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Preface

The preparation of several short courses on distribution-free statisti-
cal methods for students at third and fourth year level in Australian
universities led to the writing of this book. My criteria for the courses
were, firstly, that the subject should have a clearly recognizable
underlying common thread rather than appear to be a collection of
isolated techniques. Secondly, some discussion of efficiency seemed
essential, at a level where the students could appreciate the reasons for
the types of calculations that are performed, and be able actually to do
some of them. Thirdly, it seemed desirable to emphasize point and
interval estimation rather more strongly than is the case in many of
the fairly elementary books in this field.

Randomization, or permutation, is the fundamental idea that
connects almost all of the methods discussed in this book.
Application of randomization techniques to original observations, or
simple transformations of the observations, leads generally to
conditionally distribution-free inference. Certain transformations,
notably ‘sign’ and ‘rank’ transformations may lead to unconditionally
distribution-free inference. An attendant advantage is that useful
tabulations of null distributions of test statistics can be produced.

In my experience students find the notion of asymptotic relative
efficiency of testing difficult. Therefore it seemed worthwhile to give a
rather informal introduction to the relevant ideas and to concentrate
on the Pitman ‘efficacy’ as a measure of efficiency.

Most of the impetus to use distribution-free methods was originally
in hypothesis testing. It is now well recognized that adaptation of
some of the ideas to point estimation can be advantageous from the
points of view of efficiency and robustness. Pedagogically there are
also advantages in emphasizing estimation. One of them is that one
can adopt the straightforward approach of defining relative efficiency
in terms of variances of estimates. Another is that using the notion of
an estimating equation makes it easy to relate the distribution-free
techniques to methods which will have been encountered in the



X PREFACE

standard statistics courses. Examples include the method of mo-
ments, and large sample approximations to standard errors of
estimates.

The aim of this book is to give an introduction to the distribution-
free way of thinking and sufficient detail of some standard techniques
to be useful as a practical guide. It is not intended as a compendium of
distribution-free techniques and some readers may find that a
technique which they regard as important is not mentioned. For the
most part the book deals with problems of location and location shift.
They include one- and two-sample location problems, and some
aspects of regression and of the ‘analysis of variance’.

Although some of the presentation is somewhat different from what
appears to have become the standard in this field, very little, if any, of
the material is original. Much has been gleaned from various texts.
Direct acknowledgement of my indebtedness to the authors of these
works is made by the listing of general references. Through these, and
other references, I also acknowledge indirectly the work of other
authors whose names may not appear in the bibliography. No serious
attempt has been made to attribute ideas to their originators. Specific
references are given only where it is felt that readers may be
particularly interested in more detail.

While the origins of this book are in undergraduate teaching I do
hope that some experienced statisticians will find parts of it interest-
ing. In particular, developments in point and interval estimation, and
noting of their connections with ‘robust’ methods have taken place
fairly recently. Some interesting problems of estimating standard
errors, as yet not fully resolved, are touched upon in several places.

Many of my colleagues have helped me, by discussion and by
reading sections of manuscript. Dr D.G. Kildea read the first draft of
Chapter 2 and his detailed comments led to many improvements.
Dr B.M. Brown was not only a patient listener on many occasions
but also generously provided Appendix A.

Melbourne, November 1980 J.S. Maritz



CHAPTER 1

Basic concepts in distribution-free
methods

1.1 Introduction

In the broadest sense a distribution-free statistical method is one that
does not rely for its validity or its utility on any assumptions about the
form of distribution that is taken to have generated the sample values
on the basis of which inferences about the population distribution are
to be made. Obviously a method cannot be useful unless it is valid, but
the converse is not true. The terms validity and utility are used in a
semi-technical sense and relate to the usual statistical notions of
consistency and efficiency respectively. The great attractions of
distribution-free methods are:

(i) that they are, by definition, valid under minimal assumptions
about underlying distributional forms;
(ii) the aesthetic appeal of their being based for the most part on
very simple permutation or randomization ideas;
(ii1) the fact that they have very satisfactory efficiency and robust-
ness properties.

Distribution-free methods, especially the simpler ones, have gained
widespread acceptance, but they are by no means the first weaponry
of most practising statisticians. Perhaps the main impediments to
their even greater popularity are:

(a) the results of distribution-free tests are often not as readily
interpretable in terms of physical quantities as are the results of
parametric analysis;

(b) in some of the more complex situations severe computational
difficulties can arise; although many distribution-free methods are
‘quick’ and ‘easy’ they do not all share these properties.

It should also be noted, of course, that many distribution-free
methods are relatively new; this applies particularly to the estimation
methods. Therefore they are not yet well known in the popular sense.
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This book is written for undergraduate students, as an instruction
manual in the use of some of the standard distribution-free methods,
but its main objective is to serve as an introduction to the underlying
ideas, and perhaps to stimulate further reading in the subject.
Consequently the emphasis is on randomization (or permutation) as
the underlying unifying notion in the development of testing methods,
and associated methods of estimation. These ideas are certainly not
new, and have been developed in great detail in various special
contexts. Nevertheless, the use of ‘signs’ and ‘ranks’ is still commonly
thought to characterize distribution-free methods, if not by statis-
ticians, then by very many non-professional users of statistical
methods.

The selection of topics that are treated in ensuing chapters is
influenced strongly by consideration (a) above. In fact the emphasis is
heavily on questions of location and location shift. They are not only
among the most important from the practical viewpoint, but also
represent a class of problems where it is clearly easy, and sensible, to
visualize the quantities that are subject to inference, without the need
to specify underlying distributions in close detail. This is the only
excuse offered for not including many ‘standard’ procedures, such as
runs tests, some of the tests of dispersion, general tests of distribution
functions, such as the Kolmogorov—Smirnov test.

Very few of the so-called distribution-free methods are truly
distribution-free. Many of the arguments are simplified if the
underlying distribution can be taken as continuous, and this is
commonly done. This assumption will be made throughout this book.
Other assumptions are necessary, depending on the problem. For
example, in one-sample location problems the assumption of sym-
metry plays a major role. Thus the term distribution-free must be
interpreted with some qualification. The methods are developed
without detailed parametric specification of distributions; we may
assume that a density f(x) is symmetric about 6, but need not say that
it is, for example, 1/[#{1 + (x — 0)*}]. The term ‘nonparametric’ is
preferred to ‘distribution-free’ by some, but since we are actually
trying to make inferences about parameters the latter term seems
more appropriate here.

1.2 Randomization and exact tests

Although the randomization basis of test and other methods will be
restated for specific procedures in later chapters, we shall illustrate it
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here in a simple example. This will enable us to define certain terms
rather conveniently.

Consider the well-known simple ‘paired comparison’ experiment in
which two treatments are allocated at random, one each to a pair of
subjects. The two subjects of the same pairs are chosen to be as alike
as possible. For example, in an experiment on sheep a natural pairing
would be to use twins for each pair. Suppose that the results obtained
for the ith pair are measurements y,, and y,; for the members
receiving treatments A and B respectively. The differential effect of the
treatments for the ith pair could now be measured by d;=y,, — y;3,
withi=1,2,..., n

Now suppose that we are to test the null hypothesis H,, according
to which the effects of treatments A and B are identical. Since our
allocation of treatments within pairs is random, correctness of H,,
would mean that d; could have had the value —d;,=y,;;—y;,.
Further, if we denote by D, the random variable being the ith
difference obtained in the experiment, then

Pr(D;= +|d;|)=Pr(D;= —|d}|) =3 (1.1)

The probabilities in (1.1) are conditional probabilities, the condition-
ing being on the ith pair whose difference has magnitude |d;|.

Since the randomization is performed independently for each pair,
it is now a simple matter to conceive the joint distribution of
D,,D,,...,D,, for the random variables D,,D,,...,D, are inde-
pendent with individual distributions given by (1.1). Again we note
that it is a conditional distribution. A natural test statistic for H, is
T=D,+D,+...+D,, and from the preceding discussion it is clear that
tabulation of the exact conditional distribution of T is a straightfor-
ward matter; the 2" possible sign combinations to be attached to the
magnitudes |d;|, i =1,2,...,n, have to be listed, and for each of these
the value of T computed. This generates 2" possible values of T
occurring with equal probabilities 2 ™", and thus establishes the exact
conditional distribution of T. Let 7 be such that Pr(T = 1) = r/2". If we
test H against a one-sided alternative and take as critical region all
T; 2 1, then the size of this critical region (the level of significance) is
exactly r/2".

A test is said to be exact if the actual significance level is exactly that
which is nominated. In our example, the test is an exact level r/2" test.
Moreover, it is important to note that although the exact significance
level derives from the exact conditional distribution, the uncon-
ditional significance level is also exactly r/2". This is true simply
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because, for every possible set |d;|, i=1,2,...n, the probability of
rejecting H, is r/2".

The distribution of T under H, will often be referred to as the null
distribution of T. In our example it is a conditional null distribution.
The test of H,, is carried out by referring the observed value of T to its
conditional null distribution. The derivation of the distribution in our
example was achieved by using the randomization argument, and did
not depend on an assumption of the form of distribution that
individual y; values might follow. So, the conditional null distribution
of T does not depend on an underlying distributional assumption,
and consequently the significance level is exact, free from such
an assumption.

Although the exactness of the test is not affected by its being based
on a conditional null distribution, it should be kept in mind that the
conditional distribution of T will change from sample to sample.
Therefore the unconditional distribution of T will be a mixture of the
conditional distributions and its form will depend on the underlying
distribution of |d| values. When the exact conditional distribution of a
statistic, obtained by a randomization procedure, is not invariant
with respect to the realized sample values, the associated distribution-
free methods are said to be conditionally distribution-free.

By transformations such as rank and sign transformations it is
often possible to derive methods that are unconditionally
distribution-free from those that are conditionally distribution-free. If
every }d;| in the example that we have been discussing is replaced by 1
we obtain the well known ‘sign test’ and it is clear that the conditional
distribution of S =) 7_, sgn(D,), remains exactly the same for every
possible set of realized results.

From the point of view of exactness of significance levels, there is no
obvious advantage in a test being unconditionally distribution-free.
Since the distributions of test statistics can be tabulated once and for
all if they are unconditionally distribution-free, there can be worth-
while computational advantages in such tests. We shall see, also, that
there can be gains in efficiency by astute choice of transformation.
However, our starting point is randomization and its natural
consequence is to produce, in the first instance, conditionally
distribution-free methods.

Enumeration of exact null distributions can be a totally impractical
task for large sample sizes, hence it is quite common to approximate
null distributions by some standard distribution, usually a normal
distribution, and so to obtain approximate values of significance
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levels. Here the approximation is a mathematical convenience and
does not affect the exactness of the method in principle. Hence such
procedures will be called ‘exact’ whether or not some mathematical
approximation is used for convenience. However, there are circum-
stances where approximations, of essentially unknown precision,
have to be made. They are usually occasioned by nuisance para-
meters, whose values, while not of direct concern do affect the null
distributions of interest.

1.3 Consistency of tests

If the null hypothesis in the example of Section 1.2 had specified a
difference 6 between the two treatments, the d; values would have
been replaced by d,—6, i=1,2,...,n, the argument otherwise
remaining the same. In order to show the dependence of T on
D,,D,,...,D,and 6 we may write it T(D, §). Taking differences of the
paired values can be regarded as reducing the problem to a one-
sample problem, and in the remainder of this section we shall be
discussing one-sample, one-parameter problems.

Suppose that random sampling from a population with parameter
of interest 6 produces the results X,,X,,...,X,, where
X,,X,,...,X, can be taken as independent and identically distri-
buted. Let the statistic to be used in testing a hypothesis about 6 be
S(X, 1), defined such that its conditional and its unconditional null
distributions have mean 0 if ¢ is replaced by 6.

Suppose that we propose to test H, : 0 = 6, against H, :0 =0, >0
at level « and that the test procedure is to reject H, if observed
S(X, 0,) > C,(X,0,). The value of C,(X,6,) is determined from the
randomization distribution of S(X, 6,), therefore it generally depends
on X and on 6,,. We shall assume that S(X, 6,) is so scaled with respect
to n that C(X, 0,) £, 0, ie., in probability, as n — co.

Questions of consistency have to be answered in terms of the
behaviour of the unconditional distributions of the relevant statistics,
and we shall assume that in the unconditional distribution of S(X, 6,,),
when 0 =16,

E{S(X,0,)|6,)} = A0;,0,) > 0
var {S(X,0,)|6,)} = a*(6,, 0,)/n, with (6, ,6,) bounded.

We shall say that the test of H,, against H, is consistent if its power can
be made arbitrarily close to 1 by increasing n.
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Lemma 1.1 Under the assumptions given above about the distri-
bution of (X, ¢), the test of H, against H, is consistent.

The proof of this lemma is obtained simply from the assumptions by
noting that S(X, 6,) £ A(6,, 6,) > 0, while C,(X,6,) 5 0.

We may be concerned with values of 8, close to 6, in which case it is
useful if we assume

E{S(X,1)|0} = u(t,0)

with u(t, 8) continuous in t and differentiable near 6.
Then we can put

AB,,0,) ~ (6o —0,)u'(0,,0,),

noting that u(6,,6,) =0.

For Lemma 1.1 to hold we now have to replace the earlier
assumption about E{S(X,8,)|8,} by the assumption u'(6,6) < 0.

Let us reconsider the example of Section 1.2 in two versions.

(i) SX,t)=T*D,t)=T(D,t)/n=(D,+...+ D,)/n—t; suppose,
for our illustration, that the distribution of every D, is normal with
mean 6 and variance ¢2, and that 6, = 0. In this case, as we shall see,
the conditional randomization distribution of S can be taken as
approximately normal for large n, with variance } d?/n?,ifd,,d,, ...,
d, are the observed differences. So, with 4, an appropriate normal
quantile,

C. (X, 00) = u, {3, D} /n} '/,
and it is easy to see that Y D?/n -5 62+ 62 under H, so that
C,(X,0,) % 0.
Further,
E{S(X,0,)|0,} =0,
var {S(X;,00)10,} =a?/n

note also that E{S(X,t)|0} =60 —t, u'(6,0)= — 1. The test is con-
sistent; in fact, as we shall show in Chapter 2 the test statistic can be
written as a function of the usual ¢-statistic whose consistency and
other properties are well known.

It should be noted, however, that with certain distributions for the
D, the test may not be consistent.

(ii) Let S(X,¢)=(1/n)).7- , sgn(D; — ¢) and suppose that the distri-
bution function of every D, is F(d, #), with density f(d, 6), symmetric
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about 0. The null distribution of S has variance 1/n, n even, and S,
being a linear function of a binomial random variable, has an
approximately normal distribution.
So,

Co(X,0) = u,/</n
Also

E{S(X,1)|0} =(1/n) } E{sgn(D; —1)|6}
=(1/n) Y {(—1) P(D; <t16) + (1) P(D; > t|6)}
=1—-2F(t,0)

Therefore u'(6,0) = — 2f(6, 6). Under H, the statistic S can again be
expressed as a binomial random variable, hence 6%(6,, 6,)) < 4, so that
the conditions of Lemma 1.1 are satisfied.

Two points about the examples above are worth remarking upon.
First we see that the quantity C,(X,0,) is simply a constant, that is
non-random, in case (ii). Second, the only restriction on F is that
£(6,8) + 0, so that the ‘sign’ test will be consistent in many cases where
the usual t-test is not.

1.4 Point estimation of a single parameter

Since the statistic S(X, t) is defined so that E{S(X,6)} =0, a natural
procedure for finding a point estimate of 6 is suggested by the method
of moments, namely, to take as point estimate 0 of 6 the solutiont =
of the estimating equation

S(X, ) =0. (1.2)

As we shall see in later chapters, some of the statistics S(X, t), regarded
as functions of ¢ for fixed X are not continuous in ¢ so that a unique
solution of (1.2) has to be decided upon by a suitable convention. An
appropriate one is usually obvious in context. Weak consistency of §
is easily checked; in fact we have:

Lemma 1.2 If E{S(X,t)|0} = u(t,0) is continuous in ¢t and differen-
tiable near ¢ > 0, and if the other conditions for the applicability
of Lemma 1.1 hold, then 8 £ 0 as n — oo.

1.5 Confidence limits

Provision of a measure of precision of an estimate is an essential part
of statistical inference, and one way of doing this is to give confidence
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limits. Confidence limits, or confidence sets, can be determined by the
well-known procedure of taking a point 6’ in the parameter space to
belong to the confidence set if the null hypothesis that § =6 is
accepted. Briefly, the argument is as follows:

To test H,: 0 = 0, against some alternative H ,, a critical region of
size a, R(f,), is determined such that

Pr{S(X,0,)eR(0,)|Ho} =1« (1.3)

Now, for a given X = x find the set C,(x) of all § such that S(x, ) R(6).
The true value 6, will belong to C,(x) if S(x,60,)eR(0,). But the
probability of this event is 1 — a, whatever the value of ,,, according
to our definition (1.3). The set C,(x) is a 100(1 — «)%, confidence set for
0. The shape of C,(x) is determined by the shape of R(6). In the one-
parameter case that we are considering, R(6) is typically an interval,
and so is C,(x); one- or two-sided confidence limits are obtained
according to whether the test is one- or two-sided. The probability
1 — « is sometimes called the confidence coefficient.

A notable feature of the procedure outlined above is that only the
null distribution of S is needed. In distribution-free methods this is
particularly useful because the null distributions are usually exact,
often very easy to obtain, and of course in many instances already
tabulated. Moreover, whether a conditional or unconditional null
distribution is used the confidence coefficient is the value 1 —a
associated with the hypothesis test, and if the probability 1 — ¢ is
exact, then so is the confidence coefficient. We shall say that a
confidence region is exact if the confidence coefficient 1 — « is exact.
One of the great attractions of distribution-free methods is that they
enable one to determine, often fairly easily, exact confidence limits for
certain parameters with minimal assumptions about distributional
forms.

1.6 Efficiency considerations in the one-parameter case

1.6.1 Estimation

Efficiency of estimation will be measured in terms of var(8). The
relative efficiency of two estimators will be measured by the ratio of
their variances. In some cases it will be possible to express 8 fairly
simply in terms of X ;, X,, ..., X, so that an exact expression for var()
may be given. However, for the most part we shall have to deal with
cases where such a simple expression cannot be obtained; in fact we



BASIC CONCEPTS IN DISTRIBUTION-FREE METHODS 9

may not even be able to express 0 explicitly in terms of X, , X 5,..., X ,.
Then the best we can do is obtain a large-sample approximation
formula for var ().

To simplify notation we shall assume in what follows that
expectation and variance are derived at the true value of the
parameter 6. Thus we put E{S(X,#)|6} = E{S(X,t)}, etc. The main
assumptions that we shall make are:

(i) E{S(X,t)} = u(t,0), is continuous in ¢ and differentiable near
t=20,

(ii) the statistic S(X, t), treated as a function of ¢ for fixed X, either is
continuous and differentiable for ¢ near 6, or it can be replaced by an
approximating function which has these properties;

(iii) var{S(X,t)} = a2(t, 0)/n, 6*(t, 0) continuous in t and bounded.

Assumption (ii) is needed because statistics S(X, ) obtained after
rank or sign transformations are typically discontinuous step func-
tions of t. However, it is also typically true of them that if they are
scaled such that E{S(X, t)} = u(t, 0), that is, not dependent on n, then
the number of steps increase with n, and their heights decrease. The
sign statistic of example (i) in Section 1.3 is a case in point; a simple
transformation of S(X, t) is the sample distribution function which is
known to have the desired property.

Now consider a small but finite neighbourhood of 0, the interval
(6 — h/2,0 + h/2) with h held constant, so that we can put

{6S(X, t)} _ S(X,0+ h/2) = S(X,0 — h/2)

ot {4 h
_ S0+ h/2,6)— 56~ h/2,6) + O(1 NG,
h
~ u'(6,60) + O(1//n)

in view of assumption (iii).

Write
S(X,t)=S(X,0)+(t—9){;1'(0,0)+0(1/\/n)} (1.4)
and note that S(X, §) = 0. Then we have approximately
var () = var {S(X, 0)}/[OE{SX, 1)} /0] , (1.5)

Formula (1.5), or approximate methods similar to those used in its
derivation, occur in sundry standard situations. For example, if it is
applied to the estimating equation in the case of ‘regular’ maximum-
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likelihood estimation, the usual large-sample variance formula for
maximum-likelihood estimators is obtained.

A simple example is the following: suppose that F,(x) is the usual
sample distribution function based on n independent observations
from a population with continuous distribution function F(x), density
f(x) and median 6. The estimating equation for 6 is

SX,5)=F,(t)—1/2=0
E{S(X,t)}=F(t)—1/2
[OE{S(X,1)}/0t], = = r(6)
var {S(X,8)} = 1/4n

giving the approximate formula for the variance of the sample
median, 6,

var (0) ~ 1/(4nf %(9)).

Another consequence of the ‘linearization’ represented by (1.3) is
that the distribution of § will be approximately normal if the
distribution of S(X, ) is approximately normal. Linearization ideas
have become important in distribution-free methods, and a more
rigorous approach is outlined in Appendix A.

1.6.2 Hypothesis testing

Consider two statistics S; and S, satisfying the conditions (i), (ii), (iii)
given in Section 1.6.1. Suppose that we scale these two statistics so
that their null distributions have the same dispersion at a certain
value 0, of §; that is, we replace S, by S,(X,t)/a,(0,,0,) = S¥X,1)
and S,(X,t) by S,(X,t)/0,(8,,0,) = S¥(X, t). Inspection of formula
(1.4) shows that the ratio of variances of estimates of 6, based on S*
and S3 is determined by the slopes [0E{S}(X,t)}/0t],_,, r=1,2.
Without doing formal power calculations, it is clear that the power
of a test of Hy:0=0, against H,:0=60,+ A, A small, will be
determined largely by the slope given above associated with the
statistic S used for the test. For any statistic S, the slope at 6,

es(0o) = |[OE{S*(X,1)}/0t], =4 = 1 (6, 0,)/0(05,00)  (1.6)

is, therefore a natural measure of its efficiency for testing H , against a

close alternative H,. If we put A=1 /\/ n then eg(6,) is the displace-

ment of the distribution of S from its null location under H,,
standardized with respect to its standard deviation under H,,.

Making the approximation a(f, + A, 0,) ~ a(6,, 0,) and assuming
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the relevant distributions of S to be approximately normal, the power
of a level-a test of H, against H, is approximately

1 — ®{u, — Ay/nli (05, 00)1/5(05,60)}, (1.7)

where @ is the standard normal distribution function.

For level-« tests based on S, and S, of H, against H, to have the
same power, according to (1.7), the required sample sizes n, and n,
must satisfy

ny/n, = {‘3sz(90)/‘3s1(90)}2 (1.8)

The quantity eg(d,) is called the efficacy of S at 6, and the ratio of
squared efficacies in (1.8) is the Pitman asymptotic relative efficiency
(ARE) of the statistics S; and S,. In the ‘regular’ cases which we are
considering the ARE is readily seen to be the same as the relative
efficiency of the estimators yielded by S; and S,. Further notes on
the Pitman ARE are given in Appendix B.

1.7 Multiple samples and parameters

1.7.1 Introduction

The two-sample problem to receive most attention in later chapters is
that of location shift. It is, therefore, still a one-parameter problem,
and while the typical statistic used for inference will depend on two
sets of sample values, the modifications required to the discussions in
Sections 1.5 and 1.6 are obvious. They will be seen in the relevant later
sections.

Problems with k > 2 samples are those that are commonly thought
of as having to do with ‘analysis of variance’ in parametric statistics.
Here a natural model involves (k — 1) location-shift parameters, so we
have a multiple-parameter problem. Regression generally involves
multiple parameters, although the important straight-line regression
case can be regarded as a one-parameter problem if the interest is only
in the slope parameter. Two or more parameters also occur with
bivariate or multivariate observations.

In the discussion that follows we shall consider two parameters.
Generalization to more than two parameters is obvious. Also, as we
have indicated for the two-sample, one-parameter case, there is no
real need to discuss single- or multiple-sample cases separately at this
stage; the actual details for these cases are, of course, different, but will
become clearer when special cases are treated in later chapters.
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Generally we shall have two statistics S,(X,t,,t,), r = 1,2 whose
exact joint conditional distribution under a suitable randomization
scheme is known when ¢, and t, are replaced by 8, and 8,, the two
parameters of interest. By ‘known’ we understand, as before, that the
rule by which the distribution can be enumerated is known. In
practice we may choose to approximate the distribution by, usually, a
normal distribution. The statistics S; and S, will be assumed to have
properties like those of S according to assumptions (i), (ii), (iii) in
Section 1.6. Usually they will not be independent and we take their
covariance to be of the form cov {S,(X,t,,t;), S,(X,t;,t,)} =
6,,(t;,t,,6,,0,)/n. As we have indicated in the introductory para-
graph to this section, if more than one sample is involved, the only
changes to the discussion are that the divisors, n, in the variances and
covariances of S; and S, are replaced by factors depending on the
sample sizes.

1.7.2 Point estimation

Defining the statistics S, and S, to be such that E{S,(X,6,,0,)} =0,
r=1,2 the point estimates of 6, and 6, are taken to be the solu-
tions 0,0, of the estimating equations

Sr(xst1’t2)=0a r= 152 (19)

If S, and S, are not continuous functions of ¢, and ¢t, for fixed X, some
suitable convention has to be adopted to define unique estimates
0,,0,.

The assumptions that have already been made about the distri-
bution of S, and S, are sufficient to ensure the consistency of the
estimates, by an argument similar to that leading to Lemma 1.1; it will
not be elaborated here. Similarly, by arguments like those leading to
(1.4) a formula for the large-sample approximate covariance matrix of
6,0, can be obtained.

Let

{aE{Sr(X’ Ly, tZ)/ats]tl =01.02=0; yrs(el > 02)

711(01,0,) ?12(91,92)]
C= (1.10)
[Vﬂ(el ,02) 722004,0,)

Denote the covariance matrix of S,(X,6,,0,),5,(X,0,,0,) by V.
Then

and

]:a_c-lv(cT)'1 (1.11)

var(él) COV(él,gz)
cov(f,,0,) var(d,)
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By a linearization argument similar to that used before the joint
distribution of 8, ,0, is approximately normal if the joint distribution
of S, and S, is approximately normal.

The efficiency of a point estimate will be judged in terms of its
variance calculated according to (1.11).

1.7.3 Hypothesis testing

Let us consider the testing of a simple null hypothesis H that specifies
the values (69, 09) of 6, and 0,, and the use of the statistics S, and S,
for this purpose. Assuming that the exact joint null distribution,
conditional or otherwise, of S, and S, is known from the operation of
a suitable randomization scheme, the first matter that has to be
decided is the choice of critical region for a test of level a. In the one-
parameter case a suitable choice is usually obvious: S(X, t) is chosen
not only to have zero expectation at t = 6 but also such that E{S(X, t)}
is monotonic in ¢. Then the appropriate tail region of the distribution
of S defines a natural critical region. By extension of this sort of
approach to the two-dimensional case, the critical region could be
taken to comprise those points of the (S, S,)-space that are ‘most
distant’ from the origin [E{S(X, 69,09)}, E{S,(X,69,69)}1=[0,0].

Following precedents set in other areas of statistics, we shall use as
a measure of distance

Q(X,92,93)=(51,SZ)VI(SI,SZ)T (1-12)

where we have written for simplicity of notation S, = S,(X, 69, 69),
r=1,2, and V is the covariance matrix of S|, S,. Large values of Q
will lead to rejection of H,. In other words, we are now using Q as a
test statistic for H,,.

Enumeration of the exact randomization distribution of Q is, in
principle, straightforward and will be demonstrated in several
examples to follow in later chapters. Therefore we have the apparatus
for an exact test of H, based on §, and S,.

Elementary calculations show that

E{Q(X,09,09)|H,} =2

and this means that detailed enumeration of the distribution of Q will
often be unnecessary; if the observed Q is smaller than 2, H, is
accepted. Under suitable conditions the distribution of Q will be
approximately y3.

The one-dimensional counterpart of Q is simply S*(X,60,)/
var S5(X,6,), whose expectation under H, is 1, and whose distri-
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bution under suitable conditions is approximately y2. Consistency of
the test of H, can be shown to hold by arguing as in Section 1.3 but
using the distribution of $*(X, ,)/var {S(X, 6,)}. A similar argument
applied to 0 demonstrates the consistency of the test of H, based on
it.

For the two-dimensional case we define the efficacy of testing by
generalization of the notion of small displacement of the distribution
of S under H, relative to H, to two dimensions, using the type of
distance measure that is involved in the definition of Q. By analogy
with the interpretation of eg(6,) in Section 1.6.2 as the displacement of
the distribution of S due to a change of magnitude 1 /\/ nin 6, we now
perform a similar calculation. Both 69 and 69 are taken to be shifted
by amounts 1 /\/ n under H, and the displacement in
[E{S,(X,09,09)}, E{S,(X,09,09)}] is calculated according to the
distance measure used to define Q. Then, if the efficacy of Q is
leg(69,69)], we have

eé(@?,(?g) =(1, I)CTV; Lo, T (1.13)
2(00 o 0 Ao
where =[01(91;92()) 0122(611,22)]
0,,(67,63) 03(01,03)

While developing an exact test procedure for a simple H, is hardly
more complicated in the two-parameter case than for one parameter,
severe complications can arise if we wish to test certain composite
hypotheses. A typical example is the testing of a hypothesis that
specifies, say, 8, = 09, but leaves 6, unspecified. The difficulty that
arises is not peculiar to distribution-free tests. It is the general
problem of existence of ‘similar regions’ or elimination of ‘nuisance
parameters’. In special cases it is possible to devise an exact test of
such a null hypothesis despite the existence of the nuisance parameter
0,. But in general it is not possible. An approximate procedure is to
obtain a point estimate 8, of 6, and then to act asif d, is the true value
of 8,. The accuracy of the resulting approximate test size is generally
unknown.

1.7.4 Confidence regions

The argument for determining a confidence region outlined in Section
1.5 could be called inversion of the hypothesis-testing procedure. It
carries over without modification to the two-parameter case, where
inversion of the hypothesis-testing procedure for the simple H,
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produces a joint confidence region for the parameter vector (6,, 6,). If
the test of H is exact, so is the confidence region.

Here, as in hypothesis testing, the problem of nuisance parameters
arises, and again it is not confined to distribution-free methods. Let us
suppose that an exact joint confidence region, C, for (6,,8,), of
confidence coefficient (1 — o) has been established. Also assume for
simplicity that it is convex. Suppose that this confidence region is
graphed in a (6,,6,)-plane and that two tangents to it are drawn
parallel to the 6, axis. They intersect the 6, axis at 8" and %2, and
these two values can be taken as confidence limits for 8,. However,
the confidence coefficient of this confidence interval (83", 02)) for 8, is
greater than or equal to 1 — o; usually it is greater than 1 — o by an
unknown amount. In ‘normal theory’ it is easy to establish the exact
relationship between 1 — « and the confidence coefficient of (60, 6).

Iftwo sets of tangents to C are drawn, parallel to the ,- and 6, -axes
respectively, confidence intervals for 6, and 6, are obtained. The
probability that the two intervals simultaneously contain 8, and 6, is
also at least (1 — o). Pairs of parallel tangents drawn at other angles,
that is, not parallel to either of the axes, generate confidence intervals
for linear functions of §, and 6, ; the probability that all of these
intervals simultaneously contain all of the relevant parameters is
1 —o. However interesting this statement may be, the most pressing
practical problem is often that of obtaining a confidence interval for
0, or 0, or perhaps one linear function of 6, and 6,, and
determination of an exact interval appears to be impossible, in
general, even with the availability of an exact joint confidence
region C.

1.8 Normal approximations

1.8.1 The need for normal approximations

The inferential procedures described in this book are almost
exclusively based on quite simple permutation and randomization
schemes. Relevant conditional null distributions are obtainable
exactly by these means, so that with patience or computing help they
can always be listed in whatever detail is needed. So, from the point of
view of doing distribution-free tests, or actually finding confidence
limits, normal approximations are not strictly needed.

However, as some of the examples will show, the work of
enumerating exact null distributions increases so rapidly with



16 DISTRIBUTION-FREE STATISTICAL METHODS

increasing sample sizes that putting distribution-free methods into
effect would, in many instances, be quite impractical without the use
of approximations. Knowledge of the first two moments of a null
distribution will often be sufficient to enable one to make a sensible
decision about a set of data. For example, in a test against a one-sided
alternative the observed value of the test statistic may fall on the
‘wrong’ side of its null expectation. If the observed value of the test
statistic is, say, more than four standard derivations from the null
expectation there would be little question of accepting the null
hypothesis.

Nevertheless, in most applications reasonably accurate signific-
ances are needed for tests, and they are, of course, needed for setting
confidence limits. In calculations relating to these questions, good
large-sample approximations to the exact distributions are almost
indispensable. Another important aspect of normal approximations
of distribution for statistics is that notions of asymptotic relative
efficiency are closely connected with assumptions of normal distri-
butions of statistics. It is fairly easy, and rather useful, to introduce
crude ideas of efficiency without special reference to normal distri-
bution, as we have done, but asymptotic normality certainly figures
largely in more precise formulations.

