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Preface

Empirical time series analysis and modeling has been deviating, over the last 40 years
or so, from the linear paradigm with the aim of incorporating nonlinear features. In-
deed, there are various occasions when subject-matter, theory or data suggests that
a time series is generated by a nonlinear stochastic process. If theory could provide
some understanding of the nonlinear phenomena underlying the data, the modeling
process would be relatively easy, with estimation of the model parameters being all
that is required. However, this option is rarely available in practice. Alternatively,
a particular nonlinear model may be selected, fitted to the data and subjected to a
battery of diagnostic tests to check for features that the model has failed adequately
to approximate. Although this approach corresponds to the usual model selection
strategy in linear time series analysis, it may involve rather more problems than in
the linear case.

One immediate problem is the selection of an appropriate nonlinear model or
method. However, given the wealth of nonlinear time series models now available,
this is a far from easy task. For practical use a good nonlinear model should at least
fulfill the requirement that it is general enough to capture some of the nonlinear
phenomena in the data and, moreover, should have some intuitive appeal. This
implies a systematic account of various aspects of these models and methods.

The Hungarian mathematician John von Neumann once said that the study of
nonlinear functions is akin to the study of non-elephants.1 This remark illustrates
a common problem with nonlinear theory, which in our case is equivalent to non-
linear models/methods: the subject is so vast that it is difficult to develop general
approaches and theories similar to those existing for linear functions/models. Fortu-
nately, over the last two to three decades, the theory and practice of “non-elephants”
has made enormous progress. Indeed, several advancements have taken place in the
nonlinear model development process in order to capture specific nonlinear features
of the underlying data generating process. These features include symptoms such as

1A similar remark is credited to the Polish mathematician Stanislaw M. Ulam saying that using
a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant
animals; Campbell, Farmer, Crutchfield, and Jen (1985), “Experimental mathematics: The role of
computation in nonlinear science”. Communications of the ACM, 28(4), 374–384.
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non-Gaussianity, aperiodicity, asymmetric cycles, multi-modality, nonlinear causal
relationships, nonstationarity, and time-irreversibility, among others. Additionally,
considerable progress has been made in the development of methods for real, out-
of-sample, nonlinear time series forecasting.2

Unsurprisingly, the mass of research and applications of nonlinear time series
analysis and forecasting methods is scattered over a wide range of scientific discip-
lines and numerous journal articles. This does not ensure easy access to the sub-
ject. Moreover, different papers tend to use different notations making it difficult to
conceptualize, compare, and contrast new ideas and developments across different
scientific fields. This book is my attempt to bring together, organize, extend many
of the important ideas and works in nonlinear time series analysis and forecasting,
and explain them in a comprehensive and systematic statistical framework.

While some mathematical details are needed, the main intent of the book is
to provide an overview of the current state-of-the-art of the subject, focusing on
practical issues rather than discussing technical details. To reach this goal, the
text offers a large number of examples, pseudo-algorithms, empirical exercises, and
real-world illustrations, as well as other supporting additions and features. In this
respect, I hope that the many empirical examples will testify to the breadth of the
subject matter that the book addresses. Some of the material presented in the
book is my own or developed with co-authors, but a very large part is based on the
contributions made by others. Extensive credit for such previously published work
is given throughout the book, and additional bibliographic notes are given at the
end of every chapter.

Who is this book for?
The text is designed to be used with a course in Nonlinear Time Series Analysis,
Statistical System Processing or with a course in Nonlinear Model Identification that
would typically be offered to graduate students in system engineering, mathematics,
statistics, and econometrics. At the same time, the book will appeal to researchers,
postgraduates, and practitioners in a wide range of other fields. Finally, the book
should be of interest to more advanced readers who would like to brush up on
their present knowledge of the subject. Thus, the book is not written toward a
single prototypical reader with a specific background, and it is largely self-contained.
Nevertheless, it is assumed that the reader has some familiarity with basic linear
time series ideas. Also, a bit of knowledge about Markov chains and Monte Carlo
simulation methods is more than welcome.

The book is selective in its coverage of subjects, although this does not imply
that a particular topic is unimportant if it is not included. For instance, Bayesian
approaches – that can relax many assumptions commonly made on the type and
nature of nonlinearity – can be applied to all models. Of course, the extensive list of

2Throughout the book, I will use the terms forecast and prediction interchangeably, although
not quite precisely. That is, prediction concerns statements about the likely outcome of unobserved
events, not necessarily those in the future.
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references allows readers to follow up on original sources for more technical details
on different methods. As a further help to facilitate reading, each chapter concludes
with a set of key terms and concepts, and a summary of the main findings.

What are the main features?
Here are some main features of the book.

• The book shows concrete applications of “modern” nonlinear time series ana-
lysis on a variety of empirical time series. It avoids a “theorem-proof” format.

• The book presents a toolbox of discrete-time nonlinear models, methods, tests,
and concepts. There is usually, but not in all cases, a direct focus on the “best”
available procedure. Alternative procedures that boast sufficient theoretical
and practical underpinning are introduced as well.

• The book uses graphs to explore and summarize real-world data, analyze the
validity of the nonlinear models fitted and present the forecasting results.

• The book covers time-domain and frequency-domain methods both for the
analysis of univariate and multivariate (vector) time series. In addition, the
book makes a clear distinction between parametric models on the one hand,
and semi- and nonparametric models/methods on the other. This offers the
reader the possibility to concentrate exclusively on one of these ways of time
series analysis.

• One additional feature of the book are the numerous algorithms in pseudo
code form which streamline many ideas and material in a systematic way. Thus
readers can rapidly obtain the general gist of a method or technique. Moreover,
it is relatively easy to convert a pseudocode to programming language.

Real data
It is well known that real data analysis can reduce the gap between theory and
practice. Hence, throughout the book a broad set of empirical time series, originating
from many different scientific fields, will be used to illustrate the main points of the
text. This already starts off in Chapter 1 where I introduce five empirical time series
which will be used as “running” examples throughout the book. In later chapters,
other concrete examples of nonlinear time series analysis will appear. In each case,
I provide some background information about the data so that the general context
becomes clear. It may also help the reader to get a better understanding of specific
nonlinear features in the underlying data generating mechanism.

About the chapters
The text is organized as follows. Chapter 1 introduces some important terms and
concepts from linear and nonlinear time series analysis. In addition, this chapter
offers some basic tools for initial data analysis and visualization. Next, the book is
structured into two tracks.

Preface
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The first track (Chapters 2, 3, 5 – 8, and 10) mainly includes parametric non-
linear models and techniques for univariate time series analysis. Here, the overall
outline basically follows the iterative cycle of model identification, parameter es-
timation, and model verification by diagnostic checking. In particular, Chapter 2
concentrates on some important nonlinear model classes. Chapter 3 introduces the
concepts of stationarity and invertibility. The material on time-domain linearity
testing (Chapter 5), model estimation and selection (Chapter 6), tests for serial
dependence (Chapter 7), and time-reversibility (Chapter 8) relates to Chapter 2.
Although Chapter 7 is clearly based on nonparametric methods, the proposed test
statistics try to detect structure in “residuals” obtained from fitted parametric mod-
els, and hence its inclusion in this track. If forecasting from parametric univariate
time series models is the objective, Chapter 10 provides a host of methods. As a part
of the entire forecasting process, the chapter also includes methods for the construc-
tion of forecast intervals/regions, and methods for the evaluation and combination
of forecasts.

When sufficient data is available, the flexibility offered by many of the semi-
and nonparametric techniques in the second track may be preferred over parametric
models/methods. A possible starting point of this track is to test for linearity and
Gaussianity through spectral density estimation methods first (Chapter 4). In some
situations, however, a reader can jump directly to specific sections in Chapter 9
which contain extensive material on analyzing nonlinear time series by semi- and
nonparametric methods. Also some sections in Chapter 9 discuss forecasting in a
semi- and nonparametric setting. Finally, both tracks contain chapters on multivari-
ate nonlinear time series analysis (Chapters 11 and 12). The following exhibit gives
a rough depiction of how the two tracks are interrelated.

Each solid directed line, denoted by a → b, represents a suggestion that Chapter
a be read before Chapter b. The medium-dashed lines indicate that some specific
chapters can be read independently. Chapters 2, 7, and 9 are somewhat lengthy,
but the dependence among sections is not very strong.

At the end of each chapter, the book contains two types of exercises. Theory
exercises illustrate and reinforce the theory at a more advanced level, and provide
results that are not available in the main text. The chapter also includes empir-
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ical and simulation exercises. The simulation questions are designed to provide
the reader with first-hand information on the behavior and performance of some
of the theoretical results. The empirical exercises are designed to obtain a good
understanding of the difficulties involved in the process of modeling and forecasting
nonlinear time series using real-world data.

The book includes an extensive list of references. The many historical references
should be of interest to those wishing to trace the early developments of nonlinear
time series analysis. Also, the list contains references to more recent papers and
books in the hope that it will help the reader find a way through the bursting
literature on the subject.

Reading roadmaps
I do not anticipate that the book will be read cover to cover. Instead, I hope that
the extensive indexing, ample cross-referencing, and worked examples will make it
possible for readers to directly find and then implement what they need. Neverthe-
less, those who wish to obtain an overall impression of the book, I suggest reading
Chapters 1 and 2, Sections 5.1 – 5.5, Sections 6.1 – 6.2, Sections 7.2 – 7.3, and
Chapters 9 and 10. Chapter 3 is more advanced, and can be omitted on a first read-
ing. Similarly, Chapter 8 can be read at a later stage because it is not an essential
part of the main text. In fact this chapter is somewhat peripheral.

Readers who wish to use the book to find out how to obtain forecasts of a
data generating process maybe “expected” to have nonlinear features, may find the
following reading suggestions useful.

• Start with Chapter 1 to get a good understanding of the central concepts
such as linearity, Gaussianity, and stationarity. For instance, by exploring
a recurrence plot (Section 1.3.4) one may detect particular deviations from
the assumption of strict stationarity. This information, added to the many
stationarity tests available in the literature, may provide a starting point for
selecting and understanding different nonlinear (forecasting) models.

• To further support the above objectives, Sections 2.1 – 2.10 are worth reading
next. It is also recommended to read Section 6.1 on model estimation.

• Section 3.5 introduces the concept of invertibility, which is directly linked to
the concept of forecastability. So this section should be a part of the reading-
list.

• Continue by reading Sections 5.1 on Lagrange multiplier type tests. These tests
are relatively easy to carry out in practice, provided the type of nonlinearity is
known in advance. The diagnostic tests of Sections 5.4, and the tests of Section
5.5, may provide additional information about potential model inadequacies.

• Next, continue reading Section 6.2.2 on model selection criteria.
• Finally, reading all or parts of the material in Chapter 10 is a prerequisite for

model-based forecasting and forecast evaluation. Alternatively, readers with
an interest in semi- and nonparametric models/methods may want to consult
(parts of) Chapter 12.

Preface xi
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Do it yourself . . . with a little help from software code
It is likely that the reader is tempted to reproduce the presented results, and also
apply some of the nonlinear methods described here to other time series data. This
suggest the need of writing ones own programming code. Fortunately, many re-
searchers and specialists have already carried out this task, and results are freely
available through the Internet. In addition, there are many user-friendly software
packages, often with a graphical interface, that fit the need of a nonlinear time series
analyst and, moreover, are easy to use by non-specialists and students. Hence, I de-
cided not to integrate any software package in the text. Rather, at the end of each
chapter I provide references to websites where relevant, sometimes even complete
programs and/or toolboxes are available for downloading. In doing so, I am certainly
taking a risk; Internet is a dynamic environment and sites may change, move, or
even disappear. Despite this potential risk, I believe that the benefits of providing
links outweighs the aforementioned drawbacks. After all, scientific knowledge is only
advancing by making data, software and other material publicly accessible.

Some software programs written for MATLAB and the R system have been kindly
made available by researchers working in the field. If appropriate, the Solutions
Manual contains the whole source-code of many of the examples and the empir-
ical/simulation exercises. In some cases, however, I have simplified the code and
added explanatory text. It goes without saying that the available code and func-
tions are to be used at one’s own risk.

The data sets are stored at the website http://extras.springer.com/. My
personal web page http://www.jandegooijer.nl contains computer codes, data
sets, and other information about the book; see also the link on the book’s website.
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Chapter 1
INTRODUCTION AND SOME BASIC
CONCEPTS

Informally, a time series is a record of a fluctuating quantity observed over time that
has resulted from some underlying phenomenon. The set of times at which observa-
tions are measured can be equally spaced. In that case, the resulting series is called
discrete. Continuous time series, on the other hand, are obtained when observations
are taken continuously over a fixed time interval. The statistical analysis can take
many forms. For instance, modeling the dynamic relationship of a time series, ob-
taining its characteristic features, forecasting future occurrences, and hypothesizing
marginal statistics. Our concern is with time series that occur in discrete time and
are realizations of a stochastic/random process.

The foundations of classical time series analysis, as collected in books such as
Box et al. (2008), Priestley (1981), and Brockwell and Davis (1991), to name just a
few, is based on two underlying assumptions, stating that:

• The time series process is stationary, commonly referred to as weak or second-
order stationarity, or can be reduced to stationarity by applying an appropriate
transformation;

• The time series process is an output from a linear filter whose input is a purely
random process, known as white noise (WN), usually following a Gaussian, or
normal, distribution. A typical example of a stationary linear Gaussian process
is the well-known class of autoregressive moving average (ARMA) processes.

Although these twin assumptions are reasonable, there remains the rather prob-
lematic fact that in reality many time series are neither stationary, nor can be
described by linear processes. Indeed, there are many more occasions when subject-
matter, theory or data suggests that a stationarity-transformed time series is gen-
erated by a nonlinear process. In addition, a large fraction of time series cannot
be easily transformed to a stationary process. Examples of nonstationary and/or
nonlinear time series abound in the fields of radio engineering, marine engineering,

 1© Springer International Publishing Switzerland 2017 
J.G. De Gooijer, Elements of Nonlinear Time Series Analysis and Forecasting, 
Springer Series in Statistics, DOI 10.1007/978-3-319-43252-6_1 
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servo-systems, oceanography, population biology, economics, hydrology, medical en-
gineering, etc.; see, e.g., the various contributions in the books by Galka (2000),
Small (2005), and Donner and Barbosa (2008).

Before focusing on particular models and methods, we deem it useful to intro-
duce some of the basic concepts and notions from linear and nonlinear time series
analysis. Specifically, in Section 1.1 we start off by discussing the notion of linearity,
and thus nonlinearity, to attempt to reduce potential misunderstandings or disagree-
ments. In Section 1.2, as a prelude to a more detailed analysis in later sections, we
discuss five real data sets taken from different subject areas. These series illustrate
some of the common features of nonlinear time series data. Each data set is accom-
panied with some background information. Next, in Section 1.3, we introduce some
techniques for initial data analysis. These techniques are complemented with tests
for exploratory data analysis.

1.1 Linearity and Gaussianity

There are various definitions of a linear process in the literature. Often it is said
that {Yt, t ∈ Z} is a linear process with mean zero if for all t ∈ Z

Yt =
∞∑

i=−∞
ψiεt−i, where

∞∑
i=−∞

ψ2
i < ∞, {εt} i.i.d.∼ (0, σ2

ε), (1.1)

i.e., {εt} is a sequence of independent and identically (i.i.d.) random variables with
mean zero and finite variance σ2

ε . Such a sequence is also referred to as strict white
noise as opposed to weak white noise, which is a stationary sequence of uncorrelated
random variables. Obviously the requirement that {εt} is i.i.d. is more restrictive
than that this sequence is serially uncorrelated. Independence implies that third and
higher-order non-contemporaneous moments of {εt} are zero, i.e., E(εtεt−iεt−j) = 0
∀i, j �= 0, and similarly for fourth and higher-order moments. When {εt} is assumed
to be Gaussian distributed, the two concepts of white noise coincide.

More generally, the above concepts of white noise are in increasing degree of
“whiteness” part of the following classification system:

(i) Weak white noise:

{εt} ∼ WN(0, σ2
ε),

i.e., E(εt) = 0, γε(�) = E(εtεt+�) = σ2
ε if � = 0 and 0 otherwise (� ∈ Z).

(ii) Stationary martingale difference:

E(εt|F t−1) = 0, and E(ε2
t ) = σ2

ε , ∀t ∈ Z,

where F t is the σ-algebra (information set) generated by {εs, s ≤ t}.
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(iii) Conditional white noise:

E(εt|F t−1) = 0, and E(ε2
t |F t−1) = σ2

ε , ∀t ∈ Z.

(iv) Strict white noise:

{εt} i.i.d.∼ (0, σ2
ε).

(v) Gaussian white noise:

{εt} i.i.d.∼ N (0, σ2
ε).

The process {Yt, t ∈ Z} is said to be linear causal if ψi = 0 for i < 0, i.e., if

Yt = εt +
∞∑
i=1

ψiεt−i, where
∞∑
i=1

ψ2
i < ∞, {εt} i.i.d.∼ (0, σ2

ε). (1.2)

This infinite moving average (MA) representation should not be confused with the
Wold decomposition theorem for purely nondeterministic time series processes. In
(1.2) the process {εt} is only assumed to be i.i.d. and not weakly WN as in the
Wold representation. The linear representation (1.2) can also be derived under
the assumption that the spectral density function of {Yt, t ∈ Z} is positive almost
everywhere, except in the Gaussian case when all spectra of order higher than two
are identically zero; see Chapter 4 for details. Note that a slightly weaker form of
(1.2) follows by assuming that the process {εt} fulfills the conditions in (iii).

Time series processes such as (1.2) have the convenient mathematical property
that the best H-step ahead (H ≥ 1) mean squared predictor, or forecast, of Yt+H ,
denoted by E(Yt+H |Ys,−∞ < s ≤ t), is identical to the best linear predictor; see,
e.g., Brockwell and Davis (1991, Chapter 5). This result has been the basis of an
alternative definition of linearity. Specifically, a time series is said to be essentially
linear , if for a given infinite past set of observations the linear least squares predictor
is also the least squares predictor. In Chapter 4, we will return to this definition of
linearity.

Now suppose that {εt} ∼ WN(0, σ2
ε) in (1.2). In that case the best mean square

predictor may not coincide with the best linear predictor. Moreover, under this
assumption, the complete probabilistic structure of {εt} is not specified: thus, nor
is the full probabilistic structure of {Yt}. Also, by virtue of {εt} being uncorrelated,
there is still information left in it. A partial remedy is to impose the assumption
that {Yt, t ∈ Z} is a Gaussian process, which implies that the process {εt} is also
Gaussian. Hence, (1.2) becomes

Yt = εt +
∞∑
i=1

ψiεt−i, where
∞∑
i=1

ψ2
i < ∞, {εt} i.i.d.∼ N (0, σ2

ε). (1.3)
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Figure 1.1: Quarterly U.S. unemployment rate (in %) (252 observations); red triangle up
= business cycle peak, red triangle down = business cycle trough.

Then, the best mean square predictor of {Yt, t ∈ Z} equals the best linear predictor.
So, in summary, we classify a process {Yt, t ∈ Z} as nonlinear if neither (1.1) nor
(1.2) hold.

Finally, we mention that it is common to label a combined stochastic process,
such as (1.1) or (1.2), as the data generating process (DGP). A model should be
distinguished from a DGP. A DGP is a complete characterization of the statistical
properties of {Yt, t ∈ Z}. On the other hand, a model aims to provide a concise and
reasonably accurate reflection of the DGP.

1.2 Examples of Nonlinear Time Series

Example 1.1: U.S. Unemployment Rate

It has long been argued that recessions in economic activity tend to be steeper
and more short-lived than recoveries. This implies a cyclical asymmetry
between the two main phases, expansion and contraction, of the business
cycle. A typical example is the quarterly U.S. civilian unemployment rate,
seasonally adjusted, covering the time period 1948(i) – 2010(iv) (252 obser-
vations) shown in Figure 1.1.1 The series displays steep increases that end in
sharp peaks and alternate with much more gradual and longer declines that
end in mild troughs. Time series that exhibit such strong asymmetric beha-
vior cannot be adequately modeled by linear time series models with normally
distributed innovations. Such models are characterized by symmetric joint
conditional density functions and that rules out asymmetric sample realiza-
tions. The vertical (short dashed) red lines in Figure 1.1 denote the business
cycle contractions that run from peak to trough as dated by the U.S. National
Bureau of Economic Research (NBER).

1Most of the figures in this book are obtained using Sigmaplot, a scientific data analysis and
graphing software package. Sigmaplot R© is a registered trademark of Systat Software, Inc.
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Figure 1.2: (a) EEG recordings in voltage (μV ) for a data segment of 631 observations
(just over 3 seconds of signal), and (b) the reversed data plot.

The NBER uses many sources of information to determine business cycles,
including the U.S. unemployment rate. To know the duration and turning
points of these cycles it is important to accurately forecast unemployment
rates. This applies particularly during contractionary periods.

Example 1.2: EEG Recordings

An electroencephalogram (EEG) is the recording of electrical potentials (activ-
ity) of the brain. Special sensors (electrodes) are uniformly distributed over
the scalp and linked by wires to a computer. EEG signals are analyzed ex-
tensively for diagnosing conditions like epilepsy, memory impairments, and
sleep disorder. In particular, a certain type of epileptic EEG, called spike and
wave activity, has attracted the attention of many researchers due to its highly
nonlinear dynamics.

Figure 1.2(a) shows a short approximately stationary, segment of only 631
observations of an EEG series from an 11-year-old female patient suffering
from generalized epilepsy, with absence of seizures. Scalp recordings were
obtained at the F3 derivation (F means frontal, and 3 is the location of a
surface electrode). The sampling frequency was 200 hertz (Hz), or 5–msec
epoch. This is common in EEG data analysis. Further a low-pass filter from
0.3 to 30 Hz was used, which removes high frequency fluctuations from the
time series. Most of the cerebral activity oscillation observed in the scalp EEG
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falls in the range 1 – 20 Hz. Activity below or above this range is likely to be
an artifact of non-cerebral origin under standard normal recording techniques.

The spike and wave activity is clearly visible with periodic spikes separated
by slow waves. Note that there are differences in the rate at which the EEG
series rises to a maximum, and the rate at which it falls away from it. This is
an indication that the DGP underlying the series is not time-reversible.

A strictly stationary process {Yt, t ∈ Z} is said to be time-reversible if its
probability structure is invariant with respect to the reversal of time indices;
see Chapter 8 for a more formal definition. If such invariance does not hold, the
process is said to be time-irreversible . All stationary Gaussian processes are
time-reversible. The lack of time-reversibility is either an indication to consider
a linear stationary process with non-Gaussian (non-normal) innovations or a
nonlinear process. No point transformation, like the Box–Cox method, can
transform a time-irreversible process into a Gaussian process because such a
transformation only involves the marginal distribution of the series and ignores
dependence.

One simple way to detect departures from time-reversibility is to plot the time
series with the time axis reversed. Figure 1.2(b) provides an example. Clearly,
the mirror image of the series is not similar to the original plot. Thus, there is
evidence against reversibility. In general, looking at a reverse time series plot
can reinforce the visual detection of seasonal patterns, trends, and changes in
mean and variance that might not be obvious from the original time plot.

Example 1.3: Magnetic Field Data

The Sun is a source of continuous flows of charged particles, ions and electrons
called the solar wind. The terrestrial magnetic field shields the Earth from
the solar wind. Changes in the magnetic field induce considerable currents
in long conductors on the Earth’s surface such as power lines and pipelines.
Other undesirable effects include power blackouts, increased radiation to crew
and passengers on long flights, and effects on communications and radio-wave
propagation.

The primary scientific objectives of the NASA satellite Ulysses are to invest-
igate, as a function of solar latitude, the properties of the solar wind and the
interplanetary magnetic field, of galactic cosmic rays and neutral interstellar
gas, and to study energetic particle composition and acceleration. Onboard
data processing yields hourly time series measurements of the magnetic field.
Field vector components are given in units of nanoteslas (nT) and in RTN
coordinates, where the R axis is directed radially way from the Sun through
the spacecraft (or planet). The T (tangential) axis is the cross product of the
solar rotation axis and the R axis. The N (north) axis is the cross product of
R and T. Figure 1.3 shows the daily averages of the T component, covering
the time period February 17, 1992 – June 30, 1997.
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Figure 1.3: Magnetic field data set, T component (in nT units) in RTN coordinate system.
Time period: February 17, 1992 – June 30, 1997 (1,962 observations).

We see relatively large interplanetary shock waves at the beginning of the series
followed by a relatively stable period. Then, a considerable increase in wave
activity occurs on and around January 11, 1995. In general there is a great
variability in the strength of the magnetic field at irregular time intervals. No
linear model can account for these effects in the data.

Example 1.4: ENSO Phenomenon

The El Niño–Southern Oscillation phenomenon (ENSO) is the most import-
ant source of interannual climate variability. Studies have shown that ENSO
events have a tendency to amplify weather conditions such as droughts or ex-
cess precipitation in equatorial and subequatorial regions of the globe. Figure
1.4(a) shows the Niño 3.4 index for the time period January 1950 – March
2012 (748 observations) which is the departure in sea surface temperature
(SST) from its long-term mean, averaged over the area of the Pacific Ocean
between 5

◦
N – 5

◦
S and 170

◦
W – 120

◦
W. Based on this index ENSO events are

commonly defined as 5 consecutive months at or above the +0.5
◦
C anomaly

for warm (El Niño) events and at or below the −0.5
◦
C anomaly for cold (La

Niña) events. Figure 1.4(b) shows the 5-month running average of the Niño
3.4 index with the ENSO events identified by this method.

There is no indication of nonstationarity in the time series plot of the index.
However, we see from Figure 1.4(b) that there is a pronounced asymmetry
between El Niño and La Niña, the former being very strong. There is obviously
a time of year effect, i.e. El Niño and La Niña events typically develop around
spring (autumn) in the Northern (Southern) Hemisphere and these events
occur every three to five years. These observations suggest that the DGP
underlying ENSO dynamics may well be represented by a nonlinear time series
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Figure 1.4: (a) Plot of the Niño 3.4 index for the time period January 1950 – March 2012
(748 observations); (b) 5-month running average of the Niño 3.4 index with El Niño events
(red triangle up) and La Niña events (green triangle down).

model that allows for a smooth transition from an El Niño to a La Niña event,
and vice versa.

Example 1.5: Climate Change
One of the major uncertainties associated with the “greenhouse effect” and
the possibility of global warming lies within the ocean. To gain a better
understanding of how the ocean responds to climate change, it is important to
explore and quantify patterns of deep ocean circulation between 3 and 2 million
years ago, the interval when significant northern hemisphere glaciation began.
To this end the oxygen isotope δ18O is often used as an indicator of global ice
volume. Another important climate variable is the carbon isotope δ13C which
mainly reflects the strength of North Atlantic Deep Water formation.

One of the longest and most reliable data records comes from the Ocean
Drilling Program (ODP) site 659, located on the Cape Verde Plateau west
of Africa. The sample period corresponds to the past 5,000 ka (1 ka = 1,000
years). The available data set is divided into four distinctive climatic periods:
with some climate variability in the oldest period (5,000 – 3,585 ka), but not
as strong as the glaciation of the Northern Hemisphere which came in the
late Pliocene between 3,885 and 2,625 ka. Then the early Pleistocene started
(2,470 – 937 ka) with a time of gradual cooling and additional build-up of ice.
Subsequently, after a relatively abrupt increase of global ice volume (the mid-
Pleistocene Climatic Transition), the late Pleistocene ice ages started (since
894 ka). Below, and in forthcoming examples, we focus on climatological vari-
ables observed during the youngest period.
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Figure 1.5: Cave plot of the δ13C (top, axis on the right) and δ18O (bottom, axis on the
left) time series. Time interval covers 896 – 2 ka (1 ka = 1,000 years); T = 216.

Figure 1.5 shows two plots of the univariate time series δ13C (denoted by
{Y1,t}) and δ18O (denoted by {Y2,t}), both of length T = 216, for the late
Pleistocene ice ages.2 The graph is called a cave plot since the visual distance
between the two curves resembles the inside of a cave. The cave plot is con-
structed so that if the dependence of {Y1,t} on {Y2,t} is linear and constant
over time then the visual distance between the curves is constant. In the
present case, this is accomplished by a linear regression of the series {Y2,t} on
{Y1,t} and obtaining the “transformed” series {Y1,t} as the fitted values.3

From the plot we see that the difference between the curves is not constant
during this particular climatic period. This feature makes the data suitable
for nonlinear modeling. In addition, we notice a clear correlation between
series, with values of δ13C increasing when δ18O decreases, and vice versa.
This suggests some nonlinear causality between the two series. In general,
these graphs can give a useful visual indication of joint (non)linear short- and
long-term periodic fluctuations, even if the two series are observed at irregular
times as in the present case.

1.3 Initial Data Analysis

In any data analysis, it is good practice to start with some fairly simple descriptive
techniques which will often detect the main features of a given series. For analysis
of nonlinear time series, a host of formal and informal statistical methods and visu-

2The delta (δ) notation refers to the relative deviation of isotope ratios in a sample
from a reference (ref) standard. For example, δ18O (� vs. ref) =

{{(18O/16O)sample −
(18O/16O)ref}/(18O/16O)ref

} × 1,000. An analogous definition gives δ13C in terms of 13C and
12C.

3Transformation used: −0.1136 (intercept), and −0.7628 (slope).
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alization techniques have been proposed for this purpose. Here, we discuss a small
subset of methods which we recommend for addition to the reader’s basic toolkit.

1.3.1 Skewness, kurtosis, and normality
Independent data: Jarque–Bera test
Departures from normality often take the form of asymmetry, or skewness. Let
μr,X = E[(X − μX)r] be the rth (r ∈ N) central moment of a continuous random
variable X with mean μX and standard deviation σX . Assume that the first four
moments exist. Then a measure (one of many) of symmetry is given by the third
central moment μ3,X . The fourth central moment, μ4,X , measures the tail behavior
of X. Normalizing μ3,X by σ3

X , and μ4,X by σ4
X gives rise to the skewness and

kurtosis of X, defined as

τX =
μ3,X

σ3
X

=
E[(X − μX)3]

[E(X − μX)2]3/2
, κX =

μ4,X

σ4
X

=
E[(X − μX)4]
[E(X − μX)2]2

.

For a symmetric distribution μ3,X = 0, and thus τX will be zero. The kurtosis for
the normal distribution is equal to 3. When κX > 3, the distribution of X is said
to have fat tails.

Let {Xi}n
i=1 denote an i.i.d. random sample of X of size n. Then μr,X can be

consistently estimated by the sample moments μ̂r,X = n−1
∑n

i=1(Xi −X)r, where
X = n−1

∑n
i=1 Xi. Sample analogues of τX and κX are given by

τ̂X =
1

nσ̂ 3
X

n∑
i=1

(Xi −X)3, κ̂X =
1

nσ̂ 4
X

n∑
i=1

(Xi −X)4, (1.4)

where

σ̂ 2
X ≡ μ̂2,X =

1
n

n∑
i=1

(Xi −X)2.

If {Xi} i.i.d.∼ N (0, σ2
X) then, as n →∞,

√
n

(
τ̂X

κ̂X

)
D−→ N

((
0
3

)
,

(
6 0
0 24

))
. (1.5)

Using this asymptotic property, we can perform a Student t-test for testing the null
hypothesis H0 : τX = 0, or testing H0 : κX − 3 = 0, separately. A joint test of the
null hypothesis H0 : τX = 0 and κX − 3 = 0, is often used as a test statistic for
normality. This leads to the so-called JB (Jarque and Bera, 1987) test statistic, i.e.,

JB = n
( τ̂ 2

X

6
+

(κ̂X − 3)2

24

)
, (1.6)

which has an asymptotic χ2
2 distribution under H0, as n →∞ .
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Independent data: Lin–Mudholkar test
The Lin–Mudholkar test statistic is based on the well-known fact that the sample
mean X and sample variance S2

X = nσ̂2
X/(n − 1) of a random sample {Xi}n

i=1 are
independent if and only if the parent distribution is normal. The practical com-
putation involves three steps. First, obtain the n pairs of leave-one-out estimates(
X

−i
, (S−i

X )2
)
, where

X
−i

=
1

n− 1

∑
j �=i

Xj , S−i
X =

[ 1
n− 2

∑
j �=i

(Xj −X
−i

)2
]1/2

, (i = 1, . . . , n).

Next, apply the approximately normalizing cube-root transformation Yi = (S−i
X )2/3,

and compute the sample correlation coefficient

rXY =
∑n

i=1(Xi −X)(Yi −Y )√∑n
i=1(Xi −X)2

∑n
i=1(Yi −Y )2

as a measure of dependence between X and S2
X . Finally, in view of the robustness

and skewness reducing character of the Fisher z-transform, obtain the test statistic

Z2 =
1
2

log
( 1 + rXY

1− rX,Y

)
. (1.7)

If the series {Xi}n
i=1 consists of i.i.d. normal variables, then it can be shown (Lin

and Mudholkar, 1980) that Z2 is asymptotically normally distributed with mean 0
and variance 3/n.

Within a time series framework, the JB and Z2 test statistics are typically applied
to the residuals, usually written simply as ε̂t, of a fitted univariate (non)linear time
series model as a final diagnostic step in the modeling process. A drawback of the JB
test is that the finite-sample tail quantiles are quite different from their asymptotic
counterparts. Alternatively, p-values of the JB test can be determined by means
of bootstrapping (BS) or Monte Carlo (MC) simulation. A better-behaved JB test
statistic can be obtained using exact means and variances instead of the asymptotic
mean and variance of the standardized third- and fourth moments (cf. Exercise 1.5).
Nevertheless, the JB and Z2 tests only rely on the departure of the symmetry of
possible alternatives to the normal distribution. However, the question whether
for instance a positive skewness in the original series is reproduced by the fitted
nonlinear model cannot be answered by analyzing the residuals alone.

Example 1.6: Summary Statistics

Table 1.1 reports summary statistic for the series introduced in Section 1.2.
Except for the U.S. unemployment rate, for which we take the first differences,
we consider the original data. Note from the last column that the sample
kurtosis of the U.S. unemployment rate and the magnetic field data are much
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Table 1.1: Summary statistics for the time series introduced in Section 1.2.

Series T Mean Med. Min. Max. Std. Dev. Skewness Kurtosis

U.S. unemployment rate (1) 252 0.023 -0.033 -0.967 1.667 0.399 1.113 5.741
EEG recordings 631 28.003 194 -1890 1955 630 -0.617 3.233
Magnetic field data 1,962 -0.004 -0.003 -3.448 4.094 0.572 0.337 10.226
ENSO phenomenon 748 -0.024 -0.090 -2.320 2.520 0.845 0.264 3.045
Climate change δ13C 216 -0.103 -0.105 -1.020 0.630 0.392 -0.095 2.115

δ18O 216 -0.035 0.005 -1.470 1.050 0.538 -0.342 2.571

(1) First differences of original data.

larger than the kurtosis for a normal distribution, indicating that both series
have heavy tails. Further, the sample skewness of the series indicates no
evidence of asymmetry. Below we search for more evidence to support these
observations, using a skewness-kurtosis test statistic that is able to account
for serial correlation.

Weakly dependent data: A generalized JB test

For testing normality in time series data, we need to introduce some additional
notation similar to that given above. In particular, let {Yt, t ∈ Z} be an ergodic
strictly stationary process (see Chapter 3 for a formal definition of ergodicity) with
mean μY , rth central moment μr,Y = E[(Yt−μY )r], and lag � (� ∈ Z) autocovariance
function (ACVF) γY (�) = E[(Yt − μY )(Yt+� − μY )]. Given a set of T observations
the corresponding sample statistics are Y = T−1

∑T
t=1 Yt, μ̂r,Y = T−1

∑T
t=1(Yt−Y )r,

and γ̂Y (�) = T−1
∑T−�

t=1 (Yt −Y )(Yt+� −Y ), respectively.
Assume that {Yt, t ∈ Z} is a Gaussian short memory or weakly dependent pro-

cess, i.e.
∑∞

j=0 |γY (�)| < ∞. Then it can be shown (Lomnicki, 1961; Gasser, 1975)
that, as T →∞,

√
T

(
μ̂3,Y

μ̂4,Y − 3μ̂2
2,Y

)
D−→ N

((
0
0

)
,

(
6F3,Y 0

0 24F4,Y

))
, (1.8)

where

Fr,Y =
∞∑

�=−∞

(
γY (�)

)r
, (r = 3, 4).

A consistent estimator of Fr,Y is given by F̂r,Y =
∑

|�|<T

(
γ̂Y (�)

)r, and hence a
generalized JB (GJB) statistic for testing normality in weakly dependent data is
given by

GJB =
T μ̂2

3,Y

6F̂3,Y

+
T (μ̂4,Y − 3μ̂2,Y )2

24F̂4,Y

, (1.9)
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which has an asymptotic χ2
2 distribution under the null hypothesis (Lobato and

Velasco, 2004). Moreover, the test statistic is consistent under the alternative hy-
pothesis.

Comparing (1.6) and (1.9), we see that asymptotically the GJB test statistic
reduces to the JB test statistic if the DGP is i.i.d., since γ̂Y (�) → 0, ∀� �= 0, and
γ̂Y (0) = μ̂2,Y �= 0. Also observe that with positive serial correlation in the first few
lags, the denominator in (1.9) will be larger than in JB. Consequently, the chance
of rejecting normality will decrease when using the GJB test statistic.

Weakly dependent data: A robust JB test
Consider the coefficient of skewness and its sample analogue, respectively defined as

τY = μ3,Y

/
μ

3/2
2,Y , τ̂Y = μ̂3,Y

/
μ̂

3/2
2,Y .

Let Zt =
(
(Yt − μY )3 − μ3,Y , (Yt − μY ), (Yt − μY )2 − σ2

Y

)′ be a 3× 1 vector. Then,
under the null hypothesis that τY = 0 (or, equivalently, μ3,Y = 0), it can be shown
(Bai and Ng, 2005) that, as T →∞,

√
T τ̂Y

D−→ N
(
0,

α′Γ22α

σ6
Y

)
,

where α = (1,−3σ2
Y )′ is a 2 × 1 vector, and Γ22 is the first 2 × 2 block matrix of

Γ = limT→∞ TE(Z̃Z̃′) with Z̃ the sample mean of {Zt}.
In applications, α can be consistently estimated by its sample counterpart α̂ =

(1,−3σ̂2
Y )′. A consistent and robust estimate, say Γ̂22, of the long-run covariance

matrix Γ22 can be obtained by kernel-based estimation. Let s(τ̂Y ) = (α̂′Γ̂22α̂/σ̂ 6
Y )1/2.

Then, under the null hypothesis τY = 0, the limiting distribution of the estimated
coefficient of skewness is given by

π̂3,Y =
√

T τ̂Y

s(τ̂Y )
D−→ N (0, 1), (1.10)

where it is assumed that E(Y 6
t ) < ∞.

Also, Bai and Ng (2005) develop a statistic for testing kurtosis. Similar to the
i.i.d. case, the coefficient of kurtosis and its sample analogue are defined as

κY = μ4,Y

/
μ2

2,Y , κ̂Y = μ̂4,Y

/
μ̂2

2,Y .

Suppose that E(Y 8
t ) < ∞. Let Wt =

(
(Yt−μY )4−μ4,Y , (Yt−μY ), (Yt−μY )2−σ2

Y

)′
be a 3 × 1 vector. Then, under the null hypothesis κY = 3, and as T → ∞, it can
be shown that

√
T (κ̂Y − 3) D−→ N

(
0,

β′Ωβ

σ8
Y

)
,

where β = (1,−4μ3,Y ,−6σ2
Y )′ is a 3 × 1 vector, and Ω = limT→∞ TE(W̃W̃′) with

W̃ the sample mean of {Wt}.



14 1 INTRODUCTION AND SOME BASIC CONCEPTS

In practice, β can be consistently estimated by β̂ = (1,−4μ̂3,Y ,−6σ̂ 2
Y )′. Let

s(κ̂Y ) = (β̂
′
Ω̂β̂/σ̂ 8

Y )1/2 where Ω̂ denotes a consistent estimate, using kernel-based
estimation of Ω. This result implies that, as T → ∞, under the null hypothesis
κY = 3,

π̂4,Y =
√

T (κ̂Y − 3)
s(κ̂Y )

D−→ N (0, 1). (1.11)

Moreover, it can be shown that π̂3,Y and π̂4,Y are asymptotically independent under
normality. Thus, combining both test statistics, a robust generalization of the JB
test statistic (1.6) to dependent data is

π̂34,Y = π̂ 2
3,Y + π̂ 2

4,Y , (1.12)

which is asymptotically distributed as χ2
2.

Note that the first component of {Wt} depends on the fourth moment of (Yt −
μY )4, which is a highly skewed random variable even if {Yt, t ∈ Z} is not skewed.
This will have a considerable impact on the finite-sample properties of both test
statistics π̂4,Y and π̂34,Y , even with fairly large samples (T > 1,000), and may lead to
incorrect decisions in applied work. Another limitation of both test statistics is that
asymptotic theory assumes the existence of moments up to order eight. However,
it is a stylized fact that many financial time series are leptokurtic and have heavy-
tailed marginal distributions. Thus, the existence of high-order moments cannot
taken for granted and should generally be verified.

Example 1.7: Summary Statistics (Cont’d)

Table 1.2 reports values for the sample skewness π̂3,Y , the sample kurtosis π̂4,Y ,
the normality tests π̂34,Y , and the GJB test statistic for the series introduced
in Section 1.2. At the 5% nominal significance level, we find no evidence
of skewness in the magnetic field series, the ENSO data, and the two series
δ13C and δ18O. We fail to reject the null hypothesis of kurtosis in the EEG
recordings, the ENSO data, and the δ18O time series. Interestingly, with π̂34,Y

only three time series (U.S. unemployment rate, EEG recordings, and magnetic
field data) reject very strongly the null hypothesis of normality (symmetry)
with a critical value of χ2

2 = 5.991 at the 5% nominal significance level. The
GJB test statistic confirms these results.

1.3.2 Kendall’s (partial) tau

For linear time series processes, the sample autocorrelation function (ACF) and
sample partial autocorrelation function (PACF) are useful tools to determine a value
for the time lag, or delay, � (� ∈ Z). Often these statistics are used in conjunction
with the asymptotic Bartlett 95% confidence band, which for a time series of length



1.3 INITIAL DATA ANALYSIS 15

Table 1.2: Test statistics for serially correlated data. The long-run covariance matrices
of the test statistics π̂3,Y , π̂4,Y , and π̂34,Y are estimated by the kernel method with Parzen’s
lag window; see (4.18).

Series Skewness Kurtosis Normality GJB
(π̂3,Y ) (π̂4,Y ) (π̂34,Y )

U.S. unemployment rate(1) 2.602 2.032 6.943 89.400
EEG recordings -2.805 0.337 8.873 5.731
Magnetic field data 0.927 2.630 7.267 2127
ENSO phenomenon 1.212 0.070 1.488 1.547
Climate change δ13C -0.508 -2.005 5.280 4.150

δ18O -1.805 -0.794 3.609 3.720

(1) First differences of original data.

T is given by ±1.96/
√

T . However, using Bartlett’s formula can lead to spurious
results (Berlinet and Francq, 1997) as it is derived under the precise assumptions
of linearity of the underlying DGP and vanishing of its fourth-order cumulants (cf.
Exercise 1.3).

Kendall’s tau test statistic
One simple nonparametric measure for capturing the complete dependence, includ-
ing nonlinear dependence if present, is Kendall’s τ test statistic. It is defined as
follows. For pairs of observations {(Xi, Yi)}n

i=1 (n ≥ 3), define the second-order
symmetric kernel function h(i, j) to be

h(i, j) = h(j, i) = sign[(Xj −Xi)(Yj − Yi)],

where sign(u) = 1 (−1, 0) if and only if u > (<, =) 0. Then Kendall’s τ test statistic
is defined as

τ̂ =
(

n

2

)−1 n∑
i<j

h(i, j) =
Nc −Np

1
2n(n− 1)

. (1.13)

Here Nc (c for concordant) is the number of pairs for which h(i, j) is positive, and
Nd (d for disconcordant) is the number of pairs for which h(i, j) is negative.

It is immediately verifiable that (1.13) always lies in the range −1 ≤ τ̂ ≤ 1,
where values 1, −1, and 0 signify a perfect positive relationship, a perfect negative
relationship, and no relationship at all, respectively. The null hypothesis, H0, is that
the random variables X and Y are independent while the alternative hypothesis, H1,
is they are not independent. For large samples, the asymptotic null distribution of
τ̂ is normal with mean zero and variance 2(2n + 5)/9n(n − 1) ≈ 4/9n. Note that
one of the properties of τ̂ is that one of its variables of (Xi, Yi) can be replaced
by its associated ranks. The resulting test statistic is commonly known as the
Mann–Kendall test statistic, which has been used as a nonparametric test for trend
detection and seasonality within the context of linear time series analysis.



16 1 INTRODUCTION AND SOME BASIC CONCEPTS

To obtain a version of Kendall’s τ test statistic suitable for testing against serial
dependence in a time series {Yt}T

t=1, simply replace {(Xi, Yi)}n
i=1 by {(Ri, Ri+�)}T−�

i=1

where {Ri} are the ranks of {Yt}. Then Kendall’s τ test statistic may be defined as

τ̂(�) = 1− 2Nd(�)
/(

T − �

2

)
= 1− 4Nd(�)

(T − �)(T − �− 1)
, (1.14)

with

Nd(�) =
T−�∑
i=1

T−�∑
j=1

I(Ri < Rj , Ri+� > Rj+�).

Using the theory of U-statistics for weakly dependent stationary processes (see Ap-
pendix 7.C), it can be shown (Ferguson et al., 2000) that under the null hypothesis
of serial independence

√
T τ̂(1) is asymptotically distributed as a normal random

variable with mean zero and variance 4/9 for T ≥ 4. For � > 1, explicit expressions
for Var

(
τ̂(�)

)
are rather cumbersome to obtain. However, under the null hypothesis

of randomness, any K-tuple of the form 3
√

T (τ̂(1), . . . , τ̂(K))′/2 is asymptotically
multinormal, with mean vector zero and unit covariance matrix.

Table 1.3: Indicator patterns of the sample ACF and values of Kendall’s τ test statistic.

Lag �

Series 1 2 3 4 5 6 7 8 9 10

U.S. unemployment rate ACF (1) +∗ +∗ − −∗ −∗ −∗ − −∗ − −
τ̂(�) (2) +• +• + − −• −• − −• − −

EEG recordings ACF +∗ +∗ +∗ +∗ +∗ +∗ − − − −
τ̂(�) +• +• +• +• +• +• +• +• +• +•

Magnetic field data ACF +∗ +∗ +∗ +∗ +∗ +∗ +∗ +∗ +∗ +∗

τ̂(�) +• +• +• +• +• +• +• +• +• +•

ENSO phenomenon ACF +∗ +∗ +∗ +∗ +∗ +∗ +∗ +∗ +∗ +
τ̂(�) +• +• +• +• +• +• +• +• +• +•

Climate change δ13C ACF +∗ +∗ +∗ +∗ +∗ +∗ + + + +
τ̂(�) +• +• +• +• +• +• +• + + +

δ18O ACF +∗ +∗ +∗ + + − − −∗ −∗ −∗

τ̂(�) +• +• +• +• + − − −• −• −•

(1) +∗ indicates a sample ACF value greater than 1.96T−1/2, −∗

indicates a value less than −1.96T−1/2, and + (−) indicates a
positive (negative) value between −1.96T−1/2 and 1.96T−1/2.

(2) • marks a p-value smaller than 5%, and + (−) marks a positive
(negative) value of the test statistic with a p-value larger than 5%.
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Example 1.8: Sample ACF and Kendall’s tau test statistic

Table 1.3 contains indicator patterns of the sample ACFs and Kendall’s τ test
statistic for the time series introduced in Section 1.2. A number of observations
are in order.

• For the U.S. unemployment series the sample ACF suggests, as a first
guess, a linear AR(8) model with significant parameter values at lags 1,
2, 4 – 6, and 8. The results for τ̂(�) match those of the sample ACF.

• The sample ACF of the EEG recordings suggests a linear AR(6) model.
On the other hand, Kendall’s τ̂(�) test statistics are all significant up
to and including lag � = 10. So it is hard to describe the series by a
particular (non)linear model.

• Both the sample ACF and τ̂(�) are not very helpful in identifying pre-
liminary models for the magnetic field data and the monthly ENSO time
series. Clearly, the fact that normality is strongly rejected for the mag-
netic field data has an impact on the significance of the series’ test results.
The sample ACF of the ENSO series has a significant negative peak (5%
level) at lag 21 and a positive (insignificant) peak at lag 56. This reflects
the fact that ENSO periods lasted between two and five years in the last
century.

• The sample ACFs of the δ13C and δ18O series indicate that both series
can be represented by a low order AR process, but there are also some
significant values at lags 8 – 10. The test results for τ̂(�) match those of
the sample ACFs.

Kendall’s partial tau test statistic
A variation on Kendall’s τ test statistic (1.13), commonly referred to as Kendall’s
partial tau (Quade, 1967), is a nonparametric measure of the association between
two random variables X and Y while controlling for a third variable Z. Given a
time series sequence {Yt}T

t=1 and its associated ranks {Ri}T
i=1, Kendall’s partial τ test

statistic is the correlation obtained after regressing Ri and Ri+� on the intermediate
observations Ri+1, . . . , Ri+�−1. By analogy with (1.14), it may be defined as

τ̂p(�) = 1− 4Np(�)
(T − �)(T − �− 1)

. (1.15)

Here Np(�) is the number of pairs {(Ri, Ri+�)}T−�
i=1 such that ‖Zi − Zj‖ ≤ TZ , for

TZ a predefined “tolerance” (e.g. TZ = 0.2T ), with Zi = (Ri+1, . . . , Ri+�−1)′ (i =
1, . . . , T − �), and ‖ · ‖ is a norm. The statistic τ̂p(�) has similar properties as τ̂(�).
Moreover, it can be shown that τ̂p(�) has an asymptotically normal distribution
under the null hypothesis of no serial dependence.
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1.3.3 Mutual information coefficient

Granger and Lin (1994) develop a nonparametric statistic for measuring the com-
plete dependence, including nonlinear dependence if present, based on the mutual
information coefficient. Let X be a continuous random variable with probability
density function (pdf) fX(x). Mutual information is directly related to the Shan-
non entropy , defined as

H(X) = −
∫

log{fX(x)}fX(x) dx, (1.16)

which is just the mathematical expectation of − log fX(x), i.e., −E
(
log fX(x)

)
. Sim-

ilarly, for a pair of random variables (X,Y ) with joint pdf fXY (x, y) the joint entropy
is defined as

H(X,Y ) = −
�

fXY (x, y) log fXY (x, y) dxdy. (1.17)

The mutual information, also called Kullback–Leibler (KL) divergence or relative
entropy, is defined as

IKL(X,Y ) =
�

log
( fXY (x, y)

fX(x)fY (y)

)
fXY (x, y) dxdy. (1.18)

The mutual information measures the average information contained in one of the
random variables about the other. It is a symmetric measure of dependence between
X and Y as becomes obvious after expressing (1.18) in terms of entropies:

IKL(X,Y ) = H(X) + H(Y )−H(X,Y ). (1.19)

The mutual information is invariant not only under scale transformations of X and
Y , but more generally, under all continuous one-to-one transformations. It is also
non-negative, IKL(X,Y ) ≥ 0, with equality if and only if fXY (x, y) = fX(x)fY (y)
(cf. Exercise 1.4).

If there exists perfect dependence between X and Y , IKL(X,Y ) →∞. However,
this property is not very attractive for developing a test statistic. Indeed, an ideal
measure for testing (serial) dependence should take values in the range [0, 1] or
[−1, 1]. Moreover, for interpretation purposes it is useful to relate the measure to the
correlation coefficient ρXY = E(XY )/

√
E(X2)E(Y 2) when (X,Y ) has a standard

bivariate normal distribution. One way to establish these objectives, is to transform
IKL(X,Y ) as follows

R(X,Y ) = [1− exp{−2IKL(X,Y )}]1/2, (1.20)

which takes values in the range [0, 1], with values increasing with IKL(·); R(·) = 0 if
and only if X and Y are independent, and R(·) = 1 if X and Y are exact functionally
related. Further, it can be shown (Pinsker, 1964, p. 123) that

IKL(X,Y ) = log
√

1
1− ρXY

,
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so that R(X,Y ) = |ρXY |.
In a time series framework, R(·) can be used to measure the strength of associ-

ation between lagged values of an observed time series {Yt}T
t=1. More specifically,

the analogue to (1.20) at lag � is given by

R(Yt, Yt+�) ≡ RY (�) = [1− exp{−2IKL(Yt, Yt+�)}]1/2. (1.21)

The corresponding sample estimate, say R̂Y (�), follows from estimating function-
als of density functions. No distributional theory is currently available for R̂Y (·),
but empirical critical values may be computed for specific choices of T and �;
see, e.g., Granger and Lin (1994, Table III). Simulations show that R̂Y (�) has
a positive bias. One way to avoid such a bias is to redefine (1.21) as R∗

Y (�) =
1− exp{−2IKL(Yt, Yt+�)}.

1.3.4 Recurrence plot
An appealing and simple graphical tool that enables the assessment of stationarity
in an observed time series is the recurrence plot due to Beckman et al. (1987). The
recurrence plot is a two-dimensional scatter diagram where a dot is placed at the
point (t1, t2) whenever Yt1 is “close” to Yt2 , given some pre-specified threshold h,
usually not larger than 1/10 of the standard deviation. It can be mathematically
expressed as

Rt1,t2 = I(‖Y(�)
t1
−Y(�)

t2
‖ < h), (t1, t2 = 1, . . . , T ),

where Y(�)
t is an m-dimensional (m ∈ Z+) lag � (� ∈ Z) delay vector,4,5 also called

a state or reconstruction vector, given by

Y(�)
t = (Yt, Yt−�, . . . , Yt−(m−1)�)

′,

and ‖ · ‖ is a norm.6

If {Yt, t ∈ Z} is strictly stationary, the recurrence plot will show an approximately
uniform density of recurrences as a function of the time difference t1− t2. However,
if {Yt, t ∈ Z} has a trend or another type of nonstationarity, with a behavior that
is changing over time, the regions of Y(�)

t visited will change over time. The result
will be that there are relatively few recurrences far from the main diagonal in the
recurrence plot, that is for large values of |t1− t2|. Also, if there are only recurrences

4In the analysis of deterministic chaos, i.e. irregular oscillations that are not influenced by
random inputs, m is often called the embedding dimension. Within that context, it is important to
choose m sufficiently large, such that the so-called m-dimensional phase space enables for a “proper”
representation of the dynamical system.

5In economics and finance, but not in other fields, it is common to fix � at one. So m takes over
the role of �. In that case we write Yt, suppressing the dependence on �.

6In fact, the supremum norm is very popular for recurrence plots; see Appendix 3.A for more
information on vector and matrix norms.
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near t1 = t2 and for values of |t1 − t2| that are of the order of the total length T ,
{Yt, t ∈ Z} can be considered nonstationary. Obviously, in alliance with the choice
of � and m, visual interpretation of recurrence plots requires some experience.

Figure 1.6: Upper panel: a time series {Yt}200t=1 generated by (1.22) with a = 4. Middle
panel: number of recurrences for the recurrence plot in (b) of the lower panel. Lower panel:
(a) a plot of Rt1,t2 for a time series following an i.i.d. U(0, 1) distribution, (b) a plot of
Rt1,t2 for {Yt}, and (c) a recurrence plot for the time series Yt + 0.005t; m = 3 and � = 1.

Example 1.9: The Logistic Map

The logistic map may be interpreted as a simple biological, completely de-
terministic, model for the evolution of a population size Y of some species
over time. Due to limited natural resources there is a maximum population
size which in suitable units is equal to unity. The population size must be
larger than or equal to zero. The evolution rule is

Yt = aYt−1(1− Yt−1), (t = 1, 2, . . .), (1.22)

where a > 1 denotes the growth rate at time t of the species in the case
of unlimited natural sources. The factor (1 − Yt−1) describes the effect of
over-population. In some cases, a particular solution of (1.22) can be found,
depending on the value of a and the starting value Y0.
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Figure 1.7: (a) Directed scatter plot at lag 1 for the EEG recordings, and (b) a scatter plot
with the two largest and two smallest values connected with the preceding and the following
observations.

Figure 1.6, top panel, shows the first 200 observations of a time series {Yt}
generated with (1.22) for a = 4. The plot shows an erratic pattern, akin to
that of a realization from some stochastic process. Still, the evolution of {Yt}
is an example of chaos. The recurrence plot for {Yt}200

t=1 is shown in the bottom
panel of Figure 1.6(b).

It is interesting to contrast the main features of graph (b) with the charac-
teristic features of graph (a), showing a recurrence plot of an i.i.d. U(0, 1)
distributed time series, and with the patterns in graph (c), showing a re-
currence plot of the time series Yt + 0.005t. Graph (a) has a homogeneous
typology or pattern, which is an indicator that the series originated from a
stationary DGP. In contrast, a non-homogeneous or disrupting typology, as
with the recurrence plot in graph (c), indicates a nonstationary DGP. Finally,
graph (b) shows a recurrence plot with a diagonal oriented periodic struc-
ture due to the oscillating patterns of {Yt}. This is supported by the plot in
the middle panel. The white areas of bands in the recurrence plots indicate
changes in the behavior of a time series, perhaps due to outliers or structural
shifts. As an exercise the reader is recommended to obtain recurrence plots
for higher values of the embedding dimension m, and see whether or not the
overall observations made above remain unchanged.

1.3.5 Directed scatter plot

This is a scatter diagram, at lag � (� ∈ Z), of an observed time series {Yt}T
t=1 (vertical

axis) against Yt−� (horizontal axis) with straight lines connecting the adjacent obser-
vations, such as (Yt−�, Yt) and (Yt−�+1, Yt+1). The plot can reveal clustering and/or
cyclical phenomena. Also, any asymmetries around the diagonal are an indication
of time-irreversibility.7

7An obvious three-dimensional extension is to plot (Yt, Yt−�, Yt−�′) (� �= �′; � = �′ = 1, 2, . . .).
For this purpose the function autotriples in the R-tsDyn package can be used. Alternatively, the
function autotriples.rgl displays an interactive trivariate plot of (Yt−1, Yt−2) against Yt.
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Example 1.10: EEG Recordings (Cont’d)

Figure 1.7(a) provides a directed scatter plot of the EEG recordings, denoted
by {Yt}631

t=1, of Example 1.2. The spirals indicate some cyclical pattern within
the series. This becomes more apparent in Figure 1.7(b) where the obser-
vations for the two largest negative and two largest positive values of {Yt}
are connected with the preceding and the following observations. The anti-
clockwise route indicated by the arrows suggests a stochastically perturbed
cycle.

1.4 Summary, Terms and Concepts

Summary
In this chapter we described some nonlinear characteristics of times series, arising
from a variety of real-life problems. Using graphical tools for explanatory data
analysis one can recognize a nonlinear feature of a particular data set. Generally, we
noticed that a nonlinear time stationary series has a more complex behavior than
a linear series. Further we introduced some terms and statistical concepts that are
needed later in the book. Finally, we provided a brief treatment of test statistics for
skewness, kurtosis and normality for initial data analysis, both for independent and
weakly dependent data.

Terms and Concepts

cave plot, 9
(dis)concordant, 15
cyclical asymmetry, 4
data generating process, 4
directed scatter plot, 21
essentially linear, 3
Gaussian white noise, 1
Kendall’s tau, 14
kurtosis, 10

logistic map, 20
mutual information, 18
phase space, 19
recurrence plot, 19
Shannon entropy, 18
skewness, 10
time-reversible, 6
weak white noise, 2

1.5 Additional Bibliographical Notes

Section 1.1: The definition that a time series process is linear if the linear predictor is
optimal is due to Hannan (1979); see also Hannan and Deistler (2012). It is considered to
be the minimum requirement. The definition has been used in the analysis of time series
neural networks; see, e.g., Lee et al. (1993).

Section 1.3.1: The univariate JB normality test of residuals, has been known among
statisticians since the work by Bowman and Shenton (1975). Doornik and Hansen (2008)
transform the coefficients of skewness and kurtosis such that they are much closer to the
standard normal distribution, and thus obtain a refinement of the JB test (see, e.g., the R-
normwhn.test package). Brys et al. (2004) and Gel and Gastwirth (2008) suggest some robust
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versions of the JB-test in the i.i.d. case. Koizumi et al. (2009) derive some multivariate JB
tests. Fiorentini et al. (2004) show that the JB test can be applied to a broad class of
GARCH-M processes. Boutahar (2010) establishes the limiting distributions for the JB test
statistic for long memory processes. Kilian and Demiroglu (2000) find that the JB test
statistic applied to the residuals of linear AR processes is too conservative in the sense that
it hardly will reject the null hypothesis of normality in the residuals. Using the same setup
as with the Lin–Mudholkar test statistic, Mudholkar et al. (2002) construct a test statistic
based on the correlation between the sample mean and the third central sample moment.

Section 1.3.2: Nielsen and Madsen (2001) propose generalizations of the sample ACF and
sample PACF for checking nonlinear lag dependence founded on the local polynomial regres-
sion method (Appendix 7.A). Some of the methodology discussed in that paper is implemen-
ted in the MATLAB and R source codes contained in the zip-file comp ex 1 scrips 2011.zip,
which can be downloaded from http://www2.imm.dtu.dk/courses/02427/.

If {Yt}T
t=1 follows a linear causal process, as defined by (1.2), but now the εt’s are i.i.d.

with mean zero and infinite variance rather than i.i.d. with finite variance, then the sample
ACF for heavy tailed data, defined as ρ̂Y (�) =

∑T−�
t=1 YtYt+�/

∑T
t=1 Y 2

t , still converges to
a constant ρY (�) =

∑∞
i=0 ψiψi+�/

∑∞
i=0 ψ2

i (� ∈ Z). However, for many nonlinear models
ρ̂Y (�) converges to a nondegenerate random variable. Resnick and Van den Berg (2000a,b)
use this fact to construct a test statistic for (non)linearity based on subsample stability of
ρ̂Y (�); see the S-Plus code at the website of this book.8

Section 1.3.3: Several methods have been proposed for the estimation of the mutual in-
formation (Kullback–Leibler divergence) such as kernel density estimators, nearest neighbor
estimators and partitioning (or binning) the XY plane. This latter approach, albeit in a
time series context, is available through the function mutual in the R-tseriesChaos package.
Khan et al. (2007) compare the relative performance of four mutual information estimation
methods. Wu et al. (2009) discuss the estimation of mutual information in higher dimensions
and modest samples (500 ≤ T ≤ 1,000).

1.6 Data and Software References

Data
Example 1.1: The quarterly U.S. unemployment rate can be downloaded from various
websites, including U.S. Bureau of Labor Statistics (http://data.bls.gov/timeseries/
LNS14000000), the website of the Federal Reserve Bank of St. Louis (http://research.
stlouisfed.org/fred2/release?rid=202&soid=22), or from the website of this book.
The series has been widely used in the literature to exhibit certain nonlinear characteristics,
however, often covering a much shorter time-period; see, e.g., Montgomery et al. (1998).

Example 1.2: The EEG recordings have been analyzed by Tohru Ozaki and his co-workers
in a number of papers; see, e.g., Miwakeichi et al. (2001) and the references therein. The
data set can be downloaded from the website of this book. A link to other EEG time series
is: http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3; see
Stam (2005) for a review.

Example 1.3: The daily averages of the T component of the interplanetary magnetic field
have been analyzed by Terdik (1999). The complete data set (24 hourly basis) can be

8S-Plus is a registered trademark of Insightful Corp.

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3
http://research.stlouisfed.org/fred2/release?rid=202&soid=22
http://research.stlouisfed.org/fred2/release?rid=202&soid=22
http://data.bls.gov/timeseries/LNS14000000
http://data.bls.gov/timeseries/LNS14000000
http://www2.imm.dtu.dk/courses/02427/
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downloaded from http://nssdc.gsfc.nasa.gov/ along with further information on the
magnetic field measurements. Also, the data set is available at the website of this book.

Example 1.4: The ENSO anomaly, Niño 3.4 index, is derived from the index tabulated
by the Climate Prediction Center at the National Oceanic and Atmospheric Administration
(NOAA);http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.ascii.The
series is available at the website of this book. The complete data set has been analyzed by
Ubilava and Helmers (2013). Ubilava (2012) investigates a slightly different version of
the ENSO data set. To replicate the main results of that study, R code is available at
http://onlinelibrary.wiley.com/doi/10.1111/j.1574-0862.2011.00562.x/suppinfo.
The 5-month running average in Figure 1.4(b) is used to smooth out variations in SSTs.
Unfortunately, there is no single definition of an El Niño or La Niña event.

Example 1.5: Extensive information about the Ocean Drilling Program, including books,
reports, and journal papers, can be found at http://www-odp.tamu.edu/publications/
citations/cite108.html. The δ13C and δ18O time series plotted in this example were
made available by Cees Diks; see also Diks and Mudelsee (2000). The data for all four
climatic periods can be downloaded from the website of this book.

Software References
Section 1.2: Becker et al. (1994) introduce the cave plot for comparing multiple time
series. The plot in Figure 1.5 is produced with an S-Plus function written by Henrik Aalborg
Nielsen; see the website of this book. Alternatively, cave plots can be obtained using the R-
grid package. Note, McLeod et al. (2012) provide an excellent overview of many R packages
for plotting and analyzing, primarily linear, time series.

Section 1.3.1: The Jarque–Bera test statistic is a standard routine in many software
packages. The generalized JB test statistic can be easily obtained from a simple modification
of the code for the JB test. GAUSS9 code for the Bai–Ng tests for skewness, kurtosis,
and normality is available at http://www.columbia.edu/~sn2294/research.html. A
MATLAB10 function for computation of theses test statistics can be downloaded from the
website of this book.

Section 1.3.2: FORTRAN77 subroutines for calculating Kendall’s (partial) tau for uni-
variate and multivariate (vector) time series, created by Jane L. Harvill and Bonnie K. Ray,
are available at the website of this book.

Section 1.3.4: The results in Figures 1.6(a) – (c) can be reproduced with the function recurr
in the R-tseriesChaos package. Alternatively, one can analyze the data with the function
recurrencePlot in the R-fNonlinear package. The R-tsDyn package contains functions for
explorative data analysis (e.g. recurrence plots, and sample (P)ACFs), and nonlinear AR
estimation.

User-friendly programs for delay coordinate embedding, nonlinear noise reduction, mutual
information, false-nearest neighbor, maximal Lyapunov exponent, recurrence plot, determ-
inism test, and stationarity test can be downloaded from http://www.matjazperc.com/
ejp/time.html. Alternatively, http://staffhome.ecm.uwa.edu.au/~00027830/ contains
MATLAB functions to accompany the book by Small (2005). Another option for applying
nonlinear dynamic methods is the TISEAN package. The package is publicly available from

9GAUSS is a registered trademark of Aptech Systems, Inc.
10MATLAB is a registered trademark of MathWorks, Inc.

http://staffhome.ecm.uwa.edu.au/~00027830/
http://www.matjazperc.com/ejp/time.html
http://www.matjazperc.com/ejp/time.html
http://www.columbia.edu/~sn2294/research.html
http://www-odp.tamu.edu/publications/citations/cite108.html
http://www-odp.tamu.edu/publications/citations/cite108.html
http://onlinelibrary.wiley.com/doi/10.1111/j.1574-0862.2011.00562.x/suppinfo
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.ascii
http://nssdc.gsfc.nasa.gov/
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http://www.mpipks-dresden.mpg.de/~tisean/. The book by Kantz and Schreiber (2004)
provides theoretical background material. Similar methods are available in the comprehens-
ive MATLAB package TSTOOL: http://www.physik3.gwdg.de/tstool/. The package
comes with a complete user manual including a large set of bibliographic references, which
makes it useful for those researchers interested in getting started with nonlinear time series
analysis methods from a dynamic system perspective.

Exercises

Theory Questions

1.1 Let the ARCH(1) process {Yt, t ∈ Z} be defined by Yt|(Yt−1, Yt−2, . . .) = σtεt where
σ2

t = α0 + α1Y
2
t−1, and {εt} i.i.d.∼ N (0, 1).11 Assume α0 > 0 and 0 < α1 < 1. Rewrite

{Y 2
t , t ∈ Z} in the form of an AR(1) process. Then show that the error process of the

resulting model does not have a constant conditional variance, i.e. {Y 2
t , t ∈ Z} is not

a weakly linear time process.

1.2 Consider the process Yt = βYt−2εt−1 + εt, where {εt} is an i.i.d. sequence such that
E(εt) = E(ε3

t ) = 0, E(ε2
t ) = σ2

ε , and E(ε4
t ) < ∞, and where β is a real constant such

that β4 < 1. Let ε0 = 0 and Y−1 = Y0 = 0 be the starting conditions of the process.

(a) Show that {Yt, t ∈ Z} is an uncorrelated process. Is it also a weak WN process?

(b) Show that {Y 2
t , t ∈ Z} is an uncorrelated process.

1.3 Consider the estimator γ̂Y (1) = T−1
∑T

t=1 YtYt+1 of γY (1) = E(YtYt+1). If {εt} ∼
WN(0, σ2

ε), the theoretical ACF is zero for all lags � ≥ 1. Then Bartlett’s for-
mula for the asymptotic covariance between sample autocovariances implies that
γ−2

ε (0)Var(
√

T γ̂ε(1)
)
→ 1, as T →∞.

Show that the ARCH process in Exercise 1.1 does not satisfy the white noise condi-
tion, i.e. limT→∞ γ−2

Y (0)Var(
√

T γ̂Y (1)) increases monotonically from 1 to ∞, as α1

increases from 0 to 1/
√

3.

1.4 Consider the divergence measure IKL(X,Y ) as defined by (1.18).

(a) Show that IKL(X,Y ) is non-negative, and 0 if and only if X and Y are inde-
pendent.

(b) Suppose there exists a functional h(·) such that X = h(Y ). Show that IKL(X,Y )
= ∞.

1.5 Suppose {Yi}n
i=1 is a sequence of i.i.d. random variables of Y with mean zero. If

the rth moment of Y exists, then the semi-invariants or cumulants are defined by
the identity in t exp{

∑∞
p=1 kp(it)p/p!} = φ(t) with φ(t) the characteristic function.

11Throughout the book, we assume that the reader is familiar with the class of so-called (gener-
alized) autoregressive conditional heteroskedastic (abbreviated as (G)ARCH) models; see, e.g., the
excellent, and up-to-date, book by Francq and Zaköıan (2010).

http://www.physik3.gwdg.de/tstool/
http://www.mpipks-dresden.mpg.de/~tisean/
http://www.mpipks-dresden.mpg.de/~tisean/
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Figure 1.8: Climate change data set. (a) Recurrence plot of the δ13C time series, and (b)
recurrence plot of the δ18O time series. Embedding dimension m = 3, and � = 1.

Subject to conditions of existence of moments, kp can be expressed in terms of the
central sample moments as

k2 =
n

n− 1
μ̂2,Y , k3 =

n2

(n− 1)(n− 2)
μ̂3,Y , k4 =

n2[(n + 1)μ̂4,Y − 3(n− 1)μ̂ 2
2,Y ]

(n− 1)(n− 2)(n− 3)
.

In normal samples it can be shown that Y , μ̂2,Y and μ̂ν,Y μ̂
−3/2
2,Y (ν = 3, 4, . . .) are

independent, and hence that

Var
( k3

k
3/2
2

)
=

6n(n− 1)
(n− 2)(n + 1)(n + 3)

, Var
(k4

k2
2

)
=

24n(n− 1)2

(n− 3)(n− 2)(n + 3)(n + 5)
.

(a) Using the above results, show that the exact mean and variance of the sample
coefficient of skewness τ̂Y and the sample coefficient of kurtosis κ̂Y are, respect-
ively, given by

E(τ̂Y ) = 0, Var(τ̂Y ) =
6(n− 2)

(n + 1)(n + 3)
,

E(κ̂Y ) =
3(n− 1)
n + 1

, Var(κ̂Y ) =
24n(n− 2)(n− 3)

(n + 1)2(n + 3)(n + 5)
.

(b) Given the results in part (a) define an alternative for the JB test statistic (1.6).

Empirical and Simulation Questions

1.6 Figure 1.8(a) displays the recurrence plots of the δ13C and δ18O time series, respect-
ively; see Example 1.5. Provide a global characterization of each plot, in terms of
homogeneity, periodicity, and trend or drift.
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1.7 Figure 1.9 shows raw data plots of length T = 100, together with corresponding
directed scatter plots, for three simulated time series processes:

i) Yt = εt, (Gaussian white noise),
ii) Yt = 0.6Yt−1εt−1 + εt, (a stationary BL process; see Section 2.2),
iii) Yt = σtεt, σ2

t = 1 + 1.2Y 2
t−1, (a nonstationary ARCH(1) process),

where in all cases {εt} i.i.d.∼ N (0, 1). The graphs are listed in random order. Which
set of graphs corresponds to the listed processes?

Figure 1.9: Three time series plots and associated directed scatter plots.

1.8 Consider the δ13C time series, denoted by {Yt}216t=1 and introduced in Example 1.5.
Download the data from the website of this book.

(a) Obtain the reversed time series, say {Y R
t }216t=1. Plot both time series, i.e. {Yt}

and {Y R
t }. Is the process {Yt, t ∈ Z} time-reversible?

(b) Obtain the series Xt(�) = Yt−Yt−� for � = 1 and 2. Draw histograms of {Xt(�)}
with superimposed Gaussian distributions using sample means and standard
deviations of the two series. Is the process {Yt, t ∈ Z} time-reversible?

(c) Compute the JB and GJB test statistics and compare the results with the graphs
plotted in part (b).



Chapter 2
CLASSIC NONLINEAR MODELS

In Section 1.1, we discussed in some detail the distinction between linear and non-
linear time series processes. In order to make this distinction as clear as possible,
we introduce in this chapter a number of classic parametric univariate nonlinear
models. By “classic” we mean that during the relatively brief history of nonlinear
time series analysis, these models have proved to be useful in handling many non-
linear phenomena in terms of both tractability and interpretability. The chapter
also includes some of their generalizations. However, we restrict attention to uni-
variate nonlinear models. By “univariate”, we mean that there is one output time
series and, if appropriate, a related unidirectional input (exogenous) time series. In
Chapter 11, we deal with vector (multivariate) parametric models in which there
are several jointly dependent time series variables. Nonparametric univariate and
multivariate methods will be the focus of Chapters 4, 9 and 12.

The chapter is organized as follows. In Section 2.1, we introduce a general non-
linear time series model followed by a representation as a so-called state-dependent
model (SDM). The SDM builds upon the basic structure of the linear ARMA model.
In particular, it generalizes the ARMA model to the nonlinear version by allowing
the coefficients to take on more complex, and hence, flexible forms. As we will
see in Sections 2.2 – 2.5, by imposing appropriate restrictions on the parameters of
the SDM several important classes of nonlinear models emerge. In Section 2.6, we
introduce the class of regime switching threshold models. Basically, these models
can be regarded as piecewise linear approximations to the general nonlinear time
series model of Section 2.1. Next, to allow for slow changes between various states
of the DGP, we discuss smooth transition models in Section 2.7. In Section 2.8,
we introduce some nonlinear non-Gaussian models. Section 2.9 deals with artificial
neural networks (ANNs) which are useful for DGPs that have an unknown functional
form. In Section 2.10, we focus on Markov switching models where the regimes are
determined by an unobservable process. In the final section, we illustrate a number
of practical issues of ANN modeling via a case study.

In addition, the chapter contains two appendices. In Appendix 2.A, we briefly in-

 29
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troduce the concept of (non)linear impulse response functions. We will see that these
response functions are a convenient tool for illustrating the dynamics of (non)linear
time series models. Appendix 2.B provides a list of abbreviations for threshold-type
nonlinear models which have been introduced in the literature since the early 1970s.

2.1 The General Univariate Nonlinear Model

2.1.1 Volterra series expansions
One of the purposes of univariate time series analysis is to study the dependence
structure of a given sample realization. This is usually done by considering some
functional form that describes the relationship between past and present values, say
(. . . , Yt−2, Yt−1, Yt), of a time series process in such a way that an observed time
series {Yt} is filtered into a strict WN process {εt}. Let h(·) denote a suitably
smooth (usually analytic) real-valued function. Then a general form for modeling
{Yt, t ∈ Z} can be expressed as

h(Yt, Yt−1, Yt−2, . . .) = εt, (2.1)

which is independent of future observations and due to its generality may be con-
sidered as a nonlinear model. Model (2.1) is also referred to as causal or non-
anticipative in the sense that future values, which typically are not available, do not
participate in the functional form of the model.

Now we face the problem of finding h(·) such that (2.1) is causally invertible, i.e.
it can be “solved” for Yt as a function of {. . . , εt−2, εt−1, εt},

Yt = h̃(εt, εt−1, εt−2, . . .). (2.2)

In addition, while maintaining their generality, the functions h(·) and h̃(·) must be
tractable for the purpose of statistical analysis. However, as (2.2) stands not much
can be said or done as far as analysis of a given time series is concerned. Therefore,
we assume that h̃(·) is a sufficiently well-behaved function so that we can expand
(2.2) in a Taylor series about some fixed time point – say 0 = (0, 0, . . .)′. Then we
can write

Yt =μ +
∞∑

u=0

guεt−u +
∞∑

u,v=0

guvεt−uεt−v +
∞∑

u,v,w=0

guvwεt−uεt−vεt−w + · · · , (2.3)

where

μ = g(0), gu1 =
( ∂h̃

∂εt−u1

)
0
, · · · , gu1,...,un =

( ∂nh̃

∂εt−u1 · · · ∂εt−un

)
0
.

This expansion is known as the discrete-time Volterra series, a nonparametric rep-
resentation, where the sequences {gu}, {guv}, {guvw}, . . . are called the Volterra



2.1 THE GENERAL UNIVARIATE NONLINEAR MODEL 31

kernels.1 The first two terms in (2.3) correspond to a linear causally invertible
model.

One may also consider the dual Volterra series , which is obtained by a Taylor
series expansion applied to (2.1) – assuming invertibility of h̃(·) and smoothness of
h(·) – to obtain

εt =μ′ +
∞∑

u=0

g′uYt−u +
∞∑

u,v=0

g′uvYt−uYt−v +
∞∑

u,v,w=0

g′uvwYt−uYt−vYt−w + · · · , (2.4)

where the sequences {g′u}, {g′uv}, {g′uvw}, . . . are defined in a similar way as above.
Next, to obtain a more parsimonious representation, we truncate the sequences of
Volterra kernels in (2.3) and (2.4) at the fixed points q and p, respectively. Then,
by combining (2.3) and (2.4), we get

μ′ +
p∑

u=0

g′uYt−u +
p∑

u,v=0

g′uvYt−uYt−v +
p∑

u,v,w=0

g′uvwYt−uYt−vYt−w + · · · =

μ +
q∑

u=0

guεt−u +
q∑

u,v=0

guvεt−uεt−v +
q∑

u,v,w=0

guvwεt−uεt−vεt−w + · · · , (2.5)

which can be expressed more generally as,

h∗(Yt, . . . , Yt−p) = g∗(εt, . . . , εt−q). (2.6)

A further generalization, assuming h∗(·) is invertible, is given by

Yt = G(Yt−1, . . . , Yt−p, εt, . . . , εt−q). (2.7)

Note that (2.7) treats {εt} as an observable input; therefore, the input-output rela-
tionships are expressed in terms of a finite number of past inputs and outputs.2

When {εt} is unobservable and instead is taken as a random variable, we may
reduce the observed time series {Yt} into a strict WN series by redefining G(·) as

Yt = G̃(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q) + εt. (2.8)

With G̃(·) so defined, {εt} is considered as the innovation process for {Yt}, while G̃(·)
defines the relevant information on Yt which is contained in past values of {Yt} and its
innovation process {εt}. Observe that E(Yt|F t−1)= G̃(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q).
Clearly, the above formulation is not restricted to the case where {εt} is unobserv-
able. It can also be adopted to the case where {εt} is a controlled input variable
which may enter the model linearly as a factor influencing current output {Yt}.

1Named in honor of Vito Volterra, who studied integral equations involving kernels of this form
in the first half of the 20th century.

2In neural network studies the Volterra expansion with finite sums is often called the
Kolmogorov–Gabor polynomial, or alternatively the Ivakhnenko polynomial.
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2.1.2 State-dependent model formulation

Let (2.8) serve as the basis for the general nonlinear finite-dimensional model, and
assume that G̃(·) is a sufficiently well-behaved function; then, we may proceed by
expanding the right-hand side of (2.8) in a Taylor series about the fixed time point
(0, 0, . . . , 0)′. For simplicity we shall retain only the first term in the series expansion,
i.e.

Yt = μ(St−1) +
p∑

i=1

fi(St−1)Yt−i +
q∑

j=1

gj(St−1)εt−j + εt, (2.9)

where

St = (Yt, . . . , Yt−p+1, εt, . . . , εt−q+1)′,

μ(St−1) = G̃(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q),

fi(St−1) =
( ∂G̃

∂Yt−i

)
St−1

, gj(St−1) =
( ∂G̃

∂εt−j

)
St−1

.

Rewriting (2.9) in ARMA-like notation gives,

Yt = μ(St−1) +
p∑

i=1

φi(St−1)Yt−i + εt +
q∑

j=1

θj(St−1)εt−j . (2.10)

Model (2.10) has been introduced by Priestley (1980). It is called the state-
dependent model (SDM) of order (p, q) and may be regarded as a local linearization
of the general nonlinear model (2.9). The unknown parameters of the model are
φi(·) (i = 1, . . . , p), θj(·) (j = 1, . . . , q), the “local mean” μ(·), all of which depend
on the state S of the process at time t− 1, and σ2

ε .
3

Due to the characterization of the SDM as a locally linear ARMA model we
impose a pair of ‘identifiability’ like conditions of the following form.

(i) The polynomials {1−
∑p

i=1 φi(x)zi} and {1+
∑q

j=1 θj(x)zj} have no common
factors for all fixed vectors x, and all their roots lie outside the unit circle.

(ii) φp(x) �= 0 and θq(x) �= 0 ∀x.

The generality of (2.10) becomes more apparent as one imposes certain restric-
tions on μ(·), φi(·), and θj(·). One simple case is to take all these parameters as
constants, i.e. independent of St−1. Then (2.10) becomes the well-known linear
ARMA(p, q) model. Some more elaborate characterizations of (2.10) are introduced
in the following Sections.

3In fact, an equivalent vector state space representation of (2.10) is easily written down.
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Figure 2.1: (a) A realization of {εt}500t=1 with {εt} i.i.d.∼ N (0, 1), and (b) a realization of the
BL(1, 0, 1, 1) model (2.14), for parameter combination (φ = 0.5, ψ = 0.2), with the generated
WN series in panel (a) as input.

2.2 Bilinear Models

Let μ(St−1) = φ0, φi(St−1) = φi (i = 1, . . . , p), i.e. a sequence of constants,
and let θj(St−1) = θj +

∑Q
v=1 ψjvYt−v (j = 1, . . . , q), i.e. a linear combination of

Yt−1, Yt−2, . . . , Yt−Q (Q ≥ 1). Then (2.10) becomes

Yt = φ0 +
p∑

i=1

φiYt−i + εt +
q∑

j=1

θjεt−j +
q∑

j=1

Q∑
v=1

ψjvYt−jεt−v. (2.11)

This is a special case of a general bilinear (BL) model of order (p, q, P,Q) where P
is constrained to be equal q. The general BL model 4 is defined as

Yt = φ0 +
p∑

i=1

φiYt−i + εt +
q∑

j=1

θjεt−j +
P∑

u=1

Q∑
v=1

ψuvYt−uεt−v. (2.12)

This model is linear in the Yt’s and also in the εt’s separately but not in both. In
other words, provided ψuv �= 0, the ARMA(p, q) model is nested within (2.12). The
following example illustrates this feature.

Example 2.1: A BL Time Series

Consider the BL(1, 0, 1, 1) model

Yt = φYt−1 + εt + ψYt−1εt−1, (2.13)
4There are several alternative ways to define a BL model. Since we are concerned with input-

output model representations, we adopt definition (2.12) throughout this book unless it is explicitly
noted otherwise.
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where ψ = ψ11. This process is stationary and ergodic if φ2 + ψ2σ2
ε < 1; see

Chapter 3. Its mean is E(Yt) = ψσ2
ε . Notice that (2.13) can be rewritten as

Yt = (φ + ψεt−1)Yt−1 + εt. (2.14)

Equation (2.14) looks like a linear AR(1) process except that the AR parameter
φ + ψεt−1 is now time dependent, i.e. it may be viewed as a random variable
with mean φ. If ψ is positive, the AR parameter will increase with positive
values of εt−1 and decrease with negative values of εt−1. However, positive
shocks will be more persistent than negative shocks in the sense that they
have a more sizeable effect on the conditional variability of {Yt, t ∈ Z}.
To illustrate this point, we simulate (2.14) with parameter combinations (φ =
0.5, ψ = 0.2) and (φ = 0.5, ψ = 0), with the second process nested within
the BL process. For both processes, we generate an identical set of i.i.d.
N (0, 1) random numbers. Figures 2.1(a) – (b) show T = 500 realizations of,
respectively, {εt} and the BL process {Yt, t ∈ Z}. Since ψ is positive, it can be
seen that the value of {εt−1} has a direct effect on the value of {Yt} but that
this effect is larger for positive than for negative shocks, with values of {Yt}
in the range [−3.45, 5.59]. In contrast, the AR(1) process is having values in
the range [−3.70, 3.45].

By focusing completely on the nonlinear structure, i.e. setting p = q = φ0 = 0,
(2.12) becomes the complete BL model:

Yt = εt +
P∑

u=1

Q∑
v=1

ψuvYt−uεt−v. (2.15)

Three special cases are of interest:

• If ψuv = 0 ∀u �= v, model (2.15) is called diagonal.

• If ψuv = 0 ∀u > v, (2.15) is called superdiagonal . Here the multiplicative
terms with non-zero coefficients are such that the input variable εt−v occurs
after Yt−u so that these terms are independent. This fact makes analysis
somewhat easier.

• Model (2.15) is said to be subdiagonal if ψuv = 0 ∀u < v. In this case the
variable Yt−u occurs strictly after εt−v, making analysis more difficult.5

5The terms super and sub are not quite natural, because it is purely by convention if lags in
{Yt, t ∈ Z} correspond to the first index (u) and lags in {εt} correspond to the second index (v).
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Figure 2.2: (a) – (d) Realizations of the processes (2.16) – (2.19), respectively; (e) Gen-
eralized impulse response functions (GIRFs) for both diagonal and subdiagonal models (blue
medium dashed line), and superdiagonal model (red solid line) for a unit-shock at t = 1; (f)
GIRFs for both diagonal and superdiagonal models (blue medium dashed line) and subdiag-
onal model (red solid lines) for a permanent shock δ of magnitude −0.01, 0.02, and 1 at
time t = 1.

Example 2.2: Comparing BL Time Series
Some of the differences between the three special cases of the BL model can
be seen by considering the following specifications:

Yt = φYt−1 + εt (linear AR(1)) (2.16)
Yt = φYt−1 + εt + ψYt−2εt−1 (subdiagonal) (2.17)
Yt = φYt−1 + εt + ψYt−1εt−1 (diagonal) (2.18)
Yt = φYt−1 + εt + ψYt−1εt−2 (superdiagonal) (2.19)

with φ = 0.99 and ψ = −0.5, and where {εt} i.i.d.∼ N (0, 1).

Figures 2.2(a) – (d) show plots of the time series. The linear AR(1) model, as
a simple “baseline” specification, exhibits some evidence of long-term drift-like
behavior, consistent with the fact that this model is close to a random walk.
In marked contrast, model (2.17) exhibits two large, highly localized bursts;
similar to the extreme peaks in Figure 1.3. Also, note that the series seems
to have a sample mean zero, which is consistent with the result E(Yt) = 0
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established in Exercise 1.2. The series generated by the diagonal model also
exhibits a sample mean zero, but here the general character of the series is
quite different from the subdiagonal case. In particular, we see many isolated
negative bursts, occurring frequently enough to achieve a non-zero (specifically,
negative) sample mean, which is agreement with the fact that E(Yt) = −0.5.

Example 2.3: Dynamic Effects of a BL Model

Consider the BL time series models (2.17) – (2.19) with Y0 = 0. It is useful
to compare these models through the effect of a one-unit shock on Yt at time
t = 1, i.e. ε1 = 1, and ε2 = ε3 = . . . = 0, given the history ωt−1. As discussed in
Appendix 2.A, this can be measured by the difference between the conditional
expectation with and without the shock (called generalized impulse response
function (GIRF)) and in this case given by

GIRFY (t, 1, ωt−1) = E[Yt|ε1 = 1, ε2 = 0, ε3 = 0, . . .]− E[Yt|ε1 = 0, ε2 = 0, . . .].

Iterating each BL model, we get the following response functions for the three
models:

GIRF(sub) = φt−1, GIRF(diag) = φt−1, GIRF(super) = φt−2(φ + ψ), (t ≥ 2).

Figure 2.2(e) shows these responses for the case φ = 0.99 and ψ = −0.5. Note,
the series generated by the superdiagonal model appears to exhibit somewhat
similar behavior to the diagonal model. In contrast, the GIRF of the superdi-
agonal model defined by equation (2.19) is different from the other two mod-
els. In fact, the response functions of models (2.16) – (2.18) are identical (blue
medium dashed line). For the superdiagonal model the term −0.5Yt−1εt−2

is non-zero for t = 2, and hence has a direct effect on the impulse response
function for t > 2 (red solid line).

Figure 2.2(f) presents a global picture of what happens when each of the three
BL models are hit by a permanent shock δ at time t = 1. The step responses for
δ = −0.01, 0.02, and 1 for the diagonal and superdiagonal models are identical
(blue medium dashed line). In fact, both step responses are described by an
equivalent AR(1) process with parameter φ + ψδ. The subdiagonal model
(2.17), on the other hand, exhibits much faster step responses (red solid lines).
There is a slight overshoot for this model, reflecting the fact that its equivalent
linear model is an AR(2) process, i.e. Yt = 0.99Yt−1 − 0.5δYt−2 + εt.

2.3 Exponential ARMA Model

Let μ(St−1) = φ0, θj(St−1) = θj + τj exp(−γY 2
t−d) (j = 1, . . . , q), and φi(St−1) =

φi +ξi exp(−γY 2
t−d), (i = 1, . . . , p). Then (2.10) yields the exponential autoregressive
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moving average (ExpARMA) model of order (p, q) and delay d (d ≤ p):

Yt =φ0+
p∑

i=1

{φi+ξi exp(−γY 2
t−d)}Yt−i +

q∑
j=1

{θj + τj exp(−γY 2
t−d)}εt−j + εt, (2.20)

where the parameter γ > 0 denotes a scaling factor.
Essentially this model changes smoothly between two extreme linear models,

since for large |Yt−d|, the coefficients of (2.20) are almost φi’s and θj ’s. For small
values of |Yt−d|, they are φi + ξi and θj + τj and the exponential function changes
smoothly between these two extreme values. A sufficient condition for strict sta-
tionarity for the ExpARMA process (2.20) is that all the roots of the associated
characteristic equation

zp − c1z
p−1 − · · · − cp = 0 (2.21)

are inside the unit circle, where ci = max{|φi|, |φi + ξi|} (i = 1, . . . , p). Hence, the
characteristic roots of (2.20) are amplitude-dependent, instead of constant. Con-
sequently, {Yt} can be locally small or large. For this reason, (2.20) is also referred
to as amplitude-dependent ExpARMA process.

One of the purposes of proposing (2.20) is to reproduce certain features of non-
linear random vibrations through a nonlinear time series model. Originally (2.20),
with μ fixed at zero, p = 2, and q = 0, was derived from the stochastic second-order
differential equation Ẍ(t) + f(Ẋ(t)) + g(X(t)) = η(t), where f(·) (the “damping
force”) and g(·) (the “restoring force”) are nonlinear functions, and Ẋ(t) and Ẍ(t)
denote the first and second derivatives of the stochastic response X(t) respectively.
The function η(t) is an external random input, or external force, representing non-
linear random vibrations.

The asymptotic solution of the nonlinear homogeneous differential equation
Ẍ(t) + f(Ẋ(t)) + g(X(t)) = 0 is a periodic function called limit cycle . A limit
cycle refers to the phenomenon that the trajectories of X(t) do not wind into a sin-
gular point, but they eventually go round on closed loops, leaving an interior region
untraversed if they wind from outside, or leaving an exterior region untraversed if
they wind from inside. Sometimes a limit cycle is self-excited, i.e., it remains “act-
ive” under zero input. Some nonlinear time series models with this property can
produce useful long-term forecasts, as opposed to stationary linear models that have
an “eventual forecast function” which gradually approaches a constant for increasing
forecast horizons. In other cases a limit cycle requires a certain input to “excite” it.
A formal definition of a limit cycle is as follows.

Let {Yt, t ∈ Z} denote an m-dimensional state vector satisfying the equation

Yt = f(Yt−1), Y0 ∈ Rm.

A set Λ = (c1, . . . , cN ) is called a limit cycle of period N ∈ Z+ if (i) ∃Y0 �∈ Λ, {Yt}
will ultimately fall into Λ as t increases, and (ii)

ci = f(ci−1) (i = 1, . . . , N + 1),
f(cN ) = c1, and f(ci) �= c1 (i = 2, . . . , N ).
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Figure 2.3: (a) A realization of the ExpAR(1) model (2.23) with ξ = −0.95 and corres-
ponding histogram; (b) A realization of the ExpAR model (2.23) with ξ = 0.95 and corres-
ponding histogram; T = 100.

In addition to (2.21), a necessary (but not sufficient) condition for the existence
of a limit cycle of the ExpAR(p) process is that at least one of the roots of

zp − (φ1 + ξ1)zp−1 − · · · − (φp + ξp) = 0 (2.22)

lies outside the unit circle. Example 2.4 illustrates this feature of the ExpAR process
via MC simulation.

Example 2.4: ExpAR Time Series

Consider the ExpAR(1) model

Yt = {−0.9 + ξ exp(−Y 2
t−1)}Yt−1 + εt, {εt} i.i.d.∼ N (0, 1). (2.23)

Figure 2.3 shows T = 100 observations from (2.23) with ξ = −0.95 and ξ =
0.95, respectively, with corresponding histograms below each graph. Both time
plots demonstrate the two types of amplitude-dependent frequency, i.e. in-
creasing and decreasing frequency. For both values of ξ condition (2.21) is sat-
isfied. However, only in the case ξ = −0.95, a limit cycle exists. Indeed, it fol-
lows directly from the above definition that the skeleton of (2.23), i.e., its noise-
free (εt ≡ 0) representation, has a limit cycle (τ1, τ2) = (−1.50043, 1.50043).
Still the up- and down patterns in both time series plots are very similar.
Both histograms show a bimodal distribution with light and short tails, which



2.4 RANDOM COEFFICIENT AR MODEL 39

is a characteristic of some distributions in the ExpAR family. The second
histogram is slightly more peaked than the first histogram.

Note that if |Yt−1| → 0, the exponential term in (2.23) approaches 1. So
for ξ = −0.95 behaves increasingly like an explosive (nonstationary) process,
and for ξ = 0.95 as a stationary linear AR(1) process. In the latter case the
impulse response of the ExpAR model will be approximated by the impulse
response function of this linear process, which for a shock εt = δ is readily
determined to be (0.05)t/2δ if t is even, and 0 otherwise. Conversely, if |Yt−1|
is sufficiently large, the exponential term is small, so the process behaves like
a stationary AR(1) process for both values of ξ. Its impulse response function
is (−0.9)t/2δ if t is even, and 0 otherwise.

2.4 Random Coefficient AR Model

Let μ(St−1) = μ as constant, θj(St−1) = 0 ∀j, and φi(St−1) = {φi + βi,t}. Then
(2.10) reduces to,

Yt = μ +
p∑

i=1

{φi + βi,t}Yt−i + εt, (2.24)

where {Bt = (β1,t, . . . , βp,t)′} is a sequence of i.i.d. random vectors with zero mean
E(Bt) = 0 and Cov(Bt) = Σβ, and {Bt} is independent of {εt}.

Model (2.24) is termed a random coefficient AR (RCAR) model of order p. If
p = 1, a necessary and sufficient condition for second-order stationarity is that
φ2 + σ2

β < 1; see Anděl (1976, 1984) for more complicated stationarity conditions
when p > 1. Note, by introducing random coefficients to an ARMA model, we
can generalize the RCAR model. Alternatively, by assuming the coefficients βi,t

are not independent but follow an arbitrary strictly stationary stochastic process
(say an MA process) defined on the same probability space as {εt}, one obtains the
so-called doubly stochastic model (Tjøstheim, 1986a,b).

2.5 Nonlinear MA Model

Let μ(St−1) = 0, φi(St−1) = 0 ∀i, and with a slight change of notation we define
{θj(·)} as,

θj,i1(St−1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑Q
i1=0 βi1 j = 1,∑Q
i1=0

∑Q
i2=0 βi1,i2εt−i2 j = 2,

...∑Q
i1=0

∑Q
i2=0 · · ·

∑Q
iq=0 βi1,i2,...,iqεt−i2 · · · εt−iq j = q.
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Figure 2.4: (a) A realization of the NLMA model (2.26) with {εt} i.i.d.∼ N (0, 1), β = 0.5
and T = 250; (b) Four permanent step response functions.

With these restrictions, (2.10) becomes

Yt = εt +
q∑

j=1

θj,i1(St−1)εt−ji1

= εt +
Q∑

i1=0

βi1εt−i1 +
Q∑

i1=0

Q∑
i2=0

βi1,i2εt−i2εt−2i1 + · · ·

+
Q∑

i1=0

Q∑
i2=1

· · ·
Q∑

iq=0

βi1,i2,...,iqεt−i2εt−i3 · · · εt−ηiq , (2.25)

where η is the highest order of summations. The model is termed nonlinear moving
average (NLMA) of order (Q, q).

Note, a similar NLMA representation follows from restricting the Volterra ex-
pansion (2.5).

Example 2.5: Dynamic Effects of an NLMA Model

To illustrate the general range of qualitative behavior seen in an NLMA model,
consider the following model

Yt = εt + β(εt−1 + εt−2 + εt−3)− εtεt−4. (2.26)

The response of (2.26) to a one-unit shock at t = 1 is easily seen to be β for
t = 2 and 3, and 0 otherwise. For a sequence of permanent shocks of size δ,
starting at t = 1, we get the following response function: δ(1 + (t − 1)β) for
t = 2, 3, 4, and δ(1 + 3β)− δ2 for t ≥ 5.

Figure 2.4(a) shows a typical realization of model (2.26) with β = 0.5. The
interesting feature of this model lies in its potential to produce large values
of {Yt} given large values of εt and εt−4. Figure 2.4(b) shows the response
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function of (2.26) to a sequence of permanent shocks of magnitude ±0.5 and
±1. As with a single-step impulse response, these step responses all reach
their steady-state values in finite time (here, 5 time steps). In contrast to
the impulse response, however, these step responses give clear evidence of the
asymmetric nature of the nonlinearity.

2.6 Threshold Models

Threshold models are a very general class of models, which can capture certain
nonlinear features, such as limit cycles, asymmetries, and jump phenomena. The
essential idea underlying this class of models is the piecewise linear approximation
of the general nonlinear model (2.8) by the introduction of thresholds. Thresholds
follow from partitioning the real line R into k ≥ 1 non-overlapping intervals, or
regimes , R(i) such that ∪k

i=1R
(i) = R and R(i) ∩R(i′) = ∅ if i �= i′. Each interval R(i)

is given by R(i) = (ri−1, ri], where r0 = −∞, r1, . . . , ri−1 ∈ R, and rk = ∞. The
values r0 < r1 < · · · < rk−1 < rk are called thresholds. These values determine the
actual regimes, or mix of regimes. The ordering of the thresholds guarantees the
identifiability of the model. The regime-switching dynamics can be driven by the
observed time series {Yt} itself, the model is said to be self-exciting . Alternatively,
the transition from one member of the set of thresholds to another can be driven by
an external (exogenous) time series variable. Further, the transition can be abrupt or
follow some smooth function over time. These observations have resulted in several
versions of threshold models, some of which we discuss below.

2.6.1 General threshold ARMA (TARMA) model

Let {Yt, t ∈ Z} be a strictly stationary time series process, and {Jt} be a random
(indicator) variable taking values in {1, 2, . . . , k}. Given this setup, there are vari-
ous equivalent ways to write down a threshold model each having its advantages,
depending on the context and purpose. One general definition, due to Tong and
Lim (1980), of a TARMA(p, q) model for the process {(Yt, Jt), t ∈ Z} is given by

Yt = φ
(Jt)
0 +

p∑
u=1

φ(Jt)
u Yt−u + εt +

q∑
v=1

θ(Jt)
v εt−v, (2.27)

where {εt} i.i.d.∼ (0, σ2
ε), and the coefficients φ

(Jt)
u (u = 1, . . . , p), θ

(Jt)
v (v = 1, . . . , q)

are constants. For each t, the process {Jt} acts as the switching mechanism between
the k regimes. The process can be observable, hidden, or a combination of both.

Writing Yt = (Yt, . . . , Yt−p+1)′, a canonical (vector) form of (2.27) is given by

Yt = C(Jt) + Φ(Jt)Yt−1 + Θ(Jt)εt, (2.28)
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where, for Jt = i,

C(i) = (φ(i)
0 , 0, . . . , 0)′, Φ(i) =

(
φ

(i)
1 . . . φ

(i)
p−1 φ

(i)
p

Ip−1 0(p−1)×1

)
(a companion
matrix)

Θ(i) =

(
θ
(i)
1 . . . θ

(i)
q

O(p−1)×q

)
, εt = (εt, . . . , εt−q+1)′,

and εt is independent of {Ys} (s < t).

2.6.2 Self-exciting threshold ARMA model

The general setting (2.28) includes as a special case the so-called self-exciting threshold
ARMA (SETARMA) model of order (k; p1, . . . , pk, q1, . . . , qk) and delay parameter
d ∈ Z+. Taking Φ(i), Θ(i), C(i) as above, with the additional conditions that, for
i = 1, . . . , k,

φ(i)
u = 0 for u = pi + 1, pi + 2, . . . , p, and p = max(p1, . . . , pk, d),

θ(i)
v = 0 for v = qi + 1, qi + 2, . . . , q, and q = max(q1, . . . , qk).

Assume that the indicator variable Jt takes the value i if Yt−d ∈ R(i). 6 Then the
general SETARMA is defined as

Yt =
k∑

i=1

(
φ

(i)
0 +

pi∑
u=1

φ(i)
u Yt−u + ε

(i)
t +

qi∑
v=1

θ(i)
v ε

(i)
t−v

)
I(Yt−d ∈ R(i)), (2.29)

where ε
(i)
t = σ2

i εt, and {εt} i.i.d.∼ (0, 1). Note that (2.29) may be viewed as a general-
ization of a nonhomogeneous linear ARMA model since the noise variances Var(ε(i)

t )
are different for different i.

Example 2.6: Dynamic Effects of a SETAR Model

To illustrate the effect of a one-unit shock or a permanent shock on {Yt, t ∈ Z},
it is instructive to consider the SETAR(2; 1, 0) model with threshold parameter
r and delay d = 1, i.e.

Yt =
{

2Yt−1 + εt if |Yt−1| ≤ r,
εt if |Yt−1| > r,

(2.30)

where {εt} i.i.d.∼ (0, σ2
ε). We see that the model switches between a locally

nonstationary process and a locally stationary process. Globally, however, the
process is stationary, as may be deduced from Figure 2.5(a).

6There is no loss of generality in assuming d ≤ p, since if d > p we can introduce additional
coefficients φ

(i)
u = 0 for u = p + 1, . . . , d.
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Figure 2.5: (a) A realization of model (2.30) with r = 2, T = 250, and {εt} i.i.d.∼ (0, 1); (b)
Impulse response function for a one-unit shock at time t = 1; (c) Permanent step responses
for δ = 0.1 and δ = 1; (d) Permanent step responses for δ = 2 and δ = 10.

Figure 2.5(b) shows the impulse response function of (2.30) for a one-unit
shock at time t = 1 when r = 2, and Y0 = 0. More generally, for an impulse
response of magnitude δ, initially Yt = 0 for t ≤ 0, while Y1 = δ. Next, for
0 < δ ≤ r, the resulting responses are {2δ, 22δ, . . . , 2nδ, 0, . . . , 0}, where n is
the largest integer satisfying 2nδ ≤ r. If δ > r, it follows that Y1 = δ and
Yt = 2Yt−1 + εt = 0 for t ≥ 2. Consequently, the impulse response function
exhibits a one sample duration for δ > r.

Given a threshold value r = 2, Figures 2.5(c) – (d) show responses to steps of
four different magnitudes δ. Since εt = δ ∀t ≥ 1, the process does not remain
in the domain of the unstable first-order linear model Yt = 2Yt−1 + εt but is
periodically driven into the domain of Yt = εt, where it “switches back” to
the initial unstable model. So, for |δ| ≤ 2 the step response function oscillates
with a period determined by the magnitude of the step input, between the
two regimes. Note that the time required to “escape” from the lower regime
depends on the input value δ. If |δ| > 2 the step response function is simply
the input step εt = δ ∀t ≥ 1.
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2.6.3 Continuous SETAR model

Clearly, the SDM formulation (2.10) does not contain (2.29), because the passage
from one regime to the another is not smooth, the conditional distribution of the
process is discontinuous. More formally, consider a two-regime SETAR model of
order (p, p). Let φi = (φ(i)

0 , φ
(i)
1 , . . . , φ

(i)
p )′ be the corresponding coefficient vector

(i = 1, 2). Then the model is said to have a discontinuous AR function if there
exists Z∗ = (1, Zp−1, . . . , Z0)′, where Zp−d = r, such that (φ1 − φ2)′Z∗ �= 0. In
this case, the threshold parameter r constitutes the jump point of the AR function.
Otherwise, that is, if (φ1−φ2)′Z∗ = 0 for all Z∗ satisfying the above condition, the
model has a continuous AR function.

It is easy to see that the latter case is equivalent to the requirement that φ
(1)
u =

φ
(2)
u (1 ≤ u �= d ≤ p), and that φ

(1)
0 + rφ

(1)
d = φ

(2)
0 + rφ

(2)
d . Therefore, in the

continuous case, the SETAR model can be written as

Yt = φ0 +
p∑

u=1,u �=d

φuYt−u +
{

φ−
d (Yt−d − r) + σ1εt if Yt−d ≤ r,

φ+
d (Yt−d − r) + σ2εt if Yt−d > r,

(2.31)

where

φ0 = φ
(1)
0 + rφ

(1)
d , φ−

d = φ
(1)
d , φ+

d = φ
(2)
d , and φu = φ(1)

u for u �= d.

We use the acronym CSETAR to distinguish (2.31) from discontinuous SETAR
models. This distinction is important because the asymptotics of the conditional
least squares (CLS) estimator of the parameter θ = (φ′

1, φ
′
2, r, d)′ is different in both

cases.7 While, for a time series of length T , the CLS estimator φ̂i,T of φi always
converges to a normal distribution with mean zero at rate

√
T , the asymptotic

covariance matrix depends upon whether the model is continuous or not. In fact,
we shall see in Section 6.1.2 that in the discontinuous case the CLS estimator r̂T

of r converges to a nonstandard distribution at a rate T (super-consistent), and is
asymptotically independent of φ̂i,T . For CSETAR models, r̂T converges to a normal
distribution at the usual rate

√
T and is asymptotically correlated with φ̂i,T ; see

Chan and Tsay (1998).
The conditional expectation of model (2.31) is given by

E(Yt;θ|F t−1) = φ0 +
p∑

u=1,u �=d

φuYt−u + φ−
d (Yt−d − r)− + φ+

d (Yt−d − r)+, (2.32)

where F t is the σ-algebra generated by {Ys, s ≤ t}, and where (y)− = min(0, y)
and (y)+ = max(0, y). Observe that the right-hand side of (2.32) can be written as∑p

u=1 gu(Yu) where gu(·) (u �= d) are linear functions and gd(·) is piecewise linear.

7The class of CSETAR(MA) models should not be confused with the class of continuous-time
threshold ARMA models which may be viewed as a continuous-time analogue of (2.29); see, e.g.,
Brockwell (1994).
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Figure 2.6: Scatter plot of a typical realization of the CSETAR model (2.33) with the true
AR functions overlaid (black solid lines); T = 500.

Thus, the CSETAR model is additive. In fact, it is a subclass of the nonlinear
additive functional-coefficient models to be discussed in Section 9.2.5, and a special
case of the multivariate adaptive regression splines model of Section 9.2.3.

Example 2.7: A Simulated CSETAR Process

Consider the CSETAR(2; 1, 1) model

Yt = 1 +
{

0.5(Yt−1 − 0.7) + εt if Yt−1 ≤ 0.7,
−0.5(Yt−1 − 0.7) + 2εt if Yt−1 > 0.7,

(2.33)

where {εt} i.i.d.∼ N (0, 1). Figure 2.6 shows a scatter plot of Yt versus Yt−1 for a
typical simulated time series of length T = 500, and the true AR functions are
overlaid. Given (2.32), the CLS parameter estimates follow from minimizing
the sum of squared residuals following similar steps as in Algorithm 6.2; see
also Chan and Tsay (1998). For the simulated series, we obtain the fitted
model

Ŷt = 1.02
(0.11)

+
{

0.56(0.06)(Yt−1 − 0.72(0.21)) if Yt−1 ≤ 0.72(0.21),

−0.48(0.12)(Yt−1 − 0.72(0.21)) if Yt−1 > 0.72(0.21),
(2.34)

where the asymptotic standard errors of the parameter estimates are in paren-
theses. The standard errors of the residuals are σ̂1 = 1.08 and σ̂2 = 3.98. The
sample sizes for the two regimes are 303 and 196, respectively. Comparing
(2.33) and (2.34), we see that the two models are similar. The closeness in
absolute value of the two lag-one coefficients in (2.34) is indicative of using a
CSETAR model; see Gonzalo and Wolf (2005) for a formal test statistic.

2.6.4 Multivariate thresholds

The dynamics of the SETARMA model (2.29) are controlled by the single threshold
variable Yt−d with d > 0. A more flexible self-exciting threshold model can be
obtained by introducing multivariate thresholds, assuming the relationships between
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the threshold variables is linear, but unknown. For ease of explanation we formulate
the resulting model in terms of a SETAR specification. First, we introduce a general
framework.

Consider an m-dimensional Euclidean space Rm and a point x in that space.
Let ω = (ω1, . . . , ωm)′ denote an m-dimensional unknown parameter vector. These
parameters define a hyperplane as follows H = {x ∈ Rm|ω′x = r}, where r is a
scalar. The direction of ω determines the orientation of the hyperplane whereas r
represents the position of the hyperplane in terms of its distance from the origin.
The hyperplane H induces a partition of the space into two regions defined by the
half spaces H− = {x ∈ Rm|ω′x ≤ r} and H+ = {x ∈ Rm|ω′x > r}. In terms of the
indicator function I(·), this partition is given by I(x) = 1 if x ∈ H− and 0 otherwise.

Now, assume that an m-dimensional space is spanned by the vector of time
series values X̃t−1 = (Yt−1, . . . , Yt−m)′. Further, suppose that there are k functions
I(ω′

iX̃t−1 ≤ ri) (i = 1, . . . , k) where ωi = (ω(i)
1 , . . . , ω

(i)
m )′ and ri are real parameters.

Thus, each of these functions defines a threshold. Then a SETAR model with m
(1 ≤ m ≤ p) thresholds and order (k; p, . . . , p), denoted by SETAR(k; p, . . . , p)m, is
defined as

Yt = φ0 +
p∑

u=1

φuYt−u +
k∑

i=1

{
ξ
(i)
0 +

p∑
u=1

ξ(i)
u Yt−u

}
I(ω′

iX̃t−1 ≤ ri) + εt

= φ′Xt−1 +
k∑

i=1

ξ′iXt−1I(ω′
iX̃t−1 ≤ ri) + εt, (2.35)

where

φ = (φ0, . . . , φp)′, ξi = (ξ(i)
0 , . . . , ξ(i)

p )′, and Xt−1 = (1, Yt−1, . . . , Yt−p)′.

Note that (2.35) is not identified. For identification purpose, we impose the restric-
tion r1 ≤ · · · ≤ rk. Further, due to the fact that I(x) = 1 − I(−x), a convenient
normalization condition is to set one element of ωi equal to unity.

Example 2.8: A Simulated SETAR(2; 1, 1)2 Model

Consider the SETAR(2; 1, 1)2 model

Yt = 0.5 + 0.9Yt−1 − 1.8Yt−1I(ω′
1X̃t−1 ≤ 0)− I(ω′

2X̃t−1 ≤ 0) + εt, (2.36)

where ω1 = (1, −1)′, ω2 = (0, 1)′, and X̃t−1 = (Yt−1, Yt−2)′. Thus the
dynamics of (2.36) is controlled by two threshold functions. The first one is
a bi-dimensional threshold when Yt−1 − Yt−2 = 0. The second one is a single
threshold when Yt−2 = 0. Figure 2.7(a) shows the threshold boundaries.8

8Tiao and Tsay (1994) generalize the single threshold SETAR to a similar model as in (2.36)
with known parameters ωi (i = 1, 2).
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Figure 2.7: (a) Threshold boundaries of model (2.36); (b) Scatter plot of Yt−2 versus Yt−1

with two separating hyperplanes (red solid lines); T = 500, {εt} i.i.d.∼ N (0, 1).

Rewriting (2.36) in four separate regimes gives

Yt =

⎧⎪⎨⎪⎩
−0.5− 0.9Yt−1 + εt, I: if Yt−1 − Yt−2 ≤ 0 and Yt−2 ≤ 0,
−0.5 + 0.9Yt−1 + εt, II: if Yt−1 − Yt−2 > 0 and Yt−2 ≤ 0,

0.5− 0.9Yt−1 + εt, III: if Yt−1 − Yt−2 ≤ 0 and Yt−2 > 0,
0.5 + 0.9Yt−1 + εt, IV: if Yt−1 − Yt−2 > 0 and Yt−2 > 0.

If we reconsider the U.S. unemployment series of Example 1.1 in terms of
the above model specification the four regimes (I – IV) have a direct mean-
ing. Regime I indicates that the economy changed from a contraction period
(Yt−2 ≤ 0) to an even worse one (Yt−1 ≤ Yt−2). In Regime II, the economy is
still in recession (Yt−2 ≤ 0), but improving (Yt−1 > Yt−2). Regime III can be
viewed as a contraction period with negative growth. Finally, Regime IV is
an expansion period with positive growth. Figure 2.7(b) shows a scatter plot
of Yt−2 versus Yt−1 based on one realization of (2.36) with {εt} i.i.d.∼ N (0, 1),
and T = 500. The solid lines denote the two separating hyperplanes.

2.6.5 Asymmetric ARMA model

A strictly stationary time series {Yt, t ∈ Z} is said to follow an asymmetric autore-
gressive moving average model of order (p, q), or for short asARMA(p, q), if it takes
the form

Yt = φ0 +
p∑

i=1

φ+
i Y +

t−i +
p∑

i=1

φ−
i Y −

t−i + εt +
q∑

j=1

θ +
j ε+

t−j +
q∑

j=1

θ−
j ε−t−j . (2.37)
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Figure 2.8: Impact of a maintained unit shock from zero to one onwards from t = 10
(MA(+), asMA(+), blue solid lines) and a corresponding negative unit shock (MA(−),
asMA(−), red solid lines ) on the series {Yt}. From Brännäs and De Gooijer (1994).

Here Y ±
t and ε±t denote the asymmetric component processes, defined as

Y −
t = YtI(εt ≤ 0), Y +

t = YtI(εt > 0), ε−t = εtI(εt ≤ 0), ε+
t = εtI(εt > 0),

with {εt} ∼ WN(0, σ2
ε). If p �= 0 and q = 0, (2.37) reduces to an asymmetric AR(p)

(asAR) model. It is called an asymmetric MA(q) (asMA) model for p = 0 and q �= 0.
Note that (2.37) has four filters, two for positive innovations and two for negative
innovations.

An alternative way to write (2.37) is

Yt =
p∑

i=1

(
φ−

i + αiI(εt−i > 0)
)
Yt−i + εt +

q∑
j=1

(
θ−
j + βjI(εt−j > 0)

)
εt−j , (2.38)

where αi = φ+
i − φ−

i (i = 1, . . . , p), βj = θ+
j − θ−j (j = 1, . . . , q).9 We see that the

asAR and asMA parts add two weighted sums of positive innovations to a conven-
tional ARMA model. In addition, we see that (2.38) belongs to the class of threshold
models with I(εt−i > 0) (i = 1, . . . , max(p, q)) controlling the transition between the
two regimes.

Example 2.9: Dynamic Effects of an asMA Model

Consider the asMA model

Yt = 0.01 + εt +0.69ε+
t−1 + 0.34ε+

t−2 + 0.22ε+
t−3 − 0.11ε+

t−21 + 1.12ε+
t−22

+0.61ε−
t−1 + 0.64ε−

t−2 − 0.07ε−
t−3 + 0.48ε−

t−21 − 0.35ε−
t−22.

(2.39)

Brännäs and De Gooijer (1994) fitted the above model successfully to quarterly
growth rates in U.S. real GNP, using first differences of logged values of the
original series. Evidence of asymmetry may be noted from the sign and mag-
nitude of the parameter values. For instance, at lag 22 the response to a

9If there is a threshold value r �= 0 in the ε±t functions, it can be accounted for by including a
constant term in (2.38) and retaining r = 0 as a threshold value.
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positive innovation is stronger than to a negative shock. In addition, the re-
sponses are of the same sign. Figure 2.8 shows this phenomenon in a slightly
different way. The accumulated effect of a permanent positive or negative unit
change from t = 10 onwards from a value zero in {εt} is displayed for model
(2.39) and a best fitted MA(3) model which is given by

Yt = 0.01 + ε̂t + 0.38ε̂t−1 + 0.34ε̂t−2 + 0.17ε̂t−3,

where ε̂t denotes the tth residual. For the MA(3) model a positive or negative
shock has, apart from a change in sign, a similar effect on {Yt}. On the other
hand, for model (2.39), asymmetry is clearly present in the resulting series.
There is a more rapid decline to a lower level for a negative shock than there
is an increase to a higher level for a positive shock.

Note that the graph only gives the two most extreme outcomes out of 52 = 25
possible parameter combinations. Each combination corresponds to a partic-
ular sequence of positive and negative innovations. There is equal probability
for each combination when the innovations are i.i.d. from a symmetric distri-
bution. Each combination of an asMA model can be given a corresponding
AR representation. With 25 combinations, equally many AR representations
will arise. These can be seen as a reasonable approximation to, for instance,
a STAR model, discussed in Section 2.7.

2.6.6 Nested SETARMA model

The general setting (2.27) can be extended to allow for regime-switches controlled
by multiple observable input variables. One general class of models suitable for this
purpose is the so-called nested SETARMA (NeSETARMA) model of Astatkie et al.
(1997). Suppose, without loss of generality, that a strictly stationary process {Yt, t ∈
Z} (output) has two input variables {Xt, t ∈ Z} and {Zt, t ∈ Z}. Moreover, assume
that the regime-switching is conditional on the values of the delayed observable
variables Yt and Xt. Using these variables the complete dynamic system is divided
in two subsystems, or stages. Each stage consists of regimes, with the second stage
regimes nested within those of the first stage. The regimes are formed in such a
way that there is a linear relationship between Yt and its lagged values, and a linear
relationship between Yt and lagged values of Xt. If Yt is used as regime-switching
variable in the first stage, then Xt will be used in the second stage and the resulting
model is called an output-input NeSETARMA model. On the other hand, if Xt is
used in the first stage and Yt in the second, then the model is called an input-output
NeSETARMA model. The (possibly lagged) relationship between Yt and Zt may be
linear or quadratic.

Below we focus on an output-input NeSETARMA model. Before defining its
structure, we introduce some notation.

• Let k1 ≥ 1 be the number of first-stage regimes formed by partitioning the
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values of Yt−d1 into non-overlapping intervals with d1 ∈ Z+ the first-stage
delay.

• Let R(i) = (ri−1, ri] denote the ith (i = 1, . . . , k1) interval with r0 = −∞ and
rk1 = ∞. The parameters r1, . . . , rk1−1 are the first-stage thresholds.

• Let �i,2 ≥ 1 (i = 1, . . . , k1) be the number of second-stage regimes formed by
using Xt−d2 as a threshold variable with d2 ∈ Z the second-stage delay.

• Let R(i,j) = (ri,j−1, ri,j ] (i = 1, . . . , k1; j = 1, . . . , �i,2) denote the jth second-
stage regime within the ith first-stage regime with ri,0 = −∞ and ri,�i,2

= ∞.
The set {ri,1, . . . , ri,�i,2−1} represents the second-stage thresholds.

Given the above setup, a general NeSETARMA model is defined as

Yt =
k1∑
i=1

{ �i,2∑
j=1

(
φ

(i,j)
0 +

∑
s

φ(i,j)
s Yt−s +

∑
u

ξ(i,j)
u Xt−u

+
∑

v

η(i,j)
v Zt−v + ε

(i,j)
t +

∑
w

θ(i,j)
w εt−w

)
I(Xt−d2 ∈ R(i,j))

}
I(Yt−d1 ∈ R(i)),

(2.40)

where {ε(i,j)
t } i.i.d.∼ (0, 1). Clearly, (2.40) consists of

∑k1
i=1 �i,2 regimes.

Several (non)linear models emerge as special cases of (2.40):

• If k1 = �1,2 = 1, φs �= 0, ξu = ηv = 0, and θw �= 0 ∀s, u, v, w, then the
NeSETARMA model reduces to an ARMA model.

• If k1 = �1,2 = 1, φs �= 0, ξu �= 0, ηv = 0, and θw �= 0 ∀s, u, v, w, then the
NeSETARMA reduces to an ARMAX (loosely speaking a transfer function)
model.

• If k1 > 1, �i,2 = 1 ∀i, and ξu = ηv = 0, and θw �= 0 ∀s, u, v, w, then the
NeSETARMA becomes a SETARMA model.

• If k1 = 1, φs �= 0, ξu �= 0, and ηv = θw = 0 ∀s, u, v, w, then (2.40) reduces
to the so-called open-loop SETAR (or TARSO) model of Tong (1990). This
model is defined as

Yt = φ
(j)
0 +

mj∑
s=1

φ(j)
s Yt−s +

m′
j∑

u=0

ξ(j)
u Xt−u + ε

(j)
t (2.41)

conditional on Xt−d ∈ R(j) (j = 1, . . . , �). We fit a (subset-)TARSO model to
an empirical time series in Section 6.4. Exercise 2.10 shows estimation results
for a NeSETAR model.
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2.7 Smooth Transition Models

For some time series processes, it may not seem reasonable to assume an abrupt
change in the regimes. Instead the speed of transition may be smooth over time. Let
G(·) denote a smooth continuous function, the so-called transition function. Then
a (two-regime) smooth transition autoregressive (STAR) model of order (2; p, p) is
defined as

Yt =
{

φ
(1)
0 +

p∑
u=1

φ(1)
u Yt−u

}
(1−G(zt)) +

{
φ

(2)
0 +

p∑
u=1

φ(2)
u Yt−u

}
G(zt) + εt,

= φ0 +
p∑

u=1

φuYt−u +
{

ξ0 +
p∑

u=1

ξuYt−u

}
G(zt) + εt, (2.42)

where φu = φ
(1)
u and ξu = φ

(2)
u − φ

(1)
u (u = 0, 1, . . . , p). The transition function G(·)

allows the conditional expectation of the model to change smoothly from E(Yt|Ys; s ≤
t) = φ0 +

∑p
u=1 φuYt−u to E(Yt|Ys; s ≤ t) = φ0 +

∑p
u=1 φuYt−u +{ξ0 +

∑p
u=1 ξuYt−u}

with Yt.
Various formulations for G(·) have been proposed in the literature. For example,

one may use G(zt) ≡ G(Yt−d; γ, c) = Φ(γ{Yt−d − c}), where Φ(·) is the cumulative
distribution function (CDF) of the standard normal distribution. Here, d ≥ 1 is
again the delay parameter, c is a location value, indicating when the transition is
occurring, whereas γ > 0 is a slope parameter. The role played by γ in Φ(·) is that
of smoothing. When the value of γ increases, the transition is completed in a short
period of time, and Φ(γ{Yt−d−c}) approaches the indicator function I(Yt−d−c). In
that case (2.42) reduces to a SETAR(2; p, p) model. On the other hand, when γ is
sufficiently close to zero (2.42) may be well approximated by a linear AR(p) model.

Two plausible alternative transition functions are the logistic function and the
exponential function . The logistic function is defined as

G(Yt−d; γ, c) =
1

1 + exp{−γ(Yt−d − c)} , γ > 0, (2.43)

and the resulting model is then called logistic smooth transition autoregressive
(LSTAR). The exponential function is specified as

G(Yt−d; γ, c) = 1− exp{−γ(Yt−d − c)2}, γ > 0, (2.44)

and the resulting model is referred to as exponential smooth transition autoregressive
(ESTAR) model. If c = 0 and d = 1, then the ESTAR(p) becomes identical to the
ExpAR(p) model.

Figure 2.9 shows some examples of the relationship between γ, Yt−d for (a) the
logistic transition function (2.43), and for (b) the exponential transition function
(2.44) where, for ease of interpretation, we set c = 0 and d = 1. Some observations
are in order:



52 2 CLASSIC NONLINEAR MODELS

Figure 2.9: Effects of various values of the smoothness parameter γ on (a) the logistic
transition function (2.43), and (b) the exponential transition function (2.44). Both functions
with c = 0 and d = 1.

• In the limit, as γ → 0, both transition functions switch between 0 and 1 very
smoothly and slowly. Both models reduce to an AR(p) model as γ becomes
small, with G(·) → 0.5 for the LSTAR(p) model, and with G(·) → 0 for the
ESTAR(p) model.

• For the LSTAR(p) model, as γ → ∞, G(Yt−1; γ, c) → I(Yt−1 > c). Hence,
the LSTAR(p) model approaches a SETAR(2; p, p) model. In contrast, as
γ →∞, (2.44) approaches the indicator function I(Yt−1 = c), and consequently
the ESTAR model does not nest the SETAR model as a special case.

• The ESTAR transition function is symmetric about c in the sense that the local
dynamics are the same for high as for low values of Yt−1, whereas the mid-range
behavior, for values close to c, is different. Thus, the distance between Yt−1

and c matters, but not the sign. For the LSTAR model, the local dynamics
depends on the distance between Yt−1 and c, as well as the sign.

Note that an asMA model of Section 2.6.5, contains 2q separate MA(q) re-
gimes. In some cases, it may also seem plausible to think of a continuum of MA
regimes and that the transition from one extreme regime to the other is smooth.
This requires modifying the transition function I(εt−j ≥ 0) into a smooth function
Gj(γεt−j) (γ > 0; j = 1, . . . , q). Since the transition function multiplying εt−j has
εt−j as its argument ∀j, the resulting nonlinear model is additive in structure. For
instance, setting p = 0, an additive smooth transition moving average (ASTMA)
model of order q is given by

Yt = εt +
q∑

j=1

(
θj + δjGj(γεt−j)

)
εt−j . (2.45)

In Example 3.7, we discuss the invertibility of this process.
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2.8 Nonlinear non-Gaussian Models

In an attempt to capture the behavior of, possibly observed, nonlinear time series
processes with explicit non-Gaussian marginal distributions a number of nonlinear
non-Gaussian models have been introduced. In the following subsections we shall
briefly discuss two models which seem to be promising to use in practice and have
known statistical properties.

2.8.1 Newer exponential autoregressive models

To introduce this class of models, let {Jt, t ∈ Z}, and {εt, t ∈ Z}, be two independ-
ent sequences of i.i.d. discrete random variables. Consider the SDM (2.10) with
μ(St−1) = 0, θj(St−1) = 0 ∀j, and φi(St−1) = β(Jt) (i = 1, . . . , p) where {Jt} has the
following distribution

Jt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 with prob. α0,
1 with prob. α1,
...

...
...

p with prob. αp.

Here {αi}p
i=0 is a non-negative sequence whose elements sum up to one. Let β(0)(≡

0), β(1), . . . , β(p) be p + 1 constants, satisfying 0 ≤ β(j) ≤ 1 (1 ≤ j ≤ p). Under the
above restrictions the SDM reduces to

Yt = β(Jt)Yt−Jt + εt. (2.46)

If the {Yt, t ∈ Z} process is assumed to have an exponential marginal distribution
function then (2.46) is known as newer exponential AR (NEAR) model of order
p, NEAR(p). Note that the NEAR(p) model is a special case (sub-class) of the
RCAR model (2.24). It is obvious how the concept of “switching” comes into play
in (2.46). The degree of AR dependence structure may switch among several, p,
possibilities which are controlled by an external (unobserved) random variable Jt,
which is independent of past values of the process {Yt, t ∈ Z}.

Example 2.10: NEAR(1) Model

The NEAR(1) is defined as,

Yt = εt +
{

βYt−1 with prob. α,
0 with prob. 1 − α,

= βJtYt−1 + εt, (2.47)

where

εt =
{

Et with prob. p1 = (1− β)/(1− (1− α)β)
(1− α)βEt with prob. 1 − p1 = αβ/(1− (1− α)β)

(2.48)



54 2 CLASSIC NONLINEAR MODELS

Jt =
{

0 with prob. (1 − α)
1 with prob. α,

(2.49)

where {Et, t ∈ Z} is a sequence of i.i.d. unit mean exponential random vari-
ables. The form of the εt’s is chosen to ensure that the marginal distribution of
{Yt, t ∈ Z} is exponential with mean unity, i.e. fY (y) = exp(−y) (0 ≤ y < ∞).
The parameters α and β are allowed to take values over the domain defined by
0 ≤ α, β ≤ 1 with α = β �= 1. We note that due to the distributional assump-
tion underlying {Et}, the innovation process is not allowed to take on negative
values, i.e. P(Et ≤ 0) = 0. Again, the “switching” characteristic of (2.47) is
evident. Due to the AR(1) setup of the model, (2.47), and the restricted do-
main of the parameters, it follows that for Y0 ∼ Exp(1) and being independent
of {Et, t > 0}, the process {Yt, t ∈ Z} is stationary – by construction.

Setting α = 1, 0 ≤ β ≤ 1 in (2.47) yields the so-called exponential AR model
of order 1, or EAR(1) (Lawrence and Lewis, 1980),10 where fixing β = 1,
0 ≤ α < 1 give rise to the so-called transposed EAR (TEAR) model of or-
der 1 (Lawrance and Lewis, 1981).11 Both are extreme cases of a NEAR(1)
process.12 The main properties are: the ACF at lag � ∈ Z is given by
ρY (�) = (αβ)�, and the regression curve E(Yt+1|Yt = y) = αβy, which is
thus linear. This makes maximum likelihood (ML) estimation of α and β
possible by numerical optimization. Another interesting feature, is that the
NEAR(1) process is not time-reversible (cf. Exercise 2.5).

2.8.2 Product autoregressive model

As a natural extension of the linear AR(1) model, McKenzie (1982) proposes the
so-called product AR model of order 1, or PAR(1). It consists of an exponentiation
of a strictly stationary AR(1) process {Yt, t ∈ Z} such that the additive form is
being transformed into a linear form. Specifically,

Yt = Y α
t−1Vt, (0 ≤ α < 1), (2.50)

where the log-transform is given by

log Yt = α log Yt−1 + log Vt,

10This acronym should not be confused with the ExpAR model defined in Section 2.3.
11Corresponding to the EAR(1) model is the EMA(1), which takes the form Yt = γEt with

probability γ, and Yt = γEt + Et−1 with probability 1 − γ (0 ≤ γ ≤ 1). By bringing together the
EAR(1) and EMA(1) processes, the EARMA(1,1) process can be defined.

12Both the EAR(1) and TEAR(1) models are somewhat limited in scope for practical application
due to the sample paths these models generate. In particular, for the EAR(1) model large values
arise when Et is included (i.e. Jt = 1), which are followed by runs of decreasing value, with the
runs having geometrically distributed lengths. For the TEAR(1) model the behavior of the sample
paths, for a large α, shows geometrically distributed runs of rising values (i.e. Jt = 1) followed by
sharp declines when the selection Jt = 0 is made. One can overcome these shortcoming by using
high-order models.
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Figure 2.10: (a) A realization of the PAR(2) model Yt = (0.3Y −0.9
t−1 + 0.5Y 0.4

t−2)εt, with

{εt} i.i.d.∼ N (1, 0.1), and T = 500; (b) Sample ACF of the time series in (a) with 95%
asymptotic confidence limits (blue medium dashed lines).

with {Vt} a sequence of i.i.d. nonnegative random variables, and Y0 is independent
of V1. We may classify the PAR(1) model as an intrinsically linear model, i.e. a
nonlinear model which can be linearized. It differs from the NEAR models which
cannot be linearized due to their switching nature.

Writing Yt = {
∏�−1

i=0 V αi

t−i}Y α�

t−�. Then, dropping unnecessary subscripts, we have
E(YtYt−�) = {

∏�−1
i=0 E(V αi

)}E(Y α�+1). From (2.50), E(Y s) = E(Y αs)E(V s), and
therefore

E(YtYt−�) =
�−1∏
i=0

{ E(Y αi
)

E(Y αi+1)

}
E(Y α�+1) =

E(Y )E(Y α�+1)
E(Y α�)

. (2.51)

Hence, the ACF at lag � is given by

ρY (�) =
E(Yt){E(Y α�+1

t−� )− E(Y α�

t−�)E(Yt−�)}
E(Y α�

t−�)Var(Yt)
.

Note, the ACF depends only on the moments of the stationary marginal distribu-
tion. In the particular case of the gamma distribution such moments exist, and this
distribution is the only one for which the PAR(1) model has the same ACF structure
as an AR(1) process (McKenzie, 1982), hence its name.

More generally, the PAR(p) (p ≥ 2) model with non-additive noise is defined as

Yt = Vt

( p∑
i=1

φiY
αi
t−i

)
. (2.52)

Figure 2.10(a) shows a realization of a PAR(2) process, and 2.10(b) its corresponding
sample ACF. We see that the pattern of the sample ACF is compatible with the
sample ACF of an AR(2) model.
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2.9 Artificial Neural Network Models

The artificial neural network (ANN) has been widely used for nonlinear processes
with unknown functional form. Probably the most commonly used ANN architecture
is the multi-layer perceptron (MLP), also known as feed-forward network. MLPs
receive a vector of inputs x, the explanatory variables, and compute a response or
output y(x) by propagating x through the interconnected processing elements, called
neurons or nodes . The processing elements are arranged in layers and the data, x,
flows from each layer to the successive one. Within each layer or “hidden unit”
(processing element), x is nonlinearly transformed by so-called nonlinear activation-
level functions and propagated to the next layer. Finally, at the output layer y(x),
which can be scalar – or vector-valued, is computed. Thus, information flows only in
one direction (feed-forward) from input to output units. Without loss of generality
we focus here on single layer ANNs.

Figure 2.11 shows the basic architecture of a single hidden layer perceptron with
two input units, three hidden units, and one output unit, called a 2-3-1 feed-forward
network. The hidden (middle) layer performs a weighted summation of the input
units. In fact, the jth node in the hidden layer is defined as

hj = Gj

(
α0j +

∑
i→j

ωijxi

)
, (2.53)

where xi is the value of the ith input node, α0j is a constant (the “bias”), the
summation

∑
i→j means summing over all input nodes feeding to j, and ωij are the

connecting weights. The nonlinearity enters the model through the activation-level
function Gj(·), usually a “smooth” transition function such as the logistic function
in (2.43).

For the output layer, the node is defined as

o = ψ
(
α0o +

∑
j→o

ωjohj

)
, (2.54)

where ψ(·) is another activation-level function, which is almost always taken to be
either linear or an indicator function. Combining (2.53) and (2.54), the output of a
single-layer feed-forward ANN can be written as

o = ψ
[
α0o +

∑
j→o

ωjoGj

(
α0j +

∑
i→j

ωijxi

)]
. (2.55)

Let m be the number of input units, and k the number of nodes in the hidden
layer. Then, the network weight vector, say θ, consists of a (k+1)×1 vector of biases
(α0o, α0j)′, an mk×1 vector of input layer to hidden layer weights (ω′

1, . . . , ω
′
k)

′ with
ωj = (ω1j , . . . , ωmj)′ (j = 1, . . . , k), and a k×1 vector of hidden layer to output layer
weights (ω1o, . . . , ωko)′. Thus, for an m–k–1 network the total number of weights,
or dimension of θ, is equal to r = (m + 1)k + (k + 1). Usually the weight vector θ
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Figure 2.11: The architecture of a single hidden layer ANN with two input units, three
hidden units, and one output unit, a so-called m − k − 1 = 2 − 3 − 1 feed-forward network
with 13 weights.

is assumed to take values in the weight space Θ, a subset of the finite-dimensional
space Rr. That means, the ANN considered has bounded model complexity and
contains a finite number of hidden units k and a finite number of input units m.

In time series applications one also allows an ANN to have so-called skip-layer ,
or direct, connections from inputs to outputs. Then, the output of a feed-forward
ANN becomes

o = ψ
[
α0o +

∑
i→o

αioxi +
∑
j→o

ωjoGj

(
α0j +

∑
i→j

ωijxi

)]
. (2.56)

Thus, when ψ(·) is a linear activation-level function, there are direct linear connec-
tions from the input to the output nodes.

The weights θ are the adjustable parameters of the network, and they are ob-
tained through a process called training . Let {(xi, yi)}N

i=1 denote the training set,
where xi denotes a vector of inputs, and yi is the variable of interest. The object-
ive of training is to determine a mapping from the training set to a set of possible
weights so that the network will produce predictions ŷi, which in some sense are
“close” to the yi’s. For a given network, let o(xi;θ) be the output for a given xi.
Then by far the most common measure of closeness is the ordinary least squares
function, i.e.

LN (θ) =
N∑

i=1

{yi − o(xi; θ)}2.

Assume that the network weight space Θ is a compact subset of the r-dimensional
Euclidean space Rr, which ensures that the true ANN model is locally unique with

x1 x2

y

G1(·) G2(·) G3(·) Hidden layer

Input layer

Output layer
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regard to the objective function used for training. Then the weights are found as:

θ̂ = arg min
θ∈Θ

{LN (θ)},

using some kind of iterative minimization scheme. A popular method is the back-
propagation algorithm, i.e. a gradient descent algorithm where the computations are
ordered in a simple fashion by taking advantage of the special structure of an ANN.

2.9.1 AR neural network model

The autoregressive neural network (AR–NN) of order p with k regimes and a single
output, denoted by AR–NN(k; p, . . . , p),13 is defined as

Yt = h(Xt−1; θ) + εt,

= φ0 + φ′Xt−1 +
k∑

j=1

ξjG(ω′
jXt−1 − cj) + εt, (2.57)

where h(·) denotes a hidden layer containing k nodes, with no activation-level func-
tion at the output unit, with hidden activation-level function G(·): R→ R, a Borel-
measurable function of the input vector Xt−1 = (Yt−1, . . . , Yt−p)′, and with the
network weight vector θ ∈ R(p+2)k+p+1 defined as

θ = (φ′, ξ′, ω′, c′, φ0)′,

where

φ = (φ1, . . . , φp)′, ξ = (ξ1, . . . , ξk)′, c = (c1, . . . , ck)′,
ω = (ω′

1, . . . , ω
′
k)

′, with ωj = (ω1j , . . . , ωpj)′, (j = 1, . . . , k).

In ANN terminology the elements of the p × 1 vector φ are called the shortcut
connections , the k × 1 vector ξ consists of the hidden unit to output connections,
the elements of the k × 1 vector c are called the hidden unit “bias” weights, and
the elements of the pk × 1 vector ω are the so-called input unit to hidden unit
connections. Thus, jointly with the intercept φ0, the dimension r of the network
weight vector θ is equal to (p + 2)k + p + 1. Note, (2.57) does not include lags of
{εt} in the set of input variables, and therefore is a feed-forward ANN.

Now, assume that the activation-level function is bounded, i.e. is |G(x)| < δ < ∞
∀x ∈ R. Let φ(z) be the characteristic function associated with the shortcut connec-
tions. Then it can be shown (Trapletti et al., 2000) that the condition φ(z) �= 0 ∀z,
|z| ≤ 1 is sufficient, but not necessary for the ergodicity of the Markov chain {Yt}.
Furthermore, if this condition holds, then {Yt, t ∈ Z} is geometrically ergodic (see

13Analogue to the notation introduced for SETAR models, we refer to the number of regimes
k first, and to the order p, . . . , p of the AR–NN model second. In contrast, some books use the
notation AR–NN(p, k).
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Figure 2.12: Skeleton h(Xt−1; θ) of the AR–NN(2; 0, 1) model (2.58) for 25 iterations of
{Yt} for each value of ξ = 1, 1.1, . . . , 24.9, 25.15

Section 3.4.2) and the associated AR–NN process is called asymptotically stationary .
Typical choices for G(·) are the hyperbolic tangent (tanh) function and the logistic
function.

Certain special cases of the AR–NN model are of interest. If the sum in (2.57)
vanishes, then the model reduces to a linear AR(p) model. For k > 0, this can be
achieved by either setting ξj = 0 or ωj = 0 ∀j. For the latter case, the sum is a
constant, independent of Xt−1, and can be absorbed in the intercept φ0.

Example 2.11: Skeleton of an AR–NN(2; 0, 1) Model

Consider the single hidden layer feed-forward AR–NN(2; 0, 1) model

Yt = 0.15 + ξ tanh(Yt−1 − 1)− ξ tanh(Yt−1 − 1.5) + εt, (2.58)

where tanh(x) = (exp(2x)− 1)/(exp(2x) + 1), and with initial condition Y0 =
0.1. Thus, in terms of model specification (2.57), we have φ = 0, and ξ =
(ξ, −ξ)′, c = (1, 1.5)′, and ω = (1, 1)′.

To illustrate that a relative simple AR–NN model can generate complex dy-
namical patterns, we consider the skeleton h(Xt−1; θ), i.e. the noise-free (εt ≡
0) representation of (2.58) with ξ = 1, 1.1, . . . , 24.9, 25. For each ξ, we per-
form 2,000 iterations of (2.58). Figure 2.12 shows a scatter plot of the values
of {Yt} versus ξ after discarding the first 1,975 iterations. For approximately
1 ≤ ξ ≤ 3.4 the model converges to a stable fixed point. Then, for approxim-
ately 3.4 < ξ < 4.5 we see a local stable oscillation of period 2. The oscillation
period is doubled for 4.5 < ξ < 5.8. At about ξ = 5.8, the plot hints at
deterministic chaos, i.e. the model looses predictability.

15This type of graph is commonly referred to as a bifurcation diagram in the chaos literature.
The skeleton is the underlying dynamical system, i.e. the process without noise.
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Example 2.12: Skeleton of an AR–NN(3; 1, 1, 1) Model

Consider the single hidden layer feed-forward AR–NN(3; 1, 1, 1) model com-
posed of one linear and three logistic activation-level functions

h(Xt−1; θ) = 1− 0.5Yt−1 +
3∑

j=1

G(Yt−1; ω1j), (2.59)

where

G(Yt−1; ω11) = (1 + exp(−10[Yt−1 − 2]))−1,

G(Yt−1; ω12) = (1 + exp(−2Yt−1))−1,

G(Yt−1; ω13) = (1 + exp(−20[Yt−1 − 1]))−1.

Figure 2.13 shows (2.59) as a function of the input series {Yt−1}, with Yt−1

taking values in the set {−3,−2.9, . . . , 2.9, 3} (blue solid line). The values of
the activation-level functions G(Yt−1; ω1j) (j = 1, 2, 3) are displayed as blue
dashed-dotted, dashed-doted-doted, and dotted lines, respectively.

For Yt−1 < −1 all three logistic activation-level functions are approximately
equal to zero in value, so the behavior of (2.59) is determined largely by the
slope of the linear activation-level function. For approximately −1 ≤ Yt−1 ≤
0.7 the function G(Yt−1;ω12) slowly starts increasing, but the values of the
functions G(Yt−1;ω11) and G(Yt−1; ω13) remain approximately equal zero. As
a result, the downward trend of h(Xt−1;θ) levels off. At about Yt−1 = 0.8,
the function G(Yt−1; ω13) changes from 0 to 1 fairly rapidly, and the value
of the skeleton increases. Next, for approximately 1.2 < Yt−1 ≤ 1.7, the
skeleton resumes its gradual declining, owing to the fact that G(Yt−1; ω12)
and G(Yt−1;ω13) essentially achieve their maximum values while the function
G(Yt−1; ω11) is still not very active. Then, at about Yt−1 = 1.8, the function
G(Yt−1; ω11) begins to activate, resulting in a slow increase of h(Xt−1;θ) up
till about the point Yt−1 = 2.3. Finally, for Yt−1 ≥ 2.4 all three logistic
functions are approximately equal unity. So, once again, the linear activation-
level function causes the gradual decline of the function h(Xt−1; θ).

In general, the AR–NN model can be either interpreted as a semi-parametric ap-
proximation to any Borel-measurable function, or as an extension of the threshold
class of models (SETAR and LSTAR) where the transition variable can be a linear
combination of stochastic variables. For instance, assume that the variable con-
trolling the switching is composed of a particular subset, say X̃t−1 = (Yt−1, . . . , Yt−q)′

(1 ≤ q ≤ p) of the elements of Xt−1. Then, using the indicator function as activation-
level function, i.e. G(·) = I(·), it is easy to see that (2.55) reduces to (2.35) with
k = m.

Note that the AR–NN model (2.57) is, in principle, neither globally nor locally
identified. Three characteristics of the model cause non-identifiability. First, due
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Figure 2.13: Skeleton h(Xt−1;θ) of an AR–NN(3; 1, 1, 1) model (2.59) (blue solid line).
The values of the logistic functions G(Yt−1;ω1j) (j = 1, 2, 3) are shown as blue dashed-dotted,
dashed-dotted-dotted, and dotted lines, respectively.

to the symmetries in the ANN architecture the value of the likelihood function
remains unchanged if the hidden units are permuted, resulting in k! possibilities for
each one of the coefficients of the model. This problem is resolved by imposing the
restrictions c1 ≤ · · · ≤ ck or ξ1 ≥ · · · ≥ ξk. The second characteristic is caused
by the fact that G(x) = 1 − G(−x), where G(·) is the logistic function. This
problem can be circumvented, for instance, by imposing the restriction ω1j > 0
(j = 1, . . . , k). Finally, the presence of irrelevant hidden units in the nonlinear part
of the AR–NN model can be eliminated by assuming that each hidden unit makes
a unique non-trivial contribution to the overall AR–NN process, i.e. ξj �= 0, ωj �= 0
∀j (j = 1, . . . , k), and (ω′

i, ci) �= ±(ω′
j , cj) ∀i �= j (i, j = 1, . . . , k). In practice, these

latter assumptions are a part of the model specification stage, applying statistical
inference techniques.

2.9.2 ARMA neural network model

The autoregressive moving average network ARMA–NN of order (k; p, q) is defined
as

Yt = h(Xt−1, et−1; θ) + εt, (2.60)

where

h(Xt−1, et−1; θ) = φ0 + φ′Xt−1 + ψ′et−1 +
k∑

j=1

ξjG(ω′
jXt−1 + ϑ′

jet−1 − cj)

with the activation-level function G(·) as introduced in Section 2.9.1, an observed in-
put vector Xt−1 = (Yt−1, . . . , Yt−p)′, and a q×1 input vector et−1 = (et−1, . . . , et−q)′

with a feedback through a linear MA-polynomial ϑj (j = 1, . . . , k) for filtering past
residuals. In ANN terminology this feature means that the ARMA–NN network is
recurrent : future network inputs depend on present and past network outputs.
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Figure 2.14: A typical recurrent ARMA–NN(3; 2, 1) model with two lagged variables Yt−1

and Yt−2 and one recurrent variable et−1 in the set of inputs; ot denotes the network output
at time t, and B is the backward shift operator.

The network weight vector θ ∈ R(p+q+2)k+p+q+1 is composed of various sub-
vectors in an analogous way as given in Section 2.9.1 for an AR–NN(k; p) model.
Indeed, for p ≤ 1 and q = 0, the ARMA–NN(k; p, q) model reduces to (2.57). Fig-
ure 2.14 displays the architecture of a single hidden recurrent layer feed-forward
ARMA–NN(3; 2, 1) model.

2.9.3 Local global neural network model

Another member of the regime switching family, derived from ANNs, is the local
global neural network (LGNN) model. The central idea of LGNN is to express
the input-output mapping of a single hidden layer feed-forward ANN, containing k
nodes, by a piecewise structure. In particular, the LGNN output describes a com-
bination of pairs of smooth continuous functions, each composed of a p-dimensional

Yt−1 Yt−2 et−1

B

ot

Yt − et = Yt − ot

G1(·) G2(·) G3(·)
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nonlinear approximation function L : Rp → R of Xt−1 = (Yt−1, . . . , Yt−p)′, and
a q-dimensional activation-level function B : Rq → R of X̃t−1 = (Yt−1, . . . , Yt−q)′

(1≤ q≤p). The resulting model, denoted by LGNN(k; p)q, is defined as

Yt =
k∑

j=1

L(Xt−1;θLj )B(X̃t−1; θ̃Bj ) + εt, (2.61)

where B(X̃t−1; θ̃Bj ) is defined as the difference between two opposed logistic func-
tions, i.e.

B(X̃t−1; θ̃Bj ) = −
( 1

1 + exp(−γj [ω̃′
jX̃t−1 − c1j ])

− 1

1 + exp(−γj [ω̃′
jX̃t−1 − c2j ])

)
, (2.62)

and where θLj = (ω′
j , γj , c1j , c2j)′ with ωj = (ω1j , . . . , ωpj)′, γj the slope para-

meter, and (c1j , c2j) (j = 1, . . . , k) the location parameters. Similarly, θ̃Bj =
(ω̃′

j , γj , c1j , c2j)′ with ω̃j = (ω1j , . . . , ωqj)′.
Let q = p. Then a special case of (2.61) is the local linear global neural network

of order p, or L2GNN(k; p) model, where the approximation functions are assumed
to be linear, that is, L(Xt−1; θLj ) = ξ0j + ξ′jXt−1 with ξj = (ξ1j , . . . , ξpj)′. The
L2GNN(k; p) model resembles the structure of the AR–NN(k; p) model (2.57), and
is defined as

Yt =
k∑

j=1

(ξ0j + ξ′jXt−1)B(Xt−1; θBj ) + εt, (2.63)

where, similar to the AR–NN of Section 2.9.1, restrictions on the parameters need
to be imposed to ensure identifiability. Further, it is easy to verify that (2.61) is
related to the SETAR(k; p, . . . , p)m model of Section 2.6.4, with a similar geometric
interpretation.

Example 2.13: A Simulated L2GNN(2; 1, 1) Time Series

Consider the single hidden layer feed-forward L2GNN(2; 1, 1) model

Yt = L(Yt−1; θL1)B(Yt−1; θB1) + L(Yt−1; θL2)B(Yt−1;θB2) + εt, (2.64)

where

L(Yt−1;θL1) = 1− 1.2Yt−1, L(Yt−1; θL2) = 1− 0.5Yt−1,

B(Yt−1; θB1) = −
( 1

1 + exp(10(Yt−1 + 6))
− 1

1 + exp(10(Yt−1 − 1))

)
,

B(Yt−1; θB2) = −
( 1

1 + exp(5(Yt−1 + 2))
− 1

1 + exp(5(Yt−1 − 2))

)
,
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Figure 2.15: (a) Skeleton (the combined approximation and activation-level function) of
the L2GNN(2; 1, 1) model (2.64) (blue solid line) with activation-level functions B(Yt−1;θB1)
(blue medium dashed line) and B(Yt−1;θB2) (blue dotted line); (b) A typical realization of
the L2GNN(2; 1, 1) model (2.64); T = 200.

and {εt} i.i.d.∼ N (0, 1). Note that (2.64) is composed of a nonstationary AR(1)
process, given by the linear approximation function L(Yt−1; θL1), and a sta-
tionary AR(1) process.

Figure 2.15(a) shows the skeleton of (2.64), i.e. the values of the combined
approximation and activation-level function as a function of the input series
{Yt−1} (blue solid line). The values of B(Yt−1; θBj ) (j = 1, 2) are displayed
near the bottom of Figure 2.15(a). For approximately Yt−1 < −6.5 both
activation-level functions are almost equal to zero. Around the point Yt−1 =
−6.5, the function B(Yt−1;θB1) changes rapidly from 0 to 1, causing a steep
increase in L(Yt−1;θL1)B(Yt−1;θB1) when −6.5 < Yt−1 < −5.6. Then, when
−5.6 < Yt−1 < −2.2, the values of the skeleton drop, due to L(Yt−1; θL1).
At Yt−1 = −2.2, there is a slight increase in the values of the skeleton when
the function B(Yt−1; θB2) begins to activate. Next, at Yt−1 = −1.7 a further
decline sets in, with a small increase in the values of the skeleton when the
function B(Yt−1; θB1) begins to deactivate. Finally, the skeleton goes to zero
at about Yt−1 = 2.

In general, as {Yt} grows in absolute value, the functions B(Yt−1; θBi) → 0 (i =
1, . . . , k), and thus {Yt} is driven back to 0. By imposing some weak conditions
on the parameters ωi, and using the above result, it can be proved (Suárez–
Fariñas et al., 2004) that the L2GNN model is asymptotically stationary with
probability one, even if the model is a mixture of one or two explosive AR
processes.
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Figures 2.15(b) shows a T = 200 realization from the L2GNN model (2.64).
We observe that the series is fluctuating around a fixed sample mean of
−10.780, with a standard deviation of 9.978, suggesting that the process is
asymptotically stationary. There are, however, occasional large negative val-
ues (max{Yt} = 10.109; min{Yt} = −38.428), indicating local nonstationarity.

Figure 2.16: Flow diagram of various relationships between (non)linear AR models.

2.9.4 Neuro-coefficient STAR model

The neuro-coefficient smooth transition autoregressive (NCSTAR) model is a gen-
eralization of some of the previously described models and can handle multiple
regimes and multiple smooth transition functions, using a logistic q-dimensional
activation-level function G(·). In particular, the NCTAR model of order p with q

AR(p): Yt = φ0 + φ′Xt−1 + εt

SETAR(k; p, . . . , p) L2GNN(k; p) AR-NN(k; p) LSTAR(k; p)

SETAR(k; p, . . . , p)q LGNN(k; p, . . . , p)q

NCTAR(k; p, . . . , p)q:
Yt = φ0 + φ′Xt−1 +

∑k
j=1(ξ0j + ξ′

jXt−1)G(X̃t−1; ω̃j , cj) + εt

G(·) = I(·)
φ0 = 0
φ = 0

G(·) = B(·)

q = p q = p q = p q = 1
ξ0j = 0 X̃t−1 = Yt−d

ξj = 0 ξj = 0
(or ω̃j = 0)

ξ0j = 0
ξj = 0
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activation-level functions, denoted by NCTAR(k; p)q, is defined as

Yt = φ0 + φ′Xt−1 +
k∑

j=1

(ξ0j + ξ′jXt−1)G(X̃t−1; ω̃j , cj) + εt, (2.65)

where

G(X̃t−1; ω̃j , cj) = (1 + exp(−[ω̃′
jX̃t−1 − cj ]))−1,

with

Xt−1 = (Yt−1, . . . , Yt−p)′, X̃t−1 = (Yt−1, . . . , Yt−q)′

ω̃j = (ω̃1j , . . . , ω̃qj)′, ξj = (ξ1j , . . . , ξpj)′, (j = 1, . . . , k).

Imposing the same parameter restrictions for the AR–NN model given in Section
2.9.1 guarantees identifiability of the NCTAR model. Figure 2.16 shows a flow
diagram of various relationships between the (non)linear AR models.

2.10 Markov Switching Models

Markov chains have received wide attention in many areas of science. Before discuss-
ing Markov switching models, we introduce some basic notions. As is well known, a
Markov chain {St} is a discrete stochastic process St ∈ {1, . . . , k}, satisfying

P(St = j|St−1 = i, St−2 = r, . . .) = P(St = j|St−1 = i) = pij ,

k∑
j=1

pij = 1, pij ≥ 0, ∀i, j ∈ {1, . . . , k}.

Loosely speaking, a Markov process is called irreducible if any state j can be reached
from state i in a few steps, and it is termed aperiodic if the number of steps it needs
to return to a state has no period. Furthermore, a Markov chain is ergodic if it is
irreducible and aperiodic.

Any Markov chain has a stationary distribution {πj = P(St = j)}k
j=1 satisfying

πj =
k∑

j=1

πjpij , (2.66)

or in matrix form π = P′π where π = (π1, . . . , πk)′ is the k×1 vector of steady-state
probabilities, and P = (pij) is the k×k transition probability matrix . For an ergodic
Markov chain, πj = limn→∞ P(Sn = j|S1 = i) (independent of i).

Markov switching ARMA model
Consider a univariate time series process {Yt, t ∈ Z} that is influenced by a hidden
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discrete stochastic Markov process {St}. Then a Markov-switching ARMA (MS–
ARMA) is defined as

Yt =
k∑

i=1

δti

(
φ

(i)
0 +

pi∑
u=1

φ(i)
u Yt−u + ε

(i)
t +

qi∑
v=1

θ(i)
v ε

(i)
t−v

)
, (2.67)

where

δti =
{

1 if St = i,
0 otherwise,

with ε
(i)
t = σ2

i εt, and {εt} i.i.d.∼ (0, 1), independent of {St}. So, St denotes the regime
or state prevailing at time t, one of k possible cases, i.e. it plays the role of {Jt}
in (2.27). In the case k = 1 there is only one state and {Yt, t ∈ Z} degenerates
to an ordinary ARMA process. Adding exogenous variables, such as trends, is a
straightforward extension of (2.67). Another extension of the model is to allow for
generalized autoregressive conditional heteroskedastic (GARCH) errors. Multivari-
ate modeling, including modeling cointegrated processes, is also an option.

Emphasis has been on two-state (k = 2) Markov switching AR (MSA or MSAR)
models with qi = 0 (i = 1, . . . , k) and w1 = p12, w2 = p21. The resulting process is
ergodic, with no absorbing states, if 0 < w1 < 1 and 0 < w2 < 1. The stationary
probabilities are π1 = w2/(w1 + w2) and π2 = w1/(w1 + w2) (cf. Exercise 2.7).
Moreover, the system stays in regime i for geometrically distributed time with mean
1/wi.

Example 2.14: A Two-regime Simulated MS–AR(1) Time Series
Consider a two-regime (k = 2) MS–AR(1) process given by

Yt =

{
φ

(1)
1 Yt−1 + σ1εt if St = 1,

φ
(2)
1 Yt−1 + σ2εt if St = 2,

(2.68)

where

φ
(1)
1 = −φ

(2)
1 = 0.9, σ2

1 = 1, σ2
2 = 0.25, p11 = 0.8, and p22 = 0.9.

Figure 2.17(a) shows a realization of (2.68) with {εt} i.i.d.∼ N (0, 1). A scatter
plot of Yt versus Yt−1 (not shown here) depicts two linear relationships: one
showing a positive relationship and one with a negative linear relationship
between the two variables.

There are various ways to estimate the MS–AR model. Because {St} is not
observed, the model does not directly give a likelihood function. Let θ =
(φ(1)

1 , φ
(2)
1 , σ2

1, σ
2
2, p11, p22)′ be the vector of parameters, and F t the σ-algebra

generated by {Ys, s ≤ t}. Maximum likelihood (ML) estimation requires

f(Yt|F t−1; θ) =
2∑

j=1

f(Yt|F t−1, St = j; θ)P(St = j|F t−1; θ), (2.69)
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Figure 2.17: (a) A realization of the MS–AR(1) model (2.67), T = 500; (b) Estimated
smoothed probabilities in state 1 and 2 are plotted as blue and green solid lines, respectively.

where f(Yt|F t−1, St = j; θ) follows directly from the model, and P(St =
j|F t−1; θ) can be obtained recursively from Bayes’ rule:

P(St = j|F t−1; θ) =
2∑

i=1

P(St−1 = i|F t−1;θ)pij , (2.70)

P(St = i|F t; θ) =
f(Yt, St = i|F t−1;θ)

f(Yt|F t−1; θ)

=
f(Yt|F t−1, St = i; θ)P(St = i|F t−1; θ)∑2
i=1 f(Yt|F t−1, St = i;θ)P(St = i|F t−1; θ)

. (2.71)

Starting from the initial stationary probability

P(S1 = 1|F1) = π1 =
w2

w1 + w2
= 1− P(St = 2|F2),

we can construct the quasi log-likelihood function by evaluating (2.70), (2.69)
and (2.71) iteratively for t = 2, . . . , T . This is known as the Hamilton
(Hamilton, 1994, Chapter 22) filter (closely related to the Kalman filter). Un-
der stationarity conditions, the quasi maximum likelihood (QML) estimator θ̂
of θ has the usual asymptotic properties. After maximizing the likelihood func-
tion, a similar Bayesian argument can be used to produce estimated smoothed
probabilities

P(St = 1|FT ; θ̂) = 1− P(St = 2|FT ; θ̂), t = 1, . . . , T.

For the simulated data of Figure 2.17(a), we obtain the parameter estimates

φ̂
(1)
1 = 0.93(0.02), φ̂

(2)
1 = −0.88(0.02), σ̂2

1 = 0.94(0.12), σ̂2
2 = 0.28(0.02),

p̂11 = 0.78, p̂22 = 0.89,
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with asymptotic standard errors of the parameter estimates in parentheses.
The expected duration (length of stay) in the first regime is 1/(1− p̂11) ≈ 4.56
time periods, and in the second regime 1/(1 − p̂22) ≈ 9.33 time periods. In
conjunction with this result, Figure 2.17(b) shows the estimated smoothed
state probabilities.

2.11 Application: An AR–NN model for EEG Record-
ings

To illustrate the application of a single hidden layer feed-forward AR–NN model,
we reconsider the EEG recordings (epilepsy data). Let {Yt}631

t=1 denote the time
series under study. The aim will be to reconstruct the dynamics underlying {Yt}
and to predict future values. From the discussion in Example 1.2 it is reasonable
to treat {Yt} as a realization of a stationary process. If, however, this is not the
case we recommend to transform the series to a stationary series if possible (e.g. by
differencing) before training an ANN on it.

Implementation
Implementing an AR–NN model requires several decisions to be made. First, we
need to decide whether the data need scaling. Rescaling the data is linked to initial
values of the weights ωj (j = 1, . . . , k). These weights must vary over a reasonable
range, neither too wide nor too narrow, compared with the range of the data. If
this is not the case, the criterion function will have a number of local minima.
Although, it is difficult to offer a general advice on the choice of scaling, the data in
the training set is often standardized to have zero mean and variance one. Still it is
recommended to train an AR–NN a couple of times, using different initial weights.
For the EEG recordings we decided to use the original data. Since the values of the
inputs are large, but centered around zero, we followed a recommendation in the R
documentation of the nnet package to take the initial values of the weights randomly
from a uniform [−1/max{|Yt|, 1/ max{|Yt|}] (t = 1, . . . , N ) distribution with N the
size of the training data set, also called the total number of in-sample observations.

The next issue is the choice of G(·). A commonly used activation function is the
logistic function, which we adopt here. Furthermore, we need to choose the number
p of input (lagged) variables, and the number of hidden units k. Various strategies
have been proposed for this purpose. One strategy is to perform a grid search over a
pre-specified range of pairs (p, k) and select the AR–NN on the basis of minimizing
a model selection criterion. Recall, r = (p + 2)k + p + 1 denotes the number of
parameters fitted in the model. Then Akaike’s information criterion (AIC) and the
Bayesian information criterion (BIC) are, respectively, given by

AIC = N log(σ̂2
ε) + 2r, BIC = N log(σ̂2

ε) + r ln(N),

where σ̂2
ε denotes the residual variance.
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Table 2.1: Comparison of various AR–NN models applied to the EEG recordings; T = 631.
Blue-typed numbers indicate minimum values of a number of “key” statistics.

Measures of fit Forecast accuracy

k p r σ̂2
ε AIC BIC RMSFE MAFE

0 7 8 3875.15 7937.34 7971.73 65.76 51.29
1 7 17 3833.37 7949.44 8022.53 65.76 51.91
2 7 26 3852.46 7970.15 8081.92 65.27 51.20
3 7 35 3807.98 7981.83 8132.29 65.24 51.60
4 7 44 3744.84 7990.73 8179.89 63.76 49.87
5 7 53 3490.68 7970.50 8198.34 63.80 50.17

0 8 9 3146.67 7810.71 7849.38 51.99 40.43
1 8 19 3091.29 7821.07 7902.71 52.76 40.33
2 8 29 3041.18 7832.19 7956.81 52.23 39.75
3 8 39 3118.29 7865.79 8033.38 51.77 39.95
4 8 49 2702.61 7808.10 8018.66 51.25 39.12
5 8 59 2653.02 7818.05 8071.58 53.04 43.26

An alternative strategy is to select a linear AR(p) model first, using AIC or BIC.
In the second stage hidden units are added to the model. Then, the improvement
in fit is measured again by the AIC and BIC. In practice, we recommend the use
of both order selection criteria. The reason is that the number of parameters in an
AR–NN model is typically much larger than in traditional time series models, the
ordinary AIC does not penalize the addition of extra parameters enough in contrast
to the BIC. Section 6.2.2 contains some alternative versions of AIC which, for large
values of p, penalize extra parameters (much) more severely than AIC.

Subsamples
Since the time-interval between oscillations in the original time series of EEG record-
ings is about 80, we divide the data into two subsamples. The first subsample, used
for modeling, consists of a total of 551 observations. The remaining 80 observations
are used in the second sample for out-of-sample forecasting.

Table 2.1, columns 4 – 6, contains values of σ̂2
ε , AIC, and BIC for subselection

of AR–NN models fitted to the data in the first subsample. Blue-typed numbers
denote minimum values of these statistics. BIC selects an AR–NN(0; 8) model. This
result is in line with the linear AR(8) model preferred by AIC on the basis of the
complete data set of 631 observations. In particular, the resulting estimated model
is given by

Yt =16.96(98.42) + 2.71(0.06)Yt−1 − 3.21(0.11)Yt−2 + 2.52(0.16)Yt−3 − 1.89(0.19)Yt−4

+ 0.84(0.19)Yt−5 + 0.68(0.16)Yt−6 − 1.14(0.11)Yt−7 + 0.46(0.04)Yt−8 + ε̂t,

where asymptotic standard errors of the parameters are in parentheses, and where
the residual variance is given by σ̂2

ε = 3080.48. In contrast, AIC picks the AR–
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Table 2.2: EEG recordings. Biases and weights of the best fitted AR–NN(4; 8, . . . , 8) model.

Output
Hidden layer layer

h1 h2 h3 h4 o

Bias α0 → -0.19 0.00 1.03 -0.01 -78.85
Input layer i1 → -16.57 19.59 -4.32 3.19 2.70

i2 → -1.74 10.80 -3.88 2.43 -3.25
i3 → -10.14 5.88 0.63 2.51 2.63
i4 → -6.17 3.40 2.97 1.69 -2.03
i5 → 2.42 -2.65 4.96 0.61 0.96
i6 → -10.64 -4.51 -0.74 1.22 0.56
i7 → -10.87 -1.57 -7.31 1.62 -1.05
i8 → 7.66 -4.56 -17.27 1.69 0.46

Hidden layer h1 → 25.84
h2 → 50.01
h3 → 49.15
h4 → 29.31

NN(4; 8, . . . , 8) model and gives much results in terms of residual variance than
BIC.

Table 2.2 shows the biases and weights of the single-layer AR–NN(4; 8, . . . , 8)
model. Evidently, the weights correspond to the coefficients in the logistic activation-
level functions Gj(·) (j = 1, . . . , 4). As can be seen from the values of ωjo (j = 1, 2),
the first two neurons h1 and h2 have much more effect on the output than the third
and fourth neurons. The inputs at lags 1, 2, 3, 6, 7 and 8 have the largest effect, in
absolute value, on the first hidden layer h1, whereas all inputs contribute less to the
second hidden layer h2. Clearly, all inputs have an effect on h3, but less on h4. The
signs tell us the nature of the correlation between the inputs to a neuron and the
output from a neuron. The negative values of wij at lags i = 2 (j = 1, 2, 4), i = 4
(j = 1, 2, 3), and i = 7 (j = 1, 2, 3) match the signs of the parameter estimates in the
fitted linear AR(8) model. This is about all that can be said about the weights here.
Indeed, it is unwise to try to interpret the weights any further, unless we reduce the
influence of local minima by using different initial weights.

Forecasting
We consider the forecast performance of the AR–NN(k; p, p) models in a “rolling”
forecasting framework with parameter estimates based on a (551 − p) × p matrix
consisting of the in-sample observations: {Yt}550

t=p, {Yt}550−1
t=p−1, . . . , {Yt}550−(p−1)

t=1 (here,
p = 7 and p = 8); see Section 10.4.1 for details on various forecasting schemes. We
evaluate the fitted model on the basis of H = 1 to H = Hmax = 80-steps ahead
forecasts. So, we use an 80 × p matrix consisting of the out-of-sample observa-
tions: {Yt}630

t=551, {Yt}630−1
t=551−1, . . . , {Yt}630−(p−1)

t=551−(p−1). Finally, the 80 forecast errors are
summarized in two accuracy measures: the sample root mean squared forecast error
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(RMSFE) and the sample mean absolute forecast error (MAFE); see the last two
columns of Table 2.1. Note that the difference between the AR–NN(5; 8, . . . , 8) and
AR–NN(0; 8) models is minimal, in terms of RMSFE and MAFE.

2.12 Summary, Terms and Concepts

Summary
In this chapter we summarized the main features of various classic and popular
nonlinear model classes introduced in the literature and some of the generaliza-
tions/extensions of these models. Much of the material should be familiar to re-
searchers and practitioners already working in the field, but it is worth reviewing.
Specifically, the chapter may be viewed as a useful basis for discussing the statistical
properties of a number of these models in later chapters. One important practical
point about these nonlinear models is that many model classes relate to one another,
either through the Volterra representation or via the SDM. In addition, we have seen
that some simple specializations of these models can produce interesting qualitative
nonlinear behavior. More specializations will be examined throughout the rest of
this book.

Terms and Concepts
activation-level, 56
aperiodic, 66
asymptotically stationary, 59
back-propagation, 58
doubly stochastic, 39
exponential function, 51
feed-forward, 56
hidden unit, 56
hyperplane, 46
impulse response function, 36
innovation process, 31
irreducible, 66
limit cycle, 37
logistic function, 51
multi-layer perceptron (MLP), 56

neurons (nodes), 56
periodic function, 37
random coefficient, 39
recurrent, 61
regimes, 41
self-exciting, 41
shortcut connections, 58
skip-layer, 57
state-dependent model (SDM), 32
super (sub) diagonal, 34
threshold, 41
training, 57
transition probability matrix, 66
Volterra, 30

2.13 Additional Bibliographical Notes

Section 2.1: The beginning of nonlinear time series has been attributed to Volterra (1930);
see, e.g., Brockett (1976). Wiener (1958) suggests a linear combination of nonlinear functions
using high order moments and high order polynomial models. The use of Wiener’s approach
died out in the 1960s largely due to the complexity of the proposed model and associated
problems of parameter estimation.
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Section 2.2: D’Alessandro et al. (1974) provide a set of necessary and sufficient conditions
for a Volterra series to admit a BL realization and showed there is a clear-cut method for
determining the Volterra series for a BL system. Brockett (1977) links Volterra series and
geometric control theory by proving that over a finite time interval, a BL model, which is
itself a special case of Wiener’s model, can approximate any “nice” Volterra series with an
arbitrary degree of accuracy. Priestley (1988) discusses how BL models may be regarded
as the natural nonlinear extension of the ARMA model. A considerable amount of research
deals with various properties of BL models; see, e.g., the monographs by Granger and
Andersen (1978a), and Subba Rao and Gabr (1984).

