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Preface 

The preparation of several short courses on distribution-free statisti­
cal methods for students at third and fourth year level in Australian 
universities led to the writing ofthis book. My criteria for the courses 
were, firstly, that the subject should have a clearly recognizable 
underlying common thread rather than appear to be a collection of 
isolated techniques. Secondly, some discussion of efficiency seemed 
essential, at a level where the students could appreciate the reasons for 
the types of calculations that are performed, and be able actually to do 
some of them. Thirdly, it seemed desirable to emphasize point and 
interval estimation rather more strongly than is the case in many of 
the fairly elementary books in this field. 

Randomization, or permutation, is the fundamental idea that 
connects almost all of the methods discussed in this book. 
Application of randomization techniques to original observations, or 
simple transformations of the observations, leads generally to 
conditionally distribution-free inference. Certain transformations, 
notably 'sign' and 'rank' transformations may lead to unconditionally 
distribution-free inference. An attendant advantage is that useful 
tabulations of null distributions of test statistics can be produced. 

In my experience students find the notion of asymptotic relative 
efficiency of testing difficult. Therefore it seemed worthwhile to give a 
rather informal introduction to the relevant ideas and to concentrate 
on the Pitman 'efficacy' as a measure of efficiency. 

Most of the impetus to use distribution-free methods was originally 
in hypothesis testing. It is now well recognized that adaptation of 
some of the ideas to point estimation can be advantageous from the 
points of view of efficiency and robustness. Pedagogically there are 
also advantages in emphasizing estimation. One of them is that one 
can adopt the straightforward approach of defining relative efficiency 
in terms of variances of estimates. Another is that using the notion of 
an estimating equation makes it easy to relate the distribution-free 
techniques to methods which will have been encountered in the 
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standard statistics courses. Examples include the method of mo­
ments, and large sample approximations to standard errors of 
estimates. 

The aim of this book is to give an introduction to the distribution­
free way of thinking and sufficient detail of some standard techniques 
to be useful as a practical guide. It is not intended as a compendium of 
distribution-free techniques and some readers may find that a 
technique which they regard as important is not mentioned. For the 
most part the book deals with problems oflocation and location shift. 
They include one- and two-sample location problems, and some 
aspects of regression and of the 'analysis of variance'. 

Although some ofthe presentation is somewhat different from what 
appears to have become the standard in this field, very little, if any, of 
the material is original. Much has been gleaned from various texts. 
Direct acknowledgement of my indebtedness to the authors of these 
works is made by the listing of general references. Through these, and 
other references, I also acknowledge indirectly the work of other 
authors whose names may not appear in the bibliography. No serious 
attempt has been made to attribute ideas to their originators. Specific 
references are given only where it is felt that readers may be 
particularly interested in more detail. 

While the origins of this book are in undergraduate teaching I do 
hope that some experienced statisticians will find parts of it interest­
ing. In particular, developments in point and interval estimation, and 
noting of their connections with 'robust' methods have taken place 
fairly recently. Some interesting problems of estimating standard 
errors, as yet not fully resolved, are touched upon in several places. 

Many of my colleagues have helped me, by discussion and by 
reading sections of manuscript. Dr D.G. Kildea read the first draft of 
Chapter 2 and his detailed comments led to many improvements. 
Dr B.M. Brown was not only a patient listener on many occasions 
but also generously provided Appendix A. 

Melbourne, November 1980 lS. Maritz 



CHAPTER 1 

Basic concepts in distribution-free 
methods 

1.1 Introduction 

In the broadest sense a distribution-free statistical method is one that 
does not rely for its validity or its utility on any assumptions about the 
form of distribution that is taken to have generated the sample values 
on the basis of which inferences about the population distribution are 
to be made. Obviously a method cannot be useful unless it is valid, but 
the converse is not true. The terms validity and utility are used in a 
semi-technical sense and relate to the usual statistical notions of 
consistency and efficiency respectively. The great attractions of 
distribution-free methods are: 

(i) that they are, by definition, valid under minimal assumptions 
about underlying distributional forms; 

(ii) the aesthetic appeal of their being based for the most part on 
very simple permutation or randomization ideas; 

(iii) the fact that they have very satisfactory efficiency and robust­
ness properties. 

Distribution-free methods, especially the simpler ones, have gained 
widespread acceptance, but they are by no means the first weaponry 
of most practising statisticians. Perhaps the main impediments to 
their even greater popularity are: 

(a) the results of distribution-free tests are often not as readily 
interpretable in terms of physical quantities as are the results of 
parametric analysis; 

(b) in some of the more complex situations severe computational 
difficulties can arise; although many distribution-free methods are 
'quick' and 'easy' they do not all share these properties. 

It should also be noted, of course, that many distribution-free 
methods are relatively new; this applies particularly to the estimation 
methods. Therefore they are not yet well known in the popular sense. 
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This book is written for undergraduate students, as an instruction 
manual in the use of some of the standard distribution-free methods, 
but its main objective is to serve as an introduction to the underlying 
ideas, and perhaps to stimulate further reading in the subject. 
Consequently the emphasis is on randomization (or permutation) as 
the underlying unifying notion in the development of testing methods, 
and associated methods of estimation. These ideas are certainly not 
new, and have been developed in great detail in various special 
contexts. Nevertheless, the use of 'signs' and 'ranks' is still commonly 
thought to characterize distribution-free methods, if not by statis­
ticians, then by very many non-professional users of statistical 
methods. 

The selection of topics that are treated in ensuing chapters is 
influenced strongly by consideration (a) above. In fact the emphasis is 
heavily on questions oflocation and location shift. They are not only 
among the most important from the practical viewpoint, but also 
represent a class of problems where it is clearly easy, and sensible, to 
visualize the quantities that are subject to inference, without the need 
to specify underlying distributions in close detail. This is the only 
excuse offered for not including many 'standard' procedures, such as 
runs tests, some of the tests of dispersion, general tests of distribution 
functions, such as the Kolmogorov-Smirnov test. 

Very few of the so-called distribution-free methods are truly 
distribution-free. Many of the arguments are simplified if the 
underlying distribution can be taken as continuous, and this is 
commonly done. This assumption will be made throughout this book. 
Other assumptions are necessary, depending on the problem. For 
example, in one-sample location problems the assumption of sym­
metry plays a major role. Thus the term distribution-free must be 
interpreted with some qualification. The methods are developed 
without detailed parametric specification of distributions; we may 
assume that a density f(x) is symmetric about 0, but need not say that 
it is, for example, l/[n{ 1 + (x - O)2}]. The term 'nonparametric' is 
preferred to 'distribution-free' by some, but since we are actually 
trying to make inferences about parameters the latter term seems 
more appropriate here. 

1.2 Randomization and exact tests 

Although the randomization basis of test and other methods will be 
restated for specific procedures in later chapters, we shall illustrate it 
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here in a simple example. This will enable us to define certain terms 
rather conveniently. 

Consider the well-known simple 'paired comparison' experiment in 
which two treatments are allocated at random, one each to a pair of 
subjects. The two subjects of the same pairs are chosen to be as alike 
as possible. For example, in an experiment on sheep a natural pairing 
would be to use twins for each pair. Suppose that the results obtained 
for the ith pair are measurements YiA and YiB for the members 
receiving treatments A and B respectively. The differential effect of the 
treatments for the ith pair could now be measured by di = YiA - YiB' 

with i = 1,2, ... , n. 
Now suppose that we are to test the null hypothesis H 0' according 

to which the effects of treatments A and B are identical. Since our 
allocation of treatments within pairs is random, correctness of H 0 

would mean that di could have had the value - d j = YiB - YiA' 

Further, if we denote by Di the random variable being the ith 
difference obtained in the experiment, then 

Pr(Di = + Id;l) = Pr(Di = -Id;l) =! (1.1) 

The probabilities in (1.1) are conditional probabilities, the condition­
ing being on the ith pair whose difference has magnitude IdJ 

Since the randomization is performed independently for each pair, 
it is now a simple matter to conceive the joint distribution of 
D1 , D2, ... , Dn, for the random variables D1 , D2, ... ,Dn are inde­
pendent with individual distributions given by (1.1). Again we note 
that it is a conditional distribution. A natural test statistic for H 0 is 
T= Dl + D2 + ... + Dn, and from the preceding discussion it is clear that 
tabulation of the exact conditional distribution of T is a straightfor­
ward matter; the 2n possible sign combinations to be attached to the 
magnitudes I di I, i = 1,2, ... , n, have to be listed, and for each of these 
the value of T computed. This generates 2n possible values of T 
occurring with equal probabilities 2 - n, and thus establishes the exact 
conditional distribution ofT. Let r be such that Pr(T ~ r) = r/2n. Ifwe 
test H against a one-sided alternative and take as critical region all 
T j ~ r, then the size of this critical region (the level of significance) is 
exactly r /2n. 

A test is said to be exact if the actual significance level is exactly that 
which is nominated. In our example, the test is an exact level r/2n test. 
Moreover, it is important to note that although the exact significance 
level derives from the exact conditional distribution, the uncon­
ditional significance level is also exactly r /2n. This is true simply 
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because, for every possible set Idd, i = 1,2, ... n, the probability of 
rejecting H 0 is r /2n. 

The distribution of T under H 0 will often be referred to as the null 
distribution of T. In our example it is a conditional null distribution. 
The test of H 0 is carried out by referring the observed value of T to its 
conditional null distribution. The derivation of the distribution in our 
example was achieved by using the randomization argument, and did 
not depend on an assumption of the form of distribution that 
individual Yi values might follow. So, the conditional null distribution 
of T does not depend on an underlying distributional assumption, 
and consequently the significance level is exact, free from such 
an assumption. 

Although the exactness of the test is not affected by its being based 
on a conditional null distribution, it should be kept in mind that the 
conditional distribution of T will change from sample to sample. 
Therefore the unconditional distribution of T will be a mixture ofthe 
conditional distributions and its form will depend on the underlying 
distribution ofl d I values. When the exact conditional distribution of a 
statistic, obtained by a randomization procedure, is not invariant 
with respect to the realized sample values, the associated distribution­
free methods are said to be conditionally distributionjree. 

By transformations such as rank and sign transformations it is 
often possible to derive methods that are unconditionally 
distribution-free from those that are conditionally distribution-free. If 
every ~d;l in the example that we have been discussing is replaced by 1 
we obtain the well known 'sign test' and it is clear that the conditional 
distribution of S = Li'= 1 sgn(Di), remains exactly the same for every 
possible set of realized results. 

From the point of view of exactness of significance levels, there is no 
obvious advantage in a test being unconditionally distribution-free. 
Since the distributions of test statistics can be tabulated once and for 
all if they are unconditionally distribution-free, there can be worth­
while computational advantages in such tests. We shall see, also, that 
there can be gains in efficiency by astute choice of transformation. 
However, our starting point is randomization and its natural 
consequence is to produce, in the first instance, conditionally 
distribution-free methods. 

Enumeration of exact null distributions can be a totally impractical 
task for large sample sizes, hence it is quite common to approximate 
null distributions by some standard distribution, usually a normal 
distribution, and so to obtain approximate values of significance 
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levels. Here the approximation is a mathematical convenience and 
does not affect the exactness of the method in principle. Hence such 
procedures will be called 'exact' whether or not some mathematical 
approximation is used for convenience. However, there are circum­
stances where approximations, of essentially unknown precision, 
have to be made. They are usually occasioned by nuisance para­
meters, whose values, while not of direct concern do affect the null 
distributions of interest. 

1.3 Consistency of tests 

If the null hypothesis in the example of Section 1.2 had specified a 
difference e between the two treatments, the di values would have 
been replaced by di - e, i = 1,2, ... ,n, the argument otherwise 
remaining the same. In order to show the dependence of T on 
D1 , D2 , ••• , Dn and e we may write it T(D, e). Taking differences ofthe 
paired values can be regarded as reducing the problem to a one­
sample problem, and in the remainder of this section we shall be 
discussing one-sample, one-parameter problems. 

Suppose that random sampling from a population with parameter 
of interest e produces the results Xl' X 2' ... , X n' where 
Xl' X 2' ... ,X n can be taken as independent and identically distri­
buted. Let the statistic to be used in testing a hypothesis about e be 
S(X, t), defined such that its conditional and its unconditional null 
distributions have mean 0 if t is replaced by 8. 

Suppose that we propose to test Ho : e = eo against HI: e = e1 > ° 
at level IX and that the test procedure is to reject H 0 if observed 
S(X, eo) > C~(X, eo). The value of C~(X, eo) is determined from the 
randomization distribution of S(X, eo), therefore it generally depends 
on X and on () o. We shall assume that S(X, eo) is so scaled with respect 
to n that C~(X, ()o) ~ 0, i.e., in probability, as n ~ 00. 

Questions of consistency have to be answered in terms of the 
behaviour of the unconditional distributions ofthe relevant statistics, 
and we shall assume that in the unconditional distribution of S(X, eo), 
when () = ()1' 

E{S(X, eo)1 (1)} = ~(el' eo) > ° 
var{S(X,()o)l()d} = (J2«()1'()O)/n, with (J2(e1,eO) bounded. 

We shall say that the test of H 0 against HI is consistent if its power can 
be made arbitrarily close to 1 by increasing n. 
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Lemma 1.1 Under the assumptions given above about the distri­
bution of S(X, t), the test of H 0 against H 1 is consistent. 

The proof of this lemma is obtained simply from the assumptions by 
noting that S(X, eo) ~ A(e1 , eo) > 0, while C~(X, ( 0 ) ~ o. 

We may be concerned with values ofe1 close to eo in which case it is 
useful if we assume 

E{S(X, t)le} = p(t, 8) 

with p(t,8) continuous in t and differentiable near e. 
Then we can put 

A(e1, ( 0 ) ~ (80 - ( 1)p'(e1, 8d, 

noting that p(eo, ( 0 ) = O. 
For Lemma 1.1 to hold we now have to replace the earlier 

assumption about E {S(X, ( 0 )l(}d by the assumption p'(8, 8) < O. 
Let us reconsider the example of Section 1.2 in two versions. 
(i) S(X, t) = T*(D, t) = T(D, t)ln = (D1 + ... + Dn)/n - t; suppose, 

for our illustration, that the distribution of every D; is normal with 
mean 8 and variance (J2, and that eo = O. In this case, as we shall see, 
the conditional randomization distribution of S can be taken as 
approximately normal for large n, with variance L # In2, if d1, d2, ... , 
dn are the observed differences. So, with u~ an appropriate normal 
quantile, 

C~(X, eo) = u~{LDUn}1/2 IJn, 

and it is easy to see that L Df In ~ (J2 + ei under H 1 so that 
C~(X, ( 0 ) ~ O. 

Further, 

E{S(X,80)18d = 01 

var {S(X 1 , ( 0 ) I 8 d = (J2 I n 

note also that E{S(X, t)1 8} = 8 - t, p'(8, 8) = - 1. The test is con­
sistent; in fact, as we shall show in Chapter 2 the test statistic can be 
written as a function of the usual t-statistic whose consistency and 
other properties are well known. 

It should be noted, however, that with certain distributions for the 
D; the test may not be consistent. 

(ii) Let S(X, t) = (1/n)L7 = 1 sgn(D; - t) and suppose that the distri­
bution function of every D; is F(d, e), with density f(d, e), symmetric 



BASIC CONCEPTS IN DISTRIBUTION-FREE METHODS 7 

about B. The null distribution of S has variance lin, n even, and S, 
being a linear function of a binomial random variable, has an 
approximately normal distribution. 
So, 

Also 
E{S(X, t)1 B} = (lin) L E{sgn(Di - t)1 B} 

= (lin) L {( -1) P(D i < tlB) + (1) P(D i > tlB)} 
= 1 - 2F(t, (}) 

Therefore J-l'(B, B) = - 2f(B, (}). Under H 1 the statistic S can again be 
expressed as a binomial random variable, hencea2(Bl' Bo) ~ i, so that 
the conditions of Lemma 1.1 are satisfied. 

Two points about the examples above are worth remarking upon. 
First we see that the quantity C~(X,Bo) is simply a constant, that is 
non-random, in case (ii). Second, the only restriction on F is that 
f( (), B) =1= 0, so that the 'sign' test will be consistent in many cases where 
the usual t-test is not. 

1.4 Point estimation of a single parameter 

Since the statistic S(X, t) is defined so that E{ S(X, 8)} = 0, a natural 
procedure for finding a point estimate of B is suggested by the method 
of moments, namely, to take as point estimate {j of B the solution t = (j 
of the estimating equation 

S(X,t) = 0. (1.2) 

As we shall see in later chapters, some ofthe statistics S(X, t), regarded 
as functions of t for fixed X are not continuous in t so that a unique 
solution of(1.2) has to be decided upon by a suitable convention. An 
appropriate one is usually obvious in context. Weak consistency of8 
is easily checked; in fact we have: 

Lemma 1.2 If E {S(X, t) I B} = J-l(t, B) is continuous in t and differen­
tiable near t > B, and if the other conditions for the applicability 
of Lemma 1.1 hold, then {j ~ B as n ---+ 00. 

1.5 Confidence limits 

Provision of a measure of precision of an estimate is an essential part 
of statistical inference, and one way of doing this is to give confidence 
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limits. Confidence limits, or confidence sets, can be determined by the 
well-known procedure of taking a point ()' in the parameter space to 
belong to the confidence set if the null hypothesis that () = 0' is 
accepted. Briefly, the argument is as follows: 

To test H 0: () = ()o against some alternative HI' a critical region of 
size IX, R«()o), is determined such that 

(1.3) 

Now, for a given X = x find the set Co(x) of all () such that S(x, ())ER«()). 
The true value ()o will belong to Co (x) if S(x, ()o)ER«()o). But the 
probability of this event is 1- IX, whatever the value of()o, according 
to our definition (1.3). The set Co (x) is a 100(1 - IX)% confidence set for 
(). The shape of Co(x) is determined by the shape of R«()). In the one­
parameter case that we are considering, R«()) is typically an interval, 
and so is Co(x); one- or two-sided confidence limits are obtained 
according to whether the test is one- or two-sided. The probability 
1 - IX is sometimes called the co1(ulence coefficient. 

A notable feature of the procedure outlined above is that only the 
null distribution of S is needed. In distribution-free methods this is 
particularly useful because the null distributions are usually exact, 
often very easy to obtain, and of course in many instances already 
tabulated. Moreover, whether a conditional or unconditional null 
distribution is used the confidence coefficient is the value 1 - IX 

associated with the hypothesis test, and if the probability 1 - IX is 
exact, then so is the confidence coefficient. We shall say that a 
confidence region is exact if the confidence coefficient 1 - IX is exact. 
One of the great attractions of distribution-free methods is that they 
enable one to determine, often fairly easily, exact confidence limits for 
certain parameters with minimal assumptions about distributional 
forms. 

1.6 Efficiency considerations in the one-parameter case 

1.6.1 Estimation 

Efficiency of estimation will be measured in terms of var(O). The 
relative efficiency of two estimators will be measured by the ratio of 
their variances. In some cases it will be possible to express 0 fairly 
simply in terms of Xl' X2 , ••• ,X n so that an exact expression for var(O) 
may be given. However, for the most part we shall have to deal with 
cases where such a simple expression cannot be obtained; in fact we 
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may not even be able to express 8 explicitly in terms of Xl' X 2'···' X n. 

Then the best we can do is obtain a large-sample approximation 
formula for var(O). 

To simplify notation we shall assume in what follows that 
expectation and variance are derived at the true value of the 
parameter 8. Thus we put E{S(X,t)18} =E{S(X,t)}, etc. The main 
assumptions that we shall make are: 

(i) E {S(X, t)} = J-t(t, 8), is continuous in t and differentiable near 
t = 8; 

(ii) the statistic S(X, t), treated as a function oft for fixed X, either is 
continuous and differentiable for t near 8, or it can be replaced by an 
approximating function which has these properties; 

(iii) var{S(X, t)} = 0"2(t, 8)/n, 0"2(t, 8) continuous in t and bounded. 

Assumption (ii) is needed because statistics S(X, t) obtained after 
rank or sign transformations are typically discontinuous step func­
tions of t. However, it is also typically true of them that if they are 
scaled such that E{S(X, t)} = /1(t, 8), that is, not dependent on n, then 
the number of steps increase with n, and their heights decrease. The 
sign statistic of example (ii) in Section 1.3 is a case in point; a simple 
transformation of S(X, t) is the sample distribution function which is 
known to have the desired property. 

Now consider a small but finite neighbourhood of 8, the interval 
(8 - h/2, 8 + h/2) with h held constant, so that we can put 

{ OS(X, t)} ~ S(X, e + h/2) - S(X, e - h/2) 

at t = 9 h 

= S(8 + h/2, 8) - S(8 - h/2, 8) + 0(1/) n) 

h 

~ J-t'(8, e) + O(l/)n) 

in view of assumption (iii). 
Write 

S(X, t) = S(X, 8) + (t - 8){J-t'(8, 8) + 0(1/) n)} (1.4) 

and note that S(X, 8) = O. Then we have approximately 

var(8) = var {S(X, 8)}/[aE{SX, t)}/at];=9 (1.5) 

Formula (1.5), or approximate methods similar to those used in its 
derivation, occur in sundry standard situations. For example, if it is 
applied to the estimating equation in the case of 'regular' maximum-
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likelihood estimation, the usual large-sample variance formula for 
maximum-likelihood estimators is obtained. 

A simple example is the following: suppose that F n(x) is the usual 
sample distribution function based on n independent observations 
from a population with continuous distribution function F(x), density 
f(x) and median (). The estimating equation for () is 

S(X, t) = Fn(t) - 1/2 = 0 

E{S(X, t)} = F(t) - 1/2 

[oE{S(X,t)}/ot]t=9 = r(()) 
var {S(X, ())} = 1/4n 

giving the approximate formula for the variance of the sample 
median, (J, 

Another consequence of the 'linearization' represented by (1.3) is 
that the distribution of {j will be approximately normal if the 
distribution of S(X, ()) is approximately normal. Linearization ideas 
have become important in distribution-free methods, and a more 
rigorous approach is outlined in Appendix A. 

1.6.2 Hypothesis testing 

Consider two statistics S 1 and S 2 satisfying the conditions (i), (ii), (iii) 
given in Section 1.6.1. Suppose that we scale these two statistics so 
that their null distributions have the same dispersion at a certain 
value ()o of (); that is, we replace S1 by S1(X, t)/<T1 (()o, ()o)= S!(X,t) 
and S2(X,t) by S2(X,t)/<Tz (()o, ()o)= S!(X,t). Inspection of formula 
(1.4) shows that the ratio of variances of estimates of ()o based on S! 
and S! is determined by the slopes [oE{S:(X,t)}/ot]t=90' r= 1,2. 

Without doing formal power calculations, it is clear that the power 
of a test of H 0: () = ()o against H 1 : () = ()o + A, A small, will be 
determined largely by the slope given above associated with the 
statistic S: used for the test. For any statistic S, the slope at ()o, 

is, therefore a natural measure of its efficiency for testing H 0 against a 
close alternative H 1. If we put A = 1/Jn then es(()o) is the displace­
ment of the distribution of S from its null location under H l' 
standardized with respect to its standard deviation under H o. 

Making the approximation <T(()o + A, ()o) ~ <T(()o, ()o) and assuming 
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the relevant distributions of S to be approximately normal, the power 
of a level-ex test of H 0 against Hi is approximately 

1 - <I> { u'" - ,1.J nl p.'(OO' 00 )1/0"(00 , 00 )}, (1.7) 

where <I> is the standard normal distribution function. 
For level-ex tests based on Sl and S2 of Ho against Hi to have the 

same power, according to (1.7), the required sample sizes nl and n2 

must satisfy 
(1.8) 

The quantity es(Oo) is called the efficacy of S at 00 and the ratio of 
squared efficacies in (1.8) is the Pitman asymptotic relative efficiency 
(ARE) of the statistics S 1 and S 2' In the 'regular' cases which we are 
considering the ARE is readily seen to be the same as the relative 
efficiency of the estimators yielded by Sl and S2' Further notes on 
the Pitman ARE are given in Appendix B. 

1.7 Multiple samples and parameters 

1. 7.1 Introduction 

The two-sample problem to receive most attention in later chapters is 
that of location shift. It is, therefore, still a one-parameter problem, 
and while the typical statistic used for inference will depend on two 
sets of sample values, the modifications required to the discussions in 
Sections 1.5 and 1.6 are obvious. They will be seen in the relevant later 
sections. 

Problems with k > 2 samples are those that are commonly thought 
of as having to do with 'analysis of variance' in parametric statistics. 
Here a natural model involves (k - 1) location-shift parameters, so we 
have a multiple-parameter problem. Regression generally involves 
multiple parameters, although the important straight-line regression 
case can be regarded as a one-parameter problem if the interest is only 
in the slope parameter. Two or more parameters also occur with 
bivariate or multivariate observations. 

In the discussion that follows we shall consider two parameters. 
Generalization to more than two parameters is obvious. Also, as we 
have indicated for the two-sample, one-parameter case, there is no 
real need to discuss single- or multiple-sample cases separately at this 
stage; the actual details for these cases are, of course, different, but will 
become clearer when special cases are treated in later chapters. 
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Generally we shall have two statistics S,(X, t I' t 2), r = 1,2 whose 
exact joint conditional distribution under a suitable randomization 
scheme is known when tl and t2 are replaced by 01 and °2 , the two 
parameters of interest. By 'known' we understand, as before, that the 
rule by which the distribution can be enumerated is known. In 
practice we may choose to approximate the distribution by, usually, a 
normal distribution. The statistics SI and S2 will be assumed to have 
properties like those of S according to assumptions (i), (ii), (iii) in 
Section 1.6. Usually they will not be independent and we take their 
covariance to be of the form cov {SI(X,t l ,t2), S2(X,t l ,t2)} = 

C1\2(t\,t2,OI,02)/n. As we have indicated in the introductory para­
graph to this section, if more than one sample is involved, the only 
changes to the discussion are that the divisors, n, in the variances and 
covariances of S I and S 2 are replaced by factors depending on the 
sample sizes. 

1.7.2 Point estimation 

Defining the statistics SI and S2 to be such that E {S,(X, 0\, (2)} = 0, 
r = 1,2 the point estimates of 0\ and O2 are taken to be the solu­
tions 0\ ,(j2 of the estimating equations 

S,(X,t\,t 2 )=0, r=I,2 (1.9) 

If S I and S2 are not continuous functions of t I and t2 for fixed X, some 
suitable convention has to be adopted to define unique estimates 
0\,{i2 • 

The assumptions that have already been made about the distri­
bution of SI and S2 are sufficient to ensure the consistency of the 
estimates, by an argument similar to that leading to Lemma 1.1 ; it will 
not be elaborated here. Similarly, by arguments like those leading to 
(1.4) a formula for the large-sample approximate covariance matrix of 
0\, O2 can be obtained. 

Let 

and 

c = [YI dOl, ( 2) YI2 (°1 , ( 2)] 
Y21 (°1 , ( 2) Y22(OI' ( 2) 

(1.10) 

Denote the covariance matrix of SI(X,O\,Oz),Sz(X,O\,02) by V. 
Then 
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By a linearization argument similar to that used before the joint 
distribution of {jl' (j2 is approximately normal if the joint distribution 
of Sl and S2 is approximately normal. 

The efficiency of a point estimate will be judged in terms of its 
variance calculated according to (1.11). 

1.7.3 Hypothesis testing 

Let us consider the testing of a simple null hypothesis H that specifies 
the values (e?, e~) of e1 and e2 , and the use ofthe statistics Sl and S2 
for this purpose. Assuming that the exact joint null distribution, 
conditional or otherwise, of S 1 and S 2 is known from the operation of 
a suitable randomization scheme, the first matter that has to be 
decided is the choice of critical region for a test of levela. In the one­
parameter case a suitable choice is usually obvious: S(X, t) is chosen 
not only to have zero expectation at t = e but also such that E {S(X, t)} 
is monotonic in t. Then the appropriate tail region ofthe distribution 
of S defines a natural critical region. By extension of this sort of 
approach to the two-dimensional case, the critical region could be 
taken to comprise those points of the (S l' S 2)-space that are 'most 
distant' from the origin [E{S(X, e?, e~)}, E{S2(X, e?, e~)}] = [0, OJ. 

Following precedents set in other areas of statistics, we shall use as 
a measure of distance 

(1.12) 

where we have written for simplicity of notation S, = S,(X, e?, e~), 
r = 1, 2, and V is the covariance matrix of S l' S 2. Large values of Q 
will lead to rejection of H o. In other words, we are now using Q as a 
test statistic for H o. 

Enumeration of the exact randomization distribution of Q is, in 
principle, straightforward and will be demonstrated in several 
examples to follow in later chapters. Therefore we have the apparatus 
for an exact test of H 0 based on S 1 and S 2. 

Elementary calculations show that 

E{Q(X, e?, e~)IHo} = 2 

and this means that detailed enumeration of the distribution of Q will 
often be unnecessary; if the observed Q is smaller than 2, Ho is 
accepted. Under suitable conditions the distribution of Q will be 
approximately X~. 

The one-dimensional counterpart of Q is simply S2(X, eo)1 
var S(X,Oo), whose expectation under H 0 is 1, and whose distri-
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bution under suitable conditions is approximately xi. Consistency of 
the test of H 0 can be shown to hold by arguing as in Section 1.3 but 
using the distribution of S2(X, (Jo)/var {S(X, (Jo)}. A similar argument 
applied to Q demonstrates the consistency of the test of H 0 based on 
it. 

For the two-dimensional case we define the efficacy of testing by 
generalization of the notion of small displacement of the distribution 
of Sunder H 0 relative to HI to two dimensions, using the type of 
distance measure that is involved in the definition of Q. By analogy 
with the interpretation of es((Jo) in Section 1.6.2 as the displacement of 
the distribution of S due to a change of magnitude 1/Jn in (J, we now 
perform a similar calculation. Both (J~ and (J~ are taken to be shifted 
by amounts 1/Jn under HI and the displacement in 
[E {S dX, (J~, (J~)), E {S 2 (X, (J~, (J~)}] is calculated according to the 
distance measure used to define Q. Then, if the efficacy of Q is 
leQ((J~, (J~)I, we have 

e~((J~, (J~) = (1, 1)CT V; I C(1, W (1.13) 

where 

While developing an exact test procedure for a simple Ho is hardly 
more complicated in the two-parameter case than for one parameter, 
severe complications can arise if we wish to test certain composite 
hypotheses. A typical example is the testing of a hypothesis that 
specifies, say, (JI = (J~, but leaves (J2 unspecified. The difficulty that 
arises is not peculiar to distribution-free tests. It is the general 
problem of existence of 'similar regions' or elimination of 'nuisance 
parameters'. In special cases it is possible to devise an exact test of 
such a null hypothesis despite the existence of the nuisance parameter °2 , But in general it is not possible. An approximate procedure is to 
obtain a point estimate {j2 of O2 and then to act as if&2 is the true value 
of (J2' The accuracy of the resulting approximate test size is generally 
unknown. 

1.7.4 Corifidence regions 

The argument for determining a confidence region outlined in Section 
1.5 could be called inversion of the hypothesis-testing procedure. It 
carries over without modification to the two-parameter case, where 
inversion of the hypothesis-testing procedure for the simple Ho 
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produces a joint confidence region for the parameter vector (() l' () 2). If 
the test of H 0 is exact, so is the confidence region. 

Here, as in hypothesis testing, the problem of nuisance parameters 
arises, and again it is not confined to distribution-free methods. Let us 
suppose that an exact joint confidence region, C, for ((}1' (}2)' of 
confidence coefficient (1 - (X) has been established. Also assume for 
simplicity that it is convex. Suppose that this confidence region is 
graphed in a (() l' () 2)-plane and that two tangents to it are drawn 
parallel to the (}1 axis. They intersect the (}2 axis at (}~1) and (}~2), and 
these two values can be taken as confidence limits for (}2. However, 
the confidence coefficient ofthis confidence interval ((}~1), (J~2») for (J2 is 
greater than or equal to 1 - (X; usually it is greater than 1 - (X by an 
unknown amount. In 'normal theory' it is easy to establish the exact 
relationship between 1 - (X and the confidence coefficient of((J~l), (}<[»). 

If two sets of tangents to C are drawn, parallel to the (J2- and (Jl-axes 
respectively, confidence intervals for (}1 and (}2 are obtained. The 
probability that the two intervals simultaneously contain (}1 and (}2 is 
also at least (1 - (X). Pairs of parallel tangents drawn at other angles, 
that is, not parallel to either of the axes, generate confidence intervals 
for linear functions of (}1 and (}2; the probability that all of these 
intervals simultaneously contain all of the relevant parameters is 
1 - (X. However interesting this statement may be, the most pressing 
practical problem is often that of obtaining a confidence interval for 
(}1 or (}2 or perhaps one linear function of (}1 and (}2' and 
determination of an exact interval appears to be impossible, in 
general, even with the availability of an exact joint confidence 
region C. 

1.8 Normal approximations 

1.8.1 The need for normal approximations 

The inferential procedures described in this book are almost 
exclusively based on quite simple permutation and randomization 
schemes. Relevant conditional null distributions are obtainable 
exactly by these means, so that with patience or computing help they 
can always be listed in whatever detail is needed. So, from the point of 
view of doing distribution-free tests, or actually finding confidence 
limits, normal approximations are not strictly needed. 

However, as some of the examples will show, the work of 
enumerating exact null distributions increases so rapidly with 
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increasing sample sizes that putting distribution-free methods into 
effect would, in many instances, be quite impractical without the use 
of approximations. Knowledge of the first two moments of a null 
distribution will often be sufficient to enable one to make a sensible 
decision about a set of data. For example, in a test against a one-sided 
alternative the observed value of the test statistic may fall on the 
'wrong' side of its null expectation. If the observed value of the test 
statistic is, say, more than four standard derivations from the null 
expectation there would be little question of accepting the null 
hypothesis. 

Nevertheless, in most applications reasonably accurate signific­
ances are needed for tests, and they are, of course, needed for setting 
confidence limits. In calculations relating to these questions, good 
large-sample approximations to the exact distributions are almost 
indispensable. Another important aspect of normal approximations 
of distribution for statistics is that notions of asymptotic relative 
efficiency are closely connected with assumptions of normal distri­
butions of statistics. It is fairly easy, and rather useful, to introduce 
crude ideas of efficiency without special reference to normal distri­
bution, as we have done, but asymptotic normality certainly figures 
largely in more precise formulations. 

In the following sections a brief outline of some of the important 
theory relevant to normal approximation of null distributions is 
given. 

1.8.2 The central limit theorem 

Suppose that the random variable has finite expectation J1 and finite 
variance (J2 and that Xl' X 2' ... , X n are independent random vari­
ables, identically distributed like X. Then we have the possibly best­
known form of the central limit theorem as follows: 

Theorem 1.3 If Yn = Xl + X 2 + ... + X n' the distribution function of 
(Yn - nj1-)/((J J n) converges to a standard normal (N(O, 1)) distribution 
function as n ~ 00. 

Theorem 1.3 is the basis of the normal approximations of the 
distributions of sums of independent random variables that are used 
widely in practice. Even when the actual distribution is discrete the 
approximation can be remarkably good for quite small values of n, 
especially if appropriate continuity corrections are made. One of the 
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best-known examples, which we shall be using, is normal approxi­
mation of the Binomial distribution. 

A more general version of Theorem 1.3 holds for independent 
random variables that are not necessarily identically distributed. We 
shall state it in a form given and proved in Hajek and Sidak (1967). 
Suppose that al,a2, ... ,an is a sequence of real numbers with the 
property 

max (ar)/'Lar --+ 0 as n --+ 00 (1.14) 
i 

and that Xl' X 2' ... , X n are the random variables of Theorem 1.3. Let 
n 

Ta= 'L aiXi 
i= 1 

Then for any finite n, 
n n 

J-La=E(TJ=J-L 'L ai; 0"; = var(Ta) = 0"2 'L ar. 
i= 1 i= 1 

Theorem 1.4 The distribution function of(Ta - J-La)/O"a converges to an 
N(O, 1) distribution function as n --+ 00. 

There will be several applications of this theorem in later chapters. 
One of them is to the distribution of the Wilcoxon signed-rank 
statistic. 

1.8.3 Sampling from finite populations 

In problems involving two samples of sizes m and n it is common to 
test a null hypothesis, Ho, to the effect that the two samples derive 
from the same population. Some cases are exactly of this kind, many 
others can be put in this form. Here we obtain exact inferential 
procedures by conditioning on the observed set of N = m + n 
results, and arguing that, under H 0 the partition into groups of sizes m 
and n is random. This argument is used throughout Chapter 4 and 
elsewhere. 

The randomization procedure here can be seen to be equivalent to 
sampling without replacement from a finite population of size N = 
m + n, the sample size being m or n. Suppose that the N sample items 
in such a finite population have values el' e2' ... ' eN' with 

N N 

J-LN=(1/N) 'L ei' 0"~=(1/N) 'L (ei-J-LN)2 (1.15) 
i= 1 i= 1 
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Now let Xl' Xl' ... Xm be the values of the members of a sample of 
size m drawn at random without replacement from the population. By 
symmetry, the random variables X I, Xl' ... , X m are identically 
distributed, each with mean Jl.N and variance O'~. Nothing that var 
(X I + ... + X N) =0 we find that cov (Xi' X) = - O'M(N -1), all i,j 
and hence the following standard results are readily established: 

BCtl xi)=mJl.N' varCtl xi)=mO'~(N-m)/(N-1) 
they are used repeatedly, especially in Chapter 4. 

A general theorem of Wald and Wolfowitz (1944) deals with 
the question of asymptotic normality of linear functions of 
XI'Xl' ... 'XN • A special case is the sampling problem discussed 
above, and we have the following theorem given also in Wilks (1962, 
p.268). 

Theorem 1.5 Suppose that we have a sequence of finite populations 
nN and that for large N 

N 

(liN) I (ei - Jl.Nr;~ = 0(1) (1.16) 
i= I 

Then if m, N --+ 00 in such a way that N 1m --+ c, where 1 < c < 00, the 
distribution function of 

(~l Xi - mJl.N) I {O'~mnl(N - 1)}1/2 

converges to a standard normal distribution function. 

The more general version of this theorem deals with linear 
functions of the type 

N 

LN=IajXj 
j= I 

where (XI'Xl' ... 'XN) is uniformly distributed on all permutations 
of the values (el,el, ... ,eN). This theorem is widely applicable, and 
could be used to check the asymptotic normality of certain rank 
statistics which we shall use. 

For the (aI' al , .. ·, aN) and (~l' ~l'"'' eN) sequences we introduce 
parameters Jl.N(a), O'~(a), Jl.N(~)' O'~W, their respective means and va­
riances, defined according to (1.15). Then using the result given above 
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for cov(Xi,X) it is easily shown that 

E(LN) = N J1N(~)J1N(a) 

var(LN ) = (N ~ 1)N o-~(~)o-~(a) 
Theorem 1.6 Suppose that conditions like (1.16) hold for each of the 
sequences (a 1 ,a2 , ••• ,aN) and (~1'~2""'~N)' and that m,N --+ 00 

such that N /m --+ c, 1 < c < 00. Then the distribution function of 
{LN - E(LN)} / {var (LN)} 1/2 converges to a standard normal distribu­
tion function. 

This theorem, with an outline of the proof, is given in Wilks (1962, 
p.266). 

A bivariate extension of this theorem can be developed if we take 
each member of the population to have two measurements (ei,1'fi)' 
i = 1,2, ... , N. Then write LNa = 2:ajX j and LNb = 2)j Yj, with Yj 

defined similarly for Xj' 
By imposing suitable conditions on the four relevant sequences, 

applying Theorem 1.6 to linear functions of LNa and L Nb , and using a 
characterization of the bivariate normal distribution the joint 
asymptotic normality of LNa and LNb can be established. 

1.8.4 Linear rank statistics 

Suppose that Xl' X 2, ... , X. are independent and identically distri­
buted with the common distribution function F, and denote the rank 
of Xi among the values Xl' X 2 , ••• , X. by Ri, i = 1,2, ... , n. Many of 
the statistics that we shall discuss are of the form 

• 
W= L CiRi 

i = 1 

The null distributions of these statistics are usually based on the 
randomization scheme whereby all permutations of the ranks 
(1,2, ... , n) have equal probability. Then, by the methods used in 
Section 1.8.3, we have the following familiar results: 

E(RJ = (n + 1)/2, i= 1,2, ... ,n 

var(Ri) = 0-2 = (n 2 - 1)/12, 

cov(Ri,Rj ) = -0-2/(n-1), 

i = 1,2, ... , n 

i +- j = 1,2, ... , n 
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Using these formulae we obtain 

where c = (lin) I? = 1 c;. 
The following theorem is a special case of a theorem for rank-based 

scores given in Hajek and Sidak (1967), Ch. V: 

Theorem 1.7 If max;(c; - £:)2/I?= 1 (c; - C)2 -+0 as n-+ 00, the distri­
bution function of(W- E(W))/{var(W)}1/2 converges to a standard 
normal distribution function. 



CHAPTER 2 

One-sample location problems 

2.1 Introduction 

Throughout this chapter we shall suppose that n independent 
observations Xl' x 2 , •.. ,Xn are made on a random variable X whose 
cumulative distribution function (c.dJ.) is F(x), where F(x) is con­
tinuous with differentiable probability density function (p.d.f.) f(x). 
Our concern will be primarily with the location of F, and when 
appropriate, we shall write F(x) = F(x, e), where e is a suitably defined 
location parameter. The simpler notation, F(x), will be used unless it is 
essential to indicate parameter values explicitly. 

We shall consider questions of point and interval estimation of e, 
and of testing hypotheses about e. Estimating equations for e will be 
formulated, and the approach to testing of hypotheses, and finding 
confidence limits, will be to use the statistics appearing in these 
equations. 

The best-known measures of location of a distribution F are the 
mean and the median, each being a natural measure in its own way. In 
the distribution-free setting the mean is less suitable than the median 
because, without some restriction on the family of distributions to 
which F may belong, the mean may not exist. On the other hand, a 
median always exists. Consequently, distribution-free inferences 
about location are most commonly thought of as dealing with the 
median. Unless otherwise specified, we shall take e to be the 
population median in the remainder of this chapter. 

If the distribution F is symmetrical about a point e such that 
f(x - e) = f( - x + e) then e will also be referred to as the 'centre' of 
the distribution; if F is continuous, the mean, if it exists, and the 
median, suitability defined, coincide with e. Some of the important 
one-sample distribution-free techniques depend on symmetry of F, 
and are, therefore, distribution-free in a restricted sense. The class of 
problems involving symmetric F is, however, quite extensive. In­
stances of naturally occurring symmetric distributions are not rare, 
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and symmetric distributions are often produced by differencing of 
independent random variables, for example, as in 'paired comparison' 
trials. 

The mean, Jl, is defined by 

Jl = fXdF(X) (2.1) 

when the r.h.s. of (2.1) is finite. With suitable F(x) it is sometimes 
convenient to define it as the value of t that minimizes 

Q2(t) = f(X - t)2 dF(x) (2.2) 

The median 0 satisfies F(O) = t and, with suitable F(x), can also be 
defined as the value of t that minimizes 

Ql (t) = fiX - tl dF(x) (2.3) 

A direct way of using the observations to estimate Jl or 0 is to 
replace the distribution function in (2.1), (2.2) or (2.3) by the sample 
c.dJ. From (2.1) we then find by simple calculations that the estimate 
of J.l is 

A 1 n _ 

Jl=- L Xi=X 
n i = 1 

The sample version of (2.3) can be written 

1 n 

Qln(t) = - L IX(i) - tl 
n i = 1 

(2.4) 

where X(l) < X(2) < ... < x(n) are the ordered Xl' X2,.··, Xn • When 
graphed as a function of t, Qln(t) has slope 

1 1 n 

- S(x, t) = - L sgn [xli) - t] 
n n i = 1 

(2.5) 

for values of t not coinciding with the order statistics X(l)' X(2)' ... ,x(n)' 
This is a step function with steps of equal height 2/n occurring at 

X(1),x(2)"",x(n)' ~ 
The minimum of Qln(t) occurs at a value t = 0 where S(x, t) changes 

sign. When n=2k+ 1 we have (j=X(k+l)' When n=2k,S(x,t)=O 
for X(k) < t < X(k + 1) and the usual convention is to put (j = 
{X(k) + X(k + 1)} /2. Formally we may regard (j as the solution of 

S(x,t) = 0 
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Since Fit) = { - ~S(x, t) + 1 } /2 is the sample c.dJ., e, also satisfies 

Fn(O)=t· 
Other measures oflocation can be defined by different choices of Q, 

the function to be minimized. Alternatively, different statistics could 
be used in (2.5). We might, for example, define a location estimate as 
the value of t for which 

1 n 

S",(x, t) = - L t/I(x i - t) = 0 
n i= 1 

(2.6) 

is satisfied. !fit happens that t/I(u) = f'(u)/ feu), andf(x - e) is the p.dJ. 
of X, then the maximum-likelihood (ML) estimate (MLE) of e is 
obtained. For this reason, estimates of the type generated by (2.6) are 
called M-estimates (Huber (1972)). The equation in t, 

Et/I(X, t) = f t/I(x - t) dF(x) = 0 (2.7) 

can be taken to define a location parameter of F. 

2.2 The median 

The median was defined in Section 2.1 and, in the terminology of 
Chapter 1, the estimating equation for the median, motivated directly 
by the definition, is (2.5), which we rewrite as 

n 

Sex, t) = L sgn(xi - t) = 0 (2.8) 
i= 1 

In discussions of the median we shall take the population median to 
be e unless otherwise stated, and in this case, 

Pr[sgn(Xi - e)= + 1] = Pr[sgn(Xi - e)= -1] =1-
i = 1,2, ... , n (2.9) 

giving 
E{S(X, e)} = 0 (2.10) 

Equation (2.10), by an application of the method of moments, can be 
taken as an alternative motivation for the estimating equation (2.8). 

The null distribution of S 
Here and elsewhere the term 'null distribution' indicates the distri­
bution of a statistic sex, e) when the distribution of X has parameter 
value e. Using (2.9) and the independence of the random variables 
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sgn (Xi - (J), i = 1,2, ... n, it is easy to enumerate the null distribution 
of S. Since we can write S(X, (J) = 2(B - n/2) where B is a binomial 
(n,!) random variable, tables of the binomial distribution can be used 
to find the null distribution of S. Note that this distribution of S(X, (J) 
does not depend on the form of F, hence inference based on S is 
distribution-free. 

Since S(X, (J) is the sum of independent random variables identi­
cally and symmetrically distributed about 0, its distribution is 
symmetric about 0, and since var {sgn (X - (J)} = 1, 

var {S(X, (J)} = n (2.11) 

By an application of the central limit theorem, the distribution of 
S(X, (J) tends to normality as n increases. 

Testing Ho : (J = (Jo 
To test Ho: (J = (Jo against H 1: (J = (Jl > (Jo, we calculate the observed 
value S(x, (Jo) of S(X, (Jo) and refer it to the null distribution of S. 
Since Pr {sgn(X - (Jo) = + 11H tl >!, we have E{S(X, (Jo)IH tl > 0, 
and therefore we reject H ° if S(x, (Jo) is in the upper tail of the 
null distribution. In practice one might refer to a table of the 
null distribution, or for n ~ 5, use a normal approximation as 
follows: 
Suppose S(x, (J) = s. Calculate 

s-1 u=-;;rn (2.12) 

and reject Ho at level oc if 1 - <l>(u) < oc. In (2.12), the subtraction of 1 
from s in the r.h.s. numerator is a continuity correction, because the 
c.dJ. of S is discrete with jumps at - n, - n + 2, ... , n - 2, n. 

Since E{S(X,(Jo)IH1}=2n{F«(Jl,(Jl)~F«(Jo,(Jd} and var 
{S(X, (Jo)IH tl ~ n, the test is consistent by an application of 
the results of Section 1.3. 

For other H l' modifications of the test procedure are obvious. 

Example 2.1 Suppose that we have the n = 10 independent observa­
tions. 

3.38,5.81,4.46,4.62,4.15,5.44,6.56,5.82,3.95,5.19 

and wish to test the hypothesis H ° : (J = 4.25 against H 1 : (J > 4.25, 
where (J is the population median. Then, S(x, 4.25) = 4, and from 
tables, or by simple enumeration, Pr[S(X, (Jo) ~ + 4] = 176/1024. 
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The value ofu given by (2.12), is 3/J10 = 0.95 giving 1 - $(u) = 0.171, 
which agrees well with the exact significance level 176/1024 = 0.172. 

Confidence limits for e 
A simple way of finding a confidence set for e is to use the follow­
ing procedure of inverting the hypothesis-testing argument: 
A 100(1 - oc)% confidence set, C, for e comprises those values e' for 
which the hypothesis that e = e' is accepted at level oc. Typically the 
form of critical region in the hypothesis test determines the form 
of C, in particular, whether one- or two-sided confidence limits are 
obtained. 

For two-sided confidence limits we may proceed as follows. Let 
Pr[ISI (X, e)1 ~ s] = 1 - oc, where oc is near one of the conventional 
'small' values 0.10, 0.05, etc. Then, as t varies from - 00 to + 00, 

observed S(x, t) changes from n to - n, in jumps of size 2, at points 
X(l)' X(2)"" ,x(n)' Consequently, the limits are x(rtl + and x(r2) - where 
r l = (n - s)/2, r2 = n - r l + 1. 

For large n, the values s, r I' r 2 can be found by the normal 
approximation for the distribution of S. 

Example 2.2 Use the data in Example 2.1 arranged in increasing 
order of magnitude. The bracketed numbers separating the observed 
order statistics are values of S given by t in the corresponding interval 

(10) 3.38 (8) 3.95 (6) 4.15 (4) 4.46 (2) 4.62 (0) 

(0) 5.19 (- 2) 5.44 (- 4) 5.81 (- 6) 5.82 (- 8) 6.56 (- 10) 

From the null distribution of S we have 

Pr[ISI ~4] = -112/1024~0.90. 

Therefore a 100(1 - 112/1024)% confidence interval for e is 
(4.15 +,5.81 - ) 

Point estimation of e 
The point estimate (J of e is the solution of the estimating equation 
(2.8), and, as explained before we have 

if n=2k+ 1 
if n=2k 

the symbol (J will be used to denote the estimate and the correspond­
ing estimator. 
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To check for consistency of e as an estimate of () we can use the 
result in Section 1.4. We only have to verify that var{S(X, t)} = 
nu2(t, () with u2(t, () bounded. In fact 

var {S(X, t)} = 4n Pr {sgn(X - t) = + 1}· Pr {sgn(X - t) = - 1} ~ n 

therefore e is consistent for (). 
In general, the estimator {j is biased for (), but it is median-unbiased, 

that is, the median of {j is (). 
For the case n = 2k + 1, the p.d.f. of {j at () = t is 

{n!/(k!)2} {F(t)(1- F(t»}k 

and by using Taylor series approximations of the type F(t) = F«() + 
(t - ()f«() =! + (t - ()f«() it is possible to show that the p.d.f. of (j 
can be approximated by an N«(), 1/(4nj2«()) density as n --. 00. See, 
for example, David (1970, p. 201). 

Alternatively, we may use the results in Section 1.6.1 as follows. We 
have 

E{S(X,t)} = n{1- 2F(t)} 
giving 

( aE{S(X, t)}) = _ 2nf«() 
at 1=11 

(2.13) 

and hence 

var(O) ~ var {S(X, ()} I {oE{S(X, t)} lot}; =8 = 11 {4nf2«()} 
(2.14) 

Since the distribution of S(X, () is approximately normal for large n, 
the distribution of (j is also approximately normal for large n. 

Efficiency considerations 
We begin by considering efficiency of hypothesis testing using S. 
Recalling the definition of efficacy given in Section 1.6.2 the efficacy of 
Sis 

es«() = I {oE{S(X, t)} lotL = 811 {n var S(X, ()} 1/2 

and using (2.11) and (2.13) we obtain 

es«() = 2f«() (2.15) 

In order to get a quantitative impression of the efficiency of Sand 
its associated point estimate, relative to other statistics, particular 
examples of F have to be considered. In the examples that follow, S is 
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compared with the appropriate likelihood procedure. With twice­
differentiable likelihoods this procedure yields the estimating 
equation 

and its efficacy is 

f _1_oJ(x;,t) =0 
; = tf(x;, t) ot 

Example 2.3 If the distribution of X is N«(),0'2), we have 

es«() = (2/n)1 /2/0' 

eML «() = 1/0' 

giving Pitman ARE = 2/n. 

(2.16) 

(2.17) 

Example 2.4 F(x, () = 1- e - x In 218, X ~ 0; this is an exponential distri­
bution with median () and mean () /In 2. 

es«() = C~2) 
1 

eML «() = e 
ARE = (In 2)2 

Since the sample mean is a commonly used location estimator, a 
comparison of its efficiency relative to the median is of interest. In 
Example 2.3 the MLE is the sample mean and in Example 2.4 the 
MLE of () is (sample mean/In 2). Consequently the ARE results 
reported in these examples also apply to the sample mean. One might 
expect the sample median to be relatively more efficient than the 
sample mean for 'heavy-tailed' distributions, because the sample 
median is little influenced by fluctuations in the smallest and largest 
sample values. Two examples follow. 

Example 2.5 f(x, () = (l/n){ 1 + (x - ()2}; a Cauchy distribution. 
This is a somewhat extreme example since the mean is undefined and 
var (X) is infinitely large. 

es«() = 2/n = 0.64; 
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Thus, relative to the MLE, the sample median has the moderately 
high efficiency of 81 %, whereas the sample mean is totally inefficient. 

18 2 (x -0) . Example 2.6 f(x, 0) = 20 4Y(x - 0) + 20 4Y J:()" where 4Y(u) IS the 

standard normal p.d.f.; this is one of the examples used by Huber 
(1972) in robustness studies. Efficacies are 

es((}) = 0.73; eMd8) = 0.91; ex(8) = 0.30 

In this less extreme example the median is again considerably more 
efficient than the mean. 

In concluding this section we emphasize that the efficiency of the 
median is strongly dependent on the behaviour of f(x, 0) for x near 0, 
and it is easy to construct examples for which the median would be 
disastrously bad or, again, extremely good relative to the mean. 
Overall, S(X, t) should be a reasonably robust statistic within the class 
of unimodal distributions. 

Regarding efficiency of estimation, we have already seen that 
the large-sample variance of the sample median is given by 
equation (2.14). The large-sample variance of the MLE of 8 is 
{eMd8)} - 2 In when (2.17) holds. Thus we see that if we measure 
relative efficiency of estimation by the ratio oflarge-sample variances, 
then it is equal to the Pitman ARE of testing. 

2.3 Symmetric distributions 

2.3.1 A basic permutation argument 

If F is known to be symmetric, several distribution-free procedures, 
apart from those discussed in Section 2.2, become available. Of 
course, these procedures are distribution-free only within the class of 
symmetric distribution F. They depend on the following permutation 
argument used by Fisher (1966, p. 41). 

With the distribution of X symmetric about 0, given an observation 
x such that the magnitude of its distance from 0 is Ix - 01, the sign of 
the difference is positive or negative with equal probability, 1-
Therefore, if we put 

Y= sgn(x - O)lx - 81 (2.18) 

then, conditionally on IX - 01 = Ix - 01, Y has a two-point distri­
bution with 

Pr[Y= -lx-OI]=Pr[Y= +lx-OI]=1- (2.19) 
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Suppose, now, that we have n independent observations 
XI'X2' ... 'Xn and define YI , Y2 , .•• Yn according to (2.18). Then the 
joint distribution of Y I' Y2' ... ' Yn , conditional on the observed 
1 Xi - e I, i = 1,2, ... , n, is easily enumerated by listing the 2n 

sign arrangements of the type ( + + - ... -). Consequently it is also 
easy, although tedious for large n, to find the exact conditional distri­
bution of any function of the Yi that may be considered for use in 
inference about e. 

2.3.2 The mean statistic A(X, e) 

Let 
n n 

A(x, e) = L Yi = L sgn (Xi - e)lxi - el (2.20) 
i= 1 i= 1 

This A(x, 0) is called the mean statistic because we could write it simply 
n 

A(x, 0) = L (Xi - 0) 
i= I 

whence the corresponding estimating equation is readily seen to have 
as its solution the sample mean x. Inference about 0 using A is, 
therefore, tantamount to using the sample mean. However, since we 
shall make use of the conditional distribution of A, obtained by the 
permutational method described in Section 2.3.1, the inferences are 
exactly conditionally distribution-free. Significance levels are con­
ditionally exact, and since the unconditional significance levels are 
just expectations of the conditional levels they are also exact. 