In the following sections a brief outline of some of the important
theory relevant to normal approximation of null distributions is
given.

1.8.2 The central limit theorem

Suppose that the random variable has finite expectation x and finite
variance ¢ and that X, X,,..., X, are independent random vari-
ables, identically distributed like X. Then we have the possibly best-
known form of the central limit theorem as follows:

Theorem 1.3 If Y, = X, + X, + ... + X, the distribution function of
(Y,— nu)/(o\/ n) converges to a standard normal (N(0, 1)) distribution
function as n — 0.

Theorem 1.3 is the basis of the normal approximations of the
distributions of sums of independent random variables that are used
widely in practice. Even when the actual distribution is discrete the
approximation can be remarkably good for quite small values of n,
especially if appropriate continuity corrections are made. One of the
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best-known examples, which we shall be using, is normal approxi-
mation of the Binomial distribution.

A more general version of Theorem 1.3 holds for independent
random variables that are not necessarily identically distributed. We
shall state it in a form given and proved in Hajek and Sidak (1967).
Suppose that a,,a,,...,a, is a sequence of real numbers with the
property

max(a?)/Ya? >0 as n—owo (1.14)

and that X |, X,,..., X, are the random variables of Theorem 1.3. Let
T,= Z a; X,
i=1
Then for any finite n,

n

IJ'a=E(Ta)=# Z ai; O'Z'=Var(Ta)=O'2 Z a'z'

i
i=1 i=1

Theorem 1.4 The distribution function of (T, — u,)/0, converges to an
N(0, 1) distribution function as n — oo.

There will be several applications of this theorem in later chapters.

One of them is to the distribution of the Wilcoxon signed-rank
statistic.

1.8.3 Sampling from finite populations

In problems involving two samples of sizes m and n it is common to
test a null hypothesis, H,, to the effect that the two samples derive
from the same population. Some cases are exactly of this kind, many
others can be put in this form. Here we obtain exact inferential
procedures by conditioning on the observed set of N=m+n
results, and arguing that, under H , the partition into groups of sizes m
and n is random. This argument is used throughout Chapter 4 and
elsewhere.

The randomization procedure here can be seen to be equivalent to
sampling without replacement from a finite population of size N =
m + n, the sample size being m or n. Suppose that the N sample items
in such a finite population have values ¢,,¢&,,..., &y, with

N N
#N=(1/N)‘_Z1 & on=(/N) Y (&—m)*  (L15)

i=1
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Now let X,,X,,... X, be the values of the members of a sample of
size m drawn at random without replacement from the population. By
symmetry, the random variables X,,X,,...,X,, are identically
distributed, each with mean uy and variance ¢2. Nothing that var
(X;+...+ Xy)=0 we find that cov (X;, X;) = —6}/(N — 1), all i,j
and hence the following standard results are readily established:

E( Y Xi>=muN, var( Y X,->=ma§,(N—m)/(N—1)
i=1 i=1
they are used repeatedly, especially in Chapter 4.

A general theorem of Wald and Wolfowitz (1944) deals with
the question of asymptotic normality of linear functions of
X,,X,,...,Xy. A special case is the sampling problem discussed
above, and we have the following theorem given also in Wilks (1962,
p. 268).

Theorem 1.5 Suppose that we have a sequence of finite populations
I and that for large N

N
(1/N).=Zl(é.-—ll~)’/6§v=0(1) (1.16)

Then if m, N — oo in such a way that N/m — ¢, where 1 < ¢ < o0, the
distribution function of

( 3 X, - mu~> / {Emn/(N — 1)}

i=1

converges to a standard normal distribution function.

The more general version of this theorem deals with linear
functions of the type

N
Ly=} a;X;
i=1

where (X, X,,..., Xy) is uniformly distributed on all permutations
of the values (¢,,¢,,...,&y). This theorem is widely applicable, and
could be used to check the asymptotic normality of certain rank
statistics which we shall use.

For the (a,,a,,...,ay) and (¢,,&,,..., Ey) sequences we introduce
parameters y(a), o2(a), iy (&), 03(E), their respective means and va-
riances, defined according to (1.15). Then using the result given above
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for cov (X, X ;) it is easily shown that
E(Ly) = N py(¢)pnla)

var(Ly) = (%)Naﬁ(c)aﬁ(a)
Theorem 1.6 Suppose that conditions like (1.16) hold for each of the
sequences (a,,d,,...,ay) and (&,,&,,...,&y), and that m,N -
such that N/m —¢, 1 <c¢ < oo. Then the distribution function of
{Ly — E(Ly)}/{var(Ly)}"/* converges to a standard normal distribu-
tion function.

This theorem, with an outline of the proof, is given in Wilks (1962,
p. 266).

A bivariate extension of this theorem can be developed if we take
each member of the population to have two measurements (g;, #;),
i=1,2,...,N. Then write Ly, =) a;X; and Ly,=) b;Y;, with Y;
defined similarly for X .

By imposing suitable conditions on the four relevant sequences,
applying Theorem 1.6 to linear functions of L, and L, and using a
characterization of the bivariate normal distribution the joint
asymptotic normality of Ly, and Ly, can be established.

1.8.4 Linear rank statistics

Suppose that X, X,,..., X, are independent and identically distri-
buted with the common distribution function F, and denote the rank
of X; among the values X,,X,,...,X, by R;,i=1,2,...,n. Many of
the statistics that we shall discuss are of the form

W=y ¢R;
i=1

The null distributions of these statistics are usually based on the
randomization scheme whereby all permutations of the ranks
(1,2,...,n) have equal probability. Then, by the methods used in
Section 1.8.3, we have the following familiar results:

ER)=(m+1)2, i=12,...n

var(R)=¢?=m*-1)/12, i=12,...,n
cov(R, R))= —a?/(n—1), i#j=1,2,...,n
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Using these formulae we obtain

E(W)=<n;1)i ¢,

i=1

var(W)=oZ<n%)ﬁ - =""20 T (e, ~p

where ¢ =(1/n) 7. ¢;.
The following theorem is a special case of a theorem for rank-based
scores given in H4jek and Sidak (1967), Ch. V:

Theorem 1.7 If max(c, —&)?*/Y 1~ (¢;— &> —0 as n— oo, the distri-
bution function of (W— E(W))/{var (W)}'/? converges to a standard
normal distribution function.



CHAPTER 2

One-sample location problems

2.1 Introduction

Throughout this chapter we shall suppose that n independent
observations x,, x,, ..., X, are made on a random variable X whose
cumulative distribution function (c.d.f.) is F(x), where F(x) is con-
tinuous with differentiable probability density function (p.d.f.) f(x).
Our concern will be primarily with the location of F, and when
appropriate, we shall write F(x) = F(x, 6), where 8 is a suitably defined
location parameter. The simpler notation, F(x), will be used unless it is
essential to indicate parameter values explicitly.

We shall consider questions of point and interval estimation of 6,
and of testing hypotheses about 6. Estimating equations for 0 will be
formulated, and the approach to testing of hypotheses, and finding
confidence limits, will be to use the statistics appearing in these
equations.

The best-known measures of location of a distribution F are the
mean and the median, each being a natural measure in its own way. In
the distribution-free setting the mean is less suitable than the median
because, without some restriction on the family of distributions to
which F may belong, the mean may not exist. On the other hand, a
median always exists. Consequently, distribution-free inferences
about location are most commonly thought of as dealing with the
median. Unless otherwise specified, we shall take 6 to be the
population median in the remainder of this chapter.

If the distribution F is symmetrical about a point 6 such that
f(x —0)=f(— x4+ 0) then 0 will also be referred to as the ‘centre’ of
the distribution; if F is continuous, the mean, if it exists, and the
median, suitability defined, coincide with 6. Some of the important
one-sample distribution-free techniques depend on symmetry of F,
and are, therefore, distribution-free in a restricted sense. The class of
problems involving symmetric F is, however, quite extensive. In-
stances of naturally occurring symmetric distributions are not rare,
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and symmetric distributions are often produced by differencing of
independent random variables, for example, as in ‘paired comparison’
trials.

The mean, p, is defined by

= Jx dF(x) 2.1)

when the r.hs. of (2.1) is finite. With suitable F(x) it is sometimes
convenient to define it as the value of ¢ that minimizes

Q.= J(x —1)*dF(x) 22

The median 6 satisfies F(6) =4 and, with suitable F(x), can also be
defined as the value of ¢ that minimizes

0,(0)= flx —t|dF(x) 2.3)

A direct way of using the observations to estimate y or 6 is to
replace the distribution function in (2.1), (2.2) or (2.3) by the sample
c.d.f. From (2.1) we then find by simple calculations that the estimate
of uis

X=X

™M=

.1
p=_

1

The sample version of (2.3) can be written

0LO=1 3 1xy—1] (2.4)
ni=1

where x;, < X <...<Xq are the ordered x,,X,,...,x,. When
graphed as a function of ¢, Q, ,(¢) has slope

n

1 1
—S(x,t)==Y sgn[x;—t] (2.5)
n ni=1

for values of t not coinciding with the order statistics X ;, X(2), - - - » Xn)-
This is a step function with steps of equal height 2/n occurring at
x(l),X(Z),.-.,X("). N

The minimum of @, ,(t) occurs at a value t = 6 where S(x, t) changes
sign. When n=2k+1 we have 6 =x, ;- When n=2k S5(x,7) =0
for x4 <t<xu.1 and the usual convention is to put 6=
{X@ *+ X@ +1,}/2. Formally we may regard 6 as the solution of

S(x,t)=0
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1 -
Since F,(t) = { — ;S(x, 1)+ 1} / 2 is the sample c.d.f, 6, also satisfies

F,0)=3.

Other measures of location can be defined by different choices of Q,
the function to be minimized. Alternatively, different statistics could
be used in (2.5). We might, for example, define a location estimate as
the value of t for which

1 n
S,(x,t)= " Z Ylx;—1)=0 (2.6)

is satisfied. If it happens that y(u) = f'(u)/ f(u),and f (x — 6) is the p.d.f.
of X, then the maximum-likelihood (ML) estimate (MLE) of 6 is
obtained. For this reason, estimates of the type generated by (2.6) are
called M-estimates (Huber (1972)). The equation in ¢,

EW(X,t)= J./,(x —1)dF(x)=0 2.7

can be taken to define a location parameter of F.

2.2 The median

The median was defined in Section 2.1 and, in the terminology of
Chapter 1, the estimating equation for the median, motivated directly
by the definition, is (2.5), which we rewrite as

n

S(x, 1) = Z sgn(x,—t)=0 (2.8

i=1

In discussions of the median we shall take the population median to
be 0 unless otherwise stated, and in this case,

Prisgn(X,—0)= + 1]=Prsgn(X;,— 0)= —1]1=13,
i=1,2,...,n (29

giving
E{S(X,0)} =0 (2.10)

Equation (2.10), by an application of the method of moments, can be
taken as an alternative motivation for the estimating equation (2.8).

The null distribution of S

Here and elsewhere the term ‘null distribution’ indicates the distri-
bution of a statistic S(X, ) when the distribution of X has parameter
value 6. Using (2.9) and the independence of the random variables
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sgn(X;—60),i=1,2,...n, it is easy to enumerate the null distribution
of S. Since we can write S(X,0) =2(B — n/2) where B is a binomial
(n,4) random variable, tables of the binomial distribution can be used
to find the null distribution of S. Note that this distribution of S(X, §)
does not depend on the form of F, hence inference based on S is
distribution-free.

Since S(X, 6) is the sum of independent random variables identi-
cally and symmetrically distributed about 0, its distribution is
symmetric about 0, and since var {sgn(X — )} =1,

var {S(X,0)} =n 2.11)

By an application of the central limit theorem, the distribution of
S(X, 0) tends to normality as n increases.

Testing Hy,:0 =0,

Totest Hy:0 =0, against H, :0 =8, > 0, we calculate the observed
value S(x,0,) of S(X,0,) and refer it to the null distribution of S.
Since Pr {sgn(X —6,)= + 1|H,} >4, we have E{S(X,0,)|H,} >0,
and therefore we reject H, if S(x,6,) is in the upper tail of the
null distribution. In practice one might refer to a table of the
null distribution, or for n=5, use a normal approximation as
follows:

Suppose S(x, 6) = s. Calculate

s—1

and reject H, at level a if 1 — ®(u) < a. In (2.12), the subtraction of 1
from s in the r.h.s. numerator is a continuity correction, because the
cdf. of S is discrete with jumps at —n, —n+2,...,n—2,n.

Since E{S(X,0,)|H,}=2n{F(6,,8,) ~F(6,,6,)} and var
{S(X,0,)|H,}<n, the test is consistent by an application of
the results of Section 1.3.

For other H,, modifications of the test procedure are obvious.

Example 2.1 Suppose that we have the n = 10 independent observa-
tions.

3.38, 5.81, 4.46, 4.62, 4.15, 5.44, 6.56, 5.82, 3.95, 5.19

and wish to test the hypothesis H,:0 =4.25 against H, :0 > 4.25,
where 6 is the population median. Then, S(x,4.25)=4, and from
tables, or by simple enumeration, Pr[S(X,6,) = + 4] =176/1024.
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The value of u given by (2.12),is 3/\/10 =0.95giving 1 — ®(u) =0.171,
which agrees well with the exact significance level 176/1024 = 0.172.

Confidence limits for 0

A simple way of finding a confidence set for 8 is to use the follow-
ing procedure of inverting the hypothesis-testing argument:
A 100(1 — )% confidence set, C, for § comprises those values 6’ for
which the hypothesis that § = 0’ is accepted at level a. Typically the
form of critical region in the hypothesis test determines the form
of C, in particular, whether one- or two-sided confidence limits are
obtained.

For two-sided confidence limits we may proceed as follows. Let
Pr[|S,(X,6)|< s] =1—a, where o is near one of the conventional
‘small’ values 0.10, 0.05, etc. Then, as t varies from — oo to + o0,
observed S(x, t) changes from n to — n, in jumps of size 2, at points
X(1y> X(2)s - - - » X(y- COnsequently, the limits are x,,, + and x,,,, — where
ri=m-s)/2,r,=n—r;  +1

For large n, the values s,r;,r, can be found by the normal
approximation for the distribution of S.

Example 2.2 Use the data in Example 2.1 arranged in increasing
order of magnitude. The bracketed numbers separating the observed
order statistics are values of S given by ¢ in the corresponding interval

(10) 338  (8) 395 (6) 415 (4 446 (2 462  (0)
0 519 (—2) 544 (—4) 581 (—6) 582 (—8 656 (—10)
From the null distribution of S we have
Pr[|S|<4]=—112/1024 ~0.90.
Therefore a 100(1 — 112/1024)%, confidence interval for 6 is
4.15+,581—)

Point estimation of 0
The point estimate 8 of 6 is the solution of the estimating equation
(2.8), and, as explained before we have

A_{x(kﬂ) if n=2k+1
{Xay + Xa+1)1/2 if n=2k

the symbol @ will be used to denote the estimate and the correspond-
ing estimator.
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To check for consistency of @ as an estimate of § we can use the
result in Section 1.4. We only have to verify that var{S(X,?)} =
no(t, 0) with o2(t, §) bounded. In fact

var {S(X,0)} =4nPr{sgn(X —t)=+1}-Pr{sgn(X —t)= -1} <n

therefore 6 is consistent for 6.

In general, the estimator @ is biased for 6, but it is median-unbiased,
that is, the median of 9 is 6.

For the case n=2k + 1, the p.d.f. of § at O =1 is

{n!/(kY?} {Ft)(1 — F(0))}*
and by using Taylor series approximations of the type F(t) = F(6) +
(t—0)f(6) =1+ (t — 6)f(0) it is possible to show that the p.d.f. of §
can be approximated by an N(6, 1/(4nf*(0)) density as n — co. See,
for example, David (1970, p. 201).
Alternatively, we may use the results in Section 1.6.1 as follows. We
have

E{S(X, )} =n{1—2F(t)}

giving
<W>M = —2nf(0) (2.13)
and hence
var(0) ~ var {S(X, 0)}/{OE{S(X, 1)} /ot}2_ o = 1/{4nf ()}

(2.14)

Since the distribution of S(X, 6) is approximately normal for large n,
the distribution of @ is also approximately normal for large n.

Efficiency considerations
We begin by considering efficiency of hypothesis testing using S.
Recalling the definition of efficacy given in Section 1.6.2 the efficacy of
Sis
es(0) = | {OE{S(X, 1)} /0t}, -o|/{n var S(X, 6)} /2
and using (2.11) and (2.13) we obtain
es(6)=2/(6) (2.15)

In order to get a quantitative impression of the efficiency of S and
its associated point estimate, relative to other statistics, particular
examples of F have to be considered. In the examples that follow, S is
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compared with the appropriate likelihood procedure. With twice-
differentiable likelihoods this procedure yields the estimating
equation

" 1 of(x;,t)
LA 2.16
iglf(xial) ot 0 109
and its efficacy is
Inf(X,t 1/2
eML(0)=‘<E—~—6’:§ )> @.17)
t=6

Example 2.3 1f the distribution of X is N(6, 6%), we have
es(0)=(2/m)'*/a
ey (0) =1/
giving Pitman ARE =2/n.

Example 2.4 F(x,0) = 1—e~*2/% x >0;this is an exponential distri-
bution with median 6 and mean 6/In 2.

In2
es(0)= (’%‘)

1
ey (0) = 9
ARE = (In2)?

Since the sample mean is a commonly used location estimator, a
comparison of its efficiency relative to the median is of interest. In
Example 2.3 the MLE is the sample mean and in Example 2.4 the
MLE of 0 is (sample mean/In2). Consequently the ARE results
reported in these examples also apply to the sample mean. One might
expect the sample median to be relatively more efficient than the
sample mean for ‘heavy-tailed’ distributions, because the sample
median is little influenced by fluctuations in the smallest and largest
sample values. Two examples follow.

Example 2.5 f(x,0)=(1/n){1 +(x—0)*}; a Cauchy distribution.
This is a somewhat extreme example since the mean is undefined and
var (X) is infinitely large.

es(0)=2/n =0.64; em.(0)=0.71; es(@)=0
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Thus, relative to the MLE, the sample median has the moderately
high efficiency of 819, whereas the sample mean is totally inefficient.

18 2 -0
Example 2.6 f(x,0)= 2 o(x —0) + 2 d)(—xl—o) where ¢(u) is the

standard normal p.d.f.; this is one of the examples used by Huber
(1972) in robustness studies. Efficacies are

es(0)=0.73; ey (0)=091; ez(0)=0.30

In this less extreme example the median is again considerably more
efficient than the mean.

In concluding this section we emphasize that the efficiency of the
median is strongly dependent on the behaviour of f(x, 6) for x near 6,
and it is easy to construct examples for which the median would be
disastrously bad or, again, extremely good relative to the mean.
Overall, S(X, t) should be a reasonably robust statistic within the class
of unimodal distributions.

Regarding efficiency of estimation, we have already seen that
the large-sample variance of the sample median is given by
equation (2.14). The large-sample variance of the MLE of 0 is
{em(0)} ~%/n when (2.17) holds. Thus we see that if we measure
relative efficiency of estimation by the ratio of large-sample variances,
then it is equal to the Pitman ARE of testing.

2.3 Symmetric distributions
2.3.1 A basic permutation argument

If F is known to be symmetric, several distribution-free procedures,
apart from those discussed in Section 2.2, become available. Of
course, these procedures are distribution-free only within the class of
symmetric distribution F. They depend on the following permutation
argument used by Fisher (1966, p. 41).
With the distribution of X symmetric about 6, given an observation
x such that the magnitude of its distance from 8 is |x — 8|, the sign of
the difference is positive or negative with equal probability, 1.
Therefore, if we put
Y=sgn(x — 6)|x — 0| (2.18)

then, conditionally on |X — 8| =|x — 0|, Y has a two-point distri-
bution with
Pr[Y= —|x—0|]=Pr[Y=+|x—-0|]=3% (2.19)
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Suppose, now, that we have n independent observations
Xy,X5,...,X, and define Y,,Y,,... Y, according to (2.18). Then the
joint distribution of Y,,Y,,...,Y,, conditional on the observed
|x;— 0], i=1,2,...,n, is easily enumerated by listing the 2"
sign arrangements of the type (+ + —...—). Consequently it is also
easy, although tedious for large n, to find the exact conditional distri-
bution of any function of the Y, that may be considered for use in
inference about 6.

2.3.2 The mean statistic A(X, 6)
Let
Ax,0)= Y Y, =3 sgn(x;—0)|x; — 0] (2.20)

i=1 i=1

This A(x, ) is called the mean statistic because we could write it simply
Ax,0)= ) (x;—0)
i=1

whence the corresponding estimating equation is readily seen to have
as its solution the sample mean x. Inference about 6 using A is,
therefore, tantamount to using the sample mean. However, since we
shall make use of the conditional distribution of A, obtained by the
permutational method described in Section 2.3.1, the inferences are
exactly conditionally distribution-free. Significance levels are con-
ditionally exact, and since the unconditional significance levels are
just expectations of the conditional levels they are also exact.

Testing H, using A
Intesting H,,: 0 = 0, against H, : 6 > 0, we note that unconditionally
E{A(X,0,)|0 =0,} =0
and .
E{AX,1)|6=0,}>0, if t>0,

if these expectations exist. Thus the critical region for testing H,
against H, is chosen so as to reject H, if the observed A(x,60,) is
sufficiently large.

Example 2.7 We have n = 6 observations:
3.38,5.81,4.46,4.62, 4.15, 544

Assume that they originate from a symmetric distribution and let
6, = 4.5. We shall test at level 6/64 (approximately 107 ), and hence
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need only list the 6 largest values of A(x,8,) as follows:

Ix,—6o]: 112, 131, 004, 0.12, 035, 094

+ + + + + + A=2388
+ + - + + + A=380
+ + + - + + A=364
+ + - - + + A=3.56
+ + + + - + A=318
+ + - + - + A=310
observed: - + - + - + A=086

Since observed 4 = (.86 is smaller than the six largest values of A4,
we accept H at level 6/64.

Confidence limits using A

Let N(t) denote the number of possible A(X, t) values greater than the
observed A(x,t). The possible A(X,t) values are generated by the 2"
permutations as described in Section 2.3.1; we denote this set of
permutations by Q, while Q' denotes the 2" —1 permutations
obtained by removing the observed one from Q. A 100(1 — 2r/2"%
two-sided confidence interval for 0 is (¢,, ¢,), with ¢, determined such
that for t ¢, we have N(t)Sr; ¢, is determined similarly.

As t varies from — oo to + oo, N(f) changes whenever t passes
through one of all the possible averages (x; + x5 + ... + x[)/s, where
I1<s<n and xi,x},...,x, is a subset of the sample values
Xy,X5,...,X,. This can be seen by writing

N@n=Y I[Z{sgn(x,-——t)—sgn(Xi—t)}lxi—tl <0]

qeQ’ q
where g denotes a member of Q’, and I( ) is the indicator function.
Now
{sgn(x; — 1) —sgn(X; — )} |x; —
_{o ifsgn(x; —t)=sgn(X;—1)
T 2AX;—6)  ifsgn(x,—1)#sgn(X;— 1)

Therefore

f . X!
N(t)=ZI<X1+x2:_ s<t>
o

showing that N(¢) changes at the values (x] + ... + x)/s.

Example 2.8 We use the data of Example 2.7. For an approximately
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90% two-sided confidence interval, we have r = 3. The three largest
averages are

5.81
(5.81 + 5.44)/2 = 5.625
5.44

The three smallest averages are

3.38
(3.38 + 4.15)/2 = 3.765
(3.38 + 4.46)/2 = 3.92

Thus the 100(1 — 6/64)%; confidence interval for 0 is: (3.92, 5.44).

Normal approximation of A
For the calculation of significance levels in large samples it would be
useful to be able to approximate the conditional distribution of 4 by a
normal distribution. Since conditionally A4 is the sum of independent,
not identically distributed random variables, such an approximation
is possible under certain conditions; see Section 1.8. The variance of
the conditional distribution of 4 is Y 7_; (x; — t)* and approximation
by a N(0, Y7_, (x; — 1)?) distribution will be possible, almost surely, if
max;(X; — 1)/ (X; — t)* - 0, almost surely, as n — oo. This con-
dition will hold for distributions F with finite variance, but not, for
example, in the case of the Cauchy distribution.

To illustrate the use of the normal approximations, consider the
one-sided test discussed above with significance level a. We reject H,
if

S (x,— 60)> ua[ S (xi— 60)2}”2 221)
i=1 i=1

where ®(u,) =1 — a. Relation (2.21) can be rewritten

- s n—1\?
x>0+ —ua<—2>
\/n n—u,
where 52 =Y"7_, (x; — X)*/(n — 1).

The factor u,{(n — 1)/(n —u?)}'/* can be taken as an approxi-
mation to ¢, _ (1 — &), which would have been used in its place if the
observations were known to have originated from an N(6,0?%)
population. For certain n and « values the approximation is quite
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good; for example, with o =0.05 we have the following:

nt,_,(095) 1.645{(n—1)/(n— 1.645%)}'/2

5 2.132 2.172
10 1.833 1.827
30 1.699 1.696

Point estimation based on A and efficiency considerations

In the introduction to Section 2.3.2 we mentioned that the point
estimate of 6 resulting from the estimating equation defined by A is
the sample mean X. While it is possible to make exact conditional
distribution-free inferences, unconditional behaviour must be studied
when assessing the efficiency of a procedure based on A relative to
other statistics.

The efficacy of 4 is

e 0)=1/a

where ¢? = var (X) if it exists; and, var (X) = ¢?/n.

2.3.3 Rank transformations

Comparing the statistics S and A4 discussed in previous sections, it will
be noted that S can be regarded as having been derived from A by
applying a transformation T(u) = 1 to the values of |x; — 0| in A. Thus
n
SX,0)= 3 sgn(X;—0)T(|X,—0]) (2.22)
i=1

Many other transformations are possible; one of the best known, and
most effective, from the point of view of efficiency and robustness, is
the rank transformation where |x; —@| is replaced by its rank,
denoted Rank(|x;—6|), in the set |x, —#6|,|x,—0|,...,|x,—0|.
Recall that in a set of numbers a,,a,,...,4,, Rank(a) = # (a;<a;,
j=1,2,...,n). The statistic produced by this rank transformation is

n

W(X,0) = Y sgn(X;—6)Rank(|X;—6]) (2.23)

i=1

called the Wilcoxon signed-rank statistic, after Wilcoxon (1945).

The null distribution of W
Owing to the symmetry of the distribution of X about 6, the random
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variables |X;— 6| and sgn(X;—6) are independent; this holds
because Pr[sgn(X;—6)= — 1] =Pr[sgn(X;—6)= + 1] =1 for any
given | X; — 6|. Writing S,(6) = sgn (X; — ), R,(6) = Rank (| X, — 0}), it
follows that S,(6), S,(0), ..., S,(0) are mutually independent, and S;(6)
is independent of R0 for i,j=1,2,...,n; note, however, that
R,(6),R,(0),...,R,(6) are not mutually 1ndependent

In the Jomt distribution of R,(6),R,(6),...,R,(6), the vector
R(#)=(R,(0),R,(0),...,R,(6))assumes each of the n! permutations of
the integers 1,2,...,n with equal probability. Using this fact and the
independence properties noted above, the distribution of W can be
enumerated by listing the 2" possible values of the vector
(S,(0),5,(0),..., S,(0)) together with the integers 1,2,...,n

Alternatively, it may be noted that the basic permutation argument
of Section 2.3.1 can be employed to obtain the conditional distri-
bution of W after replacing the values | x; — 6| by their ranks. Since the
set of ranks is the same for all samples, this conditional distribution is
also the unconditional distribution.

Example 2.9 With n=3 have the following tabulation:

R;(6) S;(6) [only signs are indicated]
+ - 4+ + - -  + -
2 + + - + - + - -
+ + + - + - - -

W 6 4 2 0 0 -2 -4 —6

This gives the distribution
w:—6 —4 -2 0 2 4 6
8PI[W=w]: 1 1 1 2111

The null distribution of W has been tabulated for certain values of
n; for example, Lehmann (1975), Table H. Some care should be
exercised when using tables, because some authors tabulate the
distribution of W,, the sum of the positive ranks; W =2W, —
n(n + 1)/2. The null distribution of W does not depend on F, hence
inference based on W is distribution-free, except for the assumption of
symmetry.

The distribution of W is clearly symmetric about 0, hence
E{W(X,0)} =0. Conditionally on fixed (R,(6),...,R,(0)), W is a
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weighted sum of independent random variables S;(0),i=1,2,...,n,
each of which has variance 1, the weights being the integers 1,2,. .., n.
Hence,

var {W(X,0)[R(0)} = Y i*=n(n+1)(2n + 1)/6 (2.24)

i=1
and since E{W(X,0)|R(6)} =0, using var(W)=E{var(W|R}
+ var {E(W|R)} shows that the unconditional var {W(X, 0)} is also as
given in (2.24). For large n the conditional distribution of W is
approximately normal, by an application of Theorem 1.3. Since the
conditional distribution of W is identical for all realizations of
|X{-0|,|X,—9|,...,|X, — 0], the unconditional distribution of W is
also approximately normal for large n.

Example 2.10 For n=6, Pr(W< 18) =1 — 7/128 = 0.945.
18+1-0
1 i ion: P <18)~ = 0.946.
Normal approximation: Pr(W< 18) ¢<—7m—> 0.946
Note the ‘continuity correction’ (+ 1) in the numerator of the
argument for ¢.

Testing H,:0 = 0, against H,:0> 6,

As a function of ¢, the statistic W(x,t) is non-increasing in t. Clearly, if
t < Xx(;, we have W=n(n+ 1)/2. As t increases, W changes only if
sgn (x; —t), or Rank (|x; —t|), or both change. These events occur,
respectively, when t = x;, or when |x; —t| =|x; — t| for some i # j. In
the latter case we have x;, —t= —x; +1, or t =(x; + x;)/2. In both
cases W decreases by 2. At ¢t =x; this happens because sgn (x; — t)
Rank (| x; —t[) changes from + 1to — 1. In the second case, if x; < x;
the contribution of x; and x; to W is

—r+@+1) for t <(x; +x,)/2
—(r+D+r for t > (x; + x,)/2
giving a change of — 2. We can summarize these statements in

Wx,t)=nn+1)/2 =2#% {(x;+x;)/2<t; i,j=12,...,n}
(2.25)

the r.h.s. being clearly non-increasing in ¢.
In the light of the result above we have

E{W(X,0,)} > E{W(X, 0)} (2.26)
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hence the test procedure is
‘reject H, if observed W(x,6,) > C’

where C is obtained by reference to the null distribution of W.

Example 2.11 Suppose that we have the n = 10 observations given in
Example 2.1, and that 8, = 4.5. The values of x; — 4.5 and the signed
ranks are listed below.

x;—45:—1.12, 1.31, —0.04, 012, —035 094, 206, 1.32,
—0.55, 0.69

signed ranks : — 7 8 -1 2 -3 6 10 9
-4 5

W(x,4.5) =25
For the null distribution of W,
var(W) = 385 = (19.62)?
Pr{Ww=25} ~1—®(24/19.62) =0.11

which is the approximate significance level.
To check the consistency of the test we rewrite (2.25) as

W(x,t)= N(n+1)/2 — i V(o)
i,j=1
1 if (x; )2<
L M
Thus
EWX,t)} =nn+1)2—- 3 E{V(0)}

Li=1

where E{V(t)} = Pr{(X; + X )/2< 1}
F(t) when i =j
{ }0 F2t—x)f(x)dx ~ wheni#;

giving.

E{W(X,1)} =n(n + 1)/2 — 2nF(t)

—nn—1) F(2t — x) f(x)dx (2.27)

8= 8
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Combining (2.26) and (2.27) we see that as n— oo,
E{W(X,0,)} ~ An?, A >0,

while var {W(X,6,)} < Bn®, where B is some constant. Thus, from
Section 1.3, the test is consistent.

Confidence limits for 0

We again use the procedure of inverting the hypothesis-testing
argument. From the null distribution of W we find w such that
Pr[|W(X, 6)]| < w] =1 — a. We have seen that as ¢ varies from — oo to
+ oo the value of W(x,t) changes from N=n(n+1)/2to — N in N
jumps of size 2 at points &), &), .-, ), Where the £, are the N
averages (x; + x;)/2, i,j=1,2,...,n, arranged in increasing order of
magnitude. The 100(1 — «)%; two-sided confidence limits are Cons Eirnys
where r; = (N —w)/2, r,=N—r, + 1.

Example 2.12 Use the following n = 6 observations:
3.38, 5.81, 4.46, 4.62, 4.15, 5.44

There are 21 pairwise averages as shown below, with the original
observations underlined. The numbers shown in brackets are the
values of W for ¢ lying between the corresponding averages.

