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Anti-inflammatory drugs in asthma: The pathophysiology of 

asthma 

James L. Lordan and Ratko Djukanovic 

University Medicine (810), Level D, Centre Block, Southampton General Hospital, Tremona 

Road, Southhampton, 5016 6YD, UK 

Introduction 

Asthma is a chronic condition characterised by widespread, variable and reversible 
airflow obstruction which is either spontaneous or pharmacologically induced. The 
underlying pathophysiological feature of asthma is increased airway responsiveness 
which develops on a basis of diffuse bronchial inflammation. The prevalence of 
asthma is increasing worldwide despite improved treatment which has resulted from 
a more comprehensive understanding of its pathogenesis [1].. In most countries asth
ma affects between 4 and 8 % of the popu lation, with a trend towards an increase 
in morbidity as judged by increased hospital admissions [2]. The reasons for this are 
unclear, but environmental factors SUcD. as indoor and outdoor air pollution and 
changes in lifestyle are considered to be amongst the contributing factors. 

Asthma is clearly a complex process mediated by inflammatory cells and the 
formed and structural elements of the airway, involving numerous cytokines, 
chemokines, and costimulatory and adhesion molecules that interact in a complex 
network (Fig. 1). There is accumulating evidence establishing a link between chron
ic inflammation and remodelling of the airways in asthma. The present evidence of 
relatively permanent, irreversible structural changes found at an early stage in asth
ma supports the recommendations of current asthma management guidelines that 
effective anti-inflammatory treatment be introduced at an early stage in the man
agement of asthma. 

Asthma has been closely associated with atopy, the ability to generate an IgE 
response to environmental allergens which is detected by positive skin tests to one 
or more allergens, although it is interesting to note that only one-fifth of atopic indi
viduals actually develop asthma. Whilst the presence of allergen specific IgE has 
been considered to be central to allergic responses in human allergic disease, studies 
using IgE-deficient mice have demonstrated that bronchial eosinophilic inflamma
tion and airway hyperresponsiveness (AHR) can occur in the absence of IgE [3]. To 
what extent these observations are relevant to human disease remains to be eluci
dated. Clinical studies using a humanised monoclonal antibody to IgE show that 
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Anti-inflammatory drugs in asthma: The pathophysiology of asthma 

despite a dramatic depletion of IgE from the circulation with the prevention of the 
early and late phase response to allergen challenge, the clinical response in allergic 
asthmatics is quite poor [4, 5]. These studies suggest that while IgE is likely to be 
contributing to the inflammatory process in asthma, other immune mechanisms 
must be operating in parallel [6]. 

The genetiC basis of asthma 

There is evidence from family aggregation studies to support an important role for 
genetic contributionfactors into the development of atopy and asthma. The preva
lence of asthma in first-order relatives of asthmatics is 20-25% compared with 
4-5% in the general population [1]. The relative contribution of genetic factors to 
the onset of allergy and asthma is estimated at 40-60% [7]. Twin studies, including 
a large study of 7000 same-sex twins by Edfors-Lubs, provide evidence for the 
genetic contribution to the. onset of asthma, with concordance for asthma in 
monozygotic twins being 19%, and only 4.8% for dizygotic twins, who share less 
common genetic material [8]. Asthma is a complex genetic disorder, with studies 
suggesting a polygenic inheritance pattern which interacts with environmental fac
tors to express the full clinical and pathophysiological phenotype [1]. 

Genetic studies are being used to characterise and map the genes responsible for 
the asthmatic phenotype. Studies in British families by Cookson and colleagues were 
the first to provide evidence of linkage of atopy to a marker (DIIS97) on chromo
some llq13 in the vicinity of genes for CD20 (a B cell marker) and FceRI-/3, the /3 
component of the high affinity IgE receptor [9-12]. An iso-leucine to leucine poly
morphism at position 181 was identified in the FceRI-/3 gene and was found in 15% 
of individuals, being associated with the phenotype of high total serum IgE [13]. A 
polymorphism (Glu 237-Gly) was found in 5.3% of the population in a study by 
Hill and colleagues and this was associated with AHR and atopy [5014]. There is 

Figure 1 
The inflammatory process in asthma involves the activation of Th2 type T cells by antigen 
presenting cells (APCs) resident in the airway wall (i.e. dendritic cells). T cell derived 
cytokines, including Interleukin-4 and IL-13 promote the switching of B cells to the synthe
sis of IgE. Cytokines are involved in the activation and differentiation of eosinophils and 
mast cells with release of pro-inflammatory mediators, leading to epithelial damage, bron
choconstriction and symptoms of asthma. The bronchial epithelium plays an active role by 
the release of mediators and cytokines. MHC, major histocompatibility complex class II; 
TCR, T cell receptor; Fc£RI, high affinity IgE receptor; MBP, major basic protein; ECp, 
eosinophil cationic protein; LT, leukotrienes; PGD2, Prostaglandin D2. 
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also evidence for linkage of atopy and AHR to chromosome 5q31-33, which con
tains the genes for many cytokines considered to play an important role in asthma 
(interleukins- (IL-) 3,4,5,9, and 13 and GM-CSF) [15]. In a study of Amish fam
ilies involving 349 affected sib pairs, Marsh and colleagues provided evidence of 
linkage of total serum IgE with markers located at 5q31 [16]. A study in Dutch fam
ilies, using affected sib pair analysis and linkage analysis, has also provideds evi
dence of linkage of total serum IgE and AHR to markers on chromosome 5q [17, 
18]. Asthma and elevated serum IgE levels have further been linked to markers on 
chromosome 12q which contains candidate asthma genes including IFNy, mast cell 
growth factor (MGF), insulin-like growth factor-l (IGF-l), and the constitutive 
form of nitric oxide synthase (NOS-l) [19,20]. 

In agreement with the complex nature of asthma pathogenesis, tThere is evi
d~nce that the human leucocyte antigen (HLA) and T cell receptor (TCR) genes may 
genetically also contribute to determine antigen- specific IgE responses. Studies have 
shown associations between HLA alleles (HLA DRB1) and specific IgE responses 
[21]. HLA-DQw2 is more prevalent in Chinese children with asthma and house dust 
mite (HDM) allergy [22]. An association is found with certain alleles (HLA
DQBl *0503 and HLA-DQBl *020110301) and the onset of isocyanate-induced 
asthma in exposed individuals, while other alleles (HLA-DQBl *0501 and 
DQAl *0101-DQBl *0501-DR1) appeared to be protective (HLA-DQBl *0501 and 
DQAl *0101-DQBl *0501-DRl [23]. The alpha chain of the T cell receptor (TCR), 
located on chromosome 114, has been linked to specific IgE responses in a popula
tion of atopic asthmatics [24]. On chromosome 5q31-33 the ~2 adrenoreceptor 
gene has been linked with a phenotype based on elevated IgE and bronchial hyper
reactivity. Of significant relevance to treatment of asthma are the genes which might 
determine response to anti-inflammatory drugs, and one such plausible candidate 
for corticosteroid resistance is the glucocorticoid receptor gene [2,25]. 

Prenatal origin of asthma and allergy 

A familial tendency is seen in allergic patients, with 50% of children with one par
ent and 80% of those with two allergic parents becoming atopic [26]. Significantly 
more infants of an atopic mother develop allergy than those with an allergic father 
[27]. It is hypothesized that factors which determine allergic responses may cross the 
placenta and activate the process of initial sensitization of the fetal immune system. 
Thus, IL-I0, a cytokine known believed to deviate the immune response to a Th2 
type immune response, thus favouring the development of atopy in the foetus of an 
atopic mother [28], is detectable in amniotic fluid with at higher levels seen in atopic 
mothers than non-atopic mothers [29]. The maternal antigen presenting cells (APC) 
of the mother may pre-process antigen to peptides capable of crossing the placenta, 
allowing the foetal APCs to present this specific peptide to foetal T cells [76]. There 
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Anti-inflammatory drugs in asthma: The pathophysiology of asthma 

is also evidence to suggest that house dust mite antigens are present in cord blood, 
enabling foetal exposure to allergen to occur in utero. Infants who subsequently 
develop allergy during later childhood demonstrate an altered immune response at 
birth, with raised proliferative responses of T cells from cord blood and defective 
IFNy production of IFNy (a cytokine which downregulates allergic responses) to 
specific allergic stimulation [30]. Circulating allergen-specific T cells can be demon
strated as early as 15 weeks of gestation, and increased proliferative responses to 
antigen can be seen from 22 weeks, suggesting that the second trimester may be vital 
for initial sensitisation [30]. Circulating allergen-specific T cells are detectable at 
birth and these cells are thought to migrate over the following 6 to 12 months to tis
sue sites where disease will be expressed [31-33]. The early origin of atopy there
fore appears to be central to a strategy aimed at early intervention. In keeping with 
this notion, studies are under way to assess whether allergen avoidance during the 
second trimester of pregnancy and the first year of life is effective in preventing the 
sensitization and subsequent development of atopy and allergy. 

Pathological features of asthma 

Asthma is characterised by variable damage to the epithelium with and increased 
numbers of mucosal and submucosal inflammatory cells, including eosinophils, 
mast cells and lymphocytes [34,35]. Other prominent features of asthma are hyper
trophy of airway smooth muscle, thickening of the basement membrane, mucosal 
oedema and excessive secretion of mucus, all of which contribute to airways nar
rowing. In severe exacerbations both large and small airways show gross damage 
and shedding of the epithelium, and the airways may become occluded by inspis
sated mucus and cellular debris which form tenacious plugs [34, 35]. Studies sug
gest differences in the type of inflammation depending on the time-course of asth
ma exacerbation, with infiltration of eosinophils being noted in slow-onset fatal 
asthma and an excess of neutrophils being seen the prominent feature of sudden 
acute asthma deaths [36]. 

Cellular mechanisms in asthma 

The ability to obtain representative samples of the lower respiratory tract and tech
nological improvements in analysing samples hasve revolutionised our understand
ing of the cellular and molecular basis of asthma. The advent of flexible bron
choscopy as a research tool, and the ability to safely obtain and analyse bronchial 
biopsies, bronchial brushings and bronchoalveolar lavage (BAL) fluid in asthmatic 
individuals, together with the recent validation of induced sputum techniques, have 
provided essential samples for research purposes. 

5 
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Traditionally asthma has been viewed as a condition characterised by airway 
infiltration with activated mast cells and eosinophils, orchestrated by specific Th2 
polarised T lymphocytes [37]. It is increasingly evident that other structures, includ
ing the bronchial epithelium, endothelium, fibroblasts and the extracellular matrix 
are involved in the recruitment of inflammatory cells, tissue damage and the subse
quent repair and remodelling process that is characteristic of asthma. 

Antigen presentation and co-stimulation 

Environmental allergens and antigen presentation play an important role in the ini
tiation and maintenance of airway inflammation. As with any immune response, 
antigen presentation of allergens to the immune system is central to subsequent 
responses. On exposure to antigen, T cells require the assistance of antigen-present
ing cells (APC), such as dendritic cells, tissue macrophages, or in the case of sec
ondary presentation, B cells, for optimal activation [38]. Antigen presentation 
involves the intracellular processing of allergen to peptides which are presented to 
the T cell receptor (TCR) in the context of major histocompatibility complex 
(MHC) class II molecules on the surface of APCs. For this process to be effective at 
eliciting a T cell response, ligation of costimulatory molecules on the surface of T 
cells and APC is required, resulting in optimal T cell clonal expansion and activa
tion (Fig. 2). 

The dendritic cells (DC), which form an intricate network within the bronchial 
epithelium, are believed to be the main APC in the airways. They develop from 
monocytes in the presence of IL-3, stem cell factor (SCF) and GM-CSF, having a 
unique capacity to stimulate naive T cells. In rats, dendritic cells can be shown to 
migrate to regional (peribronchial, and mediastinal) lymph nodes for presentation 
of antigen to the immune system [39]. Of relevance to antigen presentation in asth
ma is the finding that dendritic cell numbers are elevated in the mucosa of asthmat
ic individuals and are reduced by treatment with inhaled corticosteroids in associa
tion with improved disease control [40,41]. Although the mechanisms responsible 
for this increase in DC numbers are largely unknown, local T cell-mediated inflam
mation is enhanced by increased production of granulocyte macrophage-colony 
stimulating factor (GM-CSF) which enhances the ability of DC to differentiate and 
present antigen effectively [39]. Other cells, such as macrophages or B cells, may be 
involved in antigen presentation, but their role in asthma is poorly understood. 
Macrophages recovered by BAL are generally poor antigen presenting cells and have 
predominantly an immuno-suppressive role in the lungs, despite the fact that tissue 
macrophages promote inflammation through the production of pro-inflammatory 
mediators, such as PGE2, hydrogen peroxide, leukotrienes, and cytokines such as IL
l, GM-CSF and MCP-1 [42-46]. Alveolar macrophages have a reduced capacity to 
bind with T cells, which may be due to reduced density of LFA-1 expression on their 
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cell surface AM [47,48]. Defective expression of B7-1 and B7-2 expression has pre
viously been shown on AMs which would reduce the ability to present antigen effi
ciently [49], although a recent study by Agea and coworkers has shown elevated 
expression of B7-2 on AM in BAL fluid from atopic asthmatics compared with nor
mal control subjects [50]. 

Costimulation via the CD28:B7 pathway 

There is considerable evidence to support an important role for costimulatory mol
ecules in regulating the proliferation and activation of T cells in the immune 
response. Of particular relevance are the interaction between CD28 and B7, and the 
CD40 binding with CD40 ligand (CD40L) [51,52]. 

Following interaction between the T cell receptor (TCR) on the T cell membrane 
and the major histocompatibility (MHC) antigen-peptide complex on the APC, 
CD28 molecules expressed on the surface of T cells interact with B7-1 (CD80) and 
B7-2 (CD86) ligands expressed on the surface of APCs to provide a powerful aug
menting stimulus to T cell activation. Studies have suggested that binding of anoth
er molecule present on activated T cells, CTLA-4, to B7-1 and B7-2 delivers a neg
ative signal and functions to downregulate T cell activity [53, 54]. However, the role 
of CTLA4 remains uncertain, with recent studies suggesting that CTLA-4 might also 
deliver a positive signal to T cell activation [55, 56]. The development of CTLA4-
Ig, a fusion protein consisting of the extracellular domain of CTLA4 and the Fc por
tion of a human immunoglobulin G1 (IgG1), has provided a useful tool to study the 
role of CD281B7 interactions in immune responses. A number of studies have shown 
that interference with interaction by CTLA4-Ig is able to switch off T cell activation 
[57]. Recent studies using an ovalbumin sensitive murine model of asthma showed 
that systemic or intra-nasal CTLA4-Ig treatment suppresses the response to inhaled 
allergen (increased AHR, IgE production, irecruitment of eosinophils into the lungs, 
production of IL-4, IL-5, and IL-10 and increased IFNyproduction from CD3-TCR
activated T cells) [31,54,58-60]. Anti B7-2 treatment was has been shown seen to 
have effects similiar in magnitude on eosinophil infiltration, cytokine production, 
IgE production and to reduce bronchial hyperresponsiveness, suggesting that inter
action of B7-2 with CD28 is important in the development of a Th-2 type inflam
matory response in mice. 

This observation has recently been shown to be of relevance to human allergic 
disease. In vitro studies have shown that exposure of naIve cord blood mononuclear 
cells to Der P allergen or Th-2 type cytokines, IL-4 or GM-CSF, results in increased 
expression of B7-2 and to a lesser extent B7-1. Blockade of CD28-B7 signalling by 
CTLA4-Ig or anti-B7-2 antibody has been shown to inhibit allergen-induced prolif
eration and cytokine mRNA production by PBMC from both atopic and non-atopic 
subjects [61]. A recent study by Spinozzi and colleagues has also shown increased 
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expression of B7-2 on BAL fluid alveolar macrophages from atopic asthmatics com
pared to normal controls, and to patients with pulmonary sarcoidosis or extrinsic 
allergic alveolitis [50]. 

The role of co-stimulation was recently studied in a human bronchial explant 
model of asthma. Bronchial biopsies obtained at bronchoscopy from house dust 
mite (HDM) sensitive atopic asthmatics were cultured for 24 h in the presence of 
house dust mite allergen extract. In this bronchial explant model, allergen was 
shown to stimulate the production of the cytokines IL-5 and IL-13 [62]. Addition 
of CTLA4-lg fusion protein to the culture medium effectively blocked production of 
both IL-5 and IL-13 found on stimulation ex vivo with house dust mite antigen [62]. 
These studies confirm the requirement for interaction between co-stimulatory mol
ecules in cytokine production and allergic inflammation, and point to the CD28-B7 
pathway as being important to the allergen-induced AHR in asthma. Studies of 
organ transplantation in primates suggest that CTLA4-lg is extremely effective in 
preventing organ rejection. While Phase I clinical trials have shown CTLA-4-lg 
treatment of patients with psoriasis vulgaris to be well tolerated and to result in clin
ical improvement, its role in asthma management merits further investigation [63]. 

The role of CD40-CD40L interaction 

There is considerable recent interest in the role of CD40 and its ligand CD40L in 
inflammation. CD40 is expressed on a number of cells, including B cells, T cells, 
monocytes, dendritic cells, eosinophils, and endothelial cells [64]. Ligation of CD40 
ligation on monocytes and dendritic cells results in the secretion of cytokines IL-l, 
-6, -8, -10, -12, TNFa, MIPla and up-regulation of costimulatory molecule expres
sion such as CD54 (ICAM-l), CD58 (LFA-3), B7-1 and B7-2 on the cell surface. In 
co-cultures of dendritic cells and T cells, the interruption of CD40 signalling with 
an anti-CD40L monoclonal antibody results in reduced T cell proliferation. Liga
tion of CD40L on human activated T cells by specific monoclonal antibodies or 
with CD40 transfected T cells considerably enhances their cytokine production [65]. 
The interruption of CD40-CD40L interactions appears to improve the disease state 
in murine models of many conditions (e.g. collagen arthritis, lupus nephritis, exper
imental allergic encephalomyelitis and Leishmania infection) [64]. However, while 
its effects on B cell function and IgE production in allergy have been well studied, 
the role in T cell function is less clear. 

Facilitated antigen presentation 

Emerging evidence suggests that IgE may potentiate allergen-specific responses by 
binding to high- and low- affinity IgE receptors (FCERI and FCERII) on the surface 
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of antigen presenting cells and facilitating the capture and internalization of antigen 
which can subsequently be processed and presented to T cells. It has recently been 
demonstrated that IgElFcERI-mediated antigen uptake results in 100-1000-fold 
increased effectiveness in antigen presentation by APCs [66]. A recent study of 
bronchial biopsies has shown that pulmonary DCs and mast cells stain positively for 
the a. sub-unit of FCERI [67]. This suggests a possible role for IgE and facilitated 
antigen presentation in the induction and mainteanance of chronic inflammation in 
asthma. 

Transcription factors 

There is increasing research interest in the role of transcription factors in the 
e~pression of cytokine genes involved in asthma. Transcription factors are intra
cellular proteins that bind to regulatory sequences of target genes, activating gene 
transcription, and subsequent cytokine mRNA and protein production. It is also 
increasingly recognised that therapies for asthma, such as corticosteroids and 
cyclosporin A, may function through interaction with transcription factors. Many 
stimuli including cytokines, activators of protein kinase C, viruses, and oxidants 
activate transcription factors including NFKB [68]. Cytokines act by binding to 
receptors on target cells with increased intracellular production of various protein 
kinases and phosphorylation of nuclear factor kappa B (NFKB) and activator pro
tein (AP)-l. NFKB is present in the cytoplasm in an inactive form complexed to an 
inhibitory protein IKB. Various protein kinase molecules phosphorylate IKB to 
release free NFKB which then localises to the nucleus and binds to a specific KB 
recognition element on the promoter region of several genes. NFKB is an important 
regulator of several inducible genes, such as inducible nitric oxide synthase (iNOS), 
TNFa., GM-CSF, MIP-1a., MCP-1, eotaxin, ICAM-1 and VCAM-1 [68,69]. TNFa. 
stimulates the activation of NFKB and AP-1 in the lung, and treatment with corti
costeroids inhibits activation of these transcription factors via a direct interaction 
between activated glucocorticosteroid receptor (GR), and the p65 subunit of NFKB 
[70]. 

The cytokine mediators of asthma 

A number of cytokines have been implicated in controlling and perpetuating the 
chronic inflammation in asthma [71]. While studies of BAL and bronchial biopsies 
using in situ hybridisation show T cells to be a major source of cytokines in asthma, 
it is clear that other cells including eosinophils, mast cells, bronchial epithelial cells 
and the structural elements of the airways contribute to the production of cytokines 
(Table 1). 

10 



Anti-inflammatory drugs in asthma: The pathophysiology of asthma 

Table 1 - The cellular origin of cytokines and chemokines in asthma 

Cell type 

T lymphocytes 

Eosinophil 

Mast cell 

Bronchial epithelium 

Alveolar macrophages 

Cytokines and chemokines produced 

IL-2, -3, -4, -5, -10, -12, -13, -16 

GM-CSF, TN Fa, IFNy, RANTES, MIP-1a, MCP-3 

IL-1a, -2, -3, -4, -6, -8, -10, -16, 

GM-CSF, TNFa, IFNy, TGFa, TGF~1, MIP-1 a, IGF-II 
IL-3, -4, -5, -6, -8, -10, -13, -16, 

GM-CSF, SCF, TNFa 
IL-5 [72], -6, -8, -16, GM-CSF, TNFa, PDGF, 

IL-18, IDGF, MIP-1a, MCP-3, RANTES, Eotaxin 

IL-1, -10, -12, -13, -18, 

GM-CSF, TN Fa, MCP-1 

Cytokines derived from T cells and mast cells, such as IL-4, IL-5, and IL-l0 play 
central roles in the pathogenesis of asthma by their ability to promote recruitment, 
activation, terminal differentiation, and prolonged survival of eosinophils in the air
ways, and, in the case of IL-4, to promote B cell switching to IgE production [73]. 
IL-4 enhances eosinophil recruitment to the airways by increasing VCAM-l expres
sion on endothelial cells to promote adherence of eosinophils bearing VLA-4 [74, 
75, 121]. IL-3 and GM-CSF also contribute to eosinophilic inflammation by pro
moting eosinophil survival and mast cell and basophil development. GM-CSF is also 
involved in priming neutrophils and eosinophils [7Barnes PJ 941]. Although T cells 
and mast cells are likely to initiate the production of eosinophilotactic cytokines, 
eosinophils are also capable of enhancing eosinophilic inflammation by producing
tion of IL-4, IL-5, GM-CSF and TNFa [76]. A number of studies have confirmed 
increased expression of the Th2-type cytokines which promote the allergic response 
(IL-4 and IL-5), but not the Thl-type cytokine IFNy, in BAL and bronchial biopsies 
from asthmatics [77, 78]. 

While there is a considerable body of evidence to support the role of cytokines 
such as IL-3, IL-4, IL-5, IL-6 and GM-CSF in asthma, a number of studies have 
recently focussed on IL-l0, IL-12, IL-13, IL-16 and IL-18. IL-l0 inhibits T cell pro
liferation and cytokine production [79, 80]. In vivo studies in murine models of 
allergic disease show that IL-l0 treatment can reduce the airway eosinophilic 
response to allergen inhalation by preventing the release of pro-inflammatory 
cytokines IL-3, IL-5, GM-CSF and TNFa [76]. It has been suggested that IL-l0 is 
produced as a late event after T cell activation in asthma [Robinson DS 9680], with 
IL-l0 mRNA expression being increased after allergen challenge and localised pre
dominantly to CD3+ T cells, but also to CD68+ alveolar macrophages. It has thus 
been suggested This suggests that IL-l0 may be useful as a potential therapeutic 
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agent in asthma by controlling Th2-mediated inflammatory processes and prevent
ing eosinophil accumulation [76, 80]. 

In vitro studies show that IL-12 promotes IFNy production, suppresses IgE pro
duction, and promotes development of a Th1 phenotype [81, 82, 77]. For In sensi
tised mice, IL-12 treatment has been shown to abrogate airway hyperresponsive
ness, eosinophilia and the production of Th-2 type cytokines after allergen inhala
tion [Gavett 9583]. Studies using anti-IFNy antibodies show that the action of 
IL-12, at least in mice, is partially mediated by IFNy production. The expression of 
IL-12 in bronchial biopsies is lower in asthmatics than normal controls, with mRNA 
for IL-12 being localised to alveolar macrophages and T cells [77]. A recent obser
vation that treatment with prednisolone results in a significant increase in IL-12 
mRNA positive cells in bronchial biopsies from steroid sensitive (55) asthmatics but 
not steroid resistant (SR) asthmatic patients [77]. IL-12 provides further insight into 
the mechanisms of severe asthma that does not respond readily to corticosteroids. 
In addition, it suggests that treatment with IL-12 may prove useful in the manage
ment of asthma. 

IL-13 is produced mainly by activated T cells and has a potentially important 
role in regulating allergic inflammation in asthma by promoting B cell proliferation, 
differentiation and immunoglobulin secretion via enhancement of class switching 
from IgG to IgE. This cytokine upregulates MHC class II and FceRII (low affinity 
IgE receptor) molecules and can promote dendritic cell development [84,85]. IL-13 
also upregulates VCAM-1 expression on vascular endothelial cells, which togetheor 
with IL-4 and TNFa. promotes eosinophil accumulation [86, 87]. Segmental aller
gen challenge in asthmatics has conclusively shown elevated expression of cells 
expressing BAL IL-13 mRNA and IL-13 levels in BAL [85, 88]. As noted for IL-2 
and IL-4, treatment with prednisolone results in improvement in lung function 
which is associated with a significant downregulation in IL-13 mRNA cellular 
expression in glucorticosteroid sensitive (GS) asthmatics, but not in glucocorticos
teroid resistant (GR) asthmatics who showed little clinical improvement after treat
ment [77, 86]. These observations support the hypothesis that corticosteroid action 
is mediated partly by influencing IL-12 and IL-13 expression [77]. 

IL-16 is a newly characterised cytokine which has been shown to be produced 
by CD4+ and CD8+ T cells, epithelial cells, mast cells and eosinophils [89, 92, 113]. 
It uses the surface molecule CD4 as its ligand and thus activates cells that are CD4+, 
namely monocytes and CD4+ T cells [90]. Bronchial biopsy studies using ISH show 
expression of IL-16 mRNA on epithelial cells from asthmatics but not normal or 
atopic controls. The epithelial and subepithelial IL-16 mRNA expression was sig
nificantly associated with airways hyperresponsiveness and CD4 + T cell infiltration 
in the bronchial mucosa [91]. IL-16 has been detected early in BAL post endo
bronchial allergen challenge in asthmatics but not in control subjects [92]. This sug
gests a role for early IL-16 release in the selective recruitment ·of CD4+ T cells and 
eosinophils to the inflammmed bronchial mucosa in asthma. 
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IL-18 is a recently characterised cytokine synthesised by activated macrophages 
and bronchial epithelial cells [93]. In association with IL-12, IL-18 acts on Th1 type 
T cells to produce IFN-y, and in vivo and in vitro studies in mice show that IL-12 
and IL-18 strongly activate B cells to produce IFNy [94]. Further studies are neces
sary to characterise the function of IL-18 in asthma. 

TNFa is produced by many cells including mast cells, T cells, neutrophils, 
epithelial cells and monocytes [95-97]. Bronchial biopsy studies confirm mast cells 
to be a major source of TNFa in the human airways, with increased expression 
seen in asthmatics [96]. TNFy levels in BAL are also raised in asthmatics in com
parison to controls with higher levels seen in more symptomatic subjects [98]. 
TNFa may cause increased AHR via induction of pro-inflammatory mediators or 
by acting directly on bronchial smooth muscle [Kips JC 17,9299]. It is a chemoat
tractant for neutrophils and monocytes, and enhances eosinophil and mast cell 
cytotoxicity. Furthermore, TNFa increases vascular permeability [100-102]. TNFa 
also acts indirectly on eosinophils by stimulating myofibroblasts to produce GM
CSF which prolongs their survival. TNFa upregulates adhesion molecules, includ
ing VCAM-1, E-selectin and ICAM-1 involved in the recruitment of eosinophils, T 
cells and neutrophils to the site of inflammation [103-105]. Finally, TNFa appears 
to play an important role in airways remodelling by promoting fibroblast activity 
[106]. 

The orchestrating role of T lymphocytes in the inflammation of asthma 

There is considerable evidence to support the view that the fine balance between 
Th1 and Th2 cytokines that exists in disease is dysfunctional, leading to a predom
inant Th2 type pattern in asthma. The asthmatic process is driven by the persistence 
of chronically activated memory T cells sensitised to specific allergens which localise 
to the airways after appropriate antigen exposure, or as some evidence suggests, 
after viral infection. This hypothesis is supported by observations in studies using 
BAL and bronchial biopsies from asthmatic subjects, including those studying 
treatment effects. Elevated numbers of activated CD4+, CD2s+ cells are seen in 
blood in acute severe asthma, with a direct correlation being evident between acti
vated peripheral blood T cells and airflow obstruction [107, 202]. Using immuno
histochemistry, an increased number of activated (CD25+, CD3+) T cells can be 
demonstrated in the lamina propria and submucosa of bronchial biopsies from 
symptomatic asthmatics [108, 109]. Flow cytometry of BAL cells from asthmatics 
shows a correlation between CD4+, CD25+ lymphocytes and eosinophils, and the 
majority of CD4+ T cells are of the memory (CD45RO+) phenotype [110]. 

Using techniques such as double ISH , immunohistochemistry and semi-quanti
tative PCR, T cells have been shown to be the major source of mRNA encoding IL-
4 and IL-5 in bronchial biopsies from both atopic and non-atopic asthmatics [111, 
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112]. Furthermore, CD4+ lymphocytes expressing mRNA for IL-4, IL-S and GM
CSF, but not IL-2, IL-3 or IFNy, are increased in the peripheral blood of asthmatics. 
The percentage of CD4+ T lymphocytes expressing IL-S mRNA correlates with dis
ease severity and the number of eosinophils in bronchial biopsy specimens. Gluco
corticoid treatment improves lung function and reduces the percentage of CD4+ T 
cells expressing mRNA encoding IL-3, IL-S and GM-CSF but not IL-2, IL-4 or IFNy 
[115]. An elevated number of IL-S mRNA expressing cells are seen in mucosal biop
sies of asthmatics in comparison to controls, and these correlate with the number of 
CD2S+ and EG2+ cells and total eosinophil counts suggesting that T cell products 
regulate eosinophil accumulation and function [116]. BAL from atopic asthmatics 
shows an increased number of cells expressing mRNA for IL-3, IL-4, IL-S and GM
CSF, with IL-4 and IL-S being localised to T cells, suggesting activation of, and 
cytokine production by, Th2 type T cells [78]. Prednisolone treatment of asthmatics 
results in clinical improvement and reduced AHR, accompanied by reduced 
eosinophil counts and reduced expression of mRNA for IL-4 and IL-S and increased 
expression of IFNy by cells in BAL [117, 118]. 

In situ hybridisation (ISH) techniques demonstrate significant associations 
between IL-4, IL-S and GM-CSF expression by BAL cells and airflow obstruction, 
bronchial hyper-responsiveness and asthma symptom scores [119]. IL-S is signifi
cantly higher in asthmatics than atopic non-asthmatic controls while IL-4 is elevat
ed in both atopic groups compared to normal non-atopic controls [111, 112]. This 
suggests that IL-S may be more closely related to the asthmatic phenotype while IL-
4 may be associated with the overproduction of IgE [120]. The combined use of 
immunohistochemistry and in situ hybridisation localises mRNA for IL-4 and IL-S 
predominantly to CD4+, but also to CD8+ T cells [121]. 

T cells - determinants of asthma severity 

The notion that asthma is not a single disease entity but a spectrum of what is 
best referred to as the asthma syndrome is well accepted. Since the natural histo
ry of asthma has not been a subject of scrutiny in large studies, it is unclear what 
proportion of asthmatics are predisposed to develop severe disease early in their 
life as opposed to progressing gradually from mild, through moderate, to severe 
disease. Severe asthma is characterised by decreased responsiveness, both in clin
ical and pathological terms, to corticosteroid treatment. A minority of these 
patients ,can be shown to be truly resistant irrespective of the dose of corticos
teroids used. 

Peripheral blood mononuclear cells (PBMCs) from patients with glucocorticos
teroid resistant (GR) asthma are seen to proliferate in response to the mitogen, phy
tohaemagglutinin (PHA), despite the presence of high doses of dexamethasone 
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[120]. A clear relationship can be shown between clinical responsiveness to steroids 
and in vitro effects of steroids on PHA induced T cell proliferation [1201ref??]. 
After treatment with oral prednisolone, glucorticosteroid sensitive (GS) asthmatics 
experience a significant decrease in the number of cells in BAL expressing mRNA 
for IL-4 and IL-S with an increase in IFNy expression. GR asthmatics show no 
change in the number of cells expressing ILA or IL-S, but display a significant 
reduction in the number of IFNy positive cells [122]. These findings are compati
ble with reports of a defect in glucocorticosteroid receptor binding affinity in GR 
asthmatics which can be maintained in vitro by the addition of IL-2 and IL-4 
together, but not individually [123, 124]. It has been suggested that steroid resis
tance may be due to altered expression of genes regulating T cell cytokine produc
tion [125]. Studies suggest that corticosteroid resistance results from an altered 
ability of the cellular glucocorticosteroid receptor (GCR) to bind to glucocorticoid 
response elements (GREs) in the promoter region of the glucocorticoid responsive 
genes in GR patients [125]. Another hypothesis is that a dysregulation of tran
scription factors, with increased expression of the pro-inflammatory molecule AP-
1 in GR asthmatics, may be involved in steroid resistance by interfering with 
steroid action by binding to the glucocorticosteroid receptor preventing GCR DNA 
binding [125, 126]. Leung et al. have identified GRC abnormalities using a [3H]_ 
dexamethasone radio ligand-binding assay of PBMCs, categorising GR asthmatics 
as Type 1 when a decrease in GCR binding affinity restricted to T cells was present, 
and Type 2 when the GCR binding affinity was normal but the numbers of GCR 
binding sites per cell were found to be abnormally low in both T cells and non-T 
cells. 

Unfortunately, effective and safe agents enabling suppression of corticosteroid
resistant components of airway inflammation are not available. A number of drugs 
used to inhibit organ rejection in transplanted patients (cyclosporin) and so-called 
corticosteroid sparing agents (methotrexate, azathioprine) have been used in severe 
asthma. Cyclosporin inhibits T cell activation by blocking calcium dependent tran
scription of mRNA encoding a number of cytokines. In a group of GR asthmatics 
it is seen to improve lung function, reduce the number of exacerbations and have a 
cortico-steroid- sparing effect [126-128, 201]. Cyclosporin reduces the magnitude 
of the late allergic response (LAR) to allergen challenge, suggesting cyclosporin 
action through inhibition of T cell function in this model of asthma [129, 201]. 
However, the clinical efficacy of cyclosporin remains to be fully established. For this 
reason, a number of novel therapeutic agents are being considered for the treatment 
of severe asthma, including :immuno-suppressive agents (e.g. FKS06, mycopheno
late mofetiLand rapamycin), ;anti-CD4 antibodies, ;cytokine receptor antagonists 
(e.g. IL-l receptor antagonist), anti-cytokine antibodies (e.g. anti-ILA and anti-IL-
5 antibodies), IL-12 modulation of the Th2 response, and agents that may block the 
co-stimulatory pathways required for T cell activation (e.g. CTLA4Ig fusion protein 
and anti-B7-2 antibody) [130]. 
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The effector role of eosinophils 

Eosinophils are considered to be responsible for much of the mucosal inflammation 
and resulting epithelial damage in asthma. A number of proteins are released by 
eosinophils on activation, including major basic protein (MBP), eosinophil cation
ic protein (ECP), eosinophil-derived neurotoxin and eosinophil peroxidase, which 
have been shown to damage epithelial integrity by disruption of epithelial desmo
somes and tight junctions [6]. Eosinophil counts are consistently shown to be 
increased in the lumen and in sub-mucosa and epithelium of bronchial biopsies both 
in unchallenged airways and after segmental allergen challenge [131, 132]. 

Whilst a correlation between disease severity and eosinophils can be demon
strated using cell counts in the lumen and mucosa, the strength of correlation is best 
when luminal eosinophils, counted in sputum, are investigated [133]. In addition to 
producing vaso- and bronchoactive mediators, eosinophils have been shown to syn
thesise a number of pro-inflammatory cytokines including IL-3, IL-4, IL-5, IL-6, 
TNFa, GM-CSF and transforming growth factors (TGFa and TGFP) [134]. In addi
tion, using recombinant polymerase chain reaction (RT-PCR), mRNA for IL-4 has 
been detected in blood eosinophils of asthmatic patients [135]. IL-3, IL-5 and GM
CSF are thought to prime eosinophil mediator release and prolong eosinophil sur
vival by inhibiting apoptyosis [118]. 

Mast cells 

Mast cells have long been viewed as pivotal to the development of anaphylactic or 
immediate type reactions .They produce a number of inflammatory mediators 
including histamine, heparin, tryptase, prostaglandins (PGD2), leukotriene C4 

(LTC4 ) and thromboxane A2 (TXA2) which possess potent broncho- and vasoac
tive properties [6]. Mast cells containing tryptase alone (MCT) are found in 
increased numbers in the airway biopsies of asthma patients and correlated inverse
ly with PC20 (i.e.the cumulative dose of spasmiogen, such as histamine, required to 
cause a 20% fall in FEV1 from baseline) [37]. Mast cell activation markers have 
also been shown to correlate positively with markers of vascular permeability and 
negatively with FEV1, suggesting an association with disease activity. Studies have 
shown an increased release of mast cell mediators in the BAL fluid of asthmatics 
[6]. 

In the presence of specific allergen, cross linkage of IgE molecules bound to high 
affinity IgE receptors(Fc£ R1) on the mast cell surface causes cellular activation and 
release of mediators resulting in acute bronchoconstriction. Mast cells can be acti
vated by stimuli such as airway fluid osmolar changes as in exercise-induced asth
ma, and by drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) in sus
ceptible individuals [136]. 
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It is now fully appreciated that mast cells have the capacity to produce a num
ber of cytokines which have previously been attributed to T cells, including IL-4, IL-
5, IL-6, IL-8, GM-CSF and TNFo. [137]. IL-4 has been shown to bind to gly
cosaminoglycan (GAG) side-chains of heparin produced by mast cells and stored in 
their granules, which is likely to mediate local cytokine signalling. The production 
of cytokines such as TNFo. and IL-5 and the release of the neutral protease tryptase 
by mast cells, in association with the later recruitment and activation of Th-2 type 
T cells, are likely to contribute significantly to the LAR [138, 139]. To what extent 
the cytokines secreted by mast cells contribute to allergic inflammation is unclear. 
Using a combination of immunohistochemistry and in situ hybridisation, studies 
have shown that the greatest proportion of cells producing IL-3, IL-4 and IL-5 are 
T cells [121]. However, in view of the relatively low frequency of allergen specific T 
cells in the airways of asthmatics [115] it is uncertain what the trigger factors for 
the synthesis of these cytokines may be. The relative contribution of mast cells and 
T cells is further complicated by the fact that probably all of the mast cells in the 
airways possess specific IgE which enables them to respond in an allergen specific 
manner. 

The bronchial epithelium as a source of pro-inflammatory cytokines 

The bronchial epithelium was previously thought to be a passive barrier that was 
damaged by inflammation in asthma. It is now known to be an important source of 
mediators including arachidonic acid products, nitric oxide, endothelins, cytokines 
and molecules involved in repair, demonstrating an active role for the epithelium in 
regulating the inflammation, repair and remodelling processes of asthma. The 
epithelium can be activated by mediators such as histamine, cytokines, leukotrienes, 
by IgE dependent mechanisms or by stimuli including, occupational chemicals, pol
lutants, viruses, or the shifts in epithelial lining fluid osmolarity that may occur in 
exercise induced asthma [140-144]. The epithelium is a major source of 15-HETE, 
PGE2, nitric oxide (NO) and endothelin-l [6]. The arachidonic acid metabolite, 15-
HETE induces chemotaxis of inflammatory cells, increases mucus production and 
enhances the EAR. PGE2 has vasodilator and bronchodilator properties. Increased 
PGE2 production by the epithelium inhibits IL~ 12 production by dendritic cells pro
moting Th2 differentiation by T cells [97, 145]. 

The bronchial epithelium is capable of storing and releasing cytokines (IL-l~, IL-
6, IL-11, GM-CSF, IL-16 and IL-18) and chemokines (IL-8, MIP-lo., MCP-3, 
RANTES and eotaxin) [146-149]. Cytokine release is controlled by inducible genes 
activated by pro-inflammatory cytokines (TNFo., IL-lo. and IFNy), by growth fac
tors (TGFo., HB-EGF and amphiregulin) and by epithelial detachment and defor
mation [68, 150, 151]. The transcription factors, NF-KB and STATS, control 
inducible genes that regulate mediator release. Immuno-histochemical studies show 
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increased expression of NF-lCB and STATS in asthmatic bronchial epithelium [152]. 
Asthmatic bronchial epithelium expresses the adhesion molecules ICAM-l, (X3~1 
and (Xv~6 [153]. ICAM-l is the binding receptor for rhinovirus and increased 
ICAM-l expression may contribute to virus-induced exacerbations in asthma [154]. 
(X3~1 is a ligand for fibronectin, laminins and collagens, the extracellular matrix 
proteins involved in repair and remodelling [155]. (Xv~6 is a ligand for fibronectin 
and tenascin, the structural proteins deposited in increased amounts beneath the 
epithelial basement membrane. 

Nitric oxide (NO) is a highly soluble free radical with a short half-life, involved 
in cellular signalling and is produced by constitutive and inducible forms of NO syn
thase (iNOS). Increased levels of NO are found in the exhaled air of patients with 
active asthma or rhinitis. In severe asthma, the epithelium is likely to be a major 
source of NO [156-158]. Bronchial biopsy studies show that iNOS immune activi
ty localises to the bronchial epithelium in asthmatics but is rarely seen in airway 
biopsies of normal controls [6]. Bronchial epithelial iNOS activity is downregulated 
in corticosteroid sensitive asthma and is associated with a reduction in exhaled NO 
levels. It may be a useful marker of disease activity in asthma [159, 160]. 

Human endothelins include three polypeptides (ET-l, ET-2 and ET-3). ET-l is a 
potent vasoconstrictor, contractor of smooth muscle, mitogen for airway smooth 
muscle and fibroblasts and is capable of activating collagen synthesis [161]. ET-l is 
produced by bronchial epithelial cells [162], vascular endothelial cells [163], mast 
cells and macrophages and ET-l expression is increased in bronchial epithelial biop
sies of asthmatics [164]. Studies show that ET-l levels in BALF of asthmatics are 
increased in proportion to the level of resting airflow obstruction in asthma [165]. 
ET-l levels in BALF and bronchial biopsy epithelial expression of ET-l have been 
shown to fall to normal levels in asthmatics treated with effective doses of corticos
teroids [165]. This suggests a role for endothelins in asthma, particularly in the late 
allergic reaction (LAR) but also possibly in the remodelling process. 

Inhaled anti-inflammatory drugs such as corticosteroids have a dramatic effect 
in improving asthma symptoms, lung function and airway reactivity. These agents 
have powerful inhibitory effects on mediator release and cytokine production by the 
asthmatic epithelium [166, 167]. Inhaled corticosteroids promote a reduction in 
bronchial eosinophilic infiltration and downregulate the expression of transcription 
factors such as NF-lCB known to be important in inflammation [168]. 

The process of airway remodelling in asthma 

A number of studies indicate that irreversible airway obstruction can occur in asth
ma, which suggests that structural changes consistent with a remodelling process 
occurs in the airways of asthmatics [169]. In patients who died from severe asthma, 
prominent airway wall thickening is noted. The bronchi of wall diameter greater 
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than 2 mm in thickness demonstrate increased thickness of the total wall, sub
epithelial layer and muscle layer with associated hypertrophy and hyperplasia of the 
airway smooth muscle layer [170, 171]. A recent three-dimensional morphometric 
study of asthmatic airways suggests that smooth muscle hyperplasia is more promi
nent in large airways whereas hypertrophy is more prominent in the affected small
er airways [171]. Studies have demonstrated prominent hyperplasia of mucus glands 
in the airway wall in cases of fatal asthma [172]. Increased angiogenesis and airway 
smooth muscle hypertrophy is also a feature of the remodelling process of asthma 
[173, 174]. Computerised tomography studies of asthmatics demonstrated abnor
malities in airway wall thickness in 90% of the cases studied; these were related to 
both the duration and severity of asthma in cases with an irreversible component of 
airways disease [175, 176]. Thickened basement membrane zone abnormalities 
noted at postmortem of asthmatics have been confirmed in bronchial biopsy stud
ies using fibre optic bronchoscopy. Electron microscopy studies localise the increased 
basement membrane thickness to the lamina reticularis layer. Immunohistochem
istry studies confirm that this thickened layer is composed of collagen types III, V, I 
and fibronectin [177]. Myofibroblast numbers are increased in the airway walls of 
asthmatics and are considered to be responsible for this collagen deposition [178]. 
A recent study has shown that the submucosa, as well as the reticular basement 
membrane, contains significantly more collagen than normal controls, suggesting 
that airway scar formation may have more significant effects than were previously 
considered [179]. In vitro studies suggest that this remodelling process involves a 
number of growth factors and cytokines including TGF~b platelet-derived growth 
factor, basic fibroblast growth factor, TNFa., IL-4, endothelin and other molecules 
including tryptase and histamine suggesting a role for mast cells in tissue remodel
ling in asthma [180, 181]. A number of extra-cellular matrix proteins contribute to 
the inflammation and remodelling of asthma. Eosinophils express integrins such as 
VLA-4, VLA-6 and LFA-l which are known to adhere to matrix proteins such as 
laminin, fibronectin and fibrinogen [182, 183].This is thought to encourage the 
accumulation, increase the activation and prolong the survival of eosinophils local
ly in the bronchial tissue [184]. Studies of asthmatic bronchial biopsies, using in situ 
hybridisation and immunohistochemistry techniques have shown activated 
eosinophils in the reticular lamina to be a major source of TGF~l mRNA and 
immunoreactivity which is associated with the degree of airway fibrosis, linking 
chronic allergic inflammation with the structural remodelling and decline in FEV 1 

seen in asthma [185]. Mast cells also express integrins and in vitro studies have 
shown that fibronectin adherence encourages both IgE mediated mast cell degranu
lation, chemotaxis and proliferation. In asthmatics, matrix protein interaction is 
capable of altering IgE mediated cytokine release by basophils [184]. Elevated lev
els of glycosaminoglycan (GAG) side-chains, particularly chondroitin and dermatan 
sulphate have been noted in the urine of asthmatics during a severe asthmatic attack 
[186].It is considered that these are produced by the breakdown of extracellular 
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matrix proteoglycan in the bronchi of asthmatics. Tryptase is known to cleave cer
tain components of the extracellular matrix (e.g.fibronectin, collagen VI) and acti
vate matrix metalloproteases (stromolysin). Tryptase can also enhance proliferation 
of fibroblasts, smooth muscle and epithelial cells. Asthmatic airways have an 
increased expression of these mediators which are thought to promote mitogenesis 
of myofibroblasts and airway smooth muscle and synthesis of collagen [187]. 

Studies in children and occupational asthma indicate that airway changes of 
remodelling occur at an early stage of the disease [188]. The majority of studies in 
asthmatics treated with inhaled corticosteroids show no significant reversibility of 
airway collagen deposition despite relieving symptoms, improving lung function 
and modifying bronchial hyperreactivity [189, 190]. This supports the recommen
dation of early introduction of effective anti-inflammatory treatment in an attempt 
to prevent the development of irreversible structural changes. 

Mechanisms of asthma severity and chronicity 

Despite the considerable improvement in the understanding of asthma pathogene
sis, the mechanisms which determine disease severity remain poorly understood. 
The degree of sputum, BALF and blood eosinophilia and, to a lesser extent, levels 
of ECP detected in clotted blood have been found to broadly relate to disease sever
ity. T cell activation and expression of Th2 type cytokines are found in all degrees 
of asthma but, as discussed above, it is most prominent in severe disease, which is 
poorly controlled by corticosteroids [191]. Physiological indices of asthma severity 
such as methacholine responsiveness are related to the number and activity of 
eosinophils and activated CD4+ T cells in BALF from atopic asthmatics [192, 193]. 
AHR but not symptom scores have been shown to be inversely related to the num
ber of activated eosinophils and mast cells in bronchial biopsies from asthmatics not 
treated with corticosteroids [194]. In asthmatics treated with inhaled cortico
steroids, AHR, but not symptom score or lung function, is inversely related to the 
number of infiltrating mast cells, activated eosinophils, CD8+, and CD45RO+ T cells 
in bronchial biopsies from these patients [193]. 

Studies involving post mortem examination of patients with sudden asthma 
related deaths, and sputum analysis of patients in status asthmaticus support the 
role of neutrophils in severe asthma [195, 196]. A recent bronchoscopy study 
showed that whilst eosinophil numbers mayor may not be raised in the mucosa, a 
significantly higher neutrophil count is seen in bronchial and trans bronchial biop
sies of severe, high-dose oral corticosteroid dependent asthmatics compared with 
moderate asthmatics and normal controls. Lipid-derived and mast cell derived medi
ators remained elevated in the severe patients despite treatment with high dose cor
ticosteroids [197]. Interestingly, a lower percentage of macrophages was seen in the 
severe asthmatics compared to moderate asthmatics. Some studies have shown that 
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corticosteroids can enhance neutrophil function through increased leukotriene and 
superoxide production and inhibition of apoptosis [198]. It is possible that corti
costeroids could reduce the lymphocyte and eosinophil mediated inflammation but 
exacerbate neutrophil mediated inflammation in severe asthmatics [199]. 

Concluding remarks 

The last few years have seen a dramatic improvement in our understanding of asth
ma which has probably surpassed that of other respiratory diseases. We have 
learned about the orchestrating role of Th2-type cytokines which dominate inflam
matory responses in asthma and are beginning to understand the regulation of their 
prod1,lction at the gene level. Detailed morphological studies have led to the concept 
of airweays remodellling as a consequence of chronic inflammation which is most 
likely fixed. This has contributed to better management of asthma. However, many 
issues remain unresolved, the most important being the inability to completely abro
gate the inflammatory response in more severe disease, which is not only becoming 
more prevalent but is also draining a major proportion of funds dedicated to asth
ma amanagement [200]. The identification of several cytokines as participating in 
airways inflammaamtion has meant that targetting individual cytokines is unlikely 
to lead to major improvements in disease management. Future efforts will have to 
be directed at elucidating the relative contribution of individual cell types and medi
ators in the hope that the wide syndrome of asthma may eventually be broken down 
into subtypes, hopefully with distinct patterns of mediators that are involved in their 
pathogenesis. 
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Introduction 

Corticosteroids are the most effective therapy currently available for asthma and 
improvement with corticosteroids is one of the hallmarks of asthma. Inhaled gluco
corticoids have revolutionised asthma treatment and have now become the mainstay 
of therapy for patients with chronic disease [1]. There has recently been an enor
mous increase in our understanding of the molecular mechanisms whereby gluco
corticoids suppress inflammation in asthma and this has led to changes in the way 
corticosteroids are used and may point the way to the development of more specif
ic therapies in the future [2, 3]. 