Section 2.3: Haggan and Ozaki (1980, 1981) propose the ExpAR model when p = 2, d = 1,
and φ0 = 0. Earlier, Ozaki and Oda (1978) investigate the ExpAR(1) model with φ0 = 0
and d = 1. Jones (1978) considers methods for approximating the stationary distribution of
nonlinear AR(1) processes, including ExpAR(1) processes.

Section 2.4: The monograph by Nicholls and Quinn (1982) provides a good source of
the early works on RCAR models. These authors also generalize Andel’s (1976) results to
multivariate RCAR models. Amano (2009) proposes a G-estimator (named after Godambe)
for RCAR models. Aue et al. (2006) deal with QML estimation of an RCAR(1) model.
Pourahmadi (1986) presents sufficient conditions for stationarity and derives explicit results
for double stochastic AR(1) processes with log(β2

1,t) in (2.24) following a stationary Gaussian
process, an AR(1) process, and an MA(q) process.

Section 2.5: Robinson (1977) and Lentz and Mélard (1981) consider estimation of simple
nonlinear MA models using moment methods and ML, respectively. Ashley and Patterson
(2002) use GMM to obtain estimates of the coefficients of a quadratic MA model. Ventosa–
Santaulària and Mendoza–Velázquez (2005) propose a nonlinear MA conditional heteroske-
dastic (NLMACH) model with similar properties as the ARCH-class specifications.

Sections 2.6.1 – 2.6.2: Tong (1977, 1980, 1983, 1990) explores (self-exciting) TAR models
in a number of papers, and two subsequent books; see also Tong (2007). Other influential
publications are: Petruccelli (1992), who shows that threshold ARMA (TARMA) models,
with and without conditional heteroskedastic (ARCH) errors, can approximate SDMs al-
most surely; Tong and Lim (1980), who demonstrate the versatility of SETAR models in
capturing nonlinear phenomena; and K.S. Chan and Tong (1986), who discuss the problem
of estimating the threshold parameter. Nevertheless, as noted by Tong (2011, 2015), these
early publications did not attract many followers. Indeed, the real exponential growth of
the threshold approach, and its extensions took off only in the late 1990s. The impact of
Tong’s SETAR models is enormous across many scientific fields. For instance, Hansen (2011)
provides an extensive list of 75 papers published in the economics and econometrics literat-
ures, which contribute to both the theory and application of the SETAR model. Similarly,
Chen et al. (2011b) review the vast and important developments of the threshold model in
financial applications.

Section 2.6.3: Gonzalo and Wolf (2005) propose a subsampling method for construct-
ing asymptotically valid confidence intervals for the threshold parameter in (dis)continuous
SETAR models. Stenseth et al. (2004) consider an extension of the CSETAR model, which
they call functional coefficient threshold AR model, that specifies some coefficients of the
SETAR model to be functions of some covariates.

Section 2.6.4: Medeiros et al. (2002b) propose SETAR models with unknown multivariate
thresholds. For most practical problems a search over all possible threshold combinations
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is infeasible. Therefore these authors propose a procedure based on a greedy randomized
adaptive search procedure (GRASP) which solves optimization problems which have a high
number, but not infinite, of possible solutions; see, e.g., Feo and Resende (1995).

Section 2.6.5: Wecker (1981) introduces the class of asMA models, and Brännäs and De
Gooijer (1994) extend this class to ARasMA models combining a linear AR with an asMA
part. Further extensions include asMA models with an analogously defined asymmetric
parameterization of the conditional variance (Brännäs and De Gooijer, 2004), and vector
ARasMA models with asymmetric quadratic ARCH errors (Brännäs et al., 2011). Guay and
Scaillet (2003) introduce a TMA model, as an asMA model which allows for contemporan-
eous asymmetry, and which does not restrict the threshold to be equal to zero.

Section 2.6.6: Astatkie et al. (1996) and Astatkie (2006) apply NeSETAR to time series
data of daily streamflow. Hubrich and Teräsvirta (2013) discuss a vector nested SETAR
(VNSETAR or VNTAR) version of (2.40) with only two regimes in each stage, and implicitly
assuming that R(i,j) ≡ R(j,i) (i, j = 1, 2). An application of a special type of vector NeSTAR
(called structural break TVAR) is in Galvão (2006).

Section 2.7: An early reference to the term smooth transition is Bacon and Watts (1971),
which deals with the problem of two-phase regressions. K.S. Chan and Tong (1986) intro-
duce STAR models into the nonlinear time series literature. The STAR family of models are
popularized by, for instance, Granger and Teräsvirta (1992a) and Teräsvirta (1994). Van
Dijk et al. (2002) provide a survey of various extensions and modifications of STAR models.
Lopes and Salazar (2006) discuss Bayesian STAR models. The ASTMA model was intro-
duced in Brännäs et al. (1998). Aznarte et al. (2007) establish the functional equivalence
between STAR models and fuzzy rule-based systems.

Chini (2013) proposes a generalized STAR (GSTAR) model which allows the STAR family
to capture the dynamic asymmetry in the conditional mean of a time series process, by using
a particular generalization of the logistic smooth transition function.

Section 2.8.1: Raftery (1980) and Lawrance and Lewis (1985) derive properties and limit
theorems of the NEAR(p) (p = 1, 2) model. Chan (1988) obtains a necessary and suffi-
cient condition for the existence of an “innovation” process and a stationary ergodic process
satisfying a NEAR(p) model (p ≥ 1). Smith (1986), Karlsen and Tjøstheim (1988), and
Perera (2002, 2004) consider the problem of estimating the NEAR(1) and NEAR(2) models.
Raftery (1982) proposes various modifications of the NEAR(1) model. He also introduces
three nonstationary generalizations of the NEAR(1) model, including one which is appro-
priate when a seasonal effect is present. Moreover, he points out how the NEAR(1) model
can be extended into a multivariate specification. Lawrence and Lewis (1977) develop the
EMA(1) model, and Jacobs and Lewis (1977) introduce the EARMA(1,1) model.

Section 2.8.2: The PAR(1) may be viewed as a special case of the multiplicative error model
for modeling non-negative processes of Engle (2002). Both McKenzie (1982) and Abraham
and Balakrishna (2012) provide an algorithm for the simulation of PAR(1) models in the
case of a gamma marginal distribution. Jose and Thomas (2012) study the properties of a
PAR(1) model with a log-Laplace marginal distribution. Further, they consider multivariate
extensions.

Section 2.9: A good understanding of neural networks can be obtained from, for instance,
the (text)books of Hertz et al. (1992) and Nørgaard et al. (2000). Recurrent neural network
models were introduced by Elman (1990). The motivation to consider a single hidden layer
feed-forward ANNs with Ψ(·) a linear activation-level function stems from the fact that,
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under certain regularity conditions, it can provide arbitrarily accurate approximations to
any measurable function in a variety of normed function spaces, given sufficiently many
hidden units; see, e.g., Hornik et al. (1989). This also unveils the main weakness of the
ANNs since they may end up fitting the noise in the data rather than the underlying DGP.

Sections 2.9.1 – 2.9.3: Lapedes and Farber (1987) propose an AR–NN model for time
series prediction. Recurrent ARMA–NNs are defined by Connor et al. (1994). Aznarte
and Beńıtez (2010) establish the functional equivalence between AR-NN time series models
and fuzzy rule-based systems. Suárez–Fariñas et al. (2004) present the LGNN and L2GNN
models of Section 2.9.3. They consider parameter estimation by concentrated ML, and
introduce a model building strategy. Furthermore, they address the fundamental differences
between their model and the stochastic neural network model of Lai and Wong (2001) and
the NCTAR model of Section 2.9.4.

Section 2.9.4: Medeiros and Veiga (2002a, 2005) propose the NCSTAR model. The model
is related to the functional-coefficient AR model of Section 9.2.5, and to the single-index
coefficient regression model of Section 9.2.6. Medeiros and Veiga (2003) address the issue of
NCSTAR model evaluation by presenting a number of diagnostic (LM-type) test statistics.

Section 2.10: Kim and Nelson (1999) and Frühwirth–Schnatter (2006) provide an ex-
tensive introduction and discussion of MS models. Ephraim and Merhav (2002) present a
detailed overview of many statistical and information-theoretic aspects of hidden Markov
chains, including switching AR processes with Markov regime. Franke (2012) reviews the
latest developments, and discusses various estimation methods, including Gibbs sampling.
Bayesian estimation of MS–ARMA–GARCH models is the subject of a number of papers;
see, e.g., Henneke et al. (2011). Davidson (2004) gives recursive formulae for multi-step
point forecasts of MS models with ARMA(∞, q) dynamics and ARCH(∞) errors. Both
Timmermann (2000) and Zhang and Stine (2001) derive the autocovariance structure of MS
processes. The assumption of fixed transition probabilities have been relaxed by a number
of authors; see, e.g., Bazzi et al. (2014) and the references therein.

2.14 Data and Software References

Exercise 2.10: The Jökulsá Eystri riverflow data set were made available by Tess Astatkie.
The flow series is also listed in Tong (1990, Appendix 3). The complete data set can be
downloaded from the website of this book. Related to this data set, and also available
for downloading, is a set with three years series of daily data (January 1988 – December
1990) on flow, precipitation, and temperature of the Oldman River near Brocket in Alberta,
Canada. In analogy with the results in Exercise 2.10, Astatkie et al. (1996) fit a NeSETAR
to this data set.

Section 2.6: The R-tsDyn package contains a host of functions for testing and modeling
univariate and multivariate threshold- and smooth transition type models. An R function
programmed by K.S. Chan was used to obtain the fitted CSETAR model in (2.34). The
code is available at the website of this book. Marcelo Medeiros contributed MATLAB code
for estimating SETARs with multivariate thresholds using GRASP; see the website of this
book.

Section 2.7: Chapter 18 in the book by Zivot and Wang (2006) covers some popular non-
linear time series models and methods. Examples include SETAR, STAR, Markov-switching
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(MS–)AR, and MS-state space models. S-Plus script files, using the S-Plus FinMetrics mod-
ule, are available at http://faculty.washington.edu/ezivot/MFTS2ndEditionScripts.
htm. R scripts are available at http://faculty.washington.edu/ezivot/MFTSR.htm. The
R-MSwM package deals with univariate MS–AR models for linear and generalized models
using the EM algorithm.

The website https://sites.google.com/site/marcelocmedeiros/Home/codes offers a
set of MATLAB codes to estimate logistic smooth transition regression models with and
without long memory; see McAleer and Medeiros (2008).

Section 2.9: MATLAB offers a toolbox for the analysis of ANNs. The toolbox NNSYSID
contains a number of m-files for training and evaluation of multi-layer perceptron type
neural networks; see http://www.iau.dtu.dk/research/control/nnsysid.html. There
are functions for working ordinary feed-forward networks as well as for identification of
nonlinear dynamic systems and time series analysis. Various ANN packages are available in
R. For instance, nnet, neuralnet, RSNNS, and darch.

Section 2.10: MS Regress is a MATLAB package for estimating Markov regime switching
models written by Marcelo Perlin and available at https://sites.google.com/site/
marceloperlin/. He also wrote a lighter version of the package in R which, however,
is no longer being maintained; search for FMarkovSwitching on R-forge. The MATLAB
code MS Regress tvtp is for estimating Markov-switching (MS) models with time varying
transition probabilities. Its implementation is based on the code written by Perlin.

Data and software (mainly GAUSS code) for estimating MS models is available from James
D. Hamilton’s website at http://econweb.ucsd.edu/~jhamilton/software.htm. The site
also offers links to software code written by third parties. The R-MSBVAR package includes
methods for estimating MS Bayesian VARs.

Appendix

2.A Impulse Response Functions
Impulse response analysis consists in evaluating and examining the time evolution of the
output sequence of a model when a particular input sequence changes in a very short time.
Using the Wold decomposition, the dynamic behavior of a linear strictly stationary time
series process {Yt, t ∈ Z} is commonly described by an impulse response function defined as
the difference between two realizations of Yt+H (H ≥ 1). Both realizations start from the
same history ωt−1, but one realization assumes that between t and t + H the process is hit
by a shock of size δ at time t (i.e. εt = δ), while in the other realization (called benchmark
profile) no shock occurs at time t. Furthermore, all shocks in intermediate time periods
between t and t + H are set equal to zero in both realizations, such that the “traditional”
impulse (TI) response function is defined by

TIY (H, δ, ωt−1) = E[Yt+H |εt = δ, εt+1 = · · · = εt+H = 0, ωt−1]
− E[Yt+H |εt = 0, εt+1 = · · · = εt+H = 0, ωt−1], (H ≥ 1). (A.1)

Nonlinear time series models do not have a Wold representation, however. In these
models, the impact at time t + H of a shock that occurs at time t typically depends on the
history of the process up to the time the shock occurs, on the sign and the size of the shock,

http://econweb.ucsd.edu/~jhamilton/software.htm
http://econweb.ucsd.edu/~jhamilton/software.htm
http://www.iau.dtu.dk/research/control/nnsysid.html
http://faculty.washington.edu/ezivot/MFTSR.htm
http://faculty.washington.edu/ezivot/MFTS2ndEditionScripts.htm
http://faculty.washington.edu/ezivot/MFTS2ndEditionScripts.htm
https://sites.google.com/site/marcelocmedeiros/Home/codes
https://sites.google.com/site/marceloperlin/
https://sites.google.com/site/marceloperlin/
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and on the shocks that occur in intermediate periods t+1, . . . , t+H. This may, for instance,
be deduced from the discrete-time Volterra series expansion (2.3). To avoid these problems,
a natural thing to do is to use the expectation operator conditioned on only the history
and/or shock. Given this choice, the benchmark profile for the impulse response function is
then defined as the conditional expectation given only the history of the process ωt−1. This
approach leads to the GIRF, originally developed by Potter (1995, 2000) in a univariate
framework and by Koop et al. (1996) in the multiple time series case. For a specific current
shock, εt = δ, and history ωt−1, the GIRF is defined as

GIRFY (H, δ, ωt−1) = E[Yt+H |εt = δ, ωt−1]− E[Yt+H |ωt−1], (H ≥ 1). (A.2)

It is easily seen that for linear models (A.2) is equivalent to (A.1).
Clearly, the GIRF in (A.2) depends on δ and ωt−1, which are realizations of the random

variables εt and F t−1 the σ-field generated by {Ys, s ≤ t − 1}. Hence, GIRFY (T, δ, ωt−1)
itself is a realization of the random variable given by

GIRFY (H, εt,F t−1) = E[Yt+H |εt,F t−1]− E[Yt+H |F t−1], (H ≥ 1). (A.3)

In general, the GIRF can be defined as a random variable conditional on particular subsets
of shocks (e.g. only negative shocks) and histories (e.g. Yt−1 ≤ 0).16

Note, the above impulse response analysis concerns a single, transitory, shock δ at time
t. An alternative scenario is to measure the effect of a sequence of deterministic shocks
{δ1, δ2, . . . , δt, . . .} on {ε1, ε2, . . . , εt, . . .}. Recall that a strictly stationary nonlinear time
series process {Yt, t ∈ Z} may be plausibly described by a discrete-time Volterra expansion,
which can be expressed as

Yt = G(εt, εt−1, . . . , ε1, ε0),

where {εt} i.i.d.∼ N (0, 1), ε0 = (ε0, ε−1, . . .), and G(·) is a suitably smooth real-valued func-
tion. Again, the goal is to summarize the effect of the shocks on the time evolution of Yt by
a single measure. Since, however, future innovations are unknown, both the benchmark pro-
file and the profile after the arrival of a shock are random variables. Let {εs

1, ε
s
2, . . . , ε

s
t , . . .}

denote a future path for the innovations, where εs
1, ε

s
2, . . . , ε

s
t , . . . are i.i.d. N (0, 1) conditional

on ε0. The random benchmark profile, or benchmark path, is equal to

Y s
t (ε0) = G(εs

t , ε
s
t−1, . . . , ε

s
1, . . . , ε0),

whereas the time path after the shock arrival is given by

Y s
t (δ, ε0) = G(εs

t + δt, ε
s
t−1 + δt−1, . . . , ε

s
1 + δ1, . . . , ε0),

where δ = (δ1, δ2, . . . , δt, . . .). Then the difference of expectations, conditional on ε0 = 0, of
the two time paths of the responses is given by

E[Y s
t (δ, ε0)|ε0 = 0]− E[Y s

t (ε0)|ε0 = 0]. (A.4)

16Unlike the linear case there are no general analytic expressions for the conditional expectations
in the GIRF for nonlinear models. However, assuming the nonlinear model is completely known,
MC simulation or BS can be used to obtain estimates of the impulse response measures; see, e.g.,
Exercise 2.11. Appendix 11.B describes the procedure to estimate the GIRF from multivariate
nonlinear time series models along the lines of Koop et al. (1996).
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Observe that this approach ignores the dependence between the benchmark and perturbed
paths, accounted by the joint distribution of (Y s

t (ε0), Y s
t (δ, ε0), t ≥ 1). Moreover, since the

distribution of {εt} is symmetric, positive and negative shocks will have the same infin-
itesimal occurrence. We refer to Gouriéroux and Jasiak (2005) for an alternative impulse
response analysis, using the concept of nonlinear innovations, which eliminates these prob-
lems and provides straightforward interpretation of transitory or symmetric shocks.

Example A.1: Impulse Response Analysis

As a simple example, consider the BL model Yt = (φ + ψεt)Yt−1 + εt where {εt} i.i.d.∼
N (0, 1). The effect of a shock δ that occurs at time t = 1 is given by the perturbed
path Yt(δ) = (φ+ψεt)Yt−1(δ)+εt (t ≥ 2). The difference (D) between the benchmark
path and the perturbed path is equal to

Y D
t (δ) = Yt(δ)− Yt = (φ + ψεt)Y D

t−1(δ)

=
t∏

τ=2

(φ + ψετ )(1 + ψY0)(δε1).

So that, for all t ≥ 2, the effect of a shock as measured by the conditional expectation
of the process {Y D

t (δ), t ∈ Z} is given by

E[Y D
t (δ)|Y0] = φt−1(1 + ψY0)(δε1).

Clearly, this effect converges toward zero if |φ| < 1, which is a more stringent condition
than the necessary and sufficient condition for stationarity of this model, i.e. E[log(φ+
ψεt)] < 0; see Chapter 3.

2.B Acronyms in Threshold Modeling
The TAR model has become a standard in nonlinear time series analysis. Many elaborate ex-
tensions/generalization of this model have been introduced since Tong (1977). Broadly these
offsprings can be classified in two groups: TAR-related models with nonlinearities in the con-
ditional mean, and models which extend the threshold idea to include both conditional mean
and conditional heteroskedastic effects in a time series.17 Against this background there is a
growing use of acronyms and catchy abbreviations. Below, we provide a short list of abbre-
viations, including some key-references, without pretending to be complete. In case a model
is introduced for the first time in the book, we include a reference to the appropriate section.
For compactness, we exclude STAR-type models and Markov regime switching models from
the list.

Conditional mean models

(AR)asMA (Autoregressive) Asymmetric MA model. When the switching
dynamics in a threshold MA model depends on lagged values of
the noise process; Brännäs and De Gooijer (1994) and Section
2.6.5.

17Tong (1990) refers to a second-generation model when nonlinear features in both the conditional
mean and the conditional variance are combined, as opposed to a first-generation model which
concentrates on the conditional mean.
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BAND–TAR A TAR model with the characteristic feature that the time series
process returns to an equilibrium band rather than an equilib-
rium point; Balke and Fomby (1997).

C–(M)STAR Contemporaneous (multivariate) STAR model. When the mix-
ing weights are determined by the probability that contem-
poraneous latent variables exceed certain threshold variables;
Dueker et al. (2011).

CSETAR Continuous SETAR; Section 2.6.3.
EDTAR Endogenous delay TAR model. The model differs from the

standard TAR implementation by using previously unexploited
information about the length of time spent in regimes. This
allows the construction of “sub-regimes” with “major” regimes.
Parsimony is maintained by tightly restricting parameters across
the sub-regimes; Pesaran and Potter (1997), Koop and Potter
(2003), and Koop et al. (1996).

EQ–TAR Equilibrium TAR. When the process tends towards an equilib-
rium value when it moves outside the threshold bounds; Balke
and Fomby (1997).

GTM Generalized threshold mixed model. A generalization of the
TARX model to take account of non-Gaussian errors; Samia et
al. (2007).

LTVEC Level TVEC model. When the equilibrium error process is
different in each regime; De Gooijer and Vidiella-i-Anguera
(2003b).

M–TAR Momentum TAR, with the thresholding based on the differences
of the time series; Enders and Granger (1998).

MSETAR Multivariate SETAR model. The model allows the threshold
space to be equal to the dimension of the multivariate process us-
ing lagged values of the vector input series; Arnold and Günther
(2001).

MUTARE Multiple SETAR model. The threshold variable is applied to
all the historical observations with a hierarchical substructure
imposed upon the submodels; Hung (2012).

NeTARMA Nested SETARMA model. The model defines primary level sep-
arated regimes using a threshold function which depends on one
source and within each regime of the first stage, two more re-
gimes are nested that are defined by a threshold function which
depends on another source; Section 2.6.6.

PLTAR Piecewise linear threshold AR model. When the coefficients of
the SETAR model are linear functions of the state vector Yt−d

for some delay d; Baragona et al. (2004a).
Q–SETAR Quantile SETAR model. When the existence of different re-

gimes depends on the quantile of the series to be modeled. By
estimating a sequence of conditional quantiles, the model de-
scribes the dynamics of the conditional distribution of a time
series, not just the conditional mean; Cai and Stander (2008).
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RD–TAR Returning drift TAR model. Where a unit root is present in
every regime, but the drift parameters move the process back to
the equilibrium band when the process is outside the threshold;
Balke and Fomby (1997).

RETAR REduced-rank TAR model whose principal component process
is a piecewise linear vector-valued function of past lags of the
panel of time series variables; Li and Chan (2007).

SBTVAR Structural break threshold VAR model. A special case of a two-
regime VNTAR model; Galvão (2006).

SEASETAR Seasonal SETAR model (both multiplicative and additive); De
Gooijer and Vidiella-i-Anguera (2003a).

SEMTAR SETAR model with multivariate thresholds: Section 2.6.4.
SEMI–TAR Semiparametric TAR; Gao (2007) and Gao et al. (2013).
SETARMA Self-exciting threshold ARMA. When parameter values depend

on lagged values of series being explained; Section 2.6.2.
SSETARMA Subset SETARMA model; Baragona et al. (2004b).
(SS)TARSO (Subset) open-loop threshold AR (TAR) system with observable

(O) input; Section 2.6.6 and Knotters and De Gooijer (1999).
TARMA(X) Threshold ARMA (eXogenous) model. ARMA model with a

step function having time-varying parameters; Section 2.6.1.
TARSV Threshold AR stochastic volatility. When the leverage effect

in a financial time series is described by an open-loop TAR(1)
process; Breidt (1996), and Diop and Guégan (2004).

TVEC Threshold vector error correction. When the cointegrating rela-
tionship is inactive inside a given range and then becomes active
once the process gets too far from the equilibrium relationship;
Balke and Fomby (1997) and Section 11.2.4.

VASTAR(X) Vector adaptive spline threshold AR (eXogenous) model; Sec-
tion 12.2.1.

VNTAR Vector nested TAR model; Hubrich and Teräsvirta (2013).
VSETAR Vector SETAR model with a single component series or exo-

genous variable to determine the different regimes (also called
multivariate SETAR (MSETAR) model); Section 11.2.2.

VTARMA Vector threshold ARMA; Section 11.2.2.

Conditional mean and variance models

ANST–GARCH Asymmetric smooth transition–GARCH model; Anderson et al.
(1999).

asMA–asQGARCH Asymmetric MA – asymmetric quadratic GARCH model;
Brännäs and De Gooijer (2004).

DT(G)ARCH Double threshold (generalized) AR(MA) conditionally hetero-
skedastic (also abbreviated as SETAR-(G)ARCH). When the
conditional mean is specified as a linear AR(MA) process and
the driving random component in the (G)ARCH part is not ob-
servable, but rather linked to the innovations of the TAR(MA)
model; Li and Li (1996) and Section 6.1.3.

(G)SSAR(I)–ARCH (Generalized) simultaneous switching (integrated) AR models
with ARCH errors. When the switching dynamics depends on
lag-one values of the time series; Kunitomo and Sato (2002).
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H(G)AR(CH) Hysteretic (or buffered) GARCH model (also called buffered
AR (BAR)). When the switching back and forth between two
regimes depends on two different thresholds; Zhu et al. (2014).

SETAR–(G)ARCH SETAR with (generalized) ARCH structure for conditional het-
eroskedasticity; Section 3.3.

SETAR–THSV SETAR with threshold stochastic volatility; So et al. (2002).
TCAV(X) Threshold conditional autoregressive Value-at-Risk (CAViaR)

with two regimes, and if appropriate an exogenous (X) threshold
variable; Gerlach et al. (2011).

T–CAViaR–IG A two-regime TCAV with an indirect GARCH(1, 1) model; Ger-
lach et al. (2011).

TDAR Threshold double AR model. When both the conditional mean
and the conditional variance specifications are piecewise linear
AR processes but with the conditional variance specified as a
function of the observations, rather than the innovations; Li et
al. (2016).

T(G)ARCH Threshold (G)ARCH; Rabemananjara and Zaköıan (1993),
Zaköıan (1994), and Exercise 2.8.

TIG Threshold indirect GARCH(1, 1) model; Yu et al. (2010).
TRIG Threshold range indirect GARCH(1, 1) model: A two-regime

TCAV model which replaces return data with range data; Chen
et al. (2012a).

TRV Threshold range value. A two-regime TCAV model which allows
for different responses to high and low ranges in return data;
Chen et al. (2012a).

Exercises

Theory Questions

2.1 Show that any BL(p, q, P,Q) model may be “converted” into a superdiagonal BL
model by replacing εt with ωt = εt+L for some L ∈ N. Take as examples models
(2.17) and (2.18).

2.2 Consider the ExpARMA(p, q) model in (2.20) with d = 1. Let {εt} i.i.d.∼ (0, σ2
ε) with

a density function which is strictly positive on Rp+q. Assuming that the DGP is
completely known, express {Yt, t ∈ Z} as a convergent series via repeated substitu-
tion. Discuss briefly how this representation can be used to prove that the process is
invertible if max1≤j≤q(|θj |+ |τj |) < 1.

2.3 A Markov process {Yt} is said to be ergodic if starting at any point Y1 = y, the distri-
bution of YT converges to a stationary distribution π(x) = limT→∞ P(YT < x|Y1 = y),
independent of y. It is called geometrically ergodic if this convergence occurs at an ex-
ponential rate. Geometric ergodicity is a concept of stability of the process; it excludes
explosive or trending behavior; see Chapter 3. For the SETAR(2; 1, 1) process

Yt =
{

φ1Yt−1 + εt if Yt−1 ≤ 0,
φ2Yt−1 + εt if Yt−1 > 0,
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necessary and sufficient conditions for geometric ergodicity are φ1 < 1, φ2 < 1 and
φ1φ2 < 1. These conditions imply the following three possible cases:
(i) |φ1| < 1 and |φ2| < 1;
(ii) φ2 ≤ −1 and −1 ≤ 1

φ2
< φ1 < 1;

(iii) φ1 ≤ −1 and −1 ≤ 1
φ1

< φ2 < 1.

Note that in each case, at least one of the two regimes is stationary (|φi| < 1).

(a) Suppose that, in cases (ii) or (iii), the system starts in a nonstationary regime
(i.e., φi < −1). Explain (intuitively) why the system will always move to the
other (stationary) regime in a few steps, i.e., the probability that it will stay in
the nonstationary regime for the next T periods goes to zero as T →∞. Assume
{εt} i.i.d.∼ N (0, σ2

ε).
(b) Explain why the system will not be stable if φ1 = −1.25 and φ2 = −0.8 (even

though the second regime is stationary).
(c) Consider a SETAR(k; 1, 1) process. It has been proved that the conditions for

geometric ergodicity are φ1 ≤ 1, φk < 1 and φ1φk < 1. Explain, using the
appropriate versions of (i) – (iii), why the values of the AR parameters in the
intermediate regimes (φ2, . . . , φk−1) are irrelevant for the stability of the process.

2.4 Consider the SETAR(2; 1, 1) model

Yt =
{

φYt−1 + εt if Yt−1 ≤ 0,
−φYt−1 + εt if Yt−1 > 0,

where 0 < φ < 1, and {εt} i.i.d.∼ N (0, 1). The stationary marginal pdf of {Yt, t ∈ Z} is
given by

f(y) = 2
( (1− φ2)

2π

)1/2

exp
{
− 1

2
(1− φ2)y2

}
Φ(−φy),

with Φ(·) the standard normal distribution function.

(a) Prove that f(y) is a solution of the equation

f(y) =
1√
2π

∫ 0

−∞
exp

{
− 1

2
(y − φx)2

}
f(x)dx

+
1√
2π

∫ ∞

0

exp
{
− 1

2
(y + φx)2

}
f(x)dx.

(b) Prove that the mean and variance of {Yt, t ∈ Z} are respectively given by

E(Yt) = −(2/π)1/2φ(1− φ2)−1/2, Var(Yt) = (1− φ2)−1
(
1− 2φ2

π

)
.

[Hint:

∫ ∞

−∞
uΦ(au + b)ϕ(u)du =

a√
1 + a2

ϕ
( b√

1 + a2

)
,∫ ∞

−∞
u2Φ(au + b)ϕ(u)du = Φ

( b√
1 + a2

)
− a2b√

1 + a2
ϕ
( b√

1 + a2

)
with the standard normal pdf ϕ(u) = (2π)−1/2 exp(−u2/2).]
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2.5 Consider the asMA(1) model

Yt =
{

εt + θ+εt−1 if εt−1 ≥ 0,
εt + θ−εt−1 if εt−1 < 0,

where {εt} i.i.d.∼ N (0, 1).

(a) Prove that the mean and variance are respectively given by

μY = E(Yt) =
θ+ − θ−
√

2π
, Var(Yt) = 1 +

(
(θ+)2 + (θ−)2

)1
2
− μ2

Y .

(b) Assuming stationarity, it is easy to see that the conditional pdf of {Yt, t ∈ Z},
given εt−1 = u ≥ 0, is normally distributed with mean μ+ = E(Yt|u) = θ+u
and variance unity. Similarly, the conditional pdf of {Yt}, given εt−1 = u < 0,
is normally distributed with mean μ− = −θ−u and variance unity. Given these
results, prove that the marginal pdf of {Yt, t ∈ Z} is given by

f(y) =
1

{1 + (θ+)2}1/2
√

2π
exp

{ −y2

2{1 + (θ+)2}

}
Φ

( θ+y

{1 + (θ+)2}

)
+

1
{1 + (θ−)2}1/2

√
2π

exp
{ −y2

2{1 + (θ−)2}

}
Φ

( −θ−y

{1 + (θ−)2}

)
.

(c) Consider the case θ+ = −θ− ≡ θ. Using part (b), prove that the marginal pdf
of {Yt, t ∈ Z} is identical to the marginal pdf of the SETAR(2; 1, 1) model in
Exercise 2.3 with φ = θ/(1 + θ2)1/2.

2.6 (a) Verify the statement in Section 2.8.1 that the NEAR(1) process is not time-
reversible using the third order cumulants of the process; see for cumulants
(4.2).

(b) Consider the PAR(1) process (2.50) with an exponential marginal distribution
of unit mean. Similar as in part (a), show that the process {Yt, t ∈ Z} is not
time-reversible.

2.7 Let St ∈ {1, 2} follow a two-state Markov chain with switching probabilities 0 < w1 <
1 and 0 < w2 < 1.

(a) Show that the stationary probabilities are π1 = w2/(w1+w2) and π2 = w1/(w1+
w2), so that μ = E(St) = 1 + π2 = (2w1 + w2)/(w1 + w2).

(b) Show that the process {St − 1} is an i.i.d. Bernoulli sequence if w1 + w2 = 1.

(c) Show that E(St|St−1, St−2, . . .) = μ(1 − φ) + φSt−1, with φ = 1 − w1 − w2, so
that {St} follows an AR(1) process.

2.8 Let {Pt} denote the price of an asset at time t (not paying dividend), then the con-
tinuously compound return, or log-return (often called return), is defined as

rt = log(1 + Rt) = log
Pt

Pt−1
= pt − pt−1,
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where Rt = (Pt−Pt−1)/Pt−1 is the one-period simple return, and pt = log Pt. The k-
period return is the sum of the one-period log-returns: rt[k] = pt− pt−k =

∑k−1
j=0 rt−j

(k = 1, 2, . . .). Now, assume that {rt, t ∈ Z} follows the TGARCH(1, 1) model rt =
Yt = σtεt, with σ2

t = α0 +
(
α1 + γ1I(Yt−1 < 0)

)
Y 2

t−1 + β1σ
2
t−1 and {εt} i.i.d.∼ (0, 1),

independent of σt, with E(ε3
t ) = 0. The parameters satisfy α0 > 0, α1 ≥ 0, β1 ≥ 0

and γ1 > 0. Assume that the parameters also satisfy conditions such as σ2
Y = Var(Yt)

and E(|Yt|3) < ∞.

(a) Show that the (one-period) returns rt[1] = rt = Yt have skewness zero, i.e.

τY =
E(Y 3

t )
σ3

Y

= 0.

(b) Obtain an expression for the skewness of the two-period returns rt[2] = Yt+Yt−1,
and show that it is negative if γ1 > 0.

Empirical and Simulation Questions

2.9 The file eeg.dat contains the EEG recordings used to estimate the AR–NN models in
Section 2.11. Use the data to replicate the results reported in Tables 2.1 and 2.2.
[Note: The results need not be exactly as shown in both tables since they depend heav-
ily on the initial weights chosen by random in the R-function nnet, unless set.seed(1).]

2.10 Consider the quarterly U.S. unemployment rate in Example 1.1, which we denote by
{Ut}252t=1. If we were to work directly with this series, the assumption of a symmetric
error process would be inappropriate. Various instantaneous data transformations
have been employed in the analysis of {Ut}. These include the logistic transformation,
first differences, the logarithmic transformation, and log-linear detrended. Because
{Ut} takes values between 0 and 1, we adopt the logistic transformation, i.e., {Yt =
log

(
Ut/(1− Ut)

)
}252t=1. The transformed series (see Figure 6.2(a)) is now unbounded,

and it is reasonable to assume that the error process {εt, t ∈ Z} of the nonlinear
DGPs considered below is conditionally Gaussian distributed. The data are in the file
USunemplmnt logistic.dat.

(a) Estimate a SETAR(2; 2, 2) model with delay d = 2.
[Hint : Use the R-tsDyn-package.]

(b) Estimate a CSETAR(2; 2, 2) model with delay d = 2 and compare the results
with the SETAR results obtained in part (a).

(c) The 250 × 3 matrix USunemplmnt matrix.dat contains the transformed (logistic
transform) U.S. unemployment data in the first column. The first- and second
lags of the data are in columns 2 and 3. Estimate a two-state MS–AR model,
and compare the estimation results with the SETAR results obtained in part
(a).
[Hint : Use the R-MSwM-package.]

2.11 Astatkie et al. (1997) develop a NeSETAR model for an Icelandic streamflow system
for the years 1972 – 1974, i.e. the Jökulsá Eystri in north-west Iceland. The dynamic
system consists of daily data on flow (Qt), precipitation (Pt), and temperature (Tt).
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After some experimentation, it was found that the best-fitting NeSETAR model for
Qt is

Qt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4.82(0.68) + 0.82(0.03)Qt−1 if Qt−2 ≤ 92m3/s and Tt ≤ −2
◦
C,

1.320.06)Qt−1 − 0.32(0.06)Qt−2

+0.20(0.03)Pt−1 + 0.52(0.10)Tt if Qt−2 ≤ 92m3/s and − 2
◦
C < Tt ≤ 1.8

◦
C,

1.15(0.04)Qt−1 − 0.180.04)Qt−2 + 0.01(0.00)P
2
t−1

+1.22(0.13)Tt − 0.89(0.17)Tt−3 if Qt−2 ≤ 92m3/s and Tt > 1.8
◦
C,

49(13.6) + 0.45(0.12)Qt−1

+3.47(1.55)Tt + 3.75(1.71)Tt−1 − 6.08(1.43)Tt−3 if Qt−2 > 92m3/s,
(2.72)

where Tt = (Tt−1 + Tt−2 + Tt−3)/3, and with asymptotic standard errors of the
parameter estimates in parentheses. The model includes 16 parameters and produces
a pooled residual variance of 27.4[m3/s]2. As a comparison, Tong et al. (1985) and
Tong (1990, Section 7.4.4) use a TARSO model with 42 parameters to the describe
the streamflow data, resulting in a residual variance of 31.8[m3/s]2.

The file jokulsa.dat contains the series stored in a 1,086 × 32 matrix with variables
(Qt, Qt−1, . . . , Qt−10, Pt, Pt−1, . . . , Pt−10, Tt, Tt−1, . . . , Tt−9).

(a) Using the notation introduced in Section 2.6.6, specify the structure of the Ne-
SETAR model (2.72). Interpret the fitted relationship.

(b) Using the supersmoother (function R-supsmu) proposed by Friedman (1984),
regression estimates of Qt on Qt−1 and Qt−2 reveals that there are two linear
pieces in the data, with a threshold estimate r̂1 = 92 m3/s.

Using the same method as above, verify the estimated second-stage threshold
r̂2,1 = −2

◦
C.

(c) Form subset data sets for each regime, and estimate the final model by least
squares. Plot the sample ACF and sample PACF of the normalized residuals
and comment.

2.12 Consider the simple SETAR(2; 1, 1) model

Yt = φ1Yt−1 + φ2I(Yt−1 ≤ 0) + εt, {εt} i.i.d.∼ N (0, 1).

(a) Derive an explicit expression for the one-period TI response function (A.1).
Comment on the resulting time path.

(b) Use bootstrapping to compute the GIRF in (A.3) for horizons H = 1, . . . , 10,
and δ = {1, −1}. Set φ1 = 0.9, φ2 = −0.5, and B = 1,000 replicates. Assume
the model is completely known.
Comment on the resulting time path. Also compare the GIRF with the analytic
expression for the TI response function of the AR(1) process Yt = φYt−1 + εt

with parameter φ = (0.9− 0.5) = 0.4.
[Hint: The total number of draws for an initial history is (B − 1)(H + 1). The
relevant computer code should include a loop through the data to change the
initial condition, and a loop through each horizon of impulses: one with the ini-
tial condition based on a bootstrap draw, and one based on εt +δ. Next, average
over each horizon, for each initial condition. Finally, average over histories.]



Chapter 3
PROBABILISTIC PROPERTIES

From the previous two chapters we have seen that the richness of nonlinear models is
fascinating: they can handle various nonlinear phenomena met in practice. However,
before selecting a particular nonlinear model we need tools to fully understand the
probabilistic and statistical characteristics of the underlying DGP. For instance,
precise information on the stationarity (ergodicity) conditions of a nonlinear DGP
is important to circumscribe a model’s parameter space or, at the very least, to
verify whether a given set of parameters lies within a permissible parameter space.
Conditions for invertibility are of equal interest. Indeed, we would like to check
whether present events of a time series are associated with the past in a sensible
manner using an NLMA specification. Moreover, verifying (geometric) ergodicity is
required for statistical inference.

In this chapter, we address the above topics. To find a balance between the
many works on stationarity and ergodicity of nonlinear DGPs and yet to achieve
results of general practical interest, we first discuss in Section 3.1 the existence of
strict stationarity of processes embedded within the class of stochastic recurrence
equations (SREs). Associated with the SRE, we define the notion of a Lyapunov
exponent which measures the “geometric drift” of a process. This notion plays a
central role throughout the rest of this chapter. In Section 3.2, we briefly mention
a criterion for checking second-order stationarity. Next, in Section 3.3, we focus
on the stationarity (ergodicity) of the class of nonlinear AR-(G)ARCH models as a
special case, and application of the class of SREs. In Section 3.4, we collect some
Markov chain terminologies and relevant results ensuring not only ergodicity, but
also geometric ergodicity of a DGP. In Section 3.5, we discuss ergodicity, global and
local invertibility of NLMA models with special emphasis on the SETMA model.
This section also contains an empirical method to assess the notion of invertibility
in practice.

Two appendices are added to the chapter. Appendix 3.A reviews some basic
properties of vector and matrix norms, while Appendix 3.B discusses the spectral
radius of a matrix.
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3.1 Strict Stationarity

Suppose {Yt, t ∈ Z} is a stochastic process. Then, in a multivariate setting, a
stochastic recurrence equation (SRE) is defined as

Yt = AtYt−1 + Bt, t ∈ Z, (3.1)

where Yt = (Yt, . . . , Yt−m+1)′ and Bt are random vectors in Rm, At are random
m × m matrices, and {(At,Bt), t ∈ Z} is an i.i.d. sequence. Clearly, (3.1) is the
defining equation of a vector AR(1) process with random coefficient matrix At.
Hence, it is also called a generalized (multivariate) random coefficient AR process
or RCA for short. The process (3.1) is Markovian with transition probability P(y, ·)
(y ∈ Rm) equal to the distribution of Aty + Bt. The SRE embeds many of the
nonlinear DGPs introduced in Chapter 2.

Now a sequence {Yt, t ∈ Z} of random vectors in Rm is said to be strictly (or
strongly) stationary if the joint distributions of (Yt1 , . . . , Ytn)′ and (Yt1+h, . . . , Ytn+h)′

are the same for all n, h ∈ N, t1, . . . , tn ∈ Z. Of course, it is not a priori clear for
which distributions of {(At,Bt)} a strictly stationary solution to (3.1) exists. Below
we give a sufficient condition in terms of the so-called top (or upper, or max-plus)
Lyapunov exponent. However, first we introduce some additional notation: Let ‖ · ‖
be any vector norm in Rm; see also Appendix 3.A. For a matrix A ∈ Rm×m, the
corresponding matrix norm ‖A‖s (s ∈ [1,∞)) is defined as

‖A‖s = sup
y∈Rm,y �=0

‖Ay‖s

‖y‖s
. (3.2)

Then, for an i.i.d. sequence of m×m matrices {An, n ∈ Z} with E(log+‖A1‖) < ∞,
we define the associated top Lyapunov exponent γ(·) by

γ(A) = inf
n∈N

1
n
E(log‖A1A2 · · ·An‖) a.s.= lim

n→∞
1
n

log‖A1A2 · · ·An‖, (3.3)

where the last equality (Furstenberg and Kesten, 1960) shows that γ(·) is independ-
ent of the chosen norm.

By recursive substitution of the lagged values of Yt, (3.1) can be rewritten as

Yt =
( s∏

i=0

At−i

)
Yt−s−1 +

s∑
i=0

( i−1∏
j=0

At−j

)
Bt−i, ∀s ∈ N, (3.4)

with the usual convention
∏−1

j=0 At−j = Im. If lims→∞
( ∏s

i=0 At−i

)
Yt−s−1

a.s.= 0m

holds, then it is reasonable to hope that (3.4) has a solution process {Yt, t ∈ Z} that
is stationary. Indeed, suppose that γ(A) < 0. Then, under some mild conditions,
the series

Yt = Bt +
∞∑

s=1

AtAt−1 · · ·At−s+1Bt−s, (3.5)



3.1 STRICT STATIONARITY 89

I

II

Figure 3.1: Strict stationarity parameter region (I ∪ II) based on estimates of the top
Lyapunov exponent, and second-order stationarity parameter region (II) for model (3.6)
with {εt} i.i.d.∼ N (0, 1).

converges a.s., and the process {Yt, t ∈ Z} is a non-anticipative stationary solution
to (3.4); Brandt (1986). Here, non-anticipative (or causal) means that {Yt, t ∈ Z}
is independent of {(At+h,Bt+h), h ∈ N} for each t. Further, the condition γ(A) < 0
is sufficient when {(At,Bt)} is strictly stationary and ergodic (Bougerol and Picard,
1992).

Note that γ(A) < 0 holds if E(log‖A1‖) < 0
(
take n = 1 in the definition of

γ(·)
)
. Now assume m = 1. Then, {Yt, t ∈ Z} as in (3.5) is the unique strictly

stationary solution of (3.1) provided −∞ ≤ E(log |A1|) < 0 and E(log+ |B1|) < ∞.
These two conditions are easy to check, and γ(A) = E(log |A1|) can be obtained
explicitly.

Example 3.1: Evaluating the Top Lyapunov Exponent

Consider the stochastic process

Yt = εt + β1Yt−1εt−1 + β2Yt−2ε
2
t−2, {εt} i.i.d.∼ (0, σ2

ε). (3.6)

Then (3.6) can be written in the form of the SRE (3.1) with

Yt =
(

Yt

Yt−1

)
, At =

(
β1εt−1 β2ε

2
t−2

1 0

)
, Bt =

(
εt

0

)
.

When β2 = 0 (i.e., m = 1), the strict stationarity condition based on the top
Lyapunov exponent takes the simple form γ(A) = E(log |β1εt|) = log |β1| +
E(log |εt|) < 0. If {εt} i.i.d.∼ N (0, σ2

ε), the condition reduces to σε|β1| <√
2 exp(C/2) = 1.8874 · · · , where C is Euler’s constant.

When m > 1, closed form expressions for γ(A) are hard to obtain, and one
has to resort to MC simulations. Figure 3.1 shows parameter regions for
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strict stationarity (I ∪ II), based on estimates of γ(A) (using sequences of
length 10,000), and for second-order stationarity (II), based on the constraint
β2

1E(ε2
t ) + β2

2E(ε4
t ) < 1, for model (3.6) with {εt} i.i.d.∼ N (0, 1). Note, the

parameter region II is much smaller than the region for strict stationarity. In
the case of strict-stationarity the curve for γ(A) = 0 passes through the points
(β1, β2) = (0, ±3.7748) and (β1, β2) = (±1.8874, 0).

3.2 Second-order Stationarity

A sequence {Yt, t ∈ Z} of random vectors in Rm is called second-order stationary,
or weakly stationary, if E‖Yt‖2 < ∞ for all t ∈ Z, E(Yt) ∈ Rm is independent of
t ∈ Z, and the covariance matrices satisfy

Cov(Yt1+h,Yt2+h) = Cov(Yt1 ,Yt2), ∀t1, t2, h ∈ Z.

Clearly, every strictly stationary process which satisfies E‖Yt‖ < ∞ is also second-
order stationary. In the sequel, we focus on the m-vector time series {Yt, t ∈ Z}
generated by (3.1).

Given the strict stationary solution in (3.5), the vector process {Yt, t ∈ Z} is a
Cauchy sequence in L2 if and only if ‖(

∏s−1
j=0 At−j)Bt−s‖2 exists and converges to 0

at an exponential rate as s →∞. Using the i.i.d. property of {(At,Bt), t ∈ Z} and
Kronecker product notation, we have

E‖At · · ·At−s+1Bt−s‖2 = E
(
B′

t−sA
′
t−s+1 · · ·A′

tAt · · ·At−s+1Bt−s

)
= E{B′

t−s ⊗B′
t−s}{E(A′

t ⊗A′)}svec Im.

Now, the spectral radius ρ(M) of a square matrix M (see Appendix 3.B) is defined
as

ρ(M) = sup{|λ| : λ is eigenvalue of M}.

Then, provided E‖Bt‖2 < ∞, it can be deduced (see, e.g., Nicholls and Quinn, 1982;
Tjøstheim, 1990) that

ρ
(
E(At ⊗At)

)
< 1 (3.7)

is a necessary and sufficient condition for the moments of order two to exist. This
condition has a similar implication as that the characteristic polynomial associated
with a linear AR process has no roots on and within the unit circle. If, in addition
At has finite moments of order 2m (m > 1), then a necessary and sufficient condition
ensuring finiteness of higher-order moments is ρ[E{(At)⊗2m}] < 1, where M⊗m =
M⊗ · · · ⊗M (m factors); see, e.g., Pham (1986, Lemma 2). Finally, if {A = At} is
a deterministic process, then from (3.9) it follows that γ(A) = log ρ(A).
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3.3 Application: Nonlinear AR–GARCH model

Stability and stationarity of the class of conditionally heteroskedastic nonlinear AR
models have been the focus of many papers; see, e.g., Meitz and Saikkonen (2010)
and the references therein. These works often establish geometric ergodicity us-
ing conditions which overly restrict the parameter space. Unfortunately, the SRE
framework does not allow for nonlinear AR models with (G)ARCH-type conditional
heteroskedasticity. In fact, the random coefficients embedding of these models in
(3.1) leads to “coefficients” that are no longer independent nor can one assume a
priori that the process {(At,Bt), t ∈ Z} is stationary. This requires a more subtle
approach than evaluating the asymptotic behavior of random matrices as in (3.3);
see Cline and Pu (1999a,b, 2004).

The m-dimensional Markov (state space) representation of a nonlinear AR–
GARCH time series model is of the form

Yt = B
( Yt−1

‖Yt−1‖
, εt

)
‖Yt−1‖+ C(Yt−1, εt), (3.8)

where 0 < ‖B(y/‖y‖, u)‖ ≤ b(1 + |u|) and ‖C(y, u)‖ ≤ c(y)(1 + |u|) for finite b and
c(x) = o(‖y‖), and where {εt} are i.i.d. random variables with a density symmetric
about 0 and positive on the real line. We also presume that E(|εt|r) < ∞ for
some r > 0. Note, (3.8) includes the SRE in (3.1). Cline (2007c) provides explicit
expressions for B(y/‖y‖, u)‖y‖ in the case of a SETAR model with GARCH errors
depending on past squared values of {Yt}, a nonlinear AR–GARCH model, and a
nonlinear AR model with (possibly nonlinear) GARCH errors.

For stability of (3.8) we need a tool which measures the geometric “drift” of the
process when ‖Yt−1‖ is large (and C(Yt−1, εt) is negligible). To this end, we define
the top Lyapunov exponent of the process {Yt, t ∈ Z} as

γ = lim inf
n→∞ lim sup

‖y‖→∞

1
n
E

(
log

(1 + ‖Yn‖
1 + ‖Y0‖

)∣∣∣Y0 = y
)
. (3.9)

Under some regularity conditions γ < 0 implies geometric ergodicity while the con-
verse γ > 0 ensures that {Yt, t ∈ Z} is transient (explosive); Cline and Pu (1999a,
2001).

Evaluating the double limit in (3.9) by MC simulation is difficult. However, by
establishing ergodicity for a process associated with {Yt, t ∈ Z}, one can express γ
in terms that are more easy to compute. In particular, observe that only the first
term on the right in (3.8) is homogeneous in Yt−1, and it dominates the behavior
of Yt when ‖Yt−1‖ is very large. To exploit this characteristic, and following Cline
(2007c), we consider the homogeneous version of (3.8). That is

Y∗
t = B

( Y∗
t−1

‖Y∗
t−1‖

, εt

)
‖Y∗

t−1‖, (3.10)
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where Y∗
t = (Y ∗

t , . . . , Y ∗
t−m+1)

′. Let Θ = {‖y‖ ∈ Rm : ‖y‖ = 1} be the unit sphere
in Rm. Furthermore, define

w(θ, u) = ‖B(θ, u)‖, η(θ, u) =
B(θ, u)
‖B(θ, u)‖ , for θ ∈ Θ, u ∈ R.

The homogeneous process can be collapsed to Θ:

θ∗
t =

Y∗
t

‖Y∗
t ‖

= η(θ∗
t−1, εt). (3.11)

Also, let

W ∗
t = w(θ∗

t−1, εt).

Evidently the collapsed process {θ∗
t } is Markovian. More importantly, {θ∗

t } is uni-
formly ergodic (Cline, 2007c) with some stationary distribution, say π. Then the
Lyapunov exponent for {Yt, t ∈ Z}

γ =
∫
Θ
E

(
log W ∗

1 |θ∗
0 = θ

)
π(dθ) =

∫
Θ
E

(
log w(θ, εt)

)
π(dθ) (3.12)

is finite. Specifically,

γ
a.s.= lim

n→∞
1
n

n∑
t=1

log W ∗
t .

Thus, we can estimate γ simply by simulating the collapsed process and obtaining
the sample average of {log W ∗

t }. Alternatively, γ may be determined numerically
through an iterative procedure; see, e.g., Example 3.3.

Example 3.2: An Explicit Expression for γ (Cline, 2007b)
As a special case of (3.8), consider the Markov chain on R given by

Yt = A(Yt−1, εt)
def= B

( Yt−1

|Yt−1|
, εt

)
|Yt−1|+ C(Yt−1, εt), (3.13)

where the process {εt} i.i.d.∼ (0, 1), |B(y/|y|, u)| ≤ b(1 + |u|) and C(y, u) ≤
c(1+ |u|) for finite b, c. Furthermore, we have the two-regime SETAR–ARCH
model of order 1 and delay 1:

Yt =A(Yt−1, ε1)=

{
φ

(1)
0 + φ

(1)
1 Yt−1 + (α(1)

0 + α
(1)
1 Y 2

t−1)
1/2εt if Yt−1 ≤ 0,

φ
(2)
0 + φ

(2)
1 Yt−1 + (α(2)

0 + α
(2)
1 Y 2

t−1)
1/2εt if Yt−1 > 0,

(3.14)

with each α
(i)
j ≥ 0 (i = 1, 2; j = 0, 1). Then, by setting

B(−1, u) = −φ
(1)
1 + (α(1)

1 )1/2u, B(1, u) = φ
(2)
1 + (α(2)

1 )1/2u,
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and

C(y, u) = A(y, u)−B(y/|y|, u)|y|,

we can decompose (3.14) in the form (3.13), where B(·) and C(·) are respect-
ively a homogeneous and a locally bounded function in Yt−1. Now, analogous
to (3.11), the homogeneous form of (3.13) can be collapsed to the process
{θ∗t = η(θ∗t−1, εt)} which is a two-state Markov chain on [−1, 1]. Let

pij = P
(
θ∗1 = j|θ∗0 = i

)
= P

(
η(i, ε1) = j

)
, i, j ∈ {−1, 1}.

Then, the stationary distribution of {θ∗t } is given by π1 = 1−π−1 = p−1,1/(p1,−1

+p−1,1) (cf. Exercise 2.7). To establish the uniform ergodicity of {θ∗t }, Cline
(2007a) shows that there exists a function ν : {−1, 1} → R and a constant γ
which solve the following identity, also known as the Poisson equation ,

E
(
ν(θ∗1)− ν(θ∗0) + log W ∗

1 |θ∗0 = i
)

= γ, i = ±1.

The solution is given by

v(±1) = ±E(log W ∗
1 |θ∗0 = 1)− E(log W ∗

1 |θ∗0 = −1)
2(p1,−1 + p−1,1)

,

with Lyapunov exponent

γ = π−1E
(
log |B(−1, e1)|

)
+ π1E

(
log |B(1, e1)|

)
. (3.15)

Example 3.3: Numerical Evaluation of γ (Cline, 2007c)
Consider the two-regime SETAR–ARCH model of order 2 and delay 1:

Yt =

{
φ

(1)
0 +

∑2
i=1 φ

(1)
i Yt−i + (α(1)

0 +
∑2

i=1 α
(1)
i Y 2

t−i)
1/2εt if Yt−1 ≤ 0,

φ
(2)
0 +

∑2
i=1 φ

(2)
i Yt−i + (α(2)

0 +
∑2

i=1 α
(2)
i Y 2

t−i)
1/2εt if Yt−1 > 0,

(3.16)

where {εt} i.i.d.∼ (0, 1), and each α
(i)
j ≥ 0 (i = 1, 2; j = 0, 1, 2). In this case we

have the state vector Yt = (Yt, Yt−1)′ and the collapsed process {θ∗
t } takes

values on the unit circle in R2. In addition, there are thresholds located
at arc(θ) = ±π/2 on the unit circle. Since m > 1, one can only evaluate
the Lyapunov exponent either by direct MC simulation or by numerically
analyzing a uniformly ergodic process. Below we show results for γ obtained
by solving numerically an equilibrium equation given by

ν(θ) = E
(
ν(θ∗

1) + log‖w(θ, ε1)‖
∣∣θ∗

0 = θ
)
− γ, s.t.

∫
Θ

ν(θ)dθ = 0. (3.17)

Simply stated, the solution follows from a one-dimensional numerical integ-
ration method combined with an iteration step for linear interpolation of a
piecewise continuous function with linear extensions beyond the knots near a
discontinuity point and at the extremes.
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Figure 3.2: Strict stationarity parameter regions (black solid line) for a SETAR–ARCH
model, parameter regions for checking the existence of the first moment (blue medium dashed
lines) and second moment (red medium dashed lines), and parameter regions for second-order
stationarity (green solid lines) of {Yt = (Yt, Yt−1)′, t ∈ Z}.

Suppose γ < 0, then it is often useful to determine which moments are finite
for the stationary distribution of {Yt, t ∈ Z}. For general nonlinear AR–GARCH
processes it can be shown (Cline, 2007a) that the rth moment exists when there is
a bounded, positive function λ(θ) such that

sup
θ∈Θ

E

(λ(θ∗)
λ(θ)

(W ∗
t )r

∣∣θ∗
0 = θ

)
< 1 for r > 0. (3.18)

A solution of (3.18) may be obtained by a numerical procedure analogous to eval-
uating γ through (3.17). For the quadrature (numerical integration) the results
presented below are based on 100 evenly spaced points in (−5, 5), and 200 points
are used for interpolating ν(·) and λ(·). Only eight parameters are critical for the
stability of {Yt, t ∈ Z}. Their values are:

φ
(1)
1 = 0.3, φ

(1)
2 = 0.2, φ

(2)
1 = −0.4, φ

(2)
2 = −0.1,

α
(1)
1 = (0.7)2, α

(1)
2 = (0.2)2, α

(2)
1 = (0.3)2, and α

(2)
2 = (0.1)2.

Figures 3.2(a) and (b) show parameter regions for strict stationarity (black solid
lines) of the SETAR–ARCH model in (3.16) with in each case six parameters fixed
and the remaining two parameters varying over a range of values. The figures also
contain parameter regions for checking the existence of the first- and second moments
of {Yt, t ∈ Z}. Obviously, both regions are contained within the strict-stationarity
region though covering a more restrictive set of parameter values. Indeed, we observe
that for strict-stationarity the leading coefficient φ

(1)
1 can be quite negative provided

the other leading coefficient is not too big. Note that the stability region in Figure
3.2(b) closely resembles the stability region of a SETAR(2; 1, 1) model given in Figure
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3.3(a). Presumably the values of φ
(1)
1 and φ

(2)
1 dominate the general pattern of the

stability region while the other parameters have hardly any effect.
Figures 3.2(a) and (b) also show the parameter regions for second-order station-

arity (green solid lines). The corresponding condition follows from (3.7) in Section
3.2, and is given by(

max(|φ(1)
1 |, |φ(2)

1 |) + max(|φ(1)
2 |, |φ(2)

2 |)
)2 + max{α(1)

1 , α
(2)
1 }

+ max{α(1)
2 , α

(2)
2 } < 1. (3.19)

We see that (3.19) is far too restrictive compared to the strict stationarity condition.
Imposing them would unduly limit the dynamics permitted by the SETAR–ARCH
model. In fact, as we see from the shape of the region enclosed by the red medium
dashed lines, some parameters may have values much bigger than one, while the
second moment still is finite.

3.4 Dependence and Geometric Ergodicity

3.4.1 Mixing coefficients
For i.i.d. sequences, the laws of large numbers and the central limit theorem are
the cornerstone for making statistical inferences. In the context of analyzing time
series, the i.i.d. assumption is practically always violated. Therefore, there is a
continuous search for conditions weaker than independence for proving the above
limit theorems, or variants thereof. Weak dependence is often quantified in terms of
mixing conditions. Roughly speaking, mixing means that the future behavior of a
time series becomes “almost independent” of the past, as time goes by. There exist
several notions of mixing; see, e.g., Doukhan (1994). Here we concentrate on two
standard dependence structures.

Let {Yt, t ∈ Z} be a strictly stationary time series in Rm defined on the probabil-
ity space (Ω,F ,P). Denote by F0

−∞ and F∞
t the σ-algebras generated by {Ys, s ≤ 0}

and {Ys, s ≥ t} respectively. For each k ≥ 1, define the following dependence coef-
ficients

α(k) = sup
A∈F0

−∞,B∈F∞
k

|P(A ∩B)− P(A)P(B)|, (3.20)

β(k) =
1
2

sup
Ai∈F0

−∞,Bj∈F∞
k

I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|, (3.21)

where in the definition of β(k) the supremum is taken over all pairs of finite partitions
{A1, . . . , AI} and {B1, . . . , BJ} of Ω such that Ai ∈ F0

−∞ for each i and Bj ∈ F∞
k

for each j.
The quantities α(k) and β(k) are called mixing coefficients . The process {Yt, t ∈

Z} is called strongly mixing (or α-mixing) if limk→∞ α(k) = 0, and β-mixing (or
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absolutely regular mixing) if limk→∞ β(k) = 0. Additionally, the process is said to be
strongly mixing with geometric rate if {Yt, t ∈ Z} is α-mixing (or β-mixing) with
exponentially decaying coefficients. Since α(k) ≤ (1/2)β(k), β-mixing implies α-
mixing. The α-mixing is the weakest condition among all currently available mixing
conditions. One way of checking mixing or stationarity conditions is to express
(or approximate) the nonlinear model as a suitably chosen Markov chain and use
Markov chain theory. This will be the focus of Section 3.4.2.

Mixing conditions are helpful in proving limit theorems. For instance, for the
special case of strongly mixing sequences, these conditions imply the following central
limit theorem (CLT) (Herrndorf, 1984, Corollary 1). Let {Yt}∞t=1 be a zero-mean
univariate stochastic process, where

sup
t
‖Yt‖2+a < ∞ and

∞∑
k=1

{α(k)}a/(2+a) < ∞ for some a ∈ (0,∞).

Assume that σ2 = limT→∞ Var(T−1/2
∑T

t=1 Yt) > 0. Then, T−1/2
∑T

t=1 Yt
D−→

N (0, σ2), as T → ∞; see also Rio (1993). The generalization of this CLT to a
centered vector-valued stochastic process {Yt, t ∈ Z} is obvious.

3.4.2 Geometric ergodicity

Feigin and Tweedie (1985) develop a way of checking sufficient conditions for strong
mixing. We adopt their notation and terminology. So we let {Yt, t ∈ N} be a
temporarily homogeneous Markov chain taking values in (E, E), where E ⊂ Rm and
E is the Borel σ-algebra on E. We denote its tth step transition probability by
Pt(y, C), i.e.

Pt(y, C) = P(Yt ∈ C|Y0 = y), y ∈ Rm, C ∈ E ,

with P(y, C) = P(Y1 ∈ C|Y0 = y) = P1(y, C), and where P is the probability
measure on the underlying probability space on which Y0 is defined. A measure π
is an invariant measure for the Markov chain {Yt, t ∈ Z} if

π(A) =
∫
E

P(x, A)(dy). (3.22)

Assume π(E) = 1. If there exists a finite measure with property (3.22) and we run
a Markov chain with initial probability distribution π, then the resulting process is
stationary and its marginal distribution is π at any time point t.

It is of course not yet clear whether the distribution of {Yt, t ∈ Z} converges
towards an invariant distribution π. If such a convergence happens with respect to
the total variation norm ‖ · ‖V , and with a fixed geometric rate, the Markov chain
{Yt, t ∈ Z} is called geometrically ergodic. This means that there exists a constant
0 < ρ < 1 such that ∀y ∈ Rm,

lim
t→∞ ρ−t‖Pt(y, ·)− π(·)‖V = 0 (3.23)
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for almost all initial states y ∈ Rm provided π(·) < ∞. Thus, a geometrically ergodic
stationary Markov chain is also strongly mixing with geometric rate. More precisely,
for α(k) as defined by (3.20), we have α(k) ≤ Kρk for some constants K > 0 and
ρ ∈ (0, 1). If (3.23) holds when ρ = 1, then {Yt, t ∈ Z} is said to be Harris ergodic.

As usual in the theory of Markov chains, we restrict attention to the case of
irreducible Markov chains. Let ϕ be a non-trivial (i.e. ϕ(Rm) > 0) σ-finite measure
on (Rm, E). Then the Markov process defined above is called ϕ-irreducible if ∀C ∈ E
with ϕ(C) > 0, ∀y ∈ Rm,

∞∑
t=1

Pt(y, C) > 0.

This simply states that almost all parts of the state space are accessible from all
points y of Rm. Further, a Markov chain is a (weak) Feller chain if for every bounded
continuous function g(·) on E = R the function

E{g(Yt)|Yt−1 = y} (3.24)

is also continuous in y ∈ E.
Next, we state a result due to Feigin and Tweedie (1985, Thm. 1) which ensures

geometric ergodicity. Suppose that (i) {Yt, t ∈ Z} is a Feller chain, and there exist
a measure ϕ and a compact set C with ϕ(C) > 0 such that

(ii) {Yt, t ≥ 0} is ϕ-irreducible;

(iii) There exists a non-negative continuous function V : E→ R satisfying V (y) ≥ 1
∀y ∈ C and for some δ > 0,

E{V (Yt)|Yt−1 = y} ≤ (1− δ)V (y), y �∈ C.

Then {Yt, t ∈ Z} is geometrically ergodic.

As already mentioned, for a ϕ-irreducible Markov chain geometric ergodicity and
strict stationarity are equivalent. Thus, verification of the conditions of the above
result will not only ensure the existence of a unique strictly stationary solution of
{Yt, t ∈ Z} but also the geometric rate of convergence of the marginals to the
stationary distribution if the chain is not initially in its stationary regime. The
function V (·) is the so-called test (or Lyapunov) function which is set in advance.
In the vector case, a fashionable choice is V (y) = 1 + y′Qy, where Q is a suitably
positive definite matrix. Condition (iii) is a drift condition for non-explositivity.

Example 3.4: Geometric Ergodicity of the SRE (Basrak et al., 2002)
Consider the SRE in (3.1) with either A1 or B1 having a strictly positive
density over Rm. Moreover, suppose there exists an ε > 0 such that E‖A1‖ε <
1 and E|B1|ε < ∞. It is clear that {Yt, t ∈ N} is a Markov chain. We will
show that the process {Yt, t ∈ Z} is geometrically ergodic by checking the
conditions (i) – (iii) above.
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Figure 3.3: Stationarity region of a SETAR(2; 1, 1) model; (a) d = 1, and (b) general d.

(i) Lebesgue’s dominated convergence theorem ensures that for any bounded
continuous function V (·), E{V (Yt)|Yt−1 = y} is continuous in y, and
hence the Markov chain is Feller.

(ii) Given Y0 = y, the law of Y1 = A1y + B1 admits a strictly positive
density with respect to Lebesgue measure μLeb, and so the chain is φ-
irreducible with φ = μLeb.1

(iii) The condition E‖A1‖ε < 1 for some ε > 0 implies E(log‖A1‖) < 0, using
Jensen’s inequality. Now, without loss of generality, let ε ∈ (0, 1] and

V (y) = 1 + |y|ε, y ∈ Rm.

Obviously,

E{V (Yt)|Yt−1 = y} ≤ 1 + E|A1y|ε + E|B1|ε

≤ 1 + E‖A1‖ε|y|ε + E|B1|ε

= E‖A1‖εV (y) + (1 + E|B1|ε − E‖A1‖ε).

Choose C as the closed ball in Rm with center 0 and radius M > 0 so
large that ϕ(C) > 0 and

E{V (Yt)|Yt−1 = y} ≤ (1− δ)V (y), |y| > M

for some constant 1− δ > E‖A1‖ε. This proves the so-called drift condi-
tion and completes the argument.

Thus, the stationary solution (3.5) of the SRE is geometrically ergodic, and
hence strongly mixing with geometric rate.

1Lesbesgue measure μLeb is a unique positive measure on the class R of linear Borel sets. It is
specified by the requirement: μLeb(a, b] = b − a ∀a, b ∈ R (a ≤ b). Lebesgue measure on the class
R

m of m-dimensional Borel sets is constructed similarly using the area of bounded rectangles as a
basic definition; see, e.g., Billingsley (1995, Chapter 2).



3.4 DEPENDENCE AND GEOMETRIC ERGODICITY 99

Example 3.5: SETAR Geometric Ergodicity

Figure 3.3(a) shows the geometric ergodicity (strict stationarity) region for
SETAR(2; 1, 1) models with d = 1; see Table 3.1. Note that in contrast with
the stationarity of linear AR models, the region is unbounded. Moreover, we
see a much larger region of stationarity than the region |φ1| < 1 and |φ2| < 1
which would result if only sufficient conditions for stationarity were applied.
Figure 3.3(b) shows the stationarity region in the parameter space implied by
SETAR(2; 1, 1) models with d ≥ 2. Comparing these two plots, we see clearly
the effect of the delay parameter d.

In Markov chain terminology, it can be proved (Guo and Petruccelli, 1991)
that the SETAR(2; 1, 1) model with d ≥ 1 is positive Harris recurrent in the
blue-striped “interior” and “boundary” areas; and it is transient (explosive)
in the “exterior” of the parameter space. The SETAR(2; 1, 1) model is null
recurrent on the boundaries, and regular in the strict interior parameter space
which in this case implies that the process {Yt, t ∈ Z} is geometrically ergodic.
In other words, the limit cycle behavior of the SETAR model arises from the
alternation of explosive, dormant, and rising regimes.

Table 3.1 gives an overview of necessary and sufficient conditions for geometric
ergodicity of some threshold models. The proofs are given under the assumption that
{εt} is i.i.d. with positive pdf over the real line R and E|εt| < ∞. If appropriate, it is
also assumed that for each i {ε(i)

t } are i.i.d. and {ε(i)
t , i = 1, . . . , k} are independent.

Finally, note that for the general SETARMA model d ≤ p, since if d > p one can
introduce additional coefficients φ

(i)
j = 0 for i > p.

Observe that for the SETARMA model, stationarity is completely determined
by the linear AR pieces defined on the two boundary threshold regimes. That is, the
MA part of the model does not affect stationarity. In fact, a pure SETMA model
is always stationary and ergodic as is the linear MA model. Another interesting
feature of SETARMA models is that overall (global) stationarity does not require
the model to be stationary in each regime. The ergodicity conditions given by Liu
and Susko (1992) and Lee and Shin (2001) illustrate this remark; see, also, Exercise
2.2. In general, distinguishing between local and global stationarity and between
local and global invertibility (see Section 3.5) is important for physical motivation
and for application of nonlinear time series models. However, it is quite complicated
to derive explicit (analytical) conditions for local stationarity and local invertibility.
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Table 3.1: Necessary and sufficient conditions for geometric ergodicity of SETAR(MA)
models.

Reference Model Ergodicity conditions

Petruccelli and Woolford (1984)SETAR(2; 1, 1): Yt =φ1I(Yt−1 ≤ 0) φ1 < 1, φ2 < 1, φ1φ2 < 1
+φ2I(Yt−1 > 0) + εt (necessary and sufficient)

Chan et al. (1985) SETAR(k; 1, . . . , 1): Yt =
∑k

i=1{φ(i)
0 φ

(1)
1 < 1, φ

(k)
1 < 1, and φ

(1)
1 φ

(k)
1 < 1

+φ
(i)
1 Yt−1 + ε

(i)
t }I(Yt−1 ∈ R(i)) (sufficient)

Chen and Tsay (1991) (1) SETAR(2; 1, 1): Yt =φ1I(Yt−d ≤ 0) φ1 < 1, φ1φ2 < 1, φ
sd
1 φ

td
2 < 1,

+φ2I(Yt−d > 0) + εt (d ≥ 2) φ
td
1 φ

sd
2 < 1 where td, sd ∈ N,

td = sd + 1, and sd = 12, 33, 74, 15,
316, 637, 18, 339, 310

(necessary and sufficient)

Brockwell et al. (1992) (2) SETAR(k; p, . . . , p) - MA(q): ρ
(
maxi{|A(i)|}) < 1 (i = 1, . . . , k)

Yt =
∑k

i=1{φ(i)
0 +φ

(i)
1 Yt−d + εt with A(i) =

+
∑q

j=1 ψjεt−j}I(Yt−d ∈ R(i))

(
φ

(i)
1 · · · φ

(i)
p

Ip−1 0(p−1)×1

)
(sufficient)

Liu and Susko (1992) Yt =
∑k

i=1{φ(i)
0 + φ

(i)
1 Yt−d + ε

(i)
t φ

(1)
1 < 1, φ

(k)
1 < 1, φ

(1)
1 φ

(k)
1 < 1

+
∑q

j=1 ψ
(i)
j ε

(i)
t−j}I(Yt−d ∈ R(i)) (sufficient)

φ
(1)
1 ≤ 1 and φ

(k)
1 ≤ 1 (necessary)

Amendola et al. (2009a) SETAR(2; p, q, p, q): maxi{ρ(A(i))} < 1 (i = 1, 2)

Yt =
∑2

i=1{φ(i)
0 +

∑p
j=1 φ

(i)
j Yt−j + εt

(
sufficient, but weaker than

+
∑q

j=1 ψ
(i)
j εt−j}I(Yt−d ∈ R(i)) ρ

(
maxi{|A(i)|}) < 1

)
Niglio and Vitale (2010a) SETARMA(k; 1, q, . . . , 1, q):

∏k
i=1 |φ(i)

1 |pi < 1 (i = 1, . . . , k),

Yt =
∑k

i=1{φ(i)
1 Yt−d + ε

(i)
t where pi = E[I(Yt−d ∈ R(i))], with

+
∑q

j=1 ψ
(i)
j ε

(i)
t−j}I(Yt−d ∈ R(i)) 0 < pi < 1 (3) and

∑k
i=1 pi = 1

(sufficient)

Lee and Shin (2000) MTAR(2; 1, 1): Yt =φ1Yt−1I(Yt−1 φ1 < 1, φ2 < 1, φ1φ2 < 1, φ1φ2
2 < 1,

≥Yt−2) + φ2Yt−1I(Yt−1 < Yt−2) and φ2
1φ2 < 1

+εt (sufficient)

Lee and Shin (2001) MTAR(2; 1, 1) with partial unit
(
φ1 = 1, |φ2| < 1

)
or

roots (|φ1| < 1, φ2 = 1
)

(necessary and sufficient)

(1) Lim (1992) derives necessary and sufficient conditions for stability of the deterministic
SETAR(2; 1, 1) model with general d.

(2) Ling (1999) shows that a sufficient condition for strict stationarity of the

SETARMA(k; p, q, . . . , p, q) model is given by
∑p

j=1 maxi |φ(i)
j | < 1 (i = 1, . . . , k) which is

equivalent to the condition given by Brockwell et al. (1992).
(3) The k-regime SETARMA model becomes a linear ARMA model when pi = 1, and a

k∗-regime SETAR model (k∗ < k) when pi = 0.



3.5 INVERTIBILITY 101

3.5 Invertibility

The classical invertibility concept for univariate linear time series processes loosely
says that a time series process is invertible when we are able to express the noise
process {εt} as a convergent series of the observations {Yt}, given that the DGP is
completely known. From the theory of linear time series it is well known that the
invertibility concept is pivotal when one tries to recover the innovations from the
observations of a DGP. Indeed, invertibility assures that there is a unique repres-
entation of the model which can be used for forecasting. In this section, we discuss
conditions for the global and local invertibility of nonlinear DGPs, where in the
latter case the boundary region is a part of the possible parameter space.

3.5.1 Global

To begin with, suppose {Yt, t ∈ Z} is generated by the stationary and ergodic
NLARMA(p, q) model

Yt = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q; θ) + εt, (3.25)

where {εt} i.i.d.∼ (0, σ2
ε), and g(·;θ) is a known real-valued function for a known

parameter vector θ. For nonlinear time series there exist (at least) three concepts
of invertibility.

(i) Granger–Andersen invertibility (Granger and Andersen, 1978a,b)
Suppose that q initial values, say εj (j = −q + 1, . . . , 0), of the process in
(3.25) are given and that all Yt are known. Let {ε̂t, t ∈ Z} be a sequence of
innovations (or residuals) generated by

ε̂t = Yt − g(Yt−1, . . . , Yt−p, ε̂t−1, . . . , ε̂t−q; θ), (3.26)

where ε̂i = εi for i ≤ 0. Define the reconstruction errors as

et = εt − ε̂t. (3.27)

Then the model (3.25) is said to be invertible, if

E[e2
t ] → 0 as t →∞. (3.28)

A more general form of (3.28) requires that

E|et|r → 0 as t →∞, (r = 1, 2, . . .), (3.29)

provided the q initial values εj (j = −q + 1, . . . , 0) are arbitrarily chosen. If
(3.25) involves estimated parameters, which are obtained from an earlier finite
length of data and not updated, condition (3.29) becomes

E|et|r → c as t →∞, (3.30)
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Table 3.2: Necessary and sufficient conditions for invertibility of NLMA-type models (1).

Reference Model Condition

Ling and Tong (2005) SETMA(2; p, q): Yt =
∑p

i=1 φiεt−i
∑p

i=1 |φi| < 1, and
∑p

i=1 |φi + ψi| < 1
+
∑q

i=1 ψiI(Yt−d ≤ r)εt−i + εt where ψi = 0 for i > q
(sufficient)

Ling et al. (2007) SETMA(k; 1, . . . , 1): Yt ={ψ0
∏k

i=1{|ψ0 + ψi|FY (ri)−FY (ri−1)} < 1 (2)

+
∑k

i=1 ψiI(ri−1 < Yt−1 ≤ ri)}εt−1 and not invertible if

+εt
∏k

i=1{|ψ0 + ψi|FY (ri)−FY (ri−1)} > 1,
where FY (·) is the CDF of {Yt, t ∈ Z}

(necessary and sufficient) (3)

Niglio and Vitale (2010b)SETMA(k; q, . . . , q): Yt = εt
∏k

i=1 ρ(Ψ(i))pi < 1 with

+
∑k

i=1

(∑q
j=1 ψ

(i)
j εt−j

)
I(Yt−d ∈ R(i))Ψ(i) =

(
ψ

(i)
1 · · · ψ

(i)
q

Iq−1 0(q−1)×1

)
and pi = E[I(Yt−d ∈ R(i))] (0 < pi < 1)

(sufficient)

Marek (2005) RCMA(1)): Yt =At,0εt + At,1εt−1 E log |At,1| < E log |At,0| where {At,k}
where {At−i,k}∞i=0 and {εt−k+j}∞j=0 (k = 0, 1) is a stationary and ergodic

are independent (k = 0, 1) process
(sufficient)

(1) Assuming {Yt, t ∈ Z} is strictly stationary and ergodic, and {εt} i.i.d.∼ (0, σ2
ε).

(2) This condition is much weaker than the one of Ling and Tong (2005). A similar result can be found in
Ling (1999).

(3) It remains to prove that the model is not invertible when
∏k

i=1{|φ0 + ψi|Fy(ri)−Fy(ri−1)} = 1.

where c < ∞ is some constant. Clearly, the concept of invertibility is intimately
related to the estimation of parameters. If some least squares method is used
for this purpose, it is appropriate to set r = 2, i.e. consider the mean-square
error convergence of the reconstruction errors. Most studies focus on this case,
and we refer to {Yt, t ∈ Z} as invertible if and only if

E[e2
t ] → 0 as t →∞, (3.31)

for any initial εj (j = −q + 1, . . . , 0).

(ii) Generalized invertibility (Hallin, 1980)
Suppose that a realization of the process has been observed from time a − p,
and the innovations ε̂t are generated by (3.26) with ε̂a−j = εa−j , and εa−j

(j = 1, . . . , q) are arbitrarily chosen initial values. Define the reconstruction
errors as in (3.27). Then (3.25) is said to be invertible, if

E[e2
t ] → 0 as a → −∞, ∀t ∈ Z. (3.32)

Hallin (1980) shows that in nonlinear models with constant coefficients defini-
tions (i) and (ii) are equivalent. When the coefficients are not time dependent
and the DGP is linear, (3.32) coincides with the classical invertibility condi-
tion.
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(iii) Pham–Tran invertibility (Pham and Tran, 1981)
Suppose that {Yt, t ∈ Z} in (3.25) admits an equivalent first-order Markovian
representation {Zt}. Let θ̂ be some guess or estimate of the true parameter
vector θ. In that case the innovations can be computed recursively from the
Markovian representation of the NLARMA model with θ replaced by θ̂. Con-
ditional on a chosen initial value z0 for Z0, we denote the resulting value by
εt(θ̂|z0), to indicate its dependence on θ̂. Then the process (3.25) is said to be
invertible at θ̂ relative to {Yt, t ∈ Z} if there exists a stationary process, say
{εt(θ̂)}, such that εt(θ̂|z0)−εt(θ̂) converges to 0 in some sense as t →∞. Thus,
this invertibility concept is “open”, as we may choose an appropriate meas-
ure of convergence. In contrast, the Granger–Andersen invertibility concept
requires only that the second moment of εt − ε̂t tends to a limit.

Table 3.3: Necessary and sufficient conditions for stationarity and invertibility of BL
models. In all cases {εt} i.i.d.∼ (0, σ2

ε) unless otherwise specified.

Reference Model Condition

Quinn (1982) Yt =εt+ψYt−uεt−v (u, v > 0), log |ψ| + E log |Yt| < 0 (necessary and sufficient)
with E log |εt| < ∞

Yt =εt+ψYt−uεt−v (u, v > 0, u > v) |ψ|σε < 1/
√

2 = 0.7071

Yt =εt+ψYt−uεt−v (u, v > 0, u > v), |ψ|σε < {2 exp C/(1+2 exp C)}1/2 =0.8836

with {εt} i.i.d.∼ N (0, σ2
ε)

Liu (1985) Yt =
∑p

i=1 φiYt−i+εt+θεt−1 E| log θ + C′BYt| < 0 (1) with

+
∑Q

u=1 ψ1uYt−uεt−1 B=

(
ψ11 · · · ψ1Q 0 · · · 0

0(s−1)×s

)
,

Yt = (Yt, . . . , Yt−s+1)′, C = (1, 0, · · · , 0)′, and
s = max(p, Q)

(sufficient)

Liu (1990) Yt =
∑p

i=1 φiYt−i + εt + θεt−1 E{log‖∏p
j=1 B(t − j)‖} < 0 with

+
∑p

u=1

∑Q
v=1 ψuvYt−uεt−v B(t)=

(
φ1+

∑Q
v=1 ψ1vεt−v · · · φp+

∑Q
v=1 ψpvεt−v

Ip−1 0(p−1)×1

)
with E{log+ |ε1|} < ∞ (sufficient)

Marek (2005) Yt = εt+(a + βYt−2)εt−1, β2σ2
ε < (1 − a2)/2

Yt =(a+βεt−1)εt+αεt, |α| < |a| and β < (|a| − |α|)/3
(a �= 0, α �= 0, β > 0), |εt| < 1 (sufficient)

(1) The condition reduces to the sufficient condition of Subba Rao (1981) for a BL(p, 0, p, 1) model.
In the case p = Q = 1 the condition becomes |ψ| < exp(−E log |Yt|), earlier obtained by
Pham and Tran (1981).

Assuming that {Yt, t ∈ Z} is an ergodic strictly stationary process, together with
some additional assumptions on {εt}, it is possible to find sufficient conditions for
invertibility for various NLMA- and BL-type models. Tables 3.2 and 3.3 summarize
some of the theoretical works for these models. Note, most invertibility conditions
are only sufficient and are written in general terms. Indeed, apart from a few simple
cases, explicit conditions for the invertibility of nonlinear models are sparse. From
Table 3.2 we see that, in contrast with the stationarity of SETAR models, all regimes
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Figure 3.4: Invertibility regions of the RCMA(1) model with At,1 following respectively a
U(a− θ, a + θ) distribution (blue solid curve), a N (a, θ2) distribution (red solid curve), and
a Student t6(a, θ) distribution (green solid curve).

play a role to ensure invertibility of the SETMA model. For the SETMA model there
is no difficulty in extending the results to the case where the data are generated by
a SETARMA model.

Example 3.6: Invertibility of an RCMA(1) Model

Consider the RCMA(1) model of the form

Yt = εt + (a + θYt−2)εt−1, {εt} i.i.d.∼ (0, σ2
ε), (3.33)

where a, and θ > 0 are real-valued parameters, {Yt, t ∈ Z} is a stationary and
ergodic process. Thus, in the general notation of the RCMA model (see Table
3.2), At,0 = 1 and At,1 = a + θYt−2. Assume that {At,1} i.i.d.∼ U(a − θ, a + θ).
Then it is easy to see that

E(log |At,1|) =
1
2θ

[
(a + θ) log |a + θ| − (a− θ) log |a− θ| − 2θ

]
. (3.34)

If {At,1} i.i.d.∼ N (a, θ2), we have

E(log |At,1|) = log θ +
∫ ∞

−∞

1√
2π

exp
{−y2

2
}

log
∣∣y +

a

θ

∣∣dy. (3.35)

Figure 3.4 shows the parameter regions for both sequences {At,1} using the
invertibility condition E(log |At,1|) < 0. Note that in the case of (3.34) the
blue solid curve passes through the point (a, θ) = (0, e), while in the case of
(3.35) the red solid curve goes through the point (0, 1.8874 · · · ).
Figure 3.4 also includes the parameter region for invertibility of the RCMA(1)
model when {At,1} i.i.d.∼ t6(a, θ) distributed (green solid curve), which is a
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Figure 3.5: Proportion of ASTMA(1) models classified as non-invertible as a function of
ψ (horizontal axis); T = 100, 1,000 MC replications.

location-scale transformation of a standard Student t distribution with 6 de-
grees of freedom. Clearly, this invertibility region is smaller than the ones
enclosed by the previous two distributions with a notable part indicating the
heavy tails of the t6 distribution when θ ↓ 0 and |a| > 1.

As a practical and operational alternative to the conditions in Tables 3.2 and
3.3, good sufficient conditions for invertibility can be obtained by MC simulation.
Indeed, given definition (3.31), De Gooijer and Brännäs (1995) propose the following
ready-to-use method.

Algorithm 3.1: Empirical invertibility of an NLARMA(p, q) model

(i) Generate a random sample of i.i.d. innovations {ε̃t}N
t=T+1 from the known

distribution function (e.g., normal) of the residual series {ε̂t}T
t=1, where N is

some large value, say N = 1,000.

(ii) Replace εt by ε̃t for t = T +1, . . . , N and use past values Yt−k (k = 0, . . . , p),
and ε̂t−k (k = 0, . . . , q), to generate a new set of observations {Ỹt}N

t=T+1.

(iii) Calculate {êt = Ỹt − Ŷt}N
t=T+1, where Ŷt are the out-of-sample fitted values.

Estimate E(e2
t ) by (τ−T )−1

∑τ
t=T+1 ê 2

t . If for all values of τ = T +1, . . . , N ,
this sequence does not exceed a pre-fixed value the process {Yt, t ∈ Z} is said
to be empirically invertible, otherwise it suggests non-invertibility.

Example 3.7: Invertibility of an ASTMA(1) Model

Consider an additive smooth transition MA(1), or ASTMA(1), model of the
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form

Yt = εt + βεt−1 + ψF (εt−1)εt−1, {εt} i.i.d.∼ N (0, 1), (3.36)

where F (εt−1) = [1 + exp(−γεt−1)]−1, and γ > 0. No explicit invertibility
conditions have yet been derived for this model.

For T = 100, we generated 1,000 time series {Yt}100
t=1. Dropping the first 150

observations to avoid start-up effects and using Algorithm 3.1 with N = 1,000,
we computed a sequence of estimates of E(e2

t ). Next, the process was classified
as empirically invertible if for all values τ = T + 1, . . . , N the values of the
sequence did not exceed 10−10.

Figures 3.5(a) and (b) show curves of the proportion of non-invertible models
as a function of the parameter ψ for three different values of γ. Note that
the empirical invertibility region remains the same as γ increases when β = 0,
while the region reduces when β = 0.8. For γ = 0.5 the width of the empirical
region is about the same in both figures. For larger values of γ the size of
the invertibility region becomes smaller when β = 0.8. Moreover, the curves
show a clear difference in the proportion of non-invertible models for ψ > 0 as
opposed to ψ < −2.

Throughout the previous part, we assumed that (3.25) is an ergodic strictly
stationary process. Within a Markov chain framework this requires verifying the
irreducibility condition as a part of the Feigin–Tweedie result to establish geometric
ergodicity. For general nonlinear MA models this is a non-trivial problem. Interest-
ingly, Li (2012) derives an explicit/closed form of the unique strictly stationary and
ergodic solution to the multiple-regime SETMA model without resorting to Markov
chain theory. Using a different approach, his work generalizes results of Li, Ling,
and Tong (2012) for two-regime SETMA models. The main idea is to re-formulate
the model as a SRE and adopt the notion of the top Lyapunov exponent as we
discussed in Section 3.1.

Consider a k-regime SETMA model of order q which we write in the form

Yt = a
(k)
t +

k−1∑
i=1

(a(i)
t − a

(k)
t )I(Yt−d ∈ R(i)), (3.37)

where

a
(i)
t = ψ

(i)
0 + εt +

q∑
j=1

ψ
(i)
j εt−j , (i = 1, . . . , k).

Here, {εt} is assumed to be a strictly stationary and ergodic process rather than the
usual and more restrictive assumption that {εt} is i.i.d. It follows from (3.37) that

I(Yt ∈ R(i))=I(a(k)
t ∈ R(i))+

k−1∑
j=1

{
I(a(j)

t ∈ R(i))−I(a(k)
t ∈ R(i))

}
I(Yt−d ∈ R(j)),

(i = 1, . . . , k − 1). (3.38)
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To represent (3.38) as a SRE, we define

It =
(
I(Yt ∈ R(1)), . . . , I(Yt ∈ R(k−1))

)′
, at =

(
I(a(k)

t ∈ R(1)), . . . , I(a(k)
t ∈ R(k−1))

)′
,

and

At = (aij,t) with aij,t = I(a(j)
t ∈ R(i))− I(a(k)

t ∈ R(i)) (i, j = 1, . . . , k − 1).

Then

It = AtIt−d + at. (3.39)

Observing that ‖At‖ takes values 0, 1, or 2, we have E(log+(‖At‖) ≤ 2 < ∞.
Moreover, it is easy to see that P(‖At‖ = 0) > 0. Thus, the associated top Lyapunov
exponent γ(A) defined by (3.9) is −∞ since E(log‖At‖) =

∑2
i=0(log i)P(‖At‖ = i) =

−∞. Then, following similar arguments as in Section 3.1, γ(A) < 0 is a sufficient
condition for equation (3.39) to have a unique strictly stationary and ergodic solution
given by

It =
∞∑

s=1

( s−1∏
i=0

At−id

)
at−sd, a.s., (3.40)

which is of the form (3.5). So, a unique strictly stationary and ergodic solution of
{Yt, t ∈ Z} is given by

Yt = a
(k)
t + (a(1)

t − a
(k)
t , . . . , a

(k−1)
t − a

(k)
t )It−d, a.s., (3.41)

where It−d =
∑∞

s=1(
∏s−1

i=1 At−id)at−sd. It is immediate that (3.41) does not require
any restriction on the coefficients of the process, which is different from SETAR
models.

3.5.2 Local

Within the setting of a nonlinear stochastic difference equation, it is possible (Chan
and Tong, 2010) to link local invertibility with the stability (in a suitable sense)
of an attractor in a dynamical system. Let et = (et, . . . , et−q+1)′ be the vector
of reconstruction errors, and εt = (εt, . . . , εt−q+1)′ (q > 1). Then (3.25) can be
rewritten as a homogeneous (deterministic) equation associated with the SRE (3.1)
in which Bt is replaced by the zero vector, i.e.

et = F (et−1, εt−1; θ)

=
(
g(εt−1, . . . , εt−q; θ)− g(et−1 + εt−1, . . . , et−q + εt−q; θ), et−1, . . . , et−q+1

)′
,

(3.42)

where F : Rq → Rq is a vector function. Since 0 = F (0, ε;θ) for all ε and with
0 ∈ Rq, it is clear that the origin is an equilibrium (limit) point. Then invertibility
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implies that the origin is an asymptotically globally attractor, in probability. Local
invertibility can be established by a linear approximation of {et} around et = 0, i.e.

et = 0 +
( t∏

s=1

Ḟs

)
e0, (3.43)

where Ḟs = ∂F (es, εs;θ)/∂es evaluated at es = 0.
Note that (3.43) is the deterministic counterpart of the product of random

matrices in the case of the SRE. Stability of (3.43) implies the existence of a
suitable Lyapunov exponent γ(·). Hence, in analogy with the preceding results,
if E(log+‖Ḟ1‖) < ∞, a necessary condition for non-explosiveness (invertibility) is
given by

lim
t↑∞

1
t

log‖
t∏

s=1

Ḟs‖ = γ(Ḟ). (3.44)

When q = 1, γ(Ḟ) = E(log‖Ḟ1‖), by the independence of the Ḟs’s. For q > 1 a
sufficient local invertibility condition can be obtained using the following property
of a matrix norm: ‖

∏
s As‖ ≤

∏
s‖As‖ for a sequence of regular matrices As in

Rq×q. Then, assuming that {Ḟs} is a function of a stationary and ergodic process,
we have

t−1E

(
log(‖

t∏
s=1

Ḟs‖
)
≤ t−1pE(log(‖

m∏
j=1

Ḟj‖) + t−1Er(log(‖Ḟ1‖),

where t = mp + r, and p and r are integers with 0 ≤ r < m.
Thus, t−1E(log(‖

∏t
s=1 Ḟs‖) → 0 as t ↑ ∞. So, by the independence of the

Ḟs’s, the NLMA(q) model (3.25) is locally invertible if E(log(‖Ḟ1‖) < 0, and locally
non-invertible if E(log(‖Ḟ1‖) > 0. More generally, these results apply to stationary
NLARMA(p, q) processes, for which F (·) is a function of

(
et, Yt−1, . . . , Yt−p, εt−1; θ

)
.

For typical SETARMA models where h(·) is conditionally linear in the innovations
given Yt’s, local invertibility analysis is equivalent to global invertibility analysis.

Example 3.8: Invertibility of a SETMA Model

Consider a SETMA(2; q, . . . , q) model of the form

Yt = εt +
( q∑

j=1

(ψ(1)
j εt−j

)
I(Yt−d ≤ r) +

( q∑
j=1

ψ
(2)
j εt−j

)(
1− I(Yt−d ≤ r)

)
,

(3.45)

where {εt} i.i.d.∼ (0, σ2
ε). From (3.41), we know that {Yt, t ∈ Z} is strictly

stationary. The reconstruction errors satisfy the stochastic difference equation
et = Ḟtet−1, where Ḟt is a companion matrix with its first row equal to

ψ
(2)
1 + (ψ(1)

1 − ψ
(2)
1 )I(Yt−d ≤ r), . . . , ψ(2)

q + (ψ(1)
q − ψ(2)

q )I(Yt−d ≤ r).
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Figure 3.6: Plot of a strictly stationary and ergodic time series generated by a globally
invertible, but locally non-invertible SETMA(2; 2, 2) model; T = 5,000.

Ling et al. (2007) show that for the SETMA(k; 1, . . . , 1) model Yt = {ψ0 +∑k
i=1 ψiI(ri−1 < Yt−1 ≤ ri)}εt−1 + εt the spectral radius ρ(Ḟ) is given by

ρ(Ḟ) = exp
(
γ(Ḟ)

)
=

k∏
i=1

{|ψ0 + ψi|FY (ri)−FY (ri−1)},

where 0 ≤ FY (ri) = P(Yt ≤ ri) ≡ pi ≤ 1. The process {Yt, t ∈ Z} is (locally)
invertible if ρ(Ḟ) < 1, and is not invertible if ρ(Ḟ) > 1. The case ρ(Ḟ) = 1 is
undecided, but Ling et al. (2007) conjectured non-invertibility.

When q > 1, a strictly stationary and ergodic SETMA(k; q, . . . , q) process
is invertible if the spectral radius of each sub-MA(q) processes is less than
one (see, e.g., Amendola et al., 2009b). Verifying this condition is rather
straightforward. Consider, for instance, the SETMA(2; 2, 2) process

Yt =εt + (ψ(1)
1 εt−1 + ψ

(1)
2 εt−2)I(Yt−1 ≤ 0)

+ (ψ(2)
1 εt−1 + ψ

(2)
2 εt−2)

(
1− I(Yt−1 ≤ 0)

)
,

where ψ
(1)
1 = 1.4, ψ

(1)
2 = −0.7, ψ

(2)
1 = 1.5, ψ

(2)
2 = −0.5, and {εt} i.i.d.∼ N (0, 1);

see Figure 3.6 for a typical realization. The corresponding 2 × 2 companion
matrices Ψ(i) (i = 1, 2) (see Table 3.2) have eigenvalues λ

(1)
1,2 = 0.7 ± 0.4583i

and λ
(2)
1,2 = 0.75±0.25, respectively. So, the MA process in the first (Yt−1 ≤ 0)

regime is invertible. When Yt−1 > 0, the MA process is not invertible with
one root on the unit circle and one root less than one. However, the process
{Yt, t ∈ Z} is globally invertible even though it is locally non-invertible in the
upper regime. Indeed, with ρ(Ψ(1)) = |0.7± 0.4583i| = 0.8367 and ρ(Ψ(2)) =
|0.75 + 0.25| = 1, we have

ρ(Ψ(1))1−p1 × ρ(Ψ(2))p1 = (0.8367)0.4984 × (1)0.5016 < 1,

where p̂1 = 0.5016 is an estimate of p1 = E(Yt−1 < 0). If the stationary
probability p1 of the lower regime approaches 0, as r →∞, the SETMA(2; 2, 2)
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process degenerates to a linear MA(2) process with the well-known invertibility
condition ρ(Ψ(1)) < 1.

3.6 Summary, Terms and Concepts

Summary
We reviewed some of the important probabilistic properties of a Markov chain on a
general state space. Necessary and sufficient conditions for stationarity and invertib-
ility were also mentioned. The link between stability and ergodicity was investigated
for the deterministic skeleton of the SRE. Furthermore, we discussed the use of the
associated Lyapunov exponent in inferring stationarity and stability. Conditions for
local and global invertibility were achieved. Verifying the invertibility requirement
is essential when an NLMA model is used to forecast. Consequently, we provided a
practical procedure for this purpose. Unfortunately, explicit/closed form expressions
for the stationarity and invertibility of nonlinear models have been found only in a
few simple cases.

Terms and Concepts

collapsed Markov chain, 92
empirically invertible, 105
Feller chain, 97
globally (non-)invertible, 101
generalized random coefficient AR, 88
geometric ergodic, 96
Harris ergodic, 97
locally (non-)invertible, 108

mixing coefficients, 95
non-anticipative, 89
Poisson equation, 93
reconstruction errors, 101
stochastic recurrence equation, 88
strong mixing, 95
top Lyapunov exponent, 88

3.7 Additional Bibliographical Notes

Section 3.1: Most of the properties of a SRE are well known, including conditions for
the existence and uniqueness of a stationary solution, or for the existence of moments for a
stationary distribution, cf. Pourahmadi (1988). In the context of SREs, Kristensen (2009)
gives necessary and sufficient conditions for stationarity of two broad classes of (non)linear
GARCH models in terms of γ(·). Ispány (1997) does the same for an additive BL state
space model.

Akamanam et al. (1986) show the existence of strict stationarity and ergodicity of BL time
series models of the form (2.12) with u ≥ v. Bhattacharaya and Lee (1995) and An and
Chen (1997) consider (geometric) ergodicity of a general NLAR model.

Section 3.2: As a special case of the MS-ARMA model (2.67), Holst et al. (1994) give a
sufficient condition for the switching AR with Markov regime to be second-order station-
ary. Francq and Zaköıan (2005) derive necessary and sufficient conditions for existence of
moments of any order of GARCH models with Markov regime switching. For these models,



3.8 DATA AND SOFTWARE REFERENCES 111

the regime switching depends directly on a hidden Markov chain and only indirectly on the
current state of the process itself, i.e. the process {(At,Bt), t ∈ Z} in (3.1) is no longer i.i.d.

Section 3.3: Goldsheid (1991) provides a CLT which may be used to construct asymp-
totic confidence bands for estimators of the top Lyapunov exponent, while Gharavi and
Anantharan (2005) derive an upper bound for γ(·). In a review paper, Lindner (2009) ad-
dresses the question of strictly stationary and weakly stationary solutions for pure GARCH
processes.

Section 3.4: In the early 80s the most part of the literature consider sufficient, and rarely
necessary, conditions for stationarity and ergodicity for nonlinearities in the conditional
mean; see, e.g., Chan and Tong (1985), Liu (1989a, 1995), Pham (1986), Pham and Tran
(1985), Liu and Brockwell (1988) and the references therein. During the last two decades
the focus is mainly on studying conditions for combined models with nonlinearities in both
the conditional mean and the conditional variance; see, e.g., Fonseca (2004) and Chen et al.
(2011b) for references to the main contributions. More recent developments are by Chen
and Chen (2000), Ferrante et al. (2003), Fonseca (2005), Liebscher (2005) and Meitz and
Saikkonen (2008, 2010), among others.

Section 3.4.2: Meyn and Tweedie (1993, Appendix B) propose a four-step procedure to
classify a SETAR model as being ergodic, transient, and null recurrent. This procedure may
also serve as a template for analyzing other nonlinear time series models.

Section 3.5: In the case when (3.25) has time dependent coefficients, Hallin (1980) gener-
alizes the notion of invertibility in (3.31). Using the solution to the SETMA process (3.41),
Li (2012) and Li, Ling, and Tong (2012) derive explicit expressions for the moments and
ACF of some special TMA models. Amendola et al. (2006a, 2007) give examples of moment
and ACF expressions of SETARMA models. Chen and Wang (2011) investigate some prob-
abilistic properties of a combined linear–nonlinear ARMA model with time dependent MA
coefficients.

3.8 Data and Software References

Section 3.3: R code (ctarch.eigen.r) for evaluating the Lyapunov exponent γ in the case of
SETAR-ARCH models (Example 3.3) is available at the website of this book.

Section 3.5.1: MATLAB code for checking the empirical invertibility (Algorithm 3.1) of a
BL model is available at the website of this book. The code can be quite easily modified to
assess invertibility of other nonlinear models.

Exercise 3.8: Initially the West German data set was downloaded from datamarket.
Description: Monthly unemployment figures in West Germany 1948 – 1980. DataMarket
became a part of Qlik R© in the year 2014; http://www.qlik.com/us/products/qlik-
data-market.

http://www.qlik.com/us/products/qlikdata-market
http://www.qlik.com/us/products/qlikdata-market
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Appendix

3.A Vector and Matrix Norms
Vector norms:
At various places in this book we require some method to measure the size of a vector or a
matrix. We refer to these measures collectively as norms. Given a vector/linear space V ,
then a vector norm, denoted by ‖x‖ is a function x → ‖x‖ that assigns a nonnegative real
number ‖x‖ to every vector x ∈ V with the following properties.

‖x‖ > 0, ∀x �= 0, (‖0‖ = 0) (A.1)
‖αx‖ = |α| ‖x‖, α ∈ R (A.2)

‖x + y‖ ≤ ‖x‖+ ‖y‖. (A.3)

The inequality (A.1) requires the size to be positive, and property (A.2) requires the size to
be scaled as the vector x is scaled. Property (A.3) is known as the triangle inequality.

Any mapping of an n-dimensional vector space onto a subset of R that satisfies (A.1) –
(A.3) is a norm. The following are some basic examples of norms.

(i) The normed linear space:
Let x = (x1, . . . , xn)′ be a vector in V ≡ Rn (Euclidean space). Then an obvious
definition of a norm is

‖x‖p =
( n∑

i=1

|xi|p
)1/p

, p ≥ 1. (A.4)

The function x → ‖x‖p is known as the Lp-normed linear space. The most common
linear spaces are the one-norm, L1, and the two-norm, L2, where p = 1 and p = 2,
respectively.

(ii) The infinity-norm:
Let x = (x1, . . . , xn)′ be a vector in Rn. Another standard norm is the infinity, or
maximum, or supremum, norm given by the function

‖x‖∞ = max
1≤i≤n

(|xi|). (A.5)

The vector space Rn equipped with the infinity norm is commonly denoted L∞.

(iii) Continuous linear functionals:
Let V = C[a, b] be the space of all continuous functionals f(·) on the finite interval
[a, b]. Then a natural norm is

‖f‖p =
( ∫ b

a

|f(x)|pdx
)1/p

, p ≥ 1, (A.6)

with p = 1 and p = 2 the usual cases, and ‖f‖∞ = maxa≤x≤b |f(x)|.

Matrix norms:
Suppose {Rn, ‖x‖p} is a normed linear space with ‖x‖p some norm. Let A = (aij)m×n be
a real matrix. Then the norm of A, subordinate to the vector norm ‖x‖p, is defined as

‖A‖p = sup
x�=0

‖Ax‖p

‖x‖p
= sup

‖x‖p=1

‖Ax‖p, x ∈ Rn, Ax ∈ Rm. (A.7)
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So, ‖A‖p is the largest value of the vector norm of Ax in the space V = Rn normalized over
all non-zero vectors x. In particular,

‖A‖1 = max
j

∑
i

|aij |, ‖A‖2 =
(
maximumeigenvalue of (A′A)

)1/2
.

The norm ‖A‖2 is often called the spectral norm. When p = 1 and 2, the matrix norm
satisfies the following four properties:

Positivity: ∞ > ‖A‖p > 0, ∀A �= 0, except ‖0‖p = 0, (A.8)
Homogeneity: ‖αA‖p = |α| ‖A‖p, α ∈ R, (A.9)
Triangle inequality: ‖A + B‖p ≤ ‖A‖p + ‖B‖p, (A.10)
Compatibility: ‖Ax‖p ≤ ‖A‖p ‖x‖p. (A.11)

Here, (A.8) – (A.10) are generalizations of the three properties (A.1) – (A.3). Property
(A.11) is a direct consequence of the definition (A.4). A special case of (A.11) is

‖AB‖p ≤ ‖A‖p ‖B‖p, (A.12)

which is a simple but often useful property. Another special case of (A.11) is

|aij | ≤‖A‖p, ∀i, j. (A.13)

An important use of matrix norms is in proving convergence of powers of matrices.
Suppose A1,A2, . . . is a sequence of square matrices. Then,

lim
i→∞

‖Ai‖p= 0 ⇐⇒ lim
i→∞

Ai → 0, (A.14)

where 0 is a square matrix consisting of zeros. Now, suppose Ai is given as a product of
another sequence of matrices B1,B2, . . ., so that Ai =

∏i
j=1 Bj . In that case the desired

conclusion of (A.14) will follow if there exists a ρ such that for all j, ‖Bj‖< ρ < 1. However,
within the context of formulating conditions for (multivariate) stationarity and invertibility,
we will encounter the case where the Bj are block matrices. In particular, for n×n matrices
Cu,j (u = 1, . . . , p) and Dv (v = 1, . . . , p − 1), we will see the block structure

Bj =

⎛⎜⎜⎜⎜⎜⎜⎝

C1,j C2,j · · · Cp−1,j Cp,j

D1 0n×n · · · 0n×n 0n×n

0n×n D2

...
...

. . .
...

0n×n · · · . . . Dp−1 0n×n

⎞⎟⎟⎟⎟⎟⎟⎠ .

If some or all of the matrices Dv = In, as with the so-called companion matrix , then by
(A.13), ‖Bj‖≥ 1. So, the condition leading to (A.13) is not fulfilled. One can get around
this problem by multiplying together sufficiently many Bj ’s before taking the norm.

APPENDIX 3.A
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3.B Spectral Radius of a Matrix
A quantity associated with matrices is the spectral radius of a matrix. A square matrix
A = (aij)n×n has n eigenvalues λi (i = 1, . . . , n). The spectral radius of A, which we
denote by ρ(A), is defined as

ρ(A) = max
1≤i≤n

(|λi|). (B.1)

Note that ρ(A) ≥ 0 for all A �= 0. Furthermore,

ρ(A) ≤ ‖A‖p, (B.2)

for all subordinate matrix norms. This property can be easily proved. Note that ρ(A) is
not a norm since it can be shown that ρ(A + B) �≤ ρ(A) + ρ(B).

The following properties are often useful. For any positive integer m, and a constant
c > 0, we have

|(Am)ij | ≤ c
(
ρ(A)

)m
, ∀i, j (B.3)

ρ(A) ≤ max
1≤i≤n

n∑
j=1

|aij | ≤ n max
1≤i,j≤n

|aij |, (B.4)

ρ(A⊗A) < 1 if and only if ρ(A) < 1. (B.5)

Also, it is easy to prove that

‖A‖22 = ρ(A′A), (B.6)

i.e. the maximum eigenvalue of the symmetric matrix A′A.
In Chapter 11, we mention briefly the concept of joint spectral radius which is a gener-

alization of the notion of spectral radius of a matrix, to sets of matrices. Consider a set of
bounded square matrices A ⊂ Rn×n. The joint spectral radius is defined by

ρ(A) = lim sup
p→∞

(
sup

A∈A(p)
‖A‖

)1/p

, (B.7)

where A(p) = {A1A2 · · ·Ap : Ai ∈ A, i = 1, . . . , p} and ‖ · ‖ can be any matrix norm; see,
e.g., Liebscher (2005) for more results about the joint spectral radius.
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Exercises

Theory Questions

3.1 Consider an EXPAR(1) model of the form

Yt = {φ + ξ exp(−γY 2
t−1)}Yt−1 + εt, (|φ| < 1 <, γ > 0),

where {εt} are i.i.d. random variables, each having a strictly positive and continuous
density f(x) = (1/2) exp(−|x|). Prove that {Yt, t ∈ Z} is geometrically ergodic and
E|Y m

t | < ∞ ∀m ∈ Z+.

3.2 Consider the k-regime asymmetric MA(1) model

Yt = εt + ψ(εt−1) εt−1,

where ψ(ε) =
∑k

i=1 β(i)FR(i)(ε) with FR(i)(·) the characteristic function of set R(i)

(i = 1, . . . , k). Assume |β(i)| ≤ γ < 1 and E|εt|m ≤ c < ∞ (m ∈ Z+), where γ and c
are real positive constants. Furthermore, assume that the residual ε̂0 = 0.

Show that the process {Yt, t ∈ Z} is invertible in the sense that lim supt→∞ E|et|m ≤
c∗, where {et} are the reconstruction errors, and c∗ < ∞ is some constant.

3.3 Consider the quadratic MA(1) model

Yt = εt − βε2
t−1, {εt} i.i.d.∼ N (0, 1),

where β �= 0. Granger and Andersen (1978a, p. 28) claim that this model is never
invertible with respect to the non-zero value of the parameter β.

(a) Show that under the condition |β| < (C +log 2)/4 the model is locally invertible
where C is Euler’s constant.

(b) Consider Algorithm 3.1 with N = 1,000. Set T = 50 and T = 100. Then,
using 1,000 MC replications, show that the model is empirically invertible for
|β| values smaller than approximately 0.85.

3.4 Consider the first-order BL(1, 0, 1, 1) model

Yt = φYt−1 + ψYt−1εt−1 + εt, {εt} i.i.d.∼ N (0, σ2
ε). (3.46)

Using the above model, Terdik (1999, p. 207) obtains the following estimation results
for the magnetic field data (Example 1.3):

Yt = 0.5421Yt−1 + 0.0541Yt−1ε̂t−1 + ε̂t, σ̂2
ε = 0.2765. (3.47)

(a) Verify that the fitted BL model is a weakly (second-order) stationary process,
assuming it is first-order stationary.

(b) Show that (3.46) is invertible if φ and ψ satisfy the condition

2(1 + φ)λ4 + 2(1− φ)λ2 − (1− φ)2(1 + φ) < 0, λ = ψσε. (3.48)
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(c) Using (3.48), verify that the fitted model is invertible.

3.5 Consider the BL model

Yt = φ0 +
p∑

i=1

φiYt−i +
q∑

j=1

θjεt−j +
Q∑

i=1

P∑
j=0

ψijYt−i−jεt−i, {εt} i.i.d.∼ (0, σ2
ε).

Show that the model can be represented as

Yt = Z1,t−1 + θ0εt,

where the process Zt = (Z1,t, . . . , Zn,t)′ ∈ Rn, with n = max(p, P + q, P + Q), solves
the SRE representation Zt = AtZt−1 + Bt and where the At ∈ Rn×n and Bt ∈
is a random matrix, and a random vector of polynomials in {εt} of degree 1 and 2
respectively.

(Kristensen, 2009)

Empirical and Simulation Questions
3.6 Consider the asMA(1) model

Yt = εt + β+ε+
t−1 + β−ε−

t−1, {εt} i.i.d.∼ N (0, σ2
ε),

where ε+
t = I(εt ≥ 0)εt and ε−

t = I(εt < 0)εt.

(a) Using Algorithm 3.1 with N = 1,000, obtain a graphical representation of the
empirical invertibility region for a simulated time series of size T = 100, using
1,000 MC replications.

(b) Wecker (1981) derives the following sufficient invertibility conditions: |β+| < 1
and |β−| < 1. Compare and contrast the resulting invertibility region with
the one obtained in part (a). Suggest a necessary and sufficient condition for
invertibility.

3.7 (a) Consider the asMA(1) model in Exercise 3.6. Rewrite the model in the form

Yt =β(t− 1)Yt−1−β(t− 1)β(t− 2)Yt−2+· · ·−β(t− 1) · · · β(1)Y1+εt,

where β(T − 1) · · · β(1) = (β+)j(β−)(T−1−j) (j = 0, . . . , T − 1).

(b) Using the specification in part (a), suggest an alternative notion of invertib-
ility for the asMA(1) model. Give a graphical representation of the resulting
invertibility region.

(c) Now, rewrite the asMA(1) model as follows:

Yt = εt + β(εt−1),

where β(εt−1) =
∑2

i=1 βiI(εt−1 ∈ Si)εt−1 with β1 = β+, β2 = β−, S1 = [0, ∞)
and S2 = (−∞, 0). Verify the invertibility condition E|et| → 0 as t →∞. Show
that the corresponding invertibility region is given by

|β1| < 1, |β2| < 1, and |β1|+ |β2| < 1.

R
n
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3.8 Subba Rao and Gabr (1984, pp. 211 – 212) consider the monthly West German unem-
ployment data (Xt) for the time period January 1948 – May 1980 (389 observations).
They use the first 365 observations of the series Yt = (1 − B)(1 − B12)Xt for fitting
a subset BL model, and the last 24 observations for out-of-sample forecasting. It is
therefore vital that the fitted model is invertible. The best fitted subset BL model is
given by

Yt − 0.0874Yt−1 + 0.1261Yt−2 − 0.0426Yt−9 − 0.2556Yt−11 + 0.5067Yt−12

= −4598.325− 0.1315× 10−4Yt−1ε̂t−10 − 0.1279× 10−5Yt−2ε̂t−5

− 0.3790× 10−6Yt−5ε̂t−4 + 0.1902× 10−5Yt−11ε̂t−7

+ 0.1513× 10−5Yt−12ε̂t−4 − 0.2267× 10−5Yt−12ε̂t−2

− 0.9507× 10−6Yt−4ε̂t−10 − 0.1948× 10−5Yt−10ε̂t−8

+ 0.2715× 10−5Yt−1ε̂t−9, σ̂2
ε = 0.36665× 1010.

Assuming the above model is correctly specified, check the empirical invertibility of the
fitted BL model using Algorithm 3.1 with N = 1,000. The complete (undifferenced)
data set (German unemplmnt.dat) is available at the website of this book.



Chapter 4
FREQUENCY-DOMAIN TESTS

The specification and estimation of a nonlinear model may be difficult in practice
and sometimes no substantial improvements in forecasting accuracy can be achieved
by using a nonlinear model instead of a familiar ARMA model. Therefore, one
may wish to start the model building from a linear model and abandon it only if
sufficiently strong evidence for a nonlinear alternative can be found. This approach
can be applied using a linearity test, often in combination with a test for Gaussianity.
Several test statistics, both in the time domain and frequency domain, have been
proposed for this purpose.

In this chapter, we will restrict attention to frequency-domain linearity and Gaus-
sianity test statistics. These tests are nonparametric, or model-free, having an al-
ternative hypothesis that only states that the DGP is nonlinear, and not specifying
the type of nonlinearity. Within the frequency domain the simplest higher-order
spectrum is the second-order spectrum, or bispectrum. Based on the asymptotic
properties of the estimated normalized bispectrum, we introduce various test stat-
istics. Most tests follow a two-stage approach. The first stage tests if a time series
process has a zero third-order cumulant function, but is often interpreted as a test
of white noise. If a process is WN then the second-order covariances and second-
order spectra will contain all the useful information. In that case all its higher-order
moments, or higher-order spectra, are identically zero. If on the other hand the null
hypothesis of zero third-order cumulant function is rejected in stage one, then the
second stage is to test for linearity.

The outline of the rest of this chapter is as follows. In Section 4.1 we define
the normalized bispectrum and indicate how it motivates tests of Gaussianity and
linearity. Next, in Sections 4.2 and 4.3, we introduce two “classical” methods, the
Subba Rao and Gabr (1980) and the Hinich (1982) test statistics, and discuss their
major shortcomings. In fact, the Hinich and the Subba Rao–Gabr tests for Gaus-
sianity and linearity are only useful when large amounts of data are available, and
rely on the asymptotic normality of the estimator of the bispectrum which may be a
poor approximation for small sample sizes. Between the two, Hinich’s test statistics
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have long been preferred in applications. However, these test statistics tend to have
low power and require the specification of a smoothing or window-width parameter.
Consequently, various improvements and modifications of the Hinich bispectral test
statistics have been proposed; see Section 4.4 for a brief overview. First, in Sec-
tion 4.4.1, we apply goodness-of-fit techniques to the asymptotic properties of the
estimated bispectrum, resulting in new test statistics with increased power. In the
following subsection, we describe a method to eliminate the arbitrariness concern-
ing the selection of the smoothing parameter. In Section 4.4.3, we discuss another
improvement based on a bootstrap algorithm, which approximates the finite-sample
null distribution of Hinich’s test statistics.

As we saw in Section 1.1, the differences between linear and nonlinear DGPs can
also be defined in terms of mean squared forecast errors (MSFEs). In Section 4.5, we
discuss a frequency domain linearity test statistic based on an additivity property
of the bispectrum of the innovation process of a stationary linear Gaussian process.
The bispectrum is used to check if the best predictor of an observed time series is
linear, and the series is deemed to be linear if this null hypothesis is not rejected
against the alternative hypothesis that the best forecast is quadratic. Section 4.6
contains a summary of numerical studies related to the size and power of most of the
test statistics discussed in this chapter. Finally, in Section 4.7, we apply a number
of test statistics to the six time series introduced in Chapter 1.

4.1 Bispectrum

Apart from Section 4.5, throughout this chapter we assume that {Yt}T
t=1 is a time

series arising from a real-valued third-order strictly stationary stochastic process
{Yt, t ∈ Z} that – for ease of notation – is assumed to have mean zero. One basic
tool for quantifying the inherent strength of dependence is the ACVF given by
γY (�) = E(YtYt+�) (� ∈ Z). For testing nonlinearity and non-Gaussianity, another
useful function is the third-order cumulant, defined as γY (�1, �2) = E(YtYt+�1Yt+�2),
(�1, �2 ∈ Z). Both functions are time invariant and unaffected by permutations in
their arguments, which creates the symmetries

γY (�) = γY (−�), (4.1)
γY (�1, �2) = γY (�2, �1) = γY (−�1, �2 − �1) = γY (�1 − �2,−�2). (4.2)

The spectral density function, or spectrum , of {Yt, t ∈ Z} is formally defined as the
discrete-time Fourier transform (FT) of the ACVF, i.e.,

fY (ω) =
∞∑

�=−∞
γY (�) exp(−2πiω�), ω ∈ [0, 1], (4.3)

where ω denotes the frequency. A sufficient, but not necessary, condition for the
existence of the spectrum is that

∑∞
�=−∞ |γY (�)| < ∞.
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If, in addition,
∑∞

�1,�2=−∞ |γY (�1, �2)| < ∞, then the bispectral density function,
or bispectrum , exists and is defined as the bivariate, or double, FT of the third-order
cumulant function,

fY (ω1, ω2) =
∞∑

�1,�2=−∞
γY (�1, �2) exp{−2πi(ω1�1 + ω2�2)}, (ω1, ω2) ∈ [0, 1]2.

(4.4)

Note that in a similar fashion higher-order spectral functions can be defined whose
corresponding multi-dimensional FTs are termed polyspectra . The spectrum is real-
valued and nonnegative. In contrast, the bispectrum and higher-order spectra are
complex-valued.

In view of (4.1) – (4.4), we have the relations,

fY (ω) = fY (−ω), (4.5)
fY (ω1, ω2) = fY (ω2, ω1) = fY (ω1,−ω1 − ω2) = fY (−ω1 − ω2, ω2). (4.6)

The third-order cumulant and the bispectrum are mathematically equivalent, as are
the spectrum and the ACVF. Clearly fY (ω) is symmetric about 0.5. From (4.4),
and due to the periodicity of the FT (4.3), the bispectrum in the entire plane can
be determined from the values inside one of the twelve sectors shown in Figure 4.1.
Therefore, it is sufficient to consider only frequencies in the first triangular region
(cf. Exercise 4.1), which we define as the principal domain

D = {(ω1, ω2) : ω1 = ω2, ω1 = 0, ω1 = (1− ω2)/2}; (4.7)

recall that we have assumed a normalized sampling frequency of 1 Hz.
If {Xt, t ∈ Z} and {Yt, t ∈ Z} are two statistically independent processes and

Zt = Xt + Yt, then γZ(�1, �2) = γX(�1, �2) + γY (�1, �2), and hence fZ(ω1, ω2) =
fX(ω1, ω2) + fY (ω1, ω2). If {Xt, t ∈ Z} is Gaussian and i.i.d., then γX(�1, �2) = 0,
∀(�1, �2), and fX(ω1, ω2) = 0, ∀(ω1, ω2), so fZ(ω1, ω2) = fY (ω1, ω2), in other words
symmetric noise is suppressed in the bispectrum.

Another useful property of the bispectrum is that its imaginary part (denoted
by �(·)), should be zero for a time-reversible process. In that case, the third-
order cumulant function of {Yt, t ∈ Z} has the additional symmetry property that
γY (�1, �2) = γY (−�1,−�2), and hence

�{fY (ω1, ω2)} =
∞∑

�1,�2=−∞
γY (�1�2, ) sin 2π(ω1�1 + ω2�2)

=
∞∑

�1,�2=0

γY (�1, �2){sin 2π(ω1�1 + ω2�2) + sin 2π(−ω1�1 − ω2�2)}

= 0 (4.8)
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Figure 4.1: Values of fY (ω1, ω2) defined over the entire plane, as completely specified by
the values over any one of the twelve labeled sectors.

using the identity sin A + sin B = 2 sin A+B
2 cos A−B

2 .
For reasons to be apparent soon, a convenient normalization for the bispectrum

is obtained by simply dividing the modulus of fY (ω1, ω2) by the appropriate spectra,
giving the normalized bispectrum , defined by

BY (ω1, ω2) =
fY (ω1, ω2)√

fY (ω1)fY (ω2)fY (ω1 + ω2)
, (ω1, ω2) ∈ D. (4.9)

The third-order cumulant of the general linear causal process (1.2) is given by

γY (�1, �2) = E

( ∞∑
j=0

∞∑
j′=0

∞∑
j′′=0

ψjεt−jψj′εt+�1−j′ψj′′εt+�2−j′′
)

= E(ε3
t )

∞∑
j=0

ψjψj+�1ψj+�2 .

Hence, the bispectrum becomes

fY (ω1, ω2) = E(ε3
t )

∞∑
�1,�2=−∞

∞∑
�=0

ψ�ψ�+�1ψ�+�2 exp{−2πi(ω1�1 + ω2�2)}
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= E(ε3
t )

∞∑
�1,�2=−∞

∞∑
�=0

ψ�1ψ�2ψ� exp{−2πi
(
ω1(�1 − �) + ω2(�2 − �)

)
}

= E(ε3
t )

∞∑
�1=0

ψ�1 exp{−2πiω1�1}
∞∑

�2=0

ψ�2 exp{−2πiω2�2}

×
∞∑

�=0

ψ� exp{2πi(ω1 + ω2)�}

= E(ε3
t )H(ω1)H(ω2)H∗(ω1 + ω2), (4.10)

where H(ω) =
∑∞

j=0 ψj exp(−2πiωj) is known as the transfer function , and H∗(ω) =
H(−ω) its complex conjugate. Furthermore, it is well known that if {Yt, t ∈ Z} is
linear, then the spectral density function in (4.3) reduces to

fY (ω) = σ2
ε |H(ω)|2. (4.11)

Combining (4.10) and (4.11), the square modulus of the normalized bispectrum,
called frequency bicoherence , is simply

|BY (ω1, ω2)|2 =
{E(ε3

t )}2

σ6
ε

≡
μ2

3,ε

σ6
ε

, (ω1, ω2) ∈ D, (4.12)

where μ3,ε = E(ε3
t ). This fundamental property is the basis of frequency-domain

tests for Gaussianity and linearity which we detail in the next sections.
Note that the right-hand side of (4.12) is the squared skewness of the process

{εt, t ∈ Z}. If {Yt, t ∈ Z} is linear, and the distribution of {εt} is symmetric, then
μ3,ε = 0 and so |BY (ω1, ω2)|2 ≡ 0, ∀(ω1, ω2) ∈ D. However, this is also true for
linear Gaussian time series processes. Thus the skewness function is a constant if
{Yt, t ∈ Z} is linear and that constant is zero if {Yt, t ∈ Z} is Gaussian. Consequently,
the null hypotheses of interest are, respectively,

H
(1)
0 : fY (ω1, ω2) = 0, ∀ (ω1, ω2) ∈ D; and (4.13)

H
(2)
0 : |BY (ω1, ω2)|2 = constant, ∀ (ω1, ω2) ∈ D. (4.14)

Given actual data of size T , consistent estimates of the spectrum and bispectrum
can be obtained through various techniques. Broadly these techniques can be clas-
sified into three categories: nonparametric or conventional methods, parametric or
model-based methods (e.g. AR modeling), and criterion-based methods (e.g. Burg’s
(1967) maximum entropy algorithm). The first category includes two classes: the
direct method which is based on computing the third-order extension of the sample
periodogram, known as the third-order periodogram , and the indirect method , which
is the extension of the FT of the sample ACVF to the third-order cumulant. Both
methods are easy to understand and easy to implement, but are limited by their
resolving power when T is small, i.e., the ability to separate two closely spaced
harmonics. Nevertheless, conventional methods dominate the literature.
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The (sample) periodogram, as a natural estimator of the spectrum, is defined as
the discrete FT of the sample ACVF, i.e.

IT (ω) =
T−1∑

�=−(T−1)

γ̂Y (�) exp{−2πiω�}, ω ∈ [0,
1
2
], (4.15)

where γ̂Y (�) = T−1
∑T−�

t=1 YtYt+�. The periodogram, however, is not a consistent
estimator of fY (ω). Similarly, the third-order periodogram, is an inconsistent es-
timator of fY (ω1, ω2). Consistent estimators of fY (ω) and fY (ω1, ω2) are obtained
by “smoothing” the periodogram and third-order periodogram, and the resulting
estimators are defined as

f̂Y (ω) =
M∑

�=−M

λ
( �

M

)
γ̂Y (�) exp(−2πiω�), ω ∈ [0,

1
2
], (4.16)

f̂Y (ω1, ω2) =
M∑

�1,�2=−M

λ
( �1

M
,

�2

M

)
γ̂Y (�1, �2) exp{−2πi(ω1�1 + ω2�2)},

(ω1, ω2) ∈ D, (4.17)

where γ̂Y (�1, �2) = T−1
∑T−β

t=1 YtYt+�1Yt+�2 , with β = max{0, �1, �2}, (�1, �2 =
0, 1, . . . , T − 1) and 1 ≤ M � T (truncation point).

The function λ(·) is a lag window, satisfying λ(0) = 1 and the symmetry condition
(4.1). Furthermore, λ(·, ·) is a two-dimensional lag window satisfying the same
symmetries as the third-order moment, and is real-valued and finite. A standard
window is Parzen’s lag window, which is defined as

λ(u) =

⎧⎨⎩
1− 6u2 + 6|u|3, |u| ≤ 1

2 ,
2(1− |u|)3, 1

2 |u| ≤ 1,
0, |u| > 1.

(4.18)

A two-dimensional lag window can be constructed from any one-dimensional
window, and is given by λ(�1, �2) = λ(�1)λ(�2)λ(�1 − �2). In general, M ≡ M(T )
is chosen such that as T → ∞ then M → ∞, but the ratio M2/T → 0. A large
value of M will increase the variance and decrease the bias of the estimates of the
spectrum and bispectrum.

Example 4.1: Third-order Cumulant and Bispectrum

Suppose the series {Yt}T
t=1 is generated by a diagonal BL(0, 0, 1, 1) process of

the form

Yt = βYt−1εt−1 + εt, (4.19)
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Figure 4.2: (a) A realization of the diagonal BL(0, 0, 1, 1) process Yt = 0.4Yt−1εt−1 +εt

with {εt} i.i.d.∼ N (0, 1); (b) Three-dimensional plot of γY (u, v); (c) Contour plot of the fre-
quency bicoherence estimates of the BL process in (a); (d) Contour plot of the bicoherence
of a series generated by the AR(1) process Yt = 0.4Yt−1 + εt with {εt} i.i.d.∼ N (0, 1). Super-
imposed is a plot of the principal domain (4.7); T = 100.

where {εt} i.i.d.∼ N (0, σ2
ε). To ease notation, it is convenient to define λ = βσε.

The process is stationary and ergodic if |λ| < 1. According to Kumar (1986),
the third-order cumulant is given by

γY (�1, �2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2λ3σ3
ε

(
4+5λ2

1−λ2

)
, (�1, �2) = (0, 0),

2βσ4
ε(1+λ2+λ4)

1−λ2 , (�1, �2) = (1, 1),
4β3σ6

ε(1+2λ2σ2
ε+3λ4σ4

ε)
1−λ2 , (�1, �2) = (1, 0),

β3σ6
ε , (�1, �2) = (2, 1),

6β2�2+1σ
2�2+4
ε (1+λ2+2λ4)

1−λ2 , (�1 = 0, �2 = 2, 3, . . .),
0, otherwise.

(4.20)

Figure 4.2(a) shows a plot of a realization of the BL(0, 0, 1, 1) process with
β = 0.4. The plot gives an indication of the series periodicity, stationarity,
and also whether there are any intermittent periods. Figure 4.2(b) shows a
plot of γY (�1, �2) for (�1, �2) = −3, . . . , 3, with σ2

ε = 1. Note the peak in the
third-order cumulant at (�1, �2) = (1, 1). For a diagonal BL(0, 0, p, p) (p > 0)
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zero-mean process, γY (�1, �2) will have a peak in the third-order cumulant at
(�1, �2) = (p, p). Then the modulus of the bispectrum will be periodic on the
manifolds ω1 = 0 and ω2 = 0 with frequency inversely proportional to p.

Figure 4.2(c) shows a contour plot of the bicoherence using the direct fast FT
based estimation method. We see peaks at (ω1, ω2) = (0, 0) and the 11 other
symmetric locations indicative of nonlinear phenomena. Figure 4.2(d) gives
the bicoherence for a realization of a stationary AR(1) process with the same
parameter value as the simulated BL process. The plot also includes the first
triangular region, i.e., the principal domain (4.7). We see, that in contrast
to the BL process, the bicoherence is constant, indicating that the process is
linear, and possibly Gaussian, or normally, distributed.

4.2 The Subba Rao–Gabr Tests

A first heuristic step of assessing non-Gaussianity (or more broadly asymmetry), and
nonlinearity is to examine the real and imaginary parts of the bispectrum, as well
the modulus of the bispectrum estimates by a three-dimensional plot or by a contour
plot. This can be a useful exercise, but like interpreting a plot of the sample ACF it
is an inexact art. A number of formal frequency domain tests for non-Gaussianity
and nonlinearity have been based on the frequency bicoherence result (4.12). In
this section, we discuss two test statistics proposed by Subba Rao and Gabr (1980,
1984).

4.2.1 Testing for Gaussianity

Subba Rao and Gabr (1980) suggest testing for Gaussianity first by forming an
estimate of fY (ω1, ω2) on a set of lattice frequencies in the principle domain D,
and then testing those quantities for constancy, by estimating |BY (ω1, ω2)|2. The
procedure for computing the Gaussianity test statistic consists of the following steps.

Algorithm 4.1: The Subba Rao–Gabr Gaussianity test

(i) Choose M , and estimate fY (ω) by (4.16).

(ii) Construct a set of estimators f̂Y (ωj , ωk) at a “coarse” grid of designated
frequencies (ωj , ωk) ∈ D, with ωj = j/K, (j = 1, . . . , �2K/3�), ωk = k/K,
(k = j+1, . . . ,K−�j/2�−1). Here, K must be chosen such that K � T and
its value lies inside D. This is accomplished by defining a “fine” grid of N =
4r + 1 frequencies ωjp = ωj + pd

2T , (p = −r,−r + 1, . . . ,−1, 0, 1, . . . , r − 1, r),
ωkq = ωk+ qd

2T , (q = −r,−r+1, . . . ,−1, 1, . . . , r−1, r), which extend vertically
and horizontally from each of the (ωj , ωk).
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Algorithm 4.1: The Subba Rao–Gabr Gaussianity test (Cont’d)

(ii) (Cont’d)
The distance d between the new frequencies is such that the bispectral estim-
ates at neighboring points on this fine grid are approximately uncorrelated.

(iii) Use (4.17) at each of the (ωjp
, ωkq

) in the finer grid, to obtain f̂Y (ωjp
, ωkq

),
as N unbiased, approximately uncorrelated, estimates of fY (ωj , ωk).

(iv) Place each of the f̂Y (ωjp
, ωkq

) in a P × N matrix D = (ξ1, . . . , ξN ) where
ξi = (ξ1i, . . . , ξPi)′ (i = 1, . . . , N ) with ξi = f̂Y (ωjp

, ωkq
), suitably relabeled,

and where P =
∑[2K/3]

i=1 (K−�i/2�−1− i). The P row vectors of this matrix
are asymptotically complex Gaussian with mean η, a vector of length N ,
and variance-covariance matrix Σf , say. Under H(1)

0 , η = 0.

(v) The test statistic for Gaussianity is developed as a complex analogue of Ho-
telling’s T 2 test statistic. Specifically, calculate the statistic T 2

1 = N η̂∗A−1η̂,
where A = NΣ̂f and ∗ denotes complex conjugate. For practical application,
it is recommended to use the test statistic

F1 =
2(N − P )

2P
T 2

1 . (4.21)

Under H(1)
0 , and as T →∞,

F1
D−→ Fν1,ν2 (4.22)

with degrees of freedom ν1 = 2P and ν2 = 2(N − P ).

Example 4.2: Principal Domain of the Subba Rao–Gabr Gaussianity
Test

The choice of K has a direct effect on the selected frequencies in the principal
domain. Suppose T = 250, K = 6, d = 8, and r = 2.1 Then, N = 4r + 1 = 9,
and P = (6−2)+(6−4)+(6−5) = 7, resulting in 63 frequency pairs (ω1, ω2)
from the total of approximately (1/3){(T/2)+1}2 = 5, 292 in D. Figure 4.3(a)
shows a plot of the corresponding principal domain. Figure 4.3(b) displays
similar results for K = 7 (P = 10). Observe that there is a lack of selected
frequencies near the left and bottom edges of D in both figures. So, in practice,
the Subba Rao–Gabr Gaussianity test statistic can be sensitive to small, or
missing, values of the estimates of fY (ω1, ω2) in certain areas of D.

1Choosing K as a multiple of T results in ordinates that directly match the Fourier frequencies.
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Figure 4.3: (a) Principal domain for the bispectrum with frequency pairs (ωjp
, ωkq

) (blue
dots) (p = −2,−1, 0, 1, . . . , 2; q = −2,−1, 1, 2) and designated frequency pairs (red stars) for
d = 8, T = 250 ; (a) K = 6, and (b) K = 7.

4.2.2 Testing for linearity

If the symmetry null hypothesis H(1)
0 is rejected, Subba Rao and Gabr (1980) consider

testing H(2)
0 . As in the Gaussianity test, estimates of |BY (ωjp , ωkq)| are constructed

at the N points in the fine grid (ωjp , ωkq). Place these NP estimates in a P × N
matrix. Average the values in the columns of this matrix to obtain a random sample
of N estimates of the P × 1 mean vector Z = (Z1, . . . , ZP )′, suitably relabeled.
These estimates, denoted by Z∗

1, . . . ,Z
∗
N , are asymptotically normally distributed

(Brillinger, 1965). If H(2)
0 is “true” then all the elements of the mean vector Z are

identical. Equality of the means under the null hypothesis can be expressed as P −1
comparisons, i.e. Zi − Zi−1 = 0 (i = 1, . . . , P − 1). This expression can be written  in
matrix form. To this end, define a (P − 1)× 1 column vector β such that β = BZ,
where B is the (P − 1)× P matrix:

B =

⎛⎜⎜⎜⎝
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1

⎞⎟⎟⎟⎠ .

Under the null hypothesis H(2)
0 , β is asymptotically jointly normally distributed with

mean 0, and variance-covariance matrix BΣZB′.

Given the above results, the remaining part of the procedure to compute the test
statistic goes as follows.
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Algorithm 4.2: The Subba Rao–Gabr linearity test

(i) Compute

β̂ = BZ, and Ŝ = BŜZB′,

where

Z = N−1
N∑

i=1

Z∗
i , and ŜZ = N−1

N∑
i=1

(Z∗
i −Z)(Z∗

i −Z)′

are the ML estimates of the mean and variance-covariance matrix, respect-
ively.

(ii) Compute the likelihood ratio test statistic

F2 =
N − P + 1

P − 1
T 2

2 , (4.23)

where T 2
2 = N β̂

′
Ŝ−1β̂. Under H(2)

0 , and as T →∞,

F2
D−→ Fν1,ν2 (4.24)

with degrees of freedom ν1 = P − 1 and ν2 = N − P + 1.

4.2.3 Discussion

There are some drawbacks to the test statistics (4.21) and (4.23). Typically the
user has to decide on the choice of the lag window, the truncation point M , and
the placing of the grids, i.e., the parameters d, K, and r. Based on 500 generated
BL(2, 1, 1, 1) time series W.S. Chan and Tong (1986) note that the results of the
Subba Rao–Gabr linearity test statistic is sensitive to the choice of the lag window.
The choice of the truncation point M is another delicate issue; see, e.g., Subba Rao
and Gabr (1984, Section 3.1) for various suggestions. One recommendation is that
M < T 1/2. A more formal approach is to minimize the mean squared error (MSE)
of the bispectral estimate, which is a function of fY (ω1), fY (ω2) and fY (ω1, ω2),
with respect to M .

The parameters d, K, and r should be chosen as follows. First, it is required
that N × [2K/3] < T , where [ · ] denotes the integer part; see step (iv) of Algorithm
4.1. Next, to ensure that the spectral and bispectral estimates at different points
of the grid are effectively uncorrelated, it is necessary to choose d such that d/T is
larger than the spectral window corresponding to the lag window λ(s). Similarly, r
should be chosen such that r/T is less than the lag window. Finally, to ensure that
points in different fine grids do not overlap, it is essential that d ≤ T/{K(r+1)}. In
summary, great skill is necessary in applying both test statistics (4.21) and (4.23)
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because of the large number of parameters involved.

4.3 Hinich’s Tests

Hinich (1982) modifies the Subba Rao–Gabr tests to use all the bispectrum Four-
ier frequency gridpoints. However, rather than using the windowed sample ACVF
method, or indirect method, the test statistics are based on a consistent estimator
of the bispectrum at frequency pair (ωm, ωn) obtained by smoothing the third-order
periodogram over adjacent frequency pairs.

The general framework can be summarized as follows. Let ωj = (j − 1)/T
(j = 1, . . . , [T/2] + 1). For each pair (j, k) (j, k ∈ Z), define the complex random
variable

FY (ωj , ωk) = Y (ωj)Y (ωk)Y ∗(ωj+k)/T, (4.25)

where

Y (ωj) =
T∑

t=1

Yt exp{−2πiωj(t− 1)}.

Since Y (ωj+T )=Y (ωj) and Y (ωT−j)=Y ∗(ωj), the principal domain of FY (ωj , ωk)
is the triangular set

� = {(j, k) : 0 < j ≤ T/2, 0 < k ≤ j, 2j + k ≤ T}, (4.26)

assuming T is even. A straightforward approach to obtain a consistent estimate of
the bispectrum is to average the FY (ωj , ωk) in a square of M2 points, where the
centers of the squares are defined by a lattice L of points such that L ∈ �; see
Figure 4.4 for two examples. Then the resulting direct estimator of fY (ω1, ω2) is
given by

f̂Y (ωm, ωn) =
1

M2

mM−1∑
j,k=(m−1)M

FY (ωj , ωk), (4.27)

with M = �T c� (1
2 < c < 1). The complex variance of this estimator, assuming

the terms in the summations are restricted to �, excluding the manifolds ωm = 0,
ωm = ωn, is given by

Var{f̂Y (ωm, ωn)} =
T

M4
Qm,nfY (δm)fY (δn)fY (δm+n) +O(M/T ),

where δx = (2x − 1)M/(2T ) and Qm,n is the number of (j, k) in the squares that
are in �, but not on the boundaries j = k or (2j + k) = T , plus twice the number
on these boundaries. Note, TM−4Qm,n ≤ TM−2 = T 1−2c → 0 if T → ∞, since
Qm,n ≤ M2.
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Figure 4.4: (a) Lattice in the principal domain for the bispectrum with K = 10, and
r = 5; (b) Lattice L in the principal domain of the bispectrum for estimating Hinich’s test
statistics; T = 144 and c = 1/2.

It can be shown (Hinich, 1982) that the asymptotic distribution of each estimator
is complex normal, and that the estimators are asymptotically independent inside
the principal domain. Therefore, the distribution of the statistic

B̂Y (ωm, ωn) =
f̂Y (ωm, ωn)

{T 1−4cQm,nf̂Y (δm)f̂Y (δn)f̂Y (δm+n)}1/2
(4.28)

is complex normal with unit variance, with f̂Y (·) the estimator of the spectral dens-
ity function constructed by averaging M adjacent periodogram ordinates. Now
2|B̂Y (ωm, ωn)|2 is approximately distributed as χ2

2(λm,n), i.e. a noncentral chi-square
distribution with two degrees of freedom and noncentrality parameter

λm,n = 2(T 1−4cQm,n)−1|BY (ωm, ωn)|2 ≥ 2T 2c−1|BY (ωm, ωn)|2. (4.29)

Thus, the value of (4.29) increases when a smaller set of frequency pairs (ωm, ωn) is
considered.

The choice of the parameter c controls the trade-off between the bias and variance
of B̂Y (·, ·). The smallest bias is obtained for c = 1/2, whereas the smallest variance
is for c = 1. The power of the test for a zero bispectrum depends on T 1/2 when
T 1−c is large, c should be slightly larger than 1/2 to give a consistent estimate.

4.3.1 Testing for linearity

Assume {Yt, t ∈ Z} follows the zero-mean stationary linear (L) process (1.2). Then,
for all squares in �, so that Qm,n = M2, the noncentrality parameter reduces to

λm,n = 2T 2c−1
μ2

3,ε

σ6
ε

≡ λ0.
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Thus, the noncentrality parameter becomes a constant. Since E(|B̂Y (ωm, ωn)|2)
= 1 + λm,n/2, it follows from (4.29) and the asymptotic properties of B̂Y (ωm, ωn)
that the parameter λ0 can be consistently estimated by

λ̂0 =
2

PM2

∑
(m,n)∈L

Qm,n

(
|B̂Y (ωm, ωn)|2 − 1

)
, (4.30)

where P , the number of (m,n) in L, is approximately T 2/(12M2). Consequently,
the distribution χ2

2(λ̂0) converges to a χ2
2(λ0) variate, as T →∞.

If H(2)
0 is true, expression (4.30) shows that the noncentrality parameter of the

asymptotic distribution of the statistic 2|B̂Y (ωm, ωn)|2 is constant ∀(m,n) ∈ L, and
squares wholly in �. If the null hypothesis is false, the noncentrality parameter
will be different for different values of m and n. As a result, the sample dispersion
of 2|B̂Y (ωm, ωn)|2 will be larger than expected under the null hypothesis. This
dispersion can be measured in many ways.

One way to proceed is to use the asymptotic normality of the interquartile range ,
say IQRM , of the 2|B̂Y (ωm, ωn)|’s entirely within the principle domain. Let q0.25 and
q0.75 denote respectively the first and third quartile of a χ2

2(λ0) random variable, and
let q0.75−q0.25 be the IQR from this distribution. Then, under H(2)

0 , the approximate
distribution of IQRM , as deduced from the theory of order statistics, is given by

ZL
IQR =

IQRM − (q0.75 − q0.25)
σ0

D−→ N (0, 1), as T →∞, (4.31)

where

σ2
0 =

3[fχ2
2(λ0)(q0.25)]−2−2[fχ2

2(λ0)(q0.25)fχ2
2(λ0)(q0.75)]−1+3[fχ2

2(λ0)(q0.75)]−2

16P
,

(4.32)

and fχ2
2(λ0)(·) is the density function of a χ2

2(λ0) random variable. It is not difficult
to estimate q0.25, q0.75, and (4.32) for a given value of λ0. In practice, the estimator
(4.30) is used in the computations of these values.

4.3.2 Testing for Gaussianity

If the error process {εt, t ∈ Z} in the linear DGP (1.2) is Gaussian (G), then λ0 ≡ 0.
In that case the following test statistic may be used

T G = 2
∑

(m,n)∈L
|B̂Y (ωm, ωn)|2, (4.33)

which is asymptotically distributed as a central χ2
2P variate under H(2)

0 , with P ≈
T 2/(12M2); see (4.30). Note that (4.33) is essentially the Subba Rao–Gabr test
statistic T 2

1 , i.e., instead of using an estimate of the bispectral density in the sum of
squares (4.33) uses an estimate of the normalized bispectrum.
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4.3.3 Discussion

For relatively large sample sizes Ashley et al. (1986) examine in an MC simulation
study the size and power of Hinich’s linearity and Gaussianity test statistics. Over-
all, the sizes of these test statistics are satisfactory. What seems more important,
however, is that the power of the linearity test statistic is disturbingly low in distin-
guishing between linear and nonlinear time series processes. In particular, this seems
to be the case for ExpAR and SETAR behavior. Furthermore, Harvill and Newton
(1995) show that uncommonly large time series sample sizes are necessary before
the normal distribution in (4.32) is reliable for calculating p-values. Additionally,
these authors point out that the asymptotics of this problem are present in three
interwoven forms: the length T of the observed time series, the number of points
M used to estimate the normalized bispectrum, and the number P of normalized
bispectral estimates used in calculating the IQR. For instance, to have P = 100
requires a series of length T = 1,200 when using M = �T 1/2�.

Although Hinich’s approach is robust to outliers in the case of linearity, a dis-
advantage of using the IQR is that if the null hypothesis is false and the process is
of a type of nonlinearity which would result in a peak in |BY (ωm, ωn)|2, the range
effectively ignores that distinguishing feature. So the test statistic may differentiate
between linear and nonlinear processes but provides no clue as to the form of non-
linearity. To some extent this may be overcome by visually assessing plots of the
frequency bicoherence.

More importantly, Garth and Bresler (1996) raise some concerns with the as-
sumptions required to form the linearity test statistic. As the number of discrete
FT values of {Yt}T

t=1 increase as T → ∞, the assumption that |B̂Y (ωm, ωn)|2 will
converge to the proposed noncentral χ2

2(λ0) distribution is violated, as this requires
a finite number of bispectral estimates. Ignoring the finite-dimensionality constraint
leads to a different asymptotic distribution; it can also lead to dependence between
two estimates, smoothed over distinct frequency regions. The dependence is elimin-
ated by summing the discrete FT over a finite subset of points, which is true for the
indirect estimate of the bispectrum. This approach, however, introduces the addi-
tional problem of carefully choosing the spectral bandwidth M , as with the Subba
Rao–Gabr test statistics.

4.4 Related Tests

4.4.1 Goodness-of-fit tests

Recall that under Gaussianity, the noncentrality parameter of the test statistic
2|BY (ωm, ωn)|2 is identically zero ∀(ωm, ωn) ∈ L. So the noncentral chi-square dis-
tribution with two degrees of freedom and noncentrality parameter λ0 = 0 reduces
to a central χ2

2 distribution, i.e., an exponential distribution with mean 2. This
suggests that a goodness-of-fit (GOF) test statistic might be effective in measuring
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the difference between the empirical distribution function (EDF) of 2 |B̂Y (ωm, ωn)|2
and the noncentral χ2

2(λm,n) as the null distribution.
Unfortunately, finding the null distribution of the resulting EDF-based test stat-

istic is intractable. Jahan and Harvill (2008) overcome this problem by approximat-
ing the noncentral χ2

2(·) distribution by a normal distribution in the following way.
Let X ∼ χ2

ν(λ). Then a remarkably accurate approximation (Sankaran, 1959) for
the tails of the χ2

ν(λ) distribution consists of replacing X by Y = (X/(ν + λ))h,
where the exponent h is given by

h = 1− 2(ν + λ)(ν + 3λ)
3(ν + 2λ)2

. (4.34)

Specifically, Y has an approximate normal distribution with mean and variance given
respectively by

μY = 1 + h(h− 1)
ν + 2λ

(ν + λ)2
− h(h− 1)(2− h)(1− 3h)

(ν + 2λ)2

2(ν + λ)4
, (4.35)

σ2
Y = h2 2(ν + 2λ)

(ν + λ)2
[
1− (1− h)(1− 3h)

ν + 2λ

(ν + λ)2
]
. (4.36)

If λ is unknown, it is recommended to replace λ by the method of moment based
estimator

λ̂ =
{

Y − ν if Y > ν,
0 otherwise,

(4.37)

where Y is the sample mean. Under the null hypothesis of Gaussianity, λ̂ is a
consistent estimator for λ.

Stephens (1974) shows that in a wide variety of situations the Anderson–Darling
(AD) GOF test statistic is the most powerful EDF-based test followed by the (one-
sample) Cramér–von Mises (CvM) test statistic. In the case of testing for Gaus-
sianity and linearity, using the bispectrum, these test statistics can be computed
as follows. Let {Q(i)}P

i=1 denote the quantiles computed from the ordered values

2|B̂Y (ω(1)
i , ω

(2)
i )|2 (i = 1, . . . , P ). Note, that for testing Gaussianity, the data are

assumed to come from a fully specified normal distribution. Then a modified form
of the CvM-type test statistics is given by

CvM∗ = (CvM− 0.4/P + 0.6/P 2)(1 + 1/P ), (4.38)

where

CvM =
1

12P
+

P∑
i=1

(
Q(i) −

(2i− 1)
2P

)2
.

However, for all P ≥ 5, the AD-type test statistic for testing Gaussianity needs no
modification, i.e., its calculation can be based on the formula

AD = −P − 1
P

P∑
i=1

(2i− 1)
[
log Q(i) + log(1−Q((P+1)−i))

]
, (4.39)
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assuming Q(i) �= 0 or 1.
For testing linearity both mean and variance of the transformed random vari-

ables are unknown. In that case these quantities are estimated by BY , the sample
mean of the B̂Y (ω(1)

i , ω
(2)
i ) (i = 1, . . . , P ), and the sample standard variance (P −

1)−1
∑P

i=1(B̂Y (ω(1)
i , ω

(2)
i ) −BY )2. Then, according to Stephens (1986, Table 4.9),

the asymptotic upper-tail p-value can be computed from first transforming CvM to
the modified (m) statistic CvMm = CvM(1+0.5/P ) and next calculating a parabolic
approximation, i.e.,

p =
{

exp
(
0.886− 31.62CvMm + 10.897 (CvMm)2

)
, 0.051 < CvMm < 0.092,

exp
(
1.111− 34.242CvMm + 12.832 (CvMm)2

)
, CvMm ≥ 0.092.

For the modified statistic ADm=AD(1+0.75/P +2.25/P 2) (P ≥ 8), the formula for
the asymptotic upper tail p-value is given by

p =
{

exp(0.9177− 4.279ADm − 1.38 (ADm)2), 0.340 ≤ ADm < 0.600,
exp(1.2937− 5.709ADm + 0.0186 (ADm)2), 0.600 ≤ ADm ≤ 13.

Below we summarize the two-stage procedure for testing for Gaussianity and
linearity.

Algorithm 4.3: Goodness-of-fit test statistics

(i) Testing for Gaussianity (G):

(a) Compute the quantiles Q(i) (i = 1, . . . , P ) of the ordered
2|B̂Y (ωm, ωn)|2 values, using the exponential(2) CDF. That is, Q(i) =
1−exp(−B̂(i)/2), where B̂(i) are the arranged (ascending order) values
of the 2|B̂Y (ω(1)

i , ω
(2)
i )|2’s.

(b) Apply these quantiles to the expressions in (4.38) or (4.39) to compute
the value of, say, CvMG

m or ADG
m.

(c) Compare the value of the test statistic with the appropriate critical
value.

(ii) Testing for linearity (L):

(a) For each i transform the random variable B̂(i) into Yi =
(
B(i)/(2+λ̂)

)̂h,
where ĥ is as in (4.34) with ν = 2, and replacing λ with (4.37).

(b) Standardize the P random variables Yi, using (4.35) and (4.36) with
ν = 2 and λ given by (4.37).

(c) Compute the quantiles Q(i) (i = 1, . . . , P ) of these variates, using the
standard normal CDF.

(d) Compute the values of, say, CvML
m or ADL

m.

(e) Compare the value of the test statistic with the appropriate critical
value.
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4.4.2 Maximal test statistics for linearity
As noted in Section 4.3.2, Hinich’s Gaussianity and linearity tests involve the selec-
tion of the number of points M . The larger (smaller) M , the smaller (larger) the
finite-sample variance of (4.27) and the larger (smaller) the sample bias. Because
of this trade-off, Rusticelli et al. (2009) compute the maximal values of Hinich’s bi-
spectral test statistic for linearity 2|B̂Y (ωm, ωn)|2 over the computationally feasible
range of values for M . The upper bound (MH) of this range is set at the total
number of frequency pairs (ωm, ωn) ∈ D that at least exceeds one. The lower bound
(ML) is determined by the requirement that λ̂0 in (4.30) should be positive. Then
a well-sized test, giving the highest power against a wide set of nonlinear DGPs, is
the maximal standardized interdecile (IDR) fractile statistic, MDL

IDR, defined as

MDL
IDR = max

ML≤M≤MH
{IDRM}, (4.40)

where

IDRM =
{fχ2

2(λm,n)(q0.9)− fχ2
2(λm,n)(q0.1)} − {f

χ2
2(λ̂0)

(q0.9)− f
χ2

2(λ̂0)
(q0.1)}

σ̂0

(4.41)

is the standardized IDR fractile. The estimate σ̂2
0 of σ2

0 follows from (4.32) with
fχ2

2(λ0)(·) replaced by f
χ2

2(λ̂0)
(·). The use of the IDR rather than the IQR in (4.41) is

in line with Hinich et al. (2005) who, from numerous real and artificial applications,
notice that the IDR gives more robust test results.

In an analogous way, maximal test statistics can be defined on the basis of the
IQR, and 80% fractiles of B̂Y (ωm, ωn). Following the same arguments as in Hinich
(1982), it can be shown that all these maxi-minimal test statistics are asymptotically
distributed as N (0, 1) under the null hypothesis that {Yt, t ∈ Z} is a linear DGP, as
defined by (1.2).

4.4.3 Bootstrapped-based tests
In finite samples, one cannot assess the validity of Hinich’s linearity test statistic on
the basis of critical values determined from the two asymptotic distributions – the
noncentral χ2

2(λ0) distribution and the normal distribution (4.31). Data-dependent
bootstrapping (resampling) the distributions of the linearity test is a way out, and
several approaches have been proposed for this purpose. Often these bootstrap
approaches involve, as a first step, prewhitening the time series by fitting an AR(p)
model to the data, and separating out the residuals of the fit. A more appropriate
approach is to allow the order p to be an increasing function of the sample size
T , thereby creating an approximating sieve of AR models. This is the essence of
the AR-sieve, or AR(∞) bootstrap, adopted by Berg et al. (2010) to formulate a
bootstrap procedure for Hinich’s linearity and Gaussianity test statistics.
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The proposed bootstrap algorithm is based on a ‘kernelized’ form of Hinich’s
test using the indirect bispectral estimation method. Specifically, asymptotically
unbiased and consistent estimators of fY (ω) and fY (ω1, ω2) are defined respectively
by (4.16) and (4.17). where λ(·) and λ(·, ·) are non-negative one- and two dimensional
lag windows (continuous weight functions), respectively, with compact support. This
latter assumption can be relaxed with a trade-off of a more involved asymptotic
theory. Very often λ(·) and λ(·, ·) are chosen such that they satisfy the symmetry
conditions

λ(ω) = λ(−ω),
λ(ω1, ω2) = λ(ω2, ω1) = λ(−ω1, ω2 − ω1). (4.42)

Clearly, both conditions mimic (4.1) and (4.2), or (4.5) and (4.6). But condition
(4.42) is not required for proving consistency or asymptotic normality of (4.17).

Let ωj = (ω(1)
j , ω

(2)
j ) (j = 1, . . . , P ) denote the jth frequency pair in the lattice

L. Then, as already noted in Section 4.2, the kernel estimators f̂Y (ω(1)
j , ω

(2)
j ) as in

(4.17) are approximately complex Gaussian with variance

Var{f̂Y (ω(1)
j , ω

(2)
j )} =

M2

T
W2fY (ω(1)

j )fY (ω(2)
j )fY (ω(1)

j + ω
(2)
j ), (4.43)

where

W2 =
∫ ∞

−∞

∫ ∞

−∞
λ2(ω(1)

j , ω
(2)
j )dω

(1)
j dω

(2)
j . (4.44)

Then define the statistics

ẐY (ω(1)
j , ω

(2)
j ) =

f̂Y (ω(1)
j , ω

(2)
j )

{M2W2/T}1/2{f̂Y (ω(1)
j )f̂Y (ω(2)

j )f̂Y (ω(1)
j + ω

(2)
j )}1/2

. (4.45)

Hence, the statistics 2|ẐY (ω(1)
j , ω

(2)
j )|2 (j = 1, . . . , P ) are asymptotically dis-

tributed as independent noncentral χ2
2 variates, with noncentrality parameter

|fY (ω(1)
j , ω

(2)
j )|2/(M2W2/T )fY (ω(1)

j )fY (ω(2)
j )fY (ω(1)

j +ω
(2)
j ). For the purpose of test-

ing linearity and Gaussianity, the set of random variables 2|ẐY (ω(1)
j , ω

(2)
j )|2 for all

(ω(1)
j , ω

(2)
j ) is considered to be a random sample from a continuous distribution with

CDF F (·).
Before detailing the steps involved in the AR(∞)-sieve bootstrap procedure, we

collect the spectral and bispectral density estimators into one long vector, i.e.,

VT =
(
f̂Y (ω(1)

1 ), . . . , f̂Y (ω(1)
P ), f̂Y (ω(2)

1 ), . . . , f̂Y (ω(2)
P ), f̂Y (ω(1)

1 + ω
(2)
1 ), . . . ,

f̂Y (ω(1)
P + ω

(2)
P ), f̂Y (ω(1)

1 , ω
(2)
1 ), . . . , f̂Y (ω(1)

P , ω
(2)
P )

)
.
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Figure 4.5: Profiles of the Parzen lag window (black solid line) given by (4.18), and the
trapezoid-shaped lag window (blue medium dashed line) as given by (4.50).

The hypotheses of interest are:

H
(3)
0 : Linear but non-Gaussian (L+nG), (4.46)

H
(4)
0 : Linear and symmetric (L+S), and (4.47)

H
(5)
0 : Gaussian (G). (4.48)

Depending on the purpose of the analysis, one of the above three hypotheses are
considered in the following bootstrap algorithm.

Algorithm 4.4: Bootstrap-based tests

(i) According to some order selection criterion choose p, fit (e.g., via the Yule-
Walker equations) a strictly stationary AR(p) model Yt =

∑p
k=1 φkYt−k + εt

to {Yt}T
t=1, and separate out the residuals of the fit {ε̂t}T

t=p+1.

(ii) • When testing for H(3)
0 :

(a) Center the residuals, to obtain ε̃t = ε̂t − ε, where ε = (T −
p)−1

∑
t ε̂t.

(b) Draw T + b∗ independent bootstrap residuals ε∗
t from the EDF FT

of {ε̃t}, where b∗ > 0 denotes the so-called “burn-in” period to
ensure the approximate stationarity of the bootstrap.

(c) Generate, with the AR model found in (i) a series {Y ∗
t }T

t=1 of
pseudo-observations, and obtain the corresponding EDF F

(3)
T .

• When testing for H(4)
0 :

(a) Draw T − p independent bootstrap residuals ε+
t from F

(3)
T .

(b) Transform the ε+
t ’s into pseudo-observations ε∗

t = Stε
+
t with

{St} i.i.d.∼ U [−1, 1], where U denotes the discrete uniform distri-
bution on −1 and 1.

(c) Obtain the corresponding EDF F
(4)
T .
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Algorithm 4.4: Bootstrap-based tests (Cont’d)

(ii) • When testing for H(5)
0 :

(a) Compute the residual variance σ̂2
ε = (T − p)−1

∑
t(ε̂t − ε)2.

(b) Draw T−p independent bootstrap residuals ε∗
t from N (0, σ̂2

ε), and
obtain the corresponding EDF F

(5)
T .

(iii) Compute the vector of pseudo-statistics V
(i)
T (Y (b)

t ) (i = 3, 4, 5) analogous to
VT , but with the series {Y (b)

t } generated from the fitted AR(p) model with
error process {ε(b)

t } i.i.d.∼ F
(i)
T .

(iv) Repeat steps (ii) – (iii) B times, to obtain {V (i)
T (Y (b)

t )}B
b=1 (i = 3, 4, 5).

The EDF of these bootstrap statistics can then be used to approximate
the distribution of VT under H(i)

0 (i = 3, 4, 5). In Table 4.1 we label the
corresponding test statistics, based on the IQR, as: ZL+nG

IQR , ZL+S
IQR , and TG

IQR.

(v) Reject H(i)
0 (i = 3, 4, 5) when the p-value is less than a pre-specified signific-

ance level.

Suppose, in addition to the assumptions imposed on γY (·) and γY (·, ·), that
∞∑

�=−∞
�2|γY (�)| < ∞, and

∞∑
�1,�2=−∞

(1 + �2
j )γY (�1, �2) < ∞ (j = 1, 2). (4.49)

Then Berg et al. (2010) prove the asymptotic consistency of the bootstrap test
procedure under both the null hypothesis and the alternative hypothesis. They
estimate the spectrum by a trapezoid-shaped lag window function (see Figure 4.5),
and the bispectrum with a right-pyramidal frustum-shaped lag function (see Figure
4.6(a)). These functions are, respectively, defined by

λ(s) = 2(1− |s|)+ − (1− 2|s|)+, (4.50)
λ(u, v) = 2λ0(u, v)− λ0(2u, 2v), (4.51)

where

λ0(x, y) =

{(
1−max(|x|, |y|)

)+
, −1 ≤ x, y ≤ 0 or 0 ≤ x, y ≤ 1,(

1−max(|x + y|, |x− y|)
)+

, otherwise,

with (x)+ = max(0, x). Both infinite-order functions can produce higher-order ac-
curate estimators of the spectral and bispectral densities.

4.4.4 Discussion
Similar to the original Hinich’s test statistics, the user of the AD- and CvM-type
test statistics has to select M (the bispectral bandwidth), and P (the number of
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gridpoints). Consequently, the test statistics may still be sensitive to these user-
specified parameters within the EDF framework. The automatic choice of M in the
maximal test (4.40) reduces the bias-variance trade-off associated with the Hinich
linearity test statistic. However, the resulting MDL

IDR test statistic still relies on the
asymptotic normality of the bispectrum.

On the other hand, no asymptotic distributions are utilized with the bootstrap
based tests which may be viewed as a great advantage over the above test statistics.
The disadvantage of this method is that one has to choose M and P . In addition,
the order p of the AR approximation needs to be selected. One approach is to
adopt order selection criteria as AIC or BIC. Alternatively, a bootstrap method for
AR order selection may be included into the bootstrap algorithm; see, e.g., Zoubir
(1999). Berg et al. (2010) report that, in general, there is not much sensitivity of
the obtained test results due to the selection of the above parameters.

Furthermore, with the bootstrapped-based tests a decision needs to be made
about the number of resamples B. Fortunately with greater computing power, one
can often be very conservative and choose a much larger B than needed without any
statistical consequences. As the number of resamples increases so does the accuracy
of the test results. One simple diagnostic is to run the bootstrap algorithm twice
with the same size B. If the results are adjudged to be similar, and the conclusions
drawn remain the same, then the resample size can be considered to be adequate.

Finally, the bootstrap algorithm uses the direct estimation method of the bi-
spectrum, similar to the Subba Rao–Gabr test statistics. However, a problem with
both the direct and indirect estimate is that leakage may occur when a real frequency
is not matched by a Fourier frequency in the observed data. The effect of this
frequency is then leaked into the closest Fourier frequencies. With the indirect
estimate, which uses a truncated estimate of the third-order cumulant, the influence
of γ̂Y (0, 0) on estimated values of the bispectrum at locations other than (0, 0) is
potentially greater at lower frequencies. As the estimated value of γY (0, 0) reflects
the skewness of the series {Yt}T

t=1 this is more likely to be an issue for non-symmetric
time series, especially when T is relatively small.

4.5 A MSFE-Based Linearity Test

In Section 1.1, we introduced a second notion of linearity of a time series process,
following the simple definition that a process is linear if the linear forecast is optimal
in the MSE sense. Terdik and Máth (1998) and Terdik (1999) use this notion to
propose a linearity test statistic based on one-step ahead forecast errors. Suppose
we are to make a prediction of Yt+1, at origin t. If {Yt, t ∈ Z} is a stationary weakly
linear process, then the one-step ahead (H = 1) least squares (LS), minimum mean
squared error, forecast is given by

Y LS

t+1|t ≡ E(Yt+1|Ys,−∞ < s ≤ t) = Yt +
∞∑
i=1

ψiYt−i, (4.52)
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where ψi (i = 1, 2, . . .) are to be determined. The process {et+1|t}, with et+1|t =
Yt+1 − Y LS

t+1|t ≡ εt+1, is the one-step ahead forecast error, or innovation process. It
fulfils the conditions:

E(et|F t−1) = 0, E(e2
t |F t−1) = σ2

ε , (4.53)

where F t is the σ-algebra generated by {es, s ≤ t}.
Many nonlinear predictors exist which do not require an explicit specification of

the type of nonlinearity. Among these predictors, Masani and Wiener (1959) show
that the best forecast which minimizes the one-step ahead mean squared forecast
error (MSFE), i.e. MSFE(H) = E

(
e2
t+H|t

)
with H = 1, is given by a polynomial of

the observed time series and, under some suitable conditions, can be constructed by
using only the values of the moments. The resulting one-step ahead quadratic (Q)
forecast is given by

Y Q

t+1|t = Yt +
∞∑

j=1

cjYt−j +
∞∑

j,v=0

cjvYt−jYt−v, (4.54)

where the coefficients cj and cjv are chosen such that minimum of MSFE(1) is
achieved. If {Yt, t ∈ Z} is non-Gaussian, then the one-step ahead quadratic forecast
has a smaller asymptotic MSFE than the one-step ahead linear forecast (cf. Exercise
4.2(b)).

Null- and alternative hypotheses
For simplicity of notation, we denote the process {et+1|t} by {et}, and we assume
that {et} is a strictly stationary process with ACVF satisfying similar conditions as
given by (4.49). In this case it is easy to see that {et} is an uncorrelated process, and
therefore it will not necessarily satisfy condition (1.3). Now suppose that the best
one-step ahead LS forecast Y LS

t+1|t has already been constructed and the objective
is to check the assumption Y LS

t+1|t = Y Q

t+1|t. Thus, in terms of the one-step ahead
forecast errors, the null- and alternative hypotheses of interest are:

H0 : E[{Yt+1 − Y Q

t+1|t} − {Yt+1 − Y LS

t+1|t}]2 = E[Y LS

t+1|t − Y Q

t+1|t]
2 = 0, (4.55)

H1 : E[Y LS

t+1|t − Y Q

t+1|t]
2 > 0. (4.56)

Assume that the fourth-order moments of {Yt, t ∈ Z} exists, and let fY (ω)
satisfy the so-called Szegö condition, i.e., ∫1

0 log fY (ω)dω > −∞, and assume all
finite-dimensional distributions of {Yt, t ∈ Z} have a positive spectrum. Then, in
view of the symmetry relations (4.2), it can be shown (Terdik and Máth, 1993) that
a necessary and sufficient condition for equivalence of Y LS

t+1|t and Y Q

t+1|t is that the
bispectrum fe(ω1, ω2) of the innovation process has the additive form

fe(ω1, ω2) = H(ω1) + H(ω2) + H∗(ω1 + ω2), (4.57)
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where H(ω) =
∑∞

j=0 γe(j, j) exp(−2πiωj). The functions fe(·, ·) which satisfy (4.57)
are exactly those for which the following relation holds. For any triplet (α, β, γ)

fe(α, β) + fe(γ, 0) + fe(−α + γ,−β − γ) = fe(β, γ) + fe(0,−α− β)
+ fe(−α + γ,−γ). (4.58)

This relationship forms the basis of the proposed linearity test statistic.

Test statistic
Consider the third-order periodogram of {et}T

t=1

Fe(ω1, ω2) = e(ω1)e(ω2)e∗(ω1 + ω2)/T,

where e(ωj) =
∑T−1

t=0 et exp{−2πiωj} (j = 1, 2). Then, analogous to (4.17), an
asymptotically unbiased and consistent estimator of fe(ω1, ω2) can be obtained by
smoothing with a two-dimensional window λ(·, ·), satisfying the symmetry relations
(4.42) while at all frequencies (ω1, ω2) its values are again in the principal domain
D, the triangle with vertices (0, 0), (0, 1/2), (1/3, 1/3) (see Figure 4.4). Terdik and
Máth (1998) choose λ(ω1, ω2) to be zero for |ωj | > 1/2 (j = 1, 2). The smoothed
version of fe(ω1, ω2) is defined by

f̂e(ω1, ω2) =
1

(TbT )2

T−1∑
u,v=1

W1(u, v)Fe(u/T, v/T ), (4.59)

where bT denotes a scale parameter such that bT > 0, bT → 0, Tb2
T →∞ as T →∞,

and where W1(u, v) = λ
(
b−1
T (ω1 − u/T ), b−1

T (ω2 − v/T )
)
. Observe that TbT plays

the same role as M in the previous sections.
The bispectral estimators f̂e(ω1, ω2) are asymptotically independent inside D.