Testing Ho using A 
In testing H 0: 0 = 00 against HI: 0> 00 , we note that unconditionally 

and 
E{A(X,t)IO=Oo}>o, if t>Oo 

if these expectations exist. Thus the critical region for testing H 0 

against HI is chosen so as to reject H 0 if the observed A(x, ( 0 ) is 
sufficiently large. 

Example 2.7 We have n = 6 observations: 

3.38,5.81,4.46,4.62,4.15,5.44 

Assume that they originate from a symmetric distribution and let 
00 = 4.5. We shall test at level 6/64 (approximately 10%), and hence 
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need only list the 6 largest values of A(x, ( 0 ) as follows: 

Ixi-eol: 1.12, 1.31, 0.04, 0.12, 0.35, 0.94 
+ + + + + + A = 3.88 
+ + + + + A=3.80 
+ + + + + A=3.64 
+ + + + A=3.56 
+ + + + + A = 3.18 
+ + + + A = 3.10 

observed: + + + A =0.86 

Since observed A = 0.86 is smaller than the six largest values of A, 
we accept Ho at level 6/64. 

Confidence limits using A 
Let N(t) denote the number of possible A(X, t) values greater than the 
observed A(x, t). The possible A(X, t) values are generated by the 2" 
permutations as described in Section 2.3.1; we denote this set of 
permutations by Q, while Q' denotes the 2" - 1 permutations 
obtained by removing the observed one from Q. A 100(1 - 2r/2")% 
two-sided confidence interval for 0 is (t 1 , t 2), with tl determined such 
that for t ~ tl we have N(t) ~ r; t2 is determined similarly. 

As t varies from - 00 to + 00, N(t) changes whenever t passes 
through one of all the possible averages (x~ + x~ + '" + x;)/s, where 
1 ~ s ~ n and x~, x~, ... ,x; is a subset of the sample values 
X 1'X2' ... ,X". This can be seen by writing 

N(t) = L I[L {sgn(xi - t) - sgn(X; - tnlx; - tl < 0] 
qeQ' q 

where q denotes a member of Q', and I( ) is the indicator function. 
Now 

{sgn(x; - t) - sgn(X; - tn Ix; - tl 

{o if sgn (x; - t) = sgn (X; - t) 
= 2(X;-0) ifsgn(x;-t):fsgn(X;-t) 

Therefore 

() ,,(x~ + x~ + ... + x; ) 
Nt =£..J <t 

Q' s 

showing that N(t) changes at the values (x~ + ... + x;)/s. 

Example 2.8 We use the data of Example 2.7. For an approximately 
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90% two-sided confidence interval, we have r = 3. The three largest 
averages are 

5.81 

(5.81 + 5.44)/2 = 5.625 

5.44 

The three smallest averages are 

3.38 

(3.38 + 4.15)/2 = 3.765 

(3.38 + 4.46)/2 = 3.92 

Thus the 100(1 - 6/64)% confidence interval for () is: (3.92, 5.44). 

N onnal approximation of A 
For the calculation of significance levels in large samples it would be 
useful to be able to approximate the conditional distribution of A by a 
normal distribution. Since conditionally A is the sum of independent, 
not identically distributed random variables, such an approximation 
is possible under certain conditions; see Section 1.8. The variance of 
the conditional distribution of A is I? = 1 (Xi - tf and approximation 
by a N(O, I? = 1 (Xi - t)2) distribution will be possible, almost surely, if 
maxi(Xi - tf /I? = 1 (Xi - t)2 ~ 0, almost surely, as n ~ 00. This con­
dition will hold for distributions F with finite variance, but not, for 
example, in the case of the Cauchy distribution. 

To illustrate the use of the normal approximations, consider the 
one-sided test discussed above with significance level 0(. We reject H 0 

if 

(2.21) 

where <D(ua ) = 1 - 0(. Relation (2.21) can be rewritten 

_ s ( n - 1 )1/2 
X > eo +J-Ua --2 n n- ua 

where S2 = I? = 1 (Xi - x)2/(n - 1). 
The factor ua{(n - l)/(n - U;)}1/2 can be taken as an approxi­

mation to tn _ 1 (1 - O(), which would have been used in its place if the 
observations were known to have originated from an N((),0-2 ) 

population. For certain nand 0( values the approximation is quite 
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good; for example, with IX = 0.05 we have the following: 

n t.-l (0.95) 1.645{(n -l)/(n -1.6452)p/2 

5 

10 

30 

2.132 

1.833 

1.699 

2.172 

1.827 

1.696 

Point estimation based on A and efficiency considerations 
In the introduction to Section 2.3.2 we mentioned that the point 
estimate of () resulting from the estimating equation defined by A is 
the sample mean x. While it is possible to make exact conditional 
distribution-free inferences, unconditional behaviour must be studied 
when assessing the efficiency of a procedure based on A relative to 
other statistics. 

The efficacy of A is 

eA «() = 1/0' 

where 0'2 = var (X) if it exists; and, var (X) = 0'2/n. 

2.3.3 Rank transformations 

Comparing the statistics S and A discussed in previous sections, it will 
be noted that S can be regarded as having been derived from A by 
applying a transformation T(u) = 1 to the values oflx i - 01 in A. Thus 

n 

S(X,O)= ~ sgn(Xi-()T(IXi-()1) (2.22) 
i= 1 

Many other transformations are possible; one ofthe best known, and 
most effective, from the point of view of efficiency and robustness, is 
the rank transformation where I Xi - () I is replaced by its rank, 
denoted Rank(lxi-()I), in the set Ix l -81,lx2 -()I, ... ,lxn -()I. 
Recall that in a set of numbers a 1 ,a2 , ••• ,an' Rank (ai) = =#= (a j ~ai' 
j = 1,2, ... , n). The statistic produced by this rank transformation is 

n 

W(X, () = ~ sgn (X i - () Rank (I Xi - 0 I) (2.23) 
i = 1 

called the Wilcoxon signed-rank statistic, after Wilcoxon (1945). 

The null distribution of W 
Owing to the symmetry of the distribution of X about (), the random 
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variables IX; - 81 and sgn(X; - 8) are independent; this holds 
because Pr[sgn(X; - 8) = - 1] = Pr[sgn(X; - 8) = + 1] = t for any 
given IX; - 81. Writing S;(8) = sgn(X; - 8),R;(8) = Rank(IX; - (1), it 
follows that S 1 (8), S 2 (8), ... , Sn(8) are mutually independent, and S;(8) 
is independent of R/8) for i,j = 1,2, ... , n; note, however, that 
Rl(8),R2(8), ... ,Rn(8) are not mutually independent. 

In the joint distribution of Rl(8),R2(8), ... ,Rn(8), the vector 
R(8) = (Rl (8), R2(8), ... , Rn(8» assumes each of the n! permutations of 
the integers 1,2, ... , n with equal probability. Using this fact and the 
independence properties noted above, the distribution of W can be 
enumerated by listing the 2n possible values of the vector 
(S 1 (0), S2 (8), ... , Sn(8» together with the integers 1,2, ... , n. 

Alternatively, it may be noted that the basic permutation argument 
of Section 2.3.1 can be employed to obtain the conditional distri­
bution of W after replacing the values I x; - 81 by their ranks. Since the 
set of ranks is the same for all samples, this conditional distribution is 
also the unconditional distribution. 

Example 2.9 With n = 3 have the following tabulation: 

Ri({I) Si({I) [only signs are indicated] 

+ + + + 
2 + + + + 
3 + + + + 

W 6 4 2 0 0 -2 -4 -6 

This gives the distribution 

w:-6 -4 -2 0 2 4 6 

8Pr[W=w] : 1 1 1 2 1 1 

The null distribution of W has been tabulated for certain values of 
n; for example, Lehmann (1975), Table H. Some care should be 
exercised when using tables, because some authors tabulate the 
distribution of W +, the sum of the positive ranks; W = 2 W + -

n(n + 1)/2. The null distribution of W does not depend on F, hence 
inference based on W is distribution-free, except for the assumption of 
symmetry. 

The distribution of W is clearly symmetric about 0, hence 
E{W(X,8)} =0. Conditionally on fixed (R 1 (8), ... ,Rn(8», W is a 
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weighted sum of independent random variables Si(8), i = 1,2, ... , n, 
each of which has variance 1, the weights being the integers 1,2, ... , n. 
Hence, 

n 

var {W(X, 8)IR(8)} = L: i2 = n(n + 1)(2n + 1)/6 (2.24) 
i = I 

and since E {W(X, 8)IR(8)} = 0, using var(W) = E {var(WIR} 
+ var {E(WIR)} shows that the unconditional var {W(X, 8)} is also as 
given in (2.24). For large n the conditional distribution of W is 
approximately normal, by an application of Theorem 1.3. Since the 
conditional distribution of W is identical for all realizations of 
IX I - 81, IX 2 - 81,···, IXn - 81, theunconditionaldistributionofWis 
also approximately normal for large n. 

Example 2.10 For n = 6, Pr(W~ 18) = 1 - 7/128 = 0.945. 

. . (18+1-0) Normal approxImatIOn: Pr(W~ 18) ~ <p J140 = 0.946. 

Note the 'continuity correction' (+ 1) in the numerator of the 
argument for <p. 

Testing H 0: e = eo against HI: e > eo 
As a function of t, the statistic W(x, t) is non-increasing in t. Clearly, if 
t < X(l) we have W= n(n + 1)/2. As t increases, W changes only if 
sgn(xi - t), or Rank(lxi - tl), or both change. These events occur, 
respectively, when t = Xi' or when IXi - tl = IXj - tl for some i 1- j. In 
the latter case we have Xi - t = - Xj + t, or t = (Xi + x)/2. In both 
cases W decreases by 2. At t = Xi this happens because sgn (Xi - t) 
Rank (I Xi - t I) changes from + 1 to - 1. In the second case, if Xi ~ X j 
the contribution of Xi and Xj to W is 

-r+(r+ 1) 
-(r+ l)+r 

for t < (Xi + x)/2 

for t > (Xi + x)/2 

giving a change of - 2. We can summarize these statements in 

W(x, t) = n(n + 1)/2 - 2 # {(Xi + x)/2 ~ t; i,j = 1,2, ... ,n} 
(2.25) 

the r.h.s. being clearly non-increasing in t. 
In the light of the result above we have 

E{W(X,8o)} > E{W(X,8)} (2.26) 
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hence the test procedure is 

'reject H 0 if observed W(x, 80 ) > C' 

where C is obtained by reference to the null distribution of W. 

35 

Example 2.11 Suppose that we have the n = 10 observations given in 
Example 2.1, and that 80 = 4.5. The values of Xi - 4.5 and the signed 
ranks are listed below. 

Xi - 4.5 : - 1.12, 1.31, -0.04, 0.12, -0.35, 0.94, 
- 0.55, 0.69 

signed ranks : - 7 8 - 1 2 
-4 5 

W(x, 4.5) = 25 

For the null distribution of W, 

-3 

var(W) = 385 = (19.62)2 

Pr{W~25} ~ 1-<1>(24/19.62)=0.11 

which is the approximate significance level. 

6 

2.06, 

10 

To check the consistency of the test we rewrite (2.25) as 

n 

W(x, t) = N(n + 1)/2 - L Vij(t) 

where Vij(t) = { ~ 
Thus 

if (Xi + x)/2~ t 
otherwise 

i,j= 1 

n 

E{W(X,t)}=n(n+l)/2- I E{Vi)t)} 
i,j:::::; 1 

where E{Vij(t)} = Pr{(X i + X)/2~ t} 

{
F(t) 

= J F(2t - x)/(x) dx 

when i = j 

when i =F j 
-co 

glVlng. 

E{ W(X, t)} = n(n + 1)/2 - 2nF(t) 

00 

1.32, 

9 

- n(n - 1) f F(2t - x)f(x) dx (2.27) 

-00 
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Combining (2.26) and (2.27) we see that as n-+ 00, 

A >0, 

while var {W(X, eo)}:::;; Bn3 , where B is some constant. Thus, from 
Section 1.3, the test is consistent. 

Confidence limits for e 
We again use the procedure of inverting the hypothesis-testing 
argument. From the null distribution of W we find w such that 
Pr [I W(X, e) I :::;; w] = 1 - rx. We have seen that as t varies from - 00 to 
+ 00 the value of W(x, t) changes from N = n(n + 1)/2 to - N in N 
jumps of size 2 at points ~(1l' ~(2)'··.' ~(N)' where the ~(k) are the N 
averages (Xi + x)/2, i,j = 1,2, ... , n, arranged in increasing order of 
magnitude. The 100( 1 - rx)% two-sided confidence limits are ~(rlJ' ~(r2)' 
where r1 = (N - w)/2, r2 = N - r1 + 1. 

Example 2.12 Use the following n = 6 observations: 

3.38, 5.81, 4.46, 4.62, 4.15, 5.44 

There are 21 pairwise averages as shown below, with the original 
observations underlined. The numbers shown in brackets are the 
values of W for t lying between the corresponding averages. 

(21) 3.38 (19) 3.765 (17) 3.92 (15) 4.00 

(13) 4.15 (11) 4.305 (9) 4.385 

(7) 4.41 (5) 4.46 (3) 4.54 (1) 4.595 

( - 1) 4.62 (-3) 4.795 ( - 5) 4.95 

(-7) 4.98 ( - 9) 5.03 (-11) 5.135 (-13) 5.215 

( - 15) 5.4~ (- 15) 5.625 (-19) 5.81 ( - 21) 

From the null distribution of W, Pre I WI:::;; 15] = 1 - 6/64 = 0.906. 
Thus by inspection of the table above, a 90.6% confidence interval for 
e is: (3.92, 5.44). This result happens to coincide with the result in 
Example 2.8; this will not always happen. 

Note that var(W) = 91 = (9.539)2. Using a normal approximation 
for the distribution of W, 

Pr[IWI:::;; 15] = 2¢(16/9.539) - 1 = 2¢(1.677) - 1 = 0.906. 

Thus, using this approximation for an approximately 90% confidence 
interval, the result given by the exact distribution would have been 
obtained. 
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Point estimation based on W 
The estimating equation for 8 is 

n 

W(x, t) = I sgn (Xi - t) Rank( IXi - tl) = 0 (2.28) 
i = 1 

The resulting estimate, a, is usually called the Hodges-Lehmann 
estimate (Hodges and Lehmann, 1963). 

Recalling that as t varies from - 00 to + 00, W(x, t) decreases from 
+ N to - N in N steps of size 2 at the values ~(l)' ~(2)'···' ~(NP we see 
that (2.28) may not, strictly, have a unique solution. However, we take 
the solution to be the median of the ~(k) values; thus the solution is 
defined as 

e- {~«N-l)!2+1) 
{~(N!2) + ~(N!2+ 1)}/2 

if N is odd 
if N is even 

Owing to the symmetry of X, the estimate {} is median-unbiased 
for 8. 

Example 2.13 In Example 2.12 the point estimate of 8 produced from 
(2.28) is e = 4.595. 

The point estimate e is consistent for 8 because we have seen from 
(2.27) that, as n ~ 00, 

While 
E {W(X, t)ln} ~ A 

var {W(X, t)ln} ~ Bin 

consistency follows from Section 1.4. 
According to Section 1.6.1 the distribution of e tends to normality 

and to find its large sample variance we need [oE {W(X, t)} jot], = o. To 
calculate the derivative it is convenient and entails no loss of 
generality to take 8 = O. We can then use (2.27), and noting that 
f( - x) = f(x), straightforward differentiation gives 

[oE{W(X,t)}/ot],=o= -2!if(0)-2n(n-1)SP(x)dx (2.29) 

Writing SJ 2(x)dx = J, the 'mean density', we have, using (2.24), 

var (0) ~ 1/(1211J2) (2.30) 

The efficiency of W 
From (2.29) and (2.14) the efficacy of W is readily seen to be 

ew(8) = 2J3J (2.31) 
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It is interesting to note that the efficacy of W depends on the mean 
density,], while the efficacy of S depends, by contrast, on the density 
at the median, f(O). For many standard distributions calculation of] 
is easy because f2(X) is proportional to a density of the same type as 
f(x). For example, if f(x) is a normal density, j2(x) is proportional to 
a normal density. If f(x) is a Cauchy density, both f(x) and j2(x) are, 
apart from constants, Pearson Type VII densities. 

In Table 2.1 some values of ew(l~) are given, along with esUJ) and 
eML(8) for comparison. Note that the large-sample variances of the 
corresponding point estimates are obtainable as [n 1/ 2ew(8)] - 2, etc. 

Table 2.1 Efficacies of Wilcoxon signed-rank(W), median (S), mean (A), and ML 
statistics. 

Wilcoxon 
signed-rank Median Mean 

(W) (S) (A) ML 

N(O, 1) 0.98 0.80 1.00 1.00 

Cauchy (0,1) 0.55 0.64 0 0.71 

Double exponential I(x, OJ = te - Ix - 81 0.87 1.00 0.71 1.00 

[18¢(x - OJ + 2¢{(x - OJ/lO} ]/20 0.81 0.73 0.30 0.91 

Table 2.1 shows that the efficacy of W is remarkably close to that of 
the ML statistic in the normal case. In every example in the table, the 
better of Wand S has satisfactory efficacy. Further, each of Wand S 
have reasonable robustness in being reasonably efficient over a class 
comprising several types of distributions. 

Table 2.1 also draws attention to the problem, not unique to 
distribution-free procedures, of choice between statistics. According 
to formulae (2.15) and (2.31), W is better than S when )3f1f(0) > 1, 
but, even within the class of Pearson Type VII distributions, the ratio 
)3]lf(0) varies from )314 to )3/2 as m varies between 1 (Cauchy) 
and 00 (normal). Also, examination of realized frequency distri­
butions, based on reasonably large samples from any of the popu­
lations represented in the table, will show that it is far from easy to 
choose between Sand W. To do so according to the criterion 
j3]lf(0), one has to replace] andf(O) by estimates, and estimating 
these quantities is not straightforward. A better procedure may be to 
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base the choice of procedure on a more direct estimate of efficacy, 
some further discussion of this topic is given in Section 2.3.7. 

A further question that arises is whether some other transfor­
mation, based on ranks, might produce a better statistic than W. 
Heuristically, one of the reasons for the rank transformation being 
successful is that it shrinks all observations onto the (0,1) interval 
(after division by, say, n + 1). In the case oflong-tailed distributions 
the effect of very large or very small observations is thus diluted. 
However, in some cases this effect may be too severe, and the question 
is whether, by manipulating the ranks, transformations can be made 
that would be nearly as good as ML for certain distributions. That 
this is possible is suggested by considering the example of 'normal 
scores' defined as follows: Suppose that Rank (Ix; - tl) in (2.28) is r. 
Then replace Rank (Ix; - tl) by E( Y(r»)' where Y has the standard half­
normal distribution with p.dJ. 2cf>(y), y :;?; O. A transformation having 
a very similar effect is to replace Rank (Ix; - tl) by cf>; 1 {r/(n + 1)}, 
where cf>*(y) = 2{ cf>(y) - t} is the c.dJ. of Y. The explanation of the 
similar effects of these two transformations is that E(Y(r») = cf>; 1 

{r/(n + 1)} + O(l/n); see, for example, David (1970, p. 65). 

Example 2.14 Consider the following n = 9 observations and their 
transforms: 

Xi 1.39 -0.56 0.05 0.32 2.94 1.97 -0.26 0.41 0.44 

r i = Rank (lx,IJ 7 6 3 9 8 2 4 5 

sgn (xi)E(Y('d) 1.09 -0.88 0.13 0.39 1.84 1.37 -0.26 0.54 0.70 

sgn (Xi)"'; 1 {rJ(n + 1)} 1.04 -0.84 0.12 0.38 1.64 1.28 -0.25 0.53 0.67 

Note that the scores give a reasonable reproduction of the original 
observations; also note the closeness of the two sets of scores. The 
agreement between scores and original observations suggests that, in 
the normal case, procedures based on the scores could have 
efficiencies close to that of the likelihood method. The following 
sections pursue the question of scores somewhat further. 

2.3.4 Scores based directly on ranks 

We generalize the statistic W(X, t) defined in (2.23) by replacing 
R;(t) = Rank(IX; - tl) by G;(t) = G{R;(t)/(n + 1)}, where G(u) is 
continuous, monotonic increasing in u, and defined on (0,1). 
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Typically G - 1 is a distribution function, as in Example 2.14. Observe 
that when G - l(U) = u, the c.dJ. of a uniform distribution on (0,1), then 
G/t) = R/t)/(n + 1). However, G need not always be an inverse 
distribution function, as we shall see in Section 2.3.5. 

We now have the statistic 

n 

WG(X,t)= I sgn(Xi-t)G;(t) (2.32) 
i = 1 

of which W(X, t) is clearly a special case. Note that for a given n there 
are only n distinct scores ai = G{ i/(n + I)}, i = 1,2, ... ,n, and every 
vector G(t) = (G 1 (t), G2(t), . .. , Gn(t)) is a permutation of these a i • 

The null distribution of WG 
Owing to the independence of the vectors 8(e) = (S 1 (e),S2 (e), ... ,Sn(e)) 
and R(lI) = (Rl (e), R2(e), ... , Rn(e)), noted in Section 2.3.3, the vectors 
8(e) and G(e) are also independent. Hence the null distribution of WG 
can be tabulated by exactly the same process of enumeration used for 
the null distribution of W. This distribution is symmetric about ° 
hence E {WG(X, e)} = 0, and following the argument leading to (2.24), 

n 

var [WG(X, e)] = I Gf(t) (2.33) 
i = 1 

The distribution of WG(X, e) can be approximated by a normal 
distribution forlarge n if max [G;(t)] /IGf(t) --+ ° as n --+ 00. Forlarge 
n it is sometimes useful to approximate the sum in (2.33) by an integral 
glVlng 

1 

var [WG(X, e)] ~ n f G2(u)du (2.34) 

o 

Note that in the case G - l(U) = u, giving WG(X, e) = W(X, e)/(n + 1), 
equation (2.34) gives var [W(X, e)] ~ (n + 1)2n/3; asymptotically this 
result and the result in (2.24) are identical. 

Testing H 0: e = eo 
The testing procedure is straightforward and is illustrated by 
Example 2.15 below. Since G(u) is monotonic in u, consistency of a test 
based on WG for a one-sided alternative HI: e > eo follows by 
arguments similar to those of Section 2.3.3 for W. Modifications for 
other HI are obvious. 
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Example 2.15 Suppose we have the n = 6 observations given below 
from a symmetric population and wish to test H 0 : () = 0 against 
H 1 : () > 0 at level (J( ~ 0.10. 

Xi 

Ranklxd 

Scores 

- 0.89 5.28 

3 6 

- 0.56 1.46 

-1.32 2.21 0.56 0.50 

4 5 2 1 

- 0.83 1.07 - 0.37 - 0.18 

The scores are obtained from G-l(u)=2J~<p(x)dx as in 
Example 2.14. The six largest values of WG occurring with equal 
probabilities are obtained with the following signs applied to the 
transformed ranks arranged in increasing order of magnitude. 

0.18 0.37 0.56 0.83 1.07 1.46 W 

+ + + + + + 4.47 

+ + + + + 4.11 

+ + + + + 3.73 
+ + + + 3.37 

+ + + + + 3.35 
+ + + + 2.99 

observed + + 0.60 

Pr [WG ;:: 2.99] = 6/64, observed WG = 0.60, thus H 0 is accepted at 
level (J( = 6/64 = 0.94. 

Confidence limits for (), and point estimation 
By reference to the null distribution of WG , w is found such that 
Pr[IWG(X,())I~w]=I-(J(, with 1-(J( close to the selected con­
fidence coefficient. Then the values of WG(x, t) are calculated for t 
varying between - 00 and + 00, noting that WG(x, t) varies between 
LGi(t) and - LGi(t) with n(n + 1)/2 jumps, of unequal size, at the 
averages (Xi + x)/2, i,j = 1,2, ... ,n. The confidence limits for () can 
then be determined by inspection of this tabulation to find the e 
values satisfying I WG(x, e)1 ~ w. 

Example 2.16 Use the data and scoring function in Example 2.15. Set 
(J( = 6/64 for a two sided 90.6% confidence interval. Using the 
tabulation in Example 2.15 we find that Pr[1 WG(X, e)1 ~ 3.37] = 
1 - 6/64. The n(n + 1)/2 = 21 averages (Xi + x)/2 are listed in order 
below, with the values of WG(x, t) for t in the relevant intervals shown 
in brackets; the original observations are underlined. 
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(4.47) - 1.32 (4.11) -1.105 (3.73) -0.89 (3.37) - 0.41 (2.99) 
(2.99) -0.38 (2.45) - 0.195 (2.07) - 0.165 (1.69) 0.445 (1.21) 
(1.21) 0.50 (0.85) 0.53 (0.47) 0.56 (0.11) 0.66 (- 0.43) 

( -0.43) 1.355 (-0.81) 1.385 (-1.19) 1.98 (- 1.97) 2.195 (- 2.45) 
(- 2.45) 2.21 (- 2.81) 2.89 (-3.35) 2.92 (-3.73) 3.745 (-4.11) 
(-4.11) 5.28 (- 4.47) 

From the table, the interval of t values for which I WG(x, t)1 ~ 3.37 is 
( - 0.89, 2.92). 

Formally the point estimate of () is the value of t at which 
WG(x, t) = O. In general WG(x, t) jumps from a positive value, a, to a 
negative value, - b, at one ofthe (Xi + x)/2 averages, t say, witha 1= b. 
If a = b it would be natural to take the solution 8G = t but since this 
does not happen in general it might be more satisfactory to 'smooth' 
the graph of WG(x, t) against t in the neighbourhood of WG(x, t) = 0 
and thus make an interpolation to find tG. For the data of Example 
2.16 a segment of the graph of WG(x, t) against t is shown in Fig. 2.l. 
The smoothing shown in this figure suggests taking 8G = 0.63 rather 
than t = 0.66. 
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Consistency of 8G can be established by arguments similar to those 
used for 8. The large sample variance of 8G can be obtained from the 
efficacy of WG , a discussion of which follows. 

Efficiency of WG 
In Section 2.3.3 it was possible to derive an exact expression for 
E {W(X, t)} by simple steps because of the possibility of expressing 
Rank(IZj(t)l) as a sum of indicator random variables. This simple 
procedure is unavailable when we consider G[Rank(IZj(t)I)/ 
(n + 1)]. However, we can make use of the device of replacing 
Rank (I Zj(t)I/(n + 1)) by F*( I Zi(t)J), where F*( ) is the c.dJ. ofl Zi(t)l, 
invoking the following lemma, whose proof is obvious. 

Lemma 2.1 Suppose that G(u) is continuous and twice differentiable 
in (0,1) with 0< G(u) < M. If X 1,X2"",Xn are identically and 
independently distributed with c.dJ. F(x), then 

E{Rank(Xj)/(n + 1)IXi = x} = (n -1)F(x)/(n + 1) + O(I/n) ~ F(x) 

var {Rank (Xj)/(n + 1)IX j = x} = (n - I)F(x){ 1 - F(x) }/(n + 1)2 

Also 

E[G{Rank (Xi)/(n + I)} IXj = x] ~ G{F(x)} + O(I/n) 

Let us now consider an alternative derivation to that given in 
Section 2.3.3 of E{ L? = 1 sgn (Xi - t) Rank (IZj(t)J)}. It is convenient 
without loss of generality, to take (} = 0. Then the p.dJ. of (X - t) is 
f(x + t) and the p.dJ. of Y = IX - tl is 

f*(y, t) = f(y + t) + f( - y + t), for y ~ 0 

with c.dJ. 

y 

F*(y, t) = f [f(u + t) + f( - u + t)] du (2.35) 

o 
Also 

Pr {sgn(X - t) = + l11X - tl = y} 

= f(y + t)/{f(y + t) + f( - y + t)} (2.36) 

Conditioning on Y=(Y1 , Yz, ... , Yn )=(Y1>Yz, ... ,Yn)=Y we find, 
since the conditioning fixes the ranks of the IZi(t)l, and taking 
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expectations with respect to the sgn (Xi - t), random variables 

E{W(X, t)IY = y} = f f(yi + t) - f( - Yi + t) Rank (Yi) 
i = 1 f(Yi + t) + f(Yi + t) 

i= 1 

(2.37) 

Next consider only the term Q(Yj' t) in the sum in (2.37) and condition 
only on Yj = y, while allowing the other Yi values to vary. Then, using 
Lemma 2.1, and neglecting the term of order lin, 

f(y + t) - f( - Y + t) 
E{Q(Yj ,t)IYj =y}=(n-1)f( ) f( )F*(y,t) (2.38) 

y+t + -y+t 

The unconditional expectation ofthis term is obtained by integrating 
out with respect to the p.d.f. of Y and we obtain 

00 

E{Q(Yj , t)} = (n - 1) f [f(y + t) 
o 

- f( - y + t)]F*(y, t)dy (2.39) 

Using (2.35) and noting thatf( - a) = f( + a), andf'( - a) = - f'(a), we 
find after differentiating the expression in (2.39) with respect to t and 
putting t = 0, that 

00 

[8E{W(X,t)}/8t]t=o ~ 2n2 f P(y)dy (2.40) 

-00 

in agreement with (2.29), as n--+ 00. 

Replacing Rank {IZi(t)l} by G{Rank(IZi(t)l)/(n+1)}, we use the 
same conditioning arguments, and the latter part of Lemma 2.1 in the 
step (2.37) to (2.38), to obtain 

00 

E[WG(X, t)] ~ n f [f(y + t) - f( - y + t)]G(F*(y, t» dy 

o 
and finally 

00 

[8E{WG(X, t) }/8t]t= 0 ~ - f 4P(u)G'[2F(u) - 1] du (2.41) 

o 
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Combining (2.34) and (2.41) we get 

ro 

eWG(tJ)= {4 ff 2(U)G'[2F(U) -l]dU}/ 

o 
1 

45 

{f G2(u) du } 
2 

(2.42) 

o 

Formula (2.42) is, of course, useful for finding the efficacy of a test 
based on any transformation G, and several special cases have been 
studied. For example, if F is a normal distribution and G is the 
'normal scores transformation', it can be verified that the ARE of WG 
and the MLE is 1. 

2.3.5 Optimum rank statistics 

In practice it is not at all easy to decide on a 'best' G, a matter that has 
been discussed before in Section 2.3.4. If there are grounds for 
thinking that the underlying distribution might be normal, then 
obviously a normal-scores transformation would be selected. 
However, perhaps the most useful aspect of the efficiency studies in 
this section is that one is enabled to study the efficiency of a particular 
type of score over a variety of distributions F; Chernoff and Savage 
(1958) have shown, for example, that the normal-scores test has a 
minimum asymptotic efficiency of 1 relative to the usual t-test over all 
distributions F, suggesting the former to be always preferable to the 
latter. 

In the discussion of normal scores in Section 2.3.3, it was pointed 
out that when sampling from a normal population the scores tend to 
be quite close to the original observations, because Y(r) is an unbiased 
estimate of E(Y(r») with variance of order lin. Further, in the normal 
case the ML estimating equation happens to be simply 

n 

L sgn(Xi - t)IXi - tl = 0 (2.43) 
i = 1 

Thus a natural question for a general symmetric distribution is 
whether a score can be defined such that a statistic based on such 
scores behaves like the likelihood statistic. 

For symmetric F(x, tJ) = F(x, - tJ), the ML estimating equation in 
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the 'regular' case can be written 

L sgn (Xi - t)f'(iXi - tl)/f(lxi - tl) = ° 
i= I 

Hence, using the normal case as a guide, we define scores 

(2.44) 

It will be noted that since the Y(i) are the order statistics ofthe random 
variables IX 1 - 01, IX 2 - 01,···, IX n - 01, the values of the a(i) can be 
tabulated once and for all for a given F and n. Using these scores, the 
estimating equation is 

n 

L sgn (Xi - t)a(R) = ° (2.45) 
i = I 

where Ri is the rank of IXi - tl. 
Since E(Y(r») = F'; I {r/(n + 1)} +O(l/n), r=1,2, ... ,n, where 

F *(u) = 2{F(u) -1} (see, for example, David, 1970, p. 65), the score in 
(2.44) can be approximated by 

a*(i)=f'[F,;l{i/(n+ 1)}]/f[F- 1{i/(n+ 1)}] (2.46) 

Using the scores a*(i), and formula (2.42), the efficacy of the 
resulting statistic can be shown to equal the efficacy of the ML 
statistics (Terry, 1952). 

In potential applications of rank methods, the usefulness of scoring 
systems such as (2.44) and (2.46) is problematical, because rank 
methods are normally considered in precisely those situations where 
there is uncertainty about the form of F. However, they can be useful 
for diluting the effect of outlying observations. Asymptotically little 
efficiency may be lost by using a statistic based on one of the scores, 
and there may be some gain in robustness. 

2.3.6 Robust transformations 

As we have remarked in Section 2.3.4, the success of some of the rank 
methods in coping with certain long-tailed distributions is attribut­
able to their shrinking effect on outlying observations. Other 
transformations of the observations to achieve a similar effect are 
possible. Two types of transformations that we shall discuss rather 
briefly are related to M-estimates and L-estimates. 

M-estimates 
Suppose that we transform Xi - t to tjJ(Xi - t), where tjJ(u) IS con-
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tinuous in u and differentiable almost everywhere. Then consider the 
. M -statistic' 

n 

M",(X, t) = L I/J(X i - t) (2.47) 
i = 1 

see also (2.6). When X is symmetrically distributed it is natural to 
choose I/J such that I/J( - u) = -I/J( u); to ensure this we use instead 

n 

M",(X,t) = L sgn(Xi-t)I/J(\Xi-tl) (2.48) 
i = 1 

In this form we obviously have 

E{M",(X, t)} = 0 

leading to the type of estimating equation for e that we have discussed 
before. 

As an example of I/J(u), take I/J(u) = u/(l + u2 ). Then it will be noticed 
that the estimating equation for e is exactly the equation that is 
obtained by the ML method if the p.d.f. of X is the Cauchy 
f(x, e) = n- 1 [1 + (x - e)2] -1. 

The fact that estimates based on M", may coincide with ML 
estimates has inspired the terminology 'M-estimates'. 

Lrestimates 
These are linear functions of the order statistics 
X(I) < X(2) < ... < X(n) in the form 

n 

tL = I WiX(i) 
i = 1 

where I? = 1 Wi = 1; tL is the solution of the estimating equation 
n 

L(X, t) = I Wi(X(i) - t) = O. (2.49) 
i = 1 

If n = 2k + 1, wk = 1, Wj = 0 for j +- k we obtain the estimating 
equation (2.8) as a special case of (2.49). 

Tests and confidence limits based on M-statistics. 
To test H 0 : e = eo the basic permutation argument can be applied in 
an obvious way to M",(X, t), written as in (2.38). Further, the same 
argument can be used to find exact confidence intervals for e. 

Determination of confidence limits is more tedious than with the 
rank methods because the null conditional distribution of M",(X, e) is 
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not invariant with respect to e. In practice a null distribution must be 
found for every trial e and the observed M", referred to it; this applies 
also, of course, to the mean statistic A. 

Following the argument used in connection with the mean statistic 
A, a 100(1 - 2r/2n)% two-sided confidence interval for e is (t 1 , t2 ), 

where 
t 1(t 2 ) is the rth smallest (largest)t such that 

s 

L "'( Ix; - tl) = 0 
; = 1 

where for 1 ~ s ~ n, x~, x;, . .. , x~ is a subset of the sample 
x1,x2,···,xn· 

Example 2.17 Use the n = 6 observations of Example 2.15; they are 
shown in the tabulation below. Take "'(u) = (1 - e - ")/(1 + e - "), 
following a suggestion of Huber (1972). We shall find a 100(1-
6/64)% two-sided confidence interval for e. 

To decide whether a trial value t of e belongs to the confidence 
interval, we first find the n = 6 values of "'( Ix; - tl) and enumerate the 
conditional distribution of M", by listing the 2n sign combinations. In 
fact, we only need the three largest (and smallest) possible values of 
M", for our present purpose; note that the distribution of M", is 
symmetrical about O. If observed M", lies between its third largest and 
third smallest possible value, t belongs to the confidence interval. For 
example, take t = - 0.8 and t = 2.92 to give the following results: 

sgn(x j - t)r/I (Ix; - tl) 
Xj t= -0.8 t=2.92 

-1.32 -0.254 -0.972 

-0.89 -0.045 -0.957 

0.50 0.572 -0.837 

0.56 0.592 -0.827 

2.21 0.906 - 0.341 

5.28 0.995 0.827 

Observed M",: 2.766 - 3.933 

3rd largest M",: 2.856 3.933 

The table above shows that the value t = - 0.8 is in the confidence 
interval; likewise t = 2.92 -; t = 2.92 + is outside the interval. 
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Straightforward calculations show that the confidence interval is 
(0.89,2.92). This result coincides with the result of Example 2.16; 
generally this will not happen. 

When n is large, judicious choice of t/I(u) will ensure that the 
conditional null distribution of M", can be approximated by a normal 
distribution. Thus, with t/I(u) = (1 - e - U)/(1 + e - U), u? 0, t/I(u) is 
bounded between 0 and 1 so that a normal approximation is possible. 
When a normal approximation can be used, the confidence limits are 
given by the solutions of 

(2.50) 

where Ua denotes an appropriate normal deviate; the solutions are 
generally fairly easy to obtain numerically. 

Example 2.18 Applying the normal approximation in (2.50) to the 
data in Example 2.17, with u, = 1.645 for an approximately 900/0 
confidence interval gives the result (- 0.70, 3.22). This agrees reason­
ably well with the exact result considering that n is rather small. 

One of the much studied types of robust transformations is 

for lui < k 
for lui> k 

(2.51 ) 

In principle the determination of confidence limits using (2.51) 
presents no new problems. However, with k relatively small, many of 
the t/I( Ix; - tl) values may be identical, the effect of which is to reduce 
the number of steps in the conditional c.dJ. of M",. This can be a 
nuisance in achieving a desired confidence coefficient. In the use of 
transformation (2.51), as with most robust transformations, the 
question of scaling arises; it is raised again in a later section. 

Apart from problems already mentioned there are no serious 
difficulties associated with the use of transformations t/I(u) that are 
monotonic in u > O. However, the use of transformations like 
t/I(u) = u/(1 + u2 ) can lead to problems of non-existence of confi­
dence intervals with specified confidence coefficient, especially in 
small samples. 

M -estimates and their efficiencies 
Point estimates based on M", statistics are found by solving the 
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appropriate estimating equations. In practice it is perhaps simplest to 
obtain solutions graphically as indicated in the example using rank­
based scores. 

To find E{M",(X, t)} when e = 0, the conditioning employed for 
equation (2.37) is useful. Conditional on IX i - tl = u we have 

feu + t) - f( - u + t) 
E[sgn (Xi - t)IP(IXi - tl IllXi - tl = u] = f( ) f( lP(u) 

u + t + - u + t) 
whence 

00 

E{sgn (Xi - t)IP(Xi - t)} = f [f(u + t) - f( - u + t)] lP(u) du 

o 
and 

00 

[oE{M",(X, t) }/ot]t= 0 = 2n f f'(u)lP(u) du (2.52) 

o 
Further, since sgn (Xi - t), IP(X i - t), i = 1,2, ... , n, are independent, 

+00 

var [M",(X, 0)] = f 1P2(u)f(u)du (2.53) 

-00 

from which, using (2.52), the efficacy of M", is readily found. 

M-estimation and scaling 
One of the problems associated with the use of M-transformations is 
scaling. It will be clear that, in general, the answers produced by M­
transformations are not scale-invariant. In order to achieve scale 
invariance the M-statistic could be written in the form 

n 

M",(X,t)= L sgn(Xi-t)IP[I(Xi-t)/al] (2.54) 
i= 1 

where a is a scale parameter. In practice a will be unknown and will 
have to be replaced by an estimated value. (See, for example, Huber, 
1972, where the alterations in efficacy calculations are mentioned.) 

We shall be content to explain the use of scaling in practice only 
and to indicate that it is still possible to obtain exact confidence 
intervals, and perform exact tests. The argument here again uses 
conditioning on the set of observed IXi - tl, i = 1,2, ... , n, and we use 
an estimated scale factor a that depends on the set of magnitudes 
Ix; - tl, i = 1,2, ... , n. Writing y; = IXi - tl, i = 1,2, ... , n, possible a 
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are 
n 

a1 = [(lin) L yf]1/2 
;= 1 

(2.55) 

The first of these two scale estimates, aI' is clearly sensitive to 
outliers, whereas a 2 is more robust against outlying observations. 

Hypothesis testing using M", 
To test Ho:(J = (Jo the first step, in principle, is enumeration ofthe null 
distribution of M ",. The values Ix; - (Jol, i = 1,2, ... n, have to be listed 
and they are used to find a. Then the values "'(Ix; - (Jolla) can be 
listed, and the 2" sign configurations can be applied to obtain the 2" 
equi-probable values of M",. In practice all possible values need not be 
listed; for a one-sided test at level r/2n, only the r largest (or smallest) 
possible M", values are required, as well as the observed value. 

With large n, approximation of the distribution of M", by a normal 
distribution may be possible, in which case the test of H 0 may be 
performed by calculating 

" I[ n J1 /2 ;~1 sgn(x; - (Jo)"'(lx; - (Jolla) ;~1 {"'(Ix; - (Jol/a)}2 

(2.56) 

and entering a table of the standard normal distribution function. 
Alternatively, the desired quantile ofthe distribution can be approxi­
mated by u,,[Li'= 1 {"'(IX i - (Jolla)}2]1/2, where ua; is a suitable normal 
deviate. 

Example 2.19 n = 10, H 0: (J = - 10.0, HI: (J =f - 10.0, t/I(u) = 
(l-e- U)/(l + e -U), Yi = Ix; + 101, ti2 = median (Yl,Yz, ... ,Yn) = 14.55 

Xi IXi+ 101 I/I(y;/U) Xi Ixi + 101 I/I(Y;/u) 

-91.6 81.6 0.993 1.1 11.1 0.364 

- 20.1 10.1 0.334 8.0 18.0 0.550 

-7.4 2.6 0.089 9.0 19.0 0.574 

-2.1 7.9 0.265 11.8 21.8 0.635 

-1.3 8.7 0.290 224.0 234.0 1.000 

Observed M", = 2.440. For a two-sided test at the 10% level we need 
the 51st largest (smallest) possible M", value = 3.108 (- 3.108). 
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For the normal approximation 

(0.9702 + 0.163 2 + ... + 1.0002)1/2 = 1.851 

giving 

± 1.645 x 1.851 = ± 3.045 

in reasonable agreement with the exact quantiles. Since observed 
M", = 2.753 is smaller than 3.108, Ho is accepted at the 10% level. 

Point estimation and confidence limits 
In principle, we can proceed exactly as in the case where no scale 
estimate is used. A potential difficulty arises in that Mix, t), with (J 

replaced by fT, is no longer necessarily monotonic in t for fixed x. With 
moderately large n the problem is, apparently, not serious because 
local maxima or minima only occur at large values of Itl. With some 1/1 
the problem of monotonicity of M", can be overcome by a simple 
modification of 1/1. For example, with l/I(u)=(1-e- U)/(1 +e- U), 

a=median (Yl,Yz, ... ,Yn), we can put 

u~ 1 
u ~ 1 

(2.57) 

Example 2.20 We use the n = 10 observations in Example 2.19. The 
two scales estimates a1 and a2 defined above were used with I/I(u) = 

(1 - e - U)/(1 + e - U) and 1/1 *(u) = min {I/I(u), 1/I(1)}, as in (2.57). The fol­
lowing point estimates and two-sided 90% confidence limits 
were obtained: 

Point Exact confidence Normal 
Method estimate limits approximation 

Mean (A) 13.6 - 25.4,58.9 

Median (8) 3.4 -7.4, 9.0 -7.4, 9.0 

Wilcoxon (W) 0.8 -11.1,10.4 -11.1,10.4 

M",: 

'" , 0-1 
6.1 - 24.7,48.5 - 26.5,48.9 

'" , 0-2 
0.4 -18.1,14.2 - 17.4,14.3 

'" *,0-1 
-0.1 - 24.7,26.8 - 24.2,26.5 

'" *,0-2 1.3 -9.5, 8.5 -9.5, 8.2 
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2.3.7 Large-sample calculations 

S3 

When the sample size is large it may be impractical to perform the 
exact calculations outlined in preceding sections, especially in those 
cases where ranking of observations is needed. One may have to 
resort to approximate calculations on grouped data. With large 
sample sizes it may well be that data are only supplied in grouped 
form. The sample of n = 50 observations in Table 2.2 will be used to 
illustrate some calculations using grouping; in each case a point 
estimate of 8 with 90% confidence limits will be 'found. 

Table 2.2 

3.081, 3.459, 3.527, 3.708, 3.793, 3.854, 3.865, 3.876, 4.072, 4.097 

4.204, 4.277, 4.390, 4.411, 4.434, 4.449, 4.603, 4.642, 4.685, 4.734 

4.772, 4.883, 4.889, 4.975, 4.981, 5.005, 5.053, 5.138, 5.304, 5.324 

5.465, 5.507, 5.544, 5.580, 5.813, 5.880, 5.995, 6.004, 6.278, 6.373 

6.435, 6.449, 6.604, 6.695, 6.699, 6.701, 6.975, 7.016, 7.232, 7.666 

Example 2.21 Sign statistic: Using the normal approximation to 
the null distribution of S(X,8), we have Pr[S(X, 8)1 ~ 10] ~ 
2<1>(1.556)- 1 = 0.880. Therefore the (approximately) 90% confidence 
limits for 8 are 

X(20) = 4.734 and X(31) = 5.465 

and the point estimate (j = (X(25) + X(26»)/2 = 4.993. 

Table 2.3 shows the data of Table 2.2 summarized in a frequency 
distribution. From this distribution the values of S(X, t) can be found 
for t-values coinciding with the class end-points. The largest value of S 
is 50 and the smallest is - 50. As t varies between - 00 and + 00, the 
reduction in S as t varies, between two class end-points is 2fj where fj 
is the class frequency. The values of t at which S(X, t) ~ ± 10 can be 
found from a graph of S against t in which the tabulated S-ordinates 
at t-abscissa are joined by straight-line segments; note that such a 
graph represents the sample c.d.f. of X, except for scale and origin 
transformation on the ordinate. Equivalently, t for S ~ ± 10 can be 
found by linear interpolation. The results are 4.70, 5.42; the point 
estimate from the frequency distribution is t = 5.0. These results agree 
well with the ungrouped results. 

Example 2.22 Wilcoxon signed-rank statistic: Using a normal 
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Table 2.3 

Class Frequency S 

3.0-3.5 2 
3.0 50 

3.5-4.0 6 
3.5 46 

4.0-4.5 8 
4.0 34 

4.5-5.0 9 
4.5 18 

, 
5.0-5.5 6 

5.0 0 

5.5-6.0 6 
5.5 -12 

6.0--6.5 5 
6.0 -24 

6.5-7.0 5 
6.5 -34 

7.0-7.5 2 
7.0 -44 

7.5-8.0 I 
7.5 -48 

8.0 -50 

approximation, Pr [I W(X, 0)1 ~ 339] ~ 2¢(340/207.183) - 1 = 

2¢(1.641) - 1 = 0.899. Referring to Section 2.3.4, the (approximately) 
90% confidence limits for 0 are 

~(468) = 4.870 and ~(808) = 5.434 

The 1275 mean values ~ij = (Xi + x)/2, i,j = 1,2, ... ,50, arranged in 
increasing order of magnitude and labelled ~(1)' ~(2)' ... , ~(12 7 5)' are 
not listed. The point estimate of 0 is ~(638) = 5.142. 

An approximate procedure can be used starting with the frequency 
distribution in Table 2.3. The approximation is based on taking all 
observations in a certain class interval equal to its mid-point. Then we 
have possible averages 3.75, 4.00, 4.25, ... ,7.75. Table 2.4 shows a 
convenient way of setting out the calculation of the frequency 
distribution of ~ij values. Each cell shows the number of occurrences 
ofthe average ofthe corresponding marginal values. For example, the 
frequency 9 in the class 4.5-5.0 of Table 2.3 generates (9 x 10)/2 = 45 
averages with the value 4.75; the frequencies 8 in 4.0-4.5 and 6 in 5.0-
5.5 generate 8 x 6 = 48 averages at 4.75. 

Table 2.5 shows a frequency distribution of ~ij values with 
corresponding values of W evaluated at t values mid-way between the 
successive mean values shown in the table. Graphically, or by linear 
interpolation, as in Example 2.21, the values of t at which W ~ ± 339 
are 

4.85 and 5.44 



Table 2.4 Class mid-points 
3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 

3.25 3 12 16 18 12 12 10 10 4 2 

3.75 21 48 54 36 36 30 30 12 6 

4.25 36 72 48 48 40 40 16 8 

Class 4.75 45 54 54 45 45 18 9 

mid- 5.25 21 36 30 30 12 6 

points 5.75 21 30 30 12 6 

6.25 15 25 10 5 

6.75 15 10 5 

7.25 3 2 

7.75 1 

Table 2.5 

eij Frequency W eij Frequency W 

1275 
3.25 3 5.75 118 

3.375 1269 5.875 -771 
3.5 12 6 86 

3.625 1245 6.125 -943 
3.75 37 6.25 66 

3.875 1171 6.375 -1075 
4.0 66 6.5 43 

4.125 1039 6.625 -1161 
4.25 102 6.75 31 

4.375 835 6.875 -1223 
4.5 120 7.0 15 

4.625 595 7.125 -1253 
4.75 139 7.25 8 

4.875 317 7.375 -1269 
5 142 7.5 2 

5.125 33 7.625 -1273 
5.25 149 7.75 

5.375 -265 7.875 -1275 
5.5 135 

5.625 -535 
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and the point estimate from the graph is tw = 5.16. Agreement with 
the ungrouped values is quite good. 

Estimation of variances 
Recall that the large-sample approximate variance of an estimate 
derived from an equation of the type Q(x, t) = 0 involves 
{oE{Q(x, t)}/ot}t~9. The derivative oE{Q(x, t)}/ot can be estimated 
from the actual data by oQ(x, t)/ot. In Examples 2.21 and 2.22, plots of 
S(x, t) and W(x, t) against t can be used. The slopes of these graphs are 
estimates of the derivatives. Estimates derived from such crude plots 
can possibly be refined by some mathematical smoothing process. In 
this connection, note that since S(x, t) against t is essentially the 
sample c.d.f. of X, the slope estimate is an estimate of the density of X; 
there is an extensive literature on more refined density estimation; see, 
for example, Rosenblatt (1971). 

Example 2.23 Refer to Example 2.22; the point estimate of () is 
tw = 5.14 and a graph of W(x, t) against t for t between 4.5 and 5.5 
is shown in Fig. 2.2. From the straight line fitted by eye, shown as a 
broken line in the fi~ure, the slope estimate is - 1130 giving the 
estimated s.d. (tw) = S:d.(tw) = 0.183. Crude 90% confidence limits for 
() can be c~lculated using this;.ct. (tw), giving tw ± 1.645 (d. (tw): 5.16 
± 0.030 = 4.86, 5.46. These limits agree well with the limits found in 
Example 2.22. 

2.3.8 Ties 

Nothing has so far been said about ties because, theoretically, they 
should not occur. However, in practical measurements ties do 
happen, and the question arises of what to do about them when rank 
methods are contemplated. One simple answer is to break ties 
arbitrarily. For example, if measurements 2.32, 2.59, 3.41, 6.72 are 
made and one wishes to test H 0 : () = 3, then for IXi - 31 we have 

0.68, 0.41, 0.41, 3.72 

with ranks 2 and 3 tied. The tie could be broken by considering 
H 0 : () = 3 + e or H 0 : () = 3 - e where e > 0 is arbitrary small in 
magnitude. 

In hypothesis testing most workers seem to favour the apparently 
less arbitrary device of assigning the average rank 2.5 to the two tied 
numbers. As far as applying the basic permutation argument is 
concerned, this introduces no new problem. There is only the slight 
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disadvantage that the simple formula for the null var (W(X, 0)) no 
longer holds. 

However, when point estimation and confidence intervals are 
considered, where the graph of W(x, t) against t is used, it will be noted 
that this graph depicts a step function with the jumps occurring at 
exactly the t values which create ties, but this is no impediment to the 
methods that have been developed. 

If two observations are actually identical, as in 2.32,3.41,3.41,6.72, 
giving a 'real' tie rather than the 'artificial' one above, there seems no 
natural alternative to assigning the same rank value to the identical 
numbers; one method is to give the average rank of tied values to each 
of the tied values. Some care needs to be exercised in enumerating 
exact null distributions in such cases; the formula for the variance of 
the null distribution remains unchanged. 

Example 2.24 Xi: - 2.67, 1.41, 1.41 
Test Ho :0=0. 
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Conditional null distribution of A: 

1.41 + + + + 
1.41 + + + + 
2.67 + + + + 

A(x,O) 5.49 2.67 2.67 0.15 -0.15 -2.67 -2.67 -5.49 

1 1 1 1 1 1 1 
Probability - - - - - - - -

8 8 8 8 8 8 8 8 

The variance of this distribution is .L?= 1 xf = 11.1051. 
For the signed rank statistic we have 

Rank (Ixil): 3, 1.5, 1.5 

and using the tabulation of signs above, the following distribution is 
obtained 

w: - 6 - 3 0 3 6 

P(W= w): 
1 

8 

1 1 1 1 
-

444 8 

The variance of this distribution is 1.52 + 1.52 + 32 = 13.5; in the case 
of no ties with n = 3, var(W) = 12 + 22 + 32 = 14. 

2.4 Asymmetric distributions: M-estimates 

For asymmetric distributions the median is perhaps the most natural 
measure oflocation. However, as we have indicated in Section 2.1, a 
measure of location for an arbitrary F(x) can be defined as the 
solution of the following equation in t: 

00 f ljJ(x - t) dF(x) = 0 (2.58) 

-00 

where ljJ(x - t) is some suitably chosen function. Typically ljJ(u) should 
be monotonic in u, and may be bounded, thus ensuring regular 
behaviour of the statistics associated with the estimating equation 
corresponding to (2.58). The estimating equation is 

n 

M",(X, t) = (lin) L ljJ(Xi - t) = 0 (2.59) 
i= 1 
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Since the arguments based on symmetry are not applicable, it 
appears that only approximate inference about the location para­
meter, e, is possible, based on large-sample approximate normality of 
the distribution of M ojJ and estimation of its variance. With suitably 
chosen I/I(u) the normal approximation of M is reasonable since it is 
the sum of identically and independently distributed random vari­
ables. However, the effect of having to use an estimate ofthe variance 
of M ojJ is uncertain. 

Even if the statistical problems of inference about e could be 
overcome, the difficulty of interpreting the resulting estimate as a 
measure of location remains. In certain comparative studies, for 
example in the two-sample location problem, this problem of 
interpretation does not arise. In such cases the robustness properties 
of the transformations can be advantageous. 

Exercises 

2.1 The data given below are n = 91 gold assay results (from Krige, 
D.G. (1952) A statistical analysis of some of the borehole values in the 
Orange Free State Goldfields. J. Chern. (Metall. Min.) Soc. S. Afr., 53, 
47) 

Find a point estimate and two sided 95% confidence limits for the 
population median assay value. 

1,1,5,5,5,8,11,12,12,14,14,15,24,24,33,34,37,39, 39,41,43,45,47,48, 
51,53,53,54,54,56,59,64,79,80,83,85,88,92,94,96, 104, 108, 109, 109, 
129,143,149,150,157,160,166,170,180,188,191, 195, 198,201,210,222, 
227,227,238,241,244,261,310,312,327,336,349,376,383,388,400,405, 
421, 437, 439, 518, 546, 665, 678, 890, 906, 1009, 1085, 1747, 1893, 2898, 
23036. 

2.2 In sampling from an exponential population with median e = 1, 
calculate the expectation of the sample median when n = 5, thus 
verifying by example that the sample median is in general not an 
unbiased estimator e. 
2.3 Show that the sample median (j is a median unbiased estimate of 
the population median lJ. 
2.4 Quantiles other than the median can be treated by the methods of 
Section 2.2. Consider the lower quantile e. An estimating equation for 
e is 

C(x, e) - n/4 = Q 

where C(x, e) is the number of observations Xl' X 2 , ••• , Xn smaller than 
;. The null distribution of C(x, e) is Binomial (n,!). 
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Using the data in Exercise 2.1, find a point estimate and two-sided 
90% confidence limits for e. 
2.5 Consider taking a random sample of size n = 5 from a 
R( - -! + e, -! + e) population and testing H 0 : e = 0 against 
HI: e > O. Tabulate the exact distribution of the Wilcoxon signed 
rank statistic W under the alternative H \ : e = e\ = 0.05. 