Molelcular mechanisms 

Glucocorticoids are very effective antiinflammatory therapy in asthma and the mol
ecular mechanisms involved in suppression of inflammation in asthma have recent
ly become clarified. It is evident that corticosteroids are so effective because they 
block may of the inflammatory pathways that are abnormally activated in asthma. 

Glucocorticoid receptors 

Glucocorticoids exert their effects by binding to glucocorticoid receptors (GR) 
which are localised to the cytoplasm of target cells. The affinity of cortisol binding 
to GR is approximately 30 nM, which falls within the normal range for plasma con
centrations of free hormone. There is a single class of GR that binds glucocorticoids, 
with no evidence for subtypes of differing affinity in different tissues. Recently a 
splice variant of GR, termed GR-~, has been identified that does not bind gluco
corticoids, but binds to DNA and may therefore interfere with the action of corti
costeroids [6]. However, it is unlikely that there is sufficient GR-~ present in cells to 
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GCS binding 

Zinc fingers 

Figure 1 

Domains of the glucocorticoid receptor. 

functionally inhibit glucocorticoid action. The structure of GR has been elucidated 
using site-directed mutagenesis, which has revealed distinct domains [7, 8]. The glu
cocorticoid binding domain is at the C-terminal end of the molecule and in the mid
dle of the molecule are two finger-like projections that interact with DNA. Each of 
these "zinc fingers" is formed by a zinc atom bound to four cysteine residues (Fig. 
1). An N-terminal domain (d) that is involved in transcriptional trans-activation of 
genes once binding to DNA has occurred and this region may also be involved in 
binding to other transcription factors [9]. Another trans-activating domain (t2) is 
adjacent to the steroid-binding domain and is also important for the nuclear translo
cation of the receptor. The inactivated GR is bound to a protein complex (-300 
kDa) that includes two molecules of 90 kDa heat shock protein (hsp90) and various 
other inhibitory proteins. The hsp 90 molecules act as a "molecular chaperone" pre
venting the unoccupied GR localising to the nuclear compartment. Once the gluco
corticoid binds to GR hsp90 dissociates, thus exposing two nuclear localisation sig
nals and allowing the nuclear localisation of the activated GR-corticosteroid com
plex and its binding to DNA (Fig. 2). 

Effects on gene transcription 

Glucocorticoids produce their effect on responsive cells by activating GR to direct
ly or indirectly regulate the transcription of certain target genes [10, 11]. The num
ber of genes per cell directly regulated by corticosteroids is estimated to be between 
10 and 100, but many genes are indirectly regulated through an interaction with 
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Classical model of glucocorticoid action. The glucocorticoid enters the cell and binds to a 
cytoplasmic glucocorticoid receptor (GR) that is complexed with two molecules of a 90 kDa 

heat shock protein (hsp90). GR translocates to the nucleus where, as a dimer, it binds to a 
glucocorticoid recognition sequence (GRE) on the 5'-upstream promoter sequence of corti

costeroid-responsive genes. GREs may increase transcription and nGREs may decrease tran

scription, resulting in increased or decreased messenger RNA (mRNA) and protein synthesis. 

other transcription factors, as discussed below. Upon activation GR forms a homod
imer which binds to DNA at consensus sites termed glucocorticoid response ele
ments (GREs) in the S'-upstream promoter region of corticosteroid-responsive 
genes. This interaction changes the rate of transcription, resulting in either induc
tion or repression of the gene. The consensus sequence for GRE binding is the palin
dromic 1S-base pair sequence GGTACAnnnTGITCT (where n is any nucleotide), 
although for repression of transcription the putative negative GRE (nGRE) has a 
more variable sequence (ATYACnnTnTGATCn). Crystallographic studies indicate 
that the zinc finger binding to DNA occurs within the major groove of DNA with 
one finger of each receptor in the homodimer interacting with one-half of the DNA 
palindrome. Interaction with other transcription factors may also be important in 
determining differential corticosteroid responsiveness in different cell types. Other 
transcription factors binding in the vicinity of GRE may influence the transactivat-
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ing efficiency of GRE binding and the relative abundance of different transcription 
factors may contribute to the corticosteroid responsiveness of a particular cell type. 
GR may also inhibit protein synthesis by reducing the stability of mRNA via 
enhanced transcription of specific ribonucleases that break down mRNA containing 
constitutive AU-rich sequences in the untranslated 3'-region, thus shortening the 
turnover time of mRNA. 

Interaction with transcription factors 

Activated GR may bind directly with other activated transcription factors as a pro
tein-protein interaction. This could be an important determinant of corticosteroid 
responsiveness and is a key mechanism whereby glucocorticoids exert their anti
inflammatory actions [4]. This interaction was first demonstrated for the collage
nase gene which is induced by the transcription factor activator protein-1 (AP-1), 
which is a heterodimer of Fos and Jun oncoproteins. AP-1, activated by phorbol 
esters or tumour necrosis factor-a (TNFa), forms a protein-protein complex with 
activated GR, and this prevents GR interacting with DNA and thereby reduces cor
ticosteroid responsiveness [12]. In human lung TNFa and phorbol esters increase 
AP-1 binding to DNA and this is inhibited by glucocorticoids [13, 14]. GR also 
interacts with other transcription factors that are activated by inflammatory signals, 
including nuclear factor-KB (NF-KB) in a similar manner [13-17] (Fig. 3). There is 
also evidence that ~2-agonists, via cyclic AMP formation and activation of protein 
kinase A, result in the activation of the transcription factor CREB that binds to a 
cyclic AMP responsive element (CRE) on genes. A direct interaction between CREB 
and GR has been demonstrated [18]. These interactions between activated GR and 
transcription factors occur within the nucleus, but recent observations suggest that 
these protein-protein interactions may also occur in the cytoplasm [19]. 

Effects on chromatin structure 

There has recently been increasing evidence that glucocorticoids may have effects on 
the chromatin structure. DNA in chromosomes is wound around histone molecules 
in the form of nucleosomes. Several transcription factors interact with large co-acti
vator molecules, such as CREB binding protein (CBP) and the related p300, which 
bind to the basal transcription factor apparatus [20]. Several transcription factors 
have now been shown to bind directly to CBP, including AP-1, NF-KB and STATs 
[21]. Since binding sites on this molecule may be limited, this may result in compe
tition between transcription factors for the limited binding sites available, so that 
there is an indirect rather than a direct protein-protein interaction (Fig. 4). CBP also 
interacts with nuclear hormone receptors, such as GR. These nuclear hormone 
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Direct interaction between the transcription factors activator protein-1 (AP-1) and nuclear 

factor-kappa B (NF- KE) and the glucocorticoid receptor (GR) may result in mutual repression. 

In this way corticosteroids may counteract the chronic inflammatory effects of cytokines that 

activate these transcription fadors. 

receptors may interact with CBP and the basal transcriptional apparatus through 
binding to other nuclear coactivator proteins, including corticosteroid receptor 
coactivator-I (SRC-I) [22, 23], transcription factor intermediary factor-2 (TIF2) or 
glucocorticoid receptor interacting protein-I [24]. DNA is wound around histone 
proteins to form nucleosomes and the chromatin fibre in chromosomes. At a micro
scopic level that chromatin may become dense or opaque due to the winding or 
unwinding of DNA around the histone core. CBP and p300 have histone acetyla
tion activity which is activated by the binding of transcription factors, such as AP
I and NF-lCB [25]. Acetylation of histone residues results in unwinding of DNA 
coiled around the histone core, thus opening up the chromatin structure, which 
allows transcription factors to bind more readily, thereby increasing transcription 
(Fig. 4). Repression of genes reverses this process by histone deacetylation [26]. The 
process of deacetylation involves the binding of hormone or vitamin receptors to co
repressor molecules, such as nuclear receptor co-repressor (N-CoR) which forms a 
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Effect of glucocorticoids on chromatin structure. Transcription factors, such as STATs, AP-1 

and NF- T([3 bind to co-activator molecules, such as CREB binding protein (CBP) or p300, 

which have intrinsic histone acetyltransferase (HAT) activity, resulting in acetylation (-Ac) of 

histone residues. This leads to unwinding of DNA and this allows increased binding of tran

scription factors resulting in increased gene transcription. Glucocorticoid receptors (GR) after 

activation by glucocorticoids bind to a glucocorticoid receptor co-activator which is bound 
to CBP. This results in deacetylation of histone, with increased coiling of DNA around his

tone, thus preventing transcription factor binding leading to gene repression. 

complex with another repressor molecule Sin3 and a histone de acetylase [27, 28]. 
Deacetylation of histone increases the winding of DNA round histone residues, 
resulting in dense chromatin structure and reduced access of transcription factors to 
their binding sites, thereby leading to repressed transcription of inflammatory genes. 
Activated GR may bind to several transcription co-repressor molecules that associ
ate with proteins that have histone deacetylase activity, resulting in de acetylation of 
histone, increased winding of DNA round histone residues and thus reduced access 
of transcription factors to their binding sites and therefore repression of inflamma
tory genes [26] (Fig. 4). 

Target genes in inflammation control 

Glucocorticoids may control inflammation by inhibiting many aspects of the inflam
matory process through increasing the transcription of anti-inflammatory genes and 
decreasing the transcription of inflammatory genes [2,4] (Tab. 1). 
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Table 1 - Effect of corticosteroids on gene transcription 

Increased transcription 

Lipocortin-1 (phospholipase A2 inhibitor) 

132-Adrenoceptor 

Secretory leukocyte inhibitory protein 

Clara cell protein (CC10) 

IL-1 receptor antagonist 

IL-1 R2 (decoy receptor) 

lleB-a (inhibitor of NF-KB) 

Decreased transcription 

Corticosteroids 

Cytokines 

Chemokines 

(IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, IL-12, IL-13, TNFa, GM-CSF, SCF) 

(IL-8, RANTES, MIP-1 a, MCP-1, MCP-3, MCP-4, eotaxin) 

Inducible nitric oxide synthase (iNOS) 

Inducible cyclooxygenase (COX-2) 

Cytoplasmic phospholipase A2 (cPLA2) 

Endothelin-1 

NK1-receptors, NK2-receptors 

Adhesion molecules (ICAM-1, E-selectin) 

Antiinflammatory proteins 
Glucocorticoids may suppress inflammation by increasing the synthesis of anti
inflammatory proteins. Corticosteroids increase the synthesis of lipocortin-l, a 37 
kDa protein that has an inhibitory effect on phospholipase A2 (PLA2), and therefore 
may inhibit the production of lipid mediators. Corticosteroids induce the formation 
of lipocortin-l in several cells and recombinant lipocortin-l has acute anti-inflam
matory properties [29]. However, glucocorticoids do not induce lipocortin-l expres
sion in all cells and this may be only one of many genes regulated by glucocorticoids. 
Glucocorticoids also increase the synthesis of secretory leukocyte protease inhibitor 
(SLPI) in human airway epithelial cells by increasing gene transcription [30]. SLPI is 
the predominant antiprotease in conducting airways and may be important in 
reducing airway inflammation by counteracting inflammatory enzymes, such as 
tryptase. 

Interleukin (IL)-l receptor antagonist (IL-lra) is a cytokine that blocks the bind
ing of IL-l to its receptors. Its synthesis is increased by glucocorticoids, thus coun
teracting the effect of the proinflammatory cytokine IL-1. Thus, treatment of asth-
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matic patients with inhaled glucocorticoids results in an increased expression of IL
Ira in airway epithelial cells in vitro and in vivo [31, 32]. IL-l interacts with two 
types of surface receptor, designated IL-lRl and IL-IR2. The inflammatory effects 
of IL-l~ are mediated exclusively via IL-IRl, whereas IL-IR2 has no signalling 
activity, but binds IL-l and therefore acts as a "molecular decoy" that interferes 
with the actions of IL-l. Glucocorticoids are potent inducers of this decoy IL-l 
receptor and result in release of a soluble form of the receptor, thus reducing the 
functional activity of IL-l [33]. 

IL-IO is another antiinflammatory cytokine secreted predominantly by 
macrophages in the lung which inhibits the transcription of many proinflammatory 
cytokines and chemokines and this appears to be mediated via an inhibitory effect 
on NF-KB [34]. IL-IO secretion by alveolar macrophages may be impaired in asth
matic patients, resulting in increased macrophage cytokine secretion [35, 36]. Glu
cocorticoid treatment in asthmatic patients increases IL-IO secretion by these cells, 
although this appears to be an indirect effect, since treatment of alveolar 
macrophages in vitro with glucocorticoids tends to decrease IL-IO secretion [36]. 

NF-KB is regulated by the inhibitory protein IKB to which it is bound in the cyto
plasm [37]. There is some evidence that glucocorticoids increase the synthesis and 
transcription of the predominant form of IKB, IKB-c:x, in mononuclear cells and T 
lymphocytes, thus terminating the activation of NF-KB [38, 39], but this has not 
been seen in other cell types [40-42]. The IKB-c:x gene does not appear to have any 
GRE consensus sequence, so any effect of glucocorticoids is probably mediated via 
other transcription factors. 

In epithelial cells glucocorticoids also increase the expression of the enzyme 
neutral endopeptidase (NEP), which degrades inflammatory peptides such as sub
stance P, bradykinin and endothelin-l [43]. Asthmatic patients treated with in
haled glucocorticoids have a higher level of NEP expression that untreated patients 
[44]. 

f3r Adrenoceptors 
Corticosteroids increase the expression of ~radrenoceptors by increasing the rate of 
transcription and the human ~rreceptor gene has three potential GREs [45]. Corti
costeroids double the rate of ~rreceptor gene transcription in human lung in vitro, 
resulting in increased expression of ~2-receptors [46]. Using autoradiographic map
ping and in situ hybridisation in animals to localise the increase in ~rreceptor 
expression, there appears to be an increase in all cell types, including airway epithe
lial celk and airway smooth muscle, after chronic glucocorticoid treatment [47]. 
This may be relevant in asthma as it may prevent down-regulation in response to 
prolonged treatment with ~ragonists. In rats glucocorticoids prevent the down-reg
ulation and reduced transcription of ~2-receptors in response to chronic ~-agonist 
exposure [47]. 
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Cytokines 
Although it is not yet possible to be certain of the most critical aspects of corticos
teroid action in asthma, it is likely that their inhibitory effects on cytokine synthesis 
are of particular relevance. Corticosteroids inhibit the transcription of several 
cytokines that are relevant in asthma, including IL-l13, mFa, granulocyte-macro
phage colony-stimulating factor (GM-CSF), IL-2, IL-3, IL-4, IL-5, IL-6, IL-ll and 
the chemokines IL-8, RANTES, macrophage chemotactic protein (MCP)-I, MCP-3, 
MCP-4, macrophage inflammatory protein (MIP)-la and eotaxin. These inhibitory 
effects were at one time thought to be mediated directly via interaction of GR with 
a nGRE in the upstream promoter sequence of the cytokine gene, resulting in 
reduced gene transcription. Surprisingly, there is no apparent nGRE consensus 
sequence in the upstream promoter region of these cytokines, suggesting that glu
cocor:ticoids inhibit transcription indirectly. Thus, the 5' -promoter sequence of the 
human IL-2 gene has no GRE consensus sequences, yet glucocorticoids are potent 
inhibitors of IL-2 gene transcription in T-Iymphocytes. Transcription of the IL-2 
gene is predominantly regulated by a cell-specific transcription factor nuclear factor 
of activated T-cells (NF-AT), which is activated in the cytoplasm on T-cell receptor 
stimulation via calcineurin. A nuclear factor is also necessary for increased activa
tion and this factor appears to be AP-l, which binds directly to NF-AT to form a 
transcriptional complex [48]. Glucocorticoids therefore inhibit IL-2 gene transcrip
tion indirectly by binding to AP-l, thus preventing increased transcription due to 
NF-AT [49]. There may be marked differences in the response of different cells and 
of different cytokines to the inhibitory action of glucocorticoids and this may be 
dependent on the relative abundance of transcription factors. Thus in alveolar 
macrophages and peripheral blood monocytes GM-CSF secretion is more potently 
inhibited by glucocorticoids than IL-l13 or IL-6 secretion [50]. 

Inflammatory enzymes 
Nitric oxide (NO) synthase may be induced by proinflammatory cytokines, result
ing in increased NO production. NO may amplify asthmatic inflammation and con
tribute to epithelial shedding and airway hyperresponsiveness through the forma
tion of peroxynitrite. The induction of the inducible form of NOS (iNOS) is potent
ly inhibited by glucocorticoids. In cultured human pulmonary epithelial cells 
pro-inflammatory cytokines result in increased expression of iNOS and increased 
NO formation, due to increased transcription of the iNOS gene, and this is inhibit
ed by glucocorticoids [51]. There is no nGRE in the promoter sequence of the iNOS 
gene, but NF-KB appears to be an important transcription factor in regulating iNOS 
gene transcription [52]. Glucocorticoids may therefore prevent induction of iNOS 
by inactivating NF-KB, thereby inhibiting transcription. 

Glucocorticoids inhibit the synthesis of several inflammatory mediators impli
cated in asthma through an inhibitory effect on enzyme induction. Glucocorticoids 
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inhibit the induction of the gene coding for inducible cyclooxygenase (COX-2) in 
monocytes and epithelial cells and this also appears to be via NF-KB activation [53-
55]. Glucocorticoids also inhibit the gene transcription of a form of PLAz (cPLAz) 
induced by cytokines [56]. 

Corticosteroids also inhibit the synthesis of endothelin-1 in lung and airway 
epithelial cells and this effect may also be via inhibition of transcription factors that 
regulate its expression [57]. 

Inflammatory receptors 
Glucocorticoids also decrease the transcription of genes coding for certain receptors. 
Thus the NK1-receptor which mediates the inflammatory effects of substance P in 
the airways may show increased gene expression in asthma [58]. This may be inhib
ited by corticosteroids through an interaction with AP-1 as the NKI receptor gene 
promoter region has no GRE, but has an AP-1 response element [59]. Glucocorti
coids also inhibit the transcription of the NKrreceptor which mediates the bron
choconstrictor effects of tachykinins [60]. 

Apoptosis 
Corticosteroids markedly reduce the survival of certain inflammatory cells, such as 
eosinophils. Eosinophil survival is dependent on the presence of certain cytokines, 
such as IL-5 and GM-CSE Exposure to corticosteroids blocks the effects of these 
cytokines and leads to programmed cell death or apoptosis [61]. 

Adhesion molecules 
Adhesion molecules playa key role in the trafficking of inflammatory cells to sites 
of inflammation. The expression of many adhesion molecules on endothelial cells is 
induced by cytokines and corticosteroids may lead indirectly to a reduced expres
sion via their inhibitory effects on cytokines, such as IL-1 f3 and TNFa. Cortico
steroids may also have a direct inhibitory effect on the expression of adhesion mol
ecules, such as ICAM-1 and E-selectin at the level of gene transcription [62]. ICAM-
1 expression in bronchial epithelial cell lines and monocytes is inhibited by 
glucocorticoids [63]. 

Effects on cell function 

Corticosteroids may have direct inhibitory actions on several inflammatory cells 
implicated in pulmonary and airway diseases (Fig. 5). 
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Corticosteroids inhibit the release of inflammatory mediators and cytokines from 
alveolar macrophages in vitro [50], although their effect after inhalation in vivo is 
modest [64]. Corticosteroids may be more effective in inhibiting cytokine release 
from alveolar macrophages than in inhibition of lipid mediators and reactive oxy
gen species in vitro [65]. Inhaled corticosteroids reduce the secretion of chemokines 
and proinflammatory cytokines from alveolar macrophages from asthmatic 
patients, whereas the secretion of IL-IO is increased [36]. Oral prednisone inhibits 
the increased gene expression of IL-l ~ in alveolar macrophages obtained by bron
choalveolar lavage from asthmatic patients [66]. 

Eosinophils 
Corticosteroids have a direct inhibitory effect on mediator release from eosinophils, 
although they are only weakly effective in inhibiting secretion of reactive oxygen 
species and eosinophil basic proteins [67]. Corticosteroids inhibit the permissive 
action of cytokines such as GM-CSF and IL-5 on eosinophil survival [68, 69] and 
this contributes to the reduction in airway eosinophils seen with corticosteroid ther-
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apy. One of the best described actions of corticosteroids in asthma is a reduction in 
circulating eosinophils, which may reflect an action on eosinophil production in the 
bone marrow. Inhaled corticosteroids inhibit the increase in circulating eosinophil 
count at night in patients with nocturnal asthma and also reduce plasma concen
trations of eosinophil cationic protein [70]. After inhaled corticosteroids (budes
onide 800 Ilg b.i.d.) there is a marked reduction in the number of low-density 
eosinophils, presumably reflecting inhibition of cytokine production in the airways 
[71]. 

T Lymphocytes 
An important target cell in asthma may be the T lymphocyte, since corticosteroids 
are very effective in inhibition of activation of these cells and in blocking the release 
of cytokines which are likely to play an important role in the recruitment and sur
vival of inflammatory cells involved in asthmatic inflammation. Thus glucocorti
coids potently inhibit the secretion of IL-5 from T lymphocytes [72]. 

Mast cells 
While corticosteroids do not appear to have a direct inhibitory effect on mediator 
release from lung mast cells [73], chronic corticosteroid treatment is associated with 
a marked reduction in mucosal mast cell number [74, 75]. This may be linked to a 
reduction in IL-5 and stem cell factor (SCF) production, which are necessary for 
mast cell expression at mucosal surfaces. Mast cells also secrete various cytokines 
(TNFa., IL-4, IL-5, IL-6, IL-8), but whether this is inhibited by corticosteroids has 
not yet been reported. 

Dendritic cells 
Dendritic cells in the epithelium of the respiratory tract appear to playa critical role 
in antigen presentation in the lung as they have the capacity to take up allergen, 
process it into peptides and present it via MHC molecules on the cell surface for pre
sentation to uncommitted T lymphocytes [76]. In experimental animals the number 
of dendritic cells is markedly reduced by systemic and inhaled corticosteroids, thus 
dampening the immune response in the airways [77]. Topical corticosteroids 
markedly reduce the numbers of dendritic cell in the nasal mucosa [78], and it is 
likely that a similar effect would be seen in airways. 

Neutrophils 
Neutrophils, which are not prominent in the bronchial biopsies of asthmatic 
patients, are not very sensitive to the effects of corticosteroids. Indeed, systemic cor-
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ticosteroids increase peripheral neutrophil counts which may reflect an increased 
survival time due to an inhibitory action of neutrophil apoptosis (in complete con
trast to the increased apoptosis seen in eosinophils) [79]. 

Endothelial cells 
GR gene expression in the airways is most prominent in endothelial cells of the 
bronchial circulation and airway epithelial cells. Corticosteroids do not appear to 
directly inhibit the expression of adhesion molecules, although they may inhibit cell 
adhesion indirectly by suppression of cytokines involved in the regulation of adhe
sion molecule expression. Corticosteroids may have an inhibitory action on airway 
microvascular leak induced by inflammatory mediators [80, 81]. This appears to be 
a direct effect on postcapillary venular epithelial cells. The mechanism for this 
antipermeability effect has not been fully elucidated, but there is evidence that syn
thesis of a 100 kDa protein distinct from lipocortin-l termed vasocortin may be 
involved [82]. Although there have been no direct measurements of the effects of 
corticosteroids on airway microvascular leakage in asthmatic airways, regular treat
ment with inhaled corticosteroids decreases the elevated plasma proteins found in 
bronchoalveolar lavage fluid of patients with stable asthma [83]. 

Epithelial cells 
Epithelial cells may be an important source of inflammatory mediators in asthmat
ic airways and may drive and amplify the inflammatory response in the airways [84, 
85]. Airway epithelium may be one of the most important targets for inhaled glu
cocorticoids in asthma [3, 86]. Corticosteroids inhibit the increased transcription of 
the IL-8 gene induced by TNFa in cultured human airway epithelial cells in vitro 
[87, 88] and the transcription of the RANTES gene in an epithelial cell line [89]. 
Inhaled corticosteroids inhibit the increased expression of GM-CSF and RANTES 
in the epithelium of asthmatic patients [84, 90, 91]. There is increased expression of 
iNOS in the airway epithelium of patients with asthma [92] and this may account 
for the increase in NO in the exhaled air of patients with asthma compared with 
normal subjects [93]. Asthmatic patients who are taking regular inhaled corticos
teroid therapy, however do not show such an increase in exhaled NO [93], suggest
ing that glucocorticoids have suppressed epithelial iNOS expression. Furthermore 
double-blind randomised studies show that oral and inhaled glucocorticoids reduce 
the elevated exhaled NO in asthmatic patients to normal values [94, 95]. Glucocor
ticoids also decrease the transcription of other inflammatory proteins in airway 
epithelial cells, including COX-2, cPLA2 and endothelin-l [53, 56, 57]. Airway 
epithelial cells may be the key cellular target of inhaled corticosteroids; by inhibit
ing the transcription of several inflammatory genes inhaled corticosteroids may 
reduce inflammation in the airway wall (Fig. 6). 
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Figure 6 
Inhaled corticosteroids may inhibit the transcription of several "inflammatory" genes in air
way epithelial cells and thus reduce inflammation in the airway wall. 

Mucus secretion 
Corticosteroids inhibit mucus secretion in airways and this may be a direct action 
of corticosteroids on submucosal gland cells [96]. Recent studies suggest that corti
costeroids may also inhibit the expression of mucin genes, such as MUC2 and 
MUCSAC [97]. In addition, there are indirect inhibitory effects due to the reduction 
in inflammatory mediators that stimulate increased mucus secretion. 

Effects on astmatic inflammation 

Glucocorticoids are remarkably effective in controlling the inflammation in asth
matic airways and it is likely that they have multiple cellular effects. Biopsy studies 
in patients with asthma have now confirmed that inhaled corticosteroids reduce the 

48 



Corticosteroids 

number and activation of inflammatory cells in the airway [74, 75, 91, 98, 99]. Sim
ilar results have been reported in bronchoalveolar lavage of asthmatic patients, with 
a reduction in both eosinophil number and eosinophil cationic protein concentra
tions, a marker of eosinophil degranulation, after inhaled budesonide [100]. These 
effects may be due to inhibition of cytokine synthesis in inflammatory and structur
al cells. There is also a reduction in activated CD4+ T-cells (CD4+/CD25+) in bron
choalveolar lavage fluid after inhaled glucocorticoids [101]. The disrupted epitheli
um is restored and the ciliated to goblet cell ratio is normalised after three months 
of therapy with inhaled corticosteroids [74]. There is also some evidence for a 
reduction in the thickness of the basement membrane [91], although in asthmatic 
patients taking inhaled corticosteroids for over 10 years the characteristic thicken
ing of the basement membrane was still present [102]. 

Effects on airway hyperresponsiveness 

By reducing airway inflammation inhaled corticosteroids consistently reduce airway 
hyperresponsiveness (AHR) in asthmatic adults and children [103]. Chronic treat
ment with inhaled corticosteroids reduces responsiveness to histamine, cholinergic 
agonists, allergen (early and late responses), exercise, fog, cold air, bradykinin, 
adenosine and irritants (such as sulphur dioxide and metabisulphite). The reduction 
in AHR takes place over several weeks and may not be maximal until after several 
months of therapy. The magnitude of reduction is variable between patients and is 
in the order of one to two doubling dilutions for most challenges and often fails to 
return to the normal range. This may reflect suppression of the inflammation but 
persistence of structural changes which cannot be reversed by corticosteroids. 
Inhaled corticosteroids not only make the airways less sensitive to spasmogens, but 
they also limit the maximal airway narrowing in response to spasmogens [104]. 

Clinical efficacy of inhaled corticosteroids 

Inhaled corticosteroids are very effective in controlling asthma symptoms in asth
matic patients of all ages and severity [1, 105]. 

Studies in adults 

Inhaled corticosteroids were first introduced to reduce the requirement for oral cor
ticosteroids in patients with severe asthma and many studies have confirmed that 
the majority of patients can be weaned off oral corticosteroids [106]. As experience 
has been gained with inhaled corticosteroids they have been introduced in patients 
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with milder asthma, with the recogmtlOn that inflammation is present even in 
patients with mild asthma [107]. Inhaled anti-inflammatory drugs have now 
become first-line therapy in any patient who needs to use a ~2-agonist inhaler more 
than once a day, and this is reflected in national and international guidelines for the 
management of chronic asthma [108-110]. In patients with newly-diagnosed asth
ma inhaled corticosteroids (budesonide 600 Ilg twice daily) reduced symptoms and 
~ragonist inhaler usage and improved peak expiratory flows. These effects persist
ed over the two years of the study, whereas in a parallel group treated with inhaled 
~ragonists alone there was no significant change in symptoms or lung function 
[111]. In another study patients with mild asthma treated with a low dose of inhaled 
corticosteroid (budesonide 200 Ilg b.d.) showed fewer symptoms and a progressive 
improvement in lung function over several months and many patients became com
pletely asymptomatic [112]. Similarly inhaled beclomethasone dipropionate (BDP, 
400 Ilg b.d.) improved asthma symptoms and lung function and this was maintained 
over the 2.5 years of the study [113]. There was also a significant reduction in the 
number of exacerbations. Although the effects of inhaled corticosteroids on AHR 
may take several months to reach a plateau, the reduction in asthma symptoms 
occurs more rapidly [114]. 

High dose inhaled corticosteroids have now been introduced in many countries 
for the control of more severe asthma. This markedly reduces the need for mainte
nance oral corticosteroids and has revolutionised the management of more severe 
and unstable asthma [115-117]. Inhaled corticosteroids are the treatment of choice 
in nocturnal asthma, which is a manifestation of inflamed airways, reducing night 
time awakening and reducing the diurnal variation in airway function [118, 119]. 

Inhaled corticosteroids effectively control asthmatic inflammation but must be 
taken regularly. When inhaled corticosteroids are discontinued there is usually a 
gradual increase in symptoms and airway responsiveness back to pretreatment val
ues [114], although in patients with mild asthma who have been treated with 
inhaled corticosteroids for a long time symptoms may not recur in some patients 
[120]. 

Studies in children 

Inhaled corticosteroids are equally effective in children. In an extensive study of chil
dren aged 7-17 years there was a significant improvement in symptoms, peak flow 
variability and lung function compared to a regular inhaled ~2-agonist which was 
maintained over the 22 months of the study [121], but asthma deteriorated when 
the inhaled corticosteroids were withdrawn [122]. There was a high proportion of 
drop-outs (45%) in the group treated with inhaled ~2-agonist alone. Inhaled corti
costeroids are also effective in younger children. Nebulised budesonide reduced the 
need for oral corticosteroids and also improved lung function in children under the 
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age of three [123]. Inhaled corticosteroids given via a large volume spacer improved 
asthma symptoms and reduced the number of exacerbations in preschool children 
and in infants [124, 125]. 

Prevention of irreversible changes 

Some patients with asthma develop an element of irreversible airflow obstruction, 
but the pathophysiological basis of this is not yet understood. It is likely that it is 
the result of chronic airway inflammation and that it may be prevented by treatment 
with inhaled corticosteroids. There is some evidence that the annual decline in lung 
function may be slowed by the introduction of inhaled corticosteroids [126]. Delay 
in starting inhaled corticosteroids may result in less overall improvement in lung 
function in both adults and children [127-129]. 

Pharmacokinetics 

The pharmacokinetics of inhaled corticosteroids are important in determining the 
concentration of drug reaching target cells in the airways and in the fraction of drug 
reaching the systemic circulation and therefore causing side-effects [1, 130, 131]. 
Beneficial properties in an inhaled corticosteroid are a high topical potency, a low 
systemic bioavailability of the swallowed portion of the dose and rapid metabolic 
clearance of any corticosteroid reaching the systemic circulation. After inhalation a 
large proportion of the inhaled dose (80-90%) is deposited on the oropharynx and 
is then swallowed and therefore available for absorption via the liver into the sys
temic circulation (Fig. 7). This fraction is markedly reduced by using a large volume 
spacer device with a metered dose inhaler (MDI) or by mouth washing and dis
carding the washing with dry powder inhalers. Between 10 and 20% of inhaled 
drug enters the respiratory tract, where it is deposited in the airways and this frac
tion is available for absorption into the systemic circulation. Most of the early stud
ies on the distribution of inhaled corticosteroids were conducted in healthy volun
teers, and it is not certain what effect inflammatory disease, airway obstruction, age 
of the patient or concomitant medication may have on the disposition of the inhaled 
dose. There may be important differences in the metabolism of different inhaled cor
ticosteroids. BDP is metabolised to its more active metabolite beclomethasone 
monopropionate in many tissues including lung, but there is no information about 
the absorptioh or metabolism of this metabolite in humans. Flunisolide and budes
onide are subject to extensive first-pass metabolism in the liver so that less reaches 
the systemic circulation [132, 133]. Little is known about the distribution of triam
cinolone [134]. FP is almost completely metabolised by first-pass metabolism, which 
reduces systemic effects [135]. 
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When inhaled corticosteroids were first introduced it was recommended that 
they should be given four times daily, but several studies have now demonstrated 
that twice daily administration gives comparable control [136, 137], although four 
times daily administration may be preferable in patients with more severe asthma 
[138]. However, patients may find it difficult to comply with such frequent admin
istration unless they have troublesome symptoms. For patients with mild asthma 
who require ~ 400 /..I.g daily, once daily therapy may be sufficient [139]. 

Side-effects of inhaled corticosteroids 

The efficacy of inhaled corticosteroids is now established in short- and long-term 
studies in adults and children, but there are still concerns about side-effects, partic
ularly in children and when high inhaled doses are needed. Several side-effects have 
been recognised. 
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Local side-effects 

Side effects due to the local deposition of the inhaled corticosteroid in the orophar
ynx may occur with inhaled corticosteroids, but the frequency of complaints 
depends on the dose and frequency of administration and on the delivery system 
used. 

Dysphonia 
The commonest complaint is of hoarseness of the voice (dysphonia) and may occur 
in over 50% of patients using MDI [140, 141]. Dysphonia is not appreciably 
reduced by using spacers, but may be less with dry powder devices [142]. Dyspho
nia may be due to myopathy of laryngeal muscles and is reversible when treatment 
is withdrawn [141]. For most patients it is not troublesome but may be disabling in 
singers and lecturers. 

Oropharyngeal candidiasis 
Oropharyngeal candidiasis (thrush) may be a problem in some patients, particular
ly in the elderly, with concomitant oral corticosteroids and more than twice daily 
administration [140]. Large volume spacer devices protect against this local side
effect by reducing the dose of inhaled corticosteroid that deposits in the orophar
ynx. 

Other local complications 
There is no evidence that inhaled corticosteroids, even in high doses, increase the 
frequency of infections, including tuberculosis, in the lower respiratory tract [143, 
144]. There is no evidence for atrophy of the airway epithelium and even after 10 
years of treatment with inhaled corticosteroids there is no evidence for any struc
tural changes in the epithelium [102]. Cough and throat irritation, sometimes 
accompanied by reflex bronchoconstriction, may occur when inhaled corticos
teroids are given via a metered dose inhaler. These symptoms are likely to be due to 
surfactants in pressurised aerosols as they disappear after switching to a dry pow
der corticosteroid inhaler device [145]. 

Systemic side-effects 

The efficacy of inhaled corticosteroids in the control of asthma is undisputed, but 
there are concerns about systemic effects of inhaled corticosteroids, particularly as 
they are likely to be used over long periods and in children of all ages [105]. The 
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safety of inhaled corticosteroids has been extensively investigated since their intro
duction 30 years ago [146]. One of the major problems is to decide whether a mea
surable systemic effect has any significant clinical consequence, and this necessitates 
careful long-term follow-up studies. As biochemical markers of systemic corticos
teroid effects become more sensitive, then systemic effects may be seen more often, 
but this does not mean that these effects are clinically relevant. There are several 
case reports of adverse systemic effects of inhaled corticosteroids, and these are 
often idiosyncratic reactions, which may be due to abnormal pharmacokinetic han
dling of the inhaled corticosteroid. The systemic effect of an inhaled corticosteroid 
will depend on several factors, including the dose delivered to the patient, the site of 
delivery (gastrointestinal tract and lung), the delivery system used and individual 
differences in the patient's response to the corticosteroid. 

Effect of delivery systems 
The systemic effect of an inhaled corticosteroid is dependent on the amount of drug 
absorbed into the systemic circulation. As noted above, approximately 90% of the 
inhaled dose from an MDI deposits in the oropharynx and is swallowed and subse
quently absorbed from the gastrointestinal tract. Use of a large volume spacer device 
markedly reduces the oropharyngeal deposition, and therefore the systemic effects 
of inhaled corticosteroids [147]. For dry powder inhalers similar reductions in sys
temic effects may be achieved with mouth-washing and discarding the fluid. All 
patients using a daily dose of ~ 800 flg of an inhaled corticosteroid should therefore 
use either a spacer or mouth washing to reduce systemic absorption. Approximate
ly 10% of an MDI enters the lung and this fraction (which presumably exerts the 
therapeutic effect) may be absorbed into the systemic circulation. As the fraction of 
inhaled corticosteroid deposited in the oropharynx is reduced, the proportion of the 
inhaled dose entering the lungs is increased. More efficient delivery to the lungs is 
therefore accompanied by increased systemic absorption, but this is offset by a 
reduction in the dose needed for optimal control of airway inflammation. For exam
ple, a multiple dry powder delivery system, the Turbohaler, delivers approximately 
twice as much corticosteroid to the lungs as other devices, and therefore has 
increased systemic effects. However this is compensated for by the fact that only 
half the dose is required [148]. 

Hypothalamic-pituitary-adrenal axis 
Glucocorticoids may cause hypothalamic-pituitary-adrenal (HPA) axis suppression 
by reducing corticotrophin (ACTH) production, which reduces cortisol secretion by 
the adrenal gland. The degree of HPA suppression is dependent on dose, duration, 
frequency and timing of corticosteroid administration. The clinical significance of 
HPA axis suppression is two-fold. Firstly, prolonged adrenal suppression may lead 
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to reduced adrenal response to stress. There is no evidence that cortisol responses to 
the stress of an asthma exacerbation or insulin-induced hypoglycaemia are 
impaired, even with high doses of inhaled corticosteroids [149]. Secondly, measure
ment of HPA axis function provides evidence for systemic effects of an inhaled cor
ticosteroid. Basal adrenal cortisol secretion may be measured by a morning plasma 
cortisol, 24 h urinary cortisol or by plasma cortisol profile over 24 h [150]. Other 
tests measure the HPA response following stimulation with tetracosactrin (which 
measures adrenal reserve) or stimulation with metyrapone and insulin (which mea
sure the response to stress). 

There are many studies of HPA axis function in asthmatic patients with inhaled 
corticosteroids, but the results are inconsistent as they have often been uncontrolled 
and patients have also been taking courses of oral corticosteroids (which may affect 
the HpA axis for weeks) [151]. BOP, budesonide and FP at high doses by conven
tional MOl (> 1600 /-lg daily) give a dose-related decrease in morning serum corti
sol levels and 24 h urinary cortisol, although values still lie well within the normal 
range [152-154]. However, when a large volume spacer is used doses of 2000 /-lg 
daily of BOP or budesonide have little effect on 24 h urinary cortisol excretion 
[155]. Studies with inhaled flunisolide and triamcinolone in children show no effect 
on 24 h cortisol excretion at doses of up to 1000 /-lg daily [156, 157]. Stimulation 
tests of HPA axis function similarly show no consistent effects of doses of 1500 /-lg 
or less of inhaled corticosteroid. At high doses (> 1500 /-lg daily) budesonide and FP 
have less effect than BOP on HPA axis function [153, 158]. In children no suppres
sion of urinary cortisol is seen with doses of BOP of 800 /-lg or less [159-161]. In 
studies where plasma cortisol has been measured at frequent intervals there was a 
significant reduction in cortisol peaks with doses of inhaled BOP as low as 400 /-lg 
daily [162], although this does not appear to be dose-related in the range 400-
1000/-lg [163, 164]. The clinical significance of these effects is not certain, howev
er. 

Overall, the studies which are not confounded by concomitant treatment with 
oral corticosteroids, have consistently shown that there are no significant suppres
sive effects on HPA axis function at doses of ~ 1500 /-lg in adults and ~ 400 /-lg in 
children. 

Effects on bone metabolism 
Corticosteroids lead to a reduction in bone mass by direct effects on bone formation 
and resorption and indirectly by suppression of the pituitary-gonadal and HPA axes, 
effects on intestinal calcium absorption, renal tubular calcium reabsorption and sec
ondary hyperparathyroidism [165]. The effects of oral corticosteroids on osteo
porosis and increased risk of vertebral and rib fractures are well known, but there 
are no reports suggesting that long-term treatment with inhaled corticosteroids is 
associated with an increased risk of fractures. Bone densitometry has been used to 
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assess the effect of inhaled corticosteroids on bone mass. Although there is evidence 
that bone density is less in patients taking high-dose inhaled corticosteroids, inter
pretation is confounded by the fact that these patients are also taking intermittent 
courses of oral corticosteroids [166]. 

Changes in bone mass occur very slowly and several biochemical indices have 
been used to assess the short-term effects of inhaled corticosteroids on bone metab
olism. Bone formation has been measured by plasma concentrations of bone-spe
cific alkaline phosphatase, serum osteocalcin, a non-collagenous 49-amino acid 
peptide secreted by osteoblasts, or by procollagen peptides. Bone resorption may 
be assessed by urinary hydroxyproline after a 12-h fast, urinary calcium excretion 
and pyridinium cross-link excretion. It is important to consider the age, diet, time 
of day and physical activity of the patient in interpreting any abnormalities. It is 
also necessary to choose appropriate control groups as asthma itself may have an 
effect on some of the measurements, such as osteocalcin [167]. Inhaled corticos
teroids, even at doses up to 2000 ~g daily, have no significant effect on calcium 
excretion, but acute and reversible dose-related suppression of serum osteocalcin 
has been reported with BDP and budesonide when given by conventional MDI in 
several studies [lSl]. Budesonide consistently has less effect than BDP at equiva
lent doses and only BDP increases urinary hydroxyproline at high doses [168]. 
With a large volume spacer even doses of 2000 ~g daily of either BDP or budes
onide are without effect on plasma osteocalcin concentrations, however [lSS]. Uri
nary pyridinium and deoxypyridinoline cross-links, which are a more accurate and 
stable measurement of bone and collagen degradation, are not increased with 
inhaled corticosteroids (BDP > 1000 ~g daily), even with intermittent courses of 
oral corticosteroids [166]. It is important to monitor changes in markers of bone 
formation as well as bone degradation, as the net effect on bone turnover is impor
tant. 

There has been particular concern about the effect of inhaled corticosteroids on 
bone metabolism in growing children. A very low dose of oral corticosteroids (pred
nisolone 2.S mg) causes significant changes in serum osteocalcin and urinary 
hydroxyproline excretion, whereas daily BDP and budesonide at doses up to 800 ~g 
daily have no effect [167, 169]. It is important to recognise that the changes in bio
chemical indices of bone metabolism are less than those seen with even low doses of 
oral corticosteroids. This suggests that even high doses of inhaled corticosteroids, 
particularly when used with a spacer device, are unlikely to have any long-term 
effect on bone structure. Careful long-term follow-up studies in patients with asth
ma are needed. 

There is no evidence that inhaled corticosteroids increase the frequency of frac
tures. Long-term treatment with high dose inhaled corticosteroids has not been 
associated with any consistent change in bone density [170, 171]. Indeed, in elder
ly patients there may be an increase in bone density due to increased mobility 
[171]. 
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Effects on connective tissue 
Oral and topical corticosteroids cause thinning of the skin, telangiectasiae and easy 
bruising, probably as a result of loss of extracellular ground substance within the 
dermis, due to an inhibitory effect on dermal fibroblasts. There are reports of 
increased skin bruising and purpura in patients using high doses of inhaled BDP, but 
the amount of intermittent oral corticosteroids in these patients is not known [172, 
173]. Easy bruising in association with inhaled corticosteroids is more frequent in 
elderly patients [174] and there are no reports of this problem in children. Long
term prospective studies with objective measurements of skin thickness are needed 
with different inhaled corticosteroids. 

Ocular effects 
Long-term treatment with oral corticosteroids increases the risk of posterior sub
capsular cataracts and there are several case reports describing cataracts in individ
ual patients taking inhaled corticosteroids [146]. In a study of 48 patients who were 
exposed to oral and/or high dose inhaled corticosteroids the prevalence of posterior 
subcapsular cataracts (27%) correlated with the daily dose and duration of oral cor
ticosteroids, but not with the dose and duration of inhaled corticosteroids [175]. In 
a recent cross-sectional study in patients aged 5-25 years taking either inhaled BDP 
or budesonide, no cataracts were found on slit-lamp examination, even in patients 
taking 2000 /-lg daily for over 10 years [176]. Recently there has been a report of a 
slight increase in the risk of glaucoma in patients taking very high doses of inhaled 
corticosteroids [177]. 

Growth 
There has been particular concern that inhaled corticosteroids may cause stunting 
of growth and several studies have addressed this issue. Asthma itself (as with 
other chronic diseases) may have an effect on the growth pattern and has been 
associated with delayed onset of puberty and decceleration of growth velocity that 
is more pronounced with more severe disease [178]. However, asthmatic children 
appear to grow for longer, so that their final height is normal. The effect of asth
ma on growth makes it difficult to assess the effects of inhaled corticosteroids on 
growth in cross-sectional studies, particularly as courses of oral corticosteroids are 
a confounding factor. Longitudinal studies have demonstrated that there is no sig
nificant effect of inhaled corticosteroids on statural growth in doses of up to 800 
/-lg daily and tor up to 5 years of treatment [121, 151, 179, 180]. A prospective 
study of inhaled BDP (400 /-lg daily) versus theophylline in children with mild to 
moderate asthma showed no effect on height, although there was some reduction 
in growth velocity compared to children treated with theophylline [181]. Howev
er it is not possible to relate changes in growth velocity to final height as other 
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studies have demonstrated that there is a "catch up" period. In a longitudinal study 
in children aged 2-7 years with severe asthma, budesonide 200 Ilg daily had no 
effect on growth over 3-5 years [161]. In children with virally-induced wheezing 
BDP 400 Ilg daily has been reported to reduce growth compared with a placebo 
[182]. A meta-analysis of 21 studies, including over 800 children, showed no effect 
of inhaled BDP on statural height, even with higher doses and long duration of 
therapy [183]. 

Short-term growth measurements (knemometry) have demonstrated that even a 
low dose of an oral corticosteroid (prednisolone 2.5 mg) is sufficient to give com
plete suppression of lower leg growth. However inhaled budesonide up to 400 Ilg is 
without effect, although some suppression is seen with 800 Ilg and with 400 Ilg BDP 
[184, 185]. The relationship between knemometry measurements and final height 
are uncertain since low doses of oral corticosteroid that have no effect on final 
height cause profound suppression. 

Metabolic effects 
Several metabolic effects have been reported after inhaled corticosteroids, but there 
is no evidence that these are clinically relevant at therapeutic doses. In adults fast
ing glucose and insulin are unchanged after doses of BDP up to 2000 Ilg daily [186] 
and in children with inhaled budesonide up to 800 Ilg daily [187]. In normal indi
viduals high dose inhaled BDP may slightly increase resistance to insulin [188]. 
However, in patients with poorly controlled asthma high doses of BDP and budes
onide paradoxically decrease insulin resistance and improve glucose tolerance, sug
gesting that the disease itself may lead to abnormalities in carbohydrate metabolism 
[189]. Neither BDP 2000 Ilg daily in adults nor budesonide 800 Ilg daily in children 
have any effect on plasma cholesterol or triglycerides [186, 187]. 

Haematological effects 
Inhaled corticosteroids may reduce the numbers of circulating eosinophils in asth
matic patients [71], possibly due to an effect on local cytokine generation in the air
ways. Inhaled corticosteroids may cause a small increase in circulating neutrophil 
counts [155, 190]. 

Central nervous system effects 
There are various reports of psychiatric disturbance, including emotional lability, 
euphoria, depression, aggressiveness and insomnia, after inhaled corticosteroids. 
Only eight such patients have so far been reported, suggesting that this is very infre
quent and a causal link with inhaled corticosteroids has usually not been established 
[151]. 
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Table 2 - Side-effects of inhaled corticosteroids 

Local side-effects 

Dysphonia 

Oropharyngeal candidiasis 

Cough 

Safety in pregnancy 

Systemic side-effects 

Adrenal suppression 

Growth suppression 

Bruising 

Osteoporosis 

Cataracts 

Glaucoma 

Metabolic abnormalities (glucose, insulin, triglycerides) 

Psychiatric disturbances 

Based on extensive clinical experience, inhaled corticosteroids appear to be safe in 
pregnancy, although no controlled studies have been performed. There is no evi
dence for any adverse effects of inhaled corticosteroids on the pregnancy, the deliv
ery or on the foetus [146]. It is important to recognise that poorly controlled asth
ma may increase the incidence of perinatal mortality and retard intra-uterine 
growth, so that more effective control of asthma with inhaled corticosteroids may 
reduce these problems. 

Clinical use of inhaled corticosteroids 

Inhaled corticosteroids are now recommended as first-line therapy for all but the 
mildest of asthmatic patients [1]. Inhaled corticosteroids should be started in any 
patient who needs to use a ~-agonist inhaler for symptom control more than once 
daily (or possibly three times weekly). It is conventional to start with a low dose of 
inhaled corticosteroid and to increase the dose until asthma control is achieved. 
However, this may take time and a preferable approach is to start with a dose of 
corticosteroids in the middle of the dose range (400 Ilg twice daily) to establish con
trol of asthma more rapidly [191]. Once control is achieved (defined as normal or 
best possible lung function and infrequent need to use an inhaled Ilz-agonist) the 
dose of inhaled corticosteroid should be reduced in a step-wise manner to the low
est dose needed for optimal control. It may take as long as three months to reach a 
plateau in response and any changes in dose should be made at intervals of three 
months or more. This strategy ("start high - go low") is emphasised in the revised 
BTS Guidelines for Asthma Management [110]. When doses of ~ 800 Ilg daily are 
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needed a large volume spacer device should be used with an MDI and mouth wash
ing with a dry powder inhaler in order to reduce local and systemic side-effects. 
Inhaled corticosteroids are usually given as a twice daily dose in order to increase 
compliance. When asthma is more unstable four times daily dosage is preferable 
[138]. For patients who require::;; 400 )lg daily, once daily dosing appears to be as 
effective as twice daily dosing, at least for budesonide [139]. 

The dose of inhaled corticosteroid should be increased to 2000 )lg daily if nec
essary, but higher doses may result in systemic effects and it may be preferable to 
add a low dose of oral corticosteroid, since higher doses of inhaled corticosteroids 
are expensive and have a high incidence of local side-effects. Nebulised budesonide 
has been advocated in order to give an increased dose of inhaled corticosteroid and 
to reduce the requirement for oral corticosteroids [192], but this treatment is expen
sive and may achieve its effects largely via systemic absorption. 

