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v

 The discovery of antibiotics is often considered one of man’s greatest achievements, but 
often the clinical and microbiologic outcome depends upon the skill of the clinician direct-
ing therapy. Over the last 30 years, two new sciences, pharmacokinetics and pharmacody-
namics, have increased our understanding of antibiotic behavior in the human host and 
how these agents interact with bacteria. 

 In vitro and In vivo pharmacodynamic modeling characterizes antibiotic performance 
against specifi c bacterial pathogens as concentration dependent (time independent) or con-
centration independent (time dependent). Such knowledge can infl uence antibiotic deliv-
ery methods and determine whether desired pharmacodynamic outcome parameter values 
will be achieved. As a result, continuous infusion or extended infusions of beta-lactam 
antibiotics or a single daily dose of aminoglycosides are now commonplace strategies used 
to optimize antibiotic presentation. 

 Linking bacterial antibiotic susceptibility in the form of a minimum inhibiting concen-
tration (MIC) with antibiotic pharmacokinetic parameters generates pharmacodynamic 
outcome parameters. Depending upon the antibiotic and pathogen, the peak antibiotic 
concentration (Cp-max) to MIC ratio (Cp-max/MIC), the area-under-the-serum-
concentration-  time-curve (AUC) to MIC ratio (AUC/MIC), and the percent of time that 
antibiotic concentration remains above MIC (%T> MIC) have all been reported to be use-
ful predictors of antibiotic performance. 

 These data combined with Monte Carlo modeling strategies can predict the probability 
of achieving the desired therapeutic goal based on the specifi c pathogen, bacterial MIC, 
dose, dosage interval, and method of antibiotic delivery. The advances in antibiotic phar-
macodynamics have now found their way into the antibiotic development process used for 
licensing new antibiotics. 

 This text offers state-of-the-art contributions written by world renowned experts which 
provide an extensive background on specifi c classes of antibiotics summarizing our under-
standing as to how these antibiotics might be optimally used in a clinical situation.  

  Minneapolis, MN, USA     John     C.     Rotschafer    
 Madison, WI, USA     David     R.     Andes    
 Chicago, IL, USA     Keith     A.     Rodvold     

  Pref ace   
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Chapter 1

General Concepts of Pharmacodynamics  
for Anti-infective Agents

Johan W. Mouton

Abstract

Pharmacokinetics (PK) and pharmacodynamics (PD) have become an important field in the evaluation and 
application of antimicrobials in all its aspects. PK/PD is used in developing drugs, optimizing therapy, 
setting clinical breakpoints, and preventing emergence of resistance. This chapter provides a general over-
view of PK/PD, the major factors that play a role, in vitro–in vivo relationships, pitfalls, and the application 
to clinical practice.

Key words Pharmacodynamic indices, Emax models, Exposure-response relationships

1 Introduction

Pharmacokinetics (PK) and pharmacodynamics (PD) have become 
an important field in the evaluation and application of antimicrobi-
als in all its aspects. It is now almost unconceivable that the devel-
opment of antimicrobials would take place without a thorough 
understanding of PK/PD relationships. But what then is exactly 
PK/PD? And why is it so important? In this chapter we provide a 
general overview of the emergence of PK/PD as a separate disci-
pline and highlight important aspects of the field. It should be 
borne in mind, however, that the field is still evolving and that 
nothing is set in stone—yet there are certain principles that will not 
change. Indeed, some dogmas—if ever there were—have been 
shown to fail under certain circumstances. On the other hand, try-
ing to understand what is going on between antibiotic and micro-
organism has led to some general principles that are now widely 
accepted, and exceptions to certain behavior in the past can now 
readily be explained with new understanding.

Pharmacokinetics and pharmacodynamics link the exposure of 
an antimicrobial in the host—e.g., the human—to its effect on 
microbes, and this marks the exposure–effect relationships differ-
ent from other drugs. Whereas for other drugs, such as a 
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 beta- receptor agonist or aspirin, the drug interacts and exerts its 
effect directly on a receptor in the human body, antimicrobials 
interact with receptors on the microorganism with the purpose of 
inflicting damage in such a way that the microbe cannot survive. It 
easily follows that the number of different receptors to potentially 
interact with is much larger for an antimicrobial and a microbe 
than another drug in the human body. Every species of microor-
ganisms is characterized by its own set of receptors, and the way 
antimicrobials interact with these receptors is therefore also species 
specific. Moreover, due to the rapid multiplication of microorgan-
isms and selection of mutants in specific environmental conditions, 
new populations of the same species with other receptor character-
istics may emerge fast—resulting in what is generally known as 
reduced susceptibility or resistance. The field of antimicrobial 
pharmacodynamics endeavors to describe this interaction by sev-
eral methods with the overall purpose to be able to predict the 
efficacy of antimicrobials in the treatment of infectious diseases. 
Most of these methods were rather crude in the past, but increas-
ing refinement has led to a growing insight into exactly how anti-
microbials can be used more successfully, by optimizing both the 
dosing for cure and the usage and dosing to reduce or prevent 
emergence of resistance. Importantly, it was realized that pharma-
cokinetics play an important role in the overall effect of an antimi-
crobial, and that the concentrations in different compartments of 
the host as well as the time course of those concentrations had a 
marked impact on the overall effect of the antimicrobial. Hence 
the aggregated term PK/PD emerged to incorporate the impact of 
pharmacokinetic profiling in the overall outcome of antimicrobial 
treatment.

PK/PD then describes the effect of the concentration-time 
course of an antimicrobial on the microbe as well as the longer 
term outcome thereof including the overall purpose of antimicro-
bial treatment, that is, cure of the patient, prevention of infection, 
or prevention of emergence of resistance, as illustrated in Fig. 1.

From the diagram in Fig. 1, it is obvious that there are many 
factors that play a role from dosing regimen to clinical cure of the 
patient. In the following, the major components that constitute 
PK/PD relationships and/or have a significant impact are dis-
cussed, but are intended to serve as a general overview. In each of 
the following chapters much is covered in much more detail. In the 
first part, pharmacodynamic relationships and parameters are dis-
cussed, the interaction of the drug with the microorganism, and 
methods to describe those. The second part introduces pharmaco-
kinetic profiling and the effect thereof in exposure-response rela-
tionships. Although the text and examples primarily concern 
antibacterials, the principles of PK/PD are similar for antifungal 
and antiviral drugs. Finally, in the last section a number of applica-
tions and considerations are provided.

Johan W. Mouton
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2 Concentration-Effect Relationships: Pharmacodynamics

Microorganisms contain many receptors that antimicrobials inter-
act with, some more important than others and in most cases one 
or two that the antimicrobial agent specifically was developed for. 
However, it is practically impossible—or has been until now—to 
define specific drug-receptor interactions; rather an overall mea-
sure of activity of an antimicrobial agent against a microorganism 
is used. The pharmacodynamic parameter most often used to that 
purpose is the minimum inhibitory concentration (MIC). The 
MIC is defined as the lowest concentration with no visible growth 
after (in most cases) 16–20 h of incubation under specifically pre-
scribed conditions [1]. Alternatively, the minimum bactericidal 
concentration (MBC) is the concentration with no (or few - see 
below) surviving bacteria in the MIC test and therefore is generally 
higher than the MIC. Both the MIC and the MBC strive to cap-
ture the overall effect of an antimicrobial over a certain period of 
time: the parameter value of the MIC (or MBC) is the end result 
of growth and/or kill of bacteria by the antimicrobial over time. It 
should be noted that “MIC testing” and “susceptibility testing 
using the MIC test” are often interchangeable but strictly speaking 
are two separate procedures. The MIC test provides a measure of 
activity, whereas susceptibility testing also includes an interpreta-
tion of the parameter value in the test.

The MIC was first described in some way in the report by Ericsson 
and Sherris, when microbiologists were looking for a method to 
characterize the activity of an antimicrobial agent and using a mea-
sure of activity to distinguish resistant populations from susceptible 

2.1 MIC

Pharmacodynamics
Interaction of drug with bug

Pharmacokinetics
Concentration profile

Antimicrobial Efficacy
(e.g.Microbiological Cure, 

Emergence resistance prevention)

Effect on Host 
( e.g. Clinical cure, 

prevention infection)

Dosing Regimen

Host factors
(e.g. immune system)

External factors

Fig. 1 The interrelationships between dosing, pharmacokinetics, pharmacodynamics, and treatment outcome

General Concepts of Pharmacodynamics for Anti-infective Agents
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populations [2]. In the report, twofold dilutions are mentioned as 
well as the inclusion of 1 mg/L in the dilution series. However, the 
MIC is dependent on many factors that all represent their effect on 
the growth rate and kill rate of the bacterial population during the 
time of incubation. These factors include incubation temperature, 
atmosphere (CO2), pH, inoculum, and, importantly, composition 
of the medium including Mueller-Hinton, the medium often used 
today. However, Mueller-Hinton is not a very-well-defined 
medium, and certainly at the time there were significant batch-to- 
batch and producer-to-producer variations that resulted in a repro-
ducibility of the MIC that was not satisfactory to many. For the 
disk-diffusion susceptibility testing method this effect was even far 
more pronounced. It was not possible to reach a consensus in the 
years following the publication of the report, and many different 
methods were developed at the time. In Europe, a significant num-
ber of countries adopted the ISO sensitest medium instead of 
Mueller-Hinton, since ISO sensitest was a much better defined 
medium than Mueller-Hinton and reproducibility—in particular 
for disk-diffusion—considered superior. Then, in 2002, an initia-
tive was taken by the European Committee on Standardization 
(CEN) to reach consensus on a reference method for susceptibility 
testing culminating in two standards from the International 
Standards Organization (ISO). ISO 25572-1 [1] describes the 
standard microdilution method for rapidly growing aerobic bacte-
ria and is based on earlier published methods of CLSI [3] and 
EUCAST [4]. A separate document, ISO 25572-2, describes the 
validation procedure for other methods [5]. Finally, very recently 
an ISO standard for Mueller-Hinton medium was agreed on and is 
in its final stages before publication [6]. For yeasts and molds there 
is no worldwide consensus, and the MICs of these should there-
fore always be looked at with some caution and as will become 
apparent below, this may have significant impact on the interpreta-
tion of PK/PD relationships.

Although the microdilution MIC is considered the gold stan-
dard, agar dilution has long been the mainstay of MIC testing for 
large numbers of strains simultaneously, in particular in drug devel-
opment and epidemiological studies. In this method a series of agar 
plates is incubated with inocula of up to 40 strains, each agar plate 
containing, similar to microdilution assay, a twofold increase in 
antibiotic concentration. The activity of the antibiotic is read as 
growth or no growth at a certain concentration. The inoculum for 
agar diffusion is typically somewhat lower than in microdilution, 
10E4 cfu (colony-forming units) vs 5 × 10E5 cfu/ml, and is one of 
the reasons that the MIC is often somewhat lower. Agar diffusion is 
still being used for screening large numbers of strains, but the values 
obtained may differ by one- or twofold dilutions from those obtained 
by microdilution depending on the antimicrobial and strain tested. 
Thus, for any interpretation and calculation of pharmacodynamic 
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targets (for the definition see below), this method is less suitable, 
unless having been validated against the ISO standard microdilu-
tion method. Yet, the method does provide an alternative to the 
microdilution method and has the advantage that the effect of the 
antibiotic can be measured quantitatively. A more in-depth discus-
sion of susceptibility testing can be found in Chap. 2. A variation of 
this method, using large inocula, is being used to determine the 
mutant prevention concentration (MPC; see Sect. 4.5).

The MIC is not an “all or nothing” parameter of activity, 
although this may seem to be the case. The definition clearly states 
“non-visible growth” as an end point, and the initial inoculum is 
clearly defined as 3–7 × 10E5 cfu/ml. Non-visible growth after 
incubation may represent any number of bacteria between 0 and 
the number resulting in visible cloudiness—in effect around 10E8 
bacteria/ml. Effectively, bacteria may not even have been inhibited 
in growth, but grown from inoculum size to just under the limit of 
detection by vision—still more than 2 10logs! Alternatively, signifi-
cant killing over the incubation period may have resulted in a 
decline in 2 10logs, but the MIC would still not have a different 
value. The implications hereof are discussed in [7]. This lack of 
precision of the measurement of antimicrobial activity is one of the 
explanations that PK/PD relationships found by various investiga-
tors may vary significantly.

The pharmacodynamic parameter that is somewhat more pre-
cise as an estimate of antimicrobial activity is the minimum bacte-
ricidal concentration, the MBC.

The MBC has long been used as an indication of bactericidality of 
a compound, in particular in the previous century when PK/PD 
relationships were not well established and alternative measures of 
the activity of an antimicrobial were sought. The MBC is deter-
mined by plating the contents of each well in the twofold dilution 
series and ascertaining growth or nongrowth the following day. 
The lowest concentration with at least a 99.9 % reduction in cfu 
compared to the initial inoculum is the MBC. This method is 
seemingly more precise—bacteria either survive or do not. 
However, the time course of killing is not taken into account—and 
the duration of incubation in the MIC test of 16–20 h is therefore 
one of the major factors that contribute to the MBC and is there-
fore still an arbitrary measure of activity.

Although the MIC captures the overall activity of an antimicrobial 
in a single value, which has its practical advantages, there are two 
important drawbacks that also apply to the MBC. The first is that 
it does not describe the effect of the antimicrobial over time, only 
the end result after 16–20 h (or other times in certain cases) of 
incubation. Thus, as an example, whether bacteria are slowly killed 
over time or rapidly killed over time these different patterns of kill-

2.2 MBC
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ing all could result in the same MIC and MBC value. Moreover, 
initial killing after which regrowth occurs is not accounted for 
either in the MIC test.

Differences in killing behavior of antimicrobials were observed 
as early as 1948, when Garrod described kill kinetics of streptomy-
cin and penicillin and Staphylococcus aureus [8]. Studies over the 
years by various investigators such as Shah [9], Mattie [10], and 
the group of Craig [11] have indicated that the behavior and kill-
ing characteristics differed between various classes of antimicrobi-
als and ultimately led to the recognition of antimicrobials that 
show increased killing over a large concentration range and those 
that do not. In addition, some antimicrobials show relatively fast 
killing, whereas others show a much slower but persistent killing 
effect. An example is shown in Fig. 2 for ceftazidime and tobramy-
cin. Killing of ceftazidime is maximized at concentrations of around 
four times the MIC. Microorganisms exposed to concentrations 
higher than four times the MIC all show the same rate of decline 
of cfu. Concentrations lower than the MIC do not have much 
effect, although there is some growth inhibition at concentrations 
just below the MIC. In contrast, increasing concentrations of 
tobramycin result in an increased kill rate, up to the highest con-
centration measured. The different killing properties of these two 
classes of agents have led to the terms “concentration- independent” 
and “concentration-dependent” antimicrobials. The former term 
is not fully correct of course, since effects are always concentration 
dependent and only indicate the degree and span of kill rates of the 
one relative to the other. As discussed later in this chapter, these 
pharmacodynamic properties of the two classes are associated with 
their antimicrobial effects in vivo.

Fig. 2 Time-kill kinetics of ceftazidime (left) and tobramycin (right) and Pseudomonas aeruginosa. Killing by 
tobramycin at higher concentrations is significantly faster than by ceftazidime
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Another way of expressing the rate of killing of bacteria is plot-
ting the kill rate as a function of concentration, as shown in Fig. 3. 
At low concentrations the kill rate is negative (because there is 
growth of the microorganisms) whereas increasing concentrations 
result in an increased kill rate. The kill rate is maximal at four times 
the MIC for ceftazidime, and at much higher concentrations for 
tobramycin. It should be realized that the maximum kill rates are 
in part dependent on the experimental conditions and the way 
samples were obtained, in particular for “concentration- dependent” 
drugs. For instance, some antimicrobials—such as the fluoroqui-
nolones against enterobacteriaceae—kill bacteria at such speed at 
high concentrations that measurements after even a short period as 
one-half hour of incubation will underestimate the kill rate, and 
carryover effects will overestimate it.

The relationship between concentration and kill rate can be mod-
eled. One of the most often used models to describe the killing of 
bacteria is the Emax model with variable slope, also called the Hill 
equation:

 Effect ECg g g= ´ +E C Cmax / ( )50  

where Emax is the maximum effect, C the concentration, EC50 the 
concentration where 50 % of the effect is reached, and g the Hill 
slope. Several variations of the model exist, for instance including a 
minimum effect (the model shown above assumes the minimum 
effect to be 0), or including a negative sign. The Emax model has 
shown to be a very useful tool to describe pharmacodynamic rela-
tionships and thereby estimate parameter values that can subse-
quently be used to compare the effects of different drugs or 
different conditions. It should be borne in mind however that one 
of the major reasons the model is so effectual is that by the nature 
of most experiments and the type of observations used, the Emax 
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Fig. 3 Kill rates of ceftazidime (left) and tobramycin (right) against P. aeruginosa. Note the different scales used 
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and Emin are predetermined by experimental conditions and not 
necessarily always represent the “true” effects of a drug. This will 
be further discussed in Sect. 3.

In Fig. 3, the Emax model for the ceftazidime and tobramycin 
kill rate data indicate that the maximum kill rate of tobramycin is 
reached at much higher concentrations than for ceftazidime; in 
addition the Hill slope has a much lower value—represented by the 
shallower curve for tobramycin. As will be seen later in the chapter, 
the PK/PD behavior in vivo can be traced directly to these specific 
attributes.

The effect of an antibiotic on a bacterial population can be 
described by the natural growth rate of bacteria and the kill rate of 
the antibiotic, the latter dependent on the antibiotic concentra-
tion as described by the Emax model. It can be calculated that for 
every antibiotic there is a certain concentration where the growth 
rate equals the kill rate and there is no net growth of bacteria, the 
stationary concentration SC [7, 12, 13]. Above the SC bacteria 
will outgrow, and below the SC bacteria are killed. The SC is 
therefore a much more precise estimate of antibacterial effect than 
the MIC is but arguably much more difficult to measure. The SC 
is also dependent on experimental and in vivo conditions, whereas 
the MIC is standardized. In general, the SC is somewhat lower 
than the MIC. The lower the Hill slope and/or growth rate, the 
lower the SC is, relative to the MIC. The SC is further discussed 
in Sect. 3.4.

3 PK/PD

In the section above, the effect of the antimicrobial agent was 
described at fixed concentrations: the MIC as the lowest concen-
tration with no visible growth, and time-kill curves describing the 
effect of an antimicrobial agent at various concentrations. 
Noteworthy, during these tests concentrations during exposure to 
an inoculum do not change. However, when patients are treated 
for infections and receive an antibiotic for the treatment of an 
infection, the concentrations resulting from the dose are not fixed. 
A dose results in increasing concentrations initially, the speed being 
dependent on the infusion rate or absorption rate of the drug. 
After a maximum concentration has been reached, concentrations 
decline over time due to redistribution and elimination, until the 
next dose is administered and the cycle starts anew. Thus, the con-
centration changes over time. Moreover, patients usually receive 
antibiotics several times a day, the frequency of administration 
varying depending on the drug. Obviously, the concentration-time 
profile is much different from that applied in MIC testing and 
time-kill curve experiments, and it is not possible to use a single 
concentration to express the activity of the drug in vivo. This was 
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already appreciated in the very early days of antimicrobial chemo-
therapy. Harry Eagle, in groundbreaking experiments in mice, 
demonstrated that the frequency of administration of penicillin 
had a profound effect on its efficacy, even if the total daily dose was 
the same, indicating that the shape of the concentration profile did 
have a significant impact on the overall effect of this particular anti-
biotic [14].

Since concentrations change over time during intermittent dosing 
schedules, other measures of exposure are required to allow expres-
sion of exposure of an effect. Over time, three measures have 
appeared to be particularly useful (Fig. 4). The first is the area 
under the concentration-time curve (AUC), and it represents the 
integrated concentration over time. Thus, independent of the 
shape of the curve, it is a measure for total exposure of the drug to 
the microorganism. Since most (but not all) of the antimicrobials 
used today show linear pharmacokinetic behavior after intravenous 
administration, it follows that there is a linear relationship between 
dose and AUC. In other words the AUC over a certain time 
period is, until certain limits, independent of the frequency of 
administration. The second measure is the peak concentration or 
maximum concentration Cmax. This is usually defined as the high-
est concentration in plasma after the distribution phase. The third 
measure of exposure is the time the concentration remains above 
the MIC of the microorganism. This is usually expressed as a per-
centage of the dosing interval (%T > MIC). In contrast to the AUC, 
the %T > MIC is dependent on the shape of the concentration-time 
curve as illustrated in Fig. 4b. It should be noted that the first two 
measures, the AUC and the Cmax or peak concentration, can be 
determined without any knowledge of an MIC and are strictly spo-
ken pharmacokinetic parameters, whereas for calculation of the 

3.1 Pharmaco-

dynamic Indices

Fig. 4 (a) Schematic presentation of the pharmacokinetic parameters Cmax (maximum concentration) and AUC 
(area under the concentration-time curve; indicated in light grey) and the pharmacodynamic index time > MIC. 
(b) Effect of dosing frequency on the %T > MIC: the daily dose is similar for each of the three regimens, the AUC 
is similar, but the %T > MIC increases if the frequency of administration increases, as indicated by he horizon-
tal bars below the figure
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%T > MIC the value of the MIC is required. The pharmacodynamic 
expressions that go together with AUC and peak concentration are 
the AUC/MIC ratio and the peak/MIC ratio and express the rela-
tionship between two independent estimates and are referred to as 
pharmacodynamic indices rather than pharmacodynamic parame-
ters: a pharmacodynamic index is not a parameter by itself, but the 
ratio of two independent parameter estimates [15]. Another way of 
expression is that the exposure of the microorganism to an antibi-
otic in pharmacokinetic terms is normalized by the potency of the 
antibiotic and thereby provides a means to establish exposure- 
response relationships independent of the MIC.

There have been significant discussions as to the dimension 
and units that should be used for pharmacodynamic indices as they 
are, in principle, a construct of two independent parameter esti-
mates. This applies in particular to the AUC/MIC. Moreover, the 
value of the MIC is not an unconditional parameter, but is depen-
dent on certain conditions, such as medium composition, duration 
of incubation, initial inoculum, atmosphere, and others. In the two 
papers that defined the use and expressions of pharmacodynamic 
indices units for AUC/MIC ratio were proposed in the first [16], 
but in the sequel more expanded paper, units for pharmacody-
namic indices were abolished, as there was the general feeling that 
the use of units was not justified [15] although there is still a debate 
[17]. Thus, the AUC/MIC ratio is dimensionless, but the two 
constituent factors AUC and MIC have their own definition. It 
could also be argued that the MIC is a measure of effect over (the 
incubation) time rather then a concentration and therefore should 
have the dimension h.mg/L rendering the ratio dimensionless. For 
the peak/MIC ratio such a discussion appeared to be meaningless, 
because even if dimensions would be taken into account, both are 
expressed similarly (mg/L, although with a total different mean-
ing) and the ratio therefore is dimensionless by default. The 
%T > MIC is obviously expressed in % of the dosing interval or % of 
24 h. However, even with a description of the intended meaning 
of these expressions, there is still a lot of leeway in the procedures 
to determine the exact value estimates. There are many different 
methods to determine an AUC, and the same applies to peak con-
centration in particular. It is therefore imperative that any descrip-
tion of a pharmacodynamic relationship provides a description of 
the methods used. In particular, for drugs with a long half-life the 
estimate of the AUC in steady state differs significantly from that 
after the first dose, or even the first 24 h of treatment.

Exposure-response relationships have been established for most 
antimicrobials, and it has appeared that these differ by class of anti-
biotic, but are markedly consistent within a class. After Eagle 
described the dependency of the effect of penicillin on dosing fre-
quency in mice experiments, several decades passed until this was 
followed up by evaluating the effect of dosing regimens of penicil-

3.2 Exposure- 

Response 

Relationships
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lin by Bakker-Woudenberg in a rat pneumonia model [18] and 
other antimicrobials in the neutropenic mouse thigh model by 
Gerber and colleagues [19]. Elaborate studies by the group of 
Craig showed that for some classes of drugs frequency of adminis-
tration did matter, while for others it did not [20–22]. The experi-
mental setup that they chose was the mentioned neutropenic 
mouse thigh model that since has been copied many times and has 
become some sort of a standard model, if only because virtually 
every antibiotic has been evaluated in this infection model. Mice 
are rendered neutropenic and infected with an inoculum typically 
in the range of 10E6–10E7 per thigh. After 2 h, mice receive dos-
ing regimens varying both in dose and frequency for 24 h. Each 
mouse receives a different regimen. After 24 h—or in some models 
48 or 72 h—the mice are terminated and the number of cfu in each 
thigh determined by homogenizing the thigh and plating in ten-
fold dilutions. In the pulmonary model, also often used to deter-
mine the efficacy of antimicrobials in lung-infections, the lungs are 
surgically excised. In separate experiments, the pharmacokinetic 
characteristics of the drug are determined to establish the exposure 
for each dosing regimen. By plotting the number of cfu after treat-
ment against the exposure for each mouse an exposure-response 
curve can then be constructed. An example is provided in Fig. 5, 
showing the exposure-response relationship of AUC, peak, and 
%T > MIC for levofloxacin and a strain of S. pneumoniae [23]. The 
data show a clearly better relationship between AUC and response 
than %T > MIC and response; there is a moderate relationship with 
the Cmax. As can be observed from the figure, the relationship 
between exposure and response is of the Emax model type and fit-
ting the Emax model to the data indeed shows the best relationship 
with AUC, as inferred from the R2 of the model fits. The Emax 
model used is similar to that described in the previous section, 
except that the concentration C and the 50 % effective concentra-

Fig. 5 Relationship between AUC, Cmax, and %T > MIC of levofloxacin and number of cfu of S. pneumoniae. 
Adapted from Scaglione, 2003
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tion EC50 are substituted by the pharmacokinetic parameter or 
pharmacodynamic index (PI) values.

The Emax model fit allows estimations of the parameters in the 
model, such as the EI50 (the 50 % effective (pharmacodynamic) 
index). However, another set of parameters has appeared to be 
very useful over the years. The most important one is the net static 
effect. This is the dose or exposure resulting in the measure of 
effect being unchanged from baseline to the time of evaluation 
(e.g., the number of cfu at t = 0 h (baseline, start of treatment) and 
t = time of sampling (usually 24 h)). The use of the term static does 
not imply that no changes have occurred during the period of ref-
erence; indeed kill and regrowth may have repeatedly occurred 
[15]. Other characteristics include exposures that result in the Emax, 
90 % of the Emax, or a 1 or 2 10log drop (Fig. 6). The PI value that 
will result in one of the effects described and is desired is also called 
the pharmacodynamic target (PT). In Fig. 6 the value at “A” is the 
static effect of pharmacodynamic target and at “B” the 2 10log 
drop of pharmacodynamic target. Pharmacodynamic targets have 
been described for many microorganism–anti-infective combina-
tions and in general show a good concordance with survival and 
clinical cure (see below), in particular for the free, nonprotein- 
bound fraction of the drug [24].

As noted in paragraph a, the AUC and the Cmax are pharma-
cokinetic parameters and effect plots do not necessarily include the 
MIC, whereas for %T > MIC the MIC is required. Including the 
MIC in the effect plots such as Fig. 6 by using the AUC/MIC or 
Cmax/MIC will only have a scalar effect, that is, depending on the 
MIC, the shape of the curve and the overall relationship do not 
change. The curve is only shifted to the left (if the MIC is above 1 
mg/L) or to the right (if the MIC is below 1 mg/L). In contrast, 
the overall relationship and shape of the curve between %T > MIC 

Fig. 6 Figure illustrating various measures of effect in the exposure-response model. The relationship between 
cfu and AUC is described by the Emax model with variable slope. The static effect represents no net change in 
cfu after 24 h of treatment, the 2 10log drop a 100-fold decrease in cfu. A indicates the pharmacodynamic 
target corresponding to the static effect, B to that of the 2 10log drop

Johan W. Mouton



15

and effect will change depending on the MIC. Also, given a certain 
dose and assuming linear pharmacokinetics, the AUC is indepen-
dent of the shape of the pharmacokinetic curve, whereas %T > MIC 
can be markedly different for a drug given as a bolus infusion or as 
extended or continuous infusion. Estimates of %T > MIC are, in 
general, therefore more difficult and cumbersome to ascertain.

One of the issues that has risen to considerable debate in the past 
is the effect of protein binding and to what extent protein binding 
plays a role in the outcome of treatment, although it was shown 
that there was a relationship between the degree of protein binding 
and the ability of various penicillins to kill S. aureus as early as 1947 
[25]. The issue has by and large been resolved by elegant analysis 
of pharmacodynamic results by Craig. By comparing the exposure 
required for stasis in the infected thigh model for seven different 
quinolones with different degrees of protein binding properties—
varying between less than 20 % to over 80 %—he showed that the 
AUC/MIC ratio to result in stasis was similar for each of the seven 
quinolones if only the free fraction of the drug was considered. 
However, the AUC/MIC of total drug—thus including the 
protein- bound fraction—was different for each of them, and the 
AUC/MIC required proportional to the degree of binding 
(Fig. 7). Likewise, the %T > MIC of cephalosporins required for 
static effect was comparable if based on unbound antibiotic, but 
became longer if the unbound fraction was taken into account 
[26]. In pharmacodynamic expressions, the suffix f is often used to 
indicate that the free fraction of the drug is meant. Thus fAUC 
represents the AUC of the nonprotein-bound fraction, whereas 
AUC indicates total drug. Methods to establish the degree of pro-

3.3 Protein Binding

Fig. 7 The 24-AUC/MIC values for total (grey) and free drug (white) required for a static effect of seven fluoro-
quinolones. Labels indicate the fluoroquinolone abbreviated by -floxacin. Courtesy of Dr. William A. Craig, MD, 
2011
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tein binding have evolved over the years, and have helped to inter-
pret the interpretation of protein binding [27].

The degree of protein binding is of considerable importance in 
the translation and interpretation of pharmacodynamic target val-
ues from one setting to the other, such as mice to men, or even 
in vitro activity to activity in vivo. Protein binding of a number of 
antibiotics differs considerably across species, and not making 
allowance for this may result in considerable over- or underestima-
tion of antimicrobial activity. Unfortunately, this was not fully rec-
ognized until the last decade of the previous century. Daptomycin 
most likely failed in initial clinical studies because of its high pro-
tein binding not considered [28]; teicoplanin likewise failed ini-
tially because of dosing that was too low, and one of the explanations 
was the relatively high protein binding [29]. The importance of 
protein binding is further discussed in Chap. 5.

In the section above, exposure-response relationships were dem-
onstrated for levofloxacin, representing the class of the fluoroqui-
nolones. Similar relationships have been determined for other 
classes of drugs, such as beta-lactams, aminoglycosides, glycopep-
tides, and many others, and pharmacodynamic targets have been 
derived from each of these relationships. The one class of antimi-
crobials that clearly shows a different pharmacodynamic behavior 
is the beta-lactam class. The beta-lactam class is extensive and many 
of the drugs that are used belong to this class including the penicil-
lins, cephalosporins, carbapenems, and monobactams. Figure 8 
shows the results of dose fractionation studies of levofloxacin and 
ceftazidime. In contrast to the example of levofloxacin above, the 
relationship between %T > MIC and effect is clearly superior to that 
of AUC and effect for ceftazidime. In analogy to deriving pharma-
codynamic targets of levofloxacin for AUCs, %T > MIC targets can 
be determined for beta-lactams. Experimental work shows that the 
static effect is reached at around 40 %fT > MIC for cephalosporins, 
but may be higher or lower for other subclasses.

A certain relationship exists between the pharmacodynamic prop-
erties of antimicrobials in vitro and in vivo. In general, time-kill 
kinetics showing an antimicrobial to be “concentration depen-
dent” will show a good relationship with total AUC in vivo, pro-
vided that the Hill coefficient does not deviate too much from 1. 
For most drugs this is the case. In the Emax model, the killing effect 
over time dN/dt is then described by (Emax × (C/C + EC50)) × N 
where N is the number of bacteria and C is the concentration 
(static in time-kill curves but changing over time depending on the 
pharmacokinetic profile). For C ≪ EC50, and taking the integral 
over time, this resolves to the integration over C, and the change 
in bacteria over time thus being linearly related to AUC (Emax and 
EC50 being regarded constants). For antimicrobials that show a 
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“concentration-independent” killing, characterized by a Hill coef-
ficient well above 1, the degree of killing can be described by some 
sort of a step function, with killing of bacteria above a certain con-
centration and outgrowth of bacteria if the concentration falls 
below a certain value. It should be noted that the concentration 
where there is no growth and no kill of bacteria—the stationary 
concentration SC as discussed in Sect. 2.4—is not equal to the 
MIC and may be well below the MIC, in particular if growth is 
relatively slow compared to in vitro conditions. The difference in 
SC and MIC may explain some antibacterial effects observed 
in vivo, such as the post-antibiotic in vivo effect [13]. This is the 
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Fig. 8 PK/PD relationships of the fluoroquinolone levofloxacin (upper panel) and the beta-lactam ceftazi-
dime (lower panel). With permission from [38]
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time lag between concentrations of an antibiotic declining below 
the MIC in vivo and observed regrowth of bacteria. The lower the 
SC compared to the MIC, and the longer the half-life of the anti-
biotic, the longer the post-antibiotic effect. Conversely, a long 
post-antibiotic effect can also be caused by other persistent effects. 
Post-exposure and sub-MIC effects have also been described [30].

In a slightly different approach, Tam and colleagues endeav-
ored to distinguish between peak, AUC, and %fT > MIC antimi-
crobials by defining three-dimensional planes separating the effects 
of in vitro PK/PD characteristics in three categories correlating 
with in vivo effects with major dependencies on dosing frequency 
and dose [31]. In their proposal and subsequent simulations, they 
found that the PI is at least in part, depending on dosing intensity, 
a combination of average killing characteristics and dosing 
regimen.

Whereas experimental conditions can be controlled in the research 
setting and PK/PD relationships therefore relatively easy to estab-
lish, this is much more difficult in the clinical setting. Moreover, 
for many drugs fixed dosing regimens have been established—typi-
cally found in the hospital formularium—and therefore the varia-
tion in pharmacokinetic profiles is relatively low. MICs of 
microorganisms are not always available, and the definition of 
treatment success in terms of cure or failure is not always clear 
either. As a consequence, it took much longer to ascertain exposure- 
response relationships in patients. Most of the early studies were 
focused on quinolones and aminoglycosides. One of the first stud-
ies to show the relationship between AUC/MIC and microbio-
logical and clinical cure was by Forrest and colleagues in patients 
with a pseudomonas infection treated with ciprofloxacin [32]. 
They showed that patients with an AUC/MIC ratio below 125 did 
significantly worse than patients with an AUC/MIC ratio of 125 
or higher. Increasing the ratio up to 250 and beyond resulted in an 
even better outcome. Subsequent studies by Preston and col-
leagues [33] and Ambrose and colleagues [34] found similar rela-
tionships for quinolones. Relationships for other antimicrobials 
have also been established, many of these discussed in specific 
chapters in this book, including antifungal agents [35]. In princi-
ple, these studies, and all subsequent ones, follow the same study 
design as depicted in Fig. 9: estimate the exposure in individual 
patients using population pharmacokinetic models and/or sam-
pling in individual patients, determine the MIC of the infectious 
microorganisms, and define microbiological and clinical cure at 
relevant moments in time. Figure 10 shows an example of such an 
approach for ceftazidime in the treatment of nosocomial pneumo-
nia [36]. The figure shows the relationship between %fT > MIC 
and clinical efficacy. Logistic regression was used because of the 
binomial outcome cure versus no cure. Classification and  regression 
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Fig. 9 Diagram showing the general setup of PK/PD analyses in patients. Note 
the resemblance with Fig. 1
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tree analysis was performed to determine the value that best distin-
guishes between a high and a low probability of cure. This was 45 
% in this study, and is in the same range as that found in animal 
models.

4 Some Considerations

It should be clear from the discussions above that there are many 
factors that have an impact on the parameter estimates that are 
required to determine pharmacodynamic indices, and that with 
any interpretation of data the methods used to determine these 
parameter estimates should be borne in mind. In addition, the 
experimental or clinical circumstances under which pharmacody-
namic relationships are established may bear no predictive value for 
every situation. One of the issues that is a matter of elaborate dis-
cussions is the generability of pharmacodynamic target estimates 
and exactly which targets should be used to adequately predict 
treatment success. Here some of these issues are discussed a little 
more in depth.

Although it has been clearly established that exposure-response 
relationships found in mice—or other animal species—concur with 
those in men, as has been shown by Ambrose and colleagues [24], 
there are a few issues that should be borne in mind. The first is, as 
discussed above, the degree of protein binding. Although this can 
be adjusted for by using the free fraction of the compound only 
when establishing PK/PD relationships, this is not satisfactory for 
compounds that show concentration-dependent protein binding, 
because the pharmacokinetic profiles in mice that will result in a 
certain AUC differ from those in men. As an example, Scaglione 
and colleagues showed that, because of the concentration depen-
dence of the protein binding of quinolones, the exposure-response 
relationships of free drug were different from those of total drug in 
mice, and therefore the pharmacodynamic behavior was to be rein-
terpreted [23]. A similar situation exists for ceftriaxone and some 
other drugs. It should be stressed again however that there is a 
difference in pharmacodynamic behavior of the drug and pharma-
codynamic target. The latter is dependent on the compartment 
where the drug is measured, and the matrix that was used to deter-
mine the target. Thus, a pharmacodynamic target derived from 
concentrations measured in plasma should not be used as a target 
in epithelial lining fluid (ELF) or other tissue compartment. 
Similarly, the pharmacodynamic index relationships of free drug 
are not necessarily the same as for total drug.

The second issue is which pharmacodynamic target derived 
from the experiment in mice is to be used—the exposure resulting 
in a static effect, the one-log drop in cfu, or the two-log drop in 
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cfu? Of course, the duration of the experiment has to be consid-
ered here as well: 24 h or longer? In general however, the static 
effect dose is considered to be adequate for non-severe, non-life- 
threatening infections, whereas the one or two log drop is consid-
ered necessary for severe infections, in particular patients with 
ventilator-associated pneumonia (VAP). Finally, a distinction 
should be made between targets obtained in neutropenic versus 
non-neutropenic mice. Many of the species and strains of interest 
are not virulent in mice, and exposure-response relationships 
obtained in non-neutropenic mice may overestimate the antibacte-
rial effect of the compound. On the other hand, neutrophils do 
contribute to the overall effect of an antimicrobial [37] but the 
overall contribution of neutrophils is also dependent on the class of 
drugs and infection type [38].

Even if the pharmacodynamic targets are considered valid, there 
still remains the challenge to estimate the exposure of the antimi-
crobial in the clinical conditions of interest. For instance, in drug 
development estimates of pharmacokinetic parameters are derived 
from studies in human volunteers initially, and exposures are then 
translated to the use in clinical practice. The variation in individual 
exposures is accounted for by using Monte Carlo simulations 
(MCS), a technique that was initially applied by Drusano [39, 40], 
but now generally applied throughout the drug development pro-
cess and breakpoint setting. However, although individual varia-
tion is accounted for by MCS, the premise is that the variation- and 
indeed the estimates proper in some cases- reflects the clinical situ-
ation. However, the variation observed in ICU patients extends 
that in volunteers; moreover, hyperclearance in part of this popula-
tion will most certainly result in underexposure if doses are used 
that are derived from human volunteer data [41].

Clinical breakpoints are used to distinguish between strains that 
are clinically resistant or susceptible with the overall purpose to 
provide an advice to the clinician whether or not the drug could be 
used for the treatment of infections. Over the years PK/PD has 
gained a strong influence over the rationale and setting of break-
points. One of the major reasons is the relationship between PK, 
MIC, PD, and overall outcome of treatment. Identification of 
pharmacodynamic targets, the dosing regimens used, and the 
application of Monte Carlo simulations will result in a clinical 
breakpoint value that is, by the nature of the process, dependent 
on the dosing regimens used [42]. Many of the breakpoints of 
older drugs have been revised to more rational values, initially by 
the EUCAST [43, 44], but over the last years also by the CLSI 
and, in a new initiative, the USCAST (www.uscast.org). The 
USCAST is a breakpoint committee recently established and cur-
rently establishing and revising breakpoints in a similar fashion to 
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EUCAST. Unfortunately, for many older drugs, there is not the 
information required to go through the whole process of break-
point setting, in particular pharmacodynamic targets are often 
missing by the lack of appropriate preclinical studies, but even 
pharmacokinetic data are sometimes lacking. Currently, there is 
much interest in rationalizing the use of older drugs.

In the development of new drugs, the application of PK/PD 
plays a major role in first determining the pharmacodynamic target 
and the pharmacokinetic profile of the new drug in humans. The 
indications of the drug and the MIC distributions of the potential 
causing microorganisms (in particular the ECOFF, the epidemio-
logical cutoff MIC value that distinguishes wild-type from non- 
wild- type strains, see Chap. 2) will then allow a rational dosing 
regimen to be established. Thus, for many of the new antimicrobi-
als the clinical breakpoint is similar or very close to the ECOFF. A 
further discussion can be found in Chap. 30.

As noted in the introduction, the principles of pharmacodynamics 
are not restricted to antibacterials, but also apply to antifungals and 
antivirals. The pharmacodynamics of most of the antifungals drugs 
against nonfilamentous fungi has now been reasonably well estab-
lished. Many of the principles described above have been shown to 
apply here [45]. Exposure-response relationships have been shown 
for most antifungals in the clinical setting as well. For antifungal 
drugs against filamentous fungi exposure-response relationships 
have been established sparingly. Infections are relatively rare and 
only for Aspergillus fumigatus significant data have been collected. 
Relationships have been established for azoles in various animal 
models, but it remains difficult to show these in the clinical setting. 
There is increasing evidence that PK/PD relationships apply here 
and dosing can be optimized [46].

Likewise, PK/PD relationships have been established for many 
antiviral drugs. Although antiviral drugs lagged behind in develop-
ment compared to antimicrobials, PK/PD relationships were 
established early on [47] and are used in a similar manner as for 
antibacterials [48].

The major part in this chapter was devoted to the effect of an anti-
microbial on microorganisms by describing exposure-response 
relationships. However, there is another important effect of anti-
microbials on bacterial populations. This is the evolution of bacte-
ria as a result of selection pressure in the environment, the selection 
pressure in this case being exposure to antimicrobial agents. Over 
the years, it has been shown that PK/PD can explain some of the 
effects observed. For instance, Firsov showed in a hollow fiber 
infection model (HFIM) that the increase in MIC of quinolones of 
S. aureus was dependent on the AUC. The relationship could be 
described by an inverted U shape, indicating that there is an opti-
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mal concentration for resistance selection [49]. At very low expo-
sures no increase was found, nor at very high AUCs. The optimum 
value for resistance selection in that experiment was 43. This is 
value close to that required for treatment effects. Tam and col-
leagues used a similar approach to define regimens that would have 
a lower probability of resistance emergence [50, 51].

Strain-specific parameters have been sought that identify the 
ease with which resistant mutants can be selected. The parameter 
that has been used over the last decades is the mutant prevention 
concentration (MPC) [52]. The MPC is determined using agar 
dilution methodology (see Sect. 2.1) but with a much higher inoc-
ulum, up to 1010. The higher the MPC, the more probable it is 
that resistance is selected. The MPC was subsequently used to pro-
pose and define the mutant selection window (the MPC-MIC) and 
the tMSW, the time within the mutant selection window [53]. 
This is the time that, during fluctuating antimicrobial concentra-
tions, the concentration is between the MIC and the MPC and 
thus dependent on the dosing frequency and the half-life of the 
antimicrobial (Fig. 11). The reasoning was that concentrations 
above the MIC do not inhibit growth whereas concentrations 
below the MPC do not result in kill of the entire bacterial popula-
tion, and mutants with elevated MICs will be selected—with as a 
consequence emergence of resistance. This concept was initially 
applicated to quinolone resistance in an HFIM [49]. In a rat model 
of infection, Goessens and colleagues showed the concept to be 
applicable to ceftazidime [54]. In both studies, several dosing fre-
quencies were applied to allow changes in the tMSW. The conclu-
sion here is that the longer the concentration falls within the MSW 
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the higher the probability resistance emerges. Resistance emer-
gence is therefore dependent on both the strain characteristics (as 
defined by the MSW) as well as the pharmacokinetic characteristics 
and dosing regimen of the antimicrobial. Optimizing the dosing 
regimen to reduce resistance emergence would therefore be a 
potential strategy.

The role of PK/PD in the emergence of resistance has likewise 
been studied in antivirals [48, 55] and is a major focus in establish-
ing optimal dosing regimens for these drugs.

Pharmacodynamic relationships have been studied in vitro and 
in vivo for antimicrobial combinations. In vitro, pharmacodynamic 
models have been developed to describe interaction in 
checkerboard- type experiments [56] and time-kill curves [57]. 
Few studies have examined the relationship between pharmacody-
namic index and effect. However, similar to the activity-effect rela-
tionships for single drugs, pharmacodynamic principles have been 
shown to be applicable in combinations [58].

5 Concluding Remarks

Over the course of time, the importance and the impact of phar-
macokinetics and pharmacodynamics on the optimal use of antimi-
crobials are increasingly appreciated. It has become recognized 
that there is no such thing as “one size fits all” and that each drug 
class has its own specific properties. Time-kill characteristics of 
antimicrobial agents in vitro have been shown to be related to their 
effect in vivo, and pharmacodynamic indices have been identified 
that correlated with microbiological and clinical cure. The PK/PD 
relationships established allow optimization of therapy not only in 
the general sense, but also for individual patients. Therapeutic 
drug monitoring and patient-specific dosing are becoming increas-
ingly used, in particular for drugs with a narrow therapeutic win-
dow. However, therapeutic drug monitoring is also used 
increasingly to ensure that concentrations in individual patients are 
above the pharmacodynamic target, in particular in patients with 
unpredictable pharmacokinetics. PK/PD has shifted from explana-
tory to predictive and guidance of optimal dosing for the popula-
tion in general to individualized patient care.
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Chapter 2

In Vitro Pharmacodynamic Models to Evaluate  
Anti- infective Pharmacodynamics

Warren Rose

Abstract

In vitro models have provided valuable insight into the pharmacodynamics of antimicrobials and have 
improved treatment approaches for patients. The use of in vitro models continues to help guide dosing 
decision for new antimicrobials and reevaluate those used already in clinical practice as resistance emerges. 
The design of in vitro PD models has not changed significantly since their introduction, but historically the 
models have been unique to individual laboratories with different methods scattered throughout the litera-
ture. The basic principle of the in vitro PK/PD model is to allow for assessment of antimicrobial activity 
under dynamic exposure conditions. This chapter presents the materials and methods for four different 
in vitro model types that have been used consistently in the literature to assess antimicrobial PK/PD for a 
given scenario: one-compartment model, hollow fiber model, biofilm model, and combination therapy 
model. In addition, this information is supplemented with information to design dosing schemes for the 
models as well as assess the PD outcomes of the antibiotic simulation. This information provides the basics 
for in vitro dynamic assessment, and the models can be customized from the presented method to address 
a specific research question or clinical situation.

Key words Pharmacokinetics, Pharmacodynamics, One-compartment model, Area under the curve, 
Hollow fiber, Combination model, Killing curve

1 Introduction

The in vitro pharmacokinetic/pharmacodynamic model remains a 
highly useful tool to evaluate both new antimicrobials in develop-
ment as well as reassess available antimicrobials for dosing scheme 
optimization and mitigate resistance development. The basic prin-
ciple of the in vitro PK/PD model is to allow for assessment of 
antimicrobial activity under dynamic exposure conditions. This 
provides a significant advantage for assessment of antimicrobial 
effectiveness over static assays that include susceptibility testing 
and in vitro time-kill curve methods, which fail to represent the 
clinical scenario where antibiotic distribution, metabolism, and 
elimination alter the antibiotic exposure. To understand how anti-
microbials interact with organisms under dynamic antimicrobial 
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conditions, a number of in vitro pharmacokinetic/pharmacody-
namic (PK/PD) models have been developed by various investiga-
tors over the last few decades and are classified in Table 1. These 
models have been valuable in understanding the dynamic drug 
exposures and dose–response relationships that are needed for 
continued drug development and optimization.

In order to determine the pharmacodynamics of an antibiotic, 
the impact of the antimicrobial on organism growth must be 
directly assessed, and for this, in vitro PK/PD models have many 
advantages. The antimicrobial effects from the in vitro model have 
translated well to the animal PD model and the patient setting 
[1–5]. However unlike the animal model, which necessitates 
human-scaled antimicrobial exposure due to altered animal metab-
olism [6], the in vitro PD model can simulate exact human PK 
exposures [7]. Also, the in vitro PD model is highly flexible to 
measure multiple time points throughout the treatment simula-
tion, microbial resistance development and mutation frequencies 
(mutant selection window), combinations of antibiotics, and pro-
longed treatment courses [4, 8–10]. The models can also be easily 
adjusted to accurately simulate a range of altered clearance envi-
ronments that are commonly found in patients with renal or 
hepatic dysfunction [11, 12]. There are some inherent limitations 
of in vitro PD models that should also be discussed. Primarily, 
these are simply models of simulated exposures and do not simu-
late all in vivo conditions, host factors, tissue dynamics, and con-
centrations at the site of infection. However, when drug clearance 
from a site such as epithelial lining fluid in the lung is known, these 
exposures have been simulated separately [13]. Also, these models 
often determine PK/PD endpoint with free drug simulations, not 
total drug that would be administered in patients. However, free 
drug only has been shown to account for the in vivo antibiotic 
activity [6]. In vitro PD models should be used as guidance for 

Table 1 

Classification and application characteristics of in vitro PD models: adapted from [8]

Type Application

Static models Kill curves, basic PD assessment

Intracellular models PK/PD of intracellular bacteria different from extracellular

One-compartment PK/
PD models

Direct PK/PD relationships for given simulation

Multi-compartment PK/
PD models

Different PK profiles or bacterial growing conditions. Simulate PK of 
antibiotic with numerous theoretical compartments

Models of combination 
therapy

PK/PD synergy with two or more antimicrobials

PK/PD biofilm models Bacteria in biofilms: properties distinct from single organisms, e.g., 
increased antimicrobial resistance

Warren Rose
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antimicrobial effectiveness and are not intended to replace the 
in vivo model or patient condition.

Although a large number of in vitro PD models have been 
developed, the overall concept of providing dynamic antibiotic 
exposures over time remains fairly consistent. The historical devel-
opment of in vitro PD model is beyond the scope of this chapter 
and has been reviewed by Grasso et al. [14], Li and Zhu [15], as 
well as two quality book chapters on in vitro dynamic models with 
the technical aspects of modeling and the methodology of pharma-
codynamic studies [4, 5]. A more recent review of in vitro PD 
models provides a comprehensive discussion of basic designs for 
dynamic models with either bacterial loss or no bacterial loss and 
the advantages and disadvantages of these different model types 
[8]. However, the protocol method and design of available in vitro 
PD models and interpretation of results have not been presented 
for investigators to establish models for PK/PD analysis in their 
own laboratory. This chapter presents the materials and methods 
for four different in vitro model types that have been used consis-
tently in the literature to assess antimicrobial PK/PD for a given 
scenario. This information provides the basics for in vitro dynamic 
assessment, and the models can be customized from the presented 
method to address a specific research question (e.g., inoculum 
effect or altered clearance simulations).

2 Materials

The one-compartment in vitro PK/PD model is perhaps the most 
widely used and versatile model available. While it is relatively sim-
plistic in its design, this allows for a variety of applications for anti-
biotic PK/PD assessment. The design of the one-compartment 
model is depicted in Fig. 1 and consists of central compartment 
flask containing growth media and bacteria. Fresh media is pumped 
into the central compartment via a peristaltic pump and the waste 
media is eliminated from the model by pressure of the inflow media 
or removed by a second pump. Antibiotics can be administered 
and samples taken through a sample port throughout the model 
duration. A magnetic stir bar provides continuous mixing of media, 
organism, and antibiotic. One limitation of this model is the loss of 
bacteria by the flow removal of waste media from the central com-
partment. However, this is usually not a significant factor for over-
all bacterial quantification if the clearance from the model is lower 
than the doubling rate of bacteria. Concerns may arise with excess 
bacterial clearance from the model when quantifying the emer-
gence of resistance in a bacterial population during drug exposure. 
Some investigators have used filters in the waste flow to capture 
bacteria at this step [16, 17], but this will not be presented in the 
one-compartment method for this chapter.

2.1 One- 

Compartment PK/PD 

Models

In Vitro Pharmacodynamic Models
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There are a variety of ways to create one-compartment in vitro 
models for PK/PD assessment. The simplistic design of the model 
requires a culture flask and a sealed cap with ports to allow delivery 
and removal of media, administration of antibiotic, and collection 
of samples. Some researchers in this field have customized glass 
flasks for these requirements, but the models themselves still main-
tain the same principles. This method provides materials that can 
be readily purchased for this purpose, but culture reservoirs with 
different volumes and accessories are available to fit specific research 
needs.

 1. Growth media: Mueller-Hinton broth supplemented with 25 
mg/L calcium and 12.5 mg/L magnesium as recommended 
by Clinical and Laboratory Standards Institute (CLSI) for 
Antimicrobial testing (see Note 1) [18] (#275710; BD 
Biosciences)

 2. Reservoir for one-compartment in vitro model (Kimax GL 45 
500 mL; #02-542C: Fisher Scientific)

 3. Four-port model cap (#OF945T4F; Fisher Scientific)
 4. Magnetic stir bar (#14-513-60; Fisher)
 5. Peristaltic pump (Masterflex L/S Digital Drive: #EW-07551- 30; 

Cole-Parmer)

Fig. 1 One-compartment PD model depiction of the central reservoir system. Supplemental diluent media is 
supplied to the model and waste is removed at an equivalent rate. Antibiotic doses can be administered and 
samples removed from the central reservoir

Warren Rose
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 6. Peristaltic pump head (Masterflex L/S Easy-Load pump head 
for precision tubing; #EW-07516-00; Cole-Parmer)

 7. Silicone tubing (see Note 2); (Masterfex L/S 14: 
#EW-96410- 14; Cole-Parmer)

 8. Silicone tubing (Masterflex L/S 16; #EW-96410-16; 
Cole-Parmer)

 9. Straight Tubing connector (Masterflex: #EW-30612-47; 
Cole-Parmer)

 10. Male Luer lock connector (#T-45504-04; Cole-Parmer)
 11. Stirring hotplate (Corning; #S50446HP; Fisher)
 12. Flask for fresh media supplementation and waste media (see 

Note 3) (#4980; Fisher)
 13. Rubber stopper, two hole, Size No. 10 (see Notes 4 and 5) 

(#14-140M; Fisher)
 14. Syringe Filter (GE SPARTAN: #09-302-152; Fisher)
 15. Syringe 3 ml Luer-Lok™ (#309657; BD)

Two-compartment models offer the advantages of a simulated sec-
ond compartment for drug distribution as well as maintaining bac-
teria in the secondary space for a more accurate assessment of 
resistance development and other microbe-related assessments. 
Unlike the one-compartment models, bacterial growth in the two- 
compartment model is maintained in the second compartment and 
therefore no loss of organism occurs via the clearance flow from 
the model. Many investigators have customized multi- compartment 
models using a variety of methods that permit antibiotics and 
nutrient media to freely distribute from the central compartment 
into the peripheral compartment but maintain bacteria within the 
peripheral compartment. A common method established bacteria 
in artificial membranes as the second compartment and attached 
tubing for access for bacterial sampling. The types of artificial 
membranes that have been used for this modeling include cellulose 
acetate, dialysis membranes, polycarbonate, polysulfone, and 
regenerated cellulose [19–23]. The drug is administered into the 
central compartment and allowed to diffuse into the peripheral 
compartment at the simulated infection site [21, 24]. Other types 
of two-compartment models have modified the one-compartment 
model to include introducing custom-made infected tissue in the 
model as a second peripheral compartment. Some examples of 
these pharmacodynamic models include the simulated endocardial 
vegetation model developed and extensively used by Rybak [25] 
and simulated tissue cage model [26] among other similar types. 
These models are highly customized two-compartment mod-
els that have been described in detail in the literature, and their 
development is beyond the scope of this chapter.

2.2 Two- 

Compartment Models: 

Hollow Fiber Multi- 

compartment PK/PD 

Model

In Vitro Pharmacodynamic Models
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The hollow fiber model system was first utilized by Zinner 
et al. in 1981 [21] through the use of an artificial capillary mem-
brane system to provide a separation between the central and 
peripheral compartments. The polysulfone fibers allow diffusion of 
media and antibiotics to the peripheral compartment. This design 
was further developed into a multi-compartmental model by Blaser 
et al. [27, 28]. A significant advance in the increased utilization of 
multi-compartmental modeling was made by developing hollow 
fiber bioreactors for two-compartment PK/PD assessments. 
FiberCell Systems has developed a variety of hollow fiber bioreac-
tors for commercial purchase and use. The reactor itself consists of 
small tubular filters approximately 200 μm in diameter and sealed 
at the end of the chamber. Media and antibiotics circulating 
through the central system flow through the filter into the second-
ary space where it interacts with the microorganism. The microor-
ganism resides in the extracapillary space for convenient sampling 
and quantification. The hollow fiber model can also be used for 
other PK/PD applications beyond antimicrobial killing. The extra-
capillary space within the cartridge can trap extracellular proteins 
produced by bacteria, such as toxins and virulence factors, and 
allows for dual assessment of antimicrobial killing and toxin pro-
duction/suppression from simulated PK/PD exposures. The anti-
microbial/antitoxin effects of select antimicrobials have been 
evaluated in two separate studies in this model for Bacillus anthra-
cis and Staphylococcus aureus [29, 30].

A schematic representation of the cartridge and fiber filter sys-
tem is displayed in Fig. 2. A central media compartment that is 
dosed with the antimicrobial supplies the cartridge with the sup-
plemented media. Dilution media is supplied to the central com-
partment and removed at an equivalent rate by peristaltic pumps to 
provide the dynamic antibiotic concentrations in the model. The 
clearance of antibiotic from the model is determined based on the 
antibiotic half-life and follows the principles outlined in Sect. 3.5. 
Hollow fiber models have been used in applications for cell culture 
growth and antimicrobial PK/PD studies in a variety of microor-
ganisms including bacteria, viruses, and parasites [31, 32]. 
Although a variety of two-compartment models have been explored 
and are in use as described in this section, the hollow fiber system 
will be the representative two-compartment model for this method.

 1. Growth media: Mueller-Hinton broth supplemented with 25 
mg/L calcium and 12.5 mg/L magnesium as recommended 
by Clinical and Laboratory Standards Institute for 
Antimicrobial testing [18] (see Note 1) (#275710; BD 
Biosciences).

 2. Duet Pump (# P3202; FiberCell Systems).

Warren Rose
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 3. Hollow-Fiber cartridge (#C2011; Fiber Cell Systems): A vari-
ety of cartridges are available for commercial use and have dif-
ferent volumes and molecular weight cutoffs that can be 
selected for the intended application. Antimicrobial pharma-
codynamic assessments are usually performed in the C2011 
cartridge. The methods for this model will use this cartridge.

 4. Central compartment reservoir (Nalgene; #03-311-1C: 
Fisher).

 5. Central compartment reservoir cap (#A1007; FiberCell 
Systems): The reservoir cap is designed to deliver antibiotics 
and media to the central reservoir while maintaining a con-
stant volume. There are five tubes with luer connectors on the 
cap as displayed in Fig. 3. Two connectors are for the recircu-
lation circuit through the hollow fiber cartridge, one is for 
diluent into the central reservoir, one is for diluent out of the 
central reservoir, and one is for a vent filter to maintain con-
stant pressure within the central reservoir.

 6. Peristaltic pump (Masterflex L/S Digital Drive: 
#EW-07551- 30; Cole-Parmer).

 7. Peristaltic pump head (Masterflex L/S Easy-Load pump head 
for precision tubing: #EW-07516-00; Cole-Parmer).

Fig. 2 Two-compartment hollow fiber model depiction. The cross section of the hollow fiber cartridge displays 
the separation of organism in the extracapillary space while allowing media and antibiotics to freely diffuse in 
the model

In Vitro Pharmacodynamic Models
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 8. Silicone tubing (see Note 2) (Masterflex L/S 14: 
#EW-96410- 14; Cole-Parmer).

 9. 3-Way Stopcock with Luer Connections (#EW-30600-07; 
Cole-Parmer): This item is made of polycarbonate, which is 
autoclavable. The item must be completely rinsed with dis-
tilled water prior to autoclave sterilization to remove deter-
gent residues that may lead to crazing and spotting.

 10. Male Luer lock connector (#T-45504-04; Cole-Parmer).
 11. Injection Site with Male Luer Lock (#MX492; Smiths 

Medical).
 12. Syringe Filter (GE SPARTAN: #09-302-152; Fisher).
 13. Syringe 3 ml Luer-Lok™ (#309657; BD).
 14. Syringe 20 ml Luer-Lok™ (#302830; BD).
 15. Tabletop incubator (see Note 6).
 16. Flask for fresh media supplementation and waste media (see 

Note 3); #4980; Fisher).
 17. Rubber stopper, two hole, Size No. 10 (see Notes 4 and 5) 

(#14-140M; Fisher).

Fig. 3 Image of the hollow fiber model reservoir cap with five tube connections. 
Two connectors are for the recirculation circuit through the hollow fiber car-
tridge, one is for diluent into the central reservoir, one is for diluent out of the 
central reservoir, and one is for a vent filter to maintain constant pressure within 
the central reservoir

Warren Rose
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A variety of models have been proposed to evaluate antimicrobial 
efficacy against mature biofilms. However, few of these have the 
ability to incorporate PK/PD simulations of antibiotics against 
both bacteria in the planktonic and biofilm cell state. Some models 
have introduced second compartments into the one-compartment 
model that contain biofilm in a tissue cage, membrane, or catheter- 
related bacteremia model [33, 34]. In these models, artificially 
induced biofilm is developed in a secondary compartment [35] 
consisting of a small-diameter plastic chamber with a cellulose 
membrane or a glass microfiber filter inside or developed in cath-
eters available for clinical use that have been artificially colonized 
with biofilm-embedded bacteria [33]. These PK/PD models use 
the sample principles as other pharmacokinetic models, but the 
development of biofilm can be cumbersome, the techniques being 
unique to each investigator, and has not been protocolized for rou-
tine use outside of the published literature. The Center for Biofilm 
Engineering at Montana State University has developed commer-
cial assays for biofilm development and analysis, including a model 
that can be adapted for use in PK/PD simulations. The system has 
been used to assess biofilm and antibiotic activity for a variety of 
aerobic bacteria including Pseudomonas aeruginosa and 
Staphylococcus aureus [36–38]. The CDC Biofilm Reactor is 
reviewed in this section as a reproducible and reusable commercial 
model for PK/PD biofilm assessment.

 1. Conditioning media: Tryptic soy broth (#211822; BD 
Biosciences): Broth can be supplemented with 1–10 % glucose 
to facilitate biofilm development.

 2. Growth media: Mueller-Hinton broth supplemented with 25 
mg/L calcium and 12.5 mg/L magnesium as recommended by 
Clinical and Laboratory Standards Institute for Antimicrobial 
testing [18] (see Note 1) (#275710; BD Biosciences).

 3. CDC Biofilm reactor model (#CBR 90-2; BioSurface 
Technologies Corporation).

 4. Digital stirring hotplate (Corning; #11-500-150; Fisher).
 5. Large volume carboy (Nalgene 20L; #02-960-20A; Fisher) 

with 2 port cap accessory (Nalgene; #02-923-15M; Fisher).
 6. Reservoirs for fresh media supplementation (see Note 3) 

(#4980; Fisher).
 7. Rubber stopper, two hole, Size No. 10 (see Notes 4 and 5) 

(#14-140M; Fisher).
 8. Silicone tubing (Masterflex L/S 16: #EW-96410-16; 

Cole-Parmer).
 9. Straight Tubing connector (Masterflex: #EW-30612-47; 

Cole-Parmer).
 10. Female Luer lock connector (#EW-45501-04; Cole-Parmer).

2.3 PK/PD 

Biofilm Models

In Vitro Pharmacodynamic Models
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Combination therapy modeling employs the basic principle of add-
ing a second drug in the simulation. For antibiotics with different 
half-lives this requires a supplement chamber to replace antibiotic 
that is removed by the faster clearance. Therefore, the materials 
required for this supplemental chamber are provided in this section 
and can be combined with the other models presented to achieve a 
combination simulation.

 1. Supplemental dose reservoir (Kimax GL 45 500 mL; #02- 
542C: Fisher Scientific)

 2. Four-port model cap for supplemental dose reservoir 
(#OF945T4F; Fisher Scientific)

 3. Flask for fresh media supplementation to dose reservoir (Pyrex 
Flask; #4980; Fisher)

 4. Magnetic stir bar (#14-513-60; Fisher)
 5. Y-connector (Masterflex L/S 13-14; #EW-30614-43; 

Cole-Parmer)

3 Methods

The one-compartment model system uses the principles of central 
compartment dilution effects for a simplistic yet powerful tool for 
pharmacodynamic analysis. The system follows first-order kinetic 
parameters that allow for central compartment clearance of a drug’s 
specific half-life. This principle is possible when the volume of the 
drug in the central compartment is kept the same from a similar 
rate of volume supplementation to elimination. The first-order 
kinetic equation is used for this effect in which the time-dependent 
rate of change in the amount of drug is proportional to the drug 
concentration:

 C C k t= -
0e e

 

where
C = concentration of antibiotic
C0 = concentration of antibiotic following drug administration
t = time
ke = elimination rate constant defined as
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And solving for Cl
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where
Cl = clearance
Vc = volume of central compartment
t1/2 = half-life of antibiotic

The dose of antibiotic is supplied to the central compartment 
at each scheduled interval according to the regimen simulation 
(e.g., a dose of amoxicillin is administered every 8 h to the model). 
The amount of drug to administer to provide each desired concen-
tration can be calculated by

 Dose c=V C( )0  

The target concentration C0 can be obtained from healthy vol-
unteer data or from Phase III or Phase IV studies in specific popu-
lations with infections. Often the steady state C0 in serum is 
targeted from these studies. While it is possible that drug accumu-
lation may occur with subsequent antibiotic doses, it often does 
not result in substantial accumulation that would affect the PK/
PD assessment. For example, Fig. 4 displays limited drug accumu-
lation, represented by no change in maximum or minimum con-
centration with repeated dosing, with a beta-lactam antibiotic 
given frequently in a one-compartment model over several days. 
Therefore an adjustment for residual antibiotic in the model prior 
to the next dose is often not necessary. However, this could be 
accounted for by subtracting the estimated residual concentration 
from the C0 used in the next dose.

Fig. 4 Concentration-time curve of ceftaroline with repeated dosing in a one-compartment in vitro PD model. 
The observed pharmacokinetics in the model closely matched the expected values. Adapted from [2]

In Vitro Pharmacodynamic Models
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The clearance of the model, or flow rate (F) of the media into 
and out of the central compartment, is synonymous. Therefore in 
the one-compartment system, antibiotic pharmacokinetics can be 
accurately determined using these equations. While this equation is 
commonly used to simulate a monoexponential decay of drug, 
these principles can be used to simulate an approximated multi- 
exponential decay. This can be accomplished through calculating 
the elimination rate and adjusting the clearance of the model for 
each exponential decay. Multiple antibiotics have been simulated 
using this multi-exponential decay function including levofloxacin, 
amoxicillin, cefuroxime, and oritavancin. Figure 5 displays the 
one-compartment in vitro model time concentration profile of ori-
tavancin, which simulated a three-phase decay elimination and 
demonstrated comparable expected and predicted concentrations 
[39]. Using these same principles of changes in drug clearance, 
these relatively basic in vitro models can be important tools to eval-
uate PK/PD relationship in simulations of renal dysfunction and 
other altered metabolism and clearance situations. Investigators 
have used these models with success for these PK/PD assessments 
of altered clearance [11, 12].

predicted free drug levels 
measured free drug levels

fCmax =19.8 ± 2.0 mg/L
fAUC0-24 = 136.8 ± 25.9 mg/L*h

α, 1.25ml/min, 5.04 h 
β, 0.94ml/min, 2.96 h then 0.31ml/min, 25.2 h

γ, 0.05 ml/min, 38.8 h

t ½ phase, flow rate, duration
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Fig. 5 Concentration-time curve profile of oritavancin using a single 3-h infusion dose in a one-compartment 
in vitro model. The antibiotic displays a three-phase half-life, which was able to be simulated in the model and 
was comparable to predicted values from prior pharmacokinetic studies. Adapted from [39]
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The one-compartment model can be used for a variety of applica-
tions and simulations. The method described in this section uses a 
standard inoculum and growth condition, but some of these vari-
ables can be altered to evaluate other effects on pharmacodynamics 
such as inoculum, stationary versus static phase growth, and mixed 
infection models among others [40–42]. Although this model has 
been used for a variety of microorganisms, this method will use 
aerobic bacteria as the model organism type.

 1. It is preferred that bacteria are in exponential growth phase for 
the initiation of the model simulation. Inoculate 10 ml of media 
with a single colony of bacteria from overnight growth on a 
solid agar. Incubate at 35 °C a rotating shaking platform until 
media turbidity is present. Dilute culture to a McFarland 
 turbidity standard of 0.5 (108 cfu/ml). This is the inoculum 
that is introduced into the model.

 2. Autoclave sterilize dilution media used for PK/PD simulation 
(see Note 7).

 3. Autoclave sterilize tubing to connect inflow (supplement) and 
outflow (waste).

 1. Prepare the model top by connecting the four top ports with 
tubing. Attach the syringe filter to the one port that is used as 
an air vent. Another port is used to receive dilution medium. 
The dilution port should have a straight tubing connector to 
facilitate attachment of dilution tubing to the port. A third port 
is for waste removal and should also contain a straight connec-
tor. The last port is for dosing/sampling the model. The dos-
ing/sampling port should have a female luer connector to 
facilitate attachment of syringe at the time of dose or sample. 
Connect tubing to the opposite end of the dose/sample port 
(i.e., interior of the model) to a length that extends into the 
media. This allows withdrawal of media from the model during 
sampling time points. Screw the cap onto the model. Wrap the 
exposed exterior and sample/dose port with foil. Add magnetic 
stir bar and non-sterile Mueller-Hinton broth to a target vol-
ume for the model, and autoclave sterilize the model for 20 min.

 2. Place the model on the stir hotplate. Connect inflow and out-
flow tubing to the model and attach tubing the peristaltic 
pumps. Start the model flow for the target antibiotic simula-
tion. After verifying that media is supplementing and exiting 
the model, inject 1 % v/v of the prepared inoculum into the 
model so that the starting standard inoculum is 1 × 106 cfu/ml. 
Flush the port with a small amount of sterile media to ensure 
that the inoculation reaches the model. Take the first time point 
from the sample port with a syringe prior to administering anti-
biotics. Reattach the flush syringe to the sample port and ensure 

3.2 One- 

Compartment PK/PD 

Models

3.2.1 Media 
and Organism Preparation

3.2.2 Model Preparation
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that the luer port remains closed to the environment outside 
the model. Administer antibiotic dose to the model through 
the dosing port on the model cap. This is the starting time 
point for the antibiotic simulation. The number and frequency 
of samples depend on the experimental hypothesis, but many 
take frequent samples in the first few hours to assess PK/PD 
with initial exposure. There are no limitations to the number of 
samples that can be obtained for each model during the simu-
lated exposure (see Note 9).

 1. Serially dilute each sample as needed and plate on growth agar 
using standard microbiology techniques or an automated serial 
dilution plating machine. Incubate the plates for 18–24 h at 35 
°C and then count bacterial colonies by manual recording or 
use colony detection software supplied with the automated 
method. The bacterial density in the chamber is calculated by 
the manual method with the equation
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Dilution of plated sample

The hollow fiber unit consists of the cartridge represented in Fig. 
2 and the circulatory tubing that attaches to the duet pump. This 
set comes pre-sterilized by ethylene oxide from the manufacturer 
for a one-time-use application. The central compartment reservoir 
and reservoir cap that attach to the hollow fiber unit to supply 
media and antibiotics to the system can be autoclave sterilized and 
reused. This method describes the hollow fiber setup and use for 
aerobic bacteria.

 1. The central reservoir and cap require sterilization prior to con-
necting to the hollow fiber model. Prepare the ports on the cap 
(Fig. 3) by connecting tubing with male luer connectors for the 
inflow supplement and outflow waste use. The ports used to 
circulate media and antibiotics from the central compartment 
to the hollow fiber model should be attached with tubing con-
taining a female luer connection. For the two ports that are 
used for withdrawal of media from the central compartment, 
attach tubing on the underside of the cap port to reach the 
media in the reservoir for withdrawal. Attach the vent filter to 
the final port. Fill the central reservoir with unsterilized media 
and note the volume used as it is representative of the Vc for 
dosing and clearance calculations described in the PD principles 

3.2.3 Analysis

3.3 Hollow Fiber 

Multi- compartment 

PK/PD Model

3.3.1 Model Preparation
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method. Cover all exposed luer connections with foil and 
autoclave.

 2. Autoclave sterilize dilution media used for PK/PD simulation.
 3. Connect the 3-way stopcock valve to tubing that is designated 

for removing media from the central compartment model to 
waste. Autoclave sterilize this tubing-stopcock as well as tubing 
to deliver fresh media to the central compartment (inflow 
supplement).

 4. The hollow fiber model requires that the hydrophilic polysul-
fone fibers are saturated with media prior to introduction of 
organism into the extracapillary space. It is ideal to prepare the 
hollow fiber model in a laminar flow hood to minimize con-
tamination risk. Unwrap the model from the sterile package. 
The model contains four luer ports, two on the cartridge for 
sample access of bacteria in the extracapillary space, one for 
delivery of antibiotic from the central compartment, and one 
for media return to central compartment. These are covered 
with male luer caps to maintain sterility of the ports outside of 
the package. Do not remove these caps at this time. Connect 
the tubing that delivers media to the hollow fiber model to the 
appropriate port on the central reservoir cap. Connect the tub-
ing that returns media back to the central compartment from 
the hollow fiber model to the appropriate port on the central 
reservoir cap. Place the hollow model and central reservoir on 
the Duet Pump, ensuring that the model latches to the base and 
the vertical circulatory tubing on the top of the model is secured 
in the pump slot on the Duet (Fig. 6).

The extracapillary space in the cartridge has a holder volume of 
20 ml. Withdraw 10 ml of Mueller-Hinton broth into two 20 ml 
syringes. Attach syringes onto each port on the cartridge and 
slowly deliver the 20 ml total volume to the extracapillary space. 
Leave the syringes on these ports throughout the duration of the 
experiment to maintain sterility. They are removed only at the time 
of sampling and immediately reattached. Place the Duet Pump 
with hollow fiber model in a tabletop incubator or warm room. 
Start the Duet Pump to begin media circulation throughout the 
model. The C2011 cartridge and supplied tubing have a volume 
space of approximately 50 ml. So this volume will be removed 
from the central reservoir but should be accounted for as the model 
volume when using VC in calculations. Allow the pump to circulate 
media overnight to adequately soak the fibers, but an 18–24-h 
soak period is preferred.

In Vitro Pharmacodynamic Models
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It is preferred that bacteria are in exponential growth phase for the 
initiation of the model simulation. Inoculate 10 ml of media with 
a single colony of bacteria from overnight growth on a solid agar. 
Incubate at 35 °C a rotating shaking platform until media turbidity 
is present. Dilute culture to a McFarland turbidity standard of 0.5 
(108 cfu/ml). This is the stock inoculum that is introduced into 
the model.

 1. Connect sterile inflow tubing to the central reservoir inflow 
port and attach tubing to the peristaltic pump. Connect the 
sterile 3-way stopcock and tubing to the female luer exit port 
on the central reservoir and attach tubing to the peristaltic 
pump. Attach the injection site septum with the male luer to the 
open female luer on the 3-way stopcock. Start the model flow 
for the target antibiotic simulation, and ensure that both inflow 
and outflow rates on the pumps are the same. After verifying 
that media is supplementing and exiting the model, inject 
0.2 ml (1 % v/v) of the prepared inoculum into the model using 
a 1 ml luer syringe so that the starting standard inoculum is 
1 × 106 cfu/ml in the extracapillary space.

 2. For sample collection, mix the media and organism in the extra-
capillary space by withdrawing and reinserting the extracapillary 
fluid culture using the 20 ml syringes on the cartridge ports for 

3.3.2 Organism 
Preparation

3.3.3 PK/PD Simulation

Fig. 6 Image of the hollow fiber model Duet Pump system and connected tubing. The hollow fiber cartridge and 
central reservoir are held on the Duet Pump system and circulated throughout the model, while pumps provide 
supplemental media and remove waste (not pictured)
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several cycles. Withdraw 0.5–1 ml from each port using the 
20 ml syringes and place each sample in a separate Eppendorf 
tube for analysis. Return syringes to the ports on the cartridge. 
The initial sample should be done prior to introducing antibi-
otic to the model.

 3. Administer antibiotic dose to the central model through the 
dosing port on the central reservoir cap. This is the starting 
time point for the antibiotic simulation. Continue to administer 
antibiotic doses at the indicated dosing period for each antibi-
otic during the entire simulation period. The number and fre-
quency of samples depend on the experimental hypothesis, but 
many take frequent samples in the first few hours to assess PK/
PD with initial exposure. There are no limitations to the num-
ber of samples that can be obtained for each model during the 
simulated exposure (see Note 9).

 4. Pharmacokinetic samples from the central compartment are 
obtained from the injection site on the 3-way stopcock as the 
medium is leaving the central compartment. Ideally the time of 
the PK sample collection should coincide with at least the PK/
PD samples taken from the hollow fiber model cartridge. PK 
can also be obtained from the extracapillary space in the car-
tridge from the sample collection described in the step above. 
The PK in the two compartments can be compared.

Bacterial quantification from the samples is determined using the 
same method described for the one-compartment models. Since 
the hollow fiber model is ideal for quantification of resistance 
development, susceptibility testing can also be done using standard 
techniques described in a separate chapter. Another advantage of 
this model is the ability to quantify toxins and assess virulence fac-
tors resulting from antibiotic exposure. Example protocols for 
these methods are described in the literature with the hollow fiber 
model and other applications [29, 30].

The protocol for CDC model is available upon purchase of the 
reactor model (http://www.biofilms.biz/biofilm-reactors) and is 
presented here. All components are autoclavable and reusable for 
repeat model experiments. The reactor consists of a 1 l beaker with 
an effluent spout at the 400 ml mark for media elimination (Fig. 
7). The unsealed removable top contains eight vertical rods that 
each houses three coupons that support biofilm growth and are 
used for assessment of antibiotic activity (Fig. 8). The model top 
also has three ports for administration of dilution media into the 
model, sample collection and dose administration, and sterile air 
ventilation. A variety of coupon materials are available to use in the 
model including those with clinical applications such as polycar-
bonate, stainless steel, titanium, polyurethane, and Teflon among 

3.3.4 Analysis

3.4 PK/PD 
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others. A stir bar/vane supplies continuous consistent high sheer 
against the coupons and mixing of growth media and antibiotics 
via a magnetic stir plate. Antimicrobial activity can be assessed from 
the residual organism on the coupons (biofilm) and in the growth 
medium (planktonic). The protocol for the model and PK/PD 
assessment are presented.

 1. Inoculate 100 ml of growth media (tryptic soy broth) with a 
single colony of bacteria from overnight growth on a solid agar. 
Incubate at 35 ± 2 °C overnight on a rotating shaking platform 
(120 rpm).

3.4.1 Media 
and Organism Preparation

Fig. 7 Image of the CDC biofilm PD model with eight removable rods

Fig. 8 Image of an individual rod with three biofilm coupons from the CDC biofilm 
model
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 2. Sterilize the continuous flow media (20 L of 100 mg/L TSB). 
It is recommended to first sterilize 20 L of distilled water and 
aseptically add concentrated TSB (2.0 g TSB/500 mL) to equal 
the final concentration of 100 mg/L TSB.

 3. Sterilize Mueller-Hinton broth to a volume required for the 
duration of antibiotic therapy (volume = flow rate × duration of 
simulation). This medium will be used for the assessment of 
antibiotic PK/PD simulation.

 1. The model rods, beaker, and top can be cleaned with general 
laboratory soap prior to each use. It is important to vigorously 
clean the coupons between uses to eliminate attached bacteria 
and biofilm. The recommended cleaning procedure is two series 
of immersing the coupons in laboratory soap and sonicating for 
3–5 min and rinsing. Finally the coupons should be soaked in 
2 M HCl, rinsed with sterile water, and let to air-dry. Place the 
coupons in the model rod so they are flush with each coupon 
slot (n = 3 coupons/rod, 24 per model) and tighten.

 2. Prepare the model top by inserting the coupon rods, attaching 
the stir bar/vane, and connecting the three top ports with tub-
ing. One port is used as an air vent (PFTE filter provided with 
model purchase), another for receiving supplemental dilution 
medium, and the third for dosing/sampling the model. The 
supplemental dilution port should have a straight tubing con-
nector to facilitate attachment of influent tubing to the port. 
The dosing/sampling port should have a female luer connector 
to facilitate attachment of syringe at the time of dose or sample. 
Connect tubing to the opposite end of the dose/sample port 
(i.e., interior of the model) to a length below the 400 ml efflu-
ent port level. This allows withdrawal of media from the model 
during sampling time points. Wrap the exposed exterior influ-
ent and sample/dose port with foil and place top with rods, 
coupons, and stir bar/vane into the effluent beaker. Attach tub-
ing to the effluent port on the beaker, insert a straight  connector 
to the opposite end, and wrap with foil. Clamp the effluent 
tubing with clamp scissors to hold media in the reaction cham-
ber during the batch phase. Add 500 ml of non-sterile TSB 
batch media (300 mg/L TSB) and autoclave sterilize the model 
for 20 min.

 3. The batch phase of the model allows for initial bacterial growth 
and attachment on coupons in the model. Place the reactor on 
the digital stir hotplate and inject 1 ml of the 100 ml overnight 
culture into the batch media through the injection port with a 
luer syringe. Flush the port with 5 ml TSB to ensure that the 
inoculation reaches the batch media. Do not remove the flush 
syringe to ensure that the luer port remains closed to the envi-
ronment outside the model. The inoculum in the batch is 

3.4.2 CDC Model 
Preparation
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approximately 108 cfu/ml. Start the stir bar/vane rotating at 
125 rpm and confirm that this rotation is maintained through-
out the batch phase of 24 h (see Note 8).

 4. The continuous flow phase is designed to further facilitate bio-
film development on the coupons. Prior to beginning the con-
tinuous flow phase autoclave sterilize tubing to connect to the 
supplemental and waste carboys. Aseptically connect the tubing 
to the model and carboys, attach the supplemental tubing to 
the peristaltic pump, and unclamp the waste port. The rods and 
stir bar/vane should displace approximately 150 ml media 
which should exit the effluent port once unclamped, so that 
350 ml is maintained as the reactor working volume. A continu-
ous flow rate should be used so that the residence time of the 
media in the model is less than the doubling time of the bacteria 
to ensure that non-adhered bacteria are cleared from the model 
and only biofilm-attached cells remain. In the case of 
Pseudomonas aeruginosa (ATCC 700888), a residence time of 
30 min can be used. With a model volume of 350 ml, the flow 
rate for the continuous flow phase should be set at 11.67 ml/
min (350 ml/30 min). The continuous flow phase is operated 
for 24 h.

 5. The antibiotic PK/PD simulation begins following the contin-
uous flow phase. The dilution media for supplementation dur-
ing the antibiotic simulation is Mueller-Hinton broth, so the 
dilution supplement should be exchanged for this medium and 
new tubing connected to the model and peristaltic pump. This 
new medium should maintain the same flow rate as the continu-
ous flow phase (e.g., from above 11.67 ml/min) for the first 
30 min prior to antibiotic dose to introduce appropriate media 
to the model for antibiotic activity. After 30 min, reduce the 
clearance to that of the modeled antibiotic (see Subheading 3.1). 
Dosing to the model and sampling of the media for bacterial 
enumeration can follow the procedures outlined in the other 
in vitro PK/PD models.

 1. The CDC model contains a maximum of 24 coupons for analy-
sis, so therefore the model is limited in duration of antimicro-
bial simulation to the number of time points (coupons) selected 
for analysis. The biofilms are formed on the coupon side facing 
the stir bar/vane, so take note of the coupon side for analysis of 
anti-biofilm activity. Remove a single rod and rest the bottom 
on a sterile petri dish while removing the coupon with a flame- 
sterilized hemostat taking caution not to disturb the biofilm 
side of the coupon. Place the rod back into the model to con-
tinue simulation for the remaining coupons in the rod.

3.4.3 Analysis
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 2. The biofilm is scraped from the coupon using sterile supplies. 
Although many different types of supplies could be used for 
this, a sterile wooden stick is sufficient to ensure that all biofilm 
is removed. The scraped biofilm is placed in sterile water and 
the coupon is rinsed with sterile water to remove any remain-
ing, which is added to the biofilm suspension. The total biofilm 
suspension volume of 10 ml is important in this step to calculate 
the bacterial burden in biofilm.

 3. Homogenize the sample at 20,500 rpm for 30 s to disaggregate 
the biofilm and universally disperse the cells in suspension prior 
to plating. Serially dilute the sample on growth agar using stan-
dard microbiology techniques or an automated serial dilution 
plating machine. Incubate the plates for 18–24 h at 35 °C and 
then count bacterial colonies by manual recording or use col-
ony detection software supplied with the automated method. 
The bacterial density on the coupon is calculated by 
the equation:
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The diameter of the coupons supplied for this model is 1.27 
cm; therefore the surface area scraped is 5.06 cm2.

 4. The samples taken from the sample port for planktonic bacterial 
growth in the media should be taken at the same time points as 
the coupon samples for direct comparison. These samples are 
plated using standard microbiology techniques described in 
earlier sections.

The development of antimicrobial resistance combined with rela-
tively few new treatment options has increased the interest for 
combination therapy for situations where monotherapy was tradi-
tionally considered adequate. The models described so far have all 
been used in both single- and combination-therapy experiments. A 
separate chapter discusses the pharmacodynamic issues of combi-
nation therapy, so this section presents the basic design of the com-
bination model that can be incorporated in the methods described 
for the presented models.

The concept of combination antibacterial modeling in the 
in vitro dynamic systems allows two antibiotics to be administered 
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simultaneously. For antibacterials with the same half-life, this is 
easily done in any of the models described so far since both antibi-
otics will be cleared from the dosing compartment at the same 
rate. However, when two drugs with different half-lives are stud-
ied, one of the antibiotics will be cleared at an inappropriately 
faster rate. Therefore, this requires a supplement chamber to 
replace the antibiotic that is removed at the faster rate. This method 
describes modeling with two antibiotics, but the sample principles 
can be used to model three or more antibiotics with different 
half-lives.

The combination model was originally described by Blaser et al. 
[43], and it remains mostly unchanged from the original design [2, 
44, 45]). A representative diagram of the design of the two- 
antimicrobial combination model is provided in Fig. 9. The mod-
els described in earlier sections will serve as the central reaction 
model (M1) in this method. The supplemental chamber model 
(M2) provides supplemental drug to M1 due to the more rapid 
clearance of the overall model. The inflow and clearance of the M2 
supplement chamber should be set for the antimicrobial with the 
lower half-life (slower clearance, CS). The M1 inflow rate is set at 
clearance of the faster drug (CF) minus CS (CF − CS). Therefore the 
clearance of drug from M1 is set at the clearance of the drug with 
the faster half-life. Both antibiotics are dosed into the M1 chamber 
at the targeted interval simulation. At the same time, an equivalent 
dose of the antibiotic with the slower half-life is administered into 
the M2 chamber. This allows the antibiotic with the slower half-life 
to be supplemented back into M1 to account for the drug lost due 

3.5.1 Overall 
Model Design
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Fig. 9 Schematic diagram of the in vitro combination PD model

Warren Rose



51

to CF. The total inflow and outflow clearance for M1 will be equiva-
lent [(CF − CS) + CS = CF].

An example of this diagram using a 250 ml model simulation 
is Drug A (half-life of 12 h and a dose given once daily) in combi-
nation with Drug B (half-life of 1 h and a dose given every 6 h). 
Based on the calculating model clearance rates provided in the 
PK/PD principles section of this chapter, the clearance rates of 
Drug A = 14.4 ml/h and Drug B = 173.3 ml/h. Therefore 
CF = 173.3 ml/h, CS = 14.4 ml/h, and CF − CS = 158.9 ml/h. Drug 
A is administered into M1 and M2 once daily while Drug B is 
administered into M1 every 6 h. The preparation, sampling, and 
PK/PD analysis of the combination model are similar to the meth-
ods presented for the other single-drug models in this chapter (see 
Note 9). The inflow tubing for M1 and M2 should be connected 
with a y-site so that the flow rates entering M1 are equivalent to the 
clearance (CF).

The classification of the antimicrobial effect can be obtained from 
the killing curves for a given antibiotic and reflect the entire anti-
microbial activity over the duration of exposure. While a general 
comparison between two antibiotics or among multiple antibiotics 
for a particular organism can be obtained by visual interpretation 
of the killing curves, a more intricate approach is needed for a 
mathematical and statistical comparison of the activities. The pri-
mary objective of this analysis is to provide an interpretation of the 
relationship between antibiotic and organism effect. To further 
justify the model as a clinically translatable tool, the analysis and 
interpretation should ideally be able to predict clinical outcomes of 
antibiotic treatment.

The initial analysis of the antimicrobial effect compares the 
antimicrobial killing curve to the antibiotic-free growth curve over 
time. As depicted in Fig. 10, a number of relevant endpoints have 
been utilized from these comparative curves to indicate the antimi-
crobial effect [46]. The initial and most widely used indices are 
T90, T99, and T99.9 indicating the time to achieve a 1-log, 2-log, and 
3-log reduction from the initial starting inoculum, respectively. 
For this reason many in vitro PD model studies sample frequently 
from the model after the initial dose to determine this parameter. 
While it is possible to determine the time to achieve the defined 
reduction by visual estimation, it is more accurate to use logarith-
mic extrapolation of the killing curve data points from the starting 
inoculum for each experiment to find the rate of bacterial 
elimination.

Defining the initial killing with an antimicrobial is an impor-
tant component of PD determination; however additional indices 
can be measured to determine the effect of the antimicrobial over 
the duration of the antimicrobial exposure (Fig. 10). These include 
the area between control growth and bacterial killing curves 
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(ABBC), area under the bacterial killing curve (AUBC or AUBKC), 
and the area under the inhibitory curve (AUIC). These indices can 
be calculated by the AUC trapezoidal method of the bacterial 
counts from the initial starting time (T0) until the cessation of bac-
terial killing for AUBC or end of antimicrobial exposure for 
AUIC. The ABBC is calculated by simply subtracting the trapezoi-
dal AUC of the entire experiment duration for the antibiotic curve 
from the AUC of the growth curve. The AUBC and AUIC are 
inversely related to bacterial killing: as killing increases, AUBC and 
AUIC decrease [47].

The pharmacodynamic parameter that predicts the clinical 
effectiveness of most antimicrobials is the AUC relative to the MIC 
of the organism (AUC/MIC). The above three indices are rela-
tively accurate in predicting the AUC/MIC response; however 
some limitations exist and require cautious interpretation. All three 
endpoints may underestimate the effect at high AUC/MIC, while 
AUBC may underestimate the true effect at small AUC/MIC 
[48]. In these situations, other indices of the total antimicrobial 
effect can be utilized to predict the PD response that have described 
in more detailed modeling [5]. Resistance development, as 
depicted in Fig. 10, has become an increasingly important index in 
the current era of multi-drug resistance, so this is now often 
screened as part of the analysis, which is a particular advantage of 
the prolonged duration simulations and continuous sampling sup-
ported with the in vitro PD model [49–51]. In addition to these 

Fig. 10 Antimicrobial effect endpoints. Adapted from [46]
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endpoints, detailed mathematical modeling provides robust inter-
pretation of PK/PD effects of antimicrobials from these models 
and computer simulations [52–54].

4 Notes

 1. The recommended media for use in the in vitro PD model is 
recommended by CLSI for antibiotic testing against most bac-
teria. Some bacteria may require different media for optimal 
growth conditions. Similarly, some antibiotics may require dif-
ferent chemical supplementation in order to demonstrate 
appropriate activity.

 2. The Masterflex size 14 tubing is used with the peristaltic pump 
to provide a flow rate range of 0.21–130 ml/min. This is well 
within the range of flow rates for most antimicrobials. Those 
with prolonged half-lives may require smaller bore tubing that 
can accommodate slower flow rates, such as Masterflex size 13 
tubing.

 3. The size of the inflow flask should depend on the volume 
needed for supplementation throughout the simulated expo-
sures. Ideally the size and volume should accommodate the 
entire experiment without the need for additional media sup-
plementation. This reduces the potential for environmental 
contamination.

 4. No. 10 stoppers are designed for use with 2, 4, and 6 L flasks. 
Stoppers are available in other sizes to accommodate other 
flasks.

 5. The No. 10 rubber stopper has two predrilled holes. To set up 
the system, thread 16 size tubing through one hole to a length 
that can reach the bottom of the flask to remove the entire 
media contents during the simulation. Thread 16 size tubing 
through the second hole at a length to just inside the flask. 
Connect the air filter to the tube in the second hole and allow 
sterile air diffusion within the flask.

 6. A standard tabletop incubator can house the hollow fiber model 
system. The model with the hollow fiber cartridge and central 
compartment on the Duet Pump are placed inside the incuba-
tor. The connected supplemental inflow and waste tubing 
remain outside the incubator (room air) with the peristaltic 
pump to supply/remove media from the model. To prevent the 
supplement/waste tubing from pinching when closing the 
autoclave door, cutting the door seal to allow enough room to 
place the tubes is recommended. This prevents the tubes from 
pinching but also does not interfere with the integrity of the 
seal that may lead to heat loss. Alternatively, if a warm room is 
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available for use, this would be a more optimal setup for the 
entire system.

 7. The dilution media should be autoclaved with the rubber stop-
per system in place to ensure sterility after the autoclave cycle.

 8. As provided in the materials, a digital stir hotplate provides 
accurate measurement of the rotation needed to create the bio-
film in this phase.

 9. Removal of large volumes of media during the sampling points 
may alter the pharmacokinetics of the model due to increased 
elimination. It is recommended to sample only volumes required 
for analysis.
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    Chapter 3   

 Animal Models to Evaluate Anti-infective 
Pharmacodynamics                     

     Alexander     J.     Lepak     and     David     R.     Andes      

  Abstract 

   Animal models in the PK/PD evaluation of antimicrobial therapy have proven to be a critical element in 
drug development and dosing refi nement for numerous infectious diseases. There are several variables that 
are taken into consideration when animal models are utilized. These can include host-specifi c variables 
such as the animal species, route of infection, infection site, immune status, end organ/tissue sampling and 
optimal endpoint measure. Pathogen-specifi c variables include the genus/species, inoculum size, viru-
lence, and drug susceptibility. Finally, therapeutic variables include route of drug administration, timing of 
therapy, dose level and frequency, metabolism and elimination, and duration of therapy. This list of  variables 
may seem challenging; however, carefully controlled animal model studies are the cornerstone of PK/PD 
therapeutic evaluations that lead to dosing regimen optimization, limiting drug-related toxicity, guiding 
therapeutic drug monitoring, and setting of drug susceptibility breakpoints.  

  Key words     In vivo  ,   Animal  ,   Pharmacodynamics  ,   PK/PD  

1      Pharmacokinetics in Animal Models 

 Pharmacokinetic (PK)    measurements are necessary to ensure that 
an  anti-infective agent   will be present at suffi cient concentrations 
and microbiologically active at a given site of infection in a mam-
malian host. PK, as it relates to pharmacodynamic (PD) studies, is 
primarily measured in terms of elimination half-life ( T  1/2 ), area 
under the drug concentration curve (AUC), and maximal concen-
trations achieved (Cmax). The design of PK studies incorporates 
the number of animals necessary to achieve statistically  reproducible 
PK measures and the number of time points necessary for optimal 
PK  estimates  . Many of these studies are performed in rodent 
 models; however other mammals such as hamsters, rabbits, and 
guinea pigs are utilized.  Drug concentration measurements   are 
most commonly performed using HPLC or mass spectroscopy 
(i.e., LC/MS-MS) methods; however bioassays perform very well 
and are still utilized. 
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   An important consideration in PK studies is which compartment 
or tissue site is relevant for drug concentration and PK parameter 
determination. Traditionally, bloodstream (i.e., whole blood, 
serum, or plasma) measurements of drug concentration have been 
utilized; however, there are situations in which tissue-specifi c or 
target-organ drug concentration measurement is necessary and 
potentially more informative. This is especially true for sites of 
infection that are considered sequestered (e.g., brain, CSF, urine, 
eye, placenta) or for pathogens that are primarily intracellular in 
nature. For example, many PK/PD investigations now include 
measurement of drug concentration in the epithelial lining fl uid 
( ELF  )    compartment for drugs that are being considered for the 
treatment of pulmonary infections. The lack of effi cacy of dapto-
mycin in pulmonary infections, due to inactivation of drug by 
 surfactant, is a prime example of the need to consider site-specifi c 
animal infection models and drug PK [ 1 ]. Additionally,  penetration 
to sites of infection can be preferentially different leading to lower 
PD targets based on the specifi c site of infection. An example of 
this important fi nding is the revelation of PD targets that are 
approximately one-half in lung versus thigh infection models for an 
investigational oxazolidinone based on preferential penetration 
into ELF [ 2 ,  3 ]. 

 An additional concern is in the processing of tissue samples for 
PK measurement. The most common method of processing tissue 
samples for drug concentration measurement is tissue homogeni-
zation [ 4 ,  5 ]. However, tissues have two distinct fl uid components 
consisting of the interstitial and intracellular compartments. When 
homogenized, these two compartments are irrevocably mixed. 
Since the intracellular compartment is usually of larger volume, 
drugs that concentrate more in the interstitial compartment will 
appear to be much lower in total concentration than drugs that 
accumulate in the intracellular compartment (e.g., beta-lactams 
versus fl uoroquinolones). More recently a technique to determine 
interstitial tissue-specifi c drug concentrations via microdialysis has 
been  applied   [ 6 ,  7 ].  

   The host animal species can have dramatic effects on the PK of a 
drug. Smaller mammals often exhibit more rapid metabolism and 
elimination, and therefore half-lives in these models can be consid-
erably shorter than in larger mammals such as humans [ 8 ]. The 
route of administration can also affect drug PK in a host-specifi c 
manner, as demonstrated by rifampicin where the  t  1/2  in rats was 
4.7 h following intravenous administration, but increased to 9.3 h 
following oral administration [ 9 ]. Interestingly, this same increase 
in half-life was not evident in mice. Finally, even the strain of  animal 
can affect the PK. For example, BALB/c mice and DBA/2 mice 
display markedly different serum drug concentrations of itracon-
azole over time [ 10 ].  

1.1  Tissue  Site  

1.2  Effect of Animal 
 Species   on Antibiotic 
Pharmacokinetics

Alexander J. Lepak and David R. Andes
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   The infection process can have a dramatic effect on the PK of a 
drug. Perhaps the most well-known scenario that has long been 
recognized to demonstrate this effect is bacterial meningitis, where 
bacterial and host infl ammatory-induced damage to the blood–
brain barrier produces profound changes in the penetration of 
antibiotics [ 11 – 13 ]. For example, vancomycin penetrates poorly 
through an intact blood–brain barrier due to the presence of intact 
tight junctions [ 12 ,  14 ]. However, signifi cant damage occurs to 
these tight junctions during bacterial meningitis leading to 
increased permeability. In a study utilizing rabbits, there was a 
near-fourfold increase in CSF vancomycin levels in animals with 
meningitis versus healthy controls [ 12 ]. Sepsis can also impact 
drug pharmacokinetics via a variety of mechanisms including 
increased volume of distribution and organ dysfunction leading to 
altered metabolism and elimination [ 15 – 17 ]. The translatability of 
preclinical animal model PK to patients therefore usually includes 
both uninfected and infected animal PK to determine if the disease 
state signifi cantly alters drug PK.     

   Age can have a profound effect on drug PK in many mammalian 
species. However, the clinical applicability of using age-related PK 
in an animal model and correlating it to age-related PK in a human 
is limited. For example, plasma PKs of fi ve beta-lactam antibiotics 
are markedly different in neonatal versus adult mice [ 18 ]. However, 
there is no corollary study in humans (i.e., neonates) to determine 
if these differences are applicable. When differences do occur in the 
animal model, it can provide the stimulus to study the PK in the 
age groups the antibiotic is being developed for in humans. 
However, when age-related differences do not occur in the animal 
model, it does not necessarily indicate that there are no signifi cant 
clinical differences in drug PK in different aged humans. With this 
caveat aside, there are examples of age-related changes in antimi-
crobial PK in animal models [ 19 ,  20 ]. In general, drug concentra-
tions are higher in aged animals compared to young animals for a 
given dose. Differential rates of metabolism and elimination most 
likely account for these differences, which are often clinically  relevant 
in humans as well. For example, aged rats (22–24 months) had 
higher concentrations (Cmax and AUC) and prolonged  elimination 
rates ( T  1/2 ) compared to young rats (2–3 months) [ 19 ].  

   The two most common strategies to attempt to mimic human PK 
in an animal model where there is rapid metabolism or clearance of 
the drug are to either directly alter the clearance/metabolism or 
provide a means of very rapid drug replenishment by frequent or 
continuous dosing systems. Impairment in renal clearance of a 
drug can result in slower elimination, which is relevant if this is the 
major clearance organ (e.g., cephalexin [ 21 ]). In mice, this has 
been accomplished by a single subcutaneous injection of uranyl 

1.3  Effect 
of  Infection   
on Antibiotic 
Pharmacokinetics

1.4  Effect of Animal 
 Age     

1.5  Strategies 
to  Mimic Human PK   
in Animal Models

Animal Models to Evaluate Anti-infective Pharmacodynamics
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nitrate (10 mg/kg) 3 days prior to animal infection [ 22 ]. Uranyl 
nitrate produces acute tubular necrosis and subsequent stable but 
decreased renal glomerulofi ltration for a maximal duration of 7 
days [ 23 ,  24 ]. For example, Craig and colleagues administered 
uranyl nitrate to mice receiving amikacin and demonstrated an 
increased half-life, peak concentration, and AUC for each dose 
when compared to non-renally impaired mice [ 24 ]. The resultant 
PK parameters and concentration-time curves more appropriately 
simulated human amikacin PK. Antimicrobial agents actively 
secreted by renal tubular cells can be competitively blocked by 
other compounds that utilize the same excretion process. An 
example of this is probenecid, a weak organic acid which blocks the 
secretion of penicillin and other cephalosporins [ 25 ]. A variety of 
renal impairment mechanisms have also been reported for rats 
[ 21 ]. This includes proximal tubular necrosis induced by cisplatin 
(one dose at 5 mg/kg IP), papillary necrosis induced by 
2- bromoethylamine hydrobromide (one dose at 75 mg/kg IV), 
glomerulonephritis induced by sodium aurothiomalate (6 weekly 
injections of 0.05 mg/kg IV), and anti-rabbit antibodies to rat 
glomerular basement membrane (single IV injection). 

 Continuous dosing of antimicrobials has been utilized to 
counteract the effect of rapid antimicrobial clearance in small 
rodents. There are a number of systems that have been utilized 
including tissue cage infusion [ 26 ], infusion pumps [ 27 – 31 ], and 
more recently sophisticated computer programmable pumps [ 32 ]. 
These systems work best from an effi cacy standpoint for time- 
dependent drugs in which the time above MIC is the driving phar-
macodynamic index.      

2    Host Susceptibility to Infection 

   Animal models of anti-infective therapy often utilize immune 
 suppression. There are several reasons for this model design. First, 
an unconfounded evaluation of antimicrobial effect can be per-
formed if the immune system is removed or signifi cantly inhibited 
from affecting the outcome. Therefore, one will get a more robust 
drug- effect evaluation by removing confounders that will artifi -
cially enhance antimicrobial effi cacy. Secondly, many animals are 
inherently resistant to microbes that are pathogens in humans and 
immune suppression is required to mimic disease in patients. The 
effects of immune suppression have been explored in a number of 
studies. As might be expected, in general there is a reduction in the 
amount of drug, and thus PK/PD target, necessary to achieve 
 similar microbiological outcome (i.e., net stasis or 1-log kill) in 
non- neutropenic compared to neutropenic antibacterial models 
[ 33 ]. This reduction can be as much as two- to fourfold lower but 
appears to vary dependent upon the drug class and microorganism. 

2.1   Immune 
Suppression  

Alexander J. Lepak and David R. Andes
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The infl uence of immune suppression has also been demonstrated 
for fungal infections, although with varied impact when one 
 compares  Aspergillus  and  Candida.  For example, transiently 
 neutropenic mice infected with  Aspergillus  had dramatically higher 
survival rates with treatment (amphotericin B or echinocandin) 
than would be expected based on clinical outcome in patients [ 34 ]. 
This discrepancy is likely linked to immune system recovery. This 
hypothesis was supported by use of the same animal model but 
producing persistent neutropenia over the study period [ 35 ]. In 
this experiment, persistent neutropenic animals treated with both 
compounds at the doses studied had 100 % mortality with only a 
differential effect noted based on the number of days the animals 
survived until death between the two drug groups. Therefore, 
immune suppression has a notable effect on antimicrobial effi cacy 
in fi lamentous fungal models. Conversely, the effects of  neutropenia 
appear to be less impactful in disseminated  Candida  infection 
models as similar PK/PD targets have been found in neutropenic 
and non- neutropenic  animals   [ 36 ,  37 ].  

   Host susceptibility and response to infection can change dramati-
cally in very young or advanced age animal models, as in humans. 
It has been well established that very young (i.e., neonates) and 
elderly humans are more susceptible to certain infectious diseases, 
and this can often be attributed to differences in immune function 
at these age extremes. Neonatal animal models have been estab-
lished to study common infectious diseases noted in this group 
including group B streptococcal infection [ 38 ,  39 ], staphylococcal 
infection including late-onset sepsis with CONs [ 40 – 43 ], and 
invasive candidiasis [ 43 ,  44 ]. Unfortunately, only a limited number 
of these studies have also included an evaluation of antimicrobial 
therapy. Conversely, aged animal models have focused primarily on 
specifi c immune function such as studying innate immune responses 
(e.g., cytokine response and neutrophil function) as well as  adaptive 
immune responses (e.g., T- and B-cell-specifi c responses). 
Common infections noted in elderly humans have been modeled 
in aged animals including bacterial peritonitis, intra-abdominal 
abscess and sepsis via cecal ligation, invasive candidiasis, and 
 Clostridium diffi cile  [ 45 – 49 ]. Unfortunately, while susceptibility 
to infection has been examined in aged animal models, antimicro-
bial effi cacy in these models is also limited.      

3    Common Animal Infection Models for Antimicrobial PK/PD Study 

   The rodent thigh lesion model was originally described by Selbie 
and Simon in 1952 [ 50 ] and continues to be the workhorse for 
animal model PK/PD antimicrobial effi cacy studies. This model is 

2.2  Effect of  Age   
on Susceptibility 
to Infection

3.1  Animal Models 
of  Bacterial Thigh 
Infection      (Selbie)
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commonly employed in the development of new antimicrobial 
agents and has been shown to be helpful for predicting effi cacy for 
a number of human applications (e.g., skin and soft tissue infec-
tion, intra-abdominal infections, and septicemia). The model is 
also attractive as use of two thighs per animal (two biological 
 replicates) limits the total needed for each experiment. Briefl y, the 
model involves intramuscular injection of an inoculum into the 
dorsal thighs. Mice are then treated with an antimicrobial agent for 
a defi ned period, euthanized at study endpoint, and CFU enumer-
ated from each thigh. In order to make the data most meaningful, 
zero hour control mice are optimal to determine the viable burden 
at the start of therapy. This allows one to determine whether 
 infectious burden increased, decreased, or remained stable over 
time. Untreated controls are also necessary to assess fi tness of each 
bacterial strain in the animal model. Most studies utilize a neutro-
penic mouse model. While CFU determination of pathogen 
 abundance is most commonly performed, novel techniques such as 
fl uorescent protein markers, serum biomarkers of infection, image 
scoring, quantitative PCR, and antigen/antibody testing have 
been developed for certain pathogens as a means to monitor 
 infectious burden in animals.        

   Murine models of acute pneumonia are increasingly incorporated 
into drug development and PK/PD studies for drugs intended for 
this infection site. The reliance upon these lung infection models 
has stemmed from the recognition of differential penetration of 
antimicrobials to the site of bronchopneumonia, the epithelial 
 lining fl uid, ELF. Many contemporary lung infection models have 
been described, including a recent thorough review of murine 
models to mimic human pneumonia [ 51 ]. The models include 
infection with common community pulmonary pathogens 
 including  S. pneumoniae ,  H. infl uenzae ,  C. pneumoniae , and  M. 
pneumoniae . Important considerations in the models include host 
immune dysfunction, organism pathogenicity in mice, route of 
infection, inoculum size, experimental duration, and endpoint 
(e.g., mortality, organism burden). Similar to the thigh model, 
mice are commonly rendered neutropenic. For a few organisms, 
immune suppression alone is insuffi cient to yield highly reproduc-
ible results in biological replicates. One strategy to overcome this 
has been to utilize a chemical irritant (1 % formalin) just prior to 
inoculation [ 52 ]. Decreased fi tness has also been noted in drug-
resistant isolates where presumably the loss of fi tness is secondary 
to genetic changes in the isolate [ 53 ]. Therefore, it is important at 
the outset to ensure that all organisms utilized have relatively 
 similar degrees of pathogenesis in the animal model. 

 The route of infection for production of pneumonia includes 
aerosolization of the inoculum with subsequent inhalation, intra-
nasal instillation with ensuing aspiration, injection into the trachea 
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via percutaneous puncture with a fi ne needle, or direct instillation 
into the lungs by tracheal intubation. One advantage of  aerosolized 
inoculation is the ability to infect large numbers of animals in a 
chamber at the same time with similar inoculum burden. For 
example, nebulization of 10 8  CFU/mL of  K. pneumoniae  via a 
Collison nebulizer for 45 min produces a similar degree of 
 pneumonia in up to 100 mice at the same time [ 54 ]. Experiment 
duration can vary depending on pathogenicity of the infecting 
organism, but usually does not need to be prolonged more than 
24–48 h for bacterial pathogens to produce death in untreated 
control mice. Finally, determination of organism burden is most 
commonly performed by quantitative culture techniques (CFU 
determination). The aforementioned pneumonia model  techniques 
are now increasingly utilized for hospital/health care-acquired 
pneumonia. Representative examples include  Acinetobacter  [ 55 –
 64 ], MRSA [ 3 ,  65 – 72 ],  Pseudomonas aeruginosa  [ 73 – 81 ], and 
 Klebsiella pneumoniae  [ 82 – 89 ]. Additionally, anthrax models have 
been developed in recent years given the continued threat of 
  bioterrorism      [ 90 – 97 ].  

   Chronic pneumonia usually occurs in the setting of preexisting 
lung conditions such as chronic obstructive pulmonary disease 
(COPD) and cystic fi brosis (CF). These lung diseases produce 
intermittent obstruction and variable loss of immune function with 
subsequent risk for chronic or recurrent infection. These  preexisting 
conditions do not exist in rodents and bacteria commonly involved 
in these infections are rapidly cleared from the airways in rodents 
[ 98 – 100 ]. Therefore, strategies to mimic periodic obstruction and 
prevent bacterial clearance have been developed. To date the most 
common method used to achieve airway obstruction is the 
 preparation of the bacterial inoculum in agarose or alginate beads 
[ 99 ,  101 ]. This method has been employed successfully to yield a 
persistent  P. aeruginosa  infection in rats for up to 35 days [ 99 ]. 

 The pathogen of choice for most chronic pneumonia studies is 
 P. aeruginosa . This is clinically applicable as it is not only the most 
common isolate found in colonization and infection in COPD and 
CF patients, but is also particularly diffi cult to treat and has high 
propensity of acquiring drug resistance. A representative example 
includes the guinea pig model of chronic  P. aeruginosa  pneumonia 
[ 102 ]. Infection was established using agar bead-encased bacteria 
and the compounds tested included ticarcillin (120 mg/kg), cipro-
fl oxacin (10 mg/kg), and tobramycin (1.7 mg/kg). Ciprofl oxacin 
was judged to be most effi cacious, followed by tobramycin and 
ticarcillin, which was ineffective (based on CFU counts). Notably, 
no single-drug treatment was able to completely eradicate the 
infecting organism in this chronic model. Murine models have also 
been adapted to investigate the impact of antimicrobial therapy in 
chronic  P. aeruginosa  pneumonia [ 103 – 107 ]. For example, Macia 
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and colleagues examined ciprofl oxacin and tobramycin monother-
apy and combination therapy in a murine model of chronic 
 pneumonia using a reference strain and its hypermutable derivative 
[ 104 ]. After exposure to ciprofl oxacin, infection with the hyper-
mutable isolate of  P. aeruginosa  resulted in a rapid increase in 
drug-resistant subpopulations. This effect was not observed with 
tobramycin monotherapy. Finally, the combination of the two 
drugs appeared synergistic against the hypermutable isolate. Thus 
this study design appears useful for investigation of PK/PD dosing 
strategies to prevent the emergence of resistance. Inhalational drug 
administration is an additional area of investigation garnering more 
interest for chronic pneumonia [ 103 ,  108 – 112 ]. The advantage of 
this route of administration method is directly targeting antimicro-
bial therapy to the site of infection as well as limiting systemic 
 toxicity that can be problematic for certain antimicrobial  agents  .     

   Fungal pathogens have the capability to cause localized infection 
(e.g., esophageal candidiasis or skin), pneumonia (pulmonary 
aspergillosis), disseminated infection (e.g., invasive candidiasis), or 
a combination of the two (e.g., invasive aspergillosis or cryptococ-
cosis). Therefore, models have been developed to study  site- specifi c 
infections   as well as disseminated infection [ 113 – 116 ]. There are 
important differences from bacterial animal models that require 
additional consideration. Examples include the inoculum size and 
type of immune suppression. Many fungal pathogens require a 
high inoculum to produce disease, most commonly on the order of 
7–9 log 10 . This very high inoculum though can lead to relatively 
small growth in end-organ burden prior to study endpoint or 
 animal death (i.e., 1 log 10  or less) [ 117 ]. Additionally, while many 
bacterial studies utilize a neutropenic host animal, it is almost 
 universally employed for fungal studies. This is required as most 
fungal pathogens fail to establish an infection in specifi c sites 
(e.g., lung) in the animal host without signifi cant immune 
 suppression. This factor may be intuitive as it is well documented 
that immune suppression is often a necessary risk factor for 
human disease for many opportunistic fungal pathogens. A com-
mon additional step in immune suppression in  pulmonary mold 
infection models   is the utilization of high doses of corticoste-
roids [ 118 – 123 ]. An alternative strategy is to use a rodent model 
with specifi c immune defi ciencies bread into their background 
[ 124 ,  125 ]. For example, SCID mice devoid of B- or T-cell 
immunity have been used for a mucosal candidiasis model to 
mimic infection in patients with HIV [ 125 ]. Additional host 
factor modifi cations have also been incorporated to mimic 
human disease. For example, a murine model of diabetic 
 ketoacidosis, a major risk factor for disseminated and cerebral 
zygomycosis, has been successfully described and utilized to 
examine antifungal therapy in this setting [ 126 ,  127 ]. 
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 Use of animal models for investigation for  antifungal therapy   is 
most common for  Candida  species, and includes oropharyngeal 
and esophageal candidiasis [ 128 ,  129 ], vaginitis [ 130 ], and inva-
sive candidiasis [ 10 ,  36 ,  37 ,  115 ,  119 ,  131 – 169 ]. Disseminated 
infection induced via tail vein injection of the inoculum is the most 
commonly utilized model. Quantitation of infectious burden at 
the end of therapy is assessed in tissue  homogenate  , frequently the 
kidneys. Additionally, fungal burdens and treatment effect noted in 
the kidneys of mice have correlated very closely with other, more 
diffi cult-to-sample tissue compartments such as the brain [ 170 ]. In 
a neutropenic murine model of invasive candidiasis, an inoculum 
of 6–7 log 10   C. albicans  will progress to death in 24–72 h in 
untreated animals [ 37 ]. However, study of organism growth or 
decline over longer treatment periods can be accomplished  utilizing 
a lower starting inoculum [ 138 ]. For other  Candida  spp. (such as 
 C. glabrata ), severe infection is more diffi cult to establish, and it 
often does not result in appreciable animal mortality [ 133 ,  134 , 
 144 ,  171 ]. 

 A well-recognized clinical complication of invasive candidiasis is 
dissemination to the eye with subsequent endophthalmitis. Animal 
models examining drug therapeutic effi cacy in animal models of 
 endophthalmitis   have also been developed [ 172 – 180 ]. These  models 
have provided important guidance on therapeutic options for this 
relatively pharmacologically protected body site. Models mimicking 
human fungal keratitis have also been described [ 181 – 192 ]. 

  Filamentous fungal pathogen models   (most commonly 
 Aspergillus ) have also undergone signifi cant experimental refi ne-
ment over the past decade. Many of these pathogens are acquired 
via the respiratory tract and therefore pulmonary inoculation mod-
els with dissemination most closely mimic human disease [ 123 ]. 
However, disseminated models via intravenous injection of the 
organism inoculum have also been utilized [ 193 ]. These models 
often employ signifi cant immune suppression in the form of a 
combination of chemotherapy-induced neutropenia and cortico-
steroid treatment. Durations of 7 days or longer are often utilized 
as in general, despite the immunosuppression, fi lamentous fungi 
require longer incubation periods to grow to signifi cant levels 
and/or disseminate via a pulmonary infection route. One  challenge 
of fi lamentous fungal PK/PD investigation has been reproducible 
quantitation of organism burden. Filamentous fungi do not grow 
in discrete colonies on an agar plate as do bacteria and yeast. 
Additionally, concern has been raised that homogenization can 
fracture a fi lament into multiple pieces leading to overestimation of 
organism burden. Current molecular assessments of organism 
 burden have largely alleviated this limitation. The most common 
surrogate methods of organism burden include galactomannan 
measurement [ 122 ] or real-time  quantitative PCR (qPCR)   [ 121 , 
 194 ,  195 ]. For example, a recent study evaluated the utility of 
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qPCR to assess disease progression, treatment outcome, and 
 animal mortality in a 7-day study of invasive pulmonary aspergil-
losis (IPA) in a murine model [ 121 ]. The study found a strong 
relationship between qPCR result and treatment effi cacy. For every 
1-log increased growth of organism based on qPCR, a 17 % 
increase in mortality was observed. Additionally, the increase in 
survival was most profound at the dose exposure that was  associated 
with net stasis (static dose) of organism burden. Thus, stasis or net 
cidal drug activity based on qPCR was a very strong predictor of 
clinical survival in this model. Other measures of organism viability 
and abundance have also been utilized such as XTT, DiBAC 
 staining, chitin measurement, histopathology grading, lung 
weights, pulmonary infarct scoring, and galactomannan measure-
ment [ 196 ,  197 ]. These types of models have also been recently 
expanded to examine less common fi lamentous fungal pathogens 
including   Zygomycetes    [ 126 ,  198 – 201 ]. 

 Models mimicking fungal meningitis for pathogens that 
 commonly cause primary CNS infection, or have a high likelihood 
of dissemination to the CNS, have been developed for a number of 
pathogens (e.g.,  Cryptococcus ,  Aspergillus , and dimorphic patho-
gens  Blastomyces ,  Histoplasma , and  Coccidioides ). Infection is 
induced by either intravenous or intracisternal injection of a defi ned 
inoculum and organism burden is quantifi ed in the cerebrospinal 
fl uid and brain parenchyma as a measure of outcome. One of the 
more common pathogens examined in these animal is   Cryptococcus  
sp.   [ 202 – 211 ], including the emerging species  Cryptococcus gattii  
[ 208 ]. Animal models of CNS aspergillosis, many developed and 
perfected by Clemons and Stevens, have been described and 
 utilized with success to determine therapeutic effi cacy of various 
antifungal agents [ 212 – 219 ]. Additionally, CNS models of inva-
sive  candidiasis   have been developed to better understand treat-
ment strategies for this rare pediatric complication [ 44 ,  220 ,  221 ]. 
Dimorphic fungal pathogens are often acquired via the pulmonary 
route but can disseminate to involve the CNS. A number of animal 
model investigations have examined antifungal therapy in animal 
models of CNS coccidioidomycosis and other dimorphic fungi 
[ 222 ]. Finally, animal models of CNS phaeohyphomycosis have 
been described for this rare but severe infectious entity [ 223 – 225 ]. 
PK/PD studies using animal models are very limited though for 
animal models examining CNS fungal infections. 

 The effi cacy of agents directed at  dermatophytes   has been 
 evaluated in animal models with cutaneous infection [ 226 – 230 ]. 
Most commonly, the site of infection (skin, foot pad, or nail) is 
mechanically abraded prior to topical inoculation to predispose the 
tissue to infection. The infection often takes several days or weeks 
to establish and therefore initiation of systemic or local topical 
therapy is delayed. After therapy, which may also require a 
 prolonged period of time, tissue samples are cultured and  examined 
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by histopathology to determine drug effi cacy. Rare fungal  infections 
that can occur in patients with severe or prolonged immunosup-
pression have also been studied to a limited extent. Some examples 
include blastoschizomycosis [ 231 – 233 ], fusariosis [ 234 – 237 ], 
 scedosporiosis [ 238 – 240 ], and trichosporonosis [ 241 ,  242 ]. PK/
PD evaluation in these models is in general lacking.  

   Animal models of human  sexually   transmitted infections ( STIs)   
can be problematic owing to the high-level specifi city many of the 
STI pathogens display for a human host. Despite this, a number of 
models (in some cases utilizing a different infecting species that is 
specifi c for the urogenital tract of the animal) have been success-
fully developed. Unfortunately, robust PK/PD studies do not exist 
in STI models. However, the continued epidemiological burden of 
STIs throughout the world and increasing rates of drug resistance 
(i.e.,  Neisseria gonorrhea ) make PK/PD study an important area 
for future investigation. 

 Mice were traditionally considered resistant to disseminated 
gonococcal infection [ 243 ] despite some early successful studies 
[ 244 ]. A recent advance in the fi eld is the successful development 
of a reproducible murine model [ 245 ,  246 ]. Mice are made 
 susceptible to colonization and infection with  N. gonorrhea  via the 
combination of pretreatment with antibiotics (e.g., vancomycin 
and TMP-sulfa) and estradiol [ 245 ,  247 ]. The model has also been 
used recently to examine the effects of fl uoroquinolone resistance 
mutation development and associated compensatory mutations to 
restore wild-type fi tness [ 248 ]. 

 Animal models examining antimicrobial effi cacy in syphilis 
have been developed for localized disease (i.e., dermal), genitouri-
nary tract disease, CNS/disseminated disease, and congenital 
 disease. Most models utilize rabbits as the animal host; however a 
model in the hamster has also been well described [ 249 ].  Localized 
infection   is induced by intradermal injection of live spirochetes. 
Antimicrobial therapy is usually withheld until signs of an active 
syphilitic lesion are present and confi rmed by dark-fi eld  microscopic 
analysis of a skin scraping. Once active infection is confi rmed, 
 antimicrobial therapy is administered. Representative examples of 
the use of this protocol to show antimicrobial effi cacy for localized 
disease include penicillin g [ 250 ], aztreonam [ 251 ], cefetamet 
[ 252 ], cefmetazole [ 253 ], an investigational penem [ 250 ], 
 ceftriaxone [ 254 ], and azithromycin [ 255 ]. A hamster model of 
intradermal infection demonstrating effi cacy of clarithromycin has 
also been described [ 256 ].  Genitourinary tract disease models   have 
primarily been limited to orchitis infection models. In this model, 
animals receive an inoculum of syphilis spirochetes directly into the 
testes. It has been utilized on a limited basis to determine drug 
effi cacy, with encouraging results from a study of ceftriaxone, 
 ceftizoxime, and penicillin g [ 257 ,  258 ]. Central nervous system 
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infection with syphilis can be achieved by direct intracisternal 
 injection of  T. pallidum . Marra and colleagues utilized this proce-
dure to develop a rabbit model of CNS syphilis that very closely 
mimicked human disease including a 6 % rate of uveitis in the 
 animal model [ 259 ]. A year later the same group demonstrated 
potentially improved results for penicillin g versus ceftriaxone in 
the rabbit model, although it lacked power to defi nitively show a 
statistical difference between the two drugs [ 260 ]. Finally, 
  congenital syphilis   has been described in a rabbit and hamster 
model [ 261 – 263 ]; however, antimicrobial therapy in congenital 
syphilis models has not been well explored. 

   Chlamydia trachomatis    is a major cause of STI worldwide and 
remains the most common STI in the USA. Attempts at  developing 
an animal model have, however, proven challenging [ 264 ]. 
Reproducible establishment of infection of the upper genital tract 
in female mice with human isolates of  C. trachomatis  requires hor-
monal manipulation, inbred animals, and surgical intervention to 
place the organisms directly into the site (i.e., salpingitis) [ 265 ]. 
However, in 1994 Beale and Upshon developed a novel upper 
genital tract infection model in mice [ 265 ]. They utilized  C. 
 trachomatis  MoPN (primarily a mouse respiratory pathogen) and 
were able to demonstrate upper genital track disease in 
progesterone- treated mice administered the inoculum by 
 intravaginal injection. Additionally, minocycline, doxycycline, 
amoxicillin- clavulanate, and azithromycin were all effective when 
initiated 1 or 7 days post-infection. Both doxycycline and azithro-
mycin were highly effective in restoring animal fertility. A study of 
azithromycin effi cacy in female mice demonstrated that the antimi-
crobial agent could reverse chlamydial-induced damage and restore 
fertility if administered within 2 or 7 days of infection [ 266 ]. 
Conversely, if administered 12 or more days after infection, even at 
very high doses, it failed to prevent infertility. A male murine model 
of genital tract disease caused by  C. trachomatis  MoPN has also 
been described [ 267 ] that similarly mimics disease in human males. 
However, evaluation of antimicrobial therapy in this model has not 
been performed. Another strategy to circumvent problems with 
establishing  genital tract disease   with human isolates of  C. tracho-
matis  is to utilize a species that does cause intrinsic genital tract 
infection in the animal host.    This has been accomplished using the 
isolate  C. muridarum  to infect the urogenital tract of mice [ 268 –
 273 ] and  C. caviae  in guinea pigs [ 274 – 276 ].  

   Models of urinary tract infections (UTI)    are commonly used to 
assess antimicrobial  effi cacy   given it is one of the most common 
infectious diseases of humans. Rodents (i.e., mice and rats) are the 
most common animal model utilized and there are few important 
factors one needs to consider. First, not all bacteria are inherently 
pathogenic in the rodent urinary system and therefore in some 
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studies manipulation (i.e., obstruction or direct instillation into 
renal parenchyma) is necessary. Secondly, vesicoureteral refl ux is a 
naturally occurring phenomenon in rodents due to the lack of ure-
terovesical valves [ 277 ]. In its simplest form, UTI can be induced 
in rodents by instillation of normally  pathogenic microorganisms  , 
such as  E. coli , into the bladder by urethral catheterization and 
clamping the catheter or urethra for a short period of time to 
 prevent immediate inoculation expulsion and promote infection 
[ 278 – 281 ]. As long as the bacterial strain has necessary virulence 
factors (i.e., type 1 or type P fi mbriae), a UTI with high bacterial 
counts in the bladder and kidney will ensue over a period of 1–8 
days. This model has been successfully employed to study antimi-
crobial effi cacy and PK/PD relationships of antimicrobial therapy 
[ 279 ,  282 – 284 ]. Urinary obstruction models provide a framework 
to study pyelonephritis and UTI with organisms that are not 
 intrinsically pathogenic to the rodent urinary system [ 285 ,  286 ]. 
This model is more technically demanding as it usually requires ani-
mal surgery to directly inoculate the bladder with the pathogen and 
then ligate one ureter to cause an obstructed infection.  Antimicrobial 
therapy   has also been examined using this model although given 
the complexity there is less robust pharmacodynamic analyses than 
the unobstructed model [ 287 – 289 ]. Direct instillation of organism 
into the parenchyma (i.e., poles) of one or both kidneys has also been 
demonstrated as a means to study  antimicrobial effi cacy in the urinary 
system but is also technically demanding [ 290 – 292 ]. A fi nal mecha-
nism that has been utilized is hematogenous seeding of the urinary 
system to produce  UTI   [ 293 ,  294 ]. This model has been particularly 
useful to examine antimicrobial therapy for other common  bacterial 
pathogens   of the urinary system including  Enterococcus ,  Staphylococcus , 
and  Klebsiella  [ 295 – 298 ].  

   Animal models of endocarditis have been utilized for decades to 
examine optimal antimicrobial therapy for this common 
 life- threatening infection. Additionally, they are perhaps the 
area of animal model evaluation that has garnered the most 
translatable clinical applicability [ 299 – 305 ]. The most common 
animal species utilized are rabbits, although rodent models have 
also been developed. The infection model itself usually consists 
of canalization of the right carotid artery with a polyethylene 
intravenous catheter and advancing it across the aortic valve. 
This results in the development of sterile vegetations on the 
aortic valve which can then be colonized/infected with a 
 bacterial inoculum through the catheter. This model remains a 
very important tool in optimizing antimicrobial therapy for 
endocarditis, especially combination therapy with aminoglyco-
sides and novel combinations for aminoglycoside- resistant 
Enterococcal endocarditis and methicillin-resistant  Staphylococcus 
aureus   endocard   itis   [ 306 – 315 ].  
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   Peritoneal infections can be produced by one of the two mecha-
nisms: direct inoculation of organism into the peritoneal cavity or 
cecal perforation as the result of ligation and puncture (CLP). The 
former mechanism was initially performed by surgically placing a 
gelatin-incased inoculum into the peritoneal cavity [ 316 – 318 ]. 
However, more recently this has been simplifi ed by direct inocula-
tion of the inoculum by syringe into the peritoneal cavity to 
 produce an infectious peritonitis [ 317 – 326 ]. To enhance pathoge-
nicity talcum (magnesium hydropolysilicate) is often utilized in 
inoculum preparation and serves as a foreign body irritant to 
 promote infection while having no effect on antimicrobial therapy. 
The CLP model is another surgical technique to mimic secondary 
bacterial peritonitis [ 327 ,  328 ]. In this model, the animal is 
 anesthetized and the abdominal cavity is aseptically entered 
whereby the cecum is identifi ed, ligated, and perforated with a 
needle before closing the  abdomen     .      
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Chapter 4

Pharmacodynamic Issues in Antibiotic Combinations

Zackery P. Bulman, Ryan C. Dillon, and Brian T. Tsuji

Abstract

For over decades, antibiotics have been used in various combinations to treat infections. From a clinical 
perspective a number of studies have shown that combination treatments can significantly reduce mortality 
in certain subsets of patients including those who are both bacteremic and severely ill. However, there is 
significant controversy over their current role and definitions of appropriate applications of antibiotic com-
binations, particularly as it to relates to pharmacodynamics and measurements of effect. The emerging 
health care crisis surrounding multidrug-resistant bacteria and the lack of novel antibiotics highlight the 
importance of optimizing these combinations. The fundamental principles of effective combination regi-
mens are increased bactericidal activity with decreased potential for resistance selection upon treatment 
and to minimize exposure-associated toxicity. Furthermore, quantification of two drug’s combined effect 
is of major importance when weighing the benefits and disadvantages of their use compared to mono-
therapy. Qualitative terms like synergy, additivity, or antagonism all help to categorize the nature of the 
interaction between two antibiotics. There has been much debate as to which definitions of drug interac-
tions are most appropriate but the two main metrics used to help qualify the nature of the combination (or 
interactions between any two drugs) are Loewe additivity and Bliss independence. Overall, despite the 
apparent benefits of combination therapy, pharmacodynamic concerns exist about these regimens includ-
ing: definitions of synergy, indifference, and antagonism; duration of studies; bacterial inoculum; model 
systems utilized; and a number of other issues exist. The primary objective of the chapter is to review the 
state of the art pharmacodynamic issues regarding antibiotic combinations.

Key words Antibiotic combinations, Pharmacokinetics, Pharmacodynamics, Synergy, Interaction

1 Introduction

Clinically, antibiotics have been used in various combinations for 
many years to treat infections but with mixed results when com-
pared to monotherapy. There is conflict over their current role and 
a trend toward defining appropriate applications of antibiotic 
 combinations, particularly as it relates to pharmacodynamics and 
measurements of effect. The emerging health care crisis surround-
ing multidrug-resistant bacteria and the lack of novel antibiotics 
highlight the importance of optimizing these combinations [1, 2]. 
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The fundamental principles of effective combination regimens are 
increased bactericidal activity (synergy or additive) with decreased 
potential for resistance selection upon treatment [3, 4]. Of addi-
tional benefit is decreased dose-associated toxicity of drugs. 
Overall, despite these apparent benefits, concerns exist about these 
regimens, including increased costs, more drug-related adverse 
events, and potential selection for superinfections [3, 5]. The pri-
mary objective of the current chapter is to review the state of the 
art pharmacodynamic issues of antibiotic combinations.

2 Defining the Rationale for Combination Therapy:  
What Is the Mortality Benefit?

Before one analyzes the rationale for utilizing a combination ther-
apy from a pharmacodynamics perspective, it is critical to under-
stand the original tenants of combination therapy from a mortality 
benefit perspective. Such an understanding is important to assess 
the effectiveness and importance of combination regimens in clini-
cal practice through a review of studies that have assessed the mor-
tality benefit of multiple antibiotics vs. monotherapy. Analysis of 
published literature allows us the greatest insight into when antibi-
otic combinations can have the maximum impact on survival in 
addition to the pharmacodynamics issues. Generally, these studies 
have shown that combination treatments can significantly reduce 
mortality in certain subsets of patients including those who are 
both bacteremic and severely ill [6–9]. Meta-analyses investigating 
antibiotic combinations have consistently shown that antibiotic 
combinations generally do not demonstrate a mortality benefit  
in comparison to monotherapy in infectious processes such as 
ventilator- associated pneumonia (VAP) and gram-negative bacte-
remia [5, 10]. However, early combination therapy has been shown 
to significantly reduce mortality in critically ill patients with bacte-
rial pathogens with the potential to display multidrug resistance [5, 
7–9, 11].

Safdar et al. conducted a meta-analysis investigating combi-
nation antimicrobial therapy in reduction of mortality during 
gram- negative bacteremia [5]. The authors examined 17 studies 
including 3077 patients that met their inclusion criteria of docu-
mented gram-negative bacteremia and single or multiple antibiot-
ics with mortality as a primary outcome. The summary odds ratio 
(OR) was calculated to be 0.96 (95 % CI 0.70–1.32), which estab-
lished their conclusion that there is no overall mortality benefit of 
combination antibiotics vs. monotherapy in documented gram- 
negative bacteremia. The authors challenged their results by 
exploring specific subgroups to determine the authenticity of their 
conclusion. They questioned whether the design of the studies and 
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those published before 1990, where less potent gram-negative 
antibiotics were available, would change the outcome of their 
study. The investigators found no significant difference in these 
subgroups. Interestingly, when only looking at the five studies that 
examined specifically Pseudomonas spp. bacteremia, there was a sig-
nificant reduction in mortality when the patient was started on 
combination antibiotics vs. monotherapy [OR 0.50 (95 % CI 0.2–
0.79)], with an approximate 50 % reduction in mortality observed. 
The authors concluded that there may not be mortality benefit 
when using combination antibiotics in suspected gram-negative 
bacteremia except in the case of documented or presumed 
Pseudomonas spp. infection. This could possibly be attributed to 
the resilience of Pseudomonas spp. and its characteristic multidrug- 
resistant strains [12]. Therefore, it may be of benefit to start com-
bination antibiotics on patients with previously documented or 
suspected bacteremia with Pseudomonas spp.

Baddour et al. conducted a prospective, observational study 
assessing 592 patients 15 years or older with bacteremia due to 
Streptococcus pneumoniae, where the primary outcome was mortal-
ity at 14 days [6]. Monotherapy was compared to combination 
therapy and there was no significant difference in mortality (10.4 % 
vs. 11.5 %, p = NS). When the investigators looked at the patients 
who presented with a Pitt bacteremia score >4 there was a signifi-
cant reduction in mortality at 14 days for the patients treated with 
combination antibiotics (23.4 % vs. 55.3 %, p = 0.0015) (Fig. 1).

Fig. 1 Isobologram analysis. Line A is the line of additivity which connects the independent concentrations of 
drug A and drug B that are required to generate the designated effect (IC50). Lines B and C represent experi-
mental data points which indicate antagonism and synergism of the drug combination, respectively. 
Experimental data points falling on line A would indicate additivity

Pharmacodynamic Issues in Antibiotic Combinations
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This study concludes that patients with Streptococcus pneu-
moniae bacteremia may not benefit from combination antimicrobi-
als in terms of mortality. However, the patients included who were 
deemed critically ill with this bacteremia as described by a Pitt bac-
teremia score greater than 4 had a significant mortality benefit 
when treated with a combination of antibiotics vs. monotherapy. 
This is consistent with the general conclusion that critically ill 
patients see more benefit when combination antibiotics are started 
empirically.

Correlating to the previous conclusions, two other studies 
evaluated the mortality advantage of early combination antimicro-
bials in septic shock patients as defined as systemic inflammatory 
response syndrome (SIRS) criteria with a source of infection  
and hypotension despite adequate fluid resuscitation [8, 13, 14]. 
Kumar et al. designed a retrospective, propensity-matched cohort 
study with 4662 eligible cases and 1223 propensity-matched pairs 
generated [8]. The primary outcome was 28-day mortality. The 
study was restricted to antibiotic combinations that included beta- 
lactams with aminoglycosides, fluoroquinolones, or  macrolides/
clindamycin. There was a significant reduction in hospital mortality 
related to combination antibiotics vs. monotherapy [47.8 % vs. 
37.4 %, OR 0.69 (95 % CI 0.59–0.81, p < 0.0001)]. Of note the 
trial was limited by the nature of the retrospective design and the 
inability to account for unknown confounders. The study does 
however raise the possibility of antibiotic combinations being 
superior to monotherapy in critically ill patients and acknowledges 
the need for randomized controlled trials. Their conclusion does 
concur with other publications regarding its benefit in the severely 
ill population we have visited.

Rodriguez et al. designed a prospective obervational cohort 
study in 529 patients who required ICU admission for community-
acquired pneumonia with the primary outcome of 28-day mortal-
ity [13]. They found that mortality was similar for patients receiving 
combination antimicrobials vs. monotherapy. When the authors 
analyzed the subgroup of patients who presented with clinically 
defined septic shock they found a significant reduction in 28-day 
mortality when combination antimicrobials were used [hazard 
ratio (HR), 1.69 (95 % CI 1.09–2.60, p = 0.01)]. This again adds 
to the evidence of the mortality benefit in the critically ill.

At this point we have examined some of the published litera-
ture surrounding the use of combination antimicrobials vs. mono-
therapy and have seen that the mortality benefit seems to lie within 
the severely ill and critically unstable patient populations. Most of 
the current studies that have examined the non-critically ill patients 
with community-acquired infections find that monotherapy can be 
sufficient in comparison to combination therapy. There is insuffi-
cient evidence to broadly determine that combination is superior 
in community-acquired infections [5, 15, 16]. We can extrapolate 
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that concept to the theory that community-acquired pathogens are 
generally more susceptible to current antimicrobials. When evalu-
ating critically ill patients with the possibility of multidrug-resistant 
pathogens, the need for adequate coverage utilizing combination 
antimicrobials that attack the pathogen at multiple sites appears to 
be increased [5, 11].

Determining whether to empirically start a combination of 
antibiotics requires individual assessment of the clinical picture. 
Some risk factors will encourage the use of multidrug regimens in 
order to ensure proper spectrum coverage of the infectious pro-
cess. Additionally, patient characteristics such as host defenses, site 
of infection, perceived inoculum, and clinical presentation (e.g., 
age, vital signs, mental status) should be evaluated during the 
decision- making process. Antimicrobial properties should also be 
carefully considered, such as the pharmacokinetics (PK)/pharma-
codynamics (PD) of the individual drugs as well as how these can 
fluctuate when combination regimens are utilized. There is 
 satisfactory data to support the mortality benefit of empiric antibi-
otic combinations in severe infections especially when resilient 
pathogens are suspected.

Highlighting the effectiveness and importance of combination 
regimens in clinical practice are recent studies that have assessed 
the mortality benefit of multiple antibiotics vs. monotherapy. 
Generally, these studies have shown that combination treatments 
can significantly reduce mortality in certain subsets of patients 
including those who are both bacteremic and severely ill [6, 7]. 
Early combination therapy has also been shown to reduce mortality 
in patients with suspected P. aeruginosa infections or sepsis [5, 8, 
9]. Collectively, these studies are critical to appreciate the pharma-
codynamic issues of combination therapy.

3 General Principles of Antibiotic Combination Therapy Considering 
Pharmacodynamics

Clinically, antibiotics have been utilized in various combinations 
for many years to treat infections, but with mixed results when 
compared to monotherapy. Consequently, there is much debate 
concerning their role in therapy and a trend toward defining appro-
priate applications of antibiotic combinations. As the crisis involv-
ing multidrug-resistant bacteria escalates and the deficit of novel 
antibiotic agents persists, the significance of optimizing combina-
tion therapy becomes evident [1, 2]. The effectiveness of combi-
nation regimens is based on the fundamental principles of increased 
bactericidal activity (either synergistic or additive) and the decreased 
potential for resistance [3, 4]. Additionally, we see the benefit of 
decreased dose-associated toxicity, as observed with nephrotoxic 
drugs such as vancomycin and aminoglycosides as a result of low-
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ered doses when used in combination. Regardless of these appar-
ent benefits, concerns still exist surrounding the higher costs, 
increased drug-related adverse events, and potential selection for 
superinfection [3, 5].

Synergistic activity, a quality that is determined in vitro, results 
in the concurrent use of two antimicrobial agents having a greater 
collective effect than the sum of their respective activity measured 
independently [17]. A hallmark example of a combination that 
exhibits synergy is the use of β-lactams with aminoglycosides, 
which has been proven to be effective against various gram-positive 
and gram-negative organisms [18]. These two drug classes in par-
ticular have found great utility in the treatment of serious infec-
tions such as endocarditis where rapid killing of the invading 
organism is imperative. The mechanism behind the concerted 
activity of β-lactams and aminoglycosides is inherently complex as 
a direct result of the complicated mechanisms of action of the indi-
vidual drugs. Simply put, β-lactams are able to make the bacterial 
cell wall permeable enough for the aminoglycosides to penetrate 
them and inhibit protein synthesis. This relationship is critical 
when the β-lactams may not be sufficient to exclusively kill the 
organisms and can only cause nonlethal damage and/or if the 
 aminoglycosides are unable to independently permeate the cell 
wall to carry out its desired effect. Even in cases where both agents 
demonstrate individual efficacy, synergy is still observable since the 
drugs work through different pathways and are able to attack the 
organism from different angles. It is important to note that both of 
these drugs are considered to be bactericidal agents rather than 
bacteriostatic, a factor which is postulated to play a role in whether 
a combination will be synergistic, antagonistic, or additive [19]. 
These assumptions are also based upon the mechanisms of the 
agents that fall under those categories. It is proposed that when a 
bactericidal drug which acts on actively multiplying organisms is 
combined with a bacteriostatic agent which prevents multipli-
cation, the action of the bactericidal agent becomes nullified. 
Conversely, two bactericidal agents would destroy multiplying 
 bacteria through different pathways creating a synergistic affect 
and two bacteriostatic agents would likely result in additive effects. 
However, we must also consider that this definition is not fixed and 
can vary for an antibiotic depending on the bacteria as demon-
strated in the aforementioned example where the β-lactam was not 
sufficient to kill the organism and displayed characteristics that 
were primarily bacteriostatic.

In addition to providing augmented efficacy, combination anti-
biotic therapy offers the benefit of combatting the emergence of 
resistance. The rise of antibiotic-resistant bacteria has become a con-
siderable challenge to physicians and pharmacists alike, whom are 
faced with not only increasingly resistant organisms, but also a lack of 
new agents to eliminate them [1]. Ironically, antibiotics themselves 
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are primarily responsible for the development of resistance as they 
created an environment with selective pressures that was conducive 
to the evolution of these resilient strains [17]. Bearing in mind the 
complex metabolism of bacteria, it is easy to see how a rapidly divid-
ing, unicellular organism can transform in a manner that makes it 
elusive to the mechanisms of existing antibiotics [19]. A single 
change in the metabolic pathway during a course of treatment can 
result in the depletion of the sensitive strain with continued admin-
istration while creating a population of entirely resistant organisms. 
Combination therapy has the potential to avoid such a situation 
when using antimicrobials with varied mechanisms of action, thereby 
restricting the number of pathways through which the organism can 
evade elimination [17]. This principle is critical in the treatment of 
chronic diseases such as the human immunodeficiency virus (HIV) 
where indefinite treatment durations foster an ideal environment for 
resistance and pharmacologic agents are limited. In such cases, com-
bination therapy has become the standard of treatment. Despite its 
utility in suppressing the incidence of resistance, we must exercise 
caution in utilizing combination therapy to avoid the development 
of increasingly resistant strains. Although some situations call for the 
empiric use of combination antibiotics, there are instances where 
there is no proven benefit to using more than one agent [9, 20]. It 
is  pertinent for clinicians to be familiar with antimicrobial suscepti-
bility in their geographic area in order to appropriately implement 
combination antibiotic therapy.

4 Definitions of Synergy to Evaluate Antibiotic Pharmacodynamics

Quantification of two drug’s combined effect is of major impor-
tance when weighing the benefits and disadvantages of their use 
compared to monotherapy. Qualitative terms like synergy, additiv-
ity, or antagonism all help to categorize the nature of the interac-
tion between two antibiotics. There has been much debate as to 
which definitions of drug interactions are most appropriate but the 
two main metrics used to help qualify the nature of the combina-
tion (or interactions between any two drugs) are Loewe additivity 
and Bliss independence [21].

Loewe additivity is one of the two main reference models used to 
analyze drug-drug interactions and is founded on the principle 
that a drug cannot act synergistically with itself or another drug 
similar in nature [22, 23]. Loewe additivity is defined as the mag-
nitude of the effect when an agent is added onto itself. For exam-
ple, if drugs “A” and “B” are the same or close in structure, the 
activity of “A” when used in combination with “B” at the same 
concentration will be the same as using twice as much drug “A.” 
In other words, both drugs must have linearly proportional 

4.1 Loewe Additivity
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Fig. 2 (a) Kaplan-Meier survival plot for patients with pneumococcal bacteremia and a Pitt bacteremia score ≤4. 
(b) Kaplan-Meier survival plot for patients with pneumococcal bacteremia and with a Pitt bacteremia score >4 
(Baddour et al. 2014).

increases in their magnitude of inhibition for increasing doses of 
the drugs in order to be considered additive. Isoboles, or lines of 
constant inhibition, are measured by obtaining pharmacodynamic 
data in a two-dimensional range of dosages for the drugs. Thus, 
Loewe synergism is defined as a magnitude of effect greater than 
that expected by the additivity principle when two unique com-
pounds are used in combination. It is this principle that is also the 
basis of more contemporary methods of analyzing drug interac-
tions including isobologram analysis, combination index analysis, 
and curve shift analysis. Isobologram analysis (see Fig. 2) looks at 
interactions between two drugs at a fixed effect level (i.e., 50 %) 
and compares drug concentrations required to achieve that effect 
level alone and in combination with one another [24]. Combination 
experiments are run and the concentrations of each drug at which 
some fixed effect level (i.e., 50 %) is achieved are determined. 
Experimental data falling above the line of additivity is interpreted 
as antagonism, data falling on the line is considered additivity, and 
data below the line is synergism.

The next drug interaction analyzing method is the combination 
index (CI) which is calculated by the equation below where CA,x 
and CB,x are the concentrations of drugs A and B used in combina-
tion that attain a predetermined effect level (“x”). ICx,A and ICx,B 
are the concentrations of drug A and B monotherapy, each attained 
at the same effect level, “x” [25]. A CI value of 1 indicates addi-
tivity, CI > 1 indicates antagonism, and a CI < 1 indicates syner-
gism. It has been considered the simplest way of quantifying 
synergism or antagonism of compounds given the simplicity of its 
equation, efficient data analysis, and ability to reduce trial size:

 
CI

IC IC
A x

x A

B x

x B

= +
C C,

,
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Curve shift analysis is another method of evaluating for the 
presence of Loewe synergy. Two-dimensional graphs are formed 
which plot the experimental concentration normalized to the IC50 
value vs. effect of two agents, “A” and “B,” alone and in combina-
tion at a variety of ratios [23]. The data are then fit to the Hill 
equation by nonlinear regression. Shift of the curves to the left for 
the combination of “A” and “B” defines synergy in this analysis 
model where a shift to the right would be defined as antagonism of 
two interacting drugs (Fig. 3).

Bliss independence is a second major reference model used to 
interpret drug combination interactions. Bliss independence is 
founded on the principle that two drugs will not interact with one 
another but can each contribute to a common pharmacodynamic 
endpoint [26]. For antibiotics to be considered Bliss independent, 
the product of growth inhibition by each drug measured indepen-
dently should be equal to the effect seen when the two drugs are 
used together at the same concentrations [27]. For example, Bliss 
independent drugs “A” and “B” both cause 25 % inhibition of 
bacterial growth independently and in combination they cause a 
decrease in growth of (0.25 + 0.25) − 0.25 × 0.25 which is equal to 
43.75 %. If the pharmacodynamic studies show that inhibition is 
greater than this threshold, it would be considered synergistic, 
while a value less than 43.75 % would be antagonistic.

4.2 Bliss 
Independence

Fig. 3 Analysis synergy. The solid line labeled as “Drug A” and dotted line labeled “Drug B” show the fitted Hill 
function for experimental data of each when given as monotherapy. Dashed lines, “Synergism” and “Antagonism,” 
represent the interaction of drugs “A” and “B” and their activity relative to the agents acting alone
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5 Traditional Methods of Evaluating Synergism in In Vitro Studies: 
Pharmacodynamic Advantages and Disadvantages

In vitro studies are often used to study combination therapies with 
the goal of defining the interaction using either the Loewe additiv-
ity or Bliss independence model. Determining the best method  
to define such interactions depends on the experimental system 
used [21, 28]. When using the checkerboard method to analyze 
 antibiotic combinations, the fractional inhibitory concentration 
(FIC) index is used. Briefly, the checkerboard method requires 
serial dilution of two drugs into every well of a microdilution plate 
which each contains a specific inoculum of bacterial cells in liquid 
media. The plates are then incubated and the MIC measured with 
the naked eye as the first well that completely inhibited bacterial 
growth. The FIC is calculated as seen below [28]:

 
FIC index

MIC of drug A in combination

MIC of drug A alone

MIC of drug B
= +

iin combination

MIC of drug B alone  

The literature suggests various definitions for synergy with this 
method but it has traditionally been defined as an FIC index of 
≤0.5. Additivity is described by an FIC index of 1.0, and antago-
nism as an FIC index of 2.0. However, more recent analysis has 
shown that an FIC index of >4 should be considered the cutoff of 
antagonism given imprecision of the technique and because an 
FIC index of 2.0 is probably more indicative of an indifferent effect 
[29]. As common as the checkerboard method is, it is still less dis-
criminatory than other more sophisticated in vitro methods (e.g., 
static or PK/PD time-kill models) for assessing the interactions of 
antimicrobial agents [30–32]. E-test results are not always concor-
dant with checkerboard or time-kill methods, which are also used 
to test for synergy [33, 34].

Time-kill methods can have advantages over other methods 
used to assess synergy such as the checkerboard technique or E-test 
method. Primarily, the time-kill method measures the bactericidal 
activity of the combination being tested at many points over time 
(viable counts; CFU/mL), whereas the checkerboard technique 
provides only inhibitory data and usually from a single time point 
(after 16–24 h of incubation) [28]. Time-kill models can be subdi-
vided into static and PK/PD models. In static time-kill models, 
with the exception of a small degree of loss in drug activity due to 
bacterial metabolism or inactivation, bacteria are exposed to static 
(fixed) concentrations of an antibacterial agent over a defined period 
of time. In PK/PD models [35, 36], the most common of which is 
the one-compartment model, the test organism is presented with a 
dynamic concentration of drug designed to mimic in vivo PK. PK/
PD models typically consist of a central reservoir containing the 
organism, a diluent reservoir, and a waste reservoir. Drug is added 
to the central reservoir to achieve the desired peak concentration 

5.1 In Vitro Studies
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and the elimination profile is mimicked by addition of sterile, drug-
free media to the central reservoir and removal of an equal volume 
of drug-containing media into the waste reservoir; various adapta-
tions of this standard model are available to simultaneously mimic 
the in vivo PK of two or more drugs with differing half-lives [37].

Synergy combinations have traditionally been defined as a 100-
fold increase in killing, a ≥2-log10 lower CFU/mL, relative to its 
most active component at 24 h for static and PK/PD time-kill meth-
ods [28]. Antagonism is defined by the opposite of the expression 
for synergism where a 100-fold decrease, a ≥2-log10 higher CFU/
mL, in killing at 24 h with the combination compared with the most 
active single drug alone is antagonistic. In theory, these definitions 
should require that at least one of the drugs being tested produces 
minimal to no significant inhibition or killing alone so you are basi-
cally able to assess the addition of an inactive compound to a more 
bactericidal antibiotic. Criteria have yet to be created to allow evalu-
ation of interactions when using two or more drugs when each has 
activity alone. Consequently, these same definitions for synergy are 
often used for all time-kill experiments given the lack of an appropri-
ate alternative even when there are multiple drugs which display 
significant bacterial killing. Many variations exist in the literature 
making comparison between studies difficult. As an example, syn-
ergy is sometimes reported as described above, with the added quali-
fication that the number of surviving organisms in the presence of 
the combination must be ≥2-log10 CFU/mL below the starting 
inoculum which may alter some combi nations previously defined as 
synergistic [38–42]. As such, it is important to pay close attention 
when interpreting time-kill experiment results and comparing them 
to other studies. Static and PK/PD time-kill experiments both pro-
vide more granular data than either the checkerboard or E-test 
methods and when analyzed appropriately can help to predict the 
time course of the combination’s pharmacodynamic effect.

6 Pharmacodynamic Analysis and Mathematical Modeling Issues  
in Antibiotic Combinations

Analysis of combinations using the basic definitions of synergy, 
additivity, or antagonism is simple and convenient, yet not without 
significant limitations. A significant drawback of using simple static 
metrics and definitions of drug combinations is that the labels do 
not always describe the interactions appropriately and lack the clin-
ical and translational applicability to ensure mortality benefit in 
critically ill patients with difficult-to-treat infections. For example, 
a combination that is labeled as synergistic that does not result in a 
good clinical outcome may not be meaningful. Similarly, antago-
nistic interactions do not always suggest an unfavorable outcome, 
and in some instances may be beneficial. The following examples 
will help illustrate the drawbacks of the basic classification method.
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Linezolid is a synthetic antibacterial agent of the oxazolidi-
none class and inhibits protein synthesis at the 50S ribosome site. 
Nisin, a rapidly killing peptide antibiotic, works by inducing pore 
formation in the bacterial membrane and also inhibiting peptido-
glycan synthesis. In an in vitro study, linezolid and nisin were dosed 
simultaneously against a simulated high-inoculum MRSA infection 
and pharmacodynamic activity based purely on definition  suggested 
little benefit of the combination [43]. Based on the definition of 
Bliss independence, this combination was considered additive. The 
combination’s classification as additive and not synergistic is mis-
leading though because linezolid may be helpful to prolong bacte-
rial replication time making other antibiotics more effective. It is also 
important given some of the limitations of spectrum for linezolid 
against certain gram-negative and anaerobic bacteria that it can 
work with other antibiotics without antagonizing their effect [44].

Antagonism in drug combinations is usually portrayed 
 negatively but the combination of rifampicin and vancomycin is a 
perfect example of how it can be useful clinically. Rifampicin is  
a bactericidal semisynthetic derivative of the rifamycins class of 
antibiotics that inhibits bacterial RNA polymerase responsible for 
DNA transcription whereas vancomycin is a glycopeptide antibi-
otic that primarily inhibits cell-wall biosynthesis. In vitro studies 
have traditionally defined this combination as antagonistic based 
on the Bliss independence model but more recent analysis shows 
that it may actually be an independent combination [45, 46]. 
Despite its negative classification as either an antagonistic or an 
independent combination, it is still of clinical utility as adjunctive 
therapy when treating certain acute S. aureus infections as it may 
help prevent the emergence of resistance or reduce the signs and 
symptoms of virulence among others.

The presence of synergy is not always the prediction of success 
just like antagonism, independence, or additivity are not always 
predictors of combination failure. Two antibiotics with indepen-
dently low bactericidal capacities could have synergy together as 
defined by the static models but this would likely not be predictive 
of a good clinical response. Grouping combinations based on sim-
plified labels like antagonism, synergy, or additivity are often help-
ful but still may misrepresent the outcome of the interaction 
between the agents. Being labeled as synergistic or additive is only 
as valuable as its ability to accurately predict pharmacodynamic 
activity based on that type of interaction. Part of this failure may be 
due to the exclusion of mechanistic information which would allow 
for a fuller understanding of how drugs interact to promote their 
combined effects. Given the inadequate representation of synergy 
by these basic models, newer approaches have sought to better 
define activity of antibiotic combinations.

Traditional methods that look at the 24-h time point to assess 
the bactericidal activity of the combination fail to take into consid-
eration the entire time course of synergistic killing or of resistance 
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prevention. Qualitative approaches used to describe the time 
course of antibiotic combinations are scarce [47]. In vitro and 
mathematical modeling can provide data throughout the time 
course of treatment allowing for a more accurate description of  
the interaction between two antibiotics in combination. Analysis  
of these methods can be done with the log ratio area formula. 
Assessment of the combination can be made using the living bacterial 
density measurements (CFU) from throughout the time course for 
the samples grown with the more active antibiotic (consider drug 
“A” to be the more active antibiotic) and those grown with both 
antibiotics in combination (drugs “A” and “B”). These measure-
ments will be used to make the determination of area under the 
CFU curve for the duration of the experiment (consider the exam-
ple experimental duration to be 48 h; thus AUCFU0–48). This cal-
culation will employ the use of the trapezoidal rule. Comparison of 
the calculated AUCFU of the combination sample to that of the 
control (drug “A” monotherapy) will enable us to approximate the 
effect by using the log ratio area equation below. The log ratio area 
formula shows the log-transformed decrease in area under the 
entire time course CFU curve for a specified set of concentrations 
of antibiotics relative to the absence of one of the antibiotics. The 
log ratio area formula provides more robust analysis when for 
example compared to taking the log difference at the 24-h time 
point as it accounts for the drug’s killing effect throughout the 
entire experiment:
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=
æ
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ø
÷log10

 

Antibiotic failure due to evolution and persistence of heteroge-
neous subpopulations is a major concern. Failing to account for 
the small subpopulation of bacteria that are not susceptible to a 
chosen antibiotic therapy can lead to a selective pressure in favor of 
the resistant strain. For example, the prevalence of heterogeneous 
VISA (hVISA) in MRSA infections is reported to be 1.67 %, so 
treatment failure would be anticipated in all of these patients if 
vancomycin monotherapy is selected [48]. Traditional synergy def-
initions will not sufficiently account for the additional suppression 
or killing by an antibiotic whose bacterial target may only comprise 
<1 % of the overall infection and may classify these combinations as 
either additive or independent. It is important not to overlook 
their benefit based simply on these classical, static definitions. 
Recent analysis has described this type of antibiotic combination, 
where one agent is added to attack a specific subset of less suscep-
tible organisms, as subpopulation synergy (Fig. 4) [43]. A better 
understanding of the role of subpopulation synergy in predicting 
antibiotic pharmacodynamics is required before it can practically 
be applied in the clinical setting.
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7 Innovative Strategies to Combination Treatment

There are many novel approaches to combination regimens that 
aim to focus the effort of antibiotic killing on the nature of the 
infection. Of important consideration in these approaches is the 
severity of the infection, density or starting inoculum, and behavior 
or communication within the bacterial population. Not all types of 
infections will warrant or benefit from multiple antibiotic treat-
ment. Therefore, considering the specific infections and their 
mechanisms of progression and human mortality can help to limit 
combination use to patients who can most benefit.

Short-course combination therapy using 2 weeks of gentamicin 
has been successful in severe infections with high density such as 
with infective endocarditis [49, 50]. The nature of infective endo-
carditis as a sequestered, high-inoculum infection lends itself well 
to early antibiotic combination treatment. With focuses to prevent 
resistance and achieve rapid and sustainable bactericidal activity, 
these types of infections can particularly benefit from combinations 
[51]. However, in an attempt to achieve maximal killing while 
reducing drug-induced nephrotoxicity associated with amino-
glycosides and vancomycin, shorter duration regimens would be 
optimal. Studies have shown that a single high dose of gentamicin 
(5 mg/kg) on the first day of treatment for simulated Staphylococcus 
aureus infective endocarditis with either daptomycin or vancomy-
cin resulted in early enhanced killing (within 4 h) and may be of 
benefit to gain synergy while minimizing toxicity [52]. This is an 
example of a ‘pulse’ combination regimen, which provides inten-
tionally high doses of one antibiotic agent (ie. gentamicin) in short 

Fig. 4 Subpopulation synergy concept depicting combination treatment with drugs “A” and “B” against a popu-
lation of bacteria to which there is a subpopulation susceptible to “A” (inside solid rectangle) and a second 
susceptible to “B” (long dashed lines). Bacteria in either of the dotted line boxes are resistant to either drug “A” 
or “B.” Without drug “B,” the subpopulation that is resistant to drug “A” would be selected for and cause a 
persistent and resistant infection. Adapted with permission from Landersdorfer et al. [43]
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duration at the start of therapy but ultimately with lower overall 
exposure than traditional dosing while maintaining normal doses of 
the second, principal, antibiotic (ie. daptomycin or vancomycin).

Although not fully understood, it is thought that these pulse 
combinations may act synergistically by killing susceptible organ-
isms within a heterogeneous population immediately reducing the 
inoculum to a more manageable concentration. Recent criticism of 
synergistic combination regimens may also support the use of initial 
brief periods of multiple agents before quickly reducing to mono-
therapy so as to prevent the evolution of prominently multidrug-
resistant populations [53].

Additionally, it may be useful to front-load antibiotic combina-
tion regimens, similar in concept to the standard azithromycin 
dosing, where you can start by treating a patient with higher doses 
of one or multiple drugs and then subsequently reduce them to 
lessen exposure and help to prevent toxicity. This differs from 
‘pulse’ dosing in that you do not discontinue either antibiotic 
immediately after the loading dose. In using a loading dose, you 
can achieve a high Cmax for a brief period of time which will help to 
drive early killing, especially for antibiotics considered to be con-
centration dependent. Antibiotics which are rapidly bactericidal 
and have concentration dependent bacterial killing that are active 
against high bacterial density, such as the polymyxin class, linezolid 
or daptomycin, make good candidates for front loading regimen 
exploration.Linezolid frontloaded regimens have shown promise 
where simulated doses of either 1,200 mg every 12 hours for 5 
days or 2,400 mg every 12 hours for 5 days followed by 300 mg 
every 12 hours for each case sustained bacterial killing against 
MRSA in vitro [63]. Since overall exposure to linezolid in this 
example is significantly higher than when it is traditionally dosed, 
assessment of front-loaded combinations may be useful in an 
attempt to maintain early killing while reducing risk for dose asso-
ciated toxicities. Polymyxins, formerly abandoned due to dose lim-
iting toxicity, are now commonly used as salvage regimens of 
multidrug resistant gram-negative infections. It could be impor-
tant to start a higher initial dose for drugs like colistin methanesul-
fonate (polymyxin E) which have relatively low clinically achievable 
plasma concentrations [64]. Although, using a front-loaded colis-
tin methanesulfonate monotherapy regimen against P. aeruginosa 
may not be sufficient for complete bacterial reduction in critically 
ill patients and combination with other antibiotics such as doripe-
nem, which has shown the ability to achieve substantially improved 
bacterial killing profiles in vitro compared to monotherapy, may be 
required [65]. In this case, an additional antibiotic with synergistic 
killing activity is thought to sustain the killing initiated by front-
loaded colistin methanesulfonate [66]. Patients with renal or 
hepatic dysfunction that may have trouble clearing or metabolizing 
an antibiotic may especially benefit from a front-loaded regimen 
since the dosing frequency is already likely to be reduced. It is 
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important to consider starting a higher initial dose for drugs like 
colistin which have relatively low clinically achievable plasma con-
centrations [54]. Using a front-loaded colistin regimen against P. 
aeruginosa as monotherapy may not be sufficient for complete bac-
terial reduction in critically ill patients and combination with 
doripenem achieved substantially improved bacterial killing pro-
files in vitro [55]. In this case, an additional antibiotic with syner-
gistic killing activity is thought to sustain the killing achieved by 
front-loaded colistin [56]. In general, front-loaded antibiotic com-
binations are most likely to be useful for patients that require anti-
biotics with a poor pharmacokinetic profile and/or have toxic 
adverse event profiles since you are increasing Cmax while maintain-
ing similar fAUC values [56].

Although synergy in microbiology is traditionally defined by 
increased bactericidal activity, broadening the interpretation to incor-
porate other antimicrobial targets of therapy such as bacterial viru-
lence may ultimately allow us to improve treatment outcomes. 
Virulence is the degree of pathogenicity of a microbe which is deter-
mined by its ability to harm the host organism or cause disease. 
Pseudomonas aeruginosa controls many of its virulence factors by the 
density-dependent cell-cell method of communication known as 
quorum sensing (QS). The QS system in gram-negative infections 
employs small, self-generated, diffusible N-acyl l- homoserine lactone 
(AHLs) signaling molecules which activate transcriptional regulators 
to promote synthesis of virulence factors among others (biofilm for-
mation, cell aggregation, swarming motility, exopolysaccharide for-
mation, etc.). These virulence factors governed by this mechanism 
include elastase, alkaline pro tease, phosphatase, exotoxin A, rhamno-
lipids, pyocyanin, and lactin-binding protein [57, 58]. Deficiency in 
the QS mechanism and resultant reductions in virulence factor syn-
thesis have been shown to reduce time to mortality and decrease 
rates of pneumonia and bacteremia in the murine model [58, 59]. 
Studies have also shown that QS is a realistic target for virulence 
attenuation adding credence to the argument that it may be appro-
priate to add  synergy to combination antibiotic regimens under a 
more broad multiple mechanism-based definition [60, 61]. 
Therefore, adding antibiotics to modulate virulence and not strictly 
for additive bactericidal activity is of potential value in virulent infec-
tions. While the specific mechanism may differ, treatment of S. aureus 
which uses a peptide-based QS system to control virulence and 
Acinetobacter baumannii, whose QS control on virulence has not 
been well defined, may also benefit from these concepts [60, 62].

Azithromycin has been used for years with success in cystic 
fibrosis patients that have chronic P. aeruginosa colonization in 
order to reduce inflammation despite its intrinsic lack of bacteri-
cidal activity. Although the mechanism of its benefit has never been 
completely identified it has been suggested that it is likely at least 
in part due to its ability to inhibit virulence [63]. Here we use 
azithromycin to exemplify multiple mechanism synergy in the 
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treatment of P. aeruginosa infections. Azithromycin is a macrolide 
antibiotic that inhibits protein synthesis by binding to the 50S sub-
unit of the bacterial ribosome. Traditionally, azithromycin is not 
used in the treatment of P. aeruginosa given its lack of bactericidal 
or bacteriostatic activity [64]. Its QS-specific inhibition of viru-
lence is likely the result of interference with AHL signal synthesis. 
Azithromycin has been shown to reduce QS-gene expression  
in tracheal aspirates of patients colonized by P. aeruginosa and 
although the population analysis of these patients suggests a trend 
toward the more virulent wild type after treatment, no direct 
 measure of virulence was made [61]. Additionally, if used in the 
treatment of an acute P. aeruginosa infection that is to be  completely 
eradicated, such as in hospital-acquired pneumonia, population 
evolution will not impact outcomes as they could in persistent 
 colonizations. Since azithromycin lacks bactericidal activity against 
P. aeruginosa alone, it must be used in addition to another antibi-
otic such as piperacillin-tazobactam, a carbapenem or an anti-pseu-
domonal cephalosporin which can make up for its lack of killing. 
The benefit to an azithromycin combination regimen against P. 
aeruginosa has yet to be defined clinically but limited in vitro data 
suggests that it may add bactericidal activity in addition to the 
potential for reduced virulence. One in vitro study showed additive 
effects in combination with colistin, but virulence was not mea-
sured [65]. Other studies have shown that azithromycin may have 
a role in combination therapy for multidrug-resistant P. aeruginosa 
where azithromycin with tobramycin, doxycycline, trimethoprim, 
polymyxin B, or rifampin has also resulted in increased activity [4, 
66, 67]. In order to improve our knowledge regarding combina-
tion regimens and their clinical effectiveness moving forward, it 
will be important to consider multiple mechanism synergy. Looking 
beyond basic measures and definitions of synergy may lead to novel 
combination dosing strategies and more studies are warranted.
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Abstract

Most of the drugs bind to different proteins in the body. This binding leads to reduction in the free frac-
tion of the drugs, which is responsible for the pharmacological actions. In case of anti-infective agent, 
influence of protein binding can be clearly seen by reduction in the anti-infective properties of these mol-
ecules. Therefore, evaluation of protein binding is an important aspect in case of anti-infective agents.

Protein binding of a drug molecule can be determined by a number of methods such as microdialysis, 
equilibrium dialysis (considered as gold standard), and ultrafiltration and ultracentrifugation. In case of 
anti-infective agents, percent protein binding is always corrected while calculating the minimum inhibitory 
concentration (MIC) and concentration at half maximum effect (EC50) using time kill curves. However, it 
is a common practice to use protein binding data from the literature and corrected for MIC and EC50 
values which may be erroneous due to change in percent protein binding with changes in different protein 
supplements. Therefore, the focus of this chapter is to describe these techniques in detailed methodologi-
cal fashion and provide the influence of these protein binding determinations in MIC and EC50 by time kill 
curve determinations.

Key words Protein binding, Anti-infective agents, Microdialysis, Ultrafiltration, Minimum inhibitory 
concentration, Equilibrium dialysis

1 Introduction

The drugs undergo nonspecific binding with biological proteins 
[1–5]. Depending upon the physicochemical properties of the 
drug, it can bind to different proteins including albumin, α-1 acid 
glycoproteins, lipoproteins, erythrocytes, and various globulins 
and this binding decreases the free unbound fraction of the drug in 
the body as the free fraction of the drug is responsible for the phar-
macological actions and/or side effects.

In case of anti-infectives as well, efficacy studies show the mod-
ulation in pharmacodynamics activity with change in protein bind-
ing. The reduction in free fraction of the analyte is clearly reflected 
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in the decreased efficacy in case of highly protein-bound anti- 
infective agents such as ceftriaxone and ertapenem [1]. Similarly, 
the comparison of pharmacokinetic and pharmacodynamic indices 
(PK-PD indices) of fluoroquinolones and cephalosporins shows 
the differential efficacy based on total concentrations but they are 
equipotent based on their free fractions [6, 7] (Fig. 1). In contrast 
to the most of the reports, Tsuji et al. reported that daptomycin 
and telavancin showed efficacy more than predicted based on the 
free fraction only and thus suggested that bound fraction may also 
be active [8]. However, this conclusion is based on the use of in 
vitro model of minimum inhibitory concentration (MIC) determi-
nation, which is a static model compared to the dynamic nature of 
in vivo system, with analytes being not cleared out of the system 
and higher concentrations detected compared to the free fraction 
of these anti-infective agents.

Often the in vitro efficacy of anti-infectives is determined based 
on total concentration despite the knowledge that the unbound 
fraction is responsible. The potency of anti-infective agent against 
a specific pathogen is usually reported as changes in the MIC [3, 
6]. MIC being a static and variable threshold value against a cer-
tain pathogen [9], a more dynamic approach called time kill curves 
is preferred. Time kill curves evaluate the dynamic growth and 
antibiotic-induced kill profiles over a time duration which is more 
detailed evaluation over time [10]. Time kill curve data can be 
used to calculate the concentration at half maximum effect (EC50) 
by fitting a simultaneous fit of appropriate mathematical models 

Fig. 1 (Left) PK-PD index (area under the concentration time curve over a period of 24 h at a steady state over 
MIC ratio (AUC/MIC)) of free and total drug concentrations of seven fluoroquinolones (administered as multiple 
dosing in the thighs of neutropenic mice) as for bacteriostatic actions against Streptococcus pneumoniae ATCC 
10813 (figure redrawn from ref. 6). (Right) PK-PD index (time above MIC (T>MIC)) of free and total drug con-
centrations of six cephalosporin (administered as multiple dosing in the thighs of neutropenic mice) as for 
bacteriostatic actions against Klebsiella pneumoniae ATCC 43615 (figure redrawn from refs. 6, 7)

Jatinder Kaur Mukker et al.
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[10]. In these pharmacodynamic approaches, protein binding of 
the anti-infective agents is accounted by the addition of different 
human serum or protein supplements in the growth media which 
may only reflect one of the other proteins such as human serum 
albumin or less expensive animal albumins [5, 11–13]. However, 
corrections for protein binding are usually done based on literature 
values, instead of measuring the free fraction of drug in a given 
experimental condition, which should be done to assess the impact 
of protein binding on pharmacological actions of anti-infective 
agents [14, 15]. A number of articles are published on the impact 
of protein binding on pharmacokinetics and pharmacodynamics of 
anti-infective agents [16–19]. There are a number of in vitro and 
in vivo protein binding determination techniques which can be 
used in case of anti-infective agent such as microanalysis, equilib-
rium dialysis, and ultrafiltration and ultracentrifugation. Each tech-
nique has its own advantages and disadvantages and is explained in 
Table 1 [20]. In this chapter we provide protocols of different in 
vitro techniques used in our laboratory for the assessment of the 
free fraction of the drug. These methods will allow the readers to 
perform these detailed experiments and to understand the princi-
ples and complications behind these techniques.

2 Materials and Methods

Prepare all the solutions using ultrapure water (water prepared by 
deionization to get a sensitivity of 18 MΩ cm at 25 °C) and HPLC- 
grade reagents. Prepare and store all the reagents at room tempera-
ture (unless indicated specifically). Diligently follow all the waste 
disposal regulations of the related institute where these experi-
ments will be performed.

Microdialysis is a relatively new technique for sampling unbound 
fraction of the drug (of different molecular sizes) at the site of 
action (different tissues) and can be used in vitro, in vivo, and ex 
vivo (Table 1) [20]. It is a nondestructive sampling technique and 
does not cause any fraction change in unbound concentration 
while sampling (Fig. 2) [21].

Materials and reagents required for the free fraction determination 
by microdialysis are listed below:

 1. Unfiltered preclinical/human plasma (see Note 1).
 2. Anti-infective agent (whose protein binding is to be assessed, 

analyte) (see Note 2).
 3. Microdialysis probe (for example, MD 63 catheter [MDialysis 

AB, Sweden, P/N: 8010514], polyarylethersulfone (PAES) 
membrane (20,000 Da cutoff), and polyurethane shaft, inlet 
and outlet tubes) (see Notes 3, 4, and 5).

2.1 Plasma Protein 

Binding Determination 

Using In Vitro 

Microdialysis (MD)

2.1.1 Materials

Protein Binding in Anti-infective Agents
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 4. Harvard syringe pump 22 for perfusion.
 5. Polypropylene microcentrifuge tubes for sample collection 

and storage.
 6. Analytical equipments: For example, high-performance liquid 

chromatography (HPLC), LC-MS/MS, and UHPLC-MS/
MSPerfusate (required to be optimized for individual com-
pounds) (see Note 6).

Detailed methodology to determine the plasma protein binding 
using in vitro microdialysis (MD) is explained below:

 1. Place the water reservoir (e.g., a 50 mL beaker) on 
temperature- controlled heated stir plate to maintain the 
temperature to 37 °C.

 2. Check the integrity of the probe by pumping the perfusate 
(e.g., saline) and collecting the dialysate while probe was 

saline.
 3. Set up Harvard syringe pump 22 to pump the perfusate at a 

fixed flow rate (0.5–1.5 μL/min) and dialysate samples are 
collected.

2.1.2 Methods

MD Setup

Fig. 2 Diagrammatic representation of microdialysis probe inserted in a tissue containing an analyte of inter-
est. Protein binding of an analyte is taken into consideration in this technique. Flow of the perfusate is shown 
by the black arrows (figure is redrawn from ref. 21)

Protein Binding in Anti-infective Agents
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The probe recovery is usually determined by extraction efficiency 
and retrodialysis techniques. The extraction efficiency methodol-
ogy is explained below:

saline in water reservoir maintained at 37 °C.

analyte in saline (see Note 7). Care should be taken that probe 

completely submerged in the sample.
 4. Perfuse the perfusate at a fixed flow rate.
 5. Allow the probe to equilibrate for 20 min and collect the dial-

ysate samples at 40 and 60 min (see Note 8).
 6. Analyze the samples using developed and validated bioanalyti-

cal method as explained in bioanalysis below.
 7. Calculate the probe recovery using Eq. (1) (below):

 
% Probe Recovery Dialysate

RT

= ´
C

C
100

 
(1)

where CDialysate is the dialysate collected between the time inter-
val 40–60 min, and C  is the concentration of anti-infective 

see Note 9) [17].

recoveries to calculate the final percent probe recovery (see 
Note 10).

 1. A syringe containing perfusate is placed on the pump and then 
fastened.

 2. Add an aliquot of the plasma sample previously thawed and 
-

quot should be sufficient to cover the entire length of the 
membrane (see Notes 11 and 7).

 3. The probe should now be placed in plasma samples. The 
membrane should be completely covered with plasma sample 

at 37 °C.
 5. Firmly attach a collection tube (0.5 mL microcentrifuge tube 

or microvials) with outlet tube of probe in a rack for sample 
collection.

 6. Turn ON the pump and perfusate is allowed to run through the 
probe for a period of 20 min (equilibration period). Depending 
upon the volume of sample, the equilibration period may need 

Probe Recovery

Plasma Protein Binding

Jatinder Kaur Mukker et al.
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to be increased; higher volume may need longer equilibration 
period. However, the stability of the compound may be limiting 
in some cases. Then dialysate samples are collected for a period 
of 20 min (collection period). The dialysate is collected into col-
lection tube covered. Collect three separate samples, with each 
20 min apart (see Notes 12 and 13).

 7. Analyze all the samples using developed and validated bioana-
lytical method as explained in bioanalysis below (see Note 14). 
Usually, the dialysis samples do not need sample cleaning steps; 
however, sample cleanup may be required in certain cases.

 8. Percent free fraction of drug can be calculated by Eq. (2):

 
% Free Fraction

TCRT %Proberecovery
Dialysate T T= ´ ´

C ( , )1 2 100
100

 
(2)

where CDialysate (T1, T2) is the dialysate collected between the time 

analyte in reservoir tube.
 9. The protein binding should be repeated at least three times 

and average percent free fraction should be calculated for the 
anti- infective agent (see Note 15) [17].

 1. Analyze all the above-collected samples using a newly devel-
oped and validated bioanalytical method using HPLC/
LC-MS/MS techniques. Details of method development and 
validation are out of the scope of this chapter and can be read 
using UDFDA guidelines (see Note 16) [22].

-
ing the protein binding because it represents the true equilibrium 
before samples are being collected and analyzed for free fraction 
determination (Fig. 3) (Table 1).

Materials and reagents required for the in vitro equilibrium dialysis 
are listed below [20]:

 1. Dialysis membrane (typical pore sizes for protein binding 

cutoff) (see Note 4).

 3. Phosphate buffer saline (PBS), pH 7.4.
 4. Unfiltered blank preclinical species/human plasma for analyte 

samples and control sample preparations (see Notes 11 and 1).

 6. Anti-infective agent (analyte) (see Notes 7 and 17).
 7. Prepare primary and secondary stock solutions of analyte using 

organic solvents (based on the solubility of the analyte) (see 
Note 17).

Bioanalysis

2.2 Plasma Protein 

Binding Determination 

Using In Vitro 

Equilibrium Dialysis

2.2.1 Materials

Protein Binding in Anti-infective Agents
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Detailed methodology to determine the plasma protein binding 
using in vitro equilibrium dialysis is explained below:

 1. Soak the equilibrium dialysis membranes in phosphate buffer 
solution for half an hour before starting the experiment.

 2. Add the buffer solution (200 μL) to one side of the 96-well 
equilibrium dialysis membrane and anti-infective spiked pre-
clinical/human plasma (at a required concentration, 200 μL) 
to the other side of the membrane (see Notes 7 and 11).

 3. Cover the lid of the plate to prevent any evaporation.
 4. Incubate the 96-well plate on a horizontally rotating incu-

bator (37 °C) for a specified time (e.g., 2, 4, 6, 8, 24 h can 
be different based on individual experimental needs) (see 
Notes 18 and 19).

 5. After incubation, transfer the samples (100 μL) (both buffer 
and plasma samples) into the sample container (see Notes 2 
and 8).

 6. Analyze the samples using appropriate bioanalytical method.
 7. Free fraction of the analyte can be calculated using Eq. (3):

 
%FreeFraction buffer

plasma

= ´
C

C
100

 
(3)

where Cbuffer is the unbound analyte concentration in buffer 
after dialysis and Cplasma is the postdialysis plasma concentration 
(see Notes 20 and 21).

2.2.2 Methods

Fig. 3 Basic representation of equilibrium dialysis. Before incubation, protein, drug, and protein-bound drug 
are in the plasma reservoir. After a fixed incubation period (i.e., true equilibrium), free drug crosses the semi-
permeable membrane and can be detected in the buffer reservoir (figure is redrawn from ref. 23 http://www.
drumetix.com/php/dmpk-protein-binding.php)

Jatinder Kaur Mukker et al.
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It is a rapid and most widely used technique for protein bind-
ing determination of the analyte. Centrifugation allows the separa-
tion and filter in the cartridge and  allows the free analyte to move 
to the collection vial (Fig. 4).

Materials and reagents required for the equilibrium dialysis are 
listed below [20]:

 1. Centrifugal filter units with specific molecular weight cutoff 
(see Note 4).

 2. Centrifuge (at 37 °C) capable of 3000 × g at fixed-angle 
rotation.

 4. Polypropylene microcentrifuge tubes for sample collection 
and storage.

 5. Unfiltered blank preclinical species/human plasma for samples 
and control sample preparations (see Notes 1 and 11).

 6. Anti-infective agent (whose protein binding is to be assessed, 
analyte) (see Note 7).

 7. Prepare primary and secondary stock solutions of anti-infec-
tive agent using organic solvents (based on the solubility of 
the drug) (see Note 17).

Detailed methodology to determine the plasma protein binding 
using in vitro ultrafiltration is explained below:

 1. Prepare the centrifugal filters for the protein binding experi-
ments by addition of spiked anti-infective solution in preclini-
cal/human plasma/serum (pH 7.4) in the filter. Three 
replicates of each analyte/plasma type are recommended (see 
Notes 7 and 11).

2.3 Plasma Protein 

Binding Determination 

Using In Vitro 

Ultrafiltration

2.3.1 Materials

2.3.2 Methods

Fig. 4 Diagrammatic representation of ultrafiltration technique to determine 
plasma protein binding. Centrifugal force allows the free drug to move across the 
semipermeable membrane and can be detected and analyzed using bioanalyti-
cal method (figure redrawn from ref. 24, http://www.cyprotex.com)

Protein Binding in Anti-infective Agents
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 2. Close the centrifugal filter unit tightly by closing its lid.
 3. Incubate the samples at 37 °C for 30 min in a temperature- 

controlled water bath. These samples can be analyzed to deter-
mine the plasma stability. Usually not more than 20 % decrease 
in the concentration (before and after incubation) is consid-
ered acceptable for plasma stability (see Note 18).

 4. Centrifuge the samples at 1000 rpm at 37 °C for 30 min.
 5. Pipette out the samples from collection cartridges of the ultra-

filtration units (post-centrifuged spiked samples (PCSP)) and 
store in polypropylene microcentrifuge tubes at −80 °C freezer.

 6. Collect the plasma sample from the upper part of the cartridge 
(post-centrifuged ultrafiltrate (PCU)) and store in polypropyl-
ene microcentrifuge tubes at −80 °C freezer (see Note 8).

 7. Analyze the samples using appropriate bioanalytical method.
 8. Calculate the plasma protein binding using Eq. (4):

 
%FreeFraction

PCSP

PCU
= ´100

 
(4)

Materials and reagents required for the MIC and time kill curve 
experiments are listed below:

 1. Sheep-blood agar plates.
 2. Micropipettes.
 3. Sterilized pipette tips.

 6. CO2 culture incubator.
 7. Autoclave to sterilize different media.
 8. McFarland standards.
 9. Culture flasks (25 mL, vented caps, canned neck).

 12. Auto dilution system.
 13. Turbidmeter.
 14. Turbidity standard.

 18. Mueller-Hinton broth (different types available, based on the 
specific requirements).

 19. Anti-infective agent (analyte) (see Note 7).

2.4 Minimum 

Inhibitory 

Concentration 

and Time Kill Curve 

Experiments

2.4.1 Materials

Jatinder Kaur Mukker et al.
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Detailed methodology to determine the MIC and time kill curve is 
explained below:

 1. Plate the cryo-preserved bacterial culture and subculture for 3 
days on sheep-blood agar plates in order to activate the 
bacteria.

 2. Prepare the broth that will be used in the experiments. 
Mueller-Hinton broth (440 mg) has to be suspended in puri-
fied water (20 mL). Mix thoroughly and heat with frequent 
agitation. Boil for 1 min to completely dissolve the powder. 
Autoclave at 121 °C for 15 min. Make sure not to overheat 
the broth at any time.

 3. Prepare five vials containing 15 mL of saline. Autoclave at 121 
°C for 15 min.

 4. Prepare the primary and secondary stock solutions of anti- 
infective agent. Filter the secondary stock with a 0.19 μm ster-
ilization filter.

 5. Prepare the 24-well plate using the anti-infective secondary 
stock solution and broth solution (Fig. 5).

 6. Perform the turbidmeter calibration using a McFarland stan-
dard No. 0.5 and 1.0 (approximately 1.5 × 108 CFU/mL).

 7. Prepare a dispersion of bacteria, containing 1.5 × 108 CFU/
mL, by picking colonies of specific bacteria from the agar 
plate. Pick approximately 2–3 colonies and disperse the colo-
nies in the sterilized saline (15 mL vial). Sterilize the picking 
loop before and after each contact to bacteria or use sterilized 
disposable loops. Use the turbidmeter to adjust turbidity to 
the needed CFU/mL.

2.4.2 Methods

Minimum Inhibitory 
Concentration 
Determination for Anti- 
infective Agent by 
Macrodilution

Fig. 5 Schematic representation of the 24-well plate to calculate MIC of an anti- 
infective agent

Protein Binding in Anti-infective Agents
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 8. Add the freshly prepared bacterial culture (1.5 × 108 CFU/
mL, 10 μL) to each well.

 9. Prepare negative control (containing no drug and no bacteria) 
and positive control (containing no drug but bacteria) 
samples.

 10. Last, incubate the well plates at 37 °C. The wells are read after 
20–24 h of incubation, and the MIC is determined as the low-
est concentration of the antibiotic allowing no visible growth.

 1. Predetermine MIC (μ
Inhibitory Concentration Determination for Anti-infective 
Agent by Macrodilution”) for anti-infective agent against a 
specific bacterial species.

Concentration Determination for Anti-infective Agent by 
Macrodilution,” step 2.

 3. Prepare three vials containing 15 mL of 0.9 % saline. Autoclave 
at at least 121 °C for at least 15 min. Autoclave 500 mL addi-
tional normal saline for dilution.

 4. Perform turbidity meter calibration with McFarland standard 
No. 0.5 and 1.0 (1.5 × 108 CFU/mL and 3.0 × 108 CFU/
mL).

 5. Prepare bacteria dispersion containing 1.5 × 108 CFU/mL 
(turbidity meter 0.5) by scratching colonies of bacteria from 
the agar plate. Pick approximately 2–3 colonies and disperse 
into sterilized saline. Sterilize the picking loop before and after 
each contact of bacteria. Use the turbidmeter to adjust turbid-
ity to the needed CFU/mL. Add bacteria or normal saline as 
needed.

 6. Prepare eight culture flasks (50 mL). Out of these eight flasks, 
six will be C1–C6, seventh is growth control, and eighth is 
negative control. Dispense Mueller-Hinton broth (20 mL) 
into each flask. Negative control: no drug and no bacteria; 
growth control: no drug but bacteria. It is recommended to 
do the experiment at three concentrations in duplicate.

 7. Add the bacteria dispersion (100 μL) containing 1.5 × 108 
CFU/mL to each 50 mL culture flasks C1–C6 and to the 
growth control. Ensure that the organisms are inoculated 
below the fluid meniscus without touching the flask sides with 
the pipette and mix gently. Final concentration should be 
5 × 105 CFU/mL.

 8. Prior to adding the drug, incubate the flasks for 2 h at 37 °C.
 9. Add the anti-infective solution to flasks C1–C6, not to the 

negative and growth control.
μL aliquot from each flask for serial dilu-

tion and spot inoculation.

Time Kill Curve 
Determination
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 11. Perform a tenfold serial dilution scheme from steps 11a to 11f 
on the aliquot removed as follows:

 (a)  Take a 96-well plate and label 8 wells from 1 to 8 (C1–6, 
growth control, negative control, as explained in Table 2).

 (b) Add 180 μL of sterile saline to each well.
 (c)  Add the removed 20 μL aliquot to the well marked as A.
 (d)  Mix using the pipette, and then dispense 20 μL of that well 

in second column of wells.

wells.
 (f)  Spot 10 μL of each dilution (dilution pattern will be 

dependent on the number of bacteria in specific experi-
ment) onto blood agar plates (see Fig. 6).

 12. Incubate the inoculated plate at 37 °C for 24 h.
 13. Then, repeat sampling (steps 11a–11f) at different time inter-

vals. Time points can be selected based on individual experi-
mental needs.

 14. Time kill curves are performed in duplicate.

3 Notes

 1. Use of ethylenediaminetetraacetic acid (EDTA) as an antico-
agulant is recommended for the plasma harvesting. After har-
vesting, plasma can be stored at −80 °C and can be reused 
after thawing it. Heparin interferes with protein binding 
determination and thus its use is not recommended [20]. 

Table 2 

Labeling scheme for 8 wells from 1 to 8 (C1–6, 

growth control, negative control)

Row label Contents

1 C1

2 C2

3 C3

4 C4

5 C5

6 C6

7

8 Negative control
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However, EDTA also interferes with some antibiotics such as 
tigecycline. 

 2. Protein binding techniques can be used to investigate indi-
vidual protein binding such as human serum albumin, α1-acid 
glycoprotein, or proteins specific to any preclinical species 
[20].

-
enced by length, diameter of the inflow/outflow tubing along 
with the flow rate of the perfusate. Use of long and narrow 

pressure” in the probe and ultrafiltration of the perfusate, 
which may lead to reduction in relative recovery [26].

 4. Selection of a proper probe membrane is critical in microdialy-
sis experiment. The molecular weight cutoff should be consid-
ered very carefully. The membrane pore size should be large 
enough to cross the analyte; however, pore size should be 
small to maintain the semipermeable nature of the membrane. 
Different types of membranes are commercially available and 
some are better suited for the specific analytes than others. 
Details can be read from the referred articles [26].

 5. The length of the microdialysis probe should be long enough 
to produce the maximum or nearly maximum recovery. Effect 
of the probe length on microdialysis recovery can be deter-
mined very easily using an in vitro microdialysis experiment. 
Increasing the length of the microdialysis probe is the only 
way to increase the surface area which will be in contact with 
the tissue, which is also affected by the size of the tissue [26].

Fig. 6 Spot inoculation of serial dilutions on agar for colony enumeration. Each 
plate is divided into four parts. Two sectors are used for one dilution step. Each 
sector is inoculated five times with 10 μL of each dilution (adapted and modified 
from ref. 25)
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 6. Perfusate should be isosmotic and compatible with the organ 
and analyte to be measured. Flow of the analyte is bidirec-
tional in the microdialysis setup to move the low-molecular- 
weight solute from and to the tissue and perfusate [26].

 7. Most of the protein binding experiments (using microdialysis, 
equilibrium dialysis, and ultrafiltration) should be designed in 
such a manner that physiologically feasible concentration/
toxicologically relevant concentrations of anti-infective will be 
used to conduct the experiment [20]. 

 8. Please check for sample storage requirements. Stability of the 
anti-infective agent at the room temperature should be 
checked and thus optimal storage conditions should be main-
tained for the collected samples. Additionally, addition of a 
protective agent in the collection vial or reducing the tempera-
ture will increase the stability of anti-infective agent. For 
example catecholamines can be protected from oxidative deg-
radation by the addition of ascorbic acid to the perfusate or 
addition of perchloric acid to the collected samples [26]. 

 9. Always perform a couple of in vitro experiments to optimize 
the flow rate and detectable volume of the analyte. Series of 
experiments with one-step variation at a time will help to 
improve the recovery of the analyte using suitable microdialy-
sis setup.

 10. Always check for the loss of the drug molecule due to micro-
dialysis procedure, i.e., binding to the probes, tubing, degra-
dation, or physical interactions such as oxidation. This analysis 
can be performed by perfusing a known concentration of the 
anti-infective agent by the inflow and outflow tubing into the 
collection vials. If significant loss is identified, please identify 
source of loss by systematically checking all the major compo-
nents of microdialysis. However, degradation of the com-
pound of interest by certain enzymes or oxidation, binding to 
the tubing, and probe can be potential source for the loss of 
the anti-infective agent [26].

 11. Preclinical species selection for plasma/serum binding should 
be based on the purpose/objective of the protein binding 
experiment which may be allometric scaling or pharmacoki-
netic studies [20].

microdialysis setup. This dead volume determination will help 
to know the lag time between the experiment start-up and col-
lection of the samples. For example, if the capacity of the out-
flow tubing is 12 μL and perfusion rate is 3.0 μL/min, it will 
take 4 min as a lag time for collection of samples [26]. 

 13. Collection period should be long enough to get a sufficient 
volume of analyte for testing. Longer collection period should 
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be accomplished with slow flow rate which usually increases 
the relative recovery of the analyte [26].

 14. It is always recommended to seal or cover the collected sam-
ples from microdialysis experiment. Since the collected sam-
ples are usually in small volumes (microliters), evaporation of 
the samples can be a problem [26]. 

 15. Always conduct a pilot in vivo microdialysis before planning 
for the full in vivo experiment to test the analyte recovery and 
bioanalytical detectable ranges [26]. 

 16. Sensitivity of the bioanalytical instrument should be deter-
mined using the lowest volume of physiologically relevant 
anti-infective agent [26].

 17. Minimize the use of organic solvents for initial spiking of the 
anti-infective agent in the plasma (such as dimethylsulfoxide 
(DMSO)) [20].

 18. Stability of the anti-infective agent should always be assessed 
in all the matrices along with buffer solutions. It should be 
done over a longer time period for equilibrium dialysis experi-
ment. Stability testing should be performed under same con-
ditions as the equilibrium dialysis apparatus. Samples should 
be taken at zero and last time point should be assessed to 
determine percent anti-infective agent [20].

 19. Mostly the equilibrium dialysis experiments are performed for 
the duration of 24 h (due to the efficiency issues). However, 
this time can be a shorter duration based on the particular 
experimental conditions [20].

 20. One potential issue with equilibrium dialysis is protein break-
through (i.e., movement of the protein from protein-rich 
plasma to aqueous side of the dialysis cell). This leads to false 
evaluation of anti-infective agent in the buffer compartment. 
This problem can be solved by taking any remaining buffer 
after the experiment and add acetonitrile to the buffer to pre-
cipitate the protein and check for visible particulates. 
Alternatively, use of the membrane with appropriate molecular 
weight cutoff can eliminate this problem [20].

 21. Loss of anti-infective agent during the experiment by nonspe-
cific binding to the membrane and apparatus and decomposi-
tion of the drug due to the stability issue for longer duration 
can be major issues in case of equilibrium dialysis. This prob-
lem can be solved by assessing the pre- and postdialysis plasma 
and buffer samples and check for the loss of the anti-infective 
agent during the experiment can be accounted for the calcula-
tions [20].
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    Chapter 6   

 Evaluation of Exposure-Response Relationships Using 
Clinical Data: Basic Concepts and Applications                     

     Sujata     M.     Bhavnani     ,     Christopher     M.     Rubino    , and     Paul     G.     Ambrose     

  Abstract 

   An understanding of the relationships between drug exposure and effi cacy and/or safety endpoints is use-
ful for optimizing therapy for antimicrobial agents. Such knowledge can help explain why certain patients 
fail therapy while others are successfully treated and can shed light on whether certain safety endpoints are 
predictable rather than idiosyncratic. Such exposure-response relationships for effi cacy and safety end-
points can together be used to identify both effi cacious and safe dosing regimens and thereby balance the 
competing needs for high effi cacy and low toxicity. In order to conduct analyses using clinical data, reliable 
estimates of drug exposure in individual patients, well-defi ned and reproducible effi cacy and safety end-
points, and appropriate statistical approaches are needed. 

 Herein, we describe the role of population PK methods to estimate drug exposure in patients and 
provide examples of exposure-response analyses for effi cacy and safety for several antimicrobial agents. The 
examples described were chosen to illustrate different concepts. Applications of such data to improve 
patient care are also described.  

  Key words     Exposure-response  ,   Pharmacokinetics  ,   Pharmacodynamics  ,   Pharmacokinetics- 
pharmacodynamics  ,   Effi cacy  ,   Safety  

1      Introduction 

 An understanding of the relationships between drug  exposure   and 
response is useful for optimizing patient care. For example, a rela-
tionship between drug exposure and an effi cacy endpoint can be 
used to help explain why certain patients fail therapy while others 
are successfully treated. Similarly, a relationship between drug 
exposure and a safety endpoint can demonstrate that the event is 
predictable rather than idiosyncratic. Such exposure-response rela-
tionships for effi cacy and safety endpoints can together be used to 
identify both effi cacious and safe dosing regimens and thereby bal-
ance the competing needs for high effi cacy and low toxicity. Three 
key  components   are required to conduct robust analyses using 
clinical data: (1) reliable estimates of drug exposure in individual 
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patients, (2) well-defi ned and reproducible effi cacy and safety end-
points, and (3) appropriate statistical approaches. 

 The pharmacokinetic (PK) data required to reliably estimate 
drug exposure in patients are often obtained during the  drug 
development process  . Early in drug development, data from 
healthy volunteers in a highly controlled setting are gathered. In 
this setting, it is possible to collect numerous blood samples to 
describe individual subject drug exposure. However, it is chal-
lenging to collect enough blood samples to describe individual 
patient drug exposure in late-stage clinical development, a setting 
that is generally less well controlled. To overcome this challenge, 
drug concentration data collected in early- and late-stage drug 
development are integrated using a process called population PK 
modeling. The resultant mathematical model allows for the pre-
cise and unbiased estimation of drug exposure in individual 
patients from whom only a limited number of blood samples were 
collected for drug assay. 

 Well-defi ned and reproducible  effi cacy and safety endpoints   
along with appropriate statistical approaches to evaluate the rela-
tionships between exposure and these endpoints are required. 
Effi cacy and safety endpoints should be defi ned using objective 
criteria that are informed by observations collected at meaningful 
time points so as  to   capture drug effect. Statistical approaches cho-
sen should consider the study design and nature of the data col-
lected in order to make informative inferences about the data. 

 Herein, we describe the role of population PK methods to esti-
mate drug exposure in patients and provide examples of exposure-
response analyses for effi cacy and safety for several  antimicrobial 
agents  . The examples described were chosen to illustrate different 
concepts. Applications of such data to improve patient care are also 
described. While antimicrobial agents differ in important ways 
from other classes of drugs, the concepts and approaches described 
herein apply universally.  

2    The Role of Population Pharmacokinetics for Characterizing Drug Exposure 

 In order to be able to appropriately characterize drug exposure in 
individual patients and relate exposure to effi cacy and/or safety 
endpoints of interest, sparse samples for PK are required from indi-
vidual patients. In this section, general PK principles, the basis for 
developing an understanding of the disposition of the drug through 
Phase 1 studies, and methodological approaches for quantifying 
PK properties, including population PK methods, are reviewed. 
The  benefi ts   of population PK methods, including the opportunity 
to identify sparse but information-rich PK sampling strategies and 
to use such data to reliably predict drug exposure in individual 
patients, are described. 
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 Conceptually, PK can be  defi ned   as the effect of the human (or 
animal) body on drugs. A dose of drug is administered, it is then 
distributed within the body, and clearance organs remove the drug 
from the system over time. Thus, by defi ning the PK of a drug, we 
are quantifying the manner in which drug travels through the 
body. This is accomplished by observing drug concentrations mea-
sured after the administration of a dose or doses of a drug. Most 
commonly, PK is defi ned using blood (plasma/serum) concentra-
tions but can also be defi ned using concentrations collected from 
so-called  effect sites   such as tissues, middle ear fl uid, or bone. 
Traditionally, the foundation for our understanding of the PK of 
drugs comes from Phase 1 studies in normal, healthy volunteers 
and small populations of diseased patients (e.g., patients with renal 
or hepatic impairment). The studies have the distinct  advantage   of 
being highly controlled and intensive: a relatively homogenous 
group of subjects are often confi ned to the study unit for the dura-
tion of the study and undergo “dense” PK sampling (over ten 
blood samples drawn in small time increments often over a long 
period of time after dosing). These intensive, PK-specifi c study 
designs serve to minimize issues relative to unknown variability 
and provide a reliable defi nition of the basics of the drug’s PK pro-
fi le. However, their primary advantage (a small, homogenous, cap-
tive study population) is also their primary defi ciency when 
considering the clinical  use   of drugs: healthy people do not usually 
receive antimicrobial agents. Thus, PK sampling has been incorpo-
rated into later stage clinical trials (Phase 2 and 3). This is carried 
out in an attempt to confi rm the PK fi ndings from Phase 1 studies 
by using data from large populations of patients who will ultimately 
receive the drug clinically. This strategy allows us to fi ll the gaps in 
our PK knowledge by gaining an understanding of the drug’s PK 
in the target population and to further understand factors that 
contribute to the variability in PK across patients (termed “interin-
dividual variability”). However, conducting PK studies in infected 
patients presents several potential complicating factors such as a 
less well-controlled treatment and PK sampling design and the 
inability to conduct dense PK sampling. As discussed below, these 
factors can be overcome through a combination of thoughtful 
study design and innovative data analysis techniques. 

 Pharmacokinetic  properties   are quantifi ed using two general 
methodological approaches: model-independent (also known as 
non-compartmental or shape, height, area, and moment [SHAM] 
analyses) and model-dependent. While model-independent 
approaches have utility, especially when evaluating PK in normal, 
healthy adults who undergo intensive PK sampling, model- 
dependent approaches are required when evaluating data obtained 
from infected patients [ 1 ]. Pharmacokinetic models provide  several 
advantages in the context of defi ning optimal dosing regimens of 
 antibiotics  : (1) they allow for a description of the expected time 
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course of drug concentrations (on average and within individuals); 
(2) they allow for the defi nition of variability in that time course 
across and within individuals, which we will call interindividual and 
intraindividual variability, respectively; (3) when applied appropri-
ately, they allow one to identify those patient-specifi c factors that 
minimize the amount of interindividual variability; and (4) they 
facilitate simulation of the expected time course of drug concentra-
tions following alternative dosing regimens and/or in other popu-
lations of interest. 

 As with the general approach to PK, there are two basic 
approaches to constructing PK models: models that are fi t to data 
from individual patients and those that are fi t to pooled data from 
a population of patients. Both of these approaches have the advan-
tages described above but each has distinct advantages, depending 
on the robustness of the available data. When intensive PK data are 
available, PK modeling of data from individuals can often provide 
valuable information regarding the structure of the PK model 
required to defi ne the above-mentioned time course of  drug con-
centrations  . However, it is necessary to perform post hoc evalua-
tions in order to quantify the average behavior across individuals 
and to quantify sources of variability; PK parameters are derived for 
each individual independently and then pooled in order to use tra-
ditional statistics (summary statistics or simple linear regression) to 
gain insight into the determinants of interindividual variability. 
This “two-stage”  approach  , which may be useful when applied to 
large populations of patients studied intensively, is prone to bias 
when applied to small populations sampled sparsely [ 2 ,  3 ]. 
Conversely, population (a.k.a., nonlinear mixed effects) PK models 
have the advantage of allowing for the identifi cation of both indi-
vidual and population PK properties [ 4 ]. Furthermore, population 
PK methods have  fl exibility   in that they can be applied to data 
obtained from heterogeneous sources ranging from tightly con-
trolled, Phase 1 studies through large Phase 3 trials and even to 
data collected during routine clinical care [ 5 ]. In this way, popula-
tion PK methods allow for the quantifi cation of PK in the target 
patient population and are highly useful in the process of identify-
ing optimal dosing regimens [ 6 – 10 ]. 

 A second advantage of population PK methods is the ability to 
quantify the effect of  patient-specifi c factors   (covariates) that con-
tribute to the interindividual variability in PK parameters as part of 
the model (i.e., not as a post hoc analysis in the second stage of the 
two-stage approach described above). In this way, the interactions 
between the various PK  parameters   are taken into consideration dur-
ing the identifi cation of these factors, resulting in a more reliable 
quantifi cation of the effects. Although there remains  controversy in 
the optimal means for conducting these covariate analyses [ 11 ], the 
ultimate goal is to identify those factors that result in a meaningful 
effect from both a statistical and clinical perspective. This is an 

Sujata M. Bhavnani et al.



131

important consideration given that most approved antimicrobial 
agents have undergone population PK analyses, the process for 
which yielded covariate models. However, the dose of very few anti-
microbials has required adjustment based upon individual patient 
factors other than body size. In general, those drugs that require 
dose adjustment are cleared via the  kidneys   such that dose amounts 
or intervals are adjusted secondary to patient renal function 
[ 12 – 14 ]. 

 Another  advantage   of population PK methods lies in their abil-
ity to inform study design. As described above, it is often not fea-
sible to execute dense PK sampling strategies in Phase 2 or 3 
clinical studies. The data needed for PK analyses needs to be col-
lected within the logistical framework of the study, which often 
necessitates limited PK sampling (e.g., less than fi ve or six samples 
per patient). It is, therefore, important to maximize the informa-
tion content of these PK samples to allow for a robust defi nition of 
PK in the target population.  Optimal sampling theory   can be 
applied to PK models to defi ne the times (both number and tim-
ing) that best inform the estimation of parameters for the model 
[ 15 ,  16 ]. A population PK model can provide the framework for 
defi ning these “optimal” PK sampling strategies [ 16 – 18 ]. 

 In summary, population PK methods allow for the opportu-
nity to identify sparse PK sampling strategies. Using sparsely- 
sampled PK data pooled from many patients, population PK 
methods also allow for estimation of drug exposure and identifi ca-
tion of those patient characteristics which provide clinically rele-
vant insight into the interindividual variability in  drug exposure  . 
Such an approach is important in ensuring that drug exposure in 
individual patients is reliably predicted.  

3    Exposure-Response Analyses for  Effi cacy and Safety   

 As with all drugs, safety and effi cacy are the two components that 
factor into judging the adequacy of antimicrobial dosing regimens. 
For well-tolerated agents like meropenem, there are few exposure- 
related toxicities of clinical consequence [ 19 ,  20 ]. In this best-case 
scenario, the drug can be dosed in a manner that results in a high 
percentage of patients with pharmacokinetic-pharmacodynamic 
(PK-PD) indices that are on the upper plateau of the agent’s 
exposure- response relationship for effi cacy with minimal adjust-
ments for patient covariates other than renal dysfunction. For less 
well-tolerated antibiotics, like aminoglycosides, nephrotoxicity and 
ototoxicity are clinically relevant exposure-limiting toxicities of 
concern [ 21 ]. In such a circumstance, optimal clinical use must bal-
ance the dual requirements of maximizing the probability of effi -
cacy while minimizing the risk of toxicity. Strategies to strike a 
balance between the competing needs for high effi cacy and low 
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toxicity may include limiting the duration of therapy, increasing the 
interval between exposures, and therapeutic  drug   monitoring. 

 Thus, the application of clinically-derived exposure-response 
relationships for effi cacy and safety to evaluate dosing regimens for 
drug development [ 22 ] and use in clinical practice provide the 
opportunity to balance the competing needs for effi cacious and 
minimally toxic drug exposures. In this section, the certainty that 
the results of exposure-response analyses for effi cacy provide in 
order to support decisions about dosing regimens and interpretive 
criteria for in vitro susceptibility testing will be discussed. Later in 
this section, exposure-response analyses for safety and the integra-
tion of relationships for effi cacy and safety endpoints to aid in dos-
ing regimen optimization will be discussed.  

4    Exposure-Response Analyses for Effi cacy 

 The vast majority of exposure-response analyses for effi cacy for 
 antimicrobial agents   have been conducted using data collected 
from adequate and well-controlled clinical studies that were part of 
a drug development program. From a regulatory perspective, ade-
quate and well-controlled studies have prospectively-defi ned 
 hypotheses  , include a control group, use randomization to ensure 
group comparability and minimize bias, and use well-defi ned sta-
tistical methods to assess study endpoints. In addition to  drug con-
centration   data suffi cient to estimate drug exposure, information 
regarding the infecting pathogen’s susceptibility to the study drug 
is required to conduct exposure-response analyses for effi cacy for 
an antimicrobial agent. 

 For the  evaluation   of exposure-response relationships for effi -
cacy, the independent variable represents a measure of drug expo-
sure that is indexed to a measure of  susceptibility   of the infecting 
pathogen to the study drug. Although drug dose is a measure of 
drug exposure, it is not the most informative. This is because for a 
fi xed dose of a drug, there is a resulting range of exposures for a 
population of patients. Such a distribution of exposures is expected 
due to random variability and the fact that patients can vary greatly 
in those covariates known to infl uence drug exposure, including 
body size, age, and drug clearing organ function. For antimicrobial 
agents, preclinical and clinical data have demonstrated the impor-
tance of indexing plasma/serum exposures for a drug to a measure 
of pathogen susceptibility to the same drug, such as the  minimum 
inhibitory concentration (MIC)         of the drug to the bacterial isolate 
of interest [ 23 ,  24 ]. 

 For the majority of antimicrobial agents, preclinical evalua-
tions of exposure-response relationships have demonstrated one or 
more of the following PK-PD indices to be associated with effi cacy: 
the ratio of the area under the concentration-time curve (AUC) to 
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MIC (AUC:MIC ratio), the ratio of the maximum concentration 
(Cmax) to MIC (Cmax:MIC ratio), and the percentage of time 
during the dosing interval that drug concentrations remain above 
a threshold concentration (% T  > threshold) [ 23 ,  25 ]. Alone, each 
component of the PK-PD index provides important but incom-
plete information. This principle was effectively demonstrated [ 24 ] 
using clinical trial data evaluating tigecycline for the treatment of 
patients with  complicated intra-abdominal infections (cIAI)   [ 26 ]. 
Figure  1  shows the  percentage   of 71 tigecycline-treated patients 
with cIAI enrolled in Phase 2 and 3 clinical studies who achieved 
bacteriologic success by the MIC of the baseline pathogen (the 
predominant pathogen for which was  Enterobacteriaceae   from 
among the 106 baseline pathogens isolated) and by bins of steady- 
state AUC and AUC:MIC ratio. It is evident from these data that 
neither pathogen susceptibility, as measured by MIC, nor drug 
exposure, as measured by AUC, alone provided enough informa-
tion to explain drug effect. However, when drug exposure was 
indexed to pathogen susceptibility, as measured by AUC:MIC 
ratio, response to therapy was reasonably well predicted (i.e., the 
majority of patients who failed therapy had low AUC:MIC ratio 
estimates).

   The choices for a dependent variable when evaluating exposure- 
response relationships for effi cacy based on clinical data are usually 
more limited than those for independent  variables  . Categorical 
dependent variables, such as clinical or microbiological response to 
therapy (success or failure) assessed at the test-of-cure visit (i.e., a 
window of time after the end of study drug) and/or at the end of 
therapy, have typically been evaluated [ 27 ,  28 ]. Over the years, 
increasing interest has been placed on effi cacy endpoints evaluated 
earlier in therapy. Updated guidance for the development of anti-
bacterial agents for patients with  acute bacterial skin and skin struc-
ture infections (ABSSSI)   and  community-acquired bacterial 
pneumonia (CABP)   that has been issued by the US Food and 
Drug Administration (US FDA) describes clinical endpoints 
assessed on days 2–3 and 3–5, respectively [ 29 ,  30 ]. Less experi-
ence is available to assess the success of characterizing exposure- 
response relationships for effi cacy using these endpoints. However, 
given the natural course of infection whereby  bacterial eradication   
is followed by macrophage and infl ammatory modulator activity, 
which is then followed by resolution of signs and symptoms, it may 
be diffi cult to identify exposure-response relationships for effi cacy 
using endpoints assessed early after therapy has been initiated. 
Selecting time points for evaluation at which the difference in 
 treatment effect   is expected to be the greatest is optimal not only 
for clinical trial design but also for the evaluation of exposure- 
response relationships for effi cacy. 

 Continuous dependent variables, such as change in bacterial 
density or lesion size, or time-to-event endpoints, such as time to 
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sign and symptom resolution, lesion size reduction, or bacterio-
logic eradication, may also be evaluated for exposure-response 
analyses for effi cacy. Continuous or time-to-event endpoints are 
often more sensitive than categorical endpoints for  capturing effect   
when evaluating exposure-response relationships for effi cacy. Given 
the above-described importance of identifying the time point at 
which treatment effect is greatest, time-to-event analyses provide 
the advantage of allowing for this objective to be met as well as 
allowing for the effect of the drug over time to be determined 
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  Fig. 1     Bacteriologic response   stratifi ed by the MIC of the baseline pathogen, AUC 
and AUC:MIC ratio for tigecycline-treated patients with cIAI enrolled in Phase 2 
and 3 clinical studies. Reproduced from ref.  24  with permission from Oxford 
University Press       
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[ 31 ]. Figure  2  illustrates the information lost when one considers 
only  the   categorical effi cacy endpoint, success or failure, assessed at 
a fi xed time point rather than a time-to-event effi cacy endpoint. As 
seen in this illustration, if the probability of a successful response 
was only assessed at the test-of-cure visit, Regimens A and B would 
not appear to be different despite the fact that the  probability   of a 
successful response was higher for Regimen A earlier in therapy. 
Thus, given the above, the evaluation of time-to-event effi cacy 
endpoints is useful for defi ning the optimal duration of therapy. 
When used in exposure-response analyses for effi cacy, the infl uence 
of increasing PK-PD indices on the time to achieving the  effi cacy   
endpoint can be assessed, the results of which can be used to 
inform decisions about dose and duration. An additional benefi t 
for using continuous or time-to-event effi cacy endpoints may be 
the requirement for data from fewer patients to detect differences 
of clinical interest.

    Statistical approaches   for characterizing univariable exposure- 
response relationships for effi cacy are determined by the type of 
effi cacy endpoint and the form of the PK-PD index evaluated. For 
 dichotomous effi cacy endpoints  , logistic regression or Hill-type 
 models   can be used when the PK-PD index evaluated is a continu-
ous independent variable; Chi-square or Fisher’s exact test may be 
used for a PK-PD index that is a categorical variable. For continu-
ous effi cacy endpoints, linear regression, Spearman correlation, or 
Hill-type models can be used when the PK-PD index is a continu-
ous independent variable and analysis of variance and Wilcoxon 

  Fig. 2    Schematic for comparing  drug regimens   using a categorical effi cacy endpoint. Reproduced from ref.  31  
with permission from Oxford University Press       
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rank-sum test when the PK-PD index is a categorical variable. For 
time-to-event effi cacy endpoints, Cox proportional hazard regres-
sion can be used when the PK-PD index is a continuous indepen-
dent variable and log rank tests when the PK-PD index is a 
categorical variable. 

 When evaluating continuous forms of PK-PD indices without 
consideration of categorical forms of such variables, detection of an 
exposure-response relationship may be missed if the relationship 
does not follow a pattern assumed by the underlying  mathematical 
model  . For example,  linear regression   might not be an optimal 
tool to detect an exposure-response relationship that is not mono-
tonic. By evaluating the PK-PD index in multiple forms, including 
as a continuous variable, but also divided into groups to character-
ize nonlinearity or non-monotonicity, one can increase the ability 
to detect potential exposure-response relationships. Possibilities 
for  group assignments   are quartiles, and also two-group and three- 
group divisions for which thresholds defi ning categorical indepen-
dent variables may be optimally determined for the given endpoint 
of interest. For example, the resulting split of a classifi cation tree 
for a dichotomous effi cacy endpoint can be used to optimally iden-
tify a threshold for a two-group categorical independent variable. 

 Regardless of the type of endpoint, other factors may infl uence 
the ability to characterize the nature of the exposure-relationship. 
Limited sample size, fi xed dosing regimens (thus resulting in a 
relatively more narrow range of exposures), or high effi cacy rates 
can each impede the ability to understand the nature of such rela-
tionships. When one or more of these factors are present, identifi -
cation of a signifi cant relationship in which the PK-PD index is 
evaluated as a continuous independent variable may be unlikely. It 
still may be feasible, however, to identify a step function to describe 
the exposure-response relationship based on a grouped form of the 
PK-PD index. Such a relationship distinguishes patients with both 
lower PK-PD indices and percentages of successful response or a 
longer time to achieve an effi cacy endpoint as compared to those 
with both higher PK-PD indices and percentages of successful 
response or shorter times to achieve the effi cacy endpoint. 

 When the ability to  characterize   the nature of the exposure- 
relationship is limited, another consequence is wide confi dence 
bounds around any mathematical parameters or functions used to 
describe the exposure-response relationship, thus refl ecting inher-
ent uncertainty. However, when inferences about the 
 exposure- response relationships for effi cacy based on such  clinical 
data  , including the magnitude of PK-PD targets, are consistent 
with those based on non-clinical data and/or other clinical datas-
ets, the observed uncertainty can be mitigated by other data 
sources. As discussed later in this section, the application of pre-
existing data as an input to conduct Bayesian-based exposure-
response analyses represents an informative approach to decrease 
uncertainty of the fi ndings based on analyses of  clinical data  .  
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5     Multivariable Analyses   

 If signifi cant univariable exposure-response relationships for effi -
cacy are identifi ed or if adjustment for selected variables is deemed 
necessary to properly understand the relationship between the effi -
cacy endpoint and a PK-PD index,  multivariable analyses   should be 
undertaken to evaluate predictors of response in a context in which 
all potential predictors are taken into account. Potential indepen-
dent variables that can be considered include demographic charac-
teristics and underlying comorbidities, including previously-defi ned 
risk factors. A recent analysis of univariable and multivariable 
exposure- response analyses for effi cacy based on data from 61 
tigecycline- treated patients with hospital-acquired or ventilator- 
associated bacterial pneumonia (HABP and VABP, respectively) 
[ 32 ] is described below. These 61 patients represented a subset of 
evaluable patients with tigecycline exposure data from among the 
474 tigecycline-treated patients enrolled in the randomized, mul-
ticenter, double-blind, Phase 3 clinical trial described by Freire 
et al. [ 33 ]. Patients randomized to tigecycline received an intrave-
nous (IV) loading dose of 100 mg of tigecycline followed by 50 mg 
IV every 12 h infused over 30–60 min for a minimum of 7 days. 

 In the above-described exposure-response analyses, the inde-
pendent variable was free-drug AUC:MIC ratio, which was the 
PK-PD index that was most predictive of effi cacy based on non- 
clinical data [ 34 ], and the dependent variables were clinical and 
microbiological response. As shown in Fig.  3a, b , the fi tted func-
tions and associated 95 % pointwise confi dence bounds for 
exposure- response relationships identifi ed using univariable logis-
tic regression are shown overlaid on a histogram describing the 
observed distribution of free-drug AUC:MIC ratio. The solid box 
shown on each fi tted function represents the threshold for free- 
drug AUC:MIC ratio when evaluated as a two-group variable as 
identifi ed using classifi cation tree analysis. A number of useful 
points were evident based on these results. First, as the free-drug 
AUC:MIC ratio increased, so too did the probability of clinical 
and microbiological success. Second, as expected, the 95 % point-
wise confi dence bounds around the logistic function were tight in 
the free-drug AUC:MIC ratio range in which the data density was 
high. Third, a large proportion of patients (31 %) had observed 
free-drug AUC:MIC ratios associated with a low probability of 
clinical success, which may indicate suboptimal tigecycline dose 
selection in this patient population.

   In addition to free-drug AUC:MIC ratio, other independent 
variables were evaluated for associations with  clinical and microbi-
ological response      in patients with HABP or VABP. Figure  4a  shows 
the relationship between the probability of clinical success and 
albumin concentration stratifi ed by free-drug AUC:MIC ratio, 
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  Fig. 3    Fitted functions for the relationship between the probability of clinical ( a ) 
and microbiological ( b ) success and free-drug AUC 0–24 :MIC ratio based on uni-
variable logistic regression models ( p  = 0.023 and 0.031, respectively) overlaid 
on a histogram describing the observed free-drug AUC 0–24 :MIC ratio distribution. 
The  dashed lines  represent the 95 % pointwise confi dence bands derived based 
on the standard error of the logistic regression model parameters. The  solid box  
on each fi tted function represents the threshold for free-drug AUC 0–24 :MIC 
ratio of 0.9 and 0.35 for the probability of clinical and microbiological success, 
respectively, derived based on classifi cation tree analysis       
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  Fig. 4    Fitted functions for the relationship between the probability of clinical or 
microbiological success and albumin relative to free-drug AUC 0–24 :MIC ratio eval-
uated as a two-group categorical variable ( a ) or VABP status ( b )       
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evaluated as a two-group variable (as identifi ed using classifi cation 
tree analysis). As demonstrated by the logistic function shown, the 
model-predicted probability of clinical success approached one for 
patients with and without adequate tigecycline exposure and nor-
mal baseline albumin concentration (4 g/dL). However, for 
patients with very low baseline albumin (2.0 g/dL), the infl uence 
of inadequate (free-drug AUC:MIC ratio <0.90) versus adequate 
(free-drug AUC:MIC ratio ≥0.90) tigecycline exposure on the 
probability of clinical success was greater (0.35 compared to <0.1). 
In Fig.  4b , the relationship between the probability of microbio-
logical success and albumin concentration stratifi ed by VABP sta-
tus is shown. Similar to tigecycline exposure, the infl uence of VABP 
status on the probability of microbiological success was far greater 
for patients with very low compared to normal baseline albumin 
concentrations. Given that MIC distributions for baseline patho-
gens differed for patients stratifi ed by VABP status, the ability to 
identify a relationship between the probability of  microbiological   
   success and MIC was confounded when evaluated together with 
VABP status.

   Not unexpectedly, the above-described fi ndings demonstrate 
the ability of independent variables other than tigecycline free- 
drug AUC:MIC ratio to predict the probability of clinical or 
microbiological response to therapy in this patient population. 
While the sample size of this evaluation and the number of inde-
pendent variables that could be incorporated into a multivariable 
model were limited, the above-described analysis results illustrate 
the potential of independent variables other than drug exposure to 
infl uence response. The retention of a signifi cant exposure-response 
relationship in a multivariable model that contains other infl uential 
independent variables provides an added degree of certainty about 
the presence of the relationship. 

 When evaluating the results of multivariable models, it is useful 
to assess model-predicted response relative to observed response 
for cohorts of patients described by independent variables included 
in the fi nal models. In the above-described analysis of  tigecycline- 
treated patients   with HABP or VABP, the performance of each of 
the logistic regression models presented was assessed by comparing 
the agreement between the observed proportion of patients with a 
successful response and the average model-estimated probability of 
a successful response among cohorts of patients described by com-
binations of independent variables. The data demonstrated that 
there was good agreement between observed proportions and 
average model-estimated probabilities of successful responses, even 
for those cohorts for which the sample size was limited. While 
there are a variety of other ways for evaluating the fi t of a model 
resulting from the various  statistical   approaches described earlier, 
discussion of these approaches is beyond the scope of this chapter.  
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6    Application of a Bayesian Approach 

  Statistical approaches   that have historically been used to evaluate 
data, including exposure- response data, have been based on fre-
quentist inference. Alternative statistical approaches, such as 
Bayesian inference, have rarely been considered. The two 
approaches differ with regard to whether or not prior information 
is used. For  frequentist analyses  , the quantifi cation of the data does 
not include consideration of prior data. Inferences based on the 
results of these analyses may, however, be made in the context of 
such prior information. In contrast, both prior information and the 
study data infl uence the results and conclusions when Bayesian 
analyses are conducted. 

 When considering prior information for exposure-response 
analyses of an  antimicrobial agent   using clinical data, there is a 
unique opportunity to consider in vitro and/or in vivo PK-PD 
fi ndings. Such data, which represents a pre-screen for an antimi-
crobial agent, is generated before clinical development is initiated. 
Using the example of the evaluation of  tigecycline   for patients with 
HABP or VABP once again, in vitro studies demonstrated tigecy-
cline’s activity against  target   pathogens [ 35 ,  36 ]. In vivo studies 
conducted using a  neutropenic murine-thigh infection model   
served to characterize the magnitude of the free-drug AUC:MIC 
ratio associated with effi cacy [ 34 ]. Subsequent clinical studies of 
tigecycline-treated patients with cIAI and ABSSSI, indications for 
which US FDA approval was received [ 37 ], demonstrated effi cacy. 
Moreover, exposure-response relationships were also characterized 
based on these data; results of such analyses confi rmed the preclini-
cal observation that increasing AUC:MIC ratio was associated with 
improved response [ 26 ,  38 ,  39 ]. Thus, for antimicrobial agents 
that enter late-stage clinical development, valuable preclinical and 
clinical priors are available for use when conducting exposure-
response analyses for effi cacy. To demonstrate the utility of  Bayesian 
principles   applied to such analyses, the above-described dataset of 
61 patients with HABP or  VABP   [ 32 ] was evaluated using fre-
quentist and Bayesian logistic regression analyses [ 40 ]. Specifi c 
objectives of the analyses were to determine and compare the mag-
nitude of treatment effect and the ability of clinical trial endpoints 
to capture drug benefi t. 

 When selecting prior information to be incorporated into a 
Bayesian analysis, it is important to justify the use of such external 
data. For  tigecycline   in the treatment of patients with HABP or 
VABP, the above-described in vivo data from a neutropenic murine- 
thigh infection model [ 34 ] were selected. These included the slope 
and the dynamic range based on the exposure-response relationship 
for   Staphylococcus aureus   , a major target pathogen. The slope was a 
useful parameter to inform the analysis since, as indicated by the 
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positive sign for the parameter, higher free-drug AUC:MIC ratios 
were associated with a greater magnitude of effect. Lower and 
upper limits of free-drug AUC:MIC ratio of 0.01 and 25, respec-
tively, which represented the range over which the majority of drug 
effect in animals was observed [ 34 ] and which was encompassed in 
the range observed in HABP/VABP patients [ 32 ], were selected. 

 Figure  5a, b  shows fi tted functions representing the exposure- 
response relationships for clinical response based on  frequentist   
and Bayesian logistic regression, respectively. For the frequentist 
analysis, 95 % pointwise confi dence bounds are shown while for 
the Bayesian analysis, 95 % pointwise credible bounds are shown. 
As shown in Fig.  5b , the Bayesian credible intervals were tighter 
than the frequentist confi dence intervals. As described below, 
treatment effect was estimated using these exposure-response rela-
tionships, frequentist and Bayesian approaches, and three different 
methods based on the probability of a successful response at free- 
drug AUC:MIC ratios of 0.01 and 25.

   For Method 1,  treatment effect   was calculated as the differ-
ence in point estimates of the probability of clinical success at 
AUC:MIC ratios of 0.01 and 25. For Method 2, treatment effect 
was calculated as the difference between the upper limit of a 95 % 
interval for the probability of clinical success at an AUC:MIC ratio 
of 0.01 and the lower limit of a 95 % interval for the probability of 
clincal success at an AUC:MIC ratio of 25. This approach is analo-
gous to the current practice for estimating treatment effect for the 
design of non- inferiority clinical trials for antimicrobial agents 
[ 41 ]. Figure  6  shows a schematic for calculating treatment effect 

  Fig. 5    Frequentist ( a ) and Bayesian ( b ) logistic regression-estimated relationships between the probability of 
clinical success and the tigecycline free-drug AUC:MIC ratio based on data from 61 patients with HABP. 
The  solid lines  represent the fi tted functions based on logistic regression while the  dashed lines  represent the 
upper and lower 95 % pointwise confi dence and credible bounds, respectively. The  green histogram  repre-
sents the distribution of observed values for free-drug AUC:MIC ratio       
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based on the relationship between the probability of clinical suc-
cess and free- drug AUC:MIC ratio using Bayesian logistic regres-
sion and Methods 1 and 2. Finally, for Method 3, 95 % lower 
bounds for the treatment effect were obtained by using 1000 
bootstrap samples and the bias-correcting acceleration method.

   Estimates of the treatment effect for clinical response as deter-
mined using frequentist and Bayesian logistic regression and each 
of the above-described three methods are summarized in Table  1 . 
Differences in point estimates of the treatment effect for clinical 
response (Method 1) were larger using the frequentist compared 
to the Bayesian approach. However, the comparatively tighter 
Bayesian credible intervals were indicative of increased certainty 
with the latter approach. For Methods 2 and 3, treatment effect 
was greater for the Bayesian analyses. These results demonstrate 
the utility of frequentist and Bayesian-based analyses to quantify 
treatment effect, an endpoint which is important for powering 
clinical trials. And while not illustrative of the benefi ts of a Bayesian 
approach, these results also demonstrated that irrespective of the 
type of approach, use of bootstrapping to obtain lower bounds for 
the treatment effect served to improve upon an overly imprecise 
and arbitrary practice of taking the difference between the lower 
 bound   of the interval for the maximal effect and the upper bound 
of the interval for the minimal effect.
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  Fig. 6    Schematic showing  the   calculation of treatment effect based on an 
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   While the above-described example was based on the evalua-
tion of an exposure-response relationship using a  dichotomous effi -
cacy   endpoint and logistic regression, a Bayesian approach can be 
applied to the evaluation of exposure-response relationships using 
other types of effi cacy endpoints. Regardless of the type of end-
points or statistical analyses undertaken, consideration of prior data 
using a Bayesian approach could increase the certainty in the fi nd-
ings. However, whether certainty can be increased or the degree to 
which it can be increased by a Bayesian approach will depend on the 
quality and careful quantifi cation of the prior information.  

7     Applications   of Exposure-Response Analyses for Effi cacy 

 The current paradigm for identifying dosing regimens for further 
clinical study and establishing interpretive criteria for in vitro sus-
ceptibility testing for antimicrobial agents involves the use of popu-
lation PK models based on Phase 1 PK data, PK-PD targets based 
on preclinical data, surveillance data, and Monte Carlo simulation 
[ 6 ,  10 ,  42 ,  43 ]. Using these inputs and statistical approach, the 
 probability   of simulated patients achieving PK-PD targets  associated 
with effi cacy over a MIC distribution for a relevant pathogen and by 
MIC value are determined. By evaluating PK-PD target attainment 
over a MIC distribution, the performance of a dosing regimen can 
be assessed from a population perspective, weighting the probabil-
ity of isolates at different MIC values in accordance with the likeli-
hood of their occurrence. By evaluating probabilities of PK-PD 
target attainment by MIC value, a susceptibility breakpoint, which 
is defi ned as the highest MIC value at which a high probability of 
PK-PD target attainment is achieved, can be identifi ed. 

 In later stages of drug development, there is an opportunity to 
use Phase 2 and/or 3 data to refi ne the population PK and poten-
tially the PK-PD target inputs. Such PK-PD targets, which represent 
thresholds that divide patients with higher PK-PD indices achieving 
greater effi cacy compared to those with lower PK-PD indices 

   Table 1  
  Estimates  of   treatment effect for clinical response as determined using frequentist and Bayesian 
logistic regression and three different methods a    

 Approach 

 Treatment effect estimated by method 

 1  2  3 

 Frequentist logistic regression  0.672  0.043  0.211 

 Bayesian logistic regression  0.405  0.085  0.314 

   a Based on the probability of clinical success at free-drug AUC:MIC ratios of 0.01 and 25.  
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achieving less effi cacy, can be identifi ed. Approaches to identify 
PK-PD targets include the use of recursive partitioning (e.g., classi-
fi cation and regression tree analysis), constructing  receiver operating 
characteristic (ROC)   curves, or using a PK-PD index associated with 
a given magnitude of the effi cacy endpoint. However, as described 
below, the assessment of PK-PD target attainment based on clinically-
derived PK-PD targets suffers from an important limitation [ 44 ,  45 ] 
and does not make full use of the available data. 

 The  limitation   of PK-PD target attainment analyses is that fail-
ure to achieve a PK-PD target, as evidenced by a low probability of 
PK-PD target attainment at a given MIC value, does not necessarily 
imply that the probability of a successful response will also be low at 
that same MIC value. Similarly, a high probability of PK-PD target 
attainment at a given MIC value does not necessarily imply a high 
probability of a successful response. The basis for this lack of correla-
tion is that other patient factors besides drug exposure and pathogen 
susceptibility, such as underlying medical illnesses or severity of ill-
ness, also infl uence response. Thus, to overcome this limitation and 
make better use of the information provided by the exposure-
response relationship for effi cacy, model-predicted probabilities of 
response rather than probabilities of PK-PD target attainment can 
be assessed by MIC value. To demonstrate this point, the results of 
an exposure-response analysis conducted using data from clinical tri-
als for 82 quinolone-treated patients with CABP can be examined 
[ 46 ]. Results of classifi cation tree analysis demonstrated that a free-
drug AUC:MIC ratio of 33.8 was predictive of a successful clinical 
response. The probability of a successful clinical response for patients 
with free-drug AUC:MIC ratios at and above versus below this 
breakpoint was 95 % and 67 %, respectively. Thus, despite 100 % of 
patients achieving the PK-PD target, the percentage of successful 
clinical responses was less than 100 %. Also, rather than clinical 
response approaching 0 % for those patients who did not achieve the 
PK-PD index, the percentage of successful clinical responses was 
67 %, which was similar to the  estimate of 69 % for the  y -intercept 
( E  0  which is the drug effect in the presence of no drug) for the Hill-
type function that was used to describe this exposure-response rela-
tionship. Instead  of   merely assessing PK-PD target attainment, an 
exposure-response relationship derived using clinical data can be 
used together with the population PK model and Monte Carlo sim-
ulation to generate probabilities of model-predicted response. By 
using an exposure- response relationship to determine the probabil-
ity of achieving an effi cacy endpoint at given MIC values, such pre-
dictions are likely to be more aligned with observed successful 
response than probabilities of PK-PD target attainment at that MIC. 

 Differences between the percent probabilities of PK-PD target 
attainment and model-predicted clinical response by MIC were 
demonstrated for tigecycline in an evaluation of the interpretive cri-
teria for in vitro susceptibility testing for Enterobacteriaceae [ 44 ]. 
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The PK-PD target and model for clinical response were based on the 
previously-described exposure-response relationship for effi cacy 
based on tigecycline-treated patients with cIAI [ 26 ]. The results of 
this assessment showed that a total-drug AUC:MIC ratio of 6.96 
was associated with a higher probability of achieving a positive clini-
cal response; total-drug AUC:MIC ratios ≥6.96 were associated 
with 94 % of patients having a successful clinical response while total-
drug AUC:MIC ratios <6.96 were associated with 60 % of patients 
having a successful clinical response ( p  = 0.04). Figure  7  shows prob-
abilities of PK-PD target attainment (open triangles) and the median 
model-predicted probabilities of clinical success (open circles) by 
MIC value overlaid on the MIC distribution (gray bars) of tigecy-
cline against  E. coli  ( n  = 440). At MIC values of 0.25 mg/L or less, 
both sets of probabilities were high. However, for a MIC value of 
1 mg/L, the probability of PK-PD target  attainment was 0.27 while 
the model-predicted probability of clinical success was 0.76. 
Regardless of which set of results one examines, results of these anal-
yses do not support the current US FDA susceptibility breakpoint 
for tigecycline against Enterobacteriaceae of 2 mg/L [ 37 ].

   In conclusion, PK-PD target  attainment   analyses supporting 
the selection of dose or susceptibility breakpoints that are con-
ducted later in drug development should be conducted using 
exposure-response relationships when such data are available.  

8    PK-PD Analyses for Safety 

 The favorable safety and tolerability profi le for a number of classes 
of antimicrobial agents [ 19 ,  20 ], including  beta-lactam agents  , has 
allowed for the administration of higher doses of such agents to 

  Fig. 7    Probabilities of PK-PD target attainment ( open triangles ) and the median 
model-predicted probabilities of clinical success ( open circles ) by MIC value 
overlaid on the MIC distribution ( gray bars ) of tigecycline against  E. coli  ( n  = 440). 
Reproduced from ref.  44  with permission from Elsevier       

 

Sujata M. Bhavnani et al.



147

patients with serious infections arising from potentially resistant 
bacterial pathogens.  Characterization   of exposure-response rela-
tionships for safety endpoints has, therefore, been limited to select 
agents and/or subclasses of agents which have demonstrated a nar-
row therapeutic window. For such agents, safety signals based on 
dose-ranging clinical data can be used to defi ne the upper bound 
for dosing. This method of investigation, as described below for 
 tigecycline  , is a common practice during early clinical drug devel-
opment. For other agents, alternate dosing strategies may allow for 
administration of the antimicrobial agent in a manner that reduces 
the likelihood of the occurrence of the safety event. Such was the 
case for  aminoglycosides  , principles as described below that were 
better understood decades after these agents had been introduced 
into clinical practice. 

 In this section, three examples of exposure-response analyses 
for safety are reviewed [ 21 ,  47 ,  48 ]. In the fi rst example, data dem-
onstrating the relationships between tigecycline exposure and the 
probability of  nausea and vomiting   were examined [ 47 ]. The result 
of such analyses, which were based on Phase 1 data, helped identify 
the upper limit of tigecycline dosing. For the second example, 
exposure-response relationships for both safety and effi cacy are 
examined for  aminoglycosides  . Such dual considerations allowed 
for the identifi cation of an optimal exposure window [ 21 ]. In the 
third example, exposure-response relationships for three end-
points, safety, effi cacy, and emergence of resistance, and the appli-
cation of these relationships to inform dose selection for  daptomycin   
[ 48 ], are reviewed. 

 The wide exposure range provided through the conduct of 
dose-ranging Phase 1 studies provides the opportunity to charac-
terize dose- and/or exposure-response relationships for safety end-
points early in  clinical development  . Passarell and colleagues used 
data from 136 subjects enrolled in three Phase 1 studies to evaluate 
relationships between tigecycline exposure and the probability of 
nausea and vomiting [ 47 ]. Subjects received one of seven single IV 
tigecycline doses ranging from 12.5 to 300 mg. Signifi cant rela-
tionships between AUC from 0 to infi nity (AUC 0–∞ ) and the prob-
ability of the fi rst occurrence of nausea and vomiting ( p  < 0.0001 
for each), which were based on logistic regression models, are 
shown  in   Fig.  8a, b , respectively. The 25th to 75th percentiles of 
the AUC 0–∞  range at each dose level are shown by the vertical bars. 
At the median AUC 0–∞  values of 2.6 mg • h/L for 50 mg and 
4.7 mg • h/L for 100 mg (the approved maintenance and loading 
dose, respectively), model-predicted percent probabilities of nau-
sea were 26 and 33 %, respectively. At these same exposures, 
model-predicted percent probabilities of vomiting were 7.5 and 
11 %, respectively. The percent probability of nausea increased dra-
matically with higher doses. For tigecycline doses greater than or 
equal to 200 mg, the percent probability of nausea was greater 
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  Fig. 8    Relationships between the probability of AUC0–∞ and the fi rst occurrence of nausea (a) and vomiting ( b ) 
based on data from subjects who received single IV doses of tigecycline. The 25th to 75th percentiles of the 
AUC0–∞ range at each dose level are shown by the vertical bars. The line represents the model-based probabil-
ity of the fi rst occurrence of nausea and vomiting. The triangles represent the observed probability of nausea 
and vomiting in each dose group. Reproduced from ref. [ 47 ] with permission from Elsevier       

than 60 %. For vomiting, the percent probability was greater than 
30 %. Despite the single doses studied, the above-described model- 
predicted percent probabilities were consistent with rates of nausea 
and vomiting among tigecycline-treated patients with ABSSSI 
(nausea, 24.4 %; vomiting, 19.2 %) and cIAI (nausea, 34.5 %; vom-
iting, 19.6 %) enrolled in Phase 3 clinical trials [ 49 ,  50 ]. Perhaps as 
would be expected given that 28.1 % of patients had VABP, rates of 
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these events were lower among patients with HABP or  VABP   
(nausea, 15.4 %; vomiting, 12.6 %) [ 33 ]. Although nausea and 
vomiting were the most frequently reported adverse events among 
tigecycline-treated patients, such events rarely led to the discon-
tinuation of the drug [ 33 ,  49 ,  50 ]. The results of the above- 
described exposure-response analyses for nausea and vomiting 
supported the decision to limit Phase 3 tigecycline dosing regi-
mens to 100 mg administered as a loading dose following by 
50 mg once daily. When available early in clinical development, 
data from exposure-response analyses for safety endpoints can be 
combined with preclinical PK-PD targets associated with effi cacy 
to identify dosing regimens that will have a high likelihood of 
being well tolerated and effi cacious.

   The dual examination of exposure-response relationships for 
safety and effi cacy endpoints allows for the evaluation of risk versus 
benefi t for a given dosing regimen. For  aminoglycosides  , a class of 
agents for which exposure-response relationships for safety and 
effi cacy have been the focus of investigation for several decades, 
results of such analyses [ 51 ,  52 ] have allowed for the identifi cation 
of an optimal exposure window [ 21 ]. As described for this exam-
ple, the integration of exposure-response analyses for safety and 
effi cacy in this manner allows for the understanding of the impact 
of MIC and the chosen dosing regimen on the probabilities of 
achieving safety and effi cacy endpoints. However, as a prelude to 
these data, it is useful to review earlier insights gathered from non- 
clinical and clinical data that led to the use of less fractionated ami-
noglycoside dosing regimens. 

 Preclinical observations of saturable aminoglycoside uptake by 
proximal renal tubular epithelial cells [ 53 – 55 ] led to the conduct 
of in vivo and clinical studies to compare drug uptake of different 
dosing schedules [ 56 ,  57 ]. Results of such studies demonstrated 
that more fractionated dosing regimens resulted in higher drug 
concentrations in the  proximal renal tubular epithelial cells  . 
Subsequent clinical studies were initiated to test the hypothesis 
that less frequent aminoglycoside administration, which would 
result in less aminoglycoside uptake, would lead to a lower rate of 
 nephrotoxicity   for patients treated with shorter courses of therapy 
[ 51 ,  58 ]. These data demonstrated a signifi cant reduction in the 
occurrence of nephrotoxicity for once-daily versus more frequent 
administration of netilmicin [ 58 ]. Similarly, Rybak et al. [ 51 ], who 
evaluated exposure-response relationships for aminoglycosides, 
reported a signifi cantly lower likelihood of nephrotoxicity for 
administration of therapy once daily versus every 12 h. Additional 
studies provided further data to support earlier observations of 
reduced rates of nephrotoxicity [ 59 ]. Since AUC:MIC ratio and 
Cmax:MIC ratio were the PK-PD indices that are most predictive 
of effi cacy [ 25 ], administration of less fractionated aminoglycoside 
dosing regimens was not predicted to be associated with less 
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effi cacy than more fractionated dosing regimens. Ultimately, the 
above-described data changed the clinical practice for administer-
ing aminoglycosides [ 60 ,  61 ]. 

 Using the results of the exposure-response analyses for the 
probability of nephrotoxicity of aminoglycosides reported by Ryak 
et al. based on data from 74 patients with Gram-negative bacterial 
infections, together with the results of the exposure-response rela-
tionship for the probability of temperature defervescence reported 
by Kashuba et al. based on data from 78 patients with nosocomial 
pneumonia [ 51 ,  52 ] who received aminoglycosides, Drusano et al. 
examined exposure windows based on scenarios with different 
MIC values [ 21 ]. Figure  9  shows the relationships between the 
AUC for gentamicin or  tobramycin   and the probability of nephro-
toxicity (red-colored functions) and the probability of temperature 
defervescence (black-colored functions) shown as a function of 
three different MIC values, 0.25, 0.5, and 1.0 mg/L, in panels a, 
b, and c, respectively. The aminoglycoside dosing regimen was 
gentamicin or tobramycin 5 mg/kg per day administered as 
2.5 mg/kg dose every 12 h. In this example, a weight of 80 kg was 
assumed and a dose of 200 mg was administered every 12 h. In 
each panel, the horizontal lines represent the values at which the 
probability of temperature defervescence is 0.9 and the probability 
of nephrotoxicity is 0.1. The vertical lines represent the optimal 
exposure window which was defi ned as the AUC values associated 
with probabilities of temperature defervescence ≥0.9 and proba-
bilities of nephrotoxicity ≤0.1.

   As can be seen in Fig.  9a , a broad exposure window exists for 
probabilities of 0.9 and 0.1 for temperature defervescence and 
nephrotoxicity, respectively, when the gentamicin or tobramycin 
MIC value is 0.25 mg/L.    As shown in Fig.  9b , the exposure win-
dow narrows markedly when the MIC value increases to 
0.5 mg/L. At an MIC of 1.0 mg/L (Fig.  9c ), a probability of 0.9 
for temperature defervescence cannot be achieved without a con-
sequent probability of nephrotoxicity that approaches 60 %. In 
order to achieve a probability of 0.1 for nephrotoxicity, the prob-
ability of temperature defervescence would be approximately 0.75. 
Given that the use of aminoglycosides has become more common 
to treat infected patients for whom other antimicrobials are not an 
option, the goal for individualizing therapy is to achieve the high-
est probability of effi cacy while keeping the probability of nephro-
toxicity reasonably low. 

 In the last example, results of an analysis for  daptomycin   are 
discussed [ 48 ]. This analysis involved the integration of exposure- 
response relationships for the following three endpoints in order to 
evaluate the risk versus benefi t of different dosing regimens: (1) the 
probability of CPK elevation, (2) the probability of clinical success, 
and (3) the time to decreased susceptibility. The clinical data used to 
derive these relationships were obtained from a Phase 3 clinical trial 

Sujata M. Bhavnani et al.



151

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Aminoglycoside AUC

Effect Toxicity

P
ro

ba
bi

lit
y

0 20 40 60 80 100 120 140 160 180 200

a

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Aminoglycoside AUC

Effect Toxicity

P
ro

ba
bi

lit
y

0 20 40 60 80 100 120 140 160 180 200

b

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Aminoglycoside AUC

Effect Toxicity

P
ro

ba
bi

lit
y

0 20 40 60 80 100 120 140 160 180 200

c

  Fig. 9    The relationships between the AUC for gentamicin or tobramycin and the probability of nephrotoxicity 
( red-colored functions ) and the probability of temperature defervescence ( black-colored functions ) shown as 
a function of three different MIC values, 0.25, 0.5, and 1.0 mg/L, in panels ( a ), ( b ), and ( c ), respectively. 
Reproduced from ref. [ 21 ] with permission from Oxford University Press       
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in which patients with   Staphylococcus aureus    bacteremia with or 
without infective endocarditis received daptomycin 6 mg/kg/day 
[ 62 ]. The analysis of the exposure-response relationships for CPK 
elevation demonstrated that daptomycin trough concentrations 
≥24.3 mg/L were associated with a higher probability of CPK ele-
vation [ 63 ]. Exposure-response relationships identifi ed for the prob-
ability of clinical response and time to decreased daptomycin 
susceptibility during therapy were both non-monotonic in nature. 
The relationship between the probability of clinical success and 
AUC:MIC ratio resembled a U shape (i.e., the probability of a posi-
tive clinical success was low in the middle of the AUC:MIC ratio 
distribution and high at low and high ends of the distribution). An 
inverted U shape was evident for the relationship between time to 
decreased daptomycin susceptibility and AUC:MIC ratio. At 30 days 
after the start of therapy, the probability of patients with decreased 
susceptibility was 0, 0.278, and 0.081 in patients with low, interme-
diate, and high AUC:MIC ratios, respectively. Similar such expo-
sure-response relationships for effi cacy and the resistance 
amplifi cation of quinolones have been described based on in vitro 
PK-PD system and clinical data [ 64 ,  65 ]. 

 Using the above-described relationships and  Monte Carlo sim-
ulation   [ 48 ], probabilities of each endpoint by MIC for daptomy-
cin 6 and 8 mg/kg/day were calculated. Impressive improvements 
for probabilities of clinical success and decreased susceptibility at 
30 days were not evident for 6 versus 8 mg/kg/day. The probabil-
ity of CPK elevation was modestly lower for the 6 versus 8 mg/
kg/day dosing regimen (0.073 versus 0.114). However, the risk of 
CPK elevation, which is reversible, should be assessed in the con-
text of the mortality and severe morbidity associated with these 
serious infections. The assessment of the joint probability of favor-
able outcomes (i.e., clinical success, no change in susceptibility, 
and no CPK elevation) was also consistent with the above-described 
fi ndings and did not reveal impressive differences between dosing 
regimens. Although impressive differences between dosing regi-
mens were not identifi ed, the assessment of these probabilities by 
clinical scenarios defi ned by the combination of four independent 
variables included in the  multivariable model   (creatinine clearance, 
AUC:MIC ratio, albumin, and diagnosis category for bacteremia 
with or without infective endocarditis) served to identify popula-
tions of patients for which optimal daptomycin exposure had the 
greatest and least impact. 

 While the identifi cation of exposure-response relationships 
based on data from patients who received one dose level repre-
sented an important limitation of the above-described analyses for 
 daptomycin  , the paradigm to assess risk versus benefi t of different 
dosing regimens in this manner is instructive. Exposure-response 
relationships for antimicrobials have three potential axes. While effi -
cacy and safety endpoints are typically considered, the probability of 
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antimicrobial resistance which is measured on the third axis is a less 
commonly elucidated endpoint. However, by understanding the 
nature of exposure-response relationship for changes in MIC, out-
comes for patient populations can be favorably impacted. Preserving 
the ability to use an  antimicrobial agent   is an important objective 
from a societal perspective. In conclusion, by applying exposure-
response relationships to predict the probability of good outcomes, 
clinicians can make informed decisions regarding the risk versus 
benefi t ratio for the administration of a given antimicrobial dosing 
regimen. Future evaluations of such relationships using multivari-
able analyses will allow clinicians to further understand the patient 
populations at greater risk and the impact of suboptimal antimicro-
bial exposure on each of the above-described endpoints.  

9    Prospectus 

 The evaluation of the relationships between exposure and both 
effi cacy and safety endpoints for antimicrobial agents using clinical 
data from patients provides valuable information that can be used 
to guide decisions during and after a drug is approved. As described 
herein, data from exposure-response relationships for effi cacy and 
safety have been used to support decisions about dose selection 
early and late in clinical development and even after a drug has 
been approved. Results of clinical exposure-response analyses can 
also be used to inform decisions about in vitro susceptibility test 
interpretive criteria and to answer other questions related to the 
study design of clinical trials. 

 The next frontier is to use the concepts described herein at the 
patient bedside to support decisions when selecting antimicrobial 
therapy. By applying population PK models for which patient 
covariates explain a reasonable amount of variability in the PK of 
the antimicrobial agent, the distribution of expected drug expo-
sures for groups of patients can be better predicted. Using these 
data together with expected or actual MIC values or appropriate 
MIC distributions for suspected or known infecting pathogens and 
exposure-response relationships for effi cacy and/or safety end-
points, tools to be used at the patient’s bedside can be developed 
to determine the probability that a given antimicrobial dosing regi-
men will achieve adequate drug exposure relative to PK-PD targets 
associated with positive outcomes. Such information can be used 
by clinicians, together with other patient-specifi c data, to better 
discriminate among choices of antimicrobial agents. In an era of 
increasing rates of resistance for bacterial pathogens and thus, 
fewer choices of antimicrobial agents, the use of PK-PD principles 
at the patient bedside to select optimal dosing regimens has never 
been needed more.     
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    Chapter 7   

 Toxicokinetics and Toxicodynamics 
of Anti-infective Agents                     

     David     E.     Nix      

  Abstract 

   Toxicokinetics (TK) is an essential component of preclinical toxicology assessment. The primary objective 
is to characterize systemic exposure (blood, plasma, or serum) to add relevance to toxicological fi ndings. 
Parameters such as Cmax and AUC allow comparison of exposures between species and different studies 
to clarify the relationship between toxic effects and dosimetry. Further information can be gained 
by considering toxicodynamics (TD) in conjunction with TK, and results can be summarized descriptively 
or with a model-based strategy. This chapter provides a description of TK/TD and provides examples of 
the application of TK/TD principles in the development of anti-infective agents.  

  Key words     Toxicokinetics  ,   Toxicodynamics  ,   TK/TD  ,   Anti-infectives  ,   Preclinical toxicology  ,   Drug 
development  

1       Introduction 

 The term toxicokinetics (TK) was fi rst used in the early 1970s 
referring to  in vivo kinetics   of toxic substances. TK applied  phar-
macokinetic techniques   to the study of substances of known toxic 
properties. Originally, TK was concerned with all aspects of kinet-
ics including  absorption, disposition, metabolism, and excretion 
(ADME)     ,    and some toxicologists still use the term to indicate 
application of kinetic methods to study toxic substances. Around 
1990, there was a gradual evolution of the term to include non-
clinical study of drug substances [ 1 ]. A  European Federation of 
Pharmaceutical Industry Associations Working Group   defi ned TK 
as “the generation of pharmacokinetic data as an integral compo-
nent in the conduct of nonclinical toxicity studies and the use of 
these data in the interpretation of toxicological fi ndings and their 
relevance to  clinical safety issues  .” This defi nition changed slightly 
for the ICH S3A document of 1994 where TK was defi ned as “the 
generation of pharmacokinetic data, either as an integral compo-
nent in the conduct of non-clinical toxicology studies or in 
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specially designed supportive studies in order to assess systemic 
exposure. These data may be used in the interpretation of toxico-
logic fi ndings and their relevance to clinical safety issues” [ 2 ]. TK 
information is used to ensure that relevant exposure is attained in 
animal species with application to minimize potential toxicity in 
humans [ 3 ]. 

 In the  drug development      arena, the primary objective of TK is 
to describe the systemic exposure achieved in animals and its rela-
tionship to the dose level and time course of toxicity. The most 
commonly used measures of systemic exposure are Cmax, Tmax, 
and AUC as determined from serum, plasma, or whole blood. 
Secondary objectives include “relating the exposure achieved in 
toxicity studies to toxicologic fi ndings and contributing to assess-
ing the relevance of these fi ndings to  clinical safety  ; and providing 
information which in conjunction with toxicity fi ndings contrib-
utes to the design of subsequent non-clinical toxicity studies” 
(   h t t p : / / w w w . f d a . g o v / d o w n l o a d s / D r u g s /
GuidanceComplianceRegulatoryInformation/Guidances/
UCM074937.pdf; accessed 3/18/2014    ). Most  applications   of TK 
have employed simple descriptive measures of exposure; however, 
sophisticated modeling methods may be used. Physiologically 
based models have been used to predict target organ concentra-
tions in situations where systemic drug exposure is unable to serve 
as a link between  dose and biological effect  s [ 4 ]. 

 While pharmacodynamics refers to the time course of phar-
macologic effect, toxicodynamics (TD) is an analogous term 
which relates to toxic effects. More generally, TD falls within the 
context of safety and tolerance. In the  nonclinical setting  , TD is 
an evolving science that provides one basis for risk assessment. 
Understanding intraspecies and interspecies toxicodynamic vari-
ability provides a framework for quantitative extrapolation to 
humans [ 5 ,  6 ]. A pharmacodynamic ( PD  ) study may involve the 
integration of pharmacokinetics (PK) either formally or in a sup-
portive role and be referred to as a PK/PD study. Likewise, TK 
and TD (TK/TD) may be incorporated into  preclinical toxicol-
ogy      studies or performed in parallel. TK/TD is useful in the pre-
clinical setting to explore the relevance of toxicity fi ndings and to 
predict dose target range in humans [ 7 ]. The TK/TD assessment 
should include an across-species analysis of preclinical acute and 
chronic toxicity studies with the goal of predicting outcomes [ 3 ]. 
For situations, where toxicity is predictable across species and is 
exposure related, modeling can be quite valuable in planning 
early human studies. Much of the nonclinical experience is han-
dled as proprietary information and used to support drug devel-
opment leading to substantial publication bias. Some of the 
information becomes publically available at the time of drug 
approval; however, methodologic details are often omitted and 
the results are often redacted. 
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 TK assessments may be used to support the use of biomarkers, 
provide data for interspecies scaling, and explore the value of  non- 
plasma drug concentrations   [ 8 ]. Other investigators have used TK 
principles as a marker of dosimetry involving environmental expo-
sures in fetuses and children [ 9 – 11 ]. Throughout clinical develop-
ment and even post-marketing, TK/TD studies may be conducted 
to explore ways to manage drug toxicity and refi ne dose recom-
mendations. Sex differences in TK and TD may be explored in the 
nonclinical setting to differentiate causes of observed differences in 
toxicity [ 12 ]. 

 This chapter is intended to address the principles and applica-
tion of TK/TD in anti-infective drug development. The bulk of 
this manuscript will focus on examples of how TK/TD has been 
useful to support toxicology studies.  

2     Glycopeptides and Lipopeptides 

  Vancomycin and teicoplanin   were studied in rats for acute toxicity 
[ 13 ]. Both drugs were administered by intra-jugular injection at 
several doses, and the TK endpoints included plasma urea nitro-
gen, creatinine, alanine aminotransferase, and aspartate amino-
transferase over an 8-h period. Results were presented as AUC 
from time 0 to 8 h. The vancomycin dose ranged from 40 to 250 
mg/kg. The fi rst fi nding was that exposure, vancomycin AUC 
(0–8 h), increased more than proportional to dose. Relative expo-
sure was 1.4× and 4.5× the expected exposure for the 100 mg/kg 
and 250 mg/kg doses, respectively, using a 40 mg/kg reference 
dose. This magnifi ed exposure was due to dose-related acute kid-
ney injury and reduced vancomycin clearance. Cmax was more 
than an order of magnitude higher in this model than achieved 
with clinical use. The endpoint in this case was the integrated cre-
atinine AUC 0–8 h . Creatinine AUC was 4.6 mg h/dl for 40 mg/kg, 
5.5 mg h/dl for 100 mg/kg, and 11.5 mg h/dl for 250 mg/kg 
dose [ 13 ]. Given that no control animals were included, it is impos-
sible to determine a no-effect dose level; however, given the degree 
of increase in just 8 h, acute renal failure is evident. Vancomycin-
induced nephrotoxicity is poorly characterized in terms of mecha-
nism. Acute renal failure is observed with doses in the range of 200 
mg/kg. Evidence suggests that vancomycin can accumulate in 
proximal renal tubular cells and localize in lysosomes similar to that 
seen with aminoglycosides. However, vancomycin is less nephro-
toxic than aminoglycosides. The acute kidney injury would need to 
be rapid and severe which is not consistent with the proposed 
mechanism. Vancomycin can induce histamine release in rats by 
causing mast cell degranulation similar to the red man syndrome 
described in humans [ 14 ,  15 ]. This may be associated with hypo-
tension and renal artery constriction. Considering that vancomycin 
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was administered as a IV bolus and this would be expected to cause 
extensive release of histamine and potentially other mediators, 
hemodynamic changes might explain the acute renal injury. 
The vancomycin AUC (0–8) ranged from 68 to 1510 μg h/ml 
[ 13 ]. Typical clinical use involves target average steady-state con-
centrations of 15–35 μg/ml, an 8-h AUC of 120–280 μg h/ml, 
and use of a slow infusion over 1 to 2 h to minimize the risk of red 
man syndrome. Consequently, the TK data may not directly relate 
to vancomycin use in humans. 

  Teicoplanin   was studied in the same model as above with intra- 
jugular doses ranging from 10 to 60 mg/kg. There was again evi-
dence of dose-dependent pharmacokinetics with relative exposure 
based on AUC (0–8 h) of 1.3× for 30–40 mg/kg, 1.6× for 50 mg/
kg, and 2.2× for 60 mg/kg using the 10 mg/kg dose as a refer-
ence. Unlike the acute kidney injury seen with vancomycin, no 
changes in integrated plasma creatinine over 8 h were observed; 
however, there was a dose-dependent increase in ALT and AST 
with doses of at least 40 mg/kg. Teicoplanin appears to exhibit less 
nephrotoxicity than vancomycin in clinical use but has not specifi -
cally been associated with hepatotoxicity. 

 The primary concern with  daptomycin   is development of 
myopathy for which creatine phosphokinase (CPK) is the most 
validated biomarker. A major breakthrough in the nonclinical set-
ting was the discovery that dosing interval has major effects on the 
risk of myopathy [ 16 ]. In the clinical setting, development of sig-
nifi cant CPK elevation is associated with minimum serum concen-
trations >24.3 μg/ml [ 17 ]. 

   Aminoglycosides produce ototoxicity and nephrotoxicity in 
humans and animals alike [ 18 ]. Interpretation of the relationship 
between nephrotoxicity and aminoglycoside exposure is compli-
cated by toxicity to the organ responsible for aminoglycoside elim-
ination. Toxicity was not apparent based on serum creatinine for 
gentamicin doses of 16 mg/kg Q 8 h for 6 days in rats. TK was 
assessed after the fi rst dose and the average predicted exposure (24 
h AUC) was 81 μg h/ml [ 19 ]. Note that typical human doses pro-
vide a 24-h AUC target of 70–100 μg h/ml for gentamicin. Dose- 
dependent nephrotoxicity was seen for the higher doses studied 
including 25 and 40 mg/kg Q 8 h [ 19 ,  20 ]. As toxicity produces 
reduced gentamicin clearance, exposure would be expected to 
increase with these higher doses over the observation period. With 
12 days of dosing, the maximum dose administered without 
increases in serum creatinine was 10 mg/kg Q 8 h [ 19 ]. There also 
appears to be a subgroup of rats that exhibit increased susceptibil-
ity to nephrotoxicity although the mechanism of enhanced sensi-
tivity is not clear. 

 In dogs, administration of 3 mg/kg every 8 h for 14 days did 
not produce functional nephrotoxicity. This dose regimen based 

2.1    Aminoglycosides     
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on drug clearance would provide a 24-h AUC of about 40 μg h/
ml. The same dose administered to ¾ to 7/8 subtotal nephrec-
tomized dogs was estimated to provide a 24-h AUC of 107–176 
μg h/ml. Four of six of these dogs developed nephrotoxicity 
characterized by increased serum creatinine. When the dose was 
reduced to 1–1.5 mg/kg Q 8 h (estimating a 24-h AUC of 
36–54 μg h/ml), nephrotoxicity was still seen in three of six 
nephrectomized dogs, but overall less severe than with the 
higher dose. Interestingly, no nephrotoxicity was observed when 
3 mg/kg was administered with an extended interval of 16–24 h 
[ 21 ]. This study appears to be the origin of our current dosing 
strategy for aminoglycosides [ 20 ]. 

 In the case of ototoxicity, animals are most susceptible to per-
manent high-frequency sensorineural hearing loss. This hearing 
loss is associated with damage to hair cells and neurons in the 
cochlea. In contrast, vestibular toxicity may be temporary [ 22 ]. 
Using a guinea pig model, amikacin was administered using con-
tinuous infusion with varying dose rates. Hearing loss correlated 
with the total dose administered and cumulative total exposure 
(AUC); however, the total cumulative AUC was the best predictor 
of magnitude of hearing loss. As an example, the total  AUC      associ-
ated with 10 % incidence of at least 15 dB loss at 8000 mHz fre-
quency was 305 μg d/ml [ 23 ]. With current dose recommendations, 
the typical AUC of amikacin in humans is in the range of 7.3–10 
μg d/ml. Based on extrapolation, more than 30 days of therapy in 
humans would be needed to reach a 10 % incidence of ototoxicity 
at the upper range of frequencies that are applicable for hearing 
function in daily life. The ratio between perilymph and plasma con-
centrations is quite variable, averaging about 0.5, without evidence 
of accumulation over time [ 24 ]. Direct measurement of amikacin 
concentration in the tissue compartment associated with ototoxic-
ity is not possible; thus a theoretical tissue compartment termed 
“ototoxic pool” was created. Amikacin enters into the “ototoxic 
pool” at a rate that is proportional to the plasma concentration and 
dose rate. Loss of amikacin from the “ototoxic pool” is fi rst order 
with a half-life in the order of 80 days and results in accumulation 
of amikacin over the period of treatment. Given the persistence of 
amikacin, delayed ototoxicity noted within 2 weeks after discon-
tinuing treatment is commonly observed and is occasionally 
observed, up to 8 weeks after  discontinuing      treatment [ 25 ]. 

 The TK/TD model developed using the  guinea pig model   
provides a framework to design human studies. It is clear that 
total exposure including duration of therapy is relevant to develop-
ment of ototoxicity. Given the persistence of amikacin in the “oto-
toxic pool,” repeated treatment courses within a year will likely 
lower the threshold needed to cause hair cell damage and once the 
hair cells are lost, the loss is permanent [ 26 ]. Also, some 
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patients are more sensitive than others to the ototoxic effects of 
aminoglycosides, and this may be explained by genetic differences 
or mutations [ 22 ].  

   Toxicity concerns with fl uoroquinolones generally involve the 
 central nervous system   (seizures), joints (cartilage damage), heart 
(QT prolongation), or skin (phototoxicity). One of the few pub-
lished examples of TK added to a standard chronic toxicology 
studies involves prulifl oxacin.  Prulifl oxacin   is a prodrug that is rap-
idly converted to ulifl oxacin after oral administration. The authors 
suggest that toxicity involving lungs, liver, stomach, and joints may 
be related to higher tissue concentrations. Their use of the word 
accumulation in several contexts is confusing. However, the persistence 
of  ulifl oxacin   in various tissues 14 days after the end of drug admin-
istration is unexplained based on pharmacokinetic properties [ 27 ]. 

  Seizures   have been investigated using a mouse model based on 
an intravenous continuous infusion of fl uoroquinolone. The aver-
age serum and brain concentration at the point in which convul-
sions developed was approximately 247 μg/ml and 34 μg/g for 
enoxacin, and 362 μg/ml and 22 μg/g for ciprofl oxacin, respec-
tively, in different mouse breeds [ 28 ]. Imipenem induced clonic 
convulsions at an ip dose of 1–1.5 g/kg. Fluoroquinolone pre-
treatment (250 μmol/kg) resulted in increased sensitivity to 
imipenem- induced convulsions. The ip dose of imipenem required 
to induce clonic convulsions in 50 % of mice was lowered to 0.5–
0.8 g/kg following treatment with pefl oxacin, ciprofl oxacin, enox-
acin, or ofl oxacin [ 29 ]. The lack of TK assessment makes 
interpretation diffi cult. From mice pharmacokinetic studies, mice 
require 10–20 times the human dose (mg/kg) to achieve similar 
exposure. The equivalent human dose would be in the range of 
50–200 mg/kg for imipenem alone and 25–100 mg/kg following 
the fl uoroquinolone pretreatment [ 30 ]. Even with correction for 
exposure (AUC), Cmax would be much higher in the mice. The 
 adult human dose   is usually in the range of 7–13 mg/kg. A similar 
investigation was conducted with cefazolin where the ED 50  was 
0.91 g/kg for cefazolin alone and 0.35–0.65 g/kg after pretreat-
ment with these same fl uoroquinolones [ 31 ]. The fi ndings support 
clinical experience in that seizures are rarely reported with fl uoro-
quinolones and usually occur in cases where there are confounding 
factors [ 32 ].  Sitafl oxacin and levofl oxacin   have been studied using 
injection of drug into the lateral cerebral ventricle. The dose 
required to induce convulsions was 50.6 nmol for sitafl oxacin and 
76.7 nmol for levofl oxacin, indicating that the two fl uoroquino-
lones have weak convulsant activity. Furthermore the convulsant 
activity was not enhanced with concurrent administration of anti- 
infl ammatory drugs including aspirin, acetaminophen, and various 
nonsteroidal anti-infl ammatory drugs [ 33 ]. 

2.2   Fluoroquinolone
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 Fluoroquinolones inhibit I(Kr) slow potassium channels of 
heart muscle cells leading to prolongation of the QT interval. The 
extent of QT prolongation is directly related to plasma concentra-
tion.  Moxifl oxacin   is the best studied FQ, having fairly predictable 
pharmacokinetics and consistent effect on QT interval [ 34 – 36 ]. As 
such, moxifl oxacin is used as a positive control for thorough QT 
studies in humans. Moxifl oxacin increases QT interval by an aver-
age of 3.1 ms (mean change of 1.6–4.8 ms across different studies) 
per μg/ml plasma concentration [ 34 ]. A variety of animal models 
have been used to assess risk of  QT prolongation and ventricular 
arrhythmias   [ 37 – 43 ]. Given the direct relationship between plasma 
drug concentrations and QT prolongation, one only needs to con-
sider plasma concentrations achieved in relationship to concentra-
tions observed in humans with usual doses. Efforts to produce a 
“humanized” pharmacokinetic profi le are useful. Although QT 
interval is  an   accepted surrogate marker of risk for torsades de 
pointes, there are drugs that prolong QT interval without being 
associated with torsades de pointes. Drugs that have known risk for 
causing torsades de pointes generally produce a decrease in the 
delay between end of QT interval and end of mechanical systole 
(A.K.A. the E-M window) [ 40 ]. QT dispersion may also be more 
predictive of cardiac risk than QT interval prolongation [ 44 ]. 

  Ciprofl oxacin   was shown to cause lesions in cartilage of weight- 
bearing joints in immature dogs. The chondrotoxicity is dose 
dependent with no toxicity at 10 mg/kg/day, minimal lesions at 
30 mg/kg/day, and extensive lesions with joint symptoms at 90 
mg/kg/day. Signs of joint symptoms resolved within a few weeks 
after the 14-day treatment period. Dogs given 10 mg/kg/day of 
ciprofl oxacin also did not develop any delayed cartilage lesions or 
joint symptoms [ 45 ]. Although TK were not studied, an estimate 
of exposure was derived from a study of adult dogs using allome-
tric scaling [ 46 ]. The total CL of ciprofl oxacin for a 10 mg/kg 
dose in a 5.7 kg immature beagle dog was estimated to be 5.6 l/h. 
The 24-h AUC (~10 μg h/ml for 10 mg/kg) in this model is 
somewhat less than the 24-h AUC observed with the maximum 
recommended dose in humans which is ~50 μg h/ml. Using a rat 
model, the chondrotoxic dose of sparfl oxacin was 300 times the 
human therapeutic dose (1800 mg/kg versus 6 mg/kg) and after 
correction for exposure was 15 times the typical human exposure. 
However, this model demonstrated cartilage lesions with a single 
1800 mg/kg dose and no toxicity with 600 mg/kg/day for up to 
8 days [ 47 ]. Fluoroquinolone-induced chondrotoxicity involves 
weight-bearing joints, appears to be species and dose dependent, 
and is detected in immature animals with an open growth plate. 
Although publication bias may be an issue, TK assessment may be 
useful to better characterize susceptibility differences by species. 
Fluoroquinolone use in children has been restricted for more than 
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30 years based on these animal findings without evidence of 
the same toxicity pattern in humans [ 48 ,  49 ]. However,  arthralgia   
is more common with levofl oxacin than with comparator (non- 
fl uoroquinolone) antibiotics in children [ 49 ]. 

  Phototoxicity   has been reported with some fl uoroquinolones 
in the clinical setting. In humans, fl eroxacin, lomefl oxacin, and 
sparfl oxacin have been associated with severe skin lesions, and 
lomefl oxacin and sparfl oxacin were removed from the market after 
FDA approval. In one human comparison,  enoxacin and sparfl ox-
acin   produced moderate to severe phototoxic lesions and in par-
ticular sparfl oxacin caused severe lesions over a broad range of UV 
and visible light exposure. Sitafl oxacin was associated with mild 
lesions, while no phototoxicity was seen with levofl oxacin [ 50 ]. 
Animal models were developed to evaluate relative differences and 
to explore mechanisms. One model involved BALB/c mice that 
were administered drug followed by 4-h exposure to UV light or 
artifi cial sunlight. Phototoxicity was measured by observing the 
ears and measuring thickness over 7 days post-drug and -UV light 
exposure. Minimal or no phototoxicity was seen with sparfl oxacin, 
sitafl oxacin, or lomefl oxacin at doses of 10 mg/kg. With spar-
fl oxacin, erythema was seen at 30, 40, and 100 mg/kg, with the 
addition of swelling at 40–100 mg/kg [ 51 ,  52 ]. The overall expo-
sure (24-h AUC) for the 40 mg/kg dose was only 1/3 of that in 
humans with usual doses. Lomefl oxacin produced erythema and 
swelling at the 40, 100, and 300 mg/kg doses, and the exposure 
for the 100 mg/kg dose was similar to a typical human exposure. 
Interestingly, the auricular tissue concentrations for both drugs 
were 6.0–8.9 times the corresponding plasma concentrations [ 51 , 
 52 ]. A similar study was done with  trovafl oxacin   using lomefl oxa-
cin as a positive control. Lomefl oxacin, 71 mg/kg, caused pro-
nounced erythema and swelling of the auricle. Erythema was 
noted for trovafl oxacin with 90 and 250 mg/kg doses; however, 
swelling was absent even at the highest dose. The ratio of trova-
fl oxacin concentration in skin (dorsal area) to serum was <0.4 
[ 53 ].  Retinal degeneration   was documented in a BALB/c mouse 
model which showed retinal degeneration following sitafl oxa-
cin + UV light exposure. The magnitude of retinal damage was 
associated with sitafl oxacin peak concentration which is in con-
trast to the relationship between AUC and toxicity for the auricu-
lar phototoxicity [ 54 ].  

   The most common problems with beta-lactam antibiotics are aller-
gic disorders which are idiosyncratic and non-concentration depen-
dent. However, there are issues with neurotoxicity that can be 
considered from a TK/TD perspective. One model that assesses 
neurotoxicity involves microinjection into the lateral cerebral ven-
tricles of rats to determine the dose required to induce clonus in 50 
% of animals. Table  1  provides the relative potencies of selected 

2.3    Beta-lactams  

David E. Nix



167

beta-lactam agents using penicillin G as a reference with an arbi-
trary value of 100 assigned. The actual ED 50  required was 0.05 
μmol per injection for penicillin G [ 55 ]. Considering that a normal 
volume of the lateral ventricle is in the order of 10 μl [ 56 ], the 
concentration required to induce seizures would be approximately 
1672 μg/ml. However, direct injection into the ventricle is an 
over-simplifi cation of the pathogenic sequence. Cefazolin was the 
most potent seizure-inducing beta-lactam following intraventricu-
lar injection; however, this cephalosporin is known to have poor 
penetration into cerebrospinal fl uid. In one study, cefazolin was 
administered to rats at a rate of 3.2 g/h and continued until sei-
zures developed. At that point, drug concentration was determined 
in serum, brain tissue, and CSF. Seizures occurred at a serum con-
centration of 16,800 μg/ml, brain  concentration   of 178 μg/ml, 
and CSF concentration of 81 μg/ml. The brain and CSF penetra-
tion was only 1 % and 0.5 %, respectively. Cases of beta-lactam- 
induced seizures typically occur in patients with excessively high 
doses in the face of impaired elimination leading to accumulation 
of drug in the CNS. Brain tissue concentrations correlate with tox-
icity more directly than CSF concentrations [ 57 ], and patients 
often have other factors that contribute to development of sei-
zures. In rats, seizures occurred following administration of 2.5 to 
5 million units of penicillin per kg by IP injection, although there 
was no TK assessment [ 58 ]. In another model, ip injection of 

   Table 1  

  Relative potency of selected beta-lactam antibacterial required to induce 
clonic seizures in a rat intraventricular injection model   

 Drug  Relative potency (penicillin G = 100) 

 Cefazolin  294 

 Penicillin G  100 

 Imipenem  71 

 Aztreonam  42 

 Ampicillin  21 

 Ceftazidime  17 

 Meropenem  16 

 Ceftriaxone  12 

 Piperacillin  11 

 Cefotaxime  8.8 

 Cefoxitin  1.8 

  For comparison, penicillin G was assigned an arbitrary potency of 100 [ 55 ]  
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pentylenetetrazole, 50 mg/kg, was administered with and without 
beta-lactam pretreatment. Pentylenetetrazole alone caused seizures 
in 30 % of rats, but in 100 % of rats following pretreatment with 
imipenem/cilastatin (400/400 mg/kg). Cefazolin had less effect 
of lower seizure threshold and required a dose of 800 mg/kg to 
increase seizure frequency to 80 % [ 59 ]. Again, no TK data was 
captured to help sort out relevance of these fi ndings.

      All of the azole antifungal drugs have been associated with hepato-
toxicity. Rabbits given single 40–160 mg/kg doses of ketocon-
azole develop dose-dependent increases in alanine aminotransferase 
and aspartate aminotransferase, and liver tissue necrosis. The liver 
toxicity correlates with AUC which was 85 μg h/ml for 40 mg/kg, 
158 μg h/ml for 80 mg/kg, and 623 μg h/ml for 160 mg/kg. 
Note that saturable clearance occurs with a dose greater than 80 
mg/kg [ 60 ]. For comparison, the AUC in humans following a 
200 mg dose (tablet) is 14.7 μg h/ml [ 61 ]; thus 15 mg/kg (1125 
mg/day) in humans would be approximately equal in exposure to 
40 mg/kg in rabbits. The FDA-approved label includes a box 
warning about hepatoxicity including fatal hepatotoxicity (Nizoral 
prescribing information, Janssen Pharmaceuticals Inc., 7/2013). 
In a study involving combined voriconazole and anidulafungin, 
voriconazole, 10 mg/kg/day, caused increased serum gamma glu-
tamyltransferase in female juvenile rats only. The 24-h AUC for 
voriconazole was about 20 μg h/ml [ 62 ]. In clinical practice, doses 
of 200–2000 mg have been described; however, toxicity limits 
doses greater than 400 mg/day. In this limited experience, increases 
in serum transaminases were seen in about 5 % of patients and was 
not explained  by   dose and/or exposure [ 63 ]. 

 Prolonged QT interval is another concern for antifungal 
azoles. Ketoconazole, 200 mg/kg, administered orally failed to 
increase QT interval in a guinea pig model; however, the combina-
tion of terbinafi ne and ketoconazole substantially reduced heart 
rate and prolonged QTc by almost 30 % [ 64 ]. This study shows the 
implications of omitting TK data. Readers are left with the ques-
tion of whether exposure was relevant in terms of plasma concen-
tration achieved. With ketoconazole there is always the concern of 
poor bioavailability and validation of the dose formulation is criti-
cal. Fluconazole is classifi ed as a weak inhibitor of hERG current 
with an IC 50  of 48.2 μM. Doses of 400 mg daily at steady state 
result in average peak plasma concentrations near this IC 50  [ 65 ]. 

 Itraconazole adverse events in relation to serum concentration 
have been examined in humans. Adverse event frequency was posi-
tively associated with exposure and a concentration of 17.1 μg/ml 
was associated with a 50 % frequency of adverse events. The most 
common adverse effects included fl uid retention, nausea, vomit-
ing, abdominal pain, fl atulence, or diarrhea. There was a 2 % fre-
quency of liver toxicity with bilirubin concentrations at least three 
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times normal with or without an increase in alkaline phosphatase. 
Serum transaminase increases were not mentioned [ 66 ].  

   Dose-limiting nephrotoxicity is the most common toxicity seen 
with amphotericin B. Early studies in patients revealed a mild- 
moderate reduction in renal function in the majority of patients 
receiving treatment; however, the renal failure generally stabilized 
and was reversible in the months following treatment [ 67 ]. 

 In acute toxicity studies, the LD 50   of   amphotericin B deoxy-
cholate is approximately 2.3 mg/kg and 1.6 mg/kg in mice and 
rats, respectively. Much higher doses of liposomal amphotericin B 
were tolerated and the LD 50 s were 175 mg/kg and 50 mg/kg, 
respectively. Mice were able to tolerate 25–50 mg/kg/day of lipo-
somal amphotericin B for 14 days, although there was initial weight 
loss. By the end of the treatment period, weight had stabilized and 
was increasing. The same pattern was seen in rats given liposomal 
amphotericin B for 30 days. The lowest weight was recorded on 
day 8, and weight increased towards baseline by 30 days. Renal 
failure was not seen in the rats, but there was a very large increase 
in serum transaminases on day 2 of dosing. The transaminases fell 
to near the upper limit of normal on subsequent days. In compar-
ing tissue concentrations of liposomal formulation (5 mg/kg) to 
conventional amphotericin B (1 mg/kg), the ratio of amphotericin 
B was 1.1 for kidney, 2.3 for lung, 4.3 for brain, 10.7 for spleen, 
and 10.9 for liver [ 68 ]. 

 Liposomal amphotericin B was evaluated in dogs with doses 
ranging from 0.25 to 16 mg/kg/day administered for 30 days. 
Toxicological fi ndings were similar to those seen with conventional 
amphotericin B; however, much higher plasma concentrations 
were required to produce the same effects. Minimal effects were 
seen on the kidney at 1 mg/kg/day with a 0.3 mg/dl increase in 
serum creatinine. Moderate renal toxicity was seen with doses of 4 
and 8 mg/kg/day where a 3.3- to 3.8-fold increase in serum cre-
atinine was observed. Renal tubular necrosis and severe toxicity 
were seen with the 16 mg/kg/day dose. A strong relationship 
between renal effects and the renal tissue concentration of ampho-
tericin B was observed. Dogs given the two highest doses (8 or 16 
mg/kg/day) developed vomiting, anorexia, and weight loss 
exceeding 25 % of the initial body weight. Increases in spleen, kid-
ney, and liver weights were observed with doses of at least 4 mg/
kg/day. There was saturable clearance noted throughout the con-
centration range studied and time-dependent accumulation of 
drug in plasma. If the 4 mg/kg/day dose is taken as the highest 
tolerated dose, plasma 24-h AUC was 143 μg h/ml on day 1, 728 
μg h/ml on day 14, and 1452 μg h/ml on day 30. Nearly all of the 
plasma amphotericin B was associated with liposomes or bound to 
plasma proteins since amphotericin B was not detectable in plasma 
ultrafi ltrate [ 69 ]. A 3-month chronic toxicity study was conducted 
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3     Conclusion 
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    Chapter 8   

 Pharmacodynamics of Fluoroquinolones                     

     Ramy H.     Elshaboury    ,     Thomas J.     Dilworth    , and     John     C.     Rotschafer      

  Abstract 

   Fluoroquinolones are a ubiquitous class of broad-spectrum antibacterials used to treat a multitude of 
bacterial infections in both the inpatient and outpatient settings. Pharmacodynamic research has played an 
integral role in the drug development and approval process for fl uoroquinolones. There exists a wealth of 
fl uoroquinolone pharmacodynamic literature and, despite considerable heterogeneity among studies, the 
results are almost universally the same:  f -AUC 24 /MIC ratio is most predictive of microbiologic and clinical 
effi cacy; >30 for gram-positive and >125 for gram-negative organisms. However, rising rates of fl uoroqui-
nolone resistance, particularly among gram-negative pathogens, may challenge these established pharma-
codynamic indices. This chapter discusses the pharmacodynamics of fl uoroquinolones with particular focus 
on the commonly used agents in current clinical practice: ciprofl oxacin, levofl oxacin, and moxifl oxacin.  

  Key words     Fluoroquinolones  ,   Pharmacokinetics  ,   Pharmacodynamics  ,   Fluoroquinolones pharmaco-
dynamics  ,   Levofl oxacin  ,   Ciprofl oxacin  ,   Moxifl oxacin  

1       Introduction and History of Development 

 The fi rst  quinolones      were developed nearly 50 years ago, including 
nalidixic acid, and had good activity against aerobic and facultative 
gram-negative organisms. At that time, their utility was limited to 
urinary tract infections due to low serum and tissue drug concen-
trations [ 1 ]. Newer compounds with structural-related modifi ca-
tions exhibited enhanced activity against a broad range of 
gram-negative organisms,   Mycobacteria  and  Chlamydia    spp. 
Ultimately, second and third generation fl uoroquinolones were 
developed and exhibit additional activity against gram-positive 
organisms such as streptococci, including penicillin-resistant strains 
of  Streptococcus pneumoniae , and  methicillin-susceptible 
 Staphylococcus aureus  (MSSA),      as well as compounds with activity 
against anaerobic organisms. 

 Fluoroquinolones represent the fi rst class of  antibiotics   where 
the science of pharmacodynamics was prospectively applied in 
vitro, in vivo, and clinically in the antibiotic development and 
licensing process [ 2 – 4 ]. Pharmacodynamic research incorporating 
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this new class of  antimicrobials   challenged the traditional scientifi c 
and regulatory status quo as the science offered insight where clini-
cal data were sparse or could not be obtained in a timely, practical, 
or economic fashion. Moreover, there was a remarkable agreement 
between in vitro, in vivo, and clinical data [ 2 – 4 ]. Pharmacodynamics 
research was a key tool in identifying quantitated outcome param-
eters that predicted microbiologic and clinical success for fl uoro-
quinolones and specifi c bacterial pathogens. 

 As pharmacodynamics became more engrained and accepted in 
the  scientifi c and medical communities  , the concepts articulated 
became fodder for pharmaceutical company marketing and detailing 
strategies as the industry attempted to use pharmacodynamic con-
cepts to distinguish specifi c drug products against a growing market-
place of fl uoroquinolone compounds. Managed care and hospital 
formulary committees would also use pharmacodynamic concepts 
to identify which fl uoroquinolone products would become part of a 
contract bidding strategy that would ultimately determine which 
specifi c fl uoroquinolone(s) would or would not be available to pre-
scribers and patients in specifi c hospitals or health  plans  . 

 Depending upon the specifi c fl uoroquinolone compound, this 
class of drugs offered clinical coverage of gram-positive, gram- 
negative, anaerobic,  S. aureus ,  Pseudomonas aeruginosa , and other 
diffi cult-to-treat gram-negative infections with oral dosing. 
Interestingly while the free area under the concentration–time 
curve ( f -AUC) to the pathogen minimum inhibitory concentra-
tion (MIC) ( f -AUC/MIC) ratios seem to be the best overall phar-
macodynamic outcome parameter for fl uoroquinolones against a 
spectrum of pathogens, the quantitative value of this parameter is 
not the same for all pathogens [ 2 – 4 ]. Also of note is that the phar-
macodynamic action of fl uoroquinolones may be concentration- 
dependent (time-independent) against  gram-negative pathogens  , 
while for gram-positive and anaerobic pathogens their action is 
reported as concentration-independent (time-dependent) [ 3 ,  4 ]. 

 Adverse events associated with fl uoroquinolones were unique 
to specifi c products while others were class related. Thus far, there 
does not appear to be a toxicodynamic  predictor   of phototoxicity, 
QTc prolongation, spontaneous tendon rupture, glucose hemosta-
sis, liver toxicity, tendonitis, arthropathy, or other fl uoroquinolone 
side effects. There have been a number of US  Food and Drug 
Administration (FDA)      black box adverse event warnings that have 
been issued over the years, with many being directed at the entire 
marketed class  of   fl uoroquinolone products, but none include tox-
icodynamic markers. 

 Fluoroquinolones are generally highly regarded by prescribers 
due to their versatility of use in a wide range of infections, the ease 
of administration as a once or twice a day product, and their overall 
safety record. While many of the fl uoroquinolones entered the 
market as oral agents, parenteral forms generally emerged a few 
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years later. Clinicians quickly learned that they could essentially 
generate the same fl uoroquinolone serum concentration–time 
curve orally or parentally [ 3 – 8 ]. As such, parenteral to oral switch 
programs became commonplace and fl uoroquinolones challenged 
the widely held belief that acutely ill patients require antibiotic 
management solely with  parenteral drugs   [ 3 ]. While fl uoroquino-
lone resistance is certainly part of our current landscape, the mag-
nitude of resistance for the most part falls short of expectations 
considering the widespread use and antibiotic pressure generated 
by fl uoroquinolones both in the hospital and the  community  . 

 While a substantial number of fl uoroquinolone compounds 
were screened and entered clinical testing, only a small fraction of 
these compounds were actually marketed and of those drugs only a 
handful survived the rigors of the marketplace. As such, we primarily 
limit the discussion of the fl uoroquinolones to ciprofl oxacin, ofl ox-
acin/levofl oxacin, and moxifl oxacin.  

2     Mechanism of Action and Pharmacokinetics 

   Quinolones are synthetic compounds that act by inhibiting the 
activity of type II topoisomerases (DNA gyrase and topoisomerase 
IV), resulting in rapid bactericidal activity. These enzymes help 
maintain the negative confi guration of the supercoiled DNA helix 
and the ability of the DNA to appropriately uncoil for translation 
[ 3 ,  9 ]. The interaction of quinolones with DNA and topoisomer-
ase enzymes subsequently leads to the formation of a stable ternary 
compound ahead of the replication fork, halting the normal 
replication processes [ 5 ,  10 ].  

   Following oral administration, ciprofl oxacin, levofl oxacin, and 
moxifl oxacin exhibit rapid oral absorption and excellent bioavail-
ability with little to no signifi cant fi rst pass  metabolism   (Table  1 ) 
[ 4 – 8 ]. Furthermore, ciprofl oxacin peak plasma concentrations 
( C  max ) and 24-h area under the curve (AUC 24 ) show linear rela-
tionships with escalating oral doses [ 11 ]. Time to  peak serum con-
centration   ( T  max ) in healthy volunteers typically ranges from 
60–90 min following the oral administration of  moxifl oxacin  , while 
ciprofl oxacin and levofl oxacin exhibit values of approximately 
60 min [ 6 ,  12 ,  13 ]. Comparable doses of levofl oxacin and moxi-
fl oxacin yield signifi cantly higher  C  max  than those of  ciprofl oxacin      
[ 6 ]. Fluoroquinolones are administered without regard to food; 
however, their oral absorption is negatively affected by the pres-
ence of divalent cations and iron due to chelation effects [ 14 – 16 ]. 
A non-blinded, randomized, crossover study in 24 healthy male 
volunteers showed moxifl oxacin oral absorption was signifi cantly 
affected by the co-administration of magnesium- and aluminum- 
containing antacid, but not ranitidine [ 17 ]. In two similar studies, 

2.1   Mechanism   of 
Action and Spectrum 
of Activity

2.2   Absorption and 
Oral Bioavailability  
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the rate of oral moxifl oxacin absorption was reduced when co- 
administered with calcium-containing dairy products; yet the 
extent of oral absorption was not clinically affected [ 18 ,  19 ].

   The reliable oral absorption of fl uoroquinolones makes these 
agents ideal for numerous systemic infections including pulmo-
nary, genitourinary, intra-abdominal, and skin and soft tissue infec-
tions. Additionally, fl uoroquinolones that exhibit in vivo activity 
against  P. aeruginosa  are the only available oral treatments for 
pseudomonal infections in current clinical practice.  

   Currently available fl uoroquinolones exhibit a large volume of 
distribution ( V  d ) consistent with signifi cant penetration into extra-
vascular and tissue compartments. The observed  V  d  values typically 
range from 1 to >5 L/kg [ 5 ,  6 ]. Additionally, these compounds 
exhibit moderate  plasma protein binding  , possibly contributing to 
larger volume of distribution.  Ciprofl oxacin   and  levofl oxacin   show 
mild protein binding (20–40 %), while moxifl oxacin shows moder-
ately higher affi nity to  plasma proteins   (40–50 %) [ 4 ,  20 ]. Owing 
to the extensive tissue penetration, tissue concentrations are often 
higher than corresponding serum concentrations. For example, 
ciprofl oxacin exhibits tissue-to-serum concentration ratios of 1.6, 
2.1, 1.2, 13.3, and 30 in bronchial, lung, blister fl uid, kidneys, and 
bile; respectively [ 20 ,  21 ]. Levofl oxacin and moxifl oxacin exhibit 
similar tissue penetration and tissue-to-serum concentration ratios 
to ciprofl oxacin, with the exception of low urinary concentrations 
with moxifl oxacin [ 22 – 25 ]. 

 A multiple-dose study compared  epithelial   lining fl uid and 
alveolar macrophage concentrations of levofl oxacin and ciprofl oxacin 
following the administration of comparable oral doses. 
Levofl oxacin achieved higher  intra-pulmonary distribution      and a 

2.3   Distribution 
and Tissue Penetration  

    Table 1  
  Pharmacokinetic parameters of commonly prescribed fl uoroquinolones [ 4 – 8 ]   

 Agent  Ciprofl oxacin  Levofl oxacin  Moxifl oxacin 

 Daily dose (mg)  500  500  400 

  C  max  (mcg/mL)  2.4  6  3.25–4.5 

  T  max  (hours)  1.2  1–1.2  1–1.5 

 Half-life (hours) a   3–5  6  12 

 Protein binding (%)  30–35  30  50–55 

 Renal elimination (%)  40–50  90–95  20 

 Oral bioavailability (%)  70–85  99  90 

 AUC 0–24  (mg h/L)  21–42  47–48  31–48 

   a Assumes adults with baseline normal renal function  
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higher steady-state concentration in epithelial lining fl uid than 
ciprofl oxacin [ 26 ]. In a single-dose pharmacokinetic study follow-
ing the intravenous (IV) administration of 400 mg of moxifl oxa-
cin, serial plasma and pleural fl uid samples were collected during a 
24-h interval. The maximum concentration of moxifl oxacin in 
pleural fl uid of patients with empyema or parapneumonic effusion 
was 2.23 mcg/mL, detected 7.5 h after the initiation of the infu-
sion. A similar moxifl oxacin peak concentration was measured in 
patients with malignant pleural effusion (2.96 mcg/mL), but 
detected only 3.58 h after the initiation of the infusion. Ratios of 
moxifl oxacin pleural fl uid to simultaneous serum concentrations 
were 1.11 and 1.17 for patients with empyema or parapneumonic 
effusion and those with malignant effusions, respectively [ 27 ]. 
Fluoroquinolones have been also studied as alternative agents for 
central nervous system (CNS) infections due to penicillin-resistant 
 S. pneumoniae  and gram-negative organisms such as  P. aeruginosa . 
Mean CSF-to- serum AUC 0–24  ratios in un-infl amed or mildly 
infl amed meninges for ciprofl oxacin, levofl oxacin, and moxifl oxa-
cin were approximately 0.25, 0.75, and 0.45; respectively. Higher 
CSF distribution values were demonstrated in strongly infl amed 
meninges [ 28 ]. Owing to their extensive distribution, tissue 
concentrations of these agents are expected to exceed MIC values 
for most pathogens following therapeutic doses in adult patients 
(Table  2 ) [ 29 ].

      Renal clearance is considered the major route of  elimination   for 
ciprofl oxacin and levofl oxacin, while the hepatic route constitutes 
the main elimination pathway for moxifl oxacin. In a comparative 
crossover study of healthy volunteers, levofl oxacin demonstrated 
the highest renal recovery (approximately 76 %), while 41 % and 
20 % of ciprofl oxacin and moxifl oxacin doses, respectively, were 
recovered in the urine [ 6 ]. Moxifl oxacin is metabolized through 
phase-II sulfate and glucuronide-conjugation to inactive metabo-
lites. In a study of nine patients with severe liver insuffi ciency 
(Child–Pugh Class C), pharmacokinetic parameters of moxifl oxacin 
were not signifi cantly different than in healthy patients [ 30 ]. 
Consequently, no moxifl oxacin dosage adjustments are recom-
mended for patients with severe liver impairment. Due to signifi cant 
renal elimination of ciprofl oxacin  and levofl oxacin  , dosage adjust-
ments are recommended for patients with renal impairment or 
those undergoing renal replacement therapy.   

3     Pharmacodynamics of Fluoroquinolones 

 The following section will discuss in detail the available pharmaco-
dynamic data of fl uoroquinolones against several groups of organ-
isms, and primarily limit the discussion of the fl uoroquinolones to 
ciprofl oxacin, ofl oxacin/levofl oxacin, and moxifl oxacin. 

2.4   Elimination
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   The in vitro models that have been used to examine fl uoroquino-
lones pharmacodynamics have utilized one compartment, two 
compartment and planktonic systems. However, heterogeneity 
exists among these studies with respect to the following experi-
mental parameters: starting inoculum, method of susceptibility 
testing, duration of experiments, growth media and oxygen use. 
There are differences between outcome measures as well. Methods 
used for animal models also exhibit similar heterogeneity. These 
differences in both study design and outcome measures are well 
summarized by Wright  et al . [ 4 ]. Despite the various in vitro and 
in vivo experiments used, the studies have all yielded similar phar-
macodynamic indices to be predictive of fl uoroquinolone effi cacy. 

 The  f -AUC/MIC ratio has been shown to be the pharmaco-
dynamic index most predictive of fl uoroquinolone effi cacy. A 24-h 
free area under the curve to MIC ratio ( f -AUC 24 /MIC) of 30 or 
more has been shown to be predictive of effi cacy against gram- 
positive bacteria [ 31 ]. For gram-negative bacteria, the  f -AUC 24 /
MIC predictive of effi cacy is higher, and usually cited as 125 (Table 
 3 ) [ 32 ]. These two accepted AUC 24 /MIC ratios have proved 
highly useful as    in vitro  and animal models can be used to help 
predict fl uoroquinolone activity in less common, or diffi cult to 
study, clinical scenarios.

3.1  Basics of   In Vitro  
Models and Monte 
Carlo Simulations  

    Table 2  
  CLSI susceptibility breakpoints (mcg/mL) for ciprofl oxacin, levofl oxacin, and moxifl oxacin a  [ 29 ]   

 Ciprofl oxacin  Levofl oxacin  Moxifl oxacin 

 Gram-negative organisms 

  N. meningitidis   ≤0.03  ≤0.03  – 

  N. gonorrhoeae   ≤0.06  –  – 

  M. cattarhalis   ≤1  ≤2 

  H. infl uenzae   ≤1  ≤2  ≤1 

  P. aeruginosa   ≤1  ≤2  – 

 Enterobacteriaceae (except for  Salmonella  spp.)  ≤1  ≤2  – 

  Salmonella  spp.  ≤0.06  ≤0.12  – 

 Gram-positive organisms 

  Staphylococcus  spp.  ≤1  ≤1  ≤0.5 

  S. pneumoniae   –  ≤2  ≤1 

 Other 

 Anaerobes  –  –  ≤2 

   CLSI  Clinical and Laboratory Standards Institute 
  a Blank cells indicate no susceptibility breakpoint available  
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   Monte Carlo simulations have also been used to examine fl uoro-
quinolone pharmacodynamics. These simulations attempt to estimate 
the probability of obtaining pharmacodynamic parameters by using 
MIC data in combination with human pharmacokinetic data. With 
respect to fl uoroquinolones, thousands of AUC 24 /MIC estimates are 
generated using available pharmacokinetic and MIC data, which 
yield the probability of obtaining a desired  f - AUC 24 /MIC value(s). 
The majority of these studies have examined the pharmacodynamics 
of fl uoroquinolones against either  S. pneumoniae  or various gram-
negative pathogens, including but not limited to:  Escherichia coli , 
 Klebsiella pneumoniae ,  P. aeruginosa , and  Acinetobacter baumannii . 
Some studies have focused on the probability of obtaining currently 
accepted AUC 24 /MIC breakpoints. Other studies have examined 
both accepted AUC 24 /MIC breakpoints as well as higher break-
points in order to determine the probability of preventing the 
selection of fl uoroquinolone- resistant mutants. The results of  
S. pneumoniae  Monte Carlo simulations are more encouraging for 
clinicians than similar studies involving gram-negative pathogens. 
The latter body of literature has shown that fl uoroquinolones have a 
lower probability of target AUC 24 /MIC attainment against gram-
negative pathogens, especially those with higher MIC.  

   Pharmacodynamic properties of fl uoroquinolones against gram- 
negative organisms have been extensively studied, and were incorpo-
rated in the early drug development process. A review of available in 
vitro and animal infection models by Schentag  et al . suggested three 
main breakpoints to describe the  antimicrobial effects   of fl uoroqui-
nolones: AUC 24 /MIC values of 30–50 represent bacteriostatic 
effects, values above 100 but less than 250 represent bactericidal 
effects, while values above 250 represent rapid and maximal bacteri-
cidal action. Additionally, the emergence of resistance most closely 
correlated with an AUC 24 /MIC ratio of less than 100 [ 33 ]. This 
section outlines available in vitro, animal and human data to mainly 
characterize the  antimicrobial effect   of ciprofl oxacin, levofl oxacin, 
and moxifl oxacin against  gram-negative pathogens.   

   Early in vitro models by Blaser and colleagues using netilmicin and 
enoxacin against gram-positive and gram-negative organisms dem-
onstrated bacterial regrowth within 24 h unless the  C  max /MIC 

3.2  Gram-Negative 
Organisms

3.2.1     In Vitro  Simulations  

   Table 3  
  Pharmacodynamics  of   fl uoroquinolones   

 Organisms  Action  Parameter 

 Gram negative  Concentration-dependent   f- AUC 24 /MIC ≥125 

 Gram positive  Concentration-independent   f- AUC 24 /MIC ≥30 

 Anaerobes  Concentration-independent   f- AUC 24 /MIC ~50 

Pharmacodynamics of Fluoroquinolones
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ratio was above 8. Moreover, regrowing bacteria exhibited four- to 
eightfold higher MIC values with little bactericidal activity of study 
agents with subsequent dosing [ 34 ]. A  C  max /MIC ratio of <8 was 
also shown to increase the selection of ciprofl oxacin-resistant 
colonies of  P. aeruginosa  in a separate in vitro, two-compartment 
model of infection [ 35 ]. Further research aimed to determine 
whether  C  max /MIC or AUC 24 /MIC ratio most accurately predict 
microbiologic outcomes. In a study of ciprofl oxacin and ofl axacin 
activity against  P. aeruginosa , investigators showed microbiologic 
outcomes better correlated with AUC 24 /MIC ratios of ≥100, 
when compared to other pharmacodynamic parameters such as 
AUC 24  and  C  max /MIC ratios [ 36 ]. 

 More recently, an  in vitro model   simulated the human free 
non-protein bound concentrations of 400 mg IV moxifl oxacin 
daily, 500 mg IV levofl oxacin daily and 750 mg IV levofl oxacin 
daily against strains of  S. pneumoniae ,  S. aureus ,  K. pneumoniae , 
and  E. coli  with variable susceptibilities. An AUC 24 /MIC of 100 
and a  C  max /MIC of 10 were shown to produce maximal bacteri-
cidal effect for levofl oxacin and moxifl oxacin [ 37 ]. Finally, an in 
vitro model explored the pharmacodynamics of escalating doses 
moxifl oxacin against a high inoculum (10 8  colony forming units/
mL) of three wild-type strains of  E. coli  (MIC of 0.0625 mcg/
mL). Bacterial regrowth and resistance amplifi cation were observed 
between AUC 24 /MIC ratios of 47 and 117, while sustained bacte-
rial suppression was achieved at AUC 24 /MIC ratio of 180; illus-
trating the potential impact of inoculum size on fl uoroquinolone 
antibacterial activity [ 38 ]. 

 As in vitro models continued to show varying AUC 24 /MIC 
thresholds, further research compared different endpoints to 
describe the antibacterial effects of fl uoroquinolones. Ultimately, 
the intensity of antimicrobial effect ( I  E ) was shown to be an accurate 
descriptor endpoint of fl uoroquinolones antibacterial activity [ 39 –
 42 ]. Defi ned as the area between the control growth in the absence 
of antibiotics and the antibiotic-induced time-kill/regrowth curves 
[ 43 ],  I  E  describes the area between the control and time-kill curves 
from time zero to the time when bacterial counts with antibiotic 
exposure reach the same maximal numbers as in the absence of 
antibiotic; which typically exceeds the dosing interval of a given 
agent [ 44 ]. This approach overcomes the limitations of traditional 
endpoints such as area between the control growth and time-kill 
curves and area under the time-kill curve, which describe the anti-
microbial effects over a prespecifi ed dosing interval without regard 
to the actual duration of effect. It also allows investigators to 
account for the differences seen amongst various agents based on 
their individual duration of antimicrobial effects. Subsequently, 
this approach was studied and validated in both single- and multi-
ple dose simulations [ 40 ,  42 ]. 
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 In a simulation of single doses of moxifl oxacin  and levofl oxacin   
against two isolates of   S. aureus    and one each of  E. coli  and  K. 
pneumoniae , the predicted equivalent AUC 24 /MIC ratios for 
moxifl oxacin and levofl oxacin were estimated at 80 and 130, 
respectively, indicating important differences in the antimicrobial 
effects between the two agents [ 40 ]. These breakpoints were 
predicted to be equivalent to previously reported breakpoints of 
ciprofl oxacin AUC 24 /MIC values of 125 against gram-negative 
organisms [ 33 ,  45 ]. Similarly, an in vitro dynamic model simulated 
human plasma levels after single oral doses of 1000 mg of cipro-
fl oxacin, 320 mg gemifl oxacin, 500 mg levofl oxacin or 400 mg 
moxifl oxacin against one isolate of   Moraxella catarrhalis   . Using 
traditional dosing interval-dependent endpoint, the time-kill/
regrowth curves demonstrated similar patterns with all study 
agents, while effect of moxifl oxacin as expressed by the  I  E  was 30, 
55, and 120 % greater than gemifl oxacin, levofl oxacin, and cipro-
fl oxacin, respectively [ 44 ]. 

 When considering  resistant   subpopulations and the concept of 
mutant prevention concentration (MPC), defi ned as the concen-
tration required to prevent the emergence of resistant mutants, an 
in vitro kinetic model by Olofsson and colleagues studied six simu-
lated clinical doses of norfl oxacin, ciprofl oxacin, and moxifl oxacin 
against  E. coli  mixed cultures containing fl uoroquinolone-resistant 
subpopulations. All six simulated regimens eradicated the-wild 
type population at AUC 24 /MIC values above 100, while AUC 24 /
MPC values of 35  were   effective at preventing the growth of the 
resistant single mutant strain [ 46 ]. 

 Despite varying methodologies of in vitro models used, these 
experiments offer important predictions of the antibacterial effects 
of various fl uoroquinolones against a wide range of gram-negative 
organisms.  

   Similar to in vitro models, the pharmacodynamic properties of 
various fl uoroquinolones have been evaluated in animal infection 
models. Leggett and colleagues studied the impact of dosing inter-
val on the relative effi cacy of various antibiotics, including cipro-
fl oxacin, in neutropenic murine thigh and pulmonary infection 
models using  P. aeruginosa  and  K. pneumoniae , respectively. 
Dosing interval in this study was shown to have minimal effect on 
the antibacterial effect of ciprofl oxacin [ 47 ]. Similarly, in a neutro-
penic rat infection model of  P. aeruginosa  sepsis, lomefl oxacin 
 C  max /MIC ratios of 10–20 were signifi cantly associated with sur-
vival when compared with AUC 24 /MIC ratios and fraction of the 
time drug levels were maintained above the MIC. Furthermore, 
when  C  max /MIC ratios were <10, AUC 24 /MIC ratio most closely 
predicted the outcome [ 48 ]. Unfortunately,  C  max /MIC ratios of 
above 10–20 may be diffi cult to replicate in human subjects as the 
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MIC of the offending pathogen approaches or exceeds 1 mcg/
mL, as in the case of  P. aeruginosa  (Tables  1  and  2 ) [ 4 – 8 ,  29 ]. 

 Craig and colleagues presented composite data of studies using 
strains of gram-positive and gram-negative organisms in pneumo-
nia, peritonitis and sepsis infection models performed in mice, rats, 
and guinea pigs treated for at least 2 days. AUC 24 /MIC ratios of 
<30 were associated with >50 % mortality, while values above 100 
were associated with minimal mortality [ 49 ]. More recently, inves-
tigators studied a murine model of pneumonia using levofl oxacin 
against one strain of  P. aeruginosa . Levofl oxacin levels in the epi-
thelial lining fl uid (ELF) and corresponding AUC ELF /MIC ratios 
were measured between 0 and 6 h after an intraperitoneal dose. 
AUC ELF /MIC ratios of 12.4, 31.2, 62.8, and 127.6 were required 
to drive bacteriostatic, 1-, 2-, and 3-log 10  (colony forming units/g) 
kills [ 50 ]. In the same study, resistance suppression occurred when 
the AUC 24 /MIC ratio was greater than 64 [ 50 ]. 

 Similar to in vitro research,  animal infection models are   not 
without heterogeneity, that stems from varying study designs and 
methodologies, organisms used, and the duration each model 
observed the antimicrobial effects of study fl uoroquinolones.  

   In 1989, Peloquin and colleagues studied 50 acutely ill patients 
with gram-negative lower respiratory tract infections treated with 
IV ciprofl oxacin 200 mg twice daily.  C  max /MIC ratios below 10 
were associated with development of resistance while on treatment 
in 10 of 13 (76.9 %) patients with  P. aeruginosa  pneumonia, lung 
abscess or bronchiectasis [ 51 ].  Antibacterial effects   of ciprofl oxacin 
for serious infections due to gram-negative pathogens were further 
demonstrated in a study of 70 patients treated with various IV 
doses. Both clinical and microbiologic cures were signifi cantly 
associated with AUC 24 /MIC values of 125 or more. The probabil-
ity of clinical and microbiologic cures when achieving AUC 24 /
MIC values above 125 were 80 % and 82 %, compared with 42 % 
and 26 % when AUC 24 /MIC values were below 125. Additionally, 
the median times to microbiologic eradication also differed signifi -
cantly between treatment groups. At AUC 24 /MIC values above 
250, time to microbiologic eradication was approximately 1.9 
days, as compared with 32 days when corresponding values were 
below 125 and 6.6 days when values were between 125 and 250 
[ 32 ]. In an open-label multicenter trial of 134 patients who had a 
pathogen isolated from the primary site of infection and an avail-
able MIC to levofl oxacin,  C  max /MIC ratios of 12.2 or more cor-
related with both clinical and microbiologic endpoints [ 2 ]. To 
further characterize the impact of pharmacodynamic indices on the 
risk of developing resistance during treatment, investigators com-
bined the results of four trials of patients with nosocomial lower 
respiratory tract infections. Thirty-two of the 128 (25 %) initially 
fl uoroquinolone-susceptible strains, the majority of which were 

3.2.3    Human Data  

Ramy H. Elshaboury et al.



187

gram-negative organisms, ultimately developed resistance during 
treatment. The probability of developing resistance among study 
patients signifi cantly correlated with AUC 24 /MIC ratios less than 
100 (80 % probability). In cases when AUC 24 /MIC values exceeded 
100, the probability of developing resistance was <10 % [ 52 ]. 
Results of above studies are in line with various in vitro and animal 
models suggesting an AUC 24 /MIC ratio of at least 125 is required 
to optimize antibacterial activity of fl uoroquinolones and decrease 
the risk of selecting resistant strains while on treatment. Conversely, 
Zelenitsky and Ariano recently called into question the validity of 
AUC 24 /MIC breakpoints of 125 for treating Enterobacteriaceae 
bloodstream infections. Clinical and microbiological data were col-
lected from 42 patients with bloodstream infections due to  E. coli , 
 Klebsiella  spp.,  Enterobacter  spp., or  Serratia  spp. treated with cip-
rofl oxacin. Patients with ciprofl oxacin AUC 24 /MIC of <250 were 
27.8 times (95 % CI 2.1–333,  p  = 0.011) more likely to experience 
treatment failure, and the probability of attaining an AUC 24 /MIC 
of  at   least 250 was 88 % using intravenous doses of 400 mg every 
12 h [ 53 ]. 

 As the aforementioned AUC 24 /MIC breakpoints became 
widely acceptable, focus shifted to studying the likelihood of 
achieving adequate serum and tissue concentrations using various 
intravenous and oral doses. To demonstrate the probability of tar-
get attainment, a study of three ciprofl oxacin dosing regimens 
against  P. aeruginosa  using clinical outcome-based  Monte Carlo 
simulations   showed higher ciprofl oxacin doses of 400 mg IV every 
8 h should be used to ensure target attainment. However, as the 
authors conclude, even higher doses may be ineffective in ensuring 
target attainment as the MIC of offending pathogens approaches 1 
mcg/mL [ 54 ]. Similarly, in a study of critically ill patients with 
severe community-acquired pneumonia undergoing mechanical 
ventilation, a levofl oxacin intravenous dose of 500 mg once daily 
achieved a  C  max /MIC of 10 or more and AUC 24 /MIC of at least 
125 in both serum and epithelial lining fl uid when the MIC of the 
isolated pathogen was 1 mcg/mL or less. However, doses of 
500 mg twice daily were needed to achieve the same pharmacody-
namic indices when the corresponding MIC exceeded 1 mcg/mL 
[ 22 ]. These observations were validated in other studies demon-
strating the impact of higher fl uoroquinolone MICs (≥1 mcg/
mL) on the probability of target attainment. Conil and colleagues 
showed ciprofl oxacin AUC 24 /MIC thresholds were rarely reached 
in intensive-care patients when the MIC was 1 mcg/mL, particu-
larly in those with increased renal elimination of ciprofl oxacin [ 55 ]. 
A prospective, randomized, two-way crossover trial of ten patients 
with gram-negative bacilli bacteremia evaluated consecutive intra-
venous ciprofl oxacin doses of 400 mg every 8 h for four doses 
followed by 400 mg every 12 h for four doses. Both dosing 
regimens achieved adequate AUC 24 /MIC breakpoints (at least 
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100) for pathogens with MIC of 0.5 mcg/mL. However, for 
pathogens with MIC of 1 mcg/mL, only higher daily doses pro-
vided AUC 24 /MIC greater than 100 with no observed increase in 
adverse effects [ 56 ]. Finally, in a study of hospitalized patients 
treated with ciprofl oxacin, 21 % and 75 % of study patients did not 
achieve AUC 24 / MIC   breakpoint of at least 125 when the MICs 
were 0.25 and 0.5 mcg/mL, respectively. Furthermore, a com-
puter simulation showed a decrease in those percentages to 1 % 
and 37 %, respectively, when higher doses (400 mg every 8 h) were 
utilized [ 57 ].   

   Fluoroquinolones are often used to treat upper and lower respira-
tory tract infections of which  S. pneumoniae  is often the causative 
pathogen. Fluoroquinolone pharmacodynamics against  S. pneu-
moniae  has been extensively studied, including in vitro, animal and 
human studies, as well as  Monte Carlo simulations  . The data from 
numerous studies indicate that AUC 24 /MIC ratio of at least 30 is 
necessary for bactericidal activity [ 58 ,  59 ]. It should be noted that 
this AUC 24 /MIC value has often been described with respect to 
wild-type  S. pneumoniae.  Also, this was not always the accepted 
AUC 24 /MIC value for fl uoroquinolones against  S. pneumoniae.  
After an AUC 24 /MIC of 125 was shown to be necessary for the 
eradication of gram-negative pathogens, this pharmacodynamic 
breakpoint was extrapolated to  S. pneumoniae  [ 32 ]. Bedos  et al . 
examined ciprofl oxacin  and sparfl oxacin      in a murine model of  S. 
pneumoniae  pneumonia and found AUC 24 /MIC of greater than 
160 was required to achieve 100 % survival [ 60 ]. Lister and col-
leagues then examined  levofl oxacin   against fi ve  S. pneumoniae  iso-
lates using an in vitro, two-compartment, dynamic model and 
found that a levofl oxacin AUC 24 /MIC of 32–64 corresponded to 
bacterial eradication .  In the same study, a ciprofl oxacin AUC 24 /
MIC of at least 44 correlated with bactericidal activity against 
 S. pneumoniae  [ 61 ] .  

 These lower AUC 24 /MIC values were substantiated by 
Ambrose and colleagues who evaluated the pharmacodynamics of 
ciprofl oxacin among 58 patients treated for documented  S. pneu-
moniae  respiratory tract infections; either community-acquired 
pneumonia or an exacerbation of  chronic bronchitis  . The authors 
dichotomized the probability of  microbiologic eradication   around 
an AUC 24 /MIC of 33.7 and found that ratios greater than 33.7 
led to a 100 % probability of  microbiologic eradication.   While 
patients with a ciprofl oxacin AUC 24 /MIC less than 33.7 had only 
a 64 % probability of microbiologic eradication. Additionally, the 
clinical cure rate was 92 % when the AUC 24 /MIC was above 40 
[ 31 ]. In a prospective trial of levofl oxacin for the treatment of uri-
nary tract, respiratory, and skin and soft tissue infections, Preston 
et al. found the  C  max /MIC to be most predictive of microbiologic 
and clinical outcomes [ 2 ]. In this study, a  C  max /MIC of 12.2 
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correlated with clinical success and microbiologic eradication. 
The authors also found a high degree of correlation between  C  max /
MIC and AUC 24 /MIC. This fi nding is not surprising because  C  max  
and AUC are directly related; as  C  max  increases so does the AUC 
and vice versa. While these human data are compelling, most phar-
macodynamic examinations of fl uoroquinolones against  S. pneu-
moniae  have utilized in vitro models. 

 Using in vitro kinetic models, Odenholt and Cars studied 
 levofl oxacin   and  moxifl oxacin   against  S. pneumoniae, S. aureus,  
and  E. coli  isolates with varying degrees of susceptibility to each 
antibiotic. The authors found that an AUC 24 /MIC ratio of at least 
100 and a  C  max /MIC ratio of 10 or more led to a maximum anti-
bacterial activity for both levofl oxacin and moxifl oxacin [ 37 ]. 
Both  pharmacodynamic indices   were higher for moxifl oxacin than 
levofl oxacin against the  S. pneumoniae  isolates studied. This is 
counterintuitive as moxifl oxacin 400 mg daily has lower  C  max  than 
levofl oxacin 500 mg and 750 mg daily. However, the levofl oxacin 
MICs for  S. pneumoniae  in this study were at least fourfold higher 
than the moxifl oxacin MICs. Nevertheless, moxifl oxacin 400 mg 
daily, levofl oxacin 500 mg daily and levofl oxacin 750 mg daily 
attained at least a four-log kill against a   S. pneumoniae    strain har-
boring a single fl uoroquinolone resistance mutation ( parC ) [ 37 ]. 
The associated AUC 24 /MIC values against this isolate were 102, 
40, and 52 for moxifl oxacin 400 mg, levofl oxacin 500 mg and 
levofl oxacin 750 mg, respectively. None of these three regimens 
attained bactericidal activity against a  S. pneumoniae  strain harbor-
ing both  parC  and  gyrA  mutations. The AUC 0–24 /MIC values for 
all antibiotic regimens tested against this resistant strain were 5–13 
[ 37 ]. MacGowan and colleagues examined the impact of moxi-
fl oxacin pharmacodynamics against  S. pneumoniae  on the emer-
gence of fl uoroquinolone-resistant mutants. The mean moxifl oxacin 
AUC 24 /MIC was 45 with a standard deviation of 22, and there 
was no development of moxifl oxacin-resistant  S. pneumoniae  
mutants [ 62 ]. The results of these studies may explain the minimal 
increase in  S. pneumoniae  resistance worldwide despite an increase 
in fl uoroquinolone resistance among gram-negative pathogens 
[ 63 ]. Moxifl oxacin, levofl oxacin, and ciprofl oxacin should obtain 
an AUC 24 /MIC of at least 40 if the  S. pneumoniae  MIC is ≤1 
mcg/mL, the MIC range for the majority of  S. pneumoniae  iso-
lates [ 63 ]. However, up to 30 %  of       S. pneumoniae  isolates possess 
a single  parC , a “fi rst-step mutation,” which is not detected by 
conventional laboratory susceptibility testing [ 63 ,  64 ]. These sin-
gle mutations in the quinolone resistance-determining region 
allow the bacteria to develop additional resistance mutations 
rapidly in the mutant selection window [ 63 ]. 

 The emergence of fl uoroquinolone-resistant mutants depends 
on the bacterial species, the duration of exposure and drug expo-
sure [ 62 ]. For many  S. pneumoniae  isolates, the mutant prevention 
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concentration (MPC) lies between four and eight times the MIC 
[ 65 ]. Even after the antibiotic concentration drops below the 
MPC, it takes time for bacteria to enter logarithmic growth phase. 
This delay in bacterial recovery and growth is called the post- 
antibiotic effect. Fluoroquinolones have a post-antibiotic effect of 
approximately 3 h or less against  S. pneumoniae  [ 66 ,  67 ]. 

 Allen and colleagues found that fi rst and second step muta-
tions were selected after  S. pneumoniae  isolates were exposed to 
levofl oxacin in an  in vitro dynamic model   [ 68 ]. In the same study, 
moxifl oxacin also selected for a second-step mutant when a fi rst- 
step  gyrA  mutant was present. Florea et al. studied moxifl oxacin 
and levofl oxacin against  S. pneumoniae  isolates harboring a  parC  
mutation using an in vitro model simulating epithelial lining fl uid 
pharmacokinetics of each antibiotic [ 69 ]. There was no selection 
of resistant mutants in the moxifl oxacin experiments. However, 
levofl oxacin 500 mg daily failed to achieve  bacterial eradication   or 
prevent the emergence of resistant mutants despite AUC 24 /MIC 
values above 100. Building on that study, a similar study was per-
formed in which levofl oxacin and moxifl oxacin were tested against 
 parC- containing mutants using an in vitro dynamic model simulat-
ing epithelial lining fl uid concentrations of both antibiotics [ 70 ]. 
Regimens simulating levofl oxacin 500 and 750 mg daily experi-
enced regrowth and acquisition of a second-step  gyrA  mutation in 
100 and 50 % of isolates tested, respectively. Moxifl oxacin 400 mg 
daily demonstrated sustained  bactericidal activity   without acquisi-
tion of second-step mutants. The authors concluded that an 
AUC 24 /MIC of 200 for levofl oxacin and 400 for moxifl oxacin 
were needed to prevent the acquisition of second-step fl uoroqui-
nolone resistance mutations [ 70 ]. The results of these studies are 
important but, because clinical microbiology laboratories do not 
routinely test for fi rst-step fl uoroquinolone resistance mutations, 
their clinical applicability remains in question. 

 In  Monte Carlo simulations  , both levofl oxacin and moxifl oxa-
cin have shown high probabilities of attaining the accepted AUC 24 /
MIC of 30 or more against  S. pneumoniae . Jones and colleagues 
performed a 10,000 patient Monte Carlo simulation using the  
S. pneumoniae  isolates from the SENTRY Antimicrobial Surveillance 
Program. The authors found that levofl oxacin 500 mg daily would 
achieve an AUC 24 /MIC of 30 in 79 % of patients [ 71 ]. However, 
levofl oxacin 500 mg daily had only a 15 % probability of attaining 
an AUC 24 /MIC of 120. Frei and Burgess examined the pharmaco-
dynamics of levofl oxacin 500 and 750 mg daily against 7,866  S. 
pneumoniae  isolates with varying susceptibility to penicillin includ-
ing 1,287 penicillin-resistant strains [ 72 ]. The authors evaluated 
time above MIC and AUC 24 /MIC using accepted and elevated 
AUC 24 /MIC values. Levofl oxacin 500 and 750 mg daily had a 
high probability of attaining an AUC 24 /MIC of 30 (90 and 99 %, 
respectively); however, as the AUC 24 /MIC value increased the 
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probability of attainment decreased. For example, the probability 
of levofl oxacin 750 mg daily attaining an AUC 24 /MIC of 70 or 
more was less than 40 % [ 72 ]. Noreddin et al. examined the prob-
ability of moxifl oxacin 400 mg daily achieving an AUC 24 /MIC of 
30, 40, 100, and 120 against  S. pneumoniae  MIC data from 
patients hospitalized with community-acquired pneumonia. The 
authors performed their analyses using pharmacokinetic data from 
human serum and human epithelial lining fl uid and the MIC 90  
value for the  S. pneumoniae  isolates. Moxifl oxacin 400 mg daily 
had a 97 % probability or greater of attaining an AUC 24 /MIC of 
30, 40, 100, and 120 in the serum and greater than 97 % probabil-
ity of attaining AUC 24 /MIC of 30 and 40 in the epithelial lining 
fl uid. The probabilities of moxifl oxacin 400 mg daily attaining an 
AUC 24 /MIC of 100 and 120 in the epithelial lining fl uid were 
slightly lower (87.3 and 86.2 %, respectively) [ 73 ]. This decrease 
in AUC 24 /MIC target attainment in the epithelial lining fl uid may 
be noteworthy as the epithelial lining fl uid could be a better deter-
minant of fl uoroquinolone effi cacy in respiratory infections than 
corresponding serum values. 

 These  Monte Carlo simulation   data suggest that both levo-
fl oxacin and moxifl oxacin have a high probability of attaining an 
AUC 24 /MIC of 30. The probability of these agents attaining 
higher AUC 24 /MIC ratios remains in question, as does the clinical 
signifi cance of attaining these higher ratios. The fact that levofl oxa-
cin and, to a lesser extent, moxifl oxacin have a lower probability of 
attaining higher AUC 24 /MIC values is concerning for the selec-
tion of fl uoroquinolone-resistant  S. pneumoniae.   

   Fluoroquinolones possess activity against  S. aureus , but are not 
routinely used to treat invasive  S. aureus  infections. 
Pharmacodynamic studies have shown that fl uoroquinolones are 
bactericidal against  S. aureus  when the AUC 24 /MIC is greater 
than 30 [ 37 ,  74 ,  75 ]. Fluoroquinolones have also been found to 
behave differently against  S. aureus  depending on whether the 
conditions are anaerobic or aerobic. Lewin and colleagues found 
fl uoroquinolones to be bacteriostatic against  S. aureus  under 
anaerobic conditions. The authors stated this fi nding may have 
resulted from decreased fl uoroquinolone uptake into  S. aureus  
cells in the absence of oxygen [ 76 ]. However, other investigators 
found that numerous fl uoroquinolones were bactericidal against  S. 
aureus  under anaerobic conditions [ 77 ,  78 ]. The rate of kill was 
slower under anaerobic conditions in the study by Zabinski et al. 
[ 78 ]. Wright and colleagues found that moxifl oxacin and levofl ox-
acin achieved bactericidal activity within 12 h against methicillin- 
sensitive and methicillin-resistant strains of  S. aureus  and   S. 
epidermidis    under anaerobic conditions [ 77 ]. Regrowth was not 
observed in any of the aforementioned experiments. Notably, in 
experiments with moxifl oxacin, the mean survival times were much 
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longer for methicillin-resistant  S. aureus  and  S. epidermidis  under 
anaerobic conditions compared with aerobic conditions [ 77 ]. 

 Using a two-compartment in vitro model of levofl oxacin against 
 S. aureus , Zhang et al. found AUC 24 /MIC above 25 was predictive 
of antibacterial activity, and AUC 24 /MPC of ≥2.2 predicted resis-
tance outcomes [ 74 ]. Lister compared levofl oxacin 500 mg daily 
and moxifl oxacin 400 mg daily against three  S. aureus  and three  S.  
  epidermidis    strains using an in vitro hollow fi ber model [ 75 ]. Two of 
the three strains for each  Staphylococcus  spp. studied were resistant to 
ciprofl oxacin (MIC of 4 and 16 mcg/mL) and methicillin (MIC of 
1 mcg/mL for both). Both levofl oxacin and moxifl oxacin achieved 
bactericidal activity within 8 h, but this was sustained only with 
moxifl oxacin. Levofl oxacin experienced regrowth after 8 h when 
tested against the four  Staphylococcus  strains that were resistant to 
ciprofl oxacin, irrespective of the ciprofl oxacin MIC. Resistant sub-
populations with elevated levofl oxacin MIC emerged in all four of 
these experiments for which the AUC 24 /MIC values ranged from 8 
to 32. Moxifl oxacin sustained bactericidal activity for the duration of 
the experiment against all strains except the  S. epidermidis  strain with 
a ciprofl oxacin MIC of 16 mcg/mL. Against that strain, moxifl oxa-
cin achieved  bactericidal activity at 4 h after which there was regrowth 
[ 75 ]. Nevertheless, the fi nal inoculum was more than 2 log 10  colony 
forming units/mL below the starting inoculum and no resistant 
mutants were detected. Moxifl oxacin AUC 24 /MIC values ranged 
from 54 to 108. Notably, the AUC 24 /MIC ratio for moxifl oxacin 
was 54 against both ciprofl oxacin-resistant strains of   S. epidermidis    .  
These results, similar to those for  S. pneumoniae , may suggest that 
moxifl oxacin has better antibacterial activity than levofl oxacin against 
 S. aureus.  However,    this may have little clinical importance, as fl uo-
roquinolone mono-therapy is not often utilized to treat infections 
due to  S. aureus .  

   The fi rst FDA-approved fl uoroquinolone antibiotics (norfl oxacin, 
ciprofl oxacin, ofl oxacin, and later levofl oxacin) contained no indi-
cation for the management of  anaerobic infections   [ 79 ]. However, 
with the introduction of trovafl oxacin and moxifl oxacin, as well as 
several other fl uoroquinolones that did not receive FDA approval, 
there was clear evidence of bactericidal action against a number of 
clinically relevant anaerobes. Both  trovafl oxacin   and moxifl oxacin 
had/have FDA-approved indications for the management of intra- 
abdominal and complicated skin infections [ 80 ,  81 ]. Moxifl oxacin, 
the only remaining marketed fl uoroquinolone with anaerobic 
activity, is used clinically off label in a variety of situations where 
mixed fl ora including anaerobes is likely. There is also data linking 
some of the newer fl uoroquinolones as a risk factor 
for  Clostridium diffi cile  infections [ 79 ]. 

 Fluoroquinolones appear to kill anaerobes in a concentration 
independent (time dependent) fashion [ 82 ]. Most investigators 
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identify AUC 24 /MIC ratio as the best predictor of antibiotic 
performance and the quantitative value of this parameter may vary 
for different anaerobic species. Peterson and colleagues reported 
that an AUC 24 /MIC ratio ≥40 is required to maximize the fl uoro-
quinolone antibacterial effect against  Bacteroides fragilis  [ 82 ,  83 ]. 
There are reports that suboptimal exposures (AUC 24 /MIC ratio 
<44) against anaerobic bacteria can foster fl uoroquinolone resistance 
depending upon species, fl uoroquinolone, and the magnitude of 
the AUC 24 /MIC ratio [ 82 ,  83 ]. 

 Peterson et al., when conducting preliminary in vitro dynamic 
experiments attempting to quantitate the impact of fi ve different 
fl uoroquinolones against  B. fragilis,  noticed curious phenomena 
with sparfl oxacin. Initially the anaerobic pathogens were susceptible 
to sparfl oxacin and caused a signifi cant reduction in the anaerobic 
population at clinically relevant concentrations of the drug. While 
the inoculum was initially susceptible, a sampling at the end of the 
24-h experiment demonstrated a signifi cant rise in the sparfl oxacin 
MIC [ 82 ,  83 ]. Other fl uoroquinolones were also studied to deter-
mine if this phenomenon was limited to sparfl oxacin only or was a 
class effect. Results of these additional in vitro experiments demon-
strated these fi ndings to be a class effect and irreversible after 10 days 
of serial passage. Later studies proved the mechanism of resistance 
was due to alterations in  gyrA  and  gyrB  [ 84 ,  85 ]. 

 Hospitals and health plans, as a result of pharmaceutical con-
tracting, became either ciprofl oxacin /moxifl oxacin or levofl oxacin 
institutions heavily promoting specifi c fl uoroquinolone usage 
according to their respective contracts. This may have created a 
scenario of unrecognized collateral damage for patient anaerobic 
fl ora. Often in complicated skin and intra-abdominal infections, 
cultures are not performed due to the likely multitude of bacteria 
present. Even if anaerobes are recovered most hospitals do not 
perform routine anaerobic antimicrobial susceptibility studies for 
fl uoroquinolones so the signifi cance of this antibiotic pressure is 
unknown. Edlund et al. have reported that fl uoroquinolones have 
a selective effect on intestinal fl ora, primarily affecting the 
Enterobacteriaceae, but also having a minor impact on anaerobes 
[ 86 ]. However, Golan et al. reported a dramatic increase in 
fl uoroquinolone- resistant  Bacteroides  spp. from 1994 to 2001 and 
Betriu et al. made a similar observation with moxifl oxacin and  tro-
vafl oxacin   over a 6-year period from 1997 to 2002 [ 87 ,  88 ].   

4     Summary 

 Fluoroquinolones continue to be a cornerstone of antibacterial 
treatments for a wide range of infectious diseases in the inpatient 
and outpatient settings. The breadth of fl uoroquinolone pharma-
codynamics knowledge has greatly improved our understanding of 
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    Chapter 9   

 Aminoglycoside Pharmacodynamics                     

     Dana     R.     Bowers    ,     Amy     N.     Schilling    , and     Vincent     H.     Tam      

  Abstract 

   Aminoglycosides are antimicrobial agents traditionally derived from natural sources. They exhibit potent 
in vitro bactericidal activity against a broad spectrum of pathogens. Over the years, the clinical use of the 
aminoglycosides has changed considerably. With a narrow therapeutic index, there is a need for individual-
ized therapy based on patient specifi c pharmacokinetics and pathogen susceptibility, especially if prolonged 
therapy is indicated. With an improved understanding of resistance mechanisms, synthetic structural ana-
logs are under clinical development. These agents could have a unique role in the management of infec-
tions due to multidrug-resistant bacteria.  

  Key words     Aminoglycosides  ,   Antimicrobial resistance  ,   Concentration-dependent activity  , 
  Tobramycin  ,   Gentamicin  ,   Amikacin  

1      A Brief History 

 Aminoglycosides have been available for clinical use since the 1960s. 
Early agents in the family are natural products derived from various  soil 
microorganisms  . Subsequently, synthetic derivatives with improved 
susceptibility profi les were obtained by chemical modifi cation of natu-
ral agents. The development of resistance was expected to decrease as 
structural alteration mediated by bacterial enzymes was reduced. 

 Aminoglycosides are highly polar compounds with excellent 
water solubility; the pharmacokinetics could be reasonably predicted 
by their physicochemical properties. They exhibit  concentration- 
dependent bactericidal activity   against gram- negative bacteria and a 
signifi cant post-antibiotic effect has been reported. Despite impres-
sive in vitro activity, toxicity remains a concern for many clinicians 
and is a major hindrance to widespread use of these agents. 

 In the 1990s, we entered a new paradigm of anti-infective  che-
motherapy  .  Dosing regimen design   based on concepts integrating 
pharmacokinetics and pharmacodynamics of antimicrobial agents 
appeared in the literature, which led to a more individualized 
approach to bedside dosing. The optimization of benefi t-to-risk 
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ratio of antimicrobial therapy was eventually widely accepted and 
applied clinically. 

 Over the years, the use of aminoglycosides as  monotherapy   has 
become less popular; they are increasingly used in combination with 
other agents (e.g., beta-lactams or fl uoroquinolones) to broaden 
the spectrum of empiric coverage and only for a short duration of 
time. New agent(s) in clinical development may have a better safety 
profi le and could have a unique role in the management of infec-
tions due to multidrug-resistant bacteria. This chapter provides an 
overview of the aminoglycosides in terms of chemical structures, 
pharmacokinetics, mechanism of action, resistance mechanisms, 
optimal dosing, and clinical use for different infections.  

2     Chemical Structure   

 The aminoglycosides are a class of antibiotics whose main compo-
nents include two or more aminosugar molecules linked via glyco-
sidic bonds to an aminocyclitol ring (streptidine or deoxystretamine) 
[ 1 ] (Fig.  1 ). The aminoglycosides can be derived naturally (from 
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 Streptomyces  spp. or  Micromonospora  spp.) or synthetically. Almost 
all the aminoglycosides are used clinically as their sulfate salts. In 
clinical practice, the most frequently used aminoglycosides are 
gentamicin, tobramycin, amikacin, and occasionally streptomycin. 
The other aminoglycosides are mentioned for completeness 
(Table  1 ); however, the remainder of the chapter focuses on ami-
noglycosides that are used most commonly within the USA.

   Table 1  
  Aminoglycoside  characteristics     

 Aminoglycoside 
 Chemical formula/
structure  MW  Isolated from  Notes 

 Amikacin  C22H43N5O13  585.6  Derivative of 
kanamycin 

 Presence of AHB side chain helps 
amikacin retain activity against 
gentamicin-and tobramycin-
resistant GNB 

 Gentamicin  C1 C21H43N5O7  C1 477   Micromonospora 
purpurea  

 C1a C19H39N5O7  C1a 449 

 C2C20H41N5O7  C2 463 

 Isepamicin  C22H43N5O12  667.7  Semisynthetic 
derivative of 
gentamicin 

 Kanamycin  C18H36N4O11  484.5   Streptomyces 
kanamyceticus  

 Reserved for MDR TB 

 Neomycin B  C23H46N6O13  614   Streptomyces 
fradiae  

 Very toxic, not used systemically 

 Netilmicin  C21H37N5O7  475.6  Semisynthetic 
derivative of 
sisomicin 

 Retains some activity against 
gentamicin- resistant strains 

 Plazomicin  C25H48N6O10  592  Dervivative of 
sisomicin 

 Currently under clinical 
investigation 

 Paromomycin  C23H47N5o18S  713.7  Used for parasitic infection 

 Sisomicin  C19H37N5O7  447.5   Micromonospora 
inyoesis  

 More active than gentamicin b 
but not as active as tobramycin 
for PA. Available in Europe 

 Streptomycin  C42H84N14O36S3  1457.4   Streptomycin 
griseus  

 Reserved for resistant tuberculosis 
or MAC 

 Tobramycin  C18H37N5O9  467.5   Streptomyces 
tenebrarius  

 Best intrinsic activity against PA 

   AHB  s-4 amino 2 hydroxybutyryl,  GNB  gram-negative bacilli,  MDR - TB  multidrug-resistant tuberculosis,  MAC  myco-
bacteria avium complex,  PA Pseudomonas aeruginosa   
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3         Pharmacokinetics   

 The pharmacokinetics of the aminoglycosides are generally 
 predictable based on their physicochemical properties. As highly 
polar compounds, minimal oral bioavailability is expected of the 
 aminoglycosides  . Consequently, the oral route of administration is 
not preferred for the treatment of systemic infections. However, 
there may be a unique role for oral administration of “ non-absorb-
able antibiotics  ” in certain clinical situations such as in selective 
digestive tract decontamination preoperatively, in critically ill 
patients, and for patients with hepatic encephalopathy or intestinal 
 parasites   [ 2 – 5 ]. 

 Binding of aminoglycosides to serum proteins are low [ 6 ]. 
Despite low protein binding, the drugs primarily remain in extra-
cellular space in view of their polar nature (poor diffusion across 
cell membrane). Volume of distribution resembles that of the 
extracellular fl uid compartment (approximately 25–35 % of body 
weight). Generally speaking, the volume of distribution is propor-
tional to body weight up to a certain threshold, where further 
increase in body weight is more likely contributed by adipose tis-
sues. It can also be expected to be larger in patients who are fl uid 
overloaded, ascitic or pregnant. Consequently, one can expect the 
aminoglycosides to have low volume of distribution, poor penetra-
tion into epithelial lining fl uid in the lungs [ 7 ,  8 ] and oxygen-poor 
 environments   (e.g., abscesses).  Inhaled (aerosolized) therapy   may 
be necessary to achieve therapeutic concentrations, and to reduce/
eradicate bacterial colonization in cystic fi brosis patients. The  ami-
noglycosides   are also known to be preferentially accumulated in 
the renal cortex and inner ear (perilymph and endolymph). The 
accumulation of aminoglycosides into the renal cortex is mediated 
by transporters [ 9 ].  Drug accumulation and nephrotoxicity   could 
be minimized by using an extended dosing interval [ 10 ,  11 ]. The 
uptake of drug by the inner ear tissues of rats was also found to be 
dose dependent, saturable and associated with an extended resi-
dence, which could have implications to ototoxicity especially after 
prolonged exposure [ 12 ,  13 ]. 

 Aminoglycosides are not metabolized; they are primarily 
excreted unchanged in the urine. Total body clearance is correlated 
to  glomerular fi ltration rate  . Relatively short elimination half-lives 
(2–3 h) are expected to be in patients with normal renal function, 
which could be signifi cantly prolonged in renal insuffi ciency. 
Although these are typically considered standard pharmacokinetic 
parameters for the aminoglycosides, these parameters have been 
shown to exhibit wide intra- and inter-patient variability [ 14 ,  15 ]. 
Adjustment in dosing regimen is recommended in patients with 
renal impairment and premature infants to prevent excessive drug 
accumulation. As the major route of elimination, aminoglycosides 
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are highly concentrated in the urine, which could be used to treat 
localized cystitis due to pathogens with low to intermediate level 
resistance. 

 In view of their physicochemical properties, aminoglycosides 
are effectively removed by conventional/high fl ux hemodialysis 
and various forms of continuous renal replacement therapy [ 16 , 
 17 ]. Consequently,  supplemental doses   are commonly given post- 
dialysis to patients with acute kidney injury or end-stage renal dis-
eases to maintain an adequate systemic drug exposure. However, 
based on our understanding of the pharmacokinetics and pharma-
codynamics of the aminoglycosides, novel pre-dialysis dosing strat-
egies have been proposed [ 18 ]. The rationale is to expose the 
patient to a high drug concentration for a brief period of time and 
take advantage of the  concentration-dependent bactericidal activ-
ity  , then quickly remove a signifi cant  proportion   of the dose with 
dialysis. While the theoretical benefi ts appear to be sound and sup-
ported by computer simulations [ 19 ], more favorable outcomes 
have not been conclusively demonstrated in a clinical study.  

4    Mechanism of Action 

 The use of these agents has changed signifi cantly since their initial 
introduction due to increased knowledge from basic and clinical 
research. The primary mechanism of action of aminoglycosides 
occurs via the irreversible binding of ribosomes resulting in inhibi-
tion of  protein synthesis   [ 20 ,  21 ]. Aminoglycosides are taken up 
into cells across the outer membrane of gram-negative bacteria by 
disruption of magnesium bridges between adjacent lipopolysac-
charide molecules. The energy-dependent phase I (EDP-I), which 
is dependent on electron transport, allows the transport of amino-
glycosides across the cytoplasmic membrane. This rate-limiting 
step is inhibited by divalent cations, hyperosmolarity, low pH, and 
anaerobic metabolism. The binding of the 30S subunit of ribo-
somes takes place in the cytosol through the energy-dependent 
phase II (EDP-II), which is thought to be related to the bacteri-
cidal activity of aminoglycosides [ 20 ,  22 ,  23 ]. The bactericidal 
aminoglycosides are thought to cause amino acid substitutions 
during protein synthesis resulting in inaccurate reading of the 
genetic code. The actual lethal event is unknown but many theo-
ries exist [ 23 ]. 

  
 Aminoglycosides are rapidly bactericidal and exhibit concentration- 
dependent killing against gram-negative organisms, in which more 
rapid killing is observed as drug concentrations increase [ 24 ,  25 ]. 
There is a small window between therapeutic and toxic levels for 
the aminoglycosides. Studies show serum levels above ten times 
the MIC for the isolated gram-negative organisms is more effective 

4.1   Concentration- 
Dependent Killing  
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than lower peak to MIC ratios [ 26 ,  27 ]. Most drug concentrations 
achieved in the infected tissues are lower than those attained in the 
serum with the exception of bacteremia and in infections of the 
urinary tract [ 26 ]. It is important to take this into consideration 
when monitoring aminoglycoside levels for the treatment of 
infections. 

 While aminoglycosides are known to exhibit concentration- 
dependent killing and post antibiotic effect against gram-negative 
pathogens, the limited data available suggests that this is not the 
case in gram-positive infections and that higher doses of aminogly-
cosides may not improve bacterial kill rates [ 28 ,  29 ]. Aminoglycoside 
activity against gram-positive organisms, particularly  Enterococcus  
sp., is related to its synergistic activity in the presence of cell-wall 
active agents. The cell-wall active agent, such as beta-lactams, is 
thought to increase the uptake of the aminoglycoside in the treat-
ment of severe, complicated infections such as endocarditis [ 30 ].  

  
 The  post antibiotic effect (PAE)      is a period of time in which no 
bacterial growth is observed following the complete removal of an 
antimicrobial agent. The ribosomal binding of aminoglycosides is 
thought to contribute to the PAE of these agents as it may be 
attributed to the time required for synthesis of new ribosomes 
[ 21 ]. This suppression can occur even after a limited exposure to 
an antimicrobial agent [ 31 ]. The presence of PAE can be affected 
by the antimicrobial agent, organism, and environmental condi-
tions. The aminoglycosides exhibit a long PAE against gram- 
negative organisms. Longer PAE can be observed in vivo than 
in vitro due to environmental conditions including the presence of 
neutrophils, drug concentration, area under the concentration- 
time curve, and duration of exposure [ 31 ,  32 ]. The  PAE   of amino-
glycosides allows for longer dosing intervals because bacterial 
growth is inhibited even when serum and tissue drug concentra-
tions fall below the minimum inhibitory concentration (MIC) 
[ 31 ]. The PAE is reduced in gram-negative bacilli in the setting of 
 a   larger inoculum [ 21 ]. Studies had shown that effi cacy of amino-
glycosides was associated with the total amount of drug given 
rather than how frequently it was administered [ 31 ].  

  
 Aminoglycosides are synergistic in combination with cell wall 
active agents against gram-negative and gram-positive bacteria. 
Using agents with different mechanisms of action results in 
enhanced bacterial killing. The synergistic combination of beta- 
lactams and aminoglycosides is thought to be related to the cell- 
wall disturbance caused by beta-lactams, which facilitates the entry 
of aminoglycosides into the periplasmic space [ 23 ,  33 ]. Improved 
clinical outcomes were demonstrated when aminoglycosides were 
used with antipseudomonal penicillins, especially in the 

4.2  Post Antibiotic 
 Effect  
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management of immunocompromised hosts [ 34 – 36 ]. In cases of 
enterococcal endocarditis, concurrent use of cell wall active agents 
allow for increased uptake of aminoglycosides.   

5     Resistance Mechanisms   

 As with many other  antimicrobials  , resistance to aminoglycosides 
has emerged since their introduction. Common mechanisms of 
resistance for  aminoglycosides   include: (1) aminoglycoside modi-
fying enzymes, (2) decreased uptake or accumulation of the drug 
in bacteria, and (3) aminoglycoside ribosomal target modifi cation 
[ 20 ,  37 ,  38 ]. A majority of these resistance mechanisms are 
encoded on bacterial plasmids and transposons, resulting in the 
opportunity for rapid  spread   of resistance between bacteria [ 37 ]. 
Some resistance mechanisms can also be chromosomally encoded 
and constitutively expressed, as those found in  Providencia  and 
 Serratia  species [ 33 ]. 

 The most common mechanism of aminoglycoside resistance is 
associated with aminoglycoside modifying enzymes [ 39 ]. A larger 
number of aminoglycoside modifying enzymes are found in ami-
noglycoside producing bacteria such as  Streptomyces  spp. and 
 Micromonospora  spp.; there is also evidence that the  genetic ele-
ments   can be transferred between gram-positive and gram- negative 
bacteria allowing for the rapid spread of these enzymes [ 37 ]. A 
variety of  phenotypes   have been determined, with several distinct 
proteins resulting in similar aminoglycoside modifying activity 
[ 20 ]. These enzymes modify aminoglycosides by N-acetylation, 
O-adenylation, or O-phosphorylation which, when they are pres-
ent concurrently, can result in a  broad spectrum   of aminoglycoside 
resistance [ 39 ,  40 ]. 

 In the presence of aminoglycoside modifying enzymes, the 
energy dependent interactions between an aminoglycoside and 
ribosomes will not occur, resulting in an inability to inhibit protein 
synthesis [ 37 ]. This covalent modifi cation of amino or hydroxyl 
 functions   results in high-level aminoglycoside resistance. 
Subsequent to initial studies where aminoglycoside resistance was 
associated with a single modifying enzyme, complex phenotypes 
and many genotypes have emerged, some related to local patterns 
of aminoglycoside use [ 20 ,  41 ]. These factors have led to more 
complicated decisions regarding the choice of empiric aminoglyco-
side therapy, including the use of local epidemiological data and 
institution-specifi c antibiograms. 

 While the mechanism for the decreased uptake of aminoglyco-
sides by gram-negative bacilli is not fully understood, it is likely 
due to membrane impermeability [ 20 ].  Anaerobic bacteria   are 
intrinsically resistant to aminoglycosides. The uptake of aminogly-
cosides by bacteria is mediated by an oxygen-dependent electron 
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transport system. The transport system required for the aminogly-
cosides uptake is absent in anaerobic bacteria, and therefore the 
aminoglycosides do not reach their ribosomal target [ 42 ]. Bacteria 
exposed to aminoglycosides can potentially have an alteration in 
gene regulation of the anaerobic respiratory pathway and mem-
brane protein changes.  Active effl ux   of certain aminoglycosides has 
also been described [ 43 ]. 

 Finally, the modifi cation of the aminoglycoside target, the bac-
terial ribosomal RNA and proteins including the 16S ribosomal 
subunit, by mutation or nucleotide methylation has been described 
[ 23 ,  39 ].  Target modifi cation   is a less common mechanism of ami-
noglycoside resistance, primarily reported in  Mycobacterium  [ 43 ]. 

 While  aminoglycosides   are commonly affected by aminoglyco-
side modifying enzymes and alterations in membrane permeability, 
  Pseudomonas aeruginosa    displays intrinsic aminoglycoside resis-
tance associated with proteolysis [ 44 – 46 ].   P. aeruginosa    also dis-
plays adaptive resistance in which a decreased susceptibility is 
exhibited following frequent exposure to an antimicrobial agent. 
Combinations of these resistance mechanisms can result in an 
increase in the spectrum of aminoglycoside resistance. As amino-
glycoside usage has increased over time, these resistance mecha-
nism combinations do not seem to correlate with the specifi c 
aminoglycoside usage but rather a more general increased overall 
use of these agents [ 47 ]. 

 With the increasing resistance to broad-spectrum antibiotics, 
including beta-lactams and fl uoroquinolones, new sisomycin ana-
logs have been developed. These drug candidates could potentially 
be used to treat infections due to organisms that harbor aminogly-
coside resistance mechanisms, including the three most common 
aminoglycoside-modifying enzymes.  Plazomicin   (ACHN-490) is 
one of these agents being developed clinically due to its promising 
in vitro susceptibility results [ 40 ]. Plazomicin exhibits in vitro 
activity against resistant gram-negative and gram-positive bacteria 
[ 48 ,  49 ]. The ability to evade common resistance mechanisms is 
related to its structure. The basic  sisomicin structure   lacks hydroxyl 
groups, thus these analogs are poor substrate for certain aminogly-
coside modifying enzymes. Specifi c to the plazomicin structure, 
the addition at the  N  − 1 position of a hydroxyl-aminobutyric acid 
substituent and a hydroxyethyl substituent addition block many 
aminoglycoside modifying enzymes without compromising the 
activity of the drug. These structure modifi cations allow for activ-
ity  against   amikacin- and gentamicin-resistant isolates. Plazomicin 
has been shown to retain activity against resistant clinical isolates, 
including  K. pneumoniae ,  E. coli  and  Enterobacter  spp. [ 50 ]. 
However, plazomicin remains susceptible to resistance mediated 
by 16S rRNA methylases [ 49 ].  
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6    Optimizing the Use of Aminoglycosides 

     Aminoglycoside dosing conventionally is given 3–6 mg/kg/day 
divided every 8 h for  gentamicin   and  tobramycin  .  Amikacin   is usu-
ally administered 15 mg/kg daily divided every 8 or 12 h. Patients 
with renal dysfunction require further adjustments based on the 
degree of renal impairment in addition to their severity of infec-
tion. Individual dosing regimens are often used utilized to account 
for patient variability. Since alternative dosing strategies have not 
been studied extensively in all populations and certain populations 
such as patients with extensive burns or gram-positive infections 
were excluded from extended interval daily aminoglycoside nomo-
grams [ 51 – 53 ],  traditional dosing   is still recommended for these 
patients.  

   The aminoglycosides demonstrate concentration-dependent kill-
ing; their killing effect is a function of their peak concentration 
(Cmax). Optimal bacterial killing for the aminoglycosides occurs 
when the Cmax is approximately ten times greater than the mini-
mum inhibitory concentration (MIC) of the pathogen [ 54 – 57 ]. In 
a study by Moore et al., effi cacy in patients with gram-negative 
bacterial infections was correlated to the Cmax/MIC ratio. For 
example, when the gentamicin Cmax/MIC was 2, the clinical effi -
cacy reported was approximately 50 %. However, when the Cmax/
MIC was 10, the observed effi cacy increased to around 90 % [ 27 ]. 
It is important to note that the majority of the effi cacy results were 
from patients with urinary tract infections, where favorable out-
comes could generally be expected. However, the killing profi le of 
the aminoglycosides could be different depending on the type of 
bacteria. It has been observed when the concentration of gentami-
cin is twice the MIC or greater, the extent of bacterial killing of  S. 
aureus  is not increased [ 29 ]. In this situation, gentamicin does not 
appear to have concentration-dependent but rather time- dependent 
bacterial killing. Therefore, some experts recommend administer-
ing aminoglycosides as a single daily dose for gram-negative infec-
tions and as multiple daily doses for gram-positive infections [ 58 ].  

   The rationale behind using EIAD of aminoglycoside (administer-
ing one large dose daily) is to maximize concentration-dependent 
bacterial killing and prolonging its post-antibiotic effect, while 
theoretically minimizing dose-dependent toxicity.  Gentamicin   and 
 tobramycin   are typically administered as 5–7 mg/kg and amikacin 
is dosed at 15–20 mg/kg once daily. Various nomograms have 
been developed and used clinically [ 51 ,  53 ,  54 ,  59 ]. Caution is 
recommended with any nomogram as they almost always assume 
that the patients’ volume of distribution is constant throughout 
treatment and may not be appropriate for all patients. Most patients 

6.1  Dosing Regimens
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studied were treated for intra-abdominal, genitourinary, pulmo-
nary, and skin or soft tissue infections and the patients  had   a non-
signifi cant change in volume of distribution [ 51 – 53 ]. Experience 
in patients with changing volume of distribution (e.g., pregnant, 
pediatric, or burn patients), spinal cord injury or gram-positive 
infections remains limited.  

   There have been many studies comparing different dosing strate-
gies of aminoglycosides, including several meta-analyses [ 60 – 64 ]. 
One meta-analysis showed no difference in bacteriologic cure, 
mortality, ototoxicity, or nephrotoxicity between EIAD and tradi-
tional dosing [ 61 ]. An explanation for the results is that many of 
the traditionally dosed patients could have achieved an optimal 
peak/MIC ratio, i.e., if the peak was 6 mg/mL and the MIC was 
0.5 mg/mL, this would result in a ratio of 12. Most of the meta- 
analyses have shown comparable ototoxicity or a decreased trend 
of ototoxicity with EIAD. Another meta-analysis by Barza et al. 
demonstrated lower nephrotoxicity with EIAD. Another study 
examining nephrotoxicity suggested that nephrotoxicity developed 
later in a course of therapy with the EIAD compared with tradi-
tional dosing, but with similar incidence for prolonged treatment 
courses [ 65 ].   

     Aminoglycosides concentrate preferentially within renal cortical 
cells. The uptake of aminoglycosides is nonlinear and saturable 
[ 66 ]. Phosphatidylinositol phospholipase A1 and A2 are inhibited 
by aminoglycosides causing lamellar body formation [ 67 ]. This 
causes both functional and structural damage within the proximal 
tubules. High concentration of aminoglycosides results in acute 
tubular necrosis [ 68 ], which has been reported in 5–15 % of 
patients after aminoglycoside therapy [ 69 ]. 

 Nephrotoxicity has been  well   described with aminoglycosides 
and usually manifests as an increase in serum creatinine, mild pro-
teinuria, hypophosphatemia, hypokalemia and hypocalcemia [ 70 ]. 
Rougier et al. sought to characterize the predictors for nephrotox-
icity as a single toxicity effect model [ 71 ]. The model demon-
strated with more frequently administered  doses  , the onset of 
nephrotoxicity was rapid, the extent pronounced, and the duration 
was prolonged. Interestingly, the authors also found a temporal 
 association   with nephrotoxicity where administration during peri-
ods of activity was associated with decreased nephrotoxicity. 

 Patient characteristics that have been associated with increased 
risk for nephrotoxicity are prolonged high trough levels >2 mg/L, 
duration of treatment greater than 2 weeks, underlying renal dys-
function, elderly, concomitant use of other nephrotoxic agents 
such as loop diuretics and vancomycin [ 72 ]. Aminoglycoside- 
associated nephrotoxicity is typically reversible after adequate 
hydration and discontinuation of therapy.  

6.1.4  Comparison 
of  EIAD vs. Traditional 
Dosing Strategies     

6.2   Toxicity  

6.2.1   Nephrotoxicity     
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   Treatment with aminoglycosides can lead to permanent hearing 
loss that is often bilateral. Hair cells and cochlear neurons are sus-
ceptible to aminoglycoside-induced oxidative damage due to the 
formation of reactive oxygen species [ 73 ]. High frequency hearing 
loss usually manifests before lower frequency hearing loss and can 
occur as soon as 4 h post treatment [ 74 ]. Vestibular dysfunction 
such as disequilibrium, nausea, vertigo and nystagmus can occur 
along with hearing loss. However, unlike hearing loss, vestibular 
dysfunction is often reversible [ 75 ]. 

 The likelihood of aminoglycoside ototoxicity is dependent on 
various factors such as route of administration, genetic susceptibil-
ity, and comorbid conditions. Administration through the tym-
panic membrane for the treatment of Meniere’s disease is less 
ototoxic compared with systemic administration [ 76 ,  77 ]. There 
have been a few studies suggesting a genetic predisposition to 
aminoglycoside ototoxicity. The most common genetic compo-
nent is a mitrochondrial mutation, A1555G, found on the 12S 
ribosomal RNA gene. In China, it was estimated that this muta-
tion accounts for 33–59 % of all aminoglycoside ototoxicity [ 78 ]. 
Another  report         from South Africa described a family who received 
streptomycin and was subsequently deafened. Molecular investi-
gations revealed the same mitochondrial mutation [ 79 ]. While 
genetic testing before treatment with aminoglycosides may iden-
tify patients at risk for ototoxicity, it is currently not well estab-
lished for routine clinical use.  

   Although rare, the aminoglycosides can cause neuromuscular tox-
icity or blockade. Presentation can include respiratory failure or 
muscle weakness. The mechanism of kanamycin induced neuro-
muscular toxicity is believed to involve the interference of calcium 
and acetylcholine release presynaptically [ 80 ]. Additionally, there 
have been reports of gentamicin exacerbating or unmasking myas-
thenia gravis [ 81 ], as well as prolonging the effect of  Clostridium 
botulism  toxin [ 82 ,  83 ]. Patients should be screened for coadmin-
istration of other neuromuscular blockers prior to aminoglycoside 
administration; special attention is also warranted for patients who 
receive aminoglycosides perioperatively.  

    Hypersensitivity reactions   are uncommon, but they can occur with 
both systemically and topically administered aminoglycosides [ 84 ]. 
 Hematological side effects   such as leukopenia and agranulocytosis 
are  rare   but have been reported [ 85 ].   

   Therapeutic drug monitoring ( TDM)      is often used to maximize 
the benefi t to risk ratio of antimicrobial therapy. Utilizing TDM 
for an individual patient is a way to personalize therapy, aiming to 
increase the probability of achieving therapeutic success and mini-
mizing the risk for toxicity [ 54 ,  86 ]. 

6.2.2   Ototoxicity     

6.2.3   Neuromuscular     
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   The aminoglycosides have a narrow therapeutic range and TDM of 
aminoglycosides is often performed clinically. When traditional 
dosing is used, typically both pre-infusion and post-infusion con-
centrations are measured. Post-infusion levels are usually drawn 
15–30 min after the end of the infusion and pre-infusion levels are 
drawn 15–30 min prior to the next scheduled administration time 
under steady-state conditions. Several studies have suggested that 
patient mortality is reduced if post-infusion concentrations are 
above 5–7 mg/L within the fi rst few days of treatment [ 27 ,  87 , 
 88 ]. For effi cacy, studies recommend serum post-infusion concen-
trations of 6–10 mg/L for gentamicin and tobramycin, and 20–40 
mg/L for amikacin. For example, in patients with pneumonia 
caused by gram-negative pathogens, Moore et al. found post- 
infusion levels >7 mg/L (gentamicin or tobramycin) or >28 mg/L 
(amikacin) increased the likelihood for therapeutic success com-
pared with post-infusion that were below these thresholds [ 88 ]. To 
reduce the likelihood of toxicity, the recommended pre-infusion 
concentrations were <2 mg/L for gentamicin and tobramycin, or 
<7 mg/L for amikacin [ 89 ,  90 ]. 

 EIAD of aminoglycosides does not require measurement of a 
peak but rather a serum concentration somewhere between 6 h 
post dose and the end of the dosing interval. Peaks are not usually 
required but some experts recommend checking a peak in patients 
with less predictable volume of distribution such as critically ill, 
obese, or burn patients [ 91 ]. It is important to keep in  mind   which 
type of dosing when ordering laboratory tests and interpreting the 
results. The time of the blood sampling also needs to be accurately 
reported in order to appropriately assess the level.  

   Monitoring for  nephrotoxicity   includes measuring baseline serum 
creatinine and at least 2–3 times weekly thereafter. Changes 
greater than 0.5 mg/dL may indicate potential nephrotoxicity. 
Monitoring of renal tubular markers (urinary casts and enzymes) 
has been  proposed to detect early renal damage and prevent fur-
ther damage [ 92 ,  93 ]. However, due to the lack of specifi city of 
these markers, they are not widely used. Patients who experience 
an increase in serum creatinine should be reevaluated whether 
aminoglycoside therapy should be continued or an alternate anti-
biotic is indicated. 

 According to the Academy of Audiology, patients who receive 
aminoglycosides should have pure-tone audiograms to monitor 
thresholds for conventional (8 kHz and below) and high-frequency 
regions (8–20 kHz) at baseline, once or twice weekly, then after 
drug discontinuation for several months [ 94 ]. Monitoring for ves-
tibular toxicity usually includes tests of vestibular-ocular refl ex, ves-
tibular autorotation or full-frequency rotary chair testing [ 95 ].   

6.3.1   Drug Serum 
Concentrations  

6.3.2   Toxicity Monitoring  
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     New born infants, especially premature neonates, have underdevel-
oped end organ functions and dynamic change in physiologic func-
tion that can predispose them to toxicity. A meta-analysis concluded 
that EIAD might be superior to traditional dosing in treating sep-
sis in neonates greater than 32 weeks gestation [ 96 ]. Another 
review reported that EIAD in neonates was safe and effi cacious, 
with a reduced risk of having peak and trough levels outside the 
therapeutic range [ 97 ]. 

 For pediatric patients, a meta-analysis showed no difference in 
effi cacy, nephrotoxicity, or ototoxicity between EIAD and multiple 
daily dosing [ 98 ].  

   Patients with CF often require higher daily doses of aminoglyco-
side compared to patients without CF due to their increased drug 
clearance [ 99 ]. Several meta-analyses have been completed by the 
Cochrane Collaborate [ 100 – 102 ]. The conclusions from these 
studies are that aminoglycosides administered once daily or multi-
ple times daily are equally effi cacious in treating pulmonary exacer-
bations in CF. Also, there is evidence to support less nephrotoxicity 
in children given aminoglycosides once daily compared to three 
times daily [ 101 ].  

   During the later stages of pregnancy, increases in extracellular fl uid, 
cardiac output, total body water, renal blood fl ow, and glomerular 
fi ltration up to 50 % can occur [ 103 ]. Aminoglycoside distribution 
and elimination are both affected by pregnancy, making aminogly-
coside pharmacokinetics widely variable [ 104 ,  105 ]. Pregnancy is 
often an exclusion criterion to many dosing nomograms [ 53 ,  106 , 
 107 ]. EIAD of aminoglycosides has been studied in postpartum 
women for endometritis with gentamicin doses ranging from 4 to 
5 mg/kg [ 108 – 111 ]. Although there is a risk for fetal toxicity, 
some experts recommend aminoglycoside use in patients with cho-
rioamnionitis, postpartum endometritis,  pyelonephritis  , pelvic 
infl ammatory disease, and other life threatening infections where 
the benefi ts outweigh the risks [ 103 ].  

   Dosing aminoglycosides in patients with chronic kidney disease on 
dialysis presents its own challenges. These patients lack intrinsic 
renal function and are not candidates for extended interval dosing 
of aminoglycosides due to reduced aminoglycoside clearance. One 
strategy that has been studied recently is to administer aminogly-
coside shortly before hemodialysis. Patients who received this dos-
ing still achieved high peak concentrations followed by 
aminoglycoside removal during dialysis, thus mimicking EIAD 
[ 18 ]. Using simulated patient data, studies suggest that predialysis 
dosing is able to achieve a Cmax of 8 mg/L and AUC between 10 
and 70 mg h/L over 24 h [ 16 ,  112 ].  

6.4  Special 
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   Burn patients are often in a hypermetabolic state with altered pro-
tein binding, drug distribution and clearance [ 113 ]. Burn patients 
have an extremely high rate of aminoglycoside elimination [ 114 –
 116 ]. These patients may require more frequent dosing intervals 
to achieve adequate drug concentrations [ 117 ,  118 ].    

7    Clinical Uses: Specifi c Infections 

 In the era of multidrug resistance, aminoglycosides are com-
monly used empirically along with another agent (beta-lactams or 
fl uoroquinolones) for sepsis, nosocomial pneumonia, and com-
plicated intra-abdominal infections suspected to be caused by 
gram- negative bacilli. Once susceptibilities are available, amino-
glycosides are often discontinued if the organism(s) are suscepti-
ble to other agents. Data have shown that combination therapy 
may not always be necessary in  Pseudomonas aeruginosa  bactere-
mia as long as the pathogen is susceptible to one of the antibiotics 
[ 119 ,  120 ]. 

   Aminoglycosides are used frequently in combination for empiric 
therapy of serious gram-negative infections. The addition of a 
second agent, such as an aminoglycoside, has been shown to 
increase the probability of achieving appropriate empiric antibi-
otic therapy [ 121 ]. Local susceptibility patterns should be con-
sidered when using combination therapy. Some experts 
recommend the addition of an aminoglycoside to broad-spec-
trum antibiotics when local resistance patterns demonstrate sig-
nifi cantly less than 90 % susceptibility for broad spectrum 
beta-lactams alone [ 122 ].  

   Aminoglycosides are used in the treatment of gram-positive endo-
carditis. This is based on in vitro data demonstrating synergy 
between penicillin and either gentamicin or streptomycin [ 123 , 
 124 ]. There have been randomized controlled trials for 
 Staphylococcus aureus  and  Streptococcus viridians  [ 125 – 129 ], but 
no randomized controlled trials for enterococcal endocarditis. A 
cell-wall active agent (ampicillin, penicillin, or vancomycin) plus 
gentamicin 1 mg/kg three times daily given for 4–6 weeks are 
recommended for susceptible enterococcal endocarditis [ 130 ]. A 
recent, pilot study reported using once daily gentamicin (3 mg/
kg) for a shorter course (2 weeks) [ 131 ]. Although additional 
studies are still needed, the authors found this regimen to be effi ca-
cious and less toxic than the previously recommended regimen of 
gentamicin for 4–6 weeks. 

 According to the Infectious Diseases Society of America and 
American Thoracic Society treatment guidelines on endocardi-
tis, EIDA is not recommended due to the confl icting data in 
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animal models of endocarditis [ 130 ]. Therefore, the use of the 
Hartford nomogram is not recommended in the setting of 
endocarditis. 

 The role of  gentamicin   in  S. aureus  endocarditis is less certain. 
Current recommendations are for gentamicin of 2 weeks in the 
presence of prosthetic material and 3–5 days in the absence of 
prosthetic material [ 130 ]. However, recent data have challenged 
the use of initial low dose aminoglycosides in  S. aureus  endocardi-
tis due to increased nephrotoxicity [ 132 ,  133 ].  

   Aminoglycosides are often used in pneumonia despite their poor 
penetration and variable concentration at the site of infection 
[ 134 ]. Currently, aminoglycosides are recommended in combina-
tion therapy with an antipseudomonal beta-lactam as an alternative 
to fl uoroquinolones in patients with health-care-associated pneu-
monia, health-care-acquired pneumonia, or ventilator-associated 
pneumonia [ 135 ]. Due to their poor penetration into the lungs, 
local instillation or aerosolization of aminoglycosides have been 
used in addition to systemic therapy and should be considered for 
patients with suspected pseudomonal infection or who are not 
responding to systemic therapy [ 135 ].  

   Although aminoglycosides lack activity against anaerobic patho-
gens, they are commonly used in combination with anaerobic agent 
for intra-abdominal infections. Aminoglycosides are currently rec-
ommended for health-care-acquired intra-abdominal infections in 
adults but not community acquired infections in favor of less toxic 
agents [ 136 ]. A meta-analysis was conducted to compare the effi ca-
cies of aminoglycoside based regimens with newer agents for intra-
abdominal infections [ 137 ]. However, due to their toxicity, the 
authors did not recommend aminoglycosides as fi rst- line therapy 
[ 137 ]. A Cochrane Collaborative review of different antibiotic regi-
mens for secondary peritonitis of gastrointestinal origin in adults 
found that aminoglycosides in addition to an anaerobic agent had a 
signifi cantly lower response rate compared to all other  regimens   
(OR 0.65, 95 % CI 0.46–0.92;  p  = 0.02) [ 138 ]. These data suggest 
that aminoglycoside combination therapies should not be used 
fi rst-line when alternative therapies are available.  

   Approximately 85–95 % of an aminoglycoside dose is excreted 
unchanged renally and a high concentration is achieved in the 
urine [ 139 ]. However, in lieu of safer agents, currently aminogly-
cosides are only recommended as alternative therapy in acute 
uncomplicated cystitis [ 140 ]. There is an ongoing debate whether 
or not aminoglycoside monotherapy is appropriate. According to a 
meta-analysis, urinary tract infections are the only place where ami-
noglycosides can be used as monotherapy [ 141 ].   
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8    Conclusion 

 With a better understanding of the pharmacokinetics, pharmacody-
namics, and toxicity, the clinical use of aminoglycosides has changed 
over the years. It represents one of the fi rst bedside applications of 
pharmacokinetics to individualized therapy. Landmark studies by 
legendary investigators have paved for how antibiotics would be 
used and save lives in the modern era. In most critically ill patients, 
they are commonly used to broaden the spectrum of empiric cover-
age. Various  nomograms   have been proposed to facilitate empiric 
dosing. When the aminoglycosides are used for defi nitive therapy, a 
more personalized approach to dosing (based on pathogen suscep-
tibility and prospective monitoring of drug concentrations) is 
widely adopted. Optimal dosing is expected to maximize the likeli-
hood of effi cacy and minimize (delaying the onset of) toxicity. With 
a better understanding of the resistance mechanisms, better syn-
thetic analogs are under (clinical) development. These next-gener-
ation aminoglycosides are expected to have better antimicrobial 
activity against contemporary drug-resistant pathogens.     
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    Chapter 10   

 Polymyxin Pharmacokinetics and Pharmacodynamics                     

     Soon-Ee     Cheah    ,     Jian     Li    ,     Phillip     J.     Bergen     , and     Roger     L.     Nation       

  Abstract 

   Polymyxin B and E (the latter more commonly known as colistin) were originally introduced into clinical 
medicine in the late 1950s for the treatment of infections caused by gram-negative pathogens. They fell 
into relative disuse during the next decade as concern about their potential to cause nephrotoxicity grew 
and other new antibiotics regarded at the time as less toxic became available. In more recent times, the 
polymyxins have been resurrected as an important component of the therapeutic armamentarium because 
of rising rates of resistance to other available antibiotics and the limited number of new antibacterial agents 
with activity against gram-negative pathogens emerging from the drug development pipeline. At the time 
of their original regulatory approval for clinical use the rigor of drug development and approval processes 
was substantially less than it is today and there was little information to guide clinicians in the optimal use 
of these agents. Over the last decade, the polymyxins have been subject to a “redevelopment” process, led 
by academic researchers and clinicians, and funded largely by public grant bodies around the world. The 
result has been a considerable increase in knowledge of the preclinical and clinical pharmacology of the 
polymyxins. This chapter reviews key aspects of the chemistry, microbiology, and especially the pharmaco-
kinetics and pharmacodynamics of both of the clinically available polymyxins. The similarities and differ-
ences between colistin and polymyxin B are highlighted as are the clinical implications for use of these 
important last-line antibiotics.  

  Key words     Colistin  ,   Colistin methanesulfonate  ,   Polymyxin B  ,   Pharmacodynamics  ,   Pharmacokinetics  , 
  Dose optimization  ,    P. aeruginosa   ,    A. baumannii   ,    K. pneumoniae   ,   Multidrug resistance  

1      Introduction 

 The polymyxins are a family of  antimicrobial peptides   (polymyxins 
A, B, C, D, E, F, M, P, S, and T) fi rst discovered in the 1940s from 
the soil bacterium   Paenibacillus polymyxa    [ 1 – 3 ]. Colistin, fi rst 
described in 1950 and obtained from  Pa. polymyxa  ssp.  colistinus  
[ 4 ], was subsequently determined to be identical with  polymyxin E   
[ 5 – 7 ]. Preclinical investigations demonstrated severe renal toxicity 
from polymyxins A, C, and D, and consequently only polymyxin B 
and colistin (polymyxin E) were further developed [ 8 – 12 ]. These 
two polymyxins were used clinically beginning in the late 1950s 
whereupon reports of nephrotoxicity and neurotoxicity following 
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parenteral administration began to emerge [ 13 – 21 ]. These  safety   
concerns led to declining use of the polymyxins in the 1970s as 
newer, supposedly safer antibiotics such as the  aminoglycosides   
began to replace them in the clinic. Colistin fi rst began making a 
comeback in the 1980s when reintroduced to manage respiratory 
infection or colonization by  Pseudomonas aeruginosa  in patients 
with  cystic fi brosis (CF)      [ 22 ]. More recently the increasing 
 incidence of infections caused by  multidrug-resistant (MDR)   
gram- negative organisms generally [ 23 ,  24 ], coupled with a lack of 
novel  antimicrobial agents   in development [ 25 ,  26 ], has led to a 
resurgence in interest in polymyxins as a last-line treatment. 
However, owing to their discovery prior to the modern era of drug 
development there was a major paucity of pharmacological and 
other scientifi c information with which to guide their reintroduc-
tion into the clinic. This situation has started to change over the 
last decade or so as modern drug development procedures have 
begun to be applied to the polymyxins. While signifi cant gaps still 
remain in our understanding of polymyxins and their optimal use, 
much progress has been made over this time. 

 This chapter reviews the current state of  microbiological and 
pharmacological knowledge   of the clinically used polymyxins, 
especially in relation to their pharmacokinetics (PK) and pharma-
codynamics (PD). The chemistry of the polymyxins, especially in 
the case of colistin, has a profound impact on both the PK and PD 
behavior of these antibiotics and is also reviewed briefl y. Clinical 
effi cacy is not reviewed in this chapter; readers interested in this 
area may consult other sources of information [ 27 – 31 ].  

2    Chemistry 

      Knowledge of the chemical structures of the polymyxins is essential 
for an understanding of their mechanism(s) of antibacterial activity 
and resistance. Both polymyxin B and colistin consist of a mixture 
of  D - and  L -amino acids arranged as a cyclic heptapeptide with a 
tripeptide side chain covalently linked to a fatty acyl tail; each 
 differs from the other by a single amino acid residue within their 
heptapeptide ring (Fig.  1 ). At physiological pH, 5 of the  L -α,γ- 
diaminobutyric acid (Dab) residues contained within the poly-
myxin structure are protonated, which in combination with the 
fatty acyl tail and other hydrophobic domains give polymyxins an 
amphipathic nature. As the polymyxins are of biological origin 
each consists of a mixture of products with differing amino acids 
and fatty acyl tails [ 32 – 35 ]. Variations in fatty acyl tail composition 
give rise to polymyxin B1 and B2 and colistin A and B which 
 combined account for approximately 85 % of total polymyxin B 
and colistin, respectively, in commercially available products [ 32 , 
 33 ,  36 ]. The ratios of polymyxin components within commercial 
products exhibit inter-batch and -supplier variability [ 36 ,  37 ]. 

2.1   Colistin   
and  Polymyxin B     

Soon-Ee Cheah et al.
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Harmonized limits on the minimum amount of colistin A and B 
together with three minor components in colistin products (≥77 % 
of the total content) have been established in the European (Ph. 
Eur) and British Pharmacopoeias (BP) [ 38 ,  39 ]. Similar limits have 
been established for polymyxin B, with both the Ph. Eur and BP 
establishing that no less than 80 % of total content is to consist of 
polymyxin B1, B2, and two minor components [ 38 ,  39 ]. Notably, 
similar composition limits for colistin or polymyxin B are absent 
from the United States Pharmacopeia (USP) [ 40 ].

       An important distinction between the two clinically used 
 polymyxins is their administered form. Polymyxin B is adminis-
tered parenterally as its sulfate salt while colistin is administered as 
the sodium salt of colistin methanesulfonate (CMS; also called 
colistimethate sodium, pentasodium colistimethanesulfate, and 
colistin sulfonyl methate) (Fig.  1 ) [ 41 ]. CMS is not a colistin salt 
but rather a derivative of colistin where free γ-amino groups of  L -

2.2  Colistin 
 Methanesulfonate     : 
An Inactive Prodrug 
of Colistin

  Fig. 1    The chemical structure of colistin ( a ), colistin methanesulfonate ( b ) and polymyxin B ( c ). Colistin A/
polymyxin B1: fatty acyl—6-methyloctanoic acid, colistin B/polymyxin B2: fatty acyl—6-methylheptanoic acid. 
Dab— L -α,γ-diaminobutyric acid       

 

Polymyxin Pharmacokinetics and Pharmacodynamics
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Dab residues within colistin are reacted with formaldehyde 
 followed by sodium bisulfi te [ 42 ,  43 ]. Variations in the number 
and position of γ-amino groups substituted by methanesulfonate 
(32 possible variations arising from fi ve available substitution sites), 
coupled with the variability in the ratios of colistin  components 
(Sect.  2.1 ) contribute to the complexity of CMS as a prodrug. 
Currently, none of the Ph. Eur, BP, and USP has  established limits 
on the minimum or maximum amount of each potential sulfo-
methylated derivative within a CMS product. Differences in the 
composition of CMS products may be responsible for the observed 
variability in PK of formed colistin  following intravenous adminis-
tration of different CMS products [ 44 ]. In aqueous media 
 including plasma, the methanesulfonate groups on CMS are 
cleaved to yield a mixture of partially sulfomethylated colistin 
derivatives and colistin itself [ 44 – 55 ]. Importantly, CMS does not 
exhibit any antimicrobial activity with observed  antibacterial      effects 
attributable to the gradual conversion of CMS to colistin via 
 cleavage of methanesulfonate groups [ 46 ]; CMS is thus an inactive 
prodrug of colistin. Stability studies conducted with CMS have 
shown that it undergoes  conversion to colistin at physiological 
temperatures (20 %  conversion to colistin within 12 h at 37 °C) 
and even at temperatures as low as −20 °C (a sample initially 
 containing 2.0 μg/mL CMS and no detectable colistin when 
stored for 2 months at −20 °C was found to contain ~0.4 μg/mL 
colistin and ~1.4 μg/mL CMS) [ 56 ]. Thus, CMS can undergo 
conversion to colistin not only in vivo but also in vitro. This 
 complicates the quantifi cation of CMS and colistin in biological 
fl uids. Specifi cally, unless care is taken ongoing conversion of the 
inactive prodrug CMS to the active drug colistin elevates colistin 
concentrations and lowers CMS concentrations within samples, 
which has the  potential to lead to spurious conclusions about the 
PK and PD of CMS/colistin [ 56 ]. Inaccurate PK and PD data 
relating to CMS/colistin from studies which have not prevented 
in vitro CMS conversion, in particular those studies employing 
 microbiological assays for measurement of “colistin” concentra-
tions, remain in the published literature [ 57 – 59 ] and the Product 
Information for parenteral products of CMS. The PK and PD 
implications arising from the chemistry of CMS and the  conversion 
of this inactive prodrug to colistin are discussed in detail in Sect.  4 .   

3    Spectrum of Activity, and Mechanisms of Antibacterial Activity, Resistance, 
and Toxicology 

    It is important to recognize that although colistin is administered 
parenterally as CMS, activity results from the formation of colistin, 
not CMS or its partially sulfomethylated derivatives [ 46 ]. As both 
colistin and polymyxin B are structurally very similar (Sect.  2.1 ), 

3.1   Spectrum   
of Activity 
and Susceptibility 
Testing

Soon-Ee Cheah et al.
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they share similar in vitro potencies (as measured by minimum 
inhibitory concentrations [MIC]      ) [ 60 ]. They are active against a 
range of common gram-negative organisms but have limited activ-
ity against gram-positive organisms. The binding selectivity of 
polymyxins to  lipopolysaccharide (LPS)     , which is present in the 
outer membrane (OM) of gram-negative organisms but absent in 
gram-positive organisms, is the likely cause of poor activity against 
gram-positive bacteria [ 61 ]. 

 In recently conducted large-scale surveillance studies of 
 antimicrobial susceptibility (Table  1 ), polymyxins demonstrated 
excellent antimicrobial activity (MIC 90  ≤ 2 mg/L) against prob-
lematic multidrug-resistant organisms such as  P. aeruginosa , 
 Acinetobacter  spp., and  Klebsiella  spp. [ 60 ,  62 – 64 ]. Polymyxins 
are also active (MIC 90  ≤ 2 mg/L) against a number of other 
 bacterial species including  Escherichia coli ,  Enterobacter  spp. and 
 Citrobacter freundii  [ 60 ,  62 ,  64 ,  65 ]. It should be noted that 
although resistance rates to colistin and polymyxin B remained 
stable against most clinical isolates between 2006 and 2009, a 
minor increase in resistance rates for  K. pneumoniae  was reported 
in Latin America and Asia [ 60 ]; it is possible that a lack of PK/PD 
knowledge resulting in suboptimal use of polymyxins contributed 
to this increase. The incorporation of novel PK/PD insights into 
therapy with polymyxins will be critical to the ongoing maintenance 
of their activity against problematic nosocomial pathogens [ 66 ].

      As colistin and polymyxin B are structurally very similar (Sect.  2.1 ) 
and display a high degree of cross-resistance [ 12 ,  60 ,  67 – 69 ], they 
are believed to share the same mechanism of antibacterial action. 
References to the “polymyxins” in this section thus apply to both 
colistin and polymyxin B. Although the mechanism of action of 
polymyxin antibiotics has not been fully elucidated, several interac-
tions critical to polymyxin activity have been identifi ed. The initial 
target of the polymyxins against gram-negative bacteria is LPS, the 
principal component of the outer leafl et of the OM. Interaction is 
initiated by electrostatic attraction between the cationic amine 
functionalities on polymyxin Dab amino acid residues and the 
anionic phosphate and carboxylate functionalities on the lipid A 
and core-oligosaccharide LPS domains [ 70 – 72 ]. The electrostatic 
attraction of polymyxins for LPS is at least three orders of magni-
tude higher than the native divalent cations (Ca 2+  and Mg 2+ ) which 
stabilize the OM [ 73 ,  74 ], competitively displacing them from 
lipid A and enabling the hydrophobic fatty acyl tail and  D -Phe- L - 
Leu (polymyxin B) or  D -Leu- L -Leu (colistin) hydrophobic domains 
of the polymyxin molecule to be inserted into the OM. Although 
subsequent events are not completely understood this process is 
believed to weaken the packing of adjacent lipid A fatty acyl chains 
causing considerable disruption and further permeabilization of 
the membrane, including to the peptide itself, a process termed 

3.2   Mode of Action  

Polymyxin Pharmacokinetics and Pharmacodynamics
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“self-promoted uptake” [ 75 ]. That polymyxin B nonapeptide 
(which does not contain a fatty acyl tail) and CMS (which has 
methanesulfonate moieties masking the primary amines) are devoid 
of antimicrobial activity highlights the importance of both the 
hydrophobic and electrostatic interactions between polymyxins 
and the bacterial OM. Once the OM has been breached,  polymyxins 
interact with anionic phospholipids of the cytoplasmic membrane 
in a process driven by electrostatic and hydrophobic interactions 
[ 71 ,  76 ,  77 ]. This once again is believed to lead to membrane 
 disruption and increased permeability, causing membrane depolar-
ization and leakage of cell contents [ 61 ]. 

 While it was originally proposed that the permeabilization of 
bacterial cell membranes and subsequent leakage of cell contents 
was the sole mode of action of the polymyxins, alternative 
 mechanisms of action have been suggested [ 71 ,  76 ,  78 – 86 ]. In an 
effort to better understand the mechanism(s) of action, several 
studies have examined the potential downstream effects of 
  polymyxins   following uptake into bacterial cells. Notably,  inhibition 
by polymyxin B of enzymes critical for cellular respiration such as 
NADH- quinone oxidoreductase and NADH dehydrogenase [ 78 ], 
as well as inhibition of translation [ 85 ] have been demonstrated 
and proposed as additional mechanisms of action. The formation 
of  reactive oxygen species (ROS)      has also been implicated as a 
potential mechanism of action for polymyxins [ 79 ], although 
doubts about the importance of ROS to antimicrobial activity have 
been raised [ 87 ]. The loss of the compositional specifi city of each 
membrane resulting in an osmotic imbalance in the absence of cell 
lysis or cytoplasmic leakage [ 80 – 83 ] and the arrest of cell prolifera-
tion [ 84 ] have also been suggested as possible mechanisms of 
action. However, the precise mechanism(s) by which polymyxins 
ultimately kill bacterial cells is still unknown and awaits further 
investigations.  

    Mechanisms of polymyxin resistance were initially investigated in 
the 1970s and revisited recently following the increase in clinical 
use of polymyxins. To date the resistance mechanisms identifi ed in 
gram-negative bacteria have focused on attenuation of the initial 
binding between polymyxins and LPS (see Sect.  3.1 ); although 
resistance via the synthesis of colistinase has been reported in  Pa 
polymyxa  ssp.  colistinus , this resistance mechanism has not been 
identifi ed in any other bacterial strain [ 88 ]. The similarities in the 
mechanism of action between polymyxin B and colistin give rise to 
cross-resistance between the two antibiotics [ 12 ,  60 ,  67 – 69 ]. 

 In  K. pneumoniae , upregulation in  capsule polysaccharide gene 
expression   led to increased polymyxin resistance [ 89 ]. It has been 
proposed that capsule polysaccharide functions as a barrier 
 preventing binding of polymyxins to LPS situated on the OM of 
gram-negative bacteria [ 90 ]. Modifi cations to the composition of 

3.3   Mechanisms 
of Resistance  
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the OM have also been shown to confer  resistance   to polymyxins. 
The fi rst involves the substitution of phosphate groups on the 
lipid A component of LPS with 4-amino-4-deoxy- L -arabinose or 
 phosphoethanolamine, reducing the overall negative charge on 
lipid A and attenuating the initial electrostatic interaction between 
the bacterium and polymyxin [ 91 – 93 ]. As a consequence, binding 
to the outer membrane and subsequent self-promoted uptake is 
reduced or inhibited. This substitution has been shown to be 
 regulated by two-component regulatory systems such as PhoP-
PhoQ and PmrA-PmrB [ 94 – 96 ], that are upregulated in response 
to polymyxins and elevated cation concentrations, and have been 
observed in  Acinetobacter baumannii ,  P. aeruginosa ,  K. pneu-
moniae ,  Salmonella enterica , and  E. coli . A second mechanism 
which to date has only been observed in  A. baumannii  involves 
the total loss of LPS from the OM caused by a point mutation in 
the   lpx  gene   [ 97 ]. Polymyxin  heteroresistance   (the presence of 
preexisting resistant subpopulations within an isolate that is 
 susceptible based upon its minimum inhibitory concentration 
[MIC]) has been identifi ed in  A. baumannii ,  P. aeruginosa , 
 Enterobacter cloacae , and  K. pneumoniae  [ 98 – 105 ]. As discussed 
in Sect.  5.2 , the resistant subset of the bacterial population is 
amplifi ed during polymyxin treatment resulting in signifi cant 
 bacterial regrowth [ 99 ,  105 ,  106 ].  

   Nephrotoxicity, though almost always reversible, represents the 
key dose-limiting toxicity associated with polymyxin therapy [ 107 – 109 ]. 
Concerns regarding nephrotoxicity were primarily responsible for 
the decline in polymyxin use in the 1970s as newer classes of 
 antibiotics such as the aminoglycosides were introduced into the 
clinical setting. Studies in critically ill patients have reported a wide 
range of nephrotoxicity rates. However recent studies report rates 
of acute kidney injury of ~30–55 % with standard CMS dosages 
[ 108 ,  110 – 112 ] and a rate of ~14–42 % for polymyxin B [ 31 ,  113 –
 115 ]. In a study of 173 critically ill patients that compared the 
incidence of nephrotoxicity following administration of either 
CMS ( n  = 106) or polymyxin B ( n  = 67), Akajagbor et al. [ 114 ] 
demonstrated lower rates of nephrotoxicity for polymyxin B 
 compared with that of CMS (41.8 % vs. 60.4 %,  p  = 0.02). Another 
comparative study of CMS and polymyxin B by Phe et al. [ 115 ] 
involving 225 patients with normal renal function (CMS,  n  = 121; 
polymyxin B,  n  = 104) showed a similar trend, with nephrotoxicity 
occurring in 23.1 % of polymyxin B treated patients compared with 
33.9 % in patients receiving CMS ( p  = 0.08). 

 While the exact mechanism by which polymyxins cause 
 nephrotoxicity is unknown, studies with polymyxin B have indi-
cated that it induces apoptosis in kidney proximal tubular cells in a 
concentration- dependent manner [ 116 ,  117 ]. It has been postu-
lated that extensive tubular reabsorption of polymyxin increases 

3.4   Toxicity  
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intracellular exposure in kidney cells, leading to the nephrotoxicity 
observed in clinical settings [ 118 ]. In animal models various agents 
including  N -acetylcysteine, melatonin, ascorbic acid, and heme 
oxygenase-1 have been reported to have nephroprotective 
 properties when co-administered with polymyxins [ 119 – 122 ]. 
However, clinical investigations into the co-administration of 
nephroprotective agents with polymyxins have not been reported 
and as such the implications of these fi ndings are unclear. 

 A second but less frequently reported toxicity associated with 
polymyxins is neurotoxicity including dizziness, weakness, 
 polyneuropathy, facial and peripheral paresthesia, partial deafness, 
vertigo, visual disturbance, confusion, ataxia, and neuromuscular 
blockade which can lead to respiratory failure and apnea [ 123 ]. 
Several reports of polymyxin-induced respiratory apnea following 
intramuscular administration were published in  the   late 1960s [ 16 , 
 124 ,  125 ], but only three case reports (two for polymyxin B and 
one for colistin) of neurotoxicity (paraesthesia and apnea) have 
been published in the last 10 years [ 126 ,  127 ]. However, 
 neurotoxicity may be underreported as many patients requiring 
polymyxins are sedated and under mechanical ventilation which 
makes assessment diffi cult [ 27 ]. It has been proposed that 
 polymyxins act presynaptically by interfering with the release of 
acetylcholine, giving rise to neurotoxicity in a dose-dependent 
manner [ 128 ]. 

 There remains a need to gain a greater understanding of the 
factors which contribute to both nephrotoxicity and neuro toxicity 
  arising from the polymyxins and to investigate potential strategies 
for minimizing or removing the risk of toxicity. This would increase 
the therapeutic index of these agents and allow administration of 
higher daily doses to more effectively kill bacteria and suppress 
emergence of resistance.   

4     Pharmacokinetics 

 The majority of investigations into the PK of polymyxins have 
examined CMS and colistin and can be broadly classifi ed by 
 polymyxin quantifi cation methods. Prior to the relatively recent 
introduction of  high-performance liquid chromatography (HPLC)      
and liquid chromatography tandem mass spectrometry (LC-MS 
and LC-MS/MS) assays for the quantifi cation of polymyxin 
 concentrations [ 129 – 137 ], measurements were performed using 
microbiological assays [ 57 ,  58 ]. However, quantifi cation by  micro-
biological assay   of either “CMS” or “colistin” following administra-
tion of CMS is unable to differentiate between colistin present in 
the sample at the time of collection from that formed subsequently 
from CMS during the incubation period of the assay [ 46 ]. Such a 
situation results in an underestimation of the concentration of CMS 
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in the sample and, most importantly, an overestimation of the colis-
tin concentration. A second key shortcoming in microbiological 
assays is their poor specifi city, particularly in samples containing one 
or more co-administered antibiotics which are commonplace in 
critically ill patients. As the information provided by  microbiological 
assays may not be a true refl ection of the time-course of polymyxin 
plasma concentrations, only research articles that have utilized 
chromatographic polymyxin quantifi cation methods have been 
included in this review. 

   The PK of polymyxins in animals has been primarily characterized 
in rodents, which are routinely used to investigate polymyxin 
microbiological activity and nephrotoxicity. As is the case in 
humans (discussed below), both colistin and polymyxin B are 
cleared primarily via non-renal routes of elimination (Figs.  2  and  3 ) 
[ 47 ,  48 ,  50 ,  118 ,  138 ,  139 ]. In rats, intravenously administered 
colistin (sulfate; 1 mg/kg) was shown to undergo extensive 
 reabsorption in the renal tubules by a carrier-mediated process, 

4.1  Polymyxin 
Pharmacokinetics 
in  Animals  

  Fig. 2    Schematic of the processes that infl uence the disposition of formed colistin following administration of 
CMS. The relative magnitudes of pathways when kidney function is normal are indicated by the thickness of 
the  arrows        
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  Fig. 3    Schematic of the processes that  infl uence   the disposition of polymyxin B. The relative magnitudes of 
pathways when kidney function is normal are indicated by the thickness of the  arrows        

resulting in less than 1 % of the intravenously administered dose of 
colistin being recovered in urine [ 138 ]. The mean peak colistin 
concentration ( C  max ) achieved was ~2.5 mg/L at 10 min, which 
declined to ~0.2 mg/L at 240 min; the mean half-life ( t  ½ ) was 
~75 min. A similarly minor contribution of renal clearance to total 
clearance for polymyxin B has been observed in rats, with less than 
1 % of administered polymyxin B (4 mg/kg intravenously; 
 polymyxin B1 free base quantifi ed in urine collected over 48 h) 
recovered unchanged in urine; the  t  ½  was very similar to that of colis-
tin (~87 min) [ 140 ]. In mice, Dudhani et al. [ 141 ] reported the  t  ½  
and  C  max  of unbound colistin following subcutaneous administration 
of colistin (sulfate; dose range 5–40 mg/kg/day) ranged between 
~18 min and 85 min and ~0.3 mg/L and 9 mg/L, respectively, 
increasing in a dose-dependent manner.

    Unlike colistin and polymyxin B, it is apparent that CMS 
undergoes tubular secretion and is predominantly renally cleared 
(Fig.  2 ). Subsequent to the initial study by Li et al. [ 138 ], where 
colistin was directly administered to rats, the same authors 
 conducted further studies in which rats were administered CMS 
intravenously (single intravenous bolus of 15 mg/kg) [ 47 ]. The 
 C  max  of formed colistin was achieved within 10 min indicating rapid 
conversion of CMS to colistin. The terminal  t  ½  of formed colistin 
was approximately twice that of the administered CMS 
(55.7 ± 19.3 min versus 23.6 ± 3.9 min) indicating the elimination of 
colistin is not rate limited by its formation from CMS, and was similar 
to the  t  ½  of colistin administered directly [ 47 ,  138 ]. Comparison of 
the dose-normalized area under the concentration–time curve (AUC) 
of colistin which formed following administration of CMS with 
that of colistin administered directly enabled the fraction of the 
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dose of CMS converted systemically to colistin to be estimated. 
This comparison revealed that only a very small proportion (~7 %) 
of administered CMS was converted systemically to colistin. 
Subsequently, the disposition of formed colistin following CMS 
administration in rats has shown high inter-manufacturer  variability 
[ 44 ,  47 ,  49 ]. In a study examining the disposition of formed 
 colistin following administration of CMS from four different 
 manufacturers from three different continents, He et al. [ 44 ] 
observed  statistically   signifi cant ( p  = 0.0121) differences in colistin 
AUC 0–180 min  between the various CMS manufacturers. The ratio of 
AUC 0–∞  of formed colistin to CMS displayed up to twofold 
 variation between manufacturers (1.68 ± 0.35–3.29 ± 0.43 %). This 
variation may arise from differences in sulfomethylated colistin 
derivative content within commercial CMS products, with each 
derivative potentially having a different elimination or conversion 
rate. This was an important observation as it demonstrated the 
 different brands of CMS gave rise to different exposures to the 
microbiologically active formed colistin despite each having similar 
 elemental compositions. Notably, the conversion of CMS to 
 colistin appeared to occur at a faster rate compared to in vitro 
 conversion,  suggesting the potential contribution of mechanisms 
other than spontaneous chemical hydrolysis toward the in vivo 
conversion of CMS to colistin [ 44 ,  47 ].  

    Both CMS and polymyxin B are most commonly administered to 
patients intravenously, especially in the case of critically ill patients. 
The largest published clinical PK study ( n  = 105) examining the 
disposition of colistin following intravenous CMS administration 
in critically ill patients (median daily dose of colistin base activity 
[CBA], 200 mg; range, 75–410 mg) identifi ed an inverse relation-
ship between average steady-state concentrations ( C  ss,avg ) of formed 
colistin and  creatinine clearance (CrCL)      [ 50 ]. This relationship 
stems from a reduction in the renal clearance of CMS increasing its 
availability for conversion to colistin; thus the apparent clearance of 
formed colistin correlates with creatinine clearance. However, 
 renal impairment   did not have any direct infl uence on colistin 
 elimination, with a terminal  t  ½  of ~10–13 h across a wide range of 
 CrCL   values. The terminal  t  ½  of colistin was longer than that of 
CMS resulting in smaller peak to trough fl uctuations when 
 compared to CMS (Fig.  4 ), with the  C  ss,avg  for formed colistin in 
patients ranging from 0.48 to 9.38 mg/L (median, 2.36 mg/L). 
Smaller- scale studies investigating the PK of colistin following 
intravenous administration of CMS in critically ill patients found 
no association with renal function, probably due to the smaller 
sample sizes and exclusion of patients with low creatinine clearance 
values [ 52 ,  53 ]. In these studies the reported  t  ½  of CMS was ~2.2 h 
and for colistin between 14.4 and 18.0 h. A notable exception is 
the study by Imberti et al. [ 55 ] in critically ill patients ( n  = 13) 

4.2  Clinical 
Pharmacokinetics 
of Polymyxins
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where a comparatively short  t  ½  of 5.9 ± 2.6 h for formed colistin 
was reported.

   Differences in the disposition of  colistin   have been observed in 
various patient groups other than the critically ill. In burns patients 
administered CMS, the population  t  ½  of formed colistin was 6.6 h, 
shorter than observed in critically ill patients [ 54 ]. Li et al. [ 48 ] 
investigated 12 patients with CF receiving intravenous CMS (1–2 
million IU [equivalent to 30–60 mg CBA] 8-hourly). Colistin was 
rapidly formed in vivo, while steady-state  C  max  ( C  max,SS ) ranges for 
CMS and colistin in plasma were 3.6–13.2 mg/L and 1.2–
3.1 mg/L, respectively. The  t  ½  of formed colistin at steady state 
was approximately twice that of the administered CMS (4.2 ± 1.3 h 
versus 2.1 ± 0.87 h) and considerably shorter than reported in 
 critically ill patients. In healthy young adult volunteers adminis-
tered CMS (1 million IU [equivalent to 30 mg CBA] infused over 
1 h), the mean  t  ½  of CMS and colistin was 2 h and 3 h respectively, 
with corresponding  C  max  values of 4.8 and 0.83 mg/L [ 142 ]. 
Importantly, in this study ~70 % of the administered dose of CMS 
was excreted in the urine as both CMS and colistin, the latter very 
likely having formed in the urinary tract. This is a very similar  fi nding 
to that of Li et al. [ 47 ] in rats and arises because the renal clearance 
of CMS is substantially higher than the conversion  clearance of CMS 
to colistin. In light of these fi ndings, conclusions arising from PK 
studies conducted using CMS/colistin are not applicable to poly-
myxin B, as the latter is not administered as a prodrug. Across all 

  Fig. 4    Steady-state plasma concentration–time profi les of CMS ( a ) and formed colistin ( b ) in 105 critically ill 
patients (89 not on renal replacement, 12 on intermittent hemodialysis and four on continuous renal replace-
ment therapy), illustrating the relatively level PK profi les for formed colistin concentrations in contrast to the 
pronounced peak and trough seen in CMS concentrations [ 50 ]. Copyright © 2011, American Society for 
Microbiology. All Rights Reserved       
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reviewed articles, reported plasma colistin  concentrations following 
intravenous administration of CMS in patients tended to range 
between 1.0 and 10.0 mg/L, with the majority of measured 
 concentrations below 5.0 mg/L [ 48 ,  50 ,  52 – 54 ]. 

 Polymyxins may also be administered by inhalation, a route of 
administration common in patients with CF but also increasingly 
used for patients suffering pneumonia [ 143 ,  144 ]. Following 
administration by inhalation, both CMS and colistin are well 
localized in the lungs, although a small amount of systemic absorp-
tion may occur [ 145 – 147 ]. Consequently, high colistin concen-
trations are achieved within  bronchoalveolar lavage (BAL)         fl uid or 
sputum with signifi cantly lower concentrations observed systemi-
cally. A pharmacokinetic study examining CMS (2 million IU; 
equivalent to ~60 mg CBA) inhalation in CF patients reported 
peak concentrations of formed colistin (polymyxin E1 quantifi ed) 
( C  max ) in sputum and plasma of ~40 mg/L and 0.17 mg/L, 
respectively [ 148 ], while a separate study investigating the dispo-
sition of  colistin after inhalation of CMS (1 million IU; equivalent 
to ~30 mg CBA) in critically ill patients observed a colistin  C  max  in 
epithelial lining fl uid of 6.7 and 1.6 mg/L in plasma [ 149 ]. In a 
crossover study that compared the disposition of formed colistin 
following intravenous (dose equivalent to 150 mg CBA) and 
inhaled CMS (two dose levels equivalent to 60 and 120 mg CBA) 
in 6 CF patients, Yapa et al. [ 147 ] evaluated the ratio of dose 
 normalized AUC 0–12 h  in sputum and plasma following nebulized 
CMS administration divided by the same ratio following intrave-
nous administration to obtain a  drug targeting index (DTI)     . 
Nebulization of CMS resulted in relatively high sputum concen-
trations of CMS and formed colistin compared to those resulting 
from IV administration, with a  DTI   of 15952 and 31 for CMS 
and formed colistin, respectively. This result demonstrated the 
effective targeting of CMS and formed colistin delivery to the 
lungs in CF patients via inhalation, with very low exposure to 
these compounds in the systemic circulation thereby potentially 
sparing the  kidneys  . 

 Compared to CMS/colistin, far fewer clinical studies have 
examined the PK of intravenous polymyxin B in critically ill 
patients. The largest published clinical PK study ( n  = 24) reported 
a population mean  t  ½  for polymyxin B of 11.9 h, with a population 
 C  ss,avg  of 2.79 ± 0.9 mg/L (range 0.68–4.88 mg/L) [ 118 ]; the 
dose range of intravenous polymyxin B in this study was 0.45–
3.38 mg/kg/day. Similar results have been reported in several 
smaller clinical studies [ 139 ,  150 ,  151 ]. Sandri et al. [ 139 ] 
 examined the disposition of polymyxin B in 2 patients on  renal 
replacement therapy   and found that the PK of polymyxin B in this 
patient group and non-renally impaired patients [ 118 ] were  similar. 
Clearly, there is an urgent need for larger studies on the clinical PK 
of polymyxin B. Additionally, there is also a signifi cant gap in 
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 information available pertaining to the disposition of polymyxin B 
following inhalation and further research is required to ensure its 
judicious use in the treatment of pneumonia [ 152 ]. 

 The difference in the administered form of the two polymyx-
ins has a profound impact on their overall disposition in patients. 
Specifi cally, colistin formation and thus exposure (as measured 
by AUC 0– t  ) is dependent upon the interplay between the in vivo 
 conversion of colistin from CMS and the relatively more effi cient 
renal clearance of the  prodrug   (Fig.  2 ). This situation leads to a 
slow rise in colistin plasma concentrations after initiation of CMS 
therapy, even when loading doses are employed [ 52 ]. In contrast 
the disposition of polymyxin B is relatively  simple   (Fig.  3 ) 
 compared to that of CMS/colistin owing to its administration in 
the form of the active species. This enables steady-state concen-
trations of  polymyxin B to be rapidly achieved with loading doses 
[ 118 ]. Given the importance of AUC to the activity of polymyx-
ins (Sect.  5.3 ), it has been proposed that compared to CMS/
colistin, the clinical PK properties of polymyxin B are better 
suited to achieving optimal polymyxin activity for those infec-
tions where it is important to rapidly and reliably attain antibac-
terial  concentrations in the systemic circulation [ 41 ]. CMS may 
be expected to be a  better option than polymyxin B for treat-
ment of  urinary tract infections   due to the relatively high con-
centrations of CMS (and subsequently formed colistin) within 
the urinary tract (Fig.  2 ) [ 41 ]. Further clinical studies are 
required to examine and identify potential differences in the rel-
ative clinical effi cacy between the two polymyxins for different 
types of infections.   

5    Pharmacodynamics of Polymyxins 

   At present, globally harmonized susceptibility breakpoints for 
polymyxins have not been established and there remains variation 
in the breakpoints set between laboratory standards organizations 
for various bacterial species (Table  2 ). This situation is further 
complicated by a lack of standardization of in vitro testing  methods. 
MIC determinations are routinely performed for polymyxins by 
disk diffusion, agar dilution, broth microdilution, and E-test 
 methods, with the latter three methods showing  high   concordance 
[ 98 ,  153 – 155 ]. CMS should not be used for MIC determination 
as it is an inactive prodrug which undergoes gradual conversion to 
colistin (Sect.  2.2 ); all currently available breakpoints for colistin 
susceptibility are for colistin sulfate.

       The majority of in vitro studies examining the PD of polymyxins 
(both static and dynamic [PK/PD] time-kill models) have used 
colistin. The rate and extent of polymyxin-induced bacterial killing 

5.1   Susceptibility 
Testing  

5.2   In Vitro 
Pharmacodynamics   
of Polymyxins
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increases in a concentration-dependent manner [ 67 ,  99 ,  105 ,  106 , 
 156 – 159 ]. At concentrations near or above the MIC of an isolate 
rapid bacterial killing of several Log 10  colony forming units per mL 
(CFU/mL) is observed within as little as 5 min; this is shown in 
Fig.  5  for  K. pneumoniae  and is similar in other relevant gram- 
negative pathogens such as  P. aeruginosa  and  A. baumannii  [ 99 , 
 105 ,  106 ]. Polymyxins are subject to an inoculum effect such that 
both the rate and extent of killing are markedly attenuated at high 
bacterial inocula [ 67 ,  103 ,  160 – 163 ]. Through the use of mathe-
matical modeling Bulitta et al. [ 160 ] found that the rate of  bacterial 
killing by  colistin   against  P. aeruginosa  decreased with increasing 
inocula, with killing of susceptible bacterial populations sixfold 
slower at an inoculum of 10 8  CFU/mL and 23-fold slower at an 
inoculum of 10 9  CFU/mL compared to an inoculum of 10 6  CFU/
mL. Additionally, the concentration of colistin required to achieve 
a ≥3-Log 10  CFU/mL reduction in the bacterial population was up 
to 32-fold higher at the 10 9  CFU/mL inoculum compared to the 
10 6  CFU/mL inoculum. The inoculum effect remains in need of 
further investigation as neither the biological mechanisms which 
underpin this effect nor its clinical implications are fully under-
stood. However, the existing data suggest a potential need for 
higher colistin exposure or combination regimens when treating 
infections with high inocula.

   Despite initial rapid and extensive bacterial killing a consistent 
fi nding with polymyxin monotherapy is bacterial regrowth follow-
ing a delay of between 6 and 24 h, even at exposures well beyond 

   Table 2  
  Summary of susceptibility breakpoints for colistin and polymyxin B   

  Entero
bacteriaceae  

  Pseudomonas  
spp. a  

  Acinetobacter  
spp. 

 Other 
Non-  Entero
bacteriaceae  

 Laboratory 
Organization 

 Version 
(Year)  Drug 

 Susceptibility breakpoints (mg/L) b  

 S  I  R  S  I  R  S  I  R  S  I  R 

 EUCAST  Ver. 4.0 
(2014) 

 Colistin  ≤2  –  >2  ≤4  –  >4  ≤2  –  >2  –  –  – 

 CLSI  M100-S23 
(2013) 

 Colistin and 
Polymyxin B 

 –  –  –  ≤2  4  ≥8  ≤2  –  ≥4  ≤2  4  ≥8 

 BSAC  Ver. 12 
(2013) 

 Colistin  ≤2  –  >2  ≤4  –  >4  ≤2  –  >2  –  –  – 

   a CLSI M100-S23 contains separate sections for  P. aeruginosa  and  Pseudomonas  spp. with identical breakpoints; either 
breakpoint may be altered in future versions of CLSI M100 
  b  S  susceptible,  I  intermediate,  R  resistant, – no breakpoint determined  
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clinically achievable concentrations (e.g., up to 200 mg/L) [ 156 ]. 
Such  regrowth      has been reported for  P. aeruginosa  [ 67 ,  103 ,  160 , 
 163 ,  164 ],  K. pneumoniae  [ 99 ,  101 ,  162 ] and  A. baumannii  
[ 100 ,  106 ,  158 ,  161 ,  165 ]. In these and other bacterial species, 
population analysis profi les have revealed a small proportion of 
preexistent colistin-resistant cells in many clinical isolates deemed 
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  Fig. 5    Killing curves of colistin against four colistin-susceptible or -heteroresistant isolates of  K. pneumoniae : 
( a ) colistin-heteroresistant reference strain (ATCC 13883, MIC of 1 mg/L), ( b ) colistin-heteroresistant clinical 
isolate (MIC of 0.125 mg/L), ( c ) colistin-heteroresistant clinical isolate (MIC of 1 mg/L), and ( d ) colistin-suscep-
tible clinical isolate (MIC of 1 mg/L). The  y -axis begins from the limit of detection and the limit of quantifi cation 
(LOQ) is indicated by the  dotted horizontal line . Reproduced from Poudyal et al. [ 99 ] with permission from 
Oxford University Press       
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susceptible based upon  MIC   testing (i.e., colistin heteroresistance). 
The combined contribution of constitutive (amplifi cation of preex-
isting resistant subpopulations—see Sect.  3.3 ) and adaptive 
 resistance mechanisms have been proposed by the authors of these 
studies as an explanation for the observed regrowth [ 67 ,  99 ,  105 , 
 106 ,  156 ,  157 ]. Such observations suggest that emergence of 
colistin resistance may occur with colistin monotherapy. As 
 discussed below, polymyxin combination therapy has been 
 suggested as a means to enhance bacterial killing and minimize the 
emergence of resistance [ 50 ,  166 – 168 ]. 

 The magnitude of the  post-antibiotic effect (PAE)      following 
polymyxin exposure varies between bacterial species. A modest PAE 
has been reported with high concentrations of colistin against  P. 
aeruginosa  and  K. pneumoniae  [ 99 ,  106 ,  157 ], while uncertainty 
surrounds the presence of a PAE for colistin against  A. baumannii  
[ 106 ,  169 ]. Against  P. aeruginosa , a PAE of 2–3 h was noted in 
three isolates at colistin concentrations of 16× MIC after a 15 min 
exposure [ 157 ]. In  K. pneumoniae , a smaller PAE of 1.6 h was 
reported against reference strain ATCC 13883 at 64× MIC while 
no PAE was observed in any of 21 clinical isolates tested [ 99 ,  169 ]. 
Confl icting PAE values have been published in the  literature for  A. 
baumannii  [ 106 ]. Owen et al. [ 106 ] reported a modest PAE (1.0 h 
at 16× MIC, 2.3 h at 32× MIC, and 3.5 h at 64× MIC) for colistin 
against  A. baumannii  ATCC 19606  following a 20-min exposure, 
but negative PAE values (−0.8 to −8.15 h) in 5 clinical isolates 
examined. In contrast, Plachouras et al. [ 169 ] observed a signifi cant 
PAE (3.9 h at 1× MIC and 4.48 h at 4× MIC across 19 isolates) 
against  A. baumannii   following a 5-h exposure to colistin. It should 
be noted that the length of colistin exposure differed signifi cantly 
between the two studies, which may have contributed to the 
 variation in magnitude of the PAE. Clinically, the implications of 
polymyxin PAE are unclear  particularly as both colistin and 
 polymyxin B have a long  t  ½  that reduces  the   magnitude of fl uctua-
tions in polymyxin plasma concentration. 

 In addition to static time-kill experiments, a small number of 
studies have utilized dynamic in vitro PK/PD models to simulate 
the PK of polymyxins in critically ill patients and patients with CF 
[ 67 ,  158 ,  164 ]. These experimental models provide critical insights 
into the infl uence of dosing regimens on polymyxin PD during 
therapy, simulating the peaks and troughs in drug concentrations 
seen during intermittent dosing [ 170 ]. In a hollow-fi ber infection 
model Tam et al. [ 67 ] investigated the effect of three different 
polymyxin B dosage regimens involving 8, 12, and 24 h dosage 
intervals ( C  max  of 5.3 mg/L, 8.0 mg/L, and 16.0 mg/L, 
 respectively) on activity against  P. aeruginosa . Following extensive 
initial bacterial killing, substantial regrowth was observed with all 
 regimens even with exposures eight times the recommended daily 
dose; additionally, the emergence of polymyxin B-resistant colo-
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nies was observed following 72 h of polymyxin exposure. Similar 
observations were made by Bergen et al. [ 164 ] and Tan et al. [ 158 ] 
using colistin in a one-compartment PK/PD model against  P. 
aeruginosa  and  A. baumannii , respectively. In both these studies 
overall bacterial killing with three intermittent dosage regimens 
involving 8, 12, and 24 h dosage intervals ( C  max  of 3.0 mg/L, 
4.5 mg/L, or 9.0 mg/L respectively) was similar for each species, 
although regrowth was much more rapid for  A. baumannii . 
Against  P. aeruginosa , colistin resistance emerged gradually over 
the 72 h duration of the experiment and was greater with dosing 
regimens incorporating higher doses of colistin administered less 
frequently [ 164 ]. In contrast, there was rapid and extensive emer-
gence of resistant subpopulations of  A. baumannii  irrespective of 
the colistin dosage regimen [ 158 ].  

    The dynamic in vitro model studies discussed above highlighted 
the potential shortfalls of polymyxin monotherapy and provided 
strong initial evidence that area under the unbound concentration 
curve to MIC ratio ( f AUC/MIC) is the PK/PD index most 
closely correlated with polymyxin activity [ 67 ,  158 ,  164 ]. That 
 f AUC/MIC and not the  f C max /MIC or  f T >MIC  (time for which the 
unbound concentrations exceed the MIC) was indeed most closely 
correlated with polymyxin activity (as measured by Log 10  CFU/
mL reductions in the bacterial population) was subsequently con-
fi rmed in in vitro [ 159 ] and in vivo [ 141 ,  165 ,  171 ] experiments 
discussed below. Of these experiments, investigations by Bergen 
et al. [ 159 ] and Dudhani et al. [ 141 ,  165 ] took account of protein 
binding and employed a dose-fractionation design to better char-
acterize the relationship between the PK and PD of colistin. That 
bacterial killing for the polymyxins is most closely associated with 
the  f AUC/MIC indicates that the time-averaged exposure to 
polymyxins is more important than attainment of high peak con-
centrations achieved through the use of larger doses administered 
less frequently. 

 Bergen et al. [ 159 ] examined 37 different dosage regimens 
with various colistin  C  max  and dosage intervals (including intermit-
tent dosing and continuous infusion regimens) in an in vitro PK/
PD model against three strains of  P. aeruginosa  including a colistin- 
susceptible MDR strain. Bacterial killing was best correlated with 
the  f AUC/MIC ( R  2  = 0.931), with weaker correlations observed 
for  f T >MIC  ( R  2  = 0.785) and  f C max /MIC ( R  2  = 0.868). For the 
 reference strain  P. aeruginosa  ATCC 27853, the magnitudes of 
ƒAUC/MIC required to achieve 1- and 2-log 10  reductions in the 
area under the CFU/mL curve relative to growth control were 
determined to be 22.6 and 30.4, respectively. In two in vivo dose- 
fractionation studies, Dudhani et al. [ 141 ,  165 ] examined colistin 
against three strains each of  P. aeruginosa  and  A. baumannii  
(including MDR but colistin-susceptible strains and, for  A. bau-
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mannii , colistin-heteroresistant strains) in neutropenic murine 
thigh and lung infection models. Against  P. aeruginosa  colistin 
exposure induced signifi cant bacterial killing (>3 Log 10  CFU/mL) 
over 24 h, with the  f AUC/MIC (Thigh,  R  2  = 87 %; Lung, 
 R  2  = 89 %) more closely correlated with bacterial killing than the 
 f C max /MIC (Thigh,  R  2  = 66 %; Lung,  R  2  = 71 %) and  f T >MIC  (Thigh, 
 R  2  = 84 %; Lung,  R  2  = 88 %) in both infection models (Fig.  6 ) 
[ 141 ]. Against  A. baumannii , initial killing was similarly extensive 
with the  f AUC/MIC (Thigh,  R  2  = 90 %) once again most predic-
tive of antibacterial effect in both the thigh and lung [ 165 ]. In this 
study the emergence of colistin-resistant subpopulations, which 
was not examined in the study involving  P. aeruginosa  [ 141 ], 
occurred in all three isolates following 24 h of colistin exposure. 
Against both bacterial species, the target  f AUC/MIC values to 
obtain 2 Log 10  CFU/mL killing were similar to those determined 
in vitro against  P. aeruginosa  by Bergen et al. [ 159 ], although 
somewhat higher values were required to achieve maximal killing 
in the lung.

   Wang et al. [ 171 ] investigated the activity of colistin against 
both planktonic and biofi lm-embedded  P. aeruginosa  in a murine 
lung biofi lm infection model. Unlike the studies of Bergen et al. 
[ 159 ] and Dudhani et al. [ 141 ,  165 ] discussed above, where analy-
sis was based upon unbound or free indices, protein binding was 
not measured in this study and results were reported based on the 
time-course of total colistin concentrations. In line with previously 
published results, the AUC/MIC was most closely correlated with 
killing of planktonic bacteria; for biofi lm-embedded cells, the 
AUC/minimum biofi lm inhibitory concentration [MIBC]       best 
 predicted   bacterial killing. Notably, the target AUC/MIBC values 
required to achieve substantial bactericidal activity were signifi -
cantly higher (~4- to 5-fold) for biofi lm-embedded cells compared 
to the AUC/MIC values for planktonic cells. The differences in 
bacterial killing observed between planktonic and biofi lm- 
embedded cells in this study, and between thigh and lung infection 
sites in the investigations by Dudhani et al. [ 141 ,  165 ] indicate 
that different dosage regimens may be required depending upon 
the nature and/or site of the infection.  

   The use of polymyxins in combination with one or more additional 
 antibiotics   is increasingly being reported [ 172 – 177 ], although 
 systematic investigations have occurred only recently. As outlined 
above, regrowth and the emergence of  resistance   is commonly 
reported with polymyxin monotherapy even with concentrations 
far in excess of those which are clinically achievable [ 48 ,  50 ,  52 –
 54 ,  118 ,  139 ,  150 ,  151 ]. The  amplifi cation   of polymyxin-resistant 
subpopulations in heteroresistant isolates, i.e., isolates which are 
susceptible to polymyxins based upon their MICs but which 
 contain preexisting resistant subpopulations, is a known  contributor 
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to the observed regrowth following monotherapy and has been 
reported for  P. aeruginosa  [ 67 ,  103 ,  160 ,  163 ,  164 ],  K. pneu-
moniae  [ 99 ,  101 ,  162 ], and  A. baumannii  [ 100 ,  106 ,  158 ,  161 , 
 165 ]; in many of these studies, polymyxin concentrations were 
well above those of the MIC. These observations suggest selective 
eradication of the susceptible bacterial population with unopposed 
regrowth of resistant subpopulations (for example, LPS-defi cient 
  A. baumannii    [ 97 ]). Given this situation it is not surprising that 
polymyxin combination therapy has been suggested as a possible 
means by which to increase antimicrobial activity and reduce the 
development of resistance [ 50 ,  166 – 168 ]. Such a view has been 
bolstered by the unexpected fi nding that colistin-resistant strains 
of MDR  A. baumannii  have increased susceptibility to most tested 
antibiotics, including those that are normally active only against 
 gram-positive bacteria      [ 178 ]. It has been suggested that the 
increased susceptibility of these polymyxin-resistant organisms to 
antibiotics usually considered effective against only gram-positive 
bacteria may be due to changes in the outer membrane associated 
with polymyxin resistance, increasing access of the second  antibiotic 
to its target site [ 178 ]. Given these observations two mechanisms 
have been proposed whereby polymyxins combinations may pro-
vide an enhanced PD effect, namely “ subpopulation synergy  ” 
(where one drug kills the resistant subpopulation(s) of the other 
drug, and vice versa) and “mechanistic synergy” (two drugs acting 
on different cellular pathways to increase the rate and/or extent of 
killing) [ 179 ]. Given the “last resort” status of colistin and 
 increasing resistance, systematic investigations of the effect of 
 combination therapy on the emergence of colistin resistance, 
including on  heteroresistant strains  , will be crucial for optimal 
 dosage regimen design. 

   Only a small number of preclinical studies have examined poly-
myxin combination therapy in vivo and many of these suffer from 
a number of signifi cant shortcomings [ 59 ,  180 – 187 ]. These 
include ambiguity in the form of  colistin   administered (colistin 
 sulfate or CMS) and a failure to account for animal scaling in the 
design of polymyxin dosage regimens. On this latter point the 
majority of doses administered appear to have been chosen to 
refl ect human doses on a mg/kg basis, failing to take into account 
the dissimilarities in PK across species from such an approach 
 (specifi cally, substantially lower  plasma concentrations   in the 
 preclinical models). Additionally, PK data are almost never  provided 
for the polymyxin or combination drug(s), preventing compari-
sons with PK profi les achieved in patients. As a result of these major 
defi ciencies animal studies are not considered here. 

 Numerous in vitro investigations have utilized the  fractional 
inhibitory concentration (FIC)         index and Etest methods to 
 examine the PD of polymyxin combination therapy. However, 
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these methods are less discriminatory than other more sophisti-
cated in vitro methods (e.g., static or dynamic [PK/PD] time-kill 
models; discussed below) for assessing the interactions of  antimi-
crobial agents   and are not discussed here [ 188 ,  189 ]. Of the vari-
ous studies that have utilized static or dynamic time-kill  methods   
to examine polymyxins in combination, the majority have 
employed colistin against  P. aeruginosa ,  A. baumannii , or  K. 
pneumoniae . The most common antibiotics combined with the 
polymyxins are the  carbapenems   [ 103 ,  162 ,  163 ,  182 ,  190 – 195 ] 
and  rifampicin   [ 59 ,  161 ,  192 ,  193 ,  195 ,  196 ]; others include (but 
are not limited to) ampicillin/sulbactam [ 195 ], ceftazidime [ 156 ], 
ciprofl oxacin [ 59 ,  156 ], aminoglycosides [ 59 ,  186 ,  197 ], glyco-
peptides [ 104 ,  193 ,  198 ] and fosfomycin [ 186 ,  192 ,  199 ]. As 
summarized above for animal models, there are a number of limi-
tations with many of the in vitro studies. These include use of a 
single, generally low inoculum (~10 6  CFU/mL or lower), an 
emphasis on “ synergy  ” as a marker of the success of a particular 
combination without consideration of the overall antimicrobial 
activity of the combination, and use of antibiotic concentrations 
as multiples of the MIC with little reference to, or discussion of, 
the clinical relevance of the actual concentrations used. 
Importantly, relatively few studies take into consideration poly-
myxin heteroresistance or the effect of combinations on the devel-
opment of polymyxin resistance [ 103 ,  161 – 163 ,  200 ]; as these 
investigations represent the major systematic  investigations into 
polymyxin (specifi cally colistin) combination therapy and addi-
tionally address the other shortcomings noted above, they are the 
focus of the remainder of this section. 

 Bergen et al. systematically examined colistin in combination 
with  imipenem   (static time-kill model) [ 103 ] or doripenem (PK/
PD model) [ 163 ] at multiple inocula (~10 6  and ~10 8  CFU/mL) 
against  P. aeruginosa . Colistin heteroresistant and non- 
heteroresistant strains and MDR and non-MDR strains were 
 investigated, and a range of clinically achievable concentrations was 
employed (e.g., constant colistin concentrations of 0.5 or 2 mg/L 
plus doripenem  C  max  of 2.5 or 25 mg/L every 8 h; half-life, 1.5 h 
were employed in the PK/PD model). The addition of either 
 imipenem or  doripenem   to colistin at both inocula generally 
resulted in substantial improvements in bacterial killing over equiv-
alent monotherapy against MDR  P. aeruginosa  isolates resistant to 
either antibiotic. An interesting fi nding across these two studies 
was the difference in the emergence of colistin resistance with the 
varying study designs. Using static time-kill methodology, the 
emergence of colistin-resistant subpopulations with the colistin/
imipenem combination generally resulted in a similar increase in 
colistin- resistant subpopulations across the duration of the experi-
ment (48 h) as observed with equivalent colistin monotherapy 
[ 103 ]. However, when colistin was combined with doripenem in 
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a PK/PD model simulating the unbound (free) plasma concentra-
tion–time profi les of each drug in critically ill patients (constant 
colistin concentrations of 0.5 or 2 mg/L; doripenem  C  max  of 2.5 or 
25 mg/L every 8 h; half-life, 1.5 h), the emergence of colistin 
resistance was greatly reduced across 96 h [ 163 ]. While the 
a ntibiotics and their concentrations between these two studies are 
not directly comparable, the activity of colistin combined with 
either imipenem or doripenem was similar across 48 h (the  duration 
of the colistin/imipenem study) at both inocula against a hetero-
resistant reference strain. Together with the differences observed 
in the emergence of colistin-resistant colonies these observations 
highlight the importance of simulating PK profi les when assessing 
the activity and emergence of resistance to antimicrobial therapy. 

 Subsequent investigations utilizing the same PK/PD model 
design as Bergen et al. [ 163 ] against MDR isolates of  K. pneu-
moniae  (constant colistin concentrations of 0.5 or 2 mg/L plus 
 doripenem    C  max  of 2.5 or 25 mg/L every 8 h; half-life, 1.5 h) 
[ 162 ] and  A. baumannii  (constant colistin concentrations of 0.5, 
2 or 5 mg/L plus rifampicin  C  max  of 5 mg/L every 24 h; half-life, 
3 h) [ 161 ] likewise resulted in similar substantial (and in many 
cases dramatic)    improvements in bacterial killing at both inocula 
with synergy (≥2-log 10  decrease in the number of CFU/mL 
between the combination and its most active component) or 
 additivity (a 1.0- to <2-log 10  decrease in the number of CFU/mL 
between the combination and its most active component) observed 
at the majority of time points at both inocula across the 72 h 
 duration. As was observed against  P. aeruginosa  [ 163 ] the colistin–
doripenem combination all but eliminated the emergence of colis-
tin-resistant subpopulations against  K. pneumoniae , with  resistant 
colonies only detected at the lowest concentration combination 
tested (colistin 0.5 mg/L plus doripenem 2.5 mg/L) at the high 
(~10 8  CFU/mL) inoculum. Remarkably, all three colistin/rifam-
picin regimens (colistin 0.5, 2 or 5 mg/L plus rifampicin 5 mg/L) 
completely suppressed the emergence of colistin-resistant subpop-
ulations in a MDR-colistin-susceptible clinical isolate of  A. 
 baumannii  [ 161 ]. Similar fi ndings have recently been reported 
with a colistin–doripenem combination against both planktonically 
growing and biofi lm-embedded  P. aeruginosa  using a PK/PD 
 biofi lm model [ 200 ]. 

 One further combination study deserves particular mention. 
Clancy et al. [ 201 ] examined colistin (2 mg/L) in combination 
with doripenem (8 mg/L) against 23 KPC-2-producing strains of 
 K. pneumoniae , each of which contained a variant mutant  opmK35  
porin gene. The colistin–doripenem combination was signifi cantly 
more active against the four strains with doripenem MICs of 
≤8 mg/L, whereas there was little difference in killing for strains 
with doripenem MICs >8 mg/L; improvements in antimicrobial 
activity were unaffected by colistin MICs (≤2 mg/L or >2 mg/L). 
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Importantly, while certain variants (e.g., those with insertions 
encoding glycine and aspartic acid at amino acid (aa) positions 134 
and 135 (ins aa134-135 GD;  n  = 8)) were associated with signifi -
cantly higher doripenem MICs and reduced effi cacy of the combi-
nation, other mutant/wild-type ompK36 strains demonstrated 
increased killing with the combination even with elevated doripe-
nem  MICs  . These results suggest that despite the potentially 
increased access of doripenem to target sites afforded by disruption 
of the outer membrane by the polymyxin, allowing hydrolysis by 
KPC to be overcome, OmpK36 porins may also be necessary for 
synergy. 

 In general, the results of the above and other in vitro studies 
with many drug combinations suggest a potential clinical benefi t 
with polymyxin combination therapy. Two important fi ndings 
across these studies are that substantial improvements in bacterial 
killing can be achieved with low (even sub-MIC), clinically achiev-
able polymyxin concentrations even when resistance to one or 
more of the drugs in combination is present, and that this addi-
tionally holds true for many antibiotics that ordinarily have no 
effect on  gram-negative organisms  . It may therefore be possible to 
enhance bacterial killing with polymyxin combination therapy even 
in patients who achieve low plasma concentrations with standard 
dosage regimens or, alternatively, to utilize lower-than-normal 
polymyxin doses to allay toxicity concerns. Additionally, while 
enhanced bacterial killing in these in vitro models (which lack 
immune components) was sometimes absent with combination 
therapy at later time points (e.g., 24 or 48 h), this was often not 
the case with initial killing (e.g., up to 6 h). This initial response 
may thus be important in an  immunocompetent host   whereby the 
immune system can further facilitate bacterial clearance. On this 
point there is at least a theoretical difference between the use of 
colistin (administered as CMS in patients) and polymyxin B 
(administered as polymyxin B sulfate), with steady-state concentra-
tions of the former attained far more slowly than the latter even 
with the use of a loading dose (Sect.  4.2 ). Finally, the study of 
Clancy et al. [ 201 ] cautions against a “one-size-fi ts-all” approach, 
highlighting that the specifi c resistance mechanisms present in dif-
ferent isolates of a bacterial species may dictate the effi cacy of par-
ticular combination regimens.  

   Although preclinical investigations suggest potential clinical bene-
fi ts with polymyxin combination therapy the true value of such 
combinations must be determined in vivo with well-designed 
 clinical studies. Unfortunately, practical and ethical considerations 
involved in the study of polymyxin combinations in patients have 
resulted in major limitations with published clinical studies in this 
area. These include the retrospective nature of many investigations, 
low patient numbers, lack of appropriate controls, heterogeneity in 

5.4.2   Clinical 
Investigations  

Soon-Ee Cheah et al.



247

the defi nitions of outcomes (e.g., mortality, bacteriological 
 eradication or clinical cure), variability in dosing regimens and 
 failure to stratify outcomes based on the site and/or severity of 
 illness. Importantly, all but the most recent studies lack PK 
 information on polymyxin B, CMS and formed colistin, and con-
comitant antibiotics. Such a situation precludes the drawing of 
strong conclusions from currently available clinical evidence and as 
a consequence clinical studies are considered here only briefl y. 

 Using a retrospective cohort design, Falagas et al. [ 202 ] found 
no statistically signifi cant difference in clinical response (cure and 
improvement) and occurrence of nephrotoxicity between patients 
with MDR gram-negative infections receiving CMS monotherapy 
( n  = 14; mean dose of colistin of 4.6 ± 2.3 million international units 
(IU)/day, equivalent to ~138 ± 69 mg of CBA/day) or CMS–
meropenem combination therapy ( n  = 57; mean dose of colistin of 
5.5 ± 2.2 million IU/day, equivalent to ~165 ± 66 mg of CBA/day), 
although there was a favorable association between survival and 
treatment with CMS monotherapy compared to the CMS–merope-
nem combination. In a later retrospective cohort study by the same 
group involving 258 patients infected with MDR gram-negative 
organisms infection was cured in an equal proportion of patients 
(83.3 %) who received CMS monotherapy or CMS combined with 
meropenem, whereas patients treated with CMS combined with 
piperacillin/tazobactam, ampicillin/sulbactam or other agents had 
signifi cantly lower rates of infection cure (64.7 %, 75.0 %, and 
61.3 %, respectively) [ 203 ]. However, univariate analysis revealed 
that mortality among patients who received an average colistin daily 
dose of 3 million IU (38.6 %) was higher than among patients who 
received 6 million IU (27.8 %) or 9 million IU (21.7 %). In contrast, 
a much smaller review of studies involving a total of 18 patients with 
infection caused by KPC β-lactamase-producing  K. pneumoniae  
treated with polymyxins (CMS or polymyxin B) alone or in combi-
nation reported  infections   were successfully treated in one (14.3 %) 
of seven patients receiving polymyxin monotherapy and eight 
(72.7 %) of 11 patients receiving combination therapy (mainly with 
tigecycline or gentamicin) [ 204 ]. 

 More recently Batirel et al. [ 177 ] retrospectively investigated 
various colistin-based therapies against bloodstream infections 
caused by extremely drug-resistant (XDR)  Acinetobacter  spp.; 
XDR was defi ned as non-susceptibility to at least one agent in all 
but two or more antimicrobial categories. Thirty-six patients 
received colistin monotherapy (administered as CMS) whereas 214 
patients received colistin in combination with another agent (colis-
tin/carbapenem [imipenem, meropenem, or doripenem],  n  = 102; 
colistin/sulbactam,  n  = 69; colistin/other agent,  n  = 43). Patients 
with normal renal function received 5 mg CBA/kg/day divided 
into 2–3 doses; no loading doses were administered. The rates of 
cure (defi ned as recovery of all symptoms, signs, and laboratory 
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fi nding of infection) and 14-day survival were relatively higher in 
the combination group compared to the monotherapy group 
(46.3 % vs. 30.6 % and 68.2 % vs. 55.5 %, respectively), and micro-
biological eradication was signifi cantly higher in the combination 
group (79.9 % vs. 55.6 %). In-hospital mortality was also signifi -
cantly lower in the combination group compared to the mono-
therapy group (52.3 % vs. 72.2 %). There was no signifi cant 
difference in clinical and microbiological outcomes between the 
three combination groups. In a multicenter randomized study of 
209 patients with infections caused by XDR  A. baumannii , 
Durante-Mangoni et al. [ 174 ] found a signifi cant increase in the 
rate of microbiological eradication in those patients receiving a 
combination of colistin plus rifampicin ( n  = 104) compared to 
colistin “monotherapy” ( n  = 105) (60.6 % vs. 44.8 %), although 
there was no difference in 30-day mortality, infection-related death 
and length of hospitalization between groups; however, the clinical 
failure rate was not reported. It should also be noted that the dose 
of colistin in this study (administered as CMS) was 2 million units 
every 8 h (equivalent to ~180 mg of CBA/day) without a loading 
dose, and that approximately 70 % of patients in either arm received 
other antibiotics concomitantly. Importantly, the dose used in this 
and many other polymyxin clinical studies is considerably lower 
than that of Batirel et al. [ 177 ] and low based upon the fi ndings of 
Garonzik et al. [ 50 ]. 

 Unfortunately, given the practical and ethical considerations 
involved when undertaking clinical investigations comparing 
 polymyxin monotherapy and combination therapy, as mentioned 
previously, the existing clinical data on polymyxin combination 
therapy is inconclusive. Considering the potential for rapid 
 development of resistance to polymyxins [ 100 ] and the unknown 
clinical implications of heteroresistance, further multicenter, 
 randomized trials are urgently required to provide a more  defi ni-
tive   answer regarding the role of polymyxin combination therapy 
as compared to monotherapy.    

6    Conclusions 

 Polymyxins are one of the few classes of antibiotics that retain 
activity against problematic MDR gram-negative organisms. The 
last decade has seen signifi cant gains in our understanding of poly-
myxin pharmacokinetics and pharmacodynamics. It is now evident 
that colistin (administered as its inactive prodrug CMS) and poly-
myxin B (administered in its active form) differ substantially in 
their respective pharmacokinetic profi les, suggesting potentially 
signifi cant differences in the relative effi cacy of the two  polymyxins, 
which were previously thought to be interchangeable. The 
 development of polymyxin resistance during monotherapy remains 
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a key concern, and attention has begun to shift toward identifying 
antibiotic combinations that increase bacterial killing and suppress 
the emergence of resistance. As the threat presented by MDR 
gram-negative organisms continues to grow, ongoing research into 
the pharmacology of the polymyxins will be critical to maintaining 
their effi cacy as a last-line therapy in patients.     
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    Chapter 11   

 Vancomycin Pharmacodynamics: Optimal vs. Controversial                     

     Ben     M.     Lomaestro      

  Abstract 

   After more than 55 years of use vancomycin still remains a viable agent primarily in the treatment of 
 Staphylococcus aureus  infections, but not without controversy. Issues of rising MICs (“MIC creep”), 
increased treatment failure, recommendations for more aggressive dosing, and an associated increased 
incidence of vancomycin-associated renal dysfunction have reinforced the importance of pharmacokinetic 
dosing services and antimicrobial stewardship initiatives to optimize safe and effective administration. This 
chapter addresses recent literature regarding optimal pharmacodynamic vancomycin administration to 
improve effi cacy, minimize toxicity, adjust for specifi c patient populations, address caveats in the interpreta-
tion of MICs and creatinine clearance calculations, and compare various dosing methods. Although we are 
unlikely to see randomized controlled trials for many of these concerns, there remain unmet opportunities 
for new research.  

  Key words     Vancomycin  ,   Area under the curve (AUC) and AUC 0–24 /MIC  ,   Creatinine clearance  , 
  Minimum inhibitory concentration (MIC)  ,   Pediatrics  ,   Obesity  ,   Bayesian analysis  ,   Linear regression  , 
  Nephrotoxicity  ,   MRSA  

1       Introduction and Brief History 

 Worsening outcomes in patients treated with vancomycin for inva-
sive methicillin-resistant  S. aureus  (MRSA)  infections   such as pneu-
monia and bacteremia has led to a reassessment of its dosing and 
monitoring. Vancomycin is known to have slow bactericidal activ-
ity (particularly at high inoculum) and be associated with the emer-
gence of resistant isolates and “MIC creep” among susceptible 
strains [ 1 ].  Effi cacy   may also be adversely impacted by limited pen-
etration into important sites of infection such as bone, epithelial 
lining fl uid and cerebral spinal fl uid (CSF). Yet a recent review by 
Van Hal and Fowler [ 2 ] concluded that vancomycin remains the 
standard of care for most infections caused by MRSA despite elu-
sive optimal dosing targets, concerns for increased mortality when 
the MRSA MIC is greater than 1.0 mg/L, issues with MIC testing 
methodology, aggressive dosing leading to more  nephrotoxicity  , 
and the availability of alternatives. 
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 In 2009, the vancomycin consensus guidelines attempted to 
standardize the administration and  monitoring   of vancomycin in 
adult patients with infections caused by  Staphylococcus aureus  [ 3 ] 
(recommendations summarized in Table  1 ). A ratio of the 24 h 
area under the concentration–time curve (AUC 0–24 ) to the mini-
mum inhibitory concentration ( MIC)   of 400 was recommended to 
optimize effi cacy with little mention of pharmacokinetic or phar-
macodynamic alteration for specifi c disease states. Monitoring 
serum trough  concentrations   were proposed as a surrogate to more 
cumbersome AUC 0–24 /MIC calculation. Pre-dose trough concen-
trations under steady-state conditions (defi ned as prior to the 
fourth dose) were recommended. The guidelines proposed a target 
steady-state trough of 15–20 mg/L for serious infections (defi ned 
as osteomyelitis, meningitis, endocarditis, bacteremia, or pneumo-
nia) when the MIC is ≤1 mg/L for most adult patients with nor-
mal renal function. Maintenance dosing with 15–20 mg/kg of 
 actual body weight (ABW)         every 8–12 h after consideration of a 
25–30 mg/kg loading dose was recommended. For mild to mod-
erate infections, maintaining a trough ≥10 mg/L was suggested to 
diminish development of resistance. Peak serum concentrations 
were not advised due to a lack of data to suggest correlation with 
either effi cacy or adverse reactions. Other  pathogens   such as 
methicillin- susceptible  S. aureus  or enterococcus and patient popu-
lations such as those who were obese, pediatric patients, those on 
dialysis or with augmented renal clearance were briefl y mentioned 
if at all. The 2011 MRSA guidelines also endorsed maintenance 
vancomycin dosing of 15–20 mg/kg every 8–12 h based on ABW 
and adjusted for renal function with an added caveat to not exceed 
2 g per dose [ 1 ]. A loading dose of 25 mg/kg was also to be con-
sidered in serious infections. Severe  skin infections   were added as 
an additional serious infection indication [ 1 ]. The MRSA guide-
lines suggested that more traditional (less intensive) dosing in adult 
patients with less serum concentration monitoring may be ade-
quate for less severe infections when there is a good clinical 
response [ 1 ].

   There are still several challenges in defi ning  optimal therapy   of 
vancomycin and mixed acceptance of the evidence incorporated 
into the guidelines. Dosing and monitoring practices since the 
2009 vancomycin guidelines were evaluated in a questionnaire of 
163 participants of the Making a Difference in Infectious Diseases 
Pharmacotherapy (MAD-ID) research network representing aca-
demic and nonacademic hospitals as well as rural and urban set-
tings [ 4 ]. A relative lack of compliance with several recommendations 
identifi ed several concerns in need of clarifi cation and future 
research. Inconsistent application of the guidelines was noted for 
appropriate timing of trough values, initial loading doses, and use 
of ABW.  
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   Table 1  
  Recommendations from the 2009 Vancomycin  Monitoring Guidelines   [ 3 ]   

 1. Therapeutic drug monitoring parameters 

   •  Trough serum vancomycin concentrations recommended as the most accurate and practical 
monitoring parameter to assess effi cacy. 

   • Troughs should be obtained at steady-state (approximately after the fourth dose). 

   •  Serum vancomycin trough concentrations should be maintained above 10 mg/L to avoid 
development of resistance. 

   •  Pathogens with an MIC of 1 mg/L, the minimum trough concentration should be at least 15 
mg/L to approximate an AUC 0–24 /MIC of 400. 

   •  For serious infections (bacteremia, endocarditis, osteomyelitis, meningitis, hospital-acquired 
pneumonia) caused by  S. aureus  serum trough concentrations of 15–20 mg/L are recommended. 

 2. Dosing regimen 

   •  15–20 mg/kg ABW administered every 8–12 h is recommended for most patients with normal 
renal function when the MIC is ≤1 mg/L. 

   •  In patients with normal renal function, an AUC 0–24 /MIC target of >400 is not achievable with 
conventional dosing when the MIC is ≥2 mg/L. 

   •  In seriously ill patients a loading dose of 25–30 mg/kg ABW can be used to rapidly attain target 
trough serum concentrations. 

   • Continuous infusion was not thought to offer advantages over intermittent dosing. 

 3. Monitoring for nephrotoxicity and ototoxicity 

   •  A minimum of 2 or 3 consecutive documented increases in serum creatinine concentrations 
(defi ned as an increase of 0.5 mg/dL or a >50 % increase from baseline, whichever is greater) 
after several days of vancomycin therapy. 

   •  Routine monitoring for ototoxicity was not recommended for vancomycin monotherapy but 
should be considered if concurrent ototoxic agents such as aminoglycosides are administered. 

 4. Criteria and frequency of monitoring 

   • Peak concentration monitoring was not recommended. 

   •  Trough monitoring was recommended especially for aggressive dosing to attain troughs of 15–20 
mg/L and in patients at high risk for nephrotoxicity. 

   •  Monitoring was also recommended for patients with unstable renal function or courses lasting 
>3–5 days. 

   •  Frequent monitoring prior to steady-state was not recommended for short courses or regimens 
targeted to troughs below 15 mg/L. 

   •  All patients on >3–5 day courses of vancomycin should have at least one steady-state trough 
concentration obtained no earlier than following the fourth dose and repeated as deemed 
clinically appropriate. 

   •  The limited data, at the time, to support sustained trough concentrations of 15–20 mg/L was 
noted. Once weekly monitoring was recommended for hemodynamically stable patients and 
more frequently for hemodynamically unstable patients. 

(continued)

Vancomycin Pharmacodynamics: Optimal vs. Controversial



264

2      Pharmacokinetics   

    Vancomycin   is a large molecule with a molecular weight of 
~1450 Da [ 5 ]. It is not appreciably absorbed by the oral route [ 1 ]. 
Its pharmacokinetic profi le is best explained by a 2 or 3 compart-
ment model with a volume of distribution of 0.4–1.0 L/kg within 
a larger reported range of 0.26–1.25 L/kg [ 1 ,  3 ,  5 – 9 ]. In patients 
with normal renal function, the alpha-distribution phase ranges 
from 30 min to 1 h and the beta-elimination half-life from 6 to 12 
h [ 1 ,  3 ]. The prolonged distribution phase can be a potential 
source of error when interpreting peak concentrations or fi tting to 
a one compartment model [ 9 ]. Clearance of vancomycin is approx-
imately 70–80 % of  creatinine clearance   which is the approximate 
amount of drug thought to be cleared by the kidneys [ 10 ,  11 ]. 

  Tissue penetration   is highly variable and dependent upon the 
degree of infl ammation [ 1 ]. Distribution can be permeability-rate- 
limited and/or affected by blood fl ow, tissue-partition coeffi cients, 
and/or tissue volume [ 12 ]. There is a decreased penetration into 
sequestered compartments of important sites of infection such as 
 epithelial lining fl uid (ELF)      and  cerebral spinal fl uid (CSF)         [ 13 ]. 
With uninfl amed meninges, CSF concentrations of vancomycin 
range from 0 to 4 mg/L versus 6.4–11.1 mg/L in infl amed menin-
ges [ 3 ]. Investigators have found an ELF concentration of approx-
imately 2 mg/L achieved with vancomycin serum concentrations 
of 15 mg/L, while others found a vancomycin exposure in ELF 
relative to plasma (mean AUC ELF / AUC plasma  penetration ratio) of 
0.675 [ 13 ,  14 ]. The guidelines noted concentrations in lung tissue 
to range from 5 to 41 % of serum vancomycin concentrations [ 3 ]. 
 Penetration   into skin tissue is lower in diabetic patients and may 
not be refl ected in serum concentration targets [ 3 ]. As discussed 

2.1   Overview

Table 1
(continued)

 5. Additional recommendations from the 2011 MRSA guidelines [ 1 ]. 

   •  Severe skin and skin structure infections (necrotizing fasciitis for example) were added as serious 
infections. 

   • Also recommended 15–20 mg/kg ABW every 8–12 h but with a maximum dose of 2 g 

   •  Also recommended consideration of a 25–30 mg/kg loading dose with a prolonged infusion 
time to minimize the potential for red man syndrome and possible anaphylaxis. 

   •  Reminded clinicians that for most skin and skin structure infections in nonobese patients with 
normal renal function, 1 g every 12 h is suffi cient and trough monitoring is not required. 

   • Pediatric dosing of 15 mg/kg/dose every 6 h was recommended for serious or invasive disease. 

   •  The effi cacy and safety of vancomycin trough concentrations of 15–20 mg/L in children was 
noted to require additional study but was recommended to be considered in patients with serious 
infections. 
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below, since vancomycin is about 55 % protein bound and has 
about 50 % of serum concentration penetration into the ELF, a 
serum target AUC 0–24 /MIC ratio of ≥400 could be suboptimal in 
the treatment for MRSA pneumonia when the MIC exceeds 1 
mg/L [ 13 ,  14 ].  

   Dosing interval calculation involves estimating the length of time 
required after dosing to achieve either a target trough or desired 
exposure (AUC) prior to redosing [ 6 ]. Because vancomycin is pre-
dominantly eliminated through the kidney, this is based on renal 
function estimates and assumption that its renal clearance will be 
related to creatinine clearance [ 6 ]. Equations such as Cockcroft–
Gault, Modifi cation of Diet in Renal Disease (MDRD), and 
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 
are used to provide estimations of glomerular fi ltration or creati-
nine clearance with varying result. For example, MDRD and CKD- 
EPI have been found to signifi cantly overestimate creatinine 
clearance (compared to measured or Cockcroft–Gault values) in 
elderly individuals frequently resulting in higher calculated dosing 
regimens [ 15 ]. Use of total body weight or adjusted body weight 
in the Cockcroft–Gault equation for morbidly obese patients has 
been found to overestimate creatinine clearance [ 16 ]. Augmented 
renal clearance in critically ill patients secondary to increased car-
diac output and copious fl uid administration during a systemic 
infl ammatory response is another population in which the utility of 
dosing based on creatinine clearance calculation may be limited 
and result in underdosing [ 17 ,  18 ]. The treatment duration of 
vancomycin may also affect clearance. Prolonged vancomycin regi-
mens (>4 weeks) have been associated with  reduced   vancomycin 
systemic clearance despite an unchanged creatinine clearance [ 19 ]. 
The data  highlight   the need to closely monitor vancomycin con-
centrations and population-specifi c pharmacodynamics in place of 
exclusively relying on traditional metrics assessing renal function.   

3      Pharmacodynamics   

   Vancomycin is a slowly bactericidal antibiotic whose activity is 
adversely affected by increasing bacterial inoculum [ 3 ]. It exhibits 
time-dependent (concentration independent) killing, but since it 
also has a post-antibiotic effect, AUC/MIC is accepted as the most 
accurate pharmacodynamic predictor [ 3 ,  20 ]. This was initially 
proposed by Ebert et al. [ 20 ], in a neutropenic mouse thigh model 
where AUC 0–24 /MIC was the best predictor as  T  > MIC did not 
correlate with bacterial killing. 

   The Clinical Laboratory and Standards Institute reduced the 
minimum inhibitory concentration breakpoint of  S. aureus  to 
vancomycin from 4 to 2 mg/L in 2006 due to concerns of reduced 

2.2  Creatinine 
Clearance Calculations 
to Determine Dosing 
 Interval  

3.1  Introduction 
to Basic Principles

3.1.1  Issues 
with the  MIC  
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vancomycin effi cacy [ 2 ]. The  IDSA MRSA treatment   guidelines 
published in 2011 supported the current breakpoints and more 
aggressive dosing for severe infections [ 1 ]. Expert comment noted 
for isolates with a vancomycin MIC < 2.0 mg/L, the patient’s 
clinical response should dictate continued use of vancomycin 
independent of the MIC result [ 1 ]. 

 If AUC/MIC is the pharmacodynamic predictor of vancomy-
cin effi cacy, precise determination of the MIC is of utmost impor-
tance. An AUC 0–24 /MIC ratio ≥ 400 is diffi cult to achieve when 
the MIC is greater than 1 mg/L (discussed below). MIC determi-
nation is subject to method-dependent variation with up to a one-
fold dilution difference between commonly used methods of  broth 
microdilution  , Etest, and automated  systems   [ 21 ,  22 ]. This differ-
ence can have signifi cant impact upon target attainment if not 
adjusted for testing method and can make generalization about 
success or failure based on an MIC (in the absence of clinical con-
text) diffi cult [ 23 ]. The reference method for vancomycin MIC is 
 broth microdilution (BMD)         but many laboratories use less  labor- 
intensive methods   such as Etest, disc diffusion, and commercial 
assays such as Vitek-2, Phoenix, or Microscan [ 23 ]. It is important 
for clinicians to know which method is used to determine the MIC. 

 The central vancomycin MIC tendency (including increases 
sometimes referred to as an MIC “creep” for  S. aureus   popula-
tions  ) is an unstable phenomenon due to multiple factors includ-
ing clonal replacement, antibiotic exposure, different testing, and 
whether isolates are tested at the time of isolation or after pro-
longed storage [ 2 ,  23 ]. The issue of MIC creep has prompted cli-
nicians to use higher intensity vancomycin regimens. The tendency 
for increasingly higher MICs to vancomycin over time has also 
been observed for MSSA [ 24 ]. 

 The infl uence of vancomycin’s MIC upon outcome may also 
be favorably affected by co-administered antibiotics. Vancomycin 
plus a  beta-lactam   is more likely to achieve bacterial eradication in 
patients with MRSA bacteremia than vancomycin [ 25 ]. These 
combinations may be more effective than vancomycin monother-
apy due to either enhanced vancomycin interaction with cell wall 
precursors, other alteration of the MRSA cell wall, or enhancement 
of beta-lactam activity [ 25 ]. 

 In any case, the MIC affects the likelihood of target attainment 
and has been identifi ed as an important predictor of vancomycin 
effi cacy as discussed below.  

   Does a higher, yet susceptible vancomycin MIC impact clinical 
outcome? Van Hal et al. [ 26 ] conducted a meta-analysis on the 
impact of high vancomycin MICs (≥1.5 mg/L) upon outcomes of 
 S. aureus  infected patients. Despite issues of retrospective design, 
differing defi nitions of treatment failure and MIC testing, the pre-
ponderance of data demonstrate an association between high-MIC 

3.1.2  Importance 
of the MIC and Treatment 
 Outcome  
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but susceptible vancomycin  S. aureus  infections and poorer outcomes 
independent of MIC methodology or site of infection. This was 
postulated to be due to the MIC as a biomarker for pathogen- 
specifi c factors responsible for worse outcomes, the presence of 
hVISA, or the suboptimal pharmacodynamic dosing of vancomy-
cin. An exposure–nephrotoxicity relationship with higher troughs 
(≥15 mg/L) and a prolonged duration of therapy was associated 
with increased risk of nephrotoxicity relative to lower (<15 mg/L) 
troughs. The authors recommend performing Etest MICs on all 
MRSA bacteremia isolates and use of alternative agents if the MIC 
is ≥2.0 mg/L. Most of the literature relating MIC > 1.0 mg/L to 
vancomycin treatment failure has referenced Etest MICs. Soriano 
et al. [ 27 ] found Etest vancomycin MIC > 1 mg/L to be associated 
with higher MRSA bacteremia mortality and recommended aggres-
sive empiric vancomycin dosing targeting troughs to ≥20 mg/L 
pending MIC results. Haque et al. [ 28 ] investigated the relation-
ship of vancomycin MIC to 28 day all cause mortality in patients 
with MRSA hospital-, ventilator-, or health care-associated pneu-
monia and also observed increased 28 day mortality to be a func-
tion of vancomycin MIC even with values within the susceptible 
range. They recommended caution when treating similar patients 
when the vancomycin MIC is >1 mg/L. 

 Holmes et al. [ 21 ] confi rmed an association between higher 
vancomycin MIC and mortality in patients with  S. aureus  bactere-
mia (MSSA or MRSA) but it was  not  related to specifi c antibiotic 
treatment. Other investigators have found vancomycin MIC > 1.5–
2.0 mg/L  not  to have a signifi cant impact on mortality when ana-
lyzing MRSA bacteremia [ 29 – 31 ]. Wang et al. [ 32 ] found high 
MIC and also hVISA phenotype  not  to be associated with higher 
mortality but both were associated with persistent MRSA bactere-
mia Comorbidities, high-risk sources, severity of sepsis, increasing 
age, presence of devices, presence of devices, ICU residence and 
other host or organism characteristics may be more important pre-
dictors of treatment failure. Han et al. [ 31 ] found reduced vanco-
mycin  susceptibility   (defi ned as an Etest MIC > 1.0 mg/L) to be 
associated with increased 30 day mortality in patients with MSSA 
bacteremia but not with MRSA bacteremia. The authors speculate 
this may be in part due to lower virulence and fi tness of MRSA 
strains vs. MSSA. A multicenter cohort study of 532 MSSA and 
MRSA bacteremic patients found vancomycin MIC was associated 
with mortality but in vancomycin-treated  and  in patients who 
never received vancomycin [ 21 ]. The data suggested factors other 
than antibiotic choice may be the primary determinants of patient 
outcome and/or higher vancomycin MIC may be a marker for an 
organism not likely to respond well to any antibiotic.   

   Moise et al. [ 33 ] identifi ed an AUC 0–24 /MIC ratio of >345 to have 
the highest correlation with clinical  success      in 70 patients with 
 S. aureus  respiratory tract infections. Later, Moise-Broder et al. [ 34 ] 

3.2  AUC 0–24 /MIC as a 
Pharmacodynamic 
Target
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used classifi cation and regression tree (CART) analysis to identify 
an AUC 0–24 /MIC ratio ≥ 400 to be associated with improvement 
in clinical response in 108 mostly elderly patients with vancomycin- 
treated  S. aureus  pneumonia. The odds of a successful clinical 
response were approximately sevenfold greater in patients who 
achieved an AUC 0–24 /MIC of ≥350 and a greater chance of bacte-
riologic eradication was predicted for an AUC 0–24 /MIC of ≥400. 
The AUC was calculated based on vancomycin dosing and creati-
nine clearance: AUC = total vancomycin mg dose over 24 h/{(Clcr 
in mL per min × 0.79) + 15.4} × 0.06. In patients who achieved an 
AUC 0-24 /MIC ratio of 400 or more, the median time to bacterial 
eradication was 10 days vs. >30 days for patients with an AUC 0–24 /
MIC < 400. Broth microdilution (BMD) was used to determine 
MICs. Subsequently, this AUC 0–24 /MIC target was adopted by the 
2009 vancomycin consensus guidelines and others to best predict 
vancomycin effi cacy [ 3 ,  5 ,  35 – 37 ]. Whether this pharmacodynamic 
target pertains to all types of infections or those involving hVISA or 
 agr  dysfunction is controversial. As previously mentioned, a fi xed 
AUC 0–24 /MIC ratio of 400 based on serum concentrations may 
not account for variability in concentrations at target sites of infec-
tion. More aggressive dosing to achieve a fi xed target of AUC 0–24 /
MIC ratio > 400 may also carry a higher risk of toxicity [ 2 ,  11 ]. 

 For pathogens with an MIC of 1 mg/L, 1 g of vancomycin 
every 12 h will provide an AUC 0–24 /MIC of approximately 250 in 
a patient with an ABW of 80 kg and normal renal function [ 3 ]. 
Because it can be diffi cult to obtain multiple serum concentrations, 
the 2009 guidelines recommended monitoring steady state trough 
concentrations (approximately after the fourth dose) as a surrogate 
to AUC calculation for monitoring target attainment [ 3 ]. Optimal 
trough concentrations and their use as a reliable surrogate for AUC 
calculation have been questioned. Jeffres et al. [ 38 ] found no evi-
dence that troughs of 15–20 mg/L or specifi c AUC 0–24  improved 
survival or hospital outcomes in the treatment of 102 patients with 
MRSA pneumonia over a 6.5 year period. However, optimal 
AUC 0–24 /MIC was not calculated due to a lack of MIC testing. 
Time to targeted serum  vancomycin   concentration attainment was 
not measured but may also be a critical factor in patient outcome. 
Hermsen et al. [ 39 ] did not fi nd statistically signifi cant differences 
in outcome for 55 patients being treated for deep-seated MRSA 
infection with higher (≥15 mg/L) vs. lower vancomycin trough 
concentrations. Nephrotoxicity  was  consistently higher with van-
comycin troughs ≥15 mg/L. Ackerman et al. [ 40 ] investigated 
vancomycin troughs from 604 treatment courses in 560 patients 
with either suspected or documented gram-positive infection in 
patients with burns <20 % of total body surface area. Data were 
stratifi ed by trough concentration of <5, 5–10, and >10 mg/L to 
determine the relationship between response and trough concen-
tration. Using analysis of variance, no relationship was found for 

Ben M. Lomaestro



269

the 3 trough strata and outcome, suggesting no real benefi t from 
higher trough concentrations. The greatest risk of nephrotoxicity 
occurred with prolonged duration of therapy.  

   Hidayat et al. [ 41 ] evaluated 95 patients with MRSA bacteremia 
and/or pneumonia for clinical response, nephrotoxic incidence 
and infection-related mortality of high dose vancomycin (trough 
≥15 mg/L). Aggressive vancomycin dosing produced an 85 % 
response rate when the MIC was ≤1 mg/L but only 62 % when 
the MIC was 1.5 or 2 mg/L. In addition,  nephrotoxicity   occurred 
only in the high trough group (11/63, 12 %) and was signifi cantly 
predicted by administration of other concurrent nephrotoxic 
agents. The authors recommended use of combination therapy or 
alternative agents when the vancomycin MIC is 2 mg/L. Lodise 
et al. [ 42 ] evaluated 92 adult patients with MRSA bacteremia and 
also found an increased probability of treatment failure when the 
MIC is ≥1.5 mg/L using  CART analysis  . Patients with an 
MIC ≥ 1.5 mg/L had a 2.4-fold higher risk of treatment failure 
than counterparts with an MIC ≤ 1.0 mg/L. A body weight of 
>112 kg was found to be an independent variable associated with 
treatment failure. Patel et al. [ 43 ] performed a 9999 subject  Monte 
Carlo simulation   using a previously published 2 compartment 
model of 37 patients to identify the probability of achieving an 
AUC 72–96 /MIC of ≥400 and trough of 15–20 mg/L with a variety 
of MICs and dosing regimens ranging from 1 to 4 g/day. Their 
analysis found the likelihood of achieving target AUC 0–24 /MIC 
values to be inversely related to creatinine clearance and vancomy-
cin MIC across a range of dosing regimens. Further, if the MIC is 
2 mg/L, a 4 g/day regimen was predicted to be only 57 % effec-
tive in reaching the target AUC with a projected 35 % risk of neph-
rotoxicity. Trough levels of 15–20 mg/L were not always needed 
to achieve an AUC 0–24 /MIC ≥ 400 if the MIC was ≤1 mg/L, did 
not consistently result in AUC 0–24 /MIC ratios of ≥400 with an 
MIC of 2 mg/L, and patients with augmented renal function were 
less likely to achieve target attainment. (summarized in Table  2 ) 
The authors summed up their view of vancomycin dosing and tar-
get  attainment   in the title “We can’t get there from here.”

   Kullar et al. [ 44 ] found vancomycin guideline recommended 
trough values of 15–20 mg/L to be associated with signifi cantly 
lower failure rates compared with troughs of <10 or 10–14.9 
mg/L in a retrospective investigation of 320 adult patients with 
 MRSA bacteremia   (Table  3 ). Patients failing therapy had lower 
AUC 0–24 /MIC ratios and higher MIC Etest values. Independent 
predictors of vancomycin failure were endocarditis, nosocomial- 
acquired bacteremia, initial vancomycin trough <15 mg/L and 
vancomycin MIC > 1 mg/L by Etest. CART analysis identifi ed 
vancomycin AUC 0–24 /MIC ratios of <421 as having a signifi-
cantly higher rate of failure compared with higher ratios ( p  = 0.038). 

3.3  Impact of MIC 
and Target Attainment 
on Outcome 
and Toxicity
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An association with treatment failure was found using Etest MICs 
but not broth microdilution, again pointing out differences in 
MIC testing methodology.

   Kullar et al. [ 45 ] demonstrated 15 % improvement in out-
comes and decreased duration of vancomycin therapy with aggres-
sive dosing per the 2009 guidelines targeted to attain serum trough 
concentrations of 15–20 mg/L within a median of 2 days. Two 
hundred patients with documented complicated  MRSA bactere-
mia   were dosed with more aggressive guideline-compliant regi-
mens and compared to a cohort dosed with a less aggressive 
traditional regimen depending on time period of the study. Patients 
in the pre-guideline period had lower success rates with vancomy-
cin than the post-period (45 % vs. 60 %,  p  = 0.034) and a longer 
median duration of vancomycin therapy (13 days vs. 8.5 days, 
 p  < 0.001). The failure rate was still high in the aggressively dosed 
group, but only about 10 % of patients received a loading dose 
which could have affected outcome.  Nephrotoxicity   was numeri-
cally but not signifi cantly higher in the more aggressively dosed 
cohort (18 % vs. 15 %,  p  = 0.85). Higher doses of vancomycin were 
associated with a 15 % improvement in outcomes and decreased 
duration of therapy. The authors concluded that targeting serum 
trough concentrations of 15–20 mg/L improved outcome in 
patients with MRSA bacteremia.  

   Holmes et al. [ 46 ] analyzed trough levels and vancomycin AUC 0–24 /
MIC values in 182 patients with  S. aureus  bacteremia. The median 
trough level was 19.5 mg/L within the fi rst 96 h. The AUC 0–24 /
MIC ratio varied signifi cantly by MIC testing method with a 
median of 436.1 for broth microdilution ( BMD)   compared to 
an Etest MIC calculated AUC median of 271.5 ( p  < 0.001). An 
AUC 0–24 /MIC ratio of ≥400 using BMD was not associated 
with lower mortality. However, a breakpoint AUC 0–24 /MIC of 
>375 for 30 day all-cause mortality using BMD MICs was found 
using  CART analysis   ( p  = 0.043). There was no association 

3.4  Is the AUC 0–24 /
MIC Target 
always 400?

   Table 2  
  Impact of vancomycin trough concentrations and outcomes in patients with  MRSA bacteremia     

 Characteristics  n  = 308 
 Vancomycin failure 
 n  (%) 

  P  vs. reference 
category 

 Nephrotoxicity 
 n  (%) 

  P  vs. reference 
category 

 Trough <10 mg/L ( n  = 70)  46 (65.7 %)  0.001  10/65 (15.4 %)  0.682 

 10–14.9 mg/L ( n  = 90)  52 (57.8 %)  0.016  13/76 (17.1 %)  0.476 

 15–20 mg/L ( n  = 86)  34 (39.5 %)  Reference value  10/77 (13.0 %)  Reference value 

 20 mg/L ( n  = 62)  31 (50 %)  0.206  17/62 (27.4 %)  0.032 

  Adapted from Kullar et al. (Ref. [ 44 ])  
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between achieving a vancomycin AUC 0–24 /MIC of ≥400 or >373 
and secondary endpoints of reduction in attributable mortality, 
persistent bacteremia, or recurrent bacteremia. There was moder-
ate correlation between the measured trough concentrations and 
calculated AUC ( r  = 0.246,  p  = 0.002). The authors concluded an 
AUC 0–24 /MIC > 373 within 96 h was associated with reduced mor-
tality and the MIC test method had signifi cant impact on vanco-
mycin AUC 0–24 /MIC estimation. Differences in Cockcroft–Gault 
or MDRD creatinine clearance  calculation   resulted in little infl u-
ence on vancomycin AUC but the equivalent recommended target 
AUC 0–24 /MIC when testing by Etest was 226 rather than 400. 

 Gawronski et al. [ 47 ] found a greater than 2.5-fold increase in 
time to microbiologic clearance in 59  patients   with MRSA bactere-
mia and associated osteomyelitis if unable to achieve a vancomycin 
breakpoint AUC 0–24 /MIC of >293 identifi ed by CART analysis. 
In multivariate analysis, AUC 0–24 /MIC was the only independent 
predictor of time to bacterial clearance. All patients were initially 
treated with 15 mg/kg per dose ABW to a maximum of 2 g per 
dose. No patients received loading doses. Only 39 % of patients 
were able to have the infection source removed. MICs were deter-
mined by two different methods (Etest and Microscan) during 
differing periods of study. Only 9 % of patients were able to achieve 
an optimal AUC 0–24 /MIC target if the isolate MIC was >1 mg/L. 
Trough concentrations poorly correlated with AUC 0–24 /MIC. 

 Brown et al. [ 48 ] using  CART analysis   found a lower AUC 0–24 /
MIC breakpoint of <211 to be associated with a fourfold increase 
in attributable mortality in patients with complicated MRSA bacte-
remia ( n  = 32) or infective endocarditis ( n  = 18). Of interest, hVISA 
and  agr  dysfunction were not related to increasing mortality risk. 

 Few institutions actually measure AUC and there are several 
caveats to the assumption that a vancomycin trough is always a 
good surrogate for the AUC [ 11 ,  49 ]. Optimal trough concentra-
tions and adequate correlation to an AUC 0–24 /MIC target is 
dependent on the MIC and pharmacokinetic parameters of a given 

   Table 3  
  Probability of pharmacodynamic target attainment and nephro toxicity        

 AUC 0–24 /MIC ratio ≥ 400  Nephrotoxic event 

 MIC value  0.5 mg/L (%)  1.0 mg/L (%)  2.0 mg/L (%)  Non-ICU (%)  ICU (%) 

 500 mg IV q12h  57  15  0.7  3  10 

 1 g IV q12h  90  57  15  6  16 

 1.5 g q12h  97  79  38  9  25 

 2.0 g IV q12h  98  90  57  14  34 

  Adapted from Patel N. et al. (Ref. [ 43 ])  
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patient [ 11 ]. The optimal AUC 0–24 /MIC may not always be a fi xed 
ratio depending on source of infection, MIC testing methodology 
or other factors.  

     Adult pharmacodynamic targets for vancomycin troughs may not 
be applicable to pediatric populations. Analysis of 702 pediatric 
patients with 1660 vancomycin serum concentrations (who are 
commonly dosed every 6 h) found an AUC 0–24 /MIC of approxi-
mately 400 corresponded to a trough of roughly 8–9 mg/L for 
regimens 60–70 mg/kg/day in 75 % of patients [ 50 ]. Higher doses 
were more likely to be required in patients between 1 and 2 years 
of age and those with serum creatinine falling between 0.2 and 0.4 
mg/dL. Target attainment was dependent on the MIC distribu-
tion of the hospitals involved. The authors recommended to moni-
tor AUC in pediatrics with MIC ratio calculation if possible. 
Dosing based only on trough levels would potentially lead to 
unnecessary increases in drug exposure in 25–35 % of pediatric 
subjects who had already achieved a target AUC 0–24 /MIC. Frymoyer 
et al. [ 51 ] used a population pharmacokinetic modeling and soft-
ware (NONMEM version 7.3, ICON Development Solutions, 
Ellicott City, MD) to simulate the pharmacokinetic profi les in 
5000 pediatric patients and compare three different pharmacoki-
netic models. In contrast to adults, the trough predictive of >90 % 
of children achieving AUC 0–24 /MIC > 400 ranged from 7 to 10 
mg/L. Using a daily dose of 60 mg/kg/day divided every 8 h, 
the trough predictive of an AUC 0–24 /MIC > 400 was 6–8 
mg/L. Results were highly dependent on the MIC. Their data 
also suggests troughs of 15–20 mg/L to achieve an AUC 0–24 /
MIC > 400 are likely unnecessary in the typical child. 

 Dosing metrics used in regimen calculation may also be evolv-
ing. Body surface area based dosing may be more likely than 
weight based dosing to achieve target AUC values in children and 
young adults. Camaione et al. [ 52 ] found body surface area based 
dosing to be more accurate than weight-based dosing of vanco-
mycin in children using a one-compartment pharmacokinetic 
model to determine maximum a posteriori probability (MAP)-
Bayesian pharmacokinetic parameter estimates and to evaluate 
relationships of body size descriptors.  Vancomycin   clearance was a 
nonlinear function of weight and a linear-proportionate function 
of BSA whereas the central compartment volume of distribution 
was linear- proportionate to weight. AUC 0–24  achieved with weight 
based dosing of 60–70 mg/kg/day varied with patient weight but 
isometric AUC 0–24  was predicted with BSA. Confi rmatory studies 
are needed.  

   Dosing of vancomycin in obese patients remains controversial. 
The 2009 vancomycin consensus guidelines recommended dosing 
on ABW [ 3 ]. Dosing based on ABW may not be correct if the 
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central compartment volume of distribution for vancomycin does 
not increase proportionally with weight as this may put morbidly 
obese patients at risk for toxicity when dosed by ABW. Blouin et al. 
[ 53 ], Bauer et al. [ 54 ], and Vance-Bryan et al. [ 55 ] found vanco-
mycin clearance to be greater and volume of distribution to be 
smaller in morbidly obese patients than in their nonobese counter-
parts with a stronger correlation between clearance and total body 
weight rather than lean body weight. Recent review by Grace [ 7 ] 
noted alteration in volume of distribution, increased circulating 
proteins (resulting in altered free serum concentration) and 
increased blood fl ow secondary to increased cardiac output and 
blood volume results in increased vancomycin clearance in obese 
patients. He concluded vancomycin volume of distribution corre-
lates best with total body weight and not ideal body weight. 

 Reynolds et al. [ 56 ] found 15 mg/kg every 8–12 h ABW pro-
duced a trough of >20 mg/L 55 % of the in 64 patients compared 
18 % of 74 patients dosed with a newer protocol of 10 mg/kg 
every 12 h or 15 mg/kg every 24 h. Patients in both groups were 
≥100 kg with normal renal function. The authors concluded obese 
patients should receive a smaller mg/kg dosage than nonobese 
patients. Rushing and Ambrose [ 57 ] found the lesser of ideal body 
weight (IBW) or total body weight (TBW) and Leong et al. [ 58 ] 
found adjusted body weight (ABW (kg) = IBW + 0.4 (TBW-IBW)) 
to best correlate with vancomycin clearance. Lodise et al. [ 42 ,  59 ] 
identifi ed a body weight >100 kg as a risk factor for vancomycin- 
associated renal dysfunction. 

 The  controversy   regarding dosing based on ABW in morbidly 
obese patients has led some clinicians to either “cap” vancomycin 
loading and maintenance doses or give multiple loading doses of 
2 or 3 g.  

   The 2009 vancomycin guidelines recommended consideration of a 
loading dose of 25–30 mg/kg for complicated infections and 
20–25 mg/kg for mild-moderate infections [ 3 ]. Loading doses 
theoretically allow a more rapid attainment of therapeutic concen-
trations. A loading dose of 25 mg/kg was found to be safe in 28 
ICU patients who achieved 1 h post infusion levels of 26.4 ± 9.3 
mg/L (mean ± SD) [ 60 ]. DeRyke and Alexander [ 11 ], recom-
mended a loading dose targeted to achieve a peak concentration of 
30–40 mg/L using the equation dose = Cp × Vd where Vd = 0.83 
L/kg (based on ABW) if CrCl is <60 mL/min and Vd = 0.57 L/kg 
(based on ABW) if CrCl is 60 mL/min or greater. 

 Denetclaw et al. [ 61 ] proposed a divided loading dose policy 
for critically ill patient to rapidly attain targeted trough concentra-
tions of 15–20 mg/L for severe infections. Initial dosing of 15 
mg/kg ABW every 6 h in patients with normal renal function (not 
to exceed 4 g per day or 1.5 g per dose initially) resulted in 62 of 
79 patients (90 %) achieving therapeutic concentrations 12–24 h 

3.5.3    Loading Doses  
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after initiation of therapy. For morbidly obese patients with normal 
renal function, the lesser of 20 mg/kg IBW or 1.5 g per dose was 
recommended and/or more frequent dosing to achieve target con-
centrations within 3 doses. 

 Utilization of a loading dose is most important in seriously 
infected patients and those with renal dysfunction for whom steady 
state would occur only after an extended time period [ 6 ,  11 ].  

   Continuous infusion to a vancomycin steady state level of 20–25 
mg/L appears to be effective and result in similar AUC/MIC as 
optimal intermittent therapy [ 62 ]. Pea et al. [ 63 ] proposed 2 dos-
ing nomograms to target a steady-state concentration of 15 or 20 
mg/L in critically ill patients with borderline susceptible MICs. 
Each involves administration of a 15 mg/kg loading dose but 
maintenance dosing with initiation of a continuous infusion based 
on the assumption of a signifi cant relationship between Cl vanco  and 
Cl creat . The formula for the continuous infusion rate was: grams per 
24 h = [0.029 × Cl creat  (mL/min) + 0.94] × target Css × (24/1000). 

 Meta-analysis of mostly observational studies has concluded 
there is a lower risk of nephrotoxicity (RR 0.6, 95 % CI 0.4–0.9, 
 p  = 0.02) but no difference in mortality with continuous vancomy-
cin infusion vs. intermittent regimens [ 62 ]. This may infer nephro-
toxicity is related to  higher   peak concentrations since steady state 
targets with continuous infusion are similar to (or higher than) 
targeted troughs with intermittent administration. However, other 
reviews have concluded there is inconsistent and insuffi cient evi-
dence of signifi cant difference in nephrotoxicity or effi cacy between 
the methods of administration [ 64 ,  65 ]. The 2009 vancomycin 
consensus guidelines did not advocate the need for continuous 
infusion of vancomycin [ 3 ]. More recent data seems to confi rm no 
obvious harm but insuffi cient advantage to continuous infusion 
regimens.  

   Vancomycin monitoring involves assessment of renal  dysfunction  
and intervention to decrease dosing and/or prolong frequency. 
Less appreciated are patients with substantially  augmented  renal 
elimination of drugs such as vancomycin especially among critically 
ill patients throughout their fi rst week in the ICU. Udy et al. [ 35 ] 
identifi ed 65.1 % of ICU patients to have augmented renal clear-
ance during this time period. These patients may require more 
aggressive dosing initially and a loading dose may be important to 
achieve pharmacodynamics targets. The authors remind clinicians 
to assess “renal function” and not just “renal injury” and caution 
that calculated creatinine clearance as a descriptor of renal drug 
elimination in this population can be inaccurate. 3201  This group 
may also benefi t from a loading dose. Aubron et al. [ 66 ] investi-
gated 48 critically ill patients and noted a lower percentage of 
patients with a trough in the desired range during the fi rst 24 h 
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of therapy occurred when a loading dose was not given. Truong 
et al. [ 67 ] found implementation of a 2 g vancomycin loading 
dose policy in intensive care patients to improve attainment of 
therapeutic concentrations (15–20 mg/L) to 33 % from 13 % 
( p  = 0.08) with mean trough concentrations increased from 
9.8 ± 6.6 mg/L to 14.9 ± 6.3 mg/L ( p  = 0.01). They noted this 
population can have an increase in capillary permeability as a 
response to sepsis which can increase vancomycin’s distribution 
volume. Edema, pleural effusion, ascites, and fl uid resuscitation 
may also increase the volume of distribution and result in a drop in 
serum concentration without adequate loading and maintenance 
 dosing  . They also note that the hyperdynamic state of sepsis and 
burn patients leads to increased cardiac output and blood fl ow 
that can increase elimination of vancomycin.    

4     Clinical Application of Pharmacodynamic Data 

   The focus on AUC and MIC for initial empiric dosing suggests a 
clearance-based rather than weight-based strategy through calcu-
lating the daily dose by multiplying a patient’s estimated vancomy-
cin clearance by the desired AUC 0–24  [ 6 ]. Weight is accounted for 
through estimation of creatinine clearance via Cockcroft–Gault 
[ 6 ]. This method predicts the average steady-state serum concen-
tration [ 6 ]. A variation of this relationship to quickly estimate van-
comycin AUC 0–24  by dividing total vancomycin dose (mg) per 24 h 
by the vancomycin clearance in liters per hour [ 11 ]. Accepting the 
clearance of vancomycin is approximately 70–80 % of the creati-
nine clearance, this correction must be made prior to the 
calculation. 

 It is possible that AUC calculation can be performed relatively 
easily with minimal serum concentrations required. Neely et al. 
[ 49 ] used 3 independent data sets from 47 healthy volunteers and 
previously published patient pharmacokinetic analysis (with 
Pmetrics nonparametric population modeling package version 
1.1.1 for R reversion) to compare AUCs estimated from models 
derived from “trough only” and “peak–trough” versions of the full 
data set to test the relationship between trough and AUC. Data 
sets comprised a total of 569 vancomycin concentrations and a 
wide range of dosing and estimated creatinine clearance values. 
The model was based on richly sampled vancomycin data used as a 
Bayesian prior. Simulation in adults with normal renal function 
achieving a therapeutic AUC 0–24  of  greater than  400 mg ⋅ h/L sug-
gested approximately 50–60 % will have a trough  less than  15 
mg/L which could result in an unneeded increase in dosing. 
However, the data also demonstrated trough-only data could be 
used to generate reliable AUC estimates. In contrast, the peak and 
trough concentration data analysis was worse at predicting a true 

4.1   Therapeutic Drug 
Monitoring  

Vancomycin Pharmacodynamics: Optimal vs. Controversial



276

vancomycin AUC. Even in an ideal population of adults with nor-
mal renal function, AUC values varied up to 30-fold between 
 patients   with a high degree of variability in peak and trough values 
as well. Trough concentrations were a very poor surrogate for 
AUC estimation and overall vancomycin exposure, underestimat-
ing the true AUC by about 25 %. Of simulated patients with a 
trough >20 mg/L, about 25–55 % had an AUC 0–24  ≥ 700 mg ⋅ h/L, 
depending on the dose. The authors propose that AUC-guided 
dosing is more precise and can now be easily calculated with avail-
able computer programs such as Best Dose (freely available at the 
Laboratory of Applied Pharmacokinetics and Bioinformatics web-
site at   www.lapk.org    ). 

 AUC measurement may be more accurate than using serum 
trough concentrations as a surrogate marker. Further, AUC calcu-
lation by computer software may be less cumbersome than calcula-
tion methods of decades past.  

      Linear regression analysis   fi ts serum concentrations to individual 
patient models and assumes a one-compartment model [ 68 ]. 
These methods use serum concentration data around a dosing 
interval and do not account for other factors such as changing 
renal function [ 68 ]. The lack of population data and necessity to 
have two concentrations can be a limitation.  

   Vancomycin dosing is based on population pharmacokinetic 
parameters (called an a  priori dosing method  )    without using indi-
vidual patient pharmacokinetic results [ 68 ]. Several nomograms 
have been developed to empirically dose vancomycin in such a 
manner. Assumptions include linear pharmacokinetics, strong 
correlation between drug clearance and creatinine clearance, and 
dosing weight (ideal vs. actual) [ 68 ]. Only one nomogram targets 
the recommended trough concentrations of 15–20 mg/L and has 
been validated in a select group of patients [ 69 ]. 

 Several  nomograms   were published decades ago at a time when 
troughs were targeted to 5–10 mg/L. Since it is the dose that 
defi nes the difference between peak and trough, the shortest prac-
tical dosing interval with the smallest dose would tend to yield the 
higher trough and achieve a higher likelihood of the trough being 
>15 mg/L [ 6 ]. AUC 0–24  calculated as the daily dose divided by the 
clearance and targeted to an average concentration of 15 mg/L 
was proposed over 30 years ago by Moellering et al. [ 71 ] and 
Rodvold et al. [ 70 ] The Moellering et al. [ 71 ] nomogram was 
based on a pharmacokinetic analysis of 22 patients targeting a 
mean steady-state concentration of 15 mg/L and recommended 
30 mg/kg/day in divided doses which would be 2 g daily in a 
70 kg individual with normal renal function. The Rodvold et al. 
[ 70 ]  dosing chart   was developed from data in 37 adult patients and 
used measured creatinine clearance which explained only 59 % of 
the variance in vancomycin clearance pointing out how essential it 
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is to monitor serum concentrations. Matzke et al. [ 8 ] developed a 
nomogram based on 57 patients, a one-compartment model and 
CrCl as determined by the  Cockcroft–Gault equation      (using ABW) 
in 56 patients. An initial dose of 25 mg/kg was followed by 19 
mg/kg at a frequency determined by the nomogram. The target 
serum concentrations were a peak of 30 mg/L and a trough of 
7.5 mg/L. 

 Rybak and Boike [ 72 ] compared the  Matzke and Moellering 
nomograms   and found the former to be more accurate. Murphy 
et al. [ 73 ] compared the ability of seven methods including those 
by Matzke and Rodvold to predict measured concentrations in 
189 patients and found Matzke to have the higher precision and 
less bias. However, none of the nomograms were suffi ciently reli-
able to replace monitoring vancomycin serum concentrations. 
Karam et al. [ 74 ] attempted to minimize monitoring of vancomy-
cin by comparing traditional peak and trough pharmacokinetics to 
trough-only values utilized in a vancomycin dosing chart with regi-
mens provided for 9 ranges of CrCl and 13 ranges of body weight 
targeting troughs of 5–20 mg/L. No differences were noted with 
respect to clinical effi cacy or toxicity but a considerable cost savings 
was noted due to fewer levels ordered with the use of the 
nomogram. 

 More recently recommendations for more aggressive dosing 
have resulted in new and revised nomograms. In 2011, Kullar et al. 
[ 69 ] published an updated nomogram somewhat similar to that of 
Karam et al. [ 74 ], in that ABW and estimated creatinine  clearance   
were used to determine dose and frequency. However, the new 
nomogram was refi ned to achieve a trough of 15–20 mg/L and an 
AUC 0–24 /MIC of ≥400. When tested in 200 patients, it achieved a 
trough target on the fi rst measurement in 58 % of patients and 
subsequently in 77 % of patients. If the acceptable trough range 
were expanded to 12–22 mg/L, 80 % would have achieved the 
targets. 

 Golenia et al. [ 75 ] used ABW and  MDRD   to develop a nomo-
gram in intensive care unit patients noting differences with renal 
clearance in this population (discussed above). The nomogram 
resulted in 42 % of patients ( n  = 60) attaining troughs between 15 
and 20 mg/L compared with 19 % pre-implementation patients 
( n  = 57) ( p  = 0.0099). Benefi ts may have been limited by capping 
loading doses at 2.25 g for patients ≥90 kg and maintenance doses 
at a maximum of 2.0 g every 8 h for patients with eGFR > 60 mL/
min/1.73 m 2  and ≥60 kg. 

 It is important to ensure an individual  patient   matches the 
population for which a nomogram was developed and clinicians 
remember nomograms assume pharmacokinetic parameters are 
stable which may not be the case in severely ill patients [ 68 ]. 
Nomograms do not replace clinical judgment and adjustments 
may be best made based on clinical response and therapeutic drug 
monitoring [ 69 ].  
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   Modern Bayesian modeling algorithms incorporate both popula-
tion pharmacokinetic parameters (a priori) and patient specifi c 
data ( a posteriori ) estimates of clearance and distribution to indi-
vidualize dosing [ 76 ]. It is possible to predict starting doses using 
patient demographic data to defi ne patient-specifi c parameters 
and value estimates [ 10 ,  18 ]. A major advantage is timeliness since 
maintenance regimen predictions can be made from software 
using fi rst- dose concentrations whereas guidelines usually recom-
mend levels at steady-state [ 76 ]. However, non-steady-state con-
centrations provide less than optimal information in Bayesian 
prediction of future steady-state concentrations [ 77 ]. An early 
example of this method was published by Rodvold et al. [ 78 ], 
using the Abbott Pharmacokinetic System computer program and 
two- compartment population parameter model data derived from 
45 patients to accurately individualize vancomycin dosing with 
just two measured concentrations. Precision was improved when a 
set of peak and trough vancomycin concentrations were obtained 
at steady-state and used to individualize patient pharmacokinetic 
parameter estimates. 

 Bayesian models can be used to adjust dosing after a drug con-
centration is obtained but less accurately predict pharmacokinetics 
of patients whose parameters lie outside of the 95th percentile, and 
they are most accurate when the appropriate patient population 
has been characterized in the model [ 10 ,  61 ]. Nunn et al. [ 76 ] 
investigated the accuracy of MM-USC*Pack program (Jelliffe R, 
University of Southern California, 2008, version 12.10) compar-
ing the predicted concentrations to observed concentrations in 77 
patients (204 concentrations) prescribed vancomycin over a 6-week 
period. The program uses a Bayesian algorithm with a two com-
partment population model to update pharmacokinetic parameters 
with newly available patient data as it becomes available. The most 
common dosing regimen was 1 g every 12 h which resulted in 
initial trough concentrations <10 mg/L in 58.4 % of patients and 
therapeutic concentrations (10–20 mg/L) in 33.8 %. The software 
predictions in this heterogeneous cohort of patients demonstrated 
little systemic bias (−3.1 %) but only moderate precision (median 
prediction error) of 23 %. Predictions with this program have been 
notably poorer in severely ill, obese (BMI > 35 kg/m 2 ) or in 
patients with unstable renal function [ 66 ,  76 ]. Hurst et al. [ 10 ] 
used an earlier version of the same software (USC*PACK PC col-
lection, University of Southern California) based on data from 12 
cardiac outpatients receiving single doses of vancomycin for dental 
procedures and found a lower bias than  other   Bayesian  algorithms  . 
Seven acutely ill patients with suspected staphylococcal infection 
were also studied with regimens targeted to troughs of <15 mg/L 
and peaks of 35–50 mg/L. The Bayesian method did outperform 
one-compartment linear regression in prediction of future vanco-
mycin concentrations.    

4.2.3   Bayesian Analysis     
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5      Toxicity and Adverse Reactions   

 Impurities in early formulations of vancomycin were thought 
accountable for many of its adverse reactions with little potential 
for ototoxicity or nephrotoxicity from current formulations unless 
co-administered with other nephrotoxins or by very aggressive 
vancomycin dosing [ 3 ]. The most important concentration- 
dependent adverse event associated with vancomycin administra-
tion is  renal dysfunction  . Vancomycin-associated renal dysfunction 
has been reported to temporally occur in 2–28 % of patients pre-
scribed the antibiotic [ 79 ]. Vancomycin is thought to be an oxida-
tive stressor in the renal proximal  tubule  , can cause toxicity in the 
medullary region, and may also rarely cause interstitial nephritis 
[ 3 ]. Uncertainty remains over the causality of vancomycin in most 
associated renal dysfunction cases or whether concurrent nephro-
toxins and an underlying incidence of MRSA-infection-associated 
renal dysfunction increases risk [ 2 ]. The vancomycin consensus 
guidelines did note there were insuffi cient data to support the 
safety of the higher recommended vancomycin trough concentra-
tions over a prolonged treatment duration [ 3 ]. The guidelines did 
try to standardize the defi nition of  nephrotoxicity   as multiple (at 
least 2 or 3 consecutive) high serum creatinines which increase by 
at least 0.5 mg/dL or ≥50 % from baseline (whichever is greater) 
documented after several days of vancomycin administration and in 
the absence of alternative explanation [ 3 ]. Data related to 
vancomycin- associated renal dysfunction is plagued by different 
defi nitions and metrics to defi ne renal dysfunction. 

 Lodise et al. [ 59 ] retrospectively examined the relationship 
between vancomycin dosing and rate of nephrotoxicity.  Linezolid   
usage was included as a comparator. Patients receiving ≥4 g/day 
had a threefold higher chance of developing nephrotoxicity (34.9 
%) than patients receiving <4 g/day (10.9 %) or linezolid (6.7 %). 
Multivariate analysis confi rmed the relationship between dosage 
and nephrotoxicity and also identifi ed weight ≥101.4 kg, esti-
mated Clcr of ≤86.6 mL/min and ICU residence as independent 
risk factors for nephrotoxicity. The same group found initial 
troughs >15 mg/L (within 96 h of therapy initiation) and steady-
state AUC 0–24  values ≥1300 mg ⋅ h/L to be independent predictors 
of nephrotoxicity even after correcting for confounders [ 80 ]. 

 In addition to the use of AUC calculation as a pharmacody-
namic target, an AUC 0–24  of >700–1300 mg ⋅ h/L has been proposed 
as an alternative marker for increased risk of vancomycin-associated 
renal dysfunction to trough concentrations [ 3 ,  49 ,  80 ,  81 ]. Other 
risk factors identifi ed in literature reviews for vancomycin- associated 
 renal dysfunction   include: doses exceeding 4 g/day, concurrent 
administration of nephrotoxins, prolonged duration of therapy, 
residence in intensive care units, higher acuity scores, and weight 
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greater than 100 kg [ 3 ,  79 ,  82 ]. Systematic review and meta- 
analysis of vancomycin-associated renal dysfunction identifi ed an 
exposure–nephrotoxicity relationship and concluded the probabil-
ity increases as a function of increasing trough concentration and 
duration of therapy [ 82 ]. In  rats  , high doses of vancomycin (350 
mg/kg twice daily for 4 days) are associated with increased 
nephrotoxicity risk [ 83 ]. This may imply high peak concentrations 
in humans with excessive maintenance or loading doses as an addi-
tional risk factor. 

  Ototoxicity   is a dose dependent adverse effect of vancomycin 
evaluated in recent years by Forouzesh et al. [ 84 ] A review of 89 
patients with baseline audiograms and audiograms performed after 
an average of 27 days of vancomycin therapy showed a 12 % rate of 
high-frequency hearing loss with a trend in univariate analysis to 
higher incidence with advancing age. However, only one patient 
received more than 2 g of vancomycin per day and others have ques-
tioned the fi ndings and methodology. A review of older data noted 
ototoxicity to occur with a reported frequency of 1–9 % and to be 
associated with serum vancomycin concentrations >40 mg/L [ 3 ].  

6     Summary 

  Optimal dosing   of vancomycin has led to more aggressive regi-
mens and more frequent temporally associated renal dysfunction. 
Interpretation of vancomycin troughs and their relationship to 
AUC, variation in MIC results due to testing methodology, caveats 
to calculated creatinine clearances and glomerular fi ltration rates, 
different methods to calculate regimens, and issues with different 
patient populations all complicate optimal dosing. The 2009 van-
comycin guidelines identifi ed AUC 0–24 /MIC as the best pharma-
codynamic predictor. With the current widespread use and access 
to powerful computers it may now be possible and practical to 
reexamine software programs envisioned decades ago to more 
accurately identify optimal vancomycin dosing regimens instead of 
using surrogate markers such as serum vancomycin troughs. After 
over 55 years of use, there is still room for improvement and a 
sustained commitment to the monitoring of vancomycin 
regimens.     
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    Chapter 12   

 Pharmacodynamics of Lipoglycopeptides                     

     Eric     Wenzler     ,     Siyun     Liao     , and     Keith     A.     Rodvold       

  Abstract 

   Telavancin, dalbavancin, and oritavancin are lipoglycopeptide anti-infective agents with a broad in vitro 
spectrum against gram-positive microorganisms, including methicillin-resistant  Staphylococcus aureus  
(MRSA). The research and development programs of these agents have been challenging and have resulted 
in the generation of various pharmacokinetic and pharmacodynamic data over the past 10–15 years. All of 
the lipoglycopeptide agents exhibit concentration-dependent bactericidal activity with the ratio of 
unbound area-under-the-curve to minimum inhibitory concentration ( f AUC/MIC) best predicting anti-
bacterial effi cacy in vitro and in vivo. The pharmacokinetic and exposure-response characteristics support 
the recommended once-daily dosing regimen for telavancin, a two-dose regimen for dalbavancin (1000 mg 
followed 1 week later by a 500 mg dose) and a novel single-dose regimen for oritavancin (1200 mg). 
Further research and clinical experiences with these lipoglycopeptide agents are needed in order to expand 
their use to other types of invasive infections caused by MRSA.  

  Key words     Lipoglycopeptide  ,   Telavancin  ,   Dalbavancin  ,   Oritavancin  ,   Methicillin-resistant 
 Staphylococcus aureus  (MRSA)  

1      Overview 

 Several antibiotics from the lipoglycopeptide class have recently 
become available for treatment of serious infections caused by 
 gram-positive microorganisms  , including resistant phenotypes of 
 Staphylococcus aureus  [ 1 ,  2 ]. Each of these agents differs from van-
comycin by having unique pharmacokinetic (PK) and pharmaco-
dynamic (PD)  properties   that allow for alternative dosing schemes. 

  Telavancin  , the fi rst available lipoglycopeptide, has demon-
strated rapid, potent, concentration-dependent bactericidal activ-
ity against multiple gram-positive pathogens, including resistant 
phenotypes  of    methicillin-resistant  S. aureus  (MRSA).   Its dual 
mechanism of action contributes to its demonstrated superiority 
compared to other glycopeptides and lipopeptides in various 
in vitro PD and animal models. The PK of telavancin supports the 
convenient once-daily dosing; however, the increased adverse 
effects observed in clinical trials, particularly nephrotoxicity, limit 
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its use to specifi c patient populations. The  primary urinary excretion   
requires that dosage adjustments be made for renal dysfunction 
and a dearth of data exists on the PKs of telavancin during any 
type of dialysis. Furthermore, despite the promising outcomes 
seen in both skin and soft tissue infection and pneumonia trials, 
the observation of increased mortality in patients with moderate 
to severe renal impairment will continue to place limits on the use 
of telavancin for the treatment of serious gram-positive infections, 
especially MRSA. 

  Dalbavancin   exhibits linear PK with steep dose–response 
curves and a long terminal elimination half-life. Its activity is 
concentration- dependent and the ratio of the area under the con-
centration–time curve to minimum inhibitory concentration 
( AUC/MIC  ) has been shown to be the PK/PD index associated 
with optimal antibacterial effi cacy in vitro. The mechanism of 
action is similar to other glycopeptides and therefore it does not 
retain activity against  vanA  phenotypes of enterococcus. Synergy 
was demonstrated with one agent, oxacillin, and intrinsic or 
acquired resistant to dalbavancin has not been demonstrated to 
date. In 2014, the US Food and Drug Administration (FDA) 
approved dalbavancin for the treatment of adult patients with acute 
bacterial skin and structure infections (ABSSSI) caused by suscep-
tible isolates of gram-positive microorganisms. The  PK and 
exposure- response analysis   supported the recommended two-dose 
intravenous regimen of dalbavancin 1000 mg followed 1 week 
later by a 500 mg dose. Dosage adjustment is required for patients 
with creatinine clearance (CrCl) <30 mL/min and not receiving 
regularly scheduled hemodialysis. Dalbavancin has been proven to 
be effi cacious across a range of clinical syndromes, primarily in ani-
mal models, including  endocarditis and pneumonia  . Dalbavancin 
was well tolerated throughout clinical trials and observed adverse 
events were mild and infrequent. 

  Oritavancin   exhibits multi-exponential linear PK best described 
by a  three-compartment model  . Its concentration-dependent 
bactericidal activity and extremely long terminal half-life makes 
it ideal for single-dose dosing schemes, which have shown clini-
cal effi cacy in PD and animal models as well as clinical trials. Its 
multiple mechanisms of action allow it to maintain potent bacteri-
cidal activity against diffi cult to treat pathogens including  MRSA  , 
vancomycin- intermediate  S. aureus  (VISA), vancomycin-resistant 
 S. aureus  (VRSA), and vancomycin-resistant  Enterococcus  (VRE) 
while other agents may be ineffective. The current FDA-approved 
indication of oritavancin is for the treatment of adult patients with 
ABSSSI caused by susceptible isolates of  gram-positive microor-
ganisms  . The PK and PD data supported the recommended single- 
dose regimen of oritavancin 1200 mg administered by intravenous 
infusion over 3 h in adult patients. The minimal renal and fecal 
elimination do not warrant dosage adjustments, even with dialysis, 
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and alterations in clearance due to body weight and antibacterial 
activity due to protein binding can be overcome by increasing dos-
ages. Oritavancin has proven to be effi cacious across a broad range 
of clinical syndromes in in vitro, animal, and clinical models includ-
ing endocarditis, meningitis, and pneumonia.  Synergy   has been 
demonstrated with several antimicrobials including gentamicin and 
linezolid, importantly against simulated high-inoculum infections. 
Observed adverse events were mild and infrequent, and intrinsic 
or acquired resistance has not been demonstrated during clinical 
studies with oritavancin.  

2    Telavancin 

 Telavancin, (TD-6424), is a semisynthetic derivative of vancomy-
cin with a hydrophobic decylaminoethyl moiety attached to the 
vancosamine sugar, classifying it as a lipoglycopeptide [ 1 ,  3 ]. This 
 lipophilic side chain   improves the affi nity for the  D -Ala- D -Ala target 
site and is responsible for the activity of telavancin against 
 methicillin- resistant  Staphylococcus aureus  (MRSA)   and VanB 
enterococci. Common to the newer lipoglycopeptides, telavancin’s 
lipophilic side chains help anchor the molecule to the cell mem-
brane, concentrating the drug at the site of action and dramatically 
increasing its potency while leading to membrane destabilization 
and loss of membrane potential [ 4 ]. This dual mechanism of action 
provides ten times the inhibition of transglycosylation and synthe-
sis of peptidoglycan compared to vancomycin and is the primary 
reason for telavancin’s rapid bactericidal activity. Telavancin has 
potent activity against  Streptococcus pneumoniae  and staphylococci 
including VISA, with limited activity against VRSA .  Telavancin dis-
plays poor activity against VanA VRE but modest activity against 
VanB  VRE   [ 1 – 4 ]. Telavancin was initially approved by FDA in 
2009 for the treatment of complicated skin and skin structure 
infections (cSSSI) [ 3 ,  5 ]. Issues at a manufacturing site and a 
change in commercialization partnerships subsequently led to the 
lack of product supply of telavancin [ 3 ]. In 2013, a new manufac-
turer was established and reliable distribution of telavancin was 
reestablished. At that same time, FDA approved the indication for 
the treatment of adults with hospital-acquired bacterial pneumonia 
(HABP) or ventilator-associated bacterial pneumonia (VABP) 
caused by susceptible isolates of  S. aureus  when alternative treat-
ment agents are not suitable [ 3 ]. The  European Medicines Agency   
authorized marketing of telavancin for nosocomial pneumonia, 
including VABP, in March 2014. 

   In healthy adult volunteers, total exposure to telavancin increases 
proportionally with dose with a maximum ( C  max ) and minimum 
plasma  concentrations   ( C  min ) of 186 and 16 mg/L for the 15 mg/kg 

2.1  Pharmaco-
kinetics of Telavancin

Pharmacodynamics of Lipoglycopeptides



288

dose and 88 and 6 mg/L for the 7.5 mg/kg, respectively. The 
AUC is also approximately twofold higher at 1282 (15 mg/kg 
dose) compared to 599 mg·h/L (7.5 mg/kg dose). Steady-state 
PK parameters and urinary excretion stratifi ed by gender can be 
found in Table  1  [ 6 ]. Plasma concentrations of the inactive pri-
mary metabolite of telavancin (THRX-651540) are minimal at 
approximately 2 %. Approximately 82.3 % of telavancin is excreted 
in the urine after 48 h with negligible fecal excretion at 0.7 %. 
Interestingly, the mean half-life of the total radioactivity is over 
13-fold longer than the mean half-life of telavancin potentially 
resulting from emanation from tissues or low CL of other minor 
unidentifi ed metabolites or impurities [ 7 ]. PK parameters on day 
one were not signifi cantly different from those on day 7 indicating 
a lack of accumulation. Median trough bactericidal titers of tela-
vancin against  MRSA   on day 7 were 16, 24, and 32 after 7.5, 12.5, 
and 15 mg/kg doses, respectively [ 8 ]. These respective titers were 
128, 256, and ≥512 against  S. pneumoniae . This serum bacteri-
cidal activity is not affected by renal dysfunction. Telavancin is 
approximately 93 % bound to albumin [ 9 ].

   A population PK model has been developed from patients in 
phase 2 and 3 trials with cSSSI and HABP treated with telavancin 

   Table 1  
  Summary of telavancin pharmacokinetics at steady  state     

 Parameter 

 Telavancin 7.5 mg/kg  Telavancin 15 mg/kg 

 Male 
( n  = 23) 

 Female 
( n  = 16) 

 All 
( n  = 39) 

 Male 
( n  = 22) 

 Female 
( n  = 12) 

 All 
( n  = 34) 

  C  max  (mg/L)  87 ± 14.5  88.2 ± 10  87.5 ± 12.8  188 ± 27  183 ± 28  186 ± 27 

 AUC 0–24  
(mg·h/L) 

 608 ± 104  585 ± 86  599 ± 96  1330 ± 171  1194 ± 229  1282 ± 201 

  t  1/2  (h)  6.1 ± 0.6  5.8 ± 0.6  6 ± 0.6  7.9 ± 1.2  6.8 ± 1.3  7.5 ± 1.3 

 CL (mL/h/kg)  13 ± 4.5  13.1 ± 1.8  13 ± 3.6  11.5 ± 1.6  12.9 ± 2.1  12 ± 1.9 

  V  ss  (mL/kg)  116 ± 40  106 ± 13  111 ± 32  122 ± 16  114 ± 10.5  119 ± 14 

 CL R  (mL/h/kg)  7.9 ± 3.1  8.8 ± 4.9  8.3 ± 3.9  7.9 ± 2.5  10.2 ± 6.3  8.7 ± 4.3 

 Urinary recovery 
(% dose) 

 Telavancin  62.9 ± 23.5  66.7 ± 33.2  64.4 ± 27.5  68.6 ± 19.3  77.3 ± 37.6  71.7 ± 27 

 THRX-6 51540 a     5.84 ± 1.3  6.14 ± 2.57  5.96 ± 1.9  3.19 ± 1.75  3.61 ± 0.97  3.34 ± 1.52 

  Data are presented as mean ± SD 
  C  max  maximum plasma concentration,  AUC  0–24  24-hour area under the plasma concentration–time curve,  t  1/2  elimina-
tion half-life,  CL  clearance,  V  ss  apparent volume of distribution at steady-state,  CL  R  renal clearance 
  a Primary metabolite  

Eric Wenzler et al.



289

[ 10 ]. A two-compartment open model fi t the plasma concentra-
tion–time data and was adequate to evaluate the potential contri-
bution of  covariates  . The fi nal population PK models included 
approximately 8912 plasma telavancin concentrations from 710 
patients and 236 subjects without infection. The estimated PK 
parameters from the fi nal model in patients with cSSSI and HABP 
and stratifi ed by degree of renal impairment are shown  in   Table  2 . 
Overall, the population PK estimates for infected patients and non-
infected subjects were similar and consistent to the results from 
Phase 1 clinical studies. The CL of telavancin was highly correlated 
with CrCl and to a lesser degree, body weight. In patients with 
cSSSI, CL was approximately 10 % higher in males than in females 
and the AUC was about 11 % higher in patients ≥75 years of age. 
The median AUC was 34 % higher in obese patients (body mass 
index [BMI] ≥35 kg/m 2 ) despite a 50 % increase in dose while 
median CL was 24 % higher. In patients with HABP, AUC 
decreased by 6 % in patients ≥75 years of age and increased only 18 
% in obese while CL was 27 % higher. The linear relationship 
between weight and CL of telavancin supported dosing on a mg/kg 

   Table 2  
  Population pharmacokinetic  estimated   parameters for patients with cSSSI and HABP stratifi ed by 
degree of renal impairment a    

 Patients with cSSSI 

 Parameter 

 No renal 
impairment 
( n  = 575) 

 Mild renal 
impairment 
( n  = 122) 

 Moderate renal 
impairment 
( n  = 36) 

 Severe renal 
impairment 
( n  = 16) 

  V  ss  (L)  11.87 ± 3.47  13.06 ± 3.95  14.17 ± 3.45  14.89 ± 4.44 

 CL (L/h)  1.22 ± 0.32  1 ± 0.24  0.82 ± 0.223  0.59 ± 0.15 

  V  1  (L)  5.28 ± 2.41  6.43 ± 2.81  7.57 ± 2.53  8.62 ± 4.02 

 Patients with HABP 

 Parameter 

 No renal 
 impairment   
( n  = 271) 

 Mild renal 
impairment 
( n  = 88) 

 Moderate renal 
impairment 
( n  = 48) 

 Severe renal 
impairment 
( n  = 26) 

  V  ss  (L)  11.47 ± 6.78  14.11 ± 5.23  13.68 ± 3.61  15.64 ± 3.76 

 CL (L/h)  1.1 ± 0.35  1.03 ± 0.26  0.91 ± 0.24  0.64 ± 0.22 

  V  1  (L)  5.74 ± 5.7  7.17 ± 4.07  6.77 ± 2.11  8.19 ± 2.53 

  Data are presented as mean ± SD 
  V  ss  apparent volume of distribution at steady-state,  CL  clearance,  V  1  apparent volume of distribution in the central 
compartment 
  a Degree of renal impairment was classifi ed as follows: severe, CrCl of <30 mL/min and including patients on dialysis; mod-
erate, CrCl of <50 mL/min to ≥30 mL/min; mild, CrCl of <80 mL/min to ≥50 mL/min; none, CrCl of ≥80 mL/min  
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bases, evidenced by the modest increases in exposure and CL in 
obese patients despite increases in absolute doses. The population 
PK analysis provided further support for the approved product 
package insert and dosing recommendations based body weight 
and renal function.

     Age and hepatic impairment do not have an effect on the PKs of 
telavancin [ 11 ,  12 ] and it does not induce or inhibit CYP3A [ 13 ]. 

 PKs of telavancin were studied in subjects on hemodialysis 
given a 7.5 mg/kg dose 2–4 h before a standard 4-h hemodialysis 
session [ 14 ]. The mean PK parameters were different between 
subjects with normal renal function compare to those on hemodi-
alysis, including total  C  max  of 70.6 versus 52.1 mg/L, AUC 0–∞  of 
568 versus 1147 mg · h/L, CL of 14 versus 7 mL/h/kg, volume 
of distribution at steady-state (V ss ) of 0.139 versus 0.189 L/kg, 
and elimination half-life of 8.1 versus 19.7 h. No differences were 
observed in protein binding (approximately 87 %) between the 
groups. Although there are no specifi c dosing recommendations 
provided for patients on intermittent hemodialysis in the package 
insert for telavancin, these data help support the 10 mg/kg every 
48 h dosing regimen given to patients on dialysis in the phase III 
studies. 

 Additionally, the previously described population PK model 
was used to simulate telavancin concentration–time profi les and to 
evaluate the ability to achieve PD targets of interest in patients with 
renal dysfunction [ 15 ]. Concentration–time profi les were simu-
lated for 10 mg/kg daily in individuals with CrCl >50 mL/min, 
7.5 mg/kg daily for individuals with CrCl 30–50 mL/min, and 10 
mg/kg every 48 h for CrCl <30 mL/min. The AUC 0–Tau  values 
were relatively similar across the three dosing regimens and at least 
93 % of subjects achieved the PD target (AUC/MIC of 219) for 
MIC values up to 2 mg/L. The percentage of subjects with severe 
renal impairment achieving an AUC/MIC of 219 with an MIC of 
2 mg/L was 89.3 % for the 24-h AUC (AUC 0–24 ) and 23.6 % for 
the second 24-h AUC (AUC 24–48 ), respectively. This analysis helped 
solidify the renal dose adjustments suggested by Monte Carlo sim-
ulations performed from phase I study data and confi rmed the lack 
of difference in exposure profi les of telavancin across varying 
degrees of renal impairment. 

 Telavancin is available as an intravenous preparation formu-
lated with hydroxy propyl-β-cyclodextrin to enhance solubility, a 
renally eliminated solubilizer known to cause adverse effects if 
accumulation occurs. Telavancin is highly protein bound (93 %) 
and has a large molecular weight (1792 Da) suggesting its removal 
by extracorporeal circuits would be minimal; however, its small 
apparent V (0.15 L/kg) and primary renal elimination may lead to 
signifi cant dialytic CL. The mean total CL of telavancin during 
continuous renal replacement therapy is equal to that in healthy 

2.1.1   Special Populations  
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volunteers (12–18 mL/min) given 7.5 mg/kg up to ultrafi ltration 
or dialysate rates of 3 L/h [ 16 ]. At rates of 6 L/h, the CL exceeds 
that of healthy subjects. These data suggest that telavancin may be 
removed by both continuous hemofi ltration and hemodialysis par-
ticularly when high ultrafi ltration or dialysate fl ow rates are used. 
Hydroxy propyl-β-cyclodextrin transmembrane CL approached 
ultrafi ltration or dialysate fl ow rates and would not likely accumu-
late in patients receiving continuous renal replacement ther-
apy [ 16 ]. This work suggests that dose and/or frequency increases 
of telavancin may be needed in patients receiving continuous renal 
replacement therapy with high ultrafi ltration or dialysate fl ow rates.     

   The mean  C  max  and time to  C  max  ( T  max ) of telavancin in blister fl uid 
after administration of 7.5 mg/kg daily for 3 days was 16 mg/L 
and occurred at 9.3 h [ 17 ]. The mean AUC at steady state was 241 
mg · h/L and the elimination half-life was 6.91 h. Over the dosing 
interval, the ratio of the AUC in blister fl uid to that in plasma was 
40.3 %. The derived total (AUC/MIC) and unbound AUC/MIC 
( f AUC/MIC) using an MIC of 0.5 to  S. aureus  in blister fl uid 
were 482 and 24.1, respectively. 

 The pulmonary penetration of telavancin was evaluated in 
healthy subjects. The mean concentration in ELF (3.7 mg/L) 
peaked 8 h after the start of the last infusion and the trough con-
centration in ELF (0.9 mg/L) remaining above the MIC 90  value 
for  MRSA   (0.5 mg/L) at 24 h after multiple doses of 10 mg/kg 
[ 18 ]. The  C  max  observed in alveolar macrophages (AM) was sub-
stantially higher at 45 mg/L at 12 h and 42 mg/L at 24 h after 
multiple doses of telavancin. The ratio of ELF and AM  C  max  to the 
estimated unbound  C  max  in plasma were 32 and 388 %, respectively. 
The estimated AUC 0–24  in ELF using the linear-trapezoidal rule 
was 47.4 mg · h/L compared to 785 mg · h/L for total plasma con-
centrations. The estimated penetration of telavancin over the dos-
ing interval based on ratio of AUC 0–24  in ELF to unbound AUC 0–24  
( f AUC) in plasma was 60.4 %. A second analysis of this data using 
population PK modeling and Monte Carlo simulation reported 
respective mean and median AUC 0–24  values of telavancin in pul-
monary epithelial lining fl uid (ELF) were 74.75 and 53.74 mg · h/L, 
with the median penetration ratio of AUC in ELF to  f AUC in 
plasma of 73 % [ 19 ]. The mean parameter vector from the popula-
tion model for ELF penetration was 66 %. The results of both 
analyses indicate the telavancin penetrates reasonably well into the 
ELF compared to plasma, with AUC 0–24  values in the ELF able 
to achieve the estimated  f AUC 0–24 /MIC target ratio of 78 for 
 S. aureus  isolates with an MIC <1 mg/L. Pulmonary surfactant 
had no effect on the in vitro activity of telavancin against  S. pneumoniae  
or  MRSA  . These data also suggest that telavancin penetrates rela-
tively well into the ELF and extensively into alveolar macrophages 
and the activity is not hindered by pulmonary surfactant. 

2.1.2   Disposition 
and Penetration  
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 Telavancin has been shown to be extremely potent against 
extracellular methicillin-susceptible  S. aureus  (MSSA) and  MRSA  , 
achieving bactericidal activity at the 1× MIC value at 18 h and at 
 C  max  at 2–10 h [ 20 ,  21 ]. Telavancin caused complete eradication at 
 C  max  within 6–24 h and a 4.5 log reduction against VISA and 
VRSA. Interestingly, no gross membrane destabilization of macro-
phages was detected in the model indicating that the intracellular 
bactericidal effect of telavancin were unlikely to result from direct 
contact of extracellular telavancin with phagocytized  S. aureus . 
A concentration–effect curve was clearly demonstrated for intrap-
hagocytic  S. aureus  and telavancin is known to penetrate alveolar 
macrophages; therefore, further analyses is required to delineate 
this mechanism. Also of note was the persistence of viable intracel-
lular bacteria even after exposure to concentrations of telavancin at 
1000× MIC for 24 h, a phenomenon not unique to telavancin. 
The potent intracellular and extracellular activity of telavancin 
against  S. aureus  observed in this study indicate that telavancin 
may be effective at decreasing persistence and recurrence, two 
common features of serious staphylococcal infections.      

     The activity of telavancin has been evaluated in numerous different 
in vitro models. It has been shown to have rapidly bactericidal, 
concentration-dependent activity against Gram positive pathogens, 
including those with reduced glycopeptide susceptibility [ 22 ]. 
Telavancin has displayed in vitro synergy with multiple other agents 
including nafcillin, meropenem, imipenem, ceftriaxone, rifampin, 
and gentamicin against MSSA,  MRSA   and heteroresistant 
vancomycin- intermediate  S. aureus  (hVISA) [ 23 ,  24 ]. Telavancin 
has also demonstrated activity against VISA and VRSA at 4 and 8× 
the MIC. The presence of human serum (albumin) causes a two-
fold increase in the static MIC but does not affect the cidality in 
dynamic assays. This may be due to a weaker protein binding affi n-
ity than predicted by experiments or a lack of effect on the mem-
brane destabilization mechanism of telavancin [ 25 ,  26 ]. 

 Telavancin has previously been shown to be more active than 
vancomycin against  Clostridium diffi cile  with an MIC 90  of 0.25 
mg/L compared to 1 mg/L for vancomycin. To further investi-
gate the potential utility of telavancin in the treatment of  C. diffi -
cile  infection, time-kill studies were performed for telavancin and 
compared to vancomycin and metronidazole against fi ve strains of 
 C. diffi cile  [ 27 ]. Overall, vancomycin achieved a greater log 10  
reduction in colony forming units (CFU/mL) at 24 h than tela-
vancin against all strains tested except for the ATCC strain in which 
they were comparable. Metronidazole was more bactericidal than 
both telavancin and vancomycin at all concentrations except against 
one strain where regrowth occurred at 2 and 4 times the MIC. 

 In an in vitro PD  model   examining the activity of telavancin 
against MSSA, MRSA, VISA, vancomycin-susceptible enterococci 

2.2  Pharmaco-
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(VSE), and VRE, the bactericidal concentration was explored 
along with dose-ranging studies to establish the  f AUC/MIC asso-
ciated with effi cacy [ 28 ,  29 ]. The 90 % maximum antibacterial 
effect occurred at  f AUC/MIC of >40 for vancomycin-susceptible 
 S. aureus  strains compared to a  f AUC/MIC of 6 for a 2 log reduc-
tion against VISA. Against enterococci, doses were simulated from 
9 to 14 mg/kg and the 90 % maximum antibacterial effect occurred 
at a  f AUC/MIC >70. Given the unbound drug AUC of approxi-
mately 50–100 mg · h/L observed in healthy volunteers given 10 
mg/kg of telavancin, antibacterial effi cacy for staphylococci and 
enterococci could be reasonably expected up to MICs of 1 mg/L. 

 Finally, in an in vitro PD model examined the activity of tela-
vancin alone and in combination with gentamicin or rifampin 
against various phenotypes of  S. aureus  in simulated endocardial 
vegetations against MSSA,  MRSA  , VISA, and hVISA strains [ 30 ]. 
Telavancin achieved ≥2-log reduction in CFU/g against all strains 
at the end of the experiment (96 h) and was bactericidal against 
hVISA and VISA at 64 h. When combined with rifampin or genta-
micin, the time to achieve bactericidal activity was shortened by 
20–40 h against MRSA although the extent of killing was only 
signifi cantly improved against MSSA. The combination of tela-
vancin and gentamicin tested against hVISA and VISA demon-
strated rapid bactericidal effect by 27 h and log reduction below 
the detectable limit by 48 h. Telavancin combined with rifampin 
did not demonstrate enhanced killing.     

   The demonstrated concentration-dependent, rapidly bactericidal 
activity of telavancin of in vitro models has translated well into 
in vivo animal models. In the mouse neutropenic thigh and sub-
cutaneous infection models using strains of MSSA, MRSA, 
methicillin- resistant  Staphylococcus epidermidis  (MRSE), methi-
cillin-susceptible  S. epidermidis  (MSSE), penicillin-resistant  S. 
pneumoniae  (PRSP), penicillin-susceptible  S. pneumoniae  (PSSP), 
and VRE, the total daily dose of telavancin was directly propor-
tional to the total decrease in bacterial load while the frequency 
of dosing did not affect decrease in CFU/g [ 31 ]. When total 
drug concentrations were examined, AUC/MIC and time above 
the MIC were equal predictors of antibacterial effi cacy while 
AUC/MIC was the best predictor when unbound drug concen-
trations were used ( R  2  = 0.83). This study confi rms that the 
in vivo effi cacy of telavancin is driven by total drug exposure 
(AUC/MIC) and that once-daily dosing is the preferred regimen 
for optimal effi cacy. 

 In a neutropenic mouse bacteremia model, telavancin has 
demonstrated potent activity against MRSA, hVISA and VISA 
[ 32 – 34 ]. In all studies, blood and spleen bacterial titers were 
reduced signifi cantly with the majority of mice surviving to the end 
of the observation period. 

2.2.2   Animal Models  
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 Telavancin has also been shown to signifi cantly reduce vegeta-
tion titers of  MRSA   and VISA in rabbit endocarditis models, 
including isolates that were daptomycin-nonsusceptible [ 35 – 37 ]. 

 With regards to pneumonia, telavancin has again demonstrated 
signifi cant reductions in bacterial titers and improved clinical out-
comes when tested against MSSA, MRSA, hVISA and VISA. 
Telavancin achieved a signifi cantly greater reduction in bacterial bur-
den than its comparator agents, nafcillin and linezolid, in an MSSA 
pneumonia model [ 38 ], whereas the  proportion   of survivors was 
19/22 (86 %) compared to 3/22 (14 %) for the control group after 
14 days in an MRSA immunocompromised model [ 39 ,  40 ]. 

 In a rabbit meningitis model, telavancin reached a  C  max  in cere-
brospinal fl uid (CSF) of 3.8 mg/L at 8 h post-dose compared to 
0.13 mg/L in uninfected controls [ 41 ]. The  C  max  and AUC in CSF 
relative to plasma were 3 and 2 % for infected animals. Telavancin 
was rapidly bactericidal against PRSP and the CSF of 6/10 rabbits 
were sterilized. Against MSSA, telavancin produced a 4.32 log 
CFU/mL reduction and also sterilized 6/10 rabbits. Despite the 
low level of penetration into infl amed meninges, telavancin was 
effi cacious as monotherapy against PRSP and MSSA meningitis. 
Given the MIC of 2 mg/L to MSSA, higher doses of telavancin 
may be warranted for staphylococcal meningitis. 

 Telavancin has also demonstrated low levels of penetration 
into bone albeit with improved clinical outcomes over control 
groups [ 42 ]. The concentration of telavancin in infected rabbit left 
tibial bone matrix was 0.27 μg/g compared to 0.25 μg/g in unin-
fected right tibias. At 56 days post-infection, 3/15 (20 %) rabbits 
treated with telavancin had MRSA-positive tibial cultures com-
pared to 9/15 (60 %) rabbits in the control group. 

 The bactericidal activity of telavancin has also translated into 
improved effi cacy in foreign body infection models [ 43 ]. In one 
study, the rate of both device colonization and infection with 
MRSA were both signifi cantly lower with doses of telavancin ≥15 
mg/kg (doses of 30 and 45 mg/kg). The respective rate of colo-
nization and infection were 6/54 (11 %) and 5/54 (9 %) at the 
dose of 30 mg/kg, 6/54 (11 %) and 6/54 (11 %) for the dose of 
45 mg/kg, and 21/54 (39 %) and 19/54 (35 %) with the 15  mg/
kg dose. All (48/48) control devices were both colonized and 
infected along with 52 % of the rabbits given  vancomycin  .   

   Telavancin has been under clinical investigation in human trials 
since the early 2000s and therefore has a wealth of data in several 
different disease states [ 1 ,  2 ]. In patients with cSSSI due to gram- 
positive bacteria, the  FAST 1 and 2 trials   were randomize, double- 
blind phase 2 trials comparing telavancin to standard of therapy 
[ 44 ,  45 ]. In FAST 1, cure rates were 92 % for telavancin and 96 % 
for standard therapy ( p  = 0.53). In patients with  MRSA   at baseline, 
cure was achieved in 82 and 69 % of the telavancin and standard 
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therapy groups, respectively [ 44 ]. In FAST 2, the clinically evalu-
able population cure rates were 96 % for telavancin and 94 % for 
standard therapy [ 45 ]. In the microbiologically evaluable popula-
tion of patients infected with MRSA the cure rates were 96 % for 
telavancin and 90 % for standard therapy. Telavancin achieved a 
signifi cantly higher rate of MRSA eradication in the microbiologi-
cally evaluable group at the test-of-cure visit ( p  = 0.04). 

 The  ATLAS I and II studies   were two phase 3 randomized tri-
als in patients with cSSSI in which telavancin was compared to 
vancomycin [ 46 ]. The overall cure rate in the clinically evaluable 
and all treated patients in the telavancin and vancomycin arms were 
88.3 % versus 87.1 % and 76.5 % versus 74.2 %, with no signifi cant 
differences between the groups or between the individual studies. 
Of the 579 clinically evaluable patients with MRSA at baseline, 
there were no differences in the cure rates between telavancin and 
vancomycin (90.6 % versus 84.4 %). The overall therapeutic 
response rate, including the number of patients who were cured 
and had a pathogen eradicated at the test-of-cure visit, was also 
similar between telavancin and vancomycin (88.6 % versus 86.2 %). 

 The  ATTAIN trials   were also two methodologically identical, 
randomized, double-blind, comparator-controlled, parallel-group 
phase III clinical trials designed to assess the effi cacy and safety of 
telavancin compared to vancomycin in the treatment of hospital- 
acquired pneumonia due to gram-positive pathogens, particularly 
MRSA [ 47 ]. The cure rates in the pooled all-treatment population 
were 58.9 % for telavancin and 59.5 % for vancomycin compared to 
82.4 and 80.7 % for the clinically evaluable population. The only 
statistically signifi cant difference in outcomes was seen in patients 
in the microbiologically evaluable population at the test-of-cure 
visit with monomicrobial  S. aureus  pneumonia with a vancomycin 
MIC ≥1 mg/L; the cure rate for telavancin was 87.1 % compared 
to 74.3 % for vancomycin ( p  = 0.03). 

 A   post hoc  analysis   of survival at 28 days from the ATTAIN trials 
demonstrated similar survival rates of 76 % for telavancin and 77 % 
for vancomycin [ 48 ,  49 ]. For patients with CrCl values ≥50 mL/
min survival rates were similar at 84 and 81 % for telavancin and 
vancomycin, respectively, while lower survival rates were observed 
for patients in the telavancin group with CrCl values <50 mL/min, 
although not statistically signifi cantly lower. Survival rates were 59 % 
versus 70 % and 47 % versus 61 % for telavancin versus vancomycin 
in patients with CrCl values <50 mL/min and <30 mL/min, 
respectively [ 48 ]. A second  post hoc  analysis excluding patients with 
CrCl <30 mL/min showed no differences in survival [ 49 ]. 

 Finally, in a phase II trial comparing telavancin to standard 
therapy for uncomplicated  S. aureus  bacteremia, cure rates were 
similar between the groups in the clinically evaluable population at 
88 and 89 % for telavancin and standard treatment, respectively 
[ 50 ]. Microbiological eradication was achieved at the test-of-cure 
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visit for 88 % of patients in the telavancin group compared to 78 % 
of standard therapy patients. Telavancin is currently under investi-
gation for the treatment of  S. aureus  bacteremia in a multicenter 
phase III trial [ 3 ].   

3    Dalbavancin 

  Dalbavanci  n is a novel parenteral, semisynthetic, long-acting lipo-
glycopeptide [ 1 ]. Its mechanism of action is similar to other glyco-
peptides, via binding to the terminal  D -alanyl-  D -alanine pentapeptide 
chain of nascent peptidoglycan, while the monoamide substituent 
at the peptide carboxy group is responsible for the increased 
potency against staphylococci, particularly coagulase-negative 
staphylococci [ 1 ,  51 ]. Its structure and spectrum of activity most 
closely resemble that of teicoplanin; however, it has greater potency 
against many gram-positive organisms including anaerobes [ 1 , 
 52 ]. Dalbavancin has demonstrated potent activity against clini-
cally relevant aerobic and anaerobic gram-positive  organism  s, 
including methicillin-resistant staphylococci, penicillin-resistant 
 Streptococcus pneumoniae , and certain vancomycin-resistant entero-
cocci ( vanB  phenotypes) [ 1 ,  53 ]. 

   The PKs of dalbavancin have been explored in healthy volunteers, 
renally impaired subjects, and hepatically impaired subjects. The 
  C  max  of   dalbavancin is achieved immediately following the end of the 
infusion with an apparent V ss  of 8–12 L [ 54 ,  55 ]. Plasma concentra-
tions increase in a linear dose-dependent manner and the protein 
binding is approximately 93 %. Maximum tissue concentrations are 
approximately 300 mg/L and are observed within 24 h after dose 
administration [ 56 ,  57 ]. Dalbavancin is not a substrate, inhibitor 
nor inducer of hepatic CYP450 isoenzymes. It is eliminated through 
renal and nonrenal routes primarily as intact drug. The clearance in 
healthy volunteers is estimated to be 0.04 L/h with a half-life of 
approximately 8 days [ 57 ,  58 ]. The PK  parameters of dalbavancin 
after single and multiple escalating doses are shown  in   Table  3 .

   Importantly,  hepatic and renal dysfunction   has demonstrated 
minimal effects on the concentration and exposure [ 54 ,  56 ,  59 ]. A 
minor metabolite of dalbavancin, hydroxyl-dalbavancin, has been 
found in human urine while signifi cant amounts have not been 
found in plasma. Approximately 35 % of the parent drug is excreted 
in the urine while 8–12 % of dalbavancin is excreted as hydroxyl- 
dalbavancin [ 1 ,  7 ]. Approximately 20 % of the parent drug is excreted 
in human feces and approximately 70 % of the administered parent 
dose has been accounted for in collected excreta through day 70. In 
a mass balance study in rats, by day 14 only the kidneys, liver, brown 
fat, skin, and skeletal muscle retained >1 % of the initial radiolabeled 
dose and <5 % of total radioactivity was retained in the entire carcass 
at 70 days after dosing of dalbavancin [ 56 ]. 

3.1  Pharmaco-
kinetics of 
Dalbavancin
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 The mean AUC over 7 days in blister fl uid was 6438 mg · h/L 
and mean penetration into blister fl uid was approximately 60 % fol-
lowing a single 1000 mg dose of dalbavancin [ 60 ]. Concentrations 
of dalbavancin in blister fl uid remained well above the MIC 90  for  S. 
aureus  and streptococci through day 7 in all subjects, supporting 
its use for patients with  acute bacterial skin and skin structure 
infections  . 

 The  serum bactericidal activity   of dalbavancin against MRSA 
ranged from 0.5 to 4 mg/L and remained measurable for 7 days 
after administration for all patients receiving ≥500 mg of dalba-
vancin [ 54 ,  57 ]. All samples in which the plasma concentration of 
dalbavancin exceeded 20 mg/L had detectable bactericidal activity 
upon twofold or greater dilution. The results of this study pro-
vided the basis for a once-weekly dosing regimen that would pro-
vide plasma concentrations with adequate and sustained bactericidal 
activity against  S. aureus . PK simulations indicated that this could 
be achieved with a single 1000 mg dose for the fi rst 7 days fol-
lowed by a 500 mg dose on day 8 to maintain therapeutic concen-
trations out to 14 days. In the phase 1 dose escalation study, both 
these doses were tolerated well by healthy volunteers [ 57 ]. 

 A population PK model has also been developed from patients 
enrolled in the phase 2 and 3 trials of dalbavancin [ 61 ]. A two 
compartment model with fi rst-order elimination best fi t the data. 
The apparent  V  ss  derived from the model was 15.7 L and the mean 
terminal half-life was 8.5 days. When the impact of covariates was 
examined, a BSA >2.25 m 2  resulted in a 34 % decrease in  C  max  but 
did not affect CL. A simulated CrCl of 20–50 mL/min did not 
affect  C  max  but did decrease CL by approximately 21 %. Low BSA 
and low  CrCl   resulted in 30 % higher  C  max  and 27 % lower clear-
ance. Although these values were statistically signifi cant, they were 
all within 20–30 % of an average weight patient with normal CrCl. 
The CL of dalbavancin was infl uenced by BSA and CrCl while a 
linear relationship existed between BSA and apparent volume of 
distribution in the central compartment ( V   c  ). 

 Overall, the PKs of dalbavancin are predictable and consistent 
with dose proportionality, exhibited low interindividual variability, 
and have been found to be similar between patients and healthy 
subjects [ 62 ]. After a single 1000 mg dose in healthy subjects, the 
mean PK parameter values (coeffi cient of variation) for dalbavancin 
were  C  max  of 287 mg/L (13.9 %), AUC 0–24  of 3185 mg · h/L (12.8 
%), AUC 0–168  of 11,160 mg · h/L (41.1 %), CL of 0.0513 L/h 
(46.8 %), and terminal  t  1/2  of 346 h (16.5 %). In patients receiving 
the recommended two-dose regimen of dalbavancin for the treat-
ment of ABSSSI, mean plasma concentrations of dalbavancin were 
30.4 mg/L immediately before the second dose and 21.2 mg/L 
12 days after the second dose. These observed plasma concentra-
tions of dalbavancin are similar to values observed in healthy 
volunteers. 
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   Findings from three phase I studies that investigated the safety and 
PKs in patients with varying degrees of renal or hepatic dysfunc-
tion have been reported [ 59 ]. Patients with moderate renal impair-
ment had an approximate 50 % increase in AUC 0–∞  compared to 
normal controls, although the mean AUC through day 7 was only 
23 % higher. The  C  max  of dalbavancin was also increased by 30 % in 
patients with moderate renal impairment. CL and V ss  of dalba-
vancin decreased by 35 and 21 %, respectively, as renal impairment 
increased. Mean terminal half-life with moderate renal impairment 
ranged from 389 to 432 h, but overall mean terminal elimination 
half-life remained relatively unchanged across groups as well as the 
fraction of urinary excretion. For patients with severe renal impair-
ment, plasma concentration–time profi les were similar to normal 
controls up to 7 days after dalbavancin administration but increased 
after day 7. Patients with severe renal impairment had a 100 % 
increase in AUC 0–∞ , but only a 16 % increase through day 7.  C  max  
was similar, even in patients with severe impairment who received 
the 1000 mg dose. The CL of dalbavancin was reduced by half and 
the terminal half-life was slightly longer. In dialysis-dependent 
patients, concentration–time profi les were similar to normal con-
trols through day 7 and measurable dalbavancin concentrations 
were not found in the dialysate. Compared to normal subjects, 
 C  max  was not increased; however, AUC 0–∞  was 62 and 28 % higher 
when dalbavancin was dosed before and after dialysis, respectively. 

 For patients with hepatic impairment, those with moderate 
and severe impairment had a 27–36 % decrease in AUC and an 
18–29 % increase in  C  max . CL increased by up to 58 % while  V   ss   
increased up to 30 %. Terminal half-life remained unchanged [ 59 ]. 

 The minimal changes in exposure in patients with renal impair-
ment through the fi rst 7–14 days is likely due to the fact that 7-day 
AUC and 14-day AUC accounted for only 1/3 and 1/2 of the 
total AUC 0 −  ∞   given the long half-life of dalbavancin [ 59 ]. When 
these data are taken into account, dosage adjustment is not needed 
for patients with mild renal impairment and may not be necessary 
for patients with moderate renal impairment. Patients with severe 
renal impairment had a marked increase in exposure that likely 
requires dose adjustment. With the intent of matching concentra-
tions and exposures during the 14 treatment period with the two- 
dose intravenous regimen, PK simulations were carried out in 
participants with severe renal impairment who do not receive dialy-
sis, including investigating various doses of dalbavancin. Based on 
these simulations, a dose of 750 mg of dalbavancin followed 1 
week later by 375 mg of dalbavancin was suggested for treatment 
for patients with a CrCl <30 mL/min. This dosage regimen main-
tains concentrations above 20 mg/L and matches the treatment 
exposures observed for subjects with normal renal function. 
Although a slight decrease in dalbavancin exposure and an increase 
in CL and  V  ss  were evident for patients with moderate or severe 

3.1.1   Renal and Hepatic 
Impairment     
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hepatic insuffi ciency, the values overlapped with the range noted 
for healthy subjects. Notably, the mean concentrations of dalba-
vancin were maintained above 20 mg/L throughout the 14-day 
treatment period in all groups of hepatically impaired patients. 
When these data are taken into consideration, no adjustment of 
dalbavancin dosage is required for patients with any degree of 
hepatic  impairment      [ 59 ].  

   Despite large molecular size (1817 Da), high degree of protein 
binding (93 %), and minimal renal elimination of dalbavancin, 
Vilay and colleagues assessed the transmembrane clearance of dal-
bavancin with in vitro renal replacement therapy models [ 63 ]. 
When the CL of dalbavancin by continuous renal replacement 
therapy (CRRT) was added to the nonrenal clearance observed 
from healthy subjects in order to estimate the total CL of drug 
during CRRT, the standard dosing scheme of dalbavancin 
(1000 mg followed by 500 mg on day 7) was adequate for dialy-
sate rates up to 1 L/h. For dialysate rates of ≥2 L/h with a poly-
sulfone fi lter, a dose increase should be considered as extracorporeal 
clearance exceeded 30 % of total CL, translating to a total CL dur-
ing CRRT exceeding that of total CL in healthy subjects. At a 
dialysate rate of 6 L/h, the half-life of dalbavancin would also be 
shortened from 7 to 8 days to approximately 4 days [ 63 ]. This 
fi nding could have important ramifi cations for dalbavancin dosing 
in critically ill patients on CRRT. Of note, this study only reported 
transmembrane CL and not the contribution of drug adsorption to 
extracorporeal CL.   

     Dalbavancin has exhibited rapid bactericidal activity against multi-
ple phenotypes of  S. aureus,  including those with reduced glyco-
peptide susceptibility, at clinically relevant unbound drug plasma 
concentrations [ 64 ]. The time to 99.9 % reduction in CFU/mL 
ranged from 24 to 48 h while the AUC 24 /MIC required for a 
static and 2-log reduction effect was 36–100 and 214–331, respec-
tively. Simulated unbound concentrations of dalbavancin produced 
marked but non-concentration dependent killing of multiple 
strains of  S. aureus  and  f AUC 24 /MIC was related to effi cacy up to 
240 h. 

 The activity of dalbavancin in combination with several other 
antimicrobials has been evaluated in vitro [ 65 ]. Antimicrobials 
tested against ten staphylococci, enterococci, and streptococci iso-
lates included oxacillin, gentamicin, clindamycin, levofl oxacin, 
rifampin, vancomycin, quinupristin/dalfopristin, linezolid, and 
daptomycin. Synergy was only present in 5.6 % of tests, all with the 
combination of dalbavancin and oxacillin. After dalbavancin and 
oxacillin, the combinations of dalbavancin and gentamicin and dal-
bavancin and vancomycin were equally effective, producing partial 
synergy or additive effects against 9 bacterial strains. The least 

3.1.2   Intermittent 
and Continuous Renal 
Replacement     

3.2  Pharmaco-
dynamics of 
Dalbavancin

3.2.1   In Vitro Models  
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active combination was dalbavancin plus linezolid. No antagonistic 
interactions were observed with any combination.  

   In vivo animal studies of dalbavancin have demonstrated that 
increasing the dosing interval resulted in a shifting of the dose–
response curve to the left, indicating greater killing effect when 
large doses were given infrequently [ 66 ]. When correlating the 
PK/PD indices with CFU/mL reduction, the AUC 24 /MIC 
resulted in the strongest correlation ( R  2  = 77 %) for  S. aureus  while 
 C  max  was the strongest ( R  2  = 78 %) for  S. pneumoniae.  T > MIC was 
a poor fi t ( R  2  < 10 %) for both organisms. The mean (±SD) AUC 24 /
MIC required for static and 2-log killing effect against  S. pneu-
moniae  and  S. aureus  were 7.2 ± 4.52 and 16.6 ± 12.3 and 160 ± 67 
and 266 ± 88, respectively, when dalbavancin was dosed every 72 h. 
The dose–response curves were steep and the AUC 24 /MIC associ-
ated with 1 and 2-log killing were not appreciably higher than those 
required to achieve a static effect. In addition, when dalbavancin 
was dosed every 72 h versus every 24 h, the 24-h AUC/MICs asso-
ciated with killing and stasis were 1.3- to 2.4-fold lower, supporting 
the larger, infrequent dosing regimens. When the effect of neutro-
phils on the activity of dalbavancin was examined by using nonneu-
tropenic and neutropenic mice, the doses required to achieve the 
same endpoints were 1.7- to 2.1-fold lower for the nonneutropenic 
mice, although these differences were not statistically signifi cant. 

 To determine the  impact   of site of infection, the dose–response 
curves were compared for the thigh and lung  S. pneumoniae  murine 
infection models [ 66 ]. The dose–response curves were nearly iden-
tical for these two models, suggesting that the PDs target is inde-
pendent of the infection site, at least for  S. pneumoniae.  Given that 
dalbavancin serum exposure following a single 1000 mg dose pro-
duces a  f AUC of more than 1500 mg · h/L, current dosing regi-
mens of dalbavancin would exceed the necessary targets for both 
organisms studied. 

 Dalbavancin has exhibited excellent activity in an  MRSA   rabbit 
endocarditis model and was not infl uenced by the reduced suscep-
tibility to other glycopeptides [ 67 ], while a single dose of dalba-
vancin was able to sterilize the lungs of rats with penicillin-resistant 
 S. pneumoniae  pneumonia [ 68 ]. 

 At high concentrations (32 × MIC), dalbavancin is bactericidal 
against both logarithmic and stationary-phase MRSA. In a foreign 
body infection model, only dalbavancin at 60 and 80 mg/kg pre-
vented planktonic bacterial growth while combination with 
rifampin produced a bactericidal effect for all dosing regimens of 
dalbavancin [ 69 ]. Complete elimination of implant-adherent 
staphylococci was not achieved with any dalbavancin dose tested. 
The combination of dalbavancin with rifampin achieved cure rates 
of 25–36 %, which was similar to rifampin alone (33 %). Rifampin 
did not enhance the activity of dalbavancin, although dalbavancin 

3.2.2   Animal Models  
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did prevent the emergence of rifampin resistance. Dalbavancin 
monotherapy achieved only a static effect against planktonic MRSA 
in the cage fl uid and showed no eradication for adherent  MRSA   at 
any dose. Addition of rifampin did not increase killing in either 
environment. 

 Concentrations of dalbavancin in the bone marrow of rabbits 
at 15.14 μg/g were more than threefold higher than plasma con-
centrations at 72 h and remained constant at 12.02 μg/g between 
12 and 336 h after an intravenous dose of 20 mg/kg [ 14 C] dalba-
vancin [ 70 ]. The resulting penetration into bone, bone marrow, 
and nucleus pulposus compared to plasma was 63, 248, and 12 %, 
respectively. Penetration into the synovial space and compact bone 
was 21 and 5 %, respectively, with concentrations at 12 h of 6.56 
and 1.56 μg/g, respectively. Overall, total drug concentrations 
were maintained above the MICs for key pathogens for up to 168 
h in all tissues studied except compact bone. 

 These in vitro and animal models assess the amount of total 
drug needed for activity and the PK/PD index associated with effi -
cacy, including a bactericidal effect against  S. aureus . When cou-
pled with PK data and simulations, these results provide support of 
the proposed human dose and schedule to be studied in proof of 
concept trials.      

   Clinical trials with dalbavancin have been ongoing since 1999 and 
fi ve different sponsors have been involved with the development of 
this agent [ 71 ,  72 ]. A  New Drug Application (NDA)   was fi led 
with FDA in 2004 based on clinical trial data for the indication of 
cSSSI [ 71 ,  72 ] but was subsequently withdrawn. A second NDA 
for the indication of ABSSSI was approved and was based on data 
from over 1200 subjects treated with dalbavancin in during earlier 
phase 1, 2 or 3 studies plus the two recent multinational, double- 
blind, double-dummy phase 3 noninferiority clinical trials 
(DISCOVERY 1 and 2) [ 71 – 75 ]. 

 Clinical trials in patients with skin and soft-tissue infections and 
cSSSI initially provided initial evidence of effectiveness of a two-
dose regimen of dalbavancin compared to vancomycin. Importantly, 
clinical response rates were lower when dalbavancin was given as a 
single intravenous dose of 1100 mg compared to the two dose dal-
bavancin regimen (1000 mg dose followed by 500 mg on day 8) 
[ 73 ]. The two-dose dalbavancin group had a 32 and 18 % higher 
clinical success rate when compared to the single-dose dalbavancin 
group and standard therapy (vancomycin), respectively. The two-
dose group also had a 34 and 21 % higher microbiological success 
rate when compared to the  single-dose and standard therapy 
groups  , respectively. There were no laboratory abnormalities 
observed and dalbavancin was well tolerated overall. 

 The initial phase 3 noninferiority registration trials of patients 
with cSSSI (VER001-09), dalbavancin intravenous regimen of 
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1000 mg followed 1 week later by a 500 mg dose demonstrated 
noninferiority to either twice-daily linezolid alone or initial vanco-
mycin with step-down to oral linezolid [ 71 ,  72 ,  74 ]. When the 
results of the two trials were pooled, 79.7 % versus 79.8 % of 
patients achieved a successful outcome at 48–72 h in the dalba-
vancin  and vancomycin-linezolid groups  , respectively. 

 The two recent multinational phase 3 clinical trials established 
the effectiveness and safety of intravenous dalbavancin (1000 mg 
on day 1 and 500 mg on day 8) in patients with ABSSSI compared 
to vancomycin (at least 3 days of intravenous vancomycin with an 
option to switch to oral linezolid for a 10- to 14-day treatment 
course) [ 71 ,  75 ]. The early clinical response rates for the pooled 
analysis of the intent-to-treat population were 79.7 and 79.8 % for 
dalbavancin and vancomycin-linezolid regimens, respectively. 
Similarly, the end-of-treatment clinical response rates were 90.7 
and 92.1 %, respectively. Adverse events observed with dalbavancin 
were transient and mild to moderate intensity. 

 These studies indicate that for the treatment of cSSSI or 
ABSSSI, the effi cacy of intravenous dalbavancin administered as 
1000 mg followed by 500 mg 1 week later is noninferior to com-
parator treatment regimens for both early time endpoints and 
investigator-assessed clinical success of therapy.   

4    Oritavancin 

 Oritavancin, (LY333328), is a  second-generation semisynthetic 
lipoglycopeptide antimicrobial agent   [ 1 ,  2 ]. Oritavancin possesses 
multiple mechanisms of action including inhibition of transglyco-
sylation, binding to the pentaglycyl bridging segment in peptido-
glycan, and disruption of the cell membrane resulting in rapid 
depolarization and concentration-dependent cell death [ 1 ,  76 ]. 
These multiple mechanisms of action confer rapid killing versus 
actively growing, stationary phase, and biofi lm-producing 
 gram- positive bacteria including those resistant to vancomycin and 
daptomycin [ 76 ]. Oritavancin has demonstrated potent in vitro 
activity against a wide spectrum of gram-positive bacteria com-
monly associated with serious  infections  ; including methicillin-sus-
ceptible and -resistant  Staphylococcus aureus  (MRSA), 
vancomycin-susceptible and -resistant enterococci (VRE; 
 Enterococcus faecium and Enterococcus faecalis ),  Streptococcus pyo-
genes , and penicillin- susceptible and -resistant  Streptococcus pneu-
moniae  [ 1 ,  76 ]. 

   The  chemical structure   of oritavancin gives rise to its unique PK 
properties, particularly its lengthy terminal half-life [ 1 ,  77 ]. These 
unique properties have been evaluated in several healthy volunteer 
phase I PK studies over a range of doses. In an open-label 
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dose- escalation study in nine healthy volunteers aged 21–55 years 
with normal body weight, oritavancin was administered in eight 
stepwise doses of 0.02–0.5 mg/kg. Serial plasma levels were 
obtained after the start of the infusion along with 24 h urine and 
fecal collections. After non-compartmental analysis, oritavancin 
plasma concentrations declined in a multi-exponential manner 
over the 2 week sampling period. The median  C  max  for the 0.5 mg/
kg group was 6.5 mg/L, which declined to less than 10 % of  C  max  
within the fi rst 24 h. The median AUC for the 0.5 mg/kg dose 
group was 68.3 mg · h/L.  C  max  and AUC 0-Tau  increased proportion-
ally to the dose, suggesting the PKs of oritavancin are linear over 
the dose range studied. The median plasma terminal half-life was 
207.3 h while the mean renal clearance was 0.457 mL/min. Fecal 
concentrations were undetectable for the majority of subjects and 
less than 5 % of the drug was recovered in the urine over 7 days. 

 Oritavancin displays linear PKs best described by a 
3- compartment model with terminal half-lives of 2.4, 18, and 360 
h for the  α ,  β , and  γ  phases, respectively [ 77 ]. The long terminal 
half-life ( t  1/2 γ  ) suggests that  drug accumulation   can occur after 
administration of multiple-dose regimens and that alternative dos-
age regimen such as a single-dose may be feasible. 

 Oritavancin has no active metabolites and shows high reten-
tion and slow clearance from  tissues in reticuloendothelial systems   
and accumulation of the administered dose in the liver (59–64 %), 
kidney (2.7 %), spleen (1.8 %), and lung (1.7 %). Oritavancin 
exhibited >80 % protein binding throughout various species includ-
ing human (87.5 %), mouse (85.3 %), rat (>80 %), and dog (97.1 %) 
[ 78 ]. Albumin is the protein responsible for the majority of serum 
oritavancin binding [ 78 ]. 

 Table  4     displays the mean PK parameters for a pooled popula-
tion model of 560 subjects and 6336 oritavancin plasma concen-
trations from 12 clinical phase 1, 2, and 3 studies from either 
healthy subjects or infected patients with complicated skin and skin 
structure infections or  S. aureus  bacteremia [ 79 ]. The CL of orita-
vancin appeared to be effected by body weight, with CL increasing 
in a linear fashion up to 80 kg of total body weight and resulting 
in a lower AUC 24  in subjects given 200 mg daily for 3 days who 
had a total body weight >110 kg. The magnitude of this relation-
ship was such that the population predicted CL would be expected 
to increase by 53 % over a body weight range of 80–200 kg. 
Increasing the dose to 300 mg normalized the AUC 0–24  similarly to 
those with total body weight of ≤110 kg. Age did not seem to 
affect CL or  C  max  as dose-normalized  C  max  did not increase in 
elderly subjects.

   Patients with available plasma concentration–time data from 
the two pivotal Phase 3 trials (SOLO I and II) and from the previ-
ously described population PK model above were used to evaluate 
patient-specifi c covariates and drug  variabilit  y of patients with 
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ABSSSI [ 80 ]. The analysis included 297 patients with a total of 
1337 plasma oritavancin concentrations, with 90 % of patients hav-
ing 4 or 5 plasma concentrations available. After a single intrave-
nous 1200 mg dose of oritavancin infused over 3 h, the mean PK 
parameter values (coeffi cient of variation) were  C  max  of 138 mg/L 
(23.0 %), AUC 0–72  of 1530 mg · h/L (36.9 %), AUC 0– ∞   of 2800 
mg · h/L (28.6 %), CL of 0.445 L/h (27.2 %),  V  ss  of 97.8 L 
(56.4 %),  t  1/2 α   of 2.29 h (49.8 %),  t  1/2 β   of 13.4 h (10.5 %), and 
 t  1/2 γ   of 245 h (14.9 %). Although covariate analysis revealed statis-
tically signifi cant relationships between patient height and interin-
dividual variability in CL, and between age and interindividual 
variability in  V  c ; neither tended to impact oritavancin exposure in 
the patient population studied. This population PK analysis  support 
the recommendations that dosage adjustments are not required in 
patients treated for ABSSSI with renal impairment (CrCl >29 mL/
min) or mild to moderate hepatic impairment, and that patient 
covariates such as age, body size, BMI, race, gender, or diabetes 
status had no signifi cant infl uence on measurements of oritavancin 
exposure ( C  max  or AUC values). 

   Through its development as an antimicrobial designed to treat 
complicated skin and skin structure infections, the extracellular 
blister fl uid concentrations of oritavancin were explored after vari-
ous dosages [ 81 ]. Mean  C  max  of oritavancin were observed at 1 and 
10 h in plasma and blister fl uid, respectively. The plasma concen-
tration at these time points was approximately eightfold higher 

4.1.1   Plasma and Skin 
Blister Fluid     

   Table 4  
  Summary of oritavancin pharmacokinetic parameter  estimates     

 Parameter  Phase 1 ( n  = 200)  Phase 2/3 ( n  = 360) 

  C  max  (mg/L) a   35.7 ± 9.09  34.5 (20.4–80)  28.5 ± 12.2  25.9 (10.9–131) 

  C  min  (mg/L) a   4.11 ± 1.80  3.65 (1.23–10.2)  1.99 ± 1.10  1.74 (0.54–9.81) 

 AUC 0–24  (mg · h/L) a   252 ± 78.6  240 (104–614)  146 ± 63.7  133 (42.2–618) 

 CL (L/h)  0.351 ± 0.11  0.350 (0.12–0.70)  0.601 ± 0.20  0.584 (0.17–1.45) 

  V  c  (L)  5.19 ± 1.27  5.04 (2.37–13.8)  7.10 ± 2.46  6.79 (1.17–18.3) 

 t 1/2α  (h)  2.56 ± 0.65  2.48 (1.23–4.78)  2.04 ±  0.44  2.04 (0.91–4.08) 

  t  1/2 β   (h)  27 ± 11.5  25.4 (9.38–99.6)  31.2 ± 11.4  29.2 (8.37–86.3) 

  t  1/2 γ   (h)     318 ± 59.1  314 (191–584)  393 ± 73.5  394 (142–602) 

  Data presented as mean ± SD or as median (range) 
  C  max , maximum plasma concentration,  C  min , minimum plasma concentration,  AUC  0–24  24-h area under the plasma con-
centration–time curve,  CL  clearance,  V  c  apparent volume of distribution of central compartment,  t  1/2  half-life of the 
alpha ( α ), beta ( β ), and gamma ( γ ) phases 
  a AUC 24 ,  C  max ,  C  min  have been normalized to a dose of 200 mg for subjects ≤110 kg and to 300 mg for those ≥110 kg  
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than in blister fl uid (46.2 mg/L versus 5.85 mg/L). Oritavancin 
concentrations were undetectable in blister fl uid 100–150 h after 
the last dose while total drug oritavancin exposure in interstitial 
fl uids was approximately 19 % of that in plasma, regardless of dos-
ing regimen. In this study, mean free-drug plasma concentrations 
associated with the two dosing regimens exceed the MIC 90  for 
 Staphylococcus aureus  for ≥92 % of the dosing interval.  

   Despite its large size and molecular weight, oritavancin has been 
shown to penetrate well into human pulmonary ELF and AM [ 82 ]. 
In 30 healthy adult subjects receiving oritavancin 800 mg daily for 
5 days, the AUC 0–24  of oritavancin in ELF and AM was 106 and 
3297 mg · h/L, respectively. Oritavancin distributed slowly into and 
out of both the ELF and AM and concentrations were maintained 
above the MIC for most gram-positive pathogens out to 24 h. 
These fi ndings support that oritavancin 800 mg once daily provide 
a signifi cant exposure in ELF and AM after 5 days of dosing. 

 The extensive intracellular concentration of oritavancin causes 
deposition of concentric lamellar structures and other materials 
[ 83 ]. This deposition is consistent with a mixed-lipid storage dis-
order and has been postulated to inhibit macrophage microbicidal 
function, a phagocytic effector function necessary for host defense 
against microbial pathogens such as  S. aureus  and  Acinetobacter 
baumannii  [ 84 ]. Cells incubated with carbon-labeled oritavancin 
have demonstrated intracellular concentrations that were 200-fold 
above extracellular concentrations at 24 h. Despite this accumula-
tion, killing of  S. aureus  by oritavancin-loaded macrophages was 
substantially enhanced by approximately 75 % when compared to 
control macrophages. These data suggest that the accumulation of 
lipoglycopeptides in macrophages does not correspond with 
 dysfunction in macrophage killing of microbes, and oritavancin in 
particular may enhance this function against  S. aureus  [ 83 ]. 

 Small-colony variants ( SCVs  )    demonstrate an ability to invade 
and persist in phagocytic and nonphagocytic cells and are a well- 
recognized phenomenon of serious infections due to  S. aureus  [ 84 ]. 
The treatment of these SCVs requires antibiotics with the ability to 
act intracellularly and have activity against SCVs. The results of sev-
eral studies indicate that oritavancin may be able to eradicate intra-
cellular SCVs more effectively than its comparators (vancomcyin, 
daptomycin, gentamicin, rifampin, and moxifl oxacin) and may offer 
promising activity against these forms of intracellular infections at 
clinically relevant concentrations [ 84 ]. Detailed evaluation of the 
intracellular activity of oritavancin against variant strains of  S. aureus  
has also been  conducte     d [ 85 – 88 ].  

   Despite the minimal renal elimination, large size, extensive volume 
of distribution, and high degree of protein binding of oritavancin, 
Kumar and colleagues examined the in vitro CL of oritavancin from 
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human blood via low-fl ux, high-fl ux, and CRRT dialyzers [ 89 ]. 
Overall, the mean dialytic clearances of oritavancin were below zero 
for all dialyzers tested except for Optifl ux F160NR which was 
0.34 ± 18.8 mL/min. The concentration of oritavancin in the dialy-
sate was undetectable at all sampling points for all dialyzers. The 
results of this study indicate that no adjustments to oritavancin dos-
ing schemes are needed for patients undergoing any type of dialysis 
tested. Of note, the ultrafi ltration rate was intentionally minimized 
in this study, limiting the ability to extrapolate these fi ndings to 
hemodialysis and CRRT procedures involving positive ultrafi ltra-
tion rates and more rapid blood and dialysate fl ow rates.   

   Although oritavancin was originally designated as a candidate for 
clinical development by Eli Lilly in 1994, it was felt that the long 
terminal half-life beginning at plasma concentrations ≤4 mg/L was 
too low to exert effi cient antimicrobial effi cacy for  staphylococci 
and enterococci with MICs   up to 4 mg/L. It was proposed that 
increasing the dose above the initial 200 and 300 mg originally 
studied in patients could increase these concentrations and contrib-
ute to improved antimicrobial effi cacy. Also, it was not until the 
mid-2000s before the propensity of oritavancin to adhere to the 
plastic tubes used for broth microdilution tests was appreciated. 
Once polysorbate 80 was added, the MICs to staphylococci and 
enterococci were reduced approximately 16- to 32-fold [ 1 ,  90 ]. 

   In contrast to other glycopeptides, oritavancin possesses rapid, 
concentration-dependent antibacterial effi cacy supported by the 
results of a range of in vitro microbiological evaluations [ 1 ,  91 –
 93 ]. Oritavancin has displayed potent activity against  S. aureus  and 
vancomycin-resistant  E. faecium,  although eightfold higher con-
centrations were required to achieve the same degree of microbial 
killing against VRE as compared to MRSA. The post-antibiotic 
effect of oritavancin was determined to be concentration depen-
dent at 7.68 and 4.25 h for MRSA and VRE, respectively. Synergism 
was consistently observed with gentamicin, regardless of the dos-
ing schedule, and signifi cantly improved the bacterial killing com-
pared to oritavancin alone [ 91 – 93 ]. 

 Oritavancin has also displayed excellent activity against 
multidrug- resistant strains of  S. aureus,  including hVISA, VISA, 
and VRSA, and  S. pneumonia . The in vitro activity of oritavancin 
appears to be hampered by the addition of albumin, although this 
appears to be concentration dependent [ 94 ,  95 ]. Oritavancin has 
demonstrated improved magnitude and duration of bacterial kill-
ing against hVISA when compared to its bactericidal comparators, 
including daptomycin [ 96 ]. These results suggest that oritavancin 
could be an effective choice for the treatment of staphylococcal 
infections regardless of the resistance phenotype with minimum 
bactericidal concentration (MBC) and MIC values between 16 and 
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64 with the addition of polysorbate-80 [ 90 ]. Additionally, orita-
vancin is active against both  MRSA   and VRSA biofi lms, likely due 
to its ability to alter membrane integrity and target the septum of 
 S. aureus  cells to prevent biofi lm formation [ 97 ].  

   The results of in vivo animal model data have correlated well 
with the effi cacy of oritavancin seen with in vitro models. Against 
 S. aureus,  the PK-PD index best determining in vivo effi cacy in a 
neutropenic mouse-thigh model was the  C  max  ( r  2  = 96 %) fol-
lowed by time above the MIC (%Time > MIC) and the AUC/
MIC ( r  2  = 83 and 77 %, respectively) [ 98 ]. This concentration-
dependent activity allows for improved effi cacy when oritavancin 
is administered large, infrequent doses [ 99 ,  100 ]. Oritavancin 
has demonstrated equal bactericidal activity as oxacillin in an 
MSSA endocarditis model, with lower relapse rates at 3 days 
after treatment [ 101 ]. 

 In a rabbit model of both susceptible and VanA and VanB 
phenotypes of  E. faecalis , only oritavancin reduced CFUs per 
gram of vegetation when compared to control vegetations 
amongst vancomycin and teicoplanin [ 102 ]. The greatest effi cacy 
was observed when daily oritavancin was combined with twice-
daily gentamicin, although the mean reduction in inoculum was 
modest at 1.5 logs even for the susceptible strain [ 103 ]. There are 
no data to date on oritavancin performance in endocarditis mod-
els of  E. faecium , although in rats with a central venous catheter-
associated infection model due to VanA positive  E. faecium  a 75 % 
reduction in rats with infected catheters was observed when com-
pared to controls [ 104 ]. 

 Oritavancin has been shown to bind to lung surfactant, albeit 
to a much lower extent than daptomycin. The oritavancin MIC 
against  S. pneumoniae  ATCC 6303 increased eightfold when 
exposed to 5 % surfactant. In contrast, the oritavancin MIC against 
 S. aureus  ATCC 29213 increased 16-fold when exposed to 5 % 
surfactant (from 0.06 to 1 mg/L), which would be diffi cult to 
overcome with a single intravenous dose of 1200 mg [ 105 ,  106 ]. 
Oritavancin has demonstrated improved effi cacy in both MSSA 
and  MRSA   pneumonia models in relation to its comparators [ 107 ]. 

 In a standard rabbit  pneumococcal   meningitis model, the pen-
etration of oritavancin into the CSF was about 2–5 %, with mean 
 C  max  in CSF for doses of 2.5, 10, and 40 mg/kg of 0.54, 0.76, and 
1.36 mg/L, respectively. This would allow for treatment of pneu-
mococcal meningitis and potentially coagulase-negative staphylo-
cocci given the low MIC ranges, while data on  S. aureus  are lacking 
[ 108 ]. Other animal models have also evaluated oritavancin as oral 
therapy for  Clostridium diffi cile  colitis and activity against  Bacillus 
anthracis  [ 109 ]. 

 These models are fundamental in establishing the optimal dos-
ing regimen of oritavancin in humans. Given the long plasma 

4.2.2   Animal Models  

Eric Wenzler et al.



309

half- life of oritavancin, a fi xed-dose strategy would result in a pro-
longed time to steady-state exposure. In clinical practice the pri-
mary goal is to have the greatest drug exposure early in therapy in 
order to maximize PK-PD parameters and clinical outcomes. This 
would favor a single dose regimen of oritavancin, a regimen that 
has been validated by both animal and clinical models.     

   Early phase clinical studies in humans have also investigated the 
activity of oritavancin in patients with uncomplicated  S. aureus  
bacteremia who received 10–14 days of either sequential doses of 
oritavancin (5, 6.5, 8, and 10 mg/kg) every 24 h or a control 
treatment (vancomycin or a beta-lactam) [ 110 ]. The mean AUC 24 /
MIC,  C  max /MIC, %Time > MIC, and unbound concentration 
 % T > MIC ( f T > MIC) on day one for all dosing exposures were 
219.4, 39.3, 96.2, and 28.2, respectively. Doses of 5–10 mg/kg/
day resulted in AUC 0–24  values of 144.5–1478.5 μg · h/mL, respec-
tively. Successful microbiological and clinical responses occurred in 
85 and 78 % of patients, respectively. Using classifi cation and 
regression tree (CART) analysis, a breakpoint was identifi ed for 
 f T > MIC at 22 %. There was a lack of relationship between 
%Time > MIC and microbiological or clinical response, which was 
not surprising given that the majority of patients achieved 100 % 
%Time > MIC due to the prolonged half-life and low MIC values. 
The assessment of oritavancin PKs based on these phase 2 data 
from bacteremic patients was consistent with a previous evaluation 
based on data from healthy volunteers and those with skin and soft 
tissue infections. Both analysis confi rmed the multicompartmental 
characteristics of the plasma concentration–time profi le and linear 
PKs of oritavancin.   

   Clinical trials with oritavancin have been ongoing since 1990s and 
four different sponsors have been involved with the development 
of this agent [ 111 ]. The recent phase 2 and 3 in human registra-
tion trials have provided a proof-of-concept for the single 1200 mg 
dose regimen of oritavancin as compared to smaller, more frequent 
doses that were evaluated in earlier clinical trials and phase 2 
SIMPLIFI study [ 111 – 114 ]. Compared to 7–10 days of vancomy-
cin, a single 1200 mg intravenous dose of oritavancin was noninfe-
rior for patients with ABSSSI in two, large phase 3 clinical trials 
(SOLO I and II) [ 113 ,  114 ]. Effi cacy outcomes were also similar 
when stratifi ed by pathogen, including MRSA, and the overall fre-
quency of adverse events was low, with nausea being more com-
mon in the oritavancin group. Effi cacy rates for oritavancin did not 
differ from vancomycin in SOLO I when analyzed according to 
body-mass index or the presence or absence of diabetes [ 113 ]. The 
majority (98.3 %) of treatment failures were due a lack of post- 
therapy evaluation. In the second phase 3 trial (SOLO II) in adults 
with ABSSSI [ 114 ], oritavancin had a lower response rate at the 
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primary endpoint than vancomycin (81 % versus 89.9 %) in patients 
with a major cutaneous abscess. The primary reasons for failure in 
this study was at the early clinical evaluation were the presence of 
fever or missing temperature data. The effi cacy outcome for the 
primary endpoint was also lower for patients with streptococci, 
diabetes, and subcutaneous abscesses at baseline who received ori-
tavancin. A single-dose regimen for ABSSSI that resulted in early 
and sustained clinical response has the potential to reduce compli-
cations associated with multiple intravenous administrations, 
improve treatment adherence, and reduce utilization of health care 
 resources   [ 115 ].      
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    Chapter 13   

 Pharmacodynamics of Daptomycin                     

     Eric     Wenzler    ,     Siyun     Liao    , and     Keith     A.     Rodvold       

  Abstract 

   The pharmacokinetics and pharmacodynamics of daptomycin have been extensively explored in a host of 
in vitro models, multiple different patient populations, and clinical studies. Daptomycin exhibits 
concentration- dependent bactericidal activity with the ratio of unbound area-under-the-curve to mini-
mum inhibitory concentration ( f AUC/MIC) best predicting antibacterial effi cacy in vitro. The large body 
of evidence suggests that higher doses (e.g., 8–10 mg/kg) of daptomycin are more effective and equally 
safe and should be used for specifi c pathogens (i.e., methicillin-resistant  Staphylococcus aureus ,  Enterococcus ) 
and in certain patient scenarios (i.e., critically ill, bacteremia, endocarditis). The emergence of resistance to 
daptomycin during therapy and clinical failure in serious infections brings its effi cacy as monotherapy into 
question while the ease of administration, dosing schedule, and lack of nephrotoxicity continues to drive 
its use until more reliable therapeutic alternatives for gram-positive infections are established.  

  Key words     Lipopeptide  ,   Daptomycin  ,   Methicillin-resistant  Staphylococcus aureus  (MRSA)  

1       Overview 

 Daptomycin is a  novel cyclic lipopeptide antibiotic   with a unique 
mechanism of action. Daptomycin has been shown to cause 
calcium- dependent disruption of the electrochemical gradient of 
the gram-positive cell membrane leading to an effl ux of potassium 
from the cell. This effl ux in turn inhibits the transport of cell wall 
amino acids, formation of sugar-peptide precursors and shutting 
down biosynthesis of the cell wall peptidoglycan but does not 
directly cause cell lysis [ 1 ,  2 ]. In vitro, daptomycin demonstrates a 
rapid  concentration-dependent bactericidal activity   against most 
clinically relevant gram-positive pathogenic bacteria, including 
 Staphylococcus aureus  and enterococci, including isolates resistant 
to methicillin, vancomycin, and linezolid [ 3 ,  4 ]. 

 Daptomycin is the fi rst approved member of an old class of 
antibiotics, the  cyclic lipopeptides  . It was originally discovered by 
the Eli Lilly Company in the 1980s and designated LY146032, 
dapcin, or cidecin in early years [ 5 ]. Daptomycin showed promise 
in 19 phase I and 2 phase II trials involving more than 370 subjects 
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in the 1980s and early 1990s, although unexpected treatment 
failures occurred in patients with bacteremia and endocarditis 
[ 5 – 8 ]. These failures were attributed to inadequate dosing of the 
drug (i.e., 2 mg/kg every 24 h and 3 mg/kg every 12 h), but 
unacceptably high incidences of myalgias and muscle weakness 
were seen when the daptomycin was dosed every 12 h. Unsatisfi ed 
with these results, Eli Lilly abandoned the drug which was subse-
quently acquired by Cubist Pharmaceuticals in 1997. New fi ndings 
with once-daily dosing in animal studies and the increasing emer-
gence of bacterial  resistance   among gram-positive species, specifi -
cally methicillin-resistant  S. aureus  (MRSA), contributed to the 
reassessment of the benefi t/risk ratio of daptomycin. Following 
successful phase III studies for the treatment of complicated skin 
and skin structure infections (cSSSI) at 4 mg/kg intravenously 
(IV) once daily, daptomycin was approved by the US Food and 
Drug Administration (FDA) in November 2003 under the trade 
name  Cubicin ® .   Subsequently, the completion a randomized, con-
trolled, multicenter, open-label study supported the May 2006 
FDA approval of daptomycin for the treatment of patients with  S. 
aureus  bloodstream infections (bacteremia), including those with 
right- sided infective endocarditis, at an IV dose of 6 mg/kg once 
daily. Intravenous dosage regimens up to 12 mg/kg once daily 
have been used off-label successively for the treatment of life- 
threatening and/or highly resistant gram-positive infections, 
including bacteremia and endocarditis, without evidence of signifi -
cant toxicity.  

2     Pharmacokinetics 

 Daptomycin displays linear pharmacokinetics (PK) after single and 
multiple IV doses up to 12 mg/kg [ 9 – 12 ].  Plasma concentration–
time profi le   of daptomycin is best described by a two-compartment 
open model with fi rst-order elimination. In healthy volunteers, the 
predicted maximum concentrations ( C  max ) after a single 2-min 
injection and 30-min infusion of 6 mg/kg of daptomycin were 
86.6 and 76.4 mg/L, respectively [ 12 ]. The area under the curve 
(AUC) and  C  max  increased proportionally to dose on day 1 and day 
7 in the multiple dose regimen, while clearance (CL), volume of 
distribution (Vd), and elimination half-life remained unchanged. 
At doses of 8 mg/kg, the mean  C  max  was approximately 2.2 times 
higher compared to the 4 mg/kg, indicating 20 % nonlinearity at 
dose levels above 6 mg/kg. At 4, 6, and 8 mg/kg, the median 
trough daptomycin concentrations ( C  min ) were 6.37, 9.13, and 
15.3 mg/L, respectively. 

 Daptomycin has a mean apparent Vd of approximately 0.1 L/
kg and is highly protein bound ranging between 92 and 96.4 %. 
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 Protein binding   is linear over a range of daptomycin  concentrations 
between 1.2 and 31 mg/L. Interestingly, daptomycin has shown 
limited binding to albumin or alpha-1-acid glycoprotein individu-
ally, but is extensive binding once combined. Initial pharmacoki-
netic studies suggested that the distribution phase of daptomycin 
was not complete until 4–6 h after administration [ 9 ]. 

  Renal excretion   is the major pathway of elimination for dapto-
mycin. Urinary excretion ranges from 34 to 68 % over 24 h. Renal 
elimination does not appear to be dose-dependent and remains 
linear in patient with renal impairment. The mean elimination half- 
life ranges between 8 and 9 h. Steady-state is reached by day 3 
independent of dose. The accumulation factor observed at steady- 
state in this trial was 1.2, indicating that the same total daily dose 
given every 12 h is associated with a 42 % higher daily exposure 
and could explain the decreased incidence of adverse effects when 
daptomycin is given once daily [ 9 ]. 

 The  PK and tolerability o  f daptomycin have been explored up 
to 12 mg/kg in healthy volunteers (Table  1 ) [ 11 ]. The AUC 0–∞  
increased proportionally to the dose at all dosing levels, with a 
mean AUC 0–∞  of approximately 1200 μg·h/mL on day four for the 
12 mg/kg dose. Pharmacokinetic parameters at dose levels of 10 
mg/kg and 12 mg/kg were similar after days 4 and 14 of daily 
dosing. No serious adverse events and no myalgia were reported by 
any subject. The most common adverse event was headache and 
creatinine phosphokinase (CPK) values were within normal limits 
for all subjects in all groups. Considered together, this study indi-
cates that daptomycin offers consistent and linear pharmacokinet-
ics with minimal accumulation after multiple doses and is well 
tolerated at doses up to 12 mg/kg once daily for 14 days.

   A population PK model was established for daptomycin using 
data from phase 1, 2, and 3 clinical studies involving 282 adult 
subjects and 3325 plasma concentrations [ 4 ]. Table  2     summarizes 
the pharmacokinetic parameters stratifi ed by estimated creatinine 
clearance (CrCl) for a single dose of daptomycin 4 mg/kg. The 
estimated median parameter values (and interindividual variabili-
ties) for the entire study population included CL of 0.688 L/h 
(52.1 %), volume of the central compartment of 4.8 L (60.6 %), 
volume of the peripheral compartment of 3.6 L (31.9 %), and 
intercompartmental CL was 3.6 L/h (74.4 %).

   The apparent steady-state volume of distribution ( V  ss ) for a 
healthy subject with a median body weight of 75 kg was estimated 
to be 7.9 L, which increased to 10.8 L in patients with an acute 
bacterial infection. The median terminal half- life   was estimated to 
be 7.07 h in a normothermic male with normal renal function. 
The median value for the elimination half-life increased to 10.36 h 
for a male subject with a CrCl of 40 mL/min and to 20.68 h for a 
male subject receiving dialysis. This population analysis indicates 
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that renal function is the single most important factor contributing 
to differences in daptomycin clearance. The relationship between 
rate and extent of extravascular distribution and body weight sup-
port the dosing of daptomycin on a mg/kg basis [ 4 ]. 

 This initial population PK model has subsequently been updated 
by increasing the number of subjects ( n  = 442) and plasma daptomy-
cin concentrations ( n  = 4875) [ 13 ]. Simulations were  performed to 
provide dosing recommendations of patients with  S. aureus  
 bacteremia and severe renal impairment (CrCl <30  mL/min) 
(see Sect.  2.6 ). Several other population PK models have been 
developed and used to determine parameter estimates and/or dos-
ing recommendations for critically ill patients with serious gram-
positive infections, and to evaluate the relationship between systemic 
exposure and elevations in  CPK   [ 14 – 17 ]. 

   The PK of daptomycin have been reported for infants <120 days of 
age, infants 3 months to 2 years of age, and pediatric patients 
between 2 and 17 years of age [ 18 – 23 ]. In a group of 20 infants 
stratifi ed into four categories (gestational age <32 or ≥32 weeks 
[range: 23–40 weeks]; postnatal age <14 and ≥14 days [range: 
1–85 days]) were administered a single dose of daptomycin 6 mg/
kg and an average of 4 plasma daptomycin concentrations were 
obtained from each infant (total of 85 evaluable plasma daptomy-
cin concentrations were collected). The median pharmacokinetic 
parameter estimates included AUC 0–24 , Vd, CL and half-life of 
262.4 mg·h/L, 0.21 L/kg, 0.021 L/h/kg, and 6.2 h, respectively. 
The median  C  max  was 25.5 mg/L. No adverse events related to 
daptomycin were recorded, and no relationship between age and 
daptomycin clearance or Vd was observed. Interestingly, the 
median AUC 0–24  was approximately half of the AUC 0–24  observed 
for adults receiving 4 mg/kg for cSSSI (417 mg·h/L), likely owing 
to the increased clearance observed in this population. Infants 
<120 days of age may require a higher dosage of daptomycin to 
achieve exposures estimated to be effi cacious in adults [ 18 – 20 ]. 

 Nineteen pediatric patients between 3 and 24 months of age 
were administered a single-dose of daptomycin of either 4 mg/kg 
(<13 months of age;  n  = 14) or 6 mg/kg (13–24 months of age; 
 n  = 5) [ 21 ]. Mean pharmacokinetic parameter estimates observed 
in pediatric patients 3–6 months ( n  = 7) vs. 7–12 months ( n  = 7) 
were similar in value:  C  max  38.7 vs. 37.1 mg/L; AUC 0–∞  215.0 vs. 
219.3 mg·h/L;  V  ss  127.7 vs. 134.9 mL/kg; CL 19.72 vs. 19.63 
mL/h/kg; and half-life 5.10 vs. 5.45 h. Pediatric patients 13–24 
months of age received a higher dose of daptomycin resulting in a 
higher systemic exposure (mean  C  max  was 67.0 mg/L and AUC 0–∞  
was 281.5 mg·h/L) with similar  pharmacokinetic      parameters to 
the lower age groups studied ( V  ss  was 121.7 mL/kg; CL 21.76 
mL/h/kg; half-life 4.41 h). 

2.1   Infants 
and Children     

Eric Wenzler et al.



323

 Twenty-two children (2–17 years of age) with suspected or 
proven gram-positive infections were administered a single-dose of 
intravenous daptomycin 4 mg/kg and had serial blood sampling 
for 24 h to determine plasma daptomycin concentrations. The 
mean AUC 0–24  values between children 2–6 years vs. 7–11 years vs. 
12–17 years were statistically different (215.3 vs. 271.0 vs. 374.4 
mg·h/L) and decreased proportionally with decreasing age. The 
AUC 0–24  in adolescents (e.g., age 12–17 years) were approximately 
1.7 fold higher than in children <6 years of age. In addition, AUC 0– 24  
values in adolescents were similar to adult estimates while AUC 0– 24  
values were lower in children <12 years of age secondary to an 
increased clearance of daptomycin in this latter group. The mean 
CL values between children 2–6 years vs. 7–11 years vs. 12–17 
years were statistically different (20.1 vs. 17.0 vs. 11.1 mL/h/kg) 
and daptomycin CL (and elimination rate constant) were inversely 
associated with age. The mean  C  max  and  V  ss  values were similar 
across cohorts and ranged from 43.8 to 50.0 mg/L and 0.11 to 
0.13 L/kg, respectively. Of note, age only accounted for 30 % of 
the interindividual variation observed between children in this 
study [ 22 ]. The pharmacokinetic results from these pediatric stud-
ies, along with ongoing clinical trials investigating the safety and 
effi cacy of daptomycin for the treatment of specifi c gram-positive 
infections in children, will be useful in further defi ning dosing rec-
ommendations for various pediatric  population     .  

   A single-dose pharmacokinetic study of daptomycin was conducted 
in young (18–30 years of age;  n  = 12) and geriatric (≥75 years; 
 n  = 12) healthy subjects [ 24 ]. Following a 4 mg/kg dose of dapto-
mycin, the total AUC 0–∞  was 58 % higher in the geriatric group 
(473.7 vs. 300.6 mg·h/L;  p  = 0.0001) while no difference in  C  max  
was observed (43.98 vs. 42.32 mg/L). Total CL was also 35 % 
lower in geriatric subjects (9.86 vs. 15.09 mL/h/kg) with no dif-
ference in  V  ss , while the elimination half-life was approximately 5 h 
longer (11.85 vs. 6.79 h). Of note, the mean CrCl in the geriatric 
group was 57.6 mL/min compared to 94.8 mL/min although the 
mean fraction of daptomycin excreted in the urine was not statisti-
cally different (34.3 vs. 42.6 %).     

   Pai et al. compared the single-dose pharmacokinetics of 4 mg/kg 
of daptomycin in seven morbidly obese female patients (mean ± SD, 
body mass index [BMI]: 46.2 ± 5.5 kg/m 2 ) vs. seven normal- 
weight, healthy female subjects (mean ± SD, BMI: 21.8 ± 1.9 kg/
m 2 ) [ 25 ]. Importantly, glomerular fi ltration rate (GFR) was deter-
mined using radiolabeled sodium iothalamate and estimated fat- 
free weight using bioelectric impedance. The cohorts were matched 
for age, sex, race, serum creatinine, and serum albumin. 
Pharmacokinetic parameters did not differ between the groups, 
despite total body weight dosing resulting in almost twice the dose 

2.2    Geriatric  

2.3    Obesity     
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in the morbidly obese group.  C  max  and AUC 0–24  were 60 % higher 
( p  < 0.001) in the obese group as a function of the total dose 
administered, as weight-normalized  C  max  and AUC 0–24  were not 
different. The apparent Vd (10.04 vs. 7.69 L) and CL (0.82 vs. 
0.73 L/h) were higher in the morbidly obese group, although not 
statistically signifi cantly. The relationship of Vd and CL to weight 
was best predicted by total body weight ( r  2  = 0.66 and 0.30) com-
pared to ideal and fat-free weight, although the correlation was 
somewhat poor. No signifi cant relationship was noted between 
daptomycin CL and measure or estimated GFR or CrCl. Estimation 
of CrCl using the Cockcroft–Gault equation with total body 
weight (TBW) grossly overestimated true CL among morbidly 
obese patients and may affect the dosing interval of daptomycin. 
At the time of this publication, the authors suggested that dosing 
of daptomycin based on TBW be considered in morbidly obese 
subjects given the association between Vd and TBW, the fact that 
 C  max  is dependent on Vd, and that daptomycin is a concentration- 
dependent antimicrobial agents. Dosing on IBW or fat-free weight 
may decrease  C  max , especially in acutely ill patients, while calculat-
ing CrCl using the Cockcroft–Gault equation with ideal body 
weight (IBW) provides a more accurate refl ection of GFR in obese 
subjects. Dvorchik and Damphouse had also shown similar results 
in a separate study [ 26 ]. 

 Since these original publications on the pharmacokinetics of 
daptomycin in obese subjects, questions on the rationale for TBW- 
based dosing of daptomycin continue to be raised and several 
authors have recently suggested a 500 mg or 750 mg fi xed-dose 
approach [ 15 ,  17 ,  27 – 29 ]. In addition, clinical outcomes (e.g., 
clinical and microbiological outcomes, length of stay, mortality, 
adverse effects) were similar when daptomycin dosing was based 
on IBW ( n  = 48 patients) vs. actual body weight ( n  = 69 patients) 
[ 30 ]. In obese and critically ill patients, dosing using simplifi ed PK 
equations and measurement of two plasma daptomycin concen-
trations to calculate AUC for daptomycin has been recently  sug-
gested      [ 31 ].  

   Two population PK studies in critically ill patients have demon-
strated altered disposition of daptomycin. In 58 patients with 
severe gram-positive infections receiving doses of 4–12 mg/kg, 
the median values for CL and Vd were 0.80 L/h and 12.29 L 
(0.19 L/kg), respectively [ 14 ]. Observed  C  max  values for 6, 7, and 
8 mg/kg doses were lower than expected based on previous phar-
macokinetic models (35.9, 47.1, and 76.9 mg/L), likely due to 
the 23 % increase in Vd observed in this patient population. These 
results indicate that these patients may require a higher daily dose 
depending on the severity of infection and clinical condition of 
the patient. 

2.4   Critically  Ill  
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 Population pharmacokinetics and clinical outcomes were 
determined in a cohort of 50 critically ill patients with MRSA bac-
teremia [ 15 ]. Thirty-two patients received 6 mg/kg of  daptomycin 
and 18 patients received 8 mg/kg for a median duration of 16 
days. The median CL and apparent V of the central compartment 
(V c ) were 0.845 L/h and 11.1 L, respectively. A subpopulation of 
13 patients demonstrated augmented CL of daptomycin, evi-
denced by CL values of ≥1.36 L/h. These patients also demon-
strated signifi cantly lower  C  max  and AUC values despite receipt of 
comparable doses of daptomycin to other patients studied. 
Cumulative fraction of response (CFR) was >90 % for nearly all 
targets (e.g., AUC 0–24 /MIC ratio of ≥579, ≥666, ≥753) with the 
8 and 10 mg/kg/day (and 750 or 1000 mg) dose but not the 6 
mg/kg/day (or 500 mg) dose for patients with sepsis. All weight- 
based and fi xed-dose regimens provided CFR >90 % for patients 
without sepsis. The dosage regimens of 8 mg/kg/day and 750 mg 
were also associated with a low probability (0.78 and 1.26 %, 
respectively) of  C  min  values ≥24.3 mg/L (an exposure threshold 
linked to skeletal muscle toxicity [ 17 ]). In summary, daptomycin 
exposures were lower in critically ill patients with sepsis primarily 
related to MRSA bacteremia when treated with standard doses and 
these patients likely requires dosage increases to ≥8 mg/kg/day 
(or ≥750 mg/day). Therapeutic drug monitoring and individual-
izing daptomycin dosing by calculating a target AUC/ MIC   ratio 
has also been suggested [ 14 ,  28 ,  29 ,  31 ]. 

 Pharmacokinetics of daptomycin were evaluated in 29 adult 
cancer patients with neutropenic fever [ 32 ]. Compared to reported 
PK parameters of healthy subjects, the  V  ss  (mean ± SD: 0.18 ± 0.05 
L/kg) of daptomycin was markedly increased in patients with 
febrile neutropenia. Clearance (15.51 ± 5.65 mL/h/kg) was also 
increased contributing to a lower observed  C  max  (48.92 ± 12.63 
mg/L) and AUC 0–∞  (427.3 ± 135.7 mg·h/L). An initial intrave-
nous daptomycin dosage of 6 mg/kg every 24 h was recommended 
for neutropenic cancer patients. 

 A PK study was conducted in nine patients with thermal burn 
injury who received a single dose of 6 mg/kg of daptomycin [ 33 ]. 
Patients enrolled had completed initial fl uid resuscitation, were ≥7 
days after burn injury, and had total body surface area burns rang-
ing from 18 to 50 %. Compared to literature reported PK param-
eters of daptomycin in healthy subjects, burn patients had 
signifi cantly lower mean  C  max  (53.5 mg/L; 44 % reduction) and 
AUC 0–∞  (388 mg·h/L; 47 % reduction) values and signifi cantly 
higher mean Vd (0.18 L/kg; 64 % increase) and CL (17.5 mL/h/
kg; 77 % increase). Protein binding was also signifi cantly lower at 
86.5 %. The authors recommended that a daptomycin dose of 
10–12 mg/kg/day be considered in burn patients in order to pro-
vide similar drug exposures as observed in healthy subjects receiv-
ing 6 mg/kg/ day  .  
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   Although daptomycin has been traditionally regarded as having 
poor central nervous system penetration, case reports have demon-
strated clinical success with daptomycin in meningitis despite low 
or undetectable cerebrospinal fl uid (CSF) concentrations [ 34 – 41 ]. 
In patients with external CSF shunts, mean serum concentrations 
at 0.5, 6, 12, and 24 h post-infusion were 93.7, 43.3, 27.0, and 
13.8 mg/L, respectively. In comparison, the respective mean CSF 
concentrations were 0.126, 0.461, 0.442, and 0.221 mg/L. Mean 
AUC 0–24  values in serum and CSF were 906 and 8.3 mg·h/L, 
which corresponds to a mean CSF-to-serum penetration ratio of 
8 % (11.5 % after correcting for protein binding) [ 42 ]. A similar 
CSF-to-serum penetration ratio (range: 9–11 %) for daptomycin 
has been reported for  rabbits      [ 43 ].  

    The original  population   PK model for daptomycin has been 
recently updated to further consider dosing recommendations for 
patients with  S. aureus  bacteremia and severe renal impairment 
(CrCl <30 mL/min) [ 13 ]. The fi nal PK model, along with refer-
ence effi cacy exposure range and safety threshold, was used in sim-
ulations to support a dosage recommendation of 6 mg/kg every 
48 h for patients with  S. aureus  bacteremia and CrCl <30 mL/min, 
or receiving hemodialysis (HD) or continuous ambulatory perito-
neal dialysis (CAPD). These recommendations refer only to outpa-
tient dialysis and should not be extended to patients undergoing 
continuous renal replacement therapy (CRRT) or extended dialysis 
while in the intensive care unit. Dosing with 4 mg/kg every 48 h 
was considered inferior in patients with severe renal impairment or 
on HD or CAPD, and is no longer recommended for the treat-
ment of  S. aureus  bacteremia or infective endocarditis. 

   The pharmacokinetics of daptomycin after IV administration of 6 
mg/kg was examined in eight patients undergoing CAPD in order 
to determine the penetration of daptomycin into the peritoneal 
cavity and identify optimal CAPD dosing schemes using popula-
tion PK modeling and Monte Carlo simulations [ 44 ]. The dialy-
sate concentration at the end of an exchange was between 2 and 6 
mg/L for most patients. Compared to patients administered dap-
tomycin for  S. aureus  endocarditis, CL was markedly reduced (0.96 
L/h) while Vd remained similar (6.56 L). In the Monte Carlo 
simulations for both the 4 and 6 mg/kg, AUC 0–72  was similar to 
values from patients in the endocarditis study. The mean AUC in 
the peritoneal cavity to AUC in plasma ratio was 0.058 and CAPD 
patients did not have a higher probability of a  C  min  ≥24.3 
mg/L. These results indicate that daptomycin at 4 or 6 mg/kg 
every 48 h is an appropriate dosage to treat non-peritoneal infec-
tions in patients on  CAPD  . Given that less than 6 % of the total 
AUC observed in plasma was recovered in the peritoneal cavity, 
intravenous daptomycin is likely inappropriate for treating perito-
neal infections [ 44 – 47 ]. 

2.5    Meningitis     

2.6  Dialysis 
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 Benziger and colleagues reported the plasma pharmacokinetics 
of single and multiple doses of daptomycin 6 mg/kg administered 
every 48 h before CAPD in eight noninfected adult subjects [ 48 ]. 
The mean apparent  V  ss  (0.12 and 0.12 L/kg), CL (249 and 233 
mL/h), fraction unbound (0.13 and 0.12), and half-life (25.8 and 
26.7 h) of daptomycin were similar after the fi rst and third doses 
(days 1 and 5), respectively. The respective mean (±SD)  C  max  and 
AUC 0–48  after the fi rst dose (75.2 ± 15.6 mg/L and 1354 ± 333 
mg·h/L) increased to 93.9 ± 21.9 mg/L and 2016 ± 581 mg h/L 
following the third dose. Mean trough concentrations before and 
48 h after the third dose of daptomycin were 19.5 and 20.7 mg/L, 
respectively. Accumulation ratio was estimated to be 1.49 by day 5 
of therapy. These observations lend support to the dosage regimen 
of 6 mg/kg every 48 h for patients undergoing  CAPD     .  

   Three studies have reported pharmacokinetic data with daptomy-
cin during HD [ 48 – 50 ]. Benziger and colleagues also reported 
single- and multiple-dose plasma pharmacokinetics of daptomycin 
in fi ve noninfected adult subjects undergoing high-fl ux HD [ 48 ]. 
Daptomycin was dosed 6 mg/kg after each HD during a 48–48–
72-h weekly dialysis schedule. The mean parameter values on days 
1 and 5 (fi rst and third dose) included an apparent  V  ss  (0.13 and 
0.17 L/kg), CL (253 and 270 mL/h), fraction unbound (0.11 
and 0.11), and half-life (28.0 and 35.9 h). The respective mean 
(±SD)  C  max  and AUC 0–48  after the fi rst dose (69.0 ± 11.0 mg/L and 
1318 ± 235 mg·h/L) increased to 81.6 ± 13.4 mg/L and 
1813 ± 316 mg·h/L following the third dose. Mean trough con-
centrations before and 72 h after the third dose of daptomycin 
were 13.1 and 15.3 mg/L, respectively. Accumulation ratio was 
estimated to be 1.39 by day 5 of therapy. During high-fl ux HD on 
day 5, pre-dialysis plasma concentrations decreased from 21.4 to 
13.1 mg/L post-dialysis (approximately 39 % of daptomycin was 
removed). 

 Salama and coinvestigators reported single-dose pharmacoki-
netics of daptomycin in six healthy end-stage renal disease patients 
on chronic HD [ 49 ]. Six subjects received 6 mg/kg of daptomycin 
after their usual HD session ended and blood samples were 
obtained before, during and after their next regular hemodialysis 
session. The second hemodialysis session was fi xed at 4 h in length. 
The mean  C  max  was 61.1 mg/L, AUC 0–∞  was 2168 mg·h/L, CL 
was 3.4 mL/min, Vd was 0.08 L/kg, and a half-life of 19.4 h dur-
ing the interval between dialysis sessions. The elimination rate con-
stant and half-life while undergoing dialysis were 0.20 h −1  and 3.77 
h, respectively. Daptomycin concentrations 1 h post-dialysis 
 differed by only 0.9 mg/L when compared to concentrations at 
the end of dialysis, indicating minimal rebound. Serum concentra-
tions of daptomycin were reduced approximately 51.7 % during a 
4 h hemodialysis session. Based on PK modeling and simulations, 

2.6.2   Hemodialysis ( HD     )
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adequate daptomycin concentrations were likely to be maintained 
through the 44 and 68 h interdialytic period when 6 mg/kg is 
given post-HD. Also, higher doses of daptomycin may not be nec-
essary to account for the 68 h interdialytic period despite the rec-
ommended every 48 h dosing interval for hemodialysis patients 
[ 49 ,  50 ]. 

 Twelve adult patients received daptomycin 6 mg/kg and had 
26 blood samples collected over 72 h, including before, during, 
and after HD [ 51 ]. Mean (±SD) PK parameters from population 
PK analysis included Vc of 4.77 ± 1.08 L and nondialytic CL of 
0.25 ± 0.06 L/h. The mean (±SD) CL during HD was 0.87 L/h, 
which was similar to the mean CL value observed in non-HD 
patients with  S. aureus  bacteremia and endocarditis. 

 Dosing  regimens      were evaluated using a series of Monte Carlo 
simulations that have a low probability of a  C  min  ≥24.3 mg/L and 
AUC distribution values that closely approximates doses of 4 and 
6 mg/kg every 24 h in non-HD patients with  S. aureus  bacteremia 
and endocarditis. 

 The results from all of these HD studies were pooled together 
and used in a pharmacokinetic and pharmacodynamics analysis of 
26 patients on thrice-weekly hemodialysis [ 52 ]. Monte Carlo sim-
ulations were performed to identify dosing schemes that would 
have a low probability of a  C  min  ≥24.3 mg/L and provide AUC 
distribution values similar to those associated with dosing regimens 
of 4 and 6 mg/kg every 24 h in non-HD patients (based PK 
parameters from the  S. aureus  bacteremia–endocarditis study). 
Daily AUC values were similar to patients with endocarditis when 
daptomycin was administered post-HD, but not before or during, 
with a 48-h interdialytic period. With a 72 h interdialytic period, 
even post-HD administration of 4 or 6 mg/kg resulted in AUC 48–72  
values roughly half of those with  S. aureus  bacteremia–endocardi-
tis. Evaluation of 12 mg/kg post-HD dosing resulted in AUC val-
ues comparable to those achieved in patients with  S. aureus  however 
with a high probability of  C  min  exceeding the 24.3 mg/L toxicity 
threshold (19.1 %). Therefore, intra- or post-HD doses of 4 or 6 
mg/kg of daptomycin was recommended for patients on thrice-
weekly HD prior to a 48-h interdialytic period. Intra- or post-HD 
doses should be increased to 6 or 9 mg/kg for patients on thrice-
weekly HD prior to a 72-h interdialytic period. Increased CPK 
monitoring may also be warranted in these patients due to the 
potential increase in probability of exceeding  toxi     c  C  min .  

   Continuous renal replacement therapy ( CRRT)         is a dialysis modal-
ity used to treat critically ill patients in the intensive care unit who 
develop acute kidney injury. Some of the most commonly applied 
modalities are continuous venovenous hemofi ltration (CVVH), 
continuous venovenous hemodialysis (CVVHD), and continuous 
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venovenous hemodiafi ltration (CVVHDF). In addition, sustained 
low-effi ciency dialysis (SLED) or slow low effi ciency daily dialysis 
(SLEDD) has also been used because of higher solute clearance 
and decreased supply costs compared to conventional 
CRRT. Limited data are available describing the impact of SLED 
on daptomycin disposition. 

 Based on in vitro models, CL of daptomycin during CRRT 
was comparable or exceeded renal CL of daptomycin from healthy 
volunteers (9.3–10.5 mL/min) [ 53 ,  54 ]. Filter type, dialysate 
fl ow, and ultrafi ltration will impact amount of drug removal and 
variation in CL. The mean sieving coeffi cient in whole blood over 
time was 0.40 and did not change based on daptomycin concentra-
tion while mean CL from the blood circuit was 19.8 mL/min. 
Approximately 20 % of the initial daptomycin dose was lost to 
adsorption. These experimental fi ndings suggest that increased or 
more frequent doses of daptomycin may be needed in critically ill 
patients receiving CRRT. 

 Two reports have described the effect of SLED on daptomycin 
CL [ 55 ,  56 ]. A case report demonstrated that a 12-h SLED session 
resulted in a higher CL (0.92 vs. 0.24 L/h) and shorter elimina-
tion half-life (9.49 vs. 29.32 h) of daptomycin compared to inter-
mittent HD. Similar results were reported for 10 critically ill 
patients receiving g a single dose of daptomycin 6 mg/kg 8 h 
before SLED. The mean (±SD) CL during SLED was 1.03 ± 0.29 
L/h and the elimination half-lives during and off SLED were 
8.0 ± 1.8 and 27.7 ± 4.3 h, respectively. The average total amount 
of daptomycin removed during SLED 116 mg or 23 % of the 
administered dose. However, a 31 % increase (rebound) in plasma 
daptomycin concentrations occurred with 30 min after the end of 
SLED. A dosage regimen of daptomycin 6 mg/kg once daily (vs. 
every 48 h for HD or CAPD) has been recommended for patients 
undergoing SLED. 

 Several studies have evaluated the pharmacokinetics of dapto-
mycin in critically ill patients undergoing CRRT, most commonly 
with either CVVHD or CVVHDF [ 57 – 64 ]. Findings from these 
studies suggest that daptomycin may need to be given every 24 h 
or at higher doses administered every 48 h in order to achieve 
effective concentrations in critically ill patients on CRRT. It is 
important to note that none of the studies to date have examined 
clinical outcomes in these patients and the AUC/MIC or  C  max /
MIC ratio most associated with effi cacy in vivo has not been well 
established. Even so, given the increased Vd, fraction unbound 
and transmembrane clearance of daptomycin during CRRT, dap-
tomycin doses ≥6 mg/kg once-daily or ≥8 mg/kg administered 
every 48 h are likely to be effi cacious and avoid toxicity in this 
patient  population     .   
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   The mean concentration of daptomycin into the infl ammatory 
exudate from induced blisters was 9.4 and 14.5 mg/L at 1 and 2 h 
respectively [ 65 ]. The  C  max  was 27.6 mg/L and occurred at 3.7 h 
after a 4 mg/kg dose of daptomycin. The mean half-life and 
AUC 0–24  in blister fl uid were 17.3 h and 318.2 mg h/L, respec-
tively. The penetration of daptomycin into blister fl uid was esti-
mated to be 68.4 % based ratio of AUC 0–24  for infl ammatory 
exudate and plasma. 

 An in vivo microdialysis study describes the pharmacokinetic 
profi le of daptomycin in the interstitial fl uid of soft tissues and 
compares the degree of penetration between healthy and diabetic 
subjects [ 66 ]. Six subjects in each group were evenly matched and 
recruited receive a single 4 mg/kg dose of daptomycin. The mean 
in vivo recovery levels for daptomycin in subcutaneous tissue were 
34 and 31 % for diabetic and healthy volunteers, respectively. The 
 C  max  in tissue occurred within 2 h of the dose and was approxi-
mately 4 mg/L. Tissue concentrations remained ≥1 mg/L for 
both groups up to 12 h after dosing. The mean AUC 0–∞  and half- 
life values were greater in the diabetic subjects (45.1 mg·h/L and 
12.4 h) compared healthy subjects (33.5 mg·h/L and 8.8 h), 
although not meaningfully different. The percent tissue penetration 
for diabetic subjects was 93 % compared to 73 % for healthy sub-
jects. Mean  C  min  values in tissue were 0.59 and 0.39 for diabetics 
and healthy subjects, respectively, allowing for 100 % time over the 
MIC for common skin and soft tissue pathogens with daptomycin 
MICs of ≤0.25 mg/L. 

  Daptomyci  n has also demonstrated excellent penetration into 
synovial fl uid and long bone [ 67 ,  68 ]. The mean daptomycin con-
centration in synovial fl uid, thigh bone, and shin bone were 21.6, 
3.3, and 3.4 mg/L, respectively [ 67 ]. Comparing these to plasma 
samples, the median penetration into synovial fl uid, thigh bone, 
and shin bone was 54, 9.5, and 8.2 %. All samples were collected 
approximately 7 h after a single daptomycin dose of 8 mg/kg. All 
concentrations were maintained above 1 mg/L at all sampling 
times, indicating that daptomycin may be useful in the manage-
ment of osteoarticular infections due to gram-positive pathogens, 
including  S. aureus . 

 Complete equilibration between unbound concentrations of 
daptomycin in plasma, soft tissues, and bone was observed at 
approximately 2 h in diabetic patients with bacterial food infection 
[ 69 ]. The mean penetration in healthy tissue, infl amed  subcutaneous 
adipose tissue, and bone were 154, 106, and 117 %, respectively, 
following once daily dosing of daptomycin 6 mg/kg for at least 
four consecutive days based the ratios of unbound AUC 0–24  of site 
and plasma concentrations. 

 Two case reports have reported concentrations of daptomycin 
in valve tissue and vegetation in patients with bacterial endocarditis 
[ 70 ]. In a 61-year-old man with a mitro-aortic native valve, 
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 Streptococcus oralis  endocarditis, daptomycin concentrations were 
8.6 and 30.8 μg/g in aortic and mitral values, respectively, and 26 
μg/g in the mitral vegetation, following multiple daily doses of 
daptomycin 700 mg (9.7 mg/kg). In a 69-year-old man with an 
aortic, porcine prosthetic valve,  Staphylococcus epidermitis  endocar-
ditis, daptomycin concentrations were 53.1 and 18.1 μg/g, respec-
tively, of tissues in the prosthetic aortic valve and perivalvular tissue, 
following daily doses of daptomycin 500 mg (7.1 mg/kg). These 
data, along with the plasma concentration–time profi le of dapto-
mycin in patients undergoing pulmonary bypass surgery [ 71 ], 
provide pharmacokinetic and tissue penetration information in 
patients with endocarditis and may need to undergo cardiothoracic 
surgery. 

 Pericardial fl uid and intravitreal concentrations of daptomycin 
have been reported in a 53-year-old woman with MRSA bactere-
mia, pericarditis, and endophthalmitis [ 72 ]. At approximately 42 h 
following a single dose of daptomycin 1000 mg, concentrations in 
serum, pericardial fl uid, and vitreous humor were 44.01, 27.79, 
and 12.43 mg/L, respectively. The percentage of penetration 
compared to serum concentration was 63 and 28 % for pericardial 
fl uid and  vitreous  , respectively.   

3     Pharmacodynamics 

   Daptomycin has been extensively evaluated in various in vitro stud-
ies. Importantly, the addition of calcium to laboratory media is 
essential when testing daptomycin in vitro [ 73 ,  74 ]. Additionally, 
albumin has been shown to increase the MIC values of daptomycin 
much like the other lipoglycopeptides with minimal effect on the 
degree of bacterial killing in dynamic models [ 74 ]. 

 Daptomycin has demonstrated rapid and pronounced bacteri-
cidal activity against a plethora of gram-positive pathogens, includ-
ing MRSA, vancomycin-intermediate  S. aureus  (VISA) and 
vancomycin-resistant enterococci (VRE). The PD validity of the 
once-daily dosing approach has also been confi rmed in vitro. The 
dose requirement to achieve 80 % maximal activity was 3 mg/kg 
against MRSA, correlating to an unbound AUC ( f AUC) and AUC 
of 26 and 370 mg·h/L, respectively [ 75 ]. In all studies, the activity 
of daptomycin is more pronounced against  S. aureus  than against 
enterococci. 

 In Monte Carlo simulations, the probability of target attain-
ment (PTA) and cumulative fraction of response (CFR) for an 
AUC 0–24 /MIC of 666 was calculated from daptomycin doses of 4, 
6, 8, 10, and 12 mg/kg/day [ 76 ]. The PTA was ≥99 % for all 
doses studied up to an MIC of 0.5 mg/L, while only doses ≥8 
mg/kg achieved this for an MIC of 1 mg/L. The CFR >90 % were 
achieved for doses ≥8 mg/kg for  Enterococcus faecalis  and all 

3.1    In Vitro Models  
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 Staphylococcus  and  Streptococcus  spp. tested, while even the 12 mg/
kg dosing regimen achieved a CFR of just 17 % against  Enterococcus 
faecium.  This analysis suggests that the Clinical Laboratory and 
Standards Institute (CLSI) breakpoint for  Enterococcus  spp. should 
be lowered to 1 mg/L to avoid treatment failures due to inability 
to achieve PK/PD targets when enterococcal isolates are reported 
as susceptible. 

    Multiple in vitro studies have confi rmed this need for higher 
doses of daptomycin (≥8 mg/kg) when attempting to treat  E. fae-
cium  [ 77 ]. Combination studies have been completed, although 
the addition of rifampin and/or gentamicin has shown no addi-
tional benefi t over daptomycin alone when treating  E. faecium  
[ 78 ]. Interestingly, the combination of daptomycin and β-lactams 
like ceftriaxone and ertapenem have shown signifi cant synergy 
in vitro against enterococci [ 79 ] Minimum resistance-prevention 
exposures were AUC/MIC ratios of 781 and 1562 for  E. faecium  
and  E. faecalis , respectively [ 80 ]. 

 Importantly, in vivo studies have demonstrated that  S. aureus  
isolates previously exposed to vancomycin have lower response 
rates to daptomycin and often produce heteroresistant isolates 
even without previous daptomycin exposure [ 81 ]. Alternative anti- 
MRSA agents other than daptomycin may be warranted in patients 
with serious  S. aureus  infections with previous exposure to vanco-
mycin. In contrast to enterococci, the addition of gentamicin has 
been shown to reduce the time to 99.9 % kill in vitro. Daptomycin 
also does not appear to lose overall killing effi ciency at high inocu-
lums [ 82 ]. Increasing the dose to 10 mg/kg has provided little 
increases in activity against daptomycin nonsusceptible strains with 
MIC  values   of 2–4 mg/L [ 83 ,  84 ].  

   The animal models exploring the activity of daptomycin have dem-
onstrated much of the same results as the in vitro studies, particu-
larly with regard to the differential killing of  S. aureus  and  E. 
faecium.  In the neutropenic murine thigh infection model, the 
24-h AUC/MIC best correlated with effi cacy ( R  2  = 86 %), fol-
lowed by  C  max /MIC ( R  2  = 83 %) and Time > MIC ( R  2  = 8 %) [ 85 ]. 
In animals, daptomycin displayed a post-antibiotic effect of 5 and 
10 h for  S. aureus  and  S. pneumoniae , respectively. 

 At least three other pharmacodynamic studies of daptomycin 
in the neutropenic murine thigh model have been published [ 86 –
 88 ], all supporting the conclusion that AUC 0–24 /MIC is the phar-
macodynamic index linked to effi cacy and therefore once-daily 
dosing should be used (Fig.  1 ). These results support once-daily 
dosing of daptomycin to target pathogen-specifi c AUC values best 
associated with effi cacy.

   Animal models of meningitis show similar results to the previ-
ous studies, i.e., low overall penetration (5 %) with adequate bac-
tericidal activity able to sterilize the CSF of most tested animals 
[ 89 ,  90 ]. 

3.2    Animal Models  
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 Daptomycin has displayed confl icting results in animal models 
of enterococcal endocarditis, with some authors suggesting that 
monotherapy should not be used due to the low rates of vegetation 
sterilization [ 91 – 93 ]. 

 In vitro foreign body models using the rat tissue cage model 
with MSSA have demonstrated synergy and improved activity 
when daptomycin was administered with oxacillin even when com-
pared to high-dose daptomycin monotherapy and combination of 
daptomycin and rifampin [ 94 ]. In contrast, the combination of 
daptomycin and rifampin was the most effective treatment for 
MRSA in the same  mode  l [ 95 ].  

   In order to attempt to link PK-PD parameters to predict in vivo 
effi cacy, several Monte Carlo simulations have been completed for 
daptomycin [ 96 – 99 ]. Daptomycin at doses of 4 and 6 mg/kg/day 
were incorporated into 5000-subject simulation, using at a fi xed 
weight of 80 kg, a range of CrCl of 50–120 mL/min, and a target 
 f AUC 0–24 /MIC >40. Daptomycin achieved a CFR ≥90 % against 
all methicillin-susceptible  S. aureus  (MSSA) and MRSA isolates at 
both dosing regimens regardless of patient location (intensive care 
unit [ICU] vs. non-ICU) and specimen source (respiratory or 
blood vs. other sites) [ 97 ]. 

3.3   Monte Carlo 
Simulations     

  Fig. 1    Relationship between the 24-h AUC/MIC ratio of daptomycin and log 10  CFU of  S. aureus  per gram of thigh 
muscle (mean ± 1 SD) when the total daily dose of daptomycin is given as one dose in 24 h, two equally divided 
doses every 12 h, or four equally divided doses every 6 h. Reproduced with permission from Ref. [ 86 ]       
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 Simulations have also been performed for 10,000-subject 
assigned true body weight and CrCl values from a log-normal dis-
tribution [ 97 ]. Patients with CrCl <30 mL/min were excluded. 
Concentration–time profi les were calculated for doses of 6, 8, 10, 
and 12 mg/kg for 14 days. The probability of toxicity was assessed 
as the probability of a fi nal trough concentration ( C  min ) ≥24.3 
mg/L at 336 h. Bacteriostatic and bactericidal AUC 0–24 /MIC tar-
gets were 388–537 and 788–1460, respectively. Doses of 6 mg/
kg/day achieved bacteriostatic targets for all strains at an MIC of 
0.5 mg/L, but only 75 % of strains at an MIC of 1 mg/L. For 
strains with an MIC of 2 mg/L, PTA for bacteriostatic targets was 
poor, ranging from 0.08 to 7.37 %. Doses of 8 mg/kg achieved 
static targets against all strains with an MIC ≤1 mg/L. Bactericidal 
targets were reached for 75 % of strains at an MIC of 0.5 mg/L. At 
10 mg/kg/day, all stasis targets were again achieved only up to 
MIC of ≤1 mg/L and bactericidal targets were achieved for all 
strains at MIC 0.5 mg/L. Finally, at the highest dose of 12 mg/
kg/day static targets were achieved in 75 % strains at MIC 2 mg/L 
and bactericidal targets for only 75 % strains at MIC of 1 mg/L. The 
probability of toxicity increased 5.35-fold (range: 3.3–17.7 %) 
when doses were increased from 6 to 12 mg/kg. This study dem-
onstrates that bacteriostatic target AUC 0–24 /MIC ratios were 
achieved in all strains with MIC levels at or below the CLSI break-
point of 1 mg/L with an 11.3 % probability of toxicity. 

  Bactericidal therapy   is often preferred in serious, high inocu-
lum infections but was only achieved in 25 % strains tested at the 
highest dose of 12 mg/kg with susceptible MICs [ 97 – 99 ]. These 
analyses also consistently demonstrate a lower PTA and CFR with 
daptomycin against enterococci,  especially       E. faecium  [ 76 ].  

   PD modeling, classifi cation and regression tree (CART) analysis, 
and Monte Carlo simulations were used to evaluate the 
 relationship between PK exposure parameters and the probability 
of creatinine phosphokinase (CPK) elevation. The dataset con-
sisted of 108 patients being treated for  S. aureus  bacteremia, with 
or without endocarditis, and receiving intravenous daptomycin 6 
mg/kg once daily. Six patients (5.56 %) demonstrated a pre-
defi ned CPK elevation. A plasma trough concentration ( C  min ) of 
daptomycin ≥24.3 mg/L was signifi cantly associated with a CPK 
elevation (Fig.  2 ). The predicted probability of CPK elevation at 
a daily dose of 4, 6, 8, 10, and 12 mg/kg were 3.73, 6.92, 10.7, 
15.3, and 19.5 %, respectively. The predicted probabilities of 
CPK elevations associated with musculoskeletal adverse events 
(i.e., muscle weakness and pain) at the same daily doses were 
1.24, 2.31, 3.57, 5.11, and 8.49 %, respectively. These associa-
tions should be use to evaluate the risk and benefi t of various 
dosing regimens with daptomycin.

3.4  Daptomycin 
 Exposure and Elevation 
Creatinine 
Phosphokinase Levels  
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4          Clinical Trials  : Proof of Pharmacokinetic-Pharmacodynamic Concepts 

 The effi cacy and safety of daptomycin at 4 mg/kg every 24 h for 
7–14 days was compared with conventional antibiotics in two ran-
domized, international clinical trials involving 1092 patients with 
cSSSI [ 100 ]. Among 902 clinically evaluable patients, success rates 
were 83.4 and 84.2 % for the daptomycin and comparator-treated 
groups, respectively. The majority of patients (63 %) treated suc-
cessfully with daptomycin required only 4–7 days of therapy 
 compared to 33 % of comparators. Relapse or recurrence was 
observed at the poststudy visit in 4.2 and 5.5 % of the daptomycin 
and comparator groups, respectively. Clinical success rates in the 
microbiologically evaluable population by infecting organism were 
lowest for patients with  E. faecalis  (73 %). No emergence of resis-
tance isolates was observed, including in patients who failed 
therapy. 

 Since these clinical trials, several trials have examined the clini-
cal effi cacy of daptomycin in specifi c patient populations and infec-
tions. Daptomycin and standard therapy has been evaluated as 
fi rst-line treatment for cSSSI in elderly patients in an open-label, 
randomized phase IIIb trial and showed 89 % clinical success at the 
test-of-cure visit compared to 83.3 % for daptomycin and 
comparator- treated patients, respectively [ 101 ]. In Japanese 
patients with SSSI caused by MRSA, the effi cacy of daptomycin at 
4 mg/kg/day was similar to vancomycin although the authors 

  Fig. 2    Relationship between trough concentration of oritavancin ( C  min ) and the probability of creatine phospho-
kinase (CPK) elevation ( solid line ) and 95 % confi dence interval ( dashed lines ) for the 108 patients who 
received intravenous daptomycin 6 mg/kg once-daily.  Shaded bars  are the distribution of the number of 
patients. Adapted from Ref. [ 17 ]       
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suggest a trend toward a lower clinical success rate as daptomycin 
MICs increased [ 102 ]. No difference in clinical success rates was 
observed between daptomycin and vancomycin in patients with 
cellulitis and erysipelas [ 103 ]. When high-dose (10 mg/kg/day), 
short-course (4 days) of daptomycin was evaluated against stan-
dard therapy for cSSSI, clinical success rates were 75 and 87.5 % for 
the daptomycin and comparator groups, respectively (Confi dence 
Interval [CI]: −27.9 to 2.9) [ 104 ]. In post-hoc analyses of this 
study, some subgroups (i.e., outpatients) performed better with 
the high-dose, short-course daptomycin therapy. Finally, a ran-
domized, controlled trial of daptomycin at 6 or 8 mg/kg and stan-
dard therapy for patients with osteomyelitis associated with 
prosthetic devices [ 105 ]. Clinical success rates at the test-of-cure 
visit were 58.3–60.9 % for daptomycin and 38.1 % for the com-
parator. Microbiological success rates were 50–52.2 % for dapto-
mycin and 38.1 % for the comparator. 

 The effectiveness of 6 mg/kg of daptomycin and an anti- 
staphylococcal penicillin or vancomycin plus initial low-dose gen-
tamicin was evaluated in 236 patients with  S. aureus  bacteremia 
with or without endocarditis [ 106 ]. The primary end point was 
treatment success 42 days after the end of therapy. A successful 
outcome was documented in 44.2 and 41.7 % of patients in the 
daptomycin and standard therapy groups, respectively (CI: −10.2 
to 15.1). Daptomycin was noninferior to standard therapy overall, 
and in subgroups of patients with complicated bacteremia, right- 
sided endocarditis, and MRSA. Microbiological failure was more 
common in the daptomycin group (19 vs. 11 patients,  p  = 0.17) 
and daptomycin-resistant isolates emerged in this population dur-
ing the study. Therapy failed in all nine patients with left-sided 
endocarditis caused by MRSA. The respective median time to clear 
MRSA and MSSA bacteremia was 8 and 9 days for the daptomycin 
group and 4 and 3 days for the comparator groups. Treatment 
failures in the daptomycin group were more often attributed to 
persistent or relapsing  S. aureus  infection while failure of standard 
therapy seemed to be associated with adverse events. Of note, the 
clinical success rate demonstrated in this study was lower than pre-
vious studies likely due to  the   strict defi nition for success. Patients 
who did not have repeat blood cultures drawn at the test of cure 
visit were considered failures, even without signs and symptoms of 
infection. The authors conclude that daptomycin given at 6 mg/
kg/day is noninferior to standard therapy for the treatment of bac-
teremia and right-sided endocarditis due to MSSA or 
MRSA. Further data is needed to support the use of daptomycin in 
left-sided endocarditis. 

 Carugati and colleagues evaluated the effi cacy of high-dose 
daptomycin in patients with left-sided endocarditis as part of a pro-
spective study from the international collaboration on endocarditis 
[ 107 ]. This cohort included 1112 cases of left sided endocarditis 
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due to  S. aureus , coagulase-negative staphylococci, and  E. faecalis  
treated with daptomycin or standard therapy. The primary out-
come was in-hospital mortality. Only 29 patients were included in 
the daptomycin group and these patients had signifi cantly higher 
prevalence of previous episodes of endocarditis. The median dap-
tomycin dose was 9.2 mg/kg/day and most of these patients (67 
%) had already failed a previous antibiotic regimen. In-hospital and 
6-month mortality did not differ between the groups and was not 
associated with daptomycin therapy in log-binomial analysis. 
Daptomycin given for MRSA endocarditis was associated with a 
decreased duration of bacteremia (1 vs. 5 days,  p  < 0.01) and 
shorter length of stay (33 vs. 64.5 days,  p  = 0.04) in this cohort. 
Adverse events were mild and uncommon. 

 Kullar and colleagues examined the effi cacy and safety of ≥8 
mg/kg of daptomycin in patients with suspected or confi rmed 
staphylococcal or enterococcal endocarditis in a multicenter obser-
vational study [ 108 ]. Seventy patients were included, 47.1 % with 
right-sided endocarditis and 50 % with left-sided endocarditis. The 
majority of these patients (93 %) received daptomycin as salvage 
therapy and 84.4 % had MRSA bacteremia. The median dose used 
was 9.8 mg/kg and 89.1 % of patients cleared their blood cultures. 
No patients required discontinuation due to adverse events and 
85.9 % achieved a clinical success. Six patients with MRSA devel-
oped nonsusceptibility to daptomycin, despite being treated with 
high-dose therapy. 

 In vitro data has suggested synergy between daptomycin and 
β-lactams, especially ceftaroline Daptomycin plus ceftaroline was 
used as salvage in 26 cases of refractory staphylococcal bacteremia 
at 10 medical centers [ 109 ]. The majority ( n  = 20) of cases were 
due to MRSA, with the remaining cases cause by VISA, MSSA, and 
methicillin-resistant coagulase negative staphylococci (2 cases for 
each pathogen). Patients were bacteremic for a median of 10 days 
prior to switching to daptomycin–ceftaroline. Blood cultures were 
reported negative in a median of 2 days after starting combination 
therapy. In vitro studies on the clinical isolates demonstrated syn-
ergy and enhanced MRSA killing by cathelicidin and neutrophils. 
The combination of daptomycin and ceftaroline (or other 
β-lactams) may be an effective therapeutic option in cases of refrac-
tory staphylococcal bacteremia and may have benefi ts beyond 
synergy. 

 Daptomycin has experienced extensive clinical use for various 
types of infections caused by gram-positive bacteria. Although dap-
tomycin penetrates into the lung, daptomycin is not effective for 
the treatment of community-acquired bacterial pneumonia [ 110 ] 
and is not recommended for the treatment of pulmonary infec-
tions. Daptomycin has been shown to interact with pulmonary 
surfactant in vitro that results in an inhibition of the antibacterial 
 activity   [ 111 ].     

Pharmacodynamics of Daptomycin



338

    1.    Allen NE, Alborn WE Jr, Hobbs JN Jr (1991) 
Inhibition of membrane potential-dependent 
amino acid transport by daptomycin. 
Antimicrob Agents Chemother 35(12):
2639–2642  

    2.    Straus SK, Hancock RE (2006) Mode of 
action of the new antibiotic for Gram-positive 
pathogens daptomycin: comparison with cat-
ionic antimicrobial peptides and lipopeptides. 
Biochim Biophys Acta 1758(9):1215–1223  

    3.    Fuchs PC, Barry AL, Brown SD (2002) In 
vitro bactericidal activity of daptomycin 
against staphylococci. J Antimicrob 
Chemother 49(3):467–470  

       4.    Dvorchik B, Arbeit RD, Chung J, Liu S, 
Knebel W, Kastrissios H (2004) Population 
pharmacokinetics of daptomycin. Antimicrob 
Agents Chemother 48(8):2799–2807  

     5.    Tally FP, DeBruin MF (2000) Development 
of daptomycin for gram-positive infections. 
J Antimicrob Chemother 46(4):523–526  

   6.    Garrison MW, Rotschafer JC, Crossley KB 
(1989) Suboptimal effect of daptomycin in 
the treatment of bacteremias. South Med 
J 82(11):1414–1415  

   7.    Garrison MW, Vance-Bryan K, Larson TA, 
Toscano JP, Rotschafer JC (1990) Assessment 
of effects of protein binding on daptomycin 
and vancomycin killing of  Staphylococcus 
aureus  by using an in vitro pharmacodynamic 
model. Antimicrob Agents Chemother 
34(10):1925–1931  

    8.    Rybak MJ, Bailey EM, Lamp KC, Kaatz GW 
(1992) Pharmacokinetics and bactericidal 
rates of daptomycin and vancomycin in intra-
venous drug abusers being treated for gram- 
positive endocarditis and bacteremia. 
Antimicrob Agents Chemother 
36(5):1109–1114  

      9.    Woodworth JR, Nyhart EH Jr, Brier GL, 
Wolny JD, Black HR (1992) Single-dose 
pharmacokinetics and antibacterial activity of 
daptomycin, a new lipopeptide antibiotic, in 
healthy volunteers. Antimicrob Agents 
Chemother 36(2):318–325  

   10.    Dvorchik BH, Brazier D, DeBruin MF, 
Arbeit RD (2003) Daptomycin pharmacoki-
netics and safety following administration of 
escalating doses once daily to healthy sub-
jects. Antimicrob Agents Chemother 
47(4):1318–1323  

     11.    Benvenuto M, Benziger DP, Yankelev S, 
Vigliani G (2006) Pharmacokinetics and tol-
erability of daptomycin at doses up to 12 mil-
ligrams per kilogram of body weight once 
daily in healthy volunteers. Antimicrob 
Agents Chemother 50(10):3245–3249  

     12.    Chakraborty A, Roy S, Loeffl er J, Chaves RL 
(2009) Comparison of the pharmacokinetics, 
safety and tolerability of daptomycin in 
healthy adult volunteers following intrave-
nous administration by 30 min infusion or 
2 min injection. J Antimicrob Chemother 
64(1):151–158  

     13.    Chaves RL, Chakraborty A, Benziger D, 
Tannenbaum S (2014) Clinical and pharma-
cokinetic considerations for the use of dapto-
mycin in patients with  Staphylococcus aureus  
bacteremia and severe renal impairment. 
J Antimicrob Chemother 69:200–210  

      14.    Di Paolo A, Tascini C, Polillo M, Gemignani 
G, Nielsen EI, Bocci G, Karlsson MO, 
Menichetti F, Danesi R (2013) Population 
pharmacokinetics of daptomycin in patients 
affected by severe Gram-positive infections. 
Int J Antimicrob Agents 42(3):250–255  

     15.    Falcone M, Russo A, Venditti M, Novelli A, 
Pai MP (2013) Considerations for higher 
doses of daptomycin in critically ill patients 
with methicillin-resistant  Staphylococcus 
aureus  bacteremia. Clin Infect Dis 
57(11):1568–1576  

   16.    Soon RL, Turner SJ, Forrest A, Tsuji BT, 
Brown J (2013) Pharmacokinetic/pharmaco-
dynamic evluation of the effi cacy and safety of 
daptomycin against  Staphylococcus aureus . Int 
J Antimicrob Agnets 42:53–58  

       17.    Bhavnani SM, Rubino CM, Ambrose PG, 
Drusano GL (2010) Daptomycin exposure 
and the probability of elevations in the creati-
nine phosphokinase level: data from a ran-
domized trial of patients with bacteremia and 
endocarditis. Clin Infect Dis 50:1568–1574  

     18.    Cohen-Wolkowiez M, Watt KM, Hornik CP, 
Benjamin DK Jr, Smith PB (2012) 
Pharmacokinetics and tolerability of single- 
dose daptomycin in young infants. Pediatr 
Infect Dis J 31(9):935–937  

   19.    Cohen-Wolkowiez M, Smith PB, Benjamin 
DK Jr, Fowler VG Jr, Wade KC (2008) 
Daptomycin use in infants: report of two 
cases with peak and trough drug concentra-
tions. J Perinatol 28(3):233–234  

    20.    Antachopoulos C, Iosifi dis E, Sarafi dis K, 
Bazoti F, Gikas E, Katragkou A, Drossou- 
Agakidou V, Roilides E (2012) Serum levels 
of daptomycin in pediatric patients. Infection 
40(4):367–371  

    21.    Bradley JS, Benziger D, Bokesch P, Jacobs R 
(2014) Single-dose pharmacokinetics of dap-
tomycin in pediatric patients 3-24 months of 
age. Pediatri Infect Dis J 33(9):936–939  

    22.    Abdel-Rahman SM, Benziger DP, Jacobs RF, 
Jafri HS, Hong EF, Kearns GL (2008) 

   References 

Eric Wenzler et al.



339

 Single- dose pharmacokinetics of daptomycin 
in children with suspected or proved gram-
positive infections. Pediatr Infect Dis J 27(4):
330–334  

    23.    Abdel-Rahman SM, Chandorkar G, Akins 
RL, Bradley JS, Jacobs RF, Donovan J, 
Benziger DP (2011) Single-dose pharmaco-
kinetics and tolerability of daptomycin 8 to 
10 mg/kg in children aged 2 to 6 years with 
suspected or proved Gram-positive infections. 
Pediatr Infect Dis J 30(8):712–714  

    24.    Dvorchik B, Damphousse D (2004) Single- 
dose pharmacokinetics of daptomycin in 
young and geriatric volunteers. J Clin 
Pharmacol 44(6):612–620  

    25.    Pai MP, Norenberg JP, Anderson T, Goade 
DW, Rodvold KA, Telepak RA, Merceier R-C 
(2007) Infl uence of morbid obesity on the 
single-dose pharmacokinetics of daptomycin. 
Antimicrob Agents Chemother 
51(8):2741–2747  

    26.    Dvorchik BH, Damphousse D (2005) The 
pharmacokinetics of daptomycin in moder-
ately obese, morbidly obese, and matched 
nonobese subjects. J Clin Pharmacol 
45(1):48–56  

    27.    Pai MP (2012) Drug dosing based on weight 
and body surface area: mathematical assump-
tions and limitations of obese adults. 
Pharmacotherapy 32:856–868  

    28.    Di Paolo A, Polillo M, Tascini C, Lewis R, 
Menichetti F, Danesi R (2014) Different rec-
ommendations for daptomycin dosing over 
time in patients with severe infections. Clin 
Infect Dis 58(12):1788–1789  

     29.   Falcone M, Russo A, Venditti M, Novelli A, 
Pai MP. Reply to Di Paolo et al (2014) Clin 
Infect Dis 58(12):1789–1790  

    30.    Ng JK, Schulz LT, Rose WE, Fox BC, Andes 
DR, Buhr KA, Fish JT (2014) Daptomycin 
dosing based on ideal body weight versus 
actual body weight: comparison of clinical 
outcomes. Antimicrob Agents Chemother 
58:88–93  

     31.    Pai MP, Russo A, Novelli A, Venditti M, 
Flacone M (2014) Simplifi ed equations using 
two concentrations to calculate area under 
the curve for antimicrobials with 
concentration- dependent pharmacodynam-
ics: daptomycin as a motivating example. 
Antimicrob Agents Chemother 
58(6):3162–3167  

    32.    Bubalo JS, Munar MY, Cherala G, Hayes- 
Lattin B, Maziarz R (2009) Daptomycin 
pharmacokinetics in adult oncology patients 
with neutropenic fever. Antimicrob Agents 
Chemother 53(2):428–434  

    33.    Mohr JF 3rd, Ostrosky-Zeichner L, Wainright 
DJ, Parks DH, Hollenbeck TC, Ericsson CD 

(2008) Pharmacokinetic evaluation of single- 
dose intravenous daptomycin in patients with 
thermal burn injury. Antimicrob Agents 
Chemother 52(5):1891–1893  

    34.    Erritouni M, Ktaich N, Rahal JJ et al (2012) 
Use of daptomycin for the treatment of 
methicillin- resistant coagulase-negative 
staphylococcal ventriculitis. Case Rep Med 
2012:593578  

   35.    Wahby KA, Alangaden GJ (2012) Daptomycin 
failure in a neutropenic leukemia patient with 
 Staphylococcus aureus  meningitis. Leuk 
Lymphoma 53(8):1610–1612  

   36.    Kelesidis T, Humphries R, Ward K, Lewinski 
MA, Yang OO (2011) Combination therapy 
with daptomycin, linezolid, and rifampin as 
treatment option for MRSA meningitis and 
bacteremia. Diagn Microbiol Infect Dis 
71(3):286–290  

   37.    Le J, Bookstaver PB, Rudisill CN, Hashem 
MG, Igbal R, James CL, Sakoulas G (2010) 
Treatment of meningitis caused by 
vancomycin- resistant  Enterococcus faecium : 
high-dose and combination daptomycin ther-
apy. Ann Pharmacother 44(12):2001–2006  

   38.    Riser MS, Bland CM, Rudisill CN, Bookstaver 
PB (2010) Cerebrospinal fl uid penetration of 
high-dose daptomycin in suspected 
 Staphylococcus aureus  meningitis. Ann 
Pharmacother 44(11):1832–1835  

   39.    Jaspan HB, Brothers AW, Campbell AJ, 
McGuire JK, Browd SR, Manley TJ, Park D, 
Weissman SJ (2010) Multidrug-resistant 
 Enterococcus faecium  meningitis in a toddler: 
characterization of the organism and success-
ful treatment with intraventricular daptomy-
cin and intravenous tigecycline. Pediatr Infect 
Dis J 29(4):379–381  

   40.    Lee DH, Palermo B, Chowdhury M (2008) 
Successful treatment of methicillin-resistant 
 Staphylococcus aureus  meningitis with dapto-
mycin. Clin Infect Dis 47(4):588–590  

    41.    Taglietti F, Campanile F, Capone A et al 
(2012) Daptomycin effi cacy in the central 
nervous system of a patient with disseminated 
methicillin-resistant  Staphylococcus aureus  
infection: a case report. J Med Case Rep 
6:264  

    42.    Kullar R, Chin JN, Edwards DJ, Parker D, 
Coplin WM, Rybak MJ (2011) 
Pharmacokinetics of single-dose daptomycin 
in patients with suspected or confi rmed neu-
rological infections. Antimicrob Agents 
Chemother 55(7):3505–3509  

    43.    Vivas M, Force E, Garrigos C et al (2014) 
Experimental study of the effi cacy of dapto-
mycin for the treatment of cephalosporin- 
resistant pneumococcal meningitis. 
J Antimicrob Chemother 69(11):3020–3026  

Pharmacodynamics of Daptomycin



340

     44.    Cardone KE, Lodise TP, Patel N, Hoy CD, 
Meola S, Manley HJ, Drusano GL, Grabe 
DW (2011) Pharmacokinetics and pharmaco-
dynamics of intravenous daptomycin during 
continuous ambulatory peritoneal dialysis. 
Clin J Am Soc Nephrol 6(5):1081–1088  

   45.    Goedecke VA, Clajus C, Burkhardt O, 
Martens-Lobenhoffer J, Bode-Boger SM, 
Kielstein JT, Hiss M (2009) Pharmacokinetics 
and dialysate levels of daptomycin given intra-
venously in a peritoneal dialysis patient. Scand 
J Infect Dis 41(2):155–157  

   46.    Bahte SK, Bertram A, Burkhardt O, Martens- 
Lebenhoffer J, Goedecke V, Bode-Boger SM, 
Hiss M, Kielstein JT (2010) Therapeutic 
serum concentrations of daptomycin after 
intraperitoneal administration in a patient 
with peritoneal dialysis-associated peritonitis. 
J Antimicro Chemother 65(6):1312–1314  

    47.    Huen SC, Hall I, Topal J, Mahnensmith RL, 
Brewster UC, Abu-Alfa AK (2009) Successful 
use of intraperitoneal daptomycin in the treat-
ment of vancomycin-resistant Enterococcus 
peritonitis. Am J Kidney Dis 54(3):538–541  

      48.    Benziger DP, Pertel PE, Donovan J, Yankelev 
S, Schwab RJ, Swan SK, Cannon C (2011) 
Pharmacokinetics and safety of multiple doses 
of daptomycin 6 mg/kg in noninfected adults 
undergoing hemodialysis or continuous 
ambulatory peritoneal dialysis. Clin Nephrol 
75(1):63–69  

     49.    Salama NN, Segal JH, Churchwell MD, Patel 
JH, Gao L, Heung M, Mueller BA (2010) 
Single-dose daptomycin pharmacokinetics in 
chronic haemodialysis patients. Nephrol Dial 
Transplant 25(4):1279–1284  

     50.    Salama NN, Segal JH, Churchwell MD, Patel 
JH, Gao L, Heung M, Mueller BA (2009) 
Intradialytic administration of daptomycin in 
end stage renal disease patients on hemodialy-
sis. Clin J Am Soc Nephrol 4(7):1190–1194  

    51.    Patel N, Cardone K, Grabe DW, Meola S, 
Hoy C, Manely H, Drusano GL, Lodise TP 
(2011) Use of pharmacokinetic and pharma-
codynamic principles to determine optimal 
administration of daptomycin in patients 
receiving standardized thrice-weekly hemodi-
alysis. Antimicrob Agents Chemother 
55(4):1677–1683  

    52.    Butterfi eld JM, Mueller BA, Patel N, Cardone 
KE, Grabe DW, Salama NN, Lodise TP (2013) 
Daptomycin pharmacokinetics and pharmaco-
dynamics in a pooled sample of patients receiv-
ing thrice-weekly hemodialysis. Antimicrob 
Agents Chemother 57(2):864–872  

    53.    Churchwell MD, Pasko DA, Mueller BA 
(2006) Daptomycin clearance during modelled 

continuous renal replacement therapy. Blood 
Purif 24:548–554  

    54.    Wagner CC, Steiner I, Zeitlinger M (2009) 
Daptomycin elimination by CVVH in vitro: 
evaluation of factors infl uencing sieving and 
membrane adsorption. Int J Clin Pharmacol 
Ther 47(3):178–186  

    55.    Burkhardt O, Joukhadar C, Traunmuller F, 
Hadem J, Welte T, Kielstein JT (2008) 
Elimination of daptomycin in a patient with 
acute renal failure undergoing extended daily 
dialysis. J Antimicrob Chemother 
61:224–225  

    56.    Kielstein JT, Engbers C, Bode-Boeger SM, 
Martens-Lobenhoffer J, Haller H, Joukhadar 
C, Traunmuller F, Kritsch W, Hafer C, 
Burkhardt O (2010) Dosing of daptomycin 
in intensive care unit patients with acute kid-
ney injury undergoing extended dialysis: a 
pharmacokinetic study. Nephrol Dial 
Transplant 25:1537–1541  

    57.    Khadzhynov D, Slowinski T, Lieker I, Spies 
C, Puhlmann B, Konig T, Uhrig A, Eggers K, 
Neumayer H-H, Traunmuller F, Joukhader 
C, Peters H (2011) Plasma pharmacokinetics 
of daptomycin in critically ill patients with 
renal failure and undergoing CVVHD. Int 
J Clin Pharmacol Ther 49(11):656–665  

   58.    Vilay AM, Grio M, DePestel DD, Sowinski 
KM, Gao L, Heung M, Salama NN, Mueller 
BA (2011) Daptomycin pharmacokinetics in 
critically ill patients receiving continuous 
venovenous hemodialysis. Crit Care Med 
39(1):19–25  

   59.    Rudiger A, Rentsch K, Maggiorini M, Corti 
N (2011) Daptomycin pharmacokinetics in 
critically ill patients receiving continuous 
venovenous hemodialysis (Letter). Crit Care 
Med 39(5):1243–1244  

   60.    Vilay AM, DePestel DD, Mueller BA (2011) 
Daptomycin pharmacokinetics in critically ill 
patients receiving continuous venovenous 
hemodialysis (Letter). Crit Care Med 
39(5):1244–1245  

   61.    Wenisch JM, Meyer B, Fuhrmann V, Saria K, 
Zuba C, Dittrich P, Thalhammer F (2012) 
Multiple-dose pharmacokinetics of daptomy-
cin during continuous venovenous haemodi-
afi ltration. J Antimicrob Chemother 
67(4):977–983  

   62.    Preiswerk B, Rudiger A, Fehr J, Corti N 
(2013) Experience with daptomycin daily 
dosing in ICU patients undergoing continu-
ous renal replacement therapy. Infection 
41:533–537  

   63.    Corti N, Rudiger A, Chiesa A, Marti I, Jetter 
A, Rentsch K, Muller D, Bechir M, Maggiorini 

Eric Wenzler et al.



341

M (2013) Pharmacokinetics of daily daptom-
ycin in critically ill patients undergoing con-
tinuous renal replacement therapy. 
Chemotherapy 59(2):143–151  

    64.    Falcone M, Russo A, Cassetta MI, Lappa A, 
Tritapepe L, Fallani S, Vullo V, Venditti M, 
Novelli A (2012) Daptomycin serum levels in 
critical patients undergoing continuous renal 
replacement. J Chemother 24:253–256  

    65.    Wise R, Gee T, Andrews JM, Dvorchik B, 
Marshall G (2002) Pharmacokinetics and 
infl ammatory fl uid penetration of intravenous 
daptomycin in volunteers. Antimicrob Agents 
Chemother 46(1):31–33  

    66.    Kim A, Suecof LA, Sutherland CA, Gao L, 
Kuti JL, Nicolau DP (2008) In vivo microdi-
alysis study of the penetration of daptomycin 
into soft tissues in diabetic versus healthy vol-
unteers. Antimicrob Agents Chemother 
52(11):3941–3946  

     67.    Montange D, Berthier F, Leclerc G, Serre A, 
Jeunet L, Berard M, Muret P, Vettoretti L, 
Leroy J, Hoen B, Chirouze C et al (2014) 
Penetration of daptomycin into bone and 
synovial fl uid in joint replacement. Antimicrob 
Agents Chemother 58(7):3991–3996  

    68.    Ritchie ND, Lovering AM, Seaton RA (2010) 
Daptomycin in synovial fl uid during treat-
ment of methicillin-resistant  Staphylococcus 
aureus  septic arthritis. J Antimicrob 
Chemother 65(6):1314–1315  

    69.    Traunmuller F, Schintler MV, Metzler J, 
Spendel S, Mauric O, Popovic M, Konz KH, 
Scharnagi E, Joukhader C (2010) Soft tissue 
and bone penetration abilities of daptomycin 
in diabetic patients with bacterial foot infec-
tions. J Antimicrob Chemother 
65(6):1252–1257  

    70.    Tascini C, Di Paolo A, Poletti R, Flammini S, 
Emdin M, Ciullo I, Tagliaferri E, Moter A, 
Menichetti F (2013) Daptomycin concentra-
tions in valve tissue and vegetation in patients 
with bacterial endocarditis. Antimicrob 
Agents Chemother 57(1):601–602  

    71.    Nguyen MH, Eells SJ, Tan J, Sheth CT, 
Omari B, Flores M, Wang J, Miller LG (2011) 
Prospective, open-label investigations of the 
pharmacokinetics of daptomycin during car-
diopulmonary bypass surgery. Antimicrob 
Agents Chemother 55(6):2499–2505  

    72.    Sheridan KR, Potoski BA, Shields RK, Nau 
GJ (2010) Presence of adequate intravitreal 
concentrations of daptomycin after systemic 
intravenous administration in a patient with 
endogenous endophthalmitis. 
Pharmacotherapy 30(12):1247–1251  

    73.    Hanberger H, Nilsson LE, Maller R, Isaksson 
B (1991) Pharmacodynamics of daptomycin 

and vancomycin on  Enterococcus faecalis  and 
 Staphylococcus aureus  demonstrated by studies 
of initial killing and postantibiotic effect and 
infl uence of Ca2+ and albumin on these 
drugs. Antimicrob Agents Chemother 
35(9):1710–1716  

     74.    Cha R, Rybak MJ (2004) Infl uence of protein 
binding under controlled conditions on the 
bactericidal activity of daptomycin in an 
in vitro pharmacodynamic model. 
J Antimicrob Chemother 54(1):259–262  

    75.    Cha R, Grucz RG Jr, Rybak MJ (2003) 
Daptomycin dose-effect relationship against 
resistant gram-positive organisms. Antimicrob 
Agents Chemother 47(5):1598–1603  

     76.    Asin E, Isla A, Canut A, Rodriguez GA 
(2012) Comparison of antimicrobial pharma-
cokinetic/pharmacodynamic breakpoints 
with EUCAST and CLSI clinical breakpoints 
for Gram-positive bacteria. Int J Antimicrob 
Agents 40(4):313–322  

    77.    Hall AD, Steed ME, Arias CA, Murray BE, 
Rybak MJ (2012) Evaluation of standard- 
and high-dose daptomycin versus linezolid 
against vancomycin-resistant  Enterococcus  iso-
lates in an in vitro pharmacokinetic/pharma-
codynamic model with simulated endocardial 
vegetations. Antimicrob Agents Chemother 
56(6):3174–3180  

    78.    Luther MK, Arvanitis M, Mylonakis E, 
LaPlante KL (2014) Activity of daptomycin 
or linezolid in combination with rifampin or 
gentamicin against biofi lm-forming 
 Enterococcus faecalis  or  E. faecium  in an 
in vitro pharmacodynamic model using simu-
lated endocardial vegetations and an in vivo 
survival assay using  Galleria mellonella  larvae. 
Antimicrob Agents Chemother 
58(8):4612–4620  

    79.    Hall Snyder A, Werth BJ, Barber KE, Sakoulas 
G, Rybak MJ (2014) Evaluation of the novel 
combination of daptomycin plus ceftriaxone 
against vancomycin-resistant enterococci in 
an in vitro pharmacokinetic/pharmacody-
namic simulated endocardial vegetation 
model. J Antimicrob Chemother 
69(8):2148–2154  

    80.    Werth BJ, Steed ME, Ireland CE et al (2014) 
Defi ning daptomycin resistance prevention 
exposures in vancomycin resistant  Enterococcus  
(VRE)  faecium  and  E. faecalis . Antimicrob 
Agents Chemother 58(9):5253–5261  

    81.    Bhalodi AA, Hagihara M, Nicolau DP, Kuti 
JL (2014) In vitro pharmacodynamics of 
human simulated exposures of ceftaroline and 
daptomycin against MRSA, hVISA, and VISA 
with and without prior vancomycin exposure. 
Antimicrob Agents Chemother 58(2):
672–677  

Pharmacodynamics of Daptomycin



342

    82.    LaPlante KL, Rybak MJ (2004) Impact of 
high-inoculum  Staphylococcus aureus  on the 
activities of nafcillin, vancomycin, linezolid, 
and daptomycin, alone and in combination 
with gentamicin, in an in vitro pharmacody-
namic model. Antimicrob Agents Chemother 
48(12):4665–4672  

    83.    Rose WE, Leonard SN, Rybak MJ (2008) 
Evaluation of daptomycin pharmacodynamics 
and resistance at various dosage regimens 
against  Staphylococcus aureus  isolates with 
reduced susceptibilities to daptomycin in an 
in vitro pharmacodynamic model with simu-
lated endocardial vegetations. Antimicrob 
Agents Chemother 52(9):3061–3067  

    84.    Steed M, Vidaillac C, Rybak MJ (2011) 
Evaluation of ceftaroline activity versus dap-
tomycin (DAP) against DAP-nonsusceptible 
methicillin-resistant  Staphylococcus aureus  
strains in an in vitro pharmacokinetic/phar-
macodynamic model. Antimicrob Agents 
Chemother 55(7):3522–3526  

    85.    Safdar N, Andes D, Craig WA (2004) In vivo 
pharmacodynamic activity of daptomycin. 
Antimicrob Agents Chemother 48(1):63–68  

     86.    Louie A, Kaw P, Liu W, Jumbe N, Miller MH, 
Drusano GL (2001) Pharmacodynamics of 
daptomycin in a murine thigh model of 
 Staphylococcus aureus  infection. Antimicrob 
Agents Chemother 45(3):845–851  

   87.    Dandekar PK, Tessier PR, Williams P, 
Nightingale CH, Nicolau DP (2003) 
Pharmacodynamic profi le of daptomycin 
against Enterococcus species and methicillin- 
resistant  Staphylococcus aureus  in a murine 
thigh infection model. J Antimicrob 
Chemother 52(3):405–411  

    88.    Dandekar PK, Tessier PR, Williams P, Zhang 
C, Nightingale CH, Nicolau DP (2004) 
Determination of the pharmacodynamic pro-
fi le of daptomycin against  Streptococcus pneu-
moniae  isolates with varying susceptibility to 
penicillin in a murine thigh infection model. 
Chemotherapy 50(1):11–16  

    89.    Gerber P, Stucki A, Acosta F, Cottagnoud M, 
Cottagnoud P (2006) Daptomycin is more 
effi cacious than vancomycin against a 
methicillin- susceptible  Staphylococcus aureus  
in experimental meningitis. J Antimicrob 
Chemother 57(4):720–723  

    90.    Cottagnoud P, Pfi ster M, Acosta F et al 
(2004) Daptomycin is highly effi cacious 
against penicillin-resistant and penicillin- and 
quinolone-resistant pneumococci in experi-
mental meningitis. Antimicrob Agents 
Chemother 48(10):3928–3933  

    91.    Ramos MC, Grayson ML, Eliopoulos GM, 
Bayer AS (1992) Comparison of daptomycin, 

vancomycin, and ampicillin-gentamicin for 
treatment of experimental endocarditis caused 
by penicillin-resistant enterococci. Antimicrob 
Agents Chemother 36(9):1864–1869  

   92.    Bush LM, Boscia JA, Kaye D (1988) 
Daptomycin (LY146032) treatment of exper-
imental enterococcal endocarditis. Antimicrob 
Agents Chemother 32(6):877–881  

    93.    Kennedy S, Chambers HF (1989) 
Daptomycin (LY146032) for prevention and 
treatment of experimental aortic valve endo-
carditis in rabbits. Antimicrob Agents 
Chemother 33(9):1522–1525  

    94.    El Haj C, Murillo O, Ribera A et al (2014) 
Comparative effi cacies of cloxacillin- 
daptomycin and the standard cloxacillin- 
rifampin therapies against an experimental 
foreign-body infection by methicillin- 
susceptible  Staphylococcus aureus . Antimicrob 
Agents Chemother 58(9):5576–5580  

    95.    Garrigos C, Murillo O, Lora-Tamayo J et al 
(2012) Effi cacy of daptomycin-cloxacillin 
combination in experimental foreign-body 
infection due to methicillin-resistant 
 Staphylococcus aureus . Antimicrob Agents 
Chemother 56(7):3806–3811  

    96.   Housman ST, Sutherland CA, Nicolau DP 
(2014) Pharmacodynamic profi le of com-
monly utilised parenteral therapies against 
meticillin-susceptible and meticillin-resistant 
 Staphylococcus aureus  collected from US hos-
pitals. Int J Antimicrob Agents  

      97.    Soon RL, Turner SJ, Forrest A, Tsuji BT, 
Brown J (2013) Pharmacokinetic/pharma-
codynamic evaluation of the effi cacy and 
safety of daptomycin against  Staphylococcus 
aureus . Int J Antimicrob Agents 
42(1):53–58  

   98.    Canut A, Isla A, Betriu C, Gascon AR (2012) 
Pharmacokinetic-pharmacodynamic evalua-
tion of daptomycin, tigecycline, and linezolid 
versus vancomycin for the treatment of MRSA 
infections in four western European coun-
tries. Eur J Clin Microbiol Infect Dis 
31(9):2227–2235  

     99.    Salem AH, Zhanel GG, Ibrahim SA, Noreddin 
AM (2014) Monte Carlo simulation analysis 
of ceftobiprole, dalbavancin, daptomycin, 
tigecycline, linezolid and vancomycin phar-
macodynamics against intensive care unit- 
isolated methicillin-resistant  Staphylococcus 
aureus . Clin Exp Pharmacol Physiol 
41(6):437–443  

    100.    Arbeit RD, Maki D, Tally FP, Campanaro E, 
Eisenstein BI (2004) The safety and effi cacy 
of daptomycin for the treatment of compli-
cated skin and skin-structure infections. Clin 
Infect Dis 38(12):1673–1681  

Eric Wenzler et al.



343

    101.    Konychev A, Heep M, Moritz RK et al (2013) 
Safety and effi cacy of daptomycin as fi rst-line 
treatment for complicated skin and soft tissue 
infections in elderly patients: an open-label, 
multicentre, randomized phase IIIb trial. 
Drugs Aging 30(10):829–836  

    102.    Aikawa N, Kusachi S, Mikamo H et al (2013) 
Effi cacy and safety of intravenous daptomycin 
in Japanese patients with skin and soft tissue 
infections. J Infect Chemother 19(3):447–455  

    103.    Pertel PE, Eisenstein BI, Link AS et al (2009) 
The effi cacy and safety of daptomycin vs. van-
comycin for the treatment of cellulitis and 
erysipelas. Int J Clin Pract 63(3):368–375  

    104.    Katz DE, Lindfi eld KC, Steenbergen JN et al 
(2008) A pilot study of high-dose short dura-
tion daptomycin for the treatment of patients 
with complicated skin and skin structure 
infections caused by gram-positive bacteria. 
Int J Clin Pract 62(9):1455–1464  

    105.    Byren I, Rege S, Campanaro E et al (2012) 
Randomized controlled trial of the safety and 
effi cacy of daptomycin versus standard-of-
care therapy for management of patients with 
osteomyelitis associated with prosthetic 
devices undergoing two-stage revision arthro-
plasty. Antimicrob Agents Chemother 
56(11):5626–5632  

    106.    Fowler VG Jr, Boucher HW, Corey GR et al 
(2006) Daptomycin versus standard therapy 

for bacteremia and endocarditis caused by 
 Staphylococcus aureus . N Engl J Med 
355(7):653–665  

    107.    Carugati M, Bayer AS, Miro JM et al (2013) 
High-dose daptomycin therapy for left-sided 
infective endocarditis: a prospective study 
from the international collaboration on endo-
carditis. Antimicrob Agents Chemother 
57(12):6213–6222  

    108.    Kullar R, Casapao AM, Davis SL et al 
(2013) A multicentre evaluation of the 
effectiveness and safety of high-dose dapto-
mycin for the treatment of infective endo-
carditis. J Antimicrob Chemother 
68(12):2921–2926  

    109.    Sakoulas G, Moise PA, Casapao AM et al 
(2014) Antimicrobial salvage therapy for per-
sistent staphylococcal bacteremia using dap-
tomycin plus ceftaroline. Clin Ther 
36(10):1317–1333  

    110.    Pertel PE, Bernardo P, Fogarty C et al (2008) 
Effects of prior effective therapy on the effi -
cacy of daptomycin and ceftriaxone for the 
treatment of community-acquired pneumo-
nia. Clin Infect Dis 46:1142–1151  

    111.    Silverman JA, Mortin LI, Vanpraagh AD et al 
(2003) Correlation of daptomycin bacteri-
cidal activity and membrane depolarization in 
Staphylococcus aureus. Antimicrob Agents 
Chemother 47:2538–2544    

Pharmacodynamics of Daptomycin



345

John C. Rotschafer et al. (eds.), Antibiotic Pharmacodynamics, Methods in Pharmacology and Toxicology,
DOI 10.1007/978-1-4939-3323-5_14, © Springer Science+Business Media New York 2016

    Chapter 14   

 Pharmacodynamics of Macrolides, Azalides, and Ketolides                     

     Wonhee     So      and     David     P.     Nicolau       

  Abstract 

   Macrolides and azalides have been widely utilized in clinical practice. With the increased use of these 
agents over the past two decades an accompanied increase in bacterial resistance as defi ned by laboratory 
based criteria has been observed. As a result, new derivatives have been introduced or are under develop-
ment to overcome this emerging resistance. As the chemical structure of the macrolides progressed to the 
azalides and then ketolides, convenient once-daily oral dosing regimens and enhanced antibacterial activity 
over the earlier generation macrolides contributed to their widespread use for the treatment of community- 
acquired respiratory tract infections. As a result of the high penetration into respiratory tract tissues/fl uids, 
the post antibiotic effect, uptake into white blood cells, and their immunomodulatory properties as well as 
their pharmacodynamic profi le, the newer generation macrolides and azalides continue to be used in clini-
cal practice with a high level of treatment success. Despite escalating macrolide resistance in target patho-
gens, the commercial withdrawal of telithromycin due to drug-related toxicities has tempered the 
development of new ketolides. The aims of this chapter are to provide principles to understand pharmaco-
kinetic and pharmacodynamic properties of these agents and to provide insights supporting the application 
of this knowledge in clinical practice.  

  Key words     Macrolides  ,   Azalides and ketolides  ,   Pharmacokinetic and pharmacodynamics  ,   Community- 
acquired respiratory infection  

1      History and Chemistry 

  Erythromycin  , the fi rst  macrolide   utilized in clinical practice, was 
introduced into the market in 1952 [ 1 ]. It has been used for decades 
to treat a variety of infections involving the respiratory tract, skin and 
soft tissues, genital tract as well as being considered as useful alterna-
tive therapy in the  penicillin allergic patient   [ 2 ]. However, several 
shortcomings, including instability in acidic media, gastrointestinal 
intolerance, and a short serum half- life, have limited its use and led 
to the development of synthetic macrolides such as dirithromycin 
and clarithromycin in 1990s. Furthermore, introduction of a nitro-
gen atom to the 14-membered macrolide ring yielded 15-mem-
bered ring, which was named azalide; and azithromycin, the fi rst 
azalide, became available in the market in 1990s (Fig.  1 ) [ 1 ,  2 ].
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   Major advantages of these newer macrolides and azithromycin 
compared to erythromycin include broadened antibacterial cover-
age, improved pharmacokinetic characteristics, stability to acidity, 
and high gastrointestinal tolerability. However, widespread usage of 
macrolides and  azithromycin   has promoted the emergence of resis-
tance against these agents over the last two decades [ 3 ], which in 
turn accelerated the research for newer derivatives.  Ketolides   were 
developed to overcome macrolide resistance, and the fi rst clini-
cally available ketolide,  telithromycin   entered the market in 2004. 
Ketolides are 14-membered semisynthetic derivatives of erythro-
mycin A [ 4 ], which is characterized by the replacement of the neu-
tral L-cladinose sugar at the third position of the ring with a 3-keto 
functional group and the addition of a  heteroaryl-alkyl   side chain 
attached to the macrocyclic ring (Fig.  1 ). The attachment of het-
eroaryl-alkyl side chain to the macrocyclic ring allows an additional 
binding to the ribosome and signifi cantly enhances their affi nity for 
the ribosomes [ 5 ]. The absence of cladinose also prevents ketolides 

  Fig. 1    Chemical structures of  macrolides  ,  azalides  , and  ketolides         
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from acting as inducers of   macrolide- lincosamide- streptograminB 
(MLSB)      resistance [ 5 ]. Additionally, this structural modifi cation 
accounts for improved pharmacokinetic properties of ketolides 
including acid stability and higher lipophilicity when compared 
with 14-membered macrolides [ 6 ]. However, in 2007, FDA made 
a decision to restrict  telithromycin  ’s use to CAP and dropped other 
indications such as treatment of acute sinusitis and acute exacerba-
tion of  chronic bronchitis   due to concerns with its serious toxicities 
from post-marketing reports [ 7 ]. Severe and irreversible, in some 
cases, fatal hepatotoxicity as well as other safety issues such as life-
threatening respiratory failure in patients with myasthenia gravis, 
visual disturbances, loss of consciousness, and QTc prolongation 
have tempered its use in clinical practice [ 5 ,  8 ,  9 ]. 

 While the etiology of telithromycin’s hepatotoxicity or 
whether it is a class effect is not known [ 10 ], there are three other 
ketolides that progressed to the clinical trials for CAP: cethromy-
cin (ABT- 773) which completed phase III; solithromycin (CEM-
101) in phase III; and modithromycin (EDP-420) in phase II 
trials in Japan [ 11 ]. The development of cethromycin began in 
1997 and a New Drug Application was submitted to FDA in 2008 
seeking its approval for the treatment of CAP. However, FDA’s 
Anti-Infective Drugs Advisory Committee denied its approval 
pending more evidences for its effi cacy in the treatment of CAP in 
2009 while it was voted in favor of the safety profi le [ 12 ]. 
Modithromycin, a novel bicyclolide possesses a C6,11-bridged 
ether of a 14-membered macrolide ring containing a pyrazole-
pyridine side chain at the bridged-linker [ 13 ]. Solithromycin was 
synthesized by introducing a different type of  heteroaryl-alkyl   side 
chain from telithromycin, i.e. ,  11,12-carbamate-butyl-[1–3]-tri-
azolyl-aminophenyl side chain, and by adding a fl uorine atom to 
C2 of the  macrocyclic lactone ring   [ 14 ].  

2    Mechanism of Action for Antibacterial Activity 

 All agents in these classes exert their antibacterial activities by 
blocking RNA-dependent protein synthesis within 50S subunit of 
bacterial ribosomes [ 5 ]. Macrolides and  ketolides   prevent the for-
mation of functional 50S subunits by inhibiting the assembly of 
several ribosomal proteins and two ribosomal RNA (rRNA) mole-
cules (5S and 23S) [ 15 ,  16 ]. More importantly, macrolides bind to 
the peptidyl transferase loop in domain V and to hairpin 35 in 
domain II of the 23S ribosomal RNA (rRNA) in the 50S subunit 
[ 17 ]. These two regions are thought to be folded closely together 
in the 23S rRNA tertiary structure and form a binding pocket for 
macrolides, azalides, and ketolides. Binding to peptidyl transferase 
loop blocks the translocation of the peptidyl transfer RNA (tRNA) 
from the amino acid site to the  polypeptide site   [ 18 ]. Ketolides 
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were synthesized from  erythromycin   A by replacing cladinose with 
a keto-group at C3 and adding a fl exible, heteroaryl-alkyl side 
chain attached to the macrocyclic ring. Extension of heteroaryl- 
alkyl side chain contributed to enhanced affi nity to ribosomal 
domain II as well as IV and the lack of cladinose reduced the rec-
ognition by the   mef  effl ux pump   [ 14 ,  19 ]. These unique character-
istics of ketolides translate to their improved antibacterial activity 
and susceptibility to resistance. Solithromycin’s fl uorine at the C2 
position of the 14-membered  macrocyclic ring   improves its capac-
ity to bind to the  Erm-methylated ribosomes   [ 14 ]. Also, solithro-
mycin’s heteroaryl-alkyl side chain with the aminophenyl moiety 
demonstrated stronger interaction with A752 compared with 
telithromycin [ 14 ].  

3    In Vitro Antibacterial Spectrum and Potency 

 In vitro  minimal inhibitory concentration (MIC)      testing does not 
account for the active metabolites of antibacterials and may under-
estimate the activity of antibacterials such as  clarithromycin   when 
considering its potency against   Haemophilus infl uenzae    ( H. infl u-
enzae ) [ 2 ]. Moreover, the MIC does not account for the pharma-
cokinetic and  pharmacodynamic   properties of an antibacterial such 
as tissue distribution, intracellular half-life and post antibiotic effect 
(PAE); thus, in vivo effi cacy at the site of infection may not always 
be predicted relatively to MIC for the macrolides, azalides, and 
ketolides [ 2 ]. 

 The MIC 50  and MIC 90  of macrolides, azalides, and ketolides 
from various surveillance studies are compiled in Tables  1  and  2  
[ 20 – 31 ].  Erythromycin  , when fi rst developed, had good activ-
ity against common community-acquired respiratory patho-
gens such as  streptococci   and atypical bacteria. Azithromycin 
is intrinsically more potent against gram-negative pathogens 
such as  H. infl uenzae  and  Moraxella catarrhalis  ( M. catarrhalis ) 
compared to erythromycin and clarithromycin, but less potent 
against  Streptococcus pneumoniae  ( S. pneumoniae ) compared to 
 macrolides  . Since the extensive usage of macrolides and azalides 
during the last two decades resulted in signifi cant increase in 
the resistance rates among gram-positive cocci including the 
development of multidrug- resistant  Streptococcus pneumoniae  
(MDRSP) worldwide [ 20 ,  21 ], in vitro  ketolides   activities were 
evaluated based on an enhanced mechanism of action for the 
compound class. Macrolide resistance are predominantly due to 
two mechanisms: (1) structural modifi cation of the ribosomal 
target site by methylation mediated primarily by  erm (B) and (2) 
effl ux pumps mediated by  mef (A) [ 27 ]. The fi rst mechanism by 
 erm (B) confers high-level (MIC 90  ≥64 mg/L) resistance and 
is shared by macrolide, lincosamides, and streptogramins since 
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these antibacterials target the same site of action in 50S sub-
unit of bacterial ribosomes.  Erm  expression is either constitutive 
(cMLS B ) or inducible (iMLS B ), which means the presence of an 
inducing antibacterial is required for enzyme production [ 32 ]. 
 Mef (A) gene encodes the effl ux pump and does not affect the 
lincosamide or streptogramins. Contrary to  erm (B), it results in 
low-level (MIC 90  4 mg/L) macrolide resistance [ 3 ]. Structural 
modifi cation of ketolides allowed them to remain active against 
macrolide- and azalide-resistant  streptococci  . However, telithro-
mycin has intrinsically low activity against  H. infl uenzae , which 
is attributed to intrinsic effl ux pumps acting in synergy with 
slow penetration through the bacterial outer membrane [ 33 ]. 
From PROTEKT (Prospective Resistant Organism Tracking and 
Epidemiology for the Ketolide Telithromycin) US study [ 26 ], 
telithromycin demonstrated potent in vitro activity against  S. 
pneumoniae  isolates including  erm (B) plus  mef (A) macrolide-
resistant strains. Even though telithromycin still remained active 
with MIC 90  of 0.06 against  Streptococcus pyogenes  ( S. pyogenes ) in 
2004–2005, its resistance to   S. pyogenes    had increased from 1.2 
% in 2002–2003 ( n  = 2165) to 4.7 % in 2004–2005 ( n  = 2333) 
[ 34 ]. Ketolides’ resistance in  S. pyogenes  has been investigated 
in relation to methylation mediated by   erm  genes  ; isolates with 
fully dimethylated A2058 mediated by  erm (B) showed highest 
MIC while the strains with monomethylated rRNA remained sus-
ceptible to ketolides [ 35 ]. Also, telithromycin exhibited higher 
MIC against cMLS B - resistant streptococci than against the strains 
with iMLS B  resistance [ 36 ]. Cethromycin showed increased 
potency against methicillin-susceptible  Staphylococcus aureus  
(MSSA),  S. pneumoniae ,  Enterococcus faecalis (E. faecalis),  and 
 M. catarrhalis  compared with erythromycin, clarithromycin, and 
azithromycin [ 25 ]. It was not active against either  Enterococcus 
faecium  or methicillin- resistant  Staphylococcus aureus  (MRSA). 
Solithromycin demonstrated more potent activity against gram-
positive ( S. pneumoniae, β-hemolytic streptococci, viridans group 
streptococci , MSSA, and  E. faecalis ) and gram-negative organisms 
( H. infl uenzae  and  M. catarrhalis ) compared with telithromy-
cin [ 20 ]. While its MIC 50  was 0.12 mg/L for all 45 hospital-
acquired and 30 community- acquired MRSA isolates, MIC 90  was 
>16 mg/L consistent with other macrolides and ketolides [ 37 ]. 
Its potency against  H. infl uenzae  was comparable to azithro-
mycin [ 20 ]. Modithromycin displayed comparable potency to 
 telithromycin   against gram-positives ( S. pneumoniae, S. pyogenes , 
MSSA), but reduced potency against  H. infl uenzae  compared to 
telithromycin or azithromycin [ 13 ,  21 ]. All agents in macrolides, 
azalides, and ketolides classes have potent in vitro activity against 
atypical respiratory pathogens such as  Legionella pneumophila, 
Mycoplasma pneumoniae , and  Chlamydophila pneumoniae .
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4        Pharmacokinetics 

 Erythromycin salts/esters show variable bioavailability depending 
on the formulations and are affected by food since acid degrades 
erythromycin base and stearate while it increases the absorption of 
ethylsuccinate [ 38 ]. Structural modifi cation to clarithromycin, 
azithromycin, and ketolides overcomes the instability to acidity 
and poor bioavailability of  erythromycin  , which allows their dos-
ages to be administered without regards to meals. The pharmaco-
kinetic parameters after a single and multiple doses of erythromycin 
base, clarithromycin, azithromycin, and ketolides are summarized 
in Tables  3  and  4 , respectively [ 3 ,  38 – 40 ]. The peak serum con-
centration of azithromycin is lower than that of the comparable 
doses of clarithromycin or telithromycin, but it has higher tissue 
concentration as refl ected in the large volume of distribution. 
Clarithromycin, azithromycin, and ketolides also have a prolonged 
terminal half-life compared to erythromycin. Clarithromycin is 
metabolized to an active metabolite, 14-hydroxyclarithromycin. 
Large doses of  clarithromycin   yields nonlinear increases in terminal 
half-life as the metabolic pathway becomes saturated [ 2 ].

    All ketolides and  macrolides   demonstrate dose-dependent 
plasma protein binding (PPB); PPB decreases with increasing con-
centrations as the binding sites of plasma proteins become satu-
rated [ 41 ,  42 ]. In a murine model, telithromycin’s PPB ranged 
from 94.6 to 69.8 % for serum concentrations of 2–25 mg/L, 
while in human it was reported to be approximately 90 % [ 43 ]. 

   Table 3  
  Pharmacokinetic parameters in plasma after a single oral dose   

 Drug 
 Dose 
(mg) 

  C  max  
(mg/L) 

 AUC 24  
(mg·h/L)   t  1/2β  (h)  CL (L/h)   V  d  (L)  References 

 Erythromycin base  500  0.3–0.9  8  2–3  [ 38 ] 

 Clarithromycin  500  1.8  12.4  3.7  21.9  117.0  [ 3 ] 

 14-Hydroxy metabolite 
of clarithromycin 

  a   0.6  5.7  4–7  [ 38 ] 

 Azithromycin  500  0.3  2.6  55.5  40  3083.3  [ 3 ] 

 Telithromycin  800  1.9  8.3  7.16–13  50.9  530.2  [ 3 ] 

 Cethromycin  150  0.3  1.6  5.7  54.5  450  [ 3 ] 

 Solithromycin  400  0.6  4.8  4.8  [ 39 ] 

 Modithromycin  400  0.5  8.1  17.4  [ 40 ] 

   AUC  24  area under the concentration–time curve from time zero to 24 h,  CL  apparent total body clearance,  C  max  maxi-
mum plasma concentration,  t  1/2β  terminal elimination half-life,  V  d  apparent volume of distribution 
  a After 500 mg of clarithromycin  

PD of Macrolides, Azalides, and Ketolides



354

PPB of clarithromycin is reported to be approximately 70 % of 
serum concentration [ 38 ]. 

 The longer half-life of these drugs is also a result of their exten-
sive tissue penetration [ 44 ]; macrolides, azalides, and ketolides are 
lipophilic and penetrate extensively into mammalian tissue, espe-
cially pulmonary tissue. The active metabolite of clarithromycin, 
14-hydroxyclarithromycin also penetrates well into pulmonary tis-
sue but to a lesser degree than the parent compound [ 44 ]. 
Azithromycin has particularly slow elimination, which is presumed 
to be due to the slow effl ux of azithromycin from the cellular com-
partment into  extracellular fl uid   [ 45 ]. Therefore, the long half-life 
of azithromycin is really an estimate of the half-life of tissue elimi-
nation [ 46 ]. The high degree of penetration into epithelial lining 
fl uid of these agents adds to their clinical effectiveness against 
extracellular respiratory pathogens, such as  S. pneumoniae , 
 H. infl uenzae , and  M. catarrhalis . Additionally, their penetration 
into  alveolar macrophages (AM)   provides an advantage as treat-
ment options for infections caused by intracellular organisms such 
as  Chlamydophila pneumoniae  and  Legionella sp . Concentrations of 
 macrolides, azalides, and ketolides in plasma, epithelial lining fl uid 
(ELF) and alveolar macrophage (AM) are summarized in Table  5  
[ 41 ,  47 – 53 ]. Like in healthy subjects, the ELF and AM concentra-
tions derived from patients who underwent diagnostic bronchos-
copy were approximately 10-times and 100-times higher than in 
the plasma (Table  5 ). Compared to azithromycin’s ELF concentra-
tion of 0.9 [ 52 ] or 2.18 mg/L [ 48 ] which were lower than MIC 90  
of 256 mg/L against  S. pneumoniae , all four ketolides achieved 

   Table 4  
  Pharmacokinetic parameters in plasma after multiple  oral doses     

 Drug  Dose (mg) 
  C  max  
(mg/L) 

 AUC ∞  
(mg h/L)   t  1/2β  (h)  CL (L/h)   V  d  (L)  References 

 Clarithromycin  500 mg bid × 4 days  2.9  20.8  4.8  13.2  91.8  [ 3 ] 

 Azithromycin  500 mg × 1, then 
250 mg qd × 4 days 

 0.23  15.9  66.1  11.1  1114.5  [ 3 ] 

 Telithromycin  800 mg qd × 7 days  2.27  12.6  9.8  28.7  512.4  [ 3 ] 

 Cethromycin  300 mg qd × 5 days  0.5  3.23  4.94  107.4  769  [ 3 ] 

 Solithromycin  400 mg qd × 7 days  1.09  13.27 a   7.47  [ 39 ] 

 Modithromycin  400 mg × 1,  then   
200 mg qd × 2 days 

 5.1  15.1  17.7  [ 40 ] 

   AUC  ∞  area under the concentration–time curve from time zero to infi nity,  bid  twice daily,  CL  apparent total body 
clearance,  C  max  = maximum plasma concentration,  qd  once daily,  t  1/2β  terminal elimination half-life,  V  d  apparent volume 
of distribution 
  a Reported as AUC during the dosing interval of 24 h  
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higher ELF concentrations and they were well above their respec-
tive MIC 90  against  S. pneumoniae  (Tables  1  and  5 ). On the other 
hand, clarithromycin, azithromycin, and all ketolides achieved AM 
concentrations well above the MIC 90  against intracellular organ-
isms (Tables  2  and  5 ). Even though the mechanisms behind high 
concentrations of these agents in ELF and AM have not been fully 
elucidated, the cellular antibacterial uptake and back-release has 
been suggested [ 50 ]; neutrophilic granulocytes, macrophages, and 
connective tissue cells such as fi broblasts are believed to serve as 
reservoirs for these agents. There is also a report about MDR1 
transporters on alveolar epithelial cells as well as the high uptake by 
the AMs via active transport mechanisms being responsible for the 
increased disposition of clarithromycin and azithromycin from 
blood into ELF [ 54 ].

5       Pharmacodynamics 

    Antibacterial activity   has been described to be dependent on the 
concentration, time of exposure, or a product of the two. When 
both of the factors impact antibacterial activity, the effectiveness is 
considered to be driven by the overall exposure (i.e., the area 
under the concentration–time curve, AUC). Thus commonly 
used pharmacodynamic parameters to predict antibacterial effi-
cacy are the ratio of maximum concentration to MIC ( C  max /

5.1  Discussion 
of Pharmacodynamic 
Targets of Class

       Table 5  
  Concentrations in plasma, ELF, and AM in healthy subjects and patients undergoing diagnostic 
bronchoscopy a    

 Dose 
  C  max  ( T  max ), 
plasma (mg/L) 

  C  max  ( T  max ), 
ELF (mg/L) 

  C  max  ( T  max ), 
AM (mg/L)  References 

 Erythromycin  250 mg qid × 9 doses  0.7 (4 h)  0.8 (4 h)  0.8 (12 h)  [ 47 ] 

 Clarithromycin  500 mg bid × 5 days  2.0 (4 h)  34.5 (4 h)  480 (4 h)  [ 48 ] 

 Azithromycin  500 mg × 1, then 
250 mg qd × 4 days 

 0.09 (8 h)  2.18 (8 h)  57.2 (8 h)  [ 48 ] 
 0.1 (4 h) a   0.9 (12 h) a   205.2 (24 h) a   [ 52 ] 

 Telithromycin  800 mg qd × 5 days  1.14 (2 h)  5.5 (2 h)  81 (8 h)  [ 49 ] 
 1.09 (2 h) a   3.91 (2 h) a   65.96 (12 h) a   [ 53 ] 

 Cethromycin  300 mg qd × 5 days  0.38 (4 h)  2.7 (4 h)  55.4 (6 h)  [ 41 ] 

 Solithromycin  400 mg qd × 5 days  0.730 (3 h)  7.58 (3 h)  101.7 (6 h)  [ 50 ] 

 Modithromycin  400 mg × 1 dose  0.646 (2 h)  16.7 (2 h)  176 (12 h)  [ 51 ] 

   ELF  epithelial lining fl uid,  AM  alveolar macrophages,  CL  apparent total body clearance,  C  max  maximum concentration, 
 T  max  time between the last dose and sampling time,  qd  once daily,  bid  twice daily,  qid  four times daily,  t  1/2β  = terminal 
elimination half-life,  V  d  apparent volume of distribution 
  a Data from patients undergoing diagnostic bronchoscopy  
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MIC), the percent of the time during which concentrations are 
above the MIC (%T > MIC), as well as the ratio of the AUC over 
MIC (AUC/MIC) [ 44 ]. While certain antibacterial activity can 
be predominantly predicted by one pharmacodynamic parameter, 
there are cases where antibacterial activity is closely correlated to 
more than one parameter since these parameters are highly inter-
dependent. Whether bacterial killing is concentration dependent 
or concentration independent, the relatively long, persistent PAE 
of  macrolides  ,  azalides  , and  ketolides   often renders the AUC/
MIC to be most predictive of their efficacy as long as dosing inter-
vals are 24 h or less [ 55 ].  

   Typically drug concentrations in blood are used to determine the 
pharmacodynamic parameters that best predict antibacterial effects. 
However, the use of drug concentrations in blood is only reason-
able if the blood concentration is a proper surrogate for drug con-
centration at the site of infection. Drug concentrations at the site 
of infections can be much different than the free drug concentra-
tions in plasma depending on the ratio of surface area of the capil-
lary bed to volume of the tissue compartment, special anatomic 
barriers such as blood–brain barrier, and the physiochemical char-
acteristic of the drug [ 56 ]. As noted in Table  5 , the macrolides, 
azalides, and ketolides penetrate extensively into target extracellu-
lar and intracellular sites of the respiratory tract. Therefore, the 
pharmacodynamic parameters derived from the actual site of infec-
tion, i.e., ELF and AM, may predict the antibacterial activity of 
these agents for respiratory tract infections more accurately than 
the parameters derived from blood concentrations [ 55 ]. Moreover, 
blood concentrations appear to be poorly predictive of the intracel-
lular concentrations which are  n  ecessary for the treatment of intra-
cellular pathogens [ 56 ].  

   The ability of white blood cells to transport macrolides, azalides, 
and ketolides may contribute to their effi cacy despite relatively 
low plasma concentration [ 55 ]. In vitro studies have shown that 
azithromycin concentrates 500-folds in human neutrophils and 
migrate toward a bacterial stimulus and release the active drug [ 57 , 
 58 ]. Double-layer plates were made by pouring a layer of chemo-
taxis agarose into tissue culture plates and then adding a thin layer 
of trypticase soy agar [ 58 ]. Neutrophils were incubated with anti-
biotic for 1 h, then were allowed to migrate under the agar toward 
a chemoattractant well containing formyl-methionine-leucine- 
phenylalanine for 3 h. Then,  Streptococcus pyogenes  was plated on 
top of the agar and grown overnight. When the polymorphonuclear 
neutrophils (PMN) migration and the zones of inhibition of bacte-
rial growth were measured, neutrophils migrated 2.51 ± 0.16 mm 
toward the chemoattractant well and 1.48 ± 0.12 mm toward the 
control well; migration was not signifi cantly infl uenced by any of the 

5.2  Concentrations 
at the  Infection Site  

5.3  Role of  White 
Blood Cells  
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antibiotics used. However, for PMN incubated with azithromycin 
(3 pg/ml), an agent highly concentrated inside phagocytes, a large 
degree of inhibition which was signifi cantly greater in the direction 
of chemoattractant than in the direction of medium (3.47 ± 0.30 
versus 1.89 ± 0.25 mm;  P  < 0.001) was observed, indicating that 
bioactive azithromycin was released by neutrophils after migration. 
Ketolides were also shown to accumulate in PMN, and it was sug-
gested that despite varying chemical structure, all erythromycin 
A derivatives have a transmembrane transport system in common 
[ 59 ]. In vivo studies also supported these observations [ 60 ]. After 
administering 50 mg/kg of oral azithromycin treatment, 0.05 μg 
of azithromycin was found in peritoneal fl uids of mice 20 h later. 
Following caseinate- induced PMN infi ltration, the azithromycin 
concentration in peritoneal cavity increased by sixfold to 0.32 μg. 
Therefore, it was concluded that the uptake, transport and later 
release of azithromycin by neutrophils may  contri  bute to the deliv-
ery of active drug to sites of infection.  

   PAE is a term to describe the prolonged bacterial growth inhi-
bition of antibacterials after the short exposure against the dam-
aged but viable organisms under the infl uence of host immune 
system [ 61 ]. PAE has been characterized for macrolides, azalides, 
and ketolides [ 61 – 66 ]; the duration of this effect varies depend-
ing on the drug, isolates, concentration and duration of expo-
sure (Table  6 ). For example, azithromycin has exhibited longer 
in vitro PAEs against  H. infl uenzae  than against  S. pneumoniae  
[ 61 ]. While macrolides have shown time-dependent bacterial kill-
ing [ 18 ], prolonged PAE makes their effi cacy rely less on time, 
but more on AUC once their maximum concentrations exceed the 
MIC [ 56 ]. On the other hand, azithromycin and ketolides exhibit 
concentration- dependent bactericidal action and prolonged PAE 
[ 46 ]. Both the bactericidal action and duration of PAE for these 
drugs are concentration-dependent.

5.4   Post Antibiotic 
Effect (PAE)  

   Table 6  
  Post antibiotic effects (hours) of  macrolides        ,  azalides  , and ketolides   

  S. pneumoniae    S. pyogenes    H. infl uenzae   References 

 Erythromycin  10  0.5  [ 62 ] 

 Clarithromycin  2.9  4.8  5.1  [ 61 ] 

 Azithromycin  4.7  4.1  8.0  [ 61 ] 

 Telithromycin  1.9  3.4  1.2  [ 65 ] 

 Cethromycin  2.3–6  2.7–9.1  [ 64 ] 

 Solithromycin  3. 0          6.1  3.2  [ 65 ] 
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      In addition to their antibacterial activity, macrolides, azalides, and 
ketolides possess immunomodulatory effect, which adds more 
benefi cial effects on infectious and/or noninfectious infl ammatory 
respiratory conditions [ 67 ]. Multiple mechanisms were identifi ed 
for their anti-infl ammatory effect: inhibition of pro-infl ammatory 
cytokine production such as CXCL8 (interleukin-8) and tumor 
necrosis factor-α (TNF-α) [ 68 ]; inhibition of a neutrophil chemo-
tactic mediator, leukotriene B 4  [ 69 ]; reduction in mucus secretion 
in the airways [ 70 ]; and inhibition of pro-infl ammatory transcrip-
tion factors such as nuclear factor- B (NF- B) [ 67 ,  71 ,  72 ], just to 
name a few. Solithromycin appears to exert superior anti- 
infl ammatory effect via NF- B inhibition compared to erythromy-
cin, clarithromycin, azithromycin, and  telith  romycin [ 67 ].  

    Erythromycin   has been categorized as time-dependent agent by 
most investigators [ 44 ,  73 ]. When used in murine thigh infection 
model, erythromycin showed a trend for increased survival with 
multiple-dosing regimen compared to a single dose regimen of the 
same daily dose with significantly higher survival when the concen-
trations sustained above MIC for a longer period of time [ 73 ]. The 
minimum amount of time that is required for optimal efficacy var-
ied, but it was suggested that 50 % T > MIC should be sufficient in 
immunocompetent patients [ 44 ]. For  clarithromycin  , the interde-
pendence among the pharmacodynamic parameters seems more 
apparent than other  macrolides   or ketolides [ 44 ]. Some investiga-
tors found it to be time-dependent agent for its antibacterial efficacy 
[ 74 ] while others observed its concentration-dependent antibacte-
rial effect [ 73 ]. Furthermore, some positioned the clarithromycin in 
between erythromycin and azithromycin [ 75 ], possessing elements 
of both concentration dependence and independence. 

 Tessier et al. assessed the pharmacodynamic profi le of clar-
ithromycin in a  neutropenic murine   pneumonia model against  S. 
pneumoniae  with various susceptibility profi les [ 76 ]. They found 
that %T > MIC, AUC/MIC, and  C  max /MIC are all closely corre-
lated to bacterial killing and survival ( P  < 0.001). Effi cacy for 
 bacteriostatic effect was detected at approximately 50 % T > MIC, 
AUC 0–24 /MIC of 40, and  C  max /MIC of 7 while 90 % T > MIC, 
AUC 0–24 /MIC of 200, and  C  max /MIC of 12 were more consistent 
with bactericidal effects. As a result of parameter interdependency, 
the authors concluded that AUC/MIC is the most reasonable pre-
dictor of antibacterial effi cacy for clarithromycin since it incorpo-
rates both T > MIC and  C  max /MIC. 

 In contrast to erythromycin or clarithromycin, AUC/MIC is 
considered to be the most predictive pharmacodynamic parameter 
of  azithromycin  ’s antibacterial effi cacy [ 74 ,  77 ]. Some investiga-
tors speculated that azithromycin’s prolonged PAE reduces its 
dependence on the extent of time for which it should remain above 
the MIC [ 61 ]. 

5.5   Immuno- 
modulatory/Anti- 
infl ammatory Effects  

5.6  Pharma- 
codynamic Driver 
and Required 
Magnitudes
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 Telithromycin has shown a greater dependence on concentra-
tion rather than time [ 78 ]. In an in vitro time-kill study, Boswell 
et al. showed concentration-dependent effi cacy of  telithromycin   
against  S. aureus, S. pneumoniae, S. pyogenes, E. faecalis, E. faecium, 
and H. infl uenzae  in both time-kill curves and PAE profi les [ 78 ]. 
In an in vivo neutropenic murine thigh model using  S. pneumoniae  
isolates with telithromycin MIC ≤ 0.5 mg/L,  f AUC/MIC in 
serum was predictive of its antibacterial activity ( r  2  = 0.86);  f AUC/
MIC of 200 was required for bacteriostatic effect and >1000 for 
95 % of the maximum antibacterial effects (ED 95 ) [ 42 ].  fC  max/ MIC 
was also predictive of reduction in  bacterial density   ( r  2  = 0.84) 
while %T > MIC had relatively poor goodness of fi t ( r  2  = 0.61) com-
pared to other parameters. Similarly to telithromycin, cethromycin 
(ABT-773) has demonstrated concentration-dependent bacterial 
killing. In a neutropenic murine pneumonia model, bactericidal 
activity of cethromycin against  S. pneumoniae  was evaluated [ 79 ]. 
All three pharmacodynamic parameters (i.e., %T > MIC, AUC/
MIC,  C  max /MIC) were signifi cantly correlated with changes in 
log 10  CFU. However, both  fC  max /MIC and  f AUC/MIC had bet-
ter correlation when the goodness of fi t was assessed with the  E  max  
model (both  r  2  = 0.81) compared to % f T > MIC ( r  2  = 0.61). The 
authors identifi ed an approximate  f AUC/MIC of 50 or  fC  max /
MIC of 1 for bacteriostatic target and  f AUC/MIC of 1000 or 
 fC  max /MIC of 100 for maximal bactericidal activity. When the sim-
ilar model was used to compare the pharmacodynamic parameters 
in immunocompetent versus neutropenic mice, the  f AUC/MIC 
ratios required for bacteriostatic effect were 8 and 20 for immuno-
competent versus neutropenic mice, respectively [ 80 ]. For bacteri-
cidal activity,  f AUC/MIC ratios of 32 and 129 were required for 
immunocompetent and neutropenic mice, respectively [ 80 ]. Like 
in other  ketolides  ,  f AUC/MIC was the key pharmacodynamic 
driver for modithromycin regardless of phenotypic or genotypic 
profi le to macrolides and penicillin when evaluated in a neutrope-
nic pneumococcal murine pneumonia model [ 81 ]. The   f AUC/
MIC required for stasis and 1 log CFU reduction in bacterial den-
sity were 4–53 and 9–69, respectively.  

   Pneumococcal resistance to  macrolides   as defi ned by laboratory 
criteria has increased rapidly over the past two decades in parallel 
with their wide utilization in clinical practice. Despite these recog-
nized resistance trends, the macrolides and azalides still appear to 
provide high rates of clinical cure in the setting of community- 
acquired respiratory tract infections. The disparity between in vitro 
resistance and in vivo effi cacy has been a topic of discussion for 
some time in the pneumonia patient since the mortality rate has 
remained constant despite the drastic increase in antimicrobial 
resistance rates [ 82 ]. For example, in pneumococcal pneumonia, a 
mortality rate of 13 % was reported from 1952 to 1962 when there 

5.7  Pharmacokinetic 
and Pharmaco- 
dynamic (PK/PD) 
Application
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was no drug-resistant  S. pneumoniae  (DRSP) [ 83 ] and remained 
similar at 12 % from 1995 to 1997 despite a prevalence of 18 % 
DRSP [ 82 ,  84 ]. Macrolide treatment failures in bacteremic pneu-
mococcal pneumonia has been reported, but whether macrolide 
resistance in and of itself accounts for these failures is unknown 
since mortality has been well recognized in patient with pneumo-
coccus that is fully susceptible to  antimicrobials   [ 85 ]. 

 The clinical success observed with the macrolides and azalides 
in the face of resistance may in part be due to the complex pharma-
codynamic profi le of these agents. Since these agents penetrate 
extensively into target extracellular and intracellular sites of the 
respiratory tract and the breakpoints for susceptibility have histori-
cally been based on serum concentrations, discordance between 
these in vitro and in vivo effi cacy profi les is not unexpected [ 86 ]. 
While the pharmacodynamic parameters derived from the actual 
site of infection (i.e., ELF and AM) may be a better predictor of 
the probability of a successful outcome, pharmacokinetic studies to 
determine the ELF and AM concentration–time profi le require an 
invasive sampling strategy and are therefore diffi cult to conduct in 
patients. Moreover, when interpreting ELF concentrations, one 
needs to consider that the concentrations in ELF are greatly infl u-
enced by the study design, sample collection timing, analytical 
methods, and mathematical modeling [ 87 ]. 

 In an attempt to better understand the implications of in vitro 
resistance when considering concentrations at the site of infec-
tions, investigators have attempted to use ex  vivo modeling sys-
tems   simulating humanized exposures in target tissues or fl uids. 
Using an in vitro pharmacodynamic model, Zhanel et al. simulated 
the serum, ELF, and middle ear fl uid concentration profi les of 
azithromycin at a dose of 500 mg by mouth on day 1 and 250 mg 
on day 2 [ 88 ]. With macrolide-susceptible (azithromycin MIC 
0.06 mg/L)  S. pneumoniae , 100 %  f T > MIC and  f AUC 0-24 /MIC 
of 36.7 were reached in serum and 100 %  f T > MIC and  f AUC 0-24 /
MIC of 153 were reached in ELF and middle ear fl uid. In all three 
sites, bacterial density decreased by ≥4 log10 CFU/ml at 24 and 
48 h compared to 0 h. However, against azithromycin-resistant  S. 
pneumoniae  (MIC 2 mg/L), azithromycin showed no bacterial 
growth inhibition at resultant 0 %  f T > MIC and  f AUC 0-24 /MIC of 
≤1.1 in serum, whereas 0 %  f T > MIC and  f AUC 0-24 /MIC of 4.6 in 
ELF and middle ear fl uid led to  bacteriostatic effect   (decrease in 
bacterial density of 0.2–0.5 log 10  CFU/ml at 24 h). Namely, in the 
absence of functional immune system of the host or the immuno-
modulatory effects of the compound on the host pneumococcus, 
this in vitro pharmacodynamic model failed to show the antibacte-
rial effect corresponding to achieved tissue concentrations against 
the isolate with low-level resistance (MIC=2 mg/L). 

 In direct contrast to these in vitro observations the same author 
reported a poor correlation between azithromycin resistance as 
determined by the current breakpoints and clinical outcome in 
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patients treated with azithromycin for community-acquired respi-
ratory tract infections caused by azithromycin-susceptible or -resis-
tant  S. pneumoniae  [ 89 ]. In patients with CAP or acute bacterial 
exacerbations of  chronic bronchitis  , there were no differences in 
cure rates when low-level or high-level azithromycin resistance was 
considered. On the other hand, in patients with acute bacterial 
sinusitis and acute otitis media, azithromycin resistance in  S. pneu-
moniae  resulted in statistically signifi cant increase in clinical failure, 
although cure rates were not different for patients infected with 
low-level or high-level resistant isolates. Moreover, the authors 
reported that at the observed azithromycin resistance rate of nearly 
30 %, an additional 3.1 clinical failures per 100 patients would be 
predicted as a consequence of the compound’s phenotypic resis-
tance profi le. Once again, the lack of a consistent association 
between the absolute azalide resistance rate in  S. pneumoniae  and 
clinical failure in this immunocompetent patient population is 
related to the composite effects of azithromycin’s unique PK/PD 
properties including the high concentration in ELF/AM, PAE and 
immunomodulatory activity. 

 While the utilization of animal infection models has provided 
great insight into the pharmacodynamic profi le of a wide range of 
 antimicrobial agents  , as a result of the complex pharmacodynamic 
profi le of the macrolides, azalides, and ketolides‚ discordance has 
been observed regarding the required exposure to drive microbio-
logic and clinical cures between species. For example, when PK/
PD were evaluated in patients with CAP who received 800 mg 
daily dose of telithromycin, the microbiological breakpoint for 
increased probability of successful outcome was AUC/MIC ratio 
of ≥3.375 [ 90 ], which was much lower than the targets derived 
from the animal model [ 42 ]. Although the reasons for the 
 difference in the identifi ed targets between the animal model and 
the clinical CAP patients are likely multifactorial, the difference in 
the concentrations of telithromycin between that of blood and the 
site of infection for man and mouse, host immune competency and 
immunomodulatory effects are likely contributors. 

 These data provide insights into the complexity of the host–
bug–drug interactions commonly encountered during the assess-
ment of effi cacy among the macrolides, azalides, and ketolides 
when considering data derived from in vitro experiments (i.e., 
MIC testing, in vitro pharmacodynamic modeling), in vivo models 
of infection and patient derived sources.   

6    Notes 

 When considering the utilization of the  macrolides  ,  azalides  , and 
 ketolides   in the setting of infection, an understanding of the local 
resistance profi le of the agent of interest is an important factor in 
optimizing the probability of success. Of note, in addition to the 
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susceptibility or resistance determination provided by the clinical 
laboratory, insights into the magnitude of resistance may be gar-
nered by evaluating the susceptibility profi le of  clindamycin   when 
available as resistance to both clindamycin and macrolides infers 
high-level macrolide resistance via the  erm B mediated mechanism 
[ 91 ]. Similar to observations with other antimicrobial classes, fac-
tors that can affect macrolide-resistance include previous macro-
lide use, recent hospitalization and exposure to various health care 
setting such as a nursing home or day care. 

 The aim of this review was to provide the current level of 
understanding into the pharmacodynamic profi le of the macro-
lides, azalides, and ketolides as determined using a variety of 
in vitro and in vivo experimental techniques. While these data pro-
vide great insight into the pharmacodynamic drivers of effi cacy for 
any given compound, these same experiments provide awareness 
regarding the complexity of the host–bug–drug relationship as it 
pertains to these agents. More specifi cally, these studies highlight 
the challenges when interpreting the required magnitude of phar-
macodynamic exposure to ensure good clinical and microbiologic 
outcomes from in vitro or in vivo modeling experiments to that in 
man. As a result of this complex pharmacodynamic profi le, the 
impact of host immune competency and the immunomodulatory 
properties of these agents, discordance between in vitro resistance 
as defi ned in the laboratory and good clinical outcomes is likely to 
continue as newer agents are developed.     
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Chapter 15

Antifungal Pharmacokinetics and Pharmacodynamics

William Hope and David R. Andes

Abstract

Antifungal pharmacokinetics and pharmacodynamics (PK–PD) has been used to develop currently avail-
able antifungal agents, and further optimize their use for critically ill patients. New experimental models 
have been developed to enable drug concentration–effect relationships to be characterized. This chapter 
describes the tools that have been developed and are available for antifungal PK–PD. The PK–PD of cur-
rently available antifungal drug classes and agents within those classes are reviewed. As knowledge improves, 
antifungal PK–PD will become a critical component for the development of new agents.

Key words Pharmacokinetics, Pharmacodynamics, Antifungal, Aspergillus, Candida, Triazole, 
Polyene, Echinocandin, PK–PD

1 Introduction

Antifungal PK–PD is a relatively young and rapidly evolving field. 
The application of modern PK–PD principles to antifungal agents 
and invasive fungal pathogens has required the development of 
new experimental models and adaptation of a variety of quantita-
tive techniques. The pharmacology of antifungal agents is invari-
ably complex, which has provided an additional challenge. This 
chapter reviews current concepts and approaches to antifungal PK–
PD and provides an overview of the PK–PD of currently available 
classes of antifungal agents.

2 Principles of Antifungal Pharmacokinetics and Pharmacodynamics

Pharmacokinetics is the study of the time-course of drug concen-
trations in the body. The serum (or plasma) is the most commonly 
studied matrix, but drug concentrations in other bodily fluids (e.g., 
urine, epithelial lining fluid, cerebrospinal fluid, ocular fluids) and 
tissues (e.g., tissue homogenates) may also be clinically relevant 
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and yield important information related to the disposition of drug. 
An understanding of drug absorption from the gut (oral bioavail-
ability), disposition, metabolism, and elimination are all relevant 
for an understanding the time-course of drug concentrations. The 
use of tissue concentrations may be more informative than plasma, 
but that does depend on the drug–pathogen combination under 
consideration. Often (although not invariably), drug concentra-
tions in plasma are predictive of those in tissues. On occasions 
there may be hysteresis, where there is discordance between the 
time course of concentrations in the plasma and tissue, in which 
case measurement of drug concentrations at the site of infection 
may be more appropriate [1].

Drug concentrations in various matrices can be measured 
using a variety of methods that include bioassay, high performance 
liquid chromatography, and mass spectrometry. Each of these 
methods has strengths and weaknesses. The time course of antifun-
gal agents is then described mathematically. Again, a number of 
approaches are available, including non-compartmental PK mod-
els, compartmental PK models, and population PK models. Each 
of these approaches differs in terms of simplicity, and the comput-
ing power and expertise that are required to solve each problem.

The principal reason for describing the time-course of any 
compound in a given matrix is to estimate drug exposure that an 
invading fungal pathogen experiences. Many years of research have 
demonstrated that the shape of the concentration time curve has 
an important bearing on the antifungal activity (see below). 
Information that is contained within the shape is usually condensed 
into three readily identifiable measures of drug exposure: the peak 
concentration, the area under the concentration time curve and 
the time that drug concentrations are above some threshold (which 
is usually the MIC, see below). These measures of drug exposure 
are the same as has been employed for antibacterial agents (see 
review by Drusano [2]).

An additional factor that may be important for a better under-
standing of PK–PD relationships is the binding of antifungal agents 
to serum proteins. There is general consensus that only the free 
non-protein bound drug is pharmacologically active. An estimate 
of protein binding is important for bridging the findings from PK–
PD studies from experimental systems to the clinic. Some studies 
have systematically measured free concentrations of antifungal 
agents, although it is more common to adjust the measured total 
drug concentration using the estimate for overall protein binding.

The minimum inhibitory concentration has been used for many 
decades to provide an in vitro measure of antimicrobial potency. 
These same ideas have been widely applied to antifungal agents 
and there have been significant efforts to understand the clinical 
relevance of the MIC. There are a myriad of techniques and 
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approaches to determine the MIC, which include microdilution, 
Etests, agar dilution, and disk testing. The past decade has seen 
significant emphasis on the development of standardized tech-
niques that demonstrate an acceptable degree of inter-laboratory 
reproducibility. There are two leading methodologies that are used 
for routine clinical care and for regulatory purposes (i.e., Clinical 
Laboratory Standards Institute (CLSI) and the European 
Committee on Antifungal Susceptibility Testing (EUCAST) 
methodology).

One important and frequent misconception is that the abso-
lute value of the MIC has inherent biological significance. The 
MIC value is influenced by the experimental conditions under 
which it is determined (e.g., the inoculum, the atmospheric condi-
tions used or the test, the length of incubation). Therefore, at least 
from a PK–PD perspective the MIC should be viewed as scalar that 
provides a rank order of the susceptibility of an organism to a given 
antifungal drug. The biological and clinical validity of an MIC 
value requires additional datasets (preclinical or clinical; see below 
in the breakpoint setting section).

Antimicrobial PK–PD differs from other disciplines in that the 
target for the antimicrobial agents is an organism within an experi-
mental system or patient. This differs from the situation that would 
ordinarily be present for the study of agents for human cardiovascu-
lar or respiratory disease where the target for drug activity is the host 
itself. The MIC provides a way that drug exposure can be quantified 
in terms of the invading fungal pathogen rather than the host. Thus, 
Cmax, AUC, and fraction of the dosing interval that drug concen-
trations are above some arbitrary concentration are all measures of 
drug exposure that the host experiences—and certainly may be 
important in describing and understanding drug- related toxicity. In 
contrast Cmax:MIC, AUC:MIC, and T > MIC are all measures of 
drug exposure that the invading fungal pathogen experiences. The 
ability to transform drug exposure from the host to the invading 
fungal pathogen is unique to infectious diseases and enables the abil-
ity to bridge from experimental systems to the clinic [3].

3 Experimental Models

A range of in vitro models of invasive fungal infections have been 
developed. These models have several advantages that include the 
ability to be performed in laboratories without specialist  facilitates, 
and the ability to control the significant biological variability that is 
frequently present in laboratory animals and in humans. A disad-
vantage is related to difficulty in recapitulating some of the patho-
logical events that are typical of advanced invasive disease (e.g., 
hemorrhagic infarction of the lung that is typical of invasive 

3.1 In Vitro PK–PD 

Models

Antifungal Pharmacokinetics and Pharmacodynamics



372

 pulmonary aspergillosis) and that may reasonably have an impact 
upon exposure response relationships. Some of the models that 
have been developed include a bilayer of alveolar epithelial cells 
and pulmonary artery endothelial cells have been shown to be par-
ticularly useful to examine the pharmacology of invasive pulmo-
nary aspergillosis treatment [4]. This model has also been valuable 
in examining novels methods of drug delivery via nebulized or air-
way route, examining combination antifungal therapy and provid-
ing decision support of the setting of in vitro susceptibility 
breakpoints for voriconazole [5–7].

The most widely used laboratory animal model is the mouse, but 
rabbits have also been extensively used to characterize antifungal 
PK–PD relationships. Both murine and rabbit models of invasive 
aspergillosis and invasive candidiasis have been developed.

Murine models of invasive candidiasis have been used for many 
years and used to characterize the majority of antifungal agents 
that are now clinically available (see, for example [8–10]). Both 
neutropenic and non-neutropenic models have been developed to 
reflect the background immunity that is seen in clinical settings. 
Neutropenia is typically induced and maintained with cyclophos-
phamide. For some pathogens, such as Candida glabrata, further 
immunosuppression may be required to establish infection (e.g., 
corticosteroids may also be required) [11].

There have been considerable efforts to develop, characterize 
and validate laboratory animal models of invasive pulmonary 
aspergillosis. For many years, a murine tail vein model was used 
where conidia were injected i.v. The fungal burden in the kidney 
was determined using quantitative cultures. This model is not a 
faithful mimic of human disease: humans develop invasive pulmo-
nary disease following inhalation of conidia, and the kidney is 
generally not a primary site of infection. More recently, conidia 
have been introduced into the airway via direct instillation (i.e., 
intranasal inoculation) or via aerosilization (see, for example [12, 
13]). An additional obstacle to the development of tenable mod-
els of invasive pulmonary aspergillosis has been biomarkers that 
are both clinically relevant and can be used to estimate the activity 
of antifungal agents. There have been two biomarkers that have 
been recently used: galactomannan (from serum) [12] and quan-
titative PCR to estimate the fungal burden in the lung [14]. Other 
 investigators have also used survival to estimate anti-Aspergillus 
PK–PD relationships [15]. A rabbit model of invasive pulmonary 
aspergillosis has been extensively used to characterize almost all 
antifungal agents that are currently available (see, for example 
[16–19]). A neutropenic model has mostly been used, although a 
non- neutropenic model has also been developed to mimic invasive 
disease that is observed in patients in the post engraftment phase 
of hematopoietic stem cell transplantation (HSCT) [20]. A variety 
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of endpoints have been used in the rabbit model and the size of 
the lung means that a composite end-points can be used, includ-
ing fungal burden estimated using quantitative cultures, qPCR, 
galactomannan, lung weight, infarct score, and survival.

More recently, laboratory animal models of cryptococcal men-
ingitis have been developed. A murine model of disseminated 
infection following i.v. injection of yeasts has been used to charac-
terize the PK–PD of amphotericin B deoxycholate, liposomal 
amphotericin B, and flucytosine [21, 22]. A rabbit model in which 
yeasts are infected intra-cisternally has also been used to character-
ize various regimens of amphotericin B deoxycholate [23]. The 
endpoint in the murine model is the fungal burden in the paren-
chyma, which is clinically relevant since many patients develop 
encephalitis (cryptococcal meningitis should be more accurately 
referred to as meningoencephalitis). The primary endpoint in the 
rabbit is the cryptococcal burden (density) in the CSF, just as it is 
in patients.

Traditionally, three PD indices have been used to describe the rela-
tionship between drug exposure and the antifungal effect (i.e., the 
peak:MIC, AUC:MIC, and T > MIC). Antifungal agents tend to 
exhibit concentration-dependent (e.g., polyenes and echinocan-
dins) or time-dependent activity (e.g., flucytosine). Knowledge 
regarding the index that best links drug exposure with effect can 
be used to design appropriate regimens for use in the clinic.

The relevant pharmacodynamic index is determined using 
dose-fractionation studies. The design of such experiments involves 
perturbing the total dosage and studying the antifungal fungal 
effect of different schedules of administration. If the least fraction-
ated regimen has the most antifungal activity, Cmax:MIC is likely 
to be important. If the most fractionated regimen has the most 
activity, T > MIC is likely to be important. If the effect is the same 
regardless of the regimen, then AUC:MIC is likely to be the 
dynamically linked variable. There are multiple nuances related to 
the appropriate design of these studies to ensure the “right” result 
is obtained. Most importantly perhaps is ensuring that the pharma-
cokinetics have been appropriately and adequately described. 
Mistakes in the pharmacokinetics can have a profound effect on 
the pharmacodynamic interpretations that may subsequently be 
found to be erroneous.

Once the dynamically linked variable has been identified, the 
next question is the magnitude of the PD index (AUC/MIC, 
Cmax/MIC, or fraction of the dosing interval T > MIC) that is 
associated with a suitably high probability of a successful outcome. 
Decisions about what exactly constitutes a “favorable outcome” or 
a “high probability” can be difficult to define a priori. The perfor-
mance of experimental PK–PD models, just like MICs are influ-
enced by the experimental conditions under which they are 
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established. An effect that is seen in one model may not directly 
translate to a different model constructed under different experi-
mental conditions. Commonly used endpoints for experimental 
PK–PD models include various orders of logarithmic killing (e.g., 
1-log drop in fungal burden, 2-log drop in burden), survival pro-
longation, and 50 % reduction in a biomarker such as galactoman-
nan. Ultimately, the validity of an endpoint must be cross referenced 
or validated against a clinical data-set. For disseminated candidia-
sis, half-maximal maximal effect and echinocandins (stasis) have 
been successfully used. However, for newer drug classes and for 
other diseases and experimental models (e.g., invasive aspergillo-
sis), the best outcome measure is often unknown. In this circum-
stance, investigators typically report a number of endpoints that 
can be used for current and future analyses.

When the relevant pharmacodynamic index and the magnitude of 
that index is known from one or more preclinical studies, the 
potential implications for patients can be determined. Bridging 
studies require some knowledge related to the performance of a 
drug in a patient population of interest. Population pharmacoki-
netic models are used to summarize the behavior of a drug in a 
patient population and serve as a mathematical summary of past 
experiences with that drug. A population pharmacokinetic model 
provides estimates of measures of central tendency of drug behav-
ior for the population as well as robust estimates of the extent of 
inter-individual variability [3].

The next stage in the bridging process involves the use of 
Monte Carlo simulation. Monte Carlo simulation involves the 
generation of simulated (virtual) patients that are based on the 
population pharmacokinetic parameter. Each simulated patient 
then receives a given regimen of the drug and the corresponding 
drug exposure if calculated. Analysis of each patient in turn enables 
predictions to made across the simulated population as to the like-
lihood of success (or otherwise) of the regimen to be tested. The 
simulations can be performed for a range of MICs and thereby 
enables the overall efficacy to be estimated [3].

Bridging from experimental studies to the clinic can be used to 
address a number of problems that includes the identification of 
optimal regimen (i.e., dosage and schedule of administration) for a 
patient population as well as providing decision support for the 
setting of in vitro susceptibility breakpoints. Indeed, EUCAST 
mandate the use of PK–PD information, and Monte Carlo simula-
tion (if available) in the process of setting breakpoints [24]. Monte 
Carlo simulation can be used to define regimens for difficult to 
study populations, such as for pediatric and neonatal patients, and 
for certain infections where the clinical study of different dosing 
regimens is simply impractical. For example, studies using the 
bridging technique of Monte Carlo simulation were performed for 

3.4 Bridging 

from Experimental 

Models to the Clinic

William Hope and David R. Andes



375

neonates and children with hematogenous Candida meningoen-
cephalitis (HCME), which is a rare but well recognized and poten-
tially lethal infection, with micafungin and anidulafungin [25, 26]. 
In both cases, a dosing strategy derived from adults would be 
expected to lead to suboptimal outcomes in neonates.

4 Polyenes

Amphotericin B was discovered nearly 50 years ago. The nephro-
toxicity of this agent was initially described in dogs and was related 
to constriction of renal arterioles. Amphotericin B also causes 
tubular toxicity, which results in hypokalemia and hyomagnesemia. 
Amphotericin B-induced renal impairment in patients is associated 
with prolonged hospitalization and mortality [27].

The toxicity and water insolubility of amphotericin B are the 
principal reasons a variety of formulations have been developed for 
clinical use. Widely available formulations include amphotericin B 
deoxycholate (sometimes called “conventional amphotericin B”), 
amphotericin B lipid complex (ABLC) and liposomal amphotericin 
B (LAmB). Amphotericin B colloidal dispersion is available in some 
centers in the world. Preclinical models of invasive candidiasis sug-
gest that amphotericin B exhibits concentration-dependent antifun-
gal activity. A further feature appears to be a large degree of hysteresis 
where serum and tissue concentration time profiles are discordant 
[23]. Persistent concentrations at effect sites, such as the central ner-
vous system, may enable intermittent of abbreviated regimens. The 
use of such regimens may facilitate ambulatory i.v. therapy and use 
of parenteral therapy in resource-poor healthcare settings.

Lipid formulations of amphotericin B (LAmB, ABLC, and 
ABCD) are generally less potent on a mg/kg basis when compared 
with DAmB. This is because much of the active drug (i.e., 
 amphotericin B) is preferentially complexed with the lipid carrier 
rather than existing in a free state. The distinct structure of the 
lipid carriers also has an impact upon the pharmacokinetics of each 
formulation. There appear to be differences in concentrations that 
are achieved in the central nervous system and various subcom-
partments of the lung. For example, LAmB exhibits high serum 
and CNS concentrations in comparison to other lipid preparations 
[28]. The relevance of this PK difference was found to be impor-
tant in a CNS invasive candidiasis model whereby the difference in 
drug concentration in brain parenchyma was closely related to 
treatment efficacy in favor of LAmB over the other formulations 
[28]. Conversely, both ABLC and ABCD achieve much higher 
concentrations in the intracellular space and in organs of the retic-
uloendothelial system. In a disseminated candidiasis model, differ-
ences in PD potency in the liver, kidney, and lung closely followed 
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the differences in tissue kinetics for each drug in each target organ 
system [29]. Several animal model and human investigations have 
demonstrated ABLC attains higher concentrations in the lung rela-
tive to other formulations [30].

There are relatively few clinical data that provide an insight into 
PK–PD relationships for the polyenes. Much of the validation for 
dosing has been derived over the past two-to-three decades from 
multiple clinical studies and trials. The advent of lipid formulations 
provided a hope that the improved therapeutic index that is char-
acteristic of these agents would enable more aggressive dosing and 
thereby better clinical responses. Unfortunately, this does not 
appear to be the case. For example, a prospective clinical trial that 
compared the clinical outcomes of liposomal amphotericin B at 3 
versus 10 mg/kg/day did not suggest any benefit of the higher 
dose [31]. Thus, the drug exposures associated with amphotericin 
B deoxycholate 1 mg/kg and liposomal amphotericin B 3 mg/kg/
day induce near maximal antifungal activity.

An additional feature that is common to all amphotericin B 
formulations is that the MIC has relatively little predictive value 
and in general is not used to direct antifungal therapy in the clinic. 
The MICs for common medically important fungal pathogens 
cluster tightly and there is rapid transition from no antifungal effect 
to full antifungal activity over a very narrow concentration range. 
For these reasons, neither the MIC nor amphotericin B serum con-
centrations provide useful information to enable individualized 
antifungal therapy. This limitation is in contrast to flucytosine and 
the triazoles where both the MIC and serum drug concentrations 
can be used in the clinic (see below).

5 Flucytosine

Several studies have described time-dependent activity of flucyto-
sine against Candida albicans [32]. Therefore, fractionated regi-
mens are best used to treat patients with invasive candidiasis. For 
invasive candidiasis, the fraction of the dosing interval that drug 
concentrations must be greater than the MIC is approximately 
40 % [33]. The corresponding target for cryptococcal meningitis 
has not been determined in preclinical models. A regimen as low as 
25 mg/kg/day (which is two to fourfold lower than currently rec-
ommended) is predicted to achieve the pharmacodynamic target 
against C. albicans given the current MIC distribution [34]. 
Similarly, a preclinical model of cryptococcal meningoencephalitis 
suggests that a lower dosage of flucytosine could be used in com-
bination with liposomal amphotericin B to achieve near maximal 
fungicidal activity [22].
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There are no clinical data sets that allow for PK–PD analyses for 
flucytosine. In contrast, toxicodynamic relationships are well estab-
lished from clinical data. Myelosuppression that is associated with 
flucytosine therapy is more likely with higher peak drug concentra-
tions (>100 mg/L) [35]. Consequently, fractionated regimens 
have the dual benefit of maximizing T > MIC and minimizing the 
peak concentrations that are potentially toxic.

6 Triazoles

The triazole class of antifungal agents has been extensively studied 
in both preclinical models and at the bedside. Dose fractionation 
studies have consistently suggested that the AUC:MIC is the 
dynamically linked index that best connects the dosage with the 
observed effect, although these studies have only been performed 
in Candida [8–10, 36]. An assumption is widely made that the 
AUC:MIC is also the dynamically linked variable for other fungal 
pathogens such as Aspergillus spp. PK–PD relationships have been 
defined in preclinical models of Candida spp., Aspergillus fumiga-
tus, and Cryptococcus neoformans. PK–PD studies have been per-
formed with five triazoles currently available for therapy for invasive 
candidiasis (i.e., fluconazole, itraconazole, voriconazole, posacon-
azole, isavuconazole). A free drug AUC:MIC of 25–50 appears to 
be associated with near-maximal antifungal activity for both inva-
sive candidiasis and invasive aspergillosis [8–10, 36, 37].

The pharmacodynamics of the triazoles against Aspergillus 
fumigatus are increasingly understood. A variety of experimental 
models and study endpoints have been used to estimate these rela-
tionships [12, 13, 15, 38]. Clear exposure response relationships 
have been demonstrated using qPCR, galactomannan and survival 
as study endpoints. Collectively, these studies have confirmed that 
the MIC is of both biological and clinical importance, and can 
therefore be used to guide antifungal therapy in humans.

The pharmacodynamics of fluconazole for cryptococcal menin-
goencephalitis have been recently described using a murine model of 
cryptococcal meningoencephalitis [21]. A higher fluconazole 
AUC:MIC value of approximately 400 was required for stasis, which 
is higher than is the case for invasive candidiasis and reflects the 
requirement to drive fluconazole into the central nervous system.

There is a relatively large amount of PK–PD clinical data for fluco-
nazole that is congruent with the conclusions of preclinical PK–PD 
models. In a study of more than 1000 patients receiving flucon-
azole for oropharyngeal candidiasis, clinical success was noted in 
91–100 % of patients in whom the free drug AUC:MIC was >25; 
whereas, only 27–35 % had a successful outcome with a free drug 
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AUC:MIC <25 [39]. These findings are comparable to another 
study of oropharyngeal candidiasis in which 92 % of patients had a 
successful outcome with a free drug AUC:MIC > 25, while only 9 
were successfully treated with a free drug AUC:MIC <25 [40]. 
There is a remarkably strong relationship between the AUC:MIC 
and treatment outcome for patients with invasive candidiasis. A 
free drug AUC:MIC target of 25–50 is associated with near- 
maximal survival.

The maximal outcome is associated with a voriconazole trough 
concentration (Cmin)-to-MIC ratio of approximately 2 [37]. 
Numerous additional studies suggest that trough concentrations 
(i.e., independent of MIC) of approximately 1–2 mg/L are associ-
ated with improved clinical outcomes for patients with invasive 
aspergillosis [41]. An increasing number of datasets are available 
for both itraconazole and posaconazole. For treatment of a variety 
of invasive fungal diseases (predominantly invasive aspergillosis) a 
trough concentration of approximately 1 mg/L is generally 
required and advocated as a target for therapeutic drug monitoring 
in the clinic. The drug exposure targets for prophylaxis for both 
itraconazole and posaconazole are approximately 0.5 and 
0.7 mg/L, respectively, which is lower than concentrations 
required for the treatment of established infection [41].

7 Echinocandins

The echinocandins are active against the majority of medically 
important members if the Candida genus, although they are less 
potent against Candida parapsilosis. The molecular basis of reduced 
susceptibility in Candida parapsilosis is related to the structure of 
Fks1 protein, which is the target for all echinocandin agents. 
Preclinical models suggest the echinocandins (i.e., caspofungin, 
micafungin, and anidulafungin) all exhibit concentration- 
dependent antifungal activity [14, 42–44]. The peak:MIC or 
AUC:MIC consistently provides the best link between echinocan-
din dosing and the observed effect.

The echinocandins induce a paradoxical antifungal activity, 
which is purely an in vitro phenomenon. Growth of Candida is 
observed at high drug concentrations. The effect is not universally 
observed for all echinocandin agents, or Candida species/strains. 
There are no clear in vivo or clinical consequences (i.e., there do not 
appear to be inferior clinical outcomes with higher echinocandin 
dosages or drug exposures). The paradoxical effect appears to be 
related to the induction of stress-response pathways that ultimately 
lead to a compensatory up-regulation and synthesis of chitin.

The echinocandins are clearly active against Aspergillus spp., 
both in vitro and in experimental models. However, the effect is 
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distinct from that observed against Candida in there are 
concentration- dependent morphological changes in Aspergillus 
without evidence of fungicidal activity or reduction in fungal bio-
mass [14, 45, 46]. The echinocandins induce excessive branching 
of hyphae, which appear short and dysmorphic [47]. Studies in 
laboratory animal models of invasive aspergillosis suggest that the 
echinocandins are clearly active, but do not cause a reduction in 
fungal burden when estimated using quantitative cultures or other 
clinically relevant biomarkers (e.g., circulating galactomannan) 
[48]. The echinocandins do result in survival prolongation, 
reduced lung weight and fewer pulmonary infarcts in rabbits with 
invasive pulmonary aspergillosis, and therefore appear to prevent 
organism mediated pulmonary injury. This protection may be 
related to the morphological changes that render the organism 
unable to invade the lung. The dissociation between echinocandin 
drug concentrations and traditional biomarkers has hampered a 
deep understanding of the PK–PD relationships of the echinocan-
dins against Aspergillus spp.

Preclinical models of invasive candidiasis have provided an 
insight into the drug exposure targets for the echinocandins against 
medically important Candida species. For C. albicans a free drug 
Cmax/MIC >1 or AUC/MIC 10–20 is the PD target that is associ-
ated with a stasis endpoint [14, 46]. Similar studies with C. parap-
silosis and C. glabrata have suggested that the echinocandin 
exposure required for stasis is two to threefold lower than for  
C. albicans [46]. Preclinical PK–PD studies that have examined 
both wild-type susceptible and drug resistant C. glabrata clinical 
isolates with a variety of Fks mutations found a comparable 
AUC:MIC is needed for efficacy [49]. This observation is consis-
tent with PK–PD observations with the triazoles where the MIC 
explains a large amount of system variance. Nevertheless, there is a 
complex interplay between the Fks1 genotype, the resultant MIC 
and the therapeutic response [50]. The echinocandins have a wide 
therapeutic index and higher dosages can potentially be used to 
treat (or overcome) a resistance mechanism. On occasions, how-
ever, the dosage is simply too high to generate sufficient drug 
exposure to overcome the resistance mechanism(s), and the muta-
tion must be classified as resistant.

Clinical PD studies with the echinocandins are generally concor-
dant with the findings from preclinical models. For micafungin, a 
total-drug AUC:MIC > 3000 is associated with near maximal ther-
apeutic outcomes (i.e., 98 % success compared to 84 % in those 
with an AUC/MIC <3000) [51]. A subgroup analysis based upon 
Candida species suggested patients infected with C. parapsilosis 
have a drug exposure target that is tenfold lower than Candida 
albicans.
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8 PK–PD Analysis of Combination Therapy

Combination antifungal therapy remains an areas where there has 
been a significant amount of preclinical and clinical study. Much of 
the impetus to combine antifungal agents stems from suboptimal 
outcomes that can be achieved with agents used alone. Much is 
made of the concepts of synergy, additivity, and antagonism, and a 
myriad of definitions (clinical and mathematical) serves to make 
this area complex and difficult to understand. Perhaps the clearest 
way to conceive the potential benefits of combining antifungal 
agents is the way in which maximal antifungal activity can be 
achieved as rapidly as possible. Prevention of the emergence of 
drug resistance is not such a clinical problem or concern as is the 
case in tuberculosis or viral diseases such as HIV.

The best accepted use of combination antifungal therapy is in 
the treatment of cryptococcal meningitis. Both preclinical and clini-
cal data suggest that the use of a combination of agents generally 
provides faster and more sustained antifungal activity. The strongest 
case can be made for combining a polyene (amphotericin B deoxy-
cholate or liposomal amphotericin B) with flucytosine, but the com-
bination of fluconazole and flucytosine is also potentially beneficial.

The suboptimal clinical outcomes resulting from invasive asper-
gillosis have promoted widespread interest and study for defining 
combination regimens for this disease. There appears to be general 
consensus that the combination of a triazole and an echinocandin is 
beneficial and this idea has been tested in both preclinical models 
and more recently in a clinical trial [19]. This combination of agents 
has been explored for the treatment of triazole resistant Aspergillus 
spp. [7]. In general, there appears to be some benefit of combining 
triazole and echinocandins in this setting, although conclusions 
depend somewhat on the experimental model that is used, as well as 
the study endpoint. There has been a longstanding theoretical con-
cern related to the potential for antagonism between the triazoles 
and polyenes. This has been borne out in at least one well-conducted 
preclinical model in which the combination of ravuconazole and 
liposomal amphotericin B appeared to be antagonistic on the basis 
of a number of well-validated study endpoints [52].

9 Conclusions

Application of PK–PD principles to antifungal drug therapy has pro-
vided an increased understanding of drug exposure response relation-
ships. The tools and techniques that have been developed can be 
further harnessed to improve the use of existing agents, but also address 
new problems as they arise. A further opportunity is the use of PK–PD 
to accelerate new compounds and formulations through to the clinic.
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    Chapter 16   

 Pharmacokinetics and Pharmacodynamics 
of the Tuberculosis Drugs                     

     Aline     B.     Barth    ,     Eric     F.     Egelund    , and     Charles     A.     Peloquin      

  Abstract 

   In the last 40 years, only rifapentine and bedaquiline have been approved in the USA for the treatment of 
active tuberculosis. Therefore, one focus of research involves optimizing the current antituberculosis 
drugs’ pharmacokinetic and pharmacodynamic properties. The aim of this chapter is to review both the 
pharmacokinetics and pharmacodynamics of the antituberculosis drugs. Specifi cally, the pharmacokinetic 
properties of absorption, distribution, metabolism, and elimination are reviewed for each drug. Regarding 
pharmacodynamics, we discuss pharmacodynamic modeling, mechanisms of resistance, and current meth-
odologies used to evaluate a drug’s susceptibility to  Mycobacterium tuberculosis . As a whole, we highlight 
the importance of pharmacokinetic/pharmacodynamic (PK/PD) modeling and the challenges faced in 
applying PK/PD to tuberculosis. Finally, therapeutic drug monitoring (TDM) is discussed as a tool that 
provides clinicians a means to optimize a drug’s PK/PD relationship for an individual patient.  

  Key words     Pharmacokinetics  ,   Pharmacodynamics  ,   Tuberculosis  ,   Therapeutic drug monitoring  

1       Introduction 

 There is evidence of tuberculosis (TB) since prehistoric times, and 
it is hypothesized that   Mycobacterium tuberculosis  ( Mtb )   might 
have been responsible for more deaths than any other infection in 
history [ 1 ]. In 2012, an estimated 8.6 million people became ill 
with TB, and the disease caused an estimated 1.3 million deaths 
[ 2 ]. TB is considered to be the second leading killer as sole infec-
tious  agent  , with the leading killer considered to be the human 
immunodefi ciency virus (HIV). That said, TB is the leading cause 
of death among patients with HIV [ 3 ], and one of the major causes 
of death among women of reproductive age [ 2 ]. 

 The initial drug used for TB treatment was streptomycin (SM)    
[ 4 ,  5 ]. However, the use of a single agent rapidly promoted the 
emergence of resistance [ 5 ]. In an effort to prevent drug resis-
tance, combined therapy was evaluated. Initially p-aminosalicylic 
acid (PAS) was evaluated with SM, and in 1952, isoniazid (INH) 
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was introduced [ 4 ,  5 ]. INH has strong early bactericidal activity 
(EBA), rapidly reducing the number of bacilli in sputum. INH is 
continued throughout therapy in an effort to prevent resistance. 
A three-drug regimen, with an initial 6-month intensive phase of 
SM, PAS, and INH, followed by PAS and INH for 12 more 
months, proved to be more effective than the two drug regimen. 
This regimen helped introduce the concept of an initial intensive 
phase, followed by a continuation phase [ 5 ]. Murine studies with 
pyrazinamide (PZA) demonstrated its sterilizing activity when 
combined with INH against  Mtb  [ 6 ]. Studies with rifampin (RIF) 
demonstrate similar sterilizing behavior [ 7 ,  8 ]. Sterilizing activity is 
the ability to kill off persisting organisms, and to prevent post- 
treatment relapses. Sterilizing activity thus is the most sought-after 
characteristic in a TB drug. Regimens containing INH and RIF 
could be completed in only 9 months, half of the prior duration 
without RIF. Further, studies proved that RIF and PZA had 
 synergistic activities [ 4 ]. The addition of PZA to INH and RIF 
reduced the duration of therapy from 9 to 6 months. PZA appeared 
to produce most of its sterilizing activity during the fi rst 2 months 
of therapy, while RIF has this effect throughout treatment [ 4 ]. 
A randomized clinical trial demonstrated that an intensive phase 
regimen of INH, RIF, PZA,    and SM, followed by a 4-month con-
tinuation phase of INH and RIF promoted very low relapse rates. 
The current “fi rst-line” regimen, according to the World Health 
Organization (WHO) follows the same pattern, substituting eth-
ambutol (EMB) for SM [ 9 ].  EMB   is recommended as the fourth 
drug, along with INH, RIF, and PZA, to further prevent the emer-
gence of resistance, since susceptibility data often are delayed, or 
absent altogether. Further studies aimed at shortening the dura-
tion of therapy to less than 6 months were unsuccessful, primarily 
in terms of preventing post-treatment relapses [ 10 ]. The structures 
of the TB drugs are  shown   in Fig.  1 .

   Resistance to at least INH and RIF characterizes multidrug- 
resistant tuberculosis (MDR- TB        ) [ 11 ]. The current treatment 
recommendation for MDR-TB is to use any remaining fi rst-line 
drugs, plus a fl uoroquinolone [ levofl oxacin (LEVO)      or  moxifl oxa-
cin (MOXI)     ], and an injectable agent [ amikacin (AK)     ,  kanamycin 
(KM)     , SM or  capreomycin (CM)].      Other “second-line” drugs that 
might be used, depending on susceptibility data, include cycloser-
ine (CS), ethionamide (ETA), and PAS. “Third-line” drugs also 
used for TB include clofazimine, linezolid, amoxicillin/clavula-
nate, imipenem, macrolides, and high-dose isoniazid. These drugs 
are especially important for the treatment of  extensively drug- 
resistant tuberculosis (XDR-TB),      characterized by MDR-TB plus 
resistance to a fl uoroquinolone and at least one injectable agent. In 
2012, bedaquiline (TMC-207) was approved by the US Food 
and Drug Administration (FDA) for the treatment of multidrug 
resistance as a part of the combination therapy [ 12 ]. In 2013, 
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delamanid (OPC-67683) was similarly approved by the  European 
Medications Agency (EMA)      [ 13 ]. 

 The aim of this chapter is to review different aspects of the 
pharmacokinetics (PK) and pharmacodynamics (PD) of TB drugs. 
We begin with a review of the mechanisms of action and mecha-
nisms of resistance for the TB drugs, followed by current method-
ologies to evaluate TB drug susceptibility. Next, we review PD 
models and their application to TB drugs. Finally, we highlight the 

  Fig. 1    Chemical structure of the main drugs used on the  treatment   of tuberculosis. The fi gures were drawn 
with the software Chemsketch version 14.01, 2012       
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use of therapeutic drug monitoring (TDM) as a means of optimizing 
treatment for individual patients. We note why the current drugs 
are used, and point out important gaps in our knowledge. As a 
whole, we highlight the importance of PK/PD and the challenges 
faced in applying it to TB treatment.  

2      Mechanism of Action 

 A general overview of the mechanisms of action for the TB drugs 
is shown in Fig.  2 .

     RIF inhibits the DNA-dependent RNA-polymerase, thus preventing 
the transcription of DNA to RNA [ 14 ]. The RNA polymerase 
 enzyme   has the following subunits:  α   2  ,  β ,  β ′, and  σ . The inhibition 
occurs through the binding of the drug to the  β  subunit, encoded by 
the  rpoB  gene (same gene where mutations can cause drug resistance) 
[ 15 ]. RIF has potent, concentration-dependent bactericidal activity, 
and starts to kill microorganisms within minutes [ 8 ]. RIF displays 
sterilizing activity throughout the entire treatment period [ 4 ]. 

 INH is a pro- drug  , activated by the mycobacterial enzyme 
KatG [ 16 ]. The drug inhibits enzymes responsible for the synthesis 
of cell wall lipids. Specifi cally, INH inhibits the  inh A protein activ-
ity for the synthesis of mycolic acids for the cell wall [ 17 ]. INH has 
strong bactericidal activity, and is particularly effective at the begin-
ning of treatment against actively replicating microorganisms [ 18 ]. 
INH is not particularly effective against persisting bacilli [ 5 ]. INH 
use is maintained throughout treatment in an effort to prevent 
resistance. The absence of sterilizing activity is a characteristic seen 
among current TB drugs whose mechanism of action is based on 
cell wall inhibition. 

 PZA also is a pro- drug  , and it is only active at an acidic pH. 
 Mtb  enzyme nicotinamidase/pyrazinamidase converts it to 
 pyrazinoic acid (POA), which becomes trapped within the bacilli 
[ 19 ,  20 ]. Debate continues regarding its precise mode of action. It 
is hypothesized that POA, as an uncharged acidic conjugate 
(HPOA), causes acidifi cation of the cytoplasm. This leads to the 
inhibition of important enzymes, and the disruption of the mem-
brane potential. PZA only appears to kill microorganisms with low 
rates of metabolism, because they are unable to prevent HPOA 
accumulation and acidifi cation [ 5 ]. The drug kills extracellular 
microorganisms, and in combination with RIF, it is responsible for 
the elimination of “persister” organisms. PZA’s sterilizing activity 
is evident primarily during the fi rst 2 months of therapy. 

 EMB inhibits mycobacterial cell wall  synthesis   [ 21 ,  22 ]. The 
drug inhibits the synthesis of arabinogalactan by preventing 
the polymerization of arabinose by an arabinosyl-transferase. The 
drug has moderate bactericidal activity in the initial phase of the 

2.1    First Line Drugs  
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treatment but it lacks sterilizing activity [ 4 ,  23 ,  24 ]. EMB’s 
main use is to prevent further drug resistance while susceptibility 
data are pending. Once the susceptibility results are available, 
and if the microorganism is susceptible to the other three drugs, 
EMB can be stopped. EMB also is used as part of MDR-TB treat-
ment regimens.     

   Fluoroquinolones inhibit topoisomenrase II, also known as  DNA 
gyrase  , in  Mtb . In other microorganisms these drugs also inhibit 
topoisomerase IV, absent in  Mtb  [ 25 ]. DNA gyrase is a bacterial 
enzyme responsible for preserving the superhelical twists in the 
DNA [ 26 ]. This enzyme consists of two subunits A and two sub-
units B, encoded by the genes  gyrA  and  gyrB , respectively [ 25 ]. 
These drugs possess EBA and sterilizing activity [ 27 ]. 

  Aminoglycosides   inhibit protein synthesis by binding to the 
16S ribosomal RNA sequence [ 28 ]. This inhibition does not affect 
human protein synthesis, since the ribosomal RNA structures are 
different [ 29 ]. Although CM is a polypeptide and not an amino-
glycoside, it is often placed in the same category as the aminogly-
cosides, “the injectable agents,” because of similarities in terms of 
dose, route of administration, pharmacokinetics, and toxicity [ 30 ]. 
All injectable agents are highly bactericidal against  Mtb  [ 31 ]. 
However, they lack potent sterilizing activity. 

2.2   Second Line 
Drugs  

  Fig. 2    Known or proposed  targets   for the TB drugs       

 

Pharmacokinetics and Pharmacodynamics of the Tuberculosis Drugs



390

 CS inhibits two enzymes, preventing  peptidoglycan synthesis 
and  d -alanine metabolism  :  d -alanine- d -alanine ligase, and alanine 
racemase, respectively [ 32 ]. ETA is a pro-drug, activated within 
the microorganism by a mono-oxygenase enzyme that is encoded 
by the ethA gene [ 17 ]. ETA inhibits the  inh A protein activity that 
is responsible for the synthesis of cell wall mycolic acid (similar 
mechanism as INH). The mechanism of action of  PAS  has been 
debated for many years but may involve the inhibition of 
 dihydrofolate reductase [ 33 ]. PAS displays tuberculostatic activity 
against  Mtb  [ 34 ]. In combination, it enhances the activity of SM 
and  INH   [ 33 ].   

3     Development of  Resistance   

  Mycobacterium tuberculosis  acquires spontaneous  chromosomal 
mutations   that generate resistance to antimicrobials, with different 
frequencies depending on the drug [ 35 ]. The frequencies are 
approximately 1 in 10 6  microorganisms for INH and 1 in 10 8  
microorganisms for RIF. Considering that a TB lesion may contain 
10 8  microorganisms or more, mutant organisms are likely to be 
present. These will be spared when administering a single antimi-
crobial agent. When administering drugs with different mecha-
nisms of resistance, the probability of resistance to both being 
present in a single bacterium is the sum of the probability for each 
drug. For INH and RIF, the probability of selecting a dual- resistant 
mutant would be 1 in 10 14  microorganisms. INH and RIF have 
among the strongest early  bactericidal effects  , and therefore are 
effective in reducing the bacillary burden and preventing resistance 
in combined therapy. EMB has intermediate EBA, and PZA has 
the lowest EBA of the fi rst line drugs. 

 Spontaneous  mutations   that confer resistance to fl uoroquino-
lones happen in the frequency range of 2 in 10 6  microorganisms to 
1 in 10 8  microorganisms [ 25 ]. Therefore 1–100 resistant  Mtb  are 
expected within the TB lesion. Cross-resistance also has been 
described for the fl uoroquinolones. If there is diminished suscepti-
bility to one of the drugs within the class, it is likely that the sus-
ceptibility is reduced for all fl uoroquinolones [ 25 ]. 

 The genes associated with resistance mutations, and the cor-
responding gene products, are shown for each TB drug  in   Table  1 . 
The relationship with the mechanism of action with the resistance 
gene is described in Sect.  2  for the majority of the drugs.

   Patient  adherence      to treatment is thought to play an important 
role in the prevention of drug resistance. This topic presents an 
important challenge, considering the long treatment duration, and 
the need for multiple drugs, each with adverse effects. After a study 
demonstrated the possibility of domiciliary treatment as opposed 
to long stays in a sanatorium, treatment costs were drastically 
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reduced [ 5 ]. At the same time, the means for assuring regular drug 
administration, directly observed therapy (DOT), was initiated 
only gradually. Large numbers of patients failing to take drugs reg-
ularly often is blamed for much of the current drug resistance. 
In the US, DOT consists of the direct supervision of drug intake 
by a member of the healthcare team, and now is offered to a major-
ity of TB patients throughout their treatment. 

 Considering the diffi culty of seeing a patient 7 days a week, 
most TB programs provide a drug holiday over the weekend [ 36 ]. 
A study conducted by Drusano and colleagues evaluated the effect 
of drug holidays on the emergence of resistance to rifampin and 
moxifl oxacin, using an in vitro system. They concluded that the 
5/7 days regimen generated resistance to moxifl oxacin, while the 
7/7 days regimen did not. Another study by Srivastava et al., based 
on clinical trial simulations, concluded that around 1 % of TB 
patients develop drug resistance solely due to PK variability [ 37 ]. 
Dartois, however, points out the infl uence of PK variability on 
noncompliance [ 38 ]. She states that a patient with high drug expo-
sure might not develop resistance because of missing doses while a 
patient with low drug exposure may. The impact of PK variability 

   Table 1  
  Gene and  product      correlated with resistance for the tuberculosis drugs [ 130 – 132 ]   

 Drug  Gene correlated with resistance  Gene product 

 Rifampin   rpoB   β-Subunit of RNA polymerase 

 Isoniazid   katG   Catalase/peroxidase 

  inhA   Enoyl reductase 

  ahpC   Alkyl hydroperoxide reductase 

 Pyrazinamide   pncA   Pyrazinamidase/nicotinamidase 

 Ethambutol   embB   Arabinosyl transferase 

 Levofl oxacin/moxifl oxacin   gyrA / gyrB   DNA gyrase 

 Capreomycin   tlyA   rRNA methyltransferase 

 Amikacin/kanamycin   rrs   16S rRNA 

 Streptomycin   rpsL   S12 ribosomal protein 

  rrs   16S rRNA 

  gidB   7-Methylguanosine methyltransferase 

 Cycloserine   alrA  a    d -alanine racemase 

 p-Aminosalicylic acid   thyA   Thymidylate synthase A 

 Ethionamide   inhA   Enoyl  reductase      

   a Study with  Mycobacterium smegmatis   
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on resistance reinforces the importance of therapeutic drug 
monitoring (TDM) discussed in Sect.  17 . 

 In addition to the factors discussed above, other limitations 
exist in the current treatment of TB. The fl exibility of doses with 
regard to differences in body weight is low and this factor can 
 provide variability in  drug exposure among patients  . The current 
doses were optimized many years ago when the mean population 
weight was signifi cantly lower than today. In addition, due to evo-
lution  Mtb  strains present MIC distributions that might differ from 
place to place [ 39 ,  40 ]. Therefore, there is a need for revising the 
current TB drug doses in order to avoid resistance.     

4     Susceptibility Testing 

 The ultimate aim of the drug susceptibility test ( DST)   is to verify if 
the isolate differs from the  wild-type  Mtb    in terms of susceptibility 
to specifi c antimicrobials [ 41 ]. DSTs can be classifi ed as qualitative 
or quantitative. Qualitative tests suggest susceptibility or resis-
tance, but do not provide a specifi c value. Quantitative tests deter-
mine the MIC, the smallest concentration that produces 99 % or 
more of inhibition on the microorganism population. The inter-
pretation of the qualitative test is restricted to “susceptible,” 
“intermediate,” and “resistant” without a fi nal MIC value. To 
interpret MIC results it is important to take into consideration the 
relationship with the drug concentrations achieved at the infection 
site, the correlation between the isolate MIC, and the MIC from 
other strains of the same species, as well as previous use of antimi-
crobial agents. The results of DST are solely suggestive. It is the 
clinician’s responsibility to consider the drug’s metabolism and 
pharmacology, patient specifi c characteristics, and the use of con-
comitant drugs, among other factors [ 42 ]. 

 Drug susceptibility testing on  TB patients’ samples   is per-
formed with the objective of evaluating the adequacy of the drugs 
for treatment, to confi rm if a treatment failure is due to drug resis-
tance, and to estimate the prevalence of drug resistance [ 43 ]. Some 
of the limitations of drug susceptibility testing include the fact that 
the environment conditions are different than the ones in the host 
[ 42 ]. This includes the fact that a unique microorganism is grown 
in an environment with plenty of nutrients. However, one result 
that can always be used in the clinic is the evaluation of resistance. 
If the microorganism is resistant to a certain antibiotic in vitro, 
there is a good chance that it will be resistant in the patient as well. 

  Direct and indirect methods   have been used for DST on TB 
isolates [ 44 ]. The direct method refers to the direct inoculation of 
the sample. The advantage of this approach is a shorter time for 
obtaining results. The indirect method requires the isolation of the 
microorganism prior to susceptibility testing. Advantages of the 
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indirect approach include a more precise inoculum size, and 
reduced contamination by other organisms. 

 The most common solid media used for  Mtb  are the egg-based 
Löwenstein–Jensen (L–J) and the agar based 7H11 [ 45 ].  L–J 
media   presents some disadvantages, such as a high batch-to-batch 
variation (depending on the egg quality), diffi culties on distin-
guishing colonies from debris, and obtaining consistent drug con-
centrations. In contrast, the 7H11  media   is transparent, promoting 
an easy differentiation of colonies from debris and therefore small 
colonies can be detected earlier. However, plates are expensive, 
with a short half-life (1 month) and they have to be protected from 
light that can cause degradation and formation of formaldehyde, 
toxic to the mycobacteria. 

 Both direct and indirect methods can be used in agar plates by 
the proportion method [ 44 ].  “Critical” drug concentrations   are 
incorporated in the agar. Those concentrations are empirical with-
out relationship to concentrations obtained in the human body. It 
is presumed that the patient will not respond to the treatment if 
the result of the test is “resistant.” The sample is inoculated in 
quadrants with and without drug and the percentage of resistance 
is calculated based on this relationship. The isolate is considered 
susceptible if the drug completely inhibits growth and at least 100 
colonies are found on the control (agar without drug), and resis-
tant if there is at least 1 % of growth on the agar containing drug 
in relation to the control. 

 Different systems have been used for liquid media [ 45 ]. The 
 Bactec 460 TB system      is based on the use of radioisotopes. The 
microorganisms metabolize [ 14 C] palmitic acid to  14 CO 2 , detected 
by the equipment [ 45 ]. The production and quantity of  14 CO 2  is 
directly proportional to the growth of the microorganism. Some 
limitations of this system include the impossibility of evaluating 
colony morphology, the overgrowth of contaminants, cost, the dis-
posal of the radioisotopes and safety, considering the necessity of 
using syringes with needles. This system was discontinued due to 
the use of radioisotopes. 

 The  BACTEC 960 MGIT system      is a continuous monitoring 
system based on the use of mycobacterial growth indicator tubes 
(MGIT) [ 45 ]. These tubes contain a fl uorescence sensor that is 
bound to oxygen. The sensor consists of silicon rubber that con-
tains ruthenium pentahydrate. Initially, there is no fl uorescence. 
However, as the mycobacteria (or other microorganisms) metabo-
lize the bound oxygen, the indicator starts to fl uoresce. The instru-
ment then is able to detect the change in fl uorescence, and it 
calculates a number (growth index) that is used in an algorithm to 
determine growth. 

 Both indirect qualitative and quantitative analysis can be per-
formed for the BACTEC systems [ 44 ]. Regarding the qualitative 
analysis, resistance is indicated if the daily growth index in the drug 
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containing-vial is higher than the observed growth of the control 
diluted 1:100. For the quantitative analysis (MIC defi nition), three 
drug concentrations are necessary. The lowest concentrations 
 correspond to the highest MIC found for wild strains [ 41 ] and the 
sample is considered susceptible if the MIC is lower or equal to this 
concentration. The MIC is the sample with the lowest drug con-
centration where minimal or no growth index increase is detected. 

 It has been demonstrated that both sensitivity and time to 
growth are similar for Bactec 460 TB and BACTEC 960 MGIT 
system and superior to solid media [ 45 ]. The advantage of the 
 BACTEC 960 MGIT system   over the  BACTEC 460 TB system   is 
the lack of need for radioisotopes, the reduced potential for cross- 
contamination, reduced labor, the possibility of continuous moni-
toring and electronic data management [ 45 ]. 

 To perform DST with PZA, the pH of the broth has to be 
reduced to 6 (usually 6.8–7), due to the fact that the drug is more 
active at lower pH values [ 44 ]. For more details about DST and 
critical drug concentrations we recommend the following books 
by Leonid Heifets [ 41 ,  44 ]. 

  Molecular tools   can be used to reduce diagnostic time through 
the evaluation of mutations associated with resistance [ 46 ]. 
Campbell and colleagues used molecular methods to detect TB 
drug resistance and compared the results with the phenotypic data, 
as well as calculated accuracy values. The results of the study sup-
port the use of molecular methods to detect resistance to TB drugs. 
However, it is important to emphasize that molecular tests do not 
replace the use of culture and the DST [ 47 ]. Phenotypic and geno-
typic results need to be evaluated together to provide more accu-
rate clinical information. 

 The adequacy of the current recommended susceptibility 
breakpoints and their clinical relevance has been a topic of much 
discussion.  Mtb ’s evolution was pointed out as a reason for the 
inadequacy of the previously established breakpoints, as well as 
the variability in the MIC values according to different regions, 
in addition to PK variability [ 39 ,  48 ]. Gumbo evaluated the cur-
rently used critical concentrations in terms of the probability of 
achieving an area under the curve/MIC that correlates with 90 % 
or more of maximal  Mtb  kill in 90 % or more of patients [ 40 ]. 
This study embraced the use of Monte Carlo simulations using 
10,000 virtual patients. The author proposed that the susceptibil-
ity breakpoints of isoniazid, rifampin, and pyrazinamide should 
be lowered, while the concentrations of moxifl oxacin and etham-
butol were adequate. A change in the current ofl oxacin break-
point from 2 to 0.5 μg/mL was suggested by a study that also 
used  Monte Carlo simulations   to evaluate the probability of tar-
get attainment [ 49 ].  
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5      PK/PD Indices   

 When evaluating the PK/PD indices it is important to take into 
account the role of  protein binding  . The binding of drugs to 
proteins is an important factor that infl uences the amount of drug 
that can penetrate into the tissues (at the site of infection) and 
exert its effect [ 50 ,  51 ]. The serum protein binding is especially 
important when it is higher than 70–80 %, considering that any 
small change in the binding can have a signifi cant effect on the 
free fraction [ 51 ]. 

  Anti-infective drugs   have been classifi ed into two major groups 
according to the killing profi le: time-dependent killing and 
concentration- dependent killing [ 52 ,  53 ]. The parameters associ-
ated with the concentration-dependent killing drugs are given by 
the ratio of the area under the curve of the free drug concentration 
over the MIC ( f AUC/MIC) or the ratio of the maximum drug 
concentration over the MIC ( f  C max /MIC) [ 35 ]. The effect of the 
concentration-dependent drugs increases with an increase in dose. 
Fluoroquinolones, aminoglycosides and rifamycins are examples of 
concentration-dependent drugs. Once above the MIC by twofold 
to fourfold, the effects of the time-dependent drugs do not increase 
with an increase in dose. For these compounds the effect depends 
on the time that the drug concentration remains above the MIC 
(T > MIC).  Beta-lactams   are examples of time-dependent killing 
compounds. Considering that the effect within the PK/PD param-
eter is given by the ratio of an exposure variable to a potency vari-
able (MIC), the higher the MIC value, the lower the microbiological 
effect of a drug [ 54 ]. 

   The PK/PD indices use the drug concentrations in the plasma 
or serum [ 53 ]. This approach has the drawback of not taking 
into consideration the tissue distribution, and historically, pro-
tein binding was not considered. Additionally, the MIC provides 
important information regarding the potency of the interaction 
between the microorganism and the drug, but does not offer 
information about the effect of the drug over time [ 55 ]. The 
MIC does not generate specifi c information regarding the rate 
of antibactericidal effect and how different doses can affect this 
rate [ 53 ]. The MIC is a static parameter that relies on the bac-
terial count at a certain time point. It does not take into consid-
eration that different microorganism growth and death rates 
can generate the same fi nal MIC value. The MIC also does not 
supply information about a possible postantibiotic effect of the 
 compound   [ 55 ].   

5.1   Limitations   
of the Use of PK/PD 
Indices
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6     Pharmacodynamic Models 

 An alternative approach in relation to the PK/PD parameters is to 
evaluate the effi cacy of antimicrobials with  time-kill curves   [ 53 ]. 
This methodology considers the microbial growth and kill as a 
function of time and drug concentration. In some systems, it is 
possible to mimic the human PK drug profi le and therefore expose 
the microorganism to this change in concentration over the time. 
Mathematical models can be used to analyze the data and through 
the use of simulations, the optimal dosage regimen can be identi-
fi ed. This approach presents several advantages over the use of the 
MIC: direct comparison of the effect of different drug concentra-
tions, more detailed information regarding the PK–PD relation-
ship, and information about the effect of the antimicrobial over 
time.  Time-kill curves   can be obtained from in vitro systems as well 
as animal models. In this section we will provide information about 
some commonly used in vitro systems for mycobacteria, as well as 
animal models for TB. 

   Regarding in vitro models, the hollow fi ber system (HFS) fre-
quently has been used to perform time-kill curves with different 
drugs and  Mtb  [ 36 ,  56 ,  57 ]. The HFS contains hollow fi ber car-
tridges and the microorganisms are placed in a peripheral compart-
ment, as shown in Fig.  3a . Semipermeable hollow fi bers separate 
the central compartment from the peripheral and allow the trans-
ference of nutrients and drug, but not microorganisms, according 
to the membrane pore cutoff [ 56 ]. The drug is added in a dosing 
port located in the central compartment. Peristaltic pumps con-
tinuously infuse broth into the central compartment and at the 
same rate remove broth containing drug from the central compart-
ment to waste. The pump rates are set in such a manner that the 
human plasma drug profi le can be mimicked within the system. 
Media samples are serially collected and plated. Time-kill curves 
are obtained by plotting the change in the colony-forming unit per 
mL (CFU/mL) over time.

   An alternative model was developed by Budha and collabora-
tors based on previously developed in vitro systems and is shown in 
Fig.  3  b   [ 58 ]. A peristaltic pump continuously infuses broth into 
the main double-armed fl ask while a second pump is set at the 
same rate and removes broth from the main fl ask through a fi lter 
that prevents microorganism elimination. Drug doses are added on 
a lateral arm. The rates at which the pumps work allow the bacteria 
to be exposed to the human PK profi le of the drug within the main 
fl ask. The double-armed fl ask is kept at 37 °C by water recircula-
tion through a water jacket and the culture is maintained 
 homogeneous through the use of a magnetic stirrer. The samples 
are collected and further plated in the same manner as described 
for the HFS. 

6.1    In Vitro Models  
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 The in vitro models represent a simplifi cation of what occurs 
in vivo [ 59 ]. The differences are related to  pathogen, host and PK 
factors  . Regarding the pathogen factors, the majority of the micro-
organisms present different growth rates in vitro in relation to 
in vivo. Additionally, host factors, such as the immune response, 
are not fully captured, and plasma protein binding may not be 
taken into account.  

    Animal models   take into account the interaction between the 
microorganism, the host and the drug, which is not possible with 
in vitro systems [ 60 ]. The vast majority of preclinical TB studies 
were performed with mice, rabbits, and guinea pigs [ 61 ]. In addi-
tion, nonhuman primates and cattle models have been used. 
Considering the three species, mice are the least vulnerable to 

6.2    Animal Models  
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  Fig. 3     The         hollow fi ber system cartridge ( a ) and the  dilution system   ( b ). Adapted 
from Vaddady PK et al. 2010 [ 59 ]       
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infection (even less vulnerable than humans) followed by the rabbit 
and then the guinea pig, which is extremely vulnerable. Infection 
is commonly done by aerosol, but it can also be done by intrave-
nous injection. 

 The mouse model has proved to generate reliable data 
regarding sterilizing and bactericidal drug activity [ 60 ]. In addi-
tion this model is able to represent the activity of the current TB 
drugs reasonably well, though mice do not develop  necrotic 
granulomas   as humans do [ 52 ,  60 ]. More recent models with 
the so-called  Kramnic mouse   may be more human-like [ 62 ]. 
After infection the granuloma in the guinea pig and in the rabbit 
progress to caseation. Due to the low cost, small size, and large 
amount of data available, the mice model is still the method of 
choice, with the exception of studies that require caseation [ 63 ]. 
In order to describe the drug’s bactericidal effect, lung tissue 
homogenates are obtained to determine the CFU/mL. During 
these studies the emergence of resistance also can be evaluated. 
To study the sterilizing drug activity, studies longer than 2 
months are necessary. 

 Some of the drawbacks in using animal TB infection models 
are related to the fact they do not entirely refl ect human disease. 
Some of the factors that differ are the course of the disease over 
time, drug susceptibility, and the disease characteristics such as 
 granuloma formation  .      

7     Challenges to Obtaining Clinical Pharmacodynamic and Tissue 
Pharmacokinetic Data 

 Tuberculosis affects different organs in the human body. The main 
targets are the lungs, and for a drug to reach the site of action it 
needs to be transported from the blood to the lesions—which may 
not be vascularized—and penetrate into caseous granulomas to 
reach  Mtb  [ 64 ]. Doses for the fi rst line TB treatment were estab-
lished many years ago at a time when pharmacokinetics and phar-
macodynamics were used sparingly as  dose optimization tools.   
Therefore, drug penetration was not taken into account and this 
represents a major factor why today we have suboptimal doses. The 
unique structure of the lungs make the acquisition of human data 
diffi cult regarding drug penetration, information about the tem-
poral kill profi le of the microorganisms during treatment, as well as 
data about resistance patterns. 

 Data from drug concentrations in the epithelial lining fl uid 
( ELF  ) is often equated to the extracellular drug concentrations in 
the pulmonary tissue [ 65 ]. Although these drug concentrations 
are considered to be in equilibrium with the extracellular fl uid, it 
does not represent the drug concentration inside the TB lesion. 
The TB granuloma is protected by a fi brous wall and may contain 
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caseous material with different pH values in relation to healthy 
tissue. These factors could promote different patterns of drug 
penetration into the lesions as compared to healthy tissue. 
Although this approach offers an alternative considering the pro-
tected location of the infection, its clinical signifi cance has not 
been proven yet. 

  Sputum samples   are used to evaluate the resistance of clinical 
isolates. However, it has been demonstrated that the lung cavity 
presents an environment that favors the development of resistance 
[ 66 ,  67 ]. Additional drug resistance has been demonstrated in the 
cavity in relation to sputum [ 66 ,  67 ]. The lack of vascularization in 
the caseous lesions results in diminished delivery of oxygen and 
nutrients, generating metabolic quiescence that leads to a reduc-
tion of  Mtb  cellular proliferation [ 64 ]. In addition, the lack of vas-
cularization leads to a reduced penetration of drugs as well as T 
lymphocytes. These factors lead to an increase in drug tolerance 
within the lesion. 

   The rifamycins consist of three drugs used in the treatment of  TB  : 
rifampin, rifabutin, and rifapentine. First introduced in the late 
1960s, rifampin is the most important of TB drugs. The rifamycins 
work by inhibiting RNA polymerase. Consequently, mutations in 
the  rpoB  gene encoding RNA polymerase can result in the forma-
tion of resistant organisms. 

 The rifamycins are  concentration-dependent killers   of TB. Both 
C max /MIC or AUC/MIC are associated with mycobacterial kill-
ing. Studies reveal that the rifamycins concentrate within macro-
phages, although higher intracellular concentrations may not equal 
higher intracellular activity [ 68 ]. Burman et al. point out that there 
is large variability in study results [ 69 ]. 

 Clinically evaluating the PD properties of the rifamycins can 
be diffi cult. Rifamycin  monotherapy   leads to resistance by most 
pathogens, necessitating the use of combination therapy. 
However, separating the extent of the rifamycins’ effectiveness 
from companion drugs is problematic. Additionally, unless mea-
sured in vitro, the immune system “interferes” with evaluating 
the killing of  Mtb  by rifampin (or any antimicrobial), thus, HFS 
are often used to assess the clinical utility of anti-TB  drugs  , 
including the  rifamycins  .  

   The current recommended rifampin dose for active TB disease is 
600 mg. Arrival at this dose is somewhat cloudy, but Van Ingen 
et al. give three reasons initial investigators chose this particular 
dose: (1) cost of the drug at the time was prohibitive due to its 
semisynthetic nature (2), concern over possible toxicity at higher 
doses, and (3) a 600 mg dose provided a C max  between 8.8 and 12 
μg/mL, which is 40–60 times the MIC of  Mtb , not taking into 
account protein binding [ 70 ]. This C max /MIC suggests that 

7.1    Rifamycins  

7.2    Rifampin     
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600 mg would be more than suffi cient to eradicate  Mtb . However, 
even a modest reduction in dose to 450 mg resulted in a signifi cant 
decline in rifampin’s activity [ 71 ]. EBA also decreases with a 
300 mg dose, but increases with higher doses [ 72 ]. 

 For rifampin, many early studies pointed to C max /MIC as the 
parameter most associated with effi cacy. However, recent studies by 
Jayaram and Gumbo suggest a greater correlation with the AUC/
MIC [ 57 ,  73 ]. Gumbo et al. used a HFS to show increased killing 
of  Mtb  with increasing AUC [ 57 ]. In agreement, Jayaram et al. 
identifi ed the AUC/MIC as the PK/PD parameter most associated 
with microbial killing using an aerosol infection model [ 73 ]. 
However, C max /MIC was the parameter most associated with pre-
vention of resistance. Gumbo et al. noted that a fC max /MIC > 175 is 
required for the prevention of rifampin monoresistance [ 57 ]. 

 Caution is necessary when attempting to translate model 
results to humans. Human pulmonary TB primarily consists of 
extracellular bacilli while murine TB models are primarily intracel-
lular. Additionally, as many researchers point out, animal models 
may have many features that limit their usefulness. We discuss this 
further in the rifapentine  section  .  

   Rifabutin shares some structural features with rifampin, but differ-
ences exist in their PK properties due to rifabutin’s increased lipid 
solubility [ 74 ]. This increased lipophilicity leads to a larger volume 
of distribution, a decreased clearance and, thus, a much longer 
half-life. Despite a much lower C max /MIC (approximately 7.5 μg/
mL) compared to rifampin, rifabutin seems to be as active as 
rifampin [ 69 ,  75 ]. Additionally; rifabutin’s inductive capabilities 
are much less than rifampin’s (~40 %) [ 76 ]. Unfortunately, rifabutin 
is a CYP3A4 substrate, resulting in many bidirectional interactions 
with CYP inhibitors (e.g., protease inhibitors). Rifabutin, unlike 
rifampin, is limited by concentration-related toxicities. The risk of 
patients experiencing anterior uveitis, neutropenia and thrombocy-
topenia increases with increasing concentrations.        

   A cyclo-pentyl  derivative   of rifampin, rifapentine has a much longer 
half-life (~12 h) than rifampin. The longer half-life was thought to 
lend itself to intermittent dosing, but in humans, that has not 
proven to be the case. Additionally, early in vitro and murine stud-
ies indicated rifapentine was more potent than rifampin [ 77 – 79 ]. 
However, clinical trials show rifapentine to be no more active than 
rifampin [ 80 – 82 ]. Study 29 compared 10 mg/kg rifampin plus 
standard therapy (INH, PZA, EMB) to 10 mg/kg rifapentine plus 
standard therapy during the fi rst 2 months of treatment. The study 
showed no difference in outcomes (time to culture  conversion  ) 
between the two groups [ 81 ]. Three possible reasons were offered 
by the authors: (1) rifapentine’s high protein binding might have 
detracted from its effect, (2) the dichotomous endpoint used in the 

7.3    Rifabutin     

7.4    Rifapentine  
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study reduced statistical power, and (3) the medications generally 
were taken without food, which increases rifampin absorption but 
decreases rifapentine absorption. 

 One reason for this discrepancy between preclinical and clinical 
studies may be the animal model used. In the murine model, rifa-
pentine looked superior to rifampin, but in the guinea pig model, 
the two rifamycins were similar, just as in Study 29 [ 83 ]. Guinea 
pigs,  when   infected with TB, develop necrotic granulomas similar 
to humans with  Mtb  concentrated extracellularly rather than intra-
cellularly. Mice, on the other hand, do not develop necrotic granu-
lomas and  Mtb  are primarily intracellular. Rifapentine is believed to 
penetrate macrophages better than rifampin, which would account 
for the greater effi cacy in in vitro and murine studies [ 68 ]. 
Extracellular activity is comparable between the two [ 68 ]. 

 Increasing the dose of rifapentine could result in greater effi -
cacy. However, unlike rifampin, rifapentine’s dose–response curve 
appears to fl atten just short of a 1200 mg dose. Doubling the dose 
from 600 to 1200 mg does not result in a proportional increase in 
exposure. In a recent POP PK analysis by Savic et al., modeling and 
simulation showed that, while rifapentine exposure increased less 
than proportionally, there was no plateau in exposures from 450 to 
1800 mg [ 84 ]. 

 As with  isoniazid  , Dr. Mitchison makes a case for rifapentine’s 
C max  as the parameter most associated with effi cacy rather than 
AUC, citing Study 29 as an example [ 85 ]. He advises that future 
murine studies are conducted with a “chronic” disease model 
whereby mice are infected for months rather than a couple of weeks 
[ 86 ]. This model would allow for the presence of persister popula-
tions of  Mtb . Further, he suggests using liquid media rather than 
solid media [ 85 ]. However, Neuremberger et al. argue that the 
duration infection in the murine studies is long enough to  produce   
persisters [ 87 ].   

8      Isoniazid   

 Along with rifampin, isoniazid is a main drug in TB  treatment  . 
The complex interplay between isoniazid pharmacokinetics and 
pharmacodynamics is often diffi cult to unravel. Mutations in the 
 N -acetyl transferase (NAT-2) gene lead to two distinct rates of 
clearance. Whether or not this difference in clearance affects 
outcomes is often debated. 

 Isoniazid is a prodrug, converted to its active form by the  cata-
lase peroxidase enzyme (KatG)  . The activated intermediate is 
believed to be an isonicotinoyl radical which couples to NAD+/
NADPH and forms an adduct [ 88 ]. This INH-NAD adduct is 
responsible for antitubercular activity by blocking mycolic acid 
synthesis [ 16 ]. Mutations disrupt catalase peroxidase’s activity, 
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resulting in an INH resistant organism [ 89 ,  90 ]. The most common 
mutation, accounting for 30–60 % of KatG mutations, is a point 
mutation, S315T [ 90 ,  91 ]. This alteration in the KatG enzyme 
confers complete resistance to INH at 1–2 μg/mL. A mutation in 
the  inhA  gene also confers resistance to isoniazid but to a lesser 
extent. InhA, an enoyl reductase enzyme, looks to be the main 
target for the INH-NAD adduct. Resistance to  this   target occurs in 
approximately 1 in 10 7  bacteria. Mutations in  inhA  confer resis-
tance to not only isoniazid, but the structurally similar antituber-
cular drug ethionamide [ 92 ,  93 ]. Some evidence exists that higher 
doses of isoniazid (16–18 mg/kg/day) can overcome low- level 
resistance [ 94 ]. 

 Isoniazid is considered bactericidal and produces a  post- 
antibiotic effect   which can last up to 5 days [ 95 ]. The clinical rel-
evance of this effect is not known. Isoniazid eliminates  Mtb  in the 
log-phase stage of growth, causing a rapid decline in bacilli within 
the fi rst few days of administration. This decline in bacillary rate is 
referred to as early bactericidal activity (EBA). Isoniazid’s decline 
in bactericidal activity is attributed to the reduction of bacteria in 
log phase; however, Gumbo et al. believe it is due to the emer-
gence of isoniazid resistance within the bacterial population [ 96 ]. 
Mitchison et al. disagree, stating there are no clinical data to sup-
port this and growth rates are slower in actual patients [ 97 ]. 
Regardless of the mechanism, the PD parameter primarily associ-
ated with effi cacy is either C max  or AUC. Gumbo et al. identifi ed 
the AUC/MIC as the PK/PD parameter primarily associated with 
both microbial kill and prevention of resistance [ 98 ]. However, 
Mitchison et al. maintain C max  as the PK parameter primarily associ-
ated with effi cacy [ 85 ]. Knowing the appropriate PK parameter 
associated with effi cacy may determine what TB drugs are used 
together. For instance, Weiner et al. state that the reason once 
weekly isoniazid/rifapentine was less effective than a twice weekly 
regimen was due to low isoniazid concentrations, in other words, 
a “pharmacokinetic mismatch.”    [ 99 ] The authors suggest a com-
panion drug with a higher AUC may prove more effective. 
However, Srivastava et al. contend that a pharmacokinetic mis-
match does not lead to emergence of resistance to either isoniazid 
or  rifampin   [ 100 ].  

9      Pyrazinamide   

 A prodrug, PZA is converted to its active form, pyrazinoic acid, by 
the  bacterial pyrazinamidase enzyme  . Most mycobacterial species 
are resistant to PZA. PZA’s activity is limited to  Mtb , and  M. afri-
canum . Resistance is conferred through mutations in the  pncA  
gene that encodes pyrazinamidase [ 101 ]. The exact mechanism of 
action has yet to be fully elucidated [ 102 – 104 ]. Pyrazinoic acid 

Aline B. Barth et al.



403

seems to be the active constituent. PZA is most effective in an 
 acidic environment but    Mtb  appears not to consume any signifi -
cant amount of acid, thus, it is believed that only pyrazinoic acid 
created within  Mtb  is active [ 19 ,  104 ]. PZA’s preference for an 
acidic environment makes it diffi cult to assess resistance through 
culture methods. Alternative methods for assessing resistance 
include genetic sequencing of  pncA , the Wayne Assay, a color 
metric assay, which assesses pyrazinamidase activity, or molecular 
based assays [ 105 ]. 

  PZA’  s effi cacy appears to be  dose-dependent  . Currently, the 
recommended US dose is 25 mg/kg daily or 50 mg/kg twice 
weekly. Some studies suggest higher doses should be used to maxi-
mize effi cacy (>30 mg/kg/day). A murine and guinea pig study by 
Ahmad et al. showed dose-dependent activity at human-equivalent 
doses. Utilizing an in vitro PK/PD model examining PZA’s steril-
izing activity against  Mtb  (pH of 5.8) Gumbo et al. state that the 
current PZA dosing recommendation of 20–25 mg/kg/day is 
suboptimal. The authors’ modeling suggests doses of 3000–
4000 mg per day (40–60 mg/kg/day) are necessary. 

 The  PK/PD parameter   primarily associated with PZA activity 
is believed to be AUC/MIC [ 106 ]. Gumbo et al., utilizing a HFS, 
showed that PZA’s sterilizing effect correlated best with AUC/
MIC while the time above the MIC correlated with suppression of 
resistance [ 106 ]. However, as stated previously, the MIC depends 
on the pH of the media used. For example, the highest PZA MIC 
against 21 susceptible  Mtb  strains was shown to be eightfold lower 
at a pH of 5.5 (less than 50 μg/mL) than at a pH of 5.95 (400 μg/
mL) [ 107 ]. The variability seen in vitro may be less than the vari-
ability seen within the lysosomes of macrophages, which is believed 
to range between a pH of 4.8–7 [ 108 ]. 

 The primary concern with using higher doses is the fear of 
hepatotoxicity. INH and RIF are potential hepatotoxins, so the 
rate of hepatotoxicity due solely to PZA is diffi cult to determine. 
Early PZA studies using higher doses showed an association 
between PZA and an increased incidence of hepatotoxicity. 
However, a meta-analysis by Pasipanodya and Gumbo suggests 
that a majority of cases may be idiosyncratic [ 109 ]. Additional 
adverse reactions include GI upset, arthralgia and an increase in 
uric acid concentrations [ 110 ]. The 1959 USPHS study of PZA 
and INH showed PZA dose-related increases in hepatotoxicity. 
In the study, 4 of 160 (2 %) patients given PZA 25 mg/kg daily, 
developed hepatotoxicity while 11 of 167 (7 %) given PZA 40 
mg/kg daily developed hepatotoxicity [ 111 ].  Hepatotoxicity   in 
the high dose group was associated with elevated bilirubin and 
symptoms of liver dysfunction. A meta-analysis of 29 studies by 
Pasipanodya and Gumbo suggest hepatotoxicity is not dose related 
but idiosyncratic [ 109 ]. They did note a trend toward increasing 
frequency of hepatotoxicity at doses greater than 40 mg/kg but 
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that doses of up to 60 mg/kg were not predicted to have a signifi cant 
increase in hepatotoxicity. The mechanism through which toxicity 
occurs is unclear. In the same study, the most frequent adverse 
event was arthralgia which was associated with higher doses, how-
ever, the clinical importance of this side effect was considered 
“nonsevere” [ 109 ].  

10      Ethambutol   

 EMB is a  synthetic   agent that was specifi cally designed to be used 
against  Mtb . It is believed EMB targets arabinosyltransferases that 
are necessary for the synthesis of arabinan (in arabinogalactan), a 
cell wall component. Inhibiting this synthesis leads to mycolic acid 
accumulation and eventually cell death [ 21 ,  112 ]. EMB is bacte-
riostatic at lower doses with MICs in the 0.5–2 μg/mL range, 
depending upon the media used. Higher doses of EMB can be 
bactericidal in vitro. Resistance occurs from mutations primarily in 
one of the genes encoding arabinosyltransferases, designated 
 embC ,  embA , and  embB  ( embCAB  operon). 

 The most important adverse event seen with EMB is  optic 
neuritis  . The incidence of optic neuritis is low with standard 
doses in patients with normal renal function. It may add to 
visual problems in patients with preexisting ocular conditions, 
such as cataracts or diabetic retinopathy. Ezer et al. report a 
cumulative incidence of visual impairment of 22.5 per 1000 
persons with permanent impairment at 4.3 persons per 1000 
[ 113 ]. Snellen charts are used to test for visual acuity while 
Ishihara color plates are used for green–red color discrimina-
tion. Tests should be conducted at baseline and throughout 
treatment. Adverse vision changes are dose related with an 
increased incidence seen with 30 mg/kg/day compared with 
15–25 mg/kg/day. Visual changes in patients on EMB gener-
ally are reversible once EMB is discontinued, though not always. 
Additional adverse events include GI disturbance, arthralgia, 
and neutropenia and  thrombocytopenia  .  

11      Fluoroquinolones      

   Oral LEVO bioavailability is close to 100 % and absorption is fast, 
with a T max  range of 0.8–2.4 h [ 114 ]. The drug penetrates well into 
most tissues with a volume of distribution of 1.1 L/Kg. LEVO 
binds mainly to albumin with protein binding ranging from 24 to 
38 %. The protein binding does not depend on serum drug con-
centrations. MOXI bioavailability is higher than 85 %. The T MAX  is 
about 2 h, while the volume of distribution is around 2.7 L/kg 
[ 115 ]. MOXI protein binding is around 50 %. Fluoroquinolones 

11.1   Levofl oxacin   
and  Moxifl oxacin  
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can cross the placenta and can be detected in breast milk. The kid-
neys primarily clear LEVO, while MOXI is eliminated by the liver 
(52 %) and by the kidney (20 %). The elimination half-life is 7.4 h 
for LEVO and 6.5 h for MOXI when measured in TB patients 
[ 116 ]. Considering that the kidneys eliminate the majority of 
LEVO, caution has to be taken with patients that present renal 
dysfunction and MOXI might be a better option [ 30 ]. The fl uoro-
quinolones present GI side effects such as nausea, diarrhea and 
vomiting. They also can cause tendinitis, tendon rupture and pho-
totoxicity. MOXI seems to be more toxic then LEVO in terms of 
QT interval prolongation. Currently, the recommended doses for 
LEVO are 750 and 1000 mg once a day (orally or intravenously), 
while the MOXI dose is 400 mg once a day. 

 In vitro and in vivo studies demonstrated absence of induction or 
inhibition of the cytochrome CYP P450 and as a consequence no drug 
interactions associated with this metabolizing enzyme are expected, 
however, RIF reduces MOXI concentrations 25–30%, probably 
through induced sulphation or glucuronidation [ 117 ]. An increase on 
the effect of warfarin and its derivatives was noticed in patients taking 
the drug concomitantly with LEVO [ 117 ]. In addition, altered blood 
glucose concentrations have been described for patients taking diabetic 
drugs. LEVO interactions with other drugs used for TB is not com-
mon [ 25 ]. The drug absorption might be reduced by the concomitant 
ingestion of antacids with  multivalent    cations         [ 25 ].   

12      Aminoglycosides and Polypeptides      

   These drugs are commonly prescribed once resistance to SM has 
been demonstrated [ 30 ]. The drugs are intravenously  administered 
at a dose of 12–15 mg/kg 5–7 days a week, and 20–27 mg/kg 2 
or 3 days per week [ 115 ]. When administered intramuscularly, the 
drugs take between 30 and 90 min to be absorbed. The intrave-
nous infusions typically last 30 min. The drugs present low plasma 
protein binding, with a volume of distribution in the range of 
0.25–0.30 L/kg. No metabolites have been described so far. The 
drugs are eliminated by the kidneys with elimination half-lives in 
the range of 2–4 h and with the clearance in parallel to the creati-
nine clearance. The main side effects for these drugs are related to 
auditory, vestibular and renal toxicities. Reversible non-oliguric 
acute tubular necrosis might increase the serum creatinine. Renal 
cation loss also has been demonstrated. Periodic monitoring of 
blood urea nitrogen, serum creatinine, calcium, potassium, mag-
nesium is recommended. Physical examinations for vestibular 
changes also are recommended. Injectable TB drugs may enhance 
the nephrotoxicity of other drugs, such as amphotericin B, and 
they may enhance the effects of neuromuscular blocking agents in 
selected  patients      [ 115 ].   

12.1  Amikacin, 
Kanamycin, 
Streptomycin, 
and Capreomycin
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13      Ethionamide      

 A structural analog of INH,  ETA   also inhibits mycolic acid synthesis. 
Cross-resistance between INH and ETA is possible. Mutations in 
the  inhA  structural gene or in the promotor region typically cause 
resistance to both INH and ETA. Mutations in the  katg  gene affect 
only INH, allowing the use of ETA [ 118 ,  119 ]. 

 ETA is usually administered twice a day at the doses of 250–
500 mg [ 115 ]. The drug is adequately absorbed, and the T max  is in 
the range of 1.5–2.5 h (500 mg dose). The plasma protein binding 
ranges from 10 to 30 %. Some ETA reaches the CSF, but CSF 
concentrations may be below the MIC. It also promptly crosses 
the placenta. The PK/PD of ETA have not been adequately stud-
ied. Based on some similarity to INH, one might posit that AUC/
MIC is the most important parameter. In light of that, it is easy to 
see why ETA is a weak TB drug, because both C max /MIC and 
AUC/MIC are low. Further, Time > MIC is brief, so ETA has very 
little going for it. The drug is mostly metabolized in the liver and 
the sulphoxide metabolite can be converted back to the parent 
drug [ 30 ]. ETA has signifi cant GI side effects manifested in the 
majority of patients as nausea and in many patients as vomiting. 
ETA suppositories can be taken together (or singularly) with a 
reduced oral dose in order to prevent the GI side effects [ 115 ]. 
Another important side effect is hypothyroidism that is more com-
mon in patients also treated with  PAS     .  

14     Para-Amino Salicylic  Acid   

 PAS, structurally similar to aspirin, is available as a  granule dosage 
form  . Its exact mechanism of action is unknown. It is believed PAS 
inhibits dihydropteroate synthase (DHPS) in  Mtb  by competing 
with its structural analog, para-aminobenzoate (PABA), a necessary 
precursor in folate synthase, though research continues [ 33 ,  120 ]. 

 As with aspirin, PAS may cause GI upset.  GI complaints   are 
the most common side effects experienced with PAS and increases 
with increasing dose. PASER ® , a sustained-release, enteric-
coated, granule dosage form was created to lessen these side 
effects. The granules typically are administered as a packet of 
small beads, which can be sprinkled onto soft food (provided 
that they are not chewed), or poured into the mouth and washed 
down with liquid. 

 PAS is given two to three times daily. It is metabolized by 
 N-acetyl transferase 1 (NAT-1)     . The parent drug is predominately 
cleared by the liver, with metabolites renally cleared. As noted, PAS 
has the potential to cause hypothyroidism and patients should be 
monitored for this side  effec  t.  

Aline B. Barth et al.



407

15      Cycloserine      

 Cycloserine, sometimes called “psycho-serine” because of its 
untoward CNS side effects, is one of the less pleasant drugs taken 
by TB patients. A small molecule (molecular weight = 102 g/mol), 
cycloserine easily penetrates the CNS. The drug works by disrupt-
ing the incorporation of  d -alanine into peptidoglycan, an integral 
component of the bacterial cell wall. The appropriate PK/PD 
parameter associated with effi cacy is unknown, while toxicity 
appears to be concentration-dependent. CNS side effects are the 
primary concern with administering cycloserine. Vega et al. esti-
mate the incidence of anxiety, depression, and psychosis each occurs 
in 12–13 % of patients [ 121 ]. The exact mechanism for causing 
CNS effects is unknown, but may be through its actions as a partial 
agonist of the  N -methyl- d -aspartate (NMDA) receptor [ 122 ,  123 ].  

16      Bedaquiline      

 At the time of this writing, bedaquiline (Sirturo ® ) is the latest drug 
to be approved for use in TB treatment in the US. A diarylquinoline, 
bedaquiline represents the fi rst novel class of anti-TB drugs in over 
four decades. Bedaquiline inhibits the proton pump of adenosine 
triphosphate (ATP) synthase, a necessary enzyme in the synthesis of 
 Mtb  [ 124 ]. No cross-resistance with fi rst- and second- line TB drugs 
occurs, due to its unique mechanism of action. Some cross-resis-
tance may be seen with the reserve TB drug clofazimine [ 125 ]. 
Currently only approved for use in MDR TB, bedaquiline shows 
bactericidal activity against other mycobacterial species. Bedaquiline 
is active against both sensitive and drug resistant strains with an MIC 
of 0.03 μg/mL [ 126 ]. An early murine study indicates AUC as the 
PD parameter most associated with effi cacy [ 127 ]. Rouan et al. 
administered bedaquiline to mice at doses of 15, 30, or 60 mg/kg 
divided daily (5 days per week), twice weekly, or once weekly. 
Bactericidal activity correlated with total weekly dosing (and expo-
sure) rather than frequency of administration [ 127 ]. 

 The primary concern with bedaquiline is the potential for QT 
prolongation. An additive, or even synergistic, prolongation in the 
QT interval may be seen when administered with other 
QT-prolonging agents such as the FQs and the macrolides [ 128 ]. 
Thus, close monitoring of ECGs are  necessary     .  

17      TDM   

 As with many other conditions, TDM can benefi t TB patients by 
individualizing drug therapy. TDM can reduce the risk of toxicity, 
or increase the likelihood of effi cacy. Drug therapy can be modifi ed 
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to achieve specifi c, targeted concentrations. Patients with TB often 
experience reduced serum drug concentrations because of (1) a 
low initial dose, (2) malabsorption, or (3) drug–drug interactions. 
All of these problems can be alleviated through TDM [ 129 ]. 

 Multiple factors may infl uence drug absorption, including: dis-
ease states (e.g., diabetes, HIV), food, antacids, or gut transporters 
altered by concurrent medications. Drugs may be malabsorbed, 
undergo delayed absorption. Measuring serum concentrations at 
two time points (typically 2 and 6 h post dose) can distinguish 
between the two problems. TDM allows for a prompt change in 
dose, and contributes to a more rapid and complete response to 
 treatment   [ 129 ].  

18      Conclusions 

 The clinical pharmacodynamics of the TB drugs were insuffi ciently 
studied in the past, but signifi cant efforts have been made in recent 
years to better understand and control therapy. Many treatment 
centers in developing nations still rely on clinical diagnosis, perhaps 
supplemented with sputum microscopy. Under such conditions, 
treatment remains empiric. Other centers use cultures and suscep-
tibility testing. Most often, “critical” concentrations are used, but 
more focus has been placed on using MICs, similar to what is done 
in most other infections. Combining MIC values with PK param-
eters, such as C max , the AUC, or Time > MIC, gives clinicians the 
ability to target desired PK/PD values. 

 Determining the appropriate targets can be diffi cult with TB, 
because multiple drugs are used simultaneously. Lacking clear data 
regarding synergist combinations, it seems reasonable to optimize 
each drug within these combination regimens. New drugs are 
being developed to treat  Mtb  and MDR-TB, but these new drugs 
will be combined with older, weaker second- and third-line TB 
drugs. Further research is needed to optimize these new combina-
tion regimens. 

 Several studies suggest that higher doses of TB drugs should 
be used, especially RIF and PZA, in order to increase effi cacy. 
Certain diseases, including diabetes and HIV, may reduce TB drug 
concentrations. Further, high interindividual and intraindividual 
PK variability can be seen with TB drugs. The current standard 
doses might not be adequate for certain patients. TDM is a useful 
tool for determining the appropriate doses of the TB drugs on a 
case-by-case basis.     
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    Chapter 17   

 Pharmacodynamics of Antimalarial Agents                     

     Rahul     P.     Bakshi     and     Theresa     A.     Shapiro      

  Abstract 

   Antimalarials were among the fi rst, and today are among the most widely used, anti-infective agents. 
The fundamental pharmacodynamic endpoint for antimalarials is quite simple: elimination of this eukary-
otic protozoal pathogen from its host; numerous surrogates for this have been developed. Antimalarial 
therapy is confounded by several key factors including the coexistence of multiple pharmacologically dis-
tinct  Plasmodium  life cycle forms in the human host; limited resources for discovery, development, and 
deployment of new drugs; and a high requirement for safety due to the enormous patient population and 
use for chemoprophylaxis of healthy travelers. Further, for any particular drug, myriad infl uences impact 
the pharmacological endpoint, including rapidity of the onset of action, potency, ‘static vs. ‘cidal activity, 
susceptibility to parasite resistance, immune status of the host, and the suitability of prevailing pharmaco-
kinetics. Classic and recently described pharmacodynamic endpoints in preclinical models are presented, as 
are new insights into the pharmacokinetic drivers of antimalarial pharmacodynamics. The effi cacy and 
safety of existing drugs are surveyed, and some novel experimental agents are discussed.  

  Key words     Malaria  ,    Plasmodium   ,   Antimalarial  ,   Pharmacokinetics  ,   Pharmacodynamics  ,   PK/PD  , 
  Parasite reduction ratio  ,   Resistance  ,   Combination therapy  

1       Malaria 

 Malaria is a  mosquito-borne infectious disease   that affl icts hun-
dreds of millions and kills nearly a million children every year in 
Africa. Recent efforts have brought encouraging progress toward 
eliminating this major public health challenge, via a combination 
of vector control, use of insecticide-impregnated bednets, improved 
diagnostics, and chemotherapy campaigns. Nevertheless, the lack 
of a vaccine and widespread drug resistance make the need for 
effective and safe new antimalarial agents compelling. Of the 
  Plasmodium  species   pathogenic to humans,  falciparum  is most 
aggressive, causing life-threatening infection and having the great-
est propensity for drug resistance [ 1 ,  2 ]. 

 Malaria parasites have a complex  life cycle   (Fig.  1 ). From a 
therapeutic perspective, by far the most important forms are asexu-
ally dividing parasites that dwell within erythrocytes. They alone 
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are responsible for the morbidity and mortality of malaria, and in 
severe infection may number hundreds of millions per milliliter of 
blood. It is the cyclical release of naked parasites into the blood-
stream that gives rise to the classic periodic agues of malaria.  P. 
falciparum ’s unique lethality stems from adherence of infected 
erythrocytes to blood vessel walls, which causes a cytokine response 
and functional vascular obstruction. In severe cases this results in 
cerebral malaria, extensive hemolysis, and multiple end-organ fail-
ures. The remaining life cycle stages (all of which may coexist 
simultaneously within the same patient) are responsible for trans-
mission of infection to the mosquito and may cause late reactiva-
tion of symptomatic disease. Unfortunately, each life cycle form 
has a different profi le of drug  susceptibilities   (Fig.  2 ) [ 3 ]; hence 

  Fig. 1     Life cycle   of malaria parasites. Sporozoites inoculated by a mosquito 
rapidly make their way to the liver and infect hepatocytes. Parasites replicate 
within the hepatocyte, rupture the cell, and enter the blood stream as merozoites. 
These merozoites invade erythrocytes, initiating the blood stage of the infection. 
Erythrocytic parasites amplify 8–32-fold over 48–72 h, rupture the red blood cell, 
invade new erythrocytes, and restart the cycle. All parasite proliferation within 
the human is asexual. Some erythrocytic forms differentiate into gametocytes 
that will infect a biting mosquito, reproduce sexually, and eventually generate 
sporozoites that complete the life cycle. Some liver stage parasites of  Plasmodium 
vivax  and  Plasmodium ovale  form latent hypnozoites that may remain quiescent 
for years, before activating and establishing symptomatic disease       
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multiple drugs may be required for complete eradication of the 
infection from a patient. In addition to their obvious necessity for 
the treatment of established infection, antimalarial drugs will also 
remain essential for the chemoprophylaxis of travelers to malarious 
regions until a suitable vaccine becomes available.

    The discovery and development of antimalarial drugs has 
proven challenging.  Plasmodium   parasites   are host-specifi c, such 
that species pathogenic for humans rarely propagate in other ani-
mals, and they have proven equally diffi cult to study in vitro. 
Obligate intracellular pathogens with an ~80 % AT genome [ 4 ], 
long term in vitro cultivation was not accomplished until 1976, 
when the preference of  P. falciparum  for microaerophilic condi-
tions was realized [ 5 ].  P. vivax  still cannot be maintained in con-
tinuous culture. Over time, however, animal models and in vitro 
assay systems have matured to the point that important parameters 
such as potency, pharmacokinetic–pharmacodynamic linkage, and 
proof-of-principle in vivo effi cacy can be measured. Though 
eukaryotic like its human host,  Plasmodium  has numerous unique 

  Fig. 2     Simplifi ed pharmacodynamic specifi cities   of antimalarial drugs. Depicted are the classes of antimalarial 
drugs, in the context of their major activities against distinct forms of  Plasmodium  in a human host. Disease- 
initiating sporozoites are not listed since no drug has meaningful activity against this stage. Group I drugs 
primarily target the disease-causing asexual blood stages, and form the bulwark of antimalarial therapy. The 
Group II synergistic combination of atovaquone plus proguanil has reliable action against pathogenic red cell 
stages as well as the initial liver stage of  P. falciparum ; it is useful for prophylaxis as well as treatment. Group 
III primaquine targets regular and latent liver stages and gametocytes, but has no useful activity against 
asexual blood stages. Interspecies differences and unknown or unreliable activities are not shown       
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and distinguishing features exploitable for drug targeting. These 
include, for example, a chloroplast-like organelle whose self- 
contained genome and proteins have clinically useful susceptibility 
to several conventional antibacterials (e.g., tetracyclines, clindamy-
cin) [ 6 ]; effi cient hemoglobin digestion and corollary brisk detoxi-
fi cation of byproduct heme by chloroquine-sensitive crystallization 
[ 7 ]; and absolute dependence on pyrimidine biosynthesis disrupted 
by atovaquone-mediated blockade of  mitochondrial electron trans-
port   [ 8 ]. In recent years availability of the complete genome 
sequence [ 4 ] and use of high throughput screens against libraries 
of millions of compounds [ 9 – 11 ] have provided much-needed 
promising new therapeutic leads (Sect.  4.7 ).  

2     Pharmacodynamic Endpoints for Antimalarial Drugs 

   For most animal models of malaria neither the host nor the parasite 
is directly pertinent to human infection, and the time course and 
characteristics of human disease are not faithfully recapitulated. 
However, different animal model systems mimic some aspects of 
the host–parasite interaction and allow for  biological and pharma-
cological investigations  . In addition to humans, three major animal 
models have been utilized for studying antimalarial agents. 

  
  Avian malaria   was the initial model of choice for chemotherapeutic 
development [ 12 ].  P. gallinaceum  was particularly practical since 
both the mosquito vector and avian host (ducks, chickens) are 
easily infected. Although avian red cells are nucleated and the life 
cycle of  P. gallinaceum  differs signifi cantly from that of human 
parasites, the erythrocytic stage is usefully mimicked. Mid-
twentieth century development of major drugs chloroquine, prima-
quine, proguanil, and some antifolates was accomplished using  P. 
gallinaceum -avian malaria. Subsequent discovery of rodent malaria, 
a system relatively easy to manipulate and with greater similarity to 
human physiology, resulted in a shift away from avian models.  

    Rodent malaria parasites       P. berghei ,  P. yoelii , and  P. chabaudi  have 
proven invaluable for pharmacodynamic screening of candidate 
compounds [ 13 ] and rodent models are now standard in antima-
larial drug development [ 14 ]. However, no rodent model fully 
recapitulates the disease profi le seen in human malaria, rodent par-
asite behavior in vivo can differ signifi cantly from that of human-
tropic  Plasmodium  species, and rodents may differ substantially in 
their handling of antimalarials. Controversy surrounds the use of 
the  P. berghei  ANKA-mouse model of cerebral malaria that repro-
duces some, but not all, pathophysiological aspects of human cere-
bral malaria [ 15 ]. Recent development of a mouse model in which 
human erythrocytes are maintained by immunosuppression enables 
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pharmacodynamic evaluations against the parasites of greatest 
interest (asexual blood stages of  P. falciparum ), but in a mouse 
background [ 16 ].  

   Multiple  Plasmodium  species naturally infect nonhuman primates 
and mimic important features of human infection, arguably mak-
ing them the best surrogates for human disease. However, the 
expense, limited availability, and ethical concerns surrounding use 
of primates severely limit their practical utility. Notable models 
include the  P. cynomolgi -macaque that mimics human  P. vivax  
infection, and the  P. coatneyi - and  P. fragile -macaque models that 
in many aspects resemble human  P. falciparum  infections [ 17 ]. 
In fact, the  P. cynomolgi -macaque model proved critical in the 
development of primaquine, the only agent known to target latent 
liver forms (hypnozoites), thus preventing  P. vivax  and  P. ovale  
relapses. The demonstration that  P. knowlesi , normally infective to 
Old World Monkeys, can cause signifi cant, sometimes lethal, zoo-
notic disease in humans has made this pathogen a subject of con-
siderable study [ 18 ]. While monkey-to-human transmission is 
more frequent than previously estimated, human-to-human trans-
mission has not been demonstrated. There have been efforts to 
infect nonhuman primates with human parasites. Some success has 
been obtained using the  Aotus  monkey host for  P. falciparum ,  P. 
vivax , or  P. malariae ; however, results from these artificial 
self-curing infections need to be interpreted with  caution     .  

   Experimental malaria in humans has a long and checkered history 
[ 19 ], but thoughtful and safe studies conducted during the World 
War II era provided invaluable new knowledge on the complex 
biology (Fig.  1 ) and pathophysiology of  falciparum  and  vivax  
malaria, and made possible the rapid development and deployment 
of amodiaquine, chloroquine, and proguanil to troops fi ghting in 
malarious areas of Africa, Europe, and the Pacifi c. Even today, study-
ing some aspects of antimalarial pharmacodynamics depends heavily 
on experimental human infections. Prior to large and diffi cult to 
control fi eld trials of prophylactic effi cacy, small, tightly controlled 
studies in which well-informed and consenting healthy volunteers 
are challenged by the bite of malaria-infected mosquitoes or by the 
inoculation of malaria-infected blood, are standard in assessing drug 
[ 20 ] or vaccine candidates [ 21 ] for malaria prophylaxis. 

 Classical pharmacodynamic endpoints for antimalarial devel-
opment and use have been clinical—both symptomatic (e.g., time 
to fever reduction) and microbiological (e.g., time to parasite 
clearance, 28 day cure rate). In recent years, new metrics have been 
devised for use in clinical trials. They take cognizance of the fact 
that unlike most other infections, the pathogenic forms of malaria 
are confi ned to erythrocytes in the bloodstream. In severe illness 
infected cells can number up to 10 12 , and clinical success of a drug 
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depends on reducing this burden rapidly and completely. From 
this realization have come clinical measures of rate of killing, 
rate of recrudescence and parasite reduction ratio (Sect.  2.2.3 ). 
In some cases these endpoints are now also being applied to animal 
and in vitro studies. Demonstrating and counting parasites in a 
blood smear by simple light microscopy remains the gold standard 
for measuring antimalarial pharmacodynamic activity. PCR- and 
antibody-based assays are now also available but logistical and 
resource limitations restrict their widespread fi eld-deployment.      

   For much of the twentieth century, malaria research was restricted 
to in vivo models since human parasites could not be cultured 
in vitro. Trager and Jensen’s breakthrough report of the continuous 
culture of  P. falciparum  erythrocytic stages in vitro enabled a veri-
table explosion in malaria research [ 5 ]. Unfortunately, this success 
has not translated to  P. vivax , which preferentially infects immature 
red cells, or to liver stages of the  Plasmodium  life cycle. Nonetheless, 
 P. falciparum  blood stages maintained in vitro form the basis for 
numerous and diverse pharmacodynamic assays. The following 
pharmacodynamic endpoints all focus on the asexual erythrocytic 
parasites, which are responsible for symptomatic disease. 

   As developed in a micro-titer format, this assay allows high through-
put screens and facile measurement of dose–response relationships. 
Maximum sensitivity is provided by measuring the incorporation of 
[ 3 H]hypoxanthine into parasite nucleic acid polymers [ 22 ]; how-
ever, the use of dyes [ 23 ] and fl ow cytometry [ 24 ], though less 
sensitive, avoids the logistical restraints of radioisotopes. Growth 
inhibition assays do not discriminate between the ‘static or ‘cidal 
nature of growth inhibition (that is, whether or not the parasite 
proliferates once drug pressure is lifted). In addition, they provide 
limited information about the speed of effect—an important param-
eter for in vivo consideration. Nevertheless, this is a rapid, simple 
and important fi rst step in screening for antimalarial activity.  

   A logical follow-up to growth inhibition assay is to determine whether 
the effect is ‘static, or ‘cidal. In this method parasites are treated with 
drug, the drug is removed, and individual parasites are cloned out by 
limiting dilution. Survivors are detectable after a period of 3–6 weeks 
[ 25 ,  26 ]. The 48 h erythrocytic life cycle and frequent requirement 
for fresh medium and red cells make these assays cumbersome, time-
consuming, costly, and subject to microbial contamination. Less rig-
orous approaches have been reported [ 27 ,  28 ] but not extensively 
validated by comparison with the classic method.  

    The rapidity of drug action is important in clinical care, and may 
determine the utilization profi le of a drug, particularly in the set-
ting of patients with high parasitemia. Speed of action is measured 
via the Parasite Reduction Ratio (PRR), the number of parasites 
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present before drug treatment divided by those remaining after 
treatment. PRR assays are constrained to one life cycle of the para-
site; 48 h for  P. falciparum . Thus, the higher the PRR, the more 
rapid is a drug’s effect. PRR studies are usually performed in vivo 
(in humans or in nonhuman models) wherein high parasitemia 
before dosing makes measurement of the decline both straightfor-
ward and sensitive. Measurement of PRR in vitro has been accom-
plished, with log PRR values ranging from >8 for artemisinin to <3 
for atovaquone [ 25 ]. However, in vitro assays rely on limiting 
 dilution cloning and outgrowth, thus taking weeks to yield a result. 
The standard growth inhibition assay has recently been modifi ed 
to yield information about speed-of-action of antimalarial drugs 
[ 29 ]. Output of this assay is binary, with compounds being classi-
fi ed as fast-acting or non-fast- acting     .  

   Modifi cations of an existing hollow fi ber cartridge apparatus have 
very recently made possible studies in which  P. falciparum  can be 
exposed in vitro to dynamically changing drug concentrations, 
akin to those that occur in vivo and distinctly different from the 
constant drug concentrations usually studied in vitro [ 30 ]. This 
system allows studies of the pharmacokinetics that drive many dif-
ferent antimalarial pharmacodynamics. For example, using known 
human pharmacokinetics, different dosing regimens can be tested 
to identify those that provide maximal parasite reduction and/or 
minimal emergence of resistance. Alternatively, the fundamental 
governance of drug action by either peak concentration or time of 
exposure can be discerned by applying a given dose of drug by two 
artifi cial (and extremely different) kinetic regimens (Sect.  3.4 ). 

  In summary , from a century ago when ducks and chickens 
were the major vehicle for antimalarial drug development, pharma-
codynamic analysis has progressed to the stage where most micro-
biological endpoints can be assayed in vitro. Complexities of the 
parasite and the host give rise to a signifi cant number of issues that 
must be addressed for successful antimalarial development and use, 
and no single model system or assay is suffi cient to address all of 
them. Multiple approaches remain necessary.       

3     Pharmacodynamic Issues 

   Antimalarial drugs can only be understood, and properly used, in 
the context of their activity against different forms of the parasite. 
 Plasmodium  has a multistage, complex, and dynamic life cycle, 
even just within the confi nes of the human host (Fig.  1 ). Human 
disease is initiated by the bite of an infected female Anopheline 
 mosquito   (the vector), which inoculates sporozoites in the course 
of taking a blood meal. This form circulates for just a few minutes 
before infecting hepatocytes, undergoing multiple rounds of asex-
ual reproduction over several weeks, amplifying 10–30,000-fold, 
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rupturing the cell and spilling progeny into the bloodstream. The 
released merozoites invade erythrocytes, differentiate and replicate 
asexually 8–32-fold over 48–72 h, before lysing the cell and infect-
ing new erythrocytes. Severely ill patients may harbor up to 10 12  
erythrocytic parasites. Some  erythrocytic   forms differentiate into 
gametocytes, responsible for infecting and undergoing sexual 
reproduction within the mosquito, eventually to generate salivary 
gland-resident sporozoites that complete the life cycle. The above 
biology is common to all pathogenic species of  Plasmodium , but 
 vivax  and  ovale  have the additional feature that some liver stage 
parasites, termed hypnozoites, are latent and may remain quiescent 
for decades after the mosquito bite, before activating and establish-
ing an erythrocytic cycle [ 1 ]. 

 The various life cycle forms within a patient are morphologically, 
biochemically, and pharmacologically distinct (Fig.  2 ). The activity 
of drugs against the various life cycle stages can be used to classify 
antimalarials into pharmacologically convenient groups [ 3 ]. No 
drug works against sporozoites, and, unfortunately, no drug is active 
against all forms other than sporozoites. Group I  drugs   primarily 
target asexual blood stages. They alone cause morbidity and mortal-
ity, hence are the major target of drug therapy. The Group II syner-
gistic combination of atovaquone and proguanil has additional 
activity against the initial liver stage of  P. falciparum . Group III pri-
maquine targets liver stages and gametocytes, but has no useful 
activity against asexual blood stages. Primaquine’s activity against 
latent hypnozoites of  P. vivax  or  ovale  prevents the late reactivation 
of symptomatic erythrocytic parasites that characterizes these spe-
cies. Killing gametocytes prevents transmission of infection to the 
mosquito and is hence of public health importance. 

 Choice of appropriate drug is driven, in large part, by the 
desired outcome. Treatment of, or prophylaxis against, symptom-
atic malaria is provided by Group I and II agents. Public health 
campaigns, or  regimens   striving for complete cure, may include 
primaquine for its reliable activity against hypnozoites and gameto-
cytes. Prophylaxis can also be obtained by drugs that target liver 
stage parasites (Groups II and III). Life cycle stage specifi city is 
also important in new drug discovery, the ideal agent being one 
that has reliable activity against all parasite forms.  

  
 The World Health Organization (WHO) defi nes malaria drug resis-
tance as “the ability of a parasite strain to survive or multiply despite 
the administration and absorption of a drug given in doses equal to 
or higher than those usually recommended but within the tolerance 
of the subject” [ 31 ]. Acquisition of resistance, which may be rapid 
and at a high level, negates the clinical utility of a drug and may 
jeopardize its entire chemical class. Recognized resistance mecha-
nisms include amplifi cation of, or most commonly point mutation(s) 
in, a target protein sequence. In recent years experimentally induced 

3.2    Drug Resistance  
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resistance to “lead” compounds in drug development has been 
exploited to obtain invaluable insight into molecular mechanism of 
action as well as long-term vulnerability to resistance. Interestingly, 
for leads that generate resistance in the lab, pharmacodynamic utility 
of the class may be preserved by screening for class members that 
retain activity against the primary resistance [ 32 ]. Additionally, 
emergence of resistance may be delayed if the molecular mechanism 
involves multiple molecular targets. As for other anti-infective classes, 
the most reliable route for precluding resistance in the fi eld is to 
avoid monotherapy by use of drug combinations.     

   The pharmacological battle against malaria has laid bare the inadvis-
ability of  monotherapy,   the end result of which has been emergence 
and dissemination of resistance to nearly every class of antimalarial 
drug that has been deployed. Laboratory, and in some cases fi eld, 
data indicate that antimalarial drug resistance can be delayed, and 
perhaps avoided, by drug combinations. The earliest and best-stud-
ied antimalarial drug combinations stem from Nobel prize-winning 
studies by Hitchings and Elion on the antibacterial pairing of a sul-
fonamide inhibitor of dihydropteroate synthase plus a folate reduc-
tase inhibitor, both of which interfere with production of essential 
nutrient tetrahydrofolate [ 33 ]. Profound synergism is obtained 
against malaria parasites by this dual inhibition: when sulfadiazine 
and pyrimethamine are given in combination (as opposed to singly) 
the same effi cacy is obtained by a 20-fold (or more) reduction in 
the dose of each drug [ 34 ]. (Interestingly, the fi rst-ever inkling of 
 sulfonamide/antifolate synergy   against any organism came from 
Joseph Greenberg’s studies of  P. gallinaceum  in chicks [ 35 ].) The 
ability to use lesser doses for maximal effi cacy reduces cost and the 
likelihood of host toxicity. Synergism and the well-matched phar-
macokinetics of this pair were designed to minimize the emergence 
of resistance. Two other antimalarial fi xed dose combinations have 
since been marketed.  Atovaquone plus proguanil   (Sects.  4.4  and 
 4.5.1 ) relies on synergistic collapse of the parasite’s transmitochon-
drial membrane potential [ 36 ]. The more empirical pairing of arte-
mether and lumefantrine targets different processes and their 
pharmacokinetic mismatch (2–3 h vs. 3–6 days) results in long-
term persistence of lumefantrine alone, a concern for resistance. 

 The now-accepted requirement for combination therapy and 
emergence of several promising new antimalarial leads (Sect.  4.7 ) 
have given rise to spirited discussions of the most rational basis for 
choosing drug pairs [ 37 ,  38 ]. The relative importance of (1) simi-
larities/differences in molecular mechanism of action and in mech-
anisms of resistance; (2) synergistic, additive or antagonistic 
interaction; (3) matching half-life; (4) ‘static/‘cidal activity; are all 
under consideration. While thoughtful consideration and various 
in silico models can usefully examine these various factors, only 
experimental work will identify the key determinants of success.  

3.3  Drug 
Combinations
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    Ironically, though malaria featured prominently in Paul Ehrlich’s 
seminal studies toward rational drug discovery [ 39 ], and antima-
larial drug concentrations were amongst the earliest to be mea-
sured in order to understand and guide therapy [ 40 ], today the 
status of pharmacokinetic/pharmacodynamic linkage is notably 
incomplete. Particularly lacking is an understanding of the funda-
mental PK governance of antimalarial activity. Extensive study of 
antibacterials has revealed that pharmacodynamic effi cacy is usually 
driven by a specifi c pharmacokinetic parameter— C  MAX  or  T  MIC  
(Fig.  3 ) [ 41 ,  42 ]. Indeed, antibacterials are classifi ed and clinically 

3.4  Pharmacokinetic/
Pharmacodynamic 
 Linkage  

  Fig. 3     Pharmacokinetic   parameters of a drug in vivo. Following dosing, drug con-
centration in blood rises ( dashed line ) until reaching a peak ( C  MAX ), and then 
decays at a rate characteristic of the drug and the dosed organism, until all drug 
is cleared from the system. During this time, drug concentrations spend a certain 
interval ( T  MIC ) above a predetermined Minimal Inhibitory Concentration (MIC). The 
Area Under the concentration–time Curve (AUC,  diagonal black lines ) is an indi-
cator of total drug exposure. The same amount of drug can be dosed via a differ-
ent regimen using multiple smaller doses ( solid line ). This regimen yields lower 
 C  MAX s but a longer  T  MIC  while maintaining the same AUC ( shaded area )       
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dosed based this PK/PD link. Recent in vitro studies have demon-
strated that such PK/PD governance also pertains for antimalari-
als. Initial proof of principle work indicates that antimalarials too 
can be classifi ed as being driven by  C  MAX  or  T  MIC , independent of 
their ‘static or ‘cidal action, and that this governance is class-wide 
[ 30 ]. This information may improve empirical dosing regimens [ 38 ], 
and, more importantly, provide new guidance in drug develop-
ment. For example, an experimental compound that is  C  MAX -driven 
may be fully effi cacious in vivo, despite having a short-half life. 
However, short in vivo half-life for a compound that has been 
shown to be governed by time of exposure would suggest either a 
NOGO decision or efforts to modify its chemical structure so as to 
prolong plasma half-life.   

      Given the enormous number of people affl icted with malaria, the 
often limited health resources in malaria endemic areas, and the 
tens of millions of travelers to malarious countries every year who 
should take chemoprophylaxis (  http://www.cdc.gov/malaria/
travelers/index.html    ), it becomes immediately obvious that the 
requirement for safety is unusually high for antimalarial drugs. 
This imposing barrier of safety must be kept in mind when select-
ing candidates for development, and in designing studies to test 
potential drugs.  

  
 Rational drug development starts with the identifi cation of a suit-
able molecular target. Screening small molecules in vitro for activ-
ity against the cell-free target is followed by testing and 
development of favored candidates in more complex whole cell 
assays and animal models. For  Plasmodium  this process presents 
several challenges. The eukaryotic nature of  Plasmodium , and 
resultant similarity of basic  biochemical mechanisms   between the 
pathogen and its host, immediately narrows the list of unique 
molecular entities suitable for selective targeting. Intracellular res-
idence of the parasite further complicates drug design. For a lead 
to be truly effi cacious, its molecular target should be accessible 
and essential during all stages of the parasite life cycle, and prefer-
ably be present and required in all species of  Plasmodium  patho-
genic to humans. Finally, there should be a high barrier to 
resistance, a facet infl uenced by both the function and redundancy 
of the target.  Rational drug  development   schema can yield candi-
dates that are tremendously effective in cell-free screens, but a 
great many of these prove ineffective against erythrocytic parasites 
in vitro or in vivo. An alternative strategy is to screen against whole 
cells or animal models; determination of molecular mechanism of 
action occurs later, if at all, in the process. Most successful antima-
larials have been developed through this less-than-rational strat-
egy, indeed chloroquine was discovered and developed using avian 
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and rodent models [ 43 ] and its molecular mechanism of action 
was not described until 50 years later [ 44 ]. Artemisinins were 
co-opted from ancient Chinese remedies [ 45 ] and details of their 
mechanism of effi cacy are debated. 

 The malaria research community has coalesced around the 
SERCaP—Single Exposure Radical Cure and  Prophylaxis     —as the 
ideal for new antimalarial drug development [ 46 ]. This sets a very 
high bar.  SERCaP   dictates that the treatment regimen be single 
dose, rapidly effi cacious, target all forms of the parasite including 
latent stages, and have a long-lasting pharmacodynamic effect so 
as to prevent reinfection. Prudent drug development also 
demands that the agent be inexpensive, orally bioavailable, and 
provide a high barrier to resistance. It is improbable that any 
single molecule will satisfy all of these requirements. Instead, 
future malaria therapies will likely be based on the combination 
of multiple agents, each providing a unique spectrum of action. 
In subsequent sections, we discuss clinically used antimalarial 
drugs and some experimental agents in development, in context 
of the aspects described above.   

4     Pharmacodynamics of Antimalarial Drugs 

   Agents in this class share structural similarities (Fig.  4 )    and a com-
mon molecular mechanism of action; however, resistance is medi-
ated by multiple different mechanisms, not all of which have been 
characterized.

     Synthesized by the Germans as Resochin in 1934, and rediscov-
ered by the Allies as SN7618 in 1944, chloroquine (Fig.  4 ,  1 ) was 
for decades the mainstay of antimalarial chemotherapy [ 43 ]. 
Christened chloroquine by E. K. Marshall in 1945, the drug inhib-
its the essential parasite process of  heme detoxifi cation   [ 44 ]. 
 Plasmodium  satisfi es most of its amino acid requirements by digest-
ing host cell hemoglobin, releasing free heme in the process. 
Heme-induced oxidative damage is avoided by nonenzymatic 
 crystallization into the inert polymer hemozoin [ 7 ]. Chloroquine 
concentrates in parasites and inhibits heme crystallization, leading 
to oxidative damage and death. 

 While chloroquine-resistant parasites are not readily generated 
in vitro, the eventual emergence and global dissemination of 
resistance has rendered chloroquine useless in all but a few locales. 
Elegant parasite cross-breeding studies pinpointed resistance in 
 P. falciparum  to point mutations in  PfCRT   ( P. falciparum  chlo-
roquine resistance transporter) [ 47 ]. Presence of resistance 
mutations decreases the accumulation, hence the cytotoxicity, 
of chloroquine. Curiously, although other 4-substituted quino-
lines also inhibit heme polymerization [ 48 ], and  P. vivax  may be 

4.1  4-Substituted 
 Quinolines  
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chloroquine- resistant [ 31 ], PfCRT appears not to mediate these 
resistances [ 49 ]. 

 Chloroquine’s tremendous clinical success prior to resistance 
can be explained by its ability to satisfy many of the pharmacody-
namic requirements for an ideal antimalarial. It targets a pathway 
not present in the human host, is parasiticidal, fast acting, and has 
a relatively high PRR. Furthermore, the pharmacokinetics of chlo-
roquine are favorable. It persists with a plasma half-life of weeks to 
months [ 50 ]. This long half-life permits the convenient weekly 
dosing of chloroquine for antimalarial prophylaxis. 

 Chloroquine toxicity is both dose- and age- related  ; doses must 
be substantially reduced for safe use in children. At doses and regi-
mens required to treat malaria, toxicity in adults is negligible [ 51 ]. 
Rare adverse events include diplopia and dizziness. Cumulative 
high doses of chloroquine used in anticancer [ 52 ] and immuno-
suppressive therapy [ 53 ] may lead to neurotoxicity, cardiotoxicity, 
and irreversible retinopathy.     

   Quinine (Fig.  4 ,  2 ), an alkaloid extracted from the bark of the cin-
chona tree, was used as an antipyretic by the Quechua in South 
America. It was transported to Rome by the Jesuits in the early 
seventeenth century and, in a vivid indication of today’s great need 
for new antimalarials, this antique natural product remains a drug 
of choice for treating patients with severe falciparum malaria [ 54 ]. 

4.1.2    Quinine     

  Fig. 4       The substituted quinolines  and structurally related compounds  . Drugs with substitutions at the 4-posi-
tion include chloroquine ( 1 ), quinine ( 2 ), mefl oquine ( 3 ), and amodiaquine ( 4 ). Piperaquine ( 5 ) is a bisquinoline 
while lumefantrine ( 6 ) is structurally similar to substituted quinolines. All have potent activity against asexual 
erythrocytic parasites. Primaquine ( 7 ), an 8-substituted quinoline, targets liver stages and gametocytes       
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Quinine differs from chloroquine in having an ~8 h plasma half-life 
[ 50 ]. This necessitates more frequent dosing, and in severely ill 
patients, a loading dose [ 55 ]. Quinine resistance has been observed 
in the fi eld, with genetic studies indicating a multifactorial pheno-
type [ 56 ]. Quinine has signifi cant toxicity [ 51 ]. Symptoms include 
the classic cinchonism (disturbances of vision and hearing, head-
ache, nausea), as well as hypoglycemia and hypotension that may 
be life threatening. This toxicity profi le and its relatively short 
half- life make quinine unsuitable as a prophylaxis agent. Quinidine, 
an effi cacious antiarrhythmic, is a stereoisomer of quinine with 
potent antimalarial activity. In cases where quinine is unavailable, 
intravenous quinidine is an acceptable substitute for temporary 
management of severe  malaria      [ 55 ].  

   Mefl oquine (Fig.  4 ,  3 ) was discovered in a whole-cell screen by the 
Walter Reed Institute of Medical Research [ 57 ], and became an 
immediate agent of choice for its high activity against drug- resistant 
 P. falciparum  [ 58 ]. PfCRT does not confer mefl oquine-resistance 
[ 59 ]. This fact, combined with a weeks-long half-life [ 60 ], enables 
the use of mefl oquine for prophylaxis against chloroquine-resistant 
malaria. Unfortunately, now-widespread resistance limits mefl o-
quine’s utility. Resistance appears to be multifactorial, and is usu-
ally associated with increased expression of multidrug-transporter 
proteins [ 59 ]. Mefl oquine toxicity is dose-related, and usually mild 
at doses used for short-term prophylaxis [ 51 ]. The adverse event 
spectrum expands at higher doses, to include CNS toxicity and 
neuropsychiatric effects. For this reason, it is not utilized in long- 
term prophylaxis regimens.  

    Amodiaquine   (Fig.  4 ,  4 ), an old antimalarial with structural 
and mechanistic features of chloroquine, has signifi cant activity 
against chloroquine-resistant  Plasmodium  [ 61 ]. However, its use 
is disfavored due to an association with hepatotoxicity and agranu-
locytosis [ 51 ].  Piperaquine   (Fig.  4 ,  5 ) is also active against chloro-
quine-resistant malaria; its molecular mechanism of action is 
unclear [ 62 ]. It is clinically utilized in combination with dihydro-
artemisinin.  Lumefantrine   (Fig.  4 ,  6 ), a molecule structurally simi-
lar to substituted quinolines, acts against asexual erythrocytic forms 
of  P. falciparum  by an unknown molecular mechanism of action 
[ 63 ]. Lumefantrine is FDA-approved and marketed as a fi xed-dose 
combination with artemether (Sect.  4.3 ) for use against both drug-
sensitive and drug-resistant malaria.   

   8-aminoquinoline primaquine (Fig.  4 ,  7 ) is the only clinically used 
antimalarial with reliable activity against initial and latent liver 
stages and gametocytes (Fig.  2 ) [ 64 ]. Conversely, primaquine has 
no useful effect on blood stage asexual forms of  Plasmodium , and 
hence it has no place in the acute treatment of symptomatic malaria. 

4.1.3    Mefl oquine     

4.1.4  Other 
4-Substituted Quinolines 
and Structural Relatives

4.2   8-Aminoquinol-
ines     
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Primaquine is the only agent known to eliminate hypnozoites of 
 P. vivax  and  P. ovale , thus preventing late relapses of these infec-
tions. The molecular mechanism of action of primaquine is unclear, 
but appears to be mediated largely by its metabolites. Primaquine’s 
vivid toxicities suggest that it acts by generating oxidative species 
and interfering with redox balance in the pathogen. Primaquine is 
associated with frequent gastrointestinal intolerance and at high 
doses causes methemoglobinemia in most people (primaquine use 
reviewed in [ 65 ]). Patients with glucose-6-phosphate dehydroge-
nase defi ciency are particularly susceptible, even at therapeutic doses, 
to acute, sometimes life threatening, hemolysis and hemolytic ane-
mia [ 66 ]. Indeed, primaquine-induced hemolysis led to the discov-
ery of glucose-6-phosphate dehydrogenase defi ciency, the fi rst 
genetic abnormality associated with an enzyme [ 67 ].  

    Artemisinin (Fig.  5 ,  8 ) or qinghaosu is the active moiety in  Artemesia  
  annua   , a plant utilized by Chinese herbalists for over 2000 years 
[ 45 ]. A sesquiterpene lactone endoperoxide, the artemisinins currently 
form the last line of defense against multidrug- resistant  P. falci-
parum . Their mechanism of action has been the subject of much 
study. It is generally accepted that the endoperoxide is the active 
pharmacophore. Iron- or heme-catalyzed cleavage of the oxygen-
oxygen bond likely leads to subsequent formation of a carbon-
centered radical [ 68 ] that in turn alkylates parasite macromolecules. 
Semisynthetic derivatives artemether (Fig.  5 ,  9 ), arteether (Fig.  5 , 
 10 ), and  artesunate   (Fig.  5 ,  11 ) are more soluble than parent arte-
misinin, but act in a similar fashion. While these compounds them-
selves have antimalarial activity, they also act as prodrugs in vivo. 
All derivatives ( 8 – 11 ) are rapidly converted in vivo to  dihydroarte-
misinin   (Fig.  5 ,  12 ), itself an antimalarial [ 69 ]. The artemisinins 
have potent and rapid activity against asexual erythrocytic stages of 
 P. falciparum  and  P. vivax , making them particularly useful in 
severely ill patients with high parasite burden.

   A distinguishing characteristic of the artemisinins is their 
extremely short half-life [ 70 ]. Cleared from plasma within min-
utes, their great activity against a parasite with a complex 48 h life 
cycle has always been puzzling. However, in vitro PK/PD studies 

4.3   The  Artemisinins  

  Fig. 5       The artemisinins. Members of this family include natural product artemisinin ( 8 ), and its semisynthetic 
derivatives artemether ( 9 ), arteether ( 10 ), artesunate ( 11 ), and dihydroartemisinin ( 12 ). These compounds are 
an obligate component of most clinically effi cacious antimalarial drug regimens       
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have demonstrated that artemisinin effi cacy is  C  MAX -driven, a 
mechanism that aligns ideally with its short half-life, providing a 
satisfactory explanation for the clinical success of such remarkably 
short-lived drugs [ 30 ]. Interestingly, daily dose artemisinin mono-
therapy, even for 7 days, invariably leads to recrudescence of para-
sitemia [ 71 ]. Explanations for this phenomenon include differential 
effects on life-cycle stages and/or induction of post-treatment 
“quiescence” in surviving parasites [ 72 ].  Long-lived endoperox-
ides   (Sect.  4.7.4 ) have been developed in an effort to remedy this 
problem [ 73 ]. In any case, artemisinins are now almost always used 
in combination regimens. 

 Effi cacy of the artemisinins has recently been threatened by the 
discovery of a resistance-like phenomenon. While not meeting 
WHO’s defi nition of leading to treatment failure, the effect mani-
fests pharmacodynamically as a slower rate of parasite clearance and 
longer persistence of parasites in vivo [ 74 ].  Genetic studies   suggest 
that parasite genotype accounts only partially for the observed clin-
ical phenotype, implying the existence of as-yet-undefi ned contri-
butions from the human host [ 75 ]. Although geographically still 
restricted, this “resistance” phenotype has begun a slow march out 
of its initial focus in Southeast Asia. Recent genome-wide associa-
tion studies on “resistant” parasites [ 76 ], as well as attempts to 
recapitulate resistance in vitro, have focused on polymorphisms in 
a region of chromosome 13 (encoding a protein containing a kelch 
13 propeller domain) that appear to correlate with the phenotype 
[ 77 ]. Recent in vitro work has demonstrated that these kelch 13 
polymorphisms are necessary and suffi cient to enhance the survival 
of the parasite ring stage in the face of artemisinin pressure [ 78 ]. 
While the exact molecular mechanism is unclear, transcriptomic 
analysis suggests that this ‘resistance’ is mediated via an upregula-
tion of the parasite’s unfolded protein response [ 79 ]. Artemisinins 
currently form the last line of defense against drug-resistant malaria 
and the threat to their effi cacy has, appropriately, spurred greater 
urgency in new antimalarial drug development. 

 Artemisinins are considered relatively safe, having been used 
for decades in millions of humans. Recognized toxicities include 
 hemolysis and hypersensitivity reactions  . Animal toxicology studies 
indicate that brain, liver, bone marrow, and fetus may be affected. 
This adverse event profi le has not been unambiguously demon-
strated in humans treated with therapeutic doses [ 51 ].  

      Atovaquone      (Fig.  6 ,  13 ) is an analog of coenzyme Q that specifi -
cally targets the cytochrome bc 1  complex of the mitochondrial 
respiratory chain. It interferes with mitochondrial functions, 
including pyrimidine biosynthesis, by inhibiting electron transport 
and collapsing the mitochondrial transmembrane potential [ 80 ]. 
Potent activity against  asexual erythrocytic forms   of  P. falciparum  
and  P. vivax , and the ability to eliminate  P. falciparum  liver stage 

4.4   Atovaquone
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parasites makes this agent especially useful for prophylaxis. 
Atovaquone is relatively safe—common adverse events include 
headache, rash, abdominal pain, vomiting, and diarrhea.

   In its very fi rst clinical trials atovaquone failed spectacularly, 
and quite unexpectedly, thanks to the rapid emergence of  drug- 
resistant  P. falciparum   , mediated by point mutations in target 
cytochrome b (atovaquone reviewed in [ 36 ]). Utility of this potent, 
safe, relatively long-lived candidate was saved by its synergistic 
combination, demonstrable both in lab and clinic, with veteran 
antimalarial  proguanil   (Sect.  4.5.1 ).  

   Sulfonamides and antifolates were among the earliest synthetic 
antimalarial agents, and were developed primarily using avian mod-
els of malaria. 

     The biguanide proguanil (Fig.  6 ,  14 ) targets  Plasmodium  in mul-
tiple ways. Best known as a prodrug, in vivo it is metabolized by 
CYP2C19 to cycloguanil (Fig.  6 ,  15 ) [ 81 ], which inhibits  P. falci-
parum  dihydrofolate reductase [ 82 ]. However, proguanil is also 
active in vitro (where it is not converted to cycloguanil) suggesting 
other direct (and unknown) targets [ 83 ]. Pharmacogenetic differ-
ences in CYP2C19 can affect the conversion to cycloguanil, and 
patients with CYP2C19*2–CYP2C19*8 alleles (poor metabolizers) 
may not fully convert proguanil to cycloguanil [ 81 ]. Clinical 

4.5  Antifolates 
and  Sulfonamides  

4.5.1   Proguanil 
and Cycloguanil     

  Fig. 6     Atovaquone,   antifolates, and  sulfonamides  . Atovaquone ( 13 ) is a cytochrome bc 1  inhibitor that is effec-
tive on its own, synergizes with the biguanide proguanil ( 14 ), and is clinically always used in combination. 
Proguanil is a prodrug metabolized in vivo to cycloguanil ( 15 ), a dihydrofolate reductase inhibitor. Pyrimethamine 
( 16 ) also targets dihydrofolate reductase and is used in synergistic combination with sulfadoxine ( 17 ), a dihy-
dropteroate synthase-targeting sulfonamide       
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relevance of the poor metabolizer phenotype with respect to 
malaria is the subject of debate. Proguanil is remarkably safe at 
therapeutic doses. Resistance against cycloguanil is conferred by 
point mutations in  Plasmodium  dihydrofolate reductase [ 84 ], and 
these arose and spread rapidly in the era of proguanil monotherapy. 
Clinical use of proguanil is now largely confi ned to its synergistic 
combination with atovaquone (Sect.  4.4 ). While proguanil itself 
displays no effect on the mitochondrial membrane potential, it 
greatly enhances atovaquone’s  effect      [ 85 ].  

   Pyrimethamine (Fig.  6 ,  16 ) is a diaminopyrimidine that targets 
 Plasmodium  dihydrofolate reductase [ 82 ]. The effects of inhibiting 
folate metabolism manifest late in the replication cycle of asexual 
erythrocytic forms, making pyrimethamine a slow-acting drug. 
Pharmacodynamic effi cacy of pyrimethamine can be augmented by 
host immunity, and signifi cantly inhibited by dietary  p - 
aminobenzoic acid or folate. Point mutations in  Plasmodium  dihy-
drofolate reductase confer resistance to this drug [ 86 ]. Therapeutic 
doses of pyrimethamine are safe; excessive doses can recapitulate 
symptoms of folate defi ciency [ 51 ]. Pyrimethamine is usually dosed 
in combination with a sulfonamide or sulfone to create a synergis-
tic effect. However, the utility of this combination is limited by 
widespread drug resistance, as well as by intrinsic toxicity of the 
sulfonamides.  

   Sulfonamides and sulfones inhibit  Plasmodium  dihydropteroate 
synthase [ 87 ], an enzyme involved in folate biosynthesis that has 
no counterpart in humans. These agents are slow acting and 
readily generate mutations in target protein dihydropteroate syn-
thase [ 88 ], which confers class-wide resistance. Clinical utility 
is confi ned to coadministration with an antifolate partner drug. 
The combination of sulfadoxine (Fig.  6 ,  17 ) with pyrimethamine 
is particularly effective since multiple steps of the same biosynthetic 
pathway are affected. This particular combination was designed to 
include partners with matched in vivo pharmacokinetics (both 
drugs are long-lived), thus avoiding functional monotherapy with 
either agent towards the end of the dosing interval. The use of 
sulfonamides and sulfonamide-containing combinations is limited 
by toxicity, including Stevens–Johnson syndrome and exfoliative 
dermatitis [ 51 ]. Additionally, widespread resistance of  Plasmodium  
to both partner drugs has compromised the utility of this drug 
class and its combinations.         

   Tetracycline (Fig.  7 ,  18 ) and doxycycline (Fig.  7 ,  19 ) are slow acting 
agents [ 61 ] that target the apicoplast, a chloroplast-like organelle 
in malaria parasites. Interference with apicoplast function results in 
delayed death of the parasite: effects of the drug are not manifest 
until the next replication cycle [ 89 ]. This delayed effect makes 

4.5.2    Pyrimethamine     

4.5.3  Sulfonamides 
and  Sulfones     

4.6    Antibacterials     
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the tetracyclines unsuitable for treatment of established severe 
infections; however, they are useful as adjunctive therapy and for 
short-term prophylaxis. Adverse effects that limit their use include 
discoloring depositions in bones and teeth, and a tendency to cause 
photosensitivity [ 90 ].

        Today’s global development of new antimalarial drugs is largely 
coordinated by the  Medicines for Malaria Venture (MMV)     , a non-
profi t public–private foundation. MMV coordinates industrial and 
academic antimalarial efforts and facilitates progress of drug candi-
dates through the long and complex development pathway [ 91 ]. 
A current snapshot of the global antimalarial development portfolio 
can be found on the foundation’s website (  www.mmv.org    ). There 
are multiple new drugs or drug combinations in various stages of 
development [ 92 ], ranging from the discovery phase to post- 
approval management. The following are agents currently in human 
trials, with a focus on novel pharmacophores, molecular targets, or 
pharmacokinetics. 

   Developed by a multinational academic collaboration, DSM265 
(Fig.  8 ,  20 ) targets dihydroorotate dehydrogenase, a mitochondrial 
enzyme in  P. falciparum  essential for pyrimidine biosynthesis and 
parasite survival [ 93 ]. The compound achieves several important 
benchmarks in that it is potent, selective, active against chloroquine- 
resistant parasites, bioavailable and metabolically stable. It will likely 
be deployed in combination therapy with a suitable partner.

      KAE609 (Fig.  8 ,  21 ) is a spiroindolone that targets a P-type 
ATPase Na(+) channel of  P. falciparum  [ 94 ]. Developed from a 
natural product screen in an industry–academia collaboration, 
KAE609 is a novel pharmacophore targeting a subsequently 
described and hitherto unexplored  Plasmodium  function, and has 
successfully completed Phase IIA clinical trials. The relative ease of 
generating resistance in vitro is somewhat worrisome; however, 
this effi cacious compound will provide much-needed diversity to 
the antimalarial armamentarium.  

4.7  Experimental 
 Agents  

4.7.1   DSM265  

4.7.2   KAE609  

  Fig. 7          Antibacterials. Tetracycline ( 18 ) and doxycycline ( 19 ) are slow-acting antimalarials useful for adjunctive 
therapy and short-term prophylaxis       
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   An imidazopyrazine derivative discovered and developed through 
a whole cell screening approach, KAF156 (Fig.  8 ,  22 ) targets both 
liver and blood stages of  Plasmodium  [ 95 ]. This multistage activity, 
coupled with acceptable pharmacokinetics, suggests that KAF156 
has potential to provide both the Radical Cure and the Protection 
demanded by the SERCaP model.  

    OZ439 (Fig.  8 ,  23 ) is member of the synthetic ozonides [ 96 ]. Its 
endoperoxide motif mimics that of the artemisinins, and their 
mechanism of action is likely in common. The unique feature of 
OZ439 is its metabolic stability: a terminal half-life of 25–30 h 
compared to half-lives of just minutes for the artemisinins [ 73 ]. 
Recent in vitro research on artemisinin resistance has yielded the 
intriguing suggestion that the resistance phenotype may be medi-
ated by a quiescence or dormancy mechanism that simply allows 
the parasite to outlast the short-lived drug [ 72 ]. If so, long- t  1/2  
endoperoxide OZ439 will be crucial for combating and perhaps 
reversing artemisinin resistance in the fi eld.    

5     Summary 

 Malaria is a public health problem of immense proportions. The 
complex biology of malaria makes drug development and use 
particularly challenging, a situation exacerbated by drug resis-
tance. The parasite is a eukaryote, which limits the availability of 

4.7.3   KAF 156  

4.7.4   OZ439  

  Fig. 8       Experimental antimalarials. Triazolopyrimidine DSM265 ( 20 ) inhibits dihydroorotate dehydrogenase, an 
essential malarial enzyme. KAE609 ( 21 ) targets the  Pf ATP4 (Na+) channel and KAF156 ( 22 ) is an imidazolopi-
perazine active against both blood and liver stages of the parasite life cycle. OZ439 ( 23 ) contains the endoper-
oxide pharmacophore of the artemisinins, but is designed to persist in the blood       
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targets unique to the pathogen. Plasmodium species pathogenic 
to humans will not infect other animals, rendering animal models 
defi cient. Finally, human parasites are diffi cult, and in some cases 
impossible, to culture in vitro, limiting development of labora-
tory assays. 

 The asexual erythrocytic stages that cause symptomatic illness 
are the primary targets of treatment. However, prevention and 
public health strategies necessitate the targeting of liver stages and 
gametocytes, both of which are pharmacologically distinct from 
the asexual blood stages. 

 Initial pharmacodynamic endpoints for antimalarial develop-
ment were clinical and required human studies. Surrogate animal 
models and in vitro assays have matured to the point where a ratio-
nal combination of assays yields adequate information to aid drug 
development, and these in conjunction with contemporary screen-
ing methods have yielded a number of highly promising experi-
mental drug candidates. 

 Successful antimalarial drugs must fulfi l certain criteria. The 
drug must be potent; provide a single-dose cure; act rapidly; and 
target all stages of the parasite life cycle. Drug pharmacokinetics 
in vivo must align with the essential pharmacokinetic–pharmaco-
dynamic linkage. The molecule must possess a high barrier to 
resistance. And ultimately, the drug must be extremely safe, given 
expected administration to millions of patients and to healthy 
uninfected travelers. No single drug currently fulfi ls all these crite-
ria. Indeed, it is unlikely any agent ever will. Successful antimalarial 
regimens will require combinations of drugs, rationally selected to 
provide best activity. 

 Existing antimalarials have proven successful because they 
fulfi ll some of the requirements listed above. New drug develop-
ment efforts have formalized these benchmarks and progress along 
the development pathway is now governed by these criteria. While 
there are several new pharmacophores targeting novel targets, and 
some old ones aiming for different processes, antimalarial drug 
development is likely to remain a challenging endeavor for the 
foreseeable future.     
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    Chapter 18   

 Pharmacodynamics of Antiviral Agents                     

     Renee- Claude     Mercier     ,     Bernadette     Jakeman    , and     Larry     Pineda     

  Abstract 

   The fi rst antiviral drugs developed in the 1960s targeted herpes viruses. Discovery and research surrounding 
antiviral drugs lagged behind antibacterial agents due to the diffi culties associated with isolating viruses 
and defi ning experimental treatment outcomes. Antiviral drug discovery was accelerated in the 1980s due 
to a better understanding of viral replication drug targeting sites and the advent of new technologies like 
viral genome sequencing. Most antiviral research has focused on the Human Immunodefi ciency Virus 
(HIV) and most recently on the Hepatitis viruses, leaving very little new drug discovery against either the 
Herpesviridae family of viruses or infl uenza viruses. Unfortunately, herpesviruses have the ability to estab-
lish lifelong infections requiring patients to take multiple courses of the same antiviral agents during their 
lifetime. Chronic exposure has been linked to the development of viral resistance. Infl uenza viruses have 
the ability to spread easily from person to person and lead to severe disease in susceptible populations. 
Unfortunately, in vitro susceptibility has yet to be linked to clinical outcomes and pharmacodynamic 
 studies have rarely been conducted with antiviral drugs. The chapter focuses on the pharmacodynamic para-
meters known with commonly used antiviral agents. Hopefully, by the end of the chapter it would become 
evident that there is much need to dedicate future research efforts towards clarifying how antiviral phar-
macodynamics can help optimize dosing strategies. Especially, given the limited number of compounds 
currently available coupled with the development of resistance that is threatening to further eliminate 
treatment options for patients affl icted by such viral diseases.  

  Key words     Antivirals  ,   Herpesviridae family  ,   Acyclovir  ,   Valacyclovir  ,   Famciclovir  ,   IC 50   ,   Thymidine 
kinase  ,   Plaque reduction assay  ,   Infl uenza  ,   Zanamivir  ,   Oseltamivir  

1      Introduction 

   Herpesviridae  viruses   are DNA viruses that are able to establish 
latent infections. This family of viruses includes the  herpes simplex 
viruses (HSV)      type 1 and type 2,  varicella-zoster virus (VZV)     , 
Epstein-Barr virus (EBV), and  cytomegalovirus (CMV)  . Infections 
with herpesviruses are common and usually self-limiting, with the 
majority of adults infected with HSV-1, VZV, and EBV. Life-
threatening conditions can occur, with increased risk in immuno-
suppressed patients. Antivirals used in the treatment of these 
infections typically inhibit viral DNA synthesis, but do not cure the 
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viral infection. When the treatment is complete and the medication 
is stopped reactivation may occur in some patients. 

  HSV   most commonly results in mucocutaneous infections. 
Transmission occurs through skin-to-skin contact or exposure to 
infected oral or genital secretions. HSV-1 is the most common strain 
of HSV and typically causes oral herpes. Seroprevalence of HSV-1 
amongst persons aged 14–49 is 57.7 % [ 1 ]. HSV-2 is the most com-
mon cause of genital lesions [ 2 ,  3 ]. Seroprevalence of HSV-2 in per-
sons aged 20–49 was 18.9 % [ 4 ]. HSV infections can also enhance 
the transmission of other sexually transmitted diseases [ 5 ]. 

  VZV    primary   infection, referred to as chickenpox, typically 
results in a self-limiting vesicular rash. It is transmitted person to 
person via respiratory droplets or direct exposure to the rash. More 
than 90 % of cases occur in childhood [ 3 ]. Reactivation, referred to 
as herpes zoster or shingles, results in a painful dermatomal vesicu-
lar rash. Risk of  reactivation   increases  with   age and immunosup-
pression [ 3 ]. 

  CMV   is a common infection that is usually self-limited. The 
majority of healthy children and adults infected with CMV have no 
symptoms and are unaware that they have been infected.       By the 
age of 40 approximately 50–80 % of US adults have been infected 
with CMV [ 6 ]. When symptoms are present they most commonly 
resemble fl u-like illness and include fever, sore throat, fatigue, and 
swollen glands. CMV is of great concern in immunocompromised 
patients, notably transplant recipients, and patients with HIV 
and  acquired-immunodefi ciency syndrome (AIDS)     . CMV disease 
in immunocompromised patients most commonly presents as reti-
nitis in AIDS patients, pneumonitis in bone marrow transplant 
patients and hepatitis in liver transplant patients. Other diseases 
associated with CMV include gastrointestinal invasion, encepha-
lopathy, polyradiculopathy, and myelosuppression to name only 
those. The incidence of most CMV-related disease has been declin-
ing with more aggressive prophylaxis in high-risk populations 
and the use of potent antiretroviral agents in HIV patients [ 6 ,  7 ]. 
Congenital CMV is still of great concern today, and accounts for 
approximately 1 % of all live births in the USA (~40,000 infants/
year). Congenital CMV is a frequent viral cause of mental retarda-
tion and hearing loss. Up to 90 % of infants with symptomatic 
CMV diseases at birth will develop neurologic defi cits, including 
hearing loss in 30–65 % of the patients [ 8 ,  9 ]. 

  Infl uenza     , also commonly called the fl u, is an acute, febrile, 
and highly contagious respiratory tract infection caused by infl u-
enza virus. The infl uenza virus is an encapsulated, single-stranded 
RNA orthomyxovirus that is transmitted from person to person via 
respiratory droplets. There are three distinct types of infl uenza; 
however, the two most clinically relevant types are infl uenza A and 
infl uenza B. The host range for infl uenza A includes a variety of 
species including humans, swine, equine, avian, and marine mam-
mals. Type B however only infects humans [ 10 ,  11 ]. 
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 Awareness of the  viral morphologic characteristics   is essential 
for understanding infl uenza virus pathogenesis and pharmacologic 
agents. The infl uenza viral envelope contains several membrane 
proteins including two  sialic acid-recognizing glycoproteins   
 (hemagglutinin and neuraminidase), as well as a proton-selective 
matrix (M)-2 ion channel. All are key targets for antiviral agents. 
 Hemagglutinin binds   to sialic acid-containing receptors found on 
the surface of host respiratory tract cells [ 12 ]. Attachment leads to 
 endocytosis   by the host cell and subsequent viral uncoating. The 
M2 ion channel, via passage of hydrogen ions, is instrumental in 
acidifying the interior of the endosome [ 13 ]. This allows for release 
of the viral RNA into the  cytoplasm  .  Intracellular viral replication   
follows with ultimate exocytosis of viral progeny bound to the host 
cell wall [ 11 ]. The fi nal release of virions from infected host cells is 
mediated by the enzymatic action of neuraminidase upon sialic 
acid moieties [ 14 ].  Neuraminidase   also facilitates viral spread 
throughout the upper respiratory tract by cleaving off sialic acid on 
respiratory mucin [ 15 ]. Viral replication in the respiratory tract 
reaches a peak between 24 and 72 h after the onset of illness [ 16 ]. 

  Vaccination   remains the primary means of preventing and 
 controlling infl uenza virus infections [ 17 ], but its effectiveness is 
limited mainly due to seasonal antigenic changes [ 11 ,  13 ]. There-
fore, augmentation with antiviral agents is necessary to achieve 
optimal management of infl uenza infections.  

2    Acyclovir/Valacyclovir and Penciclovir/Famciclovir 

 Acyclovir and penciclovir are nucleoside analogues that inhibit viral 
DNA polymerase. Acyclovir was one of the fi rst orally available 
drugs used in the treatment of HSV and is still one of the most 
commonly used antivirals today. However, due to limited oral bio-
availability of acyclovir  and penciclovir  , their prodrugs (valacyclovir 
and famciclovir, respectively) were developed to provide alterna-
tive oral formulations.  Valacyclovir and famciclovir   are rapidly con-
verted to their respective parent drugs after fi rst-pass metabolism 
and block viral DNA synthesis through the same mechanism [ 18 ]. 
Today these compounds are mainly used for the treatment and 
suppression of HSV and VZV infections. 

 Clinical use of  acyclovir and penciclovir   is limited due to 
poor oral bioavailability (15–30 % and 5 %, respectively) [ 19 – 21 ]. 
 Penciclovir      is currently only available in a topical preparation. 
Acyclovir is available in topical, oral, and intravenous formulations. 
Topical formulations of penciclovir and acyclovir are used for 
  herpes labialis and genital HSV  . The  oral formulations   of acyclovir, 
valacyclovir, and famciclovir are used for the treatment and sup-
pression of  genital HSV and VZV infections  . Oral acyclovir has 
been shown to decrease VZV-associated post-herpetic neuralgia 
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[ 22 – 24 ], and data show a protective benefi t when these agents are 
used for VZV prophylaxis in high-risk patients [ 25 ,  26 ]. Oral ther-
apies can also be used for treatment of mucocutaneous HSV in 
immunocompromised patients, who tend to have more severe 
infections.  Acyclovir   is the only compound that is available as an 
 intravenous formulation  . It is reserved for severe HSV or VZV 
infections, including encephalitis. 

   Acyclovir/valacyclovir and penciclovir/famciclovir have in vitro 
and in vivo inhibitory activity against HSV type 1 and type 2, and 
VZV. HSV and VSV encode a viral  thymidine kinase (TK)      required 
for viral DNA synthesis. Both  acyclovir and penciclovir   have a high 
affi nity for the HSV- and VZV- encoded   TK and low affi nity for 
human TK, preferentially targeting infected cells. Early in vitro 
studies using  human cell lines   determined that drug activity varies 
between herpes viruses, with HSV-1 being the most susceptible 
virus to these agents [ 27 ]. These compounds have limited activity 
against EBV and CMV [ 19 ]. 

 After cellular uptake, both compounds are converted to the 
monophosphate form by the viral-encoded TK. Acyclovir mono-
phosphate  and penciclovir monophosphate   are then converted to 
the active triphosphate form by host cellular kinases.    After activa-
tion the compounds bind viral DNA polymerase and are incorpo-
rated into the viral DNA chain. Acyclovir  triphosphate   does not 
contain the 3′-hydroxyl group required for DNA elongation, caus-
ing termination of the chain. Penciclovir triphosphate contains the 
3′-hydroxyl group, making it a short-chain terminator. Host DNA 
polymerases do not effectively use the activated forms of these 
compounds as substrates. This specifi city for viral enzymes explains 
the low toxicity associated with these drugs [ 19 ,  28 – 30 ]. 

 Serum half-lives of acyclovir and penciclovir are short [ 31 ,  32 ]. 
However, in vitro studies comparing intracellular drug activity 
have found that penciclovir has a higher affi nity for  viral   TK as 
compared to acyclovir, which results in higher intracellular concen-
trations of penciclovir triphosphate. An in vitro cell culture analysis 
using human MRC-5 cell lines determined that the intracellular 
half-life of activated penciclovir triphosphate is 10 h in HSV-1- 
infected cells, 20 h in HSV-2-infected cells and 7 h in VZV-infected 
cells; compared with the intracellular half-life of acyclovir triphos-
phate, which is ≤1 h [ 33 ]. Acyclovir triphosphate, however, has a 
higher affi nity for viral DNA polymerase compared to penciclovir 
triphosphate. As a result, clinical effi cacy appears to be similar with 
these compounds [ 20 ,  34 – 36 ]. 

  Steady-state  C  max  concentrations   following oral administration 
of acyclovir 200 mg, 400 mg, and 800 mg every 4 h were 0.8, 1.2, 
and 1.6 μg/mL, respectively. Corresponding steady-state  C  min  con-
centrations were 0.4, 0.6, and 0.8 μg/mL [ 37 ]. Higher concentra-
tions are achieved with  intravenous administration   of acyclovir. 
Steady-state  C  max  concentrations for 2.5, 5.0, 10.0, and 15.0 mg/kg 
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administered intravenously every 8 h were 6.7, 9.7, 20.0, and 
20.6 μg/mL respectively. Corresponding mean steady-state  C  min  
concentrations were 0.5, 0.7, 2.3, and 2.0 μg/mL [ 38 – 40 ].     High 
serum concentrations   are achieved with oral valacyclovir. 
Administration of the lowest dose of valacyclovir 250 mg four 
times daily resulted in slightly higher concentrations, with less vari-
ability in AUC, than acyclovir 800 mg fi ve times daily. Peak acyclo-
vir concentrations seen after valacyclovir 2000 mg four times daily, 
are similar to what is attained with intravenous acyclovir 5 mg/kg 
administered every 8 h (~9 μg/mL), with an AUC similar to intra-
venous 10 mg/kg administered every 8 h [ 41 ]. Acyclovir concen-
trations are not routinely measured in practice. Because median 
IC 50  concentrations are seen with VZV isolates, higher doses of 
acyclovir are used clinically for VZV infections (acyclovir 800 mg 
PO fi ve times daily or 10 mg/kg/dose every 8 h). 

 Data to support a correlation between serum drug  concentra-
tions   and antiviral effects is lacking [ 37 ]. The gold standard pheno-
typic method for evaluating the susceptibility of viral isolates to 
these antiviral drugs is the  plaque reduction assay (PRA)      [ 42 ,  43 ]. 
 PRA   results are determined by the  IC 50   , or concentration of drug 
at which viral replication is inhibited by 50 % in cell culture.  In 
vitro cell culture analyses   have shown acyclovir inhibitory concen-
trations for HSV-1, HSV-2, and VZV to range from 0.02 to 
1.9 μg/mL, 0.3 to 2.9 μg/mL, and 0.8 to 5.2 μg/mL, respec-
tively [ 3 ]. In vitro cell culture analyses have shown penciclovir 
inhibitory concentrations for HSV-1, HSV-2, and VZV to range 
from 0.02 to 1.8 μg/mL, 0.3 to 2.4 μg/mL, and 0.9 to 5.1 μg/mL, 
respectively [ 3 ]. Susceptibility results can vary greatly between 
different  cell lines   used for viral isolation in vitro, and assay sensi-
tivities may vary between laboratories even when identical viruses 
are used in the same cell line [ 44 ]. 

  Limited data   is available to help establish a correlation between 
in vitro susceptibility and clinical outcomes. The correlation 
between clinical response to acyclovir and in vitro susceptibility 
results was evaluated using PRAs in Vero cells for 243 clinical iso-
lates of HSV (80 % HSV-2) collected from 115 patients with  oro-
facial, genital, and perirectal lesions  .  Effective concentration (EC 50 ) 
values   ≥2 μg/mL were associated with poor clinical response 
( P  < 0.001). However, the positive predictive value of PRA results 
of <2 μg/mL was only 62 % [ 45 ]. In addition to lab variability, 
 host immune status and heterogenous viral populations   could have 
affected the ability to predict clinical response. Regardless, for acy-
clovir and penciclovir, a breakpoint of 2 μg/mL is typically used 
when interpreting PRAs [ 30 ,  44 ,  45 ]. For the vast majority of iso-
lates, this is an acceptable breakpoint. However, to identify unusual 
isolates with borderline susceptibility, it has been suggested that an 
additional breakpoint be used internally, based on ten-times the 
 IC 50    of a  sensitive control strain   [ 46 ]. The PK-PD parameter most 
predictive of effi cacy has not been determined.  
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   Findings from a number of clinical studies suggest that time above 
the IC 50  is an important criterion for effi cacy [ 47 – 51 ]. For episodic 
treatment of HSV, high-dose therapy does not appear to have 
additional benefi t. A  valacyclovir   500 mg twice-daily regimen was 
compared to a valacyclovir 1000 mg twice-daily regimen in the 
treatment of recurrent genital HSV episodes in 987 immuno-
competent patients [ 47 ]. No difference was found between the 
two dosing regimens. Both  dosing regimens   were effective at 
reducing the duration of episode when compared to placebo. In 
another study by Saiag and colleagues [ 48 ], valacyclovir was self- 
administered as 1000 mg daily or 500 mg twice-daily by 922 
immunocompetent patients during an episode of recurrent genital 
HSV. The two regimens were found to be equivalent at reducing 
 episodic   duration and pain. Correlations between clinical results 
and serum drug concentrations were not evaluated. 

 For  prophylaxis  , a large placebo-controlled trial [ 49 ] evaluated 
different dosing regimens in 1479 immunocompetent patients 
with genital HSV. A  dose–response relationship      was found when 
comparing once-daily valacyclovir regimens. Recurrence-free rates 
after 1 year of treatment with valacyclovir 250 mg, 500 mg, and 
1000 mg daily were 22 %, 40 %, and 48 %, respectively; with acy-
clovir AUCs of 22.0 mg h/L, 45.8 mg h/L, and 80.4 mg h/L, 
respectively. However, a regimen of valacyclovir 250 mg given 
twice daily had a higher recurrence-free rate (50 %) compared with 
both valacyclovir 500 mg daily and 1000 mg daily, even though 
the acyclovir AUC was only 55.1 mg h/L for the valacyclovir 
250 mg twice-daily regimen. Again, this suggests that longer expo-
sure above inhibitory concentrations is important for effi cacy, but 
more data is needed. 

 Because of  acyclovir  ’s limited oral bioavailability and short 
half-life, multiple daily dosing schedules are required. It has been 
suggested that short serum drug half-lives lead to sub-inhibitory 
serum concentrations for a signifi cant portion of the dosing period, 
which may contribute to viral breakthrough [ 50 ]. Viral break-
through occurs frequently and is often subclinical. Suppressive 
therapy reduces the risk of transmission, but does not eliminate it 
completely [ 51 – 53 ]. Breakthroughs can occur while patients are 
on standard- or high-dose regimens [ 51 ]. 

 Acyclovir is mainly eliminated unchanged by the  kidneys  , by 
both  glomerular fi ltration and tubular secretion   [ 54 ]. AUC will be 
directly affected by changes in clearance. In patients with impaired 
renal function receiving valacyclovir and acyclovir dosage adjust-
ments should be made [ 29 ,  37 ]. Because acyclovir is small and has 
low  protein-binding capacity  , it is removed during  hemodialysis  , 
dropping serum drug concentrations by 60 % [ 37 ]. 

 As mentioned above, acyclovir’s high specifi city for infected 
cells makes it a fairly well-tolerated medication.  Side effects   
described with intravenous formulations include phlebitis (14 %), 
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skin rash (4.7 %), neurologic side effects (<1 %; headache, 
 hallucinations, dizziness, confusion, somnolence, convulsions), 
and transient elevations in serum creatinine (4.7 %) or acute kidney 
injury (AKI) caused by crystallization of drug in the  renal tubules   
[ 37 ,  41 ,  55 ,  56 ]. Risk of AKI appears to be greatest with high-dose 
IV formulations and lower with oral formulations. In a large retro-
spective cohort of 160,915, patients receiving oral acyclovir and 
valacyclovir ( N  = 76,269) had a relative risk of AKI of 1.00 (95 % 
CI, 0.83–1.21) when compared with famciclovir, which has not 
been associated with AKI [ 57 ]. Because  acyclovir   is hydrophilic, 
weight-based dosing of IV acyclovir should be based on ideal body 
weight. There have been a number of case reports describing 
acyclovir- induced renal failure in obese patients when actual body 
weight was used [ 58 ,  59 ]. Because the mechanism is thought to be 
due to crystallization of the drug, it is recommended that IV for-
mulations be slowly infused and given with adequate hydration.  

   Acyclovir resistance is low in immunocompetent patients, with 
rates reported to be <1 % [ 60 – 63 ]. Risk factors for resistance 
include chronic antiviral prophylaxis or treatment and immunosup-
pression [ 64 – 66 ]. Resistance rates in immunosuppressed patients 
range from 4 to 7 % [ 60 ,  61 ,  67 ], with the highest frequency 
(7–14.3 %) seen in bone marrow transplant patient [ 60 ,  68 ]. 

 Mechanisms of resistance seen in HSV-1, HSV-2, and VZV 
 include   TK gene mutations, resulting in enzyme defi ciency or 
decreased drug affi nity, and/or alterations in viral DNA poly-
merase, decreasing drug affi nity [ 65 ,  69 – 71 ]. TK gene mutation 
that results in enzyme defi ciency is the most common mechanism 
of resistance identifi ed in both immunocompetent  and   immuno-
compromised patients [ 67 ,  69 ,  72 ]. It appears that TK defi cient 
viruses may be less virulent causing less severe disease [ 73 ]. 
However, a number of cases reports have recently described 
encephalitis caused by acyclovir-resistant viruses [ 74 – 76 ]. Due to 
similar drug mechanisms of action, viral isolates resistant to  acyclo-
vir   are also resistant to valacyclovir, famciclovir, and penciclovir. 
TK defi ciency appears to be the main mechanism of resistance to 
penciclovir as well [ 30 ,  46 ]. Overall, the prevalence of  penciclovir 
resistance   was found to be similar to that of acyclovir in immuno-
competent patients [ 46 ]. 

 Drug susceptibility testing is generally not recommended, 
especially in immunocompetent patients. However, it may be con-
sidered in immunocompromised patients with severe or persistent 
infections. PRA resistance testing requires isolation of the virus in 
cell culture, delaying results for 7–14 days. The lag time may also 
delay initiation of appropriate treatment. Another disadvantage of 
phenotypic testing is a lack of standardization with varying results 
within and between laboratories [ 44 ]. Gene sequencing can also 
be used when timely results are required or when viral yield for 
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culture is low, such as in CSF fl uid. Gene sequencing reveals 
 mutations in  viral   TK or viral DNA polymerase that confer resis-
tance. A drawback to gene sequencing is that mutations of 
unknown signifi cance are frequently detected [ 69 ,  77 – 80 ]. In such 
cases, phenotypical susceptibility testing is still required. Ganciclovir/
valganciclovir, foscarnet, and cidofovir are potential alternative 
therapies in these cases (see Sect.  3 ).   

3     Ganciclovir/Valganciclovir, Foscarnet, and Cidofovir 

  Ganciclovir   is a deoxyguanosine analogue similar in structure to 
acyclovir however it contains an additional hydroxymethyl group 
on the acyclic side chain [ 81 ,  82 ].  Valganciclovir   is the  l -valyl ester 
prodrug of ganciclovir [ 83 ]. Ganciclovir has potent antiviral  activity 
against Herpesviruses including CMV, HSV, and VZV. Its primary 
therapeutic role is in the treatment of CMV infections [ 81 – 83 ]. 
 Foscarnet  , a pyrophosphate analogue, has activity against Herpes-
viruses and HIV. Clinical uses most commonly include treatment 
of ganciclovir-resistant CMV and acyclovir-resistant HSV infec-
tions as most remain susceptible to foscarnet. Its utility as a clinical 
agent, however, is limited by its toxicity profi le [ 84 ,  85 ].  Cidofovir   
is an acyclic phosphonate nucleotide analogue of deoxycytidine 
monophosphate with antiviral properties against human herpesvi-
ruses (HHV), including CMV, EBV, HHV- 6, HHV-8, and other 
DNA viruses such as papillomaviruses, polyomaviruses, poxviruses 
and adenoviruses. Similar to foscarnet, cidofovir’s side effect  profi le 
limits its use to ganciclovir-resistant CMV and acyclovir-resistant 
HSV infections [ 85 – 88 ]. Ganciclovir, foscarnet and cidofovir have 
been commonly use since their approval many decades ago yet lit-
tle is known about their pharmacodynamic properties. 

   Antiviral agents with activity against  cytomegalovirus   have been 
approved at doses that would likely lead to concentrations above 
the IC 50  while trying to minimize toxicity. Unfortunately, very little 
is known about how to optimize dosing in order to provide desired 
clinical outcomes, minimize toxicity and limit the development of 
resistance. Few studies have been conducted to determine the most 
appropriate pharmacodynamic parameters that predict positive out-
comes with  ganciclovir and valganciclovir  . Conversely, the data is 
very limited with foscarnet and non-existent for cidofovir. 

 Ganciclovir inhibits viral DNA polymerase by competing with 
dGTP as a substrate. Ganciclovir fi rst enters CMV infected cells 
where it is monophosphorylated by viral protein kinase (UL97 
gene). Cellular kinases further phosphorylate ganciclovir into its 
active triphosphate form which then competitively competes with 
dGTP. The  triphosphate   form of ganciclovir achieves 10 to 100- 
fold higher intracellular concentrations in CMV infected cells than 
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uninfected cells. Ganciclovir also has much higher affi nity for viral 
DNA polymerase than host cell DNA polymerase. The average