On the boundary of D they are correlated (see, e.g., Brillinger, 1975). If ω1 �= ω2,
ω1ω2 �= 0, and ω1 �= −2ω2, the variance of f̂e(·, ·) is

lim
T→∞

Tb2
T Var{f̂e(ω1, ω2)} = (σ2

ε)
3W2, (4.60)

which implies

lim
T→∞

Tb2
T Var{�

(
f̂e(ω1, ω2)

)
} =

σ6
eW2

2
and lim

T→∞
Tb2

T Var{�
(
f̂e(ω1, ω2)

)
} =

σ6
eW2

2
,

where W2 is given by (4.44). If 0 < ω1 < 1/2, then

lim
T→∞

Tb2
T Var{f̂e(ω1, 0)} = σ6

ε(W2 + W01), (4.61)

where W01 =
∫ ∞
−∞ λ(0, ω)dω.



4.5 A MSFE-BASED LINEARITY TEST 143

To obtain a practical test, all frequencies (ω1, ω2) must be mapped into D. In
view of the symmetry conditions, and without changing the value of the bispectrum
except for complex conjugation, this can be done using the following transformations:

T1(ω1, ω2) = (ω2, ω1), T2(ω1, ω2) = (ω1,−ω2 − ω1),
T3(ω1, ω2) = (−ω1 − ω2, ω2), T4(ω1, ω2) = (−ω1,−ω2).

Now, let (α, β, γ) denote a fixed triplet such that the map of Ti(·, ·) (i = 1, . . . , 4) of
the six points

(α, β), (γ, 0), (−α + γ,−β − γ), (β, γ), (0,−α− β), (−α + γ,−γ)

is different in D. Then, the following statistic can be defined

QT (α, β, γ) = f̂e(α, β) + f̂e(γ, 0) + f̂e(−α + γ,−β − γ)− f̂e(β, γ)

− f̂e(0,−α− β)− f̂e(−α + γ,−γ), (4.62)

with its asymptotic expectation

Q(α, β, γ) = fe(α, β) + fe(γ, 0) + fe(−α + γ,−β − γ)−
(
fe(β, γ) + fe(0,−α− β)

+ fe(−α + γ,−γ)
)
.

Under H0, we have Q(α, β, γ) = 0. Moreover, under H0 and as T → ∞,
(4.62) is asymptotically complex normal distributed with mean zero and variance
Var{QT (α, β, γ)} ≈ 6σ6

εW2/Tb2
T .

Now, rather than using QT (α, β, γ) as a test statistic for linearity, Terdik and
Máth (1998) use a standardized form of QT (α, β, γ). To this end they first define

R1,T (α, β, γ) = �{QT (α, β, γ)}
(1

2
Var{QT (α, β, γ)}

)−1/2

R2,T (α, β, γ) = �{QT (α, β, γ)}
(1

2
Var{QT (α, β, γ)}

)−1/2
.

Next, the entire set of observations is divided into K separate stretches of length T .
Let R

(i)
j,T (α, β, γ) (i = 1, . . . ,K ; j = 1, 2) denote the (i, j)th statistic resulting from

this approach. These 2K statistics are asymptotically independent with the same
distribution as Rj,T (α, β, γ). From this, the standardized real and complex parts of
QT (α, β, γ) are given by

M
(K)
j,T (α, β, γ) = K−1/2

K∑
i=1

R
(i)
j,K(α, β, γ) (j = 1, 2). (4.63)

Under H0, the expectation and variance of M
(K)
j,T (α, β, γ) (j = 1, 2) are respectively

approximately equal to zero and unity. The resulting test statistic is given by
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G(K)
T = {M (K)

1,T (α, β, γ)}2 + {M (K)
2,T (α, β, γ)}2. (4.64)

Under H0, and as T →∞, G(K)
T has a χ2

2 distribution.

Computation
Clearly, (4.64) is computed for only one set of triplets in D. Generalizing to n
sets of triplets, each consisting of K stretches, is direct. The various stages in the
computation of the resulting test statistic can be summarized as follows.

Algorithm 4.5: The MSFE-based linearity test statistic

(i) According to some order selection criterion determine p, and fit an AR(p) to
the observed time series {Yt}T

t=1. Obtain the residuals {ε̂t}T
t=1.

(ii) Segment the series {ε̂t}T
t=1 into K stretches of length N = 2x (x ≥ 6, x ∈ Z),

so K = �T/N�. Select a window-width NbN . A recommended choice for
bN

−0.49, so NbN = N0.51 which parallels the choice of M in the bis-
pectral estimator (4.27). Then compute the bispectral estimates f̂ε̂(ωj , ωk)
(j, k = 1, . . . , N ).

(iii) Compute the bispectral estimates f̂ε̂(ωj , ωk) (j, k = 1, . . . , N ). A recommen-
ded choice for the weight function λ(·, ·) is

λ(ω1, ω2)=

{
4
√

3
π {1− 4(ω2

1 + ω2
2 + ω1ω2)}, (ω2

1 + ω2
2 + ω1ω2) < 1/4,

0, otherwise.
(4.65)

The above window is optimal in the sense that it minimizes the MSE of the
bispectral estimate. For this window, evaluation of (4.44) gives W2 = 1.4628.
Figure 4.6(b) shows a plot of the profile of (4.65).

(iv) Using n = 7 triplets (αi, βi, γi), construct the two 3×2 matrices with indices

N

64

⎛⎜⎝ αi βi

γi 0
−αi + γi −βi − γi

⎞⎟⎠ ,
N

64

⎛⎜⎝ βi γi

0 −αi − βi

−αi + γi −γi

⎞⎟⎠ ,

(i = 1, . . . , n).

If an index is negative, then add N to its value. Let (u, v)i and (u∗, v)i

(u, u∗ = 1, 2, 3; v = 1, 2) denote the resulting index for the ith triplet,
corresponding to either the first or the second matrix. For instance, for
N = 26 = 64, it is recommended to use the set of n = 7 triplets given by

{(αi, βi, γi)}7i=1 = {(17, 27, 30), (17, 21, 10), (17, 24, 27), (18, 27, 14),

(18, 21, 24), (19, 30, 1), (21, 27, 9)}. (4.66)

is N



4.5 A MSFE-BASED LINEARITY TEST 145

Figure 4.6: (a) Profile of the flat-top two-dimensional window function (4.51) used with
the bootstrap-based test statistics in Algorithm 4.4; (b) Profile of the two-dimensional lag
window (4.65) used in (4.59).

Algorithm 4.5: The MSFE-based linearity test statistic (Cont’d)

(v) Compute the complex-valued statistic

Qi =
3∑

u=1

f̂ε̂(ω(u,1)i+1, ω(u,2)i+1)−
3∑

u∗=1

f̂ε̂(ω(u∗,1)i+1, ω(u∗,2)i+1),

(i = 1, . . . , n).

(vi) Form the vector Q = (Q1, . . . , Qn)′, and compute the test statistic

G(K)
n,T = K ×

(Nb2
N

3W2

)
‖Q‖2, (4.67)

where ‖ · ‖ denotes the Euclidean norm. Under H0, and as T → ∞, the
statistic (4.67) has an asymptotic central χ2

ν distribution with ν = 2n degrees
of freedom.

Note that for the construction of the test it is assumed that the coefficients ψi in
(4.52) and the coefficients cj , cju in (4.54) are known. In practice these coefficients
need to be estimated. However, under not too restrictive conditions on {et}, it
can be shown (Matsuda and Huzii, 1997) that the quadratic predictor Y Q

t+1|t has a
smaller asymptotic MSE than the LS predictor Y LS

t+1|t, if p ≥ p∗, where p and p∗ are
limits imposed on the infinite summations on the right-hand side of (4.52) and (4.54)
respectively. Thus, H0 can still be tested using the statistic (4.67) if the unknown
parameters are replaced by least squares estimates.

Discussion
One disadvantage of the above method of smoothing the bispectrum into K equal
nonoverlapping records of size N is that information will be lost at lower frequencies,
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the maximum cycle that we can now observe is for frequency N instead of frequency
T . Also, since K = �T/N� will not be an integer in general, some observations
at the end of the series may be left out of the computation of the test statistic.
Clearly, the alternative hypothesis H1 presents limitations in that it only examines
second-order features in departures from the null hypothesis. Terdik and Máth
(1998) compare the power of the test statistic (4.31) with Hinich’s linearity test
statistic for a number of (non)linear models, but G(K)

n,T only shows an improvement
for linear Hermite polynomial data. Applications of the Terdik–Máth test statistic
are reported by, for instance, Terdik (1999), Terdik and Máth (1993), and Terdik et
al. (2002).

4.6 Which Test to Use?

As stated earlier there are various strengths and weaknesses of frequency-domain test
statistics. This section presents some additional information. Usually the overall
performance of a test is obtained from a size and power study. A number of these
studies have been carried out for the tests discussed above; see Table 4.1 for a
summary. Some general observations are in order.

• The empirical rejection levels (sizes) for linear DGPs with Gaussian distributed
errors from many simulation studies are not always at the nominal rejection
level, which in most studies is preset at 5%. Hence, it is somewhat unfair to
compare the powers of test statistics that have different sizes.

• The bootstrap test statistics give generally better power results than Hinich’s
Gaussianity and linearity tests. The classical Hinich linearity test, ZL

IQR, gives
poor answers for very short series as it often has too few independent values
to form an IQR.

• Of the three maximal linearity test statistics the maximal IDR test statistic,
ZL

IDR, has the largest power improvement over the Hinich linearity test, which
reinforces the conjecture that by carefully tweaking the user-specified paramet-
ers some improvement of the Hinich linearity test can be obtained. However,
the overall performance of the IDR test statistic is quite limited for data gener-
ated from a two-state Markov(2, 1) model, an EAR(2, 1) model, and a rational
nonlinear AR model.

• The power of the ADG
m and CvMG

m test statistics is comparable with that
achieved by the Hinich test statistic T G, but often higher, especially in the
case of data generated from a SETAR(2; 1, 1) model.

Although there is no frequency-domain test statistic which uniformly outper-
forms all other tests for all DGPs and sample sizes considered in the literature, we
recommend the use of the model-based bootstrap method jointly with the direct es-
timation method of the bispectrum. The method is more powerful than the Hinich
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Table 4.1: Summary of size and power MC simulation studies for some frequency-domain
Gaussianity (G) and linearity (L) test statistics.

DGPs T M Tests Reference

BL(0,0,2,1), NLMA,
⎧⎨⎩

256 12 ZL
IQR, ZL

80%
, TG Ashley et al. (1986)

extended NLMA, 512 16
NLAR, SETAR(2; 1, 1), 1,024 23
NL-TAR, ExpAR(2)

AR(2), MA(2), ExpAR(1), 104 11 ZL
IQR W.S. Chan and Tong (1986) (1)

BL(1,0,1,1),SETAR(2; 1, 1),
2 NLMAs, BL(2;1,1,1)

AR(2), Hermite polynomial 512 12 ZL
IQR, G(4)

7,128 Terdik and Máth (1998)

of order 2, BL(2, 0, 1, 1),
BL(0,0,2,1), homogeneous BL
with Hermite degree 2,
homogeneous BL with
polynomials

i.i.d. N (0, 1), AR(2), MA(2),
{

100 10 TG, ADG
m, CvMG

m Jahan and Harvill (2008) (2)

NLMA, BL(2, 1, 1, 1), 500 22
SETAR(2; 1, 1), ESTAR(1),
ExpAR(1), NLAR

NLMA, BL(0, 0, 2, 1), 350 34 ZL
IQR, ZL

IDR, ZL
80%

, Rusticelli et al. (2009)

ARCH(4), GARCH(1, 1),
⎧⎪⎪⎨⎪⎪⎩

MDL
IQR,

SETAR(2; 1, 1), two state [8 – 45] MDL
IDR,

Markov(2, 1), EAR(2, 1), MDL
80%

rational NLAR, exp. damped
AR(2), logistic(4) map

i.i.d. N (0, 1), i.i.d. χ2
1, AR(1),

⎧⎨⎩
250 4 (4)

⎧⎨⎩
TG
IQR, Berg et al. (2010) (3)

ARMA(2, 2), BL(1, 0, 1, 1), 500 6 ZL+nG
IQR ,

ARCH(1), GARCH(1, 3), 1,000 8 ZL+S
IQR

SETAR(4; 1, 2, 1, 1)2

(1) The paper includes a comparison with four time-domain nonlinearity tests.
(2) The paper includes a comparison with five time-domain nonlinearity tests.
(3) The study makes a distinction between the spectral bandwidth (Ms), and the bispectral

bandwidth (Mb ≡ M). Asymptotically Ms > Mb.
(4) Other user-defined parameters are K = 21, Ms = 8, p = 15 for T = 250; K = 36,

Ms = 12, p = 20 for T = 500; and K = 55, Ms = 15, p = 30 for T = 1, 000.
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Table 4.2: Indicator pattern of p-values of the Gaussianity (G) and linearity (L) test
statistics; ∗∗ marks a p-value < 0.01, ∗ marks a p-value in the range 1% − 5%, and † a
p-value > 0.05.

Gaussianitiy (G) Linearity (L)

GOF Tests(1) Btstrp(2) GOF Tests(1) Btstrp(2) MSFE(3)

Series ADG
m CvMG

m TG ADL
m CvML

m ZL
IQR ZL

IDR ZL
80%

G(K)
7,T

Unemployment rate(4) ∗∗ ∗ ∗ † † ∗∗ ∗∗ ∗ †
EEG recordings ∗∗ ∗∗ ∗∗ † † ∗∗ ∗∗ ∗∗ ∗∗
Magnetic field data ∗∗ ∗ † ∗∗ † † † † ∗∗
ENSO phenomenon ** † † † † † † † ∗∗
Climate change: δ13C † ∗∗ † † † † † † ∗∗

δ18O ∗∗ ∗ † † † ∗∗ ∗∗ ∗∗ †
(1) M = 18 for all series.
(2) Based on 1,000 bootstrap replicates, and M = �T �0.6 for all series.
(3) Based on stretch lengths N = 27 (Unemployment, δ13C, and δ18O), N = 28 (ENSO)

N = 29 (EEG), N = 210 (Magnetic field data); window-width NbN = 8, pmax = 24.
(4) First differences of original series.

test statistics based on the asymptotic properties of the bispectrum. An obvious
extension of the bootstrap method is to allow for an automatic grid search over the
admissible M values, as for instance discussed in Section 4.4.2, to reduce the sensit-
ivity of the tests to the choice of this parameter. Another extension of this method
is to use fourth, or higher-order, polyspectra as a test statistic, using the same test
framework.

4.7 Application: A Comparison of Linearity Tests

We now apply some of the above test statistics to the time series introduced earlier
in Chapter 1. Table 4.2 shows the test results. We see that the GOF test statistics
reject Gaussianity in almost all cases. On the other hand, the bootstrap version of
the Hinich test statistic only rejects Gaussianity for the first differences of the U.S.
unemployment series, and the EEG recordings. Recall from Table 1.2 (Example
1.7), that the parametric normality test statistic π̂34,Y flat-out rejected Gaussianity
for the EEG recordings and the magnetic field data. So, in summary, there seems
to be some inconsistencies between the results of these test statistics.

When testing for linearity, we see that all GOF test statistics do not indicate
that the series are nonlinear, except for the magnetic field data. However, the three
bootstrap-based test statistics ZL

IQR, ZL
IDR, and ZL

80% identify the first differences
of the U.S. unemployment rate, the EEG recordings, and the δ18O series to be
nonlinear. So also in this case the test results vastly differ among the test statistics.
To some extent these differences may be attributable to the choice of user-defined
parameters as, e.g., deciding on an appropriate value of M . This comment also
applies to the MSFE-based test statistic G(K)

7,T which in addition to the choice of the
window bandwidth, also depends on the stretch length N, and the order of the fitted
autoregression.
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4.8 Summary, Terms and Concepts

Summary
In this chapter we introduced the bispectrum and third-order moment as useful tools
for detecting non-symmetry (in terms of the marginal distribution), nonlinearity,
and possibly time-reversibility. We discussed two main estimates of the bispectrum,
namely the direct and indirect method. We reviewed two “traditional” bispectrum-
based test statistics for Gaussianity and nonlinearity, i.e., the Subba Rao–Gabr tests
and the Hinich tests. Further, we indicated some strengths and weaknesses of these
test statistics.

Various modifications and improvements of the Hinich test statistics have been
considered, including two bootstrap-based versions. Also, we provided a brief literat-
ure review of MC simulation studies, comparing the size and power of the Gaussian-
ity and linearity test statistics. Finally, we used several test statistics to investigate
the nonlinear properties of the time series previously introduced in Chapter 1.

An important advantage of bispectral analysis is that tests discussed in this
chapter can be applied either to the raw (original) series or to the residuals of a
fitted model; see, e.g., Ashley et al. (1986). Hence, there is no need to prefilter the
data first, using a fixed causal linear filter, in order to remove possible autocorrela-
tions. This reduces the possibility of a misspecified nonlinear model and distorted
statistical inference.

Terms and Concepts

aliasing, 150
bispectrum, 121
bootstrapping, 136
designated frequencies, 126
(in)direct method, 123
Fourier transform (FT), 120
frequency bicoherence, 123
goodness-of-fit (GOF) tests, 133
Hinich’s tests, 130
interdecile range (IDR), 136
interquartile range (IQR), 132
leakage, 140
linear (L) forecast, 140

maximal tests, 136
mean squared forecast error (MSFE), 140
normalized bispectrum, 122
polyspectrum, 121
principal domain, 121
quadratic (Q) forecast, 141
spectrum, 120
Subba Rao–Gabr tests, 126
third-order cumulant, 124
third-order periodogram, 123
transfer function, 123
truncation point, 124

4.9 Additional Bibliographical Notes

Section 4.1: A rigorous treatment of the bispectrum is given by Brillinger and Rosen-
blatt (1967). Van Ness (1966) proves, under general conditions, that the bispectrum is
asymptotically complex normal. There are several definitions of power spectra in the case of
nonstationary processes; see Priestley (1988) for a review and Priestley and Gabr (1993) for
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a time-dependent definition. Subba Rao and Gabr (1984) update their original frequency
domain tests to include frequencies along the manifold ωj = 0. Zoubir and Iskander (1999)
propose a bootstrap-based approach for testing departures from Gaussianity. Their simula-
tion results confirm that the Subba Rao–Gabr test statistic is a test of symmetry and not
pure Gaussianity. Nichols et al. (2009) provide an analytical expression for the bispectrum
and bicoherence functions for quadratically nonlinear DGPs subject to stationary, jointly
non-Gaussian distributed error processes possessing an arbitrary ACF.

Lii and Masry (1995) and Lii (1996) consider estimation of the bispectral density function of
continuous stationary DGPs when the data are obtained on unequally spaced time intervals.
Subba Rao (1997) gives an illustration of the usefulness of bispectra to analyze nonlinear,
unequally spaced, astronomical time series. Related to the analysis of continuous time
series, the problem of aliasing may arise when a real frequency in the series is not matched
by a Fourier frequency in the observed data. Testing for aliasing can be performed by an
amended version of the Hinich bispectrum test statistic for Gaussianity; see Hinich and
Wolinsky (1988).

Harvill et al. (2013) propose a bispectral-based procedure to distinguish among various non-
linear time series processes and between nonlinear and linear time series processes through
application of a hierarchical clustering algorithm.

Barnett and Wolff (2005) advocate the time-domain third-order moment γY (�1, �2) for test-
ing nonlinearity over using the bispectrum. For a linear stationary time series the estimated
values of the third-order moment are correlated. This complicates the construction of a para-
metric test. They overcome this problem by using the so-called phase scrambled bootstrap
procedure (Theiler et al., 1992), a frequency domain procedure. The method is computa-
tionally less intensive and more powerful than the Hinich test statistic. Three MATLAB files
are available at http://www.mathworks.nl/matlabcentral/fileexchange/16062-test-
of-non-linearity. These files are: third.m (calculates the 3rd-order moment for a time
series), aaft.m (calculates the Amplitude Adjusted FT), and boot.m (calculates a bootstrap
test for nonlinearity).

Section 4.2: Based on the evolutionary second-order spectrum and bispectrum (see, e.g.,
Priestley and Gabr (1993)), Tsolaki (2008) proposes test statistics for Gaussianity and lin-
earity of nonstationary slowly varying time series processes. These test statistics are gener-
alizations of the Subba Rao–Gabr tests for stationary processes.

Section 4.3: The use of a square shaped uniform smoothing window in the direct estim-
ator of the bispectrum in Hinich’s linearity and Gaussianity test statistics may introduce
severely biased estimates in relatively small areas of the bispectrum, and hence may lead to
a false acceptance of the null hypothesis with large probability. To ameliorate this problem,
Birkelund and Hanssen (2009) obtain an improved version of Hinich’s tests by proposing
a hexagonal shaped smoothing window. Yuan (2000a) investigates the effect of estimating
the noncentrality parameter λ0 on the asymptotic level of Hinich’s linearity test, and he
introduces a modification. The modified test also uses the IQR, but it tests the equality
of location parameters and its critical value does not depend on any unknown parameters.
In another paper, Yuan (2000b) extends Hinich’s Gaussianity and linearity test statistics to
stationary random fields on Zm (m = 1, 2, . . .).

Section 4.7: Ashley and Patterson (1989), and Hinich and Patterson (1985) apply the
Subba Rao–Gabr test statistics and the Hinich test statistics to various real economic time
series. Brockett et al. (1988) and Patterson and Ashley (2000) present applications of these

http://www.mathworks.nl/matlabcentral/fileexchange/16062-test-of-non-linearity
http://www.mathworks.nl/matlabcentral/fileexchange/16062-test-of-non-linearity
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tests with series taken from other areas, including examples from, finance, engineering,
and geophysics. Teles and Wei (2000) investigate the performance of various linearity test
statistics, including Hinich’s linearity test, on time series aggregates. Temporal aggregation
greatly hampers the detection of nonlinear DGPs.

Drunat et al. (1998) compare the Hinich and the Subba Rao–Gabr linearity tests on a set of
exchange rates. A modified version of the original Hinich linearity test statistic forms a part
of a single-blind controlled competition among five linearity tests, and results are reported by
Barnett et al. (1997). Hinich et al. (2005) examine the performance of Hinich’s Gaussianity
and linearity tests and the Hinich–Rothman test statistic for time-reversibility (Chapter 8),
using bootstrap and surrogate data simulation methods. Using knowledge of the asymptotic
distribution of the bispectral density function under the null hypothesis of Gaussianity, Epps
(1987) proposes a large-sample GOF-type test statistic based on the difference between the
sample mean estimate and the ensemble averaged value of the characteristic function of the
time series, measured at some specific points. The AR-sieve bootstrap, discussed briefly in
Section 4.4.3, is reviewed in detail in Kreiss and Lahiri (2011).

4.10 Software References

Section 4.2: A FORTRAN77 program for computing the Subba Rao–Gabr linearity test is
listed as Program 4 on pp. 263 – 269 of Subba Rao and Gabr (1984). An extended version
of this program can be downloaded from the website of this book.

Section 4.3: A public domain FORTRAN77 code for computing the Hinich test stat-
istics can be downloaded from http://www.la.utexas.edu/hinich/. A user-friendly
executable version of this code is contained in the nonlinear toolkit for detecting and
identifying nonlinear time series, and detailed in Patterson and Ashley (2000); see http:
//ashleymac.econ.vt.edu. The toolkit was used to calculate the bootstrap results for
the test statistics TG and ZL in Table 4.2. The MATLAB toolbox HOSA contains the file
GLSTAT that can be used to calculate Hinich’s Gaussianity and linearity test statistics with
the approximation of the noncentral χ2

2(·) distribution as discussed in Section 4.4.1.

Section 4.4: The empirical results of the AD- and CvM-type Gaussianity and linearity
test statistics (Table 4.2) can be reproduced with the goodnessfit.m MATLAB function
available at the website of this book. Also available is R code for computing the bootstrapped
form of Hinich’s Gaussianity and linearity test statistics of Section 4.4.3; see Exercise 4.4.
Furthermore, Gyorgy Terdik made available TerM.m, a MATLAB module for calculating
the Terdik–Máth test statistic.

Exercises

Theory Questions

4.1 Prove that the triangular principal domain (4.7) of the bispectral density function
fY (ω1, ω2) is bounded by the manifolds ω1 = ω2, ω1 = 0, and ω1 = (1− ω2)/2.

4.2 Consider the subdiagonal BL process Yt = βYt−2εt−1 + εt, where {εt} i.i.d.∼ N (0, σ2
ε)

with β2σ2
ε < 1.

http://ashleymac.econ.vt.edu
http://ashleymac.econ.vt.edu
http://www.la.utexas.edu/hinich/
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(a) Prove that

γY (k) =
{

σ2
ε/(1− β2σ2

ε), k = 0,
0, otherwise,

E(YtYt−kYt−�) =
{

βσ4
ε/(1− β2σ2

ε), k = 1, � = 2,
0, otherwise,

and

E(Y 2
t Y 2

t−1) =
σ4

ε(1 + 2β2σ2
ε)

(1− β2σ2
ε)2

.

(b) The best one-step ahead quadratic predictor for {Yt, t ∈ Z} is given by

Y Q

t+1|t = c1,2YtYt−1.

Using the moment results in part (a), prove that the coefficient c1,2 is given by

c1,2 = β
1− β2σ2

ε

1 + 2β2σ2
ε

.

(c) Show that the maximum reduction of the one-step ahead MSFE of Y Q

t+1|t, relative
to E(Y 2

t ) = σ2
Y , is reached at β2σ2

ε = (
√

3− 1)/2.

4.3 By assuming that the bispectrum is non-zero over the entire region D, and that
fY (ω1, ω2) is partially differentiable once with respect to ω1, Sakaguchi (1991) shows
that for any triplet (α, β, γ) the bispectrum fY (ω1, ω2) satisfies the relation

fY (α, β)fY (γ, 0)fY (−α + γ,−β − γ) = fY (β, α)fY (0,−α− β)fY (−α + γ,−γ). (∗)

This relation may be viewed as an alternative to (4.58).

(a) Consider the stationary nonlinear process defined by

Yt = εt(1 + εt−1) + (η2
t − 1),

where {εt} and {ηt} are independent and Gaussian i.i.d. processes with zero
mean and unit variance. Show that the bispectrum is given by

fY (ω1, ω2) = 2[exp{−2πi(ω1 + ω2)}+ exp(2πiω1) + exp(2πiω2)] + 8,

(ω1, ω2) ∈ [0, 1]2.

(b) Let α = β = 1/4 and γ = 0. Show that for the above nonlinear process the
left-hand side of (∗) is equal to 728 while the right-hand side is equal to 600,
indicating that the series is nonlinear.

Empirical and Simulation Questions

4.4 Consider the first differences (USunemplmnt first dif.dat) of the quarterly U.S. unem-
ployment rate, earlier introduced in Example 1.1.
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(a) Using the R functions in the file Exercise44.r, write an MC simulation program to
compare Hinich’s Gaussianity test and Hinich’s linearity test with bootstrapped
forms of these tests. To evaluate the test statistics consider 1,000 BS replicates,
and take 20 MC simulations across all tests.
Compare the percentage of rejections of the test statistics at the 5% nominal sig-
nificance level. Are the results sensitive to the user-specified parameters (inputs)
in the simulations?
[Inputs: The number of gridpoints K, a discrete uniform random variable taking
values in the set {3, 4, 5}. The spectral bandwidth Ms = cMb where c ∼ U [1.5, 3]
and the bispectral bandwidth Mb = 4. The bootstrap AR order parameter p, a
discrete uniform random variable taking values in the set {4, 5, . . . , 15}.]

(b) Compare part (a) with the corresponding test results reported in Table 4.2.

4.5 Consider the set of R functions in the file Exercise45.r.

(a) Generate 100 series of length T = 250 for the linear Gaussian processes {Yt} i.i.d.∼
N (0, 1), and for the linear, but non-Gaussian, process {Yt} i.i.d.∼ χ2

1. Compute and
compare the percentages of rejections of Hinich’s Gaussianity test and Hinich’s
linearity test with bootstrapped forms of these tests similar as in Exercise 4.4.
Take B = 200, Mb = 4, Ms = 8, p = 15, and set the nominal significance level
at 5%.
[Note: The computations can be time demanding.]

(b) Generate 100 series of length T = 250 for the diagonal BL process (4.19) with
β = 0.4 and {εt} i.i.d.∼ N (0, 1). Compute the percentages of rejections of the test
statistics similar as in part (a). Comment on the obtained results.



Chapter 5
TIME-DOMAIN LINEARITY TESTS

Time-domain linearity test statistics are parametric; that is, they test the null hy-
pothesis that a time series is generated by a linear process against a pre-chosen
particular nonlinear alternative. Using the classical theory of statistical hypothesis
testing, time-domain test nonlinearity tests can be based on three principles – the
likelihood ratio (LR), Lagrange multiplier (LM), and Wald (W) principles. LR-
based test statistics require estimation of the model parameters under both the null
and the alternative hypothesis, whereas tests statistics based on the LM principle
require estimation only under the null hypothesis. Application of W-based test stat-
istics implies that the model parameters under the alternative hypothesis need to
be estimated. Hence, in the case of complicated nonlinear alternatives, containing
many more parameters than the model under the null hypothesis, test statistics
constructed from the LM principle are often preferred over test statistics based on
the other two testing principles.

In the first three sections that follow, we introduce these three principles briefly
and show how they yield the most commonly known test statistics for nonlinear-
ity. In Section 5.4, we discuss three test statistics based on a second-order Volterra
expansion. These tests rely on an added variable approach, i.e., nonlinearity can
be seen by examining the strength of the relationship of the residuals of a fitted
linear model with nonlinear terms from a Volterra expansion via an F ratio of sums
of squares of residuals. Evidently, this approach is linked to some of the LM test
statistics proposed in Section 5.1. In Section 5.5, we first introduce the arranged
autoregression principle. Based on this principle, we discuss two test statistics for
SETARs. Then we discuss an F test statistic that combines the added variable ap-
proach with the arranged autoregression principles. Section 5.6 introduces a simple
test procedure for discriminating among different nonlinear time series models.

Two appendices are added to the chapter. Appendix 5.A presents percentiles of
the LR-SETAR test statistic. Appendix 5.B provides a summary of size and power
studies. It includes some remarks about the strengths and weaknesses of the test
statistics.
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5.1 Lagrange Multiplier Tests

General testing framework
Before we derive LM-based nonlinearity test statistics, it is good to discuss the
general testing framework briefly. Let {Yt}T

t=1 be a realization of a strictly stationary
and ergodic nonlinear process defined by

Yt = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q;θ) + εt, (5.1)

where g(·) is a sufficiently well-behaved function on R, and θ is a vector of unknown
parameters. We treat the initial values {Y−(p∧q)+1, . . . , Y0} as fixed constants. This
will not affect the distribution of the test statistics in large samples. Furthermore,
we assume that the form of (5.1) nests a linear time series model. This implies that
θ can be partitioned as θ = (θ′

1, θ
′
2)

′, where θi denotes an νi × 1 parameter vector
of the linear components (i = 1, 2) with ν = ν1 + ν2.

The null hypothesis we wish to test is θ2 = 0. The LM test statistic is based
on parameter estimates of the restricted model. In particular, the Lagrange method
states that the (nonlinear) LS estimates under the null hypothesis, denoted by θ̂ =
(θ̂′

1,0
′)′, are obtained by minimization of the (unrestricted) Lagrange function

L(θ,λ) = LT (θ) + 2λ′θ2, (5.2)

where

LT (θ) =
T∑

t=1

ε2
t (θ) (5.3)

is the (conditional) sum of squares function and λ is an ν2 × 1 vector of constants,
called Lagrange multipliers . Then, one form of the LM (or score) test statistic for
λ = 0 is given by

LMT =
(∂LT (θ)

∂θ2

∣∣∣
H0

)′
(Σ22 −Σ21Σ−1

11 Σ12)−1
∣∣∣
H0

(∂LT (θ)
∂θ2

∣∣∣
H0

)
, (5.4)

where Σ11, Σ12, Σ21 and Σ22 are p× p matrices, representing the respective parti-
tions of the Fisher information matrix.

The LMT test statistic (5.4) is not very illuminating as it stands. It can, however,
be rewritten in a much more illuminating way. Define zt(θ) = ∂εt(θ)/∂θ and denote
ẑt = zt(θ̂) and ε̂t = εt(θ̂). Partitioning ẑt conformably to the vector θ yields
ẑt = (ẑ′1,t, ẑ

′
2,t)

′. Now, for T large, we can rewrite (5.4) as

LMT = σ̂−2
ε

( T∑
t=1

ẑ2,tε̂t

)′(
Σ̂22 − Σ̂21Σ̂

−1

11 Σ̂12

)−1( T∑
t=1

ẑ2,tε̂t

)
, (5.5)

where

Σ̂21 = Σ̂′
12 =

T∑
t=1

ẑ2,tẑ′1,t, and Σ̂ii =
T∑

t=1

ẑi,tẑ′i,t, (i = 1, 2),
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and σ̂2
ε = T−1LT (θ̂). If the linearity hypothesis holds and {Yt, t ∈ Z} satisfies

appropriate regularity conditions, (5.5) has an asymptotic chi-square distribution.
In particular, under H0 and as T →∞, we have

LMT
D−→ χ2

ν2
. (5.6)

Computation of (5.5) can also be based on the auxiliary regression

ε̂t = ẑ ′
1,tβ1 + ẑ ′

2,tβ2 + ηt, (5.7)

where β1 and β2 are artificial parameter vectors of dimension ν1 and ν2 respectively,
and {ηt, t ∈ Z} is an artificial error process. Let SSE be the residual sum of squares
in the linear regression (5.7), and SSE0 for the residual sum of squares under the
null hypothesis β2 = 0. Then, applying standard least squares regression theory,
(5.5) can be written as

LMT = T
(SSE0 − SSE

SSE0

)
. (5.8)

We use the above formulation as a first step to derive various variants of LM test
statistics below. These variants depend on the form of the vector ẑ2,t, which is
determined by the type of nonlinearity investigated.

Bilinear case
Consider the BL(p, q, P,Q) model (2.12). This model reduces to a linear ARMA(p, q)
model if the last term on the right-hand side of (2.12) is zero, i.e., if ψuv = 0 ∀u, v.
Thus, the null hypothesis we wish to test is

H
(1)
0 : ψuv = 0, (u = 1, . . . , P ; v = 1, . . . , Q). (5.9)

Consequently, the vectors ẑ1,t and ẑ2,t are given by

ẑ1,t =
(∂εt(θ̂)

∂φ0
,
∂εt(θ̂)
∂φ1

, . . . ,
∂εt(θ̂)
∂φp

,
∂εt(θ̂)
∂θ1

, . . . ,
∂εt(θ̂)
∂θq

)′
(5.10)

and

ẑ2,t =
(∂εt(θ̂)

∂ψ11
, . . . ,

∂εt(θ̂)
∂ψPQ

)′
, (5.11)
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where the partial derivatives can be obtained from the recursions

∂εt(θ̂)
∂φ0

= −
(
1 +

q∑
�=1

θ̂�
∂εt−�(θ̂)

∂φ0

)
,

∂εt(θ̂)
∂φi

= −
(
Yt−i +

q∑
�=1

θ̂�
∂εt−�(θ̂)

∂φi

)
, (i = 1, . . . , p),

∂εt(θ̂)
∂θj

= −
(
ε̂t−j +

q∑
�=1

θ̂�
∂εt−�(θ̂)

∂θj

)
, (j = 1, . . . , q),

∂εt(θ̂)
∂ψuv

= −
(
Yt−v ε̂t−u +

q∑
�=1

θ̂�
∂εt−�(θ̂)

∂ψuv

)
, (u = 1, . . . , P ; v = 1, . . . , Q),

and where the necessary initial values are set to zero.
The above quantities can only be used if the inverses in (5.5) exist, at least for T

sufficiently large. If this is not the case an identification problem occurs, i.e. there is
a perfect linear dependence among the components of ẑ2,t. A natural solution is to
reduce the number of ψij coefficients in the model, i.e. restrict some of them to zero.
This means that the dimension of the vector ẑ2,t is reduced by deleting some of its
components when necessary. To solve the identification problem it suffices to impose
the following restrictions (Saikkonen and Luukkonen, 1988) on the BL model.

(i) If Q− p ≤ P − q then φp �= 0 and either Q ≤ p + 1 or the vector ẑ2,t does not
contain partial derivatives ∂εt(θ̂)/∂ψij with i and j satisfying 1 ≤ i < Q − p,
p + i < j ≤ Q.

(ii) If P − q ≤ Q− p then θq �= 0 and either P ≤ q + 1 or the vector ẑ2,t does not
contain partial derivatives ∂εt(θ̂)/∂ψij with i and j satisfying 1 ≤ j < P − q,
q + j < i ≤ P .

Now, the asymptotic distribution of the LM test statistic for BL(p, q, P,Q) mod-
els can formulated as follows. Let {Yt, t ∈ Z} be generated by (5.1) with E(ε4

t ) < ∞.
Assuming conditions (i) and (ii) are fulfilled, define the LM-type test statistic, de-
noted by LM(1)

T , by substituting (5.10) – (5.11), for the corresponding quantities in
(5.5).1 Assume that the hypothesis of interest is H(1)

0 . Then, as T →∞,

LM(1)
T

D−→ χ2
PQ−r(r+1)/2, (5.12)

where r = max{0,min(P − q,Q− p)− 1}.
Note that for the special case of a BL(p, 0, P,Q) model ẑ2,t is given by ẑ2,t =

−(Yt−1ε̂t, Yt−2ε̂t−1, . . . , Yt−Qε̂t−P )′, and the sufficient condition is given by φp �= 0,

1Throughout Sections 5.1 – 5.3, we use the numbered superscript notation (·) to indicate the
link between a particular linearity test statistic and its corresponding null hypothesis.
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Q ≤ p + 1. Under H(1)
0 , the corresponding LM-type test statistic is asymptotically

distributed as χ2
PQ. The additional assumption E(ε4

t ) < ∞ is not necessary if it is
assumed that {εt} is Gaussian WN.

Exponential AR case
Consider the ExpARMA model in (2.20) with q = 0. There are two possibilities
to reduce the resulting ExpAR(p) model to a linear AR(p). One can either set the
scaling factor γ = 0 or take ξi = 0 (i = 1, . . . , p). Since it appears that the first
possibility is easier to work with, we introduce the null hypothesis

H
(2)
0 : γ = 0. (5.13)

Unfortunately, from (2.20) one can immediately see that the ExpAR(p) model is not
identified when H(2)

0 holds, i.e. the parameters ξ1, . . . , ξp can take any values without
changing the residual sum of squares. As a consequence the relevant inverses in (5.5)
do not exist. To overcome this problem, the idea is to replace exp(·) by a suitable
linear approximation. The resulting test statistic is an LM-type test statistic which
is identical to the LM test statistic for the hypothesis ξ1 = · · · = ξp = 0 in the
auxiliary regression model (5.7). In this case the vectors ẑ1,t and ẑ2,t are defined as
respectively

ẑ1,t =−(1, Yt−1, . . . , Yt−p)′ and ẑ2,t =−(Yt−1Y
2
t−d, Yt−2Y

2
t−d, . . . , Yt−pY

2
t−d)

′. (5.14)

Let LM(2)
T denote the resulting linearity test statistic. Under H(2)

0 , and provided
E(ε6

t ) < ∞,

LM(2)
T

D−→ χ2
p, as T →∞. (5.15)

STAR model
Consider the STAR(2; p, p) model (2.42) with the transition function G(Yt−d; γ, c) =
Φ(γ{Yt−d − c}), i.e.

Yt = φ0 +
p∑

i=1

φiYt−i +
{

ξ0 +
p∑

i=1

ξiYt−i

}
G(Yt−d; γ, c) + εt. (5.16)

The null hypothesis we wish to test is given by

H
(3)
0 : ξ0 = ξ1 = · · · = ξp = 0. (5.17)

Note that the parameters γ, d (1 ≤ d ≤ p), and c are generally unknown. Hence,
under H(3)

0 , the STAR(2; p, p) model is not identified. Analogous to the LM-type
test statistic for the ExpAR(p) model one can solve this problem by replacing G(·)
by a suitable linear approximation. In fact, it turns out that LM-type test statistics
can be obtained for a wide class of smooth transition functions G(·) provided the
following conditions are satisfied (Luukkonen et al., 1988a).
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(a) The functions G(·) are odd, monotonically increasing, and possess a nonzero
derivative of order (2s + 1) in an open interval (−a, a), for a > 0, s ≥ 0.

(b) The functions G(·) are such that G(0) = 0 and (dkG(z)/dzk)|z=0 �= 0 for k
odd and 1 ≤ k ≤ 2s + 1.

Condition (b) is not restrictive. Its purpose is to provide a convenient paramet-
erization for deriving the test statistic. In the case G(0) �= 0 one can always redefine
G(·) and use G̃(·) = G(·)−G(0) instead so that (b) is again satisfied. The condition
is not required for parameter estimation.

STAR model: First-order test procedure
Assume that conditions (a) and (b) hold for s = 0. Let g1 = (dG(z)/dz)|z=0. The
idea is to linearize the STAR(2; p, p) model by using the first-order Taylor series
approximation

T1(z) ≈ g1z. (5.18)

Substituting (5.18) for G(zt) ≡ G(Yt−d; γ, c) into (5.16) yields the auxiliary linear
regression model

Yt = a0 +
p∑

i=1

aiYt−i + c0(Yt−d − c) +
p∑

i=1

ciui,t + ηt, (5.19)

where cj = γg1ξj (j = 0, 1, . . . , p), and ui,t = Yt−i(Yt−d − c) (i = 1, . . . , p). Under
the null hypothesis, cj = 0 (j = 0, 1, . . . , p) in (5.19) and ηt = εt. Note, however,
that model (5.19) is not identified, i.e. Yt−1 appears twice on the right-hand side.
One way to overcome this problem is to reorder the components of (5.19) first; this
yields

Yt = α0 +
p∑

i=1

αiYt−i +
p∑

i=1

p∑
j=i

βijYt−iYt−j + ηt. (5.20)

Thus, the null hypothesis of interest is

H
(3∗)
0 : βij = 0, (i = 1, . . . , p; j = i, . . . , p). (5.21)

The steps for computing the corresponding LM-type test statistic are as follows.
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Algorithm 5.1: LM(3∗)
T test statistic

(i) Regress Yt on {1, Yt−1, . . . , Yt−p} using LS; compute the residuals {ε̂t}T
t=1,

and the residual sum of squares SSE0 =
∑

t ε̂ 2
t .

(ii) Regress ε̂t on {1, Yt−i, Yt−iYt−j ; i = 1, . . . , p; j = i, . . . , p}; compute the re-
siduals {η̂t}T

t=1, and the residual sum of squares SSE1 =
∑

t η̂2
t .

(iii) Compute the LM-type test statistic

LM(3∗)
T = T (SSE0 − SSE1)/ SSE0. (5.22)

Under H(3∗)
0 ,

LM(3∗)
T

D−→ χ2
1
2 p(p+1), as T →∞. (5.23)

STAR model: Third-order test procedure
Clearly, the test statistic (5.22) does not depend on the form of the function G(·) but
only on the variables Yt−i (i = 1, . . . , p) and Yt−d. Thus, the same test is obtained
for a wide range of nonlinear models so that its power against some particular
alternative may be questioned. One way to improve the performance of the test
statistic is to replace the function G(·) by appropriate higher order approximations.
A second-order Taylor expansion is not useful because G(·) is odd and thus its second
derivative evaluated under the null hypothesis is zero. However, the use of a third-
order approximation is possible, if conditions (a) and (b) are assumed to hold with
s = 1. Then the third-order Taylor series approximation of G(·) evaluated at z = 0
is given by

T3(z) ≈ g1z + g3z
3, g3 = (3!)−1[d3G(z)/dz3]

∣∣
z=0

.

Now, replacing G(·) in (5.16) by T3(γ{Yt−d − c}) gives the auxiliary model

Yt =a0 +
p∑

i=1

aiYt−i + c0(Yt−d − c) +
p∑

i=1

ciui,t + d0(Yt−d − c)3 +
p∑

i=1

diwi,t + ηt,

where cj = γg1ξj , dj = γ3g3ξj (j = 0, 1, . . . , p), ui,t = Yt−i(Yt−d − c), and wi,t =
Yt−i(Yt−d − c)3 (i = 1, . . . , p). Similar as in the case of the first-order test proced-
ure the above model is not identified. Again, we can circumvent this problem by
expanding (Yt−d − c)3 and reordering terms. The result is the auxiliary regression
model

Yt =α0 +
p∑

i=1

αiYt−i +
p∑

i=1

p∑
j=i

βijYt−iYt−j +
p∑

i,j=1

ψijYt−iY
2
t−j +

p∑
i,j=1

κijYt−iY
3
t−j + ηt.

(5.24)
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Thus, the null hypothesis to be tested can be rewritten as

H
(3∗∗)
0 : βij =0, (i = 1, . . . , p; j = i, . . . , p), ψij =κij =0, (i, j = 1, . . . , p). (5.25)

The test procedure consists of the following steps.

Algorithm 5.2: LM(3∗∗)
T test statistic

(i) Repeat step (i) of the first-order test procedure (Algorithm 5.1).

(ii) Regress ε̂t on {1, Yt−i, Yt−iYt−j ; i = 1, . . . , p; j = i, . . . , p;Yt−iY
k
t−j , i, j =

1, . . . , p; k = 2, 3}; compute the residuals {η̂t}T
t=1 and the residual sum of

squares SSE2 =
∑

t η̂ 2
t .

(iii) Compute the LM-type test statistic

LM(3∗∗)
T = T (SSE0 − SSE2)/SSE0. (5.26)

Under H(3∗∗)
0 , and as T →∞,

LM(3∗∗)
T

D−→ χ2
1
2 p(p+1)+2p2 . (5.27)

STAR Model: Augmented first-order test procedure
A problem with the LM(3∗∗)

T test is that in small samples it uses 2p2 more degrees of
freedom than the LM(3∗)

T test statistic. On the other hand, it may be noted that βdd

and ψdd are the only parameters in (5.24) which are functions of ξ0. This suggests
that one might in essence retain the first-order approximation of G(·) and augment
by p third-order terms only when absolutely necessary. This means that instead of
the auxiliary regression model (5.24) we have

Yt = α0 +
p∑

i=1

αiYt−i +
p∑

i=1

p∑
j=i

φijYt−iYt−j +
p∑

i=1

ψiY
3
t−i + η∗t .

The null hypothesis of interest is

H
(4)
0 : φij = 0, (i = 1, . . . , p; j = i, . . . , p), ψi = 0, (i = 1, . . . , p). (5.28)

The corresponding LM-type test statistic is given by

LM(4)
T = T (SSE0 − SSE3)/SSE0, (5.29)

where SSE0 is as before and SSE3 is the residual sum of squares from the least squares
regression of ε̂t on {1, Yt−i, Yt−iYt−j ; i = 1, . . . , p, j = i . . . , p; Y 3

t−i; i = 1, . . . , p}.
Under H(4)

0 , and as T →∞,

LM(4)
T

D−→ χ2
1
2
p(p+1)+p

. (5.30)
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Note that the above three LM-type test statistics do not assume that the delay
parameter d is known. If, however, if d is known, then it can be shown that the
number of degrees of freedom of LM(3∗)

T , LM(3∗∗)
T , and LM(4)

T are p, 3p, and p + 1,
respectively. In that case the resulting test statistics will be different from the ones
given above since the residual sum of squares SSEi (i = 1, 2, 3) will be based on far
fewer independent variables. Hence, prior knowledge about d can be quite valuable
in testing linearity against STAR(2; p, p) models.

AsMA and SETMA models
Recall the asARMA(p, q) model (2.37) with p = 0, denoted by asMA(q), and com-
pactly written in the form

Yt = μ + εt +
q∑

j=1

θ+
j εt−j +

q∑
j=1

δjI(εt−j ≤ 0)εt−j , (5.31)

where δj = θ−j − θ+
j . In addition, consider as a special case of the SETARMA model

(2.29), the SETMA(2; q, q) model given by

Yt = μ + εt +
q∑

j=1

θjεt−j +
q∑

j=1

δjI(Yt−d ≤ r)εt−j . (5.32)

A notable difference between (5.31) and (5.32) is that with (5.31) the regime switch-
ing is in {εt} whereas the threshold variable in the SETMA model is {Yt−d} (d ∈ Z+)
itself. However, within the LM testing framework, this difference between both
models does not play a role in the development of a linearity test. Hence, below we
consider testing a linear MA model against an asMA(q) model. The procedure for
testing SETMA(2; q, q) types of nonlinearity is completely identical.

Define the parameter vectors θ = (θ1, . . . , θq)′, δ = (δ1, . . . , δq)′, and ψ =
(μ, θ′, δ′, σ2

ε)
′, where θj ≡ θ+

j . Furthermore, assume that there are q starting values

Y−q+1, . . . , Y0, and let {εt} i.i.d.∼ N (0, σ2
ε) which is needed to specify the log-likelihood

function. For the asymptotic distribution of the LM-type test statistic this latter
assumption can be relaxed by requiring the existence of certain moments higher
than order two of the process {εt, t ∈ Z}. Given these specifications, it is apparent
from (5.31) that the null hypothesis of linearity is given by

H
(5)
0 : δ = 0. (5.33)

Assume that under H(5)
0 the roots of θ(z) = 1 +

∑
k θkz

k lie outside the unit
circle to guarantee (global) invertibility. To derive an LM-type test statistic of H(5)

0

we need the components of the gradient, or score, vector ∂LT (ψ)/∂ψ. They are

∂LT (ψ)
∂θj

=− 1
σ2

ε

T∑
t=1

εt

[
εt−j +

∑
k

(
θk + δkI(εt−k ≤ 0)

)∂εt−k

∂θj

]
, (j =1, . . . , q),

(5.34)
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∂LT (ψ)
∂δj

= − 1
σ2

ε

T∑
t=1

εt

[
I(εt−j ≤ 0)εt−j +

∑
k

(
θk + δkI(εt−k ≤ 0)

)∂εt−k

∂δj

]
, (5.35)

∂LT (ψ)
∂μ

= − 1
σ2

ε

T∑
t=1

εt

[
1 +

∑
k

(
θk + δkI(εt−k ≤ 0)

)∂εt−k

∂μ

]
, (5.36)

and

∂LT (ψ)
∂σ2

ε

= − T

2σ2
ε

+
1

2σ4
ε

T∑
t=1

ε2
t . (5.37)

Under H(5)
0 , (5.34) has the form

∂LT (ψ)
∂θj

= − 1
σ2

ε

T∑
t=1

εt

[
εt−j +

∑
k

θk
∂εt−k

∂θj

]
, (j = 1, . . . , q). (5.38)

From (5.38) it follows that (1 +
∑

k θkB
k)(∂εt/∂θj) = −εt−j (j = 1, . . . , q), so

that ∂εt/∂θj = −θ−1(B)εt−j where B is the backward shift operator. Moreover,
∂εt/∂δj = −θ−1(B)I(εt−j ≤ 0)εt−j (j = 1, . . . , q) and ∂εt/∂μ = −θ−1(1) = con-
stant, under H(5)

0 . The actual testing can be performed by the following steps.

Algorithm 5.3: F
(5)

T test statistic
(i) Estimate the parameters of the asMA(q) model (5.31) with δj = 0 (j =

1, . . . , q) consistently; compute the residuals {ε̂t}T
t=1. The Hannan and Ris-

sanen (1982) procedure, based on first estimating a long AR, is recommended
for computing the MA parameters.

(ii) Regress ε̂t on 1 and ξ(B)ε̂t−j (j = 1, . . . , q), where ξ(B) =
∑K

k=0 ξkBk

(ξ0 = 1) is the Kth order approximation of θ̂−1(B); compute the residuals
{v̂t}T

t=1, and SSE0 =
∑

t v̂2
t .

(iii) Regress v̂t on 1, ξ(B)ε̂t−j and ξ(B)I(ε̂t−j ≤ 0)ε̂t−j (j = 1, . . . , q); compute
the residual sum of squares SSE.

(iv) Compute the test statistic

F
(5)
T =

(SSE0 − SSE)/q

SSE/(T −K − 2q − 1)
. (5.39)

Under H(5)
0 , and as T →∞,

F
(5)
T

D−→ Fν1,ν2 (5.40)

with ν1 = q and ν2 = T −K − 2q − 1.
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An F test is recommended because in small samples its empirical size usually is
close to the nominal significance level while the power is good. The empirical size of
the corresponding χ2

q distributed test statistic, based directly on asymptotic theory,
may be too large if q happens to be large and T is small.

Note that (5.39) is computed by conditioning on the K first residuals ε̂1, . . . , ε̂K .
Another way to proceed is to obtain the estimates of the partial derivatives in (5.38)
from the recursion

∂εt

∂θj
= −

(
εt−j +

∑
k

θk
∂εt−k

∂θj

)
, (j = 1, . . . , q).

Analogously,

∂εt

∂δj
= −

(
I(εt−j ≤ 0)εt−j +

∑
k

θk
∂εt−k

∂δj

)
, (j = 1, . . . , q),

∂εt

∂μ
= −

(
1 +

∑
k

θk
∂εt−k

∂μ

)
,

where the required initial values are set to zero. The second and third steps of the
testing procedure can be modified as follows.

(ii∗) Regress ε̂t on ∂ε̂t/∂μ̂ and ∂ε̂t/∂θ̂j (j = 1, . . . , q) to obtain {v̂t} and SSE0.

(iii∗) Regress v̂t on ∂ε̂t/∂μ̂, ∂ε̂t/∂θ̂j and ∂ε̂t/∂δ̂j (j = 1, . . . , q) to get SSE.

In this case the F test statistic has q and T − 1− 2q − 1 degrees of freedom.

ASTMA model
Consider the ASTMA model (2.45) which, for ease of exposition, we reproduce as

Yt = εt +
q∑

j=1

(
θj + δjGj(γεt−j)

)
εt−j . (5.41)

If we want to test a linear MA(q) against an ASTMA(q) model it is not necessary
to parameterize the transition functions Gj(·) (j = 1, . . . , q) in detail. Following
Luukkonen et al. (1988a), it suffices to assume that conditions (a) and (b) for the
STAR model hold. Note that an ASTMA model is not identified under the null
hypothesis of linearity

H
(6)
0 : γ = 0. (5.42)

If H(6)
0 holds so that Gj(0) ≡ 0, the δj ’s in (5.41) are not estimable. We can, how-

ever, adopt a similar approach as introduced for the STAR model and approximate
Gj(γεt−j) by its first-order Taylor expansion at the origin. With z = γεt−j this
expansion yields Tj(z) = G′

j(0)z. Substitute Tj for I(εt−j ≤ 0) in relations (5.34) –
(5.38). Keep the unidentified δ1, . . . , δq fixed and replace (5.35) by
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∂LT (ψ)
∂γ

= − 1
σ2

ε

T∑
t=1

εt

∑
k

[
θk

∂εt−k

∂γ
+ δkG

′
k(0)ε

2
t−k + γG′

k(0)δk

∂ε2
t−k

∂γ

]
.

Thus, under H(6)
0 ,

∂LT (ψ)
∂γ

= − 1
σ2

ε

T∑
t=1

εt

∑
k

[
θk

∂εt−k

∂γ
+ δkG

′
k(0)ε

2
t−k

]
and

∂εt

∂γ
= −

q∑
k=1

δkG
′
k(0)θ

−1(B)ε2
t−k ≈ −

q∑
k=1

δkG
′
k(0)ξ(B)ε2

t−k. (5.43)

Substituting (5.43), evaluated under H(6)
0 , for ∂εt/∂δj (j = 1, . . . , q) at step (iii∗) of

the asMA testing procedure leads to the following modification.

(iii
′
) Regress v̂t on 1, ∂ε̂t/∂θ̂j (j = 1, . . . , q) and ∂ε̂t/∂γ̂; compute the residual sum of

squares SSEδ.

This does not yield a practicable test because the resulting test statistic, say Fδ,
depends on the unknown nuisance parameters δj (j = 1, . . . , q). We may, however,
replace SSEδ by infδ SSEδ so that the test statistic becomes supδ Fδ. The asymptotic
null distribution of supδ Fδ is χ2

q . This is done by treating the q elements in the last
sum in (5.43) as separate variables and performing the following step.

(iii
′′
) Regress v̂t on 1, ξ(B)ε̂t−j and ξ(B)ε̂ 2

t−j (j = 1, . . . , q); compute the residual sum of
squares SSE∗. Replace SSE by SSE∗ in step (iv) of Algorithm 5.3.

The resulting test statistic is given by

F
(6)
T =

(SSE0 − SSE∗)/q

SSE∗/(T −K − 2q − 1)
. (5.44)

Under H(6)
0 , and as T →∞, (5.44) has the same asymptotic distribution as F

(5)
T .

NCTAR and AR-NN models
Consider the NCTAR(k; p)q (1 ≤ q ≤ p) model (2.65) with the logistic activation-
level function G(·) redefined as

G(X̃t−1; γj , ω̃j , cj) =
1

1 + exp(−γj [ω̃′
jX̃t−1 − cj ])

− 1
2
, (j = 1, . . . , k), (5.45)

where

X̃t−1 = (Yt−1, . . . , Yt−q)′, and ω̃j = (ω̃1j , . . . , ω̃qj)′.
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A possible null hypothesis for linearity is H0 : γj = 0, (j = 1, . . . , k).
In principle, we can proceed in the same spirit as in the case of the STAR model,

by introducing first- and third-order Taylor approximations of (5.45) under H0 and
redefining the null hypothesis. However, similar to the LM(3∗)

T -type test statistic,
all the information about nonlinearity will be lost if a first-order Taylor expansion
is used. Instead, a third-order Taylor expansion of G(·) is recommended. To this
end, consider for simplicity the case k = 1 (i.e. one node). Then, taking a third-
order Taylor expansion of (5.45) about γ1 = 0 and substitution in (2.65) gives, after
rearranging and merging terms, the auxiliary regression model

Yt = α0 +
p∑

i=1

αiYt−i +
q∑

i=1

q∑
j=i

βijYt−iYt−j +
p−q∑
i=1

q∑
j=1

ψijY
∗
t−iYt−j

+
q∑

i=1

q∑
j=i

q∑
u=j

βijuYt−iYt−jYt−u +
p−q∑
i=1

q∑
j=1

q∑
u=j

ψijuY ∗
t−iYt−jYt−u

+
q∑

i=1

q∑
j=i

q∑
u=j

q∑
v=u

βijuvYt−iYt−jYt−uYt−v

+
p−q∑
i=1

q∑
j=1

q∑
u=j

q∑
v=u

ψijuvY
∗
t−iYt−jYt−uYt−v + ηt, (5.46)

where the vector Y∗
t ∈ Rp−q is formed by the elements of Xt−1 = (Yt−1, . . . , Yt−p)′

that are not contained in X̃t−1. The corresponding null hypothesis of linearity is
defined by

H
(7)
0 : βij = 0, ψij = 0, βiju = 0, ψiju = 0, βijuv = 0, ψijuv = 0. (5.47)

Recall that an NCAR(k; p)q model with p = q and ξ0j = 0 (j = 1, . . . , k), is
equivalent to an AR–NN(k; p) model (see, e.g., Figure 2.16). Then the auxiliary
regression (5.46) reduces to

Yt = α0 +
q∑

i=1

αiYt−i +
q∑

i=1

q∑
j=i

βijYt−iYt−j + +
p∑

i=1

p∑
j=i

p∑
u=j

βijuYt−iYt−jYt−u+

+
p∑

i=1

p∑
j=i

p∑
u=j

p∑
v=u

βijuvYt−iYt−jYt−uYt−v + ηt, (5.48)

with similar modifications in the specification of the null hypothesis H(7)
0 , and the

degrees of freedom of the resulting tests statistics. Given (5.46) and (5.47), a third-
order LM-type test statistic can be computed by the following steps.
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Algorithm 5.4: LM(7)
T test statistic

(i) Regress Yt on {1, Yt−1, . . . , Yt−p} using LS; compute the residuals {ε̂t}T
t=1,

and the residual sum of squares SSE0 =
∑

t ε̂ 2
t .

(ii) Regress ε̂t on {1, Yt−1, . . . , Yt−p} and on each of the nonlinear regressors of
(5.46); compute the residuals {η̂t}T

t=1, and SSE2 =
∑

t η̂ 2
t .

(iii) Compute the LM-type test statistic

LM(7)
T = T (SSE0 − SSE2)/SSE0. (5.49)

Under H(7)
0 and standard regularity conditions, complemented with the as-

sumption E(Y δ
t−i) < ∞ (i = 1, . . . , p) for some δ > 8, the limiting distribution

of (5.49) is given by

LM(7)
T

D−→ χ2
ν , (5.50)

where

ν =
q

2!
(q + 1) +

q

3!
(q + 1)(q + 2) +

q

4!
(q + 1)(q + 2)(q + 3)

+ (p− q)
(
q +

q

2!
(q + 1) +

q

3!
(q + 1)(q + 2)

)
.

(iv) Alternatively, compute the associated test statistic:

F
(7)
T =

(SSE0 − SSE)/ν

SSE/(T − p− 1− ν)
, (5.51)

which, as T →∞, has an approximate Fν,T−p−1−ν distribution under H(7)
0 .

The asymptotic properties of the above two test statistics do not crucially de-
pend on the assumption that the activation-level G(·) function is logistic, provided
conditions (a) and (b) given with the STAR model are satisfied. In practice, the
test statistic (5.51) is preferred over (5.49) since the asymptotic χ2

ν distribution is
likely to be a poor approximation to the finite sample distribution of the LM-type
test statistic if the degrees of freedom ν is large.

5.2 Likelihood Ratio Tests

SETAR
Let {Yt, t ∈ Z} be a strictly stationary and ergodic time series. Assume for simplicity,
but without generality, that {Yt, t ∈ Z} is generated by the SETAR(2; p, p) model
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with delay d, i.e.

Yt = φ
(1)
0 +

p∑
i=1

φ
(1)
i Yt−i +

{
φ

(2)
0 +

p∑
i=1

φ
(2)
i Yt−i

}
I(Yt−d ≤ r) + εt. (5.52)

Suppose, for the moment, that p and d are known (1 ≤ d ≤ p). Further, we assume
that the unknown threshold parameter r takes a value inside a known bounded
closed subset of R, say R̃ = [r, r], with r and r finite constants.

Let φi = (φ(i)
0 , . . . , φ

(i)
p )′ (i = 1, 2), and θ = (φ′

1, φ
′
2)

′. We denote the parameter
space by Θ = Θφ1×Θφ2 , where Θφ1 and Θφ2 are compact subsets of Rp+1. Suppose
the true parameter vector θ0 = (φ′

10,φ
′
20)

′, is an interior point of Θ. The hypotheses
of interest are

H
(8)
0 : φ20 = 0, H

(8)
1 : φ20 �= 0 for some r ∈ R̃. (5.53)

By temporarily setting {εt} i.i.d.∼ N (0, σ2
ε), the conditional log-likelihood functions

under H(8)
0 and H(8)

1 are, respectively,

L0T (φ1) =
T∑

t=1

ε̂ 2
t (φ1), and L1T (φ2, r) =

T∑
t=1

ε̂ 2
t (φ2, r), (5.54)

where ε̂t(φ1) = ε̂t(θ,−∞), and ε̂t(φ2, r) is defined based on the iterative equation
(5.52). For a given r, let

φ̂1T = arg min
φ1∈Θφ1

L0T (φ1) and φ̂2T = arg min
φ2∈Θ

L1T (φ2, r).

The quasi-LR statistic for testing H(8)
0 against H(8)

1 is then defined as

LRT (r) = LR0T (φ̂1T )− LR1T

(
φ̂2T (r), r

)
.

Since r is unknown, a natural choice for a test statistic is supr∈R LRT (r). This
choice, however, is undesirable since the test diverges to infinity in probability as
T →∞. An appropriate alternative test statistic is

LR(8)
T =

(
sup
r∈R̃

{
LR0T (φ1T )− LR1T

(
φ̂2T (r), r

)})
/LR0T (φ̂1T ). (5.55)

To describe the asymptotic null distribution of (5.55), we introduce the matrices

Ω(r) =
(

Σ Σ12(r)
Σ21(r) Σ22(r)

)
= E

{∂ε̂t(θ0, r)
∂θ

∂ε̂t(θ0, r)
∂θ′

}
, (5.56)

and

Ω1(r) =
(
Σ21(r)−Σ21(r)Σ−1

22 (r)Σ12(r)
)−1

,
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where Σ(·), Σ21(·) = Σ′
12(·), and Σ22(·) are (p+1)×(p+1) matrices. Let {G2(p+1)(r)}

denote a 2(p+1)-dimensional vector Gaussian process with zero mean and covariance
kernel Σ(r∧s) −Σ21(r)Σ−1Σ12(r); almost all its paths are continuous. Then, under

H
(8)
0 , standard regularity conditions, it can be shown (Chan, 1991) that

LR(8)
T

D−→ 1
σ2

ε

sup
r∈R̃

{
G′

2(p+1)(r)Ω1(r)G2(p+1)(r)
}
, as T →∞. (5.57)

Using the Poisson clumping heuristic (Aldous, 1989), it follows that the limiting
null distribution for the test statistic (5.57) is given by

P
(
sup
r∈R̃

{
G′

2(p+1)(r)Ω1(r)G2(p+1)(r)
}
≤ α

)
∼ exp

{
− 2χ2

p+1(α)
( α

p + 1
− 1

)
×

p+1∑
i=1

∫
R̃

dti
dr

dr
}

, (5.58)

where ti = 1
2 log{Li/(1 − Li)}, ∀i, Li ≡ Li(r) = E[I(Yt ≤ r)], 1 � i � (p − 1), Lp

and Lp+1 are the roots of x2 − ux + v = 0 with u = E[(1 + Y 2
t /σ2

Y )I(Yt ≤ r)] and
v = E[I(Yt ≤ r)]E[Y 2

t I(Yt ≤ r)/σ2
Y ] − E2[Y 2

t I(Yt ≤ r)/σY ]. Here, Lp and Lp+1 are
chosen such that they are continuous functions of r.

Note from (5.58) that for p ≥ 1, and assuming d ≤ p, the asymptotic null
distribution of LR(8)

T is independent of d. For the special case p = 0, Chan and Tong
(1990) show that the asymptotic distribution of (5.58) reduces to the distribution of

sup
a≤s≤b

W ◦(s)/(s− s2), (0 < a < b < 1), (5.59)

where {W ◦(s), 0 ≤ s ≤ 1} is a one-dimensional Brownian bridge (a Gaussian ran-
dom function) on (0, 1). By introducing the well-known characterization W ◦(s) =
W (s)− sW (1), where {W (s), s ≥ 0} is the Wiener–Lévy process, and using Doob’s
transformation Ut = e−tW (e2t) the distribution function of (5.59) is available in
closed form; see Appendix 5.A. This appendix also contains asymptotic critical val-
ues of the LR test statistic (5.57) for p ≥ 1.

The assumption {εt} i.i.d.∼ N (0, σ2
ε) is not necessary for the derivation of the

asymptotic distribution of LR(8)
T . In fact, its asymptotics also holds when {εt} ∼

WN(0, σ2
ε); see, e.g., Chan (1990). Indeed, if this is the case we can treat (5.52)

as a regression model with the p + 1 vector of added variables X′
tI(Yt−d ≤ r), with

Xt = (1, Yt−1, . . . , Yt−p)′, and replace (5.55) by

F
(8)
T = T

(sup
r∈R̃

{
SSE0 − SSE1

(
φ̂2T (r), r

)}
inf

r∈R̃ SSE1

(
φ̂2T (r), r

) )
, (5.60)

where SSE0 and SSE1(·) are the sum of squares of residuals under H(8)
0 and H(8)

1 ,
respectively.
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Nested SETARs
It is straightforward to generalize the F test statistic (5.60) to a SETAR(k; p, . . . , p)
model (k ≥ 2). Let Xt = (1, Yt−1, . . . , Yt−p)′ be a (p + 1) × 1 vector. Using the
notation introduced in Section 2.6, a convenient way of writing the k-regime SETAR
model is

Yt = φ′
1XtI

(1)
t (r, d) + · · ·+ φ′

kXtI
(k)
t (r, d) + εt, {εt} ∼ WN(0, σ2

ε), (5.61)

where r = (r1, . . . , rk−1)′, r0 = −∞, rk = ∞, and I
(i)
t (r, d) = I(ri−1 < Yt−d ≤ ri)

(i = 1, . . . , k).
When k = 1, (5.61) reduces to a linear AR(p), or a SETAR(1; p), model with

zero thresholds, being the most restrictive within the class of k-regime SETAR
models. The models within this class are strictly nested . This simply means that
the i-regime SETAR model being tested, the null hypothesis, is a special case of the
alternative SETAR(j; p, . . . , p) model (i < j; i = 1, . . . , k) against which it is being
tested. Here, we implicitly assume that there are no additional different constraints
on the parameters φi, and the delay d is the same for both models.

Suppose the parameters of (5.61) are collected in the vector θ=(φ′
1, . . . , φ

′
k, r

′, d)′

belonging to the parameter space Θ. The LS estimator, say θ̂, of θ solves the
minimization problem

θ̂ = arg min
θ∈Θ

T∑
t=1

{
Yt −

k∑
j=1

φ′
jXtI

(j)
t

(
r′, d

)}2
. (5.62)

Let SSEi be the residual sum of squares corresponding to an i-regime SETAR model.
Then the natural analogue of (5.60) for testing an i-regime SETAR against a j-regime
SETAR model is defined by

F
(i,j)
T = T

(SSEi − SSEj

SSEj

)
, (i < j; i = 1, . . . , k). (5.63)

This is equivalent to the conventional LM-type test statistic (5.8).
We can solve the minimization problem (5.62) sequentially through concentra-

tion. For instance, for the case k = 2, minimization over φ = (φ′
1,φ

′
2)

′ is an LS
regression of Yt on

(
X′

tI
(1)
t (r, d),X′

tI
(2)
t (r, d)

)
with r ∈ R̃. Let SSE2(r, d) be the

corresponding residual sum of squares for a given (r, d). Then

(r̂, d̂) = arg min
r∈˜R

1≤d≤p

SSE2(r, d). (5.64)

Next, we can find the LS estimates of φ as φ̂ = φ̂(r̂, d̂), and obtain SSE2 ≡
SSE2(r̂, d̂). A natural by-product is the test statistic F

(1,2)
T = T

(
(SEE1−SSE2)/SSE2

)
with SSE1 the residual sum of squares of the SETAR(1; p) model.

Hansen (1996) derives the asymptotic null distribution of F
(1,2)
T , say T , which is a

vector mean-zero Gaussian process. To obtain a practical procedure for calculating
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p-values, he replaces all population moments of the asymptotic distribution of T
by their sample counterparts. Let u denote a random N (0, IT ) vector. Then the
random variable of interest is defined as

T T = max
r∈˜R,

1≤d≤p

û′(r, d)X1(r, d)M−1
T (r, d)X′

1(r, d)û(r, d), (5.65)

where

û(r, d) = u−X(X′X)−1X′u,

MT (r, d) = X′
1(r, d)X1(r, d)−

(
X′

1(r, d)X′
1(r, d)

)
(X′X)−1

(
X′

1(r, d)X1(r, d))
)
,

with X1(r, d) ≡ X′
tI

(1)
t (r, d) and X is the T × (p + 1) matrix whose ith row is Xt.

The asymptotic null distribution of T T follows from a large number of independ-
ent draws from (5.65).2 It can be used to calculate critical values from the quantiles
of these draws. We can also calculate an approximation to the asymptotic p-value
of the test statistic by counting the percentage of draws which exceed the observed
F

(1,2)
T . For k > 2 the procedure is similar, with the additional requirement that each

regime contains at least a sufficient number of observations, say Ti (i = 1, . . . , k).
Alternatively, the steps to bootstrap p-values of the test statistic are as follows.

Algorithm 5.5: Bootstrapping p-values of F
(1,i)
T test statistic

(i) Select a subset R̃ of values of Yt falling between the r×100 lower and r×100
upper percentiles of the EDF of {Yt}T

t=1.

(ii) Fit a SETAR(1; p) model and a SETAR(i; p, . . . , p) (i = 2, 3) model to the
data. Let θ̂i be the vector of parameter estimates as in (5.62) and SSEi the
corresponding residual sum of squares. Compute the test statistic F

(1,i)
T .

(iii) Generate {ε∗
t }T

t=1 random draws (with replacement) from the LS residuals
of the fitted SETAR(1; p) model.

(iv) With fixed initial values {Y0, Y−1, . . . , Y−p+1}, recursively generate {Y ∗
t }T

t=1

using the SETAR(1; p) model with θ̂1. Select a new set R̃∗ falling between
the r × 100 lower and r × 100 upper percentiles of the EDF of {Y ∗

t }T
t=1.

(v) Given {Y ∗
t }, calculate the test statistic F

(b)
T using the same method as to

calculate F
(1,i)
T .

(vi) Repeat steps (iii) – (v) B times to obtain {F (b)
T }B

b=1. The bootstrap p-value
is the percentage of simulated F

(b)
T values which exceeds the observed F

(1,i)
T .

2Hansen (1999) shows how to calculate the asymptotic distribution of F
(1,i)
T for the case of a

stationary process with possibly heteroskedastic error terms. Several minor modifications in the
formula for the asymptotic approximation (5.65) are needed. Also, for this case, he proposes an
adjusted version of the bootstrap procedure.
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Figure 5.1: ENSO phenomenon. Asymptotic and bootstrap distribution of the F
(1,2)
T test

statistic.

The above procedures, i.e. via the asymptotic null distribution and bootstrap-
ping, can be extended to the case of testing a two-regime SETAR model against
a three-regime SETAR model. Some caution is needed, however. The problem is
that under the null hypothesis, the parameter r̂1 has a non-standard asymptotic
distribution (Chan, 1993).

Example 5.1: ENSO Phenomenon (Cont’d)

We illustrate the use of the test statistic (5.63) with an application to the
monthly ENSO series (T = 748) introduced in Example 1.4. After some
initial exploration, we set p = 5. The estimated AR(5) model is given by

Yt = −0.00(0.01) + 1.41(0.04)Yt−1 − 0.55(0.07)Yt−2 + 0.15(0.07)Yt−3

+ 0.02(0.06)Yt−4 − 0.11(0.04)Yt−5 + εt, (5.66)

where the sample variance of the residuals is given by σ̂2
ε = 4.89 × 10−2, and

asymptotic standard errors are given in parentheses. Using (5.64), we find
d̂ = 2 and r̂1 = 0.21. The associated SETAR(2; 5, 5) model is given by

Yt =

⎧⎪⎪⎨⎪⎪⎩
−0.02(0.02) + 1.34(0.04)Yt−1 − 0.54(0.08)Yt−2 + 0.14(0.09)Yt−3

+0.05(0.08)Yt−4 − 0.09(0.05)Yt−5 + ε
(1)
t if Yt−2 ≤ 0.21,

0.06(0.02) + 1.46(0.07)Yt−1 − 0.60(0.12)Yt−2 + 0.16(0.12)Yt−3

−0.02(0.10)Yt−4 − 0.15(0.06)Yt−5 + ε
(2)
t if Yt−2 > 0.21,

(5.67)

where the sample variances of {ε(i)
t } (i = 1, 2) are 4.72 × 10−2 (T1 = 455)

and 4.70 × 10−2 (T2 = 288) respectively. The F
(1,2)
T statistic for the test

of (5.66) against (5.67) equals 27.99. The asymptotic distribution, based on
1,000 independent draws, gives a p-value of 0.009. The bootstrapped p-value
(B = 1,000) equals 0.014. So, there is sufficient evidence to reject the AR(5)
model.
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Next, we fit a SETAR(3; 5, 5, 5) model to the data, i.e.

Yt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−0.19(0.07) + 1.25(0.07)Yt−1 − 0.60(0.15)Yt−2 + 0.17(0.16)Yt−3

+0.00(0.13)Yt−4 − 0.06(0.07)Yt−5 + ε
(1)
t if Yt−2 ≤ −0.78,

−0.02(0.02) + 1.40(0.05)Yt−1 − 0.64(0.10)Yt−2 + 0.20(0.10)Yt−3

−0.00(0.10)Yt−4 − 0.08(0.06)Yt−5 + ε
(2)
t if − 0.78 < Yt−2 ≤ 0.27,

0.08(0.02) + 1.44(0.07)Yt−1 − 0.54(0.12)Yt−2 + 0.04(0.12)Yt−3

+0.06(0.10)Yt−4 − 0.17(0.06)Yt−5 + ε
(3)
t if Yt−2 > 0.27,

(5.68)

where the sample variances of {ε(i)
t } (i = 1, 2, 3) are 5.69 × 10−2 (T1 = 140),

4.17 × 10−2 (T2 = 334), and 4.71 × 10−2 (T3 = 269) respectively. The F
(1,3)
T

test statistic equals 38.21. Both the asymptotic and bootstrapped p-values are
0.09. So, there is insufficient evidence to reject the AR(5) model in favor of
the three-regime SETAR model. The F

(2,3)
T test statistic equals 9.85, with a

large bootstrapped p-value. Thus, in summary, it appears that an appropriate
model for the ENSO data is the SETAR(2; 5, 5) model.

Figure 5.1 shows the asymptotic and bootstrap distributions of F
(1,2)
T . For

fixed (r, d), the test statistic F
(i,j)
T has an asymptotic χ2

p+1 distribution. Its
density function is plotted for reference. Clearly, the χ2

6 distribution is highly
misleading relative to the other two distributions. The bootstrap procedure
properly approximates the asymptotic distribution in this case.

SETARMA model
Recall the SETARMA(2; p, p, q, q) model with delay d:

Yt = φ
(1)
0 +

p∑
i=1

φ
(1)
i Yt−i +

q∑
j=1

φ
(2)
j εt−j

+
{

ψ
(1)
0 +

p∑
i=1

ψ
(1)
i Yt−i +

q∑
j=1

ψ
(2)
j εt−j

}
I(Yt−d ≤ r) + εt, (5.69)

where, following Li and Li (2011), we assume that εt = ηtσt, where {ηt} i.i.d.∼ (0, σ2
ε).

and σt > 0 is a measurable function with respect to the information set F t =
σ(ηt, ηt−1, . . .). So, {εt} is an uncorrelated error sequence rather than an i.i.d. se-
quence. Along the same lines as above, quasi-LR test statistics for SETMA(2; q,
q) (Ling and Tong, 2005) and SETMA–TGARCH models (Li and Li, 2008) can be
defined. Not surprisingly, explicit expressions for the asymptotic null distribution
of these LR-based test statistics take a very complicated form even for some simple
cases. Only in the special case when q < d, the limiting distribution of the quasi-
LR test statistic for SETMA(2; q, q) models is that of (5.59) with W ◦(s) replaced
by W ◦

q (s), a q-dimensional Gaussian process with mean zero and covariance kernel
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(r∧s−rs)Iq. For more general SETARMA models bootstrap-based approximations
are recommended to calculate p-values.

To avoid a time-consuming optimization in searching for the quasi-LR estimate
for each bootstrapped sample, we discuss a so-called stochastic permutation-based
bootstrap procedure only. First, however, we introduce the following notations.
Let φ = (φ(1)

0 , φ
(1)
1 , . . . , φ

(1)
p , φ

(2)
1 , . . . , φ

(2)
q )′, ψ = (ψ(1)

0 , ψ
(1)
1 , . . . , ψ

(1)
p , ψ

(2)
1 , . . . , ψ

(2)
q )′,

and θ = (φ′, ψ′)′. Denote the parameter space by Θ = Θφ×Θψ, where Θφ and Θψ

are compact subsets of Rp+q+1. Suppose the true parameter vector θ0 = (φ′
0, ψ

′
0)

′

is an interior point of the parameter space Θ. The hypotheses of interest are

H
(9)
0 : ψ0 = 0, H

(9)
1 : ψ0 �= 0 for some r ∈ R̃. (5.70)

Similar to (5.55), by temporarily assuming normality for {εt}, the quasi-LR test
statistic for testing H(9)

0 against H(9)
1 is defined as

LR(9)
T =

1
σ̂2

ε

(
sup
r∈R̃

{
LR0T (φ̂T )− LR1T

(
θ̂(r), r)

})
, (5.71)

where

σ̂2
ε = LR0T (φ̂T )/T

with φ̂T = arg minφ∈Θφ
L0T (φ), and θ̂T (r) = arg minθ∈Θ L1T (θ, r). Denote Ω(r)

as in (5.56) with

Ω1(r) = Ω−1(r)− diag(Σ−1, 0),

where Σ(·), Σ21(·) = Σ′
12(·), Σ22(·), and 0 are (p + q + 1) × (p + q + 1) matrices,

and where ε̂t(θ0, r) is defined based on the iterative equation (5.69).
Let {G2(p+q+1)(r), r ∈ R} denote a 2(p+ q +1)-dimensional vector Gaussian pro-

cess with zero mean and covariance kernel E{ε2
t

∂εt(θ0,r)
∂θ

∂εt(θ0,s)
∂θ′ }, and almost all its

paths are continuous. Assume that all roots of the polynomials 1 −
∑p

i=1 φ
(1)
i zi and

1 +
∑q

j=1 φ
(2)
j zj are outside the unit circle, and these polynomials are coprime. In

addition, assume that the polynomials 1−
∑p

i=1 ψ
(1)
i zi and 1+

∑q
j=1 ψ

(2)
j zj are also

coprime. The coprime nature of the polynomials is necessary to uniquely identify
the parameters of the SETARMA model, i.e., the assumption makes the matrix Ω(r)
positive definite. Then, under H(9)

0 , some standard regularity conditions, comple-
mented with conditions on the moments of the random variable εt, it can be shown
(Li and Li, 2011) that, as T →∞,

LR(9)
T

D−→ 1
σ2

ε

sup
r∈R̃

{
G′

2(p+q+1)(r)Ω1(r)G2(p+q+1)(r)
}
. (5.72)

Because distribution theory is not available for the LR(9)
T test statistic for general

SETARMA models, classical bootstrap methods can in principle be used to obtain p-
values. However, computing time will be huge if, for each bootstrap replicate, (5.71)
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needs to be computed. Li and Li (2011) offer a bootstrap procedure that leads
to substantial computational savings since optimization of the SETARMA model
is required only once. Fundamental to the proposed procedure is the established
results that, under H(9)

0 ,

sup
r∈R̃

|{LR0T (φ̂T )− LR1T (θ̂T (r), r)} − ξ′T (r)Ω1(r)ξT (r)| = op(1), (5.73)

where ξT (r) = 1√
T

∑T
t=1 εt

∂εt(θ0,r)
∂θ . Clearly, the quantity ξ′T (r)Ω1(r)ξT (r) is a quad-

ratic form. Provided any possible dependence on the threshold structure in a ob-
served time series is removed first, we can obtain a bootstrap approximation of LR(9)

T

by randomly permuting the summand in ξT (r). In particular, the bootstrapping
takes place as follows.

Algorithm 5.6: Bootstrapping p-values of LR (9)
T statistic

(i) Generate {εt}T+n
t=1

i.i.d.∼ N (0, 1) random draws, with n the number of initial
observations. Generate {Yt}T+n

t=1 from a SETARMA(2; p, p, q, q) model, with
or without possible dependence structure in the errors, using {εt}.

(ii) Select a subset R̃ of values Yt falling between the r × 100 lower and r × 100
upper percentiles of the empirical distribution of {Yt}T

t=1.

(iii) Fit an ARMA(p, q) model to {Yt}T
t=1. Denote the resulting estimate of φ by

φ̂T . Compute LR0T (φ̂T ) =
∑T

t=1 ε̂2
t (φ̂T ).

(iv) For each value Yt ∈ R̃ set r = Yt, and fit a SETARMA(2; p, p, q, q) model
to {Yt}T

t=1. Let θ̂T (r) be the resulting estimate of θ. Also, for each
r, compute LR1T (θ̂T (r), r) =

∑T
t=1{ε̂t(θ̂T (r), r)}2. Set LR1T (θ̂T (r̂), r̂) =

minr∈˜R LR1T (θ̂T (r), r).

(v) Compute the test statistic

LR(9)
T (r̂) = T

(
LR0T (φ̂T )− LR1T (θ̂T (r̂), r̂)

)
/LR0T (φ̂T ). (5.74)

(vi) Generate a sequence {ε∗
t } of i.i.d. random variables with mean zero, variance

unity, and finite fourth moment. Suggested distribution functions are N (0, 1)
and the Rademacher distribution, which takes values ±1 with probability 0.5.

(vii) Let ε̃t = ε̃t(θ̂T (r̂), r̂). Remove any possible threshold structure in a
time series by generating Ỹt = θ̂′Z̃t + ε̃t, where Z̃t = (1, Ỹt−1, . . . , Ỹt−p,

ε̃t−1, . . . , ε̃t−q)′ with ε̃t = 0 for t ≤ 0.

(viii) Select a new set R̃∗ falling between the r × 100 lower and r × 100 upper
percentiles of the distribution of {Ỹt}. Let r be the new threshold parameter.
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Algorithm 5.6: Bootstrapping p-values of LR (9)
T statistic (Cont’d)

(ix) Set r = Ỹt ∈ R̃∗, and compute the vector functions

∂ε̃t(r)
∂φ

=−Z̃t −
q∑

j=1

φ̂
(2)
j

∂ε̃t−j

∂φ
,

∂ε̃t(r)
∂ψ

=−Z̃tI(Ỹt−d ≤ r)−
q∑

j=1

φ̂
(2)
j

∂ε̃t−j(r)
∂ψ

,
∂ε̃t(r)

∂θ
=

(∂ε̃t(r)
∂φ′ ,

∂ε̃t(r)
∂ψ′

)′
,

where the necessary initial values in the recursions are set to zero. Moreover,
as an estimator of Ω(r), compute the outer product of the vector functions,
i.e. Ω̃(r) = 1

T

∑T
t=1(

∂ε̃t(r)
∂θ

∂ε̃t(r)
∂θ′ ).

(x) Compute the vector function ξT (ε∗, r) = 1√
T

∑T
t=1 ε∗

t ε̃t
∂ε̃t(r)

∂θ , and the stat-
istic

LR(b)
T (ε∗, r) =

ξ′
T (ε∗, r)

(
Ω̃−1(r)− diag(Σ̃−1, 0)

)
ξT (ε∗, r)

σ̂2
ε σ̂2

ε∗
,

where σ̂2
ε = T−1LR1T (θ̂T (r̂), r̂) and σ̂2

ε∗ = T−1
∑T

t=1{ε∗
t }2.

(xi) Repeat step (x) B times, to obtain {LR(b)
T (ε∗, r)}B

b=1.

(xii) Repeat steps (ix) – (xi) for different values of r. Compute LR(b)
T (ε∗) =

maxr∈˜R∗{LR(b)
T (ε∗, r)} (b = 1, . . . , B).

(xiii) Transform the values {LR(b)
T (ε∗)}B

b=1 into p-values by computing the boot-
strap statistic

1
B

B∑
b=1

I
(
LR(9)

T (r̂) < LR(b)
T (ε∗)

)
.

Example 5.2: U.S. Unemployment Rate (Cont’d)

Recall, in Example 1.1 we introduced the quarterly U.S. unemployment rate.
Using the first differences of the original series, say {Yt}251

t=1, we fit the following
ARMA(1, 1) model to the data

Yt = 0.53(0.07)Yt−1 + εt + 0.22(0.08)εt−1, (5.75)

where the sample variance of the residuals is given by σ̂2
ε = 8.91 × 10−2, and

asymptotic standard errors are given in parentheses. The p-value of the Ljung–
Box (LB) test statistic is 0.15, based on 40 lags. Although this specification
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can be improved (see Chapter 6), it can well serve as a benchmark for testing
the ARMA(1, 1) model against a SETARMA(2; 1, 1, 1, 1) model with delay
d ∈ [1, . . . , 6]. Setting B = 10,000, r = 0.1, r = 0.9, and generating {ε∗t } (step
(vi)) from an N (0, 1) distribution, we fitted various two-regime SETARMA
models to the data. For d = 2 the p-value (0.049) of the LR(9)

T test statistic is
smaller than the 5% nominal significance level. The associated model is given
by

Yt = 0.44(0.08)Yt−1 + 0.48(0.07)εt−1

+ (0.24(0.10)Yt−1 − 0.71(0.12)εt−1)I(Yt−2 ≤ 1.01× 10−2) + εt, (5.76)

where the sample variance of the residuals is given by σ̂2
ε = 8.34×10−2. So, in

terms of residual variances, (5.76) provides a better fit than the linear model
(5.75).

5.3 Wald Test

ARasMA model
In Section 5.1, we introduced an LM-type test statistic for testing symmetry against
an asMA(q) model. For the more general autoregressive-asymmetric moving average
model (ARasMA) of order (p, q) with a linear AR(p) polynomial, an asymmetric MA
polynomial of order q, and a constant term φ0 (Brännäs and De Gooijer, 1994), the
null hypothesis of symmetry is equivalent to testing the restriction θ+ = θ−, where
θ+ = (θ+

1 , . . . , θ+
q )′, and θ− = (θ−1 , . . . , θ−q )′. Let θ =

(
φ0, φ

′, (θ+)′, (θ−)′
)′ denote

the (1 + p + 2q) × 1 vector of parameters, with φ = (φ1, . . . , φp)′. Further, let R
denote a restriction matrix of dimension q × (1 + p + 2q) such that Rθ = r, and r
is a (1 + p + 2q)-vector. Next, from the partition R = (R1 : R2), where R1 = 0 and
R2 is a q × 2q matrix, the problem becomes one of testing the null hypothesis

H
(10)
0 : R2θ = 0 against H(10)

1 : R2θ �= 0. (5.77)

The third classical test, the Wald (W) test, is based exclusively on the unres-
tricted estimates θ̂ of θ. Assume that the ARasMA model is invertible, and let
{εt} i.i.d.∼ N (0, σ2

ε). Then, for the unrestricted model, the log-likelihood function at
time t (apart from an additive constant term), is given by

�t(θ) = − 1
2σ2

ε

∑
t

ε2
t (θ)− 1

2
log σ2

ε , (5.78)

where summation is over the range (max(p, q) + 1, T ), and

εt(θ) = Yt − φ0 −
p∑

i=1

φiYt−i −
q∑

j=1

θ+
t−jε

+
t−j −

q∑
j=1

θ−t−jε
−
t−j .
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Let εt ≡ εt(θ). Then the score vector at time t is given by Gt(θ) = ∂�t(θ)/∂θ =
−σ2

εεt∂εt/∂θ, where

∂εt

∂θ′ = −
(
1 + vφ0

t,1

... Yt−1 + vφ
t,1 · · ·Yt−p + vφ

t,p

... ε+
t−1 + v+

t,1 · · · ε+
t−q + v+

t,q

...

ε−t−1 + v−t,1 · · · ε−t−q + v−t,q
)
,

with

vθ
t,j =

q∑
k=1

(
θ+
k I(εt−k > 0) + θ−k I(εt−k ≤ 0)

)
∂εt−k/∂θj .

Here, the superscript on vt together with the second subscript indicate the appro-
priate element within the θ vector. The empirical Hessian ĤT associated with the
log-likelihood function can be approximated by the summed outer product of Gt,
i.e. ĤT =

∑T
t=1 GtG′

t. Let θ̂ be the vector of parameter estimates of θ, and Ĥ−1

T (θ̂)
the estimate of the corresponding covariance matrix. Then the W test statistic can
be expressed as

W(10)
T =

(
R2θ̂

)′[
RĤ−1

T (θ̂)R′
]−1

R2θ̂. (5.79)

Under H(10)
0 , and as T →∞, (5.79) has an asymptotic χ2

q distribution.

5.4 Tests Based on a Second-order Volterra Expansion

In this section we discuss time-domain diagnostic tests statistics. For ease of rep-
resentation we assume that {Yt, t ∈ Z} is generated by a stationary linear AR(p)
process (H0). The alternative hypothesis (H1) states that the process can be ad-
equately approximated by a second-order Volterra expansion of the form

Yt = μ + εt +
∞∑

u=−∞
ψuεt−u +

∞∑
u,v=−∞

ψuvεt−uεt−v, {εt} i.i.d.∼ (0, σ2
ε). (5.80)

Thus H1 is quite general. Therefore the resulting test statistics are often termed
portmanteau-type tests.

Obviously, if {Yt, t ∈ Z} is linear, i.e., if ψuv = 0 ∀u, v, then εt will be independent
of εt−uεt−v. If, however, {Yt, t ∈ Z} is nonlinear, i.e., if any of the second-order
coefficients ψuv are non-zero, this is not so. Then this nonlinearity will be reflected in
the relationship of the residuals of a fitted linear model with, for instance, Yt−1Yt−2,
a quadratic nonlinear term. This is called the added variable approach. Below, we
discuss three variants.

The Tukey nonadditivity-type test
This test was developed by Keenan (1985) and is an analogue of Tukey’s (T) (1949)
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one degree of freedom test for nonadditivity in analysis of variance. The mechanisms
for computing the test statistic are as follows.

Algorithm 5.7: Tukey’s nonadditivity-type test statistic

(i) Choose an appropriate value p ∈ [4, 8]. Regress Yt on {1, Yt−1, . . . , Yt−p};
compute the fitted values {Ŷt}, the residuals {ε̂t}T

t=p+1, and SSE=
∑

t ε̂ 2
t .

(ii) Regress {Ŷ 2
t } on {1, Yt−1, . . . , Yt−p}; compute the residuals {ξ̂t}T

t=p+1.

(iii) Regress ε̂t on ξ̂t.

(iv) From the regression in (iii) calculate the test statistic

F
(T)

T =
η̂ 2

(SSE− η̂ 2)/(T − 2p− 2)
, (5.81)

where η̂ = η̂0

( ∑
t ξ̂ 2

t

)1/2

with η̂0 the regression coefficient in step (ii).

Under H0, and as T →∞, F
(T)

T
D−→ Fν1,ν2 with ν1 = 1 and ν2 = (T − p)−

(p + 1) − 1. The estimated size of (5.81) can be improved by using T − p

instead of T − 2p− 2 in the denominator of F
(T)

T (Luukkonen et al., 1988b).
This improvement also applies to the next two F test statistics.

Keenan (1985) shows that F
(T)

T is approximately distributed as χ2
1 but the F -

version may be preferred in practice because it is computationally convenient and
reasonably powerful in finite samples. An advantage of (5.81) is that it is easy and
quick to implement involving little subjective choice of parameters. On the other
hand, the F

(T)
T test statistic is only valid for the Volterra expansion, but not all

nonlinear processes possess this expansion.

Original F test
This F test statistic is a direct modification of the original (O) Tukey nonadditivity-
type test statistic (5.81), and hence its name; see Tsay (1986).3 The test considers
the residuals of regressions that include the individual nonlinear terms and quad-
ratic terms up to third order {Y 2

t−1, Yt−1Yt−2, . . . , Yt−1Yt−p, Y
2
t−2, Yt−2Yt−3, . . . , Y

3
t−p}

while F
(T)

T considers the residuals of regressions on only the squared terms.
Let Xt = (Yt−1, . . . , Yt−p)′, and define the P = 1

2p(p + 1)-dimensional vector
Zt = vech(XtX′

t). Further, assume that {εt} ∼ WN(0, σ2
ε) with E(ε4

t ) < ∞. The
procedure for performing the original F test statistic is outlined in the following
steps.

3The name given to this test statistic is taken from Tsay (1991). This reference serves also as
the source for the names given to the original, the augmented, and the new F test statistic (Section
5.5) which are discussed below.
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Algorithm 5.8: F
(O)

T test statistic

(i) Choose an appropriate even value of p, e.g. p = 4 or p = 8. Regress Yt on
{1, Yt−1, . . . , Yt−p}; compute the residuals {ε̂t}T

t=p+1.

(ii) Regress the first p + 1 elements of Zt on {1, Yt−1, . . . , Yt−p} and obtain the
residuals {ξ̂1,t}T

t=p+1.

(iii) Then regress the next p+1 elements of Zt on {1, Yt−1, . . . , Yt−p} and obtain
the residuals {ξ̂2,t}T

t=p+1.

(iv) Continue with steps (ii) – (iii) until the residuals from all p/2 regressions have
been obtained. From these residuals, form the (p/2)× 1 vector {ξ̂t}T

t=p+1.

(v) Regress ε̂t on ξ̂t; compute the residual sum of squares
∑

t ω̂2
t .

(vi) From the regression in (v) calculate the test statistic F
(O)

T as the F ratio of
the mean square of regression to the mean square error, i.e.

F
(O)

T =
(
∑

t ξ̂tε̂t)′(
∑

t ξ̂tξ̂
′
t )

−1(
∑

t ξ̂tε̂t)/P∑
t ω̂2

t /(T − p− P − 1)
. (5.82)

Under H0, and as T → ∞, F
(O)

T
D−→ Fν1,ν2 with degrees of freedom ν1 =

p(p + 1)/2 and ν2 = T − 1
2p(p + 3)− 1; Tsay (1986).

Note that the test statistic PF
(O)

T is asymptotically distributed as χ2
P . Using the

LM testing procedure of Section 5.1, it can be easily shown (Luukkonen et al., 1988a)
that both tests (5.81) and (5.82) are LM-type test statistics. Simulation results show
that the F

(O)
T is more powerful than the F

(T)
T test statistic in identifying BL-type

nonlinearity.

Augmented F test
The augmented (A) F test (Luukkonen et al., 1988a) extends the F

(O)
T test statistic

by including the regression of the cubic terms {Y 3
t } on (1, Yt−1, . . . , Yt−p) in the set

of regressions in steps (ii) – (iv) of Algorithm 5.7. The
(
(p/2)+1

)
th set of residuals

{ξ̂(p/2)+1,t}T
t=p+1 are included in ξ̂t. Call the resulting vector ξ̂

(A)
t . Perform a linear

regression of ε̂t on ξ̂
(A)
t , and obtain the residual sum of squares

∑
t{ω̂

(A)
t }2. Then

the associated F test statistic is given by

F
(A)

T =

( ∑
t ξ̂

(A)
t ε̂t

)′( ∑
t ξ̂

(A)
t (ξ̂ (A)

t )′
)−1( ∑

t ξ̂
(A)
t ε̂t

)
/P∑

t{ω̂
(A)
t }2/(T − p− P − 1)

. (5.83)

Under H0 of linearity, and as T → ∞, F
(A)

T
D−→ Fν1,ν2 , where ν1 = 1

2p(p + 1) + p
and ν2 = T − p(p + 3)/2 − 2p. Clearly, if p = 1, the asymptotic distribution of
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(5.83) is identical to the asymptotic distribution of the Tukey nonadditivity-type
test statistic (5.82).

5.5 Tests Based on Arranged Autoregressions

An arranged autoregression is an autoregression where the observed values of the “de-
pendent variable” and the associated design matrix are sorted, or rearranged, accord-
ing to the values of a particular regressor. For SETARMA processes, the regressor
on which to sort is the threshold variable. For example, consider a SETAR(2; p, p)
model with delay parameter d, and nontrivial threshold r;

Yt =

{
φ

(1)
0 +

∑p
u=1 φ

(1)
u Yt−u + εt if Yt−d ≤ r,

φ
(2)
0 +

∑p
u=1 φ

(2)
u Yt−u + εt if Yt−d > r.

(5.84)

Given the set of observations {Yt}T
t=1, the threshold variable Yt−d can assume the

values {Yi}T−d
i=h , where h = max{1, p + 1 − d}. Let τj be the time index of the

jth smallest observation among {Yi}T−d
i=h . Assume that the recursive autoregressions

begin with a minimum number of start-up values, say nmin > p + 1. Denote the
resulting ordered time series by {Yτj}T−d−h+1

j=nmin+1. Then we can write (5.84) as

Yτj+d =

{
φ

(1)
0 +

∑p
i=1 φ

(1)
i Yτj+d−i + ετj+d, (j = nmin+1, . . . , s),

φ
(2)
0 +

∑p
i=1 φ

(2)
i Yτj+d−i + ετj+d, (j = s + 1, . . . , T − d− h + 1),

(5.85)

where s satisfies Yτs < r ≤ Yτs+1 .
This is an arranged autoregression with the first s observations in the first regime

and the remaining observations in the second regime. This effectively separates the
two regimes and also provides a means by which the data points fall into two groups
where all of the observations in each group are generated from the same linear AR(p)
model. If the value of the threshold parameter r is known, consistent estimates of
the parameters can easily be obtained; see Chapter 6. Since, however, in most cases
the value of r is not known, estimation of (5.85) is performed sequentially through
recursive LS.

Let the (p + 1) × 1 vector φ̂m represent estimates of the parameters in (5.85)
based on the first m cases. Also, denote the corresponding (X′X)−1 matrix by Pm.
Let xm+1be the vector of regressors of the next observation to enter the arranged
autoregression, namely Yτm+1+d. Then recursive LS estimates can be computed by
(Ertel and Fowlkes, 1976; Tsay, 1989):

φ̂m+1 = φ̂m + Pm+1xm+1

[
1.0 + x′

m+1Pmxm+1

]−1[
Yτm+1+d − x′

m+1φ̂m

]
, (5.86)

Pm+1 = Pm −Pmxm+1

[
1.0 + x′

m+1Pmxm+1

]−1
x′

m+1Pm. (5.87)
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The predictive residuals ε̂τm+1+d and standardized predictive residuals êτm+1+d are
given by

ε̂τm+1+d = Yτm+1+d − x′
m+1φ̂m, (5.88)

êτm+1+d = ε̂τm+1+d

[
1 + x′

m+1Pmxm+1

]−1/2
. (5.89)

The LS estimates for the coefficients φ
(1)
u (u = 1, . . . , p) are consistent if there are

a large number of observations in the first regime. Moreover, the predictive residuals
are asymptotically WN and independent of the regressors. When, however, j arrives
at and exceeds s, the predictive residuals for the observation with index τs+1 +d will
become biased as a result of the model change at time τs+1+d, and the predictive
residuals now become a function of the regressors {Yτj+d−i; i = 1, . . . , p}. That
is to say, the independence between the predictive residuals and the regressors is
destroyed once the arranged autoregression includes observations whose threshold
value exceeds r. In other words, there is a change at an unknown time-point in
the cumulative sums of the standardized predictive residuals. This calls for a test
statistic having its roots in the analysis of change-points. Typically, the first test
statistic discussed below uses the change-point framework. The mechanics of the
next two test statistics are based on the properties of the one-step ahead predictive
residuals.

CUSUM test for SETAR nonlinearity
Petruccelli and Davies (1986) propose a cumulated sums (CUSUM) test statistic
for SETAR models, using the above recursive LS estimation procedure. The test
statistic can be computed as follows.

Algorithm 5.9: CUSUM test statistic

(i) Choose the AR order p, the lag d, and a minimum number nmin > p + 1
of start-up values. In practice nmin = [T/10] + p is recommended to have a
sufficiently large number of observations in the first regime.

(ii) Then, for nmin ≤ r ≤ T − p, find the recursive LS estimates; compute the
standardized predictive residuals eτj+d (j = nmin + 1, . . . , T − d− h + 1; h =
max{1, p + 1− d}).

(iii) Compute the cumulative sums Zj =
∑j

i=nmin+1 êi, (j = nmin + 1, . . . , T −
d− h + 1), and the associated CUSUM test statistic

QT = max
nmin+1≤j≤T−d−h+1

|Zj |/
√

T ∗, (5.90)
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Algorithm 5.9: CUSUM test statistic (Cont’d)

(iii) (Cont’d)
where T ∗ = T − d − h + 1 − nmin. Clearly, this is a Kolmogorov–Smirnov
type statistic. Under mild conditions on the noise process {εt}, it follows
(MacNeill, 1971) that the limiting distribution of QT is given by

P
(
(QT /

√
T ∗) � α

)
= Δα

≡
∞∑

j=−∞
(−1)j

[
Φ

(
α(2j + 1)

)
− Φ

(
α(2j − 1)

)]
, (5.91)

where Φ(·) is the normal distribution function, and α the nominal significance
level.

(iv) Some upper quantiles are 0.2309 (90%), 0.3011 (92.5%), 0.3245 (95%), 0.3478
(97.5%), and 0.3616 (99%); see Grenander and Rosenblatt (1984, Chapter
6, Table 1) for a partial tabulation. If QT > Δα, then we reject the null
hypothesis of linearity.

It is fairly obvious that the CUSUM test statistic is very simple to implement
since it does not require the estimation of the SETAR model under the alternative
hypothesis. The test statistic can be used to determine both the number and location
of the thresholds. To avoid underfitting, it is recommended to iterate the recursive
LS estimation procedure for different pairs (d, p).

TAR F test for SETAR models
The TAR F test statistic for threshold nonlinearity was developed in Tsay (1989).
The alternative hypothesis is that the series is generated by a two-regime SETAR
model as given in (5.84). The testing procedure consists of the following steps.

Algorithm 5.10: TAR F test statistic

(i) Perform the arranged autoregression, and calculate êτj+1+d.

(ii) Compute a second regression with the predictive residuals on Yτj+d; i.e.

êτj+d =β0+
p∑

i=1

βiYτj+d−i+ωτj+d, (j = nmin + 1, . . . , T − d− h + 1).

(iii) Next, compute the associated test statistic

F ∗
T =

[
∑

t ê 2
t −

∑
t ω̂ 2

t ]/(p + 1)∑
t ω̂ 2

t /(T − d− nmin − p− h)
, (5.92)
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Algorithm 5.10: TAR F test statistic (Cont’d)

(iii) (Cont’d)
where ω̂t is the LS residual of the regression in step (ii). Then it can be shown
(Tsay, 1989) that under the null hypothesis of linearity, and as T →∞,

F ∗
T

D−→ Fν1,ν2 ,

with degrees of freedom ν1 = p+1 and ν2 = T−d−nmin−p−h. Furthermore,
(p + 1)F ∗

T is asymptotically a χ2
ν random variable with ν = p + 1 degrees of

freedom.

Simulation studies show that the TAR F test statistic has consistently higher em-
pirical power than the portmanteau CUSUM test statistic.

New F test for BL, STAR, and ExpAR models
The new F test statistic combines the idea of an arranged autoregression along with
an added variable approach resulting in a test procedure for detecting three types of
nonlinear behavior. The H0 states that the time series is generated by a stationary
linear AR(p) process. The resulting F test statistic can be computed as follows.

Algorithm 5.11: New F test statistic
(i) For a given delay d, fit recursively an arranged autoregression of order p to

{Yt}T
t=1 and calculate the standardized predictive residuals {êt}T

t=nmin+1.

(ii) Calculate SSE0 =
∑

t ê 2
t .

(iii) Regress ε̂t on {1, Yt−1, . . . , Yt−p}, {Yt−iε̂t−i, ε̂t−iε̂t−i−1} (i = 1, . . . , p), and
{Yt−1 exp(−γYt−1),Φ(zt−d), Yt−1Φ(Yt−d)}, where zt = (Yt−d − Ȳd)/sd with
Yd, sd are the sample mean and standard deviation of the Yt−d, respectively.
Calculate the residual sum of squares from this regression, SSE1 =

∑
t ω̂ 2

t .

(iv) The associated test statistic is given by

F
(N)
T =

(SSE1 − SSE0)/[3(p + 1)]
SSE0/[T − nmin − 3(p + 1)]

. (5.93)

It can be shown (Tsay, 1991) that under H0, and as T →∞,

F
(N)
T

D−→ Fν1,ν2 ,

with ν1 = 3(p + 1) and ν2 = T − nmin − 3(p + 1) degrees of freedom.
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5.6 Nonlinearity vs. Specific Nonlinear Alternatives

Li (1993) proposes an LM-type test statistic for discriminating between different non-
nested nonlinear models. Let {εi,t} i.i.d.∼ N (0, σ2

i,ε) (i = 1, 2) with ε1,t independent of
ε2,t. Let Yi,t be a pi-dimensional state vector (i = 1, 2). For simplicity, we consider
the following two hypotheses:

H0 : Yt = f(Y1,t; θ1) + ε1,t, Ha : Yt = g(Y2,t; θ2) + ε2,t,

where f(·) and g(·) are two known nonlinear, real-valued functions, having continu-
ous second-order derivatives with respect to the pi×1 unknown parameter vector θi.
To avoid identification problems, we assume that both families of nonlinear models
are non-overlapping.

Let θ̂i be a consistent estimator of θi. Denote the corresponding residuals by ε̂i,t

(i = 1, 2), and let Ŷt = g(Y2,t; θ̂2) be the fitted values under Ha. Then a test of H0

against Ha can be based on considering the null hypothesis H∗
0 : λ = 0, where λ is a

parameter (the Lagrange multiplier) in the model

Yt = f(Y1,t; θ1) + λg(Y2,t; θ2) + εt,

where {εt} i.i.d.∼ N (0, σ2
ε). Thus, the adequacy of the model under H0 is tested versus

a possible deviation in the direction of Ha. Using the LM testing principle, it follows
that the corresponding score form of the LM-type test statistic is given by

LM∗
T = T ε̂′X′(XX′)−1Xε̂

/ T∑
t=1

ε̂2
t , (5.94)

where X′ is a T × (p1 + 1) matrix of regressors formed by stacking (∂εt(θ)/∂θ′
1, Ŷt),

with ∂εt(θ)/∂θ′
1 evaluated under H0, and ε̂ = (ε̂1,1, . . . , ε̂1,T )′. Under H0 the test

statistic LM∗
T has a χ2

1 distribution, as T → ∞. As before the above test stat-
istic can also be written as TR2, where R2 is the coefficient of determination from
the auxiliary regression of ε̂1,t on ∂εt(θ)/∂θ′

1|H0 and Ŷt. Thus, (5.94) is relatively
straightforward to apply, provided ∂εt(θ)/∂θ′

1 can be obtained in a simple (recurs-
ive) way.

In practice, it will often be desirable to interchange the role of H0 and Ha. It
may, however, result in a situation where both or neither of the hypotheses will be
rejected, giving interpretation problems. On the other hand, this information may
well be used to look for alternative model specifications.

Example 5.3: Interpretation of the LM∗
T -type test statistic (Li, 1993)

One attraction of the LM∗
T -type test statistic in this context is its ease of

interpretation following from a direct relation with the method of residual
sum of squares. Consider the two auxiliary linear regressions

ε̂1,t = αŶt + ωt, Ŷt =
∂f(Yt−1; θ1)

∂θ′
1

β + ηt, (5.95)
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where ωt, ηt are independent zero mean normal random variables; α and β
are the respective artificial parameters. For simplicity, let σ2

1,ε = 1 and ft ≡
f(Yt−1;θ1).

In this case, the score vector under H0 is given by −(0′,
∑T

t=1 ε̂1,tŶt)′. Now,
with the respective partitions of the observed information matrix, the LM-type
test statistic under the null hypothesis will take the following form

LM∗
T =

(∑
t

ε̂1,tŶt

)2[ ∑
t

Ŷ 2
t −

(∑
t

Ŷt
∂ft

∂θ′
1

)(∑
t

∂ft

∂θ1

∂ft

∂θ′
1

)−1(∑
t

Ŷt
∂ft

∂θ1

)]−1∣∣∣
H0

=
(∑

t ε̂1,tŶt∑
t Ŷ 2

t

)2
∑

t Ŷ 2
t

1−R2
,

where R2 is the coefficient of determination for the second auxiliary regres-
sion in (5.95). Note that

∑
t ε̂1,tŶt/

∑
t Ŷ 2

t = α̂, the LS estimate of α in the
first auxiliary regression. Suppose the residual sum of squares from the first
regression is denoted by

∑
t ω̂2

t . Then from standard linear regression theory
it follows that

LM∗
T =

∑
t α̂2Ŷ 2

t

1−R2
=

∑
t ε̂ 2

1,t −
∑

t ω̂2
t

1−R2
.

Hence, if H0 is true, the difference between the two residual sums of squares
should be small if T is sufficiently large, and

∑
t ε̂ 2

1,t should be small. On the
other hand, if Ha is true

∑
t ε̂ 2

1,t should be large while
∑

t ω̂2
t should be small.

5.7 Summary, Terms and Concepts

Summary
In this chapter we have seen a large number of time-domain statistics for testing
nonlinearity. A practitioner may be somewhat bewildered by the wide range of pos-
sibilities. To be of some help, Appendix 5.B reports some strengths and weaknesses
of the available test statistics through reported simulation studies of their size and
power. On the whole a test statistic is effective at identifying the type of nonlinear-
ity it is designed to detect. This is a pleasing result. In addition, the form of the
nonlinear functional relationship in the state-dependent model seems to be less im-
portant with test statistics based on the classical hypothesis testing principles, LR,
LM, and W. Finding the correct dimension (order) of the state vector is more likely
to be the key factor (see, e.g., Pitarakis, 2006). Nevertheless, one should always
consider a linear model first. Occam’s razor tells us that we should not introduce
complexities unless absolutely necessary. Indeed, all the hypothesis tests discussed
in this chapter are concerned with a simple null hypothesis which asserts that the
given data set is a random realization of a specified unique linear DGP.

We have not discussed a testing framework where the null hypothesis is com-
posite. The composite null hypothesis specifies a family of processes, and asserts
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that the actual DGP is a member of that family, but does not specify which one.
This latter situation occurs when artificial, or surrogate,4 data are created with MC
simulation methods. Surrogate data sets are often used in studies of nonlinear dy-
namical systems; see, e.g., Theiler et al. (1992), and Theiler and Prichard (1996) for
further insights into this topic.

Terms and Concepts

added variable, 179
arranged autoregression, 182
auxiliary regression, 157
simple (composite) hypothesis, 187
Lagrange multiplier, 156

nested, 171
Occam’s razor, 187
portmanteau-type test, 179
stochastic permutation, 175
surrogate data, 188

5.8 Additional Bibliographical Notes

Section 5.1: The LM-type test statistics for BL, ExpAR, and STAR are due to Saikkonen
and Luukkonen (1988), and Luukkonen et al. (1988a,b); see also Weiss (1986) for an early
contribution. Brännäs et al. (1998) propose the LM-type test statistics for asMA and TMA
nonlinearities. Wong and Li (1997, 2000a) study LM-type test statistics of so-called double-
threshold ARCH models, which may be applied to situations where both the conditional
mean and the conditional variance of the time series process are assumed to be piecewise
linear, given time-delayed observations. Guégan and Wandji (1996) study the local (theor-
etical) power of the LM-type test statistic for a simple subdiagonal BL model.

The LM(7)
T -type test statistic for NCTAR is due to Medeiros and Veiga (2005). Medeiros et

al. (2006) apply sequentially LM-type test statistics within the context of AR–NN modeling.
Lee et al. (1993) present an LM-type test statistic for AR–NN models. The test is a special
case of the LM-type test statistic for NCTAR models. MC simulation results show a good
performance in power compared to other competitors. However, the presence of an intercept
in the nonlinear, hidden layer, causes a loss of power compared with other LM-type test
statistics; see, e.g., Lee et al. (1993) and Teräsvirta et al. (1993). Also, various versions
of the White (1989, 1992) dynamic information matrix test, a test statistic for neglected
nonlinearity, are commonly used within the NN context.

Kiliç (2016) investigates the Taylor series approximations of STAR models around the null
hypothesis of linearity. The approximations may not accurately describe the specific nonlin-
earity of the DGP and, as a result, the LM-type test statistics may fail to detect the correct
form of nonlinearity.

Tong and Yeung (1991a) discuss the identification and estimation of continuous-time two-
regime SETAR models. Tai and Chan (2000) consider a more general class of nonlinear
continuous-time AR (NLCAR) models. In addition, they develop an LM-type test statistic
for this class of models with the linear CAR model under the null hypothesis; see Tai and
Chan (2002) for an extension.

4Surrogate data have no dynamical nonlinearities. By construction a surrogate is equivalent
to passing i.i.d. Gaussian WN through a linear filter that reproduces the linear properties of one
realization of the strictly stationary process {Yt, t ∈ Z}.
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Section 5.2: Asymptotic critical values of the LR test statistic for SETMA(2; q, q) models
with d > q are the same as that of test statistics for change-points in Andrews (1993).
Empirical implementations of the LR testing approach are reported by K.S. Chan and Tong
(1986). Ling and Tong (2005) suggest a computationally intensive bootstrap method to
calculate p-values of a quasi-LR test for SETMA(2; q, q) models with d < q. Li and Li
(2008) generalize the test in Ling and Tong (2005) to a quasi-LR test statistic for TMA
models with GARCH errors.

Hansen (2000) recommends inverting the LR test statistic to construct confidence intervals
for the threshold parameter of a SETAR process. If the error process in (5.61) is conditionally
heteroskedastic, it is necessary to replace the F

(1,i)
T test statistic with a heteroskedasticity-

consistent Wald or LM-type test statistic; Hansen (1997).

Chen et al. (2012b) propose a LR test statistic to determine the number of regimes in SETAR
models with two regimes.

Section 5.3: The Wald test statistic for symmetry of ARasMA models is due to Brännäs
and De Gooijer (1994). For asMA(1) models, the size properties are best for the LM-type
test statistic followed by, in order, the Wald and LR test statistics. The latter two tests are
more powerful than the LM-type test statistic; see also Brännäs et al. (1998).

Testing for a linear (near) unit root against (stationary) TAR models is the topic of a large
number of papers in the econometrics literature. For instance, Caner and Hansen (2001)
propose a Wald statistic for testing a two-regime SETAR with stationary but unknown
threshold parameter, Enders and Granger (1998) focus on an F test statistic for an M–TAR
model with known threshold parameter, Lanne and Saikkonen (2002) introduce a stability
test statistic for a TAR model with threshold effects only in the intercept term, Kapetanios
and Shin (2006) consider a Wald statistic for testing a three-regime SETAR model with a
random walk in the middle regime. Pitarakis (2008) comments on the limiting distribution
of the Wald test statistic in Caner and Hansen (2001). Bec et al. (2008) propose a SupWald
test statistic for SETARs with an adaptive set of thresholds, and Seo (2008) considers a
residual-based block bootstrap algorithm for testing the null hypothesis of a unit root in
SETARs.

Charemza et al. (2005) introduce a Student t-type test statistic for detecting unit root
bilinearity in a simple BL(1, 0, 1, 1) process. The linearity coefficient in this model may
be estimated by the Kalman filter algorithm, following an approach suggested by Hristova
(2005).

Section 5.4: The RESET test statistic of Ramsey (1969) may be viewed as an earlier, and
more general, version of the Tukey nonadditivity-type test statistic.

Section 5.5: It is easy to verify that (5.91) is identical to the approximate large sample
distribution given by Petruccelli and Davies (1986). Petruccelli (1990) introduces another
CUSUM test statistic for linearity using the reversed predictive residuals, denoted by Q rev

T

in Table 5.2. Similarly, Sorour and Tong (1993) examine the performance of the LR test
statistic for SETAR and the CUSUM test statistics in building a TARSO model.

Tong and Yeung (1990, 1991b) apply the CUSUM tests (original and reversed) and the TAR
F test statistic to investigate nonlinearities in partially observed time series; see also Tsai
and Chan (2000, 2002).

Following the basic structure of Algorithm 5.10, Liang et al. (2015) propose an F -type test
statistic for testing linear MA models versus (rearranged) SETMA models. The procedure
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requires the subjective use of scatter plots to identify the number and locations of potential
threshold values. The MA order follows from inspection of the sample ACF.

Section 5.6: Many studies have been performed investigating power properties of the test
statistics considered in this Chapter. Important contributions published prior to the year
1992 are summarized in the review paper by De Gooijer and Kumar (1992, Exhibit 1).
Teräsvirta et al. (1993) study and compare the power of LM-type and ANN test statistics
(see also Lee et al., 1993). de Lima (1997) investigates the robustness of several portmanteau-
type nonlinearity test statistics (e.g. Hinich’s bispectrum test) to moment condition failure.
More recently, Vavra (2013, Chapter 2) examines the robustness of eight nonlinearity test
statistics against non-Gaussian innovations by MC simulation. Overall, there is no clear link
between the performance of the test statistics and their moments requirements. However,
some of the test statistics are not very trustworthy for DGPs with heavy-tailed innovations.

5.9 Software References

Section 5.1: The website https://www.estima.com/procs_perl/mainproclistwrapper.
shtml contains freely available RATS5 code (star and regstrtest) for LM-type testing of STAR
models. Also, the website has RATS code for the arranged AR test statistic (tsaytest), the
F

(O)
T test statistic (tsaynltest), the F test statistic of Hansen (threshtest), and the Hinich

(frequency-domain) linearity and Gaussianity test statistics (hinichtest). GAUSS code for
computing the LM-type test statistic F

(6)
T is available at the website of this book.

Section 5.2: A FORTRAN77 program (written by K.S. Chan) for computing the percentiles
of the LR-SETAR test statistic LR(8)

T is available at the website of this book. The R-

TSA package contains the F
(T)

T test (Keenan.test), the F
(O)

T test (Tsay.test), the F
(8)
T test

(tlrt). Bruce Hansen’s web page at http://www.ssc.wisc.edu/~bhansen/ offers MATLAB,
GAUSS and R code (and data) to replicate some of the empirical work reported in his papers
on SETAR model selection and estimation. Based on papers written by Hansen and his
co-authors, the R-tsDyn package has a host of test statistics for various forms of SETAR
nonlinearity, including the bootstrapped version of the F

(i,j)
T test statistic. A special file at

the website of this book contains MATLAB programs to replicate the results of Example
5.1.

Two FORTRAN90 programs (written by Guodong Li) for replicating the results in Li and
Li (2011) and using the LR(9)

T –SETARMA test statistic summarized in Algorithm 5.6, are
available at the website of this book.

Section 5.4: The function lin.test in the R-nlts package computes the F
(O)

T test statistic of
Algorithm 5.8 for AR(p) processes up to order p = 5. The nlts.f FORTRAN77 library (largely
written by Jane L. Harvill), available at the website of this book, contains an extensive set
of subroutines for nonlinear time series analysis, including Hinich’s test for linearity, the
CUSUM, TAR-F , New-F , and the Original- and Augmented F test statistics.

5RATS, also called WinRATS, is a registered trademark of Estima, Inc.

http://www.ssc.wisc.edu/~bhansen/
http://www.ssc.wisc.edu/~bhansen/
https://www.estima.com/procs_perl/mainproclistwrapper.shtml
https://www.estima.com/procs_perl/mainproclistwrapper.shtml
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Appendix

5.A Percentiles of LR–SETAR Test Statistic
Critical values cα, at the nominal significance level α, depend on p and on r and r only. In
practice, R̃ can be taken as a closed interval with r × 100 and r × 100 percentiles of the
empirical distribution of {Yt}T

t=1 as end points. Table 5.1 provides values of cα for α = 0.01,
0.05, and 0.10, p = 1, . . . , 10, and R̃ = [r0, 1 − r0] for an array of r0 values between 0.05
and 0.40. In addition, Table 5.1 covers a much wider range of intervals R̃ than just the
symmetric interval [r0, 1− r0] through the parameter λ = r(1− r)/(r(1− r)). Given a value
of p ≥ 1, this allows one to obtain critical values for some other interval [r, r] either directly
or by interpolation.

For the special case p = 0, we noted in Section 5.2 that an explicit expression for the
asymptotic distribution of the LR(8)

T test statistic is available. In particular, Chan and Tong
(1990) show that, for z →∞,

P
(

sup
0≤t≤t∗

|Ut| > z
)
∼ (2/π)1/2 exp(−z2/2)

(
t∗z − t∗

z
+

1
z

)
, (5.96)

where

t∗ =
1
2

log
{b(1− a)

a(1− b)

}
, (0 < a < b < 1),

and {Ut} is a so-called stationary Ornstein–Uhlenbeck process with E(Ut) = 0 and E(UsUt) =
exp(−|t− s|).

Tables 1 and 2 in Chan (1991) contain upper 10%, 5%, 2.5%, 1% and 0.1% percentage
points for the null distribution of the LR(8)

T test statistic for 0 ≤ p ≤ 18 and (a, b) =
(0.25, 0.75) and (0.1, 0.9). For p = 0, it can be seen that the percentage points are close
to that of a χ2

3 distribution, which also follows from comparing (5.96) with the asymptotic
distribution function P(χ2

3 > z2) ∼ (2/π)1/2 exp(−z2/2)(z + 1
z ).

5.B Summary of Size and Power Studies
Usually the overall performance of a test statistic is obtained from an MC simulation study
of its size and power. A number of these studies have been carried out for the tests discussed
in this Chapter. Table 5.2 summarizes the main findings in this area. In general one can
say that when a test statistic is used against the alternative hypothesis, which it is designed
to reveal, it is more powerful than when it is used against other alternative hypotheses Ha.
Clearly, there is no test which can be used as an overall tool against any type of nonlinearity.
Nevertheless, all LM-type test statistics seem to have reasonable size and power properties.
These tests do not require estimation of the model under Ha nor do they depend on the
particular form of Ha. Thus, one might expect that for finite sample sizes tests which
explicitly make use of the form of Ha, like for example the LR test statistic, are more
powerful. This seems to be the case for SETAR models, but evidence for other types of
nonlinear models is lacking. In addition, it is important to realize that the presence and size
of an intercept in a nonlinear model seems to have a considerable influence on the size and
power of the test statistics when T is not large. Centering data, i.e. analyzing deviations

APPENDIX 5.A
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Table 5.1: Asymptotic critical values of the LR(8)
T test statistic for SETAR(2; p, p) models;

λ = (1− r0)2/r2
0.

p = 1 p = 2 p = 3 p = 4 p = 5

r0 λ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.40 2.25 6.20 8.52 12.79 7.97 10.51 15.09 9.65 12.37 17.20 11.25 14.13 19.19 12.81 15.83 21.10
0.35 3.45 7.63 9.69 13.81 9.55 11.78 16.17 11.34 13.72 18.34 13.04 15.56 20.38 14.69 17.31 22.32
0.30 5.44 8.56 10.52 14.55 10.56 12.67 16.96 12.42 14.66 19.16 14.19 16.54 21.24 15.88 18.34 23.21
0.25 9.00 9.27 11.18 15.16 11.34 13.38 17.60 13.25 15.42 19.83 15.07 17.33 21.93 16.80 19.16 23.93
0.20 16.00 9.89 11.75 15.69 12.01 14.00 18.16 13.96 16.07 20.42 15.81 18.02 22.55 17.59 19.88 24.57
0.15 32.11 10.46 12.29 16.20 12.63 14.58 18.70 14.62 16.68 20.98 16.51 18.66 23.13 18.31 20.54 25.17
0.10 81.00 11.05 12.85 16.72 13.26 15.18 19.25 15.30 17.31 21.57 17.21 19.32 23.73 19.05 21.23 25.79
0.05 361.00 11.74 13.51 17.35 14.01 15.89 19.92 16.10 18.07 22.27 18.06 20.11 24.47 19.93 22.06 26.56

p = 6 p = 7 p = 8 p = 9 p = 10

r0 λ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
0.40 2.25 14.32 17.47 22.93 15.80 19.07 24.70 17.25 20.63 26.43 18.68 22.16 28.13 20.09 23.67 29.78
0.35 3.45 16.28 19.01 24.19 17.84 20.66 26.01 19.36 22.28 27.77 20.85 23.86 29.50 22.32 25.41 31.19
0.30 5.44 17.53 20.08 25.11 19.13 21.77 26.95 20.69 23.42 28.74 22.23 25.03 30.49 23.74 26.61 32.20
0.25 9.00 18.48 20.93 25.85 20.12 22.65 27.71 21.72 24.32 29.52 23.28 25.96 31.29 24.82 27.57 33.02
0.20 16.00 19.30 21.67 26.51 20.96 23.41 28.39 22.58 25.11 30.21 24.17 26.76 32.00 25.74 28.39 33.74
0.15 32.11 20.05 22.36 27.13 21.74 24.12 29.02 23.39 25.84 30.87 25.00 27.52 32.67 26.59 29.16 34.43
0.10 81.00 20.82 23.07 27.77 22.53 24.86 29.69 24.21 26.60 31.55 25.84 28.30 33.36 27.45 29.96 35.14
0.05 361.00 21.73 23.93 28.56 23.48 25.74 30.49 25.18 27.51 32.37 26.84 29.23 34.21 28.48 30.92 36.00

from the sample mean, is not recommended since then the asymptotic null distributions are
no longer valid.

Some additional remarks are in order:

(i) With the test statistics QT , Q rev
T and LRT one must fix p and d. The selection of

the order p can be done via, e.g., AIC. Also, the number of thresholds need to be
pre-specified.

(ii) The selection of the added variables with many of the LM-type and F -type test
statistics is somewhat arbitrary. For example, one uses p added variables specifically
for the ExpAR(p) model and p + 1 for the STAR(2; p, p) model.

(iii) Test statistics based on the recursive LS method require a minimum number of ob-
servations nmin used to start the method. However, nmin depends on the order p and
the sample size T .

(iv) The recursive estimation can be done via various algorithms such as the one given by
(5.86) – (5.87), or by the Kalman filter. The latter method appears to be preferable
when there are missing observations in the data.

(v) The empirical power studies in Table 5.2 have been carried out under a wide variety of
alternatives (see the footnotes at the bottom of the table). No fixed set of DGPs has
been used across all studies with the same sample size. So, comparison of the reported
results is difficult. Moreover, power studies are criticized for the fact that test results
are determined by the sample size, i.e. as T increases the empirical power goes to one
under the alternative hypothesis. In contrast, local alternatives make its difference
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Table 5.2: Summary of size and power studies for some time-domain linearity test stat-
istics; equation numbers in parentheses refer to the particular test statistic in the main text.

DGP Test statistic T Power Reference

BL(1): (i) QT (5.90) 50, 100 •marginally Petruccelli and Davies (1986)

outperforms F
(T)

T

F
(T)

T (5.81) <200 •reasonable only Davies and Petruccelli (1986)
for extreme
BL-DGPs

>200 good for wide
range of
BL-DGPs

(ii) F
(T)

T (5.81) 50, 100, •good Saikkonen and Luukkonen (1988)
200

LM
(1)
T (5.12) •outperforms F

(T)
T

(iii) LM
(1)
T (5.12) 50, 75, •good for Saikkonen and Luukkonen (1991)

100, 150 BL-DGPs

(iv) F
(O)

T (5.82) 70, 140, 204•outperforms F
(T)

T Tsay (1986)

(v) F
(O)
T (5.82) , 100 •all tests have Tsay (1991)

F
(N)
T (5.93), F

(A)
T (5.83) good power

ExpAR(2) : QT (5.90), F
(N)
T (5.93), 100 •good Tsay (1991)

F ∗
T (5.92) •not powerful

LM
(2)
T (5.15) 50, 100, •outperforms Saikkonen and Luukkonen (1988)

200 F
(T)

T and LM
(1)
T

SETAR(3): (i) QT (5.90) 50, 100 • less powerful Petruccelli and Davies (1986)

than F
(T)

T
(ii) QT (5.90), 50, 100, • less powerful Moeanaddin and Tong (1988)

150, 200, than Q rev
T

250

F
(8)
T (5.60) 50, 100 •outperforms QT

and Q rev
T

(iii) Q rev
T and LM

(3∗∗)
T (5.26) 100 •outperforms F

(8)
T Petruccelli (1990)

and F ∗
T

(iv) F
(T)

T (5.81) <100 •reasonable only Davies and Petruccelli (1986)
for nearly
nonstationary
DGPs

>100 more satisfactory

(v) F ∗
T (5.92) 50, 100 •outperforms QT Tsay (1989)

(vi) LM
(3∗)
T (5.22), LM

(3∗∗)
T 50, 100 •LM

(4)
T is more Luukkonen et al. (1988b)

(5.26), LM
(4)
T (5.29) powerful; LM

(3∗)
T

and QT are poor
LSTAR(4): (i) F

(O)
T (5.82), F

(A)
T (5.83), 100 •all tests have Tsay (1991)

QT (5.90), F
(N)
T (5.93), low power

(ii) LM
(3∗)
T (5.22), LM(3∗∗) 50, 100 •LM

(3)
T is inferior Luukkonen et al. (1988a)

(5.26), LM
(4)
T (5.29) to LM

(3∗)
T and

LM
(4)
T ; LM

(3)
T ,

QT low power

(1) (i) Yt = (φ + ψεt)Yt−1 + εt; (ii) (2.13); (iii) Yt = μ + ψεt−1Yt−i + εt (i = 1.2);
(iv) Yt = εt − 0.4εt−1 + 0.3εt−2 + 0.5εtεt−2; (v) Yt = 0.5Yt−1 + ψYt−1εt−1 + εt and
Yt = εt + 0.5εt−1 + ψε2

t−1.
(2) Yt = {φ + ξ exp(−Y 2

t−1)}Yt−1 + εt.
(3) (i) SETAR(2; 1, 1) (no intercept); (ii) SETAR(2; 1, 1) (no intercept); (iii) SETAR(2; 1, 1),

SETAR(2; 3, 2) and SETAR(3; 1, 1, 1) (all with intercept); (iv) SETAR(2; 1, 1) (no intercept);
(v) SETAR(2; 1, 1) (no intercept); (vi) SETAR(2; 1, 1) (with intercept).

(4) (i) Yt = 1 − 1
2
Yt−1 + (φ + ξYt−1)G(γYt−1) + εt with G(z) = 1/(1 + exp(−z));

(ii) Yt = − 1
2
Yt−2 − φYt−2G( 1

2
Yt−1) + εt with G(z) = 1/(1 + exp(−z)).

APPENDIX 5.B
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with the null hypothesis shrink as T increases. Only a few papers investigate the
local power of linearity tests; see, e.g., Guégan and Pham (1992) for the LM-type test
statistic against a general diagonal BL model.

Exercises

Theory Questions

5.1 Let γ
(1,2)
Y (�) = Cov(Yt, Y

2
t−�) denote the bicovariance at lag � of a time series {Yt, t ∈

Z} generated by an MA(�) model with mean E(Yt) = 0, and with {εt}
i.i.d.∼ N (0, σ2

ε).
Given an observed time series {Yt}T

t=1, the moment estimator of γ
(1,2)
Y (�) equals

γ̂
(1,2)
Y (�) = (T − �)−1

∑T
t=�+1 YtY

2
t−�. Under the null hypothesis H0 : γ

(1,2)
Y (�) = 0

(� = 1, 2, . . .), Welsh and Jernigan (1983) show that, as T → ∞, the large sample
distribution of the standardized bicovariance is given by

WJ =
T∑

t=�+1

YtY
2
t−�/

√
3(T − �) D−→ N (0, 1).

Show that the WJ test statistic is a special case of the LM-type test statistic of testing
an MA(k) model against an ASTMA(k) model.

5.2 Suppose that the T × 1 vector of observations y = (Y1, . . . , YT )′ satisfies the asAR(p)
model

Yt =
p∑

i=1

(
φi + αiI(εt−i ≥ 0)

)
Yt−i + εt, {εt} i.i.d.∼ N (0, σ2

ε).

Let θ = (φ′,α′)′ with φ = (φ1, . . . , φp)′, α = (α1, . . . , αp)′, ε = (ε1, . . . , εT )′, Iε,T =
diag(I(ε1 > 0), . . . , I(εT > 0)) and ε+ = Iε,T ε. Construct an LM-type test statistic
for the null hypothesis H0 : α = 0.

5.3 Consider the nonlinear time series model

Yt =
p∑

i=1

(
ai + φifi(α′

iYt)
)
Yt−i +

q∑
j=1

(
bj + θjgj(β′

jYt)
)
Wj,t + εt, {εt} i.i.d.∼ N (0, σ2

ε),

where Wj,t is an observable regressor, and Yt is a state vector. Assume that Wt =
(W1,t, . . . ,Wq,t)′ as well as Yt are independent of εt+s (s ≥ 0). Furthermore, assume
that the functions fi(·) and gj(·) are real-valued possessing continuous derivatives of
at least the first order in some neighborhood of the origin.

(a) The null hypothesis under study is

H0 : αi = 0 (i = 1, . . . , p), and βj = 0 (j = 1, . . . , q).

How would you carry out an LM-type test?
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(b) Suppose the parameter restrictions α1 = · · · = αp ≡ α and β1 = · · · = βq ≡ β
are already imposed on the above nonlinear model. The null hypothesis in part
(a) is obviously replaced by

H∗
0 : α = 0 and β = 0.

How would you carry out an LM-type test in this case?

Simulation Question

5.4 In this exercise we evaluate by simulation the power of the F
(1,2)
T test statistic, defined

by (5.63), under model-selection uncertainty. The SETAR(2; 2, 2) model for the ob-
served time series is formulated as

Yt =
{

φ
(1)
0 + φ

(1)
1 Yt−1 + φ

(1)
2 Yt−2 + εt if Yt−2 ≤ 0,

φ
(2)
0 + φ

(2)
1 Yt−1 + φ

(2)
2 Yt−2 + εt if Yt−2 > 0,

where {εt} i.i.d.∼ N (0, 1). Consider the following two DGPs:

(i) φ
(1)
0 = 0.5, φ

(1)
1 = −φ

(2)
1 = 0.2, φ

(2)
0 = 0.3, φ

(1)
2 = −φ

(2)
2 = −0.1; and

(ii) φ
(1)
0 = 0.5, φ

(1)
1 = −φ

(2)
1 = −0.1, φ

(1)
2 = −φ

(2)
2 = 0.1.

(a) For T = 200 and 500, generate 2,000 MC replications of the DGPs (i) and (ii).
Next, compute the empirical power of the F

(1,2)
T test statistic, at the 5% nominal

significance level, using (i) a correctly specified SETAR model (setting the true
lag length at two), and (ii) the AIC and BIC order selection criteria (setting
the maximum allowed lag order pmax = 6). You should find the results given in
Table 5.3 (approximately).

Table 5.3: Empirical power (in %) of the F
(1,2)
T test statistic, at

the 5% nominal significance level, for two SETAR(2; 2, 2) models;
2,000 MC replications.

DGP T = 200 T = 500

True AIC BIC True AIC BIC

(i) 55.15 33.40 18.35 97.20 83.35 51.00
(ii) 13.45 8.20 5.65 33.75 21.95 12.95

Compare and interpret the results in Table 5.3.

[Hint: Use Bruce Hansen’s GAUSS, R, or MATLAB codes to compute the F
(1,2)
T

test statistic.]

(b) Gonzalo and Pitarakis (2002) introduce the following penalty-based model se-
lection approach for deciding between an AR(p) and a SETAR(2; p, p) model:

• Select the best AR model that minimizes AIC, and the best SETAR model
that minimizes the order selection criterion SC(p, d; r) = T log σ̂2

ε+C(T )(2p
+2) with C(T ) = 2 and σ̂2

ε the residual variance of the SETAR model.

EXERCISES
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Table 5.4: Model-selection based correct decision frequencies (in
%) under two SETAR models; 1,000 MC replications.

DGP T = 200 T = 500

AIC BIC AIC BIC

(i) 99.8 48.0 100.0 91.2
(ii) 98.9 13.9 99.4 16.4

• Then select the AR(p) model if minp AIC(p) < minp,r,d SC(p, d; r) (1 ≤ p ≤
pmax, r ∈ R̃, d ≤ p).

A similar approach can be based on BIC with C(T ) = log T .

For T = 200 and 500, generate 1,000 replications of the DGPs (i) and (ii). Next,
apply the above two model-selection approaches (AIC and BIC) and record the
number of correct decision frequencies. Table 5.4 provides a summary of the
results you will find.
Compare and contrast the results in Tables 5.4 and 5.3.



Chapter 6
MODEL ESTIMATION, SELECTION, AND
CHECKING

Model estimation, selection, and diagnostic checking are three interwoven compon-
ents of time series analysis. If, within a specified class of nonlinear models, a par-
ticular linearity test statistics indicates that the DGP underlying an observed time
series is indeed a nonlinear process, one would ideally like to be able to select the
correct lag structure and estimate the parameters of the model. In addition, one
would like to know the asymptotic properties of the estimators in order to make
statistical inference. Moreover, it is evident that a good, perhaps automatic, order
selection procedure (or criterion) helps to identify the most appropriate model for
the purpose at hand. Finally, it is common practice to test the series of standardized
residuals for white noise via a residual-based diagnostic test statistic.

In this chapter, we focus on these three themes within the context of parametric
nonlinear modeling. Specifically, we consider the class of identifiable parametric
stochastic models

Yt = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q;θg) + ηt (6.1)

where

ηt = h(Yt−1, . . . , Yt−u, εt−1, . . . , εt−v; θh)1/2εt.

Here {Yt, t ∈ Z} is a strictly stationary and ergodic univariate stochastic process;
g(·;θg) and h(·;θh) are two real-valued measurable (known) functions on Rp+q and
Ru+v (u ≤ p), respectively; and θ = (θ′

g, θ
′
h)′ is a vector of unknown parameters

that we wish to estimate, and we have available a set of observations {Yt}T
t=1 with

which to do so. Further, we assume that h(·;θ) is a non-negative function of past
Yt’s and εt’s.

The class of models (6.1) covers a wide range of nonlinear models, including many
models introduced earlier in this book. Numerous methods have been proposed
for estimating models contained within this class. Here, we do not provide a full
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technical treatment of the subject. Rather we elaborate on some commonly used
estimation methods and, in some cases, their practical implementation. Throughout
the discussion, we assume that (6.1) is completely known. In practice, however,
this is seldom the case and the model structure needs to be specified first. This
is a model selection problem, and there are several ways to approach it. One is
to develop model selection criteria on the basis of the asymptotic properties of
the estimated parameters, and we will therefore spend some time discussing these
criteria here. Alternatively, model selection criteria have been suggested on the basis
of sample reuse such as cross-validation (CV). Since several of the latter criteria are
(asymptotically) linked to criteria in the first group, we include them as well in this
chapter. Similarly, the effect of parameter estimation errors becomes relevant when
checking for model adequacy.

Given the above themes, the chapter consists of three interrelated parts. First,
in Section 6.1.1, we discuss the method of quasi maximum likelihood (QML) estim-
ation and, in particular, nonlinear least squares (NLS) estimation within the general
framework of model (6.1). In Section 6.1.2, we consider the method of conditional
least squares (CLS) estimation tailor-made for SETARMA, subset SETARMA,
STAR, and BL models. In Section 6.1.3, we present an iteratively weighted least
squares algorithm for QML estimation of double threshold ARCH models.

In the second part, we concentrate on model selection rules that are associated
with the QML and NLS estimation methods. Both estimation methods are likely
the most commonly used in practice. Consequently, the associated order selection
rules are of quite general interest. In the third part, we discuss a general class of
standardized-residuals-based correlation test statistics. The proposed tests avoid
potential “size distortion” problems due to estimation uncertainty. Finally, in Sec-
tion 6.4, we bring together elements of (subset) TARSO model estimation, TARSO
model selection and checking, to analyze an important nonlinear time series problem
from the area of hydrology.

6.1 Model Estimation

6.1.1 Quasi maximum likelihood estimator

Consider model (6.1). Let p∗ = p ∨ u, q∗ = q ∨ v, Y0 = (Y0, . . . , Y1−p∗)′ be the
initial starting values of the process {Yt, t ∈ Z}, and ε0 = (ε0, . . . , ε1−q∗)′ be the
starting innovations. In addition, let θ0 = (θ′

0,g, θ
′
0,h)′ denote the true value of

the parameter vector θ, and Yt = (Y1, . . . , Yt)′. We assume that θ0 belongs to
Θ = Θθg ×Θθh

⊂ Rp+q × Ru+v.
Under the above assumptions, it is easily seen that the conditional mean and

variance of {Yt, t ∈ Z} given Yt−1 and Θ are

E(Yt|Yt−1,Θ) = g(Yt−1, . . . , Yt−p, εt−1, . . . , εt−q; θ0 ) ≡ μt(θ0,g)

Var(Yt|Yt−1,Θ) = h(Yt−1, . . . , Yt−u, εt−1, . . . , εt−v; θ0 )εt ≡ σ2
t (θ0,h).

,g

,h
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Assume that {εt} has density function fε(·). Given Y0, the (conditional) likelihood
function evaluated at θ ∈ Θ, is equal to

LT (θ) =
T∏

t=1

1
σt(θh)

fε

(Yt − μt(θg)
σt(θh)

)
,

assuming σt(θh) �= 0.
The above objective function is not operational because fε(·) and Y0 are gen-

erally unknown. The initial values can be replaced by some fixed constants, e.g.,
zeros. More generally, one can treat Y0 and ε0 as unknown, additional, parameter
vectors and estimate them jointly with other parameters. This approach requires
more intensive computation. In finite samples, it may result in different parameter
estimates, but it will not affect the asymptotic properties of the estimator of θ0.

Replacing fε(·) by the N (0, 1) density function, and approximating μt(θg) by
μ̃t(θg) = g(Yt−1, . . . , Y1, 0, . . . ;θg) and σt(θh) by σ̃t(θh) = h2(Yt−1, . . . , Y1, 0, . . . ; θh),
the minimizer θ̂T of LT (θ) is called the quasi ML (QML) estimator of θ0. That is,

θ̂T = arg min
θ∈Θ

Q̃T (θ), (6.2)

where

Q̃T (θ) =
1
T

T∑
t=1

�̃t and �̃t ≡ �̃t(θ) =
(Yt − μ̃t(θg)

σ̃t(θh)

)2
+ log σ̃2

t (θh),

with �̃t the log-likelihood function at time t. Furthermore, if σ̃2
t (θh) ≡ σ2

0 > 0, i.e. a
constant, the QML estimator coincides with the classical NLS estimator.

It is known that a solution to (6.2) exists when the parameter space Θ is compact,
and the functions θg → μ̃t(θg) and θh → σ̃t(θh) are continuous. Moreover, under
some regularity conditions, it follows that the QML estimator is strongly consistent,
and asymptotic normally distributed; see, e.g., Tjøstheim (1986b). More precisely,
with �t(θ) =

(
Yt − μt(θg)

)2
σ−2

t (θh) + log σ2
t (θh), and as T →∞,

√
T (θ̂T − θ0)

D−→ N
(
0,H−1(θ0)I(θ0)H−1(θ0)

)
, (6.3)

where

H(θ0) = E

(∂2�t(θ0)
∂θ∂θ′

)
, and I(θ0) = E

(∂�t(θ0)
∂θ

∂�t(θ0)
∂θ′

)
.

Here H(·) denotes the expected Hessian matrix , and I(·) is the expected information
matrix with �t(·) evaluated at θ0.

Consistent estimates of the standard errors of the QML estimator θ̂T are obtained
as the square root of the diagonal elements of the estimated covariance matrix of
θ̂T , that is

V̂ar(θ̂T ) =
1
T

(
ĤT Î

−1

T ĤT

)−1
,
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where the empirical Hessian and average information matrix for a sample of size T
are defined as, respectively,

ĤT =
1
T

T∑
t=1

∂2�̃t(θ̂T )
∂θ∂θ′ , ÎT =

1
T

T∑
t=1

∂�̃t(θ̂T )
∂θ

∂�̃t(θ̂T )
∂θ′ . (6.4)

Optimal values of θ0 are characterized by the likelihood equation , which is just
the first-order conditions: G(θ0) ≡ 0, where the gradient vector , or score vector ,
G ∈ Rp+q+u+v is defined by

G(θ) =
T∑

t=1

∂�̃t(θ)
∂θ

.

In practice, it is usually not possible to obtain an analytic solution for θ̂T , es-
pecially when the objective function involves many parameters. In such a situation,
estimates of θ0 must be sought numerically using nonlinear optimization algorithms.
The basic idea of nonlinear optimization is to quickly find optimal parameters that
maximize the log-likelihood. This is done by searching much smaller sub-sets of the
multi-dimensional parameter space rather than exhaustively searching the whole
parameter space, which becomes intractable as the number of parameters increases.
Numerical optimization algorithms often involve the following steps.

Algorithm 6.1: Nonlinear iterative optimization

(i) Provide an initial estimate of θ0, say θ̂T,0. For instance, these estimates can
be chosen at random or by guessing.

(ii) By an “intelligent” search over the parameter space Θ, determine an im-
proved estimate of θ̂T,0, say θ̂T,1.

(iii) Taking into account the results from step (ii), obtain a new set of estimates
θ̂T,i (i = 2, 3, . . .) by adding small changes to the previous estimates in
such a way that the new parameter estimates are likely to lead to improved
performance.

(iv) Stop the iterative process in step (iii) if parameters estimates are judged to
have converged, using an appropriately predefined criterion. For instance, if
the relative improvement {Q̃(θ̂T,i+1)− Q̃(θ̂T,i)}/Q̃(θ̂T,i) is a small prefixed
number.

It is worth noting that the optimization algorithm does not necessarily guarantee
that the final estimate θ̂T uniquely maximizes the log-likelihood. Even if G(θ̂T ) ≈ 0,
the algorithm can prematurely stop and return a sub-optimal set of parameter values.
This is called the local maxima problem . Unfortunately, there exists no general
solution to the local maximum problem. Instead, a variety of remedies have been
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developed in an attempt to avoid the problem (see, e.g., Teräsvirta et al., 2010,
Chapter 12), though there is no guarantee of their effectiveness. For example, one
may choose different starting values over multiple runs of the iteration procedure and
then examine the results to see whether the same solution is obtained repeatedly.
When that happens, one can conclude with some confidence that θ̂T is close to a
global optimum. If, however, the changes in the parameter estimates remain large
in multiple iterations the parameters of the model may not be identified.

To assess the performance of the QML estimator of θ0 in finite samples, the next
example shows a simulation experiment.

Example 6.1: NLS Estimation

Consider, as a special case of the general ExpARMA model (2.20), an Ex-
pAR(1) model with p = d = 1, i.e.,

Yt = {φ + ξ exp(−γY 2
t−1)}Yt−1 + εt, {εt} i.i.d.∼ (0, σ2

ε), (6.5)

where |φ| < 1 and γ > 0. Thus, we have μ̃1(θg) = 0, μ̃t(θg) = (φ +
ξe−γY 2

t−1)Yt−1 ∀t > 1, and σ̃2
t (θh) = σ2

ε ∀t ≥ 1. The gradient vector is
G(θg) =

∑T
t=2

(
Yt − μ̃t(θg)

)
σ−2

ε

(
Yt−1, Yt−1e

−γY 2
t−1, −ξY 3

t−1e
−γY 2

t−1)′.

The DGP is characterized by the parameter vector θ0 = (φ0, ξ0, γ0)′ (introdu-
cing the subscript 0), and the so-called nuisance parameter σ2

ε,0, that we are
not interested in estimating. We assume that θ0 belongs to the interior Θ̊ of
the parameter space Θ = [−φ, φ]× [−ξ, ξ]× [γ, γ] with |φ0| < φ ≤ 1, |ξ0| < ξ
and 0 < γ < γ0 < γ. Note that the parameter γ0 is not identified if ξ0 = 0.
That is, there exist parameter vectors θ1,g = θ2,g with μ̃t(θ1,g) = μ̃t(θ2,g) ∀Yt,
then Q̃T (θ1,g) = Q̃T (θ2,g) in (6.2), in which case minima need not be unique.

Nonlinear estimation of (6.5) is easier if good initial parameter values are
available. To this end it is convenient to express the model in matrix form.
Let Y = (Y2, . . . , YT )′, β = (φ, ξ)′, ε = (ε2, . . . , εT )′, and

X =

⎛⎝ Y1 Y1e
−γY 2

1

...
...

YT−1 YT−1e
−γY 2

T−1

⎞⎠ .

Then we can write (6.5) as

Y = Xβ + ε,

which, conditional on γ, is a simple linear regression model. The CLS estimate
β̂ = (β̂1, β̂2)′ of β can be obtained in the usual manner as β̂ = (X′X)−1X′Y.
Its associated covariance matrix is given by Var(β̂) = σ2

ε(X
′X)−1. It is easily

checked that β̂ is
√

T -consistent. Thus, the above approach yields an efficient
initial estimate θ̂T,0.
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In preparation for the MC simulation experiment, it is useful to consider the
deterministic skeleton of (6.5), i.e. the difference equation

Yt = {φ + ξ exp(−γY 2
t−1)}Yt−1.

From (2.22) it follows that, if |φ + ξ| < 1, {Yt, t ∈ Z} will converge to a stable
limit point at zero as t →∞. Otherwise, we may distinguish two cases in the
dynamic behavior of Yt:

• For ξ > 1− φ > 0, {Yt, t ∈ Z} has twin limiting points at

Y = ±
{
γ−1 log

(
ξ/(1− φ)

)}1/2
, (6.6)

which for ξ < (1− φ) exp{1/(1− φ)} will be stable;

• For ξ < −(1 + φ) < 0, {Yt, t ∈ Z} has a limit cycle between the points

Y = ±
{
γ−1 log

(
− ξ/(1 + φ)

)}1/2
, (6.7)

which for −ξ < (1 + φ) exp{1/(1 + φ)} will be stable.

Consider model (6.5) with φ = −0.8, ξ = 2, γ = 2, and {εt} i.i.d.∼ N (0, 1). So,
by (6.6), the skeleton of {Yt, t ∈ Z} has alternative limiting points at ±0.2295
which are stable (ξ < 3.1372).

In step (i) of the numerical optimization procedure, we use 101 equidistant
grid points of γ in the interval [1.75, 2.25] to obtain CLS estimates of β. Con-
ditional on a value of γ, we select the ‘best’ estimate of β, say β̂

∗
= (β̂∗

1 , β̂∗
2)′,

for which the residual sum of squares attains a minimum, resulting in an ini-
tial estimate θ̂T,0. Next, in step (ii), we set [−φ, φ] = [φ− 2{V̂ar(β̂∗

1)}1/2, φ +
2{V̂ar(β̂∗

1)}1/2 and [−ξ, ξ] = [ξ − 2{V̂ar(β̂∗
2)}1/2, ξ + 2{V̂ar(β̂∗

2)}1/2]. Thus,
with [γ, γ] = [1.75, 2.25], Θ̊ ∈ Θ, which is essential to obtain the asymptotic
normality of the QML estimates.

Figure 6.1 shows boxplots of the NLS values of (φ̂− φ), (ξ̂ − ξ), and (γ̂ − γ),
using the gradient vector G(θg). The plots indicate the consistency of the
estimators and evidence of symmetry. Note the differences between the scales
on the vertical axis for both sample sizes.

6.1.2 Conditional least squares estimator

SETARMA models
Chapter 2 introduced the k-regime SETARMA model (2.29). To economize on
notation, we focus on a special case, i.e., the SETARMA(2; p1, q1, p2, q2) model with
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φ̂− φ ξ̂ − ξ γ̂ − γ φ̂− φ ξ̂ − ξ γ̂ − γ

Figure 6.1: Boxplots of (φ̂ − φ), (ξ̂ − ξ), and (γ̂ − γ); (a) T = 100, and (b) T = 500;
1,000 MC replications.

all white noise variances being equal. The latter model is defined as

Yt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ

(1)
0 +

p1∑
i=1

φ
(1)
i Yt−i + εt +

q1∑
j=1

ψ
(1)
j εt−j if Yt−d ≤ r,

φ
(2)
0 +

p2∑
i=1

φ
(2)
i Yt−i + εt +

q2∑
j=1

ψ
(2)
j εt−j if Yt−d > r,

(6.8)

where {εt} i.i.d.∼ (0, σ2
ε), r ∈ R, pi and qi (i = 1, 2) are known nonnegative integers,

and d ∈ Z+. Although (6.8) serves as a benchmark to study CLS estimation, the
asymptotic results presented below can be easily extended to k > 2 thresholds.

Without loss of generality, we assume that the unknown threshold parameter
r ∈ [r, r] ⊂ R with r and r finite constants. In addition, the delay variable d is
an unknown parameter to be estimated, and its true value is d0 with 1 ≤ d0 ≤ D0,
where D0 is known. Let φi = (φ(i)

0 , . . . , φ
(i)
pi )′ and ψi = (ψ(i)

1 , . . . , ψ
(i)
qi )′ (i = 1, 2)

and τ = (φ′
1,ψ

′
1, φ

′
2,ψ

′
2)

′. Then, θ0 = (τ ′
0, r0, d0)′ ≡ (φ′

1,0, ψ
′
1,0,φ

′
2,0, ψ

′
2,0, r0, d0)′ is

the true value of the parameter vector θ = (τ ′, r, d)′. Denote the parameter space
by Θ = Θτ × [r, r]×{1, . . . ,D0}, where Θτ is a compact subset of Rp1+p2+q1+q2+2.

Suppose that a sample {Yt}T
t=1 is available from (6.8) with the true value θ0.

Let p = p1 ∨ p2 and q = q1 ∨ q2. Then, given the vector with initial values
Y0 = (Y0, . . . , Y1−(p∨D0))′, the (conditional) sum of squared errors function LT (θ) is
defined as

LT (θ) =
T∑

t=1

ε2
t (θ), (6.9)
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where

εt(θ) = Yt −
(
φ

(1)
0 +

p1∑
i=1

φ
(1)
i Yt−i +

q1∑
j=1

ψ
(1)
j εt−j(θ)

)
I(Yt−d ≤ r)

−
(
φ

(2)
0 +

p2∑
i=1

φ
(2)
i Yt−i +

q2∑
j=1

ψ
(2)
j εt−j(θ)

)
I(Yt−d > r).

The CLS estimator θ̂T = (τ̂ ′
T , r̂T , d̂)′ of θ0 are the values which globally minimize

(6.9), that is,

θ̂T = arg min
θ∈Θ

LT (θ). (6.10)

In practice, the vector of initial values Y0 is not available and can be replaced by
constants. This will not affect the asymptotic properties of θ̂T . For simplicity, we
assume hereafter that Y0 is from model (6.8). Since LT (θ) is discontinuous in r and
d, the minimization in (6.10) can be done as follows.

Algorithm 6.2: A multi-parameter grid search

(i) Fix r ∈ R and d ∈ {1, . . . ,D0}. Then minimize LT (θ), and get its minimizer
τ̂T (r, d) and the minimum value L∗

T (r, d) ≡ LT (θ)|τ=̂τ T (r,d).

(ii) Since L∗
T (r, d) takes finite possible values only, perform a grid search over

the set of order statistics {Y(1), . . . , Y(T )} of {Y1, . . . , YT } and {1, . . . ,D0} to
get the minimizer (r̂T , d̂T )′ of L∗

T (r, d).

(iii) Use a plug-in method to obtain τ̂T (r̂T , d̂T ) and θ̂T .

Generally, there are infinitely many values r at which LT (·) attains its global
minimum, the one with the smallest r can be chosen as the estimator of r0. It is
easy to see that θ̂T is the CLS estimator of θ0. For instance, with a SETAR(2; p, p)
model, simple computation shows that for a given value of r the CLS estimator of
θ0 is given by

θ̂T (r) =
( T∑

t=1

Xt(r)X′
t(r)

)−1( T∑
t=1

Xt(r)Yt

)
, (6.11)

where Xt(r) = (X′
tI(Yt−d ≤ r),X′

tI(Yt−d > r))′ with Xt = (1, Yt−1, . . . , Yt−p)′. With
residuals ε̂t(r) = Yt −X′

t(r)θ̂T (r), the corresponding (conditional) residual variance
is given by σ̂ 2

T (r) = T−1
∑T

t=1 ε̂ 2
t (r).

SETARMA models: Asymptotic properties
Li et al. (2011), discuss (a) the consistency of the CLS estimator θ̂T ; (b) the limiting
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distributions of r̂T (a super-consistent estimator) and θ̂T ; and (c) the convergence
rate of T (r̂T −r0). A rigorous treatment of the conditions under which these authors
prove the above issues is beyond the scope of this book. However, in case of (c), we
introduce some notation to discuss the numerical method for tabulating the limiting
distribution of r̂T .

Consider the profile sum of squares errors function

L̃T (z) = LT

(
τ̂T

(
r0 +

z

T

)
, r0 +

z

T

)
− LT

(
τ̂T (r0), r0

)
, z ∈ R.

Let e = (1, 0, . . . , 0)′ be a q × 1 vector, and

Ht,j(θ) =
j∏

i=1

[ψ2 + (ψ1 −ψ2)I(Yt−d−i+1 ≤ r)], (j ≥ 0),

with the convention
∏0

i=1 = Iq, and

ψi =

(
−ψ

(i)
1 · · · −ψ

(i)
q

Iq−1 0(q−1)×1

)
, (i = 1, 2).

Using the asymptotic result in (b) and Taylor expansion, L̃T (z) can be approximated
(Li et al., 2011) by

℘T (z)=I(z<0)
T∑

t=1

ζ
(1)
t I

(
r0+

z

T
<Yt−d ≤ r0

)
+I(z≥0)

T∑
t=1

ζ
(2)
t I

(
r0 <Yt−d≤r0+

z

T

)
,

where

ζ
(i)
t =

{ ∞∑
j=0

[e′Ht+j,j(θ0)e]2
}

δ2
t +2(−1)i+1

{ ∞∑
j=0

εt+j [e′Ht+j,j(θ0)e]
}

δt, (i = 1, 2),

(6.12)

and

δt = (φ(1)
0,0 − φ

(2)
0,0) +

p∑
i=1

(φ(1)
i,0 − φ

(2)
i,0 )Yt−i +

q∑
i=1

(ψ(1)
i,0 − ψ

(2)
i,0 )εt−i.

Let Fk(·|r0) be the conditional distribution of ζ
(k)
d+1 (k = 1, 2) given Y1 = r0. To

describe the limiting distribution of r̂T , consider two independent compound Poisson
processes (CPPs) {℘(1)(z), z ≥ 0} and {℘(2)(z), z ≥ 0} with ℘(1)(0) = ℘(2)(0) = 0
a.s., and with the same jump rate π(r0) > 0, where π(·) is the pdf of Y1, and with
the jump distributions F1(·|r0) and F2(·|r0), respectively. Define a two-sided CPP
{℘(z), z ∈ R} as follows

℘(z) = I(z < 0)℘(1)(−z) + I(z ≥ 0)℘(2)(z). (6.13)
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Observe that ℘(z) goes to ∞ a.s. when |z| → ∞ since
∫

xdFk(x|r0) > 0. Therefore,
there exists a unique random interval [M−, M+) on which the process (6.13) attains
its global minimum and nowhere else. Then, under some mild conditions, it can be
proved (Li et al., 2011) that: (i) T (r̂T − r0)

D−→ M−, as T →∞; and (ii) T (r̂T − r0)
is asymptotically independent of

√
T (τ̂T −τ0) and their asymptotic distributions are

the same, regardless whether r0 is known or not. In particular,
√

T (τ̂T − τ 0) =
√

T
(
τ̂T (r0)− τ 0

)
+ op(1)

D−→ N (0(p∨d)+q, σ
2
εΣ

−1) as T →∞,

where Σ = E[
(
∂εt(θ0)/∂τ

)(
∂εt(θ0)/∂τ ′)].

SETARMA models: Numerical implementation of M−
The pdf of M− (left jump) can be obtained as follows.

Algorithm 6.3: The density function of M−
(i) Generate two independent Poisson random variables N1 and N2 with the

same intensity parameter π(r0)N , and N > 0 is a prefixed integer.

(ii) Generate two independent jump time sequences {U1, . . . , UN1} and
{V1, . . . , VN2}, where {Ui} i.i.d.∼ U [−N, 0] and {Vi} i.i.d.∼ U [0, N ].

(iii) Generate two independent jump-size sequences: {Y1, . . . , YN1} and {Z1, . . . ,

ZN2} from F1(·|r0) and F2(·|r0), respectively.

(iv) Create a set of equidistant points over the interval [−N, N ]. For z ∈ [−N,N ],
compute the trajectory of (6.13), i.e., ℘(z) = I(z < 0)

∑N1
i=1 I(Ui > z)Yi +

I(z ≥ 0)
∑N2

j=1 I(Vj < z)Zj . Find the smallest minimizer of ℘(z) on [−N, N ]

and call it M
(b)
− .

(v) Repeat step (iv) B times, to obtain {M (b)
− }B

b=1.

(vi) Use a nonparametric kernel-based estimation method, to obtain the density
function of M− numerically.

Algorithm 6.3 depends crucially on step (iii). When θ0, π(r0), the distribution
Fε(·) of {εt}, and the distribution GZ0(·) of Z0 = (Y0, . . . , Y1−(p∨d), ε0, . . . , ε1−q)′ are
known, the appropriate way to proceed is to first sample {εt}d+1+L

t=2 independently
from Fε(·) where L is some large integer. Next, draw a sample (z1, . . . , zK) from
GZ0(·) where K is another large integer, and zi = (Yi, . . . , Yi−(p∨d)+1, ε0, . . . , ε1−q)′ ∈
R(p∨d)+q (i = 1, . . . ,K). Then, generate {Yt}d+1+L

t=2 by iterating model (6.8) with
the initial values Y1 = r0, Z0 = zi, and ε1 = r0 − g(zi,θ0) (i = 1, . . . ,K).

Obtain an approximation, say ζ
(1)
d+1,k, of ζ

(1)
d+1 (k = 1, . . . ,K) by truncating the

infinite sums in (6.12) after L terms. Since ‖e′Hd+1+j,j(θ0)e‖2 = O(ρj) a.s., the
remaining term is negligible when L is large enough. Calculate the conditional
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density function of Y1 given Z0 = zk, i.e. π(r0|zk) = fε

(
r0 − g(zk,θ0)

)
. Draw a U

from a random sample, with replacement, from the integers 1 to T − p + 1, using
a vector of positive weights π(r0|zk)/

∑K
k=1 π(r0|zk) (k = 1, . . . ,K). Finally, obtain

Y1 = ζ
(1)
d+1,U . This last step is asymptotically equivalent to obtaining one observation

from F1(·|r0); Li et al. (2011). In an obvious manner the above procedure can be
modified to obtain one observation from F2(·|r0).

It remains to discuss estimation of the pdf of M− given {Yt}T
t=1. We can use

the estimators θ̂T , and π̂(r̂T ) in place of the true values since they are consistent.
Here, π̂(·) is the kernel density estimator of Yt at r0. Next, calculate the mean-
deleted residuals {ε̂ ∗

t }T
t=k0+1 where k0 = max(p, d, q). Then, compute F̂ε(x) = (T −

k0)−1
∑T

t=k0+1 I(ε̂ ∗
t ≤ x) as the estimator of Fε(·), and f̂ε(·) as the kernel density

estimator of fε(·). Now step (iii) of Algorithm 6.3 can be modified as follows.

Algorithm 6.4: Sampling Y1 from an estimate of F1(·|r0)

(i) Set ẑi = (Yi, . . . , Yi−(p∨d)+1, ε̂i, . . . , ε̂i−q+1)′ (i = k0 + 1, . . . , T ).

(ii) Sample {ε̃t}d+1+L
t=2 independently from F̂ε(·) given {Yt}T

t=1.

(iii) Generate {Ỹt}d+1+L
t=2 by iterating model (6.8) with the initial values Y1 = r̂T ,

Z0 = ẑi, and ε1 = r̂T −g(ẑi; θ̂T ). Compute Ĥd+1+j,j(θ̂T ) =
∏j

i=1[ψ̂2+(ψ̂1−
ψ̂2)I(Ỹi+1 ≤ r̂T )] as an estimate of Hd+1+j,j(·).

(iv) Calculate ζ̃
(1)
d+1,k (k = 1, . . . ,K), as an estimate of ζ

(1)
d+1, where

ζ̃
(1)
d+1,k =

{ L∑
j=0

[e′Ĥd+1+j,j(θ̂T )e]2
}

(δ∗
d+1)

2

+ 2
{ L∑

j=0

ε̃d+1+j [e′Ĥd+1+j,j(θ̂T )e]
}

δ∗
d+1,

with
δ∗
d+1=(φ̂(1)

0 − φ̂
(2)
0 )+

p∑
s=1

(φ̂(1)
s − φ̂(2)

s )Y ∗
d+1−s+

q∑
s=1

(ψ̂(1)
s − ψ̂(2)

s )ε∗
d+1−s,

and

Y ∗
j =

⎧⎪⎨⎪⎩
Ỹj j ≥ 2,

r̂T j = 1,

Yi+j j ≤ 0,

ε∗
j =

⎧⎪⎨⎪⎩
ε̃j j ≥ 2,

r̂T − g(ẑi; θ̂T ) j = 1,

ε̂i+j j ≤ 0.

(v) Draw a U from a random sample, with replacement, from the integers 1
to T − p + 1, using a vector of positive weights π̂(r̂T |ẑi)/

∑K
i=k0+1 π̂(r̂T |ẑi)

(i = k0 + 1, . . . ,K).

(vi) Obtain Ỹ1 = ζ̃
(1)
d+1,U .
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Figure 6.2: (a) Plot of the logistic transformed U.S. unemployment rate {Yt}252t=1; (b) and
(c) relative frequency histograms of T (r̂i − ri,0) (i = 1, 2) with ri,0 the true threshold value.

A probability density estimate, say M̂−, of the density function of M− follows
from repeating Algorithm 6.3, with the modification in Algorithm 6.4, a large num-
ber of times. It can be shown that, as K → ∞ (first) and L → ∞ (second), M̂−
weakly converges to M−; Li et al. (2011) and Li and Ling (2012).

Example 6.2: U.S. Unemployment Rate (Cont’d)
Consider the quarterly U.S. unemployment rate in Example 1.1. In Exercise
2.10, we analyzed the logistic transformation of the original data, and denoted
the resulting series by {Yt}252

t=1. Figure 6.2(a) shows a plot of the transformed
series.

Some researchers suggested that a two-regime SETAR model is appropri-
ate for characterizing the asymmetric behavior in the U.S. unemployment
data. Others (e.g., Koop and Potter, 1999) consider a three-regime SETAR.
With this specification, the model allows for the dynamics of the unemploy-
ment rate to differ in “good” times (expansion), “bad” times (recession), or
change little in “normal” (stable) times. Following this suggestion, we fit a
SETAR(3; p1, p2, p3) model, with threshold values r1 and r2, to the time series
{Yt}.
Setting m0 = max{p1, p2, p3} ≤ 8 and 1 ≤ d ≤ max{1,m0}, we use the AIC
below to determine the order in each regime,

AIC(p1, p2, p3) =
m0∑
i=1

{
Ti log σ̂2

Ti
+ 2(pi + 1)

}
, (6.14)
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where Ti denotes the number of observations that belong to the ith regime,
and σ̂2

Ti
is the corresponding residual variance. The final SETAR model spe-

cification is given by

Yt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−0.55(0.17) + 1.69(0.12)Yt−1 − 0.81(0.14)Yt−2 + ε

(1)
t if Yt−5 ≤ −3.14,

1.47(0.50)+2.16(0.17)Yt−1−1.11(0.30)Yt−2 − 0.38(0.27)Yt−3

+0.57(0.29)Yt−4 + 0.25(0.27)Yt−5 + ε
(2)
t if − 3.14 < Yt−5 ≤ −2.97,

−0.05(0.05) + 1.47(0.07)Yt−1 − 0.45(0.14)Yt−2 + 0.07(0.14)Yt−3

−0.28(0.13)Yt−4 + 0.18(0.07)Yt−5 + ε
(3)
t if Yt−5 > −2.97,

(6.15)

where the sample variances of {ε(i)
t } (i = 1, 2, 3) are 0.63 × 10−2 (T1 = 44),

0.19× 10−2 (T2 = 34), and 0.17× 10−2 (T3 = 172), and where the asymptotic
standard errors of the parameter estimates are in parentheses. The coefficient
estimates of φ

(2)
3 , φ

(2)
5 , φ

(3)
0 , and φ

(3)
3 are not statistically different from zero

at the 5% nominal significance level. The p-values of the LB test statistic at
lags 6, 12, and 18 are, respectively, 0.54, 0.17 and 0.08, which suggests that
the fitted SETAR(2; 5, 5) model is adequate.

To run the simulation approach, we need some additional specifications. In
step (i) of Algorithm 6.3, we set N = 100 and estimate π(ri,0) (i = 1, 2) by
π̂(r̂i,0) = T−1

∑T
t=1Kh(r̂i,0; Yt), where Kh(r̂i,0; Yt) = (

√
2πh)−2 exp{−(r̂i,0 −

Yt)2/2h2} with h ≡ hT > 0 the bandwidth from a Gaussian kernel density
estimate of fY (·).1 In step (iv), we create K = 1,000 equidistant points, and
in step (v) we use B = 10,000 replicates. In step (ii) of Algorithm 6.4, we
construct the kernel density estimator f̂ε(·) of fε(·) as follows

f̂ε(x) =
1

T − k0

T∑
t=k0+1

K
ĥ∗
opt

(x; ε̂ ∗
t ).