Most of the guidelines for asthma treatment suggest that additional bron
chodilators (slow-release theophylline preparations, inhaled and oral long-acting ~r 
agonists and inhaled anticholinergics) should be introduced after increasing the dose 
of inhaled corticosteroid to 1600-2000 )lg daily. However an alternative approach 
is to introduce these treatments when patients are taking 400-800 )lg inhaled corti
costeroid daily. Addition of the long-acting inhaled ~2-agonist salmeterol provides 
better control of asthma symptoms than doubling the dose of inhaled corticos
teroids [193, 194]. Similarly, addition of low dose oral theophylline gives better con
trol than doubling the dose of inhaled corticosteroid in patients not controlled on 
budesonide 800 )lg daily [195]. 

Inhaled corticosteroids may be the most cost-effective way of controlling asth
ma, since reducing the frequency of asthma attacks will save on total costs [196, 
197]. Inhaled corticosteroids improve the quality of life of patients with asthma and 
allow many patients a normal lifestyle [198]. 

Systemic corticosteroids 

Oral or intravenous corticosteroids may be indicated in several situations. Pred
nisolone, rather than prednisone, is the preferred oral corticosteroid as prednisone 
has to be converted in the liver to the active prednisolone. In pregnant patients pred
nisone may be preferable as it is not converted to prednisolone in the foetal liver, 
thus diminishing the exposure of the foetus to glucocorticoids. Enteric-coated 
preparations of prednisolone are used to reduce side-effects (particularly gastric 
side-effects) and give delayed and reduced peak plasma concentrations, although the 
bioavailability and therapeutic efficacy of these preparations are similar to uncoat
ed tablets. Prednisolone and prednisone are preferable to dexamethasone, 
betamethasone or triamcinolone, which have longer plasma half-lives and therefore 
an increased frequency of adverse effects. 
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Short courses of oral corticosteroids (30-40 mg prednisolone daily for 1-2 
weeks or until the peak flow values return to best attainable) are indicated for exac
erbations of asthma, and the dose may be tailed off over 1 week once the exacer
bation is resolved. The tail-off period is not strictly necessary [199], but some 
patients find it reassuring. 

Maintenance oral corticosteroids are only needed in a small proportion of asth
matic patients with the most severe asthma that cannot be controlled with maxi
mal doses of inhaled corticosteroids (2000 Ilg daily) and additional bronchodila
tors. The minimal dose of oral corticosteroid needed for control should be used and 
reductions in the dose should be made slowly in patients who have been on oral 
corticosteroids for long periods (e.g. by 2.5 mg per month for doses down to 10 mg 
daily and thereafter by 1 mg per month). Oral corticosteroids are usually given as 
a single morning dose as this reduces the risk of adverse effects since it coincides 
with the peak diurnal concentrations. There is some evidence that administration 
in the afternoon may be optimal for some patients who have severe nocturnal asth
ma [200]. Alternate day administration may also reduce adverse effects, but con
trol of asthma may not be as good on the day when the oral dose is omitted in some 
patients. 

Intramuscular triamcinolone acetonide (80 mg monthly) has been advocated in 
patients with severe asthma as an alternative to oral corticosteroids [201,202]. This 
may be considered in patients in whom compliance is a particular problem, but the 
major concern is the high frequency of proximal myopathy associated with this flu
orinated corticosteroid. Some patients who do not respond well to prednisolone are 
reported to respond to oral betamethasone, presumably because of pharmacokinet
ic handling problems with prednisolone [203]. 

Corticosteroid-sparing therapy 

In patients who have serious side-effects with maintenance corticosteroid therapy 
there are several treatments which have been shown to reduce the requirement for 
oral corticosteroids [204]. These treatments are commonly termed corticosteroid
sparing, although this is a misleading description that could be applied to any addi
tional asthma therapy (including bronchodilators). The amount of corticosteroid 
sparing with these therapies is not impressive. 

Several immunosuppressive agents have been shown to have corticosteroid 
effects, including methotrexate [205,206], oral gold [207] and cyclosporin A [208, 
209]. These therapies all have side-effects that may be more troublesome than those 
of oral corticosteroids and are therefore only indicated as an additional therapy to 
reduce the requirement of oral corticosteroids. None of these treatments is very 
effective, but there are occasional patients who appear to show a particularly good 
response. Because of side-effects these treatments cannot be considered as a way to 
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reduce the requirement for inhaled corticosteroids. Side-effects are a problem with 
these immunosuppressive drugs and include nausea, vomiting, hepatic dysfunction, 
hepatic fibrosis, pulmonary fibrosis and increased infections for methotrexate and 
renal dysfunction for cyclosporin and oral gold. Several other therapies, including 
azathioprine, dapsone and hydroxychloroquine have not been found to be benefi
cial. The macrolide antibiotic troleandomycin is also reported to have corticos
teroid-sparing effects, but this is only seen with methylprednisolone and is due to 
reduced metabolism of this corticosteroid, so that there is little therapeutic gain 
[210]. 

Acute severe asthma 

Intravenous hydrocortisone is given in acute severe asthma. The recommended dose 
is 200 mg i.v. [211]. While the value of corticosteroids in acute severe asthma has 
been questioned, others have found that they speed the resolution of attacks [212]. 
There is no apparent advantage in giving very high doses of intravenous corticos
teroids (such as methylprednisolone 1 g). Indeed, intravenous corticosteroids have 
occasionally been associated with an acute severe myopathy [213]. In a recent study 
no difference in recovery from acute severe asthma was seen whether i. v. hydrocor
tisone in doses of 50,200 or 500 mg every 6 h were used [214] and another place
bo controlled study showed no beneficial effect of i.v. corticosteroids [215]. Intra
venous corticosteroids are indicated in acute asthma if lung function is < 30% pre
dicted and in it there is no significant improvement with nebulised I3ragonist. 
Intravenous therapy is usually given until a satisfactory response is obtained and 
then oral prednisolone may be substituted. Oral prednisolone (40-60 mg) has a sim
ilar effect to intravenous hydrocortisone and is easier to administer [212,216]. Oral 
prednisolone is the preferred treatment for acute severe asthma, providing there are 
no contraindications to oral therapy [110]. 

Corticosteroid-resistant asthma 

Although corticosteroids are highly effective in the control of asthma and other 
chronic inflammatory or immune diseases, a small proportion of patients with asth
ma fail to respond even to high doses of oral corticosteroids [217-219]. Resistance 
to the therapeutic effects of glucocorticoids is also recognised in other inflammato
ry and immune diseases, including rheumatoid arthritis and inflammatory bowel 
disease. Corticosteroid-resistant patients, although uncommon, present consider
able management problems. Recently, new insights into the mechanisms whereby 
glucocorticoids suppress chronic inflammation have shed new light on the molecu
lar basis of glucocorticoid resistance in asthma [217]. 
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Clinical features 

Corticosteroid resistance (CR) in asthma was first described by Schwartz et al. in 
1968, in six asthmatic patients who did not respond clinically to high doses of sys
temic corticosteroids and in whom there was also a reduced eosinopaenic response 
[220]. Carmichael and colleagues reported a larger group of patients with chronic 
asthma who were corticosteroid-resistant [221]. These patients failed to improve 
their mean peak expiratory flow (PEF) by > 15% after taking prednisolone 20 mg 
daily for at least 7 days. They differed clinically from corticosteroid-sensitive 
patients only in having a longer duration of symptoms, lower morning PEF values 
and a more frequent family history of asthma. These patients are not Addisonian 
and they do not suffer from the abnormalities in sex hormones described in famil
ial glucocorticoid resistance. Plasma cortisol and adrenal suppression in response to 
exogenous cortisol are normal in these patients [222]. 

Absolute corticosteroid resistance in asthma is rare, but there are no population 
studies giving an estimate of the proportion of patients who are resistant. It is like
ly that most specialists would only have a few such patients in their clinic and the 
prevalence is probably < 1:1000 asthmatic patients. Much more common is a 
reduced responsiveness to corticosteroids, so that large inhaled or oral doses are 
needed to control asthma adequately. It is important to establish that the patient has 
asthma, rather than chronic obstructive pulmonary disease (COPD), "pseudoasth
ma" (a hysterical conversion syndrome involving vocal cord dysfunction), left ven
tricular failure or cystic fibrosis that do not respond to corticosteroids [223]. Asth
matic patients are characterised by a variability in PEF and, in particular, a diurnal 
variability of > 15% and episodic symptoms. It is also important to identify pro
voking factors (allergens, drugs, psychological problems) that may increase the 
severity of asthma and its resistance to therapy. 

Distinction between corticosteroid-sensitive (CS) and CR asthmatics depends on 
the response to a high dose of oral corticosteroids given for a reasonable period. In 
research studies prednisolone is usually given in a dose of 40 mg daily for 2 weeks 
with twice daily monitoring of PEF. In SR asthma patients fail to improve the morn
ing PEF or FEV1 by> 15%. Patients with CR asthma show the typical diurnal vari
ability in PEF and bronchodilate in response to inhaled ~2-agonists. Bronchial biop
sy shows the typical inflammatory infiltrate of eosinophils in CR patients [224]. It 
is clearly important to establish that the patient is taking the oral corticosteroid by 
measurement of plasma cortisol, which is suppressed after high dose oral corticos
teroids in both CS and CR patients [222] or by measurement of plasma prednisolone 
concentrations. Patients with COPD fail to improve lung function after a course of 
oral corticosteroids, but are distinguished from CR asthmatic patients by their lack 
of acute bronchodilator response and absence of diurnal variability in PEF. 

Another group of patients with asthma is responsive to corticosteroids, but only 
in relatively high oral doses. These patients are best described as steroid-dependent 

63 



Peter J. Barnes 

(i.e. dependent on oral corticosteroids as opposed to inhaled corticosteroids). These 
patients deteriorate when the dose of oral corticosteroids is reduced. Rarely a main
tenance dose of > 40 mg prednisolone daily may be required and such patients may 
mistakenly be classified as CR. Steroid-dependent asthmatic patients usually have 
severe disease and are presumed to have a high level of inflammation in their air
ways. 

Mechanisms of corticosteroid resistance 

There may be several mechanisms for resistance to the effects of glucocorticoids 
[217-219]. Although a family history of asthma is more common in patients with 
SR than CS asthma, little is known of the inheritance of CR asthma. Resistance to 
the inflammatory and immune effects of glucocorticoids should be distinguished 
from the very rare familial glucocorticoid resistance, where there is an abnormality 
of glucocorticoid binding to GR. 

Familial glucocorticoid resistance 
The rare inherited syndrome familial glucocorticoid resistance (FGR) is charac
terised by high circulating levels of cortisol without signs of symptoms of Cushing's 
syndrome [225]. Clinical manifestations, which may be absent, are due to an excess 
of non-glucocorticoid adrenal corticosteroids, stimulated by high ACTH levels, 
resulting in hypertension with hypokalaemia and/or signs of androgen excess (usu
ally hirsutism and menstrual abnormalities in females). Only about 12 cases have so 
far been reported. Several abnormalities in GR function have been described in 
peripheral blood leukocytes or fibroblasts from these patients. These include a 
decreased affinity of GR for cortisol, a reduced number of GRs, GR thermolability 
and an abnormality in the binding of the GR complex to DNA. The molecular basis 
of the disease in four patients with a reduction in GR appears to be a point muta
tion in the corticosteroid-binding domain of GR. 

Resistance to anti-inflammatory actions of corticosteroids 
Resistance to the anti-inflammatory and immunomodulatory effects of glucocorti
coids differs from the familial glucocorticoid resistance described above, as it is not 
associated with high circulating concentrations of cortisol or ACTH, and is not 
accompa.nied by hypertension, hypokalaemia or androgen excess. Furthermore, 
these patients are not Addisonian and show normal adrenal suppression. This sug
gests that any abnormality is unlikely to be due to the same abnormalities in the cor
ticosteroid-binding domain of GR, as described in FGR. Analysis of GR has failed 
to demonstrate any major abnormality in predicted structure in CR compared with 
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CS asthma [226]. Corticosteroid resistance may be primary (inherited or acquired 
of unknown cause) or secondary to some factor known to reduce glucocorticoid 
responsiveness (glucocorticoids themselves, cytokines, ~-adrenergic agonists). There 
are several possible sites where abnormalities in the anti-inflammatory response to 
glucocorticoids in asthma may arise. 

Pharmacokinetic abnormalities 
The initial suggestion of Schwartz et al. was that defective responses to corticos
teroids were due to increased clearance of the glucocorticoid, resulting in reduced 
clinical and eosinopenic response [220]. There is no evidence for altered bioavail
ability or plasma clearance of prednisolone or methylprednisolone in patients with 
corticosteroid-resistant asthma [227, 228]. Metabolism of glucocorticoids may be 
increased by induction of P-450 enzymes in response to certain drugs (e.g. 
rifampicin, carbamazepine), which may thus lead to a secondary corticosteroid 
resistance [130]. 

Antibodies to lipocortin-l 
Some anti-inflammatory effects of glucocorticoids may be due to induction of 
lipocortin-1 [29]. In some patients with corticosteroid-resistant rheumatoid arthri
tis autoantibodies to lipocortin-1 have been described [229]. However, two inde
pendent studies have failed to demonstrate the presence of IgG or IgM lipocortin-1 
antibodies in either SR or corticosteroid-dependent asthma [230,231]. 

Cellular abnormalities 
Glucocorticoid resistance has been documented in vitro in monocytes and T-Iym
phocytes from CR asthmatic patients, with a reduction in the inhibitory effect of 
corticosteroids on cytokine production. These studies in circulating leukocytes sug
gest that the defect in glucocorticoid responsiveness extends outside the respiratory 
tract and is therefore unlikely to be secondary to inflammatory changes in the air
ways. In patients with SR asthma the reduced blanching response to topical gluco
corticoids applied to the skin further indicates that there is a generalised abnormal
ity that is unlikely to be secondary to local cytokine production [232]. 

Abnormalities in G R function 
In FGR there is an abnormality in GR structure that results in reduced glucocorti
coid binding affinity. GR binding in monocytes and T lymphocytes of SR asthma 
shows either no difference in GR affinity and receptor density or a relative reduc
tion in GR affinity [227, 233-235]. Corrigan et al. found some reduction of GR 
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affinity in T cells from 5R asthmatic patients but this could not account for the resis
tance to PHA-induced proliferative responses in cells from the same patients [227]. 
5her et al. described two types of glucocorticoid resistance: a reduced affinity of GR 
binding confined to T lymphocytes which reverted to normal after 48 h in culture, 
and a much less common reduction in GR density (in only 2/17 5R patients) which 
did not normalise with prolonged incubation [235]. This suggests that there may be 
different types of corticosteroid resistance in asthma. The small reduction in GR 
affinity is unlikely to be of functional significance and is not associated with elevat
ed plasma cortisol concentrations, as observed in patients with FGR. The small 
reduction in GR affinity may be secondary to cytokine exposure, since the normal
isation of GR affinity in vitro is prevented by a combination of IL-2 and IL-4 [235] 
and this combination of cytokines reduces the binding affinity in nuclear GR in T 
lymphocytes, although either cytokine alone has no effect [236]. This suggests that 
corticosteroid resistance may occur in the airways of patients with asthma as a sec
ondary phenomenon due to the local production of cytokines. In 5R asthmatic 
patients there is a significant increase in the numbers of BAL cells expressing IL-2 
and IL-4 mRNA compared to 55 asthmatics, but no difference in IFNy mRNA pos
itive cells. After oral prednisone for 1 week there is a reduction in IL-4 expressing 
cells and a rise in IFNy positive cells in 55 asthma, whereas in 5R asthma there was 
no fall in IL-4 positive cells and a fall in IFNy positive cells [224]. This may indicate 
that there are different patterns of cytokine release that may contribute to corticos
teroid resistance. Although this may account for the increased requirement for glu
cocorticoids in more severe asthma, it is unlikely to account for the reduced corti
costeroid response seen in circulating mononuclear cells and in the skin of patients 
with no response to oral glucocorticoids. 

There is, however, a marked reduction in GR-GRE binding in mononuclear cells 
of patients with CR asthma and 5catchard analysis has demonstrated a marked 
reduction in GR available for DNA binding compared with cells from patients with 
C5 asthma [237]. 

Interaction between GR and transcription factors 
In mononuclear cells of C5 patients and normal control subjects the phorbol ester 
PMA, which activates AP-1, results in reduced GRE binding. This inhibitory effect 
is significantly abrogated in the PBMC of patients with 5R asthma, indicating a like
ly abnormality in the interaction between GR and AP-1 [238]. This defect does not 
appear to apply to the other transcription factors, NF-KB and CREB, that also inter
act with GR [238]. The abnormality in the interaction between GR and AP-1 is 
unlikely to be due to a defect in GR, since the protein sequence of GR in patients 
with 5R asthma is normal [226]. It is more likely to be due to a defect in AP-1 or 
its activation. Indeed, activation of c-Fos by phorbol esters is potentiated in the cells 
of patients with 5R compared to 55 asthma [239] and one of the key enzymes 
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Figure 8 

Proposed mechanism of primary corticosteroid-resistance in asthma. Increased adivation of 

adivator protein-1 (AP-1) results in the consumption of glucocorticoid receptors (GR), thus 

preventing the anti-infiammatory adion of corticosteroids, either through binding to GREs 

or through inhibition of NF-kB. 

involved in activation of AP-l, namely Jun N-terminal (JNK) kinase, is abnormally 
activated in these patients [240]. The increased basal and cytokine-induced AP-l 
activity may lead to consumption of GR, so that corticosteroids are not able to sup
press the inflammatory response, either through interacting with GRE or with other 
transcription factors, such as NF-KB (Fig. 8). 

An abnormality in AP-l may also account for the selective resistance to the 
effects of corticosteroid in SR asthma, since AP-l is more likely to be important in 
the regulation of some genes than in others. It would also explain why resistance is 
seen to the antiinflammatory effects of corticosteroids, since such resistance can 
only arise when AP-l is activated at the inflammatory site, whereas the hormonal 
effects of corticosteroids at uninflamed sites will not be impaired. Furthermore, 
there may also be differences in the corticosteroid resistance of different target cells, 
depending upon the relative balance of transcription factors. 
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Secondary corticosteroid resistance 

Although complete corticosteroid resistance is uncommon, there may be a spectrum 
of corticosteroid responsiveness in asthma. This may reflect several mechanisms that 
are secondary either to disease activity itself or to the effects of therapy. 

Down-regulation of G R 
Down-regulation of GR in circulating lymphocytes after oral prednisolone has been 
demonstrated in normal individuals [241]. Whether high local concentrations of 
inhaled glucocorticoids reduce GR expression in surface cells of the airway, such as 
epithelial cells, is not yet certain. It is possible that certain individuals may be more 
~usceptible to the effects of down-regulation. If effective GR density is reduced by 
direct interaction with other transcription factors, such as AP-1 and NF-lCB, then the 
down-regulating effect of glucocorticoids on GR would be expected to have a 
greater functional consequence. 

Effects of cytokines 
Several proinflammatory cytokines, including IL-1~, IL-6 and TNFa, activate AP-1 
and NF-lCB in human lung [13, 242]. As all these cytokines are known to be secret
ed in asthmatic inflammation, this suggests that these transcription factors will be 
activated in the cells of asthmatic airways. These activated transcription factors may 
then form protein-protein complexes with activated GR, both in the cytoplasm and 
within the nucleus, thus reducing the number of effective GR and thereby decreas
ing corticosteroid responsiveness [4] (Fig. 9). In a model in vitro system increased 
expression of c-Fos or c-Jun oncoproteins prevents the activation of mouse mam
mary tumour virus promoter by GR, thus creating a model of corticosteroid resis
tance [12]. Addition of recombinant c-Jun or c-Fos proteins to partially purified GR 
results in inhibition of DNA binding [12]. Phorbol esters, which activate AP-1, 
result in attenuation of glucocorticoid-mediated gene activation [243]. Any reduc
tion in glucocorticoid responsiveness would be greater as the intensity of asthmatic 
inflammation increased and may contribute, for example, to the failure of oral or 
intravenous glucocorticoids to control acute exacerbations of asthma. Once the 
inflammation is brought under control with large doses of oral glucocorticoids, cor
ticosteroid responsiveness increases again so that lower doses of inhaled or oral glu
cocorticoids are needed to control asthmatic inflammation. Increased resistance 
may also be due to the effects of cytokines on GR receptor function, since high con
centrations of IL-2 and IL-4 have been shown to reduce GR affinity in T lympho
cytes in vitro [236]. This effect would only be seen in mucosal T cells of patients 
with severe asthma and it is therefore difficulty to obtain evidence to support this 
possibility. 
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Secondary corticosteroid resistance may arise in the presence of cytokine-mediated inflam

mation through an interaction between the cytokine-activated transcription factors, such as 
activator protein-1 (AP-1) and nuclear factor-1d3 (NF-1d3), and the glucocorticoid receptor 

(GR), resulting in a reduced availability of GR for control of the inflammatory response. This 

can only be overcome by increasing the dose of glucocorticoid administered. 

Effect of fJragonists 
High concentrations of Bragonists activate CREB in rat and human lung and in 
inflammatory cells via an increase in cyclic AMP concentration [244, 245]. This 
results in reduced GRE binding due to the formation of GR-CREB complexes [246] . 
This predicts that high concentrations of B2-agonists would induce corticosteroid 
resistance. In asthmatic patients, while 3 weeks of treatment with an inhaled corti
costeroid blocked the airway response to inhaled allergen, concomitant treatment 
with inhaled-corticosteroid and a relatively large dose of inhaled B-agonist appeared 
to provide no significant protection against allergen challenge [247]. This suggests 
that high doses of an inhaled B2-agonists might interfere with the anti-asthma effect 
of inhaled glucocorticoids. It is possible that some patients who use very high doses 
of inhaled B2-agonists (over two canisters per month of metered dose inhalers or 
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regular nebulised doses), may develop a degree of corticosteroid resistance that is 
overcome by increasing the dose of inhaled or oral glucocorticoid. Corticosteroid 
responsiveness might be restored by reducing the dose of inhaled ~ragonists. In an 
uncontrolled study in corticosteroid-dependent patients with severe asthma, gradual 
withdrawal of nebulised ~ragonists resulted in a reduced requirement for oral pred
nisolone [248]. 
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Introduction 

Airway obstruction and hyperreactivity in asthma are mainly caused byaccumula
tion of inflammatory cells and their mediators promoting bronchoconstriction, air
way oedema and airway remodeling. Cyclic AMP counteracts a huge variety of 
inflammatory cell functions involved in the development and maintenance of asth
ma. In addition, cyclic AMP has been shown to reverse bronchial constriction, air
way oedema and smooth muscle proliferation and may therefore protect against air
way remodeling in asthma. cAMP is generated from ATP by adenylate cyclases that 
are activated by G-protein coupled receptors such as the f3rreceptor. In fact, atten
uating cAMP generation may aggravate clinical asthma as reported with f3rantago
nists. On the other hand, there is overwhelming evidence that f3ragonists improve 
asthma. However, long-term administration of f32-agonists may be hampered by the 
phenomenon of tachyphylaxis, e.g. receptor desensitization and post-receptor 
events. In particular, it was repeatedly demonstrated that continuous use of inhaled 
f32-agonists is associated with an impairment of their acute protective effects against 
bronchoconstrictive stimuli [1-4]. Continuous inhalation of f32-agonists impaired 
their bronchoprotective effect against AMP-induced hyperreactivity to a greater 
extent compared to hyperreactivity triggered by methacholine. These results may 
imply that f32-agonists tend to desensitize mast cell responses more strongly than 
direct smooth muscle responses [4]. Apart from enhanced cAMP generation anoth
er option to increase cAMP is to inhibit its decay. Cyclic nucleotide hydrolysing 
phosphodiesterases (PDE) represent a superfamily of enzymes which break down 
cAMP and cGMP. Thus PDE inhibitors should increase cAMP in bronchial smooth 
muscle and inflammatory cells and have anti-asthmatic effects. 

Seven PDE families have been characterized mainly based on substrate, activator 
or inhibitor sensitivities (Tab. 1) (families 8 and 9 have been identified recently). 
Several of these PDE families comprise subtypes encoded by different genes. As an 
example, four subtypes (PDE4A-D) have been identified for PDE4. mRNA-tran
scription of subtypes involves alternative splicing resulting in the expression of PDE 
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Table 1 - Classification of PDf isoenzyme families. Seven PDf families based on substrate 

preference and sensitivities to adivators or inhibitors have been charaderised. 

POE family Preferred substrate Activator Inhibitor 

PDE1 cAMP, cGMP Ca2+ -Calmodulin 
PDE2 cAMP cGMP EHNA 
PDE3 cAMP cGMP, Milrinone 
PDE4 cAMP Rolipram 
PDE5 cGMP Sildenafil 
PDE6 cGMP 
PDE7 cAMP 

species with distinct N-terminal ends. This is exemplified by the five N-terminal 
splice variants so far described for POE40. As will be discussed below, N-terminal 
splicing may serve to direct intracellular localisation of the enzyme, post-transla
tional modification or formation of distinct conformers. Phosphodiesterases share 
homologies in their amino acid sequence. A catalytic domain (- 270 amino acids) is 
flanked by a hydrophilic C-terminus and an N-terminus that comprises regulatory 
sites. The catalytic core has a higher degree of homology within phosphodiesteras
es of one family (- 80%) than with other families (- 25%-40%). The catalytic core 
contains the POE-specific sequence HO(X}zH(X4)N and two Zn2+-binding domains. 
The N-terminal domain contains the calmodulin-binding site (POEt), the cGMP
binding site (POE2 or 5), hydrophobic membrane association domains (POE3) or 
membrane-targeting domains (POE4) or other functionally relevant regions. 

In humans, there is cell-specific expression of POE families, subtypes or splice 
variants. Peripheral blood eosinophils, neutrophils, and monocytes contain almost 
exclusively POE4. T lymphocytes, lung mast cells, and bronchial and vascular 
smooth muscle cells express POE4 and 3. Human alveolar macrophages additional
ly exhibit POEt whereas human endothelial cells express POE2, 3 and 4. Finally, 
POEt and 4 were detected in human bronchial epithelial cells. Regarding subtypes, 
POE3A has been located in platelets, vascular smooth muscle and myocardium, 
whereas POE3B was found in adipocytes, liver, pancreatic p-cells, the neuronal sys
tem and T lymphocytes. POE4C was not found in peripheral blood cells, but it was 
abundant in the CNS. Studies examining whether expression of phosphodiesterase 
variants is up- or down-regulated in disease states such as asthma are at an early 
stage. Earlier studies implied that there may be an up-regulation of POE in periph
eral blood cells of patients with atopic dermatitis [5, 6], but others could not con
firm these findings [7]. Results from studies investigating the pattern of POE vari
ants in eosinophils, T lymphocytes or neutrophils infiltrating the bronchial mucosa 
in asthmatics are eagerly awaited. 
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Recently, the interesting observation was made that distinct subtypes of PDE1 
were increasingly expressed in maturing or proliferating cells. Firstly, it was shown 
that monocytes cultured with human AB serum for several days assume the pheno
type of macrophages and this was associated with an enhanced expression of PDE1 
that was absent in monocytes but detected in human alveolar macrophages [8, 9]. 
Secondly, PDE1B1 was expressed in proliferating T lymphocytes following incuba
tion with PHA, but was absent in resting T cells. In fact, PDE1B1 antisense pro
motes apoptosis of lymphocytic cells, implying a functional role of PDE1B1 up-reg
ulation in these cells [10]. Thirdly, proliferating human vascular smooth muscle cells 
express PDE1C but this was undetectable in quiescent cells [11]. From these latter 
findings the hypothesis may be raised that PDE1C up-regulation facilitates smooth 
muscle remodeling in vascular (pulmonary hypertension, atherosclerosis) disease 
and asthma and that PDE1C antisense or selective PDE1C inhibitors might reverse 
vascular or bronchial smooth muscle remodeling. 

From the pattern of PDE isoenzymes decribed above it was concluded that par
ticularly PDE4 inhibitors or dual-selective PDE3 and 4 inhibitors might provide 
benefit as efficient anti-asthma drugs since these families are found in almost all 
inflammatory cells. The development of new PDE4 or PDE3 and 4 inhibitors for 
asthma is greatly driven by the encouraging clinical experience with theophylline -
a non-selective PDE inhibitor. In fact, although theophylline has been considered for 
decades as a pure bronchodilator, recent intensive research revealed and unequivo
cally confirmed that theophylline triggers a multitude of anti-inflammatory effects 
that certainly contribute to its effects in clinical asthma. In vitro, theophylline 
inhibits lipopolysaccharide (LPS)-induced TNFa formation in human monocytes 
and alveolar macrophages; human T lymphocyte proliferation, chemotaxis and 
cytokine generation; production of reactive oxygen species (ROS), degranulation, 
LTC4 synthesis, and chemotaxis in human eosinophils; anti-IgE induced histamine 
release from human lung mast cells; degranulation and ROS formation in human 
neutrophils. Moreover, theophylline promotes human eosinophil apoptosis. Theo
phylline inhibited inflammatory cell accumulation in diverse allergen challenge 
models and attenuated airway oedema formation in experimental animals. Con
trolled clinical trials revealed that theophylline acts to reduce T lymphocyte infil
trates, to reduce IL-4 and IL-5 expression and to attenuate the number of activated 
eosinophils in bronchial biopsies obtained froin asthmatics. There is certainty from 
a diversity of clinical trials that theophylline inhibits late and early responses to 
allergen challenge, again adding strong evidence to its anti-inflammatory profile 
[12-22]. Finally, two recent trials have shown that theophylline has steroid-sparing 
effects. Adding theophylline to budesonide 800 Ilg/day or beclomethasone 
400 Ilg/day was at least equivalent and in some clinical parameters even significant
ly superior to a doubled steroid dose (i.e. budesonide 1600 Ilg/day or beclometha
sone 800 Ilg/day) [23, 24]. In other trials it was shown that benefit from theo
phylline is still gained in those patients who do not further improve despite increas-
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ing steroid dose. It may be hypothesized that theophylline synergises with steroids 
also by inhibiting some of the inflammatory responses resistant to steroids. 

New phosphodiesterase inhibitors for asthma are required in particular to 
improve the benefit-risk ratio. Originally, attention was paid to the hypothesis that 
family-selective POE inhibitors i.e. POE4 and POE4 and 3 inhibitors might provide 
a solution. However, both disappointing clinical results with first generation selec
tive inhibitors as well as considerable recent progress in POE research fueled a 
slightly different concept, and the current paradigm has changed. Through post
translational regulation, association to other proteins or membranes POEs are pre
sent in diverse functional states (conformations) and the second generation inhibitor 
should inhibit the state associated with inflammatory cells and processes but not the 
state assumed in non-inflammatory tissues (e.g. CNS, myocardium, vasculature). 

This review will focus on POE4 and POE3 and recent progress with the devel
opment of selective (POE4) or dual-selective (POE3 and 4) inhibitors for asthma. 
Chemical structures of POE4 inhibitors and dual-selective POE3 and 4 inhibitors are 
illustrated in Figure 1 (see pages 1101111). Other POE families which have so far 
not been in the focus of drug discovery for asthma have recently been extensively 
reviewed by others. 

Phosphodiesterase 4 family 

POE4 is a specific cyclic AMP hydrolysing phosphodiesterase activity that is potent
ly inhibited by rolipram but not affected by cGMP. In early chromatographical inves
tigations of heart and smooth muscle extracts, this phosphodiesterase activity eluted 
as the fourth activity from anion exchange columns [25]. Subsequent investigations 
revealed the ubiquitous presence of POE4. In human peripheral blood eosinophils, 
monocytes, neutrophils, B cells but also neuronal cells, POE4 represents the pre
dominant isoenzyme. In other systems such as human alveolar macrophages, T cells, 
dendritic cells, endothelial cells, smooth muscle cells and bronchial epithelial cells, 
POE4 was coexpressed with other POE isoenzymes, in particular POE3. This abun
dance of POE4 in cells that orchestrate inflammation in bronchial asthma or rheuma
toid arthritis was paralleled by evidence that POE4 inhibitors such as rolipram 
potently suppressed a multitude of inflammatory cell functions e.g. ROS generation, 
cytokine synthesis, cysteinylleukotriene-production, chemotaxis, and T lymphocyte 
proliferation. Hence, POE4 or POE3/4 inhibitors are thought to be capable of resolv
ing inflammation in bronchial asthma or other inflammatory diseases. 

However, the presence of POE4 in neuronal cells implies that inhibitors of this 
isoenzyme family may induce CNS effects. In fact, the original intention with the 
classical POE4 inhibitor rolipram was to develop an antidepressant drug. Moreover, 
clinical development of first generation POE4 inhibitors failed due to CNS-induced 
adverse effects such as nausea or vomiting that occurred at therapeutic plasma con-
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centrations. Therefore, it was necessary to elaborate strategies that allow to the dis
sociation of the anti-inflammatory actions of PDE4 inhibitors from their CNS-dri
ven adverse effects based on the specific interaction of these second generation 
PDE4 inhibitors with PDE4 molecules. An intensive research campaign over the past 
decade revealed that PDE4 is encoded by four distinct genes (HSPDE4A-D). Tran
scription of mRNA from these genes is associated with alternate splicing of 5'-situ
ated exons and finally PDE4 protein is expressed as a certain N-terminal splice vari
ant of one of the four subtypes PDE4A-D. For human PDE4, thirteen splice vari
ants have been characterised. Certainly, cellular systems may exhibit a different 
expression of these splice variants and it was reasoned that splice-variant selective 
PDE4 inhibitors may improve the ratio between anti-inflammatory potential and 
adverse effects. 

The important breakthrough in PDE4 research is however, the discovery that 
PDE4 proteins may exist in two different conformational states. These conforma
tions can be distiguished by their different affinity for the classical PDE4 inhibitor 
rolipram [26]. This discovery was the result of fundamental investigations to 
explain the early enigmatic finding that rolipram inhibits PDE4 catalytic activity 
with Ki ", 1 I-lM, whereas rolipram binding affinity to PDE4 is in the range of 
Ki ", 1 nM. Recent pharmacological studies suggest that the protein conformation 
with low affinity for rolipram (LAR-conformation) may predominate in inflamma
tory cells. On the other hand, in neuronal cells the PDE conformation with a high 
affinity for rolipram (HAR-conformation) may predominate. Indeed, there is an 
excellent correlation between interaction of PDE4 inhibitors with the LAR confir
mation and inhibition of TNFa-generation from human monocytes [27, 28], IL-2 
from murine splenocytes [29], superoxide from guinea pig eosinophils [30], degran
ulation of guinea pig mast cells [31], human T lymphocyte proliferation induced by 
antigen [32] and antigen-induced bronchoconstriction [33, 34]. In contrast, the cor
relation between association with HAR conformation and these functional respons
es is substantially weaker. On the other hand, interaction of PDE4 inhibitors with 
the HAR conformation strongly correlates with emesis [35, 36] and acid secretion 
from rabbit isolated gastric glands [37] (Tab. 2). In comparison, the correlation 
between association of PDE4 inhibitors with the LAR conformation and these func
tional responses is dramatically reduced. In conclusion, second generation PDE4 
inhibitors designed to exhibit a more potent interaction with the LAR-conformer 
than with the HAR-conformer of the PDE4 molecule are suggested to dissociate 
therapeutic efficacy from adverse effects resulting in an improved ratio between 
anti-inflammatory potential and emesis threshold. Taking into account these 
encouraging conclusions it should not escape our attention that the PDE4-inhibitor 
induced suppression of certain inflammatory functions such as neutrophil degranu
lation [28] but also PDE4-inhibitor induced relaxation of methacholine-precon
tracted guinea pig trachea [38] may more closely correlate with HAR-conformer 
association than with LAR-conformer interaction. 
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Table 2 - Correlation of inhibition of HAR or LAR conformation with fundional effects. 
ICso values obtained for either inhibition of PDE4 catalysis (refleding inhibition of the LAR 
conformer) or [3HJrolipram binding to PDE4 (refleding inhibition of the HAR conformer) 
were correlated to corresponding data for the inhibition or adivation of fundional respons
es. Higher degree of correlation between HAR or LAR and the fundional response is depid
ed. Notably for some fundional effects their correlation to one of the conformers depends 
on the stimulus. For example, redudion of human T-Iymphocyte proliferation induced by 
antigen correlates to LAR-inhibition whereas suppression of PHA-stimulated proliferation 
appears to be more closely associated with HAR-inhibition. 

Cell/Tissue 

Human monocytes 

Mice splenocytes 

Human T lymphocytes 

Guinea pig mast cells 

Guinea pig eosinophils 

Guinea pig antigen-induced 

bronchoconstriction 

Behavior, eNS 

Human T lymphocytes 

Rabbit gastric glands 

Human neutrophil 

Guinea pig peritoneal 

macrophages 

Guinea pig histamine/metacholine

induced tracheal constriction 

Correlation with 
HAR LAR 

Emesis 

PHA-induced 

proliferation 

Acid secretion 

Degranulation 

cAMP-accumulation 

Relaxation 

LPS-induced 

TNFa release 

Staph. auf. -induced 

IL2 release 

Antigen-induced 

prol iferation 

PGD2-release 

ROS generation 

Relaxation 

Reference 

[27,28] 

[29] 

[32] 

[31] 

[30] 

[33,34] 

[35,36] 

[98] 

[37] 

[28] 

[45] 

[38] 

In view of the pivotal role of the LAR and HAR conformers for the design of 
PDE4 inhibitors an intriguing aspect is to investigate for each of the PDE4 splice 
variants the LARIHAR ratio or the interconvertibility of these conformers. In fact, 
currently available data indicate that the percentage of LAR conformer for human 
recombinant PDE4A5, PDE4B2 and PDE4D3 is 58% [39],66% [40] and 47% [41], 
respectively. However, the extent to which a PDE4 variant assumes LAR or HAR 
conformation depends on the experimental conditions and may be different in intact 
cells. 
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Protein kinase A-triggered phosphorylation of PDE4D3 [42, 43] or membrane 
association of PDE4A5 [44, 45] may assist to augment the proportion of the corre
sponding HAR conformer. In addition, the hypothesis was raised that in vitro treat
ment of cellular extracts containing PDE4 with orthovanadate in combination with 
glutathione may result in an augmented amount of the HAR conformer reflected by 
an increased affinity of PDE4 to rolipram [45-47]. Orthovanadate in combination 
with glutathione also enhanced PDE4 activity in eosinophil membranes [47, 48]. In 
view of the fact that orthovanadate serves as a phosphotyrosine-phosphatase 
inhibitor it may be reasoned that orthovanadate acts by maintaining a tyrosine 
kinase-induced activated conformer of PDE4. Recent investigations give rise to the 
view that tyrosine kinases may stimulate PDE4 activity. The tyrosine kinase inhibitor 
genistein suppressed R020-1724-sensitive PD E4 activity in a neuronal cell line by 
85%[49]. Genistein was shown to amplify GHRH-stimulated cAMP increase in rat 
anterior pituitary cells or rat pinealocytes. These effects were reversed by orthovana
date, occurred independently of the cAMP stimulus used and were not observed in 
the presence of phosphodiesterase inhibitors [50, 51]. Interestingly, strong suppres
sion of PAF-induced human eosinophil LTC4 and superoxide generation by tyrosine 
kinase inhibitors was demonstrated [52] which may also be explained by the pro
posed tyrosine kinase-PDE4 crosstalk. These data are corroborated by evidence that 
src tyrosine kinase activates PDE4 in rat thecal interstitial and mouse Leydig cells 
[53]. The tight association of SH3-binding domains located in the N-terminal end of 
PDE4A with SH3-domains in src-tyrosyl kinases [54], suggesting an in situ co-local
ization of certain PDE4 splice variants with tyrosine kinases, further supports the sig
nificance of this putative crosstalk between two major signalling cascades. In sum
mary, based on available data the hypothesis arises that tyrosine kinases may activate 
PDE4 variants and augment the proportion of HAR conformers. In this respect, tyro
sine kinases and protein kinase A comparably activate PDE4 by enhancing their 
phosphorylated form and the HAR fraction. Orthovanadate, by suppressing phos
photyrosine phosphatase imitates tyrosine kinase-mediated PDE4 modification. 

The concept of optimising PDE4 inhibitors by screening for structures showing 
a high ratio of affinity for the LAR conformer compared to the HAR conformer has 
now been incorporated in the drug discovery strategies of leading pharmaceutical 
companies [34,41,55,56]. A very promising candidate is SB207499 (Fig. 1) which 
associates 33-fold more potently with the LAR conformer versus the HAR con
former of PDE4A5, when compared to rolipram [41]. This compound is currently 
undergoing clinical investigations as an oral antiasthmatic. 

Gene and protein structure of PDE4 variants 

Four PDE4 genes (PDE4A, B, C and D) have been distinguished. PDE4A and 
PDE4C genes are located on chromosome 19, whereas PDE4B and PDE4D genes 
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are on chromosome 1 and chromosome 5, respectively. These genes are composed 
of a multitude of exons and introns. Hence, transcription from each of the four 
genes may result in several mRNA-products emerging from alternative splicing of 
exons situated near the S'-end of the DNA open reading frame (ORF). cDNAs 
encoding different splice variants from rat and human PDE4 genes have been gen
erated based on screening of cDNA libraries with oligonucleotides conservative for 
a specific PDE4 gene. cDNA was then transfected in cellular systems and corre
sponding PDE4 proteins were expressed. The amino acid sequences of expressed 
PDE4 protein variants have been analyzed. In addition, subcellular localisation and 
catalytic activity of PDE4 splice variants was characterized. 

In general, PDE4 protein structures comprise three domains of amino acid 
sequences which are highly conserved within this enzyme family. A catalytic domain 
is flanked at its N-terminal end by two upstream conserved regions (UCRl and 
UCR2) formed of about 60-100 amino acids. In human and rat PDE4 genes, two 
splice junctions have been identified. Alternative splicing at the junction next to the 
5' end of the ORF results in protein structures that express both the UCRl and 
UCR2 encoding regions (long form splice variants). On the other hand, PDE4 vari
ants expressing the UCR2 but not the UCRl region (short form splice variants) are 
elaborated by alternate splicing at the splice junction next to the 5' end of the region 
encoding the catalytic domain. The amino acid sequence at the N-terminal end may 
(i) serve to confer association to membranes and cytoskeletal proteins and hence, 
subcellular compartmentation, (ii) represent a site for phosphorylation, (iii) function 
as an endogenous inhibitor of catalytic activity, (iv) support interaction with other 
enzymes, and (v) affect sensitivity to exogenous PDE4 inhibitors. Hence, the diver
sity of PDE4 variants and their unique expression pattern in different cellular sys
tems assists in cell-specific regulation of intracellular signalling and modulates the 
crosstalk of major signalling pathways. 

Table 3 details the classification of currently characterized human PDE4 variants 
and their rat homologues. 

Phosphodiesterase 4A variants 

In humans, a single PDE4A variant (PDE4AS) has been detected so far [44,57-60]. 
The PDE4AS protein consists of 886 amino acids and covers both N-terminal UCRl 
and UCR2 conserved regions and the catalytic domain (long-form). cDNA for 
PDE4AS was isolated from a human monocyte cDNA library [57]. PCR amplifica
tion with PDE4AS-specific oligonucleotide primers and Western blotting using anti
bodies specific for PDE4AS located PDE4AS mRNA-transcripts and protein in 
diverse systems e.g. human monocytes, T cells, B-cells, eosinophils and human brain 
[7,61]. Recently, Zn++-binding domains have been identified in the PDE4AS protein 
structure and a strong association of PDE4AS with Zn++ was described 
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Table 3 - Charaderistics of PDE4 subtypes and splice variants. 
Four different PDE4 genes are distinguished. Alternative splicing from at least two splice 

;undions results in short forms and long forms of PDE4. 

Human PDE4 

4A5 (PDE46) 

4B1 
4B2 

4B3 
4C-791 

4C-426 

4C-D54 

4C-D109 

4D1 

4D2 

4D3 

4D4 

4D5 

Rat homologue 

4A1 (RD1) 

4A5 (RNPDE6) 

4A8 (RNPDE39) 

RPDE4B1 
RPDE4B2 

4B3 (pRPDE74) 

RPDE4D1 

RPDE4D2 

RPDE4D3 

Structure 

short-form 

long-form 

short-form 

long-form 
short-form 

long-form 

long-form 

short-form 

short-form 

long-form 

long-form 
long-form 

Comments 

membrane-bound 

cAMP ~ mRNA t, protein t 
exclusively in rat testis 

cAMP ~ mRNA t, protein t 

fetal human lung 

fetal human lung 

human testis 

human testis, inactive 
cAMP ~ mRNA t, protein t 
cAMP ~ mRNA t, protein t 
cAMP ~ phosphorylation 

(Kd = 0.4 IlM). In fact, Zn++ enhanced PDE4A actlVlty, reduced the ability of 
inhibitors to suppress PDE4A activity by a factor of 10 and attenuated the associa
tion of rolipram with the enzyme by a factor of 30 [62]. 

Human recombinant PDE4A5 was engineered in COS-7 cells and PDE4 activity 
was detected in both cytosolic (88%) and particulate (12%) fractions [44]. More
over, immunofluorescence studies were suggestive of an association with membrane 
structures such as cytoskeletal or cytoskeletal-associated proteins. From these stud
ies it was speculated that the amount of PDE 4A5 associated to membrane or 
cytoskeletal structures in situ was higher than estimated by simple activity mea
surements in cytosolic and particulate fractio'ns of celllysates. In fact, studies with 
the rat homologue RNPDE6 (rat PDE4A5) of human PDE4A5 revealed that certain 
regions of the N-terminal end constitute SH3-binding domains [54]. These SH3-
binding domains confer tight association with SH3-domains. Proteins with SH3-
domains are tyrosyl kinases of the Src family but also structural proteins such as 
fodrin [63, 64]. It has been shown that complete src-kinases and isolated SH3-
domains excised from these src-kinases bind to RNPDE6. The src-kinases lyn and 
fyn exhibit the strongest association to RNPDE6 reflected by a seven-fold higher 
binding affinity compared to v-src. Binding of these tyrosyl kinases does not affect 
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PDE activity. In contrast, src-kinases csk and crk inhibited PDE4 activity although 
their binding affinity was reduced compared to v-src [54]. 

Whether association with RNPDE6 modulates functions of src tyrosyl kinases 
has not yet been comprehensively explored. However, it merits attention that PDE 
association to src kinases directs capacity for cAMP hydrolysis to the immediate 
vicinity of these tyrosyl kinases. As an example, the tyrosyl kinase csk is phospho
rylated and subsequently inactivated by cAMP-activated protein kinase [65]. Csk 
phosphorylates and inhibits other tyrosine kinases e.g. v-src resulting in suppression 
of expression of inflammation proteins such as TNFa, IL-l or iNOS [66]. In this 
case, PDE association to csk may prevent cAMP-induced inactivation of this protein 
kinase and ultimately support the function of csk to counteract inflammatory 
processes. Apart from this indirect crosstalk mediated by catalytic PDE activity, it is 
unknown at present whether RPDE6 through protein-protein interaction directly 
modifies src kinases. Certainly, an additional function of enzymes distinct from their 
well-characterized catalytic activity is not uncommon which is illustrated by the 
immunophilins. In particular, the FK506-binding protein exhibits catalytic activity 
as peptidyl-prolyl cis-trans isomerase and associates to calcineurin phosphatase 
resulting in inhibition of the phosphatase activity [67, 68]. Moreover, the interac
tion of the synaptic vesicle phosphoprotein synapsine I with src SH3-domains atten
uates tyrosine phosphorylating capacity [69]. These findings show that direct inter
action of proteins with SH3 domains of src may modify tyrosine kinase activity. In 
view of cAMP-dependent up-regulation of PDE4A mRNA transcripts and protein 
[70] and considering an orchestrating role of src-kinases in cellular functions as 
diverse as T lymphocyte proliferation [71], monocyte TNFa generation [72], apop
tosis [73, 74], and eosinophil degranulation [75] it would be attractive to hypothe
sise that PDE4A protein may regulate src tyrosyl kinase activity independently from 
cAMP breakdown. 

PDE4A5 engineered in COS-7 cells that is bound to the particulate fraction of 
cell lysates exhibits only about half the maximum enzyme activity determined for 
PDE4A5 found in the cytosolic fraction. Moreover, the potency of rolipram in 
inhibiting particulate PDE4A5 activity (Ki = 37 nM) was about 43-fold higher than 
its potency in suppressing cytosolic enzyme activity (Ki= 1.6 IlM). Whereas inhibi
tion by rolipram of cytosolic PDE4 activity was purely competitive, inhibition data 
obtained with the particulate enzyme were best fitted by a partial competitive model 
[44]. Although the authors did not measure rolipram binding, they formulated the 
hypothesis that the cytosolic and particulate enzyme fractions have a different pro
portion of PDE4A5 conformers. Expression of PDE4A5 deletion mutants in COS 
cells rev~aled that UCRl and UCR2 was required for high affinity rolipram binding 
whereas inhibition of catalytic activity was still found in an enzyme truncated to the 
catalytic core. Rolipram inhibition of the full-length PDE4A5 followed a shallow 
log dose-inhibition curve (N = 0.69) and was about five-fold more potent compared 
to suppression of the truncated core enzyme that followed competitive kinetics with 
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a Hill coefficient close to unity [60]. These results are consistent with the hypothe
sis that full-length recombinant PDE4A5 coexists in two distinct conformers e.g. 
HAR and LAR. In contrast the core enzyme may only adopt the LAR conformation. 
The amino acid sequence located N-terminal to the catalytic domain is required for 
constitution of the HAR conformer. 

Analysis of rolipram and RP73401 binding to PDE4A5 deletion mutants further 
extended these results [59]. RP73401 represents a benzamide originally designed as 
an anti-asthmatic drug [76]. In contrast to rolipram, this compound associated to 
the PDE4-high affinity rolipram binding site at concentrations comparable to those 
required for inhibition of catalysis (ICso '" 0.6 nM) [59, 77]. In consequence the 
hypothesis was raised that RP73401 exhibits similar capacity to label LAR and 
HAR [46]. This hypothesis is supported by the finding that deletion of 331 amino 
acids at the N-terminal end of PDE4A5 retains high affinity binding of RP73401 
whereas rolipram high affinity binding is lost [59]. In parallel, RP73401-induced 
inhibition of catalysis is not affected by N-terminal deletion of 331 amino acids 
whereas such a truncation impairs rolipram inhibition of cAMP-hydrolysis by a fac
tor of -6 [59]. In addition, these authors detected high (Kd '" 1 nM) and low affini
ty (Kd'" 100 nM) rolipram binding to the full length human recombinant PDE4A5 
(Metl-886) [78] as well as to a fully active truncated form of PDE4A5 (Met265-
886) using an equilibrium filter binding technique. Inhibition of cAMP hydrolysis 
by rolipram was found to be in a range comparable to low-affinity rolipram bind
ing. This indicates that standard measurement of inhibition of PDE4-induced cAMP 
hydrolysis by rolipram may predominantly reflect catalytic inhibition of the LAR 
conformer. A strong argument for the concept of two PDE4A5 conformers with dif
ferent affinities for rolipram but similar affinities for RP73401 is provided by the 
finding that the Bmax value for [3H]RP73401 binding is two to three-fold higher 
than that for [3H]rolipram binding [39]. These data based on standard filtration 
technique are consistent with the view that RP73401 labels HAR and LAR where
as with rolipram only binding to HAR is detectable under these experimental con
ditions. Taken together, there is considerable evidence that for human PDE4A5 two 
conformers can be distinguished. Rolipram discriminates between these conformers 
whereas RP73401 binds and inhibits catalytic activity of both conformers with iden
tical affinity. Rolipram and RP73401 bind to the catalytic site of the conformers 
since cAMP is a competitive inhibitor of association of these compounds with 
PDE4A5 [59]. 