(21) 338 (19) 3765  (17) 392 (15) 4.00
(13) 415  (11) 4305  (9) 4.385

(7) 441 (5) 446 () 4.54 (1) 4.595
(—1) 462 (—3) 4795 (—5) 495

(—7) 498 (—9) 503 (—11) 5135 (—13) 5215
(—15) 544 (—15) 5625 (—19) 581 (—21)

From the null distribution of W, Pr[|W|< 15]=1— 6/64 = 0.906.
Thus by inspection of the table above, a 90.6%, confidence interval for
0 is: (3.92, 5.44). This result happens to coincide with the result in
Example 2.8; this will not always happen.

Note that var(W) =91 = (9.539)%. Using a normal approximation
for the distribution of W,

Pr[|W|< 15] = 2¢(16/9.539) — 1 = 2¢(1.677) — 1 = 0.906.

Thus, using this approximation for an approximately 90% confidence
interval, the result given by the exact distribution would have been
obtained.
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Point estimation based on W
The estimating equation for 0 is

W(x,t)= Y sgn(x;—t) Rank(|x;—[)=0 (2.28)
i=1
The resulting estimate, 0, is usually called the Hodges—Lehmann
estimate (Hodges and Lehmann, 1963).
Recalling that as ¢ varies from — oo to + oo, W(x, t) decreases from
+ N to — N in N steps of size 2 at the values £;),&2),- -+ E vy, WE SEE
that (2.28) may not, strictly, have a unique solution. However, we take
the solution to be the median of the £(k) values; thus the solution is
defined as
‘__{é((}v—l)/2+1) if N is odd
{Ewn +Enz+1/2  if Niseven

Owing to the symmetry of X, the estimate @ is median-unbiased
for 6.

Example 2.13 In Example 2.12 the point estimate of 6 produced from
(2.28) is 6 =4.595.

The point estimate @ is consistent for 8 because we have seen from
(2.27) that, as n — oo,

E{W(X,t)/n} ~A
While
var {W(X,t)/n} < B/n
consistency follows from Section 1.4.

According to Section 1.6.1 the distribution of § tends to normality
and to find its large sample variance we need [OE {W(X, t)}/0t], - . TO
calculate the derivative it is convenient and entails no loss of
generality to take 6 =0. We can then use (2.27), and noting that
f(— x)=f(x), straightforward differentiation gives

[OE{W(X,1)}/0t], - o= — 2nf(0) — 2n(n — 1) [/ *(x)dx (2.29)
Writing |f*(x)dx =7, the ‘mean density’, we have, using (2.24),
var (f) ~ 1/(12nf?) (2.30)
The efficiency of W
From (2.29) and (2.14) the efficacy of W is readily seen to be
ew(0)=2./3 (2.31)
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It is interesting to note that the efficacy of W depends on the mean
density, f, while the efficacy of S depends, by contrast, on the density
at the median, f(0). For many standard distributions calculation of f
is easy because f%(x) is proportional to a density of the same type as
f(x). For example, if f(x)is a normal density, f%(x) is proportional to
a normal density. If f(x) is a Cauchy density, both f(x) and f3(x) are,
apart from constants, Pearson Type VII densities.

In Table 2.1 some values of e,,(0) are given, along with eg(6) and
ey(0) for comparison. Note that the large-sample variances of the
corresponding point estimates are obtainable as [n'/?e,(6)] 2, etc.

Table 2.1 Efficacies of Wilcoxon signed-rank(W), median (S), mean (A),and ML
statistics.

Wilcoxon
signed-rank Median Mean
(W) (S (4 ML
N(@©O,1) 0.98 0.80 1.00 1.00
Cauchy (0,1) 0.55 0.64 0 o071
Double exponential f(x,0) =4e~*~°  0.87 1.00 0.71 1.00
[18¢(x — 0) +2¢{(x — 6)/10}7/20  0.81 0.73 030 091

Table 2.1 shows that the efficacy of W is remarkably close to that of
the ML statistic in the normal case. In every example in the table, the
better of W and S has satisfactory efficacy. Further, each of W and S
have reasonable robustness in being reasonably efficient over a class
comprising several types of distributions.

Table 2.1 also draws attention to the problem, not unique to
distribution-free procedures, of choice between statistics. According
to formulae (2.15) and (2.31), W is better than S when \/ 3f/f(0) > 1,
but, even within the class of Pearson Type VII distributions, the ratio
/37/£(0) varies from /3/4 to \/3/2 as m varies between 1 (Cauchy)
and oo (normal). Also, examination of realized frequency distri-
butions, based on reasonably large samples from any of the popu-
lations represented in the table, will show that it is far from easy to
choose between S and W. To do so according to the criterion
\/ 37/f(0), one has to replace f and f(0) by estimates, and estimating
these quantities is not straightforward. A better procedure may be to
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base the choice of procedure on a more direct estimate of efficacy,
some further discussion of this topic is given in Section 2.3.7.

A further question that arises is whether some other transfor-
mation, based on ranks, might produce a better statistic than W.
Heuristically, one of the reasons for the rank transformation being
successful is that it shrinks all observations onto the (0, 1) interval
(after division by, say, n + 1). In the case of long-tailed distributions
the effect of very large or very small observations is thus diluted.
However, in some cases this effect may be too severe, and the question
is whether, by manipulating the ranks, transformations can be made
that would be nearly as good as ML for certain distributions. That
this is possible is suggested by considering the example of ‘normal
scores’ defined as follows: Suppose that Rank (|x; —¢t]) in (2.28) is r.
Then replace Rank (|x; — t|) by E(Y,), where Y has the standard half-
normal distribution with p.d.f. 2¢(y), y = 0. A transformation having
a very similar effect is to replace Rank (|x;—t|) by ¢ *{r/(n+ 1)},
where ¢, (y) = 2{¢(y) — 3} is the c.df. of Y. The explanation of the
similar effects of these two transformations is that E(Y,))= ¢, '
{r/(n+ 1)} + O(1/n); see, for example, David (1970, p. 65).

Example 2.14 Consider the following n =9 observations and their
transforms:

x; | 139 —056 0.05 032 294 1.97 —026 041 0.44
r;=Rank(|x;) |7 6 1 3 9 8 2 4 5

sgn (x)E(Y,,) | 1.09 —0.88 0.13 0.39 1.84 1.37 —026 0.54 0.70

sgn(x)y Hr/n+1)} | 1.04 —084 0.12 0.38 1.64 1.28 —025 053 0.67

Note that the scores give a reasonable reproduction of the original
observations; also note the closeness of the two sets of scores. The
agreement between scores and original observations suggests that, in
the normal case, procedures based on the scores could have
efficiencies close to that of the likelihood method. The following
sections pursue the question of scores somewhat further.

2.3.4 Scores based directly on ranks

We generalize the statistic W(X,t) defined in (2.23) by replacing
R;(t)=Rank (] X;—t|) by G;(t)=G{R,(t)/(n+ 1)}, where G(u) is
continuous, monotonic increasing in u, and defined on (0,1).
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Typically G~ ! is a distribution function, as in Example 2.14. Observe
that when G ~ '(u) = u, the c.d.f. of a uniform distribution on (0, 1), then
G,(t)=R,(t)/(n + 1). However, G need not always be an inverse
distribution function, as we shall see in Section 2.3.5.

We now have the statistic

WeX,t)= 3 sgn(X,—1)G) (2.32)
i=1
of which W(X, 1) is clearly a special case. Note that for a given n there
are only n distinct scores a; = G{i/(n+ 1)}, i=1,2,...,n, and every
vector G(t) =(G,(t), G,(1),...,G,(t)) is a permutation of these a;.

The null distribution of Wy

Owing to the independence of the vectors S(6) = (S,(6),5,(0), .. .,S,(0)
and R(0) =(R;(0), R,(0), ..., R,(0)), noted in Section 2.3.3, the vectors
S(6) and G(0) are also independent. Hence the null distribution of W,
can be tabulated by exactly the same process of enumeration used for
the null distribution of W. This distribution is symmetric about 0
hence E{W;(X, 6)} =0, and following the argument leading to (2.24),

var [We(X,0)1= Y GZ() (2.33)
i=1
The distribution of Wg(X, 6) can be approximated by a normal
distribution for large nif max [G#(t)]/Y.G?(t) > O asn — oo. For large
nitis sometimes useful to approximate the sum in (2.33) by an integral
giving
1
var[We(X,0)]~n JGZ(u) du (2.34)
0
Note that in the case G~ '(u)=u, giving W4(X,0) = W(X,0)/(n + 1),
equation (2.34) gives var [W(X, 0)] ~ (n + 1)>n/3; asymptotically this
result and the result in (2.24) are identical.

Testing Hy:0 =40,

The testing procedure is straightforward and is illustrated by
Example 2.15 below. Since G(u) is monotonic in u, consistency of a test
based on W, for a one-sided alternative H,:0> 6, follows by
arguments similar to those of Section 2.3.3 for W. Modifications for
other H, are obvious.
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Example 2.15 Suppose we have the n =6 observations given below
from a symmetric population and wish to test H,:0=0 against
H,:0>0 at level o ~0.10.

x; ~089 528 —132 221 056  0.50
Rank |x,| 3 6 4 5 2 1
Scores —056 146 —083 107 —037 —0.8

The scores are obtained from G~ '(u)=2ff H(x)dx as in
Example 2.14. The six largest values of W, occurring with equal
probabilities are obtained with the following signs applied to the
transformed ranks arranged in increasing order of magnitude.

018 037 056 0.83 107 146 w

+ + + + + + 447
- + + + + + 41
+ - + + + + 373
- -+ o+ 4+ o+ 337
+ 4+ - 4+ 4+ 4+ 335
- + - + + + 299

|

observed - - - + + 0.60
Pr[W; = 299] = 6/64, observed W; =0.60, thus H is accepted at
level o = 6/64 =0.94.

Confidence limits for 6, and point estimation

By reference to the null distribution of W, w is found such that
Pr|We(X,0)|<w]=1—a with 1 —a close to the selected con-
fidence coefficient. Then the values of W(x, t) are calculated for ¢
varying between — oo and + oo, noting that W,(x, ) varies between
Y.G(t) and — ) G(t) with n(n + 1)/2 jumps, of unequal size, at the
averages (x; + x))/2,i,j=1,2, ..., n. The confidence limits for 6 can
then be determined by inspection of this tabulation to find the 8
values satisfying | W(x, 6)| < w.

Example 2.16 Use the data and scoring function in Example 2.15. Set
a=6/64 for a two sided 90.6% confidence interval. Using the
tabulation in Example 2.15 we find that Pr[|W(X,0)| <3.37] =
1 —6/64. The n(n + 1)/2 =21 averages (x; + x;)/2 are listed in order
below, with the values of W(x, t) for t in the relevant intervals shown
in brackets; the original observations are underlined.
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447) —132  (411) —1105 (373) —089  (337) —041  (2.99)

(299) —038  (245) —0.195 (207) —0.165 (1.69) 0445 (121)

(121) 050 (085 053  (047) 056  (0.1) 066 (—043)
(—043) 1355 (—081) 1385 (—1.19) 198 (—197) 2.195 (—2.45)
(—245 221 (-281) 289 (=335 292 (—373) 3745 (—4.11)
(—411) 528 (—447)

From the table, the interval of ¢ values for which |W;(x,t)| <3.37 is
(—0.89,2.92).

Formally the point estimate of # is the value of t at which
We(x,t) =0. In general Wg(x,t) jumps from a positive value, g, to a
negative value, — b, at one of the (x; + x;)/2 averages, fsay, witha # b.
If a = b it would be natural to take the solution 6, = { but since this
does not happen in general it might be more satisfactory to ‘smooth’
the graph of W(x, t) against ¢ in the neighbourhood of Wg(x,) =0
and thus make an interpolation to find ¢;. For the data of Example
2.16 a segment of the graph of W;(x, t) against ¢ is shown in Fig. 2.1.
The smoothing shown in this figure suggests taking 0, = 0.63 rather
than 7 = 0.66.

-0.8+

05 06 07 08 09 1.0 11 12 13 1.4
t—>

Figure 2.1
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Consistency of f; can be established by arguments similar to those
used for . The large sample variance of § can be obtained from the
efficacy of W, a discussion of which follows.

Efficiency of Wy

In Section 2.3.3 it was possible to derive an exact expression for
E{W(X, 1)} by simple steps because of the possibility of expressing
Rank (| Z,(z)|) as a sum of indicator random variables. This simple
procedure is unavailable when we consider G[Rank(|Z(t)|)/
(n+ 1)]. However, we can make use of the device of replacing
Rank (| Z;(t)|/(n + 1)) by F¥(| Z;(t)|), where F*( )isthec.d.f of | Z,(1)],
invoking the following lemma, whose proof is obvious.

Lemma 2.1 Suppose that G(u) is continuous and twice differentiable
in (0,1) with 0<Gu)< M. If X,,X,,...,X, are identically and
independently distributed with c.d.f. F(x), then

E{Rank (X)/(n + 1)|X,;=x} = (n — 1)F(x)/n + 1) + O(1/n) ~ F(x)
var {Rank (X,)/(n + 1)|X; = x} = (n — YF(x) {1l — F(x)}/(n + 1)*
Also

E[G{Rank (X))/(n + 1)}| X, =x] ~ G{F(x)} + O(1/n)

Let us now consider an alternative derivation to that given in
Section 2.3.3 of E{} 7., sgn(X; —t) Rank (|Z«?)])}. It is convenient
without loss of generality, to take 6 = 0. Then the p.d.f. of (X —1) is
f(x +1) and the pdf of Y =|X —t|is

X0 =fy+0+f(—y+1, fory=0
with c.d.f.
F¥y,t)= j[f +0+f(—u+tldu (2.35)

0
Also

Pr{sgn(X —t)=+1||X —t|=y}

=f+0{f+0+f(-y+0} (236)

Conditioning on Y=(Y,Y,,....,Y,)=(¥1,Y2,---,¥,) =Y we find,
since the conditioning fixes the ranks of the |Z,r)|, and taking
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expectations with respect to the sgn (X; — ¢), random variables

o v SOt —f(=yi+Y)
E{WX,)|Y=y}= i; foi+0+f+0)

- __il 00, 1) (237)

Rank (y,)

Next consider only the term Q(y;, t) in the sum in (2.37) and condition
only on Y; = y, while allowing the other y; values to vary. Then, using
Lemma 2.1, and neglecting the term of order 1/n,

Jy+0)—f(—y+1)
JO+9+f(=y+1)

The unconditional expectation of this term is obtained by integrating
out with respect to the p.d.f. of Y and we obtain

E{Q(Y;,0)|Y;=y}=(n—1) F*(y,1) (2.38)

E{Q(Y;, )} =(n— 1)J[f(y +1)
0

—f(=y+0JF*y,t)dy (2.39)

Using (2.35) and noting thatf(— a) =f(+ a),and f'(— a) = — f"(a), we
find after differentiating the expression in (2.39) with respect to ¢t and
putting ¢t =0, that

[OE{W(X, 1)}/0t], - ~ 2n j Sy dy (2.40)

in agreement with (2.29), as n— co.

Replacing Rank {|Z()|} by G{Rank (|Z/(1)|)/(n + 1)}, we use the
same conditioning arguments, and the latter part of Lemma 2.1 in the
step (2.37) to (2.38), to obtain

E[WeX,t)]=~n f LSy +0—f(—y+0]GF*(y,1))dy
and finally ’

[OE{W4(X,8)}/0t], o~ — f4f2(u)G’[2F(u)~ 1]du  (241)
0
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Combining (2.34) and (2.41) we get

o — g

e, (0)= {4

y 2
{ J G*(u) du} (2.42)
(4]

Formula (2.42) is, of course, useful for finding the efficacy of a test
based on any transformation G, and several special cases have been
studied. For example, if F is a normal distribution and G is the
‘normal scores transformation’, it can be verified that the ARE of W,
and the MLE is 1.

fAwG'[2F(u) — 1] du}/

2.3.5 Optimum rank statistics

In practice it is not at all easy to decide on a ‘best’ G, a matter that has
been discussed before in Section 2.3.4. If there are grounds for
thinking that the underlying distribution might be normal, then
obviously a normal-scores transformation would be selected.
However, perhaps the most useful aspect of the efficiency studies in
this section is that one is enabled to study the efficiency of a particular
type of score over a variety of distributions F; Chernoff and Savage
(1958) have shown, for example, that the normal-scores test has a
minimum asymptotic efficiency of 1 relative to the usual t-test over all
distributions F, suggesting the former to be always preferable to the
latter.

In the discussion of normal scores in Section 2.3.3, it was pointed
out that when sampling from a normal population the scores tend to
be quite close to the original observations, because Y, is an unbiased
estimate of E(Y,,)) with variance of order 1/n. Further, in the normal
case the ML estimating equation happens to be simply

n
Y sgn(X;— )X, —t|=0 (2.43)
i=1
Thus a natural question for a general symmetric distribution is
whether a score can be defined such that a statistic based on such
scores behaves like the likelihood statistic.
For symmetric F(x, ) = F(x, — ), the ML estimating equation in
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the ‘regular’ case can be written

n

2. sen(x; — 0f (b — t)/f(lx; — t]) =0

i=1

Hence, using the normal case as a guide, we define scores

ai) = E{f"(Yy)/f (Y)} (2.44)

It will be noted that since the Y, are the order statistics of the random
variables | X, — 0|, | X, —0|,...,|X, — 0, the values of the a(i) can be
tabulated once and for all for a given F and n. Using these scores, the
estimating equation is

Y sgn(x; — t)a(R;) =0 (2.45)
i=1
where R; is the rank of |x, —¢|.
Since E(Y,)=F,'{r/(n+1)} +O(1/n), r=1,2,...,n, where
F, (u)=2{F(u) — 13 (see, for example, David, 1970, p. 65), the score in
(2.44) can be approximated by

a*() =f'IF Hi/in+ D}VSTF~ Hifin + 1)}] (2.46)

Using the scores a*(i), and formula (2.42), the efficacy of the
resulting statistic can be shown to equal the efficacy of the ML
statistics (Terry, 1952).

In potential applications of rank methods, the usefulness of scoring
systems such as (2.44) and (2.46) is problematical, because rank
methods are normally considered in precisely those situations where
there is uncertainty about the form of F. However, they can be useful
for diluting the effect of outlying observations. Asymptotically little
efficiency may be lost by using a statistic based on one of the scores,
and there may be some gain in robustness.

2.3.6 Robust transformations

As we have remarked in Section 2.3.4, the success of some of the rank
methods in coping with certain long-tailed distributions is attribut-
able to their shrinking effect on outlying observations. Other
transformations of the observations to achieve a similar effect are
possible. Two types of transformations that we shall discuss rather
briefly are related to M-estimates and L-estimates.

M-estimates
Suppose that we transform x; —t to y(x; — t), where y(u) is con-
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tinuous in u and differentiable almost everywhere. Then consider the
‘M-statistic’

My(X,1)= Z (2.47)

see also (2.6). When X is symmetrically distributed it is natural to
choose s such that y(—u) = — y(u); to ensure this we use instead

n

M,X,t)= 3 sgn(X;— (1 X;—1) (2.48)

i=1
In this form we obviously have
E{M,/X,1)}=0

leading to the type of estimating equation for 6 that we have discussed
before.

As an example of y(u), take y(u) = u/(1 + u?). Then it will be noticed
that the estimating equatlon for 0 is exactly the equation that is
obtained by the ML method if the p.df of X is the Cauchy
fx,0)=na"[14+(x—-0)72]"

The fact that estimates based on M, may coincide with ML
estimates has inspired the terminology ‘M-estimates’.

L-estimates
These are linear functions of the order statistics
X, <Xz <...< X, in the form
n
=13 WX,

i=1

where Y7_; W;=1;1t, is the solution of the estimating equation
z WX, —t)=0. (2.49)

If n=2k+1, w,=1, w;=0 for j#k we obtain the estimating
equation (2.8) as a special case of (2.49).

Tests and confidence limits based on M-statistics.

To test H,, : 6 = 0, the basic permutation argument can be applied in

an obvious way to M (X, ¢), written as in (2.38). Further, the same

argument can be used to find exact confidence intervals for 6.
Determination of confidence limits is more tedious than with the

rank methods because the null conditional distribution of M (X, ) is
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not invariant with respect to 6. In practice a null distribution must be
found for every trial § and the observed M, referred to it; this applies
also, of course, to the mean statistic A.

Following the argument used in connection with the mean statistic
A, a 100(1 — 2r/2")%; two-sided confidence interval for 6 is (t,,¢,),
where

t,(¢,) is the rth smallest (largest)t such that

3 Yllxi =i =0

where for 1<s<n, x{,x),...,x, is a subset of the sample
X1sXgyenesXpe
Example 2.17 Use the n =6 observations of Example 2.15; they are
shown in the tabulation below. Take y(u)=(1—-e “)/(1+e7¥,
following a suggestion of Huber (1972). We shall find a 100(1 —
6/64)% two-sided confidence interval for 6.

To decide whether a trial value ¢ of 6 belongs to the confidence
interval, we first find the n = 6 values of y(|x; — t}) and enumerate the
conditional distribution of M|, by listing the 2" sign combinations. In
fact, we only need the three largest (and smallest) possible values of
M, for our present purpose; note that the distribution of M, is
symmetrical about 0. If observed M, lies between its third largest and
third smallest possible value, t belongs to the confidence interval. For
example, take t = — 0.8 and t = 2.92 to give the following results:

sgn(x; —thy  (Ix;—¢)

x,- t=— 0.8 t= 2.92

—1.32 —-0.254 —0.972

—0.89 —0.045 —0.957

0.50 0.572 —0.837

0.56 0.592 —0.827

221 0.906 —0.341

5.28 0.995 0.827

Observed M,: 2.766 —3.933
3rd largest M, : 2.856 3.933

The table above shows that the value t = — 0.8 is in the confidence

interval; likewise t=2.92—; t=292+ is outside the interval.
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Straightforward calculations show that the confidence interval is
(0.89,2.92). This result coincides with the result of Example 2.16;
generally this will not happen.

When n is large, judicious choice of (1) will ensure that the
conditional null distribution of M,, can be approximated by a normal
distribution. Thus, with Y(uw)=(1—e /(1 +e7¥), u=0, Y(u) is
bounded between 0 and 1 so that a normal approximation is possible.
When a normal approximation can be used, the confidence limits are
given by the solutions of

n

n 1/2
2 sen(x; — Oy(lx; — 1)) = iua{Z [W(Ixi—tl)]z}
i=1 i=1 (250)
where u, denotes an appropriate normal deviate; the solutions are

generally fairly easy to obtain numerically.

Example 2.18 Applying the normal approximation in (2.50) to the
data in Example 2.17, with u, = 1.645 for an approximately 90%,
confidence interval gives the result (—0.70, 3.22). This agrees reason-
ably well with the exact result considering that # is rather small.

One of the much studied types of robust transformations is

_ ful for ju) <k
Y(lul) = {k for Ju| > k (2.51)

In principle the determination of confidence limits using (2.51)
presents no new problems. However, with k relatively small, many of
the y(|x; — t|) values may be identical, the effect of which is to reduce
the number of steps in the conditional c.df. of M,,. This can be a
nuisance in achieving a desired confidence coefficient. In the use of
transformation (2.51), as with most robust transformations, the
question of scaling arises; it is raised again in a later section.

Apart from problems already mentioned there are no serious
difficulties associated with the use of transformations y(u) that are
monotonic in u>0. However, the use of transformations like
Y(u) =u/(1 + u?) can lead to problems of non-existence of confi-
dence intervals with specified confidence coefficient, especially in
small samples.

M-estimates and their efficiencies
Point estimates based on M, statistics are found by solving the
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appropriate estimating equations. In practice it is perhaps simplest to
obtain solutions graphically as indicated in the example using rank-
based scores.

To find E{M(X,t)} when 6 =0, the conditioning employed for
equation (2.37) is useful. Conditional on |X; — t| = u we have

S —f(—u+1)
T fu+t+f(—u+1)

E[sgn (X, — y(1X; — DI X; — 1| = u] Y(u)

whence )
E{sgn(X; - y(X; - 1)} = f[f(u +1) =f(—u+0]yYu)du
and ’ 3
[OE{M,(X,1)}/0t], = =2n jf (u)p(u) du (2.52)

0
Further, since sgn (X; —¢t), y(X;—1), i=1,2,...,n, are independent,

var[M,(X,0)] = fwz(u)f(u)du (2.53)

from which, using (2.52), the efficacy of M|, is readily found.

M-estimation and scaling

One of the problems associated with the use of M-transformations is
scaling. It will be clear that, in general, the answers produced by M-
transformations are not scale-invariant. In order to achieve scale
invariance the M-statistic could be written in the form

n

M,X,1)= 21 sgn (X; — YLI(X; —1)/ol ] (2.54)
i=

where ¢ is a scale parameter. In practice ¢ will be unknown and will
have to be replaced by an estimated value. (See, for example, Huber,
1972, where the alterations in efficacy calculations are mentioned.)
We shall be content to explain the use of scaling in practice only
and to indicate that it is still possible to obtain exact confidence
intervals, and perform exact tests. The argument here again uses
conditioning on the set of observed |x; —¢|, i=1,2,...,n, and we use
an estimated scale factor ¢ that depends on the set of magnitudes
|x;—tl,i=1,2,...,n. Writing y,=|x;—t|, i=1,2,...,n, possible ¢
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are
6, =[0/m) ¥ yI1'*
i=1
&2=median ()’1,)’2,---,)’;;) (2'55)

The first of these two scale estimates, ¢, is clearly sensitive to
outliers, whereas ¢, is more robust against outlying observations.

Hypotbhesis testing using M,
To test H,:0 = 6, the first step, in principle, is enumeration of the null
distribution of M,,. The values |x; — 0, i = 1,2,...n, have to be listed
and they are used to find 6. Then the values y(|x; — 6,|/6) can be
listed, and the 2" sign configurations can be applied to obtain the 2"
equi-probable values of M. In practice all possible values need not be
listed; for a one-sided test at level r/2", only the r largest (or smallest)
possible M,, values are required, as well as the observed value.
With large n, approximation of the distribution of M,, by a normal
distribution may be possible, in which case the test of H, may be
performed by calculating

n

n 1/2
. 50 (5, — Oo)y(lx; — Bol/é) / [;‘1 (i, — eol/&)}Z]

i=1
(2.56)
and entering a table of the standard normal distribution function.
Alternatively, the desired quantile of the distribution can be approxi-
mated by u,[Y - ; {Y(|x; — 0,|/6)}*]"/%, where u, is a suitable normal
deviate.

Example 2.19 n=10, Hy:0=—100, H,:0+# —100, )=
(1—e A1 +e™"), yi=|x;+ 10|, 6, =median (y,,,,...,y,) = 14.55

X; [x; + 10 Y(y:/0) X Ix; +10]  y(y:/6)
—91.6 81.6 0.993 11 11.1 0.364
—20.1 10.1 0.334 8.0 18.0 0.550

—-74 2.6 0.089 9.0 19.0 0.574
-21 7.9 0.265 11.8 21.8 0.635
—-13 8.7 0.290 2240 234.0 1.000

Observed M, = 2.440. For a two-sided test at the 109, level we need
the 51st largest (smallest) possible M, value = 3.108 (— 3.108).



52 DISTRIBUTION-FREE STATISTICAL METHODS
For the normal approximation
(0.970% + 0.163% + ... + 1.000%)/2 = 1.851
giving
+1.645 x 1.851 = + 3.045

in reasonable agreement with the exact quantiles. Since observed
M, =2753 is smaller than 3.108, H, is accepted at the 109 level.

Point estimation and confidence limits

In principle, we can proceed exactly as in the case where no scale
estimate is used. A potential difficulty arises in that M (x, t), with ¢
replaced by o, is no longer necessarily monotonic in ¢ for fixed x. With
moderately large n the problem is, apparently, not serious because
local maxima or minima only occur at large values of |t|. With some
the problem of monotonicity of M, can be overcome by a simple
modification of . For example, with y(u)=(1—e " ¥)/(1+e™",
¢ =median (y,,y;,.-.,¥,), We can put

<1
Y u) = { ﬁlg Z >1 (2.57)

Example 2.20 We use the n = 10 observations in Example 2.19. The
two scales estimates ¢, and ¢, defined above were used with y(u) =
(1—e /(1 +e~*)and ¥, (u) = min {Y(u), Y(1)}, as in (2.57). The fol-
lowing point estimates and two-sided 909 confidence limits
were obtained:

Point Exact confidence Normal

Method estimate limits approximation
Mean (A4) 13.6 —25.4,58.9
Median (S) 34 —-174, 90 —-74, 90
Wilcoxon (W) 0.8 —11.1,104 —11.1,104
M,:

v ,o, 6.1 —24.7,485 —26.5,48.9

¥ ,0, 04 —18.1,14.2 —174,143

¥, 04 -0.1 —24.7,26.8 —242,26.5

Y, 02 1.3 —-9.5, 85 -95, 82
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2.3.7 Large-sample calculations

When the sample size is large it may be impractical to perform the
exact calculations outlined in preceding sections, especially in those
cases where ranking of observations is needed. One may have to
resort to approximate calculations on grouped data. With large
sample sizes it may well be that data are only supplied in grouped
form. The sample of n = 50 observations in Table 2.2 will be used to
illustrate some calculations using grouping; in each case a point
estimate of 8 with 90%, confidence limits will be found.

Table 2.2

3.081, 3.459, 3.527, 3.708, 3.793, 3.854, 3.865, 3.876, 4.072, 4.097
4204, 4.277, 4390, 4.411, 4.434, 4.449, 4.603, 4.642, 4.685 4.734

4.772, 4.883, 4.889, 4975, 4981, 5005, 5053, 5.138, 5304, 5.324
5.465, 5.507, 5.544, 5.580, 5.813, 5.880, 5.995, 6.004, 6.278, 6.373
6.435, 6.449, 6.604, 6.695, 6.699, 6.701, 6.975, 7.016, 7.232, 7.666

Example 2.21 Sign statistic: Using the normal approximation to
the null distribution of S(X,6), we have Pr[S(X,0)|<10]~
2¢(1.556)— 1 = 0.880. Therefore the (approximately) 90%, confidence
limits for 6 are

X(30) = 4.734 and X(31) = 5.465
and the point estimate 0 = (X(25) + X(26))/2 = 4.993.

Table 2.3 shows the data of Table 2.2 summarized in a frequency
distribution. From this distribution the values of S(X, t) can be found
for t-values coinciding with the class end-points. The largest value of S
is 50 and the smallest is — 50. As t varies between — oo and + oo, the
reduction in § as ¢ varies, between two class end-points is 2f; where f;
is the class frequency. The values of ¢ at which S(X,t)~ + 10 can be
found from a graph of S against ¢ in which the tabulated S-ordinates
at t-abscissa are joined by straight-line segments; note that such a
graph represents the sample c.d.f. of X, except for scale and origin
transformation on the ordinate. Equivalently, ¢ for S ~ + 10 can be
found by linear interpolation. The results are 4.70, 5.42; the point
estimate from the frequency distribution is t = 5.0. These results agree
well with the ungrouped results.

Example 2.22 Wilcoxon signed-rank statistic: Using a normal
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Table 2.3
Class Frequency t S
3.0-3.5 2 3.0 50
3.5-4.0 6 3.3 46
4.0-4.5 8 40 34
4.5-5.0 9 45 18
5.0-55 6 >0 0
5.5-6.0 6 35 -2
6.0-6.5 5 60 -2
6.5-7.0 5 65 -3
7.0-7.5 2 70 a4
7.5-8.0 1 75 48
80  —50

approximation, Pr[|W(X,0)| <339] ~2¢(340/207.183)— 1=
2¢(1.641) — 1 =0.899. Referring to Section 2.3.4, the (approximately)
90% confidence limits for 9 are

Cusny=4870  and &g = 5434

The 1275 mean values ¢;; = (x; + x;)/2, i,j = 1,2,...,50, arranged in
increasing order of magnitude and labelled &), &.,),...,&,7s), are
not listed. The point estimate of 8 is &34, = 5.142.

An approximate procedure can be used starting with the frequency
distribution in Table 2.3. The approximation is based on taking all
observations in a certain class interval equal to its mid-point. Then we
have possible averages 3.75, 4.00, 4.25,...,7.75. Table 2.4 shows a
convenient way of setting out the calculation of the frequency
distribution of ;; values. Each cell shows the number of occurrences
of the average of the corresponding marginal values. For example, the
frequency 9 in the class 4.5-5.0 of Table 2.3 generates (9 x 10)/2 = 45
averages with the value 4.75; the frequencies 8 in 4.0-4.5 and 6 in 5.0-
5.5 generate 8 x 6 = 48 averages at 4.75.