Here, we use a Gaussian kernel with an improved bandwidth (see, e.g., Fan
and Yao, 2003, p. 201)

ĥ∗
opt = ĥopt,T

(
1 +

35
48

κ̂ +
35
32

τ̂ +
385
1024

κ̂2
)−1/5

,

where ĥopt,T = 1.06σ̂(T − k0)−1/5 is the normal reference bandwidth, and σ̂,
τ̂ , κ̂ are respectively the sample standard deviation, skewness, and kurtosis of
the residuals {ε̂t}T

t=k0+1.

Based on the simulation approach, the 95% confidence intervals of r1,0 and
r2,0 are (−3.54, −2.75) and (−3.36, −2.58), respectively. The (normalized)
relative frequency histograms of the estimated thresholds are given in Figures
6.2(b) and (c). We see that T (r̂i − ri,0) is very small, indicating the super-
consistency of the CLS estimators of ri,0 (i = 1, 2).

1See Appendix 7.A, for details on kernel estimation.
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Subset SETARMA models
Finding a well-specified, while parsimonious, threshold model for a time series is
practically difficult, if not infeasible, due to the variety of model options, the com-
plexity in partitioning the parameter space by appropriate single or multivariate
threshold values, as well as the conventional problems in model structure selec-
tion. Consider, for instance, a SETARMA(2; 6, 6, 6, 6) model with maximum delay
dmax = 6, the total number of potentially useful models is dmax × 2p1+p2+q1+q2+2 =
402,653,184. This huge number increases even further if seasonal SETARMA mod-
els are considered. To overcome this problem, several local search techniques have
been proposed to efficiently examine the parameter space and find the best subset
of parameters that corresponds to the optimal solution for a given model selection
criterion (objective function). One approach is to use Markov chain Monte Carlo
(MCMC) methods for Bayesian subset model selection; see, e.g., Chen et al. (2011a).

Another approach can be based on genetic algorithms (GAs). GAs are ran-
domized global search techniques that emulate natural genetic operators, such as
reproduction, crossover, and mutation. At each iteration, a GA explores different
areas of the parameter space and then directs the search to a region where there is
a high probability of finding improved performance as measured by a positive real-
valued objective function, called a fitness function , g(·). Following Baragona et al.
(2004a), we briefly outline the working principles of the GA procedure only for sub-
set SETARMA models. With a few simple modifications the GA-based SETARMA
procedure can be applied to PLTAR models (Baragona et al., 2004b), DT(G)ARCH,
and multivariate SETAR models.

A k-regime subset SETARMA model takes the form of (2.29) with some of the
intermediate AR and MA parameters set to zero. To formalize, assume that

φ
(i)

j
(i)
1

, . . . , φ
(i)

j
(i)
pi

, ψ
(i)

h
(i)
1

, . . . , ψ
(i)

h
(i)
qi

(i = 1, . . . , k)

are non-zero parameters and that {j(i)
1 , . . . , j

(i)
pi } (pi ≤ p) and {h(i)

1 , . . . , h
(i)
qi } (qi ≤ q)

are two subsets of the integers 1, . . . , pi and 1, . . . , qi respectively, with p = maxi pi

and q = maxi qi. Then we write a k-regime subset SETARMA model as

Yt =
k∑

i=1

(
φ

(i)
0 +

pi∑
u=1

φ
(i)

j
(i)
u

Y
t−j

(i)
u

+
qi∑

v=1

ψ
(i)

h
(i)
v

ε
(i)

t−h
(i)
v

)
I(Yt−d ∈ R(i)), (6.16)

where ε
(i)
t = σ2

i εt (i = 1, . . . , k), {εt} i.i.d.∼ (0, 1), and R(i) = (ri−1, ri] with r0 = −∞
and rk = ∞. The delay d, the thresholds ri, and the AR and MA lags in each regime
are called structural parameters . They are collected together into the long vector

x∗ =
(
d, r1, . . . , rk−1; {pi; j

(i)
1 , . . . , j(i)

pi
| qi; h

(i)
1 , . . . , h(i)

qi
, i = 1, . . . , k}

)′
. (6.17)

Estimating (6.16) by CLS is computationally demanding since for each subset a
nonquadratic optimization has to be done. Partly for this reason, it is recommended
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to use an ARMA–LS estimation method due to Hannan and Rissanen (1982); see,
e.g., step (i) in Algorithm 6.3. Given a set of observations {Yt}T

t=1, and assuming
x∗ is known, the CLS estimation procedure is as follows.

Algorithm 6.5: k-regime subset SETARMA–CLS estimation

(i) For each regime i, fit a high-order AR(n) (1 ≤ n ≤ nmax) model to the series
using the Yule–Walker equations. Select n by AIC, and set nmax = (log T )a

(0 < a < ∞). Calculate {ε̂ ( i)
t }T

t=n+1 (i = 1, . . . , k).

(ii) Set the maximum orders P and Q of respectively the AR and MA lags
sufficiently large such that pi ≤ p ≤ P ≤ n and qi ≤ q ≤ Q.

(iii) Calculate the LS estimates of the ARMA parameters in (6.16) repla-
cing {ε(i)

t−h
(i)
1

, . . . , ε
(i)

t−h
(i)
qi

} by {ε̂ (i)

t−h
(i)
1

, . . . , ε̂
(i)

t−h
(i)
qi

}, and using observations

{Yt}T
t=n0

where n0 = n + max(P,Q), and subject to a minimum number
of observations Tmin per regime.

(iv) Find the optimal structural parameter vector by minimizing the normalized
AIC (NAIC) values, that is

NAIC(x∗)=
k∑

i=1

{
Ti log σ̂ 2

Ti
+2(pi+qi+1)

}
/(effective sample size),

where Ti is the number of observations that belong to the ith regime, and
σ̂2

Ti
denotes the corresponding residual variance.

(v) Repeat steps (i) – (iv) for each d∈[1, dmax], with dmax a pre-specified integer.

Any vector x∗, as defined by (6.17), represents a tentative solution to the problem
of specifying the structural parameters of a k-regime subset SETARMA model lead-
ing to the best choice. The GA has the task of simultaneously finding the optimal
model coefficients, as well as partitioning the parameter space by finding the number
of regimes, and the threshold parameters r1, . . . , rk−1. A solution is represented by
a binary coding string, i.e. a transformation of x∗ to the vector x = (x1, . . . , xT )′

where xj = 1 if Y(τj) is a threshold parameter, while xj = 0 otherwise, and Y(τj) is
the value at time τj of the ordered time series {Y(τj)}T

j=1. The number of regimes is
given by k = 1 +

∑T−1
j=2 xj ; a string is not admissible if k > kmax, where kmax is the

maximum number of regimes, a pre-specified integer. Below are some guidelines for
developing a simple GA.

Algorithm 6.6: A simple genetic algorithm

(i) Randomly generate an initial population of admissible binary strings
{x(1),x(2), . . . ,x(s)}.
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Algorithm 6.6: A simple genetic algorithm (Cont’d)

(ii) Calculate the fitness function g(·) for each string in the population. For
instance, in view of step (iv) in Algorithm 6.5, one may choose g(x) =
exp(−NAIC(x)/C), where C > 0 is used to scale g(·).

(iii) Keep the best string intact for the next generation and create offspring strings
by three evolutionary operators:

• Selection : Select s times a string from the population with probability
g(x(i))/

∑s
i=1 g(x(i)). Replace the population by the selected strings.

This part may include an elitist step by substituting the best string
from the past population for the string having the smallest value of
g(·) in the new population.

• Crossover : Adopt a simple crossover operator to change candidate solu-
tions into new candidate solutions. In particular, with the single point
crossover, [s/2] string pairs are selected at random, and the crossover
operator is applied to each of them with a pre-specified, usually large
(0.8 or 0.9), probability pc. If no crossover takes place, two offspring
strings are formed that are exact copies of their “parents chromosomes”.

• Mutation : Allow any bit xj (j = 2, . . . , T −1) of any string to flip with
probability pm, usually small (0.001, . . . , 0.01).

(iv) Form the new population using the results of step (iii). If the search aim is
achieved, stop; else go to step (ii).

Example 6.3: U.S. Real GNP

We illustrate the GA procedure by analyzing the first differences of the log-
arithm of quarterly U.S. real GNP, say {Xt} (seasonally unadjusted data).
The data covers the time period 1947(i) – 2009(iv). Thus, we consider {Yt =
log Xt − log Xt−1}252

t=2; see Figure 6.3 for a time plot. The series is viewed as a
“test-case” for many nonlinear models and methods. Indeed, quite some at-
tention has focused on fitting pure SETAR models to the data, albeit covering
shorter time periods.

As for the specification of the GA parameters, we set the size of the population
at s = 50, the crossover probability pc = 0.9, the mutation probability pm =
0.01, the adjusting constant is set C = 1 in the NAIC-based fitness function,
and the maximum allowed number of iterations is equal to 300. Further, we set
dmax = 5, kmax = 3, nmax = 20, Tmin = 30, and the maximum allowed order
of P and Q is set at 10. The number of bits ν for the binary representation of
pi and qi (i = 1, . . . , k) varies between 0 and 2ν − 1. We set ν = 3 so that the
maximum allowed number of parameters p and q is 8. The number of bits μ
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Figure 6.3: Growth rates of quarterly real U.S. GNP; T = 252.

(μ ≥ ν) for the lag values binary representation is constrained to the interval
[1, 2μ − 1]. With μ = 3, the maximum allowed lag is 7. The length of the
chromosome can be computed as (T − 2Tmin) + 2kν + μ{

∑k
i=1(pi + qi)}.

The best subset SETARMA model with k = 3 regimes and delay d = 2 is
given by

Yt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.45(0.28) + 0.36(0.10)Yt−10 + ε

(1)
t if Yt−2 ≤ 0.82(0.29),

0.78(0.12) + 0.46(0.12)Yt−1 − 0.21(0.13)Yt−3 + 0.16(0.39)Yt−9

+ε
(2)
t − 0.19(0.09)ε

(2)
t−4 if 0.82(0.29) < Yt−2 ≤ 1.64(0.12),

1.12(0.10) + 0.27(0.09)Yt−1 + 0.11(0.08)Yt−7

+0.10(0.00)Yt−9 + ε
(3)
t if Yt−2 ≥ 1.64(0.12),

(6.18)

where the sample variances of {ε(i)
t } (i = 1, 2, 3), are 1.34 (T1 = 34), 0.31

(T2 = 85), and 0.82 (T3 = 102), respectively, bootstrap-calculated (1,000
replicates) standard errors of the parameter estimates are given in parentheses
as subscripts, and NAIC = −0.3955.

For comparison, we repeated the GA-based subset SETARMA procedure with
k = 2 regimes. The resulting model, in obvious short-hand notation, has the
form SETARMA(2; (9), (1, 6, 10); (1, 4, 6, 10), (0)) with NAIC = −0.3069. On
the other hand, if we perform a grid search among pure SETAR(3; p1, p2, p3)
models with max{p1, p2, p3} ≤ 12 and dmax ≤ 12, the best fitted model is
a three-regime SETAR model with order (6, 7, 10), delay d = 6, and AIC =
−0.2998. These results illustrate that the selected subset SETARMA models
are adequate and more parsimonious compared to the selected pure SETAR
model.

STAR models
Efficient estimation of STAR-type nonlinear models can be carried out by NLS or,
assuming the errors are normally distributed, by QML. Under certain regularity
conditions both methods will result in estimates that are consistent and asymptot-
ically normally distributed. Below we outline nonlinear CLS estimation of LSTAR
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models, but the issues that are addressed also apply to ESTAR, time-varying STAR,
and multiple-regime STAR models.

Recall from Section 2.7 that for a stationary and ergodic time series process
{Yt, t ∈ Z} the LSTAR(2; p, p) model is defined by

Yt = φ0 +
p∑

i=1

φiYt−i +
{

ξ0 +
p∑

i=1

ξiYt−i

}
G(Yt−d; γ, c) + εt,

= φ′Xt + ξ′XtG(Yt−d; γ, c) + εt, (6.19)

where

φ = (φ0, . . . , φp)′, ξj = (ξ0, . . . , ξp)′, Xt = (1, Yt−1, . . . , Yt−p)′,

with {εt} i.i.d.∼ (0, 1), and G(·) is a logistic function defined by (2.43). Then, subject
to some initial values, the problem is to minimize the ordinary least squares function

LT (θ) =
T∑

t=1

{
Yt − φ′Xt − ξ′XtG(Yt−d; γ, c)

}2 (6.20)

with respect to θ = (φ′, ξ′, γ, c)′. However, joint estimation of θ is not an easy task
in general and can result in large γ values. One reason is that γ is not scale invariant,
making it difficult to find a good starting value. To overcome this problem, and to
improve the stability and speed of the numerical optimization procedure, it is usually
preferred to estimate LSTAR models using the following transition function

G(Yt−d; γ, c) =
{
1 + exp(−γ[Yt−d − c]2/σ̂2

Y )
}−1

, γ > 0, (6.21)

where σ̂2
Y is the sample variance of {Yt−d}. Thus, the original slope parameter γ is

transformed into a scale-free parameter.
Note that when the parameters γ and c are known and fixed, the LSTAR model

is linear in the AR parameters φ and ξ. Hence, assuming d and p are known, the
parameter vector τ = (φ′, ξ′)′ can be estimated by CLS as

τ̂ (γ, c) =
( T∑

t=1

X̃t(γ, c)X̃′
t(γ, c)

)−1( T∑
t=1

X̃t(γ, c)Yt

)
, (6.22)

where X̃t(γ, c) =
(
X′

t,X
′
tG(Yt−d; γ, c)

)′. Consequently, minimizing (6.20) can be
simplified by concentrating the sum of squares function with respect to τ as

LT (γ, c) =
T∑

t=1

{
Yt − τ ′(γ, c)X̃t(γ, c)

}2
. (6.23)

So, minimization of (6.20) is only performed over γ and c, which helps to reduce the
computational burden considerably.
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Using (6.23) some cautionary remarks are in order. It is apparent from Figure
2.9 that when the true slope parameter γ is relatively large, the slope of G(·) at c
is steep. In that case a meaningful set of grid values for the location parameter c is
needed (e.g., the sample percentiles of the transition variable Yt−d) so that the value
of the transition function G(·) varies sufficiently across the whole sample, and the
optimization algorithm converges. Otherwise, the moment matrix of the regression
(6.22) is ill-conditioned and the estimation fails. It is also recommended to have a
large number of observations in the neighborhood of c to estimate γ accurately. If
there are not many data values near c, γ will be poorly estimated, and so convergence
may be slow. This situation may well result in a parameter estimate of γ which is
not statistically different from zero as judged by, for instance, a large standard error
and a small Student t-statistic. The calculated t-statistic, however, will not have an
exact Student t distribution under the null hypothesis γ = 0, since then the LSTAR
model is no longer identified; see Section 2.7. One implication is that in practice one
should focus upon the end use of the LSTAR model when attempting to evaluate it
and not necessarily on the parameter estimates.

Example 6.4: ENSO Phenomenon (Cont’d)

Recall Example 1.4 where the monthly ENSO series refers to the abnormal
warming (cooling) of the ocean-atmosphere system in the eastern Pacific. Fig-
ure 1.4(b) shows that ENSO dynamics follow a nonlinear process that is mean-
reverting, with the speed of adjustment toward equilibrium varying directly
with the extent of the SST anomaly from its long-run mean. Changes between
El Niño and La Niña events, however, occur gradually rather than abruptly.
Within the bands (−0.5

◦
C, 0.5

◦
C), when no ENSO events are identified, small

deviations will not be corrected through the DGP. Ubilava and Helmers (2013)
capture this type of behavior by a reparameterized form of the LSTAR process,
called logistic smooth transition error correction (LSTEC),

ΔYt = α0 + β0Yt−1 +
p−1∑
i=1

ψ0iΔYt−i + δ′Dt

+
{

α1 + β1Yt−1 +
p−1∑
i=1

ψ1iΔYt−i + δ′Dt

}
G(Yt−d; γ, c) + εt, (6.24)

where ΔYt ≡ Yt − Yt−1 denotes the first-difference of the time series {Yt}, Dt

is a vector of monthly dummy variables, and δ the corresponding parameter
vector.

When Yt−d = c, the adjustment process is given by the first term on the right-
hand side of (6.24), and as Yt−d → ±∞, the adjustment process is given by
(6.24) with G(·) = 1. Here, the crucial parameters are β0 and β1. Since large
deviations are mean-reverting, it implies that β1 < 0 and β0 + β1 < 0, while
β0 ≥ 0 is possible. A linear version of the regression in (6.24), called error
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correction model (ECM), is given by

ΔYt = α0 + β0Yt−1 +
p−1∑
i=1

ψiΔYt−i + δ′Dt + εt. (6.25)

Below we show estimation results for the series covering the time period Janu-
ary 1952 – December 1990 (T = 468). Later, in Chapter 10, we employ the
remaining part of the series for a rolling out-of-sample forecasting experiment.
Using a battery of time-domain nonlinearity tests, we obtain the following
best-fitting (in terms of minimum AIC) model for the series

ΔYt = −0.19(0.21) − 0.13(0.11)Yt−1 + 0.21(0.18)ΔYt−1 − 0.07(0.17)ΔYt−2

+ 0.11(0.16)ΔYt−3 + 0.11(0.16)ΔYt−4 + 0.06(0.13)ΔYt−5

+ 0.22(0.14)D1t + 0.52(0.26)D2t + 0.29(0.17)D3t + 0.19(0.14)D4t

+ 0.11(0.12)D5t + 0.15(0.11)D6t + 0.10(0.12)D7t − 0.19(0.14)D8t

− 0.26(0.17)D9t − 0.65(0.39)D10,t − 0.23(0.15)D11,t

+ {0.25(0.24) − 0.02(0.09)Yt−1 + 0.28(0.20)ΔYt−1 − 0.02(0.19)ΔYt−2

+ 0.11(0.19)ΔYt−3 + 0.06(0.18)ΔYt−4 + 0.10(0.16)ΔYt−5

− 0.22(0.17)D1t − 0.71(0.29)D2t − 0.42(0.19)D3t − 0.32(0.16)D4t

− 0.11(0.14)D5t − 0.13(0.13)D6t − 0.10(0.15)D7t + 0.24(0.18)D8t

+ 0.29(0.20)D9t+0.87(0.43)D10,t+0.28(0.18)D11,t}G(Yt−1; γ, c)

+ εt,

where

G(Yt−1; γ, c)=
{
1 + exp

[
(−1.95(0.83)/0.82)(Yt−1−(−0.77)(0.33))

]}−1
, (6.26)

with asymptotic standard errors in parentheses. The residual variance σ̂2
ε is

88.8% of that of a corresponding AR(8) model. The JB test statistic (1.6)
does not reject normality of the residuals at the 5% nominal significance level
(p-value = 0.612).

Figure 6.4(a) displays the transition function (6.26) as a function of the trans-
ition variable Yt−1. The red medium dashed line denotes the estimate of the
threshold value c, which is centered around −0.77

◦
C of the SST anomaly. We

observe that the majority of observations belongs to the upper regime (El
Niño phase). From (6.26) it is apparent that the low value of γ results in a
relatively slow speed of transition. Figure 6.4(b) shows the SST anomaly and
the transition function as a function of time. Clearly, the ENSO dynamics are
captured well by the transition function.

Bilinear models
There are many methods for estimating coefficients of BL models. Among them is
the LS method, which is one of the most frequently applied. However, apart from
some simple BL models, the asymptotic properties of the LS estimates are unknown.
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Figure 6.4: (a) Transition function (6.26) as a function of Yt−1 (blue dots), and an
estimate of the threshold value (red medium dashed line); (b) SST anomaly (blue solid line)
and transition function (6.26) (red dotted line) as a function of time.

In this section, we discuss a CLS approach with known asymptotic properties and
proposed by Grahn (1995) for a special case of (2.12). In particular, we want to
estimate the BL model:

Yt = φ0 +
p∑

i=1

φiYt−i + εt +
q∑

j=1

ψjεt−j +
k∑

i=1

r∑
j=w

τijεt−iYt−j , (6.27)

where w = (q ∨ k) + 1, and {εt} i.i.d.∼ (0, σ2
ε). Below we assume, without loss of

generality, that the process {Yt, t ∈ Z} is standardized such that E(Yt) = 0.
The first step of the CLS procedure consists of estimating the parameter vector

φ = (φ1, . . . , φp)′ by the Yule–Walker equations, given a set of observations {Yt}T
t=1.

It can be shown that these equations hold for lags s > w∗ with w∗ = (q + 1) ∨ k.
In the second step, estimates of the other coefficients of (6.27) are obtained using
conditional covariances of the AR-residual process, say {vt, t ∈ Z}. Assuming {Yt, t ∈
Z} is a stationary, causal and invertible process with E(Y 4

t ) < ∞, Grahn (1995)
deduces the following equation

Cov(vt, vt−s|εt−w, εt−w−1, . . .) = E(vt, vt−s|εt−w, εt−w−1, . . .)

= γY (s) +
r+s∑
j=w

dj(s)Yt−j +
r∑

j=w

r∑
n=w

hj,n(s)Yt−jYt−s−n, (6.28)

where γY (s) is the ACVF of an MA(q) process with parameters ψj (j = 1, . . . , q)
and σ2

ε , and where

dj(s)≡τsjσ
2
ε +

w−1+s∑
i=s+1

(ψiτi−s,j−s + ψi−sτij)σ2
ε and hj,n(s)≡

k∑
i=s+1

τijτi−s,nσ2
ε ,

(j = w, . . . , r + s;n = w, . . . , r),

and ψi ≡ 0 for i > q and τij ≡ 0 ∀i, j taking values outside the summation domain.
Thus, Cov(vt, vt−s|εt−w, εt−w−1, . . .) depends on the parameters and a finite set of
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observations {Yt}T
t=1 only. As we will see in Algorithm 6.7, this property will be the

basis for the proposed CLS estimation procedure.
Let β0(s) be the true value of the parameter vector β(s) at lag s, i.e.

β(s) =
(
γY (s), dw(s), . . . , dr+s(s), hww(s), . . . , hwr(s), . . . , hrw(s), . . . , hrr(s)

)′
.

(6.29)

Hence, in the second step, the aim is to find an estimator β̂(s) of β0(s). Now,
summarizing the above results, the computation of CLS estimates goes as follows.

Algorithm 6.7: CLS estimation of the BL model (6.27)

(i) Calculate φ̂ as an estimate of φ by solving the Yule–Walker equations

Ĉpφ̂ = ĉ,

where Ĉp is a p × p matrix with elements {ĉY (w∗ − 1 + i − j)}1≤i,j,≤p,
ĉ =

(
ĉY (w∗), . . . , ĉY (w∗ + p)

)′, and ĉY (·) is the sample ACVF of {Yt}T
t=1.

Obtain the AR residuals by v̂t = Yt −
∑p

i=1 φ̂iYt−i.

(ii) Minimize the conditional sum of squares

T∑
t=(r+s)∨(p+1)

{
v̂tv̂t−s − E(vtvt−s|εt−w, εt−w−1, . . .)

}2 (6.30)

with respect to β(s) (s = 0, 1, . . . , w−1), giving rise to β̂(s). It can be shown
(Grahn, 1995) that β̂(s) → β0(s) a.s., as T →∞.

The remaining task is to identify the parameters τij (i = 1, . . . , k; j = w, . . . , r),
ψj (j = 1, . . . , q), and σ2

ε from β0(s) (s = 0, 1, . . . , w − 1). Regarding the iden-
tification of the MA parameters, consider the MA(q) process Zt =

∑q
j=0 ψjεt−j ,

(ψ0 = 1) where {εt} i.i.d.∼ (0, σ2
ε), and assuming the process {Zt, t ∈ Z} is invertible.

The function γY (s) can be interpreted as the ACVF of this process. Therefore,
γY (s) = σ2

ε

∑q−s
j=0 ψjψj+s. The equations which must be solved to obtain the MA

parameters can be written, in two alternative ways, as
⎛
⎜⎜⎜⎝

γY (0)
γY (1)

...
γY (q)

⎞
⎟⎟⎟⎠ = σ2

ε

⎛
⎜⎜⎜⎜⎜⎝

ψ0 ψ1 · · · ψq−1 ψq

ψ1 ψ0 · · · ψq 0
...

... . .
. ...

...
ψq−1 ψq · · · 0 0
ψq 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ψ0

ψ1

...
ψq−1

ψq

⎞
⎟⎟⎟⎟⎟⎠

= σ2
ε

⎛
⎜⎜⎜⎜⎜⎝

ψ0 ψ1 · · · ψq−1 ψq

0 ψ0 · · · ψq−2 ψq−1

...
...

. . .
...

...
0 0 · · · ψ0 ψ1

0 0 · · · 0 ψ0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ψ0

ψ1

...
ψq−1

ψq

⎞
⎟⎟⎟⎟⎟⎠ .
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These equations may be written in summary notation as

γY = σ2
εA

#ψ = σ2
εA

′ψ, (6.31)

where A# is a (q + 1)× (q + 1) matrix with constant skew-diagonals, called Hankel
matrix , γY =

(
γY (0), γY (1), . . . , γY (q)

)′, and ψ = (ψ0, ψ1, . . . , ψq)′.
Now, the objective is to solve

f(ψ) = γY − σ2
εA

#ψ = 0. (6.32)

Since (6.32) is nonlinear in ψ, its solution must be found via an iterative procedure.
For instance, we can use the Newton–Raphson algorithm (see, e.g., Wilson, 1969).
In this case the (u + 1)th approximation, say ψ(u+1), to the final solution obtained
from the uth approximation ψ(u) (u ≥ 0) is given by

ψ(u+1) = ψ(u) − {∂f(ψ(u))/∂ψ}−1f(ψ(u)),

which is equivalent to

ψ(u+1) = ψ(u) + {σ2
ε(A

# + A′)}−1
u (γY − σ2

εA
#ψ)u,

where the subscript u indicates that the elements are to be evaluated at ψ = ψ(u).
The equation for γY (s) can be normalized either by setting σ2

ε = 1 or by setting
ψ0 = 1. In the first case, it is reasonable to choose ψ0 = γY (0) and ψ1 = · · · = ψq = 0
as starting values of the iterative procedure. Once it has converged, the equation
for γY (s) can be re-normalized so that ψ0 = 1.

Below we present a procedure for identifying the BL parameters τij from dj(s)
(j = w, . . . , r + s; s = 0, 1, . . . , w − 1). For simplicity, we assume that the equation
for dj(s) is normalized either by setting σ2

ε = 1 or by considering dj(s)/σ2
ε . Define

the following two 1
2w(2r − w + 1)× 1 vectors

τ̃ = (τ0,w, τ0,w+1, . . . , τ0,r, τ1,w, τ1,w+1, . . . , τ1,r+1, . . . , τw−1,w,

ψw−1,w+1, . . . , ψw−1,r+w−1)′,
d =

(
dw(0), dw+1(0), . . . , dr(0), dw(1), dw+1(1), . . . , dr+1(1), . . . , dw(w − 1),

dw+1(w − 1), . . . , dr+w−1(w − 1)
)′

.

Then the equation for dj(s) can be written as

Tτ̃ = d, (6.33)

where

T =

⎛
⎜⎜⎜⎝

D0 U0,1 · · · U0,w−2 U0,w−1

L1,0 D1 · · · U1,w−2 U1,w−1

...
...

...
...

Lw−1,0 Lw−1,1 · · · Lw−1,w−2 Dw−1

⎞
⎟⎟⎟⎠ ,
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with

Di︸︷︷︸
(h + i) × (h + i)
0 ≤ i ≤ w − 1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
. . .

...

0
. . .

ψ2i

. . .
. . .

ψ2i 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, U0,j︸ ︷︷ ︸

(h + i) × (h + j)
0 ≤ j ≤ w − 1

=

⎛⎜⎝2ψj 0 · · · 0
. . .

. . .
...

2ψj 0 · · · 0

⎞⎟⎠ ,

↑
i+1

Ui,j︸︷︷︸
(h + i) × (h + j)
0 ≤ i < j ≤ w − 1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψj−i

0
. . .

...

0
. . .

ψj+i

. . .
. . .

ψj+i 0 · · · 0 ψj−i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Li,j︸︷︷︸

(h + j) × (h + i)
0 ≤ j < i ≤ w − 1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

. . .

0

ψi+j
. . .

. . .

ψi+j 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

↑ ↑
i+1 i+1

and with Li,0 = 0, and h = r − (w − 1) = r − (q ∨ k).
The solution to the system of equations (6.33) can, for instance, be obtained by

the method of Gaussian elimination which reduces T to an upper-triangular matrix
U whilst d is transformed into some vector x. Once x is available, the transformed
system Uτ̃ = x can be solved for τ̃ by a process of back-substitution. Following
this approach, it is easy to prove that the coefficients τij are uniquely determined
by the system (6.33). Thus, asymptotically, we can define an estimator τ̂ of τ̃ by
solving the system

T̂τ̂ = d̂, (6.34)

where T̂ and d̂ are the estimators of T and d, respectively.
Let θ = (φ′, ψ′, τ ′)′ denote the parameter vector defined by the BL model (6.27)

with τ = (τij , 1 ≤ i ≤ k,w+1 ≤ j ≤ r)′. The DGP is characterized by the true para-
meter vector θ0 = (φ′

0,ψ
′
0, τ

′
0)

′, ignoring the nuisance parameter σ2
ε,0. We assume

that θ ∈ Θ where Θ is an open subset of Rp+q+k(r−w). If θ̂ denotes the estimator
of θ0, where θ̂ is defined by the estimation procedure described by Algorithm 6.7
and equations (6.30) – (6.33). Then, under some mild regularity conditions and
assuming {εt} is an 8k-th order symmetric innovation sequence, it can be proved
(Grahn, 1995, Thm. 3.3) that

(i) θ̂ → θ0 a.s.

(ii)
√

T (θ̂−θ0) is asymptotically normally distributed with mean zero. Moreover,
the law of iterated logarithm holds, i.e. (θ̂ − θ0) = O(ST ) a.s., with ST =
{T/ log log T}−1/2.
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In principle it is possible to derive an analytical expression for the asymptotic
covariance matrix of θ̂ for BL models. However, as the order of the model increases,
the algebra becomes rather involved. Hence, bootstrapping is recommended in prac-
tice. Below we present a simple example of CLS-based BL model estimation.

Example 6.5: CLS-based Estimation of a BL Model

Consider (6.27) with p = q = 0, k = 2, r = 1, and Gaussian innovations. That
is

Yt = τYt−2εt−1 + εt, {εt}
i.i.d.∼ N (0, σ2

ε), (6.35)

where τ ≡ τ12. It is easy to see that {Yt, t ∈ Z} is a stationary, ergodic and
causal process if σ2

Y = σ2
ε/(1 − τ2σ2

ε) exists, i.e., if τ2σ2
ε < 1. In that case it

can be shown that {Yt, t ∈ Z} has the unique representation

Yt = εt +
∞∑

k=1

τkεt−2k

k−1∏
j=0

εt−2j−1, (6.36)

in L2 sense. Moreover, from Chapter 2 it is easily seen that {Yt, t ∈ Z} is
invertible if τ2σ2

ε < 1/2. From (6.36) it follows that the necessary and sufficient
condition of existence of the 2nth moment of {Yt, t ∈ Z} is (2n−1)!!τ2nσ2n

ε < 1.
If n = 2 then the condition for strong consistency, i.e. E(Y 4

t ) < ∞, becomes
τ4σ4

ε < 1/3.

From Algorithm 6.7, step (ii), the CLS estimator of τ follows from minimizing
(6.30) with respect to β(s) where, with v̂t = Yt, we have

E(YtYt−s|εt−2, εt−3, . . .) =

⎧⎨⎩
σ2

ε + τ2σ2
εY

2
t−2 if s = 0,

τσ2
εYt−2 if s = 1,

0 if s ≥ 2.

Thus, in accordance with (6.30), β(0)≡
(
β1(0), β2(0)

)′ = (
d2(0), h22(0)

)′, and
β(1) ≡ β2(1) = d2(1). This means that for s = 0, step (ii) in Algorithm 6.7
becomes

β̂(0) = arg min
β(0)

T∑
t=3

{
Y 2

t −
(
β1(0) + β2(0)Y 2

t−2

)}2
. (6.37)

Similarly, for s = 1, step (ii) consists in estimating

β̂2(1) = arg min
β2(1)

T∑
t=3

{
YtYt−1 − β2(1)Yt−2

}2
. (6.38)

Hence, β̂(0) =
(
β̂1(0), β̂2(0)

)′ estimates (σ2
ε , τ

2σ2
ε)

′ while β̂2(1) is an estimator
of τσ2

ε . Combining these results, the CLS estimator of τ is given by

τ̂ =
β̂2(1)

β̂1(0)
=

∑T
t=3 YtYt−1Yt−2

σ̂ 2
ε

∑T
t=3 Y 2

t−2

. (6.39)
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Figure 6.5: Boxplots and Q-Q plots of
√

T (τ̂ − τ) for τ = 0.3 (panels (a) and (c)), and
τ = 0.5 (panels (b) and (d)); 1,000 MC replications.

Clearly, we use three estimators
(
β̂1(0), β̂2(0), and β̂2(1)

)
to estimate two

unknown parameters (τ and σ2
ε). Moreover, we neglect information contained

in the product τ2σ2
ε . Instead of coding this term as β11β

2
2 , it is only included as

the additional parameter β2(0) in (6.37). These somewhat unfavorable features
of Algorithm 6.7 can be amended by trying to minimize the conditional sum
of squares

{ T∑
t=3

{
Y 2

t −
(
θ2 + θ2

1θ2Y
2
t−2

)}2 +
T∑

t=3

{
YtYt−1 − θ1θ2Yt−2

}2
}

with respect to θ = (θ1, θ2)′. Obviously, such a refinement overcomes the
disadvantages mentioned above – but the price we have to pay is solving a
nonlinear minimization problem which needs more effort. Hence, in practical
situations, Algorithm 6.7 may be adopted to obtain an estimate of θ, which
may serve as a starting guess for a nonlinear optimization algorithm.

To assess the performance of the CLS estimator, we perform a small simulation
experiment with the BL model (6.35). The DGP has parameters τ = 0.3, 0.5,
and σ2

ε = 1. Figure 6.5 shows boxplots and Q-Q plots of
√

T (τ̂ −τ) for sample
sizes T = 250, 500, and 1,000. Figure 6.6 shows boxplots of

√
T (σ̂2

ε − σ2
ε) for

1,000 MC replications.
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Figure 6.6: Boxplots of
√

T (σ̂2
ε − σ2

ε) for (a) τ = 0.3, and (b) τ = 0.5; 1,000 MC
replications.

Clearly, for increasing values of |τ | the nonlinearity of the generated time series
becomes more prominent, and as a consequence CLS estimation becomes more
difficult. Still, for all values of T , the boxplots in Figure 6.5 look almost sym-
metric and most of them can be interpreted as being sampled from a Gaussian
distribution. The Q-Q plots confirm this observation. However, all distribu-
tions tend to have negative medians as well as negative means. This tendency
reduces with increasing values of T and is due to the interaction between val-
ues of τ̂ and values of σ̂ 2

ε . From Figure 6.6 we see that σ̂ 2
ε overestimates

the parameter σ2
ε , and this phenomenon is more present as τ increases from

0.3 to 0.5. According to its definition β̂1(0) is a positive quantity, but β̂2(1)
can be either positive or negative. If β̂2(1) > 0, overestimating σ2

ε will imply
that τ̂ < τ . On the other hand, if β̂2(1) ≤ 0, τ̂ ≤ 0. Hence, in both cases,
overestimating σ2

ε results in underestimation of the parameter τ .

6.1.3 Iteratively weighted least squares

Mak (1993) considers an efficient and easy-to-use procedure for iteratively weighted
least squares (IWLS) estimation of general nonlinear models. Below we first sum-
marize the theory. Next, following Mak et al. (1997), we consider an IWLS algorithm
for QML estimation of DTARCH models.

General formulation
Let θ be an m-dimensional parameter vector of interest. Assume that the actual
value θ0 generating y, an T × 1 random vector of observations with corresponding
density function f(y; θ), belongs to an open parameter space Θ ⊆ Rm. The ML
estimate θ̂ of θ0 follows from solving

G(y, θ) ≡ ∂ log f(y; θ)/∂θ = 0.

For any θ, θ̃ ∈ Θ, let g(θ̃, θ) = E{f(y; θ)|θ̃}. Then:
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(i) Fisher’s information matrix is given by ∂g(θ̃,θ)/∂θ̃
∣∣
θ̃=θ

.

(ii) If θ(0) is a given starting value, and define in the (u + 1)th iteration θ (u+1)

(u ≥ 0) as a root of the equation, g(θ̃, θ (u)) = G(y, θ (u)), then θ (u) → θ̂ as
u →∞. Furthermore, it can be shown that |θ (u) − θ̂| = Op(T−u/2).

Thus, (ii) implies that if the equation

g(θ̃, θ) = G(y, θ) (6.40)

can be solved explicitly for θ̃, the algorithm in (ii) provides sufficient numerical
accuracy in a few iterations. When (6.40) does not have an explicit solution, it is
recommended to use the following linearization

G(y, θ) # g(θ, θ) +
(∂g(θ̃,θ)

∂θ̃

∣∣∣
θ̃=θ

)′
(θ̃ −θ) =

(∂g(θ̃, θ)

∂θ̃

∣∣∣
θ̃=θ

)′
(θ̃ − θ).

Hence,

θ̃ ≈ θ +
{(∂g(θ̃,θ)

∂θ̃

∣∣∣
θ̃=θ

)′}−1
G(y, θ), (6.41)

and at the (u + 1)th step

θ̂ (u+1) = θ̂ (u) +
{(∂g(θ̃, θ)

∂θ̃

∣∣∣
θ̃=θ̂ (u)

)′}−1
G(y, θ̂ (u)).

In other words, the ML estimate of θ0 is constructed via an IWLS algorithm.

IWLS for QML of DTARCH models
In Appendix 2.B, we briefly characterized the general class of (k1,k2)-regime double
self-exciting threshold ARMA conditional heteroskedastic (DTARMACH) model.
The specification consists of a k1-regime SETARMA conditional mean process
combined with a k2-regime TGARCH conditional variance. Here, we consider
IWLS estimation of a special case, i.e. the two-regime DTARCH model also called
SETAR(2; p1, p2)–ARCH(2; q1, q2) model, which is given by

Yt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ

(1)
0 +

p1∑
i=1

φ
(1)
i Yt−i + εt if Yt−d ≤ r,

φ
(2)
0 +

p2∑
i=1

φ
(2)
i Yt−i + εt if Yt−d > r,

(6.42)

σ2
t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α

(1)
0 +

q1∑
i=1

α
(1)
i ε2

t−i if Yt−d ≤ r,

α
(2)
0 +

q2∑
i=1

α
(2)
i ε2

t−i if Yt−d > r,

(6.43)
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where {εt|F t−1} i.i.d.∼ N (0, σ2
t ) with F t−1 = {Yt−1, Yt−2, . . .} the available information

set at time t− 1. The conditional mean and conditional variance of {Yt, t ∈ Z} are
given by

μt =
2∑

i=1

(
φ

(i)
0 +

pi∑
j=1

φ
(i)
j Yt−j

)
I

(i)
t , σ2

t =
2∑

i=1

(
α

(i)
0 +

qi∑
j=1

α
(i)
j ε2

t−j

)
I

(i)
t ,

where I
(1)
t = I(Yt−d ≤ r) and I

(2)
t = I(Yt−d > r), and θ = (φ′

1, α
′
1, φ

′
2, α

′
2, r)

′ with
φi = (φ(i)

0 , . . . , φ
(i)
pi )′, and αi = (α(i)

0 , . . . , α
(i)
qi )′ (i = 1, 2).

Assume d is known. Let p = max(p1, p2, q1, q2). Then, given the initial values
Y0 = (Y0, . . . , Y1−p)′ and the set of observations {Yt}T

t=1, the conditional log-QML
function (omitting a constant), under conditional normality is

QT (θ) = −1
2

T∑
t=1

2∑
i=1

(
log σ2

t +
ε2
t

σ2
t

)
I

(i)
t ,

where εt = Yt − μt(θ). For fixed r, differentiating QT (θ) with respect to θ gives
(cf. Exercise 6.3) expressions for G(y, θ) and ∂g(θ̃, θ)/∂θ̃|

θ̃=θ
. Substituting these

expressions in (6.41), it can be shown (Li and Li, 1996) that

T∑
t=1

Z′
tWtXtθ̃(r) =

T∑
t=1

Z′
tWtZtθ(r) +

T∑
t=1

ZtWtXt, (6.44)

where

Zt =
(

∂σ2
t /∂θ

∂μt/∂θ

)
, Wt =

(
1/2σ4

t 0
0 1/σ2

t

)
, Xt =

(
(Yt − μt)2 − σ2

t

Yt − μt

)
.

Next, stacking up by t and denoting the corresponding matrices by Z, W, and X
respectively, the (conditional) IWLS equation is given by

θ̃(r) = θ(r) + (Z′WZ)−1(Z′WX), (6.45)

where an explicit expression for Z follows from direct differentiation.

Example 6.6: Daily Hong Kong Hang Seng Index

The well-known (G)ARCH model has the ability to capture stylized facts of
financial and economic time series, such as excess kurtosis and volatility clus-
tering where large positive and negative returns follow each other. SETARMA
models, on the other hand, can accommodate structural changes or regime
shifts, but they cannot generate volatility pooling or leverage effects. A com-
bination of both models, as in the sub-class of DT(G)ARCH models, can
incorporate the important facets of both.
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Figure 6.7: Time plots of (a) the daily closing prices, and (b) the log-returns for the Hong
Kong Hang Seng Index (HSI) for the year 2010.

To illustrate the application of DTARCH models in financial time series ana-
lysis, we consider the Hong Kong Hang Seng Index (HSI) for the year 2010.
Let {Pt}253

t=1 be the daily closing prices at time t. The log-return Yt is defined
as {Yt = 100(log Pt − log Pt−1)}252

t=1. Figure 6.7 shows time plots of {Pt} and
{Yt}, respectively. The LR–SETAR test statistic suggests that {Yt} contains
SETAR nonlinearity, and the McLeod–Li test statistic indicates that there are
ARCH effects in the residuals.

We use the IWLS algorithm, combined with the GA-subset threshold model
selection procedure to fit DTARCH models to the data. For the GA para-
meters and the model parameters, we use the same specification as reported
in Example 6.3. Based on minimizing the NAIC, we obtain the following
SETAR(3; 1, 5, 6)–TARCH(3; 1, 1, 3) model

Yt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.13 + 0.07Yt−1 + ε

(1)
t if Yt−1 ≤ 0.16,

−0.47 + 0.69Yt−1 + 0.02Yt−2 + 0.19Yt−3

−0.37Yt−4 + 0.41Yt−5 + ε
(2)
t if 0.16 < Yt−1 ≤ 1.03,

0.61− 0.39Yt−1 + 0.10Yt−2 + 0.08Yt−3

+0.09Yt−4 − 0.16Yt−5 + 0.23Yt−6 + ε
(3)
t if Yt−1 > 1.03,

(6.46)

with

σ2
t =

{
1.29 + 0.02ε2

t−1 if Yt−1 ≤ 0.16,
0.91 + 0.73ε2

t−1 if 0.16 < Yt−1 ≤ 1.03,
0.24 + 0.02ε2

t−1 + 0.07ε2
t−2 + 0.13ε2

t−3 if Yt−1 > 1.03,
(6.47)

where ε
(i)
t = σ2

t εt (i = 1, 2, 3) and {εt} i.i.d.∼ N (0, 1). The sample variances of
{ε(i)

t } are 1.31 (T = 138), 1.18 (T = 58), and 57 (T = 49), respectively. The
sample variances of the volatility equation are 3.41, 1.87, and 76.3, respectively.

The most important feature is clearly the difference in the behavior of the series
in each regime. When Yt−1 is between 0.16 and 1.03 the behavior is slower in
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adjusting to shocks than in the third regime. In the first regime the series {Pt}
closely approximates a random walk process with a drift term. The behavior
of the conditional variance also varies considerably between regimes; shocks to
the conditional variance are more persistent in the second and third regime,
and weakly persistent in the first regime. Observe, all estimated coefficients in
σ2

t are nonnegative. Negative coefficients are counter-intuitive in (6.43) which
implies that the IWLS algorithm needs to be constrained.

6.2 Model Selection Tools

6.2.1 Kullback–Leibler information

Let f(y;θ0,m) denote the true pdf of the observed observations {Yt}T
t=1, where θ0,m ∈

Θ ⊂ Rm is an m-dimensional parameter vector, Θ denotes the parameter space,
and with y = (Y1, . . . , YT )′. Furthermore, assume that some generic (or candidate)
model Mm gives a density function fm(·;θm) to the observations, where θm is a pm-
dimensional parameter. Recall from Section 1.3.3 that the “discrepancy” between
f(·;θ0,m) and fm(·;θm) can be measured by the Kullback–Leibler (KL) divergence,
defined by

IKL(θ0,m, θm) = E0{log f(y; θ0,m)} − E0{log fm(y;θm)}

= E0{log f(y; θ0,m)}+
1
2
{
− 2E0{log fm(y; θm)}

}
, (6.48)

where E0(·) denotes the expectation with respect to y evaluated by the true density.
Hereby it is assumed that E0{log fm(·;θm)} exists ∀θm ∈ Θ.

The main property of the KL divergence is that IKL(·) ≥ 0 with equality when
f(·;θ0,m) = fm(·;θm) a.e. As we have seen in Exercise 1.4, this property can be
obtained from Jensen’s inequality: if x is a non-degenerate random variable and
h(x) is a strictly convex function, then E{h(x)} > h{E(x)}, while an equality holds
when x is degenerate at E(x). As − log(x) is a strictly convex function of x, we find

E0

{
− log

(fm(y; θm)
f(y; θ0,m)

)}
≥ − logE0

{(fm(y; θm)
f(y; θ0,m)

)}
. (6.49)

The expectation on the right-hand side employs the density function f(·;θ0,m), so
that the right-hand side of (6.49) equals − log 1 = 0, and (6.48) is equivalent to

IKL(θ0,m,θm) ≥ 0, ∀θm ∈ Θ. (6.50)

The equality in (6.49) and (6.50) arises if and only if fm(·;θm)/f(·;θ0,m) is degenerate
at E0{fm(·;θm)/f(·;θ0,m)} (= 1), in other words if and only if fm(·;θm)= f(·;θ0,m)
a.e. In particular, the equality in (6.49) and (6.50) holds when θm = θ0.

The application of Jensen’s inequality clarifies that IKL(·) is determined by the
dispersion of fm(·;θm)/f(·;θ0,m), and this explains why IKL(·) can serve as a meas-
ure of the divergence between the density function fm(·;θm) and the true density
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function f(·;θ0,m). Sometimes (6.49) is referred to as a measure of the distance
between f(·;θ0,m) and fm(·;θm), but we remark that IKL(·) is not a metric on the
space of probability densities, because IKL(θ0,m,θm) �= IKL(θm,θ0,m) and IKL(·)
does not satisfy the triangle inequality. Nevertheless, the choice of IKL(·) as the loss
function is firmly supported by a most relevant information-theoretic interpretation,
namely IKL(·) can be interpreted as the surprise experienced on average when we
believe that fm(·;θm) describes a given phenomenon and we are then informed that
in fact the phenomenon is described by f(·;θ0,m) (Rényi, 1961).

6.2.2 The AIC, AICc, and AICu rules
AIC rule
Given (6.48) as the loss function, the objective is narrowed down to minimizing
IKL(·) or, equivalently, minimizing −2E0{log fm(y; θm)} subject to θm ∈ Θ. When
the density functions fm(·;θm) and f(·;θ0,m) are equal (for almost all y) only
for a unique vector in Θ (necessarily θm = θ0,m). Then, under perfect know-
ledge, such optimization would yield θ0,m. In practice, however, either objective
function is unknown, because E0(·) is evaluated by the unknown density function
f(·;θ0,m). To overcome this hurdle, we introduce a fictitious vector of observations
x = (X1, . . . ,XT )′ with the same pdf as y, but which is independent of y. Let θ̂T,m

denote a QML estimator of θ0,m based on y. So, instead of −2E0{log fm(y; θm)}
itself, we want to minimize the function

I(m) = −2EyEx{log fm(x; θ̂T,m)}, (6.51)

where Ey refers to the dependence of θ̂T,m on the data vector y. Note that (6.51) has
an interesting cross-validatory interpretation: the sample y is used for estimation
and the independent sample x for validation of the so-obtained model’s pdf.

Now, to derive a model selection criterion we decompose I(m) as follows

I(m) = −2Ey{log fm(y; θ̂T,m)}−2Ey{log fm(y; θ0,m)}+ 2Ey{log fm(y; θ̂T,m)}︸ ︷︷ ︸
A1

−2EyEx{log fm(x; θ̂T,m)}+ 2Ey{log fm(y; θ0,m)}︸ ︷︷ ︸
A2

. (6.52)

The term A1 on the right-hand side of (6.52) measures the average overfitting of
the QML estimator, since log fm(y; θ̂T,m) ≥ log fm(y; θ0,m). The term A2 can be
interpreted as an average cost for using θ̂T,m in lieu of the true parameter vector
θ0,m, when the model is fitted to an independent replication of the DGP.

Consider the term A1 in (6.52). Under assumptions similar to those made in
Section 6.1.1, and in particular the uniqueness of the parameter θ0,m, we can ex-
pand 2Ey{log fm(y; θ̂T,m)} in a second-order Taylor expansion around θ0,m. The
estimator θ̂T,m converges to θ0,m a.s. Moreover, analogous to (6.3), we have

√
T (θ̂T,m − θ0,m) D−→ N

(
0,H−1

m (y)Im(y)H−1
m (y)

)
, (6.53)
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where

Hm(y) a.s.= lim
T→∞

1
T

∂2 log fm(y; θ0,m)
∂θ∂θ′ , Im(y) = lim

T→∞
1
T

Var
(∂ log fm(y; θ0,m)

∂θ

)
.

Hence, the third term on the right-hand side of (6.52) becomes

Ey

{√
T (θ̂T,m − θ0,m)′

1
T

(∂2 log fm(y; θ)
∂θ∂θ′

)∣∣∣
θ=θ0,m

√
T (θ̂T,m − θ0,m)

}
=

tr
(
Hm(y)Ey

{
T (θ̂T,m − θ0,m)(θ̂T,m − θ0,m)′

})
=tr

(
Im(y)H−1

m (y)
)

+ op(1). (6.54)

Substituting (6.54) into (6.52), we get

2Ey{log fm(y; θ̂T,m)}=2Ey{log fm(y;θ0,m)}+ tr
(
Im(y)H−1

m (y)
)
+op(1). (6.55)

Recall that y and x have the same pdf (which implies that Hm(y) = Hm(x)) and
that they are independent of each other. Consider the term 2EyEx{log fm(x; θ̂T,m)}
in (6.52). Assuming that Ex(·) is sufficiently smooth, and its derivatives under
the expectation sign exist, a second-order Taylor expansion of 2Ex{log fm(x; θ̂T,m)}
around θ0,m yields

2Ex{log fm(x; θ̂T,m)} = 2Ex{log fm(x;θ0,m)}

+2(θ̂T,m − θ0,m)′
(∂Ex{log fm(x;θ)}

∂θ

)∣∣∣
θ=θ0,m

+
√

T (θ̂T,m − θ0,m)′
1
T

(∂2Ex{log fg(x;θ)}
∂θ∂θ′

)∣∣∣
θ=θ0,m

√
T (θ̂T,m − θ0,m) + op(1)

= 2Ex{log fm(x;θ0,m)}+ T (θ̂T,m − θ0,m)Hm(y)(θ̂T,m − θ0,m)′ + op(1). (6.56)

We deduce from (6.56) that

2Ey

{
Ex{log fm(x;θT,m)}

}
=2Ex{log fm(x;θ0,m)}+tr

(
Im(y)H−1

m (y)
)
. (6.57)

Inserting (6.55) and (6.57) in (6.52), yields

I(m) = −2Ey{log fm(y; θ̂T,m)}+ 2tr
(
Im(y)H−1

m (y)
)

+ op(1), (6.58)

which completes the asymptotic approximation of (6.52).
It can be shown (Findley, 1993) that, under some regularity conditions, the

trace term in (6.58) can be approximated by pm, i.e. the dimension of θm. Hence,
minimizing (6.51) is equivalent to

min
θm∈Θ

{
AIC(m) = −2 log fm(y; θ̂T,m) + 2pm

}
, (6.59)

where the acronym AIC stands for Akaike information criterion . Clearly, this model
selection criterion establishes a certain balance between the model-size pm and the
lack-of-fit measured by −2 log fm(y; θ̂T,m). In other words, it is beneficial to simplify
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the model, by leaving out the less important aspects, as long as the reduction in
model-size outweighs the deterioration of the fit.

The performance of the AIC rule can be judged in different ways. One reasonable
scenario is to assume that the approximating parametric family of models Mm

includes the DGP. This is a strong assumption, but it is also used in the derivation
of AIC. Then it can be shown (see, e.g., McQuarrie and Tsai, 1998) that, under quite
general conditions, the AIC rule is inconsistent and the asymptotic probability of
overfitting is not insignificant, as T → ∞. A more practical scenario is to assume
that the DGP is more complex than any of the candidate models. In such a case the
selected model can be viewed as an approximation of the DGP, and we can consider,
for instance, the model’s average prediction error as a performance measure of the
AIC rule.

AICc rule
Hurwich and Tsai (1989) obtain an approximation of (6.58) for univariate linear
regression and AR time series models that reduces the small sample bias of the AIC
rule. This so-called corrected AIC (AICc) is given by

AICc(m) = −2 log fm(y; θ̂T,m) +
2Tpm

T − pm − 1
. (6.60)

Due to the second term in (6.60), AICc has a smaller risk of overfitting than AIC
for finite values of T . With this fact in mind, and being pragmatic rather than
theoretical, AICc can be used as an order selection criterion for more general linear
and nonlinear time series models.

AICu rule
McQuarrie et al. (1997) introduce an alternative criterion for linear regression time
series models which is an approximate unbiased (u) estimate of the KL information
I(m) defined in (6.51). This criterion, denoted by AICu, is given by

AICu(m) = −2 log fm(y; θ̂T,m) +
2Tpm

T − pm − 1
+ 2T log

{ T

T − pm

}
. (6.61)

However, AICu is neither a consistent nor an asymptotically efficient criterion. The
criterion has a good performance in finite samples, and hence can be adopted for
more general models than just linear regressions.

6.2.3 Generalized information criterion: The GIC rule

Note that in (6.51) the validation sample x has the same length as the estimation
sample y. Intuitively, the risk of overfitting will decrease if the length Tx of x is
much larger than Ty, the length of y. Specifically, assume that Tx = νTy with ν ≥ 1.
Since Hm(x) = νHm(y), it is easily seen that an asymptotic approximation of (6.51)
is given by

I(m) = −2Ey

{
log fm(y; θ̂T,m) + (ν + 1)

}
+ op(1). (6.62)pm
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In practice, the term on the right-hand side of (6.62) can be replaced by an unbiased
estimator. The resulting criterion, called generalized information criterion (GIC),
is given by

GIC(m) = −2 log fm(y; θ̂T,m) + (ν + 1) . (6.63)

Clearly, when ν = 1, GIC reduces to AIC. Extensive simulation studies (see, e.g.,
Bhansali and Downham, 1977) have empirically shown that for ν ∈ [2, 5] the correct
order is found more frequently than AIC. The Bayesian approach of the next section
provides an explicit expression for the term (ν + 1).

6.2.4 Bayesian approach: The BIC rule
From a Bayesian point of view it is natural to choose among models by select-
ing the one that maximizes the posterior probability f(Mm|y). Assume that the
parameter vector θm is a random variable with a given a priori pdf denoted by
f(θm|Mm) which does not depend on T . Now, modifying our previous notation,
f
(
(y;θm)|Mm

)
denotes the joint pdf of the random variables y and θm. Further-

more, let f(y|θm,Mm) denote the conditional distribution. Using this notation and
Bayes’ rule, we can write

f(Mm|y) ∝ f(y|Mm)f(Mm),

where

f(y|Mm) =
∫

f(y|θm,Mm)f(θm|Mm)dθm,

and where the symbol ∝ denotes proportionality. Assuming the same prior probab-
ility for all models, Schwarz (1978) derives the following large sample approximation

log f(y|Mm) ≈ log fm(y; θ̂T,m)− pm

2
log T. (6.64)

Hence, maximizing (6.64) is equivalent to minimizing the Bayesian information cri-
terion (BIC):

BIC(m) = −2 log fm(y; θ̂T,m) + pm log T, (6.65)

independently of the chosen prior. It is an interesting fact that the BIC rule can
also be derived within the KL framework. Moreover, it can be shown (see, e.g.,
McQuarrie and Tsai, 1998) that the BIC rule is consistent, that is the probability
of correct detection approaches one as T →∞.

All five order selection criteria AIC, AICc, AICu, BIC and GIC have a common
form, that is they are members of the family of criteria

min
θm∈Θ

{
− 2 log fm(y; θ̂T,m) + pmC(T, pm)

}
, (6.66)

pm
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C(T, pm)

T
Figure 6.8: Penalty functions C(T, pm) of AIC (pink solid line), AICc with pm = 5 (blue
long dashed line), AICu with pm = 5 (red dotted line), BIC (green short dashed line), and
GIC with ν = 3 (cyan medium dashed line).

but with a different penalty function C(T, pm). Figure 6.8 shows the behavior of
C(T, pm) as a function of T for each selection rule.

Given the above model selection criteria, an obvious question is: Which criterion
to use in practice? Unfortunately, within the context of nonlinear time series this
question has been the subject of only a few papers (cf. Section 6.2.6). Overall,
AICc outperforms AIC and BIC in small samples. BIC penalizes models which are
over-parameterized and so gives some value to parsimony. For this reason one may
prefer BIC over other criteria. On the other hand, if parsimony is not considered
to be really important, one may use a criterion which picks up any subtle nuance
in the data and as a result the fitted nonlinear model will be inclined to overfit in
sample. In fact, we recommend that any model should be evaluated in terms of its
out-of-sample forecasting ability, and compared with forecasts from linear and other
nonlinear time series models.

6.2.5 Minimum descriptive length principle

The minimum descriptive length (MDL) principle (Rissanen, 1986) allows comparis-
ons between nested, non-nested and misspecified models without requiring restrictive
assumptions. The MDL criterion chooses θm so as to minimize

MDL(m) = − log fm(y; θ̂T,m) +
pm

2
log

T

2π
+ log

∫ √
|Î(θm)|dθm, (6.67)

where Î(·) denotes an estimate of the expected Fisher information matrix. The
second- and third term in (6.67) are often referred to as a complexity penalty . When
the density function f(·) is known, both the MDL and BIC criteria have reasonable
explanations, though the results may not be the same. When, however, f(·) depends
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on a functional form, e.g. a conditional mean function g(·;θg), BIC does not take
this extra complexity into account, while in MDL, this extra bit of uncertainty is
reflected in Î(·). For parametric models an estimator of I(·) is given by (6.4). The
integration in the last term of (6.67) can be well approximated by MC simulation
methods (see, e.g., Robert and Casella, 2004).

6.2.6 Model selection in threshold models

As k-regime SETAR models are piecewise linear, it seems natural to extend the
various order selection criteria for linear AR models to this class of models, using
knowledge of the asymptotic properties of CLS estimator given in Section 6.1.2.
Indeed, within this context a number of relevant rules arise which can help to decide
how large the number of AR lags should be. First, we consider four members of the
family of order selection criteria (SC) defined by

SC(p1, . . . , pk) = min
p1,...,pk

{ k∑
i=1

{
Ti log σ̂2

Ti
+(pi + 1)C(Ti, pi + 1)

}}
, (6.68)

where Ti (i = 1, . . . , k) denotes the number of observations in each regime, σ̂ 2
Ti

the
corresponding (conditional) residual variance, and with penalty function

C(Ti, pi + 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 for AIC,

1
pi+1

Ti(Ti+pi+1)
Ti−(pi+1)−2 for AICc,

1
pi+1

[
Ti(Ti+pi+1)
Ti−(pi+1)−2 + Ti log

{
Ti

Ti−(pi+1)−1

}]
for AICu,

log Ti for BIC.

The generalization of (6.68) to SETARMA models is obvious.
For simplicity of presentation, we consider a SETAR(2; p1, p2) model with un-

known threshold r and delay parameter d. In that case the order selection procedure
can be entertained within the following framework.

Algorithm 6.8: Minimum order selection

(i) Fix the maximum orders (p∗
1, p

∗
2), and the maximum delay dmax.

(ii) Assume r ∈ [r, r] ⊂ R with r the 0.25×100% percentile and r the 0.75×100%
percentile of {Yt}T

t=1.

(iii) Let {Y(j)(d)}T
j=1 denote the order statistics of {Yt}T

t=1 for a fixed d ∈
[1, dmax]. Let Ir = {[0.25T ], [0.25T ] + 1, . . . , [0.75T ]}. Set r = Y(j)(d).
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Algorithm 6.8: Minimum order selection (Cont’d)

(iv) Calculate min1≤k1≤p∗
1 ,1≤k2≤p∗

2

{
SC(k1, k2)

}
. Let SC

(
Y(j)(d)

)
be the min-

imum. Denote the corresponding model orders giving this minimum as
k∗

i

(
Y(j)(d)

)
(i = 1, 2). Note, in the calculation the first max(d, p∗

1, p
∗
2) obser-

vations should be discarded to make the comparison meaningful.

(v) Calculate minj∈Ir
SC

(
Y(j)(d)

)
, and denote the value of Y(j)(d) giving this

minimum as Y ∗
(j)(d).

(vi) Calculate min1≤d≤dmax SC
(
Y ∗

(j)(d)
)
, and denote the value of d giving this

minimum as d̂.

(vii) The selected delay parameter is d̂, the estimate of the threshold parameter
is r̂ = Y ∗

(j)(d̂), the selected orders are ki

(
Y ∗

(j)(d̂)
)

(i = 1, 2).

The second set of order selection criteria is based on the concept of CV. This
comes down to dividing the available data set into two subsets: a calibration set for
estimating a model, and a validation set for evaluating its performance, as we briefly
explained in Section 6.2.3. In principle these subsets may contain different number
of observations. Within the context of SETAR(2; p1, p2) model selection, however,
we focus on the so-called leave-one-out CV-criterion. In that case the order selection
procedure goes as follows.

Algorithm 6.9: Leave-one-out CV order selection
(i) Follow steps (i) – (iii) of Algorithm 6.8.

(ii) Omit one observation from the available data set {Yt}T
t=1, and with the

remaining data set obtain the CLS estimates of a SETAR model, using Al-
gorithm 6.2. Let r̂(t) be the corresponding estimate of r, and φ̂

(t)
T−1,i an

estimate of φ = (φ(i)
0 , . . . , φ

(i)
pi )′ (i = 1, 2).

(iii) Predict the omitted observation and obtain the predictive residual
ε̂t(φ̂

(t)
T−1,i, r̂

(t)).

(iv) Repeat steps (ii) – (iii) for all remaining observations.

(v) The final model is the one which minimizes the MSFE over all SETAR mod-
els:

min
p1,p2

{
C(p1, p2) =

T∑
t=s

2∑
i=1

ε̂ 2
t (φ̂(t)

T−1,i, r̂
(t))

}
, (6.69)

where s = max(d, p∗
1, p

∗
2) + 1.

Under fairly weak conditions it can be proved (Stoica et al., 1986) that for
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linear time series regressions T log{T−1C(·)} = AIC(·) +O(T−1/2). Using this rela-
tionship, De Gooijer (2001) proposes the following CV model selection criteria for
SETAR(k; p, . . . , p) models

Cc = T log
( T∑

t=s

k∑
i=1

ε̂ 2
t (φ̂(t)

T−1,i, r̂
(t))

)
+

k∑
i=1

Ti(Ti + pi + 1)
Ti − (pi + 1)− 2

, (6.70)

Cu = T log
( T∑

t=s

k∑
i=1

ε̂ 2
t (φ̂(t)

T−1,i, r̂
(t))

)
+

k∑
i=1

Ti(Ti + pi + 1)
Ti − (pi + 1)− 2

+ Ti log
{ Ti

Ti − (pi + 1)− 1

}
. (6.71)

De Gooijer (2001) and Galeano and Peña (2007) compare by simulation the
performance of various CV- and AIC-type (including BIC) criteria for two-regime
SETAR model selection in case both d and r are unknown. Their results indicate
that AICu and Cu have larger frequencies in detecting the true AR orders and delay
parameters than AIC, AICc, and BIC, when the sample size is small to moderate
(T ∈ [30, 75]). Since AICu and Cu will tend to select a more parsimonious two-
regime SETAR model than AIC, we recommend to use both criteria rather than
AIC for relatively small samples. The extra computing time Cu needs, as opposed
to the time it takes to estimate a “conventional” criterion like AIC, is negligible
for T ≤ 75. Otherwise, i.e., in situations with T ≥ 100, the improvement of the
modified criteria over AIC diminishes.

Example 6.7: U.S. Unemployment Rate (Cont’d)

It is interesting to compare the performance of the above model selection
criteria using the transformed quarterly U.S. unemployment rate series {Yt}252

t=1

plotted in Figure 6.2(a). For two-regime SETAR models, we set the maximum
allowable orders p 1,max = p 2,max = 10. For three-regime SETAR models, we
take p 1,max = p 2,max = p 3,max = 6. In both cases, we prefix the maximum
value of the delay at dmax = 10. Parameter estimates are based on CLS.
Candidate threshold values are searched between the 25th and 75th percentiles
of the empirical distribution of {Yt}.
Table 6.1 contains the orders of the selected SETAR models, jointly with se-
lected values of d and estimates of the threshold parameters. We see that AIC
prefers a model with relatively high AR orders in each regime while almost all
other criteria tend to select a more parsimonious model. Of course, the pref-
erence for a less parsimonious or a parsimonious criterion largely depends on
how one weighs these overfitting or underfitting tendencies in a given empirical
situation. Note, that AICu and BIC favor a SETAR(2; 2, 2) model with delay
d = 5 while CVc and CVu choose the same model with d = 10. Also, in the
case of selecting a three-regime SETAR model, there is hardly any difference
between the orders selected by AICc, AICu, BIC, CV, and CVc. One inter-
esting situation occurs with CVu with all orders equal one and d = 1. Clearly,
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Table 6.1: SETAR orders selected for the transformed quarterly U.S. unemployment rate.

Two-regime SETAR Three-regime SETAR
Criterion p1 p2 d r̂ p1 p2 p3 d r̂1 r̂2

AIC 3 5 5 -2.98 2 6 5 10 -3.64 -2.72
AICc 2 5 5 -2.99 2 3 2 10 -3.64 -2.72
AICu 2 2 5 -2.99 2 3 2 10 -3.64 -2.72
BIC 2 2 5 -2.88 2 1 2 10 -3.64 -2.72
CV 3 10 5 -2.88 2 1 2 10 -3.64 -2.96
CVc 2 2 10 -3.02 2 1 2 10 -3.64 -2.96
CVu 2 2 10 -3.02 1 1 1 1 -3.64 -3.58

the estimated threshold parameter values are quite near to each other, sug-
gesting that a two-regime rather than a three-regime SETAR model is more
appropriate in this case.

6.3 Diagnostic Checking

6.3.1 Pearson residuals
It is well known that the LB test statistic, can serve as a diagnostic check to see
if the residuals from an estimated ARMA model behave as a (weak) WN process.
Given an estimator θ̂T of the true parameter value θ0, the test is based on the
sample ACF of the standardized residuals, also called Pearson residuals, defined by

ε̂t ≡ ε̂t(θ̂T ) =
(
Yt − E(Yt|F t−1, θ̂T )

)
/

√
Var(Yt|F t−1, θ̂T ). (6.72)

Unfortunately, the LB test statistic has certain features one may consider undesirable
in a nonlinear time series context. One problem is that the test has a high tendency
to let through models with interesting dependencies (e.g., GARCH) in the residuals.
Interests in a diagnostic tool based on the sample ACF of residuals from nonlinear
relationships started off with the McLeod–Li test statistic which is based on the
sample ACF of the squared standardized residuals of a linear time series model. The
McLeod–Li test statistic has high power against departures from linearity that have
apparent ARCH structures. The test statistic has little power in detecting other
types of (non)linear dependencies in the residuals; see, e.g., Li and Mak (1994),
and Tse and Zuo (1998). Li (1992) derives the asymptotic distribution of residual
autocorrelations for a general stationary NLAR process with strict WN errors; cf.
Exercise 6.4.

Chen (2008) presents a general framework for testing Pearson residuals from the
pth-order NLAR model with conditional heteroskedasticity. This model, as a special
case of (6.1), is given by

Yt = g(Yt−1; θ) + ηt, ηt = h(Yt−1; θ)1/2εt, (6.73)
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where Yt−1 = (Yt−1, Yt−2, . . . , Yt−p)′, and θ ∈ Θ denotes a parameter vector in
a compact parameter space Θ. Here, g(·;θ) and h(·;θ) are twice continuously
differentiable functions, and {εt} is an i.i.d. WN process with moments μ1,ε = 0,
μ2,ε = 1, and μ4,ε < ∞, where μr,ε = E(εr

t ).
Using residual autocorrelations, the objective is to test the null hypothesis

H0 : {εt} is an i.i.d. sequence for some θ0 ∈ Θ. (6.74)

The resulting test statistic may be based on transformed (e.g. squared) or untrans-
formed standardized (Pearson) residuals. Since we wish to remain agnostic about the
precise form of transformation for the moment, we introduce the following notation.
Let ui(·) and vj(·) be two continuously differentiable functions of {εt} with the finite
moments μui = E[ui(εt)], μvj = E[vj(εt)], σ2

ui
= Var[ui(εt)], and σ2

vj
= Var[vj(εt)]

(i = 1, . . . , P ; j = 1, . . . , Q). Moreover, we introduce the standardized random vari-
ables u∗

i (εt) = (ui(εt) − μui)/σui , v∗j (εt) = (vj(εt) − μvj )/σvj . Then, under H0, the
lag � (� ∈ Z) cross-correlation, defined as

ρ(i,j)
ε (�) = E[u∗

i (εt)v∗j (εt−�)], (i = 1, . . . , P ; j = 1, . . . , Q), (6.75)

is zero ∀i, j, �. Similarly, under H0, the PQ× 1 vector ρ(�) = E[U(εt)⊗V(εt−�)] =(
ρ
(1,1)
ε (�), . . . , ρ(1,Q)

ε (�), . . . , ρ(P,1)
ε (�), . . . , ρ(P,Q)

ε (�)
)′ is zero ∀�, where U(εt) =

(
u∗

1(εt)
, . . . , u∗

P (εt)
)′ and V(εt) =

(
v∗1(εt), . . . , v∗Q(εt)

)′.
Naturally, given {Yt}T

t=1, we replace the above quantities by their correspond-
ing sample statistics with θ̂T the QML or CLS estimator of θ. Denote the estim-
ated Pearson residuals by ε̂t ≡ ε̂t(θ̂T ) = (Yt − ĝt)/ĥ

1/2
t in which ĝt ≡ g(Yt−1; θ̂T )

and ĥt ≡ h(Yt−1; θ̂T ). Let μ̂ui and μ̂vj (σ̂2
ui

and σ̂2
vj

) be, respectively, the sample
means (variances) of ui(·) and vj(·). Moreover, let ∇θgt and ∇θht be, respectively,
the column vectors of partial derivatives of gt and ht with respect to θ. Denote
wt = (∇θgt)h

−1/2
t , zt = (∇θht)h−1

t , ŵt = wt|θ=θ̂T
, ẑt = zt|θ=θ̂T

, u∗
i (ε̂t) = (ui(ε̂t)−

μ̂ui)/σ̂ui , and v∗j (ε̂t) = (vj(ε̂t)−μ̂vj )/σ̂vj . The lag � sample cross-correlation of ui(ε̂t)

and vj(ε̂t−�) is given by ρ̂
(i,j)
ε̂ (�) = (T − �)−1

∑T
t=�+1 û∗

i (ε̂t)v̂∗j (ε̂t−�) and the sample

analogue of ρ(�) is ρ̂(�) =
(
ρ̂
(1,1)
ε̂ (�), . . . , ρ̂(1,Q)

ε̂ (�), . . . , ρ̂
(P,1)
ε̂ (�), . . . , ρ̂(P,Q)

ε̂ (�)
)′. Fi-

nally, to describe the asymptotic behavior of a finite set of ρ̂(�) vectors, we define a
PQM × 1 (M � T ) vector Π̂(M) =

(
ρ̂(1), . . . , ρ̂(M)

)′
Under H0, and certain regularity conditions, it can be shown (Chen, 2008) that

√
T − k ρ̂(�) =

1√
T − �

T∑
t=k+1

Ψ(εt, εt−�) + op(1),

where

Ψ(εt, εt−�) = U(εt)⊗V(εt−�)−Λ(�)Υ−1[wtεt +
1
2
zt(ε2

t − 1)],

Υ = E[wtw′
t] +

1
2
E[ztz′t],
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and

Λ(�) = E[∇U(εt)]⊗ E[V(εt−�)w′
t] +

1
2
E[∇U(εt)]⊗ E[V(εt−�)z′t],

where ∇U(·) denotes the PQ × 1 vector of first derivatives of U(·) with respect to
θ. So, under H0,

√
T − � ρ̂(�) is not asymptotically equivalent to its standardized-

errors-based counterpart
∑T

t=�+1 U(εt) ⊗V(εt−�)/
√

T − � unless Λ(�) = 0, due to
the effect of estimation uncertainty. Furthermore, it can be shown that

Cov
[ T∑

t=�+1

Ψ(εt, εt−�),
T∑

t=�′+1

Ψ(εt, εt−�′)
]

= (T − �′)[δ��′IPQ + A(�, �′)], (6.76)

where

A(�, �′) = Λ(�)Υ−1ΩΥ−1Λ′(�′)−Δ(�)Υ−1Λ′(�′)−Λ(�)Υ−1Δ′(�′),

Ω = E[wtw′
t] +

1
2
μ3,εE[wtz′t] + E[ztw′

t] +
1
4
(μ4,ε − 1)E[ztz′t],

and

Δ(�) = E[U(εt)εt]⊗ E[V(εt−�)w′
t] +

1
2
E[U(εt)ε2

t ]⊗ E[V(εt−�)z′t].

From the proof of this last result it can be deduced that {Ψ(εt, εt−�)} is a sequence
of uncorrelated elements. Then it follows that the asymptotic null distribution is
given by

√
T − � ρ̂(�) D−→ NPQ

(
0,Σ(l)

)
, Σ(�) = IPQ + A(�, �), (6.77)

for any fixed �. In addition, as T →∞, it follows that under H0:

√
T Π̂(M) D−→ NPQM

(
0,Ξ(M)

)
, Ξ(�) = IPQM + B(M), (6.78)

for any fixed M ∈ Z+, where B(M) is a PQM × PQM matrix with elements
{A(i, j)} (i, j = 1, . . . ,M ).

Given (6.77) and (6.78), the proposed test statistics are

CT (�) = (T − �) Γ̂′(�)Σ̂−1
T (�)Γ̂(�), (6.79)

QT (M) = T Π̂′(M)Ξ̂−1
T (M)Π̂(M), (6.80)

where Σ̂T (�) and Ξ̂T (M) are consistent estimates of Σ(�) and Ξ(M), respectively.
Under H0, and as T → ∞, it follows that for any fixed �, CT (�) D−→ χ2

PQ, and for

any fixed M , QT (M) D−→ χ2
PQM .
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Table 6.2: Standardized-residuals-based test statistics for diagnostic checking of three
SETAR-type models fitted to the log-returns of the daily Hong Kong Hang Seng Index. The
blue-typed number indicates rejection of H0 at the 5% nominal significance level.(1)

C
(i,j)
T (�) Q

(i,j)
T (M)

Model (i, j) � = 1 � = 3 � = 5 M = 5

SETAR(2; 1, 1) (1, 1) 0.56 0.31 0.14 2.26
(1, 2) 0.17 0.58 0.00 3.68
(2, 1) 2.00 3.21 0.60 6.51
(2, 2) 0.52 0.59 2.16 4.05

SETAR(2; 1, 1)–GARCH(1, 1) (1, 1) 0.07 0.52 0.26 1.78
(1, 2) 0.00 0.14 0.06 1.89
(2, 1) 2.07 2.32 0.41 6.40
(2, 2) 4.68 0.03 0.76 7.59

SETAR(2; 1, 1)–EGARCH(1, 1) (1, 1) 0.14 0.63 0.30 2.03
(1, 2) 0.02 0.60 0.19 2.62
(2, 1) 0.83 1.03 0.07 4.10
(2, 2) 3.67 0.03 0.61 7.36

(1) The 95% critical values of the χ2
1, χ2

3, χ2
5, χ2

10, and χ2
20 distribution

are approximately 3.84, 7.81, 11.07, 18.31, and 31.41.

We note that under H0, the asymptotic variance of
√

T − � ρ̂(�) is exactly the
same as the variance of Ψ(εt, εt−�), so that we have a simple estimate of Σ(�), i.e.

Σ̂T (�) =
1

T − �

T∑
t=�+1

Ψ̂t(�)Ψ̂′
t(�), (6.81)

where Ψ̂t(�) denotes the sample analogue of Ψ(εt, εt−�) evaluated at θ = θT .
In addition,

√
T Π̂(M) is exactly the same as the variance-covariance matrix of(

Ψ′(εt, εt−1), . . . ,Ψ′(εt, εt−M )
)′. So, it can be consistently estimated by

Ξ̂T (M) =
1

T −M

T∑
t=M+1

(
Ψ̂′

t(1), . . . , Ψ̂
′
t(M)

)′(Ψ̂′
t(1), . . . , Ψ̂

′
t(M)

)
. (6.82)

Example 6.8: Daily Hong Kong Hang Seng Index (Cont’d)

To illustrate the performance of the diagnostic test statistics (6.79) and (6.80),
we reconsider the log-returns of the daily Hong Kong Hang Seng Index intro-
duced in Example 6.6, and denoted by {Yt}253

t=1. Assuming {εt} i.i.d.∼ N (0, σ2
ε),

we fitted three SETAR-type models to the data.2 In order to compute the
2As an approximation of I(Yt−1 ≤ r), we use the continuously differentiable logistic transition

function (2.43) with c = r and γ = 1,000.
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test, we consider the class of power-transformed-based correlations ρ
(i,j)
ε (�)’s

with (
ui(εt), vj(εt−�)

)
= (εi

t, ε
j
t−�), (i, j = 1, 2). (6.83)

Replacing ρ
(i,j)
ε (�) by ρ̂

(i,j)
ε̂ (�), Table 6.2 shows values of the test statistics

C
(i,j)
T (�) for � = 1, 3, and 5 and Q

(i,j)
T (5) (i, j = 1, 2). Except for C

(2,2)
T (1)

in the case of a SETAR(2; 1, 1)–GARCH(1, 1) model, none of the reported
values are significant at the 5% nominal level; hence, we conclude that the
standardized residuals are serially uncorrelated. This suggests that a simple
SETAR model is capable of describing the DGP. The fit of a more complicated
model, as in Example 6.6, does not seem to be needed.

6.3.2 Quantile residuals
When the conditional distribution of the residual process is asymmetric or mul-
timodal, E(Yt|F t−1, θ̂T ) in (6.72) may not be the best forecast of the process {Yt, t ∈
Z}. Moreover, some nonlinear models may involve unobservable random variables.3

In that case, Pearson residuals will not be the empirical counterparts of the process
{εt, t ∈ Z}. In fact, assuming the model is correctly specified, the residual process
{ε̂t, t ∈ Z} is a martingale difference sequence with zero mean and unit variance,
and its asymptotic distribution differs from that of the noise process {εt, t ∈ Z}. As
an alternative, various diagnostic test statistics for parametric nonlinear time series
models can be based on quantile residuals. These quantities are defined as follows.

Following the notation introduced in Section 6.2.1, let f(y; θ0,m) be the true
pdf of the observations {Yt}T

t=1, θ0,m ∈ Θ ⊂ Rm, and y = (Y1, . . . , YT )′. For each
f : Θ× RT → R+, we can write

f(y; θm) =
T∏

t=1

ft−1(Yt; θm), (6.84)

where ft−1(Yt;θm)≡f(Yt; θm|F t−1) is the conditional density function of {Yt, t ∈ Z}
given F t−1 = σ(Y0, Y1, . . . , Yt−1), the σ-algebra generated by the random variables
{Y0, Y1, . . . , Yt−1}, θm ⊂ Rm an m-dimensional parameter vector, and where Y0

represents the initial model values. Then, according to Dunn and Smyth (1996), the
theoretical quantile residual is defined by

Rt,θm = Φ−1
(
Ft−1(Yt; θm)

)
, (6.85)

where Φ−1(·) is the inverse CDF of the N (0, 1) distribution, and Ft−1(Yt; θm) =∫ Yt

−∞ ft−1(u; θm)du is the conditional CDF of {Yt, t ∈ Z}, also called the probability

3This is, for instance, the case with the mixture AR (MAR) model (see, Exercise 7.7), and the
MAR–GARCH model (Wong and Li, 2000b, 2001).
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integral transform (PIT). The corresponding sample quantile residual is

r
t,θ̂T

= Φ−1
(
Ft−1(Yt; θ̂T )

)
, (6.86)

where θ̂T (dropping the subscript m) is a QML estimate of θ0,m. Observe that
quantile residuals of linear and nonlinear AR models with normal errors are identical
to Pearson residuals.

General testing framework
Kalliovirta (2012) develops a general testing framework for detecting different po-
tential departures from the characteristic properties of quantile residuals (H0). The
framework is based on transformations of Rt,θ0 by a continuously differentiable func-
tion g : Rd → Rn such that E

(
g(Rt,θ0)

)
= 0, where Rt,θ0 = (Rt,θ0 , . . . , Rt−d+1,θ0)

′,
and d and n are the dimensions of the domain and range of g. Different choices of
g lead to different test statistics.

Conditional on a vector with initial values Y0, and assuming that the condi-
tional density functions ft−1(Yt; θm) exist, the log-likelihood function �T (y, θ) =∑T

t=1 �t(Yt, θ) =
∑T

t=1 log ft−1(Yt; θ) of the sample follows directly. Then, under
some fairly standard regularity conditions, Kalliovirta (2012) proves the following
CLT

1√
T

T∑
t=1

g(R
t,θ̂T

) D−→ Nd

(
0,Ω), (6.87)

where

Ω = GI(θ0)−1G′ + ΨI(θ0)−1G′ + GI(θ0)−1Ψ′ + H, (6.88)

with G = E
(
∂g(Rt,θ0)/∂θ′), H = E

(
g(Rt,θ0)g(Rt,θ0)

′), and where I(θ0) denotes
the expected information matrix evaluated at θ0, and Ψ is a constant matrix. The
first three terms in the asymptotic covariance matrix Ω represent model uncertainty
due to the effect of parameter estimation. If G = 0, there is (asymptotically) no
need to take this uncertainty into account in the resulting test statistic. In general,
however, G �= 0 which resembles the case Λ(�) �= 0 in Section 6.3.1.

Assume that the nonlinear model under study is correctly specified, so that
{Rt,θ0}

i.i.d.∼ N (0, 1) holds. Let ÎT be a consistent estimator of I(θ0). Then a
consistent estimator for Ω is

Ω̂T = ĜT Î
−1

T Ĝ′
T + Ψ̂T Î

−1

T Ĝ′
T + ĜT Î

−1

T Ψ̂′
T + ĤT , (6.89)

where ĜT = T−1
∑T

t=1 ∂g(r
t,θ̂T

)/∂θ′, Ψ̂T = T−1
∑T

t=1 g(r
t,θ̂T

)∂�t(Yt, θ̂T )/∂θ′, and

ĤT =T−1
∑T

t=1 g(r
t,θ̂T

)g(r
t,θ̂T

)′. Based on (6.87), a general test statistic is defined
as

ST,d =
1

T − d + 1

T−d+1∑
t=1

g(r
t,θ̂T

)′Ω̂−1
T

T−d+1∑
t=1

g(r
t,θ̂T

), (6.90)
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Table 6.3: Three diagnostic test statistics based on univariate quantile residuals, as special
cases of the general test statistic ST,d.

Null hypothesis H0 Transformation function g Test statistic

ρRt,θ0
(�) = 0, ∀t, g : RK1+1 → RK1 AT,K1 = ST,d with

(� = 1, . . . , K1; K1 � T ) g(rt,θ) = d = K1 + 1
(Autocorrelation) (rt,θrt+1,θ , . . . , rt,θrt+K1,θ)

′

ρR2
t,θ0

(�)=0, ∀t, g : RK2+1 → RK2 HT,K2 = ST,d with

(� = 1, . . . , K2; K2 � T ) g(rt,θ) = d = K2 + 1

(Heteroskedasticity)
(
(r2

t,θ − 1)r2
t+1,θ , . . . , (r

2
t,θ − 1)r2

t+K2,θ

)′
E(R2

t,θ0
− 1, R3

t,θ0
, R4

t,θ0
− 3)′ = 0, ∀t g : R→ R3 NT = ST,d with

(Normality) g(rt,θ) = (r2
t,θ − 1, r3

t,θ , r4
t,θ − 3)′ d = 1

where r
t,θ̂T

= (r
t,θ̂T

, . . . , r
t−d+1,θ̂T

)′.4 Under H0, and as T → ∞, (6.90) has an
asymptotic χ2

n distribution; Kalliovirta (2012).
Table 6.3 shows three diagnostic test statistics, as special cases of (6.90). Note,

that the test statistic for residual autocorrelation is based on uncentered sample
autocovariances (T−�)−1

∑T−�
t=1 r

t,θ̂T
r
t+�,θ̂T

. The test statistic for conditional hetero-

skedasticity is based on the sample autocovariances (T−�)−1
∑T−�

t=1 (r2
t,θ̂T

−1)r2
t+�,θ̂T

,
while the normality test statistic builds on ideas suggested by Lomnicki (1961); see,
e.g., Section 1.3.1. Under H0 these test statistics are asymptotically distributed as
respectively χ2

K1
, χ2

K2
, and χ2

3.

6.4 Application: TARSO Model of a Water Table

In lowland areas such as the Netherlands or Belgium, structural changes in the water
table fluctuation will often have impact on agricultural land use and ecology. To
support decision making in these areas, water managers need reliable predictions of
the effects of interventions in the hydrological regime on the water table fluctuations.
Preferably, these effects are expressed in terms of risks or probabilities, which implies
the use of stochastic models and methods. Water table depths {Yt} (output) can be
related to precipitation surplus {Xt} (input). Both linear and nonlinear time series
models can be used for this purpose. One form of nonlinearity is caused by the
presence of thresholds which divide the relationship between precipitation surplus
and water table depth into several regimes. These thresholds are, for instance, soil
physical boundaries or drainage levels; see Figure 6.9 for a schematic view.

SSTARSO model
Knotters and De Gooijer (1999) show that subset TARSO (SSTARSO) models for

4It is known that under H0, E((Rt,θ0)
n) =

∏n/2
i=1(2i−1) (n = 2, 4, 6, . . .), and 0 elsewhere. Using

this result, it is straightforward to obtain explicit expressions for the matrix H for each of the three
hypotheses in Table 6.3.
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Groundsurface

Water table

Y

−−−− = X

Figure 6.9: Schematic view of a water table relative to the ground surface elevation, called
“water table depth” (denoted by Yt), with as input variable “precipitation excess” (denoted
by Xt), i.e. the difference between precipitation and evapotranspiration.

the process {(Yt,Xt), t ∈ Z}, with the regime switching depending on Yt rather than
Xt, can capture the nonlinear relationships of the hydrologic system successfully.
Adopting a similar notation as for the subset SETARMA model in (6.16), a k-regime
SSTARSO model is defined as

Yt =
k∑

i=1

(
φ

(i)
0 +

pi∑
u=1

φ
(i)

j
(i)
u

Yt−ju +
qi∑

v=0

ψ
(i)

h
(i)
v

Xt−hi
+ ε

(i)
t

)
I(Yt−d ∈ R(i)), (6.91)

where ε
(i)
t = σ2

i εt (i = 1, . . . , k), {εt} i.i.d.∼ (0, 1), and R(i) = (ri−1, ri] with r0 = −∞
and rk = ∞. Below we focus on a time series of a semi-monthly observed water
table depth covering the time period 1982 – 1992.

The {Yt} series is measured relative to the ground surface elevation nearby the
observation well. The well is situated in a drained loamy, fine sandy soil. Drains
are present at about −80 centimeter (cm), relative to the ground surface at the well
location. Moreover, at a distance of 50 cm to the well a trench with a bottom at
about −50 cm is present. Therefore, we assume k = 3.

Model selection
We divide the series into a validation and a calibration set,5 each set consists of
T = 120 observations. As a model selection criterion we adopt BIC, which for the
SSTARSO model (6.91) is defined as

BIC = min
p1,...,pk
q1,...,qk

{ k∑
i=1

{Ti log σ̂2
Ti

+ (pi + qi + 1) log Ti}
}

, (6.92)

where Ti is the number of observations that belong to the ith regime, and σ̂2
Ti

the
corresponding residual variance. If no prior information is used on the values of the

5Calibration refers to the statistical consistency between the distributional forecasts and the
observations, and is a joint property of the forecasts and the observed values.



244 6 MODEL ESTIMATION, SELECTION, AND CHECKING

thresholds ri (i = 1, . . . , k − 1), we propose the following procedure for selecting
(SS)TARSO models using BIC.

Algorithm 6.10: Selecting a (SS)TARSO model

(i) Fix the number of regimes k. Fix the maximum orders (P1, Q1), . . . , (Pk, Qk)
from which the (SS)TARSO model is selected. Given a delay d, discard the
first maxi{d, Pi, Qi} (i = 1, . . . , k) observations to obtain one effective sample
size for all fitted models.

(ii) Select an interval [r, r] in which the thresholds are searched, or the combin-
ation of threshold values if there are more than two regimes. For instance,
take the 10th percentile and the 90th percentile of the empirical distribution
of {Yt}T

t=1 respectively.

(iii) To guarantee that there are enough observations in each regime, search r’s
at a fixed interval (here 1 cm) between r and r such that within each ith
regime Ti ≥ 20. This results in a set of, say R (combinations of) candidate
threshold values r1, . . . , rk−1

(iv) Select candidate subsets for the non-zero coefficients φ
(i)
u and ψ

(i)
v , say subsets

{sj}, where j = 1, . . . ,K denotes the jth of K subsets. Assign to these
subsets the lags j

(i)
1 , . . . , j

(i)
pi , h

(i)
0 , h

(i)
1 , . . . , h

(i)
qi of the AR terms in the output

and input series in the ith regime. Given k regimes, fixed threshold values,
and a fixed delay, there are S = Kk candidate SSTARSO models to represent
the process {Yt,Xt}. Below we set Pi = 3, Qi = 2 (i = 1, 2, 3), and K = 25.

(v) Calculate (6.92) over all R× S candidate models using CLS.

Model selection results
The final model fitted to the data in the calibration set is given by

Yt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−16.10(4.17) + 0.58(0.06)Yt−1 + 0.24(0.05)Yt−3 + 6.81(0.43)Xt

+1.86(0.53)Xt−2 + ε
(1)
t if Yt−1 ≤ −57(−87,−56),

−64.07(2.00) + 7.69(1.09)Xt + ε
(2)
t if − 57(−87,−56) < Yt−1 ≤ −47(−70,−44),

−19.10(9.06) + 0.29(0.28)Yt−1 + 0.39(0.12)Yt−3

+3.01(0.91)Xt + ε
(3)
t if Yt−1 > −47(−70,−44).

(6.93)

The sample standard deviations of the residuals are 7.15, 8.65, and 6.13, respectively.
Thresholds are estimated at −57 cm and −47 cm. The 95% asymptotic confidence
intervals of r̂i (i = 1, 2, 3) are estimated from 10,000 BS replicates. The skewness
of the intervals is a result of the short distance of the threshold at −47 cm to the
upper limit of the range in which thresholds are searched; only 21 observations are
present in regime 3. Similarly, thresholds are selected more often below than above
−57 cm.
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Figure 6.10: Results of SSTARSO model selection in the calibration period. Observed
water table depth (blue dots), intervals in which 95% of the simulated water table depths fall
(black dashed lines), and selected thresholds (red solid lines). From Knotters and De Gooijer
(1999).

It is interesting to note that the estimated threshold values are possibly related
to the drainage level of the trench at about −40 cm. The estimated AR–coefficient
for {Xt} in regime 3 is small as compared with those in the other two regimes
(3.01 versus 6.81, 7.69). In physical terms the value 3.01 means that, starting from
equilibrium conditions, a unit change of the precipitation excess at time t causes a
change of 3.01 units in the water table depth {Yt}. Further, note that {Xt} is the
average daily precipitation excess between t − 1 and t. A physical explanation of
the relatively small AR–coefficient for {Xt} in regime 3 may be that the fluctuation
of the water table in regime 3 is damped by the drainage to the trench. This effect
can be seen in Figure 6.10, which shows a plot of the observed water table depth in
the calibration period and the interval in which 95% of the simulated water table
depths fall, using a set of 720 BS replicates of {Yt}. Note that the graph shows a
clear seasonal behavior, with a seasonality of 24 semi-monthly time steps.

Model-validation
To compare the performance of the SSTARSO model, we employ a transfer function
model with added noise (TFN). Within the present context, it consists of a functional
relationship between Y F

t and a noise process NF
t . Here Y F

t denotes that part of the
water table depth Yt which is explained by the precipitation surplus Xt, and NF

t is
modeled in its own right by an ARMA process. More specifically, the TFN model
fitted to the data in the calibration period (minimizing BIC) is given by

Yt = Y F
t + NF

t , (6.94)

where

Y F
t = 0.84(0.03)Yt−1 + 6.48(0.44)Xt − 1.78(0.56)Xt−1,

(NF
t − 91.20(1.93)) = 0.56(0.08)(N

F
t−1 − 91.20(1.93)) + εt,



246 6 MODEL ESTIMATION, SELECTION, AND CHECKING

with residual sample standard deviation σ̂ε = 8.57, and asymptotic standard errors
are given in parentheses.

Based on (6.91) and (6.94), we generate 1,000 series of length T = 120 and
compute the mean error (ME), the root mean squared error (RMSE) and the mean
absolute error (MAE) using data on {Yt} from the validation period.6 The values of
these measures for the SSTARSO model, and in parentheses the fitted TFN model,
are: ME = −0.3 (1.7), RMSE = 15.3 (16.3), and MAE = 12.3 (13.2). Clearly,
the fitted SSTARSO model performs better than the fitted linear TFN model. The
percentages of observations outside the interval in which 95% of the simulated water
table depths fall are 8 (SSTARSO) and 13 (TFN), respectively. Thus, the fitted
SSTARSO model provides an adequate representation. Moreover, the model can be
interpreted with respect to the hydrological conditions at the well location.

6.5 Summary, Terms and Concepts

Summary
In the first part of this chapter, we focused on QML, NLS, and CLS estimation
methods within the framework of model (6.1), with emphasis on the CLS estimator.
Subsequently, we specialized some of these methods to a number of classic nonlinear
time series models. We have not attempted to give a full treatment to the fairly
large literature on the computation of nonlinear estimation methods. Rather, in
Section 6.6, we offer some references to methods not covered by this chapter.

Our treatment of the CLS estimation method was perhaps somewhat detailed.
However, anyone who intends to use this method in empirical work should be aware
of the underlying assumptions. For example, the finite-sample properties of the
CLS method of the threshold parameter in SETAR models depend crucially on
the assumption of symmetry of the error process, and the magnitude and signs of
SETAR coefficients; see, e.g., Kapetanios (2000) and Norman (2008). Another point
worth mentioning is that the CLS estimator is not asymptotically efficient in general.
Chandra and Taniguchi (2001) explore this point via MC simulation. Nevertheless,
there is still a need for simulation studies which are designed to shed light on the
finite-sample properties of CLS and other estimation methods, and their impact on
nonlinear model selection, diagnostic checking, and forecasting.

As we have seen in the second part of this chapter, all estimation methods are
directly tied to a host of model selection criteria. With nonlinear models, the curse
of model complexity and model over-parameterization seems much more prominent
when using AIC than in the linear case. If parsimony is considered to be really
important, then perhaps a “super-parsimonious” order selection criterion may be
helpful; see Granger (1993) for a suggestion.

Finally, within the unifying theme of model estimation, we have discussed
residuals-based diagnostic test statistics for remaining serial correlation. The pro-

6See Knotters and De Gooijer (1999) for details about the design of the MC simulation experi-
ment.
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posed test statistics make an explicit correction for effects of estimation uncertainty.
Modified versions of these test statistics may also be used to check the null hypo-
thesis of serial independence in the original series because the estimation error’s
effect is irrelevant in this case. In the next chapter, we will take up the topic of
testing for serial independence in time series again, this time in a nonparametric
setting.

Terms and Concepts

Akaike information criterion (AIC), 229
average information matrix, 200
Bayesian information criterion (BIC),

231
calibration, 234
compound Poisson process (CPP), 205
conditional least squares (CLS), 202
crossover, 212
cross-validation (CV), 198
empirical Hessian, 199
expected Hessian matrix, 200
expected information matrix, 199
fitness function, 210
genetic algorithm (GA), 210
generalized information criterion (GIC),

231
gradient vector, 200
Hankel matrix, 219
Hellinger distance, 248
iterativelyweighted LS (IWLS), 223
Jensen’s inequality, 227

Kullback-Leibler (KL) divergence, 227
leave-one-out CV, 234
likelihood equation, 200
local maxima problem, 200
log-likelihood, 199
Markov chain Monte Carlo (MCMC),

210
minimum descriptive length (MDL), 232
mutation, 212
nonlinear least squares (NLS), 200
normalized AIC (NAIC), 211
nuisance parameter, 201
Pearson residuals, 236
penalty function, 232
probability integral transform (PIT), 241
quantile residuals, 240
quasi maximum likelihood (QML), 198
score vector, 200
selection, 212
structural parameter, 210

6.6 Additional Bibliographical Notes

Sections 6.1.1 and 6.1.2: Petruccelli (1986) proves strong consistency of the CLS estim-
ator in the case of a SETAR(2; 1, 1) model. Pham et al. (1991) establish strong consistency of
the CLS estimator for a simple non-ergodic SETAR model, so relaxing the stationarity and
ergodicity condition. Chan (1993) develops strong consistency and asymptotic normality
of the CLS estimator in the general SETAR(2; p, p) model, and Qian (1998) obtains strong
consistency of the QML estimate for this model. Asymptotic properties of NLS estimates,
under a set of explicit and easy to check conditions, are discussed in Mira and Escribano
(2006), Suárez–Fariñas et al. (2004), and Medeiros and Veiga (2005) for a general class of
nonlinear dynamic regression models, including STAR–GARCH models.

Liu et al. (2011) study the limiting distribution of the CLS estimators in the case of a
SETAR(2; 1, 1) model (no intercept) with a unit root in one regime, and in the case of an
explosive SETAR(2; 1, 1) model (no intercept). In both cases, the limiting behavior of the
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estimators is quite different from the CLS estimators based on the linear counterpart of
these models.

De Gooijer (1998) considers ML estimation of TMA models. Under some moderate condi-
tions, Li et al. (2013) show that the estimator of the threshold parameter in a TMA model, is
n-consistent and its limiting distribution is related to a two-sided CPP, while the estimators
of the other coefficients are strongly consistent and asymptotically normal.

Using the rearranged autoregressions, Coakley et al. (2003) introduce an efficient SETAR
model estimation approach which relies on the computational advantages of QR factorization
of matrices. Aase (1983) considers recursive estimation of nonlinear AR models. Zhang et al.
(2011) discuss QML estimation of a two-regime SETAR–ARCH model with the conditional
variance process depending on past time series observations. Koul and Schick (1997) propose
adaptive estimators for the SETAR(2; 1, 1) and the ExpAR(1) model with known parameter
γ, without sample splitting. These estimators have better performance (i.e. smaller MSEs)
than estimators based on the sampling splitting technique.

Hili (1993, 2001, 2003, 2008a,b) considers the minimum Hellinger distance (MHD) (see
Chapter 7) for estimating the parameters of the ExpARMA model (2.20), the simultan-
eous switching AR model, the general BL model (2.12), the SETAR(k; p, . . . , p) model, and
nonlinear dynamical systems, respectively. Under some mild conditions he establishes con-
sistency and asymptotic normality of the resulting parameter estimates. It is interesting
to note that the practical feasibility of employing the MHD method covers many areas,
including nonparametric ML estimation, and model selection criteria.

The theory of asymptotically optimal estimating function for stochastic models proposed
by Godambe (1960, 1985) has been used as a framework for finite-sample nonlinear time
series estimation. Thavaneswaran and Abraham (1988) construct G estimators (named
after Godambe) for RCAR, doubly stochastic time series, and SETAR models; see also
Chandra and Taniguchi (2001). These latter authors show that G estimators are better than
CLS estimation by simulation. Amano (2009) obtains similar results for NLAR, RCAR,
and GARCH models. Here, it is also appropriate to mention the generalized method of
moments (GMM) developed by Hansen (1982) which is a widely used estimation method
in econometrics. In fact, GMM estimation and Godambe’s estimation function method are
essentially the same. Caner (2002) obtains the asymptotic distribution for the least absolute
deviation estimator of the threshold parameter in a threshold regression model.

For the CLS-based estimator of the BL model in (6.35), an expression for the asymptotic
variance is given by Giordano (2000) and Giordano and Vitale (2003), assuming E(Y 8

t ) < ∞.
This condition restricts the permissible parameter space considerably. Kim and Billard
(1990) derive the asymptotic properties of the moment estimators of the parameters in a
first-order diagonal BL model extended with a linear AR(1) term. This model is also the
focus of a study by Ling et al. (2015). These authors propose a GARCH-type ML estimator
for parameter estimation which is consistent and asymptotically normal under only finite
fourth moment of the errors.

Outliers pose serious problems in time series model identification and estimation proced-
ures. Gabr (1998) investigates the effect of additive outliers (AO) on the CLS estimation of
BL models. For SETAR models, Chan and Cheung (1994) modify the class of generalized
M-estimates. Their approach, however, can lead to inconsistent and very inefficient estim-
ates of the threshold parameter even when the model is correctly specified and the errors
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are normally distributed (Giordani, 2006). Battaglia and Orfei (2005) propose a model-
based method for detecting AO and innovational outliers (IO) in general NLAR time series
processes.

Traditional likelihood analysis of threshold models is complicated because the threshold
parameters can give rise to unknown shifts at arbitrary time points. On the other hand, the
problem of estimating these parameters may be formulated into a Bayesian framework, and
apply the Gibbs sampler (Geman and Geman, 1984), an MC simulation method, to obtain
posterior distributions from conditional distributions. Amendola and Francq (2009, Section
7) briefly review MCMC methods, in particular the Metropolis–Hastings algorithm (Met-
ropolis et al. (1953) and Hastings (1970)) and the Gibbs sampler for fitting STAR models.
These authors also provide tools and approaches for nonlinear time series modeling in econo-
metrics; see the website of this book. The function metrop in the R-mcmc package, and the
function MCMCmetrop1R in the R-MCMCpack package can be used to perform a Bayesian
analysis. Gibbs sampling, being a special case of the Metropolis–Hastings algorithm, is in-
cluded in the R-gibbs.met package; see Robert and Casella (2004) for more information on
MCMC methods.

Section 6.2: Sub-section 6.2.2 is partly based on Van Casteren and De Gooijer (1997).
Using knowledge of the asymptotic properties of the CLS estimator for the SETAR model,
Wong and Li (1998) show that AICc is an asymptotically unbiased estimator for the KL
information. Kapetanios (2001) compares the small-sample performance of KL information-
based model selection criteria for Markov switching, EDTAR, and two-regime SETAR mod-
els. A similar, but more extensive study, is undertaken by Psaradakis et al. (2009). Hamaker
(2009) investigates six information criteria for determining the number of regimes in two-
regime SETAR models. For small samples AICu should be preferred. Rinke and Sibbertsen
(2016) compare regime weighted and equally weighted information criteria for simultaneous
lag order and model class selection of SETAR and STAR models. Overall, in large samples,
equally weighted criteria perform well.

Simonoff and Tsai (1999) derive and illustrate the AICc criterion for general regression mod-
els, including semiparametric and additive models. The MDL principle has been successfully
applied to a wide variety of model selection problems in the fields of computer science, elec-
trical engineering, and database mining; see, e.g., Grünwald et al. (2005). Good tutorial
introductions are provided by Bryant and Cordero–Braña (2000), Hansen and Yu (2001),
and Lanterman (2001). Qi and Zhang (2001) investigate the performance of AIC and BIC
in selecting ANNs.

Öhrvik and Schoier (2005) propose three bootstrap criteria for two-regime SETAR model
selection. Chen (1995) considers threshold variable selection in TARSO models. Chen et al.
(1997) propose a unified, but computationally intensive, approach for model estimation via
Gibbs sampling and to select an appropriate (non-nested) nonlinear model; see also Chen et
al. (2011a). However, the correct specification of potentially non-nested nonlinear models
and/or priors is not an easy task (Koop and Potter, 2001).

Based on the superconsistency of the SETAR–CLS threshold estimate established by Chan
(1993), Strikholm and Teräsvirta (2006) provide a simple sequential method for determining
the number of thresholds using general linearity tests. In addition, they compare their
method with the approaches suggested by Gonzalo and Pitarakis (2002) (cf. Exercise 5.4(b))
and Hansen (1999).

Olteanu (2006) uses Kohonen maps and hierarchical clustering of arranged autoregressions
to determine the number of regimes in switching AR (TAR and Markov switching) models.
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Bermejo et al. (2011) propose an automatic procedure to identify SETAR models and to
specify the values of thresholds. The method is based on recursive estimation of time-varying
parameters in an arranged autoregression.

Dey et al. (1994) and Holst et al. (1994) consider ML estimation via recursive EM algorithms
of switching AR(MAX) processes with a Markov regime. Krishnamurthy and Yin (2002)
study the convergence and rate of convergence issues of these algorithms; see also Douc et
al. (2014, Chapter 13 and Appendix D) on stochastic approximation EM algorithms.

Section 6.3: Li (2004, Sections 6.3 and 6.4) provides a comprehensive review on various
diagnostic test statistics for ARCH and multivariate ARCH models. Li (1992) derives the
asymptotic distribution of residual autocorrelations for a general NLAR model with strict
WN errors. Hwang et al. (1994) extend this result to NLAR with random coefficients. Baek
et al. (2012) derive the joint limit distribution of the sample residual ACF for NLAR time
series models with unspecified heteroskedasticity. Based on this result they propose a test
statistic which is an analogue of the test statistic C

(1,1)
T (�).

An and Cheng (1991) introduce a KS-type test statistic based on the predicted residuals
obtained by the best linear predictor for a NLAR process where the noise process follows
a stationary martingale difference. The limiting distribution of the test statistic depends
on the estimates of the unknown parameters of the AR(p) model considered under the null
hypothesis. As an alternative, Kim and Lee (2002) propose a new KS test statistic and an
associated BS procedure, which outperforms the original one. Hjellvik and Tjøstheim (1995,
1996) develop a nonparametric test statistic based on the distance between the best linear
predictor and a nonlinear predictor obtained by kernel estimates of the conditional mean and
conditional variance. However, to avoid the “curse-of-dimensionality”, the conditional mean
and variance functions only depend on {Yt−i} (i = 1, . . . , p) rather than on {Yt−1, . . . , Yt−p}.
The difficulty which then emerges is that consistency of the resulting test statistic no longer
holds. Also, Hjellvik et al. (1998) consider local polynomial estimation as a useful alternative
to kernel estimation. Deriving asymptotic properties of the resulting linearity test statistic
is, however, complicated.

An and Cheng (1991) and An et al. (2000) construct a CvM type test statistic which is
simple to compute and partly avoids the curse of dimensionality problem when p is large.
For time series generated by (6.73), Ling and Tong (2011) develop GOF test statistics that
are based on empirical processes marked by certain scores. The tests are easy to implement,
and are more powerful than other, residuals-based, test statistics.

6.7 Data and Software References

Data
Example 6.6: The daily HSI closing prices, adjusted for dividends and splits, for the year
2010 can be downloaded from the website of this book. For the estimation of the DTARCH
model by GAs we used Double Threshold, a C++ executable program made available by
Roberto Baragona and Domenico Cucina.

Software References
Sections 6.1.1: Tong (1983, Appendices A7 – A21) offers FORTRAN77 functions for
testing, estimation, and evaluation of SETAR models. Some of these functions are rather
dated. They are included in the interactive STAR package, to accompany the book by Tong
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(1990). Unfortunately, the STAR package is no longer available for sale. However, with the
consent of Howell Tong, the DOS-STAR3.2 program as an executable file (32-bit) is made
available at the website of this book. Alternatively, the R-TSA package, supporting results in
the textbook by Cryer and Chan (2008, Chapter 15), may be adopted for analyzing SETAR
models; see also the R-tsDyn package mentioned earlier in Section 2.14.

RSTAR is a package for smooth transition AR modeling and forecasting; see https:
//www.researchgate.net/publication/293486017_RSTAR_A_Package_for_Smooth_
Transition_Autoregressive_STAR_Modeling_Using_R. Alternatively, smooth transition
regression (STR) models can be specified, estimated and checked in the freely available,
and menu-driven, computer package JMulTi; see also Section 9.5. An EViews7 add-in
for STR analysis is available at http://forums.eviews.com/viewtopic.php?f=23&t=
11597&sid=e01abc77f3732bfcdebcf2bce8dd1888. Another option is the Ox-STR2 pack-
age8 (see http://www.doornik.com/download.html) based on Timo Teräsvirta’s GAUSS
code; see, also, http://people.few.eur.nl/djvandijk/nltsmef/nltsmef.htm.

Section 6.2.6: MATLAB code for comparing the performance of the various order selection
criteria discussed in this section is available at the website of this book.

Section 6.3.1: The test results in Table 6.2 are computed using a GAUSS code provided
by Yi-Ting Chen. The code is also available at the

Section 6.3.2: MATLAB codes for computing the test statistics AT,K1 and HT,K2 are
available at the website of this book (file: Exercise 77b.zip).

Section 6.4: The paper by Knotters and De Gooijer (1999) contains (SS)TARSO mod-
els for time series of semi-monthly observed water table depths from six observation wells.
The application only shows (SS)TARSO results for the first well. As a companion to the
above paper, the website of this book offers FORTRAN77 codes for (SS)TARSO model
identification and estimation.

Exercises

Theory Questions
6.1 Consider the simple BL model (6.35). Given the series of observation {Yt}T

t=1, the
CLS estimator τ̂ of the model parameter τ is defined by (6.39). Giordano (2000)
proposes another estimator of τ , defined as

τ̃ = γ̂Y (1, 2)/σ2
εVar(Yt),

where γ̂Y (i, j) = T−1
∑T

t=1 YtYt−iYt−j (Yt = 0, t < 0) is an estimator of the third-
order cumulant E(YtYt−iYt−j) (i = 1, 2), and Var(Yt) = σ2

ε/(1 − τ2σ2
ε). Assume σ2

ε

and σ2
Y are known, and let τ4σ4

ε < 1/3. Then show that

|τ̃ − τ̂ | → 0 a.s., and |τ̃ − τ̂ | = O(ST ),

7EViews R© (Econometric Views) is a software package for Windows, used mainly for econometric
time series analysis. It was developed by Quantitative Micro Software, now a part of IHS.

8OxMetrics R© is a commercial package using an object-oriented matrix programming language
with a mathematical and statistical function library; published and distributed by http://www.

timberlake.co.uk/software/oxmetrics.html. The downloadable Ox Console may be freely used
for academic research and teaching purposes.

Journal of Applied Econometrics
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https://www.researchgate.net/publication/293486017_RSTAR_A_Package_for_Smooth_Transition_Autoregressive_STAR_Modeling_Using_R


252 6 MODEL ESTIMATION, SELECTION, AND CHECKING

where ST = {T/ log log T}−1/2.

6.2 Consider the diagonal BL(0, 0, 1, 1) model Yt = τYt−1εt−1+εt with {εt} i.i.d.∼ N (0, σ2
ε).

Let λ = τσε. Assume that the stationarity condition holds, i.e., |λ| < 1. Then, by
repeated substitution, the process {Yt, t ∈ Z} can be written as

Yt = Ut,m + Wt,m,

where

Ut,m = εt +
m∑

j=1

( j∏
�=1

τεt−�

)
εt−j , Wt,m =

∞∑
j=m+1

( j∏
�=1

τεt−�

)
εt−j , (m = 1, 2, . . .).

(a) Show that E(Yt) = τσ2
ε and

γY (�) =

⎧⎨⎩ σ2
ε(1 + λ2 + λ4)/(1− λ2), � = 0,

σ2
ελ2, |�| = 1,

0, |�| ≥ 2.

(b) Compare the ACF of the BL(0, 0, 1, 1) process with the ACF of an invertible
MA(1) process having the same innovation process as above. What do you
conclude?

(c) Show that the BL process is invertible if the condition |λ| < 0.605 holds.

(d) Given the observations {Yt}T
t=1. Let UT = T−1

∑T
t=1 Ut,m. Prove that, as

T →∞,

√
T (UT − μU ) D−→ N

(
0, σ2

ε

(
1 + λ2 + 3

m∑
j=1

λ2j
))

,

where E(Ut,m) = μU .

(e) Assume σ2
ε is known. Kim et al. (1990) estimate the parameter τ by the method

of moments. Their moment estimator τ̂ is given by

τ̂ = YT /σ2
ε ,

where YT = T−1
∑T

t=1 Yt. Using the results in steps (a) and (c), prove that as
T →∞,

√
T (τ̂ − τ) D−→ N

(
0,

1 + 3τ2 − τ4

1− τ2

)
.

[Hint : Define Qm,T = T−1/2
∑T

t=1(Ut,m − μY ) and Rm,T = T−1/2
∑T

t=1 Wt,m,
with μY = E(Yt) = τσ2

ε . Then consider the asymptotic distribution of
√

T (YT −
μY ).]

6.3 (a) Verify (6.44).

(b) Derive an explicit expression for the matrix Z in (6.45).
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6.4 Consider, as a special case of (6.73), the NLAR(p) model

Yt = g(Yt−1;θ) + εt, {εt} i.i.d.∼ (0, σ2
ε), (6.95)

where Yt−1 = (Yt−1, Yt−2, . . . , Yt−p)′, and θ ∈ Θ is a parameter vector in a compact
parameter space Θ. Take P = Q = 1 in (6.75), and set

(
u1(εt), v1(εt−�)

)
= (εt, εt−�).

(a) Show the (i, j)th element of the asymptotic variance-covariance matrix Σ(�) =
IPQ + A(�, �) in (6.77) becomes

Σi,j(�) = δij − σ−2
ε m′

iV
−1mj ,

with the p× 1 vector mi = E[εt∇g(Yt+i−1;θ)], (i = 1, . . . , �), and where V is a
p× p matrix defined by V = E[(∇gt)(∇gt)′].

(b) Using part (a), suggest a general residuals-based diagnostic test statistic for non-
linearity.

Empirical and Simulation Questions

6.5 Consider the BL model in (6.35). Let λ = τσε, and in view of the moment condition
when {εt} i.i.d.∼ N (0, σ2

ε) assume λ8 < 1/105. Using the results in Exercise 6.1 it can be
shown (Giordano and Vitale, 2003) that τ̂ , defined by (6.39), and τ̃ are asymptotically
normally distributed with mean τ and variances respectively given by

Var(τ̂) ≈ 1
T

1
σ2

ε

1
1− 15λ6

( 1− λ2

1− 3λ4

(
183λ6 + 42λ4 + 14λ2 + 1

))
,

Var(τ̃) ≈ 1
T

(1− λ2)
(
1 + 22λ2 + 9τ2σ2

ε − 6
λ2

1− λ2

)
.

Assume σ2
ε = 1. Based on 1,000 MC replications, compute 95% coverage probabilities

of both estimators τ̂ and τ̃ for T = 1,000, using τ = ±0.1, ±0.4 and ± 0.6. In addi-
tion, with the above specifications, compute the average length of the 95% confidence
interval for both estimators. Compare and contrast the two estimators on the basis
of the simulation results.

6.6 Consider the BL model of Exercise 6.2. If σ2
ε is known, it follows from E(Yt) = τσ2

ε

that the moment estimator of τ is given by YT /σ2
ε . The solution of Exercise 6.2(c),

contains an expression for σ2
ε in terms of γY (0) and γY (1). Using this expression, and

assuming σ2
ε is unknown, Kim et al. (1990) propose the following method of moment

estimator τ̂∗ of τ

τ̂∗ =
2YT

{γ̂Y (0)− γ̂Y (1)}+ {γ̂2
Y (0)− 6γ̂Y (0)γ̂Y (1)− 3γ̂2

Y (1)}1/2
,

where γ̂Y (�) = T−1
∑T−�

t=1 (Yt−YT )(Yt+�−YT ) is the lag � sample ACVF, with normal-
izing constant T−1 instead of (T−�)−1. They show that T 1/2(τ̂∗−τ) is asymptotically
normally distributed with mean zero and with a lengthy expression for the variance.

(a) Based on 1,000 MC replications, compute the mean of the moment estimator τ̂∗

for T = 500 and 1,000, using τ = ±0.2 and ±0.4 as the parameters of the DGP.
Also, compute the mean of the CLS estimator τ̂ of τ .
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(b) For comparison purposes, compute the bootstrap mean and standard deviation
of τ̂∗ and τ̂ , using 1,000 BS replicates and with the same data sets and specific-
ations as in part (a). Comment on the obtained simulation results.

6.7 Consider the BL model (6.35) with τ = 0.6, and σ2
ε = 1.

(a) Let τ̂ be the estimator of τ as defined by (6.39). Based on 1,000 MC simulations
obtain the distribution of

√
T (τ̂−τ) and

√
T (σ̂ 2

ε −σ2
ε) for T = 250 and T = 1,000.

Investigate whether τ̂ is an unbiased and/or consistent estimator of τ .

(b) Also, argue whether or not σ̂ 2
ε will be an unbiased and/or consistent estimator

of σ2
ε .

6.8 Consider the following LSTAR(2; 1, 1) model

Yt = 1 + 0.9Yt−1 + (3− 1.7Yt−1)/(1 + exp(−10(Yt−1 − 5))) + εt, {εt} i.i.d.∼ N (0, 1).

(a) Using the R-tsDyn package, generate 100 times series of length T = 200 of this
model, with starting condition Y0 = 0. Check the local stationarity of the
LSTAR model.

(b) Compute the sample distribution of the six parameter estimates. Comment on
the outcomes.

(c) Optional: If the S-Plus FinMetrics commercial software package is available,
repeat part (a). Compare the outcomes with those obtained in part (b).

6.9 As a part of the diagnostic checking stage, it is common to check the normality
assumption. The data file Example62 res.dat contains the SETAR residuals of model
(6.15).

(a) Using the Lin–Mudholkar test statistic (1.7), test the SETAR residuals for nor-
mality.

(b) Doornik and Hansen (2008) propose an omnibus test statistic for testing uni-
variate or multivariate normality; see, e.g., the function normality.test1 in the
R-normwhn.test package. Using this test statistic, investigate the normality as-
sumption of the SETAR residuals.
Also, perform the Doornik–Hansen test using the function normality.test2. The
associated test statistic allows for time series variables which are weakly depend-
ent rather than i.i.d. Explain the differences with the results from part (a) if
there are any?

(c) Relatively little is known about the finite-sample performance of diagnostic test
statistics applied to residuals of fitted nonlinear time series models. This ques-
tion explores this issue through a small MC simulation experiment. In particular,
consider the SETAR(2; 1, 1) model

Yt =
{

0.3− 0.5Yt−1 + σ1εt if Yt−1 ≤ 0,
−0.1 + 0.5Yt−1 + σ2εt if Yt−1 > 0,

where (i) σ1 = σ2 = 1 (homoskedastic case), and (ii) σ1 =
√

2, σ2 = 1 (hetero-
skedastic case), and {εt} i.i.d.∼ N (0, 1).
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Using bootstrapped CLS–SETAR residuals, compare the empirical size of the
Lin–Mudholkar normality test statistic and the Doornik–Hansen omnibus nor-
mality test statistics for T = 100 and T = 300, and at nominal significance levels
α = 0.01, 0.025, and 0.05. Set the number of BS replicates at B = 10,000, and
assume that the threshold parameter r = 0 and the delay d = 1 are known.
Also, as a benchmark, compute the empirical size of both test statistics for pure
i.i.d. N (0, 1) errors.



Chapter 7
TESTS FOR SERIAL INDEPENDENCE

Testing for randomness of a given finite time series is one of the basic problems of
statistical analysis. For instance, in many time series models the noise process is
assumed to consist of i.i.d. random variables, and this hypothesis should be testable.
Also, it is the first issue that gets raised when checking the adequacy of a fitted
time series model through observed “residuals”, i.e. are they approximately i.i.d.
or are there significant deviations from that assumption. In fact, many inference
procedures apply only to i.i.d. processes.

In Section 1.3.2, we noted that the traditional sample ACF and sample PACF are
rather limited in measuring nonlinear dependencies in strictly stationary time series
processes. As a result a wide variety of alternative dependence measures have been
proposed, often resulting in test statistics which have appealing statistical properties.
Broadly, these test statistics can be divided into two categories: those designed with
a specific nonlinear alternative in mind – such as the time-domain test statistics
discussed in Chapter 5 – and serial independence tests. When the parameters of the
fitted model are known, these latter tests are useful to detect neglected structure
in residuals. In reality, however, the model parameters are unknown. This has
motivated the development of nonparametric test statistics for serial independence.
In fact, over the past few years, enormous progress has been made in this area.

In this chapter, we consider both historic and more recent work in the area
of nonparametric serial independence tests for conditional mean models. In the
next section, we start off by expressing the null hypothesis of interest in various
forms. In Section 7.2, we introduce a number of distance measures and dependence
functionals. Jointly with a particular form of the null hypothesis, these measures
and functionals are the “backbone” for constructing the test statistics in Sections 7.3
and 7.4. Here, we distinguish between procedures for testing first-order, or single-
lag, serial dependence (two dimensions), and high-dimensional tests. Throughout
the chapter, a number of examples illustrate the performance of the proposed test
statistics on empirical data. In Section 7.5, this is complemented with an application
of high-dimensional serial independence test statistics to a famous data set.
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To facilitate reading, technical details will be kept to a minimum. They are only
provided to understand the main premises underlying the construction of the test
statistics. In particular, three technical appendices are added to the chapter. In Ap-
pendix 7.A, we briefly discuss kernel-based density and regression estimation in the
simple setting of i.i.d. DGPs. Many of the nonparametric methods discussed in this
chapter are direct generalizations of this case. In Appendix 7.B, we present a general
overview of copula theory. Finally, in Appendix 7.C, we provide some information
about the theory of U- and V-statistics. These notions are often mentioned in this
chapter as useful ways to derive asymptotic theory of certain test statistics.

7.1 Null Hypothesis

Let {Yt, t ∈ Z} be a strictly stationary time series process with values in R. The
null hypothesis of interest is

H0 : {Yt} i.i.d.∼ μ, (7.1)

where μ is some probability measure on the real line associated with {Yt, t ∈ Z}. In
practice, it will not be easy to uniquely determine dependencies in a set of observed
time series data given the above setup. Rather than focusing on a single time series
in R, it is practical to consider a time series process in Rm, which at lag �, is given
by

Y(�)
t = (Y1,t, . . . , Ym,t)′ = (Yt, Yt−�, . . . , Yt−(m−1)�)

′, (m ∈ Z+, � ∈ Z),

with probability measure, say μ
(1)
m . Then the null hypothesis of serial independence

can be rephrased as

H0 : μ(1)
m = μ(2)

m (m ∈ N+), (7.2)

where for any Borel-measurable set A ∈ Rm

μ(2)
m (A) =

∫
A

dμ(y1)× · · · × dμ(ym)

which is invariant under permutations of the m coordinates.1

Alternatively, a more direct formulation of the null hypothesis of serial inde-
pendence, follows from assuming that {Y(�)

t , t ∈ Z} admits a common continuous
joint density function fm(A). Denote the marginal density function by f(y). Then,
if {Yt, t ∈ Z} is i.i.d., the joint density function will be equal to the product of the
individual marginals, and the hypothesis of interest is

H0 : fm(y) = f(y1)× · · · × f(ym), ∀y ∈ Rm. (7.3)
1For continuous distributions, the measure μ(y) is zero at a single point y = (y1, . . . , ym)′, so

we should consider μ(·) on measurable (compact) subsets A of Rm.
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Moreover, if {Y(�)
t , t ∈ Z} admits a continuous distribution function Fm(y), the

above hypothesis can also be formulated in terms of joint and marginal distribution
functions, i.e.,

H0 : Fm(y) = F (y1)× · · · × F (ym), ∀y ∈ Rm, (7.4)

where F (yi) is the marginal distribution of {Yt−(i−1)�} (i = 1, . . . ,m).
In view of the one-to-one correspondence between distribution functions and

characteristic functions, it is natural to construct serial independence test stat-
istics on the basis of the difference between the joint characteristic function of
{Y(�)

t , t ∈ Z} and the product of its marginal characteristic functions. Specific-
ally, let φ�(u) = E{exp

(
i(

∑m
k=1 ukYt−(k−1)|�|)

)
} be the joint characteristic function

where u = (u1, . . . , um)′ ∈ Rm. Then the difference between φ�(·) and the product
of the marginal characteristic functions φ(uk) = E{exp(iukYt)} (k = 1, . . . ,m) can
be expressed as

D�(u) = φ�(u)−
m∏

k=1

φ(uk), � = 0,±1, . . . . (7.5)

This expression is zero ∀u ∈ Rm, if and only if there is no serial dependence of order
m− 1 or, equivalently,

H0 : D�(u) = 0, ∀u ∈ Rm. (7.6)

Finally, an equivalent formulation of the null hypothesis of serial independence
can be based on copula functions. To be more specific, consider an m-dimensional
joint CDF Fm(y): Rm → [0, 1], with marginal distributions F (yi) which are assumed
to be absolutely continuous. According to Sklar’s theorem (see Appendix 7.B), there
exists an m-copula function C(·) of {Y(�)

t , t ∈ Z}, such that ∀y ∈ Rm, Fm(y) =
C

(
F (y1), . . . , F (ym)

)
. The corresponding joint pdf is

fm(y) = c
(
F (y1), . . . , F (ym)

) m∏
i=1

f(yi), (7.7)

where c(u), the density of the copula C(u), is given by

c(u) =
∂ mC(u)

∂u1 × · · · × ∂um
=

fm(u)∏m
i=1 f(ui)

, u ∈ [0, 1]m. (7.8)

Hence, in terms of copulas, (7.3) corresponds to testing the null hypothesis

H0 : c(u) = 1. (7.9)

For each of the null hypotheses specified above any deviation from the corresponding
equality is evidence of serial dependence.
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7.2 Distance Measures and Dependence Functionals

7.2.1 Correlation integral

In view of the null hypothesis (7.2), Grassberger and Procaccia (1983) propose the
so-called correlation integral as a measure of spatial correlation in {Y(�)

t , t ∈ Z} with
� = 1, which we denote by {Yt, t ∈ Z}. This measure of distance is characterized by

Cm,Y (h) =
∫
Rm

∫
Rm

I(‖ y − x ‖≤ h)dμm(y)dμm(x), (7.10)

where h is a bandwidth, depending on T , and ‖ · ‖ a norm (e.g., Euclidean norm).2

If the m-dimensional time series process {Yt, t ∈ Z} clusters in any dimension, then
Cm,Y (h) will take on relatively large values. If, however, the time series process is
i.i.d. the correlation integral factorizes, i.e.

Cm,Y (h) = {C1,Y (h)}m, (7.11)

and this equality can be used as a basis for a test of serial independence. Note that
for (7.11) no moments of {Yt, t ∈ Z} are required.

7.2.2 Quadratic distance

Model fit assessment for i.i.d. (time-independent) data is usually based, explicitly, or
implicitly, on measures of distance Δ(μF , μG) between probability measures μF and
μG. One particular class of measures is the kernel-based quadratic distance defined
as

ΔK(μF , μG) =
∫ ∫

K(s, t)d(μF − μG)(s)d(μF − μG)(t), (7.12)

where K(s, t) (possibly depending on G) is a bounded, symmetric kernel function on
the two-dimensional sample space. This form is asymmetric in μF and μG, but it is
symmetric with respect to interchanging μF and μG. For computational purposes
(7.12) can be written in the form

ΔK(μF , μG) = K(μF , μF )−K(μF , μG)−K(μG, μF ) +K(μG, μG),

where K(A,B) =
∫∫

K(s, t)dA(s)dB(t).
Clearly, the building block of (7.12) is the kernel function K(·, ·). This function is

assumed to be bounded, absolutely integrable, and consequently it has an FT which
does not vanish on any interval. Then, in analogy with matrix theory, its associated
quadratic form

∫∫
K(s, t)dσ(s)dσ(t) is called nonnegative definite, for all bounded

signed measures σ.

2Within the information theoretic literature the symbol ε is often used for the bandwidth, also
called tolerance distance or cut-off threshold.
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Figure 7.1: Three kernel functions (left panel) and their associated FTs (right panel):
Gaussian (black solid line), squared Cauchy (blue medium dashed line), and uniform (red
dotted line).

Example 7.1: Some Kernel Functions and their FTs

Figure 7.1 shows plots of three kernel functions and their associated FTs. In
particular, we have (i) the Gaussian kernel K(x) = e−x2

and its FT K̃(ω) =√
πe−ω2/4; (ii) the squared Cauchy kernel K(x) = 1/(1 + x2)2 and its FT

K̃(ω) = π(|ω| + 1)e−|ω|; and (iii) the uniform kernel K(x) = I(|x| ≤ 1) and
its FT K̃(ω) = (2/ω) sin(ω). Note, that the Gaussian kernel has a Gaussian
density as its FT, which is everywhere positive. Hence, the Gaussian product
kernel is positive definite and defines a quadratic form suitable for detecting
any differences between a pair of distributions. Similarly, (ii) corresponds,
after normalizing, to a density function. On the other hand, (iii) is not a
positive definite kernel, as its FT takes negative values for certain frequencies.

A number of classically distances such as Pearson’s chi-square or Cramér–von
Mises (CvM), are quadratic distances; see Lindsay et al. (2008). For instance, within
the context of serial correlation tests, the L2-norm can be used. Specifically, given
the m-dimensional process {Yt, t ∈ Z}, a quadratic (Q) form measuring the serial
dependence in this process is given by

ΔQ(m) = ‖μ(1)
m − μ(2)

m ‖2 = (μ(1)
m , μ(1)

m )− 2(μ(1)
m , μ(2)

m ) + (μ(2)
m , μ(2)

m ), (7.13)

where

(μ(i)
m , μ(j)

m ) =
∫
Rm

∫
Rm

Kh(y − x)dμ(i)
m (y)dμ(j)

m (x), (i, j = 1, 2),

with Kh(·) a nonnegative definite, spherically symmetric m-variate kernel function,
and h > 0 a bandwidth parameter. To make the distance calculation explicit and
fast, we recommend kernels that factorize as Kh(z) =

∏m
i=1 K(zi)/h. Here, K(·)

is a one-dimensional kernel function, which is symmetric around zero. It is easily
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seen that the functional (μ(1), μ(1)) − (μ(2), μ(2)) with the ‘naive’ or identity kernel
function Kh(z) = I(|z| < h) corresponds to (7.11).

Because FTs leave the L2-norm invariant by Parseval’s identity (loosely speaking
the sum or integral of the square of a function is equal to the sum or integral of the
square of its FT), we can express (7.13) as

ΔQ(m) =
∫
Rm

∫
Rm

Kh(y − x)d(μ(1)
m − μ(2)

m )(y)d(μ(1)
m − μ(2)

m )(x)

=
∫
Rm

K̃h(ξ)|φ
(
μ(1)

m (ξ)
)
− φ

(
μ(2)

m (ξ)
)
|2dξ, (7.14)

where K̃h(·) is the FT of Kh(·), φ
(
μ

(i)
m (·)

)
the characteristic function of μ

(i)
m (·), and

| · | the modulus.

Example 7.2: An Explicit Expression for ΔQ(·) (Diks, 2009)

Let {Yt, t ∈ Z} be a strictly stationary time series process with a standard
normal marginal distribution. The joint density function of {Yt, t ∈ Z} is of
the form fm(y) = (2π)−m/2|R|−1/2 exp(−1

2y
′R−1y) where y = (y1, . . . , ym)′

and R is the m×m correlation matrix of {Yt, t ∈ Z}, which is assumed to be
positive definite. The Gaussian density product kernel is given by Kh(y−x) =
(2
√

πh)−m
∏m

i=1 exp
(
− (yi − xi)2/(4h2)

)
, where the factor 4 is chosen for

convenience as it simplifies some of the results given below.

Evaluating the multivariate normal integral in (7.14) can be simplified by
making the transformation z = Vy, where V is an orthogonal matrix and
where, by the spectral decomposition of a positive definite symmetric mat-
rix, R = VDV′, with D = diag(λ2

1, . . . , λ
2
m) giving the joint pdf f∗

m(z) =
(2π)−m/2

∏m
i=1 λ−1

i exp
(
− z2

i /(2λ2
i )

)
, with the Jacobian of the transformation

equal to unity. Denote the product of the marginal pdfs of the transformed
process by f 0(·). Then, replacing dμm(y) by dyfm(y), it is easy to see that

(μ(1)
m , μ(1)

m )=
∫
Rm

∫
Rm

Kh(r−s)drf∗
m(r)dsf∗

m(s)=
1

(2
√

π)m

m∏
i=1

1√
h2 + λ2

i

,

(μ(1)
m , μ(2)

m )=
∫
Rm

∫
Rm

Kh(r−s)drf∗
m(r)dsf 0

m(s)

=
1

(2
√

π)m

m∏
i=1

1√
h2 + (λ2

i + 1)/2
,

(μ(2)
m , μ(2)

m )=
∫
Rm

∫
Rm

Kh(r−s)drf 0
m(r)dsf0

m(s)=
1

(2
√

π)m

m∏
i=1

1√
h2 + 1

.

Combining terms gives an explicit, no-integration needed, formula for ΔQ(m).
If, for example m = 2, λ2

1,2 = 1 ± ρ, where ρ is the correlation coefficient
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Figure 7.2: Distance ΔQ(2) between a bivariate standard normal distribution and a cor-
related bivariate normal distribution with correlation coefficient ρ, for different values of
h.

between Yt and Yt−1. Consequently,

ΔQ(2) =
1
4π

( 1√
(h2 + 1)2 − ρ2

− 2√
(h2 + 1)2 − ρ2/4

+
1

h2 + 1

)
. (7.15)

Figure 7.2 shows ΔQ(2) for bandwidths h = 0.2, 0.3, 0.5, and 1.0 as a function
of |ρ|. Note from (7.15) that, as h → 0, the limiting squared distance function
is well-defined which need not be the case for other combinations of kernel
functions and pdfs.

7.2.3 Density-based measures

Several density-based measures can be used for testing (7.3). Here, we consider the
case of pairwise (m = 2) serial dependence, and suppress the dependence on m for
notational clarity. That is, for a strictly stationary time series process {Yt, t ∈ Z}
with marginal density function f(·) and joint pdf f�(·, ·) of (Yt, Yt−�)′ (� ∈ Z), we
measure the degree of dependence by Δ(�) ≡ Δ

(
f�(x, y), f(x)f(y)

)
. It is natural to

require that Δ(·) has the following basic properties: (i) nonnegativity, (ii) maximal
information, and (iii) invariance under continuous monotonic increasing transforma-
tions. For divergence measures not satisfying (iii), one can obtain scale and location
invariance by simply standardizing {Yt, t ∈ Z}, assuming that the second moments
exist. Or retain invariance under monotonic transformations by transforming the
data to any given marginal density function (e.g. take ranks or transform to a stand-
ard normal marginal). The second moment then doesn’t even need to exists.

The functionals considered below are all of the type

Δ(�) =
∫

S2

B{f�(x, y), f(x), f(y)}f�(x, y)dxdy, (7.16)
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where B(·, ·, ·) is a real-valued function, and the integrals are taken over the support,
say S2, of (Yt, Yt−�)′.

Several functionals have been proposed in the information theory literature.
Roughly, the resulting measures can be classified in four major categories:

• Generalized Kolmogorov (K) divergence measure

ΔK
q (�) =

{∫
S2

∣∣∣f�(x, y)− f(x)f(y)
∣∣∣qdxdy

}1/q
, (q > 0),

which for q = 1 is the L1-norm. ΔK
q (·) satisfies properties (i) – (ii), but not

(iii).

• Csiszár (C) (1967) divergence measure

ΔC(�) =
∫

S2

φ
{ f�(x, y)

f(x)f(y)

}
f�(x, y)dxdy,

where φ(·) is some strictly convex function on [0,∞). Thus, B{z1, z2, z2}
≡ φ(z1/z2z3).

• Rényi (R) (1961) divergence measure

ΔR
q (�) =

1
q − 1

log
∫

S2

{
f�(x, y)

}q−1{
f(x)f(y)

}q
dxdy, (0 < q < 1).

• Tsallis (T) (1998) divergence measure

ΔT
q (�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1− q

∫
S2

{
1−

(f(x)f(y)
f�(x, y)

)1−q}
f�(x, y)dxdy (q �= 1),∫

S2

log
( f�(x, y)

f(x)f(y)

)
f�(x, y)dxdy (q = 1).

For testing purposes, both Rényi’s measure and Tsallis’ measure satisfy prop-
erties (i) – (iii).

The above list is far from exhaustive. Other possible candidates for meas-
uring statistical (serial) dependence include the difference functional (Skaug and
Tjøstheim, 1993a) which, if we set B{z1, z2, z3} = z1 − z2z3 in (7.16), is given by

Δ∗(�) =
∫

S2

{f�(x, y)− f(x)f(y)}f�(x, y)dxdy, (7.17)

and the Hellinger (H) (1909) distance which, with B{z1, z2, z3} =
(
1−(z1/z2z3)−1/2

)2,
is defined as

ΔH(�) =
∫

S2

{
f

1/2
� (x, y)−

(
f(x)f(y)

)1/2}2
dxdy

= 2− 2
∫

S2

(f(x)f(y)
f�(x, y)

)1/2
f�(x, y)dxdy.
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It is easy to see that the Hellinger distance is symmetric, and hence it can serve as
a distance measure contrary to other divergences.3

In addition, various relations exist between the divergence measures. For in-
stance, Rényi’s information divergence follows from Csiszár’s measure by taking
φ(u) = sign(u − 1)uq (u ≥ 0; q �= 1) which yields ΔR

q (·) = (q − 1)−1 log |ΔC
q (·)|.

The connection between Rényi’s measure and Tsallis’ measure is given by ΔR
q (·) =

(q−1)−1 log[1+(1+q) log ΔT
q (·)]. Clearly, when φ(·) is taken as the logarithmic func-

tion, Csiszár’s measure is equivalent to the KL information measure IKL(·). defined
in (1.18). Moreover, IKL(·) ≡ ΔT

1 (·) and ΔT

1/2(·) ≡ ΔH(·).

7.2.4 Distribution-based measures

In view of (7.4), test statistics for pairwise serial independence also have been pro-
posed on appropriate functionals measuring the distance between the joint distri-
bution function F�(x, y), suppressing the dependence on m, and the product of the
marginal distributions F (x)F (y). Two useful types of functionals for this purpose
are

Cq(�) =
∫

S2

ΔCR
q (�)dw�(x, y), and Cmax

q (�) = sup
S2

[ΔCR
q (�)w�(x, y)], (7.18)

where w�(·, ·) is a positive weight function and ΔCR
q (·) is the so-called Cressie–Read

(CR) (1984) divergence measure which, in a time series setting, is defined by

ΔCR
q (�) =

2
q + 1

{
F (x)F (y)

(F (x)F (y)
F�(x, y)

)q

+
(
1− F (x)F (y)

)(1− F (x)F (y)
1− F�(x, y)

)q
− 1

}
.

The Cressie–Read measure and Rényi’s divergence measure are related:

ΔCR
q (�) =

2
q + 1

{
exp

[
q
(
ΔR

q+1

(F (x)F (y)
F�(x, y)

)
+ ΔR

q+1

(1− F (x)F (y)
1− F�(x, y)

))]
− 1

}
.

By choosing different weight functions in (7.18), a number of “classical” function-
als follow. For instance, using q = 1 and w�(x, y) = F�(x, y)(1 − F�(x, y))dF�(x, y)
in Cq(·) gives the CvM functional

ΔCvM(�) =
∫

S2

{
F�(x, y)− F (x)F (y)

}2
dF�(x, y).

This measure satisfies the properties of nonnegativity and maximal information,
but is not invariant under continuous monotonic increasing transformations. By
evaluating the integral and replacing the distribution functions by their empirical

3The Hellinger (H) distance satisfies the inequality 0 ≤ ΔH(�) ≤ 2. Some authors prefer to have
an upper bound of 1; they include an extra factor of 1/2 in the definition of ΔH(�).
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counterparts, the CvM–GOF test statistic (4.38) can be obtained. Another well-
known functional follows from setting q = 1 and w�(x, y) = F�(x, y)(1− F�(x, y)) in
Cmax

q (·), i.e., (
ΔKS(�)

)2
=

(
sup
S2

|F�(x, y)− F (x)F (y)|
)2

,

where ΔKS(·) is the Kolmogorov–Smirnov (KS) divergence measure. This measure
satisfies the basic properties (i) – (iii). Setting q = 1 and w�(x, y) = dF�(x, y) in
Cq(·) generates the Anderson–Darling (AD) functional

ΔAD(�)=
∫

S2

(
F (x)F (y)−F�(x, y)

)2
F−1

� (x, y)
(
1−F�(x, y)

)−1
dF�(x, y),

which, after evaluating the integral and some algebra, leads to (4.39).
All the above measures consider the distance between two-dimensional densities

or two-dimensional distribution functions at a single-lag �. However, for testing
H

(�)
0 : f(Yt, Yt−�) = f(Yt)f(Yt−�), it is possible that two different lags � may give

conflicting conclusions. It is thus desirable to have a multiple-lag testing procedure.
One simple procedure is to form M linear combinations of single-lag two-dimensional
test functionals Δ(�), i.e.

Q(M) =
1√
M

M∑
�=1

Δ(�), (M ∈ N+), (7.19)

with corresponding null hypothesis

HP
0 : ∩M

�=1H
(i�)
0 , (i1 < · · · < iM ). (7.20)

Test statistics derived from (7.19) are portmanteau-type tests. Alternatively, one
may use the Bonferroni correction procedure, based on the p-values of the indi-
vidual single-lag serial correlation test statistics. Notice, however, that pairwise
(serial) independence for all combinations of paired random variables does not im-
ply joint (serial) independence in general. Hence, methods for the detection of serial
dependence in m > 2 dimensions are needed; see Section 7.4.

7.2.5 Copula-based measures

From (7.7), we see that factorization of the joint pdf in the product of marginals is
a property of the copula. In this sense the copula contains all relevant information
regarding the dependence structure of {Y(�)

t , t ∈ Z}. Thus, similar as the two-
dimensional density-based measures, it is natural to define m-dimensional copula-
based measures for serial dependence. Moreover, if the invariance property (iii) of
Section 7.2.3 holds, the dependence structure of {Y(�)

t , t ∈ Z} is completely captured
by the copula.
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Recall that Tsallis’ divergence satisfies (i) – (iii). In line with its definition in
Section 7.2.3, it is easy to see that an m-dimensional copula-based (denoted by the
superscript c) version of ΔT

q (·) is defined as

ΔT,c
m,q(�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1− q

∫
[0,1]m

{
1−

( 1
c(u)

)1−q}
c(u)du (q �= 1),∫

[0,1]m
c(u) log[c(u)]du (q = 1),

(7.21)

where c(u) is the copula density of {Y(�)
t , t ∈ Z}. It can be shown that ΔT,c

m,q(�) ≥ 0
and ΔT,c

m,q(�) = 0 if and only if the process {Y(�)
t , t ∈ Z} is serially independent.

Equivalently, ΔT,c
m,q(C) = 0 if and only if C(u) = Π (u), where Π (u) ≡

∏m
i=1ui being

the independence copula (m ≥ 2).
Other m-variate copula-based measures can be obtained in a similar manner as

we previously applied to introduce the four major density-based measures as special
cases of the general functional (7.16). In particular, in terms of the m-dimensional
copula density, we have

Δc
m(�) =

∫
[0,1]m

B{c(u, 1, . . . , 1)}du =
∫

[0,1]m
B c{c(u)}c(u)du (7.22)

as the copula-based version of (7.16).

7.3 Kernel-Based Tests

The distance measures and dependence functionals introduced in Sections 7.2.3 –
7.2.5 are central to many serial independence test statistics. However, the devil is in
the details; i.e., in the way these measures and functionals are made “operational”.
Clearly, the foundation stone is the dependence functional in (7.16). Depending on
the assumptions made on the joint and the univariate marginal distributions, three
general methods for estimating this functional are: parametric, semiparametric (cf.
Exercise 7.3), and nonparametric. In this section, we solely consider nonparametric
testing methods for which f(·) and f�(·, ·) are assumed to be unknown under the null
hypothesis of serial independence. Within this framework we need to ask, among
other things:

• What is the most appropriate technique to estimate the densities?

• Which divergence measure should we adopt?

• Should we compute the functional estimates directly, or can we approximate
the integration by a summation?

• Is there a need to include a trimming (weighting) function in the test func-
tional, that is, screening off outliers by bounding the set of observations to
some compact set?
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• What is the most appropriate method of computing p-values: a bootstrap
approach or an MC permutation (random shuffle) approach of the data at
hand?

Searching for answers to these questions, the work of Bagnato et al. (2014)
provides useful guidelines. These authors present an exhaustive MC simulation
comparison of the performance of ten nonparametric serial independence tests, both
single-lag and multiple-lag test procedures, using a wide class of linear and non-
linear models. They conclude that the integrated estimator of the KL functional
(recall IKL ≡ ΔT

1 ) combined with Gaussian kernel density estimation, provides the
best performance in terms of empirical size and power. Also, a permutation-based
approach is to be preferred over BS, and trimming functions are not needed. Below,
we discuss each of these observations and elaborate briefly on possible alternatives.

7.3.1 Density estimators
The Gaussian kernel-based estimator is commonly adopted in the context of non-
parametric serial independence testing. For the univariate density function f(·) it
is defined as

f̂(y) =
1
T

T∑
t=1

Kh(y;Yt), (7.23)

where Kh(y;Yt) = (
√

2πh)−2 exp{−(y − Yt)2/2h2} with h > 0 the bandwidth. Sim-
ilarly, the Gaussian product kernel density is often used for estimating the bivariate
density function f�(·, ·), i.e.,

f̂�(x, y) =
1

T − �

T−�∑
t=1

Kh(x; Yt)Kh(y; Yt+�). (7.24)

Common assumptions on the bandwidth are h ≡ hT → 0, and ThT →∞ as T →∞.
Using the same bandwidth for (7.23) and (7.24) is not necessary, but often simplifies
asymptotic analysis.

One approach to find the optimal bandwidth h is via likelihood cross-validation
(CV) (Silverman, 1986, p. 52). For a marginal density estimator, this approach
comes down to maximizing the loss-function

CV (h) =
1
T

T∑
t=1

log
{ 1

T − 1

T∑
s=1

Kh(Yt;Ys)I(s �= t)
}

, (7.25)

where the term in curly brackets represents the kernel-based “leave-one-out” density
estimator.4 This produces a density estimate which is “close” to the true density in
terms of the KL information divergence.

4As an aside, note that the local marginal density is usually not the main object of interest in
a testing context.
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The boundedness of the support set S of (Yt, Yt−�) in the nonparametric entropy-
based divergence measures ΔCR

q (·) and ΔT
1 (·) is a key assumption to establish the

asymptotic distribution theory of the resulting test statistics. Gaussian kernel estim-
ation suffers from so-called boundary effects with parts of the window devoid of data.
Such an effect can be diminished by, for instance, modifying the divergence measures
with a trimming function w(x, y) = I{(x, y) ∈ C} which selects only a compact set
C ⊆ S = SX ×SY . Two simple trimming functions, adopted by Fernandes and Néri
(2010) and Bagnato et al. (2014), are based respectively on the compact sets

Cu
1 = {u : |u−u| ≤ 2σ̂u} and Cu

2 = {u : ξ̂0.1(u) ≤ u ≤ ξ̂0.9(u)},

where u and σ̂u denote the sample mean and sample standard deviation, while ξ̂q(·)(
q ∈ (0, 1)

)
denotes the q-quantile of the empirical distribution. In addition, the

boundary effect can be corrected by using special boundary kernel density estim-
ators. Another widely-known way of nonparametric density estimation is to use
histogram methods. In the next section we discuss the histogram estimator within
the framework of high-dimensional copula estimation.

7.3.2 Copula estimators

Nonparametric estimates of the m-copula function C(u) can obtained in three steps.
First, every univariate marginal distribution function F (yi) of {Yi,t}T

t=1 (i = 1, . . . ,m)
is estimated by its rescaled empirical counterpart, i.e.,

F̂i,T (y) =
1

T + 1

T∑
t=1

I(Yi,t ≤ y), ∀y ∈ R. (7.26)

Next, the estimated marginal distribution functions are used to obtain the so-called
pseudo-observations , or PITs, Ût = (Û1,t, . . . , Ûm,t)′ with Ûi,t = F̂i,T (Yi,t). Note,
residuals are just a special case of pseudo-observations. Finally an estimator of
C(u), called the empirical copula , is defined as

ĈT (u) =
1
T

T∑
t=1

I(Ût ≤ u), u ∈ [0, 1]m. (7.27)

The factor T+1 in the denominator of (7.26) guarantees that the pseudo-observations
are strictly located in the interior of [0, 1]m. Observe that ĈT (u) is actually a
function of the rank Ri,t of Yi,t in the vector (Yi,1, . . . , Yi,T )′, since

(T + 1)F̂i,T (Yi,t) ≡ Ri,t =
T∑

j=1

I(Yj,t ≤ Yi,t), (1 ≤ i ≤ m; 1 ≤ t ≤ T ).

Hence, any rank test of serial independence is a function of ĈT (u). Due to the
invariance property of the ranks, the empirical copula is invariant under strictly
monotonic increasing transformations of the margins.
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In the one-dimensional case, classical histogram methods may be used to con-
struct root-n consistent density estimators with compact support. For m ≥ 2, a
conceptually easy way to obtain a copula-based histogram estimator is to divide the
sample space into hyper-rectangular regions (bins or cells) of equal size. To this end,
let (q1, . . . , qm)′ be an m-dimensional vector of integers, let (v1, . . . , vm)′ denote any
fixed m-vector, and let

Bq = {u : |ui − (vi + qihb)| ≤
1
2
hb, 1 ≤ i ≤ m}

represent the histogram bin-centered at vi +qihb. Here, hb is the binwidth , a number
which decreases to zero as T → ∞. Write Nq for the number of sample points Ût

which fall into bin Bq. Of course,
∑Q

q=1 Nq = T with Q the total number of bins.
Then, for u ∈ Bq, the equidistant histogram estimate of the copula density c(u) is
given by

ĉhb
(u) =

Nq

Thm
b

, (7.28)

and

Δ̂T,c
1 (�) =

1
T

Q∑
q=1

Nq log
( Nq

Thm
b

)
=

1
T

Q∑
q=1

Nq log Nq − log(Thm
b ) (7.29)

is a copula-based estimator of ΔT
1 (·). The optimal value of hb, minimizing the mean

squared error, is of order O(T−1/(2+m)); cf. Silverman (1986).

7.3.3 Single-lag test statistics

Table 7.1 offers a list of eight pairwise (single-lag) serial independence test statistics
along with their corresponding divergence measures. For completeness, we add the
following details.

• The test statistic Δ̂CT
T,1(·) employs histogram-based density estimators with

equidistant cells while all other tests use kernel-based density estimators.

• The test statistics Δ̂R
T,γ(·), Δ̂ST1

T (·), Δ̂ST2
T (·), Δ̂GL

T (·), and Δ̂FN
T,q(·) all make use

of the Gaussian kernel density estimator. In contrast, Δ̂HW
T (·) uses “leave-one-

out” marginal and bivariate kernel density estimators, with a special provision
in the kernel function to avoid boundary effects; see Hong and White (2005).

• Apart from Δ̂CT
T,1(·), the tests have an asymptotic normal distribution under

the null hypothesis of pairwise serial independence. Under weak regularity
conditions, it can be shown (see the cited references) that all tests are consist-
ent against lag one dependent alternatives. No limiting distribution theory is
available for Δ̂CT

T,1(·) which has hindered its application in practice.
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Table 7.1: Single-lag (m = 2) serial independence tests.

Reference Divergence measure Test statistic(1)(2)(3)

Density functions

Chan and Tran (1992) ΔK
1 Δ̂CT

T,1(�) =
∑

t∈ST (�)

|f̂(Yt, Yt−�) − f̂(Yt)f̂(Yt−�)|

Robinson (1991) (4) IKL ≡ ΔT
1 Δ̂R

T,γ(�) =
1

T − �

∑
t∈ST (�)

Ct(γ) log
( f̂(Yt, Yt−�)

f̂(Yt)f̂(Yt−�)

)

Skaug and Tjøstheim (1993a)
⎫⎬⎭

ΔH Δ̂ST1
T (�) =

1

T − �

∑
t∈ST (�)

2
{

1−
√√√√ f̂(Yt, Yt−�)

f̂(Yt)f̂(Yt−�)

}
wt(�)

Skaug and Tjøstheim (1996) Δ∗ Δ̂ST2
T (�) =

1

T − �

∑
t∈ST (�)

{f̂(Yt, Yt−�)

−f̂(Yt)f̂(Yt−�)}wt(�)

Granger and Lin (1994) 1 − e−2IKL
Δ̂GL

T (�) = 1 − exp
[ −2

T − �

∑
t∈ST (�)

log
( f̂(Yt, Yt−�)

f̂(Yt)f̂(Yt−�)

)]
Hong and White (2005) IKL ≡ ΔT

1 Δ̂HW
T (�) =

1

T − �

∑
t∈ST (�)

log
( f̂(Yt, Yt−�)

f̂(Yt)f̂(Yt−�)

)
Fernandes and Néri (2010) ΔT

q∈{ 1
2 ,1,2,4} Δ̂FN

T,q(�) =
1

(1 − q)(T − �)
×∑

t∈ST (�)

{
1 −
( f̂(Yt)f̂(Yt−�)

f̂(Yt, Yt−�)

)1−q}
wt(�)

Distribution functions

Skaug and Tjøstheim (1993b) ΔCvM Δ̂ST3
T (�) =

1

T − �

T−�∑
t=1

{F̂ (Yt, Yt+�)

−F̂ (∞, Yt)F̂ (Yt+�,∞)}2

(1) ST (�) ≡ {t ∈ N : � < t ≤ T, f̂2(Yt, Yt−�) > 0, f̂(Yt) > 0, f̂(Yt−�) > 0}.
(2) Ct(γ) = 1 − γ if t is odd, and Ct(γ) = 1 + �γ if t = 1, mod(� + 1) and Ct(γ) = 1 − γ otherwise,

with γ ∈ (0, 1).
(3) wt(�) = I{(Yt, Yt−�) ∈ S2} is a trimming (weight) function.
(4) When � = 1, Robinson’s (1991) test has the form R(�) ≡ (1/[2(� + 1)(T − 1)γ2v̂δ ])1/2Δ̂R

T,γ(�) where

v̂δ ≡ T−1
∑

t∈ST
Ct(δ)(log f̂(Yt))2 − [T−1

∑
t∈ST

Ct(δ) log f̂(Yt)]2,

ST ≡ {t ∈ N : 1 ≤ t ≤ T, f̂(Yt) > 0} with δ ∈ [0, 1).

• The trimming function wt(�) is generally not needed for Δ̂ST1
T (·) and Δ̂ST2

T (·).
For i.i.d. data from the uniform distribution, wt(�) is needed to prevent degen-
eracy, because otherwise the asymptotic variance of the test statistics would
vanish to 0.

• The test statistic Δ̂ST3
T (·) utilizes the following unbiased estimators of the one-

and two-dimensional EDF of {Yt}T
t=1, respectively,

F̂T (y) =
1
T

T∑
t=1

I(Yt ≤ y), F̂�,T (x, y) =
1

T − �

T−�∑
t=1

I(Yt ≤ x)I(Yt+� ≤ y).

Observe, all test statistics in Table 7.1 have an equivalent integral representa-
tion. Also, using the copula-based measure (7.21) in conjunction with the copula
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estimators of Section 7.3.2, the construction of copula-based serial independence test
statistics is entirely obvious.

The results in Table 7.1 prompt the question: is there a test statistic preferable
over others? Partly, the answer comes from the MC simulation study of Bagnato et
al. (2014) to which we already alluded earlier. These authors recommend using the
KL functional ΔKL

1 (·) combined with Gaussian kernel density estimation, and with
a slight preference for the integral representation of the resulting test statistic over
its summed counterpart. Simulation results reported by Hong and White (2005)
show that Δ̂HW

T (·) has much lower power than Δ̂ST2
T (·), but it is always better than

or equal to the power of Δ̂R
T,γ(·) for all DGPs and sample sizes under consideration.

7.3.4 Multiple-lag test statistics

The test statistics in Section 7.3.3 are informative in revealing serial dependence at
individual lags. On the other hand, as already mentioned in Section 7.2.4, the pair-
wise approach depends on the choice of the lag order. To mitigate this problem, we
introduce the two-dimensional test functional Q(M) jointly with the null hypothesis
(7.20). A portmanteau-type estimator of Q(M) can be defined as

Q̂(M) =
1√
M

M∑
�=1

Δ̂(�), (M ∈ N+), (7.30)

where, except for the test statistic proposed by Chan and Tran (1992), Δ̂(·) can
be one of the single-lag test statistics listed in Table 7.1. Hong and White (2005)
consider (7.30) with Δ̂(·) replaced by Δ̂HW

T (·), R(·) (see Table 7.1, footnote (4)), and
Δ̂ST2

T (·). In each case the resulting portmanteau-type test statistic has an asymptotic
normal null distribution. Bagnato et al. (2014) only focus on the integrated Gaussian
kernel estimator of ΔT

1 (·). These authors conclude that, as opposed to a simultaneous
test based on the Bonferroni procedure, the portmanteau-type test statistic is the
best choice since it preserves size across lags.

Using the CvM functional, Hong (1998) considers a modified version of the
portmanteau-type pairwise serial independence test statistic of Skaug and Tjøstheim
(1993b). That is,

Q̂H1(M) =
M∑
�=1

(T − �)Δ̂ST3
T (�). (7.31)

Thus, similar as the well-known LB portmanteau-type test statistic for joint signi-
ficance of the first M serial autocorrelation coefficients, the test statistics Δ̂ST3

T (�)
(� = 1, . . . ,M ) are weighted. A sensible generalization of (7.31) is to include a
symmetric continuous window kernel λ(·) with λ(0) = 1. This ensures that the
asymptotic bias of the test statistic vanishes.
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Under the null hypothesis of serial independence {(T−�)Δ̂ST3
T (�); � = 1, . . . , T−1}

can be viewed as an asymptotically i.i.d. sequence with mean 1/62 and variance
2/902. These results suggest the test statistic

Q̂H2(M) =
∑T−1

�=1 λ2(�/M){(T − �)Δ̂ST3
T (�)− 1/62}√

2
∑T−2

�=1 λ4(�/M)/902

, (7.32)

with the Daniell lag window λ(u) = sin(πu)/πu, which is optimal over a class of
window kernels that includes the Parzen window; see (4.18). Based on the theory
of degenerate V-statistics, it can be shown that (7.32) has a limiting N (0, 1) distri-
bution, under the null hypothesis of serial independence. A simple way to obtain
p-values is via the smoothed BS or permutation method; see Section 7.3.6 for details.

Example 7.3: Magnetic Field Data (Cont’d)

In Example 1.3, we saw that the magnetic field data is highly nonlinear. Terdik
(1999, p. 207) fits the following diagonal BL model to the series {Yt}1,962

t=1

Yt = 0.5421Yt−1 + 0.0541Yt−1εt−1 + εt,

with residual variance σ̂2
ε = 0.2765. The sample residual ACF shows significant

(5% level) values at lags � = 3, 4, 6, 7, 9, and 10. Clearly, it is likely that the
fitted model is not appropriate. To investigate this in more detail, we consider
Δ̂ST2

T (�) (� � T ) and a standardized version of this test statistic, namely

J T (�) = Ŝ−1(T − �)1/2Δ̂ST2
T (�)

= Ŝ−1(T − �)−1/2
T∑

t=�+1

{f̂(Yt, Yt−�)− f̂(Yt)f̂(Yt−�)}wt(�),

where Ŝ2 is a consistent asymptotic variance estimator. Under H0, J T (�) D−→
N (0, 1), as T →∞. For the Gaussian kernel density estimators, we obtain the
bandwidth h through a data-driven bandwidth method; see, e.g., Hong and
White (2005, p. 859) and Bagnato et al. (2014).

Based on 1,000 bootstrap replicates, both test statistics Δ̂ST2
T (�) and J T (�)

have nearly zero p-values for all lags � from 1 to 10. Moreover, the multiple-
lag portmanteau-type test statistics have p-values less than 0.05 for M = 2,
4, 6, and 8. All these test results indicate that the residuals are not serially
independent, suggesting that the fitted BL model is far from adequate.

7.3.5 Generalized spectral tests

Recall from Chapter 4 that the dependence of a strictly stationary time series {Yt, t ∈
Z} can be characterized by the spectral density function fY (ω) defined by (4.3), or
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alternatively by its spectral distribution function FY (ω) defined by

FY (ω) = 2
∫ ωπ

0
fY (ω)dω = ω + 2

∞∑
�=1

γY (�)
sin(πω�)

�π
, ω ∈ [0, 1]. (7.33)

Thus, under the null hypothesis of serial independence FY (ω) = ω, which is analog-
ous to a flat spectrum. Flat spectra, however, can result from nonlinear processes
which would be accepted as WN by a test statistic based on (7.33) with a high prob-
ability. For example, the BL process Yt = βεt−1εt−2 + εt, where {εt} ∼ WN(0, σ2

ε),
has γY (�) = 0 for � > 0, hence estimates of the spectrum will be constant over all
frequencies ω.

As an alternative, Hong (2000) introduces two test statistics (denoted by the
superscripts H1 and H2) for pairwise serial independence using a generalized spec-
trum. The key idea of the generalized spectrum is to transform {Yt, t ∈ Z} via a
complex-valued exponential function

Yt −→ exp(iuYt), u ∈ R,

and then consider the spectrum of the transformed process. Specifically, let φ(u1) =
E{exp(iu1Yt)} be the marginal characteristic function of the process {Yt, t ∈ Z},
and let φ�(u1, u2) = E{exp

(
i(u1Yt +u2Yt−|�|)

)
} (� = 0,±1, . . .) be the pairwise joint

characteristic function of {(Yt, Yt−|�|)}. Then the lag � ACVF of the transformed
processes is given by

γu1,u2(�) ≡ Cov
(
eiu1Yt , eiu2Yt−|�|

)
= φ�(u1, u2)−

2∏
k=1

φ(uk) ≡ D�(u1, u2), (7.34)

where D�(·, ·) is defined by (7.5). If γu1,u2(�) = 0 ∀(u1, u2) ∈ R2, then there is no
serial dependence between Yt and Yt−|�|, otherwise there is. In other words, the null
hypothesis of interest is given by (7.6) with m = 2.

Now, suppose that sup(u1,u2)∈R2

∑∞
�=−∞ |γu1,u2(�)| < ∞, which holds under a

proper mixing condition. Then the FT of γu1,u2(�)

fY (ω, u1, u2) =
∞∑

�=−∞
γu1,u2(�) exp(−2πiω�), ω ∈ [0, 1], (7.35)

exists. Because −∂2fY (ω, u1, u2)/∂u1∂u2|(0,0) = fY (ω), (7.35) is called a generalized
spectral density of {Yt, t ∈ Z}, although it does not have the mathematical properties
of a pdf. Similarly, a generalization of (7.33), is given by

FY (ω, u1, u2) = γu1,u2(0)ω + 2
∞∑

�=1

γu1,u2(�)
sin(πω�)

�π
, ω ∈ [0, 1], (7.36)

which is called a generalized spectral distribution function. However, unlike higher-
order spectra, (7.35) and (7.36) do not require any moment conditions on {Yt, t ∈ Z}.
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A plausible estimator for FY (·) is

F̂T (ω, x, y) = γ̂x,y(0)ω + 2
T−1∑
�=1

(
1− �

T

)1/2
γ̂x,y(�)

sin(πω�)
�π

, (7.37)

where
γ̂x,y(�) = F̂�,T (x, y)− F̂T (x,∞)F̂T (∞, y), (� = 1, . . . , T − 1),

with

F̂�,T (x, y) =
1

T − �

T−�∑
t=1

I(Yt ≤ x)I(Yt+� ≤ y).

The factor (1 − �/T )1/2 in (7.37) is a small sample correction for weighting down
higher order lags �.

Utilizing the CvM functional, the “summed version” of a test statistic for pair-
wise serial independence is given by

Δ̂H1
FY

=
T−1∑
�=1

T − �

(�π)2
( 1

T 2

T∑
t=1

T∑
s=1

γ̂2
Yt,Ys

(�)
)
. (7.38)

A second test statistic, based on the KS functional, is given by

Δ̂H2
FY

= max
1�t,s�T

sup
ω∈[0, 1]

∣∣∣ T−1∑
�=1

(T − �)1/2γ̂Yt,Ys(�)
√

2 sin(πω�)
�π

∣∣∣. (7.39)

Note that both test statistics do not assume that the lag order M is known a priori.
This may be appealing, since for certain DGPs it is not obvious how to choose the
optimal lag order leading to the highest power of a particular serial independence
test statistic.

Under H0, and assuming that the stationary process {Yt, t ∈ Z} has a continuous
marginal distribution function FY (·), it can be shown (Hong, 2000) that the test
statistics (7.38) and (7.39) are asymptotically distributed as, respectively,

Δ̂H1
FY

D−→
∞∑

i,j,l=1

1
(iπ)2

1
(jπ)2

1
(lπ)2

Z2
ijl (7.40)

and

Δ̂H2
FY

D−→ sup
(ω1,ω2,ω3)∈[0, 1]3

∣∣∣ ∞∑
i,j,l=1

√
2 sin(iπω1)

(iπ)2

√
2 sin(jπω2)

(jπ)2

√
2 sin(lπω3)

(lπ)2
Zijl

∣∣∣, (7.41)

where {Zijl; i, j, l ≥ 1} are i.i.d. N (0, 1) random variables. Both test statistics enjoy
the nuisance-parameter-free property , which ensures that their critical values and/or
p-values can be obtained by directly simulating Δ̂H1

FY
and Δ̂H2

FY
.
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Example 7.4: U.S. Unemployment Rate (Cont’d)
In this example we explore residual serial dependence using the test statistics
(7.38) and (7.39). To this end, we continue our analysis of the quarterly
U.S. unemployment rate (original data), but now for the subperiod 1948 –
1993. Montgomery et al. (1998) fit the following SETAR(2; 2, 2) model to
the first differences {ΔYt = Yt − Yt−1}184

t=2 (asymptotic standard errors are in
parentheses):

ΔYt =
{

0.01(0.03) + 0.73(0.10)ΔYt−1 + 0.10(0.12)ΔYt−2 + ε
(1)
t if ΔYt−2 ≤ 0.1,

0.18(0.09) + 0.80(0.12)ΔYt−1 − 0.56(0.16)ΔYt−2 + ε
(2)
t if ΔYt−2 > 0.1.

The residual variances are respectively 0.076 and 0.165. Note that, apart
from the constant and the AR(2) term in the lower regime, all coefficients are
significantly different from zero at the 5% nominal level.

Significant (5% nominal level) residual autocorrelations were noticed at lags
� = 4 and 5, suggesting that the above model specification is not adequate.
To follow along, we selected 100 grid points for computing the frequencies ω
and 1,000 BS samples. Using the naive bootstrap, and with 181 observations,
the p-values of Δ̂HW1

FY
and Δ̂HW2

FY
are respectively 0.09 and 0.03. Thus, only the

second test statistic reveals that the residuals are not serially independent.

7.3.6 Computing p-values
It has been extensively documented that the normal approximation based on the
asymptotic distribution of many kernel-based test statistics does not perform well
in finite samples. As a possible alternative, one can simulate a large number of
time series satisfying the null hypothesis, and calculate empirical quantiles and/or
p-values from the null distribution of the sampled test statistic. This approach is
suitable only if the marginal distribution under the null hypothesis is known, or if the
distribution of the test statistic is (asymptotically) independent of the (unknown)
marginal distribution. Since these options are generally not available in practice, it
is better to reflect the nonparametric nature of the null hypothesis through the use
of either random permutation or BS approaches.

Bootstrapping
Unfortunately, the naive nonparametric bootstrap cannot be used with many en-
tropy-based serial independence test statistics (e.g., ΔGL

T , ΔHW
T , and ΔFN

T,q) since
their leading term is a degenerate U-statistic under H0. Consequently, the bootstrap
fails to mimic the limiting distribution of the test statistic. Instead, the following
practical procedure is recommended.

Algorithm 7.1: Bootstrapped p-values for single-lag tests
(i) Compute Δ̂(0)(�) (� = 1, . . . , T − 1) using the original data {Yt}T

t=1, and a
kernel density estimator with a fixed bandwidth h. Here Δ̂(0)(�) is any of
the test statistics defined above.
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Algorithm 7.1: Bootstrapped p-values for single-lag tests (Cont’d)

(ii) Draw a bootstrap sample {Y ∗
t }T

t=1 from the smoothed kernel density (7.23)
where Kh(·) and h are the same as used for the computation of Δ̂(0)(�).
Then, compute a bootstrap statistic Δ̂∗,(0)(�), in the same way as Δ̂(0)(�),
using {Y ∗

t }T
t=1.

(iii) Repeat step (ii) B times, to obtain {Δ̂∗,(b)(�)}B
b=1.

(iv) Compute the one-sided bootstrap p-value as

p̂(�) =
1 +

∑B
b=1 I

(
Δ̂∗,(b)(�) ≥ Δ̂(0)(�)

)
1 + B

.

This procedure maintains the asymptotically pivotal character of the entropy-
based test statistics. That is, the distribution of the tests does not depend on any
unknown parameters under the null hypothesis of pairwise serial independence.

Permutation
When testing a composite hypothesis, an exact level MC test statistic can be ob-
tained by conditioning on an observed value of a minimal sufficient statistic under
the null hypothesis (Engen and Lilleg̊ard, 1997). By definition, the resulting distri-
bution does not depend on unknown parameters so that it can be used to simulate
data that have the same (exact) conditional distribution as the DGP under the null
hypothesis, given the sufficient statistic. Under the null hypothesis of pairwise serial
independence, the order statistics provide a minimal and sufficient statistic. To be
specific, let Δ̂(0)(·) denote the value of the dependence functional conditioned on the
original data, and let {Δ̂(i)(·)}B

i=1 be the set of “bootstrapped” test statistics ob-
tained from a random permutation of the original data. Then calculate the one-sided
p-value as

p̂(·) =
1 +

∑B
i=1 I

(
Δ̂(i)(·) ≥ Δ̂(0)(·)

)
1 + B

. (7.42)

Thus, reject the null hypothesis of pairwise serial independence if p̂(·) < α, where α
is some pre-specified nominal significance level.

