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Preface

Long-memory, or more generally fractal, processes are known to play an impor-
tant role in many scientific disciplines and applied fields such as physics, geo-
physics, hydrology, economics, finance, climatology, environmental sciences, bi-
ology, medicine, telecommunications, network engineering, to name a few. There
are several reasons for the ubiquitous occurrence of processes in the realm of long
memory. First of all, hyperbolic scaling occurs naturally (up to modifications by
slowly varying functions) in limit theorems for partial sums, since, under very gen-
eral conditions, the limiting processes are necessarily self-similar. One may in fact
say that in the world of stochastic processes, self-similar processes play the same
fundamental role as stable distributions (including the normal) in the world of finite-
dimensional distributions. Hyperbolic scaling phenomena are also an essential in-
gredient in statistical physics (a related notion is, for example, the so-called renor-
malization group). This is, at least partially, connected with the role of self-similar
processes in limit theorems. Another reason for the occurrence of long-memory phe-
nomena is aggregation. This, together with heterogeneity, is a frequent explanation
of long-range dependence in an economic context. In telecommunications and com-
puter networks, distributional properties of waiting times can lead to similar results.
Finally, there is also a connection to fractals (though not always direct, depending
on more specific distributional assumptions).

Although the notion of long memory and related topics can be traced far back into
the early 20th or even the late 19th century, it is probably fair to say that the subject
has been brought to the attention of a wider mathematical audience (and, in partic-
ular, probabilists and statisticians) by the pioneering work of Mandelbrot and his
coworkers. A similar pathbreaking role can be attributed to Granger in economics,
to Dobrushin (and before, to Kolmogorov) in physics and, even earlier, to Hurst in
hydrology. These early contributions motivated a number of eminent probabilists to
develop a theory of stochastic processes in the realm of stochastic self-similarity,
scaling laws and nonstandard limit theorems. The development of statistical meth-
ods followed. An overview of the state of the art in the early 1990s can be found, for
instance, in Beran (1994a). Other books and monographs on the topic, most of them
with a special focus on certain areas of application or specific methods or processes,
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are, for instance, Park and Willinger (2000), Dehling et al. (2002), Embrechts and
Maejima (2002), Robinson (2002), Doukhan et al. (2003), Rangarajan and Ding
(2003), Teyssière and Kirman (2005), Bertail et al. (2006), Samorodnitsky (2006),
Palma (2007) and Giraitis et al. (2012).

Since the appearance of the first monograph on statistical methods for long-
memory processes in the early 1990s, there has been an enormous development. One
now has a much better understanding of the probabilistic foundations and statistical
principles, various new techniques have been introduced to derive limit theorems
and other fundamental results, and a large variety of flexible statistical methods are
now available, including parametric, nonparametric, semiparametric and adaptive
inference for stationary, nonstationary, locally stationary and nonlinear processes.
This book grew out of the need to summarize the main results in this rapidly ex-
panding area. Due to the progress in the last two decades, a more systematic account
of theory and methods can be given. The aim is to cover both, probabilistic and sta-
tistical aspects, in as much detail as possible (given a limited number of pages),
while at the same time including a broad range of topics. Because of the enormous
number of theoretical and an even more overwhelming quantity of applied papers
in this area, it was not possible to include all interesting results, and we apologize
in advance to all authors whose contributions we could not mention. Apart from the
mathematical theory, practical aspects of data analysis are discussed and illustrated
by examples from various fields of application. We hope that this book will be use-
ful to researchers interested in mathematical aspects of long-memory processes as
well as to readers whose focus is on practical data analysis.

We would like to thank Todd Mitchell (JISAO, University of Washington) for
the Sahel rainfall index series (data source: National Oceanic and Atmospheric Ad-
ministration Global Historical Climatology Network (version 2), at the National
Climatic Data Center of NOAA), the Federal Office of the Environment (FOEN),
Switzerland and Hintermann & Weber, AG, Switzerland, for the species count data,
to Giovanni Galizia and Martin Strauch (Department of Biology, University of Kon-
stanz) for calcium imaging data, and to Bimal Roy and Sankhya, B, for the permis-
sion to reproduce figures from Ghosh (2009). Also, other online data bases where
time series are available for free download are gratefully acknowledged, including in
particular R.J. Hyndman’s Time Series Data Library; the River Discharge Database
of The Center of Sustainability and Global Environment, Gaylord Nelsen Institute
for Environmental Studies, University of Wisconsin-Madison; the Climate Explorer
of the Royal Netherlands Meteorological Institute; the Physionet databank funded
by the National Institute of Health; the NASA Ozone Processing Team.

J.B. would like to thank the University of Konstanz for granting him a sabbatical
with the sole purpose of working on this book and Paul Embrechts and colleagues
at RiskLab (ETH) for their hospitality during that sabbatical. Thanks go in partic-
ular to Bikram Das, Marius Hofert, Georg Mainik, Artem Sapozhnikov, Alain-Sol
Sznitman, Hans Herrmann and Paul Embrechts for stimulating discussions; to Mar-
tin Schützner, Dieter Schell, Yevgen Shumeyko, Arno Weiershäuser and Dirk Ocker
for years of fruitful collaboration; and to Volker Bürkel for reading parts of a pre-
liminary manuscript.



Preface ix

Y.F. would like to thank the University of Paderborn and the Faculty of Busi-
ness Administration and Economics for great support. In particular, the Faculty of
Business Administration and Economics kindly provided the financial support for
an additional 3-year assistant position for supporting teaching at the Professorship
of Econometrics and Quantitative Methods of Empirical Economic Research, so
that Y.F. could pay more attention to writing this book. Some Ph.D. students and
students in the research group have helped by collecting and handling some related
data. Special thanks go to colleagues from the Department of Economics and the
Center of International Economics, in particular, Thomas Gries and Manfred Kraft,
for collaboration, helpful discussions and support.

S.G. would like to thank the Forest Resources and Management unit of the
WSL for unstinting support and the colleagues from the WSL IT unit for see-
ing through that the computing jobs ran without a glitch. Swiss National Science
Foundation funded two 3-year projects in the domain of climate change, support-
ing Ph.D. students. Substantive collaboration with Christoph Frei, ETH Zurich and
MeteoSwiss, Switzerland, on Swiss precipitation dynamics, Brigitta Amman, Willy
Tinner (palaeoecology) and Jakob Schwander (physics), University of Bern, on sta-
tistical topics related to rapid climate change, and background information and data
on vascular plant species richness in Switzerland provided by Matthias Plattner,
Hintermann and Weber, AG, Switzerland, and Federal Office of the Environment,
Switzerland, are gratefully acknowledged. Additional thanks go to her former stu-
dents Dana Draghicescu, Patricia Menéndez and Hesam Montazeri for many hours
of interesting discussions and joint work, the Statistics groups at ETH Zurich and
EPF Lausanne, in particular, Stefan Morgenthaler, Hans Künsch and Werner Stahel
for collegiality and collaboration, and Otto Wildi, WSL, for inspirational discus-
sions in particular during editorial collaboration on another book.

R.K. would like to thank his Ph.D. supervisor, Ryszard Szekli of the University of
Wrocław, Poland, for introducing him into the world of long memory. Special thanks
to Raluca Balan, André Dabrowski and Gail Ivanoff of the University of Ottawa, and
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Chapter 1
Definition of Long Memory

1.1 Historic Overview

A long time before suitable stochastic processes were available, deviations from in-
dependence that were noticeable far beyond the usual time horizon were observed,
often even in situations where independence would have seemed a natural assump-
tion. For instance, the Canadian–American astronomer and mathematician Simon
Newcomb (Newcomb 1895) noticed that in astronomy errors typically affect whole
groups of consecutive observations and therefore drastically increase the “probable
error” of estimated astronomical constants so that the usual σ/

√
n-rule no longer

applies. Although there may be a number of possible causes for Newcomb’s quali-
tative finding, stationary long-memory processes provide a plausible “explanation”.
Similar conclusions were drawn before by Peirce (1873) (see also the discussion of
Peirce’s data by Wilson and Hilferty (1929) and later in the book by Mosteller and
Tukey (1977) in a section entitled “How σ/

√
n can mislead”). Newcomb’s com-

ments were confirmed a few years later by Pearson (1902), who carried out experi-
ments simulating astronomical observations. Using an elaborate experimental setup,
he demonstrated not only that observers had their own personal bias, but also each
individual measurement series showed persisting serial correlations. For a discus-
sion of Pearson’s experiments, also see Jeffreys (1939, 1948, 1961), who uses the
term “internal correlation”. Student (1927) observes the “phenomenon which will
be familiar to those who have had astronomical experience, namely that analyses
made alongside one another tend to have similar errors; not only so but such errors,
which I may call semi-constant, tend to persist throughout the day, and some of them
throughout the week or the month. . . . Why this is so is often quite obscure, though
a statistical examination may enable the head of the laboratory to clear up large
sources of error of this kind: it is not likely that he will eliminate all such errors. . . .
The chemist who wishes to impress his clients will therefore arrange to do repetition
analyses as nearly as possible at the same time, but if he wishes to diminish his real
error, he will separate them by as wide an interval of time as possible.” Since, ac-
cording to Student, it is difficult to remove the error even by careful statistical exam-
ination, simple trends are probably not what he had in mind. Instead, a second-order
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DOI 10.1007/978-3-642-35512-7_1, © Springer-Verlag Berlin Heidelberg 2013

1

http://dx.doi.org/10.1007/978-3-642-35512-7_1
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property such as slowly decaying autocorrelations may come close to his notion
of “semi-constant errors”. For spatial data, the Australian agronomer Smith (1938)
found in so-called uniformity trials an empirical law for wheat yield variation across
space that contradicts the assumption of independence or summable correlations
since the standard deviation of the sample mean converges to zero at a slower rate
than the square root of the plot size. These findings were later taken up by Whittle
(1956, 1962), who proposed space-time models based on stochastic partial differen-
tial equations exhibiting hyperbolically decaying spatial correlations and thereby a
possible explanation of Fairfield Smith’s empirical law. In hydrology, Hurst (1951)
discovered an empirical law while studying the long-term storage capacity of reser-
voirs for the Nile (also see Hurst et al. 1965). Built on his empirical findings, Hurst
recommended to increase the height of the planned Aswan High Dam far beyond
conventional forecasts. Feller (1951) showed that Hurst’s findings are incompati-
ble with the assumption of weak dependence or finite moments. Later Mandelbrot
coined the terms “Noah effect” for long-tailed distributions and Joseph- or Hurst-
effect for “long-range dependence”. The latter refers to Genesis 41, 29–30, where
the “seven years of great abundance” and “seven years of famine” may be inter-
preted as an account of strong serial correlations. The approach of Mandelbrot and
his coworkers lead to a new branch of mathematics that replaced conventional geo-
metric objects by “fractals” and “self-similarity” (e.g. Mandelbrot 1965, 1967, 1969,
1971, 1977, 1983; Mandelbrot and van Ness 1968; Mandelbrot and Wallis 1968a,
1968b, 1969a, 1969b, 1969c) and popularized the topic in many scientific fields,
including statistics. In economics, the phenomenon of long memory was discov-
ered by Granger (1966). Simultaneously with Hosking (1981), Granger and Joyeux
(1980) introduced fractional ARIMA models that greatly improved the applicability
of long-range dependence in statistical practice. In geology, Matheron developed
the field of geostatistics using, in particular, processes and statistical techniques for
modelling spatial long memory (see e.g. Matheron 1962, 1973; Solo 1992). From
the mathematical point of view, the basic concepts of fractals, self-similarity and
long-range dependence existed long before the topic became fashionable; however,
their practical significance had not been fully recognized until Mandelbrot’s pio-
neering work. For instance, the Hausdorff dimension, which plays a key role in
the definition of fractals, was introduced by Hausdorff (1918) and studied in de-
tail by Abram Samoilovitch Besicovitch (e.g. Besicovitch 1929; Besicovitch and
Ursell 1937). In the 17th century, Leibnitz (1646–1716) considered recursive self-
similarity, and about one hundred years later, Karl Weierstrass described a function
that is continuous but nowhere differentiable. The first fractal is attributed to the
Czech mathematician Bernard Bolzano (1781–1848). Other early fractals include
the Cantor set (Cantor 1883; but also see Smith 1875; du Bois-Reymond 1880 and
Volterra 1881), the Koch snowflake (von Koch 1904), Wacław Sierpiński’s triangle
(Sierpinksi 1915) and the Lévy curve (Lévy 1938). (As a precaution, it should per-
haps be mentioned at this place that, although fractal behaviour is often connected
with long-range dependence, it is by no means identical and can, in some situa-
tions, even be completely separated from the dependence structure; see Chap. 3,
Sect. 3.6.) Mathematical models for long-memory type behaviour in physics have
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been known for some time in the context of turbulence (see e.g. Kolmogorov 1940,
1941). Power-law correlations have been known to be connected with critical phe-
nomena, for instance in particle systems such as the Ising model (Ising 1924) and
the renormalization group (see e.g. Cassandro and Jona-Lasinio 1978, also see the
review paper by Domb 1985 and references therein). The study of critical phenom-
ena in physics goes even much further back in history (Berche et al. 2009), to Baron
Charles Cagniard de la Tour (1777–1859), who called a critical point in the phase
transition “l’état particulier”. With respect to unusual limit theorems for dependent
observations, Rosenblatt (1961) seems to be among the first ones to derive a noncen-
tral limit theorem where the limiting process is non-Gaussian due to nonsummable
correlations and nonlinearity. This seminal paper led to further developments in the
1970s and 1980s (see e.g. Davydov 1970a, 1970b; Taqqu 1975, 1979; Dobrushin
and Major 1979). The literature on statistical methods for long-memory processes
until the early 1990s is summarized in Beran (1994a).

1.2 Data Examples

In this section we discuss some data examples with typical long-memory behaviour.
On the way, a few heuristic methods for detecting and assessing the strength of
long-range dependence will be introduced (see Sect. 5.4 ).

Classical areas where long-range dependence occurs frequently are dendrochro-
nology and hydrology. We will therefore start with examples from these fields.
Yearly tree ring measurements usually stretch over hundreds of years, and long
memory often occurs in a rather ‘pure’ form, in the sense that a hyperbolic behaviour
of the autocorrelations and the spectral density holds for almost all lags and fre-
quencies respectively. Therefore, tree ring series are often used as prime examples
of strong dependence and self-similarity. Consider for instance Fig. 1.1 (the data
source is Hyndman, Time Series Data Library, http://robjhyndman.com/TSDL). The
following typical features can be observed:

(a) Spurious trends and cycles, and self-similarity: The observed series exhibit lo-
cal trends and periodicities that appear to be spurious, however, because they
disappear again and are of varying length and frequency. Furthermore, these
features and the overall visual impression of the time series remain the same
when considering aggregated data, with disjoint adjacent blocks of observations
being averaged (see Fig. 1.2). This is an indication of stochastic ‘self-similarity’,
which is the property that rescaling time changes the (joint) probability distri-
bution by a scaling factor only.

(b) Slow hyperbolic decay: The sample autocorrelations

ρ̂(k) = 1

n

n−|k|∑

i=1

(xi − x̄)(xi+|k| − x̄)

http://robjhyndman.com/TSDL
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Fig. 1.1 Two typical tree ring series

Fig. 1.2 (a) Tree ring series, Example 1; (b)–(f) aggregated series x̄t = m−1(x(t−1)m+1 +
· · · + xtm) (t = 1,2, . . . ,400) with blocks lengths equal to 2, 4, 6, 8 and 10 respectively
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Fig. 1.3 Tree ring example 1: (a) observed yearly series; (b) empirical autocorrelations ρ̂(k);
(c) log ρ̂(k) vs. logk; (d) log s2

m vs. logm; (e) logR/S vs. log k; (f) log I (λ) vs. logλ

(with x̄ = n−1 ∑xi ) decay slowly with increasing lag k. More specifically, the
decay of ρ̂(k) appears to be hyperbolic with a rate k−α (for some 0 < α < 1),
implying nonsummability. This phenomenon is called long memory, strong
memory, long-range dependence, or long-range correlations. This is illustrated
in Fig. 1.3(c), where log ρ̂(k) is plotted against logk. The points are scattered
around a straight line of the form log ρ̂(k) ≈ const + βρ log k with βρ ≈ −0.5.
Similarly, the variance of the sample mean appears to decay to zero at a slower
rate than n−1. This can be seen empirically in Fig. 1.3(d) with log s2

m plotted
against logm, where s2

m is the sample variance of means based on disjoint blocks
of m observations, i.e.

s2
m = 1

nm − 1

nm∑

i=1

(x̄(i−1)m,m − x̄)2,

where

x̄t,m = 1

m

m∑

j=1

xt+j
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Fig. 1.4 Tree ring example 2: (a) observed yearly series; (b) empirical autocorrelations ρ̂(k);
(c) log ρ̂(k) vs. logk; (d) log s2

m vs. logm; (e) logR/S vs. log k; (f) log I (λ) vs. logλ

and nm = [n/m]. The fitted slope in Fig. 1.3(d) is close to βs2 = −0.4, suggest-
ing s2

m being proportional to m−0.4, which is much slower than the usual rate
of m−1. A further statistic that is sometimes used to detect long-range depen-
dence is the so-called R/S-statistic displayed in Fig. 1.3(f). The R/S-statistic is
defined by

R/S(t,m) = R(t,m)

S(t,m)
,

where

R(t,m) = max
1≤i≤m

(
yt+i − yt − i

m
(yt+m − yt )

)

− min
1≤i≤m

(
yt+i − yt − i

m
(yt+m − yt )

)
,

yu =
u∑

i=1

xi,
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Fig. 1.5 (a) Monthly average discharge of the river Maas (upper series: original; lower series;
deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

and

S(t,m) =
√√√√ 1

m

t+m∑

i=t+1

(xi − x̄t,m)2.

This definition originates from hydrology (see e.g. Hurst 1951), where R cor-
responds to the optimal capacity of a reservoir when outflow is linear, with xi
denoting the inflow at time i. Figure 1.3(f) shows R/S(t,m) versus m, plotted
in log-log-coordinates. Again, we see a linear relationship between logR/S (as
a function of m) and logm, with a slope close to βR/S = 0.8. In contrast, un-
der independence or short-range dependence, one expects a slope of 0.5 (see
Sect. 5.4.1). Finally, Fig. 1.3(f) displays the logarithm of the periodogram I (λ)

(as an empirical analogue of the spectral density f ) versus the log-frequency.
Again an essentially linear relationship can be observed. The negative slope is
around βf = −0.5, suggesting the spectral density having a pole at the origin
of the order λ−0.5. Similar results are obtained for Example 2 in Figs. 1.4(a)
through (f). The slopes for the log-log plots of ρ̂(k), s2

m, R/S and I (λ) are this
time βρ ≈ −1, βs2 ≈ −0.7, βR/S ≈ 0.7 and βf ≈ −0.4 respectively.
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Fig. 1.6 (a) Monthly average discharge of the river Wisła at Tczew (upper series: original; lower
series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

Next, we consider river flow data. Figures 1.5(a), 1.6(a), 1.7(a) and 1.8(a) show
the average monthly river discharge (in m3/ sec) for four rivers from different parts
of the world: (1) Maas at the Lith station (The Netherlands); (2) Wisła at Tczew
(Poland); (3) Tejo at V.V. de Rodao (Portugal) and (4) White River at Mouth Near
Ouray, Utah (USA). The data are from the River Discharge Database of The Center
of Sustainability and Global Environment, Gaylord Nelsen Institute for Environ-
mental Studies, University of Wisconsin-Madison. Since these are monthly data,
there is a strong seasonal component. To obtain an idea about the dependence struc-
ture for large lags, a seasonal effect is first removed by subtracting the correspond-
ing monthly means (i.e. average January temperature, average February temperature
etc.). The original and the deseasonalized data are shown in the upper and lower
part of each time series picture respectively. For each of the deseasonalized series,
the points in the log-log-periodogram (all figures (b)) are scattered nicely around a
straight line for all frequencies.

The data examples shown so far may be somewhat misleading because one may
get the impression that discovering long memory can be done easily by fitting a
straight line to the observed points in an appropriate log-log-plot. Unfortunately,
the situation is more complicated, even if one considers river flows only. For in-
stance, Figs. 1.9, 1.10 and 1.11 show log-log-plots for the Danube at four different
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Fig. 1.7 (a) Monthly average discharge of the river Tejo at V.V. de Rodao (upper series: original;
lower series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

stations: (1) Bratislava (Slovakia); (2) Nagymaros (Hungary); (3) Drobeta-Turnu
Severin (Romania); (4) Ceatal Izmail (Romania). Consider first the measurements
in Bratislava. The points in the log-log-plots no longer follow a straight line all the
way. It is therefore not clear how to estimate the ‘ultimate’ slopes (i.e. the asymp-
totic slopes as m,k → ∞ and λ → 0 respectively). Fitting a straight line to all points
obviously leads to a bad fit in the region of interest (i.e. for k and m large, and λ

small). This is one of the fundamental problems when dealing with long-memory
(and, as we will see later, also so-called antipersistent) series: the definition of ‘long
memory’ is an asymptotic one and therefore often difficult to detect and quantify
for finite samples. A substantial part of the statistical literature on long-memory
processes is concerned with this question (this will be discussed in particular in
Chap. 5). In contrast to the straight lines in Figs. 1.9(b) and (c), the fitted spectral
density in Fig. 1.9(d) is based on a more sophisticated method that combines max-
imum likelihood estimation (MLE) with the Bayesian Information Criterion (BIC)
for fractional ARIMA models. This and related data adaptive methods that allow
for deviations from the straight line pattern will be discussed in Chap. 5 (Sects. 5.5
to 5.10) and Chap. 7 (Sects. 7.4.5 and 7.4.6).

Analogous observations can be made for the other Danube series. To save space,
only the log-log-periodogram plots are shown (Figs. 1.10, 1.11). Note that the MLE
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Fig. 1.8 (a) Monthly average discharge of White River, Utah (upper series: original; lower series;
deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

estimates of βf (−0.25, −0.31, −0.25, −0.29) are all very similar. It seems that
a value around −0.25 to −0.3 is typical for the Danube in these regions. On the
other hand, the slope changes as one moves upstream. For instance, at Hofkirchen
in Germany (lower panel in Sect. 1.11), long memory appears to be much stronger
with βf ≈ −0.75, and a straight line fits all the way.

An even more complex river flow series are monthly measurements of the Nile
river at Dongola in Sudan, displayed in Fig. 1.12. Seasonality is very strong here,
and subtracting seasonal means does not remove all of it (see Figs. 1.12(a), (b)).
A possible reason is that the seasonal effect may change over time; it may be non-
linear, or it may be stochastic. The MLE fit combined with the BIC captures the
remaining seasonality quite well. This model assumes seasonality (remaining after
previous subtraction of the deterministic one) to be stochastic.

The data examples considered so far could be modelled by stationary processes.
Often stationarity is not a realistic assumption, or it is at least uncertain. This makes
identification of stochastic long memory even more difficult, because typical long-
memory features may be confounded with nonstationary components. Identifying
and assessing possible long-memory components is however essential for correct
inference about the non-stationary components. A typical example is the assess-
ment of global warming. Figure 1.13(a) shows yearly average temperatures in cen-
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Fig. 1.9 Monthly average discharge of the Danube at Bratislava (upper series: original; lower
series; deseasonalized) and various log-log-plots for the deseasonalized series

tral England for the years 1659 to 2010 (Manley 1953, 1974; Parker et al. 1992;
Parker and Horton 2005). The data were downloaded using the Climate Explorer of
the Royal Netherlands Meteorological Institute. The main question here is whether
there is evidence for a systematic increase. The simplest way of answering this ques-
tion is to fit a straight line and test whether the slope, say β1, is positive. The depen-
dence structure of the regression residuals has an influence on testing whether β1 is
significantly larger than zero. As will be shown later, if the observations are given by
yt = β0 + β1t + et with et being stationary with long-range dependence such that
ρ(k) ∼ c|k|2d−1 (as |k| → ∞) for some d ∈ (0, 1

2 ), then the variance of the least
squares estimator of β1 increases by a constant times the factor n2d compared to the
case of uncorrelated or weakly dependent residuals (see Sect. 7.1). This means that
correct confidence intervals are wider by a factor proportional to nd . The difference
can be quite substantial. For example, the estimate of d for the Central England se-
ries is about 0.2. For the given data size, we thus have a factor of nd = 7040.2 ≈ 3.7.
It is therefore much more difficult to obtain a significant result for β1 than under
independence. Complicating the matter further, one may argue that the trend, if any,
may not be linear so that testing for β1 leads to wrong conclusions. Furthermore,
the observed series may even be nonstationary in the sense of random walk (or unit
roots). As will be discussed in Chap. 7 (Sects. 7.4.5 and 7.4.6), there is a method (so-
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Fig. 1.10 (a) Monthly average discharge of the Danube at Nagymaros (upper series: origi-
nal; lower series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a);
(c) monthly average discharge of the Danube at Drobeta-Turnu (upper series: original; lower se-
ries; deseasonalized); (d) log-log-periodogram of the deseasonalized series in (c)



1.2 Data Examples 13

Fig. 1.11 (a) Monthly average discharge of the Danube at Ceatal Izmail (upper series: origi-
nal; lower series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a);
(c) monthly average discharge of the Danube at Hofkirchen (upper series: original; lower series;
deseasonalized); (d) log-log-periodogram of the deseasonalized series in (c)
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Fig. 1.12 (a) Monthly average discharge of the Nile river at Dongola (upper series: original; lower
series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

called SEMIFAR models) that incorporates these possibilities using nonparametric
trend estimation, integer differencing and estimation of the dependence parameters.
Clearly, the more general a method is, the more difficult it becomes to obtain sig-
nificant results. Nevertheless, the conclusion based on SEMIFAR models is that the
trend is increasing and significantly different from a constant.

Another series with a clear trend function is displayed in Fig. 1.14. The measure-
ments are monthly averaged length-of-day anomalies (Royal Netherlands Meteoro-
logical Institute). Overall, one can see that there is a slight decline together with a
cyclic movement. The fitted line was obtained by kernel smoothing. As will be seen
in Chap. 7, the crucial ingredient in kernel smoothing is the bandwidth. A good
choice of the bandwidth depends on the dependence structure of the residuals. For
the data here, the residuals have clear long memory. In fact, the estimated long-
memory parameter is very close to the boundary of nonstationarity so that the possi-
bility of a spectral density proportional to λ−1 (as λ → 0) cannot be excluded. Pro-
cesses with this property are also called 1/f -noise (which, in our notation, should
actually be called 1/λ-noise because f stands for frequency).

In the previous examples, the trend function is obviously smooth. Quite different
time series are displayed in Figs. 1.15(a) and (d). The data were downloaded from
the Physionet databank funded by the National Institute of Health (Goldberger et al.
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Fig. 1.13 (a) Yearly mean Central England temperatures together with a fitted least squares line
and a nonparametric trend estimate; (b) histogram of residuals after subtraction of the nonparamet-
ric trend function; (c) acf of residuals; (d) log-log-periodogram of residuals

2000). The upper series in Fig. 1.15(a) shows consecutive stride intervals (stride-to-
stride measures of footfall contact times) of a healthy individual, whereas the upper
series in Fig. 1.15(d) was obtained for a patient suffering from Parkinson’s disease.
The complete data set consists of patients with Parkinson’s disease (N = 15), Hunt-
ington’s disease (N = 20) and amyotrophic lateral sclerosis (N = 13), as well as a
control group (N = 16) (Hausdorff et al. 1997, 2000). Both series in Figs. 1.15(a)
and (d) contain a spiky, somewhat periodic but also irregular, component. A natural
approach to analysing such data is to decompose them into a ‘spiky’ component and
the rest. Here, kernel smoothing is not appropriate because it tends to blur sharp
peaks. Instead, wavelet thresholding (see e.g. Donoho and Johnstone 1995) sepa-
rates local significant spikes from noise more effectively. The series plotted below
the original ones are the trend functions fitted by standard minimax thresholding
using Haar wavelets, the series at the bottom and, enlarged, in Figs. 1.15(b) and (e)
are the corresponding residuals. The log-log-periodogram plots for the residual se-
ries and fitted fractional ARIMA spectral densities in Figs. 1.15(c) and (f) indicate
long memory. A comparison of Figs. 1.15(c) and (f) shows that the slope βf is
less steep for the Parkinson patient. Indeed, using different techniques, Hausdorff
et al. (1997, 2000) found evidence for βf being closer to zero for patients suffer-
ing form Parkinson’s disease (and other conditions such as Huntington’s disease or
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Fig. 1.14 (a) Monthly averaged length-of-day anomalies (in seconds); (b) residuals after subtrac-
tion of the nonparametric trend function; (c) acf of residuals; (d) log-log-periodogram of residuals

Amytrophic Lateral Sclerosis). Applying the approach described here to all avail-
able data confirms these findings. Boxplots of estimated values of βf (Fig. 1.16)
show a tendency for βf to be closer to zero for the Parkinson patients. It should be
noted, however, that the results may depend on the way tuning constants in wavelets
thresholding were chosen. In view of the presence of long memory in the residuals,
a detailed study of wavelet-based trend estimation under long-range dependence is
needed. This will be discussed in more detail in Chap. 7 (Sect. 7.5).

A different kind of nonstationarity is typical for financial time series. Fig-
ure 1.17(a) shows daily values of the DAX index between 3 January 2000 and
12 September 2011. The series is nonstationary, but the first difference looks sta-
tionary (Fig. 1.17(b)), and the increments are uncorrelated (Fig. 1.17(c)). In this
sense, the data resemble a random walk. However, there is an essential differ-
ence. Consider, as a measure of instantaneous volatility, the transformed series

Yt = | logXt − logXt−1| 1
4 (see Ding and Granger 1996; Beran and Ocker 1999).

Figure 1.17(d) shows that there is a trend in the volatility series Yt . Moreover, even
after removing the trend, the series exhibits very slowly decaying correlations and a
clearly negative slope in the log-log-periodogram plot (Figs. 1.17(e) and (f)). This
is very much in contrast to usual random walk.

A completely different application where a trend and long memory are present is
displayed in Figs. 1.18(a) through (d). These data were provided to us by Giovanni
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Fig. 1.15 Consecutive stride intervals for (a) a healthy individual and (d) a patient with Parkin-
son’s disease. The original data are plotted on top, the trend functions fitted by minimax wavelet
thresholding are given in the middle, and the series at the bottom correspond to the residuals.
The residuals are also plotted separately in (b) and (e), the corresponding log-log-periodograms in
Figs. (c) and (f) respectively

et al. (Department of Biology, University of Konstanz) and are part of a long-term
project on olfactory coding in insects (see, Joerges et al. 1997; Galán et al. 2006;
Galizia and Menzel 2001). The original observations consisted of optical measure-
ments of calcium concentration in the antennal lobe of a honey bee. It is known that
stimuli (odors) lead to characteristic activity patterns across spherical functional
units, the so-called glomeruli, which collect the converging axonal input from a uni-
form family of receptor cells. It is therefore expected that, compared to a steady
state, the between-glomeruli-variability of calcium concentration is higher during a
response to an odor. This is illustrated in Fig. 1.18(a). For each time point t (with
time rescaled to the interval [0,1]), an empirical entropy measure Xt was calculated
based on the observed distribution of calcium concentration across the glomeruli.
The odor was administered at the 30th of n = 100 time points. The same procedure
was carried out under two different conditions, namely without and with adding a
neurotransmitter. The research hypothesis is that adding the neurotransmitter en-
hances the reaction, in the sense that the initial relative increase of the entropy curve
is faster. Because of the known intervention point t0 and the specific shape of a typ-
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Fig. 1.16 Boxplots of slopes in the log-log-periodogram plot for the control group (left) and for a
group of patients suffering from Parkinson’s disease (right)

ical response curve, a good fit can be obtained by a linear spline function with one
fixed knot η0 at t0 and two subsequent free knots η1, η2 > t0. The quantity to com-
pare (between the measurements “without” and “with” neurotransmitter) is the slope
β belonging to the truncated variable (t −η0)+. The distribution of the least squares
estimate of β depends on the dependence structure of the residual process. For the
bee considered in Fig. 1.18, the residuals exhibit clear long memory in the first case
(no neurotransmitter), whereas long memory is not significant in the second case.
For the collection of bees considered in this experiment, long memory, short mem-
ory and antipersistence could be observed. How to calculate confidence intervals for
β and other parameters in this model will be discussed in Chap. 7 (Sect. 7.3).

An example of spatial long memory is shown in Fig. 1.19. The data in (a) corre-
spond to differences between the maximal and minimal total column ozone amounts
within the period from 1 to 7 January 2006, measured on a grid with a resolution
of 0.25 degrees in latitude and longitude. The measurements were obtained by the
Ozone Monitoring Instrument (OMI) on the Aura 28 spacecraft (Collection 3 OMI
data; for details on the physical theory used in assessing ozone amounts, see e.g.
Vasilkov et al. 2008; Ahmad et al. 2004; data source: NASA’s Ozone Processing
Team, http://toms.gsfc.nasa.gov). Figures 1.19(c) and (d) display values of the pe-
riodograms in log-log-coordinates when looking in the horizontal (East–West) and
vertical direction (North–South) of the grid respectively. Both plots indicate long-
range dependence. The solid lines were obtained by fitting a fractional ARIMA
lattice process (see Chap. 9, Sects. 9.2 and 9.3). This is a simple model that al-
lows for different long-range, short-range and antipersistent dependence structures
in the horizontal and vertical direction. A formal test confirms indeed that long-

http://toms.gsfc.nasa.gov
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Fig. 1.17 Daily values of the DAX index between 3 January 2000 and 12 September 2011:
(a) logarithm of original series; (b) differenced series (log-returns); (c) acf of the series in (b);

(d) Yt = | logXt − logXt−1| 1
4 together with a fitted nonparametric trend function; (e) acf of Yt

after detrending; (f) log-log-periodogram of Yt after detrending

range dependence in the North–South direction is stronger than along East–West
transects.

1.3 Definition of Different Types of Memory

1.3.1 Second-Order Definitions for Stationary Processes

Consider a second-order stationary process Xt (t ∈ Z) with autocovariance func-
tion γX(k) (k ∈ Z) and spectral density fX(λ) = (2π)−1 ∑∞

k=−∞ γX(k) exp(−ikλ)

(λ ∈ [−π,π]). A heuristic definition of linear long-range dependence, short-range
dependence and antipersistence is given as follows: Xt has (a) long memory, (b)
short memory or (c) antipersistence if, as |λ| → 0, fX(λ) (a) diverges to infin-
ity, (b) converges to a finite constant, or (c) converges to zero respectively. Since
2πfX(λ) = ∑

γX(k), this is essentially (in a sense specified more precisely below)
equivalent to (a)

∑
γX(k) = ∞, (b) 0 <

∑
γX(k) < ∞ and (c)

∑
γX(k) = 0.
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Fig. 1.18 Empirical entropy of calcium concentrations in the antennal lobe of a honey bee exposed
to hexanol: (a) original series without neurotransmitter and linear splines fit; (b) log-log-peri-
odogram of residuals; (c) original series with neurotransmitter and linear splines fit; (d) log-log-pe-
riodogram of residuals

In the following more formal definitions will be given. First, the notion of slowly
varying functions is needed (Karamata 1930a, 1930b, 1933; Bajšanski and Kara-
mata 1968/1969; Zygmund 1968; also see e.g. Seneta 1976; Bingham et al. 1989;
Sedletskii 2000). Here and throughout the book, the notation an ∼ bn (n → ∞)

for two real- or complex-valued sequences an, bn will mean that the ratio an/bn
converges to one. Similarly for functions, g(x) ∼ h(x) (x → x0) will mean that
g(x)/h(x) converges to one as x tends to x0.

First, we need to define so-called slowly varying functions. There are two slightly
different standard definitions by Karamata and Zygmund respectively.

Definition 1.1 A function L : (c,∞) → R (c ≥ 0) is called slowly varying at infin-
ity in Karamata’s sense if it is positive (and measurable) for x large enough and, for
any u > 0,

L(ux) ∼ L(x) (x → ∞).

The function is called slowly varying at infinity in Zygmund’s sense if for x large
enough, it is positive and for any δ > 0, there exists a finite number x0(δ) > 0 such
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Fig. 1.19 Daily total column ozone amounts from the Ozone Monitoring Instrument (OMI) on the
Aura 28 spacecraft: (a) maximum minus minimum of observed ozone levels measured between
1–7 January 2006, plotted on a grid with a resolution of 0.25 degrees in latitude and longitude;
(b) residuals after fitting a FARIMA lattice model; (c) and (d) log-log-periodogram of the data in
(a) in the horizontal and vertical directions respectively

that for x > x0(δ), both functions p1(x) = xδL(x) and p2(x) = x−δL(x) are mono-
tone.

Similarly, L is called slowly varying at the origin if L̃(x) = L(x−1) is slowly
varying at infinity.

A standard formal definition of different types of linear dependence structures is
given as follows.

Definition 1.2 Let Xt be a second-order stationary process with autocovariance
function γX(k) (k ∈ Z) and spectral density

fX(λ) = (2π)−1
∞∑

k=−∞
γX(k) exp(−ikλ)

(
λ ∈ [−π,π]).

Then Xt is said to exhibit (linear) (a) long-range dependence, (b) intermediate de-
pendence, (c) short-range dependence, or (d) antipersistence if

fX(λ) = Lf (λ)|λ|−2d ,
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where Lf (λ) ≥ 0 is a symmetric function that is slowly varying at zero, and
(a) d ∈ (0, 1

2 ), (b) d = 0 and limλ→0 Lf (λ) = ∞, (c) d = 0 and limλ→0 Lf (λ) =
cf ∈ (0,∞), and (d) d ∈ (− 1

2 ,0) respectively.

Note that the terminology “short-range dependence” (with d = 0) is reserved for
the case where Lf (λ) converges to a finite constant cf . The reason is that if Lf (λ)

diverges to infinity, then the autocovariances are not summable although d = 0. This
case resembles long-range dependence, though with a slower rate of divergence. For
a discussion of models with “intermediate” dependence, see for instance Granger
and Ding (1996). In principle, any of the usual notions of “slowly varying” may be
used in the definition of Lf . The most common ones are the definitions by Karamata
and Zygmund given above. The two theorems below show that Karamata’s defini-
tion is more general. First, we need the definition of regularly varying functions and
two auxiliary results.

Definition 1.3 A measurable function g : R+ →R is called regularly varying (at in-
finity) with exponent α if g(x) 
= 0 for large x and, for any u > 0,

lim
x→∞

g(ux)

g(x)
= uα.

The class of such functions is denoted by Re(α).
Similarly, a function g is called regularly varying at the origin with exponent α

if g̃(x) = g(x−1) ∈ Re(−α). We will denote this class by Re0(α).

Slowly varying functions are regularly varying functions with α = 0. For regu-
larly varying functions, integration leads to the following asymptotic behaviour.

Lemma 1.1 Let g ∈ Re(α) with α > −1 and integrable on (0, a) for any a > 0.
Then

∫ x

0 g(t) dt ∈ Re(α + 1), and

∫ x

0
g(t) dt ∼ xg(x)

α + 1
(x → ∞).

Note that this result is just a generalization of the integration of a power x−α ,
where we have the exact equality

∫ x

0 t−α dt = x1−α/(α+ 1). Lemma 1.1 is not only
useful for proving the theorem below, but also because asymptotic calculations of
variances of sample means can usually be reduced to approximations of integrals by
Riemann sums. An analogous result holds for α < −1:

Lemma 1.2 Let g ∈ Re(α) with α < −1 and integrable on (a, b) for any 0 < a ≤
b < ∞. Then

∫ ∞
x

g(t) dt ∈ Re(α + 1), and

∫ ∞

x

g(t) dt ∼ −xg(x)

α + 1
(x → ∞).
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Now it can be shown that slowly varying functions in Karamata’s sense can be
characterized as follows.

Theorem 1.1 L is slowly varying at infinity in Karamata’s sense if and only if

L(x) = c(x) exp

{∫ x

1

η(t)

t
dt

}
(x ≥ 1),

where c(·) and η(·) are measurable functions such that

lim
x→∞ c(x) = c ∈ (0,∞),

lim
x→∞η(x) = 0

and η(·) is locally integrable.

Proof First, we show that the representation above yields a slowly varying function.
Let s > 0, s ∈ [a, b], and write

ψs(x) := L(sx)

L(x)
= c(sx)

c(x)
exp

(∫ sx

x

η(t)

t
dt

)
.

Since c(x) → c and η(t) → 0, we have for sufficiently large x, and arbitrary ε > 0,

(1 − ε) exp
(−εmax

(| loga|, | logb|)) ≤ ψs(x)

≤ (1 + ε) exp
(
εmax

(| loga|, | logb|)).
Letting ε → 0, we obtain the slowly varying property.

Assume now that L is slowly varying. Define

η̃(s) := sL(s)∫ s

0 L(t) dt
.

Then with U(s) = ∫ s

0 L(t) dt ,

∫ x

1

η̃(s)

s
ds =

∫ x

1

L(s)

U(s)
ds =

∫
u−1 du = log

(
cU(x)

)
,

where the last integration is over (c = ∫ 1
0 L(t) dt,U(x) = ∫ x

0 L(t) dt). Thus,

U(x) = c exp

(∫ x

1

η̃(t)

t
dt

)
,

and consequently, taking derivatives on both sides of the latter expression, we have

L(x) = c
η̃(x)

x
exp

(∫ x

1

η̃(t)

t
dt

)
= cη̃(x) exp

(∫ x

1

η̃(t)− 1

t
dt

)
.
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Thus, L has the required representation. It remains to show that η(x) = η̃(x) −
1 → 0 and η̃(x) → 1. This follows directly from Karamata’s theorem (Lemma 1.1)
and the definition of η̃(x). �

On the other hand, for Zygmund’s definition one can show the following:

Theorem 1.2 L is slowly varying in Zygmund’s sense if and only if there is an
x0 ∈ [1,∞) such that

L(x) = c exp

{∫ x

1

η(t)

t
dt

}
(x ≥ x0),

where c is a finite positive constant, and η(·) is a measurable function such that
limx→∞ η(x) = 0.

In terms of regularly varying functions the definition of long-range dependence
and antipersistence can be rephrased as follows: long memory and antipersistence
means that f ∈ Re0(−2d) with d ∈ (0, 1

2 ) and d ∈ (− 1
2 ,0) respectively. Since

slowly varying functions are dominated by power functions, f (λ) = Lf (λ)|λ|−2d

implies that for d > 0, the spectral density has a hyperbolic pole at the origin,
whereas it converges to zero for d < 0. In contrast, under short-range dependence,
f (λ) converges to a positive finite constant. Alternative terms for long-range de-
pendence are persistence, long memory or strong dependence. Instead of “(linear)
long-range dependence”, one also uses the terminology “slowly decaying correla-
tions”, “long-range correlations” or “strong correlations”. This is justified by the
following equivalence between the behaviour of the spectral density at the origin
and the asymptotic decay of the autocovariance function (see e.g. Zygmund 1968;
Lighthill 1962; Beran 1994a; Samorodnitsky 2006):

Theorem 1.3 Let γ (k) (k ∈ Z) and f (λ) (λ ∈ [−π,π]) be the autocovariance func-
tion and spectral density respectively of a second-order stationary process. Then the
following holds:

(i) If

γ (k) = Lγ (k)|k|2d−1,

where Lγ (k) is slowly varying at infinity in Zygmund’s sense, and either d ∈
(0, 1

2 ), or d ∈ (− 1
2 ,0) and

∑
k∈Z γ (k) = 0, then

f (λ) ∼ Lf (λ)|λ|−2d (λ → 0)

with

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)
. (1.1)
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(ii) If

f (λ) = Lf (λ)|λ|−2d (0 < λ< π),

where d ∈ (− 1
2 ,0) ∪ (0, 1

2 ), and Lf (λ) is slowly varying at the origin in Zyg-
mund’s sense and of bounded variation on (a,π) for any a > 0, then

γ (k) ∼ Lγ (k)|k|2d−1 (k → ∞),

where

Lγ (k) = 2Lf

(
k−1)Γ (1 − 2d) sinπd. (1.2)

Note that in the case of antipersistence the autocovariances are absolutely sum-
mable but |γ (k)| still converges at a hyperbolic rate that can be rather slow, com-
pared for instance with an exponential decay. Also note that d = 0 is not included
in the theorem because the condition γ (k) = Lγ (k)|k|−1 would imply that γ (k) is
not summable. In principle (possibly under additional regularity conditions), this
would correspond to intermediate dependence with f (λ) diverging at the origin like
a slowly varying function (see Definition 1.2). To obtain short-range dependence in
the sense of Definition 1.2, the summability of γ (k) is a minimal requirement. For
instance, an exponential decay defined by |γ (k)| ≤ cak (with 0 < c < ∞,0 < a < 1)
together with

∑
k∈Z γ (k) = cf > 0 implies f (λ) ∼ cf as λ → 0. A general state-

ment including all four types of dependence structures can be made however with
respect to the sum of the autocovariances:

Corollary 1.1 If

f (λ) = Lf (λ)|λ|−2d (0 < λ< π),

where d ∈ (− 1
2 ,

1
2 ), and Lf (λ) = L(λ−1) is slowly varying at the origin in Zyg-

mund’s sense and of bounded variation on (a,π) for any a > 0, then the following
holds. For − 1

2 < d < 0,

∞∑

k=−∞
γ (k) = 2πf (0) = 0,

whereas for 0 < d < 1
2 ,

∞∑

k=−∞
γ (k) = 2π lim

λ→0
f (λ) = ∞.

Moreover, for d = 0, we have

0 <

∞∑

k=−∞
γ (k) = 2πf (0) = 2πcf < ∞
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if 0 < limλ→0 Lf (λ) = cf < ∞ and

∞∑

k=−∞
γ (k) = 2π lim

λ→0
f (λ) = ∞

if limλ→0 Lf (λ) = ∞.

From these results one can see that characterizing linear dependence by the spec-
tral density is more elegant than via the autocovariance function because the equa-
tion f (λ) = Lf (λ)|λ|−2d is applicable in all four cases (long-range, short-range,
intermediate dependence and antipersistence).

Example 1.1 Let Xt be second-order stationary with Wold decomposition

Xt =
∞∑

j=0

aj εt−j ,

where εt are uncorrelated zero mean random variables, σ 2
ε = var(εt ) < ∞, and

aj = (−1)j
(−d

j

)
= (−1)j

Γ (1 − d)

Γ (j + 1)Γ (1 − d − j)

with −1/2 < d < 1/2. Then aj are the coefficients in the power series representa-
tion

A(z) = (1 − z)−d =
∞∑

j=0

aj z
j .

Therefore, the spectral density of Xt is given by

fX(λ) = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 = σ 2
ε

2π

∣∣1 − e−iλ
∣∣−2d = σ 2

ε

2π

∣∣2(1 − cosλ)
∣∣−d

∼ σ 2
ε

2π
|λ|−2d (λ → 0).

Thus, we obtain short-range dependence for d = 0 (and in fact uncorrelated obser-
vations), antipersistence for − 1

2 < d < 0 and long-range dependence for 0 < d < 1
2 .

If the innovations εt are independent, then Xt is called a fractional ARIMA(0, d , 0)
process (Granger and Joyeux 1980; Hosking 1981; see Chap. 2, Sect. 2.1.1.4).

Example 1.2 Let Xt be second-order stationary with spectral density

fX(λ) = log

∣∣∣∣
π

λ

∣∣∣∣ = Lf (λ).
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This is a case with intermediate dependence. The autocovariance function is given
by

var(Xt ) = γX(0) = 2

(
π logπ −

∫ π

0
logλdλ

)
= 2π,

and for k > 0,

γX(k) = 2
∫ π

0
coskλ · (logπ − logλ)dλ = −2

∫ π

0
coskλ · logλdλ

= 2

k

∫ π

0

sin kλ

λ
dλ = 2

k
Si(πk),

where Si(·) is the sine integral function. For k → ∞, we obtain the Dirichlet integral

lim
k→∞ Si(πk) =

∫ ∞

0

sinλ

λ
dλ = π

2
,

so that

γX(k) ∼ πk−1 (k → ∞),

ρX(k) ∼ 1

2
k−1 (k → ∞),

and

n−1∑

k=−(n−1)

γX(k) ∼ 2π logn (n → ∞).

The behaviour of the spectral density at the origin also leads to a simple universal
formula for the variance of the sample mean x̄ = n−1 ∑n

t=1 Xt :

Corollary 1.2 Suppose that f (λ) ∼ Lf (λ)|λ|−2d (λ → 0) for some d ∈ (− 1
2 ,

1
2 ),

where Lf (λ) = L(λ−1) is slowly varying at zero in Zygmund’s sense and of bounded
variation on (a,π) for any a > 0. Furthermore, assume that in the case of d = 0 the
slowly varying function Lf is continuous at the origin. Then

var(x̄) ∼ ν(d)f
(
n−1)n−1 (n → ∞)

with

ν(d) = 2Γ (1 − 2d) sin(πd)

d(2d + 1)
(d 
= 0)

and

ν(0) = lim
d→0

ν(d) = 2π.



28 1 Definition of Long Memory

Proof We have

var(x̄) = n−1
n−1∑

k=−(n−1)

(
1 − |k|

n

)
γ (k)

= n−1
n−1∑

k=−(n−1)

γ (k)− n−1
n−1∑

k=−(n−1)

|k|
n
γ (k)

with

γ (k) ∼ Lγ (k)|k|2d−1.

For 0 < d < 1
2 , this implies

var(x̄) ∼ 2Lγ (n)n
−1

[
n−1∑

k=1

k2d−1 − n−1
n−1∑

k=1

k2d

]

= 2Lγ (n)n
2d−1

[
n−1∑

k=1

(
k

n

)2d−1

n−1 −
n−1∑

k=1

(
k

n

)2d

n−1

]

∼ 2Lγ (n)n
2d−1

[∫ 1

0
x2d−1 dx −

∫ 1

0
x2d dx

]

= 2Lγ (n)n
2d−1

[
1

2d
− 1

2d + 1

]
= Lγ (n)n

2d−1

d(2d + 1)
.

Using Theorem 1.3, we can write this as

Lγ (n)n
2d−1

d(2d + 1)
= 2Γ (1 − 2d) sin(πd)

d(2d + 1)
Lf

(
n−1)n2d−1 = ν(d)Lf

(
n−1)n2d−1.

Thus,

var(x̄) ∼ ν(d)Lf

(
n−1)n2d−1 ∼ ν(d)f

(
n−1)n−1.

For d = 0 and 0 <Lf (0) = cf < ∞, we have

0 <

∞∑

k=−∞
γ (k) = 2πf (0) < ∞,

so that |k|γ (k) is Cesaro summable with limit zero. Hence,

lim
n→∞n−1

n−1∑

k=−(n−1)

|k|
n
γ (k) = 0
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and

var(x̄) ∼ n−1
n−1∑

k=−(n−1)

γ (k) ∼ 2πf (0)n−1.

Thus, we may write

var(x̄) ∼ ν(0)Lf (0)n
−1 ∼ ν(0)f

(
n−1)n−1,

where

ν(0) = lim
d→0

ν(d) = lim
d→0

2 sin(πd)

d
= 2π.

Finally, for − 1
2 < d < 0, we have

∑
k∈Z γ (k) = 0, so that

var(x̄) = n−1
n−1∑

k=−(n−1)

γ (k)− n−1
n−1∑

k=−(n−1)

|k|
n
γ (k)

= −2n−1
∞∑

k=n

γ (k)− n−1
n−1∑

k=−(n−1)

|k|
n
γ (k)

∼ 2Lγ (n)n
−1

[
−

∞∑

k=n

k2d−1 − n−1
n−1∑

k=1

k2d

]

= 2Lγ (n)n
2d−1

[
−

∞∑

k=n

(
k

n

)2d−1

n−1 −
n−1∑

k=1

(
k

n

)2d

n−1

]

∼ 2Lγ (n)n
2d−1

[
−
∫ ∞

1
x2d−1 dx −

∫ 1

0
x2d dx

]

= 2Lγ (n)n
2d−1

[
1

2d
− 1

2d + 1

]
= ν(d)Lf

(
n−1)n2d−1

∼ ν(d)f
(
n−1)n−1. �

Corollary 1.2 illustrates that knowledge about the value of d is essential for sta-
tistical inference. If short memory is assumed but the actual value of d is larger
than zero, then confidence intervals for μ = E(Xt) will be too narrow by an in-
creasing factor of nd , and the asymptotic level of tests based on this assumption will
be zero. This effect is not negligible even for small sample sizes. Table 1.1 shows
simulated rejection probabilities (based on 1000 simulations) for the t-test at the
nominal 5 %-level of significance. The numbers are based on 1000 simulations of a
fractional ARIMA(0, d , 0) process with d = 0.1, 0.2, 0.3 and 0.4 respectively (see
Chap. 2, Sect. 2.1.1.4, for the definition of FARIMA models).

The second-order definitions of long-range dependence considered here can be
extended to random fields with a multivariate index t . A complication that needs
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Table 1.1 Simulated rejection probabilities (under the null hypothesis) for the t -test at the nominal
5 %-level of significance. The results are based on 1000 simulations of a fractional ARIMA(0, d ,
0) process with d = 0.1, 0.2, 0.3 and 0.4 respectively

n d = 0.1 0.2 0.3 0.4

10 0.10 0.21 0.33 0.53

50 0.16 0.38 0.55 0.72

100 0.20 0.42 0.62 0.78

to be addressed for two- or higher-dimensional indices is however that dependence
may not be isotropic (see e.g. Boissy et al. 2005; Lavancier 2006, 2007; Beran et al.
2009). This will be discussed in Chap. 9. A further important extension includes
multivariate spectra with power law behaviour at the origin that may differ for the
different components of the process (see e.g. Robinson 2008).

1.3.2 Volatility Dependence

The characterization of nonlinear long memory is more complicated in general since
there are many ways in which nonlinearity can occur. In econometric applications,
the main focus is on dependence in volatility in the sense that Xt are uncorrelated
but the squares X2

t are correlated. The definitions of long memory given above can
then be carried over directly by simply considering X2

t instead of Xt . A more diffi-
cult, and partially still open, issue is how to define concrete statistically convenient
models that are stationary with existing fourth moments and long-range correlations
in X2

t (see e.g. Robinson 1991; Bollerslev and Mikkelsen 1996; Baillie et al. 1996a;
Ding and Granger 1996; Beran and Ocker 2001; Giraitis et al. 2000a, 2004, 2006;
Giraitis and Surgailis 2002). This is discussed in detail in Sect. 2.1.3. A very sim-
ple model that is well defined and obviously exhibits long-range dependence can be
formulated as follows.

Proposition 1.1 Let εt (t ∈ Z) be i.i.d. random variables with E(εt ) = 0 and
var(εt ) = 1. Define

Xt = σtεt

with σt = √
vt , vt ≥ 0 independent of εs (s ∈ Z) and such that

γv(k) = cov(vt , vt+k) ∼ c · |k|2d−1

for some 0 < d < 1
2 . Then for k 
= 0,

γX(k) = 0,

whereas

γX2(k) = cov
(
X2

t ,X
2
t+k

) = γv(k) ∼ c · |k|2d−1 (k → ∞).
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Proof Since E(Xt) = E(σt )E(εt ) = 0, we have for k 
= 0,

γX(k) = E(XtXt+k) = E(σtσt+k)E(εtεt+k) = 0.

Moreover, for k 
= 0,

γX2(k) = E
(
σ 2
t σ

2
t+k

)
E
(
ε2
t ε

2
t+k

)−E
(
σ 2
t ε

2
t

)
E
(
σ 2
t+kε

2
t+k

)

= E(vtvt+k)−E(vt )E(vt+k)

= γv(k) ∼ c · |k|2d−1 (k → ∞). �

The main problem with this model is that σt and εt are not directly observable.
One would however like to be able to separate the components σt and εt even though
only their product Xs (s ≤ t) is observed. This is convenient, for instance, when
setting up maximum likelihood equations for estimating parameters that specify the
model (see e.g. Giraitis and Robinson 2001). One therefore often prefers to assume
a recursive relation between vt and past values of Xt . The difficulty that arises then
is to prove the existence of a stationary solution and to see what type of volatility
dependence is actually achieved. For instance, in the so-called ARCH(∞) model
(Robinson 1991; Giraitis et al. 2000a) one assumes

σ 2
t = vt = b0 +

∞∑

j=1

bjX
2
t−j

with bj ≥ 0 and
∑

bj < ∞. As it turns out, however, long-range dependence—
defined in the second-order sense as above—cannot be obtained. This and alterna-
tive volatility models with long-range dependence will be discussed in Sect. 2.1.3.

1.3.3 Second-Order Definitions for Nonstationary Processes

For nonstationary processes, Heyde and Yang (1997) consider the variance

Vm = var
(
X

(m)
t

)
(1.3)

of the aggregated process

X
(m)
t = Xtm−m+1 + · · · +Xtm (1.4)

and the limit

V = lim
m→∞D−1

m Vm, (1.5)

where

Dm =
tm∑

i=tm−m+1

E
(
X2

i

)
. (1.6)
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The process X
(m)
t (t ∈ Z) is then said to exhibit long memory if V = ∞. This defi-

nition is applicable both to second-order stationary processes and to processes that
need to be differenced first. Note that the block mean variance m−2Vm is also called
Allan variance (Allan 1966; Percival 1983; Percival and Guttorp 1994).

1.3.4 Continuous-Time Processes

The definition of long memory and antipersistence based on autocovariances can be
directly extended to continuous-time processes.

Definition 1.4 Let X(t) (t ∈ R) be a stationary process with autocovariance func-
tion γX(u) = cov(X(t),X(t +u)) and spectral density fX(λ) (λ ∈R). Then X(t) is
said to have long memory if there is a d ∈ (0, 1

2 ) such that

γX(u) = Lγ (u)u
2d−1

as u → ∞, or

fX(λ) = Lf (λ)|λ|−2d

as λ → 0, where Lγ and Lf are slowly varying at infinity and zero respec-
tively. Similarly, X(t) is said to be antipersistent if these formulas hold for some
d ∈ (− 1

2 ,0) and, in case of the formulation via γX , the additional condition

∫ ∞

−∞
γX(u)du = 0

holds.

Note that, as in discrete time, the definition of long-range dependence given here
implies

∫
γX(u)du = ∞. A more general definition is possible by using the condi-

tions
∫
γX(u)du = ∞ and

∫
γX(u)du = 0 only. However, the first condition would

then also include the possibility of intermediate dependence.
Finally note that an alternative definition can also be given in terms of the vari-

ance of the integrated process Y(t) = ∫ t

0 X(s)ds. This is analogous to a nonlinear
growth of the variance of partial sums for discrete time processes.

Definition 1.5 Let Y(t) = ∫ t

0 X(s)ds and assume that var(Y (t)) < ∞ for all t ≥ 0.
Then Y (and X) is said to have long-range dependence if

var
(
Y(t)

) = L(t)t2d+1

for some 0 < d < 1
2 , where L is slowly varying at infinity. Moreover, Y (and X) is

said to be antipersistent if

var
(
Y(t)

) = L(t)t2H = L(t)t2d+1
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for some − 1
2 < d < 0, where L is slowly varying at infinity.

This definition means that the growth of the variance of Y(t) is faster than linear
under long-range dependence and slower than linear for antipersistent processes.
The connection between the two definitions is given by

var
(
Y(t)

) =
∫ t

0

(∫ t

0
γX(s − r) dr

)
ds = 2

∫ t

0
(t − u)γX(u)du.

If γX(u) = cov(X(t),X(t +u)) ∼ Lγ (u)|u|2d−1, where d ∈ (0, 1
2 ) and Lγ is slowly

varying at infinity (i.e. X(t) has long memory in the sense of Definition 1.4), then
application of Lemma 1.1 leads to

var
(
Y(t)

) ∼ 1

d(2d + 1)
Lγ (t)t

2d+1.

Thus, X(t) has also long memory in the sense of Definition 1.5. The analogous
connection holds for antipersistence, taking into account the additional condition∫
γX(u)du = 0.
For nonnegative processes, the expected value often grows at a linear rate. Typi-

cal examples are counting processes or renewal processes with positive rewards (see
Sects. 2.2.4 and 4.9). Long-range dependence and antipersistence can therefore also
be expressed by comparing the growth of the variance with the growth of the mean.

Definition 1.6 Let Y(t) = ∫ t

0 X(s)ds ≥ 0 and assume that var(Y (t)) < ∞ for all
t ≥ 0. Then Y (and X) is said to have long-range dependence if

lim
t→∞

var(Y (t))

E[Y(t)] = +∞.

Similarly, Y (and X) is said to be antipersistent if

lim
t→∞

var(Y (t))

E[Y(t)] = 0.

1.3.5 Self-similar Processes: Beyond Second-Order Definitions

Another classical way of studying long memory and antipersistence is based on the
relationship between dependence and self-similarity.

Definition 1.7 A stochastic process Y(u) (u ∈ R) is called self-similar with self-
similarity parameter 0 <H < 1 (or H -self-similar) if for all c > 0, we have

(
Y(cu),u ∈R

) d= (
cHY (u),u ∈R

)
,

where
d= denotes equality in distribution.
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Self-similar processes are a very natural mathematical object to look at because
they are the only possible weak limits of appropriately normalized and centered par-
tial sums Sn(u) = ∑[nu]

t=1 Xt (u ∈ [0,1]) based on stationary and ergodic sequences
Xt (t ∈ Z) (Lamperti 1962, 1972). If a process Y(u) (u ∈ R) is H -self-similar with
stationary increments (so-called H -SSSI), then the discrete-time increment process
Xt = Y(t) − Y(t − 1) (t ∈ Z) is stationary. Note also that Y(0) =d cHY (0) for any
arbitrarily large c > 0, so that necessarily Y(0) = 0 almost surely.

To see how the self-similarity parameter H is related to long memory, we first
consider a case where the second-order definition of long memory is applicable. If
second moments exist, then the SSSI-property implies, for u ≥ v > 0,

γY (u,u) = var
(
Y(u)

) = u2HγY (1,1) = u2Hσ 2

and

var
(
Y(u)− Y(v)

) = var
(
Y(u− v)

) = σ 2(u− v)2H .

Since var(Y (u)− Y(v)) = γY (u,u)+ γY (v, v)− 2γY (u, v), this means that the au-
tocovariance function is equal to

γY (u, v) = σ 2

2

[|u|2H + |v|2H − |u− v|2H ]
(u, v ∈ R).

By similar arguments, the autocovariance function of the increment process Xt

(t ∈ Z) is given by

γX(k) = cov(Xt ,Xt+k) = σ 2

2

[|k − 1|2H + |k + 1|2H − 2|k|2H ]
(k ∈ N). (1.7)

By Taylor expansion in x = k−1 around x = 0 it follows that, as k tends to infinity,

γX(k) ∼ σ 2H(2H − 1)k2H−2.

In the notation of Definition 1.2 we therefore have Lγ (k) = σ 2H(2H − 1),

H = d + 1

2
,

and Xt (t ∈ Z) has long memory if 1
2 < H < 1. Also note that for the variance of

Sn = ∑n
t=1 Xt , self-similarity implies

var(Sn) = var
(
Y(n)− Y(0)

) = n2Hσ 2,

so that, for H > 1
2 , the variance grows at a rate that is faster than linear. For H = 1

2 ,
all values of γX(k) are zero except for k = 0, so that Xt (t ∈ Z) is an uncorrelated
sequence. For 0 <H < 1

2 , γX(k) is summable, so that, in contrast to the case with
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H > 1
2 , the sum over all covariances can be split into three terms,

∞∑

k=−∞

[|k − 1|2H + |k + 1|2H − 2|k|2H ]

=
∞∑

k=−∞
|k − 1|2H +

∞∑

k=−∞
|k + 1|2H − 2

∞∑

k=−∞
|k|2H

=
∞∑

k=−∞
|k|2H +

∞∑

k=−∞
|k|2H − 2

∞∑

k=−∞
|k|2H = 0.

In other words, 0 <H < 1
2 implies antipersistence. The simplest SSSI process with

finite second moments is a Gaussian process, the so-called fractional Brownian mo-
tion (fBm), usually denoted by BH . Note that BH is the only Gaussian SSSI-process
because apart from the variance σ 2, the first two moments are fully specified by the
SSSI-property. The corresponding increment sequence Xt (t ∈R or Z) is called
fractional Gaussian noise (FGN).

To see how to extend the relationship between the self-similarity parameter H

and long-range dependence beyond Gaussian processes, we first look at an explicit
time-domain representation of fractional Gaussian motion. The definition and ex-
istence of fBm follow directly from the definition of its covariance function. The
difference between standard Brownian motion (with H = 1

2 ) and fractional Brow-
nian motion with H 
= 1

2 can be expressed by a moving average representation of
BH(u) on the real line, which is a weighted integral of standard Brownian motion.
For H 
= 1

2 , we have

BH(u) =
∫ ∞

−∞
Qu,1(x;H)dB(x), (1.8)

where

Qu,1(x;H) = c1
[
(u− x)

H− 1
2+ − (−x)

H− 1
2+
]+ c2

[
(u− x)

H− 1
2− − (−x)

H− 1
2−
]
,

and c1, c2 are deterministic constants. This representation is not unique since it de-
pends on the choice of c1 and c2. A causal representation of fBm is obtained if we
choose c2 = 0 and

c1 =
√
Γ (2H + 1) sin(πH)

Γ (H + 1
2 )

=
{∫ ∞

0

[
(1 + s)H− 1

2 − sH− 1
2
]2

ds + 1

2H

}− 1
2

.

One can verify that the kernel Qu,1(·,H) has the following property: for all
0 ≤ v < u, x ∈ R,

Qu,1(x;H)−Qv,1(x;H) = Qu−v,1(x − v;H), (1.9)

Qcu,1(cx;H) = cH−1/2Qu,1(x;H). (1.10)
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The first property reflects stationarity of increments. The second property leads to
self-similarity with self-similarity parameter H . It should be mentioned at this point
that representation (1.8) is not valid for an fBm on [0,1].

As we have seen above, if the second moments are assumed to exist, then the def-
inition of self-similarity fully determines the autocorrelation structure. This leads
to a direct definition of Gaussian self-similar processes. The existence and con-
struction of non-Gaussian self-similar processes is less straightforward because the
autocorrelation structure is not enough. One way of obtaining a large class of non-
Gaussian self-similar processes is to extend the integral representation (1.8) to mul-
tiple Wiener–Itô integrals (see e.g. Major 1981). This can be done as follows. For
q ≥ 1 and 0 <H < 1, we define the processes

ZH,q(u) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
Qu,q(x1, . . . , xq;H)dB(x1) · · ·dB(xq) (1.11)

where the kernel Qu,q is given by

Qu,q(x1, . . . , xq) =
∫ u

0

(
q∏

i=1

(s − xi)
−( 1

2 + 1−H
q

)

+

)
ds.

All kernels have the two properties guaranteeing stationarity of increments and self-
similarity. The self-similarity property is of the form

Qcu,q(cx1, . . . , cxq;H) = cH− q
2 Qu,q(x1, . . . , xq;H).

The exponent −q/2 instead of −1/2 is due to the fact that dB occurs q times in
the product. More explicitly, we can see that the scaling property of Qu,q implies
self-similarity with parameter H as follows:

ZH,q(cu) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
Qct,q(x1, . . . , xq;H)dB(x1) · · ·dB(xq)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
Qct,q

(
c
x1

c
, . . . , c

xq

c
;H

)
dB

(
c
x1

c

)
· · ·dB

(
c
xq

c

)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
cH− q

2 Qu,q(y1, . . . , yk;H)c
q
2 dB(y1) · · ·dB(yq)

= cH
∫ ∞

−∞
· · ·

∫ ∞

−∞
Qu,q(y1, . . . , yq;H)dB(y1) · · ·dB(yk) = cHZH,q(u).

For q > 1, the process ZH,q(u) (u ∈ R) is no longer Gaussian and is called Hermite
process on R. Sometimes one also uses the terminology Hermite–Rosenblatt pro-
cess, though “Rosenblatt process” originally refers to the case with q = 2 only (see
Taqqu 1975).

Equation (1.11) also leads to a natural extension to self-similar processes with
long memory and nonexisting second moments. This can be done by replacing
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Brownian motion by a process whose second moments do not exist. Note that
Brownian motion is just a special example of the much larger class of Lévy pro-
cesses. These are defined by the property that they have stationary independent
increments and vanish at zero almost surely. The nonexistence of second mo-
ments can be achieved by assuming that the Lévy process is a symmetric α-stable
(SαS) process Zα(·) for some 0 < α < 2. This means that every linear combination
Y = ∑m

j=1 ciZα(ui) has a symmetric α-stable distribution with characteristic func-
tion ϕ(ω) = E[exp(iωY )] = exp(−a|ω|α). In particular, SαS Lévy processes are
self-similar with self-similarity parameter HLévy = 1/α. Hence, we note that unlike
in the Gaussian case of fBm, here self-similarity does not have anything to do with
long memory. Furthermore, symmetric α-stable Lévy processes arise as limits of
appropriately standardized partial sums S[nu] = ∑[nu]

i=1 Xt , where Xt are i.i.d. and
have symmetric heavy tails with tail index α in the sense that

lim
x→−∞|x|αP (X < −x) = lim

x→+∞xαP (X > x) = C1 (1.12)

for some 0 < α < 2 and a suitable constant C1 (see e.g. Embrechts et al. 1997; Em-
brechts and Maejima 2002, and Sect. 4.3). In particular, the process S[nu] has to be
standardized by d−1(n), where d(n) = nHLévy = n1/α . Therefore, for sequences Xt

with tail index α < 2, the self-similarity parameter H = HLévy = 1/α is the analogue
to H = 1

2 in the case of finite second moments. If, on the other hand, a nondegen-
erate limit of d−1(n)S[nu] is obtained for standardizations d(n) proportional to nH

with H > 1/α, then the memory (in the sequence Xt ) is so strong that partial sums
diverge faster than for Lévy processes. This is analogous to H > 1

2 in the case of
finite second moments. Therefore, long memory is associated with the condition
H > 1/α. (Note that for α = 2, we are back to finite second moments, so that we
obtain the previous condition H > 1

2 .) In analogy to the case of finite second mo-
ments we may also define the fractional parameter d = H − 1/α. Long memory is
then associated with d > 0. Note also that, since the self-similarity parameter is by
definition in the interval (0,1), long memory cannot be achieved for α < 1.

As we will see in Sect. 4.3, in general the limit of d−1(n)S[nu] is a Linear Frac-
tional stable motion defined by

Z̃H,α(u) =
∫ ∞

−∞
Qu,1(x;H,α)dZα(x) (1.13)

with

Qu,1(x;H,α) = c1
[
(u−x)

H−1/α
+ − (−x)

H−1/α
+

]+c2
[
(u−x)

H−1/α
− − (−x)

H−1/α
−

]

(1.14)
and H > 1/α. This definition is obviously analogous to (1.8) for fractional Brown-
ian motion. Moreover, the definition is valid for H ∈ (0,1), H 
= 1/α.
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1.3.6 Other Approaches

1.3.6.1 Different Dependence Measures

For processes with infinite second moments, long-range dependence has to be mea-
sured by other means than autocorrelations, the spectral density or the variance of
cumulative sums. For instance, the variance Vm defined in (1.3) can be replaced by

V̂m = X
(m)
t∑tm

i=tm−m+1 X
2
i

(1.15)

(also see Hall 1997). An alternative dependence measure is for example the so-
called codifference (Samorodnitsky and Taqqu 1994). Suppose that Xt (t ∈ Z) have
a symmetric distribution. Then the codifference is defined by

τX(k) = log
E[ei(Xt+k−Xt )]

E[eiXt+k ]E[e−iXt ] . (1.16)

Note that τX can also be defined in continuous time. For Gaussian processes, τX(k)
coincides with the autocovariance function γX(k).

1.3.6.2 Extended Memory

Granger (1995) and Granger and Ding (1996) consider a different property charac-
terizing long-term effects of observations from the remote past.

Definition 1.8 Let Xt be a stochastic process defined for t ∈ Z or t ∈ N and such
that E(X2

t ) < ∞ for all t . Consider the prediction

X̂t+k = E[Xt+k | Xs, s ≤ t].
Then Xt is said to have extended memory if there is no constant c ∈ R such that
X̂t+k →p c as k → ∞.

Example 1.3 Consider a random walk process defined by Xt = ∑t
s=1 εs (t ≥ 1)

where εt are i.i.d. N(0, σ 2
ε ) distributed with σ 2

ε > 0. Then

X̂t+k = Xt

for all k ≥ 1, so that X̂t+k does not converge to a constant but is instead N(0, tσ 2
ε )-

distributed for all k. Thus, random walk has extended memory. Similarly, for Yt =
exp(Xt ) = exp(

∑t
s=1 εs), we have

Ŷt+k = YtE

[
exp

(
k∑

j=1

εt+j

)]
= Yt exp

(
1

2
σ 2
ε k

)
.



1.3 Definition of Different Types of Memory 39

Again, Yt does not converge to a constant, but instead P(Ŷt+k → ∞) = 1. This
illustrates that extended memory also captures nonlinear dependence. The reason is
that the conditional expected value and not just the best linear forecast is considered.
More generally, any strictly monotone transformation G(Xt) has extended memory
(see e.g. Granger and Ding 1996 and references therein). In contrast, for |ϕ| < 1,
the equation Xt = ϕXt−1 + εt (t ∈ Z) has a unique stationary causal solution Xt =∑∞

j=0 ϕ
jεt−j , and

X̂t+k = ϕkXt →
p

0.

More generally, for a purely stochastic invertible linear second-order stationary pro-
cess with Wold representation Xt = ∑∞

j=0 aj εt−j and i.i.d. εt , we have

X̂t+k = E[Xt+k | Xs, s ≤ t] =
∞∑

j=0

aj+kεt−j ,

so that

var(X̂t+k) = E
(
X̂2

t+k

) =
∞∑

j=k

a2
j →
k→∞ 0.

Since X̂t+k converges to zero in the L2-norm and in probability, the process Xt does
not have extended memory.

1.3.6.3 Long Memory as Phase Transition

The approach in this section was initiated by G. Samorodnitsky, see Samorodnitsky
(2004, 2006). Let {Pθ , θ ∈ Θ} be a family of probability measures that describe the
finite-dimensional distributions of a stationary stochastic process X = (Xt ) (t ∈ Z

or t ∈ R). We assume that as θ varies over the parameter space Θ , the marginal dis-
tribution of Xt does not change. Consider a measurable functional φ = φ(X). Its be-
haviour may be different for different choices of θ . Now, assume that the parameter
space Θ can be decomposed into Θ1 ∪Θ2 such that the behaviour of the functional
does not change too much as long as θ ∈ Θ1, but changes significantly when we
cross the boundary between Θ1 and Θ2. Furthermore, the behaviour changes as θ

varies across Θ2. This way, we can view the models with θ ∈ Θ1 as short-memory
models and those with θ ∈ Θ2 as long-memory models. One has to mention here
that this notion of LRD does not look at one particular parameter (in contrast to the
case of a finite variance where θ can be thought of as an exponent of a hyperbolic
decay of covariances). Instead, it is tied to each particular functional. It may happen
that a particular model is LRD for one functional but not for another. In other words,
if we have two functionals φ1 and φ2, the decomposition of the parameter space may
be completely different, i.e. Θ = Θ1(φ1)+Θ2(φ1) and Θ = Θ1(φ2)+Θ2(φ2) with
Θ1(φ1) 
= Θ1(φ2).
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Example 1.4 (Partial Sums) Denote by Lf (λ) a function that is slowly varying at the
origin in Zygmund’s sense. Let X = (Xt , t ∈ Z) be a stationary Gaussian sequence
with spectral density fX(λ) ∼ Lf (λ)λ

−2d (as λ → 0) but fX(0) 
= 0, and assume
that d =: θ ∈ [−∞, 1

2 ). (Here d = −∞ is interpreted as the case of i.i.d. random
variables.) For the functional φ1(x) = ∑n

t=1 xt , the parameter space may be decom-
posed into (0, 1

2 )∪ {0} ∪ (−∞,0]. For the sub-space (0, 1
2 ), the rate of convergence

changes for different choices of θ . In other words, according to Samorodnitsky’s
definition, X is φ1-LRD for θ ∈ (0, 1

2 ) since then the partial sum has to be scaled by

L
−1/2
γ (n)n−d− 1

2 to obtain a nondegenerate limit. Otherwise, if θ ∈ [−∞,0], then
the scaling is n−1/2. If instead, we consider the functional φ2(x) = ∑n

t=1(x
2
t − 1),

then the parameter space is decomposed into ( 1
4 ,

1
2 ) ∪ { 1

4 } ∪ [−∞, 1
4 ). The process

X is φ2-LRD for θ ∈ ( 1
4 ,

1
2 ). We refer to Chap. 4 for a detailed discussion of limit

theorems for partial sums.

Example 1.5 (Maxima) Let X = (Xt , i ∈ Z) be as in Example 1.4, but we consider
the functional φ3(x) = maxnt=1 xt . The limiting behaviour of maxima of Gaussian
sequences with nonsummable autocovariances or autocovariances that sum up to
zero is the same as under independence. Thus, according to Samorodnitsky’s defi-
nition, X is not max-LRD. We refer to Sect. 4.10 for limit theorems for maxima.

However, the main reason to consider the “phase transition” approach is to
quantify long-memory behaviour for stationary stable processes. In particular, if
Xt = ZH,α(t) − ZH,α(t − 1), where ZH,α(·) is a Linear Fractional Stable motion
(1.13), then, due to self-similarity, n−H

∑n
t=1 Xt equals in distribution ZH,α(1),

where H = d + 1/α. On the other hand, if Xt are i.i.d. symmetric α-stable, then
n−1/α ∑n

t=1 Xt equals in distribution an α-stable random variable. Hence, the phase
transition from short memory to long memory occurs at H = 1/α. A similar transi-
tion occurs in the case of ruin probabilities.

Example 1.6 (Ruin Probabilities) As in Mikosch and Samorodnitsky (2000), as-
sume again that Xt = ZH,α(t)−ZH,α(t − 1), where ZH,α(·) is a Linear Fractional
Stable motion. The authors consider the rate of decay of ruin probabilities

ψ(u) = P

(
n∑

t=1

Xt > cn+ u for some n ∈N

)

as u tends to infinity. As it turns out, for H > 1/α, ψ(u) is proportional to u−(α−αH),
whereas for 0 < H ≤ 1/α, the decay is of the order u−(α−1). Thus, for H > 1/α,
the decay is slower, which means that the probability of ruin is considerably larger
than for H ≤ 1/α. Moreover, the decay depends on H for H > 1/α, whereas this is
not the case for H ≤ 1/α. It is therefore natural to say that Xt has long memory if
H > 1/α and short memory otherwise.

Example 1.7 (Long Strange Segments) Another possibility of distinguishing be-
tween short- and long-range dependent ergodic processes is to consider the rate at
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which so-called long strange segments grow with increasing sample size (Ghosh
and Samorodnitsky 2010; Mansfield et al. 2001; Rachev and Samorodnitsky 2001).
Suppose that Xt is a stationary process with μ = E(Xt) = 0 and the ergodic prop-
erty in probability holds (i.e. the sample mean converges to μ in probability). Given
a measurable set A, one defines

Rn(A) = sup{j − i : 0 ≤ i < j ≤ n, x̄i:j ∈ A},
where

x̄i:j = (j − i)−1
j∑

t=i+1

Xt

is the sample mean of observations Xi+1, . . . ,Xj . In other words, the random num-
ber Rn(A) ∈ N is the maximum length of a segment from the first n observations
whose average is in A. Why such segments are called “strange” can be explained
for sets A that do not include the expected value μ = 0. Since the sample mean
converges to zero, one should not expect too long runs that are bounded away from
zero. It turns out, however, that for long-memory processes, the maximal length of
such runs tends to be longer than under short memory, in the sense that Rn diverges
to infinity at a faster rate.

The phase transition approach leads also to much more general stationary stable
processes. It turns out that stationary stable processes can be decomposed into a
dissipative and a conservative flow. The conservative flow part is usually associated
with long memory. We refer to Samorodnitsky (2002, 2004, 2005, 2006), Racheva-
Iotova and Samorodnitsky (2003), Resnick and Samorodnitsky (2004) for further
details and examples.



Chapter 2
Origins and Generation of Long Memory

In this chapter we discuss typical methods for constructing long-memory processes.
Many models are motivated by probabilistic and statistical principles. On the other
hand, sometimes one prefers to be lead by subject specific considerations. Typical
for the first approach is the definition of linear processes with long memory, or frac-
tional ARIMA models. Subject specific models have been developed for instance in
physics, finance and network engineering. Often the occurrence of long memory is
detected by nonspecific, purely statistical methods, and subject specific models are
then developed to explain the phenomenon. For example, in economics aggregation
is a possible reason for long-range dependence, in computer networks long mem-
ory may be due to certain distributional properties of interarrival times. Often long
memory is also linked to fractal structures.

2.1 General Probabilistic Models

2.1.1 Linear Processes with Finite Second Moments

2.1.1.1 General Definition of Linear Processes

The simplest time series models are linear processes. Given independent identically
distributed variables εt (t ∈ Z), a causal linear process (or causal linear sequence,
infinite moving average) is defined by

Xt = μ+
∞∑

j=0

aj εt−j = μ+A(B)εt (2.1)

= μ+
( ∞∑

j=0

ajB
j

)
εt (t ∈ Z) (2.2)

J. Beran et al., Long-Memory Processes,
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with B denoting the backshift operator defined by Bεt = εt−1. Here, “causal” refers
to the fact that Xt does not depend on any future values of εt . For simplicity of
notation and without loss of generality, we will assume in the following that μ = 0.
In order that Xt is well defined, convergence of the infinite series has to be guar-
anteed in a suitable way. If Xt has to have finite second moments, then we need to
impose that σ 2

ε = var(εt ) < ∞ and
∑∞

j=0 a
2
j < ∞. Also, since εt−j are supposed

to model random mean-adjusted deviations (“innovations”) at time t , it is assumed
that E(εt ) = 0. Under these conditions, the series is convergent in the L2(Ω)-sense,
i.e. for each t , there is a random variable Xt such that

lim
n→∞

∥∥∥∥∥Xt −
n∑

j=0

aj εt−j

∥∥∥∥∥

2

L2(Ω)

= lim
n→∞E

[(
Xt −

n∑

j=0

aj εt−j

)2]
= 0.

We will also call Xt an L2-linear process.

2.1.1.2 Ergodicity

The first essential question one has to ask before thinking of statistical methods
is whether the ergodic property with constant limit holds, i.e. for instance if the
sample mean x̄ = n−1 ∑n

i=1 Xt converges to μ = E(Xt) in a well-defined way.
If almost sure convergence is required, then the fundamental result to answer this
question is Birkhoff’s ergodic theorem (Birkhoff 1931, also see e.g. Breiman 1992,
Chap. 6). It states that x̄ converges almost surely to μ if Xt is strictly stationary,
E(|Xt |) < ∞ and Xt is ergodic. The last property, ergodicity, means that for tail
events (“asymptotic events”), measurable with respect to the σ -algebra generated
by Xt , the probability is either zero or one, but never anything in between (for an
exact definition, see e.g. Walters 1989). In general, ergodicity may not be easy to
check. However, a simple sufficient condition is that, for each t , the process can be
written almost surely as Xt = f (εt,εt−1, . . .) where f : RN → R is a measurable
function (see e.g. Stout 1974, Theorem 3.5.8).

For linear processes defined in L2(Ω), we have the L2-representation Xt =∑∞
j=0 aj εt−j , so that, by Jensen’s inequality,

E
(|Xt |

) ≤
√
E
(
X2

t

)
< ∞.

Moreover, since Yk = ∑k
j=0 aj εt−j (k = 0,1,2, . . .) is a martingale with

supk E[Y 2
k ] < ∞, Doob’s martingale convergence theorem (see e.g. Breiman 1992,

Chap. 5) implies that the equality Xt = ∑∞
j=0 aj εt−j also holds almost surely. Thus,

Xt = f (εt , εt−1, . . .) a.s. with f (u1, u2, . . .) = ∑∞
j=0 ajuj , so that Xt is ergodic.

Moreover, the almost sure representation guarantees that Xt is not only second or-
der but also strictly stationary. Birkhoff’s ergodic theorem is therefore applicable
for all linear processes defined in L2(Ω).
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2.1.1.3 Long Memory, Short Memory, Antipersistence

For linear processes in L2(Ω), long-range dependence, short memory and antiper-
sistence may be defined via the autocovariance function or the spectral density.
Since Xt has the spectral density

fX(λ) = σ 2
ε

2π

∣∣∣∣∣

∞∑

j=0

aj e
−ijλ

∣∣∣∣∣

2

(2.3)

and autocovariances

γX(k) = σ 2
ε

∞∑

j=0

ajaj+k, (2.4)

it is easy to see (see Lemmas 2.1, 2.2, 2.3 below) how to specify the coefficients
aj to obtain different types of dependence structures. In the following we will con-
sider three cases, with La denoting a function that is slowly varying at infinity in
Zygmund’s sense.

• Long Memory:

aj = La(j)j
d−1

(
0 < d <

1

2

)
. (2.5)

• Antipersistence:

aj = La(j)j
d−1

(
−1

2
< d < 0

)
and

∞∑

j=0

aj = 0. (2.6)

• Short Memory:

∞∑

j=0

|aj | < ∞ and
∞∑

j=0

aj 
= 0. (2.7)

The long-memory condition implies
∑

aj = ∞. This could also be used as a
definition of a long-range dependent linear process, but for most practical applica-
tions, the more specific condition (2.5) is general enough, even if La is confined to
slowly varying functions that converge to a finite constant ca . The same applies to
the condition for antipersistence. The explanation why the three cases are associ-
ated with long memory, antipersistence and short memory respectively is given in
the following three lemmas. The proofs will be given later in Sect. 4.2.

Lemma 2.1 Let Xt (t ∈ Z) be an L2-linear process such that (2.5) holds. Denote
by γX(k) = cov(Xt ,Xt+k) the autocovariance function of Xt . Then

γX(k) ∼ Lγ (k)k
2d−1 (k → ∞)
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with

Lγ (k) = σ 2
ε L

2
a(k)

∫ ∞

0
xd−1(x + 1)d−1 dx

= σ 2
ε L

2
a(k)B(1 − 2d, d),

where B(a, b) = Γ (a)Γ (b)/Γ (a + b) is the Beta function. Moreover,

fX(λ) ∼ Lf (λ)|λ|−2d (λ → 0)

with

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)
.

Lemma 2.2 Let Xt (t ∈ Z) be an L2-linear process such that (2.7) holds and also∑
j |aj | < ∞. Then

∞∑

k=−∞

∣∣γX(k)
∣∣< ∞,

∞∑

k=−∞
γX(k) 
= 0,

and fX is continuous at the origin.

Lemma 2.3 Let Xt (t ∈ Z) be an L2-linear process such that (2.6) holds. Then

γX(k) ∼ Lγ (k)k
2d−1 (k → ∞)

with

Lγ (k) = L2
a(k)

∫ ∞

0
xd−1[(x + 1)d−1 − 1

]
dx.

Moreover,

fX(λ) ∼ Lf (λ)|λ|−2d (λ → 0)

with

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)
.

Note that the additional condition
∑

j |aj | < ∞ in Lemma 2.2 is not necessary,
but was chosen here to make the proof simple. For most short-memory processes
considered in statistical applications, the asymptotic decay of aj is exponential,
so that this condition holds. Also note that for d < 0, the integral

∫ ∞
0 xd−1[(x +

1)d−1 − 1]dx is finite, whereas
∫ ∞

0 xd−1(x + 1)d−1 dx = ∞ because of the pole of
the order xd−1 � x−1 at zero (with “�” meaning that limx→0 |xd−1/x−1| = ∞).
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2.1.1.4 Fractional ARIMA Models

A particularly useful class of linear processes that includes all three dependence
structures is obtained by extending classical ARMA and ARIMA processes. Due to
their simplicity and flexibility, ARMA and ARIMA processes are probably the most
popular class of linear models in time series analysis. They were introduced and
popularized by Box and Jenkins (1970). A stationary causal ARMA(p, q) process
is defined by the equation

ϕ(B)Xt = ψ(B)εt , (2.8)

where εt are assumed to be i.i.d. with zero mean and finite variance σ 2
ε , and ϕ(z) =

1 − ∑p

j=1 ϕj z
j and ψ(z) = ∑q

j=0 ψjz
j are polynomials with no common roots

and all roots outside the unit circle. Box and Jenkins extended this definition also
to integrated processes. For d ∈ {1,2, . . .}, an ARIMA(p, d, q) process is defined
recursively by Y0 = 0 and

(1 −B)dYt = Xt (t ≥ 1), (2.9)

where Xt is given by (2.8). Note that (2.8) can also be included by setting d = 0.
For d ≥ 1, the process Yt is nonstationary, but it can be transformed into a stationary
ARMA process by taking the d th difference (1 −B)dYt . For instance, if p = q = 0
and d = 1, then Yt is a random walk process, and the first difference yields the i.i.d.
sequence εt . In econometrics, Yt defined by (2.9) is also called integrated of order
d , or I (d).

In order to obtain a model that is somewhere between an ARMA and an ARIMA
process, Granger and Joyeux (1980) and Hosking (1981) proposed to allow for the
possibility of noninteger values of d . The resulting processes are called fractional
ARIMA(p, q) processes (also FARIMA(p, d, q) or ARFIMA(p, d, q)). Formally,
this can be justified as follows. Let d ∈ (− 1

2 ,
1
2 ) and denote by εt i.i.d. zero mean

random variables with finite variance σ 2
ε . Consider the series expansions

A(z) = (1 − z)−d =
∞∑

j=0

aj z
j ,

A−1(z) = (1 − z)d =
∞∑

j=0

bj z
j

for |z| ≤ 1, z 
= 1 with

aj =
(−d

j

)
(−1)j = Γ (−d + 1)

Γ (j + 1)Γ (−d − j + 1)
(−1)j ,

bj =
(
d

j

)
(−1)j = Γ (d + 1)

Γ (j + 1)Γ (d − j + 1)
(−1)j .
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Using Stirling’s formula and the property Γ (x + 1) = xΓ (x), one can see that, as
j → ∞, the coefficients in Xt = ∑

aj εt−j and
∑

bjXt−j = εt are of the forms

aj = Γ (−d + 1)

Γ (j + 1)Γ (−d − j + 1)
(−1)j = Γ (j + d)

Γ (j + 1)Γ (d)

∼ 1

Γ (d)
jd−1

and

bj = Γ (d + 1)

Γ (j + 1)Γ (d − j + 1)
(−1)j = Γ (j − d)

Γ (j + 1)Γ (−d)

∼ 1

Γ (−d)
j−d−1.

Since d is in the interval (− 1
2 ,

1
2 ), this implies that the functions g(λ) = A(e−iλ)

and h(λ) = A−1(e−iλ) are in the L2(Fε) space of functions on [−π,π] with norm

‖g‖2 =
∫ π

−π

∣∣g(λ)
∣∣2 dFε(λ) = σ 2

ε

2π

∫ π

−π

∣∣g(λ)
∣∣2 dλ < ∞.

Here Fε(λ) = σ 2
ε /(2π)

∫ λ

−π
dν denotes the spectral distribution of εt . Therefore,

A(B) and A−1(B) are valid filters in the sense of L2(Ω)-convergence, and the linear
process

Xt = A(B)εt =
∞∑

j=0

aj εt−j (2.10)

is a well-defined, stationary and invertible process with spectral representation

Xt =
∫

eitλA
(
e−iλ

)
dMε(λ)

(with Mε denoting the spectral measure of εt ) and autoregressive representation

A−1(B)Xt = (1 −B)dXt = εt . (2.11)

This defines a FARIMA(0, d,0) process for all values − 1
2 < d < 1

2 . Including the
AR- and MA-filters ϕ(B) and ψ(B) does not change the asymptotic rate of conver-
gence of aj and bj , so that by the same arguments the equation

(1 −B)dϕ(B)Xt = ψ(B)εt (2.12)

has a unique stationary invertible solution which is called an ARFIMA(p, d, q) or
FARIMA(p, d, q) process. Applying the filter (or fractional differencing operator)
(1 −B)d , the process

Zt = (1 −B)dXt = ϕ−1(B)ψ(B)εt (2.13)
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is an ordinary stationary ARMA(p, q) process. In contrast to standard integrated
processes (i.e. I (d) with integer d ≥ 1), the FARIMA(p, d, q) process is stationary
as long as d is in the interval (− 1

2 ,
1
2 ). Fractionally integrated processes can be

obtained in an analogous manner by setting Y0 = 0 and (1 − B)mYt = Xt with
m ∈ {1,2, . . .} and Xt satisfying (2.12). This means that there are two differencing
parameters, the integer parameter m needed to make the process stationary and the
fractional parameter d needed in addition to m to obtain a standard ARMA process.
Note that, since d is confined to the open interval (− 1

2 ,
1
2 ), it is possible to recover

both parameters from their sum dtotal = d+m by m = [dtotal + 1
2 ] and d = dtotal −m.

Thus, Yt may be called a FARIMA(p, dtotal, q) process.
Definition (2.10) implies that the spectral density of a stationary FARIMA(0, d,0)

process is equal to

fX(λ) = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 = σ 2
ε

2π

∣∣1 − e−iλ
∣∣−2d

= Lf (λ)|λ|−2d

with Lf (λ) ∼ σ 2
ε /(2π) as λ → 0. More generally, applying the filters ϕ(B) and

ψ(B), the spectral density of a stationary FARIMA(p,d, q) process is equal to

fX(λ) = σ 2
ε

2π

∣∣∣∣
ψ(e−iλ)

ϕ(e−iλ)

∣∣∣∣
2∣∣1 − e−iλ

∣∣−2d (2.14)

= fARMA(λ)
∣∣1 − e−iλ

∣∣−2d = Lf (λ)|λ|−2d , (2.15)

where fARMA(λ) is the spectral density of the corresponding ARMA(p, q) process,
and the slowly varying function Lf is given by

Lf (λ) = σ 2
ε

2π

∣∣∣∣
ψ(e−iλ)

ϕ(e−iλ)

∣∣∣∣
2

∼ cf,ARMA = σ 2
ε

2π

∣∣∣∣
ψ(1)

ϕ(1)

∣∣∣∣
2

(λ → 0).

Exact explicit formulas for autocovariances and autocorrelations are complicated
in general, though in principle they follow directly from the Wold representation
(2.10). The formulas are simple however for a FARIMA(0, d,0) process (the essen-
tial formula solving the respective integrals can be found in Gradshteyn and Rhyzhik
1965, p. 372), with

γX(k) = σ 2
ε

(−1)kΓ (1 − 2d)

Γ (1 + k − d)Γ (1 − k − d)
. (2.16)

In particular,

γX(0) = σ 2
ε

Γ (1 − 2d)

Γ 2(1 − d)
,
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and, for the autocorrelation ρX(k) = γX(k)/γX(0), we have

ρX(k) = σ 2
ε

(−1)kΓ 2(1 − d)

Γ (1 + k − d)Γ (1 − k − d)
= Γ (1 − d)Γ (k + d)

Γ (d)Γ (1 + k − d)
. (2.17)

The asymptotic behavior of γX(k) for a FARIMA(p,d, q) process follows from the
behavior of fX at the origin given in (2.15) and Theorem 1.3:

γX(k) ∼ cγ |k|2d−1 (k → ∞)

with

cγ = 2cf,ARMAΓ (1 − 2d) sinπd.

Note that this result can also be obtained directly by considering the asymptotic
decay of the coefficients aj . In particular, for a FARIMA(0, d,0) process, we can
use the identity

sinπd

π
= 1

Γ (1 − d)Γ (d)

to obtain

γX(k) ∼
(
σ 2
ε

π
Γ (1 − 2d) sinπd

)
|k|2d−1 = Γ (1 − 2d)

Γ (1 − d)Γ (d)
|k|2d−1

and

ρX(k) ∼ Γ (1 − d)

Γ (d)
|k|2d−1.

A further useful result by Hosking (1981) is that the partial correlations of a
FARIMA(0, d,0) process are given by

βkj = −
(
k

j

)
Γ (j − d)Γ (k − d − j + 1)

Γ (−d)Γ (k − d + 1)

and asymptotically, as j, k → ∞ and j/k → 0,

βkj ∼ 1

Γ (−d)
j−d−1.

For j = k, we have βkk = d/(k − d). Recall that X̂n+1 = ∑n
j=1 βnjXn+1−j is the

optimal linear prediction of Xn+1 given X1, . . . ,Xn (also see Chap. 8).
One may ask at this point why d = − 1

2 and 1
2 were excluded. The reason can

be seen in the asymptotic behaviour of bj . For d = − 1
2 , the coefficients bj are

proportional to j− 1
2 , so that

∑
b2
j = ∞, and A−1(e−iλ) is no longer in L2(Fε).

This means that Xt is no longer invertible, even though the process Xt = A(B)εt
is well defined. The same comments apply to d = − 1

2 + m where m is a positive
integer, since the mth difference of Xt is not invertible, and to d = − 1

2 +m with m

a negative integer, since there Xt is the mth difference of a noninvertible process.
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2.1.1.5 Other Fractionally Differenced Processes, FEXP Processes, Fractional
Gaussian Noise

Equation (2.13) can be extended by replacing Zt = ϕ−1(B)ψ(B)εt by any L2-linear
short-memory process. The interpretation is that the fractional differencing filter
(1 − B)d removes the long-memory component, and the rest can be anything (lin-
ear) with short memory. Similarly, flexible models for the spectral density can be
obtained by replacing fARMA in (2.14) by any continuous, or more generally any
short-memory, density function fshort.

Example 2.1 Let

fshort(λ) = exp
(
η0 + η1 cos(λ)+ · · · + ηp cos(pλ)

)
.

Then

fX(λ) = fshort(λ)
∣∣1 − e−iλ

∣∣−2d

= exp

(
p+1∑

j=0

θjgj (λ)

)

with

g0(λ) ≡ 1, g1(λ) = log
∣∣1 − e−iλ

∣∣,

g2(λ) = cos(λ), . . . , gp+1(λ) = cos(pλ),

and

θ0 = η0, θ1 = −2d, θ2 = η1, . . . , θp+1 = ηp

is a so-called fractional exponential model of order p or FEXP(p) model introduced
in Beran (1993) and Robinson (1994a). The short-memory version with d = 0 is
discussed in Bloomfield (1973).

Example 2.2 Let BH(u) (u ∈ R) be a fractional Brownian motion (see Sect. 1.3.5),
and ξt = BH(t) − BH(t − 1) (t ∈ Z) be a discrete-time fractional Gaussian noise
(fGn). Self-similarity of BH implies a very specific autocovariance structure of ξt :

γξ (k) = σ 2

2

(|k + 1|2H + |k − 1|2H − 2|k|2H )

(see (1.7)). Therefore, for most observed data, fractional Gaussian noise is not flex-
ible enough. A much more flexible class is obtained by defining

Xt = ϕ−1(B)ψ(B)ξt . (2.18)

This means that after passing Xt through the ARMA filter ϕ(B)ψ−1(B) we ob-
tain fractional Gaussian noise. In other words, long-range dependence is modelled
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by the correlation structure of fGn, whereas the short-memory part is captured by
ARMA-type dependence. This is an attractive alternative to usual FARIMA pro-
cesses because the variance of the sample mean of fGn has the simple form

var

(
n−1

n∑

t=1

ξt

)
= var

(
n−1BH(n)

) = σ 2n2H−2

and fractional Brownian motion is the asymptotic limit of normalized sums (see
Chap. 4).

2.1.2 Linear Processes with Infinite Second Moments

Linear processes with infinite second moments can be defined as in (2.1), how-
ever with L2(Ω)-convergence replaced by almost sure limits. Let εt (t ∈ Z) be a
sequence of i.i.d. random variables such that

Fε(−x) = P(ε ≤ −x) ∼ (1 − p)x−α, F̄ε(x) = P(ε > x) ∼ px−α (x → ∞),

(2.19)
where p ∈ (0,1), and the tail index α is in the interval (0,2). More generally, one
may replace p and 1 − p by slowly varying functions. If α > 1, then we assume
E(ε) = 0. For α ≤ 1, the expected value does not exist, so that instead ε is assumed
to have a distribution that is symmetric around zero. The following lemma formu-
lates sufficient conditions on the coefficients aj so that the linear process is well
defined.

Lemma 2.4 Let εt be i.i.d. with distribution function Fε(x) = P(ε ≤ x) satisfy-
ing (2.19). Moreover, assume that

∞∑

j=0

|aj |δ < ∞

for some 0 < δ < min(1, α) and define

Xt,n =
n∑

j=0

aj εt−j , Yt,n =
n∑

j=0

|aj εt−j |.

Then there are strictly stationary processes Xt and Yt such that

P
(

lim
n→∞Xt,n = Xt

)
= 1

and

P
(

lim
n→∞Yt,n = Yt

)
= 1.
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We then write

Xt =
∞∑

j=0

aj εt−j , Yt =
∞∑

j=0

|aj εt−j |

with equality in the a.s. sense.

Proof (See e.g. Brockwell and Davis 1991.) We use the Lδ(Ω)-norm defined by

‖X‖δ = {E(|X|δ)} 1
δ . Note that E(|ε|δ) = ‖ε‖δδ < ∞. Applying Minkowski’s in-

equality, we have

E
(|Xt,n|δ

) = ‖Xt,n‖δδ ≤
( ∞∑

j=0

‖aj εt−j‖δ
)δ

=
{

‖ε‖δ
∞∑

j=0

|aj |
}δ

< ∞.

Hence, |Xt,n| (and also Yt,n) converges almost surely to a finite limit, which implies
that the same is true for Xt,n. �

Note that for 1 < α ≤ 2, E(|ε|) < ∞, so that convergence is even achieved
if δ = 1. The conditions in this lemma are needed to obtain the a.s. convergence
of Yt,n. The problem is however that these assumptions exclude the coefficients aj
that would correspond to what may be called long memory. More specifically, in
analogy to the case of finite variance, consider

aj = La(j)j
d−1.

The conditions in Lemma 2.4 imply that d must be such that min(1, α)(d−1) < −1,
i.e. d < 1 − 1/min(1, α). This would exclude positive values of d . Fortunately, the
convergence of Yt,n is not a necessary condition for the convergence of Xt,n. If
only the convergence of Xt,n is what we are looking for, then the assumption on
the coefficients can be relaxed as follows (cf. Kokoszka and Taqqu 1995a, 1995b,
1996).

Lemma 2.5 Let εt be i.i.d. with distribution function Fε(x) = P(ε ≤ x) satisfy-
ing (2.19) and density fε(x) = F ′

ε(x). Assume that, for some δ > 0,
∞∑

j=0

|aj |α−δ < ∞. (2.20)

Then there is a strictly stationary process such that

P
(

lim
n→∞Xt,n = Xt

)
= 1.

We then write

Xt =
∞∑

j=0

aj εt−j

with equality in the a.s. sense.
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For coefficients of the form aj = La(j)j
d−1, we thus obtain the condition

α(d − 1) < −1, i.e. d < 1 − α−1. Thus, for 0 < α ≤ 1, positive values of d are
still excluded. However, for 1 < α < 2, positive values of d may be chosen from
the interval (0,1 − α−1). As α approaches the limiting case α = 2, the upper bound
reaches 1

2 , which is the same as for linear processes with finite variance. This is to
be expected, because symmetric α-stable random variables with α = 2 are normally
distributed.

A further property of Xt is that the linear process inherits the tail index α (see
Sect. 4.10), since under condition (2.20),

lim
x→∞

P(|Xt | > x)

P (|εt | > x)
=

∞∑

j=0

|aj |α. (2.21)

Note that for α ∈ (0,1], (2.20) implies the summability of the coefficients, and
(2.21) follows from Davis and Resnick (1985). If α ∈ (1,2), then (2.21) is a state-
ment of Theorem 2.2 in Kokoszka and Taqqu (1996). We thus see that for 0 < α ≤ 1,
neither E(Xt) nor var(Xt ) exists whatever the coefficients aj are (unless they are all
zero). On the other hand, for 1 < α < 2, E(Xt) is finite, and the variance is defined
but infinite.

So far, we associated the case where d > 0 with “long-range dependence” only
by pure analogy with the finite variance case. It remains to be shown that there
is indeed long-range dependence for d > 0. A meaningful notion of long mem-
ory can be given by considering measures of dependence applicable to infinite-
variance variables, as introduced in Sect. 1.3.6.1. For instance, for the codifference
(see Eq. (1.16)), the following result follows from Kokoszka and Taqqu (1995b).

Theorem 2.1 Let εt be i.i.d. symmetric α-stable random variables with 1 <

α ≤ 2, and aj = La(j)j
d−1 with d ∈ (0,1 − α−1). Then, as k → ∞, the codif-

ference between Xt and Xt+k is of the form

τ(Xt ,Xt+k) ∼ Cτ · kα(d−1)+1,

where Cτ is a finite constant.

Note, in particular, that in the case of normally distributed innovations (α = 2)
we obtain the well-known formula for the autocovariance function γ (k) ∼ Ck2d−1.
The influence of the tail index α shows that the decay of τ becomes slower the
smaller α is, i.e. the heavier the tail is. For further fundamental results on linear long-
memory processes with heavy tails, see e.g. Avram and Taqqu (1986), Kasahara
et al. (1988), Astrauskas et al. (1991), Samorodnitsky and Taqqu (1994), Kokoszka
(1996), Kokoszka and Taqqu (1993, 1995a, 1995b, 1996, 2001), Kokoszka and
Mikosch (1997), Koul and Surgailis (2001), Mansfield et al. (2001), Rachev and
Samorodnitsky (2001), Thavaneswaran and Peiris (2001), Samorodnitsky (2002,
2004, 2006), Surgailis (2002), Racheva-Iotova and Samorodnitsky (2003), Pipiras
and Taqqu (2000b), Levy and Taqqu (2005), Stoev and Taqqu (2005a, 2005b), Beran
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et al. (2012), also see Samorodnitsky and Taqqu (1994) and Embrechts and Maejima
(2002) and references therein.

2.1.3 Nonlinear Processes—Volatility Models

2.1.3.1 Introduction

In financial applications, observations such as (log-)returns are often uncorrelated
but not independent. More specifically, often the squared observations (or other
powers) exhibit long-range dependence (Whistler 1990, Crato and de Lima 1993,
Dacorogna et al. 1993, Ding et al. 1993, Baillie et al. 1996a, Andersen and Boller-
slev 1997a, 1997b, Breidt et al. 1998, Granger 1998, Lobato and Savin 1998,
Robinson and Zaffaroni 1998, Bollerslev and Mikkelsen 1999, Ray and Tsay 2000,
Barndorff-Nielsen and Shephard 2001, Beran and Ocker 2001, Arteche 2004, Deo
et al. 2006b, Granger and Hyung 2004, Morana and Beltratti 2004, Harvey 2007,
Corsi 2009, Scharth and Medeiros 2009). In financial language this is interpreted as
strong dependence in volatility, in particular in the sense that high volatilities tend
to cluster. This lead to the development of models that are nonlinear in the sense
that the conditional variance depends on the past and possibly also on time itself.
For short-memory volatility dependence, there is an extended literature initiated
by the pathbreaking work of Engle (1982) and Bollerslev (1986), who introduced
ARCH(p) and GARCH(p, q) models respectively. Apart from applied work, there
is an enormous literature that describes mathematical properties such as stationarity,
tail behaviour, dependence, estimation and limit theorems for GARCH and related
models. However, GARCH(p, q) models cannot explain the empirical observation
that often dependence in volatility is rather strong and long-lasting while the process
still seems to be stationary. The question is therefore how to either extend GARCH
models or to define new models in order to incorporate long-range dependence. The
first natural extension is the so-called ARCH(∞) process. The general framework
was introduced in Robinson (1991). Stationarity and dependence properties were
studied in Kokoszka and Leipus (2000), Giraitis et al. (2000c), Kazakevičius and
Leipus (2002, 2003), Giraitis et al. (2006) and Douc et al. (2008) among others. At
first sight this extension seems to be analogous to the modification of ARMA(p,q)
models to MA(∞)-processes with non-summable weights (see Sect. 2.1.1.4). How-
ever, as it turns out, a stationary ARCH(∞) sequence with finite variance must have
summable weights, and this rules out long memory. In analogy to IGARCH pro-
cesses, one can however define IARCH(∞) and FIGARCH models (Baillie et al.
1996a), which necessarily have an infinite variance. The existence of a strictly sta-
tionary solution was proved in Douc et al. (2008). However, dependence properties
including the interpretation of long memory are not clear.

Since the ARCH(∞) model cannot capture long memory in volatility, an alterna-
tive is the so-called LARCH(∞) process introduced by Robinson (1991). Its station-
arity and dependence properties were studied by Giraitis et al. (2000b, 2003, 2004),
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estimation and limit theorems were considered in Giraitis et al. (2000c), Berkes and
Horváth (2003), Beran (2006), Beran and Feng (2007), Beran and Schützner (2009).
Furthermore, Giraitis and Surgailis (2002) considered bilinear models consisting of
a combination of long memory in the mean with long memory in volatility described
by a LARCH(∞) structure. Since the conditional scaling process σt in LARCH(∞)

models can be negative, Surgailis (2008) introduced a so-called LARCH+(∞) pro-
cess where σt > 0 is guaranteed. This process can also capture heavy-tailed be-
haviour.

Studying properties of GARCH(p, q), ARCH(∞) or LARCH(∞) processes can
be mathematically quite demanding. In contrast, establishing existence, stationarity
and dependence properties is generally quite easy for so-called “stochastic volatil-
ity” models. The first model of this type is the EGARCH process introduced by Nel-
son (1990) and extended to the long-memory setting (under the name FIEGARCH)
by Bollerslev and Mikkelsen (1996). Independently, Breidt et al. (1998) introduced
a slightly different long-memory stochastic volatility process (also called LMSV).
Further extensions can be found in Robinson and Zaffaroni (1997, 1998). For sta-
tionarity and asymptotic properties, see e.g. Harvey (1998) and Surgailis and Viano
(2002), for extensions with heavy tails, see Davis and Mikosch (2001) and Kulik
and Soulier (2011, 2012, 2013). For reviews in the econometric context, see e.g.
Baillie (1996) and Henry and Zaffaroni (2003).

To be more specific, we start with an informal definition of volatility models.
Following Giraitis et al. (2006), the notion of stochastic volatility usually stands for
models of the form

Xt = σtεt , (2.22)

where εt (t ∈ Z) are i.i.d. random variables with mean zero and unit variance, and
σt is a (usually positive) measurable function of the past values εs, Xs (s ≤ t − 1)
and possibly some additional, unobservable information. Furthermore, εs (s ≥ t) is
independent of εs,Xs (s ≤ t − 1). It follows that

E(Xt | σs, εs, s ≤ t − 1) = 0

and

Var(Xt | σs, εs, s ≤ t − 1) = σ 2
t .

It should be noted, however, that actually no standard terminology exists. For in-
stance, in the context of pricing of derivatives, “stochastic volatility” often refers to
the special case where the sequences σt (t ∈ Z) and εt (t ∈ Z) are mutually indepen-
dent. If this is not the case, then one talks of “stochastic volatility with leverage”.

We now discuss the most important models in more detail.

2.1.3.2 GARCH (Generalized Autoregressive Conditionally Heteroscedastic)
Models

The best known volatility model is the ARCH(p) process and its generalization, the
GARCH(p, q) process, introduced by Engle (1982) and Bollerslev (1986) respec-
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tively, and studied by Nelson (1990) and Bougerol and Picard (1992), among others
(see Berkes et al. 2003 for an overview). By GARCH(p, q) one means the model
defined by (2.22) where the conditional variance σ 2

t = E[X2
t |Xs, εs, s ≤ t − 1] is

given by

σ 2
t = β0 +

p∑

j=1

αiσ
2
t−j +

q∑

j=1

βjX
2
t−j . (2.23)

The GARCH(p, q) equation (2.23) for the conditional variance can be written as
(
1 − α(B)

)
σ 2
t = β0 + β(B)X2

t , (2.24)

where α(z) = ∑p

j=1 αiz
j and β(B) = ∑q

j=1 βj z
j . Alternatively, we can write

(2.24) as
(
1 − α(B)− β(B)

)
σ 2
t = β0 + β(B)Zt , (2.25)

where Zt = X2
t − σ 2

t (t ∈ Z) are uncorrelated. If (1 − α(B)) can be inverted, then
we obtain an explicit representation of σ 2

t as a function of past observations (Nelson
and Cao 1992):

σ 2
t = (

1 − α(1)
)−1

β0 + (
1 − α(B)

)−1
β(B)X2

t =: b0 +
∞∑

j=1

bjX
2
t−j , (2.26)

where bj (j ≥ 1) are the coefficients in the power series expansion of β(z)/(1 −
α(z)):

bj = 1

j !
dj

dzj

( ∑q

j=0 βj z
j

1 −∑p

j=1 αizj

)∣∣∣∣
z=0

. (2.27)

It can be shown that the asymptotic decay of the coefficients bj is exponential (see
e.g. Kokoszka and Leipus 2000), so that autocovariances of σ 2

t (and hence X2
t ) are

summable.

2.1.3.3 IGARCH (Integrated GARCH) Processes

Consider first an ARCH(1) model, Xt = σtεt , σ 2
t = b0 +b1X

2
t−1 with b1 = 1, b0 > 0

and E[ε2
1] = 1. Suppose that Xt is a solution such that E[X2

t ] does not depend
on time t . This is called an IARCH(1) process. Since by assumption the second
moment does not depend on time, we have E[X2

t ] = E[σ 2
t ] = b0 + E[σ 2

t ]. Now
b0 
= 0, so that the last equation implies that the variance of Xt is infinite. Note also
that, as in Eq. (2.25), we can write

(I −B)X2
t = b0 +Zt (2.28)

with Zt = X2
t − σ 2

t = X2
t − E[X2

t |Xs, εs, s ≤ t − 1] uncorrelated. This resembles
the equation for a random walk with drift. However, in contrast to random walk,
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a strictly stationary solution (though with an infinite variance) exists under suitable
conditions. The IARCH(1) definition can be generalized to IGARCH(p, q) mod-
els with parameters αi,βj in (2.23) satisfying the unit root condition

∑p

j=1 αj +
∑q

j=1 βj = 1.

2.1.3.4 ARCH(∞) Processes

Using general coefficients bj in the representation (2.26) of the conditional variance
leads to the following definition.

Definition 2.1 Let bj ≥ 0 (j = 0,1,2, . . .) and suppose that εt (t ∈ Z) are i.i.d.
zero mean random variables. Then Xt (t ∈ Z) is called an ARCH(∞) process if it
is a second-order and/or strictly stationary solution of

Xt = σtεt , (2.29)

σ 2
t = b0 +

∞∑

j=1

bjX
2
t−j . (2.30)

Usually, it is also assumed that the first two moments of εt are finite and σ 2
ε =

var(εt ) = 1. The reason for the latter assumption is identifiability since statistically
the parameter σ 2

ε is not distinguishable from b0. A more general definition is given
by Robinson (1991).

Definition 2.2 Let bj ≥ 0 (j = 0,1,2, . . .) and ξt (t ∈ Z) be i.i.d. nonnegative ran-
dom variables. Then a process Yt (t ∈ Z) is called an ARCH(∞) process if it is a
second-order and/or strictly stationary solution of

Yt = vt ξt ,

vt = b0 +
∞∑

j=1

bjYt−j .
(2.31)

Note that the second definition includes the first one by setting Yt = X2
t , vt = σ 2

t

and ξt = ε2
t . Another possibility is for instance Yt = |Xt |α , vt = σα

t and ξt = |εt |α
for some α > 0.

Many general results on ARCH(∞) models can be found in Kokoszka and Lei-
pus (2000), Giraitis et al. (2000a), Kazakevičius and Leipus (2002, 2003) and Gi-
raitis et al. (2006). The first question to be answered is under which conditions a
stationary solution exists. Above, we essentially answered the question for GARCH
processes. More general results for arbitrary ARCH(∞) models are discussed for
instance in Giraitis et al. (2000a). The basic idea is to first obtain a Volterra expan-
sion by recursion (initially without checking its validity formally) and then to check
mathematically that (or rather under which assumptions) this is indeed a solution
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and in how far it is unique. The Volterra expansion—if convergent—is obtained as
follows:

Yt = ξt

(
b0 +

∞∑

j=1

bj ξt−j vt−j

)

= ξt

(
b0 +

∞∑

j1=1

bj1ξt−j

(
b0 +

∞∑

j2=1

bj2ξt−j1−j2vt−j1−j2

))

= · · · = ξtb0

∞∑

l=0

∞∑

j1,...,jl=1

bj1 . . . bjl ξt−j1 . . . ξt−j1−···−jl , (2.32)

where the inner sum is understood as 1 for l = 0. A more concise notation is

Yt = b0

∞∑

l=0

Ml(t), (2.33)

where M0(t) = ξt , and

Ml(t) =
∞∑

j1,...,jl=1

bj1 · · ·bjl ξt ξt−j1 · · · ξt−j1−···−jl

=
∞∑

jl<jl−1<···<j1<t

bt−j1bj1−j2 · · ·bjl−1−jl ξt ξj1 · · · ξjl . (2.34)

The following theorem establishes sufficient conditions under which Xt is a station-
ary solution of (2.31) with finite expected value (see Kokoszka and Leipus 2000,
Giraitis et al. 2000a).

Theorem 2.2 Under the assumptions

μξ = E(ξt ) < ∞ (2.35)

and

μξ

∞∑

j=1

bj < 1, (2.36)

(2.33) is a strictly stationary solution of (2.31). (If b0 = 0, then Xt = 0 almost
surely.) Moreover, E(Yt ) < ∞, and Yt is unique in the class of nonanticipatory
solutions, where nonanticipatory means that Yt is independent of ξs (s ≥ t + 1). If
in addition

μξ2 = E
(
ξ2
t

)
< ∞ (2.37)
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and

μ
1/2
ξ2

∞∑

j=1

bj < 1, (2.38)

then Yt is also a unique second order stationary solution.

Remark 2.1 It should be mentioned that condition (2.38) is sufficient but not nec-
essary for the existence of a second-order stationary solution Yt (see Giraitis et al.
2006).

Proof All ξ ’s in Ml(t) are independent, so that

E
[
Ml(t)

] =
∞∑

j1,...,jl=1

bj1 · · ·bjlE(ξt ξt−j1 · · · ξt−j1−···−jl )

= μl+1
ξ

∞∑

j1,...,jl=1

bj1 · · ·bjl = μξ

(
μξ

∞∑

j=1

bj

)l

.

Since by assumption 0 ≤ μξ

∑∞
j=1 bj < 1, we have

0 ≤ E(Yt ) = μξb0

∞∑

l=0

(
μξ

∞∑

j=1

bj

)l

< ∞.

Since Yt ≥ 0, this also implies that Yt is finite almost surely and hence well defined.
Moreover, Yt is clearly strictly stationary and a solution of (2.31). For uniqueness,
we refer to Giraitis et al. (2000a).

The only result that remains to be proven is that the condition μ
1/2
ξ2

∑∞
j=1 bj < 1

implies the finiteness of E(Y 2
t ). First of all, note that

γY (k) = cov(Y0, Yk) = b2
0

∞∑

r,s=0

cov
(
Mr(0),Ms(k)

) = b2
0

∞∑

r,s=0

γM(k; r, s)

and, using the second part of (2.34),

γM(k; r, s) =
∑

js<···<j1<k
lr<···<l1<0

bk−j1bj1−j2 · · ·bjs−1−js b−l1bl1−l2 · · ·blr−1−lr

× cov(ξkξj1 · · · ξjs , ξ0ξl1 · · · ξlr ).
The result then follows by relatively simple but tedious algebra (for details, see
Giraitis et al. 2000a). Specifically, it can be shown that

0 ≤ γY (k) ≤ μξ2b
2
0

∞∑

l=0

Dl,
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where

D = μ
1/2
ξ2

∞∑

j=1

bj < 1.

This implies the finiteness of γY (k), k ≥ 0. �

Note that the nonexistence of a stationary solution Yt with finite mean under the
condition μξ

∑∞
j=1 bj = 1 and b0 > 0 can easily be seen by inverting the defining

equation. Assume that vt (t ≥ 0) is stationary and let μv = E(vt ). Then taking the
expected value in (2.31) leads to

E(Yt ) = μξE(vt ) = μξμv

= μξ

(
b0 +

∞∑

j=1

bjμξE(vt−j )

)

= μξ

(
b0 +μξμv

∞∑

j=1

bj

)
.

Since μξ 
= 0, this means

(
1 −μξ

∞∑

j=1

bj

)
μv = b0,

so that μξ

∑∞
j=1 bj = 1 (and μv < ∞) implies b0 = 0, which is a contradiction to

the assumption b0 > 0.

Example 2.3 For the standard ARCH(∞) process in Definition 2.1, Theorem 2.2
means that a unique strictly stationary solution with finite mean E(X2

t ) is given by

X2
t = b0

∞∑

l=0

∞∑

j1,...,jl=1

bj1 · · ·bjl ε2
t ε

2
t−j1

· · · ε2
t−j1−···−jl

,

whenever

σ 2
ε = E

(
ε2
t

)
< ∞

and

σ 2
ε

∞∑

j=1

bj < 1.
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Note that Xt itself is then also second-order stationary. Under the usual specification
σ 2
ε = 1, this means

∞∑

j=1

bj < 1.

Moreover, the process X2
t is also second-order stationary if

E
(
ε4
t

)
< ∞

and
√
E
(
ε4
t

) ∞∑

j=1

bj < 1.

For instance, if εt are standard normal, then we have the conditions
∑

bj < 1 and√
3
∑

bj < 1, or, in other words, just the condition

∞∑

j=1

bj <
1√
3

≈ 0.577.

The second question that has to be addressed is how fast γY (k) converges to zero.
Based on the following theorem, it follows that Yt is a short-memory process:

Theorem 2.3 If

D = μ
1/2
ξ2

∞∑

j=1

bj < 1, (2.39)

then

0 ≤
∞∑

k=−∞
γY (k) < ∞. (2.40)

Proof An extended computation in Giraitis et al. (2000a) yields

∞∑

k=0

γM(k; r, s) ≤ μξ2D
r+s(r + 1)(s + 1).

Thus,

∞∑

k=−∞
γY (k) = b2

0

∞∑

k=−∞

∞∑

r,s=0

γM(k; r, s)

≤ 2μξ2b
2
0

∞∑

r,s=0

Dr+s(r + 1)(s + 1)
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= 2μξ2b
2
0

[ ∞∑

r=0

Dr(r + 1)

]2

< ∞

since 0 <D < 1. �

The exact rate at which γY (k) converges to zero is determined by the coeffi-
cients bj as follows.

Theorem 2.4 If

D = μ
1/2
ξ2

∞∑

j=1

bj < 1 (2.41)

and either (a) bj = Cϕj (j → ∞) for some ϕ ∈ (0,1) and C ≥ 0, or (b) bj ∼ Cj−α

(j → ∞) for some α > 1, then there exists a constant 0 <C2 < ∞ such that

γY (k) ≤ C2
[
ϕ(1 +C)

]k (2.42)

in case (a) and

γY (k) ∼ C2k
−α (2.43)

in case (b).

Proof For the exponential case, we refer to Kokoszka and Leipus (2000). For the
hyperbolic case, the proof is given in Giraitis et al. (2000a). Here, we just sketch the
idea of the proof of (b) briefly. Recall that

γY (k) = cov(Y0, Yk) = b2
0

∞∑

r,s=0

γM(k; r, s).

The result then follows from the inequality

γM(k; r, s) ≤ C∗k−α(r + 1)α+2(s + 1)α+2Dr+s

(and a similar lower bound) with C∗ suitably chosen since then, for suitable 0 <

C̃,C < ∞,

γY (k) ≤ C̃k−α
∞∑

r,s=0

(r + 1)α+2(s + 1)α+2Dr+s

= C̃k−α

[ ∞∑

r=0

(r + 1)α+2Dr

]2

≤ Ck−α.

The main technical difficulty is to prove the inequality for γM(k; r, s). Again we
omit the elaborate though in principle not too difficult proof (see Giraitis et al.
2000a). �
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The results in Theorems 2.3 and 2.4 imply that long-range dependence cannot
be achieved under the given assumptions. However, one may come very close to the
case of intermediate memory since α may be arbitrarily close to 1.

2.1.3.5 IARCH(∞) and FIGARCH Models

As we noted in the case of the standard ARCH(∞) model (see Example 2.3), the
existence of a second-order stationary solution of

Xt = σtεt (2.44)

and

σ 2
t = b0 +

∞∑

j=1

bjX
2
t−j , (2.45)

with finite variance requires
∑∞

j=1 bj < 1. In particular, long memory is ruled out.
If
∑∞

j=1 bj = 1, then in analogy to IGARCH processes, Xt is called an IARCH(∞)

process and has necessarily an infinite variance. A particular example is the so-
called FIGARCH(0, d,0) process. To motivate the definition, recall (2.28), i.e.
(I − B)X2

t = b0 + Zt . Replacing (I − B) by the fractional differencing operator
(I − B)d (d ∈ (0,1/2)), we obtain (I − B)dX2

t = b0 + (X2
t − σ 2

t ). Equivalently, a
FIGARCH(0, d,0) process is defined as the solution of Eqs. (2.44) and

σ 2
t = b0 + (

I − (I −B)d
)
X2

t , (2.46)

where εt (t ∈ Z) are i.i.d. zero-mean unit-variance random variables.
A FIGARCH(0, d,0) process has the representation (2.45) with coefficients bj de-
fined by

∑∞
j=1 bjB

j = I − (I − B)d . From the properties of (1 − B)d it follows

that bj ∼ cj−(d+1) and
∑∞

j=1 bj = 1. The FIGARCH(0, d,0) model and its more
general version FIGARCH(p,d, q) were introduced in Baillie et al. (1996a) with-
out proving their existence. Sufficient conditions for the existence of a stationary
solution of (2.44) and (2.45) were given in Douc et al. (2008).

Theorem 2.5 Let μp = E[|ξ0|2p] < ∞ and Ap = ∑∞
j=1 b

p
j . If

μpAp < 1,

then a stationary solution of (2.44)–(2.45) exists and is given by the infinite Volterra
series. Furthermore, E[|X1|2p] < ∞.

We can see that for p = 1, Theorem 2.5 includes the statement of Theorem 2.2.
We give a short proof since it is very similar to the proof of Theorem 2.2.
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Proof Writing the formal Volterra expansion

σ 2
t = b0

∞∑

l=0

∞∑

j1,...,jl=1

bj1 · · ·bjl ε2
t−j1

· · · ε2
t−j1−···−jl

,

and applying the independence of the εt ’s and the inequality (a + b)p ≤ ap + bp ,
we obtain

E
[
σ

2p
t

] ≤ b
p

0

[
1 +

∞∑

l=1

(μpAp)
l

]
= b

p

0

1 −Apμp

.

This shows the finiteness of E[σ 2p
t ] and of E[|Xt |2p]. �

Theorem 2.5 is particularly interesting for the case with A1 = μ1 = 1 as in the
IARCH(∞) and FIGARCH(0, d,0) models. If at the same time Apμp < 1 for some
p ∈ (0,1), then Theorem 2.5 implies that a stationary solution with a finite moment
of order 2p, but necessarily an infinite variance, exists. The question is then whether
and under which conditions it is possible to have Apμp < 1 in spite of the condi-
tion A1 = 1. A partial answer is provided in Douc et al. (2008). They show that a
sufficient condition is

∞∑

j=1

bj log(bj )+E
[
ε2 log

(
ε2)]< ∞.

In particular, the FIGARCH(0, d,0) coefficients fulfill this condition.
The next question is in which sense FIGARCH processes exhibit long-range de-

pendence. Currently, this is still an open problem. In particular, it is not clear if d is
linked in any way to long-memory properties of the sequence.

2.1.3.6 LARCH(∞) Models

As mentioned above, second-order stationary ARCH(∞) processes cannot capture
long memory in volatility. Robinson (1991) introduced the so-called linear ARCH
(LARCH) process defined by

Xt = εtσt , (2.47)

σt = b0 +
∞∑

j=1

bjXt−j , (2.48)

where εt are i.i.d. zero mean random variables with σ 2
ε = E(ε2

t ) = 1. The model is
again of the form (2.22), and hence E(Xt | Xs, s < t) = 0. Furthermore, Xt is a mar-
tingale difference. The essential modification compared to ARCH(∞)-processes is
that σt instead of σ 2

t is expressed as a linear function of Xt (instead of X2
t ). A rigor-

ous treatment of probabilistic aspects, such as stationarity and moment assumptions,
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was given in Giraitis et al. (2000c, 2004). As we will see below, the conditional vari-
ance σ 2

t in a LARCH(∞) model may exhibit long memory, which is in contrast to
ARCH(∞) models. On the other hand, σt can become negative, so that it may be
more difficult to interpret it directly as volatility.

The first question that needs to be addressed is again whether a stationary solution
exists. The following notation will be used:

‖b‖p =
( ∞∑

j=1

|bj |p
) 1

p

,

μp = E
[
ε
p
t

]
, |μ|p = E

[|εt |p
]
,

where p ∈ N. By repeated iteration of (2.47) the candidate for a solution can be
written formally as

σt = b0

(
1 +

∞∑

k=1

∞∑

j1,...,jk=1

bj1 · · ·bjk εt−j1 · · · εt−j1−···−jk

)
. (2.49)

Equivalently,

σt = b0

(
1 +

∞∑

k=1

∞∑

jk<···<j1=t

bt−j1 · · ·bjk−1−jk εj1 · · · εjk
)
. (2.50)

Whether the expression on the right-hand side is well defined in the sense of mean
squared convergence is easy to check because the set A = {εs1 · · · εsk : s1 < · · · <
sk, k ≥ 1} is a an orthogonal system in L2(Ω). Hence,

var(σt ) = b2
0

∞∑

k=1

∞∑

j1,...,jk=1

b2
j1

· · ·b2
jk

= b2
0

∞∑

k=1

‖b‖2k
2 = b2

0‖b‖2
2

1 − ‖b‖2
2

.

Since E[σt ] = b0 we also have

E
[
σ 2
t

] = b2
0

1 − ‖b‖2
2

. (2.51)

This means that ‖b‖2
2 < 1 is a necessary and sufficient condition for the L2-

convergence of the series. By construction, σt defined by this Volterra expansion
solves Eqs. (2.47) and (2.48). Note also that, in analogy to ARCH(∞) processes, b0
should be assumed to be nonzero because otherwise σt = 0 almost surely. The main
difference compared to ARCH(∞) processes is that only a condition on the summa-
bility of b2

j is required. Therefore, the absolute values |bj | need not be summable.
This is the key to obtaining long-range dependence in volatility. Note also that the
coefficients bj need not be positive.

These results can be summarized as follows (Giraitis et al. 2004):
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Theorem 2.6

(i) A nonanticipative solution Xt of (2.47) and (2.48) with supt E(X2
t ) < ∞ exists

if and only ‖b‖2 < 1. Moreover, this solution is unique, it is given by (2.49), and
it is strictly and second-order stationary.

(ii) If b0 = 0 and ‖b‖2 < ∞, then σt = 0 a.s. is a unique solution of (2.47) and
(2.48).

The second question is at what rate the autocovariance functions of σt and X2
t

respectively decay to zero. Here it is much easier to obtain the answer than for
ARCH processes. The reason is that, since Xt are uncorrelated,

σt = b0 +
∞∑

j=1

bjXt−j (2.52)

is the Wold representation of σt . Thus,

γσ (k) = cov(σt , σt+k) (2.53)

= σ 2
X

∞∑

j=1

bjbj+k = E
(
σ 2
t

) ∞∑

j=1

bjbj+k (2.54)

= b2
0

1 − ‖b‖2
2

∞∑

j=1

bjbj+k (2.55)

and

ρσ (k) =
∑∞

j=1 bjbj+k

‖b‖2
2

.

The long-range dependence for σt then follows the same way as for linear processes
(see Lemma 2.1):

Corollary 2.1 Suppose that

bj ∼ cbj
d−1 (j → ∞)

with d ∈ (0, 1
2 ) and 0 < cb < ∞. Then

cov(σt , σt+k) ∼ c2
σ k

2d−1 (k → ∞),

where

c2
σ = c2

bE
[
σ 2

0

]
B(1 − 2d, d)

= c2
bb

2
0

1 − ‖b‖2
B(1 − 2d, d).
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A somewhat more involved proof shows that the long-memory property of σt
carries over to X2

t . More generally, Giraitis et al. (2000c) derive correlations for
powers of Xt as follows:

Theorem 2.7 Assume that μ2p = E[ε2p
t ] < ∞ for some p ∈N and

(
4p − 2p − 1

)
μ

1/p
2p ‖b‖2

2 < 1.

Moreover, suppose that

bj ∼ cbj
d−1 (j → ∞)

with d ∈ (0, 1
2 ), 0 < cb < ∞, and let

C(m) = μm

mE[σm
0 ]

b0
cσ .

Then for m = 2, . . . , p,

γXm(k) = cov
(
Xm

t ,X
m
t+k

) ∼ C2(m)|k|2d−1

as k → ∞.

Proof The proof in Giraitis et al. (2000c) is quite involved, so that we omit details.
The general idea is as follows: Setting yt,m := (εmt −μm)σ

m
t , we have the orthogonal

decomposition

Xm
t = μmσ

m
t + yt,m. (2.56)

Since Xt = σtεt and εt is independent of the past, we have, for k > 0,

cov(yt,m, yt+k,m) = E
[(
εmt −μm

)
σm
t

(
εmt+k −μm

)
σm
t+k

]

= E
[(
εmt −μm

)
σm
t σm

t+k

]
E
[
εmt+k −μm

] = 0

and also

cov
(
σm
t , yt+k,m

) = E
[
σm
t

(
εmt+k −μm

)
σm
t+k

]

= E
[
σm
t σm

t+k

]
E
[
εmt+k −μm

] = 0.

This leads to the decomposition

cov
(
Xm

t ,X
m
t+k

) = cov
(
μmσ

m
t + yt,m,μmσ

m
t+k + yt+k,m

)

= μ2
mcov

(
σm
t , σm

t+k

)+μmcov
(
yt,m, σ

m
t+k

)
.

Under the assumption that bj ∼ cbj
d−1 (j → ∞), it can then be shown that, as k

tends to infinity,

cov
(
σm
t+k, yt,m

) = o
(
k2d−1)
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and that

cov

(
σm
t − mE[σm

0 ]
b0

σt , σ
m
t+k − mE[σm

0 ]
b0

σt+k

)
= o

(
k2d−1). (2.57)

From (2.57) one then concludes that, as k → ∞,

cov
(
σm
t , σm

t+k

) ∼
(
mE[σm

0 ]
b0

)2

cov(σt , σt+k).

Applying Corollary 2.1 yields

cov
(
Xm

t ,X
m
t+k

) ∼ μ2
m

(
mE[σm

0 ]
b0

)2

cσ k
2d−1. �

This result is quite remarkable since the asymptotic rate at which autocorrelations
of Xm

t decay does not depend on m, only the constant changes. This is very much
in contrast to results on nonlinear transformations applied to linear processes (see
e.g. Corollary 3.6). Note also that the condition (4p − 2p − 1)μ1/p

2p ‖b‖2
2 < 1 makes

sure that the first 2p moments of Xt exist. A more general result on the existence of
moments with weaker assumptions is given in Giraitis et al. (2004). The sufficient
conditions used in their proofs are the following:

Condition 2.1 (M3) |μ|3 < ∞ and

|μ|1/3
3 ‖b‖3 + 3θ‖b‖2 < 1,

where θ is such that

3θ2 − 3θ − 1 = 0.

Condition 2.2 (M2p) |μ|2p < ∞ and

2p∑

j=2

(
2p

j

)
‖b‖jj |μ|j < 1.

Theorem 2.8 Suppose that (Mr ) holds where either r = 3 or r = 2p for p ≥ 2.
Then

E
[|σt |r

]
< ∞, E

[|Xt |r
]
< ∞.

With increasing r the conditions (Mr ) imply stronger restrictions on the coeffi-
cients bj . In the original derivation of the strictly and second-order stationary solu-
tion, only E(ε2

t ) < ∞ and ‖b‖2 < 1 were assumed. Thus, no assumption that links
bj and the moments of εt is needed. This is not the case for higher moments.
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Somewhat simple but much stronger conditions that imply (Mr ) can be given as
follows. For (M3), this is

(M̃3) ‖b‖2 <
1

|μ|1/3
3 + 3.81

.

Condition (M4) follows from

(M̃4) ‖b‖2 <
1√|μ|4 + 4|μ3| + 6

,

and for p ≥ 3, one may impose the sufficient condition

(M̃2p) ‖b‖2 <
1√∑2p

j=2

(2p
j

)|μj |
.

To show that these conditions imply the previous ones, one observes first that
θ ≈ 1.27. This implies ‖b‖r < 1 (and hence ‖b‖kr ≤ ‖b‖r for k ≥ 1) for each of
the norms involved in the inequalities and ‖b‖r ≤ ‖b‖2. Since the right-hand side of
these inequalities is smaller than one, these are much more restrictive assumptions
than the initial inequality ‖b‖2 < 1. It should be noted at the same time that the
conditions linking moments of εt and the coefficients bj do not restrict the range
of possible rates at which bj converges to zero. The reason is that as long as the
norm ‖b‖r is finite, it can be can be made arbitrarily small by multiplying bj with a
suitable constant.

Example 2.4 Let εt be i.i.d. N(0,1) distributed. Then μ2k+1 = 0, μ2k = (2k −
1)(2k − 3) · · · 1 (k ≥ 1) and |μ|3 = √

8/π . Condition (M̃3) can then be written as

‖b‖2 <
1

(8/π)
1
6 + 3.81

≈ 0.2008.

Consider, for instance, bj = j−2/3 = jd−1 with d = 1/3. Then

‖b‖2 =
√√√√

∞∑

j=1

j−4/3 ≈ 1.8976.

Thus, in order that a stationary solution with a finite second moment exists, we
need to divide bj at least by a factor of about 1.9. This result is independent of the
distribution of εt . On the other hand, if we want that the third moment of Xt is finite
and we know that εt are N(0,1) distributed, then we need to divide by a factor

c > 1.8976/0.2008 ≈ 9.45.

Obviously this is a much stronger restriction.
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It can be shown that the moment conditions (M2p) are weaker than the condition

(4p −2p−1)μ1/p
2p ‖b‖2

2 < 1 used in Theorem 2.7. (It may be conjectured that (M2p)

is sufficient to establish the decay of covariances in Theorem 2.7.)

2.1.3.7 LARCH+(∞) Processes

As mentioned above, the ‘volatility’ σt in the LARCH(∞) process is not necessar-
ily positive. Since one would like to interpret σt as a standard deviation, various
suggestions how to make σt positive have been discussed in the literature. Here, we
describe the approach proposed by Surgailis (2008). Recall that a LARCH process
can be written as

Xt = εtσt = b0εt + εt

∞∑

j=1

bjXt−j ,

where εt (t ∈ Z) are i.i.d. zero mean random variables with unit variance. Consider
now two mutually independent i.i.d. sequences ηt and ξt (t ∈ Z) with zero mean and
unit variance, and modify Xt as follows:

Xt = b0ηt + ξt

∞∑

j=1

bjXt−j =: b0ηt + ξtAt . (2.58)

More generally, one may also include the possibility of a correlation ρ = cor(ξt , ηt )
between ξt and ηt (see Surgailis 2008). Note that for ρ = 1, one is back to the
original LARCH model. Here, we focus on the simpler case with ρ = 0. Note that
it is not clear immediately that Xt can be written in the “standard” volatility form
Xt = σtεt . This will be shown below.

To derive the stationary solution, we write the formal Volterra expansion

Xt = b0

(
ηt + ξt

∑

k=1

∑

j1,...,jk

bj1 · · ·bjk ξt−j1 · · · ξt−j1−···−jk−1ηt−j1−···−jk

)
.

This expansion implies immediately that Xt are uncorrelated and E(Xt) = 0. Fur-
thermore, since E(η2

1) = E(ξ2
1 ) = 1, we obtain

var(Xt ) = b2
0 + b2

0
‖b‖2

2

1 − ‖b‖2
2

.

Again, as in the standard LARCH(∞) case, it can be shown that ‖b‖2 < 1 is neces-
sary for the existence of a unique second-order stationary solution.

Let Ft be the sigma field generated by ξs, ηs (s ≤ t). Now, we will show that Xt

in (2.58) can be written as Xt = σtεt , where σt is Ft−1-measurable, and εt (t ∈ Z)
is a martingale difference with respect to Ft . For a moment, we do not impose any



72 2 Origins and Generation of Long Memory

form on σt , except for measurability. For uniqueness, we will impose the additional
condition E[ε2

t |Fs , s < t] = 1. Define

εt = b0ηt + ξtAt

σt
.

Since (ξt , ηt ) is independent of Ft−1, we have the martingale difference property

E[εt | Ft−1] = σ−1
t

(
b0E[ηt ] +AtE[ξt ]

) = 0.

Furthermore,

E
[
ε2
t

∣∣Fs , s < t
] = E

[
b2

0η
2
t

σ 2
t

∣∣∣∣Fs , s < t

]

+ 2E

[
b0ηtξtAt

σ 2
t

∣∣∣∣Fs , s < t

]
+E

[
ξ2
t A

2
t

σ 2
t

∣∣∣∣Fs , s < t

]

= b2
0 +A2

t

σ 2
t

,

so that the imposed condition E[ε2
t |Fs , s < t] = 1 yields

σ 2
t = b2

0 +A2
t

(which is clearly measurable with respect to Ft−1). We summarize these findings in
the following theorem, which is a simplified version of Surgailis (2008).

Theorem 2.9 Assume that
∑∞

j=1 b
2
j < 1. Then Xt in (2.58) has the unique strictly

and second-order stationary solution given by

Xt = σtεt ,

where

σt =
√
b2

0 +A2
t

and

εt = b0ηt + ξtAt

σt

with

At =
∞∑

j=1

bjXt−j ,

and εt (t ∈ Z) is a martingale difference with respect to Ft such that E[ε2
t |Fs , s <

t] = 1.
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Thus, the LARCH+(∞) process can be written in the form (2.22), with σt > 0
interpretable directly as the conditional standard deviation of Xt . However, in con-
trast to the LARCH(∞) model, the conditional variance σ 2

t is not defined explicitly.
Instead, it follows implicitly from the construction of the model. Moreover, the ran-
dom variables εt (t ∈ Z) are no longer i.i.d. Note finally that the advantage of the
LARCH+(∞) model is that one can model heavy tails by choosing ηt to be regu-
larly varying.

2.1.3.8 SV (Stochastic Volatility) Models

The mathematical difficulty with defining volatility models by recursive equations
such as (2.23), (2.30) or (2.48) is that it is not clear a priori whether a solution (in
particular a stationary solution) exists. Moreover, it is difficult to design recursive
models with long memory. An alternative approach where existence is much easier
to show and long memory is easy to generate is to define a process explicitly as a
function of existing processes. This may be done, for instance, as follows.

Definition 2.3 Let εt (t ∈ Z) be a sequence of i.i.d. random variables with
E(εt ) = 0, independent of a stationary sequence σt (t ∈ Z). Then

Xt = σtεt

is called a stochastic volatility (SV) model. If σt is a long-memory process, then Xt

(t ∈ Z) is called a long-memory stochastic volatility model (LMSV).

To allow for more generality, we may consider SV models with leverage.

Definition 2.4 Let εt (t ∈ Z) be a sequence of i.i.d. random variables with E(εt ) = 0
and σt (t ∈ Z) a stationary sequence. Moreover, assume that εt is independent of
{σs, s ≤ t}. Then

Xt = σtεt

is called a stochastic volatility (SV) model with leverage.

As we mentioned in the introduction to this section, there is no consensus on
what is meant by a “stochastic volatility” model. In time series analysis all mod-
els of the form Xt = σtεt are called informally volatility models. In particular, a
GARCH(p, q) process is a volatility process. In financial mathematics (and in par-
ticular in option pricing) “stochastic volatility” rather means the presence of two
independent “noise components”; one being the noise sequence εt and the other one
coming in via the definition of σt . This is the case for instance in Definition 2.3.
On the other hand, if dependence between sequences σt and εt is introduced, then
we have a leverage effect, that is, a dependence between previous returns Xt−1
and future volatilities σt . In particular, Definition 2.3 excludes ARCH(∞) pro-
cesses, whereas Definition 2.4 is very general and includes Definition 2.3 as well as
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ARCH(∞) models. However, this becomes clear only after it has been established
that a solution of the ARCH(∞)-equation exists such that σt has the properties
above.

The point of Definitions 2.3 and 2.4 is that we may start with any i.i.d. sequence
εt and any stationary process σt . Thus, if we have such processes already, then the
existence of Xt is guaranteed. For instance, a simple explicit model is obtained by
setting σt = V (ζt ) where V is a positive function and ζt = ∑∞

j=1 ajηt−j is a linear
process with (ηt , εt ) (t ∈ Z) being a sequence of i.i.d. random vectors. In particular,
if V (x) = exp(x) and ηt = g(εt ) with a deterministic function g, then the model
is called an EGARCH model. The letter “E” stands for exponential (see Nelson
1990). Its long-memory modification, with aj being FARIMA(p, d, q) weights, the
so-called Fractionally Integrated Exponential GARCH (FIEGARCH) model, was
introduced in Bollerslev and Mikkelsen (1996). The special case where ζt (t ∈ Z) is
Gaussian with long memory and independent of εt (t ∈ Z) was considered in Breidt
et al. (1998). They called the process a long-memory stochastic volatility model
(LMSV), as we did in Definition 2.3.

Due to the simple explicit form, it is relatively easy to characterize the depen-
dence structure of SV models with or without leverage. First, from the definitions it
is obvious that Xt is a martingale difference. For instance, if vε = E(ε2

t ) < ∞ and
vσ = E(σ 2

t ) < ∞, then, for k ≥ 1,

γX(k) = E[εt εt+kσtσt+k] = E
[
E(εtεt+kσtσt+k|εs, σs, s ≤ t)

]

= E[εt+k]E[Eεtσtσt+k] = 0.

Moreover, if E(ε4
t ) < ∞, then

E
(
X2

t X
2
t+k

) = vεE
(
ε2
t σ

2
t σ

2
t+k

)
,

E
(
X2

t

) = vεE
(
σ 2
t

)
,

and

γX2(k) = vε
[
E
(
ε2
t σ

2
t σ

2
t+k

)− vεE
2(σ 2

t

)]
. (2.59)

In particular, if Xt is an SV model as in Definition 2.3, then

γX2(k) = v2
εcov

(
σ 2

0 , σ
2
k

)
. (2.60)

To obtain more explicit results, one needs to assume a more specific structure of σt .
For instance, if σt = V (ζt ) = exp(ζt ), E(η2

t ) < ∞ and aj = La(j)j
d−1 (0 < d <

1
2 ), then the long-memory property of the linear process ζt is inherited by σt , σ 2

t and
X2

t , because the exponential function has Appell rank 1 (this is explained in more
detail in Sects. 3.3 and 4.2.5). For the volatility component of Xt , we obtain

γσ (k) = cov
(
exp(ζt ), exp(ζt+k)

)
,

γσ 2(k) = cov
(
exp(2ζt ), exp(2ζt+k)

)
,
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so that, as k → ∞,

γσ (k) ∼ const · γζ (k) ∼ const ·L2
a(k)k

2d−1,

γσ 2(k) ∼ const · γζ (k) ∼ const ·L2
a(k)k

2d−1.

Combining the last approximations with (2.60), for the LMSV model, we obtain

γX2(k) ∼ const ·L2
a(k)k

2d−1. (2.61)

In the case of an SV model with leverage, (2.59) and the result for γσ 2(k) do not
yield (2.61) immediately. Nevertheless, the asymptotic formula for γX2(k) is still
valid, as shown in Harvey (1998) and Surgailis and Viano (2002).

Both Definitions 2.3 and 2.4 of stochastic volatility models also allow for mod-
elling heavy tails in Xt (and hence also in X2

t ) by using heavy-tailed innovations εt ,
i.e.

Fε(−x) = P(ε ≤ −x) ∼ (1 − p)x−α, F̄ε(x) = P(ε > x) ∼ px−α (x → ∞),

(2.62)
where p ∈ (0,1), and the tail index α is in the interval (1,∞). Since the mean exists,
we may use the assumption E(ε) = 0 (see also the discussion at the beginning of
Sect. 2.1.2). If the distribution of σt has lighter tails such that E(σα+δ) < ∞ for
some δ > 0, then the process Xt inherits the tail index from εt , i.e. (2.62) holds
for Xt with the same value of α as for εt . More specifically, we have by Breiman’s
lemma (see Resnick 2007, Proposition 7.5) that, as x → ∞,

P(Xt > x) ∼ pE
(
σα

)
x−α, P (Xt < −x) ∼ (1 − p)E

(
σα

)
x−α. (2.63)

Such heavy-tailed SV models were considered in Davis and Mikosch (2001) and
Kulik and Soulier (2011, 2012, 2013).

2.1.3.9 FARIMA Processes with GARCH Innovations (FARIMA-GARCH)

Linear long memory can also be combined with dependence in volatility. For in-
stance, Beran and Feng (2001a) consider FARIMA-GARCH models

(1 −B)dϕ(B)
(
Yi − g(ti)

) = ψ(B)ei,

where ei (i ∈ Z) is a stationary GARCH process, ti = i/n, and g(t) is a nonpara-
metric trend function (also see Ling and Li 1997 for a similar model and Baillie
et al. 1996b for some applications in finance). Giraitis and Surgailis (2002) define a
class of bilinear ARCH-type models with the possibility of having linear long-range
dependence as well as long memory in volatility.
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2.1.3.10 Multivariate Extensions

The extension of volatility models with long-range dependence to multivariate time
series is very important for financial applications. There is therefore a rapidly grow-
ing econometric literature on multivariate fractional volatility models. For recent
references, see e.g. Kirman and Teyssière (2002), Chiriac and Voev (2010), Flem-
ing and Kirby (2011), Bollerslev et al. (2012).

2.1.4 Counting Processes

2.1.4.1 Introduction

Assume that τj (j ∈ Z) is a strictly increasing sequence such that τ−1 < 0 ≤ τ0 < τ1.
This sequence can be interpreted as arrival times of a customer to a queueing system,
moments of claims from an insurance policy, initiation times of transmissions from
a source, etc. The increments Xj = τj − τj−1 (j ∈ Z) are often called interarrival
times or interpoint distances. By definition, Xj are strictly positive. If Xj are i.i.d.
with common marginal distribution F(x) = P(X1 ≤ x), then Xj (j ∈ Z) is called
a renewal sequence (on the real line), and τj are called renewal epochs. We will
assume that μ = E[X1] < ∞. By definition, the distribution of τ0 − τ−1 = X0 is the
same as that of X1,X2, . . . . The associated counting process is defined by

N(t) = #{j : τj ≤ t} =
∞∑

j=0

1
{
τj ∈ [0, t]} (t ≥ 0).

In other words, N(t) = 0 if τ0 > t and N(t) = k (k ≥ 1) if τk−1 ≤ t < τk . Recall
that the counting process is stationary if for each collection of Borel sets B1, . . . ,Bk

and any t ≥ 0, the distribution of (N(B1 + t), . . . ,N(Bk + t)) does not depend on t .
Here, B + t = {x + t : x ∈ B}, and N(B) counts number of points τj in the set B .
This can be achieved by placing “0” uniformly between τ−1 and τ0. The resulting
distribution of the distance between 0 and τ0 is given by

P(τ0 > x) = 1

μ

∫ ∞

x

F̄ (u) du = 1

μ

∫ ∞

x

(
1 − F(u)

)
du

=: F̄ (0)(x) = 1 − F (0)(x).

Unless stated otherwise, we will use the term “renewal process” quite loosely, to
describe either the interpoint distances Xj , the renewal epochs τj , or the counting
process N(t).

Alternatively, if one wants to start with the definition of renewal epochs on
[0,∞), one can define the renewal epochs sequence as τ0 ∼ F (0), where F (0) is
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an initial distribution, and

τj = τ0 +
j∑

k=1

Xk

with Xj (j ∈ N) being i.i.d. with common distribution F . A similar discussion is
applicable to any stationary sequence Xj of strictly positive random variables with
finite mean. The associated sequence τj (j ∈ Z) is referred to as points of a station-
ary point process. Moreover, the stationary renewal process N is associated with
two renewal functions U , Ũ defined by

U(t) = 1 +
∞∑

k=1

Fk∗(t)

with Fk∗(t) = P(X1 + · · · + Xk ≤ t) denoting the kth convolution of the distribu-
tion F , and

Ũ (t) =
∞∑

k=0

P(τk ≤ t) = E
[
N(t)

] = μ−1t =: λt.

For U(t), one has U(t)/t → λ as t → ∞, but U(t) = λt = Ũ (t) for all t holds only
if N(t) is a Poisson process with rate λ. Furthermore, N(t)/t → λ in probability as
t → ∞. The quantity λ is called the intensity or rate of the renewal process N . For
any stationary point process, we have E[N(t)] = λt . For more details on renewal
theory, see e.g. Resnick (1992), Chap. 3, and Daley and Vere-Jones (1988, 2007).

2.1.4.2 Long Memory in Counts

Consider a stationary point process τj (j ∈ Z). If the associated counting process N
is LRD in the sense of Definition 1.6, then following Daley and Vesilo (1997), we
say that the process has Long-Range count Dependence (LRcD). Here, “c” stands
for “count”.

Recall that for a stationary point process, we have E[N(t)] = λt . Therefore,
LRcD is equivalent to

lim
t→∞

var(N(t))

E[N(t)] = +∞.

The ratio V/E = var(N(t))/E[N(t)] is often referred to as the index of dispersion
Cox and Isham (1980), Fano Factor or normalized variance (Lowen and Teich 2005,
p. 66).

It is usually difficult to establish the LRcD property of the counting process as-
sociated with a stationary sequence Xj . The following theorem gives necessary and
sufficient conditions for a stationary renewal process to have the LRcD property.
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Note that this long memory does not have anything to do with dependence prop-
erties of the underlying renewal sequence of interpoint distances Xj . Instead, long
memory in counts is generated by heavy tails of F , the distribution of Xj .

Theorem 2.10 A stationary renewal process N is LRcD if and only if var(X1) =
+∞.

Proof We present the proof of sufficiency only. The complete proof can be found in
Daley (1999). Implicitly it was established in Feller (1971, pp. 331–332). Let X be a
generic random variable of a sequence of interpoint distances. The finiteness of the
second moment of the positive random variable X can be described by a condition
on F 0 or F . Indeed,

E
[
X2] = +∞ ⇐⇒

∫ ∞

0
F̄ 0(t) dt = +∞

⇐⇒
∫ ∞

0
t F̄ (t) dt = +∞. (2.64)

Recall the renewal function U(t) = 1 + ∑∞
k=1 F

k∗(t). Now, the variance function
of N(t) fulfills

var
(
N(t)

) = λ

∫ t

0

(
2
(
U(s)− λs

)+ 1
)
ds,

where U(t) is the renewal function (Daley and Vere-Jones 1988, p. 77). The function

Ṽ (t) = var
(
N(t)

)+ λt = 2λ
∫ t

0

(
U(s)− λs

)
ds

fulfills the renewal equation

Ṽ (t) =
∫ t

0
ds

∫ ∞

s

F̄ (v) dv +
∫ t

0
Ṽ (t − u)dF (u).

Appealing to the solution of the general renewal equation and using U(t) ≥ μ−1t ,
we obtain

Ṽ (t) = 2λ2
∫ t

0
dU(u)

∫ t−u

0
ds

∫ ∞

s

F̄ (v) dv

= 2λ2
∫ t

0
ds

∫ t−s

0
dU(u)

∫ ∞

s

F̄ (v) dv

= 2λ2
∫ t

0
U(t − s) ds

∫ ∞

s

F̄ (v) dv

= 2λ2
∫ t

0
U(s) ds

∫ ∞

t−s

F̄ (v) dv
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= 2λ2
∫ ∞

0
F̄ (v) dv

∫ t

(t−v)+
U(s) ds

≥ λ3
[∫ t

0
v(2t − v)F̄ (v) dv + t2

∫ ∞

t

F̄ (v) dv

]
. (2.65)

Therefore, dividing both sides of (2.65) by t , we have

Ṽ (t)/t = λ3
[∫ t

0
v

(
2 − v

t

)
F̄ (v) dv + t

∫ ∞

t

F̄ (v) dv

]

≥ λ3
[∫ t

0
vF̄ (v) dv + t

∫ ∞

t

F̄ (v) dv

]

because 0 < v/t < 1. Letting t → +∞, the right-hand side of the inequality tends
to +∞ if E[X2

1] = +∞. �

Example 2.5 Consider a stationary renewal process such that P(X1 > x) =
x−αL(x), α ∈ (1,2). Then

U(x)− x/μ ∼ x2−αL(x)

μ2(α − 1)(2 − α)
,

see Teugels (1968) or Daley and Vesilo (1997). Using the representation

Ṽ (t) = Var
[
N(t)

]+ λt = 2λ
∫ t

0

(
U(s)− λs

)
ds

and Lemma 1.1, we conclude

Ṽ (t) ∼ V (t) ∼ 2λ3 t3−αL(t)

(α − 1)(2 − α)(3 − α)
= 2λ3 t2HL(t)

(α − 1)(2 − α)(3 − α)
.

Thus, the renewal process is LRcD with Hurst parameter H = (3 −α)/2 ∈ (1/2,1).

The theorem can be extended to counting processes such that the interpoint dis-
tances have some (weak) dependence structure together with some monotonicity
properties (see Kulik and Szekli 2001).

Theorem 2.10 implies that one way of generating long memory in a counting
process is via heavy tails of interarrival distances. On the other hand, LRcD can be
generated by long memory of interpoint distances. This is illustrated by the follow-
ing example.

Example 2.6 (Long-Memory Markov Chain) Daley et al. (2000) considered the fol-
lowing long-range dependent sequence. Let {vn}n≥1 be an increasing sequence of
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positive real numbers and {πn}n≥1 a probability sequence. For the transition proba-
bility matrix

qij =

⎧
⎪⎨

⎪⎩

1 if j = i − 1, i ≥ 2,

1 − p if j 
= i, i ≥ 2, p ∈ (0,1),

πj otherwise,

consider a stationary Markov chain {Jn}n≥1 with the stationary distribution πi =
P(J1 = i), i ≥ 1. Then Xj (j ≥ 1) defined by Xj = vJj forms a stationary se-
quence. Under suitable conditions on vn and πn, the authors showed that Xj has a
finite variance and non-summable covariances. Therefore the sequence is LRD. Fur-
thermore, they showed that the associated counting process has the LRcD property.

Example 2.7 (Long-Memory Stochastic Duration) Consider two independent se-
quences εj , σj (j ∈ Z) where εj is an uncorrelated process. We assume that εj
are strictly positive, so that E[ε0] > 0. Then Xj = εjσj inherits the dependence
structure from σj since

cov(X0,Xk) = E(X0Xk)−E(X0)E(Xk) = E2[ε0]cov(σ0, σk).

Assume for instance that σ(y) = exp(y) and

σj = σ(ζj ), ζj =
∞∑

k=1

akξj−k,

where ζj is a long-memory Gaussian process with ak ∼ cak
d−1. The model Xj =

εj exp(ζj ) was introduced in Deo et al. (2007). The sequence Xj (j ∈ Z) has long
memory that propagates to the counting process N(t). It was shown in Deo et al.
(2009) that var(N(t)) ∼ Ct2d+1.

It should be mentioned that the asymptotic behaviour of the variance of the count-
ing process in Example 2.7 was not obtained from a direct computation (which may
be impossible), but rather from the limiting behaviour of N(t). More generally, if
the partial sums

∑[nt]
j=1 Xj converge to a fractional Brownian motion, then the as-

sociated counting process also converges weakly to fBm (see Sect. 4.2.6). Under
additional conditions (such as uniform integrability), one can derive the behaviour
of var(N(t)) from var(BH (t)).

It should be noted that this approach does not work for the LRcD renewal pro-
cess described above. There, the partial sums

∑[nt]
j=1 Xj converge weakly to a Lévy

process, which implies the (finite-dimensional) convergence of the counting process
to a Lévy process. Since the limiting Lévy process has infinite variance, we cannot
conclude anything about var(N(t)).

So far we saw that LRcD can be generated either by heavy tails or by long mem-
ory of interpoint distances. There are however also other possibilities.
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Example 2.8 (Mixed Poisson Process) The counting process N is a mixed Poisson
process if

P

(
n⋂

i=1

{
N(ti) = ki

}
)

=
∫ ∞

0

n∏

i=1

exp(−λti)
(λti)

ki

ki ! dG(λ), (2.66)

where G is a distribution of a strictly positive random variable Λ. We have
E[N(t)|Λ = λ] = λt and Var[N(t)] = Var[Λ]t2 + E[Λ]t . This implies that this
process is always LRcD if G is not trivial. Note that, in contrast to the renewal case,
in this process the interpoint distances can have a finite or infinite second moment,
depending on the choice of G.

Example 2.9 (Cox Processes) Let Λ(t) (t ≥ 0) be a stochastic process with abso-
lutely continuous trajectories, that is,

Λ(t) =
∫ t

0
λ(u)du,

where λ(u) (u ≥ 0) is a stationary, nonnegative random process, called intensity
process. Suppose, that N is a doubly stochastic Poisson (Cox) process driven by
Λ(t) (t ≥ 0). Recall (Daley and Vere-Jones 1988, p. 263) that

Var
[
N(t)

] = E
[
Λ(t)

]+ Var
[
Λ(t)

]
.

Therefore, N is LRcD if and only if Λ is long-range dependent in the sense of
Definition 1.6.

2.2 Physical Models

2.2.1 Temporal Aggregation

Often observed time series are temporal aggregations of (observable or hidden)
data generated on a finer time scale. The original time scale may be continuous,
and we observe (or decide to look) at discrete time points only. Typical examples
are daily average temperatures, monthly average discharge series of a river and so
on. In other cases, the original time scale is discrete, but we observe an aggregate
at an even lower time resolution. For instance, many economic variables reported
on a monthly basis are obtained by suitable averaging of daily data. Now, suppose
for instance that the original process Xi (i ∈ Z) is stationary and ergodic, and we
observe instead the aggregate

Yi,M =
iM∑

j=(i−1)s+1

Xj (i = 1,2, . . . , n) (2.67)
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for some M ∈ N. Note that, in this notation, a time interval of length k for the
aggregated process Yi,M corresponds to a time interval of length kM on the original
time axis. Defining N = nM and partial sums

SN(t) =
[Nt]∑

j=1

Xj ,

Yi,M can also be written as

Yi,M = SN(ti)− SN(ti−1)

with ti = iM/N . Now, from the previous chapter we know that the only limit the
standardized process

ZN(t) = SN(t)−E[SN(t)]√
var(SN(1))

can converge to is a self-similar process Z(t) (Lamperti 1962, 1972). Also, un-
less Xi is almost surely constant, the only scaling that is possible is var(SN(1)) ∼
L(n)n2H , where L(n) is a slowly varying function and 0 < H < 1. If the limit is
Gaussian, then Z(t) is necessarily a fractional Brownian motion BH . One may thus
say that self-similar processes play the same fundamental role in statistical infer-
ence for stochastic processes, as the normal distribution or more generally infinitely
divisible distributions play in inference for (marginal) distributions of random vari-
ables. In particular, if second moments exist, then the hyperbolic behaviour of the
spectral density at the origin (which also includes the possibility of a constant),
fY (λ) ∼ Lf (λ)|λ|−2d , can be considered a fundamental phenomenon.

For temporal aggregation, Lamperti’s results mean that, for M large enough, the
joint distribution of standardized aggregates

Y ∗
i,M = L

1
2 (N)N−H

(
Yi,M −E(Yi,M)

)
(i = 1,2, . . . , n),

with L and H chosen appropriately, is approximately the same as for increments of a
self-similar process, provided that the original process was stationary. In particular,
if second moments exist, then the autocovariances of Y ∗

i,N can be approximated by

γY ∗(k) ≈ 1

2

(|k + 1|2H − 2|k|2H + |k − 1|2H ) ∼ H(2H − 1)|k|2H−2 (k → ∞)

(2.68)
and the spectral density by

fY ∗(λ) ≈ 2(1 − cosλ)
∞∑

k=−∞
|λ+ 2kπ |−2H−1 ∼ cf |λ|1−2H (λ → 0), (2.69)

where cf = (2π)−1 sin(πH)Γ (2H + 1). In other words, in first approximation,
we have the same autocovariances and spectral density as a fractional Gaussian
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noise. Note, however, that the asymptotic distribution of Y ∗
i,M need not be Gaussian

because there exist non-Gaussian self-similar processes with finite second moments
(see Sect. 1.3.5).

In some situations, Yi,M is obtained by aggregating nonstationary observa-
tions X. For instance, many aggregated series in finance and economics are based
on integrated processes. The limit of Y ∗

i,M then changes but is not fundamen-
tally different under fairly general conditions. For instance, Tsai and Chan (2005a)
consider fractional ARIMA processes that may be nonstationary due to integra-
tion. In other words, let m ∈ {0,1,2, . . .} and − 1

2 < d < 1
2 . Denote by ϕ(z) =

1 −∑p

j=1 ϕj z
j and ψ(z) = 1 +∑q

j=1 ψjz
j polynomials with no zeroes for |z| ≤ 1,

and let εi be i.i.d. zero mean random variables with variance σ 2
ε < ∞. A fractional

ARIMA(p,m+d, q) (or FARIMA(p,m+d, q)) process Xi is defined as a solution
of

ϕ(B)(1 −B)m+dXj = ψ(B)εj (2.70)

with B denoting the backshift operator (i.e. Bεj = εj−1 etc.). For example, for m =
0, we obtain the stationary FARIMA(p, d, q) process introduced in Sect. 2.1.1.4.
For m = 1, we have a random-walk-type process where the first difference ΔXj =
(1 − B)Xj is a stationary FARIMA(p, d, q) process, and so on. Now, of course,
if we first take the mth difference ΔmXj = (1 − B)mXj and then aggregate, we
are in the same situation as before, i.e. we again obtain stationary increments of
a self-similar process in the limit. However, often aggregates are calculated first,
before making the original observations stationary. As it turns out, this leads to dif-
ferent limits. Thus, consider Xj defined by (2.70) and the aggregated Yi,M defined
by (2.67). Moreover,

Y ∗
i,M,m = ΔmYi,M√

var(ΔmYi,M)

will denote the standardized differenced series. Then the following result is derived
in Tsai and Chan (2005a):

Theorem 2.11 As M → ∞, the spectral density of Y ∗
i,M,m converges to

fm,d(λ) = Cm,d

[
2(1 − cosλ)

]m+1
∞∑

k=−∞
|λ+ 2πk|−2H−1−2m

= Cm,df
∗
m,d(λ), (2.71)

where

Cm,d =
(∫ π

−π

f ∗
m,d(λ) dλ

)−1

.

The same formula was derived in Beran and Ocker (2000) for the case of
m ∈ {0,1} (and − 1

2 < d < 1
2 ). For analogous results in the context of continuous-

time processes, in particular continuous-time FARIMA (also called CARFIMA)
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Fig. 2.1 Log-log-plot of the spectral densities fm,d with m = 0, 1 and 2 and d = 0.1 (left) and
d = 0.4 (right) respectively, obtained as limits of temporal aggregation of FARIMA(p,m + d, q)
processes

models, see Tsai and Chan (2005b, 2005c). Related papers are also Teles et al.
(1999), Hwang (2000), Souza and Smith (2004), Tsai (2006), Paya et al. (2007),
Souza (2005, 2007, 2008), Man and Tiao (2006, 2009), Hassler (2011). Moreover,
Chambers (1998) showed that (integer) integrated processes keep their order of in-
tegrations after aggregation.

For m = 0, formula (2.71) is of course the same as (2.69), i.e. f0,d is identical
with the spectral density of a fractional Gaussian noise. However, for integrated pro-
cesses (with m ≥ 1), the asymptotic dependence structure is different. What remains
the same is the preservation of long memory (since it can be shown that, for all m,
fm,d(λ) ∼ const · λ−2d near the origin) and the absence of the initial short-memory
parameters ϕj (j ≤ p) and ψj (j ≤ q) in the limit. It is the detailed form of fm,d for
nonzero frequencies that depends on m. In particular, for m 
= 0, we no longer have
increments of a self-similar process. The two plots in Fig. 2.1 show log-log-plots
of fm,d for m = 0,1,2 and d = 0.1 (left plot) and d = 0.4 (right plot) respectively.
For low frequencies up to about λ = 1, the shapes of logfm,d (m = 0,1,2) are
practically the same. The essential difference between the three cases is visible for
higher frequencies, however, and is much more pronounced for weaker long mem-
ory (d = 0.1).

In summary, one may say that in applications where time series are temporal
aggregates, the assumption that the spectral density (of the stationary version) is ap-
proximately proportional to λ−2d (for some −0.5 < d < 0.5) is a canonical one. In
retrospect, it is therefore not surprising that this fact has been noticed empirically
by experienced econometricians long before suitable probabilistic models have be-
come available (see e.g. Granger’s 1966 Econometrica article entitled “The typical
spectral shape of an economic variable”).
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2.2.2 Cross-Sectional Aggregation

A possible explanation of long memory in observed economic series was suggested
by Granger (1980) (also see Robinson 1978 for similar results). He considered in-
dependent AR(1) processes Xi,t (i = 1,2, . . .) with autoregressive parameters ϕi

being generated by a distribution G and demonstrated heuristically that the nor-
malized aggregated process N−1/2 ∑N

i=1 Xi,t converges to a long-memory process,
provided that G puts enough weight near the unit root (but within the stationary
range (−1,1)). Many authors took up this topic subsequently, working out a detailed
mathematical theory and extending the result to more general processes. References
include for instance Goncalves and Gouriéroux (1988), Ding and Granger (1996),
Igloi and Terdik (1999), Abadir and Talmain (2002), Leipus and Viano (2002),
Kazakevičius et al. (2004), Davidson and Sibbertsen (2005), Leipus et al. (2004),
Zaffaroni (2004, 2007a, 2007b), Beran et al. (2010), Giraitis et al. (2010). Also see
e.g. references in Baillie (1996).

To be specific, we will (as in Granger 1980) look at aggregation of AR(1) pro-
cesses. The following definition will be needed.

Definition 2.5 A stochastic process Xt (t ∈ N) is called strictly asymptotically sta-
tionary if the finite-dimensional distributions of Xt1, . . . ,Xtk (k ∈ N, 0 ≤ t1 < · · · <
tk < ∞),

Ft1,...,tk;n(x1, . . . , xk) = P(Xt1+n ≤ x1, . . . ,Xtn+n ≤ xn),

converge weakly to the finite-dimensional distributions of a strictly stationary pro-
cess as n → ∞. The process is called weakly asymptotically stationary if

lim
n→∞E[Xn] = μ ∈R

and

lim
t→∞ cov(Xn,Xn+k) = γ (k)

for all k ≥ 0, where γ (k) is an even non-negative definite function.

Now, consider a panel of N independent asymptotically stationary normal AR(1)
processes, each of length n, where the AR(1) coefficients ϕi of the individual series
are i.i.d., and their square is Beta distributed. Thus, we have a sequence of processes
Xi,t (i = 1,2, . . .)

Xi,t = ϕiXi,t−1 + εi,t

with εi,t i.i.d. standard normal and ϕi i.i.d. with density

gϕ(x) = 2

B(α,β)
x2α−1(1 − x2)β−1 (

x ∈ (0,1);α,β > 1
)
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(where B(α,β) = Γ (α)Γ (β)/Γ (α + β) is the Beta function) and independent of
all εi,t . A heuristic argument can now be given as follows. The spectral density of
the standardized aggregated

X
(N)
t = 1√

N

N∑

i=1

Xi,t

is equal to the average of the individual spectral densities

fi(λ) = σ 2
ε

2π

∣∣1 − ϕie
−iλ

∣∣−2
.

As N → ∞, we therefore obtain the spectral density

f (λ) = E
[
fi(λ)

] =
∫ 1

0
fi(λ)gϕ(λ)dλ,

which can be shown to be proportional to λ−2d as λ → 0, with d = 1 − β/2. The
same result also holds conditionally, i.e. when the AR(1) processes are initiated
recursively (see Beran et al. 2010, Leipus et al. 2006). Suppose that the initial values
Xi,0 are i.i.d. with E[Xi,0] = 0 and |Xi,0| ≤ C0 for all i and some constant C0 < ∞.
We also assume that Xi,0 are independent of all εi,t (i, t ≥ 1) and of ϕj (j 
= i).
Then it follows that for each i, Xi,t (t ∈ N) is a zero-mean strictly and weakly
asymptotically stationary process with

var(Xi,t ) → E
[(

1 − ϕ2)−1]

as t → ∞. This expected value is finite since

E
[(

1 − ϕ2)−1] = 2

B(α,β)

∫ 1

0
x2α−1(1 − x2)β−2

dx

with β > 1. Note, that Xi,0 is allowed to depend on ϕi . For each i, we may therefore
choose the distribution of the initial value Xi,0 such that, conditionally on ϕi , it is
arbitrarily close to a normal distribution with variance (1−ϕ2

i )
−1, which one would

get under stationarity of Xi,t (t ∈N).
The covariance function of each process Xi,t (t ∈N) is given by

cov(Xi,t ,Xi,t+k) = E

[
ϕk

t−1∑

j=1

ϕ2j

]
+E

[
ϕ2t+kX2

1,0

]
,

which, by dominated convergence, tends to
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γ (k) := E

[
ϕk

1 − ϕ2

]
=

∫ 1

0

2

B(α,β)
x2α−1+k

(
1 − x2)β−2

dx

= B(α + k
2 , β − 1)

B(α,β)

∫ 1

0

2

B(α + k
2 , β − 1)

x2(α+ k
2 )−1(1 − x2)(β−1)−1

dx

= B(α + k
2 , β − 1)

B(α,β)
(2.72)

as t → ∞. This implies

γ (k) ∼ ck1−β (k → ∞),

where d = 1 − β/2, and the constant c > 0 depends on α and β . Hence, uncondi-
tionally, each process Xi,t (t ∈N) is a stationary long-memory process if β ∈ (1,2).
However, the long-memory behaviour is not observable if only one of the series
is observed. The reason is that the random nature of ϕ is not visible or, in other
words, the data yield only information about the conditional distribution of the pro-
cess (given ϕ). A single sample path Xi,t (ω) (t ≥ 0) is not distinguishable from a
path of an AR(1) process with coefficient ϕi(ω). In this sense, Xi,t (t ∈N) is not an
ergodic process (Robinson 1978, Oppenheim and Viano 2004). Ergodicity can be
recovered only by observing an increasing number N of replicates and considering
the normalized aggregated

X
(N)
t = 1√

N

N∑

i=1

Xi,t (t ∈N).

By definition, X(N)
t exhibits the same autocovariance function as each individual se-

ries. The difference is, however, that given an individual series, we are only able to
estimate the conditional dependence structure given ϕi , whereas the random mecha-
nism generating this coefficient is hidden and cannot be estimated. This is of course
different when we observe an increasing number of replicates. For the aggregated
process, we obtain in the limit (as N → ∞) an ergodic Gaussian process X∞

t (t ∈N)
with covariance function (2.72). The existence of the limit is formulated in the fol-
lowing theorem (Beran et al. 2010, also see Oppenheim and Viano 2004). To state
the result, we consider convergence of sample paths X

(N)
t (t ∈ N) in the Hilbert

space H2
ε (for some ε > 0) of real sequences xt (t ∈ N) such that

∑

t≥0

x2
t

(t + 1)1+ε
< ∞

with the inner product between two sequences xt , yt (t ∈ N) defined by

〈xt , yt 〉 :=
∑

t≥0

xtyt

(t + 1)1+ε
.
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Proposition 2.1 As N → ∞, the process X
(N)
t (t ≥ 0) converges weakly in the

space H2
ε to a zero-mean Gaussian stationary process X∞

t (t ≥ 0) with autocovari-
ance function (2.72).

Proof First note that the sample paths X
(N)
t (t ≥ 0) are almost surely in H2

ε . This
can be seen as follows. Since E[X2

1,t ] converges to E[(1 − ϕ2
1)

−1] as t → ∞, there

is a finite constant c with E[(X(N)
t )2] ≤ c for all t ≥ 1 and N ≥ 1. This implies for

every N ≥ 1,

E

[ ∞∑

t=0

(X
(N)
t )2

(t + 1)1+ε

]
≤ c2

∑

t≥0

(t + 1)−1−ε < ∞.

The convergence of the finite-dimensional distributions of X(N)
t (t ≥ 0) follows di-

rectly from a multivariate central limit theorem (note in particular that the sample
paths are already exactly Gaussian) and the convergence of the autocovariances to
(2.72). Finally, the most difficult property to check is tightness. Here, one can use
sufficient conditions given by Suquet (1996), namely, for every n ≥ 0,

lim
a→∞ sup

N

P

(∑

t≥n

X
(N)
t

(t + 1)1+ε
> a

)
= 0

and, for every a > 0,

lim
n→∞ sup

N

P

(∑

t≥n

X
(N)
t

(t + 1)1+ε
> a

)
= 0

(also see Oppenheim and Viano 2004). Indeed, both equations are simple conse-
quences of Chebyshev’s inequality

P

(∑

t≥n

X
(N)
t

(t + 1)1+ε
> a

)
≤ a−2E

[∑

t≥n

X
(N)
t

(t + 1)1+ε

]2

≤ a−2c
∑

t≥n

(t + 1)−1−ε.
�

Example 2.10 Figure 2.2 shows a histogram of N = 1000 simulated values of ϕi

(Fig. 2.2(a)), together with the density function gϕ where α = 1.1 and β = 1.2. Fig-
ures 2.2(b) through (e) display (in log-log-coordinates) the corresponding spectral
densities fi (left panel) and their average (right panel), together with a dotted refer-
ence line with slope −0.8. In Figs. 2.2(b) and (c) we consider fi (i = 1,2, . . . ,10)
only, whereas the plots in (d) and (e) are based on fi (i = 1,2, . . . ,1000). As one
can see, aggregating the first 10 processes did not lead to a straight line in log-
log-coordinates, whereas for N = 1000, one seems to be quite close already to the
limiting straight line with slope −2d = β − 2 = −0.8.
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Fig. 2.2 (a) Shows a histogram of N = 1000 simulated values of ϕi (a), together with the density
function gϕ . (b) through (e) display (in log-log-coordinates) the corresponding spectral densities
fi and their average. In (b) and (c) we consider fi (i = 1,2, . . . ,10) only, whereas the plots in (d)
and (e) are based on fi (i = 1,2, . . . ,1000)
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2.2.3 Particle Systems, Turbulence, Ecological Systems

Kolmogorov (1940, 1941) introduced fractional Brownian motion, 1/f noise and
related processes while investigating turbulent flows (see also for instance Batch-
elor 1953, Cassandro and Jona-Lasinio 1978, Marinari et al. 1983, Eberhard and
Horn 1978, Frisch 1995, Barndorff-Nielsen et al. 1998, Anh et al. 1999, Barndorff-
Nielsen and Leonenko 2005, Leonenko and Ruiz-Medina 2006). Long memory also
plays an important role in explicit models for particle systems, in particular in the
context of phase transition (see e.g. Domb and Lebowitz 2001 and all previous and
subsequent volumes of this series, Stanley 1971, 1987; Liggett 2004). A typical
model used in statistical mechanics is a random field on an m-dimensional lattice
T = Z

m. The interpretation is that the values Xt (t ∈ T ) represent the state of a
particle at location t . Usually Xt assumes values in a polish space X. Interactions
between particles are characterized by a pair potential Φ = (Φi,j )i,j∈T where each
Φi,j (x, y) is a function describing the potential energy of the two interacting parti-
cles at locations i and j . Configurations x = (xt )t∈T ∈ X

T are functions on T , and
they are assumed to be random, i.e. realizations of a random field (Xt )t∈T ∈ X

T .
For a finite subset S ⊂ T , the energy of a configuration xS = (xt )t∈S on S is given
by

ExS =
∑

{i,j}⊆S

Φi,j (xi, xj )+
∑

i∈S,j /∈S
Φi,j (xi, xj ).

The distribution of (Xt )t∈T is assumed to be given by a Gibbs measure (associated
with the potential Φ) that is absolutely continuous with respect to a measure ν on
X

T (e.g. a Lebesgue or a Bernoulli measure). The Gibbs measure is defined by
conditional densities of finite configurations xS given the remaining configuration
xSc of the form

dP (xS | xSc ) = 1

ZS(xSc )
exp(−ExS ) dν(x).

Here, ZS is a normalizing constant so that, up to a proportionality factor, the con-
ditional distribution of xS is fully described by the potential Φ . Pure phases are
characterized by extreme elements in the set of all Gibbs measures, the set it-
self being convex. For all other phases, the corresponding Gibbs measure can be
represented as a mixture of the “pure” measures. For references in this context,
see e.g. Kolmogorov (1937), Dobrushin (1968a, 1968b, 1968c, 1969, 1970), Lan-
ford and Ruelle (1968, 1969), Ruelle (1968, 1970), Föllmer (1975), Cassandro and
Jona-Lasinio (1978), Kosterlitz and Thouless (1978), Künsch (1980), Sokal (1981),
Georgii (1988), Bolthausen et al. (1995), Lavancier (2006). The existence of a Gibbs
measure is directly linked to the occurrence of a phase transition. Given Φ and ν, a
phase transition occurs if there exists more than one Gibbs measure.

In the simplest case, xt represents the spin at location t with values in
X ={−1,1}, and ν is a point measure with mass 1

2 at −1 and 1. In the Ising model
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(originally introduced to understand fluid dynamics and ferromagnetism), the po-
tential is defined by

Φi,j = βxixj

if ‖i − j‖ = 1 and zero otherwise. The constant β > 0 is inverse temperature. For
a one-dimensional lattice, i.e. T = Z, there is a unique Gibbs measure for any β so
that no phase transition occurs. In two dimensions, i.e. T = Z

2, more than one Gibbs
measure exists, and hence phase transition takes place for the critical value β = βc =
1
2 log(1 + √

2) (Onsager 1944). Moreover, the Gibbs measures are stationary. Sim-
ilarly, for all higher dimensions, phase transition occurs for a dimension-specific
critical inverse temperature βc (Dobrushin 1965). Phase transition is directly linked
to long-range dependence as follows (Kaufman and Onsager 1949; Fisher 1964).
Using the notation k = i − j ∈ Z

m, we have cov(Xi,Xj ) = γ (‖k‖), i.e. the covari-
ance is a function of the Euclidian distance ‖k‖ only. If β 
= βc , then γ (‖k‖) tends
to zero exponentially, whereas a hyperbolic decay with nonsummable covariances
is obtained for β = βc. More specifically, denoting by κB ≈ 1.38 × 10−23 JK−1 the
Boltzmann constant and by μ ∈ [0,2] a dimension-dependent critical parameter,
one obtains γ (‖k‖) ∼ ‖k‖−1 exp(−κB‖k‖) for β 
= βc (as k → ∞) and

γ
(‖k‖) ∼ ‖k‖2−m−μ = ‖k‖2d−m

with d = 1 − 1
2μ. Since μ ∈ [0,2], we have d > 0 and, by an m-dimensional Rie-

mann sum approximation, as ‖k‖ → ∞,

Vn =
∑

‖k‖≤n

γ
(‖k‖) ∼ C

∑

0<‖k‖≤n

‖k‖2d−m ∼ C∗n2d → ∞

with nonzero constants C, C∗. For instance, for a two-dimensional lattice (m = 2),
μ = 1

4 , so that γ (‖k‖) ∼ ‖k‖− 1
4 , and Vn diverges to infinity at the rate

√
n. In con-

trast, for β 
= βc , the exponential decay implies that Vn converges to a finite constant.
Another standard case is X = R with

Φi,i(xi, xi) = β

[
1

2
J (0)x2

i + e · xi
]
,

Φi,j (xi, xj ) = βJ (i − j)xixj (i 
= j)

and ν the Lebesgue measure on R
m. The constants β and e correspond to inverse

temperature and an external magnetic field respectively. Moreover, the so-called po-
tential [J (k)]k∈T (J (k) ∈ R) is positive definite, symmetric and summable. A very
elegant result on the existence of Gibbs measures can be derived for the case where
e = 0, i.e. when there is no external magnetic field (see e.g. Dobrushin 1980, Künsch
1980, Georgii 1988): phase transitions depend on J only, not on the temperature,
and the existence of at least one Gibbs measure is equivalent to

∫

[−π,π]m
1

Ĵ (λ)
dλ < ∞,
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where

Ĵ (λ) =
∑

k∈Zm

J (k)eik
′λ

is the Fourier transform of J . The pure phases are Gaussian with autocovariance
function

γ (k) =
∫

[−π,π]m
1

Ĵ (λ)
eik

′λ dλ =
∫

[−π,π]m
1

Ĵ (λ)
ei(k1λ1+···+kmλm) dλ.

Moreover, if only Gibbs measures with existing second moments are considered,
then the existence of several Gibbs measures is equivalent to Ĵ (λ) having at least
one root in [−π,π]m. Since Ĵ−1(λ) plays the role of a spectral density for the pure
phases, this means that phase transition is equivalent to the spectral density having
at least one pole. In this sense, phase transition is linked to long-range dependence.
The following example follows from Lavancier (2006).

Example 2.11 Let m = 2, and define for u = (u1, u2)
′ ∈ Z

2 with u1 = u2 = k,

J (u) = ρd(k) = Γ (1 − d)

Γ (d)

Γ (k + d)

Γ (k + 1 − d)
,

where − 1
2 < d < 0. Otherwise, for u1 
= u2, set J (u) = 0. This means that on the

diagonal, J (u) is a function of k = u1 = u2 (k ∈ Z) and identical with the auto-
correlation function of an antipersistent FARIMA(0, d,0) process. As k → ∞, the
correlations are proportional to k2d−1, and the spectral density converges to zero at
the origin at the rate O(λ2d∗

) with 0 < d∗ = −d < 1
2 . For the Fourier transform Ĵ ,

we have

Ĵ (λ) =
∑

u∈Z2

J (u)eiu
′λ =

∞∑

k=−∞
ρ(k)eik(λ1+λ2)

= ∣∣1 − e−i(λ1+λ2)
∣∣2d∗ · Γ

2(1 − d)

Γ (1 − 2d)
.

Thus, Ĵ−1(λ) is integrable, but along the line λ1 = −λ2, we have Ĵ (λ) = 0. This
implies that phase transition occurs. The autocovariances of Xt along the diagonal
are of the form

cov(Xt ,Xt+(k,k)′) = c1

∫ π

−π

∫ π

−π

eik(λ1+λ2)
∣∣1 − e−i(λ1+λ2)

∣∣−2d∗
dλ1 dλ2

= c2

∫ π

−π

eikx
∣∣1 − e−ix

∣∣−2d∗
dx

= c3ρd∗(k) ∼ c4k
2d∗−1, (2.73)
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where we substituted x = λ1 + λ2, and c1, . . . , c3 are suitable constants. In other
words, along the diagonal we have the same type of long-range dependence as for
a FARIMA(0, d∗,0) process with 0 < d∗ < 1

2 . The correlation structure is however
not isotropic, since Eq. (2.73) does not apply to off-diagonal directions. For exam-
ple, for u = (k,pk)′ with p /∈ {0,1}, we have

cov(Xt ,Xt+u) = c1

∫ π

−π

ei(p−k)λ2

∫ π

−π

eik(λ1+λ2)
∣∣1 − e−i(λ1+λ2)

∣∣−2d∗
dλ1 dλ2

= c2ρd∗(k)
∫ π

−π

ei(p−1)kν dν = c3
sinπk(p − 1)

k(p − 1)
ρd∗(k), (2.74)

where c1, c2, c3 are suitable constants, and, for x = 0, the value of x−1 sinx is
understood as the limit as x → 0. In particular, for p ∈ Z \ {0,1}, the correlation is
zero.

For a review of some probabilistic aspects of long memory in the Ising model, see
Pipiras and Taqqu (2012).

One of the central questions closely related to phase transition and long-range
dependence is percolation (see e.g. Kesten 1982, Stauffer and Aharony 1994,
Chakrabarti et al. 2009). Percolation is originally concerned with the movement of
fluids in porous material, but applications go far beyond this specific situation (see
e.g. Bunde and Havlin 1995, Bak 1996, Vanderzande 1998) including conductiv-
ity, sol–gel transition and polymerization, spread of epidemies, ecological systems,
computer and social networks. A standard set up in “bond percolation” is a lattice,
e.g. Zm, or network/graph with edges (paths) between vertices that are located on
the lattice. The edges are “open” with probability p. (In “site percolation” vertices
instead of edges are present or absent with a certain probability.) The events at dif-
ferent edges are assumed to be independent. Considering a finite area A ⊂ Z

m, one
would like to know the probability that there is a connected path from one “end”
of A to the other. Practically speaking, this means for instance that a fluid dipped
on top of a porous stone flows all the way to the bottom. In percolation theory, one
considers the limit A → Z

m and thus the question what the probability π(p) of
an infinite path (or cluster) is. Clearly, π(p) is monotonically nondecreasing in p

with π(0) = 1 − π(1) = 0. Thus, due to Kolomogorov’s 0–1 law, there is a critical
probability pc such that π(0) = 0 for p < pc and π(p) = 1 for p > pc. While pc

generally depends on the local geometry of the graph, various quantities describing
the clusters are believed (and partially proved) to be universal. An important part of
mathematical percolation theory (see e.g. Kesten 1982, Durrett 1984, Madras and
Slade 1996, Grimmett 1999, Járai 2003) is therefore the probabilistic characteriza-
tion of clusters. For p = pc, clusters have fractal properties, and hyperbolic laws
are obtained. For example, in bond percolation, the probability Psame(r) that two
sites at locations x and y at distance r = ‖x − y|‖ are in the same connected com-
ponent is proportional to r2−m−η , where η is known to be zero for m ≥ 19 (and
believed to be zero for m ≥ 7). Note that this probability may be considered as a
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Fig. 2.3 Clusters obtained
after percolation at pc with
Psame(r) ∝ r−5/24. (Figure
courtesy of Prof. Hans Jürgen
Herrmann, Computational
Physics for Engineering
Materials, ETH Zurich)

specific measure of dependence. A typical picture with Psame(r) ∝ r−5/24 is shown
in Fig. 2.3.

A more complex version of percolation is so-called “long-range percolation”.
In contrast to standard percolation with nearest-neighbor connections only, each
vertex can be connected to any other arbitrarily remote vertex. This is combined
with hyperbolic probabilities (and sometimes also with Ising and related models),
with interesting and partially still unexplored connections to long-memory random
fields. For instance, the probability that x and y are in the same connected graph is
assumed to be proportional to ‖x − y‖−α for some α > 0. For literature on long-
range percolation and related topics, see e.g. Fröhlich and Spencer (1982), Weinrib
(1984), Newman and Shulman (1986), Imbrie and Newman (1988), Meester and
Steif (1996), Menshikov et al. (2001), Berger (2002), Coppersmith et al. (2002),
Abete et al. (2004), de Lima and Sapozhnikov (2008), Trapman (2010), Biskup
(2004, 2011), Crawford and Sly (2011), and references therein.

Other results on particle systems and long-range dependence include for in-
stance particle branching systems (Gorostiza and Wakolbinger 1991, Gorostiza
et al. 2005, Bojdecki et al. 2007) and random interlacements (see e.g. Sznitman
2010).

Random fields with long memory are also an important part of ecological mod-
elling. One approach is inspired by interacting particle systems in physics sim-
ilar to the discussion above (see e.g. Bramson et al. 1996, Durrett and Levin
1996). Under certain conditions, Bramson et al. (1996) obtain a hyperbolic de-
pendence between the number of observed species and the area where data
are sampled. Another approach that leads to a hyperbolic law is based on la-
tent long-memory fields (Ghosh 2009). The reason for considering latent pro-
cesses is that observed spatial or space-time data are often regulated or influ-
enced by unobserved processes such as water supply, soil quality, wind etc. A de-
tailed account of the approach in Ghosh (2009) is given in Sect. 9.4. For re-
lated applied literature in this context, see also e.g. Scheuring (1991), Harte et al.
(1999).
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2.2.4 Network Traffic Models

In their pioneering papers Leland et al. (1993a, 1993b) analysed internet traffic data,
more precisely time series representing the number of packets sent from a local
network. They found that the data exhibits self-similarity over a certain range of
scales. Subsequent studies (e.g. Leland et al. 1994, Beran et al. 1995, Paxson and
Floyd 1995, Crovella and Bestavros 1997) revealed that classical Poisson modelling
fails. Since then, “long-range dependence”, “self-similarity” and “high variability”
have become important issues in the analysis of network data.

To capture these phenomena, one uses models that can mimic the physical be-
haviour of a network. For traffic data in telecommunication networks or on the in-
ternet, several models play a crucial role:

• Renewal reward process: Levy and Taqqu (1987, 2000), Pipiras and Taqqu
(2000b), Pipiras et al. (2004), Hsieh et al. (2007), Taqqu and Levy (1986).

• ON–OFF process: Taqqu et al. (1997), Heath et al. (1998), Greiner et al. (1999),
Jelenkvovič and Lazar (1999), Mikosch et al. (2002), Leipus and Surgailis (2007).

• Infinite source Poisson model (M/G/∞): Konstantopoulos and Lin (1998),
Resnick and van den Berg (2000), Mikosch et al. (2002), Maulik et al. (2002).

• Error duration process: Parke (1999), Hsieh et al. (2007).

There are a number of modifications of these models, such as Poisson cluster pro-
cesses or the fractal shot-noise model; see Klüppelberg et al. (2003), Klüppel-
berg and Kühn (2004), Lowen and Teich (2005), Faÿ et al. (2006), Mikosch and
Samorodnitsky (2007), Fasen and Samorodnitsky (2009), Rolls (2010), Dombry and
Kaj (2011). We also refer to Taqqu (2002), Willinger et al. (2003), Gaigalas (2004),
Deo et al. (2006a) for an overview. Applications of these models go far beyond
computer networks. For example, renewal reward and error duration processes have
been used for modelling economic data (see e.g. Hsieh et al. 2007, Deo et al. 2009).

We will describe such models under the common umbrella of “shot-noise” pro-
cesses.

2.2.4.1 Shot-Noise Processes

Consider a stationary point process τj (j ∈ Z) on the real line with rate λ, let N be
the associated counting process, and Xj = τj − τj−1 (j ∈ Z) be the corresponding
stationary sequence of interrenewal times. Recall the convention τ−1 < 0 ≤ τ0. Now
consider independent copies Yj (·) (j ≥ 1) of a stochastic process Y1(t) (t ∈ R) and
define for t ≥ 0,

W(t) =
∞∑

j=−∞
Yj (t − τj−1). (2.75)

If Yj (t) = 0 for t < 0, then we can interpret W(t) in the following way. At random
times τj−1 we initiate a “shock” (transmission) described by a stochastic process
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Yj (·). There is no specific limit for a duration and “size” of each transmission, unless
we impose further conditions on Yj (·). In particular, if ηj (durations) is an i.i.d.
sequence of positive random variables and Yj (u) = 1{0 < u< ηj }, then

W(t) =
∞∑

j=−∞
1{τj−1 ≤ t < τj−1 + ηj } (2.76)

can be interpreted as the number of active sources at time t . We note that if ηj ≤
Xj = τj − τj−1, then at time t we can have only one source active, like in a renewal
reward or an ON–OFF process considered below. In this case the duration sequence
ηj (j ∈ Z) is not independent of the interarrival times Xj . If there is no dependence
between the sequences ηj and Xj , then there are possibly many sources active, like
in the Infinite Source Poisson model that will be introduced below.

Lemma 2.6 Assume that Yj (u) = 0 for u < 0,
∫ ∞

0 E[|Y(u)|]du < ∞ and τj
(j ∈ Z) is a stationary renewal process with rate λ. Then

• W(t) (t > 0) is stationary.
• E[W(t)] = λ

∫ ∞
0 E[Y(u)]du for each t ≥ 0.

Proof The stationarity is clear from the stationarity of the underlying point pro-
cess τj . As for the mean,

E
[
W(0)

] =
0∑

j=−∞
E
[
Yj (−τj−1)

] =
−1∑

j=−∞

∫ 0

−∞
E
[
Yj+1(−u)

]
dPτj (u)

= E

[∫ 0

−∞
Yj+1(−u)

−1∑

j=−∞
dPτj (u)

]
,

where Pτj is the distribution of τj . Now, recall that
∑∞

j=0 dPτj (u) (u > 0) is the re-

newal density function times du and thus equals λdu. Likewise,
∑−1

j=−∞ dPτj (u)

is the renewal density function for the negative real line. Thus, E[W(0)] =∫ ∞
0 E[Y(u)]du follows. �

The result of Lemma 2.6 is valid for a very general class of point processes.
Moreover, one can also write a formula for the covariance function of W(t) (Leipus
and Surgailis 2007). In the case of (2.76) the formula for the covariance function can
be obtained, without any assumptions on the independence between the sequences
Xj and ηj (Mikosch and Samorodnitsky 2007). This involves however a deeper
knowledge of point process theory, and we deliberately choose to work with specific
models instead.

Example 2.12 (Renewal Reward Process) Assume that τj (j ∈ Z) is a renewal pro-
cess with rate λ and interarrival times Xj (j ∈ Z). Set Yj (u) = 1{0 < u < Xj }Y ∗

j ,
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where Y ∗
j (j ∈ Z) is an i.i.d. sequence of random variables with finite mean. Assum-

ing that the sequences Xj and Y ∗
j are mutually independent, the resulting process

W(t) =
∞∑

j=−∞
Y ∗
j 1{τj−1 ≤ t < τj−1 +Xj } =

∞∑

j=−∞
Y ∗
j 1{τj−1 ≤ t < τj } (t > 0)

is called a renewal reward process. Alternatively, if the underlying renewal process
τj is defined on (0,∞) only, we may consider

W(t) = Y ∗
0 1{0 ≤ t < τ0} +

∞∑

j=1

Y ∗
j 1{τj−1 ≤ t < τj } = YN(t) (t ≥ 0),

where τ0 has the distribution F (0)(x) = μ−1
∫ x

0 F̄ (u) du, F is the distribution of
X1, and μ = E[X1]. In other words, at the renewal time τj−1 we have a shock of
size Yj that lasts for the duration Xj . At a given time t , only one shock contributes
to W(t). Now let us look at the autocovariance function. We assume for simplicity
that E[Y1] = 0 and E[Y 2

1 ] < ∞. From Lemma 2.6 we have

E
[
W(t)

] = λE
[
Y ∗

1

] ∫ ∞

0
P(X1 > u)du = E

[
Y ∗

1

]
.

Since W(0) = Y ∗
0 and Y ∗

j are independent, we obtain

cov
(
W(0),W(t)

) = E
[
Y ∗2

1

]
P(τ0 > t).

If we assume that P(X1 > x) = x−αL(x), α ∈ (1,2), where L(x) is slowly varying
at infinity, then

P(τ0 > t) = λ

∫ ∞

t

u−αL(u)du ∼ λ

α − 1
t1−αL(t),

and thus the covariances are not summable. Furthermore, the relation between
var(

∫ t

0 W(u)du) and Cov(W(0),W(t)), together with Lemma 1.1, yields

var

(∫ t

0
W(u)du

)
∼ 2E[Y ∗2

1 ]
μ(α − 1)(2 − α)(3 − α)

t3−αL(t).

Thus, in this model, long memory can be generated by heavy-tailed interarrival
times. In contrast, if the duration has a finite variance, i.e. E[X2

1] < ∞, then

var

(∫ t

0
W(u)du

)
= tE

[
X2

1

]
E
[
Y ∗2

1

]
.

Example 2.13 (ON–OFF Process) Assume that τj (j ∈ Z) is a renewal process with
rate λ and interpoint distances Xj (j ∈ Z). Consider two mutually independent se-
quences Xj,on and Xj,off (j ∈ Z) of i.i.d. random variables with common distri-
bution function Fon, Foff and expected values μon and μoff respectively. Suppose
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that Xj = Xj,on + Xj,off (j ∈ Z), so that E[X1] = μ = μon + μoff. The first se-
quence represents ON intervals, during which a source generates traffic (at a fixed
rate, say 1). The second sequence represents OFF periods during which the source
remains silent. Set Yj (u) = 1{0 < u<Xj,on}. The resulting process

W(t) =
∞∑

j=−∞
1{τj−1 ≤ t < τj−1 +Xj,on} (t ≥ 0)

is called ON–OFF process. Thus, at the renewal time τj−1 we have a shock of size 1
that lasts for a period of length Xj,on. At a given time t , only one shock contributes
to W(t). In other words,

W(t) = 1 if time t is in the ON interval,

W(t) = 0 if time t is in the OFF interval.

Application of Lemma 2.6 yields

E
[
W(t)

] = λ

∫ ∞

0
P(X1,on > u)du = μon

μ
.

Typically in the literature one assumes that the underlying renewal process τj is
defined on the positive real line. In this case, in order to assure stationarity, the
renewal epochs are defined as

τ0 = X̃0,

τk = τ0 +
k∑

j=1

(Xj,off +Xj,on) = τ0 +
k∑

j=1

Xj (k ≥ 1),

where the first renewal epoch τ0 = X̃0 is set equal to

X̃0 = ξ(X̃on + X̃off)+ (1 − ξ)X̃off,

where

P(X̃on > x) = 1

μon

∫ ∞

x

F̄on(u) du =: F̄ (0)
on (x),

P (X̃off > x) = 1

μoff

∫ ∞

x

F̄off(u) du =: F̄ (0)
off (x),

and ξ is a Bernoulli random variable with P(ξ = 1) = μon/(μon +μoff). All random
variables ξ , X0,on,X0,off are assumed to be independent. With the notation above,
we can write the ON–OFF process as

W(t) = ξ1{0 ≤ t < X̃on} +
∞∑

j=1

1{τj−1 ≤ t < τj−1 +Xj,on} (t > 0). (2.77)
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In particular, we have

E
[
W(t)

] = P
(
W(t) = 1

) = E[ξ ]P(X̃on > t)+
∞∑

j=1

P(τj−1 ≤ t < τj−1 +Xj,on).

By conditioning on τj−1 and recalling the definition of the renewal function

Ũ (t) =
∞∑

j=0

P(τj ≤ t) = 1

μon +μoff
t,

we have

∞∑

j=1

P(τj−1 ≤ t < τj−1 +Xj,on)

=
∞∑

j=0

∫ t

0
F̄on(t − u)dPτj (u)

=
∫ t

0
F̄on(t − u)dŨ(u) = 1

μ

∫ t

0
F̄on(t − u)du

= μon

μon +μoff

1

μon

∫ t

0
F̄on(t − u)du = μon

μon +μoff
P(X̃on < t).

Hence,

E
[
W(t)

] = μon

μon +μoff
P(X0,on > t)+ μon

μon +μoff
P(X0,on < t)

= μon

μon +μoff
= μon

μ
,

which means that we obtain the same mean as before. To generate long memory, it
is typically assumed that the ON and OFF periods are heavy-tailed, i.e.

F̄on(x) = Conx
−αon , α1 ∈ (1,2), (2.78)

F̄off(x) = Coffx
−αoff, α2 ∈ (1,2), (2.79)

where Con,Coff are finite and positive constants. More generally, the constants
can be replaced by arbitrary slowly varying functions. Note also that, since α :=
min(α1, α2) > 1, the mean ON and OFF times are finite. The asymptotic decay of
the autocovariance function is then as stated in the following lemma.

Lemma 2.7 Consider the stationary ON–OFF process W(t) (t ≥ 0) such that
(2.78)–(2.79) hold with αon < αoff. Then, as u → ∞,

γW (u) = cov
(
W(0),W(u)

) ∼ Con
μ2

off

(αon − 1)(μon +μoff)3
u−(αon−1).
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The proof of this result is technical and requires extended knowledge of renewal
theory (see Heath et al. 1998 or Taqqu et al. 1997 for the Laplace transform method).
It is therefore omitted here.

Example 2.14 (ON–OFF Process, Continued) The lemma implies that, if αon ∈
(1,2), then Cov(W(0),W(u)) is not integrable and the process W(t) is long-range
dependent in the sense of Definition 1.4. For the integrated process

∫ t

0 W(u)du, we
also have long-range dependence in the sense of Definition 1.6. This can be seen by
applying Lemma 1.1 to obtain

var

(∫ t

0
W(u)du

)
=

∫ t

0

(∫ v

0
γW (u)du

)
dv

∼ Con
μ2

off

μ3(αon − 1)(2 − αon)(3 − αon)
t3−αon

=: Conσ
2
on−offt

2H

with H = (3 − αon)/2 > 1
2 .

Example 2.15 (Infinite Source Poisson Process) Assume that τj (j ∈ Z) is a Poisson
process with rate λ. Set Yj (u) = 1{0 < u < ηj }Y ∗

j , where the random variables ηj ,
Y ∗
j , Xj (j ∈ Z) are mutually independent, i.i.d. and positive. The resulting process

W(t) =
∞∑

j=−∞
Y ∗
j 1{τj−1 ≤ t < τj−1 + ηj } (t > 0)

is called an infinite source Poisson process. Here, at times τj−1, shocks of size Y ∗
j of

a Poisson process occur and last for the duration ηj . At a given time t , all past shocks
may contribute to W(t). In queueing theory, one usually sets Y ∗

j = 1, which leads to
the following interpretation. Customers arrive according to a Poisson process τj , and
each customer requests a service for a time period of length ηj+1. Given an infinite
number of available servers, the process W(t) describes the number of customers
at time t . The model is called M/G/∞. The letter “M” stands for “exponential”
arrivals, “G” stands for a general service distribution, and ∞ for the number of
servers. If Y ∗

j and ηj have a finite mean, then E[Y(u)] = E[U1]P(η1 > u), so that

E
[
W(t)

] = λE[Y1]
∫ ∞

0
P(η1 > u)du = λE[Y1]E[η1].

Furthermore,

cov
(
W(0),W(t)

) = E
[
Y 2

1

]
λ

∫ ∞

t

P (η1 > u)du.
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If we assume that P(η1 > u) = u−αL(u), α ∈ (1,2), then

cov
(
W(0),W(t)

) ∼ E
[
Y 2

1

]
λ

1

α − 1
t1−αL(t),

and hence,

var
(
W(t)

) ∼ 2E
[
Y 2

1

]
λ

1

(α − 1)(2 − α)(3 − α)
t3−αL(t).

Example 2.16 (Error Duration Process) Assume that τj = j (j ∈ Z) is a determin-
istic sequence. Set Yj (u) = 1{0 < u< ηj+1}Y ∗

j , where the random variables ηj , Y ∗
j

(j ∈ Z) are mutually independent, i.i.d. and positive. The resulting process

W(t) =
∞∑

j=−∞
Y ∗
j 1{j ≤ t < j + ηj+1} (t > 0)

is called the error duration process. Here, we have, at each deterministic time j ,
a shock of size Y ∗

j that lasts for a period of length ηj+1. Although the model is
similar to the infinite source Poisson process, due to the lack of a Poisson structure,
computations are much more difficult. Hsieh et al. (2007) showed that, if the support
of η is a subset of the positive integers, then

cov
(
W(0),W(k)

) = var(Y1)

∞∑

j=k

pj ,

where pk = P(η1 ≥ k). In particular, if pj = P(η1 ≥ j) = L(j)j−α with α ∈ (1,2),
then W(j) (j ∈ N) has long memory.

Models based on renewal processes are discussed for instance in Levy and Taqqu
(1986, 1987, 2000, 2001), Abry and Flandrin (1994), Daley and Vesilo (1997),
Resnick (1997), Heath et al. (1998), Daley (1999), Igloi and Terdik (1999), Daley
et al. (2000), Pipiras and Taqqu (2000b), Gao and Rubin (2001), Kulik and Szekli
(2001), Cappé et al. (2002), Kaj (2002), Maulik et al. (2002), Mikosch et al. (2002),
Gaigalas and Kaj (2003), Hernández-Campos et al. (2002), Taqqu and Wolpert
(1983), Leipus and Surgailis (2007).

2.2.5 Continuous-Time Models

2.2.5.1 General Remarks

Originally, in the early works of Mandelbrot, long-range dependence has been con-
sidered in connection with self-similar processes and thus in continuous time. Such
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processes occur naturally as limiting processes (see Sects. 1.3.5 and 2.2.1). How-
ever, most statistical models and techniques have been developed for time series in
discrete time. One of the reasons is the simplicity of fractional differencing (in dis-
crete time) in general and fractional ARIMA models in particular. Yet, in some ap-
plications continuous time is essential. This is for instance the case in finance where
stochastic differential equations and the Itô calculus, embedded in the world of
Brownian motion, or more generally semimartingales, are key ingredients for pric-
ing formulas. Moreover, the availability of high-frequency data has also increased
the demand for fractional time series models in continuous time (see e.g. Bauwens
et al. 2008, Bauwens and Hautsch 2009). It is therefore not surprising that, after
the initial success of fractional time series models in discrete time, there has been
a growing interest in developing suitable long-memory models in continuous time.
Not surprisingly, many results are motivated by financial applications. At the same
time, there has been an ongoing controversy how empirical findings of long-range
dependence should be explained economically and whether long-memory processes
make any sense in the financial context. A meanwhile classical controversy is for
instance the question of arbitrage when it comes to modelling log-returns. For exam-
ple, fractional Brownian motion is not a semimartingale so that the standard non-
arbitrage arguments cannot be applied (see e.g. Mandelbrot 1971, Rogers 1997).
Rogers (1997) shows however that a fractional Brownian motion can be modified so
that long-range dependence is untouched and at the same time arbitrage is removed
because the modified process is a semimartingale. Some authors suggest instead to
link the apparent arbitrage to transaction costs. For example, Guasoni (2006) shows
that proportional transaction costs can eliminate arbitrage opportunities from a geo-
metric fractional Brownian motion with an arbitrary continuous deterministic drift.
In their review paper, Bender et al. (2007) discuss the contradictory results in the
literature on the existence or absence of a riskless gain and point out the importance
of the chosen class of admissible trading strategies. Much less controversial is the
application of continuous-time long-memory processes when it comes to modelling
volatilities. The literature in this respect is fast growing. As an illustration, one par-
ticular example will be discussed below.

Many references to continuous-time processes with long-range dependence or
antipersistence can be found in Embrechts and Maejima (2002), Bender et al.
(2007), Biagini et al. (2008) and Mishura (2008). Further references are for instance
Anh et al. (2009), Barndorff-Nielsen and Shephard (2001), Bender (2003a, 2003b),
Brockwell and Marquardt (2005), Brody et al. (2002), Chambers (1996), Cheridito
et al. (2003), Comte (1996), Comte and Renault (1996), Decreusefond and Üstünel
(1999), Duncan et al. (2000), Elliott and van der Hoek (2003), Ercolani (2011),
Guasoni (2006), Hu (2005), Hu and Nualart (2010), Hu and Øksendal (2003), Igloi
and Terdik (1999), Jasiak (1998), Kleptsyna and Le Breton (2002), Kleptsyna et al.
(2000), Le Breton (1998), Leonenko and Taufer (2005), Maejima and Yamamoto
(2003), Mandelbrot (1997), Matsui and Shieh (2009), Norros et al. (1999), Pipiras
and Taqqu (2000a, 2003), Simos (2008), Tsai (2009), Tsai and Chan (2005a, 2005b,
2005c, 2005d), Viano et al. (1994), Zähle (1998).
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2.2.5.2 Volatility Models in Continuous Time

In Sect. 2.1.3 we gave examples of stochastic volatility models in discrete time.
When dealing with high-frequency transaction-level data one needs corresponding
models in continuous time. We recall that the classical Black–Scholes model as-
sumes that a stock price S(t) behaves like

dS(t) = μS(t) dt + yS(t) dB(t),

where y > 0, μ ∈R, and B(t) is a Brownian motion. The solution is

S(t) = S(0) exp
((
μ− y2/2

)
t + yB(t)

)
,

the so-called geometric Brownian motion. The disadvantage of this model is that the
volatility y is constant. The most common solution is to replace y by a (positive)
stochastic process Y(t). Barndorff-Nielsen and Shephard (2001) suggest a process
defined as a strictly stationary solution of the stochastic differential equation

dY (t) = −aY (t) dt + σ dZ(t), (2.80)

where a > 0, and Z(·) is a Lévy process with finite or infinite variance. The solution
is given by

Y(t) = e−atY (0)+ σ

∫ t

0
e−a(t−u) dZ(u).