However, the structural requirements within the central conserved region for 
inhibitor association compared to cAMP binding to PDE4A5 are different. PDE4A5 
point mutants where either His505 or His506 were replaced by Asn using site 
directed mutagenesis displayed an increase in cAMP-KM• In parallel, the ICso for 
cAMP competition of [3H]rolipram and PH]RP73401 binding reflected a decrease 
in cAMP affinity for the enzyme. On the other hand, binding and inhibition curves 
for rolipram and RP73401 were not affected [39]. 
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From the PDE4 variants expressed in rat tissue the short form RNPDE4A1 
(RD1) is of interest since a 24 amino acid residue confers complete membrane asso
ciation in its native state in rat cerebellum [79] and when engineered in COS cells 
[80,81] or a human carcinoma thyroid cell line [82]. Deletion of the 24 amino acid 
residue flanking the N-terminal end of the core region results in an enzyme which is 
completely located in the cytosol [80]. On the other hand, a chimeric construct of 
the N-terminal domain of RD1 with chloramphenicol-acetyltransferase, which is 
cytosolic in its native state, was exclusively expressed in a membrane associated 
form [83]. In addition, deletion of the N-terminal end results in a substantial 
increase in V MAX suggesting that this unique 24 amino acid chain acts as an endoge
nous inhibitor of PDE4 activity [79, 80]. Notably, neither KM nor rolipram inhibi
tion was affected by deletion of the N-terminal 24 amino acids [80]. Immunofluo
rescent studies revealed that RD1 primarily associated to the Golgi apparatus [79, 
82]. Interestingly, RD1 engineered in human thyroid carcinoma FTC cell lines was 
accompanied by a down-regulation of endogenous PDE1C mRNA transcript and 
enzyme activity [82]. It remains an open question whether transcription of PDE1C 
mRNA is regulated by cAMP. 

Phosphodiesterase 4B variants 

Three PDE4B variants can be distinguished in humans. PDE4B1 and PDE4B3 are 
long forms, whereas PDE4B2 represents a short form [58, 84-86]. The rat homo
logue of PDE4B2 was completely associated to membranes, whereas rat PDE4B1 
was cytosolic [87]. In contrast, each of the human PDE4Bl-3 splice variants engi
neered in COS7 cells was expressed in both cytosolic and particulate fractions [86]. 
However, PDE4B1 and B2 but not PDE4B3 were released from the microsomal par
ticulate fraction following exposure to Triton X-100 suggesting a different mecha
nism of enzyme association to membrane fractions for PDE4B1 and 4B2 in com
parison to PDE4B3. This hypothesis is corroborated by the finding that VI\1AX val
ues determined for particulate PDE4B1 and PDE4B2 were substantially reduced 
compared to the cytosolic forms, whereas particulate PDE4B3 showed similar max
imum enzyme activity to the cytosolic enzyme [86]. Comprehensive kinetic analysis 
of cytosolic PDE4Bl-3 expressed in COS-7 cells revealed a higher VMAX of the short 
form PDE4B2 compared to the long forms PDE4B1 and PDE4B3 [86]. These data 
support the view that the N-terminal end and also membrane association may 
depress enzyme activity. In contrast to the long forms where rolipram-induced inhi
bition of PDE4 activity was roughly identical for the cytosolic and particulate spe
cies, the selective PDE4 inhibitor attenuated PDE4B2 more potently when express
ed in the cytosolic (ICso ",,20 nM) than in the particulate fraction (ICso ",,200 nM) 
[86]. Although the shallow log dose inhibition curves were suggestive of co-exis
tence of the HAR and LAR conformers for both membrane-associated and cytoso-

98 



Phosphodiesterases in asthma 

lic PDE4 forms, it may be hypothesized that the cytosolic PDE4B2 species is domi
nated by the HAR conformer whereas the LAR conformer represents the predomi
nant folding of PDE4B2 in its membrane-bound state. 

That PDE4B2 protein forms HAR and LAR conformations has recently been 
unequivocally demonstrated [40]. These authors separated high-affinity rolipram 
binding (Kd",,7 nM) paralleled by high-affinity enzyme inhibition (Ki ""5-10 nM) 
from low-affinity rolipram binding (Kd"" 210 nM) paralleled by low-affinity enzyme 
inhibition (Ki ",,200-400 nM). Rolipram bound with stoichiometries of 0.3 and 0.6 
molecules rolipram per molecule of PDE4B2 to the HAR conformer and LAR con
former, respectively. In contrast, an N-terminal and C-terminal deletion mutant of 
PDE4B2 encompassing amino acids 152-528 of the 564 amino acid sequence exclu
sively assumed the LAR conformation. Rolipram association to this deletion mutant 
fit tO,a low-affinity, single site (Kd"" 1 IlM). In parallel, rolipram-induced inhibition 
of PDE4B2 (152-528) activity gave a single low-affinity inhibition constant 
(Ki ",,400 nM). Stoichiometry oholipram binding to the PDE4B2 (152-528) dele
tion mutant was 0.9 molecules rolipram per PDE4B2 molecule. Stoichiometry of 
rolipram binding strongly supports the concept that full-length PDE4B2 protein 
assumes two conformations that are discriminated by their different affinity for 
rolipram whereas the PDE4B2 (152-528) deletion mutant exclusively exists in the 
LAR conformer. Similar to these data are findings with PDE4A5 discussed in the 
previous section, where deletion of the N-terminal end was associated with a loss of 
high affinity rolipram binding [59, 78]. Hence, domains in the N-terminal end of 
PDE4 variants appear indispensable to form the HAR conformer. 

The distinct characterisation of HAR and LAR conformers of highly purified 
human recombinant PDE4B2 in this study [40] is based on techniques for the mea
surement of enzyme activity and rolipram binding different from those used in pre
vious investigations. To assess cAMP hydrolysing capacity PDE4B2 preparations 
were preincubated with rolipram for 1 h before the activity assay was performed. 
Notably, this protocol imitates conditions in the rolipram binding experiments. This 
technique gave two distinct inhibition constants whereas PDE activity measurement 
immediately after addition of rolipram i.e. according to the standard common pro
tocol gave a single (low affinity) inhibition constant only. Isothermal titration 
calorimetry served to assess rolipram binding to PDE4B2. This technique described 
the binding of rolipram to PDE4B2 protein by evaluating measurements of the ener
gy generated through association of rolipram to the enzyme. Following this tech
nique two distinct binding constants were obtained whereas standard filter binding 
experiments exclusively detected high affinity rolipram binding. 

In conclesion, these experiments add further evidence that rolipram binding is 
associated with inhibition of catalytic activity. The apparent discrepancy between 
high affinity rolipram binding and low affinity rolipram inhibition of enzyme catal
ysis observed previously derives from the limitations of standard protocols for 
assessment of rolipram inhibition of PDE4 catalysis and rolipram binding to PDE4. 
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Point mutations within the catalytic core region of rat PDE4Bl resulted in phos
phodiesterase species that were resistant to rolipram inhibition. Moroever, these 
point mutations did not show high affinity rolipram binding. In contrast, the mod
ified enzymes demonstrated KM and VMAX values comparable to native rat PDE4Bl 
[88]. These findings reiterate the view that structural elements required for rolipram 
interaction with the phosphodiesterase 4 protein may be at least in part different 
from those required for cyclic AMP association [39]. 

Phosphodiesterase 4C variants 

cDNA encoding human PDE4C was first isolated from a substantia nigra cDNA 
library and transfection of PDE4C cDNA resulted in expression of corresponding 
PDE4 activity [89]. Northern blotting with PDE4C specific riboprobes and RT PCR 
with PDE4C specific oligonucleotide primers revealed that PDE4C is located in 
diverse human systems e.g. brain, liver, lung, heart. However, PDE4C was com
pletely absent in peripheral blood leukocytes e.g. neutrophils, eosinophils, T cells, 
B-lymphocytes [89, 90]. Recently, cDNA from two different human PDE4C splice 
variants encompassing 791 and 426 amino acids have been isolated from human 
fetal lung cDNA library. Screening of human testis cDNA library revealed the pres
ence of another splice variant. Proteins encoded by these three splice variants dis
played PDE activity sensitive to phosphodiesterase 4 inhibitors. A fourth splice vari
ant was identified in human testis mRNA. This variant lacked 55 amino acids in the 
catalytic domain and was inactive [91]. The significance of PDE4C splice variants 
remains to be investigated. 

Phosphodiesterase 4D variants 

There are at least five splice variants of PDE4D. The variants PDE4Dl and PDE4D2 
are short forms whereas PDE4D3-5 are long forms. PDE4D species were first detect
ed in rat [92-94] and have now also been found in human tissue [58, 95]. PDE4Dl-
3 transcripts and corresponding PDE4Dl and PDE4D2 proteins were identified in 
human mononuclear cells [96, 97]. Other sources of human PDE4D variants are 
monocytes [7, 27], CD4+- and CD8+-T cells [7, 98], TH2-T lymphocytes [99], 
Jurkat T cells (PDE4Dl and 2) [100], B lymphocytes and eosinophils [7]. cDNA 
encoding human PDE4Dl-5 has recently been isolated from HeLa cell cDNA 
libraries using riboprobes specific for PDE4D [101]. Transfection of cDNA in COS-
7 cells resulted in the expression of five enzymatically active PDE4D species. The 
PDE4D variants obtained differed based on their subcellular distribution and inhi
bition by rolipram. Whereas the short forms PDE4Dl and PDE4D2 were exclu
sively cytosolic, the additional N-terminal extension in the long forms PDE4D3-5 
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conferred partial association to the particulate fraction (30-60% of total PDE4 pro
tein). Rolipram inhibited all cytosolic PDE4D activities except PDE4D3 with com
parable high potency (ICso "" 50-80 nM) accompanied by a shallow concentration
inhibition curve (Hill coefficient n"" 0.5). In contrast, the log concentration inhibi
tion curve for rolipram-induced inhibition of PDE4D3 activity was substantially 
more steep reflected by a Hill coefficient close to unity. Moreover, rolipram less 
potently depressed PDE4D3 activity (ICso "" 140 nM) compared to the other PDE4D 
species. Notably, particulate PDE4D5 activity is less sensitive to rolipram by a fac
tor of -7 than its cytosolic homologue. This rightward shift of the log concentration 
inhibition curve is accompanied by an increased curve steepness. These results may 
indicate that in this study PDE4D3 and particulate PDE4D5 predominantly form 
the LAR conformations, whereas other species are present in both LAR and HAR 
conformers. Recent work raised the hypothesis that protein kinase A - induced 
phosphorylation of PDE4D3 directs transition of the LAR into the HAR conformer 
[43]. If phosphorylation is the pivotal event that converts LAR into HAR it is con
ceivable that PDE4D3 is completely dephosphorylated in the ATP-deprived state of 
cell-free extracts and therefore, the LAR conformer predominates. In consequence 
the conclusion may be drawn that for PDE4D3 the proportion of HAR / LAR con
formers is different in cell-free extracts compared to in situ conditions. 

Deletion of an N-terminal end encompassing 121 amino acids from PDE4D1 
resulted in a six-fold increase in VMAX' These findings complement data obtained 
with PDE4A species where an inhibitory N-terminal end has also been described 
[102]. 

In summary, four different genes encode PDE4. mRNA-transcription from these 
genes results in a diversity of N-terminal splice variants. N-terminal ends are versa
tile tools that direct PDE4-localisation or association with other proteins or regulate 
PDE4 activity. Ultimately the diversity of N-terminal ends serves to translocate and 
regulate PDE4 activity in defined intracellular compartments where the enzyme 
affords precise regulation of cAMP and consequently, protein kinase A activity. 

There is now ample evidence that PDE4A, 4B and 4D species are present in at 
least two different conformers. Rolipram binds and inhibits the PDE conformers 
with different potency. In contrast, RP73401 does not discriminate between the con
formers. Rolipram and RP73401 act at the (catalytic) cAMP-binding site. These 
claims are supported by experimental results. 

(i) In standard assays rolipram shows high affinity binding to PDE4 but low affin
ity catalytic PDE4 inhibition. In most systems, log-dose inhibition curves for 
rolipram are shallow. 

(ii) High affinity rolipram binding sites have been localized on highly purified, 
recombinant PDE4 [40, 84, 103] 

(iii) cAMP competitively inhibits [3H]rolipram and [3H]RP73401 binding to PDE4A 
[59, 103] 
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(iv) Rolipram binding to PDE4A reveals high and low affinity binding sites, whereas 
RP73401 binding kinetics would fit to a homogenous population of binding sites. 

(v) BMAX for high affinity rolipram binding to PDE4A is about half the BMAX for 
RP73401 binding. 

(iv) Convincing data suggest that PDE4B2 forms two conformers. One conformer 
shows high affinity rolipram binding sites and hence, is inhibited by low con
centrations of rolipram. The other conformer is characterized by low affinity 
rolipram binding sites and is inhibited by higher concentrations of rolipram. 

(v) Compared to other PDE4D variants rolipram exhibits less potency to suppress 
PDE4D3. On the other hand, log concentration inhibition curves for rolipram
inhibition of PDE4D3 are substantially steeper (Hill coefficient close to unity) 
compared to the other PDE4D species. This implies that under cell free condi
tions LAR represents the predominant conformation of PDE4D3. 

Regarding standard assays 'of rolipram binding and catalytic inhibition it appears 
that rolipram binding detects HAR whereas catalytic inhibition visualizes predomi
nantly the LAR conformation. However, both assays are conducted in cell free sys
tems and the ultimate relevance of rolipram binding and catalytic inhibition in situ 
remains largely unknown. 

Interaction of PDE4 inhibitors with LAR or HAR conformers correlates with 
different cellular responses. Whereas HAR correlates with behavioral effects, LAR 
may be more strongly associated with the gating of inflammatory responses. 

PDE4 regulation 

Expression and activity of the diverse PDE4 variants is selectively regulated by a 
sophisticated network of cellular messengers. cAMP has been found to enhance 
mRNA transcription of certain PDE4 splice variants. In addition, some PDE4 vari
ants may be subject to posttranslational modification such as protein kinase A 
dependent phosphorylation resulting in increased PDE4 activity. Phosphatidic acid 
has also been described to up-regulate enzyme activity of PDE4 species. PDE4 vari
ants interact with tyrosine kinases or other SH3-domain comprising proteins which 
may modulate their catalytic activity (see previous section for discussion). In this 
chapter, regulation by enhanced mRNA transcription, phosphorylation and phos
phatidic acid will be reviewed. 

cAMP-dependent transcriptional regulation of PDE4 subtypes 

Up-regulation of PDE4 activity by long-term incubation with cAMP-increasing 
agents was detected almost two decades ago (Tab. 4). Incubation of rat Sertoli cells 
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Table 4 - Cell-specific cAMP-induced transcriptional up-regulation of PDE4 variants. 
Enhanced mRNA transcription for PDE4 variants by cAMP appears to depend on the cell

type indicating a role of cell-specific co factors. In the case of PDE4D, the short forms 

PDE4D1 and PDE4D2 are transcriptionally up-regulated by cAMP. In contrast, the long-form 

PDE4D3 is resistant to this type of up-regulation. Instead, PDE4D3 activity is increased as a 
consequence of protein kinase A-dependent phosphorylation. 

Tissue POE isoenzyme Reference 

Rat brain 4A [124] 

Rat Sertoli cells 4D,48 [104], [113] 

Rat aortic smooth muscle cells 3/4 [107] 

U937 cells, human monocytes 4A, 4B [105], [61] 

Mono Mac 6 cells 4A, 48, 4D [70] 

Guinea pig macrophages 4 [108] 

HaCaT cells 4 [109] 

Myoblasts 4 110] 

Rat PC12 cells 4 [111 ] 

Jurkat cells 3, 4D1, 4D2 [100] 

Myocardium 1C,4B [123] 

with FSH, dibutyryl cAMP or 3-isobutyl-1-methylxanthine for several hours result
ed in an approximate 10-fold increase in PDE4 activity [104]. More recently it was 
found that 1 11M salbutamol in combination with 30 11M rolipram added to human 
monocytic U937 cells over 4 h induced an up to four-fold up-regulation of PDE4 
[105]. These data were extended by findings that dibutyryl cAMP over lS-24 h 
induced a two to three-fold increase in PDE4 activity from human peripheral blood 
monocytes and human monocytic MonoMac6 cells [70]. Long-term cAMP-depen
dent up-regulation of PDE4 was also shown in other systems (summarized in 
Tab. 4), e.g. rat aortic vascular smooth muscle cells [106, 107], guinea pig 
macrophages [lOS], human keratinocyte HACAT cells [109], myoblast cell lines 
[110] and rat phaeochromocytoma (PC12) cells [111]. Protein kinase A inhibitors 
reversed long-term PDE4 upregulation which suggests that this process is mediat
ed by protein kinase A [109]. This hypothesis is further corroborated by data show
ing that L6 myoblasts expressing an inhibitory mutant of the regulatory subunit of 
protein kinase A were not capable of causing cAMP-dependent PDE4 up-regulation 
[110]. Regarding the mechanism of long-term cAMP-induced PDE4 up-regulation, 
it was found that incubation with cycloheximide or actinomycin D inhibited this 
up-regulation [104, 105, 109]. These results indicated that mRNA transcription 
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and de novo protein synthesis were involved. In fact, following incubation of rat 
sertoli cells with FSH there was a time and concentration dependent increase in 
PDE4 mRNA [112] followed by augmented PDE4 protein and activity [113]. Later 
it was shown under identical experimental conditions that the amount of PDE4D 
mRNA transcripts increased, whereas the amount of PDE4B mRNA transcripts 
was less affected [113]. Identification of the amazing number of splice variants of 
PDE4A-D subtypes was paralleled by findings that some but not all splice variants 
were transcriptionally regulated by cAMP. Among the PDE4D splice variants, 
cAMP increased mRNA transcripts of the short forms PDE4Dl and PDE4D2. In 
contrast, mRNA transcription of the long form PDE4D3 was not affected by cAMP 
[114]. In human monocytic MonoMac-6 cells exposed to dibutyryl cAMP mRNA 
transcripts for PDE4A5, PDE4B2 and PDE4Dl increased [70]. Notably, although 
PDE4A5 represents a long form splice variant its mRNA transcription appears to 
be regulated by cAMP. These findings are corroborated by data obtained in human 
monocytic U-937 cells [90, 115] and human monocytes [61] where increases in 
PDE4A and PDE4B mRNA transcripts and protein were observed following long
term combined exposure to rolipram and salbutamol although in these cells 
PDE4D was not affected. On the other hand, incubation of Jurkat-T cells with 
forskolin augmented the amount of mRNA transcripts for PDE4Dl and PDE4D2 
but also PDE3, whereas PDE4D3, PDE4D4, PDE4B and PDE4C were not affected 
and mRNA transcription of a PDE4A variant decreased [100]. The mechanism of 
cAMP-dependent up-regulation of PDE4Dl-mRNA transcripts has recently been 
investigated [116]. An intronic, cAMP-responsive promoter region has been iden
tified in the PDE4D gene. Activation of this 5' upstream intronic promoter region 
directs transcription of truncated mRNA products from the PDE4D gene - the 
short forms PDE4Dl and PDE4D2. A TATA-box was not detected in this promot
er sequence but instead GC-rich regions were found which may also serve to signal 
the transcription start site. RNAse protection assays revealed at least two cap sites 
for transcription initiation. DNA-sequence encompassing 1500 bp 5' upstream of 
the translation start site coupled to a luciferase reporter gene resulted in -five-fold 
activation of baseline luciferase expression. cAMP further increased luciferase 
expression in this construct by a factor of -4.5. These results demonstrated that the 
intron 5' upstream of the PDE4Dl open reading frame acts as promoter and con
fers cAMP responsiveness. A cAMP response element (CRE) was identified in the 
5' untranslated region of the transcribed PDE4Dl mRNA. No further CRE were 
detected up to 1500 bp 5'upstream of the translation initiation site. However, dele
tion of a region comprising the CRE within the 1500 bp 5' upstream of the trans
lation initiation site resulted in a fragmented promoter that still conferred cAMP
inducibility of a luciferase reporter gene. Hence, cAMP may act to increase 
PDE4Dl mRNA transcription by mechanisms independent from CREB-induced 
CRE activation. AP-consensus sites have been identified upstream of the proximal 
cap site and there is evidence that cAMP may be capable of amplifying AP-mediat-
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ed transcription. In fact, c-fos expression, AP-binding to DNA and AP-directed 
transcription of reporter genes may be enhanced by cAMP [117-119]. In view of 
these findings the observation may be of interest that TPA - a potent stimulus of 
AP-induced transcription - synergistically potentiated cAMP-induced luciferase 
expression directed by the PDE4Dl promoter [116]. In parallel to PDE4Dl, 
mRNA transcription of PDE4B2 is also regulated by a cAMP-responsive intronic 
promoter. However, this promoter includes a TATA-box that confers efficient base
line mRNA transcription [116]. A more rapid cAMP-responsive up-regulation of 
PDE4B2 mRNA compared to PDE4Dl mRNA was observed in human monocytic 
MonoMac 6 cells [70]. 

Heterologous desensitization by PDE4 up-regulation 

cAMP-dependent transcriptional regulation of PDE4 may cause heterologous desen
sitization of cellular responses induced by B2-agonists or other cAMP-generating 
drugs. In human monocytic U-937 cells exposed to rolipram in combination with 
salbutamol over 4 h, PGE2-induced cAMP accumulation was dramatically reduced 
compared to control cells. The additional presence of rolipram restored this 
impaired cAMP accumulation indicating that it was operated by PDE4 up-regula
tion. In parallel, the capacity of PGE2 to suppress monocytic LTD4-induced Ca2+

mobilisation was substantially reduced in U937 cells exposed to salbutamol and 
rolipram for 4 h compared to control cells. Again, rolipram reversed this function
al desensitization [115]. An impaired capacity for cellular cAMP accumulation as a 
consequence of protracted cAMP elevation has also been shown in Jurkat-T lym
phocytes [120], rat aortic smooth muscle cells [107] and the human keratinocyte 
HaCaT cells [109]. In these systems, cAMP-dependent PDE4 up-regulation based 
on de novo protein synthesis has been shown and PDE inhibitors could reverse the 
concomitant desensitization of cAMP accumulation. 

Heterologous desensitisation following prolonged administration of Bragonists 
may have therapeutic implications in asthma [121]. In asthmatics, regular treatment 
with Bragonists resulted in tachyphylaxis to their protective effects against metha
choline- or AMP-induced bronchoconstriction [1-4]. Although part of these effects 
may originate in B-receptor desensitisation, the hypothesis was raised that PDE4 up
regulation may also be involved [121]. Future clinical trials may investigate whether 
PDE inhibitors e.g. theophylline restore the impaired bronchoprotective effects of 
B2-agonists caused by their regular administration. 

cAMP-dependent transcriptional regulation of PDE4 may drive the cardiopro
tective effects of prostacyclin in the ischaemic myocardium. In an experimental 
approach, hearts removed from rats pretreated intramuscularly with 7-oxo PGI2 for 
48 h exhibited a substantially impaired inotropic reponse to isoproterenol associat
ed with reduced isoproterenol-induced cAMP accumulation compared to sham-
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treated animals. Whereas the capacity of the cAMP-generating system was found to 
be unaffected, exposure of intact rats to 7-oxo PGI2 induced a marked alteration in 
the pattern of myocardial PDE subtypes. Strong increases in PDE1C and PDE4B3 
transcripts were described accompanied by reduced expression of PDE4Dl-3 
species. These alterations in PDE transcripts were paralleled by changes in protein 
levels and by increased PDE4 and PDE1 activities [122, 123]. The increased PDE1C 
expression induced by 7-oxo prostacyclin may limit Ca2+-induced myocardial dam
age by enhancing Ca2+-dependent down-modulation of myocardial cAMP. Other 
experiments demonstrated that pharmacologically induced impaired or activated 
noradrenergic signalling in the intact rat is associated with reduced or enhanced 
PDE4A protein, respectively in cerebral cortex [124]. These latter studies with intact 
animals provide convincing evidence for the physiological relevance of cAMP-oper
~ted transcriptional PDE4 up-regulation. 

Protein kinase A-induced phosphorylation and up-regulation of PDE4 

A substantial but transient increase in cAMP content of U937 cells is induced by 
salbutamol or PGE2• In fact, cAMP levels returned to baseline after 15 min expo
sure to salbutamol or PGE2• However, the combination of salbutamol with 
rolipram exerts a profound cAMP increase lasting over >4 h [42, 105]. Desensiti
zation of the cAMP-generating system may provide an explanation for these find
ings. Alternatively, a short-term up-regulation of PDE4 may be involved. This 
hypothesis is particularly supported by the marked protracted cAMP increase 
induced by the addition of rolipram. Indeed, Torphy and colleagues [105] 
observed a significant increase of PDE4 activity after only 15 min incubation of 
U937 cells with PGE2 (10 )lM) or salbutamol (10 )lM). Corroborating these data, 
PDE4 in human keratinocyte HaCaT cells was significantly up-regulated after 30 
min incubation with rolipram (10 )lM) and salbutamol (1 )lM) and PDE4 up-reg
ulation was only partly inhibited by cycloheximide [109]. In addition, the PDE4 
activity increase following incubation of rat thyroid FRTL-5 cells with TSH, dibu
tyryl cAMP or forskolin over 10-15 min was resistant to cycloheximide, support
ing the concept that short-term PDE4 up-regulation was independent from de 
novo protein synthesis [125]. On the other hand, the phosphatase inhibitor okada
ic acid enhanced PDE4 up-regulation in FRTL-5 cells and in consequence the con
cept arose that short-term cAMP-induced increase in PDE4 activity may be driven 
by PDE4 phosphorylation. Indeed, protein kinase A phosphorylates PDE4 which 
was paJ:alleled by an increase in PDE4 activity in rat thyroid FRTL-5 cells [43, 
125] and human monocytic U937 cells [42]. Protein kinase A-induced short-term 
up-regulation of PDE4 activity has also been described in rat parotid tissue [126], 
UMR-106 osteoblast like cells [127], LRM 55 astroglial cells [128] or bovine vas
cular smooth muscle cells [129] indicating that PDE4 activity regulation by cAMP-
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mediated phosphorylation represents an ubiquitous event. However, protein 
kinase A-triggered PDE4 phopshorylation is restricted to particular splice variants. 
As an example, within the PDE4D subfamily PKA phosphorylates the long form 
PDE4D3 but not the short forms PDE4D1 and PDE4D2 [42, 43, 125]. Mean
while, based on elegant experiments using site directed mutagenesis, Sette and 
Conti [43] discovered that protein-kinase A mediated PDE4D3 activity increase is 
associated with phosphorylation of serine 54 at the N-terminal end of the enzyme. 
In fact, substitution of serine 54 by alanine completely abolished phosphorylation 
and PDE-activity increase. Furthermore, as a consequence of protein kinase A-trig
gered phosphorylation of PDE4D3, altered sensitivity of the enzyme to PDE4 
inhibitors occurred. RS-25344, a highly specific PDE4 inhibitor blocked activity 
of the phosphorylated PDE4D3 form with -100-fold higher potency than the non
phosphorylated enzyme [42]. From experiments with rolipram the hypothesis was 
raised that PDE4D3 phosphorylation tips the balance of HAR to LAR conform
ers in favour of the HAR conformer [43]. Careful analysis of log concentration 
inhibition curves revealed that rolipram displayed high (ICso -1 nM) and low 
(ICso -1 11M) affinity inhibition of basal PDE4D3 catalytic activity. These ICso 
values are close to those obtained for rolipram binding to HAR and LAR. Phos
phorylation-induced PDE4D3 activity increment was almost entirely based on an 
increase in the PDE activity that was inhibited by low nanomolar rolipram con
centrations. In contrast, activity of the PDE4D3 conformer inhibited by micromo
lar rolipram concentrations was not affected. These findings imply an increase in 
HAR conformation induced by PDE4D3 phosphorylation. Rolipram log concen
tration-inhibition curves suggest that 72% of basal PDE4D3 assumes the LAR 
conformer with the remaining 28% in the HAR state. In contrast, regarding the 
phosphorylated PDE4D3 62% of the enzyme forms the HAR state with only 38% 
in the LAR conformation [43]. In view of the concept that anti-inflammatory 
effects of PDE4 inhibitors are related to LAR whereas unwanted CNS effects are 
based on their interaction with HAR those PDE4 inhibitors which lock PDE4D3 
in the non-phosphorylated state should provide anti-inflammatory drugs with 
reduced side-effects. 

Regulation of PDE4 activity by phosphatidic acid 

Phosphatidic acid (PA) was found to up-regulate PDE4 activity of some but not 
all variants, most probably based on a direct interaction. In particular, incubation 
of the long forms PDE4A5, PDE4B2 and PDE4D3 with PA resulted in a 1.5-2-
fold up-regulation of PDE4 activity. On the other hand, activities of the short 
forms PDE4B2, PDE4D1 and PDE4D2 were not affected. PA-induced PDE4 up
regulation may facilitate Con-A stimulated proliferation of rat thymocytes [130, 
131]. 
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Candidate PDE4 inhibitors as antiasthmatics 

Based on the fact that PDE4 was localized in almost all inflammatory cells and also 
in bronchial smooth muscle, and that PDE4 inhibitors have the capacity to suppress 
diverse inflammatory cell functions, it was anticipated that PDE4 inhibitors would 
be potent anti-asthmatic drugs. As discussed before, although an abundance of 
PDE4 inhibiting structures were synthesized and exhibited anti-inflammatory poten
cy in vitro and in experimental animals none of them has been licensed or reached 
phase III clinical trials mainly due to intolerable CNS side-effects. In fact, definite 
proof of antiasthmatic potency of PDE4 inhibitors in large-scale controlled clinical 
studies is still awaited. However, based on the concept that a beneficial ratio of 
LARIHAR inhibition should improve the benefit-risk ratio there are some promis
ing PDE4 inhibitors which recently reached phase I or II clinical trials. These com
pounds designed in consideration of the LARIHAR-concept have been denominat
ed as "second generation PDE4 inhibitors". Chemical structures of the compounds 
are depicted in Figure 1. Affinity ratios to HAR and LAR of these compounds relat
ed to rolipram are given in Table 5. 

58207499 (Ariflo®) 

SB207499 (Ariflo®) represents a second generation PDE4 inhibitor. The potency 
ratios for inhibition of the HAR vs LAR conformers of PDE4A, PDE4B2 and 
PDE4D3 are at least four-fold higher than for rolipram implying that SB207499 in 
comparison to rolipram preferentially inhibits PDE4 in its LAR conformer (see also 
Tab. 5). Whereas rolipram inhibits the HAR conformer of all PDE4 variants tested 
with at least 20-fold higher potency than the LAR conformers, SB204799 inhibits the 
LAR conformer of PDE4A with two-fold higher potency than its HAR conformer 
and for PDE4B2 and PDE4D3 inhibition of HAR was only about two-fold and five
fold more potent than for LAR. In fact, binding experiments revealed that SB207499 
adhered to a two-fold higher number of binding sites on PDE4 than rolipram. This 
finding reiterates that SB207499 has the capacity to bind to both HAR and LAR [41]. 

This distinct profile of SB207499 affinity to the PDE4 conformers is reflected by 
its in vitro effects. SB207499 inhibits T cell proliferation and monocyte TNFa gen
eration with comparable potency as rolipram. This is in accordance with earlier 
findings that inhibition of these inflammatory functions is mediated by LAR. In con
trast, SB207499 proves to be -160-fold less potent than rolipram in attenuating gas
tric gland acid secretion [132]. On the other hand, anti-IgE induced basophil 
degranulation was clearly more potently inhibited by rolipram than by SB207499 
and this implies that similar to neutrophil degranulation, inhibition of basophil 
degranulation requires blocking of the HAR conformer. The compound is currently 
being clinically tested as an oral anti-asthmatic drug. 
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CDP840 

CDP840 was shown to suppress PDE4 hydrolysing capacity of subtypes A, Band D 
with comparable potency (ICso = 2.9-4.3 nM) whereas the compound inhibited 
PDE4C -25-fold less potently. In addition, CDP840 was less efficient in competing 
for [3H]rolipram binding to guinea pig brain membranes (ICso = 60 nM) than in 
inhibiting PDE4 activity (Tab. 5). CDP840 had a fairly high oral bioavailability. 
These findings should predict a favorable profile of CDP840 [34]. However, other 
recent investigations came to different conclusions based on their findings that 
CDP840 inhibited catalytic PDE4 activity (reflecting LAR) less potently than the 
compound competed with [3H]rolipram binding to brain membranes [133]. In the 
above studies, competition of [3H]rolipram binding has not been measured with the 
recombinant human PDE4 variants that served for determination of PDE4 catalysis 
but with guinea pig and mice brain membranes. The discrepancy between the two 
studies emphasizes that PDE4 catalysis and [3H]rolipram-binding should be 
assessed with identical human recombinant PDE4 variants. 

In animal models CDP840 mostly given by the intraperitoneal route has been 
shown to reduce antigen-induced pulmonary eosinophil accumulation and bron
choconstriction and to attenuate ozone-triggered airway hyperreactivity [34, 
134-136]. Finally, in mild-moderate asthmatic humans CDP840 given orally at a 
daily dose of 30 mg over 10 days significantly suppressed late airway obstruction to 
allergen challenge. An oral dose of 30 mg/day was well tolerated as reflected by the 
absence of adverse events [137]. However, development of CDP840 was discontin
ued. 

CP80366 

CP80633 inhibits PDE4A, Band D with comparable ICso values (0.3-0.5 IlM), 
whereas [3H]rolipram binding to brain membranes is competed at substantially 
lower concentrations (8 nM) (Tab. 5) [133]. Therefore, CP80633 does not repre
sent a second generation PDE4 inhibitor. The compound stimulated PGE1-facilitat
ed cAMP increase in human monocytes, inhibited LPS-triggered human monocytic 
TNFa-generation and zymosan-stimulated human eosinophil ROS release with 
ICso values close to those required for suppression of catalysis [133]. The capacity 
of CP-80633 to counteract allergen-challenge induced bronchoconstriction and 
bronchoalveolar cellular infiltration in animal models further adds to the anti
inflammatory profile of the compound. In another system it was found that CP-
80633 given by the oral route (10 mg/kg) to mice elevated plasma cAMP by a fac
tor of 6 and inhibited LPS-induced systemic TNFa production by 95% [138]. The 
compound has been tested in phase II trials in patients with atopic dermatitis. It 
was found that topical application of CP-80633 over 28 days significantly reduced 
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skin inflammation in these patients. Oral administration of CP80633 to humans 
resulted in emesis at plasma concentrations above 0.16 j.lg/ml [139]. 

RP73401 

The benz amide RP73401 (Piclamilast) was the first described second generation 
PDE4 inhibitor. In fact, in the catalytic assay (reflecting LAR) RP73401 suppressed 
human recombinant PDE4D3 with ICso of 0.1 nM and the benzamide exhibited a 
comparable affinity to PDE4D3 (Kd = 0.08 nM) as determined in the [3H]RP73401 
binding assay (reflecting HAR). RP73401 attenuated catalytic activity of PDE4A 
and PDE4B with comparable efficacy as PDE4D and competed for [3H]rolipram 
binding to brain membranes with ICso = 1 nM i.e. in the range of PDE4 catalysis 
inhibition [34,41, 133]. In conclusion, RP73401 does not discriminate between the 
HAR and LAR conformers whereas in contrast rolipram exhibits clear preference 
for the HAR conformer (Table 5). 

In vitro, RP73401 enhanced B2-agonist facilitated eosinophil and monocyte 
cAMP increase and consequently inhibited eosinophil LTC4 and ROS generation, 
eosinophil degranulation [20, 77, 140], LPS-induced TNFa expression in human 
monocytes [27], and IL-2 release from Staph. au reus enterotoxin stimulated CD3-
differentiated splenocytes [29] in the lower nanomalor range. Rolipram was sub
stantially less potent than RP73401 in attenuating monocyte TNFa generation and 
splenocyte differentiation, reiterating that these functional responses are inhibited 
by interaction with the LAR (where rolipram is less potent than RP73401) rather 
than the HAR conformer (where rolipram shows comparable potency to RP73401) 
of PDE4 (Tab. 5). On the other hand RP73401 counteracted methacholine-induced 
contraction of guinea pig trachea which is considered as an HAR-correlated 
response [38] (Tab. 2) in a dose range comparable to rolipram [46]. In animal mod
els of airway inflammation RP73401 given by the intratracheal route dose-depen
dently inhibited antigen-induced bronchoconstriction and bronchoalveolar inflam
matory cell influx. In addition, RP73401 counteracted histamine-induced microvas
cular leakage into the guinea pig lung [141]. The compound is currently being 
developed for rheumatoid arthritis [139]. 

Phosphodiesterase 3 

PDE3 is als() described as the cGMP-inhibited PDE actlVlty. In fact, although 
PDE3 exhibits similar affinity for cAMP and cGMP as substrates (KM = 0.1-0.8 
j.lM), the VMAX for cAMP is about 4-10 times higher compared to cGMP. Abun
dant PDE3 activity is found in the myocardium where it may be tightly associat
ed with the sarcoplasmic reticulum. Therefore, there was considerable interest 
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from the pharmaceutical industry in developing selective PDE3 inhibitors as 
inotropics in chronic heart failure (CHF) culminating in the clinical development 
of amrinone, milrinone and enoximone. Whilst these compounds have meanwhile 
been licensed in some regions for acute treatment of otherwise refractory CHF 
where they result in some improvement of systemic haemodynamics, its chronic 
administration has been discouraged based on clinical trials demonstrating a vari
ety of haemodynamic adverse events and finally, increased mortality [142-144]. 
Indeed, in the severely damaged ischemic myocardium cAMP increase may facili
tate the generation of arrhythmias. 

So far two different PDE3 subtypes encoded by different genes have been identi
fied. PDE3A is located on chromosome 12 and PDE3B on chromosome 11 [145]. 
PDE3A and PDE3B have a different cellular expression pattern. PDE3A is predom
inantly found in myocardium, vasculature, bronchial smooth muscle, platelets. In 
contrast, human lymphocytes [146] but also adipocytes, hepatocytes, pancreatic B 
cells and renal epithelial cells [145] contain PDE3B. Hence, the hypothesis arises 
that selective inhibition of PDE3B should support anti-inflammatory effects without 
cardiovascular adverse effects. 

Subtypes are distinguished by a 44 amino acid insert in the N-terminal end of the 
catalytic core which is highly homologous for one subtype among different species 
but shows substantially less homology if the two subtypes are compared. This 44 
amino acid insert is unique for PDE3 species. Binding of PDE3 selective inhibitors 
is exclusively mediated by the catalytic domain since it is not affected by either N
terminal mutants or site directed mutants in the 44 amino acid insert [147]. The N
terminal region contains a hydrophobic site that directs membrane association. 
Expression of full-length human recombinant PDE3A and PDE3B in SF9 cells 
results in membrane associated PDE3 activity. On the other hand, expression of 
PDE3 forms truncated at their N-terminal end results in predominant cytosolic 
expression [148]. It is not known so far whether the platelet PDE3A species which 
is cytosolic represents a splice variant that omits the hydrophobic membrane asso
ciation region. The occurrence of multiple splice products from PDE3A has been 
proposed based on the use of different initiation sites in the PDE3A gene [149]. The 
N-terminal region also comprises the protein kinase A phosphorylation site. In rat 
adipocytes PDE3B serine 302 has been identified as a target for PKA-induced phos
phorylation [150]. PKA-induced phosphorylation is associated with up-regulation 
of PDE3 activity. In addition to phosphorylation, transcriptional regulation of 
PDE3 has been observed. In Jurkat cells, chronic cAMP-exposure resulted in a 
biphasic PDE3 up-regulation [100]. The initial PDE3 increase based on phosphory
lation whereas the later PDE3 up-regulation was reversed by prior incubation with 
actinomycin D indicating that enhanced mRNA transcription was involved. Expo
sure of vascular smooth muscle cells in culture to forskolin or 8-bromo cAMP also 
enhanced PDE3 activity based on de novo protein synthesis [107]. In an animal 
model of pulmonary hypertension induced by chronic hypoxia there was an up-reg-
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ulation of PDE3A paralleled by an elevation of the corresponding mRNA detected 
by Northern blot technique [151]. 

PDE3 occurs in macrophages and T lymphocytes, endothelial cells, mast cells, 
bronchial and vascular smooth muscle cells. Selective PDE3 inhibitors may have 
some functional effects in animal models relevant to asthma. In particular, selective 
PDE3 inhibitors may cause bronchodilation as a consequence of the occurrence of 
PDE3 in human bronchi. In fact, it was found that the selective PDE3 inhibitor 
SKF94120 reduced the basal tone of human bronchial rings [152]. In a clinical set
ting, the PDE3 selective inhibitor cilostazol attenuated methacholine-induced 
bronchial hyperresponsiveness [153]. 

Whilst exclusive inhibition of PDE3 does not represent a promising strategy for 
drug development in asthma the fact that additional inhibition of PDE3 frequently 
amplifies the effects of PDE4 inhibitors implies that dual selective type PDE3 and 4 
inhibitors could be an attractive concept in asthma-related drug discovery. This may 
be of particular interest since c'ompounds such as benafentrine interact predomi
nantly with LAR (Tab. 5). In the last section of this chapter, synergisms between 
PDE3 and PDE4 inhibition will be briefly discussed. 

Synergistic and additive effects of POE3 and 4 inhibition 

PDE3 and PDE4 inhibitors may act synergistically to enhance intracellular cAMP 
and consequently, to modulate functional responses in cells orchestrating the inflam
matory response (Fig. 2). Quiescent human peripheral blood CD4+ and CD8+-T 
lymphocytes expressed PDE3B [145], PDE4A, PDE4B and PDE4D and PDE7. On 
the other hand, PDE1, PDE2 and PDE5 were absent in these cells [98, 154, 155]. 
Following PHA stimulation for several hours however, there was an induction of 
PDE1B [10]. PDE3 inhibitors, whilst almost inactive by themselves, synergistically 
enhanced reduction of T lymphocyte proliferation and IL-2 generation by inhibition 
of PDE4. 100 nM rolipram inhibited PHA-induced pH]thymidine incorporation in 
human CD4+-T lymphocytes by about 20%. The selective PDE3 inhibitor 
SKF95654 (10 IlM) did not affect pH]thymidine incorporation. Adding 10 IlM 
SKF95654 to 100 nM rolipram resulted in about 50% reduction of PHA-induced 
[3H]thymidine incorporation. Similarly, addItion of 10 IlM SKF95654 which by 
itself did not affect IL-2 generation to 10 nM rolipram that induced 25% inhibition 
of IL-2 synthesis resulted in 60% reduction of PHA-induced IL-2-generation in 
CD4+-T lymphocytes [98]. 

In human alveolar macrophages there is coexpression of PDE1, PDE3 and 
PDE4 [9]. Rolipram or the PDE3-selective inhibitor motapizone suppressed LPS
stimulated TNFa generation dose-dependently following biphasic log concentra
tion inhibition curves. These biphasic curves reflect functional effects of selective 
PDE3 or PDE4 inhibition at lower inhibitor concentrations, whereas at higher con-

115 



-
"
 

-
"
 

0'
1 

c e 1a
 

E
 

E
 

cu
 
~
 

c ~
 

~ cu
 

l+
- e ~
 

..c
 
~
 
~
 

CD
 

I 

E
xp

ec
te

d 
E

ffe
ct

s 
of

 P
O

E
 4

 a
nd

 P
O

E
 3

/4
 In

hi
bi

to
rs

 

::c
 

CD
 3 0>
 

:J
 

:J
 ib' :J
 

Q
 

0>
 

:J
 

0
..

 

n :::
r 

:J
. ~
 

~ V
'O

 
n :::

r 
c: !:\:

 



Phosphodiesterases in asthma 

centrations rolipram or motapizone lost their selectivity and additionally inhibited 
other isoenzymes. At concentrations < 1 JlM motapizone synergistically amplified 
the reduction of TNFa release induced by rolipram [156]. These data were cor
roborated by findings that in human monocyte-derived macrophages LPS-stimu
lated TNFa generation was synergistically reduced by exposure to a combination 
of PDE3 and 4 inhibitors (40-50% reduction) when compared to each of the selec
tive inhibitors alone « 15% reduction) [8]. Monocyte-derived macrophages 
showed a PDE isoenzyme profile comparable to human alveolar macrophages; 
PDEl, 3 and 4 were expressed [8]. In contrast, LPS-induced TNFa synthesis in 
human monocytes (i.e. the precursor cells of monocyte derived macrophages) was 
almost completely inhibited by rolipram reflecting the predominant expression of 
PDE4 in these cells [8]. 

Rolipram synergistically enhanced inhibition of serum-stimulated [3H]thymidin 
incorporation into vascular smooth muscle cells by the PDE3 inhibitor cilostamide 
[157]. With 1 JlM cilostamide and 10 JlM rolipram, [3H]thymidine incorporation 
was attenuated by about 25% and 20%, respectively. Combined administration 
resulted in 80% reduction. Rat aortic rings precontracted with phenylephrine 
showed less than 20% relaxation to either 3 JlM milrinone (PDE3 selective) or 
10 JlM rolipram. However, the combined inhibition of PDE3 and PDE4 by these 
compounds resulted in > 90% relaxation. Human pulmonary artery precontracted 
with PGF2a did not respond to 1 JlM rolipram. Exposure to 1 JlM motapizone 
(selective PDE3 inhibitor) induced about 30% relaxation. However, 1 JlM rolipram 
was synergistic to 1 JlM motapizone resulting in 75% relaxation [158]. Similarly, in 
human bronchi, combined exposure to rolipram and the PDE3-selective inhibitor 
SKF94120 showed a trend for overadditive reduction of inherent airway tone [152]. 

Figure 2 

Targets of PDE4 and PDE314 inhibitors. A multitude of cells are involved in airway inflam

mation. Dendritic cells function as antigen presenting cells whereas antigen directly activates 

mast cells. Lymphocytes orchestrate airway inflammation. Eosinophils or neutrophils pre
dominantly constitute terminal effector cells i.e. cytotoxic proteins (ECP, EON) are released 

as a consequence of eosinophil activation. Smooth muscle cells may not only exhibit a con

tractile phenotype but they may also assume proliferative, motile or synthetic (cytokine pro

ducing) phenotypes. Epithelial and endothelial cells generate a multitude of cytokines and 

other mediators apart form their barrier function. Terminal effector cells e.g. eosinophils 

exclusively express PDE4. On the other hand in cells orchestrating inflammation e.g. T-Iym

phocytes or in antigen-presenting cells e.g. dendritic cells PDE3 and PDE4 are detected. In 

these cells selective PDE4 inhibitors partially but not completely inhibit functional respons

es. However, complete inhibition is attained by dual-selective PDE3&4 inhibitors. Dual

selective PDE3&4 inhibitors are therefore an attractive approach in asthma management. 
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cAMP-dependent transcriptional and post-translational up-regulation (PKA
dependent phosphorylation) of PDE3 and PDE4 may be one explanation for the 
synergistic functional effects of PDE3 and PDE4 inhibitors. One may postulate that 
exclusive selective inhibition of PDE3 may provide a cAMP-signal that phosphory
lates PDE4 or stimulates transcription of PDE4 mRNA. Increased PDE4 activity 
masks functional effects of PDE3 inhibitors by down-regulating cAMP. Simultane
ous PDE4 inhibition would then result in synergistic cAMP response and function
al effect. 

Synergisms between PDE3 and PDE4 inhibitors and the occurrence of both 
PDE3 and PDE4 in diverse cellular systems involved in asthma were decisive for the 
design of dual-delective PDE3 and 4 inhibitors. Preclinical and some clinical expe
rience with the dual-selective inhibitors zardaverine, AH21-132 and tolafentrine 
will be briefly reviewed. 

Zardaverine 

The pyridazinone derivative zardaverine inhibited PDE3 from human platelets and 
PDE4 from human neutrophils with ICso values of 0.6 and 0.2 ~M, respectively 
[159]. Other isoenzymes were hardly affected up to 100 ~M. Zardaverine inhibited 
human monocyte PDE4 with ICso 1.1 ~M. For competition of zardaverine with 
[3H]rolipram binding to rat brain membranes an ICso of 0.45 ~ was calculated 
(Tab. 5) [37]. However, zardaverine more strongly inhibited [3H]rolipram binding 
to PDE4 of human origin. Zardaverine counteracted the contraction of guinea pig 
trachea in response to a variety of spasmogens (e.g. histamine, ovalbumin, U46619, 
and LTC4 ) [160]. In addition, zardaverine potently reduced endogenous tone of iso
lated human bronchi [152]. In the anaesthesized guinea pig zardaverine given intra
venously (1-60 ~mol/kg) inhibited histamine induced bronchoconstriction, and fol
lowing oral application (1-100 ~mol/kg) attenuated acetylcholine·· or ovalbumin
induced dyspnoea [160]. In the rat, oral zardaverine (3-30 ~mollkg) shows 
bronchodilator activity [161]. 

Zardaverine protects against a multitude of inflammatory responses (for review 
refer to [162]). In particular, zardaverine inhibited LPS-stimulated TNFa release 
from human alveolar macrophages and human T lymphocyte proliferation with 
monophasic log concentration-inhibition curves, corresponding to ICso values of 
1.85 and 1.7~, respectively [156]. Zardaverine inhibited the increase in endothe
lial permeability of HUVEC (human umbilical vein endothelial cell) monolayers 
induced by thrombin or E. coli haemolysin and this effect was further accentuated 
in combination with adenylate cyclase activators [163]. In cultured porcine pul
monary artery endothelial cells, zardaverine at concentrations up to 10 ~M had no 
effect on H20 r induced endothelial hyperpermeability. Endothelial cells from 
porcine pulmonary artery expressed PDE1, 2, 3 and 4, and PDE3 and 4 should have 
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been strongly inhibited by 10 11M zardaverine. However, in the presence of 1 11M 
PGE1 that was inactive on its own, 10 nM zardaverine completely inhibited H20 r 
induced increase in endothelial permeability. Hence, PGE1 synergistically potentiat
ed the efficacy of zardaverine by a factor of> 10,000. In addition, in the presence 
of PGEJ, synergistic suppression of endothelial hyperpermeability by combined 
PDE3 and PDE4 inhibition may be deduced from the experimental findings. 10 nM 
rolipram or 10 nM mota pi zone did not reduce the H20 r induced increase in 
endothelial permeability in the presence of 1 11M PGE1• However, 10 nM zardaver
ine completely inhibited H20 r induced increased endothelial permeability. 10 nM 
zardaverine afforded only -10% inhibition of PDE3 and 4 which is less than the 
extent of PDE3 and 4 inhibition obtained by combining 10 nM rolipram and 10 nM 
motapizone (25% inhibition) [164]. 

Provided salbutamol (111M) was present, zardaverine inhibited C5a-stimulated 
human eosinophil degranulation and chemoluminescence with ICso values (0.4-0.9 
11M) in the range of those obtained for PDE3 and PDE4 inhibition. In contrast, zar
daverine up to 10 11M was inactive when salbutamol was absent [20]. On the other 
hand zardaverine attenuated fMLP-stimulated human eosinophil LTC4 synthesis in 
the absence of salbutamol (ICso = 0.3 11M) [140]. 