Table 2.5 shows a frequency distribution of &; values with
corresponding values of W evaluated at ¢ values mid-way between the
successive mean values shown in the table. Graphically, or by linear
interpolation, as in Example 2.21, the values of t at which W~ + 339

are
4.85 and 5.44



Table 2.4 Class mid-points
325 375 425 475 525 575 625 675 1725 175
325 | 3 12 16 18 12 12 10 10 4 2
3.75 21 48 54 36 36 30 30 12 6
4.25 36 72 48 48 40 40 16 8
Class 4.75 45 54 54 45 45 18 9
mid- 525 21 36 30 30 12 6
points 5.75 21 30 30 12 6
6.25 15 25 10 5
6.75 15 10 5
7.25 3 2
1.75 1
Table 2.5
&;  Frequency t w & Frequency w
1275
325 3 5.75 118
3.375 1269 5875 =711
3.5 12 6 86
3.625 1245 6.125 —943
3.75 37 6.25 66
3.875 1171 6.375 —1075
40 66 6.5 43
4.125 1039 6.625 —1161
4.25 102 6.75 31
4.375 835 6.875 —1223
45 120 7.0 15
4.625 595 7.125 —1253
475 139 7.25 8
4.875 317 7.375 —1269
5 142 7.5 2
5.125 33 7.625 —1273
5.25 149 7.75 1
5375 —265 7.875 —1275
5.5 135
5625 —535
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and the point estimate from the graph is t,, = 5.16. Agreement with
the ungrouped values is quite good.

Estimation of variances

Recall that the large-sample approximate variance of an estimate
derived from an equation of the type Q(x,t)=0 involves
{OE{Q(x,t)}/0t},_o. The derivative JE{Q(x,t)}/0t can be estimated
from the actual data by 0Q(x, t)/0t. In Examples 2.21 and 2.22, plots of
S(x,t)and W(x, t) against t can be used. The slopes of these graphs are
estimates of the derivatives. Estimates derived from such crude plots
can possibly be refined by some mathematical smoothing process. In
this connection, note that since S(x,t) against ¢t is essentially the
sample c.d.f. of X, the slope estimate is an estimate of the density of X ;
thereis an extensive literature on more refined density estimation; see,
for example, Rosenblatt (1971).

Example 2.23 Refer to Example 2.22; the point estimate of 6 is
tw = 5.14 and a graph of W(x,t) against ¢ for ¢t between 4.5 and 5.5
is shown in Fig. 2.2. From the straight line fitted by eye, shown as a
broken line in the figure, the slope estimate is — 1130 giving the
estimated s.d. (t,) =s.d.(ty) = 0 183. Crude 909 conﬁdence limits for
0 can be calculated using this s. sd. (tw), giving ty + 1.645s. d (tw):5.16
+ 0.030 = 4.86, 5.46. These limits agree well with the limits found in
Example 2.22.

2.3.8 Ties

Nothing has so far been said about ties because, theoretically, they
should not occur. However, in practical measurements ties do
happen, and the question arises of what to do about them when rank
methods are contemplated. One simple answer is to break ties
arbitrarily. For example, if measurements 2.32, 2.59, 3.41, 6.72 are
made and one wishes to test H, :0 = 3, then for |x; — 3| we have

0.68, 0.41, 0.41, 3.72

with ranks 2 and 3 tied. The tie could be broken by considering
Hy,:0=3+¢ or Hy:0=3—¢ where ¢>0 is arbitrary small in
magnitude.

In hypothesis testing most workers seem to favour the apparently
less arbitrary device of assigning the average rank 2.5 to the two tied
numbers. As far as applying the basic permutation argument is
concerned, this introduces no new problem. There is only the slight
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400
300
200
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-200
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-400—

=500

T T T
45 50 5.5

Figure 2.2

disadvantage that the simple formula for the null var (W(X, 6)) no
longer holds.

However, when point estimation and confidence intervals are
considered, where the graph of W(x, t) against ¢ is used, it will be noted
that this graph depicts a step function with the jumps occurring at
exactly the ¢ values which create ties, but this is no impediment to the
methods that have been developed.

If two observations are actually identical, as in 2.32, 3.41, 3.41,6.72,
giving a ‘real’ tie rather than the ‘artificial’ one above, there seems no
natural alternative to assigning the same rank value to the identical
numbers; one method is to give the average rank of tied values to each
of the tied values. Some care needs to be exercised in enumerating
exact null distributions in such cases; the formula for the variance of
the null distribution remains unchanged.

Example 2.24 x;. —2.67,141,1.41
Test Hy:60=0.
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Conditional null distribution of A4:

141 + - o+ o+ - -+ =
1.41 y o+ - o+ - 3+ - _
2,67 + o+ o+ - + - - -

A(x,0) 549 267 267 015 -—-015 —-267 —2.67 —549

1 1

. 1 1
Probability — —

1 1 1 1
8 8 8 8 8 8 8 8

The variance of this distribution is Y 7_, x? = 11.1051.
For the signed rank statistic we have

Rank (]x;):3, 1.5, 1.5

and using the tabulation of signs above, the following distribution is
obtained

w: —6 -3 0 3 6
1 11
4 4 4 8

The variance of this distribution is 1.52 + 1.5% + 32 = 13.5; in the case
of no ties with n =3, var(W)=12+22 + 32 =14

| b

P(W=w): %

2.4 Asymmetric distributions: M-estimates

For asymmetric distributions the median is perhaps the most natural
measure of location. However, as we have indicated in Section 2.1, a
measure of location for an arbitrary F(x) can be defined as the
solution of the following equation in ¢:

j Wix — ) dF(x)=0 (2.58)

where i/(x — t)is some sultably chosen function. Typically y(u) should
be monotonic in u, and may be bounded, thus ensuring regular
behaviour of the statistics associated with the estimating equation
corresponding to (2.58). The estimating equation is

My(X,1)=(1/n) Z WX, —1)=0 (2.59)

i=1
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Since the arguments based on symmetry are not applicable, it
appears that only approximate inference about the location para-
meter, 6, is possible, based on large-sample approximate normality of
the distribution of M|, and estimation of its variance. With suitably
chosen y(u) the normal approximation of M is reasonable since it is
the sum of identically and independently distributed random vari-
ables. However, the effect of having to use an estimate of the variance
of M, is uncertain.

Even if the statistical problems of inference about ¢ could be
overcome, the difficulty of interpreting the resulting estimate as a
measure of location remains. In certain comparative studies, for
example in the two-sample location problem, this problem of
interpretation does not arise. In such cases the robustness properties
of the transformations can be advantageous.

Exercises

2.1 The data given below are n =91 gold assay results (from Krige,
D.G. (1952) A statistical analysis of some of the borehole values in the
Orange Free State Goldfields. J. Chem. (Metall. Min.) Soc. S. Afr., 53,
47)
Find a point estimate and two sided 95%; confidence limits for the
population median assay value.
1,1,5,5,5,8,11,12,12, 14, 14, 15, 24, 24, 33, 34, 37, 39, 39,41, 43,45, 47, 48,
51,53, 53, 54, 54, 56, 59, 64, 79, 80, 83, 85, 88, 92, 94, 96, 104, 108, 109, 109,
129, 143, 149, 150, 157, 160, 166, 170, 180, 188, 191, 195, 198, 201, 210, 222,
227,227,238, 241, 244, 261, 310, 312, 327, 336, 349, 376, 383, 388, 400, 405,
421, 437, 439, 518, 546, 665, 678, 890, 906, 1009, 1085, 1747, 1893, 2898,
23036.

2.2 In sampling from an exponential population with median 0 = 1,
calculate the expectation of the sample median when n =5, thus
verifying by example that the sample median is in general not an
unbiased estimator 0.
2.3 Show that the sample median 0 is a median unbiased estimate of
the population median 6.
2.4 Quantiles other than the median can be treated by the methods of
Section 2.2. Consider the lower quantile £. An estimating equation for
Eis

Cx, &) —n/d=Q
where C(x, &) is the number of observations Xy,X,,..., X, smaller than
¢. The null distribution of C(x, ¢) is Binomial (n, 4).
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Using the data in Exercise 2.1, find a point estimate and two-sided
909, confidence limits for &.
2.5 Consider taking a random sample of size n=35 from a
R(—3+0,4+0) population and testing H,:0=0 against
H,:6>0. Tabulate the exact distribution of the Wilcoxon signed
rank statistic W under the alternative H,:6 =6, = 0.05.

Hint: note that under H, conditionally on |X|< 045,

Pr{sgn(X)= + 1} =4.
2.6 In Exercise 2.5 derive expressions in terms of n and 6, for
E(W|H,) and var(W|H,).

2.7 Suppose that the distribution of X is uniform between —1 + 0
and } + 6. Obtain an expression for the efficacy of Wy if G(u) = u?,
p>0.
2.8 Obtain the efficacies of the sign statistic S and the Wilcoxon
statistic W when the distribution of X has density K{1 + (x — §)?} ™
where K is a constant. Find the value of m for which the two statistics
have the same efficacy.
2.9 The frequency distribution below is typical of distributions of
errors of measurement of latitude; for convenience the units have
been adjusted to give the class centres as shown.

Assuming the underlying distribution to be symmetric, obtain a
two-sided 959 confidence interval for its centre using the Wilcoxon
statistic W.

Class centre Frequency | Class centre Frequency | Class centre Frequency
-8 1 -2 3 4 2
-1 0 -1 6 5 0
-6 0 0 10 6 1
-5 0 1 9 7 0
-4 1 2 7 8 0
-3 1 3 4 9 1




CHAPTER 3

Miscellaneous one-sample
problems

3.1 Introduction

While one of the dominant themes of this book is distribution-free
inference about location, this chapter gives attention to some
traditional one-sample problems that have not been dealt with in
Chapter 2. These have to do with dispersion and with various
aspects of estimating the distribution function and of density
estimation. One of the applications of density estimation is to
estimation of the standard deviations of certain distribution-free
estimators. Although such standard deviation estimates are not
always needed for interval estimation, they can be useful in certain
problems of combining estimates, in problems involving nuisance
parameters, and serve to give an indication of the precision of
estimates. Some attention will be given to the problem of estimating
standard deviations of estimates. Estimation of the distribution
function (or its complement) in the presence of censored observations
is an important practical problem that is also discussed.

3.2 Dispersion: the interquartile range

The standard deviation or its square, the variance, is by far the most
widely used measure of dispersion of a distribution (or of a random
variable). Many reasons can be advanced for its popularity, among
them that the variance can be interpreted as an expected squared
error, and that when it exists for a location-scale parameter distri-
bution, the standard deviation is proportional to the scale parameter.
However, in the distribution-free context much the same reasons that
make the mean unsuitable as a measure of location also apply to the
standard deviation. Notably, there is its possible non-existence.

For a continuous distribution function F(x) the interquartile range
is

A=&o.75—Co.2s
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where &, ,5 and &, ;5 are quartiles defined by
F(¢)=p, p=025075

The interquartile range is clearly a measure of dispersion of F, readily
interpretable, and like the median, it always exists. For the well-
known standard distributions like the normal and the Cauchy, it is
easy to express the usual scale parameter in terms of A. For example,
in the standard normal case A = 1.348.

Despite its simple definition and interpretation, inference about A
is not straightforward, in general. Essentially this comes about
because, using a sample of x observations, A is estimated by the
difference of sample quartiles whose joint distribution can be
complicated. This matter will be touched upon again in Section 3.2.2,
after considering a much simpler special case in Section 3.2.1.

3.2.1 Symmetric F, known location

We shall assume F to be symmetric about 0. Then, denoting the
number of random observations x,, x,,...,x, on X that liec between
— A/2 and + A/2 by n,, we note that the distribution of n, is binomial
(n,3). This fact can be used to test a hypothesis specifying a value of A,
and to find a confidence interval for A.

Example 3.1 n=12 observations from a symmetric distribution
centred at 0:
—1.86, — 1.01, — 0.87, —0.65, —0.50, —0.12
—006, 029, 059, 072, 097, 141
Testing Hy:A=20,H; :A>20
H , will be rejected in favour of H, if observed n, is sufficiently large.

Observed n, =7
Pr{n, = 7|H,} = 739/4096

thus H, is accepted at the conventional levels of significance.

Confidence limits for A
If the true A is used to find n, we have

Pr{3<n,< 10} =1— 158/4096 =0.9614
Now A > 2(1.86) = 3.72 yields n, = 12
3.72 > A> 2(1.41) = 2.82 yields n, = 11
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etc. Proceeding in this way, a two-sided 969 confidence interval for A
is seen to be

(0.58, 2.82)

Point estimation
A point estimate A of A is obtained by solving for A the equation

S(X,A)=n,—n/2=0
We observe that
E{S(X,d)} = n{F(d/2) — F(—d/2)}
and (OE{S(X,d)}/0d);— ,=nf(A/2)

Applying the results of Section 1.6.1, the large-sample variance of A
is approximately given as

var(A) ~ 1/{4nf2 (A/2)}

As an indication of relative efficiency we can calculate the variance
of the MLE of A in the case of a N(0, 6) distribution. The MLE of Q is

n

1/2
A= 1.348[ Y (x— x)l/n]

i=1
and its variance for large n is given by

var (A) = (1.348)%67/(2n)
while var (A) ~ 62/[4n¢?(0.6745)]
giving var (A)/var(A) ~ 0.37.

3.2.2 General F

Testing a hypothesis specifying a value of A is much more difficult in
this case because, in order to examine the compatibility of a given
value of A with the sample results, a decision has to be made about the
location of the interquartile interval. Suppose that the left end-point
of the interval is at &, then its right end-point is at ¢ + A, and suppose
that the numbers of observations in the intervals thus generated are
N (&), N,(&), Ny(&), with N, + N, + Ny =n.
Then the log likelihood of the observed configuration

3
log L(¢, A)=logn! — Y. log (N (£))!
j=1

—{N.(@)+ N;()}log4 — N,(¢)log2.
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and one possibility is to choose & so as to maximize log L(£, A). One

way of defining a test statistic is to base it on the difference

max log (&, A) — max log (&, A), noting that for large n with, for
g A

convenience, n a multiple of 4,
max log(¢,A) =logn! — 2log(n/4)! — log(n/2)!
Z,A
—(n/2)(log4 + log?2)

In small samples there are several difficulties in this approach, one of
them being that there is not necessarily a unique ¢ which maximizes
log (£, A) for fixed A. More seriously, the null distribution of the
proposed statistic is not distribution-free (it depends on F).

Similar difficulties attend interval and point estimation of A. The
obvious point estimate of A is

D= 50.75 - 50.25

where 50.75 and &, ,5 are sample quartiles. The exact definition of
&o.25 (and &, ,5) is a matter of convention; one possible procedure is
to smooth the sample distribution function F,(x) which has steps of
size 1/n at the order statistics x;), X (), - - - , X, @8 follows: The ordinate
of F,(x) for x, <x<x,,1) is r/n, r=1, 2,..., n—1. Let the
smoothed F,(x) have ordinates r/n at X, = (X, + X, +))/2 and inter-
polate linearly for x values between x,, and X, . ;.

If n is sufficiently large to allow replacement without serious error
of &,,s and & .5 by X, and x, respectively, where r =[n/4],
s =[3n/4], we have from standard results about order statistics:

E(D)~A
var(D)~[3f(£y.75) + 2f(50‘25)f(fo.75)
+3f2(E0.25)1/L16n (&g 25) 2 (E0.75)]  (B.1)

The discussion above, and especially the form of the
expressions in (3.1), raises a problem which it has been possible to
avoid in the one-sample, one-parameter problem of Chapter 2,
namely, taking account of a nuisance parameter. In this case the
nuisance parameter is the left location of the interquartile interval, or
o250 (3.1), where &, ;5 = &, ,5 + A. Generally in cases of this sort it
is impossible to devise exact inferential procedures. With large n one
can proceed by estimating var (D).

Estimates of quantities such as var(D), as given by (3.1), and of
densities such as (&, ,5), or the density at the median of X, depend
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fundamentally on estimating the distribution function F(x). In the
sections that follow we review some established results concerning
inference about F(x). We shall return, later, to the question of
density estimation.

3.3 The sample distribution function and related inference
The sample distribution function, F,(x), is defined as
F,(x)=(1/n) (the number of observations x,, x,,...,x, < x)

and in Chapter 2 its fundamental role in the construction of
estimators was illustrated. Generally we are interested in parameters
that are defined by certain operations involving the distribution
function F. If F, is substituted for F in such an operation the result is,
usually, that a consistent estimator of the parameter is obtained.

Thus it is important to note that, at every value of x, F,(x) is a
consistent estimator of F(x). It is, in fact the maximum-likelihood
estimator, and is unbiased with minimum variance, as is well known.

Apart from its uses indicated above, the sample distribution
function is used directly in many tests of goodness of fit. In such tests a
specific parametric F is often nominated and the goodness-of-fit test is
really a check of the agreement between F, and F. This is usually
made in terms of a measure of distance between two distributions.
With a completely specified F, such a test can always be cast as a test
of goodness of fit of the observations F(x,), F(x,),..., F(x,) to a
uniform (0, 1) distribution. The test thus becomes distribution-free.

While the distribution-free property of such goodness-of-fit tests is
comforting, we are, of course, speaking of tests of parametric
hypotheses that happen to be distribution-free. When contemplating
using the distribution-free techniques that form the major substance
of this book we are not, generally, concerned with such tests.
Therefore we shall look only at one of these tests adapted to the
setting of confidence bands for F.

3.3.1 One-sided confidence-bands for F
Consider the function
F¥(x,d)=min {F (x)+d,1}

where d > 0. Obviously F} lies entirely above F, (except when their
ordinates coincide) and it is possible that F* also lies entirely above F.
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Let us suppose that we can calculate the probability
a(n, d) = Pr{F*(x,d) = F(x) for every x}

Then F¥(x,d), x =(— o0, ), describes a 1009, one-sided con-
fidence band for F(x). The term ‘confidence band’ emphasizes that F*
isabove F for every x. Confidence limits for F at selected x-values can,
of course, be obtained in the standard way, using the binomial
distribution.

Now, F¥(x,d) will be entirely above F(x) if

d>F(X,)=U,
In+d>F(X,)=U,
d+2/n>F(X3)=U,
d+p/n>FX,)=U

(3.2)

where p is an intéger such thatd+ p/n< 1,d+(p+ 1)/n= 1.
The joint distribution of U, U,,..., U, is known its p.d.f. being
nlfor0su <u,<...<1
Hence the probability of the event described by (3.2), that is, a(n, d),
can be computed by evaluating an appropriate integral:

d d+1/n d+p/n 1
a(n,d)zn!J‘ J J [
1
J du, .. du, (3.3)
Up = Un -1

The form of the integral in (3.3) in which F does not appear
emphasizes the distribution-free character of the confidence band.

Straightforward calculations give
d d+p/n

] (1 p+1)n - ld d —
a(n,a)—n. "'-(;l"'_——*_—ﬁ‘—“ up+1... ul-n.Gn(p),
u=0 u,+1=u
and
(1—a—p/my=r-2
= —-1)— H (p—1
Gu(p)=Gulp—1) n=p—2)] nlp—1)
Therefore, by successive addition we can write
1_ n i
G,(p) = Z A=d=inf™ iy

=1 (n—=i)!
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Further we note,

H(0)=d

n

H,(1) =5+ 2/n

d r+1
H"(r)z(r+1)!(d+ n )

14

a(n,d)=n!G,(0)—d Y (?)(1 —d—i/nyid + ifn) !

i=1

so that

(3.4)

with G (0)=1—(1 —-4d)".

An approximation to «(n, d) for large n can be obtained by putting
d= i/\/ n, using Stirling’s approximation for n! which leads to the
sum in (3.4) being approximated by an integral of the form

1

1 1
\/ﬂb[\/y(l—y)

By a substitution y=4%+u followed by 4u?/(1 —4u?)=z2 this
integral can be shown to be approximately (1/4) exp (— 242). Since a is
taken to be finite, large n implies large A.

Substitution in (3.4) finally gives the large-sample approximation

a(n,d)=1—exp(— 242).

The derivation given above is in Wilks (1962, p. 336).

Two-sided confidence bands can be set in 2 manner similar to that
discussed above. Calculation of the confidence coefficient is, however,
considerably more complicated; the reader may refer to one of many
texts that deal with the problem, or again to Wilks (1962, p. 339).

exp [ — A2/(2)(1 — y)1dy

3.3.2 Estimation of densities, and some related topics

Estimation of densities arises in a variety of statistical problems; in
the context of distribution-free techniques it turns out, as we have
already noted in Chapter 2, that the density of the underlying F
appears in expressions for asymptotic variances and relative efficien-
cies. Thus, if one were to estimate the variance of the sample median,
one way of proceeding would be to use the asymptotic formula for the
variance of the sample median, and attempt to estimate f(f).
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Since F,(x) is a consistent estimate of F(x) for every x, it seems
reasonable to suppose that one might take as an estimate of f(x),

Jalx) = [F,(x +h) — F(x — h)1/(2h)

with h suitably chosen. In order that f,(x) be a consistent estimator of
f(x)itisclear that h should be chosen as a function, h(n), of n, such that
h(n)—0 as n— oo. The question of the rate at which h(n) should
approach O arises, and to answer it the statistical properties of f,(x)
have to be examined.

Following Parzen (1962) the estimate f,(x) can be put in the form

9

1 x—y _ 1 X —X;
f..(x)—EJK< p >dF..(x)—nh_Z K( p ) (3.5)

i=1
where
1
2 bIsl
K(y)=12
v {0 bl > 1

Such a representation has two advantages, the first being that the
form of (3.5) suggests that K need not be restricted to the simple choice
given above. A variety of functions are suitable for K and some of
these are shown in Table 3.1; this table is extracted from Parzen
(1962). The potential gain in having a wider choice of K is that some
functions K may have a greater smoothing effect, leading to more
reliable estimates.

Table 3.1
K(y) K
sz(y)dy
{% e .
0 Ii>1 :
Texp(—Iyl) 3
(1/2m) [sin (y/2)/(y/2)]* 1/3n

The other advantage of writing £, (x)as in (3.5)is that it is seen to be
the sum of independent identically distributed random variables, thus
facilitating the investigation of its statistical properties. In this
investigation the following theorem is used.
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Theorem 3.1 Suppose that K(y) satisfies:

(i) SUP_ o ) <ol K(Y)| < 00
(i) [ IK(y)ldy <

(i) lim [yK(y)|=0

y—=>©

Also suppose that g(y) satisfies

0

j lg(y)|dy <

and that h(n)— 0 as n— co. Then at every point of continuity of g(y),

0

. 1 y
Jlim g,(x) = lim 205 fK<h( ))g(x_ Ny

~

The proof of this theorem is obtained by noting that

A (x)=gx)—g(x) | K(y)dy

g——18

8

a0

= f [g(x — y) — ”]W) (~y—)>dy,

and splitting the region of integration into two regions |y|< 8,6 > 0,
and |y| > 6, and considering |A,(x)|. The upper bound to |A (x)|
comprises contributions which tend to 0 as first n — co and then § — 0.

Consider the expectation of f,(x) as n— co. From (3.5) we see that

1 1 X—y
s =gk ()= | sk (i v

- ®©
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Applying Theorem 3.1, we see that
lim E{f,(x)}=f(x)

if the conditions stated in the theorem are satisfied and if K(y)is scaled
so that

J K(y)dy=1

We assume this to hold in further discussions.

Thus f,(x) is asymptotically unbiased at every point of continuity
of f(x), and in order to establish conditions for its consistency we need
only examine var [ f,(x)]. Again using (3.5),

var [f,(x)] = (1/n)var [(1/R)K((x — X)/h)]

=(l/"{hz() JK(

T 1 xX—y 2
| G
nh(n)var [ f,(x)] Jhi 2<x )f(y)dy

—h(n[ J hi (";y)f(y)dy]z

o (3.6)

)f y)dy

so that

Using Theorem 3.1 again, we see that

K?(y)dy (3.7)

l__}g

lim nh(n)var [f,(x)] =/ (x)

8

The result (3.7) shows that f,(x) will be mean-square consistent if in

addition to
lim h(n)=0

n— o
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we also have
lim nh(n) =

n-— o

These results indicate that h(n) =wn™ Y2, w constant, might be an

appropriate choice of h(n) for mean-square consistency. However, the
choice of w in any particular example is not obvious. Rosenblatt
(1971) outlines an argument showing that the rate at which the mean
square error of estimation tends to 0 is maximized if

h(n)=wn~1/5
a suitable value of w being

w={4f(x) | K*(y)dy/[f"(x) | g*K*(y)dy]}"/*

Except as a rough guide this formula is not of much practical use as it
involves f''(x); it could possibly be used in an iterative manner, an
initial estimate of f(x) (and f’/(x)) being used in the place of f'(x)(and

f(x).

Example 3.2 Refer to the n =91 sample assay values of Exercise 2.1.
We shall perform only some rather crude calculations to illustrate
procedures.

Grouping the observations into classes of width 50 units we obtain
the following frequency distribution; class lower limits only are
shown.

Class 0- 50— 100- 150- 200- 250— 300- 350— 400— 450- 500-
Frequency 24 16 7 10 8 1 S 3 5 0 12
K 0.020 0.032 0.039 0.038 0.028 0.017 0.007 0.003 0.001 0.00

The observed sample median is 143 and this falls in the class with
lower limit 100. A crude estimate of the density at the mid-point of this
interval is (7/91)(1/50) = 0.001 54. One would expect a more refined
estimate of the density at x =143 to be of the same order of
magnitude.

Taking K(y) = ((;'\/2)'1 exp (— y*/(20%)) with ¢ = 10 and h = 10,
the values of K[(143 —x,;)/10] at the class mid-point values x;
are shown in the table above. The mean K-value is 0.0212 giving
Sfa(x) =0.002 12.

One way in which this result might be used is in setting
approximate confidence limits for the median using approximate
normality of the distribution of the sample median. The estima-
ted standard deviation of the sample median is then
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(4 x 91)72/(0.002 12) = 24.7, giving approximate two-sided con-
fidence limits

143 +1.645 x 247~ 143 + 41

These should be compared with the exact limits obtained as in
Exercise 2.1.

The ideas outlined above for estimating f(x) can be applied to
other cases where an estimate is required of the slope of a continuous
function, which is itself the expectation of a sample function that is not
necessarily continuous. An example of this kind was discussed in
Chapter 2, namely the Wilcoxon statistic W(x, t) defined in equation
(2.23).

It will be recalled that W(X,t) can be put in the form

WX, t)=n(n+ 1)/2 — 2 % (% < t)

Now the expectation of the second term on the r.h.s. of the above

expression is
nin+1)

2

where F,(t) is the distribution function of (X;+ X;)/2,X; and X;
being independent and distributed like X. Putting

X.+ X,
P = (500

Fy(1)

nn+1) 2

2 n t—(x; +x))/2
and Ll = e T, &, ( o) )
where K(y) is defined as above, the arguments used before show that
f2..(2) is asymptotically unbiased for f,(¢) = F;(t).

It is possible to establish conditions for h(n) to ensure that f, ,(¢) is
consistent for f,(t). The calculations are complicated and details will
not be given here.

3.3.3 Direct estimates of variances of estimates

Consider estimation of the standard deviation of the sample median
(0). The asymptotic formula for var (8) involves £ (), the density at the
true median value. It can be estimated by one of the methods
outlined in Section 3.2, and the estimated value used in the asymp-
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~

totic formula. However, var (6) can be estimated more directly for we
have, in the case n=2m + 1,

A !
E(7)=EX(p+1) = (—r:_')i Ju’F tw(l = F)"f (u)du

1

!
- (;",)— j w1 — ymdy
(1]

where y(y) = F ~*(y). Now the sample c.df. provides an estimate of
F(y), and hence of y(y), thus leading to an explicit estimate of the
actual variance of 8. This method is discussed more fully in Maritz
and Jarrett (1978).

Similar procedures can be applied to any estimates that are linear
functions of order statistics, for example, the interquartile range.

3.4 Estimation of F when some observations are censored

We shall consider only non-negative random variables and the case of
right censoring of some of the observations, by which is meant the
following: an observation is said to be right censored at the value x if it
is known that its actual value is = x. Such censored observations arise
typically in studies of survival, where patients may be lost to the study
for reasons unconnected with the agencies that may affect their
survival. For example, a patient may be transferred to another
working place by his employer. In studies of this type it is common
practice to focus attention on the complement of F(x), the survivorship
Sunction F (x)=1— F(x).

3.4.1 The actuarial method of estimating F

When the number of observations is large, the data are conveniently
summarized in the form of a life table with some grouping of
observations, as illustrated in Table 3.2; for obvious reasons this
procedure for estimating F is called an ‘actuarial method’ (Pike and
Roe, 1963). The classes need not be of equal length and we denote
them x, — x,,x, — X,, etc, with x, = 0. The steps in calculating an
estimate of F (x) are shown in the same table, resulting in the entries in
column (7) which are estimated values of F, at the lower end-points of
the successive class intervals.

Let the total number of patients be n. It is convenient to think of all



74 DISTRIBUTION-FREE STATISTICAL METHODS

Table 3.2
1 ¥ 3 4 (5 6) Y.
Interval  Deaths With-  Number at n, P, F(x,)
drawls  risk at x,
Xo — Xy do Wo no ng—wo/2 Ppo=dy/ny 1
Xy — Xy d Wy ny.  ny—wy/2 py=di/n; Po
Xy — X3 d, Wy n, ny, —wy/2 py=dy/n; Pob:

patients as having been first seen at time 0 and then followed until
death or withdrawal through other causes. The total number is also
the number at risk at the start of the first x-interval, and we denote this
number n, = n. The number of deaths and withdrawals during this
first interval are, respectively, d, and w,. The number at risk at the
start of the next interval is n, —d; — w;. The rest of the entries in
columns (1)—(4) are interpreted similarly.

If there were no withdrawals, the ratio d,/n, would be an estimate of
the conditional probability of dying in the rth interval, given survival
up to the start of the interval. Since a number w, of patients withdraw
during the interval, the effective number at risk for the interval is
between n, and n, — w,, and is usually taken to be n, — w,/2 =n,. The
conditional probability of dying is therefore estimated by

9,=4d,/(n, —w,/2)
Denoting the estimate of F (x) by F(x), we then have
Fs(xr+ 1) = Fs(xr)'(l - qr) = Fs(xr)pr

Since F(x,) = 1, we have

etc.

Example 3.3 Table 3.3 gives a numerical illustration of the estimation
procedure outlined above; it is taken from Armitage (1971, p. 412);
n=n, =374 _

A large-sample formula for var F(x,) can be developed as follows.
Write F(x,)=exp(L,), where

L,=In(pop;...P,-1)
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Table 3.3
1) ) A3) (4) (5) (6) KU
Interval Deaths ~ Withdrawls n, n, p, F(x,)
0-1 90 0 374 3740 0.7594  1.000
1-2 76 0 284 284.0 0.7324  0.759
2-3 51 0 208 208.0 0.7548  0.556
3-4 25 12 157 151.0 0.8344  0.420
4-5 20 5 120 117.5 0.8298  0.350
5-6 7 9 95 90.5 09227 0.291
67 4 9 79 74.5 0.9463  0.268
7-8 1 3 66 64.5 0.9845 0.254
8-9 3 5 62 59.5 0.9496  0.250
9-10 2 5 54 51.5 09612 0.237
10- 21 26 47 0.228
Now
var {F(x,)} = {F (x,)}*var(L,) (3.8)

and we obtain an approximation for var(L,) by noting, first, that

1 >2prv1(1—pr—1)

’
Dr -1 n

r—1

var{L |dy,ng,...d,_,,n _,,n,_,} :(

Here we use again an approximation of the form
var(InY)~ {1/E(Y)}* var(Y), and an assumption that d,_, is bi-
nomially distributed. The latter assumption is strictly valid if
w,_; =0.

Note also that
E{L,|dg,ng,...,d,_,,n_,,n/_,}

d
=ln<d—,0>+ +k< ,'—£>+lnp,_l
U n._,
By repeatedly applying the formula

var(Y)= Evar(Y|X)+ var E(T|X)

and successively reducing the number of conditioning variables




76 DISTRIBUTION-FREE STATISTICAL METHODS

we obtain Greenwood’s (1926) formula
. R r—1 d.
F ~(F 2y h 39
var (F(x,) = {F(x,)} i;) i —d) 39)
When there are no withdrawals, Greenwood’s formula simplifies to
var {Fs(xr)} = Fs(xr){l - Fs(xr) }/nO

which is the elementary formula for the variance of a binomial
random variable, with the exact probability replaced by its estimate.

One of the uses of Greenwood’s formula is for testing a hypothesis
that specifies a value for the median of X, and by the usual argument,
it can then also be used to obtain a confidence interval for the median
of X.

Example 3.4 Refer to Example 3.3 and test the hypothesis that
0 = median(X) = 2.0.

Using the version of Greenwood’s formula with F (x,) replaced by the
theoretical value, 1, that is, essentially using (3.8), we have

90 4 76
374(284)  284(208)
Treating F(2.0) as normally distributed with the standard de-

viation calculated above, for a two-sided test at the 109, level we note
that

var {F,(2.0)} ~ (%){ } =(0.0231)>.

0.5 4 1.645(0.0231) = 0.5 + 0.038.
Thus the null hypothesis stated above is rejected.