If Z is a Lévy subordinator (that is, a strictly increasing process), then the process
Y(t) is strictly positive and hence may play the role of a volatility. On the other
hand, if Z(t) is a standard Brownian motion, then the equation is interpreted as an
Itô equation, and we obtain an Ornstein–Uhlenbeck process. If Z is a Lévy process,
then Y is called CAR(1), that is, a Continuous Autoregressive Process of order 1.
The name can be explained as follows. Let Z(u) = B(u) be a Brownian motion. If
we consider the process Y(t) at discrete time points t ∈ N, then for Xt = Y(t), we
have

Xt+1 = e−aXt + σe−a(t+1)
∫ t+1

t

eμu dB(u)

or

Xt+1 = φXt +Rt ,

where φ = e−a < 1 and Rt ∼ N(0, 1
2a (e

2a − 1)σ 2). Hence, we obtain an AR(1)
process. This corresponds to the fact that processes Y(t) obtained as solutions of
(2.80) have summable covariances.

One of the possibilities to incorporate long-range dependence is to consider the
modified stochastic differential equation

dY (t) = −μY(t) dt + σ dBH (t), (2.81)
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where BH(t) is a fractional Brownian motion. The strictly stationary solution has
long memory; however, the process Y(t) is not strictly positive. This is a com-
mon problem in modelling long memory in volatility. We refer to Maejima and Ya-
mamoto (2003), Cheridito et al. (2003), Buchmann and Klüppelberg (2005, 2006),
Brockwell and Marquardt (2005) and Hu and Nualart (2010).

A possible solution to assure positivity is to generate long memory by aggre-
gation of short-memory Ornstein–Uhlenbeck processes, as in the case of AR(1)
sequences. We refer to Igloi and Terdik (1999), Oppenheim and Viano (2004), Leo-
nenko and Taufer (2005) and Barndorff-Nielsen and Stelzer (2011a, 2011b).

A different model stems from empirical observations that suggest that durations
between trades exhibit long memory, which then propagates to volatility. A possible
model that incorporates this behaviour can be described as follows (see Deo et al.
2009). Suppose that the log-price process can be described as

P ∗(t) = logP(t) = logP(0)+
N(t)∑

j=1

Y ∗
j ,

where N(t) is the number of transactions up to time t , and Y ∗
j (j ∈ N) is an i.i.d.

sequence of zero-mean random variables with finite variance. The sequence rep-
resents unobservable “shocks” at transaction times. Note that

∑N(t)
j=1 Y ∗

j is almost
the renewal reward process studied in Example 2.12. Indeed, in the setting of that
example we have

∫ t

0
W(u)du =

N(t)−1∑

j=0

Y ∗
j + (t − τN(t)−1)Y

∗
N(t) (t > τ0)

and
∫ t

0 W(u)du = tY0 if 0 < t < τ0. Thus, we expect that the process P ∗(t) has
similar long-memory properties as the integrated renewal reward process. Indeed,
we have

var
(
P ∗(t)

) = E
{
E
[(
P ∗(t)−E

(
P ∗(t)

))2∣∣N
]}

= E
[
var

(
P ∗(t)|N)]+ var

{
E
[
P ∗(t)|N]}

,

where conditioning is on the entire counting process N(t) (t ≥ 0). Since the random
variables Y ∗

j are i.i.d., we conclude that

var
(
P ∗(t)

) = E
[
N(t)

]
E2[Y 2

1

]+E
[
Y 2

1

]
var

(
N(t)

)

= λtE
[
Y 2

1

]+E2[Y1]var
(
N(t)

)
.

Thus, the variance grows faster than at a linear rate if and only if E[Y1] 
= 0. How-
ever, here we assumed that Yj are centered. Hence, there is no long memory in the
log-price process P ∗(t). On the other hand, there is long memory in the so-called re-
alized volatility. To be more specific, let Rj (j ∈ N) be log-returns at equally spaced
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calendar times,

Rj = logP(j)− logP(j − 1) =
N(j)∑

j=N(j−1)+1

Yj (j ∈ N).

A realized volatility at time i is defined as

Vi =
i∑

j=1

R2
j .

Then

var(Vi) = E
[
var(Vi |N)

]+ var
[
E(Vi |N)

]
. (2.82)

Noting that

E
[
R2
j |N

] = E
[
Y 2

1

](
N(j)−N(j − 1)

)
, (2.83)

we obtain

var
[
E(Vi |N)

] = E
[
Y 2

1

]
var

(
i∑

j=1

(
N(j)−N(j − 1)

)
)

= E
[
Y 2

1

]
var

(
N(i)

)
. (2.84)

(Furthermore, under additional moment assumption, the second term in (2.82) does
not contribute asymptotically.) Thus, Eqs. (2.82) and (2.84) imply that the variance
of Vi is proportional to the variance of N(i), whereas (2.83) means that the expected
value of Vi is proportional to E[N(i)]. Consequently, any counting process N that
is LRcD implies long memory in the realized volatility.

2.2.6 Fractals

Ever since the pioneering work by Benoit Mandelbrot and his highly influential se-
ries of books (Mandelbrot 1977, 1983), fractals have become a prime example of
mathematical ideas immersing not only all scientific disciplines but also virtually all
aspects of daily live. Apart from their usefulness, one key to the popularity of frac-
tals is their beauty (see e.g. Peitgen and Richter 1986). The occurrence of fractal
structures in nature is meanwhile widely accepted, and numerous physical expla-
nations have been suggested in the vast literature on the topic (see e.g. Pietronero
and Tosatti 1986, Avnir 1989, Becker and Dörfler 1989, Aharoni and Feder 1990,
Heck and Pedang 1991, Vicsek 1992, McCauley 1993, Barnsley 1993, Xie 1993,
McMullen 1994, Gouyet 1996, Rodriguez-Iturbe and Rinaldo 1997, Turcotte 1997,
Meakin 1998, Mandelbrot 1999, 2002). For an excellent elementary but mathemat-
ical introduction to fractals, see e.g. Falconer (2003). A very brief introduction will
be given in Sect. 3.6.
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Many simple fractals are self-similar geometric objects. Loosely speaking, this
means that the same geometric shapes can be seen no matter how closely one looks
at it. The analogous property for random geometric objects is probabilistic self-
similarity. In particular, for stochastic processes Xt (t ∈ R), we are back to the
definition introduced in Sect. 1.3.5. Since stochastic self-similarity combined with
stationary increments leads to hyperbolic behaviour of the spectral density near the
origin, this leads to the notion of long memory and antipersistence. Thus, the oc-
currence of fractals in nature (and in the arts) is another “physical” explanation why
long memory and antipersistence are fundamentally important for explaining natural
phenomena.



Chapter 3
Mathematical Concepts

In this chapter we present some mathematical concepts that are useful when deriving
limit theorems for long-memory processes.

We start with a general description of univariate orthogonal polynomials in
Sect. 3.1, with particular emphasis on Hermite polynomials in Sect. 3.1.2. Under
suitable conditions, a function G can be expanded into a series

G(x) =
∞∑

j=0

gjHj (x)

with respect to an orthogonal basis consisting of Hermite polynomials Hj(·)
(j ∈ N). Such expansions are used to study sequences G(Xt) where Xt (t ∈ Z)
is a Gaussian process with long memory (see Sect. 4.2.3). Hermite polynomials can
also be extended to the multivariate case. This is discussed in Sect. 3.2.

Subsequently, we discuss the validity of expansions in terms of so-called Ap-
pell polynomials. These results are applied in Sect. 4.2.5 to study sequences G(Xt)

where Xt is a linear process. The problem becomes very difficult when the assump-
tion of normality is dropped, because of the loss of orthogonality. A detailed theory
is presented in Sect. 3.3. This section also includes the notion of Wick products,
which are very useful in the context of limit theorems for long-memory processes.
The main reason is the so-called diagram formula (see Sect. 3.4.3), which simplifies
the calculation of joint cumulants.

An introduction to wavelets is given in Sect. 3.5. Wavelet basis functions are
defined via scaling and are therefore natural tools when it comes to stochastic pro-
cesses with hyperbolic scaling properties. Moreover, they are known to be useful in
the context of nonparametric estimation of trends and other functions that may not
be continuous or differentiable everywhere. The statistical applications will mainly
be discussed in Chaps. 5 and 7. Here, in Sect. 3.5, basic formulas needed in wavelet
analysis are introduced.

The chapter concludes with a brief introduction to fractals, including basic defi-
nitions and a selection of essential results.

J. Beran et al., Long-Memory Processes,
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3.1 Orthogonal Polynomials and Expansions

3.1.1 Orthogonal Polynomials—General Introduction

Orthogonal polynomials play an important role in mathematics in general. For a
systematic introduction to the topic, see for instance Szegö (1939), Jackson (1941,
2004), Boas and Buck (1964), Chihara (1978) and El Attar (2006) (also Abramowitz
and Stegun 1965, Chap. 22). As we will see in Chap. 4, in the context of long-
memory processes orthogonal polynomials are very useful for deriving limit theo-
rems and defining certain classes of non-Gaussian and nonlinear processes.

Many important orthogonal polynomials can be defined via a differential equa-
tion of the following form. Let Q(x) be a polynomial of degree pQ ≤ 2, and L(x)

a linear polynomial. Then we are looking for a twice differentiable function f such
that

Q(x)f ′′(x)+L(x)f ′(x)− λf (x) = 0. (3.1)

Defining the differential operator Df = Qf ′′ +Lf ′, this can be rewritten as

Df = λf, (3.2)

i.e. f is an eigenfunction, and λ an eigenvalue of D. For suitable choices of Q

and L, it turns out that the solutions f are polynomials that are orthogonal to each
other with respect to a suitable scalar product and the corresponding eigenvalues de-
pend on the degree of the polynomial Q and L. More specifically, f ∈ {P0,P1, . . . },
where Pj are polynomials of degree j , and the corresponding eigenvalues are given
by

λj = j

(
j − 1

2
Q′′ +L′

)
. (3.3)

Note that for Q(x) = a0 +a1x+a2x
2 and L(x) = b0 +b1x, Q′′ ≡ 2a2 and L′ = b1,

and the eigenvalues are just constants. Orthogonality is achieved in the following
sense:

Lemma 3.1 Define logR(x) as an antiderivative of L(x)
Q(x)

, i.e.

R(x) = exp

(∫
L(y)

Q(y)
dy

)
, w(x) = R(x)

Q(x)

and, for real functions on the real line, the scalar product

〈f,g〉 =
∫ ∞

−∞
f (x)g(x)w(x)dx.

Furthermore, let

Sjk(x) = R(x)
[
Pj (x)P

′
k(x)− P ′

j (x)Pk(x)
]
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and assume that, for j 
= k, λj 
= λk and

lim
x→±∞Sjk(x) = 0.

Then, for all j 
= k,

〈Pj ,Pk〉 = 0.

Proof By definition, Eq. (3.1) holds for Pj and Pk , that is

QP ′′
j +LP ′

j − λjPj = 0,

QP ′′
k +LP ′

k − λkPk = 0.

Multiplying these two equations from the left by RQ−1Pk and RQ−1Pj , respec-
tively, we obtain

RP ′′
j Pk +RQ−1LP ′

jPk − λjRQ−1PjPk = 0,

RP ′′
k Pj +RQ−1LP ′

kPj − λkRQ−1PkPj = 0.

Subtracting the left-hand terms from each other and using w = RQ−1 yields

R
(
P ′′
k Pj − P ′′

j Pk

)+RQ−1L
(
P ′
kPj − P ′

jPk

) = (λk − λj )PjPkw. (3.4)

A straightforward computation yields

d

dx
Sjk = d

dx

{
R
[
PjP

′
k − P ′

jPk

]}

= R
(
P ′′
k Pj − P ′′

j Pk

)+RQ−1L
(
P ′
kPj − P ′

jPk

)
,

and we recognize the latter expression as the left-hand side of (3.4). Hence, inte-
grating both sides of (3.4) from −∞ to ∞, we obtain

[
Sjk(x)

]∞
−∞ = (λj − λk)〈Pj ,Pk〉.

Thus, [Sjk(x)]∞−∞ = 0 and λj 
= λk implies 〈Pj ,Pk〉 = 0. �

An explicit formula for Pj can be given as follows (Rodrigues 1816).

Lemma 3.2 (Rodrigues Formula) Under suitable conditions on Q and L,

Pj (x) = cj
1

w(x)

dj

dxj

[
w(x)Qj (x)

]
,

where cj are suitable constants.

In the following sections we will discuss special examples that are of particular
interest in the context of long-memory processes.
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3.1.2 Hermite Polynomials and Hermite Expansion

In the context of Gaussian long-memory processes, the most useful orthogonal poly-
nomials are Hermite polynomials. They are defined by Q(x) = 1, L(x) = −x and
λj = −j , or in other words, they fulfill the Hermite differential equation

f ′′(x)− xf ′(x)+ jf (x) = 0. (3.5)

Using the previous notation, we have

R(x) = exp

(∫
L(y)

Q(y)
dy

)
= exp

(
−
∫

y dy

)
= e− x2

2 = w(x). (3.6)

Rodrigues’ formula (Lemma 3.2) then yields

Pj (x) = cj e
x2
2

dj

dxj

[
e− x2

2
]
.

The standard choice of cj is (−1)j . Thus, we have the following definition.

Definition 3.1 The j th Hermite polynomial Hj(x) (j = 0,1,2, . . .) is equal to

Pj (x) := Hj(x) = (−1)j exp

(
x2

2

)
dj

dxj
exp

(
−x2

2

)
. (3.7)

In particular,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x.
(3.8)

Lemma 3.1 and direct calculation for j = k imply

〈Hj ,Hk〉 =
∫ ∞

−∞
Hj(x)Hk(x)ϕ(x) dx = δjk · j !, (3.9)

where

ϕ(x) = 1√
2π

e− x2
2

is the standard normal density function. The L2-space equipped with this scalar
product will be denoted by

L2(R, ϕ) =
{
G : R →R,‖G‖2 =

∫
G2(x)ϕ(x) dx < ∞

}
.

Since Hj are orthogonal in L2(R, ϕ), a natural question is whether they build
a basis, i.e. whether any function G ∈ L2(R, ϕ) has a unique representation (in
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L2(R, ϕ)) in terms of Hermite polynomials. The answer is affirmative. Before we
state the result and prove it, we note that the Hermite polynomials fulfill the follow-
ing recursive formulas:

Hj+1(x) = xHj (x)−H ′
j (x), (3.10)

H ′
j+1(x) = (j + 1)Hj (x),

Hj+1(x) = xHj (x)− jHj−1(x). (3.11)

Lemma 3.3 {Hj , j = 0,1,2, . . .} is an orthogonal basis in L2(R, ϕ).

Proof It only remains to show that the family Hj (j ∈ N) is complete, i.e. that every
function in L2(R, ϕ) can be represented by Hermite polynomials. From the recur-
sive formulas (3.10) it follows that H0, . . . ,Hk span the same space (in L2(R, ϕ))
as 1, x, x2, . . . , xk . Thus, it is sufficient to show that

〈
xj ,G

〉 =
∫ ∞

−∞
xjG(x)ϕ(x) dx = 0 (j = 0,1,2, . . .)

implies G(x) ≡ 0 (in L2(R, ϕ)). Consider the complex function

m(z) =
∞∑

j=0

zj

j !
〈
xj ,G

〉 = 1√
2π

∫ ∞

−∞
G(x)ezx− x2

2 dx.

Then m(z) is an entire function, and

m(it) = 1√
2π

∫ ∞

−∞
G(x)e− x2

2 · eitx dx

is the Fourier transform of G̃(x) = G(x) exp(−x2/2)/
√

2π . (Recall that an entire
function is infinitely complex differentiable and equal to its Taylor series every-
where.) However, if the Fourier transform is equal to zero for all t ∈ R, then G̃ ≡ 0
and hence G ≡ 0 (almost everywhere). �

Why are Hermite polynomials important in the context of random variables and
stochastic processes? Suppose that Z is a standard normal random variable and de-
fine Y = G(Z). Then Y can be represented uniquely (in L2(Ω)) in terms of Hermite
polynomials Hj(Z):

Lemma 3.4 Let Z ∼ N(0,1), and let G be such that E[G(Z)] = 0 and E[G2(Z)]
< ∞. Then G(Z) has the unique representation (in L2(Ω))

G(Z) =
∞∑

k=1

gkHk(Z) =
∞∑

k=1

J (k)

k! Hk(Z) (3.12)
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with (Hermite) coefficients

gk = J (k)

‖Hk‖2
= J (k)

〈Hk,Hk〉 = J (k)

k! , (3.13)

J (k) = 〈G,Hk〉 = E
[
G(Z)Hk(Z)

]
. (3.14)

Sometimes J (k) instead of gk are called Hermite coefficients. As we will see in
Sect. 4.2.3, it is essential to know what the lowest value of k with a nonzero Hermite
coefficient is:

Definition 3.2 Let Z be a standard normal random variable, and G be a function
such that E[G(Z)] = 0 and E[G2(Z)] < ∞. Then the Hermite rank m of G is the
smallest integer k ≥ 1 such that

gk = E
[
G(Z)Hk(Z)

] 
= 0.

Another useful definition is the following.

Definition 3.3 For x ∈R, z ∈C,

MHermite(x, z) =
∞∑

k=0

zk

k!Hk(x)

is called the generating function.

We claim that

MHermite(x, z) = exp

(
xz − z2

2

)
. (3.15)

Indeed, exp(xz − z2

2 ), as a function of z, can be expanded as

exp

(
xz − z2

2

)
=

∞∑

k=0

zk

k!
[
dk

dzk
exp

(
xz − z2

2

)]

z=0
.

Now, formula (3.15) follows by noting

[
dk

dzk
exp

(
xz − z2

2

)]

z=0
= Hk(x).

Formula (3.15) implies that if X ∼ N(μ,1), then E[Hj(X)] = μj . Indeed,

E
[
MHermite(X, z)

] = E

[
exp

(
Xz − z2

2

)]
= exp(μz) =

∞∑

k=0

zk

k!μ
k
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and

E
[
MHermite(X, z)

] =
∞∑

k=0

zk

k!E
[
Hk(X)

]
.

Thus, the formula for moments comes from comparing coefficients of the both ex-
pansions. In particular, for μ = 0, E[Hj(X)] = 0 (which also follows by orthogo-
nality and H0(x) ≡ 1).

Furthermore, for real numbers a1, . . . , ak such that a2
1 + · · · + a2

k = 1, we have

Hq

(
k∑

j=1

ajxj

)
=

∑

q1+···+qk=q

q!
q1! . . . qk!

k∏

j=1

a
qj
j Hqj (xj ). (3.16)

This formula is particularly useful to derive the following lemma.

Lemma 3.5 For a pair of jointly standard normal random variables Z1, Z2 with
covariance ρ = cov(Z1,Z2), we have

cov
(
Hm(Z1),Hm(Z2)

) = m!ρm, (3.17)

whereas for j 
= k,

cov
(
Hj(Z1),Hk(Z2)

) = 0. (3.18)

Proof Write Z2 = ρZ1 + √
1 − ρ2ξ , where ξ is independent of Z1 and standard

normal. Then, applying (3.16) and recalling that E[Hq2(ξ)] = 0 unless q2 = 0, we
have

E
[
Hm(Z1)Hm(Z2)

]

= E
[
Hm(Z1)Hm

(
ρZ1 +

√
1 − ρ2ξ

)]

=
∑

q1+q2=m

m!
q1!q2!ρ

q1
(√

1 − ρ2
)q2E

[
Hm(Z1)Hq1(Z1)

]
E
[
Hq2(ξ)

]

= ρm
[
H 2

m(Z1)
] = ρm〈Hm,Hm〉 = m!ρm.

In the latter equation we used formula (3.9) for the inner product of Hermite polyno-
mials. This proves (3.17). The second formula (3.18) can be proven analogously. �

Lemma 3.4 implies that the variance of G(Z) can be decomposed into (orthogo-
nal) contributions of the Hermite coefficients,

var
(
G(Z)

) =
∞∑

k=1

g2
kk! =

∞∑

k=1

J 2(k)

k! . (3.19)
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Similarly, Lemma 3.5 implies

cov
(
G(Z1),G(Z2)

) =
∞∑

k=1

J 2(k)

k! ρk. (3.20)

Example 3.1 Let G(x) = H1(x) = x. Then J (1) = cov(G(Z)Z) = var(Z2) = 1,
so that G has Hermite rank 1. (This can also be seen directly because H2 is by
definition orthogonal to all other Hermite polynomials.) For Z1, Z2 standard normal
with ρ = cov(Z1,Z2), we obviously have cov(G(Z1),G(Z2)) = ρJ (1)/1! = ρ.

Example 3.2 Let G(x) = H2(x) = x2 −1. Then, J (1) = E(Z3 −Z) = 0 and J (2) =
E[(Z2 − 1)2] = 2, so that the Hermite rank is 2. (This can also be seen directly
because H2 is by definition orthogonal to all other Hermite polynomials.) Moreover,
cov(Z2

1 − 1,Z2
2 − 1) = ρ2J 2(2)/2! = 2ρ2.

3.1.3 Laguerre Polynomials

The Laguerre polynomials Pj (x) = L
(α)
j (x) are obtained from (3.1) by setting

Q(x) = x, L(x) = α + 1 − x (with α > −1) and λj = −j , and considering x ≥ 0

only. Thus, L(α)
j are solutions of Laguerre’s equation

xf ′′(x)+ (α + 1 − x)f ′(x)+ jf (x) = 0 (x ≥ 0). (3.21)

This implies

R(x) = exp

[∫ (
α + 1

y
− 1

)
dy

]
= xα+1e−x,

w(x) = xαe−x1{x ≥ 0},
(3.22)

and

Pj (x) := L
(α)
j (x) = cj x

−αex
dj

dxj

(
xj+αe−x

)
.

The usual standardization is cj = Γ (α + 1)/Γ (j + α + 1), so that we obtain the
following definition.

Definition 3.4 The j th generalized or associated Laguerre polynomials L
(α)
j (x)

(j ≥ 0) are defined by

L
(α)
j (x) = Γ (α + 1)

Γ (j + α + 1)
x−αex

dj

dxj

(
xj+αe−x

)
.

For α = 0, L(0)
j =: Lj are called (simple) Laguerre polynomials.
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For probabilistic and statistical applications, the most interesting case is α = 0
because it can be associated with the exponential distribution. The first few Laguerre
polynomials with α = 0 are

L0(x) = 1, L1(x) = −x + 1, L2(x) = 1

2

(
x2 − 4x + 2

)
, . . . .

By definition (simple) Laguerre polynomials are orthonormal in L2(R+,ψ) where
ψ(x) = exp(−x)1{x ≥ 0} is the standard exponential density function, i.e.

〈Lj ,Lk〉 =
∫ ∞

0
Lj(x)Lk(x)e

−x dx = δjk·

Similarly to Hermite polynomials, one can show that every function in L2(R+,ψ)

can be represented by Laguerre polynomials since {Lj , j = 0,1,2, . . .} is an or-
thonormal basis in L2(R+,ψ).

Thus, for any function G ∈ L2(R+,ψ), there is a unique representation

G(x) =
∞∑

k=0

gkLk(x),

gk = 〈G,Lk〉 =
∫ ∞

0
G(x)Lk(x)e

−x dx.

In other words, if Z is a standard exponential random variable, then the transformed
random variable G(Z) can be represented as

G(Z) =
∞∑

k=0

gkLk(Z),

g0 = E
[
G(Z)

]
, gk = cov

(
G(Z),Lk(Z)

)
(k ≥ 1).

In analogy to Hermite polynomials, one can then define the Laguerre rank.

Definition 3.5 Let Z be a standard exponential random variable, and G a function
such that E[G(Z)] = 0 and E[G2(Z)] < ∞. Then the Laguerre rank m of G is the
smallest integer k ≥ 1 such that

gk = E
[
G(Z)Lk(Z)

] 
= 0.

Further useful properties of Laguerre polynomials are for instance

(j + 1)Lj+1(x) = (2j + 1 − x)Lj (x)− jLj−1(x),

xL′
j (x) = j

[
Lj (x)−Lj−1(x)

]
.

(3.23)

The importance of Laguerre polynomials for random variables and stochastic pro-
cesses is due to the importance of the exponential distribution, which is obtained
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for instance when considering interarrival times between events of a homoge-
neous Poisson process. Applications include for example survival analysis (e.g. in
medicine or credit risk modelling) and queuing networks (e.g. computer networks).

Example 3.3 Let Z be a standard exponential random variable. Estimates of the
survival function S(z0) = P(Z > z0) are essentially based on the variable Y =
1{Z > z0}. The Laguerre rank of the centred variable G(Z) = Y −E(Y) is equal to
1 because

g1 = 〈G,Z〉 = −
∫ ∞

0
G(x)xe−x dx

= −
∫ ∞

z0

xe−x dx = −e−z0(z0 + 1) 
= 0 for all z0 > 0.

This plays a role when observed life times Z1, . . . ,Zn are strongly correlated. For
instance Leonenko et al. (2001, 2002) derive the asymptotic distribution of the
Kaplan–Meier estimator for censored survival times using a Laguerre polynomial
expansion and the notion of a Laguerre rank, analogous to the Hermite polynomial
expansion and Hermite rank.

3.1.4 Jacobi Polynomials

Jacobi polynomials P
(α,β)
j are obtained from (3.1) by setting Q(x) = 1 − x2 and

L(x) = β − α − (α + β + 2)x, where α,β > −1, and x is restricted to (−1,1). The
eigenvalues are λj = −j (j + 1 + α + β). Thus, Jacobi’s equation is

(
1−x2)f ′′(x)+[

β−α−(α+β+2)x
]
f ′(x)−λf (x) = 0 (−1 < x < 1). (3.24)

The solutions are given by

P
(α.β)
j (x) = Γ (α + j + 1)

j !Γ (α + β + j + 1)

j∑

k=0

(
j

k

)
Γ (α + β + j + k + 1)

Γ (α + β + 1)

(
x − 1

2

)k

,

(3.25)
where −1 < x < 1. Orthogonality is obtained with respect to the weight function
(on the interval (−1,1))

w(x) = (1 − x)α(1 + x)β, (3.26)

i.e. for j 
= k,

〈
P

(α,β)
j ,P

(α,β)
k

〉 =
∫ 1

−1
P

(α,β)
j (x)P

(α,β)
k (x)(1 − x)α(1 + x)β dx = 0. (3.27)
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Why are Jacobi polynomials of interest in the context of random variables and
stochastic processes? Special types of Jacobi polynomials, so-called Gegenbauer
and Legendre polynomials (see next two sections), are important for modelling sea-
sonal long-range dependence (see Sect. 5.12.2). Also, Jacobi polynomials come up
in the context of efficient regression estimation (see Sect. 7.1.2).

3.1.5 Gegenbauer Polynomials

In the following we will use Pochhammer’s symbol (a)k = Γ (a + k)/Γ (a) and the
notation Fp,q for the hypergeometric function

Fp,q(z|a1, . . . , ap;b1, . . . , bq) =
∞∑

k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k z

k.

Gegenbauer polynomials are Jacobi polynomials with α = β > − 1
2 , i.e. with

Q(x) = 1 − x2, L(x) = −2(α + 1)x and λj = −j (j + 1 + 2α). Usually, one uses a
new parameter κ = α + 1

2 > 0. Then we obtain the definition of Gegenbauer poly-

nomials C(κ)
j ,

C
(κ)
j (x) = (2κ)j

(κ + 1
2 )j

P
(κ− 1

2 ,κ− 1
2 )

j (x), (3.28)

which are solutions of Gegenbauer’s equation

(
1 − x2)f ′′(x)− 2

(
κ + 1

2

)
xf ′(x)+ j (j + 2κ)f (x) = 0.

(Note that for κ = 0, one defines C
(0)
j (1) := 2

j
.) The j th polynomial can also be

written as

C
(κ)
j (x) = Fp,q

(
1 − x

2

∣∣∣∣− j, j + 2κ;κ + 1

2

)
· (2κ)j

j ! .

For numeric calculations, the recursion formula

C
(κ)
j (x) = 1

j

[
2x(j + κ − 1)C(κ)

j−1(x)− (j + 2κ − 2)C(κ)
j−2(x)

]

is useful, with initiation C
(κ)
0 (x) = 1, C(κ)

1 (x) = 2κ · x. The Gegenbauer polyno-

mials are orthogonal with respect to the weight function w(x) = (1 − x2)κ− 1
2 on

(−1,1). More specifically,

〈
C

(κ)
j ,C

(κ)
k

〉 =
∫ 1

−1
C

(κ)
j (x)C

(κ)
k (x)

(
1 − x2)κ− 1

2 dx = δjk · π21−2κΓ (j + 2κ)

j !(j + κ)Γ 2(κ)
.
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In the context of long-memory processes, Gegenbauer polynomials are easier to
understand by looking at their generating function

MG(x, z;κ) =
∞∑

j=0

zjC
(κ)
j (x) = (

1 − 2xz + z2)−κ
.

The so-called Gegenbauer processes (see Gray et al. 1989, 1994; Giraitis and Leipus
1995; Woodward et al. 1998; Sect. 5.12.2) are defined as stationary solutions of

ϕ(B)
(
1 − 2uB +B2)dXt = ψ(B)εt

where ϕ, ψ are the usual autoregressive and moving average polynomials, εt (t ∈ Z)
are i.i.d. zero mean random variables, and u ∈ (−1,1) is a parameter. More explic-
itly, this may be written as

MG(u,B;−d)Xt =
∞∑

j=0

C
(−d)
j (u)BjXt = ϕ−1(B)ψ(B)εt = Yt ,

where Yt is an ARMA(p, q) process. In particular, for p = q = 0, the coefficients
πj in the autoregressive representation Xt = −∑∞

j=1 πjXt−j + εt are Gegenbauer
polynomials evaluated at u.

3.1.6 Legendre Polynomials

Legendre polynomials are Gegenbauer polynomials with α = β = 0, i.e. κ = 1
2 .

Thus, Q(x) = 1 − x2, L(x) = −2x, λj = −j (j + 1), and Legendre’s equation is

(
1 − x2)f ′′(x)− 2xf ′(x)+ j (j + 1)f (x) = 0.

More explicitly, Legendre polynomials are given by P0 = 1 and

Pj (x) = 2−j

j !
dj

dxj

[(
x2 − 1

)j ]
.

They are orthogonal with respect to the weight function w(x) = 1{−1 < x < 1},

〈Pj ,Pk〉 =
∫ 1

−1
Pj (x)Pk(x) dx = δjk · 2

2j + 1
.

The generating function is

MLegendre(x, z) =
∞∑

j=0

zjPj (x) = 1√
1 − 2xz + z2

.
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In the long-memory context, extensions of Legendre polynomials to non-integer
degrees are useful. The so-called associated Legendre functions Pb

a can be de-
fined either by replacing differentiation f ′ and f ′′ by fractional differentiation (see
Sect. 7.3) or directly as solutions of the Legendre equation

(
1 − x2)f ′′(x)− 2xf ′(x)+

[
a(a + 1)− b2

1 − x2

]
f (x) = 0,

where a, b ∈ C. The explicit formula is

Pb
a (z) = 1

Γ (1 − b)

(
1 + z

1 − z

) b
2

F2,1

(
1 − z

2

∣∣∣∣− a, a + 1;1 − b

) (|1 − z| < 2
)
.

These functions are useful for calculating the autocovariance function of Gegen-
bauer processes (see Chung 1996a).

3.2 Multivariate Hermite Expansions

The notion of Hermite polynomials considered in Sect. 3.1.2 can be extended to the
multivariate case. Let X = (X1, . . . ,Xk)

T be a k-dimensional Gaussian vector with
expected value zero and covariance matrix

Σ = [
cov(Xi,Xj )

]
i,j=1,...,k,

and denote by Ik the k × k identity matrix. Set q = (q1, . . . , qk)
T , q! = q1! · · ·qk!,

|q| = q1 + · · · + qk , x = (x1, . . . , xk), xq = x
q1
1 · · ·xqkk , ∂xq = ∂x

q1
1 · · · ∂xqkk and

(
d

dx

)q

= ∂ |q|

∂xq = ∂q1+···+qk

∂x
q1
1 · · · ∂xqkk

.

Definition 3.6 The qth Hermite polynomial (q ∈N
k) is equal to

Hq(x;Σ) = (−1)|q|

φΣ(x)

(
d

dx

)q

φΣ(x), (3.29)

where

φΣ(x) = 1

(2π)k/2
√

detΣ
exp

(−1

2
x′Σ−1x

)

is the density of X.
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Hermite polynomials are orthogonal w.r.t. their dual polynomials,

H̃q(x;Σ) = (−1)|q|

φΣ(Σy)

(
d

dy

)q

φΣ(Σy)

= (−1)|q|

φΣ(x)

(
d

dy

)q

φΣ(Σy)

∣∣∣∣
y=Σ−1x

,

where y = Σ−1x, in the sense that (cf. (3.9) in the univariate case)

〈H̃q,Hr〉 =
∫

Rk

H̃q(x;Σ)Hr(x;Σ)φΣ(x) dx = q!δqr, (3.30)

where δqr = 1 if q = r and zero otherwise.
Definition (3.29) is not particularly useful for constructing multivariate Hermite

polynomials. More useful results are obtained via the generating function introduced
in the univariate case in Definition 3.3:

MHermite(x, z) = exp

(
xz − z2

2

)
=

∞∑

k=0

zk

k!Hk(x).

Note that for X ∼ N(0,1),

∞∑

k=0

zk

k!E
[
(x + iX)k

] = E
[
ez(x+iX)

] = MHermite(x, z).

Therefore, Hk(x) = E[(x+ iX)k] (k ≥ 0). This formula can be extended to the mul-
tivariate case (see e.g. Withers 2000; also Barndorff-Nielsen and Pedersen 1979):

Lemma 3.6 Let Y ∼ N(0,Σ−1), y = Σ−1x and (y + iY)q = ∏k
j=1(yj + iYj )

qj .
Then the following formula holds for multivariate Hermite polynomials defined
in (3.29):

Hq(x;Σ) = E
[
(y + iY)q].

Proof Recall that the characteristic function of Y ∼ N(0,Σ−1) is given by

E
[
exp

(
iz′Y

)] = exp

(
−1

2
z′Σ−1z

)
.

Recalling that y = Σ−1x, a Taylor expansion in R
k leads to

∞∑

j1,...,jk=0

z
j1
1 · · · zjkk
j1! · · · jk!E

[
(y + iY)j] =

∑

j∈Nk
0

zj

j!E
[
(y + iY)j]

= E
[
exp

(
z′(y + iY)

)]
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= exp
(
z′y

)
exp

(
−1

2
z′Σ−1z

)

= exp
(
z′Σ−1x

)
exp

(
−1

2
z′Σ−1z

)
.

The last expression equals

φΣ(x − z)
φΣ(x)

.

Noting that
[(

d

dz

)j

φΣ(x − z)
]

z=0
= (−1)|j|

(
d

dx

)j

φΣ(x),

the Taylor expansion of φΣ(x − z) (as a function of z) leads to

∑

j∈Nk
0

zj

j!E
[
(y + iY)j] = 1

φΣ(x)

∑

j∈Nk
0

zj

j! (−1)|j|
(

d

dx

)j

φΣ(x).
�

Example 3.4 Let q = (1,1). Then

Hq(x;Σ) = E
[
(y1 + iY1)(y2 + iY2)

] = y1y2 −E[Y1Y2].

Note that H1,1(x;Σ) is expressed here in terms of y = Σ−1x. In particular, if the
covariance matrix is Σ = I2, then H1,1(x;Σ) = H1(x1)H1(x2) = x1x2 since y = x
in this case.

Example 3.5 Let q = (1,2). Then

Hq(x;Σ) = H1,2(x;Σ) = E
[
(y1 + iY1)(y2 + iY2)

2]

= y1
(
y2

2 −E
(
Y 2

2

))− 2y2E(Y1Y2).

Again, if Σ = I2, then H1,2(x;Σ) = H1(x1)H2(x2).

In general, if Σ = Ik , then Hq(x;Σ) = ∏k
j=1 Hqj (xj ). In other words, if the

components of the vector X are independent, then a multivariate Hermite polyno-
mial is a product of univariate ones.

The examples show that multivariate Hermite polynomials have quite a com-
plicated form and may not be suitable in the context of limit theorems. In fact, as
we will see below, it is sufficient to consider Gaussian random vectors with i.i.d.
N(0,1) components, i.e.

X̃ = (X̃1, . . . , X̃k)
T ∼ N(0, Ik).
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To see this, define

H ∗
q (x) = H ∗

q1,...,qk
(x1, . . . , xk) =

k∏

j=1

Hqj (xj ). (3.31)

As indicated in (3.30), H ∗
q (q ∈ N

k) form an orthonormal basis in L2(R, φIk ). Let

G ∈ L2(R, φIk ) and define

J (G, X̃,q) = J (G, Ik,q) = 〈
G,H ∗

q
〉 = E

[
G(X̃)H ∗

q (X̃)
]
.

The Hermite rank

τ(G, X̃) = τ(G, Ik)

of G with respect to X̃, or in other words with respect to the distribution N(0, Ik),
is the largest integer τ such that

J (G, Ik,q) = 0 for all 0 < |q| < τ, (3.32)

where |q| = q1 + · · · + qk . Note that this is the same as the largest integer τ such
that

〈
G(X̃), X̃q〉 = E

[
G(X̃)

k∏

j=1

X̃
qj
j

]
= 0 for all 0 < |q| < τ.

As in the univariate case, we therefore can write down an orthogonal expansion

G(X̃1, . . . , X̃k) = E
[
G(X̃)

]+
∑

|q|≥τ(G,Ik)

J (G, Ik,q)
q1! · · ·qk!

k∏

j=1

Hqj (X̃j ). (3.33)

Now consider X ∼ N(0,Σ). Then X is equal in distribution to U(X̃) = Σ
1
2 X̃. Thus,

we may apply expansion (3.33) to the function G̃(X̃) = G ◦ U(X̃), which then has
the Hermit rank τ(G̃, X̃) = τ(G◦U, X̃) = τ(G◦U,Ik) with respect to X̃. We there-
fore have the expansion

G(X) = G̃(X̃) = E
[
G(X)

]+
∞∑

|q|=τ(G̃,X̃)

J (G ◦U, X̃,q)
q1! · · ·qk!

k∏

j=1

Hqj (X̃j ).

Now let us define (“Hermite”) coefficients of G with respect to X by

J (G,X,q) = J (G,Σ,q) = E
[
G(X)H ∗

q (X)
]
. (3.34)

Here we write “Hermite” in quotation marks because initially J (G,X,q) does not
have the same straightforward interpretation as before. The reason is that the poly-
nomials H ∗

q (X) no longer constitute an orthogonal basis in the L2-space defined
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by the distribution of X. Nevertheless, it turns out that the definition of J (G,Σ,q)
is meaningful when it comes to determining that part of G(X) which is relevant
for limit theorems (of sums). The reason is that, as for X̃, the space spanned by
H ∗

q (X) (|q| ≤ p) is the same as the space spanned by all (multivariate) polynomials
in X1, . . . ,Xk up to degree p. If we define the Hermite rank τ(G,X) = τ(G,Σ) of
G with respect to X as the largest integer τ such that

J (G,Σ,q) = 0 for all 0 < |q| < τ, (3.35)

then this is the same as the largest integer such that

〈
G(X),Xq〉 = E

[
G(X)

k∏

j=1

X
qj
j

]
= 0 for all 0 < |q| < τ.

However, X is obtained from X̃ by a one-to-one linear transformation X =
U(X̃) = Σ

1
2 X̃. The space spanned by polynomials in X1, . . . ,Xk of order q with

|q| ≤ p is therefore the same as the one spanned by polynomials in X̃1, . . . , X̃k with
|q| ≤ p. Therefore the condition that E[G(X)

∏k
j=1 X

qj
j ] = 0 for all q with |q| ≤ p

is the same as the condition that

E

[
G(X)

k∏

j=1

X̃
qj
j

]
= E

[
G ◦U(X̃)

k∏

j=1

X̃
qj
j

]
= 0

for all q with |q| ≤ p. This implies that the values of τ(G,Σ) and τ(G ◦U,Ik) are
the same. The result can be summarized as follows (see Arcones 1994, p. 2249):

Lemma 3.7 Let X ∼ N(0,Σ) and

X̃ = U(X) = Σ− 1
2 X ∼ N(0, Ik).

Then the Hermite rank τ(G,Σ) of G with respect to X is the same as the Hermite
rank τ(G ◦U,Ik) of G ◦U with respect to X̃, i.e.

τ(G,Σ) = τ(G ◦U,Ik). (3.36)

Note, however that in general τ(G,Σ) 
= τ(G, Ik) (see examples below). More-
over, the coefficients J (G,Σ,q) and J (G ◦ U,Ik,q) are not the same in general.
Nevertheless, from a point of view of limit theorems, there is no need to con-
sider the entire class of multivariate Hermite polynomials Hq. First of all, due to
τ(G,Σ) = τ(G ◦U,Ik) =: τ , the Hermite rank of G(X) can be determined by cal-
culating either J (G,Σ,q) or J (G ◦ U,Ik,q) (whatever is easier). To identify the
asymptotically relevant part (terms with |q| = τ ) of G(X), one can switch to the
representation G ◦ U(X̃). If the limit theorem is for a sum of G(Xt ), then in the
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long-memory context the relevant part consists of all contributions with |q| = τ , i.e.

G̃(X̃) =
∑

1≤q1,...,qk≤τ
|q|=τ

J (G ◦U, X̃,q)
q1! · · ·qk! H ∗

q (X̃)

=
∑

1≤q1,...,qk≤τ
|q|=τ

J (G ◦U, X̃,q)
q1! · · ·qk!

k∏

j=1

Hqj (X̃j ).

Note that some but not all of the coefficients in the sum may be zero. Finally, we can
write the asymptotically relevant part in terms of the original vector X by applying
the inverse transformation U−1,

G(X) = G̃
(
Σ

1
2 X̃

)
.

Thus, in summary, only the special Hermite polynomials H ∗
q (as defined in (3.31))

and the corresponding expansion for N(0, Ik)-distributed variables are needed.

Example 3.6 Consider G(y1, y2) = y1y2, and let X1 and X2 be independent
N(0,1). Thus, Σ = I2, so that X1 = X̃1, X2 = X̃2, and we have to consider
J (G, I2,q), where I2 is the 2 × 2 identity matrix. From

J
(
G,I2, (1,0)

) = J
(
G,I2, (0,1)

) = E[X̃1X̃2X̃j ] = 0 (j = 1,2),

J
(
G,I2, (2,0)

) = J
(
G,I2, (0,2)

) = E
[
X̃1X̃2H2(X̃j )

] = 0 (j = 1,2)

and

J
(
G,I2, (1,1)

) = E
[
X̃1X̃2H1(X̃1)H1(X̃2)

] = E
[
X̃2

1

]
E
[
X̃2

2

] = 1

we conclude that the Hermite rank (of G with respect to X) is

τ(G, I2) = 2

and the only nonzero Hermite coefficient with |q| = 2 is obtained for q = (1,1).

Example 3.7 As before, we consider G(y1, y2) = y1y2, but now we assume X1,X2
to be correlated N(0,1) variables. This can be written as

X = (X1,X2)
T = (

X̃1, γ X̃1 +
√

1 − γ 2X̃2
)T

with γ = cov(X1,X2), 0 < |γ | < 1 and X̃1, X̃2 as in the previous example. In other

words, X = U(X̃) = Σ
1
2 X̃ with

Σ
1
2 =

(
1 0
γ

√
1 − γ 2

)
.
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The rank τ of G with respect to X is equal to τ(G,Σ) or equivalently τ(G ◦U,Ik).
As an exercise, we calculate τ both ways. For the coefficients J (G ◦ U,Ik,q), we
obtain

J
(
G ◦U,I2, (1,0)

) = J
(
G ◦U,I2, (0,1)

) = E
[
X̃1

(
γ X̃1 +

√
1 − γ 2X̃2

)
X̃1

] = 0,

J
(
G ◦U,I2, (1,1)

) = E
[
X̃1

(
γ X̃1 +

√
1 − γ 2X̃2

)
X̃1X̃2

] =
√

1 − γ 2,

J
(
G ◦U,I2, (0,2)

) = E
[
X̃1

(
γ X̃1 +

√
1 − γ 2X̃2

)(
X̃2

2 − 1
)] = 0,

and

J
(
G ◦U,I2, (2,0)

) = E
[
X̃1

(
γ X̃1 +

√
1 − γ 2X̃2

)(
X̃2

1 − 1
)] = 2γ.

Thus, τ(G ◦ U,I2) = 2. In fact, G ◦ U is exactly equal to the contribution of terms
with |q| = 2, namely

G ◦U(X̃1, X̃2)− γ = X̃1
(
γ X̃1 +

√
1 − γ 2X̃2

)− γ

= 2γ

2! H2(X̃1)+
√

1 − γ 2

1! H1(X̃2)H1(X̃2).

For the coefficients J (G,Σ,q), we have

J
(
G,Σ, (1,0)

) = J
(
G,Σ, (0,1)

) = E[X1X2Xj ] = 0 (j = 1,2)

and using Lemma 3.5,

J
(
G,Σ, (1,1)

) = E[X1X2X1X2] = E
[
H2(X1)H2(X2)

]+ 1 = 2γ 2 + 1,

J
(
G,Σ, (2,0)

) = E
[
X1X2

(
X2

1 − 1
)] = E

[
H3(X1)H1(X2)

] = 2γ

and

J
(
G,Σ, (0,2)

) = E
[
X1X2

(
X2

2 − 1
)] = E

[
H1(X1)H3(X2)

] = 2γ.

Thus, as it should be according to (3.36), the Hermite rank τ(G,Σ) = 2 is the same
as τ(G ◦U,I2). Note, however, that there are now three nonzero coefficients.

Example 3.8 Let G(y1, y2) = H2(y1)H2(y2) = (y2
1 − 1)(y2

2 − 1) and X = X̃. Thus
we consider J (G, I2,q). Since only odd powers are involved, we have

J
(
G,I2, (1,0)

) = J
(
G,I2, (0,1)

) = J
(
G,I2, (1,1)

) = 0.

Also, for q = (2,0), we obtain

J
(
G,I2, (2,0)

) = E
[
H 2

2 (X̃1)H2(X̃2)
] = E

[
H 2

2 (X̃1)
]
E
[
H2(X̃2)

] = 0,
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and, by symmetry, J (G, I2, (0,2)) = J (G, I2, (2,0)) = 0. For |q| = 3, only odd
powers are involved, so that J (G, I2,q) = 0. Finally, for |q| = 4, one has for exam-
ple

J
(
G,I2, (2,2)

) = E
[
H 2

2 (X̃1)H
2
2 (X̃2)

] = E
[
H 2

2 (X̃1)
]
E
[
H 2

2 (X̃2)
] 
= 0.

Thus, the Hermite rank of G with respect to X = X̃ is 4.

Example 3.9 Consider the previous function G(y1, y2) = H2(y1)H2(y2), however
with

X = (X1,X2)
T = (

X̃1, γ X̃1 +
√

1 − γ 2X̃2
)T

,

where γ = cov(X1,X2), 0 < |γ | < 1. Then

J
(
G ◦U,I2, (1,0)

) = J
(
G ◦U,I2, (0,1)

) = 0.

For

J
(
G ◦U,I2, (1,1)

) = E
[
H2(X̃1)H2

(
γ X̃1 +

√
1 − γ 2X̃2

)
X̃1X̃2

]
,

we use Eq. (3.16) to write

H2
(
γ X̃1 +

√
1 − γ 2X̃2

) = (
1 − γ 2)H2(X̃2)+ γ 2H2(X̃1)+ 2γ

√
1 − γ 2X̃1X̃2.

Then

J
(
G ◦U,I2, (1,1)

) = 2γ
√

1 − γ 2E
[
H2(X̃1)X̃1X̃2X̃1X̃2

] = 4γ
√

1 − γ 2.

Thus, in contrast to the previous case with independent components, for correlated
normal variables X1,X2, the Hermite rank τ(G,Σ) = τ(G ◦ U,I2) of G is 2 in-
stead of 4. This illustrates that a multivariate Hermite rank can be changed just by
changing the correlation structure between the components of the normal vector X.
(The example also illustrates that for correlated components, it would be wrong to
interpret τ(G, I2) as the Hermite rank. The correct Hermite rank is obtained only if
one calculates τ(G,Σ) or τ(G ◦U,I2).)

Example 3.10 Let

G(y1, y2) = H2(y1)y2

and X = X̃ ∼ N(0, I2). We have

J
(
G,I2, (1,0)

) = E
[
X̃1H2(X̃1)X̃2

] = E
[
X̃1H2(X̃1)

]
E[X̃2] = 0

and

J
(
G,I2, (0,1)

) = E
[
H2(X̃1)X̃

2
2

] = E
[
H2(X̃1)

]
E
[
X̃2

2

] = 0.
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For |q| = 2, we also similarly have J (G, I2,q) = 0. For |q| = 3, however we have
for example

J
(
G,I2, (2,1)

) = E
[
H 2

2 (X̃1)X̃
2
2

] = E
[
H 2

2 (X̃1)
] = 2.

Thus, G has Hermite rank τ(G, I2) = 3.

Example 3.11 Let

G(y1, y2) = H2(y1)y2

as before, but cov(X1,X2) = γ (and E(Xi) = 0, var(Xi) = 1). Then for instance

J
(
G,Σ, (1,0)

) = E
[
X1H2(X1)X2

] = E
[(
H3(X1)+ 2X1

)
X2

] = 2E[X1X2] = 2γ.

Thus, the Hermite rank τ(G,Σ) = τ(G◦U,I2) is now equal to one. Again, this is an
example where introducing a correlation between X1 and X2 changes the Hermite
rank.

Example 3.12 Let X = X̃ ∼ N(0, I2), and consider G(y1, y2) = G1(y1)G2(y2),
where the two (centred) functions Gi (i = 1,2) have (univariate) Hermite ranks
m1 and m2. Then

E
[
G(X̃)Hq1(X̃1)Hq2(X̃2)

] = E
[
G1(X̃1)Hq1(X̃1)

]
E
[
G1(X̃2)Hq2(X̃2)

]
.

Now, if E[G1(X̃1)] = E[G2(X̃2)] = 0, then

E
[
G1(X̃1)Hq1(X̃1)

] = 0 (0 ≤ q1 ≤ m1 − 1),

E
[
G2(X̃2)Hq2(X̃2)

] = 0 (0 ≤ q2 ≤ m2 − 1).

For q = (m1,m2), on the other hand, both expected values are non-zero. Thus, the
Hermite rank is

τ(G, I2) = m1 +m2.

If the expected value of one the functions G1,G2 is not zero, then the Her-
mite rank changes. For instance, if E[G1(X̃1)] 
= 0, then E[G1(X̃1)H0(X̃1)] =
E[G1(X̃1)] 
= 0, so that

E
[
G(X̃)H0(X̃1)Hm2(X̃2)

] = E
[
G1(X̃1)H0(X̃1)

]
E
[
G1(X̃2)Hm2(X̃2)

] 
= 0.

The same argument applies if E[G2(X̃2)] 
= 0. Therefore, in either case G has Her-
mite rank

τ(G, I2) = m1 ∧m2 = min{m1,m2}.

Example 3.13 Let G1(x) = exp(px), where p is a an integer. Then the univariate
Hermite rank of G1 is one. Now let X = X̃ ∼ N(0, I2) and consider

G(y1, y2) = G1(y1)G1(y2) = ep(y1+y2).
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Then we know from the previous example that the Hermite rank τ(G, I2) is one.

Example 3.14 Consider the same function G(y1, y2) = G1(y1)G1(y2) =
exp(p(y1 + y2)) as in the previous example, however X ∼ N(0,Σ) with N(0,1)
marginals and cov(X1,X2) = γ (0 < |γ | < 1). Then

J
(
G,Σ, (1,0)

) = E
[
X1 exp

(
p(X1 +X2)

)]

= E
[
X̃1 exp

(
p
(
(1 + γ )X̃1 +

√
1 − γ 2X̃2

))]

= E
[
X̃1e

p(1+γ )X̃1
]
E
[
ep

√
1−γ 2X̃2

]

= M ′(p(1 + γ )
)
M

(
p

√
1 − γ 2

)
,

where M(u) = exp( 1
2u

2) is the moment generating function of the standard normal
distribution. Thus,

τ(G,Σ) = τ(G ◦U,I2) = 1,

i.e. the Hermite rank with respect to the correlated vector X is also one. This exam-
ple will be applied in the section on stochastic volatility models.

The next example illustrates that monotonicity of the Hermite ranks for univariate
functions may not be transferred to the bivariate case.

Example 3.15 Let G(y1, y2) = G1(y1)G2(y2), where Gj(x) = Hm(x) (j = 1,2),
and consider a dependent vector X ∼ N(0,Σ) with N(0,1) marginals and
cov(X1,X2) = γ (0 < |γ | < 1). Due to the recursion

Hm+1(x) = xHm(x)−mHm−1(x)

and Lemma 3.5,

J
(
G,Σ, (0,1)

) = J
(
G,Σ, (1,0)

) = E
[
Hm(X1)Hm(X2)X1

]

= E
[
Hm(X1)Hm(X2)X1

]

= E
[(
Hm+1(X1)+mHm−1(X1)

)
Hm(X2)

] = 0.

For q = (2,0), however we may use formula (3.16) to first obtain

Hm(X2) = Hm

(
γ X̃1 +

√
1 − γ 2X̃2

)

=
∑

m1+m2=m

m!
m1!m2!γ

m1
(
1 − γ 2)m2

2 Hm1(X̃1)Hm2(X̃2).

Then

J
(
G,Σ, (2,0)

) = E
[
Hm(X1)Hm(X2)H2(X1)

] = E
[
Hm(X̃1)H2(X̃1)Hm(X2)

]
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can be written as

∑

m1+m2=m

m!
m1!m2!γ

m1
(
1 − γ 2)m2

2 E
[
Hm(X̃1)H2(X̃1)Hm1(X̃1)Hm2(X̃2)

]
.

Since E[Hm(X̃1)H2(X̃1)Hm1(X̃1)Hm2(X̃2)] factorizes into E[Hm2(X̃2)] times the
expected value of the other three factors, all terms in the sum are zero except for
m2 = 0, m1 = m, where we have

γmE
[
H 2

m(X̃1)H2(X̃1)
] 
= 0.

This means that for any m ≥ 1, the Hermite rank τ(G,Σ) = τ(G ◦ U,I2) with
respect to the dependent vector X is equal to 2, no matter which value the univariate
Hermite rank m ≥ 1 the two factors Gi (i = 1,2) have.

3.3 Appell Polynomials

3.3.1 General Motivation

In the previous section, expansions of transformed random variables G(X) in terms
of orthogonal polynomials Pj (X) were obtained. There are however only very few
distribution families where this is possible, including the normal and exponential.
This is in particular true for stochastic processes where a sufficiently simple closed-
form expression for the marginal distribution may not even exist. It is then unclear
how to find suitable orthogonal polynomials and whether they exist at all. Most of
the polynomials discussed above were indeed originally found in a completely dif-
ferent mathematical context such as differential equations etc., and the application
to transformations of random variables and processes came as a byproduct. As it
turns out, a general theory of polynomial expansions can be developed for linear
processes

Xt =
∞∑

j=0

aj εt−j (3.37)

with i.i.d. zero-mean innovations εt defined in L2(Ω). The generality of the ap-
proach comes at a price however since the corresponding polynomials are no longer
orthogonal except in the Gaussian case. Some care is needed therefore to obtain
meaningful expressions and definitions. In the following sections, a brief outline of
this approach is given. The original, and rather extended, literature is scattered in
various fields of mathematics (see for instance Appell 1880, 1881; Meixner 1934;
Boas and Buck 1964; Anderson 1967; Ozhegov 1965, 1967; Kazmin 1969a, 1969b;
Bateman and Erdelyi 1974; Szegö 1974; Bourbaki 1976).

The general question is as follows. Let Xt be the stationary linear process de-
fined by (3.37) and denote by FX = P(X ≤ x) the marginal distribution of Xt .
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The question is whether it is possible to find polynomials Pj such that, for any
function G with E[G(X)] = 0 and E[G2(X)] < ∞ there is a unique representation
G(X) = ∑∞

j=0 gjPj (X) with equality defined in L2(Ω). The idea is to use so-called
Appell polynomials, which are defined in terms of the moment generating function
of X. Unfortunately, Appell polynomials are no longer orthogonal (except if εt are
normally distributed). This can cause problems with respect to the calculation of
the coefficients, uniqueness of the representation and the definition of the so-called
Appell rank (the analogue to the Hermite rank). The theory of Appell polynomials
is therefore quite involved, and, in the context of linear processes, open questions
remain.

3.3.2 Definition

Let X be a univariate real-valued random variable with distribution FX . For sim-
plicity, suppose first that the moment generating function

mX(z) = E
(
ezX

)

is finite in an open neighborhood of zero, Ur = {|z| < r}, where r is a suitable
positive number. Then this implies that mX(z) is analytic on Ur . Since mX(0) =
1 
= 0, we can conclude that there is a δ ≤ r such that

minv(z) = 1

mX(z)

is analytic on Uδ , and the same is true for

exp(z)

mX(z)
= exp(z)minv(z).

Thus we have the power series representations

minv(z) =
∞∑

j=0

ainv,j

j ! zj , exp(z) =
∞∑

j=0

zj

j !

and

exp(z)minv(z) =
( ∞∑

j=0

zj

j !

)( ∞∑

j=0

zj

j ! ainv,j

)
=

∞∑

j=0

zj

j ! bj

with

bj =
j∑

k=0

(
j

k

)
ainv,k. (3.38)
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To define Appell polynomials, we introduce the function

MX(x, z) = exp(xz)

mX(z)
= exp(xz)minv(z), (3.39)

which is called the generating function of Appell polynomials associated with FX .
Then

MX(x, z) =
( ∞∑

j=0

zj

j ! x
j

)( ∞∑

j=0

zj

j ! ainv,j

)
=

∞∑

j=0

zj

j !Aj(x), (3.40)

where, as in (3.38),

Aj(x) =
j∑

k=0

(
j

k

)
ainv,kx

j−k = dj

dzj

[
MX(x, z)

]
z=0. (3.41)

The coefficients Aj are polynomials in x, of degree j . They were introduced in 1880
by the French mathematician Paul Emile Appell (Appell 1880) and are therefore
called Appell polynomials. Thus, we have the following definition.

Definition 3.7 Let X ∼ FX . Then the Appell polynomials Aj(x) of order j =
0,1,2, . . . associated with FX (or X) are defined by

MX(x, z) = exp(xz)

E(ezX)
=

∞∑

j=0

zj

j !Aj(x). (3.42)

It should be noted that Appell polynomials are distribution specific. To emphasize
this, one should actually use a notation like A

FX

j instead of Aj . However, unless
there could be a confusion, we will always write Aj instead.

Definition 3.7 assumes that the moment generating function mX(z) is finite in an
open neighborhood of the origin, which implies, but is stronger than, the assump-
tion that all absolute moments E[|X|j ] are finite. This may not always be the case.
Generally we can distinguish three cases: (1) as above, i.e. mX(z) is finite in Ur for
some r > 0; (2) E[|X|j ] < ∞ for all j , but supz∈Ur

|mX(z)| = ∞ for any r > 0, and
(3) there exists a j0 with E[|X|j0] = ∞. Case (1) is treated above. In case (2), the
expansion in (3.42) can be understood formally by matching coefficients. More pre-
cisely, this means that the formal series mX(z) = ∑∞

j=0 μjz
j /j ! with μj = E(Xj )

is understood as a symbolic representation of the sequences μ = (μ0,μ1, . . .). The
space of power series is then defined as a space of sequences P = {(aj )j∈N, aj ∈R}
endowed with the operations “+” and “·” specified by the usual rules of addition and
multiplication for power series (as in Eqs. (3.38) and (3.41)). In case (3), definition
(3.39) can be modified to

M̃X(x, z) = exp(xz)

m̃X(z)
=

∞∑

j=0

zj

j !Aj(x)
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with

m̃X(z) =
j0−1∑

j=0

zj

j !μj

and j0 such that all moments up to order j0 − 1 are finite. This way, the Appell
polynomials A0, A1, . . . ,Aj0−1 can be defined, and this definition is compatible
with the previous one in cases (1) and (2).

Appell polynomials have the following important properties, which can also be
used as an alternative definition:

Lemma 3.8 For Appell polynomials, we have

E
[
A0(X)

] = 1, (3.43)

E
[
Aj(X)

] = 0 (j ≥ 1)

and

A′
j = jAj−1. (3.44)

Proof For cases (2) and (3), combinatorial proofs of (3.43) can be given. Here, we
consider the much easier case (1). Below, it will be shown that, if mX(z) is finite
in Ur , then

Sn =
n∑

j=0

zj

j !Aj(X) →
L2(Ω)

S∞ =
∞∑

j=0

zj

j !Aj(X),

where S∞ is almost surely finite (in C). This implies

∞∑

j=0

zj

j !E
[
Aj(X)

] = E

[ ∞∑

j=0

zj

j !Aj(X)

]

= E

[
exp(zX)

mX(z)

]
= mX(z)

mX(z)
= 1,

and hence the result follows by comparing the coefficients of zj .
For the derivative, we have

∞∑

j=0

zj

j !A
′
j (x) = d

dx

exp(xz)

mX(z)
= z exp(xz)

mX(z)

=
∞∑

j=0

zj+1

(j + 1)! (j + 1)Aj (x) =
∞∑

j=1

zj

j ! jAj−1(x),

and the result follows again by comparing the coefficients of zj . �
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Example 3.16 For X ∼ N(0,1), we have mX(z) = exp( 1
2z

2), so that from (3.41)
and

MX(x, z) = ezx− 1
2 z

2

we obtain

Aj(x) = dj

dzj

[
exp

(
zx − 1

2
z2
)]

z=0

= dj

dzj

[
exp

(
x2

2
− 1

2
(x − z)2

)]

z=0

= (−1)j e
x2
2

dj

dxj

(
e− x2

2
) = Hj(x).

Thus, for Gaussian random variables, Appell polynomials coincide with Hermite
polynomials.

Example 3.17 Let X ∼ Exp(λ), i.e. X is exponentially distributed with cumulative
probability distribution FX(x) = 1 − e−λx . Then mX(z) = (1 − z/λ)−1 for |z| < λ,
and

MX(x, z) = exz
(

1 − z

λ

)
=

∞∑

j=0

zj

j ! x
j − λ−1

∞∑

j=1

zj

(j − 1)!x
j−1

= 1 +
∞∑

j=1

zj

j !
(
x − j

λ

)
xj−1,

so that

A0(x) = 1,

Aj (x) =
(
x − j

λ

)
xj−1 (j ≥ 1).

(3.45)

Note that in this case Appell polynomials do not coincide with Laguerre polynomi-
als, which were orthogonal w.r.t. the exponential density, see Sect. 3.1.3.

3.3.3 Orthogonality

As we have seen in Example 3.16, for normal random variables, Appell polyno-
mials are identical with Hermite polynomials and hence orthogonal, with a weight
function equal (or proportional) to the probability density function. A natural ques-
tion is then, under which conditions, i.e. for which probability distributions, Appell
polynomials are orthogonal. Unfortunately, it turns out that the normal distribution
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is the only one where orthogonality is achieved. Before we can see why this is the
case, the following two lemmas are needed. The first result provides an expression
for powers xj in terms of Appell polynomials.

Lemma 3.9 Let mX(z) be finite in Ur for some r > 0. Then

xj =
j∑

k=0

(
j

k

)
μj−kAk(x). (3.46)

Proof The assumption implies the power series representation

mX(z) =
∞∑

j=0

zj

j !μj ,

and hence (see (3.39), (3.40)),

ezx = mX(z)MX(x, z) = mX(z)

∞∑

j=0

zj

j !Aj(x)

=
( ∞∑

j=0

zj

j !μj

)( ∞∑

j=0

zj

j !Aj(x)

)
=

∞∑

j=0

zj

j ! bj

with

bj (x) =
j∑

k=0

(
j

k

)
μj−kAk(x).

On the other hand,

ezx =
∞∑

j=0

zj

j ! x
j ,

so that

bj = bj (x) = xj . �

The second result is a recursion formula. Here, we will need a notation for cu-
mulants. Thus, let

κX(z) = logmX(z) =
∞∑

j=1

zj

j ! κj (3.47)

be the cumulant generating function. Then

κj = dj

dzj

[
κX(z)

]
z=0 (j = 1,2, . . .) (3.48)
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are called cumulants of X. Note that (3.41) can also be written as

Aj(x) = dj

dzj

[
exz−κX(z)

]
z=0. (3.49)

Lemma 3.10 For Appell polynomials, we have

Aj+1(x) = xAj (x)−
j∑

k=0

(
j

k

)
κj−k+1Ak(x). (3.50)

Proof Using (3.49) and (3.48), we have

Aj+1(x) = dj+1

dzj+1

[
exz−κX(z)

]
z=0

= dj

dzj

[(
x − κ ′

X(z)
)
exz−κX(z)

]
z=0

= x
dj

dzj

[
exz−κX(z)

]
z=0 −

j∑

k=0

(
j

k

)
dj−k

dzj−k

[
κ ′
X(z)

]
z=0

dk

dzk

[
exz−κX(z)

]

= xAj (x)−
j∑

k=0

(
j

k

)
κj−k+1Ak(x).

�

Now we are ready to obtain the result on orthogonality.

Theorem 3.1 Appell polynomials are orthogonal, i.e.

〈Aj ,Ak〉 = E
[
Aj(X)Ak(X)

] = 0 (j 
= k)

if and only if X ∼ N(μ,σ 2).

Proof From (3.41) we have

A1(X) =
[
X exp(Xz)mX(z)− exp(xz)m′

X(z)

m2
X(z)

]
= X −μ1.

Now suppose that for all j ≥ 2,

〈A1,Aj 〉 = E
[
(X −μ1)Aj (X)

] = 0.

Since E[Aj(X)] = 0 (j ≥ 1), this implies E[XAj(X)] = 0. Now taking expected
values on both sides of (3.50), we obtain

E
[
Aj+1(X)

]
︸ ︷︷ ︸

0

= E
[
XAj(X)

]
︸ ︷︷ ︸

0

− κj+1E
[
A0(X)

]
︸ ︷︷ ︸

1

−
j∑

k=1

(
j

k

)
κj−k+1E

[
Ak(X)

]
︸ ︷︷ ︸

0

,
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which means that

κj+1 = 0 (j ≥ 2).

The only distribution for which all cumulants except κ1 and κ2 are zero is the normal
distribution (with κ1 = μ and κ2 = σ 2). �

In view of the lack of orthogonality, it is not quite easy to answer the follow-
ing basic questions: (a) which functions G(x) or random variables G(X) have a
representation in terms of Appell polynomials?; (b) is the representation unique?;
(c) how do we calculate the coefficients? Answers to these questions will be given in
the following sections. However, at this point, we may already introduce a definition
that will play a central role for limit theorems (see Sect. 4.2.5 on limit theorems for
subordinated linear processes):

Definition 3.8 Suppose that a function G(x) has a unique representation

G(x) =
∞∑

j=m

aapp,j

j ! Aj(x)

with equality defined in an appropriate sense and aapp,m 
= 0. Then m is called the
Appell rank of G.

Example 3.18 Let X ∼ N(0,1). The Appell rank of a function G is the same as its
Hermite rank, because Appell polynomials coincide with Hermite polynomials.

3.3.4 Completeness and Uniqueness

Although, in general, Appell polynomials are not orthogonal, it is still possible that
they build a basis in a suitable space of functions (or random variables). Thus, the
next question is which functions G(x) or transformed random variables G(X) may
be written as a series expansion in Aj(x) or Aj(X) respectively and in how far this
representation is unique. A little step in this direction is Eq. (3.46):

xj =
j∑

k=0

(
j

k

)
μj−kAk(x).

However, that G(x) = xj can be represented by A0(x), . . . ,Aj (x) does not guaran-
tee that this can be carried over for instance to analytic functions. Also, Lemma 3.9
does not say anything about uniqueness. This can be illustrated by the following
example.
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Example 3.19 Let X ∼ Exp(1). We rewrite (3.45) as

Aj(x) = xj − jxj−1 =: Aexp
j (x).

We may then write

xj = xj − jxj−1 + j
(
xj−1 − (j − 1)xj−2)+ · · · + j ! =

j∑

k=0

j !
k!A

exp
k (x).

(This also follows directly from (3.46) noting that μj−k = (j − k)!) Consider now
the (analytic) function ψ(x) = exp(x). If we assume that ψ(x) has a series repre-
sentation in terms of Aexp

j (x), we would have

ψ(x) =
∞∑

j=0

xj

j ! =
∞∑

j=0

1

j !
j∑

k=0

j !
k!A

exp
k (x)

=
∞∑

j=0

j∑

k=0

1

k!A
exp
k (x) =

∞∑

k=0

ckA
exp
k (x)

with

ck =
∞∑

j=k

1

k! = ∞.

Obviously, the expansion
∑∞

k=0 ckA
exp
k (x) is not applicable. The problem arises

because

exp(xz) = mX(z)

∞∑

j=0

zj

j !Aj(x),

so that we would have

exp(x) = exp(xz)|z=1 = mX(1)
∞∑

j=0

1

j !Aj(x).

But mX(z) = (1 − z)−1, so that mX(1) = ∞.

We can conclude that, in spite of Lemma 3.9, not all analytic functions can be
represented by Appell polynomials. Instead, one needs to focus on a smaller class
of functions. This leads to the following definition.

Definition 3.9 An entire function ψ : C → C is called of exponential order of type
τ (0 < τ < ∞) if there exists a finite number M > 0 such that

∣∣ψ(z)
∣∣ = ∣∣ψ

(
reiϕ

)∣∣ ≤ Meτr (3.51)
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for all z = reiϕ ∈ C. The class of functions of type τ is denoted by E(τ ). Moreover,
the exact type of ψ is the smallest τ such that (3.51) holds.

We now can give sufficient conditions in order that ψ(z) can be represented by
Aj(z) (j = 0,1,2, . . .) pointwise, i.e. for each fixed z.

Theorem 3.2 Let A(z) be an analytic function in Uτ = {|z| < τ }, and Aj (j =
0,1,2, . . .) be a sequence of polynomials such that

ezw = 1

A(w)

∞∑

j=0

wj

j ! Aj(z) (z ∈ C).

Moreover, let

ψ(z) =
∞∑

j=0

ψjz
j ∈ E(τ1),

where τ1 < τ . Then ψ has the representation

ψ(z) =
∞∑

j=0

aapp,j

j ! Aj(z) (3.52)

with

aapp,j = 1

2πi

∫

Γ

wj H(w)

A(w)
dw, (3.53)

where integration is over the curve Γ = {|w| = τ2} for some τ1 < τ2 < τ , and H(w)

is the Borel transformation

H(w) =
∞∑

j=0

j !ψjz
−j−1. (3.54)

The convergence in (3.52) is absolute and uniform on compact sets. Moreover,

lim sup
j→∞

j
√|aapp,j | ≤ τ1.

To prove and understand the theorem, some preliminary results are needed. First,
we show that being of exponential order is equivalent to fast convergence of the
coefficients in the power series representation.

Lemma 3.11 We have

ψ(z) =
∞∑

j=0

ψjz
j ∈ E(τ1)
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if and only if

lim sup
j→∞

j

√
j !|ψj | ≤ τ1. (3.55)

Proof Suppose first that (3.55) holds. Then, for τ̃1 > τ1 arbitrarily close to τ ,

|ψj | ≤ C1
τ̃
j

1

j ! ,

and hence,

∣∣ψ
(
reiϕ

)∣∣ ≤
∞∑

j=0

|ψj |rj ≤ C1

∞∑

j=0

(τ̃1r)
j

j ! = C1e
τ̃1r .

Since τ̃1 is arbitrarily close to τ1, it then follows that ψ(z) ∈ E(τ1).
Suppose now that ψ(z) ∈ E(τ1). Let r > 0 and recall Cauchy’s inequality

|ψj | ≤ r−j max|z|=r

∣∣ψ(z)
∣∣.

Then we have

|ψj | ≤ r−jMeτ1r = Mτ
j

1 e
τ1r (τ1r)

−j .

Now

min
r>0

eτ1r

(τ1r)j
= ej

j j
,

so that we obtain

|ψj | ≤ M
(τ1e)

j

j j
.

By Stirling’s formula, ej j !j−j ∼ √
2πj , so that, for j large enough,

1 ≤ ej j !
jj

< (j + 1)e,

and hence,

lim sup j

√
j !ej j−j = 1,

and

lim sup j

√
|j !ψj | ≤ τ1 lim sup j

√
M lim sup j

√
j !ej j−j = τ1. �

Next, we show that the Borel transformation is a convergent Laurent series.
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Lemma 3.12 Let

ψ(z) =
∞∑

j=0

ψjz
j ∈ E(τ1).

Then the Laurent series

H(w) =
∞∑

j=0

j !ψjw
−j−1 (3.56)

is convergent in {|w| > τ ′}, where

τ ′ = lim sup j

√
j !|ψj | ≤ τ1. (3.57)

Proof The Laurent series
∑∞

j=−∞ cj z
j is convergent in {r < |z| <R} with

r = lim sup
j→∞

j
√|c−j | = lim sup

j→∞
j

√∣∣(j + 1)!ψj+1
∣∣ ≤ τ1

by Lemma 3.11, and

R =
(

lim sup
j→∞

j
√|cj |

)−1 = ∞

since cj = 0 for j ≥ 0. �

Note that usually the Borel transform is denoted by F(z). Here we use the nota-
tion H(z) instead to avoid confusion with cumulative distribution functions. Next,
it is shown that H can also be written as the Laplace transform of ψ . Indeed, using
the power series representation of ψ(z) and partial integration, we obtain

∫ ∞

0
ψ(t)e−zt dt =

∞∑

j=0

ψj

∫ ∞

0
tj e−zt dt =

∞∑

j=0

j !ψjz
−j−1 = H(z).

Finally, we obtain a representation of ψ as a complex integral over a closed curve
around the origin (containing the Uτ neighbourhood of 0). This is also called Borel–
Polya representation.

Lemma 3.13 Let ψ(z) = ∑∞
j=0 ψjz

j ∈ E(τ1), and for an ε > 0, define the curve
Γ = {w ∈ C : |w| = τ1 + ε} = {w ∈ C : w = γ (t), t ∈ [0,2π]}, where γ is an injec-
tive, continuous, piecewise differentiable parameterization of the curve. Then

ψ(z) = 1

2πi

∫

Γ

ezwH(w)dw = 1

2πi

∫ 2π

0
ezγ (t)H

(
γ (t)

)
γ ′(t) dt. (3.58)

Proof Since for w ∈ Γ , we have |w| > τ1, Lemma 3.12 implies that H(w) is con-
vergent on Γ , and since |w| = τ1 + ε, convergence is uniform. Also, the power
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series representation of exp(zw) is uniformly convergent on Γ . Therefore, we may
exchange summation and integration:

∫

Γ

ezwH(w)dw =
∫

Γ

( ∞∑

j=0

zjwj

j !
∞∑

j=0

j !ψjw
−j−1

)
dw

=
∞∑

j=0

j !ψj

∞∑

k=0

zk

k!
∫

Γ

wk−j−1 dw.

Now,

γ (t) = (τ1 + ε)eit , γ ′(t) = i(τ1 + ε)eit ,

so that
∫

Γ

wm dw =
∫ 2π

0
(τ1 + ε)meimt · i(τ1 + ε)eit dt

= i(τ1 + ε)m+1
∫ 2π

0
ei(m+1)t dt = 2πi · 1{m = −1}

and

∫

Γ

ezwH(w)dw = 2πi
∞∑

j=0

j !ψj

zj

j ! = 2πi
∞∑

j=0

ψjz
j = 2πi ·ψ(z).

�

We now have everything that is needed for the proof of Theorem 3.2:

Proof of Theorem 3.2 The idea is as follows. By assumption

ezw = 1

A(w)

∞∑

j=0

wj

j ! Aj(z). (3.59)

On the other hand, we have from (3.58)

ψ(z) = 1

2πi

∫

Γ

ezwH(w)dw.

The representation of ψ in terms of Aj follows by replacing exp(zw) in the Borel–
Polya representation of ψ by the right-hand side of (3.59),

ψ(z) = 1

2πi

∫

Γ

ezwH(w)dw

=
∞∑

j=0

1

j !
(

1

2πi

∫

Γ

wj H(w)

A(w)
dw

)

︸ ︷︷ ︸
aapp,j

Aj (z).
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Here, interchanging integration and summation is possible due to uniform conver-
gence and since τ1 < τ and A(w) is analytic for |w| < τ (and hence Γ can be chosen
such that A(w) is not zero there).

Finally, to give an upper bound for |aapp,j |, we choose τ2 = τ1 + ε such that
τ1 < τ2 < τ , so that

min
w∈Γ

∣∣A(w)
∣∣ ≥ min|z|<τ

∣∣A(w)
∣∣ = c > 0

and by (3.54)

|aapp,j | ≤ 1

2π

∣∣∣∣∣

∞∑

k=0

k!ψk

∫

Γ

wj−k−1

A(w)
dw

∣∣∣∣∣

≤ c−1 1

2π

∞∑

k=0

k!|ψk|
∫ 2π

0

∣∣(τ2e
it
)j−k−1

iτ2e
it
∣∣dt

= c−1 1

2π

( ∞∑

k=0

k!|ψk| · 2πτ−k
2

)
τ
j

2 .

Now (3.57) and τ1 < τ2 implies that k!|ψk|τ−k
2 = O(αk) for some 0 < α < 1, so

that

|aapp,j | ≤ const ·τ j2 .
Since τ2 < τ and τ2 is arbitrarily close to τ1, we obtain

lim sup j
√|aapp,j | ≤ τ1. �

Theorem 3.2 can now be used to obtain an Appell polynomial representation,
simply by setting

A(z) = 1

m(z)
= minv(z).

Theorem 3.3 Let mX(z) = E(ezX) be defined in Uτ = {|z| < τ } and denote by Aj

(j = 0,1,2, . . .) the Appell polynomials associated with X. Suppose that ψ ∈ E(τ1)

for some τ1 < τ . Then ψ has the Appell polynomial representation

ψ(z) =
∞∑

j=0

aapp,j

j ! Aj(z) (z ∈C) (3.60)

with

aapp,j = 1

2πi

∫

Γ

wjH(w)mX(w)dw, (3.61)
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where integration is over the curve Γ = {|w| = τ2} for some τ1 < τ2 < τ , and H(w)

is the Borel transform

H(w) =
∞∑

j=0

j !ψjw
−j−1.

The convergence in (3.60) is absolute and uniform on compact sets. Moreover,

lim sup
j→∞

j
√|aj | ≤ τ1.

Finally, it also follows from the theorem that the coefficients in (3.61) are real
numbers:

Corollary 3.1 Under the assumptions of Theorem 3.3, we have ψ(x) ∈ R for all x
as well as aapp,j ∈R.

Proof Since mX(z) is finite for z ∈ Uτ , we have A(z) 
= 0 in the same domain. Also,
the coefficients of mX(z) are real numbers, and

aapp,j =
∞∑

k=0

k!ψk

1

2πi

∫

Γ

mX(w)wj−k−1 dw.

For j − k − 1 ≥ 0, mX(w)wj−k−1 is an analytic function on Uτ , so that Cauchy’s
integral theorem implies

1

2πi

∫

Γ

mX(w)wj−k−1 dw = 0.

On the other hand, for j − k − 1 ≤ −1, Cauchy’s integral formula yields

1

2πi

∫

Γ

mX(w)wj−k−1 dw = 1

2πi

∫

Γ

mX(w)w−(k−j+1) dw

= 1

(k − j)!
dk−j

dzk−j

[
mX(z)

]
z=0 ∈R. �

In general, it may be somewhat tedious to calculate the Appell coefficients via
complex integration in (3.61). Fortunately, (3.61) can be replaced by simpler formu-
las such as the following.

Corollary 3.2 Let mX(z) = E(ezX) be defined in Uτ = {|z| < τ }. Denote by Aj

(j = 0,1,2, . . .) the Appell polynomials associated with X and by μj = E(Xj ) the
moments of X. Suppose that ψ ∈ E(τ1) for some τ1 < τ . Then ψ has the Appell
polynomial representation

ψ(z) =
∞∑

j=0

aapp,j

j ! Aj(z) (z ∈C) (3.62)
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with

aapp,j =
∞∑

k=j

k!
(k − j)!ψkm

(k−j)
X (0) =

∞∑

k=j

k!
(k − j)!ψkμk−j . (3.63)

In view of these results, we gain a better understanding of Example 3.19:

Example 3.20 Let X ∼ Exp(1). Then Aj(x) = xj − jxj−1 (see (3.45)). Consider
now ψ(z) = zl for some l ≥ 0. Then clearly ψ ∈ E(τ 1) for all τ1 > 0. Moreover,
mX(z) = (1 − z)−1 is defined for U1 = {|z| < 1}. Thus, we may choose τ1 < τ so
that (3.63) is applicable. This yields

aj = 0 (j ≥ l + 1),

aj = l!
(l − j)!μl−j = l! (0 ≤ j ≤ l),

and

zl =
l∑

j=0

l!
j !Aj(z).

Example 3.21 For X as in the previous example, consider now ψ(z) = exp(z).
Then ψ ∈ E(τ 1) with τ1 ≥ 1, but not for τ1 < 1. In other words, ψ is of the ex-
act type E(1). However, mX(z) = (1 − z)−1 is analytic in U1 = {|z| < τ } only for
τ ≤ 1. Thus, there is no τ1 < τ for which ψ would be in E(τ1) and Corollary 3.2
is not applicable. In fact, the explicit calculation in Example 3.19 shows that an
expansion of ψ in terms of these Appell polynomials is not possible.

Theorem 3.3 does not necessarily imply that the Appell polynomial representa-
tion is unique. A perhaps surprising example can be given as follows:

Example 3.22 We saw that for X ∼ Exp(1) and corresponding Appell polynomials,
we have, for all l ≥ 0,

zl

l! =
l∑

j=0

1

j !Aj(z).

This implies

lim
l→∞

zl

l! = 0 =
∞∑

j=0

1

j !Aj(z). (3.64)

In other words, we obtain a nontrivial (i.e. with nonzero coefficients) pointwise
representation of the function ψ(z) ≡ 0! But, of course, the representation 0 =∑∞

j=0 0 ·Aj(z) is also correct. Thus, there are at least two different representations
of zero by Appell polynomials.
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This example illustrates that pointwise convergence of nonorthogonal represen-
tations can lead to rather counterintuitive results. We may ask the question whether
this pathology disappears when other types of convergence are considered. Since
we are dealing with random variables in L2(Ω), we consider L2(Ω)-convergence.
In general, pointwise convergence does not imply L2(Ω)-convergence. This is suf-
ficient to resolve the problem in Example 3.22:

Example 3.23 For X ∼ Exp(1) as above,

∥∥∥∥
Xl

l! − 0

∥∥∥∥
2

L2
=

(
1

l!
)2

E
[
X2l] =

(
1

l!
)2

(2l)! → ∞

as l → ∞. Thus, in the L2(Ω)-norm, xl/ l! does not converge to zero, so that the
series

∑
Aj(x)/ l! does not represent ψ(x) ≡ 0. In contrast, the representation

0 =
∞∑

j=0

aapp,j

j ! Aj(x)

with all aapp,j = 0 is of course correct.

In order to achieve not only pointwise but also L2-convergence, stronger condi-
tions are needed. This is formulated in the following theorem, together with an even
simpler formula for the Appell coefficients.

Theorem 3.4 Let mX(z) be defined in Uτ = {|z| < τ }, denote by Aj the Appell
polynomials associated with X and suppose that ψ ∈ E(τ1/2) with τ1 < τ . Then

ψ(X) =
L2(Ω)

∞∑

j=0

aapp,j

j ! Aj(X) (3.65)

with

aapp,j = E
[
ψ(j)(X)

]
. (3.66)

Proof First, we show that

ψn(X) =
n∑

j=0

aapp,j

j ! Aj(X)

is a Cauchy sequence in L2(Ω). From Theorem 3.2 we know that lim sup j
√|aapp,j |

≤ τ1/2, so that, for τ2 ∈ (τ1, τ ) and N large enough,

|aapp,j | ≤
(
τ2

2

)j

(j ≥ N).
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Hence, for M ≥ N ,

∥∥ψM(X)−ψN(X)
∥∥2
L2(Ω)

≤
∫

Δ2
N,M(x)dP (x) (3.67)

with

ΔN,M(x) =
M∑

j=N+1

(τ2/2)j

j !
∣∣Aj(x)

∣∣.

Now,

exz

mX(z)
=

∞∑

j=0

zj

j !Aj(x)

is absolutely convergent for z = τ2/2 < τ , so that certainly pointwise ΔN,M → 0 as
N → ∞ (and M ≥ N ). Thus, the left-hand side in (3.67) converges to zero if we
can write

lim
N→∞

∫
Δ2

N,M(x)dP (x) =
∫

lim
N→∞Δ2

N,M(x)dP (x).

To show this, the dominated convergence theorem can be applied as follows. From
(3.41) we have

Aj(x) =
j∑

k=0

(
j

k

)
ainv,kx

j−k =
j∑

k=0

(
j

k

)
ainv,j−kx

k. (3.68)

Setting t = τ2/τ , we have

∞∑

j=0

tj

j !
∣∣Aj(x)

∣∣ ≤
∞∑

j=0

tj

j !
j∑

k=0

(
j

k

)
|ainv,j−k||x|k

=
∞∑

j=0

j∑

k=0

tj−k

j !
j !

(j − k)!k! |ainv,j−k|
(|x|t)k

≤
( ∞∑

p=0

(|x|t)p
p!

)( ∞∑

q=0

|ainv,q |
q! tq

)

= e|x|t · const .

Hence,
∫

Δ2
N,M(x)dP (x) ≤ const ·

∫
e2|x|t dP (x)

≤ const ·[mX(2t)+mX(−2t)
]
.
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Since 2t = τ2 < τ , mX(±2t) are finite, so that the dominated convergence theorem
applies.

Next, we need to derive (3.66). Since

ψ(x) =
∞∑

k=0

ψkx
k,

we have, for j ≥ 1,

ψ(j)(x) =
∞∑

k=j

ψk

k!
(k − j)!x

k−j

and

E
[
ψ(j)(X)

] =
∞∑

k=j

ψk

k!
(k − j)!μk−j ,

which is however equal to aapp,j due to Eq. (3.63). The same argument applies for
j = 0. �

Example 3.24 Consider X ∼ Exp(1), the corresponding Appell polynomials
Aj(x) = xj −jxj−1 (see (3.45)) and ψ(z) = zl . Then mX(z) = (1−z)−1 is defined
for z ∈ U1 = {|z| < 1} and ψ ∈ E(τ1/2) for all τ1 > 0. Therefore, we may choose
τ1/2 < τ/2 = 1/2, and Theorem 3.4 is applicable. The coefficients are therefore
obtained by

aapp,j = E
[
ψ(j)(X)

] = 0 (j ≥ l + 1),

and for 0 ≤ j ≤ l,

aapp,j = E
[
ψ(j)(X)

] = E
[
l(l − 1) · · · (l − j + 1)Xl−j

]

= l(l − 1) · · · (l − j + 1)μl−j = l!.
Then

Xl =
L2(Ω)

l∑

j=0

l!
j !Aj(X).

Example 3.25 Consider again X ∼ Exp(1), but ψ(z) = ez. Then ψ ∈ E(1), which
is also the exact type, however mX(z) is analytic for |z| < 1 only. Therefore, Theo-
rem 3.4 is not applicable.

Example 3.26 Consider again X ∼ Exp(1), but ψ(z) ≡ 0. Obviously, Theorem 3.4
is applicable, and the coefficients are obtained by

aapp,j = E
[
ψ(j)(X)

] = E[0] = 0
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for all j ≥ 0. In particular, the rather strange nontrivial representation of zero (3.64)
is excluded.

An important question has not been answered yet, namely in how far and un-
der which circumstances we can be sure that the Appell polynomial representation
of ψ(z) (pointwise) or ψ(X) is unique. With respect to pointwise convergence, a
counterexample was the representation of ψ(z) ≡ 0. For the L2(Ω)-representation
of ψ(X), relatively simple general conditions for uniqueness can be given as follows
(see e.g. Giraitis 1985). We consider the L2-space (denoted by L2

X) of random vari-
ables measurable with respect to the σ -algebra generated by the random variable X

and, without loss of generality, expected value zero. This is a Hilbert space equipped
with the scalar product equal to the covariance and hence also a Banach space with
norm ‖X‖2 = 〈X,X〉. The question is now whether Aj(X) (j = 0,1,2, . . .) is a
Schauer (i.e. a complete and minimal) basis in this Banach space. To be specific, we
recall some standard definitions.

Definition 3.10 Let B be a Banach space over K = R or C. Then a sequence of
elements vj ∈ B (j ∈ N) is called complete if span{vj , j ∈N} (i.e. the closure of
all linear combinations of vj s) is equal to B .

Definition 3.11 A system vj ∈ B (j ∈ N) is called minimal (or a minimal system)
if for all k, vk /∈ span{vj , j 
= k}.
Definition 3.12 A system vj ∈ B (j ∈N) is called a Schauder basis if it is complete
and minimal or, equivalently (see e.g. Banach 1948), if for every w ∈ B , there exists
a unique sequence αj ∈ K (j ∈N) such that

w =
∞∑

j=0

αjvj .

A partial answer with respect to uniqueness can be given as follows (see e.g.
Giraitis 1985):

Theorem 3.5 Let X ∼ FX and suppose that mX(r) < ∞ for some r > 0. Then
Aj(X) (j ∈ N) is a minimal system in L2

X if and only if the following three condi-

tions hold: (i) FX has a density pX = F ′
X; (ii) pX ∈ C∞(R); (iii) Qj = p

(j)
X /pX ∈

L2(FX) (j ∈ N).

The sequence of functions Qj is also called a biorthogonal system to the se-
quence Aj in L2(FX), in the sense that

〈Aj ,Qk〉L2(FX) =
∫

Aj(x)Qk(x)fX(x)dx

=
∫

Aj(x)p
(k)
X (x) dx = δjk · j !(−1)j .
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This can also be rephrased as follows. Let Q̃j = Qj(−1)j /j !. Then, given the
two Banach spaces, L2

X(Ω) and L2(FX), and the bilinear form 〈·, ·〉 : L2
X(Ω) ×

L2(FX) → R, the two sets {Aj , j ∈ Q} ⊂ L2
X(Ω) and {Q̃j , j ∈ N} ⊂ L2(FX) are

such that 〈Aj , Q̃k〉 = δjk .
The detailed proof of Theorem 3.5 is rather technical and is therefore omitted

here. However, an intuitive explanation why Qj is a biorthogonal system to Aj can
be given as follows. From (3.65), (3.66) we have for ψ(z) = Aj(z),

ψ(z) = Aj(z) = aapp,j

j ! Aj(z)

and hence

aapp,k = j !δjk = E
[
ψ(k)(X)

]

=
∫

ψ(k)(x)pX(x)dx =
∫

A
(k)
j (x)pX(x)dx.

If partial integration can be applied, then we obtain
∫

A
(k)
j (x)pX(x)dx = (−1)k

∫
Aj(x)p

(k)
X (x) dx

= (−1)k
∫

Aj(x)Qk(x)pX(x)dx = (−1)k〈Aj ,Qk〉L2(FX).

An interesting, and at first sight surprising, consequence of Theorem 3.5 is the
following:

Corollary 3.3 Let X ∼ FX such that E(erX) < ∞ for some r > 0, but suppose that
pX = F ′

X does not exist. Then Aj (j ∈ N) is not a minimal system in L2
X(Ω). In

particular, there exists at least one function ψ with ψ(X) ∈ L2
X(Ω) for which more

than one L2
X(Ω)-representation by Aj(X) (j ∈N) exists and hence the Appell rank

is not defined.

The following example illustrates how it is possible to obtain more than one
representation.

Example 3.27 Let P(X = 0) = P(X = 1) = 1
2 . Then, for any two functions G, H ,

G(x) =
L2
X(Ω)

H(x)

if and only if G(0) = H(0) and G(1) = H(1). The equation defining Appell poly-
nomials,

exp(xz)
1
2 (1 + exp(z))

=
∞∑

j=0

zj

j !Aj(x),
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implies Aj(0) 
= 0, Aj(1) 
= 0 for all j . Consider now any function ψ . Then, for
any j 
= k, one can find real coefficients a, b such that

ψ(x) =
L2
X(Ω)

aAj (x)+ bAk(x).

The reason is that all one has to do is to solve the system of two equations,

ψ(0) = aAj (0)+ bAk(0),

ψ(1) = aAj (1)+ bAk(1).

Since Aj(x) and Ak(x) are not zero for x = 0,1, this is always possible. Thus, we
may conclude that for Bernoulli variables, there are infinitely many representations
of ψ(X). Obviously, the definition of an Appell rank does not make any sense here.

3.3.5 Extension Beyond Analytic Functions

So far, Appell polynomial expansions have been considered for analytic functions
that do not grow too fast. In some applications however one needs to go beyond
analytic functions. For instance, the indicator function G(x) = 1{X ≤ x} used in the
empirical distribution function

Fn(x) = n−1
n∑

t=1

1{Xt ≤ x}

is not analytic. The two main questions are (a) whether a unique Appell polynomial
expansion exists for certain classes of functions that are not necessarily analytic,
and (b) how to calculate the Appell coefficients.

With respect to the second questions, formula (3.66) is applicable only if ψ is
j -times differentiable. Thus, to calculate the coefficients aapp,j , ψ would have to be
infinitely differentiable. The questions is thus what to do if ψ is either not differ-
entiable at all or if it is differentiable almost everywhere (w.r.t. Lebesgue measure),
but the derivative is always zero. The latter is for instance the case for the indicator
function. Fortunately, formula (3.66) can be rewritten by (formal) partial integration
so that derivatives are not required:

Lemma 3.14 Let X ∼ FX be such that the assumptions of Theorem 3.5 hold, and
ψ be such that it has a unique representation

ψ(X) =
L2
X(Ω)

∞∑

j=0

aapp,j

j ! Aj(X).
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Moreover, assume that there is a sequence of analytic functions Gn such the as-
sumptions of Theorem 3.4 hold and Gn converges to ψ “sufficiently fast”. Then

aj = (−1)j
∫

ψ(x)p
(j)
X (x) dx. (3.69)

A heuristic justification can be as follows. From Theorem 3.4 we have

Gn(X) =
∞∑

j=0

gj,nX
j =
L2
X(Ω)

∞∑

j=0

aapp,j,n

j ! Aj(X)

with

aapp,j,n = E
[
G

(j)
n (X)

] =
∫

G
(j)
n (x)pX(x)dx

= · · · = (−1)j
∫

Gn(x)p
(j)
X (x) dx.

Thus, if Gn converges to ψ such that the limit in n can be interchanged with inte-
gration and summation, then

ψ(X) = lim
n→∞

∞∑

j=0

aapp,j,n

j ! Aj(X)

=
∞∑

j=0

limn→∞ aapp,j,n

j ! Aj(X)

and

aapp,j = lim
n→∞aapp,j,n = (−1)j lim

n→∞

∫
Gn(x)p

(j)
X (x) dx

= (−1)j
∫

lim
n→∞Gn(x)p

(j)
X (x) dx = (−1)j

∫
ψ(x)p

(j)
X (x) dx.

Now we address question (a), the validity of the Appell polynomial expansion for
suitable classes of nonanalytic functions. A partial answer can be found in Schützner
(2009), Ramm (1980) and Beran and Schützner (2008). Recall (see Definition 3.9)
the notion of the set E(τ ). The general idea is to define a suitable subclass of
Ẽ(τ ) ⊂ E(τ ) and approximate ψ by functions from Ẽ(τ ). Specifically, we use the
following definition.

Definition 3.13 Let L2[−τ, τ ] = {g : ∫ τ

−τ
|g(t)|2 dt < ∞}. Then

Ẽ(τ ) =
{
G : G(z) =

∫ τ

−τ

g(t)eitz dt, z ∈ C, g ∈ L2[−τ, τ ]
}
.
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First, it can be shown that Ẽ(τ ) is indeed a subset of E(τ ).

Lemma 3.15 Ẽ(τ ) ⊂ E(τ ).

Proof Recall that by Morena’s theorem,
∫
Γ
G(z)dz = 0 for all closed curves Γ ⊂

U = {z : |z| < τ } implies that G is analytic on U . For G ∈ Ẽ(τ ), we have

∫

Γ

G(z)dz =
∫

Γ

(∫ τ

−τ

g(t)eitz dt

)
dz

=
∫ τ

−τ

g(t)

(∫

Γ

eitz dz

)
dt = 0.

Since this is true for all closed curves, it follows that G is entire. Using the notation
z = x + iy, an upper bound for G can be given by

∣∣G(z)
∣∣ ≤

∫ τ

−τ

∣∣g(t)
∣∣e−t |y| dt ≤ eτ |z|

√∫ τ

−τ

∣∣g(t)
∣∣2 dt,

so that G ∈ E(τ ). �

Moreover, Ẽ(τ ) is identical with all functions in E(τ ) that are square integrable:

Lemma 3.16 Let G ∈ E(τ ). Then G ∈ Ẽ(τ ) if and only if
∫ ∞
−∞ |G(x)|2 dx < ∞.

Proof We refer to classical results from analysis, namely: For “=⇒”, note that by
Plancherel’s theorem we have

∫ ∞

−∞
∣∣G(x)

∣∣2 dx = 2π
∫ τ

−τ

∣∣g(ω)
∣∣2 dω < ∞,

where g(ω) is the Fourier transform of G.
The reverse direction “⇐=” is more complicated but is well known as the Paley–

Wiener theorem (see e.g. Boas 1954, p. 210). �

Using these results, it then can be shown that the following uniform approxi-
mations are possible (see Ramm 1980; Schützner 2006 and Beran and Schützner
2008):

Corollary 3.4 Let ψ ∈ C(R). Then, for any a, τ > 0, there exists a sequence of
functions Gn ∈ E(τ ) such that, as n → ∞,

sup
x∈[−a,a]

∣∣ψ(x)−Gn(x)
∣∣ → 0. (3.70)
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Moreover, if ψ is also bounded, then the sequence may be chosen such that
|Gn(x)| ≤ C0 < ∞ for all n and x, and

sup
x∈R

∣∣ψ(x)−Gn(x)
∣∣ → 0. (3.71)

It should be noted that condition (3.70) alone is not sufficient to guarantee the
existence and uniqueness of an Appell polynomial expansion in general. Depending
on additional assumptions, an additional formal proof is required.

3.4 Multivariate Appell Polynomials and Wick Products

3.4.1 Definition

The notion of Appell polynomials can be extended to multivariate random variables.
Let X = (X1, . . . ,Xk)

T ∈ R
k be a k-dimensional random variable with distribu-

tion FX , and

mX(z) = E
[
exp

(
zT X

)] = E

[
exp

(
k∑

i=1

ziXi

)]
(
z ∈C

k
)

its moment generating function.

Definition 3.14 The Appell polynomials

AF
j1,...,jk

(x1, . . . , xk) = Aj1,...,jk (x1, . . . , xk)

are defined as coefficients in the expansion

exp(zT x)

mX(z)
=

∞∑

j1,...,jk=0

z
j1
1 · · · zjkk
j1! · · · jk!Aj1,...,jk (x1, . . . , xk). (3.72)

We then write Aj1,...,jk (X1, . . . ,Xk) = AF
j1,...,jk

(x1, . . . , xk)|x=X .

It is often convenient to write Appell polynomials in terms of so-called Wick
products:

Definition 3.15 The Wick product of X = (X1, . . . ,Xk)
T ∼ F is defined by

:x1, . . . , xk:F = AF
1,...,1(x1, . . . , xk) = ∂k

∂z1 · · · ∂zk
exp(z′x)
mX(z)

.

We then write

:X1, . . . ,Xk: = :x1, . . . , xk:F
∣∣
x=X

. (3.73)

Moreover, for the empty set, we define :∅: = 1.
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Since

Aj1,...,jk (x1, . . . , xk) = ∂j1+···+jk

∂z
j1
1 · · · ∂zjkk

[
exp(z′x)
mX(z)

]

z=0
,

we can express Appell polynomials in terms of Wick products by

Aj1,...,jk (X1, . . . ,Xk) =: X1, . . . ,X1︸ ︷︷ ︸
j1

, . . . ,Xk, . . . ,Xk︸ ︷︷ ︸
jk

:

= :X′ j1
1 , . . . ,X

′ jk
k :.

In particular, for k = 1, X1 = X and

Aj(X) = :X, . . . ,X︸ ︷︷ ︸
j

: = :X′ j :

with the obvious notation :X′ j :. The Appell polynomial generating function can
then also be written as

exp(zT x)

mX(z)
=

∞∑

j1,...,jk=0

z
j1
1 · · · zjkk
j1! · · · jk! :x

′ j1
1 , . . . , x

′ jk
k :.

As in the univariate case, an equivalent recursive definition of multivariate Appell
polynomials and of Wick products can be given as follows.

Definition 3.16 Let x = (x1, . . . , xk)
T = (xi)i=1,...,k ∈ R

k , j = (j1, . . . , jk)
T ∈ N

k ,
x(i) = (x1, . . . , xi−1, xi+1, . . . , xk)

T = (xl)l 
=i , j (i) = (jl)l 
=i and 0 = (0, . . . ,0)T .
Then the Appell polynomials associated with distribution F are defined by

A0 ≡ 1,

∂

∂xi
Aj (x) = jiAj(i)

(
x(i)

)
, (3.74)

E
[
Aj(X)

] = 0 (j 
= 0).

Moreover, the corresponding Wick products are defined by

:∅: = 1,

∂

∂xi

[:x:F ] = :x(i):,

E[:X:] = 0 (k ≥ 1).

Example 3.28 Assume that the components of X are independent. Then

Aj1,...,jk (x1, . . . , xk) =
k∏

l=1

Ajl (xl).
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In particular, if X1, . . . ,Xk are standard normal, then Aj1,...,jk (x1, . . . , xk) is the
product of univariate Hermite polynomials.

Example 3.29 Bivariate Appell polynomials are defined by

∞∑

j1,j2=0

z
j1
1

j1!
z
j2
2

j2!Aj1,j2(x1, x2) = exp(z1x1 + z2x2)

E[exp(z1X1 + z2X2)] .

If E(X1) = E(X2) = 0, then

A1,1(X1,X2) = X1X2 −E(X1X2) = X1X2 − cov(X1,X2)

and

A1,2(X1,X2) = X1X
2
2 −X1E

(
X2

2

)− 2X2
2cov(X1,X2)− cov

(
X1,X

2
2

)
.

For instance, if (X1,X2) are jointly normal with Xi ∼ N(0,1), i = 1,2, and corre-
lation ρ, then

A1,1(X1,X2) = X1X2 − ρ,

A1,2(X1,X2) = X1X
2
2 −X1 − 2X2

2ρ −E
(
X1X

2
2

)

= X1
(
X2

2 − 1
)− 2X2

2ρ −E
(
X1X

2
2

)
.

In particular, if ρ = 0, then

A1,2(X1,X2) = X1
(
X2

2 − 1
) = H1(X1)H2(X2) = Hq(X),

where q = (1,2), and Hq is the multivariate Hermite polynomial defined in (3.31).

3.4.2 Connection to Cumulants and Other Important Properties

Wick products are very useful in the context of limit theorems for long-memory
processes. The main reason is the so-called diagram formula (or rather formulas),
which simplifies the calculation of joint cumulants. First, in this section, some basic
properties of cumulants, Wick products and Appell polynomials will be discussed.
The diagram formula will be introduced in the next section.

First we recall some standard definitions.

Definition 3.17 The cumulant generating function of a random vector X =
(X1, . . . ,Xk)

T is defined by

κX(t) = logmX(t) = logE
(
et

T X
)
,
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provided that mX(t) is well defined in an open neighbourhood of the origin. More
generally, without assuming existence of mX or finite moments, κX is defined by

κX(t) = logϕX(t),

where

ϕX(t) = E
(
eit

T X
)

is the characteristic function of X.

If mX(t) exists in an open neighbourhood of 0, then κX(z) can be written as a
power series

κX(z) = κX(z1, . . . , zk) =
∞∑

j1,...,jk=0

z
j1
1 · · · zjkk
j1! · · · jk! κj1,...,jk ,

and the coefficients

κj1,...,jk = κ
(
X

j1
1 , . . . ,X

jk
k

) = ∂j1+···+jk

∂zj1 · · · ∂zjk
[
κX(z)

]
z=0

are called joint cumulants of Xj1
1 , . . . ,X

jk
k . Similarly, when using the characteristic

function, then

κj1,...,jk = (−1)j1+···+jk
∂j1+···+jk

∂zj1 · · · ∂zjk
[
κX(z)

]
z=0.

Cumulants are more useful than moments when dealing with limit theorems. One
reason is that, when based on the characteristic function, moments need not exist.
A second reason is that κ is multilinear and independence is equivalent to all joint
cumulants being zero:

Lemma 3.17 Denote by π an arbitrary permutation of 1,2, . . . , k. Then

κ(X1, . . . ,Xk) = κ(Xπ(1), . . . ,Xπ(k))

and κ is multilinear, i.e. for

Xi =
m∑

j=1

cijYij ,

we have

κ(X1, . . . ,Xk) =
m∑

j1,...,jk=0

c1j1 · · · ckjk κ(Y1j1 , . . . , Ykjk ).
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Moreover, if the random variables {Xi, i ∈ W1} are independent of the r.v. {Xi,

i ∈ W2}, where W = W1 ∪W2 = {1,2, . . . , k}, then

κ(X1, . . . ,Xk) = 0.

The importance of Wick products is due to their direct relationship to cumulants:

Theorem 3.6 Let W = {1,2, . . . , k} and X = (Xi)i∈W . For V = {i1, . . . , il} ⊆ W

define

XV =
l∏

j=1

Xij , :XV : = :Xi1, . . . ,Xil :

and

κV = κ
(
XV

) = κ(Xi1, . . . ,Xil ) = ∂l

∂z1 · · · ∂zl logE

[
exp

(
l∑

j=1

zjXij

)]
.

Then, for any i ∈ W ,

:XW : = (:XW\{i}:) ·Xi −
∑

V⊆W
V�i

(:XW\V :) · κ(XV
)
. (3.75)

Proof Without loss of generality, let i = k. Then

:XW : =
{

∂k−1

∂z1 · · · ∂zk−1

[
∂

∂zk

exp(zT x)

mX(z)

]}

z=0

=
{

∂k−1

∂z1 · · · ∂zk−1

[
exp(zT x)

mX(z)
xk − exp(zT x)

mX(z)

∂

∂zk
mX(z)

]}

z=0
,

which is equal to

(:x1, . . . , xk−1:) · xk −
{

∂k−1

∂z1 · · · ∂zk−1

[
exp(zT x)

mX(z)

∂

∂zk
mX(z)

]}

z=0
.

The result then follows by noting that

[
∂l+1

∂zi1 · · · ∂zil ∂zk
κXW (z)

]

z=0
= κV

with V = {i1, . . . , il , k} and applying the product rule. �

Example 3.30 Let (X1,X2) ∼ N(0,Σ) with Σ11 = Σ22 = 1, Σ12 = Σ21 = ρ. Then
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mX(z) = exp

[
1

2

(
z2

1 + z2
2

)+ ρz1z2

]
,

exp(x1z1 + x2z2)

mX(z)
= exp

[
x1z1 + x2z2 − ρz1z2 − 1

2

(
z2

1 + z2
2

)]
,

A1(xj ) = :xj : = ∂

∂zj

[
exp(x1z1 + x2z2)

mX(z)

]

z=0
= xj ,

A1,1(x) = :x1x2: = ∂2

∂z1∂z2

[
exp(x1z1 + x2z2)

mX(z)

]

z=0
= x1x2 − ρ,

A1,2(x) = :x1
(
x′

2

)2: = ∂3

∂z1∂2z2

[
exp(x1z1 + x2z2)

mX(z)

]

z=0

= x1
(
x2

2 − 1
)− 2ρx2.

Now, consider W = {1,2} and i = 1. Then : XW := X1X2 − ρ and :XW\{i}: =
:X2: = X2. On the other hand, using formula (3.75), we have V = {1} and {1,2}
respectively and

∑

V⊆W
V�i

(:XW\V :) · κ(XV
) = (:X2:)κ(X1)+ (:∅:)κ(X1,X2)

= 0 + ρ = ρ.

Thus,

:XW : = (:X2:) ·X1 −
∑

V⊆W
V�i

(:XW\V :) · κ(XV
) = X1X2 − ρ.

A further important property of Wick products is that they factorize under inde-
pendence:

Theorem 3.7 Let X1, . . . ,Xk be independent and define

X
′ j
i = (Xi, . . . ,Xi︸ ︷︷ ︸

j

).

Then, for any j1, . . . , jk ,

:X′ j1
1 ,X

′ j2
2 , . . . ,X

′ jk
k : =

k∏

i=1

:Xji
i :.
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Proof Let X(1) = (Xi)i∈W1 be independent of X2 = (Xi)i∈W2 and W = W1 ∪ W2.
Then

exp(
∑

i∈W xizi)

mX(z)
= exp(

∑
i∈W1

xizi)

mX(1) (z)

exp(
∑

i∈W2
xizi)

mX(2) (z)
.

Since each of the terms can be written as a power series in z1, . . . , zk , the result then
follows by comparing the coefficients of zj1

1 · · · zjkk /(j1! · · · j2!). �

This result simplifies the calculation of Appell polynomials for sums of indepen-
dent random variables:

Theorem 3.8 Let X, Y be independent, X ∼ FX , Y ∼ FY , X + Y ∼ FX+Y = FX ∗
FY . Then

A
FX+Y

j (X + Y) =
j∑

k=0

(
j

k

)
A

FX

k (X)A
FY

j−k(Y ). (3.76)

Proof The result follows from multilinearity of Wick products,

A
FX+Y

j (X + Y) = :X + Y, . . . ,X + Y :
= :X,X + Y, . . . ,X + Y : + :Y,X + Y, . . . ,X + Y :

= · · · =
j∑

k=0

(
j

k

)(:X′k:) · (:Y ′ (j−k):).
�

Now we come back to linear processes

Xt =
∞∑

j=0

aj εt−j ,

where εt (t ∈ N) are i.i.d. zero mean random variables. Since linear processes are
sums of independent random variables, Theorem 3.8 can be extended to calculate
Appell polynomials for such processes. The following result is due to Avram and
Taqqu (1987).

Theorem 3.9 Let Xt = ∑∞
j=1 aj εt−j ,

∑
a2
j < ∞, E(ε1) = 0, E(ε2M

1 ) < ∞ for
some 0 <M < ∞. Then, for j ≤ M ,

A
FX

j (X) =
∑

p∈I

j !
p1! · · ·pl !

∑

i∈Jl

l∏

r=1

[
a
pr

ir
AFε

pr
(εir )

]
, (3.77)



160 3 Mathematical Concepts

where

I = {
p = (p1, . . . , pl) ∈N

l : 1 ≤ l ≤ j,1 ≤ p1 ≤ · · · ≤ pl ≤ j,p1 + · · · + pl = j
}
,

Jl = {
i = (i1, . . . , il) ∈N

l : ir 
= is (r 
= s), ij < ij+1 for pj = pj+1
}
.

Proof The idea is to apply (3.76) to the truncated sum

Xt,N =
N∑

j=1

aj εt−j

and to carry it over to the limit (as N → ∞) by using a martingale convergence
theorem. For finite N , we have due to multilinearity of the Wick product and inde-
pendence of ξi ,

A
FN

j (XN) = :XN, . . . ,XN︸ ︷︷ ︸
j

:

=
∑

p∈I

j !
p1! · · ·pl !

∑

i∈Jl

(
l∏

r=1

a
pr

ir

)
:εi1, . . . , εi1︸ ︷︷ ︸

p1

, . . . , εil , . . . , εil︸ ︷︷ ︸
pl

:

=
∑

p∈I

j !
p1! · · ·pl !

∑

i∈Jl

(
l∏

r=1

a
pr

ir

)
l∏

r=1

:εir , . . . , εir︸ ︷︷ ︸
pr

:.

To carry this over to N → ∞, one can show that XN (N ∈N) is a martingale and for
all even k ≤ 2M , E(Xk

N) ≤ const ·E(εk1). This then implies the Lk(Ω)-convergence

of XN and almost sure convergence of AFN

j (XN) and the sum above. �

3.4.3 Diagram Formulas

Diagram formulas provide a combinatorial simplification of joint moments and cu-
mulants. This is very useful in the context of limit theorems where one would like
to show that certain terms dominate others (see Sect. 4.2.5).

Before writing down diagram formulas, the following definitions and nota-
tions are needed. We will denote by W a table with k rows W1, . . . ,Wk that
may be of different length. Thus, denoting just the position in the table, we have
Wj = {(j,1), . . . , (j,mj )} (1 ≤ j ≤ k), where mj is the length of row j . Consid-
ered as a set of “positions”, the table W can be written as W = ⋃k

j=1 Wj . The rows
W1, . . . ,Wk define a specific partition of the set W (i.e. a complete decomposi-
tion into disjoint sets). More generally, we consider arbitrary partitions V1, . . . , Vr ,
W = ⋃r

j=1 Vj , Vi ∩ Vj = ∅ (i 
= j ).
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Definition 3.18 Each partition of a table W is called a diagram (or graph) and is
denoted by

(V )r = (V1, . . . , Vr) = γ.

Each Vj is called an edge of γ . The set of all diagrams on W is denoted by

ΓW = {
γ : γ = (V )r = partition of W

}
.

An important characteristic of diagrams is whether they can be partitioned ac-
cording to their association to rows:

Definition 3.19 A diagram γ ∈ ΓW is called connected if there are no two sets
K1, K2 
= ∅ such that K1 ∪ K2 = {1, . . . , k} and for each Vj ∈ γ , one has either
Vj ⊆ ⋃

i∈K1
Wi or Vj ⊆ ⋃

i∈K2
Wi .

In other words, for a connected diagram, it is not possible to separate the rows
into two groups such that some of the Vj s are in the first set of rows and the other
Vj s are in the other ones. The set of connected diagrams is denoted by Γ c

W .
For normal distributions, all cumulants higher than 2 are zero. This is the reason

for the following definition.

Definition 3.20 A diagram γ = (V )r with |V1| = · · · = |Vr | = 2 is called normal or
Gaussian. The set of all normal diagrams is denoted by Γ N

W .

Furthermore, we distinguish edges that are in one row only:

Definition 3.21 If Vj ⊆ Wi for some i, then Vj is called a flat edge. The set of all

graphs with no flat edges is denoted by Γ

−
W .

Combining the notations, we also have

Γ

−,c
W = Γ


−
W ∩ Γ c

W

for connected diagrams with no flat edges and

Γ

−,N
W = Γ


−
W ∩ Γ N

W

for normal diagrams with no flat edges.

Example 3.31 Some examples of diagrams are displayed in Figs. 3.1, 3.2, 3.3
and 3.4.

The following fundamental diagram formulas can be derived by induction (Gi-
raitis and Surgailis 1986; also see Malyshev and Minlos 1991). The detailed proof
is rather involved is therefore omitted here. For index sets A = {i1, . . . , il}, we use
the notation
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Fig. 3.1 Diagram γ =
(V1,V2,V3,V4) ∈
Γ


−,c
W \ Γ N

W

Fig. 3.2 Diagram γ =
(V1,V2,V3,V4,V5,V6) ∈
ΓW \ (Γ c

W ∪ Γ

−
W )

Fig. 3.3 Diagram γ =
(V1, . . . , V10) ∈ Γ c

W ∩ Γ N
W

XA =
∏

i∈A
Xi, :XA: = :Xi1, . . . ,Xil :

and

X′A = (Xi1, . . . ,Xil ).
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Fig. 3.4 Diagram
γ = (V1,V2,V3,V4,V5) ∈
ΓW \ (Γ


−
W ∩ Γ N

W )

Theorem 3.10 The following holds for any table W = ⋃k
j=1 Wj :

E

(
k∏

j=1

XWj

)
=

∑

γ=(V )r∈ΓW

κ
(
X′V1

) · · ·κ(X′Vr
)
, (3.78)

κ
(
XW1, . . . ,XWk

) =
∑

γ∈Γ c
W

κ
(
X′V1

) · · ·κ(X′Vr
)
, (3.79)

E

(
k∏

j=1

:XWj :
)

=
∑

γ=(V )r∈Γ 
−
W

κ
(
X′V1

) · · ·κ(X′Vr
)
, (3.80)

κ
(:XW1 :, . . . , :XWk :) =

∑

γ∈Γ 
−,c
W

κ
(
X′V1

) · · ·κ(X′Vr
)
. (3.81)

In particular, remarkable is that for the Wick product, flat edges are removed
completely. For the joint cumulant, the sum even reduces to connected graphs with-
out flat edges. As a side product, we obtain another proof that Wick products have
zero expectation: Defining a table with one row, W = W1 = {1, . . . , k} 
= ∅, no non-
flat edges exist, so that (3.80) implies E(:XW :) = 0.

The following examples illustrate some direct applications of Theorem 3.10.

Example 3.32 Consider W = W1 ∪ W2 with W1 = {1,2}, W2 = {1}. We asso-
ciate the positions in the table with random variables, namely (1,1) ←→ X1,
(1,2) ←→ X2 and (2,1) ←→ X3. For simplicity of notation, we will write the
random variables instead of the positions. Then the set of connected graphs is
Γ c
W = {γ1, γ2, γ3} with γ1 = (V )1 = {{X1,X2,X3}}, γ2 = (V )2 = {{X1,X3}, {X2}}

and γ3 = (V )2 = {{X1}, {X2,X3}}. Therefore,

κ
(
XW1,XW2

) = κ(X1 ·X2,X3)

=
∑

γ∈Γ c
W

κ
(
X′V1

) · · ·κ(X′Vr
)
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= κ(X1,X2,X3)+ κ(X1,X3)κ(X2)

+ κ(X1)κ(X2,X3).

Similarly, Γ 
−
W = {γ1} with γ1 = (V )1 = {V1} and Γ


−
W = Γ


−,c
W . Therefore,

E

[
k∏

j=1

:XWj :
]

= E
[
(:X1,X2:)(:X3:)

]

=
∑

γ∈Γ 
−,c
W

κ
(
X′V1

) · · ·κ(X′Vr
) = κ

(
X′V1

) = κ(X1,X2,X3).

Example 3.33 Let X1,X2,X3 be jointly normal with E(Xi) = μi , var(Xi) =
1 and cov(Xi,Xj ) = ρij = ρji . Then κ(X1,X2,X3) = 0, κ(Xi,Xj ) = ρij and
κ(Xi) = μi . From the previous example we then conclude that

κ(X1X2,X3) = μ2ρ13 +μ1ρ23

and

E
[
(:X1,X2:)(:X3:)

] = κ(X1,X2,X3) = 0.

Note also that :X1X2: = X1X2 − ρ12 and :X3: = X3, so that this means

E
[
(X1X2 − ρ12)X3

] = 0.

For the ordinary product, we obtain

E[X1X2X3] =
∑

γ∈Γ c
W

+
∑

γ∈ΓW \Γ c
W

=
∑

γ∈ΓW \Γ c
W

= κ(X1)κ(X2)κ(X3)+ κ(X1,X2)κ(X3)

+ κ(X1,X3)κ(X2)

= μ1μ2μ3 +μ3ρ12 +μ2ρ13.

Example 3.34 Let X be Poisson distributed with E(X) = λ = 1. We would like to
calculate the variance of the corresponding Appell polynomials, var(AF

j (X)). Since
mX(z) = exp(ez − 1), we have

κX(z) = ez − 1 =
∞∑

j=1

zj

j ! ,

so that

κj = κ(X, . . . ,X︸ ︷︷ ︸
j

) = 1 (j ≥ 1).
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Now define the table W = W1 ∪ W2 with W1 = {1, . . . , j}, W2 = {j + 1, . . . ,2j}
and associate each position in the table with X. Then (3.80) implies

E
(
A2

j (X)
) = E

[(: XW1 :)(: XW2 :)]

=
∑

γ∈Γ 
−
W

κ
(
X′V1

) · · ·κ(X′Vr
)

︸ ︷︷ ︸
=1

= N

−
W,

where N 
−
W is the number of diagrams without flat edges. Thus, the task of calculating

the variance of Aj is reduced to the combinatorial question of counting the number

of elements in |Γ 
−
W |.

For Gaussian random variables, Theorem 3.10 leads to simplified formulas for
joint moments and cumulants of Hermite polynomials where only correlations oc-
cur:

Corollary 3.5 Let X1, . . . ,Xk be jointly normal with E(Xi) = 0, var(Xi) = 1 and
ρij = E(XiXj ). For given integers mj ≥ 1, define a table W with k rows Wj of
length mj and the positions in row j associated with Xj (i.e. Wj corresponding to
(Xj , . . . ,Xj )). Then

E

[
k∏

j=1

Hmj
(Xj )

]
=

∑

γ∈Γ 
−,N
W

∏

1≤i<j≤k

ρ
lij
ij , (3.82)

and

κ
(
Hm1(X1), . . . ,Hmk

(Xk)
) =

∑

γ∈Γ 
−,c,N
W

∏

1≤i<j≤k

ρ
lij
ij , (3.83)

where, for each γ , lij = lij (γ ) is the number of edges between rows Wi and Wj .

Proof Theorem 3.10 implies

E

[
k∏

j=1

Hmj
(Yj )

]
= E

[
k∏

j=1

:Yj , . . . , Yj︸ ︷︷ ︸
mj

:
]

=
∑

γ∈Γ 
−
W

κ
(
X′V1

) · · ·κ(X′Vr
)
.

Since for jointly Gaussian variables all higher-order cumulants are zero, the sum
reduces to

∑

γ∈Γ 
−,N
W

κ
(
X′V1

) · · ·κ(X′Vr
)
.
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Since for each pair Xi , Xj (i 
= j ), κ(Xi,Xj ) = ρij , the result follows by counting
the number of pairs connecting each pair of rows. �

This result can be used to derive covariances for Hermite polynomial transfor-
mations of for stationary processes:

Corollary 3.6 Let Xt (t ∈ Z) be a stationary Gaussian process with E(Xt) = 0,
var(Xt ) = 1 and ρ(k) = corr(Xt ,Xt+k). Then

cov
(
Hj(Xt),Hl(Xt+k)

) = j !ρj (k) · δj,l,

and

κ
(
Hn1(X1), . . . ,Hnk (Xk)

) =
∑

γ∈Γ 
−,c,N
W

∏

1≤i<j≤k

ρ
lij
ij .

Proof Suppose that j 
= l. Then, for each γ ∈ Γ

−
W , there exists an edge Vi with

more than two elements. Therefore, Γ 
−,N
W = ∅, and the covariance is zero due to

formula (3.82). For j = l, the result is obtained from (3.82), var(Hj ) = j ! and the
fact that, when W consists of two rows of length j , then the number of elements in
a diagram γ ∈ Γ N

W is equal to j . �

3.5 Wavelets

3.5.1 The Continuous Wavelet Transform (CWT)

In this section we discuss basic properties of wavelet functions. First, theoretical
results on the so-called continuous wavelet decomposition appeared in the early
1980s (Morlet et al. 1982; Grossmann and Morlet 1985). A classical monograph
on the topic is Daubechies (1992). Statistical applications of wavelets were mainly
initiated by a series of papers by Donoho, Johnstone and others (Donoho and John-
stone 1994, 1995, 1997; Donoho et al. 1995). Also see Brillinger (1994, 1996),
Hall and Patil (1996a, 1996b), Johnstone (1999), Johnstone and Silverman (1997)
and Abramovich et al. (1998). In time series analysis, the main applications include
nonparametric trend estimation (see Sect. 7.5), spectral estimation and estimation of
the long-memory parameter d (see Sect. 5.7). A more detailed discussion of math-
ematical properties of wavelets can be found for instance in Mallat (1989), Strang
(1989), Daubechies (1992), Antoniadis and Oppenheim (1995), Cohen and Ryan
(1995), Neumann and von Sachs (1995), Härdle et al. (1998), Steeb (1998), Per-
cival and Walden (2000), Pinsky (2002), Vidakovic (1999) and references therein.
Much earlier references are also for instance Haar (1910) and Gabor (1946).
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Loosely speaking, a wavelet is a square-integrable function ψ :R → R such that
∫ ∞

−∞
ψ(x)dx = 0. (3.84)

This condition means that ψ must have an oscillatory behaviour. This, together with
rescaling (see below) and the fact that often ψ is also assumed to have a compact
support, justifies the name wavelet. It is also convenient to assume (without loss of
generality) that

‖ψ‖2 =
∫ ∞

−∞
∣∣ψ(x)

∣∣2 dx = 1. (3.85)

An important property of wavelets is the number of vanishing moments. If
∫

xkψ(x)dx = 0 (0 ≤ k ≤ M − 1),
∫

xMψ(x)dx 
= 0, (3.86)

then we say that ψ has M vanishing moments. If we denote by

ψ̂(λ) =
∫ ∞

−∞
ψ(x)e−iλx dx (3.87)

the Fourier transform of ψ , then

∫
xkψ(x)dx = ik

dkψ̂(λ)

dλk

∣∣∣∣
λ=0

. (3.88)

Therefore, if ψ has M vanishing moments, then ψ̂(k)(0) = 0 for k = 0, . . . ,M − 1
and ψ̂(M)(0) 
= 0. Hence, the Taylor expansion at the origin yields, as λ → 0,

∣∣ψ̂(λ)
∣∣ = |ψ̂(M)(0)|

M! |λ|M + o
(|λ|M)

.

Example 3.35 The most basic example of a wavelet is the a Haar wavelet

ψ(x) = 1

{
x ∈

(
0,

1

2

]}
− 1

{
x ∈

(
1

2
,1

)}
.

It has one vanishing moment since
∫
ψ(x)dx = ∫ 1

2
0 dx − ∫ 1

1
2
dx = 0. Note also that

∫
ψ2(x) dx = 1.

Example 3.36 A typical wavelet with infinite support is the Mexican hat wavelet
defined as the second derivative of the standard normal density,

ψ(x) = d2

dx2

1√
2π

exp
(−x2/2

)
.

It has two vanishing moments.
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The idea of wavelets is obtain a representation of square-integrable functions
g ∈ L2(R) in terms of local functions (“wavelets”, little waves) with different fre-
quencies. This is similar to a Fourier series representation. However, in contrast to
the Fourier series representation with fixed global sine and cosine functions, we
not only have a decomposition in terms of frequencies, but also a local representa-
tion (“localization”) that highlights local features of the function. Thus, consider the
Hilbert space L2(R) of measurable complex-valued functions on R equipped with
the scalar product

〈f,g〉 =
∫ ∞

−∞
f (x)g(x) dx

(for f,g ∈ L2(R)) and the corresponding norm ‖g‖ = √〈g,g〉. The wavelet func-
tion has to satisfy the admissibility condition

0 <Cψ = 2π
∫ ∞

−∞
|ψ̂(λ)|2

|λ| dλ < ∞. (3.89)

Note that (3.89) is stronger than condition (3.84) because a necessary condition for
(3.84) is ψ̂(0) = ∫

ψ(λ)dλ = 0. To obtain a decomposition of functions g ∈ L2(R)

into “wavelets”, one defines an infinite number of shifted and rescaled versions of
ψ by

ψa,b(x) = 1√|a|ψ
(
x − b

a

)
(a, b ∈R, a 
= 0).

The scaling factor a is called dilation parameter, and b is the translation parameter.

Note that ψ1,0 = ψ . Due to the factor |a|− 1
2 the L2-norm of all wavelets ψa,b(x)

is the same. Usually one takes a ψ -function with ‖ψ‖2 = ∫ |ψ(x)|2 dx = 1, so that
we have, for all a, b,

‖ψa,b‖2 =
∫ ∣∣ψa,b(x)

∣∣2 dx = 1.

Now we would like to express a function g ∈ L2(R) in terms of the wavelet func-
tions ψa,b(x) (a, b ∈ R, a 
= 0). This leads to the definition of the continuous
wavelet transform (CWT)

g → Tg(a, b) (a, b ∈R, a 
= 0),

where

Tg(a, b) =
∫ ∞

−∞
g(x)ψa,b(x) dx (3.90)

(i.e. for a given function g, Tg : (R \ {0})×R →C is a function of a, b). Note that

Tf−g(a, b) = Tf (a, b)− Tg(a, b). (3.91)
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It can be shown that (see Daubechies 1992, Proposition 2.4.1, p. 24)

∫ ∞

−∞

∫ ∞

−∞
a−2Tg(a, b)Tf (a, b) da db = Cψ 〈g,f 〉.

In particular,

C−1
ψ

∫ ∞

−∞

∫ ∞

−∞
a−2

∣∣Tg(a, b)
∣∣2 da db = ‖g‖2,

so that, together with (3.91), we have

Tf (a, b) = Tg(a, b) ⇐⇒ f = g
(
inL2(R)

)
.

This implies that g can be reconstructed perfectly from Tg . Note that heuristically,
for x 
= y,

ψ̆(x − y) = C−1
ψ

∫ ∞

−∞

(∫ ∞

−∞
a−2ψa,b(x)ψa,b(y) da

)
db

= C−1
ψ

∫
a−2〈ψ(·),ψ(· + (y − x)/a

)〉
da

= −C−1
ψ

∫ 〈
ψ(·),ψ(· + (y − x)v

)〉
dv

= −C−1
ψ

〈
ψ(·),

∫
ψ
(· + (y − x)v

)
dv

〉
= 0,

where the last equality follows from (3.84). For x = y, the integral C−1
ψ

∫
a−2 da

= ∞, but ψ̆(z) (z ∈ R) can be understood as a generalized function that is identical
with the Dirac function δ(z), i.e. for well-behaved functions, we have

∫
f (v)ψ̆(v) dv =

∫
f (v)δ(v) dv = f (0).

A concrete formula for the reconstruction of g is therefore obtained by

C−1
ψ

∫ ∞

−∞

∫ ∞

−∞
a−2Tg(a, b)ψa,b(x) da db

=
∫ ∞

−∞
g(y)

[
C−1
ψ

∫ ∞

−∞

(∫ ∞

−∞
a−2ψa,b(y)ψa,b(x) da

)
db

]
dy

=
∫ ∞

−∞
g(y)δ(y − x)dy = g(x).
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3.5.2 The Discrete Wavelet Transform (DWT)

The one-to-one mapping g → Tg(a, b) transforms functions of one variable to func-
tions of two variables, but it is obviously not a parsimonious representation of g. It
is in fact possible to reduce a and b to a countable set. The coarsest discretization
that is possible without loss of information is a diadic one, i.e.

a ∈ {
2−j , j ∈ Z

}
, b ∈ {

k2−j , j, k ∈ Z
}
. (3.92)

For other admissible choices, see e.g. Daubechies (1992), Heil and Walnut (1989).
The next aim is to obtain a nice orthonormal countable basis, with diadic dila-

tion and translation parameters. An elegant approach is the so-called multiresolution
analysis initiated by Mallat. One starts with a function φ ∈ L2(R) such that the set of
dilated functions {φ0k, k ∈ Z : φ0k(x) = √

Nφ(Nx − k)} (with N a positive integer)
is an orthonormal system. Usually, one standardizes φ so that

∫
φ(x)dx = 1,

∫
φ2(x) dx = 1. (3.93)

For simplicity of presentation, we will use the most frequently used value of N = 1
in the following. Denote by V0 all functions in L2(R) that can be represented as
a linear combination of φ0k (k ∈ Z). Since φ0k are orthonormal, each function g ∈
V0 has a unique representation g(x) = ∑∞

k=−∞ αkφ0k(x) with αk = 〈g,φ0k〉 and
‖g‖2 = ∑

α2
k . To obtain a basis in L2(R), one then defines

φjk(x) = 2
j
2 φ

(
2j x − k

)
(j, k ∈ Z).

Note that it is sufficient to keep the translation parameter at the same scale (here
with steps of size one for example). For each j , we obtain a different subspace Vj

generated by (possibly infinite) linear combinations of φjk(x) (k ∈ Z). It can be
written as

Vj = span
{
2j/2φ

(
2j · −k

)
, k ∈ Z

}

= span
{
φjk(·), k ∈ Z

}

= {
g ∈ L2(R) : g(x) = h

(
2j

)
, h ∈ V0

}
.

In each Vj the functions φjk (k ∈ Z) build an orthonormal basis. In order that we
can represent all functions in L2(R), we need to make sure that the L2-closure of
the union of all these sets is equal to L2(R). In other words, φ has to be such that

⋃

j∈Z
Vj = L2(R). (3.94)
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Furthermore, in order that Vj at different dilation levels (resolution levels) are suf-
ficiently different, one likes to have

⋂

j∈Z
Vj = {0}. (3.95)

This leads to the following definition.

Definition 3.22 Let φ be such that · · ·V−2 ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ · · · , and (3.94)
and (3.95) hold. Then {Vj , j ∈ Z} is called a multiresolution analysis (MRA) of
L2(R). The function φ is called a scaling function or father wavelet.

Example 3.37 The Haar scaling (or father) function is given by φ(x) = 1
{x ∈ [0,1]}. Then

φjk(x) = 2j/2φ
(
2j x − k

) = 2j/21
{
x ∈ [

2−j k,2−j k + 2−j
]}
.

Thus, we are approximating L2-functions by step functions. It is well known that
step functions are dense in L2(R), so that (3.94) holds. Condition (3.95) is ob-
vious. This means that φ is indeed a father wavelet. Note also that for k 
= k′,
〈φjk,φjk′ 〉 = 0. However, not all functions in the system are orthogonal. For in-
stance, 〈φ0k, φ1k〉 = 1

2

√
2.

As illustrated in the example, in general, the system of functions φjk (j, k ∈ Z)
is a basis in L2(R), but not an orthogonal one. In fact, since V0 ⊆ V1 and
φ = φ0,0 ∈ V0, we can write

φ(x) = φ00(x) =
∑

k

ukφ1k(x) = 2
1
2
∑

k

ukφ(2x − k) (3.96)

with

uk = 〈φ00, φ1k〉 =
∫

R

φ(x)φ1k(x) dx = 2
1
2

∫
φ(x)φ(2x − k) dx.

The family uk (k ∈ Z) is called a low-pass filter.
To obtain an orthogonal basis, let Wj be the orthogonal complement of Vj in

Vj+1, i.e.

Wj = Vj+1 " Vj = Vj+1 ∩ V ⊥
j .

Since, the sequence of sets Vj is nested, we can choose an arbitrary initial “resolu-
tion level” J ∈ Z and obtain the orthogonal decomposition

⋃

j∈Z
Vj = VJ ⊕WJ ⊕WJ+1 ⊕ · · · = VJ ⊕

∞⋃

j=J

Wj .
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For L2(R), we then have

L2(R) = VJ ⊕
∞⋃

j=J

Wj .

Now we can choose an orthonormal basis in VJ given by φJk (k ∈ Z). Then we de-
fine for each Wj (j ≥ J ) a corresponding basis consisting of functions ψjk (k ∈ Z).
This can be done as follows. For illustration, suppose for instance that J = 0, and
let ψ = ψ0,0 be a function such that ψ0,k(·) := ψ(· − k) (k ∈ Z) is an orthonormal
system in W0. Since W0 is orthogonal on V0, ψ0k (k ∈ Z) and φ are orthogonal.
Again, as in (3.96), since V1 = V0 ∪W0, we can write ψ(·) as a linear combination
of the base system from V1,

ψ(x) =
∞∑

k=−∞
vkφ1,k(x) = 2

1
2

∞∑

k=−∞
vkφ(2x − k), (3.97)

where

vk = 〈ψ,φ1k〉 =
∫

R

ψ(x)φ1k(x) dx = 2
1
2

∫
ψ(x)φ(2x − k) dx.

The family vk (k ∈ Z) is called a high-pass filter because we reach W0 that is the
higher-resolution part of V1 = V0 ⊕ W0, instead of the lower-resolution part V0
where we would arrive via the coefficients uk . The low- and high-pass filters are
related by (see Vidakovic 1999, (3.34)):

vk = (−1)ku1−k. (3.98)

Since for each j , the functions

ψj,k(·) = 2
j
2 ψ

(
2j · −k

)
(k ∈ Z)

form an orthonormal basis in Wj , where Vj+1 = Vj ⊕ Wj , we end up with an or-
thonormal basis in L2(R) consisting of φ0k (k ∈ Z) and ψjk (j ≥ 0, k ∈ Z). More
generally, we may start with orthonormal basis functions φJ,k (k ∈ Z) in VJ (for
any fixed integer J ) and complete the basis by corresponding orthonormal basis
functions ψjk (j ≥ J, k ∈ Z) in WJ ,WJ+1, . . . . For any J ∈ Z, the system

φJk(k ∈ Z), ψjk(j ≥ J, k ∈ Z)

is an orthonormal basis in L2(R). The coarsest resolution level J is also called the
decomposition level. Since a countable set of dilation and translation parameters
is used, the mapping of g to these coefficients (or the coefficients themselves) are
also called Discrete Wavelet Transform (DWT)—in contrast to the CWT defined
in (3.90). Note that the distinction between DWT and CWT has nothing to do with
x being continuous or not. Both methods are originally devised for functions g(x) of
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Fig. 3.5 Different mother wavelet functions at resolution levels j = 0, 1 and 2: (a) d2 (Haar);
(b) d4; (c) d8; (d) d20

a continuous argument x ∈R. For further details, such as conditions on φ to achieve
certain properties of ψ , see for instance the books listed at the beginning of this
section.

Example 3.38 Haar wavelets are generated by φ(x) = 1{x ∈ [0,1]}. Equation (3.96)
is easily verified since

1√
2
φ10(x)+ 1√

2
φ11(x) = φ(2x)+ φ(2x − 1)

= 1

{
x ∈

[
0,

1

2

]}
+ 1

{
x ∈

[
1

2
,1

]}

= 1
{
x ∈ [0,1]} = φ(x).

The mother wavelet function is equal to

ψ(x) = 1√
2
φ10(x)− 1√

2
φ11(x) = 1

{
x ∈

[
0,

1

2

]}
− 1

{
x ∈

[
1

2
,1

]}
.

Figure 3.5(a) shows ψ0j for j = 0,1,2.
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Table 3.1 Properties of
Daubechies wavelets Wavelet N No. vanishing moments No. derivatives α

d2 (Haar) 1 1 0 0

d4 3 2 0 0.55

d6 5 3 1 1.09

d8 7 4 1 1.69

d10 9 5 1 1.97

d12 11 6 2 2.19

d14 13 7 2 2.46

d16 15 8 2 2.76

d18 17 9 3 3.07

d20 19 10 3 3.38

Example 3.39 Daubechies (1992) constructed compactly supported wavelets with a
given degree of smoothness and a given number of vanishing moments M (see e.g.
Sect. 3.4.5 of Vidakovic 1999 for a brief introduction and Daubechies 1992 for a
full treatment). Several wavelets from the Daubechies family (d2, d4, d8 and d20;
note that d2 is the Haar wavelet) are plotted in Figs. 3.5(a) through (d), at resolu-
tion levels j = 0,1,2 and dilation k = 0. Table 3.1 gives an overview of the first
few Daubechies wavelets and their properties. Smoothness is characterized by the
Hölder exponent α where |ψ(x) − ψ(y)| ≤ c|x − y|α ; the support of φ and ψ is
given by [0,N ].

Example 3.40 Figure 3.6 shows the approximation of a function g(t) (top in
Fig. 3.6(a)) by φ0,k and ψj,k (j = 0,1,2,3) using the Daubechies wavelet d4. Ap-
proximations, starting with the coarsest level j = 0 (curve at the bottom), and suc-
cessively adding more levels up to j = 3, are shown in Fig. 3.6(a). The actual func-
tion is plotted on top. The corresponding coefficients are displayed in Fig. 3.6(b).
As one can see, the father wavelet (denoted by “s2” in the figure) (at the coarsest
level) captures the main long-term tendency of the function. The mother wavelets
ψj,k then add more details that are due to departures from the main (locally aver-
aged) level of g. Using only four resolution levels (j = 0,1,2,3) leads already to a
reasonably good approximation of g.

In summary, since the L2(R) space is equal to the closure of

∞⋃

j=−∞
Wj =

∞⊕

j=−∞
Wj,

every function g ∈ L2(R) can be decomposed into orthogonal components by

g(x) =
∞∑

j=−∞

∞∑

k=−∞
bj,kψjk(x),
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Fig. 3.6 Approximation of a function g(t) (curve at the top of (a) and (b)) by φ0,k and ψj,k

(j = 0,1,2,3) using Daubechies’ wavelet d4. (a) Shows approximations, starting with the coarsest
level j = 0 (curve at the bottom) and successively adding more levels up to j = 3. The actual
function is plotted on top. The corresponding coefficients are displayed in (b). The picture was
generated with the S-Plus wavelets module. (The notation in (b) is somewhat confusing: “d1”,
“d2”, “d4”, “s4” have nothing to do with the type of the wavelet but rather denote in reversed
order, and shifted by 1, the resolution level j )

where bjk = 〈g,ψjk〉 = ∫
g(x)ψjk(x) dx. At the same time, for any J ∈ Z, the

L2(R) can be written as a closure of VJ ⊕ ⋃∞
j=J Wj , so that another orthogonal

decomposition is given by

g(x) =
∞∑

k=−∞
aJkφJk(x)+

∑

j≥J

∞∑

k=−∞
bjkψjk(x), (3.99)

where bJk is as before, and ajk = 〈g,ψjk〉 = ∫
g(x)ψjk(x) dx. The lowest index

J is called decomposition level (sometimes also resolution level) because the fa-
ther wavelets φJk based on φ (with

∫
φ(x)dx = 1 and support [0,1]) approximate

the function by pasting the functions aJkφJk(x) (k ∈ Z) next to each other, on an
equidistant grid of x-values with step size 2−J . For instance, for Haar wavelets,
we obtain an approximation of g by step functions that are constant on adjacent
intervals of length 2−J . The second term in (3.99) captures deviations of g from
the simple form given by the father wavelets approximation, starting with piecewise
approximations by bJkψJk (k ∈ Z) on intervals of length 2−J and continuing to
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additional improvements of the approximation by bjkψjk (k ∈ Z) at arbitrarily fine
resolution levels with 2−j tending to zero. For this reason, the first term in (3.99) is
sometimes called the approximation part, and the second term the details part. This
terminology may not be ideal because it suggests that one would always approxi-
mate g by father wavelets only. This is of course not the case. In general, unless J

is relatively large, a good approximation of g includes several levels of the mother
wavelets as well. Note also the contrast between the conditions

∫
φ(x)dx = 1 and∫

ψ(x)dx = 0. This reflects the feature that φJk estimates the local level of the
function g (at the lowest resolution level J ) and the mother wavelets ψjk capture
the remaining “oscillations” of g around its local “average” (which is represented
by aJkφJk). The quantities aJk and bjk are therefore also called scaling and wavelet
coefficients respectively (although the word “scaling” may be somewhat ambiguous
in this context).

An important property of (regular) wavelets is its effect on polynomials. Let

g(x) = β0 + β1x + · · · + βpx
p

be a polynomial of order p and suppose that ψ has M ≥ p + 1 vanishing moments
as defined in (3.86). Then, for all j, k,

∫
g(x)ψjk(x) dx =

p∑

i=0

βi

∫
xiψjk(x) dx = 0.

This will be crucial when studying long-memory processes later and when looking
at nonparametric trend estimation based on the wavelet decomposition.

3.5.3 Computational Aspects and the Transition from Discrete
to Continuous Time

A recursive algorithm for calculating the coefficients (i.e. the DWT) can be obtained
as follows. If g ∈ V0, then we have another expansion in terms of father wavelets
only,

g(x) =
∑

k∈Z
a0,kφ(x − k),

where a0,k = ∫
g(x)φ(x−k) dx. On the other hand, φ ∈ V0 ⊆ V1, so that (cf. (3.96))

φ(x) = 2
1
2
∑

m∈Z umφ(2x −m) and

a0,k =
∫

g(x)

{
2

1
2

∞∑

m=−∞
umφ

(
2(x − k)−m

)
}
dx

=
∞∑

m=−∞
um

∫
g(x)2

1
2 φ

(
2x − (2k +m)

)
dx =

∞∑

m=−∞
uma1,2k+m.
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In general, for arbitrary j ∈ Z, we have

aj,k =
∞∑

m=−∞
umaj+1,2k+m (3.100)

and, by (3.98),

bj,k =
∞∑

m=−∞
vmaj+1,2k+m =

∑

m

(−1)mu1−maj+1,2k+m. (3.101)

In other words, the coefficients associated with the projection of g on a smaller
space Vj can be computed in terms of the coefficients associated with the larger
space Vj+1. Hence, starting with most detailed description of g, we go down to
a coarser and coarser level. Equations (3.100) and (3.101) are also called cascade
algorithm for the DWT.

Now we turn to an issue that is of particular interest in time series analysis.
Equation (3.99) describes the wavelet expansion of a continuously observed func-
tion g(x) (x ∈ R). Now assume that we observe y0, . . . , yn−1 associated with the
x-values x = 0,1, . . . , n− 1. For illustration, we will focus on a zero-mean station-
ary time series Yt (ω) with values yi observed at time points t ∈ {0,1, . . . , n−1} (i.e.
Yt = yt for t = i). We will use the notation fY (λ) (λ ∈ [−π,π]) for the spectral den-
sity of Yt and y = (y0, . . . , yn−1)

T for the vector of observed values. For simplicity,
we assume that n = 2J for some J ≥ 1. One way of adopting the techniques above
is to artificially create a function (sample path) Ỹ (t) = g(t;ω) in continuous time
(t ∈ R). There is not one unique way of doing this, and the choice of the method
may depend on the purpose. For instance, Veitch et al. (2000) suggest that, if the
focus is on second-order properties of Yt (ω) (t ∈ Z), then the synthetic continuous-
time version should be such that these properties are preserved. This means that the
process Ỹ (t;ω) (t ∈R) has expected value zero and spectral density

f
Ỹ
(λ) = fY (λ)

(
λ ∈ [−π,π]),

f
Ỹ
(λ) = fY (λ)

(|λ| > π
)
.

One of several possible solutions is

Ỹt = g(t;ω) =
∞∑

j=−∞

sinπ(t − j)

π(t − j)
Yj , (3.102)

where the equality is in L2(Ω). Now Ỹt = g(t;ω) is defined for all t ∈ R, and,
given ω (i.e. an observed path of Ỹt ), we can proceed with the DWT as discussed
above. Note that for practical applications with a finite number of observed values
Yt (t = 0, . . . , n − 1), one has to truncate the sum, i.e. set unobserved values equal
to zero.
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Another continuous-time version of Yt that is often used is the step function

Ỹt (ω) = g(t;ω) =
n−1∑

i=0

yi1
{
t ∈ [i, i + 1)

}
.

If we use a father wavelet function φ with support [0,1], ∫
φ(x)dx = 1 and∫

φ2(x) dx = 1, then the projection of g on V0 (which is generated by the orthonor-
mal basis φ0,k) is equal to

Ỹ ∗
t (ω) = g∗(t;ω) =

n−1∑

k=0

ykφ0,k(t) =
n−1∑

k=0

ykφ(t − k).

Therefore the observed values yt (t = 0,1, . . . , n− 1) are interpreted as coefficients
in the approximation of Ỹt (ω) = g(t;ω) using resolution levels j ≤ 0. Now we can
decompose this function into lower-resolution components down to a certain coars-
est level J ≤ 0. The cascade algorithm defined in (3.100) and (3.101) can be used to
obtain the corresponding coefficients aJk (k ∈ Z) and bjk (J ≤ j ≤ 0, k ∈ Z). Since
g∗(t;ω) = 0 for t < 0 and t > k, one actually only has to calculate a finite number
of coefficients.

3.6 Fractals

In the context of time series analysis, fractal behaviour is often mentioned as syn-
onym for long-range dependence. Though there are strong connections between the
two notions, they are also in some sense completely different. To see the connec-
tions and differences, it is necessary to understand some of the basic definitions in
fractal geometry. Ever since the pioneering books by Mandelbrot (1977, 1983) and
a sequence of papers in applied journals (e.g. Mandelbrot and van Ness 1968; Man-
delbrot and Wallis 1968a, 1968b, 1969a, 1969b, 1969c), the theory of fractals and
their applications have developed at an enormous speed. Here we can only give a
tiny glimpse of a few basic concepts. A beautiful concise introduction to some of
the mathematical principles is for instance Falconer (2003).

There is no “official” consensus on the definition of a fractal. However, what is
generally agreed on is that the Hausdorff measure and Hausdorff dimension play
a key role. One possible definition of a fractal is then for example that it is a set
A ⊆ R

k whose Hausdorff dimension dimH A is not an integer.
The Hausdorff measure and dimension in R

k are defined as follows. The general
idea comes from measuring the length, area, volume etc. of geometric objects using
approximations by a union of increasingly small simple geometric shapes such as
straight lines, circles, balls etc. Consider a set A ⊆ R

k and a cover U = {Ui, i =
1,2, . . .} of A by a countable number of open sets Ui , i.e. A ⊆ ⋃∞

i=1 Ui . For any
δ > 0, we say that U is a δ-cover if the diameter of each Ui in U is at most δ, i.e.

‖Ui‖ = sup
x,y∈U

‖x − y‖ ≤ δ,
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where ‖x − y‖ is the Euclidian distance between x, y. Denote by Cδ(A) the set of
all δ-covers of A and define, for each real number s > 0,

H s
δ (A) = inf

U ∈Cδ(A)

∞∑

i=1

‖Ui‖s .

Note that, for s = 1, this corresponds to an approximation of the length of A, for
s = 2, it approximates the area, and so on. By definition, 0 ≤ H s

δ (A) ≤ ∞, and
H s

δ (A) is monotonically nondecreasing in δ. Therefore the infimum over δ ex-
ists (even though it may be infinite). Therefore we may define the so-called s-
dimensional Hausdorff measure of A by

H s(A) = lim
δ→0

H s
δ (A)

(it can indeed be shown that H s is a measure). Note that for s = 1,2,3, . . . , this
corresponds to the usual definitions of length, area, volume etc. In fact, if A is a
Borel set, and s = 1,2,3, . . . is an integer, then H s(A) is equal to a constant times
the usual measure of length, area, volume etc. Since ultimately diameters δ smaller
than one are used, H s is monotonically nonincreasing in s. For s = 0, H s(A) is
equal to the number of points in A. Thus, if the number of points in A is infinite, then
H s(A) = ∞. As s increases, H s(A) remains infinite until a certain value s0 where
H s(A) = 0 for all s > s0. For s0 itself, H s(A) may take any value between (and
including) zero and infinity. The Hausdorff dimension (or Hausdorff–Besicovitch
dimension; Hausdorff 1918; Besicovitch 1928) is then defined as this exponent s0

where the value of H s(A) flips, i.e.

dimH A = inf
{
s ≥ 0 : H s(A) = 0

} = sup
{
s ≥ 0 : H s(A) = ∞}

.

For simple geometric objects, dimH A is an integer because H s with s ∈ N is pro-
portional to the usual Lebesgue measure. There are however many interesting sets
where H s is not an integer. A very intuitive way of constructing such sets is by
iterative application of a set of functions f1, . . . , fp , also called iterated function
system (IFS). First of all, a function f : Rk → R

k is called a similarity of scale
c > 0 if ‖f (x) − f (y)‖ = c‖x − y‖ for all points x, y. If c < 1, then f is a con-
tracting similarity. Given contracting similarities f1, . . . , fp with scales c1, . . . , cp
one defines for every set E ⊆ R

k , the transformation

f (E) =
p⋃

j=1

fj (E).

Then it can be shown that there is a unique set A, also called the attractor of the IFS,
such that for any i ≥ 1,

f i(A) = A.
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(Here f i means that we apply the transformation i times.) Moreover, this set can be
obtained by infinite iteration starting with an arbitrary set E for which fj (E) ⊆ E

(1 ≤ j ≤ k), namely

A =
∞⋂

i=1

f i(E).

By definition, the attractor A is self-similar in the sense that it is a union of copies
of itself at different scales (see e.g. Falconer 2003, Chap. 9). From the definition of
similarities it immediately follows that

H s
(
fj (A)

) = csjH
s(A).

Under a so-called open set condition which essentially implies that f1(A), . . . ,

fp(A) are “almost” disjoint (see e.g. Falconer 2003, Sect. 9.2), we then have

H s(A) = H s

(
p⋃

j=1

fj (A)

)
=

p∑

j=1

H s
(
fj (A)

)

= H s(A)

p∑

j=1

csj .

Thus, in cases where for s0 = dimH A we have 0 <μs0(A) < ∞ (which in fact can
be shown under the given assumptions), we obtain the condition

p∑

j=1

c
s0
j = 1.

In other words, the Hausdorff dimension of A is equal to the solution s0 of this
equation.

Example 3.41 One of the most famous examples of a fractal is the Cantor set. The
construction starts with the interval [0,1]. In a first step one removes the middle
third of the interval to obtain the two sets [0, 1

3 ] and [ 2
3 ,1]. In a second step, one

again removes the middle thirds from each of these sets, and so on. The Cantor
set is then the intersection of all sets obtained during the infinite iteration process.
This can also be described as the attractor of the IFS (in R) with f1(x) = 1

3x and
f2(x) = 1

3x + 2
3 . Since c1 = c2 = 1

3 , we have the equation 2( 1
3 )

s0 = 1 so that

s0 = dimH A = log 2/ log 3 ≈ 0.6309.

Example 3.42 Another classical fractal is the Sierpiński triangle (or Sierpiński gas-
ket). It is constructed starting with a filled equilateral triangle which is divided into
four smaller equilateral triangles, with the midpoints of each of the three sides
of the original triangle as the new vertices. The triangle in the middle is then
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Fig. 3.7 Recursive construction of the Sierpiński triangle: initial set E (a) and Ak = ⋂k
i=1 f

i(E)

for k = 1, 4 and 100 respectively (b), (c), (d). Note that the white area within the boundary of the
initial triangle represents Ak . The figures were created using the R-function spt (programmer: Bin
Wang)

removed, and the whole procedure is repeated for each of the remaining trian-
gles, and so on. This can also be described as the attractor of the IFS given by
an initial equilateral triangle with side length 1 and left lower corner at the ori-
gin, and the functions (in R

2) f1(x1, x2) = 1
2 (x1, x2), f2(x1, x2) = 1

2 (x1 + 1
2 , x2)

and f3(x1, x2) = 1
2 (x1 + 1

4 , x2 +
√

3
4 ). Thus we have cj = 1

2 (j = 1,2,3) so that∑
csj = 3( 1

2 )
s = 1 leads to the Hausdorff dimension s0 = log 3/ log 2 ≈ 1.585. Fig-

ure 3.7 shows different steps in the iteration converging to the attractor.

The practical application of the Hausdorff dimension is quite difficult, in partic-
ular when dealing with observed data. Various alternative definitions have therefore
been suggested in the literature. The best known is the so-called box-counting di-
mension. Denote by Nδ the minimal number of sets Ui needed for a δ-cover of A.
As δ → 0, one usually has Nδ ∼ cδ−s for some 0 < s < ∞. If that is so, then

s = − lim
δ→0

logNδ/ log δ =: dimB A
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is called box-counting dimension of A. More generally, even if it is not clear whether
this limit exists, one can at least define the lower and upper box-counting dimension,
dimBA and dimBA, by replacing lim by lim inf and lim sup respectively. This defi-
nition is very convenient for applications, in particular since it is possible to replace
general open sets Ui by more specific ones, such as closed balls, cubes etc. Since one
uses special coverings for the box-counting dimensions, one has H s

δ (A) ≤ Nδδ
s ,

and hence,

dimH A ≤ dimBA ≤ dimBA.

Thus, the box-counting dimension is useful for obtaining upper bounds for the Haus-
dorff dimension. This is in particular interesting if the value is not an integer.

The construction of self-similar sets is only one of many possibilities for obtain-
ing fractals (sets whose Hausdorff dimension is not an integer). The notion of (exact,
deterministic) self-similarity is too rigid for general applications. When dealing with
random objects, one likes to replace it by stochastic self-similarity as defined before.
Thus, recall that for instance a stochastic process Xt (t ∈ R) is called self-similar
with self-similarity parameter H if for any c > 0, the rescaled process c−HXct has
the same distribution as Xt . The same definition applies to random fields Xt with
t ∈ R

m for some m ≥ 1. More generally, one looks at processes in the domain of
attraction of a self-similar process.

The obvious question now is whether there is a universal connection between
the stochastic self-similarity parameter H and the Hausdorff dimension of sample
paths. In general, this questions can be asked for processes in the domain of attrac-
tion of a self-similar process. To be specific, we consider the Hausdorff dimension
of random graphs

AX,graph(ω) = {(
t,X(t,ω)

) : t ∈ [0,1]m ⊂ R
m
} ⊆ R

m+1.

(Note that this is a different question than finding the Hausdorff dimension of the
one-dimensional set Ã = {x ∈ R : x = X(t), t ∈ [0,1]m}.) Examining the meaning
of H on one hand and dimH AX,graph on the other hand, it becomes quite obvi-
ous that there is no universal formula that would link H with the Hausdorff di-
mension. For instance, if we consider not necessarily self-similar processes with
existing second moments, then the parameter H only determines the long-term be-
haviour of autocorrelations. The detailed autocorrelations and the marginal distribu-
tion can be chosen quite freely. The Hausdorff measure on the other hand charac-
terizes very local geometric properties. To establish a relationship between H and
dimH AX,graph(ω), one therefore needs to add more detailed specifications, such as
self-similarity, symmetry, marginal distribution etc. For instance, for general Lévy
processes, the relationship is quite complex (see e.g. Nolan 1988; Manstavičius
2007 and references therein). Also see Hall and Roy (1994) for results in the con-
text of stationary processes, Kôno (1986), and Talagrand (1995) and Xiao (1997a,
1997b) for self-similar processes in general and fractional Brownian motion in par-
ticular.
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A simple connection between autocovariances and Hausdorff dimension can be
established for certain self-similar processes. Consider first a Gaussian self-similar
process, i.e. fractional Brownian motion BH . Then the following holds.

Theorem 3.11 Let AX,graph(ω) = {(t,BH (t,ω)) : t ∈ [0,1] ⊂ R} ⊆ R. Then, with
probability 1,

dimH AX,graph(ω) = dimB AX,graph(ω) = 2 −H. (3.103)

Proof (Sketch) In a first step one shows that almost surely we have Hölder continu-
ity in the following sense. Let 0 < β <H . Then there exist constants c and h0 such
that, with probability 1,

∣∣BH(t + h)−BH(t)
∣∣ ≤ c|h|β

for |h| ≤ h0. This in turn can be used to show that dimBAX,graph(ω) ≤ 2 − β for all
β <H (see Corollary 11.2 in Falconer 2003), and hence,

dimH A(ω) ≤ dimBAX,graph(ω) ≤ dimBAX,graph(ω) ≤ 2 −H.

To obtain a lower bound for dimH AX,graph(ω), one makes use of the particular
Gaussian distribution of BH and potential theory (see e.g. Theorem 16.7 in Falconer
2003 for details). �

Note in particular that, for H → 1, the Hausdorff dimension of the graph tends
to one which is the smallest possible dimension for a graph (in R

2). This reflects
the increase of dependence between increments of BH(t). On the other hand, for
H → 0, the dimension approaches the maximal dimension 2. This means that the
stronger antipersistence is, the more the space is filled out. The same result also
holds for symmetric α-stable Lévy processes (see e.g. Falconer 2003, Theorem 16.8,
for a sketched proof).

Theorem 3.12 Let X(t) = X(t,ω) be a symmetric α-stable Lévy process with 0 <

α ≤ 2 (i.e. X(t) has independent stationary increments with characteristic function
E[exp(i(X(t + u)−X(t)))] = c|u|α). Then, with probability 1,

dimH AX,graph(ω) = dimB AX,graph(ω) = max{1,2 − 1/α}.

Note that the self-similarity parameter is H = 1/α, so that the formula is actu-
ally the same as for fractional Brownian motion. For α = 2, we obtain Brownian
motion with H = 1

2 and thus indeed a special case of the previous theorem. For
1 < α < 2, second moments do not exist, but first moments are finite. For α < 1,
even the first moment does not exist, and the Hausdorff dimension is always 1. In
this case, sample paths consist of infinitely many jumps in any time interval.
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Theorems 3.11 and 3.12 are obtained under self-similarity and additional as-
sumptions on the marginal distribution. If we remove the assumption of self-
similarity, then H and the Hausdorff dimension are completely unrelated in gen-
eral, even when considering Gaussian processes only. The reason is that now H

no longer determines the fully autocorrelation structure, but instead its long-term
behaviour only. In contrast, the Hausdorff dimension of Gaussian processes is de-
termined by the behaviour of the autocorrelation function at small distances because
this determines the local behaviour of sample paths. To be specific, let X(t) (t ∈R)
be a stationary Gaussian process with long-memory parameter d = H − 1

2 ∈ (0, 1
2 )

in the sense that for the autocovariance function, we have

γX(u) = cov
(
X(t),X(t + u)

) ∼ cγ u
2d−1 = cγ u

2H−2

as u → ∞, or equivalently, for the spectral density,

fX(λ) ∼ cf |λ|−2d = cf |λ|1−2H

as λ → 0. Then the behaviour of γX(u) as u → 0 is unspecified. The Hausdorff
dimension of (the graph of) sample paths is however determined by the behaviour
of γX at the origin. More specifically, if, as u → 0,

γX(u) = σ 2
X

(
1 − c0|u|2β + o

(|u|2β))

for some 0 < c0 < ∞ and 0 < β ≤ 1, then

dimH AX,graph = 2 − β

(see e.g. Adler 1981). This means that even when we stay within the realm of station-
ary Gaussian processes, there is no general relationship between H and the fractal
dimension of sample paths. In fact, examples can be constructed where both aspects
are completely unrelated, and, on the other hand, there are cases with a one-to-one
relationship between H and dimH AX,graph. This is illustrated by the following ex-
amples.

Example 3.43 Let X(t) = BH(t) − BH(t − 1) (t ∈ R+, 0 < H < 1) be fractional
Gaussian noise. Then the autocovariance function and thus the complete distribution
of X(t) is fully specified, namely

γX(u)− σ 2
X = σ 2

X

2

(|u+ 1|2H − 2|u|2H + |u− 1|2H )− σ 2
X

∼ const ·|u|2H (as u → 0).

Thus, not only for the self-similar process BH but also for its increments (as defined
above), we obtain relationship (3.103), i.e. dimB AX,graph(ω) = 2 −H . Gaussianity,
together with self-similarity, carries this relationship through to the increments.
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Example 3.44 Let X(t) be a stationary Gaussian process belonging to the so-
called Cauchy class (Wackernagel 1998; Gneiting and Schlather 2004 and refer-
ences therein), which means that the autocovariance function is given by

γX(u) = (
1 + |u|2β)− κ

β

for some 0 < β ≤ 1 and κ > 0. Then, as u → 0,

γX(u) = σ 2
X

(
1 − c0|u|2β + o

(|u|2β)),
whereas, as u → ∞,

γX(u) ∼ cγ u
−2κ .

This means that the Hurst or long-memory parameter H = 1 − κ (and d = H − 1
2 )

is completely unrelated to the Hausdorff dimension

dimH AX,graph = 2 − β.

Within the Cauchy class it is possible to combine any degree of long memory
with any Hausdorff dimension below 2. (This can be generalized to Cauchy classes
with an m-dimensional index t ∈ R

m to obtain dimH AX,graph = m + 1 − β .) Fig-
ures 3.8(a) through (d) and Figs. 3.9(a) and (b) show simulated sample paths (all
with the same random seed) for different values of β and κ . In the first two figures
(Fig. 3.8) the long-memory parameter κ is fixed, so that one can see the influence
of β on the local structure of the sample paths. As expected, higher values of β lead
to smoother paths. This is reflected in a lower Hausdorff dimension. In Figs. 3.9(a)
and (b), β is fixed, and one can see that changing κ does not have any influence on
the local impression of the graph. Finally, the four Figs. 3.10(a) through (d) show
image plots of a Cauchy class random field (with t ∈ R

2). Again one can see that
increasing β leads to a smoother surface.

Since the relationship between H and the Hausdorff dimension depends on spe-
cific circumstances, various statistical methods have been suggested for estimating
the fractal (Hausdorff, box-counting or related) dimension directly (instead of indi-
rect inference via H ). Some references are for instance Taylor and Taylor (1991),
Smith (1992), Feuerverger et al. (1994), Constantine and Hall (1994), Hall (1995),
Hall et al. (1996), Chan and Wood (1997, 2004), Istas and Lang (1997), Kent and
Wood (1997), Davies and Hall (1999), Blanke (2004). Most methods are designed
for the box-counting dimension. One should bear in mind, however, that in gen-
eral the box-counting dimension need not coincide with the Hausdorff dimension,
though it at least provides an upper limit.

In summary, many interesting fractals can be generated as attractors of iterated
function systems (based on similarities fj ). These sets are exactly self-similar, and
the Hausdorff dimension follows directly from the scaling factors cj of the involved
functions fj . Stochastic fractal structures can be obtained by relaxing the assump-
tion of exact self-similarity and replacing it by stochastic self-similarity with a self-
similarity parameter H . This leads to self-similar processes (and processes in their
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Fig. 3.8 Simulated sample paths of Cauchy class processes with κ = 0.1, and β = 0.1 and 0.9
respectively

Fig. 3.9 Simulated sample paths of Cauchy class processes with β = 0.5, and κ = 0.1 and 10
respectively

domain of attraction), with sample paths encompassing a much larger variety of
geometric structures. However, at the same time, the direct connection between
self-similarity (specified by the scaling factors cj in the deterministic and by H

in the stochastic case) and the Hausdorff dimension is lost. A one-to-one relation-
ship can be recovered only if suitable additional specifications such as continuity,
finite-dimensional distributions etc. are imposed. Some caution is therefore needed
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Fig. 3.10 Image plots of simulated spatial processes from the Cauchy class with κ = 0.1, and
β = 0.1,0.3,0.6 and 0.9 respectively

when interpreting estimated values of H as indicators of a certain fractal dimen-
sion. The situation changes however when we apply aggregation. For instance, for
time series, temporal aggregation ultimately leads back to fractional Gaussian noise
(see Chap. 4 and Sects. 2.2.1 and 5.4.6) since local effects are eliminated in the
limit. It should also be noted that in most situations one observes data at discrete
time points (or more generally discrete values of t ∈ R

m), whereas strictly speak-
ing, the notions of self-similarity and Hausdorff dimension of sample paths (in the
sense of graphs) lead to interesting results in continuous time (or space etc.) only. In
this sense general conclusions on the fractal nature of observed data may often be
considered as convenient approximations rather than a complete description of the
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phenomenon. Further caution is required due to possible discretization effects and
noise that may blur the underlying fractal structure.

3.7 Fractional and Stable Processes

In this section we present some theory on two classes of processes that appear as
limits in the case of long-memory sequences with finite and infinite variance.

We start with integral representations of fractional Brownian motion (fBm) and
Hermite–Rosenblatt processes in Sects. 3.7.1.1 and 3.7.1.2. Both processes are rep-
resented as a (multiple) Wiener–Itô integral with respect to a Brownian motion.
Such representations date back to Mandelbrot and van Ness (1968). Then, we link
the time-domain representation with the spectral representation, which is crucial in
the understanding of limit theorems for nonlinear functionals of Gaussian processes.
Further material can be found in Taqqu (1978, 2003) and Pipiras and Taqqu (2000a,
2003). Furthermore, Meyer et al. (1999) and Pipiras et al. (2004) discuss wavelet ex-
pansions of fractional Brownian motion and the Hermite–Rosenblatt process (this
material is not discussed here).

Next, the integral representation of fractional Brownian motion is extended to
a construction of Linear Fractional Stable Motion (LFSM) in Sect. 3.7.2. We first
recall the point process representation of a Poisson process. This is followed by a
brief summary of stable random variables, stable Lévy processes and stable random
measures. This material allows us to define an LFSM “replacing” Brownian mo-
tion by a Lévy process. A more detailed discussion can be found for instance in
Samorodnitsky and Taqqu (1994).

We conclude with a section on fractional calculus.

3.7.1 Fractional Brownian Motion and Hermite–Rosenblatt
Processes

3.7.1.1 Integral Representation of fBm

Let M be a real-valued Gaussian process on [−π,π] with zero mean, (almost
surely) right-continuous sample paths and uncorrelated (and hence independent)
increments such that

cov
(
dM(λ), dM(ν)

) = E
[
dM(λ)dM(ν)

] = 0 (λ 
= ν)

var
(
dM(λ)

) = cM dλ,

where cM is a constant. Without loss of generality, we can assume that cM = 1. The
process M can also be interpreted as a Gaussian random measure on [−π,π]. For
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disjoint sets A and B , we have E[M(A)M(B)] = 0. Furthermore, for any c > 0 and
any sets A1, . . . ,Am,

(
M(cA1), . . . ,M(cAm)

) d= c1/2(M(A1), . . . ,M(Am)
)
. (3.104)

This equation establishes self-similarity of the Gaussian random measure M with
self-similarity parameter H = 1

2 .
Let g be a square-integrable function (with respect to the Lebesgue measure on

[−π,π]). Then

I (g) =
∫

g(λ)dM(λ) (3.105)

is well defined and is called the Wiener–Itô integral. We can associate

M
([0, x]) =

∫ x

0
dM(λ) = B(x), (3.106)

where B(x) is a Brownian motion (which is usually defined as a Gaussian process
with independent, stationary increments such that its variance is proportional to x).
The Gaussian random measure M is also used to construct a fractional Brownian
motion (fBm). We start with a commonly used definition of fBm:

Definition 3.23 A Gaussian stochastic process BH(u) (u ∈ R) with mean zero
is called a fractional Brownian motion with self-similarity (or Hurst) parameter
H ∈ (0,1) if its covariance function is given by

γH (t, s) = cov
(
BH(u),BH (v)

) = σ 2

2

[|u|2H + v2H − |u− v|2H ]
(u, v ∈R).

In order to proceed with the construction of fBm, we note that (3.106) allows us
to rewrite the integral (3.105) as

I (g) =
∫

g(x)dB(x).

The next lemma establishes two basic properties of the Wiener–Itô integral.

Lemma 3.18 Assume that g,g1, g2 are square-integrable functions with respect to
the Lebesgue measure. Then

Cov
(
I (g1), I (g2)

) =
∫

g1(x)g2(x) dx.

In particular, I (g1) and I (g2) are independent if and only if
∫
g1(x)g2(x) dx = 0.

Furthermore, I (g) has a normal distribution with mean 0 and variance
∫
g2(x) dx.
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Define now

s+ =
{
s if s > 0,
0 if s ≤ 0,

s− =
{−s if s < 0,

0 if s ≥ 0,

and consider the kernel

Qu,1(x;H) = c1
[
(u− x)

H−1/2
+ − (−x)

H−1/2
+

]+ c2
[
(u− x)

H−1/2
− − (−x)

H−1/2
−

]

=: c1Q
+
u,1(x;H)+ c2Q

−
u,1(x;H), (3.107)

where c1 and c2 are deterministic constants. We note that the kernel Qu,1(·;H) is
square integrable. Indeed, for example the first integrand (u−x)

H−1/2
+ −(−x)

H−1/2
+

behaves like (H − 1/2)(−x)H−3/2 as x → −∞ and like (u − x)
H−1/2
+ as x → u.

A function (−x)−(3/2−H) (x → −∞) is square integrable if 2(3/2 − H) > 1, that
is, H < 1. Likewise, the function y−(1/2−H) (y → 0) is square integrable if 2(1/2 −
H) < 1, which means H > 0.

One can verify that the kernel Qu,1(·,H) has the following properties: for all
0 ≤ v < u,

Qu,1(x;H)−Qv,1(x;H) = Qu−v,1(x − v;H), (3.108)

Qcu,1(cx;H) = cH−1/2Qu,1(x;H). (3.109)

In particular, the first property reflects the stationarity of increments of a process de-
fined in terms of the kernel Qu,1(·;H). The second property leads to self-similarity
with self-similarity parameter H .

Now, we have all tools to represent fBm in terms of a Brownian motion.

Lemma 3.19 Let B(u) (u ∈ R) be a standard Brownian motion on R. Define

BH(u) =
∫ ∞

−∞
Qu,1(x;H)dB(x). (3.110)

Then BH(u) (u ∈ R) is a fractional Brownian motion.

Proof On account of Lemma 3.18, the stochastic integral
∫ ∞
−∞ Qu,1(x;H)dB(x)

is normal with mean zero. Furthermore, the vector (BH (u1), . . . ,BH (uq)) is multi-
variate normal for any u1 < · · · < uq .

Next, using properties (3.108) and (3.109) of the kernel Qu,1(·;H), the process
BH(·) defined in (3.110) is H -self similar with stationary increments. Therefore,
BH(0) = 0 almost surely, and for u < v, the covariance function can be expressed
as

E
[
BH(u)BH (v)

] = 1

2

{
E
[
B2
H (u)

]+E
[
B2
H (v)

]−E
[(
BH(v − u)−BH(0)

)2]}
.
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We now have to evaluate the covariance function of BH(u). For u > 0, we have

∫ ∞

−∞
(
Q+

u,1(x;H)
)2

dx

=
∫ ∞

−∞
[
(u− x)

H−1/2
+ − (−x)

H−1/2
+

]2
dx

=
∫ u

0
(u− x)2H−1 dx +

∫ 0

−∞
[
(u− x)H−1/2 − (−x)H−1/2]2

dx

= 1

2H
u2H + u2H−1

∫ 0

−∞
[
(1 − x/u)H−1/2 − (−x/u)H−1/2]2

dx.

The substitution v = x/u yields

∫ ∞

−∞
(
Q+

u,1(x;H)
)2

dx

= 1

2H
u2H + u2H

∫ 0

−∞
[
(1 − v)H−1/2 − (−v)H−1/2]2

dv

= u2H
{

1

2H
+

∫ ∞

0

[
(1 + v)H−1/2 − vH−1/2]2

dv

}
=: u2HC2

1(H).

Likewise,

∫ ∞

−∞
(
Q−

u,1(x;H)
)2

dx

=
∫ ∞

−∞
[
(u− x)

H−1/2
− − (−x)

H−1/2
−

]2
dx

=
∫ ∞

u

[
(x − u)H−1/2 − xH−1/2]2

dx −
∫ u

0
x2H−1 dx

= u2H
{∫ ∞

1

[
(v − 1)H−1/2 − vH−1/2]2

dv − 1

2H

}
=: u2HC2

2(H).

Furthermore, for
∫ ∞

−∞
Q+

u,1(x;H)Q−
u,1(x;H)dx,

only integration over 0 < x < u contributes and yields

−
∫ u

0
(u− x)H−1/2xH−1/2 dx = −u2H

∫ 1

0
(1 − v)H−1/2vH−1/2 dv

=: −u2HC3(H).
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A similar computation holds for u < 0. Therefore,

var
(
BH(u)

) = u2H (
c2

1C
2
1(H)+ c2

2C
2
2(H)− 2c1c2C3(H)

) =: s2HC4(H),

and

E
[
BH(u)BH (v)

] = 1

2
C4(H)

(|u|2H + |v|2H − |u− v|2H )
,

as required in Definition 3.23. The constant C4(H) is equal to var(BH (1)). �

Example 3.45 If we set c1 = c2 = 1 in the kernel Qu,1(·;H) (cf. (3.107)), then we
obtain

BH(u) =
∫ ∞

−∞
(|u− x|H−1/2 − |x|H−1/2)dB(x).

This is the so-called well-balanced representation of fBm.
If we set

c1 = 1

C1(H)
=

{
1

2H
+

∫ ∞

0

[
(1 + v)H−1/2 − vH−1/2]2

dv

}−1/2

and c2 = 0, then the integral

BH(u) = 1

C1(H)

∫ ∞

−∞
[
(u− x)

H−1/2
+ − (−x)

H−1/2
+

]
dB(x) (3.111)

defines a standard fractional Brownian motion with var(BH (1)) = 1. This represen-
tation was used in Mandelbrot and van Ness (1968).

Another representation of fBm is given in Lévy (1953):

BH(u) = 1

Γ (H + 1
2 )

∫ u

0
(u− x)H− 1

2 dB(x).

This is not a standard fractional Brownian motion since

E
[
B2
H (1)

] = 1

2HΓ 2(H + 1
2 )

.

However, this type of representation is connected to fractional integration, see
Sect. 3.7.3.

3.7.1.2 Integral Representation of the Hermite–Rosenblatt Process

To define the Hermite–Rosenblatt process, we have to extend the definition (3.105)
of a stochastic integral to the multivariate case. For simplicity, let I be a compact in-
terval and assume that it can be partitioned such that I = ⋃

Il , where Il , l = 1, . . . , k
are disjoint subintervals. Recall that a function g defined on I is called simple if
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g(x) = ∑k
l=1 al1{x ∈ Il}, where al (l = 1, . . . , k) are real numbers. A function g

defined on I 2 is called simple if

g(x1, x2) =
{
ajl if (x1, x2) ∈ Ij × Il, j 
= l,

0 if (x1, x2) ∈ Il × Il.

In particular, the function g vanishes on the “diagonal” (Il, Il), l = 1, . . . , k. More
generally, a simple function g : Im → R vanishes whenever there are two indices
1 ≤ i1 < i2 ≤ m such that (xi1, xi2) ∈ Il × Il , l = 1, . . . , k.

For simple functions g : I 2 → R, the multiple integral is defined as
∑

j,l

ajlM(Ij )M(Il),

where M is the Gaussian random measure as in (3.105). This integral extends to a
bivariate Wiener–Itô integral

I2(g) =
∫

R2
g(x1, x2) dM(x1) dM(x2).

Since the simple functions used in the construction of the integral vanish on the
diagonal, the above integration is in fact defined on R

2 with removed hyperplane
x1 = x2. Furthermore, the integral is well defined if

∫

R2
g2(x1, x2) dx1 dx2 < ∞. (3.112)

Recall (see Lemma 3.18) that the integral I (g) in (3.105) has mean zero. Also,
since E[M(A)M(B)] = 0 for any disjoint sets A,B , we have E[I2(g)] = 0.
We also see why we have to remove the diagonal: if x1 = x2, then, informally,
E[dM(x1) dM(x1)] = dx1, so that the diagonal would contribute

∫
R
g(x1, x1) dx1

yielding a non-zero mean in general.

Lemma 3.20 Assume that g,g1, g2 : R2 → R are square integrable as in (3.112).
Then E[I2(g) = 0], and

cov
(
I2(g1), I2(g2)

) =
∫

R2
g2(x1, x2) dx1 dx2.

Proof We explained why the multiple integral has zero mean. It remains to verify
the covariance formula. We have

cov
(
I2(g1), I2(g2)

)

= E

[∫

R2

∫

R2
g(x1, x2)g(y1, y2) dM(x1) dM(x2) dM(y1) dM(y2)

]
.

Since the integration excludes the hyperplanes x1 = x2 and y1 = y2 and since the
random measure M has the property E[M(A)M(B)] = 0 for disjoint sets A and B ,
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the only contribution comes from integrating over x1 = y1 and x2 = y2. Recalling
that var(dM(x)) = dx, we obtain the formula for the covariance. �

More generally, for square-integrable functions g(x1, . . . , xm), we consider

Im(g) =
∫

Rm

g(x1, . . . , xm)dM(x1) · · ·dM(xm), (3.113)

where
∫
Rm is the multiple Wiener–Itô integral over Rm, disregarding hyperplanes

xi = xj , i 
= j , i, j = 1, . . . ,m. Again, by the association M([0, x]) = B(x) we can
rewrite the integral as

Im(g) =
∫

Rm

g(x1, . . . , xm)dB(x1) · · ·dB(xm). (3.114)

We are now ready to define a Hermite–Rosenblatt process.

Definition 3.24 Let B(·) denote a standard Brownian motion on R and assume that
1 − 1

2m <H0 < 1. Define, for u ≥ 0,

Zm,H0(u) = K(m,H0)

×
{∫ ∞

−∞

∫ x1

−∞
· · ·

∫ xm−1

−∞

(∫ u

0

m∏

i=1

(s − xi)
H0− 3

2+ ds

)
dB(xm) · · ·dB(x1)

}
,

where

K2(m,H0) = m!(2m(H0 − 1)+ 1)(m(H0 − 1)+ 1)

(
∫ ∞

0 (x + x2)H0− 3
2 dx)m

.

The process Zm,H0(u), (u ≥ 0), is called a Hermite–Rosenblatt process. The choice
of the constant assures that E[Z2

m,H0
(1)] = 1; see the computation below.

The integral above is to be interpreted as iteration of the univariate Wiener–Itô
integrals.

We note that the function

(x1, . . . , xm) →
∫ u

0

m∏

i=1

(s − xi)
H0− 3

2+ ds

is symmetric. We therefore may write alternatively

Zm,H0(u) = K(m,H0)

m!

{∫

Rm

(∫ u

0

m∏

i=1

(s − xi)
H0− 3

2+ ds

)
dB(xm) · · ·dB(x1)

}
.

(3.115)
Here, the integral is understood as the multiple Wiener–Itô integral defined
in (3.113).
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As we will show below, the process Zm,H0(u) is self-similar with self-similarity
parameter H = m(H0 − 1)+ 1. In particular, for m = 1 and H0 = H , we obtain for
u ≥ 0,

Z1,H (u) = Z1,H (u) = K(1,H)

{∫ ∞

−∞

(∫ u

0
(s − x)

H− 3
2+ ds

)
dB(x)

}

= K(1,H)

{∫ 0

−∞

(∫ u

0
(s − x)H− 3

2 ds

)
dB(x)

+
∫ u

0

(∫ u

x

(s − x)H− 3
2 ds

)
dB(x)

}
.

Since
∫ u

0
(s − x)H− 3

2 ds = 1

H − 1
2

{
(u− x)H− 1

2 − (−x)H− 1
2
}

and
∫ u

x

(s − x)H− 3
2 ds = 1

H − 1
2

(u− x)H− 1
2 ,

we conclude

Z1,H (u) = K(1,H)

H − 1
2

{∫ 0

−∞
(
(u− x)H− 1

2 − (−x)H− 1
2
)
dB(x)

+
∫ u

0
(u− x)H− 1

2 dB(x)

}

= K(1,H)

H − 1
2

∫ ∞

−∞
(
(u− x)

H− 1
2+ − (−x)

H− 1
2+
)
dB(x).

We recognize the Mandelbrot–van Ness representation given in (3.111).
Now, we will establish some properties of the process Zm,H0(·). First, we will

verify that it is self-similar. Next, we will identify its covariance structure. Finally,
we will justify that E[Z2

m,H0
(1)] = 1.

Lemma 3.21 The process Zm,H0(u) (u ≥ 0) is H -self-similar with

H = m(H0 − 1)+ 1.

Proof We conduct the proof just for m = 2, but the general case is analogous. First,
we write (K(m,H0))

−1Zm,H0(cu) as
{∫ ∞

−∞

∫ x1

−∞

(∫ cu

0

2∏

i=1

(s − xi)
H0− 3

2+ ds

)
dB(x2) dB(x1)

}

= c2(H0− 3
2 )

{∫ ∞

−∞

∫ x1

−∞

(∫ cu

0

2∏

i=1

(
s

c
− xi

c

)H0− 3
2

+
ds

)
dB(x2) dB(x1)

}
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= c2(H0− 3
2 )+1

{∫ ∞

−∞

∫ x1

−∞

(∫ u

0

2∏

i=1

(
s − xi

c

)H0− 3
2

+
ds

)
dB(x2) dB(x1)

}

= c2(H0− 3
2 )+1

{∫ ∞

−∞

∫ x1

−∞

(∫ u

0

2∏

i=1

(s − xi)
H0− 3

2+ ds

)
dB(cx2) dB(cx1)

}

d= c2(H0− 3
2 )+ 2

2 Z2,H0(u) = cm(H0− 3
2 )+m

2 Z2,H0(u) = cHZ2,H0(u),

where in the second last equality we used the self-similarity property of Brownian
motion, that is B(c·) has the same distribution as c1/2B(·). �

To study further properties of the Hermite–Rosenblatt process, let us consider a
process

Zm(u) =
∫

Rm

(∫ u

0

m∏

i=1

g(s, xi) ds

)
dB(xm) · · ·dB(x1). (3.116)

Again, we will do computations for m = 2, but we keep a general m in the notation.
It is assumed that the real-valued function g :R×R is such that

∫ ∞

−∞
g2(s, x) dx < ∞.

This implies that

r(s1, s2) :=
∫ ∞

−∞
g(s1, x)g(s2, x) dx < ∞

and the process Zm(·) is well defined. Using the function r(·, ·), McKean
(1973) gives the following representation for Zm(·):

Zm(u) =
∫ u

0
rm/2(s, s)Hm

(
X(s)

)
ds,

where

X(s) = 1

r1/2(s, s)

∫ ∞

−∞
g(s, x) dB(x),

and Hm is the mth Hermite polynomial. In other words, in the definition of Zm(·),
the multiple Wiener–Itô integral is replaced by the standard Itô integral. We note
that

E
[
X2(s)

] = 1

r(s, s)

∫ ∞

−∞
g2(s, x) dx = 1

and

E
[
X(s1)X(s2)

] = r(s1, s2)

r1/2(s1, s1)r1/2(s2, s2)
.
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Thus, using the formula for the covariance of Hermite polynomials (see Lemma 3.5),
we have

E
[
Hm

(
X(s1)

)
Hm

(
X(s2)

)] = m!
(

r(s1, s2)

r1/2(s1, s1)r1/2(s2, s2)

)m

.

Consequently, the covariance structure of the process Zm(·) is given by

E
[
Zm(u1)Zm(u2)

] = m!
∫ u1

0

∫ u2

0
rm(s1, s2) ds2 ds1.

Now, we would like to apply these computations to

g(s, x) = (s − x)
H0− 3

2+ ,

so that Zm in (3.116) becomes (up to the constant K(m,H0)/m!) Zm,H0 in repre-

sentation (3.115). The problem is that the function x → g(s, x) = c(s − x)
H0− 3

2+ is
not square integrable w.r.t. Lebesgue measure. However, the functions gε(s, ·) :=
g(s + ε, ·) (ε > 0) are square integrable and tend monotonically to g(s, ·) as ε → 0.
This approach guarantees that g(s1, ·)g(s2, ·) is integrable. This in turn implies the
existence of Zm (see Lemma 2.3 in Taqqu 1978). Consequently, for our choice of
g(s, x), we have

r(s1, s2) =
∫ min(s1,s2)

−∞
(s1 − x)H0− 3

2 (s2 − x)H0− 3
2 dx

=
∫ ∞

0
xH0− 3

2
(|s2 − s1| + x

)H0− 3
2 dx

=
∫ ∞

0

(
x + x2)H0− 3

2 dx

︸ ︷︷ ︸
=:C

|s2 − s1|−2(1−H0).

Thus, the covariance structure of the process Zm(·) is given by

E
[
Zm(u1)Zm(u2)

] = m!Cm

∫ u1

0

∫ u2

0
|s2 − s1|−2m(1−H0) ds2 ds1.

In particular, for u1 = u2 = 1, we have

E
[
Z2
m,(1)

] = m!Cm 1

(2m(H0 − 1)+ 1)(m(H0 − 1)+ 1)
.

Now, Zm,H0(u) in (3.115) equals K(m,H0)
m! Zm(u). It is straightforward to verify that

E[Z2
m,H0

(1)] = 1.
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3.7.1.3 Spectral Representation of fBm and Hermite–Rosenblatt Processes

Let M1 and M2 be two independent real-valued Gaussian measures as in (3.104).
Define by

M̃(A) = 1√
2

(
M1(A)+ iM2(A)

)
(3.117)

a complex-valued Gaussian random measure. In particular, for a set A, we have
E[M̃(A)] = 0 and E[|M̃(A)|2] = |A|, where | · | stands for the Lebesgue measure.
The goal of this section is to find a spectral representation of fBm and the Hermite–
Rosenblatt process.

We start by arguing that a standard Brownian motion B(u) (u ≥ 0) can be written
as

B(u) = 1√
2π

∫

R

eiλu − 1

iλ
dM̃(λ) =

∫

R

h̃u(λ) dM̃(λ), (3.118)

where h̃u(λ) is the Fourier transform of the function hu(s) = 1{0 ≤ u ≤ s}:

h̃u(λ) = 1√
2π

∫ ∞

−∞
eiλs1{0 ≤ u ≤ s}ds.

Indeed, Lemma 3.18 implies that a random variable B(u) defined in (3.118) is Gaus-
sian. The same applies to any vector (B(u1), . . . ,B(uq)). Furthermore, we have by
Parseval’s identity

E
[
B(u)B(v)

] =
∫

R

h̃u(λ)h̃v(λ) dλ

=
∫

R

hu(x)hv(x) dx =
∫ min(v,u)

0
dx = min{u,v}.

We recognize the covariance function of a standard Brownian motion. Conse-
quently, the process B(u) (u ≥ 0) is indeed a standard Brownian motion.

Now, we recall that g : Rm → C is symmetric if it is invariant under permutation
of its indices. Furthermore, it is even if g(x1, . . . , xm) = g(−x1, . . . ,−xm). Simi-
larly to (3.113), for each symmetric, even, complex-valued function g : Rm → C,
one can define

∫

Rm

g(λ1, . . . , λm)dM̃(λ1) · · ·dM̃(λm). (3.119)

The integration in (3.119) disregards hyperplanes |λi | = |λj |, i 
= j .
Now, we are ready to establish the following representation of Hermite–

Rosenblatt processes introduced in Definition 3.24.
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Proposition 3.1 Assume that 1 − 1
2m <H0 < 1. The process Zm,H0(u) has the rep-

resentation

Zm,H0(u) = K1(m,H0)

∫

Rm

ei(λ1+···+λm)u−1

i(λ1 + · · · + λm)

m∏

j=1

1

|λj |H0− 1
2

dM̃(λ1) · · ·dM̃(λm),

where

K2
1 (m,H0) = (m(H0 − 1)+ 1)(2m(H0 − 1)+ 1)

m!{2Γ (2 − 2H0) sinπ(H0 − 1
2 )}m

.

To justify this formula, let g̃ be the Fourier transform of g, i.e.

g̃(λ1, . . . , λm) = 1

(2π)m/2

∫

Rm

exp

(
i

m∑

j=1

λjxj

)
g(x1, . . . , xm)dx1 · · ·dxm.

We have the following relation between the multiple Wiener–Itô integral defined
in (3.113) and the integral in (3.119). This result was proven in Taqqu (1978).

Lemma 3.22 Assume that g : Rm → R is a symmetric, even and square-integrable
real-valued function. Then

∫

Rm

g(x1, . . . , xm)dB(x1) · · ·dB(xm) =
∫

Rm

g̃(λ1, . . . , λm)dM̃(λ1) · · ·dM̃(λm),

in the sense of equality of finite-dimensional distributions.

Proof We conduct a proof for m = 1 only. If g ∈ L2(R,Leb), then

g(x) =
∞∑

k=0

ckψk(x),

where ψk (k ≥ 0) is a complete orthonormal basis in L2(R,Leb). Therefore, we can
write

∫
g(x)dB(x) =

∞∑

k=0

ck

∫
ψk(x)dB(x).

On the other hand, ψ̃k(λ) = (2π)−1/2
∫
eiλxψ(x)dx (k ≥ 0) is an orthonormal basis

in the set of symmetric, even, complex-valued functions. Furthermore, applying the
Fourier transform to g, we obtain

g̃(λ) =
∞∑

k=0

ckψ̃k(λ)
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and thus
∫

g̃(λ) dM̃(λ) =
∞∑

k=0

ck

∫
ψ̃k(λ) dM̃(λ).

Now, the random variables Yk := ∫
ψk(x)dB(x) (k ≥ 0) are centred Gaus-

sian and E[YkYl] = ∫
ψk(x)ψl(x) dx. Furthermore, the random variables Ỹk =∫

ψ̃k(λ) dM̃(dλ) (k ≥ 0) are also centred Gaussian, and by Parseval’s identity we
have

E[ỸkỸl] =
∫

ψ̃k(λ)ψ̃l(λ) dλ =
∫

ψk(λ)ψl(λ) dλ.

Therefore, the two sequences Yk and Ỹk (k ≥ 0) have the same distribution. It fol-
lows that the integrals

∫
g(x)dB(x) and

∫
g̃(λ) dM̃(λ) also have the same distribu-

tion. �

Now, we would like to apply this lemma to

g(x1, . . . , xm;u) =
∫ u

0

m∏

i=1

(s − xi)
H0− 3

2+ ds =
∫

R

1{0<s<u}
m∏

i=1

(s − xi)
H0− 3

2+ ds.

(3.120)
However, since 1

2 <H0 < 1, the function uH0− 3
2 1{u > 0} is not in L2(R,Leb), nor it

is in L1(R,Leb). We will overcome this problem by applying a truncation argument.

Proof of Proposition 3.1 In the proof we will consider the case m = 1 only. Let
gT (x;u) = g(x;u)1{|x| < T }, where g(x;u) is defined in (3.120) with m = 1. Its
Fourier transform is given by

g̃T (λ;u) = 1√
2π

∫

R

eiλx
(∫

R

1{0 < s < u}(s − x)
H0− 3

2+ ds

)
1{|x| < T }dx.

Since gT (x;u) → g(x;u) as T → ∞ pointwise, we also have g̃T (λ;u) → g̃(λ;u).
Substituting x → s − x =: v, we obtain

g̃T (λ;u) = 1√
2π

∫

R

eiλ(s−v)

(∫

R

1{0 < s < u}(v)H0− 3
2+ ds

)
1
{|s − v| < T

}
dv

= 1√
2π

∫

R

e−iλv(v)
H0− 3

2+
(∫

R

eiλs1{0 < s < u}ds
)

1
{|s − v| < T

}
dv.

Letting T → ∞, we obtain

g̃(λ;u) = 1√
2π

∫

R

e−iλv(v)
H0− 3

2+
(∫

R

eiλs1{0 < s < u}ds
)
dv.

This argument requires exchange of integration with limT→∞. This is allowed since
gT (λ;u) is uniformly bounded in T (see Taqqu 1979 for details). Thus, recalling
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that the Fourier transform of hu(s) = 1{0 < s < u} is

h̃u(λ) = 1√
2π

∫ ∞

−∞
eiλs1{0 ≤ u ≤ s}ds = 1√

2π

eiλu − 1

iλ
,

we have

g̃(λ;u) = h̃u(λ)

(∫ ∞

0
e−iλvvH0− 3

2 dv

)
= eiλu−1

iλ
|λ| 1

2 −H0
Γ (H0 − 1

2 )√
2π

.

By Lemma 3.22,

∫

R

g(x;u)dB(x) = Γ (H0 − 1
2 )√

2π

∫

R

eiλu−1

iλ

1

|λ|H0− 1
2

dM̃(λ).

Therefore, Z1,H0(u) defined in Definition 3.24 or in (3.115) equals in the sense of
finite-dimensional distributions to

Z1,H0(u) = Γ (H0 − 1
2 )√

2π

K(1,H0)

1!
∫

R

eiλu−1

iλ

1

|λ|H0− 1
2

W̃ (dλ).

The constant can be further simplified further to

Γ (H0 − 1
2 )√

2π

K(1,H0)

1! =
{

Γ 2(H0 − 1
2 )(2H0 − 1)H0

(2π)2/2(
∫ ∞

0 (x + x2)H0− 3
2 dx)1

}1/2

= K1(1,H0)

by Eq. (D.5) (see Appendix D).
For a general m,
∫

Rm

g(x1, . . . , xm;u)dB(x1) · · ·dB(xm)

=
(
Γ (H0 − 1

2 )√
2π

)m ∫

Rm

ei(λ1+···+λm)u−1

i(λ1 + · · · + λm)

m∏

j=1

1

|λj |H0− 1
2

dM̃(λ1) · · ·dM̃(λm).

From this the constant K1(m,H0) can be easily computed. �

3.7.2 Linear Fractional Stable Motion

3.7.2.1 Poisson Processes

Let Ej be a sequence of independent exponential random variables with mean 1.
Define Γn = ∑n

j=1 Ej and

N =
∞∑

k=1

δΓk
,
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where δx(·) is the Dirac measure, that is δx(A) = 1 if x belongs to the set A and zero
otherwise. In other words, N(A) counts the number of points Γj that fall in A. This
formula defines a Poisson process on [0,∞). Its mean (intensity) measure is given
by dλ(x) = λdx, where λ is a constant. In other words, E[N(A)] = λ · |A|, where
|A| is the Lebesgue measure of A. Such a Poisson process is called homogeneous.

Consider now a transformation T : (0,∞) → (0,∞). Then
∑∞

k=1 δT (Γk) is still a
Poisson process, but with an intensity measure given by λ ◦ T −1.

Example 3.46 Assume that T (u) = u−1/α . Then

∞∑

k=1

δ
Γ

−1/α
k

=:
∞∑

k=1

δTk ,

is the representation of a Poisson process on (0,∞) with intensity measure

dλ̃(x) = αx−(α+1), x > 0.

Furthermore, if Un, n ≥ 1, is a sequence of i.i.d. standard uniform random vari-
ables, then

N =
∞∑

k=1

δ(Uk,Tk) (3.121)

is the representation of a Poisson processs on [0,1]× (0,∞) with intensity measure
Leb × λ̃.

3.7.2.2 Stable Random Variables

There are several equivalent definitions of stable random variables.

Definition 3.25 A random variable X is stable if for any n ≥ 2, there exist constants
cn > 0 and dn ∈R such that

X1 + · · · +Xn
d= cnX + dn,

where X1,X2, . . . are independent copies of X. Necessarily, cn = n1/α , where
α ∈ (0,2].

Equivalently, stable random variables are characterized in terms of domains of
attraction:

Definition 3.26 A random variable X is stable if there exist an i.i.d. sequence Yt ,
t ∈N and constants cn > 0, dn ∈R such that

Y1 + · · · + Yn

cn
− dn

d→ X.
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The characteristic function of a stable random variable X is given by

EeiθX =
{

exp(−ηα|θ |α(1 − iβsign(θ) tan πα
2 )) if α 
= 1,

exp(−η|θ |(1 + iβ 2
π

sign(θ) ln(θ))+ iμθ) if α = 1.

Here, 0 < α ≤ 2, η > 0 is the scale parameter, −1 ≤ β ≤ 1 is skewness, and μ ∈R is
a shift parameter. We write X ∼ Sα(η,β,μ). In particular, X is symmetric α-stable
(written as X ∼ SαS) if X ∼ Sα(η,0,0).

If α ∈ (0,2), then stable random variables are heavy tailed. Indeed, if X ∼
Sα(η,β,μ), then

lim
x→∞xαP (X > x) = Cα

1 + β

2
ηα, lim

x→∞xαP (X < −x) = Cα

1 − β

2
ηα,

where

Cα =
(∫ ∞

0
x−α sinx

)−1

.

Stable Stochastic Process A stochastic process is stable if all linear combinations
are stable.

Lévy Measure Let ‖ · ‖ be the Euclidean norm. A measure λ on Rd \ {0} is called
a Lévy measure if

∫

0≤‖x‖<c

‖x‖2dλ(x) < ∞

for all c ∈ (0,∞).

Example 3.47 The measure

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
dx

is a Lévy measure. Of course, if β = 1, then we obtain the measure λ̃ in Exam-
ple 3.46.

3.7.2.3 Lévy Processes

A stochastic process Z(u) is called a Lévy process if Z(0) = 0, sample paths are in
D[0,1] and Z has stationary and independent increments.
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Itô Representation Recall the representation N = ∑∞
k=1 δ(Uk,Tk) (see (3.121)).

This Poisson process has the mean measure Leb × λ̃. Its natural extension is a Pois-
son process with the Lévy measure Leb × λ (see Example 3.47). The simplest α-
stable Lévy motion on [0,1] can be constructed as

Z(u) =
∑

Uk≤u

Tk.

In general, an α-stable Lévy motion on [0,1] can be represented as

Z(u) = lim
ε→0

∫ u

0

∫ ∞

ε

u
(
N(ds, du)− dsλ(du)

)
.

α-Stable Lévy Motion Based on this representation, we say that Z(·) is a Lévy
process with Lévy measure λ. Such a process is called an α-stable Lévy motion,
denoted in this book by Z̃α(·). If β = 0 in the definition of the measure λ, then the
process is called a symmetric α-stable Lévy motion (denoted as SαS).

Using the language of stable random variables, a process Zα(s) is called
an α-stable Lévy motion if it has independent increments, Zα(0) = 0 and Zα(s

′)−
Zα(s) ∼ Sα((s

′ − s)1/α,β,0). If β = 0, then the process is SαS. Note also that
α-stable Lévy motions are 1/α-self-similar.

3.7.2.4 Stable Random Measures and Stochastic Integrals

Recall Eq. (3.104). It defines a stable random measure that is self-similar with pa-
rameter 1/2.

Let m be a measure on a space E, and let β : E → [−1,1]. Let M be a random
measure defined on sets A such that m(A) < ∞. In other words:

• (M(A1), . . . ,M(Ak)) is a random vector;
• If Aj are disjoint, then M(

⋃
Aj) = ∑

j M(Aj ).

We say that M is an independently scattered random measure if for disjoint sets
A1, . . . ,Ak , the random variables M(A1), . . . ,M(Ak) are independent. In particu-
lar, the Gaussian random measure defined in (3.104) is independently scattered.

Assume that α ∈ (0,2). We say that M is an independently scattered α-stable
random measure with control measure m if

M(A) ∼ Sα

((
m(A)

)1/α
,

∫
β(x)m(dx)

m(A)
,0

)
.

Recall that a Brownian motion can be defined in terms of a Gaussian random mea-
sure, cf. (3.106). An analogous result holds for Lévy processes.

Example 3.48 Let M be an α-stable random measure with m = Leb and β(x) = β .
Then Zα(s) = M([0, s]), s ≥ 0, defines α-stable Lévy motion.
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However, random measures are also building blocks for other processes, e.g.
via stochastic integrals. We noted this in the construction of a fractional Brownian
motion. To extend this to stable processes, let Lα(E,m) be a class of functions such
that

∫ ∣∣f (x)
∣∣α dm(x) < ∞.

Then

I (f ) =
∫

f (x)dM(x) (3.122)

is well defined. In particular, if f (x) = ∑k
j=1 fj1{x∈Aj }, then

I (f ) =
k∑

j=1

fjM(Aj ). (3.123)

The integral I (f ) is still a stable random variable. In particular, I (f ) ∼ Sα(ηf ,

βf ,0), where

ηf = (∣∣f (x)
∣∣αm(dx)

)1/α
.

Example 3.49 In this example, we assume that M is an independently scattered
α-stable random measure. Let f ∈ Lα(R,m). Then

Z(u) =
∫ ∞

−∞
f (u− x)dM(x)

is called an SαS moving average. The process Z(s) is stationary.
Furthermore, let

gt (x) = f (t − x)− f (t − 1 − x).

Then

Xt = Z(t)−Z(t − 1) =
∫ ∞

−∞
gt (x) dM(x)

defines an α-stable stationary process.

3.7.2.5 Linear Fractional Stable Motion (LFSM)

Fractional Brownian motion has been represented as an integral with respect to a
Brownian motion. The integrand was defined in terms of the kernel that appeared
in (3.107).
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Let M be an independently scattered α-stable measure with the Lebesgue mea-
sure as the control measure. We define similarly an LFSM as

ZH,α(u) =
∫ ∞

−∞
Qu,1(x;H,α)dM(x)

or equivalently as

ZH,α(u) =
∫ ∞

−∞
Qu,1(x;H,α)dZα(x),

where Zα(·) is an α-stable Lévy motion, and

Qu,1(x;H,α) = c1
[
(u−x)

H−1/α
+ −(−x)

H−1/α
+

]+c2
[
(u−x)

H−1/α
− −(−x)

H−1/α
−

]
.

The integral is well defined as long as H > 1/α. Indeed, for example, the first
integrand (u − x)

H−1/α
+ − (−x)

H−1/α
+ behaves like (H − 1/α)(−x)H−1/α−1 as

x → −∞. A function (−x)−(1+1/α−H) (x → −∞) is integrable with power α if
α(1+1/α−H) > 1, that is H < 1. The function (u−x)

H−1/α
+ behaves like xH−1/α

as x → u, and then is clearly integrable if H > 1/α.
The process is self-similar with stationary and dependent increments. As in the

case of fractional Brownian motion, this representation is not unique. For example,

Z(u) =
∫ ∞

−∞
(|u− x|H−1/α − |x|H−1/α)dM(x)

is called a well-balanced SαS linear fractional stable motion.

3.7.3 Fractional Calculus

Fractional calculus is a useful tool when dealing with limit theorems for long-
memory processes. In particular, it provides an elegant way of understanding in-
tegral representations of fractional Brownian motion and asymptotic results in the
context of piecewise polynomial or spline regression (see Sect. 7.3). Here, we sum-
marize some basics of fractional calculus (see e.g., Samko et al. 1987; for a nice
summary ofsome essentials, also see the papers by Pipiras and Taqqu 2000a, 2003).
One possible elementary motivation for introducing fractional integrals is the obser-
vation that for a real-valued function ϕ on an interval [a, b], we have

∫ tn

a

∫ tn−1

a

· · ·
(∫ t1

a

ϕ(u)du

)
dt1 dt2 · · ·dtn−1 = 1

Γ (n)

∫ tn

a

ϕ(u)(tn − u)n−1 du.

Replacing n by a positive real value d , we obtain the definition of fractional integral
operators as follows:
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Definition 3.27 The Riemann–Liouville fractional integrals of order d > 0 are de-
fined by

(
I d+f

)
(s) = 1

Γ (d)

∫ s

−∞
f (u)(s − u)d−1 du = 1

Γ (d)

∫ ∞

−∞
f (u)(s − u)d−1+ du

and

(
I d−f

)
(s) = 1

Γ (d)

∫ ∞

s

f (u)(u− s)d−1 du = 1

Γ (d)

∫ ∞

−∞
f (u)(u− s)d−1+ du.

Note that I d+f and I d−f can be understood as operators mapping a function f (·)
to the functions (I d+f )(·) and (I d−f )(·) respectively. These integrals are well defined
if f ∈ Lp(R) with 1 ≤ p < d−1 (see Samko et al. 1987, p. 94) in the sense that
|(I d±f )(s)| < ∞ for almost all s. A natural extension to d = 0 is I 0±f := f , i.e. I 0±
is the identity operator.

A slightly more difficult concept is the fractional derivative. A natural approach
to defining a fractional derivative of order d is via the inverse operator of I d± (where

d > 0). In view of the semigroup property I
d1± I

d2± = I
d1+d2± , one may be tempted

to use the integral
∫ ∞
s

f (u)(u − s)−d−1 du. However, for many functions f , this
integral does not exist or is infinite. One way of avoiding this problem is to integrate
(u − s)−d first and take the derivative with respect to u afterwards (i.e. take the
derivative outside the integral). This leads to the definition of the Riemann–Liouville
fractional derivative:

Definition 3.28 For 0 < d < 1, the Riemann–Liouville derivatives of order d are
defined by

(
Dd+f

)
(u) = 1

Γ (1 − d)

d

du

∫ ∞

−∞
f (s)(u− s)−d+ ds

and
(
Dd−f

)
(u) = − 1

Γ (1 − d)

d

du

∫ ∞

−∞
f (s)(s − u)−d+ ds.

The reason why these are suitable definitions of fractional derivatives can be seen
from the proof of the following lemma.

Lemma 3.23 Let 0 < α < 1, and let f be a given function for which (Dd±f )(u) as
defined above exists. Then Abel’s equation

(
I d+ϕ

)
(s) = f (s)

(with unknown ϕ) has the solution

ϕ(u) = (
Dd+f

)
(u).

The analogous result holds for I d+ and Dd+.
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Proof The result is obtained by first integrating both sides of Abel’s equation mul-
tiplied by (u− s)−d+ . For the right hand side, we obtain

∫ ∞

−∞
f (s)(u− s)−d+ ds,

whereas for the left-hand side, we have
∫ ∞

−∞
(
I d+ϕ

)
(s)(u− s)−d+ ds = 1

Γ (d)

∫ u

−∞

[∫ s

−∞
ϕ(v)(s − v)d−1 dv

]
(u− s)−d ds

= 1

Γ (d)

∫ u

−∞
ϕ(v)B(d,1 − d)dv

= Γ (1 − d)

∫ u

−∞
ϕ(v)dv.

Thus,
∫ ∞

−∞
f (s)(u− s)−d+ ds = Γ (1 − d)

∫ u

−∞
ϕ(v)dv,

so that

ϕ(u) = 1

Γ (1 − d)

d

du

∫ ∞

−∞
f (s)(u− s)−d+ ds,

which is the definition of (Dd+f )(u). �

More specifically, (Dd+f )(u) exists and is the left- and right-hand inverse of I d+ if
0 < d < 1 and f = I d+ϕ for a function ϕ ∈ L1(R). For applications to stochastic in-
tegration with respect to fractional Brownian motion, the restriction to L1-functions
is not general enough. What one needs to be able to use are Lp-functions for a
p at least equal to 2. This motivates a slightly more complicated definition of the
fractional derivative.

Definition 3.29 The Marchaud derivative of order d (0 < d < 1) is defined by

Dd±f := lim
ε→0

Dd±,εf

with
(
Dd±,εf

)
(s) = d

Γ (1 − d)

∫ ∞

ε

f (s)− f (s ∓ u)

u1+d
du.

It can be shown (see Theorem 6.1 in Samko et al. 1987) that if f = I d±φ for
some φ ∈ Lp(R), d > 0 and 1 ≤ p < d−1, then limε→0 Dd±,εf exists and is equal to
φ in Lp(R) and almost surely. In other words, the Marchaud derivative inverts the
fractional integral. For d < 0, we may thus set I d± := (I

|d|
± )−1 = D|d|

± .



Chapter 4
Limit Theorems

4.1 Tools

4.1.1 Introduction

Most statistical procedures in time series analysis (and in fact statistical inference in
general) are based on asymptotic results. Limit theorems are therefore a fundamental
part of statistical inference. Here we first review very briefly a few of the basic
principles and results needed for deriving limit theorems in the context of long-
memory and related processes.

4.1.2 How to Derive Limit Theorems?

To prove the convergence of an appropriately normalized process Sn(·), one has to
verify the convergence of finite-dimensional distributions and tightness. With re-
spect to the first issue, we usually prove just one-dimensional convergence because
in most situations extensions to the multivariate case are straightforward. The tools
we describe here are applicable to many statistics, not only partial sums. On the
other hand, most of the statistics we will consider are just partial sums.

4.1.2.1 How to Verify Finite-Dimensional Convergence?

Suppose that Xt (t ∈N) is a stationary process. One of the common methods for de-
riving limit theorems is to evaluate its characteristic function. This is however rarely
successful in a long-memory setting. An alternative method for partial sums of long-
memory sequences is to study the asymptotic behaviour of cumulants. Recall that
for a given random variable X, its cumulants are the coefficients in the power series

J. Beran et al., Long-Memory Processes,
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expansion of κX(z) = logE(ezX), i.e. κj = κj (X) in

κX(z) =
∞∑

j=0

zj

j ! κj .

In particular, κ1 = μX = E(X), κ2 = σ 2
X = var(X). If E(X) = 0, then κ4 =

E(X4) − 3E2(X2). One of the useful properties of cumulants is that for a normal
random variable X, we have κj = 0 for all j ≥ 3, and this is only the case for the
normal distribution. Moreover, a normal distribution is uniquely determined by its
moments.