The finding that cAMP-triggered inhibition of some functional responses (e.g. 
eosinophil LTC4 generation) is operated by PDE inhibition alone whereas reduction 
of other responses (e.g. eosinophil degranulation, endothelial hyperpermeability) 
requires the additional presence of an adenylate cyclase enhancing stimulus merits 
attention. The following explanations may be provided. Firstly, cAMP-triggered 
modulation of different functional responses may require different thresholds of 
protein kinase A activation. Secondly, cells and membrane compartments may dif
fer regarding their expression of "high cycling" and "low cycling" adenylate cyclase 
subtypes. "High cycling" adenyl ate cyclase offers high baseline cAMP generation 
whereas "low cycling" adenylate cyclase elaborates less cAMP under baseline con
ditions. It appears evident that coincidence of "low cycling" conditions with a high 
threshold of PKA-activation requires both inhibition of PDE activity and stimula
tion of cAMP generation to modulate a functional response [165]. In fact, in an ele
gant experimental setting, Underwood and collegues recently demonstrated [166] 
that endogenous catecholamines were required for rolipram-induced inhibition of 
antigen-induced bronchial obstruction in the anaesthetized guinea pig to be appar
ent. Both ~2-antagonists and adrenalectomy dramatically reduced the anti-obstruc
tive potency of intravenously given rolipram [166]. On the other hand, PDE inhibi
tion alone may suppress functional responses in the case of "high cycling" condi
tions accompanied by a low "functional" PKA activation threshold [165]. Thirdly, 
cells may release endogenously formed stimulants of adenylate cyclase activity, in 
particular following stimulation. This is illustrated by data showing adenosine 
release from human neutrophils incubated with fMLP [167] and PAF-induced PGE2 
generation in human eosinophils [18]. In this context, it is of interest that fMLP 
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stimulation of neutrophils resulted in a transient cAMP increase that was potentiat
ed by the POE4-selective inhibitor Ro 20-1724 and abolished by adenosine de ami
nase [167]. Extending these data, Schudt and colleagues [159] reported that 11lM 
zardaverine, that only slightly and insignificantly increased the cAMP content of 
quiescent neutrophils, dramatically potentiated cAMP increase following fMLP 
stimulation by about three-fold. Taken together, these data suggest that adenosine 
released by stimulated human neutrophils supports modulation of functional 
responses by POE inhibitors such as zardaverine in these cells. 

In the isolated perfused rat lung, zardaverine inhibited LPS-induced bron
choconstriction (ICso = 1.8 IlM) and in parallel, reduced TXA2 release in the per
fusate [168]. 10 IlM zardaverine protected against increased endothelial cell perme
ability and oedema formation in the isolated perfused rabbit lung challenged with 
H20 2 [169]. Furthermore, it was demonstrated that zardaverine inhibits antigen
induced accumulation of eosinophils in guinea pig airways [170-172]. Zardaverine 
given by the oral route attenuated LPS-induced liver injury in mice [173]. 

In clinical trials, single doses of zardaverine (1.5-6 mg) given by the inhaled 
route (MOl) afforded a modest increase in FEVl in mild-moderate asthmatics. 
About 55% of the asthmatics responded to zardaverine with an FEV l increase of at 
least 10% [162, 174-176]. Zardaverine protected against the early airway reaction 
to allergen challenge but only slightly reduced the extent of the late airway reaction 
[162]. Administration of zardaverine was associated with the occasional occurrence 
of nausea and vomiting typically associated with first generation POE4 inhibitors. 
Clinical development of zardaverine was discontinued. 

AH21-132 (Benafentrine) 

The benzonaphtyridine benafentrine (AH21-132) inhibited POE3 (human platelets) 
and POE4 (human neutrophils) with ICso values of 1.74 and 1.761lM, respectively. 
Bronchodilatory, anti-inflammatory and clinical effects of this compound have been 
recently extensively reviewed [162]. Briefly, AH21-132 reversed human bronchus 
contractility induced by histamine, carbachol or endogenous spasmogens with ICso 
values of 4.0,8.0, and 4.7 IlM, respectively. In the anaesthesized, ventilated guinea 
pig the benzonaphthyridine protected against bombesin-induced airway obstruc
tion. The anti-inflammatory potential of benafentrine is reflected by the finding that 
the compound inhibited PAF- or antigen-induced airway eosinophil accumulation 
[162]. AH21-132 showed some clinical efficacy in asthmatics where the benzon
aphthyridine induced transient bronchodilation and protected against allergen-chal
lenge induced late airway obstruction [162]. Interestingly, single daily doses of 800 
mg or repeated daily doses of 200 mg over 14 days given orally were well tolerat
ed. The high oral tolerability of benafentrine may originate in the LAR-specificity of 
this compound (Tab. 5). 
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Table 6 - Summary of expected adverse effects with classical PDE3 or PDE4 inhibitors and 
strategies for design of POE inhibitors avoiding these unwanted effects. 

PDE3 and PDE4 are expressed in diverse cellular systems apart from those relevant in airway 

inflammation. PDE3 is abundant in the cardiovascular system and cAMP increase followed 

by inhibition of PDE3 results in enhanced myocardial contractility, vascular smooth muscle 

relaxation and inhibition of platelet aggregation. Nausea and vomiting may origin in cAMP 
increase in the area postrema as a consequence of PDE4 inhibition. On the other hand, gas

tric acid hypersecretion may represent a peripheral effect of PDE4 inhibition. Hence, non

selective PDE3 and 4 inhibition would result in a variety of unwanted effects. However, 

implementing recent findings regarding cell-specific prevalence of conformers or subtypes of 

PDE3 or PDE4 in drug discovery strategies would minimize the occurrence of these unwant

ed effects. 

Adverse events 

Avoidance strategy 

POE3 

Tachycardia 

Arrhythmia 

SVRI-redudion 

CI-increase 

Platelet inhibition 

PDE3B inhibition 

SVRI, systemic vascular resistance index; Ci, cardiac index 

Tolafentrine 

POE4 

Nausea 

Vomiting 

Gastric acid secretion 

Headache 

PDE4-LAR inhibition 

Tolafentrine is another benzonaphtyridine. The compound inhibits PDEI-5 with 
ICso values of 18, 0.8, 0.09, 0.06 and 211M, respectively. Tolafentrine relaxes iso
lated human bronchial smooth muscle in vitro [177] and inhibits histamine-induced 
bronchoconstriction in the anaesthesized guinea pig in vivo [178]. Tolafentrine 
inhibits LPS-stimulated TNFa-generation in human alveolar macrophages, prolifer
ation of human lymphocytes [156], degranulation and chemoluminescense of 
human eosinophils (when combined with salbutamol) [20], and fMLP-stimulated 
eosinophil LTC4 synthesis [140]. These in vitro findings might predict an anti
inflammatory potential of tolafentrine in vivo. 

Although" dual-selective PDE3/4 inhibitors are considered as promising new 
drugs in asthma, there are some concerns regarding cardiovascular side-effects due 
to the PDE3 inhibiting component (Tab. 6). However, in clinical trials with dual 
selective inhibitors, haemodynamic effects were not observed. Regarding the poten
tial of PDE3 inhibitors to induce cardiovascular effects such as those in milrinone 
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trials [142, 143] it should be taken into account that patients included in those tri
als had severe cardiac failure i.e. these studies targeted a completely different popu
lation from asthma trials. However, since PDE3B is abundant in human lympho
cytes but not in the cardiovascular system the safety profile may be increased by 
selectively inhibiting PDE3B. In fact, an ideal second generation dual selective 
PDE3/4 inhibitor for asthma should selectively inhibit PDE3B but not PDE3A and 
show selectivity for the LAR conformer of PDE4 subtypes. A dual selective 
PDE3B/4-LAR inhibitor with high oral bioavailability would represent a cutting 
edge strategy for future drug development in asthma. 
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Introduction 

~TAdrenoceptor agonists are widely used as bronchodilators and have been used to 
treat acute attacks of asthma for decades. They can be divided into the very short 
acting which last 1 to 2 h (e.g. rimiterol), the short-acting such as salbutamol which 
produce an effect for 4 to 6 h and the newer longer acting ~-agonists such as sal
meterol and formoterol which maintain bronchodilatation for at least 12 h [1, 2]. 
~-Agonists antagonise the effects of a wide variety of bronchoconstrictor agents on 
airway smooth muscle in vitro and in vivo and are thus functional antagonists. The 
main mechanism by which they cause smooth muscle relaxation involves the cyclic 
3'5' adenosine monophosphate (cAMP) second messenger system which is linked to 
the ~2-adrenoceptor by a coupling G-protein and adenylate cyclase, the effector 
enzyme [3] (Fig. 1). Cyclic AMP is able to modulate a number of processes which 
are important in governing the contractile state of the cell [4]. 

The reason for a long duration of action may differ between salmeterol and for
moterol. Salmeterol has a large non-polar N-substituent which is thought to inter
act with specific sites in the receptor to prolong its action and this may explain why 
the duration of action appears not to be concentration dependent [5]. Formoterol 
has a long duration of action when inhaled but not when given orally and its dura
tion of action is concentration dependent. It has been proposed that because it is 
very lipophilic it enters the membrane depot rapidly and only re-equilibrates grad
ually with the aqueous phase where it interacts with ~2 adrenoceptors [6]. 

In addition to being bronchodilators ~-agonists may also have anti-inflammato
ry activity. This article discusses the evidence for this and its clinical relevance. Since 
short and long acting ~-agonists have different roles and functions they will be dis
cussed separately. 
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I3rAgonists 

Do ~-agonists have anti-inflammatory activity? 

The anti-inflammatory effects of ~-agonists have been studied in vitro, in animal 
studies, in bronchial biopsies in man and in clinical studies. 

Evidence from studies in vitro and in animals 

The effect of ~-agonists on two aspects of inflammation, plasma exudation and acti
vation and mediator release from inflammatory cells have been studied. 

Plasma exudation 
Plasma exudation is an important part of airway inflammation and may contribute 
to the pathophysiology of asthm:a by increasing airway oedema and thus airflow 
obstruction and bronchial hyperresponsiveness, and by allowing pro-inflammatory 
substances into the airways [7]. 

Short-acting ~-agonists 
The short acting ~-agonists terbutaline and salbutamol have been shown to inhibit 
plasma exudation induced by bradykinin and histamine in several animal prepara
tions including hamster cheek pouches [8] and guinea pig airways in vivo [9, 10]. 
The dose of ~-agonist required to inhibit the increase in microvascular permeability 
is generally greater than that required to reverse the increase in airway resistance 
caused by the same mediators when both are given by the intravenous route but not 
when given by inhalation [10, 11]. 

Long-acting ~-agonists 
Bronchodilator doses of inhaled salmeterol and formoterol inhibit histamine 
induced plasma exudation in guinea pig airway [12, 13]. The effect of salmeterol 
was maintained for 6 h, form otero I for 5 hand salbutamol for 2 to 4 h in one study 
[14]. The mechanism for the anti-permeability effects of ~-agonists is unclear but 
they are ~2-adrenoceptor mediated [15] and are probably due to a direct action on 
the endothelial cells of leaky post-capillary venules [16, 17]. 

Effects on inflammatory cells 
~2-Adrenoceptors coupled to adenylate cyclase are present on several human inflam
matory cells including lung mast cells [18], eosinophils [19], alveolar macrophages 
[20], Band T lymphocytes [21-23] and neutrophils [24]. Many studies have demon-
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strated effects from both short and long acting l3-agonists on these cells (Tab. 1) 
although tachyphylaxis tends to develop very quickly. 

Short-acting p-agonists 
Salbutamol and isoprenaline are potent inhibitors of IgE dependent release of hist
amine from chopped human lung [25, 26] and of histamine and prostaglandin D2 
from dispersed human lung mast cells [27]. Salbutamol inhibited the release of 
superoxide anions and leukotriene B4 induced hydrogen peroxide release from 
eosinophils in one study [28], though this has not been seen in all studies possibly 
due to methodological differences. It appears that longer incubation of eosinophils 
with a l3-agonist results in a loss of its inhibitory effect, presumably due to tachy
phylaxis [19]. Salbutamol inhibited the accumulation of neutrophils in guinea pig 
lung [13] whilst isoprenaline has been shown to inhibit various responses of isolat
ed human neutrophils that -are capable of causing tissue inflammation including cell 
activation, generation of superoxides and release of beta glucuronidase [29]. 
Although not demonstrated with l3-agonists, an increase in intracellular cAMP 
inhibits interleukin-2 production which in turn has caused a decrease in T lympho
cyte proliferation [30-32]. The functional significance of the 132 adrenoceptors 
found on macrophages is unclear since short-acting l3-agonists appear not to inhib
it mediator release in vitro [33-34]. 

Long acting p-agonists 
Salmeterol and formoterol are also potent inhibitors of IgE dependent histamine 
release from human lung fragments [6, 35] and dispersed lung mast cells [36]. Sal
meterol and formoterol inhibit antigen and platelet activating factor induced 
eosinophil and neutrophil accumulation in guinea pig airways [13, 37] and the 
leukotriene B4 induced release of hydrogen peroxide from guinea pig eosinophils 
was inhibited by formoterol but not salmeterol [28]. The lack of effect of salme
terol in this respect may be due to the low density of 132-adrenoceptors on 
eosinophils, since salmeterol is a partial agonist [28]. Salmeterol has also been 
shown to reduce Pseudomonas aeruginosa damage to both nasal epithelium in 
vitro and cultured nasal epithelial cells, an effect which is attributed to a rise in 
intracellular cAMP which inhibits various toxins produced by the bacteria [38]. 
Most of the effects described above are 132-adrenoceptor mediated and inhibited by 
132-adrenoceptor antagonists; salmeterol may however have effects which are not 
I3radrenoceptor mediated, possibly due to its membrane stabilising properties. 
Examples include a potent inhibitory effect of salmeterol on TNFa production in 
a human monocytic cell line (THP-1) [39], inhibition of T lymphocyte activation in 
mice [39] and modification of thromboxane B2 release from human alveolar 
macrophages [34,40]. 
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Table 1 - Examples of the inhibitory effects of f3-agonists on inflammatory cells 

a) short acting f3-agonists 

Cell type Drug Inhibition of Ref. 

Chopped lung salbutamol IgE dependent histamine release [25] 

isoprenaline [26] 

Dispersed lung mast cells salbutamol IgE dependent histamine and [27] 

PGD2 release 

Guinea pig eosinophils salbutamol release of superoxide anions and [28] 

LTB4 induced H20 2 release 

Neutrophils isoprenaline release of human neutrophil beta [29] 

glucuronidase 

generation of superoxides 

cell activation 

Guinea pig neutrophils salbutamol accumulation [13] 

Macrophages isoprenaline no effect on mediator release [33] 

salbutamol [34] 

Lymphocytes intracellular cAMP increase in T lymphocyte [32] 

raising agents proliferation [30,31] 

b) long acting f3-agonists 

Cell type Drug Inhibition of Ref. 

Chopped lung salmeterol IgE dependent histamine, LTC4 [6] 

formoterol and PGD2 release [35] 

Dispersed lung mast cells salmeterol IgE dependent histamine release [36] 

formoterol 

Eosinophils salmeterol H20 2 release and eosinophil [28] 

formoterol accumulation [37] 

Neutrophils salmeterol antigen and PAF induced [13] 

formoterol neutrophil accumulation 

Alveolar macrophages salmeterol modification of TXB2 release [34,40] 

Cell lines salmeterol TNFa production [39] 

Murine lymphocytes salmeterol cell activation [39] 

IgE, immunoglobulin E; PGD2, prostaglandin D2; LTB</< leukotriene B</<· H20 2, hydrogen per

oxide; LTC</< leukotriene C~ PAF, platelet activating factor; TXB2, thromboxane B2; TNFa, 

tumour necrosis factor alpha. 
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Evidence from bronchial biopsy, bronchoalveolar lavage, induced sputum 
and peripheral blood studies in man 

Bronchial biopsy and bronchoalveolar lavage have been used to establish the nature 
of the inflammatory response within asthmatic airways and to investigate the effects 
of various challenges and treatment regimens on the inflammatory response. More 
recently sputum induced by hypertonic saline has been developed as a less-invasive 
method of studying airway inflammation, with sputum being analysed for various 
constituents including total and differential cell counts and inflammatory mediators 
[41]. Eosinophils and their activation markers in peripheral blood have also been 
measured. 

Short-acting J3-agonists 
Several studies have looked at bronchial biopsies or bronchoalveolar lavage before 
and after a period of regular treatment with short-acting f3-agonists. Study details 
are given in Table 2 and the main findings in Table 3. In the first study, a small, 3-
month, double-blind parallel group study by Laitinen et al. [42], bronchial biopsies 
were performed in seven patients with mild asthma before and after regular terbu
taline treatment. They found a decrease in lymphocytes in the epithelium, a decrease 
in lymphocytes, mast cells and plasma cells in the lamina propria but no change in 
eosinophils, neutrophils, macrophages or monocytes. However two patients re
ceived a 6-day course of prednisolone during the treatment period which may have 
influenced the results. Manolitsas et al. [43] using bronchial biopsies and bron
choalveolar lavage found an increase in both total and activated eosinophils com
pared with baseline following 16 weeks treatment with regular salbutamol in 13 
patients with mild asthma, but no change in mast cell or lymphocyte numbers. 
When comparisons were made with placebo there were no statistically significant 
differences in cell number or activation. Two shorter studies found no changes in 
inflammatory cell number or activation. Evans et al. [44] found no changes in 
eosinophil numbers, eosinophil cationic protein (ECP) levels or mast cell numbers 
in induced sputum from 30 rhinitic non-asthmatic subjects before and after 4 weeks' 
therapy with salbutamol, whilst Di Lorenzo et al. [45] found no change in eosino
phil counts in blood or in serum ECP levels after I-weeks' therapy with salbutamol. 
An alternative to looking at inflammatory markers in the basal state is to study the 
inflammatory response to an antigen challenge. Twentyman et al. found a reduction 
in the antigen induced increase in neutrophils at 8 h post challenge and in neu
trophil!> and basophils at 24 h post challenge following a single dose of salbutamol 
in nine subjects with mild asthma [46], whilst Howarth et al. [47] showed that pre
treatment with a single dose of salbutamol reduced the antigen induced rise in plas
ma histamine and neutrophil chemotactic factor levels for up to 30 minutes in eight 
subjects with mild asthma. 
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Table 2 - Bronchial biopsy. BAL, induced sputum and peripheral blood studies 

a) short acting j3-agonists 

Method (Ref.) Sample size Study type and duration Treatment 

Biopsy [42] 14 R, DB, PG, 12 weeks 375 Ilg bd terb 
Biopsy and BAL [43] 48 R, DB, PG, 16 weeks 200 Ilg qds salb 
Peripheral blood [45] 20 R, 0, CO, 1 week 200 Ilg qds salb 
Induced sputum [44] 30 R, DB, PG, PC, 4 weeks 200 Ilg qds salb 
... peripheral blood [46] 9 R, DB, PC, CO, SO 200 Ilg salb 
... peripheral blood [47] 8 PC, CO, SO 200 Ilg salb 

b) long acting j3-agonists 

Method (ref) Sample size Study type and duration Treatment 

BAL [48] 12 R, DB, CO, PC, 4 weeks 50llg bd salm 
BAL [49] 23 R, DB, PG, PC, 6 weeks 50 Ilg bd salm 
biopsy [50] 23 R, DB, PG, PC, 6 weeks 50 Ilg bd salm 
BAL [51] 23 R, DB, PG, PC, 6 weeks 50 Ilg bd salm 
BAL [52] 10 R, DB, CO, Pc. 8 weeks 50 Ilg bd salm 
peripheral blood [45] 20 R, 0, CO, 1 week 50 Ilg bd salm 
... induced sputum and 8 R, DB, CO, PC, SO 100 Ilg salm 
peripheral blood [56] 

... induced sputum and 6 SB, CO, PC, SO 241lg form 
peripheral blood [53] 

... peripheral blood [54] 12 R, DB, CO, PC, SO 50 Ilg salm 

... peripheral blood [55] 19 R, DB, PG, PC, SO 50 Ilg salm 

BAL, bronchoalveolar lavage; R, randomised; DB, double blind; 5B, single blind; CO, cross

over; PG, parallel group; PC, placebo controlled; 0, open; SO, single dose; terb, terbutaline; 

salb, salbutamol; salm, salmeterol; form, formoterol . 

... , studies carried out before and after antigen challenge. 

Long-acting f3-agonists 
The effect of regular long acting B-agonists on bronchial biopsies in subjects with 
asthma has also been studied (Tabs. 2 and 3). In 1991, Dahl et al. [46] reported that 
4 weeks' treatment with salmeterol produced an improvement in the appearance of 
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Table 3 - Effects of f3-agonists on inflammatory markers seen in bronchial biopsy, BAL, 
induced sputum and peripheral blood studies 

a) short ading f3-agonists 

Study type (ref) /3-Agonist 

B [42] terb (375 Ilg bd) 
B & BAL [43] salb (200 Ilg qds) 
PB [45] salb (200 Ilg qds) 
IS [44] salb (200 Ilg qds) 
.to. PB [46] salb (200 Ilg) 
.to. PB [47] salb (200 Ilg) 

b) long ading {3-agonists 

Study type (ref) /3-Agonist 

BAL [48] salm (50 Ilg bd) 

BAL [49] salm (50 Ilg bd) 
B [50] salm (50 Ilg bd) 
BAL [51] salm (50 Ilg bd) 
BAL [52] salm (50 Ilg bd) 
PB [45] salm (50 Ilg bd) 

.to. IS & PB [53] form (24 Ilg) 

.to. PB [54] salm (50 Ilg) 

.to. PB [55] salm (50 Ilg) 

.to. IS & PB [56] salm (100 Ilg) 

Eosino- Neutro- Lympho- Macro- Mast Baso-

phils phils cytes phages cells phils 

x x J. x .j. 

i x x 

x 

x x x x x 

x J. at 8 h x J. at 8 & 24 h 
J. in NCF J. in histamine -

Eosino- Neutro- Lympho- Macro- Mast 
phils phils cytes phages cells 

J. in ECP - J. in O2 radical -
generation 

x x 

x x x 

x 

x x x x x 

J. in ECP 

.j. in ECP x 

J. in ECP 
x 

x 

Baso
phils 

BAL, bronchoalveolar lavage; B, biopsy; IS, induced sputum; PB, peripheral blood; terb, 
terbutaline; salb, salbutamol; salm, salmeterol; form, formoterol; ECp, eosinophil cationic 
protein; {<, no effed; -, not measured; J., decrease; i, increase . 

.to., studies carried out before and after antigen challenge. 
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the mucosa compared with baseline and a reduction in the oxidative metabolism of 
macrophages, but the differential cell count following bronchoalveolar lavage was 
unaltered. The authors also reported a statistically significant decrease in ECP lev
els in lavage. More recently another group found a fall in mean serum ECP con
centration with no change in blood eosinophil count following salmeterol treatment 
for 1 week in 20 patients with mild atopic asthma, suggesting that salmeterol may 
modify and reduce the release of granular proteins from eosinophils but not total 
cell numbers [45]. Conversely, several studies have not been able to demonstrate 
any anti-inflammatory effects of salmeterol. Roberts et al. [49-51] performed 
detailed analyses of a wide range of inflammatory markers in bronchial biopsies 
and bronchoalveolar lavage in 23 subjects with mild asthma after six weeks thera
py with salmeterol and placebo. Despite improvements in symptoms and morning 
peak flow after salmeterol there was no difference in differential cell counts, hista
mine, albumin, prostaglandin D2 or tryptase levels in bronchoalveolar lavage, no 
difference in T lymphocyte numbers or activation status assessed by flow cytome
try and no difference in numbers of mast cells, eosinophils or T lymphocytes on 
bronchial biopsy. Similarly, a crossover study in nine subjects with mild asthma 
showed no significant change in BAL cell profile, or in percentages of CD4 and 
CD8 lymphocytes following 8 weeks' salmeterol treatment compared with placebo 
[50]. 

All these studies have looked at patients with stable asthma. Four further stud
ies have looked at the effects of long acting ~-agonists on the inflammatory response 
to an antigen challenge [53-56]. In all four the long acting ~-agonist inhibited the 
early and late response to antigen and provided protection against the subsequent 
increase in bronchial responsiveness. The effect on inflammatory markers was less 
clear cut. Formoterol had no effect on the increase in sputum and blood eosinophils 
and lymphocytes that occurred following antigen challenge in six subjects with mild, 
atopic asthma studied by Wong et al. [53] although it did inhibit the rise in serum 
ECP 24 h after the challenge. Similarly, a single dose of salmeterol administered 
prior to antigen challenge in 12 patients with mild asthma had no effect on the anti
gen induced rise in blood eosinophils although it again prevented the rise in serum 
ECP [52]. In two further studies however a single dose of salmeterol administered 
prior to antigen challenge did not affect the numbers or activation markers of 
eosinophils in peripheral blood or induced sputum [55, 56]. 

Clinical studies 

Determining the extent to which the effects of ~-agonists in clinical practice can be 
attributed to an anti-inflammatory effect rather than bronchodilatation is very dif
ficult. Antigen challenge has been used as a model but interpretation of the effects 
of ~-agonists on the response to antigen challenge is not straightforward. ~-Agonists 
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are functional antagonists and would be expected to counter the bronchoconstric
tive effect of antigen even if they were acting solely on airway smooth muscle. 

Short acting {3-agonists 
The short acting ~-agonists inhibit the early response to antigen [55] and when neb
ulised salbutamol was given in higher doses (2.5 mg) the late response to antigen 
and post antigen increase in bronchial responsiveness were also inhibited [57]. High 
doses of salbutamol have a longer duration of action than smaller doses but the inhi
bition of the late response lasted for a longer time than the bronchodilatation seen 
with salbutamol alone on the control day, suggesting that salbutamol might be hav
ing effects other than functional antagonism [56] . 

Long acting f3-agonists 
'Salmeterol and formoterol have been shown to inhibit both the early and the late 
response to antigen [53-56, 58]. The extent of the inhibitory effect of salmeterol on 
the early and late response to antigen in the study by Twentyman et al. [58] was 
broadly similar to the bronchodilator effect seen when salmeterol was given alone 
on the control day, in keeping with functional antagonism. Measurements made 
32 h after the antigen challenge when any direct effects of salmeterol had worn off, 
showed a slightly greater FEV 1 and reduced bronchial reactivity following salme
terol than following placebo, suggesting that salmeterol might have had a more spe
cific anti-inflammatory effect during the antigen challenge. However, when inflam
matory indices have been compared in blood and sputum following antigen chal
lenges preceded by long acting ~-agonists or placebo the differences have been small. 
The rise in ECP levels following antigen challenge was inhibited by salmeterol in 
two of the studies [53, 54] but not in the other two [55, 56]. 

Conclusion 

Both short and long acting ~-agonists have actions which can be described as anti
inflammatory. Both reduce plasma exudation in vitro and in animal models and 
both have inhibitory effects on several of the inflammatory cells found in the lung 
including inhibition of mediator release and cell accumulation. Although these 
actions would be expected to reduce inflammation in the airways, studies of 
bronchial biopsies and bronchoalveolar lavage following regular treatment with 
both short and long acting ~-agonists have been largely negative with no consistent 
increase or decrease in inflammatory cell numbers in the biopsies or bronchoalveo
lar lavage. Although most of these studies have been small (see Tab. 2), with insuf
ficient power to determine small effects of ~-agonists, it is clear that any changes 
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that occur with ~-agonists are considerably less than those seen with corticosteroids. 
It is also important to note that the studies are less able to comment on the func
tional activity of inflammatory cells. 

Determining the extent to which the beneficial effects of ~-agonists in patients 
are due to their anti-inflammatory effect is difficult. It seems likely that the rapid 
action of short acting bronchodilators in relieving acute asthma is due predomi
nantly to a relaxant effect on smooth muscle. When taken on a regular basis the 
long acting ~-agonists have been shown to provide clinical benefit compared to 
placebo whereas the effects of regular short acting ~-agonists have differed little 
from placebo [59-62]. The reason for the difference between short and long acting 
~-agonists in this respect is not clear but it is now apparent that the bronchodilator 
effect of short acting ~-agonists wanes considerably between doses. The same is 
probably true for their actions on inflammatory cells and this may allow intermit
tent release of mediators. The more sustained action of a long acting ~-agonist 
would ensure a more continuous inhibitory effect on inflammatory cells and this 
may explain their greater clinical efficacy. 
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Introduction 

Currently available medication for treating airway inflammation is limited to only a 
few proven antiinflammatory agents. Cromolyn sodium (sodium cromoglycate, 
SCG) and nedocromil sodium, traditionally referred to as mast cell stabilizing agents, 
comprise an important group of mild to moderate anti-inflammatory drugs [1]. 

Sodium cromoglycate (Cromolyn sodium) 

Sodium cromoglycate (SCG) has been developed from derivatives of khellin and 
found to inhibit allergen-induced bronchoconstriction in man [2]. It is believed to 
prevent degranulation of mast cells via a membrane stabilizing effect brought about 
by the phosphorylation of a protein that results in blocking ionic calcium transport 
across the cell membrane. 

Cellular effects of sodium cromoglycate 

Prevention of the release of mast cell products such as histamine, PGD2 and LTC4 

accounts for the action of this drug on the early asthmatic reaction (EAR) which is 
IgE and mast cell-dependent. Cox demonstrated that SCG inhibits the release of 
mediators from mast cells triggered by the interaction between antigen and IgE [3]. 
Sodium cromoglycate inhibited histamine release from passively sensitized human 
lung fragments in a concentration range of 0.2-200 11M, producing a maximum 
inhibition of 33% (compared to a maximum inhibition of 72% produced by the ~r 
agonist salbutamol) [4]. Sodium cromoglycate was more effective in inhibiting 
release of PGD2 (compared to histamine) from human dispersed lung mast cells [5]. 

The origin of the mast cells is important for the inhibitory activity of cromogly
cate. Flint and colleagues demonstrated that mast cells recovered by bronchoalveo-
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lar lavage in man were more sensitive to the inhibitory activity of SCG than mast 
cells obtained by digesting human lung fragments [6]. SCG also inhibits the activa
tion of mast cells by other stimuli [7]. 

Besides mast cells, other inflammatory cells are sensitive to the inhibitory activ
ity of SCG. Human neutrophils, eosinophils, platelets and macrophages have been 
used to demonstrate the broad inhibitory activity of SCG on the in vitro activation 
of inflammatory cells [8]. This wide variety of activity of SCG may account for the 
suppressive activity of this drug on the late asthmatic reaction (LAR). Finally, it was 
demonstrated that SCG inhibits, in a dose-dependent manner, IL-4-driven T cell
dependent IgE synthesis by PBMC from the majority (65%) of normal human sub
jects as well as IgE synthesis by B cells stimulated with anti-CD40 plus IL-4 or with 
hydrocortisone plus IL-4. SCG acts directly on B cells and the inhibition resides at 
~he level of deletional switch recombination. SCG has a minimal effect on B cells 
that have already undergone isotype switching [9]. These new findings suggest a 
novel potential mechanism for the prevention of allergic disease. 

Cromoglycate may also interfere with neural mechanisms. Dixon et al. demon
strated that SCG inhibited the activation of autonomic C fibre nerves stimulated by 
capsaicin in dogs in vivo, resulting in an inhibition of reflex bronchoconstriction 
[10]. These and other experiments suggest that SCG also inhibits the activation of 
certain types of nerves [11]. 

Clinical pharmacology: protective effect of SCG in bronchial challenges 

Effect of SCC on airway reactions following allergen challenge 
Altounyan and others have demonstrated that SCG, inhaled before allergen chal
lenge, significantly inhibited the immediate bronchoconstriction that developed fol
lowing the inhalation of allergen [2]. In addition, SCG given before allergen chal
lenge also inhibits the development of the late asthmatic reaction [12] and prevents 
the increase in airway responsiveness observed following the last asthmatic reaction 
[13]. 

Effect of SCC on airway reactions following challenge with non-allergic 
stimuli 
Immediate pretreatment with SCG has no protective effect on the bronchoconstric
tion induced by agonists that act directly on airway smooth muscle such as hista
mine, methacholine, prostaglandins or leukotrienes. In contrast, therapeutic doses 
of SCG significantly inhibit the bronchoconstriction induced by exercise, cold air, 
adenosine, substance P, bradykinin, sulphur dioxide and distilled water [14]. 

Silverman and Andrea demonstrated that SCG only inhibits exercise-induced 
asthma (EIA) when inhaled before exercise. SCG given after exercise but before the 
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bronchoconstriction developed was not effective [15]. Deal et al. [16] showed that 
SCG inhibits the bronchoconstriction induced by isocapnic hyperventilation. The 
airway narrowing induced by hyperventilation of cold air was also inhibited by 
cromoglycate [17]. The role of mast cells in EIA and in the airway reaction to cold 
air is still a matter of debate and therefore no uniformly accepted hypothesis on the 
mechanism responsible for the protective activity of SCG in these clinical pharma
cology models is available. 

The airway reaction to inhaled adenosine is at least partially due to the activa
tion of mast cells, since Hrantagonists significantly inhibit the bronchoconstric
tion following the inhalation of adenosine [18]. SCG has a significant protective 
activity on the adenosine-induced bronchoconstriction. The protective activity of 
SCG in this model can be explained at least partially by a mast cell stabilizing 
activity. 

Dixon and Barnes observed a significant protective effect of SCG on the 
bradykinin- induced bronchoconstriction in mild asthmatics [19]. SCG also inhibits 
the bronchoconstriction in asthmatics induced by the inhalation of sulphur dioxide 
[20] or metabisulphite [21]. The airway reaction induced by sulphur dioxide or 
metabisulphite is significantly inhibited by anticholinergics. The bronchoconstric
tion induced by these agonists is however not inhibited by high doses of the present
ly available Hrantagonists and the role of mast cells in these types of airway reac
tions is therefore less likely. The inhibitory effect of SCG on the activation of some 
autonomic nerve fibres may playa role [14]. 

Effect of chronic treatment with sec on long-term changes in non-allergic 
airway responsiveness 
Although the administration of SCG immediately before challenge does not inhibit 
the bronchial response to methacholine or histamine, L6whagen and Rak observed 
that treatment with SCG prevented the seasonal increase in bronchial responsive
ness to histamine in pollen-allergic asthmatics [22]. The effect of SCG on airway 
responsiveness in non-allergic asthmatics is rather controversial. L6whagen and Rak 
did not observe a significant change in histamine responsiveness in non-allergic asth
ma following treatment with SCG during 8 weeks [23]. In contrast, in the study of 
Petty et al. the histamine responsiveness decreased significantly over 12 weeks in the 
SCG-treated group, although the final degree of bronchial responsiveness did not 
differ significantly from the placebo-treated group [24]. 

Clinical use 

The drug is particularly active in prevention of seasonal allergic asthma in children 
and young adults. SCG seems less effective in older patients or in patients whose 
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asthma is not allergic. However, other studies have demonstrated the clinical effica
cy of SCG in chronic asthmatics, with a decrease of concomitant medication used, 
an increase in pulmonary function and significantly fewer exacerbations (reviewed 
in [25]). On the other hand, long-term prophylactic inhalation therapy with inhaled 
SCG with a spacer device in 1-4 year old children with moderate asthma was not 
more effective than placebo [26]. 

Inhaled sodium cromoglycate may be effective in cough induced by treatment 
with an ACE-inhibitor. In a double-blind crossover study, 9 of 10 patients reported 
a reduction in cough after treatment with sodium cromoglycate. Moreover, the 
cough sensitivity to capsaicin was significantly reduced by treatment with cromo
glycate [27]. 

SCG has to be taken by inhalation and has a relatively short duration of action, 
,requiring administration every 3 to 4 h. SCG is a safe drug. Long-term follow-up 
studies have shown no serious side-effects [28]. Local irritation of the throat or an 
occasional mild bronchospasm are more often seen with the dry powder prepara
tion than with the nebulizer and the metered dose inhaler. 

Nedocromil sodium 

Nedocromil sodium is a pyranoquinoline dicarboxylic acid that has been developed 
for the treatment of bronchial asthma. Several clinical trials have demonstrated the 
therapeutic efficacy of this relatively new prophylactic agent in the treatment of 
asthma. 

Cellular effects of nedocromil sodium 

In vitro studies of human eosinophils, neutrophils, mast cells, and bronchoalveolar 
cells demonstrate that nedocromil sodium exerts its anti-inflammatory effects 
through regulation of mediator production and release from these cells as well as 
modulation of inflammatory cell migration. Nedocromil sodium inhibits chemo
taxis of human eosinophils and neutrophils induced by platelet activating factor 
(PAF), zymosan activated serum (ZAS), leukotriene B4 (LTB4), or N-formyl
methionyl-Ieucylphenylalanine (fMLP) in healthy adults. Both nedocromil and cro
moglycate are similarly effective in inhibiting neutrophil chemotaxis induced by 
PAF, ZAS, LTB4, and fMLP. In vitro neutrophil migration was inhibited by 35% 
after incubation with nedocromil sodium 10-6 moUl. Nedocromil sodium also 
affects the release of a wide variety of inflammatory mediators from various cells 
(reviewed in [29]). Nedocromil sodium inhibits IgE and IgG4 production in human 
B cells stimulated with IL-4, presumably at the level of switching, as does SCG. The 
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same authors also demonstrated that nedocromil sodium inhibits the production of 
IgM, IgG1, IgG2, IgG3, IgG4, IgA, and IgA2 by tonsillar B cells stimulated with S. 
aureus Cowan strain I and IL-6 without affecting proliferation, suggesting that 
nedocromil sodium may act as a B cell regulatory reagent, thus modulating allergic 
inflammation [9]. 

Interleukin (IL)-6 production by alveolar macrophages obtained from patients 
with asthma, and stimulated by allergen and anti-IgE [30] and IL-1 induced pro
duction of IL-8 by cultured human bronchial epithelial cells from normal bronchi 
[31] was inhibited in vitro by nedocromil sodium. However, no effect was 
observed on the ozone-induced synthesis of IL-8 by bronchial epithelial cells in 
vitro, whereas nedocromil sodium clearly inhibited release of GM-CSF, TNFa. and 
sICAM by these cells [32]. The increased release of GM-CSF induced by IL-1 in 
bronchial epithelium obtained from patients undergoing surgery was inhibited by 
nedocromil sodium 10-6 moUl, although the constitutive production was not 
affected [33]. The effect of nedocromil sodium on leakage of plasma proteins into 
the airway lumen - a feature of chronic inflammation - was assessed by Schoon
brood et al. [34]. There was a very limited effect of treatment on PEF and FEVl , 

and no effect on symptom score. However, a decrease was noted for the plasma 
protein leakage as measured in the sputum sol phase. The maximal effect occurred 
after 4 weeks of treatment. This reduction of protein exudation suggests that 
nedocromil sodium has anti-inflammatory properties, the mechanism of which is 
not known [34]. 

It appears that nedocromil sodium may not be able to alter the resident airway 
inflammatory cells in mild to moderate asthmatics [35]. Recently, the effect of 
nedocromil sodium was compared with regular albuterol and albuterol as required, 
on inflammatory changes in bronchial mucosal biopsies and BAL, obtained before 
and 4 months after treatment. No significant alteration in the number of inflamma
tory cells was observed, but there was a decrease in the number of eosinophils with 
nedocromil sodium and an increase with albuterol [36]. Contradictory results have 
been reported with regard to inhibitory effects of nedocromil sodium on the release 
of LTC4 from stimulated eosinophils and on the release of superoxide anion and 
LTB4 by stimulated neutrophils. Histamine release from mast cells obtained by 
bronchoalveolar lavage from healthy volunteers and asthmatic patients was inhibit
ed more readily by nedocromil sodium than by cromoglycate [37]. Nedocromil sodi
um also inhibits histamine release within asthmatic airways following hyperosmo
lar saline challenge [38]. 

The neurogenic component of asthmatic inflammation is also inhibited by 
nedocromil 'sodium. In guinea pigs, noncholinergic, tachykinin-mediated airway 
contraction was found to be inhibited by pretreatment with nedocromil [39]. 

It is apparent from these studies that the mechanism of action of nedocromil 
sodium in the treatment of asthma is broad. The precise mechanism by which this 
drug exerts its antiinflammatory effect in man remains unclear. 
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Clinical pharmacology: protective effect of nedocromil sodium in bronchial 
challenges 

Effect of nedocromil on airway reactions following allergen challenge 
Pretreatment with nedocromil significantly inhibits the immediate reaction and the 
late reaction following allergen challenge. The inhalation of nedocromil following 
the immediate reaction partially but significantly reduced the magnitude of the late 
asthmatic reaction [40]. Inhalation of nedocromil sodium 15 min before house dust 
mite challenge inhibited the early and late reactions, with a greater protective effect 
against the late reaction, in 11 of 14 patients with asthma and positive skin tests for 
Dermatophagoides pteronyssinus allergen. There was also a significant improve
ment in bronchial hyperresponsiveness 3 and 24 h after challenge [41]. However, 
when given after the occurrence of the early-phase asthmatic reaction, nedocromil 
sodium was not able to prevent the development of the late reaction: it delayed the 
onset by 1.5 h. The allergen-induced increase of bronchial responsiveness was not 
prevented [42]. 

Effect of nedocromil on airway reactions following challenge with non-aller
gic stimuli 
Pretreatment with nedocromil immediately before challenge does not modify the 
airway responsiveness to histamine or methacholine [14]. However, the inhalation 
of 2 or 4 mg of nedocromil significantly inhibits the airway response to almost all 
indirect stimuli. Nedocromil shares this protective activity with cromoglycate but is 
more potent in protecting against non-allergic stimuli involving neuronal activation 
such as metabisulphite and bradykinin. 

Crimi et al. have compared the protective effect of 4 mg of nedocromil, 10 mg of 
cromoglycate and placebo against adenosine challenge [43]. Both agents had a sig
nificant protective effect and nedocromil was significantly better than cromoglycate 
at the doses used. This study confirmed an investigation by Altounyan et al. [44]. 

Joos et al. investigated the protective effect of nedocromil against neurokinin A
induced bronchoconstriction: 4 mg of nedocromil almost completely prevented the 
dose-dependent bronchoconstriction induced in asthmatics by the inhalation of neu
rokinin A [45]. Crimi et al. confirmed the protective activity of nedocromil against 
neuropeptide-induced bronchoconstriction. The inhalation of 4 mg of nedocromil 
30 min before inhalation challenge with substance P significantly increased the dose 
of substance P necessary to decrease the FEV! by 20% [46]. 

Dixon et al. studied the effect of nedocromil on the bronchospasm induced by 
sulphur dioxide in a group of six asthmatics [20]. Both 2 and 4 mg of nedocromil 
significantly inhibited the bronchoconstriction and dyspnoea, but using metabisul
phite instead of sulphur dioxide, Dixon and Ind investigated in two double-blind, 
placebo-controlled studies the protective effect of 4 mg of nedocromil, 200 Ilg of 

158 



Mast cell stabilizing drugs 

ipratropium bromide or 180 mg of terfenadine [21]. Both ipratropium and 
nedocromil were protective and nedocromil almost completely prevented any bron
choconstrictive reaction to metabisulphite. The fact that terfenadine had no protec
tive activity attests to the negligible role of the mast cell in this airway reaction. 
Wright et al. compared the protective effect of 8 mg of nedocromil with that of 4 mg 
of cromoglycate against metabisulphite challenge in a larger group of asthmatics. 
Nedocromil blocked the response to metabisulphite in 15 out of 20 asthmatics, 
whilst this dose of cromoglycate was only protective in three out of 20 subjects [47]. 

Dixon and Barnes compared the protective effect of 4 mg of nedocromil, 10 mg 
of cromoglycate and placebo against bradykinin challenge in eight asthmatics. Both 
drugs had significant protective activity, nedocromil being slightly better than cro
moglycate [19]. 

Robuschi et al. compared 4 mg of nedocromil to placebo in a study using chal
lenge with distilled water. Nedocromil significantly inhibited the fog-induced bron
choconstriction [48]. Along the same line, Roberts and Thomson demonstrated that 
2 and 4 mg of nedocromil, inhaled 25 min before exercise, significantly protected 
against ElA [49]. 

Juniper et al. studied the effect of 1, 2 and 4 mg of nedocromil on the bron
chospasm induced by the hyperventilation of cold air in a placebo-controlled study 
in 12 asthmatics. The response to cold air was measured at 20, 90 and 300 min after 
inhalation of the drug. All three doses has a significant protective effect at 20 min, 
but later on the protective effect of nedocromil was no longer significant [50]. 

Effect of prolonged treatment with nedocromil on airway responsiveness 
Dorward et al. compared nedocromil to placebo in a double-blind cross-over study 
in pollen-sensitive asthmatics. The active treatment period had a duration of 2 
weeks and nedocromil was inhaled at a dose of 4 mg bid. Nedocromil significantly 
prevented the seasonal increase in airway responsiveness to histamine [51]. 

Orefice et al. investigated the effect of chronic treatment with nedocromil on 
methacholine responsiveness in asthmatics [52]. Patients were treated with 4 mg of 
nedocromil q.d.s. or placebo, and this was added to their usual antiasthma treat
ment. A significant decrease in the airway responsiveness to methacholine was 
observed at 8 and 12 weeks of nedrocromil treatment. 

In a parallel-group study design, Bel et al. compared the effect of 4 mg of 
nedocromil, 100 /-lg of beclomethasone dipropionate and placebo, given four times 
per day for 4 months, on methacholine responsiveness in non-steroid-dependent non
atopic asthmatics. Both nedocromil and beclomethasone diproprionate significantly 
decreased the airway responsiveness to methacholine after 8 weeks of treatment [53]. 
In contrast, beclomethasone 200 /-lg twice or 4 times daily for 6 to 8 weeks was more 
effective than nedocromil sodium 4 mg twice or 4 times daily for the same period in 
reducing bronchial hyperreactivity to histamine and distilled water [54]. 
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Nedocromil-sodium: therapeutic efficacy in asthma 

Two double-blind, double-placebo, randomized cross-over studies compared the 
effects of nedocromil sodium with continuous P2-agonist treatment [55, 56]. 
Effects of nedocromil sodium and salbutamol (sal) treatment were investigated in 
allergic, mild to moderately severe asthmatics. Both studies showed a significant 
decrease in symptom scores and diurnal PEF variation during nedocromil sodium 
compared with sal treatment. In addition, de Jong et al. also showed a significant 
increase in PC20 propranolol (0.5 doubling concentrations) and morning PEF (16 
UMin) and a decrease in day-to-day PEF variation and rescue ipratropium bro
mide use (0.6 puffs/day) [56]. Wasserman et al. showed that regular treatment with 
nedocromil sodium provided a greater level of asthma symptom control than reg
\lIar treatment with albuterol with a significantly greater improvement in daytime 
and nighttime asthma and morning chest tightness [57]. Quality of life was evalu
ated in a year long, double-blind, placebo-controlled comparative study with 
nedocromil sodium. The impacts component of the St.George's Respiratory Ques
tionnaire was significantly improved in patients receiving nedocromil sodium (4 
mg), as were night-time asthma, asthma severity at clinic and daytime inhaled 
bronchodilator use [58]. 

The effects of nedocromil sodium added to treatment with bronchodilators 
were investigated in seven placebo-controlled, group comparative studies in adults 
with mild to moderate, mostly allergic asthma (reviewed in [29]). Patients were 
maintained on oral and/or inhaled bronchodilator therapy and received nedocromil 
sodium or placebo after a baseline period of 2 to 4 weeks. Most of the studies 
showed a significant increase in FEV1 (0.2-0.5 L) and PEF (10-75 Umin), a 
decrease in P2-agonist use (1-3 puffs/day), and an improvement of total symptom 
scores during nedocromil sodium compared with placebo treatment. The morning 
PEF values during nedocromil sodium therapy continued to increase over the peri
od of treatment [59]. 

Nedocromil sodium versus corticosteroids 

Inhaled corticosteroids are very effective anti-inflammatory agents in the treatment 
of asthma. Investigations into the effects of nedocromil sodium compared with cor
ticosteroids can be classified into three categories: (1) Nedocromil sodium compared 
with inhaled corticosteroids; (2) the addition of nedocromil sodium and the ability 
of patieats to reduce their concomitant corticosteroid therapy without further dete
rioration of their asthma; and (3) the effects of nedocromil sodium added to corti
costeroid inhalation. 
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The effects of nedocromil sodium compared with inhaled corticosteroid 
therapy 
In two placebo-controlled studies both nedocromil sodium (16 mg/d) and 
beclomethasone (400 Ilg/d) significantly improved symptom scores when compared 
with placebo. FEV 1 also improved during both treatments, but significantly more 
with beclomethasone than with nedocromil sodium treatment. Bel et al. demon
strated a significant improvement in airway hyperresponsiveness, as measured by 
the PC20 methacholine, both during nedocromil sodium and beclomethasone (1.5 
and 1. 7 doubling concentrations, respectively) compared with placebo treatment, in 
nonatopic patients [53]. In three crossover studies in mostly allergic asthmatics both 
beclomethasone and nedocromil sodium were significantly better at improving PC20 
histamine (1 to 3 doubling concentrations) but beclomethasone improved the PC20 
values significantly more compared with nedocromil sodium (reviewed in [29]). 

Addition of nedocromil sodium to corticosteroid therapy: steroid sparing 
effect? 
In six placebo-controlled studies (reviewed in [29]) attempts were made to reduce 
the doses of inhaled or oral corticosteroids. About half of the patients were allergic, 
with mild to severe asthma. Paananen et al. stopped inhaled corticosteroids after 3 
weeks of active treatment. The results showed a general impairment in PEF values 
and symptom scores, an increase in I3ragonist use and a high number of dropouts 
during both nedocromil sodium and placebo treatment. Ruffin et al. and Bone et al. 
halved the amount of inhaled corticosteroids during the baseline period, to make 
asthma unstable. During nedocromil sodium treatment, PEF values (20 Llmin) and 
symptom scores and 132-agonist use improved significantly compared to placebo. 

In a group of steroid-dependent chronic asthmatic patients, with a mean oral 
prednisolone use of > 8 mg/day, it was not possible to reduce the amount of pred
nisolone significantly more during nedocromil sodium compared with placebo treat
ment. None of the clinical outcome parameters (FEV1, PEF values, 132-agonist use 
and symptoms scores) changed in either treatment group [60]. In another study [61] 
a significantly greater reduction of the oral steroid dose during nedocromil sodium 
treatment was achieved, compared with placebo treatment. However, there was no 
change in FEV1, PEF or symptom scores. During nedocromil sodium treatment the 
132-agonist use was increased, as was the use in the placebo group. 

In a placebo-controlled study, Orefice et al. compared the effects of treatment 
with nedocromil sodium (16 mg/day) with cromoglycate (40 mg/day) and beclo
methasone (1500 Ilg/day) [62]. Compared with placebo, all patients managed to 
improve FEV1 (0.2 1) and PC20 methacholine (1.2 doubling doses). 132-agonist use 
and symptom scores decreased significantly during beclomethasone, compared with 
beclomethasone and placebo treatment, but not in comparison with nedocromil 
sodium treatment. However the four treatment groups are difficult to compare 

161 



Guy F. Joos et al. 

because all patients, with the exception of the beclomethasone group, received the 
oral corticosteroid daflazacort. 