Hint: note that under HI conditionally on IXI < 0.45, 

Pr{sgn(X) = + I} =!. 
2.6 In Exercise 2.5 derive expressions in terms of nand e1 for 

E(WI HI) and var(WI HI). 

2.7 Suppose that the distribution of X is uniform between - t + e 
and t + e. Obtain an expression for the efficacy of WG if G(u) = uP, 
f3 > O. 
2.8 Obtain the efficacies of the sign statistic S and the Wilcoxon 
statistic W when the distribution of X has density K {I + (x _ e)2} - m 

where K is a constant. Find the value of m for which the two statistics 
have the same efficacy. 
2.9 The frequency distribution below is typical of distributions of 
errors of measurement of latitude; for convenience the units have 
been adjusted to give the class centres as shown. 

Assuming the underlying distribution to be symmetric, obtain a 
two-sided 95% confidence interval for its centre using the Wilcoxon 
statistic W. 

Class centre Frequency Class centre Frequency Class centre Frequency 

-8 1 -2 3 4 2 

-7 0 -1 6 5 0 

-6 0 0 10 6 1 

-5 0 1 9 7 0 

-4 2 7 8 0 

-3 3 4 9 



CHAPTER 3 

Miscellaneous one-sample 
problems 

3.1 Introduction 

While one of the dominant themes of this book is distribution-free 
inference about location, this chapter gives attention to some 
traditional one-sample problems that have not been dealt with in 
Chapter 2. These have to do with dispersion and with various 
aspects of estimating the distribution function and of density 
estimation. One of the applications of density estimation is to 
estimation of the standard deviations of certain distribution-free 
estimators. Although such standard deviation estimates are not 
always needed for interval estimation, they can be useful in certain 
problems of combining estimates, in problems involving nuisance 
parameters, and serve to give an indication of the precision of 
estimates. Some attention will be given to the problem of estimating 
standard deviations of estimates. Estimation of the distribution 
function (or its complement) in the presence of censored observations 
is an important practical problem that is also discussed. 

3.2 Dispersion: the interquartile range 

The standard deviation or its square, the variance, is by far the most 
widely used measure of dispersion of a distribution (or of a random 
variable). Many reasons can be advanced for its popularity, among 
them that the variance can be interpreted as an expected squared 
error, and that when it exists for a location-scale parameter distri­
bution, the standard deviation is proportional to the scale parameter. 
However, in the distribution-free context much the same reasons that 
make the mean unsuitable as a measure of location also apply to the 
standard deviation. Notably, there is its possible non-existence. 

For a continuous distribution function F(x) the interquartile range 
IS 

A = ~O.75 - ~O.25 
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where ~O.25 and ~O.75 are quartiles defined by 

p = 0.25,0.75 

The interquartile range is clearly a measure of dispersion of F, readily 
interpretable, and like the median, it always exists. For the well­
known standard distributions like the normal and the Cauchy, it is 
easy to express the usual scale parameter in terms of Ll. For example, 
in the standard normal case Ll = 1.348. 

Despite its simple definition and interpretation, inference about Ll 
is not straightforward, in general. Essentially this comes about 
because, using a sample of x observations, Ll is estimated by the 
difference of sample quartiles whose joint distribution can be 
complicated. This matter will be touched upon again in Section 3.2.2, 
after considering a much simpler special case in Section 3.2.1. 

3.2.1 Symmetric F, known location 

We shall assume F to be symmetric about O. Then, denoting the 
number of random observations Xl' X 2 , ••• , Xn on X that lie between 
- Ll/2 and + Ll/2 by nM we note that the distribution of n& is binomial 
(n, t). This fact can be used to test a hypothesis specifying a value of Ll,. 
and to find a confidence interval for Ll. 

Example 3.1 n = 12 observations from a symmetric distribution 
centred at 0: 

- 1.8.6, - 1.01, - 0.87, - 0.65, - 0.50, - 0.12 

- 0.06, 0.29, 0.59, 0.72, 0.97, 1.41 

Testing Ho : Ll = 2.0, H 1: Ll > 2.0 
H 0 will be rejected in favour of H 1 if observed n& is sufficiently large. 

Observed n& = 7 
Pr{n& ~ 71Ho} = 739/4096 

thus H 0 is accepted at the conventional levels of significance. 

Confidence limits for Ll 
If the true Ll is used to find n& we have 

Pr{3::::; n&::::; lO} = 1 - 158/4096 = 0.9614 

Now Ll> 2(1.86) = 3.72 yields n& = 12 

3.72 > Ll > 2(1.41) = 2.82 yields n& = 11 
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etc. Proceeding in this way, a two-sided 96% confidence interval for fl 
is seen to be 

(0.58, 2.82) 

Point estimation 
A point estimate .1 of fl is obtained by solving for fl the equation 

S(X, fl) = ntl. - n/2 = 0 

We observe that 

E{S(X,d)} = n{F(d/2) - F( - d/2)} 

and (8E{S(X,d)}/8d)d=tl. = nf(fl/2) 

Applying the results of Section 1.6.1, the large-sample variance of.1 
is approximately given as 

var(.1) ~ 1/{ 4nf2 (fl/2)} 

As an indication of relative efficiency we can calculate the variance 
of the MLE of fl in the case of a N(O, 0"2) distribution. The MLE of Q is 

~ = 1.348 L tl (Xi - xl/n J/2 
and its variance for large n is given by 

while 

giving 

3.2.2 General F 

var (~) ~ (1.348)20"2/(2n) 

var (A) ~ 0"2/[ 4n</>2(0.674S)] 

var(~)/var(A) ~ 0.37. 

Testing a hypothesis specifying a value of fl is much more difficult in 
this case because, in order to examine the compatibility of a given 
value of fl with the sample results, a decision has to be made about the 
location of the interquartile interval. Suppose that the left end-point 
of the interval is at ~, then its right end-point is at ~ + fl, and suppose 
that the numbers of observations in the intervals thus generated are 
N 1 (~), N 2 (~), N 3W, with N 1 + N 2 + N 3 = n. 

Then the log likelihood of the observed configuration 
3 

10gL(~,fl)=logn!- L 10g(Ni~»! 
j= 1 

- {N 1 (~) + N 3(~)} log4 - N 2Wlog2. 
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and one possibility is to choose ~ so as to maximize log L(~, A). One 
way of defining a test statistic is to base it on the difference 
max log (~, A) - max log (~, A), noting that for large n with, for 

~ ~.d 

convenience, n a multiple of 4, 

max log(~, A) = log n! - 210g(n/4)! -log(n/2)! 
~.d 

- (n/2)(log4 + log 2) 

In small samples there are several difficulties in this approach, one of 
them being that there is not necessarily a unique ~ which maximizes 
log (~, A) for fixed A. More seriously, the null distribution of the 
proposed statistic is not distribution-free (it depends on F). 

Similar difficulties attend interval and point estimation of A. The 
obvious point estimate of A is 

D = eO.75 - eO.25 

where eO.75 and eO.25 are sample quartiles. The exact definition of 
~O.25 (and ~O.75) is a matter of convention; one possible procedure is 
to smooth the sample distribution function Fn(x) which has steps of 
size l/n at the order statistics x(1), X(2)"'" x(n) as follows: The ordinate 
of Fn{x) for Xl') < x < X(, + 1)' is r/n, r = 1, 2, ... , n - 1. Let the 
smoothed Fn(x) have ordinates r/n at X, = (x(,) + X(,+ 1»/2 and inter­
polate linearly for x values between x" and X, + 1 . 

If n is sufficiently large to allow replacement without serious error 
of ~O.25 and ~O.75 by xl') and XIs) respectively, where r = [n/4], 
s = [3n/4], we have from standard results about order statistics: 

E(D)~ A 

var(D) ~ [3f(~O.75) + 2f(~O.25)f(~O.75) 

+ 3P(~O.25)]/[16nf2(~O.25)f2(~O.75)] (3.1) 

The discussion above, and especially the form of the 
expressions in (3.1), raises a problem which it has been possible to 
avoid in the one-sample, one-parameter problem of Chapter 2, 
namely, taking account of a nuisance parameter. In this case the 
nuisance parameter is the left location of the interquartile interval, or 
~O.25 in (3.1), where ~O.75 = ~O.25 + A. Generally in cases of this sort it 
is impossible to devise exact inferential procedures. With large none 
can proceed by estimating var (D). 

Estimates of quantities such as var(D), as given by (3.1), and of 
densities such as f(~O.75)' or the density at the median of X, depend 
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fundamentally on estimating the distribution function F(x). In the 
sections that follow we review some established results concerning 
inference about F(x). We shall return, later, to the question of 
density estimation. 

3.3 The sample distribution function and related inference 

The sample distribution function, Fn(x), is defined as 

F n(x)=(1/n) (the number of observations Xl,X2, ... ,Xn~x) 

and in Chapter 2 its fundamental role in the construction of 
estimators was illustrated. Generally we are interested in parameters 
that are defined by certain operations involving the distribution 
function F. If F n is substituted for F in such an operation the result is, 
usually, that a consistent estimator of the parameter is obtained. 

Thus it is important to note that, at every value of x, F n(x) is a 
consistent estimator of F(x). It is, in fact the maximum-likelihood 
estimator, and is unbiased with minimum variance, as is well known. 

Apart from its uses indicated above, the sample distribution 
function is used directly in many tests of goodness of fit. In such tests a 
specific parametric F is often nominated and the goodness-of-fit test is 
really a check of the agreement between Fn and F. This is usually 
made in terms of a measure of distance between two distributions. 
With a completely specified F, such a test can always be cast as a test 
of goodness of fit of the observations F(xd, F(x 2 ), ••• , F(xn) to a 
uniform (0,1) distribution. The test thus becomes distribution-free. 

While the distribution-free property of such goodness-of-fit tests is 
comforting, we are, of course, speaking of tests of parametric 
hypotheses that happen to be distribution-free. When contemplating 
using the distribution-free techniques that form the major substance 
of this book we are not, generally, concerned with such tests. 
Therefore we shall look only at one of these tests adapted to the 
setting of confidence bands for F. 

3.3.1 One-sided confidence-bands for F 

Consider the function 

F:(x, d) = min {Fn(x) + d, 1} 

where d > O. Obviously F: lies entirely above Fn (except when their 
ordinates coincide) and it is possible that F~ also lies entirely above F_ 
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Let us suppose that we can calculate the probability 

oc(n,d} = Pr{F:(x, d) ~F(x) for every x} 

Then F:(x, d), x = ( - 00, (0), describes a 100% one-sided con­
fidence band for F(x). The term 'confidence band' emphasizes that F: 
is above F for every x. Confidence limits for F at selected x-values can, 
of course, be obtained in the standard way, using the binomial 
distribution. 

Now, F:(x, d) will be entirely above F(x) if 

d>F(X(l)=U 1 I 
l/n + d > F(X(2) = U 2 

(3.2) 
d + 2/n > F(X(3» = U 3 

d + p/n > F(X(p» = Up 

where P is an integer such that d + p/n < 1, d + (p + 1)/n ~ 1. 
The joint distribution of U 1, U 2, ... , Un is known its p.d.f. being 

n! for 0 ~ U 1 ~ U2 ~ ••• ~ I 

Hence the probability of the event described by (3.2), that is, oc(n, d), 
can be computed by evaluating an appropriate integral: 

d d + lin d+ pin 1 

oc(n,d) = n! f f f f 
Ul = 0 U2;;;;"1 Up = up - 1 Up + 1 = Up 

(3.3) 

Un=Un-l 

The form of the integral in (3.3) in which F does not appear 
emphasizes the distribution-free character of the confidence band. 

Straightforward calculations give 
d d + pin f f (1- )n-p-l 

oc(n,a)=n! (n~;l_l)! dUp+1···du l =nlGn(p), 

"1 = 0 Up + 1 = U 

and 
(l-oc-p/n)n- p-2 

Gn(p) = Gn(p - 1) - (n _ P _ 2)! Hn(P - 1) 

Therefore, by successive addition we can write 
p (l-d-i/n)n-i . 

Gn(p) = Gn(O) - i~l (n _ i)! Hn(l- 1). 
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Further we note, 

so that 

Hn(O) =d 

d 
Hn(l) = 2(d + 2/n) 

H (r)=~~ d+--d ( r+ 1) 
n (r+l)! n 

oc(n,d) = n!Gn(O) - d Jl C )(1- d - i/n)"-i(d + i/n)i-l 

with Gn(O) = 1 - (1 - d)n. 
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(3.4) 

An approximation to oc(n, d) for large n can be obtained by putting 

d = A/jn, using Stirling's approximation for n! which leads to the 
sum in (3.4) being approximated by an integral of the form 

1 

1 f 1 M:: exp[ -A2/(2y(l- y))]dy 
v' 2n Jy(1- y) 

o 

By a substitution y = t + u followed by 4u2/(1 - 4u2 ) = Z2, this 
integral can be shown to be approximately (1/ A) exp ( - 2A 2). Since a is 
taken to be finite, large n implies large A. 

Substitution in (3.4) finally gives the large-sample approximation 

oc(n, d) = 1 - exp( - 2A2 ). 

The derivation given above is in Wilks (1962, p. 336). 
Two-sided confidence bands can be set in a manner similar to that 

discussed above. Calculation of the confidence coefficient is, however, 
considerably more complicated; the reader may refer to one of many 
texts that deal with the problem, or again to Wilks (1962, p. 339). 

3.3.2 Estimation of densities, and some related topics 

Estimation of densities arises in a variety of statistical problems; in 
the context of distribution-free techniques it turns out, as we have 
already noted in Chapter 2, that the density of the underlying F 
appears in expressions for asymptotic variances and relative efficien­
cies. Thus, if one were to estimate the variance of the sample median, 
one way of proceeding would be to use the asymptotic formula for the 
variance of the sample median, and attempt to estimate f(8). 
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Since F n(x) is a consistent estimate of F(x) for every x, it seems 
reasonable to suppose that one might take as an estimate of f(x), 

fn(x) = [Fn(x + h) - Fn(x - h)]/(2h) 

with h suitably chosen. In order that fn(x) be a consistent estimator of 
f(x) it is clear that h should be chosen as a function, hen), of n, such that 
h(n)-+O as n-+ 00. The question of the rate at which hen) should 
approach 0 arises, and to answer it the statistical properties of fn(x) 
have to be examined. 

Following Parzen (1962) the estimate fn(x) can be put in the form 

where 

<Xl 

fn(x) = ~ f K( x ~ Y)dFn(X) = nIh jt, K( x ~ Xj) (3.5) 

-<Xl 

K(y)=g 
IYI~ 1 

IYI> 1 

Such a representation has two advantages, the first being that the 
form of (3.5) suggests that K need not be restricted to the simple choice 
given above. A variety of functions are suitable for K and some of 
these are shown in Table 3.1; this table is extracted from Parzen 
(1962). The potential gain in having a wider choice of K is that some 
functions K may have a greater smoothing effect, leading to more 
reliable estimates. 

Table 3.1 

<Xl 

K(y) f K2(y)dy 

-<Xl 

{~ lyl~1 t 
IYI> 1 

texp( -Iyi) t 
(1/21t) [sin (y/2)/(y/2)]2 1/31t 

The other advantage of writing fn(x) as in (3.5) is that it is seen to be 
the sum ofiildependent identically distributed random variables, thus 
facilitating the investigation of its statistical properties. In this 
investigation the following theorem is used. 
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Theorem 3.1 Suppose that K(y) satisfies: 

(i) sup _ 00 <y < 00 IK(y) I < 00 

00 

(ii) f IK(y)1 dy < 00 

-00 

(iii) lim lyK(y)1 = 0 
y"" 00 

Also suppose that g(y) satisfies 
00 

f Ig(y) I dy < 00 

-00 
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and that h(n) - 0 as n - 00. Then at every point of continuity of g(y), 

00 

}~rr;, gn(x) = !~~ h;n) f K(h[n) )g(X - y)dy 
-00 

00 

= g(x) f K(y) dy 

-00 

The proof of this theorem is obtained by noting that 
00 

.1n(x) = gn(x) - g(x) f K(y)dy 
-00 

00 

= f [g(X-y)-g(X)]h;n)K(h[n))dY, 
-00 

and splitting the region of integration into two regions Iyl ~ <5, <5 > 0, 
and Iyl > <5, and considering l.1n(x)I· The upper bound to l.1n(x)I 
comprises contributions which tend to 0 as first n - 00 and then <5 - O. 

Consider the expectation of fn(x) as n- 00. From (3.5) we see that 
00 

{ I (x -X)} f 1 (x -y) E {fn(x)} = E h(n) K h(n) = h(n) K h(n) f(y) dy 
-00 
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Applying Theorem 3.1, we see that 

lim E{fn(x)} = f(x) 
n-+ 00 

ifthe conditions stated in the theorem are satisfied and if K(y) is scaled 
so that 

00 

f K(y)dy = 1 
-00 

We assume this to hold in further discussions. 
Thus fn(x) is asymptotically unbiased at every point of continuity 

of f(x), and in order to establish conditions for its consistency we need 
only examine var [fn(x)]. Again using (3.5), 

var [fn(x)] = (lln)var [(llh)K((x - X)lh)] 
00 {If 2(X-Y) = (lin) h2(n) K h(n) f(y)dy 

-00 

-00 

so that 
00 

f 1 (x -y) nh(n)var [fn(x)] = h(n) K2 h(n) f(y) dy 
-00 

Using Theorem 3.1 again, we see that 
00 

!~~ nh(n)var [fn(x)] = f(x) f K 2(y) dy (3.7) 
-00 

The result (3.7) shows that fn(x) will be mean-square consistent if in 
addition to 

lim h(n) = 0 
n -+ 00 
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we also have 
lim nh(n) = 00 

These results indicate that hen) = wn -1/2, w constant, might be an 
appropriate choice of hen) for mean-square consistency. However, the 
choice of w in any particular example is not obvious. Rosenblatt 
(1971) outlines an argument showing that the rate at which the mean 
square error of estimation tends to 0 is maximized if 

hen) = wn - 1/5 

a suitable value of w being 

w = {4f(x) J K2(y) dy/[fl/(x) J g2 K2(y) dy]} 1/5 

Except as a rough guide this formula is not of much practical use as it 
involves fl/(x); it could possibly be used in an iterative manner, an 
initial estimate of f(x) (and fl/(x)) being used in the place of rex) (and 
fl/(x)). 

Example 3.2 Refer to the n = 91 sample assay values of Exercise 2.1. 
We shall perform only some rather crude calculations to illustrate 
procedures. 

Grouping the observations into classes of width 50 units we obtain 
the following frequency distribution; class lower limits only are 
shown. 

Class 0- 50- 100- 150- 200- 250- 300- 350- 400- 450- 500-

Frequency 24 16 7 10 8 1 5 3 5 0 12 

K 0.020 0.032 0.039 0.038 0.028 0.017 0.007 0.003 0.001 0.00 

The observed sample median is 143 and this falls in the class with 
lower limit 100. A crude estimate ofthe density at the mid-point ofthis 
interval is (7/91)(1/50) = 0.00154. One would expect a more refined 
estimate of the density at x = 143 to be of the same order of 
magnitude. 

Taking K(y) = (O'J2)-1 exp( - y2j(20'2)) with 0'= 10 and h = 10, 
the values of K [(143 - xi)j1O] at the class mid-point values Xi 
are shown in the table above. The mean K-value is 0.0212 giving 
fn(x) = 0.00212. 

One way in which this result might be used is in setting 
approximate confidence limits for the median using approximate 
normality of the distribution of the sample median. The estima­
ted standard deviation of the sample median IS then 
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(4 x 91) - 1/2/(0.00212) = 24.7, giving approximate two-sided con­
fidence limits 

143 ± 1.645 x 24.7 ~ 143 ± 41 

These should be compared with the exact limits obtained as III 

Exercise 2.1. 

The ideas outlined above for estimating f(x) can be applied to 
other cases where an estimate is required of the slope of a continuous 
function, which is itselfthe expectation of a sample function that is not 
necessarily continuous. An example of this kind was discussed in 
Chapter 2, namely the Wilcoxon statistic W(x, t) defined in equation 
(2.23). 

It will be recalled that W(X, t) can be put in the form 

( x.+x. ) 
W*(X,t) = n(n + 1)/2-2# y:s:;;t 

Now the expectation of the second term on the r.h.s. of the above 
expression is 

where F 2(t) is the distribution function of (Xi + X)/2, Xi and Xj 
being independent and distributed like X. Putting 

2 (x.+x.) 
F 2.n(t) = n(n + 1) # I 2 J:S:;; t 

and 2 n (t-(Xi +X)/2) 
f2,n(t) = n(n + 1)h(n) i'~ 1 K h(n) 

where K(y) is defined as above, the arguments used before show that 
f2,n(t) is asymptotically unbiased for f2(t) = F;(t). 

It is possible to establish conditions for h(n) to ensure that f2,n(t) is 
consistent for f2(t). The calculations are complicated and details will 
not be given here. 

3.3.3 Direct estimates of variances of estimates 

Consider estimation of the standard deviation of the sample median 
(0). The asymptotic formula for var (0) involvesf(lh the density at the 
true median value. It can be estimated by one of the methods 
outlined in Section 3.2, and the estimated value used in the asymp-
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totic formula. However, var(O) can be estimated more directly for we 
have, in the case n = 2m + 1, 

E(OX) = E(X(m + 1» = (:!\2 fur FiuP - F(u)rf(u)du 

where ifJ(y) = F -l(y). Now the sample c.d.f. provides an estimate of 
F(y), and hence of ifJ(Y), thus leading to an explicit estimate of the 
actual variance of &. This method is discussed more fully in Maritz 
and Jarrett (1978). 

Similar procedures can be applied to any estimates that are linear 
functions of order statistics, for example, the interquartile range. 

3.4 Estimation of F when some observations are censored 

We shall consider only non-negative random variables and the case of 
right censoring of some of the observations, by which is meant the 
following: an observation is said to be right censored at the value x if it 
is known that its actual value is ~ x. Such censored observations arise 
typically in studies of survival, where patients may be lost to the study 
for reasons unconnected with the agencies that may affect their 
survival. For example, a patient may be transferred to another 
working place by his employer. In studies of this type it is common 
practice to focus attention on the complement of F(x), the survivorship 
function F.(x) = 1 - F(x). 

3.4.1 The actuarial method of estimating F 

When the number of observations is large, the data are conveniently 
summarized in the form of a life table with some grouping of 
observations, as illustrated in Table 3.2; for obvious reasons this 
procedure for estimating F is called an 'actuarial method' (Pike and 
Roe, 1963). The classes need not be of equal length and we denote 
them Xo - Xl,X l - x 2, etc., with Xo = O. The steps in calculating an 
estimate of F.(x) are shown in the same table, resulting in the entries in 
column (7) which are estimated values of F. at the lower end-points of 
the successive class intervals. 

Let the total number of patients be n. It is convenient to think of all 
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Table 3.2 

(1) (2) (3) (4) (5) (6) (7) 
Interval Deaths With- Number at nr Pr F.(xr) 

drawls risk at Xr 

Xo -Xl do Wo no no -wo/2 Po =doln~ 
Xl -X2 dl WI nl . nl - w2/2 PI =ddn; Po 

X2 -X3 d2 w2 n2 n2 -w2/2 P2 = d2ln; POPI 

patients as having been first seen at time 0 and then followed until 
death or withdrawal through other causes. The total number is also 
the number at risk at the start of the first x-interval, and we denote this 
number no = n. The number of deaths and withdrawals during this 
first interval are, respectively, do and woo The number at risk at the 
start of the next interval is no - d l - w1• The rest of the entries in 
columns (1)-(4) are interpreted similarly. 

If there were no withdrawals, the ratio dr/nr would be an estimate of 
the conditional probability of dying in the rth interval, given survival 
up to the start of the interval. Since a number Wr of patients withdraw 
during the interval, the effective number at risk for the interval is 
between nr and nr - Wr ' and is usually taken to be nr - wr /2 = n;. The 
conditional probability of dying is therefore estimated by 

qr = dr/(nr - wr /2) 

Denoting the estimate of F.(x) by F.(x), we then have 

F.(xr + 1) = F.(xr)·(1 - qr) = F.(xr)Pr 

Since F.(xo) = 1, we have 

etc. 

F.(xd = Po 

F.(x2 ) = POP1 

Example 3.3 Table 3.3 gives a numerical illustration ofthe estimation 
procedure outlined above; it is taken from Armitage (1971, p. 412); 
n=no = 374. 

A large-sample formula for var F.(xr) can be developed as follows. 
Write F.(xr) = exp(Lr ), where 

Lr = In(PoP1,,·Pr-1) 
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Table 3.3 

(1) (2) (3) (4) (5) (6) (7) 
IntervaL Deaths WithdrawLs nr n' r Pr Fs(xr) 

0-1 90 0 374 374.0 0.7594 1.000 

1-2 76 0 284 284.0 0.7324 0.759 

2-3 51 0 208 208.0 0.7548 0.556 

3-4 25 12 157 151.0 0.8344 0.420 

4-5 20 5 120 117.5 0.8298 0.350 

5-6 7 9 95 90.5 0.9227 0.291 

6-7 4 9 79 74.5 0.9463 0.268 

7-8 1 3 66 64.5 0.9845 0.254 

8-9 3 5 62 59.5 0.9496 0.250 

9-10 2 5 54 51.5 0.9612 0.237 

10- 21 26 47 0.228 

Now 

var {Fs(xr)} ~ {Fs(xr)}2var(Lr) (3.8) 

and we obtain an approximation for var (Lr) by noting, first, that 

{L Id ' d ' '} ( 1 YPr-l(l-Pr-l) var r o,no ,'" r-2,nr - 2 ,nr - 1 :::::::: -- , . 
Pr - 1 nr - 1 

Here we use again an approximation of the form 
var(ln Y) ~ {1/E(y)}2 var(Y), and an assumption that dr - 1 is bi­
nomially distributed. The latter assumption is strictly valid if 
Wr - 1 = O. 

Note also that 

= In(d?)+ ... + k(d~_~) + lnpr-l 
no nr - 2 

By repeatedly applying the formula 

var(Y) = Evar(YIX) + var E(TIX) 

and successively reducing the number of conditioning variables 
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we obtain Greenwood's (1926) formula 
r- 1 d 

~ ~ 2" i 
var(Fs(xr) ~ {Fs(xr)} i~O n;(n; - d;) (3.9) 

When there are no withdrawals, Greenwood's formula simplifies to 

which is the elementary formula for the variance of a binomial 
random variable, with the exact probability replaced by its estimate. 

One of the uses of Greenwood's formula is for testing a hypothesis 
that specifies a value for the median of X, and by the usual argument, 
it can then also be used to obtain a confidence interval for the median 
of X. 

Example 3.4 Refer to Example 3.3 and test the hypothesis that 
e = median (X) = 2.0. 

Using the version of Greenwood's formula with Fs(xr) replaced by the 
theoretical value, t, that is, essentially using (3.8), we have 

{ 90 76} 
var {Fs(2.0)} ~ (t) 374(284) + 284(208) = (0.0231)2. 

Treating Fs(2.0) as normally distributed with the standard de­
viation calculated above, for a two-sided test at the 10% level we note 
that 

0.5 ± 1.645(0.0231) = 0.5 ± 0.038. 

Thus the null hypothesis stated above is rejected. 

In order to determine a confidence interval for e, the calculation 
performed above should be done at a succession of x-values. With the 
grouped data it is convenient, without regrouping, to perform the 
calculations at the class end-points. Interpolation using a graph as 
illustrated in Fig. 3.1 can be used to find a confidence interval. It will 
be noted that we plot graphs of 

0.5 ± 1.645(s.d. (F» 
and 

observed Fs(xr) 

against x. The x-values of appropriate points of intersection of these 
graphs give the confidence limits. The answers obtained from 
Figure 3.1 give a 90% confidence interval for e as: 

(2.14, 2.76) 
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0.8 

1\ 
Fslx) 

0.4 

2 2.14 2.76 3 

Figure 3.1 Graphical interpolation to obtain confidence limits for the median 
from grouped censored data. 

3.4.2 The product-limit method of estimating F 

The product-limit method can be regarded as a refinement of the 
actuarial method, effected by a judicious choice of class boundaries. 
Let ~1 < ~2 < ~3 < '" < ~n be the observed lifetimes, censored or 
uncensored, and suppose that the class boundaries are ~ 1 +, 
~2 +, ... , ~n +. Then, in the notation of Section 3.4.1, every d is 
either 0 or 1, and every Wr is either 1 or O. Also, when an interval does 
contain a loss, that is, Wr = 1, the loss occurs just before the end ofthe 
interval so that nr need not be adjusted to n; as was done in the 
actuarial method. Thus 

_ {1-l/nr 
Pr - 1 

and we have, as before 

if death at ~r + 1 

if loss at ~r + 1 

Fs(xr) = POP1" ·Pr-l 

The product-limit method is described by Kaplan and Meier (1958) 
in a paper that also contains much other useful material about the 
analysis of censored data. Among these results is a demonstration 
that the product-limit estimate is actually a maximum-likelihood 
estimate of Fs(x). Also, Fs(xr) is unbiased for Fs(x), as can be seen by 
calculating its expectation by successive conditioning up to the term 
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Pr-2,Pr-3, etc.; Pr is an unbiased estimate of the true relevant 
pro ba bili ty. 

Greenwood's formula for var {F 2(Xr )} applies to the product-limit 
estimate, with n; replaced by nr • Determination of a confidence 
interval for median (X) proceeds as in the actuarial method. In both 
the product limit and actuarial methods one can obtain an approxi­
mation for var(O), where 0 is the estimate of () obtained by solving 

Fs(x) = t 
so that 

(3.10) 

In this formula var (Fs(8)) can be estimated by using Greenwood's 
formula, possibly with some interpolation, and f((}) can be estimated 
by the type of technique discussed in Section 3.3. 

Example 3.5 The details of a product-limit estimate calculation are 
shown in the following table; observations marked * are censored. 
The entries in the column headed dr/[nr(nr - dr)] are used for 
calculating estimates of var {Fs(xr)}. 

~ 

0.33 
1.02 
1.39* 
1.47* 
1.48* 
1.67 
1.84 
2.09 
2.15 
2.51 
2.70 
4.08* 
4.57* 
4.60 
4.88 
4.98* 
5.62* 
8.11 * 

15.49 
19.62 

nr 

20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 

1 
1 
o 
o 
1 
1 

1 
o 
o 
1 
1 
o 
o 
o 
1 

p, Fs(r) dr/[nr(nr - dr)] 

0.9500 0.9500 0.00263 
0.9474 0.9000 0.00292 
0.9444 0.8500 0.00327 
1.0000 0.8500 0 
1.0000 0.8500 0 
0.9333 0.7933 0.004 76 
0.9286 0.7366 0.00549 
0.9231 0.6800 0.00641 
0.9167 0.6234 0.00758 
0.9091 0.5667 0.00909 
0.9000 0.5100 0.01111 
1.0000 0.5100 0 
1.0000 0.5100 0 
0.8571 0.4371 0.02381 
0.8333 0.3643 0.03333 
1.0000 0.3643 0 
1.0000 0.3643 0 
1.0000 0.3643 0 
0.5000 0.1821 0.50000 
0.0000 0.0000 
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From the table, {) lies between 4.57 and 4.60; we take it at 4.585 for this 
illustration. Following the method of Example 3.2 with h = 0.5, 
a = 2.0 the estimated value of f(4.585) is 0.1155. Using Green­
wood's formula the estimated values of var {Fs(xr)} at 4.57 and 4.60 
are 0.0138 and 0.0147. Substituting the average of these two values, 
and the estimated f(4.585) in formula (3.10) the estimated standard 
deviation of {) is 1.02. 



CHAPTER 4 

Two-sample problems 

4.1 Types of two-sample problems 

We shall suppose that our data comprise m independent obser­
vations, X l 'X2 ' .. . ,Xm, on a random variable X with distribution 
function F(x) and n independent observations, Yl' Y2'· .. ' Ym on Y 
with distribution function G(y). When necessary the dependence of 
these distribution functions on a parameter will be indicated. For 
convenience, the two samples may also be referred to as the X -sample 
or the Y-sample. Where convenient, the observations Xi will be 
regarded as realizations of independent identically distributed ran­
dom variables Xi' i = 1,2, ... , m, with common distribution function 
F(x); a similar notation will be applied to the Y-sample. 

In many applications of statistics, two-sample problems arise in 
such a way as to lead naturally to the formulation of a null hypothesis 
to the effect that the X-and Y-samples come from identical 
populations. For example, if subjects are randomly assigned to two 
groups in a trial to compare two treatments of hay fever, the responses 
being measured on some quantitative scale, one might begin with the 
null hypothesis that the treatments are equally effective. 

The test procedure should be influenced by the alternative to the 
null hypothesis that is being contemplated. In this respect two-sample 
problems seem to be more complicated than one-sample problems; 
one has to describe the alternative hypothesis in terms of some 
reasonably easily interpreted measure of 'difference' between two 
distributions. Clearly a great diversity of measures of difference 
between two distributions can be defined. 

Among such measures of difference, one of the simplest and most 
easily interpreted is a difference in location of distributions that are 
otherwise identical. In terms of the distribution functions F and G 
introduced above, this case of location difference is described by 
stating that F(x) = F(x - (}l)' G(y) = F(y - (}2)' the difference in 
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location being (}l - (}2 =~. The main emphasis ofthis chapter will be 
on problems of location difference. 

A somewhat more general measure of difference is the difference 
of medians of two distributions. This difference can be estimated 
without the restriction that F and G have the same 'shape'. In fact 
any quantile could be used in a similar manner. However, without 
the restriction of equal shape, equality of medians leaves room for 
two distributions to be quite different in other vital respects; this 
should be remembered in basing inference on comparison of medians 
only. 

Another simple measure of difference between F and G which 
arises naturally in connection with rank tests is Pr(X < Y) -!; its 
value is 0 when F and G are identical. An obvious estimate of 
Pr(X < Y) is the observed proportion of x;"values smaller than 
y;"values, and this is the well known Mann-Whitney statistic about 
which more details will be given later. 

For the most part, this chapter will concentrate on test and 
estimation procedures that are associated with the measures of 
difference introduced above. Other measures and test procedures 
are also mathematically and practically important, but the attraction 
of the simpler measures is that they not only lead to useful test 
procedures, but that the associated point estimates are readily 
interpreted for practical use. 

4.2 The basic randomization argument 

Suppose that the null hypothesis H Q holds, namely that F and G are 
identical. Then the X-and Y -samples can be regarded as having 
been drawn from the same population. Let us label the members 

of the pooled sample 

where N = m + n. Then, under H Q' conditionally on the realization 
of the values ZI, ... ,ZN' the particular observed X-sample can be 
regarded as having been obtained by a random selection without 
replacement of m of the z-values, labelled as Xl"" ,Xm• We shall also 
speak of a random partition of the z-values into groups of sizes m 
and n. 

Under this scheme of random partitioning, the conditional null 
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distribution of any proposed test statIstIc can, in principle, be 
obtained by listing all possible partitions and calculating the 
corresponding values of the statistic. The conditional null distri­
bution generated in this way can then be used to perform a 
conditional test of significance and to set confidence limits. The 
arguments justifying such procedures are essentially the same as 
those used in Chapter 2. In the rest of this chapter the randomization 
argument is applied repeatedly in considering various test statistics. 

4.3 Inference about location difference 

4.3.1 Introduction 

We now consider the case where the X- and Y-samples derive from 
populations that differ only in location. Thus G(y) = F(y - 8); in this 
formulation 8 = E(Y) - E(X) when the expectations exist, and 
8 = median( Y) - median(X). 

If the true location difference is 8 the two sets of random variables 

Y 1 - 8, Y 2 - 8, ... , Yn - 8 

are identically distributed. The randomization argument can there­
fore be applied to values zi(8), being the pooled collection of values 
Xl' X 2 ,··., X m, Yl - 8, Y2 - 8, ... , Yn - 8. We shall consider several 
statistics based on the zi(8) values. 

4.3.2 The two-sample mean statistic 

Let 
m 

A(X, Y, t) = L Xi - mz(t), (4.1) 

where z(t) = I,f= 1 Zi(t)/ N. We call this the mean statistic and it is, 
of course, inspired by the fact that the sample mean is a standard 
estimate of location. The statistic A(X, Y, t) can also be expressed as 

nm - r A(X, Y, t) = N(X - + t) (4.2) 

but since z(8) remains fixed in the randomization argument for finding 
the conditional null distribution of A, the form (4.1) is somewhat 
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more convenient for most of our purposes. This statistic and its 
randomization distribution was studied in considerable detail by 
Pitman (1937). 

The expression (4.2) shows that inference about () using A amounts 
to the use of the difference of sample means, and we refer only briefly 
to the consistency and efficiency properties of the related procedures. 
If F has a finite variance (f2, A(X, Y, ()) is asymptotically distributed 

N ( 0, (f2 ( mm: n ) ) as m and n --+ 00; the asymptotic distribution of 

A(X, Y, t) is N (t - (), (f2 (m ,; n )). Consistency of testing and of 

estimation is readily established. 

Testing H 0: () = ()o against H 1 : () > ()o 

We concentrate on the distribution-free test procedure based on 
enumeration of the conditional null distribution of A. In practice 
we calculate the observed A(x, y, ()o) and refer it to the null 
distribution. If the observed A(x, y, ()o) is sufficiently small, that is, lies 
in the lower 1000(% tail of this distribution, H 0 is rejected. 

Example 4.1 

()o = 1.0: 

Xi: 3.46,4.13,2.71 

Yj : 4.85, 5.22, 5.64 

Yj - ()o : 3.85, 4.22, 4.64 

z«()o) = (3.46 + ... + 4.64)/6 = 3.835 

Observed A(x, y, ()o) = - 1.205 

There are (~) = 20 ways of partitioning the Zi«()) values into two 

groups of sizes 3 and 3 and the smallest values of A obtained are: 

etc. 

2.71 + 3.46 + 3.85 - 3(3.835) = - 1.485 
2.71 + 3.46 + 4.13 - 3(3.835) = - 1.205 
2.71 + 3.85 + 4.13 - 3(3.835) = - 0.815 

Thus Pr{A(x, y, ()o) ~ - 1.205} = 2/20 and we reject Ho at the 10% 
level of significance. 

Modification of the procedure illustrated above for two-sided 
alternatives is obvious. 
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Confidence limits for e 
Confidence limits for the location-shift parameter () are set 
by the inversion of the hypothesis-testing procedure which we 
have used in earlier chapters. We shall consider a two-sided 

100 ( 1 - 2r I (m : n) )% confidence interval. 

For every possible value t of e we can calculate the observed 
A(x, y, t) and by listing partitions of the Zi(t) values we can find the 
number N(t) of possible A-values that are greater than the observed 
A. Now, as t varies between - 00 and + 00, the value of N(t) changes 

from (m: n) _ 1 to 0, and to find the exact confidence limits we 

need to identify the t-values at which N(t) changes. 
In fact, N(t) changes whenever 

m m 

L Xi = L Z{(t) (4.3) 
i = 1 i= 1 

where zf(t), z!(t), ... , z!(t) is a subset of all Zi(t) values. If the r.h.s. of 
(4.3) contains (m - 1) of the Xi values and one Yj - t, then (4.3.) is 
satisfied by a t given by 

Xi = Yj- t 

Thus all values Yj - Xi constitute change points of N(t). Similarly, if 
the r.h.s. of (4.3) contains (m - 2) of the Xi values, the value of t 
satisfying (4.3) is given by 

(Xi + x)/2 = (y, + Ys)/2 - t 

Thus the difference of averages (y, + y.)/2 - (Xi + x)2) also constitute 
change points of N(t). 

To find the exact confidence limits all such differences of means 
of subsets of the same size could, in principle, be listed in order of 
magnitude. The confidence limits are, then, the rth smallest and rth 
largest of these differences. In practice it may be quicker to vary t 
from the largest value that needs considering, Y(n) - X(l), until the 
point at which N(t) changes from r - 1 to r is found. 

Example 4.2 

X: 2.71,3.46,4.13 

Y : 4.85, 5.22, 5.64, 6.20 
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There are 4 x 3 = 12 differences of single observations 

G) (~) = 18 differences (Yr - Ys)/2 - (Xi + x j )/2 

G) (~) = 4 differences (Yr + Ys + Yt)/3 - (Xi + Xj + x k)/3 

giving a total of 34 = G) -1. Listed in decreasing order of magni­

tude, these differences are: 

3.49 2.51 2.253 2.125 1.950 1.730 1.39 

2.93 2.500 2.18 2.105 1.915 1.635 1.240 

2.835 2.440 2.160 2.07 1.825 1.615 1.09 

2.74 2.345 2.14 2.010 1.803 1.51 0.72 

2.625 2.290 2.130 1.990 1.76 1.450 

Thus a 100(1 - 6/35)% = 83% confidence interval for e is (1.240, 
2.835). 

Point estimation 
The solution jj of the estimating equation 

A(X, Y,e) =0 

is jj = Y - X. This estimating equation is inspired by the fact that 
E{A(X, Y, e)} = 0 if it exists. 

Large-sample approximations . 
Although it is not essential in hypothesis testing to list all partitions 
of the two samples, or in determining confidence limits to list all 
differences of subset means, exact calculations rapidly become 
prohibitive as m and n increase. Approximations of the conditional 
distribution, therefore, become important. The exact first two 
moments of the conditional distribution are 

E(A) = 0 

(A) mnu2(t) 
var =-----'-'---

(m+n-l) 
(4.4) 

where u 2 (t) = [l/(m + n)]Li'=+t(Zi(t) - z(t)f. These results follow 
from the standard theory of sampling at random without replacement 
from a finite population. 
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As m and n-Ht) with m/(m + n) approaching a limit A, the 
distribution of A/s.d.(A) approaches a standard normal distribution 
under conditions given in Section 1.8.3. Using this result the 
hypothesis-test procedure can be put in the form: 

reject Ho if X - f + eo < - uexu(t) J(N ~:)mn 
The rule can be written in the form, reject H 0 if 

X - Y + eo [(N - 2) 1 J1
/
2 

sG+~)," < -u. N -I (I- u;/(N -Ill (4.5) 

where s denotes the usual 'within-group pooled standard deviation'. 
Thus the l.h.s. of (4.5) is the usual t-statistic, and in the event that 
F is a normal distribution, the r.h.s. of (4.5) can be regarded as giving 
an approximation to the appropriate quantile of the t-distribution. 
The following numerical values are instructive; the constant in the 
r.h.s. of (4.5) is denoted by kex . 

IX = 0.9 IX = 0.95 
N kex tex kex tex 

5 1.446 1.476 2.505 2.015 
10 1.337 1.372 1.854 1.812 
20 1.306 1.325 1.729 1.725 

Using (4.5), the 100(1 - 2(1)% confidence interval for e is approxi­
mately 

- X + Y ± kexs[(m + n)/mn] 1/2 

4.3.3 The two-sample sign statistic 

Rewrite the mean statistic in (4.1) as 
m 

A(X, Y, t) = I [Xi - z(t)] 
i= 1 

(4.6) 

This expression suggests that a two-sample analogue of the sign 
statistic might be Ii= 1 sgn [Xi - z(t)]. However, we shall replace z(t) 
by z(t), the median of the Zi(t). One obvious advantage of this 
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alteration is that the null distribution of the resulting statistic 

m 

S(X, Y, t) = L sgn [Xi - z(t)J (4.7) 
i= 1 

is the same for all samples that have the same sample sizes m and n. 

The null distribution of S 
If N is even there are N /2 of the sgn [Zi(t) - z(t)] with value -1 and 
N/2 with value + 1, and listing the exact permutation distribution of 
S is straightforward. In fact, (S + m)/2 has a hypergeometric distri­
bution, and 

r = 0, 1,2, ... ,m, for m < n. 
When N is odd, one of the sgn [Zi(t) - z(t)] has the value 0 which 

must be noted when listing the null distribution. The procedure 
remains straightforward. 

Hypothesis testing 
After establishing the null distribution of S, the hypothesis-testing 
procedure is simply to calculate observed S(X, Y, (Jo) when testing 
H 0 : (J = 00 , and refer it to the null distribution. If the alternative 
hypothesis is H 1 : 0 > 00 , H 0 is rejected if observed S falls in the lower 
tail of the null distribution. 

Example 4.3 Use the data of Example 4.2. Suppose we test Ho: 
00 = 1.0. 
Then we have H 1 : 0 > 1.0 

Xi: 2.71, 3.46,4.13 

Yj - 00 : 3.85, 4.22, 4.64, 5.20 

giving z(Oo) = 4.13, the transformed values 

Xi: -1, -1,0 

Yj - 00 : - 1, 1, 1, 1, 

and the null distribution 

s:-3-2-1 0 2 3 

35 Pr(S = s) : I 3 9 9 9 3 1 

Observed S = - 2 and PrES ~ - 2] = 4/35. At level 4/35 this 
observed result is significant. 
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Confidence limits for e 
The null distribution of S is needed and we need to trace the values 
of Sex, y, t) as a function of t for fixed x and y. To cope with ties that 
occur as t varies, it is useful to spell out the definition of median Zj(t) 
as follows: 

m + n odd: z(t) is the largest z' -value such that the number of 
Zj(t) smaller than z' is (m + n - 1)/2. 

m+n even: z(t) is the mean ofL(t) and z+(t) where L(t)(z+(t)) 
is the smallest (greatest) z' such that the number of 
Zj(t) smaller than z' is (m + n)/2. 

The setting of confidence limits is slightly different in the two cases, 
m + n even or odd. 

1. m + n even (m < n). As t varies from - 00 to + 00, S varies 
between - m and + m in m steps of size 2. Suppose that 
t = Y«n - m)/2 + 1) - x(m) - e. Then the number of Zj(t) < Y«n - m)/2 + 1) 

is (n + m)/2 and of these m are x-values. Thus S = - m. At t = 

Y«n - m)/2+ 1) - X(m) + e, the value of S is - m + 2. Proceeding 
in this way, we see that the t-values at which the jumps in S 
occur are t 1 = Y«n - m)/2 + 1) - X(m)' t2 = Y«n - m)/2 + 2) - X(m - 1» ••• , tm = 
Y(n+m)/2 - X(1)· 

Suppose we seek a 100 ( 1 - 2r I (n : m) )% two-sided confidence 

interval. Then from the null distribution of S we find the value of S 

such that PreS ~ s) = r I (m : n). Graphically, or by inspection of a 

tabulation, the trvalue for the upper limit of the confidence interval is 
readily identified. The lower limit is found similarly. 

2. m + n odd (m < n). As t varies from - 00 to + 00, S varies from 
- m to + m in 2m steps of size 1. Following the type of enumeration 
illustrated for the case m + n even, the t-values at which the jumps in S 
occur can be seen to be: 

Y(l) - x(m)' Y(2) - x(m) 

Y(2) - x(m - 1)' Y(3) - X(m - 1) 

Y(n - 1) - X(1)' Y(n) - X(1) 

An illustration (m + n odd) follows. 
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Example 4.4 Use the data of Example 4.2. The 6 points of jump of 
S are: (- 3) 

4.85 - 4.13 = 0.72 
(- 2) 

5.22 - 4.13 = 1.09 
( -1) 

5.22 - 3.46 = 1.76 
(0) 

(0) 
5.64 - 3.46 = 2.18 

(1) 
5.64 - 2.71 = 2.93 

(2) 
6.20 - 2.71 = 3.49 

(3) 
The values of S in the appropriate intervals are shown in brackets. 
From the null distribution of S shown in Example 4.3 we see that 

Pr{-1~S~ +1}=27/35=0.7714 

Therefore a 77% two-sided confidence interval for () IS: 

(1.09, 2.93) 

Point estimation 
From the descriptions above of the behaviour of S as a function of t 
for fixed x and y, it is obvious that the point estimate of () is 

median (y) - median (x). 

Large-sample calculations 
In hypothesis testing we can use a normal approximation for the null 
distribution as explained in Section 4.3.2. In the case of the sign 
statistic the value of 0'2(t) is 

{N;: 
for m + n even, giving var(S(X, Y, ())) = mn/(m + n - 1) 

for m + n odd, giving var(S(X, Y, ())) = mn/(m + n) 

For N large, the resulting test statistic is, for m + n either even or odd, 
approximately equal to the usual test statistic arising in the analysis of 
a 2 x 2 contingency table. 

Example 4.5 Suppose that the results of an X -sample of size 24 and a 
Y-sample of size 36 are used to test the null hypothesis that () = O. If 
the common median is z(O) the results may be summarized in a 2 x 2 
contingency table as follows: 

X-sample 

Y-sample 

< z(O) > Z(O) 

10 

20 

14 24 

16 36 

30 30 
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24 x 36 
var(S) = 59 s.d.(S) = 3.827 

Observed S = - 10 + 14 = 4 

Pr{S ~ 41Ho} ~ 1 - cI>C.:27 ) = 1 - cI>(0.784) = 0.216 

91 

Note the continuity correction of - 1 in the numerator of the 
argument of cI>. 

In the usual analysis of the 2 x 2 contingency table, using the 
normal approximation for the hypergeometric distribution arising in 
the 'exact' test we obtain, letting Q denote the entry in the top right­
hand cell of the table, 

E(Q) = 12 

s.d.(Q)= 1.913 

giving the observed normal deviate, with the usual correction tor 
continuity, 

14 - 12 - 0.5 
U= =0.784 

1.913 

identical to the result obtained above. 

Consistency of the sign test 
The common median z(t) may be regarded as an estimate of (0.5 (t), the 
median of the 'mixed' distribution function 

[mF(z) + nF(z - () + t)]/ N 

As m and n --+ 00 with, say, m/ N --+.4, the difference made to z(t) by 
omission of one of the Xi from its calculation is of order 1/ N. Hence, 
asymptotically we shall treat Xi and z(t) as independent and we obtain 

E{sgn(Xi - z(t»} = 1 - 2F((0.s(t» + O(ljN) (4.8) 

Arguing similarly that Xi - z(t) and Xj - z(t) are asymptotically 
independent, we conclude that 

E{S(X, Y, t)} 1m = {1 - 2F((0.5 - (t»} + 0(11 N) 

var {SeX, Y, t)} 1m = (constant)/m + 0(11 N) 

from which the consistency of the sign test follows. 

Asymptotic efficiency of the sign test 
We consider the efficacy of the statistic S when () = O. For this we need 

[OE{S(:: y,t)}] t~O ~ -2m{f((0.5(Om~.5{O)+0(1IN)} (4.9) 



92 DISTRIBUTION-FREE STATISTICAL METHODS 

approximately for large m and n from (4.8), where 

mF((o.s(t)) + nF((o.s(t) - t) = (m + n)/2 (4.10) 

Differentiating both sides of the relation in (4.10), we obtain 

nif((o.s(t)K~.s(t) + n/((o.s(t) - t)((~.s(t) - 1) = ° 
so that, if f((o.s(O)) of 0, we have (~.s(O) = n/(m + n). Also, putting 
t = ° in (4.10), we see that 

F((o.s(O)) = 1/2 

that is (o.s(O) is the median of the distribution F. Thus 

[ OE{S(X,Y,t)}] ~_ 2mn {f((0.s(0))+O(I/N2)} (4.11) 
at t=O (m+n) 

Since 
var S(X, Y, 0) = mn/(N - 1) 

the efficacy of the statistic S is 

I lim (oE{S(X, y,t)}/ot)t=ol 
m,n-oo =2/(, (0)) 

(m;; ) 1/2 s.d.(S(X, Y, 0)) 0.5 

Example 4.6 Suppose that F has mean J1 and variance (12. Then, in the 
case () = 0 we see from (4.2) that 

( OE {A(X, Y, t)} ) 

at t= ° 
mn 

N 

also s.d. (A(X,Y,O))=J(nm/N), so that the efficacy of A is 1/(1. 
Thus the ARE of the tests based on S and on A is 4f2((0.S(0))(12. 
If F is a normal distribution, this ARE is 2/n, coinciding with the 

value of the ARE of the S and A tests in the one-sample case. 

Efficiency of estimation based on S 
We have noted above that the point estimate of () is the difference of 
the two medians, that is e = median(Y) - median(X). From results in 
Chapter 2, simple calculations show that asymptotically the distri­
bution of () is normal with mean () and 

1 (1 1) 
var(8) = 4f2((0.s(0)) ;+;; 
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If, as in Example 4.6, var (X) = (J2, the variance of the estimate 

(j = y - X is (J2 (~ + ~). giving the relative efficiency of estima­

tion 1/(4(J2j2((O.S(O)), equalling the ARE of testing. 

4.3.4 The two-sample rank sum statistic 

Referring to the expression (4.6) for the statistic A(X, Y, t), an obvious 
modification to a rank statistic is to the statistic L Rank (Xi - z(t)), 
where the Rank (Xi - z(t)) is the rank in the combined sample of Zi(t) 
values. However, since Rank(Xi - z(t)) = Rank(X;) in the combined 
sample, we shall use 

m 

W(X, Y, t) = L Rank(XJ - m(N + 1)/2 (4.12) 
i = 1 

the well-known Wilcoxon rank-sum statistic, except that the value 
m(N + 1)/2 has been subtracted so that the null distribution of W has 
expectation O. 

The null distribution of W 
Under Ho the distribution of Rank(Xi) is uniform on the integers 
1,2, ... , N, hence E{Rank(X;)} = (N + 1)/2. 

The conditional null distribution of W, obtained according to the 
randomization procedure of Section 4.2, is in principle, easily 
enumerated. Since the null distribution of W is identical for all 
samples of the same size, inference using W is conditionally and 
unconditionally distribution-free. The null distribution of W has been 
tabulated for various values of m and n; see, for example, Lehmann 
(1975, Table B). A simple illustration follows. 

Example 4.7 Suppose m = 2, n = 3, then the possible X -sample ranks 
are: 

1,2 W=-3 

1,3 W=-2 

4,5 W=+3 
and we obtain 

w : -3 -2 -1 0 2 3 
10 Pr(W= w) : 1 222 1 
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In Example 4.7 the distribution of W is seen to be symmetric about 
O. Such symmetry holds for all values of n because the distribution of 
W can be regarded for N = 2k + 1 as being generated by sampling at 
random without replacement from a population comprising elements 
whose values are 

- k, - k + 1, ... , - 1,0, 1,2, ... , k - 1, k 

Since each possible sample occurs with the same probability, every 
sample of size m yielding 

r l +r2 +···+rrn 
has associated with it a sample yielding - r 1 - r 2 - •••• - r m. A 
similar argument applies when N is even. 

The general formulae (4.4) can be applied to obtain the first two 
moments of W; in the present case we need the mean and variance of 
the uniform discrete distribution on the integers 1,2, ... , N, and they 
are respectively (N + 1)/2 and (N 2 - 1)/12. Hence we have 

E(W)=O 

var(W) = mn(N + 1)/12 

F Of large m and n, the distribution of W can be approximated by a 
normal distribution; the condition for the null distribution of A to be 
asymptotically normal is clearly satisfied for W. (See also Chapter 1 
for information about asymptotic normality of rank statistics.) 
Readily available tables of W cover values of m and n between 3 and 
10. For larger values of m and n, the normal approximation should be 
adequate for most practical purposes. 

As an example, if m = 8, n = 10, Pr(W~ - 19) = 0.0506. Using the 
normal approximation 

Hypothesis testing 
Suppose that we test the hypothesis H 0: (J = (Jo against HI: 

(J = (JI > (Jo. We shall consider the value of E {W(X, Y, (Jo)\H I}· 
Write rn n 

Rank(X;) = 1 + L Vji + L Uri(t) (4.13) 
j*i=1 r=1 

where Vji = 1 if X j < Xi; 0 otherwise 

Uri(t) = 1 if Yr - t < Xi; 0 otherwise 
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Then 

m+ 1 
E{Rank(XJ} = -2-+ nPr{Y- t < X} 

m+l f =-2- + n F(x + t - O)f(x)dx 

in our model. Substituting in (4.12), we see that 

E {W(X, Y, ( 0 )10 = t} 

m(m+ 1) f = 2 + mn F(x + 80 - t)f(x)dx - m(N + 1)/2 (4.14) 

which is clearly non-increasing with t since F(x + 00 - t) is non­
increasing with t for fixed x. Thus, with 01 > 80 , 

E{W(X, Y, ( 0 )IH d < 0 

and we reject H 0 if observed W(X, Y, ( 0 ) is 'sufficiently small'. 