The justification for the approach based on cumulants is the following well-
known result (see e.g. Rao 1965):

Theorem 4.1 Let Sn (n ∈ N) be a sequence of random variables such that
E[|Sn|j ] < ∞ for all j , and let Y be a random variable whose distribution is
uniquely determined by its moments μj = E(Y j ) (j ∈ N). Then the convergence
of all cumulants κj (Sn) of Sn (j ∈ N) to the cumulants κj (Y ) of Y implies that Sn
converges to Y in distribution.

Cumulants are useful if all moments exist. An approach that does not require
finiteness of higher-order moments is referred to as a K-dependent approximation
method and is adapted from Billingsley (1968, Theorem 4.2).

Proposition 4.1 Let Xt (t ∈ N) be a stationary sequence, cn a sequence of con-
stants, and Xt,K (t ∈ N) a sequence of K-dependent random variables. Define
Sn = ∑n

t=1 Xt and Sn,K = ∑n
t=1 Xt,K , and suppose that the following holds:

(a) c−1
n Sn,K

d→ SK as n → ∞;

(b) SK
P→ S as K → ∞;

(c)

lim
K→∞ lim sup

n→∞
P
(
c−1
n |Sn,K − Sn| > γ

) = 0

for each γ > 0.

Then, as n → ∞,

c−1
n Sn

d→ S.

To apply this theorem, we mention that if v2
K → v2 as K → ∞, then N(0, v2

K)
d→

N(0, v2). Furthermore, this approach requires the following result for K-dependent
sequences.
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Lemma 4.1 Let Xt,K (t ∈ N) be a stationary sequence of K-dependent random
variables with var(X0,K) < ∞, and define Sn,K = ∑n

t=1 Xt,K . Then

n− 1
2 Sn,K

d→ σKN(0,1),

where σ 2
K = var(X0,K)+ 2

∑K
j=1 cov(X0,K,Xj,K).

Another useful result is the following martingale central limit theorem.

Lemma 4.2 Let (Xt,n,Ft ) (t ∈ N, n ≥ 1) be a martingale difference array, and
define X̃t,n = Xt,n −E(Xt,n|Ft−1). Furthermore, assume that the following condi-
tions hold:

(a) for each δ > 0,
n∑

t=1

E
(
X̃2

t,n1
{|X̃t,n| > δ

}) → 0,

(b)
n∑

t=1

E
(
X̃2

t,n

∣∣Ft−1
) p→ 1.

Then
n∑

t=1

Xt,n
d→ N(0,1).

4.1.2.2 How to Verify Tightness?

There are several ways to prove tightness. A particularly useful result given in Theo-
rem 15.6 of Billingsley (1968) provides sufficient conditions for tightness in D (the
space of right-continuous functions with left limits):

Lemma 4.3 A stochastic process Yn(u) (u ∈ [0,1]) is tight if there exist η > 1,
a > 0 and a nondecreasing function g such that for all v1 < u< v2 ∈ [0,1],

E
[∣∣Yn(v2)− Yn(u)

∣∣a∣∣Yn(u)− Yn(v1)
∣∣a] ≤ (

g(v2)− g(v1)
)η
.

In particular, assume that Xt (t ∈ N) is a stationary sequence of random variables
and G is a function such that E[G(Xt)] = 0. Consider the partial sum process

Sn(u) =
[nu]∑

t=1

G(Xt)
(
u ∈ [0,1]). (4.1)

Applying Lemma 4.3 to the partial sum process Yn(u) = d−1
n Sn(u) yields the fol-

lowing result (see Theorem 2.1 in Taqqu 1975).
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Lemma 4.4 Assume that

(a) E[G(X1)] = 0 and E[G2(X1)] < ∞.
(b) d2

n ∼ n2d+1LS(n) with − 1
2 ≤ d < 1

2 and a slowly varying function LS .
(c) E[S2

n(1)] = O(d2
n).

(d) There exists a > (2d + 1)−1 such that E(|Sn(1)|2a) = O((E[S2
n(1)])a).

Then d−1
n Sn(·) is tight.

Proof Assume for simplicity that LS ≡ 1. We note that the process Sn(u), u ∈ [0,1],
has stationary increments. In particular, for 0 ≤ u ≤ v ≤ 1, Sn(v) − Sn(u)

d=
Sn(v − u). Thus, applying the Cauchy–Schwarz inequality and stationarity of in-
crements, we have for v1 < u< v2, and a suitable constant 0 <C < ∞,

d−2a
n E

[∣∣Sn(v2)− Sn(u)
∣∣a∣∣Sn(u)− Sn(v1)

∣∣a]

≤ d−2a
n

(
E
[∣∣Sn(v2 − u)

∣∣2a])1/2(
E
[∣∣Sn(u− v1)

∣∣2a])1/2

≤ d−2a
n d2a

n

{
(v2 − u)2d+1(u− v1)

2d+1}a/2
C ≤ {

(v2 − u)(u− v1)
}(d+ 1

2 )aC

≤ (v2 − v1)
(2d+1)aC.

Since (2d + 1)a > 1, Billingsley’s criterium is fulfilled, and the process is tight. �

If we restrict ourselves to d > 0, then Lemma 4.3 leads to a particularly use-
ful criterion in the long-memory case because it amounts to finding a bound on
E[(Yn(v2)− Yn(v1))

2] only.

Lemma 4.5 Assume that Yn(u) (u ∈ [0,1]) is a stochastic process with stationary
increments. If

E
[∣∣Yn(v2)− Yn(v1)

∣∣2] ≤ (v2 − v1)
2d+1, (4.2)

d > 0, then the process is tight.

Indeed, if we consider again Yn(u) = d−1
n Sn(u), then

d−2
n E

[∣∣Sn(v2)− Sn(u)
∣∣∣∣Sn(u)− Sn(v1)

∣∣]

≤ d−2
n

(
E
[∣∣Sn(v2 − u)

∣∣2])1/2(
E
[∣∣Sn(u− v1)

∣∣2])1/2

≤ d−2
n d2

n

{
(v2 − u)2d+1(u− v1)

2d+1}1/2
C ≤ {

(v2 − u)(u− v1)
}(d+ 1

2 )C

≤ (v2 − v1)
(2d+1)C,

and the exponent exceeds one since d > 0. We note that this approach does not
work when d ≤ 0. Hence, in a sense, showing tightness in a long-memory case is
easier than in a weakly dependent and antipersistent situation. We note further that
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condition (4.2) is almost the same as a moment condition for tightness of processes
in C; see Theorem 12.3 in Billingsley (1968).

4.1.2.3 Functional Central Limit Theorem for Processes

The following result is used to establish a functional limit theorem for a sum of
independent stochastic processes; see e.g. p. 226 of Whitt (2002).

Lemma 4.6 Let Xt(u) (u ∈ [0,∞), t ∈N) be an i.i.d. sequence of processes viewed
as random elements in D[0,∞). If E(X1(u)) = 0, E(X2

1(u)) < ∞ for each u ∈
[0,∞) and there exist continuous nondecreasing functions f , g and numbers a >

1/2, b > 1 such that

E
[(
X1(v)−X1(u)

)2] ≤ (
g(v)− g(u)

)a
,

E
[(
X1(v2)−X1(u)

)2(
X1(u)−X1(v1)

)2] ≤ (
g(v2)− g(v1)

)b
,

for all 0 ≤ u < v ≤ ∞, 0 ≤ v1 < u< v2 < ∞, then

n−1/2
n∑

t=1

Xt(u) ⇒ G(u),

where G is a zero-mean Gaussian process with continuous sample paths, cov(G(0),
G(u)) = cov(X1(0),X1(u)), and ⇒ denotes weak convergence in D[0,∞).

4.1.2.4 Functional Central Limit Theorem for Inverses

The following result, known as Vervaat’s lemma (see Vervaat 1972 or De Haan
and Ferreira 2006), plays a crucial role in deriving limit theorems for appropri-
ately scaled and normalized quantile processes (as inverses of empirical processes;
see Sect. 4.8.2), or counting processes (as inverses of partial sum processes; see
Sect. 4.9).

Lemma 4.7 (FCLT for Inverse Functions) Denote by D0([0,∞)) the subset of
D[0,∞) consisting of non-decreasing, non-negative, unbounded functions. Let
yn(·) (n ≥ 1) be a sequence of elements of D0([0,∞)). Moreover, let y(·) be a
continuous function on [0,∞), and cn (n ≥ 1) a sequence of positive numbers such
that cn → 0. If

yn(u)− u

cn
→ y(u)

uniformly on compact sets in [0,∞), then

y−1
n (u)− u

cn
→ −y(u)
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uniformly on compact sets in [0,∞), where y−1
n (u) := inf{v : yn(v) > u} is the

generalized inverse of yn(·).

It is important to mention that the continuity assumption on y(·) cannot be re-
laxed. If the limiting function has jumps, then the uniform convergence of the in-
verse processes does not follow necessarily. In particular, this theorem will be appli-
cable to situations where we have weak convergence in D[0,1] equipped with the
standard J1-topology, to a continuous process, and from that we will conclude weak
convergence in that topology for the inverse processes. If the limiting process has
jumps, we may not be able to conclude weak convergence of the inverse processes
in the same topology, even though we may have weak convergence of the original
processes. Nevertheless, at least finite-dimensional convergence follows. We refer
to Whitt (2002, Chap. 13) for more details.

It is also important to see that in this lemma we assume the identity function
to be the correct quantity to subtract. Thus, for instance, when dealing with the
empirical distribution function Fn(x) = n−1 ∑n

t=1 1{Xt ≤ x} (where X ∼ FX), the
result actually refers to F̃n(x) = n−1 ∑n

t=1 1{FX(Xt) ≤ x} and the corresponding
inverse. The reason is that FX(X) is uniformly distributed, so that we are in the
situation described in Vervaat’s lemma. The result for Fn (and F−1

n ) then follows by
the continuous mapping theorem.

4.1.3 Spectral Representation of Stationary Sequences

In this section we collect several standard results on spectral theory for stationary
processes. Some of these properties have been used in the preliminary discussion on
long memory, see Chap. 1. We state these results without a reference since they can
be found in standard textbooks on time series such as Brockwell and Davis (1991).

Recall that for a zero-mean second-order stationary process Xt (t ∈ Z) with au-
tocovariances γX(k), there is a spectral distribution function F such that

γX(k) =
∫ π

−π

eikλ dF (λ).

Moreover, Xt has a spectral representation of the form

Xt(ω) =
∫ π

−π

eitλ dM(λ;ω),

where M(·;ω) is a spectral measure (for simplicity, we will often write M(λ) in-
stead of M(λ;ω)). The spectral measure is a complex-valued zero mean stochastic
process on [−π,π] with (a.s.) right-continuous sample paths and uncorrelated (but
not necessarily independent) increments with a variance that is directly related to F .
More specifically, we have

cov
(
dM(λ), dM(ν)

) = E
[
dM(λ)dM(ν)

] = 0 (λ 
= ν),

var
(
dM(λ)

) = E
[∣∣dM(λ)

∣∣2] = dF(λ).
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In particular, if the spectral density exists, then we may write the infinitesimal equa-
tion var(dM(λ)) = E[|dM(λ)|2] = f (λ)dλ.

It is important to distinguish between the role of the spectral distribution F and
the spectral measure M . The spectral distribution determines the autocovariance
structure, i.e. linear dependence, of the process only. In contrast, the spectral mea-
sure fully specifies the process (in the sense of the probability distribution of sample
paths). In the special case where M = Mε with E[|dMε(λ)|2] = σ 2

ε /(2π) · dλ we
obtain a white noise process with variance σ 2

ε where “white noise” stands for un-
correlated observations. This follows directly from the spectral representation

εt =
∫ π

−π

eitλ dMε(λ) (t ∈ Z) (4.3)

since

E[εt εs] =
∫ π

−π

∫ π

−π

ei(tλ−sν)E
[
dMε(λ)dMε(ν)

]

= σ 2
ε

2π

∫ π

−π

ei(t−s)λ dλ = σ 2
ε δts .

The spectral density of εt is fε(λ) = σ 2
ε /(2π). One should bear in mind that, in

general, this does not imply the independence of εt (t ∈ Z). Such a direct conclusion
can only be made if M(λ;ω) is a Gaussian process.

A zero mean, purely nondeterministic second-order stationary process always
has a Wold decomposition

Xt =
∞∑

j=0

aj εt−j = A(B)εt (t ∈ Z)

with uncorrelated (i.e. “white noise”) innovations εt and A(z) = ∑
aj z

j such that∑∞
j=0 a

2
j < ∞. Therefore, the spectral measure and spectral distribution have a sim-

ple form, namely (with equality in the L2(Ω) sense)

Xt =
∫ π

−π

eitλ dMX(λ) =
∫ π

−π

eitλA
(
e−iλ

)
dMε(λ) (t ∈ Z). (4.4)

In other words,

dMX(λ) =
( ∞∑

j=0

aj e
−ijλ

)
dMε(λ) = A

(
e−iλ

)
dMε(λ).

The spectral density

fX(λ) = 1

2π

∞∑

k=∞
γX(k) exp(−iλk)
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is then given by

fX(λ) = σ 2
ε

2π

∣∣∣∣∣

∞∑

j=0

aj e
−ijλ

∣∣∣∣∣

2

= σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2.

These formulas are valid generally. More specifically, if we consider linear pro-
cesses only, the εt s in the Wold representation are not only uncorrelated but even
independent. This means that the increments of Mε are independent (instead of be-
ing just uncorrelated). Even more specifically, a Gaussian process is a linear pro-
cess that has normally distributed εt s, namely εt ∼ N(0, σ 2

ε ). This means that we
are in the following situation. The measure Mε is a Gaussian spectral measure such
that for all sets A, E[Mε(A)] = 0, Eε[M(A ∩ B)] = 0 for all disjoint sets A and
B , and E[Mε(A)Mε(A)] = σ 2

ε |A|/(2π), where | · | denotes the Lebesgue mea-
sure. Moreover, for all λ1 ≤ λ2 < λ3 ≤ λ4, the increments Mε(λ4) − Mε(λ3) and
Mε(λ2) − Mε(λ1) are independent. (For simplicity of notation, we will mostly as-
sume that σ 2

ε = 1, which means that Mε(·) is a spectral measure of an i.i.d. N(0,1)
sequence.) The Gaussian process Xt is then given by

Xt =
∞∑

j=0

aj εt−j =
∫ π

−π

eitλ dMX(λ) (t ∈N), (4.5)

where MX is the Gaussian spectral measure defined by

dMX(λ) =
( ∞∑

j=0

aj e
−ijλ

)
dMε(λ) = A

(
e−iλ

)
dMε(λ) =: √2πa(λ)dMε(λ).

Note that in the notation with a(λ), the spectral density can be written as

fX(λ) = σ 2
ε

∣∣a(λ)
∣∣2.

Thus, for σ 2
ε = 1, we have the identity fX(λ) = |a(λ)|2.

Another result that is very useful in many situations, such as prediction or (Gaus-
sian) maximum likelihood estimation, is the following factorization of the spectral
density. Let us write logfX as a Fourier series

logfX(λ) =
∞∑

j=−∞
αje

−ijλ

with coefficients

αj = α−j = 1

2π

∫ π

−π

eijλ logfX(λ)dλ. (4.6)

Then we obtain the factorization

fX(λ) = exp(α0)
∣∣A

(
e−iλ

)∣∣2 = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 =: σ
2
ε

2π
hX(λ), (4.7)
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where

A(z) =
∞∑

j=0

aj z
j = exp

( ∞∑

j=1

αjz
j

)

and

σ 2
ε

2π
= exp(α0).

The last equation, together with (4.6), implies

α0 = 1

2π

∫ π

−π

logfX(λ)dλ = logσ 2
ε − log 2π.

For the function hX(·) defined in (4.7), we therefore obtain

∫ π

−π

loghX(λ)dλ = 0. (4.8)

This property is particularly useful for the asymptotic theory of (Gaussian) quasi-
maximum likelihood estimation.

Finally, the following lemma is useful in spectral analysis of stationary sequences
(see Lemma 2 in Moulines et al. 2007a). Consider the spectral radius Sp(A) of an
n× n matrix A, defined as the maximal absolute eigenvalue, or

Sp(A) = sup
x∈Rn:‖x‖≤1

xT Ax.

Now let A = Σn = [γX(i − j)]i,j=1,...,n be the covariance matrix of X =
(X1, . . . ,Xn)

T , where Xt is a zero-mean stationary process with spectral density
fX . Then

xT Ax =
n∑

j,l=1

γX(j − l)xj xl

=
∫ π

−π

fX(λ)

∣∣∣∣∣

n∑

j=1

xj exp(−ijλ)

∣∣∣∣∣

2

dλ

≤ sup
λ∈[−π,π]

∣∣fX(λ)
∣∣
∫ π

−π

∣∣∣∣∣

n∑

j=1

xj exp(−ijλ)

∣∣∣∣∣

2

dλ = 2π |x|2 sup
λ∈[−π,π]

∣∣fX(λ)
∣∣,

where the last expression follows from the Parseval identity. Hence, we have the
following result.
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Lemma 4.8 Assume that Xt (t ∈ Z) is a stationary process with the spectral den-
sity fX . Assume that Σn is the covariance matrix of X1, . . . ,Xn. Then

Sp(Σn) ≤ 2π sup
λ∈[−π,π]

∣∣fX(λ)
∣∣.

4.2 Limit Theorems for Sums with Finite Moments

4.2.1 Introduction

Let Xt (t ∈ N) be a stationary process. The asymptotic behaviour of partial sums

Sn(u) = Sn,G(u) =
[nu]∑

t=1

G(Xt) (4.9)

is at the core of probability theory. In this section we present limit theorems for
partial sums associated with long-memory or antipersistent processes. Two types
of distinctions have to be made. One is between linear and nonlinear processes.
The other is between processes with finite and infinite variance. The case of infinite
variance is studied in Sect. 4.3. Depending on which of these cases is considered,
different results and mathematical techniques are required.

In this section we discuss finite-variance processes only. We will begin our ex-
position by assuming that Xt (t ∈ N) is a Gaussian process, since computations and
proofs are technically less challenging than for instance for general Appell poly-
nomials. The limiting phenomena related to partial sums of subordinated Gaussian
sequences were observed first by Rosenblatt (1961) and then developed indepen-
dently by Taqqu (1975, 1977, 1979), Dobrushin (1980) and Dobrushin and Major
(1979). Further developments can be found in Breuer and Major (1983), Giraitis
and Surgailis (1985), Ho and Sun (1987, 1990), Dehling and Taqqu (1989a, 1989b)
and Arcones (1994). Although the original technique in Taqqu (1975) to show con-
vergence to the so-called Hermite–Rosenblatt distribution was based on character-
istic functions, the common method to obtain a non-central limit theorem is based
on (multiple) Wiener–Itô integrals, together with the diagram formula. For long-
memory linear processes, the first result was obtained in Davydov (1970a, 1970b);
see also Gorodetskii (1977), Lang and Soulier (2000), Wang et al. (2003).

As for subordinated linear processes, there are two common approaches: Ap-
pell polynomials (Surgailis 1981, 1982; Giraitis 1985; Giraitis and Surgailis 1986,
1989; Avram and Taqqu 1987; Surgailis and Vaičiulis 1999; Surgailis 2000; also see
Surgailis 2003 for a review) and a martingale decomposition (Ho and Hsing 1996,
1997; Giraitis and Surgailis 1999; Wu 2003; see also Hsing 2000 for a review).

The theory for nonlinear models with long memory is less well developed.
EGARCH-type models were considered in Surgailis and Viano (2002), whereas re-
sults for LARCH(∞) processes can be found for instance in Giraitis et al. (2000c),
Giraitis and Surgailis (2002), Berkes and Horváth (2003), Beran (2006).
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4.2.2 Normalizing Constants for Stationary Processes

Before getting into the details of limiting distributions, a first question can be an-
swered relatively easily, namely which normalizing sequences should be used to
obtain nondegenerate limits. Let Sn = ∑n

t=1 Xt , where Xt (t ∈N) is a stationary se-
quence with appropriate moment conditions. We consider the asymptotic behaviour
of var(Sn) in three cases: long memory, short memory and antipersistence.

Lemma 4.9 (Long Memory) Let Xt (t ∈N) be a stationary sequence with γX(k) ∼
Lγ (k)k

2d−1 (k → ∞) for some 0 < d < 1
2 , where Lγ is slowly varying at infinity.

Then, as n → ∞,

var(Sn) ∼ LS(n)n
2d+1 (4.10)

with

LS(n) = L1(n) = C1Lγ (n) = 1

d (2d + 1)
Lγ (n). (4.11)

Proof We have

var(Sn) = n

n−1∑

k=−(n−1)

(
1 − |k|

n

)
γX(k)

∼ n

n−1∑

k=−(n−1)
k 
=0

Lγ (k)|k|2d−1 −
n−1∑

k=−(n−1)
k 
=0

Lγ (k)|k|2d .

The last expression can be written as

Lγ (n)n
2d+1

[
n−1∑

k=−(n−1)
k 
=0

Lγ (k)

Lγ (n)

( |k|
p

)2d−1

n−1

−
n−1∑

k=−(n−1)
k 
=0

Lγ (k)

Lγ (n)

( |k|
n

)2d

n−1

]

∼ 2Lγ (n)n
2d+1

[∫ 1

0
u2d−1 du−

∫ 1

0
u2d du

]

= 2Lγ (n)n
2d+1

(
1

2d
− 1

2d + 1

)
= Lγ (n)

d(2d + 1)
n2d+1. �

Lemma 4.10 (Short Memory) Let Xt (t ∈ N) be a stationary sequence with∑∞
k=−∞ γX(k) > 0 and

∑∞
k=−∞ |γX(k)| < ∞. Then, as n → ∞,

var(Sn) ∼ cSn (4.12)
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with

cS =
∞∑

k=−∞
γX(k). (4.13)

Proof Cesaro summability implies

n−1∑

k=−(n−1)

k

n
γX(k) → 0,

so that

var(Sn) ∼ n

n−1∑

k=−(n−1)

γX(k) ∼ cSn. �

Lemma 4.11 (Antipersistence) Let Xt (t ∈ N) be a stationary sequence with
γX(k) ∼ Lγ (k)k

2d−1 (k → ∞) for some − 1
2 < d < 0, where Lγ is slowly varying

at infinity, and

∞∑

k=−∞
γX(k) = 0.

Then, as n → ∞,

var(Sn) ∼ LS(n)n
2d+1 (4.14)

with

LS(n) = 1

d(2d + 1)
Lγ (n). (4.15)

Proof

n−1∑

k=−(n−1)

γX(k) = −2
∞∑

k=n

γX(k) ∼ −2Lγ (n)

∞∑

k=n

k2d−1

∼ −2Lγ (n)n
2d

∫ ∞

1
u2d−1 du = 2Lγ (n)

2d
n2d .

Then the result follows by the same arguments as in the long-memory case. �

Note that in the proof of Lemma 4.11, the Riemann approximation could not be
applied to

∑n−1
k=−(n−1) γX(k) directly because u2d−1 is not integrable at the origin

for d < 0. Note also that in the antipersistent case, Lγ (k) < 0 for k large enough.
However, since Lγ (k) is multiplied by d−1, the slowly varying function LS(n) is
positive asymptotically.



4.2 Limit Theorems for Sums with Finite Moments 221

Taking into account Theorem 1.3, a unified formula including (4.10), (4.12)
and (4.14) can be written in terms of the spectral density. Using the notation

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)

and

ν(d) = 2 sinπd

d(2d + 1)
Γ (1 − 2d) (d 
= 0),

ν(0) = lim
d→0

ν(d) = 2π,
(4.16)

we have

var(Sn) ∼ ν(d)Lf

(
n−1)n2d+1 ∼ ν(d)fX

(
n−1)n.

4.2.3 Subordinated Gaussian Processes

We begin our exposition by assuming that Xt (t ∈ N) are normal random variables
because computations and proofs are technically less challenging than in the case of
Appell polynomials, for instance. The limiting phenomena related to partial sums
of subordinated Gaussian sequences were first observed by Rosenblatt (1961) and
then developed independently by Taqqu (1975, 1977, 1979) Dobrushin (1980) and
Dobrushin and Major (1979). Further developments can be found in Breuer and
Major (1983), Giraitis and Surgailis (1985), Ho and Sun (1987, 1990) and Arcones
(1994). Although the original technique in Taqqu (1975) to show convergence to
the so-called Hermite–Rosenblatt distribution was based on characteristic functions,
the common method to obtain non-central limit theorems is based on (multiple)
Wiener–Itô integrals, together with the diagram formula.

4.2.3.1 Moment Bounds and Normalizing Constants

Recall from Sect. 3.1.2 that each function G(·) in L2(R, φ) with φ(x) = (2π)−1/2 ×
exp(−x2/2) can be expanded as

G(X) = E
[
G(X)

]+
∞∑

l=1

J (l)

l! Hl(X) = E
[
G(X)

]+
∞∑

l=m

J (l)

l! Hl(X),

where J (l) = E[G(X)Hl(X)], X is a standard Gaussian random variable, and m

is the Hermite rank of G (i.e. the smallest m ≥ 1 such that J (m) 
= 0). Moreover,
recall the formula (3.16) for Hm(

∑l
j=1 ajxj ),

Hm

(
l∑

j=1

ajxj

)
=

∑

m1+···+mk=m

m!
m1! . . .mk!

l∏

j=1

a
mj

j Hmj
(xj ). (4.17)
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This was used for deriving the formula for covariances of Hermite polynomials
given in Lemma 3.5. For convenience, we repeat the result here:

Lemma 4.12 Let X1, X2 be a pair of jointly standard normal random variables
with covariance γ = cov(X1,X2). Then

cov
(
Hl(X1),Hl(X2)

) = l!γ l, (4.18)

whereas for j 
= l,

cov
(
Hj(X1),Hl(X2)

) = 0. (4.19)

In particular, assume now that

γX(k) ∼ Lγ (k)k
2d−1

with d ∈ (0,1/2), and consider the sum of Hm(Xt). From Lemma 4.12 we see
that if d > 1 − 1

2m
−1, the autocovariance γHm(k) = cov(Hm(Xt),Hm(Xt+k)) of the

transformed process Hm(Xt) is not summable because it is (up to the slowly varying
function) of the order km(2d−1) with m(2d − 1) > −1. Using the same argument as
in the proof of Lemma 4.9, we then obtain

var

(
n∑

t=1

Hm(Xt)

)
= m!

n∑

k=1

n∑

j=1

γm
X (j − k) ∼ Lm(n)n

(2d−1)m+2, (4.20)

where

Lm(n) = m!CmL
m
γ (n) (4.21)

and

Cm = 2

[(2d − 1)m+ 1][(2d − 1)m+ 2] . (4.22)

Furthermore, if G has the Hermite rank m, then the variance of G(X) can be de-
composed into (orthogonal) contributions of the Hermite coefficients,

var
(
G(X)

) =
∞∑

l=1

(
J (l)

l!
)2

l! =
∞∑

l=m

J 2(l)

l! . (4.23)

Similarly, if X1 and X2 are as in Lemma 4.12,

cov
(
G(X1),G(X2)

) =
∞∑

l=m

J 2(l)

l! γ l. (4.24)

Consequently, applying this to the stationary Gaussian sequence Xt (t ∈ N), we
obtain

γG(k) = cov
(
G(Xt),G(Xt+k)

) =
∞∑

l=m

J 2(l)

l! γ l
X(k). (4.25)
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Thus, as k → ∞, the asymptotic behaviour of cov(G(Xt ),G(Xt+k)) is determined
by the leading term (J 2(m)/m!)γ m

X (k). From (4.25) we therefore conclude that for a
function G with the Hermite rank m, the asymptotic behaviour of the autocovariance
is given by

γG(k) ∼ J 2(m)

m! Lm
γ (k)k

m(2d−1) (k → ∞).

Therefore, if m(1 − 2d) < 1, then by the same argument as in (4.20),

var

(
n∑

t=1

G(Xt)

)
∼ J 2(m)

m! CmL
m
γ (n)n

(2d−1)m+2 =
(
J (m)

m!
)2

Lm(n)n
(2d−1)m+2,

(4.26)
where Cm is the constant in (4.22), and Lm(·) is the slowly varying function defined
in (4.21). Otherwise, if m(1 − 2d) > 1, then

∞∑

k=1

∣∣cov
(
G(Xt),G(Xt+k)

)∣∣< ∞.

Therefore, one can expect two different types of convergence: either a long-memory
type where the normalization for partial sums is

n−((d− 1
2 )m+1)L

− 1
2

m (n) = n− 1
2 −((m−1)/2−d)L

− 1
2

m (n) (4.27)

or a weakly-dependent type with the usual normalization n−1/2.
We conclude the discussion of normalizing constants by mentioning two useful

bounds derived by Arcones (1994):

• If m(1 − 2d) < 1, then there is a constant C such that for any function G with
Hermite rank m,

var

(
n−1

n∑

t=1

G(Xt)

)
≤ Cγm

X (n)var
(
G(X1)

)
.

• If m(1 − 2d) > 1, then there is a constant C such that for any function G with
Hermite rank m,

var

(
n−1

n∑

t=1

G(Xt)

)
≤ Cn−1 var

(
G(X1)

)
.

The first inequality looks very similar to (4.26). However, the important differ-
ence is that the constant C depends on the Gaussian process Xt only and not on the
function G.
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4.2.3.2 Limiting Distribution

The Hermite rank of G(x) = x is one. Furthermore,
∑[nu]

t=1 Xt is normally distributed
for all n and u ∈ [0,1]. Therefore, in view of (4.27), the following result is obvious.
Note that it is valid for all values of d ∈ (− 1

2 ,
1
2 ), i.e. for long memory (d ∈ (0, 1

2 )),
short memory (d = 1

2 ) and antipersistence (d ∈ (− 1
2 ,0)). The limiting process is

Gaussian. The dependence structure of the increments depends on d .

Theorem 4.2 Assume that Xt (t ∈ N) is a stationary sequence of standard normal
random variables such that fX(λ) = Lf (λ)|λ|−2d with d ∈ (−1/2,1/2) and the
assumptions of Lemma 4.9 (for d > 0, Lemma 4.10) (for d = 0) or Lemma 4.11 (for
d < 0) hold respectively. Let Sn(u) = ∑[nu]

t=1 Xt . Then

n−(d+ 1
2 )L

− 1
2

1 (n)Sn(u) ⇒ BH(u)
(
u ∈ [0,1]),

where BH(·) is a standard fractional Brownian motion with Hurst parameter H =
d + 1

2 , “⇒” denotes weak convergence in D[0,1], and L1(n) = Lf (n
−1)ν(d) with

ν(d) defined in (4.16).

Proof As mentioned in the introduction to this chapter, we prove finite-dimensional
convergence just in the one-dimensional case. Clearly, Sn(u) is normal, and r2

n =
var(Sn(1))/(n2d+1L1(n)) → 1. Thus, with d2

n = n2d+1L1(n),

E
(
eiθd

−1
n Sn(1)

) = exp

(
−1

2
θ2r2

n

)
→ exp

(−θ2/2
)
.

Thus, one-dimensional distributions of Sn(u) converge to the standard normal dis-
tribution.

For tightness, note that Sn(1) is normal, so that E[S2l
n (1)] (l ∈N) is proportional

to (E[S2
n(1)])l . Therefore, the conditions of Lemma 4.4 are fulfilled, and tightness

follows. �

We will now present another proof of this theorem. The reason is that it will be
easily extendable to more complicated cases of general Hermite polynomials and
non-normal random variables. Recall some notions on the spectral representation of
stationary time series from Sect. 4.1.3. Let εt (t ∈ Z) be a centred, finite-variance
i.i.d. sequence. Then εt can be represented in terms of a Gaussian spectral measure
with uncorrelated increments,

εt =
∫ π

−π

eitλ dMε(λ) (t ∈ Z).

Recall also that

E
[∣∣dMε(λ)

∣∣2] = σ 2
ε

2π
dλ = fε(λ)dλ,
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where σ 2
ε = var(εt ). Without loss of generality, we will assume that σ 2

ε = 1 in the
following. Moreover it will be convenient to use instead of Mε the spectral measure

M0(A) = √
2πMε(A),

so that

εt = 1√
2π

∫ π

−π

eitλ dM0(λ)

and E[|dM0(λ)|2] = dλ. For a linear process Xt = ∑∞
j=0 aj εt−j (t ∈ Z) with∑∞

j=0 a
2
j < ∞ (and σ 2

ε = 1), one then has the spectral representation

Xt =
∫ π

−π

eitλ dMX(λ) (t ∈ Z) (4.28)

with

dMX(λ) =
( ∞∑

j=0

aj e
−ijλ

)
dMε(λ) = A

(
e−iλ

)
dMε(λ)

= 1√
2π

A
(
e−iλ

)
dM0(λ) =: a(λ)dM0(λ).

The spectral density of Xt is

fX(λ) = 1

2π

∣∣A
(
e−iλ

)∣∣2 = ∣∣a(λ)
∣∣2.

Assume that fX(λ) = Lf (λ)|λ|−2d as λ → 0 or γX(k) ∼ Lγ (k)k
2d−1 as k → ∞.

Recall that, under suitable conditions, these assumptions are equivalent to

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)

and

Lγ (k) = 2Lf

(
k−1)Γ (1 − 2d) sin(πd). (4.29)

Then |a(λ)| = L
1/2
f (λ)|λ|−d . Now, we are ready to present an alternative proof of

Theorem 4.2. This type of approach was initiated in Dobrushin (1980), Dobrushin
and Major (1979); also see Arcones (1994) and Lang and Soulier (2000). We will
use a representation of a fractional Brownian motion that appears in Sect. 3.7.1.

Alternative proof of Theorem 4.2 Let Sn = Sn(1) = ∑n−1
t=0 Xt (note that we take

summation from t = 0 to n− 1) and write the spectral representation
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Sn =
n−1∑

t=0

∫ π

−π

eitλdMX(λ)

=
n−1∑

t=0

∫ π

−π

eitλa(λ)dM0(λ) =
∫ π

−π

(
n−1∑

t=0

eitλ

)
a(λ)dM0(λ)

=
∫ π

−π

eiλn − 1

eiλ − 1
a(λ)dM0(λ)

= n1/2
∫ nπ

−nπ

Dn(λ/n)a

(
λ

n

)
n1/2 dM0

(
n−1λ

)
,

where

Dn(λ) = eiλn − 1

n(eiλ − 1)
1
{|λ| ≤ πn

}
. (4.30)

Since limu→0(e
λu − 1)/u = λ, we conclude that

lim
n→∞Dn(λ/n) → eiλ − 1

iλ
=: D(λ). (4.31)

Now, E(|dM0(n
−1λ)|2) = n−1dλ. Hence, n1/2M0(n

−1A) and M0(A) have the
same distribution (as stochastic processes indexed by A), and we can write

Sn
d= n1/2

∫ nπ

−nπ

Dn(λ/n)a

(
λ

n

)
dM0(λ) ≈ n1/2

∫ ∞

−∞
Dn(λ/n)a

(
λ

n

)
dM0(λ).

Consequently, we have two possible scenarios:

• limλ→0 a(λ) = a(0) = √
fX(0) 
= 0. Then we expect

n−1/2Sn
d→ a(0)

∫ ∞

−∞
eiλ − 1

iλ
dM0(λ).

• a(λ) = L
1/2
f (λ)|λ|−d , d ∈ (−1/2,0)∪ (0,1/2). Then we expect

n−(1/2+d)L
−1/2
f

(
n−1)Sn

d→
∫ ∞

−∞
D(λ)

1

|λ|d dM0(λ). (4.32)

In the latter case, applying (4.21) and (4.22) with m = 1 and (4.29), we obtain

L1(n) = 2Γ (1 − 2d) sinπd

d(2d + 1)
Lf

(
n−1) =: K−2

1 (1, d)Lf

(
n−1).

Thus,

n−(1/2+d)L
−1/2
1 (n)Sn = K1(1, d)

∫ ∞

−∞
|λ|−d e

iλ − 1

iλ
dM0(λ).
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Recall Proposition 3.1. We can verify that K1(1, d) agrees with K1(1,H) there by
setting H = d + 1

2 , so that the limiting random variable is BH(1).
To make the argument (4.32) precise, we note that for |λ| < πn,

∣∣Dn(λ/n)−D(λ)
∣∣ =

∣∣∣∣
eiλ − 1

n(eiλ/n − 1)
− eiλ − 1

iλ

∣∣∣∣ = O
(
n−1)

uniformly w.r.t. λ (the bound does not depend on λ). Thus,
∫ ∞

−∞
∣∣Dn(λ/n)−D(λ)

∣∣2 dλ

=
∫ nπ

−nπ

∣∣Dn(λ/n)−D(λ)
∣∣2 dλ

+
∫

|λ|>nπ

∣∣D(λ)
∣∣2dλ ≤ O

(
n−1)+ 2

∫

|λ|>nπ

1

|λ|2 dλ = O
(
n−1).

We conclude that Dn(λ/n) converges to D(λ) in L2(R, dλ) (here “dλ” stands for
the Lebesgue measure). Also,

n−dL
−1/2
f

(
n−1)Dn(λ/n)a

(
λ

n

)

converges in L2(R, dλ) to D(λ)|λ|−d . Since

E

[(∫ ∞

−∞

(
n−dL

−1/2
f

(
n−1)Dn(λ/n)a

(
λ

n

)
−D(λ)|λ|−d

)
dM0(λ)

)2]

=
∫ ∞

−∞

(
n−dL

−1/2
f

(
n−1)Dn(λ/n)a

(
λ

n

)
−D(λ)|λ|−d

)2

dλ → 0,

we conclude the convergence in L2. Thus, the result of Proposition 4.2 follows. �

The limiting distribution in formula (4.32) can be also written as

n−(1/2+d)L
−1/2
f

(
n−1)Sn(1)

d→
∫ ∞

−∞
D(λ)dWX(λ), (4.33)

where

dWX(λ) = 1

|λ|d dM0(λ). (4.34)

The measure WX is called the limiting spectral measure that depends (via the pa-
rameter d) on the sequence Xt . This representation will be essential in Sect. 4.4.

The longish version of the proof of Theorem 4.2 will allow us to obtain the lim-
iting behaviour of subordinated Gaussian sequences. First, we extend the theorem
to partial sum processes Sn,Hm(u) := ∑[nu]

t=1 Hm(Xt), where Hm is the mth Hermite
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polynomial. Remarkably, the limit is no longer an fBm process, provided that long
memory is strong enough and m ≥ 2. This was first observed in Rosenblatt (1961),
also see Taqqu (1975). Note that their method of proof is based on characteristic
functions and is different from the one used in the alternative proof of Theorem 4.2.

Theorem 4.3 Assume that Xt (t ∈ N) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k

2d−1 with d ∈ (0,1/2). Let Sn,Hm(u) =∑[nu]
t=1 Hm(Xt). If m(1 − 2d) < 1, then

n−(1−m( 1
2 −d))L

−1/2
m (n)Sn,Hm(u) ⇒ Zm,H (u)

(
u ∈ [0,1]),

where Zm,H (·) is a Hermite–Rosenblatt process with H = d + 1
2 , ⇒ denotes weak

convergence in D[0,1], and Lm(n) = m!CmL
m
γ (n), see (4.21) and (4.22).

Note that this type of convergence requires long memory to be strong enough. In
particular, if m = 2, we require d ∈ (1/4,1/2). If this is not the case, then the partial
sum process has weak dependence properties.

Example 4.1 Assume that m = 2. If d ∈ (1/4,1/2), then

n−2dL
−1/2
2 (n)

[nu]∑

t=1

(
X2

t − 1
) ⇒ Z2,H (u),

where

L2(n) = 2C2L
2
γ (n),

C2 = 1

(2(2d − 1)+ 1)(2d + 1)
.

For each fixed u ∈ [0,1], the limit is non-normal. This will be illustrated by simula-
tions in computer Example 4.3 later in this section.

Proof of Theorem 4.3 The proof is almost a copy of the alternative proof of Theo-
rem 4.2. We replace (4.28) by

Hm(Xt) =
∫ π

−π

· · ·
∫ π

−π

eit (λ1+···+λm) dMX(λ1) · · ·dMX(λm)

(we refer to Sect. 3.7.1.3 for the formula and the meaning of this integral). Recalling

dMX(λ) = √
2πa(λ)dMε(λ) = a(λ)dM0(λ),

we have
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Sn,Hm(1) =
∫ π

−π

· · ·
∫ π

−π

ein(λ1+···+λm) − 1

ei(λ1+···+λm) − 1

m∏

r=1

a(λr) dM0(λ1) · · ·dM0(λm)

= n

nm/2

∫
· · ·

∫
Dn

(
λ1 + · · · + λm

n

)

×
m∏

r=1

a

(
λr

n

)
n1/2 dM0

(
n−1λ1

) · · ·n1/2 dM0
(
n−1λm

)
,

where the integration is over [−nπ,nπ]m. Therefore, if a(λ) = L
1/2
f (λ)|λ|−d , d ∈

(0,1/2), then we expect

n−(1−m( 1
2 −d))L

−m/2
f

(
n−1)Sn,Hm(1)

d→
∫

Rm

D(λ1 + · · · + λm)

m∏

r=1

1

|λr |d dM0(λ1) · · ·dM0(λm), (4.35)

cf. (4.31). Again, we identify

Lm(n) = m!Cm

(
2Γ (1 − 2d) sinπd

)m
Lm
f

(
n−1) = K−2

1 (m,d)Lm
f

(
n−1),

and from Proposition 3.1 we recognize the representation of the Hermite–Rosenblatt
process.

A precise argument for (4.35) is the same as in the case m = 1; see the proof of
Proposition 4.2. Furthermore, we do not verify tightness here since it will be done
in the next theorem. �

Finally, convergence of partial sums Sn,G(u) = ∑[nu]
t=1 G(Xt) is just a conse-

quence of Theorem 4.3, using the so-called reduction principle, proven originally
in Taqqu (1975).

Theorem 4.4 Assume that Xt (t ∈ N) is a stationary sequence of standard nor-
mal random variables such that γX(k) ∼ Lγ (k)k

2d−1 (d ∈ (0,1/2)). Let Sn,G(u) =∑[nu]
t=1 G(Xt), where G is a function such that E[G(X1)] = 0, E[G2(X1)] < ∞. If

m is the Hermite rank of G and m(1 − 2d) < 1, then

n−(1−m( 1
2 −d))L

−1/2
m (n)Sn,G(u) ⇒ J (m)

m! Zm,H (u)
(
u ∈ [0,1]),

where Zm,H (·) is a Hermite–Rosenblatt process, H = d + 1
2 , ⇒ denotes weak con-

vergence in D[0,1], and Lm is given in (4.21):

Lm(n) = m!CmL
m
γ (n).
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Proof Decompose

G(x) = J (m)

m! Hm(x)+
∞∑

l=m+1

J (l)

l! Hl(x) =: J (m)

m! Hm(x)+G∗(x).

Using (4.18) and (4.25), we have

cov

[
J (m)

m! Hm(X0),
J (m)

m! Hm(Xk)

]
= J 2(m)

m! γm
X (k)

and

cov
[
G∗(X0),G

∗(Xk)
] =

∞∑

l=m+1

J 2(l)

l! γ l
X(k).

Furthermore, for any t, s, the random variables G∗(Xt ) and Hm(Xs) are uncorre-
lated. Therefore,

var

(
n∑

t=1

G(Xt)

)
=

n∑

t=1

n∑

s=1

E
[
G∗(Xt )G

∗(Xs)
]+ J 2(q)

m!
n∑

t=1

n∑

s=1

γm
X

(|t − s|)

=
n∑

t=1

n∑

s=1

E
[
G∗(Xt )G

∗(Xs)
]+

(
J (m)

m!
)2

var

(
n∑

t=1

Hm(Xt)

)
.

(4.36)

The Hermite rank of the function G∗ is at least m + 1. Consequently, we have
two scenarios. Either

∑
k γ

m
X (k) < ∞, and then both terms in (4.36) are of the or-

der O(n), or
∑

k γ
m
X (k) = +∞, and then the second term dominates the first one.

The latter happens if m(1 − 2d) < 1, and in this case the asymptotic behaviour of∑n
t=1 G(Xt) is the same as that of (J (m)/m!)∑n

t=1 Hm(Xt).
A proof of tightness is immediate. If we set

S′
n,G(u) := n−(m(d−1/2)+1)L

−m/2
m (n)Sn(u),

we have

E
[(
S′
n,G(u)− S′

n,G(v)
)2] ∼ |u− v|m(2d−1)+2.

Since m(1 − 2d) < 1, the exponent is greater than one, and tightness follows from
Lemma 4.3. �

In contrast, if the Hermite rank is large enough such that m(1 − 2d) > 1, then we
have a weakly dependent-type behaviour of partial sums. The statement and proof
of this result is postponed to the section on limit theorems for Appell polynomials.

Example 4.2 We illustrate the theoretical findings by a simulation example. First,
we generate n = 1000 i.i.d. standard normal random variables Xt and plot the partial
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Fig. 4.1 Partial sum sequence Sk = ∑k
t=1 Xt (k = 1, . . . , n) with Xt i.i.d. N(0,1) (left) and Xt

generated by a FARIMA(0,0.4,0) process (right)

sum sequence Sk = ∑k
t=1 Xt , k = 1, . . . , n. This procedure is repeated for a Gaus-

sian fractional ARIMA(0, d,0) process with parameter d = 0.4. The corresponding
partial sum processes are plotted in Fig. 4.1. They can be considered approximations
of a Brownian motion and a fractional Brownian motion with H = 0.9 respectively.
Note that the path of the fractional Brownian motion is much smoother than the one
of Brownian motion. This is due to long memory, which acts like a smoothing filter.

Example 4.3 In this example we generate n = 1000 random variables Xt from a
Gaussian fractional ARIMA(0, d,0) process with parameter d = 0.4 and compute
their sum. This procedure is repeated N = 1000 times. A normal probability plot
of the N = 1000 sums

∑n
t=1 Xt is displayed in the left panel of Fig. 4.2. The right

panel shows a normal probability plot for the sums
∑n

t=1 X
2
t . The non-normal be-

haviour is clearly visible.

4.2.4 Linear Processes

In this section we consider a causal linear process

Xt =
∞∑

j=0

aj εt−j (t ∈N), (4.37)

where, without loss of generality,
∑∞

j=0 a
2
j = 1, and εt (t ∈ Z) are i.i.d. zero mean

random variables with var(ε1) = σ 2
ε < ∞. Thus, var(X1) = σ 2

X = σ 2
ε . Note that

Gaussian processes are included in this definition, but the class is much more gen-
eral. Three different assumptions on the coefficients will be considered as j → ∞
and with La denoting a slowly varying function at infinity:
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Fig. 4.2 Illustration of Theorem 4.3: normal probability plots of partial sums
∑k

t=1 Xt (left) and∑k
t=1 X

2
t , where Xt is generated by a FARIMA(0,0.4,0) process

• (B1) long memory:

aj ∼ La(j)j
d−1

(
0 < d <

1

2

)
;

• (B2) short memory:

∞∑

j=0

|aj | < ∞,

∞∑

j=0

aj 
= 0.

• (B3) antipersistence:

aj ∼ La(j)j
d−1

with − 1
2 < d < 0, and

∞∑

j=0

aj = 0.

Under the short-memory assumption (B2), limiting behaviour is classical (see
Theorem 4.5); see Brockwell and Davis (1991). Under long memory (B1), the first
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result was obtained in Davydov (1970a, 1970b); see also Gorodetskii (1977), Lang
and Soulier (2000), Wang et al. (2003).

4.2.4.1 Asymptotic Covariances and Normalizing Constants

The behaviour of the autocovariance function γX and the spectral density fX for
the three cases can be characterized as follows. Combining Lemmas 4.13–4.15 with
Lemmas 4.9–4.11, respectively, yields the asymptotic behaviour of var(Sn) (where
Sn(u) = ∑[nu]

t=1 Xt , Sn = Sn(1)).

Lemma 4.13 Under assumption (B1), we have, as λ → 0 and k → ∞ respectively,

fX(λ) ∼ Lf (λ)|λ|−2d ,

γX(k) ∼ Lγ (k)k
2d−1,

(4.38)

where

Lγ (k) = L2
a(k) · σ 2

ε

∫ ∞

0
vd−1(1 + v)d−1 dv = σ 2

ε L
2
a(k)B(1 − 2d, d), (4.39)

B(x, y) denotes the Beta function, and Lf is obtained from Lγ by (cf. (1.1))

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)
. (4.40)

Hence, via Lemma 4.9,

var(Sn) ∼ LS(n)n
2d+1 = 1

d(2d + 1)
Lγ (n)n

2d+1. (4.41)

Proof We have

γX(k) ∼ σ 2
ε

∞∑

j=1

La(j)La(j + k)jd−1(j + k)d−1 = σ 2
ε S∞,k · k2d−1,

where

S∞,k = lim
n→∞Sn,k

and

Sn,k =
nk∑

j=1

La(j)La(j + k)

(
j

k

)d−1(
j

k
+ 1

)d−1

n−1

= L2
a(k)

nk∑

j=1

La(j)

La(k)

La(j + k)

La(k)

(
j

k

)d−1(
j

k
+ 1

)d−1

n−1

∼
k→∞ L2

a(k)

∫ n

0
vd−1(v + 1)d−1 dv,
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where the last approximation is uniform in n. The approximation formula for fX
follows from Theorem 1.3. �

Example 4.4 (ARFIMA Model) Consider an ARFIMA(0, d,0) model, d ∈
(0,1/2). This process has the linear representation Xt = ∑∞

j=0 aj εt−j , where

aj = Γ (j + d)

Γ (j + 1)Γ (d)
∼ 1

Γ (d)
jd−1 (j → ∞).

Thus, La ∼ 1/Γ (d), so that

γX(k) ∼ cγ k
2d−1

with

cγ = σ 2
ε Γ

−2(d)

∫ ∞

0
vd−1(1 + v)d−1 dv

= σ 2
ε Γ

−2(d)B(1 − 2d, d) = σ 2
ε

Γ (1 − 2d)Γ (d)

Γ 2(d)Γ (1 − d)

= σ 2
ε

Γ (1 − 2d)

Γ (d)Γ (1 − d)
= σ 2

ε

π
Γ (1 − 2d) sin(πd).

The last equality follows from Γ (d)Γ (1 − d) = π/ sinπd . Moreover,

Lf (λ) = σ 2
ε

π
Γ (1 − 2d) sin(πd)π−1Γ (2d) sin

(
π

2
− πd

)

= σ 2
ε

π

sin(πd) sin(π2 − πd)

sin(2πd)
= σ 2

ε

π

sin(πd) cos(πd)

sin(2πd)

= σ 2
ε

π

sin(πd) cos(πd)

2 sin(πd) cos(πd)
= σ 2

ε

2π
,

so that

fX(λ) ∼ σ 2
ε

2π
|λ|−2d .

Lemma 4.14 Under assumption (B2), we have

∞∑

k=−∞

∣∣γX(k)
∣∣< ∞,

∞∑

k=−∞
γX(k) > 0.

If, in addition,
∑∞

j=0 j |aj | < ∞, then fX(λ) is continuous on [−π,π].
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Proof We have

∞∑

k=−∞

∣∣γX(k)
∣∣ = σ 2

ε

∞∑

k=−∞

∣∣∣∣∣

∞∑

j=0

ajaj+|k|

∣∣∣∣∣ ≤ 2σ 2
ε

∞∑

k=0

∞∑

j=0

|aj ||aj+|k||

= 2σ 2
ε

( ∞∑

j=0

|aj |
)2

< ∞.

Furthermore,

∞∑

k=−∞
γX(k) = 2πfX(0) = 2π

σ 2
ε

2π

∣∣∣∣∣

∞∑

j=0

aj

∣∣∣∣∣

2

> 0.

To show that fX is continuous, consider

ã(λ) =
∞∑

j=0

aj e
−ijλ.

Since, as x → 0, sinx ∼ x and cosx − 1 ∼ x2/2, we obtain for ε < 1,

∣∣ã(λ+ ε)− ã(λ)
∣∣ ≤

∞∑

j=0

|aj |
∣∣e−ijλ

(
e−ijε − 1

)∣∣

≤ 2ε
∞∑

j=0

j |aj |,

so that ã(·) is continuous, and hence so is fX(λ) = σ 2
ε /(2π) |ã(λ)|2. �

Lemma 4.15 Under assumption (B3), we have, as λ → 0 and k → ∞ respectively,

fX(λ) ∼ Lf (λ)|λ|−2d , (4.42)

γX(k) ∼ Lγ (k)k
2d−1,

∞∑

k=−∞
γX(k) = 0, (4.43)

where

Lγ (k) = L2
a(k) · σ 2

ε

∫ ∞

0
vd−1[1 − (v + 1)d−1]du

= σ 2
ε L

2
a(k)B(1 − 2d, d),

and Lf is obtained from Lγ by (4.40).
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Proof Similarly to the proof of Lemma 4.13,

γX(k) = σ 2
ε

∞∑

j=0

ajaj+k = σ 2
ε S∞,k · k2d−1

with S∞,k = limn→∞ Sn,k ,

Sn,k = k1−2d
nk∑

j=0

ajaj+k = Sn,k(1)+ Sn,k(2)

and

Sn,k(1) = k1−2d
nk∑

j=0

aj (aj+k − ak) ∼ L2
a(n)

∫ n

0
vd−1[(v + 1)d − 1

]
du,

Sn,k(2) = k1−2dak

nk∑

j=0

aj = −k1−2dak

∞∑

j=nk+1

aj ∼ L2
a(n)

∫ ∞

n

vd−1 dv = o(n),

where the approximations are uniform in n. Moreover,

∞∑

k=−∞
γX(k) = 2πfX(0) = 2π

σ 2
ε

2π

∣∣∣∣∣

∞∑

j=0

aj

∣∣∣∣∣

2

= 0.

The approximation of fX for λ → 0 follows from Theorem 1.3. �

4.2.4.2 Asymptotic Distribution

Proofs of the next results illustrate different techniques that are applicable in various
situations:

• Under short memory (B2), we apply the K-dependent approximation method, i.e.
a combination of Proposition 4.1 and Lemma 4.1. This is easier than the cumulant
method and does not require restrictive moment assumptions. It is particularly
suited for linear processes (see Brockwell and Davis 1991).

• Under long memory (B1), we apply the method based on random spectral mea-
sures, as outlined in the alternative proof of Theorem 4.2; see Lang and Soulier
(2000).

Theorem 4.5 Assume that Xt (t ∈ N) is a stationary linear process (4.37) such that
(B2) holds. Then

n−1/2Sn = n−1/2
n∑

t=1

Xt → N
(
0, ν2),

where the variance ν2 = σ 2
X + 2

∑∞
k=1 γX(k).
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This theorem can be formulated in terms of functional convergence to Brownian
motion.

Proof Let Xt,K = ∑K
j=0 aj εt−j . Since the sequence Xt,K (t ∈ N) is K-dependent,

an application of Lemma 4.1 yields

n−1/2Sn,K = n−1/2
n∑

t=1

Xt,K
d→ N

(
0, ν2

K

)

with ν2
K = var(X0,K)+ 2

∑K
k=0 γXK

(k), where

γXK
(k) = E[Xt,KXt+k,K ] = σ 2

ε

K∑

j=0

ajaj+k.

Since νK → ν as K → ∞, we conclude N(0, ν2
K)

d→ N(0, ν2). It suffices to prove
that for all δ > 0,

lim
K→∞ lim sup

n→∞
P
(
n−1/2|Sn − Sn,K | > δ

) = 0.

The result of our theorem will then follow by Proposition 4.1. By Markov’s inequal-
ity, it is sufficient to verify that

lim
K→∞ lim

n→∞n−1 var(Sn − Sn,K) = 0.

Let X̄t,K = Xt −Xt,K . Then

lim
n→∞n−1 var(Sn − Sn,K) = lim

n→∞σ 2
ε

n−1∑

k=−(n−1)

(
1 − |k|

n

) ∞∑

j=K+1

ajaj+k

= σ 2
ε

∞∑

k=−∞

∞∑

j=K+1

ajaj+k = σ 2
ε

∞∑

j=K+1

aj

∞∑

k=−∞
aj+k.

The limn→∞ behaviour above is obtained by applying the dominated convergence
theorem. For this, we need

∑
k

∑
j |ajaj+k| < ∞. This is true under the summa-

bility condition
∑∞

j=0 |aj | < ∞. Under this condition, we can also exchange the
summations

∑
k and

∑
j . Finally,

lim
K→∞ lim

n→∞n−1 var(Sn − Sn,K) ≤
∞∑

k=−∞
|ak| lim

m→∞

∞∑

j=K+1

|aj | = 0.
�

Under (B1), the asymptotic behaviour of partial sums changes. This result was
proven first in Davydov (1970a, 1970b). The method below is adapted from Lang
and Soulier (2000), where the reader is referred to for details.
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Theorem 4.6 Assume that Xt (t ∈ N) is a stationary linear process (4.37) such that
the long-memory condition (B1) holds, i.e. aj ∼ La(j)j

d−1, d ∈ (0, 1
2 ). Then

n−(d+ 1
2 )L

−1/2
S (n)Sn(u) = n−(d+ 1

2 )L
−1/2
S (n)

[nu]∑

t=1

Xt ⇒ BH(u)
(
u ∈ [0,1]),

where BH(u) is a standard fractional Brownian motion, H = d + 1
2 , ⇒ denotes

weak convergence in D[0,1], and

LS(n) = 1

d(2d + 1)
Lγ (n)

with Lγ defined in (4.39):

Lγ (k) = L2
a(k)σ

2
ε

∫ ∞

0
vd−1(v + 1)d−1 dv

= L2
a(k)σ

2
ε B(1 − 2d, d).

Proof We use the spectral method, as in the alternative proof of Theorem 4.2. Recall
that any stationary sequence with finite variance can be written as

εt = 1√
2π

∫ π

−π

eitλM0 (dλ), t ∈ Z.

The only difference between the spectral measure M0 here and M0 in the proof of
Theorem 4.2 is that the measure here is not necessarily Gaussian. In particular, there
is no guarantee that n1/2M0(n

−1·) and M0(·) have the same distribution. Neverthe-
less, the same argument can be applied (see Lang and Soulier 2000). �

Example 4.5 (ARFIMA) Assume that Xt (t ∈ N) is a FARIMA(0, d,0) model as in
Example 4.4. Then

γX(k) ∼ cγ k
2d−1,

cγ = σ 2
ε

π
Γ (1 − 2d) sin(πd).

Hence,

n−(d+ 1
2 )L

−1/2
S (n)

[nu]∑

t=1

Xt ⇒ BH(u)

and

LS(n) = cγ
1

d(2d + 1)
.

Note that the innovations εt do not need to be Gaussian.
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4.2.5 Subordinated Linear Processes

Next we consider the case where instead of the linear process Xt (t ∈ N) a subor-
dinated process, i.e. a transformation Yt = G(Xt) (t ∈ N), is observed. Recall that
in the Gaussian case asymptotic properties of partial sums of Xt and Hm(Xt) (and,
via the reduction principle of Theorem 4.4, of general functionals) can be stud-
ied using the spectral method. For linear processes, we applied again the spectral
method in Theorem 4.6. However, this extension is not feasible for subordinated
linear processes. In this setup, there are two common approaches: Appell polyno-
mials (Surgailis 1982; Giraitis 1985; Giraitis and Surgailis 1986, 1989; Avram and
Taqqu 1987; Surgailis and Vaičiulis 1999; Surgailis 2000; see also Surgailis 2003,
for overview) and a martingale decomposition (Ho and Hsing 1996, 1997; Wu 2003;
see also Hsing 2000 for an overview).

4.2.5.1 Normalizing Constants: Simple Example

Before we develop a general formula, let us consider the simple case of G(Xt) = X2
t .

Example 4.6 Let Xt (t ∈ N) be a linear process defined by (4.37). Assume that
E[ε4

1] < ∞ and that the long-memory condition (B1) holds. Using formula (4.38)
for the covariance of Xt (t ∈ N), we have

γ 2
X(k) ∼ L2

γ (k)k
2(2d−1).

On the other hand,

γ 2
X(k) = cov2(Xt ,Xt+k) =

( ∞∑

j=0

ajaj+k

)2

=
∞∑

j=0

a2
j a

2
j+k +

∞∑

j,l=0; j 
=l

aj alaj+kal+k.

Note that under (B1) the limiting behaviour of γ 2
X(k) is determined by the second

term. Now,

X2
0 =

∞∑

j=0

a2
j ε

2
0−j +

∞∑

j,l=0; j 
=l

aj alε0−j ε0−l =: X0,1 +X0,2.

Analogously, we define X2
k := Xk,1 + Xk,2. Note that X0,1 and Xk,2 are uncorre-

lated. The same holds for X0,2 and Xk,1. Furthermore,

cov(X0,1,Xk,1) = E
[
ε4

1

] ∞∑

j=0

a2
j a

2
j+k
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and

cov(X0,2,Xk,2) = 2
∞∑

j,l=0; j 
=l

aj alaj+kal+k.

Recalling that the second covariance is of a larger order than the first one, we con-
clude

γX2(k) ∼ 2
∞∑

j,l=0; j 
=l

aj alaj+kal+k ∼ 2γ 2
X(k) ∼ 2L2

γ (k)k
2(2d−1).

4.2.5.2 Normalizing Constants: Appell Polynomials

Now, we turn our attention to general nonlinear functionals. For a general non-
normal distribution, in view of Sect. 3.3, a natural approach is to start with the
Wick product Yt = Am(Xt) = :Xt, . . . ,Xt : where Am is the mth Appell polynomial
associated with the marginal distribution of Xt . Suppose that γX(k) is known, either
exactly or its asymptotic behaviour. Can we give a simple formula for γY (k)? In
principle, the diagram formulas given in Theorem 3.10 provide an answer because

κ(Yt , Yt+k) =
[

∂2

∂z1∂z2
logE

[
exp(z1Yt + z2Yt+k)

]]

z=0
= γY (k).

To apply the diagram formula, consider a table W with two rows W1, W2 of
length m. The positions in W1 are associated with Xt and those in W2 with
Xt+k , i.e. we may write W1 = {X̃(1,1), . . . , X̃(1,m)} with X̃(1,t) = Xt and W2 =
{X̃(2,1), . . . , X̃(2,m)} with X̃(2,j) = Xj+k . Using the same notation as in Theo-
rem 3.10, we obtain from (3.81)

γY (k) = κ
(:XW1 :, :XW2 :) =

∑

γ∈Γ 
−,c
W

κ
(
X′V1

) · · · κ(X′Vr
)
. (4.44)

Unfortunately, this is a rather complicated expression because in general κ(X′V )
may not be zero for any subset V . There is one exception where (4.44) simplifies
considerably, namely if Xt (t ∈N) is a Gaussian process. In this case, all cumulants
κ(X′V ) are zero except for normal edges, i.e. κ(X′V ) = 0 if |V | 
= 2, so that the sum
in (4.44) is over Γ 
−,c,N

W , and, up to a constant, we obtain a sum of correlations to
the power m, see Corollary 3.5.

Although (4.44) is complicated, it is possible to give simple asymptotic formulas
for γY (k) and, consequently, the variance of Sn,Am = ∑n

t=1 Am(Xt). A first sim-
plification can be obtained in the representation of Appell polynomials of linear
processes:
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Lemma 4.16 Let Xt (t ∈N) be a linear process (4.37) such that the Appell polyno-
mials of its marginal distribution Am (m ∈ N) exist. Then

Am(Xt) =
∞∑

k1,...,km=0

ak1 · · · akm(:εt−k1 · · · εt−km :). (4.45)

Proof The result follows from

Am(Xt) = :Xt, . . . ,Xt︸ ︷︷ ︸
m

:

and multilinearity of the Wick product. �

A direct consequence of this result is a simplified expression for Sn:

Corollary 4.1 Let Xt (t ∈ N) be a linear process defined by (4.37) such that the
Appell polynomials of its marginal distribution Am (m ∈N) exist. Let

Sn,Am =
n∑

t=1

Am(Xt).

Then

Sn,Am =
∞∑

k1,...,km=0

ak1 · · · akm
n∑

t=1

(:εt−k1 · · · εt−km :)

with ak = 0 for k < 0.

Furthermore, the diagram formula can be used to obtain an expression for the
asymptotic autocovariance function of the subordinated sequence Yt (t ∈ N) under
long memory:

Corollary 4.2 Let Xt (t ∈ N) be a linear process defined by (4.37) such that the
Appell polynomials of its marginal distribution Am (m ∈ N) exist and the long-
memory assumption (B1) holds. Then Yt = Am (Xt) has an autocovariance function
γY (k) with

γY (k) ∼ m!γm
X (k)

∼ m!
(
L2
a(k)σ

2
ε

∫ ∞

0
vd−1(v + 1)d−1 dv

)m

· k(2d−1)m

= m!Lm
γ (k)k

(2d−1)m (4.46)

as k → ∞, cf. (4.39).
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Proof Here, only an outline of the extended proof in Giraitis and Surgailis (1989)
and Surgailis and Vaičiulis (1999) is given. Lemma 4.16 and the multilinearity of
cumulants imply

cov
(
Am(Xt),Am(Xt+k)

)

= κ
(
Am(Xt),Am(Xt+k)

)

= κ

( ∞∑

j1,...,jm=0

aj1 · · · ajm(:εt−j1 · · · εt−jm :),

∞∑

j1,...,jm=0

aj1 · · · ajm(:εt+k−j1 · · · εt+k−jm :)
)

=
∞∑

j1,...,jm=0,
j ′

1,...,j
′
m=0

aj1 · · · ajmaj ′
1
· · · aj ′

m
κ(:εt−j1 · · · εt−jm :, :εt+k−j ′

1
· · · εt+k−j ′

m
:).

Now consider a table W with two rows Wi = {ε(i,1), . . . , ε(i,m)} (i = 1,2) with
ε(1,s) = εts and ε(2,s) = εt ′s . The diagram formula for cumulants of Wick products
implies

κ(:εt−j1, . . . , εt−jm :, :εt+k−j ′
1
, . . . , εt+k−j ′

m
:) =

∑

γ∈Γ 
−,c
W

κ
(
ε′V1

) · · ·κ(ε′Vr
)
.

Using this equation, we have

κ
(
Am(Xt),Am(Xt+k)

) = rmain + rk,

where

rmain =
∑

γ∈Γ 
−,c,N
W

∑

j1,...,jm=0
j ′

1,...,j
′
m=0

(
m∏

i=1

aji aj ′
i

)
κ
(
ε′V1

) · · · κ(ε′Vr
)

and

rk =
∑

γ∈Γ 
−,c
W \Γ 
−,c,N

W

∑

j1,...,jm=0
j ′

1,...,j
′
m=0

(
m∏

i=1

aji aj ′
i

)
κ
(
ε′V1

) · · · κ(ε′Vr
)
.

It can be shown that, as k → ∞, rk = o(k(2d−1)m), so that only diagrams in Γ

−,c,N
W

matter asymptotically. For instance, for γ = ⋃m−1
i=1 Vi with Vi = {(1, i), (2, i)} (i =

1, . . . ,m−2) and Vm−1 = {(1,m−1), (2,m−1), (1,m), (2,m)}, we have, because



4.2 Limit Theorems for Sums with Finite Moments 243

of independence of the random variables εi ,

κ
(
ε′V1

) · · · κ(ε′Vm−1
) = 0,

unless j ′
1 = j1 + k,. . . , j ′

m−1 = jm−1 + k and jm−1 = jm, j ′
m−1 = j ′

m = jm−1 + k.
Thus, the contribution of γ to rm is

σ 2
ε

( ∞∑

j=0

ajaj+k

)m−2 ∞∑

j=0

a2
j a

2
j+k ∼ γm−2

X (k)L(k)k4d−3 = o
(
k(2d−1)m).

For κmain, the calculation simplifies considerably because each γ ∈ Γ

−,c,N
W con-

sists of edges Vj = {(1, j), (1,π(j))} (j = 1,2, . . . ,m) where π is a permutation

of {1,2, . . . ,m}. Thus, the number of diagrams in Γ

−,c,N
W is |Γ 
−,c,N

W | = m!. More-
over, for each permutation π ,

∑

j1,...,jm=0
j ′

1,...,j
′
m=0

(
m∏

i=1

aji aj ′
i

)
κ
(
ε′V1

) · · · κ(ε′Vr
) = σ 2m

ε

( ∞∑

j=0

ajaj+k

)m

= γm
X (k).

Thus, taking the sum over all m! permutations, we have

rmain = m!γm
X (k). �

Note that, if Xt (t ∈N) is a Gaussian process, then we have the exact relationship
γAm(k) = m!γm

X (k) for any finite k because all cumulants above order 2 are zero, so

that all contributions except those from Γ

−,c,N
W are zero. (cf. Sect. 4.2.3).

The combination of Lemma 4.9 and formula (4.38) yields an asymptotic formula
for the variance of SAm,n = ∑n

t=1 Am(Xt) under the assumption of long memory
(see Giraitis and Surgailis 1989; Surgailis and Vaičiulis 1999):

Theorem 4.7 Let Xt (t ∈N) be a linear process defined by (4.37) such that the Ap-
pell polynomials Am (m ∈N) of its marginal distribution exist and the long-memory
assumption (B1) holds. Assume further that m(1 − 2d) < 1. Then, as n → ∞,

var(Sn,Am) = var

(
n∑

t=1

Am(Xt)

)
∼ Lm(n)n

(2d−1)m+2

with

Lm(n) = m!CmL
m
γ (n),

Cm = 2

((2d − 1)m+ 1)((2d − 1)m+ 2)

(4.47)

and Lγ given by (4.39). On the other hand, if m(1 − 2d) > 1, then

var(Sn,Am) = O(n).
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We recognize the same formula as in the Gaussian case, see (4.20). Furthermore,
note that, in general, antipersistence is not inherited because the condition that au-
tocovariances add up to zero is destroyed much more easily than nonsummability.

4.2.5.3 Asymptotic Distributions: Appell Polynomials

In the previous sections we obtained asymptotic expressions for the autocovariance
function γAm(k) = cov(Am(Xt),Am(Xt+k)) and the variance v2

n := var(Sn,Am). The
remaining question is which processes one obtains as limits of Sn,Am(t)/vn. It turns
out that, under suitable moment conditions, the only possible limiting processes
are Hermite–Rosenblatt processes. In fact this question has been answered in the
Gaussian case, see Theorem 4.4.

Theorem 4.8 Let Xt (t ∈ N) be a linear process defined by (4.37) such that the
Appell polynomials Am (m ∈ N) of its marginal distribution exist and the long-
memory assumption (B1) holds, i.e. aj ∼ La(j)j

d−1, d ∈ (0,1/2). Let

Sn,Am(u) =
[nu]∑

t=1

Am(Xt)
(
u ∈ [0,1])

and assume that E(ε
2j
1 ) < ∞ for all j . Then, if m(1 − 2d) < 1,

n−(1−m( 1
2 −d))L

−1/2
m (n)Sn,Am(u) ⇒ Zm,H (u)

(
u ∈ [0,1]), (4.48)

where Zm,H (·) is the Hermite–Rosenblatt process with H = d+ 1
2 , ⇒ denotes weak

convergence in D[0,1], and Lm is given in (4.47):

Lm(n) = m!CmL
m
γ (n),

Cm = 2

((2d − 1)m+ 1)((2d − 1)m+ 2)
,

with Lγ given by (4.39):

Lγ (k) = L2
a(k) · σ 2

ε

∫ ∞

0
vd−1(v + 1)d−1 dv.

On the other hand, if m(1 − 2d) > 1, then var(Sn,Am) ∼ σSn for some σS > 0, and

n− 1
2 Sn,Am(u) ⇒ σSB(u)

(
u ∈ [0,1]), (4.49)

where B(·) is a standard Brownian motion, and ⇒ denotes weak convergence in
D[0,1].
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In other words, the asymptotic distribution is the same as in case of Hermite
polynomials. Moreover, Lm agrees with Lm in Theorem 4.3.

Proof At first consider the case with m(1 − 2d) > 1. The proof is rather long, so
that only a sketch is given here (for details, see e.g. Surgailis 2003). To prove the
convergence of finite-dimensional distributions, we use the cumulant method (cf.
Theorem 4.1). Recall that for the normal distribution, all cumulants of order j ≥ 3
equal zero, and there is no other distribution with this property. It is therefore suffi-
cient to show that for j ≥ 3,

lim
n→∞κj

(
n− 1

2 Sn,Am(t)
) = n− j

2 lim
n→∞κ

(
Sn,Am(t), . . . , Sn,Am(t)︸ ︷︷ ︸

j

) = 0.

Without loss of generality, we may fix t at t = 1, and we write Sn,Am = Sn,Am(1).
Now for s1, . . . , sj ∈N, consider a table W with rows

Wr = {X(r,1) = Xsr , . . . ,X(r,j) = Xsr } (1 ≤ r ≤ j).

Then, because of multilinearity of κ ,

κ(Sn,Am, . . . , Sn,Am) =
n∑

s1,...,sj=1

κ
(
Am(Xs1), . . . ,Am(Xsj )

)

=
n∑

s1,...,sj=1

κ
(:XW1 :, . . . , :XWj :).

The diagram formula implies

κ
(:XW1 :, . . . , :XWj :) =

∑

γ∈Γ 
−,c
W

κ
(
X

′V1
) · · · κ(X′Vr

)
,

and hence,

κj
(
n− 1

2 Sn,Am(t)
) =

∑

γ∈Γ 
−,c
W

n− j
2

n∑

s1,...,sj=1

κ
(
X

′V1
) · · · κ(X′Vr

)

=
∑

γ∈Γ 
−,c
W

n− j
2 Jn,γ .

Since the number of diagrams in Γ

−,c
W is finite and does not depend on n, it is

sufficient to show that n− j
2 Jn,γ converges to zero. Note first that, for any s1, . . . , sj

and V ⊆ W ,

κ
(
X′V ) = κ

(
Xs1, . . . ,Xs1︸ ︷︷ ︸
|V∩W1|-times

, . . . ,Xsj , . . . ,Xsj︸ ︷︷ ︸
|V∩Wj |-times

)
.
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Since Xt (t ∈ N) is a linear process with i.i.d. innovations εj (t ∈ Z), this can be
written as

κ
(
X′V ) = const ·BV,s1,...,sj ,

where

BV,s1,...,sj =
∞∑

i=−∞
a

|V∩W1|
i+s1

· · ·a|V∩Wj |
i+sj

.

Hence,

κ
(
X′V1

) · · · κ(X′Vr
) = const ·

r∏

u=1

BVu,s1,...,sj ,

so that it is sufficient to show that each n− j
2 BVu,s1,...,sj converges to zero. This re-

quires a rather laborious detailed argument. However, the essential idea used in Sur-
gailis (2003, Lemma 6.1) is to show this first for a finite moving average process
Xt,K = ∑K

j=0 aj εt−j (actually Surgailis allows for a two-sided moving average)

and then give an upper bound for the difference between the approximation JK
n,γ and

Jn,γ that converges to zero as K tends to infinity. Note that a similar approximation
argument was used to establish convergence of partial sums of weakly dependent
linear processes, see Theorem 4.5.

Tightness is easier than fidi-convergence but is omitted here; we refer the reader
to Giraitis (1985).

Next, consider the case m(1 − 2d) < 1. This case has been considered for in-
stance in Surgailis (1981, 1982), Giraitis and Surgailis (1986, 1989) and Avram and
Taqqu (1987); see also Surgailis (2003) for an overview.

Recall from Corollary 4.1 that

Sn,Am =
n∑

t=1

∞∑

j1,...,jm=0

aj1 · · · ajm(:εt−j1 · · · εt−jm :).

Consider

Un,m := m!
n∑

t=1

∞∑

0=j1<j2<···<jm

aj1 · · · ajm(:εt−j1 · · · εt−jm :). (4.50)

Since the random variables εj1 · · · εjm in this expression are independent, we have

:εj1 · · · εjm : = A1(εj1) · · ·A1(εjm) = εj1 · · · εjm.
Therefore, we may write

Un,m = m!
n∑

t=1

∞∑

0=j1<j2<···<jm

m∏

s=1

ajs εt−js =: m!
n∑

t=1

Vt,m. (4.51)



4.2 Limit Theorems for Sums with Finite Moments 247

If we recall now (cf. proof of Theorem 4.6) that

εt = 1√
2π

∫ π

−π

eitλM0 (dλ),

where M0 is a spectral measure with independent increments, then combining ar-
gument from the proof of Theorem 4.3 with the proof of Theorem 4.6, we expect
that

n−(1−m( 1
2 −d))L

−m/2
f

(
n−1)Un,m

d→ m!
∫

λ1<···<λm

D(λ1 + · · · + λm)dWX(λ1) · · ·dWX(λm), (4.52)

where dWX(λ) = |λ|−d dM0(λ) is the limiting spectral measure defined in (4.34).
The spectral-domain function Lf is replaced by the time-domain slowly varying
function Lm using the same argument as in the proof of Theorem 4.3:

Lm(n) = m!Cm

(
2Γ (1 − 2d) sin(πd)

)m
Lm
f

(
n−1).

Then,

n−(1−m( 1
2 −d))L

−1/2
m (n)Un,m

d→ Zm,H (1). (4.53)

Finally,

Sn,Am = Un,m + rn,m,

where the remainder rn,m involves summation over j1, . . . , jm such that at least two
indices agree. The remainder is of a smaller order (see Avram and Taqqu 1987 for
details).

Tightness is very easy. We use the same argument as in the proof of Theorem 4.4,
together with the variance estimates in Theorem 4.7. �

As noted in the proof, in the case with m(1 − 2d) < 1, the convergence of Sn,Am

is determined by the term Un,m defined in (4.51). In fact, the convergence equa-
tion (4.52) will play a crucial role in some of the results following below.

The assumptions of the theorem can be relaxed in various ways. For instance,
in order to obtain the usual central limit theorem in (4.49), only

∑ |γX(k)|m < ∞
is required instead of the specific decay of γX (see Surgailis 2003). Moreover, the
result can be extended to

Sn,G(u) =
[nu]∑

t=1

G(Xt)

with

G(x) =
∞∑

j=m

aapp,j

j ! Aj(x).
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Assuming that aapp,m 
= 0 (i.e. G has Appell rank m), the contribution of aapp,m ×
Am(Xt)/m! dominates, provided that m(1−2d) < 1. For example, Surgailis (2000)
considers arbitrary polynomials G. Furthermore, Surgailis and Vaičiulis (1999) re-
place independent εt (t ∈ Z) by martingale differences, and Surgailis (2000) consid-
ers X̃t = Xt + Vt where Vt (t ∈N) is a stationary short-memory process.

In view of the fact that for each distribution different Appell polynomials are ob-
tained, and in general they are not orthogonal, it is quite remarkable that the same
asymptotic limit is obtained as under Gaussian subordination and Hermite polyno-
mials. Moreover, it is worth noting that, for fixed m, the condition m(1 − 2d) < 1
means that d > 1

2 (1 −m−1). Thus, a nonstandard limiting behaviour (which is also
called noncentral limit theorem) is achieved for sufficiently strong long-range de-
pendence. The higher the degree m of the Appell polynomial, the stronger depen-
dence has to be to satisfy the condition. This is essentially due to (4.46). Since at
the same time d does not exceed 1

2 , there is no such d for m = 1. In other words, for
Xt (t ∈N), a noncentral limit theorem holds for all 0 < d < 1

2 .

4.2.5.4 Asymptotic Distributions: Martingale Approach and Power Ranks

Recall now that the j th Appell coefficient can be obtained either by

aapp,j = E
[
G(j)(X)

]
(4.54)

if the j th derivative of G exists and its expected value is not zero (see (3.66)) or by

aapp,j = (−1)j
∫

G(x)p
(j)
X (x) dx (4.55)

(see (3.69)), where pX = F ′
X is the density of X. Note that due to (4.54), a similar

definition of Appell rank that has been proposed in the literature is the so-called
power rank.

Definition 4.1 Let X be a random variable. The power rank of a function G (with
respect to X) is the smallest integer m ≥ 1 such that G(m)∞ (x) 
= 0, where G∞(x) =
E[G(X + x)].

Example 4.7 Let FX be the distribution of a random variable X with E(X) = 0.
If G(x) = x2 − E(X2), then G

(1)∞ (0) = 2
∫
udFX(u) = 2E(X) = 0. Furthermore,

G
(2)∞ (0) = 2

∫
dFX(u) = 2. This implies that for a centred linear process Xt =∑

aj εt−j , the power rank of the quadratic function is always 2, regardless of the
distribution of εt (and the marginal distribution of Xt ).

Using the power rank, Ho and Hsing (1996, 1997) developed a different approach
to studying limit theorems for functionals of linear processes. To describe the idea,
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let us again consider

Xt,K =
K∑

j=0

aj εt−j ,

X̃t,K = Xt −Xt,K =
∞∑

j=K+1

aj εt−j

and

GK(y) := E
[
G(Xt,K + y)

]
(K ≥ 0), G∞(y) = E

[
G(Xt + y)

]
. (4.56)

We also use the convention G−1 = G and X̃0,−1 = X0. Note now, that if F is a
sigma field, ξA is a random variable that is F -measurable and ξB is a random vari-
able that is independent of F and has distribution FB , then

E
[
G(ξA + ξB + y)|F] =

∫
G(ξA + v + y)dFB(v) =: GB,∗(ξA + y) (4.57)

and

G∗(y) := E
[
G(ξA + ξB + y)

] = E
[
GB,∗(ξA + y)

]
. (4.58)

Now let FK = σ(εj ,−∞ < j ≤ K) (K ∈ Z). We apply (4.57) and (4.58) with
(ξA, ξB,F) = (X̃t,K−1,Xt,K−1,Ft−K) and (ξA, ξB,F) = (X̃t,K,Xt,K,Ft−(K+1))

respectively. We obtain

n∑

t=1

{
G(Xt)−E

[
G(X1)

]}

=
n∑

t=1

∞∑

K=0

{
E
[
G(Xt)|Ft−K

]−E
[
G(Xt)|Ft−(K+1)

]}

=
n∑

t=1

∞∑

K=0

(
GK−1(X̃t,K−1)−GK(X̃t,K)

)

≈
n∑

t=1

∞∑

K=0

(
GK(X̃t,K−1)−GK(X̃t,K)

)

≈
n∑

t=1

∞∑

K=0

atεt−KG
(1)
K (X̃t,K) (4.59)

≈ G(1)∞ (0)
n∑

t=1

Xt +
n∑

t=1

∞∑

K=0

aKεt−K

(
G

(1)
K (X̃t,K)−G(1)∞ (0)

)
. (4.60)
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The point of this approximation is that the first term in the last expression is just the
partial sum of the linear sequence, multiplied by a constant. The first term is of a
larger order than the second term. Consequently, using Theorem 4.6, we expect

n−(d+ 1
2 )L

−1/2
S (n)

n∑

t=1

{
G(Xt)−E

[
G(X1)

]} d→ G(1)∞ (0)BH (1).

This is useful, of course, only if G(1)∞ (0), the first power rank of G, does not vanish.
If G

(1)∞ (0) = 0, then the expansion is continued until we obtain a non-vanishing
quantity G

(m)∞ (0). In that case we say that the power rank of G is m. If for example
the power rank is 2, the expansion reads further

n∑

j=1

{
G(Xt)−E

[
G(X)

]}

=
n∑

t=1

∞∑

K=0

{
E
[
G(Xt)|Ft−K

]−E
[
G(Xt)|Ft−(K+1)

]}

≈ G(2)∞ (0)
n∑

t=1

∞∑

j1=0

∞∑

j2=j1+1

aj1aj2εt−j1εt−j2

+
n∑

t=1

∞∑

j1=0

∞∑

j2=j1+1

aj1aj2εt−j1εt−j2

(
G

(2)
j2

(X̃t,j2)−G(2)∞ (0)
)
.

As before, the second term in the last expression is of a smaller order than the first
one. We recognize the first term as G(2)∞ (0)Un,2/2! (cf. (4.51)). Therefore, using the
convergence result (4.52), we have

n−2dL
−1/2
2 (n)

n∑

j=1

{
G(Xt)−E

[
G(X1)

]} ⇒ G(2)∞ (0)Z2,H (1)/2!.

This can be generalized to arbitrary power ranks. There are a lot of technical details
missing in the heuristic explanation above. We make it more precise, using a mod-
ified version of Ho and Hsing’s approach (see Wu 2003). In order to do this, let G
be a function, and p ∈ N. Define (cf. (4.51))

Tn(G;p) =
n∑

t=1

{
G(Xt)−E

[
G(X1)

]−
p∑

r=1

G(r)∞ (0)Vt,r

}
,

where

Vt,r =
∑

0≤j1<···<jr

r∏

s=1

ajs εt−js .
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In particular,

Tn(G;1) =
n∑

j=1

{
G(Xt)−E

[
G(X1)

]−G(1)∞ (0)Xt

}
.

For any random variable Y , let ‖Y‖r = E1/r [Y r ]. The following theorem estab-
lishes a reduction principle for Tn(G;p) that can be viewed as a counterpart to the
Gaussian case (see the proof of Theorem 4.4). We state the result assuming that
the slowly varying function La in (B1) is constant. The statement can be modified
appropriately to incorporate a general slowly varying function La(j).

Theorem 4.9 Let Xt (t ∈ N) be a linear process defined by (4.37) with coefficients
satisfying assumption (B1) with La(j) ≡ 1. Assume that E[|ε|4+γ ] < ∞ for some
γ > 0 and

max
r=1,2,...,p+1

sup
y

∣∣G(r)∞ (y)
∣∣< ∞, (4.61)

where G∞ is defined in (4.56).

• If (p + 1)(1 − 2d) > 1, then ‖Tn(G;p)‖2
2 = O(n).

• If (p + 1)(1 − 2d) < 1, then

∥∥Tn(G;p)∥∥2
2 = O

(
n2−(p+1)(1−2d)). (4.62)

The proof of this result is postponed to the end of this section. At this moment, let
us discuss its consequences and technical assumptions. Assumption (4.61) is in the
spirit of Ho and Hsing (1997). Another assumption was considered in Wu (2003).
Similarly to definition (4.56), one can argue that

G
(r)
K (y) := d

dyr
E
[
G(X0,K + y)

] = E
[
G(r)(X0,K + y)

]
(K ≥ 0),

G(r)∞ (y) = E
[
G(r)(X + y)

]
.

For example,

E[G(X + y + δ)] −G(X + y)

δ
−E

[
G(1)(X + y)

]

=
∫ {

G(x + y + δ)−G(x + y)

δ
−G(1)(x + y)

}
pX(x)dx

≤ δ sup
u

∣∣G(2)(u)
∣∣
∫

pX(x)dx.

Hence, for instance, if G has uniformly bounded second-order derivatives, then the
limit as δ → 0 exists. However, such a strong assumption is not needed in fact, and
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a condition like (4.61) suffices (see Ho and Hsing 1996, Lemma 6.2, Wu 2003). We
may thus write G

(r)
0 (y) = E[G(r)(a0ε0 + y)] and

G
(r)
1 (y) = E

[
G(r)(a0ε0 + a1ε−1 + y)

] = E
{
E
[
G(r)(a0ε0 + a1ε−1 + y)|ε−1

]}

= E
[
G

(r)
0 (a1ε−1 + y)

]
.

Therefore, it is intuitively clear that properties of G(r)
0 are transferred to G

(r)
1 and by

induction to any of G(r)
K , K ≥ 1.

Example 4.8 Consider G(u) = 1{u ≤ x0} for a fixed x0. Then G∞(y) = E[1{X +
y ≤ x0}] = P(X ≤ x0 − y), and

G(1)∞ (0) = d

dy
P (X ≤ x0 − y)|y=0 = −pX(x0 − y)|y=0 = −pX(x0),

where pX is the density of X.

What is the consequence of the theorem above? Take p = 1. We obtain
‖Tn(G;1)‖2

2 = O(max{n,n4d}). Recall now Theorem 4.6 that describes conver-
gence of partial sums

∑n
t=1 Xt . We conclude that the limiting behaviour of

n−( 1
2 +d)L

−1/2
1 (n)

n∑

t=1

{
G(Xt)−E

(
G(X1)

)}

is the same as that of

n−( 1
2 +d)L

−1/2
1 (n)G(1)∞ (0)

n∑

t=1

Xt,

where L1(n) = (d(2d + 1))−1Lγ (n), and Lγ (n) given in (4.39). If the power rank
is greater than one, then one has to apply a higher-order expansion (p ≥ 2). The
limiting behaviour of the partial sum follows from the corresponding limit theorem
for Un,p . The latter was considered in (4.51) and (4.52).

Corollary 4.3 Let Xt = ∑∞
j=0 aj εt−j (t ∈ Z) be a linear process defined by (4.37)

with coefficients satisfying assumption (B1), i.e. aj ∼ La(j)j
d−1, d ∈ (0,1/2). As-

sume that G has the power rank m. If m(1 − 2d) < 1, then, under the conditions of
Theorem 4.9,

n−(1−m( 1
2 −d))L

−1/2
m (n)

n∑

t=1

{
G(Xt)−E

(
G(X1)

)} d→ G(m)∞ (0)Zm,H (1),

where

Lm(n) = m!CmL
m
γ (n),
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Cm = 2

((2d − 1)m+ 1)((2d − 1)m+ 2)
,

and Lγ is given by (4.39):

Lγ (k) = L2
a(k)σ

2
ε

∫ ∞

0
vd−1(v + 1)d−1 dv

= L2
a(k)σ

2
ε B(1 − 2d, d).

Let us apply Corollary 4.3 to X2
t , where Xt is a linear process such that

E(X2
1) = 1. The example shows that in a sense, the power rank method is distri-

bution free. In contrast, limiting results for Appell polynomials are not directly ap-
plicable to X2

t − 1, unless Xt are Gaussian.

Example 4.9 Consider a linear process Xt = ∑∞
j=0 aj εt−j (t ∈ Z) such that∑∞

k=0 a
2
k = 1 and E[ε2

1] = 1. Let G(x) = x2. Then recall from Example 4.6 that

n∑

t=1

(
X2

t − 1
) =

n∑

t=1

∞∑

j=0

a2
j

(
ε2
t−j − 1

)+
n∑

t=1

∞∑

k,l=0; k 
=l

akalεt−kεt−l .

The first term can be represented as
∑n

t=1 Yt , where Yt (t ∈ Z) is the linear process
Yt = ∑∞

j=0 ckξt−j , ξt−j = ε2
t−j − 1, with summable coefficients cj = a2

j . Using
Theorem 4.5, we have

n−1/2
n∑

t=1

∞∑

j=0

a2
j

(
ε2
t−j − 1

) d→ N
(
0, v2),

where v2 = σ 2
Y + 2

∑∞
k=1 γY (k). The second term can be recognized as Un,2, see

(4.51), (4.52) and (4.53). Therefore,

n−2dL
−1/2
2 (n)Un,2

d→ Z2,H (1)

if d ∈ (1/4,1/2), where Z2,H (u) is the Hermite–Rosenblatt process with H = d +
1/2. On the other hand,

n−1/2Un,2
d→ σSN(0,1)

if d < 1/4. Furthermore, the terms in (4.63) are uncorrelated. Therefore, if d > 1/4,
then

n−2dL
−1/2
2 (n)

n∑

t=1

(
X2

t − 1
) d→ Z2,H (1).

Otherwise, if d < 1/4,

n−1/2
n∑

j=1

(
X2

t − 1
) d→ N

(
0, v + σ 2

S

)
. (4.63)
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Example 4.10 (ARFIMA) Assume that Xt (t ∈ N) is a FARIMA(0, d,0) process as
in Examples 4.4 and 4.5. Then

γX(k) ∼ cγ k
2d−1, cγ = σ 2

ε

π
Γ (1 − 2d) sin(πd).

Hence, for d ∈ (1/4,1/2),

n−2dL
−1/2
2 (n)

n∑

t=1

(
X2

t − 1
) d→ Z2,H (1),

where

L2(n) = 2C2c
2
γ , C2 = 1

(2(2d − 1)+ 1)(2d + 1)
.

Of course, this is comparable to the Gaussian case, see Example 4.1.

4.2.5.5 Technical Details for Theorem 4.9

We write the proof for p = 1 only, leaving out some technical details. They can
be found in Ho and Hsing (1996, 1997) and Wu (2003). Using the notation Vt =
(εt , εt−1, . . . , ), we may write Tn(G;1) = ∑n

t=1 U(Vt ), where U(·) is a suitable
function. Let PK be the conditional expectation operator

PKY = E[Y |VK ] −E[Y |VK−1].

Noting that PKTn(G;1) = 0 if K > n, we can write down the orthogonal decompo-
sition

Tn(G;1) =
n∑

K=−∞
PKTn(G;1).

Furthermore,

PKTn(G;1) =
n∑

t=1

{
E
(
U(Vt )|FK

)−E
(
U(Vt )|FK−1

)}

=
n∑

t=max{K,1}

{
E
(
U(Vt )|FK

)−E
(
U(Vt )|FK−1

)}

=
n∑

t=max{K,1}
PKU(Vt ),
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since the terms corresponding to t ≤ K − 1 vanish. Therefore,

∥∥Tn(G;1)
∥∥2

2 =
n∑

K=−∞

∥∥PKTn(G;1)
∥∥2

2 =
n∑

K=−∞

∥∥∥∥∥

n∑

t=max{K,1}
PKU(Vt )

∥∥∥∥∥

2

2

.

Now, for any stationary sequence Yt (t ∈ N), we have ‖∑n
t=1 Yt‖2 ≤ ∑n

t=1 ‖Yt‖2.
Therefore, if we define

ψ2
t−K = ∥∥PKU(Vt )

∥∥2
2 = ∥∥P−(t−K)U(V0)

∥∥2
2

and use Lemma 4.17 below, we obtain

∥∥Tn(G;1)
∥∥2

2 ≤
n∑

K=−∞

(
n∑

t=max{K,1}

∥∥P−(t−K)U(V0)
∥∥

2

)2

(4.64)

≤
n∑

K=−∞

(
n∑

t=max{K,1}
(t −K)2(d−1)+1/2

)2

. (4.65)

A rough bound for this expression can be established as follows:

n∑

K=−∞

(
n∑

t=max{K,1}
(t −K)2(d−1)+1/2

)2

≈
∫ n

−∞

(∫ n

max{s,0}
(v − s)2(d−1)+1/2 dv

)2

ds

=
∫ 0

−∞

(∫ n

0
(v − s)2(d−1)+1/2 dv

)2

ds +
∫ n

0

(∫ n

s

(v − s)2(d−1)+1/2 dv

)2

ds.

Let us evaluate the first term only:

∫ 0

−∞

(∫ n

0
(v − s)2(d−1)+1/2 dv

)2

ds

= C

∫ 0

−∞
(
(n− s)2(d−1)+3/2 − (−s)2(d−1)+3/2)2

ds

=
∫ ∞

0

(
(n+ s)2(d−1)+3/2 − s2(d−1)+3/2)2

ds = O
(
n4(d−1)+3+1) = O

(
n4d).

This is statement (4.62) of Theorem 4.9 when p = 1. We note that the integral above
is well defined. For example, as s → ∞, the integrand behaves like {s2(d−1)+1/2}2,
which is integrable since d < 1/2. A detailed computation can be found in Lemma 5
in Wu (2003).

To finish the proof of Theorem 4.9, we have to prove the following lemma.
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Lemma 4.17 Assume that the conditions of Theorem 4.9 are satisfied. Then

∥∥P−KU(V0)
∥∥2

2 = O
(
K4(d−1)+1), K ≥ 0.

Proof We have

P−KU(V0) = E
[
G(X0)|F−K

]−E
[
G(X0)|F−(K+1)

]

−G(1)∞ (0)
{
E[X0|F−K ] −E[X0|F−(K+1)]

}
.

Now we use the decomposition X0 = X0,K−1 + X̃0,K−1 and note that X0,K−1 is
independent of F−K , whereas X̃0,K−1 is measurable w.r.t. this sigma field. Thus,
recalling that E(ε1) = 0, the second term in P−KU(V0) yields

E[X0|F−K ] −E[X0|F−(K+1)] = X̃0,K−1 − X̃0,K = aKε−K.

The first term in P−KU(V0) is

GK−1(X̃0,K−1)−GK(X̃0,K).

Applying (4.57) and (4.58) with (ξA, ξB,F) = (X̃0,K−1,X0,K−1,F0−K) and
(ξA, ξB,F) = (X̃0,K ,X0,K,F0−(K+1)), our goal is to evaluate the bound

∥∥P−KU(V0)
∥∥2

2 = ∥∥GK−1(X̃0,K−1)−GK(X̃0,K)−G(1)∞ (0)aKε0−K

∥∥2
2.

In the first step, we will replace GK−1 by GK . Note first that for any y ∈ R,

GK(y) = E
[
G(X0,K + y)

] = E
[
G(X0,K−1 + aKε−K + y)

]

= E
{
E
[
G(X0,K−1 + aKε−K + y)|ε−K

]} = E
[
GK−1(y + aKε−K)

]
.

(4.66)

Taking into account that E(ε−K) = 0 and applying a Taylor expansion, we therefore
obtain

GK−1(y)−GK(y) = E
[
GK−1(y)−GK−1(y + aKε−K)

]

= E
[
GK−1(y)−GK−1(y + aKεj−K)+G

(1)
K−1(y)aKε−K

]

≤ a2
KE

(
ε2−K

)
sup
y

∣∣G(2)
K−1(y)

∣∣.

Therefore,

∥∥P−KU(V0)
∥∥2

2 ≤ C
{∥∥GK(X̃0,K−1)−GK(X̃0,K)+G(1)∞ (0)aKε−K

∥∥2
2 + a4

K

}

≤ C
{∥∥GK(X̃0,K−1)−GK(X̃0,K)+G

(1)
K (X̃0,K)aKε−K

∥∥2
2 + a4

K

}

+C
∥∥G(1)∞ (0)aKε−K −G

(1)
K (X̃0,K)aKε−K

∥∥2
2 =: I1 + I2.
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The first term I1 is treated again using a Taylor approximation: it is bounded by
a4
KE2(ε2

1) supy |G(2)
K (y)|. As for the second term, since X̃0,K and ε−K are indepen-

dent, we have

I2 = a2
KE

[
ε2]∥∥G(1)∞ (0)−G

(1)
K (X̃0,K)

∥∥2
2.

Thus, in analogy to (4.66), by conditioning on X̃0,K ,

G(1)∞ (y) = E
[
G(1)(X + y)

] = E
[
G

(1)
K (X̃0,K + y)

]
. (4.67)

Furthermore, for any two random variables ηA and ηB , we have E[(ηA −
E[ηB ])2] ≤ E[(ηA −ηB)

2]. Therefore, using (4.67) with Ỹ0,K , an independent copy
of X̃0,K , we obtain

I2 ≤ a2
KE

(
ε2−K

)∥∥G(1)
K (Ỹ0,K)−G

(1)
K (X̃0,K)

∥∥2
2

≤ 2a2
KE

(
ε2−K

)∥∥G(1)
K (X̃0,K)−G

(1)
K (0)

∥∥2
2 ≤ Ca2

KE
(
X̃2

0,K

)
sup
y

∣∣G(2)
K (y)

∣∣.

Hence,

I2 ≤ Ca2
K

∞∑

j=K+1

a2
j ∼ Ca2

K

∞∑

j=K+1

j2(d−1) ∼ CK4(d−1)+1.

This finishes the proof of the lemma.
Note that we had to assume that, for p = 1,

max
r=1,2

sup
y

∣∣G(r)
K (y)

∣∣< ∞.

This explains the conditions of Theorem 4.9. �

4.2.6 Stochastic Volatility Models and Their Modifications

In this section we consider limit theorems for partial sums of stochastic volatility
models. Let Xt = σtξt (t ∈N), where

σt = σ(ζt ), ζt =
∞∑

j=1

aj εt−j ,

and σ(·) is a positive function. It is assumed that (ξt , εt ) (t ∈ Z) is a sequence of i.i.d.
random vectors and E(ε1) = 0. The linear process ζt is assumed to have long mem-
ory with autocovariance function γζ (k) ∼ Lγ (k)k

2d−1, d ∈ (0,1/2). However, we
do not assume at the moment that E(ξ1) = 0. If the sequences ξt and εt are mutually
independent, then the model is called LMSV (Long-Memory Stochastic Volatility),
but for the purpose of this section, we do not need to make this assumption.
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Let Gj be the sigma field generated by ξl, εl , l ≤ j . We consider partial sums

Sn(u) =
[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} (
u ∈ [0,1]),

where G is a measurable function such that E[G2(X1)] < ∞.
The asymptotic behaviour of partial sums is described in the following theorem.

For simplicity, we formulate it in a Gaussian setting; however, it can be extended to
linear processes, using the results of Sect. 4.2.5 instead of Theorem 4.4.

Theorem 4.10 Consider the stochastic volatility model described above with v2 =
var(G(X1)) < ∞ (but possibly E(ξ1) 
= 0). Assume in addition that εt (t ∈ Z) are
standard normal.

• If E[G(X1)|G0] = 0, then

n−1/2Sn(u) ⇒ vB(u), (4.68)

where B(u) (u ∈ [0,1]) is a standard Brownian motion.
• If E[G(X1)|G0] 
= 0, then

n−(1−m( 1
2 −d))L

−1/2
m (n)

[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} ⇒ J (m)

m! Zm,H (u), (4.69)

where ⇒ denotes weak convergence in D[0,1], Zm,H (u) (u ∈ [0,1]) is the
Hermite–Rosenblatt process, m is the Hermite rank of

G̃(y) =
∫

G
(
sσ (y)

)
dFξ (s)

with Fξ denoting the distribution of ξ , Lm(n) = m!CmL
m
γ (n) (cf. (4.39), (4.21),

(4.22)) and J (m) = E[G̃(ζ1)Hm(ζ1)].

Proof Note that σt is measurable w.r.t. Gt−1, whereas ξt is independent of Gt−1.
Thus,

[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]}

=
[nu]∑

t=1

{
G(Xt)−E

[
G(Xt)|Gt−1

]}

+
[nu]∑

t=1

{
E
[
G(Xt)|Gt−1

]−E
[
G(Xt)

]} =: Mn(u)+Rn(u).
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Note that the first part is a martingale. For this part, it suffices to verify the conditions
of the martingale central limit theorem; see Lemma 4.2. Set Xt,n = n−1/2G(Xt).
The Lindeberg condition is clearly satisfied since

E
[
X̃2

t,n1
{|X̃t,n| > δ

}] ≤ 4E
[
X2

t,n1
{|Xt,n| > δ

}] → 0

on account of E[G2(X1)] < ∞, where X̃t,n = Xt,n − E[Xt,n|Gt−1]. Furthermore,
E[G2(Xt )|Gt−1] is a measurable function of the random variable ζt and hence of
the i.i.d. sequence εt−1, εt−2, . . . . Therefore, the sequence E[G2(Xt )|Gt−1] (t ≥ 1)
is ergodic, and n−1 ∑n

t=1 E[G2(Xt )|Gt−1] converges in probability to E[G2(X1)].
Therefore, we conclude (4.68) for the martingale part Mn(u).

On the other hand, the second part Rn(u) can be written as

Rn(t) =
[nu]∑

t=1

{
G̃(ζt )−E

[
G̃(ζt )

]}
,

and (4.69) can be concluded using Theorem 4.4. �

Several comments have to be made here. We note that the proof of (4.68)
does not involve a particular structure of the model. Consider for example the
standard stochastic volatility model where E(ξ1) = 0. If we take G(x) = x, then
n−1/2 ∑[nu]

t=1 Xt converges to a Brownian motion without the assumption of Gaus-
sianity on εt . Furthermore, it is worth mentioning that this approach works (in the
case (4.68) only) for partial sums of GARCH, ARCH(∞) or LARCH(∞) models;
for the latter, see Beran (2006).

Example 4.11 Assume that G(y) = y2. Then G̃(y) = E[ξ2
1 ]σ 2(y). Therefore, m is

the Hermite rank of σ 2(y). In particular, if σ(y) = exp(y), then m = 1. We conclude

n−(d+1/2)L
−1/2
1 (n)

[nu]∑

t=1

(
X2

t −E
(
X2

1

)) ⇒ J (1)BH (u),

where J (1) = E(ζ1 exp(2ζ1))E(ξ2
1 ). This is analogous to Surgailis and Viano

(2002); note however that the authors considered general linear processes.

If E(ξ1) 
= 0 and G(x) = x, then (4.68) is no longer valid; rather (4.69) holds
with m = 1.

Example 4.12 (Long-Memory Stochastic Duration, LMSD) For the purpose of this
example, we assume that random variables ξt (t ∈ N) are strictly positive and hence
non-centred. Furthermore, it is assumed that the sequences ξt and σt are indepen-
dent. Then Xt = ξtσt inherits the dependence structure from σt , i.e.

cov(X0,Xk) = E(X0Xk)−E(X0)E(Xk) = E2[ξ1]cov(σ0, σk).
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Fig. 4.3 Partial sums for a centred and a non-centred stochastic volatility model

Assume that G(x) = x and σ(x) = exp(x). Then G̃(y) = E(ξ1) exp(y) and m = 1.
Application of Theorem 4.10 yields

n−(d+1/2)L
−1/2
1 (n)

[nu]∑

t=1

(
Xt −E(X1)

) ⇒ J (1)BH (u)

weakly in D[0,1], where BH(·) is a fractional Brownian motion with H = d + 1/2,
and J (1) = E[ζ1 exp(ζ1)]E[ξ1].

Example 4.13 We illustrate the centering effect with a simulation example. First,
we generate n = 1000 i.i.d. standard normal random variables ξt . Then we simulate
independently n = 1000 observations ζt from a Gaussian FARIMA(0, d,0) process
with d = 0.4 and compute σt = exp(ζt ). Then, we construct two stochastic volatility
models: a centred one, Xt = ξtσt and a non-centred one, X̃t = (ξt + 1)σt . Finally,
we plot the partial sum sequences Sk = ∑k

t=1 Xt and S̃k = ∑k
t=1(X̃t − E(X̃1)),

k = 1, . . . , n. The corresponding partial sum processes are plotted in Fig. 4.3. The
smoother path in the second, non-centred, case indicates an influence of long mem-
ory (cf. Fig. 4.1).

4.2.7 ARCH(∞) Models

Recall from Definition 2.1 that the ARCH(∞) model has the form Xt = σtξt , where
ξt (t ∈ Z) are i.i.d. zero mean random variables with variance σ 2

ξ . Also,
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σ 2
t = b0 +

∞∑

j=1

bjX
2
t−j .

Furthermore, if σ 2
ξ

∑∞
j=1 bj < 1, then Xt (t ∈ Z) is stationary, and E(X2

1) < ∞. The
sequence Xt (t ∈ Z) is a martingale. Using the martingale central limit theorem (see
Lemma 4.2), we conclude the following result. It can also be stated in a functional
form (as convergence to a Brownian motion).

Corollary 4.4 Consider an ARCH(∞) model as in Definition 2.1. Assume that
σ 2
ξ

∑∞
j=1 bj < 1. Then

n−1/2
n∑

t=1

Xt
d→ N

(
0, σ 2

X

)
,

where

σ 2
X = σ 2

ξ b0

1 − σ 2
ξ

∑∞
j=1 bj

.

Next, we are interested in the asymptotic behaviour of

Sn =
n∑

t=1

(
X2

t −E
(
X2

1

))
.

To deal with this, we will use the general Definition 2.2 of ARCH(∞) models and
set Yt = X2

t = vt ζt = σ 2
t ξ

2
t . In contrast to Xt (t ∈ Z), the squared sequence is not

a martingale. However, we recall from Theorem 2.3 that, under the existence con-
dition μ

1/2
ζ

∑∞
j=1 bj < 1 (which guarantees E(Y 2) < ∞), we have the summability

of the covariances,
∑∞

k=∞ |γY (k)| < ∞. Thus, we may expect a central limit for
partial sum Sn with the rate n−1/2. Indeed, we will argue that the ARCH(∞) model
Yt = vt ζt , vt = b0 + ∑∞

j=1 bjYt−j , can be written using the Wold decomposition
with respect to a martingale difference.

To see this, assume that E(ζ1) = E(ξ2
1 ) = 1 and let ψ(z) = 1−∑∞

j=1 bj z
j . Since∑∞

j=1 bj < 1, we conclude that ψ(·) is analytic on {z : |z| < 1} and has no zeros in

{z : |z| ≤ 1}. Hence, it is invertible, and ψ−1(z) = ∑∞
j=0 b̃j z

j with
∑∞

j=0 |b̃j | < ∞.
Now, vt = b0 + (1 −ψ(B))Yt , which leads to

ψ(B)Yt = Yt − vt + b0 = vt (ζt − 1)+ b0.

On the other hand,

E(Y1) = E(v1)E(ζ1) = E(v1)

= b0

1 −∑∞
j=1 bj

,
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so that

E(Y1)ψ(B) = E(Y1)ψ(1) = b0.

Hence, ψ(B)(Yj −E(Y1)) = vt (ζt − 1) and

Yt −E(Y1) =
∞∑

j=0

b̃j vt (ζt − 1).

We note that vt (ζt − 1) (t ∈ Z) is a martingale difference sequence. Therefore,
the centred Yt has a Wold decomposition with summable coefficients

∑∞
j=0 b̃j ,

where the innovations vt (ζt − 1) are uncorrelated and martingale differences. Con-
sequently, we could in principle apply the same method as in the proof of Theo-
rem 4.5, provided that it can be generalized to possibly dependent innovations that
are martingale differences. Since this is possible, we can conclude the following
result.

Theorem 4.11 Consider an ARCH(∞) process as in Definition 2.2. Assume that√
E[ξ2

1 ]∑∞
j=1 bj < 1. Then

n−1/2
n∑

t=1

(
Yt −E(Y1)

) d→ N
(
0, σ 2

Y

)
,

where σ 2
Y = ∑∞

k=−∞ γY (k).

4.2.8 LARCH Models

Recall that a LARCH(∞) process is defined as

Xt = σtξt ,

σt = b0 +
∞∑

j=1

bjXt−j ,

where b0 
= 0, and ξt (t ∈ Z) are i.i.d. zero mean random variables with σ 2
ξ =

E(ξ2
1 ) = 1. As in the case of ARCH(∞) processes, the sequence Xt is a martingale

difference. Therefore, the statement of Corollary 4.4 still holds with σ 2
X = E[σ 2

1 ] =
b2

0/(1 − ‖b‖2
2) (cf. (2.51)).

The situation is different when we consider X2
t . We can use the decomposition

(cf. (2.56))

n∑

t=1

(
X2

t −E
(
X2

1

)) =
n∑

t=1

(
σ 2
t −E

(
σ 2

1

))+
n∑

t=1

(
ξ2
t − 1

)
σ 2
t . (4.70)
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The second term is a martingale and therefore of the order OP (
√
n). Therefore,

in the case of a long-memory LARCH(∞) process, the asymptotic behaviour of∑
t (X

2
t − E(X2

t )) is the same as that of
∑

t (σ
2
t − E(σ 2

t )). On the other hand,
(2.57) of Theorem 2.7 suggests that

∑
t (σ

2
t − E(σ 2

1 )) behaves (up to a constant)
like

∑
t (σt − E(σ1)). This will be justified below. We then obtain the following

result.

Theorem 4.12 Consider a LARCH(∞) process. Let μp = E[|ξ1|p] < ∞. Assume

that 11μ1/2
4 b2 < 1, where b = ∑∞

j=1 b
2
j , and that

bj ∼ cbj
d−1 (j → ∞), (4.71)

where cb > 0, d ∈ (0,1/2). Then

n−(d+1/2)
[nu]∑

t=1

(
X2

t −E
(
X2

1

)) ⇒ 2b−1
0 E

(
σ 2

1

)
c1

(
1

d(2d + 1)

)1/2

BH(u),

where ⇒ denotes weak convergence in D[0,1], BH(u) is a fractional Brownian
motion with the Hurst parameter H = d + 1/2, and

c1 =
(

b2
0

1 − ‖b‖2

)1/2√
B(d,1 − 2d)cb.

Remark 4.1 According to Theorem 2.7, the condition 11μ1/2
4 b2 < 1 implies that the

fourth moment of Xt is finite.

Proof
Step 1: First, we look at

∑[nu]
t=1 (σt −E(σ1)). It can be written as

n∑

t=1

(
σt −E(σ1)

) =
n∑

t=1

∞∑

l=1

blσt−lξt−l =
n∑

t=1

t−1∑

l=−∞
bt−lσlξl .

We note that σtξt (t ∈ Z) are uncorrelated and martingale differences. Therefore,
we have the partial sum of a process

∑
bt−lσlξl that is a weighted linear sum

with innovations being martingale differences. This is similar, though not identical,
to the sum studied in Sect. 4.2.5 (the difference is that the innovations are only
uncorrelated, not independent, i.e. we do not have a linear process). To identify
asymptotic constants, rewrite the sum as

∑n
t=1

∑∞
l=1 blξt−lσt−l . Then for t < t ′,

cov

( ∞∑

l=1

blξt−lσt−l ,

∞∑

l=1

blξt ′−lσt ′−l

)
= var(ξ1σ1)

∞∑

l=1

blbl+t ′−t .

If (4.71) holds, then, as |j ′ − j | → ∞, the covariance behaves like

var(ξ1σ1)c
2
b

∫ ∞

0
vd−1(1 + v)d−1 dv

∣∣j ′ − j
∣∣2d−1

= var(ξ1σ1)c
2
bB(d,1 − 2d)

∣∣j ′ − j
∣∣2d−1

.
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Using known results for linear processes (see Lemma 4.9), we obtain, as n → ∞,

var

(
n∑

t=1

σt

)
∼ var(ξ1σ1)

1

d(2d + 1)
c2
bB(d,1 − 2d)n2d+1

(note that these results are applicable as long as the innovations are uncorrelated).
Now,

var(ξ0σ0) = b2
0

1 − ‖b‖2
2

.

Theorem 4.6 can be generalized to the case where innovations are martingale dif-
ferences. Setting

c1 =
(

b2
0

1 − ‖b‖2

)1/2(
B(d,1 − 2d)

)1/2
cb,

one then can apply the generalized version of Theorem 4.6 to obtain

1

nd+1/2

[nu]∑

t=1

(
σt −E(σ1)

) ⇒ c1

(
1

d(2d + 1)

)1/2

BH(u). (4.72)

Step 2: To deal with
∑[nu]

t=1 (σ
2
t −E(σ 2

1 )), we recall that (cf. (2.57))

cov
(
σ 2
t , σ

2
t+k

) ∼
(

2E(σ 2
1 )

b0

)2

cov(σt , σt+k) (k → ∞).

The implication is that the asymptotic behaviour of the partial sum is the same as
that of

2b−1
0 E

[
σ 2

1

] [nu]∑

t=1

(
σt −E(σ1)

)

(though more detailed arguments are required to obtain a similar linear representa-
tion as for σt ). Hence,

n−(d+1/2)
[nu]∑

t=1

(
σ 2
t −E

(
σ 2

1

)) ⇒ 2b−1
0 E

(
σ 2

1

)
c1

(
1

d(2d + 1)

)1/2

BH(u).

Using this and decomposition (4.70), we obtain the result. �

4.2.9 Summary of Limit Theorems for Partial Sums

We summarize the main results for partial sums under long memory in Table 4.1. For
simplicity, the slowly varying functions are assumed to be constant in this summary.
Also, only X2

t is considered as a representative of nonlinear transformations.
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Table 4.1 Limits for partial sums with finite moments

Partial sums—finite moments

Sn(u) = ∑[nu]
t=1 Xt Tn(u) = ∑[nu]

t=1 (X
2
t −E(X2

1))

Linear
processes

n−(1/2+d)Sn(u) ⇒ cBH (u)

(Theorems 4.2, 4.6)
n−1/2Tn(u) ⇒ cB(u) (d ∈ (0,1/4))
n−2dTn(u) ⇒ cZ2,H (u) (d ∈ (1/4,1/2))
(Theorem 4.3, Corollary 4.3, Examples 4.1, 4.9)

Stochastic
volatility
Xt = ξt σt ,
E[ξt ] = 0

n−1/2Sn(u) ⇒ cB(u)

(Theorem 4.10)
n−(1/2+d)Tn(u) ⇒ cBH (u)

(Theorem 4.10)

LARCH n−1/2Sn(u) ⇒ cB(u) n−(1/2+d)Tn(u) ⇒ cBH (u)

(Theorem 4.12)

4.3 Limit Theorems for Sums with Infinite Moments

4.3.1 Introduction

In this section we present limit theorems for partial sums of long-memory processes
with infinite moments. Although the theory is quite well understood for weakly de-
pendent random variables (Davis and Resnick 1985, Davis and Hsing 1995, Denker
and Jakubowski 1989, Dabrowski and Jakubowski 1994, Bartkiewicz et al. 2011),
the case of long memory is less well developed yet, except in the linear case. Re-
sults for linear processes with long memory were proven already several decades
ago in Astrauskas (1983) and Kasahara and Maejima (1988). Subordinated lin-
ear processes were studied in Hsing (1999), Koul and Surgailis (2001), Surgailis
(2002, 2004), Vaičiulis (2003). Surprisingly, the martingale decomposition method,
used for finite-variance random variables in Theorem 4.9, works also here. Subor-
dinated Gaussian processes were considered for instance in Davis (1983) and Sly
and Heyde (2008). Limiting results for infinite-variance stochastic volatility mod-
els with long memory are almost non-existing; see McElroy and Politis (2007),
Surgailis (2008), Kulik and Soulier (2012). In particular, both subordinated Gaus-
sian processes and stochastic volatility models can be treated using a point process
methodology. A complete list of the meanwhile quite extended literature would be
too long to be included here. However, some important results and more references
can be found for instance in Astrauskas et al. (1991), Benassi et al. (2002), Heath
et al. (1998), Houdré and Kawai (2006), Kokoszka and Taqqu (1995a, 1995b, 1996,
1997, 1999), Koul and Surgailis (2001), Samorodnitsky (2004), Samorodnitsky and
Taqqu (1994), Surgailis (2004), Zhou and Wu (2010).

First, we will summarize (with some details) results on regularly varying distri-
butions, stable laws and point processes, referring the reader for details to standard
textbooks such as Bingham et al. (1989), Feller (1971), Kallenberg (1997), Resnick
(2007), Samorodnitsky and Taqqu (1994), Embrechts et al. (1997).
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4.3.2 General Tools: Regular Variation, Stable Laws and Point
Processes

4.3.2.1 Regular Variation

Let Xt (t ∈N) be an i.i.d. sequence whose marginal distribution has regularly vary-
ing tails:

P(X1 > x) ∼ 1 + β

2
x−αLX(x), P (X1 < −x) ∼ 1 − β

2
x−αLX(x) (x → ∞),

(4.73)
where LX(·) is slowly varying at infinity, and β ∈ [−1,1]. Condition (4.73) is the
balanced tail condition. It is equivalent to P(|X1| > x) ∼ x−αLX(x) and

lim
x→∞

P(X1 > x)

P (|X1| > x)
= 1 + β

2
, lim

x→∞
P(X1 < −x)

P (|X1| > x)
= 1 − β

2
.

A typical example is a random variable with Cauchy density pX(x) = π(1 + x2)−1.
This random variable is symmetric, and P(X1 > x) ∼ (πx)−1, x > 0. Therefore,
the Cauchy distribution is regularly varying with index α = 1. Another example is a
(two-sided) Pareto distribution where

P
(|X1| > x

) = x−α (x > 1).

We note that if α ∈ (0,2), then random variable X has an infinite second moment.
The case α = 2 requires special attention.

Example 4.14 Assume that LX(x) ≡ 1 and that for x > x0 > 0, we have F̄|X|(x) :=
P(|X| > x) = x−α with α = 2. Then

∫ ∞

x0

xF̄|X|(x) dx =
∫ ∞

x0

xx−α dx =
∫ ∞

x0

x−1 dx = +∞.

On the other hand, if LX(x) = (logx)−2, then

∫ ∞

x0

xx−α 1

(logx)2
dx =

∫ ∞

x0

1

x(logx)2
dx =

∫ ∞

logx0

1

u2
du < +∞.

Therefore, we have infinite and finite variance, respectively, in the first and the sec-
ond case. This means that for α = 2, the slowly varying function plays an important
role.

The following result is the appropriately modified Karamata theorem. It provides
extremely useful estimates for truncated moments (see e.g. Resnick 2007, pp. 25,
36).
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Lemma 4.18 Assume that X is a random variable such that (4.73) holds. Let
F̄ (x) = P(X > x).

• If α < η, then

E
[
Xη1

{|X| ≤ x
}] ∼ α

η − α
xηF̄ (x).

Finally note that

cn = inf
{
x : P (|X| > x

) ≤ n−1} (4.74)

will be the appropriate normalization sequence used to establish convergence of par-
tial sums and point process convergence. In particular, this sequence can be chosen
as cn = n1/αL(n), where L is a slowly varying at infinity. If LX(x) ≡ A (i.e. L is
constant), then cn = A1/αn1/α .

4.3.2.2 Stable Random Variables

Stable random variables can be considered as a special case of (4.73). There are
several equivalent definitions of stable random variables.

Definition 4.2 A random variable X is stable if for any n ≥ 2, there exist constants
cn > 0 and dn ∈R such that

X1 + · · · +Xn
d= cnX + dn,

where X1,X2, . . . are independent copies of X. Necessarily, cn = n1/α , where α ∈
(0,2]. If dn = 0, then X is called strictly stable.

Equivalently, stable random variables are characterized in terms of domains of
attraction:

Definition 4.3 A random variable X is stable if there exists an i.i.d. sequence Yt
(t ∈N) and constants cn > 0, dn ∈R such that

Y1 + · · · + Yn

cn
+ dn

d→ X.

The characteristic function of a stable random variable X is given by

E
[
eiθX

] =
{

exp(−ηα|θ |α(1 − iβsign(θ) tan πα
2 )+ iμθ) if α 
= 1,

exp(−η|θ |(1 + iβ 2
π

sign(θ) ln(θ))+ iμθ) if α = 1.

Here, 0 < α ≤ 2, η > 0 is the scale parameter, −1 ≤ β ≤ 1 is a skewness, and μ ∈R

a shift parameter. We write X ∼ Sα(η,β,μ). In particular, X is symmetric α-stable
(written as X ∼ SαS) if X ∼ Sα(η,0,0). If β = 1, then the random variable X is
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called totally skewed to the right. If α ∈ (1,2], then −∞ <μ = E(X) < ∞. In what
follows, we will omit the case α = 1 from our discussion.

If α ∈ (0,2), then stable random variables are heavy tailed in the sense of (4.73).
Indeed, if X ∼ Sα(η,β,μ), then

lim
x→∞xαP (X > x) = Cα

1 + β

2
ηα, lim

x→∞xαP (X < −x) = Cα

1 − β

2
ηα,

(4.75)
where

Cα =
(∫ ∞

0
x−α sinx

)−1

= 1 − α

Γ (2 − α) cos(πα/2)
(α 
= 1).

Therefore, (4.73) holds with LX(x) ≡ Cαη
α . If η = 1, then the scaling constant cn

defined in (4.74) is cn = C
1/α
α n1/α .

In what follows, we will use several properties of stable random variables. They

can be obtained by considering the characteristic function. If Xj
d= Sα(ηj ,βj ,μj )

(j = 1,2) are independent, then

X1 +X2
d= Sα

((
ηα1 + ηα2

)1/α
,
β1η

α
1 + β2η

α
2

ηα1 + ηα2
,μ1 +μ2

)
(4.76)

and

cX1
d= Sα

(|c|η1, sign(c)β1, cμ1
)
. (4.77)

Due to the scaling property, it is sufficient to consider Sα(1, β,μ) random variables.

4.3.2.3 Stable Convergence

Stable random variables play a crucial in the asymptotic theory for heavy-tailed ran-
dom variables (with α ∈ (0,2); see Gnedenko and Kolmogorov 1968, Feller 1971).
Assume that Xt (t ∈N) is an i.i.d. sequence of Sα(1, β,μ) random variables. Using
(4.76) and (4.77), we have

n−1/α
n∑

t=1

Xt
d= Sα

(
1, β,

nμ

n1/α

)
.

Thus, if α ∈ (0,1), then n/n1/α → 0 and

n−1/α
n∑

t=1

Xt
d→ Sα(1, β,0). (4.78)

If α ∈ (1,2), a centering is required:

n−1/α
n∑

t=1

(Xt −μn)
d= Sα

(
1, β,

n(μ−μn)

n1/α

)
.
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Thus, we may choose μn = μ (recall from Definition 4.3 that for α ∈ (1,2), we have
μ = E(X)) to obtain

n−1/α
n∑

t=1

(Xt −μ)
d→ Sα(1, β,0). (4.79)

However, we may also choose μn = E[X1{|X| < n1/α}]. Then from the Karamata
theorem, as n → ∞,

n(μ−μn)

n1/α
= nE[X · 1{|X| ≥ n1/α}]

n1/α
→ Cα

α

α − 1
.

Consequently,

n−1/α
n∑

t=1

(
Xt −E

[
X · 1

{|X| < n1/α}]) d→ Sα

(
1, β,Cα

α

α − 1

)
.

Of course, we can restate these results using cn = C
1/α
α n1/α instead of n1/α . The

convergence results can be proven formally using the characteristic functions.
More generally, a classical result by Skorokhod (1957) states that if the i.i.d.

random variables Xt (t ∈N) fulfill (4.73) with LX(x) ≡ A, then

n−1/αSn(u) := n−1/α
[nu]∑

t=1

(Xt −μ) ⇒ A1/αC−1/α
α Zα(u), (4.80)

where Zα(·) is an α-stable Lévy motion with Zα(u)
d= u1/αSα(1, β,0), ⇒ denotes

weak convergence in D[0,1] w.r.t. J1 topology, and μ = E(X) if α ∈ (1,2) and
μ = 0 if α ∈ (0,1). We say then that random variables Xt (t ∈ N) are in the domain
of attraction of the α-stable law. Of course, if the random variables Xt are stable
Sα(1, β,0) and u = 1, then (4.80) reduces to (4.79) since then A = Cα .

4.3.2.4 Point Processes

Point processes are a useful tool to study limit theorems for partial sums, sample
covariances and some other functionals such as extremes. Here, we summarize (with
some details) results on convergence of point processes. For a detailed exposition,
the reader is referred to Resnick (2007) or Embrechts et al. (1997).

Let Xt (t ∈ N) be a stationary sequence, and cn a sequence of constants. Define
the point process as

Nn =
n∑

t=1

δ
(t/n,c−1

n Xt )
.
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Fig. 4.4 Counting process:
X(1) ≤ X(2) ≤ X(3) are the
smallest observations in the
sample X1, . . . ,Xn

Here, δ is a Dirac measure, which means that δx(A) = 1 if x ∈ A and 0 oth-
erwise. A point process Nn can be viewed as a random element defined on
[0,1] × (−∞,∞), with values in N. In other words, this is a random element with
values in Mp(E), the set of all Radon point measures on E = R

2. In particular, if we
choose a set U = [0,1] × (0, u), then Nn(U) = Ñn(u) = ∑n

t=1 1{0 < c−1
n Xt < u}

counts points c−1
n Xt that lie between 0 and u. The process Ñn(u) (u ∈ R+) is called

a counting process and is depicted on Fig. 4.4.
There are several ways to establish convergence of point processes. The first one

is referred to as Kallenberg’s theorem (see Theorem 14.17 in Kallenberg 1997, or
Theorem 5.2.2 in Embrechts et al. 1997).

Proposition 4.2 Let Nn, n ∈ N, and N be point processes on R
d such that N has

no multiple points. Assume that

lim
n→∞E

[
Nn(U)

] = E
[
N(U)

]
, (4.81)

lim
n→∞P

(
Nn(U) = 0

) = P
(
N(U) = 0

)
(4.82)

for U = ⋃K
i=1(ki, li ) × (si , ti), K ≥ 1, 0 ≤ ki < li ≤ 1, and arbitrary relatively

compact open intervals (si , ti) of (−∞,0) ∪ (0,∞). Then Nn converges weakly to
N in Mp(R

d).

We illustrate this theorem by proving convergence of point processes based on
i.i.d. sequences. The proof will be easily adapted to models with (long-range) de-
pendence, such as stochastic volatility or subordinated Gaussian sequences. Define
the measure λ on (−∞,∞) \ {0} by

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
dx,

(4.83)
where β ∈ [−1,1]. We say that ds × dλ(x) is an intensity measure of a Poisson
process N on [0,1] × (−∞,∞) if for any A ⊂ [0,1], B ⊂ (−∞,∞), we have

E
[
N(A×B)

] =
∫

B

∫

A

dλ(x)ds.

In particular, we note that E[N([0,1] × (−∞,∞))] < ∞.
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Theorem 4.13 Let Xt (t ∈ N) be a sequence of i.i.d. random variables such that
(4.73) holds. Let

P
(|X1| > cn

) ∼ n−1.

Then Nn converges weakly in Mp([0,1] × R) to a Poisson process N on [0,1] ×
((−∞,∞) \ {0}) with intensity measure ds × dλ(x).

Before we prove this result, let us state some of its consequences. First, the result
can be restated as

n∑

t=1

δ
c−1
n Xt

⇒
∞∑

l=0

δjl ,

where ⇒ denotes weak convergence in Mp(R), and jl are points of a Poisson pro-
cess with intensity measure dλ(x). If α ∈ (0,1), then the continuous mapping theo-
rem yields that

c−1
n

n∑

j=1

Xt
d→

∞∑

l=0

jl.

If we assume for a moment that Xt (t ∈ N) fulfill (4.73) with LX ≡ A, then the
scaling constants defined in (4.74) become cn = n1/αA1/α , and so

n−1/α
n∑

t=1

Xt
d→ A1/α

∞∑

l=0

jl.

For the α-stable random variables Xt , we have A = Cα . Comparing this expression
with (4.78) and using the scaling property (4.77), we conclude that

∑∞
l=0 jl is a

series representation of Sα(C
−1/α
α ,β,0). However, this consideration is not valid

for the case where α ∈ (1,2).
Analogously,

n∑

t=1

δ
c−2
n X2

t
⇒

∞∑

l=0

δj2
l
,

and for α ∈ (0,2),

c−2
n

n∑

t=1

X2
t

d→
∞∑

l=0

j2
l = Sα/2

(
C

−2/α
α/2 ,1,0

)
,

or

n−2/α
n∑

t=1

X2
t

d→ A2/αSα/2
(
C

−2/α
α/2 ,1,0

)
.

We note that for X2
t , the skewness parameter is β = 1. Then the stable random vari-

able is called totally skewed to the right. This means that the heavy-tailed property
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(4.75) of the limiting stable distribution is related to the heavy-tailed behaviour of

P
(
X2 > x

) = P(X >
√
x)+ P(X < −√

x) ∼ Ax−α,

which is valid for positive values of x only. In contrast, when considering Xt , the
heavy-tailed behaviour of the limiting random variable Sα(C

−1/α
α ,β,0) is attributed

to the heavy-tailed behaviour of P(X > x) (x > 0) and P(X < x) (x < 0).

Proof of Theorem 4.13 We verify (4.81). It is enough to consider U = ⋃K
i=1(ki, li)×

(si , ti) for K = 1. We have

E
[
Nn(U)

] =
n∑

t=1

E[δ
(t/n,c−1

n Xt )
]

= (l1 − k1)P
(
c−1
n Xt ∈ (s1, t1)

)

→ (k1 − l1)λ
(
(s1, t1)

)
,

where we recall that λ((si , ti)) = ∫ ti
si
dλ(x), and the measure λ(·) is given by (4.83).

To prove (4.82), write

P
(
Nn(U) = 0

) = P

(
K∑

i=1

n∑

nki<t<nli

1
{
c−1
n Xt ∈ (si , ti )

} = 0

)

=
K∏

i=1

n∏

nki<t<nli

P
(
c−1
n Xt /∈ (si , ti)

)
.

Let

Qn =
K∏

i=1

∏

nki<t<nli

e−n−1λ((si ,ti ))

and note that

Qn = exp

(
−

K∑

i=1

n−1
∑

nki<t<nli

λ
(
(si , ti )

)
)

→ exp

(
−

K∑

i=1

(li − ki)λ
(
(si , ti)

)
)

= P
(
N(U) = 0

)

as n → ∞. Recall the two elementary inequalities

∣∣∣∣∣

K∏

i=1

(si − ti )

∣∣∣∣∣ ≤
K∑

i=1

|si − ti | and
∣∣1 − e−x − x

∣∣ ≤ x1+ε

for any ε > 0. Then we obtain
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∣∣P
(
Nn(U) = 0

)−Qn

∣∣

=
∣∣∣∣∣

K∏

i=1

∏

nki<t<nli

(
1 − P

(
c−1
n X ∈ (si , ti)

))−
K∏

i=1

∏

nki<t<nli

e−n−1λ((si ,ti ))

∣∣∣∣∣

≤
K∑

i=1

(li − ki)n
∣∣(1 − P

(
c−1
n X ∈ (si , ti)

))− e−n−1λ((su,tu))
∣∣

≤
K∑

i=1

(li − ki)
∣∣nP

(
c−1
n X ∈ (si , ti )

)− λ
(
(si , ti)

)∣∣

+
K∑

i=1

n(li − ki)

∣∣∣∣1 − e−n−1λ((si ,ti )) − λ((si, ti ))

n

∣∣∣∣

= o(1)+Cn−ε = o(1)

for some ε > 0. �

Another result, due to Davis and Resnick (1988, Proposition 2.1), is useful when
studying processes that can be approximated by sequences with finite memory. Their
result is stated in fact in a much more general setting, which is omitted here.

We say that a sequence νn of measures converges vaguely to ν (νn
v→ ν) if for

all continuous functions g : E → R
d with compact support (written as g ∈ C+(E)),

we have
∫

g(x)νn(dx) →
∫

g(x)ν(dx).

We refer to Appendix A for additional precise notions related to vague convergence.

Proposition 4.3 Assume that Xt (t ∈ N) is a stationary K-dependent sequence with
values in R

d and cn → ∞ is a sequence of constants such that for the marginal
distribution, we have

nP
(
c−1
n X ∈ ·) v→ λ(·).

Furthermore, assume that for any g ∈ C+(Rd),

lim
k→∞ lim sup

n→∞
n

[n/k]∑

t=2

E
[
g
(
c−1
n X1

)
g
(
c−1
n Xt

)] = 0.

Then

Nn =
n∑

t=1

δ
(t/n,c−1

n Xt )
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converges weakly in Mp([0,1] × R) to a Poisson process N on [0,1] × (−∞,∞)

with intensity measure ds × dλ(x).

This result is applicable to sequences Xt with regularly varying tails as in (4.73).
In fact (see Theorem 3.6 in Resnick 2007), the vague convergence of nP (c−1

n X ∈ ·)
is equivalent to regular variation of the distribution of X.

4.3.3 Sums of Linear and Subordinated Linear Processes

In this section we discuss limit theorems for partial sums of linear processes

Xt =
∞∑

j=0

aj εt−j ,

where aj ∼ caj
d−1, d ∈ (0,1/2), and εt (t ∈ Z) are i.i.d. random variables such that

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α. (4.84)

In both, the coefficients aj and the tail P(ε1 > x), we assume for simplicity that
possible slowly varying functions are constant. If α ∈ (1,2), we assume also that
E(ε1) = 0.

The infinite series above converges if
∑∞

j=0 |aj |δ < ∞ for some δ < α (see e.g.
Avram and Taqqu 1992). In our case this is possible if an only if α(d − 1) < −1
and hence d < 1 − 1/α. Thus, if α ∈ (0,1), then the existence condition implies
that

∑∞
j=0 |aj | < ∞. Consequently, for α ∈ (0,1), long memory (in the sense of

non-summability of the coefficients) is excluded.
Linear processes are the easiest models to describe the interplay between depen-

dence and heavy tails. The asymptotic theory for partial sums is well developed and
includes approaches such as convergence of stochastic integrals (Astrauskas 1983,
Kasahara and Maejima 1986, 1988) or K-dependent approximations, together with
the point process methodology (Davis and Resnick 1985, Davis and Hsing 1995).
Interesting results on functional convergence are given in Avram and Taqqu (1992),
among others.

4.3.3.1 Tail Behaviour

First, we analyse the tail behaviour of linear processes. We note that if εt (t ∈ Z) are
Sα(1,0,0), so that (4.84) holds with β = 0 and A = Cα , then

X1
d=
( ∞∑

j=0

|aj |α
)1/α

Sα(1,0,0) =: D1/α
α Sα(1,0,0)

d= D1/α
α ε1,
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which follows directly from properties (4.76) and (4.77). Therefore, we may con-
clude that, as x → ∞,

P
(|X1| > x

) ∼ P
(
D1/α

α |ε1| > x
) ∼ DαCαx

−α ∼ DαP
(|ε1| > x

)
.

This property is valid in fact under the general assumption (4.84).

Lemma 4.19 Assume that Xt (t ∈ N) is a linear process, εt (t ∈ Z) are i.i.d. random
variables such that (4.84) holds, and E(ε1) = 0 if α ∈ (1,2).

• If for some δ < α,
∞∑

j=0

|aj | +
∞∑

j=0

|aj |δ < ∞, (4.85)

then

lim
x→∞

P(|X1| > x)

P (|ε1| > x)
=

∞∑

j=0

|aj |α. (4.86)

• If aj ∼ caj
d−1, d ∈ (0,1 − 1/α), and εt (t ∈ Z) are symmetric with α ∈ (1,2),

then (4.86) holds.

Note that in the second part of the theorem, the coefficients aj are not absolutely
summable, however

∑ |aj |α is finite. This turns out to be sufficient. The first part
was proven in Cline (1983); see also Davis and Resnick (1985). The second part was
proven (under special assumptions with symmetry of the innovations) in Kokoszka
and Taqqu (1996).

4.3.3.2 Point Process Convergence

In what follows we show that, under the conditions of Lemma 4.19, a point process
based on Xt (t ∈ N) converges. Its behaviour is the same under short memory (4.85)
and under long memory.

Theorem 4.14 Under the assumptions of Lemma 4.19, we have

n∑

t=1

δ
c−1
n (Xt ,...,Xt−K)

⇒
∞∑

l=1

∞∑

r=0

δjl(ar ,ar−1,...,ar−K)

in Mp(R
K+1), where cn is such that P(|ε1| > cn) ∼ n−1, i.e. cn ∼ A1/αn1/α .

Proof We give the proof for K = 0 only. For details, we refer to Davis and Resnick
(1985, Theorem 2.4). We note that the authors prove the results under condi-
tion (4.85). However, a crucial part of the proof relies on (4.86) only, which due to
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Lemma 4.19 is valid under more general conditions on aj . We restate Theorem 4.13
in terms of i.i.d. random variables εt (t ∈ Z),

n∑

t=1

δ
c−1
n εt

⇒
∞∑

l=1

δjl

where cn ∼ A1/αn1/α . Moreover (see Theorem 2.2. in Davis and Resnick 1985), this
convergence can be extended to

n∑

t=1

δ
c−1
n (εt ,...,εt−K)

⇒
∞∑

l=1

K∑

r=0

δjler , (4.87)

where er is a unit vector in R
K+1 with the r th coordinate equal to one. In other

words, the limiting process has the following structure. It is a Poisson process with
values in {0, . . . ,K}×R such that it is a univariate Poisson process on the horizontal
line {0} ×R and its points are repeated on the other horizontal lines. Since the map-
ping (zt , . . . , zt−K) → ∑K

r=0 bkzt−k from Mp(R
K+1) to Mp(R\{0}) is continuous,

(4.87) implies

n∑

t=1

δ
c−1
n Xt,K

⇒
∞∑

l=1

K∑

r=0

δjlar ,

where Xt,K = ∑K
r=0 arεt−k . Letting K → ∞, we obtain

∞∑

l=1

K∑

r=0

δjlar
p→

∞∑

l=1

∞∑

r=0

δjlar .

Therefore, to apply Proposition 4.1, we need to verify that the sequence Xt can be
approximated by the K-dependent sequence Xt,K , in the sense that for each γ > 0,

lim
K→∞ lim sup

n→∞
P
(
c−1
n sup

1≤t≤n

|Xt −Xt,K | > γ
)

= 0.

The latter probability is bounded by nP (c−1
n |X0 − X0,K | > γ ). Since P(|ε1| >

cn) ∼ n−1, applying (4.86), we have, as n → ∞,

nP
(
c−1
n |X0 −X0,K | > γ

) ∼ P(|X0 −X0,K | > cnγ )

P (|ε1| > cn)
= γ−α

∞∑

r=K+1

|ar |α.

The last expression converges to zero as K → ∞. �
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4.3.3.3 Convergence of Partial Sums

Recall our comments following Theorem 4.13. If the innovations εt have tail index
α ∈ (0,1), then we may conclude directly from Theorem 4.14 that

c−1
n

n∑

t=1

Xt
d→
( ∞∑

j=0

aj

) ∞∑

l=1

jl
d=
( ∞∑

j=0

aj

)
Sα

(
C−1/α
α ,β,0

)
,

where jl are points of a Poisson process, and
∑∞

l=1 jl is a series representation of

Sα(C
−1/α
α ,β,0). Equivalently,

n−1/α
n∑

t=1

Xt
d→ A1/α

( ∞∑

j=0

aj

)
Sα

(
C−1/α
α ,β,0

) d= A1/αC−1/α
α

( ∞∑

j=0

aj

)
Sα(1, β,0).

The situation is more complicated for α ∈ (1,2). Convergence of partial sums
does not follow directly from point process convergence (however, as in Davis and
Resnick 1985, an implication of point process convergence may serve as an interme-
diate tool—this will be illustrated for stochastic volatility models in the following
section). In particular, for a long-memory sequence, the scaling for partial sums∑n

t=1 Xt of linear processes may differ from cn.

Theorem 4.15 Assume that Xt (t ∈ Z) is a linear process such that aj ∼ caj
d−1,

d ∈ (0,1/2) and εt (t ∈ Z) are i.i.d random variables such that (4.84) holds with
α ∈ (1,2) and E(ε1) = 0.

• If for some δ < α,

∞∑

j=0

|aj | +
∞∑

j=0

|aj |δ < ∞, (4.88)

then

n−1/αSn(u) = n−1/α
[nu]∑

t=1

Xt
f.d.→ A1/αC−1/α

α

( ∞∑

j=0

aj

)
Zα(u),

where Zα(·) is an α-stable Lévy motion (with independent increments) such that

Zα(1)
d= Sα(1, β,0), and

f.d.→ denotes finite-dimensional convergence.
• If 0 < d < 1 − 1/α, then

n−HSn(u) = n−H

[nu]∑

t=1

Xt ⇒ A1/αC−1/α
α

ca

d
Z̃H,α(u),

where H = d+α−1, Z̃H,α(·) is a Linear Fractional stable motion, and ⇒ denotes
weak convergence in D[0,1] w.r.t. the Skorokhod J1-topology.
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Before we present a proof, we make several comments.

Remark 4.2 If condition (4.88) holds, then the scaling factor and the limiting pro-
cess are (up to a constant) the same as for i.i.d. random variables; see (4.80). The
limiting Lévy process has independent increments and discontinuous sample paths.
Thus, in this case the particular structure of the coefficients aj is not really impor-
tant. On the other hand, if d ∈ (0,1 − 1/α), then the scaling factor involves the
memory parameter d . This is one reason why such a process is said to have long-
range dependence. Also, the limiting process has dependent increments but contin-
uous sample paths. We illustrate this in Example 4.15. Note also that the theorem
can be stated more generally by allowing slowly varying functions in both aj and
the tail of ε1.

Remark 4.3 It should be pointed out that in the long-memory case (d ∈ (0,1−1/α))
we have weak convergence w.r.t. the standard J1-topology and the limiting pro-
cess has continuous paths. In contrast, in the case of summable coefficients we
have finite-dimensional convergence only, and this cannot be extended to J1-
convergence. This can be seen as follows. Assume for a moment that Xt = b0εt +
b1εt−1 (t ∈N). The limiting behaviour of Sn = ∑n

t=1 Xt is determined by large val-
ues of Xt (t ∈N). Now, there is a small chance that both εt and εt+1 are large since
P(εt > x, εt+1 > x) = o(P (ε1 > x)) as x → ∞. Therefore, we have one large value
of a particular εt∗ , say which implies Xt∗ ≈ b0εt∗ and Xt∗+1 ≈ b1εt∗ . This produces
two “clustered” large jumps in the limiting process, which contradicts a heuristic
explanation of J1-topology in the Appendix A. However, it is possible to have weak
convergence w.r.t. different topologies. We refer to Avram and Taqqu (1992).

Proof In the case of weak dependence (i.e. where (4.88) holds), the proof mimics
the one for normal convergence (see Theorem 4.5). Let Xt,K = ∑K

j=0 aj εt−j . Note
that (4.80) can be restated for u = 1 as

n−1/α

(
n∑

t=1

εt , . . . ,

n∑

t=1

εt−m

)
d→ A1/αC−1/α

α

(
Zα(1), . . . ,Zα(1)

)
.

The continuous mapping theorem implies

n−1/α
n∑

t=1

Xt,K
d→ A1/αC−1/α

α

(
K∑

j=0

aj

)
Zα(1).

Furthermore, (
∑K

j=0 aj )Zα(1)
p→ (

∑∞
j=0 aj )Zα(1). We finish the proof by verify-

ing

lim sup
K→∞

lim
n→∞P

(
n−1/α

∣∣Sn(1)− Sn,K(1)
∣∣> γ

) = 0

for each γ > 0. This requires precise calculations on the tail behaviour of Xt . In
particular, (4.86) plays a crucial role. We refer to Davis and Resnick (1985) for
details. The result then follows from Proposition 4.1.
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As for the long-memory case, we assume for simplicity that εt (t ∈ Z) are
Sα(1, β,0). We may write

Sn =
n∑

t=1

Xt =
n∑

l=−∞
εl

n−l∑

j=1−l

aj =:
n∑

l=−∞
ãl,nεl

with ãl,n = ∑n−l
j=1−l aj . If aj ∼ caj

d−1, then

ãl,n ∼ ca

d

{
(n− l)d − (1 − l)d

}
.

Therefore, since Sn is a sum of independent stable random variables, on account of
(4.76), we expect that

n∑

l=−∞
ãl,nεl

d= Sα(ηn,β,0)

with the scale parameter such that

ηαn =
n∑

l=−∞
ãαl,n =

(
ca

d

)α n∑

l=−∞

{
(n− l)d − (1 − l)d

}α

∼
(
ca

d

)α 1

ndα+1

∫ 1

−∞
{
(1 − v)d+ − (−v)d+

}α
dv.

Here, note that the integral above is defined only if 0 < d < 1 − 1/α. Therefore,
with bn = (cα/d)n

H (recall that now Cα = A since we consider stable innovations),
the distribution of b−1

n Sn(1) agrees asymptotically with the distribution of a stable
random variable with the scale

η =
(∫ 1

−∞
{
(1 − v)d+ − (−v)d+

}α
dv

)1/α

and skewness β . Now, if we have a stable integral
∫
g(x)dM(x), then it is a sta-

ble random variable with the scale (
∫ |g(x)|α dx)1/α . Thus, for each u, the Linear

Fractional Stable Motion Z̃H,α(·) (see Sect. 3.7.2 for additional details)
∫ u

−∞
{
(u− v)

H−1/α
+ − (−v)

H−1/α
+

}
dZα(v)

is a stable random variable with the scale

u1/α
(∫ 1

−∞
{
(u− v)

H−1/α
+ − (−v)

H−1/α
+

}α
dv

)1/α

.

Consequently, the result follows for u = 1. In this argument we replaced the coeffi-
cients ãl,n by the asymptotically equivalent expressions. This approximation can be
made more precise by computing the characteristic function. �
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Fig. 4.5 Paths of a partial sum sequence Sk = ∑k
t=1 Xt with Xt i.i.d. N(0,1) (left) and Xt gener-

ated by a FARIMA(0,0.4,0) process

Example 4.15 We illustrate Theorem 4.15 by a simulation study. First, as in Exam-
ple 4.2, we generate n = 1000 i.i.d. standard normal random variables Xt and plot
the partial sum sequence Sk = ∑k

t=1 Xt , k = 1, . . . , n. This procedure is repeated
for Gaussian FARIMA(0, d,0) process with d = 0.4. The path of the fractional
Brownian motion is much smoother than of the Brownian motion. This is due to the
influence of long memory. The corresponding partial sum processes are plotted in
Fig. 4.5. For comparison, we simulate i.i.d. random variables from a t-distribution
with 3/2 degrees of freedom (hence, with a finite mean and infinite variance) and
a FARIMA(0,0.4,0) process where the innovations have a t-distribution with 3/2
degrees of freedom. The partial sum processes are depicted on Fig. 4.6. In the i.i.d.
case, the process has clearly discontinuous sample paths, whereas this effect does
not seem to be present in the long-memory case.

4.3.3.4 Subordinated Case

Consider the partial sum

Sn,G(u) =
[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} (
u ∈ [0,1]),
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Fig. 4.6 Paths of a Lévy stable motion and a fractional stable motion with Hurst parameter
H = d + 1/α, d = 0.4, α = 3/2

where G is a measurable function. Subordinated linear processes with infinite sec-
ond moments were studied in Hsing (1999), Koul and Surgailis (2001), Surgailis
(2002, 2004), Vaičiulis (2003). Surprisingly, the martingale decomposition method,
used in Theorem 4.9 for variables with finite variance, works also here.

We start with the simple case of polynomials. Let us focus on a quadratic function
G(x) = x2. If α ∈ (0,2), then we can repeat the argument following point process
convergence in Theorem 4.14. First (see the discussion following Theorem 4.13),
we can also write

n∑

t=1

δ
c−2
n X2

t
⇒

∞∑

j=0

∞∑

l=0

δj2
l a

2
j
.

This is valid as long as the conditions of Lemma 4.19 hold. Now, if α ∈ (0,2), the
random variables X2

t (t ∈ N) have infinite means. Therefore, for α ∈ (0,2),

c−2
n

n∑

t=1

X2
t

d→
( ∞∑

j=0

a2
j

) ∞∑

l=0

j2
l =

( ∞∑

j=0

a2
j

)
Sα/2

(
C

−2/α
α/2 ,1,0

)
,



282 4 Limit Theorems

or equivalently,

n−2/α
n∑

t=1

X2
t

d→
( ∞∑

j=0

a2
j

)
A2/αC

−2/α
α/2 Sα/2(1,1,0).

The case α ∈ (0,1) was proven in Davis and Resnick (1985, Theorem 4.2), whereas
the case α ∈ (1,2) is addressed in Kokoszka and Taqqu (1996, Theorem 2.1). In
other words, long memory does not influence the limiting behaviour.

Now, the situation changes when 2 < α < 4. The partial sum

Sn,G(u) =
[nu]∑

t=1

(
X2

t −E
(
X2

1

))

can be decomposed as (cf. Example 4.9)

Sn,G,1(u)+ Sn,G,2(u) :=
[nu]∑

t=1

∞∑

j=0

a2
j

(
ε2
t−j −E

(
ε2

1

))+
[nu]∑

t=1

∞∑

j,k=0; j 
=k

aj alεt−j εt−k.

The first part Sn,G,1(u) is a partial sum process based on the linear process with
summable coefficients a2

j . Therefore, on account of the first part of Theorem 4.15,

n−2/αSn,G,1(u)
f.d.→ A2/αC

−2/α
α/2

( ∞∑

j=0

a2
j

)
Zα/2(u),

where Zα/2(·) is a Lévy process such that Zα/2(1)
d= Sα/2(1,1,0), i.e. Zα/2(1) is an

α/2-stable random variable that is completely skewed to the right.
Convergence of the second term follows exactly as in Example 4.9. First, since

2 < α < 4, the random variables εt have a finite variance where under the assump-
tion aj ∼ caj

d−1 we have γX(k) = cov(Xt ,Xt+k) ∼ Lγ (k)k
2d−1 with

Lγ (k) = c2
aσ

2
ε

∫ ∞

0
vd−1(v + 1)d−1 dv,

see Lemma 4.13. If 1/4 < d < 1/2, then

n−2dL
−1/2
2 (n)Sn,G,2(u) ⇒ Z2,H (u),

where H = d + 1/2, Z2,H (u) is the Hermite–Rosenblatt process, and

L2(n) = m!CmL
m
γ (n).

Otherwise, if 0 < d < 1/4, then n−1/2Sn,G,2(u) = OP (1). Therefore, we have a
dichotomous behaviour depending on a relation between the “memory parameter” d

and tails. Such consideration can be carried out for instance for Appell polynomials
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(see Vaičiulis 2003). Before we state our theorem, we recall for convenience the
heavy-tail condition (4.84):

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α. (4.89)

Theorem 4.16 Assume that Xt (t ∈ Z) is a linear process such that aj ∼ caj
d−1,

d ∈ (0,1/2) and εt (t ∈ Z) are i.i.d. random variables such that (4.89) holds with
α ∈ (2,4). Also, assume that E(ε1) = 0.

• If 0 < d < 1/α, then

n−2/α
[nu]∑

t=1

(
X2

t −E
(
X2

1

)) f.d.→ A2/αC
−2/α
α/2

( ∞∑

j=0

a2
j

)
Zα/2(u),

where Zα/2(·) is an α/2-stable Lévy motion such that Zα/2(1)
d= Sα/2(1,1,0).

• If 1/α < d < 1/2, then

n−2dL
−1/2
2 (n)

[nu]∑

t=1

(
X2

t −E
(
X2

1

)) ⇒ Z2,H (u),

where ⇒ denotes weak convergence in D[0,1], Z2,H (·) is the Hermite–
Rosenblatt process, and H = d + 1/2.

The next theorem follows from Theorem 4.15 and a reduction principle along
the lines of Theorem 4.9. We assume that the innovations in the linear process are
symmetric.

Theorem 4.17 Assume that Xt (t ∈ Z) is a linear process such that aj ∼ caj
d−1,

d ∈ (−∞,1/2), εt (t ∈ Z) are i.i.d. symmetric random variables such that (4.89)
holds with α ∈ (1,2) and β = 0, i.e.

P(ε1 > x) ∼ A

2
x−α, P (ε1 < −x) ∼ A

2
x−α.

Furthermore, assume that the distribution Fε of ε1 fulfills

∣∣F (2)
ε (x)

∣∣ ≤ C
(
1 + |x|)−α

,
∣∣F (2)

ε (x)− F (2)
ε (y)

∣∣ ≤ C|x − y|(1 + |x|)−α
,

where |x − y| < 1, x ∈ R.

• If 0 < d < 1 − 1/α and G is bounded, then

n−H

[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} ⇒ A1/αC−1/α
α

ca

d
G(1)∞ (0)Z̃H,α(u), (4.90)
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where ⇒ denotes weak convergence in D[0,1], and Z̃H,α(·) is a linear fractional
stable motion with H = d + α−1 such that Z̃H,α(1) is a symmetric α-stable ran-
dom variable with scale

η =
(∫ 1

−∞
{
(1 − v)d+ − (−v)d+

}α
dv

)1/α

and G∞(x) = E[G(X + x)].
• If 1 − 2/α < d < 0 and A = 1 in (4.89) and G is bounded, then

n−1/α(1−d)

[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} ⇒ c+
GZ̃

+
α(1−d)(u)+ c−

GZ̃
−
α(1−d)(u), (4.91)

where Z̃+
α(1−d)(·), Z̃−

α(1−d)(·) are independent copies of an α(1 − d)-stable Lévy

motion such that Zα(1−d)(1)
d= Sα(1−d)(1,1,0) and

c±
G = C

−1/α(1−d)

α(1−d)

c
1/(1−d)
a

1 − d

∫ ∞

0

[
G∞(±v)−G∞(0)

]
v−1−1/(1−d) dv,

where G∞(x) = E[G(X1 + x)].
• If −∞ < d < 1 − 2/α and G is bounded, then

n−1/2
[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} ⇒ σSB(u), (4.92)

where B(·) is a standard Brownian motion, and σS is a finite positive constant.

This theorem was proven in Koul and Surgailis (2001), Surgailis (2002) and Hs-
ing (1999). Remarkably, in (4.90) and (4.91), we may obtain a stable limit arising
from a summation of bounded random variables. The convergence in (4.90) can be
thought of as a long-memory-type behaviour since the scaling involves the memory
parameter d and the limiting process has dependent increments. The convergence
in (4.91) is a sort of an intermediate case: the scaling involves d , but the limiting pro-
cess has independent increments. Finally, (4.92) represents a standard behaviour: as
in the i.i.d. case, the limiting process is a Brownian motion since var(G(X1)) is fi-
nite.

Below, we give an outline of the proof of (4.90). As for (4.91), the limiting pro-
cess has independent increments, but the scaling factor involves the memory param-
eter d . The reason for this is that the process Sn,G(u) can be approximated by a sum∑n

t=1 ηG(εt ) of i.i.d. random variables, where

ηG(εt ) =
∞∑

j=0

{
G∞(aj εt )−E

[
G∞(aj ε1)

]}
,

and the variables ηG have a tail decaying like |x|−α(1−d).
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In (4.90) it may happen that the quantity G
(1)∞ (0) vanishes. It is an open question,

whether it is possible to obtain a nondegenerate limit in this case with 1 < α < 2.
Let us recall that in the case of linear processes with finite moments the solution to
this problem is given for example in Theorem 4.4. In the case of infinite moments,
this question was studied in Surgailis (2004) under the assumption 2 < α < 4. It
may happen that the limit is an α(1 − d)-Lévy stable motion, Hermite–Rosenblatt
process or Brownian motion.

Proof of Theorem 4.17 Recall the notation from the proof of Theorem 4.9. We de-
note by Vt the sigma field generated by (εt , εt−1, . . .) and set

Tn(G;1) =
n∑

t=1

(
G(Xt)−E

[
G(X1)

]−G(1)∞ (0)Xt

)

and PKY = E(Y |VK) − E(Y |VK−1). We can repeat the computation there, using
the r th norm with r < α instead of r = 2:

∥∥Tn(G;1)
∥∥r
r
≤ 2

n∑

K=−∞

∥∥∥∥∥

n∑

t=max{K,1}
PKU(Vt )

∥∥∥∥∥

r

r

≤
n∑

K=−∞

(
n∑

t=max{K,1}

∥∥P−(t−K)U(V0)
∥∥
r

)r

.

The first inequality follows from a result for martingale differences Yt (t ∈ N),
namely

∥∥∥∥∥

n∑

t=1

Yt

∥∥∥∥∥

r

r

≤ 2
n∑

t=1

‖Yj‖rr

for any 1 ≤ r ≤ 2. The second one is the norm inequality used in the proof of Theo-
rem 4.9. Now, instead of Lemma 4.17, we use

∥∥P−(t−K)U(V0)
∥∥
r
≤ (t −K)−(1−d)(1+γ ),

where (1+γ )r < α. Computations leading to this expression are quite involved; we
refer the reader to Koul and Surgailis (2001). Then one obtains

∥∥Tn(G;1)
∥∥r
r
≤ C

n∑

K=−∞

(
n∑

t=K∨1

(t −K)−(1−d)(1+γ )

)r

≤ Cnr+1n−(1−d)(1+γ )r

by similar calculations as those leading to (4.64), (4.65). Choosing γ sufficiently
close to 0, we conclude that

∥∥Tn(G;1)
∥∥r
r
= o

(
nr(d+1/α)).
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In particular, ‖Tn(G;1)‖rr = o(vrn), where

vn = C−1/α
α A1/α ca

d
nH

with H = d + 1
α

. Therefore, on account of Theorem 4.15, the limiting behaviour of

v−1
n

n∑

t=1

{
G(Xt)−E

[
G(X1)

]}

is the same as that of v−1
n G

(1)∞ (0)
∑n

t=1 Xt . �

4.3.4 Stochastic Volatility Models

In this section we consider Long-Memory Stochastic Volatility (LMSV) sequences
with infinite moments. Let Xt = σtξt (t ∈N), where

σt = σ(ζt ), ζt =
∞∑

j=1

aj εt−j ,

σ (·) is a positive function,
∑∞

j=1 a
2
j < ∞, and εt (t ∈ Z) are i.i.d. random variables.

It is further assumed that ξt (t ∈ Z) is a sequence of i.i.d. random variables such that

P(ξ1 > x) ∼ A
1 + β

2
x−α, P (ξ1 < −x) ∼ A

1 − β

2
x−α. (4.93)

Also, we assume that the sequences εt (t ∈ Z) and ξt (t ∈ Z) are mutually indepen-
dent. At the moment we do not assume anything about the mean of ξt .

Limiting results for infinite-variance volatility models with long memory are al-
most non-existing; see Kulik and Soulier (2012) or Surgailis (2008); the latter in a
quadratic LARCH case. In particular, we will show below that stochastic volatility
models can be treated using a point process methodology.

4.3.4.1 Tail Behaviour

The first question we have to answer is the following. If ξ is like in (4.93), what is the
consequence on the tail of X? The next lemma shows that if the random variables ε
and σ are independent, then σε is still regularly varying. The result is often referred
to as Breiman’s lemma (Breiman 1965), and a proof can be found for example in
Resnick (2007, Proposition 7.5).
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Lemma 4.20 Assume that (4.93) holds. If σ1 is a positive random variable inde-
pendent of ξ1 and such that for some δ > 0,

E
(
σα+δ

1

)
< ∞, (4.94)

then the distribution of σξ is regularly varying, and

lim
x→∞

P(σ1ξ1 > x)

P (|ξ1| > x)
= 1 + β

2
E
(
σα

1

)
, lim

x→∞
P(σ1ξ1 < −x)

P (|ξ1| > x)
= 1 − β

2
E
(
σα

1

)
.

(4.95)

Lemma 4.20 implies for the LMSV model and arbitrary p > 0 that

P
(|X1|p > x

) = P
(
X1 > x1/p)+ P

(
X1 < −x1/p) ∼ AE

(
σα

1

)
x−α/p. (4.96)

Thus, if we consider the LMSV model, we may take ξt as in (4.93), σ(x) = ex and
ζt (t ∈ N) to be e.g. long-memory Gaussian. Then the random variables Xt (t ∈ N)
have heavy tails and long memory.

4.3.4.2 Point Process Convergence

Point process convergence results play a crucial role when proving asymptotic re-
sults for partial sums based on infinite-variance sequences. Here, we assume that
the reader is familiar with material presented in Sect. 4.3.2.4.

We start with a simple generalization of Theorem 4.13 to the LMSV model.
Recall the intensity measure

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
dx,

where β ∈ [−1,1], and consider the point processes

Nn =
n∑

t=1

δ
(t/n,c−1

n Xt )
,

where cn is chosen to fulfill P(|ξ1| > cn) ∼ n−1, i.e.

cn = A1/αn1/α.

The next result shows that the point process based on the LMSV sequence Xt be-
haves as if the random variables were independent. It will be clear from the proof
that the same applies to |Xt |r where r is any power. Furthermore, we do not really
need the particular structure σt = σ(ζt ), where ζt (t ∈ Z) is a linear process. Only
the ergodicity of σt (t ∈N) is needed.
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Theorem 4.18 Consider the LMSV model Xt = σtξt (t ∈ N) such that (4.93) and
Breiman’s condition (4.94) hold. Then Nn converges weakly in Mp([0,1] ×R) to a
Poisson process N with intensity measure E(σα

1 )ds × dλ(x).

Proof (Personal communication with P. Soulier) The proof is basically the same
as in the i.i.d. case, see Theorem 4.13. We also use the same notation as in Theo-
rem 4.13. Let U = ⋃K

i=1(ki, li)× (si , ti ). Then

P
(
Nn(U) = 0

) = P

(
K∑

i=1

n∑

nki<t<nli

1
{
c−1
n Xt ∈ (si , ti )

} = 0

)

= E

[
K∏

i=1

n∏

nki<t<nli

P
(
c−1
n Xt /∈ (si , ti)|Fσ

)
]

=: mE[Pn],

where Fσ is the sigma field generated by the entire sequence σt . Let θt ((si , ti )) be
the limit of nP (c−1

n Xt ∈ (si , ti )|Fσ ) and write

Qn =
K∏

i=1

∏

nki<t<nli

exp
{−n−1θt

(
(si , ti )

)}
.

Note that θt is a random variable since it depends on the sequence σt (t ∈N). There-
fore, the only difference between the LMSV setting and the i.i.d. one is that Qn

here is a random variable and λ((si, ti)) is replaced by θt ((si , ti)). Nevertheless, Qn

converges in probability to

exp

{
−E

(
σα

1

) K∑

i=1

(li − ki)λ
(
(si , ti)

)
}

= P
(
N(U) = 0

)
.

It remains to prove that |Pn − Qn| converges in probability to 0 and apply the
bounded convergence theorem. To prove that |Pn − Qn| →P 0, we proceed as in
Theorem 4.13:

E|Pn −Qn|

≤
K∑

i=1

(li − ki)E
[∣∣nP

(
c−1
n X1 ∈ (si , ti)|Fσ

)− θ1
(
(si , ti)

)∣∣]

+
K∑

i=1

n(li − ki)E

[∣∣∣∣1 − e−n−1θ1((si ,ti )) − θ1((si , ti))

n

∣∣∣∣

]
.

For the second term, we have

nE

[∣∣∣∣1 − e−n−1θ1((si ,ti )) − θ1((si , ti))

n

∣∣∣∣

]
≤ Cn−δE

[
σα+δ

1

]
.
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Furthermore, let us recall the so-called Potter’s bound (see Theorem 1.5.6. in Bing-
ham et al. 1989), namely: for v > 0,

nP
(
c−1
n vξ1 ∈ (si , ti)

) ≤ C
(
max{v,1})α+δ

,

where δ > 0. For the first term, we apply Potter’s bound to get

nP
(
c−1
n X1 ∈ (si , ti)|Fσ

) = nP
(
c−1
n ξ1σ1 ∈ (si , ti)|Fσ

) ≤ (
max{σ1,1})α+δ

,

and the same bound holds for θ1(si , ti). We then can apply bounded convergence to
get

lim
n→∞E

[∣∣nP
(
c−1
n X1 ∈ (si , ti)

)− θ1
(
(si , ti )

)∣∣] = 0. �

4.3.4.3 Convergence of Partial Sums

Having established point process convergence, we proceed with its consequences
for partial sums. Assume that ξ1 fulfills (4.93) and E(ξ1) = 0 or ξ1 is symmetric if
α ∈ (0,1). Define

Sn(u) =
[nu]∑

t=1

Xt

and

Sn,p(u) =
[nu]∑

t=1

(|Xt |p −E
[|X1|p

])
,

assuming that E[|X1|p] < ∞ but E[|X1|2p] = ∞. Due to Lemma 4.20, this is
achieved when p < α < 2p. In the next theorem we show that depending on an in-
terplay between long memory and tails, partial sums based on the LMSV sequence
may converge either to a Lévy process (weakly dependent behaviour) or to a Her-
mite process (long-memory behaviour).

Theorem 4.19 Consider the LMSV model Xt = σtξt (t ∈ N) and assume that the
conditions of Theorem 4.18 hold. In addition, we assume that α > 1, E(ξ1) = 0 and
ζt (t ∈N) is a Gaussian linear process with coefficients aj satisfying (B1), i.e. aj =
La(j)j

d−1, d ∈ (0,1/2), and covariance function γζ (k) ∼ Lγ (k)k
2d−1. Let m ≥ 1

be the Hermite rank of the function σp(·) and assume further that E(σ 2α+2ε
1 ) < ∞.

• If 1 < α < 2, then

n−1/αSn(u) ⇒ A1/αC−1/α
α

(
E
[
σα

1

])1/α
Zα(u), (4.97)

where Zα(·) is an α-stable Lévy process such that Zα(1)
d= Sα(1, β,0), and ⇒

denotes weak convergence in D[0,1].
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• If p < α < 2p and 1 −m(1/2 − d) < p/α, then

n−p/αSn,p(u) ⇒ Ap/αC
−p/α
α/p

(
E
[
σα

1

])p/α
Zα/p(u), (4.98)

where Zα(·) is an α/p-stable Lévy process such that Zα(1)
d= Sα/p(1,1,0), and

⇒ denotes weak convergence in D[0,1].
• If p < α < 2p and 1 −m(1/2 − d) > p/α, then

n−(1−m( 1
2 −d))L

−1/2
m (n)Sn,p(u) ⇒ J (m)E[|ξ1|p]

m! Zm,H (u), (4.99)

where Zm,H (·) is a Hermite process of order m, H = d + 1
2 ,

Lm(n) = m!CmLγ (n),

J (m) is the Hermite coefficient of σp(·), and ⇒ denotes weak convergence in
D[0,1].

When α ∈ (1,2), the partial sum Sn(u) is a martingale because E(Xt) =
E(ξt )E(σt ) = 0. Hence, only the stable Lévy limit arises, and (4.97) holds. This
can be concluded from a general theory by Surgailis (2008). If Sn,p(·) is consid-
ered, then we observe a dichotomous behaviour. Assume for simplicity that m = 1.
If long memory is strong enough, then it influences the limiting behaviour. Inter-
estingly, the infinite variance sequence |Xt |p yields a limiting process with finite
variance. Furthermore, results are readily extendable to the case where ζt is a gen-
eral linear process. Instead of Theorem 4.4, one has to use corresponding results for
subordinated linear processes; see Theorem 4.6. Furthermore, in contrast to The-
orem 4.15 for linear processes with infinite variance, we note that we have weak
convergence w.r.t. J1-topology in all three cases.

Example 4.16 (Cf. Example 4.11) Assume that Xt = ξt exp(ζt ), where ζt is a stan-
dard normal sequence with covariance γζ (k) ∼ Lγ k

2d−1, d ∈ (0,1/2). If α ∈ (2,4)
and d + 1/2 < 2/α, then n−2/αSn,2(u) converges to a Lévy process. Otherwise, if
α ∈ (2,4) and d + 1/2 > 2/α, then

n−(1/2+d)L1(n)
−1/2(n)Sn,2(u) ⇒ J (1)E

(
ξ2

1

)
BH(u),

where L1(n) = (d(2d + 1))−1Lγ (n) and J (1) = E[ζ1 exp(2ζ1)].

In the spirit of Example 4.12, if α ∈ (1,2) and E(ξt ) 
= 0, then long memory
appears already in

∑[nu]
t=1 Xt .

Example 4.17 (LMSD with Infinite Variance) As in Example 4.12, we assume that
the random variables ξt (t ∈ N) are strictly positive. Suppose that we have heavy
tails

P(ξ1 > x) ∼ Ax−α (x → ∞)
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with α ∈ (1,2). Furthermore, it is assumed that the sequences ξt and ζt are inde-
pendent and the covariance of ζt is of the asymptotic form γζ (k) ∼ Lγ (k)k

2d−1,
d ∈ (0,1/2). Let G(x) = x and σ(x) = exp(x), so that the Hermite rank m = 1.
Then we have a dichotomous behaviour for Sn(u) := ∑[nu]

t=1 (Xt − E(X1)). Specifi-
cally, (4.98) and (4.99) hold with p = 1:

• If 1/2 + d < 1/α, then

n−1/αSn(u) ⇒ A1/αC−1/α
α

(
E
[
σα

1

])1/α
Zα(u), (4.100)

where Zα(·) is an α-stable Lévy process such that Zα(1)
d= Sα(1,1,0).

• If 1/2 + d > 1/α, then

n−(1/2+d)L
−1/2
1 (n)Sn(u) ⇒ J (1)E[ξ1]BH(u), (4.101)

where BH(·) is a fractional Brownian motion, H = d + 1
2 , L1(n) = C1Lγ (n) and

J (1) = E[ζ1 exp(ζ1)].

Proof of Theorem 4.19 Let Ft be a sigma field generated by ξj , εj (j ≤ t). We start
by studying Sn,p(·). Write

[nu]∑

t=1

(|Xt |p −E
[|Xt |p

]) =
[nu]∑

t=1

(|Xt |p −E
[|Xt |p|Ft−1

])

+
[nu]∑

t=1

(
E
[|Xt |p|Ft−1

]−E
[|X1|p

]) =: Mn(u)+Rn(u).

Note that E[|Xt |p|Ft−1] = E(|ξ1|p)σp(ζt ) is a function of ζt and does not depend
on ξt . Therefore, for the long-memory part Rn(u), we have

n−(1−m( 1
2 −d))L

−1/2
1 (n)Rn(u) ⇒ J (m)E[|ξ1|p]

m! Zm,H (u) (4.102)

if m(1/2 − d) < 1, where Zm,H (·) is a Hermite–Rosenblatt process, and L1 is a
slowly varying function defined in Theorem 4.4. If m(1/2 − d) > 1, then

n−1/2Rn(u) ⇒ vE
[|ξ1|p

]
B(u), (4.103)

where B(·) is a standard Brownian motion, and v is a constant.
We will show that under the assumptions we have,

c
−p
n Mn(u) ⇒ C

−p/α
α/p

(
E
[
σα

1

])p/α
Zα/p(u), (4.104)

or equivalently,

n−1/αMn(u) ⇒ Ap/αC
−p/α
α/p

(
E
[
σα

1

])p/α
Zα/p(u).
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From (4.102), (4.103) and (4.104) we conclude the proof of the theorem. First we
prove (4.104). The proof is very similar to the proof of convergence of the partial
sum of an i.i.d. sequence in the domain of attraction of a stable law to a Lévy stable
process. The difference consists of some additional technicalities (see e.g. the proof
of Theorem 71 in Resnick 2007 for additional details).

Step 1: For 0 < ε < 1, decompose Mn(u) further as

Mn(u) =
[nu]∑

t=1

(|Xt |p1
{|Xt | < εcn

}−E
[|Xt |p1

{|Xt | < εcn
}|Ft−1

])

+
[nu]∑

t=1

(|Xt |p1
{|Xt | > εcn

}−E
[|Xt |p1

{|Xt | > εcn
}|Ft−1

])

=: M(ε)
n (u)+ M̃(ε)

n (u).

The term M̃
(ε)
n (·) is treated using point process convergence. It excludes small

jumps Xt defined by c−1
n |Xt | < ε. The reason for this is that the summation func-

tional is not continuous on the entire real line; one has to exclude small jumps. For
any ε > 0, the summation functional is an almost surely (with respect to the dis-
tribution of the Poisson point process, see e.g. p. 215 in Resnick 2007) continuous
mapping from the set of Radon measures on [0,1] × [ε,∞) to D([0,1],R). From
Theorem 4.18 we then conclude

c
−p
n

[nu]∑

t=1

|Xt |p1
{|Xt | > εcn

} ⇒
∑

k:tk≤u

|jk|p1
{|jk| > ε

}
(4.105)

in ([0,1],R), where we recall that (tk, jk) are points of the limiting Poisson pro-
cess. Taking expectations in (4.105), we obtain

lim
n→∞[nu]c−p

n E
[|X1|p1

{|X1| > εcn
}] = u

∫

|x|>ε

|x|p dλ(x)

uniformly with respect to u ∈ [0,1], since this is a sequence of increasing functions
with a continuous limit. Furthermore, we claim that

c
−p
n

∣∣∣∣∣

[nu]∑

t=1

(
E
[|X1|p1

{|X1| > εcn
}]−E

[|Xt |p1
{|Xt | > εcn

}∣∣Ft−1
])
∣∣∣∣∣

p→ 0

uniformly in u ∈ [0,1]. The variance of the last expression is in fact bounded by

c
−2p
n [nu]2γm

ζ

([nu])var
(
E
[|X1|p1

{|X1| > εcn
}∣∣F0

])

≤ c
−2p
n [nu]2γm

ζ

([nu])E[
E2[|X1|p1

{|X1| > εcn
}∣∣F0

]]
,
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where γζ (k) is the covariance function of the Gaussian sequence ζt (t ∈ Z), and m

is the Hermite rank of σp(·). Recall Potter’s bound (see Theorem 1.5.6. in Bingham
et al. 1989): for v > 0,

nP
(
c−1
n vξ1 ∈ (si , ti)

) ≤ C
(
max{v,1})α+δ

,

where δ > 0. Now, if p < α < 2p, then we combine Karamata’s theorem with
Potter’s bound to obtain

E
[
σp(x)|ξ1|p1

{∣∣σ(x)ξ1
∣∣> εcn

}] ≤ Cn−1c
p
n

F̄ξ (εcn/σ (x))

F̄ξ (cn)

≤ Cn−1c
p
n σ

α+ε(x).

Since by assumption E[σ 2α+2ε
1 ] < ∞ for some ε > 0, we have for each t ,

var

(
c
−p
n

[nu]∑

j=1

{
E
[|X0|p1

{|X0| > εcn
}]−E

[|Xt |p1
{|Xt | > εcn

}∣∣Fj−1
]}
)

≤ Cn−2[nu]2γζ
([nu]) ≤ Cn2−2H+εu2H−ε, (4.106)

where the last bound is obtained for some ε > 0 by Potter’s bound. This proves the
convergence of finite-dimensional distributions to 0 and tightness in D([0,1]). We
now argue that the bounds obtained above imply

c
−p
n M̃(ε)

n (u) ⇒ C
−p/α
α/p

(
E
[
σα

1

])p/α
Z

(ε)
α/p(u)

and also Z
(ε)
α/p(u) ⇒ Zα/p(u) as ε → 0. Therefore, it is suffices to show the neg-

ligibility of c
−p
n M

(ε)
n , i.e. that small jumps are negligible. By Doob’s martingale

inequality we obtain

E

[(
sup

u∈[0,1]
c
−p
n

[nu]∑

t=1

{|Xt |p1
{|Xt | < εcn

}−E
[|Xt |p1

{|Xt | < εcn
}∣∣Ft−1

]}
)2]

≤ Cnc
−2p
n E

[(|X1|p1
{|X1| < εcn

}−E
[|X1|p1

{|X1| < εcn
}∣∣F0

])2]

≤ 4Cnc
−2p
n E

[(|X1|2p1
{|X1| < εcn

})]
.

Recall that α < 2p. By Karamata’s theorem (Lemma 4.18),

E
[|X1|2p1

{|X1| < εcn
}] ∼ 2α

2p − α
(εcn)

2pF̄X(εcn) ∼ 2α

2p − α
ε2p−αc

2p
n n−1.

Applying this and letting ε → 0, we conclude that c−p
n M

(ε)
n is uniformly negligible

in L2 and therefore also in probability. Thus,

c
−p
n Mn(u) ⇒ C

−p/α
α/p

(
E
[
σα

1

])p/α
Zα/p(u).

This finishes the proof of (4.98) and (4.99).
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As for the sum Sn, the long-memory part Rn vanishes since E(X1) =
E(ξ1)E(σ1) = 0. Thus, in this case also only the stable limit arises. �

The reader is referred to Kulik and Soulier (2012) for more discussion, a detailed
proof and extensions to stochastic volatility with leverage.

4.3.5 Subordinated Gaussian Processes with Infinite Variance

Previously (see Theorem 4.16 or Theorem 4.19, Eq. (4.99)) we have seen that it is
possible to obtain limiting distributions with finite variance although we start with
innovations with infinite second moments. In this section we illustrate that this type
of behaviour can also be achieved in the context of Gaussian subordination with
infinite variance. This rather peculiar result depends on specific circumstances to be
explained below.

Let Xt (t ∈ Z) be a stationary centred Gaussian process with covariance γX(K) ∼
Lγ (k)k

2d−1, d ∈ (0,1/2). Assume that G is a function such that, as x → ∞,

P
(
G(X1) > x

) ∼ A
1 + β

2
x−α, P

(
G(X1) < −x

) ∼ A
1 − β

2
x−α, (4.107)

where β ∈ [−1,1]. If α ∈ (0,2), then G(Xt) have infinite (or non-existing) vari-
ance. Furthermore, if α ∈ (0,1), then E(|G(X1)|) = +∞. A typical example is
G(x) = |x|−1/α . After the transformation |x|−1/α the mass from zero is “sent”
to infinity (since for a standard normal density, φ(0) 
= 0). Another example is
G(x) = b exp(cx2) for some constants b ∈R and c > 0.

In this section we shall assume that α ∈ (1,2). Again we consider

Sn,G(u) =
[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]}
.

With a similar trick as in the proof of Theorem 4.19, i.e. the decomposition
into a martingale and a long-memory part, Sn,G will be studied using techniques
available for weakly dependent processes with infinite variance (see Mn(·) in the
proof of Theorem 4.19) and finite-variance subordinated Gaussian processes (see
Sect. 4.2.3). This method was used in Sly and Heyde (2008) for α ∈ (1,2). The
result for α ∈ (0,1) was proven in Davis (1983).

4.3.5.1 Point Process Convergence

Assume that α ∈ (1,2), so that var(G(Xt )) < ∞. As in case of the LMSV model,
we start with the convergence of point processes

Nn =
n∑

t=1

δ
(t/n,c−1

n G(Xt ))
,
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where in the present context

cn = inf
{
x : P (∣∣G(X1)

∣∣> x
) ≤ n−1}.

Recall that

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
.

We state the following result without proof. In principle, as in the LMSV case, it
says that the random variables G(Xt) behave as if they were independent.

Theorem 4.20 Consider a Gaussian sequence Xt (t ∈ N) and a real-valued func-
tion G such that (4.107) holds. Then Nn converges weakly in Mp([0,1] × R) to a
Poisson process N with intensity measure ds × dλ(x).

4.3.5.2 Hypercontraction Principle for Gaussian Random Variables

We shall explain how it is possible to obtain a finite-variance random variable
from infinite-variance variables G(Xt). Recall that for a function G such that
E[G2(X1)] < ∞, we have the following expansion:

G(x) = E
[
G(X1)

]+
∞∑

l=m

J (l)

l! Hl(x),

where m is the Hermite rank of G, and J (l) = E[G(X1)Hl(X1)]. This expansion is
also valid for a function G with E[|G(X1)|1+θ ] < ∞, where θ ∈ (0,1). Indeed, the
Hermite coefficients J (l) are still well defined. Applying the Hölder inequality, we
obtain with r = (1 + θ)/θ ,

∣∣J (l)
∣∣ ≤ E

1
1+θ

[∣∣G(X1)
∣∣1+θ ]

E
1
r
[∣∣Hl(X1)

∣∣r] = ‖G‖1+θ‖Hl‖r < ∞, (4.108)

where ‖G‖rr = ∫
Gr(u)φ(u)du. Now, let X = a1X1 + θX2, where a2

1 + θ2 = 1, and
X1, X2 are independent standard normal random variables. Let F be the sigma field
generated by X2. We will argue below that although E[G2(X)] = +∞, we have

var
(
E
[
G(X1)|F

])
< ∞.

We start with the following result.

Lemma 4.21 Assume that E[|G(X1)|1+θ ] < ∞, where θ ∈ (0,1). Then

∞∑

l=m

J 2(l)

l! θ2l < ∞.
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Proof From Lemma 3.1 in Taqqu (1977) we have the following bound:

‖Hl‖r ≤ (r − 1)l/2
√
l!.

Applying (4.108) (recall that r = (1 + θ)/θ ), we obtain

J 2(l)θ2l

l! ≤ θ2l

l! ‖G‖2
1+θ (r − 1)l l! = θ2l‖G‖2

1+θ θ
−l = ‖G‖2

1+θ θ
l . �

The consequence of this simple lemma is quite remarkable. Applying formula
(3.16) and recalling that X2 is F -measurable and Hermite polynomials Hl (l ≥ 1)
are centred, we obtain

E
[
Hl(X)|F] = E

[
Hl(a1X1 + θX2)|F

] =
l∑

j=0

(
l

j

)
a
j

1θ
l−jE

[
Hj(X1)Hl−j (X2)|F

]

=
l∑

j=0

(
l

j

)
a
j

1θ
l−jHl−j (X2)E

[
Hj(X1)|F

] = θ lHl(X2).

We recall that E[H 2
l (X2)] = l!. From Lemma 4.21 we have

∞∑

l=m

(
J (l)

l!
)2

θ2l l! < ∞.

This expression is however equal to

var

( ∞∑

l=m

J (l)

l! θ lHl(X2)

)
= var

( ∞∑

l=m

J (l)

l! E
[
Hl(X)|F]

)
.

Thus,
∑∞

l=mE[Hl(X)|F]J (l)/ l! is a well-defined Hermite expansion of a function

g̃(X2) := E
[
G(X)|F] = E

[
g̃(X2)

]+
∞∑

l=m

J (l)

l! θ lHl(X2)

with finite variance. Note also that, since X2 is F -measurable,

E
[
g̃(X2)Hl(X2)

] = E
{
E
[
G(X)|F]

Hl(X2)
} = E

[
G(X)Hl(X2)

]
.

4.3.5.3 Partial Sums Convergence

Theorem 4.21 Assume that Xt (t ∈ Z) is a stationary standard normal sequence
with covariance γX(K) ∼ Lγ (k)k

2d−1, d ∈ (0,1/2). Let G be a function with Her-
mite rank m such that (4.107) holds with 1 < α < 2.
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• If 1 < α < 2 and 1 −m(1/2 − d) < 1/α, then

n−1/α
[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} f.d.→ A1/αC−1/α
α Zα(u), (4.109)

where Zα(·) is an α-stable Lévy process such that Zα(1)
d= Sα(1, β,0).

• If m is the Hermite rank of G and 1 −m( 1
2 − d) > 1/α, then

n−(1−m( 1
2 −d))L

−1/2
m (n)

[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} ⇒ Zm,H (u)
(
u ∈ [0,1]),

where H = d + 1
2 , Lm(n) = m!CmL

m
γ (n), Zm,H (u) is the Hermite–Rosenblatt

process, and ⇒ denotes weak convergence in D[0,1].

Proof We present just a short heuristic derivation. The Gaussian sequence can be
written as a linear process Xt = ∑∞

j=0 aj εt−j , where εt (t ∈ Z) are i.i.d. standard

normal, and
∑∞

j=0 a
2
j = 1. Let Ft = σ(εt , εt−1, . . .). Then

[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]}

=
[nu]∑

t=1

{
G(Xt)−E

[
G(Xt)|Ft−l

]}+
[nu]∑

t=1

{
E
[
G(Xt)|Ft−l

]−E
[
G(X1)

]}

=: Mn(u)+Rn(u),

where l is such that θ :=
√∑∞

j=l a
2
j < α − 1. The first part Mn(·) is a martingale.

Therefore, its limiting properties are studied in the very same way as Mn(·) in the
proof of Theorem 4.19. As for the second part, write

Xt :=
l−1∑

j=0

aj εt−j + θX̃t,l ,

where X̃t,l := θ−1 ∑∞
j=l aj εt−j . The random variables X̃t,l (t ∈ N) are standard

normal. Applying Lemma 4.21, the function

g(X̃t,l) := E
[
G(Xt)|Ft−l

]−E
[
G(X1)

]

has finite variance. Therefore, the convergence of the second part Rn(u) follows
from Theorem 4.4. �
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4.3.6 Quadratic LARCH Models

We recall (cf. (2.58)) that the quadratic LARCH(∞) (or LARCH+) process is the
unique solution of

Xt = b0ηt + ξt

∞∑

j=1

bjXt−j , (4.110)

where (ηt , ξt ) (t ∈ Z) is a sequence of i.i.d. random vectors. We assume that bj ∼
cbj

d−1 (d ∈ (0,1/2)) and that the random variables ηt are heavy tailed in the sense
that

P
(|η1| > x

) ∼ Ax−α

for some α ∈ (2,4). In other words, E(η2
1) < ∞, but E(η4

1) = ∞. Furthermore,
we assume that E(ξ4

1 + ξ2
1 η

2
1) < ∞. Surgailis (2008) considers convergence of

the sum of the squares and proves that under appropriate technical assumptions
we have a dichotomous behaviour as in case of the stochastic volatility model (cf.
Theorem 4.19) or the subordinated Gaussian sequence with heavy tails (cf. Theo-
rem 4.21): if d + 1

2 < 2/α, then

n−2/α
[nu]∑

t=1

(
X2

t −E
(
X2

1

))

converges in a finite-dimensional sense to a Lévy process. Otherwise, if d + 1
2 >

2/α, then

n−(d+ 1
2 )

[nu]∑

t=1

(
X2

t −E
(
X2

1

))

converges to a fractional Brownian motion.
Also, if α ∈ (1,2), then n−1/α ∑n

t=1 Xt converges to a stable limit. As in the case
of LMSV processes (see Sect. 4.3.4), this can be concluded from a general theory
by Surgailis (2008).

4.3.7 Summary of Limit Theorems for Partial Sums

We summarize the main limit theorems. We consider centred linear process Xt =∑∞
j=0 aj εt−j such that, as x → ∞,

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α
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Table 4.2 Limits for partial sums with infinite moments

Partial sums—infinite moments

Sn(u) = ∑[nu]
t=1 Xt Tn(u) = ∑[nu]

t=1 (X
2
t −E(X2

1))

Linear processes n−1/αSn(1)
d→ cZ̃α(1)

if
∑ |aj | < ∞

n−(d+1/α)Sn(u) ⇒ cZ̃H,α(u)

if 0 < d < 1 − 1/α
(Theorem 4.15)

n−2/αTn(1)
d→ cZ̃α/2(1)

if d ∈ (0,1/α)
n−2dTn(u) ⇒ cZ2,H (u)

if d ∈ (1/α,1/2)
(Theorem 4.16)

Stochastic volatility n−1/αSn(u) ⇒ cZ̃α(u)

(Theorem 4.19)
n−2/αTn(u) ⇒ cZ̃α/2(u)

if d ∈ (0,2/α − 1/2)
n−(1/2+d)Tn(u) ⇒ cBH (u)

if d ∈ (2/α − 1/2,1/2)
(Theorem 4.19)

with α ∈ (1,2) and appropriate regularity conditions (that assure the existence of
the process) hold. When the sum of the squares X2

t is considered, then we assume
instead that α is in the range α ∈ (2,4).

Another class of processes considered above are stochastic volatility models with
infinite second moments. As a representative, we look at Xt = ξt exp(

∑∞
j=1 aj εt−j ),

where the sequences ξt and εt are mutually independent. We assume that

P(ξ1 > x) ∼ A
1 + β

2
x−α, P (ξ1 < −x) ∼ A

1 − β

2
x−α

with α ∈ (1,2) and E[ξ1] = 0. Again, if the sum of X2
t is considered, then this

tail behaviour is assumed to hold for α ∈ (2,4). Furthermore, the random variables
εt are assumed to be standard normal. We use the notation B(·) for a Brownian
motion on [0,1], BH(·) denotes a fractional Brownian motion on [0,1], Z2,H (·)
is the Hermite–Rosenblatt process on [0,1], and Z̃H,α is a linear fractional stable
motion with Hurst parameter H = d + 1/α. Furthermore, c is a generic constant.
We summarize the results for partial sums in Table 4.2. For simplicity, the slowly
varying functions are assumed to be constant.

4.4 Limit Theorems for Sample Covariances

In a preliminary analysis of a time series, sample autocovariances play a crucial
role. Moreover, limit theorems for quadratic forms can often be deduced from those
for sample covariances. In this section we therefore study the limiting behaviour of
sample covariances and, more generally, of multivariate functions applied to long-
memory sequences. Surprisingly, this theory is not well developed beyond Gaussian
(Rosenblatt 1979; Ho and Sun 1987, 1990; Arcones 1994) and linear processes with
finite (Hosking 1996; Horváth and Kokoszka 2008) and infinite moments (Kokoszka
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and Taqqu 1996; Horváth and Kokoszka 2008). Some recent results were devel-
oped for stochastic volatility models (Davis and Mikosch 2001; McElroy and Politis
2007; Kulik and Soulier 2012).

4.4.1 Gaussian Sequences

In what follows, all vectors are considered as column vectors. Consider a stationary
centred sequence of Gaussian vectors

Xt = (
X

(1)
t , . . . ,X

(q)
t

)T
(t ∈ Z)

with the marginal covariance matrix Σ and autocovariance function γi,j (k) =
E[X(i)

0 X
(j)
k ] (i, j = 1, . . . , q), and assume either

∞∑

k=−∞

∣∣γi,j (k)
∣∣< ∞ (4.111)

or the existence of a parameter d ∈ (0,1/2) and a slowly varying function Lγ such
that

γi,j (k) ∼ ai,j k
2d−1Lγ (k) (i, j = 1,2, . . . , q), (4.112)

where the constants ai,j are not all equal to zero. We will then use the same notation
γ (k) = k2d−1Lγ (k) as in the univariate case.

Example 4.18 Let q = 2 and assume that X̃(1)
t (t ∈N) and X̃

(2)
t (t ∈ N) are mutually

independent long-memory standard Gaussian sequences with the same covariances
γX(k) = γ

X̃
(k) = γ (k). Then (4.112) holds with a1,1 = a2,2 = 1 and a1,2 = a2,1

= 0.

Example 4.19 Let Xt (t ∈ N) be a stationary standard Gaussian sequence with co-
variance γX(k) = cγ k

2d−1. Fix s > 0, and let

(
X

(1)
t ,X

(2)
t

)T = (Xt ,Xt+s)
T (t ∈N).

Then

γ1,1(k) = γ2,2(k) = E[X0Xk] = γX(k),

so that a1,1 = a2,2 = 1. Furthermore,

γ1,2(k) = E[X0Xs+k] = γX(k + s) ∼ γX(k)

as k → ∞, so that a1,2 = 1. Similarly, a2,1 = 1.
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Example 4.20 Assume that X̃(1)
t and X̃

(2)
t (t ∈ N) are as in Example 4.18. Fix s > 0,

and let
(
X

(1)
t ,X

(2)
t

)T = (
X̃

(1)
t , ρX̃

(2)
t +

√
1 − ρ2X̃

(2)
t

)T
,

where ρ = γX(s). Note that for a fixed t , the vectors (X
(1)
t ,X

(2)
t )T in Example 4.19

and here have the same covariance matrix. Now, a1,1 = a2,2 = 1, whereas

γ1,2(k) = ργX(k),

so that a1,2 = ρ. Similarly, a2,1 = ρ.

After explaining basic structures of dependent Gaussian vectors, we turn our
attention to limit theorems. It turns out that limit theorems for multivariate Gaussian
vectors can be reduced to the case where the vectors have the identity covariance
matrix Iq . Therefore, we start with the case of independent components.

4.4.1.1 Independent Components

Consider the collection {X̃(l)
t , l ∈ N, t ∈ N} of long-memory Gaussian sequences.

For any l 
= k, the sequences X
(l)
t and X

(k)
t (t ∈) are assumed to be independent.

Recall the following notation from Sect. 4.2.3 (see also Sect. 4.1.3) the following
notation. Assume for a moment that Xt = ∑∞

j=0 aj εt−j is the Gaussian process,
where εt (t ∈ Z) are i.i.d. standard normal random variables. Consider the fol-
lowing random measures: Mε(·) is a Gaussian random measure with independent
increments, associated with the sequence εt , that is E[|dMε(λ)|2] = σ 2

ε /(2π)dλ,
dM0(λ) = √

2πdMε(λ),

dMX(λ) =
( ∞∑

j=0

aj e
−ijλ

)
dMε(λ) = A

(
e−iλ

)
dMε(λ) = a(λ)dM0(λ)

is the spectral random measure associated with a sequence Xt (t ∈ N). Recall further
that n1/2M0(n

−1A) is another Gaussian random measure with the same distribution
as M0(A). Then

L
1/2
f ((nλ)−1)

L
1/2
f (n−1)

|λ|−dn1/2 dM0
(
n−1λ

)

converges vaguely to WX(dλ) := |λ|−d dM0(λ).
As in Sect. 4.2.3, we can represent the Gaussian sequences X̃

(l)
t (t ∈ N) as (cf.

(4.28))

X̃
(l)
t =

∫ π

−π

eitλ dM
X̃(l) (λ) (t ≥ 1),
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where

dM
X̃(l) (λ) = a(l)(λ) dM

(l)
0 (λ),

and M
(l)
0 (·) (l ≥ 1) are independent Gaussian random measures. Furthermore,

|a(l)(λ)|2 = f
X̃(l) (λ), where f(l) = f

X̃(l) is the spectral density associated with the

sequence X̃
(l)
t (t ∈N). Also, n1/2M

(l)
0 (n−1A)

d= M0(A), and

L
1/2
f(l)

((nλ)−1)

Lf(l) (n
−1)

|λ|−dn1/2 dM
(l)
0

(
n−1λ

)
(4.113)

converges vaguely to a measure dW
X̃(l) (λ) = |λ|−d dM

(l)
0 (λ).

As in the alternate proof of Theorem 4.2 (see also the proof of Theorem 4.3), we
may write

n−1∑

t=0

X̃
(1)
t X̃

(2)
t =

∫ π

−π

∫ π

−π

ein(λ1+λ2) − 1

ei(λ1+λ2) − 1
a(1)(λ1)a

(2)(λ2) dM
(1)
0 (λ1) dM

(2)
0 (λ2)

=
∫ nπ

−nπ

∫ nπ

−nπ

Dn

(
(λ1 + λ2)/n

)

×
2∏

l=1

a(l)
(
λl

n

)
n1/2 dM

(1)
0

(
n−1λ1

)
n1/2 dM

(2)
0

(
n−1λ2

)

with

Dn(λ) = eiλn − 1

n(eiλ − 1)
1
{|λ| < πn

}
.

The functions above converge to

D(λ) = eiλ − 1

iλ
.

Thus, if

a(l)(λ) = al,lL
1/2
f

(
λ−1)|λ|−d (l = 1,2),

then we may conclude that for d ∈ (1/4,1/2),

n−2dL−1
f

(
n−1)

n−1∑

t=0

X̃
(1)
t X̃

(2)
t

d→ a1,1a2,2

∫

R2
D(λ1 + λ2)

2∏

l=1

1

|λl |d dM
(1)
0 (λ1) dM

(2)
0 (λ2).
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This convergence can be extended to nonlinear functionals. The following theorem
is adapted from Arcones (1994). For simplicity, we assume that all al,l in (4.112)
are one. (Recall from Example 4.18 that the terms ai,l , i 
= l, vanish.)

Theorem 4.22 Let X̃t = (X̃
(1)
t , . . . , X̃

(q)
t )T (t ∈ N), be a stationary sequence of

centred Gaussian vectors with the marginal covariance matrix Iq , such that (4.112)
holds. Let G : Rq → R be a function with the Hermite rank m = m̃(G). If m(1 −
2d) > 1, then

n−(1−m(1/2−d))L
m/2
f

(
n−1)

n∑

t=1

{
G(X̃t )−E

[
G(X̃1)

]}

d→
q∑

r1,...,rm=1

c̃r1,...,rmZ̃(r1,...,rm),H (1),

where

Z̃(r1,...,rm),H (1) =
∫

Rm

D(λ1 + · · · + λm)

m∏

l=1

1

|λl |rl dM
(r1)
0 (λ1) · · ·dM(rm)

0 (λm),

∫
Rm is the m-fold multiple Wiener–Ito integral, and

c̃r1,...,rm = 1

m!E
[
G(X̃1)

q∏

l=1

Hk(r1,...,rm)

(
X̃

(l)
1

)
]
,

where k(r1, . . . , rm) is the number of components among r1, . . . , rm that are equal
to l.

Again, as in (4.33), the limiting random variable Z̃(r1,...,rm),H (1) can be expressed
as

∫

Rm

eiu(λ1+···+λm) − 1

i(λ1 + · · · + λm)
dW

X̃(r1) (λ1) · · ·dWX̃(rm)(λm), (4.114)

where dW
X̃(r) (λ) = |λ|−d dM

(r)
0 (λ).

Example 4.21 Consider G(y1, y2) = H2(y2)H2(y2). Then (see Example 3.8) its
Hermite rank with respect to a vector X̃1 = (X̃

(1)
1 , X̃

(2)
1 )T of independent standard

normal random variables is m(G) = 4. Then

c1,1,2,2 = 1

4!E
[
G(X̃1)H2

(
X̃

(1)
1

)
H2

(
X̃

(2)
1

)] = 1

4! J̃
(
G,(2,2)

) = 4

4! .
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Also, this computation is invariant under permutation of indices (1,1,2,2). All
other coefficients cr1,r2,r3,r4 vanish. Note that k(1,1,2,2) = 2 for l = 1,2. Thus,

n−(1−4(1/2−d))L
4/2
f

(
n−1)

n∑

t=1

H2
(
X̃

(1)
t

)
H2

(
X̃

(2)
t

)

converges in distribution to

6 × 4

4!
∫

R4

eiu(λ1+···+λ4) − 1

i(λ1 + · · · + λ4)
dW

X̃(1) (λ1) dWX̃(1) (λ2) dWX̃(2) (λ3) dWX̃(2) (λ4).

This can be also seen by expanding

n∑

t=1

H2
(
X̃

(1)
t

)
H2

(
X̃

(2)
t

)

and using a representation for Hm(Xt), see the proof of Theorem 4.3. The conver-
gence is valid for d ∈ (1/4,1/2).

Example 4.22 Let G(y) = Hm(y). Then one can see that Zm,H (1) in Theorem 4.22
is exactly the Hermite–Rosenblatt random variable.

4.4.1.2 From Independent to Dependent Components

In general, let Xt = (X
(1)
t , . . . ,X

(q)
t )T (t ∈ N) be a long-memory Gaussian se-

quence with cross-autocovariance function γi,j (k) = E(X
(i)
0 X

(j)
k ) as in (4.112) and

marginal covariance matrix Σ . Then the statement of Theorem 4.22 remains valid
if we replace m = m̃(G) by m = m(G,X1), where m(G,X1) is the Hermite rank of
G with respect to the Gaussian vector X1; the spectral measures W

X̃(rl ) are replaced
by the so-called joint spectral measure

(
dWX(1) (λ1), . . . , dWX(q)(λq)

)
,

and

cr1,...,rm = 1

m!E
[
G(X1)

q∏

l=1

Hk(r1,...,rm)

(
X

(l)
1

)
]
.

We do not provide details here; the reader is referred to Arcones (1994). However,
we will consider the special case of the covariance matrix Σ since this leads to study
of sample covariances.

Example 4.23 Recall Example 3.13. We consider the function

G(Xt ,Xt+s) = epXt epXt+s .
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Then the Hermite rank is one. Thus, we have to evaluate cr1 , r1 = 1,2. We compute

c1 = E
[
G(Xt ,Xt+s)Xt

] = p
(
1 + γX(s)

)
ep

2(1+γX(s)).

Also, c2 = E[G(Xt ,Xt+s)Xt+s] = c1. Thus,

n−(d+1/2)L
−1/2
f

(
n−1)

n∑

t=1

epXt epXt+s
d→ 2c1

∫
D(λ)dWX(λ),

where WX is the spectral random measure associated with Xt (t ∈N), see (4.34).

4.4.1.3 From Independent to Dependent Components: Sample Covariances

We go back to the original problem of sample covariances. Our vectors Xt =
(X

(1)
1 ,X

(2)
t )T are as in Example 4.19:

(
X

(1)
t ,X

(2)
t

)T = (Xt ,Xt+s)
T (t ∈N).

We write

Xt =
∫ π

−π

eijλa(λ)dM0(λ) =
∫ π

−π

eijλ dMX(λ),

Xt+s =
∫ π

−π

eitλeisλa(λ)dM0(λ) =
∫ π

−π

eitλeisλ dMX(λ).

Recall now the proof of Theorems 4.2 and 4.3. Like in the proof of Theorem 4.3

n−1∑

t=0

(
XtXt+s −E(XtXt+s)

)

=
∫ π

−π

∫ π

−π

ein(λ1+λ2) − 1

ei(λ1+λ2) − 1

2∏

r=1

a(λr)e
isλ2 dM0(λ1) dM0(λ2)

=
∫ nπ

−nπ

∫ nπ

−nπ

Dn

(
(λ1 + λ2)/n

)
eisλ2/n

×
2∏

r=1

a

(
λr

n

)
n1/2 dM0

(
n−1λ1

)
n1/2 dM0

(
n−1λ2

)
. (4.115)

Note that, as n → ∞, eisλ2/n → 1. Therefore, omitting technical details, the limiting
behaviour of

n−2dL−1
f

(
n−1)

n−1∑

t=0

(
XtXt+s −E(XtXt+s)

)
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or, equivalently, of

n−2dL
−1/2
2

(
n−1)

n−1∑

t=0

(
XtXt+s −E(XtXt+s)

)

is the same as that of n−2dL
−1/2
2 (n−1)

∑n−1
t=0 (X

2
t −E(X2

1)), i.e. it does not involve s.
Hence, using Theorem 4.3 with m = 2, one can argue that for d ∈ (1/4,1/2),

n1−2dL
−1/2
2

(
n−1)(γ̂n(1)− γX(1), . . . , γ̂n(K)− γX(K)

)

d→ (
Z2,H (1), . . . ,Z2,H (1)

)
, (4.116)

where

γ̂n(s) = 1

n

n−s∑

t=0

XtXt+s (s = 1, . . . ,K)

is the sample covariance at lag s and H = d +1/2. Thus, the limiting random vector
has totally dependent components.

We extend this to arbitrary Hermite polynomials. Recall Example 3.15. One can
derive the equation (see Lemma 3.4 in Fox and Taqqu 1985)

Hm(Xt)Hm(Xt+s) = m!γm
X (s)+

m∑

r=1

(m− r)!
(
m

r

)2

γm−r
X (s)Kr(t, t + s), (4.117)

where

Kr(j, l) =
∫ π

−π

· · ·
∫ π

−π

eij (λ1+···+λr )+il(λr+1+···+λ2r )
2r∏

l=1

a(λl) dM0(λ1) · · ·dM0(λ2r ).

For m = 1, the formula reduces to the formula for XtXt+s , used in deriving (4.115).
For m = 2, the formula yields

2γ 2
X(s)+ 4γX(s)

∫ ∫
eijλ1+isλ2

2∏

r=1

a(λr) dM0(λ1) dM0(λ2)

+
∫

· · ·
∫

eij (λ1+λ2)+i(j+s)(λ3+λ4)
4∏

r=1

a(λr) dM0(λ1) · · ·dM0(λ4).

The important feature of decomposition (4.117) is that under the condition d ∈
(1/4,1/2) only the term with r = 1 will contribute. In other words, the limiting
behaviour of

γ̂n(s;Hm) := 1

n

n−s∑

t=1

Hm(Xt)Hm(Xt+s)
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is up to a constant the same for each m ≥ 1. Noting that (m − 1)!(m1
)2 = m!m and

using (4.117), we have for d ∈ (1/4,1/2),

n1−2dL−1
2

(
n−1)(γ̂n(1;Hm)−m!γm

X (1), . . . , γ̂n(K;Hm)−m!γm
X (K)

)

d→ m!m(
γm−1
X (1), . . . , γ m−1

X (K)
)
Z2,H (1), (4.118)

where H = d + 1/2.

4.4.2 Linear Processes with Finite Moments

In this section we consider second-order stationary linear processes Xt =∑∞
j=0 aj εt−j (t ∈ N), where εt (t ∈ Z) are i.i.d. random variables such that

E(ε1) = 0, E(ε2
1) = σ 2

ε = 1 and E(ε4
1) = η < ∞.

Let

γ̂n(s) = 1

n

n−s∑

t=0

XtXt+s .

It converges in probability to the population covariance

γX(s) = E(X0Xs) = σ 2
ε

∞∑

j=0

ajaj+s .

Classical results for weakly dependent sequences under E(ε4
1) < ∞ were obtained

in Anderson (1971, p. 478); see also Brockwell and Davis (1991, Proposition 7.3.3).
For long-memory linear processes, they were obtained in Hosking (1996) and
Horváth and Kokoszka (2008).

Theorem 4.23 Let Xt = ∑∞
j=0 aj εt−j (t ∈ N) be a linear process such that

E(ε1) = 0, E(ε2
1) = σ 2

ε = 1 and E(ε4
1) = η < ∞. Furthermore, assume that∑∞

j=0 a
2
j = 1.

(a) If aj ∼ La(j)j
d−1, d ∈ (0,1/4) or

∑∞
j=0 |aj | < ∞, then

n1/2(γ̂n(s)− γX(s)
) d→ N

(
0, ν2),

where the variance is

ν2 = (η − 3)γ 2
X(s)+

∞∑

k=−∞

(
γ 2
X(k)+ γ 2

X(k + s)
)
.
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(b) If aj ∼ La(j)j
d−1 and d ∈ (1/4,1/2), then

n1−2dL
−1/2
2 (n)

(
γ̂n(s)− γX(s)

) d→ Z2,H (1),

where Z2,H (u) is a Hermite–Rosenblatt process, L2(n) = 2C2L
2
γ (n),

C2 = [(
2(2d − 1)+ 1

)
(2d + 1)

]−1
,

and Lγ (n) is given in (4.39).

This theorem can be formulated in a multivariate setup. In the first case the lim-
iting distribution is multivariate normal (with dependent components):

n1/2(γ̂n(0)− γX(0), . . . , γ̂n(q)− γX(q)
) d→ (G0, . . . ,Gq), (4.119)

where (G0, . . . ,Gq) is a zero-mean Gaussian vector with covariance

E[GsGt ] = (η−3)γX(s)γX(t)+
∞∑

k=−∞

(
γX(k)γX(k+ s− t)+γX(k+ s)γX(k+ t)

)
.

(4.120)
In the second case, d ∈ (1/4,1/2), the limit has the form (Z2,H (1), . . . ,Z2,H (1)).

Proof For part (a), we use the standard truncation argument as illustrated in the
proof of Theorem 4.5. Let

Xt,K =
K∑

j=0

aj εt−j ,

γ̂ (K)
n (s) = 1

n

n−s∑

t=0

Xt,KXt+s,K, γ
(K)
X (s) = E[X0,KXs,K ] = σ 2

ε

K∑

j=0

ajaj+s .

First, since the sequence Xt,KXt+s,K is (K + s)-dependent, its convergence is
described by

n1/2(γ̂ (K)
n (s)− γ

(K)
X (s)

) d→ N
(
0, ν2

K

)
,

where

ν2
K = (η − 3)

(
γ
(K)
X (s)

)2 +
∞∑

k=−∞

[(
γ
(K)
X (k)

)2 + (
γ
(K)
X (k + s)

)2]
.

Since ν2
K → ν2 as K → ∞, we also have N(0, ν2

K)
d→ N(0, ν2). It suffices to verify

that for all δ > 0,

lim
K→∞ lim sup

n→∞
P
(∣∣n1/2(γ̂ (K)

n (s)− γ
(K)
X (s)

)− n1/2(γ̂n(s)− γX(s)
)∣∣> δ

) = 0.
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By Markov’s inequality, to do this, it suffices to verify that

lim
K→∞ lim

n→∞n · var
(
γ̂ (K)
n (s)− γ̂n(s)

) = 0.

In the case of Theorem 4.5 this was handled by introducing the random variable
X̄t,K = Xt −Xt,K . In our situation here this is not straightforward since

∞∑

j,j ′=0

ajaj+s −
K∑

j,j ′=0

ajaj+s 
=
∞∑

j,j ′=K+1

ajaj+s .

We have to verify that

lim
n→∞n · var

(
γ̂n(s)

) = ν2,

lim
K→∞ lim

n→∞n · var
[
γ̂ (K)
n (s)

] = ν2, lim
K→∞ lim

n→∞n · cov
(
γ̂ (K)
n (s), γ̂n(s)

) = ν2.

We prove the first part only. The expression is

n−1∑

k=−(n−1)

(
1 − |k|

n

)[
(η − 3)σ 2

ε

∑

j=0

ajaj+saj+kaj+k+s + γ 2
X(k)+ γ 2

X(k + s)

]
.

Then the relation follows by the dominated convergence theorem. For this,
one needs, in particular,

∑
k γ

2
X(k) < ∞, which is achieved if d ∈ (0,1/4) or∑∞

j=0 |aj | < ∞.
As for part (b), we use the following decomposition:

1

n

n∑

t=1

(
XtXt+s −E(XtXt+s)

)

= 1

n

n∑

t=1

∞∑

j=0

ajaj+s

(
ε2
t−j − σ 2

ε

)+ 1

n

n∑

t=1

∞∑

j=0

∞∑

l=0; l 
=j+s

aj alεt−j εt−l

=: Mn +Rn.

We may write the first part as Mn = n−1 ∑n
t=1 Yt , where Yt (t ∈ N) is the linear

process Yt = ∑∞
j=0 cj (εt−j −σ 2

ε ) with summable coefficients cj = ajaj+s . Indeed,
by the Cauchy–Schwarz inequality,

∑
|cj | ≤

(∑
a2
j

)1/2(∑
a2
j+s

)1/2
< ∞.