The effects of nedocromil sodium when added to the treatment of patients 
already inhaling corticosteroids 
The effects of nedocromil sodium (8-16 mg/day), added to the therapy of subjects 
who were mostly steroid-dependent with stable, moderate to severe asthma were 
investigated in five placebo-controlled studies (reviewed in [29]). Most of the stud
ies showed significant improvements in PEF values (14-30 Llmin) and symptom 
scores, and decreases in 132-agonist use (about 1 puff/day) in patients treated with 
nedocromil sodium, compared with placebo. In contrast to patients not receiving 
corticosteroids, the addition of nedocromil sodium to corticosteroids leads only to 
an improvement in PEF during the first 4 to 8 weeks, reaching a plateau at that time 
without further improvement. 

In spite of these confounding factors, many studies have demonstrated the non
steroidal anti-inflammatory drug nedocromil sodium to be effective. To summarize: 

(i) Nedocromil sodium treatment is clearly superior to placebo and in some stud
ies it provides better clinical improvement compared to continuous bron
chodilator therapy. 

(ii) Several studies demonstrate that the effects of nedocromil sodium (16 mg/day) 
are equal to these of beclomethasone (400 llg/day) for some outcome parame
ters. For changes in symptom score and 132-agonist use beclomethasone gives 
significantly better results. 

(iii) No conclusive data can be drawn from studies replacing corticosteroid treat
ment with nedocromil sodium, because the withdrawal of corticosteroids was 
too rapid and the amounts used too great. 

(iv) Nedocromil sodium seems to be effective especially in mild to moderate aller
gic and non allergic asthma. 

(v) There may be an important role for nedocromil sodium as an additional ther
apy in patients already using high doses of inhaled corticosteroids. 

(iv) Compared with inhaled cromoglycate (4 x 10 mg/day), nedocromil sodium (4 
x 4 mg/day) is more effective in reducing asthma symptoms and extra bron
chodilator use. In patients more than 50 years old, there seems to be no differ
ence in the efficacy of the two drugs. 

(vii) It is still not clear whether nedocromil sodium can be used as a steroid sparing agent. 

Nedocromil sodium and steroid-resistant asthma 
Some patients with asthma respond poorly to corticosteroids and have persistent 
airway inflammation and daily clinical symptoms. Marin et al. demonstrated that 
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inhaled nedocromil sodium improves pulmonary function and decreased asthma 
severity in steroid-resistent asthma [63]. 

Nedocromil sodium and COPD 

The effect of 10 weeks of treatment with nedocromil sodium in non-allergic subjects 
with COPD was reported. Nedocromil sodium failed to improve clinical parameters 
(airway responsiveness to histamine, methacholine, AMP, pulmonary function and 
symptom scores). The only difference with placebo was seen in the lower number of 
dropouts (because of exacerbations). Also both patients and clinicians favoured 
treatment with nedocromil sodium [64]. 

Safety 

No major side-effects have been noted during the therapeutic evaluation with 
nedocromil. The drug has an excellent safety profile up to the present. The most fre
quent side-effect is unpleasant taste and occasionally local irritation of the throat 
and the airways. Some patients treated with nedocromil may also experience 
headache. 

Summary and conclusion 

Cromoglycate and nedocromil work through a number of different mechanisms. 
Their original designation as "mast cell stabilizing agents" is an oversimplification of 
their multiple pharmacological activities. According to the international guidelines [1] 
cromolyn sodium and nedocromil are considered to be long-term-control medications. 
They have a mild to moderate anti-inflammatory effect and can be the initial choice 
for long-term-control therapy in children. They can also be used as preventive treat
ment prior to exercise or unavoidable exposure to known allergens. Safety is one of 
the primary advantages of these agents. A therapeutic response often occurs within 2 
weeks, but a 4-to-6 week trial may be needed to determine the maximum benefit. 
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Introduction 

Human bronchial asthma is a chronic disorder of the airways, associated in most 
cases with atopy (i.e. specific immunoglobulin E responses to allergens), and char
acterised by a range of abnormalities on various levels. Early definitions of asthma 
stressed the aspects of variable lung function, reversible spontaneously or with treat
ment, but more recent definitions also place emphasis on the underlying airway 
inflammation that is thought to promote bronchial hyperresponsiveness [1]. The 
asthma syndrome comprises firstly, clinical symptoms, such as chest tightness, dys
pnoea, coughing, and/or wheeze, secondly, pathophysiological features, such as 
variable airway obstruction and bronchial hyperresponsiveness (BHR) to a variety 
of stimuli which may be physical (e.g. cold dry air, hyperlhypotonic saline), phar
macological (e.g. histamine, methacholine), chemical (e.g. S02), or physiological 
(e.g. exercise), and thirdly, pathohistological parameters, particularly eosinophilic 
airway inflammation, resulting in structural changes within the airways ("airway 
remodelling") [2,3]. Asthma may occur in varying degrees of severity ranging from 
intermittent to severe persistent forms [1]. 

Airway inflammation plays a central role in the pathogenesis of asthma [2]. 
Hence, in recent asthma management guidelines, anti-inflammatory therapy ("con
troller" medication, mostly inhaled corticosteroids) is advocated as first-line treat
ment of persistent asthma, in combination with "reliever" medication (specific P2-
bronchodilators) as required for rescue medication [1]. Despite the well-document
ed effectiveness and relative safety of these drugs, too many asthmatic patients are 
still being treated sub optimally, resulting in a poor quality of life [4]. The reasons 
for suboptimal treatment include poor compliance with treatment, sometimes due 
to misunderstanding by patients of the different roles of anti-inflammatory prophy
laxis and bronchodilator "rescue" drugs, and sometimes due to largely misplaced 
anxiety about adverse drug effects, particularly with corticosteroids. In addition, a 
world-wide trend of increasing prevalence, morbidity, and mortality of asthma has 
been observed in the last decade [1]. Therefore, many research groups have sought 
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alternative anti-inflammatory drugs, preferably to be combined with bronchodila
tor activity. The anti-Ieukotriene (anti-LT) drugs seem to comply with this profile. 

Experimental models of asthma 

In preclinical studies, exacerbations of asthma can be mimicked in appropriate 
patients by a number of well-documented models including exercise and aspirin 
challenge, inhalation of allergen or ozone, experimental virus infections, or even 
withdrawal of regular anti-asthma controller treatment [5]. 

The characteristics of the allergen challenge model make it one of the most suit
able systems for intervention studies with experimental anti-asthma drugs. Inhala
tion of a specific allergen by a sensitive asthmatic patient induces acute airway nar
rowing, the so-called early asthmatic response (EAR), usually defined as a fall in 
forced expiratory volume in 1 s (FEV t ) of at least 20% from baseline [6]. The EAR 
involves IgE-triggered mast cell mediator release, predominantly causing acute air
way smooth muscle contraction, occurring within 10 min after allergen inhalation 
and mostly recovering within 3 h [6, 7]. In approximately 50% of cases, the EAR 
is followed by a late asthmatic response (LAR) at 3-7 h, defined as a fall in FEVt 

of at least 15% from baseline [6]. The LAR is characterised by inflammatory 
events within the airways in which activated eosinophils are thought to playa key 
role. In particular, airway oedema and mucus hypersecretion, as well as airway 
smooth muscle contraction, may make significant contributions to airflow obstruc
tion in the LAR. Eosinophil release of pro-inflammatory mediators and basic pro
teins may induce the subsequent BHR which may last for several days or weeks fol
lowing the LAR [7-9], perhaps due to damage to the airway epithelium which 
allows greater access of airborne irritants to the bronchial submucosa. The LAR is 
thus thought to mimic the underlying pathophysiological changes in the asthmatic 
aIrway. 

Despite many advantages for the investigator, experimental models of asthma 
can only reflect the acute inflammatory processes occurring within the airways dur
ing exacerbations of asthma. Inflammatory changes in clinical asthma may occur 
in response to persistent exposure to low levels of airborne allergens or sensitising 
chemicals, rather than the large bolus doses of allergens and stimuli administered 
in the laboratory. Long-term follow-up studies in patients with persistent asthma 
are therefore essential to evaluate the possible effects of novel anti-asthma thera
pies on the chronic, structural changes which determine clinical outcome. Both 
types of intervention have been applied with anti-LT drugs [10]. Although airway 
inflammation and remodelling involve complex networks of inflammatory cells 
and mediators, the central role of the leukotriene family of mediators in these 
processes has been amply demonstrated by the surprising effectiveness of anti-LT 
drugs. 
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Leukotrienes and human lung cells 

The leukotriene synthetic pathway 

The eicosanoids are a heterogeneous group of biologically-active mediators derived 
from the 20-carbon fatty acid arachidonic acid, and include leukotrienes (LTs), 
prostaglandins (PGs), thromboxane (TX), lipoxins (LX), and hydroxylated deriva
tives (HETEs)[11]. Leukotrienes are derived from arachidonic acid via the 5-lipoxy
genase (5-LO) pathway (Fig. 1) [11, 12]. 5-LO is a 78 kDa haem protein found in 
the cytosol of a limited number of resting cells of myeloid origin [13, 14]. 5-LO acti
vating protein (FLAP), an 18 kDa nuclear membrane-bound protein, is essential for 
translation and activation of 5-LO, together with Ca2+ and ATP [15, 16]. First, free 
arachidonic acid cleaved from membrane phospholipids by cytosolic phospholipase 
Az or other phospholipases, is donated by FLAP to 5-LO, which converts it to 5-
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hydroperoxy-eicosatetraenoic acid (5-HPETE) and thence to the unstable epoxide 
LTA4. Subsequently, depending on cell-type, LTA4 is converted either to LTB4 by 
LTA4 hydrolase [17], or to the first of the cysteinyl-Ieukotrienes (cys-LTs), LTC4, by 
LTC4 synthase [18]. LTC4 synthase, a homodimer of 16.6 kDa subunits, is an inte
gral membrane protein with striking sequence homology to FLAP [19]. Following 
carrier-mediated export from the cell [20], LTC4 is metabolized via LTD4 to the rel
atively stable LTE4 by extracellular enzymes found in lung tissue and plasma [21, 
22]. Both LTE4 and LTB4 are then degraded by co- and ~-oxidation in the liver [23]. 
LTB4 may also be rapidly degraded by co-oxidation within activated neutrophils at 
the inflammatory site [24]. A small proportion (about 5%) of total systemic LTC4 
is excreted unchanged as LTE4 in the urine [25]. 

Actions of leukotrienes on human lung cells 

While LTB4 is predominantly synthesized by monocytes, macrophages, and neu
trophils, cys-LTs are mainly produced by mast cells, basophils, and eosinophils [11, 
12,26-31]. Monocyte-macrophages may also contribute to cys-LT formation. Both 
subfamilies of leukotrienes possess distinct biologic properties which may account 
for many of the features of asthma, as well as of other inflammatory diseases [11, 
12, 32, 33]. LTB4 is a potent chemoattractant and activator of neutrophils, mono
cytes, and eosinophils in several species in vitro and in vivo [11, 12, 34, 35], but 
does not contract human airway smooth muscle [36]. In contrast, cys-LTs are 
exquisitely potent in contracting airway smooth muscle in normals and asthmatics 
[37-40]. They are also potent enhancers of airway microvascular permeability, 
resulting in oedema, and they stimulate mucus secretion [41, 42]. Furthermore, 
recent evidence shows that cys-LTs also possess potent and specific chemoattractant 
activity for eosinophils in animals and humans both in vitro and in vivo [35,43-45]. 
This is in contrast to other chemoattractant lipids such as platelet-activating factor 
(PAF) and LTB4 which also attract neutrophils. 

Leukotriene receptors 

The pro-inflammatory effects of leukotrienes are mediated by stimulation of specif
ic receptors [46]. Although bronchoconstriction of isolated human airways by cys
LTs is mediated by a direct effect at specific receptors on airway smooth muscle [36], 
such effects may be supplemented or modulated in whole lung in vivo by secondary 
release of other pro-inflammatory mediators, such as neuropeptides [47]. While 
LTB4 is likely to occupy a distinct receptor, the BLT receptor [11], many details of 
cys-LT receptor pharmacology remain to be clarified. In guinea-pig airways, distinct 
receptor subtypes have been isolated for LTC4 and LTD4, termed LTRc and LTRd 
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respectively [48, 49]. The latter has been characterised as a 45 kDa membrane pro
tein [50]. Conflicting data exist on possible receptor heterogeneity in human air
ways. Investigations with an early leukotriene receptor antagonist (FPL-55712) in 
isolated human airways suggested that all cys-LTs interact with a single receptor 
[51], whereas binding studies with pH]-leukotriene radio ligands pointed to the exis
tence of two distinct cys-LT receptors: one for LTD4 and LTE4, and a second for 
LTC4 [46]. Such experiments may be confounded by non-specific binding of 3H
LTC4 to cell-associated enzymes including LTC4 synthase, or to the y-glutamyl 
transpeptidase which converts LTC4 to LTD4. Recent evidence however suggests 
heterogeneity of cys-LT receptors in different tissues; LTC4 and LTD4 are regarded 
as full agonists, and LTE4 as a partial agonist at cys-LT 1 receptors located on airway 
smooth muscle, which mediate airway smooth muscle contraction, while cys-LT2 
receptors, located in the smooth muscle of pulmonary arteries and veins, mediate 
relaxation [46, 52]. Among the cys-LT receptor antagonists, all of which block the 
cys-LTl receptor, only Bay u9773 also blocks the cys-LT2 receptor [52]. In addition, 
evidence has been provided for similar (auxiliary?) receptors located on human pul
monary vein endothelial cells, which are likely to bear both cys-LTl receptors, asso
ciated with contraction, and cys-LT2 receptors, which mediate relaxation [46]. The 
further development of potent, selective antagonists for each receptor subtype 
should clarify the role and mechanism of action of these receptors subsets in the 
pathophysiology of asthma. 

Detection of endogenous leukotriene production 

A number of studies have detected the release of cys-LTs into relevant body com
partments in clinical asthma and in various challenge models of asthma. Inhaled 
allergen challenge of atopic asthmatics causes significant rises in BAL fluid LTC4 
levels 5 min after challenge [53] and in urinary LTE41eveis within 4 h [54]. The for
mer is accompanied by rises in BAL fluid histamine, tryptase, and PGD2, suggesting 
that all four mediators are released by degranulating mast cells. In symptomatic 
patients with atopic asthma, increased levels of LTB4 and/or cys-LTs have been 
demonstrated in the exhaled breath condensate, and in biological fluids including 
.blood, urine, sputum, and bronchoalveolar lavage fluid [54-64]. This generation of 
leukotrienes may either result from direct activation of inflammatory cells [7, 28], 
or from secondary release by other mediators, such as platelet activating factor 
(PAF) [65], or bradykinin [66]. Despite conflicting data on cys-LT production fol
lowing exercise or isocapnic hyperventilation of cold and/or dry air [67-72], sever
al intervention studies using anti-LT drugs have attested that leukotrienes are likely 
to be involved in the bronchoconstriction induced by these challenges [10, 73]. 

In aspirin-sensitive asthmatic patients, who are mostly non-atopic [74], basal 
production of cys-LTs is particularly exaggerated, as reflected by increased urinary 
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LTE4 levels as compared to aspirin-tolerant asthmatics or normals [75]. Challenge 
with oral aspirin or inhaled lysine-aspirin produces significant increases in BAL fluid 
and urinary cys-LTs only in aspirin-intolerant asthmatics [76, 77], probably because 
NSAIDs remove the chronic suppression of cys-LT synthesis by endogenous PGE2 

[78]. The increased basal cys-LT synthesis in aspirin-intolerant asthmatics, and the 
BHR to inhaled NSAIDs, are closely related to markedly higher expression of LTC4 
synthase, the terminal enzyme for cys-LT synthesis, in the bronchial wall of these 
patients [79]. This is due partly to chronically increased numbers of bronchial 
mucosal eosinophils in aspirin-intolerant asthmatics [79, 80], and partly to the high
er proportion of eosinophils expressing the enzyme, compared to aspirin-tolerant 
asthmatics [79]. In addition, evidence exists for a selective target organ hypersensi
tivity to LTE4 in patients with aspirin-induced asthma [81]. 

Effects of inhaled leukotrienes in man 

Upon inhalation, cys-LTs induce clinical symptoms of asthma, including bron
choconstriction [82, 83]. The cys-LTs are several orders of magnitude more potent 
than other bronchoconstrictors such as histamine and PGD2, and the bron
choconstriction is longer-lived, lasting 30-40 min compared to the 5-10 min 
response to histamine. Inhaled cys-LTs also cause increased bronchial responsive
ness both in normal and asthmatic individuals [82, 85-87], although late phase 
responses to inhaled cys-LTs are not reported [88]. In addition, recent studies in 
asthmatic patients have shown selective influx of eosinophils into the airway in 
bronchial biopsies [44], and in hypertonic saline-induced sputum [45], 4 h after 
inhalation of LTE4 and LTD4, respectively. Furthermore, strong evidence exists 
from animal studies that cys-LTs may contribute to the development of structural 
changes within the airways, particularly by increasing the airway smooth muscle 
mass [89-91]. Apart from airway smooth muscle hypertrophy/hyperplasia, this 
airway remodelling is characterised by loss of airway epithelium and thickening of 
the airway wall through deposition of fibronectin and collagen [2, 92], and, from 
the pathophysiological point of view, it is a major determinant of excessive airway 
narrowing which may cause serious clinical symptoms [93]. In contrast to the cys
LTs, inhalation of LTB4 by normal or atopic asthmatic subjects does not cause 
acute bronchoconstriction and does not change bronchial responsiveness to hista
mine [94]. 

Anti-Ieukotriene drugs 

Despite the possible involvement of other pro-inflammatory mediators such as his
tamine, prostanoids, and platelet activating factor in asthma [56-58], therapy with 
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experimental drugs directed against single mediators have mostly shown disap
pointing results in the treatment of asthma, especially in the case of PAF antagonists 
[95]. The anti-LT drugs are exceptions to this rule. Two categories of anti-LT agents 
have been developed. Firstly, the leukotriene receptor antagonists (LTRA) block 
either cys-LT receptors (cys-LT1) or LTB4 receptors (BLT), and secondly, the 
leukotriene synthesis inhibitors (LTSls) which block either 5-LO activity or FLAP 
activity (Fig. 1), and hence prevent the synthesis both of cys-LTs and of LTB4 [10]. 
Little evidence exists of any meaningful differences in the therapeutic benefits of 
LTSls compared to cysLTRAs . 

leukotriene B4 receptor (BlT) antagonists 

LTB4 has potent chemotactic activity on neutrophils and eosinophils both in vitro 
[33] and in vivo [34], and increased LTB4 leveis have been reported in body fluids 
of symptomatic asthmatics [60, 61, 63]. Both neutrophils and eosinophils recruit
ed to the airways of asthmatics by segmental allergen challenge show decreased 
migratory responses to LTB4 in vitro [96, 97], suggesting desensitisation following 
exposure to endogenous LTB4 in vivo. Similarly, in normals, inhalation of LTB4 
causes a rapid blood neutropaenia due to margination of circulating neutrophils 
within the lung vasculature, but patients with stable mild persistent asthma show 
an attenuated response [98], again suggesting neutrophil desensitisation due to 
prior exposure to excess endogenous LTB4. Potent (but non-selective) chemoat
tractants such as LTB4 may cause specific eosinophil migration in atopic subjects, 
whose eosinophils may be primed by specific (but weak) chemokines such as inter
leukin-5 [99]. 

Specific BLT receptor antagonists have been developed. So far, few such com
pounds have been applied in human studies of asthma. In sensitized guinea-pigs, the 
BLT antagonist U-75302 considerably reduced peribronchial eosinophil infiltration 
following antigen challenge, without affecting neutrophil migration [100]. Howev
er, this was not confirmed in humans in vivo with the BLT receptor antagonist LY-
293111 [101]. In the latter study, LY-293111 failed to protect against allergen
induced bronchoconstriction, and had no effect on bronchial responsiveness to his
tamine, despite significant decreases in neutrophil counts and in myeloperoxidase 
levels in BAL fluid 24 h after challenge [101]. The role of neutrophils and of LTB4 
in allergen-induced airway responses is still under debate [7, 8, 102, 103]. Hence, 
BLT receptor antagonists may have greater effects in models in which neutrophils 
are likely to playa more prominent role, such as ozone inhalation, occupational 
asthma, or experimental virus infections [103]. Evidence for the involvement of neu
trophils in sudden-onset fatal asthma [104] and in nocturnal asthma [105] rein
forces the need to examine anti-LT drugs in clinically-relevant models other than 
allergen challenge. 
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Cysteinyl-Ieukotriene receptor (cys-LT1) antagonists (cysLTRAs) 

The cys-LT receptor antagonists (cysLTRAs) antagonize the effects of cys-LTs at the 
cys-LTl receptor [51]. The first drugs in this category to be evaluated in humans in 
vivo included FPL-55712, L-648051, L-649923, LY-171883 (tomelukast), LY-
170680 (sulukast), RG-12525 and SKF-104353 (pobilukast) [106-112]. These 
compounds had relatively low potency, producing a rightward shift in the LTD4 
dose-response curve of only three to 12-fold. Lack of potency, and in some cases 
undesirable side effects, led to the development of most of these compounds being 
suspended. In the past 6-7 years, more potent and/or selective cysLTRAs have been 
developed, among which pranlukast (SB-205312; Ultair or Onon), zafirlukast (ICI 
204219; Accolate) and montelukast (MK-0476; Singulair) have been registered, or 
are close to registration, in a number of countries including the USA, Japan, and sev
eral countries in Europe [10]. These compounds are administered orally at a rec
ommended rate of once or twice daily. 

The cysLTRAs have a dual mechanism of action. Firstly, these agents have bron
chodilator activity, which is additive to ~2-agonists in patients with mild to moder
ate persistent asthma [113, 114]. This suggests that part of their efficacy relies on 
blockade of LT-induced airway oedema and/or mucus hypersecretion, as well as on 
blocking LT-induced airway smooth muscle contraction. In the inhaled allergen 
challenge model, potent cysLTRAs inhibit 75-88% of the early response (EAR) and 
54-63% of the late response (LAR) [10]. Furthermore, cysLTRAs provide clinical
ly significant protection against bronchoconstriction induced by inhaled lysine
aspirin [115] or exercise challenge [116] in susceptible patients (Tab. 1). Secondly, 
strong evidence exists for anti-inflammatory activity of cysLTRA [117-122], in that 
they reduce airway inflammatory cell counts and mediator levels, reduce bronchial 
hyperresponsiveness, and allow reductions in steroid dosage, suggesting modulation 
of the underlying disease processes (Tab. 2). 

Clinical effects of cysLTRAs 

An increasing number of long-term follow-up studies investigating cysLTRAs in 
clinical asthma are currently being performed. Consequently, many results are not 
yet published in full. Several studies in patients with different gradations of asth
ma have been reported, showing that pranlukast, zafirlukast and montelukast, 
alone or, in combination with anti-inflammatory anti-asthma therapy (mostly theo
phylline or corticosteroids), are capable of improving both clinical criteria and 
lung function parameters (Tab. 2). In these studies, more or less comparable in
creases in lung function parameters (FEV1 and peak flow) have been measured, 
which are dose- and duration-dependent, and often accompanied by clinically sig-
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nificant decreases in daytime and nighttime symptom scores, and in ~2-agonist use 
in patients with mild to moderate, or with moderate to severe persistent asthma 
(Tab. 2) [122-125]. 

Apart from bronchodilation, cysLTRAs possess anti-inflammatory properties, 
also dependent on the dose and duration of treatment [117-122, 126-128]. In stud
ies in patients with moderate to severe persistent asthma, 6 to 12 weeks of treatment 
with various cysLTRAs had a steroid-sparing effect [120-122]. Moreover, oral pran
lukast produced small but significant decreases in baseline bronchial responsiveness 
to methacholine after only 1 week of treatment in patients with stable asthma [121], 
and this was sustained for up to 24 weeks [128]. Two- to five-fold reductions in 
baseline bronchial responsiveness to methacholine are obtained with 2-12 weeks of 
treatment with oral zafirlukast in mild to moderate atopic asthmatics [129]. One 
week of treatment with oral zafirlukast also produces a significant decrease in 
basophils and eosinophils in the BAL fluid of patients with mild to moderate atopic 
asthma 48 h following segmental allergen challenge [117]. Similarly, 4 weeks of 
treatment with oral montelukast provided a significant reduction in sputum 
eosinophils in patients with mild to moderate persistent asthma [127]. These stud
ies clearly indicate that cysLTRAs are capable of reducing airway eosinophilia and 
the associated BHR in clinical asthma. 

Leukotriene synthesis inhibitors 

Since LTB4, as well as cys-LTs, may contribute to chronic airway inflammation in 
asthma, pharmacological agents have been developed (LTSIs) which block the syn
thesis of both leukotriene subfamilies, by inhibiting 5-lipoxygenase activity (5-LO 
inhibitors) or 5-LO activating protein activity (FLAP antagonists) (Fig. 1). Fewer 
long-term clinical studies of LTSIs have been published compared to cysLTRA tri
als, and direct comparison is complicated by the trend for LTSI in slightly more 
severe asthma patient groups than those investigated in cysLTRA trials. However, 
LTSIs appear to provide improvements in clinical and lung function parameters in 
asthma comparable to those obtained with the cysLTRAs (Tabs. 1 and 2). 

Clinical effects of LTSls 

In repeated-dose studies in asthma, most experience has been accumulated with the 
first generation S-LO inhibitor zileuton, mostly at oral doses of either 400 or 600 
mg q.i.d. [130] (Tab. 2). Zileuton (formally Leutrol™, Zyflo) has recently been reg
istered for treatment of asthma in the United States. Besides, the FLAP antagonists 
MK-0591 and BAY-xl00S have also shown improvements in clinical and lung func
tion parameters after 4 to 6 weeks of treatment [131, 132]. 
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Considerable dose-dependent improvements in clinical symptoms and in lung 
function, together with a steroid-sparing effect, have been reported in patients with 
mild to moderate persistent asthma after 6 months of treatment with oral zileuton 
[133]. Using a similar treatment protocol, a steroid-sparing effect of zileuton was 
also demonstrated after 13 weeks treatment in patients with moderate to severe per
sistent asthma [134]. Further evidence for anti-inflammatory activity of this LTSI 
has been provided by other long-term studies [135-139]. In aspirin-intolerant asth
matics using corticosteroids, 6 weeks of treatment with oral zileuton produced a sig
nificant, additional improvement in clinical symptoms, lung function, and non-spe
cific BHR [135]. In patients with mild to moderate persistent asthma, 13 weeks of 
treatment with oral zileuton provided adequate protection against bronchoconstric
tion induced by cold, dry air [136]. Unexpectedly, this protection persisted for up to 
10 days after discontinuation of treatment, long after the end of the washout peri
od of this short-lived drug (half life: 2.3 h), suggesting a modulatory effect of 
leukotriene inhibition on airway inflammation. The ability of zileuton to reduce 
BHR was comparable to that achieved with high-dose inhaled corticosteroid (budes
onide), and better than that achievable with theophylline, cromoglycate, or a ~T 
agonist [136]. In another study in asthmatic patients treated with inhaled corticos
teroids for at least 6 months, a single oral dose of zileuton (400 mg) significantly 
reduced BHR to inhaled histamine (2.1 doubling doses) and to distilled water (1.3 
doubling doses), without affecting baseline FEV1 [137]. Furthermore, in atopic asth
matic patients, 8 days of pretreatment with oral zileuton not only reduced BAL fluid 
and urinary LTE4levels (by about 85%) 24 h after segmental allergen challenge, but 
also significantly reduced BAL eosinophil counts by over 60%, with trends to lower 
basophil and macrophage counts and to reduced BAL fluid levels of eosinophil 
cationic protein (ECP) [138]. In patients with mild to moderate persistent asthma, 
7 days of treatment with zileuton significantly reduced baseline LTB4 and cys-LT 
levels in BAL fluid and reduced urinary LTE4 excretion, and showed a trend for 
improvement in nocturnal FEV1 [139]. Moreover, these effects were accompanied 
by a significant decrease in the percentage of eosinophils both in the BAL fluid and 
in peripheral blood [139]. Among the group of drugs capable of reducing 
eosinophilia in asthma, which includes corticosteroids and cromones, onlyanti-LT 
agents have a clearly-defined and specific mechanism of action, proving that blood 
and airway eosinophilia in asthma are due, to a significant degree, to endogenous 
leukotriene production. 

Adverse effects of anti-Ieukotriene drugs 

Anti-Ieukotriene drugs are generally well-tolerated. Most cysLTRAs such as zafir
lukast show only a low rate of side-effects including headache, gastrointestinal tract 
disturbance, incidental infections, and rash, and most of these adverse effects are 
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seen in a similar proportion of patients in the placebo group, suggesting that they 
are not drug-related [140]. However, about 4.5% of patients receiving the LTSI drug 
zileuton had elevations in hepatic aminotransferase levels compared to only 1.1 % 
of the placebo group [134]. The elevations in hepatic enzymes were reversible either 
spontaneously following continued treatment for 2-3 months, or by discontinuation 
of treatment. In the USA, the FDA recommend regular liver function monitoring in 
patients receiving zileuton. Caution may also need to be exercised in reducing 
steroid dosage drastically if asthma symptoms improve with concomitant anti-LT 
drug therapy, as rare cases of re-emergence of underlying hypereosinophilia (Churg
Strauss syndrome) have been reported. 

The place of anti-Ieukotriene therapy in current asthma management 
guidelines 

Recently, a consensus has emerged in long-term asthma management, which empha
sises the need for a stepwise approach covering the spectrum from intermittent to 
severe persistent asthma, with early intervention with strenuous anti-inflammatory 
therapy when required [1, 141]. The guidelines also stress the need for educating 
health professionals and patients to expect high standards of asthma control, and 
for self-monitoring of lung function and to allow step-down in medication levels 
when good control is achieved. In intermittent asthma, occasional ~2-agonist use 
may be all that is required. In persistent asthma, anti-inflammatory therapy is rec
ommended in combination with bronchodilators p.r.n., depending on the frequency 
and severity of the clinical symptoms and pathophysiological parameters (Tab. 3). 

The anti-LT agents are an entirely new approach which combines both bron
chodilator ("reliever") and anti-inflammatory ("controller") properties in one fam
ily of drugs. Their efficacy has been demonstrated across the spectrum of disease 
severity. However, their efficacy may vary between patients at each level of severity, 
probably linked to recent observations of a non-responder minority [142, 143], 
who, although asthmatic, are unable to generate leukotrienes due to polymorphism 
in the 5-LO gene promoter [144]. The improvements achievable within the majori
ty "responder" group may therefore be commensurately better than anticipated 
from the average values reported in studies where the two sub-groups are not dis
tinguished. Experience in clinical trials and in clinical practice suggests that anti-LT 
drug therapy can be discontinued if no response is apparent within the first 2 
months of treatment. At the opposite extreme, spectacular improvements in objec
tive and subjective measures of quality of life can sometimes be observed in small 
numbers of responder patients. 

Although anti-LT drugs are very unlikely to replace the corticosteroids, particu
larly in the treatment of severe persistent asthma, and are likely to be used in con
junction with ~ragonist rescue medication, their place in the management of asth-
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rna seems justified [145]. Revised guidelines for their positioning in asthma man
agement will suggest that they are indicated as first-line treatment in specific asth
ma phenotypes, including most patients with aspirin-induced asthma [146, 147], 
and also in patients with intermittent or mild persistent asthma who regularly expe
rience exercise-induced bronchoconstriction [136, 147]. In studies comparing the 
effects of pobilukast or zafirlukast with cromoglycate, these cysLTRAs provided at 
least equivalent protection against exercise-induced bronchoconstriction, with a bet
ter recovery than cromoglycate [148, 149]. Furthermore, in patients with more 
severe asthma (moderate to severe persistent), who need daily medication with high 
doses of inhaled or oral corticosteroids, anti-LT drugs may be useful because of their 
steroid-sparing effect [119, 120]. Moreover, their beneficial effects both on clinical 
and pathophysiological parameters, in combination with a relatively good side
effect, profile, make anti-LT therapy a promising approach in children and adoles
cents [149, 150]. An additional advantage is the favourable pharmacokinetic profile 
of some of these compounds: with some cysLTRAs, a single oral dose may provide 
protection for 24 h [120, 127, 150]. This is likely to enhance compliance with ther
apy. 

In summary, following years of intensive research into the inflammatory basis of 
asthma, a novel generation of rationally-targeted drugs has been added to the cur
rent armoury of asthma medication. Anti-LT drugs represent the first entirely novel 
approach to asthma therapy since the introduction of inhaled corticosteroids over 
25 years ago. Their ultimate position in asthma management will depend upon their 
effects on the pathophysiology and histopathology of the asthmatic lung. To realise 
the full potential of this new development, further long-term studies are required to 
compare the ability of anti-LT therapy to modulate airway inflammation in asthma 
with that of adequate doses of corticosteroids and other current asthma therapies. 
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Introduction 

Airway inflammation is fundamental to the disease process in chronic asthma. Dif
ferent components of the immune system play important roles in perpetuating and 
orchestrating this inflammatory response. Many types of cells are involved, the air
way epithelium is shed; eosinophils, T lymphocytes, polymorphonuclear cells, mast 
cells, and macrophages are present in an activated state and release proinflammato
ry mediators, cytokines and growth factors. From inflammation, a process of heal
ing and repair may follow and this has been postulated to lead to remodeling of the 
airways. 

This immunological basis underlying asthma is increasingly recognised and may 
explain many of the pathophysiological features characteristic of asthma. Recently, 
considerable interest and emphasis have been put on a subtype of CD4+T lympho
cytes, termed type 2 T helper cells (Th2) .These Th2 cells preferentially elaborate 
and release cytokines such as interleukin-4 and 5 that promote eosinophilic inflam
mation. Although not all asthmatics are atopic, they all share similar pathologic fea
tures, which supports the importance of these CD4+ T lymphocytes in the patho
physiology of chronic asthma [1]. 

Many of the established therapies in asthma, notably corticosteriods, have their 
clinical activity because they affect these immunologically important cells. Theo
phylline, traditionally considered a bronchodilator, has now been shown to have 
immuno-modulatory effects with evidence for regulation of the expression of CD4 + 
and CD8+ cells in the airway (see Chapter by Tenor and Schudt, this volume). The 
concept of modulating or suppressing the immune system using other therapeutic 
agents forms the theoretical basis for the use of immunosuppressants to treat 
patients with severe and difficult-to-control asthma. 

Patients with severe chronic asthma currently represent a management problem. 
They may need long-term oral corticosteroids in addition to high doses of inhaled 
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corticosteroids and additional bronchodilators to control their asthma. Many of 
these individuals become chronically dependent on oral corticosteroids and suffer 
the side-effects arising from their chronic use. Despite this, they are often sympto
matic and their daily activities are severely restricted. 

Modulating the immune system in chronic asthma 

Currently, drugs that suppress the immune system may be divided into three cate
gories: first, anti-inflammatory agents such as those of the corticosteroid family and 
gold; secondly, cytotoxic dugs such as methotrexate and azathioprine; and thirdly, 
fungal and bacterial derivatives, such as cyclosporin A and tacrolimus (FKS06), 
which inhibit signaling events by T lymphocytes. 

Corticosteroids are by far the most effective agent to suppress unwanted immune 
responses in the airways of chronic asthmatics (see Chapter by Barnes, this volume). 
The introduction of inhaled steroids has revolutionized the management of asthma 
worldwide. Nevertheless, these agents are only partially successful in treating the 
more severe asthmatics, many of whom are dependent on oral corticosteroids. The 
use of other potent anti-inflammatory/immunosuppressive agents may have partic
ular value in such patients. 

Cytotoxic drugs inhibit all proliferating cells indiscriminately, including those of 
the immune system. Their toxicity and uncertain safety in long-term use would limit 
their use in treatment of many immune-mediated diseases. Immunosuppressants 
such as cyclosporin A, however, have a more selective action on immune cells, in 
particular T lymphocytes, and thus leave other cells relatively unaffected, potential
ly limiting the extent of unwanted cytotoxic side-effects. 

The clinical use of intravenous serum immune globulin (IVIG) in severe asth
matics, has also received some attention in view of its increasingly recognised bene
ficial effect in treating other immune-mediated diseases, an effect which is distinct 
from simple replacement of immunoglobulins. Many of these efficacies observed are 
believed to be related to a variety of "immune-modulatory" activities that IVIG pos
sesses. 

Other experimental "immunomodulators" are presently being investigated. 
They include anti CD4+ lymphocyte monoclonal antibody, anti-IgE agents (see 
Chapter by Patalano, this volume) and cytokine receptor antagonists (see Chapter 
by Foster and Hogan, this volume). These new agents represent exciting challenges 
to our present understanding of the immunopathogenesis of severe asthma and may 
provide potentially effective alternative treatment for asthma patients. This chapter 
will focus on the use of immunosuppressants and IVIG as immunomodulators. 
These agents have primarily been assessed for their potential to reduce the require
ments for corticosteroid ("steroid-sparing") on which many patients become depen
dent. 
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Gold 

The exact mechanism by which gold salts exert their anti-inflammatory activity is 
unknown. They have been shown to inhibit IgE-mediated release of histamine and 
leukotriene C4 from human basophils and mast cells [2]. Gold also interferes with 
T cell function, which may partly explain its efficacy in rheumatoid arthritis. Oth
erwise its ability to arrest progression of disease and induce apparent remission 
("disease modifying") in rheumatoid arthritis is largely unexplained. 

The clinical use of oral gold (auranofin) in corticosteroid-dependent asthmatics 
has been studied in several trials. The first [3] was an open trial involving 20 recruits 
who showed an improvement in symptoms and a reduced frequency of asthma 
attacks. They also had reduced bronchial reactivity to methacholine and a 34% 
reduction in corticosteroid requirement. Following this, a controlled trial [4] in 32 
corticosteroid dependent asthma patients given oral gold (3 mg twice daily) or 
placebo for 26 weeks also showed promising results. The gold treated group showed 
a statistically significant reduction in oral corticosteroid use and the number of asth
ma exacerbations requiring rescue courses of corticosteroid, together with a small 
improvement in lung function compared to the placebo group. More recently, a 
double-blind study of the effect of oral gold (3 mg twice daily) or placebo over 12 
weeks in 19 mild non-corticosteroid dependent asthma patients showed a greater 
reduction in bronchial responsiveness to methacholine in those treated with gold 
[5]. 

Recently, a large trial of oral gold therapy in corticosteroid-dependent asthmat
ics has been reported [6]. 275 patients were recruited in this placebo-controlled, 
double-blind, multicentre U.S. study and patients were followed-up over a 9-month 
period. On completion, 60% of the gold-treated patients achieved a 50% reduction 
in oral corticosteroid requirement, while only 32 % of the placebo-treated patients 
reached this end point. This study showed a clear "steroid-sparing" effect with gold 
therapy, although improvement were not seen until after several weeks of treat
ment. 

Gold salts are associated with side-effects. Problems include dermatitis, stomati
tis, proteinuria, blood dyscrasias, deranged liver function and gastrointestinal dis
turbances. However they usually resolve after reducing or stopping treatment. 

Hydroxychloroquine 

Hydroxychloroquine can inhibit phospholipase Ab an enzyme involved in the 
release of arachidonic acid from membrane phospholipids. This could potentially 
lead to a reduction in the production of leukotrienes and prostaglandins in the air
ways, many of which are bronchoconstrictor or proinflammatory. Hydroxychloro-
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quine is mainly used as an antimalarial agent but has been used in rheumatoid 
arthritis and in systemic and discoid lupus erythematosus. 

The steroid-sparing effect of hydroxychloroquine was first suggested in a case 
report in 1983 [7]. However, a placebo-controlled, crossover trial [8] in nine 
steroid-dependent asthmatics over 9 weeks did not show any steroid-sparing effect 
nor were there any significant difference in symptom scores, lung function or 
requirement for 13 agonists. Another open trial [9] performed in 11 asthmatic 
patients for 28 weeks with hydrochloroquine (300-400 mg daily) reported 
improvement in lung function and symptom scores. The dose of corticosteroid was 
reduced in seven corticosteroid-dependent asthmatics by 50%. The absence of a 
control group in this study makes any useful interpretation of results difficult. A 
serious side-effect of irreversible retinal damage caused by hydroxychloroquine is 
rare except in overdose. 

Methotrexate 

Methotrexate is an antimetabolite that acts by causing folate coenzyme deficiency 
in all cells. When administered in low doses (10 to 15 mg weekly), methotrexate 
possesses anti-inflammatory properties which can be used to treat chronic inflam
matory disorders such as rheumatoid arthritis and severe psoriasis. It can inhibit 
neutrophil chemotaxis and interleukin-l (IL-l) production from activated peri
toneal macro phages in animal models as well as inhibit histamine release from 
human basophils. 

The results from a number of "steroid-sparing" studies with low dose metho
trexate have produced both positive and negative results. The general trend however 
is of a positive effect. Mullarkey and colleagues [10] performed the first randomised, 
double-blind, crossover study of 22 steroid-dependent asthmatics, requiring at least 
10 mg prednisolone a day. They showed that treatment with oral methotrexate 
(15 mg/week) for 12 weeks could result in a 36% reduction in oral steroid require
ment compared to placebo. There were also subjective improvements in asthma 
symptoms without deterioration in pulmonary function. 

The largest placebo-controlled study was performed by Shiner et al. [11] involv
ing 69 corticosteroid-dependent asthmatics randomised to receive oral methotrex
ate (15 mg/week) or placebo for 24 weeks. At the end of the study there was a 
greater reduction in prednisolone dose in the methotrexate treated group than in the 
placebo treated group (50% versus 14%). However this benefit was not seen in the 
first 10·weeks after commencing treatment compared to placebo and was not sus
tainable after cessation of treatment. There were fewer asthma exacerbations dur
ing methotrexate treatment while symptom scores and lung function remained sta
ble throughout the study. Recently, in a meta-analysis of 11 controlled trials [12], 
the author showed that low-dose oral methotrexate used in severe asthmatics has a 
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statistically significant steroid-sparing effect. Overall steroid usage was decreased by 
23.7% (4.37 mg prednisolone/ day) from baseline. 

The adverse effects reported with the use of low dose methotrexate in these tri
als include nausea, anorexia, transient liver enzyme elevations, dermatitis and 
myelosuppression. These effects are dose-related and usually disappear when 
methotrexate is discontinued or the dose reduced. The more serious side-effects that 
have been reported with the use of methotrexate are opportunistic infections with 
Pneumocystis carinii [13, 14], varicella-zoster pneumonia [15], pulmonary crypto
coccosis [16], nocardiosis [17], and pulmonary as well as hepatic fibrosis. 

Azathioprine 

Azathioprine is an antimetabolite which by being incorporated into cellular DNA, 
prevents cell division. It has been shown to suppress T cell mediated immunity and 
is therefore useful in prevention of allograft rejection. It is used for patients with 
severe rheumatoid arthritis and has also been used in chronic inflammatory bowel 
diseases. 

It has been investigated in two short and small scale clinical trials. Asmundsson 
et al. [18] showed in an open study that on improvement in lung function and a 
reduction in asthma exacerbations were possible in selected patients with asthma, 
but not with chronic bronchitis, following 12-week treatment with azathioprine. 
However in a later study [19] where 20 patients with corticosteroid dependent asth
ma were randomised to receive placebo or azathioprine, 2 mg/kg or 5 mg/kg! day 
for 3 and 4 weeks respectively, there were no improvements in symptoms or lung 
function in the actively treated group compared to placebo. Corticosteroid dose was 
held constant throughout the study. The adverse effects experienced included mild 
dyspepsia and dose-related myelosuppression. Based on its mode of action, azathio
prine should be effective but in the absence of controlled trials, it is difficult to advo
cate its use. 

Cyclosporin A 

Cyclosporin A (CsA) is a cyclic undecapeptide produced by the fungus Tolypocladi
um inflatum: It inhibits the activation of T lymphocytes [20], the production of 
cytokines such as IL-2, IL-4, IL-5 and tumour necrosis factor-a. (TNFa.) and the 
release of histamine and leukotriene C4 from mast cells and basophils [21]. 

The introduction of CsA has provided an entirely new approach to immuno
suppression in organ transplantion. By virtue of its selective ability to inhibit 
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activation of T cells, it can be used at therapeutic concentrations which do not 
cause myelosuppression, unlike those of other cytotoxic immunosuppressants. 
This relatively selective activity has been useful in the treatment of severe psori
asis, atopic dermatitis, anterior uveitis and Crohn's disease with varying degrees 
of success. 

The first study was a placebo-controlled, crossover study in 33 steroid-depen
dent asthmatics giving low dose oral CsA (5 mg/kg/day) [22]. At the end of 12 
weeks, the CsA treated group showed a significant improvement in pulmonary 
function and a reduction in the number of asthma exacerbations requiring extra 
prednisolone compared to placebo treated subjects. Corticosteroid doses were 
kept constant throughout this period apart from when required to treat exacerba
tions. 

Two subsequent controlled studies were performed to address the issue of 
"steroid-sparing" effect of CsA. Nizankowska et al. [23] in a double-blind, place
bo-controlled study of 34· corticosteroid-dependent asthma patients showed that 
CsA therapy could only confer slight benefit over placebo treatment in terms of oral 
corticosteroid reduction and subjective parameters of asthma severity. Lung func
tion showed no significant difference between the groups at the end of the study. 
This result is in contrast to another study [24] in which 39 corticosteroid-dependent 
asthmatics were randomised to receive either CsA or placebo for 36 weeks. CsA 
therapy resulted in reduction in median prednisolone dose of 62% (10 to 3.5 mg) 
compared with a decrease of 25% (10 to 7.5 mg) in placebo-treated patients. This 
reduction with CsA therapy was most pronounced during the last 12 weeks of treat
ment. There were improvements in peak expiratory flow rate despite reduction in 
corticosteroid use following CsA therapy. However upon stopping treatment, 
steroid requirements returned to baseline values. 

The main adverse effect of low-dose CsA is decreased renal function. In studies 
to date which have been less than 12 months in duration, renal impairment has not 
been a significant problem especially when whole blood CsA is maintained between 
100 and 200 ng/ml. Any decrease in renal function is reversible upon stopping 
treatment. Other side-effects however have occasionally led to discontinued treat
ment. These include hypertrichosis, hypertension and neuropathy. 

CsA has a more selective action (i.e. to CD4+ helper T lymphocytes) compared 
to other immunosuppressants which affect all dividing cells. However it also has 
activity on mast cells and basophils which have recognised roles in the pathogene
sis of asthma. In a recent double-blind, placebo-controlled study assessing the effect 
of CsA on allergen induced bronchoconstriction, it was demonstrated that the late 
asthmatic response (thought to be mainly T cell mediated) could be abrogated by 
CsA while the early asthmatic response (mainly mast cell mediated) was unaffected 
[25]. This lends support to the hypothesis that the effects of CsA in asthma are relat
ed to inhibition of T lymphocytes rather than mast cells. With the accumulating evi
dence to implicate T lymphocytes in "driving" the ongoing airway inflammation in 
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chronic severe asthma, CsA may be of particular value as effective alternative treat
ment in these difficult patients. 

Intravenous Serum Immune Globulin (lVIG) 

Pooled human immunoglobulin has been used to confer broad-based humoral 
immunity on immunodeficient patients since congenital agammaglobulinaemia was 
first described by Bruton in the early 1950s. These products are prepared from the 
blood of thousands of healthy donors and invariably contain a wide variety of anti
body specificities. 

Inrravenous serum immune globulin (IVIG) appears to have therapeutic effects 
in patients with diseases mediated by immune mechanisms, most notably, autoim
mune diseases such as immune thrombocytopaenia [26]. These patients are not nec
essarily lacking in any classes of immunoglobulins. This observation has now been 
extended to include other immune-mediated conditions such as myasthenia gravis, 
bullous pemphigoid and systematic lupus erythematosus. Thus IVIG may possess 
immune-modulatory properties which may be beneficial in the treatment of refrac
tory asthma. 

Two early open clinical trials of IVIG in severe asthma were performed in chil
dren and involved small numbers of patients. The first [27] involved eight asthmat
ic children who required continuous oral corticosteroids. They were treated with 
IVIG at a dose of 1 glkg for two consecutive days each month for a total of six 
months- a dose regime similar to those used for treating autoimmune diseases. At 
the end of six months treatment, prednisolone was reduced from a mean dose of 
32 mg daily to 11 mg alternate-day therapy. Symptom scores and home peak expi
ratory flow had significantly improved. In the second open study [28], nine asth
matic adolescents who were dependent on moderately high dosage of inhaled corti
costeroid alone were treated with IVIG for 5 months at a mean dosage of 0.8 glkg 
on a single day each month. Of these nine patients, six were able to reduce dosages 
of inhaled corticosteroid from a mean of 720 mcg/day to 400 mcg/day. Their asth
ma symptoms as well as bronchial reactivity to histamine were also reduced. This 
benefit was not maintained 10 months after completion of scheduled therapy. This 
study suggested that the effect of IVIG was apparent even in moderately severe asth
matic patients not requiring oral corticosteroids, albeit small and short-lived. 

Recently, preliminary results of a multicentre, double-blind, placebo-controlled 
trial of IVIG in oral corticosteroid-dependent asthmatics has been reported [29]. 
Forty patients were randomised to receive either placebo (albumin 2 g/kg) or IVIG 
at dose of 1 g/kg or 2 glkg , administered once a month for 7 months. At the end of 
the scheduled therapy, both groups receiving active treatment showed a 41 % reduc
tion in their oral corticosteroid requirement, compared to a 30% reduction in place
bo-treated group. This difference did not reach statistical significance. Adverse 
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experiences reported were similar in both actively treated groups and were more 
frequent than in those treated with placebo. 

The results from this controlled trial, studying the "steroid-sparing" effect of 
MG in oral corticosteroid-dependent asthmatics do not seem to support its use. 
The authors however recognised the highly heterogenous nature of the studied pop
ulation which may be reflected in the marked placebo effect. Nevertheless the effec
tiveness of IVIG in severe asthmatics should now be treated more cautiously in view 
of the findings in this controlled trial. 

The most common side-effects relating to MG were post-infusion headache, 
fever and rigors. They appear to be temporary and the severity could be overcome 
by reducing the infusion dose of immunoglobulin. This phenomenon is largely unex
plained but may be due to formation of antigen-antibody complexes. MG has also 
been associated with aseptic meningitis [30]. 

How may MG mediate· improvement in asthmatics patients? Over 90% of MG 
is monomeric IgG with only a small proportion of other immunoglobulins such as 
IgA and IgM. Many of the effects of MG observed in autoimmune diseases espe
cially in immune cytopaenias appear to be mediated by the Fc portion of IgG 
through the Fcg receptor on phagocytic and other cells. Binding of these Fc portions 
to the receptor sites can either inhibit or modulate phagocytic functions resulting in 
disease control. Such modulation of Fcy receptor bearing monocytic/phagocytic cells 
can also affect both T and B lymphocytes, influencing both cellular and humoral 
immune responses. 