Example 4.8 Use the data of Example 4.2 to test Ho: 0 = 1.0 against 
HI: 8> 1.0. We have 

Xi : 2.71 (1), 3.46 (2), 4.13 (4) 

Yj - 00 : 3.85 (3), 4.22 (5), 4.64 (6), 5.20 (7) 

the numbers in brackets indicating the ranks. Thus 

observed W(X, Y, ( 0 ) = - 5 

From the null distribution of W, Pr(W~ - 5) = 2/35, hence the 
observed value of W is significant at level 2/35. 

Corifidence limits for 0 
The effect of varying t in W(x, y, t) is to shift the entire Y-sample 
relative to the X -sample. Consequently, the ranks of the X -sample 
values remain fixed as t varies except at points such that the order of 
an Xi' Yj pair is reversed, that is, at values Yj - Xi' Thus, as t varies from 
- 00 to + 00, Ir= 1 Rank(XJ varies between m(m + 1)/2 and 
N(N + 1)/2 - n(n + 1)/2 in mn steps of size 1 at points Yj - Xi' 

i = 1,2, ... , m,j = 1,2, ... , n; and W(x, y, t) varies between - mn/2 and 
. + mn/2. Note that the values of Ware either integers or integer 

multiples of 1/2. 
For a two-sided 100(1 - a)% confidence interval we find WI and W2 
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such that Pr{wl ~ W~ W2} = 1 -IX. If d(l)' d(2l' ..• Amn) is the set of 
differences Yj - Xi arranged in increasing order of magnitude, 
rl =mn/2-w2 ,r2 =mn-rl +1, then the confidence limits are 
dIn)' d(r2)· 

Example 4.9 Using the data of Example 4.2 the Yj - Xi differences are 
as shown below with the values of W in brackets. 

(- 6) (0) 
0.72 2.14 

(- 5) (1) 
1.09 2.18 

(- 4) (2) 
1.39 3.51 

(- 3) (3) 
1.51 2.74 

( -2) (4) 
1.76 2.93 

( -1) (5) 
2.07 2.49 

(0) (6) 

From the null distribution of W, Pr{ - 3 ~ W ~ 3} = 1 - 8/35, and by 
inspection of the table above the 100(1 - 8/35)% = 77.1% confidence 
interval for () is (1.39,2.74). 

Note that r l = 6 - 4 = 2, r2 = 12 - 2 + 1 = 11. 

Point estimation 
In the light ofthe discussion above about the behaviour of W(x, y, t) as 
t varies, the solution of the estimating equation 

W(X,Y,t)=O 

is clearly the median of the differences Yj - Xi. This estimating 
equation is used since E{W(X, Y, ())} = O. 

In Example 4.9 the point estimate of () is (2.07 + 2.14)/2 = 2.105. 

Relation to the Mann- J.Vhitney statistic 
The Mann- Whitney two-sample statistic for testing H 0: () = ()o is 

n m 

U(X, Y, ()o) = L L Uji«()o) 
j=li=l 
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where 

if Yj - eo < Xi 
otherwise 

Referring to (4.13), we see after simple calculations that 

mn 
W(X, Y, t) = U(X, Y, t) - 2 
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(4.15) 

Note that E{ U(X, Y, e)} = mn Pr(Y - e < X) and when e = 0, so 
that the X-and Y-distributions are identical under our present model, 
that G(y) = F(y - e), then E{ U(X, Y, O)} = mn/2. 

Since the Mann-Whitney statistic is, therefore, simply a linear 
function of the Wilcoxon statistic, the two statistics lead to identical 
inferences about e. 

Consistency of the W test 
Rewriting (4.14), we have 

E{W(X, Y, t)} = m(m + 1)/2 + mn f F(x + t - e)f(x) dx - m(N + 1)/2 

Hence for t close to e, say t = e + fl, 
E {W(X, Y, t)} ~ m(m + 1)/2 

+ mn f[F(X) + Ll/(x)]f(x)dx - m(N + 1)/2 

= m(N + 1)/2 + flmn fp(X)dX - m(N + 1)/2 

= flmn fp(X)dX (4.16) 

We need, also, var {W(X, Y, t)}, which we derive using the 
expression 

n m 

W(X, Y, t) = L L Uji(t) - mn/2 
j;li;1 

It is the sum of elements of the covariance matrix of U 11 (t), ... , U nm(t). 
Many of these co variances are ° because 



98 DISTRIBUTION-FREE STATISTICAL METHODS 

unless j = r or i = s. Let 

Then 

and 

q(t) = Pr(Y - t < X) = f F(x + t - (})f(x)dx. 

cov {Uj;(t), Uj.(t)} =Pr [lj - t < Xi' lj - t < Xs] - q2(t) 

= f [1- F(y - t)]2 f(y - (})dy - q2(t) 

=w1(t) 

cov {Uji(t), Uri(t)} = Pr [lj - t < Xi' Yr - t < XJ - q2(t) 

= f [F(x + t - (})]2 f(x) dx - q2(t) 

= W 2(t) 

var(Uj;(t)) = q(t)(1 - q(t)) = y(t) 

Adding all the relevant variances and covariances of Uij(t) 
variables, we find 

var {W(X, Y, t)} = mn[y(t) + (m - l)wl (t) + (n - l)w2(t)] (4.17) 

As a check on the calculations of E{W(X, Y,t)} and 
var {W(X, Y, t)}, we note that, for t = (), 

E {W(X, Y, (})} = m(m + 1)/2 + mn f F(x)f(x)dx - m(N + 1)/2 = 0, 

which agrees with our previously derived result for the null 
distribution. 

Further, q((}) = 1/2, 

w1 ((}) = f [1- F(y - t)]2 f(y - 0) dy - 1/4 

= I (1 - U)2 du - 1/4 = 1/12, 

and w2 (O) = 1/12 by a similar calculation. Therefore 

var {W(X, Y, (})} = mn(m + n + 1)/12, 
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which agrees with the variance of the conditional and unconditional 
distribution of W. 

Supposing that miN ~ A, n/N ~ 1 - A as m, n--+ 00, formulae (4.16) 
and (4.17) show that 

E{W(X, Y,t)} ~ C1N 2 

var {W(X, Y,t)} ~ C2N 3 

from which the consistency of the W-test is readily established. 

Efficiency and large-sample power of the W test 
From the expression for EW(X, Y, t) derived from (4.14) and used in 
deriving (4.16) we see that 

( OE{W(X,y,t)}) =mnfP(X)dx=m,if 
at t~O 

Hence the efficacy of W is 

mnf -J lim = f 12 
mn-+oo (mn)1/2 1/2 
(m·IN)-+A N [mn(m + n + 1)/12] 

Th us, if F has variance (J2 the ARE of the Wand A tests is 

12J2(JZ. 

Example 4.10 If F is a normal distribution, with variance (J2, it is 
readily established that] = 1/(2(JJn), so that the ARE is 3/n. 

It is instructive also to calculate the power for large m and n when 
the alternative hypothesis is close to the null hypothesis. Suppose 
that we consider H 1 : eo = eo + b/J N. Then substituting in (4.16), 
putting m ~ AN, n = (1 - A)N, we have 

E{W(X, Y, eo)IH 1} ~ - bA(l- A)N3/2]. (4.18) 

Similar substitutions in the expressions for q(t), W 1 (t), and Wz (t), and 
using the Taylor-type approximation appearing in the derivation of 
(4.16), enable one to obtain 

Using a normal approximation for the null distribution of W, a 
level-a test rejects H 0 in favour of H 1 if observed W(X, Y, (0) is 
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greater than u",[mn(N + 1)/12]1/2. Assuming that the distribution 
of W(X, Y, ( 0 ) is approximately normal under H 1 as well as under H 0 

(see Chapter 1), the power is approximately 

1 - <fJ{u", - [A(1 - A)]J12f} 

Efficiency of estimation of 0 
According to equation (1.5), Chapter 1, the large-sample variance of 
the point estimate of 0 obtained as the solution, n, of the estimating 
equation W(x, y, t) = 0 is 

~ l[aE{W(X,Y,t)}]2 N var (0) ~ var W(X, Y, 0) = 12 :7'2 
at 1=9 mty 

Thus, relative to the estimator Y - X, the efficiency of n is 12(12]2, 
if F has variance (12. 

Large-sample calculations 
When m and n are large, calculation of W(X, Y, t) can be performed 
by first grouping the observations into classes to produce two 
frequency distributions. Then, taking all observations within a class 
interval to be uniformly distributed, an approximation to W(x, y, t) 
can be calculated as explained in the following example. 

Example 4.11 Suppose that the X- and Y-samples are grouped into 
frequency distributions as shown below: 

X-sample Y-samp\e 
Group Frequency Group Frequency 

5-10 2 14-18 1 

10-15 4 18-22 4 

15-20 9 22-26 8 

20-25 7 26-30 11 

25-30 6 30-34 12 

30-35 2 34-38 6 

38-42 6 
m=30 42-46 2 

n=50 
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A cross-tabulation such as the one shown below is useful for listing 
the sums of Uji(t) values contributed by the observations in pairs of 
class intervals. The tabulation below is for t = 0; for other t-values 
the Y class limits are obtained by subtracting t from each of the 
limits shown above. 

X 

5-10 10-15 15-20 20-25 25-30 30-35 

y-o 2 4 9 7 6 2 

14-18 0(0.8) 0.2(4) 7.0(9) 7(7) 6(6) 2(2) 
18-22 4 0(0.8) 0(14.4) 3.6(36) 25.2(28) 24(24) 8(8) 
22-26 8 0(0) 0(7.2) 0(70.2) 12.6(56) 46.8(48) 16(16 
26-30 11 0(0) 0(0) 0(39.6) 0(77) 26.4(66) 22(22) 
30-34 12 0(0) 0(0) 0(0) 0(50.4) 0(72) 14.4(2.4) 
34-38 6 0(0) 0(0) 0(0) 0(1.0) 0(27.9) 0.3(12) 
38-42 6 0(0) 0(0) 0(0) 0(0) 0(3.6) 0(10.8) 
42-46 2 0 0 0 0 0(0) 0(0.9) 

Where two intervals do not overlap their contribution to the sum of 
Uji(t) values is simply calculated; for example the Y - 0 class 22-26 
and the X -class 30-35 gives 8 x 2 = 16 Yi - 0 values smaller than Xi' 
a contribution of 16 as entered in the table. The contribution from the 
y - 0 class 22-36 and X -class 15-20 is o. Complication only arises 
when the intervals overlap. Take the Y - 0 class 22-26 and X -class 
20-25 with frequencies 8 and 7 respectively. We assume that the 
8 x 7 = 56 pairs of values are uniformly distributed on the square in 
which y - 0 varies from 22-26 and x varies from 20-25. A simple 
calculation gives the number of Yj - 0 - Xi differences less than 0 as 
(4.5/20) x 56 = 12.6. The sum of cell entries in the cross-tabulation is 
221.5, giving the observed W(x, y, 0) = 221.5 - 750 = - 528.5. 

To test the null hypothesis e = 0 we can use the value of W 
calculated above together with var(WIHo) = 10125 = (100.6)2. The 
observed result is, therefore, highly significant. 

If we put t = 10, the Y - 10 class intervals become 4 - 8,8 - 12, 
etc., and the corresponding contributions to W(x, y, 10) are 
shown in brackets in the cross-tabulation above. These give 
W(x, y, 10) = 744.6 - 750 = - 5.4. 
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Similar calculations for a selection of t-values gives 

W(X,y,t) 

0 - 528.5 

5 -296.6 

7 -192.8 

10 -5.4 

12 96.5 

15 288.2 
Plotting the values of W against t, we obtain the points shown 

in Fig. 4.1; the straight line shown in this figure was drawn by eye. 
Note that the range of t values was selected to give W-values lying 
roughly between 0 ± 2 s.d.(W). 

From the graph we can obtain: 

(i) the point estimate of () ~ 10.2; note that ji - x = 10.2 calcula­
ted from the grouped data. 

(ii) by finding the t-values corresponding to ± 1.645 s.d. (W) = 
± 165.5, approximately 90% two-sided confidence limits for () are 

(7.3, 13.0) 
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Figure 4.1 
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4.3.5 Two-sample transformed rank statistics 

Let Ri = Rank (X;), where Rank (X J is defined as in Section 4.3.4. 
Transform Rj(N + 1) to Hi = H[Rj(N + 1)], where H- 1 is often 
taken to be a continuous distribution function. Then the statistic 
based on these transformed ranks, a modification of W(X, Y, t) 
defined in (4.12), is 

m 

WH(X, Y, t) = I H[Rj(N + 1)] - mH (4.19) 
i = 1 

where H = (l/N) I7= 1 HUI(N + 1)). 

The null distribution of WH 

By the basic randomization procedure of Section 4.2, tabulation of 
the null distribution of WH is, in principle, straightforward. Since the 
collection of numbers Hi' i = 1,2, ... , N, is the same for every sample, 
the conditional and unconditional distributions of W H coincide. Thus 
inference based on WH is conditionally and unconditionally 
distribution-free. 

Example 4.12 m = 2, n = 3, H - 1 = <1>, the standard normal 
distribution. 

R i : 1 2 3 4 5 

H(R;/6) : -0.967 -0.431 0 0.431 0.967 

w: -1.398 -0.967 -0.536 0.431 0 0.431 0.536 0.967 1.39 

10Pr[WH = w] : 1 1 1 1 3 1 1 1 1 

In Example 4.12 the distribution of WH is symmetric about 0 
because the distribution function <p is symmetric with <p - 1 (p) = 

- <p -1(1 - p). In general, the distribution of WH is not exactly 
symmetric about 0 but we have 

mn" - 2 
var {WH(X, Y, e)} = N(N _ 1) L.JHi - H) 

As N -+ 00, (1/ N) I7= 1 WUI(N + 1)) -+ S~ W(u)du, so that for large N, 
1 1 

var {WH(X, Y, e)} ~ N A(l - A{ fH2(U)dU - (f H(u)du Y ] (4.20) 

o o 

Thus, if H = <p - \ one finds that var {WH(X, Y, e)} ~ N A(l - A). 
In this case H = <p - 1, the resulting test statistic is called the van der 



104 DISTRIBUTION-FREE STATISTICAL METHODS 

Waerden statistic; see, for example, Bradley (1968). Referring to 
Sections 2.3.3 and 2.3.4 it will be noted that the result obtained by the 
transformation <1> - 1 is similar to the result that would be obtained if 
the observation Xi were replaced by E(Y(r;)' where Y(r) is the rth order 
statistic in a sample of size N from a standard normal distribution. 
The corresponding statistic is called the 'normal-scores' statistic; see 
also Example 2.14 and definition (2.44). 

Hypothesis-testing and confidence limits 
The hypothesis-testing procedure is straightforward, requiring calcu­
lation of the observed W H and its referral, appropriately, to the null 
distribution of W H-

For determination of exact confidence limits we could follow an 
argument like that used in Section 4.3 in connection with determining 
confidence limits based on the statistic A(X, Y, t). However, since the 
conditional null distribution of WH for testing any chosen value of t 
is invariant with respect to t, only the value of observed WH(x, y, t) 
varying with t, we can use the simpler procedure followed with 
W(X, Y,t). 

Example 4.13 Using the data of Example 4.2, m = 3, n = 4 and the 
inverse normal transformation, H = <1>- \ we have H(1/8) = 

- 1.1503, H(2/8) = 0.6745, H(3/8) = - 0.3186, etc., and straightfor­
ward enumeration gives 

Pre - 1.1503:::; WH :::; + 1.1503] = 1 - 8/35 

As t varies, observed W H(X, y, t) changes at t = Yj - Xi' i = 1, ... , m, 
j = 1,2, ... , n. The following table shows the points at which W H 

changes and the values of W H in brackets. 

(- 2.1434) 0 

0.72 2.14 

( - 1.8248) (0.4758) 

1.09 2.18 

( -1.5062) (0.7944) 

1.39) 2.51 

(- 1.1503) (1.1503) 

1.51 2.74 

( -0.7944) (1.5062) 

1.76 2.93 

(- 0.4758) (1.8248) 

2.07 3.49 

0 (2.1434) 
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From this table, a 100(1 - 8/35)% = 77.1% confidence interval for e 
is (1.39,2.74). 

This result coincides with the result of Example 4.9. However, in 
general Wand WH will not give identical results; this can be seen by 
noting that while the functions of t, Wand WH have 'jumps' at the 
same t values the jumps are of equal size in W but of unequal size in 
WHo 

The efficacy of WH 

We need an expression for E {WH(X, Y, t)} in order to find the efficacy 
of WHo For this purpose we note that 

{Rank(XJIXi = x} = 1 + * (Xj < x;j j i) + * (Yk - t < x), (4.21) 

from which it readily follows that 

E{Rank(Xi)lx} = 1 + (m -l)F(x) + nF(x + t - e) 

var{Rank (Xi)lx} = (m - l)F(x)[l - F(x)] 

+ nF(x + t - e)[l - F(x + t - e)] 

For m and n large, m ~ AN, n ~ (1 - A)N, we then have 

{ Rank(X·)1 } E (N _:_ I)' Xi = X ~ AF(x) + (1 - A)F(x + t - e) 

{ Rank (Xi) I } 1 
var (N + 1) Xi = X ~ 4N 

from which 

and 

E{ H(R~:(~;))} ~ fH {AF(x) + (1- A)F(x + t - e)}f(x)dx 

aE{ H(R~:(~;)) } I at ~ fH 1 {AF(x) + (1 - A)F(x + t - e)} x 

x (1 - A)f(x + t - e)f(x)dx 

glVlng 

( aE{WH(X, Y, t)}) ~ mn fH/{F(X)}f2(X)dX (4.22) 
at t=O N 
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Combining (4.22) and (4.20), the efficacy of WH is 
1 1 

e(WH ) = IfH'{F(x)}P(X)dxll {fH2(U)dU - [fH(U)dU J} 1/2 

o 0 (4.23) 

As a check, putting H(u) = u, H'(u) = 1 in (4.23) reproduces the 
result (4.18). 

4.3.6 'Robust' transformations in the two-sample case 

Suppose that the values Zi(t) = Xi' i = 1,2, ... , m, zm + it) = Yj - t, 
j = 1,2, ... , n, are transformed to ",(Zit)), k = 1,2, ... , N, and define 
the statistic A",(X, Y, t) by 

A",(X,Y,t)= f ",(Xi-C)_ m f. ",(Zk(t)-C) (4.24) 
i=l d N k =l d 

Typically c/I(u) is to be chosen to be continuous and monotonic in u, 
and such that its effect is to dilute the influence of outlying values of 
the Zk(t). 

According to the basic randomization argument of Section 4.2 
conditionally distribution-free inference about () is possible with the 
statistic A",(X, Y, t). The arguments are essentially the same as those 
for the statistic A(X, Y, t) elaborated in Section 4.3.2. Possible forms 
of '" are those mentioned in a similar context in Section 2.3.6. 

The location adjustment, c, and the scale factor, d, appearing in 
(4.24) can depend on t without the conditional inference argument 
being affected. As we have noted before, in Chapter 2, the commonly 
suggested", transformations are sensitive to the choice of scale factor 
and a 'best' choice is far from clear. Possible choices are 

c = median (ZIt)) 

d = median (IZi(t) - cD 

Hypothesis testing 
Application of the suggested transformations in hypothesis testing 
is straightforward, as shown in the following example. 

Example 4.14 (See also Example 4.2.) 

x: 2.71,3.46,4.13 

Y : 4.85, 5.22, 5.64, 6.20 
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We consider testing H 0 : () = 1 against H 1 : () > 1. 

c = median (2.71, ... ,5.20) = 4.13 
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d = median (12.71 - 4.131, ... ,15.20 - 4.131) = 0.51 

t/I ( Xi ; c): _ 0.884, - 0.576, 0 

t/I(Yi - ~ - C): _ 0.268, 0.088,0.462,0.781 

Observed A", = - 1.460 - ( - 0.170) = - 1.29 
Under H o, Pr(A", ~ - 1.29) = 2/35, by simple enumeration, henceHo 
is rejected at the 5.7% level. 

Point estimation and confidence limits 
The point estimate of () based on A", is the solution of the estimating 
equation 

A",(X, Y, t) = 0 (4.25) 

In principle, determination of exact confidence limits can be 
achieved by the type of argument used to find exact confidence limits 
based on A, as explained in Section 4.3.2. However, the computations 
are much more tedious and complications can arise through the 
possible non-monotic behaviour of A", as a function of t. In large 
samples this is not a serious problem and two-sided confidence limits 
for () can be obtained, using a normal approximation for the 
distribution of A"" by solving 

A",(x, y, t) = ± u"u(t)(N /mn)1/2, (4.26) 

where t/li = t/I«Zi(t) - c)/d) and u2(t) = (1/ Nfrl= 1 t/lf -Ci,t/I;/ N)2. 
The argument leading to (4.26) is exactly the same as that used to give 
(4.5). 

4.3.7 Multiplicative models 

Suppose that the positive random variables X and Yare such that 
the distribution of Y is the same as the distribution of pX, interest 
being in estimating the mUltiplying factor p. Since the distributions 
of In Y and Inp + InX are identical, the problem of inference about p 
can be regarded as similar to inference about a location-shift 
parameter. 
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Another class of alternatives that can also be reduced to the 
location shift type is 

Y distributed like xa 
where, again Y and X are positive random variables. Here we have 

In (In Y) distributed like Ina + In (lnX) 

One of the practical advantages of using distribution-free tech­
niques based on signs or ranks in connection with data generated 
by distributions of the type in question, arises through the tendency 
of experiments to round off observations, in particular to record 0 
for very small positive values. If the proportion of such 0 values is 
not large, they do not cause any difficulty in analyses by rank or 
sign transformations. 

4.4 Proportional hazards (Lehmann alternative) 

In life testing and the analysis of survival data, a model that arises 
naturally and is frequently used is 

1 - F(x) = (1 - G(x)t (4.27) 

For the X-population the hazard rate at x, also called the 
instantaneous death rate, is 

r Probability of 'death' in (x, x + ilx) f(x) 
<1~ Probability that X> x = 1 - F(x) = hx(x) 

For the Y population we have, similarly, the hazard rate 
hy(y) = g(y)/[1 - G(y)]. From (4.27) we see that 

f(x) = a(1- G(x»a-lg(x) 

so that the X -population hazard rate is 

f(x) 
hx(x) = 1 - F(x) 

a(1 - G(x»a-lg(x) 
(1 - G(x»a 

ag(x) _ h x 
(1 - G(x» - a y( ) 

(4.28) 

The proportionality of the hazard rates in the X and Y populations 
exhibited by (4.28) explains the alternative terminology for the model 
(4.27). 

4.4.1 The Wilcoxon statistic and inference about a 

In the present context it will be convenient to use the Wilcoxon or 
the Mann- Whitney statistic in the more standard form, rather than 
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the form W(x, y, t) as in (4.12) and (4.15). Let 

and put 

V .. ={l 
JI 0 

Yj<X i 

otherwise 

n m 

V(X,Y)= L L V ji 
j=li=l 
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(4.29) 

This VeX, Y) is the Mann-Whitney statistic, and if W(X, Y) denotes 
the sum of ranks of the X -sample after pooling the two samples, we 
have 

W(X, Y) = m(m + 1)/2 + V(X, Y) 

The expectation of V(X, Y) is readily seen to be 

E{V(X, Y)} = mnPr(Y < X) 

= mn f G(y)f(x) dx = mn f(l -F(y))g(y) dy 

Clearly E{V(X, Y)} = (1/2)mn if G = F. 
In the model (4.27) we have 

Pr(Y < X) = f[l- G(y)yg(y)dy = 1/(1 + C() (4.30) 

again, putting C( = 1, so that F = G, gives PreY < X) = 1/2. 
Since we have a simple expression for E {U(X, Y)} in terms of the 

parameter C(, it appears that V is a natural statistic to use for inference 
about c(. Up to a point this is true, but, as we shall explain, there 
are difficulties. 

Testing H 0 : C( = 1 against H 1 : C( < 1 
Under H 0' E( V) = mn/2 and under H 1, E( V) > mn/2; hence we reject 
H 0 if the observed V is sufficiently large. As the distributions F and 
G are identical under H o, the actual test procedure can use the null 
distribution of W as it is described in Section 4.3.4. The observed 
V (or W) can be referred to tabulated percentage points of the null 
distribution of the V (or W) statistic, or a suitable normal approxi­
mation to this distribution can be used. 

Testing H 0 : C( = c(o f 1 against H 1 : C( < C(o' 

In the application of the Wilcoxon test to the case of a specified 
location-shift alternative, 80 , it is possible to transform the Y-sample 
to an adjusted sample, Y1 - 80 , Y2 - 80 "", Yn - 80 , which can be 
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regarded as being generated by the same distribution as the X­
sample. Hence the exact distribution of W(Y, X, ()o) could be derived 
by the permutation argument of Section 4.2. In the proportional­
hazards model such a simple transformation producing, by the 
permutation argument, an exact distribution of Wunder H 0 when 
oeo =1= 1 does not seem possible. In principle it is possible to express all 
the joint probabilities of the U j, that are needed for the distribution of 
U in terms of oeo, but the task is prohibitively tedious. 

If we take m and n to be sufficiently large for the distribution of 
U to be approximately normal, we need only the first and second 
moments of U expressed in terms of oeo. 

For general oe we can follow steps like those leading to the 
expression (4.17): 

giving 

q=Pr(Y<x)=I/(oe+l); y=oe/(oe+l)2 

WI = cov (U ji' U hs) = Pr [Yj < Xi' Yi < X j] - q2 

= FI -F(y)]2g(y) dy - q2 

= 1/(2oe + 1) - 1/(oe + 1)2 

= oe2/[(2oe + l)(oe + 1)2] 

W2 = cov(Uji , UrJ = 1 - 2oe/(oe + 1) 

+ oe/(oe + 2) - I(oe + 1)2 

= oe/[(oe + 2)(oe + 1)2] 

var {W(X, Y)} = mnoe/(oe + 1)2 [1 + (n - l)oe/(2oe + 1) 

+ (m - 1)/(oe + 2)] (4.31) 

For a specified oeo in H o, we can then obtain E(WIHo) and 
var(WIHo) simply by substituting oeo for oe in the expressions (4.30) 
and (4.31). 

Example 4.15 
X : 0.315 1.062 1.357 0.004 

Y : 0.062 0.574 0.578 0.654 1.226 0.087 

Testing H 0 : oe = 0.6 against oe < 0.6. 

E(UIHo) = 15, from (4.30) 
var(WIHo)= 19.78 =(4.448)2, from (4.31) 
Observed U = 13. 
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Since observed U differs from E( U I H 0) by less than one s.d. (U I H 0)' 

we accept H o' 

Confidence limits for Q( 

Using a normal approximation for the distribution of U, with (4.30) 
and (4.31), an approximate 100(2{J - 1)% confidence interval (a l a2 ) 

for a can be found by solving the following equation in a fora l anda2 · 

Observed U - mnj(a + 1) = ± up s.d. (U) (4.32) 

where up is an appropriate normal deviate, and [s.d(U)]2 is given by 
the r.h.s. of (4.31). 

Example 4.16 Using the data in Example 4.15, graphical solutions 
of the equations (4.32) give, with up = 1.645, approximate 90% two­
sided confidence limits for Q( as (0.27, 2.9). The point estimate of a is 
a = mnj(observed U) - 1 = 0.85. 

Efficiency of U for Q( 

The point estimate ~ = (mnjU) - 1 has large-sample variance appro­
ximately {(a + 1)4 j(m2 n2 )} var (U). For comparison, consider the 
maximum-likelihood estimates Ii of Q( in the special case 1 - F(x) = 
e- ax /Il , 1-G(y)=1-e- Y/ Il • We then have Ii=Y/X with large­
sample var ~ ~ Q(2(N jmn). Thus at Q( = 1, var(li)jvar (~) ~ 3/4. 

4.4.2 The 'log-rank test' and inference about a 

The test which we are about to describe is important on several 
counts: 

(i) It is a valid test of equality of F and G in general, not only in 
the proportional hazards case. 

(ii) In the proportional-hazards case it has certain optimality 
properties. 

(iii) The test can be generalized to deal with cases where some 
observations are censored; in certain types of applications, notably 
studies of survival, such a test is very useful. 

We begin with a description of the test of the case Q( = 1 and no 
censoring of observations. Since the terminology is useful, and this 
test is often applied in survivorship analysis, we shall think of the 
observed variables as life times. Then the pooled sample values 
Zl,Z2, ... ,ZN are the times at which deaths occur, in either the 
X -sample or the Y-sample. Let C x(z) be 1 if the death at time z is an X-
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death,Ootherwise. Let mj,nj denote the numbers in the X- and Y­
samples respectively that are still alive at time Zi - 0. 

Bearing in mind that we are considering the proportional-hazards 
model, it seems natural to develop a test procedure based directly 
on calculations of conditional probabilities of events at the obser­
ved death times. More specifically, if the hazard rates in the 
two populations are identical, then the conditional probability 
Pr[Cx(Sj) = 1Imj,nj] is simply equal to the proportion of the 
X-sample 'at risk' at time Zj - 0. Thus 

m· Pr[Cx(z.) = 1Im.,n.] = __ J_ 
J J J m.+n. 

J J 

another way of expressing this result is 

ej = E(Cx(z)lmj, n) = m)(mj + n) 

The proposed test statistic is 

U = L C x(z) - Lej = m - Lej (4.33) 

As usual, when the null hypothesis implies that F and G are 
identical it is possible to evaluate the exact randomization distribu­
tion of U by the argument of Section 4.2, as illustrated in 
Example 4.17 

Example 4.17 

X: 0.7, 1.5, 4.7 (m = 3) 
Y: 0.9, 2.3 

Zj mj nj cx(z) e j 

0.7 3 2 1 3/5 = 0.6 

0.9 2 2 0 2/4=0.5 

1.5 2 2/3 = 0.6 

2.3 0 1/2 = 0.5 

4.7 0 1 1/1 = 1.0 

Totals 3 3.26 

Inspection of the column headed ej will show that, whatever 
assignment of three of the five observations is made to the X -sample, 
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the form of Lej is always 

Lej = V 5/5 + V 4/4 + ... + V d 1 

and the full set of (~) realizations of (V 5' V 4' ... ' VI) is as follows: 

Vs V 4 V3 V2 VI Lej Lqj u/(LQY,2 

3 2 0 0 1.433 0.71222 1.856 
3 2 1 1 0 1.933 0.96222 1.087 
3 2 2 1 0 2.266 0.96222 0.748 
3 3 2 1 0 2.516 0.89972 0.510 
3 2 1 1 1 2.933 0.96222 0.068 
3 2 2 1 1 3.266 0.96222 -0.272 
3 3 2 1 1 3.516 0.89972 -0.545 
3 2 2 2 1 3.766 0.71222 -0.908 
3 3 2 2 4.016 0.64972 - 1.261 
3 3 3 2 4.350 0.42750 -2.065 

A simple calculation shows that E(Le) = 3 = m; hence E(V) = O. 
The observed V for our particular example is 3-3.266; reference 

to the list of all possible Lej shows that the result is not significant. 

Further inspection of Example 4.17 should convince the reader 
that it is a fairly simple matter to describe the exact distribution of 
any Vj for general m and n. In fact 

pr(Vj=s)=G)(~=~)/(~)' s=O,1,2, ... ,M (4.34) 

indicating that Vj has a hypergeometric distribution. Using (4.34) 
and noting that V = m - L:i= 1 Vj/j, we have 

N 

E(V)=m- L M/Nj=O 
j= 1 

as verified in the example above. 
Another way of checking E(V) = 0 is by noting that 

E{ L Cx(zj)lm 1,n1,·· .,mN,nN} = E{ L Cx(Z)lm,n} = Lej 

whence 
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but I Cx(Z) = m, a constant, giving E( Iej ) = M. 
A useful result concerning var (U) can be obtained by similar 

reasoning. By repeated application of the basic relation 

var(Y) = E{var(YIX)} + var {E(YIX)} (4.35) 

var{ICx(Z)lm,n}=jtl mjn)(mj+nl (4.36) 

Putting qj = mjn)(mj + n/, j = 1,2, ... , N, we have 

var{ I Cx(Z) - Ie)m,n} = Iqj· 

Also 

and since ICx(z;) = constant = m, 

var(U) = var(Ie) 

= E(Iq) + var {E(Ulm, n)} 

=E(Iq) (4.37) 

When m and n are large one may treat U as being approximately 
normally distributed with variance given by the observed value of 
Iqj. Some justification for such a procedure is provided by (4.37). in 
that the observed Iqj may be regarded as an estimate of var(U). 
Alternatively one may argue conditionally on m, n, in which case 
(4.37) is not needed. Approximate normality of U cannot be 
established by elementary means. 

The effect of using such a normal approximation is illustrated by 
the last two columns in the tabulation appearing with Example 4.17. 
The only two values of I U /(Iq//21 that exceed the 10% point (1.282) 
of a standard normal distribution are those in the first and last rows of 
the table. 

4.4.3 Conditional likelihood and the log-rank test 

In a paper on regression models and life tables Cox (1972) uses a 
conditional likelihood approach to develop a class of test procedures 
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of which the two-sample log-rank test is a special case. The argument 
is similar to that used in Section 4.4.3, for, conditionally on mi , ni, 

individuals being. 'exposed' at Zi - 0 the probability that the 'death' 
at Zi is that the individual as observed is 

Each failure contributes a similar factor to the overall conditional 
likelihood whose logarithm is 

N 

L(oe) = log oe L C x{zJ = L log (oemi + nJ 
i = 1 i = 1 

with 

D log L(oe) = log I. {C x(zJ _ mi } = U(oe) 
Doe i = 1 oe (oe mi + ni ) 

(4.38) 

The relation (4.38) suggests the use 

as a statistic for testing that (X = 1, for, if (X = 1, then, the solution eX 

of U(oe) = 0 should not 'differ significantly' from 1. 

4.4.4 The log-rank test and censored observations 

For the null hypothesis F = G, modification of the log-rank test for 
the case where some observations are censored is straightforward. 
By censoring we understand that some observations may be known 
to exceed certain values, but their exact values are unknown. 
Typically, 'right-censored' observations of this sort occur in survival 
studies where, for example, a patient who is still alive is lost from 
a study by the action of some agency such as moving to another 
town, or dying accidentally. 

The modification to the log-rank test is simply to calculate the 
conditional expectations ei , Lei' and the relevant conditional 
variances, using numbers m;, n~, these being interpreted exactly like 



116 DISTRIBUTION -FREE STATISTICAL METHODS 

the mi , ni except that they are numbers exposed after subtraction of 
numbers of deaths and of numbers lost. 

In practical applications, observations like survival times are often 
rounded off to the nearest day or month or year. This means that 
for any Zi the values of ci and cx(Zi) may be greater than one. No new 
principle is needed to develop a test for the conditionally expected 
number of X -deaths at Zi is just 

and the conditional variance is 

I " ci(n; + m; - ci) 
qi = nimi - (n; + m; -1)(n; + m;)2 

The test statistic is 

where k is the number of distinct death times. 
In principle it is possible to obtain a randomization null distri­

bution for U, in the manner of Example 4.17, but there are prob­
lems associated with deciding exactly how the random allocatiQns 
should be made. In particular one may ask whether randomization 
should be performed disregarding censoring or whether the randomi­
zation should be performed subject to the numbers of censored ob­
servations in the X -sample also being held fixed. 

However, the difficulty may be ignored when m and n are 
moderately large, in which case the calculated conditional mean and 
variance of U can be used, assuming approximate normality of the 
distribution of U. 

Example 4.18 We use a collection of data on remission times of 
leukemia, published by Freireich et al. (1963) and used by Gehan 
(1965) to illustrate a method for dealing with censored observations, 
and also by Cox (1972); the * indicates a censored result. 
X-sample (exposed to drug 6-MP): 6*, 6, 6, 6, 7, 9*, 10*, 10, 11 *, 
13, 16, 17*, 19*,20*, 22,23,25*,32*,32*,34*,35*. 
Y-sample (control): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 
15, 17, 22, 23. 
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Failure time mj nj c j Cx(z;) ej qj 

(zJ 

21 21 2 0 1.0000 0.4878 
2 21 19 2 0 1.0500 0.4860 
3 21 17 1 0 0.5526 0.2472 
4 21 16 2 0 1.1352 0.4772 
5 21 14 2 0 1.2000 0.4659 
6 21 12 3 3 1.9092 0.6508 
7 17 12 1 1 0.5862 0.2426 
8 16 12 4 0 2.2856 0.8707 

10 15 8 1 0.6522 0.2268 
11 13 8 2 0 1.2381 0.4481 
12 12 6 2 0 1.3333 0.4183 
13 12 4 0.7500 0.1875 
15 11 4 1 0 0.7333 0.1956 
16 11 3 1 1 0.7857 0.1684 
17 10 3 1 0 0.7692 0.1775 
22 7 2 2 1 1.5556 0.3025 
23 6 1 2 1 1.7143 0.2041 

Totals 9 19.2509 6.2570 

From the table above U = 10.25 with variance = 6.26. 

4.5 Dispersion alternatives 

Elementary discriptions of distributions are often concerned mainly 
with measures of location and of dispersion. Thus in considering 
alternatives other than these already discussed in Sections 4.3 and 
4.4 it is natural to think of dispersion alternatives. Unfortunately, 
it seems possible to develop simple exact tests only if distributions 
are assumed to be equally located. Otherwise the two samples have 
to be 'aligned' by the subtraction of an estimate of the difference in 
location from one set of sample values. A test of equality of dispersion 
based on such aligned sample is generally not exact. 

Another non-trivial difficulty is associated with the question of 
interpreting the result of a test of equality of dispersion if it is 
significant. In a general way every test of dispersion may be thought 
of as a test of equality of a certain measure of dispersion. However, 
it is not always obvious just what that measure is; in particular, it 
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may be difficult to devise and use a point estimate of the relevant 
population value. 

With these difficulties in mind we shall mention just two possible 
approaches to the testing of equality of dispersion. 

4.5.1 A randomized exact test of dispersion 

Rearrange the X -sample values in random order to give 
X~,X2'''''X~ and do likewise for the Y-sample to give Y~'Y2'''''Y~' 
Now let 

W1 = IX'l - x~l, 

V1 = lil - Y~I, 

W2 = Ix~ - x~l, ... , Wk = IX~k _ 1 - x~kl 

V2 = IY~ - Y~I, .. ·, VI = IX~I_ 1 - x~11 

where k(l) is the largest integer such that 2k ~ m (21 ~ n). 
One interpretation of the hypothesis of equal dispersion is that 

the W- and V-samples are from identically located populations. Now 
anyone of the exact tests of location developed in earlier sections 
can be applied to the W- and V-samples. A word about terminology: 
this test is called randomized because of the preliminary random 
ordering of the X-and Y-samples (two statisticians will not neces­
sarily obtain the same answer for the same test procedure). This 
randomization is not to be confused with the randomization of 
Section 4.2. 

The problem of interpretation is emphasized by remarking that 
the X -dispersion parameter implicitly defined by a test procedure 
such as that outlined above is a location parameter of the distribution 
of X 1 - X 2' where Xl and X 2 are identically distributed like X. This 
location parameter could be median of IX 1 - X21 or EIX 1 - X21. 

A great advantage of the randomized test described above is that 
equality of location of the X-and Y-distributions need not be 
assumed. An obvious disadvantage is that it is randomized; 
randomized procedures are not popular with practitioners of 
statistics. 

4.5.2 Comparing interquartile ranges 

The interquartile range is perhaps one of the conceptually simplest 
measures of dispersion. Clearly, it bears a close analogy to the median 
in the problem of location. For a continuous population the 
interquartile range always exists and is unique. 
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If we wish to test the null hypothesis that two populations are 
identical against the alternative that the populations have the same 
median but different interquartile ranges, a simple test is possible. 
Let ZO.25N and ZO.75N denote the sample lower and upper quartiles 
in the pooled X - and Y-samples. Then the randomization distribution 
of the statistic Qx = # (X observations between ZO.25N and ZO.75N) is 
easily evaluated; it is a hypergeometric distribution. For large N 
values, ECQxIHo) = 0.5m 

var(QxIHo) = 0.5mn/(N - 1), 

hence the significance of an observed value of Qx is readily assessed; 
see Westenberg (1948). 

When the assumption of equal location of the two populations 
cannot be made, separate point estimates of the interquartile ranges 
of the two populations can be found and compared in terms of 
their estimated variances;. for a discussion of estimation of the 
variance of the sample interquartile range see Section 3.3. 

4.5.3 Rank test for dispersion 

Several rank or rank-like tests of dispersion exist for equally located 
distributions and are described in various texts, for example, Gibbons 
(1971). To illustrate a typical approach consider the Mood (1954) test 
statistic 

m 

M = L [Rank (X;) - (N + 1)/2]2 
i = 1 

where Rank (X;) is the rank of Xi in the pooled X-and Y-samples. 
It is clearly easy in principle to enumerate the exact null distri­

bution of M under randomization; in this distribution, 

E(M) = (m(n 2 - 1)/12 

var(M) = mn(N + 1)(N2 - 4)/180 

EXERCISES 

4.1 The following X- and Y-samples were drawn at random from 
populations differing only in location, by an amount L\. 

X: 6.474, 

Y: 6.560, 

4.573, 

7.699, 

5.799 

9.084, 8.539 
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Using the mean statistic and the basic randomization pro­
cedure obtain an exact 100(1 - 4/35)% confidence interval for ~. 

4.2 Tabulate the exact null distribution of the two sample sign 
statistic for sample sizes m = 3, n = 4 as in Exercise 4.1. 

Using the data of Exercise 4.1 and the two sample sign statistic 
test H 0 : ~ = 3.0 against H 1 : ~ > 3.0 at the level (X = 4/35. 

4.3 In the two-sample problem let m = 1, n = 2. Then the sign statistic 
for testing equality of medians is 

S(O) = sgn (X 1 - Z) 

where Z is the median of Xl' Y1 , Y2 • 

Obtain the exact distribution of S(O) in terms of the X and Y 
distributions, F and G. 

4.4 Consider the sign statistic defined as in Exercise 4.3 for general m 
and n such that N = m + n is odd. Then 

sgn (X i - Z) = - 1,0, + 1, 
if 

# (Xj > Xi,j f i) + # (Yr > X;) >, =, < (N - 1)/2. 

ConditioningonX i = x,expressP{sgn(Xi - Z) = -11Xi = x} in 
terms of F and G. 

Hence, or otherwise express E {S(O)} in terms of F and G. 
4.5 Suppose that m = 2 observations are drawn at random from a 

R {O, 1} population and n = 2 from an R {0.1, 1.1} population. 
Tabulate the exact distribution of the Wilcoxon rank sum 

statistic W(X, Y, 0) = L Rank (X;) - 5 where L Rank (X;) denotes 
the sum of the ranks of the observations from the R {O, I} 
population. 

Note: R {a, b} denotes a continuous uniform distribution with 
density f(x) = 1/(b - a) for a ~ x ~ b, and 0 elsewhere. 

4.6 Check the first two moments of the distribution obtained in 
Exercise 4.5 against values given by the formulae in Section 4.4, 
Chapter 4. 

4.7 In an experiment to examine the effect of a certain diet on growth 
rate of laboratory animals the following weights of randomly 
selected control and special diet fed animals were observed after a 
set time. 

Control: 396,409,371, 367, 392 (X observations) 
Diet fed: 434, 405, 440, 441, 399 (Y observations) 

Assume that the effect of diet is multiplicative, that is, the 
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distribution of Y is the same as the distribution of yX where y is 
the multiplicative effect. Obtain a point estimate and a 100P% 
confidence interval for y based on the Wilcoxon rank sum 
statistic, with p as close as practicable to 0.95. 

4.8 Assuming the multiplicative model of Exercise 4.7, and letting 
g(y) be the probability density function of the Y distribution, 
derive the following large sample approximate formula for the 
point estimate y, of y, based on the Wilcoxon rank sum statistic: 

y2 
var(y) ~ 12g; (11m + lin) 

where 

g; = fyg2(Y)dY 

4.9 The following two frequency distributions summarize X and Y 
samples from populations that differ only in location. 

Class lower limit 

X -freq uency 
Y-frequency 

100 105 110 115 120 125 130 

2 
1 

15 
8 

37 
39 

21 
70 

3 
38 6 

Plot an approximate graph ofthe Wilcoxon rank sum statistic 
W(X, Y, t) against t assigning the same (mid-rank) value to all 
observations within the same interval, and plotting at values of t 
that are integral multiples of the class width. Hence obtain a point 
estimate of the location shift parameter 8, and an approximate 
90% confidence interval for 8. 



CHAPTER 5 

Straight-line regression 

5.1 The model and some preliminaries 

We shall consider independent continuous random variables 
YI , Y2 , ••• , Yn that are observed at values xI,x2"",xn of a non­
random variable X. If ()j is a location parameter of Yj,j = 1,2, ... n, the 
straight-line regression problem is specified by 

j = 1,2, .. . ,n 

where Il( and f3 are parameters. For the most part our objective is to 
make inferences about Il( and f3 from observations on YI , Y2 ,· •• , Yn' 

In the rather general setting outlined above, we may take the 
distribution function of Yj to be F/y),j = 1,2, ... , 11, and, if no 
specialization of these distribution functions is introduced, it may be 
argued that the only sensible location parameter to consider is the 
median, that is, ()j is taken to be the median of Yj" As for restrictions on 
the Fj , they will be influenced by the view one takes ofthe straight-line 
regression problem. One view is that it is a matter of comparing 
locations of distributions indexed by Xl' X 2 , •.• , X n ' Such a view takes 
the problem to be an extension of the two-sample problem, and 
essentially displays no interest in the parameter Il(. All the interest 
centres in f3, and in these circumstances a natural restriction is that the 
distributions F are identical except for location. Associated with this 
type of restriction there is a body of techniques for inference about f3 
only. Another view is of simultaneous estimation of the locations of 
Y1 , •.. , Yn through estimation of Il( and f3. In such a formulation it is 
essential to specify just what location parameter is being estimated for 
each Yj" This places us in much the same position as location 
estimation in the one-sample case. Recalling our previous discussions 
it will be apparent that we shall have to assume every Yj to be 
symmetrically distributed about Il( + f3x j . 
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5.2 Inference about p only 

A number of techniques associated with the notions of 'testing for 
trend' or 'testing for randomness' become available for inference 
about p only if we assume that the distributions F j are identical except 
for location. Basically the idea is that, under this assumption, the 
differences 

j= 1,2, ... ,n 

are identically and independently distributed. Thus a test of trend of 
the D/P) is a test that p is the true parameter value. 

Extending the permutation argument used in the two-sample case, 
we see that the basic method of constructing a distribution-free test is 
to consider any permutation of the observed D/P) values as possible 
and occurring with the same probability. Under such a scheme it is 
possible to tabulate the exact conditional null distribution of any 
statistic defined as a function of the D/P) values. 

Example 5.1 Consider testing Ho: P = 1 using the data below. 

Xj: -2 -1 0 2 

Yj: -1.35 -1.55 -48 1.55 2.21 

Di1) : 0.65 -0.55 -0.48 0.55 0.21 

Take as the test statistic T*(P) = Lsgn(xj) Dj(P). There are 120 
permutations of the Dj (l) values and the 5 permutations giving the 
largest values of T*(I) are 

T*(I) 
-0.55 -0.48 0.21 0.55 0.65 2.23 
-0.55 -0.48 0.55 0.21 0.65 1.89 
-0.55 -0.48 0.65 0.55 0.21 1.79 
-0.55 0.21 -0.48 0.55 0.65 1.54 
-0.48 0.21 -0.55 0.55 0.65 1.47 

The values of T*(I) are shown in the last column above. The five 
smallest T*(I) values are obtained by reversing the order of each 
permutation. 

Now, the observed T*(I) = 0.66, a result that is not significant at 
the 100(10/120)% level. 

When two or more of the Xi values coincide care must be taken to 
list all possible permutations. The following example should be noted. 
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Example 5.2. Test f3 = 1.2 using the following data: 

Xj: -2 

Yj : - 1.35 

Yj - 1.2 Xj : 1.05 

1 

1.55 

0.35 

0.98 

-0.22 

Consider the statistic T(f3) = L xp i(f3) 

Permutation 

1.05 0.35 -0.22 - 0.19 
1.05 0.35 -0.19 -0.22 
1.05 -0.22 0.35 -0.19 
1.05 -0.22 - 0.19 0.35 
1.05 -0.19 0.35 -0.22 
1.05 -0.19 -0.22 0.35 
0.35 1.25 -0.22 -0.19 

etc. 

2 

2.21 

-0.19 

T(l) 

-2.35 
- 2.38 
- 2.35 
- 1.81 
- 2.38 
-1.81 
-0.25 

125 

There are not 4! = 24 distinct T(l) values, only 12, in this particular 
example, each of them occurring twice. They are. 

-2.38 

-2.35 

-1.81 

-0.28 

-0.25 

0.99 

1.34 

1.46 

1.91 

2.00 

2.61 

2.70 

A general class of statistics may be defined by 

n 

T(f3,ljJ,H;Y,x)= L ljJ(xj)H[D/f3)] 
j= 1 

(5.1) 

For notational convenience some of the arguments in T(f3, ljJ, H; Y, x) 
will occasionally be suppressed when there is no risk of confusion. 

The transformed 'residuals' H[D/P)] playa role rather like the 
deviations (X j - (J) in the one-sample case or Yj - (J in the two-sample 
case. Considerations as to the form of H apply here as they did in the 
one- and two-sample problems. An extra ingredient here is ljJ(x), with 
ljJ(x) = sgn(x) being used in Example 5.1. It seems clear that a 
sensible choice of ljJ(x) should be such that a trend in the Dj (f3) values 
should produce a numerically large value of T. We shall see that, given 
H, it is usually possible to find a 'best' ljJ. It should be noted that, such 
a 'best' ljJ produces, for a given H, a best T only within the class of 
statistics defined by (5.1). 
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As is often the case, the best-known classical parametric procedures 
provide useful pointers to sensible choices of r/J and H, and also 
indicate obvious restrictions that may have to be placed on the Xj 
values. Recall, briefly, the case where the Yj have expectations 
(1. + pxj,j = 1,2, ... , n, and identical finite variance (12, and suppose, 
as we shall assume throughout this chapter, unless stated otherwise, 
that LXj = O. Well-known theory shows that 

n 

T(P) = L xjDj(P) 
j= 1 

is 'best' for this case. Further, if P is estimated by the value of b 
satisfying the estimating equation 

T(P) = LxiYj - bx) = 0 

then the variance of the estimate of P is (12 ILX; . 
This result shows that for consistency of estimation of P by b = 

LXjY)Lxj we must have LX; -+ 00 as n -+ 00. Thus we must 
exclude cases when, for example, all additionallxjl values tend to 0 as 
n is increased. This is also obviously dictated by elementary 
considerations that apply to the general statistic in (S.1) As we shall 
see, the best choice r/J(x) = Xj in classical least squares, is also a best 
choice for other models and choices of H. 

S.2.1 Inference based on T(P) = LXjDiP> 

The statistic 

(S.2) 

can be regarded as the straight-line regression analogue of the mean 
statistic A of Chapter 2. It can be regarded as the primitive statistic, 
suggested by the method of least squares from which the statistic in 
(S.1) is derived by suitable generalization. It is obviously important in 
its own right since it is the best in the case where E(Y) = (1. + pXj and 
var(Y) = (12 < 00. 

Hypothesis testing 
To test the hypothesis Ho: P = Po' we evaluate the null distribution, of 
T(Po' x) conditional on Y.i - POxj,j = 1,2, ... n, fixed. This null distri­
bution is obtained by listing all n! permutations of the values 
Yj - POxj,j = 1,2, ... , n, and calculating the value of T for each of 
them. Each such value has the same probability, lin!, in the null 



STRAIGHT-LINE REGRESSION 127 

distribution. The test of H 0 is then effected by referring the observed 
value of T to the null distribution, appropriate account being taken of 
whether the alternative hypothesis is one- or two-sided. 

The work of enumerating the exact conditional null distribution of 
T increases rapidly with n, and one often has to resort to using the first 
two moments ofthe distribution in carrying out the test of hypothesis. 
Write dj = Yj - /3oXj, j = 1,2, ... , n, and put 

d= Id)n 
V= I(d j - elf In 

Let D j be the random variable generated in position x j by the 
permutation. Then, from elementary theory, as in Section 1.8.3, 

E(D j) = J, var(Dj) = v,cov(Dj,Dk) = - vl(n -1),j =1= k. 

Using these formulae we have 

and 

E(T) = Ix j t1 

var(T) = vIx; - I xjxkvl(n - 1) 
Uk 

" 2 V "2,, 2 
= VLh - (n -1) {(Lh) - Lh} 

Since we take IXj = 0, we obtain, more simply, 

E(T) = JL.x j = 0 

var(T) = (nvl(n - 1))IxJ 
(5.3) 

Approximation of the distribution of T by a normal distribution 
will be possible if var(Y) is finite and, as n -+ 00, 

max xJ IIxJ -+ 0 

An illustration of the use of such an approximation is given in 
Example 5.3. 

Confidence limits for /3 
Consider a two-sided 100(1 - 2rln!)% confidence interval for /3; r will 
be chosen such that 2r In! is close to one of the conventionally used 
small probabilities 0.10, 0.05, etc. The confidence interval will be 
constructed by finding the set of possible /3 values for which the 
appropriate null hypothesis is accepted. 
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For a selected possible value b of p, the hypothesis test is in 
principle carried out by listing all n! possible values of the statistic 
T(b) and noting that a typical member of this collection is 

n 

Tq(b) = L xi(Yn, - xn,b) 
i= 1 

The subscript ni for Y and x in this expression indicates that we are 
dealing with a permutation ofthe (Yi - bxi) values; the letter q refers to 
the particular permutation, and it is also useful to write Tq(b) as 

Tq(b) = LXi(Yn, - bxn,) 
q 

One of these Tq(b) is the actually observed value T(b) and we denote 
the set of all permutations excluding the observed one by Q'. 

Let N(b) denote the number of Tq(b), qEQ', values that are smaller 
than the observed T(b). If N(b) > rand N(b) < n! - r, then the 
hypothesis p = b is accepted and b belongs to the confidence interval 
for p. In order to set the confidence limits we have, therefore, to 
examine the value of N(b) as b varies from - 00 to + 00. Represent 
N(b) as 

qEQ' q 

assuming that L? = 1 Xi(Xi - Xn) > 0 
Thus the confidence limits are the rth smallest and rth largest of all 

slope estimates 

n 

L Xi(Yi - Yn,) 
b = _i =_1 ___ _ 

q n 

L Xi(Xi - Xn,) 
i= 1 

(5.4) 

if N(b) changes by 1 at each of the bq values. This will be true if all Xi 

values are distinct. Equality of two or more x-values is possible and its 
effect is clearly that we do not have n! - 1 distinct values of bq • In turn, 
this means that the value of N(b) jumps by more than 1 at some of the 
bq values. The implication of these facts is as follows: ifthere are n! - 1 
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distinct values of b q' the confidence coefficient can be selected from the 
numbers (1 - lin !), (1 - 2n !), .... If there are not n! - 1 distinct 
values, the possible exact confidence coefficients are a subset of the 
numbers (1 - lin !), (1 - 21n !), .... With n large it will still be possible, 
in general, to set an exact confidence coefficient close to one of the 
conventional values. 

Example 5.3 

Xi: -3 
Yi: - 1.65 

-1 
- 1.25 0.34 

3 
4.17 

The 4! - 1 = 23 values of bq calculated according to (5.4) are as 
follows, in order of magnitude: 

0.2000 0.7950 0.9700 1.1900 
0.3983 0.8453 1.0050 1.2558 
0.4975 0.8600 1.0361 1.3550 
0.5967 0.9000 1.0575 1.5417 
0.6849 0.9262 1.1050 1.9150 
0.7000 0.9525 1.1683 

Taking r = 1,2, we find the following confidence intervals for f3: 

r = 1 : 100(1 - 2/24)% = 91.7% : (0.2000, 1.9150) 

r = 2 : 100(1 - 4/24)% = 83.3% : (0.3983, 1.5417) 

The least-squares point estimate is P = 0.9525, which it will be noted, 
is the median of the bq values listed above. If the Xi are symmetrically 
distributed about 0, the median of the bq values always coincides with 
p. 

Applying the 'usual' normal theory in which the Yi are taken to be 
normally distributed with the same variance, the 83% confidence 
limits for f3 are obtained by invoking the t-distribution with 2 degrees 
of freedom; the results are 

91.7%: 

83.3%: 

0.9525 ± 0.8623 

0.9525 ± 0.6112 

Listing values of bq can be prohibitively tedious for moderately 
large values of n, and the normal approximation of the conditional 
distribution of T can be used to simplify the calculation; this process 
must not be confused with using the standard normal-theory model! 