Thus, n1/2Mn converges to a normal distribution on account of Theorem 4.5.
As for the second part, we may recognize that it has almost the same form as the

therm Un,2 in (4.51), so that its limiting distribution is of Hermite–Rosenblatt type.
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If d ∈ (1/4,1/2), then

n1−2dL
−1/2
2 (n)Rn

d→ Z2,H (1).

Thus, the second part dominates if d ∈ (1/4,1/2).
Note that formally the limit in part (b) may depend on s. However, this is not the

case; a precise computation is given in Horváth and Kokoszka (2008). �

4.4.3 Linear Processes with Infinite Moments

Here we consider the same linear processes as in Sect. 4.4.2, however, instead of
assuming E[ε4

1] < ∞, we impose the regularly varying condition:

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) = A

1 + β

2
x−α, (4.121)

where A> 0, β ∈ [−1,1] and α ∈ (1,4). In particular, E[|ε1|] < ∞, E[ε4
1] = +∞.

There is a vast literature on sample covariances for weakly dependent linear pro-
cesses with regularly varying innovations. Kanter and Steiger (1974) considered
AR(p) models, Davis and Resnick (1985, 1986) considered processes with infinite
variance and with finite variance, but infinite fourth moment, respectively. In the
latter papers, the authors used point process techniques, as described in the section
on partial sums with infinite moments; see Sect. 4.3. This technique was success-
fully applied to bilinear processes with infinite moments (Davis and Resnick 1996;
Basrak et al. 1999) and to GARCH models (Davis and Mikosch 1998; Basrak et al.
2002)

As for long-memory linear processes, Kokoszka and Taqqu (1996) general-
ized the results by Davis and Resnick (1985) for α ∈ (1,2), whereas Horváth and
Kokoszka (2008) generalized Davis and Resnick (1986) for α ∈ (2,4). (Recall that
there is no long memory if α ∈ (0,1)).

Recall that the sample covariance is defined as

γ̂n(s) = 1

n

n−s∑

t=1

XtXt+s (s = 1, . . . , q).

The first result deals with α ∈ (1,2). There is no influence of long memory.

Theorem 4.24 Assume that Xt (t ∈ N) is a linear process and εt (t ∈ Z) are i.i.d.
random variables such that (4.121) holds with α ∈ (1,2) and E(ε1) = 0. If α ∈
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(1,2), then

n1−2/α(γ̂n(0), . . . , γ̂n(q)
)

d→ A2/αC
−2/α
α/2

( ∞∑

j=0

ajaj+0, . . . ,

∞∑

j=0

ajaj+q

)
Sα/2(1,1,0), (4.122)

where Sα(1,1,0) is a stable random variable.

Proof The proof is given in Davis and Resnick in the weakly dependent case (4.88);
however it applies to the long-memory situation as long as the conditions of Theo-
rem 4.24 are fulfilled. The reason for this is that under the condition

∑
j a

2
j < ∞,

the quantity
∑

j aj aj+s is also finite. We give a sketch of the proof for γ̂n(q) only.
Recall from Theorem 4.14 that

n∑

t=1

δ
c−1
n (Xt ,...,Xt−K)

⇒
∞∑

l=1

∞∑

r=0

δjl(ar ,ar−1,...,ar−K),

where jl are points of the limiting Poisson process, cn is such that P(|ε1| > cn) ∼
n−1, i.e. cn ∼ A1/αn1/α . The continuous mapping theorem yields

c−2
n

n∑

t=1

XtXt+q1
{|Xt | > cnγ or |Xt+h| > cnγ

}

d→
∞∑

l=0

∞∑

t=0

ajaj+qj
2
l 1

{|jl | > min
{
a−1
j , a−1

j+q

}
γ
}
.

As γ → 0, the latter random variable converges to
( ∞∑

j=0

ajaj+q

) ∞∑

l=0

j2
l

d=
( ∞∑

j=0

ajaj+q

)
Sα/2

(
C

−2/α
α/2 ,1,1

)
.

It remains to show that

lim
γ→0

lim sup
n→∞

P

(
c−2
n

∣∣∣∣∣

n∑

t=1

XtXt+q1
{|Xt | < cnγ, |Xt+q | < cnγ

}
∣∣∣∣∣> γ

)
= 0.

This probability is bounded by

n

c2
nγ

E
[∣∣X2

1

∣∣1
{|X1| < γcn

}]
.

We conclude the proof by applying Karamata’s theorem (Lemma 4.18) together
with the tail estimates in Lemma 4.19. �

The situation is different for α ∈ (2,4). We have a dichotomous behaviour, de-
pending on the interplay between tails and memory.
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Theorem 4.25 Assume that Xt (t ∈ N) is a linear process such that aj ∼ caj
d−1,

d ∈ (0,1/2) (so that γX(k) ∼ Lγ (k)k
2d−1, see (4.39)) and εt (t ∈ Z) are i.i.d. ran-

dom variables such that (4.121) holds with α ∈ (2,4) and E(ε1) = 0.

• If α ∈ (2,4) and 0 < d < 1/α, then (4.122) holds.
• If α ∈ (2,4) and 1/α < d < 1/2, then

n1−2dL
−1/2
2 (n)

(
γ̂n(s)− γX(s)

) d→ Z2,H (1),

where Z2,H (u) is a Hermite–Rosenblatt process, and L2(n) = 2!C2L
2
γ (n).

Proof Consider the decomposition Mn +Rn from the proof of Theorem 4.23:

1

n

n∑

t=1

(
XtXt+s −E(XtXt+s)

)

= 1

n

n∑

t=1

∞∑

j=0

ajaj+s

(
ε2
t−j − σ 2

ε

)+ 1

n

n∑

t=1

∞∑

j=0

∞∑

l=0; l 
=j+s

aj alεt−j εt−l

=: Mn +Rn.

Since the random variables εt have a finite variance, we again have

n1−2dL
−1/2
2 (n)Rn

d→ Z2,H (1)

if d ∈ (1/4,1/2) and n−1/2Rn = OP (1) if d ∈ (0,1/4). The first part, Mn, is the
partial sum of a linear process with summable coefficients and infinite variance, and
hence we can conclude the stable limit for Mn. �

4.4.4 Stochastic Volatility Models

Some recent results were developed for stochastic volatility models (McElroy and
Politis 2007, Kulik and Soulier 2012). In the latter paper, the authors show differ-
ences between LMSV and models with a leverage.

Consider a stochastic volatility model Xt = σtξt (t ∈ N) such that the sequences
σt (t ∈ N) and ξt (t ∈N) are independent. Assume that E(ξ1) = 0. We are interested
in sample covariances of Xt and X2

t . For the first one, we note that

γ̂n(s) = 1

n

n−s∑

t=1

ξt ξt+sσtσt+s

is a martingale w.r.t. sigma field generated by (σj , ξj ), j ≤ t . Therefore, if we as-
sume additionally E[ξ2

1 ] < ∞, then

√
nγ̂n(s)

d→ N
(
0, v2),
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where v2 = E[σ 2
0 σ

2
s ]E2[ξ2

1 ]. The more interesting situation happens in the second
case of squares. Assume that E[ξ4

1 ] < ∞. Then

1

n

n∑

t=1

(
ξ2
t ξ

2
t+sσ

2
t σ

2
t+s −E

[
ξ2
t ξ

2
t+s

]
E
[
σ 2
j σ

2
t+s

])

= 1

n

n∑

t=1

σ 2
t σ

2
t+s

(
ξ2
t ξ

2
t+s −E

[
ξ2
t ξ

2
t+s

])+E2[ξ2
1

]1

n

n∑

t=1

(
σ 2
t σ

2
t+s −E

[
σ 2
t σ

2
t+s

])

=: Mn +Rn.

Again, the first part is a martingale, and therefore it is OP (n
−1/2). The second part

is a possible long-memory contribution of the bivariate sequence σtσt+s (t ∈ N).
For example, if we consider σt = exp(pζt ), where ζt (t ∈ N) is the long-memory
Gaussian process as in Example 4.23, then for d ∈ (1/4,1/2) (refer to Example 4.23
for the precise notation),

n−(d+1/2)L
−1/2
f (n)Rn

d→ 2E2[ξ2
1

]
c1

∫
D(λ)dWζ (λ),

where Wζ is the spectral random measure associated with ζt (t ∈ N). Therefore,
since the second part Rn dominates, the limiting distribution for

n1−(d+1/2)L
−1/2
2

(
n−1)γ̂n(s)

is the same as for Rn. If on the other hand d ∈ (0,1/4), then both terms Mn and Rn

are of the same order.
This consideration can be extended to random variables ξt such that (4.121) holds

with α ∈ (2,4). Then, we have again a dichotomous behaviour: the limit can be ei-
ther a stable random variable or a Hermite–Rosenblatt random variable. The situ-
ation becomes complicated though when one considers models with leverage. We
refer to Davis and Mikosch (2001) and Kulik and Soulier (2012).

4.4.5 Summary of Limit Theorems for Sample Covariances

We consider a centred linear process Xt = ∑∞
j=0 aj εt−j such that either E(ε4

1) < ∞
or

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α

with α ∈ (1,4) and appropriate regularity conditions (that assure existence of the
process). In the table, Z2,H (·) is a Hermite–Rosenblatt process on [0,1], and S̃α/2
is an α/2-stable random variable. Furthermore, c is a generic constant. The main
results are summarized in Table 4.3.
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Table 4.3 Limits for sample covariances

Sample covariances

Finite moments Infinite moments

Linear processes n1/2(γ̂n(s)− γX(s))
d→ cN(0,1)

if d ∈ (0,1/4)

n1−2d (γ̂n(s)− γX(s))
d→ cZ2,H (1)

if d ∈ (1/4,1/2)
(Theorem 4.23)

α ∈ (1,2)

n1−2/α(γ̂n(s)− γX(s))
d→ cS̃α/2

α ∈ (2,4)

n1−2/α(γ̂n(s)− γX(s))
d→ cS̃α/2

if d ∈ (0,1/α)

n1−2d (γ̂n(s)− γX(s))
d→ cZ2,H (1)

if d ∈ (1/α,1/2)
(Theorems 4.25, 4.24)

4.5 Limit Theorems for Quadratic Forms

In this section we consider quadratic forms,

Qn(u) :=
[nu]∑

t,s=1

bt−s

{
G(Xt ,Xs)−E

[
G(Xt ,Xs)

]}
, Qn := Qn(1), (4.123)

where bk (k ∈ Z) is a sequence of constants, and G : R2 → R. We are interested in
asymptotic properties of Qn(u).

In the Gaussian case, such studies were conducted in Rosenblatt (1979), Fox
and Taqqu (1985, 1987), Avram (1988), Terrin and Taqqu (1990), Beran and Ter-
rin (1994), among others. For linear processes, classical limit theorems for weakly
dependent sequences are given in Brillinger (1969) and Hannan (1970) (and refer-
ences therein); also see Klüppelberg and Mikosch (1996). They follow directly from
limit theorems for sample covariances, proven in Theorem 4.23. For long memory
such studies were initiated by Giraitis and Surgailis (1990). The authors concluded
a weakly dependent behaviour, using approximation of a quadratic form by another
quadratic form with weakly dependent variables. Other results along these lines
were proven for instance in Horváth and Shao (1999) and Bhansali et al. (1997). The
case of the multivariate Appell polynomials is studied in Terrin and Taqqu (1991),
Giraitis and Taqqu (1997, 1998, 1999a, 2001), Giraitis et al. (1998). Kokoszka and
Taqqu (1997) discuss quadratic forms for infinite-variance processes. We also refer
to Giraitis and Taqqu (1999b) for an overview.

There are two principal applications of quadratic forms. First, we can derive the
limiting behaviour of the periodogram and the Whittle estimator (see Sect. 5.5 for
results and references), or we can use quadratic forms to test for possible changes
in the long-memory parameter (see e.g. Beran and Terrin 1996, Horváth and Shao
1999).
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4.5.1 Gaussian Sequences

In this section we shall assume that Xt (t ∈ Z) is a centred Gaussian sequence with
autocovariance function γX(k) = Lγ (k)k

2d−1. First, we exploit the relation between
sample covariances and quadratic forms. Using results obtained in Sect. 4.4, we
obtain a long-memory behaviour I (i.e. of “type I”) of Qn(u) for d ∈ (1/4,1/2)
directly from limit theorems for sample covariances. The result was proven in Fox
and Taqqu (1985) and is presented in Theorem 4.26. For d ∈ (0,1/4), we obtain
convergence with rate n−1/2, as proven in Fox and Taqqu (1985) as well. The result
is presented in Theorem 4.27 and is referred to as weakly dependent behaviour I.

These results are very similar to those for partial sums
∑[nu]

t=1 (X
2
t − 1). These

sums were studied in Sect. 4.2.3, and we recall the dichotomous behaviour: con-
vergence to the Hermite–Rosenblatt process or Brownian motion for d ∈ (1/4,1/2)
and d ∈ (0,1/4) respectively.

In Theorem 4.26 the limiting process will be degenerated if
∑

l bl = 0, as it
happens for Fourier coefficients. Another type of weakly dependent behaviour is
obtained if in addition to

∑
l bl = 0 the coefficients also decay to zero fast enough.

Then, the coefficients bl compensate for long memory, and Qn(·) converges at rate
n1/2 for all d ∈ (0,1/2) (weakly dependent behaviour II). Such results were proven
in Fox and Taqqu (1985, Theorem 3; 1987), Avram (1988), Beran and Terrin (1994)
(also Beran 1986). The authors use the method of cumulants; see the proof of Theo-
rem 4.28. On the other hand, if the coefficients bl do not compensate for long mem-
ory, then Terrin and Taqqu (1990) prove that the limiting process is neither Gaus-
sian nor Hermite–Rosenblatt (long-memory behaviour II). The authors use multiple
Wiener–Itô integrals; see the proof of Theorem 4.29.

4.5.1.1 Long Memory Behaviour I

Recall that the sample covariances for the sequence Xt (t ∈ Z) are defined by

γ̂n(s) = 1

n

n−|s|∑

t=1

XtXt+|s|.

Reorganizing indices, we may write

Qn(1) =
n∑

t,s=1

bt−s

(
XtXs −E(XtXs)

) = n
∑

|l|≤n−1

bl
(
γ̂n(l)− γX(l)

)
.

Recall that for d ∈ (1/4,1/2) (see (4.116)),

n1−2dL
−1/2
2 (n)

(
γ̂n(1)− γX(1), . . . , γ̂n(K)− γX(K)

) d→ (
Z2,H (1), . . . ,Z2,H (1)

)
.

(4.124)
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This, together with the continuous mapping theorem, implies that for any fixed in-
teger K > 0,

n−2dL
−1/2
2 (n)Qn,K(1) := n−2dL

−1/2
2 (n)n

∑

|l|≤K

bl
(
γ̂n(l)− γX(l)

)

d→
(

K∑

l=−K

bl

)
Z2,H (1).

Clearly, (
∑K

l=−K bl)Z2,H (1)
p→ (

∑∞
l=−∞ bl)Z2,H (1). Furthermore,

lim
K→∞ lim sup

n→∞
P
(
n−2dL

−1/2
2 (n)

∣∣Qn,K(1)−Qn(1)
∣∣> δ

) = 0

for each δ > 0. The reader is referred to Fox and Taqqu (1985, Theorem 1) for
details on the latter approximation and tightness. This leads to the following result,
which is formulated more generally in a functional form.

Theorem 4.26 Assume that Xt (t ∈ Z) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k

2d−1, d ∈ (1/4,1/2). If
∑∞

l=−∞ |bl | <
∞, then

n−2dL
−1/2
2 (n)Qn(u) = n−2dL

−1/2
2 (n)

[nu]∑

t,s=1

bt−s

(
XtXs −E(XtXs)

)

⇒
( ∞∑

l=−∞
bl

)
Z2,H (u),

where L2(n) = 2!C2L
2
γ (n) (cf. (4.22)), H = d + 1

2 , ⇒ denotes weak convergence,
and Z2,H (·) is the Hermite–Rosenblatt process.

This result has been proven in fact in a more general setting Fox and Taqqu
(1985). Consider

Qn(u;Hm) :=
[nu]∑

t,s=1

bt−s

{
Hm(Xt)Hm(Xs)−E

[
Hm(Xt)Hm(Xs)

]}
.

The same methodology as above works, given that we use (4.118) instead of (4.124):

n1−2dL
−1/2
2 (n)

(
γ̂n(1;Hm)−m!γm

X (1), . . . , γ̂n(K;Hm)−m!γm
X (K)

)

d→ m!m(
γm−1
X (1), . . . , γ m−1

X (K)
)
Z2,H (1).
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We conclude for d ∈ (1/4,1/2) and under the condition
∑∞

l=−∞ |bl | < ∞,

n−2dL
−1/2
A2

(n)Qn(1;Hm)
d→ m!m

( ∞∑

l=−∞
blγ

m−1
X (l)

)
Z2,H (1).

4.5.1.2 Weakly Dependent Behaviour I

Theorem 4.26 above requires d ∈ (1/4,1/2). What about d ∈ (0,1/4)? As in the
case of partial sums

∑[nu]
t=1 (X

2
t − 1), one obtains a weakly dependent behaviour, i.e.

a central limit theorem with scaling n−1/2 Fox and Taqqu (1985).

Theorem 4.27 Assume that Xt (t ∈ Z) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k

2d−1, d ∈ (0,1/4). Then

n−1/2Qn(u) = n−1/2
[nu]∑

t,s=1

bt−s

(
XtXs −E(XtXs)

) ⇒ σ0B(u),

where B(·) is a standard Brownian motion, and σ0 > 0.

The constant σ0 is given in a complicated form, and we refer to Fox and Taqqu
(1985) for a precise formula.

4.5.1.3 Weakly Dependent Behaviour II

In Theorem 4.26 it may happen that
∑∞

l=−∞ bl = 0 and hence the limit will be de-
generated. This can happen when bl are Fourier coefficients of a real-valued func-
tion g. Specifically, let

bl =
∫ π

−π

eilλg(λ)dλ =: 2πĝl, g(λ) ∼ cg|λ|−γ as |λ| → 0. (4.125)

To assure the existence of Fourier coefficients, we assume that γ < 1. Then, bl ∼
cbl

γ−1, cb = 2cgΓ (1 − γ ) sin(π γ
2 ). The following result was proven in Fox and

Taqqu (1987); see also Theorem 3 in Fox and Taqqu (1985) and Avram (1988).

Theorem 4.28 Assume that Xt (t ∈ Z) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k

2d−1, d ∈ (0,1/2). If

2d + γ < 1/2, (4.126)

then

n−1/2Qn(1)
d→ σQZ, (4.127)
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where

σ 2
Q := 16π3

∫ π

−π

(
f (λ)g(λ)

)2
dλ,

f = fX is the spectral density of Xt (t ∈ Z), and Z is a standard normal random
variable.

Let us comment on condition (4.126). First, it assures that σ 2
Q is finite. Second,

it means that the coefficients bl decay appropriately fast, to compensate for long
memory in Xt (t ∈ Z).

Proof We present a modified version of the proof in Avram (1988). Let Σ =
[γX(j − l)]nj,l=1 and B = [bj−l]n−1

j,l=0. Then,

Qn(1) = (X1, . . . ,Xn)B(X1, . . . ,Xn)
T

has the pth cumulant equal to (see Grenander and Szegö 1958, p. 218)

cump

(
Qn(1)

) = 2p−1(p − 1)!Trace(ΣB)p.

Note that

γX(j − l) =
∫ π

−π

ei(j−l)λfX(λ)dλ =: 2πf̂j−l ,

where f̂j−l is the Fourier coefficient of the spectral density f = fX . Furthermore,
B = 2π[ĝj−l]n−1

j,l=0. Recall that the trace of a matrix is the sum of its diagonal ele-
ments. We have

1

n
Trace(Σ) = 2π

n
(f̂0 + · · · + f̂0) = 2πf̂0 =

∫ π

−π

fX(λ)dλ.

Of course, fX is integrable given d < 1/2. Analogously, recall that the trace can
be written as a Hadamard product: Trace(ΣB) = ∑

j,l γX(j − l)Bj,l . Since f̂l ĝl is
summable, we then obtain

1

n
Trace(ΣB) = 4π2 1

n

n∑

j,l=1

f̂j−l ĝj−l = 4π2 1

n

n−1∑

l=−(n−1)

(
n− |l|)f̂l ĝl

≈ 4π2
n−1∑

l=−(n−1)

f̂l ĝl → 4π2
∞∑

l=−∞
f̂l ĝl

as n → ∞. By the Parseval identity and since g is real,

lim
n→∞

1

n
Trace(ΣB) = 4π2 1

2π

∫ π

−π

fX(λ)ḡ(λ) dλ = 2π
∫ π

−π

fX(λ)g(λ)dλ.
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On the other hand, if λ1, . . . , λn are the eigenvalues of ΣB , then we can write alter-
natively

lim
n→∞

1

n
Trace(ΣB) = lim

n→∞
1

n

n∑

j=1

λj → 4π2

2π

∫ π

−π

fX(λ)g(λ)dλ.

The matrix (ΣB)p has eigenvalues λ
p
j , j = 1, . . . , n. One can then argue analo-

gously that

lim
n→∞

1

n
Trace(ΣB)p = lim

n→∞
1

n

n∑

j=1

λ
p
j = (4π2)p

2π

∫ π

−π

(fX(λ)g(λ))
p dλ.

Thus,

cump

(
n−1/2Qn(1)

) = n−p/2cump

(
Qn(1)

) = 2p−1

np/2−1

(p − 1)!
n

Trace(ΣB)p.

Consequently, limn→∞ cump(n
−1/2Qn(1)) = 0 if p > 2, and

lim
n→∞ cum2

(
n−1/2Qn(1)

) = 16π3
∫ π

−π

(
fX(λ)g(λ)

)2
dλ,

which provides the limiting variance. Application of the method of cumulants (see
Theorem 4.1) then yields the result. �

4.5.1.4 Long-Memory Behaviour II

In contrast to Theorem 4.28, if the coefficients bl do not compensate for long mem-
ory (i.e., when (4.126) fails to hold), then we have the following result, due to Terrin
and Taqqu (1990). Recall that g(λ) ∼ cg|λ|−γ as λ → 0 (see (4.125)) and that M0(·)
is a random measure that appears in the spectral representation of the linear Gaus-
sian sequence; see Sect. 4.1.3.

Theorem 4.29 Assume that Xt (t ∈ Z) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k

2d−1, d ∈ (0,1/2). If

1/2 < 2d + γ < 1, (4.128)

then

n−(2d+γ )L−1
f

(
n−1)Qn(u) ⇒ cgZ(u), (4.129)

where

Z(u) =
∫ ∫

ψu(λ1, λ2)
1

λ1

1

λ2
dM0(λ1) dM0(λ2),
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and

ψu(λ1, λ2) =
∫

R

eiu(λ1−λ) − 1

i(λ1 + λ)

eiu(λ2+λ) − 1

i(λ2 − λ)
|λ|−γ dλ.

The limiting process is self-similar with H = 2d + γ ∈ ( 1
2 ,2), but neither Gaus-

sian nor Hermite–Rosenblatt.
We note that for γ = 0, we have bl = 1 for l = 0 and 0 otherwise. In this case the

result of Theorem 4.29 reduces to the asymptotic behaviour of
∑[nu]

t=1 (X
2
t − 1), see

Theorem 4.3.

Proof The proof is sketched here. It follows the same idea as in the case of par-
tial sums

∑n
t=1 Hm(Xt). Recall that the multiple Wiener–Itô integral “removes” the

diagonal (see Appendix A). We write

XtXs −E(XtXs) =
∫

[−π,π]2\{λ1=λ2}
eitλ1eisλ2a(λ1)a(λ2) dM0(λ1) dM0(λ2),

where |a(λ)|2 = fX(λ).
Thus,

Qn(1) =
n−1∑

t,s=0

∫ π

−π

ei(t−s)λg(λ)dλ

∫ π

−π

∫ π

−π

eitλ1eisλ2a(λ1)a(λ2) dM0(λ1) dM0(λ2)

=
∫ π

−π

∫ π

−π

a(λ1)a(λ2)

×
(∫ π

−π

ein(λ1+λ) − 1

ei(λ1+λ)

ein(λ2−λ) − 1

ei(λ2−λ)
g(λ)dλ

)
dM0(λ1) dM0(λ2)

= cgn
γ

∫ nπ

−nπ

∫ nπ

−nπ

a

(
λ1

n

)
a

(
λ2

n

)

×ψ1(λ1, λ2;n)n1/2 dM0
(
n−1λ1

)
n1/2 dM0

(
n−1λ2

)
,

where

ψ1(λ1, λ2;n) =
(∫ nπ

−nπ

Dn

(
λ1 + λ

n

)
Dn

(
λ2 − λ

n

)
g(λ)dλ

)
,

Dn(λ) = eiλn − 1

n(eiλ − 1)
1{|λ| ≤ πn}.

Thus, Qn(1) equals in distribution to

∫ nπ

−nπ

∫ nπ

−nπ

a

(
λ1

n

)
a

(
λ2

n

)
ψ1(λ1, λ2;n)dM0(λ1) dM0(λ2).
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Clearly, limn→∞ ψ1(λ1, λ2;n) = ψ1(λ1, λ2), and as in the alternative proof of
Theorem 4.2, one can argue that the convergence is uniform. Therefore, the same
method as in Theorem 4.2 applies, and the result (4.129) follows for u = 1. A proof
of functional convergence is omitted here. �

4.5.2 Linear Processes

As in the case of partial sums, the results on quadratic forms for Gaussian LRD
sequences have a counterpart for general linear sequences

Xt =
∞∑

j=0

aj εt−j (t ∈ Z), (4.130)

where
∑∞

j=0 a
2
j = 1, εt (t ∈ Z) are i.i.d. zero mean random variables with var(ε1) =

σ 2
ε = 1. We will assume that either

∑∞
j=0 |aj | < ∞ or aj ∼ La(j)j

d−1 with d ∈
(0,1/2).

Results for quadratic forms

Qn(u) =
[nu]∑

t,s=1

bt−s

(
XtXs −E(XtXs)

)

based on weakly dependent linear processes are classical (see Brillinger 1969; Han-
nan 1970; also see Klüppelberg and Mikosch 1996) and follow directly from limit
theorems for sample covariances, as proven before in Theorem 4.23.

For long memory, such studies had been initiated by Giraitis and Surgailis (1990).
The authors concluded a weakly dependent behaviour, similar to that of Theo-
rem 4.28, using an approximation of the quadratic form by another quadratic form
with weakly dependent variables. Other results along this line can be found in
Horváth and Shao (1999) and Bhansali et al. (1997).

When one replaces Qn(u) by

Qn(u;Pm1,m2) =
[nu]∑

t,s=1

bt−s

{
Pm1,m2(XtXs)−E

[
Pm1,m2(Xt ,Xs)

]}
,

where Pm1,m2 is a multivariate Appell polynomial, then limit theorems are very
complicated; see Terrin and Taqqu (1991), Giraitis and Taqqu (1997, 1998, 1999a,
2001). We refer to Giraitis and Taqqu (1999b) for an overview.
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4.5.2.1 Weakly Dependent Processes

Assume that
∑∞

j=0 |aj | < ∞. Recall Theorem 4.23 and the multivariate conver-
gence (4.120):

n1/2(γ̂n(0)− γX(0), . . . , γ̂n(K)− γX(K)
) d→ (G0, . . . ,GK),

where (G0, . . . ,GK) is a Gaussian vector. We apply a similar method as in the
proof of Theorem 4.26. There we concluded long-memory behaviour of quadratic
forms from long-memory behaviour of sample covariances. Here, we will conclude
short-memory behaviour of quadratic forms from short memory-behaviour of sam-
ple covariances.

We have

Qn(1) =
n∑

t,s=1

bt−s

(
XtXs −E(XtXs)

) = n
∑

|l|≤n−1

bl
(
γ̂n(l)− γX(l)

)
.

The continuous mapping theorem implies

n−1/2Qn,K(1) := n−1/2n
∑

|l|≤K

bl
(
γ̂n(l)− γX(l)

) d→ b0G0 + 2
K∑

l=1

blGl.

To apply Proposition 4.1, we need to show that

lim
K→∞ lim sup

n→∞
P

(√
n

∣∣∣∣∣

n−1∑

l=K+1

bl
(
γ̂n(l)− γX(l)

)
∣∣∣∣∣> δ

)
= 0.

This is straightforward since the correlations between γ̂n(l) (l ≥ 1) are absolutely
summable. Therefore, we may apply Chebyshev inequality in a suitable way to fin-
ish the proof. �

4.5.2.2 Long-Memory Sequences

The following result is a counterpart to Theorem 4.28.

Theorem 4.30 Assume that Xt (t ∈ N) is a linear process with long-range depen-
dence defined in (4.130), with spectral density fX(λ) ∼ cf |λ|−2d . Assume that the
coefficients bl are given by (4.125), i.e. bl ∼ cbl

γ−1. Let κ4 be the fourth cumulant
of ε1. If

2d + γ < 1/2, (4.131)

then

n−1/2Qn(1) = n−1/2
n∑

t,s=1

bt−s

(
XtXs −E(XtXs)

) d→ σQZ, (4.132)
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where Z is standard normal, and

σ 2
Q := 16π3

∫ π

−π

(
fX(λ)g(λ)

)2
dλ+ κ4

(
2π

∫ π

−π

fX(λ)g(λ)dλ

)2

.

Of course, if the innovations εt are normal, then κ4 = 0, and the result reduces to
Theorem 4.28.

Proof To prove this theorem, Giraitis and Surgailis (1990) do not use the method
of cumulants. Instead, they approximate Qn = Qn(1) by a weakly dependent se-
quence. A similar approach is also used in Bhansali et al. (1997), and we present a
sketch of the method there.

Write Qn,X = ∑n
t,s=1 bt−sXtXs and Qn,ε = ∑n

t,s=1 vt−sεt εs , where

vl = 2π
∫ π

−π

g(λ)fX(λ)e
ilλ dλ.

Since Qn,ε is a quadratic form of independent random variables, it is much easier to
derive its asymptotic distribution, namely (see Bhansali et al. 1997, Theorem 4.1):

1√
var(Qn,ε)

(
Qn,ε −E(Qn,ε)

) d→ N(0,1),

where

var(Qn,ε) = v2
0n · σ 2

ε + 2
n∑

j,l=1; j 
=l

v2
j−l

and σ 2
ε = var(εt ). Under our assumptions,

g(λ)fX(λ) ∼ cg|λ|−γ cf |λ|−2d

as λ → 0. Therefore, the coefficients vl satisfy

vl ∼ cvl
2d+γ−1, cv = 2cf cgΓ

(
1 − (2d + γ )

)
sin

(
π

2d + γ

2

)
.

Furthermore, Qn,X −Qn,ε = oP (1). Evaluation of this is quite challenging, and the
reader is referred to Giraitis and Surgailis (1990). Once this is verified, the conver-
gence of Qn,X follows from the convergence of Qn,ε −E(Qn,ε). �

The limiting behaviour of quadratic forms becomes more involved if one con-
siders nonlinear functionals. Recall the definition of bivariate Appell polynomials.
Redefine Qn as

Qn(u) = Qn(u;Pm1,m2) =
[nu]∑

t,s=1

bt−s

{
Pm1,m2(Xt ,Xs)−E

[
Pm1,m2(Xt ,Xs)

]}
.
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Table 4.4 Panorama of limits for quadratic forms of Gaussian sequences

Quadratic forms—Gaussian sequences (notation: g(λ) = 1
2π

∑
ble

−ilλ)

g(0) = ∑
l bl 
= 0∑ |bl | < ∞

d ∈ (0,1/2)
n−1/2Qn(u) ⇒ cB(u)

Theorem 4.27

d ∈ (1/4,1/2)
n−2dQn(u) ⇒ c Z2,H (u)

Theorem 4.26

g(λ) ∼ cg |λ|−γ

(λ → 0)
d ∈ (0,1/2) and 2d + γ < 1/2

n−1/2Qn(1)
d→ c B(1)

Theorem 4.28

g(λ) ∼ cg |λ|−γ

(λ → 0)
d ∈ (0,1/2) and 1/2 < 2d + γ < 1
n−(2d+γ )Qn(u) ⇒ cZ(u)

Theorem 4.29

Let B = [bj−l]nj,l=1 and Σ(m) = [γm
X (j − l)]nj,l=1. Also, let h∗m be the m-fold con-

volution of a function h. Giraitis and Taqqu (1997) showed that if

lim
n→∞

Trace(Σ(m1)BΣ(m2)B)

n
=

∫ π

−π

f
∗m1
X (λ)f

∗m2
X (λ)g2(λ) dλ < ∞, (4.133)

then n−1/2Qn converges in distribution to a normal random variable; however the
formula for the limiting variance is quite complicated. Condition (4.133) holds if

max
(
1 −m1(1 − 2d),0

)/
2 + max

(
1 −m2(1 − 2d),0

)/
2 + γ < 1/2. (4.134)

In particular, if m1 = m2 = 1, then this is equivalent to 2d + γ < 1/2, so that we
recover (4.131). On the other hand, if m1 = 1, m2 = 2, then the condition reads:
3d − 1 + γ < 1/2 if d ∈ (1/4,1/2); d + γ < 3/2 if d ∈ (0,1/4).

If (4.134) does not hold, then there is a variety of different possible limits, as
presented in Giraitis and Taqqu (1999b). The proofs involve the familiar method
based on the multiple Wiener–Itô integrals.

4.5.3 Summary of Limit Theorems for Quadratic Forms

We summarize the main results for quadratic forms of Gaussian sequences in Ta-
ble 4.4. We assume that Xt (t ∈ Z) is a centred Gaussian sequence with covari-
ance γX(k) ∼ cγ k

2d−1, d ∈ (0,1/2), so that a slowly varying function can be omit-
ted. In what follows, B(·) is a Brownian motion on [0,1], Z2,H (·) is a Hermite–
Rosenblatt process on [0,1], and Z(·) is the self-similar process with Hurst param-
eter H = 2d + γ , as in Theorem 4.29. Furthermore, c is a generic constant.
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4.6 Limit Theorems for Fourier Transforms and the
Periodogram

In this section we present some basic properties of the Discrete Fourier Transform
(DFT) and the periodogram. We analyse their second-order properties showing a re-
markable difference between weakly dependent and long-memory linear processes.
In particular, the DFT and the periodogram computed at Fourier frequencies are
asymptotically independent under short memory but asymptotically dependent un-
der long memory. To achieve asymptotic independence in the latter case, one has to
consider the DFT at appropriately high frequencies. The asymptotic dependence of
the DFT and the periodogram ordinates implies a different limiting behaviour of the
DFT under short and long memory respectively.

4.6.1 Periodogram and Discrete Fourier Transform (DFT)

For an observed second-order stationary time series X1, . . . ,Xn, let x̄ = x̄n =
n−1 ∑n

t=1 Xt and define by

γ̂X(k) = 1

n

n−|k|∑

t=1

(Xt − x̄)(Xt+|k| − x̄)
(|k| ≤ n− 1

)
,

γ̂X(k) = 0
(|k| ≥ n

)
,

the sample autocovariances. Also, define the (centred) periodogram by

I centred
n,X (λ) = 1

2π

∞∑

k=−∞
γ̂X(k)e

−ikλ = 1

2π

n−1∑

k=−(n−1)

γ̂X(k)e
−ikλ

= 1

2πn

∣∣∣∣∣

n∑

t=1

(Xt − x̄)e−ikλ

∣∣∣∣∣

2

.

If E[X1] = μ = 0, then I centred
n,X (λ) can be approximated by

In,X(λ) = 1

2πn

∣∣∣∣∣

n∑

t=1

Xte
−itλ

∣∣∣∣∣

2

.

For Fourier frequencies λj = 2πj/n (j = 1, . . . ,Nn; Nn = [(n−1)/2]), we have the
exact identity I centred

n,X (λj ) = In,X(λj ) since
∑n

t=1 e
−itλj = 0. Therefore, in most ap-

plications the non-centred periodogram In,X is used. The non-centred periodogram
can be written in terms of the discrete Fourier transform (DFT). Let

dn,X(λ) = 1√
2πn

n∑

t=1

Xte
itλ.

Then clearly In,X(λ) = |dn,X(λ)|2.
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4.6.2 Second-Order Properties of the Fourier Transform and the
Periodogram

4.6.2.1 Mean and Covariance of the DFT and the Periodogram

We are interested in a general expression for the expected value and covariance of
the DFT and the periodogram ordinates In,X(λj ), where λj are Fourier frequencies.

Lemma 4.22 Assume that Xt (t ∈ Z) is a second-order stationary sequence with
mean 0, covariance function γX and spectral density fX . Then E[dn,X(λj )] = 0,

E

(
In,X(λj )

fX(λj )

)
= 1

fX(λj )

∫ π

−π

Kn(λj − λ)fX(λ)dλ

and

E
[
dn,X(λj ) dn,X(λj )

] =
∫ π

−π

Kn(λ− λj )fX(λ)dλ, (4.135)

where

Kn(λ) = 1

2πn

(
sin(nλ/2)

sin(λ/2)

)2

is the Féjer kernel.

Proof The formula is classical (see Priestley 1981 p. 419), but we give a proof for
completeness. We have

E
[
In,X(λj )

] = 1

2πn

n∑

t=1

n∑

s=1

e−i(t−s)λj E(XtXs)

= 1

2πn

n−1∑

k=−(n−1)

(
n− |k|)e−ikλj γX(k)

= 1

2πn

∫ π

−π

(
n−1∑

k=−(n−1)

(
n− |k|)e−ik(λ−λj )

)
fX(λ)dλ.

Furthermore,

n∑

t=1

n∑

s=1

e−i(t−s)u =
n−1∑

k=−(n−1)

(
n− |k|)eiku

= 1

2πn

(
sin(nu/2)

sin(u/2)

)2

= Kn(u).
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Similarly, (4.135) follows from

E
[
dn,X(λj )dn,X(λj )

] = 1

2πn

n∑

t,s=1

e−i(t−s)λj γX(t − s)

= 1

2πn

n∑

t,s=1

e−i(t−s)λj

∫ π

−π

ei(t−s)λfX(λ)dλ

=
∫ π

−π

Kn(λ− λj )fX(λ)dλ. �

Note that the Féjer kernel is also defined by

Kn(λ) = 1

2πn

n∑

t,s=1

e−i(t−s)λ = 1

2πn

∣∣Dn(λ)
∣∣2,

where

Dn(λ) =
n∑

t=1

eitλ = ei(n+1)λ − eiλ

eiλ − 1

is (a version of) the Dirichlet kernel.

4.6.2.2 Weakly Dependent Sequences

Assume that Xt (t ∈ Z) is a second-order stationary weakly dependent time series
with mean 0. Then (see e.g. Brockwell and Davis 1991) the following holds:

• The periodogram is an asymptotically unbiased estimator of the spectral density:

E
[
In,X(λj )− fX(λj )

] = O
(
n−1) (4.136)

uniformly in j = 1, . . . , [n/2].
• The periodogram ordinates at Fourier frequencies are asymptotically uncorrelated

with correlations converging to zero uniformly:
∣∣cov

(
In,X(λj ), In,X(λl)

)∣∣ ≤ C1n
−1 (4.137)

with some finite constant C1.
•

(
In,X(λj1)

fX(λj1)
, . . . ,

In,X(λjk )

fX(λjk )

)
→
d

(Z1, . . . ,Zk), (4.138)

where Z1, . . . ,Zk are i.i.d. standard exponential random variables, and λj1,

. . . , λjk are distinct Fourier frequencies.
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On the other hand, it will be shown in a subsequent section that these properties
are no longer valid for linear time series with long memory.

Of course, the main tool to establish (4.137) and (4.138) is Lemma 4.22. Note
that (cf. Gradshteyn and Rhyzhik 1965, p. 414)

∫ π

−π
Kn(λj − λ)dλ = 1. Thus, if

Xt = εt is a centred i.i.d. sequence, then fε(λ) = σ 2
ε /(2π), and hence,

E

(
In,ε(λj )

fε(λj )

)
= 1

(
j = 1, . . . , [n/2]), (4.139)

independently of the chosen Fourier frequency λj . This justifies (4.137) for an i.i.d.
sequence. It should be mentioned, though, that this equality is valid at Fourier fre-
quencies only. Furthermore, if εt (t ∈ Z) are i.i.d. with mean zero and variance σ 2

ε ,
then we have, for distinct Fourier frequencies λk , λl (k 
= l),

E
[
dn,ε(λk) dn,ε(λl)

] = σ 2
ε

2π

n∑

t=1

eit (λk−λl) = 0. (4.140)

If in addition the random variables εt are standard Gaussian, then the discrete
Fourier transform at different Fourier frequencies is also jointly Gaussian and
hence independent. Consequently, the periodogram ordinates In,ε(λj ) = |dn,ε(λj )|2
computed at distinct Fourier frequencies are independent. Moreover, 2πIn,ε(λj )
(j = 1, . . . ,Nn; Nn = [(n− 1)/2]) have a standard exponential distribution. In par-
ticular,

E
[
2πIn,ε(λj )

] = 1, var
(
2πIn,ε(λj )

) = 1. (4.141)

If the random variables εt are not Gaussian, then dn,ε(λk), dn,ε(λl) are uncorrelated
(i.e. (4.140) still holds), but they are no longer independent. For the periodogram,
we have

cov
(
In,ε(λk), In,ε(λl)

) = κ4

4π2n
, (4.142)

where κ4 is the fourth cumulant. Note that in the Gaussian case κ4 = 0. Nevertheless,
the periodogram ordinates are asymptotically independent and have the standard
exponential distribution. This way one obtains (4.138).

4.6.2.3 Linear Long-Memory Sequences

Properties (4.136), (4.137) and (4.138) are not valid in the case of linear process
with long memory. The behaviour of the periodogram at frequencies converging to
zero can be formulated as follows (Künsch 1986; Hurvich and Beltrao 1993, 1994a,
1994b; Robinson 1995a):
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Theorem 4.31 Let Xt = ∑∞
j=0 aj εt−j be a second-order stationary linear process

and assume that fX(λ) ∼ cf |λ|−2d as |λ| → 0 with d ∈ (0,1/2). Define

μ(j ;d) = |2πj |2d 2

π

∫ ∞

−∞
sin2(λ/2)

(2πj − λ)2
|λ|−2d dλ.

Then for any fixed positive integer j ,

lim
n→∞E

[
In,X(λj )

fX(λj )

]
= μ(j ;d).

Proof We use Lemma 4.22. Using the assumption fX(λ) ∼ cf |λ|−2d , we have

E

(
In,X(λj )

fX(λj )

)
= 1

n

∫ nπ

−nπ

Kn

(
2πj

n
− λ

n

)
fX(λ/n)

fX(2πj/n)
dλ

≈
(

2πj

n

)2d 1

n

∫ nπ

−nπ

Kn

(
2πj − λ

n

)∣∣∣∣
λ

n

∣∣∣∣
−2d

dλ

= 1

n

∫ nπ

−nπ

Kn

(
2πj − λ

n

)∣∣∣∣
2πj

λ

∣∣∣∣
2d

dλ. (4.143)

It is easy to see that, as n → ∞, the functions

gn(λ) := 1

n
Kn

(
2πj − λ

n

)∣∣∣∣
2πj

λ

∣∣∣∣
2d

= 1

2πn2

sin2(
2πj−λ

2 )

sin2(
2πj−λ

2n )

∣∣∣∣
2πj

λ

∣∣∣∣
2d

converge pointwise to
∣∣∣∣
2πj

λ

∣∣∣∣
2d 2

π

sin2(λ/2)

(2πj − λ)2
.

Thus,

lim
n→∞E

(
In,X(λj )

fX(λj )

)
= |2πj |2d 2

π

∫ ∞

−∞
sin2(λ/2)

(2πj − λ)2
|λ|−2d dλ,

given that we can exchange limit with integration (which follows from Lebesgue
dominated convergence) and that integration over (−∞,−nπ) ∪ (nπ,∞) is negli-
gible. �

Detailed calculations can be found in Hurvich and Beltrao (1993). The authors
considered a more general spectral density fX(λ) = |λ|−2df∗(λ) with a smooth
function f∗. In fact, this computation is valid for d ∈ (−0.5,1.5); however, if
d > 0.5, fX is not a spectral density since the model is not stationary (Hurvich
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and Ray 1995). What is important here is that the normalized periodogram at
Fourier frequencies depends on both j and d , as opposed to the i.i.d. case described
in (4.139).

Furthermore, using the same argument as for the mean, Hurvich and Beltrao
(1993) argue that for any two integers l 
= k,

lim
n→∞E

[
dn,X(λk) dn,X(λl)√

fX(λk)fX(λl)

]
=: γw(l, k;d),

where

γw(l, k;d) = (−1)l+k+1|2πk|d |2πl|d 2

π

∫ ∞

−∞
sin2(λ/2)

(2πk − λ)(2πl + λ)
|λ|−2d dλ.

Furthermore, if the random variables Xt are Gaussian, then

lim
n→∞ cov

(
In,X(λj )

fX(λj )
,
In,X(λk)

f (λk)

)
= γ 2

w(j, k;d)+ γ 2
w(j,−k;d) (j 
= k),

lim
n→∞ var

(
In,X(λj )

fX(λj )

)
= 2γ 2

w(j, j ;d).

Thus, unlike the i.i.d. case, the DFTs and the normalized periodogram ordinates are
not asymptotically independent.

4.6.2.4 Refined Covariance Bounds for Long-Memory Sequences

One can obtain the following asymptotic independence of the DFT and periodogram
ordinates if the Fourier frequencies λj are not too close to zero.

Recall that fX(λ) ∼ cf |λ|−2d and let

d0
n,X(λ) = dn,X(λ)√

cf λ−2d

and γX(k) = cov(Xt ,Xt+k). Then the following holds.

Theorem 4.32 Let Xt = ∑∞
j=0 aj εt−j be a second-order stationary linear process

with

fX(λ) = ∣∣1 − exp(−iλ)
∣∣−2d

f∗(λ) ≈ |λ|−2df∗(λ) ≈ cf |λ|−2d (4.144)

and such that

fX(λ) = cf |λ|−2d +O
(
λρ−2d) (4.145)
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for some 0 < ρ ≤ 2 and − 1
2 < d < 1

2 . Let jn, kn be positive integer-valued sequences
such that jn/n → 0 and jn > kn. Then,

var
(
d0
n,X(λjn)

) = E
[
d0
n,X(λjn) d

0
n,X(λjn)

]

= 1 +O

(
log jn
jn

)
+O

((
jn

n

)ρ)
(4.146)

and

cov
(
d0
n,X(λjn), d

0
n,X(λkn)

) = O

(
log jn
kn

)
. (4.147)

Before we proceed with the proof, we comment on assumption (4.145). This is a
smoothness condition for f∗. For example, if ρ = 2, then f∗ is twice differentiable
in the neighbourhood of the origin. This type of condition is crucial in studying for
example semiparametric estimators of d .

Proof The essential arguments can be seen by considering (4.146). Condition
(4.145) implies

fX(λj )− cf λ
−2d
j = fX(λj )

[
1 −

(
fX(λj )

cf λ
−2d
j

)−1]

= fX(λj )

[
1 − 1

1 +O(λ
ρ
j )

]

= cf λ
−2d
j

[
1 +O

(
λ
ρ
j

)] = O
(
λ
ρ−2d
j

)
,

so that

fX(λj )

cf λ
−2d
j

= 1 +O

((
j

n

)ρ)
.

In a second step, one shows

E
[
dn,X(λj ) dn,X(λj )

] = fX(λj )+O

(
λ−2d
j

log j

j

)
, (4.148)

so that

E

[
dn,X(λj ) dn,X(λj )

fX(λj )

]
= 1 +O

(
log j

j

)
.

To show (4.148), we use the general formula for the covariance of DFT; see (4.135).
Since Kn is 2π -periodic with

∫ π

−π
Kn(u)du = 1, we obtain

E
[
dn,X(λj ) dn,X(λj )

]−fX(λj ) =
∫ π

−π

[
fX(λ)−fX(λj )

]
Kn(λ−λj ) dλ. (4.149)
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Now, for n large enough, λj is smaller than δ/2, so that

fX(λj ) ≤ cδλ
−2d
j ,

∣∣f ′
X(λj )

∣∣ ≤ cδλ
−2d−1
j

for a suitable finite constant cδ . Noting that Kn(u) = O(n−1) for δ/2 < u ≤ π , we
obtain
∫

|λ|≥δ

∣∣fX(λ)− fX(λj )
∣∣Kn(λ− λj ) dλ ≤ O

(
n−1) ·

[∫ π

−π

fX(λ)dλ+ 2πcδλ
−2d
j

]

= O
(
n−1)+O

(
n−1λ−2d

j

)
.

For 0 < d < 1
2 , this is of order O((j/n)1−2d · j−1) = o(j−1 log j). Similarly, for

− 1
2 < d < 1

2 , the overall order is O(n−1) = O((j/n)j−1) = o(j−1 log j). There-
fore, the only relevant range of integration in (4.143) is −δ ≤ λ ≤ δ. There are
two asymptotic poles that are approached asymptotically on the right-hand side of
(4.149): a pole in fX for λj → 0 and an asymptotic singularity in Kn(λ − λj ) for
λ = λj . The largest order is obtained for the integral over Δn = [ 1

2λj ,2λj ]. There,
we have

∫

λ∈Δn

∣∣fX(λ)− fX(λj )
∣∣Kn(λ− λj ) dλ

≤ max
λj /2≤λ≤2λj

∣∣f ′
X(λ)

∣∣
∫ 2λj

λj /2
|λ− λj |K(λ− λj ) dλ

︸ ︷︷ ︸
J (λj )

= O
(
λ−1−2d
j

) · J (λj ).

Since |Dn(u)| ≤ 2|u|−1 (0 < |u| < π ), we have
∫ cλj

−cλj

∣∣Dn(λ)
∣∣dλ = O(log j)

for any fixed c > 0. Moreover, limλ→λj |λ− λj |K(λ− λj ) = 0, and we obtain

|λ− λj |K(λ− λj ) ≤ (2πn)−1|λ− λj | · 2|λ− λj |−1 · ∣∣Dn(λ− λj )
∣∣

= π−1n−1
∣∣Dn(λ− λj )

∣∣,

and thus,

J (λj ) = O
(
n−1 log j

)
.

Putting the orders together, we have
∫

λ∈Δn

∣∣fX(λ)− fX(λj )
∣∣Kn(λ− λj ) dλ = O

(
λ−1−2d
j · n−1 log j

)

= O

(
λ−2d
j · log j

j

)
,

as required in (4.148). �
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4.6.3 Limiting Distribution

4.6.3.1 Fourier Transform and Periodogram for Long-Memory Sequences

Now, we will describe the limiting distribution for the DFT and the periodogram
ordinates. Let us write dn,X(λj ) = A(λj )+ iB(λj ), where

A(λ) = 1√
2πn

n∑

t=1

Xt cos(tλ), B(λ) = 1√
2πn

n∑

t=1

Xt sin(tλ).

Then In,X(λj ) = A2(λj ) + B2(λj ). Assume for simplicity that Xt is a Gaussian
process. It follows from (4.147) that for each fixed K ,

(
dn,X(λj )√
fX(λj )

, j = 1, . . . ,K

)

converges to a multivariate Gaussian distribution with dependent components and
covariance matrix [γw(l, k;d)]k,l=1,...,K . Furthermore, for each fixed j , the cosine
and the sine parts A(λj ) and B(λj ) are uncorrelated with different variances. There-
fore,

In,X(λj )

fX(λj )
= A2(λj )

fX(λj )
+ B2(λj )

fX(λj )
→
d

aχ2
1 (1)+ bχ2

1 (2), (4.150)

where a, b are constants, and χ2
1 (j), j = 1,2, are independent χ2 random vari-

ables with one degree of freedom. Thus, in contrast to the i.i.d. case, the normalized
periodogram ordinates have a different asymptotic distribution at each frequency.
Moreover, the limiting distribution has dependent components.

4.6.3.2 Sum of Periodogram Ordinates

Let φ be a deterministic, real-valued function and consider the partial sum

Sn,X(φ) =
Nn∑

j=1

φ
(
In,X(λj )

)
,

where Nn = [(n− 1)/2]. If Xt = εt are i.i.d., then (cf. (4.141))

var

(
Nn∑

j=1

2πIn,ε(λj )

)
≈ n(1 + κ4/2).

Also,

n−1/2
Nn∑

j=1

2πIn,ε(λj ) →
d

N(0,1 + κ4/2).
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These asymptotic results are obvious when εt are Gaussian since the periodogram
ordinates are independent. If φ = log and εt are Gaussian, then

var
(
log

(
2πIn,ε(λj )

)) = var
(
log

(
In,ε(λj )/fε(λj )

)) = var
(
log(Z)

)
,

where Z is standard exponential. We compute

var(logZ) =
∫ ∞

0
e−x(logx)2 dx −

[∫ ∞

0
e−x(logx)dx

]2

=
(
π2

6
+ η2

)
− (−η)2 = π2

6
. (4.151)

Therefore, in the Gaussian i.i.d. case,

n−1/2
Nn∑

j=1

log
(
2πIn,ε(λj )

) →
d

N
(
0,π2/6

)
.

In the long-memory case, the periodogram ordinates are asymptotically dependent,
so that these convergence results are not valid. However, for a proper choice of
asymptotically negligible constants cn,k , it is possible to obtain asymptotic nor-
mality of

∑
cn,kφ(In,X(λk)) regardless whether Xt is weakly or strongly depen-

dent. We will illustrate this in the context of semiparametric estimation of the long-
memory parameter d .

4.7 Limit Theorems for Wavelets

4.7.1 Introduction

In this section we discuss limit theorems for the discrete wavelet transform of long-
memory stochastic processes. We refer to Sect. 3.5 for basic definitions of wavelets.
At this point we recall that for a scaling function φ and a wavelet function ψ , dilated
and translated functions are defined as

φj,k(x) = 2j/2φ
(
2j x − k

)
, ψj,k(x) = 2j/2ψ

(
2j x − k

)
.

However, it is not necessary that the wavelet functions are constructed using the
multiresolution analysis, nor that they are orthogonal.

4.7.2 Discrete Wavelet Transform of Stochastic Processes

Assume first that Y(u) (u ∈R) is a continuous-time stochastic process. Define

dY
j,k =

∫

R

Y(u)ψj,k(u) du, aYj,k =
∫

R

Y(u)φj,k(u) du (j, k ∈ Z).
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In other words, dY
j,k and aYj,k are (random) wavelet coefficients of the continuous-

time process Y(u) (u ∈ R). If the continuous-time process has mean zero, then
clearly E(dj,k) = 0 for each j, k. For simplicity, we write in the following aj,k ,
dj,k instead of aYj,k , dY

j,k .
Assume further that Y(u) (u ∈ R) has stationary increments. For each fixed res-

olution level j , the process dj,k (k ∈ Z) is stationary. Indeed, we may verify, for
instance, that the marginal distributions are invariant under translation: the random
coefficient

dj,k+l =
∫

Y(u)ψj,k+l (u) du =
∫

Y(u+ l)ψj,k(u) du

=
∫ (

Y(u+ l)− Y(l)
)
ψj,k(u) du

is equal in distribution to

∫ (
Y(u)− Y(0)

)
ψj,k(u) du =

∫
Y(u)ψj,k(u) du = dj,k.

The same applies to the scaling coefficients aj,k = ∫
Y(u)φj,k(u) du. A more rigor-

ous proof of stationarity can be found in e.g. Houdré (1994). See also Masry (1993)
and Cambanis and Houdré (1995) for the DWT of stochastic processes.

If moreover, the process Y(u) is H -self-similar, then for each j , k,

dj,k
d= 2−j (H+1/2)d0,k.

Indeed, heuristically,

dj,k =
∫

Y(u)ψj,k(u) = 2j/2
∫

Y(u)ψ
(
2j u− k

)
du

= 2−j/2
∫

Y
(
2−j u

)
ψ(u− k) du

d= 2−j/22−jH

∫
Y(u)ψj,k(u)

= 2−j (H+1/2)d0,k.

Hence, if the continuous-time process Y(u) (u ∈ R) is self-similar with stationary
increments (H -SSSI), then

E
[
d2
j,k+l

] = 2−j (2H+1)E
[
d2

0,k

] = 2−j (2H+1)E
[
d2

0,0

]
.

This applies, in particular, to fractional Brownian motion. As we will see later, these
formulas can be used to define a wavelet-based estimator of the self-similarity pa-
rameter H .
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4.7.3 Second-Order Properties of Wavelet Coefficients

Now, we turn our attention to stationary processes X(u) (u ∈ R). For example,
X(u) = Y(u) − Y(u − 1) (u ∈ R) can be defined as increments of the H -SSSI pro-
cess considered above. Define analogously wavelet and scaling coefficients:

dj,k = dX
j,k =

∫

R

X(u)ψj,k(u) du,

aj,k = aXj,k =
∫

R

X(u)φj,k(u) du (j, k ∈ Z).

Then dj,k and aj,k (k ∈ Z) form stationary sequences. We verify for instance that
the marginal distributions are shift-invariant: for l ∈ Z, we have

dj,k+l =
∫ ∞

−∞
X(u)ψj,k+l (u) du = 2j/2

∫ ∞

−∞
X(u)ψ

(
2j u− (k + l)

)
du

= 2j/2
∫ ∞

−∞
X
(
v + 2−j l

)
ψ
(
2j v − k

)
dv

d= 2j/2
∫ ∞

−∞
X(v)ψ

(
2j v − k

)
dv

= dj,k.

Hence, we can analyse the covariance structure of the stationary sequence dj,k
(k ∈ Z). Assume that the process X(u) (u ∈ R) is centred, has the covariance func-
tion γX(s) (s ∈R) and the spectral density

fX(λ) =
∫ ∞

−∞
γX(s)e

−iλs ds.

Assume further that

fX(λ) = λ−2df∗(λ), λ → 0,

where limλ→0 f∗(λ) = cf ∈ (0,∞) and d ∈ [0,1/2). For example, X(u) could be
fractional Gaussian noise, i.e. increments of fractional Brownian motion with Hurst
parameter H = d + 1

2 .
One of the most intriguing properties of DWT is the decorrelation (whitening)

property. Specifically, if the wavelet ψ has M vanishing moments, then we will
argue below that

cov(dj,0, dj,k) = O
(
k−2M+2d−1) (k → ∞).

That is, the stationary sequence dj,k (k ∈ Z) is weakly dependent (i.e. has summable
covariances) if M ≥ 1. For example, the whitening property applies to fractional
Gaussian noise X(u) = BH(u)−BH(u− 1), where BH(u) is a fractional Brownian
motion with Hurst parameter H ∈ (1/2,1). This phenomenon is discussed for in-
stance in Flandrin (1992), Tewfik and Kim (1992), Abry et al. (1998) or Mielniczuk
and Wojdyłło (2007a).
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To justify the whitening property, recall that

ψ̂(λ) =
∫ ∞

−∞
ψ(x)e−iλx dx

is the Fourier transform of ψ . Hence,

ψ̂j,k(λ) =
∫ ∞

−∞
e−iλxψj,k(x) dx = 2j/2

∫ ∞

−∞
e−iλxψ

(
2j x − k

)
dx

= 2−j/2e−i2−j λk

∫ ∞

−∞
e−iλ2−j xψ(x)dx = 2−j/2e−i2−j λkψ̂

(
2−j λ

)
.

We can then evaluate covariance structure of the wavelet coefficients of the process
X(·) as

cov(dj,k, dj ′,k′)

=
∫ ∫

γX(v − u)ψj,k(v)ψj ′,k′(u) dudv

=
∫ ∞

−∞
fX(λ)ψ̂j,k(λ)ψ̂j ′,k′(λ) dλ

= 2−j/22−j ′/2
∫ ∞

−∞
fX(λ)ψ̂

(
2−j λ

)
ψ̂
(
2−j ′

λ
)
e−i2−j λkei2

j ′
λk′

dλ. (4.152)

This formula is crucial to evaluate the variance and covariance structure of the
wavelet coefficients for stochastic processes with long memory. A change of vari-
ables ω = 2−(j+j ′)/2λ,

λ = 2(j+j ′)/2ω,

and the form f (λ) = λ−2df∗(λ) of the spectral density yield

cov(dj,k, dj ′,k′)

=
∫ ∞

−∞
fX

(
2(j+j ′)/2ω

)
ψ̂
(
2(j

′−j)/2ω
)
ψ̂
(
2(j−j ′)/2ω

)
e−i2(j−j ′)/2ωkei2

(j ′−j)/2ωk′
dω

= 2−(j+j ′)d
∫ ∞

−∞
ω−2df∗

(
2(j+j ′)/2ω

)
ψ̂
(
2(j

′−j)/2ω
)
ψ̂
(
2(j−j ′)/2ω

)
e−irω dω,

where

r = ∣∣2(j−j ′)/2k − 2(j
′−j)/2ωk′∣∣.

When j, j ′ → −∞ (i.e. we are considering coarse resolution levels or “low fre-
quencies”), then 2(j+j ′)/2ω → 0, so that

f∗
(
2(j+j ′)/2ω

) ∼ f∗(0) = cf .
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This motivates the following definition:

Ψj,j ′
(
k, k′) :=

∫ ∞

−∞
ω−2dψ̂

(
2(j

′−j)/2ω
)
ψ̂
(
2(j−j ′)/2ω

)
e−irω dω. (4.153)

We note that if j 
= j ′, k 
= k′ and d = 0, then, due to orthogonality, the covariances
vanish if the wavelet family ψj,k is constructed using the MRA. As we will see
below, in the case of long memory, orthogonality of wavelets is not crucial at all.
The most important property is the number M of vanishing moments of the wavelet
function ψ .

To see this, let d > 0 and consider j = j ′ and k′ = 0. Then

cov(dj,0, dj,k) = 2−2jd
∫

ω−2df∗
(
2jω

)∣∣ψ̂(ω)
∣∣2e−ikω dω.

Again, as j → −∞, we approximate this integral as

cov(dj,0, dj,k) = 2−2jdf∗(0)
∫

ω−2d
∣∣ψ̂(ω)

∣∣2e−ikω dω.

Next, recall now from Sect. 3.5 that if the wavelet function ψ has M vanishing
moments, then

∣∣ψ̂(λ)
∣∣ = ∣∣ψ̂(M)(0)

∣∣|λ|M + o
(|λ|M)

(λ → 0).

Thus, if k is large enough, then we have to analyse the following integral in a neigh-
bourhood (−ε/k, ε/k) of the origin:

2−2jdcf
{
ψ̂(M)(0)

}2
∫ ε/k

ε/k

ω−2dω2Me−ikω dω.

The change of variables λ = kω yields the approximation

2−2jdcf
{
ψ̂(M)(0)

}2
k−2M+2d−1

∫ ε

−ε

λ2M−2de−iλ dλ.

The integral is finite as long as 2M − 2d > −1. Of course, in these computations
several simplifications and informal approximations are used. Nevertheless, we have
obtained heuristically the following decorrelation property.

Lemma 4.23 Assume that X(u) (u ∈ R) is a stationary centred process such that
its spectral density is given by fX(λ) = |λ|−2df∗(λ), λ ∈ R, d ∈ (0,1/2) and
limλ→0 f∗(λ) = cf ∈ (0,∞). Then for each j ∈ Z,

cov(dj,0, dj,k) = O
(
k−2M+2d−1) (k → ∞).

The same result carried over to series Xt (t ∈ Z) in discrete time, when trans-
formed into their continuous-time versions as discussed in the introduction to
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wavelets. In particular, the restrictions d < 1
2 and M ≥ 1 imply that we always have

cov(dj,0, dj,k) = o(k−2). This means that

∞∑

k=−∞

∣∣cov(dj,0, dj,k)
∣∣< ∞

and the wavelet coefficients dj,k (k ∈ Z) are weakly dependent. Moreover, if the
process X(u) (u ∈ R) is Gaussian, then the wavelet coefficients are Gaussian as
well. Also, in the Gaussian case we have

cov
(
d2
j,0, d

2
j,k

) = 2cov2(dj,0, dj,k),

so that these autocovariances converge as well.
As indicated above, a very useful property is also (4.153) because for large

enough scales, i.e. for j , j ′ → −∞,

cov(dj,k, dj ′,k′) ≈ 2−(j+j ′)df∗(0)Ψj,j ′
(
k, k′).

Thus, the weak dependence extends to the wavelet coefficients at different resolution
levels j 
= j ′.

To evaluate the variance of dj,k , set j = j ′, k = k′ in (4.152). Then

σ 2
j := var(dj,k) = 2−j

∫
fX(λ)

∣∣ψ̂
(
2−j λ

)∣∣2dλ

= 2−2jd
∫

|λ|−2df∗
(
2j λ

)∣∣ψ̂(λ)
∣∣2 dλ.

Again, we approximate f∗(2j λ) ≈ f∗(0) = cf (for j → −∞) and hence

var(dj,k) ≈ 2−2jdcf

∫
|λ|−2d

∣∣ψ̂(λ)
∣∣2 dλ =: 2−2jdcf Ψ (2d), (4.154)

where

Ψ (γ ) =
∫

λ−γ
∣∣ψ̂(λ)

∣∣2 dλ.

This heuristic approximation has been derived in Abry et al. (1998). More precise
bounds have been obtained in Lemma 1 in Bardet et al. (2000) or Theorem 1 in
Moulines et al. (2007a). A bound that requires a semiparametric assumption on the
spectral density similar to the one used for the DFT is for instance:

Lemma 4.24 Assume that for some d ∈ (0,1/2),

fX(λ) = λ−2d(f∗(0)+O
(|λ|ρ)).

Under appropriate regularity conditions, we have, as j → −∞,
∣∣var(dj,k)− 2−2jdcf Ψ (2d)

∣∣ ≤ 2−2jd2jρΨ (2d − ρ).
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Proof In the proof, we omit several details, referring to the papers mentioned above.
We note that

∣∣var(dj,k)− 2−2jdcf Ψ (2d)
∣∣ ≤ 2−2jd

∫
|λ|−2d

∣∣{f∗
(
2j λ

)− f∗(0)
}∣∣∣∣ψ̂(λ)

∣∣2 dλ.

Under the assumption

f∗(λ) = |λ|−2d(f∗(0)+O
(|λ|ρ)),

the bound is

2−2jd
∫

|λ|−2d{2j λ
}ρ∣∣ψ̂(λ)

∣∣2 dλ = 2−2jd2jρΨ (2d − ρ). �

4.8 Limit Theorems for Empirical and Quantile Processes

4.8.1 Linear Processes with Finite Moments

The empirical distribution function plays an essential role in statistical inference.
Many statistics that are concerned with inference for the marginal distribution of a
process can be written as functionals of the (marginal) empirical distribution func-
tion Fn(x). Therefore, in principle, their distribution follows “automatically”, once
the empirical distribution function is characterized asymptotically. Sometimes, the
functionals are quite involved however so that the derivation requires some addi-
tional work. Relatively simple functionals occur for instance in goodness-of-fit tests,
and even more directly in quantile estimation. For obvious reasons, limiting results
for quantile processes follow directly from those for the empirical distribution func-
tion.

Recall that for a stationary process Xt (t ∈ Z) with marginal distribution func-
tion FX(x) = P(X ≤ x), a simple nonparametric estimator of FX is the (marginal)
empirical distribution function

Fn,X(x) = 1

n

n∑

t=1

1{Xt ≤ x} (x ∈ R). (4.155)

Under very general assumptions (for example ergodicity of the sequence), Fn,X is a
uniformly consistent estimator of FX , which means that, as n → ∞,

sup
x∈R

∣∣Fn,X(x)− FX(x)
∣∣ →

p
0. (4.156)

Furthermore, if Xt (t ∈ Z) are i.i.d., then the classical Donsker invariance principle
states

√
nEn,X(x) := √

n
[
Fn,X(x)− FX(x)

] ⇒ B̃
(
FX(x)

)
, (4.157)
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where ⇒ denotes weak convergence in D[0,∞), and B̃(u) (u ∈ [0,1]) is a Brow-
nian bridge, i.e. B̃(u) = B(u) − uB(u) where B(u) is standard Brownian motion.
In other words, the appropriately normalized empirical processes En,X(x) converge
weakly to the time-changed Brownian bridge. An analogous result, with the same
normalizing rate but a different limiting process, holds for weakly dependent pro-
cesses under very general conditions. The situation is quite different, however, under
long memory. This can be seen as follows. The indicator function is a very specific
transformation of X, i.e. we consider

G(X;x) = 1{X ≤ x} − FX(x).

Let pX = F ′
X be the density of X. With the function y → G(y;x) we can associate

the Appell coefficients aapp,j (j ≥ 1):

aapp,j = (−1)j
∫

G(y;x)p(j)
X (y) dy

= (−1)j
[∫ x

−∞
p
(j)
X (y) dy − FX(x)

∫ ∞

−∞
p
(j)
X (y) dy

]

= (−1)j
∫ x

−∞
p
(j)
X (y) dy = (−1)jp(j−1)

X (x).

Furthermore, recall also (see Definition 4.1) that G∞(y) = E[G(X+ y)]. Applying
this to G(y;x) = 1{y ≤ x}, we obtain G∞(y) = P(X ≤ x − y), and hence,

G(1)∞ (0) = −pX(x − y)|y=0 = −pX(x).

Therefore, the theory for partial sums of subordinated long-memory processes (con-
sidered e.g. in Sects. 4.2, 4.3) will imply the limiting behaviour for the empirical
distribution Fn,X(x) function when x is fixed.

The asymptotic behaviour of the empirical process based on long-memory linear
processes with finite variance was studied in Dehling and Taqqu (1989b), Giraitis
and Surgailis (1999), Ho and Hsing (1996), Giraitis et al. (1997), Wu (2003) and
Csörgő et al. (2006), Csörgő and Kulik (2008a, 2008b). Here, we state the result un-
der the assumptions that are needed to apply the martingale expansion technique of
Ho and Hsing (1996) and Wu (2003), as considered in Theorem 4.9. When dealing
with linear processes, this technique seems to be superior to the Appell expansion.

Theorem 4.33 Let Xt (t ∈ Z) be a linear process Xt = ∑∞
j=0 aj εt−j with co-

efficients satisfying assumption (B1), i.e. aj ∼ La(j)j
d−1, d ∈ (0,1/2) (so that

γX(k) ∼ Lγ (k)k
2d−1). Also, assume that E(|ε1|4+γ ) < ∞ for some γ > 0 and that

pε , the density of the innovations, is such that

sup
x∈R

∣∣p(r)
ε (x)

∣∣+
∫ ∣∣p(r)

ε (x)
∣∣2 dx < ∞ (r = 0,1,2). (4.158)
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Then we have the uniform reduction principle

n
1
2 −dL

− 1
2

1 (n) sup
x∈R

∣∣Fn,X(x)− FX(x)+ pX(x)x̄
∣∣ →p 0. (4.159)

Consequently,

n
1
2 −dL

− 1
2

1 (n)
[
Fn,X(x)− FX(x)

] ⇒ pX(x)Z, (4.160)

where L1(n) = (d(2d + 1))−1Lγ (n), ⇒ denotes weak convergence in D(−∞,∞),
and Z is a standard normal random variable.

Remark 4.4 Condition (4.158) implies that the same holds for the density pX . In
particular, the conditions on p

(1)
X (x) and p

(2)
X (x) are required to control a remainder

term in the second-order expansion leading to (4.159). Note also that the assump-
tions of the theorem can be modified to E(|ε1|2+γ ) < ∞ and

∣∣E
[
exp(isε1)

]∣∣ ≤ C
(
1 + |s|)δ (4.161)

for some δ > 0, 0 < C < ∞. Condition (4.161) means in principle that pX is in-
finitely often differentiable. These assumptions were used in Giraitis and Surgailis
(1999). The authors were also able to deal with double-sided linear processes, how-
ever, at the cost of additional moment assumptions.

Remark 4.5 Under the conditions of Theorem 4.33, the finite-dimensional conver-
gence in (4.160) follows directly from Theorem 4.9 and Corollary 4.3. Tightness is
usually not proven directly, but rather follows from the reduction principle (4.159).
For the latter, we refer to Dehling and Taqqu (1989b) or Csörgö, Szyszkowicz and
Wang in the Gaussian case and to Ho and Hsing (1996) and Wu (2003) in the linear
case.

Proof We repeat the martingale approximation argument presented before The-
orem 4.9, adapting it to the indicator function G(y;x) = 1{y ≤ x}. Recall that
FK = σ(εj , j ≤ K) is the σ -algebra generated by εj (j ≤ K). We start with an
orthogonal expansion of the indicator function,

1{Xt ≤ x} − FX(x) =
L2
X(Ω)

∞∑

j=0

ζt (j),

where

ζt (j) = P(Xt ≤ x|Ft−j )− P(Xt ≤ x|Ft−j−1).

Note that ζt (0) = 1{Xt ≤ x} − P(Xt ≤ x|Ft−1). As before, the nice feature of this
expansion is that, for fixed t , ζt (j) (j = 0,1,2, . . .) is a martingale difference, so
that we indeed obtain orthogonality in the sense that for j 
= j∗,

〈
ζt (j), ζt

(
j∗)〉 = cov

(
ζt (j), ζt

(
j∗)) = 0.
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In more concrete terms, we have

P(Xi ≤ x|Ft−j ) = P

(
j−1∑

s=0

asεt−s ≤ x −
∞∑

s=j

asεt−s

)
= Fj (uj ),

where, given Ft−j , the argument

uj = x −
∞∑

s=j

asεt−s

is fixed (of course, uj depends on t as well, but this dependence is omitted). Simi-
larly,

Fj+1(uj+1) = P(Xt ≤ x|Ft−j−1) = P

(
j∑

s=0

asεt−s ≤ x −
∞∑

s=j+1

asεt−s

)
.

Note that uj+1 = uj − aj εt−j and

ζt (j) = Fj (uj )− Fj+1(uj+1).

A heuristic argument leads to the idea how one may obtain a linearization. We will
use the notation pj (u) = F ′

j (u) for the probability density function of
∑j−1

s=0 asεt−s

and Fε(y) = P(ε ≤ y). For Fj+1(uj+1), we can write

Fj+1(uj+1) =
∫

pj (y)Fε

(
qj (x, y)

)
dy

with

qj (x, y) = uj+1(x)− y

aj
.

For the sake of argument, assume that aj > 0 for j large enough. Since aj → 0
(as j → ∞), we have qj → ∞ and Fε(qj (x, y)) → 1 if y < uj+1(x). On the other
hand, qj → −∞ and Fε(qj (x, y)) → 0, if y > uj+1. Therefore, as j → ∞,

Fj+1(uj+1) ≈
∫ uj+1

−∞
pj (y) dy = Fj (uj+1).

Furthermore, using uj = uj+1 − aj εt−j with aj εt−j → 0 in probability as j → ∞,
we obtain in first approximation

Fj (uj ) ≈ Fj (uj+1)− pj (uj+1)aj εt−j ,

so that
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ζt (j) = Fj (uj )− Fj+1(uj+1)

≈ [
Fj (uj+1)− pj (uj+1)aj εt−j

]− Fj (uj+1)

= −pj (uj+1)aj εt−j .

Finally, as j → ∞, Fj converges to FX (and pj to fX) and uj+1 to x, so that we
may hope to obtain the following approximation:

Fn,X(x)− FX(x) = 1

n

n∑

t=1

[
1{Xt ≤ x} − FX(x)

]

≈ 1

n

n∑

t=1

( ∞∑

j=0

−pj (uj+1)aj εt−j

)

≈ −pX(x)
1

n

n∑

t=1

( ∞∑

j=0

aj εt−j

)
= −pX(x)x̄.

A precise computation establishes the rate in (4.159). �

Taking into account higher-order terms in the Taylor expansions above, a com-
plete orthogonal decomposition can be obtained:

Fn,X(x)− FX(x) = 1

n

n∑

t=1

∞∑

r=1

(−1)kF (r)
X (x)Vt,r (4.162)

with

Vt,r =
∞∑

0≤j1<j2<···<jr

r∏

s=1

ajs εt−js ,

already defined in (4.51).
Theorem 4.33 is remarkable not only because of the slower rate of convergence

under long memory, but also because the asymptotic process pX(x)Z (in x) is de-
generate. The entire sample path is determined by one normal variable Z and a
deterministic function pX(x). In other words, all sample paths have the shape of
pX(x)! This is in sharp contrast to the case of weak memory where the asymptotic
process is proportional to a Brownian bridge (see (4.157) above).

The convergence (4.160) can be extended further. In addition to (4.158), assume
that the condition holds with r = 3. Then the following holds:

• If d ∈ (1/4,1/2), then

n1−2dL
−1/2
2 (n)

[
Fn,X(x)− FX(x)+ pX(x)x̄

] ⇒ p
(1)
X (x)Z2,H (1), (4.163)

where Z2,H (1) is the Hermite–Rosenblatt random variable, and H = d + 1/2.
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• If d ∈ (0,1/4), then
√
n
[
Fn,X(x)− FX(x)+ pX(x)x̄

] ⇒ Z(x), (4.164)

where Z(·) is a Gaussian process.

Essentially, these convergence results are very similar to the case of nonlinear
functionals. The asymptotic behaviour of

Fn,X (x)− FX(x)+ pX(x)x̄

is determined by 1
2p

(1)
X (x)n−1Un,2, where

Un,2 = 2!
n∑

t=1

∞∑

0=j1<j2

aj1aj2εt−j1εt−j2

is defined in (4.51).
Furthermore, Theorem 4.33 can be extended to subordinated processes Yj =

G̃(Xt ). As expected from Theorem 4.4 (Gaussian case) or Theorem 4.8 (the lin-
ear case), the rate of convergence and the asymptotic distribution depends on the
Appell (or, equivalently, the power) rank of

G(X;x) = 1
{
G̃(X) ≤ x

}− FY (x).

The limiting process is a Hermite–Rosenblatt random variable multiplied by a de-
terministic function.

4.8.2 Applications and Extensions

4.8.2.1 Quantile Processes and Trimmed Sums

Weak convergence (4.160) for empirical processes based on LRD linear sequences
has immediate implications for sample quantiles. For y ∈ (0,1), define the quantile
function

QX(y) = F−1
X (y) = inf

{
x : FX(x) ≥ y

}
.

We will assume that FX and QX are differentiable, so that

QX(y) = inf
{
x : FX(x) = y

}
.

In an analogous manner, the empirical quantile function is defined as Qn,X(y) =
F−1
n,X(y) with Fn,X defined in (4.155). By definition, Qn,X is left-continuous. Noting

that for x = QX(y),

Q′
X(y) = 1

pX(x)
,
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(4.160) implies

L
− 1

2
1 (n)n

1
2 −d

[
Qn,X(y)−QX(y)

] ⇒ Z, (4.165)

where Z is a standard normal random variable, and the convergence is in D[a, b]
equipped with the sup-norm for 0 < a < b < 1. It is remarkable that the limiting
variable does not depend on y (this is of course due to the degenerate structure of
the limiting process in (4.160)). A detailed evaluation and further extensions can be
found in Ho and Hsing (1996), Wu (2005), Csörgő et al. (2006), Youndjé and Vieu
(2006), Csörgő and Kulik (2008a, 2008b) or Coeurjolly (2008a, 2008b).

The result for the quantile function can be extended to trimmed sums

Tn,h := 1

n− 2[nh]
n−[nh]∑

t=[nh]+1

Xt :n, (4.166)

where h ∈ (0,1/2), and X1:n ≤ X2:n ≤ · · · ≤ Xn:n are the order statistics. Then

L
− 1

2
1 (n)n

1
2 −dTn,h →d Z.

See Ho and Hsing (1996), Wu (2003) or Kulik and Ould Haye (2008).
Note, however, that the weak convergence (4.165) cannot be extended to (0,1).

Similarly, the result (4.166) does not hold for sums of extremes
∑[nh]

t=1 Xt :n or∑n
t=n−[nh] Xt :n. There, the limiting behaviour depends on an interplay between the

dependence parameter d and the heaviness of tails of the random variables Xt . We
refer to Kulik (2008a) for details. Similar issues will be discussed in Sect. 4.8.5 in
connection with tail empirical processes.

4.8.2.2 Goodness-of-Fit Test

An immediate consequence for statistical inference is for instance an unusual be-
haviour of the Kolmogorov–Smirnov statistic, namely

L
− 1

2
1 (n)n

1
2 −dTKS,n := L

− 1
2

1 (n)n
1
2 −d sup

x∈R

∣∣Fn,X(x)− FX(x)
∣∣ →

d
|Z| sup

x∈R
pX(x),

(4.167)
given that supx∈R pX(x) < ∞. Therefore, we may approximate p-values by

P(TKS,n > u) ≈ 2Φ̄

(
u

supx∈R pX(x)
L

1
2
1 (n)n

d− 1
2

)
, (4.168)

where u ≥ 0, Φ is the cumulative standard normal distribution, and Φ̄ = 1 − Φ .
Note in particular that for a given density, the value supx∈R pX(x) is known. Of
course, in general one has to estimate the dependence parameter d .

In contrast, for weakly dependent processes, the supremum of the transformed
Brownian bridge B̃ ◦ F over the interval [0,1] is required.
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4.8.3 Empirical Processes with Estimated Parameters

Consider the assumptions of Theorem 4.33. As mentioned previously, a direct
statistical application of the limiting behaviour of the empirical process is the
Kolmogorov–Smirnov statistic, as established in (4.167). As explained in (4.168),
this result can be used, in principle, to test whether the marginal distribution FX

of an observed series X1, . . . ,Xn is equal to a specific distribution F 0. Usually,
however, one needs to test whether FX belongs to a certain type of distributions,
instead of one fixed F 0. For instance, we would like to test whether FX is in a para-
metric family {FX(·, θ), θ ∈ R}, without specifying the parameter θ a priori. The
nuisance parameter θ has to be estimated from the observed series. Thus, instead of
TKS(θ) = TKS,n(θ), one considers

TKS(θ̂) = sup
x∈R

∣∣Fn,X(x)− FX(x; θ̂ )∣∣,

where θ̂ is a suitable estimate of θ . If the observations are i.i.d., then the rate of con-
vergence for both, the original Kolmogorov–Smirnov statistics TKS = TKS(θ) and
TKS(θ̂), is the same, though the variances of the limiting distributions are different.

To show what may happen in the long-memory case, let us consider a sequence
Yt = Xt + μ (t ∈ N). Clearly, FY (x) = FX(x;μ) = FX(x − μ). The empirical pro-
cesses

En,X(x) = Fn,X(x)− FX(x) = 1

n

n∑

t=1

1{Xt ≤ x} − FX(x)

and

En,Y (x;μ) := Fn,Y (x)− FY (x) = 1

n

n∑

t=1

1{Yt ≤ x} − FY (x)

are related by
En,Y (x;μ) = En,X(x −μ). (4.169)

On account of (4.160), L
− 1

2
1 (n)n

1
2 −dEn,Y (x) converges weakly to pX(x − μ)Z.

Now, consider instead

En,Y (x; μ̂) = Fn,Y (x)− FX(x; μ̂).
We will use the estimate μ̂ = ȳ, so that μ̂−μ = x̄. We then write

En,Y (x; μ̂) = Fn,Y (x)− FY (x)+ FY (x)− FX(x; μ̂)
= En,X(x −μ)+ FX(x;μ)− FX(x; μ̂).

Now, we apply Taylor’s expansion to obtain

FX(x;μ)− FX(x; μ̂) = pX(x −μ)(μ̂−μ)− 1

2
p
(1)
X (x −μ)(μ̂−μ)2 +Rn

= pX(x −μ)x̄ − 1

2
p
(1)
X (x −μ)x̄2 +Rn,
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where Rn is of a smaller order than x̄2. Furthermore, the reduction principle (4.159)
implies

n
1
2 −dL

− 1
2

1 (n) sup
x∈R

∣∣En,X(x −μ)+ pX(x −μ)x̄
∣∣ →p 0.

Thus,

n
1
2 −dL

− 1
2

1 (n)En,Y (x; μ̂)

= oP (1)− 1

2
n

1
2 −dL

− 1
2

1 (n)
(
p
(1)
X (x −μ)x̄2 +Rn

) = oP (1),

where the bound oP (1) is uniform in x given that supx∈R |p(2)
X (x)| < ∞. In other

words, the empirical processes En,Y (· ;μ) and En,Y (· ; μ̂) have different rates of
convergence. Surprisingly, plugging in the parameter estimate improves the rate of
convergence of the empirical process and therefore of goodness-of-fit tests such as
the Kolmogorov–Smirnov or Anderson–Darling tests (Beran and Ghosh 1991; Ho
2002; Kulik 2009). The precise convergence rates are described in the following
theorem.

Theorem 4.34 Assume that the conditions of Theorem 4.33 are fulfilled. Addition-
ally, assume that (4.158) holds with r = 3.

• If d ∈ (1/4,1/2) then

n1−2dL
−1/2
1 (n)En,Y (x; μ̂) ⇒ p

(1)
X (x −μ)

(
Z2 − 1

2
Z2

1

)
, (4.170)

where Z1 and Z2 are uncorrelated random variables, Z1 ∼ N(0,1), and Z2 =
Z2,H (1) is the Hermite–Rosenblatt variable.

• If d ∈ (0,1/4) then
√
nEn,Y (x; μ̂) ⇒ Z(x −μ), (4.171)

where Z(·) is a Gaussian process.

Remark 4.6 The limiting Gaussian process has a rather complicated covariance
structure. Nevertheless, the result (4.171) suggests that for d ∈ (0,1/4), we can
apply standard resampling techniques available for weakly dependent data, see
Chap. 10.

To shed some light on the results of Theorem 4.34, consider the case d ∈
(1/4,1/2). The expression for the limiting process follows essentially from the ap-
proximation

En,Y (x; μ̂) ≈ {
En,X(x −μ)+ pX(x −μ)x̄

}+ 1

2
p
(1)
X (x −μ)x̄2.
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Now, the result follows from (4.163) and the limiting behaviour of the sample mean.
Furthermore, the limiting behaviour may change if different estimators of the

mean μ are considered or if one considers a location-scale family Y = μ+ σX (see
Beran and Ghosh 1991; Ho 2002; Kulik 2009).

4.8.4 Linear Processes with Infinite Moments

As noticed above, finite-dimensional convergence of the appropriately scaled empir-
ical process En,X = Fn,X −FX(x) follows from the result for partial sums of subor-
dinated linear processes, by considering the function y → G(y;x) = 1{y ≤ x}. We
will apply the same idea to linear processes Xt = ∑∞

j=0 aj εt−j with i.i.d. symmetric
infinite variance innovations, i.e.

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α (4.172)

with β = 0. The general result mimics Theorem 4.17. We established there that for
0 < d < 1 − 1/α, we have

n−H

[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]} ⇒ A1/αC−1/α
α

ca

d
G(1)∞ (0)Z̃H,α(u),

where Z̃H,α(·) is a linear fractional stable motion with H = d + α−1 and G∞(y) =
E[G(X + y)]. Setting u = 1 and evaluating G∞(y) = P(X ≤ x − y), G(1)∞ (0) =
−pX(x), we may conclude that for a fixed x ∈ R,

n−H
n∑

t=1

(
1{Xt ≤ x} − P(X1 ≤ x)

) d→ A1/αC−1/α
α

ca

d
pX(x)Z̃H,α(1).

This can be extended to convergence of the process En,X(x) (x ∈ R), see Koul and
Surgailis (2001).

Theorem 4.35 Assume that Xt (t ∈ Z) is a linear process with aj ∼ caj
d−1,

0 < d < 1 − 1/α,

and εt (t ∈ Z) are i.i.d. symmetric random variables such that (4.89) holds with
α ∈ (1,2) and β = 0:

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α.

Furthermore, assume that the distribution Fε of ε1 is such that

∣∣F (2)
ε (x)

∣∣ ≤ C
(
1 + |x|)−α

,
∣∣F (2)

ε (x)− F (2)
ε (y)

∣∣ ≤ C|x − y|(1 + |x|)−α
,
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where |x − y| < 1, x ∈ R. Then

n1−HEn,X(x) ⇒ A1/αC−1/α
α

ca

d
pX(x)Z̃H,α(1), (4.173)

where Z̃H,α(1) is a symmetric α-stable random variable with scale η given by

η =
(∫ 1

−∞
{
(1 − v)d+ − (−v)d+

}α
dv

)1/α

.

4.8.5 Tail Empirical Processes

Let Xt (t ∈ Z) be a stationary sequence with marginal distribution FX . More
specifically, we shall assume that Xt is a stochastic volatility model considered in
Sect. 4.3.4. Recall that the model is Xt = ξtσt (t ∈ Z), where

σt = σ(ζt ), ζt =
∞∑

j=1

aj εt−j ,

and σ(·) is a positive function. It is assumed that ξt (t ∈ Z) is a sequence of i.i.d.
random variables such that

P(ξ1 > x) ∼ A
1 + β

2
x−α, P (ξ1 < −x) ∼ A

1 − β

2
x−α. (4.174)

Also, we assume that the sequences ξt (t ∈ Z) and εt (t ∈ Z) are mutually indepen-
dent. In particular (cf. Lemma 4.20), we have

P
(|X1| > x

) ∼ E
(
σα(ζ1)

)
P
(|ξ1| > x

)
,

provided that

E
[
σα+δ(ζ1)

]
< ∞ (4.175)

for some δ > 0. In Theorem 4.19 we saw that the limiting behaviour of partial sums
depends on an interplay between the long-memory parameter d and the tail index α.
Therefore, it is important to have reliable estimates of both parameters, d and α.
With the help of the tail empirical process it is possible to prove asymptotic normal-
ity of the so-called Hill estimator of α.

We note first that the tail behaviour of X implies that, as n → ∞,

Tn(x) := P
(
X1 > (1 + x)un|X1 > un

) = F̄X((1 + x)un)

F̄X(un)
→ T (x) := (1 + x)−α



4.8 Limit Theorems for Empirical and Quantile Processes 351

for any sequence of constants un → ∞. The tail empirical distribution functions
T̃n(s) and the tail empirical processes en(s) are defined by

T̃n(s) = 1

nF̄X(un)

n∑

t=1

1
{
Xt > un(1 + s)

}

and

en(s) = T̃n(s)− Tn(s)
(
s ∈ [0,∞)

)
. (4.176)

We note that for large values of un, only extreme observations are included in the
sum. Hence the name “tail empirical”.

Drees (1998, 2000) and Rootzén (2009) show that for weakly dependent ob-
servations Xt , scaled processes wn en converge weakly in D[0,∞) to a Gaussian
process w = B ◦ T , where B is a standard Brownian motion, and w2

n = nF̄X(un).
The situation changes in the long-memory case. The limiting behaviour depends on
an interplay between the memory parameter d and the behaviour of un. If un grows
sufficiently fast (that means that very few extremes are included in the tail empirical
distribution), then long memory does not influence the limit: wn en ⇒ w with, as
before, wn =

√
nF̄X(un) and w = B ◦ T . However, if un grows at an appropriately

slow rate, then long memory starts to play a role: wn en converge weakly to a de-
generate limiting process w(s) = CT (s)Zm,H (1) (where C is a constant), and the

scaling factor is different, namely wn = nm( 1
2 −d)L(n), where L is a slowly varying

function. The corresponding result is stated in Theorem 4.36.
In order to state the result, let us define the function Gn on (−∞,∞) × [0,∞)

by

Gn(x, s) = P(σ(x)ξ1 > (1 + s)un)

P (ξ1 > un)
. (4.177)

This function converges pointwise to T (s)G(x) = T (s)σα(x). Furthermore, the
Hermite coefficients Jn(m, s) of the function x → Gn(x, s) converge (as n → ∞)
to J (m)T (s), uniformly with respect to s ≥ 0, where J (m) is the m-th Hermite
coefficient of G. This implies that for large n, the Hermite rank mn(s) of Gn(·, s)
is not greater than the Hermite rank m of G. To avoid further complications, we
impose the assumption infs≥0 mn(s) = m for sufficiently large n.

Theorem 4.36 Consider the stochastic volatility model Xt = ξtσt (t ∈ Z) and as-
sume that (4.174) and (4.175) hold. Additionally, we assume that ζj (t ∈ Z) is a
Gaussian linear process with coefficients aj satisfying (B1), i.e. aj = La(j)j

d−1,
d ∈ (0,1/2) (so that γX(k) ∼ Lγ (k)k

2d−1). Let m ≥ 1 be the Hermite rank of the
function σα(·), and set H = d + 1/2. Assume that E[σ 2α+δ(X1)] < ∞.

(i) If nF̄X(un) → ∞ and n1−m(1−2d)Lm(n)F̄X(un) → 0 as n → ∞, then√
nF̄X(un) en converges weakly in D[0,∞) to the Gaussian process B ◦ T ,

where B is a standard Brownian motion.
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(ii) If nF̄X(un) → ∞ and n1−m(1−2d)Lm(n)F̄X(un) → ∞ as n → ∞, then

nm( 1
2 −d)L

−1/2
m (n)en(s) ⇒ J (m)T (s)

E[σα(ζ1)]Zm,H (1),

where ⇒ denotes weak convergence in D[0,∞), Zm,H (·) is a Hermite–
Rosenblatt process, and Lm(n) = m!CmL

m
γ (n).

The practical application of these limit theorems for en(·) is not quite straight-
forward. First of all, F̄X(un) is unknown. The second problem is that we would
like to center the tail empirical distribution function by T (s), not Tn(s). The second
question can be addressed by introducing the assumption

lim
n→∞wn‖Tn − T ‖∞ = 0, (4.178)

where

‖Tn − T ‖∞ = sup
t≥1

∣∣∣∣
P(X1 > unt)

P (X1 > un)
− t−α

∣∣∣∣,

and the scaling wn is either
√
nF̄X(un) or nm( 1

2 −d)L
−1/2
m (n) in cases (i) and (ii)

respectively. In other words, we impose a condition that makes the bias Tn − T

negligible. This is related to the so-called second-order regular variation (see Drees
1998; Kulik and Soulier 2011), but we omit details here. As an example, assume for
instance that

P(ξ1 > x) = cx−α
(
1 +O

(
x−β

))
(x → ∞)

for some constant c > 0. Then the second-order regular variation refers to the
second-order term x−β in the expansion for the tail of ξ1.

Now, suppose that the second-order assumption holds. Let X1:n ≤ · · · ≤ Xn:n be
the order statistics of X1, . . . ,Xn, define kn = nF̄X(un) and replace un by Xn−k:n
in the definition of the tail empirical distribution function. Implicitly, k = kn will
become a user chosen number of extreme statistics such that kn → ∞ and kn = o(n).
Thus, we define

T̂n(s) = 1

k

n∑

t=1

1
{
Xt >Xn−k:n · (1 + s)

}

and the practically computable processes

ê∗
n(s) = T̂n(s)− T (s)

(
s ∈ [0,∞)

)
.

It follows from Rootzén (2009) and Kulik and Soulier (2011) that

wn ê
∗
n(s) ⇒ w∗(s) = w(s)− T (s)w(1).

In particular, if wn =
√
nF̄X(un) = √

kn and w(s) = B(T (s)), then w∗(s) =
B̃(T (s)), where B̃ is a Brownian bridge. However, if wn = nm( 1

2 −d)L(n) and
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w(s) = CT (s)Zm,H (1), then w∗(s) = 0. This is a similar effect as for the stan-
dard empirical process with estimated parameters considered in Sect. 4.34. More
surprisingly, we have the following result for the process ê∗

n(s).

Theorem 4.37 Assume that the conditions of Theorem 4.36 are fulfilled. Assume
additionally that (4.178) holds. Then

√
k ê∗

n(s) converges weakly in D[0,∞) to the
Gaussian process B̃(T (s)), where B̃ is a standard Brownian bridge, regardless of
the behaviour of n1−m(1−2d)Lm(n)F̄X(un).

4.8.5.1 Application to Tail Index Estimation

One of the most important problems when dealing with heavy tails is to estimate the
tail index α. The best known (though in many ways not always reliable) method is
Hill’s estimator. Using the notation γ = α−1, the Hill estimator of γ is defined by

γ̂n = 1

k

k∑

j=1

log

(
Xn−j+1:n
Xn−k:n

)
.

Noting that

∫ ∞

0

T̂n(s)

1 + s
ds = 1

k

n∑

t=1

∫ ∞

0

1{s < Xt/Xn−k:n − 1}
1 + s

ds

= 1

k

n∑

t=1

log

(
1 + max

{
Xt

Xn−k:n
− 1,0

})
,

the estimator can also be written as

γ̂n =
∫ ∞

0

T̂n(s)

1 + s
ds.

Since γ = ∫ ∞
0 (1 + s)−1T (s) ds, we have

γ̂n − γ =
∫ ∞

0

ê∗
n(s)

1 + s
ds.

Thus we can apply Theorem 4.37 to obtain the asymptotic distribution of the Hill
estimator. Heuristically,

√
kn(γ̂n − γ ) →d

∫ ∞

0

B̃(T (s))

1 + s
ds.

This integral is a normal random variable with variance γ 2 (for details, see Kulik
and Soulier 2011). In summary, we have the following result.
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Corollary 4.5 Under the assumptions of Theorem 4.37,
√
k(γ̂n − γ ) converges in

distribution to a centred Gaussian distribution with variance γ 2.

This result can be used to construct confidence intervals for γ . It is known that
this result gives the best possible rate of convergence for the Hill estimator for i.i.d.
data (see Drees 1998). The surprising result is that it is possible to achieve the same
i.i.d. rates regardless of the dependence parameter d .

4.8.5.2 Proof of Theorem 4.36

Proof We follow a similar idea as in the proof of Theorem 4.19. Let E be the σ -field
generated by the Gaussian process ζt (t ∈ Z). Write

en(s) = 1

nF̄X(un)

n∑

t=1

{
1
{
Xt > (1 + s)un

}− P
(
Xt > (1 + s)un|E

)}

+ 1

nF̄X(un)

n∑

t=1

{
P
(
Xt > (1 + s)un|E

)− F̄X(un)
}

=: Mn(s)+Rn(s). (4.179)

The difference between (4.179) and the decomposition used in the proof of Theo-
rem 4.19 is that here the first part is the sum of conditionally independent random
variables, instead of being a martingale. The second part is a function of the Gaus-
sian sequence ζt (t ∈ N) and does not depend on the sequence ξt (t ∈N).

For the first part, it can be shown that, using the conditional independence,

logE
[
exp

(
it

√
nF̄X(un)Mn(0)

)∣∣E
] →P −t2/2.

The bounded convergence theorem implies

√
nF̄X(un)Mn(0) →d T (0)Z,

where Z is standard normal. Using the Cramer–Wald device, it is extended to

√
nF̄X(un)

(
Mn(s1),Mn(sl)−Rn(sl−1), l = 2, . . . ,K

)

→d

(
N
(
0, T (s1)

)
,N

(
0, T (sl)− T (sl−1)

)
, l = 2, . . . ,K

)
, (4.180)

where the normal random variables are independent. Computations are somewhat
involved, but the idea is relatively easy. Since the random variables are conditionally
independent, the characteristic function can be evaluated.
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Recall that

Gn(x, s) = P(σ(x)ξ1 > (1 + s)un)

P (ξ1 > un)

converges pointwise to T (s)G(x) = T (s)σα(x). Let us now write

n∑

t=1

(
Gn(ζt , s)−E

[
Gn(ζt , s)

])

=
n∑

t=1

∞∑

q=m

T (s)J (q)

q! Hq(ζt )+
n∑

t=1

∞∑

q=m

Jn(q, s)− T (s)J (q)

q! Hq(ζt )

=: T (s)R∗
n + R̃n(s)

with R∗
n = ∑n

t=1 G(ζt ). Convergence of T (s)R∗
n is concluded in the very same way

as in (4.102) and (4.103). For m(1/2 − d) < 1 and m(1/2 − d) > 1, we have, re-
spectively,

n−(1−m( 1
2 −d))L

−1/2
m (n)R∗

n ⇒ J (m)

m! Zm,H (1)

and

n−1/2R∗
n ⇒ vZ,

where v is a constant. The second part, R̃n(s) is of a smaller order than R∗
n , uni-

formly in s ≥ 0. Since

Rn(s) = P(ξ1 > un)

nF̄X(un)

n∑

t=1

(
Gn(ζt , s)−E

[
Gn(ζt , s)

])
, (4.181)

and P(ξt > un)/F̄X(un) → 1/E[σα(ζ1)], we conclude that for m(1/2 − d) < 1,

nm( 1
2 −d)L

−1/2
m (n)Rn(s) →d

J (m)T (s)

E[σα(ζ1)]Zm,H (1). (4.182)

This convergence is easily extended to multivariate convergence. If m(1/2−d) > 1,
then Rn(s) is uniformly negligible w.r.t. the conditionally independent part Mn(s).
Therefore, (4.182) and (4.180) yield the finite-dimensional convergence. For details
and proof of tightness, we refer to Kulik and Soulier (2011). �

4.8.5.3 Further Extensions

The results given above are extendable to stochastic volatility models with lever-
age. Instead of decomposing en(s) into a conditionally i.i.d. part Mn(s) and a long-
memory part Rn(s), we may apply the martingale decomposition as in the proof of
Theorem 4.19. For details, see Luo (2011).
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4.9 Limit Theorems for Counting Processes and Traffic Models

In this section we review limit theorems for counting processes and traffic models,
such as renewal reward, ON–OFF, shot-noise and infinite source Poisson processes,
considered in Sect. 2.2.4.

4.9.1 Counting Processes

Let Xj (j ≥ 1) be a stationary sequence of strictly positive random variables with
distribution F and finite mean. Let τ0 have the distribution F (0) and define

τj = τ0 +
j∑

k=1

Xk (j ≥ 1)

and

Sn(t) =
[nt]∑

j=1

Xj .

Note that the notation Xj and Sn(t) is different from what was used previously

(which was S(u) = ∑[nu]
t=1 Xt ). The reason is that here the natural time parameter is

in the upper limit [nt] of the sum.
Now, let N(t) be the associated counting process. Since

N(t) = max{k ≥ 0 : τk−1 ≤ t} = min{k ≥ 0 : τk > t},
one can view N(t) as the generalized inverse of the partial sums process Sn(t).
Consequently, if the limiting process for partial sums is Gaussian, Lemma 4.7 will
imply the weak convergence of N(t) from that of Sn(t). In other words, we apply
Lemma 4.7 to

• yn(t) = Sn(t)/(nμ),
• y−1

n (t) = Nn(t)/n, where Nn(t) = N(nμt).

If c−1
n (Sn(t)/(nμ)− t) converges to a process S(t) with some constants cn, then

c−1
n (N(nμt)/n− t) converges to −S(t). The same procedure applies to any station-

ary counting process associated with a stationary sequence Xj (j ∈ N) with finite
mean.

Example 4.24 Recall Theorem 4.5. There, Xj (j ∈ N) is a linear process Xj =∑∞
k=0 akεj−k with summable coefficients ak and i.i.d. centred innovations εj

(j ∈ Z). We can reformulate Theorem 4.5 to accommodate μ = E(X1) 
= 0. We
have

n−1/2
[nt]∑

j=1

(Xj −μ) ⇒ vB(t)
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in D[0,1], where v2 = σ 2
X +2

∑∞
k=1 γX(k), and B(t) (t ∈ [0,1]) is a standard Brow-

nian motion. Equivalently,

Sn(t)/(nμ)− t

n−1/2
⇒ vμ−1B(t),

so that S(t) = vμ−1B(t) and cn = n−1/2. Application of Lemma 4.7 yields

n−1/2(N(nμt)− nt
) ⇒ vμ−1B(t).

However, we cannot extend this to the situation of Theorem 4.6. The long-range
dependent linear process must have zero mean and hence cannot be strictly positive.

Example 4.25 Recall Example 4.12. The model considered there is Xj = ξjσ (ζj ),
where ξj (j ≥ 1) are strictly positive random variables with mean E(ξ1), and ζj is a
centred Gaussian sequence with covariance γζ (k) ∼ Lγ (k)k

2d−1, d ∈ (0,1/2). We
established in Example 4.12 that for G(x) = x and σ(x) = exp(x), we have

n−(d+1/2)L
−1/2
1 (n)

[nt]∑

j=1

(
Xj −E(X1)

) ⇒ J (1)BH (t)

weakly in D[0,1], where BH(·) is fractional Brownian motion with H = d + 1/2
and J (1) = E(ζ1 exp(ζ1))E(ξ1). Hence, for the inverse processes, we obtain

n−HL
−1/2
1 (n)

(
N(nμt)− nt

) ⇒ J (1)μ−1BH(t).

Thus, long memory in the interpoint distances generates long-memory-type be-
haviour in the functional central limit theorem for the counting process.

Let now Xj (t ∈ N) be an i.i.d. sequence of strictly positive random variables
such that

P(X1 > x) ∼ Ax−α (A > 0, α > 1).

In Sect. 4.3 we saw that the appropriately centred and normalized Sn(t) converges
to an α-stable Lévy process with independent increments (cf. (4.80)):

c−1
n

[nt]∑

j=1

(Xj −μ) ⇒ C−1/α
α Zα(t),

where cn = inf{s : P(X > x) ≤ n−1}, cn ∼ A1/αn1/α , and Zα(t) is an α-stable Lévy

motion such that Zα(1)
d= Sα(1,1,0). The limiting process has discontinuous sam-

ple paths, and hence Lemma 4.7 is not applicable. However (see Theorem 7.3.2 in
Whitt 2002), one can generalize Vervaat’s result to cover the case of limiting pro-
cesses with discontinuous sample paths. One has to mention though that although
Sn(t) may converge in the standard Skorokhod topology, the same does not apply
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Table 4.5 Limits for
counting processes—tails vs.
dependence

Counting processes

Weak dependence Strong dependence

Interarrival times
with finite variance

Brownian motion
(Example 4.24)

fBm
(Example 4.25)

Interarrival times
with infinite variance

Lévy process
(Example 4.26)

fBm or Lévy process
(Example 4.27)

to the counting process. One has to consider a weaker M1 topology (see comments
on p. 235 as well as Sects. 13.6 and 13.7 in Whitt 2002). Here, we just illustrate
finite-dimensional convergence.

Example 4.26 In the situation described above,

c−1
n

(
N(nμt)− nt

) fidi→ −C−1/α
α μ−1Zα(t). (4.183)

Thus, a heavy-tailed distribution of interarrival times Xj generates Long-Range
count Dependence (LRcD) in the counting process (see Example 2.5). On the other
hand, the limiting process has independent increments. Furthermore, in Example 2.5
we found out that var(N(t)) is proportional to t2H (as t → ∞) with H = (3−α)/2.
On the other hand, n−H (N(nμt)−nt) converges to 0 in probability. Hence, N(·) is
an example of a second-order stationary process where its standard deviation does
not yield an appropriate scaling.

Example 4.27 Recall Example 4.17. If d + 1/2 < 1/α, then by Whitt’s approach

n−1/α(N(nμt)− nt
) fidi→ −A1/αC−1/α

α

{
E
(
σα

1

)}1/α
μ−1Zα(t). (4.184)

If however d + 1/2 > 1/α, we can use Vervaat’s Lemma 4.7 to conclude

n−(d+1/2)L
−1/2
1 (n)

(
N(nμt)− nt

) ⇒ J (1)E(ξ1)μ
−1BH(t). (4.185)

We summarize our findings in Table 4.5. It should be noted that in the case of
strong dependence the results are just for the case in Examples 4.25, 4.27, not for
all long-memory models.

4.9.2 Superposition of Counting Processes

Let N(m)(t) (t ≥ 0, m = 1, . . . ,M) be independent copies of a stationary renewal
process N(t) associated with a renewal sequence Xj (j ∈ N). We assume that, as
x → ∞,

F̄ (x) = P(X1 > x) ∼ x−αL(x) (1 < α < 2),
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and that P(X̃0 > x) = μ−1
∫ ∞
x

F̄ (u) du, where μ = E[X1] = λ−1. Application of
Lemma 4.6 yields

lim
M→∞

1

M1/2

M∑

m=1

(
N(m)(t)− λt

) ⇒ G(t), (4.186)

where G(·) is a Gaussian process with stationary increments and the same covari-
ance structure as N(t). In particular (see Example 2.5),

var
(
G(t)

) = var
(
N(t)

) ∼ 2λ

(α − 1)(2 − α)(3 − α)
t3−αL(t) =: σ 2

0 t
3−αL(t).

Indeed, to apply Lemma 4.6, we verify that for t > s,

var
(
N(t)−N(s)

) = var
(
N(t − s)

) ∼ C(t − s)2H

and 2H > 1. Also, the second condition of Lemma 4.6 is easily verified.
We recognize that the limiting process has up to a constant the same variance

as a fractional Brownian motion with the Hurst index H = (3 − α)/2. Now, let us
consider the time scaled process N(m)(T t). For a fixed T > 0, application of (4.186)
yields

lim
M→∞

1

M1/2

M∑

m=1

(
N(m)(T t)− λT t

) ⇒ G(T t) = σ0BH(T t)

and var(G(T t)) ∼ σ 2
0 T

2H t2HL(T t) ∼ σ 2
0 T

2H t2HL(T ) as T → ∞. Thus, applying
H -self-similarity of fractional Brownian motion, we have

lim
T→∞

1

T H
lim

M→∞
1

M1/2

M∑

m=1

(
N(m)(T t)− λT t

) ⇒ σ0BH(t).

On the other hand, (4.183) yields

lim
T→∞a−1

T

(
N(m)(T t)− λT t

) fidi→ −μ−1C−1/α
α Z(m)

α (λt) (m = 1, . . . ,M),

where Z(m)(·) (m = 1, . . . ,M) are independent Lévy processes, and aT ∼ T 1/α (T ).
Consequently, since the sum of independent Lévy processes yields a Lévy process,
we obtain

lim
M→∞

1

M1/α
lim

T→∞a−1
T

M∑

m=1

(
N(m)(T t)− λT t

) fidi→ −λ1+1/αC−1/α
α Zα(t),

where Zα(·) is an α-stable Lévy process. The limiting constants were obtained by

replacing t with λt and using Zα(λt)
d= λ1/αZα(t).
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Table 4.6 Limits for superposition of counting processes—tails vs. dependence

Superposition of counting processes

Weak dependence Strong dependence

Interarrival times with
finite variance

limM→∞ limT→∞ = Bm
limT→∞ limM→∞ = Bm

limM→∞ limT→∞ = fBm
limT→∞ limM→∞ = fBm

Interarrival times with
infinite variance

limM→∞ limT→∞ = Lévy
limT→∞ limM→∞ = fBm

We observe that different limiting schemes yield different limiting processes.
This feature will be also present in different traffic models.

In contrast, if the renewal sequence has a finite variance and short memory, then
application of Example 4.24 yields that both procedures limM→∞ limT→∞ and
limT→∞ limM→∞ produce the same limit, namely a Brownian motion. Likewise,
in the case of strong dependence and a finite variance (as in Example 4.25), both
procedures yield a fractional Brownian motion.

We summarize these observations in Table 4.6. We do not fill in the case of strong
dependence and heavy tails (situation of Example 4.27). It is clear that there are four
possible limits. If the counting process converges to fBm, then the limit for super-
positions must be fBm as well. If the counting process converges to a Lévy process,
then the superposition converges to either fBm or a Lévy process, depending on the
order of taking these limits.

4.9.3 Traffic Models

Let W(u) be a traffic model. It can be either a renewal reward, or ON–OFF, or infi-
nite source Poisson or error duration process. In Sect. 2.2.4 we noted that the models
have long memory in terms of non-integrable covariances or nonlinear growth of the
variance of the integrated process. A very interesting feature is that long memory in
a traffic process implies that the integrated process

W ∗(t) =
∫ t

0

{
W(v)−E

[
W(v)

]}
dv

converges in the sense of finite-dimensional distributions to an α-stable Lévy mo-
tion. The scaling factor has to be chosen as T −1/αL(T ), where L is a slowly varying
function. In particular, this is another example of a second-order long-memory pro-
cess where the variance grows at rate T 2H , but T −HW ∗(T t) converges to zero in
probability as T → ∞ (see e.g. Example 4.26). Furthermore, as in the case of count-
ing processes, the convergence cannot hold in the D[0,1] space equipped with the
J1-topology.With respect to J1 the continuous process W ∗(T t) must converge to a
continuous limit, which is not the case here.
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In the context of computer networks, these phenomena describe long memory
of an individual source. However, they do not explain long memory at the level of
teletraffic, which usually consists of a large number of sources. Assume now that
we have M independent copies W(m)(·) (m = 1, . . . ,M) of the traffic process W(t).
Define

W ∗
T ,M(t) =

∫ T t

0

M∑

m=1

{
W(m)(v)−E

[
W(v)

]}
dv =

M∑

m=1

W(m)∗(T t),

where W(m)∗(u), m = 1, . . . ,M , are i.i.d. copies of the cumulated process W(m)(t).
The process W ∗

T ,M(t) can be interpreted as (centred) total workload of M work-
stations at time t or as cumulative packet counts in the network by time t . We are
interested in the limiting behaviour of the properly normalized cumulative process
W ∗

T ,M(t).
We will consider two limiting scenarios. First, we will analyse what happens if

we let first M → ∞ and then T → ∞. In this setup, we will proceed as follows.

Step 1: Use Lemma 4.6 to establish that with some sequence aM ,

lim
M→∞a−1

M

M∑

m=1

{
W(m)(t)−E

[
W(m)(t)

]}

converges to a process, say, G(t). If the process is Gaussian, then its covariance
structure is the same as that of W(u).

Step 2: If the process G(t) is Gaussian, then the integral G∗(T t) = ∫ T t

0 G(u)du is
Gaussian as well. We have

var
(
G∗(T t)

) =
∫ T t

0

(∫ v

0
cov

(
W(0),W(s)

)
ds

)
dv.

From the form of the covariance function we will conclude either a Brownian
motion or a fractional Brownian motion as limit.

Step 3: The sum of independent (fractional) Brownian motions yields (fractional)
Brownian motion. We will conclude that

lim
t→∞a−1

T lim
M→∞a−1

M

∫ T t

0

M∑

m=1

(
W(m)(v)−E

[
W(m)(v)

])
dv

converges to a (fractional) Brownian motion, where aT is proportional to T 1/2 or
T H (H > 1/2), respectively.

As for the case T → ∞ and then M → ∞, we will proceed as follows.

Step 1: For each m = 1, . . . ,M , approximate

lim
T→∞ c−1

T

∫ T t

0

{
W(m)(v)−E

[
W(m)(v)

]}
dv ≈ c−1

T

N(T t)∑

j=1

Uj (T → ∞),
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where N(·) is an appropriate counting process, and Uj (j ∈ N) is an appropriate
i.i.d. sequence. Note that both N and Uj depend on m. If the random variables Uj

have a finite variance, then for each m, the limiting process is a Brownian motion,
and cT = T 1/2. If the random variables Uj are regularly varying with index α, then
we obtain a Lévy process as a limit and cT = T 1/α .

Step 2: The sum of independent Brownian motions (Lévy processes) is a Brownian
motion (Lévy process). We conclude the convergence for

lim
M→∞d−1

M lim
T→∞ c−1

T

∫ T t

0

M∑

m=1

(
W(m)(v)−E

[
W(m)(v)

])
dv

with some sequence dM .

One has to mention though that the proofs are sketched, without verifying some
technical details.

4.9.4 Renewal Reward Processes

Recall from Example 2.12 the renewal reward process

W(t) = Y01{0 < t < τ0} +
∞∑

j=1

Yj1{τj−1 ≤ t < τj },

Xj = τj − τj−1. We assume for simplicity that Yj (j ∈ N) is a centred i.i.d.
sequence, independent of the renewal sequence τ0,Xj (j ≥ 1), and also that
E[X1] = μ = λ−1 is finite. We are interested in the limiting behaviour of the cu-
mulative process W ∗

T ,M(t) defined above. For the purpose of the limiting regime
limM→∞ limT→∞, we represent the cumulative process as follows:

∫ T t

0
W(u)du = min{T t, τ0}Y0 +

∞∑

j=0

Yj+1
(
min{T t, τj+1} − τj

)
+. (4.187)

Indeed, if T t < τ0, then
∫ T t

0 W(u)du = Y0T t ; if τ0 < T t < τ1, then
∫ T t

0 W(u)du =
Y0T t + Y1(T t − τ0) etc.

An alternative representation will yield an approximation of the cumulative re-
ward by a sum of i.i.d. random variables. For T t > τ0, we may write

∫ T t

0
W(u)du = Y0τ0 +

N(T t)∑

j=1

YjXj −U, (4.188)

where N(t) is the renewal process associated with τj . The first two terms represent
the renewal intervals that are at least partially included in [0, T t]. For example, if
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τ0 < T t < τ1, then N(T t) = 1, and the sum includes Y0τ0 + Y1X1. However, not
the entire renewal interval X1 is included in [0, T t]. We have to subtract a portion
(τ1 − T t)Y1, and this is “hidden” in the variable U .

In most cases considered below, only
∑N(T t)

j=1 YjXj contributes to the limiting

behaviour of
∫ T t

0 W(u)du.
We start with a standard limiting behaviour. Specifically, we assume first that

var(X) = σ 2
X < ∞ and var(Y ) = σ 2

Y < ∞. In particular, there is no LRcD in
the counting process N(t) and hence in the cumulative renewal reward process∫ t

0 W(u)du.

Theorem 4.38 Assume that

• Interarrival times have a finite variance: var(X1) = σ 2
X < ∞;

• Rewards have a finite variance: var(Y1) = σ 2
Y < ∞.

Then,

lim
T→∞ lim

M→∞
W ∗

T ,M(t)

T 1/2M1/2
= lim

M→∞ lim
T→∞

W ∗
T ,M(t)

T 1/2M1/2
d= σreward,1B(t),

where (B(t), t ∈R) is a standard Brownian motion,

σ 2
reward,1 = E[X2

1]E[Y 2
1 ]

E[X1] ,

and the convergence is to be understood as a finite-dimensional one.

Proof First, we consider the limit taken in the order limM→∞ first, and then
limT→∞.

Step 1: Since W(m) (m = 1, . . . ,M) are independent identically distributed pro-
cesses with finite variance, application of Lemma 4.6 implies that for each T ,

lim
M→∞

1

M1/2

M∑

m=1

W(m)(T t) ⇒ G(T t)

in D[0,∞), where G(t) (t ≥ 0) is a centred stationary Gaussian process with co-
variance function cov(W(0),W(u)).

Step 2: The cumulative process G∗(·t) = ∫ ·t
0 G(t) du is still a Gaussian process

with variance var(G∗(T t)) = var(
∫ T t

0 W(u)du) = T tE[X2
1]E[Y 2

1 ]/μ (see Exam-
ples 2.5 and 2.12).

Step 3: The form of the covariance function yields that the process T −1/2G∗(T t)

(t ≥ 0) is a Brownian motion.

Now, we consider the reverse order of taking the limits.

Step 1: We use an approximation induced by representation (4.188).

1

T 1/2

N(T t)∑

j=1

YjXj =
(
N(T t)

T

)1/2 1√
N(T t)

N(T t)∑

j=1

YjXj .
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Recall that for a stationary renewal process, N(T t)/T → EE[N(t)] = λt = μ−1t .
Thus, as T → ∞,

1

T 1/2

N(T t)∑

j=1

YjXj ≈ t1/2

μ1/2

1

(T t)1/2

T t∑

j=1

YjXj ⇒ 1

μ1/2

√
var(Y1X1)B(t).

Since X1 and Y1 are independent and E[Y1] = 0, we obtain var(Y1X1) =
E[Y 2

1 ]E[X2
1].

Step 2: Hence, for each fixed m = 1, . . . ,M ,

T −1/2
∫ T t

0
W(m)(u)du ⇒ σreward,1B

(m)(t),

where B(m)(t) are independent standard Brownian motions. Hence, the superposi-
tion converges to a Brownian motion.

�

Next, we analyse what happens if the finite variance assumption on the rewards
still holds, but the renewal process has intervals with an infinite variance. Recall that
then the corresponding counting process N(t) has the LRcD property (see Exam-
ples 2.5 and 2.12) since its variance grows faster than linear. Also (see Examples 2.5
and 2.12), the variance of the cumulative process

∫ T t

0 W(u)du grows faster than lin-
ear.

Theorem 4.39 Assume that

• Interarrival times are regularly varying: P(X1 > x) ∼ CXx
−α (α ∈ (1,2)) as

x → ∞;
• Rewards have a finite variance var(Y1) = σ 2

Y < ∞, and they are symmetric.

Then,

lim
T→∞ lim

M→∞
W ∗

T ,M(t)

T HM1/2
d= σreward,2BH(t), (4.189)

where (BH (t), t ∈ R) is a standard fractional Brownian motion with Hurst index
H = (3 − α)/2, and

σ 2
reward,2 = CX

2E[Y 2
1 ]

E[X1](α − 1)(2 − α)(3 − α)
.

On the other hand,

lim
M→∞ lim

T→∞
W ∗

T ,M(t)

T 1/αM1/α
d= Creward,1Zα(t), (4.190)

where Zα(t)
d= t1/αSα(1,0,0) is a symmetric Lévy process, and

Creward,1 = μ−1/αE1/α[|Y1|α
]
C

1/α
X C−1

α .
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Sketch of Proof First, we proceed with limT→∞ limM→∞.

Step 1: As in the case of Theorem 4.38, Lemma 4.6 implies that for each T ,

lim
M→∞

1

M1/2

M∑

m=1

W(m)(T t) ⇒ G(T t)

in D[0,∞), where G(t) (t ∈ R) is a centred stationary Gaussian process with
covariance function cov(W(0),W(t)).

Step 2: The cumulative process G∗(T t) is Gaussian with variance σreward,2(T t)2H ,
H = (3 − α)/2 (see Example 2.12).

Step 3: The form of the variance yields that the scaled process T −HG∗(T t) is a
fractional Brownian motion.

Next, we deal with the reversed order of limits.

Step 1: We have

1

T 1/α

N(T t)∑

j=1

YjXj =
(
N(T t)

T

)1/α 1

(N(T t))1/α

N(T t)∑

j=1

YjXj ≈ 1

μ1/α

1

T 1/α

T t∑

j=1

YjXj .

By applying Breiman lemma we note that

P(Y1X1 > x) ∼ E
[
Yα+

]
P(X1 > x) ∼ E

[
Yα+

]
CXx

−α

and

P(Y1X1 < −x) ∼ E
[
Yα−

]
P(X1 > x) ∼ E

[
Yα−

]
CXx

−α.

Thus, application of (4.80) yields

1

T 1/α

N(T t)∑

j=1

YjXj ⇒ μ−1/αE1/α[|Y1|α
]
C

1/α
X C−1

α Zα(t).

Step 2: The result follows by taking dM = M1/α . �

Finally, we analyse the case where both interarrival times and rewards are heavy
tailed. We separate both limiting regimes in two theorems below.

Theorem 4.40 Assume that

• Interarrival times are regularly varying: P(X1 > x) ∼ CXx
−α (α ∈ (1,2)) as

x → ∞;
• Rewards are regularly varying: P(Y1 > x) ∼ CYx

−β (β ∈ (1,2)) as x → ∞; and
they are symmetric.

We have the following limits as limM→∞ limT→∞:

• If α < β < 2, then (4.190) still holds.
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• If β < α < 2, then

lim
M→∞ lim

T→∞
W ∗

T ,M(t)

T 1/βM1/β
d= Creward,2Zβ(t), (4.191)

where Zβ(t)
d= t1/βSβ(1,0,0) is a symmetric Lévy process, and

Creward,2 = μ−1/βE1/β[Xβ

1

]
C

1/β
Y C−1

β .

Proof The proof is very similar to that of Theorem 4.39. Recall that the limiting be-
haviour of

∫ T t

0 W(u)du is determined by
∑N(T t)

j=1 YjXj . If α < β , we may proceed
exactly in the same way as in Theorem 4.39. Otherwise, if β < α, then

1

T 1/β

N(T t)∑

j=1

YjXj =
(
N(T u)

T

)1/β 1

(N(T t))1/β

N(T t)∑

j=1

YjXj ≈ 1

μ1/β

1

T 1/β

T t∑

j=1

YjXj .

By applying Breiman lemma we have

P(Y1X1 > x) ∼ E
[
X

β

1

]
P(Y1 > x) ∼ E

[
X

β

1

]
CYx

−β

and

P(Y1X1 < −x) ∼ E
[
X

β

1

]
P(Y1 < −x) ∼ E

[
X

β

1

]
CYx

−β.

Thus, application of (4.80) yields

1

T 1/β

N(T t)∑

j=1

YjXj ⇒ μ−1/βE1/β[Xβ

1

]
C

1/β
Y C−1

β Zβ(t).
�

We note also in passing that the case β < α above does not require that X1 is
regularly varying. Therefore, (4.191) holds also when β < 2 and var(X1) < ∞.

We consider now the case of the other limit.

Theorem 4.41 Assume that

• Interarrival times consist of positive integers and are regularly varying: P(X1
> x) ∼ CXx

−(α+1) (α ∈ (1,2)) as x → ∞;
• Rewards are regularly varying and symmetric: P(Y1 > x) ∼ CYβx

−β (β ∈ (1,2))
as x → ∞;

We have the following limits as limT→∞ limM→∞:

• If β < α < 2, then (4.191) holds.
• If α < β < 2, then

lim
T→∞ lim

M→∞T −(β−α+1)/βM−1/βW ∗
T ,M(t)

d= C
1/β
X C

1/β
Y Z∗

β(t), (4.192)
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where Z∗
β(t) is symmetric β-stable process with characteristic function

E

[
exp

(
i

h∑

l=1

θlZ
∗
β(tl)

)]
= exp

(−σβ(θ, t)
)
,

where t = (t1, . . . , th)
T , θ = (θ1, . . . , θ

T
h ),

σβ(θ, t) = C−1
β

(
I (θ, t)+ J (θ, t)

)
,

I (θ, t) = μ−1
∫ ∞

0

∣∣∣∣∣

h∑

l=1

θl(tj ∧ x)

∣∣∣∣∣

β

x−α dx,

J (θ, t) = μ−1α

∫ ∞

0

∫ ∞

0

∣∣∣∣∣

h∑

l=1

θl(tj ∧ u− x)

∣∣∣∣∣

β

(u− x)−α−1+ dx.

We observe that if β < α, the order of taking limits does not matter. However,
if α < β , we obtain the new process Z∗

β(t). This process has stationary increments
and is self-similar with self-similarity parameter H = (β − α + 1)/β . For details
on this process, we refer to Levy and Taqqu (2000). Furthermore, note that the con-
vergence to Z∗

β(t) requires the additional technical assumption that the interarrival
times assume positive integers only.

Sketch of Proof We note that the technique of the proofs of Theorems 4.38 or 4.39
does not work. We cannot apply Lemma 4.6 because the process does not have a fi-
nite variance. Instead, we present a simplified version of the proofs of Theorems 2.2
and 2.3 in Levy and Taqqu (2000).

We use representation (4.187). Assume for a moment that Yk (k ≥ 0) are sym-

metric β-stable, Y1
d= Sβ(η,0,0), η > 0. Thus, its characteristic function is given

by

ϕY (θ) = E exp(iθY1) = exp
(−ηβ |θ |β).

We compute the characteristic function of R(T u) = ∫ T u

0 W(u)du. Set τ−1 = 0.
Then, by conditioning on the entire sequence τj and using the fact that the random
variables Yj (j ≥ 0) are i.i.d.,

E

[
exp

(
i

h∑

l=1

θlR(tl)

)]

= E

[
exp

(
i

h∑

l=1

θl

(
Y0

(
min{tl , τ0}

)+
∞∑

j=0

Yj+1
(
min{tl , τj+1} − τj

)
))]
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= exp

(
−ηβE

(
h∑

l=1

|θl |
(

min{tl , τ0} +
∞∑

j=0

(
min{tl , τj+1} − τj

)
))β)

=: exp
(−σβ(θ, t;η)).

Since W ∗
T ,M(t) is the sum of independent copies of the process R(T u), we have

E

[
exp

(
i

h∑

l=1

θlM
−1/βW ∗

1,M(tl)

)]
= exp

(−σβ(θ, t)
)
.

An additional limiting argument applied to random variables Yj that are regularly
varying as in the theorem yields

lim
M→∞M−1/βW ∗

T ,M(t)
d= Z∗

β,T (t),

where Z∗
β,T (t) (t ∈ [0,1]) is a symmetric β-stable process with characteristic ex-

ponent σβ(θ, T t;CY /Cβ). This process is neither self-similar, nor has it stationary
increments.

More technical details are required to establish

T −(β−α+1)/βσβ(θ, T t;CY /Cβ) → σβ(θ, T t).

This implies the finite-dimensional convergence of T −(β−α+1)/βZ∗
β,T (t) to Z∗

β(t). �

Several bibliographical notes are in place here. Theorem 4.38 was proven in
Taqqu and Levy (1986, Theorem 5). Theorem 4.39 was proven in Taqqu and Levy
(1986). Theorem 4.40 was proven in Levy and Taqqu (1987), whereas Theorem 4.41
can be found in Levy and Taqqu (2000) and Pipiras and Taqqu (2000b). In partic-
ular, in the latter paper, the authors showed that the limiting process Z∗

β(t) is not a
linear fractional stable motion. Also see Taqqu (2002) and Willinger et al. (2003)
for an overview.

A summary of the results discussed here is given in Table 4.7.

4.9.5 Superposition of ON–OFF Processes

Assume now that we have M independent copies W(m)(·) (m = 1, . . . ,M) of the
ON–OFF process W(t) defined in (2.77).

We shall assume that the ON and OFF periods in each model have the same distri-
butions: P(Xj,on(m) > x) = F̄on(x), P(Xj,off(m) > x) = F̄off(x), where Xj,on(m),
Xj,off(m) (t ∈ Z) are the consecutive ON and OFF periods, respectively, in the mth
ON–OFF process (m = 1, . . . ,M). Since W(m)(u) are stationary and have the same
distribution for each m, we obtain

E

[∫ T t

0

M∑

m=1

W(m)(u)du

]
= TME

[
W(0)

]
t = TM

μon

μon +μoff
t = TM

μon

μ
t.
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Table 4.7 Limits for superposition of cumulative renewal reward processes—tails of interarrival
times vs. tails of rewards. The tail parameters α ∈ (1,2), β ∈ (1,2)

Renewal reward processes

Rewards

E[Y 2
1 ] < ∞ RV−β , β ∈ (1,2)

Interarrival times
E[X2

1] < ∞
limM→∞ limT→∞ = Bm
limT→∞ limM→∞ = Bm

limM→∞ limT→∞ = Zβ

limT→∞ limM→∞ = Zβ

Interarrival times
RV−α , α ∈ (1,2)

limM→∞ limT→∞ = Zα

limT→∞ limM→∞ = fBm
α < β

limM→∞ limT→∞ = Zα

limT→∞ limM→∞ = Z∗
β

β < α

limM→∞ limT→∞ = Zβ

limT→∞ limM→∞ = Zβ

Recall from Lemma 2.7 that the ON–OFF process has long memory (in the sense
of Definition 1.4), or

∫ t

0 W(u)du has long memory (in the sense of Definition 1.5)
if the ON (or OFF) periods are heavy tailed. In this case we are interested in limit
theorems for the superposition of ON–OFF processes. Such studies were conducted
in Taqqu et al. (1997), Mikosch et al. (2002) or Dombry and Kaj (2011). Specifically,
the following two theorems were proven in Taqqu et al. (1997).

Theorem 4.42 Assume that ON and OFF periods satisfy (2.78) and (2.79), i.e.

F̄on(x) = Conx
−αon, α1 ∈ (1,2), (4.193)

F̄off(x) = Coffx
−αoff, α2 ∈ (1,2), (4.194)

with αon < αoff. Then,

lim
T→∞ lim

M→∞
W ∗

T ,M(t)

T HM1/2
d= C

1/2
on σon–offBH(t),

where (BH (t), t ∈ (0,1)) is a fractional Brownian motion with Hurst parameter
H = (3 − αon)/2, and

σ 2
on–off = μ2

on–off

(αon − 1)μ3
.

Sketch of Proof

Step 1: Since W(m)(·) (m = 1, . . . ,M) are independent identically distributed
bounded processes, application of Lemma 4.6 implies

lim
M→∞

1

M1/2

M∑

m=1

{
W(m)(t)−E

[
W(m)(t)

]} ⇒ G(t),
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where G(t) (t ∈ [0,1]) is a centred stationary Gaussian process with the covariance
function cov(W(0),W(t)).

Step 2: Therefore,
∫ T t

0 G(t) du is still a Gaussian process with variance

var(
∫ T t

0 W(u)du). By Lemma 2.7, the variance grows at rate Conσ
2
on–off(T t)2H

as T → ∞, which is the same as for fractional Brownian motion. We conclude

lim
T→∞

1

T H

∫ T t

0
G(t) du ⇒ C

1/2
on σon–offBH(t).

Step 3: Let

U(T t) = lim
M→∞

W ∗
T ,M(t)

T HM1/2
.

The tightness is verified by noting that as T → ∞, for t1 < t2,

E
[(
U(T u1)−U(T u2)

)2]

= T −2H var

(∫ T (t2−t1)

0
W(u)du

)
∼ C1σ

2
on–off(t2 − t1)

2H

and 2H > 1. The tightness is verified by applying Lemma 4.5. �

However, similarly to the case of superposition of renewal processes, different
orders of taking limits yield completely different limiting processes.

Theorem 4.43 Assume that ON and OFF periods satisfy (4.193) and (4.194) with
αon < αoff and αon ∈ (1,2). Then

lim
M→∞ lim

T→∞(MT )−1/α
∫ T t

0

(
M∑

m=1

(
W(m)(u)−E

[
W(m)(u)

])
)
du

d= C0Zα(t),

(4.195)

where Zα(t)
d= t1/αSα(1,1,0) is a Lévy process, and C0 = (

μoff
μ1+1/α )C

1/α
on C

−1/α
α .

Sketch of Proof

Step 1: First, we show that for each m = 1, . . . ,M ,

lim
T→∞T −1/α

∫ T t

0

{
W(m)(u)−E

[
W(m)(u)

]}
du

d=
(

μoff

μ1+1/α

)
C

1/α
on C−1/α

α Z(m)
α (t),

(4.196)

where Z
(m)
α (t)

d= t1/αSα(1,1,0) are independent Lévy processes.
If T t ≤ τ0, then there are three scenarios possible: either, at 0, the process is ON,
then

∫ T t

0 W(u)du = min(T t,X0,on); or at 0, the process is OFF, and X0,off >

T t , then
∫ T t

0 W(u)du = 0; or at 0, the process is OFF, and X0,off < T t , then∫ T t

0 W(u)du = T t − X0,off ≤ τ0 − X0,off = X0,on (this last situation is shown on

Fig. 4.7). In either case,
∫ T t

0 W(u)du ≤ X0,on. Since X0,on is a random variable
with a finite mean, we conclude that X0,on/T

1/α → 0 in probability as T → ∞.
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Fig. 4.7 ON–OFF process:
The 0th interval starts with
OFF period. The marked area
shows

∫ T t

0 W(u)du

If T t > τ0, then

∫ T t

0
W(u)du = X0,on +

N(T t)∑

j=1

Xj,on −U,

where U ≤ XN(T t)+1,on. The first two terms represent the sum of all ON intervals
that are at least partially included in [0, T t]. For example, if τ0 < T t < τ1, then
N(T t) = 1 and

∑N(T t)
j=1 Xj,on = X1,on; thus, both X0,on and X1,on are counted as

fully included in [0, T t]. Now, assume that the renewal intervals Xt start with ON
periods. It may happen that either τ0 + X1,on = τ0 + XN(T t),on < T t , and then
U = 0, or τ0 + X1,on > T t , and in the latter case we have to subtract a portion
(τ0 + X1,on − T t) ≤ X2,on that is not included [0, T t]. A similar consideration is
valid if the renewal intervals Xt start with OFF periods.
We conclude that the only term that contributes to the limiting behaviour of∫ T t

0 W(u)du is the sum
∑N(T t)

j=1 Xj,on. In the same spirit,

T t = X0,on +X0,off +
N(T t)∑

j=1

Xj,on +
N(T t)∑

j=1

Xj,off − Y,

where Y ≤ XN(T t)+1,on. Thus, informally,

∫ T t

0
E
[
W(u)

]
du = μon

μon +μoff
T t ≈ μon

μon +μoff

(
N(T t)∑

j=1

Xj,on +
N(T t)∑

j=1

Xj,off

)
.

Consequently, the limiting behaviour of T −1/α
∫ T t

0 {W(u)−E[W(u)]}du is deter-
mined by

1

T 1/α

N(T t)∑

j=1

(
Jj −E[Jj ]

)
,

where after some simple algebra

Jj = Xj,on − μon

μon +μoff
(Xj,on +Xj,off)

= μoff

μon +μoff

(
Xj,on −E[Xj,on]

)− μon

μon +μoff

(
Xj,off −E[Xj,off]

)
.
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Table 4.8 Limits for
superposition of ON–OFF
processes

Superposition of ON–OFF processes

ON times with finite variance limM→∞ limT→∞ = Bm
limT→∞ limM→∞ = Bm

ON times with infinite variance limM→∞ limT→∞ = Lévy
limT→∞ limM→∞ = fBm

We thus have

1

T 1/α

N(T t)∑

j=1

(
Jj −E[Jj ]

) =
(
N(T t)

T

)1/α 1

(N(T t))1/α

N(T t)∑

j=1

(
Jj −E[Jj ]

)
.

Recall that for a stationary renewal process N(T t)/T → E[N(t)] = (μon +
μoff)

−1μ−1t as T → ∞. Therefore, the limiting behaviour of sum is the same
as that of

t1/α

μ1/α

1

(T t)1/α

T t∑

j=1

(
Jj −E[Jj ]

)
.

We note that, as x → ∞,

P(J1 > x) ∼
(
μoff

μ

)αon

Conx
−αon , P (J1 < −x) ∼

(
μon

μ

)αoff

Coffx
−αoff .

Since α = αon < αoff, application of (4.80) yields

T −1/α
T t∑

j=1

(
Jj −E[Jj ]

) ⇒
(
μoff

μ

)
C

1/α
on C−1/α

α Zα(u),

where Zα(t)
d= t1/αSα(1,1,0) is a Lévy process. We conclude that (4.196) holds.

Step 2: Since the Lévy processes Z(m)(t) are independent, the result follows.
�

If the ON and OFF times have a finite variance, similar arguments lead to a Brow-
nian motion as a limit for both limiting regimes. We summarize our observations in
Table 4.8.

Similar results as for renewal reward and ON–OFF hold for the Infinite Poisson
source model, see Konstantopoulos and Lin (1998), Mikosch et al. (2002).

4.9.6 Simultaneous Limits and Further Extensions

What happens when T and M go to infinity simultaneously? The techniques de-
scribed above fail. Following Mikosch et al. (2002), one can consider the parameter
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M as an increasing function of T , i.e. M = M(T ). Alternatively, see Mikosch and
Samorodnitsky (2007), one can consider the intensity of the point process τj to de-
pend on a number of sources M . Consequently, following Mikosch and Samorod-
nitsky (2007), we consider the process

W ∗
λM,M(t) =

M∑

m=1

W(m)∗(λMt) =
M∑

m=1

∫ λMt

0
W(m)(u)du,

where the W(·), W(m)(·) (m ≥ 1) are independent copies of either a renewal reward,
an ON–OFF or an M/G/∞ process. We observe that an increase in the intensity can
be interpreted as an increase in time in our original cumulative process W ∗

T ,M(t).
Define also a scaling sequence

aM =
√

M var

(∫ λM

0
W(u)du

)
.

In the examples considered above (i.e. renewal reward, ON–OFF, M/G/∞) we
have

var

(∫ λM

0
W(u)du

)
∼ Cλ3−α

M L(λM).

For fixed t , convergence of a−1
M W ∗

λM,M(t) follows from a classical limit theorem for
i.i.d. arrays. Indeed, for some δ > 0, using Hölder’s inequality and stationarity of
W(u),

E
[∣∣W ∗

λM,M(t)
∣∣2+δ] ≤ (λMt)1+δ

∫ λMt

0
E
[∣∣W(u)−E

[
W(u)

]∣∣2+δ]
du ≤ C(λMt)2+δ

as long as E[|W(0)|2+δ] < ∞. In particular, this is fulfilled for the ON–OFF model
and both, renewal reward and M/G/∞, as long as E[Y 2+δ

1 ] < ∞.
If this is the case, we conclude that

M−δ/2
E[|W ∗

λM,M(t)|2+δ]
(var(

∫ λM
0 W(u)du))1+δ/2

∼ M−δ/2 (λMt)2+δ

λ
(3−α)(1+δ/2)
M L1+δ/2(λM)

.

For each t , the last expression converges to 0 as long as

λM = o
(
M1/(α−1+δ)

)
(4.197)

for some δ > 0.
For each t , we conclude the convergence of a−1

M W ∗
λM,M(t) to a normal distribu-

tion. The tightness follows clearly from

var
(
a−1
M W ∗

λM,M(t − s)
) = a−2

M M var

(∫ λM(t−s)

0
W(u)du

)
≤ C(t − s)3−α.
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Therefore, under the fast growth condition (4.197), we conclude the convergence to
an fBm. Of course, if we set λM = T , then, as M → ∞, condition (4.197) is clearly
fulfilled, and we may recover the convergence in the limT→∞ limM→∞ scheme.

Condition (4.197) is called a fast growth condition. Indeed, it means that the
number M of sources grows faster than the intensity λM , which as mentioned above,
can be interpreted as time.

It should be mentioned that in the original paper, Mikosch et al. (2002), the fast
growth for an M/G/∞ process is defined as

lim
T→∞λT T

1−α = ∞. (4.198)

On the other hand, the slow growth is defined as

lim
T→∞λT T

1−α = 0. (4.199)

Similar conditions are imposed in the ON–OFF (Mikosch et al. 2002) or renewal
reward context (Taqqu 2002, Pipiras et al. 2004). Roughly speaking, fast growth
corresponds to convergence to an fBm, whereas slow growth is responsible for a
stable convergence.

Furthermore, similar results to those presented here can be obtained for very gen-
eral Poisson shot-noise and cluster processes; see Klüppelberg et al. (2003), Klüp-
pelberg and Kühn (2004), Faÿ et al. (2006), Rolls (2010).

However, the picture may change if we consider more complicated models. In
particular, we may obtain an fBm limit even in a slow growth regime (see Mikosch
and Samorodnitsky 2007, Fasen and Samorodnitsky 2009).

Furthermore, if the limit in (4.199) is a finite, nonnegative constant, then the
limiting process is a fractional Poisson process, see Dombry and Kaj (2011).

4.10 Limit Theorems for Extremes

In this section we study the limiting behaviour of partial maxima based on a station-
ary sequence Xt (t ∈ Z). We start by recalling some basic results for i.i.d. sequences
and illustrating Fréchet and Gumbel domains of attraction. Then, for long-memory
sequences, we separate our discussion into the Gumbel and the Fréchet case. A pri-
mary example for the first situation is a stationary Gaussian sequence. We argue that
there is no influence of dependence (in particular, of long memory) on the limiting
behaviour of maxima (Berman 1964, 1971; Leadbetter et al. 1978, 1983; Buch-
mann and Klüppelberg 2005, 2006). On the other hand, there is no available theory
for general linear processes with long memory in the Gumbel case. Furthermore,
Breidt and Davis (1998) argue that maxima of Gaussian-based stochastic volatility
models (with possible long memory) behave as if the random variables were inde-
pendent.

Next, we turn our attention to the Fréchet domain of attraction. There, the main
tool is point process convergence studied in Sect. 4.3. As we will see, the rate of con-
vergence of maxima of linear processes (weakly or strongly dependent) is the same
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as for i.i.d. sequences, however, dependence implies that the so-called extremal in-
dex is smaller than one (Davis and Resnick 1985). On the other hand, extremes of
heavy-tailed stochastic volatility models (with possible long memory) behave again
like independent random variables (Davis and Mikosch 2001; Kulik and Soulier
2012, 2013).

These considerations in the Gumbel and Fréchet case may suggest that long mem-
ory does not play any role in the limiting behaviour of maxima. However, the pic-
ture is much more complicated. This will be illustrated by looking at the extremal
behaviour of general stationary stable processes in Sect. 4.10.3. That theory was
developed in Samorodnitsky (2004, 2006) and Resnick and Samorodnitsky (2004).

We start our discussion with a sequence Xt (t ∈ Z) of i.i.d. random vari-
ables with common distribution function F . Define partial maxima by Mn =
max{X1, . . . ,Xn}. The classical Fisher–Tippett theorem identifies three possible
limits for Mn. We refer to Chap. 3 in Embrechts et al. (1997) for further details
and examples.

Theorem 4.44 Assume that Xt (t ∈ Z) is a sequence of i.i.d. random variables. If
there exist constants cn > 0 and dn ∈ R and a non-degenerate distribution function
Λ such that

c−1
n

(
max{X1, . . . ,Xn} − dn

) d→ Λ,

then Λ is one of the following distributions: Fréchet, Weibull or Gumbel, defined by
the cumulative distribution functions

ΛFrechet(x) = exp
(−x−α

)
(x > 0, α > 0),

ΛWeibull(x) = exp
(−(−x)−α

)
(x < 0, α > 0),

ΛGumbel(x) = exp
(− exp(−x)

)
(x > 0).

Example 4.28 Assume that Xt (t ∈N) are standard normal. Choose cn = (2 lnn)−1/2

and

dn = 1

21/2

{
2(logn)1/2 − log logn+ log(4π)

2
√

logn

}
.

Then the limiting distribution is Gumbel.

Example 4.29 Assume that Xt (t ∈N) fulfill

P(X1 > x) ∼ A
1 + β

2
x−α, P (X1 < −x) ∼ A

1 − β

2
x−α. (4.200)

(The left-tail behaviour is not needed here, however, we include it for completeness.)
Let Aβ = A

1+β
2 . Then,

P
(
(Aβn)

−1/α max{X1, . . . ,Xn} ≤ x
) = Fn

(
A

1/α
β xn1/α) = (

1 − F̄
(
A

1/α
β xn1/α))n,



376 4 Limit Theorems

where F̄ (x) = 1 − F(x). Hence, for n large enough,

P
(
(Aβn)

−1/α max{X1, . . . ,Xn} ≤ x
) =

(
1 − x−α

n

)n

→ exp
(−x−α

)

as n → ∞. In this case dn = 0, cn = (Aβn)
1/α , and the limiting law is Fréchet.

These examples identify two main classes of distributions and their correspond-
ing extreme value behaviour: (a) the class of regularly varying distributions, that is
F̄ (x) = x−αL(x) as x → ∞, where L is a slowly varying function; then the limit
is Fréchet; and (b) a class of (informally speaking) light-tailed distributions with
unbounded support, like normal, log-normal or Gamma; then the limit is Gumbel.
The first class is called the domain of attraction of the Fréchet law, and the second
one the domain of attraction of the Gumbel law. The third type, Weibull, appears
when the distribution has a bounded support, with a regularly varying behaviour at
a boundary. This case will not be discussed here.

In the context of the examples above, a natural question is what happens if we
drop the i.i.d. assumption. We will discuss this problem separately for the Fréchet
and Gumbel domains of attraction respectively.

4.10.1 Gumbel Domain of Attraction

It turns out that maxima of a (possibly LRD) Gaussian sequence Xt (t ∈N) behaves
as if the random variables Xt (t ∈N) were independent.

Theorem 4.45 Let Xt (t ∈ N) be a stationary Gaussian process with covariance
function γ (k) such that Berman’s condition holds:

lim
k→∞ log(k)γ (k) = 0. (4.201)

Then

c−1
n

(
max(X1, . . . ,Xn)− dn

) d→ ΛGumbel,

where cn = (2 logn)−1/2, and

dn = 1

21/2

{
2(logn)1/2 − log logn+ log(4π)

2
√

logn

}
,

cf. Example 4.28.

Proof The proof is only sketched here; some additional technical details can be
found in Berman (1964) or Leadbetter et al. (1978, 1983).
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We start with the following special version of the normal comparison lemma (see
Lemma 3.2 in Leadbetter et al. 1983). For each y,

∣∣∣∣∣P
(
max{X1, . . . ,Xn} ≤ y

)−
n∏

t=1

P(Xt ≤ y)

∣∣∣∣∣

≤ Cn

n∑

k=1

∣∣γX(k)
∣∣ exp

(−y2/(1 + ∣∣γX(k)
∣∣)).

Next, let us fix x and define un = cnx + dn. Then, since cn → 0 and dn → ∞,
un ∼ dn as n → ∞. Furthermore,

d2
n = 2 logn+ 1

8

(log logn+ log(4π))2

logn
− log logn ∼ 2 logn− log logn.

Hence,

exp
(−u2

n/2
) ∼ exp

(−d2
n/2

) ∼ n−1
√

logn ∼ un√
2n

.

We may write

n
∣∣γX(k)

∣∣ exp

(
− u2

n

(1 + |γX(k)|)
)

= n
∣∣γX(k)

∣∣ exp
(−u2

n

)
exp

(
− u2

n|γX(k)|
(1 + |γX(k)|)

)
.

Let β > 0 and k > nβ . Define vn = supk≥nβ |γX(k)|. Note that

vnu
2
n ∼ 2vn log(n)2

logn

lognβ
vn lognβ = 2

β
vn lognβ → 0

as γ (n) log(n) → 0. We note that this is exactly the place that Breiman’s condition
plays a role. Therefore,

n

n∑

k=nβ

∣∣γX(k)
∣∣ exp

(
− u2

n

(1 + |γX(k)|)
)

≤ n exp
(−u2

n

)
vn

n∑

k=nβ

exp

(
u2
n|γX(k)|

(1 + |γX(k)|)
)

≤ n2 exp
(−u2

n

)
vn exp

(
u2
nvn

) ≤ Cvnu
2
n exp

(
u2
nvn

) → 0.

On the other hand, there exists δ > 0 such that 1 + |γX(k)| < 2 − δ. Then
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n
∑

k≤nβ

∣∣γX(k)
∣∣ exp

(
− u2

n

1 + |γX(k)|
)

≤ n
∑

k≤nβ

∣∣γX(k)
∣∣ exp

(
− u2

n

2 − δ

)

∼ nn−2/(2−δ)(logn)1/(2−δ)
∑

k≤nβ

∣∣γX(k)
∣∣ ≤ Cn1+βn−2/(2−δ)(logn)1/(2−δ)

since we may assume without loss of generality that |γX(k)| ≤ 1. The bound con-
verges to 0 when β < δ/(2 + δ). This finishes the proof. �

In Theorem 4.45 we considered a discrete-time process Xt (t ∈ Z). The result
can be extended to general continuous-time Gaussian processes, in particular to frac-
tional Brownian motion BH(u); see Berman (1971). Furthermore, the result extends
to stochastic differential equations driven by fBm. To illustrate this, we consider a
continuous-time process Y(u) (u ∈ R) that solves

Y(v)− Y(u) =
∫ v

u

μ
(
Y(s)

)
ds +

∫ v

u

σ
(
Y(s)

)
dBH (s) (u < v), (4.202)

where μ(·) and σ(·) > 0 are deterministic functions. We recall from Sect. 2.2.5.2
that if μ(x) = μ < 0, σ(x) = σ , then the solution is a fractional Ornstein–
Uhlenbeck process

Y(u) = FOU(u) = σ

∫ u

−∞
exp

(
μ(u− v)

)
dBH (v).

The general Berman theory applies and

c−1
T

(
max

0≤u≤T
FOU(u)− dT

)
d→ ΛGumbel,

where

cT = σ(−μ)−H
√
Γ (H + 1/2)(2 logT )−1/2,

dT = (Γ (H + 1/2))1/2

21/2(−μ)H

{
2(logn)1/2 + 1 −H

2H

log logT

(logT )1/2
+ C0

(logT )1/2

}

with a constant C0. We note that the rate of convergence does not depend on
the Hurst parameter H . This convergence can be treated as the counterpart to the
discrete-time situation in Theorem 4.45.

More generally, Buchmann and Klüppelberg (2005, 2006) study processes of
the form Yψ(u) = ψ(FOU(u)), where FOU(u) is a fractional Ornstein–Uhlenbeck
process, and ψ is a function. Under general conditions established in those papers,
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Yψ(u) solves (4.202), and the inverse function ψ−1 of ψ fulfills

ψ−1(u) =
∫ u

ψ(0)

ds

σ (s)
.

Furthermore, the authors give general conditions that guarantee

(
c∗
T

)−1
(

max
0≤u≤T

Yψ(u)−ψ(dT )
)

d→ ΛGumbel, (4.203)

where c∗
T is possibly different than cT . The form of c∗

T depends on assumptions
on ψ . For example, if

lim
y→∞

ψ(y + x/y)−ψ(y)

ψ(y + 1/y)−ψ(y)
= x,

then

c∗
T = 21/2(−μ)2H

Γ (2H + 1)

{
ψ

(
dT + 1

dT

)
−ψ(dT )

}
.

In particular, we can choose ψ(x) = exp(xq), q ∈ (0,2). Then (4.203) holds with c∗
T

as above. We note further that this is not applicable when q = 2. Then the limiting
distribution is Gumbel. Indeed, note that when Z is standard normal, then eZ

2
has a

regularly varying tail and hence cannot belong to the Gumbel domain of attraction.
We refer to Buchmann and Klüppelberg (2005, 2006) for further results.

A natural question arises. Can we generalize the theorem above to linear pro-
cesses Xt = ∑∞

k=0 akεt−k , where εt (t ∈ Z) belong to the domain of attraction of
the Gumbel law? The answer is affirmative for weakly dependent sequences. Davis
and Resnick (1988, p. 61; see also Rootzén 1986) show that if

P
(
c−1
n

(
max{ε1, . . . , εn} − dn

)
< x

) →d Λ(x),

then for the partial maxima of the linear process, we have

P
(
c−1
n

(
max{X1, . . . ,Xn} − dn

)
< x

) →d Λθ(x)

with some θ ∈ (0,1). The parameter θ is called the extremal index and describes the
contribution of dependence to the limiting law (see Embrechts et al. 1997 for more
details). However, the authors assumed, in particular, that

∑∞
k=0 |ak| < ∞, so that

long memory is excluded. At the moment there do not seem to be any results for
linear processes in the case of long memory.

Breidt and Davis (1998) study stochastic volatility models

Xt = ξtσt = ξt exp(ηt/2),

where ξt (t ∈ N) is an i.i.d. standard normal sequence, independent of the stationary
zero-mean Gaussian sequences ηt . After log-transformation, the sequence

Yt := logX2
t = ηt + log ξ2

t
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is represented as the sum of a stationary Gaussian sequence and the log of a χ2
1 ran-

dom variables. The tail of Yt has a complicated form, nevertheless it belongs to the
domain of attraction of the Gumbel law. A modification of the normal comparison
lemma allows us to prove the following result.

Theorem 4.46 Let Xt (t ∈N) be a stochastic volatility model

Xt = ξt exp(ηt/2),

where ξt (t ∈N) is an i.i.d. standard normal sequence, independent of the stationary
zero-mean Gaussian sequence ηt . Assume that the covariance function of ηt satisfies
Berman’s condition (4.201), and let Yt = logX2

t . Then

c−1
n

(
max(Y1, . . . , Yn)− dn

) d→ ΛGumbel,

where cn = (2 logn)−1/2,

dn ∼ 2ψ1(logn)1/2 +ψ2 log
(
(2 logn)1/2)−ψ3(2 logn)−1/2(log logn+ψ4)+ψ5,

where ψ1,ψ2,ψ3,ψ4 are positive constants, and c5 ∈ R.

We observe no influence of possible long memory in volatility on the limiting
behaviour of maxima. As for Gaussian sequences considered in Theorem 4.45, the
only difference appears in the form of the centering constants dn.

4.10.2 Fréchet Domain of Attraction

Recall Example 4.29. If the random variables are i.i.d. such that (4.200) holds, then
the limiting distribution is Fréchet. This result can also be obtained using point
processes. We recall from Sect. 4.3, Theorem 4.13, that

Nn :=
n∑

t=1

δ
c̃−1
n Xt

⇒
∞∑

l=1

δjl =: N,

where jl are points of a Poisson process with intensity measure

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
dx,

(4.204)
and c̃n is such that P(|X1| > c̃n) ∼ n−1, that is c̃n ∼ A1/αn1/α . We note that the
event {max{X1, . . . ,Xn} ≤ x} is equivalent to {no points of Nn in (x,∞)}. Hence,
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for x > 0,

P
(
c̃−1
n max{X1, . . . ,Xn} ≤ x

) = P
(
Nn(x,∞) = 0

) → P
(
N(x,∞) = 0

)

= exp

(
−
∫ ∞

x

dλ(u)

)
= exp

(
−1 + β

2
x−α

)
.

Changing the scaling from c̃n to cn = (Aβn)
1/α , we immediately conclude

P
(
c−1
n max{X1, . . . ,Xn} ≤ x

) → exp
(−x−α

) = ΛFrechet(x).

This approach to extremes via point processes can be generalized to dependent se-
quences, including series with long memory.

We start with linear processes. As in Sect. 4.3, we assume that Xt = ∑∞
k=0 akεt−k ,

where the random variables εt are i.i.d. with a regularly varying distribution, that is

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α. (4.205)

If α ∈ (1,2), we assume also that E(ε1) = 0. Of course, since εt are i.i.d.,

P
(
c−1
n max{ε1, . . . , εn} ≤ x

) → exp
(−x−α

) = ΛFrechet(x),

where cn = (Aβn)
1/α .

We saw in Sect. 4.3 that

P(X1 > x) ∼ DαP(ε1 > x), P (X1 < −x) ∼ DαP(ε1 < −x),

where the constant Dα = ∑∞
j=0 |aj |α is assumed to be finite. Hence, if X∗

t (t ∈ Z)
is an i.i.d. sequence with the same marginal distribution as Xt , then with the same
cn = (Aβn)

1/α ,

P
(
c−1
n max

{
X∗

1, . . . ,X
∗
n

} ≤ x
) → exp

(−Dαx
−α

)
. (4.206)

We note that the constant Dα does not play the role of the extremal index (for the
definition see e.g. Embrechts et al. 1997) because the i.i.d. random variables X∗

t have
the tail P(X1 > x) ∼ DαP(ε1 > x). The limiting distribution above will serve as a
benchmark for comparison with dependent linear processes Xt that have the same
marginal distribution as X∗

t . To do this, we will assume without loss of generality
that Dα = 1.

In Theorem 4.14 we showed, in particular, the following convergence of point
processes:

n∑

t=1

δ
c̃−1
n Xt

⇒
∞∑

l=1

∞∑

r=0

δjlar ,

where c̃n ∼ A1/αn1/α . Let us also assume for simplicity that all coefficients aj are
nonnegative. When restricted to (0,∞), the limiting Poisson process has the inten-
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sity measure (cf. Davis and Resnick 1985)

α
1 + β

2
aα+x−(α+1)dx,

where a+ = maxj aj . The same argument as described above for the i.i.d. case leads
to the following result on sample extremes for heavy-tailed processes with possible
long memory. Limiting behaviour of extremes follows directly from Lemma 4.19
and Theorem 4.14, under the assumptions therein.

Theorem 4.47 Let Xt (t ∈ Z) be a linear process where the innovations εt (t ∈ Z)
are i.i.d. random variables such that (4.205) holds and E(ε1) = 0 if α ∈ (1,2).
Suppose that either for some δ < α,

∞∑

j=0

|aj | +
∞∑

j=0

|aj |δ < ∞,

or aj ∼ caj
d−1, d ∈ (0,1 − 1/α), and εt (t ∈ Z) are symmetric with α ∈ (1,2).

Moreover, assume that Dα = 1 and aj ≥ 0. Then with cn = (Aβn)
1/α ,

P
(
c−1
n max{X1, . . . ,Xn} ≤ x

) → exp
(−a+x−α

)
.

This result should be compared with the expression (4.206) for X∗
1, . . . ,X

∗
n (with

Dα = 1). The additional term θ := a+ ∈ (0,1] in the limiting distribution in Theo-
rem 4.47 is the extremal index and describes the effect of dependence on the limiting
behaviour of extremes. Since the coefficients aj are positive, extreme values of the
sequence Xt are generated by large positive values of the sequence εt . If some of
the coefficients are negative, large positive values of Xt are possibly due to large
negative values of the innovations, and hence the extremal index will change:

θ = a+ + a−
1 − β

1 + β
,

where a− = max{max(−aj ),0}. We refer to Davis and Resnick (1985) and Em-
brechts et al. (1997) for more details.

We continue our discussion with heavy-tailed stochastic volatility models, as
studied in Sect. 4.3.4. We assume that Xt = ξtσt , where ξt are i.i.d. such that

P(ξ1 > x) ∼ A
1 + β

2
x−α, P (ξ1 < −x) ∼ A

1 − β

2
x−α. (4.207)

We will assume also for simplicity that the sequences σt and ξt are independent
from each other. Then, P(X1 > x) ∼ AE(σα

1 )
1+β

2 x−α . Hence, if X∗
1, . . . ,X

∗
n are

independent copies of X1, then with cn = (Aβn)
1/α ,

P
(
c−1
n max

{
X∗

1, . . . ,X
∗
n

} ≤ x
) → exp

(−E
(
σα

1

)
x−α

)
.
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Again, the constant E(σα
1 ) is related the to marginal behaviour of Xt , not to the

dependence structure. In Theorem 4.18 we concluded that the point process based
on X1, . . . ,Xn has the same limit as for the corresponding i.i.d. copies X∗

1, . . . ,X
∗
n.

Directly from Theorem 4.18 we conclude that the limiting behaviour maxima asso-
ciated with heavy-tailed stochastic volatility models is the same as in the i.i.d. case.
There is no influence of any dependence in volatility.

Theorem 4.48 Consider the LMSV model Xt = ξtσt (t ∈ N) such that (4.207), the
Breiman condition (4.94) and E(σα+ε

1 ) < ∞ with some ε > 0 hold. Also, assume
that σt (t ∈N) is ergodic. Then

P
(
c−1
n max{X1, . . . ,Xn} ≤ x

) → exp
(−E

(
σα

1

)
x−α

)
.

4.10.3 Stationary Stable Processes

Samorodnitsky (2004, 2006) considers a general stationary symmetric α-stable
(SαS) process Xt that can be represented by Xt = ∫

gt (s) dM(s), where M is an
SαS random measure. As mentioned in Sect. 1.3.6.3, such processes can be de-
composed into a dissipative and a conservative part. As we will indicate below, the
dissipative part has no influence on the limiting behaviour of maxima, whereas the
conservative part does.

Rosiński (1995) argues that the class of ergodic SαS processes that are gen-
erated by the dissipative flow coincides with the class of moving averages Xt =∫
gt (s) dM(s) = ∫

g(t − s) dM(s). In particular, consider a Linear Fractional Sta-
ble Motion

ZH,α(u) =
∫ ∞

−∞
Qu,1(x;H,α)dZα(x), (4.208)

where Zα(·) is a symmetric α-stable (SαS) Lévy process,

Qu,1(x;H,α) = c1
[
(u−x)

H−1/α
+ −(−x)

H−1/α
+

]+c2
[
(u−x)

H−1/α
− −(−x)

H−1/α
−

]
,

(4.209)
and H > 1/α. Let Xt = ZH,α(t)− ZH,α(t − 1). Samorodnitsky (2004) proves that
in this case

P
(
n−1/α max{X1, . . . ,Xn} ≤ x

) → exp
(−Cx−α

)
,

where C is a positive constant. Hence, the rate of growth of maxima is the same as in
the i.i.d. case. We observed this already in the case of moving averages considered
in Theorem 4.47.

In contrast, a simple (non-ergodic) example of an SαS process generated by the
conservative flow is given by Xt = Z1/βεt , (t ∈ N), where Z is a strictly positive
α/β-stable random variable, and εt is a sequence of i.i.d. symmetric Sβ(1,0,0)
random variables, independent of Z, and 0 < α < β < 2. Then, marginally, the
random variables Xt are α-stable.
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We recall that the β-stability and symmetry of random variables εt yield

P(ε1 > x) ∼ 1

2
Cβx

−β,

cf. (4.75). Choosing cn = (Cβ/2)1/βn1/β , we have

P
(
c−1
n max{X1, . . . ,Xn} ≤ x

) = E
[
P
(
c−1
n max{ε1, . . . , εn} ≤ Z−1/βx|Z)]

→ E
[
exp

(−x−αZα/β
)]
.

Hence, even though the random variables Xt are α-stable, the scaling involves β ,
not α. In other words, maxima grow slower than in the i.i.d. case. This is a general
pattern for stable processes generated by a dissipative flow. We refer to Samorodnit-
sky (2004, 2006) and Resnick and Samorodnitsky (2004) for further details.



Chapter 5
Statistical Inference for Stationary Processes

5.1 Introduction

This chapter deals with statistical inference for long-range dependent linear and
subordinated processes. Some of the tools will also be used in Chaps. 6 and 7 when
we shall consider corresponding problems for nonlinear and nonstationary long-
memory time series.

The first step in a statistical analysis is usually the estimation of location and
scale parameters. Therefore, Sects. 5.2 and 5.3 are devoted to location and scale es-
timation, respectively. Suppose we observe Yt = μ+Xt (t = 1,2, . . . , n) where Xt

(t ∈ Z) is a strictly stationary process with E(Xt) = 0. The question is how far the
dependence in Xt influences statistical inference about the location parameter μ.
We discuss estimation of μ by the sample mean, using limit theorems established in
Sects. 4.2 and 4.3 for finite and infinite variance processes, respectively. Resulting
confidence intervals and test statistics involve unknown quantities such as a scale pa-
rameter and parameters characterizing the dependence structure. These parameters
have to be estimated. In particular, one requires knowledge of the long-memory pa-
rameter d (or H = d + 1

2 ). Usually, these parameters are estimated and plugged into
formulas defining standardized statistics and confidence intervals. This may lead to
a loss of accuracy, in particular since the long-memory parameter affects rates of
convergence. Some possible improvements that can be applied to models such as a
FARIMA(p, d, q) process (see Example 5.1) are discussed. Furthermore, we exam-
ine how far the sample mean may lose efficiency under long-range dependence or
antipersistence.

Then, we turn our attention to M-estimators of location (Huber 1981). In con-
trast to the weakly dependent case, for linear long-memory sequences robust M-
estimators have the same asymptotic efficiency as the sample mean. This was first
stated in Beran (1991) in the context of Gaussian subordination and generalized
later by Koul (1992), Koul and Mukherjee (1993), Giraitis et al. (1996a), and Koul
and Surgailis (2001) to linear processes with finite or infinite variance, respec-
tively. Proofs of such results rely on the reduction principle for empirical processes
(Sect. 4.8) and limiting behaviour of the sample mean. However, it should be pointed
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out that the asymptotic equivalence of M-estimators and the sample mean does not
hold in general for subordinated processes. Moreover, as we will see below, there is
an infinite efficiency loss in the case of antipersistence (see Example 5.3).

In Sect. 5.3, we discuss the estimation of a scale parameter. It is assumed that we
observe Yt = μ + σXt (t = 1, . . . , n) where σ > 0 has to be estimated. A standard
approach is to compute the sample variance s2. In weakly dependent situations, the
limiting behaviour of the sample variance does not change, if μ is replaced by a
consistent estimator. This is no longer true for long-memory series, as illustrated in
Beran and Ghosh (1991)) and Dehling and Taqqu (1991). Furthermore, the sample
variance is not the best choice under long-range dependence. For d > 1

4 , the rate of
convergence of s2 is Op(n

2d−1) which is slower than for parametric estimators that
exploit the relation σ 2 = ∫ π

−π
fX(λ)dλ with fX denoting the spectral density of Xt .

This will be discussed later in Sect. 5.5. Also, the limiting distribution (for d > 1
4 ) is

quite complicated because it is of the Hermite–Rosenblatt type. Finally, under long
memory the sample variance tends to underestimate the true variance.

Besides standard estimators such as the sample mean and the sample variance, or
more generally, M-estimators, other methods have been discussed in the literature.
For example, Mukherjee (1999) and Sibbertsen (2001) studied L- and S-estimators,
respectively. These methods will not be discussed here since they have quite similar
properties as M-estimators.

Rates of convergence of the sample mean, or M-estimators of location, involve
the long-memory parameter d . Thus, to construct confidence intervals or statistical
tests, one needs to estimate d (together with a scale parameter). In Sect. 5.4, we
review some heuristic and/or graphical methods commonly used for long-memory
identification, including the original R/S method proposed by Hurst (1951) that
was studied later by Mandelbrot, or its modified version given in Lo (1991). Other
well known approaches include the variance plot, the KPSS statistic, the rescaled
variance method, detrended fluctuation analysis (DFA), and temporal aggregation.
Some of these methods have been introduced briefly already in Sect. 1.2. Although
they are easy to implement and may serve as descriptive tools and a first heuristic
check, there are many reasons for using more sophisticated methods when it comes
to actual statistical inference. First of all, the methods involve tuning (or cut-off) pa-
rameters that are usually based on a subjective visual impression. Depending on the
choice of these parameters, one may arrive at completely different conclusions for
the same data set. In principle, objective mathematical rules for selecting the cut-off
parameters could be worked out under suitable conditions. However, these meth-
ods have other properties that restrict their applicability. For instance, they are not
robust against departures from stationarity. In particular, trends can be interpreted
incorrectly as long memory. Furthermore, even if appropriate cut-off parameters are
used and the assumptions of stationarity and long memory are correct, the statistics
used in the heuristic methods have poor convergence properties.

Hence, refined estimation procedures are needed. In Sect. 5.5, we start with
parametric methods. First, it is assumed that we observe a Gaussian series and
we consider maximum likelihood estimation (MLE). The resulting estimator con-
verges with the rate

√
n and is asymptotically normal (Yajima 1985; Dahlhaus
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1989; Hosoya 1997). This result can be generalized to linear processes. The ex-
act MLE presents some computational challenges. As an alternative, one therefore
considers various approximate versions of the MLE, including Whittle’s method
(Sect. 5.5.2) and an approach based on the infinite autoregressive representation
of Xt . The Whittle estimator and other approximate maximum likelihood methods
are consistent (Hannan 1973) and asymptotically equivalent to the MLE (Fox and
Taqqu 1986; Beran 1986, 1995; Yajima 1985; Dahlhaus 1989; Giraitis and Surgailis
1990; Horváth and Shao 1999). The main tool to study the asymptotic distribution
of the Whittle estimator is the limiting behaviour of quadratic forms, considered in
Sect. 4.5. For the autoregressive method, a central limit theorem for martingales can
be used. Both estimators are attractive from the theoretical and practical point of
view. First of all, proofs are easier than for the exact MLE. In particular, it is clearly
visible why long memory does not influence the asymptotic behaviour. Whittle’s
estimator is obtained by minimizing the normalized periodogram In,X(λ)/fX(λ),
where fX is the spectral density of Xt (t ∈ Z). If Xt = ∑∞

j=0 aj εt−j is a linear
process with i.i.d. innovations εt , then the normalized periodogram can be approx-
imated by 2πIn,ε and hence long memory disappears. This approximation is not
valid, however, for subordinated sequences and hence the

√
n-rate of convergence

no longer holds (Giraitis and Taqqu 1999a, 1999b). The approximate MLE based
on the infinite autoregressive representation Xt − ∑∞

j=1 bjXt−j = εt is defined by

minimizing the residual sum of squares
∑

ε2
t (η) with respect to a parameter η vec-

tor that includes d . Denoting by η0 the true value of η and by ε̇t the derivative of εt
with respect to η, the asymptotic distribution of η̂ then essentially follows from the
asymptotic distribution of

∑
ε̇t (η

0)εt (η
0). Since ε̇t (η

0)εt (η
0) is a martingale differ-

ence, a central limit theorem with
√
n-rate of convergence (i.e. Op(n

− 1
2 )) follows.

From the computational point of view, the Whittle estimator and the AR-estimator
are considerably faster than the exact MLE: For the Whittle estimator, one can use a
further approximation based on a Riemann sum with Fourier frequencies only. This
is particularly attractive because it is shift-invariant (i.e. centring by an estimator of
the mean has no effect). This is very important in a long-memory setting since the
sample mean has a slow rate of convergence. Moreover, the Fast Fourier Transform
(FFT) can be used which makes computations very fast. The approach based on the
AR-representation only requires the calculation of parameter-dependent residuals.
This can be done using efficient algorithms for linear filters.

The fast rate of convergence of (approximate) maximum likelihood estimators is
in particular due to the assumption that a specific parametric model is correct. In
practice, this may be rather an optimistic assumption. There is no guarantee that we
are able to pick the correct model a priori. In fact, as George Box has once remarked,
“no model is correct, but some are useful.” In this spirit, there are essentially two ap-
proaches to estimating d without knowledge of the “true” model. The first approach
is to combine parametric models with a model selection criterion. The best known
method is Akaike’s information criterion (AIC; Akaike 1973, 1974; Shibata 1976)
and related approaches such as BIC or HIC (Schwarz 1978; Hannan and Quinn
1979). This will be discussed in Sect. 5.5.6. In particular, it turns out that not only
the asymptotic distribution of the MLE is of the same form as for short-memory
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sequences but also the AIC can be derived the same way, and consistency of the
BIC holds (Beran et al. 1998). Another approach is semiparametric estimation. In
semiparametric estimation, one exploits the simple form of the pole (or root) the
spectral density has at zero, namely fX(λ) ∼ L(λ)|λ|−2d (as |λ| → 0). This expres-
sion is simple in the sense that near the origin only the slowly varying function L

and the long-memory parameter d determine the value of fX . If L(λ) converges to
a constant cf , then we have a simple linear relationship logfX(λ) ≈ β0 + β1u(λ)

with β0 = log cf , u(λ) = logλ and β1 = −2d . Thus, the model one uses is

fX(λ) = |λ|−2df∗(λ)
(
λ ∈ [−π,π])

where f∗(λ) is an (essentially) arbitrary integrable nonnegative function except that
for λ → 0 we have f∗(λ) ∼ L(λ) as λ → 0 and cf = limλ→0 f∗(λ) exists and is
finite. The model is semiparametric because no assumptions on the shape of f∗(λ)
outside an arbitrarily small neighbourhood of the origin are made. Semiparametric
methods are consistent without specifying a particular model and the asymptotic
distribution does not depend on unknown parameters. The price one pays for this
generality is a slower rate of convergence than for the MLE and other paramet-
ric methods. It should be pointed out, however, that, strictly speaking, in a general
setting where models not included in the parametric class are “allowed”, a para-
metric approach combined with a model selection criterion that does not restrict
the number of parameters to a finite set also leads to a rate of convergence that is

slower than Op(n
− 1

2 ). Such an approach is, in fact, closely related to the so-called
semiparametric broadband methods where the whole spectral density is estimated
asymptotically by increasing the number of parameters in a parametric fit. The best
known examples are fractional autoregressive modelling with a growing AR-order
p = pn (Bhansali et al. 2006) and broadband estimation based on FEXP-models
considered in Moulines and Soulier (1999, 2000), Hurvich (2001), Hurvich and
Brodsky (2001), Hurvich et al. (2002) and Narukawa and Matsuda (2011) (also see
Beran 1993 and Robinson (1994a) for the definition of FEXP models). The best rate
one can achieve this way is Op(n

− 1
2
√

logn) instead of Op(n
− 1

2 ). In this sense, the
parametric and semiparametric approach are not as far apart as it may seem.

As already indicated, semiparametric estimators can be divided into the so-called
narrowband (local) and broadband (global) methods. The first type focusses on es-
timation of d , using frequencies in an asymptotically shrinking neighbourhood of
the origin only. In other words, one uses the m lowest Fourier frequencies where
m = mn = o(n). The two main estimators are log-periodogram regression (also
called narrowband least squares or Geweke and Porter-Hudak estimator, GPH) stud-
ied in Sect. 5.6.2 and the local Whittle estimator (also called narrowband Whittle es-
timator or Gaussian semiparametric estimator), studied in Sect. 5.6.3. The first one
is given in an explicit from, whereas the second is defined implicitly as solution of
a nonlinear equation. This makes the GPH estimator attractive for applications and,
in its simplicity, similar to heuristic methods. However, it is asymptotically less effi-
cient than a local Whittle estimator. The asymptotic theory for both estimators was
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originally established in Robinson (1995a, 1995b). A corresponding asymptotic the-
ory based on wavelets instead of the periodogram was suggested in Abry and Veitch
(1998) and Veitch and Abry (1999), with mathematical results derived in Bardet
et al. (2000), Moulines et al. (2007b, 2007a, 2008). The second class of semipara-
metric estimators, the so-called broadband methods, are based on all frequencies
in [−π,π] and provide consistent estimates of the entire spectral density. Knowing
fX(λ) for all frequencies is important in many situations. For instance, forecasts
require no only an estimate of d but also of σ 2

ε = exp((2π)−1
∫

logfX(λ)dλ) and
all autocovariances γX(k) = ∫

exp(ikλ)fX(λ)dλ.
Further topics discussed in this chapter are estimation of d for panel data (Be-

ran et al. 2010), identification of periodicities (see, e.g. Beran and Ghosh 2000;
Hosking 1981; Gray et al. 1989, 1994; Giraitis et al. 2001), quantile estimation
(see, e.g. Dehling and Taqqu 1989b; Ho and Hsing 1996; Wu 2005; Csörgő et al.
2006; Youndjé and Vieu 2006; Csörgő and Kulik 2008a, 2008b; Coeurjolly 2008a,
2008b; Ghosh et al. 1997; Ghosh and Draghicescu 2002a, 2002b; Draghicescu and
Ghosh 2003), density estimation (e.g. Wu and Mielniczuk 2002; Cheng and Robin-
son 1991; Csörgő and Mielniczuk 1995a; Honda 2000; Kulik 2008b, 2008a), tail
index estimation for heavy tailed linear processes with long memory (Beran et al.
2012) and goodness-of-fit tests (see, e.g. Beran and Ghosh 1990, 1991; Ho 2002;
Kulik 2008b, 2009; Beran 1992; Deo and Chen 2000; Faÿ and Philippe 2002; Dette
and Sen 2010).

5.2 Location Estimation

Suppose we observe

Yt = μ+Xt (5.1)

(t = 1,2, . . . , n) where Xt (t ∈ N) is a stationary process with E(Xt) = 0. Our goal
is statistical inference for the location parameter μ.

5.2.1 Tests and Confidence Intervals Based on the Sample Mean

The simplest, but not necessarily most efficient, estimator is the sample mean μ̂ =
ȳ = n−1 ∑n

t=1 Yt . To obtain valid tests and confidence intervals for μ, we need to
know how to standardize ȳ and what the asymptotic distribution of the standardized
sample mean is. This question has been answered already in Sects. 4.2 and 4.3.
Assuming that var(Xt ) < ∞ and the spectral density of Xt (and thus of Yt ) is of
the form fX(λ) ∼ cf |λ|−2d as λ → 0 (for some d ∈ (−1/2,1/2)), Corollary 1.2
implies

var(ȳ) ∼ ν(d)fX
(
n−1)n−1 ∼ ν(d)cf n

2d−1,
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where ν(0) = limd→0 ν(d) = 2π and

ν(d) = 2 sinπd

d(2d + 1)
Γ (1 − 2d) (d 
= 0).

A natural statistic for obtaining asymptotically correct tests and confidence intervals
for μ is therefore

Tn = n
1
2 −d ȳ −μ√

ν(d)cf
≈

√
n(ȳ −μ)√

ν(d)fX(n−1)
. (5.2)

For example, if Xt is a linear process with short-range dependence (d = 0), antiper-
sistence (d < 0) or long-range dependence (d > 0), then Tn converges in distribution
to a standard normal random variable (see in particular Theorem 4.5 for short mem-
ory and Theorem 4.6 for long memory). Therefore, tests and confidence intervals
for μ can be based on the approximation

P(Tn ≤ z) ≈ Φ(z) (5.3)

with Φ denoting the cumulative standard normal distribution. For instance, critical
regions for testing H0 : μ ≤ μ0 against H1 : μ > μ0 at a level of significance α are
given by Kα = {Tn > z1−α} with z1−α denoting the (1 −α)-quantile of the standard
normal distribution. Similarly, a (1 − α)-confidence interval for μ is given by

ȳ ± z1−α/2

√
ν(d)fX

(
n−1

)
n− 1

2

for any d ∈ (− 1
2 ,

1
2 ). For short memory with d = 0, this can also be approximated

by

ȳ ± z1−α/2
√

2πfX(0)n
− 1

2 (5.4)

whereas for d 
= 0 (antipersistence or long memory) we can write this interval ap-
proximately as

ȳ ± z1−α/2

√
ν(d)cf n

d− 1
2 . (5.5)

For short-memory processes, the asymptotic confidence interval (5.4) is also valid if
instead of a linear process Xt the errors in (5.1) are subordinated to a linear process
Xt , i.e. if Yt = μ + G(Xt) where G is a suitable function. This is the case, even
if Xt (t ∈ Z) itself has infinite second moments, as long as var(G(Xt )) < ∞. To
be more exact, usually some mild additional assumptions on the coefficients of the
linear process or some mixing properties are required.

In the case of subordination to a linear process with long-range dependence,
the situation is much more complicated. First of all, only the subordinated Yt =
μ+G(Xt) is observed, whereas Xt is an unobservable latent process. Moreover, the
transformation G and its Appell (Hermite, power) rank is not known. If the random
variables Xt have finite second moments and a spectral density fX(λ) ∼ cf λ

−2d
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with d ∈ (0, 1
2 ), and G has a unique Appell polynomial (Hermite, power) expan-

sion, then the asymptotic distribution of Tn is normal only if either the Appell
(Hermite, power) rank m is 1 or if m > (1 − 2d)−1 (see Theorem 4.8 or Corol-
lary 4.3). These conditions pose considerable difficulties. Although it is possible to
estimate the long-memory parameter d = dG of the observed process G(Xt) and
a correct standardization of ȳ consistently (for instance, by applying a semipara-
metric method to the observed periodogram), one cannot say which distribution to
use for tests and confidence intervals. In fact, even if dG were known exactly, we
would need to know the Appell (Hermite, power) rank m. The reason is that the
same value of dG > 0 can be obtained by transformations with different Appell
(Hermite, power) ranks, and these imply different asymptotic distributions. For in-
stance, suppose that Xt is a Gaussian process with long-memory parameter dX = 2

5
and G(x) = x2 − 1 = H2(x). Then the long-memory parameter of G(Xt) = X2

t − 1
is equal to dG = 2dX − 1

2 = 3
10 and the asymptotic distribution of the standardized

sample mean is given by the distribution of an Hermite–Rosenblatt process at time 1,
which is completely different than the standard normal distribution. On the other
hand, if Xt were a Gaussian process with dX = 3

10 and G(x) = x = H1(x), then
G(Xt) = Xt would also have dG = 3

10 , but the standardized sample mean would
be normal. To date no statistical method is known for identifying m from an ob-
served subordinated process. A possible way out is a bootstrap procedure that is
also valid for subordinated processes. One such method is the so-called sampling
window bootstrap discussed in Sect. 10.5 (Hall et al. 1998). Note that for m = 1,
the inequality m < (1 − 2d)−1 holds for all d ∈ (0, 1

2 ), whereas this is no longer
the case for m ≥ 2. If m < (1 − 2d)−1 and m ≥ 2 then the standardized statistic
Tn converges to a non-normal random variable (see, e.g. Corollary 4.3). An even
more disturbing problem is that, although the variance of Yt is finite, the variance
of the underlying linear process Xt need not be. Theorem 4.17 then implies that
asymptotically Tn has a stable distribution. Thus, using normal quantiles as in (5.5)
would lead to completely wrong confidence intervals and tests. Unfortunately, the
observed data Yt give very little indication of this problem, since their variance is
finite. In summary, in the long-memory case, inference about μ is very uncertain
unless we are willing to accept more specific assumptions.

To avoid the above mentioned problems, one of the specific assumptions used
usually in practice is that Yt = μ + G(Xt), where Xt is a linear process with long
memory and finite variance, and the Appell (Hermite, power) rank m of G is equal
to one. In that case, the confidence intervals and tests for μ as given in (5.5) are
asymptotically correct. In practice, the nuisance parameters d and cf are unknown
so that Tn is replaced by

T ∗
n = n

1
2 −d̂ ȳ −μ√

ν(d̂)ĉf

(5.6)

where d̂ and ĉf are consistent estimates. Estimation of these parameters is discussed
later in this chapter. As we will see, consistent estimation of d and cf is possible
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without detailed knowledge of the process Yt . Approximate confidence intervals are
then of the form

ȳ ± z1−α/2

√
ν(d̂)ĉf n

d̂− 1
2 . (5.7)

For small sample sizes, the normal approximation may not be very accurate, since
it does not take into account that the parameters cf and d are estimated. This is
comparable to the situation of i.i.d. data where Tn = √

n(ȳ − μ)/σ is replaced by
the t-statistic

√
n(ȳ −μ)/s with

s =
√
(n− 1)−1

∑
(Yi − ȳ)2.

However, here the additional variability induced by estimating d is expected to be
even more noticeable because it affects the rate of convergence. Focussing on d̂ , a
better approximation can be obtained as follows. Suppose that d̂ is asymptotically
normal such that, for some κ > 0,

d̂ = d + σdn
−κζ2 + op

(
n−κ

)

where ζ2 ∼ N(0,1) and σ 2
d is the asymptotic variance of d̂ . Ignoring uncertainty

about ν(d) and cf , and taking into account the symmetry of the standard normal
distribution, we then have (in probability)

T ∗
n = n

1
2 −d̂ ȳ −μ√

ν(d̂)ĉf

= n
1
2 −d ȳ −μ√

ν(d)cf
· exp

(
σd logn

nκ
ζ2

)
+ op

(
n

1
2 −d

)

= ζ1 exp

(
σd logn

nκ
ζ2

)
+ op

(
n

1
2 −d

)

where ζ1 and ζ2 are both standard normal variables. If it can be assumed that ζ1 and
ζ2 are independent (see, e.g. Nourdin and Rosinski 2012 for results pointing in this
direction), then the distribution of T ∗

n can be approximated by

P
(
T ∗
n ≤ x

) ≈
∫ ∞

−∞
Φ

(
x · exp

(
−σd logn

nκ
u

))
φ(u)du (5.8)

with φ denoting the N(0,1)-density function. Note that independence of ζ1 and
ζ2 has been conjectured in Beran (1989). However, no formal proof exists in the
literature. Recent results that may be useful for a proof can be found in Nourdin and
Rosinski (2012).

Example 5.1 Let Xt (t ∈ Z) be a FARIMA(0, d,0) process with innovation variance
σ 2
ε and fractional differencing parameter d . It is shown in Sect. 5.5 that for the
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Table 5.1 Comparison of
standard normal quantiles zα
(for α = 0.9,0.95,0.975,
0.99,0.995) with quantiles
q∗
α obtained using

approximation (5.9)

n α = 0.90 0.95 0.975 0.99 0.995

Standard normal quantiles zα
1.28 1.65 1.96 2.33 2.58

Corrected quantiles q∗
α

50 1.38 1.92 2.48 3.25 3.87

100 1.35 1.84 2.33 2.98 3.49

200 1.32 1.77 2.20 2.76 3.18

400 1.31 1.73 2.12 2.61 2.97

1000 1.30 1.69 2.05 2.48 2.78

Ratio of the two quantiles, q∗
α/zα

50 1.08 1.17 1.27 1.40 1.50

100 1.05 1.12 1.19 1.28 1.35

200 1.03 1.08 1.12 1.19 1.24

400 1.02 1.05 1.08 1.12 1.15

1000 1.01 1.03 1.05 1.06 1.08

maximum likelihood estimator of d we have κ = 1
2 and σ 2

d = 6/π2. Therefore,

P
(
T ∗
n ≤ x

) ≈
∫ ∞

−∞
Φ

(
x · exp

(
−

√
6

π

logn√
n

u

))
φ(u)du

= E

[
Φ

(
x · exp

(
−

√
6

π

logn√
n

ζ

))]
(5.9)

where ζ ∼ N(0,1). This expression is easy to calculate, for instance, by Monte
Carlo simulation of the expected value. A comparison of quantiles obtained
from (5.9) and standard normal quantiles is given in Table 5.1.

5.2.2 Efficiency of the Sample Mean

So far we have considered the sample mean only. However, since we have dependent
observations, one may ask the question in how far it may be possible to obtain more
efficient linear estimators of location by taking into account the dependence struc-
ture. Thus, we need to compare the variance of ȳ with the variance of the best linear
unbiased estimator (BLUE) μ̂BLUE = ∑n

t=1 wtYt . The weights wt are chosen such
that var(

∑
wtYt ) is minimal under the side condition

∑
wt = 1 (which is needed for

unbiasedness). Using the notation w(n) = (w1, . . . ,wn)
T , Y(n) = (Y1, . . . , Yn)

T ,
X(n) = (X1, . . . ,Xn)

T (where Xt = Yt − μ) and Σn for the covariance matrix of
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Y(n), this leads to the formulas

w = Σ−1
n 1

1T Σ−1
n 1

,

μ̂BLUE = 1T Σ−1
n X(n)

1T Σ−1
n 1

and

var(μ̂BLUE) = (
1T Σ−1

n 1
)−1

.

On the other hand, for the sample mean we have

var(ȳ) = n−1
n−1∑

k=−(n−1)

(
1 − |k|

n

)
γX(k).

Suppose now that Xt is either a linear or a subordinated process such that, after ap-
propriate standardization, the sample mean and the BLUE are asymptotically nor-
mal. Then the asymptotic efficiency is defined as the ratio of the corresponding
asymptotic variances. Since we are in a regular case where the asymptotic variance
is the same as the limit of the (standardized) variance, we may calculate the asymp-
totic efficiency of ȳ also by taking the limit of the finite sample efficiency. Thus,

as.eff(ȳ, μ̂BLUE) = lim
n→∞

(n−11T Σ−1
n 1)−1

∑n−1
k=−(n−1)(1 − |k|

n
)γX(k)

= lim
n→∞

(n−11T Σ−1
n 1)−1

ν(d)f (n−1)
= lim

n→∞
(n−11T Σ−1

n 1)−1

ν(d)cf n2d
. (5.10)

In the case of short memory (d = 0), this can also be written as

as.eff(ȳ, μ̂BLUE) = limn→∞(n−11T Σ−1
n 1)−1

2πf (0)
.

Thus, one needs to investigate the limit of n−11T Σ−1
n 1. The only difficulty is to

characterize the elements of the inverse covariance matrix. In the case of short mem-
ory, the key is an approximation of Σ−1

n by a circulant n × n matrix S. Circulant
matrices are defined as follows (see, e.g. Brockwell and Davis 1991):

Definition 5.1 Let

S = [
s(i − j)

]
i,j=1,...,n

be a Toeplitz matrix with s : Z → C a periodic function with period n. Then S is
called a circulant matrix.
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For instance, if n = 2m+1 (i.e. n is odd), then we may choose the approximation
of Σ−1

n in form of the circulant matrix S = [s(i − j)] with

s(k) = γX(k)
(
0 ≤ |k| ≤ m

)

and

s(k) = γX(n− k)
(
m+ 1 ≤ |k| ≤ n− 1

)
.

The advantage of a circulant matrix is that one has explicit expressions for the eigen-
values and eigenvectors. For S one obtains eigenvalues α0, α1, . . . , α2m given by

αo =
m∑

k=−m

γX(k),

αj =
m∑

k=−m

γX(k) coskλj (j = 1,2, . . . ,m)

and

αn−j = αj ,

with λj = 2πj/n denoting Fourier frequencies. The corresponding orthonormal
eigenvectors are given by

vo = n− 1
2 (1,1, . . . ,1)T = n− 1

2 1,

and, for j = 1,2, . . . ,m,

vj =
√

2

n

{
1, sinλj , sin 2λj , . . . , sin

[
(n− 1)λj

]}T

and

vn−j =
√

2

n

{
1, cosλj , cos 2λj , . . . , cos

[
(n− 1)λj

]}T
.

This leads to a representation of S and S−1 as

S = PΛPT ,

S−1 = PΛ−1PT

where

P = (vo, v1, . . . , vn−1)
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and

Λ =

⎛

⎜⎜⎜⎜⎝

αo 0 · · · 0

0 α1
. . .

...
...

. . .
. . . 0

0 · · · 0 αn−1

⎞

⎟⎟⎟⎟⎠
.

From the very special form of the eigenvalues and eigenvectors, one can then see
that αj ≈ 2πfX(λj ) for n large enough and

PT SP ≈ D,

PT S−1P ≈ D−1

where

D =

⎛

⎜⎜⎜⎜⎝

2πf (0) 0 · · · 0

0 2πf (λ1)
. . .

...
...

. . .
. . . 0

0 · · · 0 2πf (λn−1)

⎞

⎟⎟⎟⎟⎠
.

Note that in an exact argument one has to take into account that the dimension of
the matrices is increasing. Under suitable assumptions, it can indeed be shown that
the approximation of the elements of PT S−1P is uniform. This then leads to

PTΣ−1
n P ≈ PT S−1P ≈ D−1

and in particular

[
PTΣ−1

n P
]

11 = n− 1
2 1Σ−1

n 1n− 1
2 = n−11Σ−1

n 1 ≈(
2πf (0)

)−1
,

which implies

as.eff(ȳ, μ̂BLUE) = limn→∞(n−11T Σ−1
n 1)−1

2πf (0)
= 2πf (0)

2πf (0)
= 1. (5.11)

Thus, under some regularity conditions ignored in the heuristic arguments here, we
may conclude that for short-memory processes the sample mean is asymptotically
efficient. It is therefore not worth going through the complication of calculating
μ̂BLUE (which would even require estimation of all autocovariances). This is a fa-
mous result by Grenander (1954) who derived it in a more general regression context
(see Sect. 7.1.2 for further discussion). Assuming fX to be finite, piecewise continu-
ous and bounded away from zero for all λ ∈ [−π,π], it is sufficient to derive (5.11).

For d 
= 0, the derivation above cannot be applied because for d > 0 we have
fX(0) = ∞ and for d < 0 we would divide by fX(0) = 0. We know, however, that

(n−11T Σ−1
n 1)−1

ν(d)f (n−1)
∼ (n2d−11T Σ−1

n 1)−1

ν(d)cf
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where 0 < ν(d), cf < ∞ are fixed constants. Thus, the quantity one has to deal with
is

n2d−11T Σ−1
n 1 = n2d−1

n∑

j,l=1

c(j − l) (5.12)

where Σ−1
n = [c(j − l)]j,l=1,2,...,n. This matrix is more delicate to deal with than in

the short-memory case. A heuristic argument can be given as follows. The asymp-
totic behaviour of (5.12) is determined by the behaviour fX(λ) ∼ cf |λ|−2d at the
origin only. Moreover, since we are comparing with the variance of the sample
mean, the relative efficiency does not depend on cf . Thus, the formula we are look-
ing for depends on nothing else than d . In other words, the same formula applies
to all processes that have the same value of d . It is therefore sufficient to calcu-
late (5.10) for one particular process because this formula then applies generally.
Now, for a FARIMA(0, d,0) process autocovariances are given by an explicit for-
mula (see Sect. 2.1.1.4). One can then verify by direct calculation that the optimal
weights are of the form

wt = wt,n =
(
n− 1

t − 1

)
B(t − d,n− t + 1 − d)

B(1 − d,1 − d)

where B(·, ·) is the Beta function. After some calculation one then obtains an ex-
plicit formula for the variance of the BLUE and hence a formula for the asymptotic
efficiency of the sample mean. The formula, first derived by Adenstedt (1974), is
given by

as.eff(ȳ, μ̂BLUE) = (2d + 1)Γ (d + 1)Γ (2 − 2d)

Γ (1 − d)

for any d ∈ (− 1
2 ,

1
2 ) (also see Samarov and Taqqu 1988; Beran and Künsch 1985;

Dahlhaus 1995). For d = 0 we obtain the value of 1 as seen before. For all other
values of d , the asymptotic efficiency is below one. However, there is a distinct
difference between long memory and antipersistence. For d > 0, the efficiency loss
does not exceed 2 %. This means that under long-range dependence there is no need
to abandon the sample mean. In contrast, for d < 0, the asymptotic efficiency of ȳ
can be arbitrarily close to zero if d is close enough to the left border of − 1

2 . This is
shown in Fig. 5.1. Thus, one may conclude that for an antipersistent series it may
be worth the effort to use the BLUE or a similar improved estimator.

5.2.3 M-Estimation

The sample mean is a special example of an M-estimator of μ defined as the solution
of

n∑

t=1

ψ(Yt − μ̂) = 0 (5.13)



398 5 Statistical Inference for Stationary Processes

Fig. 5.1 Asymptotic efficiency of the sample mean as a function of d

where ψ is a deterministic function such that E[ψ(Y − μ∗)] = 0 if and only if
μ∗ = μ. For the sample mean, we have ψ(x) = x. Other examples are the median
with ψ(x) = sign(x) and the Huber estimator with

ψ(x) = x · 1
{|x| ≤ c

}+ c · sign(x) · 1
{|x| > c

}
,

where c > 0 is a suitably chosen tuning parameter. M-estimators have become pop-
ular in the context of robust statistics because their robustness is directly related to
the ψ -function (Huber 1981; Hampel et al. 1986). Specifically, writing μ as a func-
tional μ = T (F ) = ∫

x dF(x) of the underlying (marginal) distribution F of Y , the
influence function defined for an infinitesimal contamination by a point mass at x is
defined by

IF (x) = lim
ε→0

T ((1 − ε)F + εδx)− T (F )

ε
,

where δx is the Dirac measure at point x. For M-estimators the influence func-
tion is proportional to ψ(x). The intuitive interpretation of IF (x) is that it charac-
terizes in how far an infinitesimal contamination of the distribution F by a point
mass δx influences the estimator. Heuristically, one may write for ε small enough,
T ((1 − ε)F + εδx) ≈ T (F ) + εIF (x). Therefore, μ̂ is said to be robust, if ψ is
bounded on R. This is, for instance, the case for the median and the Huber estimator
with c < ∞, however, not for the sample mean. The reason is that an outlier can
change the sample mean to an arbitrary value, whereas this is not the case, if ψ(x)

is bounded. Thus, if one wants to guard against outliers, then bounded ψ -functions
are useful. However, robustness usually comes at a price, in the sense that robust
estimators tend to be less efficient under the ideal uncontaminated model F . For in-
stance, suppose for a moment that Xt (t ∈ Z) are i.i.d. with density function pX(x),
so that Yt = μ + Xt have the common density function pX(x − μ). Then, under
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some mild conditions on ψ , a Taylor expansion of (5.13) leads to the central limit
theorem

√
n(μ̂−μ) →

d
N
(
0, σ 2

ψ

)

where

σ 2
ψ = E[ψ2(Y −μ)]

E2[ψ ′
(Y −μ)] .

(Note that this formula is applicable only if E[ψ ′(Y −μ)] is not zero.) The smallest
value of σ 2

ψ is achieved for ψ(x) proportional to the score function

s(x,μ) = ∂

∂μ
logpX(x −μ).

For instance, for the normal distribution s(x,μ) is proportional to ψ(x) = x and the
corresponding asymptotic variance is σ 2

ψ = σ 2 = var(X). For all other ψ -functions,

σ 2
ψ is larger than σ 2. Thus, for i.i.d. observations all robust M-estimators lose effi-

ciency compared to the sample mean. Analogous results also hold, if the assumption
of independence is replaced by short memory.

It therefore came as a surprise, when it was discovered that for Gaussian long-
memory processes robust M-estimators no longer lose efficiency asymptotically.
This was first stated in Beran (1991) in the context of Gaussian subordination and
generalized later by Giraitis and Surgailis (1999) and Koul and Surgailis (2001) to
linear processes with finite and infinite variance, respectively (also see Wu 2003).
Proofs essentially follow from:

• Limit theorems for empirical processes;
• Asymptotic behaviour of the sample mean.

Below, we formulate the result for linear processes with a finite variance (Beran
1991; Giraitis and Surgailis 1999). Extensions, e.g. to stochastic volatility models,
require proving an appropriate functional central limit theorem for the correspond-
ing empirical processes or related results (see, e.g. Beran 2006, 2007a; Beran and
Schützner 2008, also see Beran and Feng 2007).

Recall that ψ is a function of bounded variation if

sup
∑∣∣ψ(xi)−ψ(xi−1)

∣∣< ∞,

where the supremum is taken over all possible partitions of R.

Theorem 5.1 Let Yt = μ + Xt , where Xt = ∑∞
j=0 aj εt−j is a linear process with

E(εi) = 0, σ 2
ε = var(εi) < ∞ and aj ∼ caj

d−1 as j → ∞ for some 0 < ca < ∞,
0 < d < 1

2 . Assume that ψ is a function of bounded variation and such that

E
[
ψ
(
Y −μ∗)] = 0



400 5 Statistical Inference for Stationary Processes

if and only if μ = μ∗. Moreover, assume that the technical conditions of Theo-
rem 4.33 hold and

∫
pX(x)dψ(x) 
= 0. (5.14)

Then

n
1
2 −d(μ̂−μ) →

d
N
(
0, σ 2

M

)
,

where

σ 2
M = σ 2

ε c
2
a

d(2d + 1)

∫ ∞

0
ud−1(u+ 1)d−1 du.

Moreover,

n
1
2 −d(μ̂− ȳ) →

d
0.

Proof As mentioned above, the proof follows from the limit theorem for empiri-
cal processes (Theorem 4.33), together with the asymptotic behaviour of the sam-
ple mean; see Theorem 4.6. Let FY (y) and pY (y) = pX(y − μ) be the marginal
distribution and the marginal density function of Yt . Recall that Fn,Y is the em-
pirical distribution function associated with Y1, . . . , Yn. By the definition of μ̂, we
have

0 =
∫

ψ(y − μ̂) dFn,Y (y)

=
∫

ψ(y − μ̂) d
[
Fn,Y (y)− FY (y)

]

︸ ︷︷ ︸
In,1

+
∫

ψ(y − μ̂) dFY (y)

︸ ︷︷ ︸
.

In,2

Recall the reduction principle (4.159). Formally,

Fn,X(x −μ)− FX(x −μ)+ pX(x −μ)x̄ = op
(
nd− 1

2
)
,

uniformly in x. This can be restated as

Fn,Y (x)− FY (x)+ pY (x)x̄ = op
(
nd− 1

2
)
.

Thus, using a change of variables and partial integration (which is possible due
to bounded variation of ψ ), the first term In,1 can be approximated as fol-
lows:

In,1 = −
∫ [

Fn,Y (y + μ̂)− FY (y + μ̂)
]
dψ(y)

= x̄

∫
pY (y + μ̂) dψ(y)+ op

(
nd− 1

2
)
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= x̄

∫
pY (y +μ)dψ(y)+ (μ− μ̂) · x̄n

∫
p′
Y (y +μ)dψ(y)+ op

(
nd− 1

2
)

= x̄

∫
pX(y)dψ(y)+ op

(
nd− 1

2
)
,

where the reduction principle was used in the second equality. The last approxima-

tion follows from μ̂−μ = op(1) and x̄n = Op(n
d− 1

2 ).
For the second term In,2, recall that

E
[
ψ(Y −μ)

] =
∫

ψ(y −μ)pY (y) dy = 0,

so that this term can be added to In,2. By a change of variables and Taylor expansion
of pY ,

In,2 =
∫ [

ψ(y − μ̂)−ψ(y −μ)
]
pY (y)dy

=
∫

ψ(y)
[
pY (y + μ̂)− pY (y +μ)

]
dy

= (μ̂−μ)

∫
ψ(y)p′

Y (y +μ)dy + op(μ̂−μ)

= (μ̂−μ)

∫
ψ(x)p′

X(x)dx + op(μ̂−μ)

= −(μ̂−μ)

∫
pX(x)dψ(x)+ op(μ̂−μ).

Thus, bearing in mind (5.14), overall we obtain

μ̂−μ = x̄ + op(μ̂−μ)+ op
(
nd− 1

2
)
.

The asymptotic distribution of μ̂ then follows from the asymptotic behaviour of x̄
as described in Theorem 4.6. �

Theorem 5.1 is very general. For example, it does not require the existence of a
complete Appell polynomial expansion. On the other hand, as stated here, it is not
directly applicable to the median (and other ψ -functions with similar properties)
because for ψ(x) = sign(x) the integral

∫
pX(x)dψ(x) vanishes. However, by a

slight modification of the proof, condition (5.14) can be replaced by

∫
ψ(x)p′

X(x)dx 
= 0. (5.15)
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Heuristically the result in Theorem 5.1 then follows from the approximation (see
Corollary 4.3)

n−1
n∑

t=1

ψ(Xt) ≈ J1X̄n,

where

Jk = Jk(ψ) = (−1)k
∫

ψ(x)p
(k)
X (x) dx,

and in particular

J1 = −
∫

ψ(x)p′
X(x)dx.

In other words, we use the Appell polynomial expansion

ψ(X) =
∞∑

j=1

aj,app

j ! Aj(X)

with

aj = (−1)j
∫

ψ(x)p
(j)
X (x) dx,

assuming that a unique Appell polynomial expansion exists. Recall that this
also means that we need to impose additional conditions on the marginal den-
sity functions. Sufficient conditions include, for instance, pX ∈ C∞(R) and∫
(p

(j)
X /pX)

2pX dx < ∞ (see Giraitis 1985). By definition (and arguments as be-
fore), we have

0 ≈ n−1
n∑

t=1

ψ(Xt)+ (μ̂−μ)

∫
ψ(x)p′

X(x)dx

≈ J1x̄ − J1(μ̂−μ).

Thus, the result of Theorem 5.1 follows, if J1 
= 0. Note also that for a Gaussian
process Xt with var(Xt ) = 1 we have p′

X(x) = −xpX(x) so that condition (5.15) is
the same as saying that the Hermite rank of ψ is one.

Example 5.2 Suppose that μ is the median of Yt . Note that, since E(Xt) was as-
sumed to be zero, this means that the median is equal to the expected value. Then
we have for ψ(x) = sign(x),

J1 = −
∫

ψ(x)p′
X(x)dx

= −
[
−
∫ 0

−∞
p′
X(x)dx +

∫ ∞

0
p′
X(x)dx

]
= 2pX(0).
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Thus, the theorem is applicable, if (apart from the other regularity conditions) we
have pX(0) 
= 0. It is interesting to note that this condition is also important in the
case of i.i.d. data because there the asymptotic distribution of the sample median is
then given by

√
n(μ̂−μ) →

d
N

(
0,

1

4p2
Y (μ)

)
= N

(
0,

1

4p2
X(0)

)
= N

(
0, J−2

1

)
.

However, in the case of long memory, the condition pX(0) 
= 0 is only needed to
make sure that the asymptotic distribution is valid. The actual value of pX(0) does
not appear in the limiting distribution. This is very much in contrast to the i.i.d. and
short memory case.

It should be emphasized that the assumption in the example was that Xt = Yt −μ

where μ is the median. In other words, the median of Yt is equal to the expected
value. This is, of course, not the case in general. If μ = E(Yt ) is not identical with
the median (say μmed), and our aim is to estimate μmed, then we still have ψ(u) =
sign(u), but μmed = μ+Δmed with Δmed 
= 0. The asymptotic distribution of μ̂med
is therefore determined by

∑
ψ(Yt −μmed) =

∑
ψ(Xt −Δmed).

The Appell polynomial expansion is then

ψ(X −Δmed) =
∞∑

j=1

aj,app

j ! Aj(X)

with

aj,app = (−1)j
∫

ψ(x −Δmed)p
(j)
X (x) dx

= (−1)j
∫

ψ(x)p
(j)
X (x +Δmed) dx.

In particular,

a1,app = J1 = −
∫

ψ(x)p′
X(x +Δmed) dx

= −
∫ 0

−∞
p′
X(x +Δmed) dx +

∫ ∞

0
p′
X(x +Δmed) dx

= −2p′
X(Δmed).

The result of Theorem 5.1 is in sharp contrast to the i.i.d. and weakly dependent
case where robustness comes at the cost of losing efficiency. It is also worth not-
ing that an analogous asymptotic limit theorem for M-estimators can be obtained
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Fig. 5.2 Simulated distributions of the sample mean and the sample median for a
FARIMA(0, d,0) series of length n = 1000, with (a) d = −0.4, (b) d = 0 and (c) d = 0.4, re-
spectively

for subordinated processes Yt = μ + G(Xt). However, in general, the asymptotic
equivalence between the sample mean and other M-estimators is lost.

On the other hand, if Xt (t ∈ N) is antipersistent, then the opposite happens.

Antipersistence implies that n
1
2 −d(ȳ − μ) is asymptotically normally distributed.

Since d is negative, the rate nd− 1
2 converges faster to zero than n− 1

2 . However, for
an M-estimator with a nonlinear ψ -function antipersistence is lost so that the rate

becomes n− 1
2 again. Thus, there is an infinite efficiency loss due to robust estima-

tion! This is illustrated numerically in the following example.

Example 5.3 Let Yt = μ + Xt where Xt is a fractional ARIMA(0, d,0) process
Xt = ∑∞

j=0 aj εt−j = (1 −B)−dεt with standard normal innovations εt . Recall that

the coefficients aj behave like aj ∼ caj
d−1 = 1

Γ (d)
jd−1. Then ȳ is exactly normally

distributed with expected value μ and the variance of ȳ is approximately equal to

var(ȳ) ∼ ν(d)cf n
2d−1 = sinπd

πd(2d + 1)
Γ (1 − 2d)n2d−1

= Γ (1 − 2d)

Γ (1 − d)Γ (d)d(2d + 1)
n2d−1.

We compare this to the median μ̂. If d > 0, then μ̂ has the same distribution asymp-
totically. For d = 0,

√
n(μ̂−μ) converges to a normal variable with zero mean and

variance E[ψ2(X)]/E2[ψ ′(X)] = π/2 ≈ 1.57. The relative asymptotic efficiency
of μ̂ is therefore 2/π ≈ 0.64. On the other hand, for d < 0, the relative asymptotic
efficiency of μ̂ is zero. This is illustrated in Fig. 5.2 using 1000 Monte Carlo repe-
titions and a sample size of n = 1000. For d = −0.4, the distribution of the median
is much wider, whereas for d = 0.4 the two distributions are hardly distinguishable.
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A result analogous to Theorem 5.1 holds for linear long-memory processes with
an infinite variance (Koul and Surgailis 2001). As in Theorem 4.17, we consider the
linear process Xt = ∑∞

j=0 aj εt−j such that εt are i.i.d. in the domain of attraction
of a stable law, i.e. as x → ∞,

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α (5.16)

for some 1 < α < 2. We also assume that E(εt ) = 0. Moreover, aj ∼ caj
d−1 and∑∞

j=0 |aj |α < ∞ and hence 0 < d < 1 − α−1. Also, assume that ψ fulfills the con-
ditions of Theorem 5.1. Then, under further regularity conditions on Fε (such as
those in Theorem 4.35; sufficient is, for instance, if εt is SαS) we have

n1−1/α−d(μ̂− Ȳn) →
d

0.

Thus, using Theorem 4.15, applied to the sample mean, we conclude that

n1−1/α−d(μ̂−μ) →
d

A1/αC−1/α
α

B

d
Z̃H,α(1),

where H = d + α−1, and Z̃H,α(1) is a symmetric α-stable random variable with
scale

ηα =
∫ 1

−∞

{∫ 1

0
(u− v)d−1+ du

}α

dv = d−1
(∫ 1

−∞
{
(1 − u)d − (−u)d+

}α
du

)
.

5.3 Scale Estimation

Suppose now that we observe Yt = μ + σXt where Xt is a linear process with unit
variance. The usual estimator of σ 2 is the sample variance

s2 = 1

n− 1

n∑

t=1

(Yt − ȳ)2.