For multiple-lag tests, Diks and Panchenko (2007) advocate the following al-
gorithm.

Algorithm 7.2: Permutation-based p-values for multiple-lag tests

(i) Compute Δ̂(0)(�) (� = 1, . . . ,M ) using {Yt}T
t=1 and a kernel-based density

estimator with a fixed bandwidth h. Next, construct the 1 × M vector
Δ̂(0) = (Δ̂(0)(1), . . . , Δ̂(0)(M)).
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Algorithm 7.2: Permutation-based p-values (Cont’d)

(ii) Randomly permute B times the data, and build the B×M matrix B̃ whose
b �th element is Δ̃(b)(�) (b = 1, . . . , B; � = 1, . . . ,M ). Then assemble Δ̂(0)

and B̃ into the (B + 1)×M matrix

B =

⎛⎝ Δ̂(0)

. .
B̃

⎞⎠ .

(iii) Transform B into the (B + 1)×M matrix P of p-values with elements

p̂i(�) =
1 +

∑B
k=0 I

(
Δ̂(k) > Δ̂(i)(�)

)
1 + B

, (i = 0, . . . , B; � = 1, . . . ,M ).

(iv) For each row of P select the smallest p̂i(�) and call it T̂i, i.e.

T̂i = inf
�∈(1,...,M)

p̂i(�), (i = 0, . . . , B).

(v) Adopt, T̂ say, as a test statistic. Interpret T̂0 as its observed value and
the set {T̂1, . . . , T̂B} as the values associated with each permutation. Then
calculate an “overall” p-value of T̂ , i.e.

p̂ =
1 +

∑B
i=0 I(T̂i > T̂0)
1 + B

.

For multiple bandwidth selection, the multiple-lag testing procedure can be
easily modified. In particular, in step (i) calculate the vector of values Δ̂(0)

h =(
Δ̂(0)

h (1), . . . , Δ̂(0)
h (M)

)′ for a range of bandwidths h ∈ {h1, . . . , hn} with n the num-
ber of elements. With appropriate changes in steps (ii) – (iii), step (iv) becomes
“. . . select the smallest p-values among all bandwidths and all lags . . .”, while step
(v) remains the same. As in the single bandwidth case, the multiple bandwidth
procedure yields an exact α-level (0 < α < 1) test statistic if the null hypothesis
(7.20) is rejected, whenever p̂ ≤ α.

7.4 High-Dimensional Tests

7.4.1 BDS test statistic

Assume that the m-dimensional process {Yt, t ∈ Z} admits a common continuous
joint pdf fm(y) for y = (y1, . . . , ym)′. Hence, Cm,Y (h) in (7.10) can be rewritten as
E[I(‖ Yi −Yj ‖≤ h)]. An estimator of Cm,Y (h) is Ĉm,Y (h), which is a U-statistic
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of the following form:

Ĉm,Y (h) =
(

N

2

)−1 ∑
1≤i<j≤N

I(‖Yi −Yj‖ < h), (7.43)

where N = T −m + 1 is the number of vectors obtained from a time series {Yt}T
t=1.

Now, given the divergence measure Cm,Y (h)−{C1,Y (h)}m, a test statistic for serial
independence in {Yt}T

t=1 is defined as

Sm,Y (h) =
√

N
Ĉm,Y (h)− {Ĉ1,Y (h)}m

σ̂m,Y (h)
, (7.44)

where σ̂2
m,Y (h) is a consistent estimator of the variance of

√
N

(
Cm,Y (h)−{C1,Y (h)}m

)
.

The specific estimator proposed by Brock et al. (1996) is

1
4
σ̂2

m,Y (h) = m(m− 2)Ĉ2m−2
m,Y (Km,Y − Ĉ2

m,Y ) + Km
m,Y − Ĉ2m

m,Y

+ 2
m−1∑
j=1

[Ĉ2j
m,Y (Km−j

m,Y − Ĉ2m−2j
m,Y )−mĈ2m−2

m,Y (Km,Y − Ĉ2
m,Y )], (7.45)

where

Km,Y =
2

N(N − 1)(N − 2)

N−2∑
i=1

N−1∑
s=i+1

N∑
t=s+1

I(|Yi − Ys| < h)I(|Ys − Yt| < h),

and where the dependence of the terms in (7.45) on T and h has been suppressed
for notational clarity. Under the null hypothesis of serial independence, and by
exploiting the asymptotic theory for U-statistics, it can be shown that, as T →∞,

Sm,Y (h) D−→ N (0, 1), ∀h ∈ (0,∞). (7.46)

The test statistic (7.44) is stated in terms of the data series {Yt}T
t=1. Brock et

al. (1996) show that the limiting behavior of Sm,Y (h), under H0 of no serial depend-
ence, remains the same whether the model parameters are known or estimated in a
root-n consistent fashion. Thus, (7.44) can be adapted to test situations involving
“residuals” {et}T

t=1. The resulting diagnostic test, called BDS test statistic after its
three originators Brock, Dechert, and Scheinkman, is defined as

Sm,e(h) =
√

T
Ĉm,e(h)− {Ĉ1,e(h)}m

σ̂m,e(h)
, (7.47)

where in this case the sample correlation integral is given by

Ĉm,e(h) =
(

T −m + 1
2

)−1 T∑
t=m+1

t−1∑
s=m

m−1∏
j=0

I(|et−j − es−j | < h),
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Figure 7.3: (a) Estimated correlation integral log10 Ĉm,Y (h); (b) Slope estimates β̂m for
a simulated ExpAR(1) process; T = 2,000.

and where σ̂2
m,e(h) follows from (7.45). Under H0, the test statistic (7.47) is again

asymptotically standard normal distributed.
The correlation dimension of {et}T

t is defined as

Dm = lim
h→0

lim
T→∞

log Ĉm,e(h)
log h

, (7.48)

indicating that Ĉm,e(h) ∝ hDm . Notice, the dimensionality of the distribution of
{Yt, t ∈ Z} need not be an integer number, which in chaos theory is an indication
of a fractal structure. For a given value m, the relationship between log Ĉm,e(h)
and log h can be illustrated as the slope of log Ĉm,e(h) = Dm × log h. The slope
will converge to a stationary value for increasing lengths m of the delay vector Yt,
when the dynamic system is deterministic; when the limit in (7.48) is finite. When
the dynamical system is stochastic, the slope continually increases as m increases;
the limit in (7.48) is infinite.

Rather than using an estimator of the slope for a single value h, Koc̆enda and
Briatka (2005) propose to use an estimator of the average slope across a range of
values h, which means calculating β̂m as a consistent estimate of the slope coefficient
βm from the LS regression

log Ĉm,e(hi) = αm + βm log hi + ui, (i = 1, . . . , n), (7.49)

where αm is an intercept, ui an error term, and n the number of hi’s taken into con-
sideration. However, these authors ignore the fact that Ĉm,e(·) is an empirical CDF
(of distances between pairs of points). A regression ignoring this will be inefficient,
as it leads to correlated residuals.

Example 7.5: Dimension of an ExpAR(1) process

Similar as in Example 2.4, we consider the ExpAR(1) process

Yt = {−0.9− 0.95 exp(−Y 2
t−1)}Yt−1 + εt, {εt} i.i.d.∼ N (0, 0.36). (7.50)



7.4 HIGH-DIMENSIONAL TESTS 281

We showed that the skeleton (deterministic part) of this particular ExpAR
process has a limit cycle (−1.50043, 1.50043) which suggests that the dimen-
sionality of the distribution of {Yt, t ∈ Z} equals two. To investigate this
issue, we generate T = 2,000 observations from the above process. Next, we
compute Ĉm,Y (h) (m = 2, . . . , 10) for 100 consecutive h-values in the range
[0.349, 0.990].

Figure 7.3(a) shows a plot of log10 Ĉm,Y (h) versus log10 h for m = 2, . . . , 10.
We see that for approximately values of log10 h < −0.17 there is a clear linear
relationship, indicating that {Yt, t ∈ Z} is concentrated in a low-dimensional
space. Figure 7.3(b) shows β̂m as estimates of βm. These estimates are cal-
culated by taking the LS values of the lines through three subsequent points,
corresponding to log10 hi, log10 hi+1, and log10 hi+2 (i = 1, . . . , 98). For i.i.d.
time series processes βm is equal to m, for small values of h. This is not
the case here, with slope estimates β̂m < m. In fact, it can be shown that
E(β̂m) ≤ m; cf. Exercise 7.1(d).

At this point it is appropriate to mention that in finite samples the asymptotic
normality of the BDS test statistic may not be accurate. A naturally alternative is to
use BS methods to approximate the distribution of the test statistic. One fast way of
computing p-values of (7.44) is by randomizing (permuting) the order of the observed
time series values. Because σ̂m,T (e;h) is a positive constant under randomization,
simulation can be restricted to the non-normalized statistic Ĉm,e(h) − {Ĉ1,e(h)}m.
For the observed p-values, which are invariant under a scale transformation, this
does not make a difference. Similarly, {Ĉ1,e(h)}m is a constant under permutations.
Thus, one may determine p-values by computing the statistic Ĉm,e(h) only. The
resulting procedure is as follows.

Algorithm 7.3: Bootstrapping p-values of the BDS test statistic
(i) Compute Ĉm,e(h) for the standardized residuals {et}T

t=1, and permute {et},
to obtain the series {ẽt}T

t=1.

(ii) Compute Ĉm,ẽ(h).

(iii) Repeat steps (i) – (ii) B times, to obtain {Ĉ(b)
m,ẽ(h)}B

b=1.

(iv) Compute the one-sided p-value as

p̂BDS =
1 +

∑B
b=1 I

(
Ĉ

(b)
m,ẽ(h) ≥ Ĉm,e(h)

)
1 + B

.

The nuisance-parameter-free property that any root-n consistent estimator of
the model parameters has no impact on the null limit distribution of the BDS test
statistic, under a class of linear and nonlinear conditional mean models, makes the
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test statistic a useful diagnostic tool in the context of nonlinear time series analysis.
On the other hand, the BDS test statistic suffers from some problems (Brock et al.,
1991).

• There is arbitrariness in the choice of h, which may affect both the power and
size of the test. In fact, some choices of h may render the BDS test statistic
inconsistent against certain alternatives. Thus, the probability of rejecting H0

does not always approach 1, as T → ∞. In practice, h is usually taken as a
fraction of the standard deviation of the time series under study.

• Another problem is that the BDS test statistic, though asymptotically normal
under the null hypothesis, has high rates of Type I error, especially for non-
Gaussian data.5

In the next section various extensions of the BDS test statistic are considered
that are freed from some or all of these drawbacks.

7.4.2 Rank-based BDS test statistics
In an attempt to mitigate the problems with the BDS test statistic Genest et al.
(2007) propose a number of rank-based extensions. The first test statistic is a
circular version of the BDS test statistic Sm,e(h) defined in (7.47). In particular, let
et+T = et ∀t ∈ N+. Write Wt = (W1,t, . . . ,Wm,t)′ = (et, . . . , et−m+1)′ (m ∈ Z+).
Then a circular version of the BDS test statistic (7.43) is given by

Sm,W (h) =
√

T
Ĉm,W (h)− {Ĉ1,W (h)}m

σ̂m,W (h)
, (7.51)

where Ĉm,W (h) and σ̂m,W (h) are defined in a similar way as respectively (7.43) and
(7.44). In analogy with Sm,e(h) it can be shown that the large-sample distribution
of Sm,W (h) is standard normal under the null hypothesis of no serial dependence.

In a similar fashion, Genest et al. (2007) propose a rank-based analogue of the
BDS test statistic. Let ẽt = rank(et)/(T + 1) denote the normalized ranks of the
time series {et}T

t=1. Write W̃t = (W̃1,t, . . . , W̃m,t)′ = (ẽt, . . . , ẽt−m+1)′. Then a
rank-based version of Sm,W (h) may be defined as

S
m,W̃

(h) =
√

T
Ĉ

m,W̃
(h)− {Ĉ

1,W̃
(h)}m

σ̂
m,W̃

(h)
. (7.52)

Again, under the H0 of no serial dependence, it follows that S
m,W̃

(h) D−→ N (0, 1),
∀h ∈ (0,∞), as T →∞.

5This problem does not occur with the permutation-based BDS test statistic (Algorithm 7.2),
as it has exact size.
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Table 7.2: Rank-based BDS test statistics of serial independence using three functionals
(direct integration (D), Kolmogorov–Smirnov (KS), and Cramér–von Mises (CvM)), and
two empirical processes.

Functional Empirical processes (1)(2)

D̃T (u) =
√

T{B̃T (u) −∏m
k=1 G̃T (uk)} B̃∗

T (u) = 2
√

T{B̃∗
T (u) − B̃T (u)}

D Ĩ
m,˜W

=

∫ 1

0
D̃T (h, . . . , h)dG̃(h) Ĩ∗

m,˜W
=

∫ 1

0
B̃
∗
T (h, . . . , h)dG̃(h)

KS M̃
m,˜W

= max
i∈{1,...,T}

∣∣∣D̃T

( i

T + 1
, . . . ,

i

T + 1

)∣∣∣ M̃∗
m,˜W

= max
i∈{1,...,T}

∣∣∣B̃∗
T

( i

T + 1
, . . . ,

i

T + 1

)∣∣∣
CvM T̃

m,˜W
=

∫
[0,1]m

|D̃T (u)|2dB̃(u) T̃ ∗
m,˜W

=

∫
[0,1]m

|B̃∗
T (u)|2dB̃(u)

(1) B̃T (u) =
(T
2

)−1∑
1≤i≤j≤T

∏m
k=1 I(|W̃k,j − W̃k,i| ≤ uk) with u = (u1, . . . , um)′ ∈ [0, 1]m;

G̃T (h) = B̃T (h, 1, . . . , 1) with h ∈ (0, 1].
(2) B̃∗

T (u) = T−1
∑T

i=1

∏m
k=1{F̃ (w̃k,i + uk) − F̃ (w̃k,i − uk)}, where F̃ (·) is the distribution of a U(0, 1)

random variable; B̃∗
T (u) =

∏m
k=1 G̃(uk) with G̃(·) a Beta(1,2) distribution.

Clearly, the finite-sample performances of the test statistics (7.51) and (7.52)
depend on the choice of h. A common way to get around this problem is to integrate
out h with regard to some empirical process using various continuous functionals.
Adopting direct integration (D), the KS and CvM functionals, and two empirical
processes, Genest et al. (2007) propose six rank-based BDS test statistics; see Table
7.2. Moreover, they show that under H0, all six test statistics converge in distribution
to centered Gaussian variables.

Figure 7.4: S&P 500 daily stock price index for the time period 1992 – 2003 (3,102
observations) with two subperiods, denoted by vertical red medium dashed lines, from Novem-
ber 2000 – February 2003 (T = 608) and March 2003 – December 2003 (T = 218).

Example 7.6: S&P 500 daily stock price index

Figure 7.3 shows the daily S&P 500 stock price (closing) index from 1992
– 2003. It has long been hypothesized that stock prices, say {Pt}, follow a
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Table 7.3: Bootstrap p-values of seven test statistics for serial independence applied to
daily S&P 500 stock returns. Time period November 2000 – February 2003 (T = 608), and
March 2003 – December 2003 (T = 218); B = 1,000. Blue-typed numbers indicate rejection
of H0 at the 5% nominal significance level.

BDS Rank-based BDS test statistics

Period m Sm,T Ĩ∗
m, ˜R

M̃∗
m, ˜R

T̃ ∗
m, ˜R

Ĩm, ˜R M̃m, ˜R T̃m, ˜R

11/2000 – 2 0.21 0.07 0.14 0.08 0.57 0.53 0.91
02/2003 4 0.29 0.00 0.02 0.00 0.30 0.59 0.09

6 0.36 0.00 0.02 0.00 0.30 0.58 0.01
8 0.43 0.00 0.02 0.00 0.29 0.76 0.00

03/2003 – 2 0.21 0.91 0.31 0.89 0.33 0.22 0.00
12/2003 4 0.30 0.91 0.49 0.80 0.10 0.85 0.00

6 0.36 0.41 0.34 0.48 0.12 0.88 0.00
8 0.46 0.13 0.15 0.15 0.31 0.75 0.00

(geometric) random walk possibly with drift. We consider two sample sub-
periods. The first one (11/2000 – 02/2003; T = 608), corresponds to the worst
decline in the S&P 500 index since 1931, with the end of the “dot-com bubble”
around November 2000. The second time period (03/2003 – 12/2003; T = 218)
corresponds to an upward trend with moderate volatility, indicating the start
of a new bull market in the first quarter of 2003. Using the circular version
of the BDS test statistic, we test for serial independence in the series of daily
stock returns, Rt = log(Pt/Pt−1), with h = σ̂R, i.e. the standard deviation of
{Rt}T

t=1. In addition, using the six ranked-based test statistics, we investigate
R̃t = rank(Rt)/(T + 1).

Table 7.3 reports bootstrapped p-values, based on B = 1,000 bootstrap rep-
licates, for each of the seven test statistics. Note that for the first, downward,
period the results of almost all test statistics suggest that the underlying DGP
is not i.i.d. On the other hand, the p-values of the circular BDS test statistic
Sm,R, and the rank-based test statistics Ĩ

m,R̃
and M̃

m,R̃
are insignificant at

the 5% nominal level for all values of m. The second, upward, period shows
a very different picture. There, except for the test statistics T̃

m,R̃
, almost all

test results suggest that the process {Rt, t ∈ Z} is i.i.d., i.e., the S&P 500 daily
stock price index follows a random walk.

7.4.3 Distribution-based test statistics

The pairwise test statistic Δ̂ST3
T is a special case of a test statistic of multivariate

independence proposed by Blum et al. (1961). These authors consider the differ-
ence between the nonparametric estimator of the joint EDF and the product of
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the nonparametric marginals. In a time series context, with a set of observations
{Yt}T

t=1 drawn from a strictly stationary m-dimensional process {Yt, t ∈ Z}, the
corresponding empirical process is

Hm,T (y) =
√

T
{
F̂m,T (y)−

m∏
i=1

F̂ (yi)
}
, y ∈ Rm, (7.53)

where

F̂m,T (y) =
1
T

T−m+1∑
t=1

m∏
i=1

I(Yt+i−1 ≤ yi), and F̂ (yi) =
1
T

T−m+1∑
t=1

I(Yt+i−1 ≤ yi),

(i = 1, . . . ,m).

Various functionals of (7.53) can be used for testing the null hypothesis (7.4). Del-
gado (1996) proposes the CvM functional. When m = 2, the resulting test statistic
Δ̂D

m,T (see Table 7.4) has the same asymptotic null distribution as the test statistic
of Blum et al. (1961) in the bivariate case. However, for m > 2, the asymptotic
covariance function of Δ̂D

m,T is not convenient for the tabulation of critical values,
due to the complex nature of the limiting distribution of Hm,T (·).

High-dimensional test statistics leading to considerably simpler asymptotic cov-
ariances under the null hypothesis than BCvM

m,T can be based on the Möbius transform-
ation (Rota, 1964), or decomposition, of the process Hm,T (·). Consider an index set
Sm =

{
A ⊆ {1, . . . ,m}; |A| > 1

}
, where |A| is the cardinality of the index set A.

Since |A| = m, Sm contains 2m −m− 1 elements. Now, the Möbius transformation
M decomposes Hm,T (·) into 2m −m− 1 sub-processes GA,T = MA(Hm,T ), namely

GA,T (y) =
∑
B⊆A

(−1)|A\B|Hm,T (y)
∏

i∈A\B
F̂ (yi)

=
1√
T

T−m+1∑
t=1

∏
i∈A

{
I(Yt+i−1 ≤ yi)− F̂ (yi)

}
, y ∈ Rm, (7.54)

where
∏

i∈∅ = 1 by convention. In this case, the characterization of serial independ-
ence of (Y1,t, . . . , Ym,t)′ is equivalent to having MA(·) ≡ 0, for all A ⊆ {1, . . . ,m}.

It follows from standard theory (see, e.g., Shorack and Wellner, 1984) that under
the null hypothesis of (serial) independence, GA,T (·) converges weakly to a continu-
ous centered Gaussian process with covariance function

CovA(x,y) =
∏
i∈A

{
min{F (xi), F (yi)} − F (xi)F (yi)

}
, x,y ∈ Rm,

whose eigenvalues, given by

λ(i1,...,i|A|) =
1

π2|A|(i1 · · · i|A|)2
, (i1, . . . , i|A|) ∈ N,
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may be deduced from the Karhunen–Loève decomposition of the Brownian bridge.
Moreover, GA,T (·) and GA′,T (·) are mutually independent asymptotically whenever
A �= A′.

Using the CvM functional, Ghoudi et al. (2001) propose 2m−m−1 test statistics
of the form

MCvM
A,T =

∫
{GA,T (y)}2dFm,T (y). (7.55)

When m = 2, (7.55) simplifies to the single test statistic MCvM

{1,2},T which, inter-

estingly, coincides with the test statistic Δ̂ST3
T (�) at lag � = 1. Thus, a Möbius

transformation is not needed in this particular case. Under the null hypothesis of
(serial) independence, the limiting distribution of MCvM

A,T is given by∑
(i1,...,i|A|)∈N

λ(i1,...,i|A|)Z
2
(i1,...,i|A|),

where the Z(i1,...,i|A|)’s are independent N (0, 1) random variables; Deheuvels (1981).
Observe that the sets A contribute differently to each of the test statistics MCvM

A,T ,
with the biggest contribution coming from small-sized sets. To avoid this problem,
it is convenient to standardize MCvM

A,T by the asymptotic mean and variance of ξ|A|
which are, respectively, given by E(ξ|A|) = 1/6|A| and Var(ξk) = 2/90|A|. The lower
part of Table 7.4 displays the two resulting test statistics, denoted by the short-hand
notation GKR1 and GKR2.

An obvious limitation of tests based on the above approach is the dependence
of the asymptotic null distribution of the GA,T (·)’s on the marginals of Hm,T (·).
To alleviate this problem, the original observations are replaced by their associated
ranks in Section 7.4.4.

7.4.4 Copula-based test statistics
Univariate
Similar as in Section 7.4.3, empirical stochastic processes can be based on the pseudo-
observations {Ût = (Û1,t, . . . , Ûm,t)′}T

t=1 (see Section 7.3.2). To be specific, the
natural analogue of (7.53) is defined as

CT (u) =
1√
T

T−m+1∑
t=1

{ m∏
i=1

I{Rt+i−1 ≤ (T + 1)ui} −
m∏

i=1

ui

}
, u ∈ [0, 1]m, (7.56)

where {Rt}T
t=1 are the ranks of {Yt}T

t=1. Using the Möbius transformation, Genest
and Rémillard (2004) define the 2m −m− 1 stochastic processes

Gc
A,T (u) =

1√
T

T−m+1∑
t=1

∏
i∈A

{
I{Rt+i−1 ≤ (T + 1)ui} − UT (ui)

}
, (7.57)
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Table 7.4: High-dimensional (m ≥ 2) serial independence test statistics.

Reference Test statistic

Delgado (1996) Δ̂D
m,T =

T∑
t=1

{
Hm,T (Yt)

}2
,

where Hm,T (y) =
1

T

T−m+1∑
t=1

m∏
i=1

I(Yt+i−1 ≤ yi) −
m∏

i=1

{ 1

T

T−m+1∑
t=1

I(Yt+i−1 ≤ yi)
}

Ghoudi et al. (2001) Δ̂GKR1
m,T =

∑
A

(
MCvM

A,T − (1/6|A|)
)
/

√
2/90|A|,

Δ̂GKR2
m,T = max

A

∣∣∣(MCvM
A,T − (1/6|A|)

)
/

√
2/90|A|

∣∣∣,
where MCvM

A,T =
∫ {GA,T (y)}2dFm,T (y)

with GA,T (y) =
1√
T

T−m+1∑
t=1

∏
i∈A

{
I(Yt+i−1 ≤ yi) − F̂ (yi)

}

where UT (·) is the distribution of a discrete random variable U uniformly distributed
on the set {1/(T +1), 2/(T +1), . . . , T/(T +1)}, that is UT (t) = min{�(T +1)t�/T, 1}.
Most conveniently, using the CvM functional, the copula-based version of MCvM

A,T is

MCvM,c
A,T =

∫
[0, 1]m

{Gc
A,T (u)}2du. (7.58)

Some algebra shows that (7.58) can be computed directly from the ranks as

MCvM,c
A,T =

1
T

T−m+1∑
t=1

T−m+1∑
s=1

∏
i∈A

{2T + 1
6T

+
Rt+i−1(Rt+i−1 − 1)

2T (T + 1)

+
Rs+i−1(Rs+i−1 − 1)

2T (T + 1)
− (Rt+i−1 ∨Rs+i−1)

T + 1

}
. (7.59)

Since the subset A and its δ-translate, say A+δ, generate basically the same process,
computation of the test statistic (7.59) can be restricted to subsets A ∈ Am = {A ⊂
Im; 1 ∈ A, |A| > 1} with cardinality 2m−1 − 1. The limiting distribution of MCvM,c

A,T

is the same as that of MCvM
A,T .

Multivariate
Kojadinovic and Yan (2011) address the generalization of the univariate serial copula
correlation test to the case of continuous multivariate time series. Consider a strictly
stationary ergodic sequence of q-dimensional random vectors Y1,Y2, . . ., where the
common distribution function of each Yt = (Y1,t, . . . , Yq,t)′ is denoted by F (·) and
the associated copula by C(·). Furthermore, let m > 1 be an integer, let T ′ =
T + m − 1, and, for any i ∈ Rq, let Ri,1, . . . , Ri,T ′ be the ranks associated with
the univariate sequence {Yi,t}T ′

t=1. The ranks are related to the univariate empirical
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marginal distribution function F̂i,T (Yi,t) through the equalities Ri,t = T ′F̂i,T (Yi,t)
(t = 1, . . . , T ′; i = 1, . . . , q) .

To build an empirical copula in the multivariate case, we need to introduce
some notation. First, given the index set B ⊆ {1, . . . ,m}, we define the vector
uB ∈ [0, 1]mq by

u
(j)
B =

{
u(j) if j ∈

⋃
i∈B{(i− 1)q + 1, . . . , iq},

1 otherwise.

Next, given u ∈ [0, 1]mq and i ∈ {1, . . . ,m}, define the sub-vector u〈i〉 ∈ [0, 1]q of u
by

u
(j)
〈i〉 = u(j+(i−1)q), (i = 1, . . . ,m; j = 1, . . . , q).

Finally, we form the mq-dimensional random vector Ỹt = (Y′
t, . . . ,Y

′
t+m−1)

′ (t =
1, . . . , T ). Then, given {Ỹt}T

t=1, and in analogy with (7.26), the serial (s) empirical
(multivariate) copula is defined as

Ĉs
T (u) =

1
T

T∑
t=1

m∏
i=1

q∏
j=1

I
(
F̂j,T (Yj,t+i−1) ≤ u

(j)
〈i〉

)
=

1
T

T∑
t=1

m∏
i=1

q∏
j=1

I
(
Rj,t+i−1 ≤ T ′ u(j)

〈i〉
)
.

A multivariate extension of the empirical process (7.56) is then

Cs
T (u) =

√
T

{
Ĉs

T (u)−
m∏

i=1

Ĉs
T (u〈i〉)

}
, u ∈ [0, 1]mq. (7.60)

As noticed by Ghoudi et al. (2001) in the univariate case, it follows from the Möbius
decomposition (transformation) of Cs

T (·), that the limiting distribution of the pro-
cesses

√
TMA(Cs

T ) and
√

TMA+δ(Cs
T ) are roughly the same. Hence, attention can

be restricted to the 2m−1 − 1 processes
√

TMA(Cs
T ) for A ∈ Am. Then, after some

tedious algebra, the resulting CvM test statistics are given by

MCvM,c
A,q,T =

1
T

T∑
t=1

T∑
s=1

∏
i∈A

{ q∏
j=1

[
1− (Rj,t+i−1 ∨Rj,s+i−1)

T ′
]

− 1
T

T∑
l=1

m∏
j=1

[
1− (Rj,t+i−1 ∨Rj,l+i−1)

T ′
]
− 1

T

T∑
l=1

m∏
j=1

[
1− (Rj,s+i−1 ∨Rj,l+i−1)

T ′
]

+
1
T 2

T∑
r=1

T∑
s=1

m∏
k=1

[
1− (Rk,r+i−1 ∨Rk,s+i−1)

T ′
]}

. (7.61)

Unfortunately, adopting the KS functional, an explicit expression for multivariate
serial independence tests statistics is far more difficult to derive. Hence, we focus
on MCvM,c

A,q,T .
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For q = 1, and using the approximation T ≈ T ′, (7.61) coincides with (7.59). In
contrast with MCvM,c

A,T , however, the asymptotic null distribution of MCvM,c
A,q,T (q > 1)

is no longer distribution free. To overcome this problem, a bootstrap procedure
is recommended. Below we distinguish between computing p-values for each A ∈
Am, and combined p-values across all index sets. In the latter case, and following
Kojadinovic and Yan (2011), two p-value combination methods are considered, one
due to Fisher (F) and one to Tippett (T). For ease of reading, we remove the
superscripts CvM and c from MCvM,c

A,m,T .

Algorithm 7.4: Bootstrap-based p-values for multivariate serial in-
dependence tests

(i) Compute the test statistic M
(0)
A,q,T for |A| ≤ h with h fixed in {2, . . . ,m− 1},

using the original time series data {Yt}T
t=1, and A ∈ Am.

(ii) Generate B pseudo-random samples of size T ′ from a U [0, 1] distribution,
and let M

(b)
A,q,T (b = 1, . . . , B;A ∈ Am) denote the value of the test statistics

MA,q,T , where B is some large integer.

(iii) • p-values for each A ∈ Am:
Compute an approximate p-value for the test statistic M

(i)
A,q,T (A ∈ Am)

as follows

p̂(M (i)
A,q,T )=

1
2 +

∑B
b=1 I

(
M

(b)
A,q,T ≥ M

(i)
A,q,T

)
1 + B

, i ∈ {0, 1, . . . , B}.

The factor 1/2 ensures that the p-values are in the open interval (0, 1)
so that transformations by inverse CDFs of continuous distributions
are always well-defined.

• Combined p-values:
For all i ∈ {0, 1, . . . , B}, compute

F(i)
T = −2

∑
A∈Am

log
{
p̂(M (i)

A,q,T )
}
,

and

T(i)
T = min

A∈Am

log
{
p̂(M (i)

A,q,T )
}
.

Approximate “global” p-values are then given by

p̂F =
1
B

B∑
b=1

I
(
F(b)

T ≥ F(0)
T

)
, and p̂T =

1
B

B∑
b=1

I
(
T(b)

T ≥ T(0)
T

)
.
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Figure 7.5: Dependogram summarizing the results of the multivariate test of serial inde-
pendence for the climate change data set; q = 2, m = 5. A red star denotes the approximate
critical value.

Example 7.7: Climate Change (Cont’d)

We illustrate the use of the preceding test statistics by revisiting the climate
change data of Example 1.5. It can be verified that the δ13C and δ18O time
series take only 149 and 133 unique values out of T = 216 observations, which
means that there is a non-negligible number of ties in the data. Hence, some
artificial smoothing of the series is needed in order to meet the assumption of
continuous marginal distributions of the proposed test statistics. For instance,
the method of jittering (adding random uniform noise to the series) can deal
with this problem. For simplicity, we ignore the ties and focus on the original
data.

To visualize the results of the serial independence tests it is convenient to
use a graphical display, called dependogram . For each subset A, a vertical
bar is drawn of height corresponding to the value of the subset test statistic
MCvM,c

A,q,T . A star denotes the approximate, bootstrapped, critical values of
MCvM,c

A,q,T . Subsets for which the bar exceeds the critical value are considered to
be composed of serially dependent variables.

Figures 7.5 displays a serial dependogram with q = 2 and m = 5 for MCvM,c
A,q,T

applied to the time series δ13C and δ18O jointly. The global test statistic
takes the value 0.878 × 10−3 with p-value 0.500 × 10−3. The combined tests
à la Fisher (FT ) and à la Tippett (TT ) both have a p-value of 0.500 × 10−3.
Thus, there is evidence of serial dependence. In fact, the rejection of the
null hypothesis of serial independence appears to be essentially due to subsets
{1, 2}, . . . , {1, 5}, while the test statistics are not significant for other subsets.

7.4.5 A test statistic based on quadratic forms

In view of the quadratic form ΔQ(·) given by (7.13), a natural way of forming a
high-dimensional test statistic for serial independence is to replace the integrals by
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empirical averages of (μ(i)
m , μ

(j)
m ) =

∫
Rm

∫
Rm Kh(y − x)dμ

(i)
m (y)dμ

(j)
m (x) (i, j = 1, 2).

For two independent m-dimensional processes {Yt, t ∈ Z} ∼ μ
(1)
m and {Yt′ , t

′ ∈
Z} ∼ μ

(2)
m (t �= t′) the first term (μ(1)

m , μ
(1)
m ) can be consistently estimated by the

U-statistic estimator

(μ̂(1)
m , μ̂(1)

m ) =
(

T −m + 1
2

)−1 T−m+1∑
i=2

i−1∑
s=1

m−1∏
j=0

Kh(Yi+j , Ys+j),

using a product kernel. Similarly, the terms (μ(1)
m , μ

(2)
m ) and (μ(2)

m , μ
(2)
m ) can be con-

sistently estimated by

(μ̂(1)
m , μ̂(2)

m ) =
1

T −m + 1

T−m+1∑
t=1

m−1∏
j=0

Ĉh(Yt+j),

(μ̂(2)
m , μ̂(2)

m ) =
1

(T −m + 1)m

m−1∏
j=0

( T−m+1∑
t=1

Ĉh,T (Yt+j)
)
,

where

Ĉh,T (y) =
1

T −m + 1

T−m+1∑
i=1

Kh(y, Yi)

is a kernel-based estimate of the one-dimensional correlation integral associated with
the marginal distribution function. Collecting the above expressions together, Diks
and Panchenko (2007) propose the test statistic

Δ̂DP
m,T = (μ̂(1)

m , μ̂(1)
m )− 2(μ̂(1)

m , μ̂(2)
m ) + (μ̂(2)

m , μ̂(2)
m ). (7.62)

Note that, for Kh(y) = I(|y| < h), the estimator (μ̂(1)
m , μ̂

(1)
m ) coincides with

Cm,T (Y ;h) given by (7.32) as an estimator of the correlation integral. So, using
the uniform kernel with the functional (μ(1)

m , μ
(1)
m )− (μ(2)

m , μ
(2)
m ) will lead to the BDS

test statistic (7.43), after standardizing. The theory of U-statistics can be used
to prove the asymptotic normality of Δ̂DP

m,T under the null hypothesis of serial in-
dependence. An alternative way of obtaining critical values and p-values involves
using the bootstrap or the permutation methodology as outlined in Section 7.3.6.

7.5 Application: Canadian Lynx Data

The Canadian annual lynx trappings records (1821 – 1934; T = 114) in the MacK-
enzie River district of North–West Canada (i.e. the number of furs harvested by the
Hudson Bay Company), plotted in the upper panel of Figure 7.6, provide an inter-
esting basis for many nonlinear time series techniques. The data exhibits irregular

7.5 APPLICATION: CANADIAN LYNX DATA
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Figure 7.6: Upper panel: yearly Canadian lynx data for the time period 1821 − 1934
(blue solid line), and yearly Canadian snowshoe hare data (in thousands) for the time period
1905− 1934 (red solid line). Lower panel: (a) the sample ACF for the complete lynx series,
and (b) the sample cross-correlation function (CCF) between the lynx series and the snowshoe
hare series for the time period 1905 − 1934. Both plots contain 95% asymptotic confidence
limits (blue medium dashed lines).

periodic fluctuations with sharp and large peaks and relatively small troughs. As
shown in Figure 7.6(a), the pattern of the sample ACF of the data indicates a cyc-
lical behavior of about ten years (a 9.61- year periodicity). The data set is assumed
to represent the relative magnitude of the lynx population and, hence, is of great
interests to ecological researchers. To understand the cyclical behavior in the Ca-
nadian lynx series, the upper panel of Figure 7.6 also shows 30 yearly observations
of the Canadian snowshoe hare series for the time period 1905 – 1934. Snowshoe
hares (prey) constitute a major part of the lynx’s (predator) diet. Note that the
hare series lags behind the lynx series. Indeed, as can be seen from the sample CCF
in Figure 7.6(b) there is a significant relationship between both series, but the lynx–
hare interaction is not instantaneous, rather there is a time delay of about 2 years.
According to McCarthy (2005), a possible cause of the cyclical fluctuations is that
hare populations increase and eat vegetation. In response, the vegetation produces
secondary defence compounds which are less palatable and nutritious. This triggers
a crash of the hare population – hares die in great numbers. However, the lynx con-
tinue to feed on hares, but run out of prey eventually. This is followed by a decline
in the lynx population. Next, the vegetation slowly recovers and this rejuvenates
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Table 7.5: Five models fitted to the Canadian lynx data set; T = 114.

(Pooled)
Reference Model σ̂2

ε

Moran (1953) Yt = 1.0549 + 1.4101Yt−1 − 0.7734Yt−2 + εt 0.0459

Tong (1990, p. 387) Yt =

⎧⎪⎪⎨⎪⎪⎩
0.546 + 1.032t−1 − 0.173Yt−2 + 0.171Yt−3

−0.431Yt−4 + 0.332Yt−5 − 0.284Yt−6

+0.210Yt−7 + ε
(1)
t , Yt−2 ≤ 3.116

2.632 + 1.492Yt−1 − 1.324Yt−2 + ε
(2)
t , Yt−2 > 3.116

0.0358(1)

Tsay (1989) Yt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.083 + 1.096Yt−1 + ε
(1)
t , Yt−2 ≤ 2.373

0.63 + 0.96Yt−1 − 0.11Yt−2

+0.23Yt−3 − 0.61Yt−4 + 0.48Yt−5

−0.39Yt−6 + 0.28Yt−7 + ε
(2)
t , 2.373 < Yt−2 ≤ 3.154

2.323 + 1.530Yt−1 − 1.266Yt−2 + ε
(3)
t , 3.154 < Yt−2

0.0348(2)

Ozaki (1982) (3) Yt = [1.167 + (0.316 + 0.982Yt−1) exp(−3.89Y 2
t−1)]Yt−1

−[0.437 + (0.659 + 1.26Yt−1) exp(−3.89Y 2
t−1)]Yt−2 + εt 0.0433

Teräsvirta (1994) Yt = 1.17Yt−1 + (−0.92Yt−2 + 1.00Yt−3 − 0.41Yt−4 + 0.27Yt−9

−0.21Yt−11) × [1 + exp{−1.73 × 1.8(Yt−3 − 2.73)})−1 + εt 0.0350

(1) Var(h
(1)
t ) = 0.0259 and Var(h

(2)
t ) = 0.0505.

(2) Var(h
(2)
t ) = 0.015, Var(h

(2)
t ) = 0.025, and Var(h

(3)
t ) = 0.053.

(3) As suggested by Tong (1990), the parameter 1.167 in the ExpAR(2) model replaces the original
parameter 0.138 given by Ozaki.

the hare population, and so the cycle continues.
It is generally believed that the lynx series is nonlinear, but there is no agreement

on which nonlinear model is most appropriate for the data. Lim (1987) summarizes
the work done in analyzing this time series. Five estimated time series models, for
the log-transformed data (base 10), are reproduced in Table 7.5. The SETAR(2; 7, 2)
model admits nice biological interpretation; see, e.g., Stenseth et al. (1997). Below
the threshold value the lynx population roughly increases. But above the threshold
value, the population decreases due to the complex interplay between the available
food, the mortality due to overall predation, and the indirect effects of predation by
a suite of predators.

Table 7.6 shows p-values, based on 1,000 BS replicates, of eight high-dimensional
tests for serial independence applied to the residuals of the fitted models. We see that
Sm,T , M̃∗

m,T , Ĩm,T , and M̃m,T fail to reject H0 at the 5% nominal significance level
for all models, and all values of m. A similar conclusion emerges from the p-values
of Δ̂DP

m,T , except for the ExpAR(2) model with m = 2. Interestingly, all p-values
suggest that the SETAR(2; 7, 2) and SETAR(3; 1, 7, 2) models adequately capture
the nonlinear phenomena in the data. This result confirms earlier observations made
in the literature; see, e.g., Tong (1990). For the ExpAR(2) model, we observe that
H0 is rejected at the 5% nominal significance level on the basis of the reported p-
values of the test statistics T̃ ∗

m,T , and T̃m,T . For the LSTAR(11) model, evidence of
residual dependence can be noted from the p-values of Ĩ∗m,T , and T̃ ∗

m,T .

7.5 APPLICATION: CANADIAN LYNX DATA
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Table 7.6: Bootstrap p-values of eight test statistics for high-dimensional serial independ-
ence applied to the residuals of five time series models fitted to the log of the Canadian lynx
time series (see Table 7.5); T = 114, B = 1,000. Blue-typed numbers indicate rejection of
H0 at the 5% nominal significance level.

BDS Rank-based BDS test statistics

Model m Sm,T Ĩ∗m,T M̃∗
m,T T̃ ∗

m,T Ĩm,T M̃m,T T̃m,T Δ̂DP
m,T

AR(2) 2 0.25 0.07 0.55 0.04 0.67 0.54 0.01 0.23
4 0.31 0.01 0.38 0.01 0.40 0.12 0.01 0.29
6 0.43 0.01 0.62 0.01 0.56 0.04 0.02 0.50

SETAR(2; 7, 2) 2 0.26 0.33 0.64 0.34 0.59 0.81 0.21 0.25
4 0.34 0.15 0.67 0.13 0.94 0.28 0.09 0.44
6 0.44 0.25 0.58 0.21 0.63 0.15 0.08 0.60

SETAR(3; 1, 7, 2) 2 0.25 0.66 0.38 0.63 0.98 0.56 0.13 0.50
4 0.32 0.40 0.27 0.32 0.92 0.27 0.15 0.52
6 0.41 0.44 0.17 0.41 0.62 0.15 0.14 0.38

ExpAR(2) 2 0.25 0.12 0.32 0.01 0.12 0.15 0.01 0.04
4 0.33 0.14 0.39 0.01 0.14 0.68 0.02 0.15
6 0.43 0.38 0.55 0.00 0.38 0.32 0.04 0.33

LSTAR(11) 2 0.25 0.02 0.41 0.03 0.23 0.91 0.26 0.37
4 0.32 0.01 0.20 0.01 0.19 0.99 0.24 0.09
6 0.42 0.04 0.18 0.04 0.08 0.95 0.30 0.15

Not surprisingly, the lack of fit of Moran’s AR(2) model, and Ozaki’s ExpAR(2)
model has been noted by other researchers. However, the fact that the residuals of
the LSTAR(11) model do not pass all test statistics is new. It suggests that the
model may be further improved. Finally, note that for the AR(2) model no evidence
of residual dependence is detected by Ĩ∗m,T when m = 2, while for m = 4 and m = 6
the p-value of this test statistic is smaller than the 5% nominal significance level.
Thus, it is recommended not to rely completely on low-dimensional test results.

7.6 Summary, Terms and Concepts

Summary
Serial independence is central to time series analysis, especially within the context
of checking the adequacy of fitted nonlinear time series models. In this chapter, we
highlighted influential research on nonparametric test statistics for serial depend-
ence in conditional mean. We have not said anything about other types of serial
dependence, for instance, through the conditional variance or through conditional
higher order moments. Readers interested in this topic should consult Su and White
(2008), Huang et al. (2015) and the references therein.

An obvious question is, which serial independence test should one adopt in prac-
tice? Within the context of single-lag and multiple-lag test procedures, we have
already dwelt upon conclusions emerging from the extensive MC simulation study
by Bagnato et al. (2014). Generally speaking, the tests considered by these authors
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have reasonable size and power properties compared with many nonlinear alternat-
ives. We should emphasize, however, that adopting the limiting null distribution of
a test statistic can be hazardous, except for very large sample sizes T . When using
random permutation or bootstrapping approaches the size of a test statistic is often
much closer to its nominal significance level for T < 500.

On the other hand, it is now generally believed that many empirical time series,
while nonlinear, are generated by high-dimensional processes. Hence, it is natural
to consider test statistics designed for this purpose. In this case, several of the rank-
based extensions of the BDS test statistic discussed in Section 7.4.2, and the copula-
based test statistics of Section 7.4.4 are useful. In particular, these test statistics
are more powerful than their single-lag and multiple-lag counterparts, with T̃m,T as
the best performing rank-based BDS test.

Terms and Concepts

binwidth, 270
boundary effects, 269
copula density, 267
correlation dimension, 280
correlation integral, 260
Cressie–Read (CR) divergence, 265
Csiszár (C) divergence, 264
Daniell window, 273
dependogram, 290
empirical copula, 269
Gaussian copula, 307
generalized spectral density, 273
Hellinger (H) distance, 264
high-dimensional tests, 278
independence copula, 267
jittering, 290

mixing proportions, 313
Möbius transformation, 285
multiple-lag tests, 272
nuisance-parameter-free property, 275
Parseval’s identity, 262
permutation, 277
portmanteau-type test, 266
pseudo-observations, 269
quadratic (Q) distance, 261
Rényi (R) divergence, 264
single-lag tests, 270
Student t copula, 307
Tsallis (T) divergence, 264

7.7 Additional Bibliographical Notes

Sections 7.1 – 7.3: Tjøstheim (1994, 1996) reviews the early literature on (non)parametric
tests of serial independence. An extensive bibliography of permutation, sign, and rank-
based test statistics for serial independence is provided by Dufour et al. (1982). Hallin
and Puri (1992) cover the literature of rank tests. In the context of econometric applica-
tions, Ullah (1996) provides a unified treatment of various entropy, divergence and distance
measures. Giannerini et al. (2015) propose test statistics for pairwise nonlinear depend-
ence under the null hypothesis of general linear dependence rather than serial independ-
ence. The R-package that implements these latter test statistics is available at CRAN

http:// www2.stat.unibo.it/giannerini/software.html.

Kolmogorov (K) divergence, 264

(tseriesEntropy) and at

http://www2.stat.unibo.it/giannerini/software.html
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The asymptotic properties of nonparametric estimators of copulas for time series processes
are considered by Fermanian and Scaillet (2003), and Ibragimov (2009), among others.

Section 7.4: Matilla–Garcia and Ruiz–Marin (2008) propose a test statistic for high-
dimensional serial independence using symbolic dynamics and permutation entropy. The
test requires unrealistic large sample sizes for dimensions m ≥ 6. De Gooijer and Yuan
(2016) explore a link between the correlation integral and the Shannon entropy, or second
order Rényi entropy, to derive two nonparametric portmanteau-type test statistics for serial
independence. In commonly used samples, both tests performed similarly as the best per-
forming rank-based BDS test statistics of Section 7.4.2.

Baek and Brock (1992a) extend the BDS test statistic to vector time series. Wolff and
Robinson (1994) observe that the estimator of the unnormalized correlation integral has
a limiting Poisson distribution under some moderate assumptions regarding the marginal
distribution. This motivated a nonparametric test procedure with slightly reduced size
distortion compared with the BDS test statistic. de Lima (1996) formulates five conditions
under which the BDS test statistic is asymptotically nuisance-parameter-free.

Within the context of independent component analysis, a concept that is important in signal
processing and neural networks, a subsampling pairwise test statistic for serial independ-
ence has been suggested by Karvanen (2005), based on the test of total independence by
Kankainen and Ushakov (1998). Related to this, is the paper by Wu et al. (2009). They pro-
pose a smoothed bootstrap-based test statistic for high-dimensional serial independence in
multivariate time series data by combining pairwise independence tests for all pairs. Other
recently proposed test statistics suitable for both time-independent and time-dependent com-
ponent analysis have been derived by, among others, Achard (2008), Baringhaus and Franz
(2004), Fernández et al. (2008), Székely et al. (2007) (see the R-energy package), Gretton et
al. (2005), and Zhou (2012).

Evidently, many density-based serial correlation tests require the data come from a
continuous population. Although they will no longer be distribution free, some of the dis-
cussed test statistics can also be used in the discrete case. For instance, the Skaug–Tjøstheim
(1993b) test statistic ΔST1

T can be applied to continuous as well as to discrete (or discretized)
data, after some slight adjustment of the form of the test. For a stationary sequence of a
categorical variable, high-dimensional serial independence can be checked via a test statistic
developed by Bilodeau and Lafaye de Micheaux (2009).

The so-called k-nearest neighbor density estimator avoids the problem of a pre-defined grid
required to compute the multi-dimensional copula-based histogram estimator discussed in
Section 7.3.2; see Blumentritt and Schmid (2012). Alternatively, for estimating the copula
density, a nonparametric method proposed by Kallenberg (2009) may be adopted.

Exercise 7.7: Various MAR models are available in the literature. Le et al. (1996), and
Wong and Li (2000b, 2001) assume that the mixing proportions are time invariant. More
general (Gaussian) MAR and MAR–GARCH models follow by assuming that the mixing
proportions are functions of observed variables; see, e.g., Lanne and Saikkonen (2003), and
Kalliovirta et al. (2015) and the references therein. Sufficient conditions for strict and second
order stationarity are given by, among others, Zeevi et al. (2000), Wong and Li (2000b), and
Saikkonen (2008).
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7.8 Data and Software References

Data
Section 7.5: The Canadian snowshoe hare data derive from the main drainage of the
Hudson Bay, based on trappers’ questionnaires. The hare data used in this section are
taken from the R-TSA package, and first published by D.A. MacLulich (1937) in the paper
“Fluctuations in the Number of the Varying Hare (Lepus americanus)” (Univ. of Toronto
Press, Ontario, Stud. Biol. Ser. No. 43, 136 pp.) which is not widely available. The paper
by E.L. Leigh (1968) published in M. Gerstenhaber (Ed.) Some Mathematical Problems in
Biology (American Mathematical Society, Providence, pp. 1 – 61) contains yearly hare data
for the time period 1847 – 1903. There are slight differences between this data set and the
data contained in the TSA package. The main source for the Canadian lynx data is Table 4
in the paper by C. Elton and M. Nicholson (J. Anim. Ecol., 1942, 11, pp. 215 – 244). The
data set is on DataMarket (http://data.is/TSDLdemo) at http://data.is/Ky69xY and
can be read directly into R using the rdatamarket package.

Software references
Section 7.3: The entire R code for replicating the simulation study of Bagnato et al. (2014)
is available at the website of this book.

Section 7.4: A windows executable file for computing the values of the slope coefficient
in (7.49) can be downloaded from http://kocenda.fsv.cuni.cz/software.htm. The
copula-based univariate and multivariate serial independence test statistics are implemented
as separate functions in the R-copula package; see, e.g., Exercise 7.5. These functions are
briefly described by Kojadinovic and Yan (2010). Partly overlapping the content of the
R-copula package are the functions for nonparametric testing of mutual serial independence
contained in the R-IndependenceTests package. When applying BS methods to functionals
based on the empirical copula, standard ranking procedures are computationally expensive.
Blumentritt and Grothe (2013) present a pseudocode algorithm that reduces the running
time of these procedures considerably.

A fast MATLAB code for computing the traditional BDS test statistic was developed by
Ludwig Kanzler; see http://papers.ssrn.com/paper.taf?abstract_id=151669. The
code is available at http://econpapers.repec.org/software/bocbocode/t891501.htm.
Also BDS C++, and BDS MATLAB source codes are available at the address http://
people.brandeis.edu/~blebaron/.

C++ code for computing the rank-based BDS test statistics (made available by Kilani
Ghoudi), Gauss code for computing the Hong–White, the Skaug–Tjøstheim, and Hong’s
generalized spectral test statistics (made available by Yongmia Hong) can be downloaded
from the website of this book. Based on a generalized spectral approach (Section 7.3.5) of
nonlinear model residuals, Hong and Lee (2003) propose some new diagnostic test statistics
for serial independence. Their GAUSS code is available at the website of this book. Also
available is a set of C++ computer routines written by Hans J. Skaug which are based on
the various test statistics introduced in the papers by Skaug and Tjøstheim (1993a,b), and
Skaug and Tjøstheim (1996).

Section 7.4.5: The C++ code of the Δ̂DP
m,T test statistic (7.62) can be downloaded from

Cees Diks’ web page located at http://cendef.uva.nl/people.

http://cendef.uva.nl/people
http://people.brandeis.edu/~blebaron/
http://people.brandeis.edu/~blebaron/
http://people.brandeis.edu/~blebaron/
http://econpapers.repec.org/software/bocbocode/t891501.htm
http://papers.ssrn.com/paper.taf?abstract_id=151669
http://kocenda.fsv.cuni.cz/software.htm
http://data.is/Ky69xY
http://data.is/TSDLdemo
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Figure 7.7: Selected second-order kernel functions.

Appendix

7.A Kernel-based Density and Regression Estimation
In this Appendix, we review some major concepts of kernel density and regression estimation
in the i.i.d. case. Out of necessity, the discussion is cursory. The interested reader can,
for instance, consult Härdle (1990), Wand and Jones (1995), or Li and Racine (2007) for
accounts with greater detail.

Univariate density estimation
Let X ∈ R be a random variable with continuous distribution function F (·) and a proper
density f(·). The goal of kernel density estimation is to approximate f(·) from a random
sample {Xi}n

i=1. Given this set of realizations, a natural estimator of F (·) is given by
F̂n(x) = n−1

∑n
i=1 I(Xi ≤ x) ∀x ∈ R. However, differentiating F̂n(·) with respect to x

would not lead to a useful estimator of a smooth density function f(·). Instead, for small
values of hn > 0, a two-sided finite difference approximation to f(·) follows from

f̂hn
(x) =

F̂n(x + hn)− F̂n(x− hn)
2hn

=
1

nhn

n∑
i=1

I(x− hn ≤ Xi ≤ x + hn) =
1

2nhn

n∑
i=1

I
( |Xi − x|

hn
≤ 1

)
. (A.1)

Clearly, f̂hn(·) counts the proportion of observations falling in the neighborhood of x. The
parameter hn, (bandwidth), controls the degree of smoothing: the greater hn, the greater
the smoothing.

Equation (A.1) is a special case of what is called kernel density estimator with a weight
function, or kernel, K(·) = 1

2I(| · | ≤ 1). The general, basic, kernel estimator may be written
compactly as

f̂hn
(x) =

1
nhn

n∑
i=1

K
(x−Xi

hn

)
=

1
n

n∑
i=1

Khn
(x−Xi), (A.2)

where Khn
(·) = K(·/hn)/hn. Here, K(·) is a so-called kernel function.

Kernel functions
A kernel function K : R → R is any function for which

∫
R

K(u)du = 1. A non-negative
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Table 7.7: Some second-order (ν = 2) kernel functions. (1)

Kernel Equation R(K) μ2(K) eff(K) C2(K)

Uniform K[2],0(u) = 1
2
I(|u| ≤ 1) 1/2 1/3 1.0758 1.84

Epanechnikov K[2],1(u) = 3
4
(1 − u2)I(|u| ≤ 1) 3/5 1/5 1.0000 2.34

Biweight K[2],2(u) = 15
16

(1 − u2)2I(|u| ≤ 1) 5/7 1/7 1.0061 2.78

Triweight K[2],3(u) = 35
32

(1 − u2)3I(|u| ≤ 1) 350/429 1/9 1.0135 3.15

Gaussian K[2],∞(u) = 1√
2π

exp(− 1
2
u2) 1/2

√
π 1 1.0513 1.06

(1) All kernels are supported on the interval [−1, 1] except for the Gaussian kernel
which has infinite support.

kernel satisfies K(u) ≥ 0 ∀u which ensures that K(·) is a pdf. A symmetric kernel satisfies
K(u) = K(−u) ∀u. In this case all odd moments of a kernel are zero, where the moments
of K(·) are defined by

μj(K) =
∫
R

ujK(u)du.

The use of symmetric and unimodal kernels is standard in nonparametric estimation, and
will henceforth be adopted. The order of a kernel, say ν, is defined as the first non-zero
moment, i.e. if μ0(K) = 1 and μj(K) = 0 (j = 1, . . . , ν − 1), but μν(K) �= 0. Some common
second-order kernel functions are listed in Table 7.7 and exhibited in Figure 7.7. The first
four second-order kernels are special cases of the polynomial family

K[2],p(u) =
(2p + 1)!!
2p+1p!

(1− u2)pI(|u| ≤ 1), (p = 0, 1, 2, 3).

The Gaussian kernel follows by taking the limit p →∞ after re-scaling. Higher-order kernels
are smoother, reducing the order of the bias of the curve estimator provided large sample
sizes (n & 1, 000) are available. The basic shape of the kernels are similar. Since, however,
higher-order kernel functions take on negative values, the resultant estimate of f(·) also can
have negative values.

Distance measures and relative efficiency
A common and convenient measure of evaluating the estimation precision of f̂hn

(·) is the
MSE, which at a single point x, is given by

MSE
(
f̂hn(x)

)
= E

[(
f̂hn(x)− f(x)

)2]
= Bias

(
f̂hn(x)

)2 + Var
(
f̂hn(x)

)
. (A.3)

If we want to minimize (A.3) with respect to hn, we are confronted with a bias-variance
trade-off as mentioned earlier. Rather than measuring the distance of the kernel density
estimator in terms of the pointwise MSE, a “global” measure is often preferred in practice.
Two most popular measures are the integrated squared error (ISE) and the mean integrated
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squared error (MISE), where

ISE
(
f̂hn

(x)
)

=
∫
R

(
f̂hn

(x)− f(x)
)2

dx,

MISE
(
f̂hn(x)

)
= E[ISE

(
f̂hn(x)

)
] = E

[ ∫
R

(
f̂hn(x)− f(x)

)2

dx
]
.

Since we can reverse the order of integration (over the support of X and over the probability
space of X), we have MISE

(
f̂hn

(x)
)

=
∫
R

MSE
(
f̂hn

(x)
)
dx so that MISE equals to the

integrated MSE, a measure which does not depend upon the data.
Ideally, we want to pick a bandwidth value hn such that it minimizes the MISE. How-

ever, the optimal bandwidth that minimizes the MISE depends on the unknown pdf f(·).
In order to make progress under this distance measure, it is usual to employ asymptotic
approximations to bias and variance of the kernel density estimator. The result is called
asymptotic MISE (AMISE), i.e., AMISE

(
f̂hn

(x)
)

=
∫
R

AMSE
(
f̂hn

(x)
)
dx with AMSE the

asymptotic MSE of f̂hn
(·). The optimal bandwidth, say hopt, is the one that minimizes the

AMISE(·), giving rise to AMISEopt(·).
Now, given that we have selected the kernel order ν, which kernel should we use? It

is straightforward to verify (cf. Exercise 7.7) that the kernel’s contribution to the optimal
AMISE is the following dimensionless factor:

AMISEopt(K) ∝
(
μ2

ν(K)R(K)2ν
)1/(2ν+1)

, (A.4)

where R(g) =
∫
R

g2(z)dz is the roughness penalty of the function g(·) (column three of Table
7.7). Then, to compare kernels, the efficiency (eff) of kernel K(·) relative to kernel K∗(·) is
defined as

eff(K) =
( AMISEopt(K)

AMISEopt(K∗)

)(2ν+1)/2ν

=
( μ2

ν(K)
μ2

ν(K∗)

)1/2ν R(K)
R(K∗)

. (A.5)

Usually, the Epanechnikov kernel is taken as a reference kernel since it is optimal in a
minimal variance sense.

The fifth column of Table 7.7 shows the asymptotic relative efficiency of estimating f(·)
with kernel K(·) as compared to estimating it with K[ν],1(·). We see, for instance, that
relative to K[ν],1(·) the uniform kernel has an asymptotic efficiency loss of about 7% when
ν = 2. Similar observations follow for the other kernels. In general, there is no single kernel
that can be recommended for all purposes. One serious candidate is the Gaussian kernel;
however, it is relatively inefficient and has infinite support. Even the Epanechnikov kernel is
not so attractive because it has a discontinuous first derivative, and hence it is inappropriate
for density derivative estimation.

Bandwidth selection
For practical problems the choice of the kernel is not so critical, as compared to the choice of
the bandwidth. The bandwidth depends on the sample size n and has to fulfill hn → 0 and
nhn → ∞ when n → ∞ as a necessary condition for consistency of the density estimator.
Clearly, this result is not very helpful for finite-sample application. Rather, we may use the
AMISE-optimal bandwidth with R(f (ν)(·)) replaced by R(g(ν)

σ̂X
(·)) where gσX

(·) is a plausible
reference density, σ̂X is the sample standard deviation, and f (ν)(·) is the νth derivative of
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f(·), assuming it exists. Assume gσX (·) = ϕσ̂X
, the N (0, σ̂2

X) density. It can be shown (cf.
Exercise 7.7) that

R(ϕ(ν)
σ̂X

)−1/(2ν+1) = 2σ̂X

(√πν!
(2ν)!

)1/(2ν+1)

. (A.6)

Then a rule-of-thumb (rot) bandwidth is given by

hrot = σ̂XCν(K)n−1/(2ν+1), (A.7)

where

Cν(K) = 2
(√π(ν!)3R(K)

2ν(2ν)!μ2
ν(K)

)1/(2ν+1)

.

The last column of Table 7.7 shows values of Cν(·) when ν = 2. If a Gaussian second-
order kernel is used, (A.7) is often simplified to hrot = σ̂Xn−1/5. Rule-of-thumb bandwidths
are sensitive to outliers. A robust version of the rule-of-thumb bandwidth rule is hrot =
min{σ̂X , (IQRX/1.34)}n−1/5 where IQRX is the interquartile range computed from the
sample distribution of X.

Rule-of-thumb bandwidths are “pilot” bandwidths, i.e. they are a useful starting point.
A more flexible way for obtaining bandwidths is to use a so-called plug-in bandwidth pro-
cedure. This method is based on considering some type of quadratic error between the true
function and its estimator. Minimizing an asymptotic approximation of the resulting error
and replacing the unknown parameters by estimates gives the optimal (plug-in) bandwidth.
Plug-in methods have been extensively studied for nonparametric univariate density estim-
ation, but for multivariate data the choice of a method is less clear. A flexible and generally
applicable alternative, is CV.

Multivariate density estimation
Multivariate kernel density estimation is a straightforward extension of plain univariate
estimation. Now, suppose that Xi is a p-variate i.i.d. random variable and we want to
estimate its density f(x) = f(x1, . . . , xp) (x ∈ Rp), given a set of observations {Xi}n

i=1 from
f(·). Analogue to (A.2), the multivariate kernel density estimator takes the form

f̂H(x) =
1

n|H|

n∑
i=1

K
(
H−1(x−Xi)

)
=

1
n

n∑
i=1

KH(x−Xi), (A.8)

where H is a p× p symmetric positive definite matrix of bandwidths, and

KH(x) = |H|−1/2K(H−1/2x).

Here, K(·) is a p-dimensional kernel function satisfying
∫

K(x)dx = 1. In practice, a product
of p univariate kernels Kuniv(uj), such as a univariate standard Gaussian density function,
is commonly used for K(·), i.e., K(u) =

∏p
j=1 Kuniv(uj). The matrix H is often taken to

be a diagonal matrix with common diagonal elements hn. As in the univariate case, one
additionally desires that K(·) ≥ 0 so that K(·) is a proper pdf.

Suppose H = diag(hn, . . . , hn). Then, with some algebra, it can be shown that the
optimal (in the sense of minimizing the AMISE) bandwidth is given by

hopt = R(∇νf)−1/(2ν+p)
( (ν!)2pR(K)p

2νμ2
ν(K)

)1/(2ν+p)

n−1/(2ν+p), (A.9)
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where

∇νf(x) =
p∑

j=1

∂ ν

∂xν
j

f(x).

When the observed data set is from a multivariate normal density ϕ, an explicit expres-
sion for R(∇νϕ) can be calculated straightforwardly. By replacing R(∇νf) by R(∇νϕ) in
(A.9), we obtain the rot-bandwidth

hrot = σjCν,p(K)n−1/(2ν+p) (j = 1, 2, . . . , p), (A.10)

where

Cν,p(K) =
( πp/22p+ν−1(ν!)2R(K)p

ν
(
(2ν − 1)!! + (p− 1)((ν − 1)!!)2

)
μ2

ν(K)

)1/(2ν+p)

,

and with σj the standard deviation of the jth variable, which can be replaced by its sample
estimator in practical applications. The constant Cν,p(·) is exactly 1 in the bivariate case
(p = 2), with a second-order Gaussian kernel. Numerical values of Cν,p(·) for other combin-
ations of kernel functions, p, and ν can be obtained directly using the results for R(·) and
μν(·) given in Table 7.7.

Note from (A.8) that, unless Xi is distributed more or less uniformly in the p-dimensional
space, there is the risk that for a given bandwidth, no data lies in the neighborhood specified
by H. This problem becomes worse as p increases, and is known as the “curse of dimen-
sionality”. Hence, in practice, multivariate kernel density estimation is often restricted to
dimension p = 2.

Nadaraya–Watson estimator
Let {(Xi, Yi)}n

i=1 represent n independent observations of the random pair (X, Y ), where
X = (X1,i, . . . ,Xp,i)′ is a p-variate random variable. To keep things simple, we assume that
such data is generated by the process

Yi = μ(Xi) + εi, (A.11)

where {εi} is a sequence of i.i.d. zero mean and finite variance random variables such that
εi is independent of Xi, and μ : Rp → R is an “arbitrary” function called the nonparametric
regression function and it satisfies μ(x) = E(Y |X = x) (x ∈ Rp).

We wish to estimate μ(·). If μ(·) is a smooth function at point x = (x1, . . . , xp)′, re-
sponses corresponding to Xi’s near x should contain some information about the value of
μ(·). Therefore, local averaging of the responses about X = x may yield a meaningful es-
timate of μ(·). One particular formulation, called Nadaraya–Watson (NW) kernel estimator
and attributed to Nadaraya (1964) and Watson (1964), uses a kernel function to vary the
weights given to the responses. In particular, a kernel estimate of μ(·) is a weighted average
of observations in the neighborhood of x, and is defined as

μ̂NW
H (x) =

∑n
i=1KH(x−Xi)Yi∑n
i=1KH(x−Xi)

=
n∑

i=1

Wi(x)Yi, (A.12)

with the weights Wi(x) = KH(x −Xi)/
∑n

i=1KH(x −Xi) summing up to one, and where
H is a p× p symmetric positive definite matrix of bandwidths.
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Figure 7.8: Local averages: (a) based on n = 20 observations from the DGP Yi = X3
i + εi

with {εi} i.i.d.∼ N (0, 1), and {Xi} i.i.d.∼ U [−2, 2]; (b) based on n = 100 observations from the
same DGP as in part (a).

The kernel regression estimate can be more formally derived from the regression of X
to Y , i.e., μ(x) =

∫
R

yf(y|x)dy =
∫
R

yf(x, y)dy/g(x) where the density g(·) is assumed
positive at x. Indeed, estimating these densities using univariate and multivariate kernel
density estimates (all with the same kernel) results in a kernel regression estimate which
matches (A.12). Alternatively, the kernel regression estimator (A.12) can be viewed as a
local constant fit about x which minimizes the weighted sum of squares of the residuals
(weighted by the product kernel Khn

(v) = h−p
n

∏p
i=1 K(vi/hn)).

Example A.1: NW Kernel Regression Estimation

Figure 7.8(a) shows two NW kernel smoothed averages based on the series {(Xi, Yi)}20i=1

generated from the model Yi = X3
i + εi with {εi} i.i.d.∼ N (0, 1), and {Xi} i.i.d.∼ U [−2, 2].

The true regression function y = x3 is shown by the black solid line. Using a Gaussian
kernel with hn = 0.3, the local averages are shown as a blue medium dashed line, and
the local average corresponding to hn = 0.1 by the red dotted line.

The kernel discriminates each Yi according to the distance of its corresponding Xi

from x and has its greatest value at the origin. Generally, it is positive and symmetric,
and decreases from the origin. In this way, the kernel has the effect of reducing bias
without increasing variance. The bandwidth hn controls the ‘width’ of the kernel and
is used to ‘tune’ the degree of smoothing: the greater hn, the greater the smoothing.
Clearly, the blue medium dashed line is less ‘wiggly’, and hugs closer to the true
regression curve than the red dotted line. Overall, the NW estimator with hn = 0.3 is
to be preferred because, intrinsically, its variance and squared bias are better balanced.

As n increases, variance will decrease as more averaging is performed. Then hn should
be decreased to reduce the amount of local smoothing – thus reducing bias – but not
so much as to effect a comparable increase to the variance, i.e. hn → 0 as n → ∞.
As n becomes large, we may expect the estimate to converge to the true curve at
every point x. Figure 7.8(b) illustrates convergence effects and shows local averages
computed for n = 100.

Optimum convergence of the kernel estimate can be achieved by selecting the bandwidth
hn using CV. It uses the aptly named leave-one-out estimator μ̂−i

hn
(·) of μ(·). At Xi = x,
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this estimator is defined as

μ̂−i
hn

(Xi) =
n∑

j=1
j �=i

W−i
j (Xi)Yj , (A.13)

with weights W−i
j (·) as defined in (A.12); superscript −i indicates the absence of Yi in the

averaging, and hn the explicit dependence on the bandwidth. The CV function is then
defined as the sample-average MSE that results from adopting the leave-one-out estimator,
i.e.,

CV(hn) =
1
n

n∑
i=1

{Yi − μ̂−i
hn

(Xi)}2. (A.14)

The (global) bandwidth ĥCV that minimizes (A.14) across a pre-specified range of values hn is
then used to compute the kernel estimate μ̂hn(·). Typically, CV(·) has one unique minimum
with no other local minima. In the i.i.d. case, the CV routine produces asymptotically
optimal kernel estimates. For dependent data, convergence results of the CV bandwidth
selection method have been obtained for certain types of mixing processes and univariate
regression functions.

Note that the computation of one value of CV(·) requires n2 kernel evaluations, which
may be unacceptable when n is large. A variety of refinements of the CV bandwidth selec-
tion method are available to address this problem. For instance, minimizing a generalized
CV function, or minimizing the final prediction error. Another way for obtaining global
bandwidths is to use a plug-in bandwidth procedure.

Local polynomial regression
The locally constant, or NW kernel smoothing method can be extended to allow local poly-
nomial estimation of μ(·) and its partial derivatives. The resulting estimator is obtained
by fitting locally to the data a polynomial of degree d, using multivariate weighted least
squares. Assume that μ(·) has derivatives of total order p + 1 at point x. Then, from a
standard Taylor argument, it follows that for (A.11) the local polynomial estimator of μ(·)
is defined as β̂0, where (β̂0, β̂m1 , . . . , β̂mp)′ minimizes

n∑
i=1

(
Yt −

(
β0 +

∑
1≤m1+···+mp≤d

βm1,...,mp

p∏
j=1

(Xj,i − xj)mj
))2

Khn
(x−Xi), (A.15)

with Khn
(v) = h−p

n

∏p
i=1 K(vi/hn). The above minimization problem can be rephrased in

matrix notation to allow for direct computation using weighted least squares. For instance,
with d = 1, the so-called local linear (LL) estimator is given by

μ̂LL
hn

(x) = e′(X′
xWxXx)−1X′

xWxy, (A.16)

where e is a (d+1)×1 vector having 1 in the first entry and zeros elsewhere, y = (Y1, . . . , Yn)′

is the vector of responses,

Xx =

⎛⎜⎝ 1 (x−X1)′
...

...
1 (x−Xn)′

⎞⎟⎠
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the n× (d + 1) design matrix, and

Wx = diag
(
Khn(x−X1), . . . ,Khn(x−Xn)

)
,

is an n× n matrix of weights.
In general, the local polynomial estimator is more attractive than the NW estimator

because of its better asymptotic bias performance. Moreover, the estimator does not suffer
from boundary effects, and hence does not require modifications in regions near the end
points of the support set. Another useful feature is that the method immediately estimates
the rth derivative, μ(r)(·) (r = 1, . . . , d), via the relationship μ̂

(r)
hn

(·) = r!β̂mr
(·).

Some selective background information
The class of kernel estimators was originally defined by Rosenblatt (1956) and generalized
by Parzen (1962) for pdf estimation. Marron (1994) provides a visual understanding of
higher-order kernels. For standard second-order normal kernels, the bandwidth (A.7) is
often termed Silverman’s (1986, p. 48) rule-of-thumb. Härdle and Marron (1995) show that
the CV routine yields bandwidths which produce asymptotically optimal kernel estimates.
Hansen (2005) derives the exact MISE of several higher-order kernel density estimators. For
multivariate kernel density estimation Zhang et al. (2006) provide a posterior estimate of the
full bandwidth matrix via the use of the MCMC technique. Their technique is applicable to
data of any dimension.

7.B Copula Theory

Let X = (X1, . . . ,Xm)′ be an m-dimensional random vector with joint CDF F (x1, . . . , xm) =
P(X1 ≤ x1, . . . ,Xm ≤ xm) with univariate marginal CDFs Fi(xi) (i = 1, . . . ,m). Since it
is usually easier to handle marginal distributions separately, our interests is in a function
that can reconstruct the joint distribution function from its marginals. Such a function is
called copula (Sklar, 1959), i.e. it “couples’ (or links) univariate marginal distributions to a
multivariate joint distribution. Excellent introductions to copulae and related concepts are
given in Nelsen (2006) and Joe (1997), where most of the material below can be found. We
start with the definition of copulas.

Definition B.1 (Copula) Let C : [0, 1]m → [0, 1] be an m-dimensional distribution function
on [0, 1]m. Then C is a copula if it has uniformly distributed univariate marginal CDFs on
the interval [0, 1].

Another interpretation of a copula function follows from the probability integral transform
(PIT), Ui ≡ Fi(Xi). If the marginal distribution functions F1, . . . , Fm of F are continu-
ous, the random variable Ui will have the U(0, 1) distribution regardless of the original
distribution Fi, i.e.

Ui ≡ Fi(Xi) ∼ U(0, 1), (i = 1, . . . ,m).

Thus, the copula C of X represents the joint CDF of the vector of PITs of the random vector
U = (U1, . . . , Um)′ and thus is a joint CDF with U(0, 1) marginals.

The next theorem is cardinal to the theory of copulas.
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Theorem B.1 (Sklar’s (1959) theorem) Let F be an m-dimensional joint CDF on
Rm with univariate marginal distribution functions F1, . . . , Fm. Then there exists an m-
dimensional copula C such that for all x = (x1, . . . , xm)′ ∈ Rm,

F (x1, . . . , xm) = C
(
F1(x1), . . . , Fm(xm)

)
. (B.1)

Moreover, if F1, . . . , Fm are continuous, then C is unique; otherwise C is uniquely determined
on Ran F1 × · · · × Ran Fm.

As a direct consequence of Theorem B.1, one can derive a method to specify a parametric
copula, known as the inversion method.

Corollary B.1 (Inversion method) Let F be an m-dimensional distribution function with
univariate marginal distribution functions F1, . . . , Fm and corresponding copula C satisfying
(B.1). Assume that F1, . . . , Fm are continuous. Then an explicit representation of C is given
by

C(u) = F
(
F−1

1 (u1), . . . , F −1
m (um)

)
, u = (u1, . . . , um)′ ∈ [0, 1]m, (B.2)

where F−1
i (ui) = inf{x|Fi(x) ≥ ui} (i = 1, . . . ,m).

The behavior of the copulas with respect to strictly monotonic transformations is estab-
lished in the next theorem; see Embrechts et al. (2003, Thm. 2.6). It forms the basis for the
role of copulas in the study of (multivariate) measures of association (dependence).

Theorem B.2 (Invariance) Let X = (X1, . . . ,Xm)′ be an m-dimensional continu-
ous random variable with copula C and let T1, . . . , Tm be strictly increasing functions
on Ran X1, . . . , Ran Xm, respectively. Then the transformed random variable T (X) =(
T1(X1), . . . , Tm(Xm)

)′ has exactly the same copula C as X.

According to Nelsen (2006, Thm. 2.2.7), the partial derivatives ∂ C(u)/∂ui of C exist for
almost all ui (i = 1, . . . ,m). Then we may define a copula density as follows.

Definition B.2 (Copula density) Suppose C(u) is a copula function of a continuous m-
dimensional random variable, then the copula density c(u) is defined as c(u) ≡ ∂mC(u)/(∂u1

· · · ∂um).

Differentiating (B.1) with respect to xi (i = 1, . . . ,m), yields the joint pdf:

f(x) = c
(
F1(x1), . . . , Fm(xm)

) m∏
i=1

fi(xi), (B.3)

where fi(xi) is the density associated with the marginal CDF Fi(xi). This representation
is particularly useful for copula ML parameter estimation because it provides an explicit
expression for the likelihood function in terms of the copula density and the product marginal
densities.

Every m-dimensional copula C (m ≥ 2) is bounded in the following sense:

W (u) ≡ max{u1 + · · ·+ um − (m− 1), 0} ≤ C(u) ≤ min{u1, . . . , um} ≡ M(u),
∀u ∈ [0, 1]m, (B.4)
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Figure 7.9: Contour plots of three bivariate copula densities: (a) Gaussian copula with
ρ = 0.5, (b) Student tν copula with ρ = 0.9 and ν = 15 degrees of freedom, and (c) Student
tν copula with ρ = 0.9 and ν = 1 degree of freedom.

where M(·) and W (·) are the Fréchet–Hoeffding bounds. The upper bound M(·) is also
known as the comonotonic copula. It represents the copula of X, if each of the random
variables X1, . . . ,Xm can (a.s.) be represented as a strictly functional relationship between
Xi and Xj (i �= j). This copula is also said to describe perfect positive dependence. The
lower bound W (·) is a copula only for dimension m = 2.

Example B.1: Gaussian and Student t copulas

A wide range of copulas exists. The most commonly used copulae are the Gumbel
copula for extreme distributions, the Gaussian copula for linear correlation, and the
Archimedean copula and the Student t copula for dependence in the tail. A multivari-
ate Gaussian distribution Φ(·) with m×m correlation matrix R yields the Gaussian
copula

CG(u) = Φ
(
Φ−1(u1), . . . , Φ−1(um)

)
=

∫ Φ−1(u1)

−∞
· · ·

∫ Φ−1(um)

−∞

1
(2π)m/2|R|1/2

exp
(
− 1

2
y′R−1y

)
dy,

where Φ−1(·) is the quantile function of an N (0, 1) distribution.

The t copula provides a more sophisticated model to analyze the association between
a multivariate distribution and its univariate marginal distribution functions. In the
same way as CG(u), the t copula is derived from the multivariate t distribution with

R and degrees of freedom ν, i.e.

C t(u) = tν
(
t−1
ν (u1), . . . , t−1

ν (um)
)

=
∫ t−1

ν (u1)

−∞
· · ·

∫ t−1
ν (um)

−∞

Γ( ν+m
2 )|R|−1/2

Γ(ν
2 )(νπ)m/2

(
1 +

1
ν
y′R−1y

)− ν+m
2

dy,

correlation matrix
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where t−1
ν (·) denotes the quantile function of a standard univariate Student tν distri-

bution. The multivariate Gaussian copula may be thought of as a limiting case of the
multivariate t copula as ν →∞ ∀u ∈ [0, 1]m.

Based on three MC simulation samples of T = 10,000 observations, Figure 7.9 shows
contour plots of (a) a bivariate Gaussian copula density with correlation coefficient
ρ = 0.5, (b) a bivariate t copula density with ρ = 0.9 and ν = 15, and (c) a bivariate
Student tν copula density with ρ = 0.9 and ν = 1. We see that the copulas have
symmetric tail dependencies. The lower- and upper tail dependencies are better
captured with the tν=1 copula than the one with ν = 15 degrees of freedom.

7.C U- and V-statistics
In this appendix, we briefly introduce the notions of U- and V-statistics which are men-
tioned throughout the book as a mean to derive consistent estimators of certain parameters
of interest. For a more thorough discussion on these notions, we refer the reader to the
originating papers cited below, and to the books by Serfling (1980, Chapters 5 and 6) and
Lee (1990).

Definitions
Let X1,X2, . . . be i.i.d. random variables with distribution function F taking values in an
m-dimensional Euclidean space Rm. Consider a measurable kernel function h : Rr → R

(r ∈ N), that is symmetric in its arguments. Suppose we wish to derive a minimum-
variance unbiased estimator of an estimable parameter (alternatively, statistical functional),
say θ = θ(F ). That is,

θ(F ) ≡ E[h(X1, . . . ,Xr)] =
∫
Rr

h(x1, . . . , xr)dF (x1) · · · dF (xr).

Then, given a (possibly multivariate) sequence {Xi}n
i=1 (n ≥ r), the U-statistic of order r

(the letter U stands for unbiased) is given by

Un =
(

n

r

)−1 ∑
1≤i1<i2<···<ir≤n

h(Xi1 , . . . ,Xir
).

The basic theory of U-statistics is due to Hoeffding (1948) as a generalization of the notion
of forming an average. One well-known example is the sample variance with h(x1, x2) =
(x1 − x2)2/2. Another example is Kendall’s τ statistic (1.13) with h

(
(x1, y1), (x2, y2)

)
=

2I(x1 < x2, y1 < y2) + 2I(x2 < x1, y2 < y1)− 1. Also, it is easy to see that the correlation
integral (7.10) is a U-statistic with h(x,y) = I(‖x− y‖ < h).

Closely related to the U-statistic is the V-statistic for estimating θ(F ), defined by

Vn = n−r
n∑

i1,...,ir=1

h(Xi1 , . . . ,Xir
).

Observe that

Vn = θ(Fn) =
∫
Rr

h(x1, . . . , xr)dFn(x1) · · · dFn(xr),
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where Fn(x) = n−1
∑n

i=1 I(Xi ≤ x). This is an example of a differentiable statistical
functional, a class of statistics introduced by von Mises (1947) (hence the letter V). Clearly,
Vn is a biased statistic for r > 1, because the sum in the defining equation contains some
terms in which i1, . . . , ir are not all distinct. However, the bias of Vn is asymptotically
negligible (O(n−1)). Also, for a fixed sample size n, the variance of Vn satisfies Vn =
Un +O(n−2). So, in terms of MSE, Vn may be preferred over Un.

A U-statistic (or V-statistic) of order r and variances σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
r has a de-

generacy of order k if σ2
1 = · · · = σ2

k = 0 and σ2
k+1 > 0 (k < r). Many examples exist

of exact or approximate (as n → ∞) degenerate U- or V-statistics. For instance, it is
easy to prove that CvM–GOF type test statistics (see, e.g., Section 4.4.1) are degenerate
V-statistics, i.e. ∫∞

−∞ h(x, y)dF (y) = 0 ∀x, where h(x, y) =
∫ ∞

−∞
(
I(x ≤ z) − F (z)

)(
I(y ≤

z)− F (z)
)(

w(F (z)
)
dF (z) with w(·) a non-negative weight function on (0, 1).

Asymptotic distribution theory
As a prelude to discussing the asymptotic distribution theory of the U- and V-statistics, we
introduce some notation. For a given estimable parameter, θ = θ(F ), and corresponding
symmetric kernel, h(x1, . . . , xr) satisfying Var

(
h(X1, . . . ,Xr)

)
< ∞, we define a sequence of

functions hc(·) (c = 0, 1, . . . , r) related to h(·) as follows

hc(x1, . . . , xc) = E[h(x1, . . . , xc,Xc+1, . . . ,Xr)],

where Xc+1, . . . ,Xr are i.i.d. random variables from the distribution F . In fact, hc(·) is (a
version of) the conditional (hence the subscript letter c) expectation of h(X1, . . . ,Xr) given
X1, . . . ,Xc.

Since h0 = θ and hr(x1, . . . , xr) = h(x1, . . . , xr), the functions hc(·) all have expectation
θ. Further, note that the variance of the U-statistic Un depends on the variances of the
hc(·). Without loss of generality we may take σ2

0 = 0. Moreover, for c = 1, . . . , r, we define

σ2
c = Var

(
hc(X1, . . . ,Xc)

)
,

so that σ2
r = Var

(
h(X1, . . . ,Xr)

)
. Using these preliminaries, it can be shown (Hoeffding,

1948) that the variance of Un is given by

Var(Un) =
(

n

r

)−1 r∑
c=1

(
r

c

)(
n− r

r − c

)
σ2

c .

If σ2
r < ∞, then Var(Un) ∼ r2σ2

1/n +O(n−2) as n →∞.
Asymptotic theory for U-statistics is based on the so-called “projection” of Un, say Ûn,

which is in terms of h1(·) is defined as

Ûn = θ +
r

2

n∑
i=1

(
h1(Xi)− θ

)
.

With the projection Ûn, one can decompose Un as

Un = Ûn + Rn,

where the remainder Rn → 0, as n → ∞. Thus, Un can be approximated by a sum of
i.i.d. random variables, so that the asymptotic distribution of Un follows from classical limit
theory for sums.
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Yoshihara (1976, Thm. 1) and Denker and Keller (1983, Thm. 1(c)) relax the assumption
of i.i.d. random variables Xi to accommodate strictly stationary weakly dependent processes.
Specifically, for a non-degenerate symmetric kernel h: Rr → R, and assuming that {Xi} is
β-mixing, these authors showed that

√
n (Un − θ) D−→ N (0, r2σ2

1), as n →∞.

This result can easily be applied to the correlation integral (7.10). As before, consider the
m-dimensional time series {Yt, t ∈ Z} for which each random variable is assumed to be
generated from the distribution Fm(·). Likewise, let the kernel be the indicator function,
and note then that

h1(Yt) = E[h(Yt,Xs|Xs = x)] =
∫
Rm

I(‖y − x‖ ≤ h)dFm(x).

Let h1(y;h) ≡ h1(y), so that the dependence on the bandwidth h of h1(·) is made explicit.
Then the asymptotic distribution of the estimator Ĉm,T (Y ; h), defined by (7.43), can be
expressed as

√
nĈm,T (Y ;h) ∼ N

(
Cm,Y (h), 4σ2

m,T (Y ;h)
)
,

where

σ2
m,T (Y ;h) = E

[(
h1

(
Y1;h)− Cm(Y, h)

)2

+ 2
T∑

t=1

(
h1(Y1;h)− Cm,Y (h)

)(
h1(Yt;h)− Cm,Y (h)

)]
.

In the case of a degenerate symmetric kernel h(·) of order c (c = 1, . . . , r − 1), the
asymptotic distribution of Un is given by

n(Un − θ) D−→
(

r

c

) ∞∑
j=1

λj(Z2
j − 1), as n →∞,

where Zj are independent N (0, 1) random variables, and λj are the eigenvalues for the kernel

h2(x1, x2)−θ. This result also applies to the V-statistic, since
√

n(Un−Vn) P−→ 0, under the
additional assumption that

∑∞
j=1 λj < ∞. A more general version of this asymptotic result

is given by Beutner and Zähle (2014) using a new representation for U- and V-statistics.
In fact, their continuous mapping approach not only encompasses most of the results on
the asymptotic distribution known in literature, but also allows for the first time a unifying
treatment of non-degenerate and degenerate U- and V-statistics.

Exercises

Theory Questions

7.1 Let {Yt} be an i.i.d. process with distribution function F (y). An equivalent form of
the one-dimensional correlation integral is given by C1,Y (h) = P(|Yt−Ys| < h) (t �= s).



EXERCISES 311

(a) Show that

C1,Y (h) = C ≡
∫ ∞

−∞
[F (y + h)− F (y − h)]dF (y).

(b) Show that

P(|Yt − Ys| < h, |Yt+1 − Ys+1| < h) =
{

N if |t− s| = 1,
C2 if |t− s| > 1,

where N ≡
∫ ∞

−∞[F (y + h)− F (y − h)]2dF (y).

(c) Show that limT→∞ E[Ĉ2,Y (h)] = {C1,Y (h)}2, where

Ĉ2,Y (h) =
2

(T − 1)(T − 2)

T−1∑
i=2

i−1∑
j=1

I(|Yi − Yj | < h)I(|Yi+1 − Yj+1| < h).

7.2 Suppose {Yt, t ∈ Z} is a strictly stationary process generated by the following two
models:

ARCH(1): Yt = σtεt, σ2
t = 1 + θY 2

t−1,

signAR(1): Yt = θ sign(Yt−1) +
√

1− θ εt,

where 0 < θ < 1, and {εt} i.i.d.∼ N (0, 1). Given a set of observations {Yt}T
t=1, the para-

meter θ can be estimated semiparametrically by maximizing the pseudo log-likelihood
for the copula density c

(
F̂ (Yt; θ), F̂ (Yt−1; θ); θ

)
where F̂ (Yt; θ) is the EDF. For test-

ing the null hypothesis of serial independence the associated semiparametric (denoted
by the superscript SP) score-type test statistic, apart from a normalizing-factor, is
defined as

QSP =
T∑

t=2

∂ log c(ût, ût−1; θ)
∂θ

∣∣∣
θ=0

,

where ût are the realizations of Ût ≡ F̂ (Yt; θ).

(a) Show for the ARCH(1) model, that the SP score-type test statistic is given by

QSP
ARCH =

T∑
t=2

(
Φ−1(ût)

)2(
Φ−1(ût−1)

)2

,

where Φ−1(·) is the quantile function of a standard normal distribution.

(b) Similar as in part (a), show that for the sign AR(1) (sAR) model

QSP
sAR =

T∑
t=2

sign
(
Φ−1(ût−1)

)
Φ−1(ût).

7.3 Δ̂ST2
T (�) is the weighted functional Δ∗(�) =

∫
S2{f�(x, y)−f(x)f(y)}f�(x, y)dxdy given

in Section 7.2.3. Let {Yt, t ∈ Z} be a Gaussian zero-mean stationary process. Show
that Δ∗(·) satisfies the nonnegativity property Δ∗(·) ≥ 0, where the equality holds if
and only if Yt and Yt−� are independent.

(Skaug and Tjøstheim, 1993a)
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7.4 Let {et}T
t=1 be the residuals from a fitted time series model. Consider the least squares

regression (7.49). The slope coefficient βm can be estimated as

β̂m =

∑
h

(
log h− log h

)(
log Cm,T (e;h)− log Cm,T (e;h)

)
∑

h

(
log h− log h

)2 ,

where log h is the logarithm of the tolerance distance, log Cm,T (e;h) is the logarithm
of the sample correlation integral, m is the embedding dimension, and where the bars
denote the means of their counterparts without bars. Show that

E[β̂m] ≤ m.

(This was first proved by Cutler (1991), and later by Koc̆enda (2001)).

Empirical and Simulation Questions

7.5 In Section 2.11 we fitted a RBF–AR(8) model to the EEG recordings (epilepsy data).
The data file epilepsyMR.dat contains the residual series {et}623t=1.

(a) Make a time series plot of the residuals. Also make a plot of the sample ACF
of the residuals (30 lags), and a histogram. What conclusions do you draw from
these graphs?

(b) The R-copula package contains the copula-based CvM test statistic MCvM,c
A,T for

testing univariate serial independence MCvM,c
A,T introduced in Section 7.4.4; see

Ghoudi et al. (2001) and Genest and Rémillard (2004). In this part, we invest-
igate the null hypothesis of serial independence of the residuals in a more formal
way.

• First, simulate the distribution of the CvM test statistic, the distribution
of the combined test statistic à la Fisher, and the distribution of the com-
bined test statistic à la Tippett. Use the function serialIndepTestSim with
lag.max=5, and fix the number of bootstrap replicates at 1,000 (default
value). [Note: The computations can be time demanding.]

• Next, using the function serialIndepTest, compute approximate p-values of
the test statistics with respect to the EDFs obtained in the previous step.

• Finally, display the dependogram.

Use the above results, to investigate the type of departure from residual serial
independence, if any.

7.6 Tong (1990, p. 178) fits the following SETAR(2; 2, 2) model to the (log10) Canadian
lynx data of Section 7.5:

Yt =
{

0.62 + 1.25Yt−1 − 0.43Yt−2 + ε
(1)
t if Yt−2 ≤ 3.25,

2.25 + 1.52Yt−1 − 1.24Yt−2 + ε
(2)
t if Yt−2 > 3.25,

where {ε(1)
t } and {ε(2)

t } are independent sequences of i.i.d. random variables with
{ε(1)

t } i.i.d.∼ N (0, 0.0381) and {ε(2)
t } i.i.d.∼ N (0, 0.0621).
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(a) Obtain the residual series {ε̂t}T=112
t=1 for this model. Next, compute p-values,

based on 100 BS replicates, using the rank-based BDS test statistics defined in
Section 7.4.2 with m = 2, 4, and 6.

(b) What conclusions do you draw from the obtained p-values for each computed
test statistic?

7.7 Wong and Li (2000b) fit a so-called Gaussian mixture AR (MAR) model to the log-
transformed Canadian lynx series {Yt}114t=1. For a time series process {Yt, t ∈ Z}, the
K-component MAR model of order (p1, . . . , pK), denoted by MAR(K; p1, . . . , pK), is
defined by

F (Yt|F t−1) =
K∑

i=1

πiΦ
(Yt − φi,0 − φi,1Yt−1 − · · · − φi,pi

Yt−pi

σi

)
,

where F t is the σ-algebra generated by {Yt, s ≤ t}, Φ(·) is the CDF of the N (0, 1)
distribution, φi,0, φi,1, . . . , φi,pi and σi are the AR parameters of the ith component
of the mixtures, and {πi}K

i=1 is a set of so-called mixing proportions which satisfy
πi > 0 and

∑K
i=1 πi = 1. A characteristic feature of the MAR model is that both its

conditional and unconditional marginal distributions are nonnormal and they can be
multimodal.
The BIC model selection criterion is given by BIC = −2�T (y; θ̂T ) + m log(T − n),
where �T (y; θ̂T ) is the value of the maximized log-likelihood function of the sample,
m is the dimension of the parameter vector θ, and n is the number of initial values.
Using this criterion, the best fitted MAR model is

F (Yt|F t−1, θ̂T ) = 0.3163
(0.0810)

Φ
(Yt − 0.7107(0.1798) − 1.1022(0.0621)Yt−1 + 0.2835(0.0826)Yt−2

0.0887(0.0202)

)

+ 0.6837
(0.0810)

Φ
(Yt − 0.9784(0.1564) − 1.5279(0.0884)Yt−1 + 0.8817(0.0869)Yt−2

0.0887(0.0202)

)
,

where asymptotic standard errors of the parameter estimates are given in parentheses, and
the value of BIC is −198.82.

(a) Check the adequacy of the fitted MAR model by computing the first 20 sample auto-
correlations of the Pearson residuals defined by (6.72). Repeat this step for the squared
Pearson residuals.

(b) Check the adequacy of the fitted MAR model by computing the first two diagnostic
test statistics in Table 6.3 (AT,K1 and HT,K2) using quantile residuals, and with K1 =
K2 = {5, 10, 15, 20, 25, 30}. Compare and contrast the results with those obtained in
part (a).
[Hint: Replace the covariance estimator Ω̂T in (6.89) by an estimator Ω̃

˜T using nu-
merical derivatives for both the log-likelihood function and quantile residuals given a
set of T̃ = 20,000 simulated observations (Kalliovirta, 2012, p. 365)].

Theoretical Question for Appendix 7.A
7.8 Assume that: (i) the density f(·) has (ν +1) continuous derivatives, which are square

integrable and monotone; (ii) the bandwidth h ≡ hn is a non-random sequence of
positive numbers such that limn→∞ h = 0, and limn→∞ nhν = ∞; (iii) the kernel
K(·) is a bounded pdf having finite jth (j < ν) order moment and symmetric about
the origin.
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(a) Show that the bias and variance of f̂h(x), defined in (A.2), satisfy

Bias
(
f̂h(x)

)
= E

(
f̂h(x)

)
− f(x) =

1
ν!

f (ν)(x)hνμν(K) + o(hν),

Var
(
f̂h(x)

)
=

1
nh

f(x)R(K) + o(
1

nh
),

where f (ν)(·) denotes the νth derivative of f(·), assuming it exists. Comment
on the difference in bias between second- and higher-order kernels.

(b) Combine the results in part (a), to obtain the asymptotic MSE (AMSE) of f̂h(·).
Comment on the bias-variance trade-off.

(c) Derive an expression for the AMISE of f̂h(·).
(d) Show that by differentiating AMISE

(
f̂h(x)

)
with respect to h, and setting the

derivative equal to zero, the optimal bandwidth is given by

hopt = R
(
f (ν)

)−1/(2ν+1)
( (ν!)2R(K)

2νμ2
ν(K)

)1/(2ν+1)

n−1/(2ν+1).

Comment on the difference between the optimal bandwidth for second-order
kernels and for higher-order kernels.

(e) Verify (A.5).

(f) Verify (A.6).



Chapter 8
TIME-REVERSIBILITY

Time-reversibility (TR) amounts to temporal symmetry in the probabilistic struc-
ture of a strictly stationary time series process. In other words, a stochastic process
is said to be TR if its probabilistic structure is unaffected by reversing (“mirror-
ing”) the direction of time. Otherwise, the process is said to be time-irreversible,
or non-reversible . Confirmation of time-irreversibility is important because, accord-
ing to Cox (1981), it is a symptom of nonlinearity and/or non-Gaussianity. In the
analysis of business cycles, for instance, the peaks and troughs of a business time
series differ in magnitude, not just in sign, as the dynamics of contractions in an
economy are more violent but also more short-lived than the expansions, indicating
asymmetric cycles. Time irreversible behavior may also naturally arise in stochastic
processes considered in, for instance, quantum mechanics, biomedicine, queuing the-
ory, system engineering, and financial economics. Time-irreversibility automatically
excludes Gaussian linear processes, or static nonlinear transformations of such pro-
cesses, as possible DGPs.

In Example 1.2, we discussed a graphical technique to detect departures from
TR, at least in extreme cases. In this chapter we follow a more formal approach,
that is, the focus is on test statistics for assessing TR. First, in Section 8.1, we
review various general definitions of TR for stationary DGPs. In Section 8.2, we
introduce time-domain TR tests which satisfy certain symmetry conditions of the
probability distribution of the stochastic process under study. In Section 8.3, we
consider two frequency-domain TR tests. These tests are motivated by the property
that the imaginary part of all polyspectra is zero for TR processes; see Chapter 4. In
Section 8.4, we discuss three nonparametric tests statistics. First, in Section 8.4.1,
we present a copula-based TR test statistic applicable to stationary Markov chains.
Next, in Section 8.4.2 and Section 8.4.3 respectively, we discuss a kernel-based and
a sign TR test statistic for high-dimensional stationary DGPs. We illustrate the use
of various TR test statistics in Section 8.5, with an application to the set of time
series introduced in Chapter 1. We conclude with a short summary, and offer some
concluding remarks.
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8.1 Preliminaries

A strictly stationary stochastic process {Yt, t ∈ Z} is defined to be TR if, for any
integer m and for all integers t1, . . . , tn (−∞ < t1 < · · · < tn < ∞), the vectors
(Y−t1 , Y−t2 , . . . Y−tn)′ and (Y−t1+m, Y−t2+m, . . . Y−tn+m)′ have the same joint prob-
ability distribution. Letting m = t1 + tn, we see that for a strictly stationary process
{Yt, t ∈ Z} time reversibility implies that

(Yt1 , Yt2 , . . . , Ytn)′ D∼ (Ytn , Ytn+(t1−t2), . . . , Yt1)
′, (8.1)

where D∼ denotes equal in distribution. For causal linear ARMA processes, it is well
known that TR is essentially restricted to processes having Gaussian innovations.
For stationary univariate and multivariate non-Gaussian linear processes, TR re-
quires some regularity conditions on the coefficients of the model representing the
DGP.

Test statistics for TR are often devised for bivariate or trivariate random vari-
ables because of the complexities associated with multi-dimensional distributions.
Indeed, several proposed tests statistics are based on the following, less exhaustive,
definition of TR. That is, {Yt, t ∈ Z} is said to be a TR process if (Yt, Yt−�)′

D∼
(Yt−�, Yt)′ (� ∈ N). In consequence, for any (a, b) ∈ R2, and each � ∈ N we have
FYt,Yt−�

(a, b) = FYt,Yt−�
(b, a). Let A(x) = {(a, b): b − a ≤ x}, and B(x) = {(a, b):

b− a ≥ −x}, where x is a real number. Then, for every x, we can write the distri-
bution of the stochastic process {Xt(�) ≡ Yt − Yt−�, t ∈ Z} as

FXt(�)(x) =
∫

A(x)
dFYt,Yt−�

(a, b) =
∫

B(x)
dFYt,Yt−�

(a, b)

= 1−
∫

A(−x)
dFYt,Yt−�

(a, b) = 1− FXt(�)(−x). (8.2)

Thus, the one-dimensional marginal distribution of {Xt(�), t ∈ Z} is symmetric
about zero, i.e., X0(�)

D= −X0(�). This implication of TR is the basis of the two test
statistics introduced in Section 8.2.

It is well known that many nonlinear DGPs are stationary Markov chains or
can be rephrased as a Markov chain. The dynamic properties of Markov chains
may be conveniently modeled via copula functions . Let {Yt, t ∈ Z} be a stationary
real-valued Markov chain with invariant CDF FY : R → [0, 1] which is assumed to
be continuous. Sklar’s theorem (Appendix 7.B) ensures the existence of a unique
bivariate copula function C : [0, 1]2 → [0, 1] characterizing the relationship between
Yt and Yt+1 for any t ∈ Z. Let H : R2 → [0, 1] denote the joint CDF of Yt =
(Yt, Yt+1)′. Then we have H(y1, y2) = C

(
FY (y1), FY (y2)

)
, ∀(y1, y2) ∈ R2 and all

t ∈ Z. Therefore, the following two statements provide equivalent formulations of
TR for stationary first-order Markov chains:

(i) H(y1, y2) = H(y2, y1), ∀(y1, y2) ∈ R2,

(ii) C(u, v) = C(v, u), ∀(u, v) ∈ [0, 1]2.
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Figure 8.1: (a) Scatter plot at lag 1 of the time series {Xt = Y1,t + Y2,1001−t}1,000
t=1 , where

{Yi,t, t ∈ Z} (i = 1, 2) are two independent realizations of the logistic map (1.22) with a = 4;
(b) Scatter plot at lag 1 of the time series {X∗

t = Y1,t + Y2,t}1,000
t=1 .

Property (i) is sometimes referred to as detailed balance equations . A copula satis-
fying (ii) is said to be exchangeable , commutative or symmetric.

Example 8.1: Exploring a Logistic Map for TR
Figure 8.1(a) shows a scatter plot at lag 1 of the time series {Xt = Y1,t +
Y2,1,001−t}1,000

t=1 , where {Yi,t, t ∈ Z} (i = 1, 2) are two independent realizations
of the logistic map (1.22) with a = 4. Note that the scatter plot is symmetric
along the main diagonal, suggesting that the DGP is symmetric. For the
same logistic map, Figure 8.1(b) shows a scatter plot at lag 1 of a time series
{X∗

t = Y1,t + Y2,t}1,000
t=1 . We see that the distribution of {X∗

t } is asymmetric.
Hence, the series {X∗

t } is not a realization of a static transformation of a linear
Gaussian DGP.

8.2 Time-Domain Tests

8.2.1 A bicovariance-based test
Since the condition of TR implies the equivalence of various distributions, it also
implies the equality of various subsets of moments from the joint distribution of
(Yt1 , . . . , Ytn)′, where they exist. Autocovariances, however, are by definition sym-
metric. Also the spectral density function and its time-reversed version are identical.
So, we need higher-order moments to detect irreversibility. Assume, for ease of nota-
tion, that {Yt, t ∈ Z} has mean zero. Then a sufficient, but not necessary, condition
for TR is the equality

E(Y i
t Y j

t−�) = E(Y j
t Y i

t−�), ∀(i, j) ∈ N and ∀� ∈ Z. (8.3)

Pomeau (1982) and Steinberg (1986) use (8.3) with i = 1 and j = 3 to examine
TR. Later, Ramsey and Rothman (1996) consider the case i = 1, j = 2. In partic-
ular these authors investigate the difference between two bicovariances, termed the
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symmetric-bicovariance function , and defined as follows

ψY (�) = γ
(2,1)
Y (�)− γ

(1,2)
Y (�), (8.4)

where γ
(i,j)
Y (�) = E(Y i

t Y j
t−�). If a strictly stationary process {Yt, t ∈ Z} is TR, then

ψY (�) = 0 ∀� ∈ Z.
Ramsey and Rothman (1996) note that, within the context of stationary DGPs,

TR can stem from two sources. First, the model representing the DGP may be
nonlinear even though the innovations {εt} follow a symmetric (perhaps Gaussian)
probability distribution. They refer to this case as “Type I” time-irreversibility.
Second, {εt} is a sequence of i.i.d. non-Gaussian random variables while the model
is linear. This latter case is called “Type II” time-irreversibility. Note, however, that
nonlinearity does not imply Type I time-irreversibility; there exist stationary revers-
ible nonlinear time series models; see, e.g., McKenzie (1985), Lewis et al. (1989),
and Exercise 8.4. So, a test for Type I time-irreversibility is not fully equivalent to
a test for nonlinearity.

Using moment estimates of the bicovariances, the TR test statistic is based on
the estimator

ψ̂Y (�) = γ̂
(2,1)
Y (�)− γ̂

(1,2)
Y (�), (� ∈ Z),

where γ̂
(i,j)
Y (�) = (T − �)−1

∑T
t=�+1 Y i

t Y j
t−� with (i, j) = (1, 2).1 One can easily

show that γ̂
(i,j)
Y (�) is an unbiased and consistent estimator of γ

(i,j)
Y (�). Moreover, if

{Yt, t ∈ Z} is a zero-mean i.i.d. process with E(Y 4
t ) < ∞, it is easy to verify (Exercise

8.2(a)) that an exact expression of the variance of ψ̂Y (�) is given by

Var{ψ̂Y (�)} =
2(μ4,Y μ2,Y − μ2

3,Y )
(T − �)

−
2μ3

2,Y (T − 2�)
(T − �)2

. (8.5)

Replacing μ3,Y and μ4,Y by their sample counterparts leads to V̂ar{ψ̂Y (�)}, i.e., the
sample analogue of (8.5). Then the TR test statistic is defined by

TR(�) = ψ̂Y (�)
/√

V̂ar{ψ̂Y (�)}. (8.6)

Under H0 : ψY (�) = 0, it can be shown that TR(�) D−→ N (0, 1) as T → ∞. The
pre-requisite of the test statistic is that {Yt, t ∈ Z} must possess at least a finite
six-order moment. Note that this condition may often be viewed as too restrictive
for DGPs without higher-order moments, which typically is the case with financial
data.

Ramsey and Rothman (1996) recommend the following two-stage procedure for
testing Type I and II time-irreversibility.

1The idea of using the difference γ̂
(2,1)
Y (�)− γ̂

(1,2)
Y (�) as a measure for TR is comparable to using

the difference between lag � sample cross-correlations of standardized residuals, e.g. ρ̂
(2,1)
ε̂ (�) −

ρ̂
(1,2)
ε̂ (�) (see Example 6.8) as an alternative (omnibus-type) test statistic for diagnostic checking.
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Algorithm 8.1: The Ramsey–Rothman TR test

Stage 1: Type I and II time-irreversibility
(i) Standardize the time series under study, and compute ψ̂Y (�) for � = 1, 2, . . . .

(ii) Fit a causal ARMA(p, q) model to the standardized series {Yt}T
t=1, using

an order selection criterion to find the optimal values of p and q. Obtain
the residuals and compute (8.5), replacing μr,Y by μ̂r,Y = T−1

∑T
t=1 Y r

t

(r = 2, 3, 4).

(iii) Generate a new time series {Y ∗
t }T

t=1 using the fitted model in step (ii), and
with {εt}T

t=1 generated as a sequence of i.i.d. N (0, 1) random variables. Ob-
tain the corresponding value of ψ̂Y ∗(�). Repeat this step a large number of
times.

(iv) Compute the sample standard deviation of ψ̂Y ∗(�) via its simulated distri-
bution. Using the result in step (i), compute TR(�) for � = 1, 2, . . . .

(v) To avoid possible interdependence among the computed test statistics at
different lags, estimate the p-value of max� |TR(�)| running a second MC
simulation. Rejection of H0 is consistent with both Type I and II time-
irreversibility.

Stage 2: Distinguishing Type I and Type II time-irreversibility

(vi) Given a rejection in Stage 1, repeat steps (i) and (ii) above. Next, compute
TR(�) (� = 1, 2, . . .). Finally, estimate the p-value of max� |TR(�)| running a
single MC simulation. If the DGP is Type II, i.e., the model is ARMA with
non-Gaussian innovations, the residuals will be approximately TR. Thus, H0

will not be rejected.

Two comments are in order. First, with some fitted linear ARMA models, direct
computation of the variance formula (8.5) may result in negative estimates. Step (iii)
overcomes this potential problem by simulating the distribution function of ψ̂Y (�).
A second, and more serious problem, is that the ARMA prewhitening in step (ii)
may destroy TR since it induces a phase shift in the series; see Hinich et al. (2006).
As a consequence, the TR test statistic (8.6) could lead to false rejections of the null
hypothesis.

8.2.2 A test based on the characteristic function

A distribution of a continuous random variable X is symmetric if and only if the
imaginary part of its characteristic function, �{φX(ω)} say, is zero for all real num-
bers ω. In view of (8.2), and using the fact that there is a one-to-one correspondence
between distribution functions and characteristic functions, it seems natural to con-
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struct a TR test statistic for the null hypothesis

H0 : �{φX,�(ω)} = E{sin
(
ω(Xt(�))

)
} = 0, ∀ω ∈ R+. (8.7)

This result forms the basis of a TR test statistic proposed by Chen et al. (2000).
Let g(·) be a weighting function such that ∫∞0 g(ω)dω < ∞. More specifically,

g(·) should be chosen such that φX,�(·) will not be integrated to zero when the
distribution of {Xt(�), t ∈ Z} is asymmetric. A necessary condition is∫ ∞

0
φX,�(ω)g(ω)dω=

∫ ∞

−∞

( ∫ ∞

0
sin(ωXt(�))g(ω)dω

)
dFXt,�

= 0, ∀�∈ Z. (8.8)

By changing the order of integration, (8.8) is equivalent to

μg(�) ≡ E[ψg(Xt(�))] =
∫ ∞

−∞
ψg(x)dFXt,�

(x) = 0, (8.9)

where ψg(x) = ∫∞0 sin(ωx)g(ω)dω. Given an observable segment {Yt}T
t=1 of {Yt, t ∈

Z}, and by abuse of notation, a natural point estimator of (8.9) is given by

ψg(�) =
1

T − �

T∑
t=�+1

ψg

(
Yt(�)

)
. (8.10)

Because ψg(·) is a static transformation, {Xt(�)} and {ψg

(
Xt(�)

)
} are also strictly

stationary processes for each fixed � ∈ Z. Then, under a minimal mixing condition
(see, e.g., White, 1984, Thm. 5.15), it is easy to show that, as T →∞,

√
T − �

(
ψg(�)− μg(�)

)
D−→ N

(
0, σ2

ψg
(�)

)
, (8.11)

where

σ2
ψg

(�) = lim
T→∞

Var
( 1√

T − �

T∑
t=�+1

ψg

(
Xt(�)

))
= Var{ψg

(
Xt(�)

)
}

+ 2 lim
T→∞

(
T−�−1∑

i=1

(
1− i

T − �

)
Cov{ψg

(
Xt(�)

)
, ψg

(
Xt−i(�)

)
}
)

.

This leads to the following test statistic for H0:

Cg(�) =
√

T − �
( ψg(�)

σ̂ψg(�)

)
, (8.12)

where σ̂ 2
ψg

(�) is a consistent estimator for σ2
ψg

(�). Its form is given by

σ̂ 2
ψg

(�) = γ̂ψg(0) + 2
T−�−1∑

j=1

WT,�(j)γ̂ψg(j),
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where γ̂ψg(j) is the lag-j sample autocovariance of {ψg(Xt(l)); � + 1 ≤ t ≤ T} and

WT,�(j) =
(
1− j

T − �

){
1− 1

2(T − �)1/3

}j

+
j

T − �

{
1− 1

2(T − �)1/3

}T−�−j
, (j ∈ N). (8.13)

The weight function (8.13) ensures that σ̂2
ψg

(�) is always non-negative. Its form
is motivated by the lag window used in the stationary bootstrap method of Politis
and Romano (1994) and adopted by Chen et al. (2000) and Chen (2003). These
latter authors further suggest to take g(ω) = (1/β) exp(−ω/β) (ω > 0), for some
β ∈ (0, ∞), so that ψg(x) = βx/(1 + β2x2). By adjusting the parameter β, the
resulting test statistic is flexible to capture various types of asymmetry. The test
statistic (8.12) seems to have high empirical power with β = 1 and β = 2.

Observe that (8.12) essentially is a general test statistic for detecting symmetry of
the marginal distribution of the observed time series {Yt}T

t=1. It is a TR test statistic
when applied to {Xt(�)}T

t=�+1. A useful feature of Cg(�) is that the test statistic can
be used without any moment assumptions.2 Indeed, simulations provided by Chen
et al. (2000) confirm that this test statistic is quite robust to the moment property
of the DGP being tested.

Unfortunately, the test statistic (8.12) is a check for unconditional symmetry
using the observed time series {Yt}T

t=1. From an application perspective, however,
conditional symmetry is often of more interest. This implies that we need to replace
{Yt, t ∈ Z} by some residual series {ε̂t}. In that case, Chen and Kuan (2002)
suggest to modify the computation of σ̂2

ψg
(�) by bootstrapping from the standardized

residuals of a time series model, using a model-free bootstrap approach. Provided the
first four moments of the error process {εt} exist, the resulting TR test statistic is still
asymptotically normally distributed under the null hypothesis that E

(
ψg(εt)

)
= 0.

Example 8.2: Exploring a Simulated SETAR Process for TR
A simple way to explore an observed time series {Yt}T

t=1 for TR is to detect
asymmetries in plots of the sample distributions of Xt(�) = Yt − Yt−� (� =
1, 2, . . .). As an illustration, consider the stationary SETAR(2; 1, 1) process

Yt =
{

0.5Yt−1 + εt if Yt−1 ≤ 0,
−0.4Yt−1 + εt if Yt−1 > 0,

(8.14)

where {εt} i.i.d.∼ N (0, 1). Figure 8.2(a) shows a plot of a typical subset of
length T = 100 of a simulated time series of 10,000 observations. Figure
8.2(b) displays the kernel smoothed densities of {Wt(�) = Yt − Yt−�}10,000

t=1

(� = 1, . . . , 5), using a normal kernel. It is visually clear that the distributions
are not symmetric about the origin, indicating the SETAR process is time-
irreversible.

2This feature trivially holds for the kernel-based TR test statistic Sh,T (m) of Diks et al. (1995),
to be discussed in Section 8.4.2, since the adopted Gaussian kernel is bounded.
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Figure 8.2: (a) A typical subset {Yt}100t=1 of the simulated SETAR(2; 1, 1) process (8.14);
(b) Simulated marginal distributions of {Wt(�) = Yt − Yt−�}10,000

t=1 for � = 1, . . . , 5.

8.3 Frequency-Domain Tests

8.3.1 A bispectrum-based test

In Section 4.1, we showed that, under the null hypothesis of TR, �{fY (ω1, ω2)} = 0
∀(ω1, ω2) ∈ D where D is the principal domain (4.7). Hinich and Rothman (1998)
use this result to define a frequency-domain TR test statistic based on the imaginary
part of the normalized estimated bispectrum B̂Y (ω1, ω2), say �{B̂Y (ω1, ω2)}. The
computation of the corresponding test statistic involves the following steps.

Algorithm 8.2: The bispectrum-based TR test

(i) Divide the series {Yt}T
t=1 into K nonoverlapping stretches, or frames, of

length N so that K = �T/N�. Define the discrete Fourier frequencies ωj =
j/N (j = 1, . . . , N ).

(ii) Calculate the discrete FT Yk(ωj)=
∑N

t=1 Yt+(k−1)N exp{−2πiωj(t+(k−1)N)},
and the periodogram of the kth frame N−1|Yk(ωj)|2 = N−1Yk(ωj)Yk(ω−j),
(k = 1, . . . ,K).

(iii) Compute the averaged estimate of the spectrum at frequency ωj , i.e.,
f̂Y (ωj) = T−1

∑K
k=1 |Yk(ωj)|2, since T ≈ KN . In addition, calculate

f̂Y (ωj1 , ωj2) = N−1
∑K

k=1 Yk(ωj1)Yk(ωj2)Yk(−ωj1 − ωj2). Then the normal-
ized estimated bispectrum is

B̂Y (ωj1 , ωj2) =
f̂Y (ωj1 , ωj2)√

f̂Y (ωj1)f̂Y (ωj2)f̂Y (ωj1 + ωj2)
.
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Algorithm 8.2: The bispectrum-based TR test (Cont’d)

(iv) Compute the test statistic

STR = 2T 2c−1
∑

(ωj1 ,ωj2 ) ∈D
|�{B̂Y (ωj1 , ωj2)}|2. (8.15)

Under H0 : �{BY (ωj1 , ωj2)} = 0, and as T →∞,

STR
D−→ χ2

M , (8.16)

with degrees of freedom M = [N2/16]. Hinich and Rothman (1998) prove
consistency of STR.

8.3.2 A trispectrum-based test

Similar to the bispectrum (4.4), we can define the trispectrum as the triple FT of
the fourth-order cumulant function of a stationary time series process {Yt, t ∈ Z},
i.e.,

fY (ω1, ω2, ω3)=
∞∑

�1,�2,�3=−∞
γY (�1, �2, �3) exp{−2πi(ω1�1 + ω2�2 + ω3�3)}, (8.17)

where (ω1, ω2, ω3) ∈ [0, 1]3 are normalized frequencies, and the third-order cumulant
function is defined as γY (�1, �2, �3) = E(YtYt+�1Yt+�2Yt+�3). Owing to symmetry re-
lations, the trispectrum need to be calculated only in a subset of the complete
(ω1, ω2, ω3)-space; see, e.g., Dalle Molle and Hinich (1995) for a description of nonre-
dundant regions of (8.17), including its principal domain.

The normalized magnitude of the trispectrum, known as the squared tricoher-
ence, can be expressed as

|TY (ω1, ω2, ω3)|2 =
|fY (ω1, ω2, ω3)|2

fY (ω1,−ω1)fY (ω2,−ω2)fY (ω3,−ω3)fY (ω1 + ω2 + ω3,−ω1 − ω2 − ω3)
. (8.18)

If a stationary DGP can be represented as a linear convolution of a sequence of
i.i.d. random variables, then (8.18) is a constant for all points in the stationary
set. If, moreover, the process is Gaussian, then this constant is equal to zero for
all points belonging to the principal domain, say Ω. Thus, as in Chapter 4, global
test statistics for Gaussianity and linearity can be defined at a particular frequency
triple (ω1, ω2, ω3) ∈ Ω.

Dalle Molle and Hinich (1995) consider a frame-averaging procedure for estim-
ating (8.17), similar as the one given in Section 8.3.1 for the bispectrum-based TR
test statistic. In particular, start with steps (i) and (ii) of Algorithm 8.2. Also,
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compute f̂Y (ωj) = T−1
∑K

k=1 |Yk(ωj)|2 with T ≈ KN . Next, replace steps (iii) and
(iv) in Algorithm 8.2 by the following steps.

Algorithm 8.3: The trispectrum-based TR test

(iii∗) Compute, as a consistent estimator of (8.17),

f̂Y (ωj1 , ωj2 , ωj3)=
1
T

K∑
k=1

Yk(ωj1)Yk(ωj2)Yk(ωj3)Yk(−ωj1 −ωj2 −ωj3).

Then the normalized estimated trispectrum is

T̂Y (ωj1 , ωj2 , ωj3) =
f̂Y (ωj1 , ωj2 , ωj3)√

f̂Y (ωj1)f̂Y (ωj2)f̂Y (ωj3)f̂Y (ωj1 + ωj2 + ωj3)
.

This normalization standardizes the variance of the trispectrum estimate
using the estimated asymptotic variance in place of the true variance.

(iv∗) Compute the TR test statistic

S∗
TR = 2T 2c−1

∑
ωj1 ,ωj2 ,ωj3∈Ω

|�{T̂Y (ωj1 , ωj2 , ωj3)}|2, (
1
2

< c < 1). (8.19)

Under H0: �{TY (ωj1 , ωj2 , ωj3)} = 0, and as T →∞,

S∗
TR

D−→ χ2
M∗ (8.20)

with M∗ the number of frequency triples in Ω. This number is automatically
computed in the available software code; see Section 8.7.

The test statistic S∗
TR is applicable if the one-dimensional marginal distribution of

{Yt, t ∈ Z} has a finite eighth moment. Like the bispectrum-based TR test statistic
STR, this moment requirement rules out many economic and financial time series
encountered in practice.

8.4 Other Nonparametric Tests

The frequency-domain TR test statistics discussed in Section 8.3 are nonparametric
in nature. They may be computationally demanding, and require special care when
the boundary (nonredundant) bispectral lags are included. Here, we discuss three
nonparametric TR test statistics which are computationally more attractive.
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8.4.1 A copula-based test for Markov chains
In Section 8.1, we briefly introduced the notion of exchangeability. A measure for
the “amount” or “degree” of nonexchangeability of each pair (X,Y ) of identically
distributed random variables (see, e.g., Klement and Mesiar, 2006; Nelsen, 2007) is
given by

δC = 3 sup
(u,v)∈[0, 1]2

|C(u, v)− C(v, u)|. (8.21)

This measure takes values in [0, 1] for any copula with the lower and upper bounds
attainable. Based on (8.21), Beare and Seo (2014) propose a TR test statistic for
the null hypothesis H0 : δC = 0. Using the notation in Section 8.1, let θ ∈ [0, 1/3]
be given by

θ = sup
(y1,y2)∈R2

|H(y1, y2)−H(y2, y1)|,

which, in view of (8.21), implies that θ = 1
3δC. Given a set of observations {Yt}T

t=1,
a natural empirical analogue of θ is

θT = sup
(y1,y2)∈R2

|HT (y1, y2)−HT (y2, y1)|, (8.22)

where HT (·, ·) is the joint EDF

HT (y1, y2) =
1

T − 1

T−1∑
t=1

I(Yt ≤ y1, Yt+1 ≤ y2).

Under H0 and fairly weak regularity conditions, it can be shown (Beare and Seo,
2014) that θT is asymptotically distributed as

√
TθT

D−→ sup
(y1,y2)∈R2

|B(y1, y2)− B(y2, y1)|, as T →∞, (8.23)

where B(·, ·) is a continuous centered Gaussian process with covariance kernel

Cov{B(y1, y2),B(y′1, y
′
2)} =

∑
t∈Z

Cov{I(Y0 ≤ y1, Y1 ≤ y2), I(Yt≤ y′1, Yt+1≤ y′2)}.

In addition, ∀c ∈ R, T−1/2θT > c with probability approaching one, as T → ∞.
Thus, for a fixed value c,

√
TθT is consistent against any violation of TR. One can

easily generalize (8.23) so that it applies to stationary pth-order (p ≥ 2) Markov
chains. But the factor of 3 in (8.21) does not hold for higher-dimensional copulas,
and a different constant is needed.

For practical implementation critical values of the limiting distribution of
√

TθT

are required. These values can be obtained via the local bootstrap for strictly sta-
tionary pth-order Markov processes of Paparoditis and Politis (2002). In particular,
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conditional on the observed data {Yt}T
t=1, the objective is to generate bootstrap

pseudo-replicates Y ∗
1 , . . . , Y ∗

T from which the statistic of interest, in the present case
(8.22), can be calculated.

For a first-order Markov chain the local resampling algorithm generating the
bootstrap replicates may be applied in the following way.

Algorithm 8.4: Resampling scheme

(i) (Initialization step)
Select an initial state Y ∗

1 , and the so-called resampling width b ≡ bT > 0 of
the neighborhood of a given state.

(ii) Let us suppose that for some t ∈ {1, . . . , T − 1} that Y ∗
1 , . . . , Y ∗

t is already
sampled. Now, for the (t + 1)th bootstrap observation set Y ∗

t+1 = YJ+1,
where J is a discrete random variable with probability mass function (pmf)

P(J = j) = Kh(Y ∗
t − Yj)/

T−1∑
i=1

Kh(Y ∗
t − Yi), (j = 1, . . . , T − 1).

Here, Kh(·) = K(·/h)/h with K(·) a one-dimensional, nonnegative and sym-
metric kernel function with mean zero.

Recursive application of step (ii) yields the pseudo-time series {Y ∗
t }T

t=1. Notice
that the above procedure resamples the observed time series in a way according to
which the probability of Yj being selected is higher the closer is its preceding value
Yj−1 to the last generated bootstrap replicate Y ∗

t−1.
One practical aspect is the choice of the initial bootstrap observation Y ∗

1 . A
simple approach is to draw at random from the entire set of observations {Yt}T

t=1

with equal probability. Another issue concerns the selection of h. One simple rule-of-
thumb approach is to use the ‘optimal’ resampling width, in the sense of minimizing
the AMSE of the bootstrap one-step transition distribution function; see Paparoditis
and Politis (2002). Assume that {Yt}T

t=1 is generated by an AR(1) process Yt =
φ0 + φ1Yt−1 + εt with {εt} an i.i.d. sequence of random variables. Then, under the
simplifying assumption that {εt} i.i.d.∼ N (0, σ2

ε), it can be proved that the optimal
resampling width h ≡ h(y) is given by

h(y) =
[ σ4

εW1

TfY (y){2σ2
εC

2
1 (y) + 0.25C2

2}

]1/5
, (y ∈ R), (8.24)

where, with a Gaussian kernel, K1 = 1/(2
√

π), C1(y) = φ1σ
−2
Y (y−μY ) and C2 = φ2

1.
A sample version of h(y) can be easily obtained by fitting an AR(1) model to the
data, and replacing the unknown quantities in (8.24) by their sample estimates.
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8.4.2 A kernel-based test
The above TR test statistics are all devised in a two-dimensional state space by
considering only distributions, or higher-order moments, of pairs (Yt, Yt−�). Using
the delay vector Y(�)

t = (Yt, Yt−�, . . . , Yt−(m−1)�)′ (m ∈ Z+, � ∈ Z), TR can also
be formulated in a state space framework via the joint density function fm(y) of
{Y(�)

t , t ∈ Z}, i.e., the process is invariant under time reversal for all m and � if and
only if,

fm(Py) = fm(y), ∀y ∈ Rm, (8.25)

where P denotes an m × m matrix operator with elements Pij = δi,m+1−j , and
δi,j is Kronecker’s delta. Note that this characterization of TR is related to the
classical two-sample problem of testing the equivalence of two multi-dimensional
distributions for independent samples. This equivalence suggests a test statistic
based on the distance between fm(y) and fm(Py). Diks et al. (1995) develop such
a test using a quadratic measure of dependence.

Assume that the delay vectors {Y(�)
t }N

t=1, with finite variance, are sampled inde-
pendently according to fm(y), with N = T − (m − 1)�. Let f∗

m(y) be a smoothed
pdf defined as the convolution of fm(y) with a multivariate Gaussian kernel Kh(·),
i.e.,

f∗
m(y) =

∫
Rm

Kh(y − ξ)fm(ξ)dξ, (8.26)

where

Kh(x) = (
√

2πh)−m exp{−‖x‖2/2h2},

with h > 0 the bandwidth, and ‖ · ‖ the Euclidean norm. The convolution process
has the symmetry-preserved property that f∗

m(y) = f∗
m(Py) ∀y ∈ Rm under the

null hypothesis H0 : fm(y) = fm(Py). Then a quadratic measure to evaluate the
difference between the smoothed densities is defined as

Qh(m) =
1
2
(2h

√
π)m

∫
Rm

(
f∗

m(y)− f∗
m(Py)

)2
dy

= (2h
√

π)m

∫
Rm

(
f∗

m(y)f∗
m(y)− f∗

m(y)f∗
m(Py)

)
dy, (8.27)

which is always positive-semidefinite and equals zero if and only if f∗
m(y) = f∗

m(Py).
Substituting (8.26) in (8.27), using integration by parts and a change of variables,

gives the expression

Qh(m) =
∫
Rm

fm(r)
∫
Rm

(
exp{−‖r− s‖2/(4h2)}

− exp{−‖r−Ps‖2/(4h2)}
)
fm(s)dsdr. (8.28)
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Replacing the integrals by an average of contributions from different pairs of m-
dimensional delay vectors {Yi} and {Yj} (i �= j) results in the following, unbiased,
estimator Q̂ (a U-statistic)3 of Q:

Q̂h,T (m) =
(

N

2

)−1 ∑
i<j

wij , (8.29)

where

wij =exp{−‖yi−yj‖2/(4h2)} − exp{−‖yi−Pyj‖2/(4h2)}. (8.30)

Under H0, the expected value of Q̂h,T (m) is zero and its variance is given by

Var
(
Q̂h,T (m)

)
=

(
N

2

)−2 ∑
i<j

w2
ij .

Therefore, the test statistic is defined as follows

Sh,T (m) = Q̂h,T (m)
/√

Var
(
Q̂h,T (m)

)
, (8.31)

which, approximately, has a mean zero and a standard deviation one, if the m-
dimensional processes {Yi, i ∈ Z} and {Yj , j ∈ Z} are independent.

In applications of the test statistic Sh,T (m), an important question is how to
select the bandwidth h. In kernel-based estimation it is well known that selecting
h too small leads to a higher variance of the kernel estimator, called undersmooth-
ing . On the other hand, choosing a bandwidth that is too large increases the bias
(oversmoothing) of the estimator. In practice, both factors are often balanced via
CV.

Another issue concerns the dependence among delay vectors. Diks et al. (1995)
suppress this effect by dividing the (i, j) plane of indices into squares of size τ × τ ,
with τ some fixed number larger than the typical time scale, and next replacing wij

by w′
i′,j′ = τ−2

∑τ
p=1

∑τ
q=1 wi′τ+p,j′τ+q. This method is supposed to provide more

reliable estimates of the standard deviation of Sh,T (m). Clearly, the influence of the
parameter τ on the performance of this test statistic is comparable to the bandwidth
influence. Moreover, since the parameters τ and h are bound together, the selection
of their optimal values should be carried out simultaneously, for instance by using
CV.

8.4.3 A sign test
The projection of the m-dimensional delay vectors on each bi-dimensional plane
(Yt, Yt−�) (� = 1, . . . ,m− 1) can be readily evaluated by exploiting the fact that for

3Strictly speaking this U-statistic is unbiased for a finite sample size only if the {Yi, i ∈ Z} are
independent.
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Figure 8.3: Boxplots of R(m) based on 1,000 MC replications of series of length T = 5,000
generated from the time-delayed Hénon map with dynamic noise process (8.35), and with (a)
� = 1 and (b) � = 2.

a strictly stationary and TR stochastic process {Xt(�) = Yt − Yt−�, t ∈ Z}, we have

P(X0(�) > 0) = P(X0(�) < 0) =
1
2
, (� = 1, . . . ,m − 1).

The object of interest is thus the probability π(�) ≡ P
(
X0(�) > 0

)
, which may

be thought of as a simple measure of deviation from zero of the one-dimensional
distribution of {Xt(�), t ∈ Z}. A natural point estimator of π(�) is

π̂(�) =
1

T − �

T∑
t=�+1

I
(
Xt(�) > 0

)
, (� = 1, . . . ,m − 1). (8.32)

Psaradakis (2008) proves that, for each fixed � ∈ N, as T →∞,

√
T − �

(
π̂(�)− π(�)

) D−→ N
(
0, σ2

X(�)
)
, (8.33)

where

σ2
X(�) = π(�)

(
1− π(�)

)
+ 2π(�)

∞∑
t=1

{P(Xt(�) > 0)|X0(�) > 0)− π(�)}. (8.34)

The circular block bootstrap procedure of Politis and Romano (1992) for stationary
processes may be used to obtain an estimate of (8.34). A practical difficulty with
this approach is the choice of the block length. Another possibility is to approximate
the sampling distribution of (8.32) by subsampling, which requires the selection of
a subsample size. Below we present an example of the TR test statistic π̂(�) applied
to data generated by a nonlinear high-dimensional stochastic process.

Example 8.3: Exploring a Time-delayed Hénon Map for TR

Consider the stochastic process

Yt = 1− 1.4Y 2
t−� + 0.3Yt−2�−1 + εt, {εt} i.i.d.∼ U(−0.01, 0.01). (8.35)
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Table 8.1: P -values of six TR test statistics. Blue-typed numbers indicate rejection of the
null hypothesis of TR at the 5% nominal significance level.

Time domain Frequency Nonparametric (4)

max�=1,...,10 |TR(�)| domain (3) Sh,T (m)

Series Type I & II (1) Type II (2) STR S∗
TR θT m = 2 m = 3 m = 4 m = 5

Unemployment rate(5) 0.000 0.010 0.000 0.000 0.338 0.164 0.123 0.239 0.190
EEG recordings 0.004 0.000 0.133 0.000 1.000 0.639 0.085 0.022 0.008
Magnetic field data 0.000 0.004 0.000 0.000 0.010 0.445 0.203 0.176 0.120
ENSO phenomenon 0.026 0.010 0.000 0.000 0.713 0.217 0.193 0.401 0.639
Climate change: δ13C 0.516 0.815 0.739 0.000 0.780 0.806 0.977 0.999 0.999

δ18O 0.002 0.016 0.095 0.000 0.828 0.086 0.130 0.405 0.483

(1) Based on 1,000 MC estimated standard errors, and 1,000 MC simulations to estimate the
p-value.

(2) Test results are based on i.i.d. standard errors using (8.5), and 1,000 MC simulations to
estimate the p-value.

(3) M = 25 (see Chapter 4) for all series and both test statistics; no prewhitening.
(4) p-values of θT are based on 400 bootstrap replicates, using the resampling scheme of Section 8.4.1.

p-values of Sh,T (m) are based on 1,000 MC simulations with h = 0.5, and τ = 20.
(5) First differences of the original data.

This is a “clothed”, or randomized, version of the time-delayed deterministic
(its skeleton) Hénon map. Time series generated by the Hénon map are known
to be irreversible. We generated 1,000 replications of (8.35) for series of length
T = 5,000. Subsequently, with m = 2, . . . , 15, we computed the measure

R(m) =
1

m− 1

m−1∑
�=1

|0.5− π̂(�)| × 100, (8.36)

where π̂(�) is given by (8.32).

Figures 8.3(a) and (b) show boxplots at lags � = 1 and 2, respectively, of
1,000 R(m) values. In the case � = 1, the median values of R(2) and R(3)
are approximately equal to zero, and hence irreversibility is not detected. In
contrast, all median values of R(m) (m > 3) depart from zero significantly,
indicating that the DGP (8.35) is actually time-irreversible. A similar pic-
ture emerges from Figure 8.3(b). Thus, TR cannot be consistently tested by
considering only distributions of pairs (Yt, Yt−�).

8.5 Application: A Comparison of TR Tests

Table 8.1 presents p-values of six TR test statistics. Columns 2 – 3 provide evidence
of time-irreversibility, using the Ramsey–Rothman statistic max�=1,...,10 |TR(�)|. The
AR order selection was done using BIC with pmax = 10. The only series that fails
to display evidence of both Type I and Type II time-irreversibility is the climate
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Table 8.2: Results of TR test statistic Cg(�), as defined by (8.12), for lags � = 1, . . . , 10.(1)

Blue-typed numbers indicate rejection of the null hypothesis of TR at the 5% nominal signi-
ficance level.

Time lag �

Series 1 2 3 4 5 6 7 8 9 10

Unemployment rate(2) 1.512 2.122 2.183 1.684 1.605 0.809 0.407 0.226 0.622 0.489
EEG recordings -0.257 -0.241 -0.285 -0.224 -0.222 -0.173 -0.104 -0.019 0.081 0.116
Magnetic field data -0.610 -0.479 -0.541 0.040 -0.286 -0.397 -0.334 -0.081 0.757 0.549
ENSO phenomenon 1.258 1.182 1.282 1.195 1.141 1.209 1.321 1.378 1.362 1.287
Climate change: δ13C 0.571 -0.299 -0.122 0.370 -0.016 -0.469 -0.384 -0.730 -0.622 -0.342

δ18 O -0.548 -1.288 -1.660 -1.620 -1.320 -1.156 -1.104 -0.971 -0.574 -0.593

(1) Based on the exponential density function g(ω) = (1/β) exp(−ω/β) (ω > 0) with β set at
the reciprocal of the sample standard deviation of each series.

(2) First differences of original series.

change δ13C time series. For the remaining five series, TR is rejected at the 5%
nominal significance level. The p-values of the frequency-domain test statistic STR

(column 4) differ considerably from those of S∗
TR (column 5). For all time series TR is

strongly rejected on the basis of S∗
TR, while with STR, evidence of time-irreversibility

is restricted to three series. Thus, the p-values of S∗
TR rule out linear models with

Gaussian distributions for all series. Note, however, that these test results can be
sensitive to the choice of M ; see also the discussion in Section 4.4.4.

Except for the magnetic field data, the copula-based test statistic θT (column 6)
does not reveal evidence of time-irreversibility, at the 5% nominal significance level.
This may be due to the first-order Markov chain assumption used in the construction
of the test statistic; that is higher-order Markov chains may well provide a better
representation of the DGP underlying the time series, and consequently may change
the outcome of the test statistic.

The p-values of Sh,T (m) differ considerably across the values of m. For m = 2
and 3 all p-values do not reject TR at the 5% nominal significance level. For m = 4
and 5, we see that there is evidence of time-irreversibility in the EEG recordings.
Thus, it seems worthwhile not to rely completely on low-dimensional test results.

Table 8.2 presents test results of Cg(�) for � = 1, . . . , 10. Only in one case the
test statistic rejects the TR null hypothesis, i.e. the U.S. unemployment series at
lags � = 2 and 3. In all other cases, the null hypothesis is not rejected at the
5% nominal significance level. Characterization of the U.S. unemployment series as
time-irreversible through the various TR test statistics suggest asymmetric behavior
consistent with the steepness asymmetry business cycle hypothesis, elaborated upon
in the introductory paragraph of this chapter. Also time-irreversibility of the EEG
recordings, as we observed in Table 8.1, is an indicator of nonlinear dynamics.
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8.6 Summary, Terms and Concepts

Summary
Gaussianity and TR suggest a linear model for the data under study. These are two
fundamental properties of DGPs which must be checked before adopting a nonlinear
model. A large number of potential approaches to testing for TR have been pro-
posed in the literature. In this chapter, we provided a brief overview of some of the
major developments in this area. Broadly, the TR test statistics were divided into
three categories. The first of these is those based on higher-order cumulants and
characteristic functions in the time domain, having close relationships with general,
non-temporal, tests of symmetry. In the second category we included test statistics
based on the symmetry property of cumulants in the frequency domain. These lat-
ter tests are computationally more demanding than time-domain TR tests, and are
applicable only if high-order moments exist. In addition, we focused on nonpara-
metric TR test statistics which have been designed to avoid specific assumptions
about the underlying marginal distribution of the DGP under the null hypothesis of
TR. Finally, we provided empirical evidence comparing the performance of various
TR test statistics.

In closing this chapter, we should mention that practically all existing test stat-
istics are only able to detect specific forms of TR. Moreover, many test procedures
regard time-irreversibility as a “complementary test hypothesis”. Few papers, con-
sider the notion of TR in its own right, and try to characterize the nature of TR
when it is present. One notable exception is McCausland (2007) who proposes an
index for certain types of TR, applicable to finite regular stationary Markov chains.
Another exception is Beare and Seo (2014) who use a so-called circulation density
function to measure the degree of temporal irreversibility in a stationary Markov
chain.

Terms and Concepts

Anosov diffeomorphism, 335
BGAR(1) process, 335
Beta-Gamma transformation, 335
commutative, 317
copula functions, 316
directionality, 333
detailed balance equations, 317
exchangeability, 317
local bootstrap, 325

oversmoothing, 328
resampling width, 326
squared tricoherence, 323
symmetric-bicovariance function, 318
time-irreversible, 315
trispectrum, 323
Type I and II time-irreversibility, 318
undersmoothing, 328

8.7 Additional Bibliographical Notes

The literature of TR is quite large and dates back to the mid–1930s, starting with Hostinsky
and Potocek (1935) and Kolmogorov (1936). As Dobrushin et al. (1988) note, the founder
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of the theory of temporal reversibility for Markov processes is considered to be Kolmogorov.
Reversibility, or directionality , appears to be mentioned first by Daniels (1946) in the context
of analyzing time series processes. Lawrance (1991) reviews the state of the theoretical
research up to 1990s. Breidt and Davis (1992) and Cheng (1992, 1999) study TR and
related problems in the context of general linear processes. Tong and Zhang (2005) and
Chan et al. (2006) derive conditions of TR of multivariate non-Gaussian linear processes.

Hoover (1999) describes TR from the perspective of computer simulation with many ex-
amples and concepts taken from dynamical-systems theory. Also, time-irreversibility has
gained a lot of attention in the analysis of human heart rate variability (beat-to-beat time
series); see, e.g., Casali et al. (2008) and Hou et al. (2011).

Rothman (1992) compares the power of the Ramsey–Rothman TR test statistic with the
power of the BDS and Hinich’s bispectrum test against some simple SETAR alternatives.
In a similar vein, the study by Belaire–Franch and Contreras (2003) compares the Ramsey–
Rothman TR test statistic and the Chen et al. (2000) TR test statistics for time series
generated by BL, SETAR, and GARCH models. Fong (2003) applies the Chen et al. (2000)
TR test statistic to daily stock closing prices and trading volume of the 30 component
series representing the Dow Jones Industrial Index. Giannakis and Tsatsanis (1994) propose
a time-domain analogue of the trispectrum-based TR test statistic of Section 8.3. Their
simulation study includes comparisons with the TR test statistic of Algorithm 8.3, and
application to real seismic data.

In addition to the test statistics reviewed in this chapter, several alternative test statistics
of TR have been put forward in the literature. Both Robinson (1991) and Racine and
Maasoumi (2007) introduce entropy-based test statistics which can be used for testing TR;
see, e.g., Exercise 8.6. The asymptotic distribution associated with these test statistics,
however, imposes strong regularity conditions on the DGP. Darolles et al. (2004) propose a
test statistic based on nonlinear canonical correlation analysis. Their approach comes down
to testing whether a given pair of canonical directions are equal to one another. Sharifdoost
et al. (2009) design a test statistic of TR applicable to finite state Markov chains. Kessler and
Sørensen (2005) study the case when martingale estimating functions and other unbiased
estimating functions have the same structure as the score function for a TR Markov process.

Symbolization converts continuous-valued time series observations into a stream of discrete
symbols. Using this concept, Daw et al. (2000) propose a specific method for TR without the
need for generating surrogate data. Steuber et al. (2012) introduce two Markov chain-based
time reversibility tests. The test statistics are based on observed deviations of transition
sample counts between each pair of states in a sequence sampled from a stationary time-
homogeneous Markov chain.

8.8 Software References

Section 8.2: Philip Rothman contributed FORTRAN77 code to calculate the first and
second stage of the Ramsey–Rothman TR test statistic, which can be found at the website
of this book; see Rothman (1996) for documentation. A GAUSS program for running the
Chen–Chou–Kuan TR test statistic Cg(�) was kindly made available by Yi-Ting Chen.

Section 8.3: The Hinich–Rothman bispectrum-based test and the trispectrum-based test
can be computed using the BISPEC and TRISPEC programs, respectively, both coded in
FORTRAN77 by the late Melvin J. Hinich; see http://www.la.utexas.edu/hinich/.

http://www.la.utexas.edu/hinich/
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Section 8.4: Brendan Beare and Juwon Seo have made available MATLAB code for com-
puting the copula-based TR test statistic for Markov chains. The C++ source code and
a Linux/Windows executable of the kernel-based TR test statistic Sh,T (m) (Section 8.4.2)
can be downloaded from Cees Diks’ web page, located at http://cendef.uva.nl/people.

Exercises

Theory Questions

8.1 Let {Yt, t ∈ Z} be a strictly stationary i.i.d. process with mean zero, μ3,Y = E(Y 3
t ) =

0, and finite moments μ2,Y = E(Y 2
t ) and μ4,Y = E(Y 4

t ). Verify (8.5).

8.2 Suppose that {f(t), t ∈ Z} is a strictly stationary time series process with mean zero,
defined on the interval [T1, T2]. The bicovariance function of f(t) can be approximated
by

γ(i,j)(�) =
1

(T2 − �)− T1

∫ T2−�

T1

f i(t)f j(t + �)dt, (i �= j; � ∈ Z).

Show that the bicovariance function γ
(i,j)
TR (�) of the time-reversed stochastic function

is not necessarily equal to γ(i,j)(�), except when f(t) obeys time reversal, i.e. fTR(t) =
f(−t) = f(t + ξ), where ξ is an adjustable parameter that fixes the origin of the time
axis.

8.3 Consider the strictly stationary, zero-mean, stochastic process {Xt(�) ≡ Yt−Yt−�, t ∈
Z, � ∈ N}. Let ρ

(2,1)
Y (�) = E(Y 2

t Yt−�)/E(Y 2
t )3/2, and ρ

(1,1)
Y (�) = E(YtYt−�)/E(Y 2

t ).

(a) Show the standardized third-order cumulant of {Xt, t ∈ Z} can be expressed as

E(X3
t )

E(X2
t )3/2

=
3

2
√

2
ρ
(2,1)
Y (�)− ρ

(2,1)
Y (−�)

{1− ρ
(1,1)
Y (�)}3/2

.

(b) Assume that the functions ρ
(2,1)
Y (�) and ρ

(1,1)
Y (�) are differentiable on [0,∞).

Show the above expression is approximately given by

E(X3
t )

E(X2
t )3/2

≈ − 3√
2

ρ′
21(0)

{−ρ′
11(0)}3/2�1/2

,

where ρ′
21(0) and ρ′

11(0) denote the first non-zero derivatives of ρ
(2,1)
Y (�) and

ρ
(1,1)
Y (�) at the origin, respectively.

(c) Using part (b), argue that as � ↓ 0 time-irreversibility is most apparent for small
values of �.

(Cox, 1991)

8.4 The Gamma distribution is often used to model a wide variety of positive valued
time series variables. Applications include fields such as hydrology (river flows), met-
eorology (rainfall, wind velocities), and finance (intraday durations between trades).

http://cendef.uva.nl/people
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Within this context, Lewis et al. (1989) introduce the simple first-order Beta-Gamma
autoregressive (BGAR(1)) process

Yt = BtYt−1 + Gt, (t ∈ Z),

where {Bt} and {Gt} are mutually independent sequences of i.i.d. random variables
with Beta(kρ, k(1−ρ)) and Gamma(k(1−ρ), β) distributions, respectively, with shape
parameter k > 0, rate parameter β > 0, and ρ (0 ≤ ρ < 1) describes the dependency
structure of the process. It is easily established, using moments of Beta variables,
that ρ(�) = ρ|�| (� ∈ Z).

(a) Let Y and B be independent Gamma(k, β) and Beta
(
kρ, k(1−ρ)

)
random vari-

ables respectively. Then it can be shown that BY and (1−B)Y are independent
Gamma(kρ, β) and Gamma

(
k(1− ρ), β

)
variables. Using this result, prove that

the Laplace–Stieltjes transform of the random variable (v+Bu)X (v ≥ 0, u ≥ 0)
is given by

E

(
e−(v+Bu)X

)
=

( β

β + v

)k(1−ρ)( β

β + v + u

)kρ

.

When v = 0, this result is known as the Beta-Gamma transformation.

(b) For the stationary BGAR(1) process {Yt, t ∈ Z}, let LYt,Yt−1(u, v) denote the
joint Laplace–Stieltjes transform of (Yt, Yt−1). Then, using part (a), show that

LYt,Yt−1(u, v) =
( β

β + u
× β

β + v

)k(1−ρ)( β

β + v + u

)kρ

.

(c) Given the result in part (b), state your conclusion about the TR of the BGAR(1)
process.

8.5 Consider the stationary stochastic process {Yt, t ∈ Z}

Yt = (Yt−1 + Yt−2 + εt) (mod 1),

where {εt} is a sequence of i.i.d. random variables with a continuous marginal distri-
bution. The process {Yt, t ∈ Z} may be viewed as a stochastic version of the so-called
Anosov diffeomorphism on a two-dimensional torus, i.e.(

yi+1

xi+1

)
=

(
1 1
1 0

)(
yi

xi

)
(mod 1),

which is a chaotic nonlinear deterministic system.

Let fm(y1, . . . , ym) be the joint pdf of Yt = (Yt, Yt−1, . . . , Yt−m+1)′ (m ∈ N+). The
following statements are claimed.

(a) {Yt, t ∈ Z} has a unique invariant joint probability measure.

(b) The process is time-irreversible, as the joint distribution of the process {Yt, t ∈
Z} for dimension m > 2 is not symmetric with respect to reversing the time
order of the variables. So, (8.25) does not hold for m ≥ 3.
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(c) The joint distribution of each of the pairs (Yt−�, Yt) (� ≥ 1) is symmetric with
respect to the matrix operator P, defined as P(y1, y2) = (y2, y1).

Sketch a proof of each of the above statements.

(Based on private communication with C. Diks)

Empirical and Simulation Question

8.6. Let {Yt, t ∈ Z} be a strictly stationary time series process with marginal density
function f(y) and joint pdf f�(x, y) of (Yt, Yt−�)′ (� ∈ Z). Granger et al. (2004)
consider a normalization of the Hellinger distance of dependence (Section 7.2.3) given
by S(�) = (1/2) ∫∞

−∞∫∞
−∞{f

1/2
� (x, y)−

(
f(x)f(y)

)1/2}2dxdy.4 Replacing the unknown
densities in S(�) with kernel-based estimators yields the test statistic Ŝ(�); see the
function npunitest in the R-np package.

(a) Investigate the six time series in Table 8.1 for the presence of TR using Ŝ(�), i.e.
test the null hypothesis H(0)

0 : f(y) = f(−y) ∀y. To reduce the computational
burden, set the number of BS replicates at 99.

(b) Repeat part (a), but now test the null hypothesis H(1)
0 : f(Yt, Yt−1) = f(Yt−1, Yt).

Are there any marked difference between the test results in parts (a) and (b)?

4Also known as the Bhattacharyya–Matusita–Hellinger measure of dependence; see Bhat-
tacharyya (1943), and Matusita (1955).



Chapter 9
SEMI- AND NONPARAMETRIC
FORECASTING

The time series methods we have discussed so far can be loosely classified as para-
metric (see, e.g., Chapter 5), and semi- and nonparametric (see, e.g., Chapter 7). For
the parametric methods, usually a quite flexible but well-structured family of finite-
dimensional models are considered (Chapter 2), and the modeling process typically
consists of three iterative steps: identification, estimation, and diagnostic checking.
Often these steps are complemented with an additional task: out-of-sample fore-
casting. Within this setting, specification of the functional form of a parametric
time series model generally arrives from theory or from previous analysis of the
underlying DGP; in both cases a great deal of knowledge must be incorporated in
the modeling process. Semi- and nonparametric methods, on the other hand, are
infinite-dimensional. These methods assume very little a priori information and
instead base statistical inference mainly on data. Moreover, they require “weak”
(qualitative) assumptions, such as smoothness of the functional form, rather than
quantitative assumptions on the global form of the model.

For all these reasons, a practitioner is often steered into the realm of semi- and
nonparametric function estimation or “smoothing”. However, the price to be paid is
that parametric estimates typically converge at a root-n rate, while nonparametric
estimates usually converge at a slower rate. Also, semi- and nonparametric methods
acknowledge that fitted models are inherently misspecified, which implies specifica-
tion bias. Increasing the complexity of a fitted model typically decreases the absolute
value of this bias, but increases the estimation variance: a feature known as the bias-
variance trade-off. The bandwidth or tuning parameter controls this trade-off, i.e.
its choice is often critical to implementation and practical consideration.

In this chapter, we deal with various aspects of semi- and nonparametric mod-
els/methods with a strong focus on forecasting. The desire for forecasting future
time series values, along with frequent misuse of methods based on linear or Gaus-
sian assumptions, motivates this area of interest. Based on results in Appendix 7.A,
the first half of this chapter is concerned with kernel-based methods for estimat-
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ing the conditional mean, median, mode, variance, and the complete conditional
density of a time series process. We examine and compare the use of single-stage
versus multi-stage quantile prediction. Further, we describe kernel-based methods
for jointly estimating the conditional mean and the conditional variance. This part
also includes methods for estimating multi-step density forecasts using bootstrap-
ping, and methods for nonparametric lag selection.

The second half of the chapter deals with semiparametric models/methods. It
is well known that conventional nonparametric estimators can suffer poor accuracy
for data of dimension two and higher. In fact, the number of observations needed
to attain a fixed level of estimate confidence grows exponentially with the number
of dimensions. This problem is called the curse of dimensionality and presents
a dilemma for the effective and practical use of nonparametric forecast methods.
One way to circumvent this “curse” is to use additive models. These models make
the assumption that the underlying regression function may have a simpler, additive
structure, comprising of several lower-dimensional functions. As such, they fall in the
class of semiparametric models/methods, combining parametric and nonparametric
features. In Section 9.2, we discuss several additive (semiparametric) models for
time series prediction with emphasis on conditional mean and conditional quantile
forecasts. Then, in Sections 9.2.5 and 9.2.6, we introduce two restricted, and closely
related, forms of a semiparametric AR model.

9.1 Kernel-based Nonparametric Methods

9.1.1 Conditional mean, median, and mode
Preliminaries
In what follows, we are going to discuss kernel-based predictors for a strictly sta-
tionary time series process {Yt, t ∈ Z} which is assumed to be a Markovian process
of order p.1 Let {Yt}T

t=1 be a sequence of observations on the process {Yt, t ∈ Z}.
Our objective is to predict the unobserved real random variable YT+H where H
(1 ≤ H ≤ T − p) denotes the forecast horizon. For this purpose, we construct the
associated process {(Xp,t, Zp,t), t ∈ Z} denoted as {(Xt, Zt)} ∈ Rp × R where

Xt = (Yt, Yt+1, . . . , Yt+p−1)′, Zt = Yt+H+p−1, (t = 1, . . . , n; n = T −H − p + 1).
(9.1)

Let {(Xt, Zt), t ∈ Z} be a sequence of random variable with common probability
density function with respect to the Lebesgue measure on Rp+1. Now the problem
of predicting YT+H , or equivalently ZT−p+1, consists of finding the closest (with
respect to a certain norm) random variable knowing all the past. Suppose that
there exists a function μ(·) modeling the relationship between the response Zt and

1Bosq (1998, Section 3.4.2) notes that kernel-based prediction methods can still be used if there
is a simple form of nonstationarity in the data. For instance in case the data exhibit a slowly
varying trend and/or there is a periodic function with a known period (seasonal component).
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the covariate Xt, and that μ(·) is defined through the conditional distribution. Given
a loss function L(·) with a unique minimum, define μ(·) such that it minimizes the
conditional mean E

(
L(Zt − a)|Xt = x

)
with respect to a, i.e.

μ(a) = arg min
a∈R

E
(
L(Zt − a)|Xt = x

)
. (9.2)

Then estimating nonparametrically μ(·) by μ̂(·) and calculating μ̂(XT−p+1) gives
ẐT−p+1. In this way, we obtain the H-step ahead forecast value ŶT+H|T as an
estimator of YT+H|T = E(YT+H |XT ).

Using the above principle, we define three predictors, i.e. the conditional mean,
the conditional median, and the conditional mode, each depending on a particular
form of the function L(·). These predictors will be expressed as a sum of products
between functions of {Yt} and weights Wt(x), depending on the values of Xt, i.e.
the weights are defined as

Wt(x) = K
(x−Xt

hn

)/ n∑
t=1

K
(x−Xt

hn

)
, (n = T −H − p + 1). (9.3)

In practice, K(·) is often assumed to be a product kernel. For ease of readability,
we denote the bandwidth by h without explicitly indicating its dependence on n.

It is well known that L(u) = u2 leads to the conditional mean function μ(x) =
E(Zt|Xt = x). Using the NW kernel density approach (see, e.g., Chapter 7, expres-
sion (A.12)), an estimator of μ(x) can be constructed as

μ̂NW(x) =
n∑

t=1

ZtWt(x). (9.4)

Hence, given {Yt, t ≤ T}, the H-step ahead nonparametric estimator of the condi-
tional mean is defined as

Ŷ Mean

T+H|T =
n∑

t=1

ZtWt(XT−p+1). (9.5)

Under certain mixing conditions of the process {(Xt, Zt), t ∈ Z}, Collomb (1984)
shows uniform convergence of Ŷ Mean

T+H|T .

Conditional median
When the conditional distribution of Zt given Xt is heavy-tailed or asymmetric, it
may be sensible to use the conditional median rather than the conditional mean to
generate future values, as the median is highly resistant against outliers. In this
case the loss function is given by L(u) = |u|, and the solution of (9.2) leads to the
conditional median function ξ(x) = inf{z : F (z|x ≥ 1/2)}. Here, F (·|·) is the CDF
of Zt given Xt = x. Estimating ξ(·) nonparametrically gives

ξ̂(x) = inf
{

z :
n∑

t=1

Wt(x)I(Zt ≤ z) ≥ 1/2
}

. (9.6)
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Hence, given {Yt, t ≤ T}, the H-step ahead nonparametric estimator of the condi-
tional median, denoted by Ŷ Mdn

T+H|T , is defined as

Ŷ Mdn

T+H|T = inf
{

z :
n∑

t=1

Wt(XT−p+1)I(Zt ≤ z) ≥ 1/2
}

. (9.7)

Under certain mixing conditions, uniform convergence of Ŷ Mdn

T+H|T can be proved; see,
e.g., Gannoun (1990), and Boente and Fraiman (1995).

Conditional mode
Collomb et al. (1987) propose a method to produce nonparametric predictions based
on the conditional mode function. In this case, we have a non-convex loss function
with a unique minimum L(u) = 0 when u = 0, and L(u) = 1 otherwise. The
solution of (9.2) leads to the conditional mode function τ(x) = arg maxz∈R f(z|x),
where f(·|x) denotes the conditional density function of Zt given Xt = x. Estimating
τ(·) nonparametrically gives

τ̂(x) = arg max
z∈R

n∑
t=1

K
(z − Zt

h

)
Wt(x). (9.8)

Consequently, given {Yt, t ≤ T}, the H-step ahead nonparametric estimator of the
conditional mode is given by

Ŷ Mode

T+H|T = arg max
z∈R

n∑
t=1

K
(z − Zt

h

)
Wt(XT−p+1). (9.9)

Under some mixing conditions on {(Xt, Zt), t ∈ Z}, Collomb et al. (1987) show the
uniform convergence of Ŷ Mode

T+H|T .

The predictors defined above are direct estimators since they use direct smooth-
ing techniques. Clearly, these predictors are point estimates of a particular loss
function L(·) at some x. However, they do not estimate the whole loss function. In
fact, the H-step ahead conditional mean, median, and mode all ignore information
contained in the intermediate variables Xt+1, . . . ,Xt+(H−1). In Section 9.1.2, we
introduce a nonparametric kernel smoother which uses such information.

Choice of the bandwidth
As we saw in Appendix 7.A, the main problem in the implementation of nonpara-
metric kernel-based smoothing methods is the selection of the bandwidth in finite
samples. Let us suppose that the kernel function K(·) is symmetric, second-order,
Lipschitz continuous and has absolutely integrable FT.2 Under the assumption that

2A function f : Rp → R is said Lipschitz continuous on D ⊂ R
p if there exists a finite constant

C, such that |f(x1) − f(x2)| ≤ C|x1 − x2| ∀x1, x2 ∈ D. The Lipschitz requirement is necessary for
proving uniform convergence results.
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the DGP is Markovian, and imposing proper (regularity) conditions, the leave-one-
out CV method can be extended to time series processes.

Table 9.1 gives leave-one-out estimators of the conditional mean, median, and
mode with corresponding CV measures. The optimal bandwidth follows from hopt =
arg minh{CV (·)(h)}, where the superscript (·) denotes one of the three predictors.
Then, given hopt, the H-step ahead nonparametric predictor follows directly. When
a time series is strongly correlated, it is reasonable to leave out more than just one
observation. For nonparametric density estimation of i.i.d. observations, the plug-in
bandwidth hd = σ̂Y T−1/(p+4) can be used with σ̂Y the standard deviation of {Yt}T

t=1.
This choice is a simplified version of expression (A.10) in Chapter 7, with ν = 2. It
guarantees an optimal rate of convergence with respect to the MISE. However, hd is
not optimal in all cases since it does not take into account the mixing condition of
the stochastic process. Nevertheless, it may serve as an initial pilot for CV methods.

Choice of the Markov coefficient
The performance of a kernel-based forecasting method depends on the Markov coef-
ficient p. Intuitively, we would like to have p as large as possible in order not to lose
too much information about the past. However, as p increases, the data available for
forecasting decreases. Matzner–Løber et al. (1998) propose the following empirical
procedure. For p ∈ {1, . . . , pmax} compute the functions

f1(p) =
T∑

t=T−k

∣∣Yt − Ŷ
(·)
t+1|t(p, h)

∣∣, f2(p) =
T∑

t=T−k

(
Yt − Ŷ

(·)
t+1|t(p, h)

)2
,

and

f3(p) = sup
t
|Yt − Ŷ

(·)
t+1|t(p, h)

∣∣, (9.10)

where Ŷ
(·)
t+1|t(p, h) denotes the one-step ahead kernel-based predictor (i.e. conditional

mean, median, or mode) depending on the Markov coefficient p and the bandwidth h.
The value of p is chosen as follows. For a fixed h, obtain pj = arg minp fj(p) for each
j, and subsequently p = maxj pj (j = 1, 2, 3). For series with T ≥ 100 observations,
it is recommended to take k = [T/5], and k = [T/4] otherwise. This procedure
is simple and quick. Nevertheless, there is a need for its theoretical underpinning.
Section 9.1.6 discusses alternative methods of lag selection.

9.1.2 Single- and multi-stage quantile prediction
In addition to the three conditional predictors introduced in Section 9.1.1, condi-
tional quantiles are of interest in various time series applications. Suppose that the
conditional distribution function of Zt given Xt = x, F (·|x), has a unique quantile
of order q ∈ (0, 1) at a point ξq(x). Then the conditional qth quantile is defined by

ξq(x) = inf{z : F (z|x) ≥ q}. (9.11)
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Table 9.1: Leave-one-out estimators of the conditional mean, the conditional median, and
the conditional mode with corresponding CV measures.

Predictor Leave-one-out estimator (1) Cross-validation

Mean μ̂−i(Xt) =
n∑

j=1
j �=i

ZjW−i
j (Xt) CVMean(h) =

1

n

n∑
t=1

{Zt − μ̂−t(Xt)}2

Median ξ̂−i(Xt) = inf{z|F̂−i(z|Xt) ≥ 1/2} CVMdn(h) =
1

n

n∑
t=1

{Zt − ξ̂−t(Xt)}2

(Mdn) with

F̂−i(z|Xt) =
n∑

j=1
j �=i

I{Zj ≤ z}W−i
j (Xt)

Mode τ̂−i(Xt) = arg max
z∈R

f̂−i(z|Xt) CVMode(h) =
1

n

n∑
t=1

{Zt − τ̂−t(Xt)}2

with

f̂−i(z|Xt) =
1

h

n∑
j=1
j �=i

K
( z − Zj

h

)
W−i

j (Xt)

(1) W−t
j (Xt) = K

(
Xt−Xj

h

)/∑n
j=1;j 	=t K

(
Xt−Xj

h

)
; n = T − H − p + 1.

Equivalently, ξq(x) can also viewed as any solution to the following problem

ξq(x) = arg min
a∈R

E{ρq(Zt − a)|Xt = x},

where ρq(u) = |u|+(2q−1)u is the so-called check function. Note that ξ1/2(x) ≡ ξ(x),
i.e. the conditional median.

Now, given the observations {(Xt, Zt)}n
t=1, an estimator ξ̂q(x) of ξq(x) can be

defined as the root of the equation F̂ (z|x) = q where F̂ (·|x) is an estimator of F (·|x).
Thus, a predictor of the qth conditional quantile of YT+H is given by ξ̂q(XT−H−p+1).
Of course, in practice a nonparametric estimate of the conditional distribution func-
tion is needed. One possible estimator is the NW smoother which in a time series
setting is given by

F̃ (z|x) =
∑n

t=1 K{(x−Xt)/h}I(Zt ≤ z)∑n
t=1 K{(x−Xt)/h} , (n = T −H − p + 1). (9.12)

We shall refer to the solution of the equation

F̃ (z|x) = q (9.13)

as the single-stage conditional quantile predictor and denote this by ξ̃NW
q (x). Altern-

atively, we may use the local linear (LL) conditional quantile estimator; see Section
9.1.3 for its definition.

Note that the conditional quantile predictor in (9.13) uses only the information
in the pairs {(Xt, Zt)}n

t=1 and ignores the information contained in

W(1)
t = Xt+1, W(2)

t = Xt+2, . . . , W(H−1)
t = Xt+(H−1). (9.14)
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Below we illustrate the impact of the data contained in (9.14) on multi-step ahead
prediction accuracy.

Let G1(w) = E
(
I(Zt ≤ z)|W(H−1)

t = w
)
. For j = 2, . . . ,H − 1, also define

Gj(w) = E
(
Gj−1(W

(H−(j−1))
t )|W(H−j)

t = w
)
. Hence,

Var[Gj(W
(H−j)
t )] = Var[E

(
Gj(W

(H−j)
t )|W(H−j−1)

t

)
]

+ E[Var
(
Gj(W

(H−j)
t )|W(H−j−1)

t

)
].

For j = 1, . . . ,H−2, we have Gj+1(W
(H−j−1)
t ) = E

(
Gj(W

(H−j)
t )|W(H−j−1)

t

)
. Thus,

Var[Gj+1(W
(H−j−1)
t )] ≤ Var[Gj(W

(H−j)
t )]. (9.15)

Likewise, it is easy to see that

Var[G1(W
(H−1)
t )|Xt = x] ≤ Var[I(Zt ≤ z)|Xt = x]. (9.16)

Exploiting the Markovian property of {Yt, t ∈ Z}, we can rewrite E
(
I(Zt ≤ z)|Xt =

x
)

in such a way that the information in (9.14) is incorporated, i.e.

E
(
I(Y ∗

t ≤ y)|Xt = x
)

= E
(
G1(W

(H−1)
t )|Xt = x

)
,

= E
(
G2(W

(H−2)
t )|Xt = x

)
,

...

= E
(
GH−1(W

(1)
t )|Xt = x

)
.

(9.17)

Observe that as we go down line by line in (9.17) more and more information is
utilized. Recalling the two previous inequalities, (9.15) and (9.16), we can see that as
more information is used, the prediction variance gets smaller and hence prediction
accuracy in terms of MSFE improves. Thus, at least in theory, it pays off to use all
the ignored information.

Based on the above recursive setup, we now introduce a kernel-based estimator
of F (z|x). First the estimators of G1(w) and Gj(w), (j = 2, . . . ,H − 2) are defined,
respectively, as follows.

Stage 1: Ĝ1(w) =
∑n

t=1 K{(w −W(H−1)
t )/h1}I(Zt ≤ z)∑n

t=1 K{(w −W(H−1)
t )/h1}

,

Stage j: Ĝj(w) =
∑n

s=1 K{(w −W(H−j)
s )/hj}Ĝj−1

(
W(H−(j−1))

s

)∑n
s=1 K{(w −W(H−j)

s )/hj}
.

Then, using ĜH−1(w), compute F̂ (z|x) by

Stage H: F̂ (z|x) =
∑n

k=1 K{(x−Xk)/hH}ĜH−1(W
(1)
k )∑n

k=1 K{(x−Xk)/hH}
. (9.18)
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We shall refer to the root of the equation F̂ (z|x) = q as the multi-stage qth condi-
tional quantile predictor ξ̂NW

q (x).
To compare the AMSE of ξ̂NW

q (x) (multi-stage) with the AMSE of ξ̃NW
q (x) (single-

stage), we assume for simplicity of notation that H = 2, and p = 1. From {Yt, t ∈ Z},
let us construct the associated process Ut = (Xt,Wt, Zt)′ defined by

Xt = Yt, Wt = W
(1)
t = Yt+1, Zt = Yt+2.

We suppose that the random variables {(Xt,Wt)}, respectively {(Wt, Zt)}, have joint
densities fX,W (·, ·), respectively fW,Z(·, ·). Let g(x), g(z), and g(w) be the marginal
densities of {Xt}, {Zt}, and {Wt}, and f(·|x) = fX,Z(x, ·)/g(x) be the conditional
density function. Furthermore, we assume that some regularity conditions on the
process {Ut, t ∈ Z} are satisfied, and that nh →∞ as n →∞, nh1 →∞ as n →∞
and h1 = o(h2).

For y ∈ R, define σ2(y, x) = Var(Yt ≤ y|Xt = x), v1(y, x) = Var
(
G1(Wt)|Xt = x

)
and v2(y, x) = E[Var

(
I(Yt ≤ y)|Wt

)
|Xt = x]. Then it can be shown (De Gooijer et

al., 2001) that for all x ∈ R the best possible asymptotic MSE of ξ̃NW
q (x) and ξ̂NW

q (x)
are respectively given by

AMSE{ξ̃NW
q (x)} # 5n−4/5

4f2
(
ξq(x)|x

)D
4/5
2

(
ξq(x), x

)
D

1/5
1

(
ξq(x), x

)
, (9.19)

AMSE{ξ̂NW
q (x)} # 5n−4/5

4f2
(
ξq(x)|x

)D
4/5
3

(
ξq(x), x

)
D

1/5
1

(
ξq(x), x

)
, (9.20)

where

D1(y, x) = μ2
2(K)

{
F (2,0)(y|x) +

2F (1,0)(y|x)g(1)(x)
g(x)

}2
,

D2(y, x) =
R(K)σ2(y, x)

g(x)
, D3(y, x) = R(K)

v1(y, x)
g(x)

,

with

F (i,j)(t|s) =
∂i+jF (t|s)

∂si∂tj
, and g(1)(x) =

dg(x)
dx

,

and where R(K) is the roughness function, as defined in Appendix 7.A. Con-
sequently, the ratio of the best possible AMSEs of the single-stage estimator ξ̃NW

q (x)
and the two-stage estimator ξ̂NW

q (x) is given by

r
(
ξq(x), x

)
=

{
1 +

v2

(
ξq(x), x

)
v1

(
ξq(x), x

)}4/5
, (9.21)

which takes values ≥ 1.
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Figure 9.1: Ratio of asymptotic best possible AMSEs (r) versus the quantile level q. From
De Gooijer et al. (2001).

It is easy to verify that Var
(
ξq(x), x

)
= q(1 − q). Further, note that

Var
(
ξq(x), x

)
= v1

(
ξq(x), x

)
+ v2(ξq(x), x

)
with v2 ≤ q(1 − q). Thus, we may re-

express (9.21) as follows: r
(
ξq(x), x

)
= {q(1−q)/

(
q(1−q)−v2(ξq(x), x)

)
}4/5. Figure

9.1 shows a plot of r versus q (0.1 ≤ q ≤ 0.9) for v2 = 0.05 and 0.08. Clearly, r
increases sharply as we go to the edge of the conditional distribution. This illus-
trates theoretically that the improvement achieved by ξ̂q(x) is more pronounced for
quantiles in the tails of F (·|x).

From asymptotic theory it follows that the optimal bandwidth for both predictors
depends on q. Thus, the amount of smoothing required to estimate different parts of
F (·|x) may differ from what is optimal to estimate the whole conditional distribution
function. This is particularly the case for the tails of F (·|x). We can, however, turn
to the following rule-of-thumb calculations based on assuming a normal (conditional)
distribution as an appropriate approach:

(a) Select a primary bandwidth, say hmean, suitable for conditional mean estima-
tion. For instance, one may use hrot as given by (A.7) in Appendix 7.A with
a Gaussian second-order kernel. Alternatively, various ready-made bandwidth
selection methods for kernel-type estimators of μ(·) are available in the liter-
ature.