Using the formulae (5.3), an application of Fieller's theorem gives 
the two sided 100(1 - 2y)% confidence limits (two-sided) for f3 as the 
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values of b satisfying 

(n - 1)1/20:>iYi - bLxn 

= ± Uy{DYi -.W - 2bLxiYi + b2Lxf} 1/2 (LX;)1/2 (5.5) 

where uy is an appropriate normal quantile. 

Example 5.4 We illustrate the use of (5.5) with the data of Example 
5.3, although n is rather small. 

LX; = 20, LXiYi = 19.05, DYi - yf = 21.141475 

and for an 83% confidence interval uy = 1.38. 
The solutions of (5.5) are 0.44 and 1.46, giving an interval that 

agrees quite well with the exact result. 
Denoting the usual least squares-estimate of f3 by fj = LXiY;/Lxf, 

we can write 

IXJYi - xib) = (fj - b)Ix; 

I(Yi - y - bx;l2 = I(Yi - Y - fjX;l2 + (fj - b)2Ix; 
= (n - 2)S2 + (fj - WIx; 

where S2 is the usual 'residual mean square'. Then the solution of (5.5) 
can be seen to be the solution of 

giving 

(5.6) 

If the distribution of residuals were known to be normal with 
variance (J2, the confidence limits would be given by (5.6) with the 
factor K = uy[(n - 2)/(n - 1)]1/2[1 - u;/(n - 1)]1/2 replaced by 
tn _ 2(Y)' The following table is instructive. 

(J = 0.05 Y = 0.025 

n Ky tn_ 2(Y) Ky tn- 2 (y) 
5 2.505 2.353 8.530 3.182 

10 1.854 1.860 2.440 2.306 
20 1.729 1.734 2.135 2.101 

00 1.645 1.645 1.960 1.960 

For n ~ 10 the agreement between Ky and tn _ 2 is very good; it breaks 
down for smaller n and as }' decreases. 
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Consistency and efficiency of T 
The unconditional expectation of T(b) is 

E(T(b» = ~>;[E(YJ - bx;] 

131 

It is defined only if every E(YJ is finite and, in that case we can take 
E(Y;) = oc + f3x;. Therefore, 

E(T(b)) = (f3 - b) Ixf 

The variance of T(b) is finite only ifvar(Y;) = (12 < 00, in which case 
var(T(b» = (122:X? Thus a test based on T will be consistent if 
If2:x? ~O as n~ 00. 

If the distribution of Yj is N(oc + f3xj, (12), the point estimate p 
obtained by solving T(b) = 0 is the maximum-likelihood estimate of 
f3. The variance of P is (12 fIx?, hence the efficiency of T, relative to 
various statistics based on transformed residuals, will be low for 
heavy-tailed residual distributions. 

5.2.2 Transformations of the Dj (f3) to ranks 

Inference about f3 only can be regarded as inference about location 
differences so that procedures for f3 can be thought of as extensions of 
two-sample procedures. Pursuing this line ofthought we can consider 
as an alternative to T the statistic 

TH (f3,x) = IXjH(D/f3» 

where H is some suitable transformation of the D /f3) values. In 
particular 

can be regarded as an analogue of the Wilcoxon two-sample rank­
sum statistic. 

Hypothesis testing 
We need the conditional null distribution of TR (f3, x) for a specified f3 
derived by the basic permutation procedure described earlier. Since 
the Dj (f3) values are replaced by their ranks, the null distribution is not 
only somewhat easier to enumerate but is also invariant with respect 
to f3. Thus, for a given set of x-values the null distribution can be 
tabulated once and for all. Practically, this is not of great benefit 
unless we restrict attention to equally spaced Xj values, in which case 
the statistic T R is a linear function of the Spearman rank correlation 
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coefficient. Since the null distribution of T R is invariant with respect 
to F, the test using TR is also unconditionally distribution-free. 

Example 5.5 (This example illustrates the method of listing the null 
distribution of TR .) We use the data of Example 5.3 and consider the 
hypothesis H 0 : f3 = 1.2. 

Xi: -3 -1 3 

Yi: -1.65 -1.25 0.34 4.17 

Yi - 1.2xi: 1.95 -0.05 -0.86 0.57 

Rank(Yi - 1.2xJ 4 2 3 

Observed TR = - 4. 
The null distribution of T R is easily enumerated by listing the 24 

permutations ofthe numbers 1,2,3,4 and calculating the correspond­
ing value of T R' thus 

-3 -1 

2 

2 

3 

4 

giving the following distribution of TR . 

3 

4 

3 

10 

8 

etc. 

t: -10 -8 -6 -4 -2 0 2 4 6 8 10 

24 Pr(TR = tj: 1 3 4 2 2 2 4 3 

Thus the observed TR IS not at all extreme; in fact, 
Pr{ I TRI ~ 4} = 18/24. 

Listing the distribution of TR is, of course, prohibitively tedious for 
n ~ 6, but in hypothesis testing one need only list the extreme values. 
Thus, with n = 5 for a one-sided test at the approximately 5% level 
one only has to list 5 or 6 permutations. For larger values ofn it may 
be possible to use a normal approximation for the distribution of TR . 

Normal approximation of the null distribution of TR 
The argument giving formulae (5.3) for E(T) and var(T) also gives 
E(TR) and var(TK ) with the dj values replaced by the ranks 1,2, ... , n. 
Thus v in (5.3) becomes (n 2 - 1)/12 and we have 

E(TR)=O 

var(TR ) = n(n + 1)~>U12 
(5.7) 
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According to Section 1.8.4 the distribution of TR , suitably norma­
lized, is asymptotically normal as n --+ ex) if max x; /Ix; --+ O. It will be 
noted (Exercise 5.5) that the distribution of TR is symmetric about 0 if 
the Xi are symmetrically positioned about O. Hence the normal 
approximation may be quite good for moderately small n in the 
symmetric case, depending of course, on the actual spacing of the 
x-values. 

Example 5.6 Let n = 5 with Xi values - 2, - 1,0, 1,2, giving 
LX; = 10, s.d.(TR ) = 5. Enumeration of the 5 permutations of 1,2, 
3,4, 5 giving the largest values if T R shows that Pr( T R ~ 9) = 
5/120 = 0.0416. The normal approximation gives 

Point estimation 
Since 

Pr(TR ~ 9) ~ 1- cD(8.5/5) = 0.0446 

E{TR(P, x)} =0 

an application of the method of moments suggests taking as an 
estimate of P the solution of the estimating equation 

(5.8) 

As b increases the residuals Yj - bXj for x j > 0 decrease, hence their 
ranks do not increase; a similar remark applies to residuals for x j < O. 
Consequently, TR(b, x) is a non-increasing (step) function of b. 

As b varies from - ex) to + ex) the value of TR only changes when 
the ranking of residuals changes. Unless three or more observations 
are collinear, an event with zero probability, these changes occur 
whenever b coincides with one of the pairwise slopes (Yj - Yi)/ 
(Xj - xJ There are n(n - 1)/2 of these if all Xi values are distinct. Ifn is 
even and the x's are symmetrically placed about 0 with the values 
- n + 1, - n + 3, ... - 1, 1, ... , n - 1, the maximum value of TR is 
n(n2 - 1)/6. Thus it is clear that, in general, the steps in the graph 
of TR against b are not of equal height. Therefore the solution of (5.8) 
is not necessarily the median of the pairwise slopes. In practice, a 
graph of TR against b suitably smoothed near TR = 0 is helpful in 
deciding on a point estimate of p. For most practical purposes smo­
othing by eye should suffice. The justification for smoothing is that 
the step function is actually an estimate of a smooth function. 

Example 5.7 The data of Examples 5.3 and 5.4 give the following 
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0.5 1.0 1.5 2.0 
b -----:~~ 

Figure 5.1 

pairwise slopes, the values of TR in the respective b intervals being 
shown in parentheses: 

(10) 0.2 (8) 0.4975 (4) 0.795 (2) 0.97 (- 4) 1.355 (- 8) 1.915 (- 10) 

Figure 5.1 shows a graph of TR against b, and according to the 
smoothing indicated on the graph we take the point estimate of p to 
be 0.94. 

Confidence limits 
Since the null distribution of TR is invariant with respect to p, the 
determination of confidence limits is simpler than it is with the use of 
T in Section 5.2.1. Suppose that Pr(t1 ::::;; TR ::::;; t2 ) = y. Then, to 
determine a 100 y% confidence interval for p we need only scan the list 
of 'pairwise slopes', arranged in order of magnitude and the lower 
(upper) limit is the smallest (largest) value of b such that observed 
TR ::::;; t2 (;;?; td. These values will be just to the right (left) of one of the 
pairwise slopes. 

Example 5.8 Refer to Example 5.5 and the list of pairwise slopes. 
From the null distribution of TR given in Example 5.3 we have 
Pr(-8::::;;TR ::::;;8)=22/24=0.917. Therefore 91.7% confidence in­
terval for p is (0.2, 1.915). 

This result coincides with the 91.7% confidence interval given 
in Example 5.3; generally this will not happen. Note also, that we can­
not obtain an 83.3% confidence interval in this case, because 
Pr(TR = 8) = Pr(TR = - 8) = 3/24. 
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With larger values of n the values of t 1 and t2 can usually be found 
with the normal approximation discussed above. When n is so large 

that evaluation of all (;) pairwise slopes is impractical, an approxi­

mation to the graph of TR against b, obtained by evaluating TR at a 
judiciously selected set of values of b, should suffice for graphical 
determination of the confidence limits. These are given by the 
intersections of the graph TR and the horizontal lines with abscissae t 1 

and t2 • 

Consistency and efficiency considerations 
We shall need [8E{TR(b)}/8b]b;p and therefore have to express 
E{TR(b)} in terms of F. Writing 

Rank(Yj - bx) = 1 + L Vij' 
i*j 

where V ij = 1, if Yj - bXj > Yi - bxi, and ° otherwise, it follows 
readily that 

E{Rank(Yj - bx)} = 1 + i~j f F{y - (b - f3)(x j - x;)}f(y)dy, 

since Yj - IX - f3Xj and Yi - IX - f3xi are independently and identically 
distributed. Hence 

[8E{Rank(Yj - bx)}/8b]b;p = - Jj (Xj - x;) f f2(y)dy = - nJxj 

(5.9) 

since LXi = 0, where J = JP(y)dy. Using (5.8) and (5.9), we obtain 

n 

[8E{TR(b)}/8b]b;p = - n] L xJ (5.10) 
i; 1 

To check consistency we shall assume, mainly for convenience, that 
Ix) is bounded, in fact IXil ~ t. Since var{L Rank(Yj - bx)} = 0, we 
have 

L Lcov{Rank(Yi - bx;), Rank(Yj - bxj)} = - nv 
i j 

where v is the average of var{Rank(Yi - bx;)}, i = 1,2, ... , n. Thus 

var(TR(b)} ~ (n/4) max var{Rank(Yi - bxi)} + (n/4)V ~ cn3 
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where c is a constant. This result, with (5.10), can be used to establish 
consistency as indicated in Sections 1.3 and 1.4. 

Since var {TR([3)} = n(n + 1) ~>fl12, the efficacy of TR is obtained, 
using (5.10), as 

e(TR) = J{12~>nl/2, 

For comparison, the efficacy of the least-squares statistic, when F has 
variance (12 < 00, is calculated as 

g1Vmg 

which coincides with the corresponding result for the Wilcoxon two 
sample rank sum statistic. 

5.2.3 Sign transformation 

We now consider inference about [3 based on a sign test of trend 
leading to the statistic 

Ts(b) = LXi sgn[Dib) - D(b)] 

where D(b) = median (Dib». 

Hypothesis testing 

(5.11) 

For a given set of Xi values, the conditional null distribution is 
invariant with respect to b, since the Dj(b) values are transformed to 
- 1,0, or + 1 as indicated in (5.11). Hence, the test is unconditionally 
distribution-free and for fixed Xl' x 2 , ... , xn the null distribution can 
be tabulated once and for all. 

To test a hypothesis specifying a value of [3 the observed Ts([3) is 
referred appropriately to the null distribution. 

Example 5.9 n = 5: refer to the data of Example 5.1, and consider 
Ho:[3=1. 

Xj: -2 -1 0 1 2 

Yj: -1.35 -1.55 0.48 1.55 2.21 

Dj(l) : 0.65 -0.55 - 0.48 0.55 0.21 : D(l) = 0.21 
sgn(Di1) - D(l» : -1 -1 0 

Observed Ts(1) = o. 
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The null distribution of Ts is as follows: 

t:-6 -5 -4 -3 -2 -10123456 

30Pr(Ts = t): 1 2 2 2 3 2 6 2 3 2 2 2 1 

Formulae (5.3) can be used to find E(Ts(P» and var(Ts(p) with iJ 
and v replaced appropriately by the corresponding mean and 
variance calculated from the transformed sgn(Dj(p) - D(P» values. 

giving 

giving 

(i) n even : n = 2k mean = 0 

variance = 1 

E(Ts(P» = 0 

var(Ts(p» = (n/(n - 1» Lxf 

(ii) n odd : n = 2k + 1 mean =0 

n-l 
variance = -­

n 

E(Ts(P» = 0 

var(Ts(p» = Lxf 

(5.12) 

(5.13) 

The distribution of Ts(P) is asymptotically normal as n -+ 00 with 
max xf /Lxf -+ 0, and a normal approximation for the distribution of 
Ts can be used for large n with formulae (5.12) or (5.13) giving the 
appropriate mean and variance. 

Example 5.10 Take n = 5 and refer to Example 5.9. 

E(Ts) = 0, var(Ts) = 10 

Pr (Ts ~ 4) ~ <1>( ~·~o ) = 0.92. 

From Example 5.9 the exact probability is 

Pr(Ts ~ 4) = 27/30 = 0.9 

Point estimation 
As b varies from - 00 to + 00, the value of Ts changes from + Llxd 
to - Llxd in a series of steps. Ts is non-increasing in b, by an 
argument similar to that used to demonstrate this property for TR • 

The values of b at which Ts changes are not all the pairwise slopes, but 
a subset of these. 
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b • 
Figure 5.2 

In practice it is useful to draw a graph of Ts against b. Such a graph 
is shown in Fig. 5.2 for the data of Example 5.9; we shall refer to it 
again in Example 5.11. 

The solution of the estimating equation Ts(b) = 0, giving a 
point estimate of /3, is readily obtained from the graph. 

Confidence limits 
Since the null distribution of Ts is invariant with respect to 
b, confidence limits can be found directly from the listing of values 
of b at which Ts changes and the corresponding values of Ts. We 
first find, from the null distribution, values t1 and t2 such that 
Pr (t1 ~ Ts ~ t2) = y. Then a 100y% confidence interval for f3 has as its 
lower (upper) limit the smallest (largest) value of b such that 
Ts ~ t2(~ t1)' One-sided confidence limits are found similarly. 

Example 5.11 n = 5: refer to the data of Example 5.9. Figure 5.2 
shows a graph of Ts(b) against b and according to the illustrated 
smoothing, the point estimate of /3 is taken to be bs = 1.09. 

In the following table the 10 pairwise slopes are listed in order of 
magnitude, and the corresponding values of Ts and TR are shown. 
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Ts TR Ts TR 

-0.2 6 10 1.07 0 -1 
0.435 6 9 1.253 0 -2 
0.66 4 7 1.345 -3 -5 
0.89 4 6 1.55 -3 -7 
0.966 0 2 2.03 -5 -9 

0 -1 -6 -10 

From the null distribution of Ts, Pr( - 5 ~ Ts ~ 5) = 28/30, therefore 
a 93.3% confidence interval for {3 is 

(0.435,2.03) 

For comparison, the graph of TR(b) against b is superimposed on 
the graph of Ts(b) against b in Fig. 5.2. The point estimate from this 
graph is bR = 1.00. Based on TR , a 91.6% confidence interval for {3 is 

(0.435, 1.55) 

Consistency and efficiency considerations 
The difference D/b) - bj(b) can be expressed as 

Yj - IX - bXj - (bib) - IX) 

and we write zo.5(b) for bib) -IX, so that zo.5(b) satisfies 

H n(ZO.5(b)) =! 
where 

Now 

1 
H n(z) = - # (Yi - IX - bXi ~ Z, i = 1,2, ... , n). 

n 

1 n 

H(z)=E{Hn(z)}=- L F{z+(b-{3)x;} (5.14) 
n i= 1 

and var{Hn(z)} ~ 1/4n for every z. Thus zo.5(b) is a consistent estimate 
of '0.5 (b) which satisfies 

Let us now impose some restrictions on the Xi values as we let 
n ~ 00, in particular that the Xi are bounded. This can be achieved, 
for example, by supposing that all Xi lie in a finite interval as n ~ 00. 

Then the effect on zo.5(b) of removing Yi - IX - bX i from the set 
Yj - IX - bxj , j = 1,2, ... n, is of order l/n; let the resulting median 
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be zg~5(b). Then 

E[sgn{Y; -IX - bx; - zO.5(b)}] = E[sgn{Y; -IX - bx; -zg~5(b)}] 
+ O(l/n) 

= 1 - 2F {(O.5 (b) + (b - {3)xd 

+ O(l/jn) 
(5.15) 

after taking first a conditional expectation of sgn {Y; - IX - bx; -
zg~5(b)} with zg~5(b) fixed and then an expectation with respect to 
zg~5(b). 

Alternatively, we note that 

Pr[sgn{Y; -IX - bX j - zO.5(b)} = 1] 

= Pr[sgn{Yi -IX - bXi - zO.5(b)} = 1] 

± Pr[(Yi -IX - bX;)E«(O.5(b), zO.5(b)] 

= Pr[sgn{Yi -IX - bXi - zo.s(b)} = 1] + O(l/jn) 

Summing terms like those in (5.15) and differentiating appro­
priately, we have for large n, 

( OTS(b») n I 

-ab _ ~ - 2.L xJ{zo.s({3)}{zo.s(J5) + xJ 
b-P ,= 1 

To find the value of Z~.5 ({3), differentiate both sides of 
n 

(l/n) L F{zo.s(b)+(b-{3)x;}=t 
; = 1 

with respect to b, and put b = {3, to give 
n 

!(zo.s({3» L (z~.s({3) + xJ = ° 
i = 1 

so that, assuming !(Z~.5({3» =1= 0, we find Z~.5({3) = - LX; = 0. 
Substituting in the expression above, we obtain 

( OTS(b») = _ 2!(ZO.5({3» i x? (5.16) 
ob b=p i= 1 

Using arguments similar to those leading to (5.15) we can take 
Yi - IX - bXi - zO.5(b), and Yj - IX - bXj - zO.5(b) to be approxi­
mately independent, to give, 

n 

var {Ts(b)} ~ 4 L x? F(ZO.5(b) 
i= 1 

+ (b - {3)x i ) {1- F(zo.s(b) + (b - fJ)xJ} (5.17) 
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Substituting b = {3 in (5.17), we obtain var {Ts({3)} = LX;, which 
for n-+ 00, agrees with Expressions (5.12) and (5.13). Also, for 
b =1= {3, var {Ts(b)} ~ Li = 1 x;, and var {Ts({3)} is continuous in b. 

If f(zo.s({3)) =1= 0, the results (5.16) and (5.17), by application of 
Lemmas 1.1 and 1.2, ensure consistency of estimating and testing 
procedures based on Ts. 

The efficacy of Ts can be found immediately using the results 
obtained above; in fact, 

(5.18) 

giving 

(5.19) 

The result (5.19) coincides with the corresponding result for the sign 
test in the two-sample case. This is to be expected since the two­
sample problem can be looked upon as a special case of the straight­
line regression problem. 

Comment 
Comparing the efficacies of TR and Ts we see that, as in previous 
analogous comparisons, the choice between the two statistics, 
from the point of view of efficiency depends on the ratio of J to 
f(O) = f(zo.s({3)), i.e. the ratio ofthe mean density of F to the density of 
F at its median. 

5.2.4 More general rank transformations 

Write Ri(b) = Rank(Yi - bx;) = Rank(Yi - rx - bx;) and let H(u) be a 
monotonic continuous differentiable function of u; typically H(u) may 
be an inverse distribution function as was discussed in Chapter 2. 
Define the statistic THR(b) by 

THR(b) = I,xiH {Ri(b)/(n + 1)}. 

Hypothesis testing, the null distribution 
Since the distinct values of H(Ri(b)/(n + 1)) are just the transfor­
mations H(1/(n+ 1)), H(2/(n+ 1)), ... of l/(n+ 1), 2/(n+ 1), ... , the 
null distribution of T H R is invariant with respect to {3, and it can be 
tabulated once and for all for every fixed set of Xi values. We need only 
list all permutations of the ranks 1,2, ... n and their associated 
transforms. 
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The first two moments of the null distribution are: 

E{THR(fJ)} = 'LxJI(fJ) = H(fJ)'LXj = 0 

var{THR(fJ)} = {nvl(n - I)} 'Lx; 

where v = (lin) 'L7 = 1 {Hj(fJ) - H(fJ)]2, and Hj(fJ) = H {Rj(fJ)ln + I)}. 
A normal approximation may be applied to this distribution as 
n --+ 00 of max xV'Lx; --+ 0 as n --+ 00 (see Chapter 1). 

Example 5.12 Refer to the data and the null hypothesis of Example 
5.5: test H 0: fJ = 1.2. Put H = Cl> - 1, the 'inverse normal transform'. 

Xj: -3 -1 1 3 

yj: -1.65 -1.25 0.34 4.17 

Yj -1.2x j : 1.95 -0.05 -0.86 0.57 

Rj(1.2) : 4 2 1 3 

H j(1.2): 0.84 -0.25 -0.84 0.25 

Observed THR(1.2) = - 2.36. 

By listing the 24 permutations of H j(1.2) values and calculating THR 
for each permutation, it is readily checked that the null distribution of 
THR is given by 

± t: 0.18 1.18 2.18 2.36 3.18 4.36 4.54 5.54 

24Pr(THR = t): 1 2 2 2 1 2 1 1 

Thus Pr{ITHR (1.2)1 ~2.36} = 14/24. 

Confidence limits 
Since the null distribution of THR is invariant with respect to b, we 
need to evaluate observed THR(b) for various values of b and to 
compare these with the null distribution to find confidence limits. The 
procedure is essentially the same as for TR • In fact, since the H j values 
are transformed ranks, THR(b) will have )umps' at exactly the same 
values of bas TR , that is at the pairwise slopes that have been used 
before. 

Example 5.13 (Continuation of Example 5.12; see also Example 5.8.) 
Following is a list of pairwise slopes at which values ofTHR(b) changes 
and the values of T HR(b) are shown bracketed in the relevant intervals. 

(5.54) 0.2 (4.36) 0.4975 (2.36) 0.795 (1.18) 0.97 (- 2.36) 

1.355 ( - 4.36) 1.915 ( - 5.54) 
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Since Pr{\ THR\ ~ 4.54} = 22/24 a 91.7% confidence interval for {3 is 
(0.2, 1.915). This result coincides with the result in Example 5.8; 
generally, especially for large n, this will not be so. 

Point estimation 
We obtain a point estimate of {3 by solving THR(b) = O. For most 
purposes a graphical solution should be adequate. Now, referring to 
Fig. 5.2 where a graph of TR(b) is shown for Example 5.9 (n = 5), it will 
be noted that a graph of THR(b) will be very similar to that of TR(b). 
Re-scaling the values of THR(b) so that the largest and smallest are 
+ 10 and - 10 respectively, the graph of THR(b) would have jumps at 
the same values as the graph of TR(b), but the sizes ofthe jumps will be 
different. Such a graph gives a point estimate bHR = 1.09. 

Consistency and efficiency 
Consistency of procedures based on T HR can be established by 
adaptation of the types of argument used for TR in a similar context. 
We need to evaluate E {THR(b)} for b near {3, and shall calculate for 
this purpose (aE {T HR (b)} / ab)b = II' 

Let 

Then 

and 

n 

F(z;b)=(I/n) L F{z+(b-{3)xJ 
i = 1 

E {Rj(b)/(n + 1)\ Yj - rt. - bXj = z} 

= {I + L Pr(Yi - rt. - bXi < z)}/(n + 1) ~ F(z, b) 
i'i'j 

var {Rj(b)j(n + 1)\ Yj - rt. - bXj = z} = O(I/n) 

~ollowing the argument in Section 5.2.2, we replace R .(b)/(n + 1) by 
F(Yj - rt. - bxj ; b) in calculations of E{THR(b)}. Thus J 

1 f n E {R/b)/(n + 1)} ~ ~ i~l F {y + (b - {3)(xi - x) }f(y)dy 

which agrees with the more direct derivation of Section 5.2.2 leading 
to (5.9). Also 

. ~H {Rj(b)/(n + I)} ~ f HU itl {F{y + (b - {3)(Xi - Xj)} ]f(Y)dY 

gIvmg 

[aEH{Rib)/(n+ 1)}/ab]b=lI= -Xj fH1(F(Y»P(Y)dY 
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(oETHR(b)job)b=P = - Ct1 X;) f H'(F(y)j2(y)dy (5.20) 

More lengthy calculations of a similar nature show that 
var {THR(b)} = OQ:>n, so that, applying Lemmas 1.1 and 1.2, tests 
and estimates based on THR are consistent. 

Writing 
n 

THR(P)~ L xiH{F(Yi-rt-px;)} 
i = 1 

we have 

var {THR(P)} ~ (~>;) var {H(F(Y))} 

= (LX;){ f H2(u)dn - (f H(u)dn Y} (5.21) 

Combining (5.20) and (5.21), we obtain the efficacy of THR as 

(LX;)1/2 f H(F(y))j2(y)dy 

e(THR)={f (f ) } H2(u)du _ H(u)du 2 1/2 

5.2.5 Optimal weights for statistics of type T 

Returning to definition (5.1) we note that in Sections 5.2.2, 5.2.3, 5.2.4, 
statistics of type Twith t/!(x j ) = Xj have been studied, and the question 
that needs attention is whether 'weights' other than t/!(x j ) = Xj merit 
serious attention. 

From the point of view of efficacy, the answer seems clear: they do 
not because t/!(x) = Xj gives maximum efficacy. In the case of TR this 
can be seen as follows. Suppose we put 

n 

TR(w, b) = L Wi Rank(Yi - bx;) 
i = 1 

where LWi = O. Then straightforward repetition of earlier steps gives 

var {TR(w,b)} = {n(n + 1)j12} LW; 

{oETR(w,b)/obh=p = - jnLwixi 

efficacy = 1j12(Lwix i )/(Lw;)1/2 

The efficacy is readily shown to be maximized by Wi = Xi. 
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Similar calculations may be made for the other statistics of type T. 
A simple alternative to ",(x) = Xj that has received some attention 

in the literature, more especially in the context of joint estimation of rx 
and /3, is wj=sgn(xj-x), where x is the median of X 1'X2 ' ... ,xn ; 

reference should be made to Brown and Mood (1951) and more recent 
literature on the Brown-Mood approach. In the case of testing a 
hypothetical value of /3, the relevant calculations are effectively 
reduced to the analysis of 2 x 2 contingency table in which all four 
marginal totals are equal. 

5.2.6 Theil's statistic, Kendall's rank correlation 

In this section we shall take Xl < X2 < X 3 ••• < Xn unless otherwise 
stated. Let zi(b) = Yi - rx - bxi, and put Dij(b) = z/b) - z/b), i,j = 
1,2, ... n. The statistic proposed by Theil (1950) for inference about 
/3 is 

T*(b) = L sgn {Dij(b)} 
i <j 

Since T involves the differences of zj(b) values, the value of rx is 
immaterial and we may write 

T*(b) = L sgn {Yj - Yj - b(xj - x)} 
i <j 

The null distribution of T*, that is, the distribution of T*(/3), can be 
obtained by the usual permutation argument. An interesting differ­
ence between the null distribution of T*(b) and of the statistics of type 
B in Sections 5.2.2-5.2.5 is that it does not depend on the con­
figuration of the Xl"'" xn values. Thus it can be tabulated and used 
whatever the Xl' ... 'Xn values are. 

It is instructive to obtain the null distribution successively for 
n = 2, 3, etc. Consider n = 2 where we have just 2 possible permuta­
tions of the zl/3) values. If Zl(/3) <Z2(/3) the value of T* is -1, 
otherwise it is + 1. Writing T! for T(/3) when n = 2, the distribution of 
T! is thus: 

t : 

2Pr(T! =t): 

-1 +1 
1 

For n = 3 straightforward enumeration of the 6 possible per­
mutations of any three numbers, which we may denote a, b, c, gives the 
following distribution of T~ : 

t : 

6Pr(Tj = t): 

-3 
1 

-1 

2 

+1 
2 

+3 
1 
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The six permutations of a, b, c can also be regarded as two per­
mutations of a and b, in three sets with c located in positions 1, 2, 3, 
thus: 

abc 

b a c 

a c b 

b c a 

cab 

c b a 

In these three sets the contribution to T ofthe addition ofthe number 
a to the set {a, b} is - 2,0, + 2 if c is greater than both a and b. 
Therefore it is possible to represent the distribution of T; as the 
distribution of T! + V3, where V3 is independent of T! and has the 
distribution 

Pr {V3 = 2(i - I)} = 1/3, i = 1,2,3. 

Proceeding in this way, one can represent Tn as 
n 

T:= L Vj (5.22) 
j= I 

where VI' Vz, ... , Vn are independent and 

Pr{V.=s+ 1-2j} = l/s, j= 1,2, ... ,s 

Since we can write V. = s + 1 - 2U. when Pr(U. = j) = l/s for 
j = 1,2, ... , s, we see immediately that 

E(V.) = s + 1 - 2(s + 1)/2 = 0 

and 
var(V.) = (sz - 1)/3 

Using (5.22) and the independence of VI' Vz, ... , Vn , we have 

n 

var(T:) = (1/3) L UZ - 1) = n(n - 1)(2n + 5)/18 (5.23) 
j= I 

Another advantage of the representation (5.22) is that asymptotic 
normality of the distribution of T:(P) follows by a simple application 
of Liapounov's theorem. 

Reference to the well-established literature, especially Kendall 
(1955), will show that the statistic T* is actually a linear function of 
the Kendall rank correlation coefficient, !; in fact 

!=2T*/[n(n-l)] 

Thus the published tables of the null distribution of! can be used in 
testing a hypothesis about P when T* is the basic test statistic. 
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Efficiency 
Details of calculations relating to efficiency and consistency will not 
be given here; the efficacy of T* can be found by steps similar to those 
followed for BR • 

Point estimation 
Examination of the definition of T*(b) shows that T*( b) is monotonic in 
b and its value changes whenever b passes through one of the pairwise 
slope values (Yi - Y)I(x i - x), xd= xj.1f all Xi values are distinct, the 
value of T* changes by 2 at each of these pairwise slope values, so that 
the solution of the estimating equation is the median of all the 
pairwise slopes. 

To conclude this brief discussion of Theil's statistic, we note that 
the case where all Xi values are not distinct needs special attention 
because the value of T* could be affected by the labelling of the x­
values. To avoid such ambiguity, a possible definition is 

T*(b) = L sgn [Yi - Yj - b(x i - x)J 
i<j 

Xi::fXj 

This definition implies that the null distribution depends on the 
number of x-values at which there are multiple Y-values, and on the 
multiplicities. 

5.2.7 Robust transformations 

The statistics considered in Sections 5.2.2-5.2.6 have all been of the 
'rank' or 'sign' types that are most commonly associated with 
distribution-free methods. However, if any of the monotonic transfor­
mations that have become associated with robust techniques is 
applied to the Dj(P) appearing in (5.1), it is again possible to develop a 
conditionally distribution free test procedure and a method for exact 
confidence limits. 

Consider 

(5.24) 

where p(u) is monotonic continuous and differentiable almost 
everywhere in u. Typical examples of functions I/I(u) are 

I/I(u) = (eU _e-U)/(eU +e- U) 

I/I(u) = {u, 
k, 

u~k 

u~k 
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For a discussion of the rationale underlying the use of such 
transformations the reader is referred to Section 2.3.6. 

Hypothesis testing 
To test H 0: {3 = {3o, the conditional null distribution of M({3o) has to 
be evaluated, and this entails, essentially, listing all the permutations 
of the numbers t/ll ({3o), t/l2 ({3o), ... , t/I n({3o)· In fact, all calculations are 
the same as for the statistic T({3o) except that the numbers Yi - {3oxi 

are replaced by t/I(Yi - {3ox;), i = 1,2, ... , n. The actual significance test 
is then performed by referring the observed M({3o) appropriately to 
the conditional null distribution. 
Writing 

f({3o) = (l/n) Lt/li({30) 

v", = (l/n)L(t/li({3o) - f({30))2 

the mean and variance of the conditional null distribution are 

E(M) = fLXj = 0 

var (M) = {nv",/(n - I)} LX; (5.25) 

by the steps that give (5.3). With t/I chosen such that var (t/I( YJ) is finite, 
normal approximation of the null distribution as n --+ 00 will be 
possible if max x; /Lx; --+ O. 

Confidence limits 
As in the case of T, the conditional null distribution of M is not 
invariant with respect to b. Therefore, in order to find confidence 
limits the null distribution has to be evaluated for every value of b that 
is considered for membership ofthe confidence interval. We shall use 
the notation of Section 5.2.1 and let N(b) denote the number of Mq(b) 
values, qEQ' that are smaller than the observed M(b). If r < N(b) 
< n! - r, the hypothesis {3 = b is accepted and b belongs to the 
100(1- 2r/n!)% confidence interval. Thus we have to examine 
N(b) as b varies from - 00 to + 00. Represent N(b) as 

qEQ' q 

where q refers to one of the permutations of the numbers (Yl - bx 1 ), 

(Y2 - bx2),···, (Yn - bxn), and the notation (Yn; - bxn) indicates that 
one of those permutations is used. The value of N(b) will change at the 
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solutions bq of the equations 

LXi {"'(Yi - bx;) - "'(Yni - bxn.}} = 0 
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in b; if all Xi values are distinct there will be n! - 1 such equations. 
With n large it will usually be satisfactory to use (5.25) and Fieller's 

theorem to obtain 100(1 - 2y)% confidence limits as the solution of 

(n -1)1/2 Lxi l/l(Yi - bx;) = ± uy{L(I/Ii(b) - ~(b»2'(Lx;)}1/2 (5.26) 

where uy is an appropriate normal deviate. Numerical solution of 
(5.26) is usually straightforward. 

Point estimation 
A point estimate of P is obtained by solving the estimating equation in 
b : M(b) = 0; see (5.24). In practice a numerical or graphical technique 
has to be employed in most cases. The estimate of P obtained from 
M(b) is obviously related to the M-estimates of location discussed 
briefly in Chapter 2, and the reader is referred to that chapter for some 
comments on the choice of "'(u). 

Efficiency 
From (5.24) we have, since Y1 , Y2 , ... , Yn are independent, and the 
distribution function of Yi - ex - pX i is F(y), 

var {"'(Yi - pxi)} = f ",2(U + ex)f(u)du - {f ",(u + ex)f(u)du Y = v",(ex) 

and 

Also 
var {M(P)} = v",(ex) LX; 

E {I/!(Yi - bxi)} = f I/!{z + ex - (b - p)xi}f(z)dz 

giving 

f3E:(b) t=p = - (Lx;) f ""(u + ex)f(u)du 

Thus the efficacy of M is 

(5.27) 

(5.28) 

(5.29) 

eM(p) = {v",(ex)} -1/2{ f ""(u + ex)f(U)dU} {Lxn1/2 (5.30) 

The efficacy of M depends on ex. In fact, inspection of (5.24) shows 
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that in general the point estimate of f3 derived from (5.24) will not be 
invariant with respect to oc if we rewrite the estimating equation as 

Lxit/!(Yi - IX - bxJ = 0 

The problem can be overcome by applying the robust transfor­
mation to differences 11 (b) - fj(b) used in Equation (5.11) giving 

M*(b) = Lxit/!{Di(b) - fj(b)}. 

5.2.8 An example with moderately large n 

We conclude this section dealing with inference about f3 only with an 
example where n = 21. The main reason for its inclusion is to draw 
attention to the fact that, while computations involving ranking can 
be very tedious, practically satisfactory results can be obtained by 
drawing graphs of the functions T, TR, Ts' etc., using relatively few 
values of b for plotting positions. Preparing programs for calculating 
these functions is relatively straightforward, and with n = 21 is feasi­
ble even with some desk calculators. 

The data are given in the following table, these were generated with 
parameter values IX = 0, f3 = 1, and F a Cauchy distribution function 
F(y)=(I/n) tan-1(y/0')+! with 0'=0.6745, giving the same in­
terquartile range as a standard normal distribution. 

x y x y 
-10 -11.822 1 2.189 

9 -10.509 2 1.784 
8 -48.964 3 3.076 

- 7 5.751 4 3.065 
- 6 - 6.185 5 4.815 
- 5 - 6.039 6 5.234 
- 4 4.784 7 7.027 
- 3 - 3.250 8 8.057 

2 8.034 9 9.255 
- 1 - 1.278 10 9.194 

0 1.128 

In order to find point estimates and confidence limits based on TR 
and Ts, it is relatively easy to find, by trial and error, a suitable 
plotting range of TR or Ts against b; we need only evaluate TR or Ts at 
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a selection of b-values so that the range E( TR ) ± uys.d.( TR ) is covered, 
E(TR ) = 0 and s.d.(TR ) being the mean and standard deviation of the 
null distribution. Following is a table of some values of TR and Ts at 
selected values of b. 

b TR Ts 7Ts 
0.95 393 62 434 
1.00 251 38 266 
1.025 134 19 133 
1.05 31 -1 -7 
1.10 -186 -18 -126 
1.125 - 325 - 61 -427 
1.15 - 394 -82 - 574 

Graphs of TR and Ts are shown in Fig. 5.3; the values of Ts have been 
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multiplied by the factor (max TR/max Ts) = 770/110 for ready com­
parison. Horizontal lines are drawn at ± 1.645 s.d.(TR ) = ± 1.645 
(35J22) = ± 270.25 and at ± 1.645 s.d.(Ts) = ± 46.97, the latter 
multiplied by the factor 7 for plotting. From the graph we have the 
following results: 

Statistic 

TR 
Ts 

Point estimate 

1.057 

1.048 

5.3 Joint inference about 0( and fJ 

90% (approx.) confidence limits 

(0.993, 1.128) 

(0.980,1.111) 

In Section 5.1 we have remarked that inference about /3 only can be 
regarded as tantamount to inference about relative location shift of 
several populations, and in such inference we need hut be concerned 
with the actual measure of location. However, inference about 0(, or 
joint inference about 0( and /3, is essentially inference about location, 
and not only location difference. Therefore the choice oftest statistics 
should reflect something about the location parameters of the 
distributions F;. 

In standard normal theory joint inference about 0( and /3 it turns 
out that inference about 0( is possible, free ofthe nuisance parameter /3 
when Ix; = O. Part of the explanation of this phenomenon is that the 
two relevant test statistics are uncorrelated, and normality implies 
their independence. Unfortunately, this simplification does not occur 
in the distribution-free methods that we shall discuss. 

Since we are now dealing with location problems, it is appropriate 
to recall the discussions of Chapter 2. To avoid difficulties to do with 
the meaning of location parameters, we shall either concentrate on 
the median of Fj or assume that the distributions Fj of Yj are 
symmetric and identical except for location. 

5.3.1 Median regression 

We suppose that the median of the distribution F j is 

j= 1,2, ... ,n 

A natural generalization of the sign statistic for inference about the 



STRAIGHT-LINE REGRESSION 

median is the pair of statistics 

n 

Sl(a,b)= I sgn(Yj-oc-bx) } 

S,(a, b) ~)i x) sgn (Y) -a - bx,l 
j= 1 

More generally we could use 

n 

S,(a,b)= L l/I,(xj)sgn(Yj-a-bx), 
j= 1 

r= 1,2 
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(5.31) 

but we shall see that the special choices of l/Il and l/I2 giving (5.31) have 
optimal properties. Obviously (5.31) is inspired by the 'normal' 
equations arising in application of the method of least squares. 

In principle it is easy to enumerate the joint null distribution of S 1 

and S2 because the random variables sgn (Yj - a - px),j = 1,2, ... , n, 
are independent and assume the values - 1 and + 1 with equal 
probabilities. Straightforward calculations give 

var {S 1 (oc, P)} = n 

var {S2(OC,P)} = LX; 
cov {Sl (oc,P), S2(OC, P)} = LXi = 0 (by assumption) } 

(5.32) 

Under conditions similar to those stated in the earlier one­
parameter cases for the sign statistics, the joint distribution of S 1 and 
S2 tends to a bivariate normal distribution as n increases. 

Example 5.14 

Xi: -3 -2 0 4 

Yi: 0.67 2.04 2.8 3.27 3.00 

Yi - 2 - O.4xi : - 0.13 0.84 0.63 0.87 -0.60 

The joint null distribution of S 1 and S 2 is obtained by straightforward 
enumeration and it is as shown in the table below; the entries in the 
cells are the relevant probabilities multiplied by 2" = 32. 
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-5 -3 -1 +1 +3 +5 

-10 1 1 2 

-8 1 1 2 

-6 1 1 2 

-4 1 2 1 4 

-2 1 2 1 4 

0 1* 1 1 1* 4 

2 1 2 1 4 

4 1 2 1 4 

6 1 1 2 

8 1 1 2 

10 1 1 2 

1 5 10 10 5 1 32 

If (X = 2.0 and f3 = 0.4, the observed values of S 1 and S 2 are + 1 and 
- 2 respectively. 

Inspection of the tabulation of the joint null distribution of S 1 and 
S2 in Example 5.14 shows that both the marginal distributions of S1 
and S2 are symmetric about o. This symmetry holds in general 
since both S1 and S2 are sums of independent symmetric random 
variables. 

The example also illustrates a difficulty which we have not 
encountered in the one-parameter problems that have so far been 
discussed. Suppose we were to consider testing the null hypothesis 
(X = 2.0 and f3 = 0.4. Then, as indicated in the example, the observed 
values of S 1 and S 2 are + 1 and - 2, and both of these are, relative to 
the standard deviations of S1 and S2' close to their expected values. 
However, there remains the question of an appropriate critical region 
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in the (S 1, S 2)-sample space. A possible approach is outlined below: 
see also Chapter 1, Section 1.7. 

Testing the hypothesis H 0: a = ao, 13 = Po 
We shall consider only an alternative HI: a =1= ao, 13 =1= Po, and use as a 
guide to an appropriate critical region the approach that might be 
used if S 1 and S 2 have an exactly joint normal distribution. Put 

( b) _ Si(a, b) S~(a, b) 
Qa, ---+" 2 

n L..Xi 
(5.33) 

Then large values of Q(ao, Po) reflect observed values of S 1 (ao, Po) and 
S2(aO' Po) that are 'far' from their expected values. Thus Q(ao, Po) may 
be regarded as a suitable statistic for testing H 0; the critical region 
which it defines is the set of (S l' S2)-values outside a certain ellipse 
centred at (0,0). If the test procedure is 

reject Ho if Q(ao, Po) > C 

then the exact size of the critical region can be determined from the 
exact joint distribution of Sl and S2 after C has been specified. It can 
be varied by changing C. When n is sufficiently large for a normal 
approximation to the joint distribution of Sl and S2 to apply, the value 
of C can be found by referring to a table of the X~ distribution. For 
large n, the distribution of Q is approximately X~, but it will be noted 
that the expectation of Q is exactly 2. 

Example 5.15 (Continuing Example 5.14.) Suppose we want to test 
Ho: a = 2.0,13 = 0.4 at the 10% level. From tables, X~(0.90) = 4.605, 
and we have n = 5, LX; = 30. The (Sl,S2)-values that lie outside 
the ellipse 

Si/5 + S~/30 = 4.605 

are marked with a * in the tabulation of the joint distribution of S 1 

Sl and S2 in Example 5.14. Thus Pr(Q > 4.605) = 2/32 and at level 
100(1 - 2/32)%, Ho would only be rejected if Sl ± 5 and S2 = O. 

If we put C = 3.93 - e where e is small and positive we find that the 
S 1, S 2 points in the critical region are ( - 5,0), ( + 5,0), ( - 3,8), ( + 3,8), 
giving a test size 4/32. 

Confidence regions 
The arguments used for setting confidence limits in the one­
parameter case carryover to the two parameter case but it must be 
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noted that they produce ajoint confidence region for (J( and f3. Now, as 
we have seen in Section 5.2, it is possible to make exact inferences 
about f3 free from the nuisance parameter (J(. However the roles of (J( 
and f3 cannot be reversed; it appears that without possibly severe loss 
of efficiency it is generally not possible to make exact inferences about 
(J(. This matter is taken up again in Section 5.3.2. 

Thus, while we can set an exact joint confidence region for (J( and f3, 
and an exact confidence interval for f3 alone, we cannot, generally, find 
an exact confidence interval for (J(. However, by using the point 
estimate of (J( and its standard deviation it is possible to find an 
approximate confidence interval for (J(. We shall give more details 
about this when dealing with point estimation. 

The remarks concerning inference about (J( apply equally to any 
ordinate (J( + f3x, for by a change of x origin any such ordinate can be 
made the intercept of the line. 

Point estimation 
Since E {S 1 «(J(, f3)} = E {Sz «(J(, f3)} = 0, a natural procedure for estimat­
ing (J( and f3 is to solve for a and b the estimating equations 

S1 (a, b) = ° 
Sz(a, b) =0 

(5.34) 

If for any b the value of a is chosen so that S 1 (a, b) = 0, then the 
resulting Sz (a, b) is the same as the statistic Ts(b) discussed in Section 
5.2, so that apart from the minor question of uniqueness that arises 
from the fact that Sz(a,b) is, for fixed a, a step-function in b, the 
existence of a solution is not in question. 

According to the discussion of Chapter 1, Section 1.4, the point 
estimates a and b of (J( and f3 will be consistent as n ~ 00 iffor small A(J( 
and Af3 

E{S1 «(J( + A(J(, f3)} = A1n A(J( 

Var {S1 «(J( + A(J(, f3)} = B 1n 

with A1n/Bt~Z ~ 00 as n ~ 00, a similar condition holding for Sz. 
Now 

n 

E{S1«(J( + A(J(,P)} = - n + L 2Pr{Y; - (0( + A(J() - pX; > O} 
;= 1 

n 

~ - 2A(J( L 1;(0), (5.35) 
i = 1 
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and, similarly, 

Also 
var {S 1 (a + /1a, [3) ~ n 

var {S2 (a, [3 + /1[3)] ~ Ix~ 

Thus, if we consider the case where all F; are identical except for 
location, then f(O) =1= 0 and Ix? ---+ 00 as n + 00 ensure the con­
sistency of the point estimation. 

Writing E,a = (8E{ S,(a, b)} /8a)u =a.b = p' E,p = (8E{ S,(a, b)} / 
8b)a =a.b =p, r = 1,2, the covariance matrix of a and b can be obtained 
from the following approximation: 

( var(Sl) COV(SlS2)) 
COV(Sl,S2) var(S2) 

( Ela EIP)(var(a) Var(~b))(Ela E2a ) (5.37) 
~ E2a E2p cov(a,b) cov(b) E lP E2P 

The values of Eta and E2P are obtainable from (5.35) and (5.36) 
while E2a and ElfJ are obtainable similarly. With Ix; = 0 we have 
a rather simple result if f;(O) = f(O), i = 1, ... ,n, because E lP = E 2P = 

f(O) LX; = 0, while E la = - nf(O), E lP = - f(O) Ix? Substituting in 
(5.37) we have 

( var (a) COy (a, b)) 1 ( 1/n 0) 
cov(a, b) var(b) = 4j2(0) 0 1/2>2 (5.38) 

Comparing the result (5.38) with the corresponding result for least­
squares estimation giving estimates a and lJ, we obtain 

var(a) var(b) 1 
var(a) = var(/J) = (T2f2(0) 

and these ratios coincide with the ratio of the variance of estimate 
of [3 based on Ts to var(/J). The value 1/«(T2f(0)) is also the rela­
tive efficiency of the mean and median in one-sample location estima­
tion. 

The approximate variances given by (5.38) can be used for setting 
confidence limits for a or [3. However, a major problem with such a 
procedure is thatf(O) must be estimated. An estimation procedure for 
f(O) is as follows. We use the exact confidence limit method for [3 to 
find, say, a 95% confidence interval for [3. Suppose that it is 

{b 2 (0.975), b4 (0.975)} 



158 DISTRIBUTION-FREE STATISTICAL METHODS 

Then approximately 

b4 (0.97S) - b2(0.97S) = 2(1.96)/{2J(0) (IxW/2} (S.39) 

from which we obtain 

{b4 (0.97S)-b2(0.97S)} (" 2 1/2 __ 1_ 
1.96 L."Xi ) - J(O) 

This type of calculation could be repeated for different values of the 
confidence coefficient, and the results suitably averaged to give an 
estimate of 1/J(0). 

Efficiency 
When considering the efficiency of testing a hypothesis specifying 
values of ex and p jointly, we are led to examine the non-centrality 
parameter of the statistic Q(ex, P) which has, asymptotically, a X~ 
distribution under the null hypothesis; see Section 1.7 for more details 
of tests involving multiple parameters. 

In the following calculations we confine our attention to the case 
where all Fi are identical except for location. We have seen that 
E {Q(ex, P)} = 2, hence we shall obtain an expression for E {Q(ex + ~ex, 
P + ~(3)}, where ~ex and ~P are small. Following steps like those lead­
ing to (S.3S) and (S.36), we obtain 

E {sgn (Yj - (ex + ~ex) - ({3 + ~P)x;)} ~ - 2(~ex + Xi~P)J(O) 
and 

var {sgn(Yi(ex + ~ex) - (P + ~P)Xi} ~ 1 - 4(~ex + Xi~P)2j2(0) 
from which, remembering that IXi = 0, 

E {Sf (ex + ~ex, P + ~P)} ~ n - 4j2(0) I(~ex + Xi~(3)2 + 4n2 ~2exJ2(0) 
(S.40) 

It is convenient to interpret ~ex and ~P small as meaning 

~ex=A/Jn,~p=BIJn, so that 

E {Sf (ex + ~ex, P + ~P)} ~ n - 4j2(0)A2 - 4j2(0)B2(~::X~ In) 

Similarly, 

+ 4nj2(0)A2 (S.41) 

E{S~(ex + ~ex,p + ~P)} ~ Ix~ - 4f2(0)A2(Lx~ In) 

- 2j2(0)AB(Lx~ In) 

- 4j2(0)B2(~>t In) 

+ 4f2(0)B2(Lx~)2 In (S.42) 
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We shall now assume that, as n increases, "Ixf/n-+K2,"Ixt;n 
-+ K 3 , 'Ixi /n -+ K 4, where K 2, K 3 , K4 are finite limits; this is quite a 
reasonable assumption and will be valid, for example, if all Xi values 
are constrained to lie in a fixed interval. Then, since by earlier 
assumption 'Ixf -+ 00 as n -+ 00, we can neglect all but the first and 
last terms in both (S.41) and (S.42), giving 

E {S~(ex + dex, f3 + df3)} -+ n + 4nJ2(O)A2 

E {S~(ex + dex, f3 + df3)} -+ K2 + 4np(O)B2 K~ 
so that 

To compare this result with the corresponding result for the 
method ofleast squares, we assume that every Yi has variance (J2 and 
find E {Q~ (ex + dex, f3 + df3)}, where 

and 

The result is 

Q~(a, b) = Ai(a, b)/(nu2) + A~(a, b)/((J2"Ixf) 

Al (a, b) = DYi -a - bxJ 

A2(a, b) = "IXi(Yi -a - bxJ 

E {Q~(ex + dex, f3 + df3)} -+ 2 + (l/(J2)(A 2 + B2 K 2) 

(S.44) 

Thus, taking as a measure of relative efficiency the ratio of the non­
centrality parameters, we obtain the result 1/[ 4(J2j2(O)]; this 
ratio coincides with the ARE of the mean and median in the one­
sample location problem. The results can also be checked by the 
simpler approach indicated in Chapter 1, Section 1.7. 

S.3.2 Symmetric identical Fj : U ntransJormed residuals 

Since we are now dealing with inference about location, not merely 
location shift, the discussion of Chapter 2 is relevant, and in the 
distribution-free setting we are led to assume: 

(i) that all Fj are identical except for location; 
(ii) that Fj is symmetric. 

The statistics Al (a, b) and A2 (a, b) are the natural generalizations of 
A(x, t) of Section 2.3.2. 
We rewrite them 

Al (a,b) = "I sgn (Yi -a - bxJI Yi -a - bxii 

A2(a,b)= "Ixisgn(Yi -a - bx;)1 Yi -a - bxil 
(S.4S) 
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In this form we see that the conditional joint null distribution of 
A I (ex,f3) and A 2(ex,f3) could be derived by conditioning on the 
magnitudes I Yj - ex - f3x jl, i = 1,2, ... , n. The joint distribution can, in 
principle, be enumerated by listing the 2n possible sign combinations 
for the magnitudes I Yj - ex - f3xd, i = 1,2, ... n. We also have the 
following conditional parameters: 

var {AI (ex, f3)11 Yj - ex - f3xd, i = 1, ... , n} = iJYj - ex - f3xy 

var {A2(ex, 13)11 Yj - ex - f3xjl, i = 1, ... , n} = LX?(Yj - ex - f3xY 

cov {AI (ex, f3), A 2(ex, f3)11 Yj - ex - f3xjl, i = 1, ... , n} 

= LxJ Yj - ex - f3XJ2 
(5.46) 

Under suitable conditions the joint distribution of A I and A2 
will be approximately normal as n becomes large. The conditions are 
that max x?/Lx? -'> 0 as n -'> 00 and max (Yj - ex - f3xY /L( Yj -
ex - f3XJ2 -4 O. 

Testing H o:ex = exo, f3 = f30 
Although the exact joint distribution of Al and A2 is known we are in 
the same position as before, namely that the choice of critical region, 
or equivalently, test statistic, is not obvious. In the previous sections 
we choose to use test statistics having exact expectations 2 and 
asymptotically X~ distributions. We follow the same procedure here. 

Since the covariance of A 1 and A 2 is not zero, an appropriate test 
statistic is 

where 

c = [L(Yj -a - bxi LXj(Yj -a - bxi J 
LXj(Yj -a - bxY LX?(Yj -a - bxi 

With a = a, b = f3, we have E {Q(a, f3)} = 2 and the distribution of 
Q(a, f3) is approximately X~ for large n. 

To test ex = ao, f3 = f3o, the exact conditional distribution of 
Q(ao, f3o) can be enumerated for small n and the observed value of 
Q(exo, f3o) can be referred to it; with large n the Xl approximation may 
be used. 

Testing of a hypothesis specifying ex and f3 jointly will not be 
pursued in great depth because it does not seem to be as important a 
practical problem as testing a value of f3 only, or a only. 
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Confidence limits 
By the usual argument of inverting the hypothesis-testing procedure 
an exact joint confidence region for oc and p can be derived from the 
exact testing procedure outlined above. However, in practice one is 
more likely to be interested in a confidence interval for p or a 
confidence interval for oc. In some practical problems one needs 
confidence intervals for ordinates oc + px for a succession of x-values; 
graphically these are usually depicted as confidence bands. Attention 
is drawn to the distinction between confidence limits for individual 
ordinates and a confidence band for the whole line y = oc + px derived 
from a joint confidence region for oc and p; a careful discussion of this 
distinction in the case of normal least-squares regression is given by 
Kerrich (1955). 

Although the value of A1 (A 2 ) is invariant with respect to b(a) all 
elements of the matrix C depend on both a and b, consequently exact 
inference about oc, free from the nuisance parameter p is not possible; 
reference to Section 5.2 shows that inference about p free from oc is 
possible. 

For oc one has to resort to approximate methods: one ofthem is to 
use the estimated standard error of the estimate of oc. Alternatively, 
one could use the exact conditional distribution of A 1 that would 
apply if p were known and replace p by the estimate p. Approximating 
this exact distribution by a normal distribution leads to solving 

for a after substituting {J for p. The result is 

( 
2 

)
1/2 s n-

a = a ± UYJn -n- (1 -u;/n)-1/2 (5.49) 

which is similar to the result (5.6) for p. 
However, we emphasize that, apart from the use of the normal 

approximation which is a convenience rather than a necessity, the 
limits (5.49) are not exact, unlike those given by (5.6) for p. The limits 
in (5.49) are actually estimates of the exact confidence limits. By 
introducing the confidence limits for p one could give confidence 
limits for the exact confidence limits, thus producing somewhat 
conservative confidence limits for oc. 