For i.i.d. observations the asymptotic distribution of
√
n(s2 −σ 2) is the same as that

of
√
n(s2

0 − σ 2), where s2
0 = (n− 1)−1 ∑n

t=1(Yt −μ)2. Indeed, we have

n−1
n∑

t=1

(Yt −μ)2 − σ 2 = σ 2

n

n∑

t=1

(
X2

t − 1
)

and

n−1
n∑

t=1

(Yt − ȳ)2 = σ 2

n

n∑

t=1

(
X2

t − 1
)− σ 2x̄2.
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Now,
√
nσ 2n−1 ∑n

t=1(X
2
t − 1) converges to a normal distribution with variance

σ 4E[(X2 − 1)2] = 2σ 2, whereas
√
nx̄2 = op(1). Therefore,

√
n(s2 − σ 2) and√

n(s2
0 − σ 2) have the same asymptotic distribution. This asymptotic equivalence

no longer holds for strongly dependent data. For instance, if Xt (t ∈ Z) is a station-
ary Gaussian process with coefficients aj ∼ caj

d−1 in the Wold decomposition and
1/4 < d < 1/2, then (see Theorem 4.3)

n1−2d σ
2

n

n∑

t=1

(
X2

t − 1
) →

d
σ 2vZ2,H (1),

where Z2,H (·) is an Hermite–Rosenblatt process, H = d + 1/2 and

v2 = σ 4
ε c

4
a

d(4d − 1)

(∫ ∞

0
ud−1(u+ 1)d−1 du

)2

= σ 4
ε c

4
a

d(4d − 1)
B2(1 − 2d, d).

On the other hand,

σ 2n1−2dX̄2
n = σ 2(n1/2−dX̄n

)2 →
d

σ 2v2Z2

where Z ∼ N(0,1). Thus, the limiting distribution of the appropriately normalized
s2

0 is of the Hermite–Rosenblatt type, whereas for s2 it is defined by a linear combi-
nation of an Hermite–Rosenblatt and a χ2

1 variable (Dehling and Taqqu 1991). We
illustrate this difference in the following example.

A further problem with the sample variance is that, under long memory, it tends
to underestimate σ 2 for small sample sizes. The intuitive reason is that sample
paths tend to stay at a similar level for a prolonged time and hence vary less than
they would over a longer time period. A heuristic argument can be given as fol-
lows:

E
(
s2) = (n− 1)−1σ 2

n∑

t=1

E
[
(Xt − x̄n)

2]

= (n− 1)−1n
[
σ 2 − var(x̄n)

] ≈ σ 2 1 − σ−1ν(d)cf n
2d−1

1 − n−1

= σ 2 1 − c · n2d−1

1 − o(n2d−1)
= σ 2(1 − cn2d−1 + o

(
n2d−1))

with c > 0. As d approaches 1
2 , the exponent 2d − 1 approaches zero so that the

bias becomes increasingly serious even for relatively large sample sizes. This is
illustrated by the following examples.



5.3 Scale Estimation 407

Fig. 5.3 Expected value of
s2 for increments of a
self-similar process with
variance 1

Example 5.4 For increments Xt = Ut −Ut−1 of a self-similar process Ut with self-
similarity parameter H = d + 1

2 , we have the exact equality E[s2] = σ 2 · κ with

κ = 1 − n2d−1

1 − n−1
.

Figure 5.3 displays κ for n between 2 and 400. One can see that even for n = 400
there is a considerable bias with c = 0.7, unless long memory is very weak.

Example 5.5 Figure 5.4(a) displays boxplots of simulated sample variances s2 for
a Gaussian FARIMA(0, d,0) model with d = 0.4 and d = −0.4, respectively, with
σ 2 = 1. As expected, for d = −0.4 no relevant bias appears to be present whereas
for d = 0.4 most sample variances are far below σ 2 = 1 even for n = 1000.

A further illustration which consequences long-range dependence and the nega-
tive bias of s2 may have is given in the following example.

Example 5.6 Figure 5.5 shows a simulated sample path (of length n = 2000) of a
Gaussian FARIMA(2, d,0) process with d = 0.4, ϕ1 = 0.5 and ϕ2 = 0.4. Based
on the first 1000 observations the sample mean x̄ and the sample variance s2 are
calculated. A standard rule of thumb for normally distributed observations is that
x̄ ± 2s covers about 95 % of the population distribution. Figure 5.5 illustrates that
for data with long memory this rule is not reliable even for large sample sizes. Here,
x̄ ± 2s obtained from the first 1000 observations does not even include the expected
value μ = 0. The reason is that, due to long memory which is even accompanied
by additional strong short memory (due to ϕ1, ϕ2), almost all of the first 1000 ob-
servations are above the expected value and their variability is (therefore) relatively
small. Due to stationarity, the process drops below the expected value afterwards
but that is too late, if the observer gets to see the first 1000 values only. In contrast,
the interval x̄ ± 2

√
var(Xt ) provides a much more reliable interval. Even though it

is also affected by the high value of the sample mean, it is large enough—due to
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Fig. 5.4 Boxplots of simulated sample variances for a FARIMA(0, d,0) process with d = 0.4 and
−0.4, respectively

Fig. 5.5 Simulated sample
path of a FARIMA(0,0.4,0)
process of length 2000. The
horizontal lines correspond to
the sample mean (dotted line
in the middle) and the region
x̄ ± 2s based on the first 1000
observations (full lines). The
outer dotted lines correspond
to x̄ ± 2

√
var(Xt )

the correct standard deviation—to include at least most of the next 1000 observa-
tions.

In summary, the sample variance is biased, and its asymptotic distribution is com-
plicated and depends on specific assumptions that cannot be verified. A further prob-
lem is its slow rate of convergence. An alternative approach is to set

σ̂ 2 =
∫ π

−π

f̂X(λ)dλ

where f̂X is an estimate of the spectral density of Xt (t ∈ N). In particular, for
parametric models we have f̂X(λ) = fX(λ; θ̂ ) where θ̂ is a

√
n-consistent estima-

tor of θ . Thus, the rate of convergence is better than for the sample variance (see
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Sect. 5.5), and we obtain the same asymptotic normal distribution under rather gen-
eral assumptions.

5.4 Heuristic Estimation of Long Memory

Let Xt (t ∈ Z) be a stationary linear process with long memory. In this section, we
review several heuristic methods for long memory identification (or more generally,
the distinction between short memory, long memory or antipersistence):

• Variance plot;
• Rescaled range method (R/S);
• KPSS statistic;
• Rescaled variance method (V/S);
• Detrended Fluctuation Analysis (DFA);
• Temporal Aggregation.

For reasons outlined in the introduction, these methods are mainly useful for
descriptive purposes rather than concrete statistical inference or model building.

5.4.1 Variance Plot

Recall that for long-range dependent linear processes

var(x̄) ∼ Cn2d−1,

where C is a constant (for simplicity of presentation, we omit more general slowly
varying functions here). Consequently,

log
(
var(x̄)

) ≈ logC + (2d − 1) logn.

This suggests applying linear regression with logn as predictor. For instance, one
may define the following procedure:

1. Divide X1, . . . ,Xn into m non-overlapping, adjacent blocks of length k such that
n = mk (or [mk]).

2. Compute the sample mean for each block, i.e.

x̄k(j) = 1

k

jk∑

t=(j−1)k+1

Xt (j = 1, . . . ,m).

3. Compute the overall mean

x̄ = x̄n = 1

m

m∑

j=1

x̄k(j).
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4. Compute an estimate of the variance of a sample based on k observations by

s2(k) = 1

m− 1

m∑

j=1

(
x̄k(j)− x̄

)2
.

5. Heuristically, when k grows, var(x̄k(j)) ∼ Ck2d−1 for each j = 1, . . . ,m. Thus,
s2(k) grows approximately at the rate k2d−1. We therefore carry out steps 1–4
for k = 2, . . . , n/2 and plot log s2(k) against logk. The slope should be approxi-
mately equal to (2d − 1). The estimator d̂VAR of d is then obtained from a least
squares fit.

5.4.2 Rescaled Range Method

The rescaled range statistics R/S was introduced by Hurst (1951). Hurst’s original
definition motivated by the calculation of the minimal capacity of a dam is given in
Sect. 1.2. When dealing with stationary processes, one often uses instead a simpler
expression of the form

Rn = max
1≤k≤n

k∑

t=1

(Xt − x̄n)− min
1≤k≤n

k∑

t=1

(Xt − x̄n)

and S2
n = 1

n−1

∑n
t=1(Xt − x̄n)

2 (which is the same as the sample variance s2). If Xt

is second-order stationary, then S2
n converges in probability to σ 2

X = var(Xt ). Limit-
ing properties of the R/S statistics were investigated by Mandelbrot (1975). An at-
tractive feature is that the method is robust in the sense that under weak dependence

the rate of convergence is n− 1
2 even if the variance of Xt is infinite (Mandelbrot and

Wallis 1969a, 1969b, 1969c; Mandelbrot and Taqqu 1979). In other words, under
mild regularity conditions, we have

n−1/2 Rn

Sn
→
d

Q

where Q is a nondegenerate random variable (Feller 1951; Annis and Lloyd 1976;
Mandelbrot and Wallis 1969a, 1969b, 1969c; Mandelbrot and Taqqu 1979). An-
other rate is obtained under long-range dependence or antipersistence. Suppose, for
instance, that Xt = ∑∞

j=0 aj εt−k is a linear process with aj ∼ caj
d−1 (0 < d < 1

2 )

and var(Xt ) = σ 2
X < ∞. Since S2

n → σ 2
X in probability, Theorem 4.6 implies

k∑

t=1

(Xt − x̄) =
k∑

t=1

Xt − k

n

n∑

t=1

Xt

∼ C(d)nH
[
BH

(
k

n

)
− k

n
BH (1)

]
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and

n−H Rn

Sn
→
d

C(d)
[

sup
u∈[0,1]

B̃H (u)− inf
u∈[0,1] B̃H (u)

]
=: Z̃H (5.17)

where

C2(d) = σ 2
ε c

2
a

d(2d + 1)

∫ ∞

0
vd−1(1 + v)d−1 dv (5.18)

and B̃H (u) = BH(u) − uBH (1) (u ∈ [0,1]) is a fractional Brownian bridge with
Hurst parameter H = d + 1

2 . Note the similarity to CUSUM statistics used in the
context of change point detection, see Sect. 7.9. Also note that, under additional
uniform integrability conditions, (5.17) implies

E

[(
Rn

Sn

)]
∼ const · nd+ 1

2 = const · nH . (5.19)

This, or (5.17) (and in particular the difference between H = 1
2 and H 
= 1

2 ), is
generally known as Hurst effect, and motivated Mandelbrot and co-workers to de-
velop graphical techniques for estimating H based on the R/S statistic (Mandelbrot
and Wallis 1969a, 1969b, 1969c; Mandelbrot and Taqqu 1979, also see Bassingth-
waighte and Raymond 1994; Teverovsky et al. 1999 and references therein). Taking
the logarithm on both sides of (5.17), we obtain

log(Rn/Sn) ≈ H logn+ log Z̃H

= β0 + β1 logn+ eH (n) (5.20)

where β1 = H , β0 = E[log Z̃H ] and

eH (n) =
d

log Z̃H −E[log Z̃H ].

This means that H can be interpreted as the slope of a regression line of log(Rn/Sn)

against logn with intercept β0 and random errors eH (n). The usual R/S-estimate
of d is therefore defined by

d̂R/S = ĤR/S − 1

2
= β̂1 − 1

2

where β̂1 is the least squares estimate of β1. The plot of log(R/S) against logn (or
originally rather the more complex version defined in Sect. 1.2) is also known as
‘pox plot’.

A modified R/S statistic with a limiting distribution that does not depend on
short-memory parameters was proposed by Lo (1991), with the purpose of testing
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the null hypothesis H0 : d = 0 (no long memory) against H1 : d > 0. The idea is to
replace S2

n by

S2
n,m =

m−1∑

k=−(m−1)

(
1 − |k|

m

)
γ̂X(k) = S2

n + 2
m−1∑

k=1

(
1 − k

m

)
γ̂X(k)

where γ̂X(k) are sample covariances of Xt (t ∈ N). Under H0, S2
n,m converges to

2πfX(0), provided that m tends to infinity (in this sense, (2π)−1S2
n,m is a non-

parametric estimator of fX(0)). This is the correct asymptotic standardization of∑n
t=1 Xt to obtain a standard Brownian bridge n− 1

2 Rn/Sn,m in the limit. Moreover,
as shown in Giraitis et al. (2003), the standardization is also correct for d 
= 0 except
for the factor m−2d . More specifically one has

m−2dS2
n,m →

p

cγ

d(2d + 1)
.

The general statement is then

(
m

n

)d

n−d− 1
2 Rn/Sn,m →

d
sup

u∈[0,1]
B̃H (u)− inf

u∈[0,1] B̃H (u).

In particular, the test of H0 is consistent because we use the standardized statistic

Tn = n− 1
2
Rn

Sn,m

so that under H1 we have Tn → ∞. A practical problem is, however, an appropriate
choice of m for a given data set where we do not know the short-memory structure.
Moreover, for large lags (large compared to n) sample covariances do not yield
reliable estimates of γX(k). The testing procedure therefore tends to be quite volatile
(see, e.g. the discussion in Teverovsky et al. 1999).

A further practical problem with the R/S approach is that it is not robust against
departures from stationarity. Specifically, Bhattacharya et al. (1983) considered the
model Xt = μ(t) + εt , where εt are i.i.d. random variables and μ(t) is a hyperbol-
ically decaying trend function. The estimate of d based on the R/S statistic then
converges to a value of d larger than 1

2 . Thus, the estimator suggests long memory
that is not really present in the data.

The most serious problem with the R/S method is, however, that it is not clear
how to choose the cut-off point n0 after which the linear approximation (5.20) is
sufficiently accurate. Typically, there is a transient stretch where short-range cor-
relations play a role and then the plot levels off (for n ≥ n0) to fluctuate around
a straight line with slope H = d + 1

2 . Depending on how n0 is selected, the esti-
mated slopes may be quite different. Usually, n0 is chosen by visual inspection. The
accuracy of such a subjective method is, of course, hard to quantify, and different
analysts may arrive at different conclusions. It should be noted, however, that this
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comment is not specific to the R/S approach but rather applies to all heuristic and
graphical methods considered in this section.

5.4.3 KPSS Statistic

An alternative to the R/S method is the so-called KPSS statistic proposed by
Kwiatkowski et al. (1992) and its modification analogous to Lo’s correction (Gi-
raitis et al. 2003). There, the range is replaced by a second moment. The modified
statistic is of the form

TKPSS = Mn

S2
n,m

with S2
n,m as before (with m → ∞, m/n → 0) and

Mn = 1

n2

n∑

k=1

{
k∑

t=1

(Xt − x̄n)

}2

= 1

n2

n∑

k=1

{
k∑

t=1

Xt − k

n

n∑

t=1

Xt

}2

.

Again, using Theorem 4.6, we have

Mn ≈ C2(d)n−2
n∑

k=1

{
BH(k)− k

n
BH (n)

}2

=
d
C2(d)n2H−1

n∑

k=1

{
BH

(
k

n

)
− k

n
BH (1)

}2 1

n

and conclude

n−2dMn →
d

C2(d)

∫ 1

0
B̃2
H (u)2 du,

where B̃H is a fractional Brownian bridge with Hurst parameter H = d + 1/2 and
C(d) is given in (5.18). For TKPSS similar arguments lead to (see Giraitis et al. 2003)

(
m

n

)2d

TKPSS →
d

∫ 1

0
B̃2
H (u)2 du

under fairly general assumptions including fourth order stationarity. The estimator
of d is therefore defined as d̂KPSS = 1

2 β̂1 where β̂1 is the least squares estimate
of the slope when regressing logTKPSS on log(n/m). Finally, note that the KPSS
approach has also been suggested for testing stationarity against the alternative of a
fractionally integrated process (Lee and Schmidt 1996).
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5.4.4 Rescaled Variance Method

In the rescaled variance (or V/S) method, Giraitis et al. (2003) propose replacing
Mn by

Vn = 1

n2

{
n∑

k=1

[
k∑

t=1

(Xt − x̄n)

]2

− 1

n

[
n∑

k=1

k∑

t=1

(Xt − x̄n)

]2}
.

For the so-called V/S statistic

TV/S = Vn

S2
n,m

,

we then have, again due to Theorem 4.6,

(
m

n

)2d

TV/S →
d

∫ 1

0
B̃2
H (u)du−

(∫ 1

0
B̃H (u)du

)2

.

The estimator of d is therefore defined as d̂V/S = 1
2 β̂1 where β̂1 is the least squares

estimate of the slope when regressing logTV/S on log(n/m).

5.4.5 Detrended Fluctuation Analysis (DFA)

DFA was introduced in Peng et al. (1994) to provide some evidence of long mem-
ory in DNA sequences (also see Taqqu et al. 1995). The procedure works as fol-
lows:

1. Divide X1, . . . ,Xn into m nonoverlapping and adjacent blocks of size k such that
n = mk (or n = [mk]).

2. Within each of the m blocks, we regress Tl = ∑l
t=1 Xt against l and estimate the

variance of the residuals by

S2
k (j) = 1

k

jk∑

l=(j−1)k+1

(Tl − β̂0,j − β̂1,j l)
2 (j = 1, . . . ,m).

Here β̂0,j and β̂1,j are least squares regression estimates based on the j th block.
3. Compute

F 2(k) = 1

m

m∑

j=1

S2
k (j).

4. Heuristically, as the length k of the blocks grows, S2
k (j) grows at the rate k2H =

k2d+1 for each j . Thus, F 2(k) grows at the rate k2H . Hence, after carrying out



5.4 Heuristic Estimation of Long Memory 415

steps 1–3 for k = 2, . . . , n/2, we plot logF(k) against logk to obtain

logF(k) ≈ logC +H logk = β0 + β1 logk.

The estimator of d is then obtained from the least squares estimate β̂1 by d̂DFA =
ĤDFA − 1

2 = β̂1 − 1
2 .

This method is quite similar to the variance plot. The main difference is that
instead of assuming stationarity a priori, a fitted linear trend function is subtracted
first in each block. The method is therefore less sensitive to trends in the data than,
for instance, the R/S approach.

5.4.6 Temporal Aggregation

Another idea of estimating the long-memory parameter d is based on the results
in Sect. 2.2.1. If Xi (i = 1,2, . . . , n) are generated by a second order stationary
process with zero mean, then Theorem 2.67 implies that after sufficient aggregation
the autocovariances and the spectral density of

Yi,M =
iM∑

j=(i−1)s+1

Xj

are close to the spectral density of fractional Gaussian noise. After (sufficient) ag-
gregation, we therefore can apply one of the Gaussian (quasi) maximum likelihood
methods discussed in the next section, using fractional Gaussian noise as the para-
metric model. As for the previous heuristic methods, a problem with this approach
is that it is difficult to decide how much aggregation is needed to come sufficiently
close to the asymptotic spectral shape (2.71). An advantage is, however, that tests
and confidence intervals for d may be based on asymptotic results for the MLE (see

Theorem 5.2). In particular, we have d̂ − d = Op(n
− 1

2 ), though it should be said
that, strictly speaking, Theorem 5.2 does not apply exactly because the additional
uncertainty introduced by the preceding decision on the degree of aggregation is not
taken into account. A practical limitation of the method is that aggregating blocks
of length M reduces the data size by the factor 1/M . One therefore needs a rela-
tively long series to obtain reasonable results. On the other hand, even if the original
series is far from Gaussian, aggregation often leads to an almost Gaussian process.
An MLE approach based on the assumption of normality is then likely to be quite
efficient (except for the reduced sample size due to aggregation). In particular, tem-
poral aggregation is often advantageous when the original observations Xi are very
discrete or if the series contains a large portion of zeroes. Data of this type are,
for instance, often encountered in telecommunications and computer network engi-
neering, or in climatological data such as ice thickness or precipitation. For a typical
application, see, e.g. Beran et al. (1995).
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5.4.7 Comments

Although the heuristic estimators discussed above are very easy to implement, they
are generally not the best choice when it comes to reliable statistical inference.
The main problem is that a suitable cut-off point has to be chosen after which the
asymptotic approximation is good enough or, in the aggregation approach, one has
to choose a suitable degree of aggregation. The choice is usually based on visual
inspection. It is not clear how to quantify uncertainty of such estimates, and how to
prevent results being guided by “wishful thinking”. Other problems, such as lack of
robustness against deterministic trends, are easier to handle and could be amended
by suitable modifications. For instance, the DFA method removes linear trends a
priori, in contrast to the related variance plot. For some detailed comments on R/S

and DFA, also see Mielniczuk and Wojdyłło (2007a, 2007b). In spite of their limi-
tations, the methods described in this section are often useful for a quick check. In
particular, one may assess whether there may any chance of finding long memory in
the data. A confirmation of the conjecture and concrete mathematical models have
to be carried out using more sophisticated methods, some of which will be described
in the following sections. Moreover, all heuristic methods described here focus on
the long-memory parameter d and ignore any other aspect of the data. Also in this
sense, they can be seen as complementary rather than competitors to more elabo-
rate techniques, such as parametric or broadband estimation, where the complete
dependence structure is modelled.

5.5 Gaussian Maximum Likelihood and Whittle Estimation

5.5.1 Exact Gaussian or Quasi-maximum Likelihood Estimation

Consider a linear process

Xt =
∞∑

j=0

aj εt−j = A(B)εt (5.21)

where a0 = 1,
∑

a2
j < ∞, A(e−iλ) = ∑

aj exp(−ijλ), B is the backshift opera-

tor and εt are i.i.d. zero mean random variables with finite variance σ 2
ε = var(εt ).

Suppose that the autocovariance function γX(k) and the spectral density fX(λ) of
Xt are known except for a (p + 1)-dimensional parameter vector ϑ = (σ 2

ε , θ) with
θ ∈ Θ ⊆ R

p characterizing the linear dependence structure. We will use the nota-
tion ϑ0, σ 2

ε,0 and θ0 whenever it needs to be emphasized that we are dealing with
the true parameter values. Derivatives with respect to θ will be denoted by a dot,
e.g.

∂

∂θ
fX = ḟX,

∂2

∂θ2
fX = f̈X, . . . .
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Note that, since Xt is a linear process, its distribution is fully specified by the distri-
bution of the innovations εt and the parameter θ . In particular, if Xt (t ∈ Z) is a (zero
mean) Gaussian process, then its distribution is fully specified by the parameters σ 2

ε

(scale) and θ (linear dependence). As will be seen below, for Gaussian processes
the maximum likelihood estimator (MLE) θ̂MLE of θ is defined as the minimizer
of a certain quadratic form, and the MLE of σ 2

ε is obtained by evaluating a related
quadratic form at θ = θ̂MLE. The asymptotic distribution of the MLE therefore es-
sentially follows from limit theorems for quadratic forms of Gaussian processes
discussed in Sect. 4.5.1. If Xt is not Gaussian, then minimizing the Gaussian likeli-
hood still leads to a consistent estimator of ϑ under fairly general conditions. In this
case, one also speaks of a pseudo- or quasi-maximum likelihood estimator (QMLE).
The asymptotic distribution then again follows from the corresponding limit theo-
rems for quadratic forms. For instance, for linear processes suitable limit theorems
are given in Sect. 4.5.2.

Let us now start with a zero mean Gaussian process Xt (t ∈ Z) and data con-
sisting of n observed values X(n) = (X1, . . . ,Xn)

T . The joint probability density
function of the random vector X(n) is given by

p(x;ϑ) = (2π)−
n
2 |Σn|− 1

2 exp

(
−1

2
xT Σ−1

n x

) (
x ∈R

n
)

where

Σn = Σn(ϑ) = [
γX(r − s;ϑ)]

r,s=1,...,n

is the n × n covariance matrix of X(n) and | · | denotes the determinant. The log-
likelihood function can therefore be written as

logp(x;ϑ) = −n

2
log 2π − 1

2
log

∣∣Σn(ϑ)
∣∣− 1

2
xT Σ−1

n (ϑ)x.

Multiplying by −2/n and ignoring the constant leads to the “log-likelihood func-
tion”

Ln,exact(ϑ) = 1

n
log

∣∣Σn(ϑ)
∣∣+ 1

n
x′Σ−1

n (ϑ)x. (5.22)

The maximum likelihood estimator of ϑ is defined as

ϑ̂n,MLE = argminLn,exact(ϑ). (5.23)

The estimator is asymptotically normal as stated in the following theorem. The re-
sult was proven by Yajima (1985) for FARIMA(0, d,0) models, whereas Dahlhaus
(1989) considered general Gaussian processes with a possibly unknown mean.
Hosoya (1997) considered extensions of the results by Dahlhaus to a bivariate set-
ting.

Theorem 5.2 Assume that Xt = ∑
aj εt−j (t ∈ Z) is a linear process with spectral

density

fX(λ) ∼ cf |λ|−2d (as λ → 0)
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for some d ∈ (− 1
2 ,

1
2 ). Then, under suitable regularity conditions, we have

√
n
(
ϑ̂n,MLE − ϑ0) →

d
N(0,ΣMLE) (5.24)

with

ΣMLE = 4πC−1
MLE + κ4σ

4
ε Ivar,

where CMLE = [crs]r,s=1,...,p+1 is a matrix with entries

crs =
∫ π

−π

(
∂

∂ϑr

logfX(λ;ϑ)
)(

∂

∂ϑs

logfX(λ;ϑ)
)
dλ

∣∣∣∣
ϑ=ϑ0

and all entries in the (p + 1) × (p + 1) matrix Ivar are equal to zero except for the
upper left corner with [Ivar]11 = 1.

Remark 5.1 For d > 0, “suitable regularity conditions” are in particular:

• The function λ → fX(λ;ϑ) is continuous except at λ = 0;
• The function λ → 1/fX(λ;ϑ) is continuous;
• The function ϑ → ∫ π

−π
logfX(λ;ϑ)dλ is differentiable (twice) under the integral

sign.

These conditions guarantee the validity of several approximation arguments, as
well as the interchange of differentiation with integration. For d ∈ (− 1

2 ,0], condi-
tions have to be adapted accordingly.

If κ4 = 0 then the integral involved in the definition of CMLE resembles Fisher’s
information matrix. In fact, it can be shown that under the assumption of Gaussianity
(and some regularity conditions), ΣMLE is indeed the inverse of the limit of Fisher’s
information matrix (Dahlhaus 1989). Finally note that, in general, ΣMLE depends on
the unknown parameter vector ϑ (though for θ the corresponding submatrix does
not depend on σ 2

ε ). A notable exception is the FARIMA(0, d,0) model (see the
discussion below in the context of the Whittle estimator).

The exact MLE, however, is difficult to deal with both theoretically and numer-
ically. To simplify the exact log-likelihood in (5.22), note first that fX(λ) can be
written as

fX(λ) = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 = σ 2
ε

2π
hX(λ),

where hX(λ) = (2π/σ 2
ε )fX(λ) depends on θ only and not on σ 2

ε . The autocovari-
ance function can be written as

γX(k;ϑ) =
∫ π

−π

eikλfX(λ;ϑ)dλ = σ 2
ε

2π

∫ π

−π

eikλhX(λ; θ) dλ

so that

Σn(ϑ) = σ 2
ε

2π
Σh,n(θ)
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with

Σh,n = Σh,n(θ) =
[∫ π

−π

ei(r−s)λhX(λ; θ) dλ
]

r,s=1,...,n
= 2π[ĥr−s]r,s=1,...,n.

Here, ĥr−s denotes the (r − s)th Fourier coefficient of hX(λ; θ). Hence

∣∣Σn(ϑ)
∣∣ =

(
σ 2
ε

2π

)n∣∣Σh,n(θ)
∣∣.

This leads to the alternative formula for the log-likelihood function

Ln,exact
(
σ 2
ε , θ

) = logσ 2
ε + 1

n
log

∣∣Σh,n(θ)
∣∣+

(
2π

σ 2
ε

)
1

n
x′Σ−1

h,n(θ)x. (5.25)

In this set-up, a first simplification of Ln,exact can be made by noting that (see
Grenander and Szegö 1958 and (4.8))

lim
n→∞

1

n
log

∣∣Σh,n(θ)
∣∣ = 1

2π

∫ π

−π

loghX(λ; θ) dλ = 0. (5.26)

(In an exact proof, convergence has to be shown to be uniform in θ in a suitable
way). Note that

∫
loghX(λ; θ) dλ being zero follows directly from the Wiener–

Kolmogorov formula for the one-step prediction error

σ 2
ε = 2π exp

(
1

2π

∫ π

−π

logfX(λ)dλ

)

= 2π exp

(
log

σ 2
ε

2π
+ 1

2π

∫ π

−π

loghX(λ)dλ

)

= σ 2
ε exp

(
1

2π

∫ π

−π

loghX(λ)dλ

)
(5.27)

(see, e.g. Priestley 1981; also see Chap. 8). Thus, using hX(λ; θ) allows us to sep-
arate estimation of σ 2

ε and θ , and, due to (5.26), to ignore one complicated term in
the likelihood function. We therefore replace Ln,exact by

Ln,approx
(
σ 2
ε , θ

) =
∫ π

−π

logfX(λ)dλ+
(

2π

σ 2
ε

)
1

n
x′Σ−1

h,n(θ)x, (5.28)

or equivalently by

Ln,approx
(
σ 2
ε , θ

) = logσ 2
ε +

(
2π

σ 2
ε

)
1

n
x′Σ−1

h,n(θ)x. (5.29)

In this form, minimization with respect to ϑ = (σ 2
ε , θ) can be done for θ and σ 2

ε

separately. First, one minimizes Ln,approx(σ
2
ε , θ) with respect to θ to obtain

θ̂ = θ̂n,approx MLE = argminθLn,approx
(
σ 2
ε , θ

)
. (5.30)
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Then σ̂ 2
ε is obtained by plugging θ̂ into the log-likelihood expression (5.29) and

minimizing with respect to σ 2
ε while keeping θ̂ fixed. This leads to the explicit

solution

σ̂ 2
ε = 2π

n
x′Σ−1

h,n(θ̂)x. (5.31)

If Xt (t ∈ Z) is not Gaussian, then these equations can still be used for defining ϑ̂ ,
but the estimate is no longer an approximate MLE.

5.5.2 Whittle Estimation

In order to find the approximate MLE in (5.29), one needs to invert the n × n co-
variance matrix Σn. For large values of n, this is not a pleasant task numerically,
in particular since for values of d close 1

2 the covariance matrix may be close to
singularity. Note that, even if the true value of d is not close to 1

2 , trial values of d
close to the border may occur frequently during numerical optimization. The prob-
lem with the inverse covariance matrix is illustrated in Fig. 5.6 where, for the case of
a FARIMA(0, d,0) process and n = 1000, the condition number κ of Σn (defined
as the ratio of the maximal and minimal eigenvalues) is plotted as a function of d .
For d = 0, we have a diagonal matrix and hence (with κ = 1) no problem with the
numerical precision of the inverse. However, κ increases quite rapidly for positive
values of d which means that the numerical precision when calculating Σ−1

n deteri-
orates substantially. The problem is less severe for d < 0 although very close to the
left border of − 1

2 the condition number is quite large as well. A further problem with
handling the inverse covariance matrix directly is that for asymptotic considerations
one would need to study the second-order derivatives of Σ−1

h,n(θ).
This calls for a further simplification. The following very elegant solution is due

to Whittle (1953). To simplify the presentation, we consider the case where θ is
one-dimensional, i.e. θ = d . The derivation can easily be carried over to multivariate
parameters θ ∈R

p . Thus, let θ = d . We approximate the matrix Σ−1
h,n(θ) by Wn(θ),

where

Wn(θ) = [
wr−s(θ)

]
r,s=1,...,n =

[
1

(2π)2

∫ π

−π

ei(r−s)λ 1

hX(λ; θ) dλ
]

r,s=1,...,n
.

(5.32)
Formally, the doubly-infinite matrix W∞(θ) is the inverse of Σh,∞(θ). To see
this, we note that the entries of the matrix Wn(θ) are Fourier coefficients of 1/h
multiplied by (2π)−1. We compute, for example, the entry (r, r) of the product
W∞(θ)Σh,∞(θ), and obtain

∞∑

l=−∞
(2π)−1(̂1/h)r−l(2π)ĥl−r = 1

2π

∫ π

−π

1

hX(λ)
hX(λ)dλ = 1
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Fig. 5.6 Condition number κ (= ratio of the largest and the smallest eigenvalue) of the covariance
matrix Σn (n = 1000) for a FARIMA(0, d,0) process, plotted as a function of d . The right panel
is a zoomed picture of the left one

where we used the Parseval’s identity. More generally, we note that

∞∑

k=−∞
e−iku = 2πδ(u)

where δ(·) is the Dirac (generalized) function with the property
∫
δ(u)g(u)du =

g(0) (for sufficiently regular functions g). Then, assuming summation and integra-
tion to be interchangeable, we have

[
W∞(θ)Σh,∞(θ)

]
rs

= 1

(2π)2

∫ π

−π

∫ π

−π

ei(rλ−sν)
∞∑

j=−∞
e−ij (λ−ν)

︸ ︷︷ ︸
2πδ(λ−ν)

hX(ν; θ)
hX(λ; θ) dλdν

= 1

2π

∫ π

−π

ei(r−s)λ dλ = δrs

with δrs denoting the Kronecker delta (i.e. δrr = 1, and δrs = 0 for r 
= s).
Thus, instead of Ln,approx in (5.29) we consider

Ln,Whittle
(
σ 2
ε , θ

) = logσ 2
ε +

(
2π

σ 2
ε

)
1

n

n∑

t,s=1

wt−sXtXs

= logσ 2
ε +

(
2π

σ 2
ε

)
1

n
xTWn(θ)x. (5.33)
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Now, minimizing Ln,Whittle with respect to θ yields

Qn,Whittle(θ̂ ) = xT (n)
∂

∂θ
Wn(θ̂)x = 0. (5.34)

The estimator θ̂ that minimizes Ln,Whittle is often referred to as Whittle estimator.
For the particular case with θ = d , the Whittle estimator is

d̂Whittle := argmind
1

n
x′Wn(d)x.

The asymptotic distribution of θ̂Whittle therefore essentially follows from limit theo-
rems for quadratic forms, as studied in Sect. 4.5.

The estimator is asymptotically normal as described in the next theorem, and, in
fact, turns out to have the same asymptotic distribution as the exact MLE. The result
was proven in Fox and Taqqu (1986) in the Gaussian case (also see Beran 1986) and
in Giraitis and Surgailis (1990) and Horváth and Shao (1999) for linear processes.
We note that consistency of the Whittle estimator was proven in Hannan (1973) for
a general class of ergodic sequences. We state the theorem first for the simplest case
where d is the only unknown parameter:

Theorem 5.3 Assume that Xt (t ∈ Z) is a linear process with spectral density

fX(λ) ∼ cf |λ|−2d (as λ → 0)

for some − 1
2 < d < 1

2 . Assume that θ = d . Then, under appropriate regularity con-
ditions,

√
n
(
d̂Whittle − d0) → N

(
0,4πV −1),

where

V =
∫ π

−π

(
ḟX(λ)

fX(λ)

)2

dλ.

Proof We sketch a longish proof here for d > 0, postponing details to the end of
the section. Recall (5.34). Suitable regularity conditions enable us to apply a Taylor
expansion of the form

0 = Qn,Whittle(θ̂) = Qn,Whittle
(
θ0)+ Q̇n,Whittle(θ̃)

(
θ̂ − θ0)

where |θ̃ − θ0| ≤ |θ̂ − θ0|, and thus

θ̂ − θ0 ≈ M−1 · n−1Qn,Whittle
(
θ0)

where

M = lim
n→∞n−1Eθ0

[
Q̇n,Whittle

(
θ0)].
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Consequently, in view of (5.34), the main ingredient of the proof of asymptotic
normality of the Whittle estimator is the limiting behaviour of the quadratic form

Qn,Whittle(θ) =
n∑

t,s=1

ẇi−j (θ)XtXs (5.35)

where ẇk = ẇk(θ) = ∂
∂θ

wk(θ), i.e. (cf. (5.32))

ẇk = 1

(2π)2

∫ π

−π

eikλ
∂

∂θ

1

hX(λ; θ) dλ.

Defining

g̃(λ; θ) := 1

(2π)2

∂

∂θ

1

hX(λ; θ) = − 1

(2π)2

ḣX

h2
X

,

we have

ẇk =
∫ π

−π

eikλg̃(λ; θ) dλ.

First of all, it can be established that the quadratic form is centred, i.e.

E
[
Qn;Whittle(θ)

] ≈ 0 (5.36)

(see technical notes at the end of this section). If now fX(λ) ∼ cf |λ|−2d (λ → 0),
then h−1

X (θ) ∼ c−1
f |λ|2d and differentiating w.r.t. θ = d yields

∂

∂θ
h−1
X (λ; θ) ∼ 2c−1

f logλ · λ2d (λ → 0).

Thus, Theorem 4.30 and its multivariate extension is applicable to Qn,Whittle with
γ = −2d , and arbitrary long-memory parameter d ∈ (0, 1

2 ). In other words, for the
Whittle estimator condition (4.131) of Theorem 4.30 is always fulfilled, i.e. the long-
memory contribution is neutralized by considering the reciprocal of the spectral
density in the definition of the quadratic form Qn,Whittle. The central limit theorem
is then of the form

n− 1
2 Qn,Whittle

(
θ0) →

d
σQN(0,1) (5.37)

with

σ 2
Q = 16π3

∫ π

−π

[
fX(λ)g̃(λ)

]2
dλ+ κ4

(
2π

∫ π

−π

fX(λ)g̃(λ) dλ

)2

.

However, here the term with κ4 disappears since

∫ π

−π

[
fX(λ)g̃(λ)

]
dλ = − 1

(2π)2

(
σ 2
ε

2π

)
∂

∂θ

∫ π

−π

loghX(λ)dλ = 0.



424 5 Statistical Inference for Stationary Processes

Furthermore, one can see that

σ 2
Q =

(
σ 2
ε

2π

)2 1

π
V

and

M = σ 2
ε

2π

1

2π
V

(see technical details below). Combining the arguments together and denoting by Z

a standard normal variable, we obtain

√
n
(
θ̂ − θ0) ≈ [

n−1Q̇n,Whittle
(
θ0)]−1 · 1√

n
Qn

(
θ0)

→
d

(
σ 2
ε

2π
· 1

2π
V

)−1(
σ 2
ε

2π
· 1√

π
V

1
2

)
Z

d= N(0,Σθ )

with

Σθ = 4πV −1. �

The result can be extended to simultaneous estimation of σ 2
ε and θ , as well as to

multivariate parameter vectors θ . The scale estimator

σ̂ 2
ε = 2π

n
xT Σ−1

h,n(θ̂ )x

can be approximated by

σ̂ 2
ε = 2π

n

n∑

t,s=1

wt−sXtXs

where wk are as before, i.e.

wk = 1

(2π)2

∫ π

−π

eikλ
1

hX(λ; θ) dλ =
∫ π

−π

eikλg̃(λ; θ) dλ.

The asymptotic distribution of σ̂ 2
ε therefore directly follows from Theorem 4.30. In

particular, the asymptotic variance of σ̂ 2
ε is equal to

σ 2
var = (2π)2

[
16π3

∫ π

−π

(
fX(λ)g̃(λ)

)2
dλ+ κ4

(
2π

∫ π

−π

fX(λ)g̃(λ) dλ

)2]

= (2 + κ4)σ
4
ε

where κ4 = E(ε4
t )− 3 is the kurtosis of εt and we have a function g̃ that is different

than for the other parameters, namely g̃(λ) = (2π)−2(1/hX(λ)). In the Gaussian
case, one has κ4 = 0 so that σ 2

var = 2σ 4
ε .
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Comparing these results for the Whittle estimator ϑ̂ = (σ̂ 2
ε , θ̂n,Whittle) with those

for the exact (Gaussian or quasi) MLE (Theorem 5.2), we see that the asymptotic
distribution is the same, namely

√
n
(
ϑ̂Whittle − ϑ0) →

d
N(0,ΣMLE) (5.38)

with

ΣMLE = 4πC−1
MLE + κ4σ

4
ε Ivar

where CMLE is the matrix with entries

crs =
∫ π

−π

(
∂

∂ϑr

logfX(λ;ϑ)
)(

∂

∂ϑs

logfX(λ;ϑ)
)
dλ

∣∣∣∣
ϑ=ϑ0

.

In particular, in the Gaussian case, ϑ̂MLE is indeed the actual maximum likelihood
estimator so that we can say that ϑ̂Whittle is asymptotically equivalent to the exact
MLE, and is hence asymptotically efficient (see Dahlhaus 1989 for an exact proof
of the asymptotic efficiency of the MLE in the Gaussian case).

It is interesting to look at ΣMLE more closely. First of all, the element c11 is equal
to

c11 = 2πσ−4
ε

so that

σ 2
var = [ΣMLE]11 = (2 + κ4)σ

4
ε .

For r = 1 and s > 1, we obtain

crs = csr = σ−2
ε

∫ π

−π

∂

∂ϑs

loghX(λ;ϑ)dλ
∣∣∣∣
ϑ=ϑ0

= 0.

The asymptotic covariance matrix therefore simplifies to

ΣMLE =
(
σ 2

var 0
0 Σθ

)
=

(
(2 + κ4)σ

4
ε 0

0 Σθ

)
=

(
(2 + κ4)σ

4
ε 0

0 4πV −1

)
(5.39)

where 4πV −1 = [ΣMLE]r,s=2,...,p+1. This means that the scale estimator σ̂ 2
ε is

asymptotically independent of the other parameter estimates. Moreover, the asymp-
totic distribution of θ̂ does not depend on σ 2

ε and is the same as if σ 2
ε were

known. Note, however, that σ 2
ε is the innovation variance. Estimating the variance

σ 2
X = var(Xt ) of the process itself and estimating θ cannot be done independently

because the variance σ 2
X = σ 2

ε

∫
hX(λ)dλ depends on both parameters, σ 2

ε and θ .
Furthermore, note that, in general, the asymptotic covariance matrix of θ̂ depends
on the unknown parameters θ . There are, however, models where this is not the
case because the derivative of logfX (with respect to θ ) does not depend on θ . An
important example is the fractional ARIMA(0, d,0) model.
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Example 5.7 Let θ = d . The spectral density of a fractional ARIMA(0, d,0) pro-
cess is given by

fX(λ;d) = σ 2
ε

2π
(2 − 2 cosλ)−d .

Therefore,

∂

∂θ
logfX(λ;d) ≡ − log(2 − 2 cosλ)

does not depend on d . Moreover,

(4π)−1
∫ π

−π

[
log(2 − 2 cosλ)

]2
dλ = π2

6

so that the asymptotic variance of d̂Whittle is equal to 6/π2 ≈ 0.608. More generally,
the asymptotic variance of d̂Whittle (and d̂MLE) is nuisance parameter free for all
models with

fX(λ) = σ 2
ε

2π
L(λ)|λ|−2d exp

(
p∑

j=2

θjgj (λ)

)

where L(λ), gj (λ) are functions that do not depend on any parameters, L(λ) is
slowly varying at zero, and gj (λ) are bounded. For L(λ) ≡ 1 this is the definition of
an FEXP model of order p̃ = p−1 (Beran 1993; Robinson 1994a; see Sect. 2.1.1.5).

Finally, it should be noted that the extension to subordinated processes is not
straightforward. If instead of a linear process Xt we consider Gaussian subordina-
tion, i.e. G(Xt) with Xt Gaussian but G nonlinear, then Giraitis and Taqqu (1999a)
showed that the results of Theorem 5.3 are no longer valid. Depending on detailed
conditions, one can obtain asymptotic normality with a rate of convergence slower

than n− 1
2 or even a non-normal limiting distribution.

5.5.3 Further Comments on the Whittle Estimator

Here we give a heuristic explanation why long memory cancels out in the Whittle
estimator so that we obtain

√
n-convergence. Recall the approximate log-likelihood

equation (5.33):

Ln,Whittle
(
σ 2
ε , θ

) = logσ 2
ε +

(
2π

σ 2
ε

)
1

n

n∑

t,s=1

wt−sXtXs.

This can also be written in terms of the periodogram as

Ln,Whittle
(
σ 2
ε , θ

) = logσ 2
ε + 1

(2π)2

∫ π

−π

1

n

n∑

t,s=1

XtXse
i(t−s)λ 1

fX(λ; θ) dλ
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= logσ 2
ε + 1

2π

∫ π

−π

In,X(λ)

fX(λ; θ) dλ. (5.40)

If Xt = ∑∞
j=0 aj εt−j , then

1

2π

In,X(λ)

fX(λ)
≈ In,ε(λ),

where In,ε(λ) is the periodogram of the underlying i.i.d. sequence. Therefore, the
long-memory effect vanishes. On the other hand, such a simplification is not valid
for subordinated processes (see Giraitis and Taqqu 1999a).

The Whittle estimator can also be considered in terms of a smoothed peri-
odogram. Heyde and Gay (1989) considered a general class of smoothed peri-
odograms

G(ϑ) :=
∫ π

−π

ψ(λ;ϑ){In,X(λ)−E
[
In,X(λ)

]}
dλ

with a suitably chosen function ψ(·; θ) and looked for solutions of G(ϑ) = 0. Note
that

1

2π

∫ π

−π

logfX(λ; θ) dλ = logσ 2
ε − log 2π.

Thus, ignoring the log 2π term, we can consider minimization of

Ln,Whittle
(
σ 2
ε , θ

) = 1

2π

∫ π

−π

{
logfX(λ; θ)+ In,X(λ)

fX(λ; θ)
}
dλ.

This amounts to solving

L̇n,Whittle
(
σ 2
ε , θ

) = 1

2π

∫
ḟX(λ;ϑ)
fX(λ;ϑ)

{
In,X(λ)

fX(λ;ϑ) − 1

}
dλ = 0 (5.41)

where

ḟX(λ;ϑ) = ∂

∂ϑ
fX(λ;ϑ).

Hence, we are in the Heyde and Gay (1989) set-up by choosing

ψ(λ;ϑ) =
(
ḟX(λ;ϑ)
fX(λ;ϑ)

)
1

fX(λ;ϑ),

and

G(ϑ) :=
∫ π

−π

ψ(λ;ϑ){In,X(λ)−E
[
In,X(λ)

]}
dλ

=
∫

ḟX(λ;ϑ)
fX(λ;ϑ)

{
In,X(λ)

fX(λ;ϑ) −E

[
In,X(λ)

fX(λ;ϑ)
]}

dλ = 0,
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and arguing that E[In,X(λ;ϑ)] can be replaced by fX(λ;ϑ) (Rosenblatt 1985).
Heyde and Gay (1993) extended the results to random fields. Furthermore, Heyde
and Dai (1996) considered a possible effect of nonstationarity by defining the model
Yt = Xt + zt where zt is a deterministic function such that

∑n
t=1 zt = 0. If Xt is

weakly dependent, then this has no effect on the Whittle estimator. However, if Xt

has long memory, then zt must decay fast enough to avoid any effect.
The Whittle estimator is also very attractive from a computational point of view,

in particular if one uses a further approximation of (5.40). Replacing the integral by
a Riemann sum leads to the Whittle approximation

Ln,Whittle
(
σ 2
ε , θ

) ≈ logσ 2
ε + 2

n

Nn∑

j=1

In,X(λj )

fX(λj ;ϑ) =: Ln,WR
(
σ 2
ε , θ

)
, (5.42)

where Nn = [(n− 1)/2] and λj = 2πj/n are Fourier frequencies. This approxima-
tion is computationally fast due to the Fast Fourier Transform (FFT) (Cooley and
Tukey 1965). Furthermore, we note that for Fourier frequencies λj = 2πj/n we
have

1

2πn

∣∣∣∣∣

Nn∑

t=1

(Xt − X̄n)e
itλj

∣∣∣∣∣

2

= 1

2πn

∣∣∣∣∣

Nn∑

t=1

Xte
itλj

∣∣∣∣∣

2

= In,X(λj ).

In other words, estimation of the mean does not affect the periodogram computed
at Fourier frequencies. This has important implications on the numerical perfor-
mance of the estimator, as we shall indicate below at the end of the section. Recall-
ing (5.28), an alternative to approximation (5.42) is

Ln,Whittle
(
σ 2
ε , θ

) ≈ 2

n

Nn∑

j=1

logfX(λj ;ϑ)+ 2

n

Nn∑

j=1

In,X(λj )

fX(λj ;ϑ) . (5.43)

Note also that Nordman and Lahiri (2006) proposed general maximum likelihood
estimation in the spectral domain of which Whittle estimation is a special case.

It is also worth mentioning that the asymptotic distribution of ϑ̂Whittle (and ϑ̂MLE)
is the same as it would be in the following idealized setting. Let ζj = In,X(λj ) and
assume that ζj (j = 1,2, . . . ,Nn) are independent exponential variables with ex-
pected values fX(λj ;ϑ0) (j = 1,2, . . . ,Nn). Thus, for z ≥ 0, ζj has the probability
density function

pj (z) = αj exp(−αjz)

where αj = αj (ϑ) = 1/fX(λj ;ϑ0). Given the observations ζj (j = 1,2, . . . ,Nn),
we would like to estimate ϑ = (σ 2

ε , θ) by the maximum likelihood method. The
log-likelihood function is given by

Lζ

(
σ 2
ε , θ

) =
Nn∑

j=1

logαj −
Nn∑

j=1

αj ζj
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so that ϑ̂ is the solution of L̇ζ (ϑ̂) = 0 where

L̇ζ

(
σ 2
ε , θ

) =
Nn∑

j=1

α̇j

(
1

αj

− ζj

)

= −
Nn∑

j=1

ḟX(λj ;ϑ)
fX(λj ;ϑ)

{
1 − In,X(λj )

fX(λ;ϑ)
}

= −Ln,WR
(
σ 2
ε , θ

)
.

Thus, we obtain the Whittle estimator, and hence also the same asymptotic distri-
bution. The usefulness of this insight is a purely practical one. For FEXP models,
the idealized setting with the variables ζj can be understood as a generalized lin-
ear model with expected value μj = E(ζj ) and link function η(μ) = logμ (Beran
1993). Recall that FEXP models are defined by a spectral density of the form

fX(λ) = σ 2
ε

2π
|λ|−2d exp

(
p∑

j=2

θjgj (λ)

)

= exp

(
p∑

j=0

ϑj+1gj (λ)

)

with g0(λ) = 1, g1(λ) = −2 log |λ|, gj (j ≥ 2) bounded, ϑ1 = logσ 2
ε − log 2π , ϑ2 =

d , etc. Then

η(μ) =
p∑

j=0

ϑj+1gj (λ)

is linear in ϑ so that we have indeed a generalized linear model (see McCul-
lagh and Nelder 1989 for an introduction to generalized linear models). Therefore,
Whittle’s estimator can be calculated using programs for generalized linear models
(GLM). As a cautionary remark it should be said that the derivation of the asymp-
totic distribution of the Whittle estimator using the assumption of i.i.d. variables
ζj /fX(λj ;ϑ0) would not be correct. The periodogram exhibits a different asymp-
totic behaviour at frequencies tending to zero (and the number of Fourier frequen-
cies where this is the case tends to infinity). This has been discussed in Sect. 4.6.
The conclusion that the nonstandard behaviour of the periodogram near the origin is
asymptotically negligible had to be shown by detailed arguments. Thus, only in ret-
rospect can we conclude that the GLM methodology with independent observations
ζj can be used for the calculation of the Whittle estimator.
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5.5.4 Some Technical Details for the Whittle Estimator

Here, we provide some technical details that were omitted in the proof of Theo-
rem 5.3. Recall that θ̂Whittle is obtained by setting the quadratic form

Qn,Whittle(θ) =
n∑

t,s=1

ẇt−s(θ)XtXs

with

ẇk = 1

(2π)2

∫ π

−π

eikλ
∂

∂θ

1

hX(λ; θ) dλ

equal to zero. As before we use the notation

g̃(λ; θ) := 1

(2π)2

∂

∂θ

1

hX(λ; θ) = − 1

(2π)2

ḣX

h2
X

.

We evaluate first (5.36), i.e. we would like to show that the quadratic form is centred.
Using summability of ẇkγX(k), we have

E
[
Qn,Whittle(θ)

] =
n−1∑

k=−(n−1)

(
n− |k|)ẇkγX(k) ∼ n

∞∑

k=−∞
ẇkγX(k)

= n

∫ ( ∞∑

k=−∞
ẇke

ikλ

)
fX(λ; θ) dλ

= 2πn
∫

g̃(λ; θ)fX(λ; θ) dλ

= −(2π)−1
(
σ 2
ε

2π

)
n

∫ π

−π

ḣX(λ; θ)
hX(λ; θ) dλ

= −(2π)−1
(
σ 2
ε

2π

)
n
∂

∂θ

∫ π

−π

loghX(λ; θ) dλ = 0.

In the last equation, we assumed that the derivative can be interchanged with inte-
gration.

Next, we evaluate expressions for the asymptotic variance σ 2
Q:

σ 2
Q = 16π3

∫ π

−π

[
fX(λ)g̃(λ)

]2
dλ = 16π3

∫ π

−π

[
fX(λ)

1

(2π)2

ḣX

h2
X

]2

dλ

=
(
σ 2
ε

2π

)2

· 1

π

∫ π

−π

(
ḣX

hX

)2

dλ =
(
σ 2
ε

2π

)2

· 1

π

∫ π

−π

(
ḟX

fX

)2

dλ
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=
(
σ 2
ε

2π

)2

· 1

π
V.

To conclude, we need to obtain the asymptotic quantity M . Recall that M is the
limiting expected value of

Q̇n,Whittle(θ) =
n∑

t,s=1

ẅt−s(θ)XtXs.

We assume that also the second derivative and integration can be interchanged so
that

0 = ∂2

∂θ2

∫ π

−π

loghX dλ = −
∫ π

−π

[(
ḣX

hX

)2

− ḧX

hX

]
dλ.

Then

M =
∞∑

k=−∞
ẅkγX(k) =

∫ π

−π

[ ∞∑

k=−∞
eikλẅk

]
fX(λ)dλ

= 2π
∫

∂

∂θ
g̃(λ; θ)fX(λ)dλ =

(
σ 2
ε

2π

)∫ π

−π

1

2π

[
2
ḣ2
X

h3
X

− ḧX

h2
X

]
hX(λ)dλ

= 1

2π

(
σ 2
ε

2π

)∫ π

−π

(
ḣX

hX

)2

dλ =
(
σ 2
ε

2π

)
· 1

2π
V.

5.5.5 Further Approximation Methods for the MLE

Sometimes it is of interest to obtain estimates (say ϑ̂ (j)) of ϑ for disjoint blocks
of observations, X1+(j−1)l , . . . ,Xn+(j−1)l (j = 1, . . . ,m; m = [n/l]). For instance,
if one has to handle very long time series, computations based on smaller blocks
can be faster. In the context of change point detection, this is useful for detecting
possible changes in the parameter (see Sect. 7.9). If l → ∞, l/n → p ∈ (0,1], and
Xt is a stationary linear process, then it can be shown that the averaged value

ϑ̄ = m−1
m∑

j=1

ϑ̂ (j)

has the same asymptotic distribution as the MLE based on the whole series (Beran
and Terrin 1994).

Apart from different versions of the Whittle estimator, there is another useful
approximation that avoids inversion of the covariance matrix and is computationally
fast. The idea is to use the infinite autoregressive representation of invertible linear
processes. Suppose that Xt = ∑∞

j=0 aj εt−j is a second-order linear process with

spectral density fX(λ) ∼ cf |λ|−2d for some − 1
2 < d < 1

2 . As before, we assume
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that fX is characterized by a parameter vector ϑ = (σ 2
ε , θ) with θ = (d, . . .). If Xt

is invertible, then εt can be represented by past values of the process as

εt =
∞∑

j=0

πjXt−j (5.44)

with π0 = 1 and πj obtained from

∞∑

k=0

πjz
j = 1

A(z)
=

( ∞∑

j=0

aj z
j

)−1

(|z| ≤ 1, z 
= 1). In other words, we have an autoregressive representation

Xt =
∞∑

j=1

bjXt−j + εt (5.45)

with bj = −πj (j ≥ 1). In the case of a Gaussian process, the log-likelihood of
X1, . . . ,Xn may be expressed in terms of logσ 2

ε and a sum of ε2
t−j . This leads to

the idea of estimating θ0 by minimizing the residual sum of squares

S(θ) =
∑

ε2
t (θ)

with respect to θ and then setting

σ̂ 2
ε = n−1S(θ̂) = n−1

∑
ε2
t (θ̂ ).

Taking derivatives with respect to θ , we obtain θ̂ = θ̂AR as the solution of

Ṡ(θ̂AR) =
∑

ε̇t (θ̂AR)εt (θ̂AR) = 0.

One difficulty that has to be addressed is that (5.44) includes the infinite past Xt

(t ≤ n), whereas only a finite number of observations Xt (1 ≤ t ≤ n) are available.
The simplest solution is truncation, which amounts to setting all unobserved values
equal to zero. Thus, for t = 2, . . . , n one defines

et (θ) =
t−1∑

j=0

πj (θ)Xt−j

to obtain θ̂AR as the solution of

n∑

j=2

ėt (θ̂AR)et (θ̂AR) = 0 (5.46)
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(Beran 1995). In the previous terminology, this means that we are maximizing an
approximate (Gaussian or quasi) log-likelihood function

LAR = −n

2
logσ 2

ε − 1

2σ 2
ε

n∑

t=2

e2
t (θ). (5.47)

Under suitable regularity conditions, the asymptotic distribution of θ̂AR and σ̂ 2
ε turns

out to be the same as for the other approximate methods considered above (Beran
1995), i.e.

√
n
(
ϑ̂AR − ϑ0) →

d
N(0,ΣMLE).

The essential reason is that ε̇t (θ0)εt (θ
0) is a martingale difference so that a central

limit theorem applies.
An advantage of the autoregressive approach is that it can be generalized to inte-

grated processes. Suppose that we observe an integrated process Yt as follows. Let
m ∈ {0,1,2, . . .} be the smallest integer such that the mth difference, (1 −B)mYt , is
stationary, and such that

(1 −B)mYt = Xt

with Xt as before, characterized by ϑ = (σ 2
ε , θ). If m were known, then all values

of Xt (2 ≤ t ≤ n) could be recovered by differencing. It is therefore possible to
express et defined above as a linear combination of Y1, . . . , Yn. In other words, we
can define et as a function of m and ϑ and minimize

S(m,ϑ) =
∑

e2
t (m,ϑ)

with respect to m and ϑ . Under suitable regularity conditions, we have, as n → ∞,
P(m̂ = m0) → 1 and ϑ̂ has the same asymptotic distribution as in the case where m

is known (for heuristic arguments see Beran 1995, also see Velasco and Robinson
2000 for similar results in the semiparametric context, Robinson 1994b for nonsta-
tionarity tests, and Ling and Li 1997 for an extension to GARCH innovations).

Example 5.8 Consider an ARFIMA(0, d,0) process Xt with d = d0 ∈ (− 1
2 ,

1
2 ). Re-

call that

εt =
∞∑

j=0

πjXt−j

with

πj = πj (d) = Γ (j − d)

Γ (j + 1)Γ (−d)
∼ 1

Γ (−d)
j−(d+1).

Then d̂AR is defined by minimizing S(d) = ∑
e2
t (d) with

et (d) = Xt + Γ (1 − d)

Γ (2)Γ (−d)
Xt−1 + · · · + Γ (t − 1 − d)

Γ (t)Γ (−d)
X1.
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Example 5.9 Let Xt be defined as in the previous example, but we observe instead
an integrated process

Y1 = X1, Y2 = X1 +X2, . . . , Yn = X1 + · · · +Xn.

Then, for 2 ≤ t ≤ n, we have

Xt = Yt − Yt−1.

Since the true integer differencing order m0 = 1 is unknown, we need to mini-
mize S(m,ϑ) = ∑

e2
t (m,ϑ) with respect to ϑ for a set of integer values 0 ≤ m ≤

mmax. Usually one does not go beyond mmax = 2. Once we have minimal val-
ues S(0, ϑ̂AR,1), S(1, ϑ̂AR,2), . . . , S(mmax, ϑ̂AR,mmax) (with ϑ̂AR,i denoting the cor-
responding estimates of ϑ ), we set

m̂ = arg min
m

S(m, ϑ̂AR,m).

The estimate of ϑ = (σ 2
ε , d) is then equal to

ϑ̂AR = (
σ̂ 2
ε , d̂AR

) := ϑ̂AR,m̂.

A (1 − α)-level confidence interval for d ∈ (− 1
2 ,

1
2 ) is of the form

d̂AR ± z1− α
2

√[ΣMLE]22n
− 1

2 = d̂AR ± z1− α
2

√
6

π
n− 1

2

where z1− α
2

is the (1 − α
2 )-quantile of the standard normal distribution. At the same

time, one can also provide a (1 −α)-level confidence interval for the total differenc-
ing parameter dtotal = m+ d by

m̂+ d̂AR ± z1− α
2

√
6

π
n− 1

2 .

For instance, S(0, ϑ) = ∑
e2
t (0, ϑ) with

et (0, d) = et (d)

= Xt + Γ (1 − d)

Γ (2)Γ (−d)
Xt−1 + · · · + Γ (t − 1 − d)

Γ (t)Γ (−d)
X1

and S(1, ϑ) = ∑
e2
t (1, ϑ) with

et (1, d) =
t−1∑

j=0

πj (Yt−j − Yt−j−1)

= (Yt − Yt−1)+ Γ (1 − d)

Γ (2)Γ (−d)
(Yt−1 − Yt−2)+ · · ·



5.5 Gaussian Maximum Likelihood and Whittle Estimation 435

+ Γ (t − 1 − d)

Γ (t)Γ (−d)
(Y1 − Y0).

Finally, note that a problem not considered here is maximum likelihood estima-
tion of ϑ for time series with missing values. An approach that has been used suc-
cessfully for short-memory time series is based on the state space representation.
For Markov processes this essentially amounts to representing Xt in vector form as
a multivariate AR(1) model. Long-memory processes do not have the Markov prop-
erty so that an exact state space representation is not possible. Nevertheless, Chan
and Palma (1998) could show that, under suitable regularity conditions, an approxi-
mate state space representation with an asymptotically increasing dimension can be
obtained and used to define an approximate MLE.

5.5.6 Model Choice

The asymptotic results obtained above are valid under the assumption that the as-
sumed parametric model is correct. If the model is misspecified, then this means
that the true spectral density fX is not in the parametric class of spectral densities
specified a priori. The estimates therefore converge to a value of ϑ∗ that minimizes
the discrepancy between the true spectral density fX and a member of the paramet-

ric family. The convergence to the “pseudo value” ϑ∗ may be slower than Op(n
− 1

2 )

(see, e.g. Yajima 1993; Chen and Deo 2006). In order to be applicable in practice,
parametric models have to be combined with an appropriate model choice criterion.
The best known method is Akaike’s information criterion (AIC; see Akaike 1973,
1974; Shibata 1976, 1980) and related methods such as the BIC and HIC (Schwarz
1978; Hannan and Quinn 1979). The reason for the success of the AIC is its simplic-
ity and its fundamental justification in terms of information theory. The foundation
in information theory makes the AIC potentially applicable to most situations en-
countered in statistics. However, the exact form of the AIC relies on approximations
that may depend on the particular setup.

Suppose, for instance, that Xt is generated by a FARIMA(p0, d,0) process
with unknown order p0 ≥ 0 and parameter vector ϑ0 = (σ 2

ε,0, d
0, ϕ0

1 , . . . , ϕ
0
p) (with

ϑ0 = (σ 2
ε,0, d

0) for p0 = 0). Following the same line of thought as in Akaike (1973)
(also see Bhansali 1986 and references therein), we then consider a process Yt ,
independent of Xt , but being generated by the same model as Xt . Denoting by
ϑ̂MLE(X,p) the MLE of ϑ(p) (based on the observations X(n) = (X1, . . . ,Xn))
for a FARIMA(p,d,0) process with p ≥ p0, the quality of the fit using this (possi-
bly overparametrized) model is measured by the loss function

L
(
p; ϑ̂MLE

(
X(n),p

)) = −2Ey,ϑ0

[
L

(
Y(n), ϑ̂MLE(X,p)

)]

where Y(n) = (Y1, . . . , Yn), L (Y (n), ϑ̂MLE(X,p)) is the log-likelihood function
evaluated at Y(n) and the (now fixed) parameter ϑ̂MLE(X,p), and the expected value
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Ey,ϑ0 [·] is taken with respect to the distribution of Y(n) (which is specified by the
correct parameter ϑ0). The corresponding risk function of the MLE based on the
order p is then

R(p) = Ex,θ0

[
L
(
p; ϑ̂MLE

(
X(n),p

))]

where the expectation Ex,ϑ0[·] is taken with respect to the distribution of X(n). If
instead of the exact MLE, an approximate MLE is used, then L in the definition
of L is replaced by the corresponding approximate log-likelihood function. For in-
stance, for the autoregressive approach above (Beran 1995), L is replaced by LAR
in (5.47). Note that for Y1, . . . , Yn,

et,Y (θ) :=
t−1∑

j=0

πj (θ)Yt−j

=
∫ π

−π

t−1∑

j=0

πje
i(t−j)λ dM(λ)

=
∫ π

−π

eitλΠt

(
e−iλ

)
dM(λ)

where

Yt =
∫ π

−π

eitλ dM(λ) =
d
Xt

is the spectral representation of Yt (and hence also of Xt ) and

Πt

(
e−iλ, θ

) =
t−1∑

j=0

πj (θ)e
−ijλ.

Since Ey,ϑ0 [dM(λ)dM(ν)] = 0 (λ 
= ν) and Ey,ϑ0 [dM(λ)dM(λ)] = f (λ), we
then have

Ey,ϑ0

[
e2
t,Y (θ)

] =
∫ π

−π

∣∣Πt

(
e−iλ

)∣∣2f (λ)dλ.

Therefore, for a fixed ϑ̂AR,

L
(
p; ϑ̂AR

(
X(n),p

)) = −2Ey,ϑ0

[
LAR

(
Y(n); ϑ̂)]

= n log σ̂ 2
ε + σ̂−2

ε,AR

n∑

t=2

∫ π

−π

∣∣Πt

(
e−iλ, θ̂AR

)∣∣2f (λ)dλ

and

R(p) = nEx,θ0

(
log σ̂ 2

ε,AR

)+
n∑

t=2

Ex,θ0

[
σ̂−2
ε,AR

∫ π

−π

∣∣Πt

(
e−iλ, θ̂AR

)∣∣2f (λ)dλ

]
.
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(Note that there is a typo in Beran et al. 1998, equation (12), since the sum over t is
missing.) The main difficulty at this stage is to show that |Πt(e

−iλ, θ̂AR)|2 may be
replaced by |Π∞(e−iλ, θ̂AR)|2. This does not follow from corresponding results for
short-memory processes because here the decay of the coefficients πj is hyperbolic
instead of exponential. The second approximation to be established is

Ex,θ0

(
log σ̂ 2

ε,AR

) = logσ 2
ε − p + 2

n
+ o

(
n−1).

Once these two facts are established (see Beran et al. 1998 for details), one can
obtain—up to a constant that does not depend on p—an asymptotically unbiased
estimator of R(p) in quite the same way as for short-memory processes, namely

R̂(p) = n log σ̂ 2
ε,AR + 2(p + 2)+C

(
n,ϑ0)+ o(1)

with C being fixed for a given sample size n and true parameter ϑ0. Thus, comparing
models with different orders p can be done in a first approximation by comparing
the values of

AIC(p) = n log σ̂ 2
ε,AR + 2(p + 2).

The reason is that

Ex,ϑ0

[
AIC(p1)− AIC(p2)

] = R(p1)−R(p2)+ o(1).

The order p0 is therefore estimated by

p̂ = p̂AIC = arg min
0≤p≤pmax

AIC(p)

where pmax is a certain maximal order up to which one is willing to compare models.
It can be shown that asymptotically, p̂AIC does not underestimate p0, i.e.

P(p̂AIC <p0) → 0.

On the other hand, as for short-memory series, also in the more general setting with
d ∈ (− 1

2 ,
1
2 ), the probability of overestimation is not zero, i.e.

P(p̂AIC >p0) → c ∈ (0,1).

Consistency of p̂ can be established by using a stronger penalty for the number of
parameters. For instance, minimizing the BIC criterion

BIC(p) = n log σ̂ 2
ε,AR + 2 logn · (p + 2)

or the HIC defined by

HIC(p) = n log σ̂ 2
ε,AR + 2c log logn · (p + 2)
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with c > 1, one obtains

P(p̂ = p0) → 1

(Beran et al. 1998, Theorem 2). This is analogous to the case of short-memory series
where one assumes d to be equal to zero a priori (see, e.g. Shibata 1976; Schwarz
1978; Hannan and Quinn 1979). Moreover, the results also hold in the more general
case where we may observe an integrated fractional process Yt with (1 − B)mYt =
Xt and m unknown (see the discussion above, and Beran et al. 1998). For other
results on model choice for fractional processes, see, e.g. Crato and Ray (1996) and
Baillie et al. (2012).

It should be noted that the consistency results for p̂ make sense only if there is
actually a finite p0 such that the true spectral density falls into the corresponding
parametric family. In a more general setting, this may not be the case. In principle,
one may therefore increase pmax with increasing sample size. This implies, however,
that in the general case where p0 = ∞ the convergence results in Theorem 5.2, and
in particular

√
n-convergence, no longer apply. One may conjecture, however, that

the rate Op(n
− 1

2 ) may at most deteriorate by a logarithmic factor. This conjecture is
supported by results for broadband estimators discussed below (see Sect. 5.9). For
instance, Bhansali et al. (2006) consider the model

(1 −B)dXt = Yt ,

where Yt is a weakly dependent infinite order moving average defined by

∞∑

j=0

ashort,j Yt−j = εt ,

with
∑

j |ashort,j | < ∞ and εt i.i.d. centred random variables with a finite fourth
moment. The spectral density is then

fX(λ) = σ 2
ξ

2π

∣∣1 − eiλ
∣∣−2d ∣∣Ashort

(
e−iλ

)∣∣−2
,

where Ashort(z) = ∑∞
j=0 ashort,j z

j . The estimator is obtained by minimizing the ob-
jective function

∫ π

−π

In,X(λ)

fX,p(λ; θ) dλ,

where

fX,p(λ) = σ 2
ε

2π

∣∣1 − eiλ
∣∣−2d ∣∣Ap(λ)

∣∣−2 = σ 2
ε

2π

∣∣1 − eiλ
∣∣−2d

∣∣∣∣∣

p∑

j=0

ashort,j e
iλj

∣∣∣∣∣

−2

.

In other words, the approximation of the likelihood function is in the spectral do-
main rather than the time domain, similar to Beran (1993). The authors show that
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√
n/p(d̂ − d) converges to a normal random variable if p = pn tends to infinity at

an appropriate rate. For example, one can choose pn = logn so that there is very
little loss in terms of the convergence rate, as compared to the MLE. Related results
can also be found in Poskitt (2007a). Other broadband methods (see Sect. 5.9) are
based on FEXP models (Beran 1993; Robinson 1994a; Moulines and Soulier 1999,
2000; Hurvich 2001; Hurvich and Brodsky 2001; Hurvich et al. 2002; Narukawa
and Matsuda 2011). The essential feature of broadband methods is that consistency
and the rate Op(

√
n−1 logn) can be achieved under rather general conditions, just

by letting the number of parameters tend to infinity in a suitable way. This is where
the parametric and the semiparametric worlds meet. In the end, both methodologies
may lead to similar or even identical results, either formally or when in the hands of
experienced data analysts.

5.5.7 Comments on Finite Sample Properties and Further
Extensions

Sowell (1992) studied numerical properties of the MLE and Whittle estimator in the
case of a known mean. Although both estimators have the same limiting variance,
the MLE appears to have better finite sample properties (also see, e.g. Hauser 1999
for an extended simulation study). However, as indicated by Cheung and Diebold
(1994), this effect disappears when μ = E(Xt) is replaced by an estimator. The
mean squared error of the MLE is increased due to a bias induced when replacing μ

by μ̂. In contrast, the Whittle estimator based on the Riemann approximation (5.42)
does not depend on the location parameter. Also, not quite surprisingly (see, e.g.
Huber 1981; Hampel et al. 1986), the MLE performs poorly when data are con-
taminated (Haldrup and Nielsen 2007). For robust versions of the MLE, see, e.g.
Beran (1994a, 1994b). Also note that theoretical results on finite sample properties
and the possibility of applying bootstrap methods for inference in the context of
MLE and Whittle estimation can be found in Lieberman et al. (2000, 2003) and
Andrews et al. (2006). The bias and methods for bias reduction of the MLE and ap-
proximate MLE is considered, for instance, in Cheung and Diebold (1994), Smith
et al. (1997), Hauser (1999), Lieberman (2001), and Doornik and Ooms (2003). Ex-
tensions to spatial processes are discussed, for instance, in Heyde and Gay (1989),
Boissy et al. (2005), Leonenko and Sakhno (2006), Beran et al. (2009) (also see
Angulo et al. 2000; Guo et al. 2009). For space-time processes, see Haslett and
Raftery (1989). For multivariate extensions, see Luceno (1996), Morana (2007),
Tsay (2000).

In summary, the MLE and the different approximations discussed above have
the same asymptotic distribution given in Theorem 5.2. From the numerical point
of view, the approximate Whittle and the AR-based estimator are more tractable.
Moreover, the Whittle estimator based on Fourier frequencies is free of the effect of
centring.
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5.6 Semiparametric Narrowband Methods in the Fourier
Domain

5.6.1 Introduction

In this section, we describe semiparametric methods for estimating d in the spectral
domain. We start with narrowband methods which include log-periodogram regres-
sion (5.6.2) and local Whittle estimation (5.6.3).

The semiparametric approach to long-memory estimation was initiated in
Geweke and Porter-Hudak (1983), the first mathematical results are due to Robinson
(1995a, 1995b). The two papers by Robinson form the basis for many subsequent
theoretical studies. The first estimator was suggested by Geweke and Porter-Hudak
(1983) and is therefore known as the GPH estimator. Its asymptotic distribution was
established in Robinson (1995a), detailed studies of the mean squared error and the
question of bandwidth choice can be found in Hurvich and Beltrao (1994a, 1994b),
Hurvich et al. (1998), Hurvich and Deo (1999), Andrews and Sun (2004), Andrews
and Guggenberger (2003), Robinson and Henry (2003), among others. The local
Whittle estimator was suggested by Künsch (1987), its asymptotic normality was
derived by Robinson (1995b). Since then, there has been an enormous number of
papers dealing with various aspects of narrowband estimation—to name a few (in
alphabetical order): Abadir et al. (2007), Andrews and Sun (2004), Arteche (2004,
2006), Chen and Hurvich (2003a, 2003b), Christensen and Nielsen (2006), Frederik-
sen et al. (2012), Hassler et al. (2006), Henry (2007), Henry and Robinson (1996),
Hurvich et al. (2005a), Hurvich and Ray (1995), Lobato (1995, 1997, 1999), Lobato
and Robinson (1996), Marinucci (2000), Nielsen (2004a), Nielsen and Frederik-
sen (2011), Phillips and Shimotsu (2004), Phillips (2007), Poskitt (2007a, 2007b),
Robinson (1994c, 1995a, 1995b, 2005), Robinson and Marinucci (2001, 2003),
Robinson and Yajima (2002), Shimotsu (2012), Shimotsu and Phillips (2006), Souza
(2007), Velasco (1999a, 1999b, 2000).

Both estimators (local periodogram regression, local Whittle) can be considered
in terms of sums of weighted periodogram ordinates. This approach appeared in a
sequence of papers, including Moulines and Soulier (1999, 2003), Faÿ and Soulier
(2001), Hurvich et al. (2002, 2005a). We present this approach as well as technical
details for asymptotic normality and asymptotic expressions for the mean squared
error in Sect. 5.6.4.

An important question for semiparametric estimators is the optimal rate of con-
vergence. Such results are established in Giraitis et al. (1997) and Soulier (2010).
This is discussed in Sect. 5.8. In contrast to a fully parametric setting, semipara-
metric estimation suffers from a potentially serious bias and loss of efficiency. To
overcome such problems, various bias and variance reduction techniques are pro-
posed in the literature, including tapering and pooling (Hannan 1970; Hurvich and
Beltrao 1993; Hurvich and Chen 2000; Robinson 1995a; Hurvich et al. 2002). These
methods extend also the applicability of semiparametric estimators to nonstationary
models (Hurvich and Ray 1995; Kim and Phillips 1999; Velasco 1999a, 1999b;
Hurvich et al. 2005a; Arteche and Velasco 2005; Hidalgo 2005). This is presented
in Sect. 5.6.5.
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5.6.2 Log-periodogram Regression—Narrowband LSE

Suppose that Xt is a stationary process with spectral density

fX(λ) = ∣∣1 − exp(−iλ)
∣∣−2d

f∗(λ) ∼ |λ|−2df∗(λ) ∼ cf |λ|−2d , (5.48)

as λ → 0 where − 1
2 < d < 1

2 and f∗ is a function such that f∗(0) = cf 
= 0. Recall
that the empirical analog to the spectral density is the periodogram

In,X(λ) = 1

2πn

∣∣∣∣∣

n∑

t=1

Xte
−itλ

∣∣∣∣∣

2

,

and, for Fourier frequencies λj = 2πj/n (j = 1, . . . ,Nn = [(n − 1)/2]), In,X(λ) is
not affected by centring of the time series. From Sect. 4.6 we recall that for a weakly
dependent time series the following asymptotics holds:

(
In,X(λj1)

fX(λj1)
, . . . ,

In,X(λjk )

fX(λjk )

)
→
d

(Z1, . . . ,Zk) (5.49)

where Z1, . . . ,Zk are i.i.d. standard exponential random variables and λj1, . . . , λjk
are distinct Fourier frequencies. This property facilitates the derivation of asymp-
totic results for functionals of the periodogram In,X(λ) (λ ∈ [−π,π]), provided that
the functional can be approximated by using Fourier frequencies only. Together
with (5.48) this motivated the following definition of a least squares regression esti-
mator of d by Geweke and Porter-Hudak (1983). First of all, since

logfX(λ) ∼ log cf + d · b(λ) (5.50)

with b(λ) = −2 log(λ), a natural idea is to estimate cf and d by linear regression
techniques. Replacing fX by the periodogram and assuming that log In,X(λ) is ap-
proximately equal to logfX(λ)+ logZ, where Z is a standard exponential variable,
we have

E
[
log In,X(λ)

] ≈
∫ ∞

0
e−x logx dx + logfX(λ) = −η + logfX(λ),

where η ≈ 0.57722 is the Euler constant. Thus, combining this with (5.50) yields,
for λ → 0,

E
[
log In,X(λ)

] ≈ (log cf − η)
︸ ︷︷ ︸

β0

+ d︸︷︷︸
β1

· b(λ) = β0 + β1b(λ)

and the corresponding regression equation is

log In,X(λ) = logfX(λ)+ logZ = β0 + β1b(λ)+ e(λ) (5.51)
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with

e(λ) = logZ + η.

Motivated by (5.51), Geweke and Porter-Hudak (1983) suggested the least squares
estimator (also called the GPH-estimator)

d̂GPH =
∑m

j=1(bj − b̄) log In,X(λj )
∑m

j=1(bj − b̄)2
(5.52)

where

bj = −2 log(λj ), b̄ = 1

m

m∑

j=1

bj

and

λj = 2πj

n
(j = 1,2, . . . ,m)

are the m smallest Fourier frequencies. The number m is called the bandwidth pa-
rameter. To obtain a consistent estimator that is not disturbed by deviations from
(5.50) outside an infinitesimal neighbourhood of the origin, m is chosen such that
m/n → 0. At the same time, the variance needs to converge to zero so that we need
m → ∞. The balance between these two conditions calls for a compromise between
bias and variance, comparable to other situations in nonparametric statistics. In gen-
eral, this is a difficult empirical optimization problem.

Avoiding complications at the moment, simple heuristics can be used to get
an idea about the possible asymptotic distribution of d̂GPH. If we assume Zj =
In,X(λj )/fX(λj ) (j = 1, . . . ,m) to be exactly independent standard exponential
random variables, then

var(d̂GPH) = var(log In,X(λ))∑m
j=1(bj − b̄)2

= var(log(Z))
∑m

j=1(bj − b̄)2

and var(logZ) = π2/6 (cf. (4.151)). Moreover, straightforward calculation yields

m∑

j=1

(bj − b̄)2 = 4

{
m∑

j=1

(log j)2 − 1

m

(
m∑

j=1

log j

)2}

∼ 4m

{∫ 1

0
(logλ)2 dλ−

(∫ 1

0
logλdλ

)2}
= 4m. (5.53)

Thus,

var(d̂GPH) ∼ π2

24m
.
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Consequently, if the bias (caused by treating Zj as standard exponential random

variables) is of smaller order than m− 1
2 , then we may expect to obtain a central limit

theorem of the form

√
m(d̂GPH − d) →

d
N

(
0,

π2

24

)
. (5.54)

Although (5.54) is generally correct, an exact mathematical derivation turned out
to be much more difficult. The main reason is that under long memory, property
(5.49) no longer holds for Fourier frequencies that are very close to the origin (see
Sect. 4.6). Since the behaviour of fX at the origin is exactly what we are interested
in, this is rather troublesome. Moreover, in the derivation of (5.54) it has to be taken
into account that it is not sufficient to derive a limit theorem for In,X(λ) and the
discrete Fourier transform dn,X(λ) = (2πn)−1/2 ∑n

t=1 Xte
−itλ at a finite number of

fixed non-zero frequencies and then “plug” this into a functional that depends on
an increasing number of Fourier frequencies (this was done in the incorrect heuris-
tic “derivation” above). By applying a refined analysis, it is, however, possible to
salvage the result.

The first proof of (5.54) in a long-memory case is due to Robinson (1995a). He
uses the following assumptions:

• (GPH1) Xt is a stationary Gaussian process.
• (GPH2)

fX(λ) = |λ|−2df∗(λ) = |λ|−2d(f∗(0)+O
(
λρ

))

for some 0 < ρ ≤ 2 and − 1
2 < d < 1

2 . The parameter ρ controls the smoothness
of fX away from the origin and plays a crucial role when determining the optimal
number of Fourier frequencies m. Furthermore, fX is assumed to be differentiable
at λ ∈ (0, ε) with ε > 0 a suitable constant, and also

f
′
X(λ) = O

(
λ−2d−1) (λ → 0).

• (GPH3)

m → ∞, m = o
(
n

2ρ
2ρ+1

)
.

These assumptions respectively describe the type of model considered, smooth-
ness of the spectral density fX(λ) (specifically of the short memory part f∗), and
the choice of the number of the Fourier frequencies. In particular, the condition

m = o(n
2ρ

2ρ+1 ) implies that the bias of the GPH estimator is negligible compared
to the variance. Indeed, we will argue later (see, e.g. (5.69)) that for long-memory
sequences

E
[
(d̂GPH − d)2] = Bias2 + Variance

≈ π2

24m
+ const · m

4

n4
.
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Therefore, for m proportional to n
2ρ

2ρ+1 , the squared bias is of a smaller order than
the variance as long as ρ < 2.

Robinson’s (1995a) method of proof requires also trimming of some low frequen-
cies to remove the effect of the asymptotic dependence of periodogram ordinates.
Let l > 0 be an integer and define

b̄(l) = 1

m− l + 1

m∑

j=l

bj , ȳ(l) = 1

m− l + 1

m∑

j=l

log In,X(λj )

and

d̂(l) = d̂GPH(l) =
∑m

j=l(bj − b̄(l)) log In,X(λj )
∑m

j=l (bj − b̄(l))2
, (5.55)

β̂0 = ȳ(l)− d̂(l)b̄(l). (5.56)

Robinson’s (1995a) result reads as follows.

Theorem 5.4 Under assumptions (GPH1)–(GPH3) and

√
m logm

l
= o(1), l = o

(
m

(logn)2

)
, (5.57)

we have

√
m

(
1

2 logm
(β̂0 − β0), d̂GPH(l)− d

)
→
d

N(0,V ), (5.58)

where

V = π2

24

(
1 −1

−1 1

)
.

We note that the rate of convergence
√
m is slower than

√
n. In fact, the best rate

is achieved when ρ = 2 in assumption (GPH2). Then, assumption (GPH3) yields
that m cannot grow faster than m = n4/5 and hence the rate of convergence of d̂

cannot be faster than Op(n
−2/5).

A remarkable feature of (5.58) is that β̂0 and d̂GPH(l) are asymptotically perfectly
negatively correlated. Thus, whenever d̂GPH(l) underestimates d , the intercept (and
hence the scale parameter) is overestimated and vice versa.

Robinson’s (1995a) ideas were further exploited leading to improvement of his
results. In particular, the assumption of Gaussianity (condition (GPH1)) is not nec-
essary, nor is it required that l tends to infinity. Moulines and Soulier (2003, Theo-
rems 6.2 and 6.3) state an alternative condition under which asymptotic normality of
d̂GPH holds. Their assumption (GPH1′) is more general in the sense that the process
need not be Gaussian; though, on the other hand, it is more restrictive with respect
to the shape of the spectral density:
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• (GPH1′) Xt = (1 −B)−dεt is a FARIMA(p, d, q) process with d ∈ (− 1
2 ,

1
2 ), and

εt an i.i.d. sequence with finite fourth moment and such that
∫ |E[eitε0]|r dt is

finite for some r ≥ 1.

5.6.3 Local Whittle Estimation—Narrowband Whittle Estimation

Let us recall the discrete Whittle approximation of the Gaussian likelihood (see
Sect. 5.5, (5.43))

Ln,Whittle
(
σ 2
ε , θ

) ≈ 2

n

Nn∑

j=1

(
logfX(λj ;ϑ)+ In,X(λj )

fX(λj ;ϑ)
)
.

The idea of local Whittle estimation is to use the lowest m frequencies only (Künsch
1987). This leads to

Lm,Whittle
(
σ 2
ε , θ

) = 2

m

m∑

j=1

(
logfX(λj ; θ)+ In,X(λj )

fX(λj ; θ)
)
,

where λj = 2πj/n, j = 1, . . . ,m. Assuming fX(λ) ∼ cf λ
−2d and m/n → 0, mini-

mization of Lm,Whittle can be replaced by the minimization of

Q(cf , d) = 1

m

m∑

j=1

[
log

(
cf λ

−2d
j

)+ In,X(λj )

cf λ
−2d
j

]
. (5.59)

The partial derivative with respect to cf is

∂

∂cf
Q(cf , d) = 1

m

m∑

j=1

[
c−1
f − In,X(λj )

c2
f λ

−2d
j

]
.

Thus, for any d , setting this expression to zero yields the explicit expression

ĉf = Gm(d) = 1

m

m∑

j=1

In,X(λj )

λ−2d
j

. (5.60)

Plugging ĉf into (5.59) leads to

Q(ĉf , d) = 1

m

m∑

j=1

log ĉf λ
−2d
j + ĉf

ĉf
= log ĉf − d

2

m

m∑

j=1

logλj + 1.

Thus, given a permissible range d ∈ Θ ⊆ (− 1
2 ,

1
2 ), the local Whittle estimator of d

is defined by

d̂LW = arg min
d∈Θ

Km(d) (5.61)
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where

Km(d) = logGm(d)− d

(
2

m

m∑

j=1

logλj

)
. (5.62)

This estimator is also called the Gaussian semiparametric estimator (GSE).
Robinson (1995b) derives the asymptotic distribution of d̂LW under assumptions

that mimic those for the GPH estimator. In particular:

• (LW1) Xt is a second order stationary process with Wold representation Xt =
μ0 +∑∞

j=0 aj εt−j ,
∑

a2
j < ∞ and E[ε4] < ∞.

• (LW2)

fX(λ) = |λ|−2df∗(λ) = |λ|−2d(f∗(0)+O
(
λρ

)) = |λ|−2d(cf +O
(
λρ

))

for some 0 < ρ ≤ 2 and − 1
2 < d < 1

2 .
• (LW3)

m → ∞,
(logm)2m1+2ρ

n2ρ
→ 0.

These are sufficient assumptions for deriving the asymptotic distribution of d̂LW.
Note in particular that the innovations εt do not need to be independent. Thus, this
includes also some nonlinear processes. Slightly weaker conditions can be used to
prove weak consistency only. The asymptotic distribution is given as follows:

Theorem 5.5 Under the assumptions (LW1)–(LW3),

√
m(d̂LW − d0) →

d
N

(
0,

1

4

)
.

As in the case of the log-periodogram estimator, we will give a sketch of the proof
here, deferring details to Sect. 5.6.4. Unlike in the GPH case, it is more difficult to
establish consistency of the local Whittle estimator because it is not given in an
explicit form.

Proof The standard approach to obtain the asymptotic distribution of d̂LW is a Tay-
lor expansion. Without loss of generality, we may assume σ 2

ε = 1 (since it cancels
out). Using the notation

K̇(d) = K̇m(d) = ∂

∂d
Km(d), K̈(d) = K̈m(d) = ∂2

∂d2
Km(d),

we may write heuristically

0 = K̇(d̂LW) = K̇(d0)+ K̈(d̃)(d̂LW − d0)

= K̇(d0)+ [
K̈(d0)+ op(1)

]
(d̂LW − d0)
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where d̃ is a suitable (random) intermediate value with |d̃−d0| ≤ |d̂LW −d0|. Specif-
ically,

K̇(d0) =
(

2

m

m∑

j=1

logλj · In,X(λj )
cf λ

−2d0
j

)(
1

m

m∑

j=1

In,X(λj )

cf λ
−2d0
j

)−1

− 2

m

m∑

j=1

logλj .

Now, the procedure is very similar as in the case of the GPH estimator. We handle
the denominator

(
1

m

m∑

j=1

In,X(λj )

cf λ
−2d0
j

)

by applying Bartlett’s approximation

In,X(λj )

cf λ
−2d0
j

≈ In,X(λj )

fX(λj )
≈ 2πIn,ε(λj ),

where In,ε(λ) is the periodogram of the innovation process εt . Heuristically, we then
have

1

m

m∑

j=1

In,X(λj )

cf λ
−2d0
j

≈ 2π

m

m∑

j=1

In,ε(λj ) ≈ 2πE
[
In,ε(λj )

] = σ 2
ε = 1.

Therefore, the limiting behaviour of K̇(d0) is the same as that of

2

m

m∑

j=1

logλj

[
In,X(λj )

cf λ−2d0
− 1

]
.

Thus, using the notation bj = −2 logλj and b̄ = m−1 ∑m
j=1 bj , we conclude that

the asymptotic behaviour of K̇(d0) is the same as that of

K̇∗
m(d0) := − 1

m

m∑

j=1

(bj − b̄)

[
In,X(λj )

cf λ−2d0
− 1

]
. (5.63)

Using again Bartlett’s approximation, we deduce that K̇∗
m(d0) has the same asymp-

totic behaviour as

K̇∗∗
m (d0) := 1

m

m∑

j=1

(bj − b̄)
[
2πIn,ε(λj )− 1

]
.

We will argue below (see Sect. 5.6.4) that m · var(K̇∗∗
m (d0)) → 4 as m → ∞ and

also
√
mK̇∗∗

m (d0) →
d

N(0,4).
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By similar arguments, one obtains

K̈m(d0) →
p

4.

Thus

√
m(d̂LW − d0) = −

√
mK̇m(d0)

K̈m(d0)
+ op(1),

which leads to the asymptotic normality with variance 4/42 = 1
4 . �

5.6.4 Technical Details for Semiparametric Estimators in the
Fourier Domain

In this section, we provide some technical tools that are used to prove asymptotic
normality of the GPH and local Whittle estimators in Theorems 5.4 and 5.5. We
start with asymptotic normality of a weighted sum of periodogram ordinates for
i.i.d. sequences. This is an important step in proving asymptotic normality under
long memory.

We start with some formulas for the variance of d̂GPH that explain in particular
the low trimming condition used by Robinson (1995a). Then, we will discuss the
proof of asymptotic normality following steps suggested in Moulines and Soulier
(1999, 2003), Hurvich et al. (2002), Lang and Soulier (2000) and Hurvich et al.
(2005a).

5.6.4.1 Decomposition of the GPH Estimator

Recall that bj = −2 logλj , λj = 2πj/n and

d̂GPH =
∑m

j=1(bj − b̄) log In,X(λj )
∑m

j=1(bj − b̄)2
.

Also, under the specification fX(λ) = |λ|−2df∗(λ) a straightforward computation
yields

∑m
j=1(bj − b̄) logfX(λj )

∑m
j=1(bj − b̄)2

= d +
∑m

j=1(bj − b̄) logf∗(λj )
∑m

j=1(bj − b̄)2
.

Thus, we can decompose d̂GPH − d as

d̂GPH − d =
m∑

j=1

b∗
j,m

{
log

In,X(λj )

fX(λj )
+ η

}
+

m∑

j=1

b∗
j,m logf∗(λj ), (5.64)
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where

b∗
j,m = bj − b̄

∑m
k=1(bk − b̄)2

and η is the Euler constant. Note that the constant η can be added since
∑m

j=1(bj −
b̄) = 0. A similar decomposition is applied to

√
m(d̂GPH − d) and the resulting

stochastic term is written as the weighted sum

Sm,X(log) :=
m∑

j=1

bj,m

{
log

In,X(λj )

fX(λj )
+ η

}

where

bj,m = √
mb∗

j,m = √
m

bj − b̄
∑m

k=1(bk − b̄)2
. (5.65)

5.6.4.2 Decomposition of the Local Whittle Estimator

Also, in the case of the local Whittle estimator we assume fX(λ) ∼ f∗(0)λ−2d .
Defining gX(λ) = f∗(0)λ−2d , we have to study (cf. (5.63))

√
mK̇∗

m(d) =
m∑

j=1

bj,m

[
In,X(λj )

gX(λj )
− 1

]

where now

bj,m = bj − b̄√
m

. (5.66)

Then
√
mK̇∗

m(d) is decomposed into a sum of two terms,

m∑

j=1

bj,m

[
In,X(λj )

fX(λj )
− 1

]
+

m∑

j=1

bj,m

[
In,X(λj )

gX(λj )
− In,X(λj )

fX(λj )

]
. (5.67)

We denote this weighted sum of periodogram ordinates as

Sm,X(linear) =
m∑

j=1

bj,m

[
In,X(λj )

fX(λj )
− 1

]
.
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5.6.4.3 Bias of the GPH Estimator

We apply the expected value to the decomposition (5.64) to obtain

BiasGPH = E[d̂GPH − d] =
m∑

j=1

bj,mE[Yj ] +
m∑

j=1

b∗
j,m logf∗(λj ),

where

Yj = log
In,X(λj )

fX(λj )
+ η.

Let us note that when the normalized periodogram ordinates In,X(λj )/fX(λj ) are
exactly standard exponential (like in the case of i.i.d. random variables), then the
first part disappears. In other words, in the long-memory case there are two sources
of bias. The first, deterministic part, that arises from treating the spectral density
fX(λ) as being exactly equal to f∗(λ)|λ|−2d . The second, stochastic part, comes
from treating the normalized periodogram ordinates as standard exponential random
variables.

Let us deal with the deterministic part first (cf. Hurvich et al. 1998). Under the
assumptions f ′∗(0) = 0 and f

′′
∗ (0) < ∞, we have

m∑

j=1

b∗
j,m logf∗(λj ) ≈ 2π2

9

f
′′
∗ (0)
f∗(0)

m2

n2
.

This can be obtained by expanding

logf∗(λj ) ≈ logf∗(0)+ f
′′
∗ (0)
f∗(0)

λ2
j

2
,

which leads to

m∑

j=1

b∗
j,m logf∗(λj ) ≈ 2π2 f

′′
∗ (0)
f∗(0)

1

n2

m∑

j=1

(bj − b̄)j2,

and the behaviour of the deterministic part follows from a careful study of the sum
in the latter expression. Furthermore, the stochastic term is negligible (see, e.g. Hur-
vich et al. 1998). Summarizing, under the assumption of the existence of the second
order derivative of f∗, the bias of the GPH estimator is given by

BiasGPH = 2π2

9

f
′′
∗ (0)
f∗(0)

(
m

n

)2

+ o
(
(m/n)2). (5.68)

In general, if we assume (GPH3) only, the bias is of the order (m/n)ρ .
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5.6.4.4 Variance of GPH Estimator

In the decomposition (5.64) of the GPH estimator only the first part is stochastic.
We compute

var

(
m∑

j=1

b∗
j,m log In,X(λj )

)
=

m∑

j=1

(
b∗
j,m

)2 var
(
log In,X(λj )

)

+
m∑

k,j=1
k 
=j

b∗
k,mb

∗
j,mcov

(
log In,X(λk), log In,X(λj )

)
.

Theorem 4.32 can be used to remove a sufficiently large number l of low frequencies
in the GPH estimator so that the covariance between Yj = log In,X(λj ) at different
frequencies (with j ≥ l + 1) is negligible and the second term in the expression for
the variance disappears asymptotically (see condition (5.57)). Note, however, that a
refined analysis shows that this trimming is actually not necessary asymptotically.

5.6.4.5 Mean Squared Error and Optimal Bandwidth for the GPH Estimator

Combining (5.68) with the computation of the variance above, we obtain

MSE(d̂GPH) = E
[
(d̂GPH − d)2] ≈

(
2π2

9

f
′′
∗ (0)
f∗(0)

m2

n2

)2

+ π2

24m
. (5.69)

Minimizing the MSE, we obtain the optimal value of m as

mopt = Cn
4
5

with

C =
(

27

129π2

) 1
5
(
f∗(0)
f

′′
∗ (0)

) 2
5

(5.70)

and the optimal rate of the MSE,

MSEopt = O
(
n− 4

5
)
.

It is interesting to note that this rate is the same as encountered, for example, in non-
parametric regression models with i.i.d. or weakly correlated residuals. The intuitive
explanation is that most of the residuals in the GPH regression are approximately
uncorrelated, and this turns out to be enough to obtain a result analogous to an i.i.d.
situation. We note further that for the optimal choice of m the contribution of the
bias is of the same order as the variance. On the other hand, the bias is negligible,

if m = o(n4/5), or more generally, if m = o(n
2ρ

2ρ+1 ), i.e. when (GPH3) and (LW3)
hold.
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The optimal bandwidth derived from formula (5.70) involves unknown quanti-
ties. Hurvich and Beltrao (1994a) therefore consider bandwidth choice by cross-
validation in the spectral domain. Hurvich and Deo (1999) estimate the constant C
and consider a plug-in bandwidth.

The local Whittle estimator is not given in an explicit form. Therefore, the eval-
uation of the variance and the bias is more complicated. Bounds for the second part
in (5.67) are discussed in Robinson (1995b), Lang and Soulier (2000) and Hurvich
et al. (2005a). Henry and Robinson (1996) consider plug-in bandwidth selection for
the local Whittle estimator.

5.6.4.6 Asymptotic Normality

The procedure for establishing asymptotic normality of the GPH or the local Whittle
estimator runs as follows:

• Use Bartlett’s decomposition for linear processes:

In,X(λ) = 2πfX(λ)In,ε(λ)+Rn(λ),

where Rn(·) is a remainder.
• This suggests a decomposition of the stochastic terms Sm,X(log) and Sm,X(linear)

respectively as:

m∑

j=1

bj,m log
(
2πIn,ε(λj )

)

︸ ︷︷ ︸
=:Sm,ε(log)

+
m∑

j=1

bj,m log

(
In,X(λj )

2πfX(λj )In,ε(λj )

)

︸ ︷︷ ︸
=Rm,ε(log)

and

m∑

j=1

bj,m
[
2πIn,ε(λj )− 1

]

︸ ︷︷ ︸
Sm,ε(linear)

+
m∑

j=1

bj,m

[
In,X(λj )

fX(λj )
− 2πIn,ε(λj )

]

︸ ︷︷ ︸
Rm,ε(linear)

,

where bj,m’s are given in (5.65) and (5.66) for the GPH and local Whittle estima-
tor, respectively.

• Establish convergence of Sm,ε(log) and Sm,ε(linear), the sums of periodogram
ordinates based on the i.i.d. sequence εt .

• Show that the remainder terms Rm,ε(log) and Rm,ε(linear) are negligible.
• The steps above establish convergence of Sm,X(log) and Sm,X(linear). Combine

this with conditions on bias negligibility discussed above: m = o(n
2ρ

2ρ+1 ).
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5.6.4.7 Periodogram for i.i.d. Sequences

Let εt be an i.i.d. sequence. Consider a weighted sum

Sm,ε(φ) =
m∑

j=1

bj,mφ
(
2πIn,ε(λj )

)
.

Here, φ is a deterministic function, bj,m are deterministic constants and m → ∞
as n → ∞. Faÿ and Soulier (2001) (see also Theorem 9.4 in Moulines and Soulier
2003) give general conditions under which Sn,ε(φ) converges:

• (FS1) εt is an i.i.d. sequence with finite fourth moment and such that∫ |E[eitε0]|r dt is finite for some r ≥ 1.
• (FS2)

∑m
j=1 bj,m = 0 (so that centring in Sm,ε(φ) is not needed),

∑m
j=1 b

2
j,m = 1,

limn→∞{∑m
j=1 |bj,m − bj+1,m| + |bm,m|} log2(m) = 0;

• (FS3) The Lindeberg condition

lim
n→∞ max

1≤j≤m
|bj,m| = 0.

• (FS4)

lim
n→∞

m∑

j=1

b2
j,m var

(
φ
(
2πIn,ε(λj )

)) = σ 2
0 .

The results can be formulated as follows (see Theorem 9.4 in Moulines and
Soulier 2003 or Faÿ and Soulier 2001).

Theorem 5.6 Under the conditions (FS1)–(FS4) we have

Sm,ε(φ) →
d

N
(
0, σ 2

0

)
.

We note in passing that if
∑m

j=1 bj,m 
= 0, then the asymptotic variance has to be
changed. It will involve κ4, the fourth cumulant of ε1; see Faÿ and Soulier (2001),
Moulines and Soulier (2003) as well as Example 5.11 below.

We will shed some light on this theorem in the following examples that apply
directly to the GPH and local Whittle estimator.

Example 5.10 Let φ(x) = log(x). Set

bj,m = √
m

bj − b̄
∑m

k=1(bk − b̄)2
, bj = −2 logλj , λj = 2πj

n
.

Note that (cf. (5.53))
∑m

j=1 b
2
j,m ∼ 1/4 as m → ∞. Now assume that εt are standard

normal. Then the normalized periodogram ordinates In,ε(λk)/fε(λk) are indepen-
dent, with the same standard exponential distribution. Furthermore, var(log(Z)) =
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π2/6, where Z is standard exponential. Thus

var

(
m∑

j=1

bj,mφ
(
2πIn,ε(λj )

)
)

=
m∑

j=1

b2
j,m var

(
φ
(
2πIn,ε(λj )

)) = π2

6

m∑

j=1

b2
j,m ∼ π2

24
,

and

Sm,ε(log) →
d

N
(
0,π2/24

)
.

Example 5.11 Let φ(x) = x and

bj,m = bj − b̄√
m

, bj = −2 logλj , λj = 2πj

n
.

We have (cf. (5.53))
∑m

j=1 b
2
j,m ∼ 4. Assume that εt are standard normal. Then the

periodogram ordinates 2πIn,ε(λk) are independent, with the same standard expo-
nential distribution and hence with unit variance. Thus

var

(
m∑

j=1

bj,mφ
(
2πIn,ε(λj )

)
)

=
m∑

j=1

b2
j,m var

(
2πIn,ε(λj )

) =
m∑

j=1

b2
j,m ∼ 4.

Hence,

Sm,ε(φ) →
d

N(0,4). (5.71)

If εt are not Gaussian, then (cf. (4.142))

Cov
(
In,ε(λk), In,ε(λl)

) = κ4

4π2n
(j 
= k),

where κ4 is the fourth cumulant. Therefore,

m∑

j,k=1
j 
=k

bj,mbk,mCov
(
2πIn,ε(λj ),2πIn,ε(λk)

) = κ4

n

m∑

j,k=1
j 
=k

bj,mbk,m = −κ4

n

m∑

j=1

b2
j,m,

since
∑m

j=1 bj,m = 0. Hence, the covariance term is negligible and (5.71) is valid in
the non-Gaussian case even though the periodogram ordinates are dependent.

The idea behind the proof of Theorem 5.6 can be illustrated for linear functionals
φ(x) = x. Indeed, it follows from

m∑

j=1

bj,m
(
2πIn,ε(λj )− 1

) =
m∑

j=1

bj,m

[
1

n

n∑

t,s=1

εt εse
−i(t−s)λj − 1

]
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=
n∑

t=1

[
t−1∑

s=1

εs
1

n

m∑

j=1

bj,m
(
e−i(t−s)λj + ei(t−s)λj
︸ ︷︷ ︸

2 cos(t−s)λj

)
]

=
n∑

t=1

εt

t−1∑

s=1

εs · 2

n

m∑

j=1

bj,m cos(t − s)λj

︸ ︷︷ ︸
ct−s (n,m)

=
n∑

t=1

εt

t−1∑

s=1

εsct−s(n,m) = 2
n∑

t=1

zt (n,m)

where

z1(1,m)

z1(2,m), z2(2,m)

...

z1(n,m), . . . , zn(n,m)

is a martingale difference array. Once it is shown that

n∑

t=1

E
[
z2
t (n,m) | Ft−1

]− 1 →
p

0

(with Ft denoting the σ -algebra generated by εs , s ≤ t), and

n∑

t=1

E
[
z2
t (n,m)I

{∣∣zt (n,m)
∣∣> δ

}] → 0

for all δ > 0, asymptotic normality follows from a standard martingale central limit
theorem.

5.6.4.8 Periodogram for Long-Memory Sequences

Finally, we show that the remainder terms are negligible. We sketch a proof for the
GPH estimator only, referring for technical details and the local Whittle estimator
to Hurvich et al. (2002) or Robinson (1995b).

Lemma 5.1 Assume (GPH1′), (FS2) and (FS3). Then

m∑

j=1

bj,m log

(
In,X(λj )

2πfX(λj )In,ε(λj )

)
= oP (1).
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Proof The details can be found in Hurvich et al. (2002). The sum is split into two
parts,

∑m0
j=1 and

∑m
j=m0+1. The first part is treated easily since m0 is treated as

fixed. First, by the continuous mapping theorem, (4.138) and (4.150),

m0∑

j=1

log
(
2πIn,ε(λj )

) →
d

V2,

m0∑

j=1

log
(
In,X(λj )/fX(λj )

) →
d

V1,

where V1 and V2 are finite random variables. Thus,

m0∑

j=1

bj,m log

(
In,X(λj )

2πfX(λj )In,ε(λj )

)

≤ max
1≤j≤m

bj,m

{∣∣∣∣∣

m0∑

j=1

log
(
In,X(λj )/fX(λj )

)
∣∣∣∣∣+

∣∣∣∣∣

m0∑

j=1

log
(
2πIn,ε(λj )

)
∣∣∣∣∣

}

= o(1)OP (1) = oP (1).

The second part is more technical, and we refer to Hurvich et al. (2002). �

The combination of Theorem 5.6 and Lemma 5.1 implies that the asymptotic
behaviour of

∑m
j=1 bj,m log(In,X(λj )) is the same as that of

∑m
j=1 bj,m log(2π ×

In,ε(λj )).

5.6.4.9 Consistency of the Local Whittle Estimator

For consistency of the local Whittle estimator, one considers a δ-neighbourhood of
d0 (0 < δ < 1

2 ),

Nδ = {
d : |d − d0| < δ

}
,

and the probability

pn = P
(|d̂ − d0| > δ

) = P
(
d̂ ∈ Nc

δ ∩Θ
) = P

(
inf

Nc
δ ∩Θ

Km(d) ≤ inf
Nδ∩Θ

Km(d)
)
,

where Θ = (−1/2,1/2). Since d0 ∈ Nδ ∩Θ , we have

inf
Nδ∩Θ

Km(d) ≤ Km(d0).

Hence, using the notation

Sm(d;d0) = Km(d)−Km(d0),
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one obtains

pn ≤ P
(

inf
Nc

δ ∩Θ
Sm(d;d0) ≤ 0

)
.

Note that

Sm(d;d0) = log
Gm(d)

Gm(d0)
− (d − d0)

(
2

m

m∑

j=1

logλj

)
.

Intuitively, one may use the approximation

log
Gm(d)

Gm(d0)
= log

[
1 + Gm(d)−Gm(d0)

Gm(d0)

]

= Gm(d)−Gm(d0)

Gm(d0)
+ op(1);

however, a detailed argument must use a uniform approximation (in probability).
Moreover,

Gm(d) = 1

m
cf

m∑

j=1

λ
2(d−d0)
j

[
In,X(λj )

cf λ
−2d0
j

]

= cf

{
m∑

j=1

λ
2(d−d0)
j

1

m
+

m∑

j=1

λ
2(d−d0)
j

[
In,X(λj )

cf λ
−2d0
j

− 1

]
1

m

}
.

If d0 < d + 1
2 , then the first sum is a Riemann sum that converges to the correspond-

ing integral. For instance, if Θ ⊂ (0, 1
2 ), then this is always the case and convergence

is uniform in d . For d + 1
2 < d0, a different approximation has to be used. The sec-

ond sum is stochastic with expected value approaching zero. Again a uniformity
argument must be used. Careful analysis along this line finally yields

lim
n→∞P

(
inf

Nc
δ ∩Θ

Sm(d;d0) ≤ 0
)

= 0

so that d̂LW converges to d0 in probability. For details see Robinson (1995b).

5.6.5 Comparison and Modifications of Semiparametric
Estimators in the Fourier Domain

Let us summarize the theory of semiparametric estimators in the Fourier domain:
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Estimator Linear

GPH
(Theorem 5.4)

√
m(d̂GPH − d) →

d
N(0,var)

var = π2/24

Local Whittle
(Theorem 5.5)

√
m(d̂LW − d) →

d
N(0,var)

var = 1/4

Although there is no closed form formula for the local Whittle estimator, the
proof of asymptotic normality is easier than for the GPH estimator. The reason is
that long memory is filtered out automatically due to the division of In,X(λ) by
fX(λ), so that (apart from some details regarding the accuracy of the approxima-
tions) standard results for the periodogram of i.i.d. observations can be applied.
From the applied point of view, the GPH estimator is easier to calculate since sim-
ple least squares regression (together with the correction by the Euler constant) can
be applied. However, the asymptotic loss of efficiency compared to d̂LW is consid-
erable, namely

as.eff(d̂GPH, d̂LW) = 1/4

π2/24
= 6

π2
≈ 0.61. (5.72)

On the other hand, the GPH estimator can be modified to account for this loss of
efficiency, though the charm of simplicity is lost by the modifications. This will be
discussed below, along with other extensions and modifications.

5.6.5.1 Bias Reduction—Tapering

Semiparametric estimators—though asymptotically unbiased—can have a consid-
erable finite sample bias. For example, the bias of the GPH estimator is of the order
m2/n2. One way to avoid or reduce the finite sample bias is to consider a tapered
periodogram in the definition of the GPH or the local Whittle estimator. A tapered
periodogram is defined as

ITn,X(λ) = |∑n
t=1 wn,tXte

−itλ|2
2π

∑n
t=1 |wn,t |2 , (5.73)

where wj ∈ C is an appropriate “taper”. A classical choice is a cosine bell taper
(Tukey 1967) defined by

wn,t = 0.5

{
1 − cos

(
2π(t − 1/2)

n

)}
.

We note that this taper is shift invariant which means that the resulting tapered pe-
riodogram is shift invariant as well. Recall that this property is important in order
to avoid the problem that replacing the mean by its estimate deteriorates the perfor-
mance. Hurvich and Beltrao (1993) indicated by means of simulation that tapering
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reduces the bias of the GPH estimator. Hurvich and Chen (2000) also suggested a
modified cosine bell taper,

wn,t = 0.5
{
1 − ei

2π(t−1/2)
n

}
,

and showed asymptotic normality of the resulting local Whittle estimator:

√
m(d̂ − d) →

d
N

(
0,

3

8

)
.

We note that the asymptotic variance is still smaller than for the GPH, but larger than
for the untapered local Whittle estimator. To explain the increase in the variance
(and hence loss of efficiency), let us recall that for i.i.d. data the values of the discrete
Fourier transform (DFT) at Fourier frequencies are uncorrelated. For the tapered
DFT, we have

E
[
dn,X(λj ) dn,X(λk)

] 
= 0,

for |j − k| ≤ p. Thus, while tapering reduces the bias, it introduces some depen-
dence.

A different approach to bias reduction is taken in Andrews and Guggenberger
(2003). The authors consider the GPH estimator, but instead of Fourier frequencies
λj (j = 1, . . . ,m) they consider λ2r

j for some integer r . The idea comes from a
local polynomial regression that reduces the bias. The estimator of Andrews and
Guggenbauer has a bias of the order (m/n)2+2r which is smaller than for the original
GPH method.

5.6.5.2 Improved Efficiency—Pooling

The idea of pooling dates back to Hannan (1970). As mentioned above, the GPH
method is less efficient than the local Whittle estimator. To address this problem,
Robinson (1995a) considers modified GPH estimators d̂J based on averages of the
periodogram over disjoint blocks of adjacent frequencies, each of length J . The
asymptotic variance of d̂J (say V11(J )) decreases monotonically in J , with limit

lim
J→∞V11(J ) = 1

4
<

π2

24
.

Thus, in the limit, the pooled log-periodogram estimator has the same efficiency as
the local Whittle approach. However, a practical problem with blockwise averaging
is that an observed series may be too short to use a large value of J . Hurvich et al.
(2002) suggest using blocks of size 4.
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5.6.5.3 Nonstationary and Noninvertible Models

Another direction of research deals with nonstationary processes. Assume, for in-
stance, that the sequence Yt (t ∈ Z) is such that

Yt − Yt−1 = Xt,

where Xt is an ARFIMA(0, d,0) with d ∈ (− 1
2 ,

1
2 ). The sequence Yt is fractionally

differenced of order d∗ = d + 1 and hence nonstationary. Another situation is that
we observe a noninvertible process with d < − 1

2 .
Hurvich and Chen (2000) considered a tapered local Whittle estimator and al-

lowed d ∈ (− 1
2 ,

3
2 ). Data are differenced so that the memory parameter becomes

d∗ = d − 1 ∈ (− 3
2 ,

1
2 ) and the sequence may become noninvertible. They showed

that the asymptotic variance of the local Whittle estimator of d∗ is

πΓ 2(2p − 1)Γ 2((4p − 3)/2)

Γ 4((2p − 1)/2)Γ (4p − 3)
≈

(
pπ

2

)1/2

,

where p is the parameter that appears in the definition of the tapered periodogram.
We observe a loss of efficiency, but the estimator is applicable to noninvertible pro-
cesses. Velasco (1999a) shows that the local Whittle estimator is consistent when
d ∈ (− 1

2 ,1) and asymptotically normal when d ∈ (− 1
2 ,

3
4 ). Phillips and Shimotsu

(2004) show that the local Whittle is also consistent for d ∈ [ 3
4 ,1). However, the

rate of convergence becomes m2−2d and the limiting distribution is χ2
1 . If d > 1,

then the local Whittle estimator is not consistent. Abadir et al. (2007) and Hurvich
et al. (2005a) allow for deterministic or stochastic trends. Kim and Phillips (1999)
argue that the range of consistency and normality is the same for both GPH and lo-
cal Whittle estimator. Hurvich and Ray (1995) demonstrated that the GPH estimator
of d∗ (applied to Yt ) does not equal to the GPH estimator of d , increased by one,
applied to the differenced data Xt .

5.6.5.4 Other Models and Approaches

Another extension is to time series where the spectral density has a pole at a known
location ω that may not necessarily be equal to zero. Arteche and Velasco (2005)
assume that

fX(ω ± λ) ∼ C±λ−2d± ,

where d± may be different. The authors consider both the GPH and the local Whit-
tle estimator. Hidalgo (2005) considers the case of spectral densities where the lo-
cations of poles are unknown.

Both estimators also apply to more complicated stationary models. Robinson
and Henry (1996) extend Robinson’s (1995b) results to linear processes with de-
pendent innovations. Shao and Wu (2007) consider local Whittle for ARFIMA with
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GARCH innovations. Lobato (1999) and Robinson (2008) develop semiparametric
estimation for multivariate long-memory time series. Giraitis and Robinson (2003)
derive an Edgeworth expansion for the local Whittle estimator and provide improved
confidence intervals.

One can also consider different estimators. Robinson (1994a, 1994b), Lobato and
Robinson (1996) and Lobato (1997) suggest the averaged periodogram

Fn,X(λ) = 2π

n

[nλ/2π]∑

j=1

In,X(λj )

to estimate FX(λ) = ∫ λ

0 fX(ω)dω. If fX(λ) ∼ C|λ|−2d , then FX(λ) ∼ Cλ−2d+1/

(1 − 2d) and also FX(qλ)/FX(λ) → q−2d+1 as λ → 0 for any q > 0. The estimator
is defined as

d̂ = 1

2
− log(Fn,X(qλm)/Fn,X(λ))

2 logq

where m is a bandwidth. The estimator is both location and scale invariant. However,
the asymptotic variance depends on d , and, if d ∈ (1/4,1/2), then the limit is non-
normal (of Hermite–Rosenblatt type). Thus, the estimator is not particularly useful
from a practical point of view. However, the theory developed in Robinson (1994a,
1994b) formed a basis for further considerations in Robinson (1995a, 1995b) and
thereafter.

5.7 Semiparametric Narrowband Methods in the Wavelet
Domain

5.7.1 Log Wavelet Regression

In this section, we complement semiparametric estimation in the Fourier domain
with corresponding methods in the wavelet domain. Estimation of the memory pa-
rameter in the wavelet domain originates in the works of Wornell and Oppenheim
(1992) and Abry et al. (1995). The log-wavelet estimator we are going to analyse
here was investigated in Abry and Veitch (1998) and Veitch and Abry (1999). An
asymptotic theory was developed in Bardet et al. (2000), Moulines et al. (2007b,
2008). We refer also to overview articles by Faÿ et al. (2009) and Abry et al. (2003).
There is also a corresponding theory for a wavelet version of the local Whittle es-
timator studied in Sect. 5.6.3. We will not discuss this here, referring the reader to
Moulines et al. (2008).

Assume that Xt (t ∈ Z) is a discrete-time long-memory time series (for instance,
a FARIMA(p, d, q)). Assume further that Xt (t ∈ Z) is centred with covariance
function γX(k). In order to apply the discrete wavelet transform, we replace the
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sequence by its continuous-time interpolation X(u) (u ∈R) defined as

X(u) =
∑

t∈Z
Xtφ(u− t),

where φ(·) is a father wavelet. In particular, if φ is the Haar scaling function, then
X(u) is just a piecewise constant interpolation of the discrete time sequence Xt

(t ∈ Z). For a finite sample X1, . . . ,Xn, we define

Xn(u) =
n∑

t=1

Xtφ(u− t).

Without loss of generality, we may assume that the support of φ and ψ is contained
in [−T ,0] and [0, T ], respectively, where T is a positive integer. This means that the
processes X(u) and Xn(u) agree for all u ∈ [0, n−T +1]. Furthermore, the support
of ψj,k is contained in [2−j k,2−j (k + T )]. Recall that for instance for ψ -functions

whose support has length 1, φj,k is defined by ψj,k = T
1
2 2

j
2 ψ(2jN · −k). Hence,

the wavelet coefficients

dj,k :=
∫ ∞

−∞
X(u)ψj,k(u) du

and

d
(n)
j,k :=

∫ ∞

−∞
Xn(u)ψj,k(u) du

are the same as long as the support of ψj,k is contained in [0, n − T + 1]. Thus,
since we consider j ≤ 0, the restriction on k is k ≤ nj − 1 where

nj := [
2j (n− T + 1)− (T − 1)

]
,

and [x] is the largest integer smaller than x. This motivates the following definition:

In := {
(j, k) : j ≤ 0,0 ≤ k ≤ nj − 1

}
.

In other words, In is the set of indices (j, k) for which we can compute
wavelet coefficients dj,k = d

(n)
j,k . For a given resolution level j , we can compute

dj,0, . . . , dj,nj−1. Often, T is chosen to be equal to 1. This means that nj = 2j n and
In := {(j, k) : j ≤ 0,0 ≤ k ≤ 2j n− 1}. Also note that by definition we may use the
decomposition

X(u) =
−∞∑

j=0

nj−1∑

k=0

bj,kψj,k(u)

for u ∈ [0, n− T + 1].
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Recall now the formula (4.154) for the variance of wavelet coefficients:

σ 2
j := var(dj,0) ≈ 2−2jdcf

∫
|λ|−2d

∣∣ψ̂(λ)
∣∣2 dλ = 2−2jdcf Ψ (2d). (5.74)

Taking logarithm on both sides, we have

log
(
var(dj,0)

) ≈ log
(
cf Ψ (2d)

)− 2dj log(2).

Since the sequence dj,k (k ∈ Z) is stationary, we can estimate var(dj,0) by using the
sample variance based on dj,0, . . . , dj,nj−1:

σ̂ 2
j := ̂var(dj,0) = 1

nj

nj−1∑

k=0

d2
j,k.

This leads to the following regression problem

log
(
σ̂ 2
j

) = log
(

̂var(dj,0)
) = log

(
cf Ψ (2d)

)− 2dj log(2)+Uj ,

where Uj = log( ̂var(dj,0)/(cf Ψ (2d)2−2dj )).
We note a similarity to the log-periodogram regression set-up considered in

Sect. 5.6, see (5.51). However, there is a significant difference between wavelet re-
gression and the corresponding log-periodogram regression. We note that the errors
Uj are defined explicitly in terms of d . Hence, unlike in the log-periodogram case,
one can expect that the limiting variance of a log-wavelet regression estimator will
depend on d .

The log-wavelet regression estimator of d may be obtained by regressing log(σ̂ 2
j )

on −2j log(2), where j = j0, . . . , j1. Resolution levels j0 and j1 have to be chosen
by the user. In particular, j1 = j0 − r , where r is fixed and the choice of the finest
resolution level j0 = j0(n) depends on the sample size n. The idea is, of course,
to let j0 tend to −∞ because the hyperbolic long-memory decay shows at coarse
resolution levels.

Since the variance of var(dj,0) is larger the coarser the resolution level (i.e. the
lower j ) is, it is recommended to use a weighted linear regression. Specifically, the
log-wavelet regression estimator is defined as

d̂WR =
j1∑

j=j0

wj0−j log
(
σ̂ 2
j

)
,

where the weights wj have the following properties:

j0−r∑

j=j0

wj0−j =
r∑

j=0

wj = 0 (5.75)
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and

−2 log(2)
r∑

j=0

jwj = 1. (5.76)

In particular, Moulines et al. (2007b) suggest the following weights:

w = (w1, . . . ,wr)
T = DB

(
BTDB

)−1b,

where D is a positive definite matrix,

B =
[

1 1 · · · 1
0 1 · · · r

]T
,

and

b = [
0,−(

2 log(2)
)−1]T

.

Consider the total number of wavelet coefficients used in the estimation:

m :=
j0−r∑

j=j0

nj .

The parameter m will play a similar role as the number of Fourier coefficients in
case of the log-periodogram estimation. Since nj = 2j (n − T + 1) − (T − 1), we
have

j1∑

j=j0

nj =
j1∑

j=j0

2j (n− T + 1)−
j1∑

j=j0

(T − 1)

= (n− T + 1)2j0
(
2 − 2−r

)− (r + 1)(T − 1).

If r is fixed and n2j0 = n2j0(n) → ∞ as n → ∞ (note that j0(n) → −∞), then

m = m(n) =
j1∑

j=j0

nj ∼ n2j0
(
2 − 2−r

)
.

Finally, to formulate a central limit theorem for the wavelet estimator, we state the
following assumptions:

• (W1) Xt is a stationary Gaussian process;
• (W2)

fX(λ) = |λ|−2d(f∗(0)+O
(
λρ

));
• (W3)

j0(n) → −∞
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and

lim
n→∞n2j0(n) = ∞, lim

n→∞n2(1+2ρ)j0(n) = 0; (5.77)

• (W4) The wavelet and scaling functions have the following properties:
– W4(a) ψ and φ have support [0, T ] and [−T ,0], respectively;
– W4(b) The wavelet function ψ has M vanishing moments;
– W4(c) There exists β > 1 such that supλ∈R |ψ̂(λ)|(1 + |λ|)β < ∞.

Conditions (W1)–(W3) are almost the same as for the GPH estimator. The ad-
ditional condition (W4) involves assumptions on wavelets used in the estimation
procedure. For example, for Daubechies’ wavelets the parameters M and β can be
chosen arbitrarily large.

Theorem 5.7 Under assumptions (W1)–(W4), we have

√
m(d̂WR − d) →

d
N
(
0, v2),

where m = n2j0(n)(2 − 2−r ) and

v2 = (
2 − 2−r

) 2

Ψ 2(d)

j0−r∑

j=j0

j0−r∑

j ′=j0

wj0−jwj0−j ′2(j0−j)/22(j0−j ′)/2γ
(
j, j ′)

where the constant γ (j, j ′) is defined in (5.80) (as a function of j, j ′).

Note that the asymptotic variance is quite complicated and depends on d . Also
note that the second part of condition (5.77) is needed to assure that the bias is
negligible. This is similar to what was needed for log-periodogram regression.

5.7.2 Technical Details for Wavelet Estimators

In this section, we present some technicalities for the log-wavelet estimator. De-
tails can be found in Bardet et al. (2000), Moulines et al. (2007a, 2008) and in an
overview article by Faÿ et al. (2009).

In what follows, we shall assume that the conditions of Theorem 5.7 are fulfilled.

5.7.2.1 Variance and Covariance of the Wavelet Sample Variance

Recall that σ 2
j = var(dj,0) and σ̂ 2

j = n−1
j

∑nj−1
k=0 d2

j,k . Since the random variables Xt

(t ∈ Z) are normal, the wavelet coefficients dj,k are Gaussian as well. Hence,

cov
(
d2
j,k, d

2
j ′,k′

) = 2cov2(dj,k, dj ′,k′)
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and

var
(
σ̂ 2
j

) = 1

n2
j

nj−1∑

k,k′=0

cov
(
d2
j,k, d

2
j,k′

) = 2

n2
j

nj−1∑

k,k′=0

cov2(dj,k, dj,k′)

= 2

n2
j

nj

nj−1∑

k=−(nj−1)

(
1 − k

|nj |
)

cov2(dj,k, dj,k′).

On account of Lemma 4.23, the sequence dj,k (k ∈ Z) has summable covariances.
Hence, as nj → ∞,

var
(
σ̂ 2
j

) ∼ 2

nj

∞∑

k=−∞
cov2(dj,k, dj,k′). (5.78)

Furthermore, the weak dependence of the wavelet coefficients implies that

cov
(
σ̂ 2
j , σ̂

2
j ′
) = 1

njnj ′

nj−1∑

k=0

nj ′−1∑

k′=0

cov
(
d2
j,k, d

2
j ′,k′

) = 2

njnj ′

nj−1∑

k=0

nj ′−1∑

k′=0

cov2(dj,k, dj ′,k′)

≈ 2
(
f∗(0)

)2 2−2jd

nj

2−2j ′d

nj ′

nj−1∑

k=0

nj ′−1∑

k′=0

Ψ 2
j,j ′

(
k, k′), (5.79)

where Ψj,j ′(k, k′) was defined in (4.153). The weak dependence of the wavelet co-
efficients then also implies that the limit

γ
(
j, j ′) := lim

n→∞
√
njnj ′

1

nj

1

nj ′

nj−1∑

k=0

nj ′−1∑

k′=0

Ψ 2
j,j ′

(
k, k′) (5.80)

exists and is finite (recall that nj is proportional to n2j ).

5.7.2.2 Bias of the Log-wavelet Estimator

As in the case log-periodogram estimation, we begin with the bias term. In what
follows, we will argue that the bias is

E[d̂WR] − d = O

(
m−1 +

(
m

n

)ρ)
, (5.81)

where m = m(n) ∼ n2j0(n)(2 − 2−r ) (as j0 → −∞). A precise constant is given in
Bardet et al. (2000).

Let us start with the following important inequality. A proof is omitted (see
Moulines et al. 2007a).



5.7 Semiparametric Narrowband Methods in the Wavelet Domain 467

Lemma 5.2 Let ξ be a centred Gaussian vector with covariance matrix Σ , and let
A be a positive definite matrix. Then

∣∣E
[
log

(
ξT Aξ

)]− log
(
E
(
ξT Aξ

))∣∣ ≤ C

{
1 ∧ ρ2

Aρ
2
Σ

var(ξT Aξ)

}

where ρA and ρΣ denotes the spectral radius of A and Σ , respectively.

Recall that σ 2
j = var(dj,0) and σ̂ 2

j = n−1
j

∑nj−1
k=0 d2

j,k . We split the bias as

E[d̂WR] − d =
j1∑

j=j0

wj0−jE
[
log

(
σ̂ 2
j

)]− d

=
j0−r∑

j=j0

wj0−j log
(
σ 2
j

)− d +
j0−r∑

j=j0

wj0−j

{
E
[
log σ̂ 2

j

]− log
(
E
[
σ̂ 2
j

])}
.

As for the first term, we note that due to (5.75) and (5.76) we have

j0−r∑

j=j0

wj0−j log
(
cf Ψ (d)2−2jd) =

j0−r∑

j=j0

wj0−j log
(
cf Ψ (d)

)− 2d log(2)
j0−r∑

j=j0

jwj0−j

= 0 + d.

Hence, the first term can be written as

j0−r∑

j=j0

wj0−j log

(
1 + σ 2

j − cf Ψ (d)2−2jd

cf Ψ (d)2−2jd

)
,

and applying Lemma 4.24 yields a bound

j0−r∑

j=j0

wj0−j log
(
1 +C2jρ

) ≤ 2C
j0−r∑

j=j0

wj0−j2jρ

(note the inequality | log(1 + x)| ≤ 2x for x > 0). Hence, the first term is bounded
by

2C2j0ρ

−r∑

j=0

wj2jρ = C

(
m

n

)ρ

. (5.82)

As for the second term, we apply Lemma 5.2 to ξ = (dj,0, . . . , dj,nj−1)
T , Σ =

Σj = cov(ξ) and A = diag(n−1
j ) being an nj × nj diagonal matrix with the same

diagonal entries n−1
j , so that trace(A) = n−1

j . Then ξT Aξ = σ̂ 2
j and the weak

dependence of the wavelet coefficients yield var(σ̂ 2
j ) ∼ Cn−1

j , see (5.78). Also,
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Sp(Σj ) ≤ 2π supx |fj (λ)|, where fj is the spectral density of dj,k (k ∈ Z), see
Lemma 4.8. Hence, applying Lemma 5.2, we obtain

∣∣E
[
log σ̂ 2

j

]− log
(
E
[
σ̂ 2
j

])∣∣ ≤ C

(
1 ∧ ‖fj‖2∞

n2
j var(σ̂ 2

j )

)
≤ Cn−1

j .

By definition nj = 2j (n− T + 1)− (T − 1), so that j → nj is an increasing func-
tion. Hence, for each j = j0, . . . , j0 − r the bound above is at most of order n−1

j0−r .

Furthermore, since m ∼ n2j0(2 − 2−r ), the quantity nj0−r is proportional to m.
Consequently, the second term in the bias decomposition is bounded by

Cn−1
j0−r

j0−r∑

j=j0

wj0−j ≤ Cn−1
j0−r ∼ m−1. (5.83)

Consequently, (5.82) and (5.83) yield the bias bound (5.81).

5.7.2.3 Variance of the Log-wavelet Estimator

Next, we find a precise expression for the variance of the log-wavelet estimator.
Specifically, we will show that

m · var(d̂RW) → v2

as m = n2j0(n)(2 − 2−r ) → ∞ when n → ∞. The constant v2 is defined in Theo-
rem 5.7.

As we did for the bias, we start with the following inequality. A proof of this
inequality is similar to the proof of Lemma 5.2.

Lemma 5.3 Let ξ and ξ̃ be centred Gaussian vectors with covariance matrix Σ

and Σ̃, respectively, and let A and Ã be positive definite matrices. Then

∣∣∣∣cov
(
log

(
ξT Aξ

)
, log

(
ξ̃ T Ãξ̃

))− cov(ξT Aξ, ξ̃ T Ãξ̃ )

E(ξT Aξ)E(ξ̃T Ãξ̃ )

∣∣∣∣

≤ C

{
sp3(A)sp3(Σ)

var3/2(ξT Aξ)
∨ sp3(Ã)sp3(Σ̃)

var3/2(ξ̃ T Ãξ̃ )

}
.

We use this lemma with ξ = (dj,0, . . . , dj,nj−1)
T , ξ̃ = (dk,0, . . . , dk,nk−1)

T , A =
diag(n−1

j ), Ã = diag(n−1
k ) in order to approximate

var(d̂WR) =
j0−r∑

j=j0

j0−r∑

j ′=j0

wj0−jwj0−j ′cov
(
log

(
σ̂ 2
j

)
, log

(
σ̂ 2
j ′
))



5.7 Semiparametric Narrowband Methods in the Wavelet Domain 469

by

A(j0, j0 − r) :=
j0−r∑

j=j0

j0−r∑

j ′=j0

wj0−jwj0−j ′
cov(σ̂ 2

j , σ̂
2
j ′)

E(σ̂ 2
j )E(σ̂ 2

j ′)
.

We proceed as we did for the bias: on account of Lemma 5.3, the error of this
approximation is controlled by

j0−r∑

j=j0

j0−r∑

k=j0

wj0−jwj0−k

{ ‖fj‖2∞
n3
j var3/2(σ̂ 2

j )
∨ ‖fk‖2∞

n3
k var3/2(σ̂ 2

k )

}
,

where fj and fk are the spectral densities of the sequences dj,l and dk,l (l ∈ Z),
respectively. As previously for the bias, we argue that the error of the approximation
is of the order

C

j0−r∑

j=j0

j0−r∑

k=j0

wj0−jwj0−k

{
n−1
j ∨ n−1

k

} = Cn
−3/2
j0−r = Cm−3/2 = o

(
m−1).

Since we will see below that the variance var(d̂WR) is of the order m−1, this approx-
imation error is negligible.

Hence, it suffices to study the term A(j0, j0 − r). Formula (5.79),

cov
(
σ̂ 2
j , σ̂

2
j ′
) ≈ 2f 2∗ (0)

2−2jd

nj

2−2j ′d

nj ′

nj−1∑

k=0

nj ′−1∑

k′=0

Ψ 2
j,j ′

(
k, k′),

and (cf. (4.154))

E
(
σ̂ 2
j

) = E
(
d2
j,0

) ∼ 2−2jdf∗(0)Ψ (d)

yield, for j, j ′ → −∞,

cov(σ̂ 2
j , σ̂

2
j ′)

E(σ̂ 2
j )E(σ̂ 2

j ′)
∼ 2

1

Ψ 2(d)

1

nj

1

nj ′

nj−1∑

k=0

nj ′−1∑

k′=0

Ψ 2
j,j ′

(
k, k′).

Also, the limit

γ
(
j, j ′) := lim

n→∞
√
njnj ′

1

nj

1

nj ′

nj−1∑

k=0

nj ′−1∑

k′=0

Ψ 2
j,j ′

(
k, k′)

exists and is finite (recall that nj is proportional to n2j ).
Hence, var(d̂WR) behaves asymptotically (as n → ∞, j0 → −∞) like

var(d̂WR) ∼ 2

Ψ 2(d)

j0−r∑

j=j0

j0−r∑

j ′=j0

wj0−jwj0−j ′
1√
njnj ′

√
njnj ′
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× 1

njnj ′

nj−1∑

k=0

nj ′−1∑

k′=0

Ψ 2
j,j ′

(
k, k′)

∼ 2

Ψ 2(d)

j0−r∑

j=j0

j0−r∑

j ′=j0

wj0−jwj0−j ′
1√
njnj ′

γ
(
j, j ′).

Using nj ∼ 2j n, m ∼ n2j0(n)(2 − 2−r ), we have

njnj ′ ∼ 2j2j
′
n2 = (

2j0n
)22(j−j0)2(j

′−j0) ∼
(

m

2 − 2−r

)2

2(j−j0)2(j
′−j0).

We conclude that

m · var(d̂WR) ∼ (
2 − 2−r

) 2

Ψ 2(d)

j0−r∑

j=j0

j0−r∑

j ′=j0

wj0−jwj0−j ′2(j0−j)/22(j0−j ′)/2γ
(
j, j ′).

5.8 Optimal Rate for Narrowband Methods

Both the log-periodogram and the local Whittle estimator are asymptotically normal
with variances π2/24 and 1/4, respectively (see Theorems 5.4 and 5.5). It is very
useful for applications that in both cases the asymptotic variance does not depend
on any unknown parameters. On the other hand, the problem both methods (and
local semiparametric methods in general, including the wavelet approach studied in
Sect. 5.7) have in common is that, given an observed data set, the choice of the cut-
off point m is not really specified. In fact, the choice of a cut-off point is shared by
all local methods, including the wavelet approach studied in Sect. 5.7 (there j0(n)

and r have to be chosen). Various solutions to this problem have been suggested in
the literature. The essential idea is to choose m such that the mean squared error
MSE = E[(d̂ − d)2] is minimized. This will discussed in this section.

Let us recall first that, given a sequence m = m(n), the asymptotic efficiency of
the GPH compared to the local Whittle estimator is

as.eff(d̂GPH, d̂LW) = 1/4

π2/24
= 6

π2
≈ 0.61. (5.84)

On the other hand, comparing bandwidth condition (GPH3) with (LW3), we observe
that the second condition requires

(logm)
2

1+2ρ m = o
(
n

2ρ
1+2ρ

)

which is a slightly lower bound for m than imposed by (GPH3) where m =
o(n2ρ/(1+2ρ)) is sufficient. Thus, the way the results are formulated in Robinson
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(1995a, 1995b), a logarithmically faster rate could be used for the GPH estimator
so that d̂GPH would be infinitely more efficient asymptotically than d̂W . However,
(GPH3) and (LW3) are merely sufficient conditions so that one may conjecture that
this difference is not real but rather due to the specific way the results are formulated
and derived. Thus, the fundamental questions in this context are:

1. What is the sharpest lower bound for Op(d̂ − d) among all estimators of d?
2. Is this the optimal rate in the sense that there is an estimator that achieves it?

To answer these questions, it has to be decided first which criterion and what kind
of situations to consider for measuring the quality of an estimator. For instance, if
we were willing to assume a priori that Xt is generated by a known parametric fam-

ily of linear time series models, then the optimal rate would be n− 1
2 and it would

be achieved, for instance, by a maximum likelihood or Whittle estimator (see Theo-
rems 5.2 and 5.3). However, the point of semiparametric estimation is that the shape
of the spectral density is not sufficiently known to be associated with a fixed para-
metric family. Instead, one needs to consider rate optimality within a sufficiently
rich set of spectral functions that are not specified explicitly. Given such a set of
functions, one may then consider the minimax risk of d̂ over this set or various
versions of Bayes risks and so on. A concrete result along this line is derived in Gi-
raitis et al. (1997) as follows. Consider the class N = N (C0,K0, ρ) of stationary
Gaussian processes Xt (t ∈ Z) with spectral densities fX such that

fX(λ) = cf |λ|−2d(1 +Δ(λ)
) (

−1

2
< d <

1

2

)
,

0 < cf < C0,
∣∣Δ(λ)

∣∣ ≤ K0|λ|ρ
(5.85)

with C0, K0 and ρ fixed. In the following, Pf ∈ N will denote the probability
distribution function of the process Xt for a given spectral density f = fX , d(f )

the corresponding value of d and Dn the set of all estimators of d based on a series
of length n. The following result shows that an estimator of d cannot have a better
rate of convergence than n−ρ/(2ρ+1) when taking into account the worst possible
case within N .

Theorem 5.8 Assume that (5.85) holds. Let

r = ρ

2ρ + 1
. (5.86)

Then there exists a constant c > 0 such that

lim inf
n

{
inf

d̂n∈Dn

[
sup

Pf ∈N
Pf

(
nr

∣∣d̂n − d(f )
∣∣ ≥ c

)]}
> 0. (5.87)

Proof Without loss of generality, we will assume C0 > 1. Since the supremum over
N is considered, it is sufficient to find a sequence of spectral densities fn with
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Pfn ∈ N such that

lim inf
n

Pfn

(
nr

∣∣d̂ − d(f )
∣∣ ≥ c

)
> 0

for some c > 0. Such a sequence can be constructed, for instance, by starting with
f0, d(f0) = 0 and defining a sequence fn such that dn = d(fn) approaches d(f0) at
the rate n−r . Specifically, let

δn = n
− r

ρ = n
− 1

2ρ+1 , dn = d1n
−r

where 0 < d1 < 1
2 and

f0(λ) ≡ 1,

fn(λ) =
{
c|λ|−2dn (0 < |λ| ≤ δn),

1 (δn < |λ| ≤ π).

Then d(f0) = 0 and, for n ≥ 1,

d(fn)− d(f0) = d(n) = d(1)n−r .

By detailed calculation, one can show that Pfn ∈ N . Moreover, Pf0 and Pfn are
close in the sense that

∫ π

−π

[
fn(λ)− f0(λ)

]2
dλ = O

(
n−1)

(as n → ∞). Consider now the log-likelihood ratio

Λn = log
Lfn(X1, . . . ,Xn)

Lf0(X1, . . . ,Xn)
= log

dPfn(X1, . . . ,Xn)

dPf0(X1, . . . ,Xn)
.

Then there exist finite positive constants K1, K2 such that for all n

μn = Efn(Λn) ≤ K1,

σ 2
n = Efn

[
(Λn −μn)

2] ≤ K2

and, for all events A and any constant a > 0,

Pfn(A) ≤ eaPf0(A)+ M

a2

where M = K2
1 +K2. Now, consider the specific event

A = An(f ) = {
nr

∣∣d̂n − d(f )
∣∣ ≥ c

}
.
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Since for any 0 ≤ ε ≤ 1 the mixture distribution εPf0 + (1 − ε)Pfn is in N , we
have the lower bound

sup
Pf ∈N

Pf

(
An(f )

) ≥ εPf0

(
An(f0)

)+ (1 − ε)Pfn

(
An(fn)

)

≥ ε

[
Pfn

(
An(f0)

)− M

a2

]
e−a + (1 − ε)Pfn

(
An(fn)

)
.

However, d(fn) − d(f0) = dn = d1n
−r so that for c < 1

2d(1) at least one of the
inequalities

∣∣d̂n − d(fn)
∣∣ ≥ cn−r ,

∣∣d̂n − d(f0)
∣∣ ≥ cn−r

holds. Hence

Pfn

(
An(f0)

)+ Pfn

(
An(fn)

) ≥ 1

which implies

Pfn

(
An(f0)

)− M

a2
≥ 1 − Pfn

(
An(fn)

)− M

a2

and

sup
Pf ∈N

Pf

(
An(f )

) ≥ ε

(
1 − M

a2

)
e−a + (

1 − ε − εe−a
)
Pfn

(
An(fn)

)
.

We may choose ε such that (1−ε−εe−a) = 0, namely ε = (1+e−a)−1. This yields

sup
Pf ∈N

Pf

(
An(f )

) ≥
(

1 − M

a2

)
e−a

1 + e−a
= c(a,M)

which is independent of n and larger than zero for a >
√
M . �

The intuitive meaning of equation (5.87) is as follows. Suppose we use a certain
estimator d̂n. If we have no prior knowledge where in N the true distribution Pf

may be, then the probability that d̂n differs from the true value by at least ±cn−r can
be, in the worst case, larger or equal to c. This probability cannot be made smaller,
no matter which estimation procedure is used—at least ultimately, i.e. as n tends to
infinity.

Question 1 is now resolved, at least when considering the family of distributions
specified by N . The next question is whether the rate n−r can actually be achieved
by a concrete estimator. The answer is affirmative. Giraitis et al. (1997) provide a
solution based on a suitable modification of the GPH method. (It is to be expected
that an analogous method could be constructed using the local Whittle approach,
though up to date no concrete results seem to be available in the literature.) The idea
is to use the trimmed GPH estimator as described (5.55), using optimal sequences
of lower and upper bounds ln, mn. The specific conditions proposed in Giraitis et al.
(1997) are
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• (O1)

D−1
0 (logn)3 ≤ l ≤ D0

n2r

(logn)3
,

• (O2)

D−1
0 n2r ≤ m ≤ D0n

2r

where D0 > 1.

Then the following holds.

Theorem 5.9 Assume that (5.85) holds. Let r = ρ/(2ρ + 1). Define

Jn = {
(ln,mn) : (O1) and (O2) hold

}

and let d̂mn(ln) be the trimmed GPH estimator based on frequencies λj (ln ≤ j ≤
mn). Then

lim sup
n

{
max

(ln,mn)∈N

[
sup

Pf ∈N
n2rEf

[(
d̂mn(ln)− d

)2]]}
< ∞.

The essence of the proof is to show that

n−2rE

[(
mn∑

j=ln

(bj − b̄)Zj

)]
= O(1)

uniformly over (ln,mn) ∈ Jn and Pf ∈ N where Zj are i.i.d. standard exponen-
tial random variables and bj = −2 logλj . This is done by similar arguments as in
Robinson (1995a).

The result essentially means that no matter which sequence from Jn one takes
and which distribution from N is true, we have an upper bound for the worst mean
squared error,

MSE
(
d̂mn(ln)

) = E
[(
d̂mn(ln)− d

)2] = O
(
n−2r) = O

(
n

− 2ρ
2ρ+1

)
. (5.88)

We recognize the formula for the mean squared error of the GPH estimator (cf.
(5.69)). It is interesting to note that the rate m = O(n2r ) was actually excluded in the
original proof by Robinson (1995a), since there m = o(n2r ) (see (GPH3)). Indeed,
if m ≈ n2r , then the variance and squared bias in the decomposition of the mean
squared error are of the same order, whereas for the central limit theorem without
bias correction we need the bias to be negligible compared to the square root of the
variance. Furthermore, as in the case of asymptotic normality of the GPH estimator,
trimming is not needed; see Soulier (2010).

We illustrate Theorems 5.8 and 5.9 for the special case of FARIMA processes.
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Example 5.12 To illustrate the meaning of Theorems 5.8 and 5.9 and in particular
condition (5.85), consider, for instance, a FARIMA(0, d,0) process with spectral
density

fX(λ) = σ 2
ε

2π

∣∣1 − e−iλ
∣∣−2d

, d ∈ (−1/2,1/2).

Then

fX(λ) = cf

(
2 sin

|λ|
2

)−2d

= cf |λ|−2d(1 +O
(
λ2)).

Thus, (5.85) holds with ρ = 2.

This example shows that the best achievable rate within the class of
FARIMA(0, d,0) processes (and more generally FARIMA(p, d, q)) is m = n4/5,

i.e. d̂ − d = Op(n
− 2

5 ), and this rate is indeed achieved by the GPH estimator. On
the other hand, if we had chosen bj = b(λj ) = 2 sin 1

2 |λj | in the definition of the
GPH estimator, then with respect to the FARIMA(0, d,0) model, we would have

ρ = ∞ and hence the parametric rate m = √
n, d̂ − d = Op(n

− 1
2 ). The reason is

simply that we are assuming the correct model for which fX(λ) ≡ cf exp{d · b(λ)}
for all frequencies. However, if we consider the more general class N (C0,K0,2),
then the advantage of using b(λ) = 2 sin 1

2 |λ| disappears because N also includes
models that deviate from the FARIMA(0, d,0) spectrum. Thus, the best achievable
rate within N (C0,K0,2) class is

m ∼ cn
4
5 , MSE(d̂) = O

(
n− 4

5
)
.

In summary, one can say that (5.85) together with Theorems 5.8 and 5.9 shows
a dilemma often encountered in statistics. The best possible rate is m ∝ √

n (and

d̂ − d = Op(n
− 1

2 )) which is obtained whenever a correctly specified parametric
model is assumed. On the other hand, the less we are willing to assume a priori,
the smaller the value of ρ is. In reality, a compromise between these two extremes
needs to be assumed. Often, a “FARIMA-neighbourhood” with ρ = 2 is used, since
it includes all FARIMA(p, d, q) models (with p,q arbitrary). However, in some
situations such an assumption may not be realistic. The first such situation is related
to long-memory processes observed with an additive noise (see Example 5.13), the
second is related to the case of spectral densities that are slowly varying at 0. In the
latter case, the results of Theorems 5.8 and 5.9 are no longer valid. We will illustrate
this in Example 5.14 (for a general theory, see Soulier 2010).

Example 5.13 Assume that Yt = Xt + Zt , where Xt (t ∈ Z) is a long-memory pro-
cess with spectral density fX(λ) = λ−2df∗(λ), and Zt (t ∈ Z) is an i.i.d. sequence
with spectral density σ 2

Z/(2π), independent of the sequence Xt . Then

fY (λ) = fX(λ)+ σ 2
Z/(2π) = λ−2df∗(λ)+ σ 2

Z/(2π)
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≈ λ−2df∗(0)+ σ 2
Z/(2π) = λ−2df∗(0)

(
1 +O

(
λ2d)).

Thus, (5.85) holds with ρ = 2d , yielding the optimal values

m ∼ n
2ρ

2ρ+1 = n
4d

4d+1 , MSE(d̂) = O
(
n

− 2ρ
2ρ+1

) = O
(
n− 4d

4d+1
)
.

Example 5.14 Assume that the spectral density is of the form fX(λ) = λ−2df∗(λ)
(d ∈ (− 1

2 ,
1
2 )) and f∗ can be written as

f∗(λ) = f∗(π) exp

{
−
∫ π

λ

η(u)

u
du

}
, λ ∈ (0,π),

where η(·) is regularly varying at 0 with index ρ ≥ 0, i.e. limλ→0 η(cλ)/η(λ) = cρ

for each positive c. Recall that for ρ = 0, η(·) is said to be slowly varying. We will
also assume for simplicity that η(·) is non-decreasing on [0,π]. For example, if
η(u) = Cuρ , ρ > 0, C > 0, then

f∗(λ) = const · exp
(
λρ

) = const +O
(
λρ

)
,

and hence we are in the situation of (5.85). This situation is referred to as
second order regular variation. As proven in Theorem 5.8, the rate of conver-
gence is nρ/(2ρ+1). However, if η(u) = (log log(1/u) log(1/u))−1, then f∗(λ) =
log log(1/λ) is slowly varying and the rate of convergence is log(n) log log(n). Like-
wise, if fX(λ) = log |1 − eiλ|2, then the spectral density is of the required form with
d = 0 and so fX(λ) = f∗(λ). The spectral density is slowly varying and the rate
of convergence is logarithmic. We note that fX(λ) = log |1 − eiλ|2 is the spectral
density of a Gaussian sequence with covariance γX(k) = 1/(k + 1). In summary,
the results of Theorems 5.8 and 5.9 are valid under the assumption of second order
regular variation only.

5.9 Broadband Methods

5.9.1 Broadband LSE for FEXP(∞) Models

So far, we considered local methods (also called narrowband methods) that focus
on the behaviour of the spectral density at the origin. Several questions remained
unanswered:

1. How should we estimate the complete spectral density fX(λ) (λ ∈ [−π,π])?
2. The best achievable rate of local methods under reasonable conditions is d̂ −d =

O(n−r ) with r = 2
5 . Can one improve this rate, possibly by considering other

realistic neighbourhoods?
3. Is the GPH or the local Whittle estimator better?
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First, some explanations regarding the second question are needed. Condition
(5.85) implies that

fX(λ) = cf |λ|−2d(1 +Δ(λ)
) = cf |λ|−2df∗(λ)

with

dk

dλk
f∗(0) = 0

(
1 ≤ k ≤ [ρ]).

Thus, if ρ = 2, then the first two derivatives of f∗ vanish at λ = 0 which means
that f∗ is very flat (and close to 1) around the origin, The higher the value of ρ is,
the flatter f∗ becomes and the assumption becomes very restrictive. In particular,
the assumption that ρ > 2 can be rather unrealistic. Therefore, ρ = 2 is the highest
reasonable value one may be willing to accept. This means that, in practice, the best
attainable rate within neighbourhoods of the type described by N (the set of Gaus-
sian processes with the spectral density given above) is d̂ − d = Op(n

−2/5). This

is rather disappointing and quite far from the parametric rate of n− 1
2 . For instance,

for n = 1000 we have n−2/5 ≈ 0.06 whereas n−1/2 ≈ 0.03. The conclusion is that
it may be perhaps too ambitious to expect that an estimator can perform well in a
large neighbourhood of the type described by N . A possible way out is to consider
a different type of neighbourhood that may characterize departures from the “ideal”
model in another direction. This is the idea of global estimators. As a by-product,
global estimators also solve question 1, since the whole spectral density is estimated.

Essentially three types of global methods are discussed in the literature: (i) broad-
band LSE type methods (also called broadband FEXP); (ii) broadband Whittle esti-
mation; (iii) adaptive fractional autoregressive (FAR(p,d)) fitting. We are not aware
of broadband approaches in the wavelet domain. Here, we first consider approach
(i). The starting point is the class of fractional exponential models, or FEXP models,
as proposed in Beran (1993) and Robinson (1994a) (also see Bloomfield 1973 for
EXP models in the context of short-memory time series). An FEXP(p) model has a
spectral density of the form

logfFEXP(p)(λ) := −2d log
∣∣1 − e−iλ

∣∣+
p∑

j=0

ϑjhj (λ)

where − 1
2 < d < 1

2 , the functions hj are bounded, continuous at the origin and not
linearly dependent (in the sense of the scalar product 〈hj ,hl〉 = ∫

hj (λ)hl(λ) dλ).
The unknown parameter vector is θ = (d,ϑ0, . . . , ϑp)

′. Motivated by Fourier anal-
ysis, a standard choice for hj is

h0(λ) = 1√
2π

, hj (λ) = 1√
π

cos jλ (j ≥ 1). (5.89)

This way one has 〈hj ,hl〉 = δjl . The idea of broadband FEXP estimation (Moulines
and Soulier 1999, 2000; Hurvich 2001; Hurvich and Brodsky 2001; Hurvich et al.
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2002) is to assume that the spectral density is of the form

logfX(λ) = −2d log
∣∣1 − e−iλ

∣∣+ logf∗(λ)

=: d · a(λ)+L∗(λ)

where L∗(λ) = logf∗(λ) has the Fourier series representation

L∗(λ) = logL(λ) =
∞∑

j=0

ϑjhj (λ)

with hj defined by (5.89). As n tends to infinity, L∗(λ) is approximated by a finite
Fourier series with pn terms and estimated parameters ϑ̂j (j = 0, . . . , p). If pn tends
to infinity, then one obtains a perfect approximation, provided that the estimates ϑ̂j

converge fast enough to the true values. The latter is guaranteed by preventing that
pn grows too fast, since otherwise there would be too many parameters to estimate.
Thus this method can be understood as an empirical Fourier approximation of logf .
More specifically, taking into account the Fourier representation

−2 log
∣∣1 − e−iλ

∣∣ =
∞∑

j=1

cj cos jλ =
∞∑

j=1

2
√
π

j
cos jλ, (5.90)

we have

logfX(λ) = ϑ0√
2π

+
∞∑

j=1

aj (d,ϑj ) ·
(

1√
π

cos jλ

)

with

aj (d,ϑj ) = 2π

j
d + ϑj .

If the parameters were known, then the difference between logfX and the best ap-
proximation by an FEXP model of order p would be

logfX(λ)− logfFEXP(p)(λ) =
∞∑

j=p+1

ϑj ·
(

1√
π

cos jλ

)
.

This bias has to be balanced against the error due to simultaneous estimation of
ϑ0, . . . , ϑp and d .

The specific assumptions in Moulines and Soulier (1999) are as follows:

• (F1) Xt is Gaussian;
• (F2) f ′∗(λ) exists for λ 
= 0 and there exists a finite constant c such that

∣∣f ′∗(λ)
∣∣ ≤ c

|λ| ;
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• (F3)

L∗(λ) = logf∗(λ) =
∞∑

j=0

ϑjhj (λ) (5.91)

with

|ϑ0| +
∞∑

j=1

|ϑj |jρ ≤ K0 < ∞ (5.92)

for some finite ρ, K0 > 0;
• (F4)

pn → ∞, p3
n

(
logn

n

)2

→ ∞, n(logn)2p−1−2ρ
n → 0. (5.93)

The assumption of Gaussianity is not really necessary (see, e.g. Hurvich et al.
2002) but simplifies calculations. In the following, the scalar product between in-
finite dimensional real vectors x = (x1, x2, . . . )

′, y = (y1, y2, . . . )
′ and the corre-

sponding norm will be defined by

〈x, y〉 =
∞∑

i=1

xiyi, ‖x‖2 = 〈x, x〉.

Furthermore, we will denote by θ0 = (d0, ϑ0
0 , ϑ

0
1 , . . . )

′ the true (infinite dimen-
sional) value of the parameter θ , by θ(p) = (d,ϑ0, ϑ1, . . . , ϑp)

′ the restriction of
θ to the first p + 2 components and by η the Euler constant. Similarly, we de-
fine the remaining parameter vector θ(p) = (ϑp+1, ϑp+2, . . .)

′ and also c(p) =
(cp+1, cp+2, . . .)

′. For a given order p = pn, the FEXP estimator of θ0 is defined by

θ̂ (p) = (0,0, . . .)′

and

θ̂ (p) = arg min
d,ϑ0,...,ϑp

[n/2]∑

j=1

[
log In,X(λj )+ η − d · a(λj )−

p∑

k=0

ϑj · hj (λj )
]2

.

Computationally, this is very easy because θ̂ (p) is obtained directly form the least
squares estimator in a multiple linear regression of the form

yj = β1a(λj )+ β2h0(λj )+ · · · + βp+2hp(λj )+ εj

with

yj = log In,X(λj )+ η, d = β1, ϑj = βj+2 (j = 0, . . . , p).
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An asymptotic expression for the mean squared error of d̂ (which is the first com-
ponent of θ̂ ) can be given as follows (Moulines and Soulier 1999):

Theorem 5.10 Under the assumptions (F1)–(F3),

MSE(d̂) = E
[
(d̂ − d)2] = Bias2 + Variance

=
( 〈c(p), θ(p)〉

‖c(p)‖2

)2

+ 4π · π2

6‖c(p)‖2
n−1 +Rn,p (5.94)

where an upper bound for the remainder term Rn,p can be given by

|Rn,p| ≤ C
p

n

[
(logn)3

pρ
+ p(logn)6

n

]

with a finite constant C.

Under slightly stronger conditions than in Theorem 5.10, asymptotic normality
of d̂ is derived in Moulines and Soulier (1999).

Theorem 5.11 Suppose that (F1), (F2), (F3) and (F4) hold with ρ > 1/4. Then

√
n

pn

(d̂ − d) →
d

N

(
0,

π2

6

)
.

Since c(p) is fully specified by (5.90) and the coefficients ϑj satisfy condition
(5.92), ‖c(p)‖2 can be simplified, as p → ∞, to

∥∥c(p)
∥∥2 = 4π

∞∑

j=p+1

j−2 ∼ 4πp−1
∫ ∞

1
x−2 dx = 4πp−1. (5.95)

Therefore, the variance term can be approximated asymptotically by

4π · π2

6‖c(p)‖2
n−1 ∼ π2

6

p

n
.

Moreover, (5.92) implies ϑj = o(j−ρ−1) so that

∣∣〈c(p), θ(p)
〉∣∣ =

∣∣∣∣∣2
√
π

∞∑

j=p+1

(
ϑjj

ρ
) · j−1−ρ

∣∣∣∣∣ ≤ const · p−1−ρ.

For the bias term, we therefore obtain the upper bound

( 〈c(p), θ(p)〉
‖c(p)‖2

)2

≤ const · p−2ρ.
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This means that the bias term converges to zero whenever p → ∞ whereas the
variance term converges to zero whenever pn−1 → 0. This is a classical situation
in nonparametric statistics where a balance between bias and variance has to be
found. Also note that the remainder term is always of a smaller order, as long as
both conditions hold, and pρ grows faster than (logn)3 and pn−1(logn)3 → 0. The
MSE can then be approximated by

MSE = A1p
−2ρ +A2

p

n
= A1 exp(−2ρ logp)+A2n

−1 · p (5.96)

where A1, A2 are suitable constants. The optimal value of p is obtained by

∂

∂p
MSE = −2ρA1 · p−1−2ρ +A2n

−1 = 0

which yields

popt = Copt · n
1

2ρ+1 ,

Copt =
(

2ρA1

A2

) 1
2ρ+1

.

(5.97)

As always in nonparametric optimization problems, the optimal choice is such that
the contributions of the bias and the variance are of the same order. The correspond-
ing optimal MSE is of the order

MSEopt = O

(
popt

n

)
= O

(
n−2r),

r = 2ρ

2ρ + 1
.

(5.98)

At first sight, (5.98) looks the same as the rate obtained in (5.88) for semiparametric
methods. In particular, for ρ → ∞, one approaches the parametric rate n−1. As
for (5.88), the limit is never reached unless one is in a parametric setting. Here,
this can be seen from (5.97) because pn becomes O(1), or in other words, one
is confined to a model with a finite number of parameters ϑj . There is, however,
an essential difference between (5.98) and (5.88) because the interpretation of the
regularity parameter ρ is completely different. For neighbourhoods N (C0,K0, ρ)

used in the context of narrowband estimation, a high value of ρ implies that all
derivatives of f∗(λ) up to order k ≤ ρ are zero at the origin. For ρ > 2, this is a very
strong unrealistic restriction. For the broadband method, ρ only restricts the rate at
which Fourier coefficients ϑj of L∗(λ) = logf∗(λ) converge to zero (see (5.92)),
without imposing any specific differentiability properties. Thus, large values of ρ

are not unrealistic. In fact, for a large class of functions f∗, ϑj even decays at an
exponential rate so that ρ = ∞. Of course, in this case, the heuristic “derivation” of
popt given above cannot be applied directly. To be specific, suppose that

|ϑj | ≤ const · ϕj
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for some 0 ≤ ϕ < 1. Then there exists a λ0 > 0 such that

∞∑

j=0

ejλ0 |ϑj | ≤ K0.

This implies

∣∣〈c(p), θ(p)
〉∣∣ = 2

√
π

∞∑

j=p+1

|ϑj |j−1 = 2
√
π

∞∑

j=p+1

ejλ0 |ϑj |
(
jejλ0

)−1

≤ K0p
−1e−pλ0

and, due to (5.94),

MSE(d̂) ≈ A1e
−2pλ0 +A2

p

n
. (5.99)

Minimizing with respect to p leads to

popt ∼ Copt logn (5.100)

(where Copt can be calculated from A1, A2 and λ0) and an optimal MSE of the order

MSEopt(d̂) = O

(
popt

n

)
= O

(
logn

n

)
. (5.101)

This result can be summarized as follows. We replace assumption (F3) by assump-
tion (F3′),

|ϑ0| +
∞∑

j=1

|ϑj |ejλ0 ≤ K0 < ∞. (F3′)

Then the following holds (Moulines and Soulier 1999).

Theorem 5.12 Let

pn ∼ λ−1
0 logn.

Then, under assumptions (F1), (F2), (F3′) and (F4), pn minimizes the MSE asymp-
totically and

lim
n→∞

n

logn
MSE(d̂) = λ−1

0
π2

6
.

Thus, up to a logarithmic factor, we obtain the parametric rate. In comparison, the
rate obtained here is much better than n−r with r = 2ρ/(2ρ+1) and ρ ≤ 2 for local
methods. The reason is that here ρ represents a different aspect of the approximation
so that assuming ρ = ∞ is not unrealistic. A further remarkable consequence of
the theorem is that asymptotically the contribution of the variance is larger than
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the one of the bias by the factor logn. Thus, at least in theory, no bias correction
is needed when applying the results to confidence intervals or testing. Practically
speaking, of course, logn grows very slowly so that for small to moderate sample
sizes the contribution of the bias may not really be negligible. Moreover, it is not
quite obvious how to guess the value of λ0.

In analogy to local methods, rate optimality (in the minimax sense) of the broad-
band LSE can be derived, though over more general sets of spectral densities. In
particular, O(n−1 logn) turns out to be the best attainable rate for the mean squared
error of d̂ . In comparison with local methods where the best rate is O(n−4/5), this
is a considerable improvement. This, together with Theorem 5.12, provides a strong
argument in favour of broadband methods. However, for finite samples, the actual
values of popt and MSEopt very much depend on the constant Copt. Thus, a data-
adaptive algorithm would be needed where this constant would be estimated. If we
are satisfied with purely asymptotic optimality, then only λ0 or a lower bound for
λ0 in (F3′) would need to be estimated. Even more pragmatically, to be on the safe
side, a relatively small lower bound λlow ≤ λ0 may be used. Such an assumption is
more general than a parametric model and thus leads to a realistic asymptotic bound
for the mean squared error,

lim
n→∞

n

logn
MSE(d̂) ≤ π2

6

1

λlow
.

As always, staying on the safe side (or in other words applying a “robust” proce-
dure in the sense specified above), leads to a loss of efficiency of the size λlow/λ0.
Suggestions for adaptive semiparametric estimation are discussed, for instance, in
Moulines and Soulier (2003), Henry and Robinson (1996), Hurvich (2001), Henry
(2007). Moulines and Soulier (2000) and Hurvich (2001) propose using a version
of Mallows Cp criterion for choosing p. In particular, if the aim is to minimize the
integrated mean squared error

∫
E
[(

log f̂ (λ)− logfX(λ)
)2]

dλ,

it is proposed to minimize a Cp-statistic defined by

C∗
p = RSS + π2pn

3
(5.102)

with

RSS =
∑

(yi − ŷi )
2,

yj = log In,X(λj ) + η and ŷi = logfX(λ; σ̂ 2
ξ , θ̂ ). Optimality properties of this cri-

terion are discussed in Moulines and Soulier (2000) (also see Hurvich and Brodsky
2001 where (5.102) was suggested originally).
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5.9.2 Broadband Whittle Estimation for FEXP(∞) Models

In analogy to narrowband estimation, a possibly more efficient alternative to broad-
band LSE is a Whittle approach. First asymptotic results were derived in Narukawa
and Matsuda (2011). As before, it is assumed that the spectral density is of
FEXP(∞)-type, i.e.

fX(λ) = ∣∣1 − e−iλ
∣∣−2d

f∗(λ;ϑ)
where

L∗(λ;ϑ) = logf∗(λ;ϑ) =
∞∑

j=0

ϑj cos jλ.

Note that fX can also be written as

fX(λ) = σ 2
ε

2π

∣∣1 − e−iλ
∣∣−2d

k(λ;ϑ)

with σ 2
ε = 2π expϑ0 equal to innovation variance in the Wold decomposition of Xt ,

and

log k(λ;ϑ) =
∞∑

j=1

ϑj cos jλ.

Estimation is based on a sequence of FEXP(pn) models with spectral densities

fpn(λ) = ∣∣1 − e−iλ
∣∣−2d

f∗,pn(λ;ϑ) = σ 2
ε

2π

∣∣1 − e−iλ
∣∣−2d

kpn(λ;ϑ)

where

L∗,pn(λ;ϑ) = logf∗,pn(λ;ϑ) =
pn∑

j=0

ϑj cos jλ,

log kpn(λ;ϑ) =
pn∑

j=1

ϑj cos jλ.

Given pn, the Whittle log-likelihood is proportional to

Lpn(d,ϑ) =
[n/2]∑

j=1

{
In,X(λj )

fpn(λ;d,ϑ) + logfpn(λ;d,ϑ)
}

and θ = (d,ϑ) is estimated by minimizing Lpn(d,ϑ). Using the notation

ap(λ) = (−2 log
∣∣1 − e−iλ

∣∣,1, . . . , cospλ
)′
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Lpn(d,ϑ) can also be written as

Lpn(θ) =
[n/2]∑

j=1

{
In,X(λj )

exp(a′
pn
(λ)θ)

+ a′
pn
(λ)θ

}
.

This is a convex function of θ so that minimization is no problem. To derive the
asymptotic distribution of this estimator, Narukawa and Matsuda (2011) used the
following conditions:

• (W1) Xt is a second-order linear process, i.e. Xt = μ+∑∞
j=0 aj εt−j , εt are i.i.d.

with E(εt ) = 0, σ 2
ε = var(εt ) = 1, and have finite fourth moment;

• (W2) The true parameter value θ0 is in the interior of the parameter space

Θ =
{

0 ≤ d <
1

2
, ϑ0, ϑ1, . . . ∈ R, |ϑj | ≤ Cj−δ (j ≥ 1)

}

where 0 < C < ∞ and δ > 1 are some fixed constants. Moreover, the spectral
densities corresponding to two different values of d , say d1 
= d2, differ for some
frequencies λ ∈ A ⊆ [−π,π] where A (which may depend on the particular pa-
rameters) has positive Lebesgue measure.

• (W3) Condition (F3) holds for some ρ > 9/2;
• (W4) pn → ∞, pn/n → 0 such that

p
2ρ
n

n
→ ∞,

p9
n(logn)4

n
→ 0

for some ρ > 9/2.

Note that the assumption that σ 2
ε is equal to 1 is not really needed because the

estimation of d and the asymptotic distribution do not depend on the value of σ 2
ε .

Theorem 5.13 Under the assumptions (W1)–(W4), d̂ converges to d0 in probability
and

√
n

pn

(θ̂ − θ) →
d

N(0,1).

As expected, the asymptotic variance is smaller than π2/6 ≈ 1.65 obtained for
the broadband LSE in Theorem 5.11. The loss of efficiency of the LSE compared to
the Whittle approach is exactly the same as in the comparison of the local methods
(see (5.84)),

eff(LSE,Whittle) = 6

π2
≈ 0.61. (5.103)

Note, however, that Narukawa and Matsuda (2011) did not consider antipersistent
processes (− 1

2 < d < 0) nor did they analyse the case where the Fourier coefficients
ϑj decay exponentially—though it may be conjectured that the rate

√
logn/n can

also be achieved for the Whittle broadband approach.
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5.9.3 Adaptive Fractional Autoregressive Fitting

The idea of fitting AR(pn) processes with pn tending to infinity has been suggested
in the context of short-memory time series in early papers by Parzen (1968, 1969,
1974), Akaike (1969) and Berk (1974) (also see Bhansali 1978, 1980, 1993; Shibata
(1980, 1981). Following a suggestion by Beran, Bhansali et al. (2006) extended AR-
fitting to the cases of long memory and antipersistence (also see Poskitt 2007a). The
idea is to fit FAR(pn, d) models to series of length n, with pn tending to infinity
with increasing sample size. The autoregressive order pn has to diverge fast enough
to avoid an asymptotic bias. On the other hand, the number of estimated parameters
(which is equal to pn + 2) should not grow too fast in order to keep the variance
under control. Finding an optimal balance between these two requirements is anal-
ogous to the question of choosing an appropriate number of Fourier coefficients ϑj

in the FEXP-approach considered previously. Here, it is assumed that the spectral
density of the observed process can be written as

fX
(
λ;σ 2

ε , θ
) = f∗(λ)

∣∣1 − e−iλ
∣∣−2d

,

with

f∗(λ) = σ 2
ε

2π

∣∣ϕ
(
e−iλ

)∣∣−2 = σ 2
ε

2π

∣∣∣∣∣

∞∑

j=0

ϕje
−ijλ

∣∣∣∣∣

−2

,

where ϕ0 = 1, θ = (d,ϕ) = (d,ϕ1, ϕ2, . . .) is the interior of the parameter space
Θ ⊂ (− 1

2 ,
1
2 )×R

N with Θ such that Xt is a stationary causal process and

∞∑

j=0

|ϕj | < ∞.

In other words, Xt is assumed to have the Wold representation

Xt =
( ∞∑

j=0

ϕjB
j

)−1

(1 −B)−dεt =
∞∑

j=0

aj εt−j

where a0 = 1 and εt are uncorrelated identically distributed zero mean random vari-
ables with var(εt ) = σ 2

ε . Since σ 2
ε is the one-step mean squared prediction error

of the best linear forecast, we have
∫

log |ϕ(e−iλ)|dλ = 0 so that the continuous
version of Whittle’s likelihood approximation is (up to a constant) of the form (cf.
Whittle likelihood in (5.40))

L 0
W

(
σ 2
ε , θ

) = 1

2π

∫ π

−π

In,X(λ)

fX(λ; θ) dλ+ logσ 2
ε

= σ−2
ε

∫ π

−π

In,X(λ)
∣∣ϕ
(
e−iλ

)∣∣2∣∣1 − e−iλ
∣∣2d dλ+ logσ 2

ε .
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Minimization with respect to θ is therefore independent of σ 2
ε . To obtain an estima-

tor of θ , the quantity to minimize is

LW(θ) =
∫ π

−π

In,X(λ)
∣∣ϕ
(
e−iλ

)∣∣2∣∣1 − e−iλ
∣∣2d dλ.

Since θ is infinite-dimensional, one uses instead a sequence of FAR(pn) models.
In analogy to the FEXP approach, the notation will be θ0 for the true parameter,
θ(p) = (d,ϕ1, . . . , ϕp)

′ for the finite part of θ and θ(p) = (ϕp+1, ϕp+2, . . .)
′ for the

rest. Also, we will use the norms

‖θ‖2 =
√√√√d2 +

∞∑

j=1

ϕ2
j , ‖θ‖1 = |d| +

∞∑

j=1

|ϕj |.

The FAR(pn)-estimator of θ0 is defined by

θ̂ (pn) = (0,0, . . . )′ (5.104)

and

θ̂ (pn) = arg min
d,ϕ1,...,ϕpn

LW(d,ϕ1, . . . , ϕp,0,0, . . . ). (5.105)

Finally, the innovation variance is estimated by

σ̂ 2
ε = LW(θ̂) =

∫ π

−π

In,X(λ)
∣∣ϕ̂
(
e−iλ

)∣∣2∣∣1 − e−iλ
∣∣2d̂ dλ. (5.106)

Computationally, the method of fractional autoregressive fitting is less elegant
than the FEXP-approach because LW(θ) is not a convex function. However, LW(θ)

is a convex function of ϕ1, ϕ2, . . . , ϕp , if d is fixed. The simplest way of computing
(5.105) is therefore to minimize LW(θ) with respect to ϕ1, ϕ2, . . . , ϕp for each fixed
d on a fine grid in (− 1

2 ,
1
2 ), and then take the solution with the overall smallest value

of LW(θ). More specifically, Bhansali et al. (2006) define θ̂ as follows:

• Step 1: An initial consistent estimate d̃ of d is computed such that d̃ − d0 =
op(n

−r ) for some 0 < r < 1. Once d̃ is given, improved estimates of d are
searched for in the interval d̃ ± C0p

−s
n only, where C0 > 0, and s > 2 is such

that

ps
n = o

(
min

(
n

1
4 , nr

))
.

• Step 2: θ̂ (pn) is defined by (5.104) and (5.105), but minimization is restricted by
the condition d ∈ [d̃ −C0p

−s
n , d̃ +C0p

−s
n ].

We will use the notation

τ0 = 1, τi =
i∑

j=1

ϕi−j

j
(i ≥ 1). (5.107)
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The results in Bhansali et al. (2006) (Theorems 5.14 and 5.15 below) include not
only the derivation of the asymptotic distribution of d̂ but also a simultaneous limit
theorem for all parameters. The following conditions are used:

• (FAR1)

E
(
ε4
t

)
< ∞,

ϕ0 = 1 and, for some ε > 0,

ϕ(z) =
∞∑

j=0

ϕj z
j 
= 0

(|z| < 1 + ε
);

• (FAR2)

Θ =
{
θ ∈

[
−1

2
,

1

2

]
×

∞∏

j=0

[Cj ,Dj ] : ‖θ‖1 < ∞
}

and θ0 ∈ Θ0;
• (FAR3) As n → ∞,

pn → ∞, pn = o

(
min

(
n

1
8 ,

n1−2d0

(logn)4

))
(5.108)

and
∞∑

j=pn

∣∣ϕ0
j

∣∣ = o
(
n− 1

2
)
. (5.109)

Theorem 5.14 Under (FAR1)–(FAR3) and Jn = o(pn),

√
n

pn

(
d̂ − d0, ϕ̂1 − ϕ1, . . . , ϕ̂Jn − ϕJn

)′ = (τ0, τ1, . . . , τJn)
′Zn + rn

where the random variable Zn is real-valued (and one-dimensional), and

Zn →
d

Z ∼ N(0,1), ‖rn‖2 = op(1).

Since Jn may converge to infinity, Theorem 5.14 can be used to obtain simul-
taneous confidence bands for an increasing number of parameters d0, ϕ1, . . . , ϕJn .
More specifically, we standardize by

sJn =
√√√√

Jn∑

i=0

τ 2
i

or ŝJn with ϕj in (5.107) replaced by ϕ̂j to obtain
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Theorem 5.15 Under the same assumptions as above,

ŝJn − sJn →
p

0,

and
√

n

pn

ŝ−1
Jn

∥∥(d̂ − d0, ϕ̂1 − ϕ1, . . . , ϕ̂Jn − ϕJn

)∥∥
2 →

d
|Z|.

How fast pn may diverge to infinity can be seen from condition (FAR3). On the
one hand, (5.108) sets an upper bound which is required in order that the variance of
the parameter estimates does not become too large due to overparametrization. On
the other hand, (5.109) makes sure that pn is large enough to avoid an asymptotic
bias. Since the rate of convergence is

√
pn/n, it is desirable to choose pn as small

as possible while satisfying the other requirements. Condition (FAR1) implies an
exponential decay |ϕj | = O(ρj ) for some 0 < ρ < 1 so that

∞∑

j=pn

∣∣ϕ0
j

∣∣ = O
(
ρpn

)
. (5.110)

In order that O(ρpn) = o(n− 1
2 ), it is sufficient to have

pn logρ−2 − logn → ∞.

Since logρ−2 > 1, this implies that sequences of the order pn ∼ c logn with c ≥ 1
are possible. In particular, for pn = logn we obtain

d̂ − d0 = Op

(√
logn

n

)

and even

∥∥(d̂ − d0, ϕ̂1 − ϕ1, . . . , ϕ̂Jn − ϕJn

)∥∥
2 = Op

(√
logn

n

)
.

In other words, as for the broadband methods above, the parametric rate of n− 1
2 can

be reached up to a logarithmic factor.

5.9.4 General Conclusions on Broadband Estimators

Broadband methods have, at least in theory, two main advantages compared to local
methods:

1. An almost parametric rate of convergence, d̂ − d0 = Op(n
− 1

2 logn) can be
achieved under realistic conditions;
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2. An estimate (and confidence intervals) of the complete spectral density is pro-
vided.

Compared to parametric estimation, semiparametric methods have the advantage
of providing consistent estimates without the necessity of specifying a fixed func-
tional form of the spectral density. This “robustness” comes at the cost of a slower
rate of convergence, but in many situations the rate deteriorates by a logarithmic
factor only (see point 1 above). Practically speaking, the discrepancy between the
parametric and the semiparametric approach is, however, not as vast as it may seem.
An experienced data analyst will never fit a parametric model without trying out al-
ternative models with more parameters or even a completely different structure. An
essentially objective way of choosing a parametric model is to apply an appropriate
criterion such the AIC or BIC (see Sect. 5.5.6). In i.i.d. situations or in the regression
context, the AIC can be shown to be closely related to Mallow’s Cp . It may be con-
jectured that a similar result holds for fractional time series models. Thus, we may,
for instance, fit FAR(p,d,0) models by parametric maximum likelihood estimation
for p = 0,1, . . . , pmax with pmax large but fixed, and choose the best among these
models by the AIC. This is, in principle, a parametric fit. On the other hand, we may
carry out the same procedure using pmax(n) = O((logn)1+δ) (for some δ > 0) and
choose the model that minimizes C∗

p defined in (5.102). This is then called a semi-
parametric fit. A third approach is to fit one FAR(pn, d,0) with pn = logn. Again,
this is a semiparametric fit, however, applied “mechanically” using the order pn by
default. Now, pn grows very slowly. Also, the data dependent semiparametric or-
der (with pmax(n) → ∞) will generally grow very slowly. Therefore, the difference
between a semiparametric fit with pn → ∞ and a parametric fit, chosen using a
“reasonable” fixed upper bound for p, is likely to be small. One should also bear in
mind that applying semiparametric fitting mechanically by letting p tend to infinity
without regarding the observed data is likely to be less effective than a data driven
approach where the order or even the selection of specific parameters is carried out
by a suitable information criterion. The information criterion to be used may depend
on the purpose of the analysis. For instance, in the short-memory context, the AIC is
known to be suitable for predictions but less for model identification (due to incon-
sistency, see above). The same may be true for series with long-range dependence.

An additional question is which of the broadband methods is preferable: FEXP or
FAR fitting (or possibly semiparametric fitting of another class of nested models)?
The answer depends on which approximation we expect to be more parsimonious.
For instance, if the true process is a fractional autoregressive process of finite order
p0, then FAR fitting is likely to provide better results. The reason is that ultimately
only p0 + 2 parameters are required in the FAR-representation of the spectral den-
sity, whereas the FEXP-series is infinite. The opposite applies when Xt is generated
by an FEXP-process of finite order.
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5.10 Parametric and Semiparametric Estimators—Summary

We give a brief summary of the main estimators considered in this chapter. Consider
a second-order stationary time series Xt (t = 1,2, . . . ) with expected value zero,
autocovariance function γX(k) and spectral density

fX(λ) = f∗(λ)|λ|−2d (λ → 0).

• Whittle estimator d̂Whittle—parametric (Theorem 5.3):

d̂Whittle = argmin
1

n
xTWn(θ)x,

where

Wn(θ) =
[
(2π)−2

∫ π

−π

ei(r−s)λ 1

hX(λ; θ) dλ
]

r,s=−n,...,n

,

hX(λ) = (σ 2
ε /(2π))

−1fX(λ) and x = X(n) = (X1, . . . ,Xn)
T .

–
√
n-rate of convergence for linear processes (Theorem 5.3);

–
√
n-rate of convergence not valid for subordinated processes;

• Geweke and Porter-Hudak estimator d̂GPH—semiparametric estimator in the
Fourier domain (Theorem 5.4):
–

√
m-rate of convergence, where the best possible value is m = o(n4/5);

• Local Whittle estimator d̂LW—semiparametric estimator in the Fourier domain
(Theorem 5.5):
–

√
m-rate of convergence, where the best possible value is m = o(n4/5);

– More efficient than the GPH estimator;
• Log-wavelet regression estimator d̂WR—semiparametric estimator in the wavelet

domain (Theorem 5.7):
–

√
m-rate of convergence, where the best possible value is m = o(n4/5);

– Limiting variance has a complicated form and depends on d ;
• Broadband estimators (Theorems 5.11, 5.13, 5.14):

–
√
n/pn-rate of convergence, where pn may be chosen as logn.

We summarize the limit theorems in Table 5.2.

5.11 Estimation for Panel Data

As discussed in Sect. 2.2.2, long memory can be generated by aggregation of short-
memory processes Xi,t (t ∈ Z; i = 1,2, . . . ,N ) with randomly selected parameters.
The particular case we considered was aggregation of AR(1) processes with i.i.d.
AR-parameters ϕi and such that ϕ2

i is Beta distributed with parameters α,β > 1. If

N is large, then the aggregated process X(N)
t = N− 1

2
∑N

i=1 Xi,t is close to the limit-
ing process (obtained by N → ∞). The long-term dependence structure is therefore
characterized by a long-memory parameter d0 that can be estimated by one of the
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Table 5.2 Parametric and semiparametric estimators—asymptotic distributions

Estimator Limit theorem

Whittle
(Theorem 5.3)

√
n(d̂W − d) →

d
N(0,var)

var = 4πV −1

FARIMA(0, d,0): var = 6/π2

Narrowband LSE
(Theorem 5.4)

√
m(d̂GPH − d) →

d
N(0,var)

var = π2/24

Narrowband Whittle
(Theorem 5.5)

√
m(d̂LW − d) →

d
N(0,var)

var = 1/4

Narrowband LSE
(Theorem 5.11)

√
m(d̂ − d) →

d
N(0,var)

var = π2/24

Broadband Whittle
(Theorem 5.13)

√
n/pn(d̂ − d) →

d
N(0,var)

var = 1/4

Narrowband Wavelet LSE
(Theorem 5.7)

√
m(d̂WR − d) →

d
N(0,var)

var complicated and depends on d

maximum likelihood, narrowband or broadband methods described so far in this
chapter. Sometimes, however, not only the aggregated but also the individual series
are available. This allows for estimation of α and β (or more generally, the distribu-
tion ϕi , i = 1,2, . . . , are generated from). Once these parameters are estimated, one
can obtain an alternative estimate of d0 by plugging in α̂ and β̂ into the aggregation
formula (2.72), i.e.

γ̂ (k) = B(α̂ + k
2 , β̂ − 1)

B(α̂, β̂)

and thus setting d̂ = 1 − β̂/2.
This approach is considered in Beran et al. (2010). As in Sect. 2.2.2, the squared

coefficients ϕ2
i are assumed to be i.i.d. Beta distributed with parameters α,β > 1.

Given ϕ2
1 , . . . , ϕ

2
N , the conditional MLE of θ0 = (α0, β0) is the defined by minimiz-

ing

N∑

i=1

{
ln

(
Γ (α)Γ (β)

Γ (α + β)

)
− (α − 1) lnϕ2

i − (β − 1) ln
(
1 − ϕ2

i

)}
,
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or equivalently, by finding the root of the two equations

ψ(α)−ψ(α + β) = N−1
N∑

i=1

lnϕ2
i ,

ψ(β)−ψ(α + β) = N−1
N∑

i=1

ln
(
1 − ϕ2

i

)
(5.111)

where ψ(x) = d
dx

Γ (x) is the digamma function. Since ϕi are not known, the idea
is to plug in (approximate) maximum likelihood estimates

ϕ̂i = ϕ̂i,n =
∑n

t=1 Xi,tXi,t−1∑n
t=1 X

2
i,t

obtained from the individual series. The asymptotic distribution of α̂ and β̂ can
then be derived under suitable conditions on N and n. For each individual series,
the asymptotic distribution of the Yule–Walker estimator ϕ̂i,n (as n → ∞) is well
known. The difficulty in deriving the asymptotic distribution of θ̂ = (α̂, β̂) is, how-
ever, that N tends to infinity simultaneously and the randomly generated values
of ϕi can get arbitrarily close to the unit root boundary of 1. It can be shown,
however, that under the conditions stated in Sect. 2.2.2 there is a uniform bound
E[(ϕ̂i,n,h − ϕi)

2] ≤ cn−1 where ϕ̂i,n,h is a truncated estimator defined by

ϕ̂i,n,h = min
{
max{ϕ̂i,n, h},1 − h

}

with h → 0 as N,n → ∞. Plugging this estimator into (5.111), one obtains an
estimator θ̂n,h for which asymptotic normality can be derived (Beran et al. 2010):

Theorem 5.16 Denote by θ0 = (α0, β0)
T the true parameter vector, set η0 =

min{α0, β0}, and let N,n → ∞ and h → 0 be such that

logh = o
(
N

1
4
)
, N = o

(
h−2η0

)
, N = o

(
n2h4).

Then θ̂N,n,h converges to θ0 in probability and

√
N(θ̂N,n,h − θ0)

d→ N
(
0,A−1(θ0)

)
,

where

A(θ) = ∂

∂θ

(
ψ(α)−ψ(α + β)

ψ(β)−ψ(α + β)

)

=
(
ψ1(α)−ψ1(α + β) −ψ1(α + β)

−ψ1(α + β) ψ1(β)−ψ1(α + β)

)

and ψ1(x) = d2

dx2 lnΓ (x) denotes the trigamma function.
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The conditions on N , n and h essentially imply that the stronger long memory is
in the limiting aggregated process, the longer each replicate has to be in comparison
with the number of replicates. For example, if we have 1 < α0, β0 < 2, then an
admissible choice of n and h is

n ∼ c1N
1
2 +η−1

0 +δ, h ∼ c2N
−η0

for some δ > 0. This means, however, that n has to tend to infinity faster than N by
the factor Nλ with λ = η−1

0 + δ − 1
2 . The value of λ is larger the closer β0 is to the

lower limit of 1 which corresponds to d0 = 1 − β0/2 approaching the upper limit
of 1

2 . Thus, in the most extreme case, n has to be about
√
N times larger than N . On

the other hand, in the limit towards short memory, i.e. β0 → 2 (and thus d0 → 0), λ
tends to (the arbitrarily small value of) δ so that the length of each series ultimately
does not need to be of a (much) larger order than N .

5.12 Estimating Periodicities

One of the standard questions in time series analysis is whether there may be peri-
odicities in the data. In principle, one can distinguish two main types of periodici-
ties: deterministic periodicities and stochastic periodicities. The first type (seasonal
trends) may be handled, for instance, by suitable trigonometric regression models.
For general results on fixed design regression under long memory, see Sect. 7.1.
Here we consider the second type, i.e. stochastic periodicities.

5.12.1 Identifying Local Maxima

We first consider a linear process Xt = ∑
aj εt−j with spectral density

fX
(
λ;σ 2

ε , θ
) = σ 2

ε

2π
h(λ; θ) = σ 2

ε

2π

∣∣1 − e−iλ
∣∣−2d

f∗(λ; θ)

belonging to a parametric family such that f∗ is twice continuously differentiable
(with respect to λ) in [−π,π], and θ = (d, θ2, . . . , θp). The true value of θ will be
denoted by θ0. We say that the process has stochastic periodicities if the spectral
density has at least one (isolated) local maximum λmax. In other words, the set

Λ = {
λ ∈ [−π,π] : h′(λ; θ0) = 0, h′′(λ; θ0)< 0

}
(5.112)

is not empty (with h′ and h′′ denoting derivatives with respect to λ). Suppose first
that there is just one local maximum. Given an estimator θ̂ of θ0, a natural estimator
of λmax is defined as a solution of

h′(λ̂max; θ̂ ) = 0.
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Under some regularity conditions, the asymptotic distribution of λ̂max can then be
derived by applying a Taylor expansion with respect to λ and θ . In particular, let θ̂
be one of the approximate Gaussian maximum likelihood estimators (or the exact
one) discussed previously. Then under the assumptions of Theorem 5.2, one obtains
(Beran and Ghosh 2000)

√
n(λ̂max − λmax) →

d
N
(
0, τ 2

max

)
(5.113)

with

τ 2
max = [ḣ′(λmax; θ0)]T ΣMLEḣ

′(λmax; θ0)

[h′′(λmax; θ0)]2
(5.114)

where ΣMLE is given in Theorem 5.2, and

[
ḣ′(λmax; θ0)]T =

(
∂

∂θ1
h′(λmax; θ0), . . . ,

∂

∂θp
h′(λmax; θ0)

)
.

Note that the variance is inversely proportional to the curvature at the maximal point.
This means that sharp peaks are easier to estimate. The same asymptotic result fol-
lows if one has more than one local maximum. Moreover, the result also holds for
integrated process with unknown integer differencing order m if the approximate
MLE defined in (5.46) is applied to estimate m and θ0 (Beran and Ghosh 2000).
The method can also be combined with a consistent model choice criterion and
nonparametric trend removal (see Sects. 5.5.6, 7.4). Finally, note that the method
and the central limit theorem (5.113) obtained in Beran and Ghosh (2000) is an ex-
tension of analogous results for short memory by Newton and Pagano (1983) (also
see Diggle 1990).

Example 5.15 We consider the deseasonalized monthly average discharge series
(m3/s) of the Nile river at Dongola (1912–1984) as discussed in Sect. 1.2. In
Fig. 5.7, the periodogram is plotted in log–log-coordinates together with a fitted
FARIMA(12, d,0) spectral density obtained after model selection based on the
BIC, and 95 %-confidence bands for frequencies where local maxima occur. A
Bonferroni correction was applied so that the confidence intervals are simultane-
ous. The confidence intervals for the five peaks are about [0.49,0.53], [0.99,1.08],
[1.50,1.61], [2.00,2.18] and [2.42,2.76]. Noting that the seasonal frequency corre-
sponding to one year is λ0 = 2π/12 ≈ 0.524 and its first four harmonics λj = jλ0

(j = 2,3,4,5) are equal to 1.047, 1.571, 2.094 and 2.618, respectively, we can see
that each is in the corresponding confidence interval. This confirms the suspicion
that the simple deseasonalizing filter applied in Sect. 1.2 did not remove all stochas-
tic seasonality.
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Fig. 5.7 Log–log-periodogram of the deseasonalized monthly average discharge series (m3/s)
of the Nile river at Dongola (1912–1984) as discussed in Sect. 1.2. Also plotted is a
FARIMA(12, d,0) fit obtained after model selection based on the BIC, and 95 %-confidence bands
for frequencies where local maxima occur. A Bonferroni correction was applied so that the confi-
dence intervals are simultaneous

5.12.2 Identifying Strong Stochastic Periodicities

An extreme version of a local maximum at a certain frequency λmax is a pole
at this frequency. As a generalization of fractional ARIMA processes—following
a suggestion by Hosking (1981)—Gray et al. (1989, 1994) studied the so-called
GARMA(p,d, q) processes defined as stationary solutions of

ϕ(B)Xt = (
1 − 2uB +B2)− d

2 ψ(B)εt (5.115)

where −1 ≤ u ≤ 1, ϕ(z) and ψ(z) are the usual AR- and MA-polynomials of or-
ders p and q and εt are i.i.d. zero mean variables with a finite variance σ 2

ε . More
generally, one could also consider merely uncorrelated εt ’s, such as martingale dif-
ferences. For p = q = 0, Xt is also called a Gegenbauer process. The reason is that
the coefficients in the Wold representation

Xt =
∞∑

j=0

aj εt−j

are of the form

aj = 1

Γ (d2 )

[j/2]∑

s=0

(−1)s
Γ (d2 + j − s)(2u)j−2s

s!(j − 2s)!

which turn out to be identical with Gegenbauer polynomials (see Sect. 3.1.4). Given
the usual conditions on ϕ and ψ (i.e. ϕ(z) and ψ(z) have no roots for |z| ≤ 1) a
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stationary invertible solution of (5.115) exists if

−1 < u,d < 1,

or

u = ±1 and − 1

2
< d <

1

2
.

The spectral density is given by

fX(λ) = σ 2
ε

2π
2−d(cosλ− u)−d

∣∣∣∣
ψ(e−iλ)

ϕ(e−iλ)

∣∣∣∣
2

.

Thus, for u = 1 one obtains a FARIMA(p, d, q) process with the hyperbolic be-
haviour fX(λ) ∼ cf |λ|−2d at the origin λ0 = arccosu = 0. However, the behaviour
is quite different for |u| < 1 since the pole (for d > 0) or zero value (for d < 0)
occurs elsewhere, namely at the frequency

λ0 = arccosu 
= 0.

In particular, for d > 0, this means that we have a pole of the form fX(λ) ∼
cf |λ − λ0|−2d as λ approaches the non-zero frequency λ0. This can be interpreted
as an extreme version of stochastic periodicity within the realm of stationarity. Note
that (5.115) can also be written as

ϕ(B)
(
1 − 2uB +B2) d

2 Xt = ψ(B)εt .

This means that after multiplying the spectral density of Xt by |1−2ue−iλ+e−i2λ|d
one obtains the spectral density of an ARMA process. Considering the spectral
representation of Xt one can interpret this as follows. The same way the frac-
tional differencing filter (1 − exp(−iλ))d replaced the usual (integer) differenc-
ing filter 1 − exp(−iλ) in the case of FARIMA processes, the fractional filter
(1 − 2ue−iλ + e−i2λ)d/2 replaces the filter 1 − exp(−i(2π/λ0)λ) which is often
used for removal of periodic components.

The parameters ϑ = (σ 2
ε , d,ϕ1, . . . , ϕp,ψ1, . . . ,ψq) and λ0 = arccosu can be

estimated, for example, by Whittle’s approximate MLE. The asymptotic distri-
bution of ϑ̂Whittle turns out to be of the same form as in Theorem 5.2. This re-
sult, established in Giraitis et al. (2001) (for a related heuristic result see Chung
1996a, 1996b), is remarkable because it means that estimation of λ0 does not
change the asymptotic result. Intuitively, the reason is that a pole is ultimately
highly visible so that it cannot be missed. Indeed, Giraitis et al. (2001) show that
the rate of convergence of λ̂0 is very fast, namely λ̂0 = λ0 + Op(n

−1). This is
in contrast to the estimation of local maxima for differentiable spectra considered
in (5.112).
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Fig. 5.8 Simulated sample path of a Gegenbauer process with λ0 = π/5 and d = 0.4 (a). Also
shown are the logarithm of the spectral density (b) and of the periodogram (c), and the sample
autocorrelations (d)

For local estimation of ϑ and λ0, see, e.g. Arteche and Robinson (2000), Hi-
dalgo and Soulier (2004). Note also that instead of one pole one can include an
arbitrary finite number of frequencies 0 ≤ λ1 < λ2 < · · · < π where a pole (or
a zero) occurs, by multiplying the right-hand side by the corresponding filters
(1 − 2 cosλjB + B2)−s/2. For further results, see Chung (1996a, 1996b), Ferrara
and Guégan (2000, 2001a, 2001b), Giraitis and Leipus (1995), Gray et al. (1994),
Guégan (1999, 2000), Olhede et al. (2004), Porter-Hudak (1990), Woodward et al.
(1998) and Yajima (1996).

Example 5.16 Figure 5.8(a) shows a simulated sample path of a Gegenbauer process
with λ0 = π/5 and d = 0.4. Also shown are the logarithm of the spectral density
(Fig. 5.8(b)) and of the periodogram (Fig. 5.8(c)), and the sample autocorrelations
(Fig. 5.8(d)). Note that here the logarithm was taken for better visibility; however, a
log–log-plot (i.e. taking also the logarithm of λ) is not meaningful because there is
no pole at the origin.
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5.13 Quantile Estimation

For stationary linear processes with long memory, inference for quantiles follows
directly from the corresponding limit theorems discussed in Sect. 4.8. As men-
tioned there, the main literature includes Dehling and Taqqu (1989b), Ho and Hsing
(1996), Wu (2005), Csörgő et al. (2006), Youndjé and Vieu (2006), Csörgő and Ku-
lik (2008a, 2008b), Coeurjolly (2008a, 2008b) among others. Thus, suppose that
Xt = ∑

aj εt−j is a linear process with aj ∼ caj
d−1 for some d ∈ (0, 1

2 ) and such
that the conditions in Theorem 4.33 hold. Denote by F and pX = F ′ the marginal
distribution and probability density function of Xt , respectively. Also, for a given
value of α ∈ (0,1) we denote by Q(α) = F−1(α) the α-quantile of F and by
Qn,X(α) = F−1

n (α) the empirical quantile based on observations X1, . . . ,Xn. As
usual, Fn(x) = n−1 ∑1{Xt ≤ x} denotes the empirical distribution function, and
the inverse is defined by F−1

n = inf{x : Fn(x) ≥ α}. As outlined in Sect. 4.8, the em-
pirical quantile is asymptotically equivalent to the sample mean, irrespective of the
value of α. Since, for simplicity, we assume the slowly varying function in aj to be
equal to a constant ca , the spectral density has a pole of the form fX(λ) ∼ cf |λ|−2d

so that the simplified standardization by cf ν(d) applies and we have the functional
limiting result

n
1
2 −d Qn,X(α)−Q(α)√

cf ν(d)
=⇒ Z

where convergence is in D[αlow, αup] equipped with the supremum norm and
0 < αlow < αup < 1. This makes inference for quantiles rather simple. Because of
convergence in the sup-norm, it is possible to define simultaneous confidence bands
for an arbitrary (and even uncountable) number of quantiles. For instance, a 95 %
confidence interval for all quantiles between αlow = 0.005 and αup = 0.995 can be
defined as

Qn,X(α)± 1.96
√
cf ν(d)n

d− 1
2 . (5.116)

If cf and d have to be estimated, then exactly the same finite sample corrections
as discussed in Sect. 5.2 can be applied, since the standardization is the same as
for the sample mean. Formula (5.116) is very much in contrast to the case of i.i.d.
observations (and also similar results under short memory) where the asymptotic
distribution of Qn,X(α) depends on α and in particular pX(α). In particular, for
i.i.d. observations the asymptotic variance is equal to α(1 − α)/p2

X(Q(α)). For in-
stance, if the marginal distribution is standard normal, then under the i.i.d. assump-
tion the asymptotic variance of the median is 1

4 2π = π/2 ≈ 1.57 whereas for the
5 %-quantile it is about 4.47. In contrast, under long memory the asymptotic vari-
ance of both empirical quantiles is the same. It should be noted that the simplicity
induced by Qn,X(α) − Q(α) converging to the same random variable is not nec-
essarily good for statistical inference because it also means that for a given data
set all quantiles simultaneously either under- or overestimate the corresponding true
values. This is illustrated by the following example.
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Fig. 5.9 Boxplots of simulated observations of a FARIMA(0, d,0) process of length n = 400 with
d = 0.1, 0.2, 0.3 and 0.4, respectively, together with 95 %-confidence intervals (shaded areas) for
the 10 %- and 90 %-quantiles. The dashed lines represent the true quantiles Q(0.1) and Q(0.9)

Fig. 5.10 Boxplots of observations of a simulated FARIMA(0, d,0) process of length n = 1000
with d = 0.1, 0.2, 0.3 and 0.4, respectively, together with 95 %-confidence intervals (shaded areas)
for the 10 %- and 90 %- quantiles. The dashed lines represent the true quantiles Q(0.1) and Q(0.9)

Example 5.17 Consider a FARIMA(0, d,0) process with σ 2
ε = 1, and simultaneous

estimation of the 10 %- and 90 %-quantiles. Figures 5.9 and 5.10 display boxplots of
observations from one simulated path of length n = 400 and 1000, respectively, with
d = 0.1, 0.2, 0.3 and 0.4. The dashed horizontal lines represent the correct quantiles.
The shaded areas are the corresponding 95 % confidence intervals based on the
observed path (assuming that cf and d are known). Note that here the intervals are
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of the form

Qn,X(α)± 1.96

√
ν(d)

2π
nd− 1

2

= Qn,X(α)
1

2
± 1.96

√
sinπd

πd(2d + 1)
Γ (1 − 2d)nd− 1

2 .

All intervals contain the true values. However, generally there tends to be either
over- or underestimation for both quantiles. Moreover, the confidence intervals for
d = 0.4 are very large, and even overlap for n = 400. The reason is the very slow
rate of convergence Op(n

−0.1).

In applications, quantile estimation is of particular interest when data are not ex-
actly stationary. Extensions of quantile estimation to locally stationary processes
were developed, for instance, in Ghosh et al. (1997), Ghosh and Draghicescu
(2002a, 2002b), Draghicescu and Ghosh (2003). This will discussed in more de-
tail in Sect. 7.6.

5.14 Density Estimation

5.14.1 Introduction

Here we first recall some standard results for nonparametric density estimation. Sup-
pose we observe X1, . . . ,Xn generated by a (univariate) stationary process with
marginal probability density function pX . A kernel estimator of pX at point x0 is
defined by

p̂X(x0) = 1

nb

n∑

t=1

K

(
x0 −Xt

b

)
(5.117)

where b > 0 is the bandwidth and K is a kernel such that K ≥ 0, K(u) = K(−u)

and
∫
K(u)du = 1. Often one uses kernels with support [−1,1]. The estimate is

simply an average of weights wt(x0) = b−1K((x0 − Xt)/b). For instance, for the
rectangular kernel K(u) = 1

2 1{−1 ≤ u ≤ 1} we consider a neighbourhood x0 ±nb of
length 2nb, count the number of observations Xt in this neighbourhood and divide
it by the length of the interval. This corresponds to a histogram, with the essential
difference that instead of considering disjoint blocks of length 2nb we move a win-
dow (block) of the same length continuously along the x-axis. To judge the quality
of the estimator, we consider the mean squared error

MSE(x0, b) = E
[(
p̂X(x0)− pX(x0)

)2] = Bias2 + Variance.



502 5 Statistical Inference for Stationary Processes

Alternatively, one may rather look at a global criterion such as the integrated mean
squared error

IMSE(b) =
∫

MSE(x, b) dx

(or a suitably weighted integral). The bias E[p̂X(x0)] − pX(x0) is smaller the
smaller the bandwidth, whereas the variance var(p̂X(x0)) decreases for larger values
of the bandwidth. This is the standard dilemma in a nonparametric setting. In order
to make the bias asymptotically negligible, one needs b → 0 as n tends to infinity.
At the same time the variance should tend to zero so that one also needs nb → ∞.

The essential question is how to choose a bandwidth such that it minimizes the
MSE or IMSE. In a first step, one derives an asymptotic formula for the MSE.
This leads to a formula for an asymptotically optimal bandwidth. Since this formula
usually depends on unknown parameters, one finally has to design an adaptive data
driven algorithm that estimates the MSE (or IMSE) and the optimal bandwidth.

The bias does not depend on the dependence structure. Suppose that K has sup-
port [−1,1]. We write ui = (x0 −Xt)/b so that |ui | ≤ 1 means x0 −b ≤ Xt ≤ x0 +b.
An approximate expression for the bias can essentially be derived by a Taylor ex-
pansion. Note first that, as b → 0,

E
[
K(ui)

] =
∫

K

(
x0 − x

b

)
pX(x)dx =

∫
K

(
x − x0

b

)
pX(x)dx

= b

∫
K(u)pX(x0 + bu)du

≈ bpX(x0)

∫
K(u)du+ b2p′

X(x0)

∫
K(u)udu

+ b3

2
p′′
X(x0)

∫
K(u)u2 du,

provided that K and pX are well behaved. By assumptions we have
∫
K(u)du = 1,∫

K(u)udu = 0 and 0 <
∫
K(u)u2 du < ∞. Therefore,

E
[
p̂X(x0)

] = 1

nb

n∑

t=1

E
[
K(ut )

] = b−1E
[
K(u1)

]

≈ pX(x0)+ b2

2
p′′
X(x0)

∫
K(u)u2 du,

and for the bias we obtain

Bias = b2

2
p′′
X(x0)

∫
K(u)u2 du+ o

(
b2).

As one can see, the bias is larger in absolute value at points with larger (absolute)
curvature. The reason is that at points with high curvature neighbouring values dif-
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fer more from the value at x0 so that averaging over neighbouring values is more
harmful.

In contrast to the bias, the variance depends on the autocovariance structure of the
process Xt . For uncorrelated data, a similar Taylor expansion leads to the formula

Var
(
p̂X(x0)

) = 1

nb
pX(x0)

∫ ∞

−∞
K2(u) du+ o

(
1

nb

)
,

and hence for the mean squared error we have

MSE(x0, b) = b4
(

1

2
p

′′
X(x)

∫ ∞

−∞
u2K(u)du

)2

+ 1

nb
pX(x0)

∫ ∞

−∞
K2(u) du+ o

(
(nb)−1)+ o

(
b2)

= C̃1(x)b
4 + C̃2(x)(nb)

−1 + o
(
(nb)−1)+ o

(
b2).

Setting the derivative with respect to b equal to zero leads to the asymptotically
optimal local bandwidth

bopt = bopt(x) = Coptn
− 1

5

with

Copt = Copt(x) =
(

1

4
C̃2/C̃1

) 1
5

and an optimal mean squared error of the order MSEopt = O(n− 4
5 ). If, for simplicity,

one prefers using a global bandwidth, then one can minimize the integrated MSE,

IMSE =
∫

MSE(x, b)q(x) dx = C1b
4 +C2(nb)

−1 + o
(
(nb)−1)+ o

(
b2)

with Ci = ∫
C̃i(x)q(x) dx and q an appropriate weight function. Note that the op-

timal bandwidth is such that the contributions of the bias and variance to the MSE
are of the same order.

The constant in the optimal bandwidth depends on unknown parameters. There-
fore, data driven algorithms have been designed to estimate this constant or to ob-
tain a good estimate of the IMSE (see, e.g. Stone 1974; Geisser 1975; Silverman
1986; Bowman 1984). Under short-range dependence and antipersistence, the re-
sult remains the same (under suitable regularity conditions), except that C2 changes
and hence the optimal constant Copt is different. Under long memory, the situa-
tion changes, however, since the asymptotic behaviour, including the rate of conver-
gence, of the variance depends on whether one uses a sequence of relatively large
or small bandwidths. This makes the question of optimal bandwidth choice more
complicated and will be discussed in the following section.
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An alternative approach that can be used for linear processes is based on the
empirical cumulant distribution of the innovation process. This is discussed in
Sect. 5.14.3.

5.14.2 Nonparametric Kernel Density Estimation Under LRD

5.14.2.1 Main Results

Here we consider nonparametric kernel density estimation (5.117) under the as-
sumption of long memory. Thus, let X1, . . . ,Xn be generated by a linear process
Xt = μX + ∑∞

j=0 aj εt−j where εi are i.i.d. zero mean variables with variance σ 2
ε

and aj ∼ caj
d−1 (0 < d < 1

2 ) as j → ∞. Without loss of generality, we will assume
μX = 0 and σ 2

X = 1. The following results can be generalized to the case where ca
is replaced by a slowly varying function La . For practical purposes, the case with
La ∼ ca is usually sufficient.

The first asymptotic results for p̂X defined in (5.117) were established in Cheng
and Robinson (1991) and Csörgő and Mielniczuk (1995a), under the assumption
that Xt are subordinated Gaussian variables and for the case of “large” band-
widths (see below for a definition). A general result on the asymptotic distribution
of p̂X(x0) − pX(x0) is derived in Wu and Mielniczuk (2002), under the assump-
tion that the bias is asymptotically negligible compared to the variance. Our aim in
bandwidth selection is to minimize the mean squared error. The contribution of the
optimal bandwidth to the MSE is then automatically of the same order as the vari-
ance. We therefore rewrite the limit theorem by considering p̂X(x0) − E[p̂X(x0)],
without any bias condition.

Theorem 5.17 Let Xt be a linear process with long memory as defined above and
denote by cX = cf ν(d) the constant in the asymptotic expression var(

∑
Xt) ∼

cXn
2d+1. Let x0 be in the interior of the support of pX , assume that pX is twice

continuously differentiable in a neighbourhood of x0, denote by Z a standard nor-
mal random variable and assume that b → 0 and nb → ∞. Then the following
holds:

• If b = o(n−2d), then

√
nb

(
p̂X(x0)−E

[
p̂X(x0)

]) d→ Z

√

pX(x0)

∫
K2(u) du. (5.118)

• If b � n−2d (i.e. bn2d → ∞), then

n
1
2 −dc

− 1
2

X

(
p̂X(x0)−E

[
p̂X(x0)

]) d→ p′
X(x0)Z. (5.119)
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Proof Let Fi = σ(εi, εi−1, . . .) be the σ -algebra generated by εs (s ≤ i) and denote
by pε the density of εi . We denote by

X̂i = Xi − εi =
∞∑

j=1

aj εi−j

the best linear forecast of Xi given Fi−1 and by p
X̂

its probability density function.
Using the notation

νn(Xi) = K

(
x −Xi

b

)
,

we obtain the decomposition

p̂X(x0)−E
[
p̂X(x0)

]

= 1

nb

n∑

i=1

{
νn(Xi)−E

[
νn(Xi)|Fi−1

]}+ 1

nb

n∑

i=1

E
[
νn(Xi)|Fi−1

]−E
[
p̂X(x0)

]

=: Rn,2 +Rn,1 (5.120)

where

E
[
νn(Xi)|Fi−1

] = 1

nb

n∑

i=1

∫
K

(
x0 − (X̂i + u)

b

)
pε(u)du.

We will call (5.120) the M/L-decomposition (marginal/long memory) (see also
Sect. 7.2.3). Application of the martingale central limit theorem implies that

√
nbRn,2

d→ Z1

√

pX(x)

∫
K2(u) du. (5.121)

If we assume that Xi are normal, then the term Rn,1 can be treated using an Hermite
polynomial expansion (also called (H)-decomposition in Sect. 7.2.3). However, if
we assumed Gaussianity a priori, then there would be no need for nonparametric
density estimation. Thus, we apply a different method instead (see Wu and Miel-
niczuk 2002 for all technical details). We note that Rn,1 can be written as

ζn,b := nbRn,1 =
n∑

i=1

{∫
K

(
x0 − (X̂i + z)

b

)
pε(z) dz−

∫
K

(
x0 − x

b

)
pX(x)dx

}
.

Applying a change of variables with w = (x0 − X̂i − z)/b in the first and w =
(x0 − x)/b in the second integral, we obtain

∫
K

(
x0 − z − X̂i

b

)
pε(z) dz −

∫
K

(
x0 − x

b

)
pX(x)dx
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= −b

∫
K(w)

[
pε(x0 − X̂i − bw)− pX(x0 − bw)

]
dw

= b

∫
K(w)

[
pε(x0 − X̂i + bw)− pX(x0 + bw)

]
dw

and hence

ζn,b = b

∫
K(w)Sn,b(w)dw

where

Sn,b(w) =
n∑

i=1

[
pε(x0 − X̂i + bw)− pX(x0 + bw)

]
.