In order to determine a confidence interval for 6, the calculation
performed above should be done at a succession of x-values. With the
grouped data it is convenient, without regrouping, to perform the
calculations at the class end-points. Interpolation using a graph as
illustrated in Fig. 3.1 can be used to find a confidence interval. It will
be noted that we plot graphs of

0.5+ 1.645(s.d. (F))
and -
observed F(x,)

against x. The x-values of appropriate points of intersection of these
graphs give the confidence limits. The answers obtained from
Figure 3.1 give a 90% confidence interval for 6 as:

(2.14, 2.76)
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Figure 3.1 Graphical interpolation to obtain confidence limits for the median
from grouped censored data.

3.42 The product-limit method of estimating F

The product-limit method can be regarded as a refinement of the
actuarial method, effected by a judicious choice of class boundaries.
Let &, <é,< &< ... <&, be the observed lifetimes, censored or
uncensored, and suppose that the class boundaries are ¢, +,
& +,...,¢,+. Then, in the notation of Section 3.4.1, every d is
either 0 or 1, and every w, is either 1 or 0. Also, when an interval does
contain a loss, that is, w, = 1, the loss occurs just before the end of the
interval so that n, need not be adjusted to n, as was done in the
actuarial method. Thus

_{l—l/n, if death at &, ,

"1 ifloss at &, ,
and we have, as before
F(x,)=popy---Pr—1

The product-limit method is described by Kaplan and Meier (1958)
in a paper that also contains much other useful material about the
analysis of censored data. Among these results is a demonstration
that the product-limit estimate is actually a maximum-likelihood
estimate of F(x). Also, F (x,) is unbiased for F(x), as can be seen by
calculating its expectation by successive conditioning up to the term
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Dy_2,Dr—3, €tC; p, is an unbiased estimate of the true relevant
probability.

Greenwood’s formula for var {F,(x,)} applies to the product-limit
estimate, with n, replaced by n,. Determination of a confidence
interval for median (X) proceeds as in the actuarial method. In both
the product limit and actuarial methods one can obtain an approxi-
mation for var (), where 8 is the estimate of § obtained by solving

F(x)=3
so that
var (f) ~ var {F (0)}/1*®) (3.10)

In this formula var (F,(§)) can be estimated by using Greenwood’s
formula, possibly with some interpolation, and f(6) can be estimated
by the type of technique discussed in Section 3.3.

Example 3.5 The details of a product-limit estimate calculation are
shown in the following table; observations marked * are censored.
The entries in the column headed d,/[n,(n,—d,)] are used for
calculating estimates of var {F (x,)}.

¢ n, d, P, Fyr) d,/[n,(n,—d,)]
0.33 20 1 0.9500 0.9500 0.002 63
1.02 19 1 0.9474 0.9000 0.00292
1.39* 18 1 0.9444 0.8500 0.00327
1.47* 17 0 1.0000 0.8500 0
1.48* 16 0 1.0000 0.8500 0
1.67 15 1 0.9333 0.7933 0.00476
1.84 14 1 0.9286 0.7366 0.00549
2.09 13 1 0.9231 0.6800 0.00641
2.15 12 1 09167 0.6234 0.007 58
2.51 11 1 0.9091 0.5667 0.00909
2.70 10 1 0.9000 0.5100 001111
4.08* 9 0 1.0000 0.5100 0
4.57* 8 0 1.0000 0.5100 0
4.60 7 1 0.8571 04371 0.02381
4.88 6 1 0.8333 0.3643 0.03333
4.98* 5 0 1.0000 0.3643 0
5.62% 4 0 1.0000 0.3643 0
8.11* 3 0 1.0000 0.3643 0
15.49 2 1 0.5000 0.1821 0.50000
19.62 1 1 0.0000 0.0000
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From the table, 0 lies between 4.57 and 4.60; we take it at 4.585 for this
illustration. Following the method of Example 3.2 with h=0.5,
o =20 the estimated value of f(4.585) is 0.1155. Using Green-
wood’s formula the estimated values of var {F (x,)} at 4.57 and 4.60
are 0.0138 and 0.0147. Substituting the average of these two values,
and the estimated f(4.585) in formula (3.10) the estimated standard
deviation of 8 is 1.02.



CHAPTER 4

Two-sample problems

4.1 Types of two-sample problems

We shall suppose that our data comprise m independent obser-
vations, x,,Xx,,...,X,, on a random variable X with distribution
function F(x) and n independent observations, y,,y,,...,y, on Y
with distribution function G(y). When necessary the dependence of
these distribution functions on a parameter will be indicated. For
convenience, the two samples may also be referred to as the X -sample
or the Y-sample. Where convenient, the observations x; will be
regarded as realizations of independent identically distributed ran-
dom variables X, i =1,2,...,m, with common distribution function
F(x); a similar notation will be applied to the Y-sample.

In many applications of statistics, two-sample problems arise in
such a way as to lead naturally to the formulation of a null hypothesis
to the effect that the X- and Y-samples come from identical
populations. For example, if subjects are randomly assigned to two
groups in a trial to compare two treatments of hay fever, the responses
being measured on some quantitative scale, one might begin with the
null hypothesis that the treatments are equally effective.

The test procedure should be influenced by the alternative to the
null hypothesis that is being contemplated. In this respect two-sample
problems seem to be more complicated than one-sample problems;
one has to describe the alternative hypothesis in terms of some
reasonably easily interpreted measure of ‘difference’ between two
distributions. Clearly a great diversity of measures of difference
between two distributions can be defined.

Among such measures of difference, one of the simplest and most
easily interpreted is a difference in location of distributions that are
otherwise identical. In terms of the distribution functions F and G
introduced above, this case of location difference is described by
stating that F(x)=F(x—80,), G(y)=F(y—0,), the difference in
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location being 8, — 6, = A. The main emphasis of this chapter will be
on problems of location difference.

A somewhat more general measure of difference is the difference
of medians of two distributions. This difference can be estimated
without the restriction that F and G have the same ‘shape’. In fact
any quantile could be used in a similar manner. However, without
the restriction of equal shape, equality of medians leaves room for
two distributions to be quite different in other vital respects; this
should be remembered in basing inference on comparison of medians
only.

Another simple measure of difference between F and G which
arises naturally in connection with rank tests is Pr(X < Y) —3; its
value is 0 when F and G are identical. An obvious estimate of
Pr(X < Y) is the observed proportion of x-values smaller than
y;-values, and this is the well known Mann—Whitney statistic about
which more details will be given later.

For the most part, this chapter will concentrate on test and
estimation procedures that are associated with the measures of
difference introduced above. Other measures and test procedures
are also mathematically and practically important, but the attraction
of the simpler measures is that they not only lead to useful test
procedures, but that the associated point estimates are readily
interpreted for practical use.

4.2 The basic randomization argument

Suppose that the null hypothesis H, holds, namely that F and G are
identical. Then the X- and Y-samples can be regarded as having
been drawn from the same population. Let us label the members

xl’x2’-"’xm; Yu)’z,u-,yn

of the pooled sample

21329y ey Zyy Zma 19 -2 ZN

where N =m + n. Then, under H,, conditionally on the realization
of the values z,,...,zy, the particular observed X-sample can be
regarded as having been obtained by a random selection without
replacement of m of the z-values, labelled as x, ..., x,,. We shall also
speak of a random partition of the z-values into groups of sizes m

and n.
Under this scheme of random partitioning, the conditional null
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distribution of any proposed test statistic can, in principle, be
obtained by listing all possible partitions and calculating the
corresponding values of the statistic. The conditional null distri-
bution generated in this way can then be used to perform a
conditional test of significance and to set confidence limits. The
arguments justifying such procedures are essentially the same as
those used in Chapter 2. In the rest of this chapter the randomization
argument is applied repeatedly in considering various test statistics.

4.3 Inference about location difference

4.3.1 Introduction

We now consider the case where the X- and Y-samples derive from
populations that differ only in location. Thus G(y) = F(y — ); in this
formulation 6= E(Y)— E(X) when the expectations exist, and
6 = median(Y) — median(X).

If the true location difference is § the two sets of random variables

X, X, X,
Y,—0,Y,—0,....Y,— 0

are identically distributed. The randomization argument can there-
fore be applied to values z,(0), being the pooled collection of values
X1:XpseesXms V1 — 8y, —0,...,y,—0. We shall consider several
statistics based on the z,(6) values.

4.3.2 The two-sample mean statistic

Let

AX Y, t)= ) X, —mz(t), 4.1)
i=1

where z(t) =Y ¥_, z,()/N. We call this the mean statistic and it is,

of course, inspired by the fact that the sample mean is a standard

estimate of location. The statistic A(X, Y, ) can also be expressed as

AKX, Y, 1) = %(X ¥+ 42)

but since z(f) remains fixed in the randomization argument for finding
the conditional null distribution of A4, the form (4.1) is somewhat
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more convenient for most of our purposes. This statistic and its
randomization distribution was studied in considerable detail by
Pitman (1937).

The expression (4.2) shows that inference about 0 using 4 amounts
to the use of the difference of sample means, and we refer only briefly
to the consistency and efficiency properties of the related procedures.
If F has a finite variance ¢2, A(X, Y, 6) is asymptotically distributed

+ e e .
N <0, 62<_m___n>> as m and n— oo; the asymptotic distribution of
mn

AX,Y,t) is N <t—0, g(% . Consistency of testing and of

estimation is readily established.

Testing Hy:0 =0, against H,:0 > 0,

We concentrate on the distribution-free test procedure based on
enumeration of the conditional null distribution of A. In practice
we calculate the observed A(X,y,0,) and refer it to the null
distribution. If the observed A(x,y, 8,) is sufficiently small, that is, lies
in the lower 100a%; tail of this distribution, H, is rejected.

Example 4.1
x,:3.46,4.13,2.71

y;:4.85,5.22,5.64
00 = 1.0: yl - 00 . 385, 422, 4.64

Z(0,) =(3.46 + ... + 4.64)/6 = 3.835
Observed A(x,y, 6,) = — 1.205
There are < g = 20 ways of partitioning the z(6) values into two

groups of sizes 3 and 3 and the smallest values of A obtained are:

2.71 + 3.46 + 3.85 — 3(3.835) = — 1.485
2.71+43.46 4+ 4.13 — 3(3.835) = — 1.205
2.71+ 3.85+4.13 — 3(3.835) = — 0.815

etc.
Thus Pr{A(x,y, 6,) < — 1.205} =2/20 and we reject H, at the 10%,
level of significance.

Modification of the procedure illustrated above for two-sided
alternatives is obvious.
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Confidence limits for 0

Confidence limits for the location-shift parameter 6 are set
by the inversion of the hypothesis-testing procedure which we
have used in earlier chapters. We shall consider a two-sided

100<1 —2r / (m + n)>% confidence interval.
n

For every possible value ¢ of § we can calculate the observed
A(x,y, t) and by listing partitions of the z(t) values we can find the
number N(z) of possible A-values that are greater than the observed
A. Now, as t varies between — oo and + oo, the value of N(t) changes
from (™ T 1 to 0, and to find the exact confidence limits we

n
need to identify the ¢-values at which N(¢) changes.
In fact, N(t) changes whenever

Y x=Y 20 (43)
i=1 i=1
where z}(t), z%(¢),..., z}(?) is a subset of all z,(t) values. If the r.h.s. of
(4.3) contains (m — 1) of the x; values and one y; —t, then (4.3.) is
satisfied by a ¢ given by
X, =y;—t

Thus all values y; — x; constitute change points of N(t). Similarly, if
the r.hs. of (4.3) contains (m —2) of the x; values, the value of ¢
satisfying (4.3) is given by

(i +x)2=0,+y)2—t
Thus the difference of averages (y, + y,)/2 — (x; + x ;/2) also constitute
change points of N(¢).

To find the exact confidence limits all such differences of means
of subsets of the same size could, in principle, be listed in order of
magnitude. The confidence limits are, then, the rth smallest and rth
largest of these differences. In practice it may be quicker to vary ¢
from the largest value that needs considering, Y — X1, until the
point at which N(t) changes from r — 1 to r is found.

Example 4.2

x:2.71,3.46,4.13
y:4.85,5.22,5.64, 6.20
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There are 4 x 3 = 12 differences of single observations

(;) (;) = 18 differences (y, — y,)/2 — (x; + x;)/2

3\/4
<3><3> = 4 differences (y, + y, +y,)/3 = (x; + x; + x,)/3

. 7 . . .
giving a total of 34 = ( 3> — 1. Listed in decreasing order of magni-
tude, these differences are:

3.49 2.51 2253 2125 1950  1.730 139
293 2.500 218 2.105 1915 1.635  1.240
2835 2440 2160 207 1.825 1615  1.09
2.74 2345 214 2010 1.803 1.51 0.72
2625 2290 2130 1990 176 1.450

Thus a 100(1 — 6/35)%, = 83% confidence interval for @ is (1.240,
2.835).

Point estimation
The solution @ of the estimating equation

AX,Y,0)=0

is § = Y— X. This estimating equation is inspired by the fact that
E{AX,Y,0)} =0 if it exists.

Large-sample approximations *

Although it is not essential in hypothesis testing to list all partitions
of the two samples, or in determining confidence limits to list all
differences of subset means, exact calculations rapidly become
prohibitive as m and n increase. Approximations of the conditional
distribution, therefore, become important. The exact first two
moments of the conditional distribution are

E(A)=0

var (4) = mng?(t)

(m+n-1)
where o?(1) = [1/(m +n)]Y ""(z,(t) — Z(1))*>. These results follow

from the standard theory of sampling at random without replacement
from a finite population.

(4.4)



TWO-SAMPLE PROBLEMS 87

As m and n— oo with m/(im+ n) approaching a limit A, the
distribution of A/s.d.(A) approaches a standard normal distribution
under conditions given in Section 1.8.3. Using this result the
hypothesis-test procedure can be put in the form:

N2

reject Hy if X — Y+ 6, < —u,a(t) (N = Lymn

The rule can be written in the form, reject H if

X-Y+9, N-2 1 2
s(l l)“ ) _u“[<N - 1){1 /(N - 1)}] 4

+
n m

where s denotes the usual ‘within-group pooled standard deviation’.
Thus the Lhis. of (4.5) is the usual ¢-statistic, and in the event that
F is a normal distribution, the r.h.s. of (4.5) can be regarded as giving
an approximation to the appropriate quantile of the ¢-distribution.
The following numerical values are instructive; the constant in the
r.hs. of (4.5) is denoted by k,.

=09 a=10.95

N k, t, k, t,

5 1.446 1.476 2.505 2,015
10 1.337 1.372 1.854 1.812
20 1.306 1.325 1.729 1.725

Using (4.5), the 100(1 — 2a)%; confidence interval for @ is approxi-
mately

— X + Y+ k,s[(m + n)/mn]"?

4.3.3 The two-sample sign statistic

Rewrite the mean statistic in (4.1) as
AX Y, )=y [X;~Z(t)] (4.6)

i=1
This expression suggests that a two-sample analogue of the sign

statistic might be ) 7", sgn [ X, — z(t)]. However, we shall replace z(t)
by 2(t), the median of the z,(f). One obvious advantage of this
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alteration is that the null distribution of the resulting statistic

m

SX,Y,t)=Y sgn[X,—2(1)] 4.7)

i=

is the same for all samples that have the same sample sizes m and n.

The null distribution of S

If N is even there are N/2 of the sgn [z,(t) — 2(t)] with value —1 and
N/2 with value + 1, and listing the exact permutation distribution of
S is straightforward. In fact, (S + m)/2 has a hypergeometric distri-
bution, and

-2/ (2)

r=0,1,2,...,mform<n.

When N is odd, one of the sgn [z;(t} — Z(¢)] has the value 0 which
must be noted when listing the null distribution. The procedure
remains straightforward.

Hypothesis testing

After establishing the null distribution of S, the hypothesis-testing
procedure is simply to calculate observed S(X,Y,6,) when testing
H,:0=0, and refer it to the null distribution. If the alternative
hypothesisis H, : 0 > 6, H,, is rejected if observed § falls in the lower
tail of the null distribution.

Example 4.3 Use the data of Example 4.2. Suppose we test H,,:
0, =1.0.
Then we have H, :6> 1.0
x;:2.71, 3.46, 4.13
y;—00:3.85,422,4.64, 5.20
giving 2(6,) = 4.13, the transformed values
x:—1,-10
yi—0,:—11,1,1,
and the null distribution
s:—3-2—-1 0 1 2 3
35PriS=s): 1 3 9 9 9 3 1

Observed S= —2 and Pr[S< —2]=4/35. At level 4/35 this
observed result is significant.
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Confidence limits for 0

The null distribution of S is needed and we need to trace the values
of S(x,y, t) as a function of ¢ for fixed x and y. To cope with ties that
occur as t varies, it is useful to spell out the definition of median z(t)
as follows:

m+n odd : 5(t) is the largest z’-value such that the number of
z,(t) smaller than z' is (m +n —1)/2.

m + n even : 2(t) is the mean of Z_(¢) and Z , (t) where z_(t)(2..(t))
is the smallest (greatest) z’ such that the number of
z,(t) smaller than z’ is (m + n)/2.

The setting of confidence limits is slightly different in the two cases,
m+ n even or odd.

1. m+n even (m<n). As t varies from — oo to + oo, S varies
between —m and +m in m steps of size 2. Suppose that
t=Yw-my2+1) — Xem — & Then the number of z,(t) < yu—my2+1)
is (n+m)/2 and of these m are x-values. Thus S= —m. At t=
Yn-my2+1)— X+ & the value of § is —m+2. Proceeding
in this way, we see that the t-values at which the jumps in §
oCCUr are ty = Yo —myz+1) ~ X L2 = Vim-my2+2) ~ X1+ > lm =
Yn+myz =~ X1y

Suppose we seek a 100(1 —2r / (n -};m))(% two-sided confidence

interval. Then from the null distribution of S we find the value of S
m+n . . .
such that Pr(S<s)=r / < ) Graphically, or by inspection of a
n

tabulation, the ¢;-value for the upper limit of the confidence interval is
readily identified. The lower limit is found similarly.

2. m+nodd (m <n). Ast varies from — oo to + oo, S varies from
—mto + min 2m steps of size 1. Following the type of enumeration
illustrated for the case m + n even, the t-values at which the jumpsin §
occur can be seen to be:

Yy = Xemy Y2y = Xm)

Y2) =™ Xem-1)2Y3) ™ Xem-1

Yi-1) = %y Y ~ X1
An illustration (m + n odd) follows.
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Example 4.4 Use the data of Example 4.2. The 6 points of jump of

S are:; (__ 3) (O)
4.85—-413=0.72 5.64 —3.46=2.18

(=2 (1)
522-413=1.09 5.64—271=293

(=1 @
5.22-346=1.76 6.20 — 2.71 = 3.49

0 3
The values of S in the approp(rie)lte intervals are shown(ir)l brackets.
From the null distribution of S shown in Example 4.3 we see that
Pr{—1<S<+1}=27/35=0.7714
Therefore a 779, two-sided confidence interval for 9 1s:
(1.09, 2.93)

Point estimation
From the descriptions above of the behaviour of § as a function of ¢
for fixed x and y, it is obvious that the point estimate of 8 is

median (y) — median (x).

Large-sample calculations

In hypothesis testing we can use a normal approximation for the null
distribution as explained in Section 4.3.2. In the case of the sign
statistic the value of ¢2(t) is

1 for m + n even, giving var(S(X, Y, 0)) =mn/(m +n—1)

N-1 .
N for m + n odd, giving var(S(X, Y, 8)) = mn/(m + n)

For N large, the resulting test statistic is, for m + n either even or odd,
approximately equal to the usual test statistic arising in the analysis of
a 2 x 2 contingency table.

Example 4.5 Suppose that the results of an X-sample of size 24 and a
Y-sample of size 36 are used to test the null hypothesis that 8 = 0. If
the common median is Z(0) the results may be summarized in a 2 x 2
contingency table as follows:

<20) >2%0)

X-sample 10 14 24
Y-sample 20 16 36

30 30
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24 x 36

59 °
Observed S= - 10+ 14=4

var(s) = 5.d.(S) = 3.827

3
=4 ~1 - —= |=1—-D(0. =0.
Pr{S>4|H,} <I)<3.827> 1 — ®(0.784) = 0.216

Note the continuity correction of —1 in the numerator of the
argument of ®.

In the usual analysis of the 2 x 2 contingency table, using the
normal approximation for the hypergeometric distribution arising in
the ‘exact’ test we obtain, letting Q denote the entry in the top right-
hand cell of the table,

EQ)=12
s.d.(Q)=1913

giving the observed normal deviate, with the usual correction Yor
continuity,
_14-12-05
© 1913

identical to the result obtained above.

=0.784

Consistency of the sign test
The common median z(t) may be regarded as an estimate of {, 5(¢), the
median of the ‘mixed’ distribution function

[mF(z) + nF(z — 0 + ©)]/N

As m and n — oo with, say, m/N — A, the difference made to () by
omission of one of the X, from its calculation is of order 1/N. Hence,
asymptotically we shall treat X; and 2(¢) as independent and we obtain

E{sgn(X;— (1)} =1—2F((,.5(t)) + O(1/N) (4.8)
Arguing similarly that X; — 2(f) and X; — 2(t) are asymptotically
independent, we conclude that
E{SX,Y,0)}/m={1—-2F(,s— (1)} + O(1/N)
var {S(X, Y, t)}/m = (constant)/m + O(1/N)

from which the consistency of the sign test follows.

Asymptotic efficiency of the sign test
We consider the efficacy of the statistic S when § = 0. For this we need

FE,{_S%&] = = 2m{ o sO)E5(0)+ OL/N)} (49)
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approximately for large m and n from (4.8), where
mF(o.5(t)) + nF (o s(t) — ) = (m + n)/2 (4.10)
Differentiating both sides of the relation in (4.10), we obtain
mf (Lo.s(0))Co.5(8) + nf (Lo.s (1) — )(o.s() —1) =0

so that, if f({, s(0))# 0, we have {; 5(0)=n/(m + n). Also, putting
t =0 in (4.10), we see that

F(Co.s(o)) =1/2
that is {, 5(0) is the median of the distribution F. Thus

OE{SX,Y,1)}
ot

2
] ~ = (f(Cos0) + O(/NY}  (411)
=0 (m+n)

Since
var S(X,Y,0)=mn/(N — 1)

the efficacy of the statistic S is

lim (3E{S(X, Y, ?)}/3t),-

m,n— x = 2f(C0.5(0))

mn \1/2
(W) s.d(S(X, Y,0))

Example 4.6 Suppose that F has mean p and variance ¢2. Then, in the
case 0 =0 we see from (4.2) that

GE{AX,Y, 1)} _mn
ot o N

also s.d. (A(X,Y,0))=./(nm/N), so that the efficacy of 4 is 1/a.
Thus the ARE of the tests based on S and on A4 is 4f *({, 5(0))s>.
If F is a normal distribution, this ARE is 2/=, coinciding with the

value of the ARE of the S and A tests in the one-sample case.

Efficiency of estimation based on S

We have noted above that the point estimate of 6 is the difference of
the two medians, that is § = median(Y) — median(X). From results in
Chapter 2, simple calculations show that asymptotically the distri-
bution of § is normal with mean # and

1 1 1
var(f) = 4f2(c0.5(0))<E * Z)
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If, as in Example 4.6, var (X) = ¢, the variance of the estimate
- - o 1 1 .. . . .
§=Y—X is ¢*[ —+ - ), giving the relative efficiency of estima-
m n

tion 1/(462f%({, 5(0)), equalling the ARE of testing.

4.3.4 The two-sample rank sum statistic

Referring to the expression (4.6) for the statistic A(X, Y, t), an obvious
modification to a rank statistic is to the statistic )’ Rank (X; — z(t)),
where the Rank (X, — Z(t)) is the rank in the combined sample of z(t)
values. However, since Rank (X — Z(t)) = Rank(X;) in the combined
sample, we shall use

i=

WX Y, t)= 3 Rank(X;) — m(N + 1)/2 (4.12)

the well-known Wilcoxon rank—sum statistic, except that the value
m(N + 1)/2 has been subtracted so that the null distribution of W has
expectation 0.

The null distribution of W
Under H,, the distribution of Rank(X,) is uniform on the integers
1,2,...,N, hence E{Rank(X,)} =(N +1)/2.

The conditional null distribution of W, obtained according to the
randomization procedure of Section 4.2, is in principle, easily
enumerated. Since the null distribution of W is identical for all
samples of the same size, inference using W is conditionally and
unconditionally distribution-free. The null distribution of W has been
tabulated for various values of m and n; see, for example, Lehmann
(1975, Table B). A simple illustration follows.

Example 4.7 Suppose m = 2, n = 3, then the possible X-sample ranks
are:

1,2 W= -3
1,3 W= -2
4,5 W=+3
and we obtain
w: =3 -2 —-1 01 2 3
10 Pr(W=w) : 1 1 2 2211
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In Example 4.7 the distribution of W is seen to be symmetric about
0. Such symmetry holds for all values of n because the distribution of
W can be regarded for N = 2k + 1 as being generated by sampling at
random without replacement from a population comprising elements
whose values are

-k —k+1,...,—1,0,1,2,...,k— 1,k

Since each possible sample occurs with the same probability, every
sample of size m yielding

Fy+r+...+r,

has associated with it a sample yielding —r, —r,—....—r,. A
similar argument applies when N is even.

The general formulae (4.4) can be applied to obtain the first two
moments of W; in the present case we need the mean and variance of
the uniform discrete distribution on the integers 1,2,..., N, and they
are respectively (N + 1)/2 and (N? — 1)/12. Hence we have

E(W)=0
var(W)=mn(N + 1)/12

For large m and n, the distribution of W can be approximated by a
normal distribution; the condition for the null distribution of 4 to be
asymptotically normal is clearly satisfied for W. (See also Chapter 1
for information about asymptotic normality of rank statistics.)
Readily available tables of W cover values of m and n between 3 and
10. For larger values of m and n, the normal approximation should be
adequate for most practical purposes.

As an example, if m =8, n = 10, Pr(W< — 19) = 0.0506. Using the
normal approximation

—19+0.5
[(8 x 10 x 19)/12]7

Pr(W< —19):(D{ }:m(—1.644)=0.0500

Hypothesis testing
Suppose that we test the hypothesis H,:0=46, against H,:
0=0,>0, We shall consider the value of E{W(X Y,0,)H,}.

Write o .
Rank(X;) =1+ Z Vit Z U,.(t) (4.13)
r=1

j#i=1
where V;;=1if X; < X;; 0 otherwise

U,(t)=1if Y, —t < X,; 0 otherwise
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Then

1
E{Rank(X,)} :ﬁ—;—+ nPr{Y—t < X}

=ﬂ;—1+nJ‘F(x+t—0)f(x)dx

in our medel. Substituting in (4.12), we see that
E{W(X,Y,0,)|0=t}

=m(m+ 1)

7+ mn fF(x +0,— f(x)dx —m(N +1)/2 (4.14)

which is clearly non-increasing with t since F(x + 6, —t) is non-
increasing with ¢ for fixed x. Thus, with §, > 6,

E{W(X,Y,0,)|H,} <0
and we reject H, if observed W(X,Y, ,) is ‘sufficiently small’.

Example 4.8 Use the data of Example 4.2 to test H,: 6 = 1.0 against
H,: 60> 10. We have

x; 1 271 (1), 3.46 (2), 413 (4)
y;—0o : 385 (3), 422 (5), 4.64 (6), 520 (7)
the numbers in brackets indicating the ranks. Thus
observed W(X,Y,0,)= —5

From the null distribution of W, Pr(W< — 5)=2/35, hence the
observed value of W is significant at level 2/35.

Confidence limits for 0
The effect of varying ¢ in W(x,y,t) is to shift the entire Y-sample
relative to the X-sample. Consequently, the ranks of the X-sample
values remain fixed as ¢ varies except at points such that the order of
an x,, y; pair is reversed, that is, at values y; — x;. Thus, as ¢ varies from
—o to +o0, Y™, Rank(X, varies between m(m+1)/2 and
N(N +1)/2—n(n+1)/2 in mn steps of size 1 at points y;—x,,
i=1,2,...,mj=1,2...,n;and W(x,y,?) varies between — mn/2 and
* +mn/2. Note that the values of W are either integers or integer
multiples of 1/2.

For a two-sided 100(1 — «)% confidence interval we find w, and w,
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such that Pr{w, SW<w,}=1—a.1{d;,,,d,,...,d,, is the set of

. . . o > (mn) .
differences y; —x; arranged in increasing order of magnitude,
ri=mn/2 —w,,r,=mn—r;+1, then the confidence limits are

d,,d

(r1)> *(r2)*

Example 49 Using the data of Example 4.2 the y; — x, differences are
as shown below with the values of W in brackets.

(—6) ©)

0.72 2.14
(=9) (1)

1.09 2.18
(=4 )

1.39 351
(=3) G)

1.51 2.74
(=2 (4)

1.76 2.93
(=1 ©)

2.07 2.49
© (6)

From the null distribution of W, Pr{ — 3 < W< 3} =1 — §/35, and by
inspection of the table above the 100(1 — 8/35)%; = 77.1%, confidence
interval for 6 is (1.39, 2.74).

Note that r; =6—-4=2,r,=12-2+1=11.
Point estimation

In the light of the discussion above about the behaviour of W(x, y, t) as
t varies, the solution of the estimating equation

W(x,y,t)=0

is clearly the median of the differences y; —x;. This estimating
equation is used since E{W(X,Y,6)} =0.
In Example 4.9 the point estimate of 0 is (2.07 + 2.14)/2 = 2.105.

Relation to the Mann—Whitney statistic
The Mann—Whitney two-sample statistic for testing H,: 6 = 60, is

UX,Y,0)= Y Y U6,

j=1i=1



TWO-SAMPLE PROBLEMS 97

where
0 otherwise

U ji(go) = {

Referring to (4.13), we see after simple calculations that
WX, Y, )= UX,Y,t) - %’1 (4.15)
Note that E{U(X,Y,0)} =mn Pr(Y— 0 < X) and when 6 =0, so
that the X- and Y-distributions are identical under our present model,

that G(y)= F(y — 6), then E{U(X,Y,0)} = mn/2.

Since the Mann—Whitney statistic is, therefore, simply a linear
function of the Wilcoxon statistic, the two statistics lead to identical

inferences about 0.

Consistency of the W test
Rewriting (4.14), we have

E(WX Y, )} =mm+1)/2+mn jF(x +t—0)f(x)dx—m(N + 1)/2

Hence for ¢ close to 6, say t =0 + A,
E{W(X,Y,t)} ~m(m+1)/2

+ mn J[F(x) + Af (x)] f(x)dx — m(N + 1)/2
=m(N + 1)/2 + Amn ffz(x) dx —m(N + 1)/2

= Amn Jf 2(x)dx (4.16)

We need, also, var {W(X,Y,#)}, which we derive using the
expression

WX Y, )= .anl .i Ui(t) —mn/2

It is the sum of elements of the covariance matrix of U, (t),. .., U,.(t).
Many of these covariances are 0 because

cov {U (1), U,(t)} =0



98 DISTRIBUTION-FREE STATISTICAL METHODS

unless j=r or i =s. Let
g)=Pr(Y—t<X)= JF(x +t—0)f(x)dx.

Then
cov{U,(t), U ()} =Pr[Y,—t < X, Y, —t < X.]—¢*(1)

= J[l —Fy—-01f(y—0dy— ¢’

=w(t)
cov{U,(1), U ()} =Pr[Y,—t< X, Y,—t<X]—q*()

= J[F(x +t—0)1*f(x)dx — ¢*(®)

=w,(?)

and
var (U,;(t)) = q(t)(1 — q(t)) = ¢(1)

Adding all the relevant variances and covariances of U(t)
variables, we find

var {W(X, Y, t)} = mn[y(t) + (m — )w, () + (n — D)w,(1)] (4.17)

As a check on the calculations of E{W(X,Y,f)} and
var {W(X,Y,t)}, we note that, for t =0,

E{W(X,Y,0)} =m(m+ 1)/2 + mn JF(x)f(x)dx —m(N +1)/2=0,
which agrees with our previously derived result for the null
distribution.

Further, g(0)=1/2,

w,(0) = J[l —Fy—-n1*f(y-6)dy—1/4

= f (1 —w?du—1/4=1/12,
0

and w,(0) = 1/12 by a similar calculation. Therefore

var {W(X,Y, 0)} = mn(m +n + 1)/12,
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which agrees with the variance of the conditional and unconditional
distribution of W.

Supposing that m/N ~ A, n/N ~ 1 — 1 as m,n— oo, formulae (4.16)
and (4.17) show that

E{W(X,Y,)} ~ C,N?
var {W(X,Y, 1)} ~ C,N?

from which the consistency of the W-test is readily established.

Efficiency and large-sample power of the W test
From the expression for EW(X, Y, t) derived from (4.14) and used in
deriving (4.16) we see that

<8E{W(X,Y, t)}>

- 2 — mnf
A a—mnjf (x)dx = mnf

Hence the efficacy of W is
. mnf* -
lim > = f\/12

m,n— o /
(m/N)y~ A (%) [mn(m + n + 1)/12]'2

Thus, if F has variance 62 the ARE of the W and A tests is
12f262.