(b) Adjust hmean according to the following rule-of-thumb

hq = hmean[{q(1− q)}/{ϕ
(
Φ−1(q)

)2}]1/(p+4), (9.22)

where ϕ(·) and Φ(·) are the standard normal density and distribution functions,
respectively, and p refers to the order of the Markovian process. In particular,
when q = 1/2, h1/2 = hmean(2/π)1/(p+4) using ϕ

(
Φ−1(1/2)

)2 = (2π)−1.

Example 9.1: A Comparison Between Conditional Quantiles

Consider the simple, Markovian-type, NLAR(1) process

Yt = 0.23Yt−1(16− Yt−1) + 0.4εt, (9.23)
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Figure 9.2: (a) – (c) Percentile plots of the empirical distribution of the squared errors for
model (9.23) for the single-stage predictor ξ̃NW

q (·) (blue solid line), and the multi-stage (here
two) predictor ξ̂NW

q (·) (black solid line); (d) – (f) Boxplots corresponding to the percentile
plots (a) – (c), respectively; T = 150, and 150 MC replications. From De Gooijer et al.
(2001).

where {εt} i.i.d.∼ N (0, 1) random variables with the standard normal distribution
truncated in the interval [−12, 12]. The objective is to estimate two and five
steps ahead q-conditional quantiles using both ξ̃NW

q (x) and ξ̂NW
q (x) (q = 0.25

and 0.75; x = 6 and 10), and compare their prediction accuracy.

Clearly, a proper evaluation of the accuracy of both predictors requires know-
ledge about the “true” conditional quantile ξq(x). This information is obtained
by generating 10,000 independent realizations of (Yt+H |Yt = x) (H = 2 and 5)
iterating the DGP (9.23) and computing the appropriate quantiles from the
empirical conditional distribution function of the generated observations.

From (9.23), we generate 150 samples of size T = 150. Based on these estim-
ates, we compute for each replication j (j = 1, . . . , 150) the following error
measures:

e
(j)

ξ̃q(x)
=
{ξ̃(j)

q (x)− ξq(x)}2

ξq(x)2
and e

(j)

ξ̂q(x)
=
{ξ̂(j)

q (x)− ξq(x)}2

ξq(x)2
,



9.1 KERNEL-BASED NONPARAMETRIC METHODS 347

where ξ̃
(j)
q (x) and ξ̂

(j)
q (x) denote the jth estimators ξ̃NW

q (x) and ξ̂NW
q (x), re-

spectively. Next, we compute percentile values from the empirical distributions
of these two error measures. Figures 9.2(a) – (c) show that the percentiles of
the squared errors from the 2-stage predictions (black solid line) lie overall be-
low the corresponding percentiles of the squared errors from the single-stage
predictions (blue solid line). This implies that the conditional quantile predic-
tions made by ξ̂NW

q (x) are more accurate than those made by ξ̃NW
q (x). Boxplots

corresponding to the percentile plots (a) – (c) are given in Figures 9.2(d) – (f).
It is clear from these plots that the multi-stage quantile predictor has a much
smaller variability while its bias is nearly the same as that of the single-stage
quantile estimator, supporting asymptotic results.

9.1.3 Conditional densities

Let {(Xt, Yt), t ∈ Z} be a Rp×R valued strictly stationary process with a common pdf
f(·) as (X, Y ). In a univariate time series context, Xt typically denotes lagged values
of {Yt}. Also assume that Xt admits a marginal density g(·). Suppose we are given
{(Xt, Yt)}n

t=1 observations of {(X, Y ), t ∈ Z} with n = T−p. We wish to estimate the
conditional density function of Yt given Xt = x, i.e. f(y|x) = f(x, y)/g(x), where g(·)
is assumed positive at x. The conditional density function can be a useful statistical
tool in several ways. The most obvious need for estimating conditional densities
arises when exploring relationships between a response and potential covariates.

Example 9.2: Old Faithful Geyser
To motivate ideas and as an illustration we consider, as a classical example for
the analysis of bimodal time series data, the waiting time between the starts of
successive eruptions and the duration of the subsequent eruption for the Old
Faithful geyser in Yellowstone National Park, Wyoming, USA. The average
interval between eruptions is about 72.3 minutes (median = 76 minutes) with
a standard deviation of about 13.9 minutes. Figure 9.3(a) shows a scatter plot
of the duration time and the waiting time. Both variables are transformed
to have mean zero and variance one. From the plot it is clear than when
there has been a relatively short waiting time between eruptions, the duration
of the next eruption is relatively long. When, however, the waiting time
between eruptions is longer than about −0.17 (or 70 minutes in the scale of
the untransformed data), the duration of the next eruption is more or less
a mixture of short and long durations. This interesting observation can be
nicely summarized by the conditional density function.

Figure 9.3(b) gives the estimated conditional density. Notice that when the
waiting time to eruption is more than −0.17, the conditional density function
of eruption duration conditional on waiting time to eruption is bimodal. On
the other hand, for waiting times below −0.17, the conditional density function
is unimodal.
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Figure 9.3: Old Faithful geyser data set: (a) Duration of eruption plotted against waiting
time to eruption, and (b) conditional density estimates of eruption duration conditional on
the waiting time to eruption. Time period: August 1, 1985 – August 15, 1985 (T = 299).
From De Gooijer and Zerom (2003).

In the sequel, we first discuss two existing kernel-based smoothers of the condi-
tional density: the NW estimator and the LL estimator. Next, following De Gooijer
and Zerom (2003), we introduce a simple kernel smoother which combines the bet-
ter sides of both estimators. For simplicity, we shall consider the case p = 1, i.e.
{Xt, t ∈ Z} is a univariate process.

Nadaraya–Watson (NW) and local linear (LL) estimators
Let the kernel K(·) be a symmetric density function on R. Let h1 and h2 denote
two bandwidths. As h1 → 0 when n →∞, it is easy to see from a standard Taylor
argument that

E{Kh1(y − Y )|X = x} # f(y|x),

where Kh(·) = K(·/h)/h. This suggests that the estimation of f(y|x) can be viewed
as a nonparametric regression of Kh(y − Yt) on {Xt}. In fact, it is based on this
particular idea that the NW kernel smoother of f(y|x) was first proposed. Within
the current setting, the natural NW estimator of f(y|x) is given by

f̂ NW(y|x) =
n∑

t=1

Kh1(y − Yt)WNW
t (x), (n = T − p), (9.24)

where

WNW
t (x) =

Kh2(x−Xt)∑n
t=1Kh2(x−Xt)

.

Now, suppose that the second derivative of f(y|x) exists. Also, introduce the
short-hand notation f (i,j)(y|x) = ∂i+jf(y|x)/∂xi∂yj . In a small neighborhood of a
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point x, we can approximate f(y|z) locally by a linear term

f(y|z) # f(y|x) + f (1,0)(y|x)(z − x)
≡ a + b(z − x).

In this sense, one can also regard the estimation of f(y|x) as a nonparametric
weighted regression of Kh1(y − Yt) against

(
1, (x−Xt)

)
using weights Kh2(x−Xt).

Considerations of this nature suggest the following LS problem. Let (β̂0, β̂1) minim-
ize

n∑
t=1

(
Kh1(y − Yt)− β0 − β1(x−Xt)

)2
Kh2(x−Xt).

The LL estimator of f(y|x), here denoted by f̂ LL(y|x), is defined as β̂0. Simple
algebra (Fan and Gijbels, 1996) shows that f̂ LL(y|x) can be expressed as

f̂ LL(y|x) =
n∑

t=1

Kh1(y − Yt)W LL
t (x), (n = T − p), (9.25)

where

W LL
t (x) =

Kh2(x−Xt){Tn,2 − (x−Xt)Tn,1}
(Tn,0Tn,2 − T 2

n,1)
,

with Tn,j =
∑n

t=1 Kh2(x−Xt)(x−Xt)j (j = 0, 1, 2).
From the definition of the two estimators, we can see that f̂ NW(y|x) ap-

proximates f(y|x) locally by a constant while f̂ LL(y|x) approximates f(y|x) locally
by a linear model. To appreciate why the extension of the local constant fitting to
the local linear alternative is interesting, we now compare the two estimators via
their respective moments. To keep the presentation simple, we assume without loss
of generality, that h1 = h2 = h. When the process {(Xt, Yt), t ∈ Z} is α-mixing it
can be shown (Chen et al., 2001) that the approximate asymptotic bias and variance
of f̂ NW(y|x) is given by

Bias
(
f̂ NW(y|x)

)
=

1
2
μ2(K)h2

[
f (2,0)(y|x) + f (0,2)(y|x) + 2

g(1,0)(x)
g(x)

f (1,0)(y|x)
]

(9.26)

and

Var
(
f̂ NW(y|x)

)
= R2(K)

1
nh2

f(y|x)
g(x)

, (9.27)

where μ2(K) =
∫
R

u2K(u)du and R(K) =
∫
R

K2(z)dz are defined earlier in Ap-
pendix 7.A. Similarly, it can be shown (Fan and Gijbels, 1996, Thm. 6.2) that the
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asymptotic bias and variance of f̂ LL(y|x) are given by

Bias
(
f̂ LL(y|x)

)
=

1
2
μ2(K)h2

[
f (2,0)(y|x) + f (0,2)(y|x)

]
, (9.28)

Var
(
f̂ LL(y|x)

)
= R2(K)

1
nh2

f(y|x)
g(x)

. (9.29)

Note that the two variances are identical and the differences in the AMSEs
between the two estimators depend only on their respective biases. We see that the
bias of f̂ NW(y|x) has an extra term

(
g(1,0)(x)/g(x)

)
f (1,0)(y|x). The bias of f̂ NW(y|x)

is large if either |g(1,0)(x)/g(x)| or |f (1,0)(y|x)| is large, but neither term appears in
(9.28). For example, when the marginal density function of X (design density) is
highly clustered, the term |g(1,0)(x)/g(x)| becomes large. Of course, when g(x) is
uniform, the biases of the two estimators are the same. Thus, the fact that f̂ LL(y|x)
does not depend on the density of X makes it design adaptive (see, e.g., Fan, 1992).
Now, let’s consider |f (1,0)(y|x)|. For simplicity, suppose that the conditional density
of Y depends on x only through a location parameter, say the conditional mean
μ(·) and hence f(y|x) = f

(
y − μ(x)

)
. Then f (1,0)(y|x) = μ(1)(x)f (1,0)

(
y − μ(x)|x

)
where μ(1)(·) denotes the first derivative of μ(·). In this setup when, for example,
μ(x) = a+bx with large coefficient b, the bias of f̂ NW(·|x) gets large. When, however,
μ(x) is flat or has maximum or minimum, or inflection point at x, the biases of the
two estimators become the same.

The above theoretical comparisons suggest that the LL estimator is more at-
tractive than the NW alternative because of its better bias performance and design
adaptation. It is also possible to show that both in the interior and near the bound-
ary of the support of g(·), the asymptotic bias and the variance of f̂ LL(·|x) are of
the same order of magnitude. On the other hand, f̂ NW(·|x) has a bias of order h
for x in the boundary. So, at least in theory, the LL smoother does not suffer from
boundary effects and hence does not require modifications at the boundaries.

Re-weighted Nadaraya–Watson (RNW) estimator
From LS theory, we see that the LL weights satisfy:

∑n
t=1(x−Xt)W LL

t (x) = 0. On
the other hand, this moment condition is not fulfilled for the NW weights . One way
to overcome this difficulty is to force the weights WNW

t (·) to resemble W LL
t (·). To this

end, let τi(x) denote the “probability-like” weights with properties that τt(x) ≥ 0,∑n
t=1 τt(x) = 1, and

n∑
t=1

τt(x)(x−Xt)Kh(x−Xt) = 0. (9.30)

Next, we define the RNW conditional density estimator as

f̂ RNW(y|x) =
n∑

t=1

Kh(y − Yt)WRNW
t (x), (9.31)
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where

WRNW
t (x) =

τt(x)Kh(x−Xt)∑n
t=1 τt(x)Kh(x−Xt)

.

From a computational perspective the RNW smoother is easy to implement. In
particular, we choose to look for the unique solution of τt(x) by maximizing its
empirical likelihood

∑n
t=1 log τt(x), subject to the constraints on τt(x), via Lagrange

multipliers. That is,

Ln(κ, λ) =
n∑

t=1

log τt(x) + κ
(
1−

n∑
t=1

τt(x)
)
− nλ

n∑
t=1

τt(x)(x−Xt)Kh(x−Xt).

Setting ∂Ln(·, ·)/∂τt(x) = 0, we obtain τt(x) = 1/{κ + nλ(x −Xt)Kh(x −Xt)}. In
addition, summing ∂Ln(·, ·)/∂τt(x) and employing (9.30), we can see that κ = n.

Hence,

τt(x) = n−1
{
1 + λ(x−Xt)Kh(x−Xt)

}−1
. (9.32)

Substituting (9.32) into (9.30), we obtain

0 =
n∑

t=1

(x−Xt)Kh(x−Xt)
1 + λ(x−Xt)Kh(x−Xt)

≡ G(λ).

Now, notice that −G(·) is just the gradient with respect to λ of

Ln(λ) = −
n∑

t=1

log{1 + λ(x−Xt)Kh(x−Xt)}.

So, a zero of G(·) is a stationary point of Ln(·). The implication is that, in prac-
tice, one can compute λ as the unique minimizer of Ln(·). De Gooijer and Zerom
(2003) suggest that a line search algorithm is a suitable choice to compute λ. The
conditional density function displayed in Figure 9.3(b) is computed via the RNW
smoother.

It is straightforward to show (De Gooijer and Zerom, 2003) that |λ| ≤ Op(h).
Moreover, the bias and variance of f̂ RNW(·) are identical to the bias and variance of
the LL smoother respectively given by (9.28) and (9.29). Thus, the RNW smoother
shares the better bias behavior of the LL smoother. If one chooses the optimal
bandwidth, say h∗, such that it minimizes the AMSE of f̂ RNW(·), it is easy to see
that

h∗ = Bn−1/6,

where B is a functional of some unknowns such as f(·|x). In practice, B may
be replaced by consistent estimates. Unlike the n−1/5 rate from the univariate
density estimation, notice that h∗ ∼ n−1/6 as one needs to smooth in both x and
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y directions. Recall that in defining the RNW smoother we used one bandwidth
h = h1 = h2. However, in practice there may indeed arise a need to have different
levels of smoothing for each direction. For example, in the Old Faithful geyser
illustration, it is not advisable to have the same h for both variables because they
have different levels of variability. In fact, that was the reason for standardizing
the variables before using a single bandwidth for both. If the approach of pre-
standardizing the data is found inadequate, the RNW smoother can be easily re-
defined to involve two bandwidths.

9.1.4 Locally weighted regression

The classic kernel-based, methods depend on a real-valued non-random bandwidth
sequence {hn}. For locally weighted nonparametric estimation, however, the smooth-
ing parameter depends on the number of neighbors around a point of interest using
only data (training set) that are “local” to that point. There are several ways of
performing nearest-neighbor estimation. Below we present two main approaches.
As in the previous sections, we assume that {Yt, t ∈ Z} is a strictly stationary pro-
cess. Moreover, {Yt, t ∈ Z} is allowed to follow a Markovian process of order p, and,
given the observed time series {Yt}T

t=1, {Xt, t ∈ Z} is obtained by the construct
Xt = (Yt, Yt+1, . . . , Yt+p−1)′ ∈ Rp (t = 1, . . . , n; n = T − p). That is H = 1 in (9.1).

K-nearest neighbors
In an i.i.d. setting the method of k-nearest neighbors (k-NN) is a simple, yet powerful
and versatile, nonparametric pattern recognition procedure. Within a time series
context the intuition underlying the k-NN approach is that the DGP causes patterns
of behavior to be repeated in {Yt}n

t=1 with n = T − p. If a previous pattern can be
identified as most similar to the current behavior of Yt, then the previous subsequent
behavior of the series can be used to predict behavior in the immediate future.
Here, the objective is to produce a nonparametric estimator of the conditional mean
μ(x) = E(Yt+1|Xt = x) using the kn < n vectors closest to Xn in the training, or
fitting set F t = {Xt|t = 1, . . . , n}. To this end, we define a neighborhood around
x ∈ Rm such that N(x) = {i|i = 1, . . . , kn whose X(i) represents the ith-nearest
neighbor of x in the sense of a given semi-metric, say D(x,X(i))}.

Let K(·) denote a kernel function on Rm. Then the k-NN estimator of μ(x) is
defined as

μ̂k-NN(x) =
∑

X(i)∈Ft

i∈N(x)

Y(i)+1W(i)(x), (9.33)

where

W(i)(x) =
K

(
H−1

kn
D(x,X(i))

)∑n
i=1 K

(
H−1

kn
D(x,X(i))

) , if
n∑

i=1

K
(
H−1

kn
D(x,X(i))

)
�= 0,
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and where Hkn is the bandwidth, defined as the distance to the furthest neighbor,
i.e. Hkn ≡ D(x,X(kn)). Two-step ahead forecasts can be obtained along the same
lines as above using the data set {Y1, . . . , Yn, μ̂k-NN(x)}.

Clearly, a weighting scheme is necessary to combine the forecasts implied by
each neighbor. When K(u) = I(‖u‖p ≤ 1), the kernel weights are just the uni-
form weights, i.e. W(i)(x) = 1/kn ∀i. Using these weights, and some weak mixing
conditions, Yakowitz (1987) shows that AMSE{μ̂k-NN(x)} = O(n−4/(p+4)). He also
establishes asymptotic normality of μ̂k-NN(x).

Note that the k-NN method can be thought of as a kernel regression in which
the size of the local neighborhood around x is allowed to vary, thus providing a
large window around x when the data are sparse. The k-NN kernel estimate is
also automatically able to take into account the local structure of the data. This
advantage, however, may turn into a disadvantage. If there is an outlier in the data,
the local prediction may be bad; see, however, below for a robustification of the
k-NN method. Typically, kn is chosen on the order of magnitude n1/2, but can be
selected using a procedure such as (G)CV. Traditionally, the Euclidean semi-metric
is chosen as a distance measure.

Loess/Lowess
The acronyms “loess” and “lowess” both refer to a nonparametric method to calcu-
late an estimate of μ(x) = E(Yt+1|Xt = x) using locally weighted regression (LWR)
to smooth data. LWR was first introduced by Cleveland (1979) and further de-
veloped by Cleveland and Devlin (1988). The basic underlying model supposes that

Yt = μ(Xt) + εt, (9.34)

where μ(·) is a smooth function mapping Rp → R, and {εt} i.i.d.∼ (0, 1). LWR is a
numerical approach that describes how μ̂(x∗), the estimate of the unknown function
μ(·) at the specific value x∗, is estimated using a local Taylor series approximation
of order d. Let f be a “smoothing” parameter such that 0 < f ≤ 1, and let qf =
[f × n]. Then the LWR uses the “window” of qf observations nearest to x∗, where
proximity is defined by the distance D(·, ·), commonly taken as the Euclidean norm.
In summary, the basic steps to calculate an estimate of μ(x) = E(Yt+1|Xt = x) are
as follows.

Algorithm 9.1: Loess/Lowess

(i) Define a local weight function. For instance, use the tricube weighting func-
tion W (u) = (1− |u|3)3 if |u| < 1, and 0 elsewhere.

(ii) For each {Xt}n
t=1 compute the ordered values of the distances D(x,X(i))

with X(i) the ith-nearest neighbor of x as in (9.33).
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Algorithm 9.1: Loess/Lowess (Cont’d)

(iii) For any value of x compute the local weights

w(i)(x) = W
(
h−1

qf
D(x,X(i))

)
,

where f is selected by the user.

(iv) Perform a LWR over the span of values. For lowess, set the order of the
polynomial at d = 1, i.e. the regressions are based on LL–fits. For loess, set
d = 2 (local polynomial or quadratic fits). The estimate of μ(·) is simply the
estimate of the parameter β0 from the corresponding LS regression.

Note, the parameter f indicates the fraction of data used in the LWR proced-
ure, analogous to the bandwidth in kernel smoothing. As f increases much more
smoothing is done. Since the LWR estimate of μ(·) is linear in Yt, the asymptotic
properties (e.g. consistency) of the estimator can be derived (Stone, 1977) using
standard techniques provided that as n → ∞, qf → ∞, but qf/n → 0. If the
data set contains outliers, it is generally recommended to use a robust variant of
Algorithm 9.1. Basically, the robust LWR procedure involves the following steps.

Algorithm 9.2: Robust Loess/Lowess

(i) Compute the residuals {ε̂t}n
t=1 from a k-NN pilot estimate of μ(·), and s =

Mdn{|ε̂t|}.

(ii) Calculate the robustness weights δt which are defined as δt = K
(
ε̂t/(6s)

)
,

where K(·) denotes the biweight second-order kernel function given in Table
7.7 of Appendix 7.A.

(iii) Set d = 1 or d = 2. Then, for each x, perform a weighted LS regression as
in Algorithm 9.1, but with weights {δiW(i)(x,Xqf

)}.

(iv) Given the smoothed values from step (ii), compute the next set of residuals
and a new set of robustness weights.

(v) Repeat the previous two steps a few times (by default three times in the R and
S-Plus implementations of loess/lowess). This produces the final estimate of
μ(·).

Example 9.3: Hourly River Flow Data

Figures 9.4(a) and (b) show the lowess and robust lowess curves fitted to an
hourly river flow series {Yt}401

t=1 from a typical catchment in Wales, UK. The
modeling of such processes is a major task of hydrologists who require models
for applications such as runoff and flood forecasting. The data are known to
exhibit short-term nonlinearity caused by ‘soil moisture’ effects. In that case
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Figure 9.4: (a) Lowess curve fitted to the hourly river flow data set; (b) Robust lowess
curve fitted to the hourly river flow data set; m = 1 and f = 0.1.

the soil is infiltrated to its full capacity due to prior rainfall or melting of snow
and, as a consequence, river flow will be significantly higher than if the soil has
dried out through lack of external sources. There is no discernible long term
nonlinearity caused by evapotranspiration. Here, we ignore the information
that the major effect on the river flow behavior comes from the amount of
rainfall with a few hours delay.

Plot (a) suggests that the lowess method gives a very good identification of
the base flow effects, but extreme peaks, or “outliers”, are less well explained.
Plot (b) shows that the robust lowess method reflects the outlier influences
slightly better (R2 = 0.999) than the non-robust lowess method (R2 = 0.996)
with smoothed values quite close to the observed data (red dots).

9.1.5 Conditional mean and variance

Let {Yt, t ∈ Z} be a strictly stationary process. In this subsection it is convenient
to start from the following functional relationship

Yt = μ(Xt) + σ(Xt)εt, t ≥ 1, (9.35)

where Xt = (Yt−1, . . . , Yt−p)′, σ(x) > 0 ∀x ∈ Rp, Y0, . . . , Yp are initial conditions,
{εt} i.i.d.∼ (0, 1) random variables with {εt} independent of past Yt, μ(·) and σ(·) are
unknown functions on R. The first objective is to estimate μ(·) and σ(·) jointly from
T available observations using methods analogous to those for estimating conditional
means. In the second part, we focus on the complete conditional density.

Nadaraya–Watson (NW) estimation
Auestad and Tjøstheim (1990) and Tjøstheim and Auestad (1994a,b) propose the
NW estimator with product kernels. In particular, as in (9.4), the NW estimator of
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μ(·) and σ2(·) at point x are given by

μ̂NW(x) =

∑T
t=p+1KH(x−Xt)Yt∑T
t=p+1KH(x−Xt)

, σ̂2(x) =

∑T
t=p+1KH(x−Xt)Y 2

t∑T
t=p+1KH(x−Xt)

− {μ̂NW(x)}2.

(9.36)

Masry and Tjøstheim (1995) establish strong consistency and asymptotic normality
of these estimators for α-mixing processes.

In an analogous fashion, we can adopt LL estimators and other nonparametric
regression methods to estimate μ(·) and σ(·) jointly. However, there is no a priori
reason to assume that the only features of the conditional distribution that depend
on Xt are the mean and the variance. Hence, it seems reasonable to obtain a
complete conditional density estimate of Yt given Xt = x. The basic setup is as
in Section 9.1.3. Then, assuming a single bandwidth h, a kernel estimate of the
conditional (one-step ahead) density f(·|x) associated with (9.35) is given by

f̂ NW(y|x) =
(Thp+1)−1

∑T
t=p+1 Kp+1[{(y,x)− (Yt,Xt)}/h]

(Tp)−1
∑T

t=p+1 Kp{(x−Xt)/h}
, (9.37)

where Kp+1(·) denotes a p+1 dimensional kernel function, commonly of the product
form. Robinson (1983) establishes a CLT for this estimator. For H ≥ 2, the fore-
cast transition density can be obtained by applying an iterative scheme; see, e.g.,
Algorithm 9.3.

Singh and Ullah (1985) extend the above results to the estimation of the condi-
tional density of a (jointly) strictly stationary real-valued bivariate process {(Xt,Zt),
t ∈ Z} with Zt = (Zt, . . . , Zt−q)′ (q ≥ 0). Moreover, they establish a CLT under far
weaker mixing conditions than those used in Robinson (1983).

Bootstrapping conditional densities
Paparoditis and Politis (2001, 2002) combine the flexibility of nonparametric, kernel-
based, estimators with bootstrap techniques for pth-order Markovian processes. We
already explored this method, called local resampling, when discussing a nonpara-
metric test statistic for TR; see Algorithm 8.4. Manzan and Zerom (2008) extend the
local resampling (bootstrap) approach to the context of density forecasting. Using
the previous framework, the objective is to estimate the out-of-sample H-step fore-
cast density fT+H(·|XT ) where XT = (YT , YT−1, . . . , YT−p+1)′. Since the proposed
estimation procedure is recursive in nature it is convenient to introduce the vectors
Xt = (Yt, Yt−1, . . . , Yt−p+1)′ where t ∈ Sp,T and Sp,T = {p, p + 1, . . . , T − 1}. The
strategy is to assign probability weights Wt(·) ∈ Rp to each vector Xp, . . . ,XT−1,
and use these weights to resample from the successors of Xt. The resulting algorithm
for Markov forecast densities (MFDs) is as follows.
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Algorithm 9.3: Resampling scheme for MFDs

H = 1 (One-step ahead):
1.1 Set n = T . For t = p, p + 1, . . . , T − 1 compute the weights at Xn = x,

Wt(x) = Kh1(x−Xt)
/ T−1∑

t=p+1

Kh1(x−Xt), (9.38)

where h1 > 0 is a bandwidth and Kh1(·) = K1(·/h1)/h1 with K1(·) a sym-
metric kernel function (e.g., the Gaussian product kernel).

1.2 Using (9.38), resample with replacement from the successors of Xt, i.e.,
Y ∗

T+1 = YJ+1 where J is a discrete random variable taking its value in the
set Sp,T .

1.3 Repeat steps 1.1 – 1.2 B times, to obtain the bootstrap replicates {Y ∗,(b)
T+1 }B

b=1.

H ≥ 2 (Multi-step ahead):
2.1 Move n one period forward, i.e., n = T + 1, and update Xn accordingly,

i.e., X∗
n = (Y ∗

n , Yn−1, . . . , Yn−p+1)′. Compute new weights using an updated
version of (9.38). Resample with replacement from the successors of X∗

t , i.e.,
Y ∗

T+2 = YJ+1.

2.2 Keep moving n forward one step. Repeat step 2.1 until n = T + H − 1 by
updating Xt.

2.3 Repeat steps 2.1 – 2.2 B times, to obtain {Y ∗,(b)
T+H}B

b=1.

Using another bandwidth h2 > 0 (i.e., h2 ∼ B−1/5) and kernel K2(·), compute
the H-step ahead MFD kernel estimator, say f̂ MFD

T+H (·|XT ), from the B-bootstrap
replicates in steps 1.3 and 2.3.

By Algorithm 9.3 the values of the probability weights depend on how “close”
the vectors Xt are to the conditioning vector Xn. That is, the closer Xt is to Xn the
larger weight it receives as compared to state vectors that are further away. In so
doing the method actually defines for each time point t ∈ Sp,T a local neighborhood
from which the value Y ∗

T+H is obtained, and hence its name local bootstrap. Under
certain mixing conditions on the associated process {(Xt, Zt)} ∈ Rp × R where
Zt = Yt+H and some technical assumptions Manzan and Zerom (2008) demonstrate
the asymptotic validity of MFD when H ≥ 2.

To accurately capture the dependence structure of the data, the following ap-
proach for the selection of h1 is recommended:

(i) Compute a pilot density estimate f̂hrot(Xt)=(T−p)−1
∑

t∈Sp,T
Khrot(XT−Xt),

using hrot = σ̂Y N−1/5, where σ̂Y is the standard deviation of {Yt}N
t=1.

(ii) Compute the local bandwidth factor λt = {f̂hrot(Xt)/g}−γ where g is the
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geometric mean of f̂hopt(Xt), i.e., log g = (1/T )
∑T

t=1 log f̂hopt(Xt), and γ (0 ≤
γ ≤ 1) is a sensitivity parameter that regulates the amount of weight that is
attributed to the observations in the low density regions. In terms of lowest
MSE, a good choice is γ = 1/2; see Silverman (1986).

(iii) Compute the adaptive (A) bandwidth ht,A = λthrot. The idea here is to adjust
the pilot density estimate in such a way that areas of high (low) density use a
smaller (larger) bandwidth.

9.1.6 Model assessment and lag selection
Assessment of the independence properties of residuals from nonparametric models
can be carried out as in the linear case but using methods appropriate for assessing
possible nonlinear dependence. For instance, residuals can be checked for independ-
ence using the mutual information mentioned in Section 1.3.3, or a test of nonlin-
earity can be applied to see if any nonlinear structure remains. In general, any of
the test statistics of Chapter 7 that are not tied to a particular nonlinear model can
be used to assess the GOF for nonparametric modeling procedures.

Related to these tests are methods of lag selection. They are often based on
modifications of time series model selection criteria. For example, methods for
variable selection based on minimization of a criterion such as AIC or final prediction
error (FPE) have been investigated for kernel-based (i.e., NW and LL estimates)
autoregression. To highlight the statistical ideas, we use the framework of (9.35).
The goal of lag selection is to determine a proper subset (Yt−i1 , . . . , Yt−ip)′ from
Xt with p as small as possible such that E(Yt|Yt−i1 , . . . , Yt−ip)

a.s.= E(Yt|Xt). Thus,
we assume that all lags are needed for specifying μ(·), but not necessarily for σ(·).
Moreover, we let {εt, t ≥ ip + 1} i.i.d.∼ (0, 1) with finite fourth moment.

Below we focus on the FPE criterion of a nonparametric estimate μ̂(·) of μ(·).
Let {Ỹt, t ∈ Z} be a process independent of {Yt} but having identical properties.
Then, using the notation X̃t = (Ỹt−1, . . . , Ỹt−p)′, the FPE is defined as

FPE(μ̂) = E[{Ỹt − μ̂(X̃t)}2W (X̃M,t)], (9.39)

where X̃M,t = (Yt−1, . . . , Yt−M )′ (M ≥ ip) is the full lag vector process, and W :
RM → R is a suitably chosen weight function (usually a 0 – 1 function with compact
support). Similar as AIC and its variants, the idea is to choose the lag combination
which leads to the smallest FPE(·).

Tjøstheim and Auestad (1994a) derive a stepwise FPE criterion with a penalty
term that is a complicated function of the chosen bandwidth and the selected ker-
nel. For a DGP with correct lag vector (i1, . . . , ip) and bandwidth h, as T → ∞,
Tschernig and Yang (2000) obtain an expression for the asymptotic FPEs (AFPEs).
Then, under some mild assumptions, and for both NW and LL estimators of μ(·),
they propose the estimated FPEs

F̂PE(h, i1, . . . , ip) = ÂFPE(h, i1, . . . , ip) + o
(
h4 + (T − ip)−1h−p

)
, (9.40)
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in which the ÂFPEs are given by

ÂFPE(h, i1, . . . , ip) = Âhopt +
2{K(0)}p

(T − ip)hopt

B̂h, (9.41)
where, at XM,t = xM ,

Âhopt =
1

T − ip

T∑
t=ip+1

{Yt−μ̂(Yt)}2Wt(xM ), B̂h =
1

T − ip

T∑
t=ip+1

{Yt−μ̂(Yt)}2 Wt(xM )

f̂hopt(Yt)
,

(9.42)

and where Âhopt and f̂hopt (a kernel-based estimator of the density function f(y))
are evaluated at the optimal bandwidth hopt, while B̂h uses any bandwidth of order
(T−ip)−1/(p+4). For a second-order Gaussian kernel hopt is given as the rule-of-thumb
(rot) bandwidth hrot = σ̂Y {4/(p + 2)}1/(p+4)T−1/(p+4), and K(0) = (2π)−1/2.

Tschernig and Yang (2000) show that conducting lag selection on the basis of
(9.40) is consistent if the underlying DGP is nonlinear. Nevertheless, they find that
the ÂFPE criterion tends to select too many lags in general, and suggest a correction
to reduce the chance of overfitting. The resulting estimate of the corrected AFPE
(CAFPE) is given by

ĈAFPE = ÂFPE{1 + p(T − ip)−4/(p+4)}. (9.43)

Fukuchi (1999) introduces a consistent CV-type method for checking the ad-
equacy of a chosen lag vector, albeit in a linear parametric model setting. The set
of candidate models can be correctly or incorrectly specified, nested or nonnested.
The method also provides a valid approach for selecting the correct lag vector in
(9.35). It uses a measure of forecast risk for each set of one-step ahead forecasts, with
the forecast risk estimated from a growing subsample of the original series {Yt}T

t=1.
Specifically, in the first step the data set is split into a sample for estimation that
contains the first R values (R ≤ T − 1). The remaining T − R observations are
used to forecast YR+1, say ŶR+1. Next, the one-step ahead forecast ŶR+2 of YR+2 is
based on the sample {Yt}R+1

t=1 . This procedure is repeated until the one-step ahead
forecast of YT is based on T − 1 observations. The so-called rolling-over, one-step
ahead MSFE is

MSFE =
1

T −R

T−R∑
t=1

{Yt+R − Ŷt+R}2. (9.44)

The selected subset lag vector is the one giving the smallest MSFE. Clearly, if a lag
selection is carried out for each forecast using e.g. ĈAFPE, the above method can
be computationally demanding.

Example 9.4: Canadian Lynx Data (Cont’d)
Consider the log10-transformed Canadian lynx data introduced in Section 7.5
(T = 114). Based on the LL nonparametric estimation method with a Gaus-
sian kernel, we conduct a full search over a wide set of lag combinations with
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M = 15. The maximum number of lags entertained in the state vector is set
at 4. Both methods, ÂFPE and ĈAFPE select the lag vector (1, 2, 10, 11)
as the optimal one. Comparing this result with the specified lags of the five
fitted models in Table 7.5, it is clear that a subset NLAR with only these four
lags might be sufficient in describing the data. In fact, the residual variance in
both cases is 0.0271 which is considerably lower than the corresponding values
reported in the last column of Table 7.5.

Using the rolling-over, one-step ahead forecasts of the last 12 observations, we
obtain a MSFE of 0.0165, with the pre-set lag vector (1, 2, 10, 11). This MSFE
value remains the same if we apply the ĈAFPE-based criterion using the initial
estimation sample up to and including time t = 102, and then maintain the
selected lag vector for all remaining periods. If, however, we apply the ĈAFPE
lag selection criterion for each forecast separately, the overall MSFE is 0.0087.
In this case, the forecasts are based on the selected lag vector (1, 2, 10, 11)
for subsamples of observations up to and including time t = 102, 110, 111, and
112, and on the lag vector (1, 2, 3, 4) for subsamples of observations up to
and including t = 103, . . . , 109.

9.2 Semiparametric Methods

9.2.1 ACE and AVAS

As noted in Appendix 7.A, allowing μ(·) to take any possible form using kernel
estimation suffers from the curse of dimensionality. If μ(·) is constrained in such a
way that it still provides a flexible representation of the unknown underlying function
yet does not suffer from excessive data requirements, a more stable estimate may
be obtained. Several different methods have been used to construct such μ(·). We
describe two of them below.

ACE
Consider the multiple regression model in (9.35) with σ(·) constant. The alternat-
ing conditioning expectations (ACE), and additive and variance stabilizing (AVAS)
transformations algorithms are methods designed to find nonlinear transformations
of both the response variable, Yt, and the predictor variables, Xt = (Yt−1, . . . , Yt−p)′

with the number of lagged Yt’s limited by some fixed p. Specifically, the “workhorse”
for these two methods is

θ(Yt) = φ(Xt) + εt

=
p∑

i=1

φi(Yt−i) + εt, (9.45)

where θ(·) and φi(·) are smooth real-valued, but unknown, functions. For identifi-
ability reasons, we usually require that E[φi(Yt)] = 0.
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The objective is to find the optimal transformations θ(·) and φ(·) of Yt and
Xt, respectively, such that the squared-loss regression function

E[θ(Yt)− φ(Xt)]2

E[θ2(Yt)]

is minimized over all smooth real-valued functions θ(·) and φ(·). Clearly, if we fix
φ(Xt), the solution of θ(Yt) is the conditional expectation θφ(Yt) = E[φ(x)|Yt]/
‖ E[φ2(Xt)] ‖. If we fix θ(Yt), then the solution of φ(Xt) is φθ(Xt) = E[θ(Yt)|Xt].
Assume that the joint distribution of the stochastic processes {Yt} and {εt} is known.
Then, combining the above steps, leads to an iterative procedure for finding the
optimal transformation in the sense of minimizing the LS errors, that is

arg min
θ,φ

{
E[θ(Yt)−

p∑
i=1

φi(Yt−i)]2
}
, (9.46)

where, to avoid the trivial solution θ(·) ≡ φi(·) ≡ 0, we set E[θ2(Yt)] = 1.
In applications, the conditional expectations in (9.46) are replaced by suitable

estimates obtained from the data. More specifically, within a time series context,
the ACE algorithm works as follows.

Algorithm 9.4: ACE

(i) Initialize : Set θ̂(Yt) = (Yt − Y )/σ̂Y , where Y = T−1
∑T

t=1 Yt and σ̂2
Y =

T−1
∑T

t=1(Yt −Y )2; compute φ̂i(Yt−i) as the regression of Yt on Yt−i (i =
1, . . . , p).

(ii) New transformation of Xt (backfit): Using kernel estimation or a variant
thereof, estimate each φi(·) as a regression of θ(Yt) −

∑p
j=1,j �=i φ̂j(Yt−j) on

Yt−i (i = 1, . . . , p).

(iii) New transformation of Yt: Compute θ̂(·) as a regression of Yt on∑p
i=1 φ̂i(Yt−i), and standardize θ̂(·).

(iv) Alternate : Do steps (ii) and (iii) until a convergence criterion is reached.
The resulting functions θ∗(·), φ∗

1(·), . . . , φ∗
p(·) are then taken as estimates of

the corresponding optimal transformations.

For time series data, convergence may be slow due to the correlated nature of
the observations. Also, if {Yt, t ∈ Z} is close to unit root nonstationarity in the
sense that the lag one serial correlation is close to unity, then the ACE algorithm
tends to suggest linear transformations for Yt−1. Nevertheless, the ACE procedure
will converge to the optimal solution asymptotically, provided the serial dependence
decays sufficiently fast. Besides, the ACE algorithm can handle variables other
than continuous predictors such as categorical (ordered or unordered), integer, and
indicator variables.
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AVAS
AVAS differs from ACE in that θ(·) is selected so that Var{θ(Yt)|

∑
iφ̂i(Yt−i)} is

constant. This modification removes the problem with heteroskedasticity which lies
at the root of the ACE difficulties in multiple regression. It is known that if a random
variable Z has mean μ and variance V (μ), then the asymptotic variance stabilizing
transformation for Z is h(t) =

∫ 1
0 V (s)−1/2ds. The resulting AVAS algorithm is like

Algorithm 9.4 except that in step (iii) it applies the estimated variance stabilizing
transformation to θ̂(·) before standardization.

AVAS can be viewed as a generalization of the Box–Cox ML procedure for choos-
ing power transformations of the response, Yt. It also generalizes the Box–Tidwell
procedure for choosing transformations of the predictor variables, Yt−1,Yt−2, . . . ,Yt−p.
Both ACE and AVAS are useful primarily as exploratory tools for determining which
of the response Yt and the predictors Yt−1, . . . ,Yt−p are in need of nonlinear trans-
formations and what type of transformation is needed.

Since both the ACE and AVAS algorithms are based on smoothing methods,
prediction of θ(Yt) based on the conditional mean function may be carried out in a
manner similar to the simple kernel regression case. For example, to predict θ(YT+1)
as a function of p lagged values of the series, the functions φi(YT+1−i) (i = 1, . . . , p)
are estimated separately as

φ̂i(x) =
∑n

t=1 K{(x− Yt)/h}Y ∗
t∑n

t=1 K{(x− Yt)/h} , (n = T − i), (9.47)

where x = YT+1−i and Y ∗
t = Yt+i. Then the one-step ahead forecast of θ(YT+1) is

θ̂(YT+1) =
p∑

i=1

φ̂i(YT+1−i). (9.48)

If the transformation of the response is constructed to be monotone, both ACE and
AVAS enable prediction of {Yt, t ∈ Z} itself by inverting θ(·).

Example 9.5: Sea Surface Temperatures
Oceanographers are interested in modeling sea surface temperatures (SSTs)
to understand what drives changes in temperatures and to obtain accurate
predictions of SSTs. Short-term predictions (approximately 1 to 20 days) are
used in large-scale weather models, whereas long-term predictions (2 to 3 years
or more) are used to explore issues such as global warming and El Niño effects;
see, e.g., Example 1.4.

Figure 9.5 shows 30 years of SSTs (in ◦C) measured at approximately 0800
hours each morning at a point on the California coast about thirty miles south
of Monterey Bay, called Granite Canyon. The nonlinear behavior of SSTs has
been studied extensively by, among others, Lewis and Ray (1993, 1997). The
series, denoted by {Yt}7,361

t=1 , has a sample mean (median) of 11.89 (11.80) and
its values range between [8.00, 18.70]. The Jarque–Bera (JB) test statistic
(1.6) rejects normality (p-value = 0.00).
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Figure 9.5: Thirty years of daily sea surface temperatures (SSTs) in ◦C at Granite Canyon
California measured from March 1, 1971 – April 30, 1991; T = 7,361.

We illustrate the use of the ACE algorithm for approximating a functional
relationship between SSTs and lagged SSTs. The ACE algorithm is applied to
the raw SST data to approximate a nonlinear AR(7) model, i.e. lagged values
of SSTs up to one week previous are used as predictor variables.

Figure 9.6 shows the estimated θ(·) and φi(·) (i = 1, . . . , 7) obtained using
the ACE algorithm with a symmetric k-NN linear least squares procedure
for estimating θ(·) and φi(·), having bandwidth chosen using local CV. The
estimated functions for Yt, Yt−1 and Yt−2 are fairly linear, suggesting a positive
linear relationship between SSTs on day t and SSTs on the previous day and a
negative linear relationship for SSTs two days back. There is some suggestion
of nonlinear relationships for SSTs at longer lags. The multiple R2 value for
the fitted data is 89.29%.

9.2.2 Projection pursuit regression

Whereas ACE and AVAS estimate the relation between Yt and Xt using linear
combinations of one-dimensional nonparametric functions operating on individual
coordinates of the predictor space, the projection pursuit regression (PPR) method
estimates the relation using a sum of M one-dimensional nonparametric functions
of linear combinations of the predictors. PPR thus allows for the possibility of
interactions between predictor variables. Within a time series context, the primary
concept underlying PPR is as follows. Given the response and predictor variables Yt

and Xt = (Yt−1, . . . , Yt−p)′, respectively, the PPR function locates the p-dimensional
“directional” vector αi = (αi,1, . . . , αi,p)′ and a univariate “activation-level” function
φi(·) (i = 1, . . . ,M ) of the projection α′

iXt, such that the model

Yt = β0 +
M∑
i=1

βiφi(α′
iXt) + εt, (9.49)
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Figure 9.6: Estimated additive functional relationships between SSTs and transformed
lagged SSTs obtained using ACE.

has the best predictive power, in terms of lowest MSFE. Each φi(·) is estimated
nonparametrically using a kernel-based smoothing method such that E[φi(α′

iXt)] =
0 and Var[φi(α′

iXt)] = 1.
Model (9.49), with p > 1, is a generalization of the original PPR model in-

troduced by Friedman and Stuetzle (1981), i.e. the series {Yt}T
t=1 is modeled as a

(smooth, but otherwise unrestricted) function of a (usually) different linear com-
bination of Xt. For the case p = 1 both models have the same form, but the
estimation algorithm differs in the sense that the original PPR algorithm chooses
α′

i (i = 1, . . . ,M ) in a forward stepwise manner. This can result in considerably
different model specifications. PPR, as specified by (9.49), is implemented in both
R and S-Plus with the constraint

∑p
j=1 α2

i,j = 1.

Example 9.6: Sea Surface Temperatures (Cont’d)

As mentioned in Section 9.2.1, the ACE algorithm constrains the functional
relationship to operate on individual coordinates of the predictor space, which
is quite restrictive. It is reasonable to believe that the behavior of SSTs de-
pends on complex interactions between climate signals as captured in previous
SST values.

Figure 9.7 shows the estimated functional relationship between Yt and α′
iXt

obtained using PPR with M = 2 and Xt = (Yt−1, . . . , Yt−7)′. Table 9.2 gives
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α̂′
1Xt α̂′

2Xt

φ̂1(α̂′
1Xt) φ̂2(α̂′

2Xt)

Figure 9.7: Estimated functional relationships between SSTs and lagged SSTs obtained
using PPR.

the values of βi and αi for the fitted PPR model.

Table 9.2: The estimated coefficients in the PPR model for the SSTs.

i βi αi,1 αi,2 αi,3 αi,4 αi,5 αi,6 αi,7

1 1.51 0.99 -0.12 -0.02 0.02 0.00 0.03 0.03
2 0.03 0.40 -0.33 -0.24 0.30 -0.42 0.55 -0.32

Most of the weight in the first projection vector falls on Yt−1 and the estimated
relationship is approximately linear. The second projection vector has weights
on all lagged values of Yt and the graph suggests that this projection is related
to Yt in a nonlinear fashion. The multiple R2 value is 89.05%, similar to that
for the ACE fitted model. A third-order projection makes little additional
contribution to the prediction of SSTs.

9.2.3 Multivariate adaptive regression splines (MARS)

MARS (Friedman, 1991) is a global adaptive method for fitting nonlinear multivari-
ate regression models using splines. In a time series context, MARS can be used
to model nonlinear univariate series, with or without exogenous predictors, and is
referred to as TSMARS.

Estimation
Although nonparametric methods do not require an explicit model, the TSMARS
methodology is probably best understood through introducing the following setup.
Let {Yt, t ∈ Z} be a univariate stationary time series process that depends on p1

(p1 ≥ 0) past values of Yt and on q pi-dimensional vectors of exogenous time series
variables Xi,t = (Xi,t−1, . . . ,Xi,t−pi)

′, (pi ≥ 0; i = , . . . , q). Assume that there are
T observations on {Yt} and {Xi,t}, and that the data is presumed to be described

1
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by the semi-multivariate time series model

Yt = μ(1,Yt−1,X1,t, . . . ,Xq,t) + εt (9.50)

over some domain D ⊂ Rn, (n = 2 +
∑q

i=1 pi), which contains the data. Here, 1
denotes a model constant, Yt−1 = (Yt−1, . . . , Yt−pl

)′, μ(·) is a measurable function
from Rn to R which reflects the true, but unknown, relationship between Yt and
Yt−1,X1,t, . . . ,Xq,t, and {εt} i.i.d.∼ (0, σ2

ε) with εt independent of Xi,t (i = 1, . . . , q).
The goal is to construct a function μ̂(·) that can serve as a reasonable approximation
of μ(·) over the domain D.

We introduce the (TS)MARS methodology by first discussing the method of
recursive partitioning. Let {R(s)}S

s=1 be a set of S disjoint subregions representing a
partitioning of D. Given these subregions, recursive partitioning approximates the
unknown function μ(·) at Wt = (1,Y′

t−1,X
′
1,t, . . . ,X

′
q,t)

′ in terms of basis functions
Bs(·) so that

μ̂(Wt) = β0 +
S∑

s=1

βsBs(Wt), (9.51)

where Bs(Wt) = I(Wt ∈ R(s)) (s = 1, . . . , S). Each indicator function is a product
of Heaviside or step functions: H(z) = 1, if z ≥ 0; H(z) = 0, if z < 0, describing each
subregion R(s). The aim is to use the data to simultaneously estimate a good set
of subregions, without enforcing continuity at the boundaries, and the parameters
associated with the separate basis functions in each subregion.

The recursive partitioning follows a two-step procedure.

• Forward step: Start from the entire domain R(1) = D. Split all existing
subregions (parent) into two sibling subregions. Optimize the split jointly
over all variables and all observed values using a GOF criterion on the resulting
approximation μ̂(·) to μ(·). Continue this step until a large number of disjoint
subregions {R(s)}M

s=2, for some pre-specified M ≥ S, are generated.

• Backward step: Recombine the subregions in a reverse manner until a good
set of non-overlapping subregions is obtained, using a criterion that penalizes
both for lack-of-fit and increasing number of regions.

The basis function of the (TS)MARS algorithm are usually described by linear
splines of the form (x− τ)+ and (τ − x)+, where

(x− τ)+ =
{

x− τ if x ≥ τ,
0 otherwise,

and (τ − x)+ =
{

τ − x if x ≤ τ,
0 otherwise,

which is a non-zero function; see the “hockeystick” graphs in Figure 9.8. For mul-
tivariate problems, products of the univariate basis functions are used. As a result
the TSMARS estimate of the function μ(·) takes the form

μ̂(Wt) = β0 +
S∑

s=1

βs

Ks∏
k=1

[uks(W ∗
v(ks),t − t∗ks)]+. (9.52)
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Figure 9.8: Pair of one-dimensional basis functions used by the MARS method; (x−0.5)+
(left panel) and (0.5− x)+ (right panel).

Here, β0 is the coefficient of the constant basis function B0(Wt) = 1, and the
sum is over all remaining basis functions produced by the forward step that survive
the backwards deletion step, uks = ±1 and indicates the (left/right) sense of the
associated step function. The quantity Ks is the number of factors or splits that
give rise to the sth basis function Bs(·). The subscript v(ks), t (v = 1, . . . , n) labels
the predictor variables at time t (t = 1, . . . , T ), and the t∗k,s represent values on the
corresponding variables.

Model selection
To evaluate the GOF and compare partition points, (TS)MARS uses residual squared
errors in the forward step. In the backward step, it uses a modified generalized CV
(GCV) criterion that requires only one evaluation of the model and hence reduces
some of the computational burden of (TS)MARS. That is

GCV(M) = σ̂2
ε

/[
1− C(M)

T

]2
, (9.53)

where σ̂2
ε = T−1

∑T
t=1{Yt − μ̂M (Wt)}2 is an estimate of σ2

ε , measuring the lack-
of-fit to the training data. The term in the denominator of (9.53) penalizes over-
parameterization, with

C(M) = (number of parameters, cj , being fit)+
+ (number of non-constant basis functions)

= (M + 1) + dM.

The quantity d (2 ≤ d ≤ 5) represents an additional contribution by each basis
function to the overall model complexity resulting from the (nonlinear) fitting of the
basis function parameters to the data at each iterative step. It can be regarded as a
smoothing parameter of the (TS)MARS procedure, and d is generally chosen to be 3.
Larger values of d result in fewer partition points being placed and thereby smoother
function estimates. Observe that TSMARS is more general than the SETAR-type
models in the sense that in the SETAR approach interactions among lagged predictor
variables (if present) are not allowed, whereas this is not the case with TSMARS.
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Figure 9.9: (a) Five years of daily SSTs (◦C); (b) Wind speed (in knots) at Granite
Canyon; T = 1,825.

On the other hand, the SETAR model allows for different error variances in different
regimes, whereas homogeneity of error variances is assumed in TSMARS.

Forecasting
Forecasts for TSMARS models that involve no stochastic exogenous covariates may
be obtained in two ways – iteratively or directly. Given Yt+1−j , (j = 1, . . . , p), an
iterated forecast of Yt+H (H ≥ 1) is computed as

Ŷt+H|t = μ̂(Ŷt+H−1|t, . . . , Ŷt+H−p|t), (9.54)

where Ŷt+H−j|t = Yt+H−j when H − j < 0, beginning with Ŷt+1|t. This is analogous
to the iterative prediction of a parametric AR model, as μ̂(·) can be considered as
a parametric spline function. Direct forecasts of Yt+H can be obtained by fitting
a TSMARS model using only values of the series at lags greater than or equal to
H as predictors, e.g., Ŷt+H|t = μ̂(Yt+H−1, . . . , Yt+H−p). This is analogous to the
methods of forecasting for kernel-based regression models. Using the direct method,
a different model should be estimated for each value of H to be forecast, as the
TSMARS model is selected to minimize a function of the forecast errors.

Example 9.7: Sea Surface Temperatures (Cont’d)

Figure 9.9(a) shows a subset of the daily SSTs at Granite Canyon introduced
in Example 9.5, now covering the time period January 1986 – December 1990
(T = 1,825). The corresponding daily wind speeds are plotted in Figure 9.9(b).
Lewis and Ray (1997) adopt the TSMARS methodology to approximate a
nonlinear functional relationship between logged SSTs, 50 lags of logged SST,
10 lags of the logarithm of (1 + wind speed), say WSt−j , and 10 lags of
wind directions (WDt−j). They use logs of the SSTs to remove the variance
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inhomogeneity in the series. Also, they remove a one-year cycle from the data
before model fitting, i.e. Yt = log SSTt−{b̂0+b̂1 sin(2πt/365)+b̂2 cos(2πt/365)}
with LS estimates b̂0 = 2.4826, b̂1 = −0.0907, and b̂2 = 0.0460. Further, they
recode the WDt series as a categorical variable representing the following four
wind directions: 1 = East; 2 = North; 3 = West; and 4 = South. Days with
no wind or only light airs receive a code of 5. The resulting fitted model is:

Ŷt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.19(0.00)+0.88(0.01)(Yt−1−2.13)+ + 1.62(0.28)(2.22−Yt−34)+

+0.01(0.00)(WSt−1−1.10)+I(WDt−1 ∈ {1, 2})
−0.04(0.00)(WSt−1−1.10)+I(WDt−1 ∈ {2, 3})

−0.50(0.01)(Yt−1−2.13)+(2.75−Yt−7)+(2.68 − Yt−17)+

−0.58(0.10)(2.27−Yt−34)+(WSt−1−1.10)+I(WDt−1 ∈ {2, 3})
−0.52(0.12)(Yt−49−2.51)+(WSt−1−3.00)+I(WDt−1 ∈ {1, 4, 5})
+4.67(1.03)(2.51−Yt−49)+(2.26−Yt−24)+I(WDt−1 ∈ {2, 3}),

(9.55)

where values in parentheses indicate standard errors of the coefficients ob-
tained from regression theory, assuming that the model terms and threshold
values are predetermined.

The model may be interpreted explicitly to obtain a better understanding of
the nonlinear relationship between Yt, WDt, and WSt. Consider, for instance,
the second and third terms in (9.55). The second term, 0.88(Yt−1 − 2.13)+,
indicates that when the value of Yt one day ago is larger than 2.13, the next
value of the series will be pulled up by a factor 0.88 multiplied by the amount
that Yt−1 is larger than 2.13. Furthermore, the third term has a non-zero
(positive) contribution to the value of Ŷt when Yt−34 ≤ 2.22, which rarely
happens since the minimum value of Yt is 2.13. Another example, is the last
term in (9.55) which shows that when the previous wind direction was toward
the Northwest (categories 2 and 3), the next day’s SST is decreased in all cases,
except when Yt−24 ≤ 2.26 and Yt−49 ≤ 2.51. The relationship between SSTs
and WS is more explicit in lines 2 and 3. In particular, for WDt−1 in categories
1, 2, or 3, the effect on Ŷt is to add either 0.01, (0.01− 0.04), or −0.04 times
the excess of WSt−1 over 1.10. In addition, the wind speed thresholds, which
are selected automatically by the TSMARS algorithm, have a meteorological
interpretation. For instance, a transformed wind speed threshold of 1.10 knots
translates into 1.031 m/s, below which it is well known that wind speeds have
little effect on SSTs.

9.2.4 Boosting
Boosting is a semiparametric forward stagewise algorithm that, in a time series
context, iteratively estimates a multivariate nonlinear additive AR model, with or
without exogenous variables. Let {Yt, t ∈ Z} be a univariate stationary time series
process which depends on the (q+1)p-dimensional vector Wt = (W1,t, . . . ,W(q+1)p,t)′
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= (Y′
t,X

′
1,t, . . . ,X

′
q,t)

′ ∈ R(q+1)p, where Yt−1 = (Yt−1, . . . , Yt−p)′ is the p-dimensional
vector of lagged values, and Xi,t = (Xi,t−1, . . . ,Xi,t−p)′ (i = 1, . . . , q) the q p-
dimensional vectors of explanatory variables. Similar as with (TS)MARS, the goal
is to obtain an estimate, or approximation, μ̂(·) of the regression function μ(·) ≡
E(Yt|Wt = w). For a sample of T observations, this approximation comes down to
minimizing the expected value of a loss function, say L(·), over all values {Yt,Wt}T

t=1.
A common procedure that solves the above problem, and facilitates interpreta-

tion, is to restrict μ(·) to be a member of a parameterized class of functions μ(·;β).
To be specific, we reformulate the original function optimization problem as a para-
meter optimization problem, i.e.

μ̂(Wt) ≡ μ(Wt; β̂), (9.56)

where

β̂ = arg min
β

T∑
t=1

L
(
Yt, μ(Wt; β)

)
, (9.57)

with L(·) a loss function which is assumed to be differentiable and convex with
respect to the second argument. Two frequently used loss functions are the L2 loss,
and the absolute error or L1 loss. The final solution is given by

μ(Wt; β̂[M ]) =
M∑

m=0

νh(Wt; γ̂[m]). (9.58)

Here h(·), termed a weak learner or base learner, is characterized by the mth estimate
γ̂[m] of an M -dimensional parameter vector γ; ν ∈ (0, 1) is a shrinkage parameter;
and γ̂[0] is an initial guess of γ. Thus, the underlying structure in the parameters is
assumed to be of an “additive” form

β̂[M ] =
M∑

m=0

νγ̂[m].

The shrinkage parameter ν can be regarded as controlling the learning rate of the
boosting procedure. It provides the base learner to be “weak” enough, i.e. the base
learner has large bias, but low variance.

Now, solving (9.58) directly is infeasible. One practical way to proceed is to
use greedy (stepwise) optimization to estimate the additive terms one at a time.
Jointly with a steepest-descent step, the resulting (generic) algorithm, called gradient
descent boosting, can be summarized as follows.
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Algorithm 9.5: Gradient descent boost

(i) Set m = 0. Initialize μ(Wt; β̂[m]) = Y = T−1
∑T

t=1 Yt for each t.

(ii) Set m = m + 1. Compute the negative gradient:

−g[m](Wt) =
[∂L

(
Yt, μ(Wt)

)
∂μ(Wt)

]∣∣∣
μ(·)=μ(·;̂β[m−1])

, (t = 1, . . . , T ).

(iii) Perform a simple regression of the weak learner on the negative gradient
vector, i.e. γ̂[m] = arg minγ

∑T
t=1

(
g[m](Wt)− h(Wt;γ)

)2.

(iv) Update μ(Wt; β̂[m]) = μ(Wt; β̂[m−1]) + ν · h(Wt; γ̂[m]).

(v) Iterate steps (ii) – (iv) until m = M , where M may be chosen by GCV, as
in (TS)MARS, or an AIC-type stopping criterion, e.g., AICc.

The parameter ν is often taken to be small (ν ∈ [0.01, 0.3]); Bühlmann and Yu
(2003). A small value of ν typically implies a larger number of boosting iterations.
Hence, in step (iv), the estimate μ̂(·) is continuously improved by the little boosts
ν · h(Wt; γ̂[m]). Observe that for the L2 loss, gradient boosting is equivalent to
repeated LS fitting of residuals {Yt − μ(Wt; β̂[m−1])}T

t=1. Bühlmann and Yu (2003)
also show that the addition of new terms in the model does not linearly increase its
“complexity”, but rather by an exponentially diminishing amount as m gets larger.
This result partly explains the “overfitting resistance” of boosting.

High-dimensional models
For regression problems with a large number of predictor variables, Bühlmann
(2006) proposes component boosting, where the base learner is applied to one
variable at a time. The simplest weak learner is linear. For this learner γ̂[m] =
(0, . . . , 0, γ̂ŝm

, 0, . . . , 0)′ ∈ R(q+1)p where ŝm ∈ {1, 2, . . . , (q + 1)p} denotes the re-
spective component at the mth boosting iteration. Then, for componentwise L2

boosting, the modification of h(·) in Algorithm 9.5 is as follows:

h(Wt; γ̂[m]) = W′
tγ̂

[m],

γ̂j = OLS{γj}, ∀j ∈ J ≡ {1, 2, . . . , (q + 1)p}, (9.59)

ŝm = arg min
j∈J

T∑
t=1

(
g[m](Wt)− h(Wt, γ̂

[j])
)2

, (9.60)

where OLS{γj} denotes the ordinary LS estimator of γj with the negative gradient of
the loss function as a T -dimensional pseudo-response vector. The resulting algorithm
is called generalized linear model boosting (glmboost).
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Table 9.3: Comparison of MSFEs for H = 1, 4, 8, and 12-steps ahead predictions made
with glmboost, gamboost, BRUTO, and MARS for the quarterly U.S. unemployment rate.
For each H, blue-typed numbers indicate the lowest MSFE.

H glmboost gamboost BRUTO MARS

1 7.85×10−4 8.23×10−4 5.99×10−4 8.66×10−4

4 1.48×10−2 1.68×10−2 1.26×10−2 1.53×10−2

8 3.72×10−2 4.23×10−2 4.62×10−2 4.60×10−2

12 7.79×10−2 8.08×10−2 7.72×10−2 6.65×10−2

Example 9.8: Quarterly U.S. Unemployment Rate (Cont’d)

We consider further the quarterly U.S. unemployment rate {Ut}252
t=1 introduced

in Example 1.1. In Example 6.2, we fitted a SETAR model to the series
Yt = log{Ut/(1−Ut)}. Here, we apply glmboost, gamboost, as well as BRUTO
and TSMARS to {Yt} and obtain forecasts for H = 1, 4, 8, and 12-steps ahead.
Gamboost is a boosting procedure which employs penalized B-splines, called
P-splines, with evenly spaced knots as weak learners (Eilers and Marx, 1996).
This implies that the weak learner representation is a generalized additive
model (Hastie and Tibshirani, 1990) with P-splines. BRUTO (Hastie, 1989)
is a variation on ACE that uses a step-wise procedure for selecting predictors.

For both boosting algorithms we choose the L2 loss function, and we set
ν = 0.1. The stopping criterion M is determined by AICc, with its upper
bound fixed at 500. Additionally, for gamboost the degrees of freedom in
the smoothing spline base learner was set at 3.5. The R implementation of
BRUTO and MARS both have a tuning parameter (denoted by a) for the
cost per degree of freedom change. Following Huang and Yang (2004) we set
a = log T (a BIC type of penalty). These authors noted that the default a = 2
(an AIC type of penalty) always yielded substantial overfitting.

The initial information set covers the time period 1948(i) – 2001(iv). The max-
imal number of lags p is set at 12. Next, we generate twelve forecasts from
the four prediction methods with a recursive approach. That is, at the first
stage, twelve forecasts are calculated for the time period 2002(i) – 2004(iii).
At the next stage, the information set is enlarged with one observation and the
corresponding horizon is re-estimated. We continue with this approach until
2007(i), and then we compute the final twelve forecasts. Thus, the recursive
scheme consists of 21 stages in total. From Figure 1.1, we see that the total
forecasting period includes two subperiods of economic contraction (or reces-
sion) with rapidly rising unemployment, and one subperiod with economic
expansion. In general, interest in forecasting unemployment will be greater
during contractionary periods.

Table 9.3 summarizes the forecast results in terms of MSFEs. BRUTO has the
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Figure 9.10: Boxplots of the averaged squared forecast errors, based on 21 forecasts, for
H = 1, 4, 8, and 12-steps ahead forecasts of the quarterly U.S. unemployment rate.

lowest MSFEs for H = 1 and 4. Relative to glmboost, the reduction in MSFE
of BRUTO is about 24% (H = 1) and 15% (H = 4). For eight-quarter ahead
forecasts, glmboost outperforms all other methods. MARS seems to be more
efficient for long-term (H = 12) forecasting. Thus, apart from gamboost, each
semiparametric method has some forecasting merits over the other methods
during certain forecasting horizons. Of course, a real benchmark comparison
is needed to support these empirical findings.

Figure 9.10 shows the differences between the four semiparametric methods
as boxplots of the average squared forecast errors, based on 21 forecasts. Sur-
prisingly, there is no clear “winner” among the methods, each approach has
comparable forecast results. The selected model lags, however, differ at the
21 forecasting stages. Table 9.4 shows the selected lags for the first quarter
of 2007 when the available forecast information set reaches its maximum, and
hence is the most representative. Clearly, with only three lags the glmboost
model is easier to interpret than the more complicated gamboost, BRUTO,
and MARS models with the latter two methods selecting lag variables via
GCV. Interestingly, the gamboost model uses many lag variables in spite of
its relatively poor forecasting performance.
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Table 9.4: Selected lags for the first quarter of 2007 when the available information set
reaches its maximum; Quarterly U.S. unemployment rate.

glmboost gamboost BRUTO MARS

Selected lags 1, 5, 6 1, 3, 4, 5, 6, 7, 9, 10, 12 1, 2, 6, 8, 9, 10 1, 2, 5, 6, 8, 10

9.2.5 Functional-coefficient AR models

In Section 9.1.5, we introduced the functional relationship (9.35). One restricted
functional form that allows for practical implementation is the so-called functional-
coefficient AR (FCAR) model of Chen and Tsay (1993b) and its adaptive version
(Cai et al., 2000b; Fan et al., 2003, among others). Here, and in the next section,
we discuss two of these approaches briefly. We refer to Fan and Yao (2003, Chapter
8) who provide an excellent and detailed overview of the many developments in this
area.

A strictly stationary time series process {Yt, t ∈ Z} is said to follow a FCAR
model of order p if it satisfies

Yt = φ1(Yt−d)Yt−1 + · · ·+ φp(Yt−d)Yt−p + εt, (d ≤ p), (9.61)

where {εt} i.i.d.∼ (0, σ2
ε) with εt independent of Yt−i ∀i > 0. Model (9.61) is a special

case of the state-dependent model (2.10), hence has all the nice properties of a SDM.
The model encompasses the SETAR and STAR models. A direct generalization
follows from introducing functional-coefficient MA terms (Wang, 2008). If d > p,
a coefficient term φ0(Yt−d) may be included in the model. For d = p, such a term
creates ambiguity and is generally omitted. Clearly, the FCAR(p) model forces each
function of Yt−i (i = 1, . . . , p) to be of the form φi(Yt−d)Yt−i, whereas the more
general NLAR model allows φi(·) to vary freely.

The functional form of the coefficients can be simply estimated at time t using an
arranged local regression with a fixed-length moving window, and a minimum data
size. The resulting estimates φ̂i(·) of φi(·) are consistent under geometric ergodicity
conditions (Chen and Tsay, 1993b). By plotting φ̂i(·) versus the threshold variables
Yt−i (i = 1, . . . , p) one may infer good candidates for the functional form.

Generalized FCAR
Cai et al. (2000b) propose a generalized FCAR(p) model, given by

Yt = φ1(X)Z1,t + · · ·+ φp(X)Zp,t + εt, (9.62)

where X ∈ Rq can consist of possibly more than one lagged value of the time series
process {Yt, t ∈ Z} or some other exogenous variable. In addition, the Zi,t (i =
1, . . . , p) can be lagged values of {Yt, t ∈ Z} or can be a different exogenous variable,
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although commonly Zi,t = Yt−i is used. The φi(·) are assumed to have a continuous
second derivative. The functional form can be estimated nonparametrically using
kernel-based methods. In this sense, analysis of (9.62) may be thought of as a
hybrid of parametric and nonparametric methods. In the following, we discuss the
LL smoother for the case q = 1.

Let {Yt,Xt,Zt = (Z1,t, . . . , Zp,t)′}T
t=1 denote process observations. We approx-

imate φi(·) locally at a point x0 ∈ R as φi(x) ≈ ai + bi(x − x0). Then (ai, bi) are
estimated to minimize the weighted sum of squares

T∑
t=1

Wt

(
Yt −

p∑
i=1

{
ai + bi(x0 −Xt)

}
Zi,t

)2
, (9.63)

where Wt = KhT
(x0−Xt) and hT is a bandwidth. The LL estimator of φi(·) is then

defined as φ̂i(x0) = âi. For q-dimensional Xt (q > 1), a q-dimensional kernel and a
q × q bandwidth matrix may be used.

The one-step ahead forecast of {Yt, t ∈ Z} given (Xt, Zt) is given by Ŷt+1|t =∑p
i=1 φ̂i(Xt)Zi,t. The bandwidth, hT , may be selected to minimize a measure of

out-of-sample one-step ahead forecast errors for the fitted model. Specifically, let

MSFEs(hT ) =
1
n

T−sn+n∑
t=T−sn+1

{
Yt −

p∑
i=1

φ̂i,s(Xt)Zi,t)
}2

, (9.64)

where n denotes the length of the sth subseries of {Yt} (s = 1, . . . , S), and the
φi,s(·) are computed from the series up to observation T − sn using bandwidth
hT = [T/(T − sn)]1/5. The optimal bandwidth is defined to minimize

MSFE(hT ) =
S∑

s=1

MSFEs(hT ). (9.65)

This measure can be regarded as a modified form of multifold CV, appropriate for
stationary time series processes. In practical applications, it is recommended to set
n = [0.1T ] and S = 4. The same criterion can be used to select among different X
and different model orders, p.

Model assessment
Cai et al. (2000b) propose a bootstrap LR-type test for FCAR models to determine
whether the coefficient functions are constant or take a particular parametric form.
Suppose, for some parameter vector θ ∈ Θ, where Θ denotes the space of allowed
values of θ, we have the null hypothesis

H0 : φi(x) = φi(x; θ), (i = 1, . . . , p),

where φi(· ; θ) is a specified family of functions parameterized by θ. The bootstrap
procedure consists of the following steps.
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Algorithm 9.6: Bootstrap-based LR-type test

(i) Estimate θ for the specified parametric model and construct the resid-
uals, ε̂t = Yt −

∑p
i=1 φ̂i(x; θ̂)Zi,t and the residual sum-of-squares, RSS0 =∑T

t=1 ε̂ 2
t .

(ii) Estimate the FCAR model nonparametrically and construct the residuals,
ε̃t = Yt −

∑p
i=1 φ̂i(x)Zi,t and the residual sum-of-squares, RSS1 =

∑T
t=1 ε̃ 2

t .

(iii) Compute the test statistic

LRT = (RSS0 − RSS1)/RSS1. (9.66)

Large values of LRT indicate that H0 should be rejected.

(iv) Generate the bootstrap residuals {ε∗
t } from the EDF of the centered residuals

{ε̃t − ε̃} from the nonparametric FCAR-fit, and construct bootstrap process
values as Y ∗

t =
∑p

i=1 φ̂j(x; θ̂)Zi,t + ε∗
t . (Note that if z or Zi,t are functions

of the original {Yt, t ∈ Z} process, the original values are used, not values
obtained from the bootstrapped process. This corresponds to a fixed-design
nonparametric regression method.)

(v) Compute the test statistic LR(0)
T based on the bootstrapped sample in the

same way as (9.66).

(vi) Repeat step (v) B times, to obtain {LR∗,(b)
T }B

b=1.

(vii) Compute the one-sided bootstrap-based p-value as

p̂ =
1 +

∑B
b=1 I

(
LR∗,(b)

T ≥ LR(0)
T

)
1 + B

.

Note that the above test statistic can be used to test for constant coefficients
by letting φ̂i(x; θ̂) = φ̂i. The residuals are bootstrapped from the nonparametric
fit to ensure that the estimated residuals are consistent, no matter whether the null
hypothesis or the alternative hypothesis is correct.

Example 9.9: Quarterly U.S. Unemployment Rate (Cont’d)

We reconsider the transformed U.S. unemployment rate {Yt}252
t=1 of Examples

6.2 and 9.8. To find the optimum FCAR model among the class of FCAR
models defined in (9.61), we set pmax = 11 (the largest model considered).
In the MSFE criterion (9.64) we let S = 4 (the number of multi-folds),
n = [0.1T ] = 25 (the length of the sth subseries (s = 1, . . . , S)). Figure
9.11(a) plots MSFE values against a range of bandwidth values. The optimal
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Figure 9.11: (a) Plot of the MSFE versus hT for estimation of model (9.67); (b)–(f)
Estimated functional-coefficients φ̂i(·) in model (9.67) for the quarterly U.S. unemployment
rate.

bandwidth, which minimizes the AMSE, is hT = 0.60. Moreover, MSFE iden-
tifies a FCAR with d = 5 and p = 10 as the best model. Recall that we set
d = 5 in the final three-regime SETAR model (6.15). Combining this with the
specified lag structure in (6.15), we fit the data with the FCAR model

Yt = φ1(Yt−5)Yt−1 + φ2(Yt−5)Yt−2 + φ4(Yt−5)Yt−4 + φ5(Yt−5)Yt−5

+ φ10(Yt−5)Yt−10 + εt. (9.67)

Figure 9.11(b) – (f) shows the estimated functional-coefficient functions. We
see that these functions behave differently for Yt−5 around approximately
−3.10, which is close to the threshold values at −3.14 identified in (6.15).
There also seems to be a changing point around −2.60 which, however, cor-
responds less well with the obtained threshold value −2.97. Clearly, these
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figures indicate that most functions φi(·) are either quadratic or sine func-
tions. Finally, we apply the bootstrap LR-type test statistic in Algorithm 9.6
(500 replicates) to test (6.15) against the FCAR model in (9.67). The p-value
is 0.00, which reinforces that the three-regime SETAR model is adequate with
a residual variance σ̂2

ε = 0.26 × 10−2 versus σ̂2
ε = 0.43 × 10−2 for the fitted

FCAR model.

9.2.6 Single-index coefficient model

A model related to the FCAR model is the single-index coefficient model, discussed
by Ichimura (1993) in a regression setting and extended to the dependent time series
setting by Xia and Li (1999). For a strictly stationary time series process {Yt, t ∈ Z},
the model is formulated as

Yt = φ0

(
g(X; θ)

)
+

p∑
i=1

φi

(
(g(X; θ)

)
Yt−i + εt, (9.68)

where {εt} i.i.d.∼ (0, σ2
ε) with εt independent of X and Yt−i ∀i > 0. Here, φi(·) (i =

0, 1, . . .) are unknown (arbitrary) coefficient functions, X is a random q-covariate,
and g(X; θ) : Rk+q → R is known up to a parameter vector θ ∈ Θ, where Θ ⊂ Rk

is usually a convex subset.
Model (9.68) is quite general and encompasses various existing nonlinear time

series models. The idea is that the nonlinear functions φj

(
g(X; θ)

)
“single index”

the threshold variable X, hence its name. When g(X; θ) = θ′X with ‖θ‖ = 1, it is
considered a linear single-index model and is related to the projection pursuit AR
model (9.49) when X = (Yt−1, . . . , Yt−p)′. As the coefficients φi(·) are functions of
a random variable X, it is a type of random coefficient model. When X = Yt−d,
g(X; θ) = exp(−θX2) and φi

(
g(X; θ)

)
= αi + βig(X; θ), the model has the form of

an ExpAR model. When θ = 1, g(X; θ) = Yt−d (d ≤ p), it is a FCAR(p) model. The
model having only two terms with φ1(·) restricted to be linear and g(X; θ) = θ′X
is the extended partially linear single-index model of Xia et al. (1999).

One advantage of the single-index model over the FCAR model is that the coef-
ficient functions φi(·) are one-dimensional. This avoids the curse of dimensionality
in estimating φi(·) nonparametrically. On the other hand, some nonlinear models
cannot be expressed in the form of a single-index model. Xia et al. (1999) give the
example of a Hénon map with dynamic noise. Additionally, there does not appear
to be any general guidance as to the appropriate choice of g(·) in the single-index
model for describing different types of nonlinearity.

Once θ and a bandwidth hT are specified, the coefficient functions can be estim-
ated using LL regression in the neighborhood of g(Xt; θ) (t = 1, . . . , T ) as discussed
in the previous section, provided the inverse of Wx, the weight (or design) matrix
in the LL regression at the point x, exists and is not large. If this is not the case,
then only Xt values in a subset A of Rq so that Wx tends to a positive definite
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matrix, are used for estimation. Xia et al. (1999) suggest selecting θ and hT using
a leave-one-out CV method, as follows.

Algorithm 9.7: Estimating θ and hT for the single-index model

(i) For a range of θ and hT values, compute

Ŝ(θ, hT ) =
∑

Xt∈A

(
Yt − Φ̂′

θ,t

(
g(Xt;θ)

)
Yt

)2

, (9.69)

where Φ̂θ,t(·) denotes the LL regression estimate of Φθ(x) = (φ0,θ(x), . . . ,
φp,θ(x))′ obtained using kernel regression when the point (Yt,Xt) is omitted
from the data.

(ii) Choose hT and θ to minimize (9.69), and estimate σ2
ε by

σ̂2
ε =

1∑T
t=1 I{Xt ∈ A}

Ŝ(θ̂, ĥT ),

where (θ̂, ĥT ) is a pair of solutions.

Xia et al. (1999) prove the asymptotic normality of the estimator of θ̂ and the
consistency of the estimators for φi(·) under some regularity conditions. They also
show that the estimated bandwidth, ĥT , is asymptotically efficient and is propor-
tional to T−1/5.

Example 9.10: A Monte Carlo Simulation Experiment

Consider the following partial linear single-index coefficient regression model

Yt = 0.45Xt − 0.6Xt−1 + exp{−2(0.8Xt + 0.6Xt−1)2}+ 0.1εt, (9.70)

where {εt}, {Xt} i.i.d.∼ N (0, 1), and {εt} and {Xt} are mutually independent
processes. Alternatively, (9.70) corresponds to the model

Yt = β′Xt + φ1

(
g(Xt; θ)

)
+ 0.1εt, (9.71)

where

g(Xt; θ) = cos(α)Xt + sin(α)Xt−1

with β =
(
λ cos(α), λ sin(α)

)′, θ =
(
cos(α), sin(α)

)′, Xt = (Xt,Xt−1)′, β ⊥ θ
(to ensure estimability), ‖θ‖ = 1, α = 0.9273, and λ = 0.75.

For sample sizes T = 50, 100 and 200, we simulate 1,000 independent samples.
We take A such that it includes all observations, and use a Gaussian kernel.
We minimize Ŝ(θ, hT ) within θ ∈ [0.2, 1.3], and hT ∈ [0.01, 0.2]. Table 9.5
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Table 9.5: Sample mean and standard deviation (in parentheses) of estimated θ, β and
σ2

ε for different sample sizes T ; based on 1,000 MC replications.

T θ̂ β̂ σ̂2
ε

50 0.7978 (0.0331) 0.5994 (0.0569) 0.4427 (0.0447) -0.5875 (0.0593) 0.0261 (0.0189)
100 0.7987 (0.0170) 0.6010 (0.0226) 0.4484 (0.0212) -0.5959 (0.0219) 0.0194 (0.0158)
200 0.7996 (0.0091) 0.6003 (0.0122) 0.4492 (0.0112) -0.5983 (0.0112) 0.0169 (0.0072)

θ̂′Xt

Figure 9.12: Simulation result from a typical data set of size T = 200. The blue sold line
denotes the estimated nonlinear relation between Yt and θ′Xt. Black dots denote Yt − β′Xt

against θ′Xt. The red solid line denotes the real nonlinear part of relation (9.70).

confirms the theoretical results; stable estimates of θ, β, and σ2
ε are obtained

even for T = 50. Figure 9.12 shows the estimated nonlinear relation between
Yt and θ′Xt from a typical simulated data set of size T = 200. We see that
the estimated function (blue solid line) is relatively close to the real one (red
solid line).

9.3 Summary, Terms and Concepts

Summary
This chapter has focused on some of the many methods available for semi- and
nonparametric time series forecasting. Because there is a rich literature in this area,
we have restricted attention to the principal methods which have demonstrated good
prediction performance in practice and comparative MC simulation studies. As such
the chapter is somewhat “selective”, although it does not imply that a particular
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Table 9.6: Some applications of semi- and nonparametric methods to univariate time
series.

Section Method Reference Applications

9.1.1 Mean, Mdn, Mode De Gooijer and Zerom (2000) U.S. weekly T-bill rate
9.1.4 k-NN Lall and Sharma (1996) Monthly streamflow data

Rajagopalan and Lall (1999) Daily weather data
Loess Barkoulas et al. (1997) U.S. quarterly T-bill rate

9.2.1 ACE, BRUTO Chen and Tsay (1993a) Daily river flow data
BRUTO Shafik and Tutz (2009) Monthly unemployment index

9.2.2 PPR Xia and An (1999) Australian blowfly data
Lin and Pourahmadi (1998) Canadian lynx data

9.2.3 TSMARS Lewis and Stevens (1991) Annual sunspot numbers
Lewis and Ray (1997) Daily sea surface temperatures
Chen et al. (1997) Eight environmental time series
De Gooijer et al. (1998) Weekly exchange rates

9.2.4 Glmboost/Gamboost Robinzonov et al. (2012) German monthly industrial production
Glmboost Buchen and Wohlrabe (2011) U.S. monthly industrial production

method is unimportant if it is not included. Much of the material we have discussed
is quite new. To facilitate further reading, we have summarized some applications
in Table 9.6.

Adapting semi- and nonparametric methods for forecasting is more convenient
than using parametric models (Chapter 10) because the functional form of the un-
derlying DGP is unknown or indeterminable in practice. Additionally, semi- and
nonparametric approaches offer much greater flexibility to capture variations in the
conditional second- and higher-order moments of the noise process than linear and
other specific parametric nonlinear models. Additive semiparametric methods have
a host of applications, especially in engineering where online analysis of possibly
(locally) nonstationary data is often required. A typical example is the magnetic
field data of Example 1.3. Hence, we foresee further investigations of semiparametric
forecasting methods in real-world applications.

Terms and Concepts

backward step, 366
base (weak) learner, 370
basis function, 366
boosting, 369
check function, 342
curse of dimensionality, 338
design adaptive, 350
forward step, 366
gradient descent boosting, 370

leave-one-out CV, 341
Lipschitz continuous, 340
locally weighted regression (LWR), 353
multi-stage, 344
plug-in bandwidth, 341
projection pursuit regression (PPR), 363
rolling-over MSFE, 359
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9.4 Additional Bibliographical Notes

Section 9.1: The use of kernel regression for time series data has been extensively discussed
in the literature, going back to Rosenblatt (1969). A useful but slightly outdated source of
information on this topic is the review article by Härdle et al. (1997); see also Heiler (2001)
and Fan and Yao (2003). Recursive schemes (not a part of this Chapter) for kernel-based
regression estimation have been proposed by many authors; see, e.g., Härdle (1990) for some
of these. For mixing and ergodic stationary processes, a good starting point for recursive
kernel density estimators is Györfi et al. (1989). Franke et al. (2002) show that bootstrap
procedures can be used for estimating the distribution of kernel smoothers in NLAR–ARCH
processes.

Section 9.1.1: Using strong mixing conditions (α-mixing), Berlinet et al. (2001) prove
that the conditional median is asymptotically normally distributed. Similarly, for α-mixing
stationary processes, Berlinet et al. (1998) prove that the conditional mode is asymptotically
normally distributed.

Härdle and Vieu (1992) extend the leave-one-out CV bandwidth selector to time series
processes. Deheuvels (1977) proposes the plug-in bandwidth hd for density estimation.
Matzner–Løber et al. (1998) apply a modified version of hd, in conjunction with a local
and global CV procedure, within the context of an empirical nonparametric forecast set-
ting. These authors also compare nonparametric forecasts based on kernel estimation of the
conditional mean, median, and mode.

Section 9.1.2: Direct, or single-stage, kernel-based multi-step predictors for the mean are
given by, among others, Auestad and Tjøstheim (1990), Härdle (1990), and Härdle and
Vieu (1992). Chen (1996) and Chen et al. (2004) consider the problem of multi-stage kernel
prediction for the conditional mean. As special cases of (9.19) and (9.20), De Gooijer et
al. (2002) derive the AMSE properties of the kernel-based multi-stage median predictor for
α-mixing time series of Markovian structure. Using the LL regression method, Zhou and Wu
(2009) estimate quantile curves of a special class of nonstationary processes, called locally
stationary processes.

Section 9.1.3: Hyndman and Yao (2002) also introduce two alternative kernel smoothers
of the conditional density, both aimed at producing non-negative estimators. In practice,
however, the RNW approach is computationally more feasible than the smoothers proposed
by these authors.

Section 9.1.4: Fan and Gijbels (1996) provide a detailed study of the asymptotic proper-
ties of the local polynomial estimator. Masry (1996a,b) presents similar theory for the LL
estimator under dependence. Vilar–Fernandez and Cao (2007) compare nonparametric fore-
casts of the conditional mean using the NW estimator, and the LL estimator with forecasts
obtained from parametric ARIMA specifications.

The method of k-NN for time series prediction was introduced by Yakowitz (1985, 1987) in
the context of predicting river runoff for flood warnings. Lall and Sharma (1996) provide a
nearest neighbor bootstrap algorithm for resampling hydrologic time series. Application of
the k-NN method to predicting GDP and stock returns have been considered by respectively
Guégan and Rakotomarolahy (2010) and Kim et al. (2002).

Section 9.1.5: Yang et al. (1999) consider nonparametric local polynomial estimation of
(9.35), where they assume that the mean function is additive and the volatility function
is multiplicative. Fan and Yim (2004) propose a CV method for estimating a conditional
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density. The bandwidth selection rule optimizes the estimated conditional density by min-
imizing the ISE. Fan et al. (1996) provide a similar, but ad – hoc method. McKeague and
Zhang (1994) study cumulative versions of one-step lagged conditional mean and variance
functions.

Section 9.1.6: Early studies on CV nonparametric lag selection consider functional re-
lationships with conditional homoskedasticity; see, e.g., Cheng and Tong (1992), Yao and
Tong (1994), and Vieu (1994, 1995). Guo and Shintani (2011) investigate the properties
of the FPE lag selection procedure for nonlinear additive AR models. Also, there is an
extensive literature on CV methods for the simultaneous selection of the parametric and
nonparametric components in a partially linear model; see, e.g., Gao and Tong (2004), and
Avramidis (2005) and the references therein. Chen et al. (1995) propose three procedures
for testing additivity in nonlinear ARs of the form (9.45).

Section 9.2.1: The ACE and AVAS algorithms were originally introduced for regression
modeling by Breiman and Friedman (1985); see also Hastie and Tibshirani (1990) and
Tibshirani (1988).

Section 9.2.2: Following Hall (1989), a kernel-based PPR estimation method for time series
has been proposed by Xia and An (1999), and applied to real data. Granger and Teräsvirta
(1992b) report results of a small experiment in which linear models, PPR models, and models
containing both linear and PPR terms are fitted to nonlinear time series under a variety of
signal to noise cases. They conclude that when nonlinearity is strong, PPR models fit and
forecast quite well, but tend to overfit the data when nonlinearity is weak.

Section 9.2.3: Lewis and Ray (2002) use TSMARS to model nonlinear threshold-type AR
behavior in periodically correlated time series. A Bayesian nonparametric implementation
of nonlinear AR model fitting using splines has been discussed by Wong and Kohn (1996).
A Bayesian implementation of MARS, with application to time series prediction, has been
given by Denison et al. (1998). In both cases, Bayesian estimation is carried out by MCMC
methods. These methods generate enormous combinations of basis functions from which it
is difficult to extract information on the regression structure. Sakamoto (2007) solves this
problem by proposing an empirical Bayes method to select basis functions and the position
of the knots. Porcher and Thomas (2003) propose a penalized least squares approach to
order determination in TSMARS.

Section 9.2.4: Robinzonov et al. (2012) perform a nonlinear time series Monte Carlo
comparison of glmboost, gamboost, TSMARS, BRUTO, and an algorithm due to Huang
and Yang (2004). These latter authors use a stepwise procedure for the identification of
nonlinear additive AR models based on spline estimation and BIC. Robinzonov et al. (2012)
conclude that boosting is superior to its rivals in discovering the true nonlinear DGP. From
a computational point of view, Schmid and Hothorn (2008) advocate the use of component
P-splines based learners with the shrinkage parameter vector estimated via penalized least
squares; see also Shafik and Tutz (2009) for the corresponding boosting algorithm. Some
ideas to address the multivariate generalization of boosting are provided by Lutz et al.
(2008). Assaad et al. (2008) adopt the boosting algorithm for predicting future time series
values using recurrent NNs as base learners. For an overview on boosting in general, we
refer to Bühlmann and Hothorn (2007).

Section 9.2.5: Chen and Liu (2001) place the estimation of (9.61) in the smoothing con-
text, proposing an LL regression estimate of φi(·) (i = 1, . . . , p). In addition, these authors
give two test statistics. One for assessing whether all the coefficient functions are con-
stant. The second one tests if all the coefficient functions are continuous. A small MC
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simulation study complements the paper. Chen and Wang (2011) investigate some prob-
abilistic properties (stationarity and invertibility) of combined AR–FCMA models. Chen
and Huo (2009) provide an approach that generalizes smoothing splines to high dimensions
(> 3 covariates) and is relatively free from formulational assumptions such as the restric-
ted number of covariates in the FCAR models; MATLAB and R codes are available at
http://www.tandfonline.com/doi/suppl/10.1198/jcgs.2009.08040?scroll=top.

Matsuda (1998) proposes an alternative GOF test statistic to determine whether the coeffi-
cient functions are constant or take a particular parametric form. Although the test statistic
has asymptotically a χ2 distribution under certain regularity conditions, he finds that a boot-
strap method provides better significance levels in practice. Cai et al. (2000a) provide details
of estimating varying-coefficient models in a regression setting. Cai et al. (2009) consider
the estimation of a generalized functional coefficient regression model with nonstationary
covariates.

Section 9.2.6: Wu et al. (2011) recommend to estimate the univariate varying-coefficient
functions in the single-index model by P-splines. This approach provides an explicit fit
which allows the authors to conduct multi-step ahead out-of-sample forecasting. The paper
includes implementation details of the proposed estimation algorithm. Wu et al. (2010)
introduce LL estimation for quantile regression via single-index models as well as some
computational algorithms.

9.5 Data and Software References

Data
Example 9.2: The data on the Old Faithful geyser in Yellowstone National Park, Wyoming,
USA, are taken from Azzalini and Bowman (1990, Table 1). The data set, containing
299 observations on the duration of eruptions and the waiting time between the starts of
the successive eruptions, can be downloaded from the website of this book. The duration
measurements with codes L (long), M (medium), and S (short) are recoded as 4, 3, and 2
minutes, respectively. This data set is more complete than the one in the R-datasets package,
and the numbers are slightly different. The stacked conditional density plot can be obtained
using the R-hdrcde package.

Example 9.3: The river flow data were made available by Peter C. Young of Lancaster
University. Previous analysis of this series can be found in Young (1993) and Young and
Beven (1994) and references therein; see also De Gooijer and Gannoun (2000), and Polinik
and Yao (2000). The data set, including hourly observations on rainfall, can be downloaded
from the website of this book.

Example 9.5: The SST data set can be downloaded from the website of this book. Previous
studies of daily SSTs at Granite Canyon include Breaker and Lewis (1988), Lewis and Ray
(1993, 1997), and Breaker (2006).

Example 9.7: The subset SST data set includes time series on (interpolated) water salinity,
and sine and cosine terms. These series can be used in the TSMARS model as potential
predictors to investigate whether the observed cyclic effects (see Figure 9.9(a)) are wind
driven. Missing values in the wind direction series are filled in using the wind direction
series from the same date of a different year.

Exercise 9.2: The monthly GSL data were made available by David Tarboton (Utah State
University). The measured dates are reported by the U.S. Geological Survey (USGS).

http://pubs.amstat.org/toc/jcgs/18/3


9.5 DATA AND SOFTWARE REFERENCES 385

Software References
Section 9.1: A kernel smoothing MATLAB toolbox is available at http://nl.mathworks.
com/matlabcentral/linkexchange/links/3551-kernel-smoothing-toolbox as a part
of the book by Horová et al. (2012). The toolbox contains menu-driven functions for the
estimation of: univariate densities, distribution functions, quality indices, hazard functions,
regression functions, and multivariate densities. Various alternative software codes can be
downloaded from MATLAB Central. For instance, ksr (Gaussian kernel smoothing regres-
sion), ksrlin (local linear Gaussian kernel regression), and smoothing (Nadaraya–Watson
smoothing with GCV). Also, several R packages for kernel smoothing are available. For in-
stance, ksmooth {stats} (NW estimator (local constant fit), univariate x only, no automatic
bandwidth selection), and sm (nonparametric smoothing methods described in Bowman and
Azzalini (1997)).

KDE is a general MATLAB class for k-dimensional kernel density estimation (written in
a mix of “m” files and MEX/C++ code); see http://www.ics.uci.edu/~ihler/code/
kde.html. There are various R-packages available. For instance, sskernel (kernel density es-
timation with an automatic bandwidth selection), gkde (Gaussian kernel density estimation
with bounded support), kerdiest (kernel estimators of the distribution function and related
functionals, with several CV bandwidth methods), KernSmooth (local linear or quadratic
kernel smoothing; up to bivariate density estimation with restricted bandwidths; see Wand
and Jones (1995)), and ks (kernel smoothing; kernel density estimation; kernel discriminant
analysis; two- to six-dimensional data; general bandwidths).

An extensive set of semi- and nonparametric methods comes with the interactive commercial
statistical computing environment XploRe. Using this software, it is easy to reproduce many
of the examples in the book by Härdle (1990). XploRe is not sold anymore. However, the last
version, 4.8, can be freely downloaded from the website http://sfb649.wiwi.hu-berlin.
de/fedc_homepage/xplore.php.

MATLAB code (mean median.m) for obtaining the conditional mean and the conditional
median forecasts, using single- and multi-stage methods, can be downloaded from the website
of this book. The solutions manual (Exercise 9.4) contains MATLAB code for computing
the conditional mean, median, and mode.

Section 9.1.4: The R-packages knn, class, and FNN (fast nearest neighbor) contain k-
NN implementations. A related package is knnflex; see http://cran.r-project.org/
src/contrib/Archive/knnflex/. The R-kknn package performs weighted k-NN. The R-
KODAMA (KnOwledge Discovery by Accuracy MAximization) package contains the function
KNN.CV which performs a 10-fold CV bandwidth selection on a given data set using k-NN.

The MATLAB function knn.m is available at MATLAB Central. Related MATLAB func-
tions are kNearestNeighbors, knnsearch, and knnclassify. Alternatively, a MATLAB package
for obtaining one-step ahead k-NN forecasts is available at https://sites.google.com/
site/marceloperlin/.

The working paper “Computing nonparametric functional estimates in semiparametric prob-
lems” by Miguel A. Delgado ( http://orff.uc3m.es/bitstream/handle/10016/5821/
we9217.PDF) offers a set of FORTRAN77 routines including k-NN, kernel regression with
symmetric and possibly non-symmetric kernels, and nonparametric k-NN regression.

The Loess/Lowess methodology of Cleveland (1979) is implemented in the R (S-Plus) func-
tions lowess and loess including their iterative robust versions. The loess function (local
linear or quadratic fits, multivariate x’s, no automatic bandwidth selection) is more flexible

http://orff.uc3m.es/bitstream/handle/10016/5821/we9217.PDF
http://orff.uc3m.es/bitstream/handle/10016/5821/we9217.PDF
http://cran.r-project.org/src/contrib/Archive/knnflex/
http://cran.r-project.org/src/contrib/Archive/knnflex/
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore.php
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore.php
http://www.ics.uci.edu/~ihler/code/kde.html
http://www.ics.uci.edu/~ihler/code/kde.html
http://www.ics.uci.edu/~ihler/code/kde.html
http://nl.mathworks.com/matlabcentral/linkexchange/links/3551-kernel-smoothing-toolbox
http://nl.mathworks.com/matlabcentral/linkexchange/links/3551-kernel-smoothing-toolbox
https://sites.google.com/site/marceloperlin/
https://sites.google.com/site/marceloperlin/
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and powerful. For large sample sizes, however, the computations can be time-consuming.
Cleveland et al. (1990) develop a seasonal adjustment algorithm based on robust loess. It is
implemented in the R (S-Plus) function stl. The curve fitting toolbox in MATLAB contains
the function smooth with the loess/lowess methods and their robust variants.

Section 9.1.5: Ox code (Test-Algorithm-93.ox) for obtaining the Markov forecast densities,
as summarized in Algorithm 9.3, is available at the website of this book.

Section 9.1.6: The lag selection methods ÂFPE, ĈAFPE, and MSFE are options within
the freely available computer package JMulTi, a JAVA application designed for the specific
needs of time series econometrics. The package can be downloaded from http://www.
jmulti.de/download.html.

Section 9.2.1: ACE and AVAS are implemented in the R-acepack package. S-Plus has
an implementation of both algorithms too, called ace and avas, respectively. The FOR-
TRAN77 source codes of Friedman’s ACE algorithm, and PPR are available from http:
//www-stat.stanford.edu/~jhf/ftp/progs/. A FORTRAN90 version of the ACE al-
gorithm (mace.f90) can be downloaded from Alan Miller’s FORTRAN software webpage at
http://jblevins.org/mirror/amiller/. The MATLAB–ACE algorithm, using adaptive
partitioning to calculate the conditional expectations, and the supersmoother algorithm are
available from the MATLAB archive. The function areg in the R-Hmisc package offers the
option to control the smoothness of the transformation in ACE.

Section 9.2.2: PPR is implemented in the R-stats package as the function ppr, and within
S-Plus it is called ppreg. Both functions are based on the so-called smooth multiple additive
regression technique (SMART) of Friedman (1984). As explained in Section 9.2.2, SMART
modeling is a generalization of PPR (Friedman and Stuetzle, 1981).

Section 9.2.3:
MARS and BRUTO are provided in the R-mda package. A new, slightly more flexible altern-
ative implementation of MARS (fast MARS) is in the R-earth package. A commercial version
of MARS is available from http://www.salford-systems.com/products/mars. ARESLab
is an Adaptive Regression Splines toolbox for MATLAB/Octave, which can be downloaded
from Gints Jekabsons’ webpage at http://www.cs.rtu.lv/jekabsons/regression.html.

Section 9.2.4: There are several implementations of boosting techniques, available as add-
ons for R. Both procedures glmboost and gamboost are contained in the packages mboost
and GAMBoost. The first package provides an implementation for fitting GLMs, as well
as additive gradient-based boosting. GAMBoost contains an implementation of likelihood
boosting as proposed by Tutz and Binder (2006).

Section 9.2.5: The results in Example 9.9 were obtained with the S-Plus code to accom-
pany the book by Fan and Yao (2003); see http://orfe.princeton.edu/~jqfan/fan/
nls.html.

Section 9.2.6: The simulation results in Example 9.10 were obtained using SAS code,
provided by Yingcun Xia. The epls.sas code is available at the website of this book.

3SAS is a registered trademark of SAS Institute, Inc.

3

http://orfe.princeton.edu/~jqfan/fan/nls.html
http://orfe.princeton.edu/~jqfan/fan/nls.html
http://orfe.princeton.edu/~jqfan/fan/nls.html
http://www.cs.rtu.lv/jekabsons/regression.html
http://www.salford-systems.com/products/mars
http://jblevins.org/mirror/amiller/
http://www-stat.stanford.edu/~jhf/ftp/progs/
http://www-stat.stanford.edu/~jhf/ftp/progs/
http://www-stat.stanford.edu/~jhf/ftp/progs/
http://www.jmulti.de/download.html
http://www.jmulti.de/download.html
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Exercises

Empirical and Simulation Questions

9.1 Consider the NLAR(1) process

Yt = sin(Yt−1) + εt, {εt} i.i.d.∼ N (0, 1).

(a) The file Yt-n500-sinus.dat contains T = 500 simulated data points from the above
process. Compute the NW local constant smoother μ̂NW

h (x) with x = Yt−1

equally spaced in the range [−2, 2], h ≡ hT = 0.02, and with the Epanechnikov
kernel (see Table 7.7). If h → 0, what happens with μ̂NW

h (·)?
(b) Repeat part (a) using the local linear smoother μ̂LL

h (·), with a Gaussian kernel.

(c) Plot both kernel regression estimates jointly with the true regression function,
and the generated data. Comment on the results.

(d) Repeat part (a) using the plug-in bandwidth hrot = σ̂Y T−1/5. Compare all
kernel regression estimates. Is there any observable difference? Why?
[Hint : Use the MATLAB-ksrgress function or a similar interactive package.]

9.2 A simple algorithm (Jaditz and Sayers, 1998) for NN estimation of μ(x) = E(Yt+1|Xt =
x) goes as follows. For a given lag length p, let {(Yt,Xt)}T

t=1 be a set of available
observations where Xt = (Yt, Yt+1, . . . , Yt+p−1)′. Divide the data in a prediction
set P = {(Yt,Xt) : Nf < t ≤ T} and, for some Nf < T a fitting (training) set
F t. For each Yt ∈ P calculate the distance between Xt = x and Xi ∀i ∈ F t

using the supremum norm. Sort the data according to the distance. Then, for a
given number of NNs, select the kn (n = T − p) nearest pairs to estimate the para-
meters α0,kn and αp,kn = (α1,kn , . . . , αp,kn)′ in the local linear regression model,
Y(i) = α0,kn + X′

(i)αp,kn + ε(i),kn
with {ε(i),kn

} a zero-mean WN process. Next,
use the estimated parameters α̂0,kn and α̂p,kn to calculate the one-step ahead fore-
cast Ŷ(i)+1|(i) = α̂0,kn

+ X′
(i)α̂p,kn

, and the associated one-step ahead forecast error

e(i)+1|(i) = Y(i)+1 − Ŷ(i)+1|(i). Pick the value of kn that minimizes the MSFE. Fi-
nally, given the specified number of NNs, say k∗

n, rebuild the data set to replicate the
regression. Then, in the present setting, the k-NN estimator for μ(x) is defined as
μ̂k-NN(x) = (1/k∗

n)
∑

x(i)∈Ft,i∈N(x) Y(i)+1; see (9.33) for a more general case.

(a) Using your favorite programming language, write a computer code to obtain
H one-step ahead forecasts for the above k-NN regression algorithm. Include
a “robust” matrix inversion routine as a provision for near-singular matrices
X′

(i)X(i).

The Great Salt Lake (GSL) of Utah is the fourth largest, perennial, closed basin,
saline lake in the world. Monthly measurements of the volume (in m3) in the north
arm of the lake from October 1949 to December 2012 (756 observations) are given in
the file gsl.dat. These measurements have been investigated in an effort to understand
the dynamics of the precipitous rise of the lake during the years 1983 – 1987 and
its consequent rapid retreat; see, e.g., Lall et al. (1996) and Moon et al. (2008) for
background information on recent analyzes. Such behavior is typical of nonlinear
systems driven by large scale, persistent, climatic fluctuations.
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(b) Assume the GSL time series is generated by a NLAR(2) process. Based on the
first T = 507 observations (training set) of the standardized GSL data, obtain
twelve one-step ahead forecasts. Re-estimate the model before each forecast is
computed (expanding the training set) and use the following estimation methods.

• k-NN regression with the computer code from part (a). Given a fixed sample
size n, comment on the choice of kn in the limiting case kn = n and kn = 1.

• locally constant kernel regression with a Gaussian product kernel and a
single bandwidth obtained by CV.
[Hint: Use the functions npregbw and npksum in the R-np package.]

• AVAS estimation with bandwidth obtained by CV and no weights. Com-
ment on the selected transformation of the GSL time series.
[Hint: Use the AVAS function in the R-acepack package.]

Comment on which method produces forecasts with smallest MSFEs over the
course of the year.

9.3 The data set ExpAR2.dat contains 200 simulated data points from an ExpAR(2) model
of the form

Yt = {0.9 + 0.1 exp(−Y 2
t−1)}Yt−1 − {0.2 + 0.1 exp(−Y 2

t−1)}Yt−2 + εt, {εt} i.i.d.∼ N(0, 1).

(a) Check the strict stationarity of the ExpAR(2) process.

(b) Use PPR to fit a model containing M = 2 terms, with p = 2 lagged predictor
variables, to the first 189 observations.
[Hint : Use the R-fRegression package for answering questions (b) – (d).]

(c) Fit an m− k− 1 = 2− 2− 1 ANN model to the first T = 189 observations using
LS.

(d) Compute the one-step ahead forecasts at times t = 190, . . . , 200 using a fixed,
but rolling (cf. Section 10.4.1 ) sample size of 188 observations for the PPR and
ANN models. Compare the in-sample residual variances obtained in parts (a)
and (b) with the one-step ahead MSFE for the two models.

9.4 Consider the Old Faithful Geyser data introduced in Example 9.2. Here, we explore
some aspects of the data that were not investigated previously. In particular, we
focus on forecasting the last ten (Hmax = 10) observations of the waiting time {Yt}299t=1

where t denotes the eruption number (geyser waiting.dat). If the time to next eruption
can be predicted accurately, visitors to the Yellowstone National Park could use this
information to organize their visit.

(a) Recall the empirical method for selecting the Markov coefficient p in (9.10). Set
pmax = 10, k = 60, and take h = σ̂Y T−1/(p+4) (p = 1, . . . , pmax). Verify that for
the conditional mean the most appropriate order of the NLAR process equals
p = 1, using the function f2(p) with {Yt}289t=230.

(b) Using the specification in part (a), compute the conditional mean, median, and
mode for h = 1, . . . ,Hmax given the observations up to and including the waiting
time at t = 289 (Y289 = 47). Summarize the forecast performance in terms of
the MSFE and RMAFE and comment on the results.

(c) Suggest an empirical method to construct forecast intervals on the basis of the
nonparametric estimates.
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(d) Until now we have not used information on the eruption duration time. Based
on descriptive statistics and boxplots of the waiting and duration times, the
following simple (naive) forecasting rule has been suggested.4 An eruption with
a duration < 3 minutes will be followed by a waiting time of about 55 minutes,
while an eruption with a duration > 3 minutes will be followed by a waiting
time of about 80 minutes. For the last ten observations, compare and contrast
the forecasting performance of this rule with the results obtained in part (b).

9.5 Consider the river flow data set, consisting of the hourly river flow time series {Yt}401t=1

introduced in Example 9.3 (file name: flow.dat) and the hourly rainfall time series
{Xt}401t=1 (file name: rain.dat). Following the forecasting procedure described in Ex-
ample 9.8, obtain forecasts Ŷt+H|t from past values of {(Yt,Xt)} for H = 1, 10, and
20, with the initial information set defined from t = 1 until t = 366.

(a) Use the following methods to produce the 15 out-of-sample forecasts: glmboost,
gamboost, MARS, and VAR (unrestricted). Summarize the forecasts in terms
of MSFEs and discuss the results.
[Hint : Modify the Forecasting-USunemplmnt.r function (file: example 9-8.zip),
available at the website of this book. Note, the computations can be time
demanding.]

(b) Using the four forecasting methods mentioned above, obtain the MSFEs of {Yt}
in a univariate setting. Compare your results with those obtained in part (a).

4See Chatterjee, Handcock, and Simonoff (1995, pp. 224 – 226), A Casebook for a First Course
in Statistics and Data Analysis, Wiley.



Chapter 10
FORECASTING

As we saw in Chapter 9, it is fairly straightforward to forecast future values of a time
series process using semi- and nonparametric methods, given data up to a certain
time t. In contrast, the situation becomes more complicated when real out-of-sample
forecast are computed from parametric nonlinear time series models; in particular,
as we explain below, this is a difficult issue for H ≥ 2 steps ahead.

To be more specific, recall that for a strictly stationary stochastic process {Yt, t ∈
Z} the least squares (LS), or minimum mean squared error (MMSE), forecast of
Yt+H (H = 1, 2, . . .), given a finite or semi-finite past history Yt, Yt−1, . . . is given
by E(Yt+H |Ys, −∞ < s ≤ t) when this exists. When we restrict attention to a
pth order Markov process the MMSE forecast of Yt+H equals the conditional mean,
i.e. Y LS

t+H|t = E(Yt+H |Xt), where Xt = (Yt, Yt−1, . . . , Yt−p+1)′. Calculation of Y LS

t+H|t
requires knowledge of the conditional pdf of {Yt, t ∈ Z}, which is a substantial task
in general. The task becomes easier for a NLAR(p) model

Yt = μ(Xt−1;θ) + εt, (10.1)

where {εt} i.i.d.∼ (0, σ2
ε) such that εt is independent of Xt−1, θ is a finite-dimensional

vector of unknown parameters, and μ : Rp → R. Given (10.1), the one-step ahead
LS forecast at time t equals

Y LS

t+1|t = E(Yt+1|Xt) = E{μ(Xt; θ) + εt+1|Xt} = μ(Xt; θ). (10.2)

So, for H = 1, the conditional mean is independent of the distribution of εt+1 which
is an important property for both linear and NLAR models. When H ≥ 2, however,
this is true only for linear models.

For example, the two-step ahead LS forecast for model (10.1) is given by

Y LS

t+2|t = E(Yt+2|Xt) = E{μ(Xt+1; θ) + εt+2|Xt}

= E{μ
(
μ(Xt;θ) + εt+1

)
|Xt} =

∫ ∞

−∞
μ
(
μ(Xt; θ) + ε)dF (ε), (10.3)
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where F (·) is the distribution function of {εt}. Thus, the second term on the right-
hand side of (10.3) depends on F (·), and cannot further be reduced as in (10.2).
The reason is that, in general, the conditional expectation of a nonlinear function is
not equal to the function evaluated at the expected value of its argument.

From the above results one may erroneously conclude that it is not possible to
obtain closed-form analytical expressions for H ≥ 2 forecasts. However, by using
the so-called Chapman–Kolmogorov recurrence relationship, “exact” LS multi-step
ahead forecasts for general NLAR models can, in principle, be obtained through
complex numerical integration as we will see in Section 10.1.1 The section also
describes two “exact” forecast strategies for SETARMA models.

An alternative way to obtain more than one-step ahead forecasts, and possibly
the nearest one can get to an explicit analytical form, is a numerical approximation
(Monte Carlo simulation, bootstrap and related methods), a series expansion, or by
assuming that the innovation distribution is known. Applying these and some other
approaches, we discuss seven approximate methods for making point forecasts in
Section 10.2.

With point forecasts, the accuracy is often measured by the forecast error vari-
ance or by a forecast interval. In Section 10.3, we address the problem of construct-
ing (bootstrap) forecast intervals and regions for nonlinear and nonparametric ARs.
We make a distinction between percentile- and density-based forecast intervals. The
latter intervals are often more informative than the former when, for instance, the
forecast distribution is asymmetric or multimodal. In Section 10.4, we provide a
limited review of measures evaluating the accuracy of competing point forecasts. In
the same vein, this section gives a description of methods for interval and density
evaluation. Finally, in Section 10.5, we briefly discuss methods for optimal forecast
combination. By combining forecasts of different models/methods instead of relying
on individual forecasts, forecast accuracy can often be improved.

10.1 Exact Least Squares Forecasting Methods

10.1.1 Nonlinear AR model

Consider the NLAR(p) model as given by (10.1) and assume that the process {Yt, t ∈
Z} is strictly stationary. Let g(·) be the pdf of {εt}. By using the Chapman–
Kolmogorov relation, the conditional pdf of Yt+H given Xt = xt can be written
as

f(yt+H |xt) =
∫ ∞

−∞
f(yt+H |xt+1)f(yt+1|xt)dxt+1, (10.4)

1As noted above, the solution of the Chapman–Kolmogorov recurrence relationship requires
numerical integration techniques. The quotation marks around “exact” are put there to emphasize
that the numerical accuracy of H ≥ 2 forecasts depends on certain tuning parameters. For instance,
a change of variable of integration to get a finite range, and the judicious choice of weights and
abscissae of a numerical integration method.
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where

f(yt+1|xt) = g
(
yt+1 − μ(xt; θ)

)
.

Alternatively, this equation can be obtained by considering the joint pdf of Yt+H ,
Yt+H−1, . . . , Yt+1 conditional on Xt = x and integrating out the unwanted vari-
ables.2 Introducing the short-hand notation fH(·) = fYt+H |Yt

(·|x), equation (10.4)
immediately gives

fH(x) =
∫ ∞

−∞
fH−1(x)g

(
z − μ(x;θ)

)
dz. (10.5)

Thus, starting from f1(x) = g
(
x− μ(Xt;θ)

)
, equation (10.5) is a recursive formula

for evaluating the conditional density. Given fH(·) at step H = 1, the conditional
mean for H ≥ 2 can be calculated using

Yt+H|t =
∫ ∞

−∞
fH−1(Yt+1)g

(
Yt+1 − μ(Xt; θ)

)
dYt+1. (10.6)

Similarly, a recurrence relation for the jth (j = 1, 2, . . .) conditional moment is given
by

E(Y j
t+H |Xt = x) =

∫ ∞

−∞
fH−1(Y

j
t+1)g

(
Yt+1 − μ(Xt;θ)

)
dYt+1. (10.7)

Except for some special cases of μ(·;θ), the integral equations (10.5) and (10.6)
do not readily admit explicit analytic solutions. To evaluate (10.6) numerically,
each forecasting step requires p + 1 numerical integrations. Standard numerical
integration methods can be used for this purpose, but care must be taken to handle
accumulation of rounding errors; see, e.g., Pemberton (1987), Al-Qassem and Lane
(1989), and Cai (2005).

Example 10.1: Forecast Density

Consider the SETAR(2; 0, 0) model

Yt =
{

α + εt if Yt−1 ≤ 0,
−α + εt if Yt−1 > 0,

(10.8)

where {εi} i.i.d.∼ N (0, 1). In the sequel, ϕ(·) denotes the pdf and Φ(·) the CDF
of N (0, 1). Then the stationary marginal pdf of {Yt, t ∈ Z} is given by

f(yt) = {ϕ(yt + α) + ϕ(yt − α)}/2. (10.9)

2For economy of notation, we suppress the dimension of the information set on which the
conditional density forecast is conditioned.
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Figure 10.1: (a) Forecast density f(yt+H |xt) (H = 1, . . . , 5) for the SETAR(2; 0, 0) model
(10.8); (b) Conditional mean E(Yt+H |Xt) (H = 2, . . . , 5;α = 1).

The exact (LS) conditional pdf of Yt+H (H = 1, 2, . . .) given Xt = x has the
form

f(yt+H |x) = w
(H)
1 (β)ϕ

(
Yt+H − I(Yt ≤ 0)α

)
+ w

(H)
2 (β)ϕ

(
Yt+H + I(Yt > 0)α

)
,

(10.10)

where w
(H)
1 (β) = (1 − βH−1)/2, w

(H)
2 (β) = 1 − w

(H)
1 (β), and β = 1 − 2Φ(α);

cf. Exercise 10.3. From (10.10), the conditional mean and the conditional
variance are given by respectively

E(Yt+H |Xt = x) = αβH−1I(Yt ≤ 0)− αβH−1I(Yt > 0),

Var(Yt+H |Xt = x) = 1 + α− E2(Yt+H |Xt = x).

Note that the skewness of f(yt+H |x) is affected by both H and β which de-
termine the weights w

(H)
i (β) (i = 1, 2) of the linear combination of ϕ(Yt+H +α)

and ϕ(Yt+H −α); see Figure 10.1(a). Figure 10.1(b) shows plots of the H-step
ahead conditional mean.

10.1.2 Self-exciting threshold ARMA model

It will often be the case that μ(·;θ) in (10.1) has a much more complicated func-
tional form than, for instance, the SETAR model considered in Example 10.1.
So the analytic solution to (10.6) is not available. Still, after some algebra, the
stationary k-regime SETARMA model introduced in (2.29) allows for explicit ex-
pressions of the multi-step forecast and the variance of the forecast error, assum-
ing the model is invertible. To reduce the burden of notation, we focus on the
SETARMA(2; p1, q1, p2, q2) model (6.8) with the same error distribution in both
regimes.
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From (6.8), we observe that the two-regime SETARMA model can be written as

Yt = {φ(1)
0 + φ(1)

p1
(B)Yt + ψ(1)

q1
(B)εt}I(Yt−d ≤ r)

+ {φ(2)
0 + φ(2)

p2
(B)Yt + ψ(2)

q2 (B)εt}
(
1− I(Yt−d ≤ r)

)
, (10.11)

where φ
(i)
pi (B) =

∑pi
j=1 φ

(i)
j Bj and ψ

(i)
qi (B) = 1 +

∑qi
j=1 ψ

(i)
j Bj (i = 1, 2). Denote the

indicator process by It−d ≡ I(Yt−d ≤ r), and the ARMA process in the ith regime
by Y

(i)
t ∼ ARMA(pi, qi). Then (10.11) can be written more compactly as

Yt = Y
(1)
t It−d + Y

(2)
t (1− It−d). (10.12)

Now assume that the joint process {(Y (1)
t , Y

(2)
t , It−d), t ∈ Z} is strictly stationary,

invertible, and ergodic. The exact H-step ahead (H ≥ 2) LS forecast of (10.11) is
given by

Y LS

t+H|t = Y
(1)
t+H|tE(It+H−d|F t) + Y

(2)
t+H|t

(
1− E(It+H−d|F t)

)
, (10.13)

where Y
(i)
t+H|t is the ARMA forecast in regime i, and F t = {Yt, Yt−1, . . .} denotes the

information set up to time t. Depending on the case H ≤ d or H > d, there are
various approaches to calculate the forecast and the forecast error variance.

Case H ≤ d: It is easy to see that Y LS

t+H|t is an unbiased estimator of Yt+H .
Moreover, the variance of the LS forecast error eLS

t+H|t = Yt+H − Y LS

t+H|t is given
by

Var(eLS

t+H|t) = σ2
ε

H−1∑
j=1

[(
ω

(1)
j

)2
It+H−d +

(
ω

(2)
j

)2(1− It+H−d)
]
, (10.14)

where ω
(i)
j =

∑j−1
s=0 φ

(i)
s ω

(i)
j−s − ψ

(i)
j (i = 1, 2; j ≥ 1) with ω

(i)
0 = 1, and ψ

(i)
j = 0 for

j > qi.

Case H >d: Observe that Yt+H−d �∈ F t. So the value of the threshold variable is
unknown. This makes the computation of the LS forecast more complicated. For
this case Amendola et al. (2006b) suggest the following forecast strategies.

• Least squares (LS) forecast : Clearly, under the stationarity assumption, It+H−d

becomes a Bernoulli random variable iH−d according to

iH−d =
{

1 with P(Yt+H−d ≤ r|F t) ≡ p(H−d),

0 with P(Yt+H−d > r|F t) ≡ 1− p(H−d).
(10.15)

Thus, the indeterminacy regarding the future now hinges on p(H−d). In this
case, the LS forecast in (10.13) reduces to

Y LS

t+H|t = Y
(2)
t+H|t + p(H−d)(Y

(1)
t+H|t − Y

(2)
t+H|t), (10.16)
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and the LS forecast error variance becomes

Var(eLS

t+H|t) = Var(e(2)
t+H|t) + p ·

[
Var(e(1)

t+H|t)−Var(e(2)
t+H|t)

]
+

(
p + p2

(H−d) − 2p · p(H−d)

)
×

[
Var(Y (1)

t+H|t) + Var(Y (2)
t+H|t)− 2σ2

ε

∞∑
j=h

ω
(1)
j ω

(2)
j

]
, (10.17)

where e
(i)
t+H|t is the forecast error in regime i, p the unconditional expected

value of It+H−d, Var(Y (i)
t+H|t) = σ2

ε

∑∞
j=h(ω(i)

j )2 the forecast variance in regime
i (i = 1, 2), and the last term in squared brackets in (10.17) denotes the
covariance between the forecasts generated from the two regimes.

• Plug-in (PI) (or naive, or skeleton) forecast: Assume that the last predicted
values are the true values Y PI

t+H|t =E
(
Yt+H |F t+H−d

)
where F t+H−d ={Y1, . . . ,

Yt, Yt+1|t, . . . , Yt+H|t} is the augmented information set. Then the indicator
function It+H−d becomes

it+H−d = [It+H−d|F t+H−d] =
{

1 if Yt+H−d ≤ r,
0 if Yt+H−d > r.

(10.18)

So, on replacing p(H−d) in (10.16) by it+H−d, we obtain the PI forecast with
corresponding forecast error variance Var(ePI

t+H|t).

We note that the LS and PI forecasts strategies make use of the available in-
formation set differently. Nevertheless, it is easy to prove that both Y LS

t+H|t and
Y PI

t+H|t are unbiased estimators of Yt+H . However, in terms of minimum MSFE, the
gain in using one method over the other comes from their forecast error variances.
Since p(H−d) → p, as T → ∞, it can be deduced that Var(eLS

t+H|t) ≥ Var(ePI

t+H|t) if
Yt+H−d ≥ r and Var(eLS

t+H|t) ≤ Var(ePI

t+H|t) if Yt+H−d < r. As an immediate result
Amendola et al. (2006b) propose the combined (C) forecast

Y C

t+H|t = Y PI

t+H|tit+H−d + Y LS

t+H|t(1− it+H−d), (10.19)

with it+H−d the indicator function given by (10.18). Accordingly, the combined
forecast is as good as the best of the two forecast methods LS and PI. Note that
in practice a reasonable approximation of p(H−d) (H > d) is needed for all three
forecast strategies, and hence the quotation marks around “exact’.

Example 10.2: Comparing LS and PI Forecast Strategies

To evaluate the performance of the LS and PI forecast strategies, we con-
sider the SETARMA(2; 1, 1, 1, 1) model with d = 1 and parameter vectors
θ = (φ(1)

0 , φ
(1)
1 , ψ

(1)
1 , φ

(2)
0 , φ

(2)
1 , ψ

(2)
1 , r)′ = (0, 0.6, −0.7, 0, 0.4, 0.5, 0)′, and θ =

(0.6, 0.6, −0.7, −1, 0.4, 0.5, 0)′. So the difference between these models is



10.1 EXACT LEAST SQUARES FORECASTING METHODS 397

Table 10.1: Averaged MSFEs and MAFEs for the least squares (LS), plug-in (PI), and
combined (C) forecast strategies for the SETARMA(2; 1, 1, 1, 1) models specified in Example
10.2; T = 250, and 1,000 MC replications.

Strategy SETARMA without intercept SETARMA
H = 2 H = 3 H = 4 H = 5 H = 2 H = 3 H = 4 H = 5

MSFE
LS 1.382 1.248 1.191 1.155 2.258 1.914 1.732 1.633
PI 1.388 1.255 1.197 1.160 3.076 2.832 2.629 2.490
C 1.399 1.264 1.203 1.165 2.620 2.292 2.049 1.896

MAFE
LS 0.944 0.884 0.862 0.846 1.223 1.116 1.053 1.016
PI 0.948 0.887 0.865 0.848 1.482 1.403 1.343 1.297
C 0.953 0.891 0.867 0.850 1.348 1.235 1.161 1.104

that the second model has intercept terms while the first one has not. It is
well known that non-zero intercepts can greatly extenuate or attenuate the
relative forecast performance of the SETARMA model. The number of MC
replications is set to 1,000 with {εi} i.i.d.∼ N (0, 1), and T = 250. The forecast
horizon H ranges from 1 to 5. The probability p(H−d) (H > d) is estimated
as

∑T
t=d+1 I(Yt−d ≤ r)/(T − d).

Figure 10.2 shows boxplots of the forecast errors et+H|t of the LS and PI
forecast strategies for the SETARMA models. Observe that the variability
in et+H|t differs for the SETARMA model with and without intercept. This
phenomenon also appears in the sample means of the forecast errors, which
for the LS strategy are ranging between [−0.027, −0.080] and [0.083, 0.414],
respectively. For the PI strategy the range of the two sets of forecast errors
are given by [0.025, −0.083] and [0.083, 0.429]. Clearly, there is a difference
between the forecasts from the two SETARMA models. This confirms results
in other studies: the sign and magnitude of the intercept in the SETARMA
model have a large effect on the forecast performance of a particular method.

Table 10.1 shows the averaged (over all replications) MSFEs and MAFEs for
H = 2, . . . , 5 of Y LS

t+H|t, Y PI

t+H|t, and Y C

t+H|t with starting-point t = 250. For the
SETARMA model without intercept, there is not much to be gained in terms
of out-of-sample forecasting by using the LS, PI, or C forecast strategy. We
also see that for the SETARMA model with intercept term, the LS forecast
strategy renders superior forecasts for all forecast horizons. The combined
method performs second best, whilst the PI method is generally the worst
over the horizons considered.
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Figure 10.2: Boxplots of the forecast errors of the LS and PI forecast strategies; T = 250,
1,000 MC replications.

10.2 Approximate Forecasting Methods

In this section, we briefly outline a number of approximate methods for obtain-
ing multi-step ahead forecasts from a NLAR(1) model. The methods can all be
generalized in a fairly straightforward manner to the NLAR(p) model (10.1).

10.2.1 Monte Carlo

Given a one-step ahead forecast at time t, the Monte Carlo (MC) method is a
simple recursive simulation method to approximate the expectation of Yt+H (H ≥ 2)
conditional upon F t. From (10.3) the two-step ahead MC forecast can be constructed
as

Y MC

t+2|t =
1
N

N∑
i=1

Y MCi

t+2|t, (10.20)

where

Y MCi

t+2|t = μ
(
(Yt+1|t; θ) + ε2,i

)
,
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with {ε2,i}N
i=1 a set of pseudo-random numbers drawn from the presumed distribu-

tion of {εt+1}, and with N some large number. In general, the H-step ahead forecast
is given by

Y MC

t+H|t =
1
N

N∑
i=1

Y MCi

t+H|t, (10.21)

where

Y MCi

t+H|t = μ
(
(Y MCi

t+H−1|t; θ) + εH,i

)
= μ

(
μ(· · · (μ(Yt+1|t;θ) + ε2,i) + · · · ) + εH,i

)
,

with εj,i (j = 2, . . . ,H ; i = 1, . . . , N ) independent pseudo-random numbers drawn
from some pre-specified distribution of {εt+H}, usually the Gaussian distribution.
In the case of a SETARMA model the pseudo-random drawings in period t + H
are often taken from a distribution with a variance appropriate for the regime the
process {Yt, t ∈ Z} is in, determined by the MC forecast value of the process at time
t + H − 1.

10.2.2 Bootstrap

Forecasts obtained from the bootstrap (BS) method are similar to the MC simulation
method except that the e∗j,i are drawn randomly (with replacement) from the within-
sample residuals ei (i = 2, 3, . . . , T ), assuming a set of T historical data is available
to obtain some consistent estimate of θ. In this case the H-step ahead (H ≥ 2)
forecast is given by

Y BS

t+H|t =
1

T − 1

T∑
i=2

Y BSi

t+H|t, (10.22)

where

Y BSi

t+H|t = μ
(
(Y BSi

t+H−1|t; θ) + e∗H,i

)
= μ(μ(· · · (μ

(
Yt+1|t;θ) + e∗2,i) + · · · ) + e∗H,i

)
.

The advantage of this method over the MC method is that no assumptions are made
about the distribution of the innovation process.

10.2.3 Deterministic, naive, or skeleton

The deterministic, or naive, or skeleton (SK) method amounts to approximating
E

(
μ(·;θ)

)
by μ

(
E(·;θ)

)
, and can be viewed as a special case of the MC method in
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which we ‘switch off the white noise’ in (10.1). Thus, the two-step ahead forecast is
given by

Y SK

t+2|t = μ(Yt+1|t; θ).

Note that this approach leads to biased predictions since Y SK

t+2|t �= E(Yt+2|t). By
induction, the H-step ahead forecast can be computed as

Y SK

t+H|t = μ
(
μ(· · ·μ(Y SK

t+1|t; θ))
)
. (10.23)

Clearly, the SK method is computationally inexpensive. However, unlike the other
methods discussed in this section, the SK forecasts do not necessarily converge to
the mean of the process. Moreover, as σ2

ε increases there is the possibility that the
deterministic component of the model ceases to dictate the behavior of the process
and the noise part starts to be dominant, causing for instance switches between
different limit/oscillation points, etc.; see Tong (1990, Section 6.2.2) for an example.

10.2.4 Empirical least squares

Assume that the NLAR(1) model is known and correctly specified for the DGP, but
the innovation distribution is unspecified. This is the setup introduced in Section
10.2.2. However, rather than bootstrapping the empirical distribution of the within-
sample residuals ei (i = 2, . . . , T ), the empirical least squares (ELS) forecast method
of Guo et al. (1999) uses F̂T (x) = (T − 1)−1

∑T
i=2 I(ei < x) as an estimate of the

innovation distribution. Then, given (10.3), the two-step ahead ELS forecast can be
defined as

Y ELS

t+2|t =
1

T − 1

T∑
i=2

μ
(
μ(Yt+1|t; θ) + ei

)
. (10.24)

The ELS method can be readily extended to the case H > 2. For instance, the exact
three-step ahead LS forecast is given by

Y LS

t+3|t =
∫ ∞

−∞
μ
(
μ(μ(Yt+1|t; θ) + ε) + ε′

)
dF (ε)dF (ε′).

Thus, as a three-stage ELS forecast, we may take

Y ELS

t+3|t =
1

(T − 1)(T − 2)

∑
2≤i�=j≤T

μ
(
μ(μ(Yt+1|t; θ) + ei) + ej

)
.

In general, the exact H-step ahead LS forecast is given by

Y LS

t+H|t =
∫ ∞

−∞
· · ·

∫ ∞

−∞
μ
(
μ(· · · (μ(Yt; θ)+ε1)+· · · )+εH−1

)
dF (ε1) · · · dF (εH−1),
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and the proposed ELS forecast can be written as

Y ELS

t+H|t =
(T −H)!
(T − 1)!

∑
(H−1,T )

μ
(
μ(· · · (μ(Yt+1|t; θ) + e1,i) + · · · ) + eH−1,i

)
, (10.25)

where the summation
∑

(H−1,T ) runs over all possible (H − 1)-tuples of distinct
(i1, . . . , iH−1). Guo et al. (1999) show that the above prediction scheme is asymp-
totically equivalent to the exact LS forecast.

The ELS method can be easily generalized to NLAR models with conditional
heteroskedasticity. For instance, consider the model

Yt = μ(Yt−1; θ1) + εtσ(Yt−1; θ2),

where θi (i = 1, 2) is a vector of unknown parameters, μ(·;θ1) and σ(·;θ2) are two
real-valued known functions on R, and the εt’s are assumed to satisfy E(εt) = 1
for identification purposes. Given T observations, the series {ei} can be calculated
exactly from the model based on particular estimates of θi. Next, we use these
residuals as proxies for the disturbance term instead of random draws from some
assumed parametric distribution as in Section 10.2.1. Then, using the same idea
as above, the H-step ahead predictor follows directly. It is apparent that, in com-
parison with the MC predictor, the ELS predictor is less sensitive to distributional
assumptions about the error process.

10.2.5 Normal forecasting error

An alternative to the H-step ahead (H ≥ 2) exact LS predictor in (10.6) is to assume
as an approximation that all (H − 1) forecast errors et+H−1|t (H ≥ 2) are normally
distributed with mean zero and variance σ2

e,H−1 ≡ Var(et+H−1|t). The resulting
method is known as the normal forecasting error (NFE) method. As we will see,
for both the ExpAR(1) model (Al-Qassem and Lane, 1989) and the SETAR(2; 1, 1)
model (De Gooijer and De Bruin, 1998) the normality assumption avoids the use of
numerical methods. However, as μ(·;θ) is a nonlinear function the multi-step ahead
forecast errors et+H−1|t will not equal the linear innovations, nor will they follow an
i.i.d. Gaussian process.

ExpAR(1) model
To obtain the NFE forecast value for any step, we employ the following result.
Let r(Z) be a function of the random variable Z

i.i.d.∼ N (0, σ2
Z), and M and c are

constants. Then

E{r(Z) exp
(
− c(Z + M)2

)
} = A−1/2 exp(−c1M

2)E
(
r(V )

)
, (10.26)

where A = 1 + 2cσ2
Z , c1 = cA−1, and V

i.i.d.∼ N (−2c1σ
2
ZM,σ2

Z/A); cf. Exercise 10.6.
Consider the ExpAR(1) model at time t + H, i.e.,

Yt+H = {φ + ξ exp
(
− γ(Yt+H−1|t + et+H−1|t)2

)
}(Yt+H−1|t + et+H−1|t) + εt+H ,
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substituting Yt+H−1|t + et+H−1|t for Yt+H−1.
The one-step ahead forecast is the conditional expectation of the ExpAR(1)

model given the available data at time t, Yt+1|t = μ(Yt; θ). By applying (10.26) with
Z = et+H−1|t, M = Yt+H−1|t, and c = 1, the H-step ahead (H ≥ 2) NFE forecast is
given by

Y NFE

t+H|t = E(Yt+H |F t) = {φ + ξH−1 exp(−γH−1Y
2
t+H−1|t)}Yt+H−1|t, (10.27)

where AH−1 = 1 + 2σ2
e,H−1, cH−1 = A−1

H−1, ξH−1 = ξA
−3/2
H−1 . After substitution and

some algebra, the forecast error is given by

et+H|t = φet+H−1|t + ξ{Yt+H−1 exp(−γY 2
t+H−1)− E

(
Yt+H−1 exp(−γY 2

t+H−1)|F t

)
}

+ εt+H ,

so that E(et+H|t) = 0. Since et+H−1|t does not depend on future noise εt+H , the
forecast error variance is given by

σ2
e,H = φ2σ2

e,H−1 + ξ2vH−1 + 2φξuH−1 + σ2
ε , (10.28)

where σ2
e,1 = σ2

ε and, using (10.26) with c = 2,

vH−1 ≡ Var{(Yt+H−1|t + et+H−1|t) exp(−γ(Yt+H−1|t + et+H−1|t)2)}

= B
−3/2
H−1

(
σ2

e,H−1 +
Y 2

t+H−1|t
BH−1

)
exp(−dH−1Y

2
t+H−1|t)

−A−3
H−1Y

2
t+H−1|t exp(−2cH−1Y

2
t+H−1|t)

with BH−1 = 1 + 4σ2
e,H−1, and dH−1 = 2B−1

H−1. Moreover, it can be deduced that

uH−1 ≡ Cov{et+H−1|t, (Yt+H−1|t + et+H−1|t) exp(−γ(Yt+H−1|t + et+H−1|t)2)}
= E{et+H−1|t(Yt+H−1|t + et+H−1|t) exp(−γ(Yt+H−1|t + et+H−1|t)2)}

= σ2
e,H−1A

−3/2
H−1 (1− 2cH−1Y

2
t+H−1|t) exp(−cH−1Y

2
t+H−1|t),

where the last equation follows from (10.26) by defining U = V + M with U
i.i.d.∼

N (M/A, σ2
Z/A).

To generalize the above results to an ExpAR(p) model, requires the assumption
that the p × 1 vector (et+H|t, . . . , et+H−p+1|t)′ is jointly multivariate normally dis-
tributed. Moreover, depending on the order p of the model, we also need various
generalizations of (10.26). Altogether, however, the algebra involved is manageable.

SETAR(2; 1, 1) model
Consider, as a special case of (10.11), the SETAR(2; 1, 1) model

Yt = {φ(1)Yt−1 + εt}I(Yt−1 ≤ r) + {φ(2)Yt−1 + εt}
(
1− I(Yt−1 ≤ r)

)
, (10.29)
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where {εt} i.i.d.∼ N (0, σ2
ε). Assume that the (H−1)-step (H ≥ 2) ahead forecast errors

are N (0, σ2
e,H−1) distributed. Then, as in (10.13), the H-step ahead NFE forecast

is a weighted average of the forecasts from the first regime Y
(1)
t+H|t = φ(1)Yt+H−1|t

and the second regime Y
(2)
t+H|t = φ(2)Yt+H−1|t with weights equal to the probability

of being in a particular regime at time t + H − 1 under normality of the forecast
errors, plus an additional correction factor. In particular, the H-step ahead NFE
forecast follows from the recursion

Y NFE

t+H|t = p(H−1)Y
(1)
t+H|t + (1− p(H−1))Y

(2)
t+H|t + (φ(2) − φ(1))σe,H−1ϕ(zt+h−1|t)

=
(
φ(1) + (φ(1) − φ(2))Φ(zt+H−1|t)

)
Yt+H−1|t + (φ(2) − φ(1))σe,H−1ϕ(zt+H−1|t),

(10.30)

where p(H−1) = Φ(zt+H−1|t) and zt+H−1|t = (r−Yt+H−1|t)/σe,H−1. The correspond-
ing forecast error variance is given by the recursive relation

σ2
e,H = 2σ2

εΦ(zt+H−1|t)

+ {(φ(1))2 +
(
(φ(1))2 − (φ(2))2

)
Φ(zt+H−1|t)}{Y 2

t+H−1|t + σ2
e,H−1}

+
{
(φ(1))2 − (φ(2))2

}
σe,H−1(r + Yt+H−1)φ(zt+H−1|t)− Y 2

t+H|t. (10.31)

For H = 2, it can be shown that (10.30) is identical to the two-step ahead ex-
act MMSE forecast; cf. Exercise 10.1. The above results can be directly extended
to more general SETAR models, including models with multiple regimes, and to
situations where the delay has a value greater than one. An additional advantage is
that for both ExpAR(1) and SETAR(2; 1, 1) models the NFE method can be rapidly
calculated using, for instance, a spreadsheet.

Example 10.3: Comparing NFE and MC Forecasts

To quantify the accuracy of (10.30) consider the SETAR(2; 1, 1) model (10.29)
with r = 0, Y0 = 0, and {εt} i.i.d.∼ N (0, 1). Necessary and sufficient conditions
for stationarity are φ(1) < 1, φ(2) < 1, and φ(1)φ(2) < 1; see Table 3.1. Subject
to these conditions, we compute Y NFE

t+H|t for H = 3, . . . , 10 with parameter val-

ues φ(1) = −1.50, −1.25, . . . , 0.50, 0.75 and φ(2) = −1.75, −1.50, . . . , 0.50, 0.75.
Also, we obtain H-step ahead forecasts by the MC method, generating for each
step H 100,000 realizations of Yt+H . Next, for each parameter combination,
we calculate the relative mean absolute forecast error (RMAFE):

RMAFEt =
1
8

10∑
H=3

|(Yt+H − Y MC

t+H|t)/Y MC

t+H|t|. (10.32)

Figure 10.3 shows a contour plot of (10.32). The results indicate good agree-
ment between the NFE and the MC method over a wide range of parameter
values. More generally, MC simulations show that for values of σ2

ε = 0.4 and 1



404 10 FORECASTING

Figure 10.3: Contour plot of (10.32) for the SETAR(2; 1, 1) model (10.29) with r = 0,
Y0 = 0, {εt} i.i.d.∼ N (0, 1). From De Gooijer and De Bruin (1998).

the SETAR–NFE method performs well as opposed to the exact and the MC
forecasting method. For σ2

ε = 2 NFE is quite reliable for forecasts up to, say,
five- or six-steps ahead.

10.2.6 Linearization
Another approach to approximate the exact forecast Yt+H|t is to linearize the prob-
lem. In particular, Taylor’s expansion up to order two of μ(·;θ) about the point
Yt+H−1|t (ignoring the remainder term), is

μ(Yt+H−1; θ) # μ(Yt+H−1|t; θ) + et+H−1|tμ(1)(Yt+H−1|t;θ)

+
1
2
e2
t+H−1|tμ

(2)(Yt+H−1|t; θ), (10.33)

where μ(i)(·;θ), (i = 1, 2) denotes the ith derivative of μ(Yt+H−1|t; θ) with respect
to Yt+H−1|t, and et+H−1|t is the (H−1)-step ahead forecast error (H ≥ 2). We refer
to this approach as the linearization (LN) method.

Assume, for simplicity, that the forecasting error process {et+H−1|t}
i.i.d.∼

N(0, σ2
e,H−1) distributed. Then, substituting (10.33) in the NLAR(1) model and

taking the conditional expectation of the resulting specification, gives the H-step
ahead LN forecast, i.e.

Y LN

t+H|t # μ(Yt+H−1|t; θ) +
1
2
σ2

e,H−1μ
(2)(Yt+H−1|t; θ). (10.34)
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Substituting (10.34) in the corresponding H-step ahead forecast error and simplify-
ing gives

et+H|t = εt+H +e2
t+H−1|tμ

(1)(Yt+H−1|t; θ)+
1
2
{e2

t+H−1|t − σ2
e,H}μ(2)(Yt+H−1|t; θ).

The forecast error variance for this step is given by the recurrence relation

σ2
e,H =σ2

ε +σ2
e,H−1

(
μ(1)(Yt+H−1|t; θ)

)2+
1
2
σ4

e,H−1

(
μ(2)(Yt+H−1|t;θ)

)4
. (10.35)

Forecasts obtained from this method can be quite different from the exact prediction
method or from the NFE method for moderate or large σ2

ε (mainly ≥ 10−2). Al-
Qassem and Lane (1989) provide a discussion on the limiting behavior of (10.33)
in the case of the ExpAR(1) model. They emphasize the need for great caution in
using linearized forecasts in nonlinear models.

Extension of the LN method to ExpAR(p) is straightforward with a Taylor ex-
pansion of μ(·;θ) around the point Yt+H−1|t = (Yt+H−1|t, Yt+H−2|t, . . . , Yt+H−p|t)′

where Yt+j|t = Yt+j if j ≤ 0. Similarly, an expression for the H-step ahead fore-
cast error variance can be obtained by assuming that the forecast errors have a
multivariate normal distribution.

Example 10.4: Forecasts from an ExpAR(1) Model

Consider the ExpAR(1) model with nonlinear function of the form

μ(X; θ) = {φ + ξ exp(−γX2)}X,

where θ = (φ, ξ, γ)′. The function μ(·;θ) has the following partial derivatives
with respect to X

μ(1)(X; θ) = φ + ξ(1− 2γX2) exp(−γX2),

μ(2)(X; θ) = 2ξγX(2γX2 − 3) exp(−γX2).

Substituting μ(2)(·;θ) into (10.34), we get

Y LN

t+H|t = φ + ξfH−1 exp
(
− γ(Yt+H−1|t)2

)
Yt+H−1|t,

where

fH−1 = 1 + γσ2
e,H−1

(
2γ(Yt+H−1|t)2 − 3

)
.

Thus, fH−1 is increasing with σ2
e,H−1. We also see that if σ2

e,H−1 is large and
Yt+H−1|t is near zero, fH−1 can be negative. It seems that this is the root
cause of the instability of the LN method.

Figure 10.4(a) shows 50 forecasts obtained by the NFE, SK, and LN methods
applied to a typical single simulation of an ExpAR(1) model with φ = 0.8,
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Figure 10.4: Forecasts from the ExpAR(1) model in Example 10.4 with the NFE, SK,
and LN methods; (a) σ2

ε = 1, and (b) σ2
ε = 0.01.

ξ = 0.3, {εt} i.i.d.∼ N (0, 1), and starting value Y0 = 1. By relation (6.6) the
process has two limit points at ±0.6368. It is clear that the NFE forecasts go
to a limit point zero, SK forecasts go to the upper limit point 0.6368, while
the series of LN forecast are unstable up to about H = 30, then stabilize to a
point far off the upper limit point. Four more plots are given in Figure 10.4(b)
for σ2

ε = 0.01.

For short-term forecasting (H ≤ 5) there is hardly any noticeable difference
between the three forecasting methods, provided σ2

ε is small. On the other
hand, for long-term (H ≥ 30) forecasting the LN method may go to the
“wrong” limit point.

10.2.7 Dynamic estimation

In the spirit of dynamic estimation (DE) applied to linear models, the next method is
based on the in-sample relationship between Yt and Yt+H , ignoring contributions of
intermediate values, to produce H-step ahead forecasts. In other words, for H-step
ahead forecasts we replace the NLAR(1) model by the following specification

Yt+H = μ(Yt; θ∗
H) + ε∗t+H , (10.36)

where θ∗
H is a vector of parameters depending upon the forecast horizon H. These

parameters can, for instance, be estimated by minimizing the sum of squares of
ε∗T+H over θ∗

H for the sample period t = 1, . . . , T . So that, given the parameter
estimates θ̂∗

H , the corresponding H-step ahead DE forecast can be written as

Y DE

t+H|t = μ(Yt; θ̂∗
H). (10.37)
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In a linear setting, there are no gains in terms of increased forecast accuracy using
DE over the traditional minimization of in-sample sum of squares of one-step ahead
errors when the model is correctly specified. When a nonlinear model, however, is
correctly specified, the DE method may result in better out-of-sample forecasts due
to its simplicity. An obvious drawback of the method is that the nonlinear model
needs to be estimated for each forecasting horizon.

Example 10.5: Forecasts from a SETAR(2; 1, 1) Model
Recall the SETAR(2; 1, 1) model (10.29) with μ(Yt−1; θ) = φ(1)Yt−1I(Yt−1 ≤
r)+φ(2)Yt−1

(
1−I(Yt−1 ≤ r)

)
and θ = (φ(1), φ(2))′. The two-step ahead version

of the model can be written as

Yt+2 = φ(2){φ(2)Yt + (φ(1) − φ(2))YtI(Yt ≤ r) + εt+1}
+ (φ(1) − φ(2)){φ(2)Yt + (φ(1) − φ(2))YtI(Yt ≤ r) + εt+1}I(Yt+1 ≤ r)
+ εt+2

≈ φ(2){φ(2)Yt + (φ(1) − φ(2))YtI(Yt ≤ r)}+ ε∗t+2

= μ(Yt; θ∗
2) + ε∗t+2, (10.38)

where θ∗
2 = (θ(1)

2 , θ
(2)
2 )′ =

(
φ(1)φ(2), (φ(2))2

)′. Observe that in the second
equation terms multiplied by I(Yt+1 ≤ r) are missing. So, the DE method is
just a projection of Yt+2 on the period t information, but using the form of
nonlinearity in the “one-step ahead” model.

The parameter estimates θ̂
(i)
2 (i = 1, 2) follow from minimizing the sum of

squares of εt+2 for the in-sample period, using the CLS estimation procedure
outlined in Section 6.1.2. This requires a grid search over r; see Algorithm 6.2.
Denote the resulting estimate by r̂2. Then the two-step ahead DE forecast is
given by

Y DE

t+2|t = μ(Yt; θ̂∗
2) = θ̂

(1)
2 YtI(Yt ≤ r̂2) + θ̂

(2)
2 Yt

(
1− I(Yt ≤ r̂2)

)
. (10.39)

The generalization to H-step ahead (H > 2) forecasts entails minimizing the
sum of squares of ε∗t+H over θ∗

H = (θ(1)
H , θ

(2)
H )′ =

(
φ(1)(φ(2))H−1, (φ(2))H

)′, and
r, where

Yt+H = μ(Yt; θ∗
H) + ε∗t+H . (10.40)

The corresponding H-step ahead DE forecast is given by

Y DE

t+H|t = μ(Yt; θ̂∗
H) = θ̂

(1)
H YtI(Yt ≤ r̂H) + θ̂

(2)
H Yt

(
1− I(Yt ≤ r̂H)

)
. (10.41)

Note that {ε∗t+H} is not a WN process, but has temporal relationships. So, in
general, the forecasts are biased.

In an MC simulation experiment Clements and Smith (1997) conclude that
the DE method is worse than the BS, MC and NFE forecasting methods for
SETAR(2; 1, 1) models with Gaussian disturbances and zero intercepts.
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10.3 Forecast Intervals and Regions

10.3.1 Preliminaries
The forecast methods discussed in the previous two sections produce a single ap-
proximation for YT+H . Ideally, forecast intervals/regions are more informative than
point predictions as they indicate the likely range of forecast outcomes. As such,
a forecast interval/region is a measure of the inherent model accuracy. The con-
ditional distribution of YT+H given F t = {Yt, Yt−1, . . .} forecast interval/region for
YT+H . Given Xt = x, Qα ≡ Qα(x) ⊂ R is such an interval with coverage probability
1 − α (α ∈ [0, 1]). That is P{YT+H ∈ Qα(x)|XT−H−p+1 = x} = 1 − α, assuming
the DGP is strictly stationary and Markovian of order p. The set Qα will be called
forecast region (FR). When Qα is a connected set, we call it a forecast interval
(FI). Obviously, such a region/interval can be constructed in an infinite number of
ways. For instance, a natural FI for the conditional median of YT+H is the so-called
conditional percentile interval (CPI) given by

CPI1−α = [ξ̂α/2(x), ξ̂1−α/2(x)], (10.42)

where ξ̂α(·) is the αth conditional percentile of ξα(·) defined by (9.11) with α ≡ q,
changing the notation of the quantile level q to the symbol α.

In the context of linear ARMA models, we normally construct a FI for H ≥
1 steps ahead by using an estimate of the conditional mean, an estimate of the
conditional variance, and, in addition, a certain critical value taken from either the
normal or the Student t distribution. For some nonparametric methods, FIs can be
constructed on the basis of available asymptotic theory of the forecast under study
(Yao and Tong, 1995). In general, however, some form of resampling is necessary
because of non-normality of the forecast errors and/or nonlinearity of the forecast.
Below, we consider both approaches, making a distinction between FI/FRs based
on percentiles and on conditional densities where in the latter case the shape of the
densities may change over the domain of Xt.

10.3.2 Conditional percentiles

As it is informative to provide general theory covering all (non)parametric nonlinear
models/methods, we discuss FIs for two prominent cases: (i) the Nadaraya–Watson
(NW) and local linear (LL) estimators of the conditional mean function, and (ii) the
SETAR-based estimator of the conditional mean.

FIs for the NW and LL estimators of the conditional mean
Consider a strictly stationary and real-valued stochastic process {Yt, t ∈ Z} that
follows the functional relationship defined in (9.35) which, for ease of reference, we
re-introduce as

Yt = μ(Xt) + σ(Xt)εt, t ≥ 1, (10.43)
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where Xt = (Yt−1, . . . , Yt−p)′, σ(x) > 0 ∀x ∈ Rp, Y0, . . . , Yp are initial conditions,
{εt} i.i.d.∼ (0, 1) random variables with {εt} independent of past Yt, μ(·) and σ(·) are
unknown functions on R. Let f(x) denote the density function of the lag vector
at the point Xt = x. Recall μ̂NW(x), the NW estimator of the conditional mean
function μ(x), is given by (9.36). Under certain mixing conditions it can be shown
(see, e.g., Fan and Gijbels, 1996, Thm. 6.1) that μ̂NW(x) is asymptotically normally
distributed with asymptotic bias and variance given by

Bias
(
μ̂NW(x)

)
=

1
2
μ2(K)h2

[
μ(2)(x) + 2μ(1)(x)

f (1)(x)
f(x)

]
, (10.44)

Var
(
μ̂NW(x)

)
= R(K)

1
nh

σ2(x)
f(x)

, (n = T −H − p + 1), (10.45)

where μ2(K) =
∫
R

u2K(u)du and R(K) =
∫
R

K2(z)dz. Similarly, based on the
LL regression approach, the estimator μ̂ LL(x) of μ(x) is asymptotically normally
distributed with asymptotic mean and variance

Bias
(
μ̂ LL(x)

)
=

1
2
μ2(K)h2μ(2)(x), Var

(
μ̂ LL(x)

)
= R(K)

1
nh

σ2(x)
f(x)

. (10.46)

We see that the bias of the NW estimator does not only depend on the first- and
second derivatives of μ(x), but also on the score function −f (1)(x)/f(x). This is the
reason why an unbalanced design may lead to an increased bias, especially when p is
large and T is small. Clearly, consistent bias estimates of the NW and LL estimators
of μ(x) require estimates of μ(2)(x). Such estimates will possibly reduce the bias, and
hence improve forecast accuracy in small samples. On the other hand, the variance
may increase since more parameters have to estimated. Thus, it is reasonable to
construct FIs for both nonparametric conditional mean estimators without a small-
sample bias correction. Since the expression for the asymptotic variance is the same
for μ̂NW(x) and μ̂ LL(x), the resulting FI with coverage probability (1−α) is defined
as

FIα =
[
μ̂(·)(x)− zα/2

√
σ2(x) +

Var
(
μ̂(·)(x)

)
nh

, μ̂(·)(x) + zα/2

√
σ2(x)+

Var
(
μ̂(·)(x)

)
nh

]
.

(10.47)

Here, zα/2 denotes the (1 − α/2)th percentile of the standard normal distribution,
and the notation μ̂(·)(x) denotes the NW or the LL conditional mean forecast.

Bootstrap FIs for SETAR models
Consider the stationary SETAR(2; p, p) model with d ≤ p:

Yt = {φ(1)
0 +

p∑
i=1

φ
(1)
i Yt−i}I(Yt−d ≤ r) + {φ(2)

0 +
p∑

i=1

φ
(2)
i Yt−i}I(Yt−d > r) + εt,

(10.48)
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where {εt} i.i.d.∼ (0, 1) random variables, and p is assumed to be known. Given the
initial, pre-sample, values (Y−p+1, . . . , Y0) and the set of observations {Yt}T

t=1, an
estimate r̂T of r follows from using Algorithm 6.2. We have seen in Section 6.1.2
that this estimator is super-consistent with the rate of convergence of Op(T−1).

Bootstrap FIs for linear ARs have received quite some attention; see, e.g., Pan
and Politis (2016) for a recent review. Within this context, BS can be based on the
backward and forward time representation of an AR(p) model. For SETAR models
there is no immediate way of inverting the lag polynomial augmented with indicator
variables. Hence, the so-called backward BS procedure does not apply in this case.
In contrast, the forward BS generates bootstrap series conditionally on the first p
observations of the observed series as the initial values of the bootstrap replicates.
Both Li (2011) and Pan and Politis (2016) use forward BS in a SETAR forecasting
context. One simple algorithm to construct the FI for Yt+H is as follows.

Algorithm 10.1: Bootstrap FI

1.1 Using Algorithm 6.2, compute the CLS estimates φ̂
(j)
i (i = 0, . . . , p; j = 1, 2),

conditional on r̂T . Compute the EDF, say F̂ε̃, of the mean-deleted residuals
{ε̃t = ε̂t − ε̂}T

t=p+1, where ε̂ = (T − p)−1
∑T

t=p+1 ε̂t and

ε̂t = Yt − {φ̂(1)
0 +

p∑
i=1

φ̂
(1)
i Yt−i}I(Yt−d ≤ r̂) + {φ̂(2)

0 +
p∑

i=1

φ̂
(2)
i Yt−i}I(Yt−d > r̂).

1.2 Draw (with replacement) BS pseudo-residuals {ε∗
t } from F̂ε̃, and generate

the BS replicate of Yt, denoted by Y ∗
t , as Y ∗

t = Yt, (t = 1, . . . , p),

Y ∗
t = {φ̂(1)

0 +
p∑

i=1

φ̂
(1)
i Y ∗

t−i}I(Y ∗
t−d ≤ r̂T ) + {φ̂(2)

0 +
p∑

i=1

φ̂
(2)
i Y ∗

t−i}I(Y ∗
t−d > r̂T )

+ ε∗
t , (t = p + 1, . . . , T + H). (10.49)

1.3 Based on the pseudo-data {Y ∗
t }T

t=1, and using r̂T , re-estimate the coefficients
φ

(j)
i . Obtain a new set of BS coefficients φ̂

∗,(j)
i .

1.4 Compute the BS H-step ahead forecast, denoted by Yt+H , as Y ∗
t = Yt,

(t = T, T − 1, . . . , T − p + 1),

Y ∗
t+H = {φ̂∗,(1)

0 +
p∑

i=1

φ̂
∗,(1)
i Y ∗

t+H−i}I(Y ∗
t+H−d ≤ r̂T )+

{φ̂∗,(2)
0 +

p∑
i=1

φ̂
∗,(2)
i Y ∗

t+H−i}I(Y ∗
t+H−d > r̂T ) + ε∗

t+H ,

where ε̂∗
t+H is a random draw (with replacement) from F̂ε̃. So, the BS

forecasts are all conditioned on the forecast origin data.

1.5 Repeat steps 1.1 – 1.4 B times, and obtain the BS forecasts {Y ∗,(b)
t+H }B

b=1.
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Algorithm 10.1: Bootstrap FI (Cont’d)
1.5 (Cont’d)

Then the bootstrap FI (BFI) with coverage probability (1 − α) is given by

BFIH,α = [Ŷ (α/2)
t+H , Ŷ

(1−α/2)
t+H ], (10.50)

where Ŷ
(α/2)
t+H and Ŷ

(1−α/2)
t+H are, respectively, the (α/2)th and (1 − α/2)th

percentiles of the EDF of {Y ∗,(b)
t+H }B

b=1.

Note that Algorithm 10.1 ignores the sampling variability of r̂T . To adjust for
this, step 1.3 can be repeated many times with BS threshold values obtained from
Algorithm 6.2; see Li (2011). Another modification follows from using bias-corrected
estimators of the coefficients φ

(j)
i ; see, e.g., Kilian (1998). In the context of linear AR

models, Kim (2003) provides a BS mean bias-corrected estimator which can simply
be adopted to correct for biases of SETAR coefficient estimators. In particular,
Algorithm 10.1 needs to be modified as follows.

Algorithm 10.2: Bootstrap bias-corrected FI

2.1 Same as step 1.1.

2.2 Re-estimate (10.8) using {Y ∗
t }T

t=1 and r̂T , and obtain the BS coefficients
φ̂

∗,(j)
i (i = 0, . . . , p; j = 1, 2). Repeat this step C times to get a set of BS

coefficients {φ̂∗,(c),(j)
i }C

c=1.

2.3 Compute the bias of φ̂
(j)
i as Bias(φ̂(j)

i ) = φ̂
∗,(j)

i − φ̂
(j)
i where φ̂

(j)

i is the
sample mean of {φ̂∗,(c),(j)

i }C
c=1. Next, compute the bias-corrected coefficients

as φ̂
c,(j)
i = φ̂

(j)
i − Bias(φ̂(j)

i ).

2.4 Then, analogously to (10.49), generate the bias-corrected BS replicates {Y c∗
t }

using φ̂
c,(j)
i .

2.5 Re-estimate (10.8) using {Y c∗
t }T

t=1 and r̂T , and obtain the BS coefficients
φ̂

∗,(c),(j)
i . Next, compute the bias-corrected BS forecasts as Y c∗

t = Yt (t =
T, T − 1, . . . , T − p + 1),

Y c∗
t+H = {φ̂∗,(c),(1)

0 +
p∑

i=1

φ̂
∗,(c),(1)
i Y c∗

t+H−i}I(Y c∗
t+H−d ≤ r̂T )+

{φ̂∗,(c)(2)
0 +

p∑
i=1

φ̂
∗,(c),(2)
i Y c∗

t+H−i}I(Y c∗
t+H−d > r̂T ) + ε∗

t+H .

2.6 Repeat steps 2.1 – 2.4 B times and obtain a set of bias-corrected forecasts
{Y c∗,(b)

t+H }B
b=1. The bias-corrected BFI (BFIc) with coverage probability (1−α)

is given by
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Algorithm 10.2: Bootstrap bias-corrected FI (Cont’d)

2.6 (Cont’d)

BFIcH,α = [Ŷ (α/2),c
t+H , Ŷ

(1−α/2),c
t+H ], (10.51)

where Ŷ
(α/2),c
t+H and Ŷ

(1−α/2),c
t+H are, respectively, the (α/2)th and (1−α/2)th

percentiles of the EDF of {Y c∗,(b)
t+H }B

b=1.

Note that the bias-correction in step 2.3 can push the coefficients into the non-
stationary region of the parameter space; see, e.g. Clements (2005, Section 4.2.4),
Kilian (1998), and Li (2011) for a stationarity correction procedure which can easily
be implemented in Algorithm 10.2. Another modification is to replace the fitted
residuals by predictive residuals (Politis, 2013, 2015). For a SETAR(2; p, p) model
these residuals can be computed as follows: Delete the row (1, Yt−1, . . . , Yt−p) in
the T × (p + 1) design matrix Xt(r) (see (6.11)), and delete Y −t

t from the series
{Yt}T

t=1. Next, compute the leave-one-out CLS estimator of the model coefficients
using (6.11), and obtain the leave-one-out fitted value Ŷ −t

t Then the predictive re-
siduals are given by ε̂−t

t = Yt − Ŷ −t
t . The key idea here is that the distribution

of the one-step-ahead forecast errors can be approximated better by the EDF of
{ε̂−t

t }T
t=p+1 than by the EDF of {ε̂t}T

t=p+1; cf. Exercise 10.7.

Example 10.6: FIs for a Simulated SETAR Process

Consider the stationary SETAR(2; 1, 1) process of Example 8.2, i.e.

Yt = 0.5Yt−1I(Yt−1 ≤ 0)− 0.4Yt−1I(Yt−1 > 0) + εt, (10.52)

where Y0 = 0 and {εt} i.i.d.∼ N (0, 1). We set T = 100, B = 1,000, C = 200,
and α = 0.05. To assess the performance of the BFIs, we use the empirical
coverage rate (CVR) defined by

CVRH,α =
1
m

m∑
i=1

I
(
Yi,T+H ∈ FI(·)α

)
, (10.53)

where Yi,T+H denotes the H-step ahead forecast made at time t = T from the
ith data set, and FI(·)α denotes either BFIH,α or BFIcH,α.

Figure 10.5 shows boxplots of the CVRH,α for H = 1, . . . , 5 and m = 100.
There are no serious size distortions in coverage rates; both BFIs have an IQR
of about 0.03, on average, across all values of H. This implies that the BFIs
generally work well. The variability of the threshold variable estimator does
not seem to cause higher CVRs in the case of BFIc

H,α. Moreover, the CVRs
seem to remain fairly constant as H increases with average standard deviation
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Figure 10.5: Empirical CVRs for (a) BFIH,α and (b) BFIcH,α for the SETAR(2; 1, 1)
model (10.52); T = 100, α = 0.05, B = 1,000, m = 100, and 500 MC replications.

of about 0.02 in both cases (a) and (b). Observe that (10.53) represents an
unconditional coverage probability since YT is different for each simulated data
set.

10.3.3 Conditional densities

For nonlinear DGPs, the width of the CPI in (10.42) is no longer a constant, as
in the case of linear DGPs, but may vary with respect to the position in the state
space from which forecasts are being made.3 Unfortunately, CPI’s are not always
efficient (in the sense of having the smallest width) when the forecast distribution
is asymmetric or multi-modal. To overcome this problem Yao and Tong (1995), De
Gooijer and Gannoun (2000), and Polinik and Yao (2000) advocate the use of the
following two alternative methods.

Shortest conditional modal interval (SCMI)
For any given α ∈ [0, 1] and x ∈ Rp, we define the minimal conditional density
region as

bα(x, y) = min
{

b > 0
∣∣∣ ∫ y+b

y−b
f(u|x)du ≤ 1− α

}
, y ∈ R, (10.54)

where f(·|x) denotes the conditional density function of Yt given Xt = x. Let

bα(x) = min
y∈R

bα(x, y), mα(x) = arg min
y∈R

bα(x, y). (10.55)

The so-called shortest conditional modal interval (SCMI) with coverage probability
1− α is defined as

SCMIα(x) = [mα/2(x)− bα/2(x), b1−α/2(x) + b1−α/2(x)], α ∈ [0, 1]. (10.56)

3The property of variable-size FIs is commonly named sharpness or resolution. Sometimes a
subtle difference is made between both terms in the sense that sharpness relates to the average size
of FIs and resolution to their associated variability; cf. Exercise 10.8.
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It follows from (10.54) and (10.55) that the SCMI can also be defined as

[a, b] = arg min{Leb{[c, d]} |F (d|x)− F (c|x) ≤ 1− α}, α ∈ [0, 1], (10.57)

where Leb(C) denotes the Lebesgue measure of the set C, which is a measurable
subset of Rp, and F (·|x) the conditional distribution function of Yt given Xt = x.
Thus, the idea is to search for the set with the minimum length among all predictive
sets; see Fan and Yao (2003, Section 10.4) for a more thorough discussion.

Of course, in practice, a natural estimator for the SCMI is obtained by replacing
F (·|x) by a consistent estimate, e.g. the NW or the LL kernel-based estimator. For
symmetric and unimodal conditional predictive distributions SCMI reduces to CPI.

Maximum or highest conditional density region (HDR)
The second method, initially called maximum conditional density region (MCDR),
but better known as the highest (conditional) density region (HDR), is the smallest
region (i.e., Lebesgue measure) of the sample space to a given coverage probability.
More formally, for α ∈ [0, 1], define

lα(x) ≡ lα
(
f(y|x)

)
= inf

{
l ∈ (0,∞)

∣∣∣ ∫ ∞

−∞
f(y|x)I

(
f(y|x) ≥ l

)
dy ≤ 1− α

}
.

We call the subset Rα the 100(1 − α)% HDR of f(·|x) (cf. Hyndman, 1995, 1996)
such that

Rα = {x ∈ Rp : f(y|x) ≥ lα(x)}, α ∈ [0, 1]. (10.58)

Thus, the HDR is naturally related to the conditional mode since they are both
based on points of highest density. The HDR can be equivalently defined as

�⋃
i=1

[ai, bi] = arg min
{

Leb
( �⋃

i=1

[ci, di]
)∣∣∣ c1 < d1 ≤ c2 < d2 ≤ · · · ≤ c� < d�,

and
�∑

i=1

{F (di|x)− F (ci|x) ≤ 1− α}
}

,

where � ≥ 1 denotes the number of sub-intervals. Replacing F (·|x) by, for instance,
the NW smoother gives an estimator of the HDR. By definition, HDR is of the
smallest Lebesgue measure among all FRs with the same α. The HDR may consist
of less than � disconnected intervals even though f(·|x) has � modes. Equivalently as
the SCMI, the HDR reduces to the CPI when f(·|x) is unimodal and also symmetric
with respect to its mode.

Example 10.7: Hourly River Flow Data (Cont’d)
We reconsider the hourly river flow series {Yt}401

t=1 introduced in Example 9.3.
The series is stationary and positively autocorrelated. We predict the flow
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Figure 10.6: Hourly river flow data set. (a) One-step ahead forecast Ŷ Mdn
t+1|t and estimated

SCMI’s (with coverage probability 0.9); (b) One-step ahead forecast Ŷ Mdn
t+1|t and estimated

HDRs (with the highest coverage probability). From De Gooijer and Gannoun (2000).

at the tth hour Yt from the observed values of Yt−1 using the nonparametric
predictor Ŷ Mdn

t+H|t, defined in (9.7). We use a Gaussian kernel, and set p = 1. As
a starting-point we select t = 366 which is just located before the large peak
in {Yt} at time t = 374. Next, we predict Y368 using the observed values up to
an including the one at t = 367. This procedure is repeated till the end of the
series. Hence, in total 35 one-step ahead predictions are available. Further,
with coverage probability (1 − α) = 0.9, we estimate the SCMI and the HDR
in each step. The bandwidths follow from minimizing CVMdn(H); see Table
9.1.

Figures 10.6(a) and 10.6(b) show plots of the last 35 observations of {Yt} with
one-step ahead forecasts Ŷ Mdn

t+1|t for the SCMI and the HDR. Clearly, the SCMI
is very wide and asymmetric whereas the HDR is much tighter. Note, however,
that at t = 370 – 375, 378 – 380, 382 – 383, 391, and 400 the realizations do
not fall within the HDR. On the other hand, the SCMI does not cover the
corresponding observed values at t = 371 – 372, 374 – 375, 382, and 385.
Similar observations were noted for FRs based on Ŷ Mean

t+H|t, defined in (9.5). For
the time period t = 370 – 375 this is due to a steep rise in river flow, due to
heavy rainfall (3.2 mm/hour at t = 374). Thus, the width of both FRs can be
quite sensitive to the position in the state space from which predictions are
being made.

10.4 Forecast Evaluation

10.4.1 Point forecast
Classical, stand-alone, accuracy measures for comparing forecasts are the MSFE
and the MAFE. The smaller the value of these measures, the better is a particular
forecast. More generally, it frequently happens that two (or more) forecasts of the
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same quantity are available via rival forecast methodologies. Then the question
naturally arises as how likely it is that differences between the two forecasts is due
to chance or whether they are “significant”. Below we review various tests for
comparing the accuracy of competing point forecasts. First, we describe the basic
forecast setup.

Setup
Let {Yt}T+H

t=1 be the sample of observation, where H ≡ Hmax ≥ 1 denotes the longest
forecast horizon of interest. We assume that the available data set is divided into
in-sample and out-sample portions, with R (R as in Regress) the total number of
in-sample observations and P the number of H-step ahead forecasts. Thus, R+P +
H − 1 ≡ T + H is the size of the available sample. Note that this setup implies that
P out-of-sample forecasts depend on the same parameter vector estimated on the
first R observations. So, the forecast scheme is based on a single, fixed, estimation
sample.

Alternatively, a rolling or a recursive forecasting scheme can be employed. In the
latter case, the first forecast is based on a model with parameter vector estimated
using {Yt}R

t=1, the second on a parameter vector estimated using {Yt}R+1
t=1 , . . . , the

last on a parameter vector estimated using {Yt}R+P−1
t=1 , where T ≡ R + P − 1. In

the rolling scheme, the sequence of parameter estimates is always generated from
a fixed, but rolling, sample of size R: The first forecast is based on parameter
estimates obtained from the set of observations {Yt}R

t=1, the next on parameter
estimates obtained from {Yt}R+1

t=2 , and so on.

Diebold–Mariano (DM) test
Diebold and Mariano (1995) propose a test statistic based on the null hypothesis
that two forecasts are the same in terms of forecasting accuracy, for some arbitrary
loss function L(ei,t+H|t) where ei,t+H|t = Yt+H−Yi,t+H|t is the H-step ahead forecast
error with Yi,t+H|t the forecasts from model i (i = 1, 2). The so-called H-step ahead
loss differential is defined as

dt = L(ei,t+H|t)− L(ej,t+H|t), (i, j = 1, 2; i �= j).

So, the null hypothesis entails

E[L(ei,t+H|t)] = E[L(ej,t+H|t)], (i, j = 1, 2; i �= j), (10.59)

or μd ≡ E(dt) = 0. Typically, L(·) is the squared-error loss or the absolute error
loss. Still one may consider other loss functions, including ones based on economic
rather than statistical criteria.

Suppose that a sample realization {dt}R+P+H−1
t=R+H of a covariance stationary pro-

cess {dt, t ∈ Z} is available. Then, as R → ∞ at a faster rate than P → ∞, as
T → ∞, it is easy to deduce that the asymptotic distribution of the sample mean
loss differential, d = P−1

∑R+P+H−1
t=R+H dt, is given by
√

P (d− μd)
D−→ N

(
0,Var(d)

)
, (10.60)



10.4 FORECAST EVALUATION 417

where

Var(d) ≈ 1
P

H−1∑
�=−(H−1)

γd(�), (10.61)

with γd(·) the ACVF of {dt, t ∈ Z}. The lag � autocovariance can be estimated by

γ̂d(�) =
1
P

R+P+H−1∑
t=R+H+�

(dt − d)(dt−� − d), � ∈ Z.

Then a consistent estimate V̂ar(d) of Var(d) follows directly. The resulting asymp-
totic distribution of the DM test statistic is then

DM =
d√

V̂ar(d)

D−→ N (0, 1), as P →∞. (10.62)

It is apparent that, for fixed H, relevant applications of the DM test statistic
are those in which H � R, P . The DM test statistic is “model-free”, i.e., the
forecast models are assumed to be correctly specified, but unknown, and the asso-
ciated loss function L(·) does not rests on additional, conditioning, information. In
other words, only a set of forecasts and actual values of the predictand are con-
sidered. Furthermore, it is implicitly assumed that the competing forecasts Y1,t+H|t
and Y2,t+H|t are obtained from non-nested models. With nested models the limiting
distribution of the DM test statistic and other existing tests for comparing fore-
cast accuracy are non-standard, can be difficult to compute or are context-specific
(see, e.g., Clark and McCracken, 2001; Clark and West, 2007). Motivated by the
above observations, Giacomini and White (2006) present a general framework for
out-of-sample forecast evaluation. It applies to multi-horizon point, interval, prob-
ability, and density forecasts for general loss functions applicable to both nested and
non-nested models. The resulting tests can be viewed as extensions to the DM test
statistic. Moreover, the asymptotic standard normal distribution of the DM test
statistic remains unchanged for nested models and finite in-sample sizes; see also
Table 10.2.4

Modified DM test
When the forecast errors are Gaussian distributed or fat tailed, MC simulation res-
ults (Diebold and Mariano, 1995) indicate that the DM test statistic, under quad-
ratic loss, is robust to contemporaneous and serial correlation in large samples, but
the test is oversized in small samples. Indeed, for a small number of forecasts it is

4It is good to mention that the null hypothesis of the Giacomini–White approach is different from
that of West and his co-authors in two respects: (i) the loss function L(·) depends on estimates
rather than their probability limits; and (ii) the expectation in (10.59) is conditional on some
information set.
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recommended to use the modified DM (MDM) test statistic proposed by Harvey et
al. (1997). The modification follows from replacing (10.61) by the exact variance

Var(d) =
1
P

(
γd(0) + 2P−1

H−1∑
�=1

(P − �)γd(�)
)
. (10.63)

Then V̂ar(d) can be written as

V̂ar(d) =
1
P

(
γ̂∗

d(0) + 2P−1
H−1∑
�=1

(P − �)γ̂∗
d(�)

)
, (P ≥ 2), (10.64)

where

γ̂∗
d(�) =

1
P − �

R+P+H−1∑
t=R+H+�

(dt − d)(dt−� − d).

Assume the mean of {dt, t ∈ Z} is known and, without loss of generality, can be
taken to be zero. With a little algebra (cf. Exercise 10.5), it follows that for � � P

E
(
γ̂∗

d(�)
)

= γd(�)− (P − �)−1(P + �)Var(d) +O(P−2)

≈ γd(�)−Var(d). (10.65)

Taking expectations in (10.64) and substituting (10.65), we have

E
(
V̂ar(d)

)
≈ P + 1− 2H + P−1H(H − 1)

P
Var(d). (10.66)

The term P−1H(H − 1) is included here, since (10.66) is exact in the special case
where the process {dt, t ∈ Z} is WN.

As an implication of (10.66), the DM test statistic can be modified (m) for its
finite sample oversizing by using an approximately unbiased variance estimate, say
V̂arm(d). The resulting MDM test statistic is therefore simply

MDM =
d√

V̂arm(d)
=

{P + 1− 2H + P−1H(H − 1)
P

}1/2
DM, (10.67)

where

V̂arm(d) = [P + 1− 2H + P−1H(H − 1)]−1
(
γ̂d(0) + 2

H−1∑
�=1

γ̂d(�)
)
.

Significance may be assessed using the Student t distribution with P − 1 degrees of
freedom.
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10.4.2 Interval evaluation

Using the forecast setup introduced in the previous subsection, let L
(1−α)
t+H|t and U

(1−α)
t+H|t

denote the lower and upper limits of the H(≡ Hmax)-step ahead interval forecasts
of Yt+H made at time t, for a coverage probability (1 − α), and given the sample of
observations {Yt}T+H

t=1 . We define the sequence of indicator functions {i(α)
t }R+P+H−1

t=R+H

as

i
(α)
t =

{
1 if Yt+H ∈ [L(1−α)

t+H|t, U
(1−α)
t+H|t ],

0 otherwise,
(10.68)

where P denotes the number of H-step ahead forecasts, and R the total number of in-
sample observations. Thus, the indicator (or “hit”) function tells whether the actual
value Yt+H lies (a “hit”) or does not lie (a “miss” or a “violation”) in the FI for that
lead time H. The sequence of interval forecasts is said to be “well-specified’ with
respect to the past information set Ψt = {i(α)

t , i
(α)
t−1, . . .} if E(i(α)

t |Ψt−1) = 1− α ≡ p.
Within this framework, Christoffersen (1998) proposes the following, widely used,
LR-based test statistics.

Unconditional (uc) coverage LR test statistic
The easiest way to evaluate FIs is to compare the coverage probability p with the
sample proportion of times that the FI includes Yt+H , ignoring the dependence
in {i(α)

t }. Hence, the null hypothesis H(uc)
0 of interest is E(i(α)

t ) = p, while the
alternative hypothesis is E(i(α)

t ) ≡ π �= p. For a given H and α, denote

n1 = #{i(α)
t = 1} =

P∑
t=1

i
(α)
t and n0 = #{i(α)

t = 0} = P − n1.

The likelihoods of the data under the null and alternative hypotheses are, respect-
ively,

Lp≡L(p; i(α)
1 , . . . , i

(α)
P ) = (1− p)n0pn0 and Lπ̂≡L(π̂; i(α)

1 , . . . , i
(α)
P ) = (1− π̂)n1 π̂n1 ,

where the relative hit frequency π̂ = n1/(n0 + n1) is the ML estimate of π. Then
the LR-based test statistic is given by

LRuc = −2 log(Lp/Lπ̂). (10.69)

Under H(uc)
0 , and as P →∞, LRuc has a χ2

1 distribution.

Independence (ind) LR test statistic5

The test statistic (10.69) will have very low power when there are discernible, time-
dependent, patterns in {i(α)

t }. To overcome this problem, Christoffersen (1998)
5The term “independence” is a misnomer, because only second-order properties will be con-

sidered.



420 10 FORECASTING

suggests testing for independence by modeling the process {i(α)
t , t ∈ Z} as a two-

state (i.e., k = 2 in the notation of Section 2.10) first-order Markov chain with
transition probability matrix

P1 =
(

1− p12 p12

1− p22 p22

)
, (10.70)

where pij = P(i(α)
t = j|i(α)

t−1 = i) and
∑2

j=1 pij = 1 (i, j = 1, 2). Let nij denote
the number of events that a state i is followed by a state j. Then the approximate
likelihood function under the alternative hypothesis for the whole process is

L(P̂1) = (1− p̂12)n11 p̂n12
12 (1− p̂22)n21 p̂n22

22 , (10.71)

with p̂ij = nij/(ni1 + ni2) (i, j = 1, 2) the ML estimate of pij . Under the null
hypothesis H(ind)

0 : p12 = p22, the state of the process at time t conveys no information
on the relative likelihood of it being in one state as opposed to another at time
t + 1. Thus, when the outcome, say i

(α)
t , of the chain lies in state j, the nearest

outcome i
(α)
t−1 has the same probability of lying in any state. We can write this as

p1j = p2j = πj , where πj = P(i(α)
t = j) (j = 1, 2). Let nj denote the corresponding

number of outcomes. Then the ML estimate of πj is given by π̂j = nj/N with
N =

∑2
i,j=1 nij . Hence, the approximate likelihood function under H(ind)

0 is L
P̂0
≡

L(P̂0; i
(α)
1 , . . . , i

(α)
P ) =

∏2
j=1

(
nj/N)nj , and the unrestricted likelihood function is

L
P̂1
≡ L(P̂1; i

(α)
1 , . . . , i

(α)
P ) =

∏2
i=1

∏2
j=1

(
nij/

∑2
j=1 nij

)nij . Then the LR-based test
statistic for independence is given by

LRind = −2 log(L
P̂1

/L
P̂0

). (10.72)

Under H (ind)
0 , and as P → ∞, LRind has a χ2

(2−1)2 distribution. Similarly, it is
straightforward to show that for a k-state (k ≥ 2) first-order Markov chain, the
corresponding LR-based test statistic has (asymptotically) a χ2

(k−1)2 distribution
under the null hypothesis.

Conditional coverage (cc) LR test statistic
Note the LRuc and LRind test statistics do not affect each other. To test whether the
FI has the correct coverage in the form of the null hypothesis H(cc)

0 : p12 = p22 = p

with p = E(i(α)
t |Ψt−1), it is sensible to combine both test statistics. In particular, a

test statistic of correct conditional coverage is given by

LRcc = −2 log(Lp/L
P̂1

). (10.73)

Under H(cc)
0 it follows (Christoffersen, 1998) that, as P →∞, the test statistic LRcc

has a χ2
2 distribution. For a k ≥ 2 state first-order Markov chain, the corresponding
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LR-based test statistic is asymptotically χ2
k(k−1) distributed. Moreover, when ignor-

ing the first observation i
(α)
1 , the three LR test statistics are numerically related by

the identity LRcc = LRuc + LRind (an additivity property).
Note that the above LR test statistics do not take into account time-dependencies

in the information set Ψt−1 of order higher than one. So, in some cases, these
tests may ignore patterns of clustering in Ψt−1. Furthermore, within the Markov
chain framework, it is not possible to extend the information set with information
contained in another exogenous variable. The list with additional bibliographical
notes given at the end of this chapter contains references to papers which discuss
test statistics aimed at avoiding these and other drawbacks; see also below.6

Detecting clustering effects
When dealing with linear and nonlinear ARCH-type DGPs it is likely that FIs are
too small in turbulent periods compared to relatively tranquil times. This will result
in clustering of misses (violations) at high volatility times. Araújo Santos and Fraga
Alves (2012) propose a new class of test statistics for explicitly testing H(ind)

0 against
an alternative hypothesis expressing a tendency to clustering patterns. They define
this notion more formally as follows.

Let {Dj = tj − tj−1}N
j=1 (t0 = 0) be the sample of N durations between two

consecutive violations in the sequence {i(α)
t }P

i=1 where tj denotes the time-index
of violation j. If H(cc)

0 is valid, then the process {i(α)
t , t ∈ Z} i.i.d.∼ Bernoulli(p)

(0 < p < 1). Consequently, the random variable Dj is geometrically distributed
with pmf fD(d) = (1 − p)d−1p (d ∈ N). Hence, H(ind)

0 can be written as {Dj , j ∈
Z+} i.i.d.∼ Geometric(p). Furthermore, let D1:N ≤ · · · ≤ DN :N be the order statistics
of {Dj}N

j=1. Then a hit function is said to have a tendency to clustering of violations
if Mdn(DN :N/D[N/2]:N ) is higher than the median of the process {Dj , j ∈ Z+} under

H
(ind)
0 .

Next, as a special case of the proposed class of independence tests, Araújo Santos
and Fraga Alves (2012) define the test statistic

TN,[N/2] = log 2
DN :N − 1
D[N/2]:N

− log N. (10.74)

The test statistic is pivotal in the sense that its distribution does not depend on an
unknown parameter. However, (10.74) is a test statistic for H(ind)

0 , not for testing
H

(cc)
0 . The decision rule for rejecting H(ind)

0 can be based on critical values (using an
exact distribution) provided by Araújo Santos and Fraga Alves (2012, Appendix) or
by simulating p-values (cf. Exercise 10.11).

6Within the Value-at-Risk (VaR) evaluation literature of FIs these test statistics are often called
backtesting procedures.
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10.4.3 Density evaluation

As we mentioned earlier, in stationary time series the conditional density function
provides the most informative characterization of the possible future values of a time
series variable, conditional on the information available at the time the forecast is
made. Interest in the topic has recently surged in the literature (see, e.g., Clements,
2005, Chapter 5) with, for instance, the MFD method in Algorithm 9.3 as a par-
ticular contribution. Here, we consider methods of evaluating the performance of
density forecasts using the PIT of the actual realizations of the variable with respect
to the forecast densities.

Suppose we have a set of P one-step ahead forecast densities for the future
value of a process {Yt, t ∈ Z}, denoted by {f̂t(Yt|F t−1)}P

t=1, made at time t with
f1(Y1|F0) ≡ f(y1). The PIT, denoted by Ut, is defined as

Ut ≡
∫ Yt

−∞
f̂t(u|F t−1)du, (t = 1, . . . , P ). (10.75)

Under the null hypothesis (H0) that the model forecasting density corresponds to
the true conditional density, given by the DGP which is denoted by ft(·|F t−1),
that is f̂t(·|F t−1) = ft(·|F t−1), the process {Ut, t ∈ Z} is i.i.d. U(0, 1) distributed
(Rosenblatt, 1952).

A simple way of testing the uniformity part of the null hypothesis conditional on
the i.i.d. assumption is by using a nonparametric GOF test like the KS, AD or CvM
test statistics; see, e.g., Chapter 7. Alternatively, a plot of the CDF of the Ut may be
used and visually compared with a line at an angle of 45

◦
representing the cumulative

uniform distribution. The independence part of the null hypothesis may be tested by
using an LM-type test for serial correlation in the sequences {(Ut−U)u}P

t=1 (u = 1, 2),
where U is the sample mean of the Ut. For the case u = 2, the sample ACF may
indicate some form of nonlinear dependence such as heteroskedasticity. Similar
evaluation techniques can be applied to the transformed sequence {Φ−1(Ut)}P

t=1

which is i.i.d. N (0, 1) distributed under the null hypothesis (Berkowitz, 2001). Other
ways of testing forecast densities are given in the next chapter, albeit in a vector
nonlinear time series framework.

Example 10.8: ENSO Phenomenon (Cont’d)

Recall the monthly ENSO time series discussed in Examples 1.4, 5.1, and
6.4. We proceed by evaluating the out-of-sample forecast performance of the
nonlinear LSTEC model (6.24) as opposed to its linear (AR-type) counterpart
(6.25) using a rolling forecasting approach. In (6.24) an LSTEC model was
fitted to {ΔYt}468

t=1, covering the time period January 1952 – December 1990.
This period will serve as the first in-sample set. The last estimation window
ends with December 2008 (T = 684). Hence, in total, we estimate 216 linear
and nonlinear models on a monthly basis while, following Ubilava and Helmers
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Figure 10.7: Predictive probabilities of ENSO events, using information up to and includ-
ing June 1997. (a) Linear ECM (6.25), (b) LSTEC model (6.24), and (c) actual realization.

(2013), the AR order p and the delay lag d of the transition variable are re-
examined on an annual basis with d = 1, . . . , 6 and p = 1, . . . , 24 as possible
candidate values. We set Hmax = 36 (months).

Genuine out-of-sample forecasts are obtained via a block bootstrap approach
to mitigate for the effects of potential residual autocorrelation and heteroske-
dasticity, and we fix the number of BS replicates at 1,000.

To assess the accuracy of the fitted time series models in forecasting El Niño
and La Niña events, we introduce five thresholds windows: SST ≤ −0.9

◦
C

(“Extreme” La Niña), −0.9
◦
C < SST ≤ −0.5

◦
C (“Moderate” La Niña),

−0.5
◦
C < SST < 0.5

◦
C (Normal conditions), 0.5

◦
C < SST < 0.9

◦
C (“Moder-

ate” El Niño), and SST ≥ 0.9
◦
C (“Extreme” El Niño). For each window, and

each forecast horizon, we compile probability forecasts of ENSO events using
empirical forecast densities.

Figure 10.7 shows probability forecasts using information up to and including
June 1997 – when ENSO conditions are normal. For short-term, 3 months
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Figure 10.8: ENSO phenomenon. (a) Root mean squared forecast errors (RMSFEs);
(b) Percentage correctly predicted La Niña events (SST < −0.5

◦
C), and El Niño events

(SST > 0.5
◦
C).

ahead, forecasting both linear and nonlinear models yield comparable results.
Note, the overall picture changes for 6 – 12 months ahead when the LSTEC
model forecasts the upcoming extreme El Niño episode with about a twice
as large probability than the linear model. In reality the 1997 – 1998 time
period showed the strongest El Niño event since 1950. Note that this period
was followed by a period of extreme La Niña, starting in the Fall of 1998 and
continuing into 1999 and 2000. Again, the LSTEC model is able to forecast the
beginning of this episode with a relatively high forecast accuracy (about 24%
probability) as compared to the linear model, which forecasts this up-coming
event with a modest 14% probability.

In addition, the DM test statistic rejects the null hypothesis of equality of
MSFEs for H = 1, . . . , 10, 14, 20, . . . , 27, 31, . . . , 37 with p-values < 0.03. For
H = 11, 12, 13, 28, 29, and 30 the DM test statistic indicates that there is
no statistically significant improvement in forecast accuracy of the nonlinear
model over the linear model. Moreover, for H = 15, . . . , 19 negative variance
estimates of d were obtained. Diebold and Mariano (1995) suggest that the
variance estimate should then be treated as zero and the null hypothesis of
equal forecast accuracy be rejected. All these results indicate a preference for
the LSTEC model in ENSO forecasting.

The above observation is further supported by Figure 10.8(a) displaying the
RMSFEs from both models, and by Figure 10.8(b) showing the percentage
correctly predicted ENSO events. As we see, up to H = 20 the LSTEC
model shows the largest improvement in forecast accuracy as measured by
the RMSFE. Figure 10.8(b) reveals that La Niña events are more accurately
predicted by the LSTEC model than El Niño events. In addition, the LSTEC
model is more effective in forecasting La Niña over a notably longer time
period.
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10.5 Forecast Combination

Point forecasts
Combining H-step ahead point forecasts {Yi,t+H|t}n

i=1 of n different time series mod-
els, representing different information sets, instead of relying on a forecast from an
ex-ante best individual model is, on average, an effective way of improving the fore-
cast accuracy of a certain target variable Yt+H . The central question here is to de-
termine the optimal weights for the calculation of combined forecasts. For instance,
in the case of SETARMA models, we explored the performance of the combined
forecast Y C

t+H|t in (10.19) with weights based on the same information set.
If the individual forecasts are unbiased then common practice is to obtain a

weighted average of forecasts, with weights wi ≥ 0 and
∑n

i=1 wi = 1.7 The weights
follow from minimizing some loss function, usually the MSFE.8 However, in empir-
ical applications equal-weighting (ew) often outperforms estimated optimal forecast
combinations9, i.e.

Y ew

t+H|t =
1
n

n∑
i=1

Yi,t+H|t. (10.76)

Indeed, for short samples n, estimating forecast combination weights is unlikely to
lead to any improvements in forecast accuracy.

Interval forecasts
FIs are frequently too narrow, i.e. too many observations are in the tails of the
forecast distribution; Chatfield (1993) discusses seven reasons for this problem oc-
curring. One most likely reason is that forecast errors are not normally distributed
because the underlying DGP is nonlinear. Granger (1989) suggests a simple method
to construct realistic, non-symmetrical FIs. The method combines the H-step ahead
conditional quantile predictor {ξ̂i,q(x)}n

i=1

(
q ∈ (0, 1)

)
obtained from n different time

series models with weights wi,q(x) based upon within-sample estimation. That is,

ξ̂ C
q (x) =

n∑
i=1

wi,q(x)ξ̂i,q(x), (10.77)

where the weights are chosen to minimize the (local linear) “check” function; see
Section 9.1.2. If the conditional quantile estimators are unbiased, then we might
expect that

∑n
i=1 wi,q(x) ≈ 1, and this constraint could be used for simplification,

assuming the individual conditional quantile functions ξi,q(x) are sufficiently smooth.

7The weights may change through time; see Deutsch et al. (1994) for an example. Note that
the underlying DGP may or may not be second-order stationary.

8If the component forecasts are biased, it is recommended (Granger and Ramanathan, 1984) to
add a constant to the combined forecasting model and not to constrain the weights to add to unity.

9This is known as the forecast combination puzzle ; see, e.g, Huang and Lee (2010), Smith and
Wallis (2009), Aiolfi et al. (2011), and Claeskens et al. (2016), for some answers to this puzzle.
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A combined conditional percentile interval then follows from (10.42); see Granger et
al. (1989b) for an application.

Density forecasts
Generalizing the notation in Section 10.4.3, we denote n sequences of P indi-
vidual one-step ahead forecast densities of a process {Yt, t ∈ Z} at some time t, as
{f̂i,t(Yt|F i,t−1)}P

t=1, where F i,t−1 represents the ith information set (i = 1, . . . , n).
Then, assuming the density forecasts are continuous, the combined density forecast
is defined as

f̂ C
t (Yt) =

n∑
i=1

wif̂i,t(Yt|F i,t−1), (t = 1, . . . , P ), (10.78)

with wi ≥ 0 and
∑n

i=1 wi = 1.10 This combined density satisfies certain proper-
ties such as the “unanimity” property which amounts to saying that if all fore-
casters agree on the probability of a certain event then the combined probab-
ility agrees also. Further characteristics of f̂ C

t (·) can be drawn out by, for in-
stance, defining the forecast mean μi,t =

∫ ∞
−∞ ytf̂i,t(yt|F i,t−1) dyt and variance

σ2
i,t =

∫ ∞
−∞(yt − μi,t)2f̂i,t(yt|F i,t−1) dyt of the ith density sequence at time t. The

combined one-step ahead density has mean and variance

E
(
f̂ C

t (Yt)
)

= μC
t =

n∑
i=1

wiμi,t, Var
(
f̂ C

t (Yt)
)

=
n∑

i=1

wiσ
2
i +

n∑
i=1

wi(μi,t − μC
t )2.

(10.79)

The second equation of (10.79) indicates that the variance of the combined density
equals the average individual uncertainty (“within” model variance) plus a measure
of the dispersion of the individual forecast (“between” model variance). This result
stands in contrast to the combined, optimal point forecast which has the smallest
MSFE within the particular set of individual point forecasts (cf. Exercise 10.6).

Clearly, as before, the key issue is to find wi. Most simply, various authors (see,
e.g., Hendry and Clements, 2004) advocate the use of equal weights wi = 1/n. A
related topic is finding the set of weights in (10.78) that minimize the Kullback–
Leibler divergence (see (6.48)) between the combined density forecast and the true,
but unknown, conditional density ft(·|F t−1); see, among others, Bao et al. (2007)
and Hall and Mitchell (2007).

10.6 Summary, Terms and Concepts

Summary
This chapter has covered quite a lot of important material related to the topic of
obtaining forecasts from parametric nonlinear models. We started off by discussing

10The restriction that the weights are positive can be relaxed; see Genest and Zidek (1986).
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various exact and approximate methods for the generation of point forecasts. We
then described general methods for constructing forecast intervals and regions. We
also considered methods and test statistics for the evaluation of sequences of sub-
sequent point, interval, and density forecasts. Finally, we discussed some weighting
schemes for the optimal combination of model-based forecasts.

We would like to stress that this chapter introduced the major forecasting, eval-
uation and combination methods. As such, the chapter may well serve as a starting
point for anyone who intends to do empirical work. Table 10.2 can be helpful in
choosing an appropriate test statistic for forecast evaluation. Kock and Teräsvirta
(2011) provide additional literature on nonlinear forecasts (conditional means) of
economic time series obtained from parametric models, including NNs. Cheng et al.
(2015) summarize the “state-of-the-art” of forecasting models for complex (nonlinear
and nonstationary) biological, physical, and engineering dynamic systems.

Table 10.2: Overview of some forecast evaluation tests: Forecast errors are denoted by
ei,t ≡ ei,t+H|t (i = 1, 2), PEE = parameter estimation error, and HLN = Harvey, Leybourne,
and Newbold (1998). Based on Clark (2007).

Forecast No parameter estimation Parameter estimation Parameter estimation
evaluation Nonnested models Nonnested models Nested models

Point forecasts
Equal MSE DM test (10.62) with West (1996): Asymptotically, the Giacomini and White

loss dt = e2
1,t − e2

2,t. effect of PEE on forecast uncertain- (2006): DM
D−→ N (0, 1)

For H > 1: ty cancel out (recursive (rolling scheme).

• use MDM test (10.67) and rolling schemes)(1). Clark and McCracken
• use a resampled version Giacomini and White (2006): (2005): DM has a non-

of ei,t (White, 2000). Despite PEE, DM
D−→ N (0, 1) standard distribution

(rolling scheme). (recursive and rolling
schemes).

Encompassing(2) Harvey et al. (1998): West (2001): Given a recursive Clark and McCracken
t test with loss or rolling scheme, use the HLN test (2001; 2005): HLN
dt = e1,t(e1,t − e2,t). with a specific estimate of the has a non-standard
HLN test = d/(V̂ar(d))1/2 asymptotic variance of dt. distribution (recursive
D−→ N (0, 1). Giacomini and White (2006): and rolling schemes).

Despite PEE, HLN
D−→ N (0, 1) Giacomini and White

(rolling scheme). (2006): HLN
D−→ N (0, 1)

(rolling scheme).

Density forecasts
Accuracy PITs {Ut} as in (10.75): PITs with some adjustments for From pairs of models:

• H = 1: {Ut} i.i.d.∼ U(0, 1), PEE (only applicable for H = 1): LR based test based on
• H > 1: {Ut} ∼ U(0, 1). • use the out-of-sample version of log predictive density
“Tests”: Bai’s (2003) test; see score; see Amisano and
• Histogram of {Ut}, Corradi and Swanson (2006a) Giacomini (2007).

• EDF against 45
◦

line. • use max distance between EDF (model estimation:

and 45
◦

line and bootstrap the rolling scheme).
resulting distribution
(Corradi and Swanson, 2006b).

(1) Recursive scheme: sample expands. Rolling scheme: constant sample size, rolled forward.
(2) A forecast is said to encompass another when the optimal weight attached with one forecast

is zero in a linear combination of two out-of-sample forecasts of the same variable.
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Terms and Concepts

backward (forward) bootstrapping, 410
bootstrap (BS) forecasting, 399
bootstrap forecast interval (BFI), 409
Chapman–Kolmogorov, 392
conditional coverage (cc), 420
conditional percentile interval (CPI), 408
Diebold–Mariano (DM) test, 416
direct forecasting, 429
duration, 421
dynamic estimation (DE), 406
empirical least squares (ELS)

forecasting, 400
(forecast) encompassing, 427
equal-weighting (ew), 425
forecast interval (FI), 408
forecast region (FR), 408
highest density region (HDR), 414
least squares (LS) forecasting, 392

linearization (LN) method, 404
modified DM (MDM) test, 417
Monte Carlo (MC) forecasting, 398
minimum MSE (MMSE), 391
normal forecasting error (NFE), 401
parameter estimation error (PEE), 427
plug-in (PI) forecasting, 396
predictive residuals, 412
recursive forecasting scheme, 416
relative mean absolute forecast error

(RMAFE), 403
rolling forecasting scheme, 416
shortest conditional modal interval

(SCMI), 413
skeleton (SK) forecasting, 399
unconditional coverage (uc), 419

10.7 Additional Bibliographical Notes

Section 10.1: Jones (1978) considers power-series expansions for the moments of the sta-
tionary distribution of NLAR(1) processes. One method also enables the corresponding ex-
pansions for conditional distributions to be found. Both Pemberton (1987) and Al-Qassem
and Lane (1989) arrive at (10.6) independently. The approach followed by the first author
is to look at H-steps ahead as one step followed by (H − 1) steps whereas the latter authors
consider H-steps ahead prediction as (H − 1) steps followed by a single step. Tong and
Moeanaddin (1988) observe that the forecast error function of the nonlinear LS predictor
is not necessarily a monotonic non-decreasing function of the forecast horizon. Similar as
in Example 10.2, one may use the Markovian structure of SETAR models jointly with the
assumption that the errors are Gaussian distributed, to estimate the probability p(H−d); see
De Gooijer and Kumar (1992, Section 6.2.1).

Cai (2003) presents a convergence theory for a particular numerical method to solve the
Chapman–Kolmogorov relation. It is, however, unclear whether the accuracy of the pre-
dictive CDF, mean, and variance can be guaranteed by the proposed accuracy check on the
calculation of the predictive pdf.

Section 10.2: In this chapter, and particularly this section, most approximate forecasting
methods are for time series of a Markovian structure. Although the assumption of Markov
dependence is satisfied by a large class of linear and nonlinear models that are of interest
in time series analysis and forecasting, there exist non-Markovian processes, e.g. nonlinear
MA models. Guégan (1993) gives analytic expressions for the LS forecasts from some simple
non-Markovian processes. Fassò and Negri (2002) obtain multi-step ahead MC forecasts of
hourly ozone concentration using a seasonal fractionally integrated SETARX–ARCH model.
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Section 10.2.4: Lai and Zhu (1991) consider adaptive multi-step ahead MMSE predictors
for NLAR models when the parameters are unknown, and provide a numerical comparison
between their forecast method and the exact LS forecast Y LS

t+H|t.

Section 10.2.5: Clements and Smith (1997) compare a number of alternative methods of
obtaining multi-step SETAR forecasts, including the NFE method. They conclude that the
MC method performs reasonably well. The BS forecast method is preferred when the errors
in the SETAR model come from a highly asymmetric distribution. Other comparisons
include Amendola and Niglio (2004), Brown and Mariano (1984), Clements and Krolzig
(1998), and Clements and Smith (1999, 2001). Niglio (2007) investigates forecasts from
SETARMA models under asymmetric (linex) loss.

Section 10.2.6: Linearization is often used by control engineers in filtering and nonlinear
system analysis. Apart from the Taylor series expansion there exists several other lineariz-
ation methods of nonlinear state equations; see, e.g., Jordan (2006).

Section 10.2.7: The DE forecasting method was first introduced by Granger (1993, p. 132)
and called direct forecasting.

Section 10.3: Similar to the construction of kernel-type nonparametric BS confidence in-
tervals, nonparametric BFIs can also be based on pivotal statistics which are more conducive
for theoretical analysis. De Brabanter et al. (2005) construct such an interval. Moreover,
they provide an algorithm for the wild bootstrap.

The modal interval SCMI was originally proposed by Lientz (1970, 1972) for unconditional
distribution functions. Hyndman (1995, 1996) was the first to construct HDRs for un-
conditional densities. Yao and Tong (1995) and De Gooijer and Gannoun (2000) provide
applications of FRs and FIs with both real and simulated time series. Polinik and Yao
(2000) establish various asymptotic properties of the conditional HDR, called minimum
volume predictive region. The HDR estimation problem has been the focus of many papers;
see, e.g., Samsworth and Wand (2010) who study the asymptotic and optimal bandwidth
selection for nonparametric HDR estimation of a sequence of i.i.d. random variables.

Section 10.4.1: There is a myriad of theoretical papers dealing with extensions and modi-
fications of the DM test statistic; see, e.g., Harvey et al. (1997), Corradi et al. (2001),
Clements et al. (2003), Van Dijk and Franses (2003), and White (2000). West (2006) and
Corradi and Swanson (2012) provide surveys of the “state-of-the-art”. Two well-received
empirical studies dealing with forecast evaluation are by Swanson and White (1997a,b).
Recently, Diebold (2015) gives some personal reflections about the history of the DM test
statistic. The test was originally developed to compare the accuracy of model-free forecasts.
Mariano and Preve (2012) consider a multivariate version of the DM test statistic with
multiple forecasts and forecast errors from more than two alternative models.

Note, the section does not include nonparametric techniques. For instance, assuming that
the loss differentials are i.i.d., a standard sign test may be performed to test the null hy-
pothesis that the median of the loss-differential distribution is equal to zero. Alternatively,
Wilcoxon’s signed rank sum test for matched pairs can be used for this purpose. Also,
Pesaran and Timmermann (1992) propose a nonparametric test statistic for the null hy-
pothesis that there are no predictable relationships between the actual and predicted sign
changes of the predictand. Swanson and White (1997a,b), Chung and Zhou (1996) and
Jaditz and Sayers (1998) each construct nonparametric test statistics for out-of-sample fore-
casting.
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Gneiting (2011) demonstrates that averaging individual point forecasts, summarized in meas-
ures such as the MAFE and MSFE, can lead to grossly misguided inferences, unless there
is a careful matching between the evaluation (loss) function and the forecasting task.

Section 10.4.2: There exists a large number of studies (see, e.g., Clements and Taylor,
2003; Engle and Manganelli, 2004; Berkowitz et al., 2011; Dumitrescu et al., 2013, and
the references therein) offering alternative approaches to testing for independence; see also
Campbell (2007) for a review.

Section 10.4.3: Diebold et al. (1998, 1999a,b) popularize the idea of using PITs in the
context of macro-econometrics; see Tay and Wallis (2000) for a survey. Wallis (2003) suggests
another way of evaluating density forecasts. Mainly it recasts the LRuc and LRind test
statistics into the framework of a Pearson χ2 test. Unfortunately, this approach lacks the
additivity property of the likelihoods. In fact, it is easy to see that the LR and Markov chain
based FI evaluation approach can be directly extended to the case of evaluating density
forecasts.

A number of empirical studies have shown that nonlinear models produce superior interval
and density forecasts (see, e.g., Clements and Smith, 2000; Ma and Wohar, 2014). Rapach
and Wohar (2006) compare out-of-sample point, interval and density forecasts generated by
the Band–TAR, ESTAR, and linear AR models. The quality (i.e. the statistical performance)
and the operational value of probabilistic forecasts is a primary requirement of many studies
of atmospheric variables. Within this context nonparametric evaluation methods play an
important role; see, e.g., Pinson et al. (2009) and the reference therein.

Section 10.5: Since the seminal work of Bates and Granger (1969) a voluminous literature
has emerged on combining; see Timmermann (2006) for a recent review, and Granger (1989)
and Wallis (2011) for some extensions. One recent paper is Adhikari (2015) who proposes
a linear combination method for point forecasts that determines the combining weights
through a novel NN structure.

Software References

Section 10.1.1: FORTRAN77 code, written by Yuzhi Cai, to find the “exact” conditional
pdf of two-regime SETAR models and STAR models is available at the website of this book.

Section 10.2.1: The PI and LS SETARMA forecast results presented in Table 10.1 of
Example 10.2 are obtained by the LS-PI-forecast.r function, available at the website of this
book. The computer code was provided by Marcella Niglio, who also supplied the Linux-
Procedure.r function related to the generation of forecasts using the linex asymmetric loss
function.

Clements (2005, Chapter 8) contains sample GAUSS code for the estimation and forecasting
(MC method) of SETAR(2; 1, 1) models.

Section 10.3: The BS forecast intervals in Example 10.6 are computed using a RATS code
provided by Jing Li. A MATLAB function for computing BFIs is available at the website
of this book. The R-BootPR package provides a way to obtain BS bias-corrected coefficients
for forecasting linear AR models. The code can easily be adapted to SETAR-type models.
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The R-hdrcde package contains computer code for the calculation and plotting of HDRs.
GAUSS and MATLAB codes for computing the conditional mean, median, mode, SCMI
and HDR are available at the website of this book.

R codes for the estimation, forecasting, and out-of-sample evaluation of the ENSO series are
available in the file Example 6-4.zip.

Section 10.4.1: The MATLAB function dmtest retrieves the DM test statistic (under
quadratic loss) using the Newey–West (1987) estimator for the covariance matrix of the loss
differential. The R-forecast package contains the function dm.test. Some old R code for the
DM test statistic is available at the R-help forum: http://r.789695.n4.nabble.com/R-
help-f789696.html.

The URL http://qed.econ.queensu.ca/jae/datasets/alquist001/ has MATLAB code
used in Alquist and Killian (2010) to calculate the DM test statistic under both quadratic and
absolute loss, the Clark–West (2006) test statistic, and the Pesaran–Timmermann (1992)
test statistic.

Section 10.4.2: MATLAB code for computing the three LR-based test statistics is available
from http://www.runmycode.org/companion/view/93. GAUSS code for MC evaluation
of interval lengths and coverages is given by Clements (2005, Chapter 8).

Exercises

Theory Questions

10.1 Consider the strictly stationary NLAR(1) process

Yt = ωY
1/2
t−1 + εt,

where ω > 0, and {εt} i.i.d.∼ U(a, b) distributed with 0 ≤ a < b < ∞. Recall from
Section 10.1.1 that the exact H-step ahead point forecast is given by E(Yt+H |Yt) =
fH(Yt) (H ≥ 1) using the short-hand notation fH(·) = fYt+H|Yt

(·|x). Moreover, it is
convenient to introduce the functions g0(x) = x, gH(x) = ω(gH−1(x))+με for H ≥ 1.
Then Y Naive

t+H|t = gH(Yt) is the naive H-step forecast of Yt+H , i.e. an SK (skeleton)
forecast with additive WN.

(a) Show that the exact three-step ahead LS conditional pdf is given by

f3(x) =
∫ ∞

−∞
f2(y)g

(
y − μ(x)

)
dy =

a + b

2

+
8

105ω(b− a)2
[
Q(a, b, x)R(a, b, x) + Q(b, a, x)R(b, a, x)

−Q(a, a, x)R(a, a, x)−Q(b, b, x)R(b, b, x)
]
,

where

Q(u, v, x) =

√
u + ω

√
v + ω

√
x,

R(u, v, x) = 2u3 − u2ω

√
v + ω

√
x− 8uω2(v + ω

√
x)− 5ω3(v + ω

√
x)3/2.

[Hint: Use a software package for algebraic manipulation.]

http://www.runmycode.org/companion/view/93
http://qed.econ.queensu.ca/jae/datasets/alquist001/
http://r.789695.n4.nabble.com/R-help-f789696.html
http://r.789695.n4.nabble.com/R-help-f789696.html
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(b) Let z ≥ 0 be a given number. Then the equation x = ωx1/2 + z has a unique
positive root xz. Especially, if z = 0, x0 = ω2. Furthermore, xz is an increasing
function of z. Define α = xa and β = xb. It is easy to verify that Yt−1 ∈ [α, β]
implies Yt ∈ [α, β] ∀t > 0. It can also be proved that for arbitrary Y0 ≥ 0 the
process {Yt, t ∈ Z}, after a finite number of steps, falls with probability 1 into
[α, β] and remains there.
Compute the functions fH(Yt) and gH(Yt) for H = 2 and 3, with Yt ∈ [α, β] for
the following two cases:
(i) ω = 1, a = 0, and b = 1;
(ii) ω = 1, a = 0, and b = 100.
Comment on the results.

(Andĕl, 1997)

10.2 Consider the stationary SETAR(2; 1, 1) process

Yt =
{

φ1Yt−1 + εt if Yt−1 ≤ r,
φ2Yt−1 + εt if Yt−1 > r,

where {εt} i.i.d.∼ N (0, σ2
ε). The one-step ahead MMSE forecast is given by Yt+1|t =

E(Yt+1|Yt) = φ1Yt, if Yt ≤ r, and by Yt+1|t = φ2Yt, if Yt > r. The one-step ahead
forecast variance σ2

e,1 = E(Y 2
t+1|Yt)− Y 2

t+1|t = σ2
ε . Let zt+1|t = (r − Yt+1|t)/σe,t+1.

(a) Show that the exact two-step ahead MMSE forecast is given by

Yt+2|t =
{
φ1Φ

(
zt+1|t

)
+ φ2Φ

(
−zt+1|t

)}
Yt+1|t + (φ2 − φ1)σe,t+1ϕ

(
zt+1|t

)
,

where Φ(·) and ϕ(·) are respectively the CDF and the pdf of the standard normal
distribution.

(b) Show that the exact two-step ahead forecast variance is given by

σ2
e,2 = 2σ2

εΦ
(
zt+t|t

)
+ {φ2

1Φ
(
zt+1|t

)
+ φ2

2Φ
(
− zt+1|t

)
}{Y 2

t+1|t + σ2
e,t+1}

+ (φ2
2 − φ2

1)(r + Yt+1|t)σe,t+1ϕ
(
zt+1|t

)
− Y 2

t+2|t.

(c) Explore the limiting behavior of σ2
e,2 as Yt → ±∞.

(De Gooijer and De Bruin, 1998)

10.3 Consider predicting from a stationary AR(1) process Yt = φYt−1 + εt with {εt} i.i.d.∼
N (0, 1) when the true process factually is the SETAR(2; 0, 0) process in Example 10.1.

(a) Verify (10.9) and (10.10).
(b) Using (10.9) show that E(Yt) = 0, Var(Yt) = 1 + α2, and γY (1) = E(YtYt−1) =

−α
(
ϕ(α)− αβ

)
with β = 1− 2Φ(α).

(c) Show that the ratio of the MSFE of the H-step ahead forecast Y AR
t+H|t from

the AR(1) process to the MSFE of the H-step ahead forecast Y SETAR
t+H|t from the

SETAR(2; 0, 0) process in Example 10.1 can be expressed as

Ratio-MSFE(H) ≡
MSFE(Y AR

t+H|t)

MSFE(Y SETAR
t+H|t )

= 1 +
φHYt + αβH−1I(Yt ≤ 0)− αβH−1I(Yt > 0)

1 + α2(1− β2H−2)
.
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(d) Obtain a value for the AR(1) parameter φ by equating the lag 1 autocorrela-
tions of the AR(1) process and the SETAR(2; 0, 0) process for α = 1.5. Next,
using part (c), plot Ratio-MSFE(H) versus Yt ∈ [−5, 5] for H = 1, 2, 3, and 5.
Comment on the shape of the line plots.

(Guo and Tseng, 1997)

10.4 With reference to Section 2.8.1, we recall that the EAR(1) model is defined as

Yt =
{

αYt−1 with prob. α,
αYt−1 + Et with prob. 1 − α,

where {Et} are i.i.d. exponentially distributed random variables with mean μ. Gaver
and Lewis (1980) show that Yt+j can be expressed as

Yt+j = αjYt + αj−1εt+1 + αj−2εt+2 + · · ·+ εt+j , (j = 0, 1, 2, . . .), (10.80)

where εt = 0 with probability α, and εt = Et with probability 1 − α.

(a) Using (10.80), show that the MSFE(H) of the least squares (LS) forecast is given
by

MSFE(H) = E(e2
t+H|t) = E{(Yt − Y LS

t+H|t)
2} = μ2(1− α2H), (H = 1, 2, . . .).

(b) Show that the MAFE of the one-step ahead LS forecast, denoted by MAFE(1),
is given by

MAFE(1) = 2μ(1− α)e−(1−α).

10.5 With reference to the point forecast evaluation measures in Section 10.4.1:

(a) Verify (10.65).

(b) Verify the statement below (10.66) about the exactness of E(Var
(
d)

)
in the case

the process {dt, t ∈ Z} is WN.

10.6 Let {Yt}T
t=1 be an observed time series with T observations. Suppose that we have two

unbiased one-step ahead forecasts Y1,T+1|T and Y2,T+1|T , obtained from two different
models for time t = T + 1. The corresponding forecast errors are ei,T+1|T = YT+1 −
Yi,T+1|T (i = 1, 2). The one-step ahead forecast errors have variances σ2

1,e and σ2
2,e

with σ2
2,e ≤ σ2

1,e. The covariance between e1,T+1|T and e2,T+1|T is equal σ12.

Consider the following linear combination of the two forecasts

Y C
T+1|T = wY1,T+1|T + (1− w)Y2,T+1|T ,

for some weight w. The corresponding forecast error is eC
T+1|T = YT+1 − Y C

T+1|T .

(a) Show that Var(eC
T+1|T ) is minimal for w = w∗, with

w∗ =
σ2

2,e − σ12

σ2
1,e + σ2

2,e − 2σ12
.
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(b) Let σ2
C(w∗) denote the variance of the combined forecast error evaluated at w∗.

Show that σ2
C(w∗) ≤ σ2

2,e, and thus σ2
C(w∗) ≤ σ2

1,e.

(c) How does the optimal weight w∗, obtained via the combined forecast Y C
T+1|T ,

behave as a function of the correlation ρ12 = σ12/σ1,eσ2,e using values ρ12 = 0
and ρ12 = ±1?

(d) In practice, the variances σ2
1,e, σ2

2,e are unknown. Also, the covariance σ12 is
unknown. How would you suggest to estimate the optimal weight w∗?

10.7 Consider the stationary SETAR(2; 1, 1) process

Yt =
{

φ1Yt−1 + σ1εt if Yt−1 ≤ 0,
φ2Yt−1 + σ2εt if Yt−1 > 0,

where {εt} i.i.d.∼ N (0, 1). Let {Yt}T
t=1 be a time series satisfying the above model.

Suppose that the ith observation (2 ≤ i ≤ T − 1) is missing from the series, but that
{Yt}i−1

t=1 and {Yt}T
t=i+1 are known. Let Y−i

t denote the vector of known observations,
and θ the vector of unknown parameters. Then show that the best minimum MSE
(MMSE) forecast for Yi is given by

Ŷi = E(Yi|Y−i
t ;θ)

=
{(

c
(1)
1 c

(1)
2 Φ(c(1)

2 ) + c
(1)
3 c

(1)
4

)
c
(1)
5 +

(
c
(2)
1 c

(2)
2 Φ(−c

(2)
2 )− c

(2)
3 c

(2)
4

)
c
(2)
5

}
/f(Yi+1|Yi−1),

where, for j = 1, 2,

c
(j)
1 = 1/

√
2π(σ2

j + φjσ2
(j))

c
(j)
2 = (φ(j)σ

2
j Yi−1 + φjYi+1)/(σ2

j + φ2
jσ

2
(j))

c
(j)
3 = σjσ(j)/2π(σ2

j + φjσ
2
(j))

c
(j)
4 = exp{−(φ(j)σ

2
j Yi−1 + φjσ

2
(j)Yi+1)2/2σ2

j σ2
(j)(σ

2
j + φjσ

2
(j))}

c
(j)
5 = exp{−(Yi+1 − φjφ(j)Yi−1)2/2(σ2

j + φjσ
2
(j))},

with

φ(j) = φj + (−1)j+1(φ2 − φ1)I(Yi−1 ≥ 0)

σ(j) = σj + (−1)j+1(σ2 − σ1)I(Yi−1 ≥ 0),

and where Φ(·) is the CDF of the standard normal distribution.

Empirical and Simulation Questions

10.8 Reconsider the SETAR(2; 1, 1) process in Exercise 10.1. Figures 10.9(a) and 10.9(b)
show the exact two-step ahead forecast function and the exact two-step ahead forecast
variance functions for two SETAR(2; 1, 1) processes each having a threshold at r = −2.

(a) Construct a tree diagram of all possible paths from Yt to Yt+2. Explain qualit-
atively the maxima in the two variance functions.
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Figure 10.9: Two-step ahead forecast function (with ±2σe,2) and variance function (blue
solid lines) for the SETAR(2; 1, 1) process in Exercise 10.1 with (a) (φ1, φ2) = (0.8, −0.4),
and (b) (φ1, φ2) = (−0.8, 0.4); r = −2 (black solid vertical line) and σ2

ε = 1.

(b) Consider the SETAR process in Figure 10.9(a). Locate the two maxima of the
two-step ahead forecast variance function by solving dσ2

e,2/du = 0 numerically.

10.9 (a) Verify (10.26). In addition, using this result, prove that

E
(
r(Z + M) exp(−c(Z + M)2

)
= A−1/2 exp(−c1M

2)E
(
r(U)

)
,

where U
i.i.d.∼ N (M/A, σ2

Z/A) with the notation introduced in Section 10.2.5.

The next part consists of a small MC simulation experiment. Consider an EXPAR(1)
model with parameters φ = −0.8, ξ = 2, γ = 2, {εt} i.i.d.∼ N (0, 1). Generate 50 samples
of length T = 130 of the above process. Discard the first 99 values of each realization,
and use Y100 as a starting value. Next, given the last 30 values, make forecast 30-steps
ahead with the NFE and SK methods.

(b) Suppose that ei,j represents the forecasting error for the jth-step ahead in the
ith replication (i = 1, . . . , 50; j = 1, . . . , 30). Analyze and compare the two
forecasting methods in terms of short-term (H = 5), medium-term (H = 15),
and long-term (H = 30) forecasting accuracy via the measures

MSFE(H) =
1
50

50∑
i=1

1
H

H∑
j=1

e2
i,j , and MAFE(H) =

1
50

50∑
i=1

1
H

H∑
j=1

|ei,j |.

10.10 Consider the SETAR(2; 1, 1) model in Example 10.6. In addition to the empirical
coverage rate (CVR) given by (10.53), two other measures for evaluating the sharpness
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Table 10.3: Average CVR (coverage rate) and FI (asymptotic
standard errors are in parentheses) for the SETAR(2; 1, 1) model in
Example 10.6 with (a) {εt} i.i.d.∼ N (0, 1), and (b) {εt} i.i.d.∼ t5 distri-
bution; T = 100, B = 1,000, H = 1, α = 0.05, and m = 500.

FI0.95 {εt} i.i.d.∼ N (0, 1) {εt} i.i.d.∼ t5

CVR FI CVR FI

BFI (fitted residuals) 0.937 3.890(0.375) 0.978 5.188(0.785)

BFI (predictive residuals) 0.947 4.060(0.382) 0.983 5.416(0.802)

and resolution are the size and standard error of the length of the FIs, i.e. Ŷ
(1−α/2)
T+H,i −

Ŷ
(α/2)
T+H,i, where Ŷ

(1−α/2)
T+H,i and Ŷ

(α/2)
T+H,i are based on m MC replications.

(a) Consider Algorithm 10.1 with H = 1, B = 1,000, α = 0.05, and T = 100.

Moreover, set m = 500. Compute the CVR, the average length FI
(1−α)

H =
m−1

∑m
i=1(Ŷ

(1−α/2)
T+H,i − Ŷ

(α/2)
T+H,i), and the associated standard error when the er-

ror terms of the SETAR process are simulated using (a) the standard normal
distribution, and (b) the fat-tailed Student t5 distribution re-scaled to unit vari-
ance. You will obtain (approximately) the results in Table 10.3.

(b) Compare and contrast the results in Table 10.3.

10.11 Consider the river flow data set; see Examples 9.3 and 10.7. The file SCMI-HDR.dat
contains the last 35 observations of the river flow data set (column 1), the SCMI-lower
and upper FI (columns 2 – 3), and the HDR-lower and upper FI (columns 4 – 5).
Both FIs are shown in Figure 10.6, with coverage probability 1 − α = 0.9.

(a) Evaluate the two FIs using the test statistics LRuc, LRind, and LRcc. In the case
of LRuc and LRcc, take p = [0.5, 0.525, . . . , 0.95] (19 values).

(b) Test for independence of the process {i(α)
t , t ∈ Z} using the test statistic (10.74).

Calculate the rejection frequency under the null hypothesis over 25,000 replic-
ations. Compare the outcome of the test with the test result of LR ind in part
(a).

10.12 Consider a certain strictly stationary and invertible time series process {Yt, t ∈
Z} whose ACF is identically zero. Therefore, it is reasonable to use Y LS

t+H|t =
E(Yt+H |Ys,−∞ < s ≤ t) = 0 (H ≥ 1) as the best (in the MSE sense) least squares
(LS) forecast of Yt+H . Yet, assume that in reality {Yt, t ∈ Z} is nonlinear. If this
fact is known, the forecast accuracy may be improved using a nonlinear (NL) forecast
based on a proper nonlinear model. This is a starting-point for the following forecast
comparison.

Suppose that the time series {Yt}T
t=1 is generated by the subdiagonal BL model

Yt = ψYt−2εt−1+εt, where {εt} i.i.d.∼ N (0, 1). The coefficient ψ is assumed to be known,
and ψ satisfies the invertibility condition |ψ| < 1/

√
2. Of course, the assumption that

the BL model is completely known is not very realistic in practice. However, under
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not too restrictive assumptions, Matsuda and Huzii (1997) show that the LS and NL
predictors with LS estimated parameters converge to their asymptotic values.

(a) Using your favorite programming language, write a computer code to obtain
estimates of the relative MSFE of the LS and NL forecasts for H = 1 and 2, and
ψ = −0.65,−0.55, . . . , 0.65. That is

MSFE(Y LS
t+H|t)/MSFE(Y NL

t+H|t), (H = 1, 2),

where the nonlinear two-step ahead forecasts are computed by the MC simulation
method in Section 10.2.1. Set the number of replications N = 100. Moreover,
set the number of MC replications at 2,000, and take T = 50.

In addition, consider the quadratic (Q) predictor introduced in (4.54). For the sub-
diagonal BL model the one-step ahead forecast is given by Y Q

t+1|t = ψYt−2Yt−1. This
approximation follows from replacing εt−1 by its definition εt−1 = Yt−1 − ψYt−3εt−2

and ignoring the term containing ψ2 in the subsequent expression. The two-step ahead
quadratic predictor can be obtained by MC simulation.

(b) Write a computer code to obtain estimates of the one- and two-step ahead MSFE
of the quadratic predictor using the same MC setup as in part (a). Compute
MSFE(Y Q

t+H|t)/MSFE(Y NL
t+H|t) (H = 1, 2) for ψ = −0.65,−0.55, . . . , 0.65. Com-

pare the estimates of the relative MSFEs with those obtained under (a).



Chapter 11
VECTOR PARAMETRIC MODELS AND
METHODS

In this chapter, we extend the univariate nonlinear parametric time series framework
to encompass multiple, related time series exhibiting nonlinear behavior. Over the
past few years, many multivariate (vector) nonlinear time series models have been
proposed. Some of them are “ad - hoc”, with a special application in mind. Others
are direct multivariate extensions of their univariate counterparts. Within the latter
class, a definition of a multivariate nonlinear time series model is often proposed with
the following objectives in mind. First, the definition should contain the most general
linear vector model as a special case when the nonlinear part is not present. This is
analogous to univariate nonlinear time series models embedding linear ones. Second,
the definition should contain the most general univariate nonlinear model within its
class of models. Also, a potential candidate for a multivariate nonlinear time series
model should possess some specified properties in order to permit estimation of the
unknown model parameters and allow statistical inference. Moreover, because one
of the main uses of time series analysis is forecasting, it is reasonable to restrict
consideration to models which are capable of producing forecasts.

In Section 11.1, we give a general parametric multivariate nonlinear model in
the context of a vector Volterra series expansion, extending the discussion in Sec-
tion 2.1.1. However, with this specification an enormous range of possible models
emerges. The obvious way to avoid this problem is to impose some sensible restric-
tions on the structure of the model. This has led to a wealth of “restricted” vector
nonlinear models. Our treatment in Section 11.2 covers only a few of the most basic
ones. Each subsection provides a definition of the model, and discusses conditions
for stationarity and invertibility, if available. In contrast, we will not say much about
estimating these vector nonlinear models. In most cases, QML and CLS estimation
methods may be employed. In Sections 11.3 and 11.4, we then discuss a number of
time-domain test statistics for nonlinearity. Most of these tests are generalizations
of similar tests discussed in Chapter 5. In Section 11.5, we briefly address the prob-
lem of choosing the proper structure of a model using two model selection criteria.
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To check the model adequacy, we discuss two portmanteau-type test statistics in
Section 11.6. Section 11.7 deals with the calculation of forecasts, and we consider
a method for forecast density evaluation using PITs. Finally, in Section 11.8, we
apply some of the modeling and testing procedures to two Icelandic river flow series.

Two appendices are added to the chapter: Appendix 11.A contains selected
percentiles for the LR test statistic introduced in Section 11.4. Appendix 11.B
provides a step-by-step algorithm for the estimation of GIRFs in nonlinear VAR
processes.

11.1 General Multivariate Nonlinear Model

Consider an m-dimensional stochastic process Yt = (Y1,t, . . . , Ym,t)′. Let g(·) =(
g1(·), . . . , gm(·)

)′ denote a sufficiently smooth vector function on Rm, and θ a vector
of unknown parameters. Then, following the discussion of Section 2.1, a general
nonlinear vector (multivariate) time series model can be written as

Yt = g(Yt−1, . . . ,Yt−p, εt−1, . . . , εt−q; θ) + εt, (11.1)

where εt = (ε1,t, . . . , εm,t)′ is an m-variate i.i.d. random sequence with mean zero
and positive definite covariance matrix Σε, independent of Yt.

As in (2.3), we can express gi(·) (i = 1, . . . ,m) by a multivariate discrete-time
Volterra series representation. The ith component of the resulting expression is
given by

Yi,t = μi + εi,t +
m∑

u=1

∞∑
k=1

bi,u,kεu,t−k +
m∑

u,v=1

∞∑
k,�=1

bi,u,v,k,�εv,t−kεu,t−� + · · · , (11.2)

(i = 1, . . . ,m).

In practice, a truncated representation involving a finite number of parameters is
used to approximate this structure. In particular, the ith component of a vector BL
model results if all the coefficients of the second- and higher-order terms in (11.2)
equal zero. Furthermore, we introduce the m(p + q)-dimensional state vector St

defined by
St = (Y′

t, . . . ,Y
′
t−p+1, ε

′
t, . . . ε

′
t−q+1)

′. (11.3)

Then we can define a multivariate SDM of order (p, q) which is locally linear, just
as in (2.10). Its ith component is given by

Yi,t = μi(St−1) +
p∑

j=1

φi,j(St−1)Yi,t−j + εi,t +
q∑

�=1

θi,�(St−1)εi,t−�, (i = 1, . . . ,m).

(11.4)

If all the parameters are constant, we have the ith component of the well-known
vector autoregressive moving average (VARMA) model. Clearly, an obvious gener-
alization of (11.1) is to allow for exogenous regressors in the function g(·).
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11.2 Vector Models

11.2.1 Bilinear models
An m-dimensional vector BL model follows as a special case of the Volterra repres-
entation in (11.2). Its ith component (1 ≤ i ≤ m) is given by

Yi,t = εi,t +
m∑

u=1

p∑
j=1

φj
i,uYu,t−j +

m∑
u=1

q∑
j=1

θj
i,uεu,t−j +

m∑
k,�=1

P∑
u=1

Q∑
v=1

ψuv
i,k,�Yk,t−uε�,t−v,

(11.5)

where {φj
i,u}, {θ

j
i,u}, and {ψuv

i,k,�} are sequences of constants.
By introducing matrix notation and the Kronecker product, we can write the

system of equations defined by (11.5) in vector form as

Yt =
p∑

j=1

ΦjYt−j + εt +
q∑

j=1

Θjεt−j +
P∑

u=1

Q∑
v=1

Ψuv{εt−v ⊗Yt−u}. (11.6)

Here, Φj = {φj
i,u, 1 ≤ j ≤ p} and Θj = {θj

i,u, 1 ≤ j ≤ q} are m ×m matrices, and
Ψuv (1 ≤ u ≤ P ; 1 ≤ v ≤ Q) is an m × m2 matrix with the ith row obtained by
vectorizing the m×m matrix ψuv

i = {ψuv
i,k,�, 1 ≤ k, � ≤ m}, where k is the row index

and �th column index, i.e.

Ψuv =
(
(vec(ψuv

1 ))′, . . . , (vec(ψuv
m ))′

)′
.

Note that (11.5) involves PQm2 +m(p+ q) parameters, making it too general to
be of use in practice. As for the univariate BL model, special cases of (11.5) include
the

• superdiagonal case: ψuv
i,k,� = 0, ∀u > v.

• subdiagonal case: ψuv
i,k,� = 0, ∀u < v.

• diagonal case: ψuv
i,k,� = 0, ∀u �= v.

Stationarity
Stensholt and Tjøstheim (1987) give sufficient conditions for strict stationarity of
vector subdiagonal BL models, and obtain expressions for the mean and higher-
order autocovariance matrices.1 For simplicity, we assume that P = p and Q = q,
and q ≤ p. This is not an essential assumption, since it can be fulfilled by introducing

1Our use of the term “subdiagonal” is in line with the definition given by Granger and Andersen
(1978a) and Stensholt and Tjøstheim (1987).



442 11 VECTOR PARAMETRIC MODELS AND METHODS

a suitable number of zero matrices. Now, we can rewrite (11.6) in a state space form.
That is

St = Fεt + ASt−1 +
q∑

v=1

Cv[εt−v ⊗ Im(p+q)]St−1, (11.7)

where we define the m(p + q)×m matrix F and the m(p + q)×m(p + q) matrix A
as follows

F=

⎛⎜⎜⎝
Im

0m(p−1)×m

Im

0m(q−1)×m

⎞⎟⎟⎠, A=

⎛⎜⎜⎜⎝
Φ1 · · · Φp Θ1 · · · Θq

Im(p−1) 0m(p−1)×m 0m(p−1)×m(q−1)

0m×m · · · 0m×m

0mq×mp Im(q−1) 0m(q−1)×m

⎞⎟⎟⎟⎠.

We also define the m(p + q)×m2(p + q) matrices Cv (v = 1, . . . , q) as

Cv =
(

Cv
1 · · · Cv

m

0m(p+q−1)×m2(p+q)

)
, where Cv

j =

⎛⎜⎜⎜⎝
(
vec(Cv

1,j)
)′

... 0m×mq(
vec(Cv

m,j)
)′

⎞⎟⎟⎟⎠,

with the m× p matrices Cv
i,j (1 ≤ i ≤ m) defined by

Cv
i,j = {ψk�

i,u,v, 1 ≤ u ≤ m, 1 ≤ k ≤ p},

and where for simplicity we assume that ψk�
i,u,v = 0 for k < � in the sequel.

Following Stensholt and Tjøstheim (1987), we shall use the above matrices to
formulate a strictly stationary solution of (11.7). Let H = E[{εt ⊗ Im(p+q)} ⊗ {εt ⊗
Im(p+q)}]. We further introduce the m2(p+q)2×m2(p+q)2 matrices Γv (1 ≤ v ≤ q)
defined by

Γ1 = A⊗A + (C1 ⊗C1)H,

Γv =
v−1∑
i=1

{
(Av−iCi)⊗Cv

}
H(Ai−1 ⊗Av−1) + (Cv ⊗Cv)H(Av−1 ⊗Av−1)

+
v−1∑
i=1

{
Cv ⊗ (Av−iCi)

}
H(Av−1 ⊗Ai−1), (2 ≤ v ≤ q),

where A0 = Im(p+q). Moreover, let L be the qm2(p + q)2 × qm2(p + q)2 matrix
defined by

L =
(

Γ1 Γ2 · · · Γq

I(q−1)m2(p+q)2 0(q−1)m2(p+q)2×m2(p+q)2

)
.

Then, if

ρ(L) < 1, (11.8)
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equation (11.7) has a unique strictly stationary and ergodic solution (Stensholt and
Tjøstheim, 1987, Thm. 4.1) given by

St = Fεt +
∞∑

j=1

j∏
r=1

(
A +

q∑
v=1

Cv[εt−v−r+1 ⊗ Im(p+q)]
)
Fεt−j , (11.9)

where the expression on the right-hand side of (11.9) converges absolutely almost
surely as well as in the mean for every fixed t in Z.

Liu (1989b) derives a sufficient condition for the existence of a strictly stationary
solution of the general vector BL model (11.6). The condition has the same form as
(11.8) except that the order and entries of the matrix Γj follow from another state
space representation than (11.7) with fewer dimensions. By assuming {εt} is an
i.i.d. sequence satisfying E(εi,t)2Q < ∞ (i = 1, . . . ,m) and E(εt) = 0, the condition
for strict stationarity reduces to (11.8).

A potentially useful result (Stensholt and Tjøstheim, 1987) for the identification
of vector superdiagonal BL models is that the autocovariance matrix of {St, t ∈ Z}
at lag � (� > q) is given by

Cov(St,St−�) =
p∑

i=1

AiCov(St−i,St−�), (11.10)

assuming the existence of the fourth moments of {εt}. Thus, the process (11.9)
has the same autocovariance structure as for a VARMA(p, q) process. This result
suggests that p and q selected by standard linear model selection techniques such
as AIC or BIC, can also serve as upper bounds on the lag orders P and Q in the
specification of BL models.

Invertibility
Here, we discuss invertibility of the process {Yt, t ∈ Z} given by (11.6) with P = p,
Q = q and q ≤ p. Define the mp× 1 vectors

St = (Y′
t−1, . . . ,Y

′
t−p+1)

′, Ut = (ε′t−1, . . . , ε
′
t−q+1,0

′, . . . , 0′)′.

Then, in matrix notation, we can write {Yt, t ∈ Z} as follows

St = Ut + ΦSt−1 + ΘUt−1 + Ψ[St−1 ⊗ Imp]Ut−1, (11.11)

where we define the mp×mp matrices Φ and Θ as follows

Φ =
(

Φ1 · · · Φp

Im(p−1)

)
, Θ =

⎛⎜⎝ Θ1 · · · Θq 0 · · · 0

−Im(q−1)

...
...

0 · · · 0 0 · · · 0

⎞⎟⎠.
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We also define the following matrices

Ψi,u =

⎛⎜⎜⎝
ψu1

i,1,1 · · · ψu1
i,m,1 ψu2

i,1,1 . . . ψu2
i,m,1 · · · ψuq

i,1,1 · · · ψuq
i,m,1 0 · · · 0

...
...

...
...

ψu1
i,1,m · · · ψu1

i,m,m ψu2
i,1,m . . . ψu2

i,m,m · · · ψuq
i,1,m · · · ψuq

i,m,m 0 · · · 0

⎞⎟⎟⎠
m×mp

Ψu = [Ψ1,u, · · · ,Ψm,u]m×m2p, Ψ =
(
Ψ1 · · · Ψp

0m(p−1)×m2p

)
mp×m2p2

.

Now the process satisfying (11.6) is invertible (both by the classical concept of
invertibility and by the Granger–Andersen invertibility concept), if

expE
{

log‖
q∏

v=1

Θ + Ψ[St−v ⊗ Imp]‖
}

< 1. (11.12)

Using Jensen’s inequality, we obtain

expE
{

log‖
q∏

j=1

Θ + Ψ[St−j ⊗ Imp]‖
}
≤ E

{
‖

q∏
j=1

Θ + Ψ[Yt−j ⊗ Imp]‖
}
.

Hence, a stronger condition for invertibility than (11.12) is given by

E
{
‖

q∏
j=1

Θ + Ψ[Yt−j ⊗ Imp]‖
}

< 1. (11.13)

It is clear that conditions (11.12) and (11.13) do not depend on the coefficients
of the linear VAR(p) submodel. Nevertheless, these conditions are hard to verify
in practice since they depend on the distribution of {Yt, t ∈ Z}. However, we can
replace (11.12) by a stronger condition which assumes only the existence of second
moments of {Yt, t ∈ Z}. As an example, we consider a multivariate BL model with
a single lag in the noise term and P = p. First, we define the m× 1 vectors

Yt = (Y1,t, . . . , Ym,t)′, and εt = (ε1,t, . . . , εm,t)′.

Then the representation of the multivariate BL model with just one lag in the noise
term is given by

Yt =
p∑

i=1

ΦiYt−i + εt +
{
Θv +

p∑
u=1

Ψuv[Yt−u ⊗ Im]
}
εt−v, (11.14)

(v ∈ {1, . . . , q}; q ≤ p),

where

Ψuv =

⎛⎝ ψuv
1,1,1 · · · ψuv

m,1,1 · · · φuv
m,1,1 · · · ψuv

m,1,m

...
...

ψuv
1,m,1 · · · ψuv

m,m,1 · · · φuv
m,m,1 · · · ψuv

m,m,m

⎞⎠
m×m2

. (11.15)
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Now, it can be shown (cf. Exercise 11.1) that {Yt, t ∈ Z} is invertible if

‖Θv‖+
p∑

u=1

‖Ψuv‖
√
E‖Yt‖2 < 1, (v ∈ {1, . . . , q}; q ≤ p). (11.16)

This criterion is sufficient, but not necessary.

Example 11.1: Stationarity and Invertibility of a Bivariate BL Model

Consider a bivariate (m = 2) BL model with p = P = Q = 1 and a single lag
in the noise term, say at lag q = 1. Then the state space representation (11.7)
is given by

St = Fεt + ASt−1 + C1[εt−1 ⊗ I4)]St−1,

where

F =

⎛⎜⎝ 0.5 0
0 −0.7

0.5 0
0 −0.7

⎞⎟⎠ , A =

⎛⎜⎝ 0.2 0.3 0 0
0.1 −0.5 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ , C1 =

⎛⎜⎝ 0.2 −0.1 0 0 0.1 0.3 0 0
0.4 −0.3 0 0 −0.3 0.4 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎠.

The stationarity condition (11.8) becomes ρ
{
(A ⊗ A) + (C1 ⊗ C1)H

}
< 1

with H = E[{εt ⊗ I4)} ⊗ {εt ⊗ I4)}], and by (11.16) the invertibility condition
becomes ‖Ψ11‖

√
E‖Yt‖2 < 1, where

Ψ11 =
(

0.2 −0.1 0.1 0.3
0.4 −0.3 −0.3 0.4

)
.

We can obtain the stationarity condition by simple calculation. Since
√
E‖Yt‖2

is unknown, we replace the expression for the invertibility condition by the ap-
proximation ‖Ψ11‖(1,000)−1

∑1,000
t=1 ‖Yt‖2.

When we fix the covariance matrix of the vector time series process {εt} at
Σε = I2, the value of the stationarity condition equals 0.57, and the values of
the approximate invertibility condition are in the range (0.71, 1.19) with an
average of 0.89. When Σε = ( 2 0.5

0.5 2 ) the value of the stationarity condition is
0.70. On the other hand, the values of the approximate invertibility condition
are in the range (1.26, 1.62), so indicating that the process is non-invertible.
Figures 11.1(a) – (b) show the pattern of a typical realization of {Yt, t ∈ Z},
for each covariance matrix Σε. Overall these time series are rather stable in
both cases, with larger changes in the variance of {Yt, t ∈ Z} in Figure 11.1(b)
than in Figure 11.1(a). In general, the stationarity condition (11.8) works well
for a wide range of parameter matrices. However, one has to be careful in
using condition (11.16) since it seems to be too strong, i.e. the invertibility
domain is smaller than the exact invertibility domain. We discussed this point
earlier in Section 3.5 for the univariate case.
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Figure 11.1: A typical realization of a bivariate BL process (T = 500; blue solid line Y1,t,
red solid line Y2,t); (a) Σε = I2, and (b) Σε = ( 2 0.5

0.5 2 ).

11.2.2 General threshold ARMA (TARMA) model

The general form (11.1) is not really useful in practice. A model that includes a
wide range of, but not all, multivariate possibilities, while still retaining practical
significance, is a more worthwhile object. One way to accommodate this considera-
tion, is to assume that the function g(·) in (11.1) is additive while retaining a vector
linear model as a special case. Under the additivity setup, we present some special
cases of the resulting models in this and the next five subsections.

Let {Xt, t ∈ Z} denote a weakly stationary m-variate continuous process in
Rm. Assume that Rm can be partitioned into k > 1 non-overlapping subspaces Rm

i ,
i.e. Rm

i ∩ Rm
i′ = ∅ ∀i �= i′ (i, i′ = 1, . . . , k) determined by the values of {Xt−d},

where d > 0 is the threshold lag or delay parameter. Then, for an m-dimensional
strictly stationary time series process {Yt, t ∈ Z}, a VTARMA model of order
(k; p, . . . , p, q, . . . , q) is defined as

Yt =
k∑

i=1

(
Φ(i)

0 +
p∑

u=1

Φ(i)
u Yt−u + ε

(i)
t +

q∑
v=1

Ψ(i)
v ε

(i)
t−v

)
I
(
(ω(i))′Xt−d ∈ Rm

i

)
, (11.17)

where Φ(i)
0 are m× 1 constant vectors, Φ(i)

u and Ψ(i)
u are m×m matrix parameters,

and ω(i) = (ω(i)
1 , . . . , ω

(i)
m )′ is a pre-specified m-dimensional vector. When ω(i) =

(1, 0, . . . , 0)′, the threshold variable is simply X1,t−d. The error process in the ith
regime satisfies ε

(i)
t = (Σ(i)

ε )1/2εt, where (Σ(i)
ε )1/2 are symmetric positive definite

matrices and {εt} is an m-variate serially uncorrelated process with mean 0 and
covariance matrix Im. The process {Xt, t ∈ Z} can include lagged values of the
time series process {Yt, t ∈ Z}, or lagged values of an exogenous (independent or
explanatory) variable. Additionally, the order (p, . . . , p, q, . . . , q) can be different in
each regime. Also, the threshold regimes may include lagged exogenous variables.
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Note that (11.17) is very general, in the sense that the regimes are defined by
arbitrary subspaces of Rm. However, identification of such regimes can be difficult in
practice. Tsay (1998) discusses a VTAR model in which values of a single exogenous
variable X1,t−d ≡ Xt−d are used to determine the different regimes. That is, with
R(i) = (ri−1, ri], where −∞ = r0 < r1 < · · · < rk−1 < rk = ∞, (11.17) simplifies to

Yt =
k∑

i=1

(
Φ(i)

0 +
p∑

u=1

Φ(i)
u Yt−u + ε

(i)
t

)
I(Xt−d ∈ R(i))

=
k∑

i=1

(
Φ(i)

0 +
p∑

u=1

Φ(i)
u Yt−u + ε

(i)
t

)
(I(i−1)

t−d − I
(i)
t−d), (11.18)

where

(I(i−1)
t−d − I

(i)
t−d) ≡ I(Xt−d > ri−1)− I(Xt−d ≥ ri), (I(0)

t−d = 1, I
(k)
t−d = 0).

Analogous to properties described for univariate TAR models, it can be shown
(Lai and Wei, 1982) that under mild regularity conditions the CLS estimates of
(Φ(i)

u , rj , d) (i = 1, . . . , k; j = 1, . . . , k − 1) are strongly consistent and the LS estim-
ates of Φ(i)

u are asymptotically normally distributed and independent of rj and d.
These results apply whenever the conditional expectation E(Yt|F t−1) has a discon-
tinuity at the threshold Xt−d = rj (j = 1, . . . , k − 1) where F t−1 is the information
set available at time t− 1. When the expectation is continuous at the threshold val-
ues, the process will be the multivariate version of the CSETAR model described in
Section 2.6.3. When Xt−d = Y1,t−d, (11.18) reduces to a vector SETAR (VSETAR)
model.

Stationarity
To present stationarity conditions for the VTARMA process, we first define the
m(p + q)-dimensional vector Ut = (ε′t,0′

m(p−1)×1, ε
′
t,0

′
m(q−1)×1)

′. We set ω =

(1, . . . , 1)′ and Φ(i)
0 = 0, ∀i, in (11.17). We also need the state space vector

St defined in (11.3). Then we can re-write the VTARMA model compactly as a
VTAR(k; 1, . . . , 1) process. That is,

St = Φ(i)St−1 + Ut, if Xt−d ∈ R(i), (i = 1, . . . , k), (11.19)

where Φ(i) is an m(p + q)×m(p + q) matrix, partitioned as follows

Φ(i) =

⎛⎝ Φ(i)
11 Φ(i)

12

0mq×mp Φ(i)
22

⎞⎠ ,

with

Φ(i)
11=

(
Φ

(i)
1 · · · Φ

(i)
p

Im(p−1) 0m(p−1)×m

)
, Φ(i)

12=
(

Ψ
(i)
1 · · · Ψ

(i)
q

0m(p−1)×mq

)
,Φ(i)

22 =
(

0m×m · · · 0m×m

Im(q−1) 0m(q−1)×m

)
.
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Observe that (11.19) is identical to the SRE in (3.1) with At ≡ Φ(i) if Xt−d ∈ R(i)

(i = 1, . . . , k). After s iterations, and similar to (3.4), (11.19) can be written as

St =
( s∏

i=0

(
At−i

)
St−s−1 +

s∑
i=0

( i−1∏
j=0

At−j

)
Ut−i, ∀s ∈ N, (11.20)

where
∏−1

j=0 At−j = Im. Then, under some mild conditions, Niglio and Vitale (2014)
show that the process {St, t ∈ Z} is strictly stationary and ergodic if

k∏
i=1

ρ(Φ(i))pi < 1, (11.21)

where pi = E[I(Xt−d ∈ R(i))] < 1 with
∑k

i=1 pi = 1, and ρ(Φ(i)) is the dominant
eigenvalue (or spectral radius) of Φ(i) (i = 1, . . . , k).

Invertibility
Consider, as a special case of (11.17), the VTMA(k; q, . . . , q) model

Yt =
k∑

i=1

( q∑
v=1

Ψ(i)
v εt−v

)
I
(
X t−d ∈ R(i)

)
+ εt. (11.22)

It is convenient to rewrite (11.22) as an mq-dimensional TVMA(k; 1, . . . , 1) process,
using the state vector St and the vector of errors Ut, respectively defined as

St = (Y′
t, ε

′
t−1, . . . , ε

′
t−q+1)

′, Ut = (ε′t, ε
′
t−1, . . . , ε

′
t−q+1)

′.

Thus, the model is given by

St = Ut +
k∑

i=1

Ψ(i)Ut−1I(Xt−d ∈ R(i)), (11.23)

where Ψ(i) is an mq ×mq matrix defined by

Ψ(i) =
(

Ψ
(i)
1 . . . Ψ

(i)
q

0(m−1)q×mq

)
.

Then, under some mild conditions, Niglio and Vitale (2013) show that (11.23) is
globally invertible if

k∏
i=1

ρ(Ψ(i))pi < 1. (11.24)
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Further, they show that under condition (11.24), the VTMA(k; q, . . . , q) model can
be written as a VTAR of infinite order with conditionally time dependent paramet-
ers, i.e.

εt = Yt +
∞∑

j=1

Πj,tYt−j , (11.25)

where

Πj,t = −
q∑

i=1

Πj−i,t

( k∑
�=1

Ψ(�)
i I(Xt−d−(j−i) ∈ R(�))

)
,

with Πj−i,t = 0 if j < i, and Πj−i,t = Im if i = j. The above condition is sufficient
and global. So, the VTMA model can still have locally non-invertible regimes while
the full model satisfies condition (11.24).

11.2.3 VSETAR with multivariate thresholds

Model (11.18) describes a specification with a single threshold variable partition. A
more general formulation follows when we allow up to, say, kmax = max{k1, k2, . . . ,
km} partitions for each variable in the m-dimensional threshold sample space. This
parallels a similar model specification introduced in Section 2.6.4.

More specifically, let (k1, k2, . . . , km) ∈ Z+, and let (R(i)
j )(i=1,2,...,kj) be a dis-

junctive decomposition of the real line R, such that R = ∪kj

i=1R
(i)
j with R(i)

j = ∅
(i = kj + 1, . . . , kmax; j = 1, . . . ,m). Then, for a strictly stationary m-dimensional
process {Yt, t ∈ Z}, a VSETAR process of order (kmax, pJ) and delay d, is defined
as

Yt =
∑

J∈{1,...,kmax}m

(
Φ(J)

0 +
pJ∑

u=1

Φ(J)
u Yt−u + ε

(J)
t

)
I(Yt−d ∈ RJ), (11.26)

where RJ ≡ R
(J)
1 × · · · × R(J)

m , Φ(J)
0 is an m × 1 constant vector, Φ(J)

u are m ×
m parameter matrices with elements {(φ(J)

u;r,s); 1 ≤ r, s ≤ m,u = 1, . . . , pJ}. The
process {ε(J)

t } is an m-dimensional vector martingale difference sequence satisfying
E(ε(J)

t |F t−1) = 0, Cov(ε(J)
t , ε

(J)
t |F t−1) = Σε and Cov(ε(J)

t , ε
(J)
s |F t∧s) = 0 (t �= s),

where F t is the information set generated by {Ys, s ≤ t}.
Analogous to univariate SETAR models, parameter estimation of VSETARs,

with and without multivariate thresholds, can be performed by CLS assuming the
order of the model, the delay, and the number of threshold parameters are known.
Alternatively, one may use an algorithm for recursive LS estimation by, for instance,
adopting a multivariate version of the recursions (5.86) – (5.87); see, e.g., Arnold
and Günther (2001). Finally, note that we may extend (11.18) and (11.26) to a
V(SE)TARX model by introducing eXogenous variables.
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Figure 11.2: (a) – (b) Regime-specific realizations of {Y (J)
j,t }100t=1 (j = 1, 2;J = 1, 2)

obtained from model (11.27) with T = 7,000; (c) – (d) Sample CCFs for {(Y (J)
1,t , Y

(J)
2,t )}TJ

t=1

(T1 = 3,539 and T2 = 3,460) with 95% asymptotic confidence limits (blue medium dashed
lines).

Example 11.2: A Two-regime Bivariate VSETAR(2; 1, 1) Model

Consider the following two-regime bivariate VSETAR(2; 1, 1) model with R(J)
1 =

R (J = 1, 2), R(1)
2 = (−∞, 0), and R(2)

2 = [0, ∞), i.e.

Yt =
{

Φ(1)
1 Yt−1 + εt if Yt−1 ∈ R1 ≡ R× (−∞, 0),

Φ(2)
1 Yt−1 + εt if Yt−1 ∈ R2 ≡ R× [0, ∞),

(11.27)

where

Φ(1)
1 =

(
0.8 0.5
0 0

)
, Φ(2)

1 =
(

0.5 0.3
0 0

)
, {εt} i.i.d.∼ N (0, I2).

Figures 11.2(a) – (b) show plots of the series {Y (J)
j,t }100

t=1 (J = 1, 2; j = 1, 2) for
each regime obtained as subseries from two typical regime-specific realizations
of length T1 = 3,539 and T2 = 3,460 respectively. Both plots provide informa-
tion of a possible feedback relationship from earlier values of Y

(J)
2,t (black solid

lines) to Y
(J)
1,t (blue solid lines). The sample CCFs in Figures 11.2(c) – (d)
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support this observation with significant values at lag � = −1, as indicated by
the Bartlett 95% asymptotic confidence limits ±1.96/

√
TJ .2

Unfortunately, Bartlett’s confidence limits are no longer valid for nonlinear
DGPs as we have remarked earlier. Thus, it may be safer to follow another
route to detect whether one time series is leading another. In particular,
Granger’s causality concept, or rather its opposite, Granger non-causality,
may be used for this purpose. The concept is well known in the context of
VAR models; see Section 12.5 for a definition. Evidently, for (11.27) a Granger
causality test based on the parameter restriction φ

(J)
1;1,2 = 0 ∀J is no longer

sufficient due to across-regime interactions.

An immediate but approximate solution is to compute a Granger caus-
ality measure for each regime J separately; Leistritz et al. (2006). Let
Y−u

t = (Y1,t, . . . , Yu−1,t, Yu+1,t, . . . , Ym,t)′, where the superscript −u denotes
omission of the uth variable in Rm, with corresponding restricted information
set R−u

j =
∏
R1,...,Ru−1,Ru+1,...,Rm

Rj (j = 1, . . . ,m). Further, for each regime J

(J = 1, . . . , kmax), let e
(J)
j,t+1|Yt−d denote the one-step ahead forecast error for

Y
(J)
j,t+1 (j = 1, . . . ,m) conditional on Yt−d ∈ Rj when the forecast is given by

the conditional mean. In addition, let ẽ
(J)
j,t+1|Y

−u
t−d denote the one-step ahead

forecast error for Y
(J)
j,t+1 (i = 1, . . . ,m) conditional on Y−u

t−d ∈ R−u
j with sim-

ilar properties. Then Y
(J)
u,t does not Granger cause in variance Y

(J)
j,t (j �= u),

denoted by Y
(J)
u,t

V
� Y

(J)
j,t , if and only if

E
(
(e(J)

j,t+1)
2|Yt−d

)
= E

(
(ẽ(J)

j,t+1)
2|Y−u

t−d

)
< ∞ ∀t. (11.28)

In view of (11.28), the Granger causality index (GCI) for regime J is defined
as

γ
(J)
u→j = log

(E(
(ẽ(J)

j,t+1)
2|Y−u

t−d

)
E

(
(e(J)

j,t+1)2|Yt−d

))
. (11.29)

In practice, we replace γ
(J)
u→j by an estimate γ̂

(J)
u→j using consistent estimates

of E
(
(e(J)

j,t+1)
2|Yt−d

)
and E

(
(ẽ(J)

j,t+1)
2|Y−u

t−d

)
. Thus, if the series Y

(J)
u,t does not

improve the prediction of Y
(J)
j,t+1, γ̂

(J)
u→j will be close to zero. Any improvement

in prediction of Y
(J)
j,t+1 by the inclusion of Y

(J)
u,t in the information set leads to

an increase in γ̂
(J)
u→j .

In order to evaluate the performance of γ̂
(J)
u→j in the case of the two-regime

VSETAR(2; 1, 1) model (11.27) we bootstrapped the EDF of γ̂
(J)
u→j (100 BS rep-

licates) and computed 95% critical values for each regime. Next, based on 500
2If {Xt}T

t=1 and {Yt}T
t=1 are two time series normalized to have zero-mean and unit-variance,

their lag � sample CCF is given by cXY (�) = (T − �)−1∑T−�
t=1 Xt+�Yt (� = 0, 1, 2, . . .).
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MC simulations, we explored the interrelationship between the components of
{Yt, t ∈ Z}. The results permit the following observations: Y

(J)
1,t

V
� Y

(J)
2,t in

95.4% (J = 1) and 94.6% (J = 2) of the cases. Moreover, Y
(J)
2,t

V
� Y

(J)
1,t in

0% (J = 1, 2) of the cases. Thus, there are unidirectional causal relationships
from past values of Y2,t to Y1,t in both regimes. In contrast, there is no evid-
ence of a time-lagged feedback from Y1,t to Y2,t. These findings confirm earlier
observations based on the sample CCF.

The GCI can be easily extended to cases where m > 2. Nevertheless, one
serious limitation of the above analysis is that the GCI is defined for pairwise
comparison of time series. However, a bivariate GCI for each pair of time series
from a multivariate process of dimension m > 2 does not account for all the
covariance structure information from the full data set. Also, the definition is
for conditional second-order moments of the one-step ahead residuals rather
than in terms of conditional pdfs. In Section 12.5, we will return to these
issues when we discuss nonparametric Granger causality testing.

11.2.4 Threshold vector error correction
Preamble
Before introducing the threshold vector error correction model, we briefly discuss
the notion of “long-term equilibrium” between the components of an m-dimensional
nonstationary time series process {Yt, t ∈ Z} of order 1, or simply I(1) (I as in
Integrated). Assume there exists an m× 1 vector of parameters β, called cointegra-
tion vector. Then {Yt, t ∈ Z} is said to be an equilibrium error process if Xt = β′Yt

is stationary in the mean, or I(0). When long-run components of {Yt, t ∈ Z} obey
equilibrium constraints, it is often sensible to isolate these components from those
which are nonstationary. A model which can be used for this purpose is the linear
vector error correction (VEC) model of order p. It can be compactly written as

ΔYt = a + αβ′Yt−1 +
p−1∑
i=1

AiΔYt−i + εt, (11.30)

where ΔYt ≡ Yt−Yt−1 is I(0), a and α are both m× 1 parameter vectors, Ai are
m×m matrices of coefficients, and {εt} is a sequence of i.i.d. random variables with
mean zero and positive definite covariance matrix Σε, independent of Yt. If the
time series are not cointegrated, then a VAR in ΔYt with p− 1 lags is appropriate.
The partition of the matrix αβ′ in (11.30) is not unique, a convenient normalization
condition is to set one element of β equal to unity.

Threshold
Assume (

∑p
u=1 Φ(i)

u − Im) has rank m− 1. Then, after rearranging some terms, we
can write (11.17) as a k-regime threshold vector error correction (TVEC) model:3

3The acronym TVEC is commonly used in the literature. Adopting the short-hand notation
VTEC would have been more in line with abbreviations introduced in Sections 11.2.2 and 11.2.3.
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ΔYt =
k∑

i=1

(
φ

(i)
0 + α(i)

(
(β(i))′Yt−1

)
+

p−1∑
u=1

A(i)
u ΔYt−u + ε

(i)
t

)
I(β′Yt−1 ∈ R(i)),

(11.31)

where
∑p

u=1 Φ(i)
u − Im = α(i)(β(i))′, with α(i) and β(i) m × 1 vectors, and A(i)

u =
−

∑p
j=u+1 Φ(i)

j . Note that the delay d is set at one with Xt−1 ≡ Yt−1. Making the
delay a part of the set of unknown parameters is in principle possible, but would
make the estimation and identification process much more involved.

Model (11.31) implies that there exists a regime-specific stationary equilibrium
solution. To achieve identification of (11.31), some normalization must be imposed
on β and β(i) (i = 1, . . . , k). In the bivariate case, we recommend to do this by
setting one element of these vectors equal to one. Note that if in regime i (β(i))′Yt−1

is I(0), then the threshold variable β′Yt−1 will not be stationary when β(i) �= β.
Estimation of TVEC models can be performed by recursive CLS, assuming that

the order of the model and the value of the threshold cointegration parameters
are known. Another way to proceed is by adopting a QML procedure. Third,
two-stage LS can be used in a conditional way; see De Gooijer and Vidiella–i–
Anguera (2005) for a finite-sample comparison of these estimation procedures. El-
Shagi (2011) compares various genetic algorithms to optimize the likelihood function
of TVEC models. It is beyond the scope of this book to discuss these and other
estimation methods in detail.

11.2.5 Vector smooth transition AR
The VTARMA model has abrupt transitions from one regime to another. In con-
trast, an m-dimensional analogue of the STAR(2; p, p) model discussed in Section
2.7, allows the conditional expectation of the model to change smoothly over time.
Let Zt = (1,Y′

t−1, . . . ,Y
′
t−p)

′ be an (mp + 1) × 1 vector. Then an m-dimensional
k-regime vector smooth transition AR model of order (k; p, . . . , p), called VSTAR,
is defined as

Yt =
k∑

i=1

{(
Φ(i)

0 +
p∑

u=1

Φ(i)
u Yt−u

)(
G(i−1)

t −G(i)
t

)}
+ εt

=
{ k∑

i=1

(
G(i−1)

t −G(i)
t

)
(Φ(i))′

}
Zt + εt, (11.32)

where Φ(i) is an (mp + 1)×m matrix given by

Φ(i) =
(
(Φ(i)

0 )′, (Φ(i)
1 )′, . . . , (Φ(i)

p )′
)′

,

and where G(i)
t ≡ G(X(i)

t ; γ(i), c(i)) is an m×m diagonal matrix of transition func-
tions

G(i)
t = diag{G(X(i)

1,t ; γ
(i)
1 , c

(i)
1 ), . . . , G(X(i)

m,t; γ
(i)
m , c(i)

m )}, (i = 1, . . . , k − 1), (11.33)
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with G(0)
t = Im, G(k)

t = 0, γ(i) = (γ(i)
1 , . . . , γ

(i)
m )′ (the slope parameters), c(i) =

(c(i)
1 , . . . , c

(i)
m )′ (the location parameters), and γ

(i)
j > 0, ∀i, j. The sequence {εt} is an

m-dimensional vector WN process with mean zero and m×m positive definite covari-
ance matrix Σε, independent of Yt. The transition variable X(i)

t = (X(i)
1,t , . . . ,X

(i)
m,t)

′

(i = 1, . . . , k − 1) can take many forms, for example a lagged variable of one of the
components of {Yt, t ∈ Z}, a linear combination of the m series, a weakly stationary
exogenous variable, or a deterministic time trend.

When k = 2, (11.32) becomes

Yt =
{
(Im −G(1)

t )(Φ(1))′ + G(1)
t (Φ(2))′

}
Zt + εt

= Φ0 +
p∑

u=1

ΦuYt−u +
{
Φ̃0 +

p∑
u=1

Φ̃uYt−u

}
G(Xt;γ, c) + εt, (11.34)

where Φu = Φ(1)
u , Φ̃u = Φ(2)

u −Φ(1)
u (u = 1, . . . , p), Φ0 = Φ(1)

0 , Φ̃0 = Φ(2)
0 −Φ(1)

0 , and
with Xt ≡ X(1)

t , γ ≡ γ(1), and c ≡ c(1). From the first expression we see that each
location parameter c

(1)
j (j = 1, . . . ,m) represents the inflection point in which the

transition function has value 1/2, i.e. the process is halfway through the transition
from G(1)

t to G(2)
t .

When the diagonal elements of G(i)
t are logistic functions, (11.32) becomes the so-

called logistic vector STAR (LVSTAR) model. On the other hand, when γ
(i)
j →∞,

∀j, and when also X
(i)
1,t = · · · = X

(i)
m,t, c

(i)
1 = · · · = c

(i)
m , the resulting model approaches

an m-dimensional VTAR(k; p, . . . , p) model. If the form of (11.32) assumes that
the transition functions are common to the m component series, we have G(i)

t =
G(X(i)

t ; γ(i), c(i))Im with γ
(i)
1 = · · · = γ

(i)
m = γ(i), c

(i)
1 = · · · = c

(i)
m = c(i), and

X
(i)
1,t = · · · = X

(i)
m,t = X

(i)
t .

Once the transition variable X(i)
t and the form of G(·) have been specified, para-

meters in the VSTAR model can be estimated using NLS. The VSTAR model is
identified if we restrict the location parameters c

(i)
j in equation j such that they are

in monotonically increasing order during the estimation.

Stationarity
The transition functions G(i)

t are continuous and bounded between 0 and 1 for all
values of X(i)

t (i = 1, . . . , k − 1). This implies that the VSTAR model has the
same stability condition as the linear VAR model. Unfortunately, explicit necessary
and sufficient conditions for weak stationarity of LVSTAR models are not available
yet. Nevertheless, a “rough-and-ready” check for stationarity of nonlinear models
in general is to determine whether the skeleton is stable, using MC simulation. If
the skeleton is such that the observed vector time series tends to explode for certain
initial values, the process is likely to be nonstationary.
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11.2.6 Vector smooth transition error correction

Following the discussion in Section 11.2.4, an m-dimensional (vector) two-regime
smooth transition error correction (VSTEC) model is defined as

ΔYt = φ
(1)
0 + α(1)

(
(β(1))′Yt−1

)
+

p−1∑
u=1

A(1)
u ΔYt−u

+
(
φ

(2)
0 + α(2)

(
(β(2))′Yt−1

)
+

p−1∑
u=1

A(2)
u ΔYt−u

)
G(Xt;γ, c) + εt, (11.35)

where ΔYt is I(0), the m × 1 vectors α(i) and β(i) (i = 1, 2) are as in (11.30),
and G(·) is an m ×m diagonal matrix defined in (11.33). One way of keeping the
computational aspects tractable, is to assume that the transition variables as well
as the transition functions in (11.35) are the same for each model equation. In that
case, G(Xt;γ, c) = G(Xt; γ, c)Im.

Stationarity
Saikkonen (2005, 2008) considers conditions for stationarity and ergodicity of a gen-
eral three-regime nonlinear error correction model that encompasses the VSTEC
model. The m-dimensional process {Yt, t ∈ Z} is transformed to a process {Zt, t ∈
Z} which can be viewed as a Markov chain. The Markov chain Zt is geometrically er-
godic when the joint spectral radius of a (finite) set A ⊂ Rmp×mp of square matrices
is less than one. The set A consists of companion matrices defined through the
transformed representation of Yt. If A only contains a single matrix then the joint
spectral radius ρ(A) (see (B.7) for its definition) coincides with the spectral radius of
a square matrix. Clearly, the condition ρ(A) < 1 is hard to verify analytically. An
alternative method is to use one of the many algorithms for approximating the joint
spectral radius; see Chang and Blondel (2013) for an overview and a comparison of
these algorithms.

11.2.7 Other vector nonlinear models
It is easily seen how other parametric univariate nonlinear ARMA models in Chapter
2 can be extended to the vector case. For instance, Nicholls and Quinn (1981, 1982)
investigate vector RCAR models. Another example is given in Exercise 11.1, where
we introduce a vector asMA model as a generalization of the univariate asMA model
of Section 2.6.5. Some of these models are restricted to low-dimensional (m ≤ 3)
time series processes due to the fast increase of parameters. Below, we discuss two
options within the framework of a two-regime m-dimensional VSTAR model.

Smooth transition cointegration
In general, modeling and forecasting multivariate time series can be improved by
imposing parameter restrictions that are driven by so-called common features in
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Figure 11.3: (a) Three nonstationary, I(1), time series {Y ∗
1,t}, {Y2,t} and {Y3,t} of length

T = 200; (b) A stationary nonlinear combination of the time series {Y2,t} and {Y3,t} in plot
(a).

the individual component series.4 These features may, for instance, be a common
stochastic trend as with linear cointegration; see the brief exposition in the preamble
of Section 11.2.4. A less restrictive specification arises under the assumption that the
cointegrating vector β = (β1, . . . , βm)′ is not a constant; e.g. β depends on time t, or
β is assumed to be a vector of random variables. This prompted Li and He (2012a)
to propose the following definition. The vector time series process {Yt, t ∈ Z} is
said to contain smooth transition cointegration if there exists an m× 1 time-varying
vector βt = (β1,t, . . . , βm,t)′ such that the nonlinear combination of Yt is I(0), that
is

β′
tYt ∼ I(0), (11.36)

where βi,t = βiG(Xt; γ, c), and G(·) is a logistic transition function given by

G(Xt; γ, c) =
1

1 + exp{−γ
∏q

j=1(Xj,t − cj)}
, (11.37)

with Xt = (X1,t, . . . ,Xq,t)′ a q × 1 vector of transition variables, γ > 0 a slope
parameter, and c = (c1, . . . , cq)′ the vector of location parameters.

Example 11.3: An LVSTAR Model with Nonlinear Cointegration

Consider the following LVSTAR process {Yt =(Y1,t, Y2,t, Y3,t)′, t ∈ Z} with

Y1,t = β2,tY2,t + β3,tY3,t + ε1,t, Y2,t = Y2,t−1 + ε2,t, Y3,t = Y3,t−1 + ε3,t,

where β2,t = −0.8
(
1 + exp{−2(Xt − 0.3)}

)−1, β3,t =
(
1 + exp{−(Xt − 1)}

)−1,
{εt = (ε1,t, ε2,t, ε3,t)′} i.i.d.∼ N (0, I3), and {Xt} i.i.d.∼ N (0, 1). Both {Y2,t, t ∈ Z}

4A feature that is present in each group of individual time series is said to be common to those
series if there exists a non-zero linear combination of the series that does not have the feature; Engle
and Kozicki (1993).
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and {Y3,t, t ∈ Z} are random walks, or I(1) processes. Their linear combina-
tion, Y ∗

1,t = Y2,t + Y3,t is also a nonstationary, or I(1) process. Figure 11.3(a)
shows plots of the three series Y ∗

1,t, Y2,t and Y3,t over a sample period of length
T = 200. Figure 11.3(b) shows a plot of the stationary nonlinear combination
{Y1,t}200

t=1 with βt = (β2,t, β3,t)′ the time-dependent cointegration vector.

Common nonlinear features (CNFs)
Another way to reduce model complexity is by investigating whether an m-dimensio-
nal stationary time series process {Yt, t ∈ Z} has CNFs. Anderson and Vahid (1998)
introduced this concept within the context of LVSTAR and VSETAR modeling. Let
Zt = (1,Y′

t−1, . . . ,Y
′
t−p)

′ be an (mp + 1)× 1 vector. Consider the specification

Yt = Φ0 +
p∑

u=1

ΦuYt−u + g(Zt; θ) + εt, (11.38)

where Φ0 and θ are vectors of parameters, Φu is an m × m parameter matrix
(u = 1, . . . , p), g(·) is an m × 1 vector of nonlinear functions, defined in a similar
way as in (11.1), and {εt} i.i.d.∼ (0,Σε), independent of Yt. Suppose that there are
r (r < m) linearly independent linear combinations of the components of Yt whose
conditional expectation is linear in Zt. Consequently, there is an m × r matrix A,
of full column rank, such that

A′g(Zt;θ) = 0. (11.39)

The matrix A is not unique, a convenient normalization is to rearrange A such that
its first r × r block is the identity matrix. Then we can partition g(·) accordingly.
That is, in partitioned form we have

A =
(

Ir

A∗∗

)
, and g(Zt; θ) =

(
g∗(Zt; θ)
g∗∗(Zt; θ)

)
.

Clearly, (11.39) implies that g∗(·) = −(A∗∗)′g∗∗(·), an r × 1 vector. Moreover,
it implies the following relation:

g(Zt; θ) =
(
−(A∗∗)′

Im−r

)
g∗∗(Zt; θ).

Hence, we can write the conditional expectation of {Yt, t ∈ Z} in terms of m − r
common nonlinear components g∗∗(·), i.e.

E(Yt|Zt, θ) = Φ′Zt + A⊥g∗∗(Zt; θ), (11.40)

where Φ = (Φ′
0,Φ

′
1, . . . ,Φ

′
p)

′ is an (mp + 1) × m parameter matrix, and A⊥ =(
−(A∗∗)′
Im−r

)
such that A′A⊥ = 0, an r × (m − r) matrix. Model (11.38) is said to

have m− r common nonlinear features when it is possible to rewrite the conditional
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Figure 11.4: (a) Two stationary nonlinear time series with a single CNF; (b) A stationary
linear combination of the time series in plot (a).

expectation of (11.38) in the form (11.40). Often, it is convenient to split the m× r
matrix A into its columns, i.e. A = (α1 α2 · · · αr), where αi (i = 1, . . . , r) is an
m× 1 vector.

Example 11.4: An LVSTAR Model with a single CNF

Consider the following bivariate (m = 2) LVSTAR(1) model with a single CNF(
Y1,t

Y2,t

)
=

(
0.8

−0.3

)
+

(
−0.3 0.5
0.2 0.1

)(
Y1,t−1

Y2,t−1

)
+

(
2
1

)
(0.5 + 0.2Y1,t−1 + 0.3Y2,t−1)G(Y2,t−1; γ, c) + εt, (11.41)

where G(Y2,t−1; γ, c) = (1 + exp{−(Y2,t−1 − 1)})−1, and {εt} i.i.d.∼ N (0, I2).
In this case the processes {Y1,t, t ∈ Z} and {Y2,t, t ∈ Z} share a single (r =
1) linear combination Ỹt = β′Zt = 0.5 + 0.2Y1,t−1 + 0.3Y2,t−1, where β =
(0.5, 0.2, 0.3)′ is a 3 × 1 vector. As a result, (11.41) has a common nonlinear
component (0.5 + 0.2Y1,t−1 + 0.5Y2,t−1)G(Y2,t−1; γ, c). Moreover, α⊥ = ( 2

1 ), a
non-zero 2 × 1 vector. Multiplying both sides of (11.41) by the 1 × 2 vector
α′ = (−1, 2) leads to a linear VAR(1) process, since α′α⊥ = 0. Figure 11.4(a)
shows two generated time series {Yi,t}200

t=1 (i = 1, 2) with a CNF. Figure 11.4(b)
shows a plot of the stationary linear combination {Ỹt}200

t=1.

11.3 Time-Domain Linearity Tests
Nonadditivity-type test statistics
Recall the nonadditivity-type test statistics F

(T)
T and F

(O)
T discussed in Section 5.4,

with the superscripts (T) and (O) referring to Tukey and original respectively. It is
straightforward to generalize these test statistics to the multivariate framework. For
convenience, we assume that each component of Yt = (Y1,t, . . . , Ym,t)′ has mean zero.
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The null hypothesis states that {Yt, t ∈ Z} is generated by an m-dimensional station-
ary VAR(p) process. The alternative hypothesis states that the underlying process
can be adequately approximated by a truncated multivariate second-order Volterra
expansion with �th component given by (11.2). The tests determine whether at least
one of the component series is nonlinear. Several computational procedures can be
used for this purpose, each depending on different approximations and asymptotic
expansions of the F distribution. The first test statistic, as proposed by Harvill and
Ray (1999), uses an approximation due to Rao (R); see Rao (1973, Section 8c.5).

Algorithm 11.1: A nonadditivity-type test for nonlinearity

(i) Fit a VAR(p) model to {Yt}T
t=1 by regressing Yt on Zt = (Y′

t−1, . . . ,Y′
t−p)

′.
Compute the m× 1 vector of residuals {ε̂t}T

t=p+1.

(ii) Let Ut = vech(Zt⊗Z′
t) be an νU ≡ mp(mp+1)/2-dimensional vector which

contains all second-order cross-product terms of lagged values of the process
up to order p. So νU is the degrees of freedom for the hypothesis. Regress
Ut on Zt. Obtain the residuals Wt = (W1,t, . . . ,WνU ,t)′.

(iii) Regress ε̂t from step (i) on Wt from step (ii). Compute the corresponding
m×m sum of squared regression matrix, SSR, and the sum of squared error
matrix, SSE.

(iv) For m > 1, let

w = (νE − νU )− 1
2
(m− νU + 1) and v =

√
m2ν2

U − 4
m2 + ν2

U − 5
,

where νE = T − p−mp is the degrees of freedom for error. Compute the F

test statistic

F
(R)

T,p (m) =
(wv − 1

2mνU + 1)
mνU

)(1−
(
Λ(W)

)1/2(
Λ(W)

)1/2

)
, (11.42)

where

Λ(W) = |SSE|/{|SSR + SSE|} (11.43)

is Wilks’ (W) lambda statistic. If {Yt, t ∈ Z} follows a strictly stationary
zero-mean Gaussian VAR(p) process (H0), then from standard theory of
multivariate linear regression models it follows that

F
(R)

T,p (m) D−→ Fν1,ν2 , as T →∞, (11.44)

with ν1 = mνU and ν2 = wv −mνU/2 + 1.

If m = 1 or νU = 1, v is set equal to 1. Note that ν2 need not be integral.
The approximation is exact if min(m, νU ) ≤ 2. A (less accurate) approximate test
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statistic (Bartlett, 1954) is given by

λT,p(m) = −[(νE −
1
2
(m− νU + 1)] log Λ(W) (11.45)

which, under H0 and as T →∞, has an approximate χ2
mνU

distribution.

Just as for the univariate test statistic F
(T)

T , Algorithm 11.1 reduces to a mul-
tivariate version of Tukey’s nonadditivity-type test statistic if the Ut in step (ii)
are aggregated using weights based on the LS coefficients in step (i); i.e. the fitted
values Ŷt from step (i) are used as the dependent variable in (ii). The resulting test
statistic can be computed as follows.

Algorithm 11.2: Tukey’s nonadditivity-type test for nonlinearity

(i) Fit a VAR(p) model to {Yt}T
t=1 by regressing Yt on Zt = (Y′

t−1, . . . ,Y′
t−p)

′.
Compute the m × 1 vector of fitted values {Ŷt}T

t=p+1, the m × 1 vector of
residuals ε̂t, and the corresponding m×m matrix SSR1 of sum of squared
and cross-product terms.

(ii) Compute an m × 1 vector of squares of fitted values, say Xt, from the m-
variate AR(p) regression in step (i). Remove the linear dependence of Xt on
Zt by a second m-variate AR(p) regression of Xt on Zt. Obtain the m × 1
vector of fitted values X̂t, and the m× 1 vector of residuals Ut = Xt − X̂t.

(iii) Regress ε̂t from step (i) on the vector of residuals Ut from step (ii). Compute
the corresponding m×m sum of squared regressions matrix, SSR2, and the
sum of squared errors matrix, SSE2. Let SSR2|1 = SSR2 − SSR1, i.e.
SSR2|1 is the extra sum of squares due to the addition of the second-order
terms to the model.

(iv) Compute the F test statistic:

F
(T)

T,p (m) =
(T − p−m(p + 1)

m

)(1−
(
Λ(W)

)1/2(
Λ(W)

)1/2

)
, (11.46)

where

Λ(W) = |SSE2|/{|SSR2|1 + SSE2|}. (11.47)

If {Yt, t ∈ Z} follows a strictly stationary zero-mean Gaussian VAR(p) pro-
cess (H0),

F
(T)

T,p (m) D−→ Fν1,ν2 , as T →∞, (11.48)

with ν1 = m and ν2 = T − p−mp−m.

The proof of (11.48) follows from standard multivariate regression theory. It
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may be noted that for m = 1, the degrees of freedom of ν1 and ν2 are nearly the
same as those reported in Algorithm 5.7; recall that E(Yt) = 0 while in Algorithm
5.7 the univariate second-order Volterra expansion has a non-zero mean. Clearly,
computation of (11.46) requires fewer degrees of freedom; i.e. the response variable
is an m-variate vector as compared to an νU = mp(mp + 1)/2-variate vector in
Algorithm 11.1. This may be preferable for short series.

Original F test
The multivariate generalization of the F

(O)
T test statistic (Algorithm 5.8) employs

disaggregated variables in step (ii) of Algorithm 11.2. The test statistic is based on
the following model

Yt =
p∑

j=1

ΦjYt−j + Ψ vech(Zt ⊗ Z′
t) + εt, (11.49)

where Zt = (Y′
t−1, . . . ,Y

′
t−p)

′ is an mp× 1 vector, and Ψ is an m×mp(mp + 1)/2
parameter matrix. Thus, the null hypothesis of interest is given by H0 : Ψ = 0. The
computation of the corresponding test statistic goes as follows.

Algorithm 11.3: F
(O)

T test statistic for nonlinearity

(i) Follow step (i) of Algorithm 11.2.

(ii) Compute Ut = vech(Zt ⊗ Z′
t). Thus, the νU = mp(mp + 1)/2-dimensional

vector Ut contains all second-order cross-product terms of lagged values of
the process up to order p. Regress Ut on Zt. Obtain the residuals Wt =
(W1,t, . . . ,WνU ,t)′.

(iii) Regress ε̂t from step (i) on Wt from step (ii). Compute the m × m sum
of squared regressions matrix, SSR2, and the sum of squared errors matrix,
SSE2. Let SSR2|1 = SSR2 − SSR1.

(iv) Compute the F test statistic:

F
(O)

T,p (m) =
(T − p− 1

2

(
mp(mp + 3)

)
νU

)(1−
(
Λ(W)

)1/2(
Λ(W)

)1/2

)
, (11.50)

where

Λ(W) = |SSE2|/{|SSR2|1 + SSE2|}. (11.51)

Under H0,

F
(O)

T,p (m) D−→ Fν1,ν2 , as T →∞, (11.52)

with ν1 = νU and ν2 = T − p− 1
2

(
mp(mp + 3)

)
.
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Figure 11.5: Annual temperatures (Y1,t) and tree ring widths (Y2,t) for the years 1907 –
1972 (T = 66) at Campito Mountain, California.

Harvill and Ray (1999) also consider a semi-multivariate version of the test stat-
istics in Algorithm 11.3 in which each component of the vector series is regressed in-
dividually on Ut in step (ii). The individual test statistics for this semi-multivariate
version have a simple F distribution under the null hypothesis of linearity with
ν1 = mp(mp + 1)/2 and ν2 = T −mp(mp + 3)/2 degrees of freedom. In this case,
however, possible cross-correlation in the error terms is not accounted for by the
procedure. On the other hand, the semi-multivariate test may be more powerful
when only one of the component series of {Yt, t ∈ Z} is nonlinear.

The Wilks’ Λ(W) test statistics in Algorithms (11.1) – (11.3) are formulated as
LR-type tests. Other test statistics can be defined directly in terms of the sum of
squared errors matrix SSE and the sum of squared regression matrix SSR, or in
terms of their non-zero eigenvalues; see, e.g., Johnson and Wichern (2002, Chapter
7). Two well known multivariate test statistics are the Hotelling–Lawley (HL) trace
test statistic and Pillai’s (P) trace test statistic, respectively defined by:

U (HL) = tr[SSE−1 SSR], (11.53)

V (P) = tr[SSR(SSR + SSE)−1]. (11.54)

The test statistic (11.53) is valid when SSE is positive definite. The test statistic
(11.54) requires a less restrictive assumption: SSR+SSE is positive definite. Wilks’
lambda and the Hotelling–Lawley trace test statistics are nearly equivalent for large
sample sizes.

The test statistic (11.50) can be extended to include cubic terms, as in the
augmented F

(A)
T test statistic of Section 5.4. However, the proliferation of additional

terms in the multivariate case is expected to result in a loss of power due to fewer
degrees of freedom for the F test statistic, unless m is small and T is large. Also, as
in the univariate case, a VARMA(p, q) model can be fit to the data initially (using,
e.g., QML estimation) to allow for linear MA structure. In that case the test statistic
(11.50) is modified by letting Zt in step (i) be (Y′

t−1, . . . ,Y
′
t−p, ε̂

′
t−1, . . . , ε̂

′
t−q)

′, where
ε̂t denotes the series of residuals from the VARMA fit.
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Table 11.1: Values of the multivariate nonlinearity test statistics for the annual temper-
atures (Y1,t) and tree ring widths (Y2,t) time series; T = 66, p = 4, and m = 2.

Degrees of freedom

Test Wilks HL-Trace P-Trace Num. Den. p-value p-value p-value

F
(O)
T,p (m) 0.042 8.888 1.539 36 18 0.028 0.023 0.047

F
(T)

T,p (m) 0.572 0.747 0.429 2 52 0.000 0.000 0.000

F
(O)
T (Y1,t) 3.191 10 52 0.003

F
(O)
T (Y2,t) 3.146 10 52 0.003

Semi (Y1,t) 2.691 36 22 0.008
Semi (Y2,t) 1.358 36 22 0.227

Example 11.5: Tree Ring Widths

The rings of trees in certain cites of western North America provide a unique
source on past variations of climatic and other environmental factors which
prevail over North America and the adjoining oceans. Figure 11.5 shows plots
of annual temperatures (in ◦F) and annual tree ring widths (in 0.01 mm)
measured at Campito Mountain in California for the years 1907 – 1972 (T =
66). Below, we use this data set as an illustration of the nonlinearity test
statistics discussed above.

The sample ACF and PACF matrices both identify an association between
tree ring widths in year t (Y2,t) and tree ring widths one, three, and four years
back, while changes in temperature (Y1,t) are associated with the previous
year’s tree growth; cf. Exercise 12.2. So, as a first step, we fitted a VAR(4)
model to the data. Next, we computed the test statistics in Algorithms 11.2
and 11.3 using appropriate versions of Wilks’ lambda statistic, the HL test
statistic, and the P test statistic. In addition, based on the Wilks’ lambda
statistic, we applied the semi-multivariate version of the F

(O)
T,p (m) test statistic

and its univariate analogue, F
(O)
T (Algorithm 5.8).

Table 11.1 contains the values of the test statistics, p-values, and degrees of
freedom. The p-values for the multivariate nonlinearity test statistics F

(O)
T,p (m)

and F
(T)

T,p (m), for the Wilks’ lambda statistic, the HL test statistic, and the
P test statistic, all indicate that the null hypothesis of linearity should be
rejected at the 5% nominal significance level. The same conclusion emerges
for each series from the p-values of the F

(O)
T test statistic based on the Wilks’

lambda test statistic. On the other hand, the p-value of the semi-multivariate
version of Tsay’s original test statistic does not reject linearity for the tree ring
widths Y2,t. However, as stated above, the semi-multivariate test statistics do
not account for significant, at the 5% nominal level, sample cross-correlations
between the time series {Y1,t} and {Y2,t}.
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11.4 TestingLinearityvs. SpecificNonlinearAlternatives

A test for VSETAR nonlinearity
Tsay (1998) provides a generalization of the TAR F ∗

T test statistic (Algorithm 5.10)
to the VSETAR case. Given a strictly stationary m-variate time series process
{Yt, t ∈ Z}, assume that this process follows a VSETAR(2; p, . . . , p) model with
regimes determined by the threshold variable Xt−d. Let Zt = (1,Y′

t−1, . . . ,Y
′
t−p)

′

be an (mp + 1)-dimensional regressor. Placing the model in a regression framework
gives

Y′
t = Z′

tΦ + ε′t, (t = h + 1, . . . , T ), (11.55)

where h = p∨d, and Φ denotes the parameter matrix. Ordering Yt and Zt according
to increasing values of Xt−d gives

Y′
τi+d = Z′

τi+dΦ + ε′τi+d, (i = 1, . . . , T − h), (11.56)

where τi denotes the time index of X(i), the ith smallest value of {Xt−d}T
t=h+1−d.

If {Yt, t ∈ Z} is linear, the predictive residuals of (11.56) are an m-variate WN
process, whereas if {Yt, t ∈ Z} follows an m-dimensional VTAR(2; p, p) model with
threshold variable Xt−d, the predictive residuals are correlated with Z′

τi+d. Based
on this idea, the computation of the test statistic goes as follows.

Algorithm 11.4: Multivariate test statistic for VSETAR

(i) Given d, fit an arranged VAR(p) to {Yt}T
t=1 using data points associated

with the s smallest values of Xt−d, obtaining {Φ̂s}T−h
s=nmin+1, where nmin is

a minimum number for starting the multivariate version of the recursive LS
estimation procedure given by (5.86) – (5.87). For unit root time series, Tsay
(1998) recommends taking nmin ≈ 5

√
T , and nmin ≈ 3

√
T for the stationary

case.

(ii) Compute the predictive residuals

ε̂τs+1+d = Yτs+1+d − Φ̂′
sZτs+1+d

and the standardized predictive residuals

êτs+1+d = ε̂τs+1+d/[1 + Z′
τs+1+dPsZτs+1+d]1/2,

where Ps = [
∑s

i=1 Zτs+1+dZ′
τs+1+d]

−1.

(iii) Regress êτ�+d on Zτ�+d (� = nmin + 1, . . . , T − h).

(iv) Compute the test statistic

CT,p(d,m) = [T − h− nmin − (mp + 1)]{log |SSE0| − log |SSE1|}, (11.57)
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Algorithm 11.4: Multivariate test statistic for VSETAR (Cont’d)

(iv) (Cont’d)
where d signifies that the test depends on the threshold variable Xt−d, and

SSE0 =
1

T ∗

T−h∑
�=nmin+1

êτ�+dê′
τ�+d, SSE1 =

1
T ∗

T−h∑
�=nmin+1

ω̂τ�+dω̂
′
τ�+d

with T ∗ = T − h− nmin and ω̂τ�+d denotes the LS residual from step (ii).

(v) Under the null hypothesis that {Yt, t ∈ Z} follows a strictly stationary
VAR(p) process, and some regularity conditions, Tsay (1998) shows that

CT,p(d,m) D−→ χ2
m(mp+1), as T →∞. (11.58)

The test statistic has good power when the delay d is correctly specified; Tsay
(1998). The power deteriorates when the delay used in the test is different from
the actual delay. Note, H0 includes a zero intercept for all predictive residuals. In
theory, a non-zero intercept signifies a systematic bias in the estimation of (11.56),
indicating possible change points. So, due to the possibility of finite-sample bias, one
may wish to exclude the intercept term from the nonlinearity test statistic (11.57)
which can be achieved by mean-correcting SSE0. In this case, the resulting test
statistic has an asymptotical χ2

m2p distribution under the null hypothesis.

Likelihood ratio test statistic for VSETAR
Recall, in Section 5.2 we introduced a LR test statistic for SETAR models. Using
similar arguments, Liu (2011) proposes a LR test statistic for an m-dimensional
strictly stationary time series {Yt, t ∈ Z} generated by the VSETAR(2; p, p) model
with (exogenous) threshold variable {Xt−d} (d ≤ p):

Yt = Φ0 +
p∑

i=1

ΦiYt−i +
(
Ψ0 +

p∑
i=1

ΨiYt−i

)
I(Xt−d ≤ r) + εt, (11.59)

where Φ0 and Ψ0 are m × 1 parameter vectors, and Φi and Ψi (1 ≤ i ≤ p) are
m×m parameter matrices. The process {εt} is an m-dimensional vector martingale
difference sequence satisfying

E(εt|F t−1) = 0, Cov(εt, εt|F t−1) = Σε, and Cov(εt, εs|F t∧s) = 0, (t �= s),
(11.60)

with F t the information set, and Σε is a positive definite matrix. It is also assumed
that p and d are unknown, and that r belongs to a known bounded subset R̃ = [r, r]
of R.
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For simplicity it is convenient to rewrite (11.59) in a regression form first and
vectorize the resulting equation next. To this end, we introduce the following nota-
tion. Let Φ(U) = (Φ0,Φ1, . . . ,Φp)′, Ψ(U) = (Ψ0,Ψ1, . . . ,Ψp)′ be two m× (mp + 1)
matrices, with the subscript (U) denoting an unrestricted parameter vector,

Y=

⎛⎜⎝
Y′

p+1

Y′
p+2

...
Y′

T

⎞⎟⎠ , X=

⎛⎜⎝
1 Y′

p · · · Y′
1

1 Y′
p+1 · · · Y′

2

...
...

...
1 Y′

T−1 · · · Y′
T−p

⎞⎟⎠ , ε=

⎛⎜⎝
ε′p+1

ε′p+2

...
ε′T

⎞⎟⎠ , and

Yr =

⎛⎜⎝
I(Xp+1−d ≤ r) I(Xp+1−d ≤ r)Y′

p · · · I(Xp+1−d ≤ r)Y′
1

I(Xp+2−d ≤ r) I(Xp+2−d ≤ r)Y′
p+1· · · I(Xp+2−d ≤ r)Y′

2

...
...

...
I(XT−d ≤ r) I(XT−d ≤ r)Y′

T−1 · · ·I(XT−d ≤ r)Y′
T−p

⎞⎟⎠ .

Now, we can rewrite (11.59) in a regression framework as

Y = XΦ(U) + YrΨ(U) + ε. (11.61)

Let Av ≡ vec(A). Then a vectorization of (11.61) is given by

Yv = (Im ⊗X)Φv
(U) + (Im ⊗Yr)Ψv

(U) + εv. (11.62)

The hypotheses of interest are

H0 : Ψv
(U) = 0, H1 : Ψv

(U) �= 0, for some r ∈ R̃. (11.63)

Note, under H0 equation (11.62) reduces to the linear regression

Yv = (Im ⊗X)Φv
(R) + ηv, (11.64)

where ηv ≡ vec(η) is defined in the same way as εv with η = (η′
p+1, . . . , η

′
T )′. Here,

{ηt} is an m-dimensional vector martingale difference sequence that is strictly sta-
tionary and ergodic with covariance matrix Ση. Also, the subscript (R) in Φv

(R)
reflects the fact that the parameter vector of the original VSETAR model is “re-
stricted”.

Given (11.64), the CLS estimate of the restricted parameter vector Φv
(R) and the

corresponding estimate of Ση are given by

Φ̂v
(R) = {Im ⊗ (X′X)−1X′}Yv and Σ̂η = η̂′η̂/(T − p),

with η̂v = Yv−(Im⊗X)Φ̂v
(R) a vector of residuals. Similarly, given (11.61), the CLS

estimates of the unrestricted parameter vectors Φv
(U) and Ψv

(U), and the corresponding
estimate of Σε are respectively given by

Φ̂v
(U) =

{
Im ⊗ (X′X)−1X′[IT−p −YrG−1Y′

r(IT−p −PX)]
}
Yv,

Ψ̂v
(U) =

{
Im ⊗G−1Y′

r(IT−p −PX)
}
Yv and Σ̂ε = ε̂′ε̂/(T − p),
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where PX = X(X′X)−1X′, G = Y′
r(IT−p −PX)Yr, and ε̂v = Yv− (Im ⊗X)Φ̂v

(U) −
(Im ⊗Yr)Ψ̂v

(U).

Now, let Λ̂η = (Σ̂−1/2
ε ⊗ IT−p)η̂v and Λ̂ε = (Σ̂−1/2

ε ⊗ IT−p)ε̂v be the rescaled
residual vectors. Then the LR statistic for testing H0 against H1 is defined in terms
of the residual sum of squares matrices as

LRT,p(m, r)=sup
r∈R̃

{
Λ̂′

ηΛ̂η − Λ̂′
εΛ̂ε

}
,

= sup
r∈R̃

({
[Σ̂−1/2

ε ⊗Y′
r(IT−p −PX)]Yv}′[IT−p ⊗G−1]

{
[Σ̂−1/2

ε ⊗Y′
r(IT−p −PX)]Yv})

, (11.65)

where the second expression on the right-hand side follows from some simple algebra.
Note that for a fixed r and m = 1, (11.65) reduces to the LR test statistic LR(8)

T

defined by (5.55).
The asymptotic null distribution follows in a similar way as described in Section

5.2. Suppose the following assumption holds

1
T

(
X′X X′Yr

Y′
rX Y′

rYr

)
a.s.−−−−→

T→∞

(
Σ Σ12(r)

Σ21(r) Σ22(r)

)
,

where Σ(·), Σ21(·) = Σ′
12(·), and Σ22(·) are (mp + 1) × (mp + 1) matrices. Under

H0, standard regularity conditions, and as T →∞, it can be shown (Liu, 2011) that

LRT,p(m, r) D−→ sup
r∈R̃

{G′
2(mp+1)(r)Ω(r)G2(mp+1)(r)}, (11.66)

where

Ω(r) = Im ⊗
(
Σ21(r)−Σ21(r)Σ−1

22 (r)Σ12(r)
)−1

,

and {G2(mp+1)(r)} ∼ N 2(mp+1)

(
0, Im ⊗ (Σ(r∧s) − Σ21(r)Σ−1Σ12(r))

)
distributed.

Then, for large α, and using the Poisson clumping heuristic method, we have

P(sup
r∈R̃

G′
2(mp+1)(r)Ω1(r)G2(mp+1)(r) ≤ α)∼exp

{
− 2χ2

m(mp+1)(α)
( α

mp + 1
− 1

)
×

mp+1∑
i=1

(
ti(r)− ti(r)

)}
, (11.67)

where χ2(·)m(mp+1) denotes the pdf of the χ2 distribution with m(mp + 1) de-
grees of freedom, ti(r) = 1

2 log
{
Li(r)/

(
1 − Li(r)

)}
∀i, and Li(r) are eigenvalues

of Σ−1/2
21 (r)Σ22(r)Σ

−1/2
12 (r). Appendix 11.A contains a table with selected percent-

iles of the LR-VATR test statistic when m = 2.
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LM-type test statistics for VSTAR
Recall the two LM-type test statistics for STAR nonlinearity in Section 5.1. Their
construction is based on respectively a first-order and a third-order Taylor expan-
sion of the univariate transition function G(·) around the slope parameter γ. This
approach is also applicable to VSTAR models with a single transition variable Xt.

As an example, consider the two-regime m-dimensional VSTAR(p) model (11.32)
with the matrix of transition functions given by Gt ≡ G(Xt; γ, c)Im:

Yt = B′
1Zt + GtB′

2Zt + εt, (11.68)

where Bi (i = 1, 2) are (mp + 1)×m matrices given by

B1 = Φ(1), B2 = Φ(2) −Φ(1),

Zt = (1,Y′
t−1, . . . ,Y

′
t−p)

′ is an (mp+1)×1 vector, and {εt} i.i.d.∼ Nm(0,Σε). We wish
to test the null hypothesis H0 : γ = 0, versus the alternative hypothesis H1: γ > 0.
However, as in the univariate case, model (11.68) contains nuisance parameters
that are not identified under the null hypothesis. To circumvent this problem, it is
common to replace Gt by a suitable linear approximation.

For instance, in case the alternative is an LVSTAR model with Gt a diagonal
matrix of transition functions, a first-order Taylor expansion around γ = 0 yields
the auxiliary regression model

Yt = Θ′
0Zt + Θ′

1ZtXt + ηt, (t = 1, . . . , T ), (11.69)

where Θ0 = B1 + B2B, Θ1 = B2A, ηt = RtB′
2Zt + εt, with A = diag(a1, . . . , am)

and B = diag(b1, . . . , bm) having, respectively elements aj = (1/4)γ and bj = (1/2)−
ajcj (j = 1, . . . ,m), and Rt denotes an m × m diagonal matrix containing the
remainder terms. The null hypothesis implies Gt = (1/2)Im. Clearly, model (11.69)
is linear when Θ0 = B1 + (1/2)B2 and Θ1 = 0. Thus, the original null hypothesis
of linearity is equivalent to testing H0 : Θ1 = 0 versus the alternative hypothesis
H1 : Θ1 �= 0.

We begin our discussion of the score form of the first-order LM-type test statistic
by introducing the following notation:

Y =

⎛⎝Y′
1

...
Y′

T

⎞⎠ , X =

⎛⎝Z′
1

...
Z′

T

⎞⎠ , U =

⎛⎝Z′
1X1

...
Z′

T XT

⎞⎠ .

Also, let θ denote the vector of available parameters. As {εt} i.i.d.∼ Nm(0,Σε), the
conditional log-likelihood function of the data, evaluated at θ ∈ Θ (a compact
parameter space) and apart from some additional constants, is equal to

log LT (θ) = −(1/2)
T∑

t=1

(Yt −Ψ′
tB

′Zt)′Σ−1
ε (Yt −Ψ′

tB
′Zt),
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where Ψt = (Im,Gt)′ is a 2m×m full rank matrix, and B = (B1,B2) is an (mp +
1) × 2m matrix. Assume some standard regularity conditions are satisfied. Then
the LM-type test statistic follows from the score matrix ∂ log LT (θ̂)/∂Θ1, where θ̂
is an estimate of θ under the null hypothesis. In particular, the chi-square version
of the LM-type test statistic is given by

LM(1)
T,p(m) = tr{Σ̂−1

ε (Y −XB̂1)′U
[
U′(IT −PX)U

]−1U′(Y −XB̂1)}, (11.70)

where PX = X(X′X)−1X′, B̂1 and Σ̂ε are parameter estimates under the null
hypothesis, i.e. the restricted model specification. Here, the superscript (1) indicates
that the test is based on the first-order Taylor expansion of the logistic transition
function. Similar as Algorithm 5.1, the test procedure consists of the following steps.

Algorithm 11.5: LM(1)
T,p(m)-type test statistic for LVSTAR

(i) Fit a VAR(p) model to {Yt}T
t=1 using, e.g., CLS or NLS. Obtain the T ×m

matrix of residuals Ê = (IT − PX)Y, and compute the corresponding sum
of squared errors matrix, SSE0 = Ê′Ê.

(ii) Regress Ê = (ε̂1, . . . , ε̂T )′ on (X,U), i.e. an auxiliary regression. Obtain the
matrix of residuals Ξ̂ and compute the corresponding sum of squared errors
matrix, SSE1 = Ξ̂′Ξ̂.

(iii) Compute the LM-type test statistic

LM(1)
T,p(m) = T tr[(SSE0 − SSE1)SSE−1

0 ]. (11.71)

Under H0, it easy to show (Teräsvirta and Yang (2014a) and Exercise 11.3)
that

LM(1)
T,p(m) D−→ χ2

m(mp+1), as T →∞. (11.72)

The degrees of freedom correspond to the number of restrictions m multiplied
by the column dimension mp + 1 of U.

The LM(1)
T,p(m)-type test statistic can also be used to help select an appropriate

transition variable Xt by computing the statistic for various Xt’s and selecting the
one for which the p-value of the test statistic is smallest. MC simulation studies
(e.g., Teräsvirta and Yang, 2014a) indicate that the power of the above test is good
when the transition variable is correctly specified.

In small samples, it is recommended to compute an F -version of the test statistic
(11.71) to improve its empirical size. Also, Bartlett and Bartlett-type corrections
have been suggested. One is the so-called Laitinen–Meisner correction, which is a
simple degrees of freedom rescaling of an LM-type test statistic. Within the setup
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Table 11.2: Values of the multivariate nonlinearity test statistics for the tree ring widths
data set; T = 66, p = 4, and m = 2 (p-values are given in parentheses).

d CT,p(d, m) LM
(1)
T,p(m) F

(1)
T,p(m) λT,p(m) F

(R)
T,p (m)

1 21.587 (0.251) 39.263 (0.006) 1.384 (0.153) 40.565 (0.004) 2.297 (0.005)
2 13.758 (0.745) 35.613 (0.017) 1.255 (0.232) 33.969 (0.026) 1.852 (0.028)
3 34.222 (0.012) 37.997 (0.009) 1.339 (0.178) 36.078 (0.015) 1.991 (0.016)
4 23.655 (0.167) 34.876 (0.021) 1.229 (0.252) 34.134 (0.025) 1.863 (0.026)
5 19.315 (0.373) 34.622 (0.022) 1.220 (0.258) 34.138 (0.025) 1.863 (0.026)

of Algorithm 11.5, the test statistic is given by

F
(1)
T,p(m) =

mT −
(
m + (mp + 1)

)
T ×m(mp + 1)

LM(1)
T,p(m), (11.73)

where m(mp + 1) denotes the number of regression parameters in the auxiliary
regression model, and m+(mp+1) represents the total number of restrictions. Under
H0 the rescaled test statistic (11.73) will asymptotically follow an Fν1,ν2 distribution
with ν1 = m(mp + 1) and ν2 = mT −

(
m + (mp + 1)

)
degrees of freedom, as

T → ∞. Another test statistic follows by modifying Rao’s (R) approximation of
the F distribution in step (iv) of Algorithm 11.1 to the present situation with νU

replaced by mp + 1, i.e. the dimension of Zt.
Moreover, it is easy to extend the test procedure in Algorithm 11.5 to incorporate

equation-specific transition functions; see Teräsvirta and Yang (2014a). The limiting
null distribution of the resulting LM-type test statistic is, however, unknown and
has to be obtained by MC simulation. These authors also modify Algorithm 11.5
by augmenting the first-order test (11.71) with regressors Z′

tX
2
t and Z′

tX
3
t to ac-

commodate a third-order, rather than a first-order, Taylor expansion of the logistic
transition function around γ = 0.

Example 11.6: Tree Ring Widths (Cont’d)

We continue our analysis of the annual temperature (Y1,t) and tree ring widths
(Y2,t) data introduced in Example 11.5. AIC indicates that a VAR(4) model
best describes the interdependencies between the two time series. So, for all
test statistics, we fix p at 4. The second column of Table 11.2 gives the results
of the test statistic CT,p(d,m) for delay d = 1, . . . , 5. The recursive estimation
starts with nmin = 25, which is about 3

√
T with T = 66. For d = 3 the

test statistic suggests threshold nonlinearity, but in all other cases there is no
evidence to reject H0.

Many studies indicate that ring width growth relates to climatic factors at
different period during the growing season. In fact, when temperatures exceed
a physiological threshold value the long-run effect is that tree ring widths
decline. Hence, it is reasonable to take Y1,t−d as a transition variable in the
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four test procedures considered here. The test results are summarized in Table
11.2, columns 3 – 6. We see that the test statistics attain their largest value
for delay d = 1. Except for F

(1)
T,p(m), the p-values of the test statistics are all

close to zero. Thus, the H0 of linearity is rejected against the alternative of
LVSTAR nonlinearity.

11.5 Model Selection Tools

For parametric vector nonlinear models, standard information theoretic criteria,
such as AIC and BIC can be used for variable selection, including identifying the
appropriate lag length. For instance, consider a strictly stationary m-dimensional
VTARMA(k; p1, . . . , pk, q1, . . . , qk) process {Yt, t ∈ Z} with a single weakly station-
ary threshold variable Xt−d. Assume that {Xt}, and the maximum number of re-
gimes k are known. It is obvious that for a fixed delay d, the number of data points in
regime i equals Ti =

∑T
t=h+1(I

(i−1)
t−d − I

(i)
t−d), where h = max(p1, . . . , pk, d), and T de-

notes the total number of observations. Setting p = (p1, . . . , pk) and q = (q1, . . . , qk),
the multivariate versions of AIC and BIC are defined as

AIC(p, q, d, k) =
k∑

i=1

(
Ti log |Σ̂(i)

ε |+ 2m(mpi + vqi + 1)
)
, (11.74)

BIC(p, q, d, k) =
k∑

i=1

(
Ti log |Σ̂(i)

ε |+ log(Ti)m(mpi + vqi + 1)
)
, (11.75)

where Σ̂(i)
ε is an estimate of the residual covariance matrix in each regime i (i =

1, . . . , k).
Clearly, the explosion of parameters for VSETARMA models can be problem-

atic in practice. Therefore, one often restricts the number of regimes k to a small
number such as 2 or 3 to keep the analysis manageable. In addition, it is useful
to divide the available multivariate data set into subsets according to the empirical
percentiles of {Xt}T

t=1, and adopt a vector time-domain nonlinearity test statistic to
detect any model change within each subset. This approach may also provide some
tentative information on the location of the threshold intervals R(i) (i = 1, . . . , k).
Moreover, in the case of VSETAR model identification, a regression subset selection
method based on GAs may be considered as an attractive, and easily implemented,
alternative; see Baragona and Cucina (2013).

Evidently, for an m-dimensional VSTAR(k; p, . . . , p) model with a single trans-
ition variable Xt−d, we can use both AIC and BIC. Then the regime-specific number
of observations is not necessarily an integer, i.e. Ti =

∑T
t=h+1(G

(i−1)
t−d −G

(i)
t−d), where

G
(i)
t−d ≡ G(Xt−d; γ(i), c(i)) is the transition function corresponding to the ith regime,

G
(0)
t−d = 1 and G

(k)
t−d = 0.
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11.6 Diagnostic Checking

Preamble
After model selection and model estimation, diagnostic checking is the next import-
ant step before we can use the model for forecasting, control, and other purposes. In
Section 7.4, we introduced a number of high-dimensional nonparametric test stat-
istics for serial correlation. Valuable as these test statistics can sometimes be, they
have implicitly or explicitly relied on the assumption that the error terms are inde-
pendent, and some results have depended on the further assumption that they are
normally distributed. In this section, we discuss two portmanteau-type test statist-
ics proposed by Chabot–Hallé and Duchesne (2008), which allow us to handle the
more realistic situation that the error terms follow a stationary martingale difference
sequence.

Asymptotics
Let {Yt, t ∈ Z} be a stationary and ergodic m-dimensional stochastic process defined
by the nonlinear model

Yt = g(F t−1; θ0) + εt, (11.76)

where F t−1 represents the information set generated by {Ys, s < t}, g(·;θ0) is
a known real-valued measurable function on Rm, and θ0 denotes the true, but un-
known, value of the K×1 parameter vector θ. The vector function g(·; ·) is supposed
to have continuous second-order derivatives with respect to θ a.s. The process {εt}
is an m-dimensional vector martingale difference sequence satisfying (11.60).

Let {Yt}T
t=1 be a finite set of realizations of the process {Yt, t ∈ Z}. Given a

vector of initial values, the CLS estimator θ̂T of θ0 is obtained by minimizing the
sum of squared errors

LT (θ =
T∑

t=1

(
Yt − g(F t−1; θ0)

)′Σ−1
ε

(
Yt − g(F t−1; θ0)

)
. (11.77)

Under appropriate regularity conditions, it is straightforward to show (Tjøstheim,
1986b) that θ̂T is strongly consistent and asymptotical normally distributed. That
is, in the notation of Chapter 6, and as T →∞,

√
T (θ̂T − θ0)

D−→ Nk

(
0,H−1(θ0)I(θ0)H−1(θ0)

)
, (11.78)

where

H(θ0) = E

(∂g′
t−1

∂θ
Σ−1

ε

∂gt−1

∂θ′
)
,

I(θ0) = E

(∂gt−1

∂θ
Σ−1

ε

(
Yt − gt−1

)(
Yt − gt−1

)′Σ−1
ε

∂gt−1

∂θ′
)
,
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with gt−1 ≡ g(F t−1; θ0). Let Γε(�) = Cov(εt, εt−�) be the lag � theoretical autoco-
variance matrix. Its sample analogue is defined as

Cε(�) =
{

T−1
∑T

t=�+1 εtε
′
t−�, (� = 0, 1, . . . , T − 1),

C′
ε(−�), (� = −1, . . . ,−T + 1).

(11.79)

Let cε =
(
c′ε(1), . . . , c′ε(M)

)′, with cε(j) = vec
(
Cε(j)

)
(j = 1, . . . ,M ) an m2 × 1

vector of sample autocovariances, and M denotes a fixed positive integer (M � T )
chosen large enough to cover all lags of interest. Then, under the assumptions
for {εt}, it can be shown (Chabot–Hallé and Duchesne, 2008) that the limiting
distribution of cε is given by

√
Tcε

D−→ NMm2

(
0,ΔM

)
,

where

ΔM =
(
Δij

)
i,j=1,...,M

= E(εt−iε
′
t−j ⊗ εtε

′
t). (11.80)

From standard matrix differentiation, and the martingale difference property of {εt},
it follows that ∂cε(�)/∂θ′ P→ −J�, where J� = E(εt−� ⊗ ∂gt−1/∂θ′) (� = 1, . . . ,M )
is an m2 ×K matrix.

Now, consider the case that the parameters of the model are estimated by
CLS. Let ĝt−1 ≡ g(F t−1; θ̂T ). Denote the m × 1 vector of estimated residuals
by ε̂t = Yt− ĝt−1. Then, replacing εt by ε̂t in (11.79), the m2× 1 vector of residual
autocovariances cε̂ is defined naturally. By expanding cε̂ in a Taylor series expan-
sion, it is easy to see that cε̂ = cε−J(θ̂T −θ0)+op(T−1/2), where J = (J′

1, . . . ,J
′
M )′

is an Mm2 × K matrix. Furthermore, it can be shown (Tjøstheim, 1986b, Thm.
2.2) that the asymptotic distribution of T−1/2∂LT (θ0)/∂θ is normal. Also, using the
martingale difference property of {εt} it can be proved (Chabot–Hallé and Duch-
esne, 2008) that T 1/2

(
(θ̂T −θ0)′, c′ε

)′ converges in distribution to a Gaussian random
vector. Combining these results, it follows that, as T →∞,

√
Tcε̂

D−→ NMm2

(
0,Ω

)
, (11.81)

where

Ω = ΔM − J∗H−1(θ0)J′ − JH−1(θ0)J∗′ + JH−1(θ0)I(θ0)H−1(θ0)J′,

and

J∗ =
(
J∗′

1 , . . . ,J∗′
M )′, with J∗

� = E
(
εt−� ⊗ εtε

′
tΣ

−1
ε ∂gt−1/∂θ′), (� = 1, . . . ,M ).

If {εt} is a strict WN process, it follows that J∗ = J andH(θ0) = I(θ0). This implies
that

√
Tcε̂ converges to a Gaussian random vector with mean 0 and covariance

matrix IM ⊗Σε ⊗Σε − JH−1(θ0)J′; see Hosking (1980).
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Portmanteau-type test statistics
The null hypothesis of model adequacy is

H0 : Γε(�) = 0, (� = 1, 2, . . .). (11.82)

Let Ω̂ be a consistent estimator of Ω. Then a multivariate portmanteau-type
test statistic may be written as Tc′ε̂Ω̂

−1cε̂, which has a limiting χ2
Mm2 dis-

tribution under H0. As in the univariate case, the “Ljung–Box variant” of
this test statistic is preferable in practice. In that case, replace cε̂ by c∗ε̂ =(√

T/(T − 1)c′ε̂(1), . . . ,
√

T/(T −M)c′ε̂(M)
)′ to obtain a level-adjusted test stat-

istic. In other words, we can calculate

Q(M) = Tc∗′ε̂ Ω̂−1c∗ε̂, (M ∈ Z+), (11.83)

and its null distribution is also asymptotically χ2
Mm2 , as T →∞.

Clearly, (11.83) is a multiple-lag test statistic. The test does not provide insight
in the possible residual dependence at each individual lag �. It that case one may
consider the following level-adjusted single-lag test statistic

Q(�) =
T 2

T − �
c′ε̂(�)Ω̂

−1
� cε̂(�), (� = 1, . . . ,M ), (11.84)

where

Ω̂� = Δ̂�� − Ĵ∗
�Ĥ

−1

T Ĵ′
� − Ĵ�Ĥ

−1

T Ĵ∗′
� + Ĵ�Ĥ

−1

T ÎT Ĥ
−1

T Ĵ′
�

be a consistent estimator of the asymptotic covariance matrix, say Ω�, of cε̂(�).
Under H0, it follows that Q(�) D→ χ2

m2 , as T → ∞. For testing several lags simul-
taneously, one may use Bonferroni-type adjustments; see, e.g., Section 7.2.4.

11.6.1 Quantile residuals
Recall the definition of univariate quantile residuals in Section 6.3.2. In a vec-
tor framework, we denote by ft−1(Yt;θ) the conditional density function of an m-
dimensional stochastic process {Yt, t ∈ Z} with θ a vector of unknown parameters.
Assume the components of Yt = (Y1,t, . . . , Ym,t)′ are independent. Then the condi-
tional CDF of {Yt, t ∈ Z} has the product form Ft−1(Yt; θ) =

∏m
j=1 Fj,t−1(Yj,t; θ),

where Fj,t−1(Yj,t;θ) is the marginal distribution of the jth component. Similarly,
by conditioning with respect to any chosen order of the components of {Yt, t ∈ Z},
we can write ft−1(Yt; θ) in the product form, that is

ft−1(Yt; θ) =
m∏

j=1

fij ,j−1,t−1(Yij ,t; θ|Aj−1), (11.85)
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Table 11.3: Three diagnostic test statistics based on multivariate quantile residuals.

Null hypothesis H0 Transformation function g Test statistic

E
(
Rt,θ0R

′
t−�,θ0

)
= 0m×m, ∀t, g : Rm(K1+1) → Rm2K1 ÃT,K1 = S̃T,d with

(� = 1, . . . , K1; K1 � T ) g(ut,θ) = d = K1 + 1
(Autocorrelation) vec(rt,θr

′
t+1,θ , . . . , rt,θr

′
t+K1,θ)

E(R2
i,t,θ0

, R2
j,t−�,θ) = 0, ∀t, g : Rm(K2+1) → Rm2K2 H̃T,K2 = S̃T,d with

and ∀i, j ∈ {1, . . . , m} g(ut,θ) = d = K2 + 1

(� = 1, . . . , K2; K2 � T ) vec(vt,θv
′
t+1,θ , . . . ,vt,θv

′
t+K2,θ

)
(Heteroskedasticity) with vt−�,θ = (r2

1,t,θ − 1, . . . , r2
m,t+K2,θ − 1)′

E(R2
j,t,θ0

− 1, R3
j,t,θ0

, R4
j,t,θ0

− 3)′ = 0, g : Rm → R3m ÑT = S̃T,d with

∀t, and ∀j ∈ {1, . . . , m} (Normality) g(rj,t,θ) = (r2
j,t,θ − 1, r3

t,θ , r4
t,θ − 3)′ d = 1

where Aj−1 = σ(Yi1,t, . . . , Yij−1,t) is the σ-algebra generated by the jth compon-
ent variable. Interpret fi1,0,t−1(Yi1,t; θ) = fi1,t−1(Yi1,t; θ), and Fi1,j−1,t−1(Yi1,t; θ) =∫ Yij ,t

−∞ fi1,j−1,t−1(u; θ)du. Thus, generalizing (6.85), the m × 1 vector of theoretical
quantile residuals at time point t is defined by

R̃t,θ =

⎛⎜⎝R1,t,θ

...
Rm,t,θ

⎞⎟⎠ =

⎛⎜⎝ Φ−1
(
Fi1,t−1(Yi1,t; θ)

)
...

Φ−1
(
Fim,t−1(Yim,t; θ)

)
⎞⎟⎠ , (11.86)

and the corresponding m × 1 vector of sample quantile residuals is r̃
t,θ̂T

=

(r
1,t,θ̂T

, . . . , r
m,t,θ̂T

)′, where θ̂T is the QML of the true parameter vector θ0.
Following a similar approach as in Section 6.3.2, Kalliovirta and Saikkonen (2010)

introduce a general testing framework based on transformations of R̃t,θ by a continu-
ously differentiable function g : Rdm → Rn such that E

(
g(Ut,θ0)

)
= 0, where Ut,θ0 =

(R̃′
t,θ0

, . . . , R̃′
t−d+1,θ0

)′ ∈ Rdm and with d given in Table 11.3. Conditional on a vec-
tor with initial values, and assuming the conditional density function ft−1(Yt; θ)
exists, the log-likelihood function �T (y, θ) =

∑T
t=1 �t(Yt, θ) =

∑T
t=1 log ft−1(Yt; θ)

of the set of observations {Yt}T
t=1 follows directly. Then, under some mild condi-

tions, Kalliovirta and Saikkonen (2010) prove a CLT for transformed vector quantile
residuals. Next, they define the general test statistic

S̃T,d =
1

T − d + 1

T−d+1∑
t=1

g(u
t,θ̂T

)′Ω̂−1
T

T−d+1∑
t=1

g(u
t,θ̂T

), (11.87)

where u
t,θ̂T

= (r̃′
t,θ̂T

, . . . , r̃′
t−d+1,θ̂T

)′, and Ω̂T is a consistent estimator of the asymp-
totic covariance matrix Ω. Specifically,

Ω̂T = ĜT Î
−1

T Ĝ′
T + Ψ̂T Î

−1

T Ĝ′
T + ĜT Î

−1

T Ψ̂′
T + ĤT , (11.88)
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where ĜT =T−1
∑T

t=1 ∂g(u
t,θ̂T

)/∂θ′, Ψ̂T =T−1
∑T

t=1 g(u
t,θ̂T

)∂�t(Yt, θ̂T )/∂θ′, ĤT =

T−1
∑T

t=1 g(u
t,θ̂T

)g(u
t,θ̂T

)′, and ÎT is a consistent estimator of I(θ0), the expected
information matrix evaluated at θ0. In practice, one can compute these matrices
by simulation. Moreover, given the above null hypotheses, explicit expressions for
H=E

(
g(Ut,θ)g(Ut,θ)′

)
follow in a straightforward way.

Assume that the vector nonlinear model under study is correctly specified. Then
(11.87) has an asymptotic χ2

n distribution; Kalliovirta and Saikkonen (2010). This
result does not depend on the chosen order of conditioning of R̃t,θ. Table 11.3
shows three diagnostic test statistics, as special cases of (11.87). Under H0, these
test statistics are asymptotically distributed as respectively χ2

m2K1
, χ2

m2K2
, and χ2

3m.

11.7 Forecasting

11.7.1 Point forecasts

Calculating a point forecast (conditional mean) from multivariate nonlinear time
series with correlated errors is a far more substantial task than in the univariate case
(Chapter 10). Generally, explicit forecast expressions for the forecast density do not
exist for any horizon H, even for one-step ahead forecasts. To see this, consider the
general multivariate nonlinear model in (11.1) with q = 0, i.e. a vector NLAR(p)
model. Then, the one-step (H = 1) ahead LS forecast of the m-dimensional time
series process {Yt, t ∈ Z} at time t is given by

YLS

t+1|t = E(Yt+1|F t) = E{g(Yt; θ) + εt+1|F t} �= g(Yt; θ), (11.89)

since E(εt+1|F t) �= 0. When H = 2, the two-step ahead LS forecast is given by

YLS

t+2|t = E(Yt+2|F t) = E{g(Yt+1; θ) + εt+2|F t}

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
g
(
g∗(Yt; θ) + ηt+1) + εt+2|F t

)
dF (η, ε), (11.90)

where ηt and g∗(·) are defined in a similar way as εt and g(·) respectively, and F (·)
is the joint distribution function of the dependent processes {ηt} and {εt}. Thus,
just as in the univariate case, one can only obtain forecasts by numerical methods.

Two common approaches to computing multi-step ahead forecasts is to use MC
simulation and BS. Often, however, a BS procedure is preferred in practice since
no assumptions need to be made about the distribution of {εt}. One option is to
use some form of block bootstrapping by resampling from non-overlapping blocks
of consecutive centered residuals, say {ε̂t}. Another option is to use a model-based
bootstrap. By this it is meant that a finite-order VAR model is first fitted to {ε̂t},
assuming that the vector error process is i.i.d. and its components are mutually
uncorrelated. Then, assuming that the VAR residuals are i.i.d., and using the re-
cursive structure of the VAR model, it is straightforward to obtain the H-step ahead
forecast E(Yt+H |F t) via block bootstrapping.
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Example 11.7: Forecasting an LVSTAR(1) Model with CNFs
Consider a two-dimensional LVSTAR(1) strictly stationary process {Yt, t ∈ Z}
with CNFs. This implies that there exists a non-zero 2× 1 vector α such that
the LSTAR(1) nonlinearity vanishes in the linear combination α′Yt. More
formally, using the notation of (11.34), we have

Yt = Φ0 + Φ1Yt−1 + (Φ̃0 + Φ̃1Yt−1)G(Xt; γ, c) + εt, (11.91)

where α⊥φ∗
0 = Φ̃0, α⊥β′ = Φ̃1 with φ∗

0 a scalar parameter, β is a 2 × 1
parameter vector, α′α⊥ = 0, G(·) is a logistic transition function given by
(11.37), and {εt} i.i.d.∼ (0,Σε) independent of Yt, and Xt ≡ Yt−d (d > 0).

The one-step ahead LS forecast for model (11.91) is given by

YLS

t+1|t = E(Yt+1|F t) = Φ0 + Φ1Yt + α⊥(φ∗
0 + β′Yt)G(Yt+1−d; γ, c).

(11.92)

Using (11.92), the two-step ahead LS forecast is given by

YLS

t+2|t = E(Yt+2|F t) = Φ0 + Φ1Φ0 + Φ1α⊥(φ∗
0 + β′Yt)G(Yt+1−d; γ, c)

+ φ∗
0α⊥E[G(Yt+2−d; γ, c)] + α⊥β′Φ0E[G(Yt+2−d; γ, c)]

+ α⊥β′Φ1YtE[G(Yt+2−d; γ, c)] + α⊥β′E[εt+1G(Yt+2−d; γ, c)]
+ α⊥β′α⊥(φ∗

0 + β′Yt)G(Yt+1−d; γ, c)E[G(Yt+2−d; γ, c)]. (11.93)

For further evaluation of (11.93) we need to distinguish between the two cases
d < 2 and d ≥ 2. When d = 1, explicit expressions for E[G(Yt+2−d; γ, c)]
and E[εt+1G(Yt+2−d; γ, c)] are not directly available; then we need to replace
them by estimates obtained via MC simulation or BS. However, when d ≥ 2,
we see that G(Yt+2−d; γ, c) is available at time t. In this case (11.93) reduces
to

YLS

t+2|t = E(Yt+2|F t) = Φ0 + Φ1Φ0 + Φ1α⊥(φ∗
0 + β′Yt)G(Yt+1−d; γ, c)

+
(
φ∗

0α⊥ + α⊥β′Φ0 + α⊥β′Φ1Yt

)
G(Yt+2−d; γ, c)

+ α⊥β′α⊥(φ∗
0 + β′Yt)G(Xt+1; γ, c)[G(Yt+2−d; γ, c)]. (11.94)

In general, when H ≤ d, exact analytic expressions for YLS

t+H|t can be ob-
tained. However, when H > d, one has to resort to MC or BS methods.
For instance, in the case of block bootstrapping with a block size of one,
E[εt+1G(Yt+2−d; γ, c)] can be estimated by( 1

B

B∑
b=1

ε̂
(b)
1,t+1G(Y(b)

t+2−d; γ, c),
1
B

B∑
b=1

ε̂
(b)
2,t+1G(Y(b)

t+2−d; γ, c)
)′

,

and E[G(Yt+2−d; γ, c)] by B−1
∑B

b=1 G(Y(b)
t+2−d, γ, c) with B the number of

BS replicates. The steps to obtain the 2 × 1 vector ε̂
(b)
t+1 = (ε̂(b)

1,t+1, ε̂
(b)
2,t+1)

′ are
as follows.
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(i) Compute the bias-corrected residuals ε̃t = ε̂t− ε̂t, where ε̂t is the sample
mean of the “raw” residuals {ε̂t}.

(ii) Obtain the bootstrap residuals ε̃
(b)
t as random draws with replacement

from ε̃t, taking account of serial correlation in {εt} via the Cholesky form
of the sample estimate of Σε. Next, compute ε̂

(b)
t+1 as ε̃

(b)
t+1 + ε̂t.

The value of Y(b)
t+1 = (Y (b)

1,t+1, Y
(b)
2,t+1)

′ follows from

Y(b)
t+1 = Φ0 + Φ1Yt + α⊥(φ∗

0 + β′Yt)G(Y(b)
t+1−d; γ, c) + ε̂

(b)
t+1.

Alternatively, one can use a fixed block size which depends on the forecast
horizon H, or a random block size when the errors are serial correlated.

11.7.2 Forecast evaluation
RMSFE
Various measures to compare the forecasting accuracy of two or more alternative
(nonlinear) multivariate models follow from direct generalizations of well known
univariate measures. One ubiquitous measure is the multivariate version of the
RMSFE which we define as follows. Let et+h = Yt+h − E(Yt+h|F t) denote the
forecast error from a certain model for forecast period h (h = 1, . . . ,H) associated
with an m-dimensional time series process {Yt, t ∈ Z}. Then, corresponding to the
RMSFE in the univariate case, the RMSFE for the multivariate system is defined as
the square root of the trace of the covariance matrix of out-of-sample forecast errors,
i.e., by {trace E(et+he′t+h)}1/2. Below, we make this concept operational within a
rolling forecasting framework.

Let T be the total number of observations. Also, let n be the last in-sample
observation, i.e. n is the first forecast origin. Then, for this particular origin, T − n
observations are retained as a hold-out or subsample for evaluating the forecast
performance of a particular model. As explained in Chapter 10, by rolling it is
meant t extends as far as T −H, where H ≤ T − 1 is the maximum forecast horizon
under consideration. At each time point t, the parameters of the forecast model
are re-estimated as new observations become available in the subsample. Using
this approach, evaluation is based on the dynamic out-of-sample forecasts. That
is, the rolling method gives rise to T − n one-step ahead forecasts and associated
forecast errors, T − n − 1 two-step ahead forecasts and associated forecasts errors,
. . ., T −H−n+1 H-step ahead forecast and associated forecast errors. Below we set
R ≡ T −H−n+1 for each forecast period h. So, the rolling forecasting method has
a fixed-length R. The corresponding vector of forecast errors are {en+j+h|n+j}R−1

j=0 .
Then the RMSFE measure can be estimated by

RMSFER(h) =
{

trace
[ 1
R

R−1∑
j=0

en+j+h|n+je
′
n+j+h|n+j

]}1/2
, (h = 1, . . . ,H). (11.95)



11.7 FORECASTING 479

Generalized MSFE
One problem with using (11.95) is that E(et+he′t+h) is not invariant to non-singular,
scale preserving transformations. Hence, different models may yield the most ac-
curate forecasts for different transformations. To avoid this problem, Clements
and Hendry (1993) propose the so-called generalized forecast error second moment
(GFESM). Let ẽn+h = (e′n+h|n, e′n+h+1|n+1, . . . , e

′
n+h+(T−H−n)|n+(T−H−n))

′ be the
vector of h-step ahead forecast errors. Then the GFESM is defined as the determ-
inant of the matrix E(EhE′

h) where Eh = (ẽ′n+1, ẽ
′
n+2, . . . , ẽ

′
n+h)′. An estimate of

this criterion is given by

GFESMR(h) =
1

hR
|Êh Ê′

h|, (h = 1, . . . ,H), (11.96)

where Êh is defined in a similar way as Eh with ẽn+h replaced by êt+h =
(ê′n+h|n, ê′n+h+1|n+1, . . . , ê

′
n+h+(T−H−n)|n+(T−H−n))

′ and where ê(n+j)+h|n+j is an es-
timate of e(n+j)+h|n+j (j = 0, . . . , R − 1;h = 1, . . . ,H). One important difference
between (11.95) and (11.96) is that the GFESMR(h) statistic reflects the interrela-
tionships between the different forecast values whereas MSFER(h) does not.

Forecast densities
Multivariate forecast densities can be evaluated in the same fashion as discussed
in Section 10.4.3. For instance, suppose we have a series of T − n one-step ahead
forecasts of a bivariate time series Yt = (Y1,t, Y2,t)′ obtained via the rolling forecast-
ing scheme as we just described. Let f̂t(Y1,t, Y2,t|F t−1) (t = 1, . . . , T − n) denote
the joint forecast density with f̂t(Y1,1, Y2,1|F0) ≡ f(y1, y2). Further, suppose this
density function can be factorized into the product of the conditional (c) density
and the marginal (m) density as, e.g., f̂t(Y1,t, Y2,t|F t−1) = f̂

(c)
t (Y1,t|Y2,t,F t−1) ×

f̂
(m)
t (Y2,t|F t−1). We can transform each element (Y1,t, Y2,t)′ by its corresponding

PIT to give

U
(c)
1|2,t =

∫ Y
(c)
1|2,t+1

−∞
f̂

(c)
t (u|Y2,t,F t−1)du, U

(m)
2,t =

∫ Y
(m)
2,t+1

−∞
f̂

(m)
t (u|F t−1)du,

(t = 1, . . . , T − n), (11.97)

where Y
(c)
1|2,t+1 and Y

(m)
2,t+1 are respectively the conditional and marginal one-step

ahead forecasts. The null hypothesis of interest is that the model forecasting density
corresponds to the true conditional density. That is,

H0 : ft(Y1,t, Y2,t|F t−1) = f̂t(Y1,t, Y2,t|F t−1),

where ft(Y1,t, Y2,t|F t−1) is the true joint forecast density. Then the two sequences
{U (c)

1|2,t}
T−n
t=1 and {U (m)

2,t }T−n
t=1 will each be i.i.d. U(0, 1); Rosenblatt (1952). Moreover,

the two sequences of PITs will themselves be independent.
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Figure 11.6: Time plots of flow (m3/s) of (a) Jökulsá Eystri river and (b) Vatnsdalsá
river, Iceland, (c) precipitation (mm), and (d) temperature (◦C). Daily data covering the
time period January 1972 – December 1974; T = 1,095.

Various approaches can be used to assess whether a particular sequence of PITs
is i.i.d. U(0, 1). Within this context, Clements and Smith (2002) show that the KS
test statistic of uniformity has the highest empirical power for both the product (p)
and ratio (r) of PITs, with typical elements {U (p)

t = U
(c)
1|2,t × U

(m)
2,t } and {U (r)

t =

U
(c)
1|2,t/U

(m)
2,t } respectively. Nevertheless, these results depend on the sign of the

correlation coefficient ρ between Y1,t and Y2,t. The power of the KS(U (p)) test
statistic is markedly better for ρ < 0, and the test statistic using U

(r)
t has power

only when ρ > 0. The asymmetry in power comes from the functional form of
the two test statistics. As an alternative to {U (p)

t }, Ko and Park (2013) propose a
location-adjusted transformation of {U (c)

1|2,t} and {U (m)
2,t }. Under the null hypothesis,

these two sequences are each i.i.d. U(0, 1). Thus, the sequence of modified PITs is
given by {Ũ (p)

t = (U (c)
1|2,t− 1/2)× (U (m)

2,t − 1/2)}. Simulation results indicate that the

resulting KS(Ũ (p)) test statistic delivers much more powerful test results than the
KS(U (p)) test statistic, irrespective of the value of ρ.

So far in this subsection, we have focussed on one-step ahead forecasts. However,
when interest is in H > 1-step ahead forecasts, the following simple provision should
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be applied for the usual (H − 1) dependence of the forecasts. That is, divide the
forecasts into sets of independent series, taking the first, the H + 1, the 2H + 1 etc.
for set 1, and the second, the H + 2, the 2H + 2 etc. for the second set, and so on.
Thus, each of the sub-series of PITs {U1, U1+H , U1+2H , . . .}, {U2, U2+H , U2+2H , . . .},
and {UH , U2H , U3H , . . .} should be i.i.d. U(0, 1) under H0.

11.8 Application: Analysis of Icelandic River Flow Data

In this section, we reconsider the Jökulsá Eystri daily river flow data (Q1,t), earlier
introduced in Exercise 2.11, and measured in m3/s for the years 1972 – 1974. The
exogenous variables are precipitation (Pt), measured in mm, and temperature (Tt) in
◦C. As a second variable of interest, we use daily streamflow data for the Vatnsdalsá
river (Q2,t), also located in north-west Iceland. Jökulsá Eystri is the bigger river
of the two, with a large drainage basin (1,200 km2) that includes a glacier (155
km2); as a result, the effect of temperature goes beyond producing spring snowmelt.
Vatnsdalsá has a much smaller drainage area (450 km2), and some of the flow is due
to groundwater. Full description of this streamflow system is available in Tong et
al. (1985) and the references cited there.

Figure 11.6 shows time plots of the four variables. We see sharp rises and slow
declines with a more pronounced spring peak in the Vatnsdalsá flow than in the
Jökulsá Eystri flow data due to the presence of the glacier in its drainage area.
Since the recorded values of Pt represent the accumulated rain or snow at 9 a.m.
from the time of the day before, we adjust the series Pt by a forward translation of
one day. In total there are 1,095 observations for analysis.

VTARX model
Following Tsay (1998), we use Tt as a threshold variable for both flows. Furthermore,
we focus on a two-regime model. Initially, the maximum AR-order of Qi,t (i = 1, 2)
and the maximum order of the exogenous variables Pt and Tt were set at 15 and 3,
respectively. After some fine tuning, using the multivariate F test statistic of Section
11.4 and AIC, Table 11.4 reports the final equations for the bivariate two-regime
VTARX model with AIC = 16, 981.7 and BIC = 17, 355.0.5 The corresponding
threshold parameter estimate is given by r̂ = −0.409◦C. The number of data points
in each regime are 479 and 601, respectively.

Some observations are in order. First, the estimate of the threshold parameter
for Tt is slightly below freezing, which effectively separates the histories of Q1,t and
Q2,t into two regimes. However, only for Tt > −0.409◦C (regime 2) the series Q1,t

strongly depends on current and one day ago temperature. This phenomenon may be
explained by the presence of the glacier in the basin. There is no effect of temperature
on Qi,t (i = 1, 2) in the other three regimes. Second, lagged precipitation has effect
on current flow for both series. The lags and amount, however, depend on Tt with

5The parameter estimates are not completely identical to those reported by Tsay (1998). This
may be due to small differences in computer code.
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Figure 11.7: HDR’s based on 50% (grey) and 90% (blue) coverage probabilities for the
GIRF of the VTARX model for a one-unit, system-wide shock; (a) Jökulsá Eystri river, Tt ≤
−0.409◦C, (b) Jökulsá Eystri river, Tt > −0.409◦C, (c) Vatnsdalsá river, Tt ≤ −0.409◦C,
and (d) Vatnsdalsá river, Tt > −0.409◦C.

a pronounced effect of Pt on Q1,t (as indicated by larger Student t values, not
shown here) in the second regime. Third, the fitted model suggests a causal, but
asymmetric, relationship between Q1,t and Q2,t in both regimes. According to Tsay
(1998), this may be an indication of missing useful variables such as evaporation
and ground moisture content.

Table 11.5 shows the sample residual cross-correlation matrices summarized by
the symbols +, −, and • in the (i, j)th position, where + denotes a value greater
than 2 estimated standard errors, − denotes a value less than −2 estimated standard
errors, and • denotes a value within 2 estimated standard errors. The pattern
indicates that the fitted model is adequate with no strong serial correlation in the
residuals. We also see some significant CCF values at clusters of lags (3, 4, 5), (8,
10, 11), and (19, 20, 21). This suggests some minor periodic behavior in the series,
likely to be caused by seasonality. Thus, it seems reasonable to complement the
fitted VTARX model by a seasonal component.

Impulse response analysis
In order to illustrate the dynamic behavior of the fitted VTARX model, we estimate
the GIRF defined in Appendix 2.A for single equation nonlinear time series models.
For an m-dimensional strictly stationary vector nonlinear time series process {Yt, t ∈
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Table 11.4: CLS estimates of a bivariate VTARX model for the Iceland river flow data
set; T = 1,095. Blue-typed numbers denote significant parameter values at the 5% nominal
significance level.

Lower regime Upper regime
Q1,t Q2,t Q1,t Q2,t

φ
(i)
0 7.75 1.42 0.69 1.31

Q1,t−1 0.52 -0.06 1.12 0.02
Q1,t−2 -0.02 0.03 -0.42 -0.04
Q1,t−3 0.06 -0.01 0.29
Q1,t−4 0.05 0.01 -0.27
Q1,t−5 -0.07 -0.02 0.17
Q1,t−6 0.12 0.03 -0.12
Q1,t−7 -0.05 -0.01 0.05
Q1,t−8 0.00 -0.01 0.04
Q1,t−9 0.01 0.02 -0.02
Q1,t−10 -0.03
Q1,t−11 0.05
Q1,t−12 0.01
Q1,t−13 0.04
Q1,t−14 -0.07
Q1,t−15 0.05

Q2,t−1 0.11 0.80 0.84 1.25
Q2,t−2 -0.18 -1.05 -0.67
Q2,t−3 0.09 0.19 0.24
Q2,t−4 0.03 0.54 0.16
Q2,t−5 -0.02 -0.21 -0.01
Q2,t−6 0.02 0.14 -0.03
Q2,t−7 -0.00 0.01 0.16
Q2,t−8 0.02 -0.55 -0.30
Q2,t−9 -0.02 0.47 0.17
Q2,t−10 -0.04
Q2,t−11 -0.05
Q2,t−12 0.01
Q2,t−13 -0.08
Q2,t−14 0.09

Pt−1 0.07 0.01 0.44 0.09
Pt−2 -0.03 -0.00 -0.25 -0.06
Pt−3 0.04 -0.01 0.05

Tt 0.03 0.00 1.33
Tt−1 -0.02 -0.02 -0.54

Σ̂
(1)
ε =

(
1.72 0.13
0.13 0.46

)
Σ̂

(2)
ε =

(
48.71 2.44
2.44 5.96

)
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Table 11.5: Icelandic river flow data set. Indicator pattern of the statistically significant
values of the residual sample cross-correlation matrices for the {Q1,t} and {Q2,t} time series.

Lag
1 2 3 4 5 6 7 8 9 10(• •

+ +
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) (
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Z} the GIRF is defined as follows:

GIRFY (H, ε
(δ)
t ,Ωt−1) = E[Yt+H |εδ,t,Ωt−1]− E[Yt+H |Ωt−1], (H ≥ 1), (11.98)

where ε
(δ)
t = (ε(δ)

1,t , . . . , ε
(δ)
m,t)

′ is an m-dimensional vector of shocks at time t, and
Ωt−1 = {ωt−j ; j ≥ 1} is a set (or an appropriate subset) of possible histories.
The conditioning variables ε

(δ)
t and Ωt−1 are assumed to be random, and hence

GIRFY (·) is a random variable itself. As noted in Chapter 2, the GIRF can be
estimated by either MC simulation, when the distribution of the shocks is known,
or by bootstrapping the residuals when the distribution is unknown.6

Within the present setting the maximum horizon, H, is set to 5, and we average
over 1,000 BS replicates. We define two separate sets of histories: one when the
temperature Tt ≤ −0.409◦C at the moment of a shock, and the other when Tt >
−0.409◦C. Since the maximum lag order of the VTARX model is 15, we examine
only the effect of a positive, one-unit, “system-wide” shock from time t = 16 through
t = 20. Figure 11.7 shows HDR’s (50% and 90% coverage probabilities) of the GIRF.
For the Jökulsá Eystri river, the effect of a positive shock is not very persistent
and dies out gradually for both regimes. We see a similar dynamic effect for the
Vatnsdalsá river, when Tt ≤ −0.409◦C; Figure 11.7(c). In contrast, when Tt >
−0.409◦ C, shocks persist longer for the Vatnsdalsá river than for the Jökulsá
Eystri river; Figure 11.7(d). Also, there is no indication of bimodality in the HDRs
of the impulse responses for all values of H. The modes of the HDRs converge more
quickly to zero in the summer than in the winter period. Note, however, that for
the summer period the range of values of the HDR of the Vatnsdalsá river is much
wider than that for the Jökulsá Eystri river. Indicating once more the completely
different hydrological and meteorological conditions of the two rivers. We leave it
to the reader to investigate the effect of a negative shock on the system.

11.9 Summary, Terms and Concepts

Summary
Vector nonlinear time series analysis will become more and more prominent in fu-
ture applications. This chapter has covered quite a lot of aspects of the subject,

6The algorithm for estimating the multivariate GIRF is given in Appendix 11.B.
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much of it taken from relatively recent reports and papers. Certainly, and despite
various advantages of vector nonlinear methods over corresponding linear methods,
we should mention that these methods are not free of caveats. For instance, if the
multivariate nonlinear DGP is a “long way” from linearity (null hypothesis) due to
outliers in the series, it is likely that asymptotic test theory will not work well. In
that case, one would expect to reject the null hypothesis emphatically – with a large
number of candidate models under the alternative hypothesis. Moreover, outliers
can have a more serious effect on multivariate nonlinear conditional mean forecasts
than on univariate forecasts due to complex interactions among simultaneously ac-
quired time series. To some extent, these and other difficulties may be overcome by
adopting the vector semi- and nonparametric methods/models discussed in Chapter
12. In any case, we have seen that vector parametric nonlinear time series analysis
can be useful in giving insight into the interdependence between many time series
met in practice. With an interplay between theory and practice, further research
will no doubt result in a “nonlinearity toolkit” for vector time series.
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11.10 Additional Bibliographical Notes

Section 11.1: Thavaneswaran and Abraham (1991) present methods for estimating general
nonlinear multivariate time series models using optimal estimating functions, but do not
provide any practical application of their method for specific nonlinear models. Nicholls and
Quinn (1981, 1982) investigate vector RCAR models. Li and Racine (2007) introduce vector
nonlinear AR models for panels of nonlinear time series, using reduced-rank regression.

Section 11.2.1: Terdik (1990) gives a sufficient condition and asymptotic results concerning
the stationarity and second-order properties of superdiagonal vector BL models. Subba Rao
and Terdik (2003) review recent developments both for univariate and multivariate versions
of the BL model. For the analysis of spatial-temporal processes, Dai and Billard (1998,
2003) propose a space-time subdiagonal BL model, which is a direct generalization of the
vector subdiagonal BL model.

In principle, parameter estimation of vector BL can be obtained in an analogous way as
in the univariate case. For instance, in the time-domain one may use the ML method
via the Newton–Raphson method by providing recursive equations for the gradient vector
and the Hessian matrix. Alternatively, one may apply the Kalman filter to evaluate the
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likelihood function. Also, the repeated residual method of Subba Rao and Gabr (1984) may
be adopted for the estimation of vector BL models. Within the frequency-domain, Subba
Rao and Wong (1999) propose an extension of the method described by Sesay and Subba
Rao (1992). Kumar (1988) investigates some moment properties of bivariate BL models.

Section 11.2.2: Nieto (2005) proposes a methodology for analyzing bivariate time series
with missing data using a VSETAR model transformed into a state space form with regime
switching. The identification and estimation of the model is based on a combination of
MCMC and Bayesian approaches.

There is a wealth of literature applying VSETARs to empirical (financial) economic data.
Three interesting publications outside the area of economics are: Bacigál (2004) (bivariate
GPS data), Chan et al. (2004) (trivariate actuarial data), and Solari and Van Gelder (2011)
(five-variate sea wave and wind data).

Section 11.2.3: Yi and Deng (1994) present sufficient conditions for geometric ergodicity
of a first-order bivariate VSETAR model with two partitions in each regime. They assume
that the structural parameters of a bivariate VSETAR model with multivariate regimes are
unknown and jointly estimated with the other parameters of the model.

Section 11.2.4: Yang et al. (2007) suggest a hybrid algorithm for the estimation of TVEC
models which combines aspects of GAs and elements of simulated annealing (SA). Simulation
results show that the algorithm does a better job than either SA or GA alone.

Hansen and Seo (2002) propose a SupLM-type test statistic for testing a linear VEC model
against a two-regime TVEC model; see the function TVECM.HStest in the R-tsDyn package.
However, this test can suffer from substantial power loss (see, e.g., Pippenger and Goering,
2000 and Seo, 2006) when the alternative hypothesis is threshold cointegration. As an
alternative, Seo (2006) adopts a SupWald-type test statistic, and derives its asymptotic
null distribution. The power of the proposed test dominates the power of conventional
cointegration tests.

Section 11.2.5: Many extensions of the VSTAR models have been proposed in the liter-
ature; see Hubrich and Teräsvirta (2013) for a survey. For instance, Dueker et al. (2011)
propose a so-called vector contemporaneous-threshold STAR model. A key characteristic
of the model is that regime weights depend on the ex-ante probabilities that latent regime-
specific variables exceed certain threshold values. Several methods are available to find
good starting-values for the estimation of VSTAR models. In an MC simulation study,
Schleer–van Gellecom (2015) compares grid search algorithms and three heuristic proced-
ures: differential evolution (DE), threshold accepting (TA), and simulated annealing (SA).
It appears that SA and DE improve LVSTAR model estimation.

Section 11.3: Harvill and Ray (1998) compare the various nonlinearity test statistics in
an MC simulation study. Their results indicate that the power of the test statistics is
affected by cross-correlation between process errors terms. In general, the multivariate
test statistics tend to perform better than their univariate counterparts when the cross-
correlation is moderate or weak. For small sample sizes, the multivariate version of the
Tukey nonadditivity-type test statistic is preferable, as the test requires fewer degrees of
freedom.

Section 11.4: Li and He (2012a) develop an F -type test statistic to examine linear versus
nonlinear cointegration in a bivariate LVSTAR model. In case the null hypothesis is rejected,
they recommend to examine the time series for CNFs using an LM-type test statistic as



11.10 ADDITIONAL BIBLIOGRAPHICAL NOTES 487

proposed by Li and He (2012b). Within this context, Li and He (2013) propose a residual-
based Wald-type test statistic for CNFs in LVSTAR models.

As noted earlier, tests for nonlinearity can be quite sensitive to extreme outliers. This is, for
instance, the case with the multivariate test statistic in Algorithm 11.4. Chan et al. (2015)
propose a new and robust VSETAR-nonlinearity test statistic, and derive its asymptotic
null distribution.

There are many ways in which an estimated nonlinear vector model can be misspecified.
Yang (2012) and Teräsvirta and Yang (2014b) consider three LM-type misspecification test
statistics for possible VSTAR model extensions: a test of no serial correlation, a test of no
additive nonlinearity, and a test for parameter constancy.

Section 11.5: Billings et al. (1989) propose a method for variable selection in general (in-
cluding exogenous variables) nonlinear models based on a truncated multivariate, discrete-
time, Volterra series representation; see also Billings (2013). The method uses a recursive
orthogonal LS algorithm which efficiently combines model identification and parameter es-
timation. It can be tied to the subset model selection method for univariate nonlinear time
series models of Rech et al. (2001); see Section 12.7 for details about the method in the mul-
tivariate case. Camacho (2004) presents a strategy for building (specification, estimation,
and evaluation) bivariate STAR models; see Yang (2012) for the multivariate case.

Section 11.6: Ling and Li (1997) and Duchesne (2004), among others, present diagnostic
test statistics for checking multivariate (G)ARCH errors.

Section 11.7: Using BS and MC simulation procedures, De Gooijer and Vidiella-i-Anguera
(2003b) explore the long-term forecast ability of two threshold vector cointegrated systems
via a rolling forecasting approach. For model comparison they apply several forecast accur-
acy measures, including forecast densities. Polanski and Stoja (2012) propose a test statistic
for evaluating multi-dimensional time-varying density forecasts.

The KS test statistic of uniformity, and related GOF tests, are sometimes referred to as
omnibus tests, i.e. they are sensitive to almost all alternatives to the null hypothesis. For
evaluating forecast densities, this property implies that when an omnibus test fails to reject
H0, we can conclude that there is not enough evidence that the time series is not generated
from the joint forecasting density. On the other hand, a rejection would not provide any
information about the form of the density. Test statistics that can be decomposed into
interpretable components may be a solution. Such a test is Neyman’s smooth test for testing
uniformity. De Gooijer (2007) explores the properties of this test statistic in a bivariate VAR
framework. Moreover, he applies the test to multivariate forecast densities obtained from
the VSETAR model in Exercise 11.5 fitted to the S&P 500 stock index data.

Section 11.8: Teräsvirta and Yang (2014b) present another study of the Icelandic river
flow data, using a VLSTAR model with a yearly sine and cosine term as input variable.
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Table 11.6: Asymptotic critical values of the LRT,p(m, r0) test statistic (11.65) for
various bivariate VTAR models of order p; λ = (1− r0)2/r2

0.

p = 1 p = 2 p = 3 p = 4 p = 5

r0 λ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.40 2.25 13.31 16.20 21.40 19.10 22.47 28.37 24.67 28.40 34.86 29.92 33.98 40.95 35.07 39.42 46.84
0.35 3.45 15.10 17.67 22.63 21.19 24.14 29.74 26.99 30.25 36.34 32.40 35.94 42.51 37.79 41.56 48.53
0.30 5.44 16.26 18.68 23.51 22.54 25.30 30.72 28.49 31.53 37.42 34.03 37.33 43.65 39.51 43.01 49.73
0.25 9.00 17.16 19.49 24.22 23.57 26.21 31.51 29.63 32.54 38.29 35.28 38.42 44.59 40.84 44.17 50.71
0.20 16.00 17.93 20.19 24.85 24.44 27.00 32.21 30.62 33.42 39.06 36.34 39.37 45.41 41.97 45.18 51.58
0.15 32.11 18.64 20.85 25.45 25.25 27.75 32.88 31.50 34.23 39.76 37.32 40.25 46.18 43.01 46.13 52.40
0.10 81.00 19.36 21.53 26.07 26.09 28.52 33.57 32.43 35.09 35.63 38.30 41.15 46.98 44.08 47.10 53.25

p = 6 p = 7 p = 8 p = 9 p = 10

r0 λ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
0.40 2.25 40.10 44.73 52.56 45.17 50.02 58.21 50.08 55.17 63.71 55.03 60.31 69.17 59.86 65.33 74.52
0.35 3.45 43.01 47.00 54.35 48.16 52.35 60.04 53.28 57.65 65.65 58.29 62.84 71.15 63.28 67.99 76.58
0.30 5.44 44.86 48.56 55.63 50.11 53.99 61.38 55.27 59.32 67.02 60.41 64.62 72.59 65.46 69.82 78.06
0.25 9.00 46.26 49.78 56.65 51.59 55.28 62.46 56.83 60.68 68.15 62.00 65.99 73.74 67.12 71.26 79.26
0.20 16.00 47.45 50.84 57.56 52.83 56.38 63.39 58.15 61.85 69.14 63.37 67.21 74.77 68.54 72.51 80.31
0.15 32.11 48.56 51.84 58.42 54.00 57.43 64.30 59.35 62.92 70.06 64.62 68.33 75.73 69.85 73.69 81.32
0.10 81.00 49.70 52.88 59.33 55.20 58.52 65.26 60.61 64.07 71.06 65.94 69.53 76.77 71.21 74.92 82.39

11.11 Data and Software References

Data
Example 11.5: The tree ring widths has been used by Fritts et al. (1971) “Multivari-
ate techniques for specifying tree-growth and climatic relationships and for reconstructing
anomalies in Paleoclimate”, Journal of Applied Meteorology, 10(5), pp. 845 – 864. The
data were produced and assembled at the Tree Ring Laboratory at the University of Ari-
zona, Tuscon. Both annual (monthly averaged) tree ring widths and temperature are
included in the folder LAMARCHE in the mhsets.zip collection of data sets, available at
http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/readme-mhsets.html . Al-
ternatively, one may visit the website of this book.

Exercise 11.5: Forbes et al. (1999) and Tsay (1998, 2010) provide detailed information
about the intraday transaction data of the S&P 500 index. Similar to Tsay (1998, Section 5)
we replaced 10 extreme values (5 on each side) in the series Y1,t and Y2,t by the simple average
of their two nearest neighbors. The original data set (with outliers) can be downloaded from
Ruey Tsay’s teaching website http://faculty.chicagobooth.edu/ruey.tsay/teaching/
fts2/, file: sp5may.dat. The data set (intraday.dat), corrected for outliers, is available at the
website of this book.

Application: The complete data set of Icelandic river flow system (1,096 observations) is
included in the file tsayjasa1998.zip, available at the Estima website (https://estima.com).
This website provides links to a long list of RATS time series procedures. The zip file also
contains RATS code to replicate the threshold parameter estimation results of Tsay (1998,
Section 6). On the other hand, the simplest way is to download the file ice.dat from the
website of this book.

http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts2/
http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts2/
http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/readme-mhsets.html
https://estima.com
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Software References
Section 11.2.2: MATHEMATICA source code for testing and estimating bivariate TAR
models can be downloaded from Tomás̆ Bacigál’s web page at https://www.math.sk/
bacigal/homepage/. The R-tsDyn-package contains various functions for bivariate TVAR
estimation, simulation and linearity testing.

Section 11.2.3: The website http://repec.wirtschaft.uni-giessen.de/~repec/RePEc/
jns/Datenarchiv/v233y2013i1/y233y2013i1p3_21/ provides access to C++ source code
and executable files for multivariate threshold bivariate VSETAR analysis using GAs.

Section 11.3: The test results in Table 11.1 are computed with applytot.f, a FORTRAN77
program written by Jane L. Harvill and Bonnie K. Ray, and available at the website of this
book.

Section 11.4: Yang (2012, Appendix) provides a collection of R functions for the specifica-
tion and evaluation of VSTAR models; see http://pure.au.dk/portal/files/45638557/
Yukai_Yang_PhD_Thesis.pdf.

Application: Several FORTRAN77 programs for threshold estimation and parameter es-
timation of VTARX models (three regimes at most), created by Ruey S. Tsay, are available
at the website of this book.

Appendix

11.A Percentiles of the LR–VTAR Test Statistic

Using formula (11.67), we can tabulate the asymptotic critical values for the null distribution
of the LRT,p(m, r) test statistic. The distribution of LRT,p(m, r) is parameter-free, only
depending on the dimension m of Yt, the threshold value r, and the order p of the fitted
VTAR(2; p, p) model. Ordinarily, r ∈ R̃ = [r, r] with r = 0.1 × T and r = 0.9 × T .
Table 11.6 lists the upper 10%, 5%, and 1% points for the asymptotic null distribution of
the LRT,p(m, r0) test statistic for p = 1, . . . , 10, R̃ = [r0, 1−r0] with r0 = 0.05, 0.10, . . . , 0.40,
and m = 2. Percentiles for another (non-symmetric) interval [r, r] can be obtained through
the parameter λ or by interpolation.

11.B Computing GIRFs

In this appendix, we describe the steps involved in computing the GIRF for a strictly
stationary m-dimensional nonlinear VAR(p) process along the lines of Koop et al. (1996).
Assume that the functional form of the fitted model is completely known. Given the set of
m-dimensional vector residuals {ε̂t}T

t=p+1, Algorithm 11.6 summarizes the relevant steps.

Algorithm 11.6: Bootstrapping the GIRF

(i) Draw at random a history from the available set Ωt−1 = {ωt−j ; j ≥ 1}. This
set is used to initiate the simulation of the process in the subsequent steps.

http://pure.au.dk/portal/files/45638557/Yukai_Yang_PhD_Thesis.pdf
http://pure.au.dk/portal/files/45638557/Yukai_Yang_PhD_Thesis.pdf
http://repec.wirtschaft.uni-giessen.de/~repec/RePEc/jns/Datenarchiv/v233y2013i1/y233y2013i1p3_21/
http://repec.wirtschaft.uni-giessen.de/~repec/RePEc/jns/Datenarchiv/v233y2013i1/y233y2013i1p3_21/
http://repec.wirtschaft.uni-giessen.de/~repec/RePEc/jns/Datenarchiv/v233y2013i1/y233y2013i1p3_21/
https://www.math.sk/bacigal/homepage/
https://www.math.sk/bacigal/homepage/
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Algorithm 11.6: Bootstrapping the GIRF (Cont’d)

(ii) Obtain a Cholesky decomposition of the residual covariance matrix: Σ̂ε =
P̂′P̂, where P̂ is an m × m non-singular upper triangular matrix. Then
compute the set of orthogonal (transformed) vectors {et = P̂−1ε̂t}T

t=1.

(iii) Draw randomly (with replacement) a sequence of vector residuals from this
set, i.e. {e∗

t , . . . , e
∗
t+H}, where H (H ≥ 1) is the forecast horizon.

(iv) Suppose that the effect of a shock on the ith variable Yi,t (i = 1, . . . ,m) is of
interest given the initial history ωi,t−1 of this variable. Then replace the ith
element of e∗

t by a shock of size e
(δ)
i,t = δ drawn from a set of shocks. Alternat-

ively, δ may be a pre-fixed number. Denote the resulting sequence of residuals
by {e(δ)

i,t , e∗
t+1, . . . , e

∗
t+H}, where e(δ)

i,t = (e1,t, . . . , ei−1,t, δ, ei+1,t . . . , em,t)′.

(v) Recover the “original residuals” by the transformation ε̂ ∗
t+j = P̂e∗

t+j (j =

1, . . . ,H) and ε̂
(δ)
i,t = P̂e(δ)

i,t (i = 1, . . . ,m).

(vi) For each j = 1, . . . ,H , and a history ωi,t−1, generate two values of Yi,t+j ,
one using ε̂ ∗

t+j and one using ε̂
(δ)
i,t (i = 1, . . . ,m). Compute the differences,

say GIRF(b)
Y (H, ε̂

(δ)
i,t ,ωi,t−1), between both values.

(vii) Repeat steps (iii) – (vi) B times, to obtain {GIRF(b)
Y (H, ε̂

(δ)
i,t ,ωi,t−1)}B

b=1 (i =
1, . . . ,m). Finally compute, as an estimate of the GIRF (11.98), the sample
average GIRFY,i,H = B−1

∑B
b=1 GIRF(b)

Y (H, ε̂
(δ)
i,t ,ωi,t−1) for each variable i

and each horizon H.

Repeating steps (i) – (vi) a sufficiently large number of times (say R), an estimate of the
unconditional pdf of the random GIRF, given ωi,t−1 follows directly. So, each time a new
set of histories is drawn from a given initial set of histories. If the size of the shock e

(δ)
i,t

and/or subset of histories is restricted, a conditional estimate of the pdf can be obtained. In
the application of Section 11.8, we set H = 10, B = 1,000 and R = 1,000. Finally, it is good
to mention that for unrestricted linear VAR and cointegrated VAR models the computation
of GIRFs do not require orthogonalization of shocks, as in step (ii) above, and they are
invariant to the ordering of the variables in the VAR; see Pesaran and Shin (1998).

Exercises

Theory Questions

11.1 Given the BL model (11.14), verify condition (11.16).

[Hint: First show that expE
{

log‖Θv +
∑p

u=1 Ψuv[Yt−u ⊗ Im]‖
}

< 1 (v ∈ {1, . . . , q};
q ≤ p). Next, prove (11.16), using Jensen’s inequality, the Cauchy–Schwarz inequality,
the strict stationarity of the process (ergodic theorem), and using the properties of
vectors and matrices given in Appendix 7.A.]
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11.2 Let {Xt, t ∈ Z} i.i.d.∼ Nm(0,ΣX) with Xt = (X1,t, . . . ,Xm,t)′ ∈ Rm. In addition,
assume that Rm can be partitioned into two non-overlapping subspaces, i.e.

Mi = {x ∈ Rm|1′x ∈ R(i)}, (i = 1, 2).

Here, 1 = (1, . . . , 1)′, and R(i) denotes the support of the associated density function,
assuming it exists. Then a multivariate analogue of the univariate asMA(1) model is
defined as

Yt = Xt +
2∑

i=1

BiI
(
Xt−1 ∈ Mi

)
Xt−1

= Xt + B1Xt−1 + BI
(
Xt−1 ∈ M1

)
Xt−1,

where Bi (i = 1, 2) are m×m matrices with constants, and B = B2 −B1.

(a) Now, let ΣX = {(σij)} =
(

σ11 Σ12
Σ22

)
, (i, j = 1, . . . ,m), where Σ12 is an 1×(m−1)

vector, Σ22 an (m − 1) × (m − 1) matrix, and |Σ22| > 0. Further, let fm(x)
denote the density function of {Xt, t ∈ Z}. Show that

(i) ∫Ai
xjfm(x)dx = σj1(μi/σ11), (i = 1, 2; j = 1, . . . ,m).

(ii) ∫Ai
xkxjfm(x)dx =

(
σk1σj1/σ11

)(
(σi/σ11) − αi

)
+ σkjαi, (i = 1, 2; j, k =

1, . . . ,m).

where Ai = {(z1, . . . , zm) ∈ Rm; z1 ∈ R(i), (z2, . . . , zm) ∈ Rm−1}, and where
μi = ∫

R(i) uf1(u)du and σi = ∫
R(i) u2f1(u)du.

(b) Let r and s be two m-dimensional non-random vectors in Rm. Using the results
in part (a), show that

(i) ∫Ai
r′xfm(x)dx = (μi/σ11)r′Σ∗

12, (i = 1, 2).

(ii) ∫Ai
r′xx′sfm(x)dx = γir′Σ∗

12Σ
∗′
12s + αir′ΣXs, (i = 1, 2), where αi =

∫
R(i) f1(u)du, and

γi =
σi

σ2
11

− αi

σ11
, Σ∗

12 = (σ11,Σ12)′.

(c) Using the results in part (b), and assuming the process {Yt, t ∈ Z} is weakly
stationary, show that

E(Yt) = (2π1′ΣX1)−1/2BΣX1,

Var(Yt) = ΣX +
1
2
(B1ΣXB′

1 + B2ΣXB′
2)− E(Yt)(E(Yt))′,

Cov(Yt,Yt−1) =
1
2
(B1 + B2)ΣX .

11.3 Consider the LM-type test statistic for testing linearity versus the LVSTAR model in
(11.69).

(a) Verify (11.70).

(b) Show that under the null hypothesis H0 : Θ1 = 0, and as T → ∞, the asymp-
totic distribution of the test statistic LM(1)

T,p(m) converges in probability to a χ2

distribution with m(mp + 1) degrees of freedom.

Σ12
0
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11.4 Let U1 and U2 be two independent random variables each U(0, 1) distributed.

(a) Show that the random variable U (p) = U1×U2 has a distribution function given
by FU(p)(x) = x− x log(x) if 0 < x < 1.

(b) Show that the distribution function of U (r) = U1/U2 is given by FU(r)(x) = x/2
if 0 < x < 1, and FU(r)(x) = 1− (1/2x) if 1 < x < ∞.

(c) Show that the distribution function of Ũ (p) = (U1 − 1
2 )(U2 − 1

2 ) is given by

F
˜U(p)(x) =

{
−2x log 2 + 2x− 2x log(2x) + 1

2 , x > 0,
−2x log 2 + 2x− 2x log(−2x) + 1

2 , x < 0.

(Clements and Smith, 2002; Ko and Park, 2013)

Empirical Questions

11.5 The V(SE)TAR model is a useful tool to study index futures arbitrage in finance. Tsay
(1998) studies the intraday (1–minute) transactions for the S&P 500 stock index in
May 1993 and its June futures contract traded at the Chicago Mercantile Exchange.
Specifically, let {Yt = (Y1,t, Y2,t,Xt)′}7,060

t=1 denote the data set under study (file:
intraday.dat) with Y1,t = ft,� − ft−1,� and Y2,t = st − st−1, where ft,� is the log price
of the index futures at maturity �, and st is the log of the security index cash prices.

(a) Check the threshold nonlinearity of the series {Yt} using the test statistics
F

(T)
T,p (m) (Algorithm 11.2), F

(O)
T,p (m) (Algorithm 11.3), and CT,p(d,m) (Al-

gorithm 11.4). In all cases, assume that a VAR(8) model best describes the
interdependencies between the two series.

(b) Using LS, estimate the parameters of the following bivariate VSTARX(2; 8 , 8)
model

Yt =

{
φ

(1)
0 +

∑8
u=1 Φ(1)

u Yt−u + β1Xt−1 + ε
(1)
t if Xt−1 ≤ r,

φ
(2)
0 +

∑8
u=1 Φ(2)

u Yt−u + β2Xt−1 + ε
(2)
t if Xt−1 > r,

where Xt is an exogenous variable (column three of the available data set) con-
trolling the switching dynamics, r is a real number, Φ(i)

u (i = 1, 2;u = 1, . . . , p)
are 2× 2 matrices of coefficients, φ

(i)
0 and βi are 2× 1 vectors of unknown para-

meters. The error process {ε(i)
t } satisfies ε

(i)
t = (Σ(i)

ε )1/2εt, where Σ(i)
ε (i = 1, 2)

are 2 × 2 symmetric positive definite matrices, and {εt} i.i.d.∼ N (0, I2). Provide
an (economic) interpretation for the estimation results.

(c) Apply the LVSTAR nonlinearity test statistic LM(1)
T,p(m) (Algorithm 11.5), and

the rescaled F
(1)
T,p(m) test statistic (Expression (11.73)) to the intraday transac-

tion series, letting p = 8. Compare the test results with those of part (a).

11.6 Consider the monthly percentage growth of personal consumption expenditures, and
the percentage growth of personal disposable income in the U.S. for the time period
January 1985 – December 2011 (T = 324). Both series are measured in millions of
dollars, and months are seasonally adjusted at annual rates. Let {Yi,t} (i = 1, 2)
denote the logs of the first differences of the two series. Li and He (2013) use the first
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263 observations of the differenced series to fit an LVSTAR(3) model with a common
CNF and transition variable Y1,t−7 to the data. Using the notation introduced earlier
in this chapter, the model is given by

Yt = Φ0 +
3∑

u=1

ΦuYt−u + α⊥
(
φ∗

0 +
3∑

u=1

β′
uYt−u

)
G(Y1,t−7; γ, c). (11.99)

The last 60 observations are set aside for out-of-sample forecasting in a rolling fore-
casting framework. Thus, the first forecast origin is 264. Then h-step ahead forecasts
(h = 1, . . . ,H) are obtained with maximum forecast horizon H = 1, 3, and 6. Next,
at time t = 264, the parameters of the model are re-estimated as new observations be-
come available, but the model structure remains unchanged. This process is repeated
until t extends as far as 323.

The aim of this exercise is to compare the out-of-sample forecasting performance
of (11.99) with forecasts obtained from a VAR(3) model fitted to the series {Yi,t}
(i = 1, 2).

(a) The file con inc.dat contains the original, untransformed data. Obtain H-step
forecasts (with H = 1, 3 and 6) from a VAR(3) model in a similar manner to
the rolling forecast experiment described above.

Collect the corresponding three series of forecast errors in appropriately named data
files. The data files eNL1.dat (T = 60), eNL3.dat (T = 176), and eNL6.dat (T = 335)
contain the H-step ahead forecast errors (H = 1, 3, and 6) from the LVSTAR(3)–CNF
model.

(b) Evaluate the forecast performance of both models in terms of RMSFEs.

(c) Use the DM and MDM test statistics (see Chapter 10) to test for equal forecast
accuracy. Take as benchmarks the following three series: (i) the forecast errors
of {Y1,t} and {Y2,t} from the VAR model, (ii) the forecast errors of {Y1,t} from
the VAR model, and (iii) the forecast errors of {Y2,t} from the VAR model.



Chapter 12
VECTOR SEMI- AND NONPARAMETRIC
METHODS

Quite often it is not possible to postulate an appropriate parametric form for the
DGP under study. In such cases, semi- and nonparametric methods are called for.
Certain of these methods introduced in Chapter 9 can be easily extended to the
multivariate (vector) framework. Specifically, let Yt = (Y1,t, . . . , Ym,t)′ denote an
m-dimensional process. We consider again the general nonlinear VAR(p) model

Y�,t = f�(Yt−1, . . . ,Yt−p) + ε�,t, (� = 1, . . . ,m), (12.1)

where εt = (ε1,t, . . . , εm,t)′ is an m-dimensional i.i.d. variable with mean vector 0
and m × m covariance matrix Σε, independent of Yt. In this chapter, we discuss
various aspects related to data-driven estimation and forecasting methods, as well
as to the detection of dependence structures and interrelationships in multivariate
time series.

In Section 12.1, we start off by extending the theory of univariate kernel-based
conditional quantile estimation to higher dimensions. In addition, we present a
kernel-based forecasting method. Valuable as these methods can sometimes be, the
increase in the dimensionality of the predictor space makes straightforward applica-
tion of kernel-based methods impractical in practice unless both m and p are small
and T is large. As an alternative, constraining the functions f�(·) in (12.1) in such a
way that they still provide flexible representations of the unknown underlying func-
tions yet do not suffer from excessive data requirements results is often a more useful
approach. Of the semiparametric methods discussed in Chapter 9, (TS)MARS, k-
NN, PPR and FCAR are most easily extended to the multivariate framework; see
Section 12.2. In Section 12.3, we discuss vector frequency-domain Gaussianity and
linearity test statistics.

In Section 12.4, we turn our attention to an exploratory nonparametric test
statistic for lag identification in vector nonlinear time series which is a multivari-
ate analogue to the mutual information coefficient R(·) given by (1.20). Finding
appropriate lags for inclusion in a vector nonlinear time series model can be based
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on this test statistic and hence it can serve as an initial way to infer causal rela-
tionships. In Section 12.5, we then introduce three formal nonlinear causality test
statistics. These tests are closely related to test statistics for high-dimensional serial
independence, which we discussed earlier in Chapter 7.

Two appendices are added to the chapter. Appendix 12.A provides information
about the numerical computation of multivariate conditional quantiles. Appendix
12.B discusses how to compute percentiles of the vector based analogue of the uni-
variate test statistic R̂Y (·) introduced in Section 1.3.3.

12.1 Nonparametric Methods

12.1.1 Conditional quantiles
Suppose that data are available in the form of a strictly stationary stochastic process
{(Xt,Yt), t ∈ Z} with the same distribution as (X,Y) taking values in Rmp (p ≥
1,m ≥ 2). Our aim is to generalize the univariate conditional quantile definition
of Section 9.1.2 into a multivariate setting, i.e., m ≥ 2. First, we introduce some
notation.

Let ‖ · ‖s,q : Rm → R, be the application defined by

‖z‖s,q = ‖(z1, . . . , zm) ‖s,q=
∥∥∥∥ |z1|+ (2q − 1)z1

2
, . . . ,

|zm|+ (2q − 1)zm

2

∥∥∥∥
s

.

Although ‖ · ‖s,q is not a norm on Rm, it has properties similar to those of a norm;
see Abdous and Theodorescu (1992). Below, we consider the Euclidean norm. Fur-
thermore, for notational simplicity, we write ‖ · ‖q for ‖ · ‖2,q, and ‖ · ‖ for ‖ · ‖2.

For a fixed x ∈ Rp, we define a vector function of θ (θ ∈ Rm) by

ϕ(θ,x) = E(‖Y − θ‖q − ‖Y‖q|X = x)

=
∫
Rm

(‖y − θ‖q − ‖y‖q)Q(dy|x), (12.2)

where Q(·|x) is the conditional probability measure of Yt given Xt = x. Because
‖θ‖q < ‖θ‖, we have |ϕ(θ,x)| ≤ ‖θ‖ ∀θ ∈ Rm. Thus, ϕ(·,x) is well-defined. We
shall call a q-conditional multivariate quantile , any point θq(x) which assumes the
infimum

ϕ
(
θq(x),x

)
= inf
θ∈Rm

ϕ(θ,x). (12.3)

Unless Q(·|x) is included into a straight line in Rm, it can be shown (Kemperman,
1987, Thm. 2.17) that ϕ(θ,x) must be a strictly convex function of θ, assuming
‖ · ‖q is a strictly convex norm (Appendix 3.A). This guarantees the existence and
uniqueness of θq(x). If the norm is not strictly convex, uniqueness of ϕ(·,x) is
not guaranteed; see, e.g., Oja (1983). Also, when ϕ(·,x) is defined on an infinite-
dimensional space, it may have no minimum (León and Massé, 1992).
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Now, we introduce a consistent nonparametric estimator of θq(x). In particu-
lar, given observations {(Xt,Yt)}T

t=1, we define F̂ (·|x) (x ∈ Rp), a nonparametric
estimate of F (·|x) the conditional distribution function of Y given X = x, by

F̂ (y|x) =
∑T

t=1Kh(x−Xt)I(Yt � y)∑T
t=1Kh(x−Xt)

, y ∈ Rm.

Here, h is the bandwidth, and Kh(v) = h−p
∏p

i=1 K(vi/h) where K(·) is a kernel
function. Further

I(Yt � y) = I(Y1,t � y1)× · · · × I(Ym,t � ym),

if y = (y1, . . . , ym)′ ∈ Rm and Yt = (Y1,t, . . . , Ym,t)′ for t ≥ 1.
For any Borel-measurable set V ⊂ Rm, let QT (·|x) = ∫V FT (dy|x) be the estim-

ate of Q(·|x). Then, for θ ∈ Rm, the natural estimate of ϕ(θ,x) denoted by ϕT (θ,x)
can be defined by

ϕT (θ,x) =
∫
Rm

(
‖y − θ‖q − ‖y‖q

)
QT (dy|x)

=
T∑

t=1

(
‖Yt − θ‖q − ‖Yt‖q

) Kh(x−Xt)∑T
t=1Kh(x−Xt)

.

Finally, if we minimize ϕT (θ,x) instead of ϕ(θ,x), the minimizer is an estimator of
θq(x). Denoted by θq,T (x), such an estimator is given by

θq,T (x) = arg min
θ∈Rm

T∑
t=1

(
‖Yt − θ‖q − ‖Yt‖q

)
Kh(x−Xt), (12.4)

and the estimator is consistent (De Gooijer et al., 2006). In Appendix 12.A, we
discuss the computation of (12.4).

Example 12.1: A Monte Carlo Experiment

Consider a vector time series process {Wt = (W1,t,W2,t)′, t ∈ Z} which is
strictly stationary and described by a NLAR(1) process of the form

Wt+1 = θWt + εt+1, (12.5)

where θ(·) : R2 → R2 is defined as(
u
v

)
→

(
θ(1)

θ(2)

)
=

(
−0.1 0.5
−0.3 0.2

)(
u
v

)
+

(
−2.5 0

0 2

)(
exp(−3.89u2)u
exp(−3.89v2)v

)
.

The innovations satisfy εt = Σ1/2
ε ηt where Σ1/2

ε = diag(0.2, 0.2) is a symmet-
ric positive definite matrix, {ηt} is a sequence of serially uncorrelated bivariate
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Figure 12.1: True and estimated bivariate conditional quantile functions at q = 0.5 for a
typical MC simulation of the NLAR(1) process (12.5).

normally distributed random vectors with mean 0 and covariance matrix I 2,
and {Wt} is independent of {ηt}.
Assume that the objective is to estimate the vector function θ given the data
points {Wt}T

t=1. Let Xt = (X1,t,X2,t)′ = Wt and Yt = (Y1,t, Y2,t)′ = Wt+1

(t ∈ {1, . . . , T − 1}). Then, using (Xt,Yt), we can directly apply the mul-
tivariate conditional quantile estimator (12.4) to approximate θ.

To gain some insight in the shape of the estimated conditional quantile function
for model (12.5), we generate 101 random samples of size T = 600. With a
Gaussian kernel function K(·), and choosing h = 1.06σ̂i,W T−1/5 (i = 1, 2),
with σ̂i,W the estimated standard deviation of {Wi,t}, we compute θq,T (·)
for each replication. Figure 12.1 shows the estimated conditional quantile
functions at q = 0.5 along with the “true” functions θ(i)(·) as functions of
Xt for a typical replication. Note that even without using any data-driven
bandwidth choice criterion the shape as well as the values of each estimated
conditional quantile estimator are fairly close to the corresponding true one.

12.1.2 Kernel-based forecasting
The multivariate conditional quantile estimator can be adapted to out-of-sample
prediction problems from Markovian time series processes in a similar manner as
we discussed in Section 9.1.2. Let {Wt; t ∈ Z} be a strictly stationary process
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taking values in Rm, with m � 2. Suppose that {Wt, t ∈ Z} is α-mixing and
p-Markovian. Consider the problem of predicting the qth quantile of the random
vector WT+H (H ≥ 1) given the set of observations {Wt}T

t=1. This comes down
to estimating the conditional quantile of WT+H given (W′

T , . . . ,W′
T−p+1)

′. Thus,
using the associated process {(Xt,Yt)} ∈ Rmp × Rm with

Xt = (W′
t, . . . ,W

′
t+p−1)

′ and Yt = Wt+H+p−1

(t = 1, . . . , n; n = T −H − p + 1),

the problem of predicting the q-quantile of WT+H is equivalent to estimating the
q-quantile of Yt conditional on Xt = XT−p+1.

Example 12.2: Daily Returns of Exchange Rates

As an illustration of the multivariate forecasting approach, we consider two
series of daily returns (differences of log spot rates): the Deutsche Mark/US
Dollar (DEM/USD), and the Deutsche Mark/British Pound (DEM/GBP).
The time period of interest is January 3, 1990 to December 28, 1994 (T =
1,300); see Figure 12.2.1 The two series, denoted by {Wi,t}1,300

t=1 (i = 1, 2), are
correlated, the sample correlation equals 0.16, and {W 2

1,t} and {W 2
2,t} have a

sample correlation of 0.11. Both correlations are statistically significant. The
series are rescaled so that their range always has length 1. Also, we set the
Markov order of the general nonlinear VAR(p) model in (12.1) at p = 1. The
aim is to compute H = 1, 2, and 3-step ahead conditional quantiles for each
return series using θq,T .

To see the relative performance of the multivariate conditional quantile pre-
dictor, we compare it against the univariate conditional quantile predictor,

θ̃q,T = arg min
θ∈R

n∑
t=1

ρq(Yt − θ)Kh(XT−p+1 −Xt), (12.6)

where

Xt = (Wi,t, . . . ,Wi,t+p−1)′ and Yt = Wi,t+H+p−1 (i = 1, 2), (12.7)

and ρq(u) = 0.5(|u| + (2q − 1)u), i.e. the check function. Note that in the
univariate case, the series {W1,t} and {W2,t} are considered separately.

We need some measure to evaluate how well the quantile forecasts from the
two methods are doing. To this end, we use a rolling forecast framework of 800
observations which gives a total of 498 conditional quantiles for each forecast
step. Then, for each q, we calculate the following accuracy measure

1Härdle et al. (1998) discuss an LL kernel-based method for the estimation of (12.1) in the
multivariate case, allowing for conditional heteroskedasticity of the error process. They use a
longer version of the above bivariate data set.
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Figure 12.2: Daily returns (rescaled) of the exchange rates data set; (a) {W1,t =
DEM/USD} and (b) {W2,t = DEM/GBP} for the time period January 3, 1990 – December
28, 1994; T = 1,300.

Table 12.1: Exchange rates data set. Values of the accuracy measure qi,H based on 498
out-of-sample forecasts; θq,T is the multivariate conditional quantile estimator, and θ̃q,T is
the univariate conditional quantile estimator. Blue-typed numbers indicate values which are
statistically significantly different from q. From De Gooijer et al. (2006).

q W1,t (DEM/USD) W2,t (DEM/GBP)
H

1 2 3 1 2 3

0.01 θq,T 0.010 0.010 0.008 0.010 0.016 0.008
θ̃q,T 0.010 0.004 0.010 0.038 0.016 0.018

0.025 θq,T 0.016 0.020 0.020 0.024 0.030 0.026
θ̃q,T 0.032 0.032 0.030 0.074 0.060 0.054

0.05 θα,n 0.042 0.042 0.044 0.058 0.060 0.050
θ̃q,T 0.060 0.064 0.052 0.108 0.104 0.100

0.95 θq,T 0.956 0.954 0.956 0.956 0.959 0.949
θ̃q,T 0.943 0.946 0.944 0.869 0.874 0.876

0.975 θq,T 0.984 0.976 0.972 0.976 0.978 0.979
θ̃q,T 0.974 0.969 0.976 0.932 0.942 0.939

0.99 θq,T 0.986 0.986 0.988 0.986 0.986 0.992
θ̃q,T 0.990 0.998 0.994 0.968 0.974 0.974
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qi,H =
1

498

498∑
j=1

I(Wi,T+H+j−1 � θ̂
(H)
q,T ), (i = 1, 2;H = 1, 2, 3;T = 800),

where θ̂
(H)
q,T is either θ

(H)
q,T (multivariate) or θ̃

(H)
q,T (univariate) with the super-

script (H) denoting the H-step ahead prediction. If the conditional quantiles
are accurate, we expect the value of qi,H to closely approximate q. Table 12.1
shows the results for qi,H . The results of the significance test are obtained us-
ing the Gaussian assumption and using the well-known fact that the standard
deviation for a set of n = 498 proportions equals (q(1− q)/n)1/2.

Given their role in Value at Risk calculations, a type of risk in a financial
market (see, e.g., Tsay, 2010), we only discuss the conditional quantile results
for the lower tail quantile levels, q = 0.01, 0.025, and 0.05. The qi,H values
from the calibration of the conditional quantiles of the {W2,t = DEM/GBP}
series shows that θ̃q,T consistently underpredicts tail quantile values, with lar-
ger biases at q = 0.025 and q = 0.05. In contrast, for the {W1,t = DEM/USD}
series, θ̃q,T performs as well as θq,T , in terms of its empirical q or qi,H . The
distribution of the DEM/GBP returns has a rather heavy tail with a standard-
ized kurtosis of 18.2. Thus, it may not be a surprise when θ̃q,T underpredicts
the tails. However, when the returns are jointly considered in a multivari-
ate fashion, the tails of the DEM/GBP distribution are accurately tracked by
θq,T with no statistically significant bias.2 In all cases, the bandwidths hi,T

(i = 1, 2) are chosen according to the rule-of-thumb (9.22).

12.1.3 K-nearest neighbors
The univariate k-nearest neighbor method discussed in Section 9.1.4 extend most
naturally to the vector framework. For ease of exposition, let {(Y1,t, Y2,t, Y3,t)′}T

t=1

be a set of three observed time series on the strictly stationary time series process
{(Y1,t, Y2,t, Y3,t), t ∈ Z}. Moreover, assume that each series can be transformed into
an m-dimensional vector by the construct Xi,t = (Yi,t, Yi,t+1, . . . , Yi,t+m−1)′ ∈ Rm

(i = 1, 2, 3). As a first step, we are interested in producing a nonparametric estimator
of the conditional mean Yi,t+1|t = E(Yi,t+1|Xt = x), where Xt = (X′

1,t,X
′
2,t,X

′
3,t)

′ ∈
R3m. To this end, we start by fixing an integer 1 ≤ kT < T . Then, at time point t =
T , we look for the kT closest vectors Xi,j (i = 1, 2, 3; j = j1, . . . , jkT

) to XT = x in
the vector space R3m, in the sense that they minimize the function

∑3
i=1 ‖Xi,j−XT ‖

2In finance, it is common to assume normality of returns although it is well known that one of
the stylized facts of many financial time series is their being heavy tailed and most often asymmetric.
The most usual way of estimating quantile predictions is by first computing conditional variance
(volatility) predictions and then make a normality assumption. Obviously, this parametric approach
leads to a sizeable underprediction of tail events because in practice returns are not normally
distributed. In contrast, the multivariate conditional quantile approach can be computed directly
and no distributional assumptions about the process under study are needed.
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(j = j1, . . . , jkT
), where ‖ · ‖ denotes the usual Euclidean norm.3 In this way, we

obtain a set of kT simultaneous m-histories in the three series under study, i.e.
{(Y1,j1 , Y2,j1 , Y3,j1), . . . , (Y1,jkT

, Y2,jkT
, Y3,jkT

)}. Then compute the one-step ahead
forecasts Yi,T+1|T using linear regressions of Yi,jr+1 on (Yi,jr , Yi,jr−1, . . . , Yi,jr−m+1)′

(i = 1, 2, 3; r = 1, . . . , kT ). Alternatively, a VAR model may be used to obtain the
joint vector of one-step ahead forecasts μ̂k-NN(x). Next, the two-step ahead vector
forecasts follow from the new information set {X1, . . . ,XT , μ̂k-NN(x)}.

As expected, the value of kT controls the degree of smoothing. Again, there is
an optimum choice for kT that is neither too large nor too small. Given a value
of the embedding dimension m, the number of neighbors kT can be obtained from
minimizing the RMSE. Note that the model produced by the nearest neighbors is
not a true density model because the integrals over all vector spaces diverge.

12.2 Semiparametric methods

12.2.1 PolyMARS

PolyMARS, or for short PMARS, is an extension of the MARS procedure (see Sec-
tion 9.2.3) that allows for multiple polychotomous regression; Kooperberg et al.
(1997). The method was introduced primarily to extend the advantages of the
(TS)MARS algorithm over simple recursive partitioning to the multiple classific-
ation problem, in which multinomial response data is considered as a set of 0 –
1 multiple responses. With PMARS, by letting the predictor variables be lagged
values of multivariate time series, one obtains a new method for modeling vec-
tor threshold nonlinear time series with or without additional (lagged) exogenous
predictors. The resulting specification, called vector adaptive spline threshold AR
(eXogenous) (VASTAR(X)) model can be considered as a type of generalized VTAR
model.

Description of PMARS
Let Yt = (Y1,t, . . . , Ym,t)′ ∈ Rm be an m-dimensional time series which depends
on q pj-dimensional vectors of time series variables Xj,t = (Xj,t−1, . . . , Xj,t−pj )

′

(pj ≥ 0; j = 1, . . . , q). Assume that there are T observations on {Yt} and {Xj,t}
and that the data are presumed to be described by the time series regression model

Y�,t = μ(�)(X1,t, . . . ,Xq,t) + ε�,t, (� = 1, . . . ,m), (12.8)

over some domain D ∈ Rn (n =
∑q

j=1 pj), which contains the data. Here, the
superscript (�) denotes that this is the �th component of m possible regressions, the
μ(�)(·) are measurable functions from Rn to R which reflect the true, but unknown,
relationship between Yt, and X1,t, . . . ,Xq,t, and ε�,t (� = 1, . . . ,m) are mean zero

3Alternatively, one can minimize other functions like
∑3

i=1{1 − Corr(Xi,j ,XT )} (j =
j1, . . . , jkT ). Of course, other methods of determining the nearest neighbors in the multivariate
framework exist. For instance, different (kernel) weights could be assigned to different components.
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random variables which are correlated with those from the other regressions, as
specified in (12.10) below.

The goal of semiparametric multivariate regression modeling is to construct a
data-driven procedure for simultaneous estimation of the unknown functions μ(�)(Xt)
where Xt = (X1,t, . . . ,Xq,t)′. Specifically, each regression function is modeled as a
linear combination of S > 0 basis functions Bs(Xt), so that for a function μ(�)(·),

μ̂(�)(Xt) =
S∑

s=1

β(�)
s Bs(Xt), (� = 1, . . . ,m). (12.9)

Here, S denotes the number of knots or thresholds τs, representing a partitioning of
D, and the β

(�)
s ’s are regression parameters. To keep the PMARS methodology fast,

and to allow for a better interpretable final model, the candidate basis functions
Bs(Xt) (s = 1, . . . , S) are limited to the following set:

• xi;

• (xi − τis)+ if xi is already a basis function in the model;

• xi(xj − τjs)+ if xixj and (xj − τjs)+ are in the model;

• (xi − τis)+(xj − τjs)+ if xi(xj − τjs)+ and xj(xi − τis)+ are in the model.

This procedure is a little different from that of (TS)MARS, which constrains the
set of candidate basis functions at each step in a slightly different way. PMARS
thus creates a preference for linear models over nonlinear ones, while interactions
are only considered if they are between predictors that are already in the model.
Further note that PMARS, in contrast to (TS)MARS, does not allow basis functions
of the form (τs − x)+.

Let X�,t = (b1(Xt), . . . , bS(Xt)), and β� = (β(�)
1 , . . . , β

(�)
S )′ (� = 1, . . . ,m). Then,

given a choice of a particular basis for the approximation at (12.9), (12.8) can be
placed into vector notation as follows:

Yt = Xtβ + εt. (12.10)

Here, Xt = diag(X1,t, . . . ,Xm,t), β = (β′
1, . . . , β

′
m)′, and εt = (ε1,t, . . . , εm,t)′ is an

m-dimensional vector of i.i.d. random variables with mean zero and m×m covariance
matrix Σε, independent of Yt. In PMARS, estimates of β are obtained by the
method of CLS. As in multivariate regression, simultaneous estimation of the β�

takes advantage of correlation among the ε�,t (� = 1, . . . ,m) for efficient estimation.
Note that the fitted model has the same basis functions for each response; different
structure in different component series is captured through the different coefficients.

Model selection
Analogous to the univariate (TS)MARS methodology, we can use a GCV criterion
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for model selection. Given a maximum number M of basis functions (M ≥ S), the
criterion is given by

GCV(M) =
T−1

∑m
�=1

∑T
t=1{Y�,t − μ̂

(�)
M (Xt)}2

{1− (d×M)/T}2
, (12.11)

where d is a user-specified constant that penalizes for larger models. A value of d
such that 2 d ≤ 5 is recommended in practice. The value of M is commonly set
equal to min([6T 1/3], [T/4], 100).

Alternatively, a test data set can be used for model selection by specifying the
test response data, and the test predictor values. Then compute for each fitted
model the residual sum of squared errors (RSS) of the test set. Next, select at
each stage the VASTAR model with the smallest RSS. Fitting a VASTAR model
to all data except a test set of length h and evaluating the model over the test set
corresponds to a leave-out h CV method evaluated only for a single block of series.

Forecasting
Multi-step ahead forecasts for PMARS models can be made using a naive, or plug-in,
iterative approach as a simple extension of (9.54). Specifically, correlations between
the forecast errors of the component variables should be considered in a vector
framework. In that case, the method of model-based block bootstrapping may be
used as an alternative to the “plug-in” method.

12.2.2 Projection pursuit regression
Recall, in Section 9.2.2 we introduced the PPR method to estimate the relation
between a univariate time series process {Yt, t ∈ Z} and a specified p-dimensional
vector of predictors, Xt, using a linear combination of M one-dimensional non-
parametric functions. In a vector framework, the PPR representation of the �th
component of an m-dimensional time series process {Yt, t ∈ Z} is given by

Y�,t = β�,0 +
M∑
i=1

β�,iφi(α′
iXt) + ε�,t, (� = 1, . . . ,m), (12.12)

where each αi is a p-dimensional vector and α′ and β�,i are chosen using an LS
criterion. Each φi(·) is a univariate function of the projection α′Xt estimated non-
parametrically using a kernel-based smoothing method such that E

(
φi(·)

)
= 0 and

Var
(
φi(·)

)
= 1. PPR thus searches for low-dimensional linear projections of a high-

dimensional data cloud that can be transformed using nonlinear functions and added
together to approximate the structure of {Yt, t ∈ Z}.

Example 12.3: Sea Surface Temperatures (Cont’d)

Recall, in Example 9.7 we showed a TSMARS model fitted to a subset of the
transformed daily SSTs at Granite Canyon, i.e. the series {Yt}1,825

t=1 with lagged
values of Yt, lagged values of wind speed data {WSt}, and lagged values of wind

≤
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Table 12.2: Estimated β and α′
i values for the PPR model fitted to the SST and wind

speed (WS) data set.

Predictor weights (α̂′
i) Coefficients

i Yt−1 WSt−1 WDt−1 WSt−4 WSt−9 β̂1,i β̂2,i

1 0.067 0.701 0.598 0.257 0.284 0.006 0.360
2 1.000 -0.003 -0.001 -0.004 0.001 0.077 -0.090
3 0.996 0.029 -0.076 0.012 -0.022 0.007 0.107

directions WDt as predictors. First, we fit a PMARS model to the bivariate
series (Yt,WSt)′ with (Yt−j , WSt−j) (j = 1, . . . , 10) and WDt−j (j = 1, . . . , 5)
as predictor variables, using default values to specify model selection (GCV
with M = 73) and space between knots. Including only terms with absolute
coefficient value more than twice their estimated standard error, we obtain
the model

Ŷt = 0.0030WSt−1 + 0.8971Yt−1 − 0.0050I(WDt−1 = 2) (12.13)

ŴSt = 0.9079 + 0.1597WSt−1 + 0.09690WSt−9 + 0.0832WSt−4

+0.2232I(WDt−1 = 2) + 0.5189(WSt−1 − 2.445)+. (12.14)

The fitted PMARS model suggests that lagged values of WSt have only a min-
imal effect on transformed SSTs. There is indication that winds blowing from
the North (coded as 2) act to lower SSTs on the following day. Transformed
wind speeds are modeled primarily as a function of lagged transformed wind
speeds. Wind speeds greater than 2.445 act to increase the wind speed on the
following day, as do winds blowing from the North. Taking the inverse trans-
form, the threshold value translates into 10.53 knots, or about 12 mph (5.5
m/sec). The PMARS model explains about 80.5% of the observed variation
in SSTs, while explaining only 11.4% of observed variability in wind speeds.

Based on the PMARS model fitting results, we apply PPR with M = 3 using
Yt−1, WSt−1, WDt−1, WSt−1, and WSt−9 as predictor variables, giving p = 5.
Figure 12.3 shows φ̂i(·) as a function of α̂′

iXt. Table 12.2 gives the estimated
values of α′

i and β�,i.

The α̂′
1 vector suggests that a combination of lagged wind speeds and lagged

wind directions affect the responses. The α̂i (i = 2, 3) vectors have most
weight given to Yt−1. The φ̂1(·) function is fairly linear, with a slope near
1. The coefficient of φ̂2(·) is 0.077 for the SST response, thus this term cor-
responds roughly to the term 0.8971Yt−1 in (12.13). The nonlinear nature of
φ̂3(·) suggests a nonlinear relation between SSTs and wind speeds and the
SST of the previous day. The fitted PPR model explains about 75.2% of the
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α̂′
3Xt

α̂′
2Xt

α̂′
1Xt

φ̂3(α̂′
3Xt)

φ̂2(α̂′
2Xt)

φ̂1(α̂′
1Xt)

Figure 12.3: Estimated functional relationships φi(·) (i = 1, 2, 3) for the PPR model fitted
to the SSTand wind speed (WS) time series.

variance in the SST series, while only 12.5% of the variability in wind speeds
is explained, comparable to the PMARS model results. The wind direction
predictor variable does not play a significant role in the fitted PPR model.

12.2.3 Vector functional-coefficient AR model

Harvill and Ray (2005, 2006) extend the FCAR idea of Section 9.2.5 to the vector
AR framework. Consider the case where all functions f�(·) in (12.1) are additive;
that is,

f� =
p∑

j=1

φ
(j)
� (Xt)Yt−j , (� = 1, . . . ,m), (12.15)

where (j) is a superscript, and Xt is a q-dimensional exogenous random variable,
or lagged values of the series {Yt}T

t=1. There is little or no information about the
specific forms of the φ

(j)
� (·). Specification of (12.15) with Xt = Yt−d (d ≤ p) gives

a multivariate version of the FCAR model (9.62). More formally, combining (12.1)
and (12.15), we define the vector FCAR model of order p, VFCAR(p), as

Yt = Φ0(Xt) +
p∑

j=1

Φj(Xt)Yt−j + εt, (t = p + 1, . . . , T ), (12.16)
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where {εt} is independent of Ys and Xt ∀s < t. The Φj(·) (j = 1, . . . , p) are
m × m matrices with elements {φ(j)

�,k(·)} that are real-valued measurable functions
that change as a function of a designated variable Xt and which have continuous
second derivatives. If the variable Xt consists of lagged values of Yt−d, the intercept
term, or the lag d term in the sum of (12.16) should be omitted to avoid a non-
identifiable model, giving unstable estimates of the functional coefficients.

Estimation
The elements of the matrices Φj(·) can be estimated from the observations
{(Xt,Yt)}T

t=1 using local constant or LL multivariate regression in a neighborhood
of Xt with a specified kernel and bandwidth matrix. At time t, denote the AR fit
order by p∗, and the mp∗-dimensional vector of predictors by Zt; that is, let

Zt = (1′,Y′
t−1, . . . ,Y

′
t−p∗)

′,

where Yt−j = (Y1,t−j , . . . , Ym,t−j)′ (j = 1, . . . , p∗). Define Φ(·) by

Φ(Xt) =
(
Φ0(Xt),Φ1(Xt), . . . ,Φp∗(Xt)

)′
.

Then model (12.16) can be written as

Yt = Φ(Xt)Zt + εt, (t = p∗ + 1, . . . , T ).

For the sake of discussion, we temporarily restrict the dimension of the functional
variable Xt to q = 1. Since all elements of Φ(·) have continuous second-order
derivatives, we may approximate each φ

(j)
�,k(·) locally at a point x0 ∈ R by a linear

function φ
(j)
�,k(x) = a

(j)
�,k + b

(j)
�,k(x − x0). Partitioning the coefficient matrices in the

form (a |b), the LL kernel-based estimator of Φ(·) is defined as Φ̂(x0) = â, where
(â | b̂) is the solution to (a |b) that minimizes the weighted sum of squares

T∑
t=p∗+1

[
Yt − (a |b)

(
Zt

Ut

) ][
Yt − (a |b)

(
Zt

Ut

) ]′
Kh(x0 −Xt). (12.17)

Here, Ut is a partitioned matrix with the first partition being (Zp∗+1, . . . ,ZT )′,
and the second partition is the result of the element-by-element product of Zt and
(x0 − Xt), Kh(·) = K(·/h)/h with K(·) a specified kernel function, and h is the
bandwidth. From least squares theory, the solution of (12.17) is given by(

â
b̂

)
= (U′WU)−1U′WY,

where

U =

⎛⎜⎝ Zp∗+1 Zp∗+1(x0 −Xp∗+1)
...

...
ZT ZT (x0 −XT )

⎞⎟⎠ ,
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U′WU is non-singular, and

W = diag
(
Kh(x0 −Xp∗+1), . . . ,Kh(x0 −XT )

)
.

If q > 1, the first mp∗ rows of Ut are the element-by-element product of Zt

and (x1,0 − X1,t), the second mp∗ rows are that of Zt and (x2,0 − X2,t), etc. In
this case K(·) is a specified q-variate kernel function. If the intent is to use the
VFCAR model for testing, a boundary kernel is recommended to avoid trimming
the functional coefficient estimates. In general, results given in Section 9.2.5 for the
bandwidth selection carry over to the present vector framework.

Forecasting
Forecasting with VFCAR models can be based on, for instance, the naive, or plug-in,
method, on MC simulation, and BS. For ease of discussion, consider the univariate
FCAR model (9.61) with Yt = (Yt−1, . . . , Yt−p+1)′. The goal is to find the H-step
ahead (H ≥ 1) MMSE forecast of Yt+H , i.e.

E(Yt+H |Yt) =
p∑

i=1

φi(Yt+H−d)E(Yt+H−d|Yt), (12.18)

assuming φi(·) is known. The BS forecast method is, by far, most commonly used
for this purpose. That is, the H-step ahead (H ≥ 2) forecast is given by

Ŷ BS

t+H|t =
1
B

B∑
b=1

Ŷ
(b)
t+H|t, (12.19)

where

Ŷ
(b)
t+H|t =

p∗∑
i=1

φ̂i(Ŷt+H−d|t)Ŷt+H−i|t + e(b), (12.20)

with e(b) (b = 1, . . . , B) a bootstrapped value of the within-sample residuals from
the fitted FCAR model. Extension of this approach to the vector framework is
straightforward. One advantage of the bootstrapping forecast method is that the
series {Ŷ (b)

t+H|t}
B
b=1 can be used to construct interval forecasts and density forecasts.

Model assessment
Specific choices for the elements of the matrices Φj(·) in (12.16) can result in para-
metric vector time series models. This feature is particularly useful, and can be
assessed by testing the null hypothesis

H0 : Φj(X) = Gj(X; θ) versus H1 : Φj(X) �= Gj(X; θ),
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where Gj(·;θ) (j = 1, . . . , p∗) is a given family of matrix functions indexed by an un-
known parameter vector θ, and of the same dimension as Φj(·). The corresponding
LR-type test statistic is given by

LRT =
1− Λ

Λ
, where Λ =

(tr(RSS0)
tr(RSS1)

)1/2
, (12.21)

with RSSi (i = 0, 1) the matrix residual sum of squares obtained under Hi, given
an estimator θ̂ of θ in the specified parametric model Gj(·;θ). Large values of LRT

indicate that H0 should be rejected.
Finding the distribution of the test statistic (12.21) in finite samples is a difficult

problem. However, along the same lines as Algorithm 9.6, Harvill and Ray (2006)
propose the following bootstrap procedure.

Algorithm 12.1: Bootstrap-based p-values for LRT

(i) Sample bootstrap residuals {ε∗
t }T

t=1 from the EDF of the centered residuals
{ε̃t − ε̃}T

t=1, where ε̃ is the mean of the m-dimensional residual vector ε̂t =
Yt − Φ̂(Xt)Zt (t = p∗ + 1, . . . , T ).

(ii) Construct the vector of pseudo-observations Y∗
t = G(Xt; θ̂)Zt + ε∗

t . Next,
compute a bootstrap statistic LR(0)

T in the same way as LRT using {Y ∗
t }T

t=1.

(iii) Repeat step (ii) B times, to obtain {LR∗,(b)
T }B

b=1.

(iv) Compute the one-sided bootstrap p-value as

p̂ =
1 +

∑B
b=1 I

(
LR∗,(b)

T ≥ LR(0)
T

)
1 + B

.

Example 12.4: Sea Surface Temperatures (Cont’d)

For illustration, we fit a VFCAR(1) model to the transformed daily SSTs at
Granite Canyon and transformed WS data, i.e. {Yt =(Yt, WSt)′}1,825

t=1 , letting
Xt = WSt−1. Figures 12.4(a) – (d) show the elements of the estimated Φ1(·)
matrix as a function of WSt−1, using an Epanechnikov kernel with a single
bandwidth across components, i.e. h = 0.8T−1/5. The top left plot corresponds
to the estimated FCAR coefficient of Yt−1 for the SST response, whereas the
top right plot corresponds to the estimated FCAR coefficient of WSt−1. The
bottom plots are similar, but for the wind speed response.

For the SST response (Figure 12.4(a)), the coefficient of Yt−1 varies in the range
[0.85 – 0.95], except when lagged values of WS are large. This corresponds
roughly to the coefficient of 0.8971 for Yt−1 in the PMARS model (12.13).
The estimated coefficient of Yt−1 for the lagged wind speed response (Figure
12.4(c)) is fairly constant around zero except in the boundary regions, possibly
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Figure 12.4: Estimated AR(1) coefficients for the VFCAR model of SST and wind speed
(WS) as a function of lag one wind speeds (WSt−1).

an artifact of boundary effects in the LL kernel-based smoothing method.
The estimated coefficient of WSt−1 for the wind speed response is close to the
estimated coefficient of (0.1597+0.5189) from the PMARS model for WSt−1 >
2.445, but does not correspond to the PMARS model coefficient of 0.1597
when WSt−1 < 2.445. Of course, the fitted PMARS model (12.14) includes
additional lagged wind speed terms, which are unaccounted for in the fitted
VFCAR model.

12.3 Frequency-Domain Tests

Analogous to the univariate case (Section 1.1), we say that an m-dimensional sta-
tionary (up to the rth-order) time series process {Yt, t ∈ Z} is linear if it can be
represented as

Yt =
∞∑

j=−∞
Ψjεt−j ,

∞∑
j=−∞

‖Ψj‖2 < ∞, (12.22)

where {Ψj} is a sequence of m × m coefficient matrices and {εt} is a sequence of
i.i.d. random vectors such that

Cum(εt) = E(εt) = 0,

Cum(εt1 , . . . , εtr) =
{
Cr,ε if t1 = · · · = tr,
0 otherwise.
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Here, Cr,ε is an mr × 1 column vector.
In view of (12.22), the second-order m×m spectral matrix gY (ω) is defined as

gY (ω) =
∞∑

�=−∞
ΣY (�)exp(−2πiω�), ω ∈ [0, 1], (12.23)

where

ΣY (�) ≡ Cov(Yt,Yt+�) =
∞∑

j=−∞
Ψj+�ΣεΨ′

j ,

with Σε = E(εtε
′
t), and C2,ε = vec(Σε). Then the (m2 × 1) second-order spectral

vector, denoted by fY (ω), is related to gY (ω) by the expression

fY (ω) = vec
(
gY (ω)

)
=

(
H(−ω)⊗H(ω)

)
vec(Σε), (12.24)

where H(ω) =
∑∞

j=0 Ψjexp(−2πiωj) is the transfer function matrix, and H(−ω) ≡
H∗(ω) the complex conjugate and transpose of H(ω); cf. the univariate case in
Section 4.1. In a similar manner, the rth-order (r > 2) spectral density vector
(mr × 1) is given by (Wong, 1997; Subba Rao and Wong, 1999)

fY (ω1, . . . , ωr−1) = {H(ω1)⊗ · · · ⊗H(ωr)}Cr,ε, (ω1, . . . , ωr) ∈ [0, 1]r, (12.25)

where ωr = −
∑r−1

j=1 ωj .
If {Yt, t ∈ Z} is Gaussian distributed, Cr,ε = 0 for r > 2, and all higher-order

spectra are zero. On the other hand, if {Yt, t ∈ Z} has a linear (and non-Gaussian)
representation of the form (12.22), Wong (1997) shows that

f∗Y (ω1, . . . , ωr−1)
(
gY (ω1)⊗ · · · ⊗ gY (ωr)

)−1fY (ω1, . . . , ωr−1)

= C′
r,ε

(
Σε ⊗ · · · ⊗Σε

)−1Cr,ε. (12.26)

Note, the right-hand side of expression (12.26) is a constant, i.e. independent of
(ω1, . . . , ωr−1). Similar as in Section 4.1, this property forms the basis for testing
linearity in the frequency domain as we explain below.

Let Xt = α′Yt be a scalar time series process, where α is an m × 1 vector
of constants and {Yt, t ∈ Z} is given by (12.22). Then the second-order spectral
density function and the rth-order cumulant spectral density function of {Xt} are
given by

gX(ω) = α′gY (ω)α = (α[2])′fY (ω) (12.27)

fX(ω1, . . . , ωr−1) = (α[r])′fY (ω1, . . . , ωr−1), (12.28)
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where fY (ω1, . . . , ωr−1) is given by (12.25), and α[r] = α⊗ · · · ⊗α (r times). Using
(12.27) and (12.28), it follows directly that the rth-order normalized spectral density
function, defined by

|fX(ω1, . . . , ωr−1)|2
gX(ω1) · · · gX(ωr−1)gX(ω1 + · · ·+ ωr−1)

, (12.29)

is not a constant, showing that a linear combination of {Yt, t ∈ Z} satisfying (12.22)
is not linear (in contrast to Gaussianity). Note that for m = 1 and r = 3, (12.29)
becomes the square modulus of the normalized bispectrum.

Clearly, linear combinations cannot be used for testing vector linearity. So, one
has to test for vector linearity using (12.26). In fact, as a direct generalization of
Hinich’s test statistic for linearity in the univariate case (Section 4.2.2), Wong (1997)
proposes the test statistic

ŜY =
∑

(j,k)∈L
R̂j,k(ωj , ωk), (12.30)

where

R̂j,k(ωj , ωk) = f̂∗
Y (ωj , ωk)

(
ĝY (ωj)⊗ ĝY (ωk)⊗ ĝY (−ωj − ωk)

)−1
f̂Y (ωj , ωk), (12.31)

with f̂Y (ωj , ωk) the bispectral vector estimator, and L a lattice in the principal
domain D defined by (4.7). Then ŜY is asymptotically distributed as χ2

2m3P under
the null hypothesis of Gaussianity, with P the number of R̂j,k’s in D.

Under the null hypothesis of linearity, and as T → ∞, the test statistic ŜY

is asymptotically distributed as χ2
2m3P (λ̂0) where λ̂0 = P−1

∑
(j,k)∈L R̂j,k − 2m3.

Under the alternative hypothesis, the non-centrality parameter of the distribution is
not constant. Thus, as in the univariate frequency-domain case, it is recommended
to use the IQR of the EDF of {R̂j,k} to compare the dispersion of the R̂j,k’s to that
of χ2

2m3P (λ0).4

12.4 Lag Selection

Sample ACF, PACF, and CCF matrices are useful in specifying the lags to be used
in linear VARMA models. In practice, these test statistics may not be helpful in
weeding out nonsignificant variables with data generated by nonlinear processes.
Recall, in Section 1.3 we introduced several test statistics for lag identification of
univariate nonlinear time series models. It is straightforward to extend Kendall’s
τ̂(�) test statistic and Kendall’s partial τ̂p(�) test statistic to the multivariate case. In

4Apart from a very small MC simulation study by Wong (1997), the finite-sample behavior of
both test statistics has not been investigated in detail. Since, however, (12.30) is a generalization
of Hinich’s linearity test statistic in the univariate case, Wong’s multivariate test statistic may have
the same general weaknesses; see Section 4.3.3.
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Table 12.3: Climate change data set. Indicator pattern of the statistically significant
values of the sample ACF, sample PACF, R̂(�), Kendall’s τ̂(�) and Kendall’s partial τ̂p(�)
test statistics for the δ13C and δ18O time series; T = 216.

Lag ACF (1) PACF (1) R̂(�) (2) τ̂(�) (3) τ̂p(�) (3)

1
(

+ −
− +

) (
+ −
− +

) ( • •
• •
) (

+∗∗ −∗∗

−∗∗ +∗∗

) (
+∗∗ −∗∗

−∗∗ +∗∗

)

2
(

+ −
− +

) (
+ �
� �

) ( • •
• •
) (

+∗∗ −∗∗

−∗∗ +∗∗

) (
+∗∗ −†

−∗∗ +∗∗

)

3
(

+ −
− +

) (
� +
� �

) ( • •
• •
) (

+∗∗ −∗∗

−∗∗ +∗∗

) (
+∗∗ −†

+† +†

)

4
(

+ �
� +

) (
� +
� �

) ( • ◦
• •
) (

+∗∗ −∗

−† +∗∗

) (
+∗ +†

+† −†

)

5
(

+ �
� �

) (
� �
� �

) ( • ◦
• •
) (

+∗∗ −†

−† +†

) (
+† +†

+† +†

)
(1) + indicates a value > 1.96T−1/2, − indicates a value < −1.96T−1/2, and

� indicates a value between −1.96T−1/2 and 1.96T 1/2.
(2) • indicates a value significantly different from zero at the 5% nominal

level, and ◦ indicates a value not significantly different
from zero at the 5% nominal level.

(3) ∗∗ marks a p-value smaller than 1%, ∗ marks a p-value in the range 1% – 5%,
and † marks a p-value larger than 5%.

a similar vein, Harvill and Ray (2000) define the multivariate version of the mutual
information coefficient (1.20) at lag � by

R(Yi,t, Yj,t−�) ≡ Ri,j(�), (i, j = 1, . . . ,m; � ≥ 1). (12.32)

Simulation results indicate that the corresponding sample estimate of Ri,j(�), say
R̂i,j(�), identifies appropriate lagged nonlinear bivariate MA terms. Kendall’s τ̂(�)
and partial τ̂p(�) test statistics have some power in identifying appropriate lagged
nonlinear MA and AR terms, respectively, when the relationship between the lagged
variables is monotonic. These test statistics fail when the nonlinear dependence is
nonmonotonic, as with bivariate NLMA models.

Example 12.5: Climate Change (Cont’d)
As an example, we apply the lag identification techniques to the δ13C and
δ18O (T = 216) time series introduced earlier in Example 1.5. Table 12.3
summarizes the significance of the sample ACF and PACF values at the 5%
nominal level, in terms of three “indicator symbols”; see footnote (1) below
the table. Similarly, we mark p-values of the test statistics R̂(�), τ̂(�) and
τ̂p(�) through the symbols listed in footnote (2). To facilitate examination
of R̂(�), we obtain empirical significance levels by MC simulation using 1,000
replications of a bivariate Gaussian WN series of length T = 216; see Appendix
12.B for details.
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The pattern of the sample ACF identifies a bi-directional association between
δ13C in year t and δ18O one to three years back. The sample PACF takes
almost all nonsignificant values after lag one, suggesting a VAR(1) model for
linearly modeling the data. However, the pattern of indicator symbols for
the R̂(�) test statistic suggests a bi-directional nonlinear relationship between
δ13C and δ18O up to lag three, and a uni-directional relationship from δ13C
to δ18O at lags four and five involving no feedback. For Kendall’s τ̂(�) test
statistic, we see a significant bi-directional relationships between δ13C and
δ18O up to and including lag three. Additionally, values of Kendall’s partial
τ̂p(�) test statistic are nonsignificant after lag one. In summary, these last
three statistics suggest that a first-order NLAR model might be appropriate
to model the interdependence between the two climate variables.

We have seen that the nonparametric test statistic R̂(�) can serve as an initial
way to infer causal nonlinear relationships. Some subjective interpretation problems,
however, exist with this approach. We therefore need some more formal method to
investigate causality, and we shall see in the next section how to achieve this.

12.5 Nonparametric Causality Testing

12.5.1 Preamble
Identifying causal relationships among a set of multivariate time series is import-
ant in fields ranging from physics to biology to economics. Indeed, using Granger’s
(1969) parametric causality test statistic there exists a large body of literature ex-
amining the presence of causal linear linkages between bivariate time series. On
the other hand, there is substantially less literature on uncovering nonlinear causal
relationships among strictly stationary multivariate time series variables. In this
section, we discuss the concept of Granger causality in a more flexible nonparamet-
ric setting for both bivariate and multivariate time series processes. However, before
doing so, we first introduce the general setting for testing causality.

Assume {(Xt, Yt); t ∈ Z} is a strictly stationary bivariate time series process. We
say that {Xt, t ∈ Z} is a strictly Granger cause of {Yt, t ∈ Z} if past and current
values of Xt contain additional information on future values of {Yt} that is not
contained in the past and current Yt-values alone. More formally, let FX,t and FY,t

denote the information sets consisting of past observations of Xt and Yt up to and
including time t. Then the process {Xt, t ∈ Z} is a Granger cause of {Yt, t ∈ Z} if,
for some H ≥ 1,

(Yt+1, . . . , Yt+H)′|(FX,t,FY,t)
D
�∼ (Yt+1, . . . , Yt+H)′|FY,t. (12.33)

This definition is general and does not involve model assumptions. In practice one
often assumes H = 1, i.e. testing for Granger non-causality (bivariate) comes down
to comparing the one-step ahead conditional distribution of {Yt, t ∈ Z}, with and



12.5 NONPARAMETRIC CAUSALITY TESTING 515

without past and current observed values of {X t, t ∈ Z}. Not the testing framework
introduced above concerns conditional distributions given an infinite number of past
observations. In practice, however, tests are usually confined to finite orders in
{Xt, t ∈ Z} and {Yt, t ∈ Z}. To this end, we define the delay vectors

Xt = (Xt, . . . ,Xt−�X+1)′ and Yt = (Yt, . . . , Yt−�Y +1)′, (�X , �Y ≥ 1).

If past observations of {Xt, t ∈ Z} contain no information about future values, it
follows from (12.33) that the null hypothesis of interest is given by

H0 : Yt+1|(Xt,Yt) ∼ Yt+1|Yt. (12.34)

For a strictly stationary bivariate time series, (12.34) comes down to a statement
about the invariant distribution of the dW = (�X + �Y + 1)-dimensional vector
Wt =

(
X′

t,Y
′
t, Zt)′ where Zt = Yt+1. To simplify notation, we drop the time index

t, and just write W = (X′,Y′, Z)′.
Under H0, the conditional distribution of Z given (X′,Y′)′ = (x′,y′)′ is the same

as that of Z given Y = y. Then (12.34) can be restated in terms of ratios of joint
distributions. Specifically, the joint pdf fX,Y,Z(x,y, z) and its marginals must satisfy
the relationship

fX,Y,Z(x,y, z)
fX,Y (x,y)

=
fY,Z(y, z)

fY (y)
,

or equivalently

fX,Y,Z(x,y, z)
fY (y)

=
fX,Y (x,y)

fY (y)
fY,Z(y, z)

fY (y)
, (12.35)

for each vector (x′,y′, z)′ in the support of W.

12.5.2 A bivariate nonlinear causality test statistic

Along the lines of Baek and Brock (1992a,b) for testing conditional independence,
Hiemstra and Jones (1994) devise a nonparametric Granger causality test statistic
for bivariate relationships, sometimes called the HJ test statistic. The test employs
ratios of correlation integrals to measure the discrepancy between the left- and right-
hand sides of (12.35). Specifically, dropping the subscript m in the definition of the
correlation integral (7.10), the test statistic is based on the equation

CX,Y,Z(h)
CY (h)

=
CX,Y (h)
CY (h)

CY,Z(h)
CY (h)

, (h > 0). (12.36)

Replacing the correlation integral CW (h) by its corresponding sample counterpart
ĈW (h) defined in (7.43), the proposed test statistic is given by

QT,W (h) =
ĈX,Y,Z(h)

ĈY (h)
− ĈX,Y (h)

ĈY (h)

ĈY,Z(h)

ĈY (h)
, (12.37)

e,
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where

ĈW (h) =
(

T

2

)−1 ∑
1≤i≤j≤T

I(‖Wi −Wj‖ < h).

Since the correlation integral is a U-statistic (Appendix 7.C), it can be shown (Hiem-
stra and Jones, 1994, Appendix) that, under H0,

√
T QT,W (h) D−→ N

(
0, σ2

W (h)
)
, as T →∞, (12.38)

where σ2
W (h) is a lengthy expression, not given here. An autocorrelation consistent

estimator of σ2
W (h) follows from using the theory of Newey and West (1987). In

practice, it is recommend to use one-sided critical values of QT,W (h). Bai et al.
(2010) extend the HJ test statistic to the multivariate case.

12.5.3 A modified bivariate causality test statistic

Diks and Panchenko (2005, 2006) observe that, for a given nominal size, the actual
rejection rate of QT,W may tend to one as T increases, i.e. the test statistic over-
rejects the null hypothesis. The reason is that equation (12.36) follows from (12.35)
only in specific cases. For instance, when X and Z are independent conditionally
on Y = y, for each fixed value of y. To overcome this, and following Diks and
Panchenko (2006), we rewrite the null hypothesis as

H0 : E

[(fX,Y,Z(X,Y, Z)
fY (Y)

− fX,Y (X,Y)
fY (Y)

fY,Z(Y, Z)
fY (Y)

)
g(X,Y, Z)

]
= 0. (12.39)

Here g(x,y, z) is a positive weight function which for convenience is set at g(x,y, z) =
f2

Y (y), giving more stable results than alternative weight functions. Thus, the cor-
responding functional is simply given by

Δ ≡ E[fX,Y,Z(X,Y, Z)fY (Y)− fX,Y (X,Y)fY,Z(Y, Z)] = 0. (12.40)

Under H0 the term within square brackets vanishes, so that the expectation is zero.
Clearly, (12.40) is a density-based distance measure similar in structure as the meas-
ures introduced in Section 7.2.3. In fact, Δ is closely related to the difference func-
tional Δ∗(·) given by (7.17).

Let f̂W (Wi) denote a local density estimator of a dW -variate random vector W
at Wi defined by

f̂W (Wi) =
(2h)−dW

T − 1

∑
j,j �=i

I
(W )
ij ,

where I
(W )
ij = I(‖Wi−Wj‖ < h). Given this estimator, the proposed nonparametric

Granger causality (bivariate) test statistic is given by

Q∗
T,W (h) =

T − 1
T (T − 2)

∑
i

f̂ 2
Y (Yi)

{
f̂X,Z|Y (Xi, Zi|Yi)− f̂X|Y (Xi|Yi)f̂Z|Y (Zi|Yi)

}
.

(12.41)
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For an appropriate sequence of bandwidths, the estimator f̂W (·) of the pdf fW (·) is
consistent. So, Q∗

T,W (h) consists of a weighted average of local contributions given
by the expression in curly brackets, which tends to zero in probability under H0.

The test statistic (12.41) can be rearranged in terms of a U-statistic as follows,

Q∗
T,W (h) =

1
T (T − 1)(T − 2)

∑
i�=j �=k �=i

K(Wi,Wj ,Wk), (12.42)

where

K(Wj ,Wj ,Wk) =
(2h)−dX−2dY −dZ

3!

(
(I(XY Z)

ik I
(Y )
ij −I

(XY )
ik I

(Y Z)
ij ) + (I(XY Z)

ij I
(Y )
ik −I

(XY )
ij I

(Y Z)
ik )

+ (I(XY Z)
jk I

(Y )
ji −I

(XY )
jk I

(Y Z)
ji ) + (I(XY Z)

ji I
(Y )
jk −I

(XY )
ji I

(Y Z)
jk )

+ (I(XY Z)
ki I

(Y )
kj −I

(XY )
ki I

(Y Z)
kj ) + (I(XY Z)

kj I
(Y )
ki −I

(XY )
kj I

(Y Z)
ki )

)
.

By exploiting the asymptotic theory for U-statistics, assuming that h = cT−β (c >
0, β > 0), and setting dX = dY = dZ = 1, it can be shown (Diks and Panchenko,
2006, Appendix A.1) that, as T →∞, (12.42) satisfies

√
T

Q∗
T,W (h)−Δ

σW (h)
D−→ N (0, 1), iff

1
2ν

< β <
1

dX + dY + dZ
, (12.43)

where ν is the order of the density estimation kernel (Appendix 7.A), as opposed to
the U-statistics kernel, and where

σ2
W (h) = 9Var

(
r0(Wi)

)
, with r0(w) = lim

h→0
E

(
K(w1,W2,W3)

)
,

and Wi (i = 1, 2, 3) are i.i.d. random variables according to W.
A consistent estimate of r0(Wi) is given by

r̂0(Wi) =
(2h)−dX−2dY −dZ

(T − 1)(T − 2)

∑
j,j �=i

∑
k,k �=i

K(Wi,Wj ,Wk).

An autocorrelation consistent estimator for σ2
W (h) (Newey and West, 1987) is given

by

S2
T,W (h) =

[T 1/4]∑
�=1

γ̂W (�)ωT (�),

where γ̂W (�) is the lag � sample ACVF, i.e.

γ̂W (�) =
1

T − �

T−�∑
i=1

(
r̂0(Wi)−QT

)(
r̂0(Wi+�)−QT

)
,
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and ωT (�) is a weight function given by ωT (�) = 1, if � = 1, and ωT (�) = 2(1 −
(�− 1)/[T 1/4]), otherwise, which declines as � increases. Then, under suitable mix-
ing conditions (Denker and Keller, 1983), it follows that the test statistic Q∗

T,W (h)
satisfies

√
T

Q∗
T,W (h)−Δ
ST,W (h)

D−→ N (0, 1), as T →∞. (12.44)

It is recommended to use a one-sided version of Q∗
T,W (h), rejecting the null hypo-

thesis when the left-hand side of (12.42) is too large, because in practice it is often
found to have larger power than a two-sided test.

Example 12.6: Climate Change (Cont’d)

In Examples 1.5, 7.7, and 12.5 we analyzed the δ13C (Y1,t) and δ18O (Y2,t)
climate change time series. Here, we consider an extended version of the ODP
data set with insolation (Y3,t) as an additional variable. Insolation is a measure
of solar radiation energy received at a given latitude on Earth. Its value
largely depends on astronomical, often called Milankovitch, parameters. The
Milankovitch theory proposes that variation in the Earth’s orbital elements
and therefore changes in insolation are a driving force of climate change, a
hypothesis that has been supported by various empirical studies. All series
are rescaled to zero-mean and unit-variance.

Figure 12.5 shows path diagrams for the nonparametric causality test statistics
QT,W (h) (top row) and Q∗

T,W (h) (bottom row), at lags �Y1 = �Y2 = 1, . . . , 5,
and bandwidth h = 1.5.5 The absence of an arrow from a node i to a node j
(i �= j) means that Yi,t is a non-Granger-cause of Yj,t, i.e. the null hypothesis
(12.34) is not rejected. Both test statistics indicate a very strong nonlinear
causal (often bi-directional) relationship from δ18O (Y2,t) to δ13C (Y1,t) at all
lags. This confirms earlier results presented in Table 12.3. Furthermore, at
lags 1 – 3, the modified test statistic Q∗

T,W (h) suggests that insolation (Y3,t) is
an important driving force for global warming either directly, or mediated by
δ18O (Y2,t) indirectly. The causality graph for the HJ test statistic QT,W (h)
only suggests this indirect relationship at lag two. Interestingly, for all other
lags, there is a complete absence of significant nonlinear causal relationships
between insolation on the one hand, and δ13C (Y1,t) and δ18O (Y2.t) on the
other.

12.5.4 A multivariate causality test statistic
The above bivariate nonparametric test statistics allow for pairwise causality testing,
as in Example 12.6. However, the outcome of the test statistics may be blurred by the

5Diks and Panchenko (2006) show that the estimator Q∗
T,W (h) has the smallest MSE with the

rate β = 2/7. This implies a bandwidth of approximately 1.5, with C = 7 and T = 216. The bias
of the HJ test statistic QT,W (h) cannot be removed by choosing a bandwidth smaller than 1.5.
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Figure 12.5: Extended Climate change data set. Nonparametric causality testing at lags
�Y1 = �Y2 = 1, . . . , 5; with h = 1.5; (a) QT,W (h) test statistic and (b) Q∗

T,W (h) test statistic.
The single arrow symbol marks a p-value in the range 1% – 5%, and the double arrow symbol
marks a p-value smaller than 1%; T = 216.

confounding effect of other variables. One simple way to control these additional
variables is by pre-filtering the multivariate data by a parametric model (e.g. a
linear VAR model), and next performing a bivariate causality test of the residuals
pairwise. As an alternative, Diks and Wolski (201
statistic Q∗

T,W (h) to a multivariate setting. Following these authors, we first state a
generalization of (12.33).

Consider the strictly stationary multivariate time series process {(Xt, Yt, Qt), t ∈
Z}, where {Xt, t ∈ Z} and {Yt, t ∈ Z} are univariate time series processes, and
{Qt, t ∈ Z} is a univariate or multivariate time series process. Then the process
{Xt, t ∈ Z} is a Granger cause of {Yt, t ∈ Z} if, for some H ≥ 1,

(Yt+1, . . . , Yt+H)′|(FX,t,FY,t,FQ,t)
D
�∼ (Yt+1, . . . , Yt+H)′|FY,tFQ,t, (12.45)

where FX,t,FY,t, and FQ,t are the corresponding information sets. Note, the as-
sumption that both {Xt, t ∈ Z} and {Yt, t ∈ Z} are scalar-valued time series pro-
cesses makes it possible to determine whether the causal relationship between these
two processes is direct or mediated by other variables.

Now, consider the same setup as in Section 12.5.1 with the delay vectors Xt, Yt,
and Qt = (Qt, . . . , Qt−�Q+1)′. So, the multivariate analogue of the null hypothesis
(12.34) is given by

H0 : Yt+1|(Xt,Yt,Qt) ∼ Yt+1|(Yt,Qt). (12.46)

1 2

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

(a)

1 2

3

1 2 1 2 1 2

1 2

3

(b)

1 2

3

1 2

3

1 2 1 2

6) generalize the bivariate test
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For simplicity, assume that the embedding dimensions are all equal to unity, i.e. �X =
�Y = �Q = 1. Thus, the dimensionality of the vector Wt = (X′

t,Y
′
t,Q

′
t, Zt)′, where

Zt = Yt+1, is a number dW ≥ 4. In this case, and following the same reasoning as
in Section 12.5.3, the asymptotic normality condition becomes 1/(2ν) < β < 1/dW .
So, for a standard second-order kernel (ν = 2) and dW ≥ 4, there is no feasible
β-region which would endow the test statistic Q∗

T,W (h) with asymptotic normality.
The associated problem is the well-known curse of dimensionality.

One solution, followed by Diks and Wolski (201
the density estimator by reducing the kernel estimator bias using data-sharpening
(Hall and Minotte, 2002) as a bias reduction method. The sharpened (s) form of
the plug-in density estimator is given by

f̂s
W (Wi) =

h−dW

T − 1

∑
j,j �=i

K
(Wi − ψp(Wj)

h

)
,

where ψp(·) is a so-called sharpening function, with p the order of bias reduction.
On replacing the data by their sharpened form in the definition of the kernel density
estimator f̂W (·) one obtains an estimator of fW (·) of which the bias equals O(h4),
with p ≡ dW = 4, rather than O(h2) (Hall and Minotte, 2002) for f̂W (·). In this
case the sharpening function is of the form

ψ4(W ) = I + h2 μ2(K)
2

f̂ ′(W )

f̂(W )
,

where I denotes the identity function, μ2(K) =
∫
R

u2K(u)du, and f̂ ′ is the estimator
of the gradient of f . In practice, the NW kernel estimator may be used as an
approximation for the ratio f̂ ′(W )/f̂(W ). Clearly, the lower order of the bias makes
it possible to find a range of feasible β-values again, in this case β ∈

(
1/(2p), 1/dw) =

(1/8, 1/4
)
.

The sharpened form of the test statistic is given by

Qs
T,W (h) =

T − 1
T (T − 2)

∑
i

(
f̂s

X,Y Z(Xi, Yi, Zi)f̂s
Y (Yi)− f̂s

X,Y (Xi, Yi)f̂s
Y,Z(Yi, Zi)

)
.

(12.47)

Under certain mixing conditions Diks and Wolski (201
T →∞,

√
T

Qs
T,W (h)−Δ

ST

D−→ N (0, 1), iff
1
2p

< β <
1

dW
, (12.48)

where S2
T is a consistent estimator of the asymptotic variance of

√
T

(
Qs

T,W (h)−Δ
)
.

6), is to improve the precision of

6, Appendix B) show that, as
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12.6 Summary, Terms and Concepts

Summary
In the first part of this chapter, we focused on a multivariate conditional quantile
estimator using a kernel-based method, and we explored its use in forecasting multivariate
nonlinear time series. In addition, we discussed three semiparametric multivariate
regression methods. Depending on the modeling goal, each of these methods can
be used as an ends in itself, or as a technique for exploring the structure in the
data to aid in proposing a particular parametric vector time series model. Never-
theless, issues such as stationarity, ergodicity, and variable selection of the fitted
semiparametric models are still largely open for research.

In the second part, we discussed two nonlinear and nonparametric test statistics
for investigating Granger noncausality in a bivariate setting: the HJ test statistic,
and a test statistic proposed by Diks and Panchenko (2006). The second test statistic
avoids the over-rejection problem of the first one. However, it lacks consistency in
a multivariate setting. The problem is the result of the kernel density estimator
bias, which does not converge to zero at a sufficiently fast rate when the number of
conditioning variables is larger than one. One solution is to use a data-sharpening
method which reduces the bias of the original estimator without affecting the order
of its variance. Readers are invited to compare this approach with other methods
to reduce the dimensionality problem; Scott (1992).

Terms and Concepts

data sharpening, 520
Granger cause, 514
Hiemstra–Jones (HJ) test, 515
multivariate conditional quantiles, 496
polyMARS (PMARS), 502

projection pursuit regression (PPR), 504
second order spectral vector, 511
spectral matrix, 511

12.7 Additional Bibliographical Notes

Section 12.1.1: There are many ways to define multivariate quantiles; see, e.g., Serfling
(2002, 2004). Two different approaches based on norm minimization are by Abdous and
Theodorescu (1992) and Chaudhuri (1996). Throughout this section, conditional quantiles
are based on the definition of Chaudhuri (1996) for unconditional quantiles. In general, there
has been a proliferation of research aimed at extending quantiles for multivariate data. Few
studies, however, deal with the case where covariates are allowed to explain the distribution
of the multivariate data. One notable exception is Chakraborty (2003) who proposes a tech-
nique for estimating “linear” conditional quantiles with multivariate responses. In contrast,
the nonparametric method proposed in this chapter estimates conditional quantiles from
multiple responses when no restriction (i.e. not necessarily linear) is imposed on the form of
the conditional quantile function.

Section 12.1.2: The section is based on De Gooijer et al. (2006). Cheng and De Gooijer
(2007) focus on an alternative formulation of multivariate conditional quantiles generalizing
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a notion of geometric or spatial quantile studied by Chaudhuri (1992, 1996).

Section 12.1.3: Yang and Shahabi (2007) present a similarity measure to efficiently perform
k-NN searches for vector time series. Fernández–Rodŕıguez et al. (1997, 1999) apply the k-
NN multivariate method to nine currencies participating in the European Monetary System.

Section 12.2.1: De Gooijer and Ray (2003) provide an extensive discussion of the various
“tuning” parameters in the S-Plus and R implementations of PMARS. These authors also
illustrate the use of PMARS by fitting various VASTAR(X) models to two series of half-
hourly average electricity load data. The data (electricity.dat) can be downloaded from the
website of this book.

Section 12.2.3: Harvill and Ray (2005) compare the forecasting performance of VFCAR
models using a simple “plug-in” approach, a bootstrapped-based approach, and a multi-stage
smoothing approach, where the functional coefficients are updated in a rolling framework.
The BS approach outperforms the other two methods. Baniscescu et al. (2005, 2011) present
an approach to the parallelization of VFCAR–MC simulations to reduce computational
time when bandwidth selection and bootstrapped-based model assessment are parts of the
analysis.

Section 12.3: Subba Rao and Wong (1998) propose frequency-domain test statistics for
Gaussianity and linearity of multivariate stationary time series based on classical multivari-
ate measures of skewness and kurtosis. Rao et al. (2006) present a unified and comprehensive
approach for deriving expressions for higher-order cumulants of random vectors. It is used
to study the asymptotic theory of test statistics for multivariate stationary nonlinear time
series processes.

Quite some scientific work has been published on nonparametric test statistics for station-
arity in the framework of so-called locally stationary univariate time series processes; see,
e.g., Puchstein and Preuß (2016) and the references therein. Also, these authors present
a nonparametric procedure for validating local-stationarity in the multivariate time series
case.

Section 12.4: In principle, the FPE criterion of Tschernig and Yang (2000) (see Section
9.1.6) may be used as an alternative model lag selection method in the multivariate case.
Unfortunately, the explosion in the number of possible lagged predictors results in the curse
of dimensionality for kernel-based regression methods used in estimating the nonlinear ARs.
So, model selection based on the nonparametric FPE criterion is not feasible. The regression
subset method, a parametric approach, of Rech et al. (2001) provides an attractive and easily
implemented alternative. The method goes as follows in a multivariate setting.

(i) For a given sample size T , select the polynomial order � in the truncated Volterra represent-
ation for {Yt}T

t=1. A larger � is necessary for larger T .

(ii) Regress {Yt} on all variables (lagged values of {Yt}, any exogenous variables, and products
up to order � of all lagged values and exogenous variables) and compute the value of an
appropriate model selection criterion, such as AIC or BIC.

(iii) Omit one regressor from the original model, regress the time series {Yt} on all remaining
variables in the �th order Taylor series expansion and compute the value of the selection
criterion.

(iv) Repeat, omitting one regressor each time. Continue, omitting two regressors at a time, etc.
until the regression consists of only a constant term (all regressors removed, corresponding
to {Yt, t ∈ Z} being WN).
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(v) The combination of regressors resulting in the optimal model selection criterion value is
selected.

Section 12.5: By exploiting the geometry of reproducing kernel Hilbert spaces, Marinazzo
et al. (2008) develop a nonlinear Granger causality test statistic for bivariate time series.
Gao and Tian (2009) consider the construction of Granger causality graphs for multivariate
nonlinear time series. Péguin–Feissolle et al. (2013) propose two test statistics for bivariate
Granger non-causality in a stationary nonlinear model of unknown functional form. The
idea is to globally approximate the potential causal relationship between the variables by
a Taylor series expansion. A few applications of the test statistics in Section 12.5.3 have
been reported. For instance, Bekiros and Diks (2008) investigate linear and nonlinear causal
linkages among six currencies. De Gooijer and Sivarajasingham (2008) apply both paramet-
ric and nonparametric Granger causality tests to determine linkages between international
stock markets. Francis et al. (2010) use both linear and nonlinear causality tests to examine
the relationship between the returns on large and small firms.

12.8 Data and Software References

Data
Example 16.2: The bivariate series of daily returns of exchange rates (ExchangeRates.dat)
can be downloaded from the website of this book.

Software References
Section 12.2.1: PolyMARS (or PMARS) is available in the R-polspline package. The R-
fRegression package has an option for computing a PMARS model as a part of the function
regFit; see also the references to software packages in Section 9.5.

Section 12.2.2: The function ppr in the R-stat package, and the function ppreg in S-Plus
both allow for PPR model fitting with multivariate responses.

Section 12.5: R codes for performing the HJ (hj.r) and the Diks–Panchenko (dp.r) nonpara-
metric test statistics are available at the website of this book. The C
executable file, for computing both test statistics can be downloaded from http://www1.
fee.uva.nl/cendef/upload/6/hjt2.zip. Alternatively, a windows version and C
source code are available at http://research.economics.unsw.edu.au/vpanchenko/
#software. C source code for the multivariate nonlinear nonparametric Granger causality
test is available at http://qed.econ.queensu.ca/jae/datasets/diks001/.

Appendix

12.A Computing Multivariate Conditional Quantiles

To solve a highly discontinuous problem such as (12.4) numerically, the most obvious choice is
the simplex algorithm. However, a simplex search becomes less efficient when for dimension
m > 2. In fact, convergence becomes extremely slow. Thus, we suggest here a simple
iteratively re-weighted least squares algorithm. The idea of the algorithm is to transform
an L1-like minimization problem into an L2 -minimization problem such that weighted least

source code, and an

http://qed.econ.queensu.ca/jae/datasets/diks001/
http://research.economics.unsw.edu.au/vpanchenko/#nameddest=software
http://research.economics.unsw.edu.au/vpanchenko/#nameddest=software
http://www1.fee.uva.nl/cendef/upload/6/hjt2.zip
http://www1.fee.uva.nl/cendef/upload/6/hjt2.zip
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squares can be applied. First, we rewrite (12.4) as follows

θq,T (x) = arg min
θ∈Rm

T∑
t=1

‖Yt − θ‖qKh(x−Xt)

= arg min
θ∈Rm

T∑
t=1

(‖Yt − θ‖q)2Gq(x,Xt,Yt;θ, h), (A.1)

where

Gq(x,Xt,Yt;θ, h) =
Kh(x−Xt)
‖Yt − θ‖q

.

Note that, for Yt = (Y1,t, . . . , Ym,t)′ and θ = (θ1, . . . , θm)′,

‖Yt − θ‖q = ‖0.5 [sign(Y1,t − θ1) + (2q − 1)](Y1,t − θ1), . . . ,
0.5 [sign(Ym,t − θm) + (2q − 1)](Ym,t − θm)‖.

We now follow an iterative approach to solve (A.1). Let θ
(1)
q,T (x), . . . , θ

(r)
q,T (x) be success-

ive approximations of θq,T (x) obtained in consecutive iterations. Let 1 = (1, . . . , 1)′ denote
a unity row vector with dimension m. First, we define the T ×m matrix Wq(·) as a direct
(or Hadamard) product (() of two T ×m matrices, i.e.

Wq(Y,x,X; θ, h) = Mq(Y;θ)( {Gq(x,X,Y;θ, h)× 1},

where the T ×m matrix Mq(Y;θ) is given by

Mq(Y;θ) =

(0.5)2

⎛⎜⎜⎝
{sign(Y1,1 − θ1) + (2q − 1)}2, . . . , {sign(Ym,1 − θm) + (2q − 1)}2
{sign(Y1,2 − θ1) + (2q − 1)}2, . . . , {sign(Ym,2 − θm) + (2q − 1)}2

. . .
{sign(Y1,T − θ1) + (2q − 1)}2, . . . , {sign(Ym,T − θm) + (2q − 1)}2

⎞⎟⎟⎠
and the T × 1 vector Gq(·) is

Gq(x,X,Y;θ, h) =
(
Gq(x,X1,Y1;θ, h), . . . ,Gq(x,XT ,Yn;θ, h)

)′
.

The vector 1 is used to resize the vector Gq(·) into a T ×m matrix. Then, at iteration step
(r + 1), θ

(r+1)
q,T (x) is simply computed by,

θ
(r+1)
q,T (x) =

∑
{Y (Wq(Y,x,X; θ(r)

q,T , h)}∑
{Wq(Y,x,X; θ(r)

q,T , h)}
. (A.2)

The sum
∑

in the above formula refers to the sum for each column and the division is
a direct division. Equation (A.2) shows that once θ

(r)
q,T is given, the solution to (A.1) at

iteration step r + 1 simply follows from applying weighted least squares.
The iteration is continued until two successive approximations of θq,T (x) are sufficiently

close. For the numerical illustration in this chapter, convergence is assumed if ‖θ(r+1)
q,T (x)−
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θ
(r)
q,T (x)‖2 � 10−3‖

(
Y − 1′ × θ

(1)
q,T (x)

)
‖2. The above algorithm is fully vectorized so that it

can be easily implemented in matrix oriented software packages like GAUSS or MATLAB
(see, e.g., the file illustrate.m).

It is worth noting that the algorithm requires a good initial approximation of θq,T (x) to
start the iteration. We suggest the following approach. When q = 0.5, the conditional mean
can be taken as the starting value. For q > 0.5 or q < 0.5, one may start from the optimal
value for q = 0.5 and move upward or downward. For example, to estimate the conditional
quantile at q = 0.9, one may first estimate this quantity for q = 0.6 starting from q = 0.5.
Then estimate the conditional quantile for q = 0.7 starting from q = 0.6 and so on until the
end. In doing so, convergence to local optimum is facilitated.

Finally, it is interesting to mention that the proposed estimator is more efficient in
the sense that it requires less computing time than the corresponding univariate estimator.
This is the case even for dimension m as high as 7 or 8. This empirical evidence may
suggest that the fast converging property of the unconditional multivariate quantiles (see,
e.g., Chaudhuri, 1996) may also be shared by the conditional estimator defined above.

12.B Percentiles of the R̂(�) Test Statistic
Following Harvill and Ray (2000, Section 2.2), we estimate the marginal densities by smooth-
ing the standardized data with a (scaled) second-order Student tν kernel-based density, as
given by

K(u) =
Γ
(
(ν + 1)/2

)
/
(√

πν Γ(ν/2)
)

h
(
1 + u2/(νh2)

)(ν+1)/2
, (B.1)

with ν = 4 degrees of freedom, and adopting a bandwidth h = 0.85T−1/5. We estimate the
bivariate density of the pair of random variables (X,Y ) by a product kernel of Student’s t4
distributions with bandwidth

h = 0.85(1− ρ2
XY )5/12(1 + ρ2

X,Y /2)−1/6T−1/6,

where ρX,Y is the correlation coefficient. Apart from the factor 0.85, this particular band-
width follows from minimizing the AMISE using a bivariate Gaussian kernel; see Scott (1992,
Section 6.3.1). The choice for the Student t4 kernel is motivated by the work of Hall and
Morton (1993). No boundary correction is needed in both kernel-based density computations
since the Student t distribution has infinite support. In addition, we estimate the integrals
in (1.18) numerically using a 30-point Gaussian quadrature. The limits of the integration
are chosen conservatively, as the minimum and maximum of the observed data.

Table 12.3 shows the empirical mean, standard deviation, and 90%, 95%, and 99%
percentile points of the R̂(�) test statistic for various sample sizes T , and lags � using
1,000 MC replications. The results for T = 300 are in agreement with percentiles reported
by Harvill and Ray (2000, Table I). It is clear that R̂(�) is biased in finite samples. As
expected, the bias decreases as T increases. Joe (1989) and Hall and Morton (1993) show
that a summation-based estimator of the Shannon entropy H(X) = −

∫
log{fX(x)}fX(x)dx

of an m-dimensional random variable X, and thus of R(�), is root-n consistent in m = 1, 2
and 3 dimensions. This result requires certain properties of the tails of the underlying
distribution.

APPENDIX 12.B
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Table 12.4: Empirical mean, standard deviation, and percentile points of the R̂(�) test
statistic for dimension m = 2, various sample sizes T , and lags �; 1,000 MC replications.

Lag 90% 95% 99% Mean Std.dev 90% 95% 99% Mean Std.dev

T = 100 T = 200
1 0.2536 0.2604 0.2755 0.2282 0.0200 0.2214 0.2266 0.2370 0.2033 0.0139
2 0.2535 0.2620 0.2768 0.2287 0.0197 0.2225 0.2278 0.2361 0.2037 0.0142
3 0.2542 0.2636 0.2757 0.2290 0.0199 0.2228 0.2286 0.2388 0.2042 0.0144
4 0.2554 0.2629 0.2810 0.2298 0.0204 0.2241 0.2296 0.2385 0.2049 0.0144
5 0.2554 0.2616 0.2757 0.2294 0.0202 0.2233 0.2303 0.2421 0.2046 0.0145

T = 300 T = 400
1 0.2059 0.2101 0.2170 0.1894 0.0122 0.1925 0.1984 0.2074 0.1791 0.0109
2 0.2032 0.2082 0.2178 0.1885 0.0119 0.1928 0.1971 0.2042 0.1792 0.0107
3 0.2046 0.2088 0.2165 0.1891 0.0119 0.1936 0.1970 0.2067 0.1794 0.0108
4 0.2059 0.2102 0.2211 0.1901 0.0120 0.1934 0.1974 0.2046 0.1797 0.0108
5 0.2049 0.2101 0.2173 0.1900 0.0118 0.1935 0.1980 0.2042 0.1801 0.0103

T = 500 T = 1,000
1 0.1850 0.1888 0.1948 0.1717 0.0098 0.1888 0.1976 0.2059 0.1652 0.0196
2 0.1850 0.1881 0.1966 0.1712 0.0101 0.1900 0.1955 0.2033 0.1659 0.0201
3 0.1841 0.1881 0.1950 0.1717 0.0099 0.1873 0.1962 0.2071 0.1657 0.0188
4 0.1841 0.1880 0.1948 0.1719 0.0097 0.1880 0.1972 0.2066 0.1648 0.0193
5 0.1845 0.1883 0.1964 0.1717 0.0096 0.1851 0.1977 0.2069 0.1653 0.0193

Exercises

Theory Question

12.1 Consider the well-known property of the Kronecker product (A⊗B)(C⊗D) = AC⊗
BD, if AC and BD exist. Using this property, verify (12.26).

Empirical and Simulation Questions

12.2 The file treering.dat contains the annual temperatures and tree ring widths series,
denoted by {(Y1,t, Y2,t)}66t=1; see, e.g., Examples 11.5 and 11.6.

(a) Compute the sample ACF and PACF matrices for lags � = 1, . . . , 5. Discuss the
overall pattern of these statistics. Verify your observations with those made in
Example 11.5.

(b) Using the MATLAB code Rtest.m, compute the values of the R̂(�) test statistic
for � = 1, . . . , 5. Determine the appropriate lags for inclusion in a vector NLAR
model.
[Note: For T = 66, the 5% critical values of the R̂(�) test statistic are given by
0.317 (� = 1), 0.315 (� = 2), 0.325 (� = 3), 0.315 (� = 4), and 0.326 (� = 5).]

12.3 The files earthP1.dat – earthP4.dat accompany the climate change data set of Example
1.5, but now covering each of the four climatic periods P1 – P4. Each file consists of
four time series variables: δ13C, δ18O, dust flux, and insolation.
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(a) Test for the presence of a nonlinear causal pairwise relationship between the four
series (all re-scaled) in time periods P4, P3, and P2, using the modified bivariate
nonparametric test statistic Q∗

T,W (h) with bandwidth h = 1.5 (denoted by the
variable “epsilon” in the C and R codes). Use nominal significance levels of 1%
and 5% in all pairwise tests.

(b) Compare and contrast the test results in part (a) with those reported in Example
12.5 for time period P1.

12.4 Consider the Icelandic river flow data set introduced in Section 11.8. The dependent
variables are the daily river flow measured in m3/s, of the Jökulsá Eystri river (Q1,t),
and Vatnsdalsá river (Q2,t), i.e. 1,095 observations for analysis. The exogenous vari-
ables used in the model specification are lagged values of streamflow (Q1,t−�, Q2,t−�)
(� = 1, . . . , 20), lagged values of precipitation (Pt−1, Pt−2, Pt−3), and contemporan-
eous and lagged values of temperature (Tt, Tt−1).

(a) Fit two PMARS models to the data: an unrestricted VARX model, and a re-
stricted (additive) VARX model. Use the GCV criterion for model selection
with default value d = 4. Find the unrestricted model with the lowest value of
|Σ̂ε|, i.e. the determinant of the residual covariance matrix.
[Hint: Use the function polymars in the R-polspline package.]

(b) In part (a) you will notice that the “best” fitted unrestricted PMARS–VARX
model is attained at lag � = 15. Compare the determinant of the residual
covariance matrix of this particular model with the determinant of the pooled
residual covariance matrix computed from Σ̂(1)

ε and Σ̂(2)
ε given in Table 11.4 for

the VTARX model.

(c) Given the unrestricted PMARS–VARX model in part (b), consider only terms
with absolute coefficient value more than twice the estimated standard error.
Compare the resulting model with the nonlinear time series models presented in
Exercise 2.11 and Table 11.4.

(d) Test for the presence of a nonlinear causal relationship between the series {Q1,t}
and {Q2,t}, using the modified bivariate nonparametric test statistic Q∗

T,W (h)
with h = 1.5 and embedding dimension �Q1 = �Q2 = 1, . . . , 8.
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Chabot–Hallé, D. and Duchesne, P. (2008). Diagnostic checking of multivariate nonlinear
time series models with martingale difference errors. Statistics & Probability Letters, 78(8),
997–1005. DOI: 10.1016/j.spl.2007.10.003. [472, 473]

Chakraborty, B. (2003). On multivariate quantile regression. Journal of Statistical Planning
and Inference, 110(1-2), 109–132. DOI: 10.1016/s0378-3758(01)00277-4. [521]

Chan, K.S. (1988). On the existence of the stationary and ergodic NEAR(p) model. Journal
of Time Series Analysis, 9(4), 319–328. DOI: 10.1111/j.1467-9892.1988.tb00473.x. [74]

Chan, K.S. (1990). Testing for threshold autoregression. The Annals of Statistics, 18(4),
1886–1894. DOI: 10.1214/aos/1176347886. [170]

Chan, K.S. (1991). Percentage points of likelihood ratio tests for threshold autoregression.
Journal Royal Statistical Society, B 53(3), 691–696. [170, 191]

Chan, K.S. (1993). Consistency and limiting distribution of the least squares estimator of a
threshold autoregressive model. The Annals of Statistics, 21(1), 520–533.
DOI: 10.1214/aos/1176349040. [173, 247, 249]

Chan, K.S. (Ed.) (2009). Exploration of a Nonlinear World: An Appreciation of Howell
Tongs Contributions to Statistics. World Scientific, Singapore. DOI: 10.1142/7076. [597]

Chan, K.S. and Tong, H. (1985). On the use of the deterministic Lyapunov function for
the ergodicity of stochastic difference equations. Advances in Applied Probability, 17(3),
666–678. DOI: 10.2307/1427125. [111]

Chan, K.S. and Tong, H. (1986). On estimating thresholds in autoregressive models. Journal
of Time Series Analysis, 7(3), 179–190.
DOI: 10.1111/j.1467-9892.1986.tb00501.x. [73, 74, 189]

Chan, K.S. and Tong, H. (1990). On likelihood ratio tests for threshold autoregression.
Journal Royal Statistical Society, B 52(3), 469–476. [170, 191]

Chan, K.S. and Tong, H. (2001). Chaos: A Statistical Perspective. Springer-Verlag, New
York. DOI: 10.1007/978-1-4757-3464-5. [597]

Chan, K.S. and Tong, H. (2010). A note on the invertibility of nonlinear ARMA models.
Journal of Statistical Planning and Inference, 140(12), 3707–3714.
DOI: 10.1016/j.jspi.2010.04.036. [107]

http://dx.doi.org/10.1016/j.jspi.2010.04.036
http://dx.doi.org/10.1007/978-1-4757-3464-5
http://dx.doi.org/10.1111/j.1467-9892.1986.tb00501.x
http://dx.doi.org/10.2307/1427125
http://dx.doi.org/10.1142/7076
http://dx.doi.org/10.1214/aos/1176349040
http://dx.doi.org/10.1214/aos/1176347886
http://dx.doi.org/10.1111/j.1467-9892.1988.tb00473.x
http://dx.doi.org/10.1016/s0378-3758(01)00277-4
http://dx.doi.org/10.1016/j.spl.2007.10.003
http://dx.doi.org/10.1103/physreve.77.066204
http://dx.doi.org/10.1111/1468-0262.00257
http://dx.doi.org/10.1017/s0266466602183113


540 References

Chan, K.S. and Tsay, R.S. (1998). Limiting properties of the least squares estimator of a
continuous threshold autoregressive model. Biometrika, 85(2), 413–426.
DOI: 10.1093/biomet/85.2.413. [44, 45]

Chan, K.S., Ho, L.-H., and Tong, H. (2006). A note on time-reversibility of multivariate
linear processes. Biometrika, 93(1), 221–227. DOI: 10.1093/biomet/93.1.221. [333]

Chan, K.S., Petruccelli, J.D., Tong, H., and Woolford, S.W. (1985). A multiple-threshold
AR(1) model. Journal of Applied Probability, 22(2), 267–279. DOI: 10.2307/3213771. [100]

Chan, N.H. and Tran, L.T. (1992). Nonparametric tests for serial dependence. Journal of
Time Series Analysis, 13(1), 19–28. DOI: 10.1111/j.1467-9892.1992.tb00092.x. [271, 272]

Chan, W.S. and Cheung, S.H. (1994). On robust estimation of threshold autoregressions.
Journal of Forecasting, 13(1), 37–49. DOI: 10.1002/for.3980130106. [248]

Chan, W.S. and Tong, H. (1986). On tests for non-linearity in time series analysis. Journal
of Forecasting, 5(4), 217–228. DOI: 10.1002/for.3980050403. [129, 147]

Chan, W.S., Wong, A.C.S., and Tong, H. (2004). Some nonlinear threshold autoregressive
time series models for actuarial use. North American Actuarial Journal, 8(4), 37–61.
DOI: 10.1080/10920277.2004.10596170. [486]

Chan, W.S., Cheung, S.H., Chow, W.K., and Zhang, L-X. (2015). A robust test for threshold-
type nonlinearity in multivariate time series analysis. Journal of Forecasting, 34(6), 441–
454. DOI: 10.1002/for.2344. [487]

Chandra, S.A. and Taniguchi, M, (2001). Estimating functions for nonlinear time series
models. Annals Institute of Statistical Mathematics, 53(1), 125–141. [246, 248]

Chang, C.T. and Blondel, V.D. (2013). An experimental study of approximation algorithms
for the joint spectral radius. Numerical Algorithms, 64(1), 181–202.
DOI: 10.1007/s11075-012-9661-z. [455]

Charemza, W.W., Lifshits, M., and Makarova, S. (2005). Conditional testing for unit-root
bilinearity in financial time series: Some theoretical and empirical results. Journal of
Economic Dynamics & Control, 29(1-2), 63–96. DOI: 10.1016/j.jedc.2003.07.001. [189]

Chatfield, C. (1993). Calculating interval forecasts. Journal of Business & Economic Stat-
istics, 11(2), 121–135. DOI: 10.2307/1391361. [425]

Chaudhuri, P. (1992). Multivariate location estimation using extesion of R-estimates through
U-statistics type approach. The Annals of Statistics, 20(2), 897–916.
DOI: 10.1214/aos/1176348662. [522]

Chaudhuri, P. (1996). On a geometric notation of quantiles for multivariate data. Journal
of the American Statistical Association, 91(434), 862–872.
DOI: 10.2307/2291681. [521, 522, 525]

Chen, C.W.S., Gerlach, R., Hwang, B.B.K., and McAleer, M. (2012). Forecasting Value-at-
Risk using nonlinear regression quantiles and the intra-day range. International Journal
of Forecasting, 28(3), 557–574. DOI: 10.1016/j.ijforecast.2011.12.004. [81]

http://dx.doi.org/10.1016/j.ijforecast.2011.12.004
http://dx.doi.org/10.2307/2291681
http://dx.doi.org/10.1214/aos/1176348662
http://dx.doi.org/10.2307/1391361
http://dx.doi.org/10.1016/j.jedc.2003.07.001
http://dx.doi.org/10.1007/s11075-012-9661-z
http://dx.doi.org/10.1002/for.2344
http://dx.doi.org/10.1080/10920277.2004.10596170
http://dx.doi.org/10.1002/for.3980050403
http://dx.doi.org/10.1002/for.3980130106
http://dx.doi.org/10.1111/j.1467-9892.1992.tb00092.x
http://dx.doi.org/10.2307/3213771
http://dx.doi.org/10.1093/biomet/93.1.221
http://dx.doi.org/10.1093/biomet/85.2.413


References 541

Chen, C.W.S., McCulloch, R.E., and Tsay, R.S. (1997). A unified approach to estimating
and modeling linear and nonlinear time series. Statistica Sinica, 7(2), 451–472. [249]

Chen, C.W.S., Liu, F.C., and Gerlach, R. (2011a). Bayesian subset selection for threshold
autoregressive moving-average models. Computational Statistics, 26(1), 1–30.
DOI: 10.1007/s00180-010-0198-0. [210, 249]

Chen, C.W.S., So, M.K.P., and Liu, F.C. (2011b). A review of threshold time series models
in finance. Statistics and Its Interface, 4(2), 167–181.
DOI: 10.4310/sii.2011.v4.n2.a12. [73, 111]

Chen, D.Q. and Wang, H.B. (2011). The stationarity and invertibility of a class of nonlinear
ARMA models. Science China, Mathematics, 54(3), 469–478.
DOI: 10.1007/s11425-010-4160-y. [111, 384]

Chen, G., Abraham, B., and Bennett, G.W. (1997). Parametric and non-parametric model-
ling of time series – An empirical study. Environmetrics, 8(1), 63–74.
DOI: 10.1002/(sici)1099-095x(199701)8:1%3C63::aid-env238%3E3.0.co;2-b. [381]

Chen, H., Chong, T.T.L., and Bai, J. (2012). Theory and applications of TAR model with
two threshold variables. Econometric Reviews, 31(2), 142–170.
DOI: 10.1080/07474938.2011.607100. [189]

Chen, J. and Huo, X. (2009). A Hessian regularized nonlinear time series model. Journal of
Computational and Graphical Statistics, 18(3), 694–716.
DOI: 10.1198/jcgs.2009.08040. [384]

Chen, M. and Chen, G. (2000). Geometric ergodicity of nonlinear autoregressive models
with changing conditional variances. The Canadian Journal of Statistics, 28(3), 605–613.
DOI: 10.2307/3315968. [111]

Chen, R. (1995). Threshold variable selection in open-loop threshold autoregressive models.
Journal of Time Series Analysis, 16(5), 461–481.
DOI: 10.1111/j.1467-9892.1995.tb00247.x. [249]

Chen, R. (1996). A nonparametric multi-step prediction estimation in Markovian structures.
Statistica Sinica, 6(3), 603–615. [382]

Chen, R., Liu, J.S., and Tsay, R.S. (1995). Additivity tests for nonlinear autoregression.
Biometrika, 82(2), 369–383. DOI: 10.1093/biomet/82.2.369. [383]

Chen, R. and Liu, L.-M. (2001). Functional-coefficient autoregressive models: Estimation
and tests of hypotheses. Journal of Time Series Analysis, 22(2), 151–173.
DOI: 10.1111/1467-9892.00217. [383]

Chen, R. and Tsay, R.S. (1991). On the ergodicity of TAR(1) processes, Annals of Applied
Probability, 1(4), 613–634. DOI: 10.1214/aoap/1177005841. [100]

Chen, R. and Tsay, R.S. (1993a). Nonlinear additive ARX models. Journal of the American
Statistical Association, 88(423), 955–967. DOI: 10.2307/2290787. [381]

Chen, R. and Tsay, R.S. (1993b). Functional coefficient autoregressive models. Journal of
the American Statistical Association, 88(421), 298–308. DOI: 10.2307/2290725. [374]

http://dx.doi.org/10.2307/2290725
http://dx.doi.org/10.2307/2290787
http://dx.doi.org/10.1214/aoap/1177005841
http://dx.doi.org/10.1111/1467-9892.00217
http://dx.doi.org/10.1093/biomet/82.2.369
http://dx.doi.org/10.1111/j.1467-9892.1995.tb00247.x
http://dx.doi.org/10.2307/3315968
http://dx.doi.org/10.1198/jcgs.2009.08040
http://dx.doi.org/10.1080/07474938.2011.607100
http://dx.doi.org/10.1002/(sici)1099-095x(199701)8:1%3C63::aid-env238%3E3.0.co;2-b
http://dx.doi.org/10.1007/s11425-010-4160-y
http://dx.doi.org/10.4310/sii.2011.v4.n2.a12
http://dx.doi.org/10.1007/s00180-010-0198-0


542 References

Chen, R., Yang, K., and Hafner, C. (2004). Nonparametric multistep-ahead prediction in
time series analysis. Journal of the Royal Statistical Society, B 66(3), 669–686.
DOI: 10.1111/j.1467-9868.2004.04664.x. [382]

Chen, X., Linton, O., and Robinson, P.M. (2001). The estimation of conditional densities. In
M.L. Puri (Ed.) Asymptotics in Statistics and Probability, Festschrift for George Roussas .
VSP International Science Publishers, The Netherlands, pp. 71–84. Also available as LSE
STICERD Paper, No. EM/2001/415 (http://sticerd.lse.ac.uk/dps/em/em415.pdf).
[349]

Chen, Y.-T. (2003). Testing serial independence against time irreversibility. Studies in Non-
linear Dynamics & Econometrics, 7(3). DOI: 10.2202/1558-3708.1114. [321]

Chen, Y.-T. (2008). A unified approach to standardized-residuals-based correlation tests for
GARCH-type models. Journal of Applied Econometrics, 23(1), 111–133.
DOI: 10.1002/jae.985. [236, 237]

Chen, Y.-T. and Kuan, C.-M. (2002). Time irreversibility and EGARCH effects in US stock
index returns. Journal of Applied Econometrics, 17(5), 565–578.
DOI: 10.1002/jae.692. [321]

Chen, Y.-T., Chou, R.Y., and Kuan, C.-M. (2000). Testing time reversibility without mo-
ment restrictions. Journal of Econometrics, 95(1), 199–218.
DOI: 10.1016/s0304-4076(99)00036-6. [320, 321, 333]

Cheng, B. and Tong, H. (1992). On consistent non-parametric order determination and chaos
(with discussion). Journal of the Royal Statistical Society, B 54(2), 427–474.
DOI: 10.1142/9789812836281 0010. [383]

Cheng, C., Sa-ngasoongsong, A., Beyca, O., Le, T, Yang, H., Kong, Z., and Bukkapatnam,
S.T.S. (2015). Time series forecasting for nonlinear and non-stationary processes: A review
and comparative study. IIE Transactions, 47(10), 1053–1071.
DOI: 10.1080/0740817x.2014.999180. [427]

Cheng, Q. (1992). On the unique representation of non-Gaussian linear processes. The An-
nals of Statistics, 20(2), 1143–1145. DOI: 10.1214/aos/1176348677. [333]

Cheng, Q. (1999). On time-reversibility of linear processes. Biometrika, 86(2), 483–486.
DOI: 10.1093/biomet/86.2.483. [333]

Cheng, Y. and De Gooijer, J.G. (2007). On the uth geometric conditional quantile. Journal
of Statistical Planning and Inference, 137(6), 1914–1930.
DOI: 10.1016/j.jspi.2006.02.014. [521]

Chini, E.Z. (2013). Generalizing smooth transition autoregressions. CREATES research pa-
per 2013-32, Aarhus University. Available at: ftp://ftp.econ.au.dk/creates/rp/13/
rp13_32.pdf. Also available at: http://economia.unipv.it/docs/dipeco/quad/ps/
RePEc/pav/demwpp/DEMWP0114.pdf. [74]

Christoffersen, P.F. (1998). Evaluating interval forecasts. International Economic Review,
39(4), 840–841. DOI: 10.2307/2527341. [419, 420]

http://dx.doi.org/10.2307/2527341
http://economia.unipv.it/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0114.pdf
http://economia.unipv.it/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0114.pdf
ftp://ftp.econ.au.dk/creates/rp/13/rp13_32.pdf
ftp://ftp.econ.au.dk/creates/rp/13/rp13_32.pdf
http://dx.doi.org/10.1016/j.jspi.2006.02.014
http://dx.doi.org/10.1093/biomet/86.2.483
http://dx.doi.org/10.1214/aos/1176348677
http://dx.doi.org/10.1080/0740817x.2014.999180
http://dx.doi.org/10.1142/9789812836281_0010
http://dx.doi.org/10.1016/s0304-4076(99)00036-6
http://dx.doi.org/10.1002/jae.692
http://dx.doi.org/10.1002/jae.985
http://dx.doi.org/10.2202/1558-3708.1114
http://sticerd.lse.ac.uk/dps/em/em415.pdf
http://dx.doi.org/10.1111/j.1467-9868.2004.04664.x


References 543

Chung, Y.P. and Zhou, Z.G. (1996). The predictability of stock returns – a nonparametric
approach. Econometric Reviews, 15(3), 299–330. DOI: 10.1080/07474939608800357. [429]

Claeskens, G., Magnus, J.R., Vasnev, A.L., and Wang, W. (2016). The forecast combination
puzzle: A simple theoretical explanation. International Journal of Forecasting, 32(3),
754–762. DOI: 10.1016/j.ijforecast.2015.12.005. [425]

Clark, T.E. (2007). An overview of recent developments in forecast evaluation. Available at:
http://www.bankofcanada.ca/wp-content/uploads/2010/09/clark.pdf. [427]

Clark, T.E. and McCracken, M.W. (2001). Tests of equal forecast accuracy and encompassing
for nested models. Journal of Econometrics, 105(1), 85–110.
DOI: 10.1016/s0304-4076(01)00071-9. [417, 427]

Clark, T.E. and McCracken, M.W. (2005). Evaluating direct multistep forecasts. Economet-
ric Reviews, 24(4), 369–404. DOI: 10.1080/07474930500405683. [427]

Clark, T.E. and West, K.D. (2006). Using out-of-sample mean squared prediction errors to
test the martingale difference hypothesis. Journal of Econometrics, 135(1-2), 155–186.
DOI: 10.1016/j.jeconom.2005.07.014. [431]

Clark, T.E. and West, K.D. (2007). Approximately normal tests for equal predictive accuracy
in nested models. Journal of Econometrics, 138(1), 291–311.
DOI: 10.1016/j.jeconom.2006.05.023. [417]

Clements, M.P. (2005). Evaluating Econometric Forecasts of Economic and Financial Vari-
ables. Palgrave MacMillan, New York. DOI: 10.1057/9780230596146. [412, 422, 430, 431]

Clements, M.P. and Hendry, D.F. (1993). On the limitations of comparing mean squared
forecast errors. Journal of Forecasting, 12(8), 617–637 (with discussion).
DOI: 10.1002/for.3980120815. [479]

Clements, M.P. and Krolzig, H.-M. (1998). A comparison of the forecast performance of
Markov-switching and threshold autoregressive models of US GNP. Econometrics Journal,
1(1), C47–C75. DOI: 10.1111/1368-423x.11004. [429]

Clements, M.P. and Smith, J. (1997). The performance of alternative forecasting methods
for SETAR models. International Journal of Forecasting, 13(4), 463–475.
DOI: 10.1016/s0169-2070(97)00017-4. [407, 429]

Clements, M.P. and Smith, J. (1999). A Monte Carlo study of the forecasting performance
of empirical SETAR models. Journal of Applied Econometrics, 14(2), 124–141.
DOI: 10.1002/(sici)1099-1255(199903/04)14:2%3C123::aid-jae493%3E3.0.co;2-k. [429]

Clements, M.P. and Smith, J. (2000). Evaluating the forecast densities of linear and non-
linear models: Application to output growth and unemployment. Journal of Forecasting,
19(4), 255–276.
DOI: 10.1002/1099-131x(200007)19:4%3C255::aid-for773%3E3.0.co;2-g. [430]

Clements, M.P. and Smith, J. (2001). Evaluating forecasts from SETAR models of exchange
rates. Journal of International Money and Finance, 20(1), 133–148.
DOI: 10.1016/s0261-5606(00)00039-5. [429]

http://dx.doi.org/10.1016/s0261-5606(00)00039-5
http://dx.doi.org/10.1002/1099-131x(200007)19:4%3C255::aid-for773%3E3.0.co;2-g
http://dx.doi.org/10.1002/(sici)1099-1255(199903/04)14:2%3C123::aid-jae493%3E3.0.co;2-k
http://dx.doi.org/10.1016/s0169-2070(97)00017-4
http://dx.doi.org/10.1111/1368-423x.11004
http://dx.doi.org/10.1002/for.3980120815
http://dx.doi.org/10.1057/9780230596146
http://dx.doi.org/10.1016/j.jeconom.2006.05.023
http://dx.doi.org/10.1016/j.jeconom.2005.07.014
http://dx.doi.org/10.1080/07474930500405683
http://dx.doi.org/10.1016/s0304-4076(01)00071-9
http://www.bankofcanada.ca/wp-content/uploads/2010/09/clark.pdf
http://dx.doi.org/10.1016/j.ijforecast.2015.12.005
http://dx.doi.org/10.1080/07474939608800357


544 References

Clements, M.P. and Smith, J. (2002). Evaluating multivariate forecast densities: A compar-
ison of two approaches. International Journal of Forecasting, 18(3), 397–407.
DOI: 10.1016/s0169-2070(01)00126-1. [480, 492]

Clements, M.P. and Taylor, N. (2003). Evaluating interval forecasts of high frequency fin-
ancial data. Journal of Applied Econometrics, 18(4), 445–456. DOI: 10.1002/jae.703. [430]

Clements, M.P., Franses, P.H., Smith, J., and Van Dijk, D. (2003). On SETAR non-linearity
and forecasting. Journal of Forecasting, 22(5), 359–375. DOI: 10.1002/for.863. [429]

Cleveland, R.B., Cleveland, W.S., McRae, J.W., and Terpenning, I. (1990). STL: A seasonal-
trend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–73
(with discussion). [386]

Cleveland, W.S. (1979). Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association, 74(368), 829–836.
DOI: 10.2307/2286407. [353, 385]

Cleveland, W.S. and Devlin, S.J. (1988). Locally weighted regression: An approach to re-
gression analysis by local fitting. Journal of the American Statistical Association, 83(403),
596–610. DOI: 10.1080/01621459.1988.10478639. [353]

Cline, D.B.H. (2007a). Stability of nonlinear stochastic recursions with application to non-
linear AR-GARCH models. Advances in Applied Probability, 39(2), 462–491.
DOI: 10.1239/aap/1183667619. [93, 94]

Cline, D.B.H. (2007b). Regular variation of order 1 nonlinear AR-ARCH models. Stochastic
Processes and their Applications, 117(7), 840–861. DOI: 10.1016/j.spa.2006.10.009. [92]

Cline, D.B.H. (2007c). Evaluating the Lyapounov exponent and existence of moments for
threshold AR-ARCH models. Journal of Time Series Analysis, 28(2), 241–260.
DOI: 10.1111/j.1467-9892.2006.00508.x. [91, 92, 93]

Cline, D.B.H. and Pu, H.H. (1999a). Geometric ergodicity of nonlinear time series. Statistica
Sinica, 9(4), 1103–1118. [91]

Cline, D.B.H. and Pu, H.H. (1999b). Stability of nonlinear AR(1) time series with delay.
Stochastic Processes and their Applications, 82(2), 307–333.
DOI: 10.1016/s0304-4149(99)00042-3. [91]

Cline, D.B.H. and Pu, H.H. (2001). Geometric transience of nonlinear time series. Statistica
Sinica, 11(1), 273–287. [91]

Cline, D.B.H. and Pu, H.H. (2004). Stability and the Lyapounov exponent of threshold AR-
ARCH models. The Annals of Applied Probability, 14(4), 1920–1949.
DOI: 10.1214/105051604000000431. [91]

Coakley, J., Fuertes, A-M., and Pérez, M-T. (2003). Numerical issues in threshold autore-
gressive modeling of time series. Journal of Economic Dynamics & Control, 27(11-12),
2219–2242. DOI: 10.1016/s0165-1889(02)00123-9. [248]

Collomb, G. (1984). Propriétés de convergence presque complète du prédicteur à noyau.
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Small, M. (2005). Applied Nonlinear Time Series Analysis: Applications in Physics,
Physiology and Finance. World Scientific, Singapore. DOI: 10.1142/5722. [2, 24, 597]

http://dx.doi.org/10.1142/5722
http://dx.doi.org/10.1093/biomet/80.3.591
http://dx.doi.org/10.1017/s0266466600010987
http://dx.doi.org/10.2307/1390918
http://dx.doi.org/10.1007/978-1-4899-3324-9
http://dx.doi.org/10.1137/1.9780898719017
http://www.m-hikari.com/ams/ams-password-2009/ams-password49-52-2009/lotfiAMS49-52-2009-4.pdf
http://www.m-hikari.com/ams/ams-password-2009/ams-password49-52-2009/lotfiAMS49-52-2009-4.pdf
http://dx.doi.org/10.1016/j.csda.2008.12.006
http://dx.doi.org/10.1111/j.1467-9892.1992.tb00124.x
http://dx.doi.org/10.1016/s0378-3758(03)00156-3
http://dx.doi.org/10.1111/1467-9574.00195


References 585

Smith, J. and Wallis, K.F. (2009). A simple explanation of the forecast combination puzzle.
Oxford Bulletin of Economics and Statistics, 71(3), 331–355.
DOI: 10.1111/j.1468-0084.2008.00541.x. [425]

Smith, R.L. (1986). Maximum likelihood estimation for the NEAR(2) model. Journal of the
Royal Statistical Society, A 48(2), 251–257. [74]

So, M.P., Li, W.K., and Lam, K. (2002). A threshold stochastic volatility model. Journal of
Forecasting, 21(7), 473–500. DOI: 10.1002/for.840. [81]

Solari, S. and Van Gelder, P.H.A.J.M. (2011). On the use of vector autoregress-
ive (VAR) and regime switching VAR models for the simulation of sea and wind
state parameters. In C.G. Soares et al. (Eds.), Marine Technology and Engin-
eering, Volume 1. Taylor & Francis Group, London, pp. 217–230. Available at:
http://www.tbm.tudelft.nl/fileadmin/Faculteit/CiTG/Over_de_faculteit/
Afdelingen/Afdeling_Waterbouwkunde/sectie_waterbouwkunde/people/personal/
gelder/publications/papers/doc/solari_015.pdf. [486]

Sorour, A. and Tong, H. (1993). A note on tests for threshold-type non-linearity in open
loop systems. Applied Statistics, 42(1), 95–104. DOI: 10.2307/2347412. [189]

Stam, C.J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging
field. Clinical Neurophysiology, 116, 2266-2301. [23]

Steinberg, I.Z. (1986). On the time reversal of noise signals. Biophysical Journal, 50(1),
171–179. DOI: 10.1016/s0006-3495(86)83449-x. [317]

Stenseth, N.C., Chan, K.S., Tavecchia, G., Coulson, T., Mysterud, A., Clutton-Brock, T.,
and Grenfell, B. (2004). Modelling non-additive and nonlinear signals from climatic noise
in ecological time series: Soay sheep as an example. Proceedings of The Royal Society
London, B 271(1552), 1985–1993. DOI: 10.1098/rspb.2004.2794. [73]

Stenseth, N.C., Falck, W., Bjørnstad, O.N., and Krebs, C.J. (1997). Population regulation
in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare
and lynx. Proceedings of the National Academy of Sciences USA, 94(10), 5147–5152.
DOI: 10.1073/pnas.94.10.5147. [293]

Stensholt, B.K. and Tjøstheim, D. (1987). Multiple bilinear time series models. Journal of
Time Series Analysis, 8(2), 221–233.
DOI: 10.1111/j.1467-9892.1987.tb00434.x. [441, 442, 443]

Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of
the American Statistical Association, 69(347), 730–737.
DOI: 10.2307/2286009 and DOI: 10.1080/01621459.1974.10480196. [134]

Stephens, M.A. (1986). Tests based on EDF statistics. In R.B. D’Agostino and M.A. Steph-
ens (Eds.) Goodness-of-Fit Techniques. Marcel Dekker, New York, pp. 97–193. [135]

Steuber, T.L., Kiessler, P.C., and Lund, R. (2012). Testing for reversibility in Markov chain
data. Probability in the Engineering and Informational Sciences, 26(04), 593–611.
DOI: 10.1017/s0269964812000228. [333]

http://dx.doi.org/10.1017/s0269964812000228
http://dx.doi.org/10.1080/01621459.1974.10480196
http://dx.doi.org/10.2307/2286009
http://dx.doi.org/10.1111/j.1467-9892.1987.tb00434.x
http://dx.doi.org/10.1073/pnas.94.10.5147
http://dx.doi.org/10.1098/rspb.2004.2794
http://dx.doi.org/10.1016/s0006-3495(86)83449-x
http://dx.doi.org/10.2307/2347412
http://www.tbm.tudelft.nl/fileadmin/Faculteit/CiTG/Over_de_faculteit/Afdelingen/Afdeling_Waterbouwkunde/sectie_waterbouwkunde/people/personal/gelder/publications/papers/doc/solari_015.pdf
http://www.tbm.tudelft.nl/fileadmin/Faculteit/CiTG/Over_de_faculteit/Afdelingen/Afdeling_Waterbouwkunde/sectie_waterbouwkunde/people/personal/gelder/publications/papers/doc/solari_015.pdf
http://www.tbm.tudelft.nl/fileadmin/Faculteit/CiTG/Over_de_faculteit/Afdelingen/Afdeling_Waterbouwkunde/sectie_waterbouwkunde/people/personal/gelder/publications/papers/doc/solari_015.pdf
http://dx.doi.org/10.1002/for.840
http://dx.doi.org/10.1111/j.1468-0084.2008.00541.x


586 References
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Székely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007). Measuring and testing dependence by
correlation of distances. The Annals of Statistics, 35(6), 2760–2794.
DOI: 10.1214/009053607000000505. [296]

Tai, H. and Chan, K.S. (2000). Testing for nonlinearity with partially observed time series.
Biometrika, 87(4), 805–821. DOI: 10.1093/biomet/87.4.805. [188]

Tai, H. and Chan, K.S. (2002). A note on testing for nonlinearity with partially observed
time series. Biometrika, 89(1), 245–250. DOI: 10.1093/biomet/89.1.245. [188]

Tay, A.S. and Wallis, K.F. (2000). Density forecasting: A survey. Journal of Forecasting,
1(4), 235–254. DOI: 10.1002/1099-131X(200007). Reprinted in M.P. Clements and D.F.
Hendry (Eds.), A Companion to Economic Forecasting. Blackwells, Oxford (2002), pp.
45–68. [430]

Teles, P. and Wei, W.W.S. (2000). The effects of temporal aggregation on tests of linearity
of a time series. Computational Statistics & Data Analysis, 34(1), 91–103.
DOI: 10.1016/s0167-9473(99)00072-9. [151]
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Notations and Abbreviations

The following notation is frequently used throughout the book. The number following the
description of a notation marks the page where the notation is first introduced.

Table 1: List of Symbols.
Symbol Description Page

General
≡ equals, by definition 10
⊥ perpendicular, mutually singular (of measures) 457
‖x‖ norm of x in L2 (Euclidian norm) 19
‖x‖p Lp-norm 112
! factorial 299
!! semifactorial: (2k − 1)!! = 1 · 3 · 5 · · · (2k − 1) 221
[x] absolute value (integer part) of scalar x (largest integer ≤ x) 127
�x� the largest integer not greater than x 126
x ∧ y = min(x, y) 449
x ∨ y = max(x, y) 198
log(x) natural logarithm of x (with base e = 2.71828 · · · ) 11
log+(x) = max{log(x), 0)} 89
B backward shift (or lag) operator 62
C = 0.5772156649 · · · , Euler’s constant 89
δij Kronecker delta, where δij = 1 if i = j and δij = 0 if i �= j 327
∃ “there exists” 37
h ≡ hT smoothing parameter or bandwidth 209
hb binwidth 270
K(·),Kh(·) kernel function (with bandwidth h) 260
∀ “for all” (“for every”) 2
arg min argument that minimizes a function 58
arg max argument that maximizes a function 340
exp exponential 2
inf infimum (greatest lower bound) 339
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600 Notation and Abbreviations

min minimum 44
max maximum 37
Leb Lebesgue measure on Rm 98
lim limit (number); also limit (sets) 13
lim inf inferior limit (number); also inferior limit (sets) 91
lim sup superior limit (number); also superior limit (sets) 91
Ran H range of the function H 306
sign(a) sign of the real number a 311
sup supremum (least upper bound) 19
s.t. “subject to” 93

Sets
{·} set designation; also sequence, array 2
∈, �∈ set membership, does not belong to 2
∪ union 41
⊂ subset (strict containment) 198
∩ intersection 41
F t σ-algebra (information set) 2
∅ empty (null) set 41
I(·) indicator function, i.e. I(z) = 1 if z > 1 and I(z) = 0 if z ≤ 0 16
�(·) imaginary part 121
N = {0, 1, 2, . . .}, i.e. the set of all natural numbers, including zero 10
R the set of all real numbers 41
R+ the set all non-negative real numbers 240
Rn, Rm×n the set of real n× 1 vectors (m× n matrices) 37
�(·) real part 142
Z = {0,±1,±2, . . .}, i.e. the set of all relative integers 2
Z+ = {1, 2, 3, . . .}, i.e. the set of all positive integers 19

Special matrices and vectors
e = (1, 0, . . . , 0)′, a vector with 1 in the first entry and zeros

elsewhere 205
1 = (1, . . . , 1)′, a unity row vector 491
In identity matrix of order n× n 42
Om×n m× n null matrix 42
0m, 0m×1 m× 1 null vector 42

Operations on matrix A and vector a
A′, a′ transpose of a matrix or vector 13
A−1 inverse of a matrix 129
A# Hankel matrix 219
diag(A) diagonal matrix, containing the diagonal elements of A 262
vec(A) = stacking the elements of A one underneath the other 441
vech(A) = stacking the elements of A on and below the main

diagonal into one vector 180
ρ(A) maximum absolute eigenvalue of A (spectral radius) 90
tr(A) trace 229
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|A|, det(A) determinant of a matrix 232
‖A‖, ‖a‖ norm of a matrix or vector 88

Matrix products
⊗ Kronecker product 90
( Hadamard product (also known as direct product or tensor

product) 524
Statistical symbols

C(·) copula 267
D−→ convergence in distribution (or weak convergence) 10

D∼ equivalence in distribution 316
E expectation 2
P probability 54
P probability measure 96
(Ω,F ,P) probability space 95
i.i.d. independently and identically distributed 2
Var variance 16
Cov covariance 39
Cum cumulant 510
∼ is distributed as 2
a.s. almost surely 88
Nm(0,Σ) m-dimensional normal (or Gaussian) distribution with

mean 0 and covariance matrix Σ 467
tν Student t distribution with ν degrees of freedom 104
χ2

n chi-squared distribution with n degrees of freedom 10
χ2

n(λ) χ2
n distribution with noncentrality parameter λ 131

“Big O” and “little o”
Suppose {xn} is a scalar non-stochastic sequence of real numbers for integers
n = N, . . . ,∞. Then
xn = O(1) if |xn| < c ∀n, and 0 < c < ∞;
xn = O(nm) if n−m = O(1); 130
xn = o(nm) if limn→∞ n−mxn = 0. 344

Suppose {Xn} is a sequence of random variables for integers n = N, . . . ,∞. Then
Xn = Op(nm) if for any ε > 0 there is a constant c < ∞ such that

P(|n−mXn| > c) < ε ∀n > N (convergence in probability); 351
Xn = op(1) if Xn converges in probability to zero as n →∞. 229

Notation and Abbreviations



602 Notation and Abbreviations

Table 2: List of abbreviations. The number following the description marks the page where
the notation is first introduced. For acronyms given to threshold-type time series models, we
refer to Appendix. 2.B.

Symbol Description Page
ACE alternating conditioning expectations 360
ACF autocorrelation function 14
ACVF autocovariance function 12
AD Anderson–Darling 266
AFPE asymptotic FPE 358
AIC Akaike’s information criterion 69
AMISE asymptotic MISE 300
AMSE asymptotic mean squared error 300
ANN artificial neural network 56
AO additive outlier 248
AR(MA)–NN autoregressive (moving average) neural network 58
asARMA asymmetric ARMA 47
(G)ARCH (generalized) autoregressive conditional heteroskedasticity 67
ARMA(X) autoregressive moving average (exogenous) 1
ASTMA additive smooth transition moving average 52
AVAS additive and variance stabilizing 360
BDS Brock–Dechert–Scheinkman 279
BFI bootstrap FI 411
BGAR beta-gamma AR 335
BIC Bayesian information criterion 69
BL bilinear 33
BS bootstrapping 11
cc conditional coverage 420
CCF cross-correlation function 292
CPP compound Poisson process 205
CDF cumulative distribution function 51
(C)LS (conditional) least squares 44
CLT central limit theorem 96
CNF common nonlinear feature 457
CPI conditional predictive interval 408
CR Cressie–Read 265
CUSUM cumulated sum 183
CV cross-validation 268
CvM Cramér–von Mises 261
CVR coverage rate 412
DE dynamic estimation 406
DGP data generating process 4
DM Diebold–Mariano 416
DP Diks–Panchenko 291
ECM error correction model 216
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EDF empirical distribution function 134
EEG electroencephalogram 5
eff efficiency 300
ELS empirical least squares 400
ENSO El Niño–Southern Oscillation 7
ESTAR exponential STAR 51
ew equal-weighting 425
ExpARMA exponential ARMA 37
FC(MA)AR functional-coefficient (MA) AR 374
FI forecast interval 408
FPE final prediction error 358
FR forecast region 408
FT Fourier transform 120
GA genetic algorithm 210
GCI Granger causality index 451
GCV generalized cross-validation 367
GFESM generalized forecast error second moment 479
GIC generalized information criterion 231
GIRF generalized impulse response function 36
GJB generalized JB 12
GMM generalized method of moments 248
GOF goodness-of-fit 133
GRASP greedy randomized adaptive search procedure 74
HDR highest density region 414
HJ Hiemstra–Jones 515
HL Hotelling–Lawley 462
IDR inter decile range 136
IO innovational outlier 249
IQR inter quartile range 132
ISE integrated squared error 299
IWLS iteratively weighted least squares 223
JB Jarque–Bera 10
KL Kullback–Leibler 18
KS Kolmogorov–Smirnov 266
LB Ljung–Box 236
LGNN local global neural network 62
L2GNN local linear global neural network 63
LL local linear 304
LM Lagrange multiplier 155
LN linearization 404
LR likelihood ratio 155
LSTAR logistic STAR 51
LSTEC logistic smooth transition error-correction 215
LVSTAR logistic VSTAR 454
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604 Notation and Abbreviations

LWR locally weighted regression 353
MAE mean absolute error 246
MAFE mean absolute forecast error 72
MAR mixture AR 240
MARS multivariate adaptive regression splines 365
MC Monte Carlo 11
MCDR maximum conditional density region 414
MCMC Markov chain Monte Carlo 305
MDM modified DM 417
MDL minimum descriptive length 232
MFD Markov forecast density 356
MHD minimum Hellinger distance 248
MISE mean integrated squared error 300
ML maximum likelihood 54
MLP multi-layer perceptron 56
MMSE minimum mean squared error 391
MS–ARMA Markov-switching ARMA 67
MSE mean square error 129
NAIC normalized AIC 211
NBER National Bureau of Economic Research 4
NC(S)TAR neuro-coefficient (S)TAR 65
NEAR newer exponential AR 53
NFE normal forecast error 401
NLARMA nonlinear ARMA 101
NLS nonlinear least squares 198
NW Nadaraya–Watson 302
ODP Ocean Drilling Program 8
PACF partial autocorrelation function 14
PAR product AR 54
pdf probability density function 18
PEE parameter estimation error 427
PI plug-in 396
PIT probability integral transform 305
pmf probability mass function 326
PPR projection pursuit regression 363
QML quasi maximum likelihood 198
RMAFE relative mean absolute forecast error 403
RCAR(MA) random coefficient AR(MA) 39
(R)MSFE (root) mean squared forecast error 72
RNW re-weighted NW 350
rot rule-of-thumb 301
SCMI shortest conditional modal interval 413
SDM state-dependent model 32
SK skeleton 399
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SRE stochastic recurrence equation 88
SST sea surface temperature 7
STAR smooth transition autoregressive 51
TEAR transposed exponential AR 54
TFN transfer function noise 245
TI traditional impulse 76
TR time-reversibility 315
TSMARS time series MARS 365
uc unconditional coverage 419
VARMA vector autoregressive moving average 440
VEC vector error correction 452
VSTAR vector STAR 453
WN white noise 1
WS wind speed 506
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List of Pseudocode Algorithms

Page numbers are in parentheses

CHAPTER 3

3.1 Empirical invertibility of an
NLARMA(p, q) model (105)

CHAPTER 4

4.1 The Subba Rao–Gabr Gaussianity 4.4 Bootstrap-based tests (138)
test (126) 4.5 The MSFE-based linearity test

4.2 The Subba Rao–Gabr linearity statistic (144)
test (129)

4.3 Goodness-of-fit test statistics (135)

CHAPTER 5

5.1 LM(3∗)
T test statistic (161) 5.6 Bootstrapping p-values of LR(9)

T test
5.2 LM(3∗∗)

T test statistic (162) statistic (176)
5.3 F

(5)
T test statistic (164) 5.7 Tukey’s nonadditivity-type test

5.4 LM(7)
T test statistic (168) statistic (180)

5.5 Bootstrapping p-values of F
(1,i)
T test 5.8 F

(O)
T test statistic (181)

statistic (172) 5.9 CUSUM test statistic (183)
5.10 TAR F test statistic (184)
5.11 New F test statistic (185)

CHAPTER 6

6.1 Nonlinear iterative optimization (200) 6.6 A simple genetic algorithm (211)
6.2 A multi-parameter grid search (204) 6.7 CLS estimation of the BL model (218)
6.3 The density function of M− (206) 6.8 Minimum order selection (233)
6.4 Sampling Y1 from an estimate of 6.9 Leave-one-out CV order selection (234)

F1(·|r0) (207) 6.10 Selecting a (SS)TARSO model (244)
6.5 k-regime subset SETARMA–CLS

estimation (211)
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608 List of Pseudocode Algorithms

CHAPTER 7

7.1 Bootstrapped p-values for single-lag 7.3 Bootstrapping p-values of the BDS
tests (276) test statistic (281)

7.2 Permutation-based p-values for 7.4 Bootstrap-based p-values for multivariate
multiple-lag tests (277) serial independence tests (289)

CHAPTER 8

8.1 The Ramsey–Rothman TR test (319) 8.3 The trispectrum-based TR test (324)
8.2 The bispectrum-based TR test (322) 8.4 Resampling scheme (326)

CHAPTER 9

9.1 Loess/Lowess (353) 9.5 Gradient descent boost (371)
9.2 Robust Loess/Lowess (354) 9.6 Bootstrap-based LR-type test (376)
9.3 Resampling scheme for MFDs (357) 9.7 Estimating θ and hT for the
9.4 ACE (361) single-index model (379)

CHAPTER 10

10.1 Bootstrap FI (410) 10.2 Bootstrap bias-corrected FI (411)

CHAPTER 11

11.1 A nonadditivity-type test for 11.4 Multivarite test statistic for VSETAR
nonlinearity (459) (464)

11.2 Tukey’s nonadditivity-type test for 11.5 LM(1)
T,p(m) test statistic for LVSTAR

nonlinearity (460) (469)
11.3 F

(O)
T test statistic for 11.6 Bootstrapping the GIRF (489)

nonlinearity (461)

CHAPTER 12

12.1 Bootstrap-based p-values for LRT (509)



List of Examples

Page numbers are in parentheses

CHAPTER 1

1.1 U.S. Unemployment Rate (4) 1.6 Summary Statistics (11)
1.2 EEG Recordings (5) 1.7 Summary Statistics (Cont’d) (14)
1.3 Magnetic Field Data (6) 1.8 Sample ACF and Kendall’s τ (17)
1.4 ENSO Phenomenon (7) 1.9 The Logistic Map (20)
1.5 Climate Change (8) 1.10 EEG Recordings (Cont’d) (22)

CHAPTER 2

2.1 A BL Time Series (33) 2.9 Dynamic Effects of an asMA
2.2 Comparing BL Time Series (35) Model (48)
2.3 Dynamic Effects of a BL Model (36) 2.10 NEAR(1) Model (53)
2.4 ExpAR Time Series (38) 2.11 Skeleton of an AR–NN(2; 0, 1)
2.5 Dynamic Effects of an NLMA Model Model (59)

(40) 2.12 Skeleton of an AR–NN(3; 1, 1, 1)
2.6 Dynamic Effects of a SETAR Model Model (60)

(42) 2.13 A Simulated L2GNN(2; 1, 1)
2.7 A Simulated CSETAR Process (45) Time Series (63)
2.8 A Simulated SETAR(2; 1, 1)2 Model (46) 2.14 A Two-regime Simulated MS–AR(1)

Time Series (67)
A.1 Impulse Response Analysis (78)

CHAPTER 3

3.1 Evaluating the Top Lyapunov 3.5 SETAR Geometric Ergodicity (99)
Exponent (89) 3.6 Invertibility of an RCMA(1) Model (104)

3.2 An Explicit Expression for γ (92) 3.7 Invertibility of an ASTMA(1) Model (105)
3.3 Numerical Evaluation of γ (93) 3.8 Invertibility of a SETMA Model 108)
3.4 Geometric Ergodicity of the SRE (97)

CHAPTER 4

4.1 Third-order Cumulant and Bispectrum 4.2 Principal Domain of the Subba Rao–
(124) Gabr Gaussianity Test (127)
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CHAPTER 5

5.1 ENSO Phenomenon (Cont’d) (173) 5.3 Interpretation of the LM∗
T Test

5.2 U.S. Unemployment Rate (Cont’d) (177) Statistic (186)

CHAPTER 6

6.1 NLS Estimation (201) 6.6 Daily Hong Kong Hang Seng Index
6.2 U.S. Unemployment Rate (Cont’d) (208) (225)
6.3 U.S. Real GNP (212) 6.7 U.S. Unemployment Rate (Cont’d)
6.4 ENSO Phenomenon (Cont’d) (215) (235)
6.5 CLS-based Estimation of a BL Model 6.8 Daily Hong Kong Hang Seng Index

(221) (Cont’d) (239)

CHAPTER 7

7.1 Some Kernel Functions and their 7.5 Dimension of an ExpAR(1) Process
FTs (261) (280)

7.2 An Explicit Expression for ΔQ(·) 7.6 S&P 500 Daily Stock Price Index (283)
7.3 Magnetic Field Data (Cont’d) (273) A.1 NW Kernel Regression Estimation
7.4 U.S. Unemployment Rate (Cont’d) (303)

(276) B.1 Gaussian and Student t copulas (307)

CHAPTER 8

8.1 Exploring a Logistic Map for TR 8.3 Exploring a Time-delayed Hénon
(317) Map for TR (329)

8.2 Exploring a Simulated SETAR
Process for TR (321)

CHAPTER 9

9.1 A Comparison Between Conditional 9.7 Sea Surface Temperatures (Cont’d)
Quantiles (345) (368)

9.2 Old Faithful Geyser (347) 9.8 Quarterly U.S. Unemployment Rate
9.3 Hourly River Flow Data (354) (Cont’d) (372)
9.4 Canadian Lynx Data (Cont’d) (359) 9.9 Quarterly U.S. Unemployment Rate
9.5 Sea Surface Temperatures (362) (Cont’d) (376)
9.6 Sea Surface Temperatures (Cont’d) 9.10 A Monte Carlo Simulation Experiment

(364) (379)

CHAPTER 10

10.1 Forecast Density (393) 10.5 Forecasts from a SETAR(2; 1, 1) Model
10.2 Comparing LS and PI Forecast (407)

Strategies (396) 10.6 FIs for a Simulated SETAR Process
10.3 Comparing NFE and MC Forecasts (412)

(403) 10.7 Hourly River Flow Data (Cont’d) (414)
10.4 Forecasts from an ExpAR(1) Model 10.8 ENSO Phenomenon (Cont’d) (422)

(405)

CHAPTER 11

11.1 Stationarity and Invertibility of a 11.4 An LVSTAR Model with a single CNF
Bivariate BL Model (445) (458)

11.2 A Two-regime Bivariate 11.5 Tree Ring Widths (463)
VSETAR(2; 1, 1) Model (450) 11.6 Tree Ring Widths (Cont’d) (470)

11.3 An LVSTAR Model with Nonlinear 11.7 Forecasting an LVSTAR(1) Model with
Cointegration (456) CNFs (477)
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12.1 A Monte Carlo Experiment (497) 12.4 Sea Surface Temperatures (Cont’d)
12.2 Daily Returns of Exchange Rates (509)
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Table 3: Time series used throughout the book. File names are
given in parentheses.

Series Example Exercise Application
(Section number)

U.S. unemployment rate(1) 1.1, 1.6, 1.7, 1.8, 4.4, 8.6 4.7, 8.5
(USunemplmnt first dif.dat) 5.2, 7.4

U.S. unemployment rate(2) 6.2, 6.7, 9.8, 9.9 2.10, 6.9
(USunemplmnt logistic.dat)
EEG recordings (eeg.dat) 1.2, 1.6, 1.7, 1.8, 1.10 2.9, 7.5, 8.6 2.11, 4.7, 8.5
Magnetic field 1.3, 1.6, 1.7, 1.8, 7.3 8.6 4.7, 8.5
(magnetic field.dat)
ENSO phenomenon 1.4, 1.6, 1.7, 1.8, 8.6 4.7, 8.5
(ENSO.dat) 5.1, 6.4, 10.8
Climate change 1.5, 1.6, 1.7, 1.8, 1.6, 1.8, 8.6, 4.7, 8.5
(deltaC.dat and deltaO.dat) 7.7, 12.5, 12.6 12.3
(earthP1.dat - earthP4.dat)
Jökulsá Eystri streamflow 2.11
(jokulsa.dat)
Icelandic river flow 12.4 11.8
(ice.dat )
West German unemployment 3.8
(German unemplmnt.dat)
U.S. real GNP (USGNP.dat) 6.3
Hong Kong Hang Seng Index 6.6, 6.8
(HSI returns)
Water table depth 6.4
(WaterT Precip.dat)
S&P 500 stock price index 7.6
(SP500.dat)
Canadian lynx (lynx.dat) 9.4 7.6, 7.7 7.5
Old Faithful geyser 9.2 9.4
(geyser waiting.dat)
Hourly river flow 9.3, 10.7 9.5, 10.11
(flow.dat and rain.dat)
Sea surface temperatures 9.5, 9.6, 9.7
(SST.dat and SSTGranite.dat) 12.3, 12.4
Great Salt Lake volume (gsl.dat ) 9.2
Intraday transaction (intraday.dat) 11.5
Tree ring widths (treering.dat) 11.5, 11.6 12.2
U.S. consumption-income 11.6
(con inc.dat)
Exchange rates 12.2
(ExchangeRates.dat)

(1) First differences of original data.
(2) Logistic transformation of original data.



Subject index

ACE algorithm, 360, 361
Added variable approach, 179
Akaike’s information criterion

AIC, 69, 208, 216, 228–232, 235, 246
AICc, 230
AICu, 230
multivariate, 471
NAIC, 211

Anderson–Darling GOF test, 134
Anosov diffeomorphism, 335
Aperiodic, 66
Arranged autoregression, 182
Artificial neural network (ANN), 56–58

activation-level, 56
AR–NN, 58, 59
ARMA–NN, 61, 62
back-propagation, 58
bias, 58
hidden unit, 56
L2GNN, 63, 64
LGNN, 62, 63
multi-layer perceptron (MLP), 56
NCSTAR, 65
neurons, 56
shortcut connections, 58
skip-layer, 57
training, 57

Asymmetric ARMA (asARMA)
model, 47

Asymmetry, 4, 10
Asymptotically stationary, 59
Augmented F test, 181
Autocorrelation function (ACF), 14
Autocovariance function (ACVF), 12, 141,

218, 417
AVAS algorithm, 362

Backward shift operator, 62
Bandwidth, 298

oversmoothing, 328
plug-in, 301, 341
rule-of-thumb (rot), 301, 302, 358, 359
undersmoothing, 328

Bartlett’s confidence limits, 15, 451
Base learner, 370
Basis functions, 366
Bayesian information criterion

(BIC), 69, 231, 243
multivariate, 471

BDS test statistic, 278
rank-based, 282

Beta-Gamma transformation, 335
Bilinear model

multivariate, 441
super (sub) diagonal, 34
univariate, 33, 35, 36, 216

Binwidth, 270
Bispectral density function, 121
Bispectrum, see Bispectral density function
Boosting, 369

componentwise, 371
gradient descent, 370
greedy, 370

Bootstrapping, 136
backward (forward), 410

Boundary effects, 269
BRUTO, 372

Calibration, 234, 243, 244
Causality test

bivariate, 515
modified, 516

Hiemstra–Jones (HJ), 515
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multivariate, 518
Causally invertible, 30
Cave plot, 9
Chapman–Kolmogorov relationship, 392
Check function, 342, 499
Cholesky decomposition, 478, 490
Cointegration, 452, 456
Common features, 455

nonlinear (CNF), 457
Commutative, see Exchangeable
Companion matrix, 42, 108, 113
Complexity penalty, 232
Compound Poisson process (CPP), 205
Concordant, 15
Conditional least squares (CLS), 44, 198, 202,

210, 214, 217, 218, 221, 234, 244
Conditional mean, 339
Conditional median, 339
Conditional mode, 340
Conditional percentile interval

(CPI), 408, 413
Conditional quantile predictor

multi-stage, 344, 346, 347
single-stage, 342, 344, 346, 347

Copula, 259, 266
density, 267, 306
empirical, 269
Fréchet–Hoeffding bounds, 307
Gaussian, 307
independence, 267
Student t, 307

Correlation dimension, 280
Covariance matrix, 90
Coverage

conditional, 420
unconditional, 419

Coverage rate (CVR), 412
Cramér–von Mises (CvM) GOF test, 134
Cross-correlation function (CCF), 237, 450
Cross-validation (CV), 234

generalized (GCV), 367, 504
Crossover, 212
Cumulants, 25

third-order, 120
Cumulative sums (CUSUM) test, 183
Curse of dimensionality, 250, 338
Cut-off threshold, 260

Data generating process (DGP), 4
Data-sharpening, 520

Delay parameter, 42
Dependogram, 290
Descriptive statistics, 10
Design adaptive, 350
Designated frequency, 126, 128
Detailed balance equations, 317
Diagnostic checking, 236, 472
Diebold–Mariano (DM) test, 416, 417, 424

modified (MDM), 417, 418
Direct method, 123
Directed scatter plot, 21
Disconcordant, see Concordant
Distance

Anderson–Darling (AD), 266
correlation integral, 260
Cramér–von Mises (CvM), 265
Cressie–Read (CR), 265
Csiszár (C), 264
functionals, 263
Hellinger (H), 264
Kolmogorov (K), 264
Kolmogorov–Smirnov (KS), 266
Kullback–Leibler (KL), 18, 227
quadratic (Q), 260
Rényi (R), 264
Tsallis (T), 264

Doubly stochastic, 39
Duration, 421

Embedding dimension, 19
Equilibrium error process, 452
Ergodic, 66, 97
Error correction model (ECM), 216
Essentially linear, 3
Euler’s constant, 89, 115
Exchangeable, 317
Exponential AR (EAR) model, 54
Exponential ARMA (ExpARMA) model, 36,

51
Exponential function, 51

Feed-forward network, 56
Feller chain, 97
Final prediction error

AFPE, 358
CAFPE, 359
FPE, 358

Forecast
interval (FI), 408
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linear (L), 140
quadratic (Q), 141
region (FR), 408

Forecast combination
density forecasts, 426
interval forecasts, 425
point forecasts, 425

Forecast evaluation
density forecast, 422
interval forecast, 419
point forecast, 415
vector

density, 479
GFESM, 479
RMSFE, 478

Forecasting
bootstrap (BS), 399
combined (C), 396
dynamic estimation (DE), 406
empirical least squares (ELS), 400
encompassing, 427
exact, 392
least squares (LS), 395
linearization (LN), 404
Monte Carlo (MC), 398
normal forecasting error (NFE), 401
plug-in (PI), 396
recursive, 416, 427
rolling, 416, 427
SETARMA, 394
skeleton (SK), 399

Fourier transform (FT), 120, 126
Frequency bicoherence, 123
Functional-coefficient AR (FCAR) model, 374

Gaussian mixture AR (MAR) model, 313
Generalized impulse response function

(GIRF), 36
Generalized information criterion (GIC), 231
Generalized spectrum, 274
Genetic algorithm (GA), 210

fitness function, 210
Geometric ergodicity, 81, 95, 96
Goodness-of-fit (GOF) test, 133
Gradient vector, 200–202
Granger’s causality index (GCI), 451
Grid search, 69

Hénon map, 330
Hamilton filter, 68

Hankel matrix, 219
Hessian matrix, 179, 199, 200
Hidden unit, 58
Highest (conditional) density region

(HDR), 414
Hinich’s tests, 130, 131, 133, 136
Hotelling–Lawley (HL) trace test, 462
Hyperplane, 46

Impulse response function, see Generalized
impulse response function (GIRF)

Indirect method, 123
Information matrix, 199, 224, 232, 241
Innovation process, 31, 141
Integrated squared error (ISE), 299
Interdecile range (IDR), 136
Interquartile range (IQR), 132, 136
Intrinsically linear, 55
Invariance, 306
Inversion method, 306
Invertibility, 101, 109

classical, 101
empirical, 105
global, 101

generalized, 102
Granger–Andersen, 101
Pham–Tran, 103

local, 107
Irreducible, 66
Iteratively weighted least squares

(IWLS), 223, 224

Jarque–Bera (JB) test
generalized (GJB), 12
independent data, 10
weakly dependent data, 12

Jensen’s inequality, 98, 227
Jittering, 290
Joint entropy, 18

Kendall’s (partial) tau, 14, 15, 17
Kernel functions, 298

biweight, 299
Cauchy, 261
Epanechnikov, 299
Gaussian, 261, 299
triweight, 299
uniform, 299

Kolmogorov–Gabor polynomial, 31
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Kurtosis, 10

Lag selection, 512
Lag window

Daniell, 273
Parzen, 15, 124
right-pyramidal, 139
trapezoid, 138

Lagrange multiplier (LM) type tests
AsMA and SETMA models, 163
ASTMA model, 165
bilinear model, 157
ExpARMA model, 159
general, 156
NCTAR and AR-NN models, 166
STAR model, 159

augmented first-order, 162
first-order procedure, 160
third-order procedure, 161

VSTAR model, 468
Leakage, 140
Leave-one-out CV, 234, 304
Lebesgue measure, 98, 338, 414
Likelihood ratio (LR) tests

NeSETAR model, 171
SETAR model, 168
SETARMA model, 174
VSETAR model, 465

Limit cycle, 37
Lin–Mudholkar test, 11
Linear causal, 3
Linear forecast, 140
Linear process, 2
Linear single-index model, 378
Lipschitz continuous, 340
Ljung–Box (LB) statistic, 177, 209, 236
Local linear (LL)

conditional density
asymptotic bias, 350
asymptotic variance, 350

conditional mean, 375
asymptotic bias, 409
asymptotic variance, 409

Logistic function, 51
Logistic map, 20
Logistic smooth transition error correction

(LSTEC), 215
Lyapunov exponent, 88

NLAR–GARCH model, 91

Möbius transformation, 285, 286, 288
Markov chain, 66

collapsed, 92
Monte Carlo (MCMC), 210, 249, 305

Markov-switching (MS–ARMA) model, 67
Martingale difference, 2
Maximal test, 136
Mean absolute forecast error (MAFE), 72
Mean integrated squared error (MISE), 300
Mean squared error (MSE), 129, 299
Mean squared forecast error (MSFE), 141,

144
Minimum descriptive length (MDL), 232
Mixing, 95

α-mixing, 95
β-mixing, 96

Mixing coefficient, 95
Mixing proportions, 313
Multiple-lag tests, 272
Multivariate adaptive regression splines

(MARS), 365
Multivariate quantile, 496
Mutation, 212
Mutual information, 18

Nadaraya–Watson (NW), 302
conditional density

asymptotic bias, 349
asymptotic variance, 349

conditional mean
asymptotic bias, 409
asymptotic variance, 409

kernel estimator
re-weighted (RNW), 350

Newer exponential AR (NEAR) model, 53
Newton–Raphson method, 219
Non-anticipative, 89
Nonadditivity-type test

multivariate
original F test, 461
Rao’s (R), 459
Tukey (T), 460

univariate
Tukey (T), 179

Nonlinear, 4
Nonlinear ARMA (NLARMA) model, 39, 101
Nonparametric regression

K-nearest neighbor (k-NN), 352, 501
local polynomial, 304
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loess/lowess, 353
projection pursuit regression (PPR), 363,

504
Normality, 10
Normalized bispectrum, 122

Occam’s razor, 187

Parameter estimation error (PEE), 427
Parseval’s identity, 262
Partial autocorrelation function (PACF), 14
Pearson residuals, 236, 237, 240, 241
Penalty function, 232
Periodic function, 37
Permutation test, 277
Phase space, 19
Pillai’s (P) trace test statistic, 462
Poisson equation, 93
PolyMARS (PMARS), 502
Polyspectrum, 121
Portmanteau-type test, 179, 266, 474
Prediction, see Forecasting
Predictive residuals, 412
Principal domain, 121, 126, 128, 131
Probability integral transform (PIT), 241, 422,

479
Product AR (PAR) model, 54, 55
Product kernel, 339

Quantile residuals, 240, 474
Quasi maximum likelihood (QML), 68, 198,

199

Random coefficient AR (RCAR) model, 39
generalized, 88

Reconstruction errors, 101
Reconstruction vector, 19
Recurrence plot, 19
Recurrent, 61, 62
Recursive partitioning, 366

backward step, 366
forward step, 366

Root mean squared forecast error (RMSFE),
72

Roughness, 300

Score vector, see Gradient vector
Selection, 212
Self-exciting, 41
Semi-invariants, see Cumulants
Sensitivity parameter, 358

Shannon entropy, 18, 525
Shortest conditional modal interval

(SCMI), 413, 414
Sigma-field, 77
Sign AR model, 311
Single-index coefficient model, 378
Single-lag tests, 270
Skeleton, 59, 61, 202
Skewness, 10, 84
Sklar’s theorem, 306
Smooth transition (ST) model, 51

ASTMA, 52
cointegration, 456
ESTAR, 51
LSTAR, 51
LVSTAR, 454
STAR, 51
VSTAR, 453

Spectral density function, 120
Spectral distribution function, 274
Spectral matrix, 511
Spectral radius, 90, 114, 448, 455
Spectrum, see Spectral density function
Squared tricoherence, 323
State space, 32
State vector, see Reconstruction vector
State-dependent model (SDM)

multivariate, 440
univariate, 32

Stochastic permutation, 175
Stochastic recurrence equation (SRE), 88
Subba Rao–Gabr tests, 126
Surrogate data, 188
Switching mechanism, 41
Symmetric-bicovariance function, 318
Szegö condition, 141

Third-order periodogram, 123, 124, 142
Threshold, 41
Threshold model, 41, 45

TARMA, 41
CSETAR, 44, 45
NeSETARMA, 49, 50
SETARMA, 42
SSTARSO, 242
TAR, 78
TARSO, 50, 242
VASTAR(X), 502
VSETAR, 447
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VTARMA, 446
Time-irreversibility

Type I, 318
Type II, 318

Time-reversible, 6
Tolerance distance, see Cut-off threshold
Traditional impulse (TI) response

function, 76
Transfer function, 123
Transition function, 51
Transition probability matrix, 66
Transposed EAR (TEAR) model, 54
Triangle inequality, 112
Trispectrum, 323
Truncation point, 124
Tsay’s test statistics

new F test, 185
original F test, 180
TAR F test, 184

VSETAR F test, 464

U-statistic, 308
Unit root, 189, 361, 464

V-statistic, 308
Validation, 234, 243
Vector error correction (VEC) model, 452
Vector smooth transition error correction

(VSTEC), 455
Volterra, 30, 31, 179, 522

Wald (W) test
asARMA model, 178

Weak learner, see Base learner
White noise (WN)

conditional, 3
Gaussian, 3
strict, 3
weak, 2
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