Point estimation 
The point estimates of oc and p derived by solving the estimating 
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equations 
r= 1,2, (5.50) 

are just the usual least-squares estimates 

a= IYdn, (5.51) 

These estimates are well known to be consistent if var (YJ < 00 and 
Ix; -+ 00 as n -+ 00. 

The conditional variances of a and lJ are 

var {all Yj -IX - f3xl, i = 1,2, ... , n} = I(Yj -IX - f3XJ2/ n2 

var {lJ11 Yj -IX - f3xd, i = 1,2, ... , n} = IX;(Yj - IX - f3xf /(Ix;f 
Taking expectations, the usual results are obtained for the uncon­
ditional variances: 

var (a) = (J2/n, 

Assuming approximate normality of the conditional distributions 
of a, an approximate confidence interval for IX is obtainable by using 
the estimated conditional variance, giving 

& ± u/s/ J n){ (n - 2)/n p/2 (5.52) 

For large n, (5.52) and (5.49) are nearly identical but (5.49) seems 
more satisfactory since the factor Ky = u/(n - 2)/n)1/2(1 - u/n) - 1/2 is 
greater than uy for n ~ 5 and is close to the appropriate tn _ 2 (y) which 
is applicable when F is normal, as the following table shows. 

Y = 0.05 Y =0.025 

n Ky tn - 2 (y) Ky tn - 2 (y) 

5 1.881 2.353 3.154 3.182 
10 1.723 1.860 2.234 2.306 
20 1.678 1.734 2.069 2.101 
00 1.645 1.645 1.960 1.960 

Efficiency 
Since the inferential procedures based on Al and A2 are clearly very 
similar to those based on the method of least squares, the classical 
results for that method may be expected to hold. In the case of 
hypothesis testing some manipulation is required to see that the 
classical results do apply, but since the point estimates a and lJ are just 
the usual least-squares estimates, the classical results for estimation 
do apply. Briefly, they are that ~ and lJ are the minimum-variance 
unbiased estimates of IX and f3 among linear functions of Y1, ... , Yn if 
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var (Y;) = (12 < 00; in the case of normal F they are the minimum­
variance unbiased estimators. 

It is also well known that the method ofleast squares is inconsistent 
ifvar (Y;) is not finite. For this reason it is advisable to consider the use 
of transformations of the I Y; - a - bx; I to define new statistics, in a 
manner analogous to the use of transformations of the IX; - tl values 
in Chapter 2, in the one-sample location problem. 

Example 5.16 

Xi: -5 -4 -3 -2 -1 0 2 3 4 5 

Yi: - 4.79 - 4.93 - 2.84 - 3.94 0.58 0.09 2.44 0.64 3.43 3.88 7.05 

(a) Sl,S2 
Figure 5.4 shows a graph of S2 plotted against b; the value of a is 
chosen to satisfy S 1 = 0 so that S 2 is actually identical to Ts of Section 
5.2.3. Inspection of a plot of the data shows that Ps is near 1.0, hence 
Ts was calculated only for pairwise slope values near 1 and such that 
its absolute value is not greater than 2 s.d.(Ts), approximately. Note 

that s.d.(TsUJ)) = s.d,(S2(1X, P)) = (~>;)1/2 =J110. 
From this graph the point estimate of P is /3s = 1.045. The graph 

also shows horizontal lines drawn at ± 1.645 s.d.(Sz) = ± 17.3. The 
values of b at which these lines interest the graph of S2 gives 90% 
confidence limits for P as 0.96 and 1.331. 

Figure 5.5 gives a similar graph of S 1 (IX, Ps) against a and it gives as 
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point estimate of IX the median of the Yi - {3sxi values, namely, 0.295. 
Using s.d. (SI) = Jl1, the lines drawn at ± 1.645Jl1 give estimated 
90% confidence limits for IX as - 0.75 and 1.395. Note that the limits 
for p are exact, apart from the use, for convenience, of the normal 
approximation, whereas the limits for IX are estimated 90% limits. 

(b) AI,A2 
The point estimates are 

& = 0.130 

P = 1.130 

Using (5.6) to set a confidence interval for p, and using (5.49) for IX, 

with uy = 1.645 we obtain the following 90% confidence intervals: 

IX : 0.130 ± 0.633 

P : 1.130 ± 0.213 

Note that the interval for p is exact (apart from the use of the normal 
approximation for the distribution of T defined by (5.2)), whereas the 
interval for IX is an estimated interval as described above. 

The data in this example were actually generated with normally 
distributed residuals. The confidence intervals given by the standard 
normal theory are 

IX : 0.130 ± 0.633 

P : 1.130 ± 0.214 

5.3.3 Identical symmetric Fj : signed-rank method 

For many purposes the method discussed in Section 5.3.2 may be 
regarded as the primitive form which many others are derived 
by suitable transformations of the magnitudes I Yi - a - bxd, 
i=I,2, ... n. Thus if IYi-a-bxil is replaced in A l , and A2 by 
t/I( I Yi - a - bx I) with t/I(n) = 1, the statistics S I and S 2 of Section 
5.3.1 are obtained. In fact that role of Al and A2 is analogous to that 
of A in the one-sample location case. The analogue of the Wilcoxon 
signed rank statistic is obtained by replacing I Yi - IX - bXi I by its rank, 
leading to 

n 

Wr(a,b)= L x~-lsgn(Yi-a-bxJRank(IYi-a-bxd),r= 1,2 
i; I 

(5.53) 
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These statistics and some extensions are discussed in Adichie (1967). 
The conditional joint null distribution of W1 and W2 is, in principle, 

easily tabulated. Although a rank transformation has been used, this 
conditional distribution does depend on the sample configuration. 
Let R; = Rank (I Y; - ex - px;l), i = 1,2, ... , n. Then we have for this 
conditional joint distribution: 

E{WrIC} =O,r= 1,2 
var {W11e} = LRf, var {W11c} = LxfRf 

cov {Wl' W2 1c} = Lx;Rf 

where Wr = Wr(ex, P), r = 1,2, and C denotes the sample configuration; 
both var{W2 (ex,P)} and cov{W1(ex,P), W2 (ex,P)} depend on the 
sample configuration. 

For the unconditional joint distribution the covariance matrix of 
W1 and W2 is obtained quite easily from the results given above; they 
give: 

E(Wr ) = O,r = 1,2 

var(W) = n(n + 1)(2n + 1)/6 

var(Wd = (n + 1)(2n + 1HLxf)/6 

COV(Wl' W2 ) = 0, if LX; = ° 
It is possible to show that the joint distribution of W1 and W2 is 

asymptotically normal, with suitable conditions on the xi-values. 

Testing H 0: ex = exo, P = Po 
An exact test of a joint hypothesis specifying ex and P is possible since 
the exact joint null distribution of W1 and W2 is known. As test 
statistic we could use a Q statistic based on the exact conditional joint 
distribution of W1 and W2 , or more simply, 

Qw(exo, Po) = 6{Wi(exo, Po) + W~(exo, Po)/Lxf}/{(n + 1)(2n + 1)} 

whose exact distribution can be tabulated. It can be approximated by 
a x~-distribution under suitable conditions. 

Other hypothesis tests 
Composite hypotheses where only one of ex or P is specified, for 
example, Ho: P = Po, cannot be tested exactly using W1 and W2 • The 
other parameter is a nuisance parameter so the problem cannot be 
solved exactly. An approximate test is possible, analogous to the 
finding of estimated confidence limits, as we shall explain below. 
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Point estimation 
Point estimates aw and bw are found as the solutions of 

Wr(a, b) =0, r=1,2 (5.54) 

For any selected b, the solutiona(b) ofW! (a, b) = Ois the median of the 
pairwise averages of the intercepts Yi - bxi; this follows from the 
analogy between W l and the Wilcoxon signed rank statistic of 
Chapter 2 and its associated Hodges-Lehmann point estimate. The 
point estimate of p can then be found graphically by plotting 
W2 (a(b),b) against b. By considering small changes in b it can be 
shown that this function is non-increasing in b. Let the solution of 
W2 (aw(b), b) be bw ; then the point estimate of IX is taken to be 
a(bw)=aw· 

Confidence limits 
In principle a joint confidence region for IX and p based on W l and W2 

is easily found; in practice calculations could be tedious. However, as 
we have remarked before, determining a joint confidence region for IX 

and p seems to be of much less practical importance than determining 
confidence limits for IX and p separately. 

Now, we have seen that it is possible to find a point estimate of p, 
and an exact confidence interval, free from the nuisance parameter IX, 

if we use the methods of Section 5.2. Thus whether Wl and W2 should 
be used to find a confidence interval for p depends on whether a 
significant gain in efficiency is obtained, as against the simpler 
procedures of Section 5.2. As we shall see below the asymptotic 
efficiency of estimating p by Wl and W2 is the same as using the 
simpler rank statistic TR of Section 5.2. Therefore we shall consider 
only the setting of a confidence interval for IX. 

Suppose we know the true value of p. Then the random variables 
1'; - pXi are identically distributed with location parameter IX, and W, 
becomes, effectively the signed rank statistic W of Chapter 2, and the 
point estimate of IX is the Hodges-Lehmann type of estimate calculated 
from observed Yi - pXi values. Further, exact confidence limits for IX 

can be found by the procedures described in Chapter 2. If P is 
unknown we can carry through the same calculations with p replaced 
by an estimate of p. In the present context we take the estimate to be 
bw or bTR • The formal confidence interval calculation produces an 
estimate of the exact confidence interval that would have been 
obtained had p been known. 
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Example 5.17 Use the data of Example 5.16. Following the method of 
Section 5.2.3 the point estimate of [3 yielded by the statistic TR is 1.148. 
The values of Yi - 1.148xi are 

Xi: -5 -4 -3 -2 -1 0 

Yi - 1.148Xi : 0.950 - 0.338 0.604 -0.644 1.728 -0.090 

Xi: 1 2 3 4 5 

Yi - 1.148xi : 1.292 -1.656 - 0.014 -0.72 1.31 

Now using the method of Section 2.2 the point estimate of rx is the 
median of the pairwise averages of the Yi - 1.148xi values listed 
above, namely 0.126, and the associated 95% confidence limits are 

( - 0.525, 0.819) 

Efficiency 
By formula (1.11) the covariance matrix of the point estimatesaw and 
bw is 

where Cw is the covariance matrix of Wo(rx, [3) and WI (rx, [3), that is 

and 

_ (n 0 )(n + 1)(2n + 1) 
Cw - 0 LX? 6 

(JEWI (a, b)/ Jb)a = ~.b = p) 
(JEWz (a, b)/ Jb)a = ~.n = P 

Expressions for the derivatives appearing in the matrix Ew can be 
obtained by steps similar to those involved in the derivations 
represented by equations (2.48) to (2.53) in Chapter 2. The result is 

Ew = 2n~~ L~?) 
the diagonal element of Ew is actually 2~Lxi = 0 since LXi = O. 
Thus, as n -+ 00 the covariance matrix of an' bn becomes 

1 (l/n 
12P 0 

(5.55) 
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The result (5.55) shows that, in terms of relative efficiency of 
estimation, the estimates aw and bw stand in the same relation to the 
method of least squares as does the Hodges-Lehmann estimator to 
the mean. 

Estimating the standard errors of aw and bw 
There are several ways in which estimates of s.e.(aw) and s.e.(bw) can 
be calculated. Apparently the most direct of these is to try construct­
ing an estimate of J. However, density estimation is not a trivial 
exercise, even in simple cases. Experience in the one-parameter case 
suggests that estimating the elements of E; 1 might be simpler. 

Write 

EW=(Hll 
H21 

and note that H 21 = H 12 = 0 so that 

E;l=(~jHll 

Thus we can estimate the elements of Ew by the slopes at (aw,b w) of 
the graphs of Wi and W2 against a and b. More directly the elements 
of E; 1 can be estimated by the slopes of the same graphs with a 
regarded as a function of Wi and b as a function of W2 , both near Wi 
and W2 =O. 

5.3.4 Identical symmetric F j : scores based on ranks 

We consider briefly the extension of the ideas of Section 2.2 to 
straightline regression. Instead of transforming Yi - a - bXi to Rank 
(Yi - a - bxi), we put Rank (Yi - a - bxi) = Ri(a, b) and transform to 
H{Ri(a,b)jn + 1)} giving the statistics 

WHr(a,b) = Lxi-1 sgn(Yi - a - bx;)H {Ri(a, b)j(n + 1)} r = 1,2 
(5.56) 

The large-sample properties of tests and estimates based on 
statistics of this type have been examined in detail by Adichie (1967). 
Essentially they are similar to those of statistics TH ( ) of Chapter 2. 
Typically score functions H are taken to be inverse distribution 
functions; if the 'right' score function is selected, statistics can be 
obtained that are 'best'. 
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5.3.5 Identical symmetric Fj : robust transformations 

Instead of first transforming I Y; - a - bx; I to Rank (I Y; - a - bx; I), a 
transformation (I Y; - a - bx; I) may be applied directly to the ab­
solute deviations. Transformations 1/1 that have been used in 'robust' 
statistics are typically of the types exemplified in Section 2.2. Our 
main concern here is not with robustness and its ramifications, but to 
indicate that, conditioning on the absolute values I Y; - ex - flx;l, 
i = 1,2, ... ,n, it is possible to obtain the exact conditional joint 
distribution of 

M"'r(ex,[3) = Lxi-1 sgn(Y; - ex - [3x;)t/I(1 Y; - C( - [3x;i), r = 1,2 
(5.57) 

The relevant arguments are exactly parallel to those of Section 5.3.2 
above, and it is possible to obtain an exact joint confidence region for 
ex and [3 based on M 1 and M 2. However, the question of choice of a 
critical region for a joint test of C( and [3 arises, as it did in Sections 
5.3.1-5.3.3. We outline a possible approach. 

Conditionally on fixed I Y; - ex - [3x;l, i = 1,2, ... , n, we have 

E {M",(C(, [3)} = 0 

var M"'r(ex, [3) = Lx?rl/l?, r = 1,2 

where 1/1; = 1/1(1 Y; - ex - [3x;l), and cov {M '" 1 , M '" Z} = LX; I/If. 
For testing a hypothesis specifying ex and [3 we can define a critical 

region through the use of a statistic 

QM(ex, [3) = (M"'l' M",z)V- 1 (M", 1 , M",z)T 
where 

whose exact conditional distribution can be tabulated quite easily 
with reasonably small n; this distribution has mean exactly 2 and is 
approximately X~ under suitable conditions on the I Y; - C( - [3x;l 
values. 

For efficiency calculations, and large-sample approximations, we 
note that, unconditionally, 

E {M"'r(ex, [3)} = 0 

var{M"'r(ex,[3)} =(Lx?r-Z)} ftftZ(IUl)f(U)dU 

cov {M"'l,M",z} = 0 



170 DISTRIBUTION-FREE STATISTICAL METHODS 

If we define IjJ(u) such that IjJ( - u) = - IjJ(u), then we can write 

M",r(lX, 13) = ~>~IjJ(Yi -IX - f3xJ, r = 1,2 

and we have 

E {M",r(lX, f3)} = 2>~ f IjJ{u + (IX -a) + (13 - b)xdf(u)du r = 1,2 

Using (5.58) we obtain 

(oEM",oloa)a=a,b=P = - n f </t'(u)f(u)du 

(oEM",olob)a=a,b=P = - {f </t'(U)f(U)dU} LXi = 0 

= (oEM",l/oa)a=a,b=P 

(oEM",dob)a=a,b=P = - {f </t'(U)f(U)dU} Lxt 

(5.58) 

and using formula (1.11) the covariance matrix ofthe estimates (a"" b",) 
of (IX, 13) obtained by solving 

r=O,l 

is 

(5.59) 

In practice one may have to estimate the value of the factor 
JljJ2(u)f(u)dul {J IjJ'(u)f(u)du} 2 that appears in (5.59). One way of doing 
this is to use the values ui = Yi - a", - b",xi as realizations of a random 
variable U having density f(u). 
Then 

and 

EXERCISES 

(lln)L</t2(uJ estimates f </t 2(u)f(u)du 

(lin) L </t'(uJ estimates f </t'(u)f(u)du. 

5.1 Tabulate the exact null distribution of the sign statistic 

Ts(b) = LXi sgn {Dj(b) - D(b)}, 
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defined in Section 5.2.3, for the Xj set 

- 3, - 1, + 1, + 3. 

5.2 Suppose that there are 3k equally spaced Xj values in a straight 
line regression problem and that the medians of the lower, 
middle and upper third of the xj-values are L,xo,x+. Let 

D k 

Rm(b) = X + L Rank (Yj - bx;) - L L Rank (Yj - bxj) 
j = 2k + 1 j = 1 

Obtain a large k approximate formula for the variance of the 
point estimate ofthe slope /3 based on the statistic RM in terms of 
the common 'error' distribution F. 

5.3 Consider n odd = 2k + 1 and a scoring system whereby Yj - bXj 

is transformed first to Rank (Yj - bx;) = Rj(b) and then to 

{
[ -In 2{ 1 - Rj(b)/(n + 1)}]jy + 1; 

Zj(b) = 0; 

[In {2Rj(b)/(n + 1)}]jy - 1; 

(Note that as y ~ 00 Zj ~ sgn(Yj - bx;}.) 

Rj > 2k+ 1 

Rj =2k+ 1 

Rj< 2k+ 1 

For the straight line regression data below find 90% (appro­
ximately) two sided confidence limits for the slope /3 using Z 
values first with y = 100, then y = 1, and the test statistic 
Bz(b) = LXjZj(b). 

Xi: - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 

Yi: 4.8 6.4 8.6 2.8 8.4 13.2 8.1 11.7 13.9 18.8 16.8 

5.4 Suppose that Yj observed at Xj has distribution function 
F j(y;/3,x j) with median /3xj, i = 1,2, ... ,n, and that Y1 , Y2 , .. • Yn 

are independent. Let 

S(b) = LXj sgn (Yj - bx;). 

Express E{S(b)} in terms of Fj(Y;/3,x j), i= 1,2, ... n. 
5.5 Refer to Exercise 5.4 and let 

F'('/3 .)={I-eXP (-Yln2/(/3X;)), y~O 
,y, ,x, 0 ' 0 y< . 

Find the large n variance of the point estimate of /3 obtained 
by solving S(b) = E(S(/3)), for b. Assume that as n increases the Xj 
values remain approximately equally spaced between 0 and ¢. 
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Compare your result with the variance of the maximum 
likelihood estimate of p. 

5.6 Using the data of Exercise 5.3 and the rank statistic 

BR(b) = LXi Rank (Yi - bx;) 

obtain a point estimate of the slope 13 in the straight line 
regression. 

5.7 One way of calculating an estimate of the intercept parameter IY. 

in straight line regression is to obtain, first, an estimate fJ of 13, for 
example, as in Exercise 5.6. Then the differences Yi -13Xi 
i = 1,2, ... n are treated as if they are independently distribu­
ted with location parameter IY., and one of the one-sample techni­
ques is used to estimate IY.. 

Obtain the Hodges-Lehmann estimate of IY. using the differ­
ences Yi - fJXi' i = 1,2, ... n. 

5.8 The Brown-Mood (1955) procedure for inference in straight 
line regression can be considered as follows. Let x denote the 
median of the Xi values. Replace Xi in the sign statistic Ts(b), 
Equation 5.11, by sgn (Xi - x), i = 1,2, ... n. 

Obtain the efficacy of the resulting statistic and compare it 
with the efficacy of Ts. 

5.9 The data given below on the cost of operating a hosiery mill and 
its output are quoted in Mansfield (1980) p. 360 (Statistics for 
Business and Economics, Norton, New York) 

X : Output (tons) 11 2 4 5 6 7 8 8 9 
y : Cost (thousands of dollars) 2 3 4 5 6 6 7 8 8 

Obtain an estimate of b by the method of Exercise 5.8. 
5.10 Let bm denote the Brown-Mood estimate of p. A corresponding 

estimate of IX is the median, am of the differences Yi - bmx i , 

i = 1,2, ... n. 
Obtain am for the data in Exercise 5.9. 



CHAPTER 6 

Multiple regression and general 
linear models 

6.1 Introduction 

In the 'parametric' literature on the topics of this chapter it has 
become part of the folklore that problems of the types considered in 
Chapters 4 and 5 are merely special cases of the 'general linear 
hypothesis' whose treatment is well established and known. With the 
treatment of the general model being so accessible one may argue that 
treatment of the special cases is relatively uninteresting and needs to 
be examined in detail only for individual applications. To a certain 
extent this argument can be defended, but it must be remembered that 
much ofthe apparent simplicity of the treatment of the general linear 
model is associated with the common assumption of identically 
normally distributed errors. 

It is certainly possible to develop a distribution-free approach to a 
general linear model along lines somewhat similar to those of the 
traditional treatment. But it soon becomes clear that exact inferential 
statements can only be made about rather uninteresting questions, 
unless one considers generalizations with certain special properties 
which can perhaps be labelled properties of orthogonality. 

We shall, therefore, consider separately generalizations of the 
topics of earlier chapters in different directions. Thus we shall 
generalize straight-line regression to 'plane regression' with k = 2 
independent variables; then to multiple linear regression with k > 2; 
the two-sample problem to the k-sample problem with k > 2; and so 
on. 

6.2 Plane regression: two independent variables 

Let YI , Y2, ... , Yn be independent random variables, identically 
distributed except for location; thus we take the distribution function 
of Yj to be F(y - IX - [31 X lj - [32X2)' j = 1,2, ... , n. We have linear 
regression of Y on two independent non-stochastic variables x I and 
x 2 • The coordinates (X lj ,X 2) of the points in the (X I ,X 2 ) plane at 
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which Y is observed are usefully summarized by the design matrix 

1 Xu x 21 

X 12 x22 

x= 

The natural generalization of the statistic A given in Chapter 5 is 
the pair of statistics . 

Al (Y; f3l' f32) = L, x lj( Yj - f3l x lj - f32 X2) 

A2(Y; f3l' f32) = L,x2j(Yj - f3l x lj - f32 X2j) 
(6.1) 

The choice of these statistics is inspired by the 'normal equations' of 
the method ofleast squares. They do not depend on IX, and are suitable 
for inference about f3l and f32 only. Following the approach 
developed in earlier chapters, we shall consider the distributions of A 1 

and A2 and various modifications of them under certain permutation 
schemes, and use these for inferential procedures. 

6.2.1 Inference about p = (f3l,f32): statistics Al and A2 

Different permutation schemes are possible, the most direct of these 
being based on the fact that all differences Dj = Yj - f3lXlj - f32X2jare 
identically distributed. Thus by taking all permutations of the 
observed dj = Yj - f3lXlj - f32X2j to be equally probable, we can 
tabulate a joint conditional distribution of the statistics Al and A2 
defined in (6.1). 

We shall assume throughout that LXlj = LX2j = O. Further, 
although it may not always be possible to arrange this without a 
rotation of the x-axes which may be regarded as artificial, it will 
sometimes also be assumed that L,XljX2j = O. 

Example 6.1 This example is used to illustrate the permutation 
scheme mentioned above. We have n = 4 observations as follows: 

Yj Xl j x 2j Yj - x lj - 2X2j 

- 2.312 -1 -1 -0.312 

2.156 -1 1 0.156 

-0.140 1 -1 - 0.140 

3.612 1 1 - 0.388 
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The last column in the table above is obtained with /31 = 1, /32 = 2, 
giving observed 

A 1 (Yj; 1,2) = - 0.372 

A 2 (Yj;1,2)= 0.220 

There are 24 arrangements of the dj values; the following table gives 
three of them with the corresponding values of Al and A 2 . 

X lj Xl j Permutations of dj values 

-1 -1 -0.388 -0.388 -0.388 
-1 1 - 0.312 - 0.312 -0.140 

-1 - 0.140 0.156 - 0.312 
0.156 - 0.140 0.156 

Al 0.716 0.716 0.372 

Al 0.372 -0.220 0.716 etc. 

The joint conditional permutation distribution of Al and A2 is as 
follows; the table entries are probabilities multiplied by 24. 

Al 

A2 

- 0.716 - 0.372 -0.220 0.220 0.372 

-0.716 0 1 1 
-0.372 1 0 1 1 0 
-0.220 1 1 0 0 1 

0.372 1 0 1 0 
0.716 0 

Let a = LAin and 0'2 = I,(d j - d)2 In. Then 

E(Ar) = dI,xrj = 0, r = 1,2, and 

Var(A 1 )=O'2 I,xL+( I, X 1j X lk )[ -O'2/(n-1)] 
Uk 

0.716 

0 
1 
1 
1 
0 

(6.2) 
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since LXij = O. Similarly, 

var(A2 ) = 0"2(n: 1) LX~j 

cov (A1' A2) = 0"2(n: 1 )LX1jX2j (6.3) 

Thus, since LX 1jX2j = 0, A 1 and A2 are uncorrelated. However, 
reference to Example 6.1 shows that A1 and A2 are not, in general, 
independent. 

Another point to note about the conditional distribution when 
LX1jX2j = 0 is that although the value of observed A1 is invariant 
with respect to f32' its joint distribution with A2, and its marginal 
distribution, are not. Thus f32 acts as a nuisance parameter for 
inference about f31 , and it appears to be impossible to free f31 from f3 2' 

at least with the permutation scheme that we are now considering. 
Exact joint inference about f31 and f32 is possible through the use of 

the joint conditional permutation distribution of A1 and A2. 
However, as we have seen before, there is some arbitrariness in the 
choice of a test statistic based on both A1 and A2. 

Testing H 0: f31 = f3~, f32 = f3'2 
The first step is to tabulate the joint conditional distribution of A 1 and 
A2, using the values f3~ and f3~ for f31 and f32. We accept Ho if the 
observed {A1(y;f3~,f3~), A2(y;f3~,f3~)} is not an extreme point. By 
convention we judge whether an observed point is extreme in terms of 
a measure of distance from its expectation with reference to the joint 
distribution of A1 and A2. 

With LX1j X2j = 0 we take as measure of distance, that is as a test 
statistic, 

Q( .f30 f3o)_J..{A2(Y;f3~,f3~) + A2(Y;f3~,f3~}(n-1) 
Y, l' 2 - 0"2 LXIj LX~j n 

(6.4) 

whose exact distribution can be obtained from the joint distribution 
of A1 and A2 • 

Example 6.2 Suppose we use the data of Example 6.1 to test Ho: 
fJ = (1,2) against H 1 : fJ =1= (1,2). 

Observed Q = 0.8011, 

and Pr(Q > observed Q) = 16/24; Ho is accepted. 
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When n is large the joint distribution of A I and A2 is, under suitable 
conditions on the design matrix X, approximately normal. The 
expectation of Q is exactly 2, and when the joint distribution of A I and 
A2 is approximately normal, its distribution is approximately X~ 

Point estimation and confidence limits 
Point estimates b l and b2 of PI and P2 are obtained by solving the 
estimating equations 

(6.5) 

These point estimates are the usual 'least-squares' estimates and their 
efficiency properties are well known. 

An exact joint confidence region for PI and P2 can be obtained via 
the hypothesis test based on Q. For large n, the distribution of Q is 
approximately X~, so an approximate confidence region for (P I, P2) is 
given by 

{LXlj(Yj - PI x lj - P2X2j)} 2 {LX2j(Yj - PIXlj - P2 X2j)} 2 

" 2 + " 2 L.Xlj L. X 2j 

~ (n : 1) L(Yj - Y - PI x lj - P2 X2Y (6.6) 

where C is a selected quantile of the X~ distribution. Note that the X2 

approximation is a mathematical convenience so the region is exact in 
the sense of Section 1.2. Fixing P2' it is easily checked that in the 
quadratic in PI' defined by using the equality in (6.6) and taking all 
terms to the left side, the coefficient of PI is positive. Thus the region 
defined by (6.6) is closed with a roughly elliptical shape. 

6.2.2 11!forence about PI or P2 individually using Al and A2 : restricted 
randomization 

We now consider specializing the design matrix in order to be able to 
make exact inferences about PI and P2 separately. We begin by 
arranging the (x Ij' x2j) points in a rectangular lattice pattern. It is 
somewhat more convenient in this case to use a double subscript for 
the y values; thus y,. corresponds to the point 

r = 1, 2, ... , p, s = 1, 2, ... , q 

with pq = n; see Fig. 6.1. We take as before L,xI , = L.x2s = 0, which 
in this case ensures L,.X I ,X2• = O. Let us now focus attention on the 
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x )( 
11 12 )( 

1P 

Figure 6.1 

collection of observations at X 2 = X 21 ; there are p ofthem. Since tI. and 
P2X21 are fixed quantities for this set of observations, we can use a 
statistic 

All = 2>lr(Yrl - Pl x lr ) = 2>lr Drl (Pl) 

for inference about Pl' The permutation procedure we use here is 
permutation of the Dlr values within the 'row' defined by X2 = X 21 . In 
short, at the fixed value X 2 = X 21 the problem, as far as Pl is 
concerned, is reduced to one of straight-line regression, and we use the 
methods of Chapter 5. 

The restricted, within-row randomization can be carried out to 
evaluate the distributions of statistics 

A ls = 2>lr(Yrs - P1X lr ) = LxlrDrs(Pd, 

and naturally one defines the statistic 
q q P 

s = 1,2, ... q 

Ai. = L A ls = L L xlr(Yrs - P1X lr ) 
s=l s=lr=l 

for inference about Pl' 
With LXljX2j = 0 in Al defined by (6.1), we see that Al and Ai. are 

identical. However, the randomization schemes under which the 
exact conditional distributions of these two statistics are evaluated 
are quite different. Although the randomization method within each 
row is the same as that exploited in straight-line regression, and the 
principles for hypothesis testing and finding confidence limits are the 
same, the details are somewhat more complicated because the 
distribution of Ai. is the distribution of the sum of independent 
random variables, each of whose distribution is obtained by randomi­
zation. Example 6.3 gives an illustration of the tabulation of the 
distribution of Ai.' 
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Hypothesis test of f31 only 
Consider H ° : f31 = f3~ . The first step in evaluating the conditional null 
distribution of AI. is to calculate the values of Drs(f3~)· Then the p! 
permutations of these D .. (f3~) values within each row are listed giving 
p! possible valus for each A is' S = 1, 2, ... , q. The exact distribution of 
AI. then has (p!)q 'points' of equal probability. 

To perform the test of Ho, the observed value of AI. is referred 
suitably to the null distribution of AI.' 

The enumeration of the null distribution described above is clearly 
a large task, even for only moderately large p and q. Let 

p 

D.s(f3~) = (lip) L D,s(f3l) 
r= 1 

and 
p 

(J~s(f3~) = (lip) L [Drs(f3~) - D.s(f3~)]2, s = 1,2, ... ,q 
,= 1 

Then using the results in Chapter 5, the conditional distribution of 
A 1s gives 

E(A 1a) =0 

var(A ls) = ( ~ 1 )(Ji.(f3~) f x~, 
p r= 1 

Since we randomize independently within the separate rows we have 

E(A1.) =0 

var{Ad = (p ~ 1 )Ct1 x~, )Ct (J~s(f3~)) (6.7) 

Moreover, from Chapter 5 we can conclude that since A 1. is the sum 
of independent random variables each of whose distribution tends to 
normality as p increases, the distribution of AI. tends to normality as 
p increases. On the other hand, if we keep p fixed, but increase q, we see 
that AI. is the sum of not necessarily identically distributed random 
variables, but with moderate constraints on the (J~s values the 
distribution of A 1. again tends to normality. 

Thus, for moderately large p or q and using a normal approxi­
mation to the conditional distribution of AI., the arithmetic of 
hypothesis testing about f31 becomes relatively easy. Only calculation 
ofthe observed AI. and its variance according to (6.7) is required, the 
rest of the calculations being arithmetically trivial. 
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Confidence limits for P1 
The null distribution of AI. is used in the same way that the null 
distribution of A is used in Chapter 5. For any trial b1 the crucial 
quantity, on which depends the decision as to whether b1 is in the 
confidence region, is N(b 1)' the number of the (p !)q possible A 1. values 
that are greater than or equal to the observed AI.' 

The following example explains the procedure. 

Example 6.3 In the following table the entries are observed values 
of Y. 

~ -1 0 +1 
x 2 

-1 - 3.072 -1.648 -0.623 

+1 0.905 1.910 2.985 

We shall find an upper confidence limit for P1 using within-row 
permutation. 

Suppose we take as a trial P 1 value b 1 = 1.2. Then the values of 
Y.1 - 1.2x 1., Y.2 - 1.2x 1., r = 1,2,3, are: 

~ 
-1 0 1 

X 2 

-1 -1.872 -1.648 -1.823 

+1 2.105 1.910 1.785 

giving observed 

AI. = All + A12 = + 0.049 - 0.320 = - 0.271 

According to the randomization scheme there are 3! equiprobable 
values of each of All and A 12 , so that listing the 36 equiprobable 
values of A 1. is straightforward. The values are 

All 0.049, 0.175, 0.224 

A12 0.125, 0.145, 0.320 

AI. 0.020, 0.029, 0.050, 0.076, 0.096, 0.099 

0.145, 0.146, 0.174 0.244, 0.271, 0.300 

0.349, 0.369, 0.370, 0.419, 0.495, 0.544 
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each of these numbers appearing with both a negative and positive 
sign. There are N(bd = 27 possible A 1. values greater than or equal to 
observed A 1. = - 0.271. 

As b l increases N(b l ) increases, and we take as the upper 
100(32/36)% = 89% confidence limit for /31 the value of b l at which 
N(b l ) changes from 32 to 33. 

In this example, jumps in the value of N(b l ) occur at all pairwise 
slopes calculated within rows and at their averages. The value of 
N(b l ) jumps from 32 to 33 at bl = {( - 1.648 + 3.072) + (2.985-
0.903)/2} /2 = 1.2320. We take this value to be an upper 89% 
confidence limit for b l . 

The data in this example were generated with normally distributed 
residuals. The classical procedure gives an upper 89% confidence limit 
of 1.242; interpolation in one of the standard tables was used to give 
t 3 (0.39) = 1.54. 

With larger values of p and q we can use the normal approximation 
described above. For example, two-sided 90% confidence limits for /31 
are obtained as the set of b l values satisfying 

ttl JI Xlr(Yrs - bIX lr)} 

~ 1.6452C~ 1)Ctl xir)Ctl (Jis(bd) (6.8) 

Using the equality in (6.6) produces a quadratic expression in hi 
which can be simplified; it is left as an exercise. 

I njerence about linear combinations of /31 and /32 
The reason for considering the restricted randomization schemes of 
this section, which are only really feasible with X suitably designed, is 
that it enables one to make exact inferences about /31 or /32 
individually; as we have noted in Section 6.2.1, with an arbitrary X 
this is not generally possible. 

A similar problem arises in connection with inference about 
wII31 + W 2 /32' where WI and W 2 are constants; in fact /31 and /32 are 
just special cases of such linear combinations. Now, considering 
f3T = W I /31 + W2/32 as the parameter of interest amounts to repara­
metrizing the original problem. Suppose that wi + w~ = 1, which 
entails no loss of generality, so that we can put WI = sin e, W2 = cose. 
Then the plane 
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becomes 

where 

1J = ex + (Pl sin e + P2 cos e)xi + (P2 sin e - Pl cos e)x! 
= ex + f3T xi + Pi xi 

(Xl) = (sin e - c~s 8) (Xi) 
X2 cos 8 Sill 8 x! 

The new (xi, xi) axes are obtained by rotating the old axes through 
an angle e. 

Exact inference about f3T will now be possible if we have 
observations at sets of points in the (xi, xi) plane that lie on straight 
lines parallel to the xi axis. However, if the original design was such as 
to give a rectangular grid of observation points, a rotation of axes 
may yield points that satisfy our criterion, but each set will not 
necessarily contain the same number of points. The following 
example illustrates some of these remarks. 

Example 6.4 Suppose that the (X l ,X2 ) points are regularly spaced on 
a rectangular lattice with Xlr = - 2, - 1,0,1,2, and x2s = - 2, 
-1,0,1,2, so that n = 25. 

1 1 
Suppose we put Pi = j2 Pl + j2 P2 then the new axes are as 

shown in Fig. 6.2. 
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Referring to the diagram we see that there are several sets of lines 
parallel to the x! axis containing observational points. 
Randomization along each line leads to exact inference about P!. 
These methods are exactly like those described for PI except that the 
number of points in each line is not the same; the required alterations 
in formulae are straightforward. 

6.2.3 Rank statistics: inference about fJ 

We shall follow the methods of Section 6.2.1 except that the statistics 
A 1 and A 2 are replaced by 

n 

Ri(Yj;p)= L xijRank(Yj -PIX1j -P2X2)' 
j= 1 

i = 1,2 (6.9) 

Under overall randomization the joint conditional distribution of 
Rl and R2 is readily tabulated by the method shown in Example 6.1. 
Since the collection of ranks is invariant with respect to the 
observations, the distribution so tabulated is also the unconditional 
distribution. 

Example 6.5 Use the design matrix with n = 4 of Example 6.1. The 
joint distribution of Rl and R2 is as follows: 

~ Rl 
-4 -2 0 2 4 

-4 1 2 1 

-2 1 2 1 

0 2 2 2 2 

2 1 2 1 

4 1 2 1 

The entries in the table above are probabilities multiplied by 24. 
The variance and covariance formulae (6.2) and (6.3) apply with 

(J2 = (n2 - 1)/12, so that 

n(n + 1) n 2 • 
var (Ri) = 12 .L Xij' I = 1,2 

J=l 
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The joint distribution of RI and R2 tends to normality as n 
increases if max (xt)/2>t -+ 0, i = 1,2. 

Using the joint distributions described above we can proceed with 
joint inference about /31 and /32. The problems associated with 
inference about /31 and /32 individually arise again and we shall look at 
these separately. 

Testing Ho: /31 = /3~, /32 = /3~ 
As with AI' A2 , we have to decide upon a test statistic, and we use the 
quadratic form on RI and R2 that has expectation 2 under Ho.lfwe 
assume 2>ljX 2j = 0, we put 

Example 6.6 Data on the conversion percentage in an experiment on 
caustic fusion (Data ofF. R. Lloyd reproduced in Burr (1974), p. 405). 

Time (hours) Average fusion Conversion 
temperature (DC) percentage 

Xl X 2 Y Rank(y) 

3 (-1) 297.5 (- 1) 62.7 1 
3 (-1) 322.5 (0) 76.2 3 
3 (- 1) 347.5 (1) 80.8 5 
6 (0) 297.5 (- 1) 80.8 6 
6 (0) 322.5 (0) 89.2 8 
6 (0) 347.5 (1) 78.6 4 
9 (+ 1) 297.5 (- 1) 90.1 9 
9 (+ 1) 322.5 (0) 88.0 7 
9 (+ 1) 347.5 (1) 76.1 2 

A test of /31 = 0, /32 = ° is required. 
The Xl and X2 scales are by simple transformations converted to the 
values shown in brackets in the table above; the ranks ofthe y-values 
are shown with the tie at 80.8 broken arbitrarily. Now we obtain 

2>L = L:XL = 6, 2>ljx2j = ° 
RI = 9 + 7 + 2 - (1 + 3 + 5) = 9 

R2 = 2 + 4 + 5 - (1 + 6 + 9) = - 5 

QR = 2.36. 
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The observed value QR = 2.36 is clearly not significant compared with 

X~ 

Joint confidence regions for /31 and /32 

Using QR and the usual inverse argument, it is in principle straightfor­
ward to find a joint confidence region for /31 and /32' Generally the 
confidence region determined in this way has an irregular outline 
when n is small, and the calculations needed to determine it are 
tedious. 

When n becomes large, with suitable and practically reasonable 
restrictions on X, both Rl and R2 treated as functions of /31 and /32 for 
fixed y can be approximated by linear functions over a small region of 
fJ values such that 

(6.10) 

Consequently the outline of the joint confidence region is elliptical 
and it can be sketched by finding relatively few points on its 
boundary. 

Computationally the setting of a confidence region can be perfor­
med by selecting a sequence of /31 values and finding the smallest and 
largest /32 values that satisfy (6.10). Putting yj = Yj - /31 X 1j ' we know 
from Section 5.2.2 that as /32 varies the ranks of yj - /32X2j only 
change at values of /32 given by pairwise slopes (yj - yT)/(x2j - x 2;), 

hence it is relatively easy to find the critical /32 values for any chosen 
value of /31' 

Point estimation 
Putting 

Ri(y, b) = 0 for i = 1,2 (6.11) 

gives two estimating equations whose solutions may be taken as point 
estimates of /31 and /32' Since Rl is monotonic in b1 for fixed b2 , the 
function b1 (b2 ), giving the value ofb1 at which Rl = Ois single-valued. 
A similar remark applies to b2 (bd and R2 • Therefore, apart from 
having to adopt a convention to define a unique b 1 (b 2 ) for every b2 , 

and likewise for b2 (bd, the point estimates are unique. 

6.2.4 Restricted randomization: inforence about /31 or /32 only based on 
Rl and R2 

In connection with the statistics Al and Az it was noted that while 
exact inference about /31 and /32 jointly is possible, it is generally 
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impossible to make exact inferences about PI or P2 or WIPI +W2P2 
separately, unless X is such that restricted randomization can be used. 
These remarks apply also to RI and R2 ; in particular, exact inference 
about PI is possible by using the restricted randomization scheme. 

We shall consider here only the case where the design matrix X is as 
described in Section 6.2.2; 'untidy' design matrices will be discussed in 
Section 6.2.8. Using a notation corresponding to that of Section 6.2.2 
we put 

P 

Rls = L Xlr Rank (Yr. - PI x lr ), S = 1,2, ... , q 
r= I 

and 

Under the 'within-row' randomization scheme, the exact distri­
bution of R ls , and hence that of R1.' is easily tabulated in principle. 
The realized value of this statistic Ru and its conditional distri­
bution, are invariant with respect to P2' hence it can be used for exact 
inference about Pl. The null distribution is also invariant with respect 
to PI' so it can be tabulated once and for all for a given X. 

We have 

E(Rd=O if LXlj=O 

and for the variance of R 1. we can use (6.7), noting that 

uUPd = (p2 - 1)/12 

giving 

qp(p + 1) p 

var(RI.) = 12 r~l Xlr 

Testing Ho: PI = P~ 

(6.12) 

The observed R1. is simply referred to the null distribution of R1. 
which is described above. If n is sufficiently large, a normal 
approximation, based on the variance (6.12) can be used. 

Example 6.7 See also Example 6.6. In this case tabulation ofthe exact 
distribution of R1. is relatively easy and produces: 

r:O ±1 ±2 ±3 ±4 ±5 ±6 
216.Pr(RI. = r) : 24 36 27 14 12 6 1 
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To test H 0: PI = 0 we arrange the data as follows: 
Xl 

X 2 -1 0 +1 Rls 

-1 62.7 (1) 80.8 (2) 90.1 (3) +2 

0 76.2 (1) 89.2 (3) 88.0 (2) +1 

1 80.8 (3) 78.6 (2) 76.1 (1) -2 

The ranks within rows are shown in brackets. We have Rl. = + 1, 
clearly not significant. 

Confidence limits for PI 
Since the conditional null distribution of Rl, is invariant with respect 
to PI' confidence limits can be determined using the null distribution 
by steps like those involving the use of TR in Section 5.2.2. 

As bl increases, Rl, = Rdb i ) is a non-increasing step-function and 
varies between - Rand + R, where R depends on the Xlr con­
figuration. Let r l and r 2 be such that 

Pr(r l ~ Rl, ~ r 2 ) = s/(P!)q 

and suppose that bl (1), bl (2), ... , bl (m) are the points at which jumps 
in Rdb l ) occur. These are the pairwise slopes within rows; generally 
m = qp(p -1)/2. 

Then let b l (m l ) be the point at which Rl, (b l ) jumps from r2 + 1 to 
r2 ; this is the lower limit of the two-sided 100s/(p!)q% confidence 
interval. The upper limit is determined similarly. 

Example 6.8 From Examples 6.6 and 6.7 we obtain 9 pairwise b l 

slopes within the three rows in which X 2 is fixed. These values are 
given below, and the values of Rl, are shown in brackets in the 
relevant intervals. 

( + 6) - 2.5 (45) - 2.35 (+ 3) - 2.2 (+ 2) - 1.2 (+ 1) 

5.9 (- 1) 9.3 (- 2) 13.0 (- 3) 13.7 (- 5) 18.1 (- 6) 

A 100(1 - 14/216)% = 93.5% confidence interval for PI is 

( - 2.35, 13.7). 

6.2.5 Consistency and efficiency of the rank methods 

Consistency 
We shall discuss only the consistency of point estimates derived from 
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(6.11); other consistency results follow in a similar manner. In this 
discussion, as in dealing with consistency of TR in Section 5.2.2, we 
assume I xrjl ~ 1, r = 1, 2,j = 1,2, ... ,no In practice this can always be 
arranged by a rescaling of x. Then it is easily shown by exactly the 
same argument as in Section 5.2.2 that var {R/b)} = C in3 as n-+ 00. 

Also, by steps similar to those leading to (5.9), 

YSI = (JE{Rs(b)}) = {- r?L.x~, 
Jb t b=1l 0 

Therefore, for small 11/31 and 11/32' 
n 

E {Rs(JJ + I1fJ)} ~ - nl1/3.J L. X;j' 
j= 1 

s = t = 1,2 

sft 

s = 1,2. 

(6.13) 

Using the results of Section 1.3, consistency of point estimation 
follows. 

Efficiency 
We consider efficiency of estimation only. The large-n covariance 
matrix of PI and P2 derived from (6.11) is CfJ, satisfying 

( I'll Yl2 )CfJ(Yll 1'21) ~ (var(R l (JJ» COV(R1 (fJ), R2 (fJ») 
1'21 1'22 1'12 1'22 COV(R1 (JJ),R 2(JJ» var(R2(JJ» 

(6.14) 
and giving 

(6.15) 

Thus, relative to the method ofleast squares the efficiency is 12J2(;2, a 
result equal to several previous ones. 

Considering estimation of /31 through R1. the point estimate is PL. 
Using results from Chapter 5, we have 

Also, 

pq(p + 1) p 2 

var(R1.(/3d) = 12 r~l X1r 

from (6.12). Therefore, the approximate variance of PI. for large p and 
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q IS 

var({f1.)~11 {12]2q ,tl xi,} 
This result, it will be noted, coincides with var (fJ d given by (6.14) as 
n --+ ctJ. 

6.2.6 Sign transformations: inference about fJ 

The randomization procedures of Section 6.2.1 are followed but the 
statistics Al and A2 are modified to become 

S,(fJ) = I,x,j sgn (Dj(fJ) - D(fJ», 

where D({3) = median {Dl (fJ), ... , Dn(fJ)} 

r = 1,2 

D/{3) = Yj - f3l x lj - f32X2j,j = 1,2, ... , n 

(6.16) 

Tabulation of the conditional joint null distribution of S 1 and S 2 is 
straightforward and the moments up to order 2 are readily obtained 
by using (6.3) with (J2 replaced by the appropriate values: 

n even (J2 = 1 

n odd : (J2 = (n - 1)/n 

Thus: E {S,(fJ)} = 0, r = 1,2, and the covariance matrix is 

(6.17) 

for n even; for n odd, the factor (n/(n -1» in (6.17) becomes 1. The 
joint distribution of S 1 and S 2 tends to normality as n -'> CJ) if 
max (x;)/I, X;j-'> 0, r = 1,2. 

For inference about fJ the statistic 

Qs(f3) = (J2 {Si (fJ)/I>L + S~(fJ)/I,xU (6.18) 

may be used, with (J2 as given above, if l>ljX2j = 0. 

Hypothesis testing 
Example 6.9 Refer to Example 6.6, and test H 0: f3l = 0, f32 = 0. In this 
case the observed Dj values are just the original observations (y) 
shown in Example 6.6, so that D = 80.8. Breaking the tie at 80.8 as was 
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done in Example 6.6, we obtain observed values 

Sl = 3, S2 = - 3 

and (12 = 8/9, giving 

Qs(P) = (9/8) {9/6 + 9/6} = 3.375 

Taking the distribution of Qs to be approximately X~, we accept H o' 

Joint confidence regions and point estimation 
An exact joint confidence region for Pl and P2 can be determined 
through the use of Qs in the same way that QR can be used for the same 
purpose, as discussed in Section 6.2.3. 

Point estimates of Pl and P2 are obtainable as solutions of the 
estimating equations 

Sr(b) = 0, r = 1,2 (6.19) 

Consistency and efficiency 
Demonstrating consistency of inference based on S 1 and S 2 is 
relatively straightforward and is left as an exercise. By methods 
similar to those used with Ts in Chapter 5, the covariance matrix of 
the point estimates derived from (6.19) tends, as n --+ 00, to 

(6.20) 

if 2>ljX2j = 0, where /(0) is the density of F at its median. 

6.2.7 Restricted randomization using sign statistics: inference about Pl 
or P2 separately. 

Consider a design matrix as in Section 6.2.2. Let 

Ds(Pl) = median (Yls - Pl Xll , Y2s - Pl Xl2 , ... , Yps - Pl x 1p ) 
s = 1,2, ... ,q, 

and put 

P 

Sls = L xlrsgn {Yrs - P1X1r - Ds(Pd}, s = 1,2, .. . ,q 
r = 1 

and 
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The conditional null distribution of every S 18 is like that of Ts, 
Section 5.2.3. The statistics S 11> S 12, ... , S lq are conditionally in­
dependent and hence enumeration of the distribution of S 1. is 
straightforward in principle. With LXIi = 0 we have 

E(Sd=O 
and it is easily seen that 

P q(p - 1) P 
var(Sd = q L xir or L xir (6.21) 

r=l P r=l 

according as p is even or odd. By arguments similar to those applied 
to R 1., Section 6.2.4, the distribution of Sl. tends to normality as p and 
q -+ 00 under suitable conditions on X. 

Inferential procedures are similar to those described for R 1.' and we 
shall illustrate them in Example 6.10. 

Example 6.10 The following data from a test of corrosion resistance 
of steel plates are reproduced from Johnson and Leone (1964, p. 442). 
The Y-values, three of them at every combination of time (x t> and 
temperature (x 2 ), are weight losses (g); one of the sets of data at time 
8 hrs, 180°F was omitted. 

(x2 ) (Xl) Time (hours) 
Temperature (- 2) ( -1) (0) (1) (2) Sl5(O) 

(OF) 4 6 8 10 12 

0.0065 0.0057 0.0058 0.0070 0.0119 
140 (- 3) 0.0047 0.0045 0.0055 0.0110 0.0148 14 

0.0132 0.0054 0.0064 0.0111 0.0100 

0.0083 0.0065 0.0093 0.0094 0.0117 
160 (- 1) 0.0080 0.0078 0.0084 0.0126 0.0107 15 

0.0059 0.0097 0.0105 0.0130 0.0105 

0.0073 0.0084 0.0140 0.0169 0.0182 
180 (+ 1) 0.0094 0.0092 0.0115 0.0207 0.0299 16 

0.0068 0.0086 0.0130 0.0112 0.0356 

0.0171 0.0142 0.0185 0.0325 0.0485 
200 (+ 3) 0.0142 0.0146 0.0160 0.0095 0.0349 10 

0.0111 0.0111 0.0176 0.0149 0.0380 

It is suggested that a plane regression of Yon Xl and X 2 might be 
appropriate. In the following calculations the rescaled Xl and X 2 

values as indicated are used. 
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Testing /31 = 0 
The values of Sls(8) are shown with the table above, giving 

S 1. = 55 

In this example we have to make some small, obvious modifications 
to the formula (6.21) owing to there being three Y-values at each 
(Xl' X 2 ) combination. Thus, within rows there are p = 15 observations 
so that 

var(StJ = 4(14) I xi, = (4 x 14 x 30)/15 = 112 
15 ,= 1 

Taking S 1. to be approximately normally distributed, the observed 

value of S1. is clearly highly significant, since 55/J112 = 5.2. 

95% corifldence interval for /31 
Figure 6.3 shows a graph of S 1. (b) plotted against b for a few values of 
b. The plotting values of b were determined using the least-squares 
estimate to indicate a starting value. 
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Figure 6.3 



MULTIPLE REGRESSION AND GENERAL LINEAR MODELS 193 

Using the normal approximation for Sl, we note that SdPI) 
should lie between - 1.96J1l2 = - 20.7 and + 1.96J1l2 = 20.7 
with probability 0.95. Thus horizontal lines drawn at these two values 
to intersect the graph of Sdb) give the confidence interval for PI as 
(0.00134, 0.00326); the point estimate of PI is 0.00228. 

6.2.8 Grouping and restricted randomization 

In previous sections we have shown how restricted randomization 
can be used to make inference about PI (or P2) alone, free from the 
nuisance parameter P2 (or PI). Strictly such a procedure is possible 
whenever there are multiple X2(Xtl values corresponding to at least 
one XI (x2 ) level. Clearly it may happen that only a small proportion 
of the data may be suitable for application of the restricted 
randomization technique, leading to unacceptable loss of efficiency 
for the sake of statistical exactness. In the examples discussed above, 
the problem did not arise because of the nature of the designs. 
However cases with 'untidy' design matrices do arise in practice and 
we shall examine a compromise method, using grouping, for dealing 
with them. 

Suppose that n is moderately large and that we group the X2 values 
into q classes. Treating the X2 values within each class as being 
identical, we can then perform a restricted randomization analysis 
with respect to Pl. A grouping error is, of course, introduced. An idea 
of its size can be obtained by, for instance, comparing the estimate of 
PI calculated from the restricted randomization statistic AI. with the 
ungrouped least-squares estimate. 

Apart from the grouping error there is also loss of efficiency as a 
result of performing a 'within-rows' analysis for PI without using the 
'between-rows' information about PI. A brief review of the usual 
least-squares procedures gives an indication of the loss of efficiency. 
Suppose that there are q distinct X 2 levels at which there are 
nl ,n2 , ••• ,nq values of XI. Let the X2 values be X21,X 22 , ..• ,X2q , and 
denote the n, values of Xl at level X2, by Xu' ••• , x ln,. Suppose that 

q n, 

I nsX2s = 0 = I I Xlj' and put 
s= I j= I 

WI = within-group sum of squared differences for Xl 

BI (B2 ) = between-group sum of squared differences for Xl (X 2 ) 

B12 = between-group sum of X I ,X2 cross-products. 
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These sums of squares and cross-products are defined in the usual 
way associated with the analysis of variance. 

Suppose that the Y values have variance ([2. Then the variance of 
the full least-squares estimate of PI is ([2/{WI +Bl -Bi2/B2}. The 
within-group estimate of PI' which corresponds to the restricted 
randomization estimate has variance ([2/WI . Now the difference, 
Bl - Bi2/B2' between the denominators in these two variances is the 
residual sum of squares after fitting a straight line through the means 
of the Xl values, with X 2 as 'independent' variable. This means that, if 
the mean Xl values plotted against their X2 values lie close to a 
straight line, the loss of efficiency of the 'within' estimator is small. If 
these means lie exactly on a straight line there is no loss of efficiency. 
This has already been noted in the orthogonal cases treated as in 
Section 6.2.5. 

Example 6.11 In this example the variables are characteristics of 
timber specimens from n = 50 varieties of trees. The data were 
supplied by the CSIRO Division of Building Research, Melbourne. 

y modulus of rigidity 

Xl : modulus of elasticity 

X2 : air dried density 

In the following table of the data, the X2 values are arranged in 
increasing order of magnitude. Grouped calculations are performed 
by forming 10 groups each with 5 sets of results and taking all X2 

values within the group to equal the group median. 

y Xl X 2 Y Xl X 2 

1000 99 25.3 1897 240 50.3 
1112 173 28.2 1822 248 51.3 
1033 188 28.6 2129 261 51.7 
1087 133 29.1 2053 245 52.8 
1069 146 30.7 1676 186 53.8 

925 91 31.4 1621 188 53.9 
1306 188 32.5 1990 252 54.9 
1306 194 36.8 1764 222 55.1 
1323 195 37.1 1909 244 55.2 
1379 177 38.3 2086 274 55.3 
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y Xl X 2 Y Xl x2 

1332 182 39.0 1916 276 56.9 
1254 110 39.6 1889 254 57.3 
1587 203 40.1 1870 238 58.3 
1145 193 40.3 2036 264 58.6 
1438 167 40.3 2570 189 58.7 

1281 188 40.6 1474 223 59.5 
1595 238 42.3 2116 245 60.8 
1129 130 42.4 2054 272 61.3 
1492 189 42.5 1994 264 61.5 
1605 213 43.0 1746 196 63.2 

1647 165 43.0 2604 268 63.3 
1539 210 46.7 1767 205 68.1 
1706 224 49.0 2649 346 68.9 
1728 228 50.2 2159 246 68.9 
1703 209 50.3 2078 237.5 70.8 

In the model 
y = IX + /31X1 + /32X2 + error 

with independent errors having zero expectations and common 
variance (12, the full least-squares estimate of /31 is 3.182 with 
estimated standard error 0.718. Grouping the X2 values as explained 
above and calculating a full least-squares estimate gives the result 
3.236. Thus the grouping error is quite small relative to the standard 
error of the estimate. 