Since b tends to zero, a Taylor expansion at b = 0 suggests that asymptotically the
distribution of ζn,b is the same as for

ζn,0 = b

∫
K(w)Sn,b(0) dw = bSn,b(0).

Now for

Sn,b(0) =
n∑

i=1

[
pε(x0 − X̂i)− pX(x0)

]

we use the convergence results for empirical processes from Sect. 4.8. Thus, let

E
X̂,n

(x) := F
X̂,n

(x)− F
X̂
(x) = 1

n

n∑

i=1

[
1{X̂i ≤ x} − F

X̂
(x)

]
,

where F
X̂
(x) = P(X̂ ≤ x). Then

Sn,b(0) =
n∑

i=1

[
pε(x0 − X̂i)− pX(x0)

]

= n

∫
pε(x0 − z)F

X̂,n
(z)− npX(x0)

= n

[∫
pε(x0 − z) dF

X̂,n
(z)−

∫
pε(x0 − z) dF

X̂
(z)

]

= n

∫
pε(x0 − z) dE

X̂,n
(z)

= n

∫
E

X̂,n
(z)p′

ε(x − z) dz.
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From the reduction principle for empirical processes (4.159) (and LX(n) = cX), we
have

nE
X̂,n

(z) = p
X̂
(z)

n∑

i=1

X̂i + op
(
n

1
2 +d

)
,

uniformly in z ∈R. Thus, since p′
ε is integrable,

Sn,b(0) =
n∑

i=1

X̂i

∫
p
X̂
(z)p′

ε(x0 − z) dz + op
(
n

1
2 +d

)

= p′
X(x0)

n∑

i=1

X̂i + op
(
n

1
2 +d

)

(note that the slowly varying function is a constant here). Thus, applying the limit
Theorem 4.6 for partial sums, we obtain

n
1
2 −dXc

− 1
2

X Rn,1
d→ p′

X(x0)Z. �

The theorem reveals a “smoothing dichotomy” with a completely different be-
haviour for “small” and “large” bandwidths, respectively. A similar phenomenon
can also be observed in random design nonparametric regression (see Sect. 7.4.8).
If b is small then the estimator behaves as if the sequence was i.i.d. For large band-
widths b, long-range dependence influences the variance of the estimator. Note also
that the limit in (5.119) degenerates if p′

X(x) = 0. If that is the case, then the scaling
factor and the limit will change, which leads to a smoothing trichotomy (see Wu and
Mielniczuk 2002).

To understand the consequences of Theorem 5.17, let us look at the conditions
of the two cases more closely. First, note that in (5.118) the rate and even the exact
asymptotic distribution of

√
nb(p̂X(x0) − E[p̂X(x0)]) is exactly the same as if the

data were i.i.d. Now recall that the mean squared error is the sum of the squared bias
(which is always of the order b4) and the variance. If b = o(n−2d), then both terms
depend on b and the optimal bandwidth is exactly the same as for i.i.d. data. Thus,

bopt = Coptn
− 1

5 (5.122)

(with Copt as for i.i.d. data) and the optimal MSE of the order n−4/5. This is a very
nice result because the solution does not depend on the autocorrelation structure
(which therefore does not need to be estimated) and the rate is much better than if
long memory had played a role. However, it needs to be clarified whether it is always
possible to achieve this rate. In other words, if we consider b = cn−α (with α > 0), is
it possible to choose α such that the bias is of the same order as the variance, under
the side condition that b = o(n−2d)? The side condition implies α > 2d . As seen
before, the bias–variance condition implies α = 1/5. The two conditions together
imply d < 1/10. Thus, unfortunately the nice result in (5.118) and (5.122) is only
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Table 5.3 Overview of rates in kernel density estimation for linear long-memory processes

d Large b Optimal b Small b

0 ≤ d < 1
10 0 < α < 1

5
Var ( Bias2

MSE = O(n−4α)

α = 1
5

Var ∝ Bias2

MSE = O(n− 4
5 )

α > 1
5

Var � Bias2

MSE = O(n−(1−α))

1
10 < d < 1

2 α < 1
5 − 1

2 (d − 1
10 )

Var ( Bias2

MSE = O(n−4α)

1
5 − 1

2 (d − 1
10 ) < α < 2d

Var ∝ Bias2

MSE = O(n−(1−2d))

α > 2d
Var � Bias2

MSE = O(n−(1−α))

applicable for a small range of very weak long-range dependence characterized by
0 < d < 1

10 . Note in particular that for d ↑ 1
10 , the interval 2d < α < 1

5 within which
b4 = cn−4α is of a larger order than the order 1/(nb) = nα−1 of the variance shrinks
to an empty interval. The common feature that is independent of the value of d is that
the bandwidth decides whether the bias, the variance or neither of them dominates
the mean squared error asymptotically. If the bias is very small, then the MSE is
dominated by the variance. If the biased is too large, then the variance does not play
any role. However, there is a major difference with respect to the optimal rate of the
MSE. For d < 0.1 (including short-range dependent and i.i.d. data with d = 0), there
is exactly one optimal bandwidth between the two ranges of “too small” and “too

large” bandwidths, namely bopt = Coptn
− 1

5 . In this optimal case, the contributions of
the bias and variance are of the same order. In contrast, for d > 0.1, there is a whole
range of bandwidths in between “too small” and “too large”. For all bandwidths
in this range, the MSE achieves its optimal rate, and is dominated by the variance.
The optimal rate is slower than for d < 0.1 and depends on d . However, the good
news is that one does not need to estimate one single optimal value of b, since it
is sufficient to identify a suitable range from which to choose b. This is illustrated
in Fig. 5.14. For n = 100 and different values of d , we plot the rate n−β of the
MSE as a function of α > 0. For each value of d < 0.1, the curve has a unique
minimum at α = 1

5 . For d > 0.1, there is an intermediate interval of α-values where
n−β is constant at its minimal value. This range increases in size as d increases. At
the same time, however, the whole curve is shifted upwards for larger values of d

because the rate of the optimal MSE deteriorates. An overview of the different rates
is also given in Table 5.3. Note in particular that with d ↑ 1

2 the range of optimal
bandwidths,

1

4
(1 − 2d) < α < 2d, (5.123)

converges to the largest possible range 0 < α < 1. In other words, the stronger the
long memory, the less important the choice of the bandwidth, in the sense that we
can choose from a large interval of possible bandwidths without changing the result
asymptotically. Loosely speaking, we may also say that under strong long memory
the main source of error is the variance. Intuitively, this is due to the fact that under
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Fig. 5.11 Kernel estimate of the marginal density based on n = 100 i.i.d. standard normal vari-
ables, together with the true (standard normal) density function and bandwidths b ranging from
small (top left) to large (bottom right)

long memory the whole density tends to be shifted to the left or right randomly
because the process is likely to stay on one side of the distribution for extended
periods of the time. (Note that this is also related to the notion of “long strange
segments” as considered in Sect. 1.3.6.3.) This problem does not show up in the
expected value but in the variance. Figures 5.11, 5.12 and 5.13 illustrate this by
considering p̂X for i.i.d. normal observations (Fig. 5.11), and two simulated series
of a FARIMA(0,0.4,0) process (Figs. 5.12 and 5.13). For the FARIMA process
one can observe the typical phenomenon that the whole estimated density is shifted
to the left or right, and more concentrated because—due to strong long memory—
observations tend stay within a relatively small range for a long time.

The intuitive explanation that under long memory the whole density tends to
be shifted to the left or right randomly is supported by a functional limit theorem
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Fig. 5.12 Kernel estimate of the marginal density based on n = 100 observations of a standard-
ized FARIMA(0,0.4,0) process, together with the true (standard normal) density function and
bandwidths b ranging from small (top left) to large (bottom right)

for large bandwidths first derived in Csörgő and Mielniczuk (1995a). Their result
is originally derived under the assumption of Gaussian subordination but can be
extended to linear processes. The essential part is that the pointwise convergence in
the second part of Theorem 5.17 (i.e. for large densities b � n−2d ) holds uniformly,
i.e.

sup
x0∈R

∣∣n
1
2 −dc

− 1
2

X

(
p̂X(x0)−E

[
p̂X(x0)

])− p′
X(x0)Z

∣∣ →
p

0. (5.124)

(Under Gaussian subordination such that 1{Xi ≤ x} − FX(x) has Hermite rank
m ≥ 2, Z has to be replaced by an Hermite-variable of rank m and p′

X by another
constant obtained from the Hermite expansion.) Csörgő and Mielniczuk call this
“globalization” of nonparametric density estimation because the random variable Z
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Fig. 5.13 Kernel estimate of the marginal density based on n = 100 observations of a standard-
ized FARIMA(0,0.4,0) process, together with the true (standard normal) density function and
bandwidths b ranging from small (top left) to large (bottom right)

determines for the whole estimated density function p̂X(x0) (xo ∈ R) whether and
how far it is lower or higher than the whole curve pX(x0). More specifically, if Z > 0
and b is such that the bias is negligible (see above), then we have asymptotically

p̂X(x0) > pX(x0) for x0 with p′
X(x0) > 0

and

p̂X(x0) < pX(x0) for x0 with p′
X(x0) < 0.

For Z < 0, the opposite inequalities hold.
Finally, note that a refined optimization of the bandwidth can be considered

by taking into account the higher order term b2n2d−1cX from the variance (see
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Fig. 5.14 For n = 100 and
different values of d , the plot
shows the rate n−β of the
MSE as a function of α > 0
where b = cn−α is the
bandwidth

Claeskens and Hall 2002). The IMSE is then of the asymptotic form

IMSE(b) ∼ C1(nb)
−1 +C2b

4 + n−(1−2dX)cX + b2n2d−1cX.

Although for d > 1
10 asymptotically negligible, the optimal rate of b may be chosen

by minimization of the second-order terms with respect to b. This leads to bopt =
cn− 1

5 for d < 0.3 and bopt = cn− 2
3 d for d > 0.3. This bandwidth choice involves

unknown parameters (in c for d < 0.3, and in c and the rate for d > 0.3), including
the unknown density function itself. These have to be replaced by suitable estimates.
In particular, a good method for estimating the IMSE has to be applied. This turns
out to be quite difficult. The reason can be summarized briefly as follows. Suppose
that we are able to calculate (or approximate with high accuracy) the actual error

ISE(b) =
∫ (

p̂X(x)− pX(x)
)2

dx

as a function of b. Minimizing this quantity yields an estimated optimal bandwidth
b̂opt. It turns out, however, that, in spite of the ideal situation with ISE(b) known,
b̂opt converges to bopt in probability only if d < 0.1 (see Claeskens and Hall 2002
where asymptotic results are given in a Gaussian context). Therefore, for instance,
standard cross-validation cannot be applied to processes with d > 0.1.

Example 5.18 We consider the monthly average discharge series of the Danube at
Hofkirchen (1901–1984) introduced in Sect. 1.2. Figure 5.15(a) shows a histogram
of the series together with a kernel density fit p̂X(x) and a simultaneous 95 % con-
fidence band (Fig. 5.15(a)), based on the second part of Theorem 5.17 and (5.124).
Figure 5.15(b) shows a kernel estimate of the first derivative p′

X(x) used to calculate
the confidence band. Note that the width (or rather height) of the band reduces to
zero where p′

X(x) = 0. This should not be interpreted as absolute certainty about
the value of the density at that point but rather as a limitation of the asymptotic
approach based on the first order approximation in (5.124).
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Fig. 5.15 Histogram of the monthly average discharge series of the Danube at Hofkirchen
(1901–1984), together with a kernel density fit p̂X(x) and a simultaneous 95 % confidence
band (a). Figure (b) shows a kernel estimate of the first derivative p′

X(x)

We conclude this section with some bibliographical comments. Wu and Miel-
niczuk (2002) present general limit theorems for p̂X(x) − E[p̂X(x)] in the pres-
ence of LRD. Previous asymptotic results can be found, for instance, in Cheng and
Robinson (1991), Csörgő and Mielniczuk (1995a) (for subordinated processes and
large bandwidths). The smoothing dichotomy was shown for the first time in Ho
(1996) for subordinated Gaussian and in Honda (2000) for linear processes. See
also Hidalgo (1997) and Gajek and Mielniczuk (1999) for multivariate extensions.
Asymptotic results for kernel density estimation in an errors-in-variables setting
were derived in Kulik (2008b). Hall and Hart (1990a) were the first to establish
the formula for the mean squared error of the kernel density estimator; see also
Mielniczuk (1997) and Estévez and Vieu (2003). Properties of empirical bandwidth
choice were studied in Hall et al. (1995b) and Claeskens and Hall (2002).

5.14.3 Density Estimation Based on the Cumulant Generating
Function

An alternative approach to estimating the marginal distribution of a linear process
Xt = ∑∞

j=0 aj εt−j is suggested in Ghosh and Beran (2006). The idea is to exploit
linearity directly using the cumulative distribution function. The main advantage of
linearity is that, once the coefficients aj are given, the marginal distribution of Xt

is fully determined by the distribution of εt . Moreover, from Sects. 5.5 and 5.9 we
know that, under some regularity conditions, the coefficients aj may be estimated
with good accuracy. It may therefore be possible to obtain fairly good estimates
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ε̂t of the innovations εt , though a detailed analysis would be required in specific
situations.

We consider the case of long memory with aj ∼ caj
d−1 (as j → ∞) for some

0 < d < 1
2 , and assume that the moment generating function mε(u) = E[exp(uε)]

of ε exists in an open neighbourhood −δ < u < δ of the origin. Let mX(u)

be the moment generating function of Xt and denote by  ε(u) = logmε(u) and
 X(u) = logmX(u) the corresponding cumulant generating functions. Then, due to
independence of the ε’s, we have

 X(u) =
∞∑

j=0

 ε(uaj ). (5.125)

Suppose now that εt (t = 1, . . . , n) are known (or estimated with sufficient accu-
racy). Then the moment generating function of ε can be estimated by the empirical
moment generating function

m̂ε(u) = n−1
n∑

t=1

exp(uεt ).

For the cumulant generating function of ε, we then have the estimate

 ̂ε(u) = log m̂ε(u).

Using (5.125), we then may estimate the corresponding quantities for Xt by

m̂X,linear(u) =
Nn∏

j=0

m̂ε(uaj ),  ̂X,linear(u) =
Nn∑

j=0

 ̂ε(uaj ) (5.126)

where Nn → ∞. (Note that in general, setting Nn = ∞ is not a viable option be-
cause the variance becomes infinite.) An estimate of the density function pX can
then be obtained by Laplace inversion of m̂X . Note that an analogous approach can
be based on the characteristic function which would have the advantage that no mo-
ment conditions are required (see, e.g. Feuerverger and Mureika 1977; Csörgő 1981,
1986; Murota and Takeuchi 1981; Ghosh and Ruymgaart 1992; Gürtler and Henze
2000 for asymptotic results and ideas based on the empirical characteristic func-
tion in the i.i.d. context). For limit theorems and statistical methods based on the
empirical moment generating function in the i.i.d. setting, see, e.g. Csörgő (1982),
Epps et al. (1982), Feuerverger (1989), Baringhaus and Henze (1991, 1992), Ghosh
(1996), Ghosh and Beran (2000, 2006), Kalliorasa et al. (2006).

To see whether using the linear structure may improve estimation, one can com-
pare the corresponding mean squared errors

MSE
(
 ̂X(u)

) = E
[(
 ̂X(u)−  X(u)

)2]
,

MSE
(
 ̂X,linear(u)

) = E
[(
 ̂X,linear(u)−  X(u)

)2]
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where

 ̂X(u) = log m̂X(u), m̂X(u) = n−1
n∑

t=1

exp(uXt ).

For  ̂X(u) the asymptotic variance and distribution follows directly from limit the-
orems for sums discussed in Sect. 4.2. In particular, we have

var
(
 ̂X(u)

) = w(u)n2d−1 + op
(
n2d−1)

where

w(u) = σ 2
ε c

2
au

2

d(d + 1)

[∫ ∞

0
xd−1(1 + x)d−1 dx − 1

2
(1 − 2d)−1

]
.

Since the bias is of the order O(n2d−1), its square is asymptotically negligible and

MSE
(
 ̂X(u)

) = w(u)n2d−1 + o
(
n2d−1). (5.127)

The bias of  ̂X,linear(u) depends on Nn, namely

E
[
 ̂X,linear(u)

]−  X(u) = B(u)N2d−1
n + o

(
N2d−1

n

)

with

B(u) = − σ 2
ε c

2
au

2

2(1 − 2d)
.

The variance is of the form

var
(
 ̂X,linear(u)

) = N2d
n n−1D(u)

with

D(t) = σ 2
ε c

2
au

2

d2
.

Thus, the MSE can be approximated asymptotically by

MSE
(
 ̂X,linear(u)

) ≈ B2(u)N4d−2
n +D(u)N2d

n n−1. (5.128)

The asymptotically optimal choice of Nn is therefore given by

Nn = Coptn
1

2−2d

with

Copt =
(

c2
au

2d

4(1 − 2d)

) 1
2−2d

.
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The optimal MSE is then of the order

MSEopt
(
 ̂X,linear(u)

) = O
(
n

2d−1
1−d

)
.

Comparing (5.127) with (5.128) and assuming that Nn = cnα for some α > 0, we
see that the first MSE is of a larger order than the second one if α(4d − 2) < 2d − 1
and 2αd − 1 < 2d − 1. This is equivalent to

1

2
< α < 1.

Thus, we have the following result (Ghosh and Beran 2006).

Theorem 5.18 Let Xt be a linear process as defined above and Nn = cnα for some
1
2 < α < 1. Then there are constants 0 < δ,q(u) < ∞ such that

lim
n→∞n−δ

{
MSE( ̂X(u))

MSE( ̂X,linear(u))

}
= q(u).

The result means that, as long as Nn tends to infinity at a hyperbolic rate that
is faster than

√
n but slower than n, the estimator  ̂X(u) has asymptotically an in-

finitely larger MSE than  ̂X,linear(u). The general reason is that  ̂X,linear(u) exploits
the additional information of linearity and the good convergence of  ̂ε . By limit-
ing the number of terms in the sum to Nn = o(n), the variance is kept low. At the
same time, the bias is controlled by the condition Nn � √

n. The optimal choice of
Nn balances the bias and variance in the MSE. Note that in the case of short mem-
ory with exponentially decaying coefficients aj , the possibility of balancing bias
and variance disappears because the variance dominates asymptotically as long as
Nn → ∞. It is therefore no longer possible to improve the rate of convergence by a
smart choice of the sequence Nn.

5.15 Tail Index Estimation

Suppose Xt ∈R (t ∈N) have a marginal distribution FX such that

lim
x→−∞|x|αFX(x) = C (5.129)

for some finite constant. Consistent estimation of the tail index α is possible under
fairly general conditions (see, e.g. Embrechts et al. 1997), for instance, by using the
property that equation (5.129) implies conditional Pareto type behaviour in the sense
that P(X > c+ x|X > c) ∼ x−α as c → ∞ (for the Pareto distribution with density
αx−α−1 (x > 1) this relation is true exactly for any c > 1). Best known is the clas-
sical Hill estimator discussed previously (see, e.g. Hill 1975) that makes use of the
Pareto approximation for a certain number kn of upper order statistics with kn → ∞
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but kn/n → 0. For the extended literature on such methods, mainly in the i.i.d. or
weakly dependent setting, see, e.g. Mason (1982), Hall (1982), Davis and Resnick
(1984), Csörgő and Mason (1985), Csörgő et al. (1985), Häusler and Teugels (1985),
Deheuvels et al. (1988), Csörgő and Viharos (1997), De Haan and Peng (1998), De
Haan and Resnick (1998), Hsing (1991), Resnick and Starica (1995, 1998), Dekkers
and de Haan (1989), Rootzén et al. (1998), Drees (2000), Hall and Welsh (1984),
Hall (1990), Drees (1998), Beirlant et al. (2006), Resnick (1997, 2007). We are not
aware of any results for the Hill estimator in the case of linear long-memory mod-
els. Since kn diverges at a slower rate than the number of observations, consistent
estimation of α comes at the price of a slower rate of convergence. For instance, for
i.i.d. data, the variance of α̂ is asymptotically proportional to k−1

n instead of n−1.
A further problem is that for a given data set with a fixed sample size n and unknown
marginal distribution, it is difficult to decide which concrete value of kn to choose
(for instance, to minimize the mean squared error of α̂). This makes estimation of
α quite unreliable for small to moderate sample sizes. As an alternative, Beran and
Schell (2010) proposed a method in the spirit of robust statistics (also see Beran
1997). The approach is consistent under an ideal “central” model, and the asymp-
totic bias is bounded under deviations from this model. At the same time, the vari-
ance of α̂ achieves the parametric rate. To be more specific, suppose, for instance,
that the “ideal model” has the Pareto distribution. If Xt (t = 1,2, . . . , n) are i.i.d.
and exactly Pareto distributed with α = α0, then the derivative of the log-likelihood
function with respect to α is equal to nα−1 − ∑n

t=1 logXt , so that the maximum
likelihood estimator of α0 can be understood as a solution of the equation

α

n∑

t=1

logXt − n =
n∑

t=1

[α logXt − 1] = 0. (5.130)

Robustness against deviations from the Pareto distribution can be achieved by
bounding the score function α logXt − 1. The simplest version of this idea is to
replace α logXt − 1 in (5.130) by

ψv,u(x,α) = [
α log(x)− 1

]u
v
− E

{[
α log(X)− 1

]u
v

}
(5.131)

= [
α log(x)− 1

]u
v
−C(α;v,u) (5.132)

where [y]uv = max{v,min(y,u)} and the expectation is taken with respect to the
Pareto distribution. Note that, by subtracting C(α;u,v), we make sure that α̂ is
consistent under the Pareto assumption. If the true distribution is not exactly Pareto,
then α̂ generally does not converge to the true value of α0. However, if ψv,u is
bounded sufficiently in the range of x-values where deviations from the Pareto dis-
tribution is most noticeable, then the asymptotic bias of α̂ is small (see, e.g. Huber
1981; Hampel et al. 1986). At the same time, the variance of α̂ is proportional to n−1

because all observed values are used. For small sample sizes, this robust procedure
therefore tends to have a smaller mean squared error than Hill type estimators (for
illustrative examples, see Beran and Schell 2010). Note that in view of the valid-
ity of the Pareto approximation for large conditional quantiles, the most important
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deviations occur for small quantiles. The lower truncation parameter v is therefore
more important. Moreover, a possible modification of ψv,u is to use more narrow
truncation intervals [v,u] for smaller quantiles.

In the i.i.d. setting, the asymptotic distribution of the estimator based on ψv,u

can be obtained by standard approximations for M-estimators (Beran and Schell
2010; Serfling 1980). Here, we consider the case of a long-memory series with long-
tailed marginals. Although the joint log-likelihood of X1, . . . ,Xn is much more
complicated, the M-estimator above can still be applied. Nothing changes with re-
spect to the bias. However, limit theorems for the empirical process summarized in
Sect. 4.8.4 imply a completely different asymptotic distribution of α̂ − E(α̂). The
following results are from Beran et al. (2012).

First of all, the process Xt has to be defined appropriately. The simplest model is
a linear process with i.i.d. symmetric innovations εt . Thus, let

Xt =
∞∑

j=0

aj εt−j (5.133)

where εt are i.i.d. symmetric (standard) α-stable (SαS) with characteristic function
ϕε(u) = E[exp(iuε)] = exp(−|u|α) for some α = α0 (1 < α0 < 2) and weights aj
such that

aj ∼ caj
d−1 (5.134)

as j → ∞, with ca 
= 0 and

0 < d < 1 − α−1
0 . (5.135)

Note that Xt inherits the tail index from the innovation process εt . Since the distri-
bution Fε of εt is (standard) SαS, we have

lim
x→−∞|x|αFε(x) = lim

x→∞xα
(
1 − Fε(x)

) = Cα (5.136)

with

Cα = sin(πα2 )Γ (α)

π
= 1 − α

2Γ (2 − α) cos(πα2 )
(5.137)

(see Nolan 2011, Theorem 1.12; Samorodnitsky and Taqqu 1994). The assumption
on d implies that

∑ |aj | = ∞, Aα := ∑ |aj |α < ∞, and the process Xt is well-
defined (in the sense of convergence in probability) with a marginal distribution FX

satisfying the tail condition

lim
x→−∞|x|αFX(x) = lim

x→∞xα
(
1 − FX(x)

) = CαAα. (5.138)
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More exactly, FX is SαS with scale parameter γ = A
1/α
α (we will use the notation

Xt ∼ Sα(0, γ,0)). This can be seen by considering the characteristic function

ϕX(u) = E

[
exp

(
iu

∞∑

j=0

aj εt−j

)]
=

∞∏

j=0

E
[
exp(iuaj εt−j )

]

=
∞∏

j=0

ϕε(aju) =
∞∏

j=0

exp
(−|aj |α|u|α)

= exp

(
−|u|α

∞∑

j=0

|aj |α
)

= exp
(−γ α|u|α)

= ϕγε(u).

Then, as discussed in detail in Sect. 4.8.4, we have

n1−H
(
Fn(x)− FX(x)

) ⇒ ca

d
pX(x)Z̃H,α(1),

where H = d + α−1, pX(x) = F ′
X(x) and Z̃H,α(1) is a symmetric α-stable random

variable with scale η, where

η =
(∫ 1

−∞
{
(1 − v)d − (−v)d+

}α
dv

)1/α

.

Here we use the notation x+ = max(0, x) and x− = −min(0, x), and ⇒D(R) for

weak convergence of random processes in the space of càdlàg functions on R =
[−∞,∞] under the sup-norm metric.

Since Xt ∼ Sα(0,A
1/α
α ,0), the standardized variables Yt = Xt/A

1/α
α are stan-

dard SαS (we will write in short Xt/A
1/α
α ∼ SαS). It is well-known that for a SαS

random variable Y the Pareto approximation for the conditional distribution given
Y > c holds, i.e. P(Y > c+x|Y > c) ∼ x−α (c → ∞), and the analogous statement
can be made for the left tail. The M-estimator introduced above for i.i.d. data can
therefore be used for the right and left tail separately as follows. For the right tail,
we define, for any −∞ ≤ v < u ≤ ∞,

ψ+
v,u(x,α) = [

α log(x)− 1
]u
v
1{x > 0} −E

([
α log(Xt )− 1

]u
v
1{Xt > 0}) (5.139)

= [
α log(x)− 1

]u
v
1{x > 0} −C(α,v,u). (5.140)

The analogous function for the left tail is

ψ−
v,u(x,α) = [

α log(−x)− 1
]u
v
1{x < 0} −E

([
α log(−Xt)− 1

]u
v
1{Xt < 0})

= [
α log(−x)− 1

]u
v
1{x < 0} −C(α,v,u). (5.141)
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Note that ψ−
v,u(x,α) = ψ+

v,u(−x,α). An estimator T +
n of α can now be defined by

setting T +
n = [τ0]2

1 = max{1,min(2, τ0)} where τ0 solves the equation

λ+
Fn
(τ ) =

n∑

t=1

ψ+
v,u(Xt , τ ) = 0. (5.142)

The analogous definition is used for the left-tail estimator T −
n with ψ+

v,u replaced by
ψ−
v,u. Note that by definition T +

n and T −
n are functionals of the empirical distribution

function Fn. The corresponding functionals of FX are solutions of the equations

λ±
F (τ) =

∫

R

ψ±
v,u(x, τ ) dFX(x) = 0. (5.143)

In general, the constant C(α,v,u) has to be evaluated numerically. In the special
case where v = −∞ and u = ∞, we have

C(α,−∞,∞) = Ce(1 − α)+ logA− 1

2
(5.144)

with

E
(
logX+

t

) = E
(
logX−

t

) = Ce

2

(
1

α
− 1

)
+ 1

2α
logAα (5.145)

and

Ce = lim
n→∞

(
n∑

i=1

1

i
− logn

)
= 0.577215 . . . (5.146)

being the Euler constant (Zolotarev 1986, p. 215). The results in Sect. 4.173 imply

n−H
n∑

t=1

ψ+
v,u(Xt ,α) →

d
−cah

+Z̃H,α(1), (5.147)

n−H
n∑

t=1

ψ−
v,u(Xt ,α) →

d
−cah

−Z̃H,α(1), (5.148)

where H = d + 1
α

is the self-similarity parameter, Z̃H,α(1) is in both cases the same
standard SαS random variable with the scale η and

h± = −
∫

R

ψ±
v,u(x,α)pX

′(x) dx =
∫

R

pX(x)dψ
±
v,u(x,α)

=
∫

R

pX(x)
∂

∂x
ψ±
v,u(x,α)dx. (5.149)
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The asymptotic distribution of T +
n and T −

n then essentially follows by standard
arguments for M-estimators:

n1−H
(
T ±
n − α

) →
d

h±

μ±(α)
caZ̃H,α(1)

where

μ±(α) = E
[
ψ̇±
v,u(Xt ,α)

] =
∫

R

ψ̇±
v,u(x,α)pX(x)dx (5.150)

and ψ̇±
v,u(x,α) = ∂/∂αψ±

v,u(x,α). Because of the symmetry of the underlying SαS-
distribution, there is a direct relationship between h+ and h−, and μ+ and μ−,
respectively. Note that ψ+

v,u(x,α) = ψ−
v,u(−x,α), pX(x) is an even and pX

′(x) an
odd function. This implies

h− = −
∫ ∞

−∞
ψ−
v,u(x,α)pX

′(x) dx = −
∫ ∞

−∞
ψ+
v,u(−x,α)pX

′(x) dx

= −
∫ ∞

−∞
ψ+
v,u(x,α)pX

′(−x)dx =
∫ ∞

−∞
ψ+
v,u(x,α)pX

′(x) dx

= −h+

and

μ+(α) = E
[
ψ̇+
v,u(Xt ,α)

] =
∫ ∞

0
ψ̇+
v,u(x,α)pX(x)dx (5.151)

=
∫ 0

−∞
ψ̇+
v,u(−x,α)pX(x)dx =

∫ 0

−∞
ψ̇−
v,u(x,α)pX(x)dx (5.152)

= μ−(α). (5.153)

Thus,

n1−H
(
T +
n − α

) →
d

h+

μ+(α)
caZ̃H,α(1)

whereas

n1−H
(
T −
n − α

) →
d

− h+

μ+(α)
caZ̃H,α(1)

with Z̃H,α(1) denoting the same random variable.
On the average, each of the two estimators uses about half of the observed values

only. One may therefore try to obtain an improved estimator by combining T +
n and

T −
n . Because of the symmetry, the logical choice would be the average T̄n = 1

2 (T
+
n +

T −
n ). However, the result above implies that n1−H (T̄n − α) converges to zero in

distribution. This means that the rate of convergence of T̄n is faster than for the
individual estimators T +

n and T −
n , respectively. Thus, combining the two estimators
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leads to a method with much better asymptotic properties. Unfortunately, there is
currently no limit theorem available in the literature for T̄n. As a second best choice
one may therefore take another convex combination κT −

n + (1 − κ)T +
n with κ ∈

[0,1] \ { 1
2 }. This is asymptotically equivalent to defining the M-estimator Tκ,n =

[τκ,n]2
1 where τκ,n solves the equation

λκ,Fn(τ ) =
n∑

t=1

ψκ;v,u(Xt , τ ) = 0 (5.154)

and

ψκ;v,u(x,α) = κψ−
v,u(x,α)+ (1 − κ)ψ+

v,u(x,α). (5.155)

The corresponding constants are

μ(α) = E
[
ψ̇κ;v,u(Xt ,α)

] = μ+(α) (5.156)

and

h = −
∫

R

ψκ;v,u(x,α)pX
′(x) dx = κh− + (1 − κ)h+ = (1 − 2κ)h+. (5.157)

Since μ is the same as before, the constant in the asymptotic distribution of Tκ,n is
smaller (in absolute value) by the factor |1 − 2κ|:

n1−H (Tκ,n − α)⇒ −δκZ̃H,α(1) (5.158)

with

δκ = (1 − 2κ)
h+ca

μ+(α0)
.

Finally, note that estimating α for the left and right tail separately can also be
used for testing the null hypothesis that the tail index is the same on both sides. For
instance, suppose that Xt = X+

1,t −X−
2,t with

X1,t =
∞∑

j=0

aj ε1,t−j , X2,t =
∞∑

j=0

aj ε2,t−j (5.159)

where εj,i are i.i.d. SαS with α = αj (j = 1,2). A natural statistic for testing
H0 : α1 = α2 is given by ΔT = T +

n − T −
n . However, in order to obtain a unique

distribution under H0, one has to narrow down the null hypothesis to a more con-
crete situation. For example, under H0 : X1,t = X2,t (t ∈ Z) (with α = α1) we have

n1−HΔTn⇒
(

2h+ca
μ+(α1)

)
Z̃H,α1(1), (5.160)
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where now H = d+α−1
1 . Another possibility is that the two processes {X1,t ; t ∈ Z},

{X2,t ; t ∈ Z} are independent of each other. Then, we obtain, under the assumption
that α1 = α2,

n1−HΔTn⇒
(

21/α1h+ca
μ+(α1)

)
Z̃H,α1(1). (5.161)

For further details, see Beran et al. (2012).

5.16 Goodness-of-Fit Tests

Let Xt = ∑∞
j=0 aj εt−j be a linear process with aj ∼ caj

d−1 (j → ∞), and such
that the assumptions of Theorem 4.33 hold. We denote by F(x) = P(Xt ≤ x) and
pX = F ′ its marginal distribution and density function, respectively. Suppose we
would like to test the null hypothesis H0 that F(x) belongs to a certain class of distri-
butions F0 against the alternative that F /∈ F0. Theorem 4.33 implies that under H0
test statistics based on the empirical distribution function Fn(x) = n−1 ∑1{Xt ≤ x}
converge to distributions that are much simpler than for short-memory series. The
reason is that the standardized empirical process degenerates to a random variable
multiplied by a constant that depends on x.

Let us start with the simplest situation of a simple hypothesis F0 = {F0}, i.e. we
test whether F is equal to one specific distribution F0. Consider, for instance, the
Kolmogorov–Smirnov statistic

TKS = sup
x∈R

∣∣Fn(x)− F0(x)
∣∣.

Theorem 4.33 implies that

n
1
2 −d

√
d(2d + 1)c

− 1
2

γ TKS →
d

sup
x∈R

pX(x) · |Z| (5.162)

where Z is a standard normal variable and cγ is the constant in γX(k) ∼ cγ k
2d−1

(k → ∞). Thus, H0 is rejected at the level of significance α if

TKS > nd− 1
2

√
cγ

d(2d + 1)
sup
x∈R

pX(x) · z1− α
2

where z1− α
2

is the (1 − α
2 ) standard normal quantile. In practice, testing a simple

hypothesis rarely happens. Instead, one usually needs to test whether F belongs to
a certain parametric family of distributions characterized by an unknown parameter,
say τ . For instance, we may want to test whether F is a normal distribution with
unknown mean and variance τ = (μX,σ

2
X). The Kolmogorov–Smirnov statistic is

then given by

TKS = sup
x∈R

∣∣Fn(x)− F0(x; τ̂ )∣∣
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where τ̂ is a consistent estimator of τ . The problem that complicates inference is
now that estimating τ often changes the asymptotic distribution. This is also the
case for i.i.d. and short-range dependent processes. However, under long memory
even the rate of convergence may change. This has been discussed in Theorem 4.34
for the case where τ = μ is estimated by the sample mean. As illustrated by this
theorem, and first discussed in Beran and Ghosh (1990, 1991), estimating μ actu-

ally improves the rate of convergence. If 0 < d < 1
4 , then the rate improves to n− 1

2

which is the same as under independence or short memory. The limiting distribu-

tion of n− 1
2 TKS is complicated. However, due to the n− 1

2 -rate, statistical inference is
possible because, for instance, blockwise bootstrap procedures are applicable (pos-
sibly under some additional regularity conditions). For 1

4 < d < 1
2 , the rate improves

to n2d−1, and we have

n1−2d
√
d(2d + 1)c

− 1
2

γ TKS →
d

sup
x∈R

∣∣p′
X(x −μ)

∣∣ ·
∣∣∣∣Z2 + 1

2
Z2

∣∣∣∣ (5.163)

where Z and Z2 are uncorrelated variables, Z is standard normal and Z2 is the
value of the Hermite–Rosenblatt process at time 1 (see Theorem 4.34). The rate im-
proves further if, for instance, the variance is estimated by the sample variance (see
Beran and Ghosh 1990, 1991; Ho 2002; Kulik 2009). Analogous results can also
be obtained for subordinated processes. Inference based on (5.163) is, of course,
more complicated than using (5.162). Under suitable regularity conditions, one may
avoid using the asymptotic formulas directly by applying suitable bootstrap proce-
dures (note, however, that traditional blockwise bootstrap methods do not work for
d > 1

4 ). For instance, if Xt is generated by Gaussian subordination, then a suitable
sampling window bootstrap may be designed (see Sect. 10.5).

Analogous results can be obtained for other goodness-of-fit tests for the marginal
distribution. Interesting is, for example, the empirical characteristic function

mn(u) = n−1
n∑

t=1

exp

(
iu

Xt −μ

σ

)
= n−1[Tre(u)+ iTim(u)

]

with

Tre(u) = n−1
n∑

t=1

cos

(
iu

Xt −μ

σ

)
,

Tim(u) = n−1
n∑

t=1

sin

(
iu

Xt −μ

σ

)
.

Suppose, for example, that under the null hypothesis Xt is normally distributed, and
we assume μ and σ to be known. Since cos(·) is even and sin(·) is odd, the real and
imaginary parts have different rates of convergence. The Hermite rank of the sine is

one so that n
1
2 −dTim converges in distribution to a normal random variable. For the

cosine, the Hermite rank is two so that n1−2d [Tre −E(Tre)] converges to a constant
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times an Hermite–Rosenblatt variable (Rosenblatt process at time 1), provided that
1
4 < d < 1

2 . On the other hand, if 0 < d < 1
4 , then

√
n[Tre − E(Tre)] converges to

a centred normal variable. More generally, one can show functional convergence

of the processes ζim(u) = n
1
2 −dTim(u), and ζre(u) = n1−2d [Tre(u) − E(Tre(u))] or

ζre(u) = √
n[Tre(u)−E(Tre(u))] in C[ulow, uup] equipped with the supremum norm

and ulow, uup finite (Beran and Ghosh 1991). If μ and σ are estimated by x̄ and
s, respectively, all rates (except

√
n) improve and the improvement as well as the

limiting processes depend on which subinterval d is in.
Another question in the context of goodness-of-fit is whether the assumed model

for the spectral density may be correct. Thus we wish to test the null hypothesis
H0 : fX ≡ f0 where f0 is a fixed spectral density against the alternative H1 : fX 
≡
f0. More generally, f0 may depend on a finite parameter vector ϑ that has to be
estimated. We will assume that Xt is a linear process. For short-memory time series,
Milhoj (1981) suggested the statistic

TMilhoj = B−2
n

∫ π

−π

(
IX,n(λ)

f0(λ)

)2

dλ

with

Bn =
∫ π

−π

IX,n(λ)

f0(λ)
dλ

and showed that under H0, and some regularity conditions, the standardized statistic√
n(T − π−1) converges in distribution to an N(0,2π−2) variable. The application

of this statistics in the case of long memory is discussed in Beran (1992). (Deo and
Chen 2000) pointed out that the asymptotic distribution of T and of an approxi-
mation T ∗ where integrals are replaced by Riemann sums at Fourier frequencies is
not the same. While TMilhoj is related to the Box–Pierce portmanteau statistic (Box
and Pierce 1970), an alternative test based on an information measure introduced in
Mokkadem (1997) is studied in Faÿ and Philippe (2002). As a modification of the
Kulback–Leibler divergence, Mokkadem (1997) defines an information theoretic
quantity that measures in how far two spectral densities f and g differ by

M(f,g) = log

(
1

2π

∫ π

−π

f (λ)

g(λ)
dλ

)
− 1

2π

∫ π

−π

log
f (λ)

g(λ)
dλ.

Note that M ≥ 0 with equality if and only if f ≡ g. Also note that M is scale
invariant since log((2π)−1

∫
σ dλ) − (2π)−1

∫
logσ dλ = 0. As in the context of

maximum likelihood estimation (Sect. 5.5), we will use the notation ϑ = (σ 2
ε , θ) =

(σ 2
ε , d, θ2, . . . , θp). Under H0, we assume the spectral density to be of the form

f (λ;ϑ) = σ 2
ε

2π

∣∣1 − e−iλ
∣∣−2d

f∗(λ; θ2, . . . ) = σ 2
ε

2π
g(λ; θ)
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and such that σ 2
ε > 0, θ is in a compact subset of Θ0 = [0, 1

2 )×R
p−1. The deviation

of a spectral density fX(λ) from f (λ;ϑ) is then measured by

S
(
fX,f (λ;ϑ)) = S

(
fX,g(λ; θ)) = inf

ϑ∈ΘM
(
fX,g(λ; θ)). (5.164)

The true density fX is, however, not known. To define a test statistic based on ob-
servations X1, . . . ,Xn, Fay and Philippe propose to first apply tapering and pooling.
For instance, for a taper defined by

wn,t = 1√
2

(
1 − ei

2π
n
t
)

(t = 1,2, . . . , n)

we write

d(1)
n (λj ) = 1√

2πn

n∑

t=1

wn,tXte
−itλj

(
λj = 2πj

n
, j = 1,2, . . . , n

)

and the tapered periodogram is I (1)n = |d(1)
n |2. Pooling is done by dividing the range

[0,π] into Kn = [ 1
2 (n− 1)/(m+ 1)] disjoint intervals [λ(k−1)(m+1)+1, λk(m+1)] and

taking the average of m tapered periodogram values in each interval. Thus, denoting
by

λ̄k = (m+ 1)
2π

n

(
k − 1

2

)

the middle of each interval, we define

Īn(λ̄k) := m−1
k(m+1)−1∑

j=(k−1)(m+1)+1

∣∣d(1)
n (λj )

∣∣2 (k = 1,2, . . . ,Kn),

where Kn = [ 1
2 (n−1)/(m+1)]. This means that the range [0,π] is divided into Kn

disjoint intervals [λ(k−1)(m+1)+1, λk(m+1)−1] containing m Fourier frequencies, and
we take the average of the tapered periodogram values in each interval. Replacing
fX in (5.164) by Īn and approximating the integral by a Riemann sum leads to

S̃
(
Īn, g(λ; θ)) = log

(
K−1

n

Kn∑

k=1

Īn(λ̄k)

g(λ̄k; θ)

)
−K−1

n

Kn∑

k=1

log

(
Īn(λ̄k)

g(λ̄k; θ)
)
.

We give a brief highly simplified account of results derived in Faÿ and Philippe
(2002) for m ≥ 5. If H0 is true and θ is equal to the correct parameter θ0, then under
regularity conditions

E
[
S̃
(
Īn, g

(
λ; θ0))] = μm + o

(
n− 1

2
)

where

μm = −E
[
log

(
2πĪZn (λ̄k)

)]
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Fig. 5.16 For the deseasonalized monthly average discharge series of the Danube at Ceatal Izmail
(m3/s) (1921–1984), introduced in Sect. 1.2, the figure displays, in log–log-coordinates, the raw
periodogram I (λj ) at Fourier frequencies, the tapered pooled periodogram Īn(λ̄k) (large circles)
at the averaged frequencies λ̄k and the spectral densities of a FARIMA(1, d,0) MLE fit (full line)
and a FARIMA(0, d,0) MLE fit (dashed line)

with Ī Zn (λ̄k) calculated from n i.i.d. standard normal variables Z1, . . . ,Zn. This can
be extended to the case where θ0 is replaced by a

√
n-consistent estimator and,

under suitable regularity conditions, one obtains a central limit theorem of the form

TFP = √
Kn

[
S̃
(
Īn, g(λ; θ̂ ))−μm

] →
d

N
(
0, σ 2

FP

)

with

σ 2
FP = var

{
2πĪZn (λk)− log

(
2πĪZn (λk)

)}
.

(Note that the right-hand side is the same for all k.) Applying the test, one has to
bear in mind, however, that it is highly sensitive to “outliers” in the spectral domain.
This may be a desirable feature when it comes to power considerations. However,
the pooled tapered periodogram with the taper as defined above may sometimes
yield an outlying value for the lowest frequency (or possibly even a few of the
lowest frequencies). It may therefore advisable to remove the lowest or a few of the
lowest frequencies first. This is illustrated by the following example.

Example 5.19 Suppose the parametric family consists of FARIMA(p, d, q) models
with d ∈ [0, 1

2 ), p ≤ p0, q ≤ q0 and p0, q0 fixed. In view of asymptotic theory,
we may fit a FARIMA(p0, d, q0) process by one of the ML or Whittle methods
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discussed in Sect. 5.5. For m = 5 one obtains μ5 ≈ 0.140 and σ 2
FB ≈ 0.378 (see

Dette and Sen 2010). Thus

TFP = √
Kn

[
S̃
(
Īn, g(λ; θ̂ ))− 0.14

]

and the null hypothesis that fX belongs to the FARIMA family with p ≤ p0 and
q ≤ q0 is rejected if

|TFP| > √
0.378z1− α

2

where z1− α
2

is the (1 − α
2 )-quantile of the N(0,1) distribution. For α = 0.05 the

critical limit is about 1.2. To illustrate the method, we consider the deseason-
alized monthly average discharge series of the Danube at Ceatal Izmail (m3/s)
(1921–1984) introduced in Sect. 1.2. Figure 5.16 displays, in log–log-coordinates,
the raw periodogram IX,n(λj ) at Fourier frequencies, the tapered pooled peri-
odogram Īn(λ̄k) (large circles) at the averaged frequencies λ̄k , the spectral density
of a FARIMA(1, d,0) MLE fit (full line) and also a FARIMA(0, d,0) fit (dashed
line). The MLE fit (d̂ = 0.146, with a 95 %-confidence interval [−0.044,0.336],
ϕ̂1 = 0.614, [0.423,0.806]) is apparently good when compared to the raw peri-
odogram. There is, however, a problem with the tapered periodogram at the lowest
frequency λ̄1 since the value is far from all the other values. This has to do with
the specific taper (1 − exp(i2πtn−1)). Calculating TFP using all frequencies indeed
yields a surprisingly large value of about 50. This contradicts the visually excel-
lent fit, and is entirely due to the outlying value of Īn(λ̄1). If λ̄1 is omitted in the
calculation, then we obtain TFP ≈ 1.145 which corresponds to a p-value of about
0.25. Thus, there is no evidence for a departure from a FARIMA(1, d,0) model. In
contrast, if a FARIMA(0, d,0) model is fitted instead, then the value of TFP after
omitting λ̄1 is equal to 7.219 which is significant at any reasonable level. This con-
firms the visual impression in Fig. 5.16 that a straight line (in log–log-coordinates)
is not appropriate.

Finally, note that it can also be shown that TFP is asymptotically normal under
local (Faÿ and Philippe 2002) and fixed alternatives (Dette and Sen 2010); however,
with a different expected value and variance. Another goodness-of-fit test for the
autocovariance structure is proposed, for example, in Delgado et al. (2005).



Chapter 6
Statistical Inference for Nonlinear Processes

In this section, we consider nonlinear processes with long memory. We will
mainly focus on volatility models: stochastic volatility (see Definitions 2.3–2.4
and Sect. 4.2.6 for limit theorems), ARCH(∞) processes (see Definition 2.1 and
Sect. 4.2.7) and LARCH(∞) models (see (2.47) and (2.48), and Sect. 4.2.8). Sta-
tistical inference for traffic models is not well developed yet (see Faÿ et al. 2006,
2007; Hsieh et al. 2007 for some results in this direction).

Volatility models considered in this book have the general form Xt = ξtσt , where
ξt (t ∈ Z) is an i.i.d. sequence and σt depends on the past (ξt−1, ξt−2, . . .) and/or a
latent process ζt . In particular, in the stochastic volatility model (SV),

σt = σ(ζt ), ζt =
∞∑

j=1

aj εt−j ,

where (ξt , εt ) (t ∈ Z) is a sequence of i.i.d. random vectors. If furthermore σ(x) =
exp(x) and ζt is a long-memory Gaussian sequence independent of the i.i.d. centred
sequence ξt , then the model is called LMSV.

If

σt = b0 +
∞∑

k=1

bkXt−k

and bj decay slowly like a constant times jd−1 (d ∈ (0,1/2)), then we obtain a
LARCH(∞) model with long memory (recall that σt can be expressed explicitly in
terms of ξt−1, ξt−2, . . .). Finally, if

σ 2
t = b0 +

∞∑

k=1

bkX
2
t−k,

∑∞
k=1 |bk| < ∞, we obtain a second-order stationary ARCH(∞) sequence. Other

models, e.g. FIGARCH, are not discussed in this chapter.
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As in Chap. 5, we start our discussion with location estimation. In this case, the
stochastic volatility (like LMSV) and LARCH(∞) models follow a similar pattern.
The asymptotic distribution of the sample mean is not affected by long memory. The
same applies to M-estimators, as long as the function ψ that defines the M-estimator
is antisymmetric and the distribution of the noise variables ξt is symmetric. Other-
wise, asymptotic properties of M-estimators are influenced by long memory. Such
results were obtained in Beran (2006) and Beran and Schützner (2008), and are
presented in Sects. 6.1.1 and 6.2.1, respectively, for SV and LARCH models. Fi-
nally, in Sect. 6.3.1, we discuss location estimation for ARCH(∞) processes. At the
moment, a theory for M-estimators is not available.

As for estimation of memory parameters, one may note that long memory ap-
pears (if at all) in the squares. It is therefore tempting to apply methods described
in Chap. 5 to the squared sequence X2

t . However, it may be more natural to di-
vide volatility processes into two groups: stochastic volatility-type models (with a
possible leverage) and LARCH(∞)-type models.

In the first case, direct maximum likelihood estimation is not always feasible
because of the presence of an unobserved latent process. Note, however, that, for
instance, for a stochastic volatility model with an exponential volatility function
σ(x) = ex , one may consider a log-transformation. This approach is taken, among
others, in Zaffaroni (2009) using parametric Whittle estimation and in Deo and
Hurvich (2001), Hurvich and Soulier (2002), Hurvich et al. (2005b) or Dalla et al.
(2006) who consider semiparametric estimation.

For the LARCH models, a maximum likelihood approach is feasible in principle
because σt is an explicit function of past observations (see Beran and Schützner
2009). Up to date there are no theoretical results on semiparametric estimators
in the Fourier or wavelet domain. Teyssière and Abry (2006) as well as Jach
and Kokoszka (2008) study the numerical performance of wavelet estimators, in
particular for LARCH models. For ARCH(∞) processes, σ 2

t is again a direct
function of past observations and MLE-type estimators are not difficult to calcu-
late. In particular, one can show that the MLE is more efficient than Whittle es-
timation based on the squared observations (which is not really an approximate
MLE), see Giraitis and Robinson (2001), Straumann (2004), Berkes and Horváth
(2003).

Finally, we consider tail index estimation for heavy-tailed stochastic volatility
models. Recall that for linear processes we considered in Sect. 5.15 the tail index
M-estimation based on the assumption of stable innovations. Here we consider in-
stead the Hill estimator which is consistent without specifying a particular model.
Asymptotic normality of the Hill estimator for SV models was established in Ku-
lik and Soulier (2011) and is presented in Sect. 6.1.3. For LARCH processes, a
numerical, although wavelet-based, tail index estimation can be found in Jach and
Kokoszka (2008).
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6.1 Statistical Inference for Stochastic Volatility Models

In this section, we consider statistical inference for stochastic volatility models of
the form

Xt = σtξt (t ∈ N), (6.1)

where σt = σ(ζt ), ζt = ∑∞
j=1 aj εt−j and (ξt , εt ) (t ∈ Z) is a sequence of i.i.d. ran-

dom vectors. It is assumed that E(ε1) = 0, however, there is no a priori assumption
that the random variables ξt are centred.

In Sect. 6.1.1, we consider location estimation in a model Yt = μ+Xt , where Xt

is an SV process. As mentioned in the introduction, the asymptotic distribution of
the sample mean is not affected by long memory. The same applies to M-estimators,
as long as the function ψ that defines the M-estimator is antisymmetric and the
distribution of the noise variables ξt is symmetric (Beran and Schützner 2008).

We proceed with estimation of the memory parameter. Consider the volatility
model (6.1). We recall that the memory parameter d appears in the asymptotics for
the covariance function of the squares (see (2.61)). The graphical methods consid-
ered in Sect. 5.4 can be also applied in this case, by replacing Xt there by Yt = X2

t

here. For example, the R/S statistic can be defined as Rn/Sn, where

Rn = max
1≤k≤n

k∑

t=1

(Yt − ȳn)− min
1≤k≤n

k∑

t=1

(Yt − ȳn)

and S2
n = (n− 1)−1 ∑n

t=1(Yt − ȳn)
2 is the sample variance of Yt = X2

t . The sample
variance S2

n converges in probability to var(X2
1) (provided it is finite). The same ap-

proach can be applied to all other methods considered in Sect. 5.4 (see, e.g. Giraitis
et al. 2000b).

However, using the squares may not be appropriate for heavy-tailed data. For
instance, the data may have a finite variance, but infinite fourth moments. Then the
graphical methods can be quite misleading (see, e.g. Wright 2002).

In general, maximum likelihood estimation is not suitable for SV models because
the likelihood function cannot be written in an explicit form (see, e.g. Robinson and
Zaffaroni 1997, 1998). Asymptotic normality of the Whittle estimator applied to
transformed data was considered explicitly in Breidt et al. (1998) and in case of
leverage in Zaffaroni (2009). Some results can be deduced from earlier theory for
models with signal and additive noise (Hosoya 1974; Hosoya and Taniguchi 1982).
Note, however, that the Whittle approach does not have much to do with maximum
likelihood estimation here because the (transformed) data the method is applied to
are by definition far from normal.

As for semiparametric methods, asymptotic results in the SV case are a rel-
atively simple generalization of the theory for linear processes considered in
Chap. 5. Specifically, if Xt = ξt exp(

∑∞
j=1 aj εt−j ), then one can apply the log-

transformation to X2
t and the resulting model has the form of a linear long-memory
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process corrupted by i.i.d. noise. Asymptotic properties of semiparametric estima-
tors in SV models were considered in Deo and Hurvich (2001), Hurvich and Soulier
(2002), Hurvich et al. (2005b).

Finally, we discuss tail index estimation. In Sect. 5.2.3, we considered
M-estimation for heavy-tailed long-memory processes. Such an approach requires
strong assumptions on an innovation sequence of the linear process. Rates of conver-
gence and the asymptotic distribution is affected by long memory and tail behaviour.
In the present context, based on results on M-estimators in Sect. 6.1.1 below, one
may be expected that the asymptotic behaviour of an M-estimator of the tail index
is not affected by long memory. However, such results are not known at present.
Instead, we consider the so-called Hill estimator (see, e.g. Embrechts et al. 1997).
Its asymptotic properties are built upon results for the tail empirical process consid-
ered in Sect. 4.8.5. It is proven (see Kulik and Soulier 2011) that long memory does
not affect the rate of convergence. This is confirmed in Jach et al. (2012) and Luo
(2011), both in theory and numerical studies.

6.1.1 Location Estimation

Consider a time series Yt = μ+Xt (t ∈N) such that the residuals Xt are generated
by a stochastic volatility model (6.1). Furthermore, assume that the random vari-
ables ξt that appear in the model definition (6.1) are centred. Hence E(Xt) = 0. In
Sect. 4.2.6, we found out that under appropriate moment assumptions,

n−1/2
[nu]∑

t=1

Xt ⇒ vB(u),

where v2 = var(X1) and B(u) (u ∈ [0,1]) is a standard Brownian motion. In other
words, long memory in volatility does not affect rates of convergence for the sample
mean.

More generally, if ψ is a deterministic function such that E[ψ(X1)|G0] = 0,
where Gt is the sigma field generated by (ξt , εt , ξt−1, εt−1, . . .) , then the central
limit theorem above still holds with v2 = var(ψ(X1)).

The condition E[ψ(X1)|G0] = 0 is equivalent to

∫
ψ
(
sσ (ζ1)

)
dFξ (s) = 0,

where Fξ is the distribution function of ξ1. If, for example,ψ(x) = sign(x), bearing
in mind that σ(·) > 0, this integral has the form

−
∫ 0

−∞
dFξ (s)+

∫ ∞

0
dFξ (s).
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Thus, if the random variable ξ1 is symmetric, then this expression vanishes. Re-
calling from Sect. 5.2.3 that the sign function yields the sample median (written
down as an M-estimator), we can expect that in the particular case of symmetric
random variables ξt and antisymmetric functions ψ , the asymptotic theory for M-
estimators is the same as for i.i.d. data. To be more specific, if μ̂ is a solution of∑n

t=1 ψ(Yt −μ) = 0, then

√
n(μ̂−μ) →d N

(
0, σ 2

ψ

)
, (6.2)

where σ 2
ψ = E[ψ2(X1)]/E2[ψ ′(X1)]. A general result was obtained in Beran and

Schützner (2008) (cf. also Theorem 6.2 in Sect. 4.2.6). In particular, if

(A1) The random variables ξt are symmetric,
(A2) σt is a second-order stationary process with a finite variance such that ξt is

independent of σs , s ≤ t (but the sequences ξt and σt are not necessary inde-
pendent),

(A3) The function ψ(·) is measurable and antisymmetric, that is, ψ(x) = −ψ(−x),
and E[ψ2(X1)] < ∞,

then (6.2) holds.

Theorem 6.1 Consider the stochastic volatility model defined in (6.1). Assume that
(A1)–(A3) above hold. Under additional regularity conditions, (6.2) holds.

We note that “additional regularity conditions” refer to assumptions (A4)–(A8)
in Beran and Schützner (2008).

Proof The proof differs from the proof of the central limit theorem for M-estimators
based on linear processes with long-range dependence; see the proof of Theo-
rem 5.1. The reason is that in the proof of that theorem we were looking for the
asymptotic equivalence between an M-estimator and the sample mean.

To proceed, we expand

0 =
n∑

t=1

ψ(Yt − μ̂) =
n∑

t=1

ψ(Yt −μ)+ (μ̂−μ)

n∑

t=1

ψ ′(Yt −μ∗),

where |μ∗ − μ| ≤ |μ̂ − μ|. Under appropriate differentiability properties of ψ ,
|μ̂ − μ| < δ implies |ψ ′(Yt − μ̂) − ψ ′(Yt − μ)| < k1(δ), where k1 is a constant
that depends on δ only. Hence, recalling that Yt −μ = Xt ,

√
n(μ̂−μ) ≈ n−1/2 ∑n

t=1 ψ(Xt)

n−1
∑n

t=1 ψ
′(Xt )

.

One can argue that the denominator converges in probability to E[ψ ′(X1)]. Further-
more, a martingale central limit theorem yields asymptotic normality of the nomi-
nator. Hence, the result follows. For further details, we refer to Beran and Schützner
(2008). �
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The most general statement is given in Beran and Schützner (2008). The Gaus-
sian assumption used in the statement of Theorem 4.10 is replaced by

(A1) The random variables ξt are symmetric;
(A2) σt is a second-order stationary process with a finite variance such that ξt is

independent of σs , s ≤ t (but the sequences ξt and σt are not necessary inde-
pendent).

Furthermore, as in Theorem 4.10, it is assumed that

(A3) The function ψ(·) is measurable and antisymmetric, that is, ψ(x) = −ψ(−x),
and E[ψ2(X1)] < ∞.

Finally, there is an additional assumption on extremal behaviour of the sequence
ψ(Xt), as well as further technical conditions on function ψ , see (A4)–(A5) and
(A6)–(A8) in Beran and Schützner (2008).

Theorem 6.2 Consider the stochastic volatility model defined above. Assume that
(A1)–(A3) above as well as (A4)–(A5) and (A6)–(A8) in Beran and Schützner
(2008). Then (4.68) holds.

6.1.2 Estimation of Dependence Parameters

As mentioned in the introduction to this section, maximum likelihood estimation
does not seem to be feasible for models of the form (6.1). To be more specific, let
us consider the LMSV model,

Xt = ξt exp

( ∞∑

j=1

akεt−j

)
, (6.3)

where the sequences ξt (t ∈ Z) and εt (t ∈ Z) are mutually independent. Fur-
thermore, we shall assume that all random variables are standard normal and∑∞

j=1 a
2
j = 1. Then the density pX of Xt is

pX(x) =
∫ ∞

0
φ
(
log(x/y)

)
φ(y)dy (x > 0),

where φ is the standard normal density. An analogous formula is valid for x < 0.
Furthermore, the joint density of (X1, . . . ,Xn) can be written as an n-fold integral
with respect to φ(y1) · · ·φ(yn)dy1 · · ·dyn. Consequently, finding the maximum like-
lihood estimator is extremely difficult. Breidt et al. (1998) use the Whittle estimator
(see Sect. 5.5.2) applied to the logarithm of the squares instead.

Much easier is the application of semiparametric methods to stochastic volatil-
ity models. We consider for simplicity the LMSV model (6.3). Applying the log-
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transformation to X2
t , we obtain a new model

Yt = μ+ 2
∞∑

k=1

akεt−k +Zt ,

where Zt = log ξ2
t − E(log ξ2

t ), μ = E(log ξ2
t ). The semiparametric estimators (in

the Fourier or wavelet domain) can be applied directly to the sequence Yt . We note
that Yt has the form of a long-memory sequence plus i.i.d. noise Zt . Hence, we
are exactly in the situation of the additive noise model considered in Example 5.13.
Specifically, if we assume that the spectral density f

X̃
of the linear process X̃t :=∑∞

k=1 akεt−k has the form f
X̃
(λ) = λ−2df∗(λ), then Yt has the spectral density

fY (λ) = f
X̃
(λ)+ σ 2

Z/(2π) = λ−2df∗(λ)+ σ 2
Z/(2π)

≈ λ−2df∗(0)+ σ 2
Z/(2π) = λ−2df∗(0)

(
1 +O

(
λ2d)),

where σ 2
Z = var(Z1). According to the results in Sect. 5.8, the optimal mean squared

error of a semiparametric estimator is then of order

m = O
(
n− 4d

4d+1
)
, MSE(d̂) = O

(
n− 4d

4d+1
)
,

cf. Deo and Hurvich (2001), Hurvich and Soulier (2002) for log-periodogram re-
gression (GPH), and Arteche (2004) for the local estimator. Hurvich et al. (2005b)
show that a modified version of these estimators can outperform the GPH approach.

Furthermore, the techniques considered in Sect. 5.6.4 can be applied to the sit-
uation of additive noise as well. Consequently, we obtain the following asymptotic
normality of the local Whittle estimator (see Hurvich et al. 2005b; Dalla et al. 2006).
The result mimics Theorem 5.5. We have to adapt the bandwidth condition (LW3)
there to the present context.

Theorem 6.3 Consider the LMSV model given in (6.3). If

m−1 +m2d+1n−2d → 0, (LW3–SV)

then m1/2(d̂LW − d) → N(0,1/4).

Proof The proof follows similar lines as in the case of a linear process without
the additive noise (see Sect. 5.6.4). The main step is asymptotic normality of a
weighted sum of periodogram ordinates. Let us recall some notation: λj = 2πj/n,
j = 1, . . . ,m, are Fourier frequencies, bj = −2 logλj , In,Y (·) is the periodogram
associated with the sequence Y1, . . . , Yn. We re-write the decomposition (5.67) in
the present context to obtain

m∑

j=1

bj,m

[
In,Y (λj )

fY (λj )
− 1

]
+

m∑

j=1

bj,m

[
In,Y (λj )

gY (λj )
− In,Y (λj )

fY (λj )

]
, (6.4)
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where bj,m = (bj − b̄)/
√
m and gY (λ) = |λ|−2df∗(λ). We deal with the first part

only to illustrate the influence of the additive noise.
Let us decompose the difference between the normalized periodogram of Yt

and X̃t :

In,Y (λj )

fY (λj )
− I

n,X̃
(λj )

f
X̃
(λj )

= I
n,X̃

(λj )

fY (λj )
− I

n,X̃
(λj )

f
X̃
(λj )

+ In,Z(λj )

fY (λj )

= f
X̃
(λj )− fY (λj )

fY (λj )

I
n,X̃

(λ)

f
X̃
(λ)

+ In,Z(λj )

fY (λj )

= σ 2
Z/2π

fY (λj )

I
n,X̃

(λ)

f
X̃
(λ)

+ In,Z(λj )

fY (λj )
.

We start with the term In,Z(λj )/fY (λj ). Since the random variables Zt are i.i.d., the
expected value of the normalized periodogram is one (cf. (4.139)). Thus

E

(
In,Z(λj )

fY (λj )

)
= E

(
In,Z(λj )

fZ(λj )

)
fZ(λj )

fY (λj )
∼ σ 2

Z

2π
|λj |2df−1∗ (λj ) ≤ C(j/n)2d .

Furthermore, we recall that E[I
n,X̃

(λj )/fX̃(λj )] is uniformly bounded (in j ) and

that fY (λj ) = O((j/n)−2d). Thus we conclude

E

∣∣∣∣
In,Y (λj )

fY (λj )
− I

n,X̃
(λj )

f
X̃
(λk)

∣∣∣∣ ≤ C(j/n)2d .

Hence,

E

∣∣∣∣∣

m∑

j=1

bj,m

{
In,Y (λj )

fY (λj )
− I

n,X̃
(λj )

f
X̃
(λj )

}∣∣∣∣∣ ≤
m∑

j=1

|bj,m|(j/n)2d .

The bound is max1≤j≤m |bj,m|∑m
j=1(j/n)

2d = o(1)n−2dm2d+1 which converges
to 0 if (LW3–SV) holds. Consequently, the asymptotic behaviour of

m∑

j=1

bj,m

[
In,Y (λj )

fY (λj )
− 1

]

is the same as that of
m∑

j=1

bj,m

[
I
n,X̃

(λj )

f
X̃
(λj )

− 1

]
.

The latter was studied in Sect. 5.6.4. �

The result of Theorem 6.3 can be extended to the case of stochastic volatility
models with leverage, i.e. when ρZ,ε = E[Ztεt ] 
= 0. In this case, the spectral den-
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sity of Yt = logX2
t behaves like

fY (λ) ∼ f
X̃
(λ)+ σ 2

Z

2π
+ Re

((
1 − eiλ

)−d)2ρZ,εσ
2
Z

√
f∗(0)√

2π
.

6.1.3 Tail Index Estimation

Consider the stochastic volatility models Xt = ξtσt given in (6.1), where ξt are i.i.d.
random variables with

P(ξt > x) ∼ A
1 + β

2
x−α, P (ξt < −x) ∼ A

1 − β

2
x−α,

as x → ∞, and α > 0 is the tail index. Furthermore, it is assumed that the sequence
σt is independent of ξt .

One of the most important problems when dealing with heavy tails is to estimate
the tail index α. A standard (though not quite unproblematic; see, e.g. Resnick 1997)
method is Hill’s estimator. Setting γ = α−1, the Hill estimator of γ is defined by

γ̂n = 1

k

k∑

j=1

log

(
Xn−j+1:n
Xn−k:n

)
=

∫ ∞

0

T̂n(s)

1 + s
ds,

where

T̂n(s) = 1

k

n∑

j=1

1
{
Xj >Xn−k:n(1 + s)

}
, T (s) = (1 + s)−α,

and Xk:n are the order statistics of the sample X1, . . . ,Xn. Since γ = ∫ ∞
0 (1 +

s)−1T (s) ds, we have

γ̂n − γ =
∫ ∞

0

ê∗
n(s)

1 + s
ds,

where ê∗
n(s) is the tail empirical process defined in Sect. 4.8.5:

ê∗
n(s) = T̂n(s)− T (s)

(
s ∈ [0,∞)

)
.

Thus we can apply Theorem 4.37 to obtain the asymptotic distribution of the Hill
estimator. Heuristically,

√
kn(γ̂n − γ ) →d

∫ ∞

0

B̃(T (s))

1 + s
ds

where B̃(u) = B(u) − uB(1) (u ∈ [0,1]) is a Brownian bridge. This integral is a
centred normal random variable with variance γ 2.
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Table 6.1 Simulated average values of and standard deviations of the Hill estimator γ̂ (where
γ = 1/α) for an LMSV model with standard deviation β = 0.2 and sample size n = 1000

γ = 1/α d =0 0.2 0.4 0.45

0.667 mean = 0.6631 0.6670 0.6717 0.6659

Std. dev. = 0.0664 0.0682 0.0648 0.0648

0.5 0.5001 0.5010 0.4988 0.5010

0.0506 0.0500 0.0515 0.0503

0.25 0.2513 0.2518 0.2511 0.2530

0.0249 0.0251 0.0251 0.0246

0.167 0.1711 0.1718 0.1791 0.1833

0.0174 0.0170 0.0174 0.0188

0.1 0.1208 0.1226 0.1379 0.1452

0.0114 0.0111 0.0140 0.0165

Corollary 6.1 Under the assumptions of Theorem 4.37,
√
k(γ̂n − γ ) converges

weakly to the centred Gaussian distribution with variance γ 2.

This result allows us to construct confidence intervals for γ , with a user-chosen
number k of extreme observations. The result is, in fact, the best possible rate of
convergence for the Hill estimator for i.i.d. data (see Drees 1998). The surprising
result is that it is possible to achieve the i.i.d. rate in spite of long memory. A detailed
proof is given in Kulik and Soulier (2011). Further results can be found in Jach
et al. (2012). Also, Corollary 6.1 can be extended to stochastic volatility models
with leverage, i.e. when the sequences σt and ξt are not mutually independent, see
Luo (2011).

Example 6.1 We simulate an LMSV model Xt = ξt exp(βζt ), (t = 1, . . . , n = 1000)
with β > 0, ξt independent Pareto random variables with tail parameter α and
ζt a long memory FARIMA(0, d,0) sequence with standard normal innovations
and dependence parameter d ∈ [0,1/2). We assume that {ζt , t = 1, . . . , n} and
{ξt , t = 1, . . . , n} are mutually independent. Table 6.1 shows that dependence of
ζt does not influence tail index estimation, unless α is very large. Note, however,
that from a practical point of view, large values of α are not interesting (if α > 4,
then the squares X2

t have a finite variance). Note also that further simulations (not
reported here) illustrate that, if the variability coefficient β is large, then dependence
may start to play a role for finite samples, although this influence disappears asymp-
totically, as indicated in Corollary 6.1. We refer to Luo (2011) for further details.

6.2 Statistical Inference for LARCH Processes

In this section, we consider LARCH processes. As in Sect. 6.1, we start with loca-
tion estimation showing again that the asymptotic distribution of the sample mean
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as well as for M-estimators is not affected by long memory, as long as function ψ

that defines the M-estimator is antisymmetric and the noise variables ξt are sym-
metrically distributed (Beran 2006).

As for parameter estimation, it is reported in Giraitis et al. (2000b) that the
graphical methods (KPSS, V/S, R/S) perform well for LARCH processes. Giraitis
et al. (2003) claim further that for LARCH(∞) models V/S is superior to R/S

and KPSS. There is no existing theory for semiparametric estimators for LARCH
processes. Teyssière and Abry (2006) and Jach and Kokoszka (2008) study the nu-
merical performance of wavelet estimators. Giraitis and Robinson (2001) argue that
for ARCH(∞)-type models (including LARCH), the Whittle approach is less moti-
vated than the maximum likelihood procedure that yields explicit results. However,
it turns out that the issue is actually more complex. This and other detailed theoret-
ical results on MLE type estimation, including asymptotic normality, can be found
in Beran and Schützner (2009), and will be discussed below.

6.2.1 Location Estimation

Consider a time series Yt = μ + Xt with residuals Xt generated by a long-memory
LARCH process

Xt = σtεt , (6.5)

σt = a +
∞∑

j=1

bjXt−j . (6.6)

Here εt are i.i.d. random variables with E(εt ) = 0 and E(ε2
t ) = 1, and the coef-

ficients are such that a 
= 0, bj ∼ cjd−1 (as j → ∞) for some 0 < d < 1
2 and∑

b2
j < 1. Since cov(Xt ,Xt+k) = 0 (k 
= 0), the variance of the sample mean is not

affected by the dependence in volatility, i.e. var(X̄) = σ 2
X/n where σ 2

X = var(Xt )

(note that σ 2
X = σ 2

Y = var(Yt )). Beran (2006) defines sufficient moment conditions
under which a functional limit theorem holds for partial sums, namely

n− 1
2 σ−1

X Sn(u) = n− 1
2 σ−1

Z

[nu]∑

t=1

Xt →
D[0,1] B(u)

where convergence is in the space D[0,1] of càdlàg functions equipped with the
Skorokhod metric and B(u) denotes standard Brownian motion. More generally,
for functions ψ satisfying some moment conditions, we can write

E
[
ψ(Xt+k)ψ(Xt )

] = E
{
E
[
ψ(Xt+k)ψ(Xi) | Ft+k−1

]}

= E
{
ψ(Xt)E

[
ψ(εt+kσt+k) | Ft+k−1

]}
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where Ft denotes the σ -algebra generated by εj (j ≤ t). In particular, if the dis-
tribution of εt is symmetric and ψ is antisymmetric, i.e. ψ(−x) = −ψ(x), then
E[ψ(εt+kσt+k) | Ft+k−1] = 0 so that ψ(Xt) (t ∈ Z) is a martingale difference and
var(

∑
ψ(Xt)) = O(n). This has direct implications for M-estimators of the loca-

tion parameter μ defined as solutions of
∑n

i=1 ψ(Yt − μ̂) = 0. It can be shown
that under regularity conditions, the asymptotic distribution of μ̂ is the same as for
Sn;ψ = E−1[ψ ′(X1)]Sn(1). Thus, we have

√
n(μ̂−μ) →

d
N
(
0, σ 2

ψ

)

where σ 2
ψ = E[ψ2(X1)]E−2[ψ ′(X1)], cf. Sect. 5.2.3. In other words, the asymp-

totic distribution of M-estimators of location is undisturbed by LARCH type (long-
range) dependence in volatility, and is, in fact, the same as if observations were i.i.d.
For detailed conditions on ψ and εt , see Beran (2006). In conclusion, approximate
(1 − α)-confidence intervals for μ may be given by

μ̂± z1−α/2σψn
− 1

2 (6.7)

where z1−α/2 is the standard normal (1 − α/2)-quantile.
A completely different result is obtained, however, if ψ is not antisymmetric or

if εt are not symmetrically distributed such that E[X1ψ(X1)] 
= 0. In this case, μ̂
has a slower rate of convergence and limit theorems derived in Berkes and Horváth
(2003) apply; see also Sect. 4.2.8. From the applied point of view, this means that it
is important to check symmetry of the innovation process.

6.2.2 Estimation of Dependence Parameters

6.2.2.1 Basic Definitions and Problems

Consider a parametric long-memory LARCH process (Xt , σt )t∈Z as in (6.5)
and (6.6), where εt are i.i.d. continuous random variables with density function
pε , E(εt ) = 0 and E(ε2

t ) = 1, a 
= 0, bj ∼ cjd−1 (as j → ∞) for some 0 < d < 1
2 ,∑

b2
j < 1 and bj = bj (θ) with θ = (d, a, c, . . .) denoting a finite dimensional pa-

rameter vector. The true parameter value will be denoted by θ0. In the following,
we summarize results from Beran and Schützner (2009). For simplicity of notation,
we will consider the case with exact equality bj = cjd−1 (j ≥ 1) which implies that
θ = (d, a, c)T .

Since σt is given explicitly as a function of past observations Xs (s ≤ t − 1),
a plausible approach to estimating θ is to use the conditional likelihood function
of εt (θ) = Xt/σt (θ). If σt (θ) can be calculated exactly and θ is equal to the true
parameter θ0, then εt (θ) (t ∈ Z) coincides with the innovations εt . Since εt (t ∈ Z)
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are i.i.d. with density pε , the log-likelihood function can be written as

Ln(θ) =
n∑

t=1

logpε

(
εt (θ)

)
.

If differentiation with respect to θ is possible, then the maximum likelihood estima-
tor of θ0 can be defined as a solution of

L̇n(θ̂) := L̇n(θ)|θ=θ̂
= 0

(where “·” denotes differentiation with respect to θ ). In particular, if pε is a normal
density function with mean zero, then

−2

n
Ln(θ) = 1

n

n∑

t=1

X2
t

σ 2
t (θ)

+ logσ 2
t (θ)+ log 2π (6.8)

and

−2

n
L̇n(θ) = ∂

∂θ

[
n∑

t=1

ε2
t (θ)+ logσ 2

t (θ)

]

= 2
n∑

t=1

ε̇t (θ)εt (θ)+ σ̇ 2
t (θ)

σ 2
t (θ)

.

If the innovations εt are not normally distributed, then this function can still be used
to define an estimator θ̂ , but the solution no longer coincides with the MLE and is
therefore often called a pseudo- or quasi-maximum likelihood estimator (PMLE or
QMLE).

If all quantities in the last equation are well defined, then the asymptotic distribu-
tion of θ̂ can be derived quite easily because ε̇t (θ

0)εt (θ
0) is a martingale difference.

However, in contrast to short-memory volatility models (Lee and Hansen 1994;
Lumsdaine 1996; Berkes et al. 2003; Robinson and Zaffaroni 2006; Francq and Za-
koian 2008; Truquet 2008), for LARCH processes with slowly decaying coefficients
bj ∼ cjd−1 (0 < d < 1

2 ) several complications arise. First of all, it is not obvious
whether σt (θ) is an ergodic process (see, e.g. Walters 2000; Krengel 1985; Petersen
1989). Moreover, for θ 
= θ0, it is not even clear whether εt (θ) = ∑∞

j=1 bj (θ)Xt−j

is finite with probability one. (Note that for θ = θ0 this problem disappears be-
cause εt (θ

0) is almost surely equal to the random variable εt .) The reason is that∑
bj (θ) = ∞ implies

∑ |bjXt−j | = ∞ almost surely unless P(εt = 0) = 1. Simi-
larly, it is not clear whether and in which sense the derivative of εt (θ) with respect
to θ exists (this problem occurs even for θ = θ0), and whether the derivative is equal
to

∑
ḃj (θ)Xt−j . An additional technical property that has to be established when

studying the asymptotic distribution of θ̂ is the measurability of infima involving
σt (θ) on the (uncountable) set Θ .
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Apart from these questions, there is also the problem that σ 2
t (θ) may become

arbitrarily small. In particular, for θ 
= θ0, E[Ln(θ)] may be infinite or not defined.
In fact, Francq and Zakoian 2008 (also see Truquet 2008) showed that, because
of this reason, even in the case of short memory with a finite number of nonzero
coefficients bj the estimator based on (6.8) is not consistent.

Finally, for long-memory LARCH models, the issue that has to be addressed is
that σt (θ) depends on the entire past Xs (s ≤ t − 1), whereas the only available ob-
servations are X1, . . . ,Xn. This means that σt cannot be calculated exactly. Because
of the slow decay of bj , finite approximations may not be very good.

6.2.2.2 Ergodicity

Let us start with the fundamental question of ergodicity. Ergodicity of the process
σt (θ) (t ∈ Z) follows once the existence of a measurable function f : R∞ → R is
established for which σt (θ) = f (εt−1, εt−2, . . .) almost surely (Stout 1974, Theo-
rem 3.5.8). In view of the definition

σt (θ) = a + a

∞∑

k=1

∞∑

j1,...,jk=1

bj1(θ) · · ·bjk (θ)εt−j1 · · · εt−j1−···−jk , (6.9)

the natural choice of f is

f = a + a

∞∑

k=1

fk

with

fk(x1, x2, . . .) =
∑

1≤m≤k

∞∑

j1, . . . , jm = 1
j1 + · · · + jm = k

bj1 · · ·bjmxj1 · · ·xj1+···+jm.

Almost sure convergence of
∑

fk follows from the fact that, for each fixed t ,

Mt(k) = fk(εt−1, εt−2, . . .) (k ∈ N)

is a martingale difference with respect to the sequence of σ -algebras Fk =
σ(Mt(l), l ≤ k). Measurability of f follows, for instance, from Corollary 2.1.3 in
Straumann (2004).

6.2.2.3 Summability, Continuity and Differentiability

Next consider the existence of σt (θ) (θ ∈ Θ) and its derivatives. If the coefficients
bj were absolutely summable, then answering these questions would be straight-
forward because

∑ |bj | < ∞ implies absolute summability of the right-hand side
of (6.9) which, in turn, implies that σt (θ) inherits the differentiability properties
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of bj (θ). For nonsummable coefficients, these arguments do not apply. The solu-
tion proposed in Beran and Schützner (2009) is to consider σt (θ) (for fixed t) as a
stochastic process with index θ ∈ Θ . To carry over the properties of bj (θ) to σt (θ),
the process σt (θ) (θ ∈ Θ) is assumed to be separable. More specifically, the techni-
cal condition can be written down as follows:

(S) For every t ∈ Z, (σt (θ))θ∈Θ is a separable stochastic process on Θ , i.e. for
every open set A ⊂ Θ and closed interval B , the sets {ω : σt (θ) ∈ B,∀θ ∈ A}
and {ω : σt (θ) ∈ B,∀θ ∈ A∩Q

3} differ only on a set N ⊂ N0 where P(N0) = 0.

Note that the original process (σt (θ))θ∈Θ can always be replaced by a separable
version (see Theorem 2.4 in Doob 1953). Before establishing differentiability of
σt (θ), we recall two different definitions of derivatives that are particularly useful
for stochastic processes.

Definition 6.1 A stochastic process ξ(x) (x ∈ [a, b]) is uniformly mean squared dif-
ferentiable (u.m.s.-differentiable), if there exists a process ζ(x) =: ξ ′(x) (x ∈ [a, b])
such that

E

[(
ξ(x + h)− ξ(x)

h
− ζ(x)

)2]
→
h→0

0

uniformly in x ∈ (a, b). The process ξ ′(x) is also called the L2-derivative of ξ(x).

Definition 6.2 Let Ψ (a, b) be the set of (test) functions ψ that are infinitely con-
tinuously differentiable on (a, b) and such that the closure K̄ψ of the support
Kψ = {x : ψ(x) 
= 0} is a compact subset of (a, b). A function g ∈ L2(a, b) is called
a generalized (or distributional) derivative of a function f ∈ L2(a, b), if

∫ b

a

g(x)ψ(x)dx = −
∫ b

a

f (x)ψ ′(x) dx

for all ψ ∈ D(a,b).

Note that generalized derivatives extend differentiation to functions that are not
differentiable in the usual sense (or more generally, to generalized functions). For
an elementary introduction to generalized derivatives, see, e.g. Lighthill (1958). For
a more detailed account of the theory and further references, see, e.g. Gelfand and
Shilov (1966–1968), Kanwal (2004), Strichartz (1994), Vladimirov (2002), Zema-
nian (2010).

Example 6.2 Let H(x) = 1{x ≥ 0} be the Heaviside function defined on (−∞,∞).
For ψ ∈ Ψ (−∞,∞), we then have

−
∫ ∞

−∞
H(x)ψ ′(x) dx = −[

ψ(∞)−ψ(0)
] = ψ(0).

Thus, the generalized derivative H ′ is equal to the Dirac delta function δ defined by∫
δ(x)ψ(x)dx = ψ(0) (for all ψ ∈ Ψ (−∞,∞)).
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The following result is derived in Beran and Schützner (2009).

Theorem 6.4 Suppose that there are constants du < 1
2 and 0 < C < 1 such that

bj = cjd−1 with d ∈ [0, du], c ∈ [0, cu(d)] and cu(d) = C/
√∑∞

j=1 j
2d−2. Assume

furthermore that (S) holds. Then σt (θ) is almost surely infinitely many times dif-
ferentiable in θ in the generalized sense, and the kth generalized partial derivative
w.r.t. θ is given by

∂k

∂θj1 · · · ∂θjk
σt (θ) =

∞∑

j=1

∂k

∂θj1 · · · ∂θjk
bj (θ)Xt−j ,

i.e. we can write σ̇t := ∂/∂θσt = ∑
ḃjXt−j .

This theorem follows by applying the following results.

Lemma 6.1 Let ξ(x) (x ∈ [a, b]) be a separable and u.m.s.-differentiable process
with the L2-derivative ξ ′(x). Then ξ ′(x) is also a generalized derivative of ξ(x).

Lemma 6.2 (Kolmogorov) Let ξ(x) (x ∈ [a, b]) be such that E[ξ(x)] = 0,
E[ξ2(x)] < ∞ and

E
[∣∣ξ(x1)− ξ(x2)

∣∣α] ≤ const|x1 − x2|1+β

for some α,β > 0. Then there exists a version of ξ(x) with almost surely continuous
paths.

Lemma 6.3 Let ξ(x) (x ∈ [a, b]) be a separable process, m times u.m.s.-
differentiable with the L2-derivatives ξ (k) (k ≤ m) and such that the paths of ξ (k)

(k ≤ m) are almost surely continuous. Then ξ(x) is also (m− 1)-times continuously
differentiable in the generalized sense.

Note that the last lemma is essentially an application of Sobolev’s famous em-
bedding theorem (see, e.g. Adams and Fournier 2003). Using these lemmas, the
theorem can be proved in three steps. First of all, it is obvious that the only problem
with respect to differentiability occurs for d . The lemmas were therefore formulated
for the case of a one-dimensional index x only. The other parameter components
can be fixed, and we can write σt = σt (d) and ḃj = ∂

∂d
bj .

The first step of the proof is to show that
∑

ḃjXt−j is indeed the L2-derivative
of σt in the u.m.s.-sense. This can be done directly by showing that

E

[(
σt (d + h)− σt (d)

h
−

∑
ḃjXt−j

)2]
≤ const · h2

and similar inequalities for higher derivatives. In a second step, one shows in a
similar way that the condition in Lemma 6.2 holds. Since σt (d) (d ∈ [d, du]) is as-
sumed to be separable, almost sure continuity of the paths of σ̇t (d) (d ∈ [d, du]) and
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Fig. 6.1 Log-likelihood function Ln,h(d) as a function of d for a simulated LARCH process with
bj = cjd−1 and d = 0.3. The left panel shows Ln,h for h = 0 whereas on the right h = 0.1 was
used

higher order L2-derivatives follows from Lemma 6.2. Finally, Lemma 6.3 implies
that these are also derivatives in the generalized sense and the generalized deriva-

tives σ (k)
t (d) = ∂k

∂dk
σt (d) (k ≤ m− 1) are almost surely continuous.

In a similar but slightly more involved manner, it can be shown that, under as-
sumption (S), one can find bounds for E(supθ∈Θ |σt (θ)|m) (m ≥ 1) in terms of
supθ∈Θ E(|σt (θ)|m) and supθ∈Θ E(|σ̇t (θ)|m). This is very useful for proving con-
sistency (see below).

6.2.2.4 A Modified Log-likelihood Function

As mentioned above, a QMLE based on Ln in (6.8) is not consistent even in the
case of short memory. The reason is that σt can be arbitrarily close to zero. Beran
and Schützner (2009) therefore suggest a modified (quasi-) log-likelihood function.
Multiplied by −1 it is given by

Ln,h(θ) = n−1
n∑

t=1

(
X2

t

σ 2
t (θ)+ h

+ log
[
σ 2
t (θ)+ h

])
(6.10)

for some h > 0. Computationally, the effect of the correction is a regularization in
the sense that the function Ln,h becomes smoother, with clearly identifiable local
minima. This is illustrated in Fig. 6.1 where Ln,h is plotted against d (for fixed
a and c) for h = 0 (left) and h = 0.1 (right), respectively. The correct value of
d = 0.3 is indicated by a dotted vertical line. Obviously, for h = 0, the function is
not suitable for minimization whereas the minimum for h = 0.1 is clearly visible
and close to the true value.

The function Ln,h can also be interpreted as a robust version of Ln in the follow-
ing sense. Suppose that εt are Gaussian and instead of Xt we observe a perturbed
process Yt = Xt + ζt where ζt are i.i.d. N(0, h)-distributed, and independent of Xt .
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Then var(Yt | Xs, s ≤ t −1) = σ 2
t +h so that the conditional log-likelihood function

of Y1, . . . , Yn is given by

Ln,Y (θ) = n−1
n∑

t=1

[
(Xt + ζt )

2

σ 2
t (θ)+ h

+ log
(
σ 2
t (θ)+ h

)]
.

Integrating out ζt , we obtain Eζ [Ln,Y (θ)] = Ln,h(θ).

6.2.2.5 Consistency

Let θ̂n,h be defined by minimizing Ln,h with respect to θ and denote by θ0 the true
value of θ . Sufficient conditions for almost sure consistency of θ̂n,h are: (a) θ0 ∈ Θ0

(with θ0 denoting the true parameter and Θ0 the interior of Θ) and Θ is compact;
(b) Ln,h(θ) is continuous and supθ |Ln,h(θ)−Lh(θ)| converges a.s. to zero where

Lh(θ) = E
[
Ln,h(θ)

]

and (c) Lh(θ) has a unique minimum at θ = θ0.
Continuity of Ln,h(θ) follows from continuity of σ 2

t (θ) discussed in the previous
section. Pointwise a.s. convergence of |Ln,h(θ)−Lh(θ)| follows from ergodicity of
σt (θ) (for each θ ∈ Θ) and

sup
θ∈Θ

E

[∣∣∣∣
X2

t + h

σ 2
t (θ)+ h

+ log
(
σ 2
t (θ)+ h

)∣∣∣∣

]
≤ const ·

{
E
[
X2

t

]+ h+ sup
θ∈Θ

E
[
σ 2
t (θ)

]}
.

Since Θ is assumed to be compact, supθ∈Θ E[σ 2
t (θ)] < ∞ can be shown and thus

Birkhoff’s ergodic theorem implies |Ln,h(θ)−Lh(θ)| → 0 almost surely. The con-
vergence of supθ |Ln,h(θ) − Lh(θ)| follows from equicontinuity of Ln,h(θ) which
requires slightly more involved arguments (see Beran and Schützner 2009) involv-
ing certain moment conditions on εt .

The proof of (c) follows from

Lemma 6.4 If εt are continuous random variables with density function pε , then

P
(
σt (θ) = 0

) = 0 (for all t and θ),

P
(
σ 2
t (θ) = σ 2

t

(
θ0)) = 1 =⇒ θ = θ0

and

θ 
= θ0 =⇒ Lh(θ) > Lh

(
θ0).

Proof Defining the set Nt = {ω : σt (θ) = 0}, the first equation means that
P(Nt) = 0. To prove this, consider ω ∈ Nt ∩ Nc

t−1, i.e. we look at a realization
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of the process such that σt (θ) = 0 but σt−1(θ) 
= 0. Then

0 = σt (θ) = a + b1(θ)

Xt−1︷ ︸︸ ︷
εt−1σt−1(θ)+

∞∑

j=2

bj (θ)Xt−j

so that

εt−1 = − 1

b1(θ)σt−1(θ)

(
a +

∞∑

j=2

bj (θ)Xt−j

)
.

However, the right-hand side involves only εs (s ≤ t − 2) which is independent
of the left-hand side εt−1. Therefore, since the εt ’s are assumed to be continu-
ous variables, this equality can only occur with probability zero. In other words,
P(Nt ∩Nc

t−1) = 0. The same arguments lead to P(Nt,k) = 0 where

Nt,k =
k−1⋂

i=0

Nt−i ∩Nc
t−k (k ≥ 1).

Since Nt = ⋃∞
k=1 Nt,k , we obtain P(Nt ) = P(σt (θ) = 0) = 0.

Analogous arguments can be used to show that P(σ 2
t (θ) = σ 2

t (θ
0)) = 1 implies

θ = θ0. Finally, the last statement in the lemma follows from

Lh(θ)−Lh

(
θ0) = E

[
σ 2
t (θ

0)+ h

σ 2
t (θ)+ h

− log
σ 2
t (θ

0)+ h

σ 2
t (θ)+ h

− 1

]

and the inequality u− logu− 1 > 0 (u 
= 1). �

6.2.2.6 Asymptotic Normality

By similar arguments as for Ln,h, one can show that supθ ‖L̇n,h(θ) − L̇h(θ)‖ and
supθ ‖L̈n,h(θ)− L̈h(θ)‖ (with the matrix norm ‖A‖ = √

tr(AT A)) converge to zero
almost surely. The asymptotic distribution of θ̂n,h can therefore be obtained by the
Taylor approximation

0 = Ln,h(θ̂n,h) ≈ L̇n,h

(
θ0)+ L̈n,h

(
θ0)(θ̂n,h − θ0)

≈ L̇n,h

(
θ0)+ L̈h

(
θ0)(θ̂n,h − θ0) (6.11)

implying

θ̂n,h − θ0 ≈ −[
L̈h

(
θ0)]−1

L̇n,h

(
θ0),

where L̈h(θ) = E[L̈n,h(θ)]. Thus, apart from the deterministic matrix L̈h(θ
0), the

asymptotic distribution of θ̂n,h is determined by the asymptotic distribution of
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L̇n,h(θ
0) where

L̇n,h(θ) = n−1 ∂

∂θ

{
n∑

t=1

X2
t

σ 2
t (θ)+ h

+ log
[
σ 2
t (θ)+ h

]
}

= n−1
n∑

t=1

 ̇t,h(θ)

with

 ̇t,h(θ) = 2

(
1 − X2

t + h

σ 2
t (θ)+ h

)
σt (θ)

σ 2
t (θ)+ h

σ̇t (θ).

For θ = θ0, E[ ̇t,h(θ0) | εs, s ≤ t −1] = 0 so that  ̇t,h(θ0) is a martingale difference.
Therefore,

√
nL̇n,h

(
θ0) →

d
Z1

where Z1 is a normal random vector with zero mean and covariance matrix

Gh = E
[
 ̇t,h

(
θ0) ̇Tt,h

(
θ0)]

= 4E

{
σ 6
t (θ

0)[E(ε4
t )− 1]

(σ 2
t (θ

0)+ h)4
σ̇t
(
θ0)σ̇ T

t

(
θ0)

}
.

For the matrix L̈h(θ
0), we have

L̈h

(
θ0) = Hh = 4E

[
σ 2
t (θ

0)

(σ 2
t (θ

0)+ h)2
σ̇t
(
θ0)σ̇ T

t

(
θ0)

]
.

Thus, we obtain (see Beran and Schützner 2009):

Theorem 6.5 Suppose that Hh is nonsingular. Then, under suitable moment condi-
tions,

√
n
(
θ̂n,h − θ0) → Z ∼ N(0,Vh)

d

with covariance matrix

Vh = H−1
h GhH

−1
h .

It is interesting to see that in general Hh need not be of full rank. A sufficient
condition for nonsingularity of Hh is that εt are continuous random variables. The
proof essentially follows from P(σt = 0) = 0. To see this, we have to consider the
quadratic form

uT Hhu = 4E

[
σ 2
t

(σ 2
t + h)2

uT σ̇t σ̇
T
t u

]
.
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Since σt is not zero with probability one, the condition uT Hhu = 0 can only be
true if P(σ̇t = 0) > 0 or if u = 0. Considering, for instance, the specific case with
θ = (a, c, d)T and bj = cjd−1 (j ≥ 1), the equation uT σ̇t = 0 can be written as

0 = u1
∂

∂a
σt + u2

∂

∂c
σt + u3

∂

∂d
σt

= u1 +
∞∑

j=2

(
u2j

d−1 + u3c log j · jd−1)Xt−j + u2σt−1εt−1.

Since P(σt−1 = 0) = 0, this can be rewritten as

−u2εt−1 = σ−1
t−1

[
u1 +

∞∑

j=2

(
u2j

d−1 + u3c log j · jd−1)Xt−j

]
.

However, the left-hand side is independent of the right-hand side. Since εt (and
hence also Xt ) has a continuous distribution, equality can only occur with positive
probability if all components of u are zero. In other words, Hh is of full rank. Note
that in a similar manner Gh can be shown to be positive definite.

It is interesting to look at the asymptotic covariance matrix of θ̂n,h for small
values of h. Letting h tend to zero, we obtain in the limit

lim
h→0

Vh = [
E
(
ε4
t

)− 1
]
H−1

0

with

H0 = 4E

[
σ̇t (θ

0)σ̇ T
t (θ0)

σ 2
t (θ

0)

]
.

In particular, if E[σ−2
t (θ0)] = ∞, then the asymptotic variance of θ̂1 = â is zero.

(Note, however, that this does not necessarily follow for the other components
θ̂2 = ĉ and θ̂3 = d̂ .) It is also remarkable that θ̂n,h has the same rate of conver-
gence, and formally also the same type of asymptotic covariance matrix, as esti-
mators of comparable parameters for GARCH(p,q) and ARCH(∞) processes (cf.
Berkes et al. 2003; Robinson and Zaffaroni 2006).

6.2.2.7 Estimation Given the Finite Past

Since σt depends on the complete past Xs (s ≤ t − 1), it cannot be calculated ex-
actly. The simplest approximation is obtained by truncating the sum, i.e. setting all
unobserved values Xs (s ≤ 0) equal to zero. This leads to the approximate estimator

θ∗
n,h := arg min

θ∈Θ L∗
n,h(θ),
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where

L∗
n,h(θ) := 1

n

n∑

t=1

X2
t + h

σ̄ 2
t (θ)+ h

+ ln
(
σ̄ 2
t (θ)+ h

)

and

σ̄t (θ) = a(θ)+
t−1∑

j=1

bj (θ)Xt−j .

However, because of the slow decay bj ∼ cjd−1, the error σt (θ) − σ̄t (θ) may be
quite large (note that the error is larger for smaller values of t). In fact, we have, as
t → ∞,

E
[(
σt (θ)− σ̄t (θ)

)2] =
∞∑

j=t

b2
j (c, d) ∼ c1t

2d−1.

The question is therefore whether this approximation changes the asymptotic distri-
bution of the estimator. As before, a Taylor expansion yields (cf. (6.11))

0 = L̇∗
n

(
θ∗
n,h

) = L̇∗
n,h(θ0)+ L̈∗

n,h(θ̃ ) · (θ∗
n,h − θ0)

so that the asymptotic distribution of θ∗
n,h follows from the asymptotic distribution

of L̇∗
n,h(θ

0). The latter is the same as for L̇n,h(θ
0) provided that

Δn := √
n
(
L̇∗
n,h

(
θ0)− L̇n,h

(
θ0)) p→ 0

as n → ∞ which means that

1√
n

n∑

t=1

˙̄σt (θ)σ̄t (θ)(X2
t + h)

σ̄ 2
t (θ)+ h

(
1

σ̄ 2
t (θ)+ h

− 1

σ 2
t (θ)+ h

)
→p 0.

Using the mean value theorem for (x2 + h)−1 and the asymptotic behaviour of
E[(σt (θ) − σ̄t (θ))

2], an upper bound for E(|Δn|) can be given by E(|Δn|) ≤
const ·nd . Unfortunately, for d > 0, this bound does not converge to zero. The errors
E[(σt (θ)− σ̄t (θ))

2] do not decay fast enough (in t) to be negligible when summing
over all values of t . As a simple remedy, Beran and Schützner (2009) propose to use
only those time points where a sufficient number of past observations is available.
Specifically, let mn = [nβ ] − 1 for some 0 < β < 1 where [·] is denotes the integer
part,

Ln,h;β(θ) := 1

mn

n∑

t=n−mn

X2
t + ε

σ̄ 2
t (θ)+ ε

+ ln
(
σ̄ 2
t (θ)+ ε

)

and

θ
(β)
n,h := arg min

θ∈Θ Ln,h;β(θ).
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Then, by similar arguments as before, and under suitable moment conditions,

n
β
2
(
θ
(β)
n,h − θ0) d→ N

(
0,H−1

h GhH
−1
h

)

provided that 0 < β < 1 − 2d . This means that the asymptotic normal distribution

is the same as for θ̂n,h; however, the rate of convergence is much slower than n− 1
2 .

For the “best” rate of nd− 1
2 , one can at least show E[|θ(β)n,h − θ0|] ∼ c2n

−( 1
2 −d),

but it seems more difficult to derive the asymptotic distribution. The problem with a
slower rate becomes worse if the long memory becomes stronger because β cannot

exceed 1 − 2d . For instance, for d = 0.1 we have n
1
2 −d = n−0.4 whereas for d =

0.4 the rate of convergence is n−0.1 only. This makes a huge difference even for
moderate sample sizes. For instance, for n = 1000, n−0.1/n−0.4 ≈ 7.9.

Although the explicit proofs in Beran and Schützner (2009) are written down for
the specific case bj = cjd−1 (θ = (a, c, d)T ) the generalization to general weights
with bj ∼ cjd−1 follows directly. A natural starting point is for instance given by
coefficients defined by the fractional differencing operator, i.e. coefficients in the
series (in z ∈ C)

∞∑

j=1

bj z
j = c(d)

[
(1 − z)−d − 1

]

where

c2(d) ≤
[ ∞∑

j=1

(−d

j

)2
]−1

(to ensure stationarity, see Sect. 2.1.3.6). This can easily be extended by multiply-
ing the

∑∞
j=1 bj z

j by a function ψ(z)/ϕ(z) corresponding to an ARMA filter and

adjusting the constant to satisfy the stationarity condition
∑

b2
j < 1.

6.3 Statistical Inference for ARCH(∞) Processes

In this section, we briefly mention the existing theory for ARCH(∞) models. Lo-
cation estimation mimics the results for SV and LARCH models; however, there
are no available theorems for M-estimators. As for parametric estimation of depen-
dence parameters, we note that the maximum likelihood estimation is much easier
than in the LARCH(∞) case (Berkes and Horváth 2004). Furthermore, the MLE
seems to be the most suitable approach. The Whittle estimator applied to squared
sequences is no longer an approximation of the MLE and is indeed less efficient
than the actual MLE (Giraitis and Robinson 2001).
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6.3.1 Location Estimation

As in Sect. 6.2.1, we consider a time series Yt = μ+Xt ; however, now the residuals
Xt are generated by an ARCH(∞) process

Xt = ξtσt , (6.12)

σ 2
t = b0 +

∞∑

j=1

bjX
2
t−j . (6.13)

The random variables ξt are such that E(ξt ) = 0 and σ 2
ξ = E(ξ2

t ) = 1. Furthermore,
b0 > 0, bj ≥ 0 and

∑
bj < 1 (see Sect. 4.2.7). Then the central limit theorem holds

for Sn = ∑n
t=1 Xt (see Corollary 4.4) so that

√
n(ȳ −μ) →

d
N
(
0, σ 2

X

)

with

σ 2
X = b0

1 −∑∞
j=1 bj

.

Thus, an approximate (1 − α)-confidence interval for μ can be given by

x̄ ± z1− α
2

σX√
n
.

Since var(Y1) = var(X1), the parameter σX can be estimated based on the observed
data Y1, . . . , Yn.

6.3.2 Estimation of Dependence Parameters

Consider a parametric ARCH(∞) process with μ = 0 and coefficients bj = bj (θ
0)

(j ≥ 0) depending on a finite dimensional parameter vector θ0 = (b0
0, ϑ

0). As in
the LARCH case, quasi maximum likelihood estimation of θ0 can be obtained by
maximizing the Gaussian conditional log-likelihood function

−2

n
Ln(θ) = 1

n

n∑

t=1

X2
t

σ 2
t (θ)

+ logσ 2
t (θ) (6.14)

where σ 2
t (θ) = b0 + ∑∞

j=1 bjX
2
t−j . In contrast to LARCH processes, no problems

with respect to summability and differentiability of σ 2
t (θ) occur because the coef-

ficients bj are absolutely summable. For the same reason, the approximation of σ 2
t

by the truncated sum b0 +∑t−1
j=1 bjX

2
t−j is accurate enough to be negligible asymp-

totically. Moreover, by definition, σ 2
t is bounded away from zero by b0. Asymptotic
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normality of θ̂MLE = arg maxLn is shown in Weiss (1986) for ARCH(p) processes,
Lee and Hansen (1994) and Lumsdaine (1996) for the GARCH(1, 1) model and
Hall and Yao (2003) for GARCH(p,q) models. Similar results are also given in
Berkes et al. (2003), Berkes and Horváth (2004). For more general ARCH(∞) pro-
cesses, including the case of hyperbolically decaying coefficients bj , Robinson and
Zaffaroni (2006) derived the consistency of θ̂MLE.

Results on the asymptotic distribution for general ARCH(∞) processes are
known for an alternative estimator (Giraitis and Robinson 2001), namely the Whit-
tle estimator θ̂Whittle based on the squared observations X2

t (see also Bollerslev 1986
and Robinson and Zaffaroni 1997, 1998 for earlier uses of Whittle estimation in
volatility models). The idea is to write X2

t in the autoregressive form

X2
t = E

[
X2

t | Ft−1
]+X2

t −E
[
X2

t | Ft−1
]

= σ 2
t +X2

t − σ 2
t = b0 +

∞∑

j=1

bjX
2
t−j + ζt

with ζt = X2
t − σ 2

t and Ft the σ -algebra generated by Xs (s ≤ t). The residual
process is a martingale difference with variance σ 2

ζ = var(ζt ). Since the equation
can also be written as

X̃2
t = b−1

0 X2
t = 1 +

∞∑

j=1

b−1
0 bjX

2
t−j + b−1

0 ζt

= 1 +
∞∑

j=1

b̃j X̃
2
t−j + ζ̃t ,

we may assume without loss of generality that b0 = 1. Under moment assumptions
(in particular, fourth-order stationarity of Xt ), X2

t then has the spectral density

fX2

(
λ; θ0) = σ 2

ζ

2π
gX2

(
λ; θ0) = σ 2

ζ

2π

∣∣∣∣∣1 −
∞∑

j=1

bj e
−jλ

∣∣∣∣∣

−2

.

The Whittle estimator θ̂Whittle of θ0 based on this spectral density is obtained by
minimizing

Ln,Whittle(θ) = 2

n

[(n−1)/2]∑

j=1

In,X2(λj )

gX2(λj ; θ)

with respect to θ , where In,X2 is the periodogram of the sequence X2
t evaluated

at the Fourier frequencies λj = 2πj/n (cf. (5.42)). It should be noted, however,
that, in contrast to Ln, the function Ln,Whittle is not associated with a likelihood.
In particular, for the case of Gaussian innovations ξt , Ln essentially corresponds to
a (conditional) log-likelihood function whereas this is not the case for Ln,Whittle.
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The reason is simply that the process X2
t is not Gaussian. This implies that, for

Gaussian ξt , θ̂Whittle is asymptotically less efficient than θ̂MLE. Specifically, Giraitis
and Robinson (2001) derive for general ARCH(∞) processes (and suitable moment
conditions) the limit

√
n
(
θ̂Whittle − θ0) →

d
N
(
0,2W−1 +W−1VW−1)

where

W = 1

2π

∫ π

−π

∂

∂θ
loggX2(λ)

[
∂

∂θ
loggX2(λ)

]T
dλ,

V = 2π

σ 2
ζ

∫ π

−π

∂

∂θ

1

gX2(λ1)

[
∂

∂θ

1

gX2(λ2)

]T
h(λ1,−λ2, λ2) dλ1 dλ2.

Here h(λ1,−λ2, λ2) denotes the fourth-order cumulant spectral density of X2
t de-

fined by

h(λ1, λ2, λ3) = 1

(2π)3

∞∑

k1,k2,k3=−∞
exp

(−i(k1λ1 + k2λ2 + k3λ3)
)
c0,k1,k2,k3

where c0,k1,k2,k3 = cum(X2
t ,X

2
t+k1

,X2
t+k2

,X2
t+k3

) is the joint cumulant of the vari-

ables Y1 = X2
t , Y2 = X2

t+k1
, Y3 = X2

t+k2
, Y4 = X2

t+k3
. Recall that the cumulants

κj1,...,jm = cum(Y
j1
1 , Y

j2
2 , . . .) of a random vector Y ∈ R

m are the coefficients in the
series expansion of the cumulant generating function

κ(u) = logE
[
exp

(
iuT Y

)] =
∞∑

j1,...,jm=0

κj1,...,jm

u
j1
1 · · ·ujmm
j1! · · · jm! i

j1+···+jm.

For other estimators and a nice overview on estimation for ARCH(∞) processes,
see, e.g. Giraitis et al. (2006).



Chapter 7
Statistical Inference for Nonstationary Processes

In this chapter, statistical inference for nonstationary processes is discussed. For
long-memory, or, more generally, fractional stochastic processes this is of particu-
lar interest because long-range dependence often generates sample paths that mimic
certain features of nonstationarity. It is therefore often not easy to distinguish be-
tween stationary long-memory behaviour and nonstationary structures. For statisti-
cal inference, including estimation, testing and forecasting, the distinction between
stationary and nonstationary, as well as between stochastic and deterministic com-
ponents, is essential.

The most obvious type of nonstationarity in time series is a deterministic trend.
Related to that is the issue of parametric and nonparametric regression. Both top-
ics will be addressed (Sects. 7.1, 7.2, 7.4, 7.5, 7.7). A common feature is that there
is a distinct difference between fixed and random design regression. For most fixed
designs, long memory influences the rate of convergence of parametric and nonpara-
metric regression estimators. In contrast, random design often removes the effect of
strong dependence. The issue is, however, more complex, and will be discussed in
detail.

Standard techniques in nonparametric regression are kernel and local polynomial
smoothing. The main question one has to address is the choice of a suitable band-
width. In the context of fractional processes with an unknown long-memory param-
eter d ∈ (−1/2,1/2), this is a formidable task. The optimal bandwidth depends on
the unknown long-memory parameter d . At the same time, using an inappropriate
bandwidth leads to biased estimates of d . To complicate the matter, the possibility
of nonstationarity due to integration (i.e. random walk type behaviour) cannot be
excluded a priori, and may be masked by antipersistent dependence. Nevertheless,
it is possible to design data driven algorithms for asymptotically optimal bandwidth
selection and simultaneous estimation of dependence parameters as well as iden-
tification of random walk type structures (see Sect. 7.4.5.1). Extensions to nonlin-
ear processes with trends are considered briefly in Sect. 7.4.10. As an alternative
to kernel and local polynomial smoothing, trend estimation based on wavelets and
the issue of optimal selection of the number of resolution levels is discussed in

J. Beran et al., Long-Memory Processes,
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Sect. 7.5. Furthermore, a semiparametric regression model, also known as partial
linear regression, is considered in Sect. 7.7.

Another important class of nonstationary models can be subsumed under the
notion of local stationarity, in the sense that certain parameters change as a function
of time. Quantile estimation along this line is discussed in Sect. 7.6. Local FARIMA
type estimation is considered in Sect. 7.8.

The chapter concludes with a section on change point detection (Sect. 7.9). This
is an important issue in the long-memory context because occasional structural
changes often generate sample paths that resemble stationary processes with long-
range dependence. A typical example is a model with occasional shifts in the mean.
Various methods have been developed in the literature for distinguishing between
structural changes and long-range dependence. We discuss a selection of typical
methods.

7.1 Parametric Linear Fixed-Design Regression

In this section, we discuss estimation in fixed design linear regression with resid-
uals exhibiting long memory. The least squares estimator (LSE) is compared with
the BLUE. It turns out that under long memory (as well as under antipersistence)
the LSE usually loses efficiency compared to the BLUE. This is in contrast to the
case of weak dependence studied in Grenander (1954) and Grenander and Rosen-
blatt (1957). The concrete asymptotic results, however, depend on the combination
of long-memory properties of the residuals and the type of regression functions (Ya-
jima 1988, 1991). A practical problem with the BLUE is that the weights depend on
the unknown autocovariance function of the residual process. For certain situations,
Dahlhaus (1995) designed explicit weights that eliminate this problem. The asymp-
totic results for the LSE can be extended to robust estimation (see Giraitis et al.
1996a which is an extension of Beran 1991 to the regression context). Finally, we
briefly discuss the question of optimal design in the linear (fixed-design) regression
context.

7.1.1 Asymptotic Distribution of the LSE

We consider linear regression of the form

Yt =
p∑

j=1

βjxtj + et (t = 1,2, . . . , n) (7.1)

where

et =
∞∑

j=0

aj εt−j (7.2)
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is a linear process with εt i.i.d., E(εt ) = 0, var(εi) = σ 2
ε < ∞ and aj = caj

d−1

(0 < d < 1
2 ). The following notation will be used:

β =
⎛

⎜⎝
β1
...

βp

⎞

⎟⎠ , y(n) =
⎛

⎜⎝
Y1
...

Yn

⎞

⎟⎠ , e(n) =
⎛

⎜⎝
e1
...

en

⎞

⎟⎠ ,

xt ·(n) =
⎛

⎜⎝
xt1
...

xt

⎞

⎟⎠ , x·j (n) =
⎛

⎜⎝
x1j
...

xnj

⎞

⎟⎠

and

X
n×p

= [
x·1(n), . . . , x·p(n)

] =
⎡

⎢⎣
xT1·
...

xTn·

⎤

⎥⎦ .

Then

y(n) = Xβ + e(n). (7.3)

The least squares estimator of β is equal to

β̂LSE = (
XTX

)−1
XT y(n) (7.4)

so that

β̂LSE − β = (
XTX

)−1
XT e(n) = (

XTX
)−1

⎛

⎜⎝
xT·1e(n)

...

xT·pe(n)

⎞

⎟⎠ .

More generally, for a weighted least squares estimator with weights qj
(j = 1,2, . . . , n) we have

β̂ = (
XTQX

)−1
XTQy(n) (7.5)

and

β̂ − β = (
XTQX

)−1
XTQe(n) = (

XTQX
)−1

⎛

⎜⎝
xT·1Qe(n)

...

xT·pQe(n)

⎞

⎟⎠ (7.6)

where the n× n matrix Q is given by Q = diag(q1, . . . , qn). The covariance matrix
of β̂ is equal to

Σ
β̂

= var(β̂) = (
XTQX

)−1
XTQΣeQ

TX
(
XTQX

)−1
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where Σe = [cov(ei, ej )] is the covariance matrix of e(n). In particular, the best
linear unbiased estimator (BLUE) is given by

β̂BLUE = (
XTΣ−1

e X
)−1

XTΣ−1
e y(n) (7.7)

and its covariance matrix is equal to

Σ
β̂

= var(β̂) = (
XTΣ−1

e X
)−1

.

To obtain a nondegenerate limit theorem for β̂ defined in (7.5), we need to stan-
dardize the estimator by a matrix that takes into account that var(β̂) depends on the
design matrix X, the matrix Q and on the covariance matrix Σe of the residuals.
The first issue is taken into account by the normalizing diagonal p × p matrix

Dn = diag
(
X′X

) =
⎛

⎜⎝
‖x·1‖2 · · · 0

...
. . .

...

0 · · · ‖x·p‖2

⎞

⎟⎠

where for a ∈ R
p , ‖a‖ =

√
a2

1 + · · · + a2
p denotes the Euclidian norm. Then we can

write

D
1
2
n Σβ̂

D
1
2
n = (

D
− 1

2
n XTQXD

1
2
n

)−1(
D

− 1
2

n XTQΣeQ
TXD

− 1
2

n

)(
D

− 1
2

n XTQXD
− 1

2
n

)−1

= C−1
n

(
D

− 1
2

n XTQΣeQ
TXD

− 1
2

n

)
C−1
n .

For most deterministic design matrices X and weights qj (i.e. Q), Cn converges to
a nondegenerate p × p matrix C so that

D
1
2
n Σβ̂

D
1
2
n ≈ C−1(D− 1

2
n XTQΣeQ

TXD
− 1

2
n

)
C−1

and

D
1
2
n (β̂ − β) ≈ C−1(D− 1

2
n XTQ

)
e(n)

= C−1Wne(n) =: Zn.

Thus it is sufficient to study the asymptotic behaviour of Wne(n). If the elements of

Wn = D
− 1

2
n XTQ = [wj,n]i,j=1,...,p

can be written as a function of i/n, then this amounts to studying the joint distribu-
tion of weighted sums

Zn,j =
n∑

i=1

wj,n

(
i

n

)
ei (j = 1, . . . , p).
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If, in addition,

wj,n(u) ≈ n−κwj (u)

for a fixed weight functions wj and a suitable power n−κ , then results from Pipiras
and Taqqu (2000c) can be used to obtain

nκ−HD
1
2
n (β̂ − β) →

d
Z = C−1Z̃

where H = d + 1
2 and

Z̃ =
∫ 1

0
w(u)dBH (u) =

⎛

⎜⎝

∫ 1
0 w1(u) dBH (u)

...∫ 1
0 wp(u)dBH (u)

⎞

⎟⎠ .

The vector Z is normally distributed with zero mean and covariance matrix
var(Z) = C−1VC−1 where the elements of V = (vij )i,j=1,...,p are given by

vij = E

[(∫ 1

0
wi(x) dBH (x)

)(∫ 1

0
wj(y)dBH (y)

)]

=
∫ 1

0

∫ u

0
wi(x)wj (y)(x − y)2d−1 dy dx. (7.8)

In terms of fractional integrals (see Sect. 7.3) this can also be written as

vij =
(
Γ (d + 1)

c1

)2 ∫ ∞

−∞
(
I d−wi

)
(s)

(
I d−wj

)
(s) ds (7.9)

where

(
I d−wj

)
(s) = 1

Γ (d)

∫ 1

0
uj−1(u− s)d−1+ du

for 0 ≤ s ≤ 1 and zero otherwise, and c1 is a constant that depends on d . To make
sure that vij are all finite, certain conditions on wj must be imposed. For instance,
Deo (1997) defines the conditions wj ∈ C(0,1) and xα(1 − x)αwj (x) bounded for
x ∈ [0,1] and a some 0 < α < min( 1

2 ,2d).

Example 7.1 Consider a polynomial regression model of degree p defined by
Yi = ∑p

j=0 β0i
j + ei . Note that, for obvious reasons, we deviate slightly from the

previous notation by including j = 0. Here, we have X = [x·1(n), . . . , x·p+1(n)],
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x·j (n) = (1,2j−1, . . . , nj−1)T , xi·(n) = (1, i1, . . . , ip)T ,

∥∥x·j (n)
∥∥2 =

n∑

i=1

i2j−2 = n2j−1
n∑

i=1

(
i

n

)2j−2

n−1

∼ n2j−1
∫ 1

0
s2j−2 ds = n2j−1

2j − 1

and the (p + 1)× (p + 1) matrix

Dn ≈

⎛

⎜⎜⎜⎜⎜⎝

n 0 · · · 0

0 n3

3

...
...

. . .
. . . 0

0 · · · 0 n2p−1

2p−1

⎞

⎟⎟⎟⎟⎟⎠
.

Furthermore,

(
XTX

)
kl

= xT·k(n) · x·l (n) =
n∑

i=1

ik+l−2

∼ nk+l−1
∫ 1

0
sk+l−2 ds = nk+l−1

k + l − 1
.

For the LSE the elements of Cn = (cij )i,j=1,...,p+1 are then given by

ckl = (
D

− 1
2

n XT XD
− 1

2
n

)
kl

= (XT X)kl

‖x·k(n)‖‖x·l‖

∼
√
(2k − 1)(2l − 1)

k + l − 1

and

[Wn]ji = (
D

− 1
2

n XT
)
ji

= xij

‖x·j‖ = ij−1

nj− 1
2

√
2j − 1

= n− 1
2

(
i

n

)j−1√
2j − 1

so that

wj,n(u) = n− 1
2 wj(u),

w(u) = uj−1
√

2j − 1.
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Thus, we have κ = 1
2 . Putting these results together and noting that κ − H = −d ,

we obtain

n−dD
1
2
n (β̂ − β) →

d
Z = C−1Z̃ ∼ N

(
0,C−1VC

)
.

The explicit form of V is given by (Yajima 1988)

vij =
√
(2i − 1)(2j − 1)Γ (1 − 2d)

Γ (d)Γ (1 − 2d)

∫ 1

0

∫ 1

0
xi−1yj−1|x − y|2d−1 dy dx. (7.10)

7.1.2 The Regression Spectrum and Efficiency of the LSE

A natural question is whether the least squares estimator should be replaced by the
best linear unbiased estimator (BLUE) that is optimally adapted to the covariance
structure. This issue was first addressed in a systematic manner by Grenander (1954)
and Grenander and Rosenblatt (1957) (also see, e.g. Priestley 1981 for a nice sum-
mary). To study the asymptotic covariance matrix of β̂LSE and β̂BLUE for a general
class of deterministic regression functions the following conditions are imposed:
Let

x·j (k) =
⎛

⎜⎝
x1+k,j

...

xn+k,j

⎞

⎟⎠

with xi,j := 0 if i /∈ {1,2, . . . , n} and

〈
x·j (0), x·l (k)

〉 =
n∑

i=1

xij (0)xil(k).

Then we assume, as n → ∞,

• (R1) ‖x·j‖2 → ∞;
• (R2)

x2
nj

‖x·j‖2
→ 0;

• (R3)

r
(n)
j l (k) = 〈x·j (0), x·l (k)〉

‖x·j‖‖x·k‖ → rjl(k) ∈ R;

• (R4) Define the p×p matrix R(k) = [rjl(k)]j,l=1,...,p . Then R(0) is nonsingular.

The first condition makes sure that xij does not vanish too fast as time i tends
to infinity. The second condition means that the last observed value xnj does not
dominate all the previous ones. Condition (R3) defines a kind of a cross-correlation.
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The last condition excludes asymptotic collinearity of the explanatory variables.
From the definition of R(k) it follows that there is a (complex-valued) function
M : λ → M(λ) assigning every frequency in [−π,π] a p × p matrix M(λ) such
that

M(λ2)−M(λ1) ≥ 0

for all λ2 ≥ λ1, where “≥ 0” means positive semidefiniteness, and

R(k) =
∫ π

−π

eikλ dM(λ)

for all k. The so-called (regression) spectral distribution function M(·) plays a key
role when comparing the relative asymptotic efficiency of the least squares estimator
compared to the BLUE.

The matrix R(k) may be interpreted as a (noncentred) asymptotic correlation
matrix for the regression functions x·j . In particular, Rjj (0) = ∫

dMjj (λ) = 1. This
implies a property of M that turns out to be important in the context of long-range
dependence. Suppose that

dMjj (0) = Mjj (0+)−Mjj (0) = 1. (7.11)

Since dMjj (λ) ≥ 0 and |dMjl(λ)| ≤ dMjj (λ)dMll(λ) this implies for all j, l,

dMjl(λ) = 0 (λ 
= 0). (7.12)

As we will see below, (7.11) causes particular difficulties under long memory.

Example 7.2 Let p = 1 and xt1 = xt ≡ 1. This means that Yt is stationary and β = μ

is the expected value of Yt . Conditions (R1)–(R4) hold for obvious reasons, and
r(k) = r11(k) ≡ 1. Hence,

R(k) =
∫ π

−π

eikλ dM(λ) ≡ 1

so that M has a point mass at the origin such that (7.11) and (7.12) hold.

Example 7.3 For polynomial regression of order k we have xtj = tj−1

(j = 1, . . . , p; p = k + 1). Then, as n → ∞,

‖x·j‖2 =
n∑

t=1

t2j−2 ∼ n2j−1
∫ 1

0
u2j−2 du = n2j−1

2j − 1

and

r
(n)
j l (k) = 〈x·j (0), x·l (k)〉

‖x·j‖‖x·k‖ ∼ √
(2j − 1)(2l − 1)nj+l−1

n∑

t=1

tj−1(t + k)l−1

∼ √
(2j − 1)(2l − 1)

∫ 1

0
uj+l−2 du =

√
(2j − 1)(2l − 1)

j + l − 1
.
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Thus, the “lag” k does not matter, i.e. for all k we have

rjl(k) =
∫ π

−π

eikλ dMjl(λ) ≡
√
(2j − 1)(2l − 1)

j + l − 1

which implies dM(λ) = 0 (λ 
= 0) and

dMjl(0) =
√
(2j − 1)(2l − 1)

j + l − 1
.

In particular,

dMjj (0) = 2j − 1

2j − 1
= 1

so that again (7.11) and (7.12) hold.

Example 7.4 Let p = 1 and xt1 = cosλ0t for some λ0 ∈ (0,π). Then

‖x·1‖2 ∼ n

2

and

r
(n)
11 (k) = 〈x·1(0), x·1(k)〉

‖x·1‖2
= 2n−1

n∑

t=1

cos(λ0t) cos
(
λ0(t + k)

)

= cosλ0k + n−1
n∑

t=1

cos(2λ0t + λ0k) ∼ cosλ0k.

Thus, dM(±λ0) = 1
2 and dM(λ) = 0 otherwise.

Example 7.5 Let p = 1 and xt = xt1 = (−1)t = cosπt . Then xtxt+k = (−1)k =
cosπk, ‖x·1‖2 = n so that r(k) = (−1)k . This implies dM(±π) = 1

2 and dM(λ) =
0 otherwise.

Example 7.6 Let p = 1 and xt = xt1 = t (1 + e−iλ0t ) for some λ0 ∈ (0,π). Note
that the definitions above can be extended in a natural way to complex valued
x-variables, with 〈x·j (0), x·l (k)〉 = ∑

xtj (0)x̄tl(k). Then

‖x·1‖2 = 2
∑

t2(1 + cosλ0t) ∼ 2

3
n3
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and

〈
x·1(0), x·1(k)

〉 =
n∑

t=1

t (t + k)
(
1 + e−iλ0t

)(
1 + eiλ0(t+k)

)

∼ (
1 + eiλ0k

) n∑

t=1

t2 ∼ (
1 + eiλ0k

)1

3
n3.

Hence

r(k) = r11(k) = 1

2

(
1 + eiλ0k

) =
∫ π

−π

eikλ dM(λ)

so that

dM(0) = M(0+)−M(0) = 1

2
,

dM(λ0) = 1

2

and dM(λ) = 0 otherwise.

For residual processes with short-range dependence and spectral density fe, the
asymptotic covariance matrix of β̂LSE and β̂BLUE can be expressed in terms of M

and fe as follows (Grenander 1954; Grenander and Rosenblatt 1957):

Theorem 7.1 Let fe ∈ C[−π,π], Dn = diag(‖x·1‖, . . . ,‖x·p‖) and assume that
(R1)–(R4) hold. Then, as n → ∞,

Dn var(β̂LSE)Dn → 2πR−1(0)
∫ π

−π

fe(λ) dM(λ)R−1(0). (7.13)

Theorem 7.2 Under same assumptions as in Theorem 7.1, and fe > 0,

Dn var(β̂BLUE)Dn →
[

1

2π

∫ π

−π

1

fe(λ)
dM(λ)

]−1

. (7.14)

Theorem 7.1 includes not only the case of short memory (with f continuous) but
also antipersistence with fe(λ) = L(λ)|λ|−2d (− 1

2 < d < 0), provided that L(λ) is
continuous. However, if M is such that dM(λ) = 0 for all λ 
= 0, then

∫
dM(λ) = 0.

In other words, for such explanatory variables the actual rate of convergence is
faster than captured by (7.13). Theorem 7.2 does not include antipersistence be-
cause fe(λ) = 0. The reason for the condition fe > 0 is to avoid a pole in the integral∫
f−1
e dM . It should be noted, however, that the conditions as stated here are suffi-

cient but not necessary. For instance, piecewise continuous spectral distributions fe
may be considered or even cases where fe(0) = 0 provided that dM is zero in the
neighbourhood of the origin. Long memory is, however, not included in any of the
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two theorems (or possible simple modifications) because fe has a pole. This causes
difficulties with some of the integrals. A partial extension of the results was obtained
by Yajima (1991). The main problem caused by the pole of fe at the origin occurs
when dM(0) > 0. The reason is that then

∫
fe(λ)dM(λ) is infinite. Moreover, if

dM(λ) = 0 outside the origin, then
∫
f−1
e (λ) dM(λ) = 0 so that we would divide

by zero in (7.14).
Two cases have to be distinguished when considering long memory, namely

Mjj (0+)−Mjj (0) = 0 (case 1) (7.15)

and

Mjj (0+)−Mjj (0) > 0 (case 2). (7.16)

For the second case, a more refined distinction will have to be made, namely

0 <Mjj (0+)−Mjj (0) < 1 (case 2a) (7.17)

and

Mjj (0+)−Mjj (0) = 1 (case 2b). (7.18)

First, we state the result for case 1. Since M does not have any mass at zero, the
pole of fe does not disturb, i.e. there is no “interference” between long memory and
the regression function.

Theorem 7.3 Let fe(λ) = L(λ)|1−e−iλ|−2d (0 < d < 1
2 ), L ∈ C[−π,π], and sup-

pose that (7.15) holds for all j = 1, . . . , p. Moreover, for j, l = 1, . . . , p define

M
(n)
jl (λ) =

∫ λ

−π

m
(n)
j l (u) du,

m
(n)
j l (u) =

∑n
t=1 xtj e

−itu
∑n

s=1 xsle
isu

2π‖x·j‖‖x·l‖ .

Then, under (R1)–(R4),

Dn var(β̂LSE)Dn → 2πR−1(0)
∫ π

−π

fe(λ) dM(λ)R−1(0) (7.19)

if and only if for all δ > 0 there exists a finite constant c > 0 and n0 ∈ N such that
∫ c

−c

fe(λ) dM
(n)
jj (λ) < δ (7.20)

for all j = 1, . . . , p and n ≥ n0.

Proof Suppose first that (7.19) holds. For the left-hand side of (7.19), we have

Dn var(β̂LSE)Dn = (
D−1

n XT XD−1
n

)−1(
D−1

n XTΣXD−1
n

)(
D−1

n XT XD−1
n

)−1
.
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Due to (R3), D−1
n XT XD−1

n converges to R(0). Hence (7.19) and the definition of
M(n) imply

D−1
n XTΣXD−1

n = 2π
∫ π

−π

fe(λ) dM
(n)(λ) → 2π

∫ π

−π

fe(λ) dM(λ). (7.21)

Since Mjj (0+)−Mjj (0) = 0, there exists a c > 0 such that
∫ c

−c
fe(λ) dMjj (λ) < δ

for all j . Moreover, M(n) converges weakly to M and fe is continuous on {|λ| ≥ c}
so that

∫

|λ|≥c

fe(λ) dM
(n)(λ) →

∫

|λ|≥c

fe(λ) dM(λ). (7.22)

Since also
∫ π

−π
fe(λ) dM

(n)(λ) converges to
∫ π

−π
fe(λ) dM(λ) (7.21), (7.20) follows

for n large enough.
Suppose now that (7.20) holds. Again, by the same argument, (7.22) holds.

Therefore, (7.20) implies that
∫ π

−π
fe(λ) dM

(n)(λ) converges to
∫ π

−π
fe(λ) dM(λ). �

Condition (7.20) holds, for instance, if dM(λ) = 0 in an open neighbourhood of
the origin.

In case 2, components where (7.16) holds have to be standardized by a larger
power of n as follows.

Theorem 7.4 Let fe be as in Theorem 7.3, cf = L(0) > 0 and M such that (7.16)
and (7.20) hold for j = 1, . . . , p. Define the p × p matrix V ∗ = [v∗

j l]j,l=1,...,k with
the elements

v∗
j l = cf lim

n→∞n−2d
∫ π

−π

∣∣1 − e−iλ
∣∣−2d

dM
(n)
jl (λ)

and assume that all v∗
j l are finite. Then

n−2dDn var(β̂LSE)Dn → VLSE = 2πR−1(0)V ∗R−1(0). (7.23)

Proof First, note that, by setting

D̃n = diag
(‖x·1‖nd, . . . ,‖x·p‖nd) = ndDn,

we have

D̃−1
n

(
XTX

)
var(β̂LSE)

(
XTX

)
D̃−1

n = n−2dD−1
n

(
XTX

)
var(β̂LSE)

(
XTX

)
D−1

n

∼ n−2dR(0)Dn var(β̂LSE)DnR(0).

Thus, we may consider

D̃−1
n

(
XTX

)
var(β̂LSE)

(
XTX

)
D̃−1

n = D̃−1
n XTΣXD̃−1

n .
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Now

D̃−1
n XTΣXD̃−1

n =
n∑

t,s=1

xtj

‖x·j‖
xsl

‖x·l‖γ (t − s)

=
∫ π

−π

(
n∑

t,s=1

xtj

‖x·j‖
xsl

‖x·l‖e
−i(t−s)λ

)
f (λ)dλ

= 2π
∫ π

−π

fe(λ) dM
(n)(λ),

by definition of M
(n)
jl (λ) and m

(n)
jl (λ). For j ≥ k + 1 the result follows as in the

previous theorem. Moreover, since fe is continuous for |λ| ≥ c and M(n) → M

weakly, we have

∫

|λ|≥c

fe(λ) dM
(n)
jl (λ) →

∫

|λ|≥c

fe(λ) dMjl(λ) < ∞.

The only integral we need to take care of is
∫ c

−c
fe(λ) dM

(n)
jl (λ). Using the property

fe(λ) ∼ cf |1 − e−iλ|−2d (λ → 0), one can show that

n−2d
∫ c

−c

fe(λ) dM
(n)
jl (λ) ∼ n−2d

∫ π

−π

∣∣1 − e−iλ
∣∣−2d

dM
(n)
jl (λ)

which converges to v∗
j l by assumption. �

The difference to case 1 characterized by (7.15) (and also to short memory) is
that an additional normalization by n−2d is required and a different limiting ma-
trix VLSE is obtained. The reason for the slower rate of convergence is that under
(7.16) the regression functions have a strong low-frequency component in the sense
that M includes a point mass at the origin. This interferes with the pole of fe so
that it becomes difficult to distinguish the low-frequency signal of the regression
functions from low-frequency components in the residual process. Heuristically, the
point mass of M at zero implies

∫
fe(λ)dM(λ) ≥ fe(0) dM(0) = ∞ so that n−2d

has to be introduced to obtain a finite limit. A further interesting feature of (7.23)
is that the asymptotic covariance matrix does not depend on the shape of fe outside
the origin. Only cf and d are relevant. This is convenient for statistical inference
since only these two parameters need to be estimated.

The evaluation of the matrix V ∗ is not always easy. An explicit formula is avail-
able for polynomial regression (Yajima 1988; also see Example 7.3):

Theorem 7.5 Let fe be as in Theorem 7.3, cf = L(0) > 0 and xtj = tj−1. Then

n−2dDn var(β̂LSE)Dn → VLSE = 2πR−1(0)V ∗R−1(0). (7.24)
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Fig. 7.1 Yt = 3 + 0.025t + et
(t = 1,2, . . . ,1000) where et
is a FARIMA(0, d,0) process
et = (1 −B)−dεt with
d = 0.4 and var(εt ) = 1. The
true trend function (full line)
and the fitted least squares
line (dotted line) are also
plotted

where [Dn]jj ∼ nj/j , and R(0) = [rjl]j,l=1,...,p and V ∗ = [v∗
j l]j,l=1,...,p have the

elements

rjl ≡
√
(2j − 1)(2l − 1)

j + l − 1

and

v∗
j l = cf

√
(2j − 1)(2l − 1)Γ (1 − 2d)

Γ (d)Γ (1 − d)

∫ 1

0

∫ 1

0
xj−1yl−1|x − y|2d−1 dy dx,

respectively.

Example 7.7 Figure 7.1 illustrates which problems long memory in the resid-
ual process may cause when the regression function has a zero-frequency com-
ponent characterized by (7.16). Specifically, we observe Yt = 3 + 0.025t + et
(t = 1,2, . . . ,1000) where et is a FARIMA(0, d,0) process et = (1 − B)−dεt with
d = 0.4 and var(εt ) = 1. The sample path of the residual process et (lower curve)
has a spurious downward trend. The actual trend function with slope β1 = 0.025
(full line) is therefore hardly visible in Yt . The least squares estimate is indeed
β̂1 = 0.0002 so that the fitted trend (dotted line) is practically horizontal. On the
other hand, fitting a least squares line to the estimated residual process êi yields
β̂1 = −0.025. This is actually a spurious trend. If we use the usual t-test which as-
sumes independence, then we come to the wrong conclusion that β̂1 is significantly
different from zero with a p-value far below 1 %. Clearly, a correction of this test is
needed to take into account the possibility of spurious trends in ei . This is reflected
in the additional norming constant n−2d in Theorem 7.4. Theorem 7.5 leads to

V ∗ = 2

3
cf

Γ (1 − 2d)

(2d + 1)Γ (1 − d)Γ (1 + d)
= 1.29,

D2
n ∼ 1

3n
3 and R(0) = 1. Hence, an approximate corrected 95 %-confidence interval

for β1 is given by −0.025 ± 2
√

3 · 2π · 1.29nd−3/2 ≈ [−0.09,0.04] which includes
zero.
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Fig. 7.2
Yt = cos(2πt/100)+ ei
(t = 1,2, . . . ,1000) where et
is a FARIMA(0, d,0) process
et = (1 −B)−dεt with
d = 0.4 and var(εt ) = 1. The
true trend function (full line)
is also plotted. The shaded
area represents a
95 %-confidence region for
the trend function, based on
Theorem 7.3

Example 7.8 In Fig. 7.2, the same residuals as in the previous example are superim-
posed on a seasonal trend, namely Yt = cos(2πt/100)+ ei . In spite of the spurious
trend in the residual sample path, it is not too difficult to distinguish the seasonal
fluctuation from ei . The reason is that the frequency λ0 = 2π/100 ≈ 0.0628 is iso-
lated and relatively far from zero. Therefore, according to Theorem 7.3, β̂LSE has
asymptotically the same rate of convergence as under independence. The only quan-
tity that changes, depending on fe, is the finite constant

Dn var(β̂LSE)Dn → 2πR−1(0)
∫ π

−π

fe(λ) dM(λ)R−1(0),

2π
∫ π

−π

fe(λ) dM(λ) = 2πfe(λ0) = ∣∣1 − e−iλ0
∣∣−2d

.

The concrete estimate for the observed series in Fig. 7.2 is β̂LSE = 1.00. Since

n∑

t=1

cos2(λ0t) ≈ 1

2

n∑

t=1

∣∣eiλ0t
∣∣2 = n/2,

we have D2
n ∼ 1

2n. An approximate 95 %-confidence interval for β1 is therefore
given by

β̂LSE ± 2
√

2 · 2πfe(λ0)n
− 1

2 = 0.6 ± 2
√

31.9n− 1
2 = [0.64,1.36].

This is shown in Fig. 7.2 as shaded area for the trend function.

A mixed result can also be obtained. If (7.15) holds for j = 1, . . . , k and (7.16)
for j = k + 1, then, by setting

D̃n = diag
(‖x·1‖, . . . ,‖x·k‖,‖x·k+1‖nd, . . . ,‖x·p‖nd),
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the asymptotic covariance matrix is of the form

VLSE =
(
V1 0
0 V2

)

where V1 is as in Theorem 7.3 and V2 as in 7.4.
The derivation of the asymptotic variance of β̂BLUE is a more challenging task.

The first question is in how far formula (7.14) may be carried over to the long-
memory case. The problem is that the integral

∫
f−1
e (λ) dM(λ) may be zero. More

specifically, suppose that Mjj (0+)−Mjj (0) = 1. This implies dMjl(λ) = 0 for all
λ 
= 0 and j , l = 1, . . . , p (see (7.11) and (7.12)) so that

∫
f−1
e (λ) dM(λ) = 0 and

the inverse does not exist. Therefore, we have to distinguish between the cases 2a
(7.17) and 2b (7.18), i.e. 0 <Mjj (0+) − Mjj (0) < 1 and Mjj (0+) − Mjj (0) = 1,
respectively. Under assumption (7.17), formula (7.14) indeed carries over to the
long-memory case. The same is true for case 1 (7.15).

Theorem 7.6 Let fe be as in Theorem 7.3, fe > 0 and M such that either (7.15)
or (7.17) holds for j = 1, . . . , p. Moreover, under (7.17) assume further that, for all
j = 1, . . . , p and a suitable δ > 1 − 2d ,

max
1≤t≤n

x2
tj

‖x·j‖2
= o

(
n−δ

)
.

Then (7.14) holds, i.e.

Dn var(β̂BLUE)Dn → VBLUE =
[

1

2π

∫ π

−π

1

fe(λ)
dM(λ)

]−1

. (7.25)

Proof For case 1 with Mjj (0+) − Mjj (0) = 0, the result follows by analogous
arguments as in the short-memory case because on {|λ| ≥ c} (with c arbitrary) fe
is continuous and such that 0 < f−1

e (λ) < ∞. For frequencies where dMjj (λ) > 0,
the function f−1

e (λ) is bounded away from zero.
Consider now case 2a, i.e. 0 <Mjj (0+)−Mjj (0) < 1. Since

Dn var(β̂BLUE)Dn = (
D−1

n XTΣ−1XD−1
n

)−1
,

we need to show that D−1
n XTΣ−1XD−1

n converges to (2π)−1
∫
f−1
e (λ) dM(λ).

The essential problem is that we have to deal with the inverse of the covariance
matrix. It can be shown by some extended algebra that indeed

D−1
n XT

(
Σ−1 −An

)
XD−1

n → 0 (7.26)

where An = [ajl]j,l=1,...,n has the elements

ajl = 1

(2π)2

∫ π

−π

ei(j−l)λ 1

fe(λ)
dλ.
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Showing (7.26) is the main difficulty of the proof (see Yajima 1991 for details).
Using this approximation, we obtain for Cn = [c(n)j l ]j,l=1,...,p = D−1

n XT AnXD−1
n ,

c
(n)
j l =

n∑

t,s=1

xtj

‖x·j‖
xtl

‖x·l‖
∫ π

−π

ei(j−l)λg(λ)dλ =
∫ π

−π

g(λ)dM
(n)
jl (λ)

where 2πg(λ) = 1/fe(λ). Since g(λ) ∈ C[−π,π] and M(n) converges weakly to M ,
this leads to

lim
n→∞ c

(n)
j l =

∫ π

−π

g(λ)dM(λ) = 1

2π

∫ π

−π

1

fe(λ)
dMjl(λ). �

This result means that if the regression spectral distribution is not completely
concentrated at the origin (cases 1 and 2a), then the pole of fe at zero does not
disturb the asymptotic covariance matrix of β̂BLUE. In contrast, in order that the
asymptotic covariance matrix of β̂LSE is unaffected by the pole of fe, M must not
have any mass at the origin. What happens otherwise is illustrated in Theorem 7.4.

A general result for β̂BLUE under condition (7.18) does not seem to be available
currently. For polynomial regression, Yajima derived the following expression.

Theorem 7.7 Let fe be as in Theorem 7.3, fe > 0 and xtj = tj−1 (j = 1, . . . , p).
Then

n−2dDn var(β̂BLUE)Dn → VBLUE (7.27)

where VBLUE = 2πcfW−1 and W = [wjl]j,l=1,...,p with

wjl =
√
(2j − 1)(2l − 1)

j + l − 1 − 2d

Γ (j − d)Γ (l − d)

Γ (j − 2d)Γ (l − 2d)
. (7.28)

Note that, as for the LSE in case 2, the asymptotic covariance matrix V in (7.27)
does not depend on the shape of fe outside the origin.

Example 7.9 For Yt = μ + et = β0 + et with et generated by any stationary long-
memory process with long-memory parameter d and a constant cf , we have

W = w11 = 1

1 − 2d

[
Γ (1 − d)

Γ (1 − 2d)

]2

= Γ 2(1 − d)

Γ (1 − 2d)Γ (2 − 2d)

so that

VBLUE = 2πcfW
−1 = 2πcf

Γ (1 − 2d)Γ (2 − 2d)

Γ 2(1 − d)
.

In comparison, for the LSE which is the sample mean ȳ, R(0) = 1 and

VLSE = 2πcf
Γ (1 − 2d)

Γ (d)Γ (1 − d)

∫ 1

0

∫ 1

0
|x − y|2d−1 dy dx
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with
∫ 1

0

∫ 1

0
|x − y|2d−1 dy dx = 2

2d(2d + 1)
.

Thus,

VLSE = 2πcf
Γ (1 − 2d)

d(2d + 1)Γ (d)Γ (1 − d)
.

Note that in Sect. 1.3.1 we derived the asymptotic variance of the sample mean to
be equal to

ν(d)cf = cf
2Γ (1 − 2d) sinπd

d(2d + 1)
.

This is indeed the same as the previous formula because

Γ (d)Γ (1 − d) = π

sinπd
.

The asymptotic relative efficiency of the LSE compared with the BLUE is equal to

e(d) = VBLUE

VLSE
= (2d + 1)Γ (2 − 2d)Γ (d + 1)

Γ (1 − d)
. (7.29)

This formula was first obtained by Adenstedt (1974) (also see Samarov and Taqqu
1988 and Beran and Künsch 1985), and holds for the whole range −1/2 < d < 1/2.
We refer to the discussion in Sect. 5.2.2.

Example 7.10 Next, consider a linear trend model Yt = β0 + β1t + et with et gen-
erated by any stationary long-memory process. Then

w11 = 1

1 − 2d

[
Γ (1 − d)

Γ (1 − 2d)

]2

,

w22 = 3

3 − 2d

[
Γ (2 − d)

Γ (2 − 2d)

]2

= 3(1 − d)2

(3 − 2d)(1 − 2d)
w11

and

w12 = w21 =
√

3

2 − 2d

Γ (1 − d)Γ (2 − d)

Γ (1 − 2d)Γ (2 − 2d)

=
√

3(1 − d)

2 − 2d
w11.

Thus

W = w11

(
1

√
3(1−d)
2−2d√

3(1−d)
2−2d

3(1−d)2

(3−2d)(1−2d)

)
.
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Fig. 7.3 Relative asymptotic
efficiency e(d) =
det(VBLUE)/det(VLSE) of the
least squares estimator in a
linear regression model
Yt = β0 + β1t + et (full
linear) and a regression
model with β1 = 0, i.e.
Yt = β0 + et (dotted line)

The inverse of W is equal to

W−1 = w−1
11

(
4(1 − d)2 − 2√

3
(3 − 2d)(1 − 2d)

− 2√
3
(3 − 2d)(1 − 2d) 4

3 (1 − 2d)(3 − 2d)

)
.

The determinant of W−1 is equal to

det
(
W−1) = w−2

11

(
4 − 32

3
d + 16

3
d2

)

so that

det(VBLUE) =
(

2πcf
w11

)2(
4 − 32

3
d + 16

3
d2

)
.

By similar calculations, one can derive an explicit formula for VLSE and the relative
efficiency

e(d) = det(VBLUE)

det(VLSE)
= (3 + 2d)(3 − 2d)

36

[
(1 + 2d)Γ (1 + d)Γ (3 − 2d)

Γ (2 − d)

]2

.

(Note that there is a typo in Yajima 1988 in that 1/e(d) instead of e(d) is given.)
Figure 7.3 shows slightly larger efficiency losses than for the previous case where
β0 = 0. However, qualitatively the behaviour of e(d) is quite similar.

Example 7.11 Let Yt = β1(1 + cosλ0t)+ et . Then this corresponds to case 2a with
0 <M(0+)−M(0) < 1. Thus, Theorem 7.6 can be applied.

The next question is the comparison of the asymptotic covariance matrices for
β̂LSE and β̂BLUE. The previous examples illustrated that for polynomial regression
β̂LSE is asymptotically efficient under short memory whereas this is not the case
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when d 
= 0. In how far is this a general phenomenon? The short-memory case has
been considered by Grenander (1954) (also see Grenander and Rosenblatt 1957).
An essential notion in this context is the so-called regression spectrum:

Definition 7.1 Let M be a regression spectral distribution function. Then

S = {
λ ∈ [−π,π] : dM(λ) > 0

}

is called the regression spectrum.

Each (regression) spectral distribution function M can be decomposed in the
following way.

Lemma 7.1 There exist disjoint subsets S1, . . . , Sm (for some m ≤ p) such that

S =
m⋃

j=1

Sj

and

M(Sj )M
−1(π)M(Sj ) = M(Sj ),

M(Sj )M
−1(π)M(Sl) = 0 (j 
= l)

where M(Sj ) = ∫
Sj

dM(λ) and M(π) = ∫ π

−π
dM(λ).

Lemma 7.1 leads to the following definition.

Definition 7.2 The sets Sj are called the elements of the regression spectrum.

Using these definitions, Grenander derived the following necessary and sufficient
conditions for the asymptotic efficiency of the LSE.

Theorem 7.8 Let fe ∈ C[−π,π], fe > 0, Dn = diag(‖x·1‖, . . . ,‖x·p‖), assume
that (R1)–(R4) hold and denote by S1, . . . , Sm the elements of the regression spec-
trum. Then

lim
n→∞ var(β̂BLUE)

[
var(β̂LSE)

]−1 = I

if and only if there are constants cj (j = 1, . . . ,m) such that fe(λ) ≡ cj for λ ∈ Sj
(i.e. fe is constant on each Sj ). Moreover, this is equivalent to

|S| ≤ p,
∑

λ∈S
rank

{
dM(λ)

} = p.

This is a classical result (see, e.g. Grenander and Rosenblatt 1957), and we there-
fore only outline the basic idea only. Suppose that fe is indeed constant on each
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element of the regression spectrum. Then Theorems 7.1 and 7.2 imply

var(β̂BLUE)
[
var(β̂LSE)

]−1

∼ 2πR−1(0)
∫

fe(λ)dM(λ)R−1(0) · 1

2π

∫
1

fe(λ)
dM(λ).

Using R(0) = M(π) and Lemma 7.1, the right-hand side is equal to

M−1(π)

m∑

j,l=1

cjM(Sj )M
−1(π)M(Sk)c

−1
k

= M−1(π)

m∑

j=1

M(Sj ) = M−1(π)M(π) = I.

The question is under which circumstances Theorem 7.8 can be carried over to the
case where d 
= 0. As we saw in the examples discussed previously, Theorem 7.8 no
longer holds for polynomial regression, whereas β̂LSE turns out to be fully efficient
for a periodic component. The essential argument in Theorem 7.8 is based on for-
mulas (7.13) and (7.14) for the asymptotic covariance matrix of β̂LSE and β̂BLUE,
respectively. However, it is assumed implicitly that all quantities involved are finite.
This is no longer the case, if fe has a pole at the origin and dM(0) > 0. It can there-
fore be concluded that the LSE is asymptotically efficient, compared to the BLUE,
if Theorems 7.3 and 7.6 are applicable and dM(0) = 0:

Theorem 7.9 Let fe and xtj be as in Theorem 7.6 and Dn = diag(‖x·1‖, . . . ,
‖x−p‖). Assume that (R1)–(R4) hold and denote by S1, . . . , Sm the elements of the
regression spectrum S = ⋃

Sj (m ≤ p). Then

lim
n→∞ var(β̂BLUE)

[
var(β̂LSE)

]−1 = I

if and only if Sj = {λj } with λj ∈ (0,π] and

∑

λ∈S
rank

{
dM(λ)

} = p.

Formally, the result is due to the fact that if dM(0) < 1, then there is at least one
nonzero frequency where dM(λ) > 0. The integral

∫
f−1
e (λ) dM(λ) is therefore no

longer zero and the usual formula for the asymptotic covariance matrix (which re-
lies on the inverse of this integral) is applicable. Thus, essentially the LSE does not
lose efficiency as long as the regression spectrum does not include the frequency
zero. A loss of efficiency usually occurs, if dM(0) > 0. The intuitive reason is that
in this case both the regression function and the residual process have a strong zero-
frequency component. Incorporating the covariance structure in the estimator re-
lieves this problem up to a certain extent. In fact, comparing Theorems 7.2 and 7.6,
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in cases where 0 < dM(0) < 1, this even leads to an improvement of the rate of
convergence, matching the rate under short range dependence! This is illustrated by
the following example.

Example 7.12 Let Yt = β1(−1)t +et with long-memory residuals et as above. Then
dM(±π) = 1

2 and zero otherwise, Dn = √
n and R(0) = 1. Thus, by Theorem 7.9,

the LSE is asymptotically efficient. The asymptotic variance is given by

n · var(β̂1) → V = 2π
∫ π

−π

fe(λ) dM(λ) = 2πfe(π).

For instance, if et is a FARIMA(0, d,0) process with variance one, then

V = ∣∣1 − e−iπ
∣∣−2d Γ

2(1 − d)

Γ (1 − 2d)
= 2−2d Γ

2(1 − d)

Γ (1 − 2d)
.

This is a monotonically decreasing function of d . In particular, for d = 0, we have
V = 1 whereas, for instance, for d = 0.4 one obtains V = 0.28. The intuitive ex-
planation for the better performance under long memory is that the sample paths of
et tend to be “smoother” so that it is easier to distinguish them from the alternating
function xt = (−1)t .

In summary, one can say that the efficiency of the LSE compared to the BLUE
very much depends on the combination of the long-memory properties of ei and the
type of regression functions xtj . A practical problem with the BLUE is, however,
that the weights depend on the autocovariance function γe of the residual process.
For observed data, γe is usually unknown and has to be estimated from the same
data. Thus, in cases where only minor efficiency gains are to be expected, the LSE
is preferred. In other cases, the BLUE is much more efficient so that one would
like to use it. However, since γe has to be estimated, a balance between efficiency
gain due to weighing by Σ−1 and additional inaccuracy induced by estimation of
Σ has to be found. A further complication is that for large sample sizes and strong
long memory inversion of Σ may be computationally difficult. As an alternative,
Dahlhaus (1995) suggested using explicit weights without the need of inverting an
n×n matrix. In particular, for polynomial regression with xtj = tj−1 (j = 1, . . . , p)
he shows that the weighted estimator

β̂G = (
XTGX

)−1
XTGy(n)

with

G
p×p

= diag
(
g(t1), g(t2), . . . , g(tn)

)
,

ti = i/n and g(u) = u−d(1 − u)−d has the same asymptotic covariance matrix as
the BLUE. In applications, one would use, for instance, gn(u) = u−d(1−u− 1

2n)
−d

to avoid g(1) = ∞. This result can be generated to regressors generated by Jacobi
polynomials (see Dahlhaus 1995 for details; also see Sect. 3.1.4 for the definition of
Jacobi polynomials).
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7.1.3 Robust Linear Regression

Consider

Yt =
p∑

j=1

βjxtj + et = x′
t ·β + et (t = 1,2, . . . , n) (7.30)

as in (7.1) and a long-memory residual process as in (7.2). Denote by pe the proba-
bility density function of the marginal distribution of et . A standard class of robust
estimators of β (robust in the y-direction, see Hampel et al. 1986) can be defined as
M-estimators, i.e. as solutions of p equations

n∑

t=1

ψ
(
Yt − x′

t ·β̂
)
xt · = 0

p×1
(7.31)

where ψ is such that E[ψ(Yt − x′
t ·β)xt ·] = 0. By similar arguments as for location

estimation, it can be shown that the limit theorem (Theorem 4.33) for the empirical
process implies asymptotic equivalence of any M-estimator and the LSE. If ψ is
continuously differentiable, then this can be seen even more directly since (7.31)
and consistency imply

n∑

t=1

ψ
(
Yt − x′

t ·β
)
xt · −

n∑

t=1

ψ̇
(
Yt − x′

t ·β
)
xt ·x′

t ·(β̂ − β) ≈ 0

so that

β̂ − β ≈ {
E
[
ψ̇(e)

]
X′X

}−1 1

n

n∑

t=1

ψ(et )xt ·. (7.32)

If we can use the approximation

ψ(et ) = −
∫

ψ(u)p′
e(u) du · et + rt = −aapp,1et + rt

with aapp,1 = E[ψ̇(et )] and rt in (7.32) is negligible (for instance, when a unique
Appell expansion is valid), then

β̂ − β ≈ (
X′X

)−1 1

n

n∑

t=1

xt ·et = (
X′X

)−1
X′e(n) = β̂LSE − β.

For more general, not necessarily differentiable, functions ψ , the limit theorem for
the empirical process has to be applied more directly, along the lines of the proof
of Theorem 5.1. A simplified version of the result in Giraitis et al. (1996a) can be
stated as follows:
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Theorem 7.10 Let ψ be nondecreasing, right-continuous and bounded. Further-
more, suppose that (X′X)−1 exists for n large enough,

√
n max

1≤t≤n

∣∣x′
t ·
(
X′X

)− 1
2
∣∣ = O(1), (7.33)

et = ∑
aj εt−j is a linear process with aj ∼ caj

d−1 (0 < d < 1
2 ), E[|εt |k] < ∞ for

all k ∈ N and denote by I the p × p identity matrix. Then

var(β̂LSE)
[
var(β̂)

]−1 → I
p×p

and
[
var(β̂LSE)

]− 1
2 (β̂ − β̂LSE) → 0.

Example 7.13 For polynomial regression

ckl = (
D

− 1
2

n X′XD
− 1

2
n

)
kl

= (X′X)kl

‖x·k(n)‖‖x·l‖ ∼
√
(2k − 1)(2l − 1)

k + l − 1

so that
∣∣x′

t ·
(
X′X

)− 1
2
∣∣2 = x′

t ·
(
X′X

)−1
xt · ∼ x′

t ·D−1
n C−1D−1

n xt ·

= 1′C−11 ≤ p2 max
1≤j,l≤p

|cjl |.

Thus (7.33) holds and the theorem can be applied, for instance, if et are generated
by a FARIMA(0, d,0) process, then Theorem 7.10 holds.

7.1.4 Optimal Deterministic Designs

So far, it was assumed that the regression functions were evaluated at equidistant
(time) points. For instance, for polynomial regression we considered xij = ij−1 (i =
1, . . . , n). Replacing the diagonal matrix Dn = diag(n

1
2 , n

3
2 , . . . , n

2p−1
2 ) by D̃n = n ·

diag(1,1, . . . ,1) we may consider an analogous regression with xij = t
j−1
i = gj (ti)

where ti = i/n. In some situations, it is possible to choose the points ti where the
regression functions are observed. This can be modelled as follows. For a given
T ∈ R, let

h : [0,1] → [−T ,T ] (7.34)

be a function such that h(t) can be written as a quantile h(t) = F−1
h (t) of a distribu-

tion function Fh(x) = ∫ x

−∞ ϕ(u)du. Then it is assumed that the regression functions
are generated at points

ti,n = h

(
i − 1

n− 1

)
.
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The collection of all points,

Ξn = {t1,n, . . . , tn,n} = {
h(0), . . . , h(1)

}
,

is called the experimental design of the regression model. To obtain asymptotic
results regarding the variance of β̂ , observations are assumed to be given by

Yt = β1g1(t)+ · · · + βpgp(t)+ en(t) (t = 1, . . . , n) (7.35)

where en(t) = e
(1)
n (t) + e

(2)
n (t), e(1)n and e

(1)
n are zero mean processes, independent

of each other, with variances σ 2
j (j = 1,2), e(1)n (t) being uncorrelated and e

(2)
n (t)

having autocorrelations

corr
(
e(2)n (t), e(2)n (t + k)

) = ρn(k) = ρ(nk) (7.36)

with ρ(u) ∼ cρu
2d−1 (0 < d < 1

2 ) as u → ∞. Moreover, gj are “explanatory” lin-
early independent functions. We will use the notation

κ = σ 2
2

σ 2
1 + σ 2

2

.

Note that (7.36) is equivalent to letting T in (7.34) tend to infinity while keeping ρn
fixed. By similar arguments as in the previous sections, it can be shown that, under
suitable regularity conditions, the asymptotic covariance matrix of the least squares
estimator is given by Dette et al. (2009)

n1−2d · var(β̂LSE) = 2σ 2cρκR
−1
h (0)VhR

−1
h (0) (7.37)

= 2σ 2cρκΨ (ϕ) (7.38)

where

[
Rh(0)

]
j l

=
∫ 1

0
gj

(
h(u)

)
gl
(
h(u)

)
du,

[Vh]j,l =
∫ 1

0
gj

(
h(u)

)
gl
(
h(u)

)
Q
(
h′(u)

)
du

and

Q(v) = c−1
ρ lim

n→∞n−2d
n∑

j=1

ρ(jv) = v2d−1

2d
.

Note in particular, that for an equidistant design with h(u) = (2u− 1)T (and hence
h′(u) ≡ 2T ), (7.37) gives back the asymptotic formulas in the previous section.
An asymptotically optimal design is obtained by minimizing the function Ψ with
respect to the design density ϕ.
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Example 7.14 For Yt = βt + en(t), Dette et al. (2009) derived explicit expressions
for the optimal design density ϕopt. Essentially, as d approaches 0, ϕopt tends to
the uniform distribution on [−T ,T ]. This result is directly related to the fact that
for short-memory processes the LSE is asymptotically efficient. Recall that for the
same regression (however, with t ∈ [0,1]), w(u) = u−d(1 − u)−d was the weight
function yielding the same efficiency as the BLUE (Dahlhaus 1995). As d → 0,
w also converges to a constant function w ≡ 1. On the other hand, when d ap-
proaches 1

2 , then the optimal design density ϕopt puts more and more weight close
to the left and right end of the interval. This is in correspondence with Dahlhaus’
optimal weight function w(u) in the equidistant case to having increasingly steeper
poles at the ends of the interval. Intuitively, this means that one tries to estimate β

from two parts of the series (the beginning and the end) that are as far apart in time
as possible—thus avoiding too much correlation.

7.2 Parametric Linear Random-Design Regression

In this section, we address the problem of parameter estimation in a linear regression
model

Yt =
p∑

j=1

βjXtj + et (t = 1, . . . , n), (7.39)

where the explanatory variables Xt,j are random, and the processes Xt,j (t ∈ Z)
and/or et (t ∈ Z) may be strongly dependent or nonstationary. In Sect. 7.2.1, we
start with two examples that illustrate possible effects of long memory in errors
and predictors on parameter estimation in the random design case. These examples
will provide some intuition for asymptotic results on contrast estimation. Estimation
of contrasts is, historically, one of the first illustrations of the phenomenon that
estimators in random design regression tend to perform better than in a typical fixed
design case (Künsch et al. 1993, also see Beran 1994a, Chap. 9).

In Sect. 7.2.2, we focus on the heteroskedastic case

Yt = β0 + β1Xt + σ(Xt )et ,

where σ(·) is a positive function. We assume that predictors and errors are station-
ary with possible long memory, independent from each other. The general theory for
the LSE is based on randomly weighted partial sums (see Sect. 7.2.3) as presented
in Kulik and Wichelhaus (2012), see also Guo and Koul (2008). Other approaches,
tailored for the homoscedastic case σ(·) ≡ σ are presented, following Robinson
and Hidalgo (1997) and Choy and Taniguchi (2001). Further results can be found
in Koul (1992), Koul and Mukherjee (1993), Giraitis et al. (1996a), Koul and Sur-
gailis (1997, 2000), Hallin et al. (1999), Chung (2002), Koul et al. (2004), Lazarova
(2005).

Section 7.2.4 addresses the problem of spurious correlation between nonstation-
ary series Xt , Yt that are independent of each other. In the case of a random walk and
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related integrated processes, it is well known that the sample correlation between
two independent series does not converge to zero (see, e.g. Granger and Newbold
1974 and Phillips 1986). The same is true for fractionally integrated processes. We
summarize detailed results including various combinations of nonstationarity, sta-
tionarity and long-range dependence as derived in Tsay and Chung (2000). Related
results have been established in Phillips (1986, 1995), Phillips and Loretan (1991),
Marmol (1995), Jeganathan (1999), Robinson and Marinucci (2003, 2003), Buch-
mann and Chan (2007).

Finally, Sect. 7.2.5 briefly addresses the problem of fractional cointegration. The
idea of cointegration dates back to Granger (1981, 1983) and Engle and Granger
(1987). In fractional cointegration, the reduction of the degree of integration is al-
lowed to assume noninteger values. In some situations, this can lead to the lack of
consistency of the LSE so that modifications are required (see, e.g. Robinson 1994a,
1994b and Marinucci 2000). Because the issue is of major interest in economics,
there is meanwhile an extended literature. Important references are, for instance,
Marinucci and Robinson (1999, 2001), Velasco (1999a, 1999b, 2003), Chen and
Hurvich (2003a, 2003b, 2006) among others.

7.2.1 Some Examples, Estimation of Contrasts

As we saw in the previous section, the rate of convergence of (weighted) least
squares estimators of β depends on the properties of the explanatory variables, i.e.
on the regression design matrix X. If the explanatory themselves are random, then
this means that the properties of β̂ depend on the distribution of Xtj (j = 1, . . . , p).
Relevant are mainly two questions:

1. Is μj = E(Xtj ) zero?
2. What is the temporal dependence structure of Xtj ?

This is illustrated by the following examples.

Example 7.15 Let Yt = βXt + et with Xt uncorrelated, E(Xt) = 0, var(Xt ) =
σ 2
X < ∞, et a zero mean stationary process with spectral density fe(λ) ∼ cf |λ|−2d

(0 < d < 1
2 ) and independent of the process Xt . Then, by the law of large numbers,

the asymptotic distribution of

β̂LSE =
∑n

t=1 XtYt∑
X2

t

∼ σ−2
X n−1

n∑

t=1

XtYt

is the same as that of

σ−2
X n−1

n∑

t=1

XtYt .
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Furthermore,

var

(
σ−2
X n−1

n∑

t=1

XtYt

)
= var

(
σ−2
X n−1

n∑

t=1

Xtet

)
∼ σ−4

X n−2 · nσ 2
Xσ

2
e = σ 2

e

σ 2
X

n−1.

Thus, Xt having zero mean and being uncorrelated removes a possible effect of
(long-range) dependence in the residual process.

Example 7.16 Consider the same process as in the previous example; however, with
μ = E(Xt) 
= 0. Then the asymptotic distribution of β̂LSE is the same as that of

(
σX +μ2

X

)−2
n−1

n∑

t=1

XtYt .

Furthermore,

var

(
n∑

t=1

XtYt

)
=

n∑

t,s=1

E[etesXtXs]

= 2μ2
X

n−1∑

k=1

(
n− |k|)γe(k)+ (

σX +μ2
X

)
nσ 2

e

∼ μ2
X · const · n2d+1 + o

(
n2d+1).

Hence, even though Xt are uncorrelated, the possible long-range dependence stem-
ming from the residuals is not removed.

Example 7.17 Let Xt = (−1)Zt where Zt are i.i.d. Bernoulli random variables with
P(Zt = 1) = P(Zt = 0) = 1

2 and independent of et . Then σ 2
X = 1 and

var(β̂LSE) ∼ σ 2
e n

−1 = n−1
∫ π

−π

fe(λ) dλ.

It is in particular interesting to compare this with the asymptotic variance of β̂LSE
for the fixed-design regression with Xt = (−1)t = cosπt where, from Theorem 7.3,
one obtains n−12πfe(π). If fe achieves its minimum at λ = π , then this means that
alternating the sign systematically yields a better estimate of β than if assigning
the sign purely randomly. For instance, for a fractional ARIMA(0, d,0) model with
d > 0, fe(π) coincides with minimum of fe whereas the contrary is true for d < 0.
For d = 0, fe is constant so that 2πfe(π) and

∫ π

−π
fe(λ) dλ are the same.

From the applied point of view, a simple principle that may be deduced from
these examples is that estimation of ‘absolute’ constants is more difficult than esti-
mation of contrasts (for the definition of contrasts, see (7.43)). Or in other words, it
is easier to compare constants than to estimate their individual values. This has been
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known to applied statisticians for a long time. In the context of long-memory pro-
cesses and simple experimental designs, this principle can be formulated explicitly
as follows (see Künsch et al. 1993). Suppose p treatments are assigned randomly
to n observational units that are observed in a certain temporal (or other) sequence.
Assuming an additive effect of the treatments leads to the regression model

Yt =
p∑

j=1

βjxt,j + et = xTt · β + et (7.40)

where β = (β1, . . . , βp)
T , βj is the j th treatment effect and et is a zero mean pro-

cess with spectral density fe ∼ ce|λ|−2d (λ → 0). The explanatory variables are
defined by

xt,j = 1{at = j}
with at ∈ {1, . . . , p} defining the treatment used. The question is now in how far
long memory in the residuals affects the estimation of β and, in particular, whether
the least squares estimator is asymptotically efficient. Furthermore, one may ask
whether there are designs (random allocations of treatments) that improve the accu-
racy of estimates.

Künsch et al. (1993) considered the following standard designs:

(a) Complete randomization: at are i.i.d. with

P(at = j) = πj .

(b) Restricted randomization: Given n, the number of assignments to treatment j
(j = 1, . . . , p) is fixed, i.e. n = n1 + · · · + np and

n∑

t=1

xt,j = nj ,

and all possible allocations of this type have the same probability

P(a1, . . . , an | n1, . . . , np) = p(a1, . . . , an) = n!
n1! · · · np! .

(c) Complete blockwise randomization: Restricted randomization within blocks,
i.e. define b = [n/l] blocks of length l,

Bk = {
(k − 1)l + 1, . . . , kl

}

and, within each block (and independently of other blocks), apply restricted
randomization subject to

∑

t∈Bk

xt,j = lj ≥ 1,

l = l1 + · · · + lp.
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The main difference between (a) and (b) is that in (a) nj (j = 1, . . . , p) are ran-
dom whereas they are fixed in (b). However, in (a) nj/n converges to πj almost
surely so that for n large enough, nj is “in the neighbourhood” of the fixed num-
ber nπj . The randomization in case (c) is even more restricted than in (b) because
the number of assignments to treatment j is also fixed within each block. A typical
choice of l and lj in (c) is l = p and lj = 1.

In vector form, model (7.40) can be written as

Y(n) = Xβ + e(n) (7.41)

with Y(n) = (Y1, . . . , Yn)
T ,

X = (x·1, . . . , x·p) =
⎛

⎜⎝
xT1·
...

xTn·

⎞

⎟⎠ ,

and column and row vectors x·j = (x1j , . . . , xnj )
T and xt · = (xt1, . . . , xtj )

T , respec-
tively such that

1T xt · =
p∑

j=1

xtj = 1, 1T x·j =
n∑

t=1

xtj = nj .

By definition, column vectors are orthogonal, i.e.

〈x·j , x·l〉 =
n∑

t=1

xtj xtl = nj · δjl

so that

XTX =

⎛

⎜⎜⎜⎜⎝

n1 0 · · · 0

0 n2
. . .

...
...

. . .
. . . 0

0 · · · 0 np

⎞

⎟⎟⎟⎟⎠
.

Therefore, the least squares estimator of β can be written in a simple form

β̂LSE = (
XTX

)−1
XT y(n) =

⎛

⎜⎝
n−1

1

∑n
t=1 xt1yt
...

n−1
p

∑n
t=1 xtpyt

⎞

⎟⎠ . (7.42)

For the BLUE, we have the usual formula

β̂BLUE = (
XTΣ−1X

)−1
XTΣ−1y(n).
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Now, instead of β itself, we are interested in estimation of contrasts. A contrast is
defined by

c = ηT β =
p∑

j=1

ηjβj , (7.43)

where η is a deterministic vector such that

1T η =
p∑

j=1

ηj = 0.

The variance of any estimated contrast can be written in terms of variances of esti-
mates of the simple contrasts

cjk = βj − βk.

It is therefore sufficient to study the variance of ĉjk = β̂j − β̂k . Since usually in-
ference is carried out conditionally on the given (randomly generated) design, one
has to consider the asymptotic behaviour of the conditional variance Vn(ĉjk | X) =
var(ĉjk | X). Comparing the LSE and the BLUE of cjk , the corresponding condi-
tional variances Vn(ĉjk;LSE | X) and Vn(ĉjk:BLUE | X) will be denoted by Vn,LSE(X)

and Vn,BLUE(X), respectively. The following result can be obtained by relatively
simple approximations of the second moment.

Theorem 7.11 Let fe satisfy one of the following conditions: (i) fe is piecewise
continuous and 0 < c ≤ fe ≤ C for suitable finite constants c and C, or (ii) fe(λ) =
L(λ)|λ|−2d with 0 < d < 1

2 , L(·) continuous, of bounded variation and 0 < c ≤
L ≤ C. Then, under complete randomization (design (a)), we have, as n → ∞,

nVn,LSE(X) →
a.s.

σ 2
e

(
1

πj

+ 1

πk

)
,

nVn,BLUE(X) →
a.s.

σ 2
e

(
1

πj

+ 1

πk

)[
σ 2
e

(2π)2

∫ π

−π

1

fe(λ)
dλ

]−1

.

(7.44)

The first remarkable result in this theorem is that contrasts can be estimated with
the same rate of convergence as under independence, since Vn = O(n−1). This is
in sharp contrast to estimates of the slope parameters βj themselves. Since the ex-
pected value of the explanatory variables is not zero, the rate of convergence of
β̂j,LSE and β̂k,BLUE is slower, namely var(β̂) ∼ const ·n2d−1. In contrast to the case
of uncorrelated residuals, however, β̂j,LSE and ĉjk,LSE loses efficiency compared to
β̂j,BLUE and ĉjk,BLUE. This is even true for cases where d = 0 but fe is not constant.
Note that this is very much in contrast to fixed-design regression under Grenander’s
conditions. There, under short memory, β̂j,LSE (and hence also ĉjk,LSE) does not
lose efficiency. Here, under the given random design, conditionally on X (and hence
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also unconditionally), the asymptotic efficiency of ĉjk,LSE = β̂j,LSE − β̂k,LSE com-
pared to the best linear unbiased estimator ĉjk,BLUE = β̂j,BLUE − β̂k,BLUE can be
written as

eff (ĉjk,LSE) =
[

σ 2
e

(2π)2

∫ π

−π

1

fe(λ)
dλ

]−1

.

Note that although the result was derived originally for d > 0 only and d = 0 under
the given assumptions, analogous arguments lead to (7.44) for d < 0.

Example 7.18 For et generated by a FARIMA(0, d,0) process with variance
σ 2
e = 1, we have

fe(λ) = 1

2π

∣∣1 − e−iλ
∣∣−2d · Γ

2(1 − d)

Γ (1 − 2d)
,

1

fe(λ)
= 2π

∣∣1 − e−iλ
∣∣2d · Γ (1 − 2d)

Γ 2(1 − d)

= (2π)2 Γ (1 − 2d)

Γ 2(1 − d)
· 1

2π

∣∣1 − e−iλ
∣∣2d .

Using the equality
∫ |1 − e−iλ|2d dλ = 2πΓ (1 + 2d)/Γ 2(1 + d), we obtain

1

(2π)2

∫ π

−π

1

fe(λ)
dλ = Γ (1 − 2d)

Γ 2(1 − d)

∫ π

−π

1

2π

∣∣1 − e−iλ
∣∣2d dλ

= Γ (1 − 2d)Γ (1 + 2d)

[Γ (1 − d)Γ (1 + d)]2
,

and the relative asymptotic efficiency

eff (ĉjk,LSE) = [Γ (1 − d)Γ (1 + d)]2

Γ (1 − 2d)Γ (1 + 2d)
.

Figure 7.4 shows eff (ĉjk,LSE) for all values of d . Towards the two extremes
d → ± 1

2 , the efficiency converges to zero. Thus, although the LSE keeps the same
rate of convergence, it may be worthwhile using the BLUE, when d is far away from
zero.

Similarly, for restricted and blockwise randomisation (designs (b) and (c)) it can
be shown that the same asymptotic formulas for Vn,LSE hold as under independence
(see Künsch et al. 1993). For Vn,BLUE this is conjectured to be true.

A possibility of improving the variance of the LSE is to apply blockwise ran-
domization. The reason is that, under design (c), we have
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Fig. 7.4 Relative asymptotic
efficiency of the LSE of a
contrast βj − βk compared to
the BLUE, as a function of d .
The model considered here is
a FARIMA(0, d,0) process

E[Vn,LSE] =
(

1

nj
+ 1

nk

)[
σ 2
e − 2

l − 1

l−1∑

k=1

(
1 − k

l

)
γe(k)

]

=
(

1

nj
+ 1

nk

)
σ 2
l .

If the autocovariance function γe(k) is strictly positive and (strictly) monotonically
decreasing with limit zero, then σ 2

l is strictly increasing in l and σ 2
l → σ 2

e (see, e.g.
Cochran 1946). Therefore, the smallest variance is expected under blockwise ran-
domization with blocks of length l = p. Note, however, that this does not mean nec-
essarily that, under this design, the efficiency of the LSE (compared to the BLUE)
is better.

7.2.2 Some General Results and the Heteroskedastic Case

In this section, we consider a parametric random design regression model given by

Yt = β0 + β1Xt + σ(Xt )et (t = 1, . . . , n), (7.45)

where σ(·) is a positive, deterministic function. As illustrated above, under random
design, regression estimators may have a faster rate of convergence than in most
fixed design cases. General results including the heteroskedastic case with σ(·) not
constant can be derived, for instance, under the following conditions:

• (P1) The sequence Xt (t ∈ Z) is i.i.d.;
• (P2) The sequence Xt (t ∈ Z) is a linear process

Xt = μX +
∞∑

j=0

bj ξt−j ,
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where ξt (t ∈ Z) are centred, i.i.d. random variables such that var(Xt ) = σ 2
X = 1.

Moreover, we assume bj = jdX−1Lb(j), dX ∈ (0,1/2). Unless stated otherwise,
we assume μX = 0;

• (E1) The sequence et (t ∈ Z) is i.i.d.;
• (E2) The sequence et (t ∈ Z) is a linear process

et =
∞∑

j=0

aj εt−j ,

where εt (t ∈ Z) are centred, i.i.d. random variables, var(εt ) = σ 2
ε and aj =

jde−1La(j), de ∈ (0,1/2).

Let fX and fe be the spectral densities of Xt and et , respectively. Under (P2)
and (E2), we have fX(λ) = |λ|−2dXLfX(λ

−1), fe(λ) = |λ|−2deL
f̃
(λ−1), where the

functions LfX and Lfe are slowly varying at infinity. Furthermore,

var

(
n−1

n∑

t=1

et

)
∼ n2de−1Le(n), var

(
n−1

n∑

t=1

Xt

)
∼ n2dX−1LX(n),

where

Le(n) = 2L2
a(n)

2de(2de + 1)
σ 2
ε

∫ ∞

0

(
u+ u2)de−1

du = 2Γ (1 − 2de) sinπde
de(2de + 1)

Lfe (n),

(7.46)

LX(n) = 2L2
b(n)

2dX(2dX + 1)
σ 2
ξ

∫ ∞

0

(
u+ u2)dX−1

du = 2Γ (1 − 2dX) sinπdX
dX(2dX + 1)

LfX(n).

(7.47)

Recall also that (see Sect. 4.2.4)

nde−1L
−1/2
e (n)

n∑

t=1

et
d→ Z0, ndX−1L

−1/2
X (n)

n∑

t=1

Xt
d→ Z1, (7.48)

where Z0 and Z1 are standard normal random variables. Throughout this section, it
is also assumed that the sequences Xt and et (t ∈ Z) are mutually independent (the
results are not applicable otherwise, see Sect. 7.2.5). Thus, Z0 and Z1 are indepen-
dent. We recall also that

E[e0ek] = γe(k) = L2
a(k)σ

2
ε

∫ ∞

0

(
u+ u2)de−1

du. (7.49)

We start our discussion with the classical least squares estimator (LSE), which
leads to

β̂1 − β1 = 1

V 2
n

1

n

n∑

t=1

Xtσ(Xt )et , (7.50)
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β̂0 − β0 = 1

n

n∑

t=1

σ(Xt )et , (7.51)

where

V 2
n = 1

n

n∑

t=1

X2
t .

If σ 2
X = 1, then the sample standard deviation Vn converges (in probability) to σX .

For the purpose of limit theorems, we can replace V 2
n by σ 2

X = 1 in the expression
for β̂1.

As we will see in Theorem 7.12, for stochastic regression, the rate of convergence
of β̂0 is always influenced by a possible memory in the errors et . However, the rate
of convergence of β̂1 depends properties of the regressors Xt (t ∈ Z), the errors et
(t ∈ Z) and on the function σ(·). We start with a simple example.

Example 7.19 Consider the homoskedastic linear regression model without inter-
cept,

Yt = β1Xt + et (t = 1, . . . , n), (7.52)

and assume that (P1) and (E2) hold. We note that

var

(
n−1

n∑

t=1

Xtet

)
= n−2

n∑

t,s=1

E[XtXs]E[et es] = n−1σ 2
e .

According to the law of large numbers, n−1 ∑n
t=1 X

2
t

p→ σ 2
X = 1. Therefore, the

asymptotic behaviour of β̂1 −β1 is the same as that of n−1 ∑n
t=1 Xtet . The formula

for the variance suggests that β̂1 behaves as if the errors et were uncorrelated. We
expect that

√
n(β̂1 − β1) converges in distribution to a normal random variable; see

(7.58) of Theorem 7.13.

Example 7.20 We consider the heteroskedastic linear regression model without in-
tercept:

Yt = β1Xt + σ(Xt )et (t = 1, . . . , n). (7.53)

We assume again that (P1) and (E2) hold, and furthermore 0 
= E[σ(X1)X1] < ∞.
Then

Var

(
n−1

n∑

t=1

Xtσ(Xt )et

)
∼ E2[σ(X1)X1

]
n2de−1Le(n)

so that the rate of convergence of β̂1 is influenced by long memory in et .

Example 7.21 Consider the homoscedastic model without intercept (7.52) and as-
sume that the errors and predictors fulfill (E2) and (P2), respectively. If 2(de +
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dX) > 1

var

(
n−1

n∑

t=1

Xtet

)
= n−2

n∑

t,s=1

E[XtXs]E[et es]

= n−2
n−1∑

k=−(n−1)

(
n− |k|)γe(k)γX(k)

∼ n2(de+dX)−2Le(n)LX(n).

Otherwise, if 2(de + dX) < 1, then the variance is of order n−1. Thus, long mem-
ory in both errors and predictors may influence the limiting behaviour of β̂1; see
Theorem 7.12.

The complete convergence of the least squares estimators (7.51) and (7.50) is
characterized in the following two theorems. These theorems were proven in Guo
and Koul (2008) and Kulik and Wichelhaus (2012). The proof is given in Sect. 7.2.3
in a general context of randomly weighted partial sums.

Theorem 7.12 Consider the random design regression model (7.45) and let β̂1, β̂0
be least squares estimators defined in (7.50) and (7.51).

• Assume that (P1) or (P2), and (E1) hold. Then

√
n(β̂0 − β0)

d→
√
E
[
σ 2(X1)

]
σ 2
e Z0 (7.54)

and
√
n(β̂1 − β1)

d→
√
E
[
σ 2(X1)X

2
1

]
σ 2
e Z1, (7.55)

where Z0, Z1 are independent standard normal random variables.
• Assume that (P1) and (E2) hold. If E[σ(X1)X1] 
= 0, then

n
1
2 −deL

−1/2
e (n)(β̂1 − β1)

d→ E
[
σ(X1)X1

]
Z0 (7.56)

and

n
1
2 −deL

−1/2
e (n)(β̂0 − β0)

d→ E
[
σ(X1)

]
Z1, (7.57)

where Z0, Z1 are independent standard normal random variables.
• Assume that (P2) and (E2) hold and that Xt , et are Gaussian. If E[σ(X1)X1] 
= 0,

then (7.56) and (7.57) hold.

If E[σ(X1)X1] = 0, then the limiting behaviour of LS estimators changes.

Theorem 7.13 Consider the random design regression model (7.45) and let β̂1, β̂0
be LS estimators defined in (7.50) and (7.51). Assume that (P1) or (P2) and (E2)
hold with E[σ(X1)X1] = 0 and that Xt , et are Gaussian.
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• If 2(dX + de) > 1 and E[σ(X1)X
2
1] < ∞, then

n1−(de+dX)
(
LfX(n)Lfe (n)

)−1/2
(β̂1 − β1)

d→ E
[
σ(X1)X

2
1

]
Z1,1 (7.58)

where the random variable Z1,1 is defined in (7.63).
• If 2(dX + dε) < 1 and E[σ 2(X1)X

2
1] < ∞, then

√
n(β̂1 − β1)

d→ N
(
0,C2

0

)
, (7.59)

where C2
0 = limn→∞

∑∞
k=0 E[X0σ(X0)Xkσ (Xk)]E[ε0εk].

Of course, the LSE is not the only possible method. In the homoscedastic model
without intercept it is possible to remove the dependence in et first before estimat-
ing β1. This way one can achieve

√
n-convergence. This is the case by definition

for the BLUE. An alternative method that does not require inversion of the covari-
ance matrix was suggested by Robinson and Hidalgo (1997). Thus, consider the
homoscedastic regression model (7.52). Assume that (P2) and (E2) hold, possibly
with μX 
= 0. Define the following weighted least squares estimator of β1:

β̂φ,LSE =
1
n

∑n
t=1

∑n
s=1(Xt − x̄)(Ys − ȳ)φt−s

1
n

∑n
t=1

∑n
s=1(Xt − x̄)(Xs − x̄)φt−s

,

where

φj = 1

(2π)2

∫ π

−π

φ(λ) cos(jλ)dλ,

and φ(·) is some function such that φj = O(j−γ ), γ ≥ 2de + 1. This holds in par-
ticular if φ = f−1

e is the reciprocal of the spectral density of et (t ∈ Z). One can
verify that

var

(
1

n

n∑

t=1

n∑

s=1

(Xt − x̄)(Ys − ȳ)φt−s

)
= O

(
n−1).

Consequently, the asymptotic variance of β̂φ,LSE is not influenced by LRD in Xt

or et . This observation leads to the following result, proven in Robinson and Hidalgo
(1997).

Theorem 7.14 Consider the model (7.52). Assume that (P2) and (E2) hold. Under
appropriate technical conditions,

√
n(β̂φ,LSE − β1)

d→ N
(
0,Σ−1

φ ΣψΣ
−1
φ

)
,

where ψ(λ) = φ2(λ)fe(λ) and we use the notation Σh = (2π)−1
∫ π

−π
h(λ)dλ for

h = ψ,φ.
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The “appropriate technical conditions” are in particular continuity of ψ(·) and
independence between errors and predictors. Moreover, it has to be mentioned that√
n-consistency does not hold, in general, in the heteroskedastic case. To see this,

assume for simplicity that (P1) holds and μX = 0. Then

var

(
1

n

n∑

t=1

n∑

s=1

Xtσ(Xt )esφt−s

)
∼ φ2

0E
2[σ(X1)X1

]
var

(
1

n

n∑

t=1

et

)
.

Finally, we consider again the model (7.52) and the following estimators:

β̂R :=
n∑

t=1

Yt

/ n∑

t=1

Xt

and

β̂BLUE = (
XTΣ−1X

)−1
XTΣ−1Y,

with column vectors of X = (X1, . . . ,Xn)
′, X = (Y1, . . . , Yn)

′, respectively, and Σ

being the covariance matrix of e1, . . . , en. The following result (under a slightly
different set of assumptions) was proven in Choy and Taniguchi (2001).

Theorem 7.15 Consider the model (7.52). Assume that (P2) and (E2) hold and that
μX = E[X1] 
= 0. Then

n1/2−deL
−1/2
e (n)(β̂R − β1)

d→ μ−1
X Z0

and
√
n(β̂BLUE − β1)

d→ CZ0,

where C−1 = (2π)−1
∫ π

−π
f−1
e (λ)fX(λ)dλ.

Proof We prove only the convergence of β̂R . We have

β̂R − β1 = n−1 ∑n
t=1 et

n−1
∑n

t=1 Xt

.

By the law of large numbers, we may replace the denominator by μX . The conver-
gence of the nominator, and hence of β̂R , follows from (7.48). �

By definition, β̂BLUE is better than β̂R and β̂LSE (in the sense of a smaller vari-
ance of the asymptotic distribution). However, in the heteroskedastic case, Σ is
the covariance matrix of σ(X1)e1, . . . , σ (Xn)en. This involves knowledge of σ(·).
In most situations with heteroskedastic errors, one may therefore prefer to use
the LSE.
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7.2.3 Randomly Weighted Partial Sums

Asymptotic results in the context of regression with stochastic explanatory variables
are usually based on limit theorems for weighted sums, where weights are stochas-
tic. It is therefore useful to consider such sums in general. Thus let

Rn := 1

n

n∑

t=1

ν(Xt )et (7.60)

where ν(·) is a deterministic function such that E[ν(Xt )] 
= 0. Also, define the
σ -algebras Xt = σ(X1, . . . ,Xt ), Hi = σ(εt , εt−1, . . .). The following properties
will be used under different combinations of (E1), (E2), (P1) and (P2)1 (we used
some of these properties also in Sect. 5.14 on density estimation):

• (M) If (E1) holds, then Rn (n ≥ 1) is a martingale with respect to a sigma-field
Xn ∨ Hn.

• (M/L) If (P1) holds, we use the decomposition

1

n

n∑

t=1

{
ν(Xt )et −E

[
ν(Xt )et |Xt−1 ∨ Ht−1

]}+E
[
ν(X1)

]1

n

n∑

t=1

E[et |Ht−1].
(7.61)

The first part is a martingale, so that its convergence with scaling
√
n can

be described by an appropriate martingale central limit theorem. Furthermore,
E[et |Ht−1] = ∑∞

j=1 aj εt−j so that the second sum is just the sum of long-
memory moving averages and the asymptotic behaviour of

∑n
t=1 E[et |Ht−1] is

the same as that of
∑n

i=1 et (cf. (7.48)):

n−de− 1
2 L

−1/2
e (n)

n∑

t=1

E[et |Ht−1] d→ Z0.

We will call the second term the LRD part. It contributes (and dominates) only if
E[ν(X1)] 
= 0.

• (H) In general, under (E2) and (P2), we assume for simplicity that Xt are standard
Gaussian. We decompose Rn as

Rn = E
[
ν(X1)

]1

n

n∑

t=1

et +
∞∑

m=1

J (m)

m!
1

n

n∑

t=1

etHm(Xt), (7.62)

where J (m) is the mth Hermite coefficient of z → ν(z). If E[ν(X1)] 
= 0, then
the first term dominates, and convergence of Rn is equivalent to convergence
of the sum n−1 ∑n

i=1 et . Indeed, let us note that from Lemma 3.5 the random

1(M), (M/L) and (H) stand for martingale property, martingale/long-memory decomposition and
Hermite expansion, respectively.
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variables Hm(Xt), (m ≥ 1) are uncorrelated. Since the sequences Xt and et are
independent, we have for each m 
= k and all t, s,

cov
(
Hm(Xt)et ,Hk(Xs)

) = E
(
Hm(Xt)Hm(Xs)

)
E(etes) = 0.

Thus,

var

( ∞∑

m=1

J (m)

m!
1

n

n∑

t=1

etHm(Xt)

)
=

∞∑

m=1

J 2(m)

(m!)2
var

(
1

n

n∑

t=1

etHm(Xt )

)
.

Furthermore, for a given m ∈N we have

var

(
1

n

n∑

t=1

etHm(Xt )

)
= n−2

n∑

t,s=1

E
[
Hm(Xt)Hm(Xs)

]
E[et es]

= m!n−2
n−1∑

k=−(n−1)

(
n− |k|)γm

X (k)γe(k)

= O
(
max

{
n(2dX−1)m+(2de−1)L(n),n−1}),

where L is a slowly varying function.

These decompositions provide a general framework that will be used several
times. In particular, we will use it to prove Theorem 7.12. We note, however, that
the situation with E[σ(X1)X1] = 0 and (E2) is not covered by any of these cases.
To study this situation, we shall consider

Tn := n−1
n∑

t=1

Xtet

directly, assuming (P2), (E2), and also that Xt , et (t ∈ Z) are two independent cen-
tred Gaussian sequences. We recall some spectral theory from Sect. 4.1.3, see also
proof of Theorem 4.2. The innovation processes ξt and εt have the spectral repre-
sentation

ξt = 1√
2π

∫ π

−π

eitλ dM0,ξ (λ), εt = 1√
2π

∫ π

−π

eitλ dM0,ε(λ) (t ∈ Z),

where M0,ξ and M0,ε are two independent complex-valued Gaussian random mea-
sures with independent increments such that E[|dMξ(λ)|2] = σ 2

ξ dλ, E[|dMε(λ)|2]
= σ 2

ε dλ. Furthermore,

Xt =
∫ π

−π

eitλ dMX(λ), et =
∫ π

−π

eitλ dMe(λ),
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where

dMX(λ) = 1√
2π

( ∞∑

j=0

bj e
−ijλ

)
dM0,ξ (λ) = b(λ)dM0,ξ (λ),

dMe(λ) = 1√
2π

( ∞∑

j=0

aj e
−ijλ

)
dM0,ε(λ) = a(λ)dM0,ε(λ).

Repeating the same argument as in the proof of Theorem 4.2,

Tn = 1

n

n∑

t=1

∫ π

−π

∫ π

−π

b(λ)a(ω)eitλeitω dM0,ξ (λ) dM0,ε(ω)

= 1

n

n∑

t=1

∫ nπ

−nπ

∫ nπ

−nπ

b

(
λ

n

)
a

(
ω

n

)
Dn

(
λ+ω

n

)

× n1/2 dM0,ξ
(
n−1λ

)
n1/2 dM0,ε

(
n−1ω

)
.

If fX and fe are spectral densities of the two sequences, respectively, then by taking

b(λ) = L
1/2
fX

(
λ−1)|λ|−dX , a(ω) = L

1/2
fe

(
ω−1)|ω|−de ,

we may conclude for dX + de > 1/2 that

n1−(dX+de)
(
LfX(n)Lfe (n)

)−1/2
Tn

d→
∫ ∞

−∞

∫ ∞

−∞
1

|λ|dX
1

|ω|de
ei(λ+ω)

i(λ+ω)
dM0,ξ (λ) dM0,ε(ω) =: Z1,1. (7.63)

Having this general framework, we are ready to prove Theorems 7.12 and 7.13.

Proof of Theorem 7.12 Recall the formulas (7.50) and (7.51) for β̂1 and β̂0, and also
that we may replace V 2

n by σ 2
X = 1.

1. If (E1) holds, i.e. the errors are i.i.d., we apply the (M)-decomposition to (7.60)
with ν(Xt ) = σ(Xt )Xt and ν(Xt ) = σ(Xt ), respectively. The martingale central
limit theorem (Lemma 4.2) yields (7.54) and (7.55).

2. If (P1) and (E2) hold and E[σ(X1)X1] 
= 0, then we apply the (M/L)-de-
composition to (7.60) with ν(Xt ) = σ(Xt )Xt . The limiting behaviour of β̂1 − β1 is
determined by

E
[
σ(Xt )Xt

]1

n

n∑

t=1

E[et |Ht−1]. (7.64)
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Similarly, the limiting behaviour of β̂0 − β0 is determined by

E
[
σ(Xt )

]1

n

n∑

t=1

E[et |Ht−1]. (7.65)

We conclude (7.56) and (7.57). Independence of the limiting random variables fol-
lows from

cov(β̂1, β̂0) → 0.

3. Under the conditions (E2) and (P2), and E[σ(X1)X1] 
= 0, we apply (7.62) to
ν(Xt ) = σ(Xt )Xt and to ν(Xt ) = σ(Xt ). Convergence of the regression estimates
can be concluded the same way as under (P1) and (E2). �

Proof of Theorem 7.13 Under the conditions (E2), (P2) and E[σ(X1)X1] = 0, we
apply the (H)-decomposition (7.62) with ν(Xt ) = σ(Xt )Xt . Since E[ν(X1)] = 0,
the limiting behaviour of β̂1 − β1 is determined by

J (1)
1

n

n∑

t=1

Xtet +
∞∑

m=2

J (m)

m!
1

n

n∑

t=1

etHm(Xt ),

where J (1) = E[σ(X1)X
2
1] is the first Hermite coefficient of ν(z) = σ(z)z. Clearly,

the first part dominates. Applying (7.63),

n1−(de+dX)
(
LfX(n)Lfe (n)

)−1/2
(β̂1 − β1)

d→ J (1)Z1,1. (7.66)

�

Finally, it is worth mentioning another possibility. Consider assumptions (P2)
and (E2), but with the modification μX 
= 0 and instead of E[σ(X1)X1] = 0 (which
was used in Theorem 7.13) the condition E[σ(X1)(X1 − μX)] = 0. Then, the esti-
mator of β1 has to be replaced by

β̂1 − β1 = 1

V 2
n

(
1

n

n∑

t=1

Xtσ(Xt )et − 1

n

n∑

t=1

Xt

1

n

n∑

t=1

σ(Xt )et

)
, (7.67)

with V 2
n = n−1 ∑n

t=1(Xt − x̄)2. Again, we may replace V 2
n by σ 2

X = 1 asymptoti-
cally. Applying the (H)-decomposition to n−1 ∑n

t=1 σ(Xt )et yields

1

n

n∑

t=1

σ(Xt )et = E
[
σ(Xt )

]1

n

n∑

t=1

et +
∞∑

m=1

J ∗(m)

m!
1

n

n∑

t=1

etHm(Xt ),
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where now J ∗(m) = E[σ(X1)Hm(X1)]. As in the proof of Theorem 7.13 (see also
proof of Theorem 4.2),

n
1
2 −deL

−1/2
fe

(n)
1

n

n∑

t=1

et
d→ Z0, n

1
2 −dXL

−1/2
fX

(n)
1

n

n∑

t=1

Xt
d→ Z1,

where Z0 and Z1 are independent and standard normal. Independence is clear since
E[Xt,σ (Xs)es] = 0 for all s, t . Combining this with (7.66), we obtain

n1−(de+dX)
(
LfX(n)Lfe (n)

)−1/2
(β̂1 − β1)

d→ (
J (1)Z1,1 −E

[
σ(X1)

]
Z0Z1

)
.

7.2.4 Spurious Correlations

So far it has been assumed that the explanatory variable(s) Xt and the residual pro-
cess et are stationary. In practice, this is not always clear. In some applications, such
as financial time series, it is, in fact, often more likely that none of the observed
series is stationary. This is known to cause considerable problems for regression,
even without introducing the complication of long memory or antipersistence. For
instance, Granger and Newbold (1974) and Phillips (1986) considered two indepen-
dent random walks

Xt =
t∑

j=1

ξj , Yt =
t∑

j=1

ηj ,

i.e. with ξj , ηj , i.i.d. and independent of each other. Suppose we set up an equation
of the form

Yt = βXt + et

with et zero mean stationary. Since et is stationary but Yt and Xt are not, we cer-
tainly cannot have β = 0. Of course, the model is misspecified. However, in prac-
tice we do not know that. The problem is then to see what happens if we actually
fit a linear regression to the x − y-observations. For instance, if ξt ∼ N(0, σ 2

ξ ) and

ηt ∼ N(0, σ 2
η ), then

∑t
s=1 ξt =d B1(t),

∑t
s=1 ηt =d B2(t) where B1, B2 are two

Brownian motions that are independent from each other. Hence,

n∑

t=1

XtYt =
n∑

t=1

(
t∑

s=1

ξt

)(
t∑

s=1

ηt

)
=
d

n∑

t=1

B1(t)B2(t)

=
d
n2

n∑

i=1

B1(ui)B2(ui)
1

n
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where ui = in−1 so that

n−2
∑

XtYt →
d

∫ 1

0
B1(u)B2(u) du.

Similarly,
n∑

t=1

X2
t =

d
n

n∑

i=1

B2
1 (ui) = n2

n∑

i=1

B2
1 (ui)

1

n

implies

n−2
n∑

t=1

X2
t →

d

∫ 1

0
B2

1 (u) du.

Thus,

β̂LSE =
∑

XtYt∑
X2

t

→
d

∫ 1
0 B1(u)B2(u) du
∫ 1

0 B2
1 (u) du

.

In other words, instead of tending to zero, β̂LSE tends to a random variable that is
not equal to zero with probability one. This means that, if a regression of Y on X

is carried out, we will (for n large enough) always find a relationship even though
it is not there. This is a famous phenomenon in econometrics, known as ‘spurious
correlation’ or ‘spurious regression’. Initiated by Granger and others, methods for
determining the relationship between integrated time series has become an extended
branch of the econometric literature, mostly subsumed under the label ‘cointegra-
tion’.

Results on spurious correlations can be generalized to long-memory processes.
For instance, Tsai (2006) and Tsay and Chung (2000) consider the following sit-
uation. Let ηt and ξt be i.i.d. and independent of each other, E(ηt ) = E(ξt ) = 0,
var(ηt ) = σ 2

η and var(ξt ) = σ 2
ξ . Furthermore, define the FARIMA processes

vt = (1 −B)−d1ηt ,

wt = (1 −B)−d2ξt

with 0 < d1, d2 < 1
2 , and the corresponding integrated processes, i.e. the

FARIMA(0,1 + d1,0) and FARIMA(0,1 + d2,0) processes (starting at zero for
t = 0),

v∗
t = v∗

t−1 + vt ,

w∗
t = w∗

t−1 +wt .

Now we consider β̂LSE for the following regressions with intercept,

Yt = β0 + β1Xt + et ,
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Table 7.1 Models
considered in the context of
spurious correlation

xt stationary xt nonstationary

yt stationary M2 M4, M6

yt nonstationary M3 M1, M5

where Xt , Yt are defined as follows:

• Model 1: Yt = v∗
t , Xt = w∗

t ;
• Model 2: Yt = vt , Xt = wt with d1 + d2 > 1

2 ;
• Model 3: Yt = v∗

t , Xt = wt with d2 > 0;
• Model 4: Yt = vt , Xt = w∗

t with d1 > 0;
• Model 5: Yt = v∗

t on Xt = t ;
• Model 6: Yt = vt on Xt = t with d1 > 0.

Table 7.1 gives an overview. The following notation will be used:

β̂LSE =
(
β̂0

β̂1

)
,

β̂1 =
∑

(Xt − x̄)Yt∑
(Xt − x̄)2

, β̂0 = ȳ − β̂1x̄,

ŷt = β̂0 + β̂1Xt,

σ 2
y = var(Yn), σ 2

x = var(Xn).

Moreover, s2 = (n − 2)−2 ∑n
t=1(yt − ŷt )

2 will denote the usual estimate of the
variance of Yt (note, however, that for a nonstationary Yt , σ 2

y grows with t , i.e. the

estimate s2 is actually meaningless) and similarly, s2
β0

and s2
β1

are the usual estimates

of var(β0) and var(β1). Finally, tβ0 = β̂0/sβ0 and tβ1 = β̂1/sβ1 are the corresponding
t-statistics for β0 and β1. For simplicity of presentation, we assume all moments of
ηt and ξt to be finite.

For Model 1, the limit theorems in Sect. 4.2 can be applied to obtain

σ 2
y ∼ σ 2

η c1n
1+2d1 ,

σ 2
x ∼ σ 2

ξ c2n
1+2d2

with

cj = Γ (1 − 2dj )

(1 + 2dj )Γ (1 + dj )Γ (1 − dj )
(j = 1,2).

Assume for a moment that our FARIMA sequences vt and wt are replaced by fGn,
i.e. increments of two independent fractional Brownian motions BH1 , BH2 with
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Hj = dj + 1
2 . Then

n∑

t=1

Xt =d

n∑

t=1

BH2(t) =d n1+H2

n∑

t=1

BH2

(
t

n

)
1

n
,

and an analogous embedding applies to
∑n

t=1 Yt . Similarly, we can consider the
other quantities in β̂LSE, including

∑n
t=1 XtYt and

∑n
t=1 X

2
t :

n∑

t=1

XtYt =d

n∑

t=1

BH1(t)BH2(t) =d n1+H1+H2

n∑

t=1

BH1

(
t

n

)
BH2

(
t

n

)
1

n
.

Using the notation

∫ 1

0
BHi

(u)BHj
(u)du = Zi,j ,

∫ 1

0
BHj

(u)du = Zi,

we have

n−(1+H2)
n∑

t=1

Xt = n−( 3
2 +d2)

n∑

t=1

Xt →d

∫ 1

0
BH2(u) du = Z2,

n−(1+H1)
n∑

t=1

Yt = n−( 3
2 +d1)

n∑

t=1

Yt →d

∫ 1

0
BH1(u) du = Z1,

n−(1+H1+H2)
n∑

t=1

XtYt = n−(2+d1+d2)
n∑

t=1

XtYt →d

∫ 1

0
BH1(u)BH2(u) du = Z1,2,

and similarly,

n−(1+2H2)

n∑

t=1

X2
t = n−(2+2d2)

n∑

t=1

X2
t →d

∫ 1

0
B2
H2

(u) du = Z2,2.

All asymptotic limits can be considered jointly. Since

β̂1 =
∑n

t=1 XtYt − 1
n

∑n
t=1 Xt

∑n
t=1 Yt∑n

t=1 X
2
t − 1

n

∑n
t=1 Xt

∑n
t=1 Xt

= nd1−d2
n−(2+d1+d2)

∑n
t=1 XtYt − n− 3

2 +d2
∑n

t=1 Xtn
− 3

2 +d1
∑n

t=1 Yt

n−(2+2d2)
∑n

t=1 X
2
t − n− 3

2 +d2
∑n

t=1 Xtn
− 3

2 +d2
∑n

t=1 Xt

,

we obtain

nd2−d1 β̂1 →d

Z1,2 −Z1Z2

Z2,2 −Z2
2

=: β∗
1 .
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Similar arguments apply to the other regression quantities of interest, and (due
to convergence to fGn in D[0,1]) we may state the following result for general
FARIMA models:

Theorem 7.16 Assume that the FARIMA processes have all moments finite. Then,
under Model 1,

σXn

σYn
β̂1 →d β∗

1 ,
1

σYn
β̂0 →d Z1 − β∗

1Z2,

1

σYn
s2 →d Z1,1 −Z2

1 − (
β∗

1

)2(
Z2,2 −Z2

2

) =: σ 2∗ ,

σ 2
Xn

σ 2
Yn

s2
β1

→d

σ 2∗
Z2,2 −Z2

2

=: σ 2∗β1
,

n

σ 2
Yn

s2
β0

→d σ 2∗
{

1 + Z2
2

Z2,2 −Z2
2

}
=: σ 2∗β0

,

1√
n
tβ1 →d

β∗
1

σ∗β1

,
1√
n
tβ0 →d

β∗
0

σ∗β0

,

R2 →d

(
β∗

1

)2 Z2,2 −Z2
2

Z1,1 −Z2
1

.

For related results, also see, e.g. Phillips (1995), Phillips and Loretan (1991),
Marmol (1995), Jeganathan (1999), Robinson and Marinucci (2003, 2003), Buch-
mann and Chan (2007). Theorem 7.16 can be interpreted as follows. Model 1
deals with the case where Yt and Xt are both integrated processes, independent
of each other and such that the first difference exhibits (stationary) long mem-
ory. The estimated intercept β̂0 always diverges. For the slope, it is more com-
plicated. If long memory in the dependent variable Yt is at least as strong as in
Xt (i.e. d1 ≥ d2) then the estimated slope β̂1 does not converge to zero. In par-
ticular, if d1 = d2, we have spurious correlation in the standard sense, namely
β̂1 converges to a non-constant random variable. If d1 > d2, then β̂1 assumes
asymptotically the values ±∞ only. If Xt has stronger long memory than Yt , then
β̂1 does converge to zero; however, at a very slow rate. What is even worse is
that the R2-statistic does not converge to zero, irrespective of the concrete val-
ues of d1 and d2. Furthermore, we also have spurious correlation at a second-
order level for all values of d1, d2 > 0, in the sense that the usual t-tests for
β0 and β1 asymptotically reject the null hypothesis that these parameters are
zero.

Example 7.22 Figures 7.5(a)–(f) display simulated distributions and boxplots of
β̂1 for the cases d1 = d2 = 0.4 and d1 = 0.1, d2 = 0.4, respectively, and sample
sizes n = 20,50,100,200,400,1000 and 2000. As expected from Theorem 7.16,
the results for the two cases are very different. In case 2, the distribution of β̂1
(Figs. 7.5(d)–(e)) is increasingly concentrated around the true value of β1 as n

grows. In case 1, however, the distribution remains essentially the same (Figs. 7.5



602 7 Statistical Inference for Nonstationary Processes

Fig. 7.5 Simulated distributions and boxplots of β̂1 in a regression of two independent integrated
FARIMA(0, d,0) processes with d1 = d2 = 0.4 ((a) and (b)) and d1 = 0.1, d2 = 0.4 ((d) and (e)),
respectively. The sample sizes are n = 20,50,100,200,400,1000 and 2000. Also shown are box-
plots of the R2-statistic ((c) and (f), respectively)

(a)–(b)). For R2, the behaviour is the same in both cases. As expected from
the asymptotic result, the distribution of R2 stabilizes at a nondegenerate level
(Figs. 7.5(c) and (f)). In other words, one is led to believe that there is a linear
relationship between the two series, although in reality they are independent of each
other.
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The results for the other models (Models 2 through 6) can be obtained by sim-
ilar arguments. In the following, only the order of the variables is written down
since this is the essential part of the statements. To simplify notation, we will write
“O∗

p(n
α)” for a random quantity that is equal to nα times a random variable with

positive variance. In contrast to Model 1, Model 2 involves the estimated relation-
ship between two stationary long-memory processes. For obvious reasons, the least
squares estimators of β0 and β1, as well as R2, do converge to zero (see also (7.58)
in Theorem 7.13). However, if d1 + d2 > 1

2 , then

tβ1 = O∗
p

(
nd1+d2− 1

2
)
.

Thus, if the two variables have enough “joint” long memory, then second-order spu-
rious correlations occur in the sense that the usual t-test rejects H0 : β1 = 0 asymp-
totically. Long memory has to be taken into account to obtain correct rejection re-
gions. This is analogous to tests and confidence intervals for the location parameter,
as considered in Sect. 5.2.1.

A different result is obtained in Model 3 where a nonstationary series Yt is re-
gressed on a stationary series Xt . Here, nonstationarity of the response series alone
leads to spurious correlations, as described in the following theorem.

Theorem 7.17 Under Model 3,

β̂1 = O∗
p

(
nd1+d2

)
, β̂0 = O∗

p

(
n

1
2 +d1

)
,

s2 = O∗
p

(
n1+2d1

)
, s2

β1
= O∗

p

(
n2d1

)
, s2

β0
= O∗

p

(
n2d1

)
,

tβ1 = O∗
p

(
nd2

)
, tβ0 = O∗

p

(
n

1
2
)
,

R2 = O∗
p

(
n2d2−1).

Thus, regressing a nonstationary long-memory process on an independent sta-
tionary long-memory series leads to spurious correlations in the sense that |β̂1| di-
verges to infinity, and the t-test for β1 needs adjustment. On the other hand, there
is no spurious correlation as such because R2 (which is in the case of simple linear
regression equal to the square of the sample correlation) converges to zero. In con-
trast, regressing a stationary process on a nonstationary series leads to a spurious
effect only when considering the (unadjusted) t-test.

Theorem 7.18 Under Model 4,

β̂1 = O∗
p

(
nd1−d2−1), β̂0 = O∗

p

(
nd1− 1

2
)
,

s2 →
p

σ 2
v , s2

β1
= O∗

p

(
n−2−2d2

)
, s2

β0
= O∗

p

(
n−1),

tβ1 = O∗
p

(
nd1

)
, tβ0 = O∗

p

(
nd1

)
,

R2 = O∗
p

(
n2d1−1).
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Thus, apart from the need for an adjustment in the t-test, nothing too serious
happens when regressing a stationary series on an unrelated nonstationary one.

The situation is different, when fitting a liner trend function to an integrated pro-
cess:

Theorem 7.19 Under Model 5,

β̂1 = O∗
p

(
nd1− 1

2
)
, β̂0 = O∗

p

(
n

1
2 +d1

)
,

tβ1 ∼ O∗
p(

√
n), tβ0 = O∗

p(
√
n),

R2 = O∗
p(1).

Thus, the t-test and the value of R2 indicate asymptotically the presence of a
linear trend. On the other hand, β̂1 itself is asymptotically zero with probability
one, but the convergence to zero is very slow. Finally, if the differenced series (i.e.
a stationary long-memory process) is regressed on a linear trend, then the only re-
maining problem is that the t-test would need adjustment. Specifically, one obtains
for Model 6

tβ1 = O∗
p

(
nd1

)
.

7.2.5 Fractional Cointegration

The problem of spurious correlations leads to the natural question how to recognize
which (linear) relationships between observed nonstationary time series are real and
which ones are spurious. The original definition of cointegration of random walk
type processes (or integrated processes with an integer valued degree of integra-
tion) was introduced by Granger (1981, 1983) and further developed in Engle and
Granger (1987) and many subsequent papers. Qualitative considerations suggesting
that certain nonstationary time series should not drift arbitrarily far apart existed be-
fore, for instance, in Davidson et al. (1978). Much later, cointegration was extended
to fractionally integrated processes. There is an extended literature on this topic, and
fractional cointegration is still somewhat controversial among economists. Here,
only a very brief introduction is given.