Example 4.10 If F is a normal distribution, with variance o2, it is
readily established that 7 = 1/(26/n), so that the ARE is 3/x.

It is instructive also to calculate the power for large m and n when
the alternative hypothesis is close to the null hypothesis. Suppose
that we consider H, :6, =16, + 5/\/ N. Then substituting in (4.16),
putting m ~ AN, n=(1 — A)N, we have

E{W(X,Y,0,)|H,} ~ — A1 — J)N*?7. (4.18)

Similar substitutions in the expressions for ¢(t), w, (t), and w,(t), and
using the Taylor-type approximation appearing in the derivation of
(4.16), enable one to obtain

sd (WX, Y,00)|H,} ~ [A(1 — D]VANY(1//12)(1 + O(1//n)) "2,

Using a normal approximation for the null distribution of W, a
level-a test rejects H, in favour of H, if observed W(X,Y,0,) is
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greater than u,[mn(N + 1)/12]'2. Assuming that the distribution
of W(X, Y, 6,)is approximately normal under H, as well as under H,,
(see Chapter 1), the power is approximately

1 - ¢{u, — [M1 - H1/12f}

Efficiency of estimation of 0

According to equation (1.5), Chapter 1, the large-sample variance of
the point estimate of § obtained as the solution, §, of the estimating
equation W(x,y,t)=0 is

var (§) ~ var W(X, Y, 6) / [0E (WX, Y, 1)} ]2 N

at _,  12mnf?

Thus, relative to the estimator ¥— X, the efficiency of § is 126272,
if F has variance ¢2.

Large-sample calculations

When m and n are large, calculation of W(X, Y, ) can be performed
by first grouping the observations into classes to produce two
frequency distributions. Then, taking all observations within a class
interval to be uniformly distributed, an approximation to W(x,y,t)
can be calculated as explained in the following example.

Example 4.11 Suppose that the X- and Y-samples are grouped into
frequency distributions as shown below:

X-sample Y-sample
Group Frequency Group Frequency
5-10 2 14-18 1
10-15 4 18-22 4
15-20 9 22-26 8
20-25 7 26-30 11
25-30 6 30-34 12
30-35 2 34-38
38-42 6
m =30 42-46 2

n=150
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A cross-tabulation such as the one shown below is useful for listing
the sums of U ;(t) values contributed by the observations in pairs of
class intervals. The tabulation below is for t = 0Q; for other t-values
the Y class limits are obtained by subtracting ¢ from each of the
limits shown above.

X
5-10 10-15 15-20 20-25 25-30 30-35

Y—0 2 4 9 7 6 2
14-18 1 008 024) 700 77 6(6) 22)
18-22 4 008) 0(144) 3.6(36) 252(28) 24(24)  8(@8)
2-26 8  00) 072 0(70.2) 12.6(56) 46.8(48) 16(16
26-30 11 00) 00)  0(39.6) 077 26.4(66) 22(22)
30-34 12 00) 00) 00  0504) 072 14.42.4)
34-38 6 00) 00 00  OLO)  0279) 03(12)
38-42 6 00) 00) 00 00 03.6)  0(1038)
42-46 2 0 0 0 0 0(0) 0(0.9)

Where two intervals do not overlap their contribution to the sum of
Uj(¢) values is simply calculated; for example the Y— 0 class 22-26
and the X-class 30—35 gives 8 x 2 =16 Y; — 0 values smaller than X,
a contribution of 16 as entered in the table. The contribution from the
Y—0 class 22-36 and X-class 15-20 is 0. Complication only arises
when the intervals overlap. Take the Y— 0 class 22-26 and X-class
20-25 with frequencies 8 and 7 respectively. We assume that the
8 x 7 =156 pairs of values are uniformly distributed on the square in
which y — 0 varies from 22-26 and x varies from 20-25. A simple
calculation gives the number of Y; — 0 — X, differences less than 0 as
(4.5/20) x 56 = 12.6. The sum of cell entries in the cross-tabulation is
221.5, giving the observed W(x,y,0) = 221.5 — 750 = — 528.5.

To test the null hypothesis § =0 we can use the value of W
calculated above together with var (W|H,) = 10125 = (100.6)>. The
observed result is, therefore, highly significant.

If we put t =10, the Y— 10 class intervals become 4 — 8,8 — 12,
etc, and the corresponding contributions to W(x,y, 10) are
shown in brackets in the cross-tabulation above. These give
W(x,y, 10)=744.6 — 750 = — 5.4.
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Similar calculations for a selection of t-values gives

t W(x,y,t)
0 —528.5
5 —296.6
7 —192.8
10 -54
12 96.5
15 288.2

Plotting the values of W against ¢, we obtain the points shown
in Fig. 4.1; the straight line shown in this figure was drawn by eye.
Note that the range of ¢ values was selected to give W-values lying
roughly between 0 + 2 s.d.(W).

From the graph we can obtain:

(i) the point estimate of 6 ~ 10.2; note that y — X = 10.2 calcula-
ted from the grouped data.

(i) by finding the t-values corresponding to + 1.645s.d. (W)=
+ 165.5, approximately 90%; two-sided confidence limits for 6 are

(7.3, 13.0)

300}

-200 ®

=300

B WS N N SR SN S N S S S
6 7 8 9 10 11 12 13 14 15 16

t ——

Figure 4.1
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4.3.5 Two-sample transformed rank statistics

Let R, = Rank (X;), where Rank (X)) is defined as in Section 4.3.4.
Transform R,/(N + 1) to H;= H[R;/(N + 1)], where H™' is often
taken to be a continuous distribution function. Then the statistic
based on these transformed ranks, a modification of W(X,Y,t)
defined in (4.12), is

WX, Y, t)= i H[R,/(N + 1)]—mH (4.19)

i=1

where H = (1/N) Y Y- H(j/(N + 1)).

The null distribution of Wy

By the basic randomization procedure of Section 4.2, tabulation of
the null distribution of Wy, is, in principle, straightforward. Since the
collection of numbers H;,i=1,2,..., N, is the same for every sample,
the conditional and unconditional distributions of W}, coincide. Thus
inference based on Wy is conditionally and unconditionally
distribution-free.

Example 412 m=2, n=3, H '=®, the standard normal
distribution.

R: 1 2 3 4 5
H(R,/6): —0967 —0431 0 0431 0.967
w: —1398 —0967 —0536 0431 0 0431 0.536 0967 1.39
10Pr[Wy=w]: 1 1 1 1 3 1 1 1 1

In Example 4.12 the distribution of Wy is symmetric about 0
because the distribution function ¢ is symmetric with ¢~ !(p)=
—¢ "Y1 —p). In general, the distribution of Wy is not exactly
symmetric about 0 but we have

E{WH(XaYa 6)} = 0

var {W,(X,Y,0)} = (H,— Ay

mn
NN — 1)Z
AsN — o0,(1/N)Y¥_ | H'(j/(N + 1)) - [§ H"(4)du, so that for large N,

1 1

2
var {Wy(X,Y,0)} ~NA(1 — A)|: jHZ(u)du — < JH(u)du) ] (4.20)
0 0

Thus, if H= ¢ !, one finds that var {W,(X, Y, 0)} ~ NA(1 — A).
In this case H = ¢ ~ !, the resulting test statistic is called the van der
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Waerden statistic; see, for example, Bradley (1968). Referring to
Sections 2.3.3 and 2.3.4 it will be noted that the result obtained by the
transformation @ ~ ! is similar to the result that would be obtained if
the observation X; were replaced by E(Y,,,), where Y,,, is the rth order
statistic in a sample of size N from a standard normal distribution.
The corresponding statistic is called the ‘normal-scores’ statistic; see
also Example 2.14 and definition (2.44).

Hypothesis-testing and confidence limits

The hypothesis-testing procedure is straightforward, requiring calcu-
lation of the observed W and its referral, appropriately, to the null
distribution of Wy,

For determination of exact confidence limits we could follow an
argument like that used in Section 4.3 in connection with determining
confidence limits based on the statistic A(X, Y, ¢). However, since the
conditional null distribution of W, for testing any chosen value of ¢
is invariant with respect to t, only the value of observed Wy(x,y,?)
varying with ¢, we can use the simpler procedure followed with
WX, Y,1).

Example 4.13 Using the data of Example 4.2, m =3, n=4 and the
inverse normal transformation, H=®"! we have H(l/8)=
—1.1503, H(2/8)=0.6745, H(3/8) = — 0.3186, etc., and straightfor-
ward enumeration gives
Pr[ - 1.1503< W, < +1.1503] =1 —8/35

As ¢ varies, observed Wy(x,y,t) changes at t=y,—x, i=1,...,m,
j=1,2,...,n. The following table shows the points at which Wy
changes and the values of Wy, in brackets.

(—2.1434) 0
0.72 2.14

(— 1.8248) (0.4758)
1.09 2.18

(- 1.5062) (0.7944)
1.39) 2.51

(— 1.1503) (1.1503)
1.51 274

(—0.7944) (1.5062)
176 2.93

(—0.4758) (1.8248)
2,07 349

0 (2.1434)
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From this table, a 100(1 — 8/35)%; = 77.1%, confidence interval for 6
is (1.39,2.74).

This result coincides with the result of Example 4.9. However, in
general W and Wy will not give identical results; this can be seen by
noting that while the functions of ¢, W and Wy have ‘jumps’ at the
same t values the jumps are of equal size in W but of unequal size in
Wy

The efficacy of Wy
We need an expression for E{Wy(X, Y, t)} in order to find the efficacy
of Wy. For this purpose we note that

{Rank(X)| X;=x} =1+ #(X;<x;j#)+ # (Y, —t<x), (421)
from which it readily follows that
E{Rank (X))|x} =1+ (m — 1)F(x)+ nF(x +t— 6)
var {Rank (X,)|x} = (m — 1)F(x)[1 — F(x)]
+nF(x+t—0)[1—F(x+t—0)]

For m and n large, m ~ AN, n~(1 — )N, we then have

Rank(X)| = N
E{(—NT Xi—X}—/lF(xH(l — A)F(x +t—06)
Rank (X) _ 1
var{—m—— Xi—x}Sm
from which

Rank (X;
E[H{j\rrl—+(1)}‘x = x] ~ H{AF(x) + (1 — )F(x + t — 6)}

and

N+1

Xx(1=Af(x+t—0)f(x)dx

{ (Rank(X )} JH{AF(x )+ (1= DF(x +t— )} f(x)dx

giving

<8E{WH(X, Y, 1)} )

> = % f H{Ff2x)dx  (4.22)
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Combining (4.22) and (4.20), the efficacy of Wy, is

L L 241/2
/{ JHZ(u)du - [IH(u)duiI }
0 0 (4.23)

As a check, putting H(u) =u, H'(u)=1 in (4.23) reproduces the
result (4.18).

(Wy)= UH'{F(x)}fz(x)dx

4.3.6 ‘Robust’ transformations in the two-sample case

Suppose that the values Z(t)=X,, i=1,2,....m, z,, () =Y, — 1,
ji=1,2,...,n, are transformed to y(Z(t)), k=1,2,..., N, and define
the statistic 4,(X, Y, t) by

& (Xi—c\ m ] Z(t)—c
Aw<x,Y,t>—i§1w< y )—I—V—k;w< ¥ ) (4.24)

Typically ¢(u) is to be chosen to be continuous and monotonic in u,
and such that its effect is to dilute the influence of outlying values of
the Z, ().

According to the basic randomization argument of Section 4.2
conditionally distribution-free inference about § is possible with the
statistic A,(X, Y, t). The arguments are essentially the same as those
for the statistic A(X, Y, ) elaborated in Section 4.3.2. Possible forms
of y are those mentioned in a similar context in Section 2.3.6.

The location adjustment, ¢, and the scale factor, d, appearing in
(4.24) can depend on ¢ without the conditional inference argument
being affected. As we have noted before, in Chapter 2, the commonly
suggested y transformations are sensitive to the choice of scale factor
and a ‘best’ choice is far from clear. Possible choices are

¢ =median (Z(t))
d = median (| Z{t) — c|)
Hypothesis testing
Application of the suggested transformations in hypothesis testing
is straightforward, as shown in the following example.
Example 4.14 (See also Example 4.2))

x:2.71,3.46,4.13
y :4.85,5.22,5.64, 6.20
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We consider testing H,:60 =1 against H, :6 > 1.

¢ =median(2.71,...,5.20)=4.13

d = median (]2.71 — 4.13},...,|5.20 — 4.13}) = 0.51

.p(x";c>: —0.884, —0.576,0

.p(XL:;_—c) . —0.268, 0.088, 0.462, 0.781
Observed 4, = — 1.460 — (- 0.170) = — 1.29

Under Hy, Pr(4, < —1.29) = 2/35, by simple enumeration, hence H,
is rejected at the 5.79 level.

Point estimation and confidence limits
The point estimate of § based on A, is the solution of the estimating
equation

A,X,Y,0)=0 (4.25)

In principle, determination of exact confidence limits can be
achieved by the type of argument used to find exact confidence limits
based on 4, as explained in Section 4.3.2. However, the computations
are much more tedious and complications can arise through the
possible non-monotic behaviour of 4, as a function of ¢. In large
samples this is not a serious problem and two-sided confidence limits
for § can be obtained, using a normal approximation for the
distribution of 4,, by solving

Ayx,y,t) =+ u,a(t)(N/mn)'2, (4.26)

where ;= y((Zi(t) = ¢)/d) and o*(t) =(1/N)L \¥i — (L ¥/ N)”
The argument leading to (4.26) is exactly the same as that used to give
4.5).

4.3.7 Multiplicative models

Suppose that the positive random variables X and Y are such that
the distribution of Y is the same as the distribution of pX, interest
being in estimating the multiplying factor p. Since the distributions
of InY and Inp +1nX are identical, the problem of inference about p
can be regarded as similar to inference about a location-shift
parameter.
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Another class of alternatives that can also be reduced to the
location shift type is
Y distributed like X*
where, again Y and X are positive random variables. Here we have
In(InY) distributed like Ing + In (InX)

One of the practical advantages of using distribution-free tech-
niques based on signs or ranks in connection with data generated
by distributions of the type in question, arises through the tendency
of experiments to round off observations, in particular to record 0
for very small positive values. If the proportion of such 0 values is
not large, they do not cause any difficulty in analyses by rank or
sign transformations.

4.4 Proportional hazards (Lehmann alternative)

In life testing and the analysis of survival data, a model that arises
naturally and is frequently used is

1-F(x)=(1 - Gx))* (4.27)
For the X-population the hazard rate at x, also called the
instantaneous death rate, is
lim Probability of ‘death’ in (x,x + Ax)  f(x)
A=0 Probability that X > x T 1= F(x)

= hx(x)
For the Y population we have, similarly, the hazard rate
hy(y)=g(y)/[1 — G(y)]. From (4.27) we see that

fx)=al = G(x)y~g(x)
so that the X-population hazard rate is

_ ) _a(-GRFT) _ ag)
[-F  (1-GxF  (1-Gx)

= othy(x)
(4.28)

hx(x)

The proportionality of the hazard rates in the X and Y populations
exhibited by (4.28) explains the alternative terminology for the model
(4.27).

4.4.1 The Wilcoxon statistic and inference about o

In the present context it will be convenient to use the Wilcoxon or
the Mann—Whitney statistic in the more standard form, rather than
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the form W(x,y,t) as in (4.12) and (4.15). Let

vl V<X
s 0 otherwise

and put

m

UX,Y)= )j rvu (4.29)

This U(X, Y) is the Mann—Whltney statistic, and if W(X,Y) denotes
the sum of ranks of the X-sample after pooling the two samples, we
have

WX, Y)=m(m+ 1)/2 + U(X,Y)

The expectation of U(X,Y) is readily seen to be
E{U(X,Y)} =mnPr(Y < X)

=mn jG(y)f (x)dx =mn j(l — F(y)g(y)dy

Clearly E{UX,Y)} =(1/2)mn if G=F.
In the model (4.27) we have

Pr(Y<X)= j[l -G g dy=1/1+0a) (4.30)

again, putting o = 1, so that F =G, gives Pr(Y< X)=1/2.

Since we have a simple expression for E{U(X, Y)} in terms of the
parameter g, it appears that U is a natural statistic to use for inference
about «. Up to a point this is true, but, as we shall explain, there
are difficulties.

Testing H, :a =1 against H, 1o < 1

Under H,, E(U) = mn/2 and under H ,, E(U) > mn/2; hence we reject
H, if the observed U is sufficiently large. As the distributions F and
G are identical under H,, the actual test procedure can use the null
distribution of W as it is described in Section 4.3.4. The observed
U (or W) can be referred to tabulated percentage points of the null
distribution of the U (or W) statistic, or a suitable normal approxi-
mation to this distribution can be used.

Testing Hy: o= oy # 1 against H; 1o < .

In the application of the Wilcoxon test to the case of a specified
location-shift alternative, 6, it is possible to transform the Y-sample
to an adjusted sample, Y, —6,,Y, —0,,..., Y, — 6,, which can be
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regarded as being generated by the same distribution as the X-
sample. Hence the exact distribution of W(Y, X, 6,) could be derived
by the permutation argument of Section 4.2. In the proportional-
hazards model such a simple transformation producing, by the
permutation argument, an exact distribution of W under H, when
oo # 1 does not seem possible. In principle it is possible to express all
the joint probabilities of the U, that are needed for the distribution of
U in terms of «,, but the task is prohibitively tedious.

If we take m and n to be sufficiently large for the distribution of
U to be approximately normal, we need only the first and second
moments of U expressed in terms of «,,.

For general « we can follow steps like those leading to the
expression (4.17):

g=Pr(Y<x)=1/a+1); y=oafa+1)

wy=cov(U;,U,)=Pr[Y;< X, Yi<X,-]—‘12

je
= j[l —Fy)Pg(y)dy—4*

=1/Q2a+ 1) = 1fa+ 1)
= /[ + D(a + 1)*]
wy=cov(U;,U,) =1-2a/(a+1)

+oaf/(e+2) — Lo+ 1)2

=o/[{a+ 2)(a + 1)?]

giving
var {W(X, Y)} = mnaf(a + 1)*[1 + (n — Do/ 2u + 1)

+(m— DA+ 2)] (4.31)

For a specified «, in H, we can then obtain E(W|H,) and
var (W|H,) simply by substituting «, for « in the expressions (4.30)
and (4.31).

Example 4.15
X : 0315 1.062 1357 0.004

Y : 0062 0.574 0578 0.654 1226 0.087
Testing H,, :« = 0.6 against « < 0.6.

E(U|H,) = 15, from (4.30)
var (W|H,) = 19.78 = (4.448), from (4.31)
Observed U = 13.
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Since observed U differs from E(U|H ) by less than one s.d.(U|H ).
we accept H,,.

Confidence limits for o

Using a normal approximation for the distribution of U, with (4.30)
and (4.31), an approximate 100(28 — 1)% confidence interval (a, a,)
for o can be found by solving the following equation in « fora, anda,.

Observed U —mn/(ax + 1) = + u; s.d. (U) (4.32)

where u, is an appropriate normal deviate, and [s.d(U)]? is given by
the r.h.s. of (4.31).

Example 4.16 Using the data in Example 4.15, graphical solutions
of the equations (4.32) give, with u; = 1.645, approximate 907, two-
sided confidence limits for o as (0.27,2.9). The point estimate of a is
a=mn/(observed U)—1=0.85.

Efficiency of U for a

The point estimate & = (mn/U) — 1 has large-sample variance appro-
ximately {(a+ 1)*/(m*n?)} var(U). For comparison, consider the
maximum-likelihood estimates & of a in the special case 1 — F(x) =
e M 1—-G(y)=1—e"?* We then have 4=Y/X with large-
sample var & ~ a*(N/mn). Thus at o = 1, var(@)/var (&) ~ 3/4.

4.4.2 The ‘log-rank test’ and inference about o

The test which we are about to describe is important on several
counts:

(i) It is a valid test of equality of F and G in general, not only in
the proportional hazards case.

(ii) In the proportional-hazards case it has certain optimality
properties.

(iii) The test can be generalized to deal with cases where some
observations are censored; in certain types of applications, notably
studies of survival, such a test is very useful.

We begin with a description of the test of the case « =1 and no
censoring of observations. Since the terminology is useful, and this
test is often applied in survivorship analysis, we shall think of the
observed variables as life times. Then the pooled sample values
Zy,23,...,2y are the times at which deaths occur, in either the
X-sample or the Y-sample. Let C,(z) be 1 if the death at time zis an X -
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death, O otherwise. Let m;, n; denote the numbers in the X- and Y-
samples respectively that are still alive at time z;, — 0.

Bearing in mind that we are considering the proportional-hazards
model, it seems natural to develop a test procedure based directly
on calculations of conditional probabilities of events at the obser-
ved death times. More specifically, if the hazard rates in the
two populations are identical, then the conditional probability
Pr[Cy(S;)=1|m;,n;] is simply equal to the proportion of the
X-sample “at risk’ at time z; — 0. Thus

m;

Pr[Cy(z;)=1|m;,n;]= ——
j j

another way of expressing this result is
e; = E(Cy(z;)|m;,n;)=m;/(m; + n;)
The proposed test statistic is
U=YCxlz))—Yej=m—Ye; (4.33)

As usual, when the null hypothesis implies that F and G are
identical it is possible to evaluate the exact randomization distribu-
tion of U by the argument of Section 4.2, as illustrated in
Example 4.17

Example 4.17
X: 0.7, 1.5, 4.7 (m=3)

z m; n; cxlz) e;

0.7 3 2 1 3/5=06

0.9 2 2 0 2/4=05

L5 2 1 1 2/3=0.6

23 1 1 0 12=0.5

4.7 1 0 1 1/1=10
Totals 3 3.26

Inspection of the column headed e; will show that, whatever
assignment of three of the five observations is made to the X-sample,
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the form of )'e; is always

Ye=Us/5+Uy/4+...+ U/l

and the full set of <§> realizations of (Us, Uy, ..., U,) is as follows:

U, u, U, U, U Ye Y4 u/(Ya)"?
3 2 1 0 0 1433 071222 1.856
3 2 1 1 0 1933 096222 1.087
3 2 2 1 0 2266 096222 0.748
3 3 2 1 0 2516  0.89972 0510
3 2 1 1 1 2933 096222 0.068
3 2 2 1 1 3266 096222  —0272
3 3 2 1 1 3516 089972  —0.545
3 2 2 2 1 3766 071222  —0908
3 3 2 2 1 4016 064972  —1261
3 3 3 2 1 435 042750  —2.065

A simple calculation shows that E(} e;) = 3 = m; hence E(U) = 0.
The observed U for our particular example is 3—3.266; reference
to the list of all possible ) e; shows that the result is not significant.

Further inspection of Example 4.17 should convince the reader
that it is a fairly simple matter to describe the exact distribution of
any U, for general m and n. In fact

Pr(Uj:s)=<£><Z:£>/<Z>, s=0,1,2,...,M (4.34)

indicating that U; has a hypergeometric distribution. Using (4.34)
and noting that U=m — Y ¥_, U,/j, we have

N
E(Uy=m— Y M/N;=0
j=1

as verified in the example above.
Another way of checking E(U)=0 is by noting that

E{Z Cx(zj)|m1,n1,...,mN,nN} = E{Z Cx(zj)|m,n} =Ye;
whence E{Z Cx(zj)} = E(Zej>
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!

but Y Cy(z;)=m, a constant, giving E<Zej> =M.

A useful result concerning var(U) can be obtained by similar
reasoning. By repeated application of the basic relation

var(Y)= E{var (Y |X)} + var {E(Y | X)} 4.35)
N
var{z Cx(zj)[m,n}= Y mp/(m;+n) (4.36)
j=1
Putting g;=mn;/(m;+n)* j=1,2,...,N, we have

var{z Cx(z) —Zeﬂm,n} =Ygq;.

Also

Il

E{Z Cylz) — Zejlm,n} 0

and since ) C,(z;) = constant =m,

var (U) = var () e))
=E(}.q;) + var {E(U|m,n)}
= E(qu) 4.37)

When m and n are large one may treat U as being approximately
normally distributed with variance given by the observed value of
Y.4;- Some justification for such a procedure is provided by (4.37). in
that the observed qu may be regarded as an estimate of var (U).
Alternatively one may argue conditionally on m,n, in which case
(4.37) is not needed. Approximate normality of U cannot be
established by elementary means.

The effect of using such a normal approximation is illustrated by
the last two columns in the tabulation appearing with Example 4.17.
The only two values of |U/(} g;)"/?| that exceed the 10%, point (1.282)
of a standard normal distribution are those in the first and last rows of
the table.

4.4.3 Conditional likelihood and the log-rank test

In a paper on regression models and life tables Cox (1972) uses a
conditional likelihood approach to develop a class of test procedures
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of which the two-sample log-rank test is a special case. The argument
is similar to that used in Section 4.4.3, for, conditionally on m, n,
individuals being ‘exposed’ at z; — 0 the probability that the ‘death’
at z; is that the individual as observed is
aCx(Zi)
am; +n;

Each failure contributes a similar factor to the overall conditional
likelihood whose logarithm is

N n
L) =loga Y Cyxlz)= Y log(am;+n,)

i=1 i=1

with

0log L(x) S [ Cxlz) m;
it Sl | —
o B Ta Gman)

i=1

}= U@ — (4.38)

The relation (4.38) suggests the use

m

U= Z{CX(ZL') _m--l—in}

13 1

as a statistic for testing that o = 1, for, if o = 1, then, the solution &
of U(x) = 0 should not ‘differ significantly’ from 1.

4.4.4 The log-rank test and censored observations

For the null hypothesis F = G, modification of the log-rank test for
the case where some observations are censored is straightforward.
By censoring we understand that some observations may be known
to exceed certain values, but their exact values are unknown.
Typically, ‘right-censored’ observations of this sort occur in survival
studies where, for example, a patient who is still alive is lost from
a study by the action of some agency such as moving to another
town, or dying accidentally.

The modification to the log-rank test is simply to calculate the
conditional expectations e;, Ye;, and the relevant conditional
variances, using numbers m;, n{, these being interpreted exactly like
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the m;, n; except that they are numbers exposed after subtraction of
numbers of deaths and of numbers lost.

In practical applications, observations like survival times are often
rounded off to the nearest day or month or year. This means that
for any z, the values of ¢; and c,(z;) may be greater than one. No new
principle is needed to develop a test for the conditionally expected
number of X-deaths at z; is just

, m;
€=\ |G
m; +n;

and the conditional variance is

[ n’m’ _ cl(n; + m; - Ci) .
4 =Ml (n; + m; — 1)(n; + m)*

The test statistic is

i ,
U= ,-;1 {CX(Zi) B <mf'i1|~imf>ci}

where k is the number of distinct death times.

In principle it is possible to obtain a randomization null distri-
bution for U, in the manner of Example 4.17, but there are prob-
lems associated with deciding exactly how the random allocations
should be made. In particular one may ask whether randomization
should be performed disregarding censoring or whether the randomi-
zation should be performed subject to the numbers of censored ob-
servations in the X-sample also being held fixed.

However, the difficulty may be ignored when m and n are
moderately large, in which case the calculated conditional mean and
variance of U can be used, assuming approximate normality of the
distribution of U.

Example 4.18 We use a collection of data on remission times of
leukemia, published by Freireich et al. (1963) and used by Gehan
(1965) to illustrate a method for dealing with censored observations,
and also by Cox (1972); the * indicates a censored result.
X-sample (exposed to drug 6-MP): 6*, 6, 6, 6, 7, 9%, 10*, 10, 11*,
13, 16, 17*, 19*, 20%, 22, 23, 25%, 32* 32% 34* 35%

Y-sample (control): 1,1, 2,2,3,4,4, 55,8 8,8, 8 11, 11, 12, 12,
15, 17, 22, 23.
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Failure time m;, ny ¢ Cyz) e; q;

(z)

1 21 21 2 0 1.0000 0.4878

2 21 19 2 0 1.0500 0.4860

3 21 17 1 0 0.5526 0.2472

4 21 16 2 0 1.1352 0.4772

5 21 14 2 0 1.2000 0.4659

6 21 12 3 3 1.9092 0.6508

7 17 12 1 1 0.5862 02426

8 16 12 4 0 2.2856 0.8707

10 15 8 1 1 0.6522 0.2268

11 13 8 2 0 1.2381 0.4481

12 12 6 2 0 1.3333 0.4183

13 12 4 1 1 0.7500 0.1875

15 11 4 1 0 0.7333 0.1956

16 11 31 1 0.7857  0.1684

17 10 3 1 0 0.7692 0.1775

22 7 22 1 1.5556  0.3025

23 6 1 2 1 1.7143 0.2041

Totals 9 19.2509  6.2570

From the table above U = 10.25 with variance = 6.26.

4.5 Dispersion alternatives

Elementary discriptions of distributions are often concerned mainly
with measures of location and of dispersion. Thus in considering
alternatives other than these already discussed in Sections 4.3 and
4.4 it is natural to think of dispersion alternatives. Unfortunately,
it seems possible to develop simple exact tests only if distributions
are assumed to be equally located. Otherwise the two samples have
to be ‘aligned’ by the subtraction of an estimate of the difference in
location from one set of sample values. A test of equality of dispersion
based on such aligned sample is generally not exact.

Another non-trivial difficulty is associated with the question of
interpreting the result of a test of equality of dispersion if it is
significant. In a general way every test of dispersion may be thought
of as a test of equality of a certain measure of dispersion. However,
it is not always obvious just what that measure is; in particular, it
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may be difficult to devise and use a point estimate of the relevant
population value.

With these difficulties in mind we shall mention just two possible
approaches to the testing of equality of dispersion.

4.5.1 A randomized exact test of dispersion

Rearrange the X-sample values in random order to give

X},X5,..., %, and do likewise for the Y-sample to give y{,y5,..., V..
Now let
Wy=Ixy —x3l, Wo=Ix3—xyl..., Wi=Ixg_ 1 — Xy
Vi=1yi—yal, Va=1y3=Yab--os Vi =|x3_1 = X3

where k() is the largest integer such that 2k <m (2 < n).

One interpretation of the hypothesis of equal dispersion is that
the W- and V-samples are from identically located populations. Now
any one of the exact tests of location developed in earlier sections
can be applied to the W- and V-samples. A word about terminology:
this test is called randomized because of the preliminary random
ordering of the X- and Y-samples (two statisticians will not neces-
sarily obtain the same answer for the same test procedure). This
randomization is not to be confused with the randomization of
Section 4.2.

The problem of interpretation is emphasized by remarking that
the X-dispersion parameter implicitly defined by a test procedure
such as that outlined above is a location parameter of the distribution
of X, — X,, where X, and X, are identically distributed like X. This
location parameter could be median of | X, — X,| or E| X, — X,|.

A great advantage of the randomized test described above is that
equality of location of the X- and Y-distributions need not be
assumed. An obvious disadvantage is that it is randomized;
randomized procedures are not popular with practitioners of
statistics.

4.5.2 Comparing interquartile ranges

The interquartile range is perhaps one of the conceptually simplest
measures of dispersion. Clearly, it bears a close analogy to the median
in the problem of location. For a continuous population the
interquartile range always exists and is unique.
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If we wish to test the null hypothesis that two populations are
identical against the alternative that the populations have the same
median but different interquartile ranges, a simple test is possible.
Let z, ,5y and z, ;5 denote the sample lower and upper quartiles
in the pooled X - and Y-samples. Then the randomization distribution
of the statistic Q, = # (X observations between z, ,5, and z, ,5,) is
easily evaluated; it is a hypergeometric distribution. For large N
values, E(Qy|H,)=0.5m

var (Qy|Ho) = 0.5mn/(N — 1),

hence the significance of an observed value of Q, is readily assessed;
see Westenberg (1948).

When the assumption of equal location of the two populations
cannot be made, separate point estimates of the interquartile ranges
of the two populations can be found and compared in terms of
their estimated variances;. for a discussion of estimation of the
variance of the sample interquartile range see Section 3.3.

4.5.3 Rank test for dispersion

Several rank or rank-like tests of dispersion exist for equally located
distributions and are described in various texts, for example, Gibbons
(1971). To illustrate a typical approach consider the Mood (1954) test
statistic

M=S [Rank(X)— (N + 1)2]°

i=1

where Rank (X)) is the rank of X, in the pooled X- and Y-samples.
It is clearly easy in principle to enumerate the exact null distri-
bution of M under randomization; in this distribution,

E(M) = (m(n* — 1)/12
var (M) =mn(N + 1)(N? — 4)/180

EXERCISES

4.1 The following X- and Y-samples were drawn at random from
populations differing only in location, by an amount A.

X : 6474, 4.573, 5.799
Y: 6.560, 7.699, 9.084, 8.539
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Using the mean statistic and the basic randomization pro-
cedure obtain an exact 100(1 — 4/35)%, confidence interval for A.
4.2 Tabulate the exact null distribution of the two sample sign
statistic for sample sizes m = 3, n =4 as in Exercise 4.1.
Using the data of Exercise 4.1 and the two sample sign statistic
test Hy: A = 3.0 against H,: A > 3.0 at the level « =4/35.
4.3 Inthe two-sample problem let m = 1,n = 2. Then the sign statistic
for testing equality of medians is

5(0)=sgn(X, — Z)

where Z is the median of X,,Y,,Y,.
Obtain the exact distribution of S(0) in terms of the X and Y
distributions, F and G.
4.4 Consider the sign statistic defined as in Exercise 4.3 for general m
and n such that N =m + n is odd. Then

sgn (X, —-Z)=—-1,0+1,
if
#X;>X,j#+:)+#(Y,>X)>,=,<(N-1)/2
Conditioning on X; = x, express P {sgn (X, — Z) = — 1| X, = x}in
terms of F and G.
Hence, or otherwise express E{S(0)} in terms of F and G.

