variance of
the LL smoother respectively given by (9.28) and (9.29). Thus, the RNW smoother
shares the better bias behavior of the LL smoother. If one chooses the optimal
bandwidth, say h*, such that it minimizes the AMSE of f®W(.), it is easy to see
that

h* = Bn~ /S,

where B is a functional of some unknowns such as f(:|x). In practice, B may
be replaced by consistent estimates. Unlike the n~1/5 rate from the univariate
density estimation, notice that h* ~ n~1/6 as one needs to smooth in both z and
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y directions. Recall that in defining the RNW smoother we used one bandwidth
h = h1 = he. However, in practice there may indeed arise a need to have different
levels of smoothing for each direction. For example, in the Old Faithful geyser
illustration, it is not advisable to have the same h for both variables because they
have different levels of variability. In fact, that was the reason for standardizing
the variables before using a single bandwidth for both. If the approach of pre-
standardizing the data is found inadequate, the RNW smoother can be easily re-
defined to involve two bandwidths.

9.1.4 Locally weighted regression

The classic kernel-based, methods depend on a real-valued non-random bandwidth
sequence {hy, }. For locally weighted nonparametric estimation, however, the smooth-
ing parameter depends on the number of neighbors around a point of interest using
only data (training set) that are “local” to that point. There are several ways of
performing nearest-neighbor estimation. Below we