For simplicity, we consider the bivariate case, i.e. two series Yt and Xt . The first
step is to specify exactly what kind of nonstationarity is considered. This leads to
the notion of integrated processes. There are at least two possible ways of defin-
ing such processes, and these definitions are, in fact, quite different (see, e.g. Chen
and Hurvich 2009). The first definition was used, for instance, in Velasco (1999a,
1999b), Chen and Hurvich (2003a, 2003b, 2006) and Velasco (2003):

Definition 7.3 A univariate process Xt is called I (d) of Type I or integrated of
order d > − 1

2 if either (a) − 1
2 < d < 1

2 , Xt is stationary and with spectral density
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fX(λ) ∼ cf |λ|−2d (λ → 0), or (b) d > 1
2 and there is an integer m such that − 1

2 <

d∗ = d −m< 1
2 and (1 −B)mXt is I (d∗).

The second definition was used in Marinucci and Robinson (2000):

Definition 7.4 A univariate process Xt (t ≥ 1) is called I (d) of Type II or integrated
of order d > − 1

2 if, for t ≥ 1,

Xt =
t−1∑

j=0

aj ξt−j =
∞∑

j=0

aj ξ
∗
t−j = (1 −B)−dξ∗

t

where ξt are zero mean i.i.d. with finite variance, ξ∗
t = ξt · 1{t ≥ 1}, and

aj = δ0j (d = 0),

aj =
(−d

j

)
= Γ (1 − d)

Γ (j + 1)Γ (1 − d − j)
∼ c · jd−1.

The second definition may be generalized by imposing the asymptotic condi-
tion on aj only. It should be noted that the two definitions are quite different. For
d > 1

2 , both imply a nonstationary process. For − 1
2 < d < 1

2 , Xt obtained from
Definition 7.3 is stationary, whereas this is only the case asymptotically when Def-
inition 7.4 is used. Moreover, different limits for partial sums are obtained. For
example, if Xt is I (d) according to Definition 7.4 with 1

2 < d < 3
2 , then

Xn = X∗
1 +X∗

2 + · · · +X∗
n

where

X∗
t = (1 −B)−(d−1)ξ∗

t ,

and the partial sums

Sn(u) =
[nu]∑

i=1

X∗
i (0 ≤ u ≤ 1)

are such that Zn(u) = Sn(u)/
√

var(Sn(1)) converges to a so-called Type II or
Riemann–Liouville fractional Brownian motion (Marinucci and Robinson 2000;
also see Akonom and Gourieroux 1987; Silveira 1991) which is defined for all
H = d + 1

2 > 0. On the other hand, if Xt is obtained from Definition 7.3, then Zn(u)

converges to the usual fractional Brownian motion as in Mandelbrot and van Ness
(1968) (see Sect. 1.3.5) which is defined for 0 <H < 1 only. For limit theorems for
Fourier transforms under the two definitions, see, e.g. Velasco (2007).

More generally, I (d) may be defined for bivariate (or multivariate) processes
Xt = (Xt1,Xt2) as follows. Using the spectral representation

Xt,j =
∫ π

−π

eitλ dMj (λ) (j = 1,2),
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the cross-covariance is

γ12(k) = cov(Xt+k,1,Xt,2) =
∫ π

−π

f12(λ)e
ikλ dλ

=
∫

eikλE
[
dM1(λ) dM2(λ)

]
.

Thus, in this notation,

f12(λ) = E
[
dM1(λ) dM2(λ)

]
.

If, for instance, dM2(λ) = e−iφ12(λ) dM1(λ) with φ12(λ) = φλ and φ > 0, then this
means that Xt,2 is delayed with respect to Xt,1 by the time span φ. For the cross-
spectral density, we have

f12(λ) = eiφ12(λ)
∣∣f12(λ)

∣∣ = eiφλ
∣∣f12(λ)

∣∣.

Thus, in the notation used here, the slope of the phase, φ′
12(λ), corresponds to the

time delay of dM2(λ) with respect to dM1(λ) (see, e.g. Brockwell and Davis 1991).
A possible definition of bivariate fractionally integrated processes is as follows:

Definition 7.5 A stationary process Xt = (Xt,1,Xt,2)
T ∈ R

2 is called I (d1, d2) of
Type I if there exist − 1

2 < d1, d2 < 1
2 such that Xt has a 2 × 2 spectral density

fX(λ) ∼ Λ(λ)Cf Λ̄(λ) (λ → 0)

with Cf a constant, real, positive semidefinite and symmetric p × p matrix such
that [Cf ]ii 
= 0, and

Λ(λ) =
( |λ|−d1 0

0 e−iφ12(λ)|λ|−d2

)

for some differentiable function φ12 with derivative φ′
12 such that limλ→0 φ

′
12(λ) =

φ0 ∈ (0,π]. A nonstationary process Xt is called I (d1, d2) of Type I if there is an
integer m such that − 1

2 < d∗
i = di − m < 1

2 and (1 − B)mXt = ((1 − B)mXt,1,

(1 −B)mXt,2)
T is I (d∗

1 , d
∗
2 ).

The generalization to p-dimensional cointegrated vector series is obvious. More
explicitly, a stationary I (d1, d2) process has a spectral density that behaves at the
origin like

f (λ) ∼
( |λ|−d1 0

0 e−iφ0λ|λ|−d2

)(
C11 C12
C12 C22

)( |λ|−d1 0
0 eiφ0λ|λ|−d2

)

=
(

C11|λ|−2d1 C12|λ|−d1−d2eiφ0λ

C12|λ|−d1−d2e−iφ0λ C22|λ|−2d2

)
.
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In particular, this means that for low frequency components of Xt there is an ap-
proximately constant phase shift corresponding to Xt,2 being behind by Δt = φ0. In
the simplest case with limλ→0 φ

′
12(λ) = 0 (see, e.g. Christensen and Nielsen 2006),

there is no phase shift for very low frequencies (more precisely, for λ → 0).

Example 7.23 Consider a multivariate FARIMA model defined as the stationary
solution of

(
(1 −B)d1 0

0 (1 −B)d2

)
Xt = ϕ−1(B)ψ(B)ξt = ηt =

(
ηt,1

ηt,2

)
(7.68)

(see, e.g. Lobato 1999; Robinson and Yajima 2002; Shimotsu 2006) with i.i.d. ξt =
(ξt,1, ξt,2)

T , zero mean random variables and ξt,1 independent of ξs,2 for all s, t .
The spectral density of Xt is given by

f (λ) =
(
(1 − e−iλ)−d1 0

0 (1 − e−iλ)−d2

)
fη(λ)

(
(1 − eiλ)−d1 0

0 (1 − eiλ)−d2

)

where

fη
2×2

(λ) = σ 2
ξ

2π
ψ
(
e−iλ

)
ϕ−1(e−iλ

)
ϕ−1(eiλ

)
ψ
(
eiλ

)

=: σ
2
ξ

2π

∣∣ψ
(
e−iλ

)
ϕ−1(e−iλ

)∣∣2.

For λ → 0,

fη(λ) → Cf = σ 2
ξ

2π

∣∣ψ(1)ϕ−1(1)
∣∣2

and
(
1 − eiλ

)d ∼ (1 − 1 − iλ)d = λde−i π2 d .

Thus,

f (λ) ∼
(
λ−d1ei

π
2 d1 0

0 λ−d2ei
π
2 d2

)
Cf

(
λ−d1e−i π2 d1 0

0 λd2e−i π2 d2

)

=
(
λ−d1 0

0 λ−d2ei
π
2 (d2−d1)

)
Cf

(
λ−d1 0

0 λd2e−i π2 (d2−d1)

)

so that Definition 7.5 applies with

φ12(λ) ≡ π

2
(d1 − d2)

and

φ0 = φ′
12(λ) ≡ 0.
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This means that for FARIMA models as defined above there is no time shift, al-
though the phase φ12 itself is not zero except for d1 = d2. (For less restrictive mod-
els, see, e.g. Robinson 2007). Note, however, that this only refers to λ → 0. Outside
any open neighbourhood of the origin, the AR- and MA-matrices ϕ and ψ can
model any kind of phase shifts with φ′

12 
= 0.

Similarly, a Type II I (d1, d2)-process can be defined (see, e.g. Robinson and
Marinucci 2001, 2003, Marinucci and Robinson 2000; Marmol and Velasco 2004;
Nielsen and Shimotsu 2007).

A simple, though not most general, definition of cointegration can be given as
follows (Chen and Hurvich 2003a, 2003b, 2006).

Definition 7.6 Let Xt ∈ R
2 be I (d1, d2) with d1 = d2 = d > − 1

2 . Then Xt is coin-
tegrated of order d , b (or CI (d, b)) if there exists a vector β ∈ R

2 such that β 
= 0
and Yt (β) = βT Xt ∈R is I (d∗) with d∗ = d − b < d . Any such vector β is called a
cointegrating vector.

By definition, β is determined up to a scaling constant. Thus, for a bivariate

series, there is at most one β with ‖β‖ =
√
β2

1 + β2
2 = 1. More generally, for p-

dimensional series, there are at most p − 1 such vectors. The number of linearly in-
dependent cointegrating vectors is then called the cointegrating rank. Note that orig-
inally, cointegration was defined for integer valued differencing parameters dj only
(Engle and Granger 1987): the components of Xt ∈ R

p are said to be cointegrated of
order d, b ∈N in the sense of Engle and Granger (Xt ∼ CI (d, b)) if all components
of Xt are I (d) and there exists a vector β ∈ R

p such that βT Xt ∼ I (d − b), b > 0.
Definition 7.6 is applicable to any d and b = d − d∗. The possibility of extending
cointegration to fractional differences was suggested before by Granger (Granger
1981, 1986). Note also that d∗ may be less or equal − 1

2 . This means that Yt (β)
may turn out to be non-invertible. More general definitions that allow for d1 
= d2

were also introduced in the literature, but are more complicated due to the variety
of possible subsets with equal dj ’s (see, e.g. Robinson and Yajima 2002; Robinson
and Marinucci 2003, 2003).

Example 7.24 Suppose that Xt1 and Xt2 are both Type I I (d) with d ∈ (0, 1
2 ) and

et ∈ R is Type I I (de) with 0 < de < d < 1
2 . If there is an α 
= 0 such that

Xt2 = αXt1 + et , (7.69)

then Xt = (Xt1,Xt2)
T is fractionally cointegrated with cointegrating vector β =

(1,−α)T and fractional integration parameters d and de (see, e.g. Robinson 1994b).

Example 7.25 Let Xt be defined as in the previous example and X̃t be such that
(1 − B)X̃t = Xt . Also denote by ẽt an I (de + 1) process such that (1 − B)ẽt = et .
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Then

X̃t,2 = μ+ αX̃t,1 + ẽt (7.70)

where μ is an arbitrary constant. The integrated process X̃t is cointegrated with
cointegrating vector β = (1,−α)T and fractional integration parameters d + 1 and
de + 1 (see Chen and Hurvich 2003a for a generalization to d +m).

Example 7.26 A Type I p-dimensional fractional common component model pro-
posed in Chen and Hurvich (2006) is defined as

Xt = A0ξ
(0)
t +A1ξ

(1)
t + · · · +Asξ

(s)
t

with latent (unobserved) I (dj )-processes ξ
(j)
t ∈ R

pj such that

−m0 + 1

2
< ds < · · · < d0 <

1

2
,

A0, . . . ,As are p × pj full-rank matrices with all columns linearly independent,
p0 +· · ·+ps = r , 1 ≤ r < p and 1 ≤ s ≤ r . This means that Xt can be decomposed
orthogonally into s cointegrating subspaces defined by A1, . . . ,As and the cointe-
gration rank is r . Moreover, by definition, Xt is I (d0). If we choose β as a linear
combination of the columns of matrix Aj (j 
= 0), then—due to orthogonality—

Yt (β) = βT Xt = βT Ajξ
(j)
t

so that Yt (β) is I (dj ).

Example 7.27 Sowell (1990) and Dueker and Startz (1998) consider a cointegrated
FARIMA process of the form Xt = (Xt1,Xt2)

T with

ϕ
2×2

(B)

(
(1 −B)d1 0

0 (1 −B)d2

)(
1 0

−α 1

)
Xt = ψ

2×2
(B)ξt (7.71)

where − 1
2 < d2 < d1 < 1

2 , and ϕ and ψ are AR- and MA-operators of order
p and q . This means that X∗

t = (Xt1,Xt2 − αXt1)
T is the usual multivariate

FARIMA process. The bivariate process Xt is cointegrated with cointegrating vec-
tor β = (−α,1)T . If the i.i.d. innovation variables ξt are assumed to be Gaussian,
then, in principle, the parameters in (7.71) can be estimated by a maximum like-
lihood type method. For non-Gaussian innovations, the same method may be used
(under moment assumptions), though it may not be optimal (see, e.g. Dueker and
Startz 1998; Jeganathan 1999).

For further results, discussions and literature, see, e.g. Chan and Terrin (1995),
Breitung and Hassler (2002), Davidson (2002), Dolado et al. (2003), Robinson and
Hualde (2003), Nielsen (2005a, 2005b), Johansen (2008, 2008), Lasak (2010).
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In classical cointegration with integer valued d and b, the cointegrating vector
β = (1,−α)T can be estimated by minimizing

∑
(X1t − μ − αX2t )

2 with respect
to μ and α. (The generalization to higher dimensions p > 2 is obvious.) In addition,
because of the problem of spurious correlation, one has to test whether β̂ is “real”
or spurious. The classical method suggested by Engle and Granger is to test for unit
roots in the residuals êt = X1t − μ̂− α̂X2t (i.e. H0 : ϕ = 1 vs. H1 : |ϕ| < 1 where we
assume et = ϕet−1 +ut ). This is typically done by a suitable version of the Dickey–
Fuller test (Dickey and Fuller 1981). If H0 is not rejected, then cointegration is
assumed to be real. An alternative method is based on reduced rank regression of a
multivariate ARMA process the cointegration model can be embedded in (see, e.g.
Johansen 1996).

At first sight, the generalization of estimation and identification techniques to
fractional cointegration is not obvious because unit root testing is not sufficient. The
first question is estimation of β in the case where cointegration applies. The sec-
ond question is how to guard against spurious correlations. In particular, the usual
Dickey–Fuller test is not applicable. With respect to estimation no fundamentally
new problem occurs if a parametric model, such as (7.71), is acceptable. In this case,
maximum likelihood estimation of the cointegration vector β and other parameters
of the model (including d1, d2) can be carried out in principle because everything
is specified. However, in models where only the behaviour of the (cross-) spectrum
near the origin is specified (see some of the examples above), the task is more diffi-
cult. Consider, for example, (7.69) with

Xt2 = αXt1 + et , (7.72)

Xt1 stationary with autocovariance function γ11(k), variance var(Xt1) = γ11(0) =
σ 2

1 and I (d) for some 0 < d < 1
2 , and et stationary and I (de) with de < d . For the

least squares estimator of α, we then have

α̂LSE = α +
∑n

t=1 Xt1et∑n
t=1 X

2
t1

→
p

α + cov(Xt1, et )

σ 2
1

.

This is equal to zero only if Xt1 and et are uncorrelated. The result is different
from nonfractional cointegration where, for instance, Xt,1, Xt,2 are CI (1,1) which
implies that

∑n
t=1 X

2
t1 is of a larger order than

∑n
t=1 Xt1et . A possible solution for

the fractional cointegration model here is to apply least squares regression to low
frequency components only. The reason is that

cov(Xt1, et ) =
∫ π

−π

f1,e(λ) dλ,

var(Xt1) =
∫ π

−π

f11(λ) dλ

where

f (λ) =
(
f11(λ) f1,e(λ)

fe,1(λ) fee(λ)

)
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is the (real-valued) bivariate spectral density of (Xt1, et )
′. Since 0 ≤ |f1,e| ≤√

f11fee and de < d , we have for λ → 0,

f1,e(λ) = O
(
λ−d−de

) = o
(
λ−2d).

Denote by

Zj (λk) = 1√
2πn

n∑

t=1

Xtj e
iλkt (j = 1,2)

the discrete Fourier transform of Xtj at Fourier frequencies λk = 2πk/n and define

α̂LSE(mn) =
∑mn

k=1 Re(Z1(λk)Z2(λk))∑mn

k=1 |Z1(λk)|2 (7.73)

with mn → ∞ such that mn/n → 0. For Zj we have

E
[
Z1(λk)Z2(λk)

] = 1

2πn

n∑

t,s=1

E
[
Xt1(αXs1 + es)

]
eiλk(t−s)

= α
1

2πn

n∑

t,s=1

γ11(t − s)eiλk(t−s)

+ 1

2πn

n∑

t,s=1

cov(Xt1, es)e
iλk(t−s)

∼ α ·O(
λ−2d
k

)+O
(
λ

−de−d
k

)

and

E
[∣∣Z1(λk)

∣∣2] = 1

2πn

n∑

t,s=1

γ11(t − s)eiλk(t−s) = O
(
λ−2d
k

)
.

Similar arguments apply to the variance of the enumerator and denominator in (7.73)
so that, under suitable detailed regularity conditions,

α̂LSE(mn) = α +Op

(
λd−de

) = α + op(1)

(see Robinson 1994b). Robinson and Marinucci (2001) showed that α̂LSE(mn) is
also consistent for a Type II nonstationary cointegration model. Similarly, Chen
and Hurvich (2003a) showed consistency and derived the asymptotic distribution
of α̂LSE(mn) refined by tapering, under a Type I cointegration model with arbitrary
integer integration parameter (also see, e.g. Chen and Hurvich 2006; Robinson and
Yajima 2002; Velasco 2003; Nielsen and Shimotsu 2007). Also note that an alterna-
tive estimator based on the Whittle approximation is proposed in Robinson (2008).
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Moreover, Johansen and Nielsen (2010a, 2010b) show how to generalize reduced
rank regression to fractional cointegration (also see Johansen 2010a, 2010b, 1996,
2008, Lütkepohl 2006).

The second question is how to design “unit roots” tests that detect fractional de-
partures from stationarity. More generally, the question is how to identify the coin-
tegration rank in the fractional cointegration context. Tests along this line are dis-
cussed, for instance, in Breitung and Hassler (2002, 2006), Davidson (2002, 2006),
Robinson and Yajima (2002), Marmol and Velasco (2004), Nielsen (2004b, 2004c,
2004a, 2005a, 2005b), Chen and Hurvich (2006), Nielsen and Shimotsu (2007),
Hualde and Velasco (2008), Avarucci and Velasco (2009), Lasak (2010), MacKin-
non and Nielsen (2010). For additional references to fractional cointegration, see,
e.g. Cheung and Lai (1993), Baillie and Bollerslev (1994), Ravishanker and Ray
(1997, 2002), Kim and Phillips (2001), Gil-Alana (2004), Nielsen (2004b, 2004c),
Robinson and Iacone (2005), Hualde and Robinson (2007, 2010), Robinson (2008),
Berger et al. (2009), Davidson and Hashimzade (2009a, 2009b), Gil-Alana and
Hualde (2009), Sela and Hurvich (2009), Franchi (2010), Nielsen (2010, 2011),
Nielsen and Frederiksen (2011).

7.3 Piecewise Polynomial and Spline Regression

We consider a process of the form

Xt = m

(
t

n

)
+ et (t = 1, . . . , n) (7.74)

where et is a zero mean second-order stationary process. In some situations, a natu-
ral model for the expected value m is a piecewise polynomial. For instance, Fig. 1.18
in Sect. 1.2 shows typical olfactory response curves to an odorant stimulus adminis-
tered at a known time point t0. In this case, a continuous piecewise linear polynomial
(or in other words, a linear spline function) with one known knot at time t0 and one
subsequent unknown knot characterizes the essential features of the expected value
as a function of time. The residual processes et often exhibit long memory.

More generally, we may consider an arbitrary continuous piecewise polynomial
function

m(s) =
l∑

k=0

pk∑

j=1

ak,j (s − ηk)
βj,k
+

with βj,k < βj+1,k , knots 0 = η0 < η1 < · · · < ηl < 1 of which some (but not nec-
essarily all) are unknown. Note that m is continuous if βj,k ≥ 1 for k ≥ 1. The
definition includes splines, but is more general since apart from continuity no dif-
ferentiability conditions are imposed. For simplicity of presentation, we will discuss
the case with one unknown knot η only. As we will see, however, results can be for-
mulated in a general form so that all cases with an arbitrary number of knots and
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arbitrary polynomials are included. Thus, suppose that there is one unknown knot η.
Then m(s) has the representation

m(s) =
p∑

j=1

αjfj (s)
(
s ∈ [0,1]) (7.75)

with αT = (α1, . . . , αp) denoting unknown regression coefficients and

f1(s) = 1, f2(s) = s, . . . , fq(s) = sq−1,

fq+1(s) = (s − η)+, . . . , fp(s) = (s − η)
p−q
+

(7.76)

(where (s − η)l+ := max(0, (s − η)l)). The unknown parameter vector is θ =
(αT , η)T . The true value of θ will be denoted by θo. Note that for identifiability
of η0, one needs the condition that α0

j 
= 0 for at least one j ≥ q + 1. Beran and
Weiershäuser (2011) and Beran et al. (2013) derived the asymptotic distribution of
the least squares estimator of θ0 under long memory, short memory and antipersis-
tence of the residual process et . In particular, if et is linear, then unified formulas
applicable to all three cases can be derived. The key to obtaining these results is a
linearization of the nonlinear regression estimator of θ and convergence of weighted
sums of et to integrals with respect to fractional Brownian motion. Combined with
fractional calculus unified formulas follow.

We will use the notation ν(d) as in Corollary 1.2. Minimizing the sum of the
squared residuals, Q(θ) = ∑n

t=1[Xt −m(sn; θ)]2 (with sn = t/n) with respect to θ

can be done in two steps. First of all, for each value of η, the optimal value of α is
obtained by standard linear least squares regression on the functions fj defined by
using knot η. Thus, for each η ∈ (0,1) we define the n× p matrix

Wn = Wn(η) = (wij )i=1,...,n;j=1,...,p = (w1,n, . . . ,wp,n) (7.77)

with wi,j = fj (
i
n
) (1 ≤ i ≤ n;1 ≤ j ≤ p), and column vectors denoted by wj,n

(j = 1, . . . , p). For n large enough, WT
n Wn is invertible so that the projection matrix

on the column space of Wn(η) may be written as

PWn
= PWn

(η) = Wn

(
WT

n Wn

)−1WT
n . (7.78)

Thus, given observations X = (X1, . . . ,Xn)
T , η̂ is obtained by minimizing

‖X − PWn
(η)X‖2 with respect to η. The slope estimates are given by

α̂ = (
WT

n Wn

)−1WT
n X

and m(s1), . . . ,m(sn) are estimated by

[
m

(
1

n
; θ̂

)
,m

(
2

n
; θ̂

)
, . . . ,m(1; θ̂ )

]T
= PWn(η̂)X. (7.79)
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Note that, in spite of the projection, neither α̂ nor η̂ are linear in X. For general
piecewise polynomials, linearization of θ̂ has to take into account that derivatives
of m with respect to η may not exist for t = η. Denoting by m(j+) the right-hand
partial derivatives of m with respect to θj and defining the n× (p + 1) matrix

Mn+ = [
m(j+)(t/n)

]
t=1,...,n;j=1,...,p+1 ∈R

n×(p+1) (7.80)

the limit

lim
n→∞n−1(MT

n+Mn+
)
jk

=
∫ 1

0
m(j+)(s, θ)m(k+)(s, θ) ds (7.81)

exists. Therefore, the matrix MT
n+Mn+ is of full rank for n large enough, and we

can also define the asymptotic matrix

Λ = lim
n

n
(
MT

n+Mn+
)−1

. (7.82)

Suppose now that the spectral density of et is of the form fe(λ) ∼ cf |λ|−2d for
λ → 0 where d ∈ (− 1

2 ,
1
2 ). Using the notation e(n) = (e1, . . . , en)

T it can then be

shown that ‖θ̂ − θ − (MT
n+Mn+)−1Mn+e(n)‖ = op(n

d− 1
2 ) and

lim
n→∞ cov

(
n

1
2 −dν− 1

2 (d)
(
MT

n+Mn+
)−1MT

n+e(n)
) = ΛΣ0Λ (7.83)

where Σ0 depends on d . At first sight, the formulas for Σ0 seem to be quite different
depending on whether we have long memory, short memory or antipersistence:

1. d > 0:

Σ0 = d(1 − 2d)

(∫ 1

0

∫ 1

0

m(j)(s)m(k)(t) dt ds

|s − t |1−2d

)

j,k=1,...,p+1
. (7.84)

2. d = 0:

Σ0 =
(∫ 1

0
m(j)(t)m(k)(t) dt

)

j,k=1,...,p+1
. (7.85)

3. d < 0:

Σ0 = c

(∫ 1

0
m(j)(t)

∫

R\[0,1]
m(k)(t)

|s − t |1−2d
ds

−
∫ 1

0

m(k)(s)−m(k)(t)

|s − t |1−2d
ds dt

)

j,k=1,...,p+1

(7.86)

with c = d(1 − 2d).

However, using fractional calculus (as discussed in Sect. 3.7.3), one formula for
all three cases can be given. This approach also helps deriving the asymptotic dis-
tribution of θ̂ in an elegant way similar to Pipiras and Taqqu (2000a, 2000c, 2003).
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Extending m(j+) to the real axis by setting m(j+)(t) = 0 (j = 1, . . . , p + 1) for
t /∈ [0,1), the unified formula for Σ0 can be given as follows (Beran et al. 2013):

Theorem 7.20 Define

c2
1(d) :=

∫

R

(
(1 + s)d − sd

)2
ds + 1

2d + 1
.

Then

Σ0 =
[
Γ (d + 1)2

c2
1(d)

∫

R

(
I d−m(j+)

)
(s)

(
I d−m(k+)

)
(s) ds

]

j,k=1,...,p+1
.

Finally, recalling the linearization

n
1
2 −dν− 1

2 (d)(θ̂ − θ) ≈ n
1
2 −dν− 1

2 (d)
(
MT

n+Mn+
)−1Mn+e(n),

convergence to a normal distribution can be derived by extending limit theorems
for weighted sums given in Pipiras and Taqqu (2000a, 2000c). The limit is a linear
transformation of the (p + 1)-dimensional Gaussian variable

Z :=
(∫

m(j+)(s) dBH (s)

)

j=1,...,p+1

where BH(s) denotes a fractional Brownian motion with Hurst parameter H =
d + 0.5 and the integral

∫ ·dBH (s) is understood in the sense of Pipiras and Taqqu
(2000a, 2000c). The asymptotic distribution can then be expressed as follows.

Theorem 7.21 Under the assumptions summarized above (see Beran and Weier-
shäuser 2011 and Beran et al. 2013 for detailed assumptions) we have, as n → ∞,

n
1
2 −dν− 1

2 (d)(θ̂ − θ) →
d

ΛZ ∼ N(0,ΛΣ0Λ). (7.87)

Note that the formulation of the asymptotic distribution in terms of fractional
integration is general so that it directly applies to any continuous piecewise polyno-

mial function m(s) = ∑l
k=0

∑pk

j=1 ak,j (s − ηk)
βj,k
+ as specified above.

An application of these results to calcium imaging data in the context of olfactory
research was introduced in Sect. 1.2. The data displayed in Fig. 1.18 are part of a
data set consisting of estimated entropy series for 25 adult forager bees (Apis mel-
lifera carnica). The original series were based on calcium imaging data reflecting
the response in the antennal lobe of bees to an odorant stimulus (more specifically,
hexanol). For the response series in Fig. 1.18, a linear spline function (i.e. a con-
tinuous piecewise linear function) with one known knot at the time of intervention
and two subsequent unknown knots provides a rather accurate approximation of the
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main characteristics. For each bee, two response series were measured under two
different conditions, namely without and with the addition of the neurotransmit-
ter octopamine. The research hypothesis was that under the influence of the neuro-
transmitter, the change in entropy should be faster. Using a linear splines fit with one
known knot η0 at the time of intervention and two subsequent unknown knots η1,η2,
we have m(s) = α0 +α1s +α2(s −η0)+ +α3(s −η1)+α4(s −η2)+ with unknown
parameter vector θ = (α0, . . . , α4, η1, η2). Let θwithout and θwith be the parameters
without and with octopamine. Then checking the research hypothesis can be inter-
preted as testing the null hypothesis H0 : α2,without = α2,with. Using least squares
estimation for each of the response series, the distribution of α̂2,without and α̂2,with,
respectively, follows from the theorem above. Since the two series are always mea-
sured within one individual bee, the estimates are correlated so that a paired test has
to be applied that takes into account the correlation ρ between the two estimates.
The difference Δ̂ = α̂2,with − α̂2,without is then approximately normal with variance
var(Δ̂) = var(α̂2,with) + var(α̂2,without) − ρ

√
var(α̂2,with)var(α̂2,without). The vari-

ances are obtained from the asymptotic results above whereas ρ may be replaced by
the sample correlation based on all bees in the data set. Beran et al. (2013) used these
estimates to calculate an optimally weighted mean as an estimate of μΔ = E(Δ̂).
Using asymptotic normality or bootstrap, it could indeed be shown that μΔ > 0 with
a p-value below 1 %.

7.4 Nonparametric Regression with LRD Errors—Kernel
and Local Polynomial Smoothing

In this section, we consider the nonparametric regression model

Yi = m(Xi)+ σ(Xi)ei (i = 1, . . . , n), (7.88)

where m(·), σ(·) are unknown functions, Xi are predictors (deterministic or ran-
dom), and ei is a second-order stationary process. First, in Sect. 7.4.1, we give a
brief introduction to kernel (Priestley–Chao, Nadaraya–Watson) and local polyno-
mial smoothing. We provide some preliminary calculations of the bias and vari-
ance and point out important differences between fixed and random design. It turns
out that random design may improve rates of convergence. We have observed this
already for parametric regression in Sects. 7.1 and 7.2 . Methods for estimating
derivatives and boundary effects are also discussed.

In Sects. 7.4.2–7.4.3, we present general results for fixed design kernel and lo-
cal polynomial estimation. In particular, it is shown that long memory or antiper-
sistence influences rates of convergence. Hall and Hart (1990b) were the first to
derive an asymptotic formula for the mean squared error of kernel estimators of
the trend function in fixed-design regression with long-memory errors. This result
was extended further in Beran and Feng (2001a, 2001b, 2002a, 2002b, 2002c),
including kernel estimation with boundary corrections, local polynomial estima-
tion of derivatives and integrated processes. Further results have been obtained in
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Csörgő and Mielniczuk (1995b, 1995a), Robinson (1997), Beran and Feng (2001a,
2007), Pawlak and Stadtmüller (2007), Feng et al. (2007). Extensions to LARCH-
type residuals are given in Beran and Feng (2007). Optimal convergence rates are
derived in Feng and Beran (2012), but will not be discussed here. The nonexis-
tence of optimal kernels in the long-memory setting is shown in Beran and Feng
(2007). Sections 7.4.4 and 7.4.6 are devoted to bandwidth choice in nonparamet-
ric kernel and local polynomial regression. Bandwidth choice in the long-memory
context by cross-validation originates from Hall et al. (1995a), whereas the plug-
in approach is discussed in Ray and Tsay (1997), Beran and Feng (2002a, 2002b,
2002c). Sections 7.4.5 and 7.4.6 include a discussion of the so-called SEMIFAR
models and iterative procedures to estimate the trend function and, in particular,
the long-memory parameter simultaneously (Beran 1999; Beran and Feng 2001a,
2001b, 2002a, 2002b, 2007, Beran and Ocker 2001). Furthermore, robust versions
of local polynomial estimators in the long-memory context are considered in Be-
ran et al. (2002) and Beran et al. (2003). Extensions to nonequidistant time se-
ries and tests for rapid change points are discussed in Sect. 7.10 (Menéndez et al.
2010).

Section 7.4.8 is devoted to random design regression. It turns out that the choice
of a bandwidth is even more fundamental than for fixed design regression. We
show a dichotomy between small and large bandwidths. This is the same phe-
nomenon as observed already for density estimation (see Sect. 5.14). For small
bandwidths, long-range dependence in the residuals has no influence and one ob-
tains exactly the same asymptotic distribution as for i.i.d. data. This is in contrast
to fixed-design kernel (and local polynomial) regression. For large bandwidths, we
have a long-memory behaviour. We also show an improvement in the rate of con-
vergence for shape functions. Such observations have its origin in the work by
Cheng and Robinson (1994). Further references include Csörgő and Mielniczuk
(1999, 2000), Mielniczuk and Wu (2004), Zhao and Wu (2008), Kulik and Lorek
(2011). In the latter article, the authors consider a very general class of errors that
includes FARIMA–GARCH and antipersistent processes. In Bryk and Mielniczuk
(2008), the authors consider a randomization scheme for fixed-design regression.
As a consequence, the resulting kernel estimator has a rate of convergence as in the
random-design case. Results for the Nadaraya–Watson estimator have further ex-
tensions to local linear regression estimators (see Masry and Mielniczuk 1999 and
Masry 2001). Furthermore, Benhenni et al. (2008) considered consistency of a ker-
nel estimator in functional regression with stochastic regressors and long-memory
errors.

In Sect. 7.4.9, we deal with estimation of the conditional variance σ 2(·) in
random-design regression. Rates of convergence are different than for estimation
of the conditional mean m(·) in the model (7.88). Such results are obtained in Guo
and Koul (2008), Zhao and Wu (2008), Kulik and Wichelhaus (2011, 2012), and
also have some connections to residual empirical processes. The latter topic is not
discussed here, we refer to Chan and Ling (2008) and Kulik and Lorek (2012).
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7.4.1 Introduction

Here we briefly recall some basic results from kernel- and local polynomial smooth-
ing. Also some first heuristic comments are made on the role of long-range depen-
dence and antipersistence in the context of nonparametric regression.

7.4.1.1 The Priestley–Chao Regression Estimator—Deterministic Design

We consider the nonparametric regression model with a response variable Y being
a function of a deterministic design variable X. In the simplest case, we have the
regression model

Yi = m(xi)+ ei (i = 1,2, . . . , n) (7.89)

with fixed (i.e. deterministic) equally spaced design variables x1, x2, . . . , xn. Often
one uses xi = ti = in−1 ∈ [0,1]. To emphasize that the “explanatory” variables xi
are deterministic and equally spaced, we will use the notation ti instead of xi . Note
that, strictly speaking, one actually has a sequence of models Yi,n because the grid
of t-values (x-values) changes slightly with each n, i.e.

Yi = Yi,n = m(ti)+ ei .

The residual process ei is assumed to be second-order stationary with E(ei) = 0,
autocovariances γe(k) and variance σ 2

e = γe(0). The regression function m(ti) is
not specified except for suitable regularity conditions. In kernel and local polyno-
mial smoothing, one usually assumes that m is at least continuous, or even a few
times continuously differentiable (see, e.g. standard books such as Härdle 1990a,
1990b; Wand and Jones 1994; Fan and Gijbels 1996; Simonoff 1996; Eubank 1999;
Tsybakov 2010).

Effective estimation of m can be quite difficult in the presence of long-range de-
pendence. The reason is that long-memory processes tend to exhibit spurious trends
which may be mistaken for deterministic ones. At the same time, smooth trends can
lead to increased values of the periodogram near the origin and to sample autocovari-
ances with a high positive bias. For example, considering a sample autocovariance
at a fixed lag k ≥ 0,

γ̂ (k) = n−1
n−k∑

i=1

(yi − ȳ)(yi+k − ȳ) (7.90)

we have, as n → ∞, var(γ̂ (k)) = o(1), but

Bias = E
[
γ̂ (k)

]− γe(k) ∼
∫ [

m(t)−
∫

m(s)ds

]2

dt, (7.91)

which is a positive constant, unless m is constant almost everywhere. Thus, not
removing the trend function leads to the overestimation of d . Related to this is the
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problem that the choice of a good estimate of m depends on approximate knowledge
of d . A feasible solution that will be described below (Sects. 7.4.4 and 7.4.6) can
be given in terms of an iterative procedure where trend estimation and estimation
of the dependence parameters of ei are applied repeatedly (Beran and Feng 2002a,
2002b; Ray and Tsay 1997).

Suppose now that m is smooth (in a sense to be specified). The problem is non-
parametric estimation of this function. The Priestley–Chao estimator (0 < x < 1) is
given by

m̂PC(t) = 1

nb

n∑

i=1

yiK

(
ti − t

b

)
(7.92)

(Priestley and Chao 1972) where b > 0 is a bandwidth, and K ≥ 0 is a symmetric
kernel function with support [−1,1] and

∫
K(u)du = 1. The idea is that, since m

is continuous, the value of m(t) may be estimated by taking a weighted average
over a neighbourhood of x. For instance, if K(u) = 1

2 1{−1 ≤ u ≤ 1}, then m̂PC(t)

is the average over all yi with t − b ≤ ti ≤ t + b. Since ti = in−1, this condition
means n(t − b) ≤ i ≤ n(t + b) so that we are taking an average over 2[nb] + 1
observations. Since the grid of t-values is increasingly dense and m is continuous,
the bias of m̂PC(t) converges to zero, provided that the neighbourhood we are taking
observations from shrinks. At the same time, however, one needs to make sure that
the variance of m̂PC(t) tends to zero which means that the number of observations
in the weighted mean must increase to infinity. This leads to the conditions b → 0
and nb → ∞.

The most important decision in kernel regression is the choice of the band-
width b. If b is chosen too small, then the number of averaged observations is small
so that the variance is large. On the other hand, if b is too large, then one averages
the function m over a large neighbourhood of x. For highly nonlinear functions, this
leads to a large bias. This dilemma leads to a trade-off between minimizing bias and
variance. If the mean squared error is used as a criterion, then the separation of the
two effects is additive,

MSE = E
[(
m̂PC(t)−mPC(t)

)2]

= [
E
(
m̂PC(t)

)−mPC(t)
]2 +E

[(
m̂PC(t)−E

(
m̂PC(t)

))2]

= Bias2 + Variance.

Asymptotic expressions for the bias do not depend on the autocovariance struc-
ture of ei . Suppose that m is twice continuously differentiable. Using the notation
i0 := [nt] and ui = (ti − t)/b, the standard argument is a Taylor expansion of the
form

Bias
(
m̂PC(t)

) = E
(
m̂PC(t)

)−m(t) = 1

nb

n∑

i=1

K(ui)m(t + bui)−m(t)



620 7 Statistical Inference for Nonstationary Processes

= 1

nb

n∑

i=1

K(ui)

[
m(t)+ buim

′(t)+ 1

2
b2u2

i m
′′(t)−m(t)+ o

(
b2)

]

= b2 1

2
m′′(t)

∫ 1

−1
u2K(u)du+ o

(
b2)+O

(
1

nb

)
.

(Note that the symmetry of K implies
∫
K(u)udu = 0.) Thus, the bias is propor-

tional to the squared bandwidth and to the second derivative of m(t). If we can
assume a higher degree of smoothness of m(t), then an even better order of the bias
can be achieved by using a different type of kernel. Suppose that m(t) is k times
differentiable. Using a Lipschitz continuous kernel with

∫
K(u)ui du =

⎧
⎨

⎩

1, i = 0,
0, i = 1, . . . , k − 1,
βk, i = k,

(7.93)

we obtain

Bias
(
m̂PC(t)

) ≈ 1

nb

n∑

i=1

K(ui)

[
buim

′(t)+ 1

2
b2u2

i m
′′(t)+ · · ·

]

=
k∑

j=1

bj
m(j)(t)

j !
∫ 1

−1
ujK(u)du+ o

(
bk

)+O

(
1

nb

)

= bk
m(k)(t)

k! βk + o
(
bk

)+O

(
1

nb

)
,

provided that the error term in the Taylor expansion can be controlled well. Thus the
bias is order O(bk). Kernels with property (7.93) are called kernels of order k, the
kth moment of K , denoted by βk = ∫

K(u)uk du 
= 0, is the so-called kernel con-
stant in the asymptotic bias. In most cases, one uses kernels of order 2 for estimating
m(t) because one would like to keep the assumptions on the unknown function as
general as possible. More comments on the choice of a kernel are given in the next
section.

In contrast to the bias, the variance of m̂PC(t),

var
(
m̂PC(t)

) = (nb)−2
n∑

i,j=1

K

(
ti − t

b

)
K

(
ti − t

b

)
γe(i − j),

depends on the autocovariance structure of ei . In particular, the distinction between
short memory, long memory or antipersistence is essential because the variance
turns out to be proportional to (nb)2d−1. This implies that a bandwidth chosen by
minimizing the MSE will be of a different order for different values of d . It should
be noted that the choice of b is not only important for estimating m but also for
reliable estimation of the parameters d and cf which, in turn, determine the optimal
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Fig. 7.6 The four pictures show the same series Yi = m(ti ) + ei with m(t) = tanh( 1
2 (t − 1

2 )) and
ei generated by a FARIMA(0,0.3,0) process with innovation variance one. The four figures show
nonparametric fits m̂(t) based on kernel regression with the rectangular kernel and different band-
widths: (a) very small bandwidth; (b) medium size bandwidths; (c) large bandwidth; (d) b = ∞.
In (d), the true trend function is also shown

value of b. Moreover, knowledge of these two parameters is needed for tests and
confidence intervals for m, as well as for forecasting.

If one lets d vary freely, then the choice of a good bandwidth is not only more
difficult but also more important than in situations where one assumes short mem-
ory (i.e. d = 0) a priori. The reason is that, as mentioned above, the estimation
of d from the residuals êi = yi − m̂(ti) very much depends on the choice of b.
This is illustrated in Fig. 7.6 with m(t) = tanh( 1

2 (t − 1
2 )) and ei generated by a

FARIMA(0,0.3,0) process with innovation variance one. The four figures show
nonparametric fits m̂(t) based on kernel regression with the rectangular kernel
and different bandwidths: (a) very small bandwidth; (b) medium size bandwidths;
(c) large bandwidth; (d) b = ∞ (so that m̂(t) ≡ ȳ). The true trend function m(t) is
also displayed in Fig. 7.6(d). The bandwidth in (a) is clearly too small. The fitted
line follows the data too closely. The corresponding residual series êi (Fig. 7.7(a))
therefore resembles an antipersistent process. Fitting a FARIMA(0, d,0) process to
êi by maximum likelihood estimation (including model choice by the BIC) indeed
yields a value of d̂ = −0.34. The moderate and large bandwidths used in (b) and (c)
provide much better trend estimates. The corresponding values of d̂ are equal 0.23
and 0.25, respectively, and thus much closer to the true value of d = 0.3. On the
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Fig. 7.7 Residuals êi = Yi − m̂(ti ) based on the fits in Figs. 7.6(a)–(d)

other hand, choosing an infinite bandwidth, and thus not removing any trend esti-
mate at all (Fig. 7.7(d)) leads to slight overestimation with d̂ = 0.33.

The easiest way to see the essential difference between long memory, short
memory and antipersistence more formally is to look at the rectangular kernel
K(u) = 1

2 1{−1 ≤ u ≤ 1}. For this second-order kernel, m̂PC(t) is simply a sample
mean of 2[nb] + 1 consecutive observations. From Corollary 1.2, we know that the
variance can be approximated by cf ν(d)22d−1(nb)2d−1 where the spectral density
of ei is assumed to be such that fe(λ) ∼ cf |λ|−2d , as λ → 0, and

ν(d) = Γ (1 − 2d)2 sinπd

d(2d + 1)
(d 
= 0), ν(0) = 2π.

Thus, for the mean squared error we have

MSE(t;b) ∼ C̃1(t)b
4 + C̃2(nb)

2d−1 (7.94)

with

C̃1(t) =
{

1

2
m′′(t)

∫ 1

−1
u2K(u)du

}2

= 1

36

{
m′′(t)

}2
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and C̃2 = ν(d)22d−1cf . If the approximation is uniform in t (in a suitable sense),
then we obtain an analogous formula for the integrated mean squared error

IMSE(b) =
∫ 1

0
MSE(t;b)dt ∼ C1b

4 +C2(nb)
2d−1 (7.95)

with

C1 =
∫ 1

0
C̃1(t) dt = 1

36

∫ 1

0

{
m′′(t)

}2
dt

and C2 = ν(d)22d−1cf . Setting the derivative of the right-hand side of (7.95) equal
to zero, we obtain the asymptotically optimal bandwidth

bopt = Coptn
−βopt (7.96)

with

βopt = 1 − 2d

5 − 2d
= 1

5
− 8d

25 − 10d
,

Copt =
[
C2(1 − 2d)

4C1

] 1
5−2d =

[
9(1 − 2d)ν(d)22d−1cf∫ 1

0 {m′′(t)}2 dt

] 1
5−2d

.

The integrated squared curvature
∫ 1

0 {m′′(t)}2 dt is in the denominator. This means
that a smaller bandwidth is required if m has various sharp turns. The reason is that
the bias can become quite large when we average over a too large neighbourhood.
In contrast, if m is close to a straight line, then the curvature is almost zero so that
one may average with a large bandwidth without causing much damage. Note that
bopt is such that the bias and the variance terms in the MSE are of the same order.
The optimal mean squared error is then of the order b4 which means

MSEopt ∼ const · n−4βopt = const · n− 4−8d
5−2d . (7.97)

Under short memory (including independence) with d = 0, one has the well known

rates of bopt ∼ const · n− 1
5 and MSEopt ∼ const · n− 4

5 . For long memory, βopt is
smaller than 1

5 so that bopt is larger and the MSEopt converges to zero at a slower
rate. The reason is that, due to long-term positive dependence, one needs more data
to make the variance of the sample mean small. In contrast, under antipersistence
(d < 0) βopt is larger than 1

5 so that the optimal bandwidth and mean squared er-
ror converge to zero faster than under short memory. These properties carry over to
other kernels K . In summary, optimal bandwidth selection very much depends on
the type of memory we have in the residual process. In the case of long memory,
larger bandwidths are required. This is also related to the problem that it is of-
ten difficult to distinguish between long-range dependence and deterministic trend
functions or change points in the mean (see also Sect. 7.9). The basic reason is that
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trend functions tend to increase the values of the periodogram near the origin. This
can be confounded with a pole due to long memory.

The practical application of (7.95) is not straightforward in practice because it
involves the unknown quantities d , cf and m′′(t). If we are willing to assume short
memory, then the problem is less difficult because the long-memory parameter is
fixed at d = 0. Various methods have been developed for obtaining a data driven
approximation of the IMSE and thus an approximately optimal bandwidth. Well
known methods are, for instance, cross-validation and iterative plug-in methods. If
d is a free parameter in the interval (− 1

2 ,
1
2 ), then the problem is more involved.

Data driven plug-in methods, however, have been developed, for instance, in Ray
and Tsay (1997) and Beran and Feng (2002a, 2002b). The idea is to start with initial
estimates of m(·) and m′′(t), estimate the parameters d and cf from the residuals,
obtain an estimate of bopt and then iterate the procedure. This will be discussed
below in the Sects. 7.4.4 and 7.4.6. In the short-memory context, similar methods
are discussed in Gasser et al. (1991) and Ruppert et al. (1995).

7.4.1.2 Higher-Order Kernel Estimators and Estimation of Derivatives

So far we assumed that the kernel function K is given. More generally, not only
the bandwidth but also the kernel K has to be chosen before carrying out a kernel
regression. Although the choice of K is generally less important, it is still worth
investigating the role of K in detail. In particular, one gains insight into the inter-
play between smoothness of the function and a suitable choice of the kernel, and it
becomes more clear how to estimate derivatives.

Commonly used second-order kernels on [−1,1] are of the form

Kμ(u) = Cμ

(
1 − u2)μ1{−1 ≤ u ≤ 1} (7.98)

for some nonnegative integer μ, where Cμ is such that
∫
K(u)du = 1. The parame-

ter μ is called the degree of smoothness (or simply smoothness) of a kernel function
of this type (see Müller 1984) which means that the (μ− 1)th derivative of the ker-
nel function is Lipschitz continuous. This also controls the degree of smoothness
of the corresponding kernel estimator. For μ = 0,1,2,3, Kμ in (7.98) corresponds
to the Uniform kernel, the Epanechnikov kernel, the Bisquare kernel and the Tri-
weight kernel, respectively. Another commonly used kernel—which has, however,
an unbounded support—is the Gaussian (or normal) kernel, i.e. the standard normal
density function. It can also be considered as a rescaled limit of Kμ for μ → ∞.
Explicit formulae of these kernel functions are given in Table 7.2.

The Uniform, the Epanechnikov and the Bisquare kernels are shown in Fig. 7.8.
Corresponding higher-order kernels and kernels for estimating derivatives m(j)(t) =
dj/dtjm(t) can be generated based on kernel functions defined in (7.98). This will
be discussed below.

As already mentioned before, higher-order kernels as defined in (7.93) can be
used to reduce the bias of m̂(t), if we are willing to assume stronger smoothness
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Table 7.2 Some
second-order kernels Name k μ Kernel (on [−1,1])

Uniform 2 0 1
2

Epanechnikov 2 1 3
4 (1 − u2)

Bisquare 2 2 15
16 (1 − 2u2 + u4)

Triweight 2 3 35
32 (1 − 3u2 + 3u4 − u6)

Gaussian 2 ∞ 1√
2π

exp(− 1
2u

2) (−∞ < u< ∞)

Fig. 7.8 Three commonly used second-order kernels with compact support

properties for m. Note that a high-order kernel with k > 2 (see (7.93)) is symmetric
but not necessarily nonnegative. Thus, for

m̂(t) = (nb)−1
∑

yiK
(
(ti − t)/b

) =
∑

wiyi

the weights wi are sometimes negative, although we still have
∑

wi = 1. Second-
order kernels defined by (7.98) are special cases of (7.93) with k = 2. Most com-
monly used higher-order kernel functions are generated by the special kernels given
in Table 7.2 (see Tables 5.7 of Müller 1988). Only kernels of polynomial form will
be used for simplicity in the following. Most of the standard kernels proposed in the
literature are of polynomial form.

Once the order of the kernel is fixed, its shape is less important and in particu-
lar does not influence the rate of convergence. If the residuals ei are i.i.d., then the
optimal second-order kernel is Epanechnikov’s function K(u) = 3

4 (1 − u2), in the
sense that it minimizes the MSE when the optimal bandwidth is used (Epanechnikov
1969; Benedetti 1977). Similarly, higher-order kernels generated by the Epanech-
nikov kernel are also optimal for the corresponding order. These findings remain
true under short memory. Despite its elegance this result is of little practical rele-
vance because using suboptimal kernels does not lead to a substantial increase in the
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asymptotic MSE (Rosenblatt 1971). Furthermore, it turns out that an optimal kernel
function does not exist in the long-memory setting.

Slightly more important than the shape is the degree of smoothness of the kernel
function because it carries over to m̂(t). If a kernel of smoothness μ is used, then m̂

has the same degree of smoothness, i.e. the (μ − 1)th derivative of m̂ is Lipschitz
continuous. Thus, the higher the μ the smoother the m̂. For instance, m̂ obtained
with the uniform kernel is discontinuous because the kernel itself is discontinuous
at both end points (u = ±1). Note in particular that this does not depend on the
smoothness of the true function m, nor is it influenced by the dependence structure
of ei .

The most important feature of a kernel is its order. As demonstrated above, the
optimal rate of convergence of m̂(t) is faster the higher the order k. One should
bear in mind, however, that, in general, this is only true if m(t) itself is smooth
enough. Otherwise the asymptotic arguments leading to a bias of order O(b2k) do
not apply. Thus, using higher-order kernels and the corresponding asymptotic results
involves rather strong assumptions on the unknown trend function m. Moreover, the
finite sample variance of a higher order kernel estimator is usually larger than for
a second-order kernel estimator. For small samples, the performance of a higher-
order kernel estimator is therefore not necessarily better, even if m has the required
smoothness properties. In practice, the order of the kernel is often chosen subjec-
tively according to the data and further analysis. The safest choice that requires
minimal assumptions is, however, a kernel of order 2.

Though the notion of higher-order kernels for estimating m(t) may seem mainly
of theoretical interest; the general approach of defining higher-order kernels via their
moments becomes practically relevant when it comes to estimating derivatives. Es-
timation of derivatives is not only important in applications where the derivatives
themselves are the object of interest. Even if the actual aim is to estimate m(t),
optimal data driven bandwidth selection based on the plug-in idea requires the es-
timation of higher-order derivatives (see, e.g. (7.96)). Kernel estimators of m(j)(t)

in the i.i.d. case are investigated, for instance, in Gasser and Müller (1984), Rice
(1986) and Ullah (1988, 1989). The simplest way of obtaining an estimate of the
j th derivative is to start with m̂(t) based on a kernel of order k > j (as in definition
(7.93)) that is at least j times differentiable, and then take the derivative. Thus we
define

dj

dtj
m̂PC(t) = 1

nb

n∑

i=1

dj

dtj
K

(
ti − t

b

)
yi (7.99)

= 1

nbj+1

n∑

i=1

(−1)jK(j)

(
ti − t

b

)
yi. (7.100)

A more systematic approach is to define a new class of kernels as follows. Let j ≥ 0
be an integer and k such that k − j ≥ 2 is an even number. A kernel function K

of order (j , k) for estimating the j th derivative of m(t) (Gasser et al. 1985; Müller
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1984, 1988) is defined as a Lipschitz continuous function satisfying the moment
conditions

∫
K(u)ui du =

⎧
⎨

⎩

0, 0 ≤ i ≤ k − 1, i 
= j,

j !, i = j,

βk, i = k,

(7.101)

where βk = ∫
K(u)uk du 
= 0 is again a kernel constant in the asymptotic bias.

A kernel of order (j, k) with k = j + 2 is called a standard kernel function. On the
other hand, K is called a higher-order kernel, if k > j + 2. The estimator of m(j)(t)

is then given by

m̂
(j)

PC(t) = 1

nbj+1

n∑

i=1

K

(
ti − t

b

)
yi =

n∑

i=1

w
j
i yi (7.102)

with w
j
i = (nbj+1)−1K((ti − t)/b). As will be seen below, a necessary and suffi-

cient condition for consistency of m̂
(j)

PC(t), for d ∈ (−0.5,0.5), is that b → 0 and
(nb)1−2db2j → ∞. In particular, the second condition implies nb1+j → ∞ which
is a necessary condition for wj

i to tend to zero uniformly. More exactly, (7.102) is a
good definition for interior points only. As discussed in the next section, the kernel
has to be modified near the border to keep the bias small. This will be discussed
below. A heuristic justification of definition (7.101) and (7.102) can be given as
before, namely

E
(
m̂

(j)

PC(t)
) ≈ 1

bj

k∑

i=0

bi
m(i)(t)

i!
∫ 1

−1
uiK(u)du+ o

(
bk−j

)+O

(
1

nb

)

= m(j)(t)+ bk−j m
(k)(t)

k! βk + o
(
bk−j

)+O

(
1

nb

)
.

Note that kernels of order (0, k) coincide with kernels of order k according to the
previous definition (7.93). Besides the moment conditions given in (7.101), some
additional conditions are often required, such as the degree of smoothness and the
minimal number of sign changes.

7.4.1.3 Boundary Effects and Boundary Kernels

Formula (7.102) does not yield good results for boundary points t ∈ [0, b) ∪
(1 − b,1] (see, e.g. Gasser and Müller 1979 and Müller 1984). The reason is that
observations are not placed symmetrically on both sides of t . This increases the
bias. While the bias of the estimator in (7.102) is of the order O(b2), it is the or-
der O(b) at boundary points. This problem can be solved by using the so-called
boundary kernels. The solution is relatively complex in general though, in partic-
ular when higher order kernels are used or when estimation of the derivatives is
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considered. A more elegant solution is provided by local polynomial regression
discussed later, where adaptation at the boundary is automatic. Nevertheless, it is
interesting to study the approach of boundary kernels because one gains a better
understanding of boundary problems. Moreover, local polynomial fits can be repre-
sented asymptotically as kernel estimators with boundary kernels at boundary points
(see Sect. 7.4.1.6).

Consider, for instance, a second-order kernel estimator m̂(t) of m(t) and denote
by Δ(t) its bias. The contribution of the bias to the IMSE is B = ∫ 1

0 Δ2(t) dt . Al-
though the length of the boundary areas tends to zero, the contribution of Δ(t) in
the boundary region is not negligible. The reason is that the contribution of interior
points to the IMSE is

∫ 1−b

b

Δ2(t) dt =
∫ 1−b

b

O
(
b4)dt = O

(
b4)

whereas for boundary points we have

∫ b

0
Δ2(t) dt =

∫ b

0
O
(
b2)dx = O

(
b3)

and the same holds for
∫ 1

1−b
Δ2(t) dt . This means that the integrated squared bias

is dominated by the bias in the boundary regions. In the extreme case with t = 0,
the estimator in (7.102) even converges to 1

2m(0) because we have only half of the
weights (Müller 1991). The boundary effect is even worse for higher-order kernel
estimators and kernel estimators of derivatives.

The problem can be overcome by using boundary kernels that are designed to
make the bias of the same order of magnitude for all t ∈ [0,1]. To achieve that,
the moment conditions given in (7.101) should be satisfied not only at interior but
also at boundary points. Boundary kernels are solutions obtained from (7.101) and
additional side conditions. Examples of boundary kernels may be found in Gasser
and Müller (1979), Gasser et al. (1985), Müller (1991) and Müller and Wang (1994).
In the following, the discussion will only be carried out for left boundary points
t ∈ [0, b). For the right boundary, arguments are analogous. Note that asymptotically
any fixed point t ∈ (0,1) is an interior point because b → 0. A left boundary point
can be written as t = cb with 0 ≤ c = c(t) < 1. For interior points t ∈ [b,1 − b], we
define c = 1.

A left boundary kernel Kc(u) of order (j, k) is defined as a Lipschitz continuous
function with compact support [−1, c] satisfying the moment conditions

∫ c

−1
Kc(u)u

i du =
⎧
⎨

⎩

0, i = 0, . . . , j − 1, j + 1, . . . , k − 1,
j !, i = j,

βc,k 
= 0, i = k.

(7.103)

Boundary kernels for the right boundary t ∈ (1 − b,1] are defined in an analogous
manner.
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Table 7.3 Three commonly used second-order μ-smooth boundary kernels

j k μ Kernel function K
(μ)
c (on [−1, c])

0 2 0 1
c+1 {1 + 3( 1−c

1+c
)2 + 6 1−c

(1+c)2 u}
0 2 1 6

(c+1)3 {1 + 5( 1−c
1+c

)2 + 10 1−c
(1+c)2 u}(1 + u)(c − u)

0 2 2 30
(c+1)5 {1 + 7( 1−c

1+c
)2 + 14 1−c

(1+c)2 u}(1 + u)2(c − u)2

Table 7.4 Three second-order boundary kernels proposed by Müller and Wang (1994)

j k μ Kernel function K
(μ,μ−1)
c (on [−1, c])

0 2 0 1
c+1 {1 + 3( 1−c

1+c
)2 + 6 1−c

(1+c)2 u}
0 2 1 12

(c+1)4 {u(1 − 2c)+ (3c2 − 2c + 1)/2}(1 + u)

0 2 2 15
(c+1)5 {2u(5 1−c

1+c
− 1)+ (3c − 1)+ 5 (1−c)2

1+c
}(1 + u)2(c − u)

For the kernel function in the interior, some additional conditions are often re-
quired such as a certain degree of smoothness. Müller (1991) proposed a class of the
so-called μ-smooth optimal boundary kernels which are obtained by solving (7.103)
under the side condition that

∫ c

−1[K(μ)
c (u)]2 du is minimized. Such kernels have the

same degree of smoothness in the boundary area as in the interior. Also, the degree
of smoothness of such boundary kernels is always μ over the whole support [−1, c].
Second-order boundary kernels of this type (for estimating the regression function
m itself) corresponding to the Uniform, the Epanechnikov and the Bisquare kernels
in the interior (see Table 1 in Müller 1991) are listed in Table 7.3. For c = 1, these
formulae reduce to the corresponding ones in the interior given in Table 7.2.

Another class of boundary kernels with a so-called (μ,μ− 1) degree of smooth-
ness was proposed by Müller and Wang (1994). These are defined as solutions of
(7.103) under certain smoothness conditions (see (K2) and (K3) in Müller and Wang
1994, with α and β there corresponding to μ and μ− 1, respectively). At a bound-
ary point t = cb with 0 ≤ c < 1, the degree of smoothness of a boundary kernel
in this class is μ at the left end point u = −1 and μ − 1 at the right end point
u = c, provided that μ > 1. In the interior, one obtains the same kernels as before.
In particular, the kernels given in Table 7.3 may be called boundary kernels with a
(μ,μ) degree of smoothness. The authors showed that these new boundary kernels
have some advantages over those proposed in Müller (1991). Note that the bound-
ary kernels given in Table 7.3 are polynomials of order 2μ − 2 in the interior and
of order 2μ − 1 at the boundary. In contrast, for μ ≥ 1, the boundary kernels pro-
posed by Müller and Wang (1994) are of the same order 2μ − 2 in the interior and
at the boundary. Boundary kernels in this class corresponding to the Uniform, the
Epanechnikov and the Bisquare kernels in the interior are listed in Table 7.4. Note
that here the boundary kernel corresponding to the Epanechnikov kernel with c < 1
is discontinuous at u = c. This means that the degree of smoothness at this end point
is μ− 1 = 0.
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Further examples of boundary kernels can be found, for instance, in Gasser et al.
(1985), Müller (1988, Sect. 5.8). Messer and Goldstein (1993) considered the con-
tinuation of equivalent spline kernels from the interior to the boundary. Gasser et al.
(1985) also proposed some boundary kernels which, for any μ, are non-smooth at
the end point u = c (c 
= 1). Boundary kernels considered by Gasser et al. (1985)
belong to another class generated by local polynomial regression with a truncated
weight function at the boundary.

7.4.1.4 The Nadaraya–Watson Regression Estimator—Random Design

If we consider the same nonparametric regression model (7.89),

Yi = m(xi)+ ei (i = 1, . . . , n),

but with a design variable X = x that is random, say with density function pX , then
the Priestley–Chao estimator has to be modified, in general. The reason is that by
analogous arguments as above one obtains

E
(
m̂PC(x)

) = pX(x)m(x)+O
(
b2) (

x ∈ (0,1)
)
.

Thus, in general, one has a bias that does not disappear asymptotically, unless pX

is the uniform distribution on [0,1]. (Note, in particular, that the equidistant fixed
design considered previously can be seen as a special case, or rather an extended
special case, in the sense of conditional inference given x1, . . . , xn and a uniform
limiting design density pX .) A simple solution is to divide m̂PC(x) by a consistent
estimate of pX(x). This is the idea of the Nadaraya–Watson estimator (Nadaraya
1964; Watson 1964)

m̂NW(x) =
∑n

i=1 yiK(
xi−x
b

)
∑n

i=1 K(
xi−x
b

)
= m̂PC(x)

p̂X(x)
(7.104)

where

p̂X(x) = 1

nb

n∑

i=1

K

(
xi − x

b

)

is the so-called Parzen–Rosenblatt kernel estimator of pX(x) (Rosenblatt 1956;
Parzen 1979) since, under standard conditions p̂X(x) →p pX(x) and m̂PC(x) →p

pX(x)m(x), the Nadaraya–Watson estimator m̂NW(x) converges in probability to
m(x). Expressions for the bias and variance are slightly more complicated than those
for m̂PC(x) in the deterministic equidistant case because the accuracy of p̂X(x) also
plays a role. However, the order of the bias is as before, namely O(b2) for second-
order kernels. In how far the variance of m̂NW(x) is influenced by the autocovariance
structure depends on the random mechanism generating the values of X. This is sim-
ilar to a parametric linear regression where, for instance, autocorrelations play no
role when Yi = βxi + ei with x1, . . . , xn obtained by i.i.d. sampling of a zero-mean
random variable X, whereas the opposite is true when E(X) 
= 0 (see Sect. 7.2).
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7.4.1.5 Local Polynomial Smoothing

The main idea behind local polynomial smoothing (see, e.g. Ruppert and Wand 1994
and Fan and Gijbels 1995, 1996 and references therein) is based on a polynomial
approximation of a (p + 1)-times differentiable function m(x) in a small neigh-
bourhood of x. This is applicable to deterministic as well as to random designs.
By a Taylor series expansion around x, a pth-degree polynomial approximation of
m(xi) is given by

m(xi) ≈ m(x)+ (xi − x)m(1)(x)+ (xi − x)2

2! m(2)(x)+ · · · + (xi − x)p

p! m(p)(x).

As before, we use the notation m(j) for the j th derivative. Since the coefficients

βj = βj (x) = m(j)(x)

j ! (j = 0,1,2, . . . , p)

are fixed, we can rewrite m(xi) as

m(xi) ≈
p∑

j=0

(xi − x)jβj

where the coefficients β0, . . . , βp are the same for all xi “close” to x. This enables
us to estimate m(x) and its derivatives m(j)(x) (j = 1,2, . . . , p) by fitting a local
polynomial of degree p to observations (xi, yi) with xi (fixed or random) in the
neighbourhood of x. Estimates of derivatives are then defined by

m̂(j)(x) = j !β̂j (j = 0,1, . . . , p).

In other words, we apply a polynomial regression locally. The regression parameter
β = β(x) = (β0, . . . , βp)

T is estimated by minimizing a weighted sum of squared
residuals,

Q(x) =
n∑

i=1

{
yi −

p∑

j=0

(xi − x)jβj

}2

D

(
xi − x

b

)
,

with respect to β where the weights D((x − xi)/b) make sure that only values in
the neighbourhood of x are included. In matrix form, Q can also be written as

Q(x) = (y − Xβ)′D(x)(y − Xβ)

where

X = (x·1, . . . ,x·p+1) =
⎛

⎜⎝
1 x1 − x . . . (x1 − x)p

...
...

. . .
...

1 xn − x . . . (xn − x)p

⎞

⎟⎠
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and

D =

⎛

⎜⎜⎜⎜⎝

D(x1−x
b

) 0 . . . 0

0 D(x2−x
b

)
. . .

...
...

. . .
. . . 0

0 . . . 0 D(xn−x
b

)

⎞

⎟⎟⎟⎟⎠
. (7.105)

The weighted least squares solution can be written as

m̂(j)(x) = j !β̂j = j !δTj+1

(
XT DX

)−1XT Dy (7.106)

where δj = (δ1,j , . . . , δp+1,j )
T (j = 1, . . . , p+1) denote unit vectors with δj,j = 1,

δi,j = 0 (i 
= j ).

To derive asymptotic properties of m̂(j)(x), it is often convenient to write (7.106)
as a weighted sum. Defining the weighting system

wT
j ;b,n = (

wj ;b,n(x;1), . . . ,wj ;b,n(x;n)) = j !δTj+1

(
XT DX

)−1XT D, (7.107)

we have

m̂(j)(x) = wT
j ;b,ny =

n∑

i=1

wj ;b,n(x; i)Yi .

Note, that each weight wj ;b,n(i) associated with Yi changes with changing sample

size n. Thus, investigating the asymptotic distribution of m̂(j)(x) amounts to study-
ing the sequence of sums

Sn =
n∑

i=1

wj ;b,n(x; i)ei =
n∑

i=1

ζi,n (n ∈ N) (7.108)

of a triangular array ζi,n = wν;b,n(x; i)εi (1 ≤ i ≤ n; n ∈N). Since

δTj+1

(
XT DX

)−1XT DX = δTj+1 = (0, . . . ,0,1,0, . . . ,0)

(with 1 being the (j + 1)st component), the weights have the property

wT
j ;b,nx·j+1 = j !δTj+1

(
XT DX

)−1XT Dx·j+1

=
n∑

i=1

wj ;b,n(x; i)(xi − x)j = j ! (7.109)

and

wT
j ;b,nx·l+1 =

n∑

i=1

wj ;b,n(x; i)(xi − x)l = 0 (l 
= j, 0 ≤ l ≤ p). (7.110)
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These equations hold under any design that makes m̂(j) exactly unbiased in the case
where m is a polynomial of degree q ≤ p.

The bias of local polynomial estimators is of the same order for interior and
boundary points. For instance, if j = 0 and p = 1, then

E
[
m̂(x)

] =
n∑

i=1

w0;b,n(x; i)m(xi)

=
n∑

i=1

w0;b,n(x; i)
[
m(x)+ (xi − x)m(1)(x)+ 1

2
m(2)(x̃i)(xi − x)2

]

= m(x)+ 0 + 1

2
m(2)(x)b2 + o

(
b2) = m(x)+O

(
b2)

where the latter equality follows from (7.110) and a detailed argument for the re-
mainder term using the property (xi − x)2 ≤ b2. More generally, local polynomial
estimators of m(j) are automatically boundary corrected if p− j is odd, in the sense
that the bias at interior and boundary points is of the same order. In contrast, for
kernel estimators (7.109) and (7.110) hold only approximately, and this leads to
problems at the boundary. Furthermore, these properties show that local polynomial
regression is design adaptive. In contrast to the Priestley–Chao kernel estimator, no
adjustment by the design density is required.

More specifically, if b → 0 and nb3 → ∞, then, under suitable conditions on D,
expressions for the bias of m̂(j)(x) can be shown to be of the form

Bias
(
m̂(j)(x)

) ∼ c1 · m
(p+1)(x)

(p + 1)! j !bp+1−j (if p − j odd),

Bias
(
m̂(j)(x)

) ∼ c2 ·
{
m(p+2)(x)

(p + 2)! + m(p+1)(x)

(p + 1)!
p′
X(x)

pX(x)

}
j !bp+2−j (if p − j even)

with c1 and c2 not depending on m. In particular, this means that if p − j is even,
then the bias is affected by the design density. This can be problematic especially
near the boundary of the x-space, and thus we have another reason for choosing
p − j odd. Moreover, one would like to choose p as small as possible in order to
avoid unnecessary differentiability conditions on m. Therefore, the usual choice of
p is j + 1 which leads to a bias of the order O(b2).

The variance of m̂(j)(x) depends on the autocovariance structure and the design.
For asymptotic considerations, it is also useful to note that local polynomials can
be approximated by kernel estimators. For instance, in the case of equidistant fixed
design regression with xi = i/n =: ti , the asymptotically equivalent kernel estimator
is (see Müller 1987 and Feng 1999)

m̃(j)(t) = 1

nb

∑
K(j,p+1,c)

(
ti − t

b

)
Yi
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where the “equivalent kernel” K(j,p+1,c) has the following properties. As before,
the notation is t = cb and 1 − cb with 0 ≤ c < 1 for boundary points t = cb and
1 − cb, and c = 1 for interior points t ∈ [b,1 − b]. Then K(j,p+1,c)(u) is such that,
for 0 ≤ j ≤ p,

∫ 1

−c

K(j,p+1,c)(u)u
l = 0 (j 
= l),

∫ 1

−c

K(j,p+1,c)(u)u
j = j !

and

τ =
∫ 1

−c

K(j,p+1,c)(u)u
p+1 
= 0.

Note that the kernel is different for boundary points. This reflects the automatic
boundary correction of local polynomials. Equivalence is expressed in terms of a
uniform approximation of the weighting system wj ;b,n of m̂(j)(t) by the weighting
system w̃j ;b,n of m̃(j)(t), namely

lim
n→∞ sup

1≤i≤n

∣∣∣∣
wj ;b,n(t; i)
w̃j ;b,n(t; i) − 1

∣∣∣∣ = 0

where we define 0/0 := 1 (Müller 1987; also see Lejeune 1985; Lejeune and Sarda
1992 and Ruppert and Wand 1994). Using the approximation by m̃(j)(t), one obtains
the asymptotic variance of m̂(j)(t) by similar arguments as for the Priestley–Chao
kernel estimator,

var
(
m̃(j)(t)

) = (nb)−2
n∑

i,j=1

K(j,p+1,c)

(
ti − t

b

)
K(j,p+1,c)

(
ti − t

b

)
γe(i − j)

∼ const · (nb)2d−1b−2j

(Beran and Feng 2001a, 2001b, 2002c, 2007).

Example 7.28 Let p = 0. Then we obtain a local constant fit that minimizes

Q(x) =
n∑

i=1

{yi − β0}2D

(
ti − t

b

)
.

The solution is a weighted sample mean

β̂0(x) = 1

nb

n∑

i=1

D̃

(
ti − t

b

)
yi
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with

D̃(u) = D(u)

(nb)−1
∑n

i=1 D(u)
.

Thus, D̃(u) is the equivalent kernel. Note that β̂0(x) is the Nadaraya–Watson es-
timator discussed in the previous section. Explicit formulae of the weights for the
local linear estimator of m(t) are given by (2.3) and (2.4) in Fan (1992).

In summary, the main practical advantages of local polynomial estimation com-
pared to direct kernel smoothing are the direct availability of estimated derivatives,
the automatic bias correction at the border (for more discussion on this topic, see,
e.g. Fan and Gijbels 1996) and design adaptivity. The calculation of m̂(j)(x) is very
simple because it essentially only requires a program for linear regression. The rep-
resentation by an equivalent kernel estimator is useful for deriving asymptotic re-
sults.

7.4.1.6 Calculation of Equivalent Kernels

Here we provide some details on the calculation of the equivalent kernel introduced
above. We consider the case of j = 0 only, i.e. estimation of m(x) by

m̂(x) = wT y =
n∑

i=1

w(i)Yi

with

w = wT
0;b,n = δT1

(
XT DX

)−1XT D.

Lejeune and Sarda (1992) showed that there is a kth order equivalent kernel function
(for estimating m) where k = p + 1 if p is odd and k = p + 2 if p is even. It can be
calculated as follows. Let

Np =

⎛

⎜⎜⎜⎝

1 μ1 . . . μp

μ1 μ2 . . . μp+1
...

...
. . .

...

μp μp+1 . . . μ2p

⎞

⎟⎟⎟⎠ , (7.111)

and

Mp =

⎛

⎜⎜⎜⎝

1 μ1 . . . μp

u μ2 . . . μp+1
...

...
. . .

...

up μp+1 . . . μ2p

⎞

⎟⎟⎟⎠ , (7.112)
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where μj = ∫ 1
−1 u

jD(u)du is the j th moment of D(u). The equivalent kernel func-
tion is given by

K(u) = Kk(u) = det(Mp(u))

det(Np)
D(u). (7.113)

Note that the kernel function is determined by the weight function D(u) and the
order of the polynomial p. It does not depend on the design and is therefore the same
for fixed (equi- and nonequidistant) and random design. Another representation is

K(u) =
(
p+1∑

j=1

a1j u
j−1

)
W(u), (7.114)

where N−1
p = (aij )i,j=1,...,p+1. Note that for j even, a1j = 0. Thus, all odd powers

of u in (7.114) vanish. One can also see that K(u) is a polynomial kernel whenever
D(u) is a polynomial. Moreover, if p is even, then k = p + 2 = (p + 1) + 1, and
one can see that K = Kk is the same for p and p + 1.

Let wNW(x; i) denote the weights of the Nadaraya–Watson estimator of m(·)
defined by Kk(u). It can be shown that w(x; i) = wNW(x; i)[1 + op(1)]. Hence the
kernel Kk(u) is often called the (asymptotically) equivalent kernel function of the
local polynomial regression. This interpretation is, however, somehow inaccurate
because the detailed difference between the NW-estimator and the local polynomial
estimator is only asymptotically negligible in the case of an equidistant design. This
is not true for random or non-equidistant fixed design.

We conclude the discussion with two examples of equivalent kernels.

Example 7.29 Consider a local quadratic (p = 2) or local cubic (p = 3) estimator of
m(t) using the Epanechnikov kernel D(u) = 3

4 (1−u2) (|u| ≤ 1) as weight function.
We have k = 4, a11 = 15

8 and a13 = − 35
8 . The resulting equivalent kernel is

KE
4 (u) = 15

32

(
3 − 10u2 + 7u4), (7.115)

which is a well known fourth-order kernel used in the literature (Gasser et al. 1985).

Example 7.30 Consider a local quadratic (p = 2) or local cubic (p = 3) estimator

of m(t) using the Gaussian kernel D(u) = ϕ(u) = (2π)− 1
2 exp(− 1

2u
2) as weight

function. We have k = 4, a11 = 3
2 and a13 = − 1

2 . The resulting equivalent kernel is

KG
4 (u) = 1

2

(
3 − u2)ϕ(u). (7.116)

Further examples of equivalent kernel functions in the interior may be found
in Gasser et al. (1985) and Müller (1988). Examples of equivalent kernels includ-
ing boundary kernels and estimation of derivatives are given in Feng (1999, 2004a,
2004b).
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7.4.2 Fixed-Design Regression with Homoscedastic LRD Errors

7.4.2.1 Bias and Variance of Kernel and Local Polynomial Estimators

We assume a nonparametric regression model (7.89) with a fixed equidistant design,

Yi = Yi,n = m(ti)+ ei,

where ti = i/n and ei is a second-order zero mean stationary process with spectral
density fe(λ) ∼ cf |λ|−2d for some d ∈ (− 1

2 ,
1
2 ). In view of the discussion above,

essentially the same results are expected to hold for local polynomial estimators
and kernel estimators with boundary kernels. The following results are therefore
formulated under the assumption that m̂(j) is either a local polynomial estimator
(with polynomials of degree p) or a kernel estimator of the corresponding degree
and boundary corrections.

For reasons discussed previously, we will assume p− j to be odd. Moreover, we
will use the notation k = p + 1. Thus k ≥ j + 2 and k − j is always even. If m̂(j) is
a local polynomial estimator with polynomials of order p, then it is asymptotically
equivalent to a certain kth order kernel estimator with boundary corrections (see
discussion above). The corresponding kernel is denoted by K(j,p+1,c). Otherwise,
if we use a kernel estimator, then this denotes the kernel we use. To derive the
asymptotic mean squared error, the following assumptions are sufficient (but not
necessary).

A1. The errors ei have the Wold decomposition

ei =
∞∑

s=0

asεi−s

where E(εi) = 0, σ 2
ε = var(εi) < ∞,

fe(λ) = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 ∼ cf |λ|−2d (λ → 0)

for some d ∈ (−0.5,0.5) and εi is a martingale difference.
A2. The trend function m(t) is at least k (= p + 1) times continuously differen-

tiable on [0,1] with k ≥ j + 2 and k − j even, and m̂(j) is either a pth order
local polynomial or a kth order kernel estimator with a corresponding boundary
correction.

A3. For the bandwidth we have, as n tends to infinity,

b → 0, (nb)1−2db2j → ∞.

A4. For y = x − (x − y) (with x and y in the support of K(j,p+1,c)) the kernel
K(j,p+1,c) can be written as

K(j,p+1,c)(y) = K(j,p+1,c)(x)+ K̃(j,p+1,c)(x − y), (7.117)
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where

K̃(j,p+1,c)(x − y) =
r∑

j=1

ηj (x − y)j ,

with coefficients ηj = ηj (x) determined by the value of x.

These conditions are sufficient for deriving the asymptotic results given below.
Note, however, that for the derivation of the minimax lower bounds, for estimating
the unknown dependence structure after subtracting a nonparametric trend estimate
or for the development of data-driven algorithms, stronger conditions are required.

Assumption A1 defines the linear dependence structure, including short memory
(with d = 0), long memory (d > 0) and antipersistence (d < 0). If εi are i.i.d., then
ei is a linear fractional process. However, linearity is not required. It is sufficient
that the process ei is a martingale difference. This is particularly useful when one
would like to include short-range volatility dependence. For instance, Beran and
Feng (2001a) consider the case where ei is a FARIMA–GARCH with GARCH-
innovations εi . In other words,

ei = (1 −B)−dϕ−1(B)ψ(B)εi,

εi = √
viξi,

vi = α0 +
r∑

j=1

αjε
2
i−j +

s∑

j=1

βjvi−j

where A(B) = (1 − B)−dϕ−1(B)ψ(B) is the usual FARIMA(p,d, q) operator. If
only the asymptotic variance of m̂(j) is of interest, then weaker conditions than the
martingale assumptions are sufficient. This assumption is useful when it comes to
deriving the asymptotic distribution of m̂(j). Assumption A2 is a regularity condi-
tion on the smoothness of m which, together with A3, is required for the deriva-
tion of the order of magnitude of the bias of m̂(j). If only consistency is required,
then it is sufficient that m(j) is continuous in a neighbourhood of x. As discussed
previously, the first condition in A3 is needed so that the bias converges to zero.
The second condition is needed for the variance to tend to zero. More specifically,
(nb)1−2db2j → ∞ implies nbj+1 → ∞ for all d ∈ (−0.5,0.5). This ensures that
wj ;b,n(t; i) → 0 (see (7.107)). Condition A4 is needed for the case of antipersis-
tence (see the result below). For local polynomial estimation A4 can be achieved,
for instance, by using a second-order weight function K(u) in (7.105) that is μ-
smooth and of the form

K(u) = Cμ

(
1 − u2)μ1{−1 ≤ u ≤ 1}

for some μ ∈ N. For kernel estimation a polynomial kernel can be chosen directly
by taking into account (7.117).

For any point t ∈ [0,1], the asymptotic mean squared error can be obtained by
detailed arguments following along the line of the heuristic ideas outlined so far.
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As before, for any interior point t ∈ (0,1) we write c = 1, and for boundary points
t = cb or t = 1 − cb with 0 ≤ c < 1. The corresponding support of K(j,p+1,c) is
denoted by S = [−a1, a2] with a1 = c and a2 = 1 for a left, and a1 = 1 and a2 = c

for a right boundary kernel. In the interior, we have a1 = a2 = 1.

Theorem 7.22 Assume Conditions A1–A4. We define a1 = b1 = 1 for interior
points t ∈ [b,1 − b], a1 = c, a2 = 1 for left boundary points t = cb ∈ [0, b)
and a1 = 1, a2 = c for right boundary points t = 1 − cb ∈ (1 − b,1]. Then for
d ∈ (−0.5,0.5) and any t ∈ [0,1] we have

(i) Bias:

E
[
m̂(j)(t)−m(j)(t)

] = bk−j m
(k)(t)β(j,k,c)

k!
[
1 + o(1)

]
, (7.118)

where β(j,k,c) = ∫ a2
−a1

ukK(j,k,c)(u) du,
(ii) Variance:

var
(
m̂(j)(t)

) = (nb)2d−1b−2jV(j,k,c)(d)
[
1 + o(1)

]
, (7.119)

where for d = 0 we have

V(j,k,c)(0) = 2πcf

∫ a2

−a1

K2
(j,k,c)(x) dx, (7.120)

for d > 0,

V(j,k,c)(d) = 2cf Γ (1 − 2d) sinπd

×
∫ a2

−a1

∫ a2

−a1

K(j,k,c)(x)K(j,k,c)(y)|x − y|(2d−1) dx dy (7.121)

and for d < 0,

V(j,k,c)(d) = 2cf Γ (1 − 2d) sin(πd)I (j, k, c;d) (7.122)

with

I (j, k, c;d) =
∫ a2

−a1

K(j,k,c)(x)M(x)dx, (7.123)

M(x) =
∫ a2

−a1

K̃(j,k,c)(x −y)|x −y|2d−1 dy −K(j,k,c)(x)

∫

y<−a1y>a2

|x −y|2d−1 dy.

(7.124)

We note that for j = 0, k = 2 the results in Theorem 7.22 agree with the expres-
sions for bias and variance given above. Note also that being in the boundary region
not only affects the bias but also the variance. The reason is that having less data in
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the boundary regions necessarily increases the variance, though the order does not
change. A detailed proof of Theorem 7.22 can be found in Beran and Feng (2002a).
For earlier partial results in the short- and long-memory context, respectively, see,
e.g. Altman (1990), Hart (1991) and Hall and Hart (1990a). Note that, for d < 0,
the integral on the right-hand side of (7.121) is not well defined. However, the two
integrals on the right-hand side of (7.122) based on the decomposition of the kernel
function given in (7.123) and (7.124) are both well defined, since −0.5 < d < 0 and
the powers of (y − x) in K̃(j,k,c)(x − y) are at least of order one. This is why the
decomposition was needed.

Example 7.31 Let et be generated by a FARIMA(0, d,0) process. Consider the ker-
nel estimation of m with the rectangular kernel for interior points and the corre-
sponding boundary kernels for left and right boundary points. Thus, j = 0, and we
choose k = 2. For interior points, we have

K(0,2,1)(u) = 1

2
1{−1 ≤ u ≤ 1}

and, for instance, for left boundary points we have the kernel

K(0,2,c)(u) = 1

c + 1

{
1 + 3

(
1 − c

1 + c

)2

+ 6
1 − c

(1 + c)2
u

}

with 0 ≤ c < 1 (see Table 7.3). Note in particular that K(j,k,c) converges to the
rectangular kernel as c → 1. For β(j,p+1,c) we have

β(0,2,1) =
∫ 1

−1
u2K(0,2,1)(u) du = 1

2

∫ 1

−1
u2 du = 1

3

and, with c < 1,

β(0,2,c) =
∫ 1

−1
u2K(0,2,c)(u) du

= 1

c + 1

∫ 1

−1
u2

{
1 + 3

(
1 − c

1 + c

)2

+ 6
1 − c

(1 + c)2
u

}
du

= 1

c + 1

{
1

3
+

(
1 − c

1 + c

)2

+ 3
1 − c

(1 + c)2

}
.

Figure 7.9 shows how β(0,2,c) increases as c decreases to zero. The smallest value
for c = 0 is equal to β(0,2,0) = 13

3 . Thus, the bias of m̂(0) is more than four times
larger than for interior points. More specifically, we have for t ∈ [b,1 − b],

Bias = E
[
m̂(t)

]−m(t) = b2 1

6
m(2)(t)+ o

(
b2)
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Fig. 7.9 Plot of β(0,2,c) for
0 ≤ c < 1 and K(0,2,c) derived
from the rectangular kernel

and for t = 0,

Bias = E
[
m̂(0)

]−m(0) = b2 13

8
m(2)(0)+ o

(
b2).

The variance can be evaluated from (7.119) by inserting K(0,2,c) in the correspond-
ing integral. Figure 7.10 shows V(j,k,c)(d) as a function of c ∈ [0,1] for different
values of d . As for the bias, the variance increases the closer we are to the boundary.
However, in contrast to the bias, the effect is stronger for higher values of d . This
means that the increase in the variance near the border is much more dramatic in the
presence of strong long memory so that, for instance, confidence intervals for m(t)

near the border can differ considerably from those at interior points. Note also that
for d < 0, the function K̃(j,p+1,c) = K̃(0,2,1) is given as follows. Let y = (y−x)+x.
Then for interior points (c = 1) we have

K(0,2,1)(y) = 1

2
1{−1 ≤ y ≤ 1} = K(0,2,1)(x)+ K̃(0,2,1)(x − y)

with K̃(0,2,1) being an indicator function determined by the value of x by

K̃(0,2,1)(u) = −1

2

(
1{u < x − 1} + 1{u > 1}).

For 0 ≤ c < 1 and left boundary points, we have

K̃(0,2,c)(u) = 1{−1 ≤ x ≤ c}1{x − c ≤ x − y ≤ x + 1},
and for right boundary points,

K̃(0,2,c)(u) = 1{−c ≤ x ≤ 1}1{x − 1 ≤ x − y ≤ x + c}.
Again, the variance increases with decreasing c.
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Fig. 7.10 V(0,2,c)(d) plotted
as a function of c ∈ [0,1) for
different values of d ∈ (0, 1

2 )

Theorem 7.22 implies an asymptotic formula for the MSE at t of the form

MSE(t) = E
[(
m̂(j)(t)−m(j)(t)

)2] (7.125)

∼ b2(k−j)

(
m(k)(t)β(j,k,c)

k!
)2

+ (nb)2d−1b−2jV(j,k,c)(d). (7.126)

By minimizing this expression, we obtain the asymptotically optimal local band-
width

bopt = bopt(t) = Copt(t)n
−αopt (7.127)

where

αopt = 1 − 2d

2k + 1 − 2d

and

Copt(t) =
{

2j + 1 − 2d

2(k − j)

(
k!

m(k)(t)β(j,k,c)

)2

V(j,k,c)(d)

} 1
2k+1−2d

. (7.128)

Here it was assumed tacitly that m(k)(x) 
= 0. Note that a bandwidth of the optimal
order n−αopt is such that the squared asymptotic bias and the asymptotic variance are
of the same order of magnitude. Inserting bopt(x) in (7.125), we obtain an optimal
MSE of the order

MSEopt = O
(
n−r

)
, (7.129)

with

r = 2(k − j)αopt = 2(k − j) · 1 − 2d

2k + 1 − 2d
. (7.130)
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Under the assumptions of Theorem 7.22, this rate turns out to be optimal among
all possible nonparametric regression estimators (Feng and Beran 2012). Moreover,
Beran and Feng (2007) show that there is no kernel (or weighting system) that would
be optimal for all values of d ∈ (0, 1

2 ). Thus, in contrast to the case where we restrict
models to short-range autocorrelations, optimization with respect to the kernel is not
meaningful because the value of d is not known a priori.

The standard choice of k is k = j + 2 which leads to

αopt = αopt(j, d) = 1 − 2d

5 + 2j − 2d

= 1

5 + 2j
− 2d(4 + 2j)

(5 + 2j − 2d)(5 + 2j)

= αopt(j,0)− 2d(4 + 2j)

(5 + 2j − 2d)(5 + 2j)

and

ropt = ropt(j, d) = 4αopt(j, d) = 4 − 8d

5 + 2j − 2d

= 4

5 + 2j
− 8d(4 + 2j)

(5 + 2j − 2d)(5 + 2j)

= ropt(j,0)−Δropt(j, d).

Thus, compared to the case of short memory with d = 0, the optimal order of the
MSE is increased for d > 0 and decreased for d < 0 by the factor nΔropt(j,d). In
Fig. 7.11, Δropt(j, d) is plotted against j = 0, 1, 2, 3 and 4 for n = 1000, and d

ranging between −0.4 and 0.4. The effect is quite dramatic for low values of j

and strong long memory. The largest increase within the range considered here is
obtained for j = 0 and d = 0.4 with Δropt(0,0.4) ≈ 0.61. Note that, for instance,
for n = 1000 this amounts to an increase by the factor nΔropt(j,d) ≈ 67.

If one prefers to use a global bandwidth instead of a local one, then one can min-
imize an integrated MSE (IMSE). If we use local polynomial estimation or a kernel
estimator with boundary kernels, then the bias for boundary points is of the same
order as in the interior. The contribution of boundary points to the IMSE is there-
fore asymptotically negligible because the boundary intervals shrink to length zero.
(It should be emphasized, however, that this conclusion is wrong when one does
not use boundary kernels—see the previous discussion.) The asymptotic expression
therefore simplifies to

IMSE =
∫ 1

0
MSE(t) dt (7.131)

∼ b2(k−j)

(
β(j,k,1)

k!
)2

Ik + (nb)2d−1b−2jV(j,k,1)(d) (7.132)
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Fig. 7.11 Change Δr of the
optimal exponent ropt in
MSEopt(m̂

(j)) = O(n−ropt )

compared to the case of short
memory, as a function of j ,
plotted for different values
of d

where

Ik =
∫ 1

0

(
m(k)(t)

)2
dt. (7.133)

The asymptotically optimal global bandwidth is then given by

bopt = Coptn
−αopt (7.134)

where αopt is as before and

Copt =
{

2j + 1 − 2d

2(k − j)

(
k!

β(j,k,1)

)2 V(j,k,1)(d)

Ik

} 1
2k+1−2d

. (7.135)

Example 7.32 Let et be generated by a FARIMA(0, d,0) process with 0 < d < 1
2 .

Consider kernel estimation of m with the rectangular kernel for interior points and
the corresponding boundary kernels for left and right boundary points. Then j = 0,
k = 2,

K(0,2,1)(u) = 1

2
1{−1 ≤ u ≤ 1},

V(0,k,1)(d) = Γ (1 − 2d) sinπd

4π

∫ 1

−1

∫ 1

−1
|x − y|(2d−1) dx dy

= Γ (1 − 2d) sinπd

4π

22d+1

d(2d + 1)
,

β(0,2,1) = 1

2

∫ 1

−1
u2 du = 1

3
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and (with the notation from (7.133))

IMSE ∼ b2(k−j)

(
β(j,k,1)

k!
)2

Ik + (nb)2d−1b−2jV(j,k,1)(d) (7.136)

= b4
(

1

6

)2

I2 + (nb)2d−1 Γ (1 − 2d) sinπd

π

22d−1

d(2d + 1)
. (7.137)

This is the same expression we obtained in (7.95).

7.4.2.2 Asymptotic Distribution

As mentioned previously in (7.108), local polynomial and kernel estimators can
be written as sums of triangular arrays. Investigating the asymptotic behaviour of
m̂(j)(t) amounts to studying a sequence of sums

Sn =
n∑

i=1

ζi,n (n ∈N) (7.138)

with

ζi,n = wj ;b,n(i)ei
(1 ≤ i ≤ n; n ∈ N). The asymptotic distribution of m̂(j)(t) therefore follows as a
corollary of a suitable limit theorem for triangular arrays. For instance, Beran and
Feng (2002a) consider the case of a second order stationary residual process

ei =
∞∑

s=0

asεi−s

with square integrable martingale differences εi and

fe(λ) = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 ∼ cf |λ|−2d (λ → 0)

for some d ∈ (−0.5,0.5). This includes not only second-order stationary linear pro-
cesses but also nonlinear fractional processes such as FARIMA–GARCH models.
Under relatively mild conditions on the marginal distribution of ei , one has a limit
theorem

σ−1
n

n∑

i=1

ei →
d

Z ∼ N(0,1),

where

σ 2
n = var

(
n∑

i=1

ei

)
.



646 7 Statistical Inference for Nonstationary Processes

This can be extended to sums of arrays ζi,n = wi,nei as follows.

Theorem 7.23 Under the conditions stated above (see Beran and Feng 2002a),
the following holds. Let (wi,n) be a triangular array of weights such that σ 2

n,w :=
var(

∑n
i=1 wi,nei) > 0 for all n. If

max
1≤i≤n

|wi,n|/σn,w → 0 (7.139)

and

sup
i

∣∣∣∣∣

n∑

j=1

wj,nai−j

∣∣∣∣∣

/
σn,w → 0, (7.140)

then
[

n∑

i=1

wi,nei

]/
σn,w →

d
Z ∼ N(0,1). (7.141)

The detailed proof of Theorem 7.23 can be found in Beran and Feng (2002a).
Condition (7.139) means that the weights wi,n are uniformly negligible. Note that, if
max |wi,n| = O(1), then σ 2

n,w → ∞ as n → ∞. Condition (7.140) on the weighted
sum

∑
wjai−j is often related to (7.139). Theorem 4.2 in Müller (1988) on the

asymptotic normality of a weighted sum of i.i.d. random variables is a special case
of Theorem 7.23. Related results on the asymptotic normality of weighted sums can
be found, for instance, in Fuller (1996, Theorem 6.3.4).

Asymptotic normality for local polynomial and kernel estimators is now a corol-
lary of (7.141). As before, we distinguish between interior points t ∈ (0,1) with
c = 1, and boundary points t = ch or t = 1 − ch with c ∈ [0,1).

Corollary 7.1 Let m̂(j)(t) (t ∈ [0,1]) be a local polynomial estimator or a kernel
estimator with boundary kernels. Suppose that the conditions of Theorem 7.22 and
the conditions on ei in Theorem 7.23 hold. Assume furthermore that the bandwidth
is of the optimal order, i.e.

b = cb · n−αopt

(for some 0 < cb < ∞), and let

μ(j,k,c) = c
1
2 −d+k

b

m(k)(t)β(j,k,c)

k! . (7.142)

Then, for any d ∈ (− 1
2 ,

1
2 ), we have

(nb)
1
2 −dbj

[
m̂(j)(t)− m̂(j)(t)

] →
d

Z(j,k,c) ∼ N
(
μ(j,k,c),V(j,k,c)(d)

)
, (7.143)

where V(j,k,c)(d) and β(j,k,c) are the constants defined in Theorem 7.22.



7.4 Nonparametric Regression with LRD Errors 647

Note that, as usual in nonparametric regression, using a bandwidth with the opti-
mal rate leads to a non-negligible asymptotic bias after standardization. For statisti-
cal inference about m(j)(t), this means that one needs to include an estimate of this
bias. The other option is to use a slightly faster rate for the bandwidth so that the
bias disappears asymptotically because it is dominated by the variance.

A further result that is useful for simultaneous confidence bands for the func-
tion m(t) has been shown in Csörgő and Mielniczuk (1995a) for the case of
long memory. Assuming a spectral density fe(λ) ∼ cf |λ|−2d or autocovariances
γe(k) ∼ cγ |k|2d−1 with 0 < d < 1

2 , and a second-order kernel estimator m̂, one can
show that for interior points 0 < t1 < · · · < tl < 1 one has asymptotic independence.
In other words,

(nb)1/2−dV
− 1

2
(0,2,1)

(
m̂(t1)−m(t1), . . . , m̂(tl)−m(tl)

) →
d

(Z1, . . . ,Zl) (7.144)

where Zi are independent standard normal random variables and V(0,2,1) is defined
in (7.121). The result is, of course, only valid, if the standardized sums of ei are
also asymptotically normal. Specifically, Csörgő and Mielniczuk (1995a) consider
Gaussian residuals as well as Gaussian subordination. In the latter case, the Hermite
rank of the transformation has to be one (see Sect. 4.2.3). The reason why we have
asymptotic independence can be seen quite easily. For t 
= s, we have

cov
(
m̂(t), m̂(s)

) ∼ cγ n
2d−1b−2

∫ 1

0

∫ 1

0
K

(
x − t

b

)
K

(
y − s

b

)
|x − y|2d−1 dx dy

∼ cγ n
2d−1

∫ 1

−1

∫ 1

−1
K(u)K(v)

∣∣t − s − b(u− v)
∣∣2dε−1

dudv.

Up to this point, the evaluation is almost the same as for the variance of
m̂(t). However, the crucial difference is that with b → 0 the function g(u, v) =
|t − s − b(u− v)| converges to |x − y| uniformly in (u, v) ∈ [−1,1]2. Therefore,

cov
(
m̂(t), m̂(s)

) ∼ cγ n
2d−1|t − s|2d−1.

However, our standardization in (7.144) is (nb)1/2−d so that

(nb)1−2dcov
(
m̂(t), m̂(s)

) ∼ cγ b
1−2d |t − s|2d−1 → 0.

Note finally that all asymptotic considerations above were made under the as-
sumption that fe(λ) ∼ cf |λ|−2d and γe(k) ∼ cγ |k|2d−1. More generally, the same
results follow when the constants cf and cγ are replaced by slowly varying func-
tions. Also extensions to Gaussian subordination with non-Gaussian limits can be
considered (see Csörgő and Mielniczuk 1995a). Further results can be found, for
instance, in Robinson (1997).
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7.4.3 Fixed-Design Regression with Heteroskedastic LRD Errors

Suppose we have a slightly more general model with a deterministic equidistant de-
sign, namely with a residual process that has a time-varying variance. More specifi-
cally, we assume

Yi = m(ti)+ σ(ti)ei (7.145)

with σ(·) continuous and ei as before. Suppose moreover that, apart from possible
heteroskedasticity modelled by σ , the assumptions of Theorem 7.22 hold. Since the
bias is not influenced by the autocovariance structure, the asymptotic expression for
the bias remains the same. For the variance, the assumption that σ is continuous
implies that at point t only σ 2(t) comes in asymptotically. Thus, in the formulas
for the asymptotic variance given in Theorem 7.22, we just have to multiply V(j,k,c)

by σ 2(t). Formula (7.125) changes to

MSE(t) ∼ b2(k−j)

(
m(k)(t)β(j,k,c)

k!
)2

+ (nb)2d−1b−2j σ 2(t)V(j,k,c)(d). (7.146)

All other formulas for bopt and MSEopt, Theorem 7.22, Corollary 7.1, and (7.144)
have to be modified accordingly.

7.4.4 Bandwidth Choice for Fixed Design Nonparametric
Regression—Part I

Nonparametric regression works well only if an appropriate bandwidth is chosen.
Unfortunately, asymptotic expressions for the MSE and IMSE all involve unknown
parameters. If we allow d to vary, instead of being fixed at zero, the situation is
even worse because a good estimate of d is essential, in particular if d > 0 (see, e.g.
Figs. 7.6 and 7.7). It is therefore very important to design a reliable data-adaptive
method for the case of fractional residuals with unknown correlation structure.

Bandwidth selection in nonparametric regression with uncorrelated errors is
well studied. Numerous results on this topic may be found in the literature. Stan-
dard bandwidth selection rules include cross-validation (CV; Clark 1975; Bowman
1984), generalized cross-validation (GCV; Craven and Wahba 1979) and the so-
called R-Criterion (Rice 1984). Also see Härdle et al. (1988), Marron (1989) and
Jones et al. (1996) for related surveys on bandwidth selection rules in the closely
related context of nonparametric density estimation. The main drawback of those
bandwidth selection rules is that their rate of convergence is just O(n−1/10). Other,
more recent, bandwidth selection rules in nonparametric regression have higher
rates of convergence. These include, for instance, the iterative plug-in (IPI, Gasser
et al. 1991), the direct plug-in (DPI, Ruppert et al. 1995) and the double smooth-
ing approach (DS, Müller 1985; Härdle et al. 1992; Heiler and Feng 1998). Band-
width selection in nonparametric regression with dependent errors is more difficult
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because the bandwidth selection and the estimation of the dependence structure de-
pend on each other. This problem is discussed, for instance, in Altman (1990), Hart
(1991), Herrmann et al. (1992), Hall et al. (1995a), Ray and Tsay (1997), Opsomer
et al. (2001) and Beran and Feng (2002a, 2002b, 2002c). The two main approaches
discussed in the long-memory context are bootstrap based cross-validation (Hall
et al. 1995b), and the iterative plug-in method (Ray and Tsay 1997; Beran and Feng
2002a, 2002b, 2002c).

Although the case of a fractional residual process is very general, it does have a
clear structure due to the asymptotic dominance of the parameters d and cf . An iter-
ative plug-in (IPI) algorithm is therefore a natural approach. The first IPI algorithm
in the long-memory context was proposed by Ray and Tsay (1997).

Specifically, consider a second-order kernel estimator of m. Ray and Tsay (1997)
propose the following iteration.

1. Estimate an “optimal” bandwidth b̂opt, assuming only short-range dependent er-
rors, using a standard method such as the procedure in Herrmann et al. (1992).

2. Set b0 = b̂opt.
3. For j ≥ 1 estimate m(t) using bj−1 and let êi = yi − m̂(ti). Estimate d and cf

using the log-periodogram regression by Geweke and Porter-Hudak (or any other
semiparametric method) applied to êi .

4. Let b2,j = bj−1n
(1−2d̂)/(2(5−2d̂)), and estimate m′′ and I (m′′) = ∫

(m′′(t))2 dt

using a fourth-order kernel estimator for estimating the second derivative with
the bandwidth b2,j .

5. Improve bj−1 by setting

bj = Ĉoptn
(2d̂−1)/(5−2d̂) (7.147)

where Ĉopt is obtained from the current estimates of d , cf , and I (m′′).
6. Increase j by 1 and repeat Steps 3 to 5 until convergence is reached. Finally, at

the end of the iteration set b̂opt = bj .

This algorithm is based on the proposal of Herrmann et al. (1992). The formula

b2,j = bj−1n
(1−2d̂)/(2(5−2d̂)) in Step 4 is called an inflation method. An improved

algorithm was proposed in Beran and Feng (2002a, 2002b, 2002c). This is discussed
in more detail in Sect. 7.4.6.

7.4.5 The SEMIFAR Model

7.4.5.1 Introduction

As we have seen in this chapter, distinguishing between deterministic trend func-
tions and random stationary fluctuations with long memory can be quite difficult.
A further complication is that sometimes it may not even be clear whether the
stochastic component of the observed series is stationary. For practical applications,
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one would therefore like to have a data-driven methodology that is able to identify
at least certain standard types of stochastic nonstationarities and distinguish them
from stationary dependence (including short and long memory, and antipersistence)
or deterministic trend functions. A semiparametric approach along this line, the so-
called SEMIFAR (semiparametric autoregressive) models, has been developed in
Beran (1999) and Beran and Feng (2001b, 2002a, 2002b). For applications, see, e.g.
Beran and Ocker (2001), Beran et al. (2003), Beran (2007b) and Feng et al. (2007).
An implementation is available in the S-Plus module S + FinMetrics (see Zivot and
Wang 2003).

The idea is to define a semiparametric model that incorporates a nonparametric
trend function, parameters that determine whether the detrended series is integrated
or stationary, and parameters determining the detailed dependence structure of the
underlying stationary process. All parameters are estimated from the data, includ-
ing an integer valued and a fractional differencing parameter. The SEMIFAR model,
originally introduced in Beran (1999), extends the model in Beran (1995) by includ-
ing a trend function.

7.4.5.2 Definition of the SEMIFAR Model

Assume that m(t) (t ∈ [0,1]) is a trend function satisfying suitable smoothness con-
ditions, let εi (i ∈ N) be a sequence of i.i.d. zero mean random variables with finite
variance σ 2

ε = var(εi), define Bjm(ti) = m(ti−j ), where ti = i/n is rescaled time,
and denote by ϕ(z) = 1 − ∑p

j=1 ϕjz
j a polynomial with all roots outside the unit

circle. A SEMIFAR model is defined as follows.

Definition 7.7 A process Xi is called a semiparametric fractional autoregressive
(or SEMIFAR) model if there exist an integer r ∈ {0,1} and a d ∈ (−0.5,0.5) such
that

ϕ(B)(1 −B)d
{
(1 −B)rXi −m(ti)

} = εi . (7.148)

For Yi = (1 −B)rXi we are back to the model with a nonparametric trend func-
tion and stationary errors generated by a FARIMA(p,d,0) process, namely

Yi = m(ti)+ ei (i = 1,2, . . . , n), (7.149)

where ei = ϕ−1(B)(1 −B)−dεi . We will also use the notation

Ei = (1 −B)dei =
∞∑

j=0

bj ei−j = ϕ−1(B)εi (7.150)

for the autoregressive residuals obtained after filtering out the fractional differencing
component. Note, however, that we are assuming r to be unknown, so that taking
the appropriate r th difference cannot be applied directly.
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7.4.5.3 Fitting the SEMIFAR Model

Fitting a SEMIFAR models consists of two main parts: (a) nonparametric estima-
tion of the trend function m(t) and (b) estimation of the parameters σ 2

ε , r , d , p and
ϕ1, . . . , ϕp . Since r is an integer and d ∈ (− 1

2 ,
1
2 ), r and d can be summarized by

one parameter dtotal = d + r only. The two differencing parameters can be obtained
from dtotal by r = [dtotal + 0.5] and d = dtotal − r , where [·] denotes the integer
part. Parts (a) and (b) of SEMIFAR fitting depend on each other because for (b)
we need to have subtracted a good estimate of the trend function, whereas for (a)
one would need to know r in the first place, and also have some knowledge of d ,
σ 2
ε and ϕ1, . . . , ϕp (and the second derivative of m) to calculate the optimal band-

width. The method considered in Beran (1999) and Beran and Feng (2002a, 2002b)
is an iterative plug-in algorithm. This is related (but not identical) to similar meth-
ods in the short-memory context (Gasser et al. 1991; Ruppert et al. 1995) and to the
method by Ray and Tsay (1997) introduced in Sect. 7.4.4. Note that, as discussed
in Sect. 7.4.4, other methods like cross-validation seem less appropriate. Even in
the i.i.d. context, it is well known that cross-validation and related methods (Clark
1975; Bowman 1984; Craven and Wahba 1979) lead to highly volatile bandwidths

that converge to the optimal one at the slow rate of O(n− 1
10 ). Methods based on

the plug-in principle are known to provide more reliable bandwidth estimates with
a smaller variability and much faster convergence to the optimal bandwidth (Gasser
et al. 1991; Ruppert et al. 1995; Müller 1985; Härdle et al. 1992; Heiler and Feng
1998). In the context of long memory, the situation is even worse since the estimate
of the IMSE obtained by cross-validation converges to the actual IMSE only under
very restrictive conditions. In contrast, the plug-in method (for fixed design) con-
sidered here can be shown to provide reasonable reliable estimates of the optimal
bandwidths (see results below).

The key ingredient of the plug-in method is the possibility of estimating the un-
known parameter vector consistently even though the trend estimate m̂(t) may not
be optimal. More specifically, let ϑ0 = (σ 2

ε,0, θ
0) = (σ 2

ε,0, d
0
total, ϕ

0
1 , . . . , ϕ

0
p0) be the

true parameter vector defining the (possibly integrated) fractional ARIMA compo-
nent. Suppose that m̂(x) is a kth order kernel regression estimator with a bandwidth
b = O(n−α) such that 0 < α < 1/2. Then it can be shown that, under some regu-
larity conditions and the assumption kα + d0 > 0 (which always holds for d0 > 0),
the parameter θ0 (including the integer differencing parameter r0) can be estimated
consistently. The same is true when the autoregressive order p0 is chosen by the BIC
(Beran et al. 1998) as discussed in Sect. 5.5.6 (provided that p0 does not exceed the
maximal autoregressive order pmax used in the selection). Moreover, if kα+d0 > 1

4 ,
then the approximate MLE defined in Beran (1995) yields a

√
n-consistent estima-

tor of θ0 (for more details, see Beran and Feng 2002a and Feng 2004a, 2004b). Note
that this is a specific condition for avoiding too large bandwidths.
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7.4.6 Bandwidth Choice for Fixed Design Nonparametric
Regression—Part II: Data-Driven SEMIFAR Algorithms

In the following, we present two data-driven algorithms within the SEMIFAR
framework. The first algorithm (Algorithm A, AlgA) relies on a full search with re-
spect to d , and was originally proposed in Beran (1999) (also see Beran and Ocker
2001). The second algorithm (Algorithm B, AlgB) was proposed in Beran and Feng
(2002b) and runs much faster than Algorithm A because a full search is avoided.
As explained below, both methods are superior to the plug-in procedure proposed
by Ray and Tsay (1997) in different ways. To simplify the presentation, only local
linear estimates of the trend function m will be considered here, and m′′ (needed
in the constant of the bias) will be calculated using a local cubic or a fourth-order
kernel estimator.

Algorithm A

Step 1: Let pmax be the maximal order of ϕ(B) that will be tried, and define a
sufficiently fine grid G ∈ (−0.5,1.5)\{0.5}. First, carry out Steps 2 through
4 for p = pmax in order to select the integer differencing order r .

Step 2: For each dtotal ∈ G, set r = [dtotal + 0.5], d = dtotal − r , and Yi(r) =
(1 −B)rXi , and carry out Step 3.

Step 3: Carry out the following iteration:
Step 3a: Let b0 = Δ0 min(n(2d−1)/(5−2d),0.5) (for some fixed Δ0 > 0) and

set j = 1.
Step 3b: Calculate m̂(ti; r) using the bandwidth bj−1. Set êi (r) = Yi(r) −

m̂(ti; r).
Step 3c: Set Êi,dtotal = ∑i−1

j=0 bj (d)êi−j (≈ (1 − B)d êi ), where bj =
(−1)j

(
d
j

)
.

Step 3d: Estimate the autoregressive parameters ϕ1, . . . , ϕp , from Êi,dtotal

and obtain the estimates σ̂ 2
ε = σ̂ 2

ε (dtotal; j) and ĉf = ĉf (j). Esti-
mation of the parameters can be done, for instance, by using the
S-PLUS function ar.burg or arima.mle or an analogous R-function
for autoregressive MLE. If p = 0, set σ̂ 2

ε equal to n−1 ∑ Ê2
i,dtotal

and ĉf equal to σ̂ 2
ε /(2π).

Step 3e: Set b2,j = (bj−1)
α with α = α0 = (5−2d)/(9−2d), and improve

bj−1 by defining

bj =
(

1 − 2d

I 2(K)

(1 − 2d)V̂

Î (m′′(t;b2,j ))

)1/(5−2d)

· n(2d−1)/(5−2d) (7.151)

where I (K) = ∫
u2K(u)du, I (m̂′′(t;b2,j )) is an estimate of

I (m′′) = ∫ [m′′(t)]2 dt using bandwidth b2,j and V̂ is an estimate
of the constant in the asymptotic variance (see Theorem 7.22).
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Step 3f: Increase j by one and repeat Steps 3b to 3e until convergence is
reached or until a given number of iterations has been carried out.
This yields, for each dtotal ∈ G separately, the ultimate value of
σ̂ 2
ε (dtotal), as a function of dtotal.

Step 4: Define d̂total to be the value of dtotal for which σ̂ 2
ε (dtotal) is minimal, and let

r̂ = [d̂total + 0.5].
Step 5: For each p = 0,1, . . . , pmax, carry out Steps 2 through 4 for l = r̂ . Define

d̂total to be the value of dtotal for which σ̂ 2
ε (dtotal) is minimal. This, together

with the corresponding estimates of the AR parameters, yields a value of
an information criterion for the given order p, e.g. BIC(p) = n log σ̂ 2

ε (p)+
p logn, as a function of p and the corresponding values of θ̂ and m̂.

Step 6: Select the order p that minimizes the BIC(p). This yields the final estimates
of θ0 and m.

This algorithm differs from Ray and Tsay (1997) mainly in the inflation method
and in the estimation of the integer differencing parameter r . The inflation method
used here in Step 3e is b2,j = (bj−1)

α with α = α0 = (5 − 2d̂)/(9 − 2d̂). This
is also called an exponential inflation method (EIM). Ray and Tsay (1997) use
instead a multiplicative inflation method (MIM) of the form b2,j = bj−1n

β with
β = βv = 1

2 (1 − 2d̂)/(5 − 2d̂). The constants α or β in the two inflation methods

are called inflation factors. The asymptotic rate of convergence of b̂ depends on
the choice of the inflation factor only, not on the choice of the inflation method.
However, an algorithm based on the EIM requires a smaller number of iterations to
reach a consistent bandwidth estimate. Commonly used choices of the inflation fac-
tors are: (i) αv or βv such that the variance of b̂ is minimized; (ii) αopt or βopt such
that the MSE of Î is minimized and the rate of convergence of b̂ is optimized; or (iii)
α0 or β0 such that the MSE of m̂′′ is minimized. Explicit formulae for these inflation
factors may be found in Beran and Feng (2002b). The rate of convergence of b̂ based
on αv or βv is the worst of all three choices, namely O(n(2d

0−1)/(5−2d0)). The rate of
convergence of AlgA—which is based on α0—is of the order O(n2(2d0−1)/(9−2d0))

which is slightly faster than for the algorithm in Ray and Tsay (1997). Another
advantage of AlgA compared to Ray and Tsay (1997) is the choice of the initial
bandwidth. Although it does not affect the rate of convergence of b̂, the initial band-
width in AlgA is already of the correct optimal order. This reduces the number of
required iterations.

Algorithm B AlgA is straightforward and intuitive. However, the iterative proce-
dure has to be carried out for each trial value d ∈ G. This makes the algorithm
computationally slow. Beran and Feng (2002b) therefore proposed a much faster
algorithm where all parameters, except for p and r , are estimated directly from the
residuals by maximizing the likelihood function. In the practical implementation,
the S-PLUS function arima.fracdiff or an analogous R-function can be used. The
algorithm can essentially be described as follows:
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Step 1: First, we obtain a bandwidth for estimating r0:
Step 1a: Set r = 1. Calculate Yi(r)= (1−B)rXi , and estimate m from Yi(r)

using the initial bandwidth b0 =n−1/3. Calculate the residuals.
Step 1b: Set p = pmax and assume that the residual process follows a

FARIMA(p,d,0) model. Calculate a second initial bandwidth b1
following, e.g. AlgA or another simple bandwidth selection pro-
cedure, but with α = α̂opt = (5 − 2d̂)/(7 − 2d̂).

Step 2: Estimate r0:
Step 2a: Carry out Steps 1a and 1b with the selected b1 as new initial band-

width for r = 0 and r = 1 separately.
Step 2b: Select r following the BIC. Now we obtain an estimate r̂ of r0.
Step 2c: Set r = r̂ .

Step 3: Further iterations: Carry out further iterations for each p = 0,1, . . . , pmax
with r = r̂ and a new starting bandwidth b2 := 1

3n
−1/3 (or b2 := n−5/7) un-

til convergence is reached or a given number of iterations has been reached.
Step 4: Select the best AR order p following the BIC and take the parameter esti-

mate corresponding to p̂ as the final estimate.

In this algorithm, r = 1 is used at the first iteration as a starting value of r . The
initial input of the S-PLUS function arima.fracdiff is therefore always stationary,
no matter what the value of r0 is. The purpose of this step is to obtain a starting
bandwidth for estimating r . The estimated value of r0 is then selected in the second
iteration and is asymptotically consistent. The use of p = pmax avoids the selec-
tion of p in the first two steps. Afterwards, r̂0 is used as a known parameter. At
the beginning, the starting bandwidth b0 = n−1/3 is used. Since (2 · (−0.5) − 1)/
(5−2 ·(−0.5)) = −1/3, this is the smallest possible order of optimal bandwidths for
d in the range (−0.5,0.5). The order of magnitude of b0 also ensures that, for any
r0 ∈ {0,1}, the bandwidth selected at the end of Step 1 fulfills the basic assumptions
on the bandwidth.

AlgB runs much quicker than AlgA. Furthermore, the rate of convergence of b̂ is
improved by choosing the inflation factor αopt = (5 − 2d̂)/(7 − 2d̂). The resulting

rate of convergence of b̂ is now of the order Op(n
2(2d0−1)/(7−2d0)), which is the

highest known rate for an iterative plug-in bandwidth selector in the current context.
More specifically, the following results can be shown (Beran and Feng 2002b).

Proposition 7.1 Let Xi be a SEMIFAR process defined by (7.148). Suppose that
m(t) ∈ C4[0,1] and, as n → ∞, nb → ∞ and b → 0. Denote by bA the optimal
asymptotic bandwidth obtained by minimizing the asymptotic formula for the IMSE
and let bM be the actually optimal bandwidth that minimizes the exact finite sample
IMSE. Then

bA − bM

bM
= O

(
b2
M

)
.

For the data driven bandwidths obtained by AlgA and AlgB, respectively, the
following asymptotic formulas hold (Beran and Feng 2002b):
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Fig. 7.12 (a) Simulated FARIMA(p0, d0,0) series with p0 = 1, d0
total = 1.3 (r0 = 1, d = 0.3)

and ϕ0
1 = −0.4. This is the same as a SEMIFAR model with the same parameters and m(t) ≡ 0.

(b) SEMIFAR process with the same parameters as in (a), but including a non-constant trend
function m(t). The estimated trend (full line) is also plotted together with the true (integrated)
trend function (dotted line)

Theorem 7.24 Let Xi be a SEMIFAR process with autoregressive order p0, frac-
tional differencing parameter d0, and integer differencing parameter r0 ∈ {0,1}.
Suppose that m(t) ∈ C4[0,1], and denote by b̂AlgA and b̂AlgB the data driven
bandwidths obtained by Algorithms A and B, respectively, with maximal AR-order
pmax ≥ p0. Then

b̂AlgA = bM
{
1 +Op

(
n(4d

0−2)/(9−2d0)
)}
,

b̂AlgB = bM
{
1 +Op

(
n(4d

0−2)/(7−2d0)
)}
.

For details, see Beran and Feng (2002a, 2002b). The iterative plug-in algorithms
can easily be adapted to select bandwidths for estimating derivatives m̂(j) (j > 0).
Similar asymptotic results can be obtained for b̂ as in Theorem 7.24.

Example 7.33 Figure 7.12 shows two simulated SEMIFAR series. In Fig. 7.12(a),
the sample path was simulated by an integrated FARIMA process without trend.
More specifically, we have n = 1000 observations of a FARIMA(p0, d0,0) series
with p0 = 1, d0

total = 1.3 (r0 = 1, d = 0.3) and ϕ0
1 = −0.4. This is the same as a

SEMIFAR model with the same parameters and m(t) ≡ 0. The SEMIFAR fit using
Algorithm B is p̂ = 1, d̂total = 1.29 (hence r̂ = 1, d̂ = 0.29) and ϕ̂ = −0.43 with
95 %-confidence intervals [1.23,1.35] and [−0.50,−0.36], respectively. Also no
significant trend was found. The series in (b) is a SEMIFAR process with the same
parameters for the stochastic part, but including a trend function m(t). The esti-
mated parameters obtained by AlgB are p̂ = 1, d̂total = 1.28 and ϕ̂ = −0.37, with
95 %-confidence intervals [1.22,1.34] and [−0.44,−0.30], respectively. The esti-
mated trend function is significant (at the 5 %-level) and also plotted, together with
true trend function. Note that m(t) is the trend function of the differenced process.
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Fig. 7.13 Volatility series for the DAX between January 3, 2000 and September 12, 2011.
(a) Shows daily data together with a nonparametric trend function fitted by Algorithm B. The cor-
responding log–log-plot of the periodogram together with the fitted spectral density is displayed
in (b). (c) and (d) show analogous results, however, for weekly aggregates of the original data

Figure 7.12(b) shows, however, the integrated process. In contrast to m, the inte-
grated trend function is not bounded. This explains why the estimated trend in the
picture is relatively far from the true trend: errors m̂(ti) − m(ti) in the differenced
domain have a long lasting effect in the integrated domain. This reflects the general
uncertainty about trends when considering integrated processes.

Example 7.34 Figure 7.13(a) shows a volatility series of the DAX between Jan-
uary 3, 2000 and September 12, 2011 as defined in Sect. 1.2. A nonparamet-
ric trend function fitted by Algorithm B is also shown. The trend is significant
at the 5 %-level. The parameter estimates are p̂ = 2, d̂total = 0.26 (i.e. r̂ = 0,
d̂ = 0.26), ϕ̂1 = −0.28, ϕ̂2 = −0.09 with 95 %-confidence intervals [0.21,0.30],
[−0.33,−0.22] and [−0.14,−0.04], respectively. The corresponding log–log-plot
of the periodogram (of the detrended process) together with the fitted spectral den-
sity is displayed in (b). The results are confirmed when one looks at weekly ag-
gregates. Figure 7.13(c) shows weakly averages of the original series displayed in
(a). The SEMIFAR-fit again yields a significant trend which looks very much like
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the function fitted in (a). As expected (see Sect. 2.2.1), due to temporal aggrega-
tion, the log–log-plot of the periodogram (of the detrended series) displayed in (d)
is closer to a straight line. Applying Algorithm B indeed yields p̂ = 0 so that a
pure FARIMA(0, d,0) model seems appropriate. (Note that the spectral density of a
FARIMA(0, d,0) model is very close to the one of fractional Gaussian noise). The
estimated value of d is 0.34 with a 95 %-confidence interval of [0.27,0.40].

Example 7.35 Figure 7.14(a) shows monthly precipitation anomalies for the Sahel
region between January 1900 to December 2011 (data courtesy of Todd Mitchell,
The Joint Institute for the Study of the Atmosphere and Ocean at the University
of Washington, JISAO; the data source is the National Oceanic and Atmospheric
Administration Global Historical Climatology Network (version 2), at the National
Climatic Data Center of NOAA; http://www.ncdc.noaa.gov/temp-and-precip/ghcn-
gridded-products.php). First, we try to fit a stationary FARIMA(p,d,0) process by
selecting the order p using the BIC with p ≤ pmax = 16. Figure 7.14(b) displays
the periodogram of the data in log–log-coordinates, together with the fitted spec-
tral density. The fit appears to be quite good, and mimics in particular the seasonal
peaks. The estimated AR-order is p̂ = 13. The estimated long-memory parameter
is equal to d̂ = 0.35 with a 95 %-confidence interval of [0.14,0.55]. Note, how-
ever, that we used the restriction d < 0.5. Now the question is whether the apparent
long memory may not rather be caused by a deterministic trend function or an in-
tegrated process (i.e. dtotal > 0.5). We therefore fit a SEMIFAR process using AlgB
and the BIC with p ≤ pmax = 16. The fitted trend function indeed turns out to be
significantly different from a constant (see (c), with horizontal lines demarking the
critical limits). As suspected, the trend indicates a decline in precipitation starting
around 1960. Subtracting the trend function seems to have removed long memory,
since for the residuals we obtain a 95 %-confidence interval for d of [−0.28,0.18]
(and p̂ = 12). The corresponding log–log-periodogram and fitted spectral density of
the detrended data are shown in (d). Note also that the possibility of an integrated
process (dtotal > 0.5, r = [dtotal + 0.5]) was excluded by the estimation procedure.
A more detailed analysis can be obtained by separating the rainy season (June to Oc-
tober) from the rest of the year. Figure 7.14(e) shows the Sahel rainfall index with
each year being represented by measurements form the rainy season only (i.e. we
have June to October only for each year). The fitted trend function is very similar to
the one in Fig. 7.14(c), and significant. Also as before, the estimated value of d is not
longer significant, with a 95 %-confidence interval of [−0.20,0.13] (see (f) for the
log–log-periodogram and spectral density). Note also that the selected autoregres-
sive order of p̂ = 3 is much smaller than before because of the different (stochastic)
periodicity. Finally, Fig. 7.14(g)–(h) show the results for the other months. This time
the trend function is not quite significant at the 5 %-level. However, it is close to the
critical limits and clearly monotonously decreasing. In contrast to the rainy season,
d̂ = 0.09 with a 95 %-confidence interval of [0.03,0.15] indicates the possibility of
slight long-range dependence in the residuals. Moreover, there does not appear to be
any periodicity left (see Fig. 7.14(h)), and accordingly we have p̂ = 0. In summary,
we may say that there is relatively clear evidence for a decline in precipitation in the

http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php
http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php
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Fig. 7.14 Monthly precipitation anomalies for the Sahel region between January 1900 to Decem-
ber 2011 (data courtesy of Todd Mitchell, JISAO, University of Washington; http://www.ncdc.
noaa.gov/temp-and-precip/ghcn-gridded-products.php): (a) original series; (b) log–log-peri-
odogram and spectral density obtained by stationary fit; (c) data with fitted SEMIFAR trend (and
critical limits); (d) log–log-periodogram and spectral density after SEMIFAR fit; (e) series with
rainy seasons only; (f) log–log-periodogram and spectral density after SEMIFAR fit for data in (e);
(g) series excluding rainy seasons; (h) log–log-periodogram and spectral density after SEMIFAR
fit for data in (g)

http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php
http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php
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Sahel zone starting around 1960. The alternative models of an integrated process or
of stationarity with long memory can probably be excluded.

7.4.7 Trend Estimation from Replicates

Suppose that we have N time series Yj (i) where j = 1,2, . . . ,N denotes a replicate,
i = 1,2, . . . , n denotes time and the problem is estimation of the common trend m(·)
in the nonparametric regression model

yj (i) = m(ti)+ ej (i)

(
ti = i

n

)

by smoothing the average series ȳ(i) = N−1 ∑N
j=1 yj (i). The function m(t)

(t ∈ (0,1)) is assumed to be smooth whereas ej (i) are random error terms that
are stationary zero mean processes within each replicate but independent between
replicates. In other words, cov(ej (i), el(i + k)) is zero if j 
= l and equals γj (k)

otherwise, where γj is a covariance function.
Specifically, we make the following assumptions on the j th error series ej (i):

• (A1) Mean: E[ej (i)] = 0;
• (A2) Spectral density: limλ→0[fj (λ)/{Dj |λ|−2dj }] = 1 where Dj > 0, 0 <

dj < 1/2 and the convergence is uniform;
• (A3) Covariances: cov(ej (i), ej (i + k)) = γj (k) ∼ Cj |k|2dj−1 as |k| → ∞,

dj 
= 0, Cj > 0 where, Cj = sin(πdj )Γ (1 − 2dj )Dj/(1 + 2dj ).

Consider the Priestley–Chao estimate of m(t),

m̂(t) = 1

nb

n∑

i=1

K

(
ti − t

b

)
ȳ(i),

where the kernel K is a symmetric probability density function on (−1,1) and b is
a bandwidth such that

b → 0 and nb3 → ∞ as n → ∞.

The uniform kernel K(u) = 1
2 1{|u| ≤ 1} is an example of such a kernel which we

use in this section, but the arguments also hold for other kernels.
Clearly, the precision of such an estimator will depend on n as well as on N . Two

different cases are of interest: (i) N is fixed and finite and (ii) N → ∞.

Case (i) N is fixed and finite. As we shall see, in this case the mean squared error
of the estimated trend function will be dominated by the largest fractional
differencing parameter.
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Theorem 7.25 Let N be fixed and finite. Then, as n → ∞, the asymptotic expres-
sion of the bias of m̂(t) for t ∈ (0,1) is

E
[
m̂(t)

]−m(t) = b2

2
m′′(t)

∫ 1

−1
u2K(u)du+ o

(
b2).

Proof Since E[ȳ(i)] = m(ti), the proof follows, as we have seen before in previous
sections, from a two-term Taylor series expansion of m(ti) around t and in particular
by noting that as n → ∞,

∣∣∣∣∣
1

nb

n∑

j=1

(
tj − t

b

)p

K

(
tj − t

b

)
−

∫ 1

−1
upK(u)du

∣∣∣∣∣ = O

(
1

nb

)

where p is a positive integer. To simplify further, the term O((nb)−1) can be ab-
sorbed into o(b2) since nb3 → ∞. �

As an example, when K is the uniform kernel on (−1,1), since
∫ 1
−1 u

2K(u)du

= 1/3 the asymptotic expression of the bias of m̂(t) is

E
[
m̂(t)

]−m(t) = b2

6
m(2)(t)+ o

(
b2)

and for η ∈ (0,1/2), as n → ∞, the integrated squared bias of ĝ is:

∫ 1−η

η

{
E
[
m̂(t)

]−m(t)
}2

dt = b4

36

∫ 1−η

η

{
m(2)(t)

}2
dt + o

(
b4).

As for the covariances, note that when d = max{d1, . . . , dk}, N is fixed and finite
and ē(i) = N−1 ∑N

j=1 ej (i), by (A2) and (A3),

cov
(
ē(i), ē(i + k)

) = γē(k) = 1

N2

N∑

j=1

γj (k) ∼ 1

N2
Cd,N |k|2d−1 (as |k| → ∞)

where

Cd,N =
∑

j :dj=d

Cj .

Similarly, the spectral density is

fē(λ) = 1

2π

∞∑

k=−∞
γē(k)e

−ikλ = 1

N2

N∑

j=1

fj (λ) ∼ 1

N2
Dd,N |λ|−2d (as λ → 0)

where

Dd,N =
∑

j :dj=d

Dj .
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These facts can be summarized as follows:

Lemma 7.2 Let d = max{d1, . . . , dN }, and let N be fixed and finite. Then the largest
fractional differencing parameter d is also the fractional differencing parameter for
the sample mean process ē(i) (i = 1,2, . . . ).

Theorem 7.26 Let N be fixed and finite. Let K(u) = 1
2 1{−1 ≤ u ≤ 1},

d = max{d1, . . . , dN } and

β(d,N) = 22d−1

d(2d + 1)
Cd,N .

Then for η ∈ (0,1/2) and as n → ∞, the integrated variance of m̂ is
∫ 1−η

η

Var
[
m̂(t)

]
dt = 1

N2
(1 − 2η)(nb)2d−1β(d,N)+ o

(
(nb)2d−1).

Proof For every fixed t ∈ (0,1),

Var
(
m̂(t)

) = 1

(2nbN)2

N∑

j=1

n(t+b)∑

r,s=n(t−b)

γj (r − s)

= 1

(2nbN)2

N∑

j=1

2nb+1∑

r1,s1=1

γj (r1 − s1)

where the last expression is obtained by substituting r1 = r − n(t − b) + 1 and
s1 = s − n(t − b)+ 1. Thus, we get

Var
(
m̂(t)

) = 1

(2nbN)2

N∑

j=1

2nb∑

k=−2nb

(
2nb + 1 − |k|)γj (k)

= 1

N2

N∑

j=1

[
V

(1)
n,j + V

(2)
n,j − V

(3)
n,j

]

where

V
(1)
n,j = 1

2nb

2nb∑

k=−2nb

γj (k),

V
(2)
n,j = 1

(2nb)2

2nb∑

k=−2nb

γj (k),

V (3)
n,r = 1

(2nb)2

2nb∑

k=−2nb

|k|γj (k).
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We have dj ∈ (0,1/2) so that 2dj − 1 ∈ (−1,0) and

lim
nb→∞

2nb∑

k=−2nb

γj (k) = γj (0)+ 2Cj lim
nb→∞

2nb∑

k=1

|k|2dj−1 = ∞.

Also as nb → ∞,
∣∣∣∣∣

2nb∑

u=1

|u|2dj−1 − (2nb)2dj

∫ 1

0
x2dj−1 dx

∣∣∣∣∣ = O
(
(nb)2dj−1).

Simplifying, and since (nb)2dj−2 = o((nb)2dj−1),

V
(1)
n,j = Cj

dj
(2nb)2dj−1 + o

(
(nb)2dj−1)

and clearly V
(2)
n,j = o(V

(1)
n,j ). As for V (3)

n,j , |k|γj (k) ∼ Cj |k|2dj as |k| → ∞, so that

V (3)
n,r = 2Cj

2dj + 1
(2nb)2dj−1 + o

(
(nb)2dj−1).

The theorem follows by noting that V (1)
n,j − V

(3)
n,j = (2nb)2dj−1Cj/(dj (2dj + 1)) +

o((nb)2dj−1) and, as n → ∞, the sum
∑N

j=1{V (1)
n,j − V

(3)
n,j } will be dominated by a

multiple of (nb)2d−1 where d is the largest fractional differencing parameter. �

Corollary 7.2 Let K(u) = 1
2 1{−1 < u< 1} and, as n → ∞, b → 0 and nb3 → ∞.

If N is fixed and finite and dj (j = 1,2, . . . ,N ) are fractional differencing param-
eters with d = max{d1, . . . , dN }, 0 < dj < 1

2 , then for η ∈ (0,1/2), the asymptotic
expression for the integrated mean squared error for m̂ is (as n → ∞)

IMSE(m̂) =
[
b4

36

∫ 1−η

η

{
m(2)(t)

}2
dt + 1

N2
(1 − 2η)(nb)2d−1β(d,N)

]

+ o
(
max

(
b4, (nb)2δ−1))

and the global optimum bandwidth minimising IMSE(m̂) is

bopt =
[

9(1 − 2η)(1 − 2d)β(d,N)
∫ 1−η

η
{m(2)(t)}2 dt

]1/(5−2d)

× n(2d−1)/(5−2d)N−2/(5−2δ)

where β(d,N) is defined in Theorem 7.26.

Substituting bopt in the leading term of IMSE(m̂) the optimum rate of conver-
gence can be obtained as O(n(8d−4)/(5−2d)N−8/(5−2d)). Note that when d → 0 (i.e.
the process approaches short-memory or independence) and N = 1, the familiar
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rate n−4/5 for the integrated mean squared error for estimation of the trend function
can be confirmed. As usual, the rate of convergence under long memory (d > 0)
is slower than under independence (d = 0). Compare also with (7.97) which corre-
sponds to the case N = 1.

Case (ii) In this case, infinitely many replicates are available asymptotically.

Theorem 7.27 We assume that limN→∞ N−1 ∑N
j=1 fj (λ) = f (λ) uniformly in λ ∈

(0,π) with f (λ) ∼ L(λ)|λ|−2d , 0 < d < 1/2 where L is slowly-varying at zero
in the sense of Zygmund. Let γ (k) = (2π)−1

∫ π

−π
f (λ)eikλ dλ ∼ L(1/|k|)|k|2d−1

(|k| → ∞). Then for η ∈ (0,1/2), the asymptotic expression for the integrated mean
squared error of m̂ (as N → ∞, n → ∞) is

IMSE(m̂) = b4

36

∫ 1−η

η

{
m(2)(t)

}2
dt

+ 1

N

1

d(2d + 1)
(1 − 2η)(2nb)2d−1L

(
1

nb

)

+ o
(
max

(
b4, (nb)2d−1)). (7.152)

Proof The expression for the bias term follows as in Theorem 7.25. As for the vari-
ance, first of all, j disappears due to the convergence of the mean N−1 ∑N

j=1 γj (k)

appearing in var(m̂(t)) to the limit γ (k) that follows a slow hyperbolic decay given
by (A3). The proof follows from similar arguments as for Theorem 7.26. �

Corollary 7.3 Under the conditions of Theorem 7.27, the global optimum band-
width minimizing IMSE(m̂) is

bopt =
[

9(1 − 2η)(1 − 2d)2(2d−1)/(5−2d)L(1/(nb))

d(2d + 1)
∫ 1−η

η

{
g(2)(t)

}2
dt

]1/(5−2d)

× n(2d−1)/(5−2d)N−1/(5−2d)

where the slowly-varying function L is defined in Theorem 7.27.

Remark By assumption, the spectral density fj (λ) of the j th error process ej be-
haves at zero like a constant Dj times |λ|−2dj . In the theorem above, however, we
assume the average spectral density to be a product of a slowly varying function
L and |λ|−2d where 0 < d < 1/2. In particular, L need not be a constant. An in-
sight into this may be gained, for instance, by considering the case of i.i.d. random
fractional differencing parameters having a moment generating function M where
M(−2 log |u|) = L(u)|u|−2d ; an example is the uniform distribution; see Ghosh
(2001). In this case, the expected value of the spectral density function is directly
proportional to L(λ)× |λ|−2θ where 1/2 > θ > 0, and L(u) ∝ 1/ log(|u|).
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7.4.8 Random-Design Regression Under LRD

In this section, our goal is to estimate the conditional mean function m(Yt |Xt) in a
random-design model with residuals exhibiting long-range dependence and a vari-
ance that may depend on Xt . Thus, we have

Yi = m(Xi)+ σ(Xi)ei (7.153)

where now Xi is a stationary process with marginal density pX , ei is a stationary
zero mean process with long memory and σ is a continuous function of Xi . Since
the design is random, we consider the Nadaraya–Watson estimator (7.104), i.e.

m̂NW(x) = m̂PC(x)

p̂X(x)
= (nb)−1 ∑n

i=1 K(
Xi−x

b
)Yi

p̂X(x)
(7.154)

where

p̂X(x) = 1

nb

n∑

i=1

K

(
Xi − x

b

)
(7.155)

is a kernel density estimator of pX .
We can summarize the limiting behaviour of m̂NW in the following theorem.

This theorem summarizes results obtained under different sets of assumptions and
using different techniques in papers like Cheng and Robinson (1994), Csörgő and
Mielniczuk (1999, 2000), Mielniczuk and Wu (2004), Zhao and Wu (2008) and
Kulik and Lorek (2011).

Theorem 7.28 Suppose that m and σ are twice continuously differentiable in a
neighbourhood of x0. Then the following holds:

• Suppose that Xi are i.i.d. and ei = ∑∞
j=0 aj εi−j is a linear process with i.i.d. zero

mean innovations εi , σ 2
ε = var(εi) < ∞ and aj ∼ caj

de−1 for some 0 < d < 1
2 .

Then, for a sequence of bandwidths

b = o
(
n−2de

)

we have

√
nb

√
p̂X(x0)

{
m̂(x0)−E

[
m̂(x0)

]} d→ Z

√

σ 2(x0)p(x0)

∫
K2(u) du (7.156)

where Z is a standard normal random variable.
• Under the same assumptions, but with

b � n−2de ,
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we have

n
1
2 −dec

− 1
2

e

{
m̂(x0)−E

[
m̂(x0)

]} d→ σ(x0)Z (7.157)

where ce = cfeν(de) is the constant in var(
∑n

i=1 ei) ∼ cen
2de+1.

• Suppose that Xi = ∑∞
j=0 aj,Xξi−j is a zero mean Gaussian process with long-

range dependence such that γX(k) ∼ cγ |k|2d−1 (0 < d < 1
2 ). Then, keeping

the other conditions as above, the same results follow for b = o(n−2de ) and
b � n−2de , respectively.

Proof We write

p̂X(x0)
{
m̂(x0)−E

[
m̂(x0)

]} = 1

nb

n∑

i=1

K

(
Xi − x0

h

)
Yi −E

[
m̂(x0)

]
p̂X(x0)

= 1

nb

n∑

i=1

K

(
Xi − x0

b

){
m(Xi)−E

[
m̂(x0)

]}

+ 1

nb

n∑

i=1

K

(
Xi − x0

b

)
σ(Xi)ei .

It can be shown that the first term is op((nb)
−1/2) and is hence asymptotically neg-

ligible. The second term has the structure Rn := n−1 ∑n
i=1 νn(Xi)ei (cf. (7.60)),

where

νn(Xi) = b−1K

(
x0 −Xi

b

)
σ(Xi) = b−1K

(
Xi − x0

b

)
σ(Xi).

Note that

E
[
νn(X1)

] = b−1
∫

K

(
x0 − u

b

)
σ(u)pX(u)du

=
∫

K(u)σ(x0 − ub)pX(x0 − ub)du 
= 0. (7.158)

Since σ and pX are assumed to be twice continuously differentiable in a neighbour-
hood of x0, with bounded second derivatives, we have

E
[
νn(X1)

] ∼ σ(x0)pX(x0), var
(
νn(X1)

) ∼ b−1σ 2(x0)pX(x0)

∫
K2(u) du.

(7.159)
Thus, we can apply techniques from Sect. 7.2.3:
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• If ei are i.i.d., then Rn is a martingale. An application of a martingale central limit
theorem (Lemma 4.2) yields

√
nb

1

nb

n∑

i=1

K

(
x0 −Xi

b

)
σ(Xi)ei

d→ σ(x0)Z

√

pX(x0)

∫
K2(u) du.

• If ei is a linear long-memory process and Xi are i.i.d., then we apply the (M/L)-
decomposition

Rn = n−1E
[
νn(X1)

] n∑

i=1

E[ei |εs, s ≤ i − 1]

+ n−1
n∑

t=1

{
νn(Xi)ei −E

[
νn(Xi)ei |Xs, εs, s ≤ i − 1

]} =: Rn,1 +Rn,2.

The second part is a martingale and again an application of the martingale CLT
yields

√
nbRn,2

d→ Z

√

σ 2(x0)pX(x0)

∫
K2(u) du. (7.160)

For the first part, we have, recalling (7.48) and (7.159),

n
1
2 −dec

− 1
2

e Rn,1
d→ σ(x0)pX(x0)Z. (7.161)

• If both, Xi and ei are linear processes with long memory, then we proceed exactly
the same way as in the case of parametric linear regression. The direct application
of the Hermite polynomial decomposition does not lead to weakly dependent
behaviour (7.156). However, conditioning on ξi, ξi−1, . . . , we start with an (M/L)-
decomposition

1

n

n∑

i=1

(
νn(Xi)ei −E

[
νn(Xi)ei |ξs, εs, s ≤ i − 1

])

+ 1

n

n∑

i=1

E[ei |εs, s ≤ i − 1]
∫

K

(
x0 − (u+ X̂i)

b

)
σ(u+ X̂i)pξ (u) du

=: R̃n,2 + R̃n,1, (7.162)

where pξ (·) is the density of ξi and X̂i = Xi − ξi is the one-step forecast of Xi

given ξs (s ≤ i − 1). Now, R̃n,2 is a martingale and its limiting properties are
described by (7.160). For R̃n,1 we apply the Hermite polynomial decomposition
(7.62) with

ν̃n(z) =
∫

K

(
x0 − (u+ z)

b

)
σ(u+ z)pξ (u)du.
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Let p
X̂

be the density of X̂i . Note that pX is the convolution of p
X̂

and pξ , i.e.
pX = p

X̂
∗ pξ . Then

E
[
ν̃n(X̂t )

] =
∫ ∫

K

(
x0 − (u+ z)

b

)
σ(u+ z)pξ (u)pX̂

(z) dudz

=
∫ ∫

K(u)σ(x0 − bu)pξ (x0 − z − bu)p
X̂
(z) dudz

∼ σ(x0)

∫
K(u)du

∫
pξ (x0 − z)p

X̂
(z) dz = σ(x0)pX(x0).

Thus, using the same argument as for parametric regression, we are able to con-
clude that (7.161) holds for R̃n,2. The result then follows by comparing the term
Rn,1 with Rn,2, and R̃n,1 with R̃n,2, respectively, and noting that p̂X is the con-
sistent estimator of pX (see Sect. 5.14). �

The theorem is remarkable in several ways. First of all, it reveals a dichotomy
between small and large bandwidths. This is the same phenomenon as observed
already for density estimation (see Sect. 5.14). For small bandwidths b = cn−α =
o(n−2de ), the long-range dependence in the residuals has no influence, and one ob-
tains exactly the same asymptotic distribution as for i.i.d. data. The optimal band-

width is then of the form b = cn− 1
5 , and optimal MSE has the order O(n− 4

5 ). This is
in contrast to fixed-design kernel estimation. On the other hand, this behaviour is not
unexpected in view of similar results for random design linear regression (Sect. 7.2)
and kernel density estimation (Sect. 5.14). For large bandwidths b � n−2de , the
contribution of the bias is proportional to n−4α � n−8de whereas the variance is
proportional to n−(1−2de). Since 1 − 2de < 8de is equivalent to de > 0.1, the first

conclusion is that the optimal MSE is of the order n− 4
5 (with bopt = cn− 1

5 ) only if
de < 0.1. For de > 0.1, the optimal order is n−(1−2de) which is achieved as long as
the variance dominates the bias. This is the case for a whole range of bandwidths
b = cn−α with 1 − 2de < 4α < 8de. These general results are the same as for den-
sity estimation. We therefore do not repeat the same comments and refer the reader
to Sect. 5.14. The second remarkable aspect of Theorem 7.28 is that long memory
in the explanatory process Xi does not influence the asymptotic behaviour.

The results can be generalized to multivariate time series. In the context of
(7.160), the limit is multivariate normal with independent components; in the con-
text of (7.161), the limit is multivariate normal with perfectly correlated compo-
nents. Furthermore, one can also obtain analogous results for multivariate predic-
tors.

The main conclusion is that for de > 0.1, the MSE is dominated by the variance
as long as the bandwidth is not too large but of a larger order than n−2de . An exact
choice of b is not needed to achieve the optimal rate of n−(1−2de). However, as
for density estimation, a higher-order expansion of the MSE can be used to derive
a criterion for an optimal bandwidth—even though it may not have an influence
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asymptotically. Considering a weighted integrated mean squared error

IMSE(m̂,m;w) =
∫

E
[(
m̂(x)−m(x)

)2]
w(x)dx,

Kulik and Lorek (2011) obtained the following formula.

Proposition 7.2 Under the assumptions of the third part of Theorem 7.28 (i.e. when
both ei and Xi have long memory), we have

IMSE(m̂,m;w) ∼ 1

nb
κ1

∫
σ 2(x)

pX(x)
w(x)dx

+ b4 κ
2
2

4

∫ (
m′′(x)pX(x)+ 2m′(x)p′

X(x)

pX(x)

)2

w(x)dx

+ n2dε−1cε

∫
σ 2(x)w(x)dx + b2n2dε−1ceκ2

∫
ψe(x)w(x)dx,

(7.163)

where κ1 = ∫
K2(u) du, κ2 = ∫

u2K(u)du, and

ψe(x) = σ(x)
(σ (x)pX(x))

′′

pX(x)
.

Of course, the weight function w must be chosen in such the way that the in-
tegrals are finite. For example, if σ(x) ≡ 1 and pX is the standard normal density,
then

∫
σ 2(x)

pX(x)
w(x)dx =

∫
w(x)

pX(x)
dx

would be infinite if we chose w(x) ≡ 1, whereas this is not the case, for instance,
for w(x) = p2

X(x).
The first term in (7.163) is due to the bias, the second one describes i.i.d.-type

behaviour. The term involving de describes a possible contribution of long memory.
Note that we have to include the term b2n2de−1ce to obtain a criterion for bandwidth
selection that can also be used for d > 0.1. For d > 0.1 this terms does not have an
influence on the optimal behaviour of the MISE, but it improves the higher-order
term in the expansion. Optimizing the higher order expansion with respect to b

yields

bopt ∼
{
Cn− 1

5 if de < 0.3,

Cn− 2
3 de if de > 0.3.

The optimal IMSE(m̂,m;w) with bopt is then proportional to n−4/5 if de < 1/10,
and to n2de−1ce(n) if de > 1/10. However, as discussed above (also see Sect. 5.14),
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for d > 1/10 the optimal order can be achieved even if b is not exactly of the order

O(n− 2
3 de ).

The optimal bandwidth depends on unknown parameters. Moreover, for de > 0.1
data driven bandwidth choice is not quite trivial because bopt is based on a higher
order expansion of the IMSE. Given an observed series where we may not know
much about the underlying process, it seems quite difficult to estimate the IMSE
with sufficient accuracy to assess the contribution of higher-order terms. For in-
stance, cross-validation turns out to be applicable for de < 0.1 only (for a precise
statement, see Kulik and Lorek 2011).

An improved result can be obtained if one is interested in the shape of the func-
tion m(x) only. This means that the aim is to estimate

m∗(x) = E[Y |X = x] −E[Y ] = m(x)−
∫

m(x)pX(x)dx.

The natural estimator is given by

m̂∗(x) = m̂NW(x)− ȳ (7.164)

where ȳ = n−1 ∑Yi . In contrast to Proposition 7.2, the mean squared error is now
influenced by the dependence structure of Xi (Kulik and Lorek 2011) whereas the
long-memory property of ei disappears:

Theorem 7.29 Suppose that m is twice continuously differentiable in a neighbour-
hood of x0 and σ(x) ≡ 1. Then the following holds:

• Suppose that Xi are i.i.d. and ei = ∑∞
j=0 aj εi−j is a linear process with i.i.d. zero

mean innovations εi , σ 2
ε = var(εi) < ∞ and aj ∼ caj

de−1 for some 0 < de <
1
2 .

Then

IMSE(m̂,m;w) ∼ b4 κ
2
2

4

∫ (
m′′(x)pX(x)+ 2m′(x)p′

X(x)

pX(x)

)2

w(x)dx

+ 1

nb
κ1

∫
w(x)

pX(x)
dx, (7.165)

where κ1 = ∫
K2(u) du, κ2 = ∫

u2K(u)du.
• Suppose that Xi is a zero mean Gaussian process with long-range dependence

such that γX(k) ∼ cγ |k|2dX−1 (0 < dX < 1
2 ) and var(

∑n
i=1 Xi) ∼ cXn

2dX−1.
Then

IMSE(m̂,m;w) ∼ b4 κ
2
2

4

∫ (
m′′(x)pX(x)+ 2m′(x)p′

X(x)

pX(x)

)2

w(x)dx

+ 1

nb
κ1

∫
w(x)

pX(x)
dx + n2dX−1cXE

2[m(X)X
]
. (7.166)
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The first part of Theorem 7.29 means that for i.i.d. explanatory variables the
asymptotic mean squared error is exactly the same as for i.i.d. residuals. Thus, if
we are interested in the shape of m only, then the optimal bandwidth is the same

as under i.i.d. assumptions, namely bopt = Coptn
− 1

5 , and the optimal IMSE is of

the order O(n− 4
5 ). This is similar to results on linear regression through the ori-

gin with explanatory variables having expected value zero. Note in particular that
even if

∫
m(x)pX(x)dx = 0, the rate can be improved by subtracting ȳ. This is

similar to the improved rate of the empirical process when subtracting the sam-
ple mean (see Sect. 4.8.3) and results discussed in the context of goodness-of-fit
testing where estimation of nuisance parameters improves the rate of convergence
(Sect. 5.16). On the other hand, if Xi exhibits long memory, then the rate dete-
riorates for functions m whose Hermite rank is one. In terms of orders, we have
IMSE = O(b4)+O((nb)−1)+O(n2dX−1). Minimization with respect to b = cn−α

therefore yields exactly the same optimal value bopt = Coptn
− 1

5 as for i.i.d. residuals.

However, the optimal mean squared error is of the order O(n− 4
5 ) only if 4

5 ≤ 1−2dX
which means dX ≤ 0.1. For dX > 0.1 the variance dominates the optimal IMSE
which is asymptotically proportional to n2dX−1. On the other hand, for very large
bandwidths b = cn−α with α < 1

4 (1 − 2dX), the bias dominates the IMSE which is
then, however, far from the optimal one. In summary, if Xi exhibits long memory,
then the results are analogous to estimation of m; however, with de replaced by dX .

7.4.9 Conditional Variance Estimation

We go back to the parametric regression model (7.45)

Yi = β0 + β1Xi + σ(Xi)ei .

Our goal now is to estimate the conditional variance function σ 2(·) in a nonparamet-
ric way. To do so, we first estimate β0 and β1 by the least squares method studied
in Sect. 7.2. Then, in analogy to conditional mean estimation, we estimate σ 2(·) by
smoothing residuals with a kernel K and a bandwidth b,

σ̂ 2(x0) = (nb)−1 ∑n
i=1(Yi − β̂0 − β̂1Xi)

2K(
Xi−x0

b
)

p̂X(x0)
, (7.167)

where p̂X(x0) is the kernel density estimator defined in (7.155). It is known that in
the case of weakly dependent errors and/or predictors, estimation of β0 and β1 does
not influence the performance of σ̂ 2(·) (see Fan and Yao 1998; Zhao and Wu 2008).

To see what happens in the case of long memory, we will work under the con-
dition that Xi are i.i.d. and ei = ∑

aj εi−j is a linear long-memory process with
aj ∼ caj

d−1 (0 < d < 1
2 ). Defining

Δt = (β̂0 − β0)+ (β̂1 − β1)Xt =: Δ0 +Δ1,t ,
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we can write down the decomposition

p̂X(x0)
(
σ̂ 2(x0)− σ 2(x0)

) = 1

nb

n∑

i=1

K

(
Xi − x0

b

)(
σ 2(Xi)− σ 2(x0)

)

+ 1

nb

n∑

i=1

K

(
Xi − x0

b

)
σ 2(Xi)

(
e2
i − 1

)

− 2

nb

n∑

i=1

Δiσ(Xi)K

(
Xi − x0

b

)
ei

+ 1

nb

n∑

i=1

Δ2
i K

(
Xi − x0

b

)

=: J1 + J2 − J3 + J4.

If β0 and β1 were known, then we would have Δi = 0 and thus J3 = J4 ≡ 0. Let us
recall the proof of Theorem 7.28. The first two terms J1 and J2 are very similar to
the terms appearing in the decomposition of p̂X(x0)(m̂(x0)−m(x0)). If we assume
nb5 → 0, then

√
nbJ1 = op(1) so that the term J1 is negligible. The second term

can be decomposed into two terms J21 and J22 with

√
nbJ21

d→ Z1σ
2(x0)

√

pX(x0)

∫
K2(u) du (7.168)

and, if d ∈ (1/4,1/2),

n1−2dε c
− 1

2
e,2 J22

d→ σ 2(x0)pX(x0)Z2,H0(1) (7.169)

where Z2,H0(1) is the Hermite–Rosenblatt process at time 1 and ce,2 is the constant
in var(

∑
(e2

i − 1)) ∼ ce,2n
4d+2. If d ∈ (0,1/4), then

√
nJ22 = oP (1). The reason

for the difference between (7.161) and (7.169) is that the latter involves limiting
behaviour of

∑n
t=1(e

2
t − 1).

To deal with J3, write

J3 = (β̂0 − β0)
2

nb

n∑

i=1

K

(
Xi − x0

b

)
σ(Xi)ei

+ (β̂1 − β1)
2

nb

n∑

i=1

K

(
Xi − x0

b

)
Xiσ(Xi)ei

=: (β̂0 − β0)L̃3 + (β̂1 − β1)R̃3.
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Defining the quantity

J̃3 := 2

n2b

n∑

i=1

n∑

j=1

K

(
Xi − x0

b

)
σ(Xi)σ (Xj )XiXjeiej ,

we may decompose J3 into two parts,

J3 = L̃3
1

n

n∑

i=1

σ(Xi)εi + 1

Vn

J̃3, (7.170)

with V 2
n = n−1 ∑n

i=1 X
2
i . Furthermore, in J̃3 we may ignore summation over i = j .

Since Xi are i.i.d., the (M/L)-decomposition suggests that J3 behaves like

E

[
b−1K

(
Xi − x0

b

)
σ(Xi)σ (Xj )XiXj

]
n−2

n∑

t=1

n∑

s=1,s 
=t

et es .

Since the expected value above behaves like E[σ(X1)X1]σ(x0)x0, we conclude
from (7.48) that

n(1−2de)c
− 1

2
e J̃3

d→ 2E
[
σ(X1)X1

]
σ(x0)x0pX(x0) ·Z2

0 . (7.171)

Similar arguments yield

n(1−2de)c
− 1

2
e L̃3n

−1
n∑

i=1

σ(Xi)ei
d→ 2E

[
σ(X1)

]
σ(x0)pX(x0) ·Z2

0 . (7.172)

Since Vn converges in probability to 1, the last two equations mean that n1−2dec
− 1

2
e J3

converges in distribution to

2
{
E
[
σ(X1)X1

]
x0 +E

[
σ(X1)

]}
σ(x0)pX(x0) ·Z2

0 .

We note that this conclusion is obtained by justifying that the convergence in (7.171)
and (7.172) is joint. Similar considerations can be applied to J4. Details can be found
in Kulik and Wichelhaus (2011). There, the results are obtained under more general
assumption on predictors; see also Guo and Koul (2008). Extension to conditional
variance estimation in the model (7.153) are given in Kulik and Wichelhaus (2012)
and Zhao and Wu (2008). In summary, the following dichotomy is obtained:

Theorem 7.30 Consider the random design regression model (7.45). Assume that
nb5 → 0 and σ is twice continuously differentiable in a neighbourhood of x0. Fur-
thermore, suppose that Xi are i.i.d. and ei = ∑∞

j=0 aj εi−j is a second-order sta-

tionary linear process with aj ∼ caj
de−1 (0 < de <

1
2 ), and denote by Z and Z0

standard normal variables and by Z2,H0(1) an Hermite–Rosenblatt variable. Then
the following holds:
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• If b = o(n1−4de ), then

√
nb

√
p̂X(x0)

(
σ̂ 2(x0)− σ 2(x0)

) d→ Zσ 2(x0)

√

pX(x0)

∫
K2(u) du;

• If b � n1−4de , then

n1−2dec
− 1

2
e

(
σ̂ 2(x0)− σ 2(x0)

)

→
d

σ 2(x0)Z2,H0(1)

+ {
E2[σ(X1)X1

]
x2

0 − 2σ(x0)x0E
[
σ(X1)X1

]}
Z2

0

+ {
E2[σ(X1)

]− 2σ(x0)E
[
σ(X1)

]}
Z2

0 . (7.173)

The last two terms quantify the price we have to pay due to estimation of β0

and β1 and due to the fact that the error process has long-range dependence. Note
that the first of the two terms disappears, if E2[σ(X1)X1] = 0. Finally, note that
the assumption nb5 → 0 was used for convenience in order that the bias of σ̂ 2(x0)

be asymptotically negligible. This assumption can be dropped, but then σ̂ 2(x0) −
σ 2(x0) has to be replaced by σ̂ 2(x0) − E[σ̂ 2(x0)], and the bias of σ̂ 2(x0) has to be
treated separately (as it was done previously when estimating the conditional mean
function m(x0) nonparametrically).

7.4.10 Estimation of Trend Functions for LARCH Processes

Consider a time series model Yi = m(ti) + ei with a nonparametric trend function
m(ti) (ti ∈ [0,1]) and residuals ei that exhibit long-range dependence in volatil-
ity, and a linear dependence structure corresponding either to short memory, long
memory or antipersistence. The main question addressed here is the asymptotic be-
haviour of nonparametric estimators of m. In particular, one is interested in charac-
terizing the influence of linear and nonlinear dependence of m̂.

More specifically, Beran and Feng (2007) consider residuals ei having a Wold
decomposition

ei =
∞∑

j=0

ajXi−j = A(B)Zi

with |A(e−iλ)|2 ∼ Lfe(λ)|λ|−2d1 (− 1
2 < d1 < 1

2 ) as λ → 0, Lfe(λ) ∈ C[−π,π]
slowly varying, and Zi is a long-memory LARCH process with bj ∼ cjd2−1 (as
j → ∞) for some 0 < d2 < 1

2 and
∑

b2
j < 1. For the autocovariances of ei , we

have γe(k) ∼ Lγe(k)|k|2d1−1 with Lγe slowly varying, whereas Zi are uncorrelated
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but the squares Z2
i have autocovariances of the form γZ2(k) ∼ Lγ

Z2 (k)|k|2d2−1 (as
j → ∞) where Lγ

Z2 is another slowly varying function.
We recall that, given a polynomial degree p ∈ N and a bandwidth b > 0, a local

polynomial estimator of the j th derivative m(j)(t0) (for a fixed t0 ∈ [0,1]) can be
written as

m̂(j)(x) = j !β̂j = j !δTj+1

(
XT DX

)−1XT Dy (7.174)

= wT
j,b;ny =

n∑

i=1

wj,b;n(i)Yi (7.175)

where δj = (δ1,j , . . . , δp+1,j )
T (j = 1, . . . , p + 1) denote unit vectors with δj,j =

1, δi,j = 0 (i 
= j ) (see (7.106)). Thus, investigating the asymptotic behaviour of
μ̂(j)(t0) amounts to studying the sequence of sums

Sn =
n∑

i=1

wj,b;n(i)Yi =
n∑

i=1

ζi,n (n ∈N)

of a triangular array ζi,n = wj,b;n(i)Yi (1 ≤ i ≤ n; n ∈ N). For the specific weights
given by local polynomial estimation, Beran and Feng (2007) derive asymptotic
normality of Sn under suitable conditions on the tail behaviour of ei and on the
weights wj,b;n. In particular, one must make sure that the weights are balanced in
the sense that max1≤i≤n w

2
j,b;n(i) is asymptotically of a smaller order than var(Sn)

(for the detailed assumptions, see Beran and Feng 2007). Also note that the results
for the mean squared error are the same as in Theorem 7.22 because these depend
on the linear dependence structure only.

7.4.11 Further Bibliographic Comments

Hall and Hart (1990b) were the first to derive an asymptotic formula for the mean
squared error of kernel estimators of the trend function m(t) in fixed-design regres-
sion with long-memory errors. This result was extended further in Beran and Feng
(2001a, 2001b, 2002a, 2002b, 2002c), including kernel estimation with boundary
corrections, local polynomial estimation of derivatives and integrated processes.
Results along the line of (7.144) were proven in Csörgő and Mielniczuk (1995a)
under the condition of a homoscedastic Gaussian residual process (the modification
to the heteroskedastic case is obvious). See also Csörgő and Mielniczuk (1995b)
and Robinson (1997). Nonparametric trend estimation in replicated long-memory
time series is considered in Ghosh (2001). The general results applicable to local
polynomial estimators of m(j) and kernel estimators with boundary correction was
given in Beran and Feng (2001a, 2001b, 2002a) (also see Feng et al. 2007). Prop-
erties of cross-validation and plug-in bandwidth were studied in Hall et al. (1995a)
and Beran and Feng (2002a, 2002b, 2002c), respectively. Data driven bandwidth
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selection including asymptotic results on the convergence of the estimated band-
width can also be found in Beran and Feng (2002a, 2002b, 2002c). Extensions to
LARCH-type residuals are given in Beran and Feng (2007). Opsomer et al. (2001)
give an overview of up-to-date existing results in nonparametric estimation with
short- and long-memory errors. Robust versions of local polynomial estimators in
the long-memory context are considered in Beran et al. (2002) and Beran et al.
(2003). Optimal convergence rates in the long-memory setting are derived in Feng
and Beran (2012). The nonexistence of optimal kernels in the long-memory setting
is shown in Beran and Feng (2007). Extensions to nonequidistant time series and
tests for rapid change points are derived in Menéndez et al. (2010).

Theorem 7.28 has its origin in work by Cheng and Robinson (1994). Further ref-
erences include Csörgő and Mielniczuk (1999, 2000), Mielniczuk and Wu (2004),
Zhao and Wu (2008), Kulik and Lorek (2011). In the latter article, the authors con-
sider very general class of errors, which include FARIMA–GARCH or antipersis-
tent processes. In Bryk and Mielniczuk (2008), the authors consider a randomization
scheme for fixed-design regression. As a consequence, the resulting kernel estima-
tor has a rate of convergence as in the random-design case. Results for the kernel
Nadaraya–Watson estimator have further extensions to local linear regression esti-
mators; see Masry and Mielniczuk (1999) and Masry (2001).

7.5 Trend Estimation Based on Wavelets

7.5.1 Introduction

In this section, we consider adaptive estimation of m(t) = E(X) using wavelets.
The advantage of the wavelet approach is evident for functions m that are inhomo-
geneous in time or not smooth. We start with the fixed-design case. As was shown
for kernel and local polynomial estimation, the rates of convergence are affected
by the presence of long memory. The same happens for wavelet methods (see, e.g.
Wang 1996; Wang 1997; Johnstone and Silverman 1997; Johnstone 1999; Li and
Xiao 2007; Kulik and Raimondo 2009a; Beran and Shumeyko 2012a). Again, in the
random design case, it is possible to achieve the same rates as for weakly dependent
data (Kulik and Raimondo 2009b).

7.5.2 Fixed Design

7.5.2.1 Data Adaptive Trend Estimation

As before, we consider a model with trend,

Yi = m(ti)+ ei, (7.176)
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with ti = i/n, m ∈ L2[0,1] and ei a zero mean stationary process with long-
range dependence. Wavelet based trend estimation in the context of i.i.d. or short-
range dependent residuals has been considered by many authors (see, e.g. a se-
ries of pioneering papers by Donoho and Johnstone). Most results deal with op-
timality in the sense of a minimax risk, and are partially also applicable in the
long-memory setting. For an observed data set, however, the minimax principle
often leads to estimates of m that may be far from optimal in the specific sit-
uation. A useful alternative is therefore to take a data adaptive approach where
one tries to extract information about the dependence structure of ei and prelimi-
nary information about m in order to come up with a (close to) optimal solution
for m̂. Results along this line are available in Li and Xiao (2007) and Beran and
Shumeyko (2012a). For simplicity, suppose that ei is a Gaussian process with auto-
covariance function γ (k) = E(eiei+k) ∼ Cγ |k|2d−1 (k → ∞) and spectral density
f (λ) = (2π)−1 ∑γ (k) exp(−ikλ) ∼ Cf |λ|−2d (λ → 0). To include a larger vari-
ety of wavelets, Beran and Shumeyko (2012a) assume that the support of the father
and mother wavelets φ(t) and ψ(t) is [0,N] with N an arbitrary integer. Moreover,
ψ(0) = ψ(N) = 0 and

∫ N

0
φ(t) dt =

∫ N

0
φ2(t) dt =

∫ N

0
ψ2(t) dt = 1. (7.177)

Then, for any J ≥ 0, the system {φJk,ψjk, k ∈ Z, j ≥ 0} with

ψjk(t) = N1/22(J+j)/2ψ
(
N2J+j t − k

)
, φJk(t) = N1/22J/2φ

(
N2J t − k

)
,

is an orthonormal basis in L2(R) (see Sects. 3.5 and 3.5). An important role is
played by the number Mψ ∈N of vanishing moments, defined by the properties

∫ N

0
tkψ(t) dt = 0 (k = 0,1, . . . ,Mψ − 1) (7.178)

and
∫ N

0
tMψψ(t) dt = νMψ 
= 0. (7.179)

Recall that for every fixed, J ≥ 0, every function m ∈ L2([0,1]) has a unique or-
thogonal wavelet representation

m(t) =
N2J −1∑

k=−N+1

sJkφJk(t)+
∞∑

j=0

N2J+j−1∑

k=−N+1

djkψjk(t), (7.180)

with

sJk =
∫ 1

0
m(t)φJk(t) dt, djk =

∫ 1

0
m(t)ψjk(t) dt.
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Setting

ŝJ k = 1

n

n∑

i=1

YiφJk(ti), d̂jk = 1

n

n∑

i=1

Yiψjk(ti),

a (hard) thresholding wavelet estimator of m is defined by

ĝ(t) =
N2J −1∑

k=−N+1

ŝJ kφJk(t)+
q∑

j=0

N2J+j−1∑

k=−N+1

d̂jk I
(|d̂jk| > δj

)
ψjk(t). (7.181)

The constants J , q and δj are called the decomposition level, smoothing parameter
and threshold, respectively, and can be chosen quite freely except for some minimal
asymptotic requirements such as δj → 0 (with rates in a certain range), q → ∞, etc.
The decomposition level J may also tend to infinity, but a reasonable assumption is
that 2J = o(n). The reason is that the lowest resolution level which is of the order
O(2−J ) should tend to zero at a slower rate than the distance n−1 between succes-
sive observational time points. This requirement corresponds to letting the length of
the window of a kernel estimator tend to zero at a slower rate than n−1. More specif-
ically, N2J t ∈ [0,N] if and only if 0 ≤ t ≤ 2−J , so that we need n−1 = o(2−J ).

The question of interest is now how to choose the constants J , q and δj op-
timally for a given data set. An asymptotic answer is given, at least partially, in
Beran and Shumeyko (2012a) (also see Li and Xiao 2007). The solution con-
sists of an asymptotic expression for the integrated mean squared error MISE =∫
E[(m̂(t) − m(t))2]dt that can be minimized. The result depends on the differen-

tiability of m, the number mψ of vanishing moments and further regularity prop-
erties of the mother wavelet ψ , and on the long-memory parameter d . A specific
assumption used in Beran and Shumeyko (2012a) is a uniform Hölder condition
with exponent 1/2, i.e.

∣∣ψ(x)−ψ(y)
∣∣ ≤ C|x − y|1/2, ∀x, y ∈ [0,N]. (7.182)

This is, however, not necessary since analogous results can be derived, for instance,
for Haar wavelets.

In a first step, it can be shown that minimization with respect to J , q and {δj }
yields the following optimal order of the MISE:

Theorem 7.31 Suppose that m ∈ Cr [0,1], m(r)(t) 
= 0 for a non-zero set (w.r.t.
Lebesgue measure), the process εi is Gaussian with covariance structure γ (k) =
E(eiei+k) ∼ Cγ |k|2d−1, and ψ is such that Mψ = r . Then, minimizing the MISE
with respect to J , q and {δj } yields the optimal order

IMSEopt = O
(
n− 2rα

2r+α
)

(7.183)

where α = 1 − 2d .
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Since only the rate is given, Theorem 7.31 is not directly applicable in practice.
Instead, an expression for the IMSE including all relevant constants is required.
Moreover, the trend function (or its derivatives) should be allowed to have at least a
finite number of jumps.

It turns out that the optimal order can be achieved without thresholding, i.e. set-
ting δj = 0 for all j . Using no thresholding simplifies asymptotic calculations. A de-
tailed analysis of the IMSE yields the following optimal values of J and q .

Theorem 7.32 Under the assumptions of the previous theorem and thresholds

δj = 0 (0 ≤ j ≤ q),

the following holds: Let

C2
φ = Cγ

∫ N

0

∫ N

0
|x − y|−α φ(x)φ(y) dx dy, (7.184)

C2
ψ = Cγ

∫ N

0

∫ N

0
|x − y|−α ψ(x)ψ(y)dx dy. (7.185)

(i) If (2α − 1)C2
φ > C2

ψ , then the asymptotic IMSE is minimized by decomposition

levels J ∗ satisfying 2J
∗ = o(n

α
2r+α ) and smoothing parameters

q∗ =
⌊

α

2r + α
log2 n+C∗

ψ

⌋
− J ∗ (7.186)

where log2 denotes logarithm to the base 2. The optimal IMSE is of the form

MISE = A1A2 · n− 2rα
2r+α + o

(
n− 2rα

2r+α
)

(7.187)

with constants A1, A2 defined explicitly as functions of d , and the wavelet func-
tions (see Beran and Shumeyko 2012a).

(ii) If (2α − 1)C2
φ < C2

ψ , then minimizing the asymptotic IMSE with respect to J

and q yields

ĝ(t) =
N2J

∗−1∑

k=−N+1

ŝJ ∗kφJ ∗k(t), (7.188)

with

J ∗ =
⌊

α

2r + α
log2 n+C∗

φ

⌋
+ 1 (7.189)

and C∗
φ defined explicitly as a function of d , and the wavelet functions (see

Beran and Shumeyko 2012a). The optimal IMSE is of the form

IMSE = A3A2 · n− 2rα
2r+α + o

(
n− 2rα

2r+α
)
, (7.190)

where again A1, A2 can be given explicitly.
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This result establishes an explicit asymptotic expression (and not just the or-
der) for optimal choices of J ∗ and q∗, for the case where g is sufficiently smooth
and when a wavelet basis is used that matches at least this degree of smoothness.
Most interesting is part (i) where the optimal estimator does not contain any mother
wavelets. Thus, smoothing is done solely by refining the resolution level J ∗ in the
father wavelet decomposition. The optimal choice is a logarithmic increase of J ∗
with constants as given in (7.189).

If jumps in the function g are expected, then the same asymptotic formula for
the MISE holds, when essentially using the same rules in this theorem; however,
adding thresholded mother wavelet components to capture local disturbances. Thus,
consider

ĝ(t) =
N2J −1∑

k=−N+1

ŝJ kφJk(t)+
q∑

j=0

N2J+j−1∑

k=−N+1

d̂jk I
(|d̂jk| > δj

)
ψjk(t). (7.191)

Then the following holds.

Theorem 7.33 Suppose that g(r)exists on [0,1] except for at most a finite number
of points, and, where it exists, it is piecewise continuous and bounded. Furthermore,
assume that supp(g(r)) has positive Lebesgue measure, Mψ = r and the process ei
is Gaussian with long memory as specified above. Then the following holds:

(i) If (2α − 1)C2
φ > C2

ψ , J is such that 2J = o(n
α

2r+α ), q = ,log2 n- − J , q∗ is
defined by (7.186), and δj is such that for 0 ≤ j ≤ q∗

δj = 0 (7.192)

and for q∗ < j ≤ q

2J+j δ2
j → 0,2(J+j)(2r+1)δ2

j → ∞, δ2
j ≥ 4eC2

ψN
−1+α(lnn)2

nα2(J+j)(1−α)
, (7.193)

then (7.187) holds.
(ii) If (2α − 1)C2

φ < C2
ψ , J = J ∗ with J ∗ defined by (7.189), q = ,log2 n- − J and

δj such that

2J+j δ2
j → 0,2(J+j)(2r+1)δ2

j → ∞,

δ2
j ≥ 4eC2

ψN
−1+α(lnn)2

nα2(J+j)(1−α)
(0 ≤ j ≤ q),

(7.194)

then (7.190) holds.

7.5.2.2 Convergence in Besov Classes

An alternative approach to convergence rates of wavelet estimators in the long-
memory context was initiated by Wang (1996). Assume that the error sequence ei
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is Gaussian with covariance function γ (k) ∼ cγ k
2d−1, d ∈ (0,1/2). As before, set

α = 1 − 2d . Then, in continuous time, a model that is analogous to Yi = m(ti)+ ei
discussed above is given by

dY (t) = m(t) dt + εα dBH (t), (7.195)

where BH(t) (t ∈ [0,1]) is a standard fractional Brownian motion (fBm) with Hurst
index H = d + 1/2, and ε = n−1/2 is the “noise level”.

Recall that the function m(t) can be expanded as

m(t) =
∞∑

k=−∞
αjkφJk(t)+

∑

j≥J

∞∑

k=0

βjkψjk(t).

Equivalently, we may write

m(t) = α00φ00(t)+
∑

j≥0

∞∑

k=0

βjkψjk(t)

where φ00(t) is a suitable father wavelet. To characterize properties of m, one con-
siders the so-called Besov spaces, characterised by the behaviour of the wavelet
coefficients as follows:

Definition 7.8 Assume that m ∈ Lλ([0,1]). We say that m belongs to the Besov
space Br

λ,s([0,1]) if

∑

j≥0

2j (r+1/2−1/λ)s
[ ∑

0≤k≤2j

|βjk|λ
]s/λ

< ∞. (7.196)

The parameter r can be thought of as related to the number of derivatives of m.
With different values of λ and s, Besov spaces capture a variety of smoothness
features in a function, including spatially inhomogeneous behaviour.

The wavelet estimator is constructed similarly to (7.181):

m̂(t) = α̂00φ00(t)+
J∑

j=0

2j−1∑

k=0

β̂jk1
(|β̂jk| > δj

)
ψjk(t),

where in the continuous time model (7.195) we set

β̂jk := β̂C
jk :=

∫
ψjk(t) dYt . (7.197)

Of course, in the original model we have to take instead

β̂jk := β̂D
jk := 1

n

n∑

i=1

ψjk(ti)Yi . (7.198)
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The tuning parameters J and δj are chosen as follows:

• Fine resolution level J :

2J =
(

n

logn

)α

=
(

n

logn

)1−2d

. (7.199)

• Threshold: The threshold value δ = δj has three input parameters and is written
as

δj = ησj cn (7.200)

– η: η >
√

8α
√

2 ∨ p;
– σj : a level-dependent scaling factor

σj = τ2−j (1−α)/2, (7.201)

τ 2 = (1 − α/2)(1 − α)

∫ 1

0

∫ 1

0
ψ(u)ψ(v)|u− v|−α dudv; (7.202)

– cn: a sample size-dependent scaling factor

cn = (logn)
1
2 n− α

2 . (7.203)

The following comments have to be made here. First, in the definition of η, we
have a new parameter p that is connected to the loss function we would like to use.
Specifically, let

‖f − g‖νν =
∫ ∣∣f (t)− g(t)

∣∣ν dt

be the νth norm. Then we will measure accuracy of the estimator m̂ by computing

E
(‖m̂−m‖νν

)
.

Clearly, if ν = 2, this definition agrees with the IMSE, as considered in Theo-
rem 7.31. The value of σj comes from

σ 2
j = var

(∫
ψjk(t) dBH (t)

)
.

Furthermore, the parameter τ in (7.202) is chosen for the continuous model (7.195).
For the original discrete time model, the parameter should be changed to

τ 2 = cf

∫ 1

0

∫ 1

0
ψ(u)ψ(v)|u− v|−α dudv.

We note that the estimator is adaptive with respect to the smoothness class as our
tuning paradigm does not depend on r .
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The following result was proven in Kulik and Raimondo (2009a), see also Wang
(1996), Wang (1997), Johnstone and Silverman (1997), Johnstone (1999) and Li and
Xiao (2007).

Theorem 7.34 Consider the continuous time model (7.195) with ε = n−1/2, and the
wavelet estimator with (7.199), (7.200), (7.201), (7.202) and (7.203). Assume p > 1
and m ∈ Br

λ,s with r ≥ 1
λ

. There exists a constant C > 0 such that for all n ≥ 0,

E
(‖m̂−m‖νν

) ≤ C

(
(logn)

1
α

n

)γ

,

with

γ = νrα

2r + α
if r ≥ α

2

(
ν

λ
− 1

)
, (7.204)

r −
(

1

λ
− 1

ν

)

+
>

r

2r + α
, (7.205)

γ = αν(r − 1
λ

+ 1
ν
)

2(r − 1
λ

+ α
2 )

if
1

λ
< r <

α

2

(
ν

λ
− 1

)
. (7.206)

The proof of this result is based on the so-called maxiset theorem, see Kerky-
acharian and Picard (2000). In particular, the following estimates are crucial. First,
E(β̂jk) = βjk and

var(β̂jk) = var

(
εα

∫
ψκ(t) dBH (t)

)
= n−α2−j (1−α)τ 2 ≤ Cσ 2

j c2
n.

Since the random variables β̂jk − βjk are Gaussian, we have the following large
deviations inequality

P
(|β̂jk − βjk| > ησj cn/2

) ≤ exp

(
− logn

η2

8

)
≤ C

(
c

2p
n ∧ c4

n

)
(7.207)

provided η >
√

8α
√
p ∨ 2.

The two rate regimes (7.204) and (7.206) are referred as the ‘dense’ and ‘sparse’
phases (see, e.g. Kerkyacharian and Picard 2000 in the i.i.d. case). The result above
shows that the boundary region r = α

2 (
p
λ

− 1) depends on the LRD index α, and the
sparse region is smaller for dependent data. In other words, some inhomogeneous
properties of the trend function are “hidden” in the LRD noise. We note further that
the condition p > 2

α
+λ is required for the sparse regime to be visible. In particular,

if p = 2 then there is no sparse region and the rate results agree (up to a logarithmic
term) with the result in Theorem 7.31.
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7.5.3 Random Design

In this part, we are interested in estimating the conditional mean function m(·) in
the heteroskedastic model

Yi = m(Xi)+ σ(Xi)ei (i = 1, . . . , n). (7.208)

Again, the rates of convergence will be analysed using Besov classes, although in the
random-design context we cannot change this model to a continuous set-up as we
did before. Furthermore, the fact that we consider random design has to be addressed
appropriately. This can be done using the so-called warped wavelets. The wavelet
expansion of m(t) is replaced by

m(x) = α0,0φ00
(
F(x)

)+
∑

j≥0

∞∑

k=0

βjkψjk

(
F(x)

)
, (7.209)

with

βjk =
∫ 1

0
m(x)p(x)ψjk

(
F(x)

)
dx, (7.210)

and F(·), p = F ′ being a cumulative distribution and density function of X1, re-
spectively.

The partially adaptive wavelet estimator we are going to consider is

m̂(t) = α̂00φ00
(
F(t)

)+
J∑

j=0

2j−1∑

k=0

β̂jk1
(|β̂jk| ≥ δj

)
ψjk

(
F(t)

)
, (7.211)

where

α̂00 := 1

n

n∑

i=1

φ00
(
F(Xi)

)
Yi, β̂jk := 1

n

n∑

i=1

ψjk

(
F(Xi)

)
Yi. (7.212)

The highest resolution level is chosen as

2J ∼ n

logn
.

The theoretical level-dependent threshold parameter is set to be

δj = τ0

(
logn√

n
∨ 1

{
E
(
ψjk

(
F(X1)

)
σ(X1)

) 
= 0
} (logn)1/2

nα/2

)

where τ0 is large enough and α = 1−2d . We note the significant difference between
fixed and random design. The choice of the highest resolution level J in the case
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of a random design does not involve LRD. Furthermore, in most regular cases the
threshold δj does not depend on α. Indeed, we have

E
[
ψjk

(
F(X1)

)
σ(X1)

] =
∫

ψjk(u)σ
(
F−1(u)

)
du.

Note first that if σ(·) ≡ σ , then the above integral vanishes. Furthermore, this is also
the case if σ(·) has polynomial-like behaviour and appropriately regular wavelets
are used. Consequently, in most practical cases the parameters of the wavelet esti-
mator can be tuned without knowledge of α.

Since we deal with warped wavelets, we have to consider the following weighted
norm

‖f − g‖νLν(p) =
(∫ ∣∣f (x)− g(x)

∣∣νp(x) dx
)
.

Using the notation

αD := 2r

2r + 1
, αS := 2(r − ( 1

λ
− 1

ν
))

2(r − 1
λ
)+ 1

, (7.213)

the following rates of convergence can be derived (Kulik and Raimondo 2009b):

Theorem 7.35 Consider the random-design regression model (7.208) such that
Xi are i.i.d. and ei is a long-range dependent Gaussian sequence such that
γe(k) ∼ cγ k

2d−1. Both sequences are assumed to be independent from each other.
Assume furthermore that m◦F−1 ∈ Br

λ,s([0,1]), λ ≥ 1, where r > max{ 1
λ
, 1

2 }. Then

E
(‖m̂−m‖νLν(p)

) ≤ Cn− ν
2 γ (logn)κ,

where

γ =
⎧
⎨

⎩

αD if α > αD and r > ν−π
2π ,dense phase;

αS if α > αS and 1
π
< r <

p−π
2π , sparse phase;

α if α ≤ min(αS,αD), LRD phase,

αS , αD are given in (7.213), and κ > 0. If α = 1, then the LRD phase is not relevant.

The proof is based on the M/L technique, as discussed before in the context of
random-design regression. The main tool is a large deviation inequality for LRD
processes. Informally speaking, LRD appears at low resolution levels only and is
suppressed by the additional threshold term.

Furthermore, as in the case of kernel estimators, the rates of convergence improve
when once considers estimation of the shape function m∗(t) = m(t)−E(m(X1)).

To get full adaptiveness F(·) has to be replaced by its empirical counter-
part Fn(·). The results of Theorem 7.35 continue to hold. However, the highest
resolution level must be chosen according to 2J ∼ √

n/ logn.
The results in Theorem 7.35 are optimal. It other words, it is not possible to find

estimators that achieve better rates of convergence.
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7.6 Estimation of Time Dependent Distribution Functions
and Quantiles

Limit theorems for empirical quantiles of stationary long-memory processes, and
their direct application to quantile estimation have been discussed in Sect. 4.8.2.1.
Here we consider the more complicated situation where quantiles may change with
time. The approach introduced in the following is nonparametric.

Consider time series observations Y1, Y2, . . . , Yn such that Yi = G(Zi, ti) where
ti = i/n are rescaled times and {Zi, i = 1,2, . . .} is a zero mean stationary Gaus-
sian process with long-memory. The function G(x, ·) is assumed to be an unknown
square integrable function (with respect to the N(0,1) density). As for the Gaussian
process Zi , we assume that

cov(Zi,Zi+k) = γ (k) ∼ C|k|2H−2, as |k| → ∞,

H being the long-memory parameter with 1/2 <H < 1 and C is a positive constant.
For y ∈R, ti = i/n, define the cumulative distribution function of Y at rescaled time
ti to be

Fti (y) = P(Yi ≤ y).

For simplicity of arguments, let Ft , t ∈ (0,1) be continuous with a probability den-
sity function ft defined by

ft (y) = ∂

∂y
Ft (y).

The problem is the nonparametric estimation of Ft(·), t ∈ (0,1) and consequently
the estimation of the α-quantile (0 < α < 1)

θt (α) = inf
y

{
y|Ft (y) ≥ α

}
,

and deriving asymptotic confidence bands for these functions. The results summa-
rized in this section can be found in Ghosh et al. (1997). As for applicability of these
ideas, estimation and prediction of the time dependent probability function Ft(y)

can be of practical relevance in various situations. For instance, if Yi is precipitation
at time i (rescaled time ti ), then 1 − Ft(y) is the probability that the amount of rain
at time t will exceed a previously specified level y, having implications for regions
where heavy rainfall is the primary factor leading to floods. Equivalently, quantile
functions may be considered. Very low values of θt (α) for low α may be indicative
of a drought, also having serious implications for agriculture.

The time dependent Gaussian subordination model considered here is a model
for processes that are nonstationary in the sense that the marginal distribution func-
tion may change with time. Moreover, the distribution may be Gaussian or non-
Gaussian. Some simple examples are:

(i) Yi = μ(ti)+ σ(ti)Zi , where μ and σ are real-valued functions;
(ii) Yi = μ1(ti)Z

2
i +μ2(ti)Z

3
i where μ1 and μ2 are real-valued functions;
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(iii) Yi = 1{Zi < z} − P(Zi < z), z ∈R, etc.

Let K(u), u ∈ (−1,1) be a symmetric probability density function on (−1,1). Also
let bn = b be a sequence of bandwidths such that b → 0 and nb3 → ∞ as n → ∞.
Define the Priestley–Chao estimator

F̂t (y) = 1

nb

n∑

i=1

K

(
ti − t

b

)
Ii(y)

where

Ii(y) = 1 if Yi ≤ y and Ii(y) = 0 otherwise.

Since the indicator function Ii(y) is a function of Yi , it is also Gaussian subordi-
nated. We assume that the following Hermite polynomial expansion holds

Ii(y)− P(Yi ≤ y) =
∞∑

l=m

cl(ti , y)

l! Hl(Zi).

In the above expansion, m is the Hermite rank of G, the functions cl are the Hermite
coefficients, and Hl denotes the Hermite polynomial of degree l. Note that when
H > 1 − 1/(2m), Ii(y)− P(Yi ≤ y), i = 1,2, . . . will have long-memory.

Theorem 7.36 Under the conditions stated above for H > 1 − 1/(2m) and under
further regularity conditions on the Hermite coefficients and assuming that the dis-
tribution function Ft (y) is twice differentiable with respect to t , for fixed t and y

and as n → ∞, F̂t (y) will have the following asymptotic properties:

Bias
(
F̂t (y)

) = b2

2
A(t, y)+ o

(
b2),

Var
(
F̂t (y)

) = (nb)m(2H−2)B(t, y)

+ o
(
(nb)m(2H−2)),

MSE
(
F̂t (y)

) = A2(t, y)b4 +B(t, y)(nb)m(2H−2)

+ o
(
max

(
b4, (nb)m(2H−2)))

where

A(t, y) = 1

2

∂2

∂t2
Ft (y)

∫ 1

−1
u2K(u)du,

B(t, y) = Cm c2
m(t, y)

m!
∫ 1

−1

∫ 1

−1
K(u)K(v)|u − v|m(2H−2) dudv.
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Proof We have,

E
[
F̂t (y)

] = 1

nb

n∑

i=1

K

(
ti − t

b

)
E
[
Ii(y)

] = 1

nb

n∑

i=1

K

(
ti − t

b

)
Fti (y).

The proof for bias of F̂t (y) then follows by a Taylor series expansion of Fti (y)

around t and by noting that as n → ∞,
∣∣∣∣∣

1

nb

n∑

i=1

(
ti − t

b

)p

K

(
ti − t

b

)
−

∫ 1

−1
upK(u)du

∣∣∣∣∣ = O

(
1

nb

)

where p is a positive integer, and also O( 1
nb
) = o(b2) since nb3 → ∞. Moreover,

since K is a symmetric probability density function,
∫ 1
−1 u

pK(u)du equals 1 when
p = 0 and equals 0 when p is odd.

As for the variance, since cov[Hl1(Zi),Hl2(Zj )] = 0 if l1 
= l2 and equals
l![γ (i − j)]l if l1 = l2 = l,

var
(
F̂t (y)

) = 1

(nb)2

n∑

i=1

n∑

j=1

K

(
ti − t

b

)
K

(
tj − t

b

)
cov

[
G(Zi, tj ),G(Zj , tj )

]

= 1

(nb)2

n∑

i=1

n∑

j=1

K

(
ti − t

b

)
K

(
tj − t

b

) ∞∑

l=m

cl(ti)cl(tj )

l!
[
γ (i − j)

]l

∼ 1

(nb)2

n∑

i,j=1
i 
=j

K

(
ti − t

b

)
K

(
tj − t

b

) ∞∑

l=m

cl(ti)cl(tj )

l! Cl |i − j |l(2H−2).

The last step follows since
∑

i,j |i−j |l(2H−2) diverges as n → ∞. Now using a one-
term Taylor series expansion of cl(ti) and cl(tj ) around t and due to the convergence
of the Riemann sums involving the kernel K , the expression for the variance follows.
The formula for the mean squared error (MSE) follows from definition. �

By differentiating the asymptotic expression for the MSE with respect to b, a
formula for an optimal bandwidth for estimating Ft(y) can be derived as

b
(opt)
t (y) = Qt(y)× nm(2H−2)/(4+m(2−2H))

where

Qt(y) =
[
m(2 − 2H)B(t, y)

4A2(t, y)

]1/[4+m(2−2H)]
.

Thus, for instance, when m = 1 and H ≈ 1/2, b(opt)
t (y) ∝ n−1/5. As H moves away

from 0.5 and approaches 1, b(opt)
t (y) becomes large as well. This has to do with



688 7 Statistical Inference for Nonstationary Processes

the fact that long memory creates an apparent smoothness in the data as a result of
which larger bandwidths suffice for optimum smoothing.

The quantile function θt (α) for a given α can be estimated by inverting the esti-
mated distribution function F̂t (y), y ∈ R as follows:

θ̂t (α) = inf
y

{
y|F̂t (y) ≥ α

}
.

It turns out that the estimator θ̂t inherits the asymptotic properties of F̂t . Specifically,
we have the following result:

Theorem 7.37 Let θt (α) be unique and ft (θt (α)) > 0. Then,

Bias
(
θ̂t (α)

) = b2

ft (θt (α))
A
(
t, θt (α)

)+ o
(
b2),

Var
(
θ̂t (α)

) = (nb)m(2H−2) B(t, θt (α))

f 2
t (θt (α))

+ o
(
(nb)m(2H−2)),

MSE
(
θ̂t (α)

) =
[
A2(t, θt (α))

f 2
t (θt (α))

b4 + B(t, θt (α))

f 2
t (θt (α))

(nb)m(2H−2)
]

+ o
(
max

(
b4, (nb)m(2H−2))).

Proof For additional information, refer to Rao (1973, Chap. 6f.2) and Serfling
(1980, Chap. 2.3). First of all, as n → ∞, θ̂t (α) → θt (α) in probability. Secondly,
as in Pollard (1984, p. 98),

(nb)m(2−2H)
[
θ̂t (α)− θt (α)

] = −(nb)m(2−2H)[F̂t (θ̂t (α))− Ft(θ̂t (α))] − op(1)

ft (θt (α))+ op(1)
.

The result follows from the continuous mapping theorem. �

Remark It is easy to see that the asymptotically optimal local bandwidth that mini-
mizes the leading term in the MSE of θ̂t (α) (term inside the square brackets) is the
same as the bandwidth needed for the estimation of Ft(θt (α)).

Under the condition that the Hermite rank of the function G is equal to 1, we
have the following central limit theorem:

Theorem 7.38 Let m = 1.

(a) CLT for F̂ti (y): Let y ∈ R, k ≥ 1 and t0
1 < t0

2 < · · · < t0
k (with t0

i ∈ (0,1)) be
fixed. Define

Ui,n = (nb)1−H [F̂ti (y)− Fti (y)− b2A(ti, y)]√
B(ti, y)

, ti = tin = in/n
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with ti → t0
i (i = 1,2, . . . , k) as n → ∞. Then as n → ∞, the random vector

Un = (U1,n,U2,n, . . . ,Uk,n)
T

converges in distribution to Zu = (Zu
1 ,Z

u
2 , . . . ,Z

u
k )

T where Zu
i , i = 1,2, . . . , k

are independent and identically distributed standard normal random variables.
(b) CLT for θ̂ti (α): Let α ∈ (0,1) and k ≥ 1 be fixed, and t0

i as before. Define

Wi,n = (nb)1−H [θ̂ti (α)− θti (α)− b2A(ti, θti (α))/fti (θti (α))]√
B(ti, θti (α))/fti (θti (α))

,

ti = tin = in/n

with tin as above. Then as n → ∞, the random vector

Wn = (W1,n,W2,n, . . . ,Wk,n)
T

converges in distribution to Zw = (Zw
1 ,Zw

2 , . . . ,Zw
k )

T
where Zw

i , i = 1,2,
. . . , k are independent and identically distributed standard normal random vari-
ables.

Proof (a) Due to Theorem 7.36, as n → ∞, for each t ∈ (0,1)

(nb)1−H
∣∣F̂t (y)− Ft(y)− b2A(t, y)−Rn(t, y)

∣∣ → 0

in probability, where

Rn(t, y) = (nb)−1
n∑

i=1

K

(
ti − t

b

)
c1(ti , y)Zi.

Note that (nb)1−HRn(t, y) has a normal distribution because it is a linear com-
bination of standard normal random variables that are also jointly normal. Also,
cov((nb)1−H F̂t (y), (nb)

1−H F̂s(y)) for t 
= s converges to zero in probability. The
result follows by considering the sequence of random vectors Un and Theo-
rem 7.36(i) in Csörgő and Mielniczuk (1995a).

(b) The proof follows from (a) above and the arguments of Theorem 7.37(b). �

7.7 Partial Linear Models

A partial linear model is a semiparametric regression model containing a nonpara-
metric as well as a linear parametric regression component. An example is as fol-
lows:

y(i) = xT (i)β +μ(ti)+ ε(i)
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where y(i), i = 1,2, . . . , n is an observation on the dependent variable y, xT (i) is
a (row) vector of explanatory variables

xT (i) = (
x1(i), x2(i), . . . , xp(i)

)
, p ≥ 1,

β is a (column) vector of regression parameters

βT = (β1, β2, . . . , βp)

and ti = i/n is rescaled time. The nonparametric component μ is an unknown but
smooth function in C2[0,1] whereas ε(i) is the error term with zero mean. Of spe-
cial interest is the case when ε(i) is a stationary long-memory process. Specifically,
let ε(i) have a covariance function γε and a spectral density fε

γε(k) = Cov
(
ε(j), ε(j + k)

) =
∫ π

−π

exp(ikλ)fε(λ) dλ,

fε(λ) ∼ cε|λ|−2dε as λ → 0

where as usual ∼ means that the left-hand side divided by the right-hand side con-
verges to one, cε is a positive constant and 0 ≤ dε <

1
2 . Let E(εεT ) = Γε,n = Γε =

[γε(i − j)]i,j=1,2,...,n. The uncorrelated case, namely when β and μ are unknown
but the errors are uncorrelated, is considered in Speckman (1988). He suggests a√
n-consistent estimator for β under the assumption that also the explanatory vari-

ables contain a rough component. Beran and Ghosh (1998) examine Speckman’s
method of estimation under long-memory in the errors. As it turns out, even under
long-memory, a

√
n-rate of convergence of the slope estimates can be achieved. In

this section, we take a closer look at some of these results.
To start with, we set our notations: we observe (xT (i), y(i)) at time points i =

1,2, . . . , n. Using vector notations, we define

xT (i) = (
x1(i), x2(i), . . . xp(i)

)
, i = 1,2, . . . , n,

yT = (
y(1), y(2), . . . , y(n)

)
,

μT = (
μ(t1),μ(t2), . . . ,μ(tn)

)
, ti = i/n,

εT = (ε1, ε2, . . . , εn).

Let the n× p full design matrix be

X = M + η

where M is a deterministic matrix of order n × p and η is a random matrix, its
elements being zero mean random variables. The ith row of X is xT (i), the columns
of M are (m1,m2, . . . ,mp),

mT
j = (

mj(t1),mj (t2), . . . ,mj (tn)
)
, j = 1,2, . . . , p
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whereas the ith row of M is

(
m1(ti),m2(ti), . . . ,mp(ti)

)
, i = 1,2, . . . , n.

The functions mj(·) are in C2[0,1]. The columns of the random matrix η are de-
noted by ej , i.e.

η = (e1, e2, . . . , ep)

where

eTj = (
ej (1), ej (2), . . . , ej (n)

)
, j = 1,2, . . . , p,

rows are given by

eT (i) = (
e1(i), e2(i), . . . , ep(i)

)
.

The random “error” terms in X are assumed to have the following properties: η is
independent of ε. As for the covariances,

γej (k) = Cov
(
ej (s), ej (s + k)

) =
∫ π

−π

exp(ikλ)fej (λ) dλ,

fej (λ) ∼ cej |λ|−2dej as |λ| → 0

where cej is a positive constant and 0 ≤ dej < 1
2 . Let σe(j, l) = Cov(ej (i), el(i))

so that the p × p matrix of zero-lag cross-covariances is E(e(i)eT (i)) = Γe =
[σe(j, l)]j,l=1,2,...,p . The partial linear model is then of the form

y = Xβ +μ+ ε = Mβ + ηβ +μ+ ε.

In the above formula, Mβ +μ is deterministic whereas ηβ + ε is random. The main
idea is to smooth the values of y to obtain an estimate of the deterministic part and
consequently an estimate of the error. Similarly, the error in X can be estimated
by detrending the data series containing the values of the explanatory variables.
These error estimates are then used in a regression model to recover β . For instance,
consider the Nadaraya–Watson kernel (see Gasser et al. 1985)

K(ti, tj , n, b) = w(
ti−tj
b

)

n−1
∑n

i=1 w(
tl
b
)

and define the kernel matrix

K = [
K(ti, tj , n, b)

]
i,j=1,2,...,n.

Here b is a bandwidth satisfying in particular that as n → ∞, b → 0, nb → ∞,
and w is a bounded, non-negative, symmetric and piecewise continuous function
with support [−1,1] such that

∫ 1
−1 w(s)ds = 1. Additional conditions on b that are
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used to prove the asymptotic results concerning the estimated slope are in Beran and
Ghosh (1998).

Define the residuals

X̃ = (I − K)X, ỹ = (I − K)y.

Then the semiparametric regression estimate of the slope parameter β can be given
by

β̂ = (
X̃T X̃

)−1X̃T ỹ.

In addition to the conditions stated earlier, let, as n → ∞,

n
(
ηT η

)−1
ηT Σεη

(
ηT η

)−1 → A

almost surely, and
√
n
(
ηT η

)−1
ηT ε → N(0,A)

in distribution where N(0,A) denotes a p-variate normal distribution with zero
mean and covariance matrix A. These conditions ensure that β can be estimated with√
n-convergence. For sufficient conditions for these to hold, see Sect. 7.2 (and in

particular Yajima 1991 and Künsch et al. 1993). Under the conditions stated above,
the following asymptotic results can be derived.

Theorem 7.39 Let d0 = maxj=1,...,p dej . Then as n → ∞, conditionally on X,

E(β̂|X)− β = O
(
b4)+O

(
(nb)d0− 1

2 b2),

nVar(β̂|X) → A almost surely,
√
n(β̂ − β) → N(0,A) in distribution.

Note in particular that asymptotically the bias is of a smaller order than the vari-
ance. For the proof of the theorem and additional technical conditions on the band-
width, see Beran and Ghosh (1998). In applications, the covariance matrix A would
have to be estimated. These authors recommend fitting a parametric model fε(λ; θ̂ )
for the spectral density to the residuals ε̂(i) = ỹ(i)− x̃T (i)β and setting Γ̂ε = Γε(θ̂).
For an extension of these results to testing for partial linear models with long mem-
ory, see Aneiros-Pérez et al. (2004).

7.8 Inference for Locally Stationary Processes

7.8.1 Introduction

In this short section, we discuss estimation for locally stationary long-memory pro-
cesses. In the context of weakly dependent processes, the mathematical background
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stems from Dahlhaus (1997) (also see, e.g. Priestley 1981 for earlier references). In
a long-memory setting, the general idea is that the long-memory parameter is treated
as a smooth function of time (that is, the dependence parameter becomes a curve).
Specifically, Whitcher and Jensen (2000) propose locally stationary ARFIMA pro-
cesses. Ghosh et al. (1997) consider subordinated locally stationary Gaussian pro-
cesses in the context of quantile estimation. Asymptotic theory for estimators of the
“dependence curves” is presented in Beran (2009). The results use tools from ker-
nel regression, as discussed before in Sect. 7.4. Roueff and von Sachs (2011) discuss
estimation for locally stationary processes using wavelet methods.

The motivation for considering locally stationary processes is the observation
that often time series appear to be stationary when one looks at short time pe-
riods; however, in the long run, the structure changes. If changes are not abrupt,
then such data can be modelled by the so-called locally stationary processes. The
general idea is that the probabilistic structure of the process changes smoothly in
time such that locally the series are stationary in a first approximation. In engi-
neering, this idea has been used long before exact mathematical definitions of local
stationarity were introduced. A systematic mathematical approach was initiated by
pioneering contributions of Subba Rao (1970), Hallin (1978) and Priestley (1981),
followed by Dahlhaus (1997) who developed a general theory based on an exact
definition of locally stationary processes in terms of their spectral representation
Xt = ∫

eitλA(e−iλ;ut,n) dMε(λ) where Mε is the spectral measure of white noise,
ut,n = t/n and A depends (smoothly) on rescaled time ut,n. More exactly, we have
a sequence of processes

Xt,n =
∫ π

−π

eitλA0
t,n

(
e−iλ; θ(ut,n)

)
dMε(λ) (7.214)

with transfer functions A0
t,n(e

−iλ; θ) such that

sup
λ∈[−π,π],t=1,2,...,n

∣∣A0
t,n

(
e−iλ; θ(ut,n)

)−A
(
e−iλ; θ(ut,n)

)∣∣ ≤ Cn−1 (7.215)

for all n, some constant C and a certain transfer function A(e−iλ; θ). This definition
allows for changes in the linear dependence structure. As an alternative definition
that also includes the possibility of changes in the spectral measure dMε(·), Ghosh
et al. (1997) and Ghosh and Draghicescu (2002a, 2002b) propose using the con-
cept of subordination, defining Xt,n = G(ζt ;un) where ζt is a stationary process
and G(·;u) is a smooth function of u. In the following, we discuss inference for
processes that are locally stationary in the sense of definition (7.214).

In the context of long-memory processes, changes in the long-memory parame-
ter d are of particular interest. Numerous data examples are reported in the litera-
ture where d may be changing in time (see, e.g. Vesilo and Chan 1996; Whitcher
and Jensen 2000; Whitcher et al. 2000, 2002; Lavielle and Ludena 2000; Ray
and Tsay 2002; Granger and Hyung 2004; Falconer and Fernandez 2007). This
motivated Whitcher and Jensen (2000) to consider locally stationary fractional
ARIMA (FARIMA) processes. Optimal fitting of parameters in locally stationary
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Fig. 7.15 (a) Central England temperature series with fitted linear and nonparametric trend func-
tion respectively; (b) local maximum likelihood estimates of d for detrended series, based on mov-
ing blocks of 176 years and a fractional ARIMA(0, d,0) model

long-memory processes is discussed in Beran (2009). An example is plotted in
Figs. 7.15(a)–(b). After subtracting the nonparametric trend (see the nonlinear line
in Fig. 7.15(a)), estimated values of d based on moving (overlapping) blocks of 175
years are plotted against the year in the middle of each block. The plot indicates that
long memory is stronger for the initial measurements and then declines to a lower
level.

7.8.2 Optimal Estimation for Locally Stationary Processes

In the following, we consider a locally stationary long-memory model of the fol-
lowing form. Define a sequence of processes Xt,n with a time-varying infinite au-
toregressive representation given by

Xt,n =
∞∑

j=1

bj,nXt−j,n + εt (7.216)

where εt are i.i.d. zero-mean random variables with finite variance σ 2
ε = σ 2

ε (un)

(un = t/n) and coefficients bj,n = bj (θ(un)). For fixed u, it is assumed that d(u) ∈
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(0, 1
2 ) and the coefficients are such that

bj
(
θ(u)

) ∼
j→∞ cb(u)j

−d(u)−1 < ∞ (7.217)

σ 2
ε (u)

2π

∣∣∣∣∣1 −
∞∑

j=1

bj e
−ijλ

∣∣∣∣∣

−2

∼|λ|→0
cf (u)|λ|−2d(u) (7.218)

where cb , cf are positive constants. Specifically, we may consider a locally station-
ary fractional ARIMA(p,d, q) process. Then cf (u) = σ 2

ε (u)/(2π) and for z ∈ C,
with |z| ≤ 1 and z 
= 1,

1 −
∞∑

j=1

bj
(
θ(u)

)
zj = ϕ(z;u)ψ−1(z;u)(1 − z)d(u) (7.219)

where θ(u) = [d(u),ϕ1(u), . . . , ϕp(u),ψ1(u), . . . ,ψq(u)]T ,

ϕ(z;u) = 1 − ϕ1(u)z − · · · − ϕp(u)z
p 
= 0

(|z| ≤ 1
)
, (7.220)

ψ(z;u) = 1 +ψ1(u)z + · · · +ψq(u)z
q 
= 0

(|z| ≤ 1
)
. (7.221)

Separating σε from the other parameters in the spectral representation, we can write

Xt,n = σε(ut,n)

∫ π

−π

eitλA0
t,n

(
e−iλ; θ(ut,n)

)
dMε(λ) (7.222)

with

A0
t,n

(
z; θ(u)) = ψ(z;u)

ϕ(z;u) (1 − z)−d(u). (7.223)

Let θ0(u) denote the true parameter function, and Xt,n a locally stationary
FARIMA process. In general, the shape of θ0(·) is unknown. Under smooth-
ness conditions, estimation of θ0(·) can be done in a similar manner as regression
smoothing. Suppose we would like to estimate θ0 at a fixed rescaled time point
u0 ∈ (0,1). A natural approach is to apply quasi-maximum likelihood estimation
based on time points in a small neighbourhood of u0. Using the Gaussian likelihood,
this is essentially equivalent to local minimization of the sum of squared residu-
als estimated from (7.216). Thus, let t0(n) = [nu0], ut0,n = t0(n)/n. Given a kernel
function K ≥ 0 with K(−x) = K(x), K(x) = 0 (|x| > 1) and

∫
K(x)dx = 1, a ker-

nel estimate of θ0(u0) minimizes

Ln(θ) =
t0+[nb]∑

t=t0−[nb]
K

(
t0(n)− t

nb

)
e2
t (θ) (7.224)
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or solves the equation

L̇n(θ̂ ) =
t0+[nb]∑

t=t0−[nb]
K

(
t0(n)− t

nb

)
ε∗
t (θ̂ )ε̇

∗
t (θ̂ ) = 0 (7.225)

where

ε∗
t (θ) = Xt −

t−1∑

j=1

bj (θ)Xt−j , ε̇∗
t (θ) = ∂

∂θ
ε∗
t (θ) = −

t−1∑

j=1

ḃj (θ)Xt−j (7.226)

are approximations of

εt (θ) = Xt −
∞∑

j=1

bj (θ)Xt−j (7.227)

and

ε̇t (θ) = −
∞∑

j=1

ḃj (θ)Xt−j , (7.228)

respectively, and ḃj = ∂/∂θbj ∈ R
p+q+1. The asymptotic distribution of θ̂ (u0) was

derived in Beran (2009) in an analogous manner as for stationary processes. The
same result was later also shown to hold for the local Whittle estimator (Palma and
Olea 2010).

Theorem 7.40 Let Xt,n be a locally stationary FARIMA process defined by (7.222)
and (7.223) and let u0 ∈ (0,1). Moreover, assume that, as n tends to infinity, b → 0
and nb3 → ∞. Then, under regularity assumptions and moment conditions (see
Beran 2009), there is a sequence θ̂n such that L̇n(θ̂n) = 0 and θ̂n → θ0(u0) in
probability. Moreover,

√
nb

(
θ̂n −E(θ̂n)

) →d N(0,V ) (7.229)

where

V = J−1(θ0)
∫ 1

−1
K2(x) dx (7.230)

with

J
(
θ0) =

[
1

4π

∫ π

−π

∂

∂θr
logg

(
λ; θ0) ∂

∂θs
logg

(
λ; θ0)dλ

]

r,s=1,...,k
(7.231)

and g(λ; θ(ut,n)) = |A0
t,n(e

−iλ; θ(ut,n))|2.
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Once the estimate of θ0(u0) is given, σ 2
ε (u0) can be estimated by

σ̂ 2
ε (u0) =

t0+[nb]∑

t=t0−[nb]
K

(
t0(n)− t

nb

)(
ε∗
t (θ̂ )

)2
. (7.232)

As in the stationary case, σ̂ 2
ε (u0) is asymptotically independent of θ̂ and the asymp-

totic distribution of θ̂ does not depend on σ 2
ε .

Example 7.36 Let Xt,n be a local fractional ARIMA(0, d,0) process. Then J =
π2/6 for any value of θ0(u0). The asymptotic variance of

√
nb(d̂ − d0(u0)) is

therefore nuisance parameter free. If we use, for instance, the rectangular kernel
K(x) = 1

2 1{|x| ≤ 1}, then
∫
K2(x) dx = 1

2 and

V = 6

π2

1

2
= 3

π2
≈ 0.304. (7.233)

The limit theorem cannot be used directly for inference about θ0 because it refers
to the deviation of θ̂ from its expected value. What we would need instead is a re-
sult for θ̂ − θ0. As always in nonparametric smoothing, an asymptotic formula for
the bias E(θ̂) − θ0 is required. Since the order of the bias is not influenced by the
dependence structure, we have E(θ̂) − θ0 = O(b2). Moreover, in contrast to non-
parametric regression smoothing with long-memory errors, the rate of convergence
of θ̂ − E(θ̂) is the same as under independence. Therefore, the mean squared er-
ror E[‖θ̂ (u0) − θ0(u0)‖2] can be approximated by the sum of a bias term of order
O(b4) and a variance term of order O((nb)−1), and the optimal bandwidth is of the

order O(n− 1
5 ).

More specifically, suppose, for instance, that Xt,n is a locally stationary fractional
ARIMA(0, d,0) process. Then the optimal choice of b can be based on the following
result.