4.5 Suppose that m =2 observations are drawn at random from a
R{0,1} population and n =2 from an R{0.1,1.1} population.

Tabulate the exact distribution of the Wilcoxon rank sum
statistic W(X, Y,0) = " Rank(X;) — 5 where )’ Rank (X;) denotes
the sum of the ranks of the observations from the R{0,1}
population.

Note: R{a,b} denotes a continuous uniform distribution with
density f(x) = 1/(b —a) for a< x < b, and O elsewhere.

4.6 Check the first two moments of the distribution obtained in
Exercise 4.5 against values given by the formulae in Section 4.4,
Chapter 4.

4.7 In an experiment to examine the effect of a certain diet on growth
rate of laboratory animals the following weights of randomly
selected control and special diet fed animals were observed after a
set time.

Control : 396, 409, 371, 367, 392 (X observations)
Diet fed : 434, 405, 440, 441, 399 (Y observations)

Assume that the effect of diet is multiplicative, that is, the
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4.8

4.9

distribution of Y is the same as the distribution of yX where y is
the multiplicative effect. Obtain a point estimate and a 1005%
confidence interval for y based on the Wilcoxon rank sum
statistic, with B as close as practicable to 0.95.

Assuming the multiplicative model of Exercise 4.7, and letting
g(y) be the probability density function of the Y distribution,
derive the following large sample approximate formula for the
point estimate 7, of y, based on the Wilcoxon rank sum statistic:

2

Y
12§i(l/m+ 1/n)

var (J) ~
where

gi = Jygz(y) dy

The following two frequency distributions summarize X and Y
samples from populations that differ only in location.

Class lower limit 100 105 110 115 120 125 130

X-frequency 2 15 37 21 3
Y-frequency 1 8 39 70 38 6

Plot an approximate graph of the Wilcoxon rank sum statistic
W(X,Y,t) against ¢ assigning the same (mid-rank) value to all
observations within the same interval, and plotting at values of ¢
that are integral multiples of the class width. Hence obtain a point
estimate of the location shift parameter 6, and an approximate
90% confidence interval for 6.



CHAPTER 5

Straight-line regression

5.1 The model and some preliminaries

We shall consider independent continuous random variables
Y;, Y,,..., Y, that are observed at values x;,x,,...,x, of a non-
random variable X. 1f §;is alocation parameter of Y;,j = 1,2,...n, the
straight-line regression problem is specified by

0;=a+ px;, j=12,...,n

where o and B are parameters. For the most part our objective is to
make inferences about « and g from observations on Y,,Y,,...,Y,.

In the rather general setting outlined above, we may take the
distribution function of Y; to be F;(y),j=1,2,...,n, and, if no
specialization of these distribution functions is introduced, it may be
argued that the only sensible location parameter to consider is the
median, that s, §; is taken to be the median of Y;. As for restrictions on
the F;, they will be influenced by the view one takes of the straight-line
regression problem. One view is that it is a matter of comparing
locations of distributions indexed by x, x,,..., x,. Such a view takes
the problem to be an extension of the two-sample problem, and
essentially displays no interest in the parameter o. All the interest
centres in §, and in these circumstances a natural restriction is that the
distributions F are identical except for location. Associated with this
type of restriction there is a body of techniques for inference about g
only. Another view is of simultaneous estimation of the locations of
Y,,..., Y, through estimation of « and B. In such a formulation it is
essential to specify just what location parameter is being estimated for
each Y;. This places us in much the same position as location
estimation in the one-sample case. Recalling our previous discussions
it will be apparent that we shall have to assume every Y; to be
symmetrically distributed about a + fx;.
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5.2 Inference about S only

A number of techniques associated with the notions of ‘testing for
trend’ or ‘testing for randomness’ become available for inference
about g only if we assume that the distributions F ; are identical except
for location. Basically the idea is that, under this assumption, the
differences

D(p=Y,—Px;, j=12,...n

are identically and independently distributed. Thus a test of trend of
the D;(B) is a test that § is the true parameter value.

Extending the permutation argument used in the two-sample case,
we see that the basic method of constructing a distribution-free test is
to consider any permutation of the observed D (f) values as possible
and occurring with the same probability. Under such a scheme it is
possible to tabulate the exact conditional null distribution of any
statistic defined as a function of the D (f) values.

Example 5.1 Consider testing H,: =1 using the data below.

X;1— 2 -1 0 1 2
yii— 1.35 —1.55 —48 1.55 221
D(1): 065 —055 —048 055 021

Take as the test statistic T*(8) =) sgn(x;) D;(f). There are 120
permutations of the D;(1) values and the 5 permutations giving the
largest values of T*(1) are

T*(1)
—0.55 —0.48 0.21 0.55 0.65 2.23
—0.55 —0.48 0.55 0.21 0.65 1.89
—0.55 —0.48 0.65 0.55 0.21 1.79
—0.55 0.21 —048 0.55 0.65 1.54
—-048 0.21 —0.55 0.55 0.65 1.47

The values of T*(1) are shown in the last column above. The five
smallest T*(1) values are obtained by reversing the order of each
permutation.

Now, the observed T*(1) = 0.66, a result that is not significant at
the 100(10/120)%; level.

When two or more of the x; values coincide care must be taken to
list all possible permutations. The following example should be noted.
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Example 5.2. Test B = 1.2 using the following data:

X; = 2 1 1 2
yii— 1.35 1.55 0.98 221
y;— 12 X;: 1.05 0.35 -0.22 -0.19

Consider the statistic T(§) = x;D,(f)

Permutation T(1)
1.05 035 -022 -0.19 —235
1.05 035 -019 -022 —2.38
1.05 —-0.22 035 -0.19 —235
1.05 -022 -0.19 0.35 —1.81
1.05 -0.19 035 -0.22 —2.38
1.05 -019 -022 0.35 — 181
0.35 125 =022 -0.19 -0.25
etc.

There are not 4! = 24 distinct T(1) values, only 12, in this particular
example, each of them occurring twice. They are.

—2.38 —-0.25 1.91
—235 0.99 2.00
—1.81 1.34 261
—0.28 1.46 2.70

A general class of statistics may be defined by

T,y H: Y, %)= Y 9(c)HD,(B)] 6.1

For notational convenience some of the arguments in T(8, y, H; Y, X)
will occasionally be suppressed when there is no risk of confusion.

The transformed ‘residuals’ H[D,(f)] play a role rather like the
deviations (X ; — 6) in the one-sample case or Y; — @ in the two-sample
case. Considerations as to the form of H apply here as they did in the
one- and two-sample problems. An extra ingredient here is y(x ), with
Y(x;) =sgn(x;) being used in Example 5.1. It seems clear that a
sensible choice of y(x;) should be such that a trend in the D () values
should produce a numerically large value of T. We shall see that, given
H, itis usually possible to find a ‘best’ . It should be noted that, such
a ‘best’ y produces, for a given H, a best T only within the class of
statistics defined by (5.1).
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As s often the case, the best-known classical parametric procedures
provide useful pointers to sensible choices of y and H, and also
indicate obvious restrictions that may have to be placed on the x;
values. Recall, briefly, the case where the Y; have expectations
a+ Px;,j=1,2,...,n, and identical finite variance o2, and suppose,
as we shall assume throughout this chapter, unless stated otherwise,
that ) x; = 0. Well-known theory shows that

is ‘best’ for this case. Further, if g is estimated by the value of b
satisfying the estimating equation

T(B) = ij(Yj“‘ bxj) =0

then the variance of the estimate of g is 62/ x?.

This result shows that for consistency of estimation of § by b=
Y x;y/>.x; we must have ) x?—> oo as n—oo. Thus we must
exclude cases when, for example, all additional | x| values tend to 0 as
n is increased. This is also obviously dictated by elementary
considerations that apply to the general statistic in (5.1) As we shall
see, the best choice y(x;) = x; in classical least squares, is also a best
choice for other models and choices of H.

5.2.1 Inference based on T(B) = x;D,(f)

The statistic
T(B,x)=Y.x;D;(B) (5.2)

can be regarded as the straight-line regression analogue of the mean
statistic A of Chapter 2. It can be regarded as the primitive statistic,
suggested by the method of least squares from which the statistic in
(5.1)is derived by suitable generalization. It is obviously important in
its own right since it is the best in the case where E(Y)) = « + fx; and
var(Y) =0’ < oo.

Hypothesis testing

To test the hypothesis H, : B = B,, we evaluate the null distribution, of
T(B,, x) conditional on y; — f,x;,j =1, 2,...n, fixed. This null distri-
bution is obtained by listing all n! permutations of the values
Vi—Boxpi=12...,n, and calculating the value of T for each of
them. Each such value has the same probability, 1/n!, in the null
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distribution. The test of H,, is then effected by referring the observed
value of T to the null distribution, appropriate account being taken of
whether the alternative hypothesis is one- or two-sided.
The work of enumerating the exact conditional null distribution of

T increases rapidly with n, and one often has to resort to using the first
two moments of the distribution in carrying out the test of hypothesis.
Write d;=y; — Box;, j = 1,2,...,n, and put

d=Yd;n

v=Y(d;—d)*/n

Let D; be the random variable generated in position x; by the
permutation. Then, from elementary theory, as in Section 1.8.3,

E(D;) =d,var(D) =v,cov(D;,D,) = —v/(n—1),j # k.
Using these formulae we have
E(T)=Yxd
and

var(T)=vY x} — Y, x;x,0/(n— 1)
iFk

=08 — o 0 - )
Since we take ) x; =0, we obtain, more simply,
E(T)=dY x;=0
var(T) = (nv/(n — 1))} x}

Approximation of the distribution of T by a normal distribution
will be possible if var(Y)) is finite and, as n — oo,

max x}/Y x} —0

(5.3)

An illustration of the use of such an approximation is given in
Example 5.3.

Confidence limits for

Consider a two-sided 100(1 — 2r/n!)%; confidence interval for §; r will
be chosen such that 2r/n! is close to one of the conventionally used
small probabilities 0.10, 0.05, etc. The confidence interval will be
constructed by finding the set of possible p values for which the
appropriate null hypothesis is accepted.
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For a selected possible value b of f, the hypothesis test is in
principle carried out by listing all n! possible values of the statistic
T(b) and noting that a typical member of this collection is

n

Tq(b) = z xi(yn,- - xnib)
i=1
The subscript n; for y and x in this expression indicates that we are
dealing with a permutation of the (y; — bx;) values; the letter q refers to
the particular permutation, and it is also useful to write T,(b) as

T,(b) =Y xi(y, — bx,)

One of these T,,(b) is the actually observed value T(b) and we denote
the set of all permutations excluding the observed one by Q'.

Let N(b) denote the number of T,(b), geQ’, values that are smaller
than the observed T(b). If N(b)>r and N(b)<n!—r, then the
hypothesis 8 = b is accepted and b belongs to the confidence interval
for B. In order to set the confidence limits we have, therefore, to
examine the value of N(b) as b varies from — co to + co. Represent
N(b) as

N(b)= Y I[Y x;(y; = bx) — 3. x,(y,, — bx,)> 0]
qeQ’ q

Z xi(yi—yn.»)
=Y I|=—>b

n

1= Z x(x; — X))
i=1
assuming that Y 7_, x;(x; — x,) >0
Thus the confidence limits are the rth smallest and rth largest of all
slope estimates

n

Z xi(yi - yn.-)
b, = t—— (5.4)
z x;(x; — X,)

i=1
if N(b) changes by 1 at each of the b, values. This will be true if all x;
values are distinct. Equality of two or more x-values is possible and its
effect is clearly that we do not have n! — 1 distinct values of b_. In turn,
this means that the value of N(b) jumps by more than 1 at some of the
b, values. The implication of these facts is as follows:iftherearen! — 1
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distinct values of b,, the confidence coefficient can be selected from the
numbers (1 —1/n!), (1—2n!), .... If there are not n! —1 distinct
values, the possible exact confidence coefficients are a subset of the
numbers (1 — 1/n'), (1 — 2/n!),.... With nlarge it will still be possible,
in general, to set an exact confidence coefficient close to one of the
conventional values.

Example 5.3

x;:—3 -1 1 3
y;+ —1.65 —1.25 0.34 4.17

The 4!—1=23 values of b, calculated according to (5.4) are as
follows, in order of magnitude:

0.2000 0.7950 0.9700 1.1900
0.3983 0.8453 1.0050 1.2558
0.4975 0.8600 1.0361 1.3550
0.5967 0.9000 1.0575 1.5417
0.6849 0.9262 1.1050 1.9150
0.7000 0.9525 1.1683

Taking r = 1,2, we find the following confidence intervals for f:

r=1:100(1 —2/24)%, =91.7% : (0.2000, 1.9150)
r=2:100(1 —4/24)% = 83.3% :(0.3983,1.5417)

The least-squares point estimate is f = 0.9525, which it will be noted,
is the median of the b, values listed above. If the x; are symmetrically
distributed about 0, the median of the b, values always coincides with
B.

Applying the ‘usual’ normal theory in which the Y; are taken to be
normally distributed with the same variance, the 839 confidence
limits for § are obtained by invoking the ¢-distribution with 2 degrees
of freedom; the results are

91.7%: 0.9525 +0.8623
83.3%: 0.9525 +0.6112

Listing values of b, can be prohibitively tedious for moderately
large values of n, and the normal approximation of the conditional
distribution of T can be used to simplify the calculation; this process
must not be confused with using the standard normal-theory model!

Using the formulae (5.3), an application of Fieller’s theorem gives
the two sided 100(1 — 2y)%, confidence limits (two-sided) for B as the
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values of b satisfying
(n— 123Xy, — by x?]
=tu, {Z(,V.' - 5’)2 - 2bZX.~y,- + bZZX?}”Z (inz)l/z (5.5)
where u_ is an appropriate normal quantile.

Example 5.4 We illustrate the use of (5.5) with the data of Example
5.3, although n is rather small.

Yx2 =20, x,y; = 19.05, Y (y; — 5)* = 21.141 475

and for an 83%, confidence interval u, = 1.38.

The solutions of (5.5) are 0.44 and 1.46, giving an interval that
agrees quite well with the exact result.

Denoting the usual least squares-estimate of B by B = x,y,/Y x2,
we can write

Yoxiy;— x;b) = (B — b)Y x}
Y= =bx)* =Yy =y = fx)* + (B - b)Y x}
=(n—=2)s*+(f— by x}

where s is the usual ‘residual mean square’. Then the solution of (5.5)
can be seen to be the solution of

(B—byYx 1 —u2/n—1)]=s*u}(n—2)/(n—1)
giving
n—2
n—1

b:ﬁiuv<

If the distribution of residuals were known to be normal with
variance ¢2, the confidence limits would be given by (5.6) with the
factor K =u,[(n—2)/(n—1)]"*[1 —ul/(n—1)]"* replaced by
t,— ,(). The following table is instructive.

)”2[1 — w2 - 1] (s(Tx ) (56)

¢ =005 y=0025

n K, t, K, t,_2y)
5 2505 2.353 8.530 3.182
10 1854 1.860 2.440 2.306
20 1.729 1.734 2.135 2.101
0 1.645 1.645 1.960 1.960

For n > 10 the agreement between K and ¢, _, is very good; it breaks
down for smaller n and as y decreases.
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Consistency and efficiency of T
The unconditional expectation of T(b) is

E(T(b)) = >x,[E(Y;) — bx,]

It is defined only if every E(Y)) is finite and, in that case we can take
E(Y)) = a + Bx;. Therefore,

E(T(b)=(8— b)Y x}

The variance of T(b) is finite only if var(Y,) = 6% < oo, in which case
var(T(b)) = 6y x?. Thus a test based on T will be consistent if
1/¥ x? >0 as n—> co.

If the distribution of Y; is N(x+ Bx;,¢%), the point estimate f
obtained by solving T(b) = 0 is the maximum-likelihood estimate of
B. The variance of f is 6?/Y x2, hence the efficiency of T, relative to
various statistics based on transformed residuals, will be low for
heavy-tailed residual distributions.

5.2.2 Transformations of the D;(P) to ranks

Inference about g only can be regarded as inference about location
differences so that procedures for § can be thought of as extensions of
two-sample procedures. Pursuing this line of thought we can consider
as an alternative to T the statistic

Ty(B,x)= zxjH(Dj(ﬂ))
where H is some suitable transformation of the D,(f) values. In
particular

Tr(B.x) =Y x; Rank(D/(B))

can be regarded as an analogue of the Wilcoxon two-sample rank-
sum statistic.

Hypothesis testing

We need the conditional null distribution of T,(, x) for a specified g
derived by the basic permutation procedure described earlier. Since
the D;(p) values are replaced by their ranks, the null distribution is not
only somewhat easier to enumerate but is also invariant with respect
to f. Thus, for a given set of x-values the null distribution can be
tabulated once and for all. Practically, this is not of great benefit
unless we restrict attention to equally spaced x ; values, in which case
the statistic Tp is a linear function of the Spearman rank correlation
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coefficient. Since the null distribution of T is invariant with respect
to F, the test using Tj is also unconditionally distribution-free.

Example 5.5 (This example illustrates the method of listing the null
distribution of T;.) We use the data of Example 5.3 and consider the
hypothesis H,: p=1.2.

X =3 -1 1 3

yi  —165 ~1.25 034 417

yi—1.2x;: 195 ~ 005 —086 057
Rank(y, — 1.2x,): 4 2 1 3

Observed T, = —4.

The null distribution of T, is easily enumerated by listing the 24
permutations of the numbers 1,2, 3,4 and calculating the correspond-
ing value of T, thus

X, -3 -1 1 3 T
1 2 3 4 10

1 2 4 3 3

etc.

giving the following distribution of Ty.

t:-10 -8 —6 —4 -2 0 2 4 6 8 10
MPr(Te=0: 1 3 1 4 222413 1

Thus the observed T, is not at all extreme; in fact,
Pr{|Tx| =4} = 18/24. _

Listing the distribution of T is, of course, prohibitively tedious for
n 2 6, but in hypothesis testing one need only list the extreme values.
Thus, with n =5 for a one-sided test at the approximately 5% level
one only has to list 5 or 6 permutations. For larger values of n it may
be possible to use a normal approximation for the distribution of Tj,.

Normal approximation of the null distribution of Ty

The argument giving formulae (5.3) for E(T) and var(T) also gives
E(Tg) and var(Ty) with the d; values replaced by the ranks 1,2,...,n.
Thus v in (5.3) becomes (n? — 1)/12 and we have

E(Ty) =0

(5.7)
var(Ty) =n(n + 1)} x?/12
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According to Section 1.8.4 the distribution of T, suitably norma-
lized, is asymptotically normal as n — oo if max x7?/Y x7 — 0.1t will be
noted (Exercise 5.5) that the distribution of Ty is symmetric about 0 if
the x, are symmetrically positioned about 0. Hence the normal
approximation may be quite good for moderately small n in the
symmetric case, depending of course, on the actual spacing of the
x-values.

Example 5.6 Let n=5 with x; values —2,—1,0,1,2, giving
Y x? =10, 5.d.(T) = 5. Enumeration of the 5 permutations of 1,2,
3,4,5 giving the largest values if Tp shows that Pr(Tz=9)=
5/120 = 0.0416. The normal approximation gives

Pr(Tg > 9)~ 1 — ®(8.5/5) = 0.0446

Point estimation
Since

E{Tg(B,x)} =0

an application of the method of moments suggests taking as an
estimate of f the solution of the estimating equation

Tr(b,x) =Y x;Rank(y; — bx)=0 (5.8)

As b increases the residuals y; — bx; for x; > 0 decrease, hence their
ranks do not increase; a similar remark applies to residuals for x; < 0.
Consequently, Tg(b, x) is a non-increasing (step) function of b.

As b varies from — oo to + oo the value of T, only changes when
the ranking of residuals changes. Unless three or more observations
are collinear, an event with zero probability, these changes occur
whenever b coincides with one of the pairwise slopes (y;— y;)/
(x; — x;). There are n(n — 1)/2 of these if all x; values are distinct. If n is
even and the x’s are symmetrically placed about 0 with the values
—n+1, —n+3,... —1,1,..., n—1, the maximum value of Ty is
n(n? — 1)/6. Thus it is clear that, in general, the steps in the graph
of T, against b are not of equal height. Therefore the solution of (5.8)
is not necessarily the median of the pairwise slopes. In practice, a
graph of T, against b suitably smoothed near T, =0 is helpful in
deciding on a point estimate of 8. For most practical purposes smo-
othing by eye should suffice. The justification for smoothing is that
the step function is actually an estimate of a smooth function.

Example 5.7 The data of Examples 5.3 and 5.4 give the following
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pairwise slopes, the values of Ty in the respective b intervals being
shown in parentheses:

(10) 0.2 (8) 0.4975 (4) 0.795 (2) 0.97 (—4) 1.355 (—8) 1.915 (— 10)

Figure 5.1 shows a graph of T, against b, and according to the
smoothing indicated on the graph we take the point estimate of § to
be 0.94.

Confidence limits

Since the null distribution of T is invariant with respect to g, the
determination of confidence limits is simpler than it is with the use of
T in Section 5.2.1. Suppose that Pr(t, < T, <t,)=1y. Then, to
determine a 100 y%/ confidence interval for § we need only scan the list
of ‘pairwise slopes’, arranged in order of magnitude and the lower
(upper) limit is the smallest (largest) value of b such that observed
Tr <t,(=1t,). These values will be just to the right (left) of one of the
pairwise slopes.

Example 5.8 Refer to Example 5.5 and the list of pairwise slopes.
From the null distribution of T, given in Example 5.3 we have
Pr(— 8 < Tp <8)=22/24=0.917. Therefore 91.7%, confidence in-
terval for B is (0.2, 1.915).

This result coincides with the 91.79; confidence interval given
in Example 5.3; generally this will not happen. Note also, that we can-
not obtain an 83.3% confidence interval in this case, because
Pr(Tg =8)=Pr(Ty = — 8) = 3/24.
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With larger values of n the values of ¢, and t, can usually be found
with the normal approximation discussed above. When n is so large

that evaluation of all , pairwise slopes is impractical, an approxi-

mation to the graph of T against b, obtained by evaluating T, at a
judiciously selected set of values of b, should suffice for graphical
determination of the confidence limits. These are given by the
intersections of the graph T, and the horizontal lines with abscissae ¢,
and ¢,.

Consistency and efficiency considerations
We shall need [0E{Tg(b)}/ob],_, and therefore have to express
E{Tg(b)} in terms of F. Writing

Rank(Y,—bx)=1+3 U,
i)
where U;=1, if Y;—bx;>Y,—bx;, and 0 otherwise, it follows
readily that

E{Rank(Y; —bx;)} =1+ Y |F{y —(b— B)(x;— x)}f(y)dy,
itj
since Y; —a — fix; and Y, — a — fx; are independently and identically
distributed. Hence
[OB(Rank(Y, ~bx,)}/0b],-, = = T (x,—x) [ 120)dy = = F
iFj
’ (5.9)
since ¥ x; =0, where f = [f*(y)dy. Using (5.8) and (5.9), we obtain

[OE(T(5)}/2b]y =~ ¥ %3 (5.10

To check consistency we shall assume, mainly for convenience, that
|x;| is bounded, in fact |x;| < 3. Since var{}) Rank(Y;—bx;)} =0, we
have

Y ¥ cov{Rank(Y, — bx;), Rank(Y; — bx;)} = — nv

i
where v is the average of var{Rank(Y; — bx,)},i=1,2,...,n. Thus

var(Tg(b)} < (n/4) max var{Rank(Y, — bx;)} + (n/4)p < cn®
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where c is a constant. This result, with (5.10), can be used to establish
consistency as indicated in Sections 1.3 and 1.4.

Since var {Tx(B)} = n(n + 1)} x?/12, the efficacy of T} is obtained,
using (5.10), as

e(Tp) =F {121 %]},

For comparison, the efficacy of the least-squares statistic, when F has
variance ¢? < 00, is calculated as

oT) = {¥x2}"%/o
giving
{e(Tg)/e(T)}* =12f %62,

which coincides with the corresponding result for the Wilcoxon two
sample rank sum statistic.

5.2.3 Sign transformation

We now consider inference about § based on a sign test of trend
leading to the statistic

Ty(b) = Y x;sgn[D;(b) — D(b)] (5.11)
where D(b) = median (D ;(b)).

Hypothesis testing
For a given set of x; values, the conditional null distribution is
invariant with respect to b, since the D (b) values are transformed to
— 1,0, or + 1 as indicated in (5.11). Hence, the test is unconditionally
distribution-free and for fixed x,, x,,..., x, the null distribution can
be tabulated once and for all.

To test a hypothesis specifying a value of f the observed Tg(f) is
referred appropriately to the null distribution.

Example 5.9 n=15: refer to the data of Example 5.1, and consider
Hy: =1

X0 —2 -1 0 1 2
y;: —135 —155 048 1.55 221
D(1): 0.65 —0.55 —0.48 0.55 0.21 : D(1)=0.21
sgn(D;(1) — D(1)) : 1 -1 -1 1 0

Observed Tg(1)=0.
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The null distribution of Ty is as follows:

t:—6 -5 —4 -3 -2 -1 0123456
30Pr(Tg=1): 1 2 2 2 3 26 232221

Formulae (5.3) can be used to find E(T(B)) and var(T(f)) with d
and v replaced appropriately by the corresponding mean and
variance calculated from the transformed sgn(D;(f) — D(p)) values.

(i) neven :n=2k mean =0

. variance = 1
giving

var(Ts(B)) = (n/(n — 1))} x}
(i) nodd :n=2k +1 mean =0

-1

variance = n—n~
giving

var(Tg(B)) = Y x3
The distribution of T(f) is asymptotically normal as n — co with
max x?/Y x? — 0, and a normal approximation for the distribution of

T can be used for large n with formulae (5.12) or (5.13) giving the
appropriate mean and variance.

Example 5.10 Take n=>5 and refer to Example 5.9.
E(Tg)=0, var(Tg)=10

45
<4~ 0 - )=092.
Pr(T, < 4) ‘D<\/10> 0.92

From Example 5.9 the exact probability is
Pr(T;<4)=27/30=0.9

Point estimation :

As b varies from — oo to + oo, the value of T changes from + Y |x,]
to —Y|x;| in a series of steps. Ty is non-increasing in b, by an
argument similar to that used to demonstrate this property for Tj.
The values of b at which T changes are not all the pairwise slopes, but
a subset of these.
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Figure 5.2

In practice it is useful to draw a graph of T against b. Such a graph
is shown in Fig. 5.2 for the data of Example 5.9; we shall refer to it
again in Example 5.11.

The solution of the estimating equation Tg(b)=0, giving a
point estimate of f, is readily obtained from the graph.

Confidence limits

Since the null distribution of T is invariant with respect to
b, confidence limits can be found directly from the listing of values
of b at which T changes and the corresponding values of T5. We
first find, from the null distribution, values ¢, and ¢, such that
Pr(t, < T; <t,) = y. Then a 100y% confidence interval for f has as its
lower (upper) limit the smallest (largest) value of b such that
Tg<t,(Zt,). One-sided confidence limits are found similarly.

Example 511 n=35: refer to the data of Example 5.9. Figure 5.2
shows a graph of Tg(b) against b and according to the illustrated
smoothing, the point estimate of § is taken to be by = 1.09.

In the following table the 10 pairwise slopes are listed in order of
magnitude, and the corresponding values of T and T are shown.
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Ty T Ty Tk
—-02 6 10 107 0o -1
0.435 6 9 1253 0 =2
0.66 4 7 1345 -3 -5
0.89 4 6 155 -3 -7
0.966 0 2 203 -5 -9
0 -1 -6 —10

From the null distribution of Ty, Pr(— 5 < Ty < 5) = 28/30, therefore
a 93.3%; confidence interval for B is

(0.435,2.03)

For comparison, the graph of Tg(b) against b is superimposed on
the graph of T(b) against b in Fig. 5.2. The point estimate from this
graph is by = 1.00. Based on Tk, a 91.6%, confidence interval for f is

(0.435, 1.55)

Consistency and eﬁicienfy considerations
The difference D;(b) — D;(b) can be expressed as

Y;—a—bx;—(D;(b)— o)
and we write z, 5(b) for D;(b) — o, so that z, 5(b) satisfies

H,(z4 5(b))= %
where

1
H,,(z)=;#(Yi—oz~bxi<z,i=1,2,...‘n).

Now

n

1

H(z)=E{H,(2)} = Y Fiz+(b— P} (5.14)
i=1

and var{H (z)} < 1/4nfor every z. Thus z, (b)is a consistent estimate

of {,.s(b) which satisfies

H(Cus(b)) =%

Let us now impose some restrictions on the x; values as we let
n— oo, in particular that the x; are bounded. This can be achieved,
for example, by supposing that all x; lie in a finite interval as n — oo.
Then the effect on z, s(b) of removing Y, —a — bx; from the set
Y;—a—bx;, j=1,2,...n, is of order 1/n; let the resulting median
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be z{; (b). Then
E[sgn{Y; —a —bx; — zo 5(b)} 1 = E[sgn{Y; — a — bx; — z§5(b) } ]
+ O(1/n)
= 1 - 2F{{o5(b) + (b — B)x,}
+0(1/4/n)
(5.15)

after taking first a conditional expectation of sgn{Y;,— o — bx; —
Z9,(b)} with z{(b) fixed and then an expectation with respect to
285 (b).
Alternatively, we note that
Pr[sgn{¥, — o — bx; — 2 5(b)} = 1]
= Prsgn{Y, —a — bx; — zo 5(b)} = 1]
+ Pr{(Y; — a — bx;)e({o.5(b), 2o.5(b)]
= Pr[sgn{Y; — o — bx; ~ 20,5 (b)} = 1]+ O(1/\/n)
Summing terms like those in (5.15) and differentiating appro-
priately, we have for large n,

0Ts(b n
< asb( )>b_ﬁ2 _2i§1 X f{20.5(B)} {zo.5(B) + x;}

To find the value of zg 5(f), differentiate both sides of

(1/n) .; F{zo s(b) +(b— B)xi} =3

with respect to b, and put b= f, to give
n

f(zo.5(B) Z (z05(B) +x;)=0

i=1

so that, assuming f(zos(B))#0, we find z;(f)=—) x;=0.
Substituting in the expression above, we obtain .

0T(b)
ob

Using arguments similar to those leading to (5.15) we can take
Y,—a—bx;—zys5(b), and Y;—a—bx;—z,s(b) to be approxi-
mately independent, to give,

var {Ty(b)} ~ 4 __il X2 F(zy 5(b)

13

), =¥ 5 5 (5.16

+(b—Px) {1 —Flzos(b) +(b—Px)}  (5.17)
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Substituting b= in (5.17), we obtain var{Ts(f)} =) x?, which
for n— oo, agrees with Expressions (5.12) and (5.13). Also, for
b+ B, var {Tg(b)} <Y 7_,x%, and var {Tg(B)} is continuous in b.

If f(z4.5(B))+0, the results (5.16) and (5.17), by application of
Lemmas 1.1 and 1.2, ensure consistency -of estimating and testing
procedures based on Tj.

The efficacy of Ty can be found immediately using the results
obtained above; in fact,

e(Ts) = 2f(ZO.5(B))(in2)1/2 (5.18)
giving
{e(T5)/e(T)}* = 4f*(2,.5(B)) (5.19)

The result (5.19) coincides with the corresponding result for the sign
test in the two-sample case. This is to be expected since the two-
sample problem can be looked upon as a special case of the straight-
line regression problem.

Comment

Comparing the efficacies of T and Ty we see that, as in previous
analogous comparisons, the choice between the two statistics,
from the point of view of efficiency depends on the ratio of f to
f©)=f(z,5.5(B)),i.c. theratio of the mean density of F to the density of
F at its median.

5.2.4 More general rank transformations

Write R;(b) = Rank(Y; — bx;) = Rank(Y; — o — bx;) and let H(u) be a
monotonic continuous differentiable function of u; typically H(u) may
be an inverse distribution function as was discussed in Chapter 2.
Define the statistic Tyx(b) by

Tyr(b)= inH {Ry(b)/(n + 1)}.