The within-group least squares estimate of /31 is 3.046 with an 
estimated standard error, using the estimated (12 from the full least­
squares method, of 0.721. 

The calculations reported above indicate that both the error due to 
grouping and the loss of efficiency is small, in this example. 

The next step is to find a point estimate of /31 and a confidence 
interval, based on the sign statistic S 1. described in Section 6.2.7. A 
slight, obvious modification of the definition of S ls is required to 
define Sls in terms of the deviations of the within-group Xl values 
from their means. Thus, putting xt = D'= 1 x~.lns' 

n. 

Sls(b)= L (xL-xUsgn{Y1S,j-bx~j-Ds(b)} 
j; 1 
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where D.(b) = median {YIs.j - bxL, .i = 1,2, ... , ns}, 
and 

q ns 

var {SdPd} = L Cs L (x~j - x~Y 
s=1 j=1 

where Cs = 1 or (ns - l)/ns according to whether ns is even or odd. 
In this example every ns = 5, hence 

var{SdPd} =~Wl = (212.57f 

The values of S 1. (b 1 ) for a selection of b1 values are as follows; they 
give b l intervals on which Sl. has the values shown. 

bl SI. 
( .... , 2.10) 377.5 (3.83, 3.93) 38.5 
(2.10, 2.43) 328.5 (3.93, 4.05) - 58.5 
(2.43, 2.70) 321.5 (4.05, 4.09) -134.5 
(2.70, 3.23) 298.5 (4.09, 4.14) -188.5 
(3.23, 3.74) 241.5 (4.14, 4.31) - 224.5 
(3.74, 3.83) - 142.5 (4.31, 4.90) - 332.5 

(4.90, .... ) -432.5 

A plot of Sdbd against bl is shown in Fig. 6.4. The abscissae at which 
the hI axis and horizontal lines drawn at ± 1.645 (212.57) intersect the 
graph of Sdbd give the point estimate PI = 3.93 and approximate 
90% confidence limits for PI of(2.10, 4.90). These results, especially the 
width of the confidence interval, should be compared with the least­
squares results. 
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6.2.9 Joint estimation of P1 and P 2' approximate solutions and estimated 
standard errors 

Inference about P1 and P2 separately has been examined in some 
detail because it is regarded as an important practical problem. We 
now return to joint estimation of P1 and P2 and consider circum­
stances where the restricted randomization or grouping methods are 
not regarded as adequate. For example, the statistician may regard 
the loss in efficiency as too great, or may be concerned about a non­
linear function of P1 and P2, which cannot be handled by the 
techniques discussed before. We have noted above that while exact 
joint inference about P1 and P2 is possible, inference about P1 or P2 
alone, or about a function of P1 and P2' can be approximate only, in 
general. 

One way of making such inferences is by using standard errors, or 
large-sample approximate standard errors of estimates. Thus the 
problem of obtaining estimates of these standard errors arises. There 
are quite general methods of obtaining estimates of standard errors 
such as the 'jack-knife' method and the 'bootstrap' method. Here we 
shall discuss only a method that is directly connected with the actual 
calculation of the estimates and is related to the well known Newton­
Raphson method of solution of equations by successive 
approximation. 

We shall use the rank statistics R1 and R2 of Section 6.2.3 in this 
discussion, but the methods are quite generally applicable. 
. The basic idea is to approximate the functions Ri(Y, b), i = 1,2, by 
differentiable smooth functions of b1 and bz in the neighbourhood of 
the solution of the estimating equations (6.11). In order to avoid 
introducing further notation we shall now treat Rl and Rz as 
differentiable functions of b i and bz. A solution of the estimating 
equations can now be sought by successsive corrections to a starting 
solution bOo 

Let C~r = [ClR.(b)/Clbr]b=bo. Then the first corrections Ab~ and Ab~ 
are obtained by solving the linear equations 

The new solutions are bf = b~ + Ab~ , i = 1,2. 
To implement this iterative technique the elements of the matrix 

Co = (( C~r» are needed. Whereas in the better-known applications of 
this type of technique the elements of Co are commonly obtained 
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simply by differentiation, here they have to be estimated by a 
numerical technique. One such technique is to choose bf - and bf + 
such that the difference Rl (Y, b~ +, b~) - R(Y, b~ -, b~) is appro­
ximately equal to the standard deviation of R. Then put 

C~ 1 ~ {R 1 (Y ,b~ + , b~) - R 1 (Y, b~ - , b~)} /(b~ + - b~ - ) 

Other C~t are calculated similarly. 
The estimated covariance matrix of the estimates PI' P2 is given by 

(6.14) with Cp replaced by Cp, the estimated covariance matrix, and Yr. 
replaced by Cr., the latter calculated using P instead of bOo 

As a possible computational simplification we may note that 
Y12 = 0 if the design matrix is suitably chosen. In that case the value 
of Cr. may be taken as O. 

Example 6.12 As a numerical illustration we use the data and some of 
the results in Example 6.11. For preliminary estimates we use those 
yielded by the sign statistics S 1. and S 2. ; they are 

Also 
b~ = 3.93, b~ = 17.76. 

Rl (Y, 3.93, 17.76) = - 3822 

R 1 (Y,3.83, 17.76)= -2482 

R 2 (Y, 4.05, 17.76)= -5189 

giving q 1 = - 2707/0.21. 

6.2.10 Joint inference about IX and p: median regression 

As far as inference about IX is concerned, the situation here is exactly as 
in the straight-line regression case. While p refers only to location 
shift, the parameter IX reflects the actual location. Consequently we are 
only able to make real progress in a relatively simple manner if we 
consider median regression, or if the Y variables are assumed to be 
symmetrically distributed. 

Straightforward generalization of the straight-line regression case 
suggests the use of the following statistics for inference about IX and p: 

So(IX,P) = Lsgn(Yj -IX - PI Xlj - P2X2j) 

S,(IX,P) = Lxrjsgn(Yj -IX - PIXlj - P2X2j), r = 1,2 

The joint distribution of S 1> S 2, S 3 has 

E {Sr(lX,p)} = 0, r = 0,1,2 
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and the covariance matrix X'X. 
With n small it is fairly simple to tabulate the exact joint distribution. 

Testing a = ao,fl = flo 
The discussion of Section 5.3.1 is relevant here, and by analogy, a test 
statistic is 

where 

If ~>lj = LX2j = 0, which we assume to be true unless otherwise 
stated, and if also LXljX2j = 0, then 

Q( fl) = S~(ao,flo) + Si(ao,flo)+ S~(rxo,flo) 
rxo, 0 '\' 2 '\' 2 ' n L.,X lj L., X 2j 

which is an obvious generalization of expression (5.33). 
We have 

E {Q(rx,fl)} = 3 

and with large n and suitable conditions on the design matrix the 
distribution of Q may be taken to be approximately X~. Thus, the 
observed value of Q(rxo,flo) may be compared with the appropriate X2 

distribution to test the null hypothesis. 
In principle it is, of course, possible to tabulate the null distribution 

of Q; with n large it is impractical and the X2 approximation has to be 
used. 

Example 6.13 Suppose that we have n = 5 observations at (Xl' x 2 ) 

values (0,0), (-1, + 1),( + 1, -1),( -1, -1),( + 1, + 1) 
Then the null distribution of Q is as follows: 

q : 0.2 1.8 2.2 3.8 4.2 5.0 

16Pr(Q = q) : 2 4 4 4 

Point estimation 
Point estimates of the parameters are obtained by solving the 
estimating equations 

S,(a, b) = 0, r=0,1,2 (6.22) 

Actually finding solutions can be difficult, but an obvious extension to 
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three dimensions of the type of procedure outlined in Section 6.2.9 can 
be used to find approximate solutions. 

Using the arguments of Section 5.3.1 the large-sample covariance 
matrix of the estimates obtained as solutions of (6.22) is 

Cs- 1/(4f(0)2), 

where f(O) is the density of F at its median. 

6.2.11 Joint il'!forence about rx and p: symmetric residuals 

The arguments here are in essence exactly those of Section 5.3.3 in 
connection with joint inference about rx and 13 in straight-line 
regression. We condition on the observed absolute residuals 
I Yj - rx - f3lXlj - f32X2jl and take these to have positive or nega­
tive signs with equal probability. Then putting 

Dj(rx,P) = Yj - rx - 131 x Ij - f32X2j 

we use the statistics 

Ao(rx,P) = L sgn Dj(rx,P)1 D}rx, P)I 

Ar(rx,P) = LXrj sgn D}rx,P)1 Dj(rx,P)1 

The exact joint conditional distribution of Ao, AI' A2 is in principle 
easily tabulated but the process becomes impractical as n increases. 
The joint distribution has 

E {Ar(rx,P)} = ° 
and covariance matrix 

(
LD; LXljD; LX2jD;) 

CA(rx,P) = L>ljD; LxfjD; Lxljx 2j D; 

Lx2j D; Lx lj x2j D; LX~jD; 

With suitable conditions on the design matrix and the distribution of 
residuals, this joint distribution is approximately normal for n large. 

For joint inference about rx,p, especially testing a hypothesis 
specifying values of rx and P, we may use the statistic 

QA(rx,P) = (Ao, AI' A2)CA I(Ao, AI' A2)' 

which has expectation exactly 3 and an approximately X~ distribution 
under suitable conditions. The point estimates yielded by solving 

Ar(a, b) = 0, r = 0, 1,2 

are just the usual least-squares estimates. 
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Example 6.14 Consider the n = 5 observations 

Xl X2 Y Iy-l-xi -2X21 

0 0 1.035 +0.035 
-1 +1 1.481 + 0.519 
-1 -1 - 2.081 -0.081 
+1 +1 3.611 - 0.389 
+1 -1 -0.938 - 0.938 

Testing Ho: (l( = 1,111 = 1,112 = 2 
The observed value of QA is 2.4962, which is smaller than 3, so that H 0 

is accepted. 
Enumeration of the 32 possible values of Q shows that Pr(QA ~ 

2.4962) = 20/32. 
As we have seen in previous chapters a family of statistics can be 

generated, starting with Ao, Ai' A 2' by replacing I D j I by some 
transformed value T(IDjll. The simplest of these is T(u) = 1 which 
reproduces the sign statistics So, S l' S2 that were examined in Section 
6.2.10. 

Transforming IDjl to Rank (IDjll gives the signed rank statistics 
that have been studied extensively by Adichie (1967). Writing Rj = 
Rank (IDjll, j= 1,2, ... ,n it is again relatively straightforward, 
although tedious for large n, to tabulate the exact joint distribution of 
the resulting statistics which we denote A Rs' S = 0, 1,2. Although we 
have transformed to ranks, it will be noted that the conditional joint 
distribution of A Rs' S = 0, 1,2, is not invariant with the observed 
sample; this phenomenon was seen in the case of straight-line 
regression. 

Conditionally we have 

E(AR,,) = 0, s = 0,1, 2 

Unconditionally the covariance matrix is 

{n(n + 1)(2n + 1)/6}X'X 

For testing a hypothesis specifying (l( and 11 we can use the statistic 

QR((l(,P) = (A RO ' A R1 , A R2 )C; 1 (A Ro , ARI , A R2 )' 

which has properties similar to those of QA' 
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Example 6.15 Using the data of Example 6.14 and testing Ho:Ct. = 1, 
[31 = 1,[32 = 2, .the observed value of QR is 2.1889, and from the 
conditional distribution of QR we have Pr(QR ~ 2.1889) = 12/16; 
therefore H 0 is accepted. 

Point estimates based on the signed rank statistics can, in principle, 
be found as solutions of the estimating equations 

ARs(a, b) = 0 

but the comments made in connection with (6.22) regarding finding 
of solutions also apply here. 

6.2.12 Inference about Ct. 

We shall not give any details about this problem, except to point out 
that the difficulties discussed in connection with Ct. in straight-line 
regression arise here as well. Without loss of efficiency it is not, in 
general, possible to make exact inference about Ct. alone, free of the 
nuisance parameters [31 and [32. Inference about Ct. alone can only be 
approximate and may have to depend on estimated standard errors, 
obtained in ways such as those indicated in Sections 5.3.3 and 6.2.9. 

6.3 General linear models 

If we use the notation of Section 6.2 and put y = (Ct., [31' [32)' then the 
model for the location of Yj can be written 

,,= X'y 

or equivalently 

Y =X'y+e (6.23) 

where Y = (Yj , Y2 , .•. , Yn) and e = (e 1 ,e2 , ••• ,en) and e j ,e2 , ••• ,en are 
independent 'errors' distributed identically with distribution function 
F(u). 

The representation of (6.23) is well known for the general linear model 
in which the vector y is k-dimensional and X is an n x k design matrix. 
In parametric treatments of this model the errors are often taken 
to be normally distributed. According to our discussion, straight­
line and plane regression are obviously special cases of the 
general linear model. Many statistical techniques that have been 
developed in other ways are now recognized as special cases of 
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techniques associated with the general linear model. These include, 
for example, one- and two-way analysis of variance. 

The distribution-free methods that have been developed for 
straight-line and plane regression can be generalized for the general 
linear model in a fairly obvious way, and we shall discuss some 
aspects of these generalizations below. However, certain special cases, 
other than those that we have already considered, are of great 
practical importance and we shall deal with them separately. They 
include, for example, one- and two-way analysis of variance. 

Rewriting (6.23) as 
Y = X'«(l(,fJ), + e 

where fJ is now a (k - I)-dimensional vector, and taking X to have a 
first column consisting of ones, we can, in this more general setting, 
still interpret the parameters fJ as reflecting location shift, whereas (l( 
determines the actual locations of the various Yj distributions. As an 
illustration we may take the model for the one-way analysis of 
variance where we have samples of sizes n j , i = 1,2, ... , k, from k 
populations with location parameters Jl., JL + P2"'" JL + Pk' so that 

0 0 0 
0 0 0 

1 0 0 0 
1 1 0 0 

X= 1 0 0 (6.24) 
0 1 0 

o 1 o 
o 0 

o o 1 

6.3.1 Inference about fJ 

By straightforward generalization of statistics used before, the basic 
set of statistics used in inference about fJ is 

n 

A,(Y,fJ)= L X,j(Yj -PI X lj-",-Pk-1 Xk-lj) 
j= 1 

r = 1,2, ... , k - 1 (6.25) 
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In this representation we shall assume that, for every r = 1,2, ... , 
k - 1, IJ= 1 Xrj = O. This means that, in the example (6.24) the x-ori­
gins are shifted such that in the second column every 0 is replaced by 
- n2/n and every 1 by 1 - n2/n, and so on. 

Under the model according to which the Yi are identically and 
independently distributed except for location, all permutations of the 
realized DiP) = Yj - PI X1j - ... - Pk- 1 Xk- j,j = 1,2, ... , n, are equal­
ly probable. On this basis it is in theory a simple matter to 
tabulate the joint conditional distribution of the A statistics. Equal­
ly, it is straightforward to tabulate the joint distribution of statistics 
generated by transformation of the Dj values. 

The expectation of every Ar is 0 since we take IXrj = 0 for every r. 
The covariance matrix of AI' A 2 , •• ·, Ak- 1 is given by 

var(Ar) = (T2(n: 1) jt1 X;j 

cov (Ar, As) = (T2 ( : 1).± x rj xsj 
n J=l 

where (T2 = (lin) j t (dj - (1)2, a = (~)Idj' These formulae are ob­

vious generalizations of (6.3). 
The inferential problems noted in connection with PI and P 2 in the 

case of plane regression arise here also. Thus it is generally impossible 
to make exact inferences about individual P's while the others act as 
nuisance parameters, at least with the permutational scheme being 
discussed here. 

An exact test of a joint hypothesis about PI' P2' ... ,Pk _ 1 can be 
made through the statistic 

QA = A'C- 1A 

where A' = (A 1, A 2 , ••• ,Ak _ 1) and C is the covariance matrix of the 
A's. 

When it is impractical to tabulate the exact distribution of QA' we 
may note that E(QA) = k - 1 and under suitable conditions on X and 
the D j values the distribution of QA will be approximately X~ - 1 . 

Transformations of the Dj values in the manner of Section 6.2 
produce various statistics that are obvious generalizations of rank 
and other statistics discussed earlier. For example, let 

n 

Rr(Y, p) = I Xrj Rank (Yj - PIX 1j - ... - Pk - 1 Xk - 1), 
j= 1 

r = 1,2, ... , k - 1 
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Then, using the results for Ar we can write down var (Rr ), COy (Rr , R.) 
simply by replacing 0'2 by (n2 - 1)/12. 

Example 6.16 The following data relate to trials on percentage 
elongation of an alloy (Y) and its dependence on the percentages 
X l' X 2' X 3' X 4 , X 5 of five elements. There were 24 trials ('melts'); the 
data are from Burr (1974). The y-values are arranged in decreasing 
order of magnitude and ranks are assigned 24,23, ... , 1, ties being 
broken arbitrarily as indicated by the tabulation 

y Xl X2 X3 X4 Xs Y Xl X2 X3 X4 Xs 

11.3 0.50 1.3 0.4 3.4 0.010 5.8 0.33 2.6 0.6 4.7 0.008 
10.0 0.47 1.2 0.3 3.6 0.012 5.5 0.51 3.9 0.9 4.4 0.000 
9.8 0.48 3.1 0.7 4.3 0.000 5.5 0.54 3.1 0.7 4.2 0.000 
8.8 0.54 2.6 0.7 4.0 0.022 4.7 0.48 4.0 1.1 3.7 0.024 
7.8 0.45 2.8 0.7 4.2 0.000 4.1 0.38 3.3 0.8 4.1 0.000 
7.4 0.41 3.2 0.7 4.7 0.000 4.1 0.39 3.2 0.7 4.6 0.016 
6.7 0.62 3.0 0.6 4.7 0.026 3.9 0.60 2.9 0.7 4.3 0.025 
6.3 0.53 4.1 0.9 4.6 0.Q35 3.5 0.54 3.2 0.7 4.9 0.022 
6.3 0.57 3.7 0.8 4.6 Q.ooo 3.1 0.33 2.9 2.9 1.0 0.063 
6.3 0.67 2.7 0.6 4.8 0.013 1.6 0.40 3.2 3.2 1.0 0.059 
6.0 0.54 3.1 0.7 4.2 0.000 1.1 0.64 2.5 0.7 3.8 0.018 
6.0 0.42 3.1 0.7 4.4 0.000 0.6 0.34 5.0 1.3 3.9 0.044 

Standardizing the x variables the covariance matrix of R l' ... , Rs 
becomes 50 C *, where C * is the matrix of correlation coefficients 
among X l 'X2 ' ... ,XS , that is, 

[ 

1.00000 - 0.17600 
- 0.17600 1.00000 

C * = - 0.42456 0.26356 
0.38712 0.13389 

- 0.21924 0.20448 

[ 

35.1313~ -78.7200 
and R' = - 87.3511 

54.1576 
- 84.2784 

-0.42456 
0.26356 
1.00000 

-0.87641 
0.70877 

0.38712 021924J 
0.13389 - 0:20448 

- 0.87641 0.78077 
1.00000 - 0.70099 

- 0.70099 1.00000 
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Also 

0.3522 
2.9125 
4.4464 

0.3522 
C; 1 = 0.1962 

- 0.6687 

[ 

1.3152 

- 4.6262 
- 0.4056 - 0.2896 

- 0.6906 
- 54.6376 

C; 1 R' = - 52.5560 
-13.5852 
- 41.7494 

0.1962 
-4.4464 
12.8466 
10.6459 

- 1.6153 

From these results we obtain 

QR = 9.71 

-0.6687 
- 4.6262 
10.6459 
11.6381 
0.6771 

-0.4
0561 -0.2896 

- 1.6153 
0.6771 
2.7061 

which we can treat approximately as an observation on a X; random 
variable on the null hypothesis, Ho, of no association. 

Regarding restricted randomization and exact inference about 
individual Pj values, it is clear that, by this device, exact inference 
about PI will be possible only if we have multiple Xl values 
corresponding to at least one of the (X2' X 3 ,···, X k -1) points. 

6.4 One-way analysis of variance 

Although the one-way analysis of variance can be treated as a 
particular case of the general linear model, it is a technique of such 
practical importance as to deserve special attention. Historically it 
predates the now well-known general linear approach and its special 
terminology is useful and very well known. 

We consider generalization ofthe two-sample location problem to 
one of k ~ 3 groups of observations from populations that differ only 
in location. The jth observation from the ith group is denoted Yij' with 
j = 1,2, ... , ni , i = 1,2, ... , k. The mean of the ith group is Yu the 
overall mean Y .. ' IJ=l nj=N. 

The commonly used measure of divergence between the groups is 
the 'between groups sum of squared differences', 

k 

B = L n)Yi. - yj 
j= 1 

and we recall the identity 
k ni k Hi 

L I (Ylj - yj = L L (Yij - yj + B 
k=lj=l i=lj=l 
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in words, 
'Total SSD' = 'Within groups SSD' + 'Between groups SSD' 

abbreviated 

T=W+B 

6.4.1 The basic randomization test 

Consider the null hypothesis under which the k populations are 
identical. Then, conditioning on the observed set of y values, the 
particular partition into k groups of size n l' n2 , ••• , nk can be regarded 
as one selected at random from all such partitions. Tabulation of the 
null distribution of B under this permutation scheme is straightfor­
ward. Under this scheme T is fixed, hence it is actually immaterial 
whether we use B or W as a test statistic. 

Example 6.17 

Group Yij 

1 5.04, 4.30, 4.90 

2 6.49, 5.20 

3 5.38, 3.99 

In this example the observed value of B = 1.8062. There are 
7 !/(3! 2! 2!) = 210 possible partitions, the 10 partitions giving the 
largest values of B being as follows: 

Partitions of the seven observations B 

5.20 5.04 4.90 6.49 5.38 4.30 3.99 3.2042 
5.20 5.04 4.90 4.30 3.99 6.49 5.38 3.2042 
5.38 5.04 4.90 6.49 5.20 4.30 3.99 2.9114 
5.38 5.04 4.90 4.30 3.99 6.49 5.20 2.9114 
6.49 5.38 5.20 5.04 4.90 4.30 3.99 2.8793 
6.49 5.38 5.20 4.30 3.99 5.04 4.90 2.8793 
3.99 4.30 4.90 5.04 5.20 5.38 6.49 2.8564 
3.99 4.30 4.90 5.38 6.49 5.04 5.20 2.8564 
5.38 5.20 4.90 6.49 5.04 4.39 3.99 2.6964 
5.38 5.20 4.90 4.30 3.99 6.49 5.04 2.6964 

Therefore Pr(observed B?; 1.8062) > 10/210 under the null hy­
pothesis H 0 that the three samples are from identical populations. At 
the 4.8% level we accept H o. 
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The listing of possible B values illustrated in Example 6.l7 is 
impractical for moderately large sample sizes and we have to look to 
approximation of the distribution of B. Under permutation, 

k n. T (N - n.) ( T ) E(B) = L ~- ~ = (k - I)--=-
i=1 niN N 1 N 1 

Putting B* = (N ; 1 )B, we have a statistic whose exact conditional 

null distribution has expectation (k - 1). 
Arguing by analogy to the one-way analysis of variance in the case 

where the Yij are normally distributed with variance (f2, it can be seen 
that, under reasonable conditions on the Y ij , the permutation 
distribution of B* will be approximately X~ - 1 • 

We note that B* is a quadratic form in the random variables 
Yi. - Y .. , i = 1,2, ... , k, and under permutation 

var(Y - Y)=- __ I =---- 1---'-T (N - n.) T 1 ( n.) 
I. .. N ni N - 1 (N - 1) ni N 

cov(Yi . - Y .. , Yj . - YJ= - (N ~ 1)(~) 
In the usual normal case, 

var (Y - Y ) = - 1 ---'-(f2( n.) 
I. .. ni N 

cov(Yi. - Y .. , Yj . - YJ= - (f2jN 

hence the covariance structure of the random variables Yi . - Y .. is 
identical under the two schemes. Therefore, if the joint distribution of 
the Yi. - Y .. is approximately normal under permutation, the distri­
bution of B* is approximately X~ _ l' The question of approximate 
normality is the subject of an extension of Theorem 1.8.3. 

6.4.2 Rank test (Kruskal- Wallis) 

A rank test of the null hypothesis considered in Section 6.4.1 can be 
made simply by replacing every Yij by its rank. In this special case B* 
is denoted B';. and we can express it as 

12 ,,2 
B';. = N(N + 1) L.,R)nj - 3(N + 1) 

where R j is the sum of the ranks in the jth group. 
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The conditions for asymptotic Xl distribution of B* apply and with 
moderately large nj values it is common to use the Xl approximation 
for the distribution of Bk. For selected small values of k and the group 
sizes it is, of course, possible to tabulate the exact distribution of B*; 
see, for example, Lehmann (1975, Table I). 

Example 6.18 Ranking the observations in Example 6.17, we find 
Rl = 9, Rz = 12, R3 = 7, giving observed B1{ = 2.47. Enumeration of 
the partitions of the observations, as in Example 6.17, shows 
quite quickly that Pr(B1{ ~ 2.47) > 0.10; according to the Xl approxi­
mation it is close to 0.5. 

6.4.3 Sign test: 2 x k contingency test 

Replacing Yij by sgn (Yij - y), where y is the median of all the Y results, 
and writing Sj for the sum ofthe transformed values in thejth group 
we note that T= N, and Sl + Sl + ... + Sk = Oif N is even, so that the 
statistic B* becomes 

B~=(~) ± Sf 
N j= 1 

Having transformed the data they can be summarized in a 2 x k 
contingency table with column totals nj and both row totals N /2. A 
simple calculation shows that {N /(N - 1)} B~ equals the usual X~ - 1 

test statistic. Minor changes are required if N is odd. 

6.S Two-way analysis of variance 

Consider a b x t array of observations Yij' i = 1,2, ... , b,j = 1,2, ... , t, 
where typically the results in the same row belong to the same block 
and the t results within a row are obtained with different treatments. 
The null hypothesis under test is that there are no differences between 
treatments. 

6.5.1 The basic randomization test 

Under the null hypothesis, permutations of the realized observations 
within the rows are equally likely. A conditional test of the null 
hypothesis can therefore be developed by considering the null 
distribution of a suitable statistic under the restricted randomization 
scheme where permutations within rows are allowed. 
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The treatments sum of squared differences, that is, the between­
column sum of squared differences, is commonly used as test statistic. 
It is defined like B in the one-way analysis of variance; the expression 
is slightly simpler since each group size is b, thus 

t 

B = b I (Y.j - YY 
j= 1 

where Y.j is the mean of the jth column and Y .. is the overall mean. 
Let C = I~= 1 IJ= 1 (Yij - YiY Then, under randomization, 

E(B) = Clb 

In order to exploit the analogy with the usual two-way analysis of 
variance we use the statistic 

B* = bB(t - l)/C 

which has expectation t - 1 and whose distribution can be approxi­
mated by a X~ _ 1 distribution under suitable conditions. 

6.5.2 Rank test (Friedman) 

Transforming the results within each row to their ranks, 1,2, ... , t, and 
applying the basic permutation argument to these ranks, the statistic 
B* becomes 

12 t 

Bk = b( 1 I RJ - 3b(t + 1) t+ )j=l 

where R j is the sum of ranks in the jth column. 
The exact distribution of Bk can be tabulated and tables exist 

for selected values of band t; see, for example, Owen (1962). The 
conditions for applicability of the X~- 1 approximation hold for Bk 
and it can be used for band t values not covered by the tables. 

6.5.3 Sign test 

Let Yi be the median of the t observations Yil'Yi2' ... 'Yit in the ith 
row and put Sij = sgn (Yij - y;), S.j = S Jj + S2j + ... + Sbj. Replacing 
every Yij by its corresponding Sij, the test statistic becomes 

I 

B~=K I S~ 
j= 1 

where K = (t - l)/(bt) or lib according as t is even or odd. 
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The exact distribution of Bt can be tabulated for moderately small 
band t; for larger band t the distribution is approximately X; _ l' The 
special case t = 2 may be noted as it is the well-known paired two­
sample sign test; it is also identical to the rank test when t = 2. 

Example 6.19 The following table gives a set of results typical of a 
randomized block experiment. The within-row rank and sign trans­
formed values are also given in each cell, thus: observation, rank, sign. 

Treatments (t = 4) 

T1 T2 T3 T4 

Blocks B1 2.2,3, + 1 3.4,4, + 1 1.7, 1, - 1 1.9,2, - 1 

(b = 3) Bz 4.6,4, + 1 3.7, 3, + 1 2.8,2, -1 2.7, 1, -1 

B3 1.5, 1, - 1 2.7,4, + 1 1.9,2, -1 2.0,3, + 1 

The values ofthe three statistics discussed in Sections 6.5.1, 6.5.2, 6.5.3 
are as follows 

B* = 4.72 

B"k =4.20 

Bt = 5.00 

It should be noted that if tied ranks occur the computations for Bk 
can be done according to the method for B*. Although formulae for 
B"k can be written down they are not really necessary. 

6.5.4 Aligned ranks and other scoring systems 

The transformations indicated in Sections 6.5.2 and 6.5.3 may be 
regarded as two systems of converting the original observations to 
'scores' before performing the randomization test. Many others have 
been used, an interesting class of scoring systems being that in which a 
transformation is not made within rows separately, but overall, after 
eliminating block effects. For example, we may first calculate row 
(block) averages and then subtract them from the values within the 
block. This process is also called 'aligning'. After aligning, the entire 
set of adjusted observations is ranked 1,2,3, ... , N, with N = bt. The 
analysis then proceeds as before, but note that we still consider only 
within-row permutations. 
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As indicated in Lehmann (1975, p. 270), there may be some 
advantage in ranking after aligning; this is very clear for t = 2. The 
statistic B* is unchanged by aligning according to row means, thus 
making any real gains with moderately large values of t problemati­
cal. There is also a question ofthe method to be used for aligning. For 
example, the median could be used instead of the mean. Finally, ifthe 
results within a row are affected by random errors, apart from 
random effects due to the allocation of treatments to plots, aligning 
does not necessarily lead to exact test procedures. 

EXERCISES 

6.1 The data in the table below are observations taken at the value 
(Xl' x 2 ) of a 'dependent variable' according to the plane re­
gression model of Section 6.2. 

X 2 

-2 -1 0 2 

-2 3.5 2.8 8.8 10.8 11.6 
-1 6.7 7.2 8.3 lOA 13.1 

Xl 0 5.7 7.0 lOA 11.0 13.6 
1 5.5 6.9 10.1 11.1 17.6 
2 8.2 . 8.3 13.9 12.0 14.8 

Using a rank method test the null hypothesis H 0: fJ 1 = 1, 
fJ2 = 2 against Hi: not H 0 at the 10% level of significance. 

6.2 Using the data in Exercise 6.1 obtain exact 100y% confidence 
intervals for each of fJ 1 and fJ2 with y ~ 0.9 based on sign statistics. 

6.3 Consider an (X l ,X2 ) array as in Exercise 6.1 with both Xl andx2 

having values - k, - k + 1, ... , - 1,0,1,2, ... , k - 1, k, and sup­
pose that the distribution of the Y-residuals, F, is a mixture of two 
normal distributions N(O, 1), N(O, 4) in proportions 0.8 and 0.2. 

Obtain large k values ofthe variances ofthe estimates of fJl and 
f32 based on the sign statistics used in Exercise 6.2. Compare these 
variances with those of the least squares estimates of f31 and f32' 

6.4 In the one-way analysis of variance with k = 3 groups let 
n, 

A j= L Yij-njy .. , i= 1,2,3. 
j= 1 

Using results given in Section 6.4, or otherwise, obtain the 
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covariance matrix under permutation of A I and A 2, and denote it 
by V. 

Show that Q = (AI' A2 )V- I (A1' A2 ) is identical to B*. 
6.5 In Exercise 6.4, let Ri = 'Iii; I Rank (Yi) as in the definition of the 

Kruskal- Wallis test, and let QR denote the statistic analogous to 
Q based on RI and R 2 • Write 

n, 

A i(t l ,t2 )= 'I (Yij-tJ-niy .. (tI,t 2 ),i= 1,2 
j; I 

where yjt I' t2 ) denotes the mean of the 'adjusted' values 
(YII -td···,(Y21 -t2),···Y3I'···Y3n3' and define R i(tI,t2) simi­
larly. 

Obtain expressions for the efficacies of the statistics Q and QR 
using the definition in Section 1.7.3, Chapter 1, and find the ratio 
of the squared efficacies. Compare the result with the analogous 
result for the two sample case. 

6.6 Parabola regression of the form 'y = ex + PI x + P2X2' can be 
considered as a special case of plane regression with Xli = Xi' 

X 2i = xf, where Xli and X 2i are the variables used in Sec­
tion 6.2. 

The data below can be treated as relating to an experiment on a 
quantitative factor whose level is x, the three values of X used in 
the experiment being 0, 1, 2. At each value of X four independent 
y-observations are made. 

x 
0 2 

8.13 13.81 21.80 
9.49 12.65 20.20 
9.78 13.20 19.98 

13.28 12.49 19.58 

Calculate the value ofthe appropriate quadratic form based on 
ranks for testing Ho: P1 = 1, P2 = 2, and state your conclusion. 

6.7 Use the data in Exercise 6.6, assume P1 = 1 and obtain a 
confidence interval for P2 with confidence coefficient appro­
ximately 0.95. 

6.8 The following data from Burr (1974) p. 369 are measurements of 
diameter of pieces of 4 inch stock machined on a lathe. 
Measurements were made at five positions on each piece, and are 
recorded as (diameter - 3.96) x 104 . 
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Position 

Piece 2 3 4 5 

1 72 71 73 70 68 
4 76 72 70 71 70 
7 76 73 72 72 72 

10 75 75 73 73 73 

Interpreting 'pieces' as blocks and 'positions' as treatments, 
perform a Friedman rank test of significance of position. 

6.9 Assuming the positions in Exercise 6.8 to be equally spaced a plot 
of the data suggests that there may be a linear trend within each 
block. Using the method of Section 6.2.4, obtain a point estimate 
of the slope parameter of this trend, assuming it to be common to 
the four blocks. 



CHAPTER 7 

Bivariate problems 

7.1 Introduction 

Two types of question arising naturally in connection with bivariate 
distributions are those of association and of location; although 
problems of dispersion were discussed briefly in the univariate case we 
shall ignore them in this chapter. In certain fields of application, like 
psychology, tests and measures of association are often used, and the 
first part of this chapter will be devoted to some of the well-known 
relevant methods. In the later part we shall look at some questions of 
location. Multivariate statistics are more difficult to interpret than 
univariate statistics, and so we restrict attention to the bivariate case, 
although similar methods can be applied to higher-dimensional 
random variables. 

7.2 Tests of correlation 

7.2.1 Conditional permutation tests: the product moment 
correlation coefficient 

We have a sample (Xi' yJ, i = 1,2, ... , n, of n independent observations 
on the bivariate random variable (X, Y). In many applications the 
question of possible independence of X and Y is considered and 
statistics related to the correlation coefficient are often used in this 
connection. Technically a test of zero correlation is not, of course, a 
test of independence, but where such a test is used the primary 
concern is often to establish dependence, rather than independence. 

The basis of the tests that we shall discuss is that if X and Y and 
independent and the observed Xi values are arranged in order of 
magnitude, then the corresponding sequence of Yi values should 
behave like a random sequence. Consequently the tests of random­
ness mentioned in connection with inference about the slope in 
straight-line regression are applicable here, if we condition on the set 
of observed Xi values. 
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The basic statistic considered in straight-line regression, with slope 
/3=0 is of the form T=L;xiYi. Keeping Xl'X2' ... 'Xn fixed and 
considering permutations of the Yi values we have seen, in Chapter 5, 
that the permutation distribution of T can be tabulated quite easily 
for small n and that 

E(T) = nxy 

with the distribution approaching normality as n increases, under 
suitable conditions on the Xi and Yi sequences. 

In the present context the sample correlation coefficient R, which is 
a linear function of T is often used; in our present notation, 

R= T-nxy 
{var(T)}1/2J(n -1) 

so that we have for the permutation distribution of R, 

E(R) = 0, var(R) = 1j(n - 1) 

The expression for R is symmetric in the Xi and Yi; if the 
conditioning used above is on fixed Yi instead of Xi values the result is 
exactly as before. 

7.2.2 Spearman rank correlation 

Ifwe transform the Xi values and the Yi values to their respective ranks 
and then calculate R as above, we obtain the Spearman rank 
correlation coefficient. Its distribution under the hypothesis of 
independence of X and Y can be tabulated according to the same 
principle used in Section 7.2.1. Owing to the transformation to ranks, 
this null distribution is the same for every sample of the same size, its 
tabulation is relatively easy, and can be done once and for all; tables 
of the nun distribution of the Spearman rank correlation coefficient 
can be found in many books on non-parametric statistics. 

Example 7.1 

Xi: 7.6 2.3 6.5 

Yi: 6.3 3.8 6.6 Rank (yJ : 2 3 
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R _ 13 - (6 x 6)/3 _ ~ 
s- {(14-12)(14-12)}1/2j2-2 

In this example the null distribution of Rs can be obtained by listing 
the 6 permutations of the Yi ranks against the fixed ranks 1,2,3 of Xi 
val ues, and we find 

Pr(Rs = 1) = Pr(Rs = - 1) = 1/6, Pr(Rs =!) = Pr(Rs = -!) = 2/6. 

After the rank transformations the numerator of Rs is 

I Rank (xJ Rank (Yi) - n(n + 1)2/4 

while the denominator is n(n2 - 1)/12. Putting Di = Rank (Xi)­
Rank (yJ, we see that 

IDt = n(n + 1)(2n + 1)/3 - 2I Rank (xJ Rank (Yi) 
and 

Rs = 1- 6LDt/{n(n2 -I)}, 

an often-used expression. 
From Section 7.2.1 we have immediately that, in the null case, 

E(Rs) = 0, var(Rs) = l/(n -1) 

and a normal approximation can be used for the distribution of Rs for 
large n. 

When the hypothesis of independence of X and Y is rejected, the 
value of Rs is often used as a measure of the strength of the 
association between X and Y. Here we do not have the useful 
interpretation of the ordinary correlation coefficient, for homoscedas­
tic regression, relating the marginal and conditional variables of Y. 
However, if the plot of y ranks against X ranks reveals a linear trend, 
we do have approximately 

Mean {Rank(Y)1 Rank (X) = x} = Rs{x - (n + 1)/2} + (n + 1)/2 

s.d. {Rank (Y)I Rank (X) = x} = {(1- R~)(n2 - 1)/12}1/2 

which may give a fairly useful prediction of a Y-rank from an 
observed X -rank. 

7.2.3 Sign transformations: 2 x 2 contingency tables 

Instead of transforming Xi and Yi values to their ranks before 
calculating the correlation coefficient, we may make the sign transfor­
mations sgn (Xi - x), sgn (Yi - y), where x and yare the respective 
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sample medians. The results can then be summarized in a 2 x 2 table 
as follows, if n is even. 

sgn(X -x) 

-1 +1 

-1 a b n/2 
sgn(Y- y) 

+1 c d n/2 

n/2 n/2 n 

The correlation coefficient can then be expressed as 

Rc = (a + d - b - c)/n 

and simple calculations confirm that Rc J(n - l)is the norrnaldeviate 
that arises in the exact (Fisher) test for association in a 2 x 2 
contingency table when a normal approximation is used for the 
relevant hypergeometric distribution. 

7.2.4 Kendall's 1" and Theil's statistic 

Suppose that we have arranged the x values in increasing order of 
magnitude so that Xl < X 2 ••• < X n • Then Theil's statistic for testing 
randomness of the Y sequence is 

T= L sgn(Yj- y;) 
i<j 

(see also Section 5.2.6). The Kendall rank correlation coefficient is 

1" = 2T/{n(n -I)} 

Details of the tabulation of the null distribution of T are given in 
in Chapter 5, where it is also shown that it has E(T) = 0, var(T) = 
n(n - 1)(2n + 5)/18, and is asymptotically normally distributed. 
Thus 

E(1") = 0, var(1") = 8(2n + 5)/{9n(n - I)} 

An interesting interpretation of Kendall's 1" statistic is that the 
proportion of (Xi' Yi)' (X j' Yj) pairs in which the Y order is the same as 
the X order is (1 + 1")/2. 

7.2.5 Mean square successive difference test 

Correlation tests are known to be insensitive to certain departures 
from independence; hence it is worth while considering some other 
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tests. One of these is an adaptation of the test of trend based on the 
mean square successive difference. The idea of the test is that 
dependence between X and Y may be indicated by the conditional 
variance of Y given X being, on average, substantially smaller than 
the marginal variance of Y. Therefore, if the observed X values are 
fixed in increasing order the mean square successive difference of the 
Y sequence would be relatively low, if the dependence takes the form 
that the conditional expectation of Y given X follows a smooth trend 
in X. 

Tabulation of the conditional distribution of the statistic 
n-l 

M = L (Yi + I - YY 
i = I 

where we take Xl < X 2 ••• < x n' is straightforward and requires only 
listing of all permutations of the Y values. The first and second 
moments of M can be expressed in terms of 

where y = L? = I Ydn 
We have 

n 

J1., = L (Yi - y)'/n, r = 2,4 
i= I 

E(M) = 2nJ1.2 

while for n large the expression for E(M2) simplifies to 

E(M2) ~ 3nJ1.4 + 7n2J1.~ 

and these quantities can be used in an approximate test of inde­
pendence of X and Y. 

One of the less attractive features of the test based on M is that the 
statistic is not symmetric in the X and Y observations. 

7.2.6 Contingency tables, correlation ratios 

When n items are cross-classified in an r x c array according to two 
criteria A and B, the table of frequencies is usually called an r x c 
contingency table. The usual X2 test of significance associated with 
contingency tables can be interpreted as a test of independence ofthe 
classifying mechanisms A and B. 

If the classifications A and B are qualitative the type of analysis that 
usually accompanies contingency tables seems quite satisfactory. 
However, if A and B actually correspond to random variables X and 
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Y for which some form of grouping has been chosen so that the 
contingency table is a bivariate frequency distribution of X ami Y, 
then the contingency table analysis seems somewhat less satisfactory, 
since it depends on an arbitrary grouping, and takes no account of the 
orderings of A and B. 

The correlation ratios (Kendall and Stuart, 1961, VII, p. 296) which 
are developed from a partitioning of the Y-sum of squared differences, 
in the manner of the analysis of variance, can also be used to test 
independence. For data on continuous X and Y grouped into a 
bivariate frequency table, the null distributions of these coefficients, 
under permutation, can be obtained by conditioning on the approp­
riate marginal totals. These coefficients are not symmetric in the x and 
Y values and depend on the grouping employed for the bivariate 
frequency tables. 

7.3 One-sample location 

7.3.1 Medians 

We now suppose that a random sample (Xi' Yi)' i = 1,2, ... , n, has been 
drawn from the continuous bivariate distribution of (X, Y). We shall 
denote the median of X by Ox and that of Y by Oy. Further, let 
Pr(X> Ox, Y> 0,) = 'ltll . Then 

Pr(X ~ Ox, Y > Oy) = 1/2 - 'ltll = Pr(X > Ox, Y~ Oy), and 
Pr(X ~ Ox, Y~ Oy) = 'lt11 . The symmetries 
Pr(X> Ox, Y> Oy) = Pr(X ~ Ox, Y~ Oy) and 
Pr(X> Ox, Y~ Oy) = Pr(X ~ Ox, Y> Oy), conversely, imply that 
Ox and Oy are the respective medians. 

Testing a specified (Ox, Oy) 
The symmetry noted above can be exploited to develop an exact test 
of a hypothesis specifying two values (O~, 0;). Suppose that in the 
observed sample, 

no~ = =#= (Xi ~ o~, Yi ~ 0;), no 1 = =#= (Xi ~ O~, Yi > 0;), 
nlO = =#= (Xi > O~, Y ~ 0;), nll = =#= (Xi > O~, Yi > 0;) 

If we now condition on both no~ + nil, and n 1 0 + no 1 being fixed at 
the observed values, then no~ and n10 are, conditionally, distributed 
Bin(noo + nil, 1/2) and Bin(n1o + not, 1/2), and they are indepen-
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dent. As a test statistic we may use 

(see also Section 1.7.3 for similar statistics in general). The expression 
for Q can be written more simply as Q = (noo - nll )2/(noo + nll ) + 
(n lO -nOl )2/(nlO +nOl )' but in the first form it is easier to see that 
the appropriate continuity correction when using normal and X2 

approximations is to replace Inoo-(noo+nll)/21 by Inoo­
(noo + nll )/21- 1/2, the other numerator being treated similarly. 

Since we know that the binomial (n,1) distribution can be 
approximated by a normal distribution for moderately large n, we 
shall be able to approximate the distribution of Q by a X~ distribution. 
Tabulation of the exact distribution of Q is straightforward but since 
the normal approximation to Bin(n, 1) is good for quite small values 
of n, the approximation by X~ should be adequate for most 
applications. 

Example 7.2 Suppose that a sample of n = 200 (x, y) pairs with given 
values of 8~, 8~yields 

noo = 71, nll = 69, nOl = 40, nlO = 20 

Then applying continuity corrections, 

Q = (140 - 201-:- 1)2/60 + (171-691- 1)2/140 = 6.03 

Referring this Q to X~, we reject the hypothesized (8~, 8~) at the 2.5% 
level. 

If the two median values were tested individually, both would be 
accepted at the 10% level. The frequencies given above indicate that 
there is strong dependence between X and Y, and the results of the 
significance tests illustrate the well-known fact that multivariate tests 
are more sensitive than univariate tests under suitable conditions. 

Confidence regions for (8x , 8y) 

Ajoint confidence region for (8x ' 8y ) can be set by using Q and taking a 
trial point (8x , 8) to belong to the confidence region if the correspond­
ing value of Q is less than an appropriately chosen constant. The 
following example illustrates the procedure. 
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Example 7.3 The n = 30 pairs of (x, y) observations listed below were 
generated from a bivariate normal distribution with correlation 
coefficient O.S. 

x Y x Y Xl Yl 

0.448 -0.435 -0.688 -0.668 - 0.173 - 0.622 
-0.062 - 0.831 -0.199 -1.029 -0.644 -1.282 

0.241 0.313 - 0.428 0.093 - 0.587 -0.372 
- 2.181 - 2.495 - 2.318 - 2.707 -1.541 -0.201 
- 0.456 -0.500 -0.077 - 0.108 -1.256 0.169 

1.262 1.395 -0.987 -1.702 0.542 1.012 
0.385 - 0.215 -0.110 - 0.227 - 0.788 -0.978 
0.207 0.585 - 2.523 - 2.515 1.219 0.482 

-1.185 -1.028 0.514 0.773 -0.276 - 0.819 
- 1.320 - 0.746 -0.363 -1.014 -0.213 0.103 

The data points are shown in Fig. 7.1. We illustrate determination 
of a confidence region by considering two (ex, ey ) trial values 

ex = - 0.2, ey = - 0.6: noo = 11, n OI = 7, nil = 9, n lO = 3 

Q =0.95 

ex = - 0.4, By = - 0.9: noo = 7, n OI = 7, nil = 14, n lO = 2 

Q = 3.49 

Both Q values are calculated with a correction for continuity. With 
X~(O.SO) = 3.22, the first of the two points belongs to the 80% 
confidence region and the second does not. Proceeding with similar 
calculations, it is an easy task to obtain an outline of the joint SO% 
confidence region for (ex, By); the shaded area in Fig. 7.1 shows such a 
region in approximate outline. To construct a confidence region note 
that as ex and ey vary, the value of Q changes only when ex passes 
through one of the observed x values, and when ey passes through one 
of the observed y values. 

The ellipse sketched in Fig. 7.1 is an SO% confidence region for 
(ex, ey ) based on normal theory; the reason for choosing confidence 
coefficient SO% is that tangents to the ellipse drawn parallel to the axis 
give two-sided 93% confidence limits (by interpolation in F- and t­
tables) for the individual ex and ey ; this confidence coefficient is close to 
those used conventionally. In the case of the distribution-free limits, 
tangents drawn to the confidence contour also give confidence limits 
with coefficient greater than SO%, but the exact relation is not known. 
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2 

However, it will be seen that the tangents to the 80% distribution-free 
confidence region are close to the individual two-sided 93% confidence 
limits. 

Point estimation 
Let N oo(tx, ty) = * (Xi ~ tx' Yi ~ ty), etc., in a notation corresponding 
to that used above. Since E{Noo((}x,(}y)-N ll ((}x(}y)}=O and 
E {N 1 o ((}x, (}y) - N 01 ((}x(}y)} = 0, we estimate (}x and (}y by solving the 
equations in tx and ty: 

N oo(tx, ty) - N 11 (tx, ty) = 0 

N lO(tx' ty) - N 01 (tx , t) = 0 

As we have indicated in the introduction to this section, these 
equations are equivalent to 

N OO (t 1,t2) + N 01 (tl,t 2) = No.(tx,ty) = nl2 

N OO(tl' t2) + N 10(t1 ,t2) = N.o(tx, ty) = nl2 

Since No. (tx, ty) does not depend on ty, and N.o(tx,t) not on tx' the 
relevant solutions are just the two-sample medians. 

Using well-known results about the multinomial distribution, we 
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wherefx(x) is the density of X, with a similar result for N.o(tx, ty). 
Using these results and writing fw for fw(8w), w = x,y, the large­
sample approximate covariance matrix of the point estimates of 8x 

and 8y is 

( 1 )[1/!; 
4n (4noo - 1)/ fJy 

Efficacy 
According to the definition of efficacy in the two-parameter case, we 
have for the bivariate median test 

(Efficacy)2 = n(fJy) V- 1 (fx,f/ 

= 4{f~ + f; + 2fJy(1 - 4noo )}/{l- (4noo _1)2} 

Example 7.4 Suppose that the joint distributions of X and Y is 
normal with E(X) = E(Y) = 0, var(X) = var( Y) = 1 and correlation 
coefficient p. Then writing Pm = 4noo - 1 we have Pm = (2/n) sin (p) 
and the efficacy of the median test is expressed as 

{efficacy (median)}2 = (2/n)/ {2/(1 + Pm)} 

For the test based on the sample means 

{efficacy (mean)}2 = 2/(1 + p) 

glVlng 

{efficacy (median)/efficacy (mean)} 2 = (2/n)(1 + p)j(1 + Pm) 

(see also Puri and Sen (1971), p. 175). 

7.3.2 Symmetric distributions 

Denoting the joint density of X and Y by F(x, y), we now take the 
distribution of (X, Y) to be symmetric about (()x' 8y ) in the sense that 

F(8x + ~,By + II) = F(8x - ~,8y -II) 
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~------------------------+x ex 
Figure 7.2 

Referring to Fig. 7.2, this means that at points A and At the densities 
are identical, and similarly for Band B'. It will be noted that the 
bivariate normal distribution is symmetric in this sense. 

With the symmetry that we have assumed, the basic permutation 
argument that we shall use to make inferences about (Ox, Oy) rests on 
the following conditioning: Let the jth observational pair be (x j , Y) 
and put ~j = Xj - Ox, '1j = Yj - Oy. We now consider all sets of possible 
observations such that the jth observational pair is 

(Ox + ~j' Oy + '1) or (Ox - ~j' Oy - '1) 

with equal probability. Fixing attention on the x values only, the 
conditioning is seen to be the same as that used in the univariate case, 
namely on the IXj - 0xl values being fixed; however, in the bivariate 
case the observed signs of ~j and '1j have to be noted. 

To simplify notation, suppose for the moment that (Ox, Oy) = (0, O). 
Adjustment for (Ox, Oy) + (O,O) is straightforward. We shall be using 
the conditional distributions of statistics generated by taking the 2n 

sets of observations 

±(x1,yd, ±(X1'Yl},···, ±(xn,Yn) 
as having equal probabilities. Conditionally, therefore, we shall be 
dealing with n independent random variables (X;, Y;), where 

Pr(X; = x;, Y; = y;) = Pr(X; = - X;, Y; = - Y;) = 1/2, i = 11 2, ... , n 

Among the statistics that we shall consider is (X., Y) = (LX;, L Y;). 
Under the permutation scheme E(X) = E(Y) = 0, and 

var(X) = Lxf, var(Y) = Lyf 
with cov(X., Y) = LX;Y; 
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If we assume the distribution of X and Y to be such that () x and () 
- - y 

are the expectations of X and Y, the statistic (X, Y)= (X./n, Y'/n) is a 
natural point estimate of (()x, ()y). Therefore we shall, first, consider 
inference about (()x' ()y) based on the mean statistic (X, Y). 

Testing a hypothesis specifying (()x' ()y) 

Suppose we wish to test (()x' ()y) = (()~, ()~). Following well-established 
tradition we shall take as a measure of distance of (X, Y) from (()~, ()~) 

Q(()~, ()~) = (X - ()~, Y - ()~) V - 1 eX - ()~, Y - ()~)' (7.1) 

where Vis the (conditional) covariance matrix of X, Y, and following 
the argument outlined above, 

n var(X) = DXi - ()~f, n var( V) = DYi - ()~)2, 

ncov(X, V) = I(x i - ()~)(Yi - ()~) (7.2) 

In principle we have to list all 2n possible sets and calculate the 
corresponding values of Q for the observed (Xi' y;) values. 

Example 7.5 Suppose we have the n = 3 pairs 

( - 1.0, + 0.4), ( - 0.1, + 1.5), ( + 0.2, + 0.3) 

and we wish to test H 0: (()x, ()y) = (0.5, 1.0). 

The observed (Xi - ()~, Yi - ()~) values are 

(- 1.5, - 0.6),( - 0.6, + 0.5),( - 0.3, - 0.7) 

giving 

(
2.70 

nV= 0.81 

and the observed Q(0.5, 1.0) = 2.1408. 

0.81) 
1.10 

A list of the 23 = 8 possible sets of observations and their 
corresponding Q values follows: 

Sample values Q 

(- 1.5, -0.6) (- 0.6, +0.5) ( -0.3, -0.7) 2.1408 
(+ 1.5, +0.6) (- 0.6, +0.5) ( -0.3, - 0.7) 0.1898 
(- 1.5, -0.6) (+0.6, - 0.5) (- 0.3, -0.7) 2.9529 
(+ 1.5, +0.6) (+0.6, -0.5) ( -0.3, - 0.7) 2.7164 
(- 1.5, -0.6) (-0.6, +0.5) ( +0.3, +0.7) 2.7164 
(+ 1.5, +0.6) (- 0.6, +0.5) ( +0.3, +0.7) 2.9529 
( - 1.5, -0.6) (+0.6, -0.5) (+ 0.3, +0.7) 0.1898 
( + 1.5, +0.6) ( +0.6, -0.5) ( +0.3, +0.7) 2.1408 
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Thus Pr(observed Q ~ 2.1408) = 6/8, and we accept Ho. In fact, 
with this sample size the smallest significance level at which we could 
reject a null hypothesis is 2/8. 

The permutation distribution of Q(O~, O~) has mean exactly 2. Under 
suitable conditions on the joint distribution of X and Y the distribution 
of Q may be approximated by a X~ distribution for n sufficiently large. 

Confidence regions 
As usual we may determine a confidence region as the set of all 
possible (Ox, Oy) points which are acceptable according to a hypothesis 
test at a fixed level. In an exact procedure this would entail evaluation 
of the exact null distribution of Q for every (Ox, Oy). 

If we approximate the distribution of Q by a X~ distribution an 
approximately 10013% confidence region is obtained as all (Ox,Oy) 
satisfying 

(x - OY~)Yi - ey + (ji - 0y})Xi - ey - 2(x - ex) 

x (ji - Oy)~)Xi - ex)(Yi - ey) ~ 2(13) 
[n)Xi - ey} {l)Yi - ey} - {~)Xi - eJ(Yi - ey)}2J '" X2 

If we use the equality in the expression above and fix 0Y' we produce a 
quadratic equation in ex, so we can compute the confidence region 
fairly easily. 