We now know that MG preparations also contain many other substances such 
as solubilized membrane components, and possibly important solubilized receptors, 
as well as specific antibodies to HLA determinants and lymphocyte surface mole
cules. In fact solubilized CD4, solubilized CD8, HLA class I and class II determi
nants have been isolated from commercial IVIG preparations [31]. These cell sur
face molecules could interfere with antigen presentation by blocking the interaction 
between HLA class II and membrane-bound CD4 on T cells or between HLA class 
I and CD8 in T cell-mediated cytotoxicity. Specific antibodies to HLA determinants 
and lymphocyte surface molecules could similarly affect the immune regulation of 
T cells. This perhaps explains why large amounts of IVIG preparation are required 
for clinical benefit to be realized. 

Key issues in the use of immunosuppressive therapy 

All immunosuppressive therapies have potentially serious adverse effects. Therefore 
their clinical use should be confined to asthmatic patients who are dependent on 
unacceptably high maintenance doses of corticosteroids. The side-effects of corti
costeroids are usually not troublesome until doses in excess of 7.5 mg prednisolone 
per day (above the physiologic level) are used over a long period of time. 
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The first question is how effective immunosuppressive agents are in patients with 
severe chronic corticosteroid-dependent asthma, whether they are administered as 
adjunctive or alternative ("steroid-sparing") therapy. Secondly, how does the toxic
ity of such agents compare to the reduction in unwanted side-effects of corticos
teroids? Can short-term administration of these agents provide sustainable benefits, 
and therefore improve the long-term outlook for these patients? 

Many of the activities of these agents are felt to be "additive" to the anti-inflam
matory /immunosuppressive actions aimed at by the use of corticosteroids. In doing 
so, some of the effects of corticosteroids can be "replaced" and their requirement 
reduced. Most studies primarily aimed at assessing their "steroid-sparing" efficacy. 
Whether there is any unique benefit conveyed from administration of one agent 
compared to another, is unclear at the moment until there are studies specifically 
designed to address this issue. 

"Steroid-sparing" capability of immunosuppressive agents 

Of the agents studied, methotrexate, cyclosporin A and gold provide more consis
tent evidence of a "steroid-sparing" benefit. At present, hydroxychoroquine have 
not been adequately assessed in larger, controlled trials for potential "steroid-spar
ing" effect, nor has azathioprine shown proof of clinical benefit when added to the 
steroid regime of studied populations of asthmatics. The "steroid-sparing" effect of 
IVIG appears to be minimal. The administration of IVIG can be costly despite the 
attractiveness of its relatively "benign" side-effects when compared to those 
observed with immunosuppressants. 

The mean reduction in prednisolone use is possibly in the range of 0-9.5 mg/day 
with methotrexate and 0-5 mg/day with CsA and gold, as suggested from these tri
als. This indicates that the mean overall "steroid-sparing" effect of these immuno
suppressants is modest. However, it is important to recognise that individual 
responses to immunosuppressive agents, whether in terms of benefit or side-effects, 
are unpredictable. This creates the difficulty in trying to equate benefit and risk for 
any single individual with certainty. 

For some asthmatic responders, a small reduction of 5 mg prednisolone/day may 
perhaps be all that is required to significantly reduce the side-effects caused by cor
ticosteroids whilst experiencing no adverse effects from the use of immunosuppres
sants. However the converse can also be true in that patients may suffer consider
able side-effects from taking these immunosuppressants while experiencing little 
success in {educing corticosteroid dosage. This consideration may be further com
pounded by an observation in a recent meta-analysis of low-dose methotrexate [12], 
that greater steroid sparing benefit occurred in those who took lower doses of oral 
steroids (::::;20 mg/day). This may be because these patients are less intractable than 
those requiring higher doses of corticosteroids. 
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Safety and clinical benefits from short-term use of immunosuppressive 
agents 

Long-term depression of immune surveillance by immunosuppressive agents 
increases the incidence of malignancy seen in patients after allograft transplant [32]. 
However the incidence of malignancy with use of these agents in autoimmune dis
eases is much lower, probably due to the lower doses used and the shorter treatment 
periods employed. If possible, only a short duration of treatment with immunosup
pressants should be used in treating severe asthma. 

Unwanted side-effects associated with different immunosuppressants have been 
discussed earlier. They may be equally or even more unpleasant to those resulting 
from corticosteroids. Sometimes, they are distressing enough to warrant discontin
uing treatment. The increased risk of opportunistic viral, bacterial and fungal infec
tions should always be borne in mind when using immunosuppressants. These can 
develop rapidly and may on occasion be fatal. It is therefore important for both 
physicians and patients to be vigilant for any signs of infection and to respond 
appropriately. 

The "steroid-sparing" effect from these immunosuppressive agents is observed to 
be short-lived. Corticosteroid requirement seems to return to baseline values after 
immunosuppressive agents are discontinued, although some studies have reported 
success in stopping all asthma medications or lasting improvements in lung function 
after gold and CsA treatment [4, 22, 33]. Some observed rebound exacerbations of 
asthma within 6 weeks following 18 months' treatment with CsA [34]. However it 
is conceivable that such potent agents could have "reset" the level of airway inflam
mation and perhaps made airway disease more amenable to subsequent treatment. 
In fact this has been claimed to occur in patients who responded to relatively long
term therapy (18 to 28 months) of low-dose methotrexate [35]. They responded 
more rapidly to doses of prednisolone that were ineffective prior to the use of 
methotrexate and tolerated more rapid reductions in corticosteroids than before 
methotrexate treatment. 

Practical considerations in the use of immunosuppressive therapy 

The clinical use of immunosuppressive therapy should be restricted to physicians 
familiar with the management of chronic severe asthmatics and the pharmacology 
of these agents. The oral steroid dose should be reduced to the lowest possible level 
to maintain symptom control prior to the use of immunosuppressants. In doing so, 
the benefit/risk ratio of adding immunosuppressants to existing asthma medication 
can be accurately assessed and treatment adjusted accordingly. Prior to commenc
ing immunosuppressants, it is essential to exclude other factors which may be 
responsible for poor control such as non-compliance with medication, hyperventi-
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lation, occupational factors, continued exposure to specific allergens and significant 
gastroesophageal reflux disease. Issues concerning the pharmacokinetics of corti
costeroids may require consideration especially in an individual who receives high 
doses of corticosteroids and fails to demonstrate any "anticipated" side-effects. This 
involves questions of whether there is insufficient corticosteroid absorption from the 
gastrointestinal tract or accelerated catabolism/elimination from the body. Here, 
measurement of plasma prednisolone levels may be useful. Close monitoring of rou
tine blood and urine tests is also essential, and investigations will vary, depending 
on the type of immunosuppressive agents selected. 

Potential benefit from immunosuppressive agents should not be dismissed until 
a reasonable trial period has passed. Obviously if there are unacceptable adverse 
effects, these agents will have to be discontinued. The steroid-sparing benefit of 
methotrexate appears to take effect only after prolonged treatment of at least 6 
months [12]. Cyclosporin A and gold seem to act more rapidly and steroid reduc
tion may be possible within 3 months. 

In patients who respond to immunosuppressive therapy, how long should we 
continue the treatment? There are reports [35] to suggest that stopping methrotrex
ate within the first month of discontinuing oral corticosteroids could led to disease 
exacerbation. Hence it is reasonable to continue treatment for up to 6 months after 
stopping oral corticosteroids. Using this regime, some patients have managed to stay 
off continuous oral corticosteroids for over 2 years. Our experience with 
Cyclosporin A has been that patients generally relapse on stopping treatment. From 
the existing literature, it is unclear how long gold therapy should continue after 
stopping oral corticosteroids. 

It is also important to remember that improvement with immunosuppressants 
does not obviate the need for periodic rescue courses of oral steroids during disease 
exacerbations. Its chief objective is to reduce dependency on oral corticosteroids and 
may, as earlier stated, "reset" the level of airway inflammation and influence the 
natural course of disease. 

Future considerations in immunosuppressive/immune-modulatory therapy 

Inhaled route of administration 

There is obviously a need for safer immunosuppressive agents. One possibility is to 
deliver these agents by the inhaled route, thus maximising delivery to the target site 
of inflammation while reducing systemic uptake. Aerosolized cyclosporin A has 
been used in lung allograft recipients with some success [36]. Similarly, the devel
opment of inhaled formulations for other immunosuppressive agents could repre
sent a way forward for better tolerated therapy. 
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Newer immunosuppressive agents 

Rapamycin and tacrolimus (FKS06) are new immunosuppressive agents presently 
studied in the field of organ transplantion. They share a molecular structure related 
to CsA and appear to be more potent, yet less toxic than CsA [37]. Tacrolimus, like 
CsA, exerts its effects principally through alteration of T cell gene expression, while 
rapamycin blocks signal transduction mediated by interleukin-2 and other 
cytokines, therefore inhibiting T cell activation at a later stage. Another immuno
suppressant presently being evaluated is mycophenolate mofetil acid, which acts by 
inhibiting de novo synthesis of pyrimidines and purines. These agents have poten
tial in overcoming the problems of earlier immunosuppressants and may be useful 
to treat severe asthmatics. 

Experimental immune-modulatory agents 

Specifically targeting immunologically important cells/cytokines/immune-mediated 
inflammatory cascade in asthma may be another way forward. These possibilities 
are presently being explored in animal models and as yet, their potential therapeu
tic role in humans is undefined. 

As discussed earlier, CD4 + T lymphocytes are implicated in orchestrating ongo
ing airway inflammation, particularly in chronic asthma. By modulating their func
tion, the airway inflammatory process may be attenuated and disease control 
improved. Recently we have completed a small, double-blind, placebo-controlled 
study assessing the effect of a humanised antiCD4 monoclonal antibody in steroid
dependent asthmatics [38]. Our results showed that following a single infusion of 
3 mg/kg of the monoclonal antibody keliximab, an improvement in lung function 
could be observed as early as 24 h which persisted for 14 days when compared to 
placebo. The effect of repeated dosage and any "steroid-sparing" action were not 
studied. Larger, longer term trials are now being set up to investigate this further. 

Potential role of immunosuppressants in corticosteroid-resistant asthma 

Patients with corticosteroid-resistant asthma are fortunately few. The potential of 
benefit with the use of immunosuppressive therapy in this group of patients has not 
been thoroughly studied. The mechanism of steroid resistance is complex and is still 
poorly understood. Yet it is conceivable that immunosuppressive agents may bene
fit this group of patients because their mechanisms of action are primarily indepen
dent of the glucocorticoid receptor. In fact there is in vitro evidence that while stim
ulated T cell proliferation from corticosteroid-resistant asthmatics was relatively 
unaffected by corticosteroid, it was inhibited by CsA, tacrolimus and mycopheno-
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late mofetil [39]. A clinical study to specifically address this question will be most 
interesting. 

Early introduction of immunosuppressants in difficult-to-control asthma 

Asthma management has changed significantly over the last few years, in particular 
with earlier and more aggressive use of anti-inflammatory agents. This is based on 
the evidence that airway inflammation is present early in the asthma disease process 
and early introduction of anti-inflammatory agents would be a logical step in 
improving the prognosis in asthma. 

It is still unclear why certain asthmatics appear to have a more aggressive onset 
of disease. Their airway inflammation continues to be active despite being treated 
with high doses of corticosteroids. In patients such as these, should we consider 
bringing our most potent drugs, i.e. immunosuppressive drugs, into action early 
rather than late? Obviously the risk of potential toxicity should be weighed against 
the benefit of early and adequate control of airway inflammation and consequently 
reduction in longer term morbidity and indeed mortality from progressively destruc
tive disease. 

Interestingly, some open studies [40] have suggested that early introduction of 
immunosuppressants in selected groups of patients with severe asthma could reduce 
the incidence of corticosteroid dependency. Already other chronic autoimmune/ 
inflammatory diseases have been managed with such an "aggressive" approach with 
the intention of making long-term prognosis favourable. 

Conclusion 

The immunological basis of the disease of asthma is now more clearly defined than 
before. Clinical studies with existing therapeutic drugs have in fact shown immuno
suppressive or immune-modulatory activity relevant to the pathophysiology of 
chronic asthma. Corticosteroids remain our best "immunosuppressant". Many 
potent agents have been tried as adjuncts or .alternatives to corticosteroids, mostly 
in situations when side-effects from corticosteroids become unacceptable. Of these, 
methotrexate, gold salts and cyclosporin A have the best documented "steroid-spar
ing" effect in severe asthmatics. However, with increased potency comes the "price" 
of toxicity and the uncertainty of long-term beneficial effect. Their clinical use must 
therefore be weighed carefully and individually assessed. The clinical efficacy of 
intravenous serum immune globulin in severe asthma appears to be minimal despite 
the increasing recognition of its varied immune-modulatory effects and clear bene
fits in treating some autoimmune/inflammatory diseases. "Safer" and more "effec
tive" immunosuppressive/immune-modulatory agents are always needed because of 
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the clear management problem in patients with severe asthma due to the lack of 
effective alternative treatment. 

References 

1 Corrigan C, Kay AB (1992) T cells and eosinophils in the pathogenesis of asthma. 
Immunol Today 13: 501-507 

2 Marone G, Columbo M, Galeone D, Guidi G, Kagey-Sobotka A, Lichtenstein LM et al 
(1986) Modulation of the release of histamine and arachidonic acid metabolites from 
human basophils and mast cells by auranofin. Agents Actions 18: 100-102 

3 Bernstein DI, Bernstein IL, Bodenheimer SS, Pietrusko RG (1988) An open study of 
auranofin in the treatment of steroid-dependent asthma. J Allergy Clin Immunol 81: 
6-16 

4 Nierop G, Gitjzel WP, Bel EH, Zwinderman AH, Dijkman KH (1992) Auranofin in 
the treatment of steroid-dependent asthma: a double blind study. Thorax 47: 
349-354 

5 Honma M, Tamura G, Shirato K, Takishima T (1994) Effect of an oral gold compound 
auranofin, on non-specific bronchial hyper-responsiveness in mild asthma. Thorax 49: 
649-651 

6 Bernstein IL, Bernstein DI, Dubb JW, Faiferman I, Wallin B et al (1996) A placebo-con
trolled multicentre study of auroanofin in the treatment of patients with corticosteroid
dependent asthma. J Allergy Clin Immunol 98: 317-324 

7 Goldstein JA (1983) Hydroxychloroquine for asthma (letter). Am Rev Resp Dis 128: 
1100-1101 

8 Roberts JA, Gunneberg A, Elliott JA, Thomson NC (1988) Hydroxychloroquine in 
steroid dependent asthma. Pulm Pharmacoll: 59-61 

9 Charous BL (1990) Open study of hydroxychloroquine in the treatment of severe symp
tomatic or corticosteroid-dependent asthma. Ann Allergy 65: 53-58 

10 Mullarkey MF, Blumenstein BA, Pierre Andrade W, Bailey GA, Olason I, Wetzel CE 
(1988) Methotrexate in the treatment of corticosteroid-dependant asthma. New Engl J 
Med 318: 603-607 

11 Shiner RJ, Nunn AL, Fan Chung K, Geddes DM (1990) Randomised, double-blind, 
placebo-controlled trial of ·methotrexate in steroid-dependent asthma. Lancet 336: 
137-140 

12 Marin GM (1997) Low-dose methotrexate spares steroid usage in steroid-dependent 
asthmatic patients. Chest 112: 29-33 

13 Kuitert LM, Harrison AC (1991) Pneumocystis carinii pneumonia as a complication of 
methotrexate treatment of asthma. Thorax 46: 936-937 

14 Vallerand H, Cossart C, Milosevic D, Lavaud F, Leone J (1992) Fatal pneumocystis 
pneumonia in asthmatics patient treated with methotrexate. Lancet 339: 1551 

212 



Immunomodulators 

15 Gatnash AA, Connolly CK (1995) Fatal chickenpox pneumonia in an asthmatic patient 
on oral steroids and methotrexate. Thorax 50: 422-423 

16 Altz-Smith M, Kendall LG], Stamm AM (1987) Cryptococcosis associated with low
dose methotrexate for arthritis. Am] Med 83: 179-181 

17 Keegan ]M, Byrd JW (1988) Nocardiosis associated with low dose methotrexate for 
rheumatoid arthritis (letter). ] Rheumatol15: 1585-1586 

18 Asmundsson T, Kilburn KH, Lazzlo], Krock CJ (1971) Immunosuppressive therapy of 
asthma. ] Allergy 47: 136-147 

19 Hodges NG, Brewis RAL, Howell ]BL (1971) An evaluation of azathioprine in severe 
chronic asthma. Thorax 26: 734-739 

20 Kahan BD (1989) Cyclosporin. New EnglJ Med 321: 1725-1738 
21 Cirillo R, Triggiani M, Sirih et al (1990) Cyclosporin A rapidly inhibits mediator release 

from human basophils presumably by interacting with cyclophilin. ] Immunol 144: 
389-397 

22 Alexander AG, Barnes NC, Kay AB (1992) Trial of cyclosporin in corticosteroid-depen
dent chronic severe asthma. Lancet 339: 324-328 

23 Nizankowska E, Soja ], Pinis G, Bochenek G, Sladek K, Domagala B, Pajak A, Szczek
lik A (1995) Treatment of steroid-dependent bronchial asthma with cyclosporin. Eur 
RespirJ 8: 1091-1099 

24 Lock SH, Kay AB, Barnes NC (1996) Double-blind, placebo-controlled study of 
cyclosporin A as a corticosteroid-sparing agent in corticosteroid-dependent asthma. Am 
] Respir Crit Care Med 153: 509-514 

25 Sihra BS, Kon OM, Durham SR, Walker S, Barnes NC, Kay AB (1997) Effect of 
cyclosporin A on the allergen-induced late asthmatic reaction. Thorax 52: 447-452 

26 Bussel ]B, Szatrowski TP (1995) Uses of intravenous gammaglobulin in immune haema
tologic disease. Immunol Invest 24: 451-456 

27 Mazer BD, Gelfand EW (1991) An open-label study of high-dose intravenous 
immunoglobulin in severe childhood asthma. ] Allergy Clin Immunol 87: 976-983 

28 ]akobsson T, Croner S, Kjellman N, Pettersson A, Vassella C, Bjorksten B (1994) Slight 
steroid sparing effect of intravenous immunoglobulin in children and adolescents with 
moderately severe bronchial asthma. Allergy 49: 413-420 

29 Valacer D], Kishiyama ]L, Com B, Richmond GW, Bacot B, Glovsky M, Stiehm R, 
Stocks ], Rosenberg LA, Tonetta SA (1997) A multi-center, randomized, placebo-con
trolled trial of high dose intravenous gammaglobulin (MG) for oral corticosteroid
dependent asthma. Am] Respir Crit Care Med 155: A659 

30 Pallares DE, Marshall GS (1992) Acute aseptic meningitis associated with administra
tion of intravenous immunoglobulin. Am] Paediatr Hematol Oncol14: 279-281 

31 BlasczyI< R, WesthoffU, Grosse-Wilde M (1993) Soluble CD4, CD8 and HLA molecules 
in commercial immunoglobulin preparations. Lancet 341: 789-790 

32 Boitard C, Bach]F (1989) Long-term complications of conventional immunosuppressive 
treatment. Adv Nephrol18: 335-354 

33 Muranaka M, Nakajima K, Suzuki S (1981) Bronchial responsiveness to acetylcholine 

213 



Li Cher Loh and Neil C. Bames 

in patients with bronchial asthma after long-term treatment with gold salts. ] Allergy 
Clin Immunol 67: 350-356 

34 Szczeklik A, Nizankowska E, Sladek K (1992) Cyclosporin and asthma (letter). Lancet 
339: 873 

35 Mullarkey MF, Lammart JK, Blumenstein BA (1990) Long-term methotrexate treatment 
in corticosteroid-dependent asthma. Ann Intern Med 112: 577-581 

36 O'Riordan TG, Iacono A, Keenan RJ et al (1995) Delivery and distribution of aero
solized cyclosporine in lung allograft recipients. Am] Respir Crit Care Med 151: 516-
512 

37 Chang JY, Seagal SN, Bansdach C (1991) FK506 and rapamycin: novel pharmacologi
cal probes of the immune response. Trends Pharmacol Sci 12: 218-222 

38 Kon OM, Sihra BS, Compton CH, Leonard TB, Kay AB, Barnes NC (1998) Ran
domised, dose-ranging, placebo-controlled study of chimeric antibody to CD4 (kelix
imabb) in chronic severe asthma. Lancet 352: 1109-1113 

39 Corrigan q, Bungre JK, Assoufi B, Cooper AE, Seddon H, Kay AB (1996) Glucocorti
coid resistant asthma: T-lymphocyte steroid metabolism and sensitivity to glucocorti
coids and immunosuppressive agents. Eur RespirJ 9: 2077-2086 

40 Mullarkey MF (1997) Methotrexate revisited. Chest 112: 1-2 

214 



Anti-lgE agents 

Francesco Patalano 

Novartis Pharma A.G., Project Management, 5-386.12.15, CH-4002 Basel, Switzerland 

Introduction 

There is little debate over the essential role of IgE in allergic reactions. During an 
allergic response, CD4+ T lymphocytes of the Th2 phenotype stimulate allergen-spe
cific B cells to produce IgE molecules via the release of IL-4IIL-13. The receptors for 
IgE are found on a multitude of different cells and two different types have been 
identified: the high-affinity receptor (FcERI) on mast cells, basophils, and antigen
presenting cells, and the low-affinity receptor (FCERII or CD23) on B lymphocytes, 
monocytes/macrophages, eosinophils, dendritic cells, and epithelial cells. After inter
action with allergens, IgE-armed cells release a number of inflammatory mediators 
and enhance and redirect antigen presentation. This cascade of events seems to have 
a crucial role in the generation and persistence of symptoms in allergic diseases. The 
development of drugs that interfere with IgE production and function may therefore 
represent a more specific approach to treat these pathological conditions [1,2]. 

A number of different strategies have been devised to inhibit IgE synthesis on the 
basis of studies in vitro or in animal models of allergic inflammation. These studies 
have indicated that it may be possible to inhibit IgE production by using STAT-6 
inhibitors, which interfere with the signal transduction of IL-4 and IL-13 in B cells 
[3], or molecules that interfere with the binding of IL-4 to its receptor on B cells (IL-
4 antagonists and neutralizing antibodies to ILA) [4]. IgE production has also been 
shown to be partially inhibited by anti-CD23 antibodies [5]. However, no clinical 
evidence of benefit in allergic conditions has been demonstrated with these strate
gies. 

In 1976, a complete suppression of the IgE-mediated response to Nippostrongy
Ius Brasiliensis was reported in mice following treatment with specific polyclonal 
antibodies [6-8]. This set the stage for studying methods of antibody-mediated IgE 
inhibition suitable for human use and notable progress has been made since then. 
At present, the use of monoclonal antibodies that inhibit IgE function by preventing 
the binding of IgE to effector cells represents the most promising strategy for treat-
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ment of allergic diseases. In fact, it has been proven to be effective in asthma and 
allergic rhinitis, as described in the next sections. 

Development of a non-anaphylactogenic monoclonal antibody (mAb) to 
human IgE 

A therapeutically viable anti-human IgE mAb should have the following character
istics: (1) It should bind specifically to IgE to minimize the unwanted effects on the 
immune system; (2) it should not bind to IgE attached to the receptors on cell sur
faces to minimize the risk of triggering cell degranulation and mediator release; (3) 
it should not trigger immune complex diseases. 

Anti-human IgE antibodies were first described in 1981 by Hook et al. [9]. 
Later, anti-mouse IgE antibodies were shown to inhibit IgE binding to the FceRI, 
but in so doing they induced mast cell degranulation by receptor cross-linking 
[10]. This was avoided by producing mAbs that recognized IgE at the same site 
as FceRI and FceRII [11-13]. These mAbs were shown to bind to free IgE. They 
were unable to bind to IgE attached via IgE receptors to the cell surfaces [2, 13-
15]. 

Antibody 1-5 [12], TES-C21 [14] and MAE 11 [15] were rodent antibodies that 
recognized IgE at a target structure located within the Fce3 domain containing the 
binding site for FceRI. Six amino acids of the binding site (Arg-408, Ser-411, Lys-
414, Glu-452, Arg-465 and Met-468) are critically involved in the binding of IgE to 
FceRI and represented the ideal target for these non-anaphylactogenic anti-human 
IgE mAbs [15]. Since the binding site for FceRI is contained within the same domain 
as the site for FceRII, they also inhibited the binding of IgE to the low-affinity recep
tor [15-17]. 

A major factor that limited the use of these murine antibodies as therapeutic 
agents was the fact that an antigenic (anti-antibody) response can occur following 
repeated administration of xenogenic mAbs. This antigenic response can decrease 
the efficacy of the antibodies by reducing their half-life through the formation of 
antibody-anti-antibody complexes, and it carries the danger of anaphylaxis 
[18-22]. Since the antigenic response against the constant region ofaxenogenic 
mAb comprises as much as 90% of the total response, the potential for an anti-anti
body response was reduced by generating recombinant hybrid mAbs. These mAbs 
retain the mouse variable regions, and therefore retain specificity for the antigen. 
The constant regions of the immunoglobulins have been replaced by human con
stant regions. Chimeric and humanized mAbs have been generated by ligation of 
entire mouse V region genes with human constant region genes or by grafting the 
murine antigen-binding loops onto a human IgG1 subclass framework, respective
ly. Humanized recombinant mAbs possess little or no expected antigenicity [2, 
22-29]. 
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CGP 51901 and E25 are the chimeric and humanized constructs of the murine 
antibodies TES-C21 and MAEll, respectively. Most of the clinical data available 
have been obtained with these mAbs. 

Effect of anti-human IgE antibodies in atopic subjects 

The humanized antibody E25 and the chimeric antibody CGP 51901 were tested in 
a series of single and multiple dose clinical trials in subjects with elevated serum IgE. 
Their administration resulted in a dose-dependent decrease in serum free IgE levels. 

In 23 atopic subjects, single doses of 3, 10, 30, and 100 mg i.v. of CGP 51901 
induced an immediate fall in the concentration of circulating free IgE. Free serum 
IgE levels decreased by more than 95% after the highest dose, with a mean recov
ery to 50% of baseline levels by.39 days. TotalIgE (sum of IgE-anti-IgE complexes 
and free IgE) increased, indicating that clearance of the immune complex is slow 
[30]. 

E25 was also shown to induce and maintain extremely low IgE levels for a long 
period of time. In an open trial, 45 atopic subjects received 0.015 or 0.03 mg of 
E25/kg/total serum IgE i.v. every 2 weeks. After 182 days of treatment, serum IgE 
levels were still less than 2 % of the baseline value. After reducing the dose, serum 
IgE levels promptly began to return to pre-treatment values [31]. 

Antibodies against the anti-IgE mAbs were measured in all the clinical trials per
formed. A weak antigenic reaction was measured in only one of the subjects treat
ed with the chimeric antibody CGP 51901 [30] and in none of those treated with 
the humanized mAb E25. Both antibodies were well tolerated. 

Effect of anti-human IgE antibodies in allergic diseases 

Allergic rhinitis 

Two trials [32, 33] have been performed to test the efficacy of the anti-IgE mAbs in 
seasonal allergic rhinitis. 

The first trial [32] was designed to evaluate the ability of CGP 51901 to prevent 
symptoms caused by mountain cedar pollen in subjects with a history of rhinitis 
upon exposure to this pollen. The administration of CGP 51901 every 2 weeks, at 
doses of 15, 30, or 60 mg, prevented the development of symptoms during the 
pollen season in a dose-dependent manner. This effect was achieved in patients 
whose IgE levels were reduced by at least 85 % from the baseline value. In this trial, 
approximately 25% of the patients treated with the highest dose did not need addi
tional medication during the season, whereas 35 out of 36 patients in the placebo 
group needed symptomatic treatment. 
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One could speculate that repeated administration of these antibodies may allow 
recovery from chronic mucosal inflammation due to recurrent allergen exposure, 
thereby preventing or reversing some common complications of the chronic inflam
matory process, particularly sinusitis and polyps. 

Models of allergic asthma 

Antigen challenge in the laboratory represents a model for mimicking the changes 
occurring in the airways of subjects with allergic asthma after natural exposure to 
an allergen. This model has been repeatedly used in the development of antiasth
matic drugs to predict their efficacy before embarking on large and expensive trials. 
Most of the drugs capable of affecting bronchial responses to allergen inhalation, 
particularly those affecting the late asthmatic response, have been effective in the 
clinical setting. This is the ~ase with inhaled corticosteroids which have been shown 
to inhibit the late reaction by interfering with several steps of the associated inflam
matory response [34, 35]. 

The role of IgE in the development of the allergen-induced early asthmatic reac
tion is undisputed, because the early response is the result of the release of media
tors triggered by IgE cross-linking on mast cell surfaces [36]. The direct involvement 
of IgE in the late reactIOn and in the associated inflammatory and functional 
changes, such as tissue eosinophil accumulation and increased bronchial hyperre
sponsiveness, is still unclear [37]. The study of the effect of anti-IgE mAbs on aller
gen-induced early and late asthmatic reactions can therefore provide important 
information on the pathogenesis of the inflammatory response that follows allergen 
exposure, in addition to giving an indication of their therapeutic. potential in asth
ma. 

One randomized, double-blind study by Boulet and colleagues [38] tested the 
ability of E25 to affect the allergen-induced early asthmatic response. After an ini
tialloading dose of 2 mg/kg, E25 was administered i.v. to 10 allergic asthmatic indi
viduals, on study days 7, 14,28,42, 56 and 70, at a dose of 1 mg/kg. Nine indi
viduals received placebo. The allergen concentration able of inducing a 15% fall in 
FEVI (PC15) was measured on days 1, '1-7, 55, and 77. E25 administration result
ed in a significant increase in the PClS, that was 2.2 to 2.7 doubling doses higher 
than the baseline value (Fig. 1). The magnitude of this increase exceeds that report
ed with inhaled corticosteroids [39]. 

In another randomized double-blind study, Fahy and colleagues [40] tested the 
effect df E25 on the allergen-induced early and late asthmatic responses and on 
some inflammatory parameters measurable in induced sputum. Either E25 (0.5 mg/ 
kg) or placebo were administered i.v. every week for 9 weeks. Allergen challenge 
was carried out before and at the end of the treatment phase. E25 significantly 
attenuated the early asthmatic response and reduced the magnitude of the late asth-
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Effect of E25 and placebo (P) on allergen-induced bronchoconstriction measured as PC15. 

The change in allergen PC15 during treatment is reported as median change in doubling con

centrations of allergen and 25th-75th quartiles [38]. Reproduced by permission. 

matic response by more than 60% (Fig. 2). These effects were statistically signifi
cant versus placebo (p = 0.01 for the early response and p = 0.047 for the late 
response). In addition, the airway hyperresponsiveness to inhaled methacholine 
measured 24 h after allergen inhalation was significantly lower at the end of treat
ment with E25 than before. E25 administration had a small overall effect on inflam
matory parameters as compared to placebo, probably because higher concentrations 
of the allergen were inhaled after E25 administration than after placebo. However, 
the allergen-induced increase in the number of eosinophils and the release of 
eosinophil cationic protein in sputum were lower after treatment with the anti-IgE 
mAb than before (all p < 0.05). 

Taken together, these studies provide the first direct evidence of the involvement 
of IgE in both the early and late asthmatic reactions that follow allergen inhalation, 
and predict therapeutic utility of E25 and similar anti-IgE mAbs in asthma. 
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Figure 2 

Effect of E25 on the allergen-induced early and late asthmatic responses. Changes in FEV1 

in the first hour after allergen challenge (early response) and from 2 to 7 h after allergen 

challenge (late response) in the placebo (top panel) and E25 (lower panel) treated groups 

are reported as mean percent of baseline values ± SD before treatment (open squares) and 

at the end of treatment (closed squares) [40}. Reproduced by permission. 
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Naturally occurring asthma 

There is an ongoing debate on the percentage of patients with bronchial asthma 
who are atopic. In addition, it is difficult to estimate the pathogenetic importance 
of the atopic status per se. However, several investigators have found significant cor
relations between total serum IgE concentration, clinical parameters of disease 
severity [41], bronchial hyperresponsiveness [42,43] and risk of emergency room 
admission [44]. 

E25 has been tested in asthmatic patients with positive skin prick test to at least 
two allergens known to be associated with bronchial asthma. Those patients were 
moderate to severe asthmatics treated with a standard dose of inhaled steroids and 
bronchodilators. A subgroup of them was receiving oral steroids. The study design 
involved two phases. During the first 12-week phase either E25 or placebo was added 
at random and double-blind to a standard treatment for moderate to severe bronchial 
asthma that included inhaled ~rieceptor agonists and inhaled or oral steroids and was 
chosen on the basis of the current guidelines [45]. During the second 8-week phase, a 
forced reduction in the dose of the inhaled and oral steroids was attempted [46]. 

When E25 was added to the standard treatment, it significantly reduced symp
toms and improved PEFR while decreasing simultaneously the use of rescue med
ications with ~rreceptor agonists. The most remarkable effect of E25 during this 
study phase was its ability to reduce the number of asthma exacerbations by 
approximately 50% [45]. During the second study phase, patients receiving E25 
were able to reduce their dose of inhaled and oral steroids by 50%, whereas patients 
in the placebo group were able to reduce the dose of inhaled steroids by 25% [46]. 
No reduction in the dose of oral steroids was possible in the placebo group. In spite 
of the reduction in the dose of steroids, the improvement observed in the patients 
receiving E25 during the first phase continued during the second phase, and the 
number of asthma exacerbations was further reduced [46]. 

These results demonstrate the effectiveness of E25 in chronic asthma and its abil
ity to reduce the use of steroids in patients that otherwise need continuous admin
istration of these agents. 

In another randomized, double blind study [38], repeated administration of 
1 mg/kg of E25 on study days 7, 14,28,42,56 and 77, after an initial loading dose 
of 2 mg/kg, induced a significant reduction in the airway hyperresponsiveness to 
inhaled methacholine in 10 atopic asthmatics (p = 0.048 on day 76). As mentioned 
in the previous section, this study was designed to assess the effect of E25 on airway 
response to allergen inhalation test. The subjects recruited were therefore mild asth
matic patierlts with little or no symptoms and no recent or concurrent natural expo
sure to the relevant allergen. Since E25 is IgE- specific, it should be able to modify 
only allergen-induced airway inflammation and airway hyperresponsiveness. Thus, 
even the minimal effect on airway hyperresponsiveness observed in this study was 
totally unexpected. 
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Effect of anti-human IgE on cutaneous reactivity 

As mentioned in the previous sections, the anti-IgE mAbs tested in the studies 
reported above do not bind to the IgE already attached to their receptors on the cell 
surfaces. This is the most plausible reason to explain why the administration of 
these agents for a short period of time does not change skin reactivity. Longer peri
ods of treatment seem to affect allergen-induced cutaneous reactions, and a reduc
tion in the wheal response to skin prick testing after the administration of E25 for 
3 and 6 months has been reported recently [31, 47]. The apparent dissociation 
between the onset of the effect in the lung and in the nose and the onset of the effect 
in the skin is unclear. It is possible that effective IgE depletion in the skin requires 
prolonged administration of the mAb, or that cells bearing the receptors for IgE play 
different roles in the immediate reactions induced by allergens in the airway and in 
the skin, or that inhibition of allergen-induced immediate reactions like the cuta
neous wheal-and-flare response does not represent the mechanism by which anti-IgE 
mAbs improve allergic rhinitis and asthma. The latter hypothesis would imply that 
the clinical efficacy of anti-IgE mAbs is not merely due to the inhibition of mast cell 
degranulation or mediator release from other cells that bind IgE, and that it depends 
on more complex mechanisms, such as interference with dendritic cell function and 
antigen presentation or eosinophil trafficking and activation. 

Other effects of long-term treatment with anti-human IgE mAbs 

At the time of this writing, the longest period of administration of anti-human IgE 
mAbs in atopic individuals has been 1 year [31]. No serious unwanted effects have 
been reported. The virtual absence of an antigenic (anti-antibody) reaction and the 
absence of any sign of deleterious effect due to the formation of immune complex
es predict an excellent tolerability of these agents during longer periods of treat
ment. 

There are many hypotheses on the consequence of prolonged administration of 
anti-human IgE mAbs in allergic individuals. It has been speculated that long-term 
treatment with these mAbs may reduce IgE synthesis through interference with a 
feedback mechanism mediated by IL4 [1]. Furthermore, treatment with E25 has 
been shown to reduce the expression of IgE receptors on the surfaces of circulating 
basophils [47]. On the basis of these putative mechanisms, it has been suggested that 
it may be possible to reduce the dose of the mAbs and achieve a more permanent 
effect orr clinical parameters of disease severity after long-term administration. Data 
available up to now, however, do not support those theories. When the dose of E25 
was reduced in 54 subjects after 6 months of high-dose therapy, IgE levels rose 
immediately. Treatment withdrawal after 1 year induced a further rise in IgE levels, 
and the expression of the IgE receptor returned to 80 % of the baseline value [48]. 

222 



Anti-lgE agents 

While these observations are reassuring for the long-term safety of the drug, 
because there is no permanent modification of the immunological characteristics, 
they also anticipate the necessity of prolonged administration of anti-IgE mAbs for 
achieving permanent remission of allergic diseases. Longer trials and observational 
studies will clarify this point. 

Another issue concerning the long-term treatment with anti-IgE mAbs is the pro
tection against parasitic diseases. Elevated IgE levels are an important characteristic 
of the immune response during and after parasitic infections, and are considered to 
be a host defense against secondary infections [49]. Recent epidemiological studies 
have also indicated a correlation between schistosome-specific IgE levels and resis
tance to reinfection [50, 51]. However, protection against parasites is not solely an 
IgE-dependent phenomenon, as it involves many cellular and humoral factors [52, 
53]. In addition, several studies have demonstrated a neutral or beneficial effect of 
low IgE on the outcome of parasitic infection and resistance to reinfection in mice 
[52-54]. 

Some studies have suggested that the atopic status may protect against the devel
opment of cancer [55, 56]. This effect has not been related specifically to IgE levels, 
and other studies have failed to confirm the reduced risk of neoplasia in allergic 
individuals [57, 58]. 

Whatever role IgE molecules may play in immunological responses other than 
allergic reactions, it must be considered that during treatment with anti-human IgE 
mAbs atopic individuals have circulating levels of IgE similar to those commonly 
detectable in non-atopic subjects. It is therefore extremely unlikely that a population 
treated with anti-IgE differs from a normal population in terms of relative risk for 
diseases not associated with atopy. 

Conclusions 

IgE molecules are key mediators in the development and maintenance of allergic 
reactions. The inhibition of IgE function by preventing the binding of IgE to specif
ic receptors on effector cells represents a valid therapeutic strategy in allergic dis
eases such as allergic asthma and seasonal allergic rhinitis. The development of 
chimeric and humanized anti-IgE monoclonal antibodies has provided the first 
agents capable of obtaining this effect efficiently and safely. 
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Introduction 

Mast cells have long attracted attention for their potential to contribute to the dis
ease process in asthma [1]. These cells are widely distributed throughout the body, 
but are particularly prevalent in tissues which form an interface with the external 
environment. In the lower airways mast cells are numerous in the bronchial mucosa 
[2], submucosa and alveolar walls [3], and are even found free in the lumen [4]. The 
activation of mast cells by allergen or by other stimuli is associated with the rapid 
release of a range of potent mediators of inflammation and bronchoconstriction. 

Mast cell products include proteases, histamine, heparin, prostaglandins and a 
variety of cytokines [5]. Several of these have been the subject of extensive study and 
have become targets for drug development, but until recently proteases have been 
relatively little investigated. Over the past few years, however, evidence has been 
accumulating that these major products of the mast cell may have potent biological 
actions. Mast cell proteases, and in particular tryptase and chymase, may be impor
tant mediators of inflammation and are showing promise as targets for therapeutic 
intervention in asthma and other allergic conditions. 

The proteases of human mast cells 

Neutral proteases are the most abundant components of the mast cell secretory 
granule on a weight basis. Five distinct proteases have been localised to the human 
mast cell, of which three have now been purified, tryptase, chymase and car
boxypeptidase (Tab. 1). Tryptase is the major protease with approximately 10 pg 
per lung mast cell and 35 pg per skin mast cell [6]. There are estimated to be 
5-16 pg of carboxypeptidase [7] and 4.5 pg of chymase per skin mast cell [6]. A 
protease with some enzymatic and antigenic properties in common with neutrophil 
cathepsin G has also been detected [8, 9] and there are conflicting reports on the 
presence in mast cells of an elastase-like serine protease [8, 9]. The high concentra-
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Table 1 - Human mast cell proteases 

Enzyme Molecular weight (kDa) 

Tryptase 

Chymase 

Carboxypeptidase 

Cathepsin G 

Elastase 

132 
30 

34.5 
ND 
ND 

ND, not determined for the protease identified in mast cells. 

Subpopulation 

MCTand MCTC 
MCTC 
MCTe 

MCTe 

? 

tions of proteases in mast cell secretory granules would be consistent with these pro
teases playing a major mediator role in conditions involving mast cell activation. 

Tryptase and chymase have assumed importance as biochemical markers of mast 
cells [10] and of mast cell heterogeneity in humans [11]. Two distinct subpopula
tions of mast cells have been identified, those containing both tryptase and chymase 
(MCTd, and those possessing tryptase but not chymase (MCT). Carboxypeptidase 
and the cathepsin G-like enzyme have been localised to the MCTe subset [9, 12]. 
Mast cells of the MCTe phenotype are the predominant phenotype in the skin and 
other connective tissues, while MCT cells appear to be most numerous in the nor
mal mucosal tissues of the lung and gut [11]. The defined mast cell subpopulations 
may reflect relative rather than absolute differences in protease composition. Thus, 
the results of histochemical studies with a chymotryptic substrate [13] or immuno
cytochemistry with a sensitive protocol for chymase detection [14] have indicated 
the presence of chymase, or perhaps of a new form of chymase, in the majority of 
cells generally classed as being of the MCT phenotype in the gastrointestinal 
mucosa. Nevertheless, utilising immunocytochemistry under carefully standardised 
conditions, the detection of MCT and MCTe subsets can offer important informa
tion on mast cell heterogeneity and function. There is no simple relationship 
between mast cell functional heterogeneity and protease composition in terms of 
susceptibility to activation by basic peptides or control by pharmacological agents 
[15]. However, in the upper airways it is the MCTe population which appears to be 
the principle store of interleukin 4 (IL-4), while IL-5 and IL-6 have been localised to 
the MCT subset [16]. 

The relative numbers of each mast cell subset may be altered in disease. In the 
gastrointestinal mucosa of patients with AIDS and other immunodeficiency syn
dromes, a selective deficiency in cells of the MCT phenotype has been noted [17], 
prompting the suggestion that the growth and survival of this subset are dependent 
on intact T lymphocyte function. In keeping with this idea, increased numbers of 
MCT cells have been associated with inflammatory changes in seasonal allergic 
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rhinitis [18], atopic dermatitis [19], scleroderma [20], conjunctlVltls [21] and 
rheumatoid arthritis [22]. However, MeT numbers may also be elevated in 
osteoarthritis [23], a condition in which inflammation is not a prominent feature. In 
asthmatic airways there have been no detailed investigations of the distribution of 
M~ and M~c cells, but the evidence available from bronchial biopsies suggests 
that the relative numbers of each of these subpopulations are relatively little altered 
[16]. 

Tryptase 

Biochemical and enzymatic properties 

Early studies with tryptase isolated from human mast cells established that it is a 
tetrameric serine protease with a molecular weight of approximately 130 kDa and 
with each of the subunits possessing a single active site [24]. Tryptase expresses opti
mal catalytic activity when in its tetrameric form. Initially detected in mast cells 
using histochemical substrates [25], tryptase was later purified to homogeneity from 
pulmonary mast cells [24], human skin [26] and human lung tissue [27]. Subse
quently tryptase has been isolated from cells and tissues of the dog [28], rat [29], 
cow [30], guinea pig [31] and monkey [32]. Studies in different species have 
revealed major differences in the types of protease present and in their properties. 
Thus for example, while tryptase in the dog, rat and monkey appears to be tetramer
ic and with a molecular weight similar to that in humans [24], that purified from 
bovine tissues has a molecular weight of 360 kDa [30], and that from guinea pigs, 
860 kDa, indicative of a very large structure with some 20-22 subunits [31]. On 
account of such species-related differences, the focus here will be on the human pro
teases. 

Recently the crystal structure of tetrameric human tryptase has been reported 
[33] as a square flat ring structure composed of four subunits with the active site of 
each monomer facing a central pore. This arrangement will restrict access to the cat
alytic site and helps to explain why tryptase appears to cleave few protein sub
strates, and exhibits little susceptibility to .inhibition by endogenous protease 
inhibitors. Two complementary deoxyribonucleic acid (cDNA) molecules termed a 
and ~ have been cloned from a human lung mast cell library and sequenced [34,35], 
while three cDNA molecules named type I, II & III have been derived from a human 
skin library [36]. Beta-tryptase shows 98-100% amino acid sequence homology 
with the three tryptases from human skin and 90% with alpha tryptase. However, 
although ~-tryptase (or type II tryptase) and types I and III tryptase are similar in 
sequence, some of the differences may affect the catalytic site. While one putative 
glycosylation site has been identified for ~-tryptase/type II tryptase the other forms 
possess two putative sites. 
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Much of the size and charge heterogeneity of purified tryptase observed follow
ing electrophoresis on SDS polyacrylamide gels can be attributed to the differences 
in glycosylation. The extent to which heterogeneity in sequence or glycosylation pat
tern of tryptase may lead to differences in function remain to be determined. How
ever, a major difference between a-tryptase and 13-tryptase-like forms has been sug
gested by the application of immunoassays using antibodies with different affinities 
for a and 13-tryptase. a-Tryptase appears to be released constitutively from mast 
cells in an inactive form, while 13-tryptase appears to represent the form which is 
stored in the secretory granules and released on anaphylactic degranulation [37, 38]. 
In biological fluids, the levels of a-tryptase are likely to reflect numbers of mast cells 
present in nearby tissues, whereas the concentration of 13-tryptase should provide an 
indication of the degree of mast cell activation. It is a-tryptase which predominates 
in the serum of normal subjects, and it is present at much higher levels in patients 
with mastocytosis [37]. a-Tryptase also appears to comprise the majority of tryptase 
which can be detected in the· synovial fluid of most patients with rheumatoid arthri
tis or osteoarthritis [39], conditions associated with increased numbers of mast cells 
in synovial tissue [23]. In contrast, tryptase in the serum of anaphylactic patients is 
predominantly of the 13 form [37]. 

In the asthmatic bronchi, there is an increased degree of mast cell activation, 
with little or no evidence of mast cell hyperplasia. This suggests that much of the 
tryptase released into the airways in this condition will be of the 13 form, though this 
has yet to be tested directly. As enzymatically inactive a-tryptase is not stored, there 
are particular difficulties in isolating and studying this form other than in recombi
nant expression systems. The function of a-tryptase in health and disease remains a 
subject for conjecture. Almost all studies to date have been with the stored forms of 
tryptase which must represent 13 or 13-like tryptase, and therefore all subsequent ref
erences will be to these forms. 

The detection of tryptase within mast cells using histochemical substrates [25, 
40] indicates that tryptase is stored in the secretory granules in a fully-active state. 
However, inside the granule, tryptase will be tightly bound to heparin proteogly
can, an association which could serve to maintain the tetrameric structure and 
hence the stability of the enzyme following secretion into the extracellular space 
[41]. The high negative charge of heparin is primarily responsible for its binding to 
tryptase, as other proteoglycans of lower negative charge bind less efficiently [41]. 
Tryptase has been found to cleave chromogenic substrates with a pH optimum of 
pH 7 to 8 [26]. In contrast, in the acidic conditions of the mast cell granule (esti
mated to be in the region of pH 5.5 [42]), tryptase is likely to have relatively little 
activity 143]. In addition, tryptase activity in the granule will be inhibited by the 
presence of histamine which at high concentrations can act as a reversible inhibitor 
of this enzyme [44]. The main actions of tryptase are thus likely to be in the neu
tral pH conditions outside the cell following mast cell activation. Recently, howev
er, fibrinogen has been identified as a substrate which tryptase may cleave more 
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efficiently at pH 5 [45], indicating a possible role for this protease in acidic pH con
ditions. 

The enzymatic activity of tryptase may be inhibited by diisopropylfluorophos
phate (DFP) and benzamidine and by certain natural inhibitors of proteases such as, 
antipain, leupeptin [27] and an inhibitor isolated from the medicinal leech [46]. 
However, circulating serine protease inhibitors such as «rantitrypsin and «2-
macroglobulin fail to inhibit the enzymatic activity of tryptase [47]. Secretory leuko
cyte protease inhibitor (SLPI) has been reported to have some inhibitory actions on 
tryptase [48], but little evidence has been presented to date that an endogenous 
human protease inhibitor may be effective as an inhibitor of tryptase. Probably of 
greater importance is the role of heparin in stabilising the tetrameric structure of this 
unstable molecule. Tryptase in the absence of heparin dissociates rapidly into inac
tive monomers in physiological buffers [41]. In contrast, when tryptase is in physi
ological buffer in the presence of heparin, it retains its activity for several hours. 
Divalent cations [44] or other heparin binding proteins such as antithrombin III [27] 
or lactoferrin [49] can serve as inhibitors of tryptase by virtue of their ability to 
destabilise the tryptase/heparin complex. Tryptase is secreted with proteoglycan in 
a complex of some 200 kDa [50]. The large size of this complex is likely to hinder 
diffusion away from the site of its release and it is likely that the actions of tryptase 
will be in the immediate vicinity of degranulating mast cells. 

Extracellular substrates of tryptase 

Studies with synthetic substrates have indicated that tryptase cleaves peptide and 
ester bonds on the carboxyl side of amino acids [26], but relatively few natural sub
strates have been identified. Peptide substrates of potential relevance in asthma 
which are efficiently cleaved by tryptase include the neuropeptides vasoactive 
intestinal peptide (VIP), peptide histidine methionine (PHM) [51] and calcitonin 
gene-related peptide (CGRP) [52]. VIP and PHM are both potent relaxants of 
bronchial muscle [53] and the cleavage of these peptides by tryptase has been sug
gested to contribute to the bronchoconstriction observed in asthmatics. CGRP is a 
potent vasodilator [54] and cleavage of this by tryptase results in attenuation of 
vasodilator activity [52]. 

The ability of tryptase to generate kinins remains controversial. Some workers 
have reported that tryptase fails to generate kinins from low molecular weight 
kininogen (LMWK) [55] or high molecular weight kininogen (HMWK) [56], whilst 
others have demonstrated kininogenase activity for tryptase with these substrates 
[57, 58]. Fibrinogen may be degraded by tryptase so that it no longer acts as a sub
strate for thrombin in the clotting cascade [59]. The anticoagulant properties of 
tryptase may be of particular importance in acidic conditions as the reaction is 
optimal at acidic pH [45]. 
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A number of extracellular matrix (ECM) components are cleaved to some extent 
by tryptase. Tryptase can degrade the ECM synthesised in vitro by rat heart smooth 
muscle cells [60] and by a human lung fibroblast cell line [50]. Cleaved substrates 
include gelatinase/type IV collagenase and fibronectin [61]. In addition, tryptase can 
activate stromelysin (matrix metalloprotease 3; MMP 3) [62] resulting in the acti
vation of latent collagenase [63], and also urokinase [64]. These actions of tryptase 
in degrading the ECM could facilitate the entry of cells and plasma proteins into 
areas of mast cell degranulation, and tryptase could be an important participant in 
processes of matrix remodelling and repair. Structural alterations and increased 
epithelial fragility are features in the bronchial tissue of asthmatics and tryptase may 
contribute to these. 