Hypothesis testing, the null distribution

Since the distinct values of H(R,(b)/(n + 1)) are just the transfor-
mations H(1/(n+ 1)), H2/(n+1)),... of 1/(n+ 1), 2/(n+ 1), ..., the
null distribution of Ty, is invariant with respect to B, and it can be
tabulated once and for all for every fixed set of x; values. We need only
list all permutations of the ranks 1,2,...n and their associated
transforms.
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The first two moments of the null distribution are:

E{Tyr(B)} =2 x;H(B) = H(B)}x; =0
var {Ty(B)} = {no/(n — 1)} Yx?
where v =(1/n) ) - ; {H,(p) — H(B)]?, and H,(B)=H{R,(B)/n + 1)}.
A normal approximation may be applied to this distribution as
n— oo of max x}/Y x? >0 as n— oo (see Chapter 1).

Example 5.12 Refer to the data and the null hypothesis of Example
5.5:test Hy:p=12. Put H=®"! the ‘inverse normal transform’.

x: =3 -1 1 3
yi:  —165 —1.25 0.34 417
yi— 1.2x;: 1.95 —-0.05 —0.86 0.57
Ri(1.2): 4 2 1 3
H(1.2): 0.84 —0.25 —-0.84 0.25

Observed Tyg(1.2)= —2.36.

By listing the 24 permutations of H,(1.2) values and calculating Ty,
for each permutation, it is readily checked that the null distribution of
Tyr 1s given by

+ t: 018 1.18 2.18 2.36 3.18 4.36 4.54 5.54
UPr(Tye=t): 1 2 2 2 1 2 1 1

Thus Pr{|Tyx(1.2)| = 2.36} = 14/24.

Confidence limits

Since the null distribution of Ty is invariant with respect to b, we
need to evaluate observed Tyg(b) for various values of b and to
compare these with the null distribution to find confidence limits. The
procedure is essentially the same as for Ty. In fact, since the H; values
are transformed ranks, Ty.(b) will have jumps’ at exactly the same
values of b as T, that is at the pairwise slopes that have been used
before.

Example 5.13 (Continuation of Example 5.12; see also Example 5.8.)
Following is a list of pairwise slopes at which values of Ty z(b) changes
and the values of Ty z(b) are shown bracketed in the relevant intervals.
(5.54) 0.2(4.36) 0.4975(2.36) 0.795(1.18) 0.97 (—2.36)
1.355(—4.36) 1.915(—5.54)
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Since Pr{|Tyg| < 4.54} =22/24 a 917 confidence interval for B is
(0.2, 1.915). This result coincides with the result in Example 5.8;
generally, especially for large n, this will not be so.

Point estimation

We obtain a point estimate of § by solving Tyg(b)=0. For most
purposes a graphical solution should be adequate. Now, referring to
Fig. 5.2 where a graph of T(b) is shown for Example 5.9 (n = 5), it will
be noted that a graph of Ty, (b) will be very similar to that of Tg(b).
Re-scaling the values of Ty, (b) so that the largest and smallest are
+ 10 and — 10 respectively, the graph of Ty, (b) would have jumps at
the same values as the graph of T(b), but the sizes of the jumps will be
different. Such a graph gives a point estimate by, = 1.09.

Consistency and efficiency

Consistency of procedures based on Ty, can be established by
adaptation of the types of argument used for Ty in a similar context.
We need to evaluate E {Tyg(b)} for b near f, and shall calculate for
this purpose (OE {Tyg(b)}/0b), - 4.

Let
Fiz;b)=(1/m) ¥ F{z+(b—p)x;)
Then =l
E{Rb)/(n+ 1)|Y;—a—bx;=2z}
={l+ ‘Z‘Pr(Yi —a—bx;<z)}/(n+1)~F(z,b)
and i

var {R;(b)/(n + 1)|Y; — a — bx; = z} = O(1/n)

Following the argument in Section 5.2.2, we replace R ;(b)/(n+ 1) by
F(Y; — o — bx;; b) in calculations of E{Tyg(b)}. Thus

n

E{R;(b)/(n+ 1)} 2%f 2 Fly+ 0 —B)x;—x)1f(dy

i=1

which agrees with the more direct derivation of Section 5.2.2 leading
to (5.9). Also

R (R0 )= [H] 1 5 17+ 6~ P - ) oy
giving o

[OEH{R;(b)/(n + 1)}/0bl,- 5= — x; yH’(F(y))fz(y) dy
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and
(OETyg(b)/0b)y - 5 = ~< Z ﬁ-)jH (Ff(y)dy  (5.20)
i=1

More lengthy calculations of a similar nature show that
var {Tyg(b)} = O(3.x?), so that, applying Lemmas 1.1 and 1.2, tests
and estimates based on Ty are consistent.

Writing

n

Tyr(B) =~ Z x; H{F(Y; — o — Bx;)}

i=

we have
var {Ty(B)} ~ (Y x}) var {H(F(Y))}

= (Yx? {sz(u ydn — <JH(u)dn>2} (5.21)

Combining (5.20) and (5.21), we obtain the efficacy of Ty as

(fo-)”sz(F(y))fz(y)dy

e(Tyg) = 3
{JHz(u)du — (jH(u)du) }1/2

5.2.5 Optimal weights for statistics of type T

Returning to definition (5.1) we note that in Sections 5.2.2,5.2.3,5.2.4,
statistics of type T with y(x;) = x; have been studied, and the question
that needs attention is whether ‘weights’ other than y(x;) = x; merit
serious attention.

From the point of view of efficacy, the answer seems clear: they do
not because y(x;) = x; gives maximum efficacy. In the case of Ty this
can be seen as follows. Suppose we put

Tr(w,b)= Z w, Rank (Y, — bx;)

where Y w; = 0. Then straightforward repetition of earlier steps gives
var {Tg(w,b)} = {n(n + 1)/12} Y w?
{OETR(W, b)/2b}y = — fnEwix,
efficacy =7,/12(Y w;x)/(3 wi)'?

The efficacy is readily shown to be maximized by w; = x;.
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Similar calculations may be made for the other statistics of type T.

A simple alternative to y(x;) = x; that has received some attention
in the literature, more especially in the context of joint estimation of «
and B, is wj=sgn(xj—56), where X is the median of x,,x,,...,X,;
reference should be made to Brown and Mood (1951) and more recent
literature on the Brown-Mood approach. In the case of testing a
hypothetical value of B, the relevant calculations are effectively
reduced to the analysis of 2 x 2 contingency table in which all four
marginal totals are equal.

5.2.6 Theil’s statistic, Kendall's rank correlation

In this section we shall take x, < x, < x5... < x, unless otherwise
stated. Let z;(b)=Y;—a —bx;, and put D;(b)= z;(b) = z;(b), i,j=
1,2,...n. The statistic proposed by Theil (1950) for inference about
B is
T*(b)= ). sgn{D;(b)}
i<j
Since T involves the differences of z;(b) values, the value of « is
immaterial and we may write
T*(b)= ) sgn{Y,—Y;,—b(x;,—x;)}
i<j

The null distribution of T*, that is, the distribution of T*(f), can be
obtained by the usual permutation argument. An interesting differ-
ence between the null distribution of T*(b) and of the statistics of type
B in Sections 5.2.2-5.2.5 is that it does not depend on the con-
figuration of the x,,..., x, values. Thus it can be tabulated and used
whatever the x,,...,x, values are.

It is instructive to obtain the null distribution successively for
n=2,3, etc. Consider n =2 where we have just 2 possible permuta-
tions of the z(f) values. If z,(f) <z,(B) the value of T* is — 1,
otherwiseitis + 1. Writing T% for T(f) when n = 2, the distribution of
T% is thus:
: t: -1 +1
2Pr(T%¥=1): 1 1
For n=3 straightforward enumeration of the 6 possible per-

mutations of any three numbers, which we may denotea, b, c, gives the
following distribution of T%:

t: -3 -1 +1 +3
6Pr(T%=1): 1 2 2 1
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The six permutations of a,b,c can also be regarded as two per-
mutations of a and b, in three sets with ¢ located in positions 1, 2, 3,
thus:

a b ¢ a c b ¢c a b

b a ¢ b ¢ a ¢ b a
In these three sets the contribution to T of the addition of the number
a to the set {a,b} is —2,0, +2 if ¢ is greater than both a and b.
Therefore it is possible to represent the distribution of T% as the
distribution of T* + V,, where V, is independent of T% and has the
distribution

Pr{V,=2(i—-1)}=1/3, i=123.
Proceeding in this way, one can represent T, as

T:=Y V, (5.22)

where V,,V,,...,V, are independjenlt and
Pr{V,=s+1-2j}=1/s, j=12,...;s
Since we can write V,=s+1—2U, when Pr(U;=j)=1/s for
j=1,2,...,s, we see immediately that
E(V)=s+1-2s+1)/2=0

and var(V,) = (s — 1)/3

Using (5.22) and the independence of V,,V,,...,V,, we have
E(TH=0

var(T¥)=(1/3) ¥, (> — 1) =n(n—1)(2n+5)/18 (5.23)
j=1
Another advantage of the representation (5.22) is that asymptotic
normality of the distribution of T¥(f) follows by a simple application
of Liapounov’s theorem.
Reference to the well-established literature, especially Kendall
(1955), will show that the statistic T* is actually a linear function of
the Kendall rank correlation coefficient, 7; in fact

1=2T*/[n(n —1)]

Thus the published tables of the null distribution of = can be used in
testing a hypothesis about § when T* is the basic test statistic.
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Efficiency

Details of calculations relating to efficiency and consistency will not
be given here; the efficacy of T* can be found by steps similar to those
followed for By.

Point estimation
Examination of the definition of T*(b) shows that T*(b) is monotonicin
b and its value changes whenever b passes through one of the pairwise
slope values (Y; — Y;)/(x; — x;), x;# x;. If all x; values are distinct, the
value of T* changes by 2 at each of these pairwise slope values, so that
the solution of the estimating equation is the median of all the
pairwise slopes. 7

To conclude this brief discussion of Theil’s statistic, we note that
the case where all x; values are not distinct needs special attention
because the value of T* could be affected by the labelling of the x-
values. To avoid such ambiguity, a possible definition is

T*b)= ) sgnl[Y,—Y,—b(x,—x;)]
BpiA
This definition implies that the null distribution depends on the
number of x-values at which there are multiple Y-values, and on the

multiplicities.

5.2.7 Robust transformations

The statistics considered in Sections 5.2.2—5.2.6 have all been of the
‘rank’ or ‘sign’ types that are most commonly associated with
distribution-free methods. However, if any of the monotonic transfor-
mations that have become associated with robust techniques is
applied to the D;() appearing in (5.1), it is again possible to develop a
conditionally distribution free test procedure and a method for exact
confidence limits.
Consider

M) = in‘p(yi —bx;) =Y x;(b) (5.24)

where p(u) is monotonic continuous and differentiable almost
everywhere in u. Typical examples of functions y(u) are

Ylu) =(e"—e")/le" +e™*)

u, u<sk

Mmz{k u>k
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For a discussion of the rationale underlying the use of such
transformations the reader is referred to Section 2.3.6.

Hypothesis testing

To test Hy: f = B, the conditional null distribution of M(8,,) has to
be evaluated, and this entails, essentially, listing all the permutations
of the numbers y, (8,), ¥,(Bo); - - -, ¥,(Bo)- In fact, all calculations are
the same as for the statistic T(f,) except that the numbers y, — f,x;
are replaced by y(y; — Box;),i = 1,2,..., n. The actual significance test
is then performed by referring the observed M(B,) appropriately to
the conditional null distribution.

Writing

‘p—(ﬂo) = (l/n)zlpi(ﬂo)
by = (1/")2(%(!30) - ‘p(ﬁo))Z

the mean and variance of the conditional null distribution are

E(M)=§ Y x;=0
var(M) = {nv,/(n — 1)} Y x} (5.25)

by the steps that give (5.3). With s chosen such that var (y(Y,)) is finite,
normal approximation of the null distribution as n— oo will be
possible if max x?/3 x? — 0.

Confidence limits

As in the case of T, the conditional null distribution of M is not
invariant with respect to b. Therefore, in order to find confidence
limits the null distribution has to be evaluated for every value of b that
is considered for membership of the confidence interval. We shall use
the notation of Section 5.2.1 and let N(b) denote the number of M_(b)
values, geQ’ that are smaller than the observed M(b). If r < N(b)
< n!—r, the hypothesis f=b is accepted and b belongs to the
100(1 — 2r/n!)%; confidence interval. Thus we have to examine
N(b) as b varies from — oo to + o0. Represent N(b) as

N(b)= 2 I{inw(yi_bxi)—zxilp(yni_bxni)}
qeQ’ q

where g refers to one of the permutations of the numbers (y, — bx,),
(y, — bx3),...,(y, — bx,), and the notation (y, — bx, ) indicates that
one of those permutations is used. The value of N(b) will change at the
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solutions b, of the equations

Y% (Y, — bx;) = Yy, — bx,,)} =0

in b; if all x; values are distinct there will be n! — 1 such equations.
With n large it will usually be satisfactory to use (5.25) and Fieller’s
theorem to obtain 100(1 — 2y)% confidence limits as the solution of

(= D2 x; (v, — bx) = £u, {F(:b) — §O)-(XxD)}* (5.26)

where u, is an appropriate normal deviate. Numerical solution of
(5.26) is usually straightforward.

Point estimation

A point estimate of §§ is obtained by solving the estimating equation in
b : M(b) = 0; see (5.24). In practice a numerical or graphical technique
has to be employed in most cases. The estimate of § obtained from
M(b) is obviously related to the M-estimates of location discussed
briefly in Chapter 2, and the reader is referred to that chapter for some
comments on the choice of y(u).

Efficiency
From (5.24) we have, since Y,, Y,,..., Y, are independent, and the
distribution function of Y, — a — Bx; is F(y),

var {Y(Y; — Bx;)} = fn/ﬂ(u + o) f (u)du — {Jtﬂ(u + oc)f(u)du}2 =0, ()

(5.27)
and
var {M(B)} = v, (1)} x? (5.28)
Also
E{y(Y,—bx;)} = jlp {z+a—(b~p)x;}f(z)dz
giving
{ oEM ‘b)} — (¥ Jw'(u rof@ds (529
L P

Thus the efficacy of M is

em(p) = {vy (o)}~ ”2“!//'(14 + a)f(u)du} {2 (5.30)

The efficacy of M depends on a. In fact, inspection of (5.24) shows
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that in general the point estimate of § derived from (5.24) will not be
invariant with respect to « if we rewrite the estimating equation as

inlp(yi —a—bx;)=0

The problem can be overcome by applying the robust transfor-
mation to differences D, (b) — D(b) used in Equation (5.11) giving

M*(b) = Y xy{Dy(b) — D(b)}.

5.2.8 An example with moderately large n

We conclude this section dealing with inference about § only with an
example where n =21. The main reason for its inclusion is to draw
attention to the fact that, while computations involving ranking can
be very tedious, practically satisfactory results can be obtained by
drawing graphs of the functions T, Ty, Ty, etc., using relatively few
values of b for plotting positions. Preparing programs for calculating
these functions is relatively straightforward, and with n = 21 is feasi-
ble even with some desk calculators.

The data are given in the following table, these were generated with
parameter values « =0, 8 = 1, and F a Cauchy distribution function
F(y)=(1/n) tan~'(y/o) + 3 with ¢ =0.6745, giving the same in-
terquartile range as a standard normal distribution.

X y X y
-10 —11.822 1 2189
-9 —10.509 2 1784
- 8 — 48.964 3 3.076
-7 — 5.751 4 3065
- 6 - 6.185 5 4815
-5 — 6.039 6 5234
- 4 — 4.784 7 7027
-3 - 3.250 8  8.057
- 2 8.034 9 9255
-1 — 1278 10 9.194

0 1.128

In order to find point estimates and confidence limits based on T,
and Ty, it is relatively easy to find, by trial and error, a suitable
plotting range of Ty or T against b; we need only evaluate Ty or T at
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a selection of b-values so that the range E(Tg) £ u,s.d(Ty) is covered,
E(Tg) =0 and s.d.(Ty) being the mean and standard deviation of the
null distribution. Following is a table of some values of T and Ty at
selected values of b.

b Tg T 7T
0.95 393 62 434
1.00 251 38 266
1.025 134 19 133
1.05 31 -1 -7
1.10 — 186 - 18 —126
1.125 — 325 —61 —427
1.15 — 394 - 82 —574

Graphs of T, and Ty are shown in Fig. 5.3; the values of T have been
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multiplied by the factor (max Tp/max Tg) = 770/110 for ready com-
parison. Horizontal lines are drawn at + 1.645 s.d(Ty) = + 1.645
(35./22)= +270.25 and at + 1.645 s.d(Ts)= £ 4697, the latter
multiplied by the factor 7 for plotting. From the graph we have the
following results:

Statistic Point estimate 90%;, (approx.) confidence limits
Ty 1.057 (0.993,1.128)
T, 1.048 (0.980, 1.111)

5.3 Joint inference about o and f

In Section 5.1 we have remarked that inference about § only can be
regarded as tantamount to inference about relative location shift of
several populations, and in such inference we need 1.0t be concerned
with the actual measure of location. However, inference about a, or
joint inference about « and f, is essentially inference about location,
and not only location difference. Therefore the choice of test statistics
should reflect something about the location parameters of the
distributions F;.

In standard normal theory joint inference about « and f it turns
out that inference about « is possible, free of the nuisance parameter f
when Y x; = 0. Part of the explanation of this phenomenon is that the
two relevant test statistics are uncorrelated, and normality implies
their independence. Unfortunately, this simplification does not occur
in the distribution-free methods that we shall discuss.

Since we are now dealing with location problems, it is appropriate
to recall the discussions of Chapter 2. To avoid difficulties to do with
the meaning of location parameters, we shall either concentrate on
the median of F; or assume that the distributions F; of Y; are
symmetric and identical except for location.

5.3.1 Median regression

We suppose that the median of the distribution F; is
01=a+ﬁx1, j=1,2,-..,n

A natural generalization of the sign statistic for inference about the
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median is the pair of statistics

Si(a,b)y= Y sgn(Y;—a—bx))

j=1
" (5.31)
S;@b)= ) x;sgn(Y;—a—bx))
=1

J

More generally we could use
Sr(a’b)= z tpr(xj)sgn(yj_a_bxj)’ r= 1’2
j=1

but we shall see that the special choices of yy, and y, giving (5.31) have
optimal properties. Obviously (5.31) is inspired by the ‘normal’
equations arising in application of the method of least squares.

In principle it is easy to enumerate the joint null distribution of S,
and S, because the random variables sgn (Y; —a — fix »i=12..,n,
are independent and assume the values —1 and + 1 with equal
probabilities. Straightforward calculations give

E{S,(0,f)} = E{S,(2,8)} =0
var {S(e, f)} =n
var {S,(o, B)} = Y x? (5.32)
cov {S; (% B), S5 (e, )} =Y. x; =0 (by assumption)
Under conditions similar to those stated in the earlier one-

parameter cases for the sign statistics, the joint distribution of S, and
S, tends to a bivariate normal distribution as n increases.

Example 5.14
x;: =3 -2 0 1 4
Vit 0.67 2.04 2.8 3.27 3.00
y;—2—04x,: -—013 0.84 0.63 0.87 —0.60

The joint null distribution of S, and S, is obtained by straightforward
enumeration and it is as shown in the table below; the entries in the
cells are the relevant probabilities multiplied by 2" = 32.
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S,

-5 =3 -1 +1 +3 +5

—-10 1 1 2
-8 1 1 2
-6 1 1 2
—4 1 2 1 4
S, -2 1 2 1 4
0 1* 1 1 1* 4

2 1 2 1 4

4 1 2 1 4

6 1 1 2

8 1 1 2

10 1 1 2

1 5 10 10 5 1 32

If « = 2.0 and B = 0.4, the observed values of S, and S, are + 1 and
— 2 respectively.

Inspection of the tabulation of the joint null distribution of S, and
S, in Example 5.14 shows that both the marginal distributions of S,
and S, are symmetric about 0. This symmetry holds in general
since both S, and S, are sums of independent symmetric random
variables.

The example also illustrates a difficulty which we have not
encountered in the one-parameter problems that have so far been
discussed. Suppose we were to consider testing the null hypothesis
a=2.0 and 8 =04. Then, as indicated in the example, the observed
values of S, and S, are + 1 and — 2, and both of these are, relative to
the standard deviations of S, and S,, close to their expected values.
However, there remains the question of an appropriate critical region



STRAIGHT-LINE REGRESSION 155

in the (S,, S,)-sample space. A possible approach is outlined below:
see also Chapter 1, Section 1.7.

Testing the hypothesis Hy:a =0y, B = B,

We shall consider only an alternative H, : o« # o, f # B, and use as a
guide to an appropriate critical region the approach that might be
used if S; and S, have an exactly joint normal distribution. Put

Siab)  Si(ab)
+ 2
n Y x;
Then large values of Q(a,, B,) reflect observed values of S (o4, f,) and
S, (a0, Bo) that are ‘far’ from their expected values. Thus Q(x,, f,) may
be regarded as a suitable statistic for testing H ; the critical region

which it defines is the set of (S, S,)-values outside a certain ellipse
centred at (0,0). If the test procedure is

reject Hy if Q(ag,Bo)>C

Ola,b) = (5.33)

then the exact size of the critical region can be determined from the
exact joint distribution of S, and S, after C has been specified. It can
be varied by changing C. When n is sufficiently large for a normal
approximation to the joint distribution of S; and S, to apply, the value
of C can be found by referring to a table of the y distribution. For
large n, the distribution of Q is approximately ¥3, but it will be noted
that the expectation of Q is exactly 2.

Example 5.15 (Continuing Example 5.14.) Suppose we want to test
H,:a=20, =04 at the 10% level. From tables, x2(0.90) = 4.605,
and we have n=>5, ) x? =30. The (S,,S,)-values that lie outside
the ellipse

S2/5 + $2/30 = 4.605

are marked with a * in the tabulation of the joint distribution of S,
S, and S, in Example 5.14. Thus Pr(Q > 4.605) =2/32 and at level
100(1 — 2/32)%;, H, would only be rejected if S; + 5 and S, =0.

If we put C = 3.93 — ¢ where ¢ is small and positive we find that the
S,, S, points in the critical region are (— 5,0),(+ 5,0),(— 3, 8),(+ 3,8),
giving a test size 4/32.

Confidence regions
The arguments used for setting confidence limits in the one-
parameter case carry over to the two parameter case but it must be
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noted that they produce a joint confidence region for « and . Now, as
we have seen in Section 5.2, it is possible to make exact inferences
about f free from the nuisance parameter o. However the roles of «
and f cannot be reversed; it appears that without possibly severe loss
of efficiency it is generally not possible to make exact inferences about
o. This matter is taken up again in Section 5.3.2.

Thus, while we can set an exact joint confidence region for « and f,
and an exact confidence interval for § alone, we cannot, generally, find
an exact confidence interval for . However, by using the point
estimate of a and its standard deviation it is possible to find an
approximate confidence interval for «. We shall give more details
about this when dealing with point estimation.

The remarks concerning inference about « apply equally to any
ordinate o + fx, for by a change of x origin any such ordinate can be
made the intercept of the line.

Point estimation
Since E{S,(a, f)} = E{S,(a, f)} =0, a natural procedure for estimat-
ing « and B is to solve for a and b the estimating equations

S,(a,b)=0
S,(a,b)=0

If for any b the value of a is chosen so that S,(a,b) =0, then the
resulting S, (a, b) is the same as the statistic Tg(b) discussed in Section
5.2, so that apart from the minor question of uniqueness that arises
from the fact that S,(a,b) is, for fixed a, a step-function in b, the
existence of a solution is not in question.

According to the discussion of Chapter 1, Section 1.4, the point
estimates 4 and b of « and g will be consistent as n — oo if for small Ao
and Ap

(5.34)

E{S,(¢+ Ax, )} = Ay, A
Var {S;(« + Ao, f)} = By,
with A4,,/B}/> — oo as n— oo, a similar condition holding for S,.

Now

E{Si{(a+ Ao, p)}=—n+ i 2Pr{Y; — (¢ + Aa) — Bx; > 0}

i=1

~ —2Aa Z £.(0), (5.35)

i=1
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and, similarly,

E{S;(o, B+ AB)} = — 2ABY X7 £(0) (5.36)
Also
var{S,(a+ Aa, )< n

var {S, (@ B + AB)] < Yx?

Thus, if we consider the case where all F; are identical except for
location, then f(0)+0 and fo — o0 as n + oo ensure the con-
sistency of the point estimation.

Writing Era z(aE{Sr(aa b)}/aa)a=a,b=ﬂ’ ErB z(aE{Sr(aa b)}/
0b)— 4 p=p> = 1,2, the covariance matrix of @ and b can be obtained
from the following approximation:

var(S,) cov(S,S,)
cov(S,,S,) var(S,)

_(E1w Eip\[var@ var(@,b)\(E,, E,, (537)

" \Es, Ey;/\cov(@b) cov(h) J\E,; Ey '
The values of E,, and E,; are obtainable from (5.35) and (5.36)
while E,, and E,; are obtainable similarly. With ) x; =0 we have
a rather simple result if f;(0) =£(0), i = 1,...,n, because Egz=Ey;=

f0)Y x;=0, while E;, = —nf(0), E,;; = —f(0)Y.x2. Substituting in
(5.37) we have

var@ cov(@b)) 1 (l/n 0 5.38)
cov(@b) var(h) ) 420\ 0 1/¥x? ©.

Comparing the result (5.38) with the corresponding result for least-

squares estimation giving estimates a and 3, we obtain

var(@) var(b) 1

var(d) var(f) a&2f2(0)
and these ratios coincide with the ratio of the variance of estimate
of B based on Ty to var(f). The value 1/(c%(0)) is also the rela-
tive efficiency of the mean and median in one-sample location estima-
tion.

The approximate variances given by (5.38) can be used for setting
confidence limits for « or . However, a major problem with such a
procedure is that f(0) must be estimated. An estimation procedure for
f(0) is as follows. We use the exact confidence limit method for g to
find, say, a 959 confidence interval for 8. Suppose that it is

{b,(0.975), b,(0.975)}
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Then approximately

b,(0.975) — b,(0.975) = 2(1.96)/{2f (0) (}.x?)"/?} (5.39)
from which we obtain

{b,(0.975) — b,(0.975)} T2y = 1
1.96 ~f(0)
This type of calculation could be repeated for different values of the

confidence coefficient, and the results suitably averaged to give an
estimate of 1/f(0).

Efficiency

When considering the efficiency of testing a hypothesis specifying
values of « and B jointly, we are led to examine the non-centrality
parameter of the statistic Q(a, §) which has, asymptotically, a y3
distribution under the null hypothesis; see Section 1.7 for more details
of tests involving multiple parameters.

In the following calculations we confine our attention to the case
where all F; are identical except for location. We have seen that
E{Q(a, B)} = 2, hence we shall obtain an expression for E {Q(x + Aq,
B+ AB)}, where Ax and AB are small. Following steps like those lead-
ing to (5.35) and (5.36), we obtain

E{sgn(Y,— (¢ + Aax) — (B + AB)x;)} =~ — 2(Aa + x;AP) f(0)
and
var {sgn (Y,(a + A) — (8 + AB)x;} = 1 — 4(Aa + X, A1 (0)

from which, remembering that ) x; =0,
E{S¥a+ Aa, B+ AP)} =~ n—4f2(0)Y.(Ax + x;AB)* + 4n’ A%af%(0)
(5.40)
It is convenient to interpret Ao and Af small as meaning
Ao = A/\/n, AB= B/\/n, so that
E{S3(a+ Ao, B+ A)} = n — 4f2(0) A% — 4/ 2(0) B(T x2/n)
+ 4nf2(0)A* (5.41)

Similarly,
E{S}(a+ Ax, f+ AB)} =Y X — 4fH(0)A* (X x{ /n)
— 2f20)AB(Y x?/n)
—4f2(0)B* () x{/n)
+4f%0)B*(Y.x})*/n (5.42)
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We shall now assume that, as n increases, Y x?/n—K,,Y x}/n
- K3, Y xt/n— K,, where K,, K3, K, are finite limits; this is quite a
reasonable assumption and will be valid, for example, if all x; values
are constrained to lie in a fixed interval. Then, since by earlier
assumption Y x? — oo as n — oo, we can neglect all but the first and
last terms in both (5.41) and (5.42), giving

E{S}(a+ Ao, B+ AP)} — n + 4nf%(0) A2
E{S2(a + Ao, B + AB)} = K, + 4nf2(0)B’K 2
so that
E{Q(a + A, B + AB)} — 2 + 4f %(0)(4% + B’K,) (5.43)

To compare this result with the corresponding result for the
method of least squares, we assume that every Y, has variance ¢ and
find E{Q%(x + Ao, B + AB)}, where

Q3(a,b) = A3(a, b)/(n0%) + A3@.b)/(0*Lx?)
and
Al(aab)ZZ(Yi_a_bxi) (5.44)
A,(a,b)= in(Yi —a—bx)

The result is
E{Q%(x+ Ax, B+ AB)} 2 + (1/0%)(4% + B2K,)

Thus, taking as a measure of relative efficiency the ratio of the non-
centrality parameters, we obtain the result 1/[46%f2(0)]; this
ratio coincides with the ARE of the mean and median in the one-
sample location problem. The results can also be checked by the
simpler approach indicated in Chapter 1, Section 1.7.

5.3.2 Symmetric identical F;: Untransformed residuals

Since we are now dealing with inference about location, not merely
location shift, the discussion of Chapter 2 is relevant, and in the
distribution-free setting we are led to assume:

(i) that all F; are identical except for location;
(i) that F; is symmetric.

The statistics A, (a, b) and A, (a, b) are the natural generalizations of
A(x,t) of Section 2.3.2.
We rewrite them

A (@ b)= ZSgn(Yi —a—bx;)|Y;—a—bx,|

Ay(a,b)=Y x;sgn(Y;—a—bx;)| Y, —a — bx,| (5.45)
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In this form we see that the conditional joint null distribution of
A, (a, ) and A,(a, f) could be derived by conditioning on the
magnitudes | Y; —a — Bx;],i=1,2,..., n. The joint distribution can, in
principle, be enumerated by listing the 2" possible sign combinations
for the magnitudes |Y, —a — fx;/,i=1,2,...n. We also have the
following conditional parameters:

var {4, (o, B)|| Y, —a— px;l,i=1,...,n} =Y (Y; — o — Px,)*
var {4, (o, P11 Y; —a— Bx;l,i=1,...,n} =Y x} (Y, — a ~ px;)?
cov{A4,(a, ), A5(0, B)I|Y; —a — Bx;|,i=1,...,n}

= in(Yi —a— ﬂxi)z
(5.46)

Under suitable conditions the joint distribution of A, and A4,
will be approximately normal as n becomes large. The conditions are
that max x?/) x?—0 as n—oo and max (Y;,—a—fx;)*/d (Y, —
a— Px;)? 50.

Testing Hy o =ag, =B,
Although the exact joint distribution of A, and 4, is known we are in
the same position as before, namely that the choice of critical region,
or equivalently, test statistic, is not obvious. In the previous sections
we choose to use test statistics having exact expectations 2 and
asymptotically 2 distributions. We follow the same procedure here.
Since the covariance of 4, and A, is not zero, an appropriate test
statistic is

Qla,b) =(A,(a,b), A,(a,b))C~ (A, (a,b), A, (@, b))’ (547)

where

Co Y(Y,—a—bx)? Y x(Y;—a—bx)?
B in(yi_a_bxi)z inz(Yi_a_bxi)z

With a=o,b=f, we have E{Q(x, f)} =2 and the distribution of
Q(a, B) is approximately y3 for large n.

To test a=uoay, =P, the exact conditional distribution of
Q(ag, Bo) can be enumerated for small n and the observed value of
Qa0 Bo) can be referred to it; with large n the y? approximation may
be used.

Testing of a hypothesis specifying o« and g jointly will not be
pursued in great depth because it does not seem to be as important a
practical problem as testing a value of § only, or « only.
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Confidence limits

By the usual argument of inverting the hypothesis-testing procedure
an exact joint confidence region for o and f can be derived from the
exact testing procedure outlined above. However, in practice one is
more likely to be interested in a confidence interval for f§ or a
confidence interval for «. In some practical problems one needs
confidence intervals for ordinates « + fx for a succession of x-values;
graphically these are usually depicted as confidence bands. Attention
is drawn to the distinction between confidence limits for individual
ordinates and a confidence band for the whole line y = o + fx derived
from a joint confidence region for o and §; a careful discussion of this
distinction in the case of normal least-squares regression is given by
Kerrich (1955).

Although the value of 4, (4,) is invariant with respect to b(a) all
elements of the matrix C depend on both a and b, consequently exact
inference about «, free from the nuisance parameter f is not possible;
reference to Section 5.2 shows that inference about f free from « is
possible.

For « one has to resort to approximate methods: one of them is to
use the estimated standard error of the estimate of a. Alternatively,
one could use the exact conditional distribution of 4, that would
apply if B were known and replace § by the estimate f. Approximating
this exact distribution by a normal distribution leads to solving

(Y, —a—Bx)=+u,{(Y,—a— px,)*}? (5.48)

for a after substituting B for §. The result is
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