7.3.3 Symmetric distributions: transformation of observations 

Employing a method of writing that we have first used ill the 
univariate case, we put 

(Xi - ex'Yi - ey) = [sgn(xi - ex)lxi - exl,sgn(Yi - e)IYi - eylJ 

for i = 1,2, ... ,n. Thus, in considering the possible sample values 
produced by the 2n sign combinations applied to these vector 
observations we note that it is only the 'sign' values that are affected. 
In other words, we may regard the conditioning as being on the 
magnitude IXi - exl, IYi - eyl, i = 1,2, ... , n, and also on the positions 
in the observed sequence where sgn(xi - ex) 1- sgn(Yi - ey). 

Now we can see that various test statistics, other than those of 
Section 7.3.2, can be generated by transformations of the magnitudes 
I Xi - ex I, I Yi - e y I, in the style of similar methods discussed in Chapter 
2. The vectors (Xi - ex, Yi - ey) can be thought of as being replaced by 

[sgn (Xi - ex) T(IXi - ex!)' sgn (Yi - ey) T(IYi - Oyl)] 

= [Txi(ex, e), Tyi(ex, ey)J 
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We now consider the statistic 

and its distribution under our permutation scheme. Clearly, the joint 
distribution of Tx. and Ty. can be tabulated quite simply in the same 
way as that of X. and Y. Further, the second-order moments of Tx. 
and Ty. are obtained like those of X. and Y. simply by replacing 
Ix; - exl by T(lx; - ex!)' etc. Thus we find that 

E {Tx.(ex, ey)} = E {Ty.(ex, ey)} = 0 

var {Tx.(ex, ey)} = L {T(lx; - exl)}2 

var {Ty.(ex' ey)} = L {T(ly; - eyl)}2 

cov {Ty.(8x' ey), TyJex' ey)} = LTx;(ex' ey)Ty;(ex, ey) 

this covariance can also be expressed as 

L(T(lx; - 8xI)T(ly; - eyl) - LT(lx; - exI)T(ly; - eyl) 
P Q 

where P denotes the subset of observations where sgn(x; - ex) = 
sgn(y; - 8y ) and Q is its complement. 

For testing a hypothesis specifying a value of (ex, ey) we shall use 
the counterpart of Q defined in (7.1), namely 

QT(ex, ey) = [Tx.(8x, ey), Ty.(ex8y)]Vi l(ex, ey ) 

x [Tx.(exey), TyJex,ey)Y (7.3) 

where V T(8x' ey) is the 2 x 2 covariance matrix of Tx., Ty. with 
elements as given above. We have E{QT(ex,e)} = 2, and under 
suitable conditions its conditional distribution is approximately X~. 

Point estimates of ex and ey will be obtained by solving the 
equations 

L sgn (x; - tx) T(lx; - txl) = 0 

Lsgn(y; - ty)T(ly; - ty!) = 0 

the estimates obtained in this way, ex' ey , are just those that would be 
obtained by treating the x and y values separately as univariate 
samples. Generally, of course, ex and ey are not independent. 

7.3.4 Symmetric distributions: sign statistics 

The simplest useful transformation is T(u) = 1. An effect of this 
transformation is that we essentially condition only on the total 
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number of (Xi - 8x, Yi - 8y) pairs in which sgn (Xi - 8x) =1= sgn (Yi - 8y); 
this is essentially the same as the conditioning used in Section 7.3.1. 

In the notation of Section 7.3.1, omitting the arguments (tx' ty) or 
(8x ,8y ), we see that 

Sx = Tx. = Nil + N 10 - NOl - Noo = n -2No. 

Sy= Ty.=N ll +N01-N10-Noo=n-2N.o 

so that we are led back to the median tests of Section 7.3.1. In fact, 
following calculations according to Sections 7.2 and 7.1, we see that 

var(Sx) = n = var(Sy) 

cov (Sx' Sy) = nll + nOD - nOl - nlO 

and it is simple exercise to show that Qs given by (7.3) becomes 
(nll - noo)2/(n ll + nOD) + (nOl - nlO )2/(nOl + nlO )' which is the ex­
pression for Q given in Section 7.3.1. 

An interesting difference between univariate and bivariate sign 
statistics should be noted. In the univariate case the conditional null 
distribution of the sign statistic is invariant with respect to the 
realized observations. Hence it is also the unconditional distribution 
of the statistic. However, in the bivariate case the conditional joint 
distribution of the two sign statistics depends on the sample 
configuration, specifically, on the value of nOD + nil. The uncon­
ditional joint distribution is, therefore, a mixture of distributions 
which will depend on the true joint distribution of X and Y. 

7 .3.5 Symmetric distributions: rank statistics 

Let T(lxi - 8xi) = Rank (Ix; - 8xi), that is, the rank of IXi - 8xl in the 
sequence Ix j -8xl,j=1,2, ... ,n, and similarly, let T(IYi-8yl)= 
Rank (IYi - 8yl). We shall use the notation Wx for Tx., Wy for Ty.; 
Wx and Wy are sums of signed x and Y ranks respectively and may be 
regarded as bivariate versions of the Wilcoxon signed rank statistic. 

Here we have 

var {Wx(8x' 8y)} = var {Wy(8x, 8y)} = n(n + 1) (2n + 1)/6 

invariant with respect to the realized sample. However, cov (Rx' Ry) 
does depend on the sample configuration. Transformation to ranks 
has, therefore, not produced statistics that are unconditionally 
distribution-free. A similar phenomenon was noted in connection 
with the sign statistics in Section 7.3.4. 



230 DISTRIBUTION-FREE STATISTICAL METHODS 

Testing (Ox, Oy) = (O~, O~) 
We use the statistic QR' being QT given by (7.3) with an obvious 
change in notation. The conditions for asymptotic joint normality of 
Rx and Ry , and for the asymptotic X~ distribution of QR hold here; see 
comments following Theorem 1.8.3. In principle it is relatively easy to 
evaluate the conditional distribution of QR exactly for small n. 
However, while it is possible it is not practical to prepare tables ofthis 
conditional distribution for all reasonably small values of n. 

Example 7.6 Refer to the data of Example 7.3 and consider the 
hypothesis H 0: (Ox, Oy) = ( - 0.3, - 0.7). The observed (Xi - Ox' Yi - Oy) 
values are shown overleaf with their signed ranks. 

From this table of ranks we obtain 

Observed Wx = - 75 

Wy = 121 

var (Wx) = var (Wy) = 9455 

cov (Wx ' Wy ) = 5824 

-1 [ 9455 
V T = _ 5824 -~!~~ }55 478 049) - 1 

QT = 5.36 

At the 20% level, for which the results of Example 7.3 are relevant, we 
reject H o. In other words, if we constructed an 80% confidence region 
for (Ox,Oy) using QT' the point (-0.3, -0.7) would not be in it. 

Confidence regions 
A confidence region based on the rank statistics can be constructed by 
the usual inverse hypothesis-testing procedure. For a set of data such 
as that used in Example 7.6 the calculations are somewhat tedious. It 
is easy to write down the finite set of tx and ty values at which Wx(tx' ty) 
and Wy(tx,tyl change as tx and ty vary; they are the sets of pairwise 
averages of the x's and y's. However, it seems that actually performing 
the ranking and other calculations exhibited in Example 7.6 is 
unavoidable for at least some (tx, t) points. 

Point estimation 
The point estimates of Ox and Oy are the respective Hodges- Lehmann 
estimates calculated from the X and y values, hence their large-sample 
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variances are as given in Section 2.2. To find the large-sample 
covariance of the estimates we need the expectation of the conditional 
cov (Wx' Wy), which depends on the underlying joint distribution of X 
and Y. 

A large n expression for cov (Wx' Wy) can be obtained by using 
Lemma 2.1, Section 2.3.4, and making the substitutions 

Fx(X;)-! 

Fy(Y;)-! 

for sgn(X;) Rank (IXil)/(n + 1) 

for sgn(Yi ) Rank(1 Yd)/(n + 1) 

i = 1,2, ... , n; where F x and Fy are the marginal distribution functions 
of X and Y, respectively. Then cov(Wx' W) ~ n3wXY ' where 

wxy = f f(F Ju) -!) (F y(v) - !)Ixy(u, v)dudv 

where Ixy is the joint density function of X and Y. 
For large n we have from Section 2.3.3 

[oE{Wx(tx,ty)}/otxJ'=6~ -2n2 fI;(U)dU= -2n2Ju 

[oE {Wx(tx,ty)} /otyJ, = 6 = 0 

with similar expressions for Wy , where!x and!y denote the marginal 
densities of X and Y. Using the formula (1.11) the large sample 
covariance matrix of the Hodges-Lehmann estimates ex, ey is 
approximately 

Efficacy 
Using the results from above, the efficacy of the signed rank statistic 
(Wx ' Wy ) can be expressed as 

{Efficacy(W)}2 = 12{]; +1; + 6wxyJJy}/{1- 9w;y} 

Example 7.7 Suppose that the joint distribution of X and Y is normal 
with E(X) = E( y) = 0, var (X) = var (Y) = 1 and correlation coef­
ficient p. Write 

pw = 3wXY 

for the correlation coefficient of the signed ranks. Then since Ix = 
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{Efficacy (W)}2 = (3/n)(2/(1 + Pw)) 

and using the result from Example 7.4 

{Efficacy (W)}2/{Efficacy (mean)}2 = (3/n)(1 + p)/(1 + Pw). 

The value of Pw is given by 

Pw = (6/n) sin - 1(p/2) 

Puri and Sen (1971) p. 176. 
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In Example 7.7 a simple expression is given for Pw, but generally 
Pw, and noo in Section 7.3.1 have to be obtained by numerical 
integration. 

7.3.6 Symmetric distributions: scores based on ranks 

We refer briefly to transformations of a type discussed in earlier 
chapters, namely G{R;/(n + I)}, where Ri is a rank and G is an inverse 
distribution function; the best known of these is perhaps G = <1>; 1 

where <1>* is the standard half-normal distribution. The statistics 
(Tx.' TyJ now become 

Gx(l~1' ( 2 ) = I sgn (Xi - Ox) G{Rx;(Ox)/(n + I)} = I Gxi 
Gy (8 1 , ( 2 ) = L sgn (Yi - 8y) G{Ry;{8y)/(n + 1) = L GYi 

where Rwi(Ow) = Rank(lwi - Owl), W = x,y 

The conditional joint distribution of G x and G y, and of a quadratic 
form of the type QT' can be listed using the same principles as before, 
and the conditional second-order moments of Gx and Gy are as given 
for Tx. and Ty. with the appropriate substitutions. The following 
example illustrates the procedure for testing a hypothesis about 
(Ox,Oy) using Gx and Gy. 

Example 7.8 We use the data of Example 7.6 but to save space show 
only the first few transformed ranks. The other results reported are for 
the full set of n = 30 observations. The transformation used is 
G=<1>;1 where <1>*(u)=2{<l>(u)-!}; <l> is the standard normal 
distribution function. Thus rank 19 becomes 

<1>; 1(19/31) = 0.865 
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Signed ranks Signed transformed ranks 

19 
11 
16 

-28 

etc. 

7 
5 

22 
-27 

0.865 
0.460 
0.700 

-1.661 

0.287 
-0.203 

1.057 
- 1.518 

Gx = 4.993 Gy = 5.754 

L G~i = 27.083 382 = L G;i 

LGxiGyi = 18.505088 

QG= QT= 6.80 
The results above give Gx and Gy for the hypothetical (8x ' 8y ) = 

(- 0.3, - 0.7); see also Example 7.6. Treating QT = 6.80 as an obser­
vation on a X~ random variable, the hypothesis H 0: (8x , 8y ) = ( - 0.3, 
- 0.7) is rejected at the 20% level. 

The point estimates of 8 t and 82 yielded by solving the estimating 
equations 

Gx {tt,t2)=0, Gy (tl>t 2)=0 

are just the estimates discussed in Section 2.2. The efficacy of the test, 
based on QG' can be derived using results on (oE{GJtt,t2)}/otdt=8 
from Chapter 2 and methods similar to those of Section 7.3.5 for the 
unconditional covariance of Gx and Gy • Details will not be given. 

7.3.7 Symmetric distributions: robust transformations 

Let t/f(u) be one of the transformations associated with M-estimates; 
typically I/I(u) is a monotone, continuous, and differentiable function 
of u. Now we put 

Mt/lx(8x,8y) = Lsgn(xi - 8x)I/I(lxi - 8x!) 

Mt/ly(8x, 8y) = L sgn (Yi - 8y)I/I(IYi - 8y l) 

and apply the permutational methods outlined above. We obtain an 
exact conditional test procedure based on the M -statistics and find an 
exact confidence region for (8x ' 8y ). 

Since Mt/lx and Mt/ly are sums of independent random variables, it is 
somewhat easier to write down expressions for the relevant efficacy 
and the large-sample covariance matrix ofthe point estimate. If I/I(u) is 
'odd', i.e., such that I/I( - u) = - I/I(u), we can simply write 

Mt/lx(8x, 8y) = LI/I(xi - 8x) 



BIVARIATE PROBLEMS 235 

and MtjJy similarly. Then conditionally, 

var(MtjJx} = L {t/!(x i - Ox)}2 

var (MtjJy) = L {t/!(Yi - Oy)}2 

cov(MtjJx,MtjJy} = Lt/!(xi - 0x}t/!(Yi - Oy} 

At (Ox. Oy) = (0. 0) the unconditional versions of these moments are 

n ft/!2(U)!x(U)dU, n ft/!;(U}!y(U}dU, n f ft/!(X)t/!(Y)!(X,Y)dXdY 

With suitable choice of t/!, normal approximation of the joint 
distribution ofthe M-statistics will be possible. This makes it relatively 
easy to test a hypothesis about (Ox,Oy) through the appropriate 
version of QT. Finding a joint confidence region is a fairly straightfor­
ward computational job because we need find only the (tx, ty) values 
such that 

{MtjJx(tx' ty}, MtjJy(tx' ty}} Vi 1 (t l' t2) {M tjJx(tx, ty), M tjJy(tx, ty}}' ~ C 

where the elements of VtjJ(tx• ty} are given by the formulae for the 
moments of the M-statistics as given above with (tx' t) replacing 
(Ox,Oy). 

7.3.8 Functions of Ox and Oy 

We need to investigate joint inference for Ox and Oy, in particular joint 
estimation of (Ox, By), because a parameter of interest may be a 
function A(Ox.Oy} of Ox and Oy. The simplest non-trivial function is 
linear, say axOx + ayOy , with ax and bx =1= 0. The case ax = 1,ay = ° (or 
ax = O,ay = 1) is of course also of interest, but in the location model 
that we are considering it reduces to inference about the location of 
the marginal X -distribution. Note that this situation differs some­
what from some univariate problems involving two parameters. 
Now, while exact joint inference about (Ox, Oy) is possible, the problem 
of exact inference about A(Ox, 0) generally appears insoluble. This is a 
problem of nuisance parameters which we have encountered before. 

Statistically approximate inference about A(Ox'Oy) is possible by 
using the large-sample covariance matrix of the estimates of Ox and 
Oy; alternatively, exact but conservative inference can be made, using 
in essence an exact joint confidence region for (Ox, Oy). Consider, for 
example, estimation of ~ = Oy - Ox. Suppose that a joint 80% 
confidence region for (Ox, Oy) has been graphed with Oy as ordinate and 
Ox as abscissa. Then two straight lines of slope 1 drawn as tangents to 
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the confidence region have ey intercepts .1L ,.1u and the integral 
(.1L , .1u ) is a confidence interval ford with confidence coefficient at 
least 80%. 

Alternatively, if approximate normality of the estimates Band B is 
.... ,A "" x y 

assumed, .1 = ey - ex has approximate variance given by the appro-
priate large-sample covariance matrix of(Bx , By). However, a problem 
remains in that the elements of this matrix have, themselves, to be 
estimated. Sample values of the derivatives that enter into their 
calculation can be used, but obtaining good estimates of these 
elements is, as yet, not a fully resolved matter. 

7.4 Two-sample location problems 

7.4.1 Introduction: randomization 
Two bivariate random samples are considered, one of size m, the other 
of size n. In the 'm-sample' we have (xil , Yil)' i = 1,2, ... , m, and in the 
'n-sample', (xj2' Yj2),j = 1,2, ... , n. These samples are assumed to be 
drawn from populations with distribution functions F 1 (x, y) and 
F 2 (x, y). Tests of equality of these two distribution functions may be 
considered in a rather general context, but we shall, as in Chapter 4, 
make some simplifying assumptions about the alternative hy­
potheses, thus narrowing down the classes of test statistics to be 
considered. 

Much the simplest type of alternative seems to be the location-shift 
alternative, F 2 (x, y) = F 1 (x + ex, Y + ey). Under such an alternative 
the sequence of N = m + n values 

(xil , Yil)' i = 1,2, ... , m, (x j2 - ex' Yj2 - ey),j = 1,2, ... , n 

can be considered as having been drawn at random from the same 
population. For convenience we shall refer to the above sequence as 
(ui(O), vi(O», i = 1,2, .. . ,N, so that for example u1 (0) = xll,um - dO) = 
X 12 - ex' etc. The basic randomization argument, as before, 
uses conditioning on the observed set of (u, v) values and we consider 
the conditional distributions of various statistics under a scheme 
of random partitioning the N values of (u, v) into subsets of sizes m 
and n. 

7.4.2 Medians and sign tests 

Let u be the median of the N values ui, and v the median of the Vi 
values and let N 00 = * (ui ~ u, Vi ~ v), 
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NOI = =IF(Ui~U,Vi> v),N lO = =IF(Ui>U,Vi~V) 
Nil = =IF (ui > U, Vi > V). Also put NO. = N 00 + N 01' 

Nt. = N 10 + Nil' etc. 
If N is even we note that 

No. = Nt. = N.o = N.l = NI2 and Nll = Noo,N ol = N 10' 
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According to the randomization scheme discussed in Section 7.4.1 
we select m pairs at random without replacement from the total of N 
pairs (ui , vJ, Let M oo(Ox' Oy) = =IF (selected pairs such that 
Ui~U,Vi<V), with M01,MI0,Mll defined similarly. Under this 
randomization scheme, 

E(Md= mN1.IN =m12 

E(M.d = mN.IIN = ml2 

(N even) 

(N even) 

Therefore we base a test of a specified (Ox, Oy) on the bivariate statistic 
(MUM.1) which can be thought of as a median test. 

In order to use the conditional randomization scheme outlined in 
Section 7.4.1 for exact median tests note that the null hypothesis need 
not specify that F I and F 2 are identical. In fact, we only need 
F1 (Ox,Oy)=F2 (Ox'Oy); but we shall concentrate on the location­
difference case. 

The joint conditional distribution of Moo,Mol,MIO (and Mll = 
m - Moo - MlO - MOl) is a multivariate hypergeometric distribution 
with parameters (N, m, N 00' N 01' N I d, whose probability function is 
easily written down. The following formulae are readily obtainable: 

( ) NdN -Nd(N -m) var M1 =m --
. N N-1 

( ) N.I(N-N.I)(N-m) 
var M.I = m N2 N _ 1 

cov(M M )=m(Nll_ N1. N .I)(N-m) 
1.'.1 N N 2 N-l 

Note that here again, despite the transformation to signs, the 
conditional joint distribution of M 1. and M.1 is not invariant with 
respect to the sample configuration. 

Testing aspecifl£d (Ox, Oy) 
Following precedents we shall base our hypothesis test on 

QM =(Ml, -mN1./N,M. 1 -mN.dN)V;/ 

x (Ml, -mNl,IN,M. 1-mN.dN), 
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where VM is the covariance matrix of M1. and M.l with elements as 
given above; if N is even the formulae are simpler, with 

var(M 1.) - var(M. 1 ) = (m/4)(N - m)/(N - 1) 

cov(MUM.l)= m(N 11 /N -1/4)(N -m)/(N -1). 

The exact distribution of QM can be evaluated; E(QM) = 2 and we 
shall take the distribution of QM to be approximately X2 for m 
and n moderately large. 

Example 7.9 

m = 3: (- 0.8, - 0.7), (- 0.6, + 0.6), ( + 0.8, + 0.9) 

n = 3: (- 0.9, - 0.3), ( + 0.5, + 1.2), ( + 0.8, + 0.7) 

H 0: (Ox' Oy) = (0.3, 1.0) 

modified 'n-sample': ( - 1.2, - 1.3), (0.2, + 0.2), (0.5, - 0.3) 
In the pooled sample, (it, v) = ( - 0.2, - 0.05), N 00 = 2, N 01 = 1, 

N 10 = 1, N 11 = 2, and the joint distribution of M 1.' M.l is as 
follows: 

M.l 
0 1 . 2 3 

0 1/20 
Ml. 1 1/20 4/20 4/20 

2 4/20 4/20 1/20 
3 1/20 

1/20 9/20 9/20 1/20 

From this table, and the formulae given above, 

var(M tJ = var(M.tl = 9/20, 

cov (M 1.' M. l ) = 3/20, 

and the distribution of QM is as follows: 

q : 5/6 5/3 5 

20Pr(QM= q) : 8 8 4 

1/20 
9/20 
9/20 
1/20 

20/20 

This example only illustrates computational methods; the sample 
is too small for useful inference based on QM' 

Confidence regions, point estimation 
Finding a joint confidence region can be expedited somewhat by 
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noting, as we have described in Section 4.3.3, that M 1. (tx' ty) is a step 
function of tx with jumps occurring only at certain Xil - X i2 

differences; M.l (tx, ty) behaves similarly. However, complications 
arise because N 11 might also change as tx or ty is varied. 

The point estimates of ex and ey are obtained by solving the 
estimating equations 

M 1. (tx' ty) = 1/2; M.l (tx' t) = 1/2 (7.4) 

and are readily seen to be just the respective univariate estimates 
obtained in Chapter 4. However, the two estimates are not inde­
pendently distributed. To find their large-sample covariance matrix 
we need 

E[cov{M1.(0),M. 1 (0)}] =m(E(~ld - N~~.l )(~ =7) 
For the present purpose we may take the medians of both F 1 and F 2 

to be (0,0), so that we can write 

E(N 11) = E(N 00) = NF 1 (0,0) = N7too 

If N is even, we then have 

E[cov(MdO), M.l (0)] = m(7too - 1/4)(N - m)/(N - 1) 

Approximating terms N - 1 by N for large N, and using results from 
Chapter 4 for quantities like (vE {M 1. (tx' ty)} I vtx)t = 9 the large-sample 
covariance matrix of the point estimates of ex and ey derived as 
solutions of (7.4) is 

( N)[ II!; 
4mn 4(7too - l)fJy 

(47too - 1)/!Jy] 
Ilf; , 

where fx,fy are the marginal common densities at the median values. 

Efficacy 
The efficacy of the test of (ex , e) based on (M u M. 1) can be calculated 
from the results given above; it is 

4{f; + f; + 2fxfy(1 - 47too)} I {I - (47too - 1)2} 

7.4.3 Mean statistics 

Let u(t), v(t) be the means of the ui(t), vi(t) values respectively. As an 
obvious generalization of the mean statistic of Chapter 4 we consider 

m m 

Ax(t) = L Xli - mu(t), A/t) = L Yli - mv(t) 
i = 1 i= 1 
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As we have indicated in Section 7.4.1, if t = (), all Ui, Vi values may be 
regarded as having been drawn from the same population and we can 
use the conditional permutation argument. 

Let 
0';=(1/N)2)ui -ii)2, 0'~=(1/N)2)Vi-V)2 (7.5) 

O'uv = (1/N)2::(u; - U)(Vi - v). 

Then the first- and second-order moments of the joint permutation 
distribution of Ax and Bx are 

and 
E(Ax) = E(Ay) = 0 

var(Ax) = mO';(N - m)/(N -1) 

var (Ay) = mO'~(N - m)/(N - 1) 

cov (Ax, Ay) = mO'u.(N - m)/(N - 1) 

If VA is the covariance matrix of Ax and Bx, then the exact conditional 
permutation distribution of 

QA = (Ax, Ay) VA l(Ax' A/ 

can be found; E(QA) = 2, and under suitable conditions the per­
mutatiol) distribution of QA will be approximately X~. 

Hypothesis testing and corifidence limits: 
To test H 0: () = ()O the calculations indicated by the formulae above 
are performed with ()O replacing t, and the resulting value of QA is 
compared with the appropriate X~ quantile. Confidence regions are 
found in the usual inverse hypothesis-testing manner. When a X2 

approximation of the permutation distribution of QA is applicable, a 
10013% confidence region is given by the (tx, ty) set satisfying 

QA (tx' ty) ~ X~(f3) 

Example 7.10 We use the data of Example 7.9 and test Ho:(()x,()y) 
= (0.3,1.0), as before. The collection of N = 6 (u i , va values are 

giving 

(- 0.8, - 0.7), (- 0.6, + 0.6), (+ 0.8, + 0.9) 

( - 1.2, - 1.3), ( + 0.2, + 0.2), ( + 0.5, - 0.3) 

ii = 0.183 333 

0'; = 0.528055 

v = - 0.100000 

O'~ = 0.570000 
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(I.v = 0.376 667 

Ax = - 0.6 - 3u = - 0.050000 

Ay = + 0.8 - 3u = + 1.100000 

- 1 - ~[3.5823 - 2.3673 ] 
VA -9 -2.3673 3.3187 

QA = 2.3805 
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The exact null distribution of QA for this case has been enumerated. 
There are 10 distinct QA values occurring with equal probability; they 
are: 

0.1702, 0.6420, 0.6530, 1.4558, 1.7155, 

1.8197, 2.3261, 2.3805, 4.1734, 4.6632 

Thus Pr(QA ~ 2.3805) = 3/10. 
An exact confidence region, based on the mean statistics, can be 

found but the calculations are lengthy because the exact distribution 
of QA has to be listed for every trial (tx' ty). Using the X~ approximation 
indicated above leads to relatively simple calculations. 

Point estimation 
The point estimates obtained by solving 

Ax(t) = 0, Ay(t) = 0 

are simply the usual differences of means; thus 

(ex,(Jy) is estimated by (x z. -XuYz. - Yl.) 

where Xl. =(l/M)L~;lX1i,etc. 

7.4.4 Rank statistics 

The rank statistics which we shall consider are obtained by ranking 
the N values of Ui and also the N values of Vi and then using the sums of 
the ranks in the M -sample to define two test statistics: 

m 

i= 1 

m 

Wy(t) = L Rank {vi(t)} - m(N + 1)/2 
i; 1 

The two statistics are the Wilcoxon two-sample rank sum statistics 
defined for the X and y values. 
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Under our permutation scheme we have 

E(W,,) = E(Wy ) = 0 

var(W,,) = var(Wy) = mn(N + 1)/12 

cov(W", Wy) = mO'uv(R)(N - m)/(N - 1) 

where O'uv(R) is calculated according to the formula for O'uv in (7.5) 
but with Ui and Vi replaced by their ranks. The value of O'uv(R) will de­
pend on the sample configuration and on t; this is a symptom of the 
joint permutation distribution of W" and Wy not being invariant 
with respect to the realized samples. Here, as in Section 7.4.3, a 
conditionally exact distribution-free procedure is not uncondition­
ally distribution-free when the observations are transformed. 

The quadratic form used for testing a hypothesis about (0", Oy) is 

Qw = (W", Wy ) Vw I(W", Wy )' 

where Vw is the conditional covariance matrix of (W", Wy ) with 
elements as defined above. For large n its distribution is approxi­
mately X~ 

Example 7.11 With the data of Example 7.10 and the trial (O",Oy) = 
(0.3, 1.0) as before, the set of pairs of ranks is 

(2,2), (3,5), (6,6), (1,1), (4,4), (5,3) 

giving O'uv(R) = 27/12, 

-1 (60)[ 35 
Vw = 4464 -27 

-27J 
35 

and observed Qw = 2.1505. 
In the exact null distribution of Qw there are the following six 

distinct values of Qw with probabilities shown in parentheses. 

0.0538 (1/10), 0.4839 (2/10), 1.7204 (2/10), 2.1505 (2/10), 

2.6344 (1/10), 4.3011 (2/10) 

Changing the trial (0", Oy) to (0.3,0.0) changes the set of ranks to 

(2,1), (3,3), (6,5), (1,2), (4,6), (5,4) 

giving O'uv(R) = 29/12, a new observed Qw, and a new conditional 
distribution of Qw. 

Confidence region, point estimation 
A joint confidence region can be obtained in the usual way, but may 
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be somewhat tedious to compute. Note that the only (tx' ty) points for 
which computations may have to be performed are those with at least 
one of Wx or Wy 'jumps'; these are discussed in Section 4.3.2. 

The point estimates, also, are those discussed in Section 4.3.4, and 
the only new element here is that the two point estimates are 
correlated. To find their large-sample covariance we require 
E(auv(R»). Without loss of generality, for the present purpose, we 
take F 1 (x, y) = F 2 (x, y) = F(x l' y) with corresponding densities 
f(u, v). Now 

auv = (1/ N) I,RxiRYi - (N + 1)2/4 

where (Rxi' R y;) are the ranks of the X and Y values in the N 
independent pairs (Xi' Yi , i = 1,2, ... , N. Using methods of 
earlier chapters, for example Lemma 2.1, Section 2.3.4., we have as a 
large-N approximation 

E(RxiR y;) ~ N 2 f f F(u, 00 )F( 00, v)f(u, v)du dv 

The values of [8E{Wz (t)}/8tz Jt=8' z = x,y, that are also required 
for the large-sample covariance of the point estimates are given in 
Section 4.3.4; they are mnlx, mnIr, where fx,fy are the marginal X, Y 
densities and Ix = fj;(u)du,!y = J l;<v)dv. 

7.4.5 Rank-based scores and other transformations 

Tests like those described in Sections 7.4.3 and 7.4.4 can be performed 
after transforming the (u i , v;) values to rank-based scores of the type 
G{Rank (u;}/(N + I)}, etc., where typically G is an inverse distribution 
function. Similarly, robust transformations of the kind associated 
with M-estimates can be used. By either method the basic randomi­
zation argument gives an exact distribution-free test and will produce 
an exact joint confidence region for (Ox,Oy). 

Point estimates are obtained by solving the estimating equations 
obtained by the simple application of the method of moments that we 
have been using throughout. Details of large-sample variances and 
covariances are very similar to others that have already been 
presented, and will be left as exercises. 

Example 7.12 This example illustrates the calculations based on 
scores of the type <I> - 1 {Rank/(N + I)} for a moderately large set of 
data. They are taken from an example in Morrison (1967, p. 154), and 
are the results of a drug trial on mice, which were divided at random 
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into 'Control' and 'Drug' groups. The levels of three biochemical 
compounds found in the brain were the response variables of interest. 
In the following list we report only the results of assays for two of 
these compounds. 

Control Drug 

A(x) Score B(y) Score A(x) Score B(y) Score 

1.21 0.512 0.61 1.711 1.40 1.711 0.50 0.857 
0.99 -0.939 0.43 0.055 1.17 0.109 0.39 -0.512 
0.80 -1.711 0.35 -0.857 1.23 0.781 0.44 0.164 
0.85 - 1.359 0.48 0.641 1.19 0.391 0.37 -0.641 
0.98 -1.125 0.42 -0.109 1.38 1.359 0.42 -0.109 
1.15 -0.055 0.52 1.125 1.17 0.109 0.45 0.333 
1.10 -0.276 0.50 0.857 1.31 1.125 0.41 -0.276 
1.02 -0.641 0.53 1.359 1.30 0.939 0.47 0.512 
1.18 0.276 0.45 0.333 1.22 0.641 0.29 -1.359 
1.09 0.451 0.40 -0.391 1.00 -0.781 0.30 -1.125 

1.12 -0.164 0.27 1.711 
1.09 - 0.451 0.35 -0.857 

The null hypothesis under test is that the drug had no effect on the 
levels of A or B; (ex' e) = (0, 0). 

The rank of the A observation 1.21 in the pooled sample is 16 and 
its transformed value is <1>- 1(16/23) = 0.512 from a table of the 
standard normal distribution. We also illustrate a standard method of 
dealing with ties: the two tied A values at 1.09 are given the mean, 7!, 
of their ranks 7 and 8. This method of dealing with tied ranks 
introduces little extra computational work because the covariance 
always has to be calculated for every sample. 

Denoting the A and B scores by Si(A), Si(B), S. (A) = (1/ N) LSi(A); 
a2(A) = LSr(A)/ N - S~(A); etc., we have from the table of scores 

N N 

L Si(A) = 0.000 
i= 1 

L Si(B) = 0.000 
i;;;;; 1 

N 

L Sr(A) = 16.913042 L Sr(B) = 16.868418 
i= 1 

N 

L Si(A)Si(B) = 2.661 966 
i= 1 

a2 (A) = 0.768 775 a2 (B) = 0.766 746 

a(A, B) = 0.120998 
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The observed values of the test statistics are the sums of scores of 
the control sample 

Ae = I SJA) = - 5.769, Be = I Sj(B) = 4.724 
control control 

and using these to compute the usual quadratic form test statistic we 
obtain the observed value 

Treating Q as X~ distribution under the null hypothesis, the null 
hypothesis is clearly rejected. 

7.5 Three-sample location problems 

7.5.1 Randomization 

By straightforward extension of the arguments and notation of 
Section 7.4.1, we now consider samples of sizes n1 ,n2 ,n3 from 
three populations with distribution functions F 1 (x, y), F 2 (x, y) = 
Fdx + (}x2,Y + (}y2),F 3(x,y) = F(x + (}x3,y + (}y3). The samples from 
the three populations are (xrj , YrJ, r = 1,2,3, i = 1,2, ... nr. We also 
define a sequence of uj((J) values as the sequence of Xll 'X 12 ' ... , 

Xln,X21-(}x2, ... ,X2n2-(}x2,X31-(}x3, ... X3n3-(}x3; the sequence 
of vj((J) values is defined similarly using the Yrj values. 

If the Uj and Vj values are obtained using the population () values, 
the sequence (u j , v;), i = 1,2, ... , N can be regarded as a sample from 
the same bivariate population and the randomization scheme to be 
used is random partitioning of the N pairs into groups of sizes 
n1 , n2 , n3 • The exact conditional distribution of any test statistic or 
statistics can be obtained by listing all of the possible partitions. 

7.5.2 The choice of test statistic 

The question remaining is the choice of a suitable statistic for testing a 
hypothesis that specifies a set of () values; note in passing that in the 
most common 'one-way analysis of variance' situation all of the () 
values are specified as being zero. It is instructive to re-examine 
the test procedure suggested for the two-sample case, One may argue 
that the null hypothesis under test is acceptable if the observed 
mean point (x 1.' Y 1) of the m-sample is not 'too far' from the 'expected 
point' (u, v). If (J"~v = 0 a natural measure of distance of (x u Y d from 
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(u, ii) would be D = (xl. - u)2/var(xl) + (Yt. - v)2/var (Yt.). Since Uuv 
is, in general, not zero, the distance is defined by the quadratic form 
QA given in Section 7.4.3; in the case Uuv = 0, QA = D as given above. 

It is easy to transform the (u j , vJ values to (ut, vt) values such that, 
for this new sequence u:v = 0; the transformation is 

[ utJ [ sinA vt = - cos A 

with A given by 
- 2cos 2Auuv + sin 2A(u; - u:) = 0 

Now we define xi. as the mean of ut values belonging to the m-sample, 
and yi. similarly. Then 

( x:' - u*) = [ sinA 
Y* -iJ* - cosA r. 

C?SAJ(Xr . - ~), 
smA Yr.-v 

r = 1,2 (7.6) 

and 

U*2 = sin2 A u2 + 2 sin A cos A u + cos2 A u2 
u u uv v 

u:2 = cos2 Au: - 2 sin A cos A uuv + sin2 A u; 
(7.7) 

The distance of (xT.,y!.) from (u*, iJ*) is 

Dt = (xi. - u*)2/var (x!.) + (Yi. - v*)/var (y!.) 

=m(Nn-1){(Xt·u:U*Y +(Yi.u~V*y} 

and in fact, Dt = QA' 
In the three-sample case there are two mean points (Xl.,yd and 

(x2., Y2) whose distances from (u, V) have to be considered. If we first 
transform to (ut, vt) values as explained above, it is natural to 
consider using Dt + Di as a test statistic. However, in such an 
expression, although xi. is uncorrelated with yi. and yt, it is 
correlated with x!,. Thus, while we can treat the x:. and y:' values 
'independently', we should represent the sum of distances of xi. and 
4. from u by a quadratic form, as in the one-way analysis of variance 
taking into account cov (xt., xi,). The proposed test statistic then 
becomes 
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A measure identical to Q~ is obtained if a single vector of 4 
elements, 

Ll' = (Xl. - it, X 2. - it, Yt. - V, Y2. - v) 

is formed whose elements have the 4 x 4 covariance matrix VA' and 
then computing 

QA = Ll'VA 1 Ll = Q* 

The matrix VA is 

a~Cl -a~ auvC l - (Juv 

(N ~ 1) -a~ a~C2 - auv auv C2 

auvC l - auv a~Cl -a~ 

- auv auvCl - a~ a~C2 

where C 1 = N/nl -1, Cz = N/nl - 1. 
Finally it is instructive, and may be more efficient for computation, 

to note that the components due to x* and y* in Q* are simply the 
values of the statistic B* proposed for the one-way analysis of 
variance calculated from the x*(u*) and y*(v*) values respectively. 
Thus, if B*(u*) = (N - 1)B(u*)/T(u*), where B(u*), T(u*), are the 
between-group and within-group sums of squared differences for u* 
values, with B*(v*) defined similarly. 

Q* = B*(u*) + B*(v*) (7.9) 

See also Section 6.4.1. 

7.5.3 Inference using Q~ (equivalently Q*) 

Under randomization the exact null distribution of Q* can be 
tabulated. Its expectation is exactly 4, and under the conditions where 
the analogous quadratic forms that occur in univariate one-way 
analysis of variance have approximate Xl distributions, the randomi­
zation distribution of Q* will be approximately x~. 

Example 7.13 The following total of N = 6 observations is divided 
into three groups as shown 

Sample 1 : nl = 1 : (- 0.8, - 0.7) 

Sample 2 : nz = 2 : (- 0.6, + 0.6), ( + 0.8, + 0.9) 

Sample 3 : n3 = 3 : (- l.2, - 1.3), ( + 0.2, + 0.2), ( + 0.5, - 0.3) 
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o~~--~~~~--~~--~--~----
2345678 

aA=a* -+ 

Figure 7.3 

Suppose that we test the hypothesis Ho that all e values are zero, 
that is, the three samples come from the same population. Then the 
(u i , vJ values are simply the N = 6 vectors given above, giving 

U = - 0.183 33j, jj = - 0.100000 

a~= 0.528055, a;= 0.570000, auv =0.376666 

sin A = 0.681 71, cos A = 0.726496 

(X1.;h)=(-0.8, -0.7) 

(xvY2.) = (+ 0.10, + 0.75) 

U* = - 0.198 733 

a: = 0.926 256 

v* = + 0.64483 

a~ = 0.171 778 

(xi. - u*, yi. - v*) = ( - 0.859 653, 0.035753) 

(xt - u*, yt - v*) = (0.812220, 0.372 255) 

Q* = 4.4365 

from (7.9) 

The value of Q* has been evaluated for everyone of the 60 possible 
partitions in this example, giving the conditional null distribution 
whose distribution function is depicted in Figure 7.3. From the 
tabulation of Q* values, 

Pr{Q* ~ 4.4365} = 25/60 

7.5.4 Rank methods 

By obvious extension of the rank methods for the two-sample case we 
now simply transform all the Ui values to their ranks, and do likewise 
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for the Vi values. All calculations are now exactly like those outlined in 
Section 7.5.3 except that the original (Ui,V i ) are replaced by their 
ranks. Some simplifications occur because the values of u, V, O"~, 0"; 

become 

u(Rank) = v (Rank) = (N + 1)/2 

O"~ (Rank) = 0"; (Rank) = (N 2 - 1)/12 

The value of O"uv (Rank) will depend on the sample configuration, thus 
reminding us that, despite the transformation to ranks the exact test 
procedures for the (j's jointly are only conditionally distribution-free. 
However, if we use the method of calculation of distance as in 
equation (7.8) we find that A = 45°, giving 

u*(Rank) = (N + 1)/)2 

v* (Rank) = ° 
0":2 (Rank) = (N 2 - 1)/12 + O"uv(Rank) 

0":2 (Rank) = (N 2 - 1)/12 - O"uv(Rank) 

We shall not rewrite the formulae of Section 7.5.3 in terms of ranks 
for our present purpose. Note that we shall use x 1. to denote the mean 
of the ranks of Ui values of Sample 1, etc. The following example 
illustrates the method. 

Example 7.14 We consider the problem of Example 7.13 using the 
rank transformation. The transformed values are 

Sample 1 : (2, 2) 

Sample 2 : (3,5) (6,6) 

Sample 3 : (1,1) (4,4) (5,3) 

(xl. - u, Y!. - V) = (- 1.5, - 1.5) 

(x 2 . - ii, Y2. - V) = ( 1.0, 2.0) 

(xt. - u*,yt. - v*) = (- 3.0/j2,0) 

(xi. - u*, yi. - v*) = (3.0/ j2, 1.0/ j2) 

O"uv=17/12 

0": = 35/12 + 17/12 = 52/12 

0": = 35/12 - 17/12 = 18/12 
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From (7.8), 

Q*(Rank) = (~~)(~~)G} -3.0, 3.0{~ 

+ C~)C~)(~}O, 1.0{~ 

IJ[-3.0J 
5 3.0 

~ J[ 1~0 J 
= 3.8105 

This observed Q* value is slightly smaller than expected value of 4, 
hence without further calculations we can accept Ho. 

If an exact test at, say, the 5% level is required we need only find the 
3 largest Q* values, which are fairly easy to identify. They are given by 
the following 3 partitions of the total sample, giving the Q* values 
shown: 

(3,5) (2,2),(1,1) (4,4)(5,3)(6,6) Q*=6.2251 

(5,3) (2,2),(1,1) (4,4)(3,5)(6,6) Q* = 6.2251 

(6,6) (1,1), (2,2) (4,4) (3,5) (5,3) Q* = 5.7692 

7.5.5 Sign statistics and other transformations 

Sign statistics are obtained on replacing U i by sgn(u i - iI), where iI is 
the median of the NU i values, and the Vi values are transformed 
similarly. Again, the ensuing calculations are just those outlined in 
Section 7.5.3 with the original (Ui,V i ) values replaced by their 
transforms. We have 

u (sgn) = v (sgn) = 0 

o-~ (sgn) = 0-; (sgn) = {Z _ 1, 
N even 

N odd 

but 0-uv (sgn) will depend on the sample configuration. 
Further details will not be given except to note that the method, if 

applied to the two-sample case, leads to the same analysis as that 
described in Section 7.4.2 when n is even. Without change, the 
approach of Section 7.5.3 also copes with n odd. 

Using other transformation based on ranks or robust transfor­
mations is straightforward, as far as testing of a joint null hypothesis 
is concerned. The steps of Section 7.5.3 are followed after applying the 
relevant transformation to (U i , Vi) values. 
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7.6 Multiple-sample location problems 

The randomization argument here is a straightforward extension of 
that used in the two- and three-sample cases; ifthere are k samples of 
sizes n 1, n2 , •• , nk , summing to N, we consider partitions of the N 
vectors (ui,vJ into groups of sizes n1 ,n2 , ... ,nk • The ui((J) values are 
defined, as before, as the sequence of Xi values 'corrected' for their 
group location parameters {)X2' {)X3"'" ()Xk' and the Yi((J) values are 
obtained similarly. 

The discussion of the three-sample case shows how to obtain a test 
statistic for the more general k-sample case. We calculate Q*, 
equation (7.8), by first transforming (u i , vJ values to (ut, vt) values, 
then computing the one-way analysis of variance statistic B* for the ut 
and vt sequences separately and finally adding the two statistics; see 
equation (7.9) and Section 6.4.1. The resulting Q* has a conditional 
null distribution under randomization with expectation exactly 
2(k - 1) and under suitable conditions its distribution can be 
taken as approximation X~(k - 1)' 

Application of the basic idea after various transformations follows 
exactly the pattern exhibited in some detail for the three-sample case 
in Section 7.5, and further details will not be supplied. 

Exercises 

7.1 In the following table are the results of 24 determinations of X, 
percentage dry matter in fresh spinach and Y, percentage 
preserved ascorbic acid after drying at 90°C; the data are from 
RaId (1952) p. 904. 

X Y X Y 

10.0 70.9 12.5 74.2 
8.9 74.0 12.3 83.1 
8.9 58.6 10.0 66.7 
9.2 80.6 10.2 77.2 
7.8 69.4 11.2 83.8 

10.1 76.0 11.2 67.9 
9.0 66.4 10.0 88.9 
8.2 50.9 10.7 69.0 
9.5 61.9 10.3 69.8 

10.8 65.2 12.9 86.0 
11.1 77.2 11.8 79.9 
11.2 89.6 14.9 88.2 
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Perform tests of independence of X and Y using the Spearman 
and the Kendall rank correlation coefficients. 

7.2 Using the sign statistics, Section 7.3.1, examine the hypothesis 
that the medians of X and Y in Exercise 7.1 are 10.5 and 74.0 
respectively using the data as given. 

7.3 Sketch an outline of a joint 90% confidence region for the 
population median (0 1 , ( 2 ) of the joint distribution of Xl and X 2 

in Exercise 7.1, using the given data and the sign statistics. 
7.4 The joint distribution of X and Y is uniform on a rectangle which 

in the (x, y) plane is bounded by the four lines with (slope, 
intercept) values (1,1), (1, - 1), (- 1,4), (- 1, - 4). 

Calculate the efficacy of the bivariate sign test of location and 
compare it with the efficacy of a test based on sample means. 

7.5 The data given below are extracted from a larger collection 
reported in Morrison (1967). They are scores on a psychomotor 
testing device of patients suffering from cancerous lesions. The 
scores on two days, 1, 2, are shown for each patient. The two 
groups of results shown are for a control group of size m = 6 and a 
group of size n = 14 treated with 25-50 r radiation dosages. 

Controls (m = 6) 25-50 r (n = 14) 

2 2 2 

223 242 53 102 32 97 
72 81 45 50 38 37 

172 214 47 45 66 131 
171 191 167 188 210 221 
138 204 193 206 167 172 
22 22 91 154 23 18 

115 133 234 260 

Test the joint equality of Day 1 and Day 2 medians of the two 
populations represented by these data. 

7.6 Assuming symmetry as in Section 7.4 perform a test of equality of 
location of two bivariate distributions from which the obser­
vations in Exercise 7.5 were sampled, using rank statistics. 
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We saw in Chapter 1 how a 'linearization' technique explained heuristically 
the asymptotic behaviour of estimators (j defined implicitly as solutions 
for t of the estimating equation 

Sn(t) = Sn(X, t) = 0 

where X = (X l' ... ,X n) is a vector of random observations, and where in 
some contexts' = 0' may mean 'change of sign'. To recapitulate, if 80 denotes 
the true value of the unknown parameter 8, then by writing t = 80 + n -1/2rx 

for values in a small neighbourhood of 80 , it may be possible to expand Sn as 

Sn(t) = S.(80 ) + rxc. + 0(1) (A.1) 

where 0(1) denotes a term which is small in some sense, where Sn has been 
normalized so that 

(A.2) 
and where 

lim cn = co. (A.3) 
n~ 00 

Then, letting ri. = nl/2({j - ( 0 ), noting that Sn(8) = 0, and ignoring the 0(1) 
term in (A.l) yields 

& = - Sn(80 )/cn 

and (A.2) and (A.3) then indicate that 

& = nl/2 (8 - 80 } !!.-... N(O, (J"~/c~) as n -+ 00. (AA) 

The equation (A.l) is termed a linearization representation. This appendix is 
concerned with making rigorous the informal reasoning leading to (A.4). 
Some of the detail which follows is necessarily technical in nature, and 
assumes a familiarity with probability theory, but some intuitive remarks can 
be made about the ideas now to be developed. 

The argument leading to (A.4) relied upon replacing an arbitrary constant rx 
in (A.l) by the random variable &. This step can be made justifiable if the 
precise nature of the smallness of the 0(1) term in (A.1) is strong enough. 
Condition (A.6) below validates the replacement of rx by &, as long as the 
collection of random variables {&, n ~ I} is well-behaved. 
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The use of linearization techniques has become widespread in asymptotic 
theory of theoretical statistics (see Brown and Kildea (1979) lureckova 
(1969)). 

Firstly, rewrite (A.!) as 

S.(60 + n -1/2a) = S.(60 ) + ac. + U.(a) 

and consider the condition: 

for all finite M < 00, } 

sup I U.(a)1 ..!.... 0 as n ~ 00 
I·I"M 

(A.5) 

(A.6) 

Proposition A.1. Let (A. 2), (A.3) and (A.6) hold, and suppose that [Ii = 
nl/2 (O - 60 ), n ~ 1] is tight, i.e. given e = 0, there exists K so large that 

P(lal > K)~e for all n~ 1. (A.7) 
Then (A.4) holds. 

Proof Identifying the M in (A.6) with the K in (A.7) indicates that the 
remainder term U.(a) in (A.5) is small in probability when Ii replaces a. Thus U. 
may be ignored in the reasoning, outlined previously, which leads to (A.4). 

In their turn, the conditions (A.6) and (A.7) are implied by other, simpler 
conditions. A choice suitable for many applications is given by the following. 

Proposition 2. Let (A.2) and (A.3) hold, and also 

SnIt) is monotone increasing in t 
and for all fixed a 

Then (A.4) holds. 

(A.S) 

(A.9) 

Proof. From Proposition A.1, it is enough to show that (A.S) and (A.9) imply 
(A.6) and (A.7). 

For fixed M and arbitrary e, choose K so large that M / K ~ e. Let 

V.j = sup IU.(a)- U.{(j-l)/K}I 
j- 1 "Ka:r;;,j 

where, as in (A.5), U .(a) = S.(Bo + n - 1/2a) - S.(60) - ac •. 
Now 

SUPUn(IX)~max {IUn(j-l)l+v. j } 

I.I"M lii"MK K 

~ max {lu.(~)I}+ max (V.j) 
lil"MK K lil"MK 

But K is fixed, and U. [(J - 1)/ K] E. 0 for all j, from (A.9). Thus 

max {lu.(~)I} ~O as n~ 00 
lil"MK K 

(A. 10) 

(A. 11) 
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Also, each 

from (A.8) 

for n large enough. Thus the limit in probability of each IVnjl is ~ 21co I 
(e + K - 1). But e and K are arbitrary, so in fact the probability limit is zero. 
Thus with (A.10) and (A. I I), (A.6) is seen to hold. 

To establish (A.7), note that the monotonicity of Sn (i.e. (A.8)) means that 
the event {Ii> K} coincides with {Sn(OO + n- 1 / 2 K) <O}. But 

Sn(OO + n - 1/2 K) = U n(K) + KCn + Sn(OO)' 

The behaviour of the three terms on the right-hand side is indicated by (A.9), 
(A.3) and (A.2). Clearly, choice of K large enough ensures that P(rx > K) ~ e 
for all n ~ 1. P(rx < - K) is handled in the same way, and (A.7) is established. 

Finally, it remains to point out that in most cases, a suitable choice of {cn} 
enabling (A.3) to hold is just 

(A.12) 

where mn(t) = E {Sn(t)} is assumed continuously differentiable at t = 00 , Then, 
the condition (A.9) is implied by 

{
for all fixed cc, 

var {Sn(OO + n - 1/2CC) - Sn(OO)} ..... 0 as n ..... 00 
(A. 13) 

To see this, note that 

Un(cc) = Sn(Bo + n -1/2 ex) - Sn(Bo) - exn - 1/2m~(eo). 

Thus U n(cc) has mean mn(Bo + n -1/2ex) - mn(Oo) - exn - 1/2m~(Bo) which is 
0(n- 1/2), and variance which ..... 0, from (A.13). Thus (A.9) holds. 

To summarize, to justify the informal reasoning leading to (A.4), it will be 
enough in most cases to: 

(i) choose cn according to (A.12) and verify that (A.3) holds; 
(ii) check that Sn is correctly normalized so that (A.2) holds; 

(iii) check that (A.8) holds; and 
(iv) check that (A.13) holds. 

Multiparameter linearization theorems can be constructed in exactly the 
same fashion as the single parameter case considered here. The details can 
become very involved, of course, but the basic ideas remain simple. 

Example A.1 M -estimation of location. Let Xl"'" X n be i.i.d. random 
variables, each distributed symmetrically about an unknown parameter 00 , 

Let t{I be monotone increasing, differentiable with bounded derivative, and 
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anti-symmetric about zero. The M-estimate of (}o based on'" is 0, where 0 = t 
solves S.(t) = 0, with 

• 
S.(t) = - n -1/2 I ",(Xi - t). 

i= 1 

It is easy to check that: 
(i) with c. chosen by (A.12), (A.3) holds and 

co =E{",'(X1-(}o)}; 

(ii) (A.2) holds and O"~ = E {",2(X 1 - (}o)}; 
(iii) S. is monotone increasing in t; and 
(iv) var {S.((}o + n - 1/2a) - S.((}o)} 

=var{",(X1-(}O)-",(X1-(}O-n-1/2a)} 

~ (n - 1/2aC)2 where C is an upper bound on "", 

-+0 as n -+ 00; so that (A.13) holds. 
Therefore the asymptotic behaviour of M-estimators is given by (A.4); i.e. 

n1/2(0 _ (} ) ~ N(O E(",2) ). 
o , {E("")} 2 

Example A.2 The sample median. Letting F. denote the sample distribution 
function based on random observations Xl' ... , X., whose true distribution 
function is F with continuous density j, and true median (}o. The sample 
median (j solves S.(t) = 0, where 

S.(t) = n1/2 {F.(t) - t}. 
(i) m.(t) = n1/2 {F(t) - t}, and c. given by (A.12) makes (A.3) hold with 

Co =j((}o)' 
(ii) (A.2) holds and 0"& = 1/4. 

(iii) S. is monotone increasing in t. 
(iv) var {S.((}o + n - 1/2a) - S.((}o)} is 

n- 1 x {the variance ofa Bi[n,F((}o + n- 1/2a)-F((}o)]r.v.}, 

and -+0 as n-+ 00. 

Therefore 

1/21> D (0 1 ) 
n (u - (}o) -> N '4f2((}o) 

a well-known result which can be proved more easily by direct means. 
In other examples encountered in the main text, the details involved in 

checking (i)-(iv) are more substantial, but the method works in most cases. 
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The following notes on asymptotic efficiency are extracted from Cox and 
Hinkley (1974) pp. 337-338. 

Consider any statistic T which has a limiting N {(J, n - I u}«(J)} distribution, 
(J being one-dimensional. Then the ML ratio test of H 0: (J = (Jo based on T has 
a critical region asymptotically equivalent to 

{y;lt - (JolJn ~ ktIIZ).uT«(Jo)} 

with significance level approximately (1.. The large-sample power function, to 
first order, for (J - (Jo = 8n - liZ is 

<I>{ - ktllz). - _8_} + 1 - <I>{ktllz). __ 8_} (B.I) 
uT«(Jo) uT«(Jo) 

which is symmetric about 8 = O. 
If we compare two consistent asymptotic normal statistics TI and Tz with 

limiting variances n -I u}.«(J) and n - IU},«(J), (B.l) shows that they have 
asymptotically the same power for the same local values of () if the sample 
sizes n l and nz are related by 

n1 I u},«(Jo) = n;l u}2«(JO)' 

Thus, if efficiency is measured by relative sample sizes, then the asymptotic 
relative efficiency of Tl to Tz is 

(T . T ) = u},«(Jo) 
e I' Z Z 

uT,«(Jo) 

or, equivalently, the ratio of power function curvatures at (Jo' Notice that the 
measure e(TI : Tz) is independent of ktllz)a' and hence of the size of the critical 
regions. The same measure is appropriate for local alternatives when derived 
from the significance probability point of view. 

It is unnecessary to restrict test statistics to be consistent estimates of (J. 
More generally, we might suppose that T is consistent for some function J1«(J) 
which is a monotone function of (J, at least near to (J = (Jo' A corresponding 
general definition of asymptotic relative efficiency, often called Pitman 
efficiency, relates to statistics T that are asymptotically N {J1T«(J), u}«(J)}. The 
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simple calculation leading to (B.1) generalizes immediately to give the 
asymptotic relative efficiency of two such statistics Tl and T2 as 

e(Tl: Tz) = {I'~I (80)}2 {ai2(80)}. 
I'T2(80) aT, (80) 

Note that the sensitivity measure 1'~(80)/a T(80) is the Pitman efficacy 
introduced in Section 1.6.2. It is invariant under monotonic transformations 
of T, as is to be expected. 
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