Cellular targets of tryptase 

Cells in the vicinity of a degranulating mast cell are likely to be exposed to high con
centrations of tryptase and other mast cell products (Fig. 1). Recent studies have 
indicated the potential of tryptase to induce profound alterations in cell behaviour 
(Tab. 2). The early studies involved incubation of purified dog tryptase with cells of 
non-human origin. Canine tryptase was found to be a potent mitogen for Chinese 
hamster lung fibroblasts (CHL cells) and Rat-1 fibroblasts, and in both cases the 
effect was inhibited by protease inhibitors, suggesting dependence on an intact cat
alytic site [65]. Moreover, tryptase was reported to act synergistically with basic 
fibroblast growth factor (FGF), epidermal growth factor (EGF), insulin and throm
bin on CHL cells [66]. Human tryptase has now been reported to act as potent mito
gen for human lung fibroblasts [66, 67], epithelial cells [68], airway smooth muscle 
cells [69], including those from the dog [70], and human microvascular endothelial 
cells [71], but not macrovascular endothelial cells [72]. These various actions could 
be important in the context of tissue remodelling in asthma and other inflammato
ry conditions. Of particular importance could be the ability of tryptase to stimulate 
the synthesis and release from fibroblasts of type I collagen as well as of collagenase 
activity [67, 73]. In addition tryptase can stimulate fibroblast chemotaxis in vitro 
[73]. The release of tryptase into the upper airways of asthmatics could be a major 
factor in the induction of myofibroblast and smooth muscle cell hyperplasia and in 
the deposition of collagen beneath the epithelial basement membrane. 

The pro inflammatory potential of tryptase is becoming quite well recognised. 
Studies with animal models have demonstrated that the injection of human tryptase 
into tile skin can induce microvascular leakage [74] and accumulation of 
eosinophils and neutrophils, and also to some extent of macrophages and lympho
cytes [75]. The microvascular leakage induced by tryptase may be inhibited by pre
treatment with antihistamines, suggesting that the effect is dependent on mast cell 
activation by tryptase. This has been confirmed by the demonstration that human 
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Table 2 - Actions of tryptase on the behaviour of human cells 

Cell type 

Epithelial cell 

Fibroblast 

Endothelial cell 

Airway smooth muscle cell 

Mast cell 

Eosinophil 

Neutrophil 

Effect 

Proliferation, IL-S release and upregulation of ICAM-1 

Proliferation, chemotaxis synthesis and secretion of type I 

collagen synthesis 

IL-1/3 gene expression and IL-S release 

Proliferation 

Histamine release 

Chemotaxis and ECP release 

Chemotaxis 

tryptase can induce histamine release from guinea pig mast cells [74] and from 
human tonsil mast cells, though this effect has not been found with human skin 
mast cells [76]. 

The ability of tryptase to stimulate the accumulation of inflammatory cells in 
vivo is likely to involve a complex interplay between several cell types which are 
affected by this protease. Tryptase can stimulate the release of the potent granulo
cyte chemoattractant IL-S and upregulate expression of intercellular adhesion mol
ecule 1 (ICAM-l) in epithelial cells [6S]. In addition, tryptase can induce the secre
tion of IL-S and upregulate expression of mRNA for both IL-S and IL-l13 in prima
ry cultures of human umbilical vein endothelial cells (HUVEC) [72] and provoke the 
release of neutrophil chemotactic activity [77]. Potentiation of IL-6 and IL-S release 
from TGF13 or IL-4 stimulated fibroblasts has also been reported in a preliminary 
study [7S]. As well as inducing the release of granulocyte chemoattractants tryptase 
appears to have direct effects on granulocytes, acting as a chemotactic agent for 
human eosinophils and neutrophils in vitro and provoking the release of eosinophil 
cationic protein [79]. This latter action is consistent with observations in a guinea 
pig model in which the presence of partially degranulated eosinophils has been 
noted at the sites where human tryptase has been injected into skin [75]. There is 
thus an accumulation of evidence to implicate this major mast cell product as play
ing a key role in mast cell dependent inflammation. 

The precise mechanisms by which tryptase can alter cell function remain to be 
resolved and this is an issue of considerable interest. The cloning of a receptor for 
thrombin [SO], now termed protease activated receptor-l (PAR-l), opened the way 
for the identification of a family of related receptors, and has indicated the poten
tial importance of proteases in regulating cell function. PAR-l may be activated to 
some extent by tryptase when expressed in COS-l cells, but tryptase appears not to 

activate this receptor on HUVEC [Sl]. Recently tryptase has been found to cleave 
PAR-2 [Sl], a receptor found on human endothelial cells [S2], vascular smooth mus-
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cle cells [83], keratinocytes [84], rat colonic myocytes [85] and neutrophils [86], but 
not fibroblasts [841. The activation of PAR-2 appears to be less efficient with 
tryptase than with trypsin, a stimulus which is not of physiological importance out
side the intestinal tract [87], and there is some uncertainty over the extent to which 
the actions of tryptase in vivo may be dependent on the activation of PAR-2. Thus 
a peptide agonist for PAR-2 can stimulate a strong proliferative response in HUVEC 
[82], yet this has not been reproduced using tryptase [72]. The activation of PAR-2 
by tryptase may therefore not account for all the actions of this protease observed 
on cells. Recently the characterisation of a PAR-3 on HUVEC has been described, 
another receptor which can be cleaved by thrombin [88]. The growing number of 
PARs suggests that it is possible that other receptors for tryptase are yet to be dis
covered. 

Chymase 

Biochemical and enzymatic properties 

Chymase is a chymotryptic-like protease which has been purified from human skin 
[89], heart [90] and tonsil [91] with a molecular weight of approximately 30 kDa. 
Although multiple amino acid sequences have been derived for chymases from 
rodents [92], to date the sequence of only a single human chymase has been report
ed from skin, heart and tonsil tissues [91, 93, 94]. This encodes a protein of 25 kDa 
with a net positive charge of 13. There is evidence from several sources, however, 
for the presence of more than one type of human chymase. Employing heparin 
agarose affinity chromatography, at least two distinct forms of chymase-like pro
tease have been identified in high salt extracts of a variety of human tissues [95]. 
Chymase B eluted with sodium chloride concentrations of 1.0 to 1.2 M, and chy
mase C at 1.8 to 2.0 M. Both forms exhibited similar enzymatic properties with syn
thetic substrates and reacted with a range of chymase-specific antibodies, but 
marked differences were observed in their tissue distribution. Chymase B constitutes 
the predominant form in extracts of human skin, heart and synovial tissue, while 
chymase C is the major form in lung tissues. The extent to which differences 
observed between chymases Band C represent differences in primary sequence or in 
post-translational modifications remains to be determined. However, the isolation 
from lung tissue has been reported of a protease with properties similar to chymase, 
but with an N-terminal sequence which differed at a number of residues [96]. It is 
possible that as in rodents, there may be quite different chymases expressed in 
human mucosal and connective tissue compartments. 

Understanding of the enzymatic properties of human chymase is based largely on 
studies with purified preparations in which chymase B is likely to represent the main 
constituent. This protease exhibits relatively little catalytic activity towards synthet-
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ic substrates at pH 5.5 [97], the reported pH of the mast cell granule [42]. Thus, 
although stored in a catalytically active form in the secretory granules, the principle 
actions of chymase are likely to be extracellular. Moreover, heparin exerts a further 
inhibitory effect on chymase activity at pH 5.5, but can enhance activity at pH 7.5, 
the pH of the extracellular space [97]. The observation that the activation of recom
binant prochymase by dipeptidyl peptidase I occurs with a pH optimum in the neu
tral range and is inhibited by both heparin and histamine [98] would appear to indi
cate that this process is restricted to the early stages of vesicle formation. 

Chymase is released in a complex of 400-560 kDa with proteoglycans and car
boxypeptidase, but not with tryptase [99]. Chymase is inhibited by the circulating 
serine protease inhibitors <xrantichymotrypsin, Urproteinase inhibitor and Ur 
macroglobulin [100] and also by SLPI [101]. 

Substrates and cellular targets 

Compared with tryptase, chymase appears to be much less restricted in substrate 
specificity. Peptide bonds are cleaved preferentially where there is a phenylalanine 
residue at the Pl site and hydrophobic residues at Pz and P3 [102]. Angiotensin I is 
cleaved by chymase in this way to generate angiotensin II, a reaction which is catal
ysed more efficiently than with angiotensin converting enzyme itself [103]. The abil
ity of chymase to cleave a range of substrates may suggest an important role in tis
sue degradation and remodelling at sites of mast cell activiation. Addition of chy
mase to cultures of fresh human skin has been reported to result in extensive 
degradation of the epidermal-dermal junction [104]. There may be direct actions on 
components of the extracellular matrix. For example, Type I procollagen is 
processed by human chymase to initiate the formation of collagen fibrils [105]. A 
less direct contribution to matrix remodelling may involve the activation of inter
stitial procollagenase and other proenzymes [106]. 

The ability of chymase to degrade IL-4 [107], to activate the precursor form of 
IL-l~ [108] and to cleave and release the membrane bound form of stem cell factor 
(SCF) [109] suggests roles for this protease in the regulation of cytokine bioavail
ability. Evidence that chymase may exercise a proinflammatory role has come from 
studies in which the purified enzyme h~s been injected into laboratory animals. 
Injection of chymase into the skin of guinea pigs elicits a prolonged increase in 
microvascular permeability that is still apparent 120 min following injection, and 
that appears to be dependent on an intact catalytic site [110]. Unlike the skin reac
tions which may be provoked by tryptase in this model, those induced by chymase 
are unaffected by antihistamine pretreatment of the animals. This suggests that the 
mechanism of chymase action does not involve histamine release; a subsequent 
study with dispersed human lung, tonsil and skin mast cells has failed to demon
strate chymase-induced mast cell activation [111]. 
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Several hours following the injection of chymase into guinea pig skin or into the 
peritoneum of mice a massive accumulation of eosinophils and neutrophils has been 
observed with significant increases in the numbers of lymphocytes being noted in the 
mouse model [112]. Quantities of chymase as low as 5ng [1.7 x 10-13 moles] were 
able to induce an inflammatory infiltrate, and in all cases co-injection with a pro
tease inhibitor, or heat inactivation of the enzyme significantly inhibited the 
response. Chymase, like tryptase, could thus represent a potent stimulus for the 
recruitment of inflammatory cells following mast cell activation in bronchial asth
ma. 

In the context of inflammatory conditions of the respiratory tract, the finding 
that dog chymase can stimulate mucus secretion from glandular cells in vitro [113] 
is of particular interest, and there is a clear need for the potential role of human chy
maseto be investigated as a stimulus of mucus secretion. The extent to which chy
mase may alter cell function remains largely unexplored, and it is not known if there 
are cell surface receptors for chymotryptic proteases. 

Carboxypeptidase 

Carboxypeptidase purified from human lung and skin has a molecular weight of 34 
to 40 kDa [114, 115]. Sequences for carboxypeptidase cDNA derived from human 
lung and skin libraries encode a protein with a molecular weight of 36.1 kDa with 
a net positive charge of 16 [116, 117]. There is little evidence for heterogeneity, with 
only one sequence being derived. 

Mast cell carboxypeptidase possesses a similar substrate profile to pancreatic 
carboxypeptidase A, although it has greater sequence homology to carboxypepti
dase B. Natural substrates include neurotensin, Leu5- enkephalin and kinetensin 
[118]. On mast cell degranulation carboxypeptidase is co-released with tryptase and 
chymase, and it is bound to the same proteoglycan macromolecular complex as chy
mase [99]. It seems likely that carboxypeptidase will act in concert with other mast 
cell proteases. 

Therapeutic potential of inhibitors of mast cell proteases 

Mast cell proteases have long been neglected as potential targets for therapeutic 
intervention. While it has been known for several years that mast cell proteases 
are released" in substantial quantities into the airways of asthmatic subjects, it is 
only now being recognised that they may possess a range of potent biological 
activities. The proinflammatory actions of tryptase and chymase implicate these 
proteases in the genesis of both early and late phase allergic reactions, and they 
could both play particularly important roles in mediating structural alterations in 
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chronic disease. A consistent finding with in vitro and in vivo experimental mod
els has been that the biological actions of tryptase and chymase can be inhibited 
by protease inhibitors. However, information is sparse on the abiiity of protease 
inhibitors to modulate processes of allergic disease induced by allergen, and are 
restricted at present to some relatively small scale studies of the effects of tryptase 
inhibitors. 

The synthetic protease inhibitors APC-366 and BABIM, both of which are rela
tively selective for tryptase, have been shown to be effective in a sheep model of 
asthma [119]. Their administration reduced both the early and late phase response 
to allergen, as well as blocking the acquired airway hyperresponsiveness. Consistent 
with the findings of purified tryptase in animal models [74, 75], APC-366 was also 
found to inhibit microvascular leakage and eosinophil accumulation. A subsequent 
study with the same sheep model has involved administration of a preparation of 
neutrophillactoferrin, which has inhibitory activity on human tryptase [49]. While 
this treatment had little effect on the early reaction to allergen, both the late phase 
reaction and allergen-induced hyperresponsiveness were abolished. 

Recently, the results have been reported of a randomised cross-over study in 
which APC-366 was administered by aerosol to 16 subjects with mild-to-moderate 
atopic asthma [120]. Following allergen challenge, administration of APC-366 
resulted in a significant reduction in the late phase response compared with place
bo, whether assessed as the area under the curve or as the maximum fall in FEVI. 
While there was a trend for APC-366 administration to be associated with a reduced 
early phase reaction, this did not reach statistical significance and bronchial hyper
responsiveness appeared unaffected. 

The studies to date with tryptase inhibitors have been encouraging, and it will 
be important to determine more precisely their anti-inflammatory properties. Of 
particular interest must be the ability of tryptase inhibitors to affect processes of 
tissue remodelling in airways disease. Observations that tryptase is a potent growth 
factor for fibroblasts [65, 67] and a stimulus for collagen secretion [67, 73] call 
attention to the potential role of this major mast cell product in inducing the struc
tural alterations which are prominent features of asthmatic bronchi [121]. While 
experimental evidence with inhibitors of chymase is still lacking, the biological 
actions described for this protease also suggest that they could prove valuable in 
modifying processes of both acute inflammation and matrix remodelling in the air
ways and at other sites. They may also be of benefit in controlling mucus hyper
secretion. 

Tryptase and chymase represent promising targets for therapeutic intervention in 
conditioL1$ associated with an increased degree of mast cell activation. The design of 
selective small molecular weight inhibitors of mast cell proteases, or the preparation 
of certain broad spectrum endogenous protease inhibitors, or even the development 
of antagonists of protease activated receptors could lead to the provision of some 
new classes of anti-inflammatory and anti-fibrotic drug. 
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Introduction 

The proposed central role of specific leukocyte subsets in the pathophysiology of 
asthma has focused attention on the development of agents that will selectively 
inhibit the migration of these inflammatory cells into the lung. In asthma, airway 
CD4+ Th2 type lymphocytes, mast cells and eosinophils appear to be primarily 
effector cells that underlie the clinical manifestations of disease [1]. The cellular and 
molecular mechanisms involved in the regulation of the recruitment of these inflam
matory cells from the blood to sites of inflammation are complex, however, cellular 
migration appears to be modulated by two fundamental processes; cell-adhesion 
systems located in the vascular endothelium and signals elicited through cytokine 
and chemokine (chemoattractant cytokines) receptors. Cell-adhesion and cytokine 
signalling systems form networks that are elegantly coordinated to promote cellular 
extravasation and localisation to the site of inflammation [2, 3]. At the initiation of 
inflammation, cytokines and chemokines play key roles in propagating the inflam
matory response by eliciting signals that activate adhesion-systems, induce the secre
tion of other cytokineslchemokines from the vascular bed and promote chemotaxis. 
The type of cytokines produced in response to a particular inflammatory stimulus 
are intimately involved in directing the immune response by promoting the selective 
mobilization, attachment and recruitment of specific leukocyte sub-sets to the site of 
provocation [2-4]. 

In asthma the inflammatory response appears to be predominantly driven by the 
Th2 type cytokines, in particularly interleukin-(IL)-4 and IL-5 secreted from aller
gen-specific CD4+ T cells [1, 5]. Th2 cytokines may also be derived from activated 
mast cells and eosinophils. These cytokines, in association with specific adhesion 
molecules "and other inflammatory molecules (chemokines, leukotrienes, 
prostaglandins, and platelet activating factor) provide the basis of the molecular net
work that regulates the trafficking of leukocytes to the asthmatic lung. 

In this chapter we provide an overview of the molecular and cellular mechanisms 
that regulate the recruitment of leukocytes to sites of allergic inflammation. We also 
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identify the cytokines and adhesion molecules that are currently thought to be the 
key molecular targets for the inhibition of leukocyte trafficking to the lung and 
describe their potential for future anti-inflammatory therapy of asthma. Mecha
nisms for the antagonism of cytokine and adhesion molecule function will also be 
discussed. 

Potential roles of cytokines and adhesion molecules in asthma 

Key cytokines involved in regulating allergic inflammation 

The accumulation and/or activation of inflammatory cells during an asthmatic 
response may be initiated and partially sustained by cytokines released at sites of 
antigen provocation (such as the airway epithelium and from antigen presenting 
cells) and from T cells and mast cells after activation by specific antigens [1, 4]. B 
lymphocytes, basophils, monocytes and neutrophils may act in concert with T cells, 
mast cells and eosinophils in the lung to modulate the inflammatory responses. 
Cytokines in conjunction with chemokines are thought to play an integral role in 
orchestrating the molecular events that initially stimulate the inflammatory response 
and regulate leukocyte endothelium interactions, extravasation, chemotaxis and 
localization of inflammatory cells at the site of allergen provocation. Each of the 
events involved in the regulation of leukocyte migration provides an opportunity for 
therapeutic intervention and subsequent attention of the inflammatory response. 

Characterisation of the immunopathogenesis of asthma suggests that Th2 type 
cytokines (IL-3, -4, -5, -10, -13) and granulocyte macrophage colony stimulating 
factor (GM-CSF) play central roles in the asthmatic response by regulating the pro
duction of IgE, the effector function of mast cells and eosinophils, and by promot
ing trans endothelial cell migration [1,4,5]. In particular, IL-4 is thought to be a crit
ical factor for the regulation of T cell commitment to the CD4 + Th2 phenotype and 
is known to regulate IgE production by B cells and mast cell function [6]. In addi
tion, IL-4 also has potential roles in regulating the inflammatory response to recall 
antigens and in the production of the eosinophil-specific chemoattractant, eotaxin 
[6, 7]. In conjunction with other Th2 type cytokines as well as IL-1~ and tumor 
necrosis factor, IL-4 may also regulate leukocyte trafficking in asthma by activating 
adhesion systems in the vascular endothelium [8, 9]. 

IL-5 has also been identified as a key mediator in the aetiology of asthma [1, 5, 
10]. IL-5 not only regulates the growth, differentiation, and activation of 
eosinophils, but also provides an essential signal for the induction of eosinophilia 
during allergic inflammation [11-13]. Furthermore, in conjunction with chemokines 
(RANTES, monocyte chemoattractant protein-3 (CP-3), macrophage inflammatory 
protein-lex (MIP-1ex) and eotaxin) and lipid mediators (platelet-activating factor 
and leukotriene B4), IL-5 may promote eosinophil chemotaxis [14-16]. Notably, of 
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the cytokineslchemokines implicated in modulating eosinophilic inflammation, only 
IL-S and eotaxin have been identified to selectively regulate eosinophil trafficking. 
Eotaxin is a newly identified member of the C-C branch of chemokines and is high
ly potent and extremely rapid in inducing pulmonary and intradermal eosinophil 
recruitment [7, 16] (recently, eotaxin-2 has been identified). Investigations in guinea 
pigs and mice suggest that eotaxin and IL-S act cooperatively to promote the 
recruitment of eosinophils into tissues [7, 17, 18]. Evidence is also accumulating 
that eotaxin may playa role in the aetiology of eosinophil-associated allergic disease 
in humans. 

Adhesion molecules 

Adhesion molecules are glycoproteins that play intimate roles in cell assembly, cell 
signalling and cell-cell communi~ation [2, 3]. The adhesion molecules that are pri
marily involved in regulating the migration and interaction of leukocytes during 
inflammation are the selectins, integrins and the cell adhesion molecules (CAMs) of 
the immunoglobulin superfamily. It is specific members of these families of adhesion 
molecules that appear to constitute the adhesion systems utilized during inflamma
tory responses in asthma. In particular, leukocyte endothelial-cell interactions dur
ing allergic responses are regulated through the L-, P-, and E- type selectins, vascu
lar- and intercellular-CAMs (VCAMs and ICAMs, respectively) and the integrins, 
lymphocytes function-associated antigen-l ((LFA-l), the ~2-integrin, CDlla1CDI8 
adhesion complex), Mac-l (the ~2 integrin, CDllb/CD18 adhesion complex) and 
very-late activation antigen 4 ((VLA-4), the ~rintegrin, 0,4 ~1) (Tab. 1). 

Molecular basis of leukocyte adhesion 

The arrest and extravasation of circulating leukocytes at the vascular bed involves 
activation of adhesion molecules on the surfaces of both the endothelium and 
inflammatory cells. Leukocyte extravasation proceeds primarily through three steps 
that have been well characterised [2, 3, 19] (Fig. 1). The initial phase involves weak 
interactions between the endothelium and the migrating cell that are regulated 
through selectins (E-, P- or L-selectin) and their receptors (e.g. sialoglycoproteins), 
which promotes leukocyte tethering and rolling of the arrested cell on the endothe
lium. The second phase is coordinated by signals elicited by cytokines/chemokines 
produced in' response to inflammation that up-regulate the expression of selectins, 
various CAMs and ~-integrin adhesion complexes (e.g. VCAM-INLA-4, ICAM
lILFA-1 or ICAM-I/Mac-1 interactions). The coordinated interaction between 
cytokines and adhesion systems promotes stable adherence of inflammatory cells to 
the vascular endothelium and allows for the final phase of migration, diapedesis. 
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Notably, the events leading to extravasation are sequential and are mediated by dis
tinct molecular interactions between specific adhesion-complexes that are charac
teristic of the immune response. 

Thus, inhibition of these molecular interactions during any phase of leukocyte
endothelial cell interactions should inhibit the process of extravasation and poten
tially attenuate the inflammatory response within the tissue. 

Adhesion molecules and asthma 

The increased expression of a number of adhesion complexes has been correlated 
with the clinical manifestations of asthma, which suggests a functional role for these 
molecules in the aetiology of disease (reviewed in [20]). Increased levels of ICAM-l 
and E-selectin have been found in the blood of acute asthmatics and in the bronchial 
epithelium and pulmonary vascular bed of allergic and non allergic asthmatics 
[20-25]. The recruitment of granulocytes to the airways has also been correlated 
with increased levels of soluble -ICAM-l and -E-selectin in the bronchial alveolar 
lavage fluid (BALF) of asthmatics after segmental antigen-challenge [26, 27]. In 
allergic asthmatics correlations have also been observed between elevated levels of 
IL-4 in BALF, eosinophil numbers in the airway wall, and increased VCAM-l 
expression [28]. L-selectin has also been implicated in regulating eosinophil migra
tion into the asthmatic lung after allergen-challenge [29]. 

Thus, the postulated role of leukocytes in the pathophysiology of asthma in asso
ciation with evidence that suggests that cytokines and adhesion molecules are upreg
ulated in this disease, suggests that therapeutics which target these inflammatory 
molecules may be effective in the relief of airways obstruction. 

Figure 1 
Molecular regulation of eosinophil transmigration. (A) Eosinophils express L-seledin, which 
promotes transient interadions with the vascular endothelium through carbohydrate ligands 
(sialoglycoproteins). Eosinophils also express the CD111CD18 adhesion complex and the 
integrin, very-Iate-adivation-antigen 4 (VLA-4). (B) Initial adivation of the endothelium 
occurs through interadions with chemokines and cytokines, which promote eosinophil
endothelium interadions by chemotaxis and adivating adhesion pathways. Firm adhesion to 
the adivated endothelium may be mediated by eosinophils binding to P-seledin and E
seledin, and interadions between intercellular adhesion molecule-1 (ICAM-1) and the 
CD111CD18adhesion complex. Vascular cell adhesion molecule 1 (VCAM-1) and the VLA-
4 adherence pathway may promote the initial binding of adivated eosinophils to the 
endothelium and preferentially promote eosinophil accumulation at sites of inflammation. 
(C) Transmigration of eosinophils across the vascular bed occurs after priming with cytokines 
and in response to chemotatic signals (adapted from [19]). 
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Table 1 - Key adhesion molecules involved in leukocyte trafficking in asthma 

Adhesion molecule subtypes Cell localization Ligand 

Immunoglobulin superfamily 
VCAM-1 endothelial cells VLA-4 

ICAM-1 endothelial cells LFA-1 

leukocytes hyaluronic acid 

epithelium Mac-1 

lymphocytes LFA-1, Mac-1 

Seledins 

P-type endothelial cells PSGL-1; SL-C 

E-type endothelial cells SL-C 

L-type PMN leukocytes/lymphocytes CD-34 

SL-C 

GlyCAM-1 

E-selection 

P-selection 

Integrins 

~1 VLA-4 lymphocytes, eosinophils VCAM-1, fibrinogen 

monocytes, mast cells 

~2 LFA-1 lymphocytes, leukocytes ICAM -1,-2,-3 

Mac-1 lymphocytes/various leukocytes ICAM-1, fibrinogen, 

others 

P-seledin glycoprotein ligand, (PSGL-1): sialyllewis and other carbohydrate moieties, SL-C; 

integrin subsets, a4f31 (VLA-4), CD11alCD18 (LFA-1), CD11blCD18 (Mac-1); polymor

phonuclear leukocyte (PMN); other abbreviations see text. For detailed references see [2, 3, 
20,94]. 

Key cytokine targets for the inhibition of allergic airways inflammation 

Glucocorticosteroids remain the current drugs of choice for the regulation of severe 
manifestations of asthma. These drugs may be effective, in part, because they sup
press cytokine production (IL-4, IL-5 and others) by inflammatory cells and modi
fy the participation of adhesion systems in the inflammatory response [30]. How
ever, long-term glucocorticosteroid therapy is associated with harmful systemic 
effects and does not always relieve bronchial hyperreactivity. Clearly, new antago
nists which target key molecules in the inflammatory cascade are required. 

256 



Cytokine and adhesion molecule antagonists 

Clinical and experimental investigations have identified Th2-cells and -cytokines 
as key regulatory components of the inflammatory response associated with asthma 
and allergic disease. It is hoped that the delivery of specific cytokine antagonist to 
the airways early in an asthmatic's life will attenuate inflammatory infiltrates, the 
observed progressive morphological changes to the airway wall, and the develop
ment of enhanced bronchial reactivity. Specific Th2 cell suppressors may also pro
vide a significant advance in the treatment of established disease. The immunomod
ulatory functions of IL-4 and IL-5 have identified these cytokines as key therapeu
tic targets for the relief of airways inflammation and obstruction in asthma. 
Furthermore, in animal models of asthma, both cytokines have been implicated in 
the development of airways hyperreactivity to spasmogens after antigen inhalation 
[13,31-33]. Although animal models are only representative of the immunopatho
logical process underlying asthma, they do provide important insights into the 
potential contribution of individual inflammatory cells and molecules to the patho
genesis of this disease which in turn allows identification of key targets for poten
tial therapeutic intervention. 

Roles of IL-4, IL-5 and eotaxin 

Currently, there are no specific antagonists of IL-4, IL-5 or eosinophil-specific
chemokines available for clinical practice. However, analysis of the literature sug
gests that the development of such agents will provide a significant advancement in 
the treatment of asthma. IL-5 plays a central role in eosinophil development and 
activation and has been strongly implicated in the aetiology of allergic and non
allergic asthma. In transgenic mice, the overexpression of IL-5 in the respiratory 
epithelium results in changes to the airways pathognomic of asthma and in 
enhanced bronchial reactivity [32]. Investigations in IL-5 deficient mice indicate that 
this cytokine is critical for regulating eosinophilia during allergic inflammation [13]. 
Moreover in a mouse model of asthma, IL-5 was found to be essential for the devel
opment of airways epithelial cell damage and bronchial hyperreactivity in response 
to inhaled allergen [13]. Recently, we have also shown that IL-5 secreted from aller
gen specific CD4+ Th2 cells plays a pivotal rple in the pathophysiology of allergic 
airways disease by regulating eosinophilia and bronchial hyperreactivity in response 
to allergen inhalation [34]. Notably, IL-5 deficiency does not affect the production 
of other cytokines or antibodies, nor significantly impair T and B cell function, sug
gesting that antagonism of this molecule would not significantly impair other 
immunological responses [35]. 

Interestingly, evidence is accumulating that IL-5 production can be regulated by 
CD4+ T cells in the absence of IL-4. This particular sub-population of CD4+ T cells 
develops into the Th2 phenotype (producing IL-4 and IL-5) independently of IL-4 
and can provide enough IL-5 during allergic inflammation of the lung to induce 
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eosinophilia, bronchial hyperreactivity and morphological changes to the airways 
[33,36]. Thus, two CD4+ T cell pathways exist for the immune system to regulate 
IL-S production and eosinophilia in response to inhaled allergens; one dependent 
on IL-4 and the other independent of this factor. The central role of IL-S in both 
T cell components of allergic disease further highlights the requirements for high
ly specific therapeutic agents that inhibit production and/or action of this 
cytokine. 

In conjunction with IL-S, inhibition of the function of eotaxin may markedly 
suppress the movement of eosinophils into tissues. Eotaxin and IL-S may act in syn
ergism to regulate the homing of eosinophils to sites of allergic inflammation. IL-S 
mobilizes eosinophils from the bone marrow and also promotes homing to the 
infected organ, while eotaxin elicits signals for cell polarization and chemotaxis 
within the inflamed tissue [18]. It appears that "cross talk" occurs between IL-S and 
eotaxin signalling systems to uniquely and selectively promote eosinophil chemo
taxis/locomotion and potentially degranulation. Investigations using inhibitory 
mAbs in guinea pigs indicated that this chemokine may play a major role in the 
movement of eosinophils from the blood to the allergic lung [37]. In contrast, 
eosinophilia was not significantly altered in eotaxin deficient mice during the late
phase of allergic airways inflammation [38]. Recently, the eotaxin receptor has also 
been identified on memory Th2 cells, suggesting that eotaxin may also playa role 
in the recruitment of this T cell to sites of allergic inflammation [39]. The biologi
cal functions of eotaxin suggest that this molecule, in conjunction with IL-S, will 
provide an important new therapeutic target for the attenuation of the progression 
of allergic disease. 

Blocking the actions of IL-4 may also provide an effective mechanism to attenu
ate inflammation of the airways in asthmatics. Inhibition or deletion of IL-4 during 
allergic airways inflammation attenuates eosinophilia, IgE production and bronchial 
hyperreactivity [31, 40], while overexpression of this cytokine in the lung of trans
genic mice results in morphological changes to the respiratory epithelium [41]. 
Recently, IL-4 was also shown to playa crucial role for the homing of Th2 cells to 
the allergic lung [42]. 

Although blocking the actions of ILA may provide an effective mechanism for 
the relief of airways obstruction in asthma, evidence from animal models of Th2 
dependent allergic airways inflammation indicate that targeting this cytokine alone 
may not be an effective therapeutic strategy. Notably, enhanced reactivity to cholin
ergic stimuli and eosinophilia are still features of inflammatory responses (albeit 
significantly reduced) in mice treated with anti-IL-4 mAbs or deficient in this fac
tor [31,33]. Furthermore, unlike IL-S transgenic mice [32], over expression of IL-
4 in the airway wall does not result in the induction of airways hyperreactivity, 
although morphological changes in the respiratory epithelium are observed [41]. 
Anti-ILA mAbs also are only effective in attenuating aero allergen-induced airways 
hyperreactivity if administered during the primary sensitisation phase, but not dur-

258 



Cytokine and adhesion molecule antagonists 

ing the period of direct provocation of the airways with allergen [31], suggesting 
that antagonists of the actions of IL-4 during an established asthmatic response 
may not attenuate bronchial hyperreactivity. Eosinophilia and bronchial hyperre
activity are also induced after allergen-inhalation in sensitised mast cell-, IgE- and 
CD40- (no production of IgE, IgG or IgA) deficient mice, components of the 
inflammatory response whose functions are intimately regulated by IL-4 [33, 40, 
43,44]. 

A number of other interleukins may also play important roles in regulating air
ways occlusion in asthma [4]. IL-13 has similar biological activities to IL-4 in the 
downregulation of proinflammatory cytokines and chemokine production, in the 
induction and expression of integrins and in the regulation of IgE synthesis [45,46]. 
Thus, targeting both of these cytokines concurrently may be required to attenuate 
the asthmatic response. IL-l~, IL-ll and TNFa have also been implicated in vari
ous mechanisms associated with leukocyte activation and trafficking in allergic 
inflammation [4]. However, the role of these cytokines in a broad range of immune 
responses suggests that these molecules would not be suitable targets for therapeu
tic modulation of asthma. In contrast, the Th2 cytokine IL-l0 down regulates 
processes associated with allergic disease, such as IL-5 and IgE synthesis. Notably, 
IL-l0 has been shown to suppress the recruitment of leukocytes into the lung dur
ing the early-phase of allergic airways inflammation in mice [47]. 

Although clinical and experimental investigations indicate that IL-4 and IL-5 are 
primary targets for the attenuation of asthma, studies in mice also suggest that 
directly targeting T cell activation may be required to alleviate bronchial hyperre
activity associated with allergic inflammation of the airways [18,48-50]. Recently, 
we have described a novel CD4+ T cell pathway in BALBIc mice that modulates 
allergen-induced airways hyperreactivity independently of the collective actions of 
IL-4 and IL-5 [48]. Data indicates that CD4+ T cells operate at least two pathways 
that can act independently to induce airways hyperreactivity. The co-existence of 
parallel pathways may account for the dissociation of airways eosinophilia from the 
development of airways hyperreactivity in some cases of asthma and in animal mod
els of this disease [48]. Notably, the transfer of enriched naIve T cell populations 
from a strain of mice that displayed inherent airways hyperreactivity to metha
choline to a hyporeactive strain conferred en,hanced airways reactivity to this spas
mogen in the absence of antigen challenge [50]. Airways hyperreactivity was direct
ly associated with CD4+ T cells and occurred in the absence of eosinophilia and pro
nounced inflammation and morphological changes to the airways. Although the 
mechanism of T cell activation in the absence of antigen was obscure these investi
gations support our conclusion that factors secreted from CD4+ T cells play funda
mental roles in determining the level of airways reactivity to cholinergic stimuli. 
Thus, while a number of molecules contribute to the mechanisms underlying the 
regulation of bronchial hyperreactivity in mice, only CD4 + T cells have been shown 
to exclusively regulate disease pathogenesis [48,49]. 
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Key adhesion molecule targets for the inhibition of leukocyte-endothelium 
transmigration during allergic airways inflammation 

The roles of various adhesion-molecules in the trafficking of leukocytes into the lung 
have been investigated in various animal models of asthma. Collectively, these inves
tigations suggest that adhesion molecules playa pivotal role in controlling T cell and 
eosinophil trafficking into the allergic lung and in the subsequent induction of 
bronchial hyperreactivity in response to allergen inhalation, thus indicating the 
potential therapeutic value of targeting adherence pathways at the vascular endothe
lium for the treatment of asthma. 

The potential importance of VCAM-1, ICAM-1, VLA-4, and LFA-1 on antigen
induced leukocyte recruitment to the trachea in a mouse model of allergic airways 
disease has been demonstrated by using inhibitory mAbs [51]. Inhibition of the 
VCAM-1NLA-1 pathway, but not of ICAM-1 or of LFA-1, suppressed eosinophil
ia. In this model, antigen chaJlenge induced the expression of VCAM-1, but not of 
ICAM-1 on the vascular endothelium. Notably, VCAM-1 expression was sup
pressed (27%) by anti-IL-4 mAb treatment, without significantly affecting 
eosinophil accumulation into the trachea. Thus, factors other than IL-4 are impor
tant in promoting VCAM-1-regulated airways eosinophilia [51]. In contrast to 
eosinophil transmigration, all of the adhesion molecule mAbs reduced CD4+ and 
CD8+ T cell infiltration into the trachea, indicating the importance of both LFA-
1IICAM-1 and VLA-4NCAM-1 adhesion pathways for lymphocyte extravasation 
during allergic airways inflammation [51]. 

In similar studies, CD18 and VLA-4 were shown to play key roles in eosinophil 
extravasation in the lung and blockade of these integrins also suppressed the influx 
of mononuclear cells and neutrophils [52, 53]. 

A number of studies have attempted to correlate the effects of inhibiting adhe
sion molecules during allergic inflammation not only with the selective reduction in 
the trafficking of leukocyte subsets, but also with in the level of bronchial reactivi
ty to spasmogens. In primate, rat and guinea pig models of asthma, administration 
of anti-ICAM-1 or anti-VLA-4 mAbs attenuated the development of inflammation 
and bronchial hyperreactivity [53-55]. Inhibition of integrin signalling through 
Mac-lor LFA-1 also attenuated enhanced airways reactivity in models of allergic 
asthma [56-59]. 

The mechanisms whereby adhesion molecules regulate airways hyperreactivity 
are not clear. Observations in a sheep model of asthma suggest a key role for U4 
integrins in the development of allergen-induced late-phase airways dysfunction 
independently of leukocyte recruitment [57, 60]. Systemic and airway administra
tion of anti-u4 mAb (MP1I2) did not alter the composition of leukocyte subsets 
recovered in BALF, while significantly reducing an increase in late-phase lung resis
tance and bronchial hyperreactivity [60]. Inhibition ofICAM-1 signalling or of inte
grin function (with mAbs against VLA-4, both LFA-1 and Mac-lor with mAbs 
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which recognise different epitopes on the CD18 molecule) have also shown that 
adhesion molecules can regulate bronchial hyperreactivity in the presence of inflam
matory cell influx into the airways [55-59]. Thus, adhesion systems may not only 
play an important role in inflammatory cell extravasation but also in their state of 
activation and ability to communicate directly with other inflammatory cells and 
pathways. This concept is supported by recent investigations which show that inte
grins control cell adhesion to extracellular ligands and also transduce biochemical 
signals both into and out of cells [61]. 

Mice carrying a targeted disruption of a gene encoding a particular adhesion 
molecule have been employed to investigate the role of the factors in leukocyte traf
ficking to sites of inflammation. Lymphocytes from L-selectin deficient mice do not 
bind to high endothelial venules of peripheral lymph nodes and total numbers of 
lymphocytes are decreased at these sites [62]. A central role for L-selectin in leuko
cyte homing to non-lymphoid tissues during contact and delayed-type hypersensi
tivity responses was also obsenred [63]. Leukocyte rolling was also significantly 
impaired in P- and L- selectin deficient mice [62, 64]. In P-selectin-deficient mice the 
accumulation of CD4+ T lymphocytes, monocytes and neutrophils, and the degran
ulation of mast cells were significantly reduced during contact hypersensitivity reac
tions [65]. Recently, endothelial selectins were also shown to be critical for a,4-inte
grin dependent leukocyte rolling in chronically inflamed venules in mice deficient in 
P- and E- selectin [68]. P-selectin deficiency has also been associated with the atten
uation of leukocyte recruitment to the lung and of airways hyperreactivity in a 
mouse model of asthma [66]. In ICAM-1-deficient mice, IL-5 and eosinophil per
oxidase levels were significantly lower in BALF in comparison to wild type after sen
sitisation and exposure to aeroallergen [67]. Furthermore, aeroallergen-induced air
ways hyperreactivity was significantly attenuated in the absence of ICAM-1. Thus, 
ICAM-1 was considered to be an important molecule for regulating eosinophilia 
and enhanced bronchial reactivity during allergic responses of the airways [67]. 
Recent investigations suggest that adhesion mechanisms may also be able to distin
guish between Th1 and Th2 subsets and mediate differential trafficking of these T 
cells [69]. Collectively, these investigations indicate that targeting specific adhesion
molecule complexes may be an efficient means of controlling leukocyte infiltration 
during late-phase asthmatic responses. 

Cellular and molecular approaches to antagonise adhesion pathways and 
cytokine signalling 

Th2 type cytokines and adhesion systems activated by these factors have become a 
major focus of research directed at developing novel anti-inflammatory agents for 
the treatment of asthma. Several cellular and molecular approaches are currently 
being pioneered with the view to providing new insights and principles for the devel-
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opment of highly specific therapeutics. Experimental strategies currently are aimed 
at inhibiting cytokine, chemokine or adhesion molecule signalling processes by tar
geting molecular interactions between ligands and their receptors or by modifying 
specific components of signal transduction pathways or of mechanisms of tran
scription. 

The molecular components (transcription factors and promoter elements) regu
lating cytokine-induced expression of specific adhesion molecules in endothelial 
cells and of cytokine expression by Th2 cells are being increasingly characterized. In 
particular, the transcription factor NF-lCB plays a critical role in immune and inflam
matory responses. NF-lCB is regulated by the cytokine-responsive I-lCB complex (IKK 
ex and ~ subunits) and a catalytically inactive form of IKK-~ has been shown to 
block cytokine-induced NF-lCB activation [70]. Nitric oxide, by inhibiting the action 
of NF-lCB has also be shown to suppress cytokine induced expression of adhesion 
molecules and cytokine production within endothelial cells. The signal transducers 
and activators of transcription (STATS) provide another target for the inhibition of 
cytokine gene expression [71]. In particular, IL-4 signals through STAT-6 to regulate 
T helper development, IgE production, expression of CD23, and presentation of 
MHC class II antigen on B cells [71,72]. Importantly, IL-13 also activates the STAT-
6 pathway [73]. Thus, the inhibition of STAT-6 signal transduction and/or other 
transcription factors involved in cytokine and adhesion molecule signalling may 
provide a mechanism for attenuating allergic inflammation in asthma. 

Cytokine or adhesion molecule function may also be antagonised by targeting 
specific components of their signal transduction pathways. The intracellular 
domains of integrins communicate with several structural and signal transduction 
proteins to regulate a wide variety of cellular functions associated with leukocyte 
activation and recruitment [61]. Recently, the Rho subfamily of small guanosine 
triphosphate (GTP)-binding proteins was identified as a potential pharmacological 
target for the uncoupling of G-protein-linked chemoattractant receptors from inte
grin-mediated adhesion of leukocytes [74]. Inactivation of Rho by C3 transferase 
exoenzyme blocked chemokine induced lymphocyte ex4~1 adhesion to VCAM-1 
[74]. Calreticulin has also been shown to be an essential modulator of both integrin 
adhesion functions and intercellular signalling [75]. Thus, disruption of calreticulin
integrin interactions may not only inhibit cell adhesion but also activation of other 
mechanisms associated with the inflammatory stimulus, perhaps providing a mech
anism to attenuate bronchial hyperreactivity. However, the redundancy in the 
actions of cytokines and chemokines and the pleotropic actions of many of the tran
scription factors and intracellular transducing elements involved in both cytokine 
and adhesion molecule signalling suggests that modulation of specific components 
of the inflammatory response by targeting intracellular compartments will be very 
difficult and such approaches currently are far removed from clinical applications. 

Animal studies with monoclonal antibodies (see above) suggest that targeting 
specific inflammatory molecules with humanised antibodies may provide an effec-
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tive therapeutic approach to the treatment of asthma. The recent success at block
ing chemokine receptors with low molecular weight compounds also indicates that 
the use of small molecules, peptide antagonists and perhaps non-signalling receptor 
binding analogues of specific cytokines/chemokines and adhesion molecules may 
also provide a more direct modality to attenuate inflammatory responses. Hetero
cyclic bicyclams, an 18 residue peptide and a highly cationic oligopeptide contain
ing nine arginines were found to inhibit HIV entry of cells by interacting with the 
CXCR-4 (receptor 4 for CXC chemokines) (see [76] for review). The repeated deliv
ery of truncated analogues of chemokines (MCP-l) has also been shown in vivo to 
inhibit chronic inflammatory arthritis that develops spontaneously in MRL-Ipr mice 
[77]. Collectively, these investigations identify the potential for chemokine/cytokine 
receptor antagonists as anti-inflammatories (76). 

Structural analysis of inflammatory molecules and their receptors is also allow
ing for the identification of specific motifs that can be targeted with small mole
cules/peptides to inhibit downstream activation of signal transduction pathways. 
For example, antagonists of the QIDSPL motif within domain one of VCAM indi
cate that this site is critical for VLA-4 binding [78, 79]. The EILDVPST sequence 
within the connecting segment-l (CS-l) region of fibronectin is also recognised by 
VLA-4 [80]. Recently, the cyclic hexapeptide CWLDVS (TBC 772) has been shown 
to be a potent antagonist of a4 integrin function; inhibiting lymphocyte interactions 
with fibronectin, VCAM-l and mucosal vascular adhesion-CAM-l (MAdCAM-l) 
[81, 82]. This peptide is not toxic to T cells in vitro and is integrin selective in its 
suppressive activity as co-stimulation through other molecules in the presence of 
TBC 772 was not impaired [81]. Notably, the antagonist peptide inhibited integrin 
function by a mechanism independent of competitive binding [81]. Recently, a CS-
1 ligand mimic was also shown to inhibit VLA-4 mediated mast cell binding to 
fibronectin and attenuate degranulation [83]. These in vitro investigations with pep
tide antagonists have been extended in a sheep asthma model [84]. Aerosol admin
istration of the CS-l ligand mimic (phenylacetyl-L-Ieucyl-L-aspartyl-L-phenyl
alanyl-D-prolineamide) before aero allergen-challenge significantly attenuated 
(40%) the early-phase and almost ablated the late-phase airways response (88%). 
Moreover, the VLA-4 antagonist inhibited the development of airways hyperreac
tivity to cholinergic stimuli. Inhibition of ant~gen-induced changes in airways func
tion were directly correlated with a reduction of VLA-4 positive leukocytes 
(eosinophils, lymphocytes and metachromatic-staining cells) in airway biopsies 
taken 24 h after the challenge [84]. These investigations also provide evidence that 
small molecules which target specific inflammatory molecule interactions can be 
delivered directly to the airways to potentially inhibit asthmatic like responses. 
These results also support investigations with anti-arintegrin mAbs and studies 
with other small molecule VLA-4 antagonists and suggest that inhibition of CS-l as 
well as VCAM-l binding may be important for suppression of allergic airways 
inflammation [85]. The potential of intravenous or perhaps subcutaneous adminis-
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tration of specific carbohydrate antagonists as therapeutics for blocking leukocyte 
trafficking in asthma has also been demonstrated. Intravenous administration of 
fucoidin, a selectin-binding carbohydrate (blocking of selectin-carbohydrate inter
actions), markedly inhibited (> 98%) leukocyte rolling flux [68]. 

Recently, a mutant of human IL-5, E12K was shown in vitro to act as a potent 
and specific antagonist of IL-5 dependent cell proliferation and eosinophil adhesion, 
and of the events inducing downstream tyrosine phosphorylation [86]. Although 
this mutant did not inhibit all of the actions mediated by IL-5, it demonstrated the 
potential for inhibiting IL-5 function with engineered structural analogues. The 
recent demonstration that insertion mutants of IL-5 can be expressed as monomers 
with biological activity similar to that of native IL-5 provides a platform for the 
development of non-signalling receptor binding antagonists of this cytokine [87]. 

Th2 cell and cytokine suppression by opposing cytokines 

The molecular complexity, high receptor affinity, pleotrophic actions, and redun
dancy of cytokines has to date made it difficult to design pharmacological antago
nists that will specifically modify the actions of an individual cytokine and/or atten
uate inflammatory responses. Furthermore, once the inflammatory cascade is initi
ated mechanisms may operate in parallel and independently to regulate leukocyte 
trafficking and the induction of bronchial hyperreactivity in asthma, suggesting that 
strategies targeting one factor may not be sufficient to relieve airways obstruction. 

Alternatively, over all suppression of a specific inflammatory response may be 
achieved by molecules that are normally involved in the downregulation of the par
ticular immune response in vivo. The ability of cytokines to cross-regulate immune 
responses driven by T cells suggests a possible role for cytokine-directed therapy of 
the inflammatory response underlying asthma. In particular, the cytokines IFNy, 
IFNa and IL-12 have been shown to potentially suppress immunological responses 
driven by Th2 cells [88-93]. These cytokines may act by inhibiting the proliferation 
of Th2-cells, by suppressing IgE and IL-4 production and by downregulating adhe
sion pathways. IFNa and IL-12 may exert their inhibitory effects by enhancing the 
production of IFNy and also independently of this cytokine. IFNa inhibits antigen
induced eosinophil and CD4+ T cell recruitment into airway tissue [93]. Further
more, both IL-12 and IFNyare potent inhibitors of antigen-induced airways hyper
reactivity and Th2 driven inflammation [90-92]. Recently, we have demonstrated 
the potential of cytokine directed gene therapy for the suppression of airway inflam
matory responses in asthma. The delivery of viral constructs encoding IL-12 to the 
lung before the onset and during an established allergic response, selectively inhib
ited airways eosinophilia and hyperreactivity to cholinergic stimuli [93]. This effect 
was accompanied by a shift to Thl type cytokine expression in lung T cells. The 
protective effects of IL-12 were almost completely abolished when experiments were 
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performed in mice with disruption of the gene encoding the IFNy receptor. Interest
ingly, this strategy may promote the clearance of respiratory tract viral infections 
(by stimulating the proliferation of IFNy producing CD8+ T cells) which are thought 
to play key roles in inducing and exacerbating asthmatic responses. 

Summary 

The proposed central role of airways inflammation in the induction and mainte
nance of the asthmatic responses has identified molecules that specifically regulate 
the migration and activation leukocytes as key therapeutic targets for the relief of 
airways obstruction. In asthma, leukocyte trafficking to the lung appears to be pre
dominantly regulated by Th2 cytokines (in particularly IL-4 and IL-S) secreted from 
allergen-specific CD4 + T cells in association with specific adhesion molecules 
(VCAM-I, ICAM-I, VLA-4, LFA-I, Mac-I and P-, E- and L-selectin). Clinical and 
experimental investigations suggest that the delivery of specific antagonists of these 
molecules to the airways may provide a significant advance in the treatment of asth
ma. Currently, a range of cellular and molecular approaches are being employed 
with the view to identifying novel anti inflammatory targets and agents. The com
plexity of the inflammatory response in asthma suggests that Th2 cell suppressers 
may be more efficient at attenuating the inflammatory response than targeting indi
vidual inflammatory molecules. 

The immunoregulatory effects of IFNy, IFNa and IL-12 suggest that these mol
ecules have the potential to inhibit the activation of CD4+ Th2 cells and mast cells 
and suppress airways eosinophilia in asthma. The delivery of inhibitory cytokines 
or antagonists of cytokine and adhesion molecule signalling networks directly to the 
airways may provide a rapid, potent and convenient method for the treatment of 
developing and ongoing asthmatic responses. 
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