Theorem 7.41 Let d ∈ C2[0,1] and d ′′(u0) 
= 0. Then under regularity and moment
assumptions (see Beran 2009), we have, as n → ∞,

1. Bias:

E
[
d̂(u0)

]− d0(u0) = b2 1

2
d ′′(u0)

∫ 1

−1
K(x)x2 dx + o

(
b2); (7.234)

2. Variance:

var
[
d̂(u0)

] = (nb)−1J−1
∫ 1

−1
K2(x) dx + o

(
(nb)−1) (7.235)

= (nb)−1 6

π2

∫ 1

−1
K2(x) dx + o

(
(nb)−1); (7.236)
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3. Mean squared error:

MSE(d̂) = E
[(
d̂ − d0)2] = b4C1 + (nb)−1C2 + o

{
max

(
b4, (nb)−1)} (7.237)

with

C1(u0) =
[

1

2
d ′′(u0)

∫ 1

−1
K(x)x2 dx

]2

(7.238)

and

C2 = J−1
∫ 1

−1
K2(x) dx = 6

π2

∫ 1

−1
K2(x) dx. (7.239)

By minimizing the asymptotic expression (7.237) with respect to b, the asymp-
totically optimal bandwidth is of the form

bopt(u0) = Copt(u0)n
−1/5 (7.240)

with

Copt(u0) =
[

C2

4C1(u0)

]1/5

. (7.241)

The resulting MSE is of the order O(n−4/5). This result is analogous to nonparamet-
ric regression with uncorrelated residuals. The reason is the

√
n-rate of convergence

of θ̂ . The second derivative d ′′ of the estimated d-curve influences the constant Copt.
The stronger the curvature of d(u) at the point u0, the smaller the locally optimal
bandwidth bopt(u0). Similar results are derived in Dahlhaus and Giraitis (1998) for
locally stationary AR(p) processes. For practical purposes, one may prefer using a
global bandwidth that minimizes the asymptotic integrated mean squared error. To
avoid boundary effects, one may use the formula

IMSE = b4
∫ 1−δ

δ

C1(u) du+ (nb)−1
∫ 1−δ

δ

C2(u) du (7.242)

where 0 < δ < 1
2 . The constant Copt in (7.240) has to be adjusted accordingly.

If the optimal bandwidth or a bandwidth of the same order is used, then inference
about the curve d0(u) has to take into account that the bias is of the same order as
the standard deviation. This means that a bias correction has to be subtracted before
using the bounds based on the CLT. An easier solution is to used a bandwidth that is
of a slightly smaller order than O(n−1/5). This way one can avoid a bias correction.
Approximate (1 − α/2)-confidence intervals can then be given by

d̂(u0)± z1−α/2

√
6

π

(∫ 1

−1
K2(x) dx

) 1
2

(nb)−
1
2 .
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In particular, for the rectangular kernel we have
∫
K2 dx = 1

2 , so that the interval
reduces to

d̂(u0)± z1−α/2

√
3

π
(nb)−

1
2 .

Analogous formulas can be given for FARIMA(p,d, q) processes with p and q

arbitrary. However, in general the optimal bandwidth and the confidence intervals
are no longer parameter free.

7.8.3 Computational Issues

In practice, the involved parameters and hence also Copt and bopt are unknown and
have to be estimated. In the context of nonparametric regression with i.i.d. errors,
various data driven methods for bandwidth choice are known (see, e.g. Gasser et al.
1991; Herrmann et al. 1992). Similar algorithms may be applied here. A possible
solution to this problem is an iterative plug-in algorithm where one obtains initial
parameter estimates using a first bandwidth. This yields new estimates of bopt so that
one can again obtain new parameter estimates and so on. Beran (2009) suggests, for
instance, the following algorithm for locally stationary fractional ARIMA(0, d,0)
processes:

Algorithm 1

• Step 1: Set j = 0 and set bj equal to an initial bandwidth.
• Step 2: Estimate d(·) using the bandwidth bj .
• Step 3: For each uo, fit a local polynomial regression β0(u0)+ β1(u0)(u− u0)+

1
2β2(u0)(u− u0)

2 directly to d̂(u) (plotted against u) using a suitable bandwidth
b2.

• Step 4: For each u0, set d̂ ′′(u0) = 2β2(u0), and calculate an estimate of Copt(u0)

(or a global value Copt minimizing the integrated mean squared error).
• Step 5: Set j = j + 1 and bj = Coptn

−1/5. If bj and bj−1 are very similar (ac-
cording to a specified criterion), go to Step 6. Otherwise go to Step 2.

• Step 6: Fit a kernel regression with kernel K and bandwidth bj to d̂(u) directly.

Note that the only purpose of Step 6 is to obtain a somewhat smoother curve,
without changing the order of the mean squared error. This step is, however, not
necessary. The algorithm can easily be generalized to FARIMA(p,d, q) or more
general processes. To do so, one needs to define a suitable mean square error crite-
rion such as E[‖θ̂ − θ‖2] and plug-in θ̂ into the asymptotic expression of the cri-
terion. A more complicated algorithm has to be designed, if one wants to combine
optimal bandwidth selection with data driven choice of the AR- and MA-orders p

and q . A proposal in the context of short-memory AR(p) processes is given in Van
Bellegen and Dahlhaus (2006) under the assumption that p (which is unknown)
remains constant. Note, however, that even in the AR(p) case the assumption that
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p is constant may not be reasonable. In view of the fact that even for stationary
fractional ARIMA(p,d, q) processes choosing p and q in a data adaptive way is
not easy (see, e.g. Sect. 5.5.6), the problem of including unknown orders p and q

(which may also change in time) is far from trivial in the context of locally station-
ary processes. Alternatively, if the interest lies solely in estimating the long-memory
curve d(u), a possibly more elegant solution is to apply a semiparametric method
for estimating d(u) locally. This approach is discussed in Roueff and von Sachs
(2011) where results on local wavelet estimation of d are obtained.

7.9 Estimation and Testing for Change Points, Trends
and Related Alternatives

7.9.1 Introduction

Modelling time series by locally stationary processes is closely related to change
point detection and estimation. The main difference is that in change point analysis
the emphasis is on abrupt changes. Changes can occur in any aspect of the prob-
ability distribution, but most frequently these are the expected value, the marginal
distribution or the correlation structure. Here we consider such questions in the long-
memory context. An additional issue is that sample paths of short-range dependent
processes with change points may be almost indistinguishable from a stationary pro-
cess with long-range dependence (see, e.g. Bhattacharya et al. 1983; Künsch 1986;
Granger and Ding 1996; Teverovsky and Taqqu 1997; Hidalgo and Robinson 1996;
Bai 1998; Krämer and Sibbertsen 2000; Mikosch and Starica 2000, 2004; Diebold
and Inoue 2001; Granger and Hyung 2004; Davidson and Sibbertsen 2005, also see
Sibbertsen 2004 and Banerjee and Urga 2005 and references therein). An important
question is therefore how to distinguish “genuine” long memory from such models.

Change point analysis is a classical field of probability theory and statistics, and
the literature is enormous (for an overview, see, e.g. Basseville and Nikiforov 1993;
Csörgő and Horváth 1998 and references therein), even if we restrict attention to
long-memory processes. In the following, some exemplary change point problems
are discussed in the context of long-memory processes.

We start with change points in the mean. The standard approach is based on
the so-called CUSUM statistics and the asymptotic results follow directly from the
asymptotic behaviour of partial sums discussed in Sect. 4.2. In the long-memory
context, CUSUM tests are discussed in Horváth and Kokoszka (1997).

Changes in the distribution are detected using empirical processes. In a weakly
dependent situation, a sequential empirical process converges to a bivariate Gaus-
sian process, the so-called Kiefer process. In the long-memory set-up the latter pro-
cess has to be replaced by a process that is degenerate in one dimension and a frac-
tional Brownian bridge in the other. Such results follow from Dehling and Taqqu
(1989a, 1989b), see also Sect. 4.8.
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Changes in the spectrum (i.e. in the linear dependence structure) are consid-
ered in Giraitis and Leipus (1992), Beran and Terrin (1994) and Horváth and Shao
(1999), among others. In the last two papers, the dependence parameter before
and after a potential change is estimated using Whittle’s estimator. Hence, the
asymptotic distribution under the “no-change” assumption follows from results for
quadratic forms.

Tests that distinguish between changes in the mean (as null hypothesis) and sta-
tionary long memory. The best available results are obtained in Berkes et al. (2006),
further improvements are suggested in Baek and Pipiras (2011).

Finally, this section is concluded with the question of detecting so-called rapid
change points. This notion refers to smooth but very fast changes in the mean. Re-
sults in the long-memory context and applications to paleoclimatology are discussed
in Menéndez et al. (2010).

7.9.2 Changes in the Mean Under Long Memory

Suppose we would like to test whether a process is stationary against the alternative
that there may be changes in the expected value. If, under the alternative, the mean
function μ(t) = E(Xt) is expected to follow certain regularity conditions such as
differentiability or L2-integrability, then we are back to the question of simultane-
ous modelling of trend functions and dependence structure. We refer to Sects. 7.1,
7.4 and 7.5 for a discussion of this topic. On the other hand, if abrupt changes are
expected, then this leads to questions in the realm of change point detection and esti-
mation. (Another situation that is somewhere between standard nonparametric trend
estimation and change point analysis is the so-called rapid change point detection
discussed in Sect. 7.10.)

Specifically, consider the null hypothesis

H0 : Yt = μ+Xt

where Xt is a zero mean second-order stationary process against the alternative

H1 : Yt = μ+Δ · 1{t > t0 + 1} +Xt (Δ 
= 0)

where t0 (1 ≤ t0 < n) is an unknown change point. The best known approach is
based on the CUSUM statistic (originally introduced by Page 1954 in the context of
quality control; also see Barnard 1959) defined by

D1,n = max
1≤i≤n

|Vi |

≈ sup
0<u<1

∣∣Sn(u)− uSn(1)
∣∣



702 7 Statistical Inference for Nonstationary Processes

where we use the notation

Vi = S1,i − i

n
S1,n, Si,j =

j∑

t=i

Yt

and

Sn(u) =
[nu]∑

t=1

Yt .

Note that n−1Vi can also be written as a weighted sum of the difference between
the two sample means before and after i, namely

n−1Vi = i

n

(
1 − i

n

)(
1

i
S1,i − 1

n− i
Si+1,n

)
.

In the classical change point analysis, the process Xt is assumed to be in the area
of attraction of Brownian motion in the sense that Sn(u), properly standardized,
converges in the space of càdlàg functions D[0,1] to a standard Brownian mo-
tion B(u) (u ∈ [0,1]). This result usually applies to second-order stationary short-
memory processes where var(Sn(1)) ∼ cSn. Thus, under H0, we have a functional

limit theorem with Z̃n(u) = (Sn(u) − uSn(1))c
− 1

2
S n− 1

2 converging to a Brownian
bridge B̃(u) = B(u)− uB(1), and hence

c
− 1

2
S n− 1

2 D1,n →
d

sup
u∈[0,1]

∣∣B̃(u)
∣∣.

In view of the limit theorems discussed in Chap. 4, this result can be generalized
quite easily to processes with long memory and antipersistence, respectively. Sup-
pose that Xt is in the domain of attraction of fractional Brownian motion BH(u)

(again in the sense of a functional limit theorem) with self-similarity parameter
H ∈ (0,1). The case of short memory is included here, with H = 1

2 , antipersistence
corresponds to H < 1

2 and long memory to H > 1
2 . Then, under the null hypothesis

formulated above, the process

Z̃n(u) ≈ L
− 1

2
S (n)n−H

(
Sn(u)− uSn(1)

)

(with LS a slowly varying function as defined in Sect. 4.2.2) converges to a frac-
tional Brownian bridge B̃H (u) = BH(u) − uBH (1). For the standardized statistic,
we then have

T = L
− 1

2
S (n)n−HD1,n →

d
sup

u∈[0,1]
∣∣B̃H (u)

∣∣.

In contrast, under the alternative H1 with a change point in μ(t) = E(Yt ), the ex-
pected value of Sn(u) − uSn(1) is of the order n � nH so that T →p ∞ (for fur-
ther results and detailed regularity assumptions, see, e.g. Csörgő and Horváth 1998;
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Berkes et al. 2006). Note that an analogous result can be obtained in principle for
processes in the domain of attraction of a Hermite process of any order.

The standardization L
− 1

2
S (n)n−H contains the unknown self-similarity parameter

H and the slowly varying function LS . Both have to be estimated from the observed
data. For most practical purposes, it is sufficient to assume that LS converges to
a constant cS > 0 so that var(Sn(1)) ∼ cS · n2H (n → ∞). In view of Sect. 1.3.1,
a natural way of rewriting the standardization is

L
1
2
S (n)n

H =
√
ν(d)cfXn

d+ 1
2 =

√
ν(d)fX

(
n−1

)
n

1
2

with d = H − 1
2 ,

ν(d) = 2 sinπd

d(2d + 1)
(d 
= 0),

ν(0) = 2π

and cfX such that fX(λ) ∼ cfX |λ|−2d (λ → 0). In the classical change point analy-
sis, H is assumed to be equal to 1

2 a priori so that only the constant cf , or equiva-
lently fX(0), needs to be estimated (see, e.g. Csörgő and Horváth 1998 and refer-
ences therein). However, if we calculate T under this assumption but the true value
of H is actually larger than 1

2 , then the asymptotic rejection probability tends to one
even if the null hypothesis is true (for a further discussion along this line, see, e.g.
Horváth and Kokoszka 1997; Wright 1998; Krämer et al. 2002; Sibbertsen 2004;
for extensions to linear regression, see, e.g. Krämer and Sibbertsen 2000). In other
words, assuming independence or short-range dependence ultimately leads to the
erroneous conclusion that the mean is not constant. The formal reason is that the
standardization by n

1
2 is too small by a factor proportional to nH− 1

2 → ∞ so that
T tends to infinity. The intuitive explanation is that long-range dependent series ex-
hibit local spurious trends and tend to stay on one side of the expected value for a
long time. This often looks as if the mean were changing occasionally.

If we are not assuming H = 1
2 a priori, then both parameters, cf and H , need to

be estimated consistently. Given such estimates, we define the statistic

T = n−Ĥ ν̂− 1
2 ĉ

− 1
2

fX
D1,n

with Ĥ = d̂ + 1
2 and ν̂ = ν(d̂). The null hypothesis of no change point is rejected at

the level of significance α, if T > q1−α where q1−α is defined by

P
(

sup
u∈[0,1]

∣∣B̃
Ĥ
(u)

∣∣> q1−α

)
= α.

(Note that here the probability is evaluated for a fractional Brownian bridge with Ĥ

being fixed.)



704 7 Statistical Inference for Nonstationary Processes

Fig. 7.16 Simulated sample paths of Yt = Δ · 1{t ≥ 120} + Xt (a) and Xt (b) where Xt is a
FARIMA(0,0.3,0) process and Δ = 1. The values of Vi = S1,i − (i/n)S1,n are plotted against
i in (c) and (d), with 5 %- and 10 %-critical values (horizontal lines) based on the true (c) and
estimated parameters d and cf (d), respectively

Example 7.37 Let Xt be generated by a fractional ARIMA(0, d,0) process with
zero mean i.i.d. innovations εt . Then cf = σ 2

ε /(2π) and we may estimate θ =
(σ 2

ε , d) by one of the (quasi-) maximum likelihood methods discussed in Sect. 5.5.
The test statistic simplifies to

T̃ = n− 1
2 −d̂ ν̂− 1

2
√

2πσ̂−1
ε D1,n.

Example 7.38 Figure 7.16(a) displays simulated sample paths of

Yt = Δ · 1{t ≥ 120} +Xt

(t = 1,2, . . . ,400) with Δ = 1 and 0, respectively, and Xt generated by a fractional
ARIMA(0,0.3,0) process. The shift is hardly visible by eye. Nevertheless, H0 is
rejected at the 5 %-level of significance. The fact that H and cf have to be estimated
does not make much of a difference. This can be seen from Figs. 7.16(c)–(d) where
the values of S1,i − i

n
S1,n are plotted against i, together with critical 10 %- and

5 %-limits (horizontal lines) based on the true parameters (Fig. 7.16(c)) and the
estimated parameters (Fig. 7.16(d)), respectively. The estimated value of H is 0.78.
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Although in this example the estimation of d and cf has almost no influence on
the result, this may not always be the case. In fact, under the alternative, the observed
process is no longer stationary. This may have undesirable effects on the estimates.
Sometimes it may first be necessary to remove an estimated trend function μ̂(t)

before estimating d and cf . This brings us back, however, to the question how to
fit a trend function in the presence of dependent errors (see Sects. 7.1, 7.4 and 7.5).
If a step function with a finite but unknown number of change points is expected
under the alternative, then one may try, for instance, wavelet thresholding with Haar
wavelets (see Sect. 7.5) or nonlinear regression with piecewise constant polynomials
(see Sect. 7.3). Another possibility is to first calculate parameter estimates based on
relatively short disjoint blocks of observations and then take their average. For quasi-
maximum likelihood estimation, this can be done without any loss of asymptotic
efficiency (Beran and Terrin 1996). This approach is illustrated in the following
example.

Example 7.39 Figure 7.17(a) displays a sample path of Yt = μ(t)+Xt where Xt is a
FARIMA(0,0.1,0) process and μ(t) has multiple change points with values switch-
ing between 0 and 1 as displayed in Fig. 7.17(b). The values of Vi = S1,i −(i/n)S1,n
are plotted in Figs. 7.17(c)–(d). In Fig. 7.17(c), the horizontal lines correspond to
10 %- and 5 %-critical values when using d̂ and ĉf estimated (by QMLE) from
the complete series Yt (t = 1,2, . . . , n) directly, whereas in Fig. 7.17(d), the crit-
ical boundaries are based on averages of estimates d̂j and ĉf,j (j = 1,2, . . . ,10)
obtained from disjoint blocks Yt+(j−1)100, . . . , Yj100 of length 100. In the first case,
d0 = 0.1 is overestimated by the amount of d̂ − d0 = 0.13 whereas in the second
case overestimation is less severe with d̂ − d0 = 0.06. This leads to clear rejection
of H0 at the 5 %-level in the second case; however, no rejection in the first case.

The test statistics above do not take into account that the variance function of
B̃H (u) is not constant. More specifically, we have

var
(
B̃H (u)

) = E
[
B2
H (u)

]+ u2E
[
B2
H (1)

]− 2uE
[
BH(u)BH (1)

]

= u(1 − u)
[
u2H−1 − 1 + (1 − u)2H−1]

=: wH(u).

Since wH is zero at both ends and achieves its maximum in the middle (see
Fig. 7.18), the test based on T or T̃ may have little power when change points oc-
cur near the two ends. One therefore sometimes prefers to standardize by

√
wH(u)

before taking the supremum. This means that one defines a test based on D∗
1,n =

max |Vi |/
√
w( i

n
). The asymptotic distribution of D∗

1,n is, however, more difficult to
derive.

The statistics w− 1
2 Vi (i = 2, . . . , n − 1) are also often used for estimating the

change point t0 itself, namely by choosing t̂0 = i such that |w− 1
2 Vi | is minimal.

For i.i.d. data, the asymptotic distribution of t̂0 has been derived by Antoch et al.
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Fig. 7.17 Figure (a) shows a sample path of Yt = μ(t) + Xt where Xt is a FARIMA(0,0.1,0)
process and μ(t) has multiple change points with values switching between 0 and 1 as displayed
in (b). The values of Vi = S1,i − (i/n)S1,n are plotted in (c) and (d). The horizontal lines corre-
spond to 10 %- and 5 %-critical values using estimates of d and cf . In (c), the estimates were based
on Yt (t = 1,2, . . . , n), whereas in (d) these are averages of estimates d̂j and ĉf,j (j = 1,2, . . . ,10)
obtained from disjoint blocks Y1+(j−1)100, . . . , Yj100 of length 100

(1995) (also see Hinkley 1970; Yao 1987 for earlier results). Similar results in the
context of short-range dependence can be found, for instance, in Bagshaw and John-
son (1975), Davis et al. (1995), Horváth (1993), Johnson and Bagshaw (1974) and
Tang and MacNeill (1993). Horváth and Kokoszka (1997) derive limit theorems for
t̂0 under more general dependence assumptions in the domain of attraction of frac-
tional Brownian motion with H ∈ (0,1), and also consider a more general class of
estimators.

Change point estimation in the mean can be extended to the problem of structural
breaks in regression models. Results along this line in the long-memory context can
be found, for instance, in Wright (1998), Krämer and Sibbertsen (2003), Sibbertsen
(2004), Lazarova (2005), Gil-Alana (2008). Also see Ben Hariz and Wylie (2005)
and Ben Hariz et al. (2007) for general results. Change point estimation in the long-
memory context based on the Wilcoxon two-sample test is considered in Dehling
et al. (2013), rank tests are developed in Wang (2008).
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Fig. 7.18 Standard deviation
of a fractional Brownian
bridge B̃H (u)

7.9.3 Changes in the Marginal Distribution

Instead of testing for changes in the mean, one may more generally test whether
any changes in the marginal distribution occur. If we do not want to specify which
features of the distribution may change, then we are led to nonparametric testing
based on the empirical distribution function. This problem has been addressed, for
instance, in Giraitis et al. (1996b) by studying a test based on the Kolmogorov–
Smirnov statistic. In the i.i.d. and short memory context, such tests have been studied
extensively (see, e.g. Picard 1985; Carlstein 1988; Leipus 1988; Dümbgen 1991;
Ferger and Stute 1992; Carlstein and Lele 1993; Ferger 1994; also see Csörgő and
Horváth 1988, 1998; Brodsky and Darkhovsky 1993 and references therein).

The essential probabilistic result one needs is the asymptotic distribution of the
empirical process. More specifically, suppose we observe Y1, . . . , Yn generated by a
stationary process with marginal distribution F(y) = P(Y ≤ y). A natural statistic
for testing for changes in the marginal distribution function can be constructed by
comparing an estimated cumulative distribution of Y1, . . . , Yi with the correspond-
ing estimate for Yi+1, . . . , Yn. Let

Fi,j (y) = 1

(j − i + 1)

j∑

t=i

1{Yt ≤ y}

where j ≥ i, and

F1,[nu](y) = F[nu](y)

with u ∈ [0,1] and [nu] denoting the largest integer not exceeding nu. Then we
consider weighted differences

Vi(y) = i

n

(
1 − i

n

)[
F1,i (y)− Fi+1,n(y)

]
(i = 1, . . . , n− 1).
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Let u ∈ (0,1) and i = [nu]. Then we can rewrite Vi(y) as

Vi(y) = V[nu](y)

= [nu]
n

(
1 − [nu]

n

)[
F1,[nu](y)− F[nu]+1,n(y)

]

=
(

1 − [nu]
n

){ [nu]
n

F[nu](y)
}

− [nu]
n

{
Fn(y)− [nu]

n
F[nu](y)

}

= F[nu](y)− [nu]
n

Fn(y).

This is analogous to the quantities used for the CUSUM statistic in the previous sec-
tion. The only difference is that instead of the observations themselves we average
the 0–1-variables 1{Yt ≤ y}. The CUSUM statistic is then of the form

D1,n = sup
1≤i≤n−1

y∈R

∣∣Vi(y)
∣∣

= sup
n−1≤u≤1−n−1

y∈R

∣∣∣∣
[nu]
n

(
1 − [nu]

n

)[
F1,[nu](y)− F[nu]+1,n(y)

]∣∣∣∣

= sup
u,y

∣∣∣∣F[nu](y)− [nu]
n

Fn(y)

∣∣∣∣

(see, e.g. Picard 1985). The asymptotic distribution of D1,n follows easily, once we
have a suitable functional limit theorem for the difference F[nu](y) − F(y), under-
stood as a stochastic process in (u, y) ∈ [0,1] × [−∞,∞].

Suppose that there is a suitable sequence of numbers vn → 0 such that

v
− 1

2
n

[
F[nu](y)− F(y)

]

converges (weakly in a suitable manner) to a process W(u,y). Then we define the
test statistic

T = v
− 1

2
n D1,n.

Under the null hypothesis that the marginal distribution remains the same, we have

T = sup
u,y

∣∣∣∣v
− 1

2
n

{
F[nu](y)− [nu]

n
Fn(y)

}∣∣∣∣

=
d

sup
(u,y)∈[0,1]×R

∣∣W(u,y)− uW(1, y)
∣∣+ op(1).
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Thus, a rejection region at a level of significance α can be defined by Kα =
{T > q1−α} where q1−α are (1 − α)-quantiles defined by

P
(

sup
(u,y)∈[0,1]×R

∣∣W(u,y)− uW(1, y)
∣∣> q1−α

)
= α.

For i.i.d. observations, it is well known that the asymptotic limit of

Wn(u,y) = n
1
2
[
F[nu](y)− F(y)

]

is a Kiefer process W(u,y) where convergence is in the space D([0,1] ×
[−∞,∞]). Recall that a Kiefer process is a Gaussian process (in (u, y)) with zero
mean and covariance function

cov
(
W(u1, y1),W(u2, y2)

) = min{u1, u2} · [F (
min(y1, y2)

)− F(y1)F (y2)
]

(see, e.g. Shorack and Wellner 1986 and references therein). This result can be gen-
eralized to standard short-memory conditions to obtain a Gaussian limiting process
with covariance function

cov
(
W(u1, y1),W(u2, y2)

) = min{u1, u2} · σ(y1, y2)

where

σ(y1, y2) =
∞∑

t=−∞

[
P(Y0 ≤ y1, Yt ≤ y2)− P(Y0 ≤ y1)P (Yt ≤ y2)

]

(see, e.g. Berkes and Philipp 1977). In contrast, under long memory the rate of con-
vergence is slower and one obtains a degenerate limiting process (see Sect. 4.8).
For instance, let Yt = G(Zt) where Zt is a zero mean Gaussian process with vari-
ance one, slowly decaying autocovariances γZ(k) ∼ Lγ (k)|k|2d−1 and assume that
1{G(Zt) ≤ y} has Hermite rank m = 1. Then Dehling and Taqqu (1989b) showed
that

Wn,H (u, y) = L
− 1

2
S (n)n1−H

[
F[nu](y)− F(y)

]

(with H = d + 1
2 and LS(n) = Lγ (n)(d(2d + 1))−1, see Sect. 4.2.2) converges in

D([0,1] × [−∞,∞]) equipped with the sup-norm to a constant (depending on y)
times a fractional Brownian motion BH , or more specifically,

W(u,y) = WH(u,y) = J1(y)BH (u)

where J1(y) = E[1{G(Z) ≤ y}Z]. An analogous result holds for higher Hermite
ranks with BH replaced by the corresponding Hermite process of order m. This
result is remarkable because along the y-axis, no stochasticity is involved. Once u

is fixed and the random variable BH(u) is generated, the process evolves in y only
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via multiplication by the deterministic function J1(y). The asymptotic distribution
of D1,n is therefore much simpler than under short memory. Defining

T = L
− 1

2
S (n)n−HD1,n,

we obtain

T =
d
ζ + op(1)

with

ζ = sup
y∈R

∣∣J1(y)
∣∣ · sup

u∈[0,1]

∣∣BH(u)− uBH (1)
∣∣

= sup
y∈R

∣∣J1(y)
∣∣ · sup

u∈[0,1]

∣∣B̃H (u)
∣∣.

The first factor is a deterministic constant that only depends on the transforma-
tion G. The second term is the usual supremum of a fractional Brownian bridge.
Now we can calculate critical values for testing the null hypothesis that we observe
a stationary process Yt = G(Zt) with a certain (unknown) marginal distribution F

against the alternative

H1 : Yt = Xt,1 (1 ≤ t ≤ t0), Yt = Xt,2 (t0 < t ≤ n)

where Xt,1, Xt,2 are two stationary processes with marginal distributions F1 
= F2
and t0 is an unknown change point. A rejection region at level of significance α can
be defined by

T > sup
y∈R

∣∣J1(y)
∣∣ · q1−α,

or equivalently,

D1,n > L
1
2
S (n)n

H · sup
y∈R

∣∣J1(y)
∣∣ · q1−α

where q1−α is defined by

P
(

sup
u∈[0,1]

∣∣B̃(u)
∣∣> q1−α

)
= α.

Example 7.40 Let Yt be a Gaussian FARIMA(0, d,0) process with var(εt ) = 1.
Then Yt = σYZt with σ 2

Y = var(Yt ) = Γ (1 − 2d)/Γ 2(1 − d) and

J1(y) = E
[
1{σYZ ≤ y}Z] =

∫ σ−1
Y y

−∞
z

1√
2π

e− 1
2 z

2
dz = − 1√

2π
e− 1

2σ
−2
Y y2

.

The supremum of |J1(y)| is 1/
√

2π . Moreover,

Lγ (n) = Γ (1 − 2d)/
[
Γ (d)Γ (1 − d)

]
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so that

LS(n) = Lγ (n)
(
d(2d + 1)

)−1 = Γ (1 − 2d)

Γ (1 + d)Γ (1 − d)(2d + 1)
.

A critical region at level α is therefore given by

{
T >

1√
2π

· q1−α

}
=

{
D1,n > nH ·

√
Γ (1 − 2d)

2πΓ (1 + d)Γ (1 − d)(2d + 1)
· q1−α

}

where H = d + 1
2 .

7.9.4 Changes in the Linear Dependence Structure

Often the dependence structure in an observed time series is not constant. Slow
changes can be captured by locally stationary processes. This has been discussed
in Sect. 7.8. On the other hand, there are situations where the dependence structure
changes suddenly. Such situations are in the realm of change point analysis. The null
hypothesis we are testing is that the observed process Yt is stationary with a fixed
spectral distribution FY . The alternative is that there is a change point t0 such that
Yt has the spectral distributions F1 and F2 for t ≤ t0 and t > t0, respectively, with
F1 
= F2. Note that here F denotes the spectral distribution, and not the marginal
distribution.

A simple way of testing for change points in the correlation structure is con-
sidered in Beran and Terrin (1994). Suppose we have a parametric model with
θ = (σ 2

ε , d, . . . )
T = (σ 2

ε , η)
T where the central limit theorem holds for quasi-

maximum likelihood estimates as discussed in Sect. 5.5. For instance, we may as-
sume a FARIMA(p,d, q) process with spectral density

f (λ; θ) = σ 2
ε

∣∣1 − exp(−iλ)
∣∣−2d

∣∣∣∣
ψ(e−iλ)

φ(e−iλ)

∣∣∣∣
2

.

First, we divide the time axis into m blocks I1 = {1,2, . . . , n1}, I2 = {n1 +
1, . . . , n1 + n2}, . . . such that

∑
nj = n and nj/n → pj ∈ (0,1). For each block

of observations Yt (t ∈ Ij ) a quasi-MLE η̂j is computed. Similar arguments as in
Sect. 5.5 (Beran and Terrin 1994) show that, as n → ∞, Zj,n = √

nj (η̂j − η) (j =
1,2, . . . ,m) are asymptotically independent of each other, with limiting N(0,Σj )-
distribution where Σj = 4πV −1 and

V =
{∫

∂

∂η
logf (λ; θ)

[
∂

∂η
logf (λ; θ)

]T
dλ

}−1

.

This can be used for testing whether the parameter η remains constant over time.
For simplicity suppose that we are only interested in changes of the long-memory
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parameter d . Then the null hypothesis is that Yt is stationary, which means in par-
ticular that d is constant. Denoting by dj the long-memory parameter in block
Ij (j = 1,2, . . . ,m), the null hypothesis implies d1 = · · · = dm = d . The alterna-
tive is specified by the existence of at least one pair j1, j2 ∈ {1,2, . . . ,m} such
that dj1 
= dj2 . Suppose for simplicity that n1 = · · · = nm = nm−1 and denote by
vm,n = 4π[V −1]11mn−1 the approximate variance of each d̂j . Using the notation
d̄ = m−1 ∑ d̂j , a simple test statistic of H0 can be based on

χ2 = v−1
m,n

m∑

j=1

(d̂j − d̄)2

= 1

4π[V −1]11

n

m

m∑

j=1

(d̂j − d̄)2.

Under H0, the statistic is approximately χ2
m−1-distributed. In contrast, under the

alternative,
∑

(d̂j − d̄)2 converges in probability to
∑m

j=1(dj − d)2 > 0 where

d = m−1 ∑dj so that χ2 diverges to infinity.

Example 7.41 Let Yt be a FARIMA(0, d,0) process. Then 4π[V −1]11 = 6/π2. The
null hypothesis is rejected at the level of significance α, if

π2

6

n

m

m∑

j=1

(d̂j − d̄)2 > χ2
m−1;1−α

with χ2
m−1;1−α

denoting the (1 − α)-quantile of a χ2
m−1-distribution. We apply

this test to the detrended central England temperatures displayed in Fig. 7.19(b).
The sample size is n = 352. Using m = 4 blocks of length nj = 88, and
a FARIMA(0, d,0) fit for each block, the maximum likelihood estimates d̂j
(j = 1,2,3,4) are equal to 0.30, 0.07, 0.02 and 0.29, respectively. The value
of the χ2-statistic is about 9.15 which corresponds to a p-value (based on a
χ2

3 -distribution) of 0.027. Thus, there is quite strong evidence for a change in d .
This confirms the visual impression of the log–log-periodogram plots for the four
blocks in Figs. 7.19(c)–(f), and also the impression obtained by fitting a locally sta-
tionary FARIMA(0, d,0) process in Sect. 7.8. (Note also that the FARIMA(0, d,0)
model does indeed fit the data reasonably well, locally.)

In situations where the location of change points is unknown, one would prefer
a method where one does not have to divide the time axis into blocks by hand. As-
sume again a parametric model with spectral density f (λ; θ) and a p-dimensional
parameter θ = (σ 2

ε , d, . . . )
T = (σ 2

ε , η)
T . Suppose for simplicity of presentation that

we are only interested in changes in the long-memory parameter d . A CUSUM type
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Fig. 7.19 Yearly Central England temperatures 1659–2010 (a) and the detrended series (b) af-
ter subtracting a nonparametric trend function. Also displayed are log–log-periodograms and
FARIMA(0, d,0) spectral densities fitted to four disjoint blocks of length nj = 88

statistic can be defined by

D1,n = max
nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣

with d̂1,i = [η̂1,i]1, d̂i+1,n = [η̂i+1,n]1 where η̂1,i and η̂i+1,n are estimates of η =
(d, . . . )T based on X1,X2, . . . ,Xi and Xi+1, . . . ,Xn, respectively. Note that, in
contrast to the sample mean, the estimates require a certain minimal size of the
sample. Therefore, in practice nlow has to be chosen larger than 1, and nup smaller
than n.

Suppose now that under the null hypothesis H0 the observed time series Yt
(t = 1, . . . , n) is generated by a stationary process in the parametric class with
θ = θ0. The alternative H1 we would like to test against is that there is a change
point 1 < t0 < n such that the long-memory parameter is d = d1 for t ≤ t0 and
d = d2 
= d1 for t > t0. To estimate θ0 we use one of the approximate quasi-
maximum likelihood estimators derived from the normal likelihood. Recall that un-
der H0, the central limit theorem holds for θ̂ with a

√
n-rate of convergence, and

the scale estimator is asymptotically independent of η̂. The proof of this result relies
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either on a central limit theorem for quadratic forms or on an approximation by mar-
tingale differences (see Sect. 5.5). For instance, if we use the second approach, then
η̂ is defined by minimizing

∑
e2
t (η) where et (η) = ∑t−1

j=0 bj (η)Yt−j is an approxi-
mation of εt obtained from the autoregressive representation εt = ∑∞

j=0 bj (η)Yt−j ,

and θ̂1 = σ̂ 2
ε is set equal to n−1 ∑ e2

t (η̂). Then, based on n observations, we have
the approximation

η̂ − η0 = n−1Sn + op
(
n−1)

where

Sn = (
S1
n, . . . , S

p−1)T = M−1
n∑

t=2

ε̇t
(
η0)εt

(
η0),

M = E(ε̇t ε̇
T
t ) and ε̇t = ∂/∂ηεt (η) |η=η0= ∑

ḃj Yt−j . Using the notation

ζt = (
ζ 1
t , . . . , ζ

p−1
t

)T = M−1ε̇t
(
η0)εt

(
η0)

and

ζ
j
t =

p−1∑

l=1

m̃jl

{
∂

∂ηl
εt
(
η0)εt

(
η0)

}

with M−1 = [m̃jl]j,l=1,...,p−1, we can write Sn = ∑n
t=2 ζt . Since we are only inter-

ested in d , the only relevant component of Sn is

S1
n =

n∑

t=2

ζ 1
t .

This means that asymptotically d̂ − d0 can be approximated by a sample mean, and
D1,n can be written in the form of a usual CUSUM statistic with sample means.
Furthermore, since ε̇t (η

0)εt (η
0) is a martingale difference, we have, under suitable

moment conditions, a functional limit theorem

n− 1
2 S1

n(u) = n− 1
2

[nu]∑

t=2

ζ 1
t → const ·B(u)

where convergence is in D[0,1] and B(u) (u ∈ [0,1]) is a standard Brownian mo-
tion. Assuming that nlow/n → 0 and nup/n → 1, we may therefore write

√
nD1,n = √

n max
nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣

= √
n max
nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)(
i−1S1

i − (n− i)−1(S1
n − S1

i

))∣∣∣∣+ op(1)
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= max
nlow≤i≤nup

∣∣∣∣n
− 1

2

(
S1
i − i

n
S1
n

)∣∣∣∣+ op(1)

= const · sup
0≤u≤1

∣∣B̃(u)
∣∣+ op(1)

with B̃ denoting a standard Brownian bridge. Analogous arguments can be carried
out using a quasi-MLE based on quadratic forms. The derivation given here is, of
course, purely heuristic, an exact proof is more difficult. For the approach based
on quadratic forms, a complete proof can be found in Horváth and Shao (1999).
Specifically, the following result is derived.

Theorem 7.42 Consider a parametric family Yt = ∑∞
j=−∞ aj (η)εt−j of second-

order stationary linear processes with θ = (σ 2
ε , η

T )T = (σ 2
ε , d, . . . )

T ∈ Θ ⊆ R+ ×
(0, 1

2 ) × R
p−2. Suppose that we observe Y1, . . . , Yn with the true parameter θ0 in

the interior of Θ0. Let d̂1,i and d̂i+1,n be the first components of η̂1,i and η̂i,n re-
spectively obtained by Whittle estimation. Assume furthermore that the conditions
in the central limit theorem for Whittle estimators given in Giraitis and Surgailis
(1990) hold, and also E(ε4+r

t ) < ∞ for some r > 0. Denote by Ση = 4πV −1 the
asymptotic covariance matrix of η̂ with

V =
∫

∂/∂η logf [∂/∂η logf ]T dλ

and by vd = [Ση]11 the asymptotic variance of d̂ . Then

n
1
2 u(1 − u)(d̂1,i − d̂i+1,n) → √

vdB̃(u)

where B̃(u) is a standard Brownian bridge.

The theorem implies that under the null hypothesis

T = √
nD1,n = √

nv
− 1

2
d max

nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣ →
d

sup
u∈[0,1]

∣∣B̃(u)
∣∣.

Thus, we reject H0 at the level of significance α, if T > q1−α where q1−α is the
(1 − α)-quantile of supu∈[0,1] |B̃(u)|.

Example 7.42 Let Yt be a FARIMA(0, d,0) process. Then vd = 6/π2 so that an
approximate rejection region at level α is given by

T = √
n

π√
6

max
nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣> q1−α.

We apply this method to the detrended central England temperature series con-
sidered before. The practical difficulty one encounters is that it is not clear how
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to choose nlow and nup. Although the results in Horváth and Shao suggest that
asymptotically one may choose nlow = 1 and nup = n, this is not really true be-
cause the calculation of the MLE based on one (or a very small number of) obser-
vation is not meaningful; in fact, for very small samples, numerical optimization
often fails to find a solution in the interior of the parameter space. Here, we chose
nlow = 100 and nup = n− 100 = 252. This means, however, that u = n/nlow ≈ 0.28
and u = nup/n ≈ 0.72 are far from the left and right border of the interval [0,1]. In-
stead of using quantiles of the supremum of |B̃(u)| over the whole range of u ∈ [0,1]
we therefore calculated quantiles of supu∈[0.28,0.72] |B̃(u)|. The critical 5 %-level
value is about 1.34. The observed value of T is 0.99 so that, in contrast to the sim-
ple χ2-test calculated previously, H0 is not rejected.

The failure to reject in this example may be due to the (conjectured) possibility
that the potential change points are near the two borders of the observational period
(recall that the estimates of d calculated for the four blocks were 0.30, 0.07, 0.02
and 0.29). The test based on T has little power when changes occur near the borders
because the variance of B̃(u) is equal to u(1 − u) and thus approaches zero at the
two ends. One may increase the power by changing the standardization by the factor

[u(1 − u)]− 1
2 and hence using the statistic

T̃ = √
nD̃1,n = √

nv
− 1

2
d max

nlow≤i≤nup

∣∣∣∣

√
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣.

The derivation of the asymptotic distribution of T̃ is more involved, however, be-
cause convergence in D[0,1] no longer holds. The statistic T̃ was suggested in
Beran and Terrin (1996), its asymptotic distribution was derived by Horváth and
Shao (1999). Under additional regularity conditions, Horváth and Shao obtain the
asymptotic expression

lim
n→∞P

{√
2 logn

√
nv

− 1
2

d max
1≤i<n

∣∣∣∣

√
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣ ≤ c(x)

}

= exp
(−2e−x

)

where

c(x) = x + 2 logx + 1

2
log logx − 1

2
logπ.

Thus, given a level of significance α, we first need to determine xα such that
exp(−2e−xα ) = 1 − α. We reject H0 at the level of significance α, if

T̃ >
c(xα)√
2 logn

,
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Fig. 7.20 Plot of
| i
n
(1 − i

n
)(d̂1,i − d̂i+1,n)| and

|
√

i
n
(1 − i

n
)(d̂1,i − d̂i+1,n)|

against i = 100, . . . ,252 for
detrended yearly Central
England temperatures. The
horizontal line corresponds to
the 5 %-critical value for the
second statistic. The
corresponding critical value
for the first statistic is outside
the plotted range

where

xα = − log log
1√

1 − α
.

For instance, for α = 0.05 we have xα = 3.66 and c(xα) = 5.82.

Example 7.43 We apply the test based on T̃ to the detrended Central England
series, using a FARIMA(0, d,0) model. For α = 0.01 and 0.05 we have c(xα)/√

2 logn = 2.43 and 1.70, respectively. The value of T̃ turns out to be 2.13. Thus,
in contrast to the test based on T , we can reject H0 at α = 0.05. Figure 7.20 shows
a comparison between |i/n(1 − i/n)(d̂1,i − d̂i+1,n)| and |√i/n(1 − i/n)(d̂1,i −
d̂i+1,n)|. Due to the new standardization, the second statistic is indeed much larger
near the left border.

7.9.5 Changes in the Mean vs. Long-Range Dependence

One of the controversial issues in the applied literature is whether long-memory
phenomena may not be caused by changes in parameters of a short-memory pro-
cess rather than stationary long-range dependence (see, e.g. Klemes 1974; Boes and
Salas 1978; Roughan and Veitch 1999; Veres and Boda 2000; Karagiannis et al.
2004; Diebold and Inoue 2001; Granger and Hyung 2004; Mikosch and Starica
2004; Charfeddine and Guegan 2009; Mills 2007). One way to answer this is the
pragmatic view that in situations where the data were actually generated by a more
complex short-memory mechanism, stationary processes with long-range depen-
dence often provide a convenient parsimonious model (by including just one addi-
tional parameter d or H ). Nevertheless, one would at least like to be able to dis-
tinguish long memory from certain simple alternatives. Among the most important
competitors are short-memory processes with changes in the expected value. Essen-
tially, we may distinguish two situations: (a) E(Yt ) changes gradually; (b) E(Yt )
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changes abruptly. In the first case, the standard nonparametric approach is to con-
sider a sequence of models Yt,n = m(t/n) + Xt where Xt is a zero mean sta-
tionary process and m : [0,1] → R satisfies certain regularity conditions such as
m ∈ C[0,1] or L2[0,1]. This leads back to the question of estimating a determinis-
tic trend function m and parameters describing the stochastic dependence structure
simultaneously. This topic is discussed in Sects. 7.4 and 7.5. (Note, in particular,
that wavelet thresholding provides a way of distinguishing m from the dependence
structure of Xt even if m is not smooth, which is the case under alternatives in
change point analysis.)

In this section, we turn to scenario (b) where changes in the expected value
are abrupt. The fundamental difficulty of distinguishing between a stationary long-
memory process and a short-memory process with change points can be illustrated
by the following example. Suppose that Xt are i.i.d. with zero mean. We observe
Yt = μ(t)+Xt with μ(t) = μ(t;ω) ∈ {0,1} generated by an ON–OFF process that
is independent of Xt and has long memory. In other words,

μ(t;ω) = W(t) =
∞∑

j=−∞
1{τj−1 ≤ t < τj−1 + Tj,on},

with Tj = τj − τj−1 = Tj,on + Tj,off as defined in Sect. 2.2.3 (there we used the no-
tation Xj,on, Xj,off instead of Tj,on, Tj,off). The distributions of the ON and OFF in-
tervals are such that P(Tj,on > x) ∼ Conx

−αon and P(Tj,off > x) ∼ Coffx
−αoff with

1 < αon < αoff < 2. Then cov(μ(t),μ(t + k)) ∼ const · |k|−(αon−1). This means that
μ(t) and hence also Yt has long-range dependence. On the other hand, conditionally
on μ(t;ω) the observations Yt (t = 1,2, . . . , n) are independent. Figures 7.21(a)–
(f) show simulated sample paths of μ(t;ω), Xt and Yt , respectively, and the cor-
responding empirical correlograms. Here, Tj,on and Tj,off are equal to 10 times
standard Pareto-distributed variables with αon = 1.1 and αoff = 1.2, respectively,
i.e. P(Ti,off > x) = (x/10)−1.1 and P(Ti,off > x) = (x/10)−1.2 (for x ≥ 10). The
correlogram of Xt—which is the same as the conditional correlogram of Yt given
μ(t;ω)—does not show any dependence, whereas in the (unconditional) correlo-
gram of Yt the long memory of μ leaks in. If we observe one sample path of the
process Yt only, then in principle we are not able to tell whether μ(t) has been gen-
erated randomly or if it is deterministic, unless we know or assume a priori that
the class of possible deterministic functions has certain properties that make them
distinguishable asymptotically from typical sample paths of the long-memory ON–
OFF process. If, however, no assumptions are imposed on the function E(Yt ), then
one realization of the process Yt with μ generated by the ON–OFF process can also
be interpreted as a series of independent observations with deterministic shifts in
the expected value. More generally, one can say that the question whether we have
stationarity with long memory or short memory with shifts in the mean function is
ill-posed, unless one specifies a priori some detailed properties of the shifts in E(Yt ).
Such restrictions may be, for example, the maximal number, the frequency, the lo-
cation, the spacing, integrability or the size of shifts.
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Fig. 7.21 Figure (g) shows a simulated sample path of Yt = μ(t/n) + Xt where Xt are i.i.d.
N(0,1)-variables and μ(u) (u ∈ [0,1]) is generated by an ON–OFF-process with long-range de-
pendence. The ON–OFF-process is displayed in (a), the residual process Xt in (d). Also shown are
the corresponding correlograms ((b), (e) and (h)) and log–log-periodograms ((c), (f) and (i))

Once we have decided on what type of change point models we would like to
compare with, an appropriate statistical test can be set up. Depending on the appli-
cation, the assumption of stationarity with long memory can be assigned to the null
hypothesis H0 or to the alternative H1. The former is considered, for instance, in
Ohanissian et al. (2008), Müller and Watson (2008), Qu (2010), Kuswanto (2011),
the latter in Berkes et al. (2006), Jach and Kokoszka (2008) and Baek and Pipiras
(2011).

As an example, we discuss the method proposed by Berkes et al. (2006). The
idea is to start with testing

H0 : Yt = μ+Δ · 1{t > t0 + 1} +Xt (Δ 
= 0)

where 1 ≤ t0 < n and Xt is a fourth-order stationary zero mean short-memory pro-
cess with absolutely summable autocovariances γX(k) in the domain of attraction
of a Brownian motion. The alternative is

H1 : Yt = μ+Xt
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where Xt is a fourth-order stationary zero mean long-memory process with auto-
covariances γX(k) ∼ cγ |k|2d−1 (|k| → ∞) for some 0 < d < 1

2 , in the domain of
attraction of a fractional Brownian motion. An additional technical assumption is
that under H0 the fourth-order cumulants

κ(k1, k2, k3) = cum(Xt ,Xt+k1,Xt+k2,Xt+k3)

= E(XtXt+k1Xt+k2Xt+k3)

− (
γX(k1)γX(k2 − k3)+ γX(k2)γX(k1 − k3)+ γX(k3)γX(k1 − k2)

)

are such that

sup
k1

∞∑

k2,k3=−∞

∣∣κ(k1, k2, k3)
∣∣< ∞.

Under H1, the fourth-order cumulants are assumed to be such that

sup
k1

n∑

k2,k3=−n

∣∣κ(k1, k2, k3)
∣∣ = O

(
n2d).

The idea of the test proposed in Berkes et al. (2006) is to use a CUSUM statistic with
a standardization of the order O(

√
n) that leads to a well known limiting distribution

under H0, but to divergence under H1 because there dividing by n
1
2 is not enough.

The distribution of CUSUM statistics is well known under the assumption of no
change in the mean. Under the null hypothesis considered here, we have one change
point. If we knew the change point t0, then we could consider a CUSUM statistic
for Y1, . . . , Yt0 and another CUSUM statistic for Yt0+1, . . . , Yn separately. For each
statistic, the asymptotic distribution could be calculated using the supremum of a
Brownian bridge. A natural approach to testing H0 is therefore to first estimate the
change point t0, and then to consider the two CUSUM statistics for Yt (t ≤ t̂0) and
Yt (t ≥ t̂0 + 1). Estimation of t0 can also be done by means of a CUSUM statistic.
Thus, we define

t̂0 = min
{
i : |Vi | = max

1≤i≤n
|Vi |

}

where

Vi = S1,i − i

n
S1,n.

Given t̂0, we consider

D1,t̂0 = max
1≤i≤t̂0

∣∣∣∣S1,i − i

t̂0
S1,t̂0

∣∣∣∣

and

Dt̂0+1,n = max
t̂0+1≤i≤n

∣∣∣∣St̂0+1,i − i − t̂0

n− t̂0
St̂0+1,n

∣∣∣∣.
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Note that in both cases, the location parameter is removed automatically. The es-
sential part is therefore the standardization of D1,t̂0 and Dt̂0+1,n. To obtain a stan-

dardization that corresponds to
√

var(S1,t0) and
√

var(St0+1,n) asymptotically under
H0, but remains of the order O(

√
n) under H1, Berkes et al. (2006) propose Bartlett

estimators defined by

v1,t̂0 =
mt̂0

−1∑

u=−(mt̂0
−1)

(
1 − |u|

mt̂0

)
γ̂1,t̂0(u),

vt̂0+1,n =
mn−t̂0

−1∑

u=−(mn−t̂0
−1)

(
1 − |u|

mn−t̂0

)
γ̂t̂0+1,n(u)

where mt̂0
and mn−t̂0

tend to infinity at a slower rate than n. Here we use the notation

γ̂i,j (u) = 1

ni,j

j−|u|∑

t=i

(Yt − ȳi,j )(Yt+|u| − ȳi,j )

for the sample autocovariance at lag u (where j > i), based on observations
Yi, Yi+1, . . . , Yj , with ni,j = j − i + 1 and ȳi,j = n−1

i,j Si,j . If it is assumed that un-

der H0 the change point t̂0 is asymptotically proportional (but not equal) to n, then
v1,t̂0 and vt̂0+1,n both converge in probability to

∑∞
u=−∞ γX(u) = 2πfX(0). This is

the asymptotic variance of a standardized sum since var(S1,n) ∼ 2πfX(0)n. On the
other hand, under H1, var(S1,n) ∼ cSn

2d , but v1,t̂0 and vt̂0+1,n diverge to infinity at
a slower rate than n2d . This essentially follows from

∑m
k=1 k

2d−1 ∼ const · m2d =
o(n2d). Thus we obtain the desired asymptotic properties for the test statistics

T1,t̂0 = t̂0
− 1

2 v
− 1

2
1,t̂0

D1,t̂0

and

Tt̂0+1,n = (n− t̂0)
− 1

2 v
− 1

2
t̂0+1,n

Dt̂0+1,n.

More specifically, Berkes et al. (2006) use following additional conditions:

t0 = [nϑ] for some 0 < ϑ < 1,

Δ → 0, nΔ2 → ∞, mnΔ
2 = O(1),

and

Δ2|t̂0 − t0| = Op(1).

The joint distribution of the two statistics under H0 is given by
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Theorem 7.43 Suppose H0 holds, and mn is nondecreasing, mn → ∞ and such
that

sup
k≥0

m2k+1

m2k
< ∞, mn(logn)4 = O(n).

Then, under the conditions above,

(T1,t̂0 , Tt̂0+1,n) →
d

(
sup

0≤u≤1

∣∣B̃(1)(u)
∣∣, sup

0≤u≤1

∣∣B̃(2)(u)
∣∣
)

where B̃(1), B̃(2) are two independent Brownian bridges, i.e. B̃(i)(u) = B(i)(u) −
uB(i)(1) with B(i) (i = 1,2) two independent standard Brownian motions.

In contrast, under the alternative, we have long-range dependence so that the rate
of convergence of sums is slower, the two statistics are no longer asymptotically in-
dependent and their distribution can be expressed in terms of one common fractional
Brownian motion:

Theorem 7.44 Suppose that H1 holds, and mn is nondecreasing, mn → ∞ and
such that

sup
k≥0

m2k+1

m2k
< ∞, mn(logn)

7
2−4d = O(n).

Then, under the conditions above,
((

mt̂0

n

)d

T1,t̂0 ,

(
mn−t̂0

n

)d

Tt̂0+1,n

)
→
d

(Z1,Z2)

where

Z1 = τ− 1
2 sup

0≤u≤τ

∣∣∣∣BH(u)− u

τ
BH (τ)

∣∣∣∣,

Z2 = (1 − τ)−
1
2 sup
τ≤u≤1

∣∣∣∣BH(u)−BH(τ)− u− τ

1 − τ

(
BH(1)−BH(τ)

)∣∣∣∣,

BH is a fractional Brownian motion with self-similarity parameter H = d + 1
2 and

τ = inf
{
t ≥ 0 : ∣∣BH(t)

∣∣ = sup
0≤u≤1

∣∣BH(u)
∣∣
}
.

By assumption mt̂0
/n and mn−t̂0

/n converge to zero so that, under H1, the vector
(T1,t̂0 , Tt̂0+1,n) diverges to (∞,∞) in probability. Defining

T = max{T1,t̂0 , Tt̂0+1,n},
we have

T →
d

max
{

sup
0≤u≤1

∣∣B̃(1)(u)
∣∣, sup

0≤u≤1

∣∣B̃(2)(u)
∣∣
}
,
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under H0 whereas under H1 the statistic diverges to infinity. The results can be
extended to H0 including several shifts in the mean.

An essential element in the test procedure by Berkes et al. (2006) is the Bartlett
estimator based on sample autocovariances. Apart from the difficulty of choosing
appropriate sequences mt̂0

and mn−t̂0
, more efficient estimators of the asymptotic

values of γX(k) exist because γX(k) ∼ cγ |k|2d−1 is characterized by two parameters
only. A test where all autocovariances are estimated by the sample autocovariance
is likely to have relatively low power. Baek and Pipiras (2011) therefore suggest
a more powerful test procedure where the hyperbolic shape of the autocovariances
and the spectral density is exploited more directly. As before, in a first step t̂0 is
calculated. In a second step, the data are centred using t̂0 by defining

X̂t = Yt − ȳ1,t̂0 (1 ≤ t ≤ t̂0),

X̂t = Yt − ȳt̂0+1,n (t̂0 + 1 ≤ t ≤ n).

The third step is to estimate the long-memory parameter from X̂1, . . . , X̂n. If t̂0 con-
verges to t0 fast enough, then d̂ converges to the true value d0 under H0 and under
H1. Thus, if we are able to establish that under H0 a standardized statistic nβ(d̂−d0)

converges to a nondegenerate random variable ζ , then we may use the test statistic
T ∗ = |nβ(d̂ − 1

2 )|. Under H0, T ∗ converges in distribution to |ζ | whereas under H1

the statistic diverges to infinity because the true value of d is not 1
2 . For instance,

Baek and Pipiras (2011) show the following result for the local Whittle estimator.

Theorem 7.45 Let d̂ be a local Whittle estimator based on X̂t using m Fourier
frequencies λj = 2πj/n (j = 1,2, . . . ,m). Suppose that conditions used in the the-
orems above as well as regularity conditions needed for the Whittle estimator (see
Theorem 2 in Robinson 1995b; also see Chap. 5) hold. Furthermore, assume

m log2 m

nΔ2
→ 0.

Then, under H0,

√
m

(
d̂ − 1

2

)
→
d

ζ ∼ N

(
0,

1

4

)
,

whereas under H1 with d0 ∈ (0, 1
2 ),

d̂ →
d

d0.

For exact regularity conditions and detailed proofs, see Baek and Pipiras (2011).
Note that Δ is even allowed to tend to zero; however, at a slower rate than
logm

√
m/n. The theorem essentially says that estimation of t0 does not change the

asymptotic distribution of the local Whittle estimator under H0, and under H1 the
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estimator remains consistent. We may therefore reject H0 at the level of significance
α if

T ∗ =
∣∣∣∣
√
m

(
d̂ − 1

2

)∣∣∣∣>
1

2
z1− α

2

where z1− α
2

is the (1 − α
2 )-quantile of the standard normal distribution.

7.10 Estimation of Rapid Change Points in the Trend Function

In this section, we address rapid change point detection in a nonparametric regres-
sion function where the regression residuals are Gaussian subordinated via an un-
known function (see Sect. 7.6) with long-memory. Due to a specific application
that we have in mind, we base our estimation procedure on time series observed at
unevenly spaced time points. In fact, this type of problem tends to occur in palaeo-
climatic research where in order to answer questions concerning past environmental
changes, one may analyse environmental proxies such as pollens, oxygen and other
gas isotopes that are found in ice or sediment samples. Such environmental prox-
ies give rise to time series data, where the successive observations are unevenly
spaced in time. One important topic is rapid climate change where one is concerned
with identification of rapid change points in the trend function; see Ammann et al.
(2000) for background information on palaeoclimatic research. Most of the material
covered in this section can be found in Menéndez et al. (2010); also see Menén-
dez (2009) and Menéndez et al. (2012). We start by introducing a continuous time
stationary Gaussian process Z(u) (u ∈R) with E[Z(u)] = 0, var(Z) = 1 and

γZ(v) = cov
(
Z(u),Z(u+ v)

) ∼ CZv
2H−2

as v → ∞ where H ∈ (0,1). Here “∼” means that the ratio of the left and right hand
side tends to one. The observed time series Y1, . . . , Yn is assumed to be generated
by a nonparametric regression model of the form

Yi = m(ti)+ εi

where εi = G(Z(Ti), ti), Ti ∈ R+, T1 ≤ T2 ≤ · · · ≤ Tn, ti = Ti/Tn ∈ [0,1] and
m(·) is a smooth function. For each fixed t ∈ [0,1] the function G(·, t) is assumed
to be in the L2-space of functions (on R) with E[G(Z, t)] = (2π)− 1

2
∫
G(z, t)

exp(−z2/2) dz = 0 and ‖G‖2 = E[G2(Z, t)] < ∞. This implies a convergent L2-
expansion

G(Zi, ti) =
∞∑

k=q

ck(ti)

k! Hk(Zi)

where Hk(·) are Hermite polynomials and q ≥ 1 is the Hermite rank. The function G

provides the possibility of having non-Gaussian residuals with a changing marginal
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distribution (see Sect. 7.6). The spacings between the successive time points is arbi-
trary except for some technical conditions (similar in spirit as the equidistant case,
where Ti = iTn/n and ti = i/n).

Rapid change is defined in terms of derivatives of the trend function. Such a
change may be rapid but it is a continuous change in the trend function m. More
specifically, rapid change is said to occur whenever the absolute value of the first
derivative of m has a local maximum and exceeds a certain threshold. Let m(i)(t)

denote the ith derivative of m with respect to t . We shall follow this definition of a
rapid change point considered in Müller and Wang (1994) in the context of hazard
rate estimation:

Definition 7.9 Given a threshold η > 0, the p time points {τ1, τ2, . . . , τp} ∈ (0,1)
are rapid change points of the trend function m if

∣∣m(1)(τ1)
∣∣ ≥ ∣∣m(1)(τ2)

∣∣ ≥ · · · ≥ ∣∣m(1)(τp)
∣∣ ≥ η,

m(2)(τi) = 0, i = 1, . . . , p and

0 <
∣∣m(3)(τi)

∣∣< ∞.

In applications, the trend derivatives will have to be estimated. Thus consider the
non-parametric curve estimates using Priestley–Chao type kernel estimator

m̂(ν)(t) = (−1)ν

bν+1

n∑

i=1

(ti − ti−1)K
(ν)

(
ti − t

b

)
Yi

where ν = 0,1,2, . . . , t0 = 0 and the kernel K satisfies the following conditions
(Gasser and Müller 1984):

(i) K ∈ Cν+1[−1,1];
(ii) K(x) ≥ 0, K(x) = 0 (|x| > 1),

∫ 1
−1 K(x)dx = 1;

(iii) ∀x, y ∈ [−1,1], |K(ν)(x)−K(ν)(y)| ≤ L0|x−y| where L0 ∈R
+ is a constant;

(iv) K is of order (ν, k), ν ≤ k − 2, where k is a positive integer, i.e.

∫ 1

−1
K(ν)(x)xj dx =

⎧
⎨

⎩

(−1)νν!, j = ν,

0, j = 0, . . . , ν − 1, ν + 1, . . . , k − 1,
θ, j = k

where θ 
= 0 is a constant;
(v) K(j)(1) = K(j)(−1) = 0 for all j = 0,1, . . . , ν − 1.

It turns out that by Lemma 1 in Gasser and Müller (1984) one can also write

∫ 1

−1
K(x)xj dx =

⎧
⎨

⎩

1, j = 0,
0, j = 1, . . . , k − ν − 1,
(−1)νθ (k−ν)!

k! , j = k − ν.
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For a given sample and a fixed value of the first derivative threshold η, the num-
ber of change points p̂ where m̂(2) is zero is random whereas the true number of
change points p is unknown. However, as the sample size increases, under suitable
regularity conditions on m, consistency of m̂ and p̂ follows. The following technical
conditions are used to prove the consistency result in the theorem below:

(A1) The coefficients ck(t) = E[G(Z, t)Hk(Z)] in the Hermite expansion of
G(Z, t) are continuously differentiable with respect to t ∈ [0,1];

(A2) 1 − (2q)−1 <H < 1;
(A3) m ∈ Cν+1[0,1];
(A4) 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn, ti = Ti/Tn ∈ [0,1];
(A5) α−1

n ≤ tj − tj−1 ≤ β−1
n where αn ≥ βn > 0 and βn → ∞;

(A6) b → 0, b2ν(Tnb)
(2−2H)q → ∞, and bβn → ∞;

(A7) limn→∞(bαn)
1+(2−2H)q(bβn)

−2 = 0;
(A8) K ∈ Cν+1[0,1] with 0 < cν+1 = supu∈[0,1] |K(ν+1)(u)| < ∞.

The following observations can be made. (A1) implies a slowly changing marginal
distribution of the regression residuals. This may be understood as a type of local-
stationarity. Due to (A2), the long-memory property of Zi is inherited by the subor-
dinated error process. (A5) ensures that no repeated time points and, more generally,
no extreme clustering of the time points occurs. A special case is when the observa-
tions are available at equidistant time points (set αn = βn = n). The first condition
in (A6) is needed to avoid an asymptotic bias in m̂(ν)(t) whereas the second and
the third conditions ensure convergence of the asymptotic expression for the vari-
ance of m̂(ν)(t) to zero. (A7) is needed for the asymptotic approximation of the
mean squared error. Due to (A2), (2 − 2H)q < 1 so that (A7) is possible although
αn ≥ βn. For additional discussions and related results, specifically for monotone
transforms G and slightly different conditions on the spacings between successive
observations Ti − Ti−1, see Menéndez et al. (2012).

Theorem 7.46 Under the assumptions stated earlier in this section and (A1)–(A7),
we have for t ∈ (0,1):

Bias
(
m̂(ν)(t)

) = E
[
m̂(ν)(t)

]−m(ν)(t) = bk−νJν,k + o
(
bk−ν

)
,

Var
(
m̂(ν)(t)

) = b−2ν(Tnb)
(2H−2)qIq(t)+ o

(
b−2ν(Tnb)

(2H−2)q),

MSE
(
m̂(ν)(t)

) = E
[(
m̂(ν)(t)−m(ν)(t)

)2]

= b2(k−ν)J 2
ν,k(t)+ b−2ν(Tnb)

(2H−2)qIq(t)

+ o
(
max

(
b2(k−ν), b−2ν(Tnb)

(2H−2)q))

where

Iq(t) = c2
q(t)

q! C
q
Z

∫ 1

−1

∫ 1

−1
K(ν)(u)K(ν)(v)|u− v|(2H−2)q dudv
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and

Jν,k(t) = m(k)(t)

k!
∫ 1

−1
K(ν)(u)uk−ν du.

Proof Let t ∈ (0,1) be a scalar. The expression for the bias follows from a Tay-
lor series expansion of m and properties of the kernel. To prove the result for the
variance, note that

b2ν(Tnb)
(2−2H)q Var

(
m̂(ν)(t)

)

= b−2(Tnb)
(2−2H)q

n∑

i,j=1

(ti − ti−1)(tj − tj−1)K
(ν)

(
t − ti

b

)
K(ν)

(
t − tj

b

)
Vi,j

where

Vi,j = Cov(Yi, Yj ) =
n∑

l=q

cl(ti)cl(tj )

l! γ l
Z(Ti − Tj ).

Recalling

γZ(Ti − Tj ) ∼ CZ|Ti − Tj |2H−2

and −1 < (2H − 2)q < 0, we have

Cov(Yi, Yj ) ∼ c2
q(t)

q! γ
q
Z(Ti − Tj )

for i, j ∈ Ub(t) with Ub = {k ∈N : |t − Tk/Tn| ≤ b}. It is then sufficient to consider

Sn = b−2(Tnb)
(2−2H)q

∑

i 
=j

(ti − ti−1)(tj − tj−1)K
(ν)

(
ti − t

b

)
K(ν)

×
(
tj − t

b

)
|Ti − Tj |(2H−2)q .

Since K(u) = 0 for |u| > 1, we have

Sn =
∑

i:|Ti−tTn|≤Tnb

K(ν)

(
ti − t

b

)
ti − ti−1

b
[Si,1 + Si,2]

where

Si,1 =
∑

j∈Ai

K(ν)

(
tj − t

b

)
·
(
ti − tj

b

)(2H−2)q tj − tj−1

b
,

Si,2 =
∑

j∈Bi

K(ν)

(
tj − t

b

)
·
(
ti − tj

b

)(2H−2)q tj − tj−1

b
,
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Ai = {
j ∈N : 1 ≤ j ≤ i − 1, |Ti − tTn| ≤ Tnb

}
and

Bi = {
j ∈N : i + 1 ≤ j ≤ n, |Ti − tTn| ≤ Tnb

}
.

Setting

hn(x) = K(ν)

(
x − t

b

)
×

(
ti

b
− x

)(2H−2)q

,

we have

Si,1 =
∫ ti−1/b

t1/b

hn(x) dx +
∑

j∈Ai

h′
n(xj )

(
tj − tj−1

b

)2

=
∫ ti−1/b

t1/b

hn(x) dx + rn,i,1

and an analogous expression for Si,2 where tj−1/b ≤ xj ≤ tj /b and h′
n(x) =

gn,1(x)+ gn,2(x) with

gn,1(x) = K(ν+1)
(
x − t

b

)
×

(
ti

b
− x

)(2H−2)q

and

gn,2(x) = K(ν)

(
x − t

b

)
×

(
ti

b
− x

)(2H−2)q−1

× (2 − 2H)q.

By assumption we have α−1
n ≤ |tj − tj−1| ≤ β−1

n , −1 < (2H − 2)q < 0 and

0 ≤ sup
u∈[0,1]

∣∣K(ν+1)(u)
∣∣ = cν+1 < ∞.

Also note that the assumption bβn → ∞ implies bαn → ∞. Using the notation
j1 = [αn(t − b)] and j2 = [αn(t + b)], an upper bound can be given by

∣∣∣∣
∑

j∈Ai

gn,1(xj )

(
tj − tj−1

b

)2∣∣∣∣ ≤ cν+1b
−2β−2

n

j2∑

j=j1

(
ti − tj

b

)(2H−2)q

≤ cν+1b
−2β−2

n

[2bαn]∑

j=1

(
j

bαn

)(2H−2)q

= cν+1b
−1αnβ

−2
n

[2bαn]∑

j=1

(
j

bαn

)(2H−2)q 1

bαn

≤ cν+1b
−1αnβ

−2
n

∫ 2

o

x(2H−2)q dx.

Thus if (2H − 2)q > −1 and limn→∞ b−1αnβ
−2
n = 0 there is a uniform (in i)

upper bound on the remainder term rn,i,1. Note that 1 + (2 − 2H)q > 1 and
bαn → ∞ so that limn→∞ bαn(bβn)

−2 = 0 follows from the assumption that
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limn→∞(bαn)
1+(2−2H)q(bβn)

−2 = 0. Similarly, considering the remainder term
rn,,i,2 for gn,2, we have

∣∣∣∣
∑

j∈Ai

gn,2(xj )

(
tj − tj−1

b

)2∣∣∣∣ ≤ cν+1(bβn)
−2

j2∑

j=j1

(
ti − tj

b

)(2H−2)q−1

≤ cν+1(bβn)
−2

[2bαn]∑

j=1

(
j

bαn

)(2H−2)q−1

= cν+1(bαn)
1+(2−2H)q(bβn)

−2
[2bαn]∑

j=1

j (2H−2)q−1

≤ cν+1(bαn)
1+(2−2H)q(bβn)

−2
∞∑

j=1

j (2H−2)q−1

so that, under the assumption that H < 1 and limn→∞(bαn)
1+(2−2H)q

(bβn)
−2 = 0, there is a uniform (in i) upper bound on the remainder term rn,i,1.

Analogous arguments apply to Si,2 so that the sum Sn converges to the correspond-
ing double integral and c2

q(t)/q!CZ times Sn converges to the asymptotic variance
as given in the theorem. �

The asymptotic formula for the mean squared error stated above implies an
asymptotically optimal bandwidth of the form

bopt =
[

2ν + (2 − 2H)q

2(k − ν)

Iq

J 2
ν,k

] 1
2k+(2−2H)q

T

(2H−2)q
2k+(2−2H)q
n .

The central limit theorem in the corollary below states that if the Hermite rank q

equals 1, the limiting distribution of m̂(ν)(t) is normal and the estimates at different
fixed values t1, . . . , tk are asymptotically independent. If, however, q ≥ 2, a similar
limit theorem can be derived but with a non-normal asymptotic distribution which
would correspond to the marginal distribution of a Hermite process of order q .

Corollary 7.4 Suppose that the Hermite rank q of G is one. Let t = (t1, . . . , tk)
′,

m̂(ν)(t) = [m̂(ν)(t1), . . . , m̂
(ν)(tk)]′ and define the k × k diagonal matrix

D = diag
(√

I1(t1), . . . ,
√
I1(tk)

)
.

Then, under the assumptions of Theorem 7.46, we have, as n tends to infinity,

bν(Tnb)
1−HD−1{m̂(ν)(t)−E

[
m̂(ν)(t)

]} →
d

(ζ1, . . . , ζk)
′

where ζi are i.i.d. standard normal variables.
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Proof The result follows from the previous theorem and the fact that asymptotically
the distribution of

Δn = (Tnb)
(1−H)q

{
m̂(2)(τi)−E

[
m̂(2)(τi)

]}

is equivalent to the asymptotic distribution of

Δ̃n = (Tnb)
(1−H)q (−1)ν

nbν+1

n∑

j=1

K(ν)

(
tj − τi

b

)
cq(τi)

q! Hq(Zj )

= (Tnb)
1−H (−1)ν

nbν+1

n∑

j=1

K(ν)

(
tj − τi

b

)
c1(τ1)Zj

which is a sequence of normal variables. Asymptotic independence of m̂(ν)(t) and
m̂(ν)(s) for t 
= s follows by analogous arguments as in the proof of the last theorem,
along the lines of Csörgő and Mielniczuk (1995b). �

Note that the estimate of the change points will involve estimates of the trend
derivatives, which in turn will depend on the respective bandwidths. As we have
seen in the theorem earlier, if b is too large, and in particular if b−2ν(Tnb)

(2H−2)q

is of smaller order than b2(k−ν), then the bias of τ̂n will dominate the mean squared
error and no reasonable confidence interval for τ can be given. Consider, however,
(i) b2k = o((Tnb)

(2H−2)q) which allows the bias to be asymptotically negligible, or
(ii) b2k ∼ C · (Tnb)(2H−2)q which makes the asymptotic contribution of both bias
and variance of the same order. For these cases, if the Hermite rank of G is one,
asymptotic normality of τ̂n follows.

Theorem 7.47 Let τ = (τ1,τ2, . . . , τp)
′ be the points of rapid change of m, and

suppose that the assumptions of the corollary to the last theorem hold. Then there
is a sequence τ̂n = (τ̂n;1,τ̂n;2, . . . , τ̂n;p)′ such that m̂(2)(τ̂n;i ) = 0 (1 ≤ i ≤ p) and
τ̂n →p τ . Moreover, define the p × p diagonal matrix

D̃ = diag
(√

I1(τ1)
/∣∣m(3)(τ1)

∣∣, . . . ,
√
I1(τp)

/∣∣m(3)(τp)
∣∣).

Then the asymptotic distribution of τ̂n is given as follows:

(i) If b2k = o((Tnb)
2H−2) then (Tnb)

1−H D̃−1(τ̂n − τ) →
d

(ζ1, . . . , ζp)
′ where ζi

are i.i.d. standard normal variables;
(ii) If b2k ∼ C · (Tnb)2H−2 then (Tnb)

1−H D̃−1(τ̂n − τ) →
d

(μ1 + ζ1, . . . ,μp + ζp)
′

where ζi are as in (i) and

μi =
[
m(k)(τi)

k!
∫ 1

−1
K(ν)(u)uk−ν du

]/
m(3)(τi).
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Fig. 7.22 Top: Oxygen isotope values plotted against age (years before present or 1989) and an
estimated trend curve. Left middle: Distance between successive time points. Right middle: Peri-
odogram of residuals and fitted spectral density in log-log coordinates. Bottom: Estimated trend
derivatives m̂(ν) (ν = 0,1,2,3). The curve estimates are rescaled for better visibility. The two ver-
tical lines mark rapid climate change points where the threshold for the speed of change is set at
η = 100. The two main points of rapid climate change points are estimated to be at around 11,560
and 14’658 years before 1989. The asymptotic 95 %-confidence intervals for the change points
(in years before 1989) ignoring bias in estimation are (11,554;11,566) and (14,646;14,670),
respectively. Data source: Greenland Ice Core Project dataset, Johnsen et al. 1997. The figure is
reproduced from the Journal of Statistical Planning and Inference (2010), vol. 40, 3343–3354
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Proof Consistency follows from m(t) ∈ Cν+1[0,1] and the consistency of m̂(2)(t).
For the asymptotic distribution of τ̂n, we have by Taylor expansion

τ̂n:i −E(τ̂n:i ) = −m̂(2)(τi)
[
m(3)(τi)

]−1 + op
(
b−2(Tnb)

H−1).

Since the Hermite rank q of G is equal to one, the limiting behaviour given in (i)
and (ii) then follows from the last theorem and its corollary. �

Note that, a similar non-Gaussian limit theorem can be derived for q ≥ 2. By
analogous arguments as above, it can be shown that the number of zeros of m̂(2)

with |m̂(2)| > η converges to p in probability, so that when n is sufficiently large,
p can be estimated with arbitrary precision and in particular, the estimate of p can
be plugged-in for computing confidence intervals for the change points.

The example below is concerned with evidence of rapid climate changes in the
northern hemisphere approximately 20,000 years before present (‘present’ being set
at 1989). The observations are oxygen isotope ratio measurements from a Greenland
ice core (Johnsen et al. 1997) resulting in unevenly spaced time series observations,
so that a continuous time process is appropriate for modelling the regression errors.
The data are analysed and rapid change points in the trend functions are identified
by using the methods described in this section. For curve estimation, the Gaussian
kernel and its derivatives with support R were used which gave very smooth curve
estimates. This is appropriate in the current example. The regression residuals are
estimated by detrending the data series locally, using an optimal bandwidth (formula
given in the text above). The distribution of the residuals turned out to be very close
to normal so that one may assume q = 1 and c2

1(ti) ≈ var(Yi). On the original time
scale in years (before 1989) the method identifies the main points of rapid change
around the epoch known as the Younger Dryas at about 11,560 and 14,658 years
before 1989 (see Fig. 7.22). For further details of the data analysis, see Menéndez
et al. (2010).



Chapter 8
Forecasting

8.1 Forecasting for Linear Processes

8.1.1 Introduction

Here we briefly recall some basic results from forecasting. For details, see standard
time series books such as Priestley (1981) and Brockwell and Davis (1991).

8.1.1.1 Prediction Given the Infinite Past

Suppose we observe X1, . . . ,Xn generated by a stationary process with Wold de-
composition

Xt =
∞∑

j=0

aj εt−j = A(B)εt

where

A(z) =
∞∑

j=0

aj z
j ,

εt are identically distributed uncorrelated zero mean variables with variance σ 2
ε =

var(εt ),
∑

a2
j < ∞ and Bjεt = εt−j . We would like to predict Xn+k for some k ≥ 1.

Before we focus on long-memory processes, we recall some basic facts from time
series analysis (see, e.g. Priestley 1981; Brockwell and Davis 1991). The simplest
formulas can be obtained for linear prediction based on the infinite past Xt (t ≤ n),

X̂n+k =
∞∑

j=0

βj,kXn−j (8.1)

J. Beran et al., Long-Memory Processes,
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with suitably chosen weights. If Xt is invertible, then

∞∑

j=0

bjXt−j = εt

with

∞∑

j=0

bj z
j = A−1(z) =

( ∞∑

j=0

aj z
j

)−1 (|z| ≤ 1
)

and the σ -algebra generated by Xt (t ≤ n) is the same as the one generated by εt
(t ≤ n). Therefore, X̂n+k can also be written as

X̂n+k =
∞∑

j=0

αj,kεn−j . (8.2)

To judge the performance of the prediction, we use the mean squared prediction
error

MSE(k) = E
[
(X̂t+k −Xt+k)

2].

The best linear predictor minimizes the MSE(k). Since εt are uncorrelated, we have
from (8.2)

Xn+k − X̂n+k =
∞∑

j=0

aj εn+k−j −
∞∑

j=0

αj,kεn−j

=
∞∑

j=0

[aj+k − αj,k]εn−j +
k−1∑

j=0

aj εn+k−j .

Hence,

MSE(k) = σ 2
ε

∞∑

j=0

[aj+k − αj,k]2 + σ 2
ε

k−1∑

j=0

a2
j .

The second term on the right-hand side does not depend on our choice of αj,k . The
minimum is therefore achieved for

αj,k = aj+k (j = 0,1,2, . . . ).

We thus obtain the optimal linear predictor

X̂n+k =
∞∑

j=0

aj+kεn−j (8.3)
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and the optimal mean squared error

MSE(k) = σ 2
ε

k−1∑

j=0

a2
j .

In particular, for the one-step prediction X̂n+1 we obtain

MSE(1) = σ 2
ε .

On the other hand, for predictions far into the future we have

lim
k→∞ X̂n+k = 0 = E(Xt)

(with convergence in the sense of mean squared error, i.e. in L2(Ω)) and

lim
k→∞ MSE(k) = σ 2

ε

∞∑

j=0

a2
j = var(Xt ).

More generally, if

Xt = μ+
∞∑

j=0

aj εt−j

then

lim
k→∞ X̂n+k = μ,

i.e. we predict the infinitely remote observation by μ = E(Xt), and the asymptotic
prediction error is the variance of Xt . The proportion of the variability explained by
past observations can be measured by

R2(k) = MSE(k)

MSE(∞)
=

∑∞
j=k a

2
j∑∞

j=0 a
2
j

.

Formula (8.3) is not computable directly because the innovations εs , s ≤ n are
not observable. Since Xt was assumed to be invertible, the optimal weights in (8.1)
can be obtained from

A(k)(z)A−1(z) =
∞∑

j=0

βj,kz
k

(|z| ≤ 1
)

(8.4)

where

A(k)(z) =
∞∑

j=0

aj+kz
j .
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Prediction intervals follow directly from expressions for MSE(k), at the least if
Xt is a Gaussian series. In this case, a prediction interval with confidence level 1−α

is given by

Iα(k) =
[
−z1−α/2σε

√√√√√
k−1∑

j=0

a2
j , z1−α/2σε

√√√√√
k−1∑

j=0

a2
j

]
.

8.1.1.2 Construction of the Wold Decomposition from the Spectral Density

Some models are given in terms of their spectral density fX so that the coefficients
in the Wold decomposition need to be calculated based on that information. The
solution is due to a classical result by Whittle (1962). If

∫ π

−π
logfX(λ)dλ > −∞

and the autocovariance generating function

G(z) =
∞∑

k=−∞
γX(k)z

k

is such that L(z) = log(G(z)) is holomorphic in a ring r−1 < |z| < r for some r > 1,
then Xt has the Wold representation

Xt = A(B)εt =
∞∑

j=0

aj εt−j

with

A(z) =
∞∑

j=0

aj z
j = 1 +

∞∑

j=1

aj z
j = exp

( ∞∑

j=1

αjz
j

)
, (8.5)

αj = 1

2π

∫ π

−π

eijλ logfX(λ)dλ, (8.6)

and the stationary uncorrelated zero-mean process εt defined by

εt =
∫

eitλ
1

A(e−iλ)
dMX(λ;ω) =

∞∑

j=0

bjXt−j .

The coefficients aj can be obtained by

aj =
dj

dzj
A(z) |z=0

j ! . (8.7)
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Similarly, the coefficients bj are obtained from

1

A(z)
=

∞∑

j=0

bj z
j = exp

(
−

∞∑

j=1

αjz
j

)

by writing down the left-hand side as a power series and comparing the coefficients
on both sides. Furthermore,

fX(λ) = eαo
∣∣A

(
e−iλ

)∣∣2 = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2

and

σ 2
ε = var(εt ) = 2π exp(αo)

= 2π exp

(
1

2π

∫ π

−π

logf (λ)dλ

)
.

Note that fX can also be written as

fX(λ) = exp

( ∞∑

j=−∞
αje

−iλ

)
= σ 2

ε

2π
exp

( ∞∑

j=1

α̃j cos jλ

)
(8.8)

with

α̃j = 2αj (j ≥ 1).

8.1.1.3 Prediction Based on the Finite Past

Optimal linear prediction given the finite past, i.e. observations X1, . . . ,Xn, is of
the form

X̂n+k =
n∑

j=1

ϕn,j (k)Xn−j+1 = [
ϕ(n; k)]T X(n)

with X(n) = (Xn,Xn−1, . . . ,X1)
T and ϕ(n; k) = (ϕn1(k),ϕn2(k), . . . , ϕnn(k))

T

such that MSE(k) = E[(Xn+k − X̂n+k)
2] is minimized. By orthogonal projection

on the L2-closure of the span of X1, . . . ,Xn (see, e.g. Brockwell and Davis 1991) it
follows that the optimal coefficients ϕnj can be obtained from the autocovariances
by

γX(k + s − 1) = ϕn,1(k)γX(s − 1)+ · · · + ϕn,n(k)γX(s − n) (s = 1,2, . . . , n).

In matrix form, with

γX(n; k) = (
γX(k), γX(k + 1), . . . , γX(k + n− 1)

)T
,

Σn = [
γX(i − j)

]
i,j=1,2,...,n,
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this can be written as

ϕ(n; k) = Σ−1
n γX(n; k).

The forecast is then

X̂n+k = [
ϕ(n; k)]T X(n) = [

γX(n; k)]T Σ−1
n X(n),

and the mean squared prediction error is

MSE(k) = E
[
(Xn+k − X̂n+k)

2]

= γX(0)− γ T
X (n; k)Σ−1

n γX(n; k).
Forecast intervals are calculated as before, but with this formula for the k-step mean
squared error MSE(k).

Another important notion is partial correlation. If X̂n+1(2, n) denotes the best
linear prediction of Xn+1 given X2, . . . ,Xn and X̂1(2, n) the best linear prediction
of X1 given X2, . . . ,Xn, then the partial correlation (pacf) at lag n is defined as
corr(Xn+1 − X̂n+1(2, n),X1 − X̂1(2, n)) and turns out to be equal to the coefficient
of X1 in the forecast of Xn+1, i.e.

corr
(
Xn+1 − X̂n+1(2, n),X1 − X̂1(2, n)

) = ϕnn(1).

The coefficients of ϕ(n;1) can be calculated recursively, for instance, by the
Durbin–Levinson algorithm (see Brockwell and Davis 1991). The coefficients
ϕ(n; k) for k ≥ 2 can then be obtained recursively by repeated conditioning and
insertion of corresponding one-step forecasts.

8.1.2 Forecasting for FARIMA Processes

Fractional ARIMA processes are very convenient when it comes to linear fore-
casting because they are defined in terms of difference equations. This makes the
calculation of optimal prediction coefficients and prediction errors relatively easy.
Explicit and recursive formulas are available. There is an extended, mainly applied,
literature on forecasting with FARIMA and related processes (see, e.g. Reinsel and
Lewis 1987; Peiris and Pereira 1988; Smith and Yadav 1994; Crato and Ray 1996;
Palma and Chan 1997; Beran and Ocker 1999; Brodsky and Hurvich 1999; Hauser
and Kunst 2001; Baillie and Chung 2002; Bos et al. 2002; Hidalgo and Yajima
2002; Ramjee et al. 2002; Ravishanker and Ray 2002; Bhansali and Kokoszka 2003;
Bhardwaj and Swanson 2006; Man and Tiao 2006). Here we focus on the main basic
formulas.

A FARIMA(p, d, q) process with − 1
2 < d < 1

2 has the Wold decomposition

Xt = A(B)εt = (1 −B)−d ψ(B)

ϕ(B)
εt ,
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with

A(z) =
∞∑

j=0

aj z
j =

∞∑

j=0

(−d

j

)
(−1)j

1 +ψ1z + · · · +ψqz
q

1 − ϕ1z − · · · − ϕpzp
(8.9)

(see Sect. 2.1.1.4). If d 
= 0, then aj ∼ caj
d−1. For instance, for a FARIMA(0, d,0)

process ca = 1/Γ (d). Thus,

∞∑

j=k

a2
j ∼ c2

a

∫ ∞

1
x2d−2 dx · k2d−1 = c2

a

1 − 2d
k2d−1.

Hence

R2(k) =
∑∞

j=k a
2
j∑∞

j=0 a
2
j

∼ const · k2d−1.

In contrast, if d = 0, then we have a short-memory ARMA(p,q) process with an
exponential decay |aj | ≤ O(cj ) for some 0 ≤ c < 1 so that

R2(k) =
∑∞

j=k a
2
j∑∞

j=0 a
2
j

= O
(
ck
)
.

In other words, under short memory the explanatory power of past observations
decays at an exponential rate, whereas for long-memory and antipersistent pro-
cesses the decay is much slower. This essentially means that for short-memory
processes accurate forecasts cannot be made too far into the future whereas the
“forecastable” time horizon is much longer for long-memory processes. This is il-
lustrated in Fig. 8.1 with a comparison of R2(k) for FARIMA(0, d,0) models and
AR(1) processes with parameters chosen such that the variance and the lag-one cor-
relation is the same for both processes. The difference between short and long mem-
ory can also be seen by looking at the length lα(k) of prediction intervals which is
proportional to (

∑k−1
j=0 a

2
j )

1/2, compared to the length of the interval for the infinite

time horizon. The monotonically nondecreasing ratio lα(k)/ lα(∞) = √
1 −R2(k)

always converges to 1, but for long-memory processes the convergence is rather
slow (namely hyperbolic).

The optimal coefficients βj,k in the optimal forecast (8.1) are defined by

A(k)(z)A−1(z) =
∞∑

j=0

βj,kz
j

=
∞∑

j=0

aj+kz
j

∞∑

j=0

(
d

j

)
(−1)j zj

1 − ϕ1z − · · · − ϕpz
p

1 +ψ1z + · · · +ψqzq
.
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Fig. 8.1 R2(k) for FARIMA(0, d,0) processes with d = 0.4,0.2,−0.2 and −0.4, respectively,
together with corresponding values for AR(1) processes with the same variance and lag-one corre-
lation

Using the notation

αk(B) =
k−1∑

j=0

ajB
j ,

alternative expressions for βj,k can be obtained from

X̂n+k =
∞∑

j=k

aj εn+k−j = Xn+k −
k−1∑

j=0

aj εn+k−j

= B−k

{
1 − αk(B)

ϕ(B)

ψ(B)
(1 −B)d

}
Xn

=
∞∑

j=0

βj,kXn−j = βk(B)Xn

which implies

∞∑

j=0

βj,kz
j = z−k

{
1 − z−k

k−1∑

j=0

aj z
j

∞∑

j=0

bj z
j

}
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(see also Bisaglia and Bordignon 2002). Multiplying out yields the relationship

βj,k =
k−1∑

i=0

biak+j−i .

For predictions based on the finite past, one can apply the usual Durbin–Levinson
algorithm to obtain ϕ(n; k). This is particularly simple for FARIMA(0, d,0) pro-
cesses because there one has explicit formulas for γX(k). In particular, Hosking
(1981) showed the partial autocorrelation of a FARIMA(0, d,0) process to be equal
to

ϕn,n(1) = d

n− d
.

It is interesting that ϕn,n(1) is proportional to n−1 and this rate does not depend
on d . The other coefficients do depend on d , however, with

ϕn,j (1) = −
(
n

j

)
Γ (j − d)Γ (n− j − d + 1)

Γ (−d)Γ (n− d + 1)
∼ − 1

Γ (−d)
j−d−1

with the last equivalence under the assumption that j,n → ∞, j/n → 0. Note
that the hyperbolic decay and the very slow rate of ϕn,n(1) are again in contrast
to ARMA processes with d = 0 where we have an exponential bound. Also, the
very slow rate n−1 of ϕn,n(1) can be understood in the sense that the additional in-
formation from the past that is encoded in the earliest available observation X1 is
highly relevant for the future observation Xn+1.

Example 8.1 The variety of possible forecast intervals one may obtain with
FARIMA(p, d, q) models is displayed in Fig. 8.2.

8.1.3 Forecasting for FEXP Processes

FEXP processes (Beran 1993; Robinson 1994a) are defined in terms of their spectral
density. Therefore the MA-coefficients aj in the Wold representation and the AR-
coefficients bj have to be calculated from fX . Consider, for instance, cosine-based
models. A cosine based FEXP(p) process has the spectral density

fX(λ) = σ 2
ε

2π

∣∣1 − e−iλ
∣∣−2d exp

(
p∑

j=1

ϑj cos jλ

)

= ∣∣1 − e−iλ
∣∣−2d

fEXP(λ)

where fEXP is the spectral density of an FEXP(p) model with d = 0, which is also
called an EXP process Bloomfield (1973). Thus Xt can also be written as

Xt = (1 −B)−dZt
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Fig. 8.2 Simulated FARIMA(p, d, q) series for various parameter settings. In each pic-
ture, n = 100 observations were simulated and the optimal k-step forecast was calculated
(k = 1,2, . . . ,20) together with 95 %- and 99 %-prediction intervals. The forecasts (full line) as
well the actual simulated observations Xn+1, . . . ,Xn+20 (circles) are also displayed

where Zt is an EXP(p) process with short memory. Since the coefficients in the
linear filters (1 − B)−d and (1 − B)d are known, a natural approach to obtain MA-
and AR-coefficients of Xt is to obtain the MA-filter of Zt first and multiply it by the
fractional differencing filter (1 −B)−d and (1 −B)d , respectively Hurvich (2002).
The coefficients based on fEXP were derived by Bloomfield (1973). From (8.5) we
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have

AEXP(z) =
∞∑

j=0

aj z
j = exp

(
1

2

p∑

j=1

ϑjz
j

)
= exp

(
h(z)

)

so that

dj

dzj
AEXP(z) |z=0=

j∑

s=1

(
j − 1

s − 1

)
h(s)(0).

Equation (8.7) then implies a0,EXP = 1 and

aj,EXP =
dj

dzj
AEXP(z) |z=0

j ! = 1

2j

j∑

s=1

sϑsaj−s (j > 0)

(with ϑs := 0 for s > p). Moreover, the AR-coefficients are obtained from
exp(−h(z)) so that one obtains b0,EXP = 1 and

bj,EXP = − 1

2j

j∑

s=1

sϑsbj−s (s > 0).

The MA-coefficients of Xt are then obtained by

∞∑

j=0

aj z
j = (1 − z)−d

∞∑

j=0

aj,EXPz
j .

Comparing powers leads to

aj =
j∑

s=0

(−d

s

)
(−1)saj−s,EXP.

Similarly, for the AR-coefficients one has

bj =
j∑

s=0

(
d

s

)
(−1)sbj−s,EXP.

For a detailed derivation of these formulas, see Bloomfield (1973) and Hurvich
(2002).

8.2 Forecasting for Nonstationary Processes

Suppose we observe an integrated process Yt (t = 1,2, . . . , n) such that

Yt − Yt−1 = Xt
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where Xt = ∑∞
j=0 aj εt−j is a stationary linear process as before with aj ∼ caj

d−1

(0 < d < 1
2 ). Then an observation k steps ahead is of the form

Yn+k = Yn +Un+k

with

Un+k =
k∑

j=1

Xn+j .

Note that X2, . . . ,Xn can be reconstructed from Y1, . . . , Yn by differencing. Con-
sidering linear prediction of Yn+k , we have

Ŷn+k = Yn +
n−1∑

j=1

βj (k)Xn−j+1 = Yn + βT Xn:2

with X2:n = (Xn,Xn−1, . . . ,X2)
T and β = (β1, β2, . . . , βn−1)

T . The mean squared
error is

MSE(k) = E
[
(Yn+k − Ŷn+k)

2]

=
k−1∑

s=−(k−1)

(
k − |s|)γX(s)− 2

k∑

i=1

n−1∑

j=1

βjE[Xn+iXn−j+1] + βT Σnβ

=
k−1∑

s=−(k−1)

(
k − |s|)γX(s)− 2γ̃ T β + βT Σnβ

where

γ̃ = γ̃ (n; k) =
k∑

i=1

γX(n− 1; i),

and the vectors

γX(n− 1; i) = (
γX(i), γX(i + 1), . . . , γX(i + n− 2)

)T

are defined as in the stationary case. Minimizing with respect to β then leads to the
optimal solution

βopt = Σ−1
n γ̃ .

The optimal MSE is given by

MSEopt(k) =
k−1∑

s=−(k−1)

(
k − |s|)γX(s)− γ̃ T Σ−1

n γ̃ .
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In contrast to the stationary case, the MSE diverges to infinity as k → ∞ because
the first term is simply the variance of the sum of k observations Xn+1, . . . ,Xn+k .
More specifically, we have

MSE(k) ∼ cf ν(d)k
2d−1.

For more details and examples, together with extensions to forecasting in the pres-
ence of trends, see Beran and Ocker (1999).

8.3 Forecasting for Nonlinear Processes

Prediction for nonlinear processes can differ quite substantially from the case of lin-
ear processes. There is an enormous number of possibilities for nonlinear behaviour
(see, e.g. the classical book by Tong 1993). Here, we focus on volatility models be-
cause most nonlinear processes with long-range dependence known so far fall into
this category. We give a brief account of some basic problems.

Consider a volatility model Xt = σtεt (t ∈ Z) with εt i.i.d., independent of the
past, E(εt ) = 0, var(εt ) = 1, and σt a function of Xs (s ≤ t −1). The best linear pre-
diction of Xn+k given Xt (t ≤ n) is E(X) = 0 because the observations are uncorre-
lated. However, in contrast to linear processes, the conditional quadratic forecasting
error

MSEcond(k) = E
[
(X̂n+k −Xn+k)

2
∣∣Xt, t ≤ n− 1

] = E
[
X2

n+k

∣∣Xt, t ≤ n− 1
]

can be quite different from the unconditional error

MSE(k) = E
[
(X̂n+k −Xn+k)

2] = E
[
X2

n+k

]
.

This is in particular true for processes with long memory in volatility. Moreover,
for the purpose of forecasting one actually needs the standard deviation rather
than the mean squared error. However, in general

√
MSE(k) is not equal to σ̃ =

E[|σn(Xn−1,Xn−2, . . . )|], and the latter quantity is difficult to calculate (but can
be evaluated approximately by simulations). In contrast, the conditional standard
deviation is readily available due to the definition of σt (Xs, s ≤ t − 1).

We illustrate this by considering a LARCH process with weights bj ∼ const ·
jd−1 (j → ∞) for some 0 < d < 1

2 , and
∑

b2
j < 1. The conditional value of σn,

E[σn|Xt, t ≤ n− 1] = σn(Xn−1,Xn−2, . . . ) = b0 +
∞∑

j=1

bjXn−j , (8.10)

can be calculated directly. For the unconditional expected value, we know that
E(σn) = 0 and

E
(
σ 2
n

) = var
(
σ 2
n

) = b2
0

‖b‖2
2

1 − ‖b‖2
2
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where we use the notation ‖b‖2
2 = ∑∞

j=1 b
2
j (see Sect. 2.1.3.6). However, there is no

closed form formula for σ̃ = E(|σn|). Thus, σ̃ has to be evaluated by simulation.
Given Xt (t ≤ n), Xn+1 is distributed like σn+1εn+1 where σn+1 = σn+1(Xt ,

t ≤ n) is a fixed number defined by (8.10). Suppose that εt are symmetrically dis-
tributed. Since E(Xn+1 | Xt, t ≤ n) = 0, a conditional (1 − α)-prediction interval
can be given by

Icond(α) = [
X̂n+1 − |σn+1|qε; α2 , X̂n+1 + |σn+1|qε;1− α

2

]

= [−|σn+1|qε; α2 , |σn+1|qε;1− α
2

]

where qε; α2 and qε;1− α
2

are the α
2 - and (1 − α

2 )-quantiles of εt . In particular, if εt are
standard normal variables, then

Icond(α) = ±σn+1z1− α
2

where z1− α
2

is the (1 − α
2 )-quantile of the standard normal distribution. To calculate

an unconditional prediction interval, one would have to evaluate the corresponding
unconditional quantiles of Xt = σtεt . Although εt is independent of σt , calculating
such quantiles is quite difficult due to the complicated distribution of σt . Moreover,
conditional prediction intervals are more accurate because they have the correct
coverage probability even if one looks at the conditional distribution. In other words,

P
(
Xn+1 /∈ Icond(α) | Xt, t ≤ n

) = α.

If we use an unconditional prediction interval Iuncond(α) = [−c, c], then the
situation changes. Even though the constant c is chosen such that P(Xn+1 /∈
Iuncond(α)) = α, the conditional probability P(Xn+1 /∈ Iuncond(α) | Xt, t ≤ n) is a
nondegenerate random variable. If the innovations εt are continuous, then the con-
ditional coverage probability of unconditional prediction intervals is almost surely
wrong. Thus, in summary, we may conclude that it is advisable to use conditional
prediction intervals.

8.4 Nonparametric Prediction of Exceedance Probabilities

In Sect. 7.4, we have considered nonparametric estimation of time dependent dis-
tribution functions and quantiles when the time series observations are Gaussian
subordinated via an unknown function. The aim of this section is a slight extension
of that and, namely, nonparametric forecasting of exceedance (or, non-exceedance)
probabilities, a topic with major practical significance in many fields. Needless
to say, this approach can also be applied to other trend functions, i.e. to means
of stochastic processes. To start with we recall our model for the observations
Y1, Y2, . . . , Yn namely,

Yj = G(Zj , tj ),
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tj = j/n being rescaled times and {Zj , j = 1,2, . . .} is an unobserved zero mean
stationary Gaussian process with long-memory. The unknown function G(x, ·) is a
Lebesgue measurable function that is square integrable with respect to the normal
density. This assumption will allow us to use Hermite polynomial expansions. The
Gaussian process Zj has correlations that decay slowly, i.e. it has long-memory, and
in particular

Cov(Zj ,Zj+u) = γ
(|u|) ∼ C × |u|2H−2, as |u| → ∞

with 1/2 < H < 1 and C > 0. We want to forecast values of the non-exceedance
probability Ft(y) for a prespecified value of y ∈ R where

Ftj (y) = P(Yj ≤ y)

or of the level-crossing probability 1 − Ft(y) at time t . We let Ft , t ∈ (0,1) be
continuous, finitely differentiable, as many times as is required, with respect to t

and y, and we denote the probability density function at time t by,

ft (y) = ∂

∂y
Ft (y).

Finally, under some suitable conditions, we will also derive CLT’s facilitating
construction of asymptotic prediction bands for Ft(y) where y is a prespecified
real number. The main ideas covered here are in Ghosh and Draghicescu (2002a,
2002b) and Beran and Ocker (1999). Additional important information concerning
the asymptotic properties is in Beran (1986), Dehling and Taqqu (1989a, 1989b),
Csörgő and Mielniczuk (1995a); also relevant is Leadbetter et al. (1983).

The time dependent Gaussian subordination model considered here is appropri-
ate for processes for which the marginal distribution function at any point of time
can have an arbitrary shape and an adequate description by means of a parametric
family becomes difficult. This property then demands that the method of estimation
and prediction be sufficiently flexible. For nonparametric function prediction of a
function μ(·) at a future time tn + δ based on data until time tn, the main idea is
to use a Taylor series expansion of μ(tn + δ) around μ(tn) and then to plug in es-
timates of the various derivatives. For instance, a k-step forecast based on n data
points would correspond to tn + δ = (n+ k)/n. We sketch the main ideas here, but
there are various other factors that affect the quality of prediction. One such factor
is the issue of boundary bias when μ(t) and its derivatives where t close to 1 is
being estimated from the data. For illustration, for estimating μ(t) or its derivatives
at t ∈ (0,1), we use kernel smoothing for estimating derivatives. Needless to say,
local polynomials of a suitable degree would be more appropriate when t reaches
the boundary.

Figure 8.3 illustrates the time series of the mean daily precipitation totals (mm)
in the 1900s from Grand St. Bernard, Switzerland and the estimated probability (as
a function of time) that the precipitation level stays below 5 mm. The figure shows
estimated probabilities for 1901–1970 with prediction for the next 20 years. For
comparison, estimates are also shown for the entire series.
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Fig. 8.3 Mean daily precipitation in Grand St. Bernard (mm) in the 1900s: (left) precipitation
time series, (right) estimated (solid lines) and predicted (broken lines) probability function. Data
source: MeteoSwiss, Switzerland. The figures have been reproduced from International Journal of
Forecasting (2002), Vol. 18, pp. 283–290

At the beginning of the century, an average daily precipitation value of 5 mm is
near the right tail of the distribution. However, after some 100 years, the precipita-
tion distribution had shifted to the right, well beyond this daily average.

Using a symmetric probability density function K(u), u ∈ (−1,1) and a se-
quence of bandwidths bn = b for which b → 0 and nb → ∞ as n → ∞, we start by

defining the estimate of the ith derivative F
(i)
t (y) = ∂i

∂t i
Ft (y) as follows: let Ki(·)

be a kernel of order i + 2 (see Gasser and Müller 1984 and Eubank 1987). Define
the Priestley–Chao estimator of F (i)

t (y) as

F̂
(i)
t (y) = (−1)i

nbi+1

n∑

j=1

Ki

(
tj − t

b

)
Ij (y)

where

Ij (y) = 1 if Yj ≤ y and Ij (y) = 0 otherwise.

When i = 0, the above estimator is simply the usual Priestley–Chao estimator
of Ft(y).

Since the indicator function Ij (y) is a function of Yj , it is also Gaussian subor-
dinated. We assume that the following Hermite polynomial expansion holds

W(tj , y) = Ij (y)− P(Yj ≤ y) =
∞∑

l=m

cl(tj , y)

l! Hl(Zj )

where m ≥ 1 is the Hermite rank, cl are the Hermite coefficients, and Hl denotes
the Hermite polynomial of degree l. Suitable regularity conditions will be assumed
for the Hermite coefficients. For instance, due to the orthogonality of the Hermite
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polynomials, and since var(Hl(Zj )) = l!,

var
(
W(t, y)

) =
∞∑

l=m

c2
l (t, y)

l!

which implies

∞∑

l=m

c2
l (t, y)

l! < ∞

where y ∈ R and t ∈ (0,1). Furthermore, we will assume that

∂2

∂t2
var

(
W(t, y)

)
< ∞

for t ∈ (0,1) and y ∈ R. These conditions essentially imply smoothness of changes
in the indicator function W (Draghicescu 2002). We also assume that the long-
memory parameter H > 1 − 1/(2m), in which case, W(tj , y), j = 1,2, . . . will
have long-memory.

For prediction of Ft(y) to a future point t + δ, it is convenient to consider the
logistic transformation

Vt (y) = log

(
Ft (y)

1 − Ft (y)

)

and define

Ut,δ(y) = Vt (y)+
k∑

j=1

δj

j ! ×
(

∂j

∂tj
Vt (y)

)
.

Then by Taylor series expansion around δ = 0,

Vt+δ(y) = Ut,δ(y)+ (
δk+1/(k + 1)!)Rt̃ (y)

where

Rt(y) = ∂k+1

∂tk+1
Vt(y)

and t < t̃ < t + δ. For convenience, we assume that Vt (y) has k continuous deriva-
tives with respect to t in [0,1] and a finite (k+ 1)st derivative in (0,1). Specifically,
there exist a measurable function Mt(y) defined on [0,1]×R → R and a constant a
such that |Rt(y)| <Mt(y) and E[Mt(Y )] < a < ∞ (see, e.g. Rao 1973 and Serfling
1980).

The above discussion shows that when δ converges to zero, the difference be-
tween Vt+δ(y) and Ut,δ(y) diminishes. Since Vt+δ(y) is the logistic transformation
of a cumulative probability distribution function at time t + δ, it is monotone in y,
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justifying the use of Ut,δ(y) for a ‘δ steps ahead of t’ prediction. In particular, when
δ is small, the inverse logistic transform

exp(Ut,δ(y))

1 + exp(Ut,δ(y))

is a valid probability distribution function. In particular, in that case, the predicted
value of the α-quantile (0 < α < 1) defined as any value θt (α) for which

θt (α) = inf
y

{
y|Ft (y) ≥ α

}
,

can then be obtained by simply inverting the predicted distribution function. For
convenience, we will assume that θt (α) is unique.

For illustration, consider k = 2, in which case the expression for Ut,δ(y) becomes

Ut,δ(y) = log

(
Ft(y)

1 − Ft(y)

)
+ δ

∂
∂t
Ft (y)

Ft (y)(1 − Ft(y))

+ δ2

2!
[ ∂2

∂t2 Ft (y)

Ft (y)(1 − Ft(y))
−

{ ∂
∂t
Ft (y)

Ft (y)(1 − Ft(y))

}2

+ 2Ft(y)

{ ∂
∂t
Ft (y)

Ft (y)(1 − Ft(y))

}2]

= ψ(F0,F1,F2), say,

where Fi = ∂i

∂t i
Ft (y), i = 0,1,2. Similarly, define Ût,δ(y) by substituting the esti-

mates F̂i , i = 0,1,2.
Fix t and y and consider

ai = ai(t, δ, y) = ∂

∂Fi

ψ(F0,F1,F2), i = 0,1,2,

where

a0 = 1

F0(1 − F0)
+ δF1(2F0 − 1)

(F0(1 − F0))2
+ δ2

2

[
F2(2F0 − 1)

(F0(1 − F0))2
+ 2F 2

1 (4F0 − 3F 2
0 − 1)

F 2
0 (1 − F0)4

− 2F 2
1 (2F0 − 1)

(F0(1 − F0))3

]
,

a1 = δ

F0(1 − F0)
+ δ2F1

F0(1 − F0)2
− δ2F1

(F0(1 − F0))2
,

a2 = δ2

2F0(1 − F0)
.
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Then,

Ût,δ(y) = Ut,δ(y)+
2∑

i=0

ai(F̂i − Fi)+Rn(t, δ, y)

where

Rn(t, δ, y) = op
(
max(F̂0 − F0, F̂1 − F1, F̂2 − F2)

)
.

For simplicity, let b0 = b1 = b2 = b. Let as n → ∞, b → 0 and nb → ∞. We have

Theorem 8.1 As n → ∞,

(a) Bias: E(Ût,δ(y))−Ut,δ(y) = O(b2);
(b) Variance: var(Ût,δ(y)) = Vn(t, δ, y;m,b,H)+ o(b−4(nb)m(2H−2))

where

Vn(t, δ, y;m,b,H) =
2∑

i=0

2∑

j=0

ai(t, δ, y)aj (t, δ, y)Bn,i,j (t, y;m,b,H)

and

Bn,i,j (t, y;m,b,H)

= (nb)m(2H−2)

bi+j

Cm

m! c
2
m(t, y)

∫ 1

−1

∫ 1

−1
Ki(u)Kj (v)|u− v|m(2H−2) dudv.

Proof The proof follows using arguments of Sect. 7.4. �

Theorem 8.2 Let m = 1. We assume the regularity conditions on Vt (y) mentioned
above. Then under the conditions stated above and if b−4(nb)m(2H−2) → 0 as n →
∞, for every fixed t ∈ (0,1) and y ∈ R,

(
Ût,δ(y)− Vt+δ(y)

)/√
Vn(t, δ, y;m,b,H)

converges to a standard normal variable.

Proof Note that due to the previous theorem, for every fixed t ∈ (0,1) and y ∈ R,
the mean squared error of Ût,δ(y), i.e.

E
(
Ût,δ(y)− Vt+δ(y)

)2 = O
(
b−4(nb)m(2H−2))+O

(
b4),

so that if b−4(nb)m(2H−2) → 0 as n → ∞, by Chebyshev’s inequality, |Ût,δ(y) −
Vt+δ(y)| converges to zero in probability. Normality follows from Dehling and
Taqqu (1989a, 1989b). �
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By using inverse logistic transformation, for 0 < α < 1 and y ∈ R, an approx-
imate 100(1 − α) %-prediction interval can now be given by (F̂

(l)
t+δ(y), F̂

(u)
t+δ(y))

where

F̂
(l)
t+δ(y) = eÛt,δ(y)−zα/2

√
Wn(t,δ,y;m,b,H)

1 + eÛt,δ(y)−zα/2
√
Vn(t,δ,y;m,b,H)

,

F̂
(u)
t+δ(y) = eÛt,δ(y)+zα/2

√
Wn(t,δ,y;m,b,H)

1 + eÛt,δ(y)+zα/2
√
Vn(t,δ,y;m,b,H)

and zα/2 is the upper α/2-point of the standard normal distribution.



Chapter 9
Spatial and Space-Time Processes

9.1 Spatial Models on Z
k

Spatial data play an important role in many areas such as ecology, biology, environ-
mental monitoring, agronomy, remote sensing, geology, to name a few. Sometimes
observations are obtained on a regular lattice (see, e.g. Whittle 1962; Bartlett 1974;
Besag 1974; Cressie 1993; Christakos 1992, 2000; Benson et al. 2006; Sain and
Cressie 2007; and references therein). This leads to considering spatial processes on
a grid, or more specifically, random fields Xt with index t ∈ Z

2. On the other hand,
if the spatial points are not on a regular grid, then random fields with t ∈ R

2 are
used.

Suppose now that our data can be modelled by a stationary random field Xt ∈ R

(t ∈ Z
2) on a regular grid. In general, the autocovariances γ (k) = cov(Xt ,Xt+k)

(where t = (t1, t2), k = (k1, k2)) are a function of the two lags k1 and k2 and may
differ from γ (k̃1, k̃2) even if ‖k‖2 = k2

1 + k2
2 is equal to ‖k̃‖2 = k̃2

1 + k̃2
2 . If this is the

case for at least one pair of (two-dimensional) lags k, k̃, then Xt is called anisotropic.
Otherwise, Xt is isotropic and we can write (in a slight misuse of notation) γ (k) =
γ (‖k‖), i.e. the autocovariance function depends on the Euclidian distance only and
not on the direction. The random field is said to have long memory if

∑

k∈Z2

∣∣γ (k)
∣∣ = ∞

(see, e.g. Lavancier 2006, 2007). Most work in the literature focusses on long-range
dependent random fields with a hyperbolic decay of γ of the form

γ (k) ∼ L
(‖k‖)h

(
k

‖k‖
)

‖k‖−α = L
(‖k‖)h

(
k

‖k‖
)

‖k‖2d−2 (0 < α < 2)

as ‖k‖ → ∞, where L is slowly varying at infinity and h is a continuous function
on the unit sphere in R

2. Note that d = 1− 1
2α ∈ (0,1). Also note that this definition

can be generalized to random fields on a grid of arbitrary dimension m, i.e. t ∈ Z
m.

J. Beran et al., Long-Memory Processes,
DOI 10.1007/978-3-642-35512-7_9, © Springer-Verlag Berlin Heidelberg 2013
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Since h(u) (u = (u1, u2) = k/‖k‖) is an arbitrary function of u1, u2, this definition
includes isotropic as well anisotropic fields. However, since asymptotically the es-
sential part is ‖k‖−α , Lavancier (2006, 2007) suggests to call such long-memory
fields isotropic, even if h depends on the direction. In a similar way as for time
series, the definition of long memory based on the autocovariance function is equiv-
alent under suitable regularity conditions to a pole of the spatial spectral density of
the following form:

Definition 9.1 A stationary random field Xt (t ∈ Z
2) is said to have long-range

dependence or long memory if it has a spectral distribution that is continuous every-
where except at zero, where it has a pole of the form

f (λ) ∼ L
(‖λ‖)h

(
λ

‖λ‖
)

‖λ‖α−2 = L
(‖λ‖)h

(
λ

‖λ‖
)

‖λ‖−2d (0 < α < 2)

with L slowly varying at zero, h continuous on the unit sphere and λ ∈ [−π,π]2.

This definition implies that the long-memory property, characterized by the pa-
rameter d , is the same in all directions. In some applications, this assumption is too
restrictive. For instance, in ground water flow and contaminant transport studies,
it is common practice to model physical properties by scalar fields with stronger
long memory in the direction of the flow (Guo et al. 2009). Ponson et al. (2005)
conjecture the existence of universal anisotropic long-memory exponents in frac-
ture surfaces that correspond to certain physical properties of the material such as
roughness, growth and the so-called dynamic exponents. Also see, e.g. Makse et al.
(1996), Elliott et al. (1997), Hristopulos (2002), Kelbert et al. (2005) for other ex-
amples from physics, geophysics, etc. An overview of recent results on anisotropic
random fields can be found in Lavancier (2006, 2007) (also see Matheron 1973;
Mandelbrot 1983; Solo 1992; Heyde and Gay 1993; Anh et al. 1999; Angulo et al.
2000; Ruiz-Medina et al. 2003; Chan and Wood 2004; Fernández-Pascual et al.
2006).

More generally, we may thus extend the definition of long memory to spectral
densities that are unbounded on at least one line λ2 + βλ1 = 0 or λ1 + βλ2 = 0,
or even more generally, on a one-dimensional set (or curve) Apole ⊆ [−π,π]2 of
positive one-dimensional Lebesgue measure (i.e. of positive length). The meaning
of λ2 + βλ1 = 0 is that long-range dependence in the sense of time series is present
when following a transect in the direction k = (k1, k2) with k2 = βk1. This can be
seen by considering the autocovariance function along this line, namely

γ (k) = γ (k1, β1k1) =
∫∫

eik1(λ1+β1λ2)f (λ1, λ2) dλ1 dλ2 =: γ ∗(k1).

Assuming a pole of the form f (λ) ∼ L(|λ2 + βλ1|)|λ2 + βλ1|−2d with 0 < d < 1
2 ,

analogous arguments as in Sect. 1.3.1 lead to γ ∗(k1) ∼ L∗(|k1|)|k1|2d−1 as |k1| →
∞. Note that here d is limited to the range (0,1/2) because the pole is directional.



9.2 Spatial FARIMA Processes 755

9.2 Spatial FARIMA Processes

A simple model that follows this definition and can accommodate anisotropic long
memory can be obtained, for instance, by extending the fractional ARIMA process
to space as follows (Beran et al. 2009). Define polynomials

ϕ1(z) = 1 −
p1∑

j=1

ϕ1j z
j , ϕ2(z) = 1 −

p2∑

j=1

ϕ2j z
j ,

ψ1(z) = 1 +
q1∑

j=1

ψ1j z
j , ψ2(z) = 1 +

q2∑

j=1

ψ2j z
j

(9.1)

with no roots for |z| ≤ 1, and let εrs (r, s ∈ Z) be i.i.d. random variables with
E(εrs) = 0 and σ 2

ε = var(εrs) < ∞. Denoting by B1 and B2 backshift oper-
ators in the horizontal and vertical direction, respectively (i.e. B1εrs = εr,s−1,
B2εrs = εr−1,s ) we define “vertical” and “horizontal” linear filters Λ1(B1) =
ϕ−1

1 (B1)ψ1(B1) and Λ2(B2) = ϕ−1
2 (B2)ψ2(B2) , and the product

Λ(B1,B2) = Λ1(B1)Λ2(B2).

To include the possibility of long memory and antipersistence, we define further for
d1, d2 ∈ (− 1

2 ,
1
2 ) the fractional differencing operators (1 − B1)

d1 and (1 − B2)
d2 ,

respectively. Then a process Xrs (r, s ∈ Z) that solves

Xrs = (1 −B1)
−d1(1 −B2)

−d2Λ(B1,B2)εrs = Ψ1(B1)Ψ2(B2)εrs (9.2)

is called a spatial fractional ARIMA process, or ARFIMA(p,d,q) process where
p = (p1,p2), d = (d1, d2) and q = (q1, q2). The idea of the model is that there is
a vertical and a horizontal dependence structure in form of a fractional ARIMA
model. From the definition, it follows that the spectral density of Xrs is equal to

f (λ1, λ2) = σ 2
ε

4π2

∣∣1 − e−iλ1
∣∣−2d1

∣∣1 − e−iλ2
∣∣−2d2

∣∣∣∣
ψ1(e

−iλ1)

ϕ1(e−iλ1)

∣∣∣∣
2∣∣∣∣
ψ2(e

−iλ2)

ϕ2(e−iλ2)

∣∣∣∣
2

(9.3)

= σ 2
ε f1(λ1)f2(λ2) (9.4)

where fi (i = 1,2) are the spectral densities of a fractional ARIMA model with
innovation variance one, p = pi , d = di , q = qi , and the MA- and AR-polynomials
ϕ(z) = ϕi(z), ψ(z) = ψi(z), respectively. Note that here

Apole = {
λ ∈ [−π,π]2 : λ1 = 0, λ2 ∈ [−π,π]}∪ {

λ ∈R
2 : λ1 ∈ [−π,π], λ2 = 0

}

= {λ : λ1 + βλ2 = 0 with β = 0} ∪ {λ : λ2 + βλ1 = 0 with β = 0},
provided that d1, d2 > 0. The short-memory version of this model (i.e. d1 = d2 = 0)
was introduced in Martin (1979). Sethuraman and Basawa (1995) considered a ver-
sion with d2 = 0, d1 > 0 and Ψ1 finite. The fully spatial version was introduced in
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Beran et al. (2009). Note furthermore that we also may obtain directional antiper-
sistence for negative values d1 or d2, respectively.

It is worth noting that for spatial data, there are many other ways of generating
long-range dependence. Generally speaking, we may start with the spectral repre-
sentation of an uncorrelated (i.e. white noise) spatial process

εt =
∫ π

−π

∫ π

−π

ei〈t,λ〉 dMε(λ1, λ2)

where Mε(λ1, λ2) = Mε(λ1, λ2;ω) is the spectral measure of εt and 〈t, λ〉 =
t1λ1 + t2λ2. Given a function a(e−iλ) = a(e−iλ1, e−iλ2) ∈ L2([−π,π]2), the pro-
cess

Xt =
∫ π

−π

∫ π

−π

ei〈t,λ〉a
(
e−iλ

)
dM(λ1, λ2)

is well defined with spectral density

fX(λ) = σ 2
ε

(2π)2

∣∣a
(
e−iλ

)∣∣2 (
λ ∈ [−π,π]2).

Long-range dependence is achieved whenever a(λ) is unbounded on a set Apole. For
instance, consider

Xt = (
1 −B1B

m
2

)−d
εt

with 0 < d < 1
2 and m ≥ 2 (see Lavancier 2006, 2007). Although there is only one

fractional differencing parameter d , long memory is not at all isotropic. The spectral
density is equal to

fX(λ) = σ 2
ε

4π2

∣∣1 − ei(λ1+mλ2)
∣∣−2d

so that

γX(k1,mk1) ∼ const · |k1|2d−1

as |k1| → ∞, whereas γX(k) = 0 for all other directions.

9.3 Maximum Likelihood Estimation

For a linear process on a regular grid, a straightforward approach to maximum like-
lihood estimation can be obtained from the conditional representation of Xt (t ∈ Z

2)
given all other observations. The reason is that for an invertible linear process,
E(Xt | Xs, s 
= t) is linear in Xs (s 
= t) and the residuals εt = Xt − E(Xt | Xs,

s 
= t) are i.i.d. variables with distribution Fε . In particular, if εt are Gaussian and
E(Xt | Xs, s 
= t) is characterized by a finite dimensional parameter ϑ0 = (σ 2

ε;0, θ
0),
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then maximum likelihood estimation of ϑ0 can usually be approximated asymptot-
ically by minimizing the residual sum of squares SSE = ∑

ε2
t (θ) with respect to

θ and setting σ̂ 2
ε = n−1SSE(θ̂). As in the time series context, there are two main

issues that have to be addressed to prove that this estimator has asymptotically the
same distribution as the exact MLE: First of all, in the exact MLE, conditioning can
be done on the observed values Xs only (i.e. a finite number of Xs -values). The
second problem which is related to the first one is that none of the εt can be evalu-
ated exactly because only a finite number of Xs -values are known. More generally,
the same estimator can be used for linear processes with an arbitrary distribution
of εt (satisfying certain moment conditions). In the general case, the method no
longer approximates the MLE, but usually shares the same or similar limiting prop-
erties. Approximations of the likelihood function of short-memory Gaussian lattice
processes are discussed, for instance, in Besag (1974), Tjostheim (1978), Martin
(1979), Guyon (1982, 1995), Kashyap (1984), Dahlhaus and Künsch (1987), Huang
and Anh (1992). In the long-memory case, the issue of obtaining a good approxi-
mation is more delicate because of the farther reaching dependence structure.

Consider, for instance, the fractional ARIMA lattice model introduced above
(Sect. 9.2). If 0 < d1, d2 < 1

2 and the roots of the polynomials

ϕ1(z) = 1 −
p1∑

j=1

ϕ1j z
j , ϕ2(z) = 1 −

p2∑

j=1

ϕ2j z
j ,

ψ1(z) = 1 +
q1∑

j=1

ψ1j z
j , ψ2(z) = 1 +

q2∑

j=1

ψ2j z
j

(9.5)

are outside the unit circle, then Xrs is stationary and invertible so that we have the
representation

εrs = (1 −B1)
d1(1 −B2)

d2Λ−1(B1,B2)Xrs (9.6)

=
∞∑

j,l=0

bj (θcol)bl(θrow)Xr−j,s−l . (9.7)

The unknown parameter vector is ϑ = (σ 2
ε , θ

T ), where σ 2
ε = var(εrs) > 0, and θ =

(θTrow, θ
T
col) ∈ Θ ⊆ R

p1+q1+1 ×R
p2+q2+1 with

θrow = (
d1, ϕ

T
1 ,ψT

1

)T
, θcol = (

d2, ϕ
T
2 ,ψT

2

)T
, (9.8)

and

ϕi = (ϕi1, . . . , ϕipi
)T , ψi = (ψi1, . . . ,ψiqi )

T (i = 1,2). (9.9)

For convenience, we use the same notation ϕi and ψi for the polynomials and the
corresponding parameter vectors, respectively. Approximate MLE as above is dis-
cussed in Beran et al. (2009). Related results for special cases are discussed in
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Boissy et al. (2005) and Sethuraman and Basawa (1995). For local Whittle esti-
mation based on low frequencies of the spatial periodogram, see Guo et al. (2009).
Due to the factorized form of the linear filter, it is possible to calculate approximate
values of εrs even if we observe Xrs on an irregularly shaped area (r, s) ∈ A ⊆ Z

2.
To obtain asymptotic results, A has to grow with increasing sample size n. Thus, we
assume that observations consist of

Xrs, (r, s) ∈ An (9.10)

with

An = {
(r, s) ∈N

2+ : mrow,L ≤ r ≤ mrow,U ,mcol,L(r) ≤ s ≤ mcol,U (r)
}

(9.11)

where mcol,L(·) and mcol,U (·) are functions with finite support mapping N+ (the
set of positive integers excluding zero) to N. This definition includes quite gen-
eral shapes. For instance, an L-shaped area can be defined by setting mrow,L = 1,
mrow,U = n, mcol,L(r) ≡ 1, mcol,U (r) = n − [n/2] · 1{r > [n/2]}. A rectangular
area with side lengths n and [na0] is obtained by setting mrow,L = 1, mrow,U = n,
mcol,L(r) ≡ 1, and mcol,U (r) ≡ [na0]. The computable approximation of εrs(θ) is

ers(θ) =
∑

j,l∈Bn(r,s)

bj (θcol)bl(θrow)Xr−j,s−l (θ ∈ Θ), (9.12)

with Bn(r, s) = {j, l ≥ 0 : (r − j, s − l) ∈ An}. The estimate of θ is set equal to

θ̂ = arg min
∑

(r,s)∈An

e2
rs(θ). (9.13)

In the following, we use the notation

ėrs(θ) = [ėrs;1, . . . , ėrs;p1+q1+p2+q2+2]T (9.14)

with

ėrs;j = ∂

∂θj
ers(θ) (9.15)

and

S̃n(θ) =
∑

(r,s)∈An

ėrs(θ)ers(θ). (9.16)

The estimator θ̂ can also be defined as the solution of

S̃n(θ̂ ) = 0. (9.17)

This definition is useful for deriving the asymptotic distribution. Beran et al. (2009)
use the following assumptions:
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• (A1) Let εrs = εrs(θ
0) be i.i.d. zero mean random variables with finite variance

and denote by

ε̇rs
(
θ0) =

∞∑

j,l=0

∂

∂θ

[
bj (θcol)bl(θrow)

]∣∣
θ=θ0Xr−j,s−l

= [
ε̇rs;1

(
θ0), . . . , ε̇rs;p1+q1+p2+q2+2

(
θ0)]T (9.18)

the derivative of εrs(θ) at θ = θ0. Then, as n → ∞,

n−1 max
1≤r,s≤n

∥∥εrs
(
θ0)ε̇rs

(
θ0)∥∥2 = op(1) (9.19)

where ‖ · ‖ denotes the Euclidean norm and op(1) means that the sequence of
random variables converges to zero in probability as n tends to infinity.

• (A2) With the same notation as in (A1)

lim
n→∞n−1E

{
max

1≤r,s≤n

∥∥εrs
(
θ0)ε̇rs

(
θ0)∥∥2

}
= 0. (9.20)

• (A3) Θ is compact and θ ∈ Θ0 where Θ0 denotes the interior of Θ .
• (A4)

Xrs, (r, s) ∈ An, (9.21)

with An defined in (11) and such that there exist constants 0 < κrow, κcol ≤ 1,
0 ≤ a < b ≤ 1, with

lim
n→∞n−1[mrow,U −mrow,L] = κrow (9.22)

and

lim
n→∞n−1 min

a≤r≤nb

[
mcol,U (r)−mcol,L(r)

] = κcol. (9.23)

Moreover, the number of points in An is such that

0 < lim
n→∞n−2|An| = A< ∞. (9.24)

The intuitive meaning of these assumptions can be explained as follows. The first
two assumptions, (A1) and (A2), depend on extreme value properties of εrs . These
conditions hold, for instance, if εrs are in the maximum domain of attraction of the
Gumbel distribution (see Embrechts et al. 1997). Assumption (A3) is standard in
the context of parameter estimation. It makes sure that asymptotically the solution
of the estimating equation is bounded away from the border of the parameter space.
Finally, (A4) provides an asymptotic characterization of the observational area An.
For example, for a rectangle with sides of length 1 and a we have κrow = 1, κcol = a

and A = a, whereas for the L-shaped area described previously we have κrow = 1,



760 9 Spatial and Space-Time Processes

A = 3
4 , a = 0, b = 1, κcol = 1

2 . Under (A1)–(A4), the asymptotic distribution of θ̂

can be derived by defining

Sn(θ) =
∑

(r,s)∈An

ε̇rs(θ)εrs(θ) (9.25)

and essentially showing

lim
n→∞|An|−1E

[∥∥Sn
(
θ0)− S̃n

(
θ0)∥∥2] = 0

and

|An|− 1
2 Sn

(
θ0) →

d
Z ∼ N

(
0, σ 2

ε V
(
θ0)), (9.26)

where

V
(
θ0) =

(
V1 0
0 V2

)
(9.27)

with the (p1 + q1 + 1)× (p1 + q1 + 1) matrix

V1 = 1

4π

∫ π

−π

∂

∂θrow
logf1(λ)

[
∂

∂θrow
logf1(λ)

]T
dλ

and the (p2 + q2 + 1)× (p2 + q2 + 1) matrix

V2 = 1

4π

∫ π

−π

∂

∂θcol
logf2(λ)

[
∂

∂θcol
logf2(λ)

]T
dλ.

Note that the convergence of |An|− 1
2 Sn(θ

0) follows from a martingale property anal-
ogous to the case of a time series. Conditioning is, however, more complex since it
has to be done in space. More specifically, define

Zt,n = n− 1
2 St

(
θ0) (9.28)

=
t∑

u=1

ξu,n (9.29)

with

ξu,n = n− 1
2

[
u∑

j=1

ε̇uj
(
θ0)εuj

(
θ0)+

u−1∑

j=1

ε̇ju
(
θ0)εju

(
θ0)

]

= n− 1
2

[
u∑

j=1

ηuj +
u−1∑

j=1

ζuj

]
.
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Defining the array of σ -algebras Ft,n = σ(Zu,n, u ≤ t), we have

E[ξt,n|Ft−1,n] = 0

and

E[Zt,n|Ft−1,n] = Zt−1,n.

Thus, ξt,n is an array of martingale differences and Zt,n an array of martingales. The
central limit theorem for

n−1Sn
(
θ0) = n− 1

2 Zn,n

then follows from Theorem 3.2 in Hall and Heyde (1980) since their sufficient con-
ditions

n−1 max
1≤u≤n

ξ2
u,n = op(1) (9.30)

and

lim
n→∞n−1E

{
max

1≤u≤n
ξ2
u,n

}
= 0 (9.31)

turn out to hold under the given assumptions. The final result for θ̂n can be stated as
follows:

Theorem 9.1 Under (A1)–(A4), there exists a sequence θ̂n such that (9.17) holds,
θ̂n converges to θ0 in probability and

|An| 1
2
(
θ̂n−θ0) →

d
Z ∼ N

(
0,V −1(θ0)). (9.32)

This result holds even if di = 0 or di < 0 (as long as d1 and d2 are estimated). It is
interesting to note that the shape of V implies that θ̂row and θ̂col are asymptotically
independent. This can be used to obtain a simple test of isotropy. Under the null
hypothesis H0 : d1 = d2, the statistic

T = |An| 1
2

d̂1 − d̂2√
σ 2

1 + σ 2
2

,

with σ 2
i (i = 1,2) equal to the asymptotic variances of d̂i , is approximately standard

normal. In general, σ 2
i (i = 1,2) have to be replaced by estimates obtained from θ̂ .

The only exception is the case with pi = qi = 0 where σ 2
i = 6/π2 ≈ 0.608. Beran

et al. (2009) apply this test to show that, for the ozone data introduced in Sect. 1.2
(Fig. 1.19), there is evidence for stronger long memory in the north–south direction.
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9.4 Latent Spatial Processes: An Example from Ecology

In the context of species diversity assessment, one is often interested in estimating
the total number of unseen species which have not been discovered during a survey.
Consider, for example, the problem of estimating the number of plant species in a
very large landscape. The usual method consists of counting the total number of
species in an area and then extrapolating this value to a much larger area. Extrapola-
tion takes place after one has fitted a suitable curve to the data that are obtained from
surveying areas of increasing size. Such a curve is known as the species–area curve.
It is popular to fit a linear model to the scatter plot of the (x, y) observations in
log–log coordinates where x denotes area and y is species count. Since the number
of species typically increases with increasing area, this approach leads to a positive
slope, implying a predicted value of an infinite number of species when area tends
to infinity. This disturbing outcome leads one to postulate a spatial model that is
decisive of species occurrence and examining regularity conditions that would lead
to a finite predicted value for the total species number.

To proceed with our argument, we assume a systematic survey design, a lat-
tice u = (i, j), i, j = 1,2, . . . , n such that k = n2 denotes the total number of sites
where species have been counted. Species occurrence is assumed to depend on a
background process X(u) which could be, for instance, moisture, soil quality, expo-
sure to sunlight, and so on. This process that is decisive of species occurrence will
be assumed to be of the form

X(u) = GX

(
Z(u)

)
.

Here, Z(u) is a zero mean, unit variance Gaussian spatial process with covariance
function

cov
(
Z(u),Z(u + h)

) = γZ
(|h|),

h = (l1, l2), l1, l2 = 0,±1,±2, . . . and GX is an arbitrary Lebesgue-measurable L2

function with respect to the standard normal density. Note that by definition, X(u)
is also stationary but it need not be Gaussian. Stationarity of the background process
X(u) implies that we are concerned with a large area where apart from stochastic
variations ecologically similar conditions prevail, so that the same species–area law
can be postulated. Let X be univariate, although generalizations can be carried out.
We consider two correlation types:

Type 1: Short memory:
∑

h |γZ(h)|m < ∞ and,
Type 2: Long memory: γZ(h) ∼ |h|−2α , as |h| → ∞, where 0 < α < 1/m and

m ≥ 1 is a positive integer. In this case,
∑

h |γZ(h)|m = ∞.

Let there be S different species in the landscape, which have been assigned serial
numbers 1,2, . . . , S and suppose that X(u) ∈ As where As is an interval on the real
line suitable for species occurrence so that we may define the spatial process Ys that
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takes binary values on the lattice as follows:

Ys(u) = 1 if X(u) ∈ As,

= 0 otherwise,

having expected value E[Ys(u)] = P(X(u) ∈ As) = ps(u) = ps which does not
depend on u due to stationarity of X. In addition, suppose that the species have
been ordered such that s1 < s2 implies ps1 ≤ ps2 . As S is assumed to be large, we
will assume ps = p(xs) where xs = s/S and p is a sufficiently regular function on
[0,1].

Note that by definition, Ys is also a transformation of the same Gaussian spatial
process Z, and we may write

Ys(u)− p(xs) = GY

(
Z(u), xs

)
,

for an appropriately defined GY . We assume that GY admits the following Hermite-
polynomial expansion:

Ys(u)−E
[
Ys(u)

] =
∞∑

l=m

cl(xs)

l! Hl

(
Z(u)

)

having a Hermite rank m ≥ 1. The Hermite coefficients cl(x) are continuous func-
tions, and as before, Hl(x) is the Hermite polynomial of degree l in x ∈ R. Summing
the values of the indicator process Ys over k plots, one arrives at the number of plots
where species s occurs. Let this number be denoted by Nk,s = ∑k

i=1 Ys(ui) where
ui = (i1, i2), i1, i2 = 1,2, . . . , n, i = 1,2, . . . , k.

Theorem 9.2 Under the assumptions stated above, as n → ∞ and n2 = k,

var(Nk,s) ∼ Ckδ

for some constant 0 < C < ∞, where δ = 1 in case of short memory and δ = 2 −
mα, 0 < α < 1/m, when Z(u) has long-memory correlations and the Hermite rank
of GY is m ≥ 1.

Proof We have

var(Nk,s) =
n∑

i1=1

n∑

i2=1

n∑

j1=1

n∑

j2=1

cov

{ ∞∑

l1=m

cl1(xs)

l1! Hl1

(
Z(i1, i2)

)
,

∞∑

l2=m

cl2(xs)

l2! Hl2

(
Z(j1, j2)

)
}

=
n∑

i1=1

n∑

i2=1

n∑

j1=1

n∑

j2=1

∞∑

l=m

c2
l (xs)

(l!)2
cov

{
Hl

(
Z(i1, i2)

)
,Hl

(
Z(j1, j2)

)}
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=
n−1∑

v1=−(n−1)

n−1∑

v2=−(n−1)

∞∑

l=m

c2
l (xs)

l!
(
n− |v1|

)(
n− |v2|

)
γ l

(∣∣
√
v1

2 + v2
2
∣∣)

= n2
∞∑

l=m

c2
l (xs)

l!
n−1∑

v1=−(n−1)

n−1∑

v2=−(n−1)

γ l
(∣∣
√
v1

2 + v2
2
∣∣)[1 +O(1)

]
.

Case 1. Short memory: In this case, the auto-covariances are summable. More-
over, var(Hl(Z(u))) = l!, so that, due to the orthogonality of the Hermite polyno-

mials, var(Ys(u)) = ∑∞
l=m

c2
l (xs )

l! < ∞, uniformly in s. Thus, substituting k = n2,
var(Nk,s) ∼ O(k).

Case 2. Long memory: In this case,

cov
(
Ys(u), Ys(v)

) =
∞∑

l=m

c2
l (xs)

l! γ l
Z

(|u − v|) ∼
∞∑

l=m

c2
l (xs)

l! |u − v|−2lα

as |u − v| → ∞. The result follows by noting that

var(Nk,s) ∼ n2 c
2
m(xs)

m!
n−1∑

v1=−(n−1)

n−1∑

v2=−(n−1)

{
v1

2 + v2
2}−mα

= O
(
n4−2mα

) = O
(
k2−m(2−2H)

)
, 1 − 1/(2m) <H < 1,

H = 1 − α/2 being the Hurst parameter. �

Thus in case of short memory, var(Nk,s) = σ 2
k (xs) = O(k), whereas when m = 1

and Z(u) has long-memory σ 2
k (xs) = O(k2H ), 0.5 <H < 1.

Figure 9.1 shows two typical examples of Ys(u) (right) for one species (i.e. s
fixed) generated by a background process X(u). In the upper left figure, we see an
image plot of a simulated process X(u) with moderate long-range dependence, and
on the right next to it, the corresponding spatial distribution of Ys(u) (white cor-
responds to Ys(u) = 1). The two lower panels display the same pictures for strong
long-range dependence. Figure 9.2(a) shows typical species–area curves, i.e. plots of
the total number of species, say ξk (see (9.34) below), observed in k plots, against k,
as well as a plot of bootstrap averages of ξk − ξk−1 against k in log–log-coordinates.
The different paths of ξk were obtained by a specific bootstrap procedure developed
in Ghosh (2009).

Define the sum

Ws,k = Nk,s/
√

var(Nk,s) =
k∑

i=1

[
Ys(ui)− p(xs)

]/
σk(xs).
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Fig. 9.1 Spatial distribution of one species (right) generated by a background process with
long-range dependence (left): the upper two panels correspond to moderate long-range depen-
dence, the lower two to strong long-range dependence in the background process. White patches in
the two right panels indicate presence of the species

We will assume that for every fixed s, Ws,k has an asymptotic cumulative probability
distribution function Fs(x) with an exponentially decaying tail

log
(
Fs(−x)

) ∼ −asx
θ

2

[
1 + o(1)

]
, x → ∞, (9.33)

for some as, θ > 0. For instance, for the standard normal distribution Φ , we have:

Lemma 9.1 Let Fs = Φ . Then

log
(
Fs(−x)

) ∼ −x2

2

[
1 + o(1)

]
, x → ∞.

Proof The reader may also refer to Feller (1971) for an outline of the proof. Let
f (x) = φ(x)/x where φ(x) is the pdf of the standard normal distribution. Since
f

′
(x) = −φ(x){1 + 1

x2 }, we have an alternative expression

f (x) = 1√
2π

∫ ∞

x

e−y2/2
{

1 + 1

y2

}
dy.
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Fig. 9.2 Species–area curves
for vascular plant
species-richness data from
Switzerland. (a) Top: Ten
randomly selected
species–area curves: species
counts plotted against the
number of surveyed plots.
(b) Middle: Bootstrap average
of species counts from 1000
simulations plotted against
the number of plots;
(c) Bottom: first finite
difference of the average
species counts plotted against
the number of plots in
log–log coordinates. Data
source: Federal Office of the
Environment (FOEN),
Switzerland and Hintermann
& Weber, AG, Switzerland.
The figures are reproduced
from Sankhya, B (2009) with
the permission of the Indian
Statistical Institute, Kolkata,
India

Since, however, for every real y, e−y2/2 < e−y2/2{1 + 1
y2 }, we have

∫ ∞

x

φ(y) dy < φ(x)/x.

Also,

d

dx

[
φ(x)

{
1/x − 1/x3}] = φ(x)

{
3/x4 − 1

}

which implies

φ(x)
{
1/x − 1/x3} =

∫ ∞

x

φ(x)
{
1 − 3/x4}dx <

∫ ∞

x

φ(x) dx = 1 −Φ(x)

where Φ(x) = ∫ x

−∞ φ(y)dy. Combining these results, for large x,

1 −Φ(x) ≈ φ(x)
1

x
.
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Taking logarithm of both sides,

log
{
1 −Φ(x)

} ≈ −x2

2
− log

(√
2π · x)

= −x2

2

{
1 + 2(log(x)+ log(

√
2π))

x2

}

= −x2

2

{
1 + o(1)

}
, as x → ∞.

The result follows. �

In what follows, we assume that the Hermite rank m equals 1, which holds if the
first Hermite coefficient is non-zero, i.e.

c1(xs) = E
[
Z(u)

{
Ys(u)− p(xs)

}] =
∫

Is

1√
2π

ze−z2/2 dz 
= 0,

where Is = {z | X(u) = GX(z) ∈ As}. Note that c1(xs) will be equal to zero if Is

is exactly symmetric around zero, an unlikely situation in the present example. If
Nk,s > 0, species s occurs in at least one of the k plots which have been surveyed.
So, considering the new indicator process Tk,s which takes the value 1 if Nk,s > 0,
and it equals zero otherwise, the sum

ξk = Tk,1 + Tk,2 + · · · + Tk,S (9.34)

is the total number of (different) species in the k plots. Thus the mean number of
species in the first k plots is

E[ξk] =
S∑

s=1

P {Sk,s > 0} =
S∑

s=1

P

{
k∑

j=1

Ys(uj) > 0

}

=
S∑

s=1

[
1 − P

(
k∑

j=1

Ys(uj)− kp(xs) ≤ −kp(xs)

)]
.

Now, we let S and k tend to ∞ and k
S

→ 0 so that the number of species is much
larger than the number of plots on the sampling grid. This takes us to an asymp-
totic expression for the number of unseen species, i.e. species which have not been
discovered in the first k plots. Under suitable conditions (which have to take into
account that we are taking simultaneous limits in S and k) an approximation of the
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following form can be obtained (using (9.33)):

S −E(ξk) =
S∑

s=1

P

(∑k
j=1 Ys(uj)− kp(xs)

σk(xs)
≤ −kp(xs)

σk(xs)

)

∼
S∑

s=1

exp

{
−kθpθ (xs)/σ

θ
k (xs) · a(xs)

2

}
, as k → ∞.

We summarize this results in the following theorem (Ghosh 2009):

Theorem 9.3 Under the assumptions given above, the difference between S and the
expected number of observed species E(ξk) in k plots can be approximated by

S −E(ξk) ≈ S ·
∫ 1

o

exp
{−pθ(x)bk(x)

}
dx

where

bk(x) = 1

2

a(x)kθ

σ θ
k (x)

.

Moreover, for the increments, we obtain the approximation

E(ξk)−E(ξk−1) ∼ S ·
∫ 1

o

[
exp

{−pθ(x)bk(x)
}− exp

{−pθ(x)bk−1(x)
}]

dx.

The most common example is θ = 2, i.e. all Ws,k are asymptotically standard
normal. Let σk(xs) = kβ with 0.5 ≤ β < 1. In particular, if p2(x)a(x) = c2 · x2 for
some constant c 
= 0, we have

S −E(ξk) ∼ S ·
∫ 1

o

exp

{
−1

2
c2k2−2βx2

}
dx

= S · √2πc−1kβ−1 1√
2πc−2k2β−2

∫ 1

o

exp

{
− x2

2(c−1kβ−1)2

}
dx

= S · √2πc−1kβ−1
[
Φ
(
ck1−β

)− 1

2

]
≈ S ·

√
π

2
c−1kβ−1.

For large S and k → ∞, we therefore may use the following approximation:

Corollary 9.1 Under the conditions stated above, for S → ∞, k/S → 1, the num-
ber of unseen species S −E(ξk) can be approximated by

S −E(ξk) ∼ S ·
√

π

2
c−1kβ−1
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where β ∈ [0.5,1). Moreover, for the increments, we have the approximation

E(ξk)−E(ξk−1) ∼ S

√
π

2
c−1[kβ−1 − (k − 1)β−1]

∼ S

√
π

2
c−1(β − 1)kβ−2.

In other words, if δk = ξk − ξk−1 = increment in number of species from k − 1
plots to k plots, then in log–log coordinates,

log(δk) ∼ constant + (β − 2) log(k).

Thus the increment in the species–area curve will be hyperbolic with an exponent
equal to β − 2 < −1, so that the predicted number of species in the infinitely large
landscape governed by this background process will be finite. Also, the number
of unseen species, i.e. the difference from the total number S will also decrease
hyperbolically, with an exponent equal to β − 1 < 0.



Chapter 10
Resampling

10.1 General Introduction

Resampling or bootstrap methods refer to techniques where statistical inference is
based on a simulated distribution of a statistic Tn obtained by resampling from an
observed sample X1, . . . ,Xn. Inference of this type is always conditional on the
sample. In the most general version, no model assumptions are used except for
global conditions such as stationarity, existence of some moments, etc. In the most
restricted version, a parametric model is specified and resampling is used only as
a simple way of obtaining an approximate distribution of Tn. Note that different
terms such as ‘bootstrap’, ‘resampling’, ‘subsampling’, etc. are used in the litera-
ture for different variations of the same general idea. Since there does not seem to
be a unified terminology, we use ‘resampling’ and ‘bootstrap’ as synonyms.

The original bootstrap (Efron 1979) was developed for i.i.d. data. Under the
i.i.d. assumption, only the marginal distribution is unknown. Suppose, for in-
stance, that we are interested in inference about the location parameter μ, given
the observed data Yn = (Y1, . . . , Yn) where Yj = μ + Xj ∈ R and Xj are i.i.d.
with distribution FX . If we estimate μ by the sample mean Tn = ȳ, then we can
write Tn as a functional Tn(Fn) = ∫

udFn(u) of the empirical distribution func-
tion Fn(x) = n−1 ∑1{Yj ≤ x}. If the distribution function FY (x) = FX(x − μ)

of Y were known, then, in principle, the distribution of Tn could be calcu-
lated exactly by evaluating the n-dimensional integral FTn(x) = P(Tn ≤ x) =∫
A
dFY (y1) dFY (y2) · · · dFY (yn) where A = {y ∈ R

n : y1 + · · · + yn ≤ nx}. Usu-

ally, FY is unknown and is therefore replaced by an estimate F̂Y . One then has to
evaluate F̂Tn(x) = P̂ (Tn ≤ x) = ∫

A
dF̂Y (y1) dF̂Y (y2) · · · dF̂Y (yn). In most cases,

the numerical evaluation of high dimensional integrals is difficult. The easiest al-
ternative is Monte Carlo approximation which means that we approximate F̂Tn by
a simulated distribution, say F̂ ∗

Tn
, based on a sufficiently large sample of i.i.d. val-

ues T ∗
n,1, . . . , T

∗
n,N with T ∗

n,j ∼ F̂Tn . This can be done without actually computing

F̂Tn directly (after all that is what we wanted to avoid), namely by resampling. In-
dependent samples Y ∗

n,j = {Y ∗
1,j , . . . , Y

∗
n,j } (j = 1,2, . . . ,N ) are simulated and the
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sample means T ∗
n,j = n−1 ∑n

i=1 Y
∗
i,j = Tn(F

∗
n,j ) (with F ∗

n,j denoting the empirical
distribution function of Y ∗

1,j , . . . , Y
∗
n,j ) are computed. For each j , the values Y ∗

i,j

(i = 1,2, . . . , n) are obtained by simulating n independent realizations of a random
variable Y ∗ ∼ F̂Y . If F̂Y is equal to the empirical distribution function Fn, then this
is the same as drawing Y ∗

i,j (i = 1,2, . . . , n) randomly with replacement (and equal

probability n−1) from the original set of observations {Y1, . . . , Yn}.
Resampling procedures can thus be considered as a simulation device to obtain

an approximate distribution function of a statistic Tn. It should be noted here that the
sample mean is a relatively simple statistic because it can be expressed explicitly as a
function of Y1, . . . , Yn. Many estimators in statistics are defined by equations that do
not lead to an explicit expression for Tn and FTn . For example, most non-Gaussian
maximum likelihood estimators, M-estimators or minimum contrast estimators are
defined as solutions of nonlinear equations for which no explicit solution exists.
This makes resampling procedures even more useful because explicit expressions
are not required.

The obvious question is how accurate a bootstrap approximation F̂ ∗
Tn

of FTn is
and, in fact, whether it works at all. Usually, if Tn is an appropriately standard-
ized statistic, then it converges in distribution to a certain nondegenerate random
variable Z ∼ FZ . For instance, in the i.i.d. example above, we may redefine Tn as
Tn = √

n(ȳn − μ)/σ which converges to a standard normal variable, provided that
σ 2 = var(Xj ) is finite. The asymptotic distribution FZ is a natural competitor of the
bootstrap approximation F̂ ∗

Tn
. Since FZ is exactly correct asymptotically, the first

requirement is that the same is true for F̂ ∗
Tn

. This is also called ‘validity’ of the boot-

strap procedure. Thus, one needs to prove that F̂ ∗
Tn

converges to FZ as n tends to
infinity. Once validity is shown, the next question is why we should prefer to use
F̂ ∗
Tn

instead of the asymptotic distribution FZ . There are at least two possible rea-

sons: (i) FZ may be complicated or unknown, (ii) F̂ ∗
Tn

may be more accurate than
the asymptotic distribution FZ .

The first reason is certainly relevant in the context of long-range dependence. For
instance, under Gaussian subordination with Hermite rank two or higher, asymptotic
distributions of normalized sums are marginals of non-Gaussian Hermite processes.
These distributions are rather complicated and, in practice, we actually do not even
know which one applies because the Hermite rank is an unknown quantity (in fact,
we do not even know whether Gaussian subordination applies). Also, even in the
case of a Gaussian limit (i.e. Hermite rank one), the exponent of n in the standard-
ization is unknown and the normalizing constant (or even a slowly varying function)
may be complicated. Resampling procedures based on self-normalized statistics that
avoid explicit estimation of this exponent (and the constant or slowly varying func-
tion) provide a simple alternative to more explicit model based approaches. Other
examples where FZ may be complicated are encountered in the context of stable
laws (see below).

To justify the second reason for using F̂ ∗
Tn

, namely improved accuracy, more

refined asymptotic results are required since convergence of F̂ ∗
Tn

to FZ (which is
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a basic prerequisite for considering F̂ ∗
Tn

at all) does not automatically imply that,

compared to FZ , F̂ ∗
Tn

is closer to the true finite sample distribution FTn . Suppose that

FTn(x) = FZ(x)+ an(x)+ o(an) (with an = o(1)) and FTn(x) = F̂ ∗
Tn
(x)+ bn(x)+

op(bn). (Note that in contrast to an(x), bn(x) is random because F̂ ∗
Tn
(x) is calculated

conditionally on the observed sample.) For validity it is sufficient to show that b̃n =
supx |bn(x)| = op(1). To prove that F̂ ∗

Tn
is more accurate than FZ , one needs to

make a second order comparison. Such comparisons are usually based on Edgeworth
expansions (see, e.g. Hall 1992). In many situations, it is indeed possible to show
that b̃n = op(an) which means that the bootstrap error is of a smaller order than
the one of the asymptotic approximation. The implications of such an improvement
are often clearly visible. For instance, if FX in the i.i.d. example above is highly
skewed, then the distribution of Tn = √

n(ȳn−μ)/σ can be highly skewed too, even
for relatively large sample sizes. In such a case, an approximation by the standard
normal distribution FZ is inappropriate whereas a bootstrap distribution tends to
mimic the asymmetry of FTn rather well.

The validity and accuracy of resampling techniques is fairly well understood in
the i.i.d. case (see, e.g. Hall 1992; Politis et al. 1999; Lahiri 2003, and references
therein). Once the assumption of independence is abandoned, further complications
arise because the marginal distribution is not the only unknown quantity. In full
generality, a statistic Tn is a functional of the complete joint n-dimensional distri-
bution FYn

(y1, . . . , yn) = P(Y1 ≤ y1, . . . , Yn ≤ yn). The question how to resample
from an observed series Yn = (Y1, . . . , Yn) is therefore much more difficult. First
of all, we have one observation only (namely Yn itself) from the n-dimensional
distribution FYn

so that no consistent estimate of FYn
is available, unless certain as-

sumptions are imposed. This is, of course, a general problem of statistical inference
for stochastic processes, and led, already in the early days of time series analysis, to
the introduction of properties such as stationarity and ergodicity. Most of the resam-
pling theory for stochastic processes is concerned with the question under what kind
of general conditions bootstrap works, which modifications are required to ensure
validity and how to improve the second-order error. The original approach of draw-
ing individual observations Y ∗

i,j (i = 1,2, . . . , n) independently with replacement
from {Y1, . . . , Yn} does not provide valid results in general because the dependence
structure is removed completely by the resampling scheme.

There are two main ideas how to solve this problem. The first approach is to
resample whole blocks Br = (Yr , . . . , Yr+l−1) of adjacent observations instead of
individual values. By letting the block length l tend to infinity such that at the same
time l/n → 0, an infinite time horizon is captured ultimately within each block
while at the same time the number of blocks (and thus the number of items to re-
sample from) also tends to infinity. Methods of this type are also called block or
blockwise bootstrap or subsampling. The problem is, of course, that in general FTn

depends on the complete n-dimensional distribution FYn
whereas the subsampling

procedure essentially relies on estimating the lower-dimensional probability func-
tion FYl

. Although l tends to infinity, we also have l = o(n). It is therefore not clear
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a priori whether information about the dependence structure beyond lag l is asymp-
totically negligible when characterizing the distribution of Tn(FYn

), and in how far
it matters that FYl

actually has to be estimated as well. As it turns out, the main
dividing line is between short and long memory. The validity and second-order ac-
curacy of relatively simple versions of blockwise subsampling can be established
under short-memory assumptions (Carlstein 1986; Künsch 1989; Politis and Ro-
mano 1993). This is not the case in general for long-memory processes although
some modifications of blockwise resampling work under certain specific assump-
tions (see below).

A second approach to adapting bootstrap to dependent data consists of remov-
ing all or some of the dependence before applying resampling. Resampling meth-
ods based on this principle are subsumed under the name ‘sieve bootstrap’. For
instance, under the assumption that a causal linear process Yt = ∑

aj εt−j (with
εt i.i.d.) is observed, one may use a sequence of autoregressive filters Φn(B) =
1 − ϕ1,nB − · · · − ϕpn,nB

pn with pn → ∞ and ϕj,n estimated by minimizing the
least squares criterium

∑
(Yt −Φn(B)Yt )

2. Resampling is then applied to the resid-
ual process et,n = Φn(B)Yt . Under suitable short-memory conditions, it can be
shown that with pn → ∞ it is possible to approximate the actual i.i.d. residuals εt
with sufficient accuracy (for early literature on autoregressive fitting with pn → ∞,
see, e.g. Parzen 1974; Berk 1974; Hannan and Deistler 1988; also see Shibata 1980
for the connection to optimal prediction and Akaike’s information criterion). Note
that, if the order pn is kept fixed, then we are relying on the stronger assumption
that Yt is generated by a finite-order autoregressive process. This is a special case of
a ‘parametric bootstrap’. Validity and second-order accuracy of the sieve bootstrap
have been established under short-memory conditions (see, e.g. Bühlmann 1997,
2002, and references therein). In general, sieve methods rely on more restrictive as-
sumptions than blockwise bootstrap because the choice of the preprocessing device
has to be appropriate. On the other hand, if the assumptions are correct, then the
sieve bootstrap tends to provide more accurate approximations (see, e.g. Choi and
Hall 2000).

While both approaches (blockwise and sieve) are quite well understood under
short-memory conditions, the situation is more difficult in the presence of long
memory. Generally, the validity of standard blockwise methods no longer holds,
unless specific modifications are applied (see, e.g. Lahiri 1993, 2003; Hall et al.
1998; Nordman et al. 2006). The easiest situation is encountered for the parametric
bootstrap where not only validity but also improved second-order accuracy has been
established for certain classes of estimators under long-memory conditions (see, e.g.
Andrews et al. 2006; Andrews and Lieberman 2005). Similar results are available
for the sieve bootstrap based on autoregressive fitting as above with pn → ∞ such

that n
1
2 −d(logn)

1
2 −dpn → 0 (Poskitt 2007a, 2007b). Note that the results in Poskitt

(2007a, 2007b) are also interesting from the point of view of parameter estimation
for a long-memory process because it is shown that the fitted AR-coefficients ϕj,n

converge to the coefficients aj in the Wold representation with a simultaneous bound
on the estimation error |ϕj,n −aj | (j = 1,2, . . . , pn). This is achieved without using
fractional differencing or direct estimation of the fractional differencing parameter
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d (in contrast to comparable AR-fitting methods such as Bhansali et al. 2006; see
Sect. 5.9.3).

In the following sections, a few selected resampling methods will be discussed
in more detail in the context of long-range dependence. For further literature on
resampling methods and Edgeworth expansions for long-memory processes, see,
e.g. Lahiri (2003), and references given in Lieberman et al. (2001, 2003), Giraitis
and Robinson (2003), Faÿ et al. (2004), Lieberman and Phillips (2004), Andrews
and Lieberman (2005), Nordman and Lahiri (2005), Andrews et al. (2006), McElroy
and Politis (2007), Poskitt (2007a, 2007b), Jach et al. (2012), Kim and Nordman
(2011).

10.2 Some Basics on Bootstrap for i.i.d. Data

Let Yn = {Y1, . . . , Yn} be a sample from the distribution F . Note that at this moment
we do not assume any particular dependence structure of the original sequence Yj
(j ∈ N), except that the marginal distribution is the same. The simplest bootstrap
procedure starts with drawing a sample Y ∗

1 , . . . , Y
∗
n with replacement from Yn. Con-

ditionally on Yn, the random variables Y ∗
1 , . . . , Y

∗
n are i.i.d., no matter what the

original model is. Moreover,

P∗
(
Y ∗

1 = Yj
) := P

(
Y ∗

1 = Yj |Yn

) = 1/n, j = 1, . . . , n,

which means that the common (random) distribution function of Y ∗
j (j = 1,2, . . . , n)

is equal to the empirical distribution function

Fn(x) = 1

n

n∑

j=1

1{Yj ≤ x}.

To keep things simple, we consider estimation of the expected value μ = E(Y1)

by the sample mean Ȳn. Denote by Ȳ ∗
n = n−1 ∑n

j=1 Y
∗
j the bootstrap sample mean.

Also, let E∗ be the expectation w.r.t. P∗. We have the following moment properties:

E∗
(
Y ∗
i

) =
∫

x dFn(x) = 1

n

n∑

j=1

Yi = Ȳn,

E∗
(
Ȳ ∗
n

) = E
(
Ȳ ∗
n |Yn

) = 1

n

n∑

j=1

E(Yj |Yn) = Ȳn,

E
(
Ȳ ∗
n

) = E
[
E
(
Ȳ ∗
n |Yn

)] = E(Ȳn) = E(Y),

var∗
(
Y ∗
i

) =
∫

x2 dFn(x)−
(∫

x dFn(x)

)2

= 1

n

n∑

j=1

Y 2
j −

(
1

n

n∑

j=1

Yj

)2

=: s2,
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and recalling that Y ∗
j are conditionally independent,

var∗
(
Ȳ ∗
n

) = 1

n
var∗

(
Y ∗

1

) = s2

n
. (10.1)

Let us now focus on the case where Y1, . . . , Yn are i.i.d. observations with a finite
variance. The standardized sample mean is asymptotically standard normal, i.e.

Tn = Ȳn −μ√
var(Ȳn)

= √
n

Ȳn −μ√
var(Y1)

d→ N(0,1). (10.2)

In the bootstrap approach, the initial population one sampled from is replaced by
Yn. Thus, the bootstrap version of Tn is obtained by replacing Ȳn by the boot-
strap sample mean Ȳ ∗

n , the population mean μ by the bootstrap population mean
E∗(Y ∗

1 ) = Ȳn, and the population variance var(Y1) by the bootstrap population vari-
ance var∗(Y ∗

1 ) = s2. The bootstrap version of Tn is therefore given by

T ∗
n = Ȳ ∗

n −E∗(Y ∗
1 )√

var∗(Ȳ ∗
n )

= √
n
Ȳ ∗
n −E∗(Y ∗

1 )√
var∗(Y ∗

1 )
= √

n
Ȳ ∗
n − Ȳn

s
. (10.3)

Since Ȳn converges in probability to μ and the denominator converges in probability
to

√
var(Y ), T ∗

n has the same behaviour as Tn asymptotically. More specifically, the
following lemma justifies validity of the bootstrap for i.i.d. data with a finite variance
(see, e.g. Lahiri 2003, Theorem 2.1).

Lemma 10.1 Assume that Y1, . . . , Yn are i.i.d. with var(Yi) < ∞. Then

sup
x

∣∣P∗
(
T ∗
n ≤ x

)−Φ(x)
∣∣ = op(1),

where Φ(x) is the standard normal distribution.

10.3 Self-normalization

Consider Yj = μ+Xj (j ∈N) with Xj a stationary zero-mean sequence and assume
that after suitable standardization the sample mean converges to a nondegenerate
random variable Z, or in other words,

Tn :=
∑n

j=1 Yj − nμ

vn
= n

vn
(Ȳn −μ)

d→ Z ∼ FZ (10.4)

where FZ is a nondegenerate distribution. Usually, the choice of vn is v2
n =

var(
∑n

j=1 Yj ), provided that this quantity exists. In the i.i.d. case with finite vari-

ance, we have v2
n = n · var(X1) and Z standard normal. Usually, vn has to be es-

timated. In some situations, vn is not even computable or requires an additional
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estimation step. For example, if the random variables Xj are i.i.d. with a regularly
varying distribution with index −α (α ∈ (0,2)), then vn = n1/αL(n) where L(n)

is a slowly varying function, and Z is a stable random variable. Thus, in principle,
we would need to estimate α (and even the slowly varying function L) before com-
puting Tn. Often, it is possible to replace vn by a data-based normalizer Vn without
explicit estimation of model specific quantities, such as α or L. For example, for
i.i.d. data (both with finite and infinite variance), we can replace vn by the square
root of V 2

n = n−1 ∑n
j=1(Yj − Ȳn)

2. Given a data-based normalizer Vn we then con-
sider the ‘self-normalized’ statistic

Un :=
∑n

j=1 Yj − nμ

Vn

= n

Vn

(Ȳn −μ). (10.5)

The choice of the normalizer Vn has to be modified for dependent sequences to
guarantee that Vn/vn converges to one in probability.

Denote by Z0 the limit of Un. If Z in (10.4) is normal, then Z0 is also a standard
normal variable. In general, however, the distributions of Z and Z0 can be quite
complicated, and may even differ. For example, if the data are i.i.d. with infinite
variance, then Z is a stable random variable, but Z0 is different. To see this, assume
that Xj (j ∈ N) are i.i.d. and regularly varying with index −α. Consider

Wn := n

Vn

(Ȳn −μ) (10.6)

where

V 2
n =

n∑

j=1

(Yj − Ȳn)
2.

We note that the random variables Y 2
j (j ∈ N) are regularly varying with index

−α/2 and thus have an infinite mean. In particular, n−2/α ∑n
j=1(Yj − Ȳn)

2, and

hence n−1/αVn converges to a stable random variable. This implies that

Wn = n−1/α ∑n
j=1(Yj −μ)

n−1/αVn

converges to a ratio R of two dependent stable random variables. In principle, we
may use this information to construct confidence intervals for μ of the form

[
Ȳn − z1− 1

2p0
n−1Vn, Ȳn − z 1

2p0
n−1Vn

]
,

where zp denotes the (100p)th percentile of R. However, these percentiles may not
be easily computable. Resampling methods are useful to overcome this problem.
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10.4 The Moving Block Bootstrap (MBB)

Lemma 10.1 provides validity of the bootstrap procedure in the case of i.i.d. data
with existing second moments. Now we turn our attention to the case of dependent
data. Assume that Yj = μ + Xj (j ∈ N) is a stationary sequence of random vari-
ables with short memory and σ 2 := var(Y ) < ∞. Then convergence (10.2) has to
be replaced by

√
n
Ȳn −μ

σ0

d→ N(0,1), (10.7)

with

σ 2
0 = var(Y )+ 2

∞∑

k=1

cov(Y0, Yk). (10.8)

However, as mentioned above, sampling with replacement from Yn produces con-
ditionally independent random variables. Therefore, if we use T ∗

n defined in (10.3),
then the result in Lemma 10.1 still applies. This contradicts (10.7) so that the boot-
strap procedure is no longer valid (except in the special case of uncorrelated ob-
servations). The asymptotic variance of bootstrap replicates is wrong by the factor
(σ0/σ)

2. The reason is that the bootstrap procedure cannot recreate var(Ȳn). More
exactly, recall that var∗(Ȳ ∗

n ) = s2/n (10.1). The expected value of the conditional
variance is then equal to

E
[
var∗

(
Ȳ ∗
n

)] = 1

n

{
E
(
Y 2)− 1

n2

n∑

j,j ′=1

E(YjYj ′)

}
= 1

n

{
var(Y )−var(X̄n)

}
. (10.9)

Since var(X̄n) → 0 (except for degenerate cases that are not of interest here), the
expected variance is approximately equal to

E
[
var∗

(
Ȳ ∗
n

)] ∼ 1

n
var(Y ) = σ 2

n
.

This is in contrast to

var(Ȳn) ∼ σ 2
0

n
.

To obtain a valid bootstrap procedure, a suitable modification is required. One
of the possible solutions is the so-called Moving Block Bootstrap (MBB) (Carl-
stein 1986; Künsch 1989). To preserve most of the dependence structure, we sam-
ple (with replacement) blocks B∗

1 , . . . ,B
∗
k from the set of all available blocks

Br = (Yr , . . . , Yr+l−1) (r = 1, . . . ,Nb; Nb = n − l + 1) instead of sampling single
observations. A bootstrapped sample Y ∗

1 , . . . , Y
∗
n is generated by pasting k = [n/l]

sampled blocks B∗
1 , . . . ,B

∗
k next to each other. Note that, by definition, B∗

r =
(Y ∗

(r−1)l+1, . . . , Y
∗
rl) (r = 1, . . . , k). For example, if k = 2 and blocks, say, B1 and
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B3 are selected, then the bootstrap sample is

(
Y ∗

1 , . . . , Y
∗
l , Y

∗
l+1, . . . , Y

∗
2l

) = (Y1, . . . , Yl, Y3, . . . , Yl+2).

Also note that the actual length of the bootstrapped series is ñ = kl = [n/l]l (where
[n/l] denotes the largest integer not exceeding n/l), but the difference between ñ

and n is negligible asymptotically. We will therefore write n = kl for simplicity.
Denote by

ζr = ζr,l =
∑

j∈Br

Yj =
r+l−1∑

j=r

Yj

(r = 1,2, . . . ,Nb) the block sums and by

ζ ∗
r = ζ ∗

r,l =
∑

j∈B∗
r

Y ∗
j =

rl∑

j=(r−1)l+1

Y ∗
j

the corresponding bootstrapped quantities (the index l will be dropped unless it
needs to be emphasized). The bootstrap mean is given by

Ȳ ∗
n = n−1

n∑

j=1

Y ∗
j = 1

k

k∑

r=1

1

l
ζ ∗
r,l = 1

k

k∑

r=1

(
1

l

rl∑

j=(r−1)l+1

Y ∗
j

)
.

When drawing block B∗
r , each of the blocks Bs (s = 1, . . . ,Nb) has the same prob-

ability of being chosen. Thus, for any r ∈ {1, . . . , k},

P∗
(
B∗
r = Bs

) = 1

Nb

(s = 1, . . . ,Nb) (10.10)

so that

E∗
(
Ȳ ∗
n

) = E∗
[

1

k

k∑

r=1

(
1

l

∑

Y ∗
j ∈B∗

r

Y ∗
j

)]

= 1

Nb

Nb∑

r=1

(
1

l

∑

Yj∈Br

Yj

)
= 1

Nbl

Nb∑

r=1

r+l−1∑

j=r

Yj

= 1

Nb

Nb∑

r=1

1

l
ζr,l .

Note that, if l/n → 0 fast enough, then E∗(Ȳ ∗
n ) may be approximated by the sample

mean Ȳn because all variables Yj occur in the sum l times except for l observations
on the left and right border, respectively.
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Now, recalling that the blocks are conditionally independent, the conditional vari-
ance of the bootstrap mean is

var∗
(
Ȳ ∗
n

) = var∗

(
1

k

k∑

r=1

1

l
ζ ∗
r

)

= k

(kl)2
var∗

(
ζ ∗
r

) = k

(kl)2
var∗

(
l∑

j=1

Y ∗
j

)

= k

n2

{
1

Nb

Nb∑

r=1

(
r+l−1∑

j=r

Yj

)2

−
(

1

Nb

Nb∑

r=1

r+l−1∑

j=r

Yj

)2}
.

For the unconditional expected value of the variance, we may assume, without loss
of generality, that μ = 0. Then the second term does not contribute asymptotically,
and we obtain

E
[
var∗

(
Ȳ ∗
n

)] ∼ k

n2
E

[(
l∑

j=1

Yj

)2]
= 1

nl
var

(
l∑

j=1

Yj

)
.

If the stationary sequence Yj has short memory and n, l → ∞ such that l/n → 0,
this leads to

E
[
var∗

(
Ȳ ∗
n

)] ∼ 1

nl
σ 2

0 l = σ 2
0

n
,

where σ0 is given in (10.8). Therefore, the bootstrap variance of the bootstrap mean
is asymptotically the same as var(Ȳn) and the MBB bootstrap statistic

T ∗
n = Ȳ ∗

n −E∗(Y ∗
1 )√

var∗(Ȳ ∗
n )

has the same asymptotic distribution as Tn = (Ȳn −μ)/σ0.
However, if the random variables Xj (j ∈ N) are Gaussian with autocovariance

function γX(k) ∼ Lγ k
2d−1 (0 < d < 1

2 ), then

var(Ȳn) ∼ n−2v2
n

and

Tn = n(Ȳn −μ)

vn

d→ N(0,1)
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where v2
n = n2d+1LS with LS = C1Lγ (Sect. 4.2.2). On the other hand,

E
[
var∗

(
Ȳ ∗
n

)] ∼ k

n2
E

(
l∑

j=1

Yj

)2

= 1

nl
var

(
l∑

j=1

Yj

)

∼ C
1

nl
l2d+1 = C

l2d

n
.

Thus

E[var∗(Ȳ ∗
n )]

var(Ȳn)
∼ const

(
l

n

)2d

→ 0

and

Ȳ ∗
n −E∗(Ȳ ∗

n )√
var(Ȳn)

= Ȳ ∗
n −E∗(Ȳ ∗

n )√
var∗(Ȳ ∗

n )

√
var∗(Ȳ ∗

n )

var(Ȳn)
= T ∗

n

√
var∗(Ȳ ∗

n )

var(Ȳn)
→ 0.

This means that the MBB bootstrap heavily underestimates the variability of the
sample mean Ȳn such that the asymptotic coverage probabilities of bootstrap con-
fidence intervals for μ are zero. The reason is that too much of the long-memory
property is lost by pasting together independent blocks. In the short-memory case,
the rate of

∑n
t=1 Yt is Op(

√
n) which is the same as for i.i.d. data, and therefore

also the same as for
∑k

r=1 ζ
∗
r = Op(

√
kl) with kl = n. The error in the standardiza-

tion is only a multiplicative constant that can be made arbitrarily small by letting l

tend to infinity. This is no longer the case under long memory because independent

sampling of blocks changes the rate of the original sum
∑n

t=1 Yt = Op(n
d · n 1

2 )

to the smaller rate of the bootstrapped sum given by
∑k

r=1 ζ
∗
r = Op(k

1
2 ld+ 1

2 ) =
Op(l

d · n 1
2 ).

A simple remedy to make the MBB bootstrap work in the long-memory con-
text is suggested in Lahiri (1993). Instead of using the sample mean directly, we
consider a statistic that takes into account independence introduced by blockwise
resampling. This can be done by adjusting the standardization accordingly. As be-
fore k = [n/l] blocks B∗

1 , . . . ,B
∗
k are sampled independently with replacement, but

we now consider the correctly standardized statistic

T̃ ∗
n = k− 1

2

k∑

r=1

ζ ∗
r − l ·E∗(Y ∗

1 )

vl

= k− 1
2

k∑

r=1

l−d− 1
2
ζ ∗
r − l ·E∗(Y ∗

1 )√
C1Lγ

,
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or

T̃ ∗
n = k− 1

2

k∑

r=1

l−d− 1
2
ζ ∗
r − l · Ȳn√
C1Lγ

.

Since T̃ ∗
n is equal to k− 1

2 times a sum of k independent equally distributed stan-
dardized variables, the central limit theorem holds and one can even show uniform
convergence (Lahiri 1993)

sup
x∈R

∣∣P∗
(
T̃ ∗
n ≤ x

)−Φ(x)
∣∣ = op(1).

This result has to be interpreted with care, however, because we are dealing with
the case of long memory. For instance, consider the Gaussian subordination model
Yj = μ + G(Xj ) where Xj is a stationary Gaussian process with E(Xj ) = 0,
var(Xj ) = 1, E[G(Xj )] = 0 and autocovariance function γX(k) ∼ Lγ (k)|k|2dX−1

(as k → ∞) for some 0 < dX < 1
2 . If G has Hermite rank one, then the standardized

sample mean converges to a standard normal variable and the standardization is the
same as in T̃ ∗

n . In this sense, validity of the modified MBB procedure is established.
However, if G has a Hermite rank m higher than one and dX > 1

2 (1−m−1), then the
asymptotic limit of the standardized sample mean is non-Gaussian. This means that
the modified MBB is no longer valid. The question then arises why the modified
MBB should be used at all. The reason is obviously not a complicated asymptotic
distribution since validity holds only in the case where the asymptotic distribution is
normal. As discussed previously, another possible motivation for using resampling
is a better approximation of finite sample distributions. In how far the conditional
distribution of T̃ ∗

n does indeed provide a better approximation of the distribution
of Tn has not yet been fully explored in the long-memory context. However, the
idea of a modified MBB can be extended to other problems where the definition of
a bootstrap based statistic with known asymptotic distribution is useful in its own
right. For instance, Beran and Shumeyko (2012b) develop an MBB based test of the
null hypothesis that a nonparametric trend function is continuous (see Sect. 10.7.2
below).

10.5 The Sampling Window Bootstrap (SWB)

As we saw above, the modified MBB is not valid under Gaussian subordination
unless the Hermite rank of G is one. The reason is that independent sampling of
blocks automatically entails the central limit theorem, independently of the Hermite
rank. A natural idea to solve this problem is to avoid independent resampling. In
the so-called sampling window (SW) approach, independent sampling of blocks is
replaced by including all available blocks with equal weight in an empirical distri-
bution function.

To be specific, we consider as before estimation of μ for the process Yj =
μ + G(Xj ) where G has Hermite rank m, and Xj (j ∈ N) is a stationary Gaussian
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sequence with E(Xj ) = 0, var(Xj ) = 1 and autocovariances γX(k) ∼ Lγ (k)k
2dX−1

with Lγ (k) = cγ > 0, 1
2 (1 −m−1) < d < 1

2 . From Theorem 4.4 we have

n−(1−m( 1
2 −d))L

−1/2
S

(
n∑

j=1

Yj − nμ

)
d→ J (m)

m! Zm,H (1), (10.11)

where LS = J 2(m)/m!Cmc
m
γ , vn = n1−m( 1

2 −d)L
1/2
S and Z = Zm,H (1). As be-

fore, the replicates T ∗
n,1, . . . , T

∗
n,Nb

are based on standardized sums over blocks
Br = (Yr , . . . , Yr+l−1) (r = 1,2, . . . ,Nb) of length l. However, instead of resam-
pling blocks independently and pasting them together, we use all Nb (partially over-
lapping) blocks to obtain the empirical distribution function

F ∗
Tn
(x) = 1

Nb

Nb∑

r=1

1
{
T ∗
n,r ≤ x

} = 1

Nb

Nb∑

r=1

1

{
Sn,l,r − lȲn

vl
≤ x

}

with

T ∗
n,r := T ∗

n,l,r :=
∑r+l−1

j=r Yj − lȲn

vl
= Sn,l,r − lȲn

vl
(r = 1,2, . . . ,Nb).

By assigning equal weights to all available blocks and avoiding any kind of random
reshuffling of the sequence, the complete dependence structure can essentially be
preserved. Why this is so can be seen in more detail as follows. Recall that, as
n → ∞, FTn(x) = P(Tn ≤ x) → FZ(x) := P(Zm,H (1) ≤ x) for all x ∈ R and note
that E[F ∗

Tn
(x)] = P(T ∗

n,l,1 ≤ x). We will prove (Hall et al. 1998):

Theorem 10.1 Let Xj be as defined above, and l, n → ∞ such that l/n → 0. Then

sup
x∈R

∣∣F ∗
Tn
(x)− FTn(x)

∣∣ p→ 0. (10.12)

Proof In the first step, we will replace Ȳn by μ in the definition of F ∗
Tn
(x). To justify

this, we note that with T̃n,l,r = (Sn,l,r − lμ)/vl we have

T̃n,l,r − T ∗
n,l,r = l

vl
(Ȳn −μ) = lvn

nvl
Tn.

On account of (10.11), Tn converges in distribution to the finite random variable
Z = Zm,H (1). Furthermore,

lvn

nvl
→ 0

since it was assumed that l, n → ∞ and l/n → 0.
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The next useful fact is that both FTn(x) and FTl (x) converge to FZ(x) as n, l →
∞. It is therefore sufficient to prove

sup
x∈R

∣∣F̃Tn(x)− FTl (x)
∣∣ p→ 0,

where

F̃Tn(x) = 1

Nb

Nb∑

r=1

1{T̃n,l,r ≤ x} = 1

Nb

Nb∑

r=1

1
{
(Sn,l,r − lμ)/vl ≤ x

}
.

We note that E[F̃Tn(x)] = P(Tl ≤ x) = FTl (x). Therefore,

E
[(
F̃Tn(x)− FTl (x)

)2] = var
(
F̃Tn(x)

) = 1

Nb

var
(
1{T̃n,l,1 ≤ x})

+ 2

Nb

l∑

r=2

cov
(
1{T̃n,l,1 ≤ x},1{T̃n,l,r ≤ x})

+ 2

Nb

Nb∑

r=l+1

cov
(
1{T̃n,l,1 ≤ x},1{T̃n,l,r ≤ x})

≤ 1

Nb

+ 2l

Nb

+ 2

Nb

Nb∑

r=l+1

cov
(
1{T̃n,l,1 ≤ x},1{T̃n,l,r ≤ x}).

Now, let us consider the case m = 1 only, so that v2
l is proportional to l2dX+1. Then

the random variables T̃n,l,r , r = l + 1, . . . ,Nb , are centred Gaussian and w.l.o.g. we
can assume that they have unit variance (formally, var(T̃n,l,r ) ∼ 1 as l → ∞). Note
that for a standardized bivariate normal vector Z = (Z1,Z2) we have

∣∣cov(Z1,Z2)
∣∣ = ∣∣corr(Z1,Z2)

∣∣ ≥ ∣∣cov
(
1{Z1 ≤ x},1{Z2 ≤ x})∣∣.

Moreover, the separation between blocks B1 and Br is r − l. Therefore,

2

Nb

Nb∑

r=l+1

Cov
(
1{T̃n,l,1 ≤ x},1{T̃n,l,r ≤ x})

≤ 2

Nb

Nb∑

r=l+1

l∑

j=1

r+l−1∑

j ′=r

γX(j
′ − j)

≤ 2l2

Nbv
2
l

Nb∑

r=l+1

γX(r − l) ∼ C
2l2

Nbv
2
l

N2d
b ∼ C

l1−2d

N1−2d
b

= C

(
l

n− l + 1

)1−2d

→ 0

as l, n → ∞ such that l/n → 0.
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The arguments for m> 1 are analogous, but covariances between Hermite poly-
nomials of higher order have to be considered. �

We conclude that the empirical distribution F ∗
Tn
(x) is a consistent estimator of

the limiting distribution FZ(x) so that the SW bootstrap is a valid procedure under
Gaussian subordination with arbitrary Hermite rank. This is in contrast to the MBB
bootstrap which is valid for Hermite rank one only. Since the SW approach pre-
serves non-Gaussianity, one may also hope that it will provide better finite sample
approximations even in the case of a Gaussian limit. Some examples in the next
section illustrate this conjecture.

Remark 10.1 This theorem is adapted from Hall et al. (1998); see also Lahiri (2003,
Theorem 10.4). We note that the authors consider a general form of γX(k) with a
possible slowly varying function. It requires slightly modified assumptions on the
length l of the blocks. Furthermore, Theorem 2.4 in Hall et al. (1998) implies that it
is enough to prove (10.12) for a fixed x.

Remark 10.2 The proof above also works for weakly dependent random variables
(informally, when d = 0), and under Gaussian subordination with 0 < dX < 1

2 (1 −
m−1).

So far, we assumed that the standardization sequence vn is known. In practice,

this is, of course, not the case because vn = n(1−m( 1
2 −dX))L

1/2
S depends on the long-

memory parameter dX and the constant Lγ (n) ≡ cγ . There are at least two pos-
sible solutions to this problem. The first one is to estimate the parameters dX and
cγ directly by fitting a parametric or semiparametric model (see Sects. 5.5, 5.6,

5.7, 5.8 and 5.9). The standardization vn is then replaced by v̂n = nd̂X+ 1
2 L̂

1/2
S .

Note, however, that in general the true Hermite rank m is not known. Neverthe-
less, if m is larger than one, then the exponent of n can also be estimated by the
same methods. The difference is that we are then not estimating dX but rather
d̃ = (1 − m( 1

2 − dX)) − 1
2 . The other solution is to replace vn by a direct fully

nonparametric estimate Vn. Thus, we consider the statistics

Un :=
∑n

j=1 Yj − nμ

Vn

= n(Ȳn −μ)

Vn

,

and, with the blocks defined as before,

U∗
n,r := U∗

n,l,r :=
∑r+l−1

j=r Yj − lȲn

Vl

= Sn,l,r − lȲn

Vl

(r = 1, . . . ,Nb).

Note that, compared to the previous parametric or semiparametric estimation of
vn, direct estimators of vn are more general, but at the same also less efficient, if the
model assumptions needed for estimating d and Lγ by parametric or semiparametric
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methods hold. A possible, though somewhat arbitrary, choice is, for instance,

V 2
l = V 2

n,l = E4
n,l,m1

E2
n,l,m2

where

E2
n,l,mi

= 1

l −mi + 1

l−mi+1∑

j=1

(Sn,mi,j −miȲn)
2

and

Sn,mi,j = 1

mi

j+mi−1∑

h=j

Yh.

The crucial part of this construction is that

V 2
n

var(
∑n

j=1 Yj )
= E4

n,n,m1

v2
nE

2
n,n,m2

p→ 1

as n → ∞. Therefore, the limiting distribution of Un = nV −1
n (Ȳn − μ) is the same

as that of Tn = nv−1
n (Ȳn − μ), namely FZ(x) = P(Zm,H (1) ≤ x). We state the

following result without proof (see Hall et al. 1998 or Lahiri 2003, Theorem 10.5).

Theorem 10.2 Assume that Xj (j ∈N) is a stationary sequence of standard normal
random variables, such that γX(k) ∼ Lγ k

2d−1, d ∈ (0,1/2). Let

F ∗
Un

(x) = 1

N

N∑

r=1

1
{
U∗
n,l,r ≤ x

}

and FUn(x) = P(Un ≤ x). If l, n → ∞ such that l/n → 0, then, as n → ∞,

V 2
n /var

(
n∑

j=1

Yj

)
= V 2

n /vn
p→ 1

and

sup
x∈R

∣∣F ∗
Un

(x)− FUn(x)
∣∣ p→ 0. (10.13)

Combining Theorems 10.1 and 10.2 implies that the empirical distribution
function F ∗

Un
(x) approximates FUn(x) which in turn approximates FZ(x) =

limn→∞ P(Tn ≤ x). Thus, validity of the SW bootstrap based on Un is also es-
tablished.
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Fig. 10.1 Histogram of a
simulated series Yt = G(Xt )

of length n = 1000, where Xt

is a FARIMA(0,0.4,0)
process with variance one and
G(x) = x + 0.005(x3 − x).
Also plotted are distributions
obtained by blockwise
bootstrap with block length
l = 177, and by an analogous
SW bootstrap

10.6 Some Practical Issues

The main practical problem with the bootstrap procedures above is that it is not
clear how to choose the tuning parameters for an observed data set with a finite
number of observations and unknown data generating process. For both bootstrap
procedures, the block length is to be chosen such that l tends to infinity at a slower
rate than n. Even if we restrict attention to block lengths proportional to n1−ε for
some 0 < ε < 1, one needs to specify ε and the proportionality constant. For the
block bootstrap, there is an additional tuning parameter k.

As a general rule, the block length should be neither too small nor too large,
compared to n. If l is very small, then the computed statistics fail to capture the
asymptotic effect of long-range dependence. On the other hand, if l is too large, then
the number of blocks to choose from is small so that there is not enough variability
among the (highly dependent) block statistics, and the results may heavily depend
on spurious features of the observed series. The latter problem is more likely to
occur for the SW bootstrap because there the whole shape of the sample path plays
a role. This is illustrated in Figs. 10.1, 10.2 and 10.3. The figures are based on
a simulated series of the process Yt = G(Xt) where Xt is a FARIMA(0,0.4,0)
process with variance one and G(x) = x+0.005(x3 −x). Since the Hermite rank of
G is one, both bootstrap procedures are valid. Given the dominant linear part and the
relatively large sample size of n = 1000, one would expect a good approximation by
any reasonable bootstrap method. In Fig. 10.1, l is chosen to be equal to n1−ε with
ε = 1

4 so that l = 177. While the block bootstrap and even the asymptotic standard
normal approximation are close to the simulated histogram, the SW bootstrap yields
a completely wrong bimodal distribution. The reason for the bimodal shape can be
seen in Figs. 10.2(a)–(d). Due to strong long memory (with d = 0.4), the simulated
sample path stays below zero for a relatively long time in the beginning and towards
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Fig. 10.2 Same simulated series as for the histogram in Fig. 10.1 (a), together with values of T ∗
n,r

for blocks moving from left to right (b), and boxplots of Xt and T ∗
n,r for three different regions ((c)

and (d))

Fig. 10.3 Histogram of a
simulated series Yt = G(Xt )

of length n = 1000, where Xt

is a FARIMA(0,0.4,0)
process with variance one and
G(x) = x + 0.005(x3 − x).
Also plotted are distributions
obtained by blockwise
bootstrap with block length
l = 5, and by an analogous
SW bootstrap
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Fig. 10.4 Histogram of a
simulated series Yt = G(Xt )

of length n = 1000, where Xt

is a FARIMA(0,0.4,0)
process with variance one and
G(Xt ) = H2(Xt ) = X2

t − 1.
Also plotted are distributions
obtained by blockwise
bootstrap with block length
l = 5, and by an analogous
SW bootstrap

the end whereas it is above zero most of the time in the middle period. As a result,
conditionally on the observed sample path, block sums and hence the values of
T ∗
n,r exhibit a bimodal distribution (Figs. 10.1 and 10.2(b), (d)). In contrast, for

the block bootstrap the long wave in the observed series does not influence the
result because blocks are resampled randomly. The dependence of the SW bootstrap
on spurious features can be alleviated by choosing a smaller block length. This
illustrated Fig. 10.3 where ε = 3

4 and hence l = 5 was used.
Figure 10.4 shows an example where only the SW bootstrap is a valid resampling

procedure. The simulated series is Yt = G(Xt) with G(Xt) = H2(Xt ) = X2
t − 1.

Since the Hermite rank is two, the asymptotic distribution is given by the marginal
of the Hermite–Rosenblatt process. This distribution is skewed to the right. The
simulated histogram of Tn with n = 1000 is indeed highly skewed. In contrast, the
distribution obtained by the MBB is symmetric and very close to the standard nor-
mal density. The SW bootstrap provides a much better approximation with a skewed
shape. As before, however, the concrete choice of the block length is crucial. The
good approximation in Fig. 10.4 with l = 5 (ε = 1

4 ) is in sharp contrast to the disas-
trous result in Fig. 10.5 with l = 177 (ε = 3

4 ).
Generally, one may conclude that the SW method is quite flexible since it is able

to capture non-Gaussian limits. This is very useful even for large sample sizes be-
cause the distribution of Hermite processes is rather complicated except for Hermite
rank one. On the other hand, the flexibility of the SW method comes at a price. Since
almost the complete dependence structure of the observed series is preserved, results
may heavily depend on the particular sample path. This lack of ‘robustness’ can lead
to artefacts. A good choice of the block length l plays an important role. On the one
hand, l needs to be large enough to come as close as possible to the situation with
n observations. On the other hand, if l is too large, then some spurious properties
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Fig. 10.5 Histogram of a
simulated series Yt = G(Xt )

of length n = 1000, where Xt

is a FARIMA(0,0.4,0)
process with variance one and
G(Xt ) = H2(Xt ) = X2

t − 1.
Also plotted are distributions
obtained by blockwise
bootstrap with block length
l = 177, and by an analogous
SW bootstrap

of the observed sample path may have an undue influence on the result (see, e.g.
Fig. 10.1). Thus, as is so often in nonparametric statistics, a suitable balance has to
be achieved between two conflicting aims.

10.7 More Complex Models

10.7.1 Bootstrap for the Heavy-Tailed SV Model

10.7.1.1 The HTLM Model

We consider a stochastic volatility model Xt = ξtσt , where the random variables ξt
are i.i.d., strictly positive and regularly varying with index −α, α ∈ (1,2), that is,

P(ξ1 > x) ∼ Ax−α.

The sequence σt = exp(ζt ) is stationary and ergodic, and independent of the se-
quence ξt . Furthermore, ζt is a Gaussian long-memory process with parameter d .
Suppose that E[ξ1] 
= 0. We saw in Example 4.17 that, if 1/2 + d < 1/α, then

n−1/αSn(u) ⇒ A1/αC−1/α
α

(
E
[
σα

1

])1/α
Z̃α(u), (10.14)

where Z̃α(·) is an α-stable Lévy process such that Z̃α(1)
d= Sα(1,1,0). On the other

hand, if 1/2 + d > 1/α, then

n−(1/2+d)L
−1/2
1 (n)Sn(u) ⇒ J (1)E[ξ1]BH(u) , (10.15)
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where BH(·) is a fractional Brownian motion, H = d + 1
2 , L1(n) = C1Lγ (n) and

J (1) = E(ζ1 exp(ζ1)). In Example 4.17, we called this model LMSD. A very sim-
ilar model was considered in McElroy and Politis (2007). There, Xt = ξtσt with
σt = σ(ζt ). The function σ(·) is supposed to have Hermite rank 1, and furthermore
E[σ1] = 0. For this model, we have the same dichotomy as in (10.14)–(10.15), only
the constants of the limiting distributions change. McElroy and Politis coined the
term “HTLM (Heavy Tailed with Long Memory)”.

10.7.1.2 Subsampling for the HTLM Model

We consider Yt = μ + Xt , where Xt (t ∈ N) is the HTLM model described above,
with E[ξ ] 
= 0 (but E[Xt ] = 0 since the subordinated Gaussian sequence σt is cen-
tred). We noted above that the limiting distribution F is either stable or normal.
Furthermore, the scaling vn is the maximum of n1/α and nd+1/2L(n), where L(n)

is a slowly varying function.
Recall the self-normalized statistics Wn from (10.6). Since our data are depen-

dent, we have to change the self-normalizer. It can be constructed as

V 2
n =

n∑

j=1

(Yj − Ȳn)
2 + nLMn(ρ),

where

LMn(ρ) =
∣∣∣∣∣

[nρ ]∑

|k|=1

1

n− |k|
n−k∑

j=1

(
YjYj+k − Ȳ 2

n

)
∣∣∣∣∣

1/ρ

, ρ ∈ (0,1).

To get an idea about the behaviour of V 2
n , we note that Y 2

j (j ∈ N) are regu-
larly varying with index −α/2 and thus they have an infinite mean. This implies
that the behaviour of Y 2

j is free of long memory. In particular,
∑n

j=1 Y
2
j grows

at rate n2/α , n−2/α ∑n
j=1(Yj − Ȳn)

2 converges to a stable random variable and

n−(2d+1)L−2(n)
∑n

j=1(Yj − Ȳn)
2 converges in probability to 0. As for LMn(ρ),

we recognize (n−|h|)−1 ∑n−h
j=1(YjYj+k − Ȳ 2

n ) as the sample covariance at lag k as-
sociated with the sequence Yj (j ∈ N) which is the same as the sample covariance of
Xj (j ∈ N). We expect that they converge in probability to γX(k) = E2[ξ0]E[σ0σk].
If we assume that γX(k) ∼ Lγ k

2d−1, d ∈ (0,1/2), then we expect LMn(ρ) to grow
at the rate

C

∣∣∣∣∣

[nρ ]∑

|k|=1

k2d−1

∣∣∣∣∣

1/ρ

≈ Cn2d,
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since the Hermite rank is one. Thus, with vn := max{n1/α, nd+1/2L(n)} we may
conclude that

Wn := n(Ȳn −μ)

Vn

= v−1
n

∑n
j=1(Yj −μ)

v−1
n Vn

converges to a non-degenerate random variable.
Now, using the blocks Br = (Yr , . . . , Yr+l−1), r = 1, . . . ,Nb, we construct repli-

cates of Wn as

W ∗
n,l,r = l

Ȳn,l,r − Ȳn

Vn,l,r

, r = 1, . . . ,Nb,

where

Ȳn,l,r = 1

l

r+l−1∑

j=r

Yj

and

LMn,l,r (ρ) =
∣∣∣∣∣

[lρ ]∑

|k|=1

1

l − |k|
r+l−1−|k|∑

j=r

(
YjYj+k − Ȳ 2

n,l,r

)
∣∣∣∣∣

1/ρ

.

A (1 − θ)-confidence interval can be constructed as

[Ȳn − z1− θ
2
Vn, Ȳn − z θ

2
Vn],

where z θ
2

is the (1 − θ)-percentile of the empirical distribution function

F ∗
n (x) = 1

n− l + 1

n−l+1∑

r=1

1
{
W ∗

n,l,r ≤ x
}
.

For details, we refer to McElroy and Politis (2007) and Jach et al. (2012).

10.7.2 Testing for Jumps in a Trend Function

In some situations, the modified MBB approach can be useful for defining test statis-
tics whose distribution under the null hypothesis is asymptotically normal due to the
resampling device. For instance, consider a model with a nonparametric trend func-
tion given by

Yi = m(ti)+ ei (10.16)

where m ∈ L2[0,1] and ei a Gaussian process with autocovariance function γ (k) ∼
Lγ |k|−α for some α = 2d − 1 ∈ (0,1). Beran and Shumeyko (2012b) derive an
MBB-based test for

H0 : m ∈ C[0,1]
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against the alternative H1 that m has at least one isolated jump. The idea is to use
the wavelet estimator

m̂(t) = m̂low(t)+ m̂high(t)

given in Sect. 7.5. The low resolution component m̂low(t) is an optimal estimator of
m, if m is continuous whereas the high resolution part m̂high(t) captures departures
from continuity. A natural idea is therefore to test H0 against H1 by designing a
test statistic that compares two types of residuals, êi = Yi − m̂(t) = Yi − m̂low(t)−
m̂high(t) and êi,low = Yi − m̂(t) = Yi − m̂low(t). This can be done, for instance, as
follows. For a given block size l, define block sums

ζr = êr + · · · + êr+l−1 =
∑

êj∈Br

êj

and

ζr,low = êr,low + · · · + êr+l−1,low =
∑

êj∈Br

êj,low

(1 ≤ r ≤ Nb = n − l + 1). Then, k blocks B∗
1 , . . . ,B

∗
k are sampled independently

with replacement and bootstrap samples ζ ∗
1 , . . . , ζ

∗
k and ζ ∗

1,low, . . . , ζ
∗
k,low are com-

puted. The corresponding bootstrap statistics are

T ∗
kl = k−1/2

k∑

r=1

ζ ∗
r

vl
, T ∗

kl,low = k−1/2
k∑

r=1

ζ ∗
r,low

vl

with vl = L
1/2
γ ld+ 1

2 . Extending the proofs in Lahiri (1993) and Beran and Shumeyko
(2012a), the following result can be derived (Beran and Shumeyko 2012b):

Theorem 10.3 Suppose that m ∈ L2[0,1], m′ exists except for a finite set
N ⊂[0,1] and is piecewise continuous outside of N . Moreover, let

l = O
(
nδ

)

where

1

2r + α
< δ <

2

2r + α

and define σ̃ 2 = 2σ 2(1 −α)−1(2 −α)−1 where σ 2 = var(et ). Then, under H0 : m ∈
C[0,1], we have

E∗
(
T ∗
kl,low

) = E∗
(
T ∗
kl

)+ op
(
n0.5αδ−lnn) = op(1),

Var∗
(
T ∗
kl,low

) = Var∗
(
T ∗
kl

)+ op
(
nαδ−2 lnn) = σ̃ 2 + op(1),

T ∗
kl,low = T ∗

kl +Op

(
n0.5αδ−lnn)
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and

sup
x∈R

∣∣∣∣P∗
(
T ∗
kl,low ≤ x

)−Φ

(
x

σ̃

)∣∣∣∣ = op(1),

sup
x∈R

∣∣∣∣P∗
(
T ∗
kl ≤ x

)−Φ

(
x

σ̃

)∣∣∣∣ = op(1),

sup
x∈R

∣∣P∗
(
T ∗
kl ≤ x

)− P∗
(
T ∗
kl,low ≤ x

)∣∣ = op(1).

Thus, under H0, the two statistics are asymptotically equivalent and converge
uniformly in distribution to the N(0, σ̃ 2) distribution. This is no longer the case
under H1:

Theorem 10.4 Suppose that the same assumptions as in the previous theorem hold
except that m has at least one isolated jump. Then the first two moments and the
distribution of T ∗

kl as well as E∗(T ∗
kl,low) are the same asymptotically as under H0.

However,

Var∗
(
T ∗
kl,low

) = σ̃ 2 +wn + op(1)

where

wn = C∗nβ

with

0 < β = αδ − α

2r + α
<

α

2r + α
.

Moreover,

sup
x∈R

∣∣∣∣P∗
(
T ∗
kl,low ≤ x

)−Φ

(
x√

σ̃ 2 +wn

)∣∣∣∣ = op(1),

sup
x∈R

∣∣∣∣P∗
(
T ∗
kl ≤ x

)−Φ

(
x

σ̃

)∣∣∣∣ = op(1).

Note in particular that under H1 the ratio of the variances var(T ∗
kl,low)/var(T ∗

kl)

diverges to infinity. We may therefore test

H0 : var∗
(
T ∗
kl,low

) = var
(
T ∗
kl

)

against

H1 : var∗
(
T ∗
kl,low

)
> var

(
T ∗
kl

)
.

Repeating the bootstrap procedure described so far, say NT times, we calculate

Wlow = σ̃−2
NT∑

i=1

(
T

∗(i)
kl,low − T̄ ∗

kl,low

)2
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Fig. 10.6 (a) Simulated series Yi = m(ti )+ ei with ei generated by a FARIMA process and (b) a
trend function with a local jump. The wavelet estimate of m(ti) is shown in (c), a kernel estimate
in (d). The bootstrap based test (using the trend estimate in (c)) detects the jump at the 5 %-level
of significance

and reject H0, if Wlow is too large. Conditionally on the sample, the simulated statis-
tics T ∗(i)

kl,low (i = 1,2, . . . ,NT ) are independent. Moreover, under H0 they are asymp-

totically N(0, σ̃ 2)-distributed so that Wlow is approximately χ2
NT −1-distributed. Ap-

proximate critical values for Wlow are therefore given by corresponding quantiles
of the χ2

NT −1-distribution. To obtain more exact finite sample quantiles, one can
instead simulate the distribution of

W = σ̃−2
NT∑

i=1

(
T

∗(i)
kl − T̄ ∗

kl

)2

via resampling. This approach is adopted in Beran and Shumeyko (2012b).
Figure 10.6 shows a typical example where the wavelet decomposition and the

test based on Wlow enables us to detect a very local discontinuity in the trend func-
tion. In spite of the presence of local spurious trends caused by strong long memory
in the residuals, the local disturbance in the trend function (Fig. 10.6(b)) is cap-
tured by the high resolution component (Fig. 10.6(c)). This is in contrast to other
nonparametric regression methods such as kernel or local polynomial regression
(Fig. 10.6(d)).



Appendix A
Function Spaces

A.1 Convergence of Functions and Basic Definitions

In what follows, E denotes a measurable space.

• A sequence of functions fn : E → R converges pointwise to a function f if

lim
n→∞fn(x) = f (x) (A.1)

for each x ∈ E.
• A sequence of functions fn : E → R converges uniformly on A ⊆ R if

sup
x∈A

∣∣fn(x)− f (x)
∣∣ → 0. (A.2)

• We have local uniform convergence if (A.2) holds for any compact interval A.
• For two functions, g(x) ∼ h(x) (x → x0) means that g(x)/h(x) converges to one

as x tends to x0.

Definition A.1 A function f :R → R has bounded variation if

sup
∑∣∣f (xi)− f (xi−1)

∣∣< ∞,

where the supremum is taken over all possible partitions of R.

A.2 L Spaces

Throughout the book we use several function spaces:

• Let (E, ν) be a measurable space. Then Lp(E,ν) denotes the space of functions
f : E → R such that

∫

E

∣∣f (x)
∣∣p dν(x) < ∞.
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In particular, L2(R,Leb) is the space of functions f : R → R that are square
integrable with respect to the Lebesgue measure.

• L2(Ω) is the space of random variables X (or, equivalently, the space of distribu-
tion functions F ) such

‖X‖2
2 = E

(
X2) =

∫
x2 dF(x) < ∞.

A.3 The Spaces C and D

We denote by C[0,M] the space of continuous real-valued functions x : [0,M]
→R. The uniform metric on C[0,M] is defined by

dM
(
x(·), y(·)) = sup

t∈[0,M]
∣∣x(t)− y(t)

∣∣ =: ‖x − y‖M.

The uniform metric on C[0,∞) is defined by

d∞
(
x(·), y(·)) =

∞∑

M=1

min{dM(x(·), y(·)),1}
2M

.

Two functions are close in the uniform topology if their graphs are close.
We denote by D[0,1] the space of real-valued functions that are right-continuous

functions on [0,1), with finite left limits on (0,1]. Let

Λ = {
λ : [0,1] → [0,1] : λ(0) = 0, λ(1) = 1;λ continuous, strictly increasing

}
.

The Skorokhod J1 metric is defined by

d
(
x(·), y(·)) = inf

λ∈Λmax
(‖λ− I‖1,‖x − y ◦ λ‖1

)
,

where I is the identity function. In other words, two functions are close in the Sko-
rokhod topology if there exists a strictly increasing transformation mapping one into
another. A typical example is given by

xn(u) = 1

{
0 ≤ u ≤ 1

2
+ 1

n

}
, x(u) = 1

{
0 ≤ u <

1

2

}
(u).

These two functions are close to each other in the J1 topology, however, the uniform
distance is 1.

We refer to Whitt (2002) for more details on different Skorokhod metrics.



Appendix B
Regularly Varying Functions

In this section we collect several results on regularly varying and slowly varying
functions that are used in the book. The main references for this material are Bing-
ham et al. (1987) and Resnick (2007).

Definition B.1 A measurable function L : (c,∞) → R (c ≥ 0) is called slowly
varying at infinity in Karamata’s sense if it is positive for x large enough and such
that for any u > 0,

L(ux) ∼ L(x) (x → ∞).

The function is called slowly varying at infinity in Zygmund’s sense if for x large
enough, it is positive and for any δ > 0, there exists a finite number x0(δ) > 0 such
that for x > x0(δ), both functions p1(x) = xδL(x) and p2(x) = x−δL(x) are mono-
tone.

Similarly, L is called slowly varying at the origin if L̃(x) = L(x−1) is slowly
varying at infinity.

Definition B.2 A measurable function g : R+ → R is called regularly varying (at
infinity) with exponent α if g(x) 
= 0 for large x and for any u > 0,

lim
x→∞

g(ux)

g(x)
= uα.

The class of such functions is denoted by Re(α).
Similarly, a function g is called regularly varying at the origin with exponent α

if g̃(x) = g(x−1) ∈ Re(−α). We will denote this class by Re0(α).

Lemma B.1 (Karamata Theorem) Let g ∈ Re(α) with α > −1 and integrable on
(0, a) for any a > 0. Then

∫ x

0 g(t) dt ∈ Re(α + 1) and

∫ x

0
g(t) dt ∼ xg(x)

α + 1
(x → ∞).
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Lemma B.2 Let g ∈ Re(α) with α < −1 and integrable on (a, b) for any 0 < a ≤
b < ∞. Then

∫ ∞
x

g(t)dt ∈ Re(α + 1) and

∫ ∞

x

g(t) dt ∼ −xg(x)

α + 1
(x → ∞).

Lemma B.3 (Potter’s Bound) Assume that g(t) is regularly varying with index ρ.
Let δ > 0. Then there exists t0 such that for all x > 0 and t > t0,

g(tx)

g(t)
< (1 + δ)

(
max{x,1})ρ+δ

.



Appendix C
Vague Convergence

We collect some notions and results on vague convergence. This concept is used to
prove convergence of point processes. For details, the reader is referred to standard
literature, such as Kallenberg (1997) and Resnick (2007).

Let ν be a measure on E. It is called a Radon measure if ν(K) < ∞ for all
relatively compact sets K ⊆ E. If E = R

m, then K is called relatively compact if it
is bounded away from 0. For example, if m = 1, then K ⊂ (0,∞) or K ⊂ (−∞,0).
If m = 2, relative compactness means that K does not contain (0,0). We denote by
M+(E) the set of all nonnegative Radon measures on E.

The simplest example of a Radon measure is the Dirac measure δx(·): δx(K) =
1 if x ∈ K and 0 otherwise. Furthermore, a point measure

∑
i δxi (xi ∈ E) is a

nonnegative Radon measure. The set Mp(E) consists of all Radon point measures
of the form

∑
i δxi .

Let C+
K(E) be a set of all continuous functions f : E → R+ with compact sup-

port. We say that a sequence νn of measures converges vaguely to ν, denoted by
νn

v→ ν, if
∫

f (x)νn (dx) →
∫

f (x)ν (dx)

for all f ∈ C+
K(E). There is a close link between regular variation and vague con-

vergence. Assume that the distribution F of a nonnegative random variable X is
regularly varying. Let an be a sequence of constants such that nF̄ (anx) → x−α as
n → ∞. Define νn(K) = nP (a−1

n X ∈ K). Then νn
v→ ν, where ν(x,∞] = x−α in

M+[0,∞).
A sequence Nn of point processes converges weakly in Mp(E) to N if for all

sets A1, . . . ,Am ⊆ E and all integers n1, . . . , nm, we have

P
(
Nn(A1) = n1, . . . ,Nn(Am) = nm

) → P
(
N(A1) = n1, . . . ,N(Am) = nm

)

as n → ∞.

J. Beran et al., Long-Memory Processes,
DOI 10.1007/978-3-642-35512-7, © Springer-Verlag Berlin Heidelberg 2013

801

http://dx.doi.org/10.1007/978-3-642-35512-7


Appendix D
Some Useful Integrals

We collect several formulas for integrals that are used extensively in the book. We
start with definitions of beta and gamma functions.

Definition D.1 (Gamma Function)

Γ (z) =
∫ ∞

0
xz−1e−x dx. (D.1)

Definition D.2 (Beta Function)

B(a, b) =
∫ ∞

0
xa−1(1 + x)−(a+b) dx = Γ (a)Γ (b)

Γ (a + b)
,

∫ ∞

0
x−1 sinx dx = π/2, (D.2)

∫ ∞

0
x−α sinx dx = Γ (2 − α) cos(πα/2)

1 − α
(α 
= 1), (D.3)

Γ (z)Γ (1 − z) = π

sinπz
, (D.4)

∫ ∞

0

(
x + x2)H0− 3

2 dx = B

(
H0 − 1

2
,2 − 2H0

)
= Γ (H0 − 1

2 )Γ (2 − 2H0)

Γ ( 3
2 −H0)

= sinπ(H0 − 1
2 )

π
Γ (2 − 2H0). (D.5)
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Glossary

Notation
d= Equality in distribution
d→ Convergence in distribution

⇒ Weak convergence
p→ Convergence in probability

f.d.→ Finite-dimensional convergence
B(·) Brownian Motion
BH(·) Fractional Brownian Motion (fBm) with Hurst parameter H
Zm,H Hermite–Rosenblatt process
SαS Symmetric α-Stable random variable
Zα(·) Stable Lévy process
Z̃H,α(·) Linear Fractional Stable Motion (LFSM)

Abbreviations
ARMA Autoregressive Moving Average
FARIMA (ARFIMA) Fractionally Integrated ARMA
fBm Fractional Brownian Motion
fGn Fractional Gaussian Noise
(G)ARCH (Generalized) Autoregressive Conditionally Heteroscedastic
I(G)ARCH Integrated GARCH
EGARCH Exponential GARCH
FIGARCH Fractionally Integrated GARCH
FIEGARCH Fractionally Integrated Exponential GARCH
LARCH Linear ARCH
SSSI Self Similar with Stationary Increments
SV Stochastic Volatility
LMSV Long-Memory Stochastic Volatility
LMSD Long-Memory Stochastic Duration
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Stable distribution, 37
Stable random variable, 40, 267
Stirling’s formula, 48, 139
Stochastic volatility, 56, 74, 299, 805
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with leverage, 56, 294

Stride intervals, 15, 17
Strongly correlated, 116
Subject, 78, 87
Subordination, 248, 294, 385, 390, 399, 426,

510, 524, 693
Gaussian, 647, 747, 772, 782, 785
time dependent, 685

Superposition of counting processes, 358, 360
Superposition of ON–OFF processes, 372,
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Symmetric α-stable, 54, 183, 203, 267, 284,
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Tail

parameter, 369, 538
regularly varying, 266, 274, 379
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Tail index, 37, 52, 54, 75, 277, 350, 353, 389,
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function, 523
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uniform, 798

Totally skewed, 268, 271
Transaction costs, 102
Translation parameter, 168, 170, 172
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Trichotomy, 507
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Truncated moments, 266
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parameter, 518
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Turbulence, 3, 90
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Vertices, 93, 180
Vervaat’s lemma, 213, 214, 357, 358
Volatility, 16, 30, 31, 55, 66, 71, 74, 75, 103,

104, 265, 638, 656, 745, 805
dependence, 55, 383
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decomposition level, 172, 175
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data adaptive, 675
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Whittle approximation, 428, 445, 497, 611
Whittle estimator, 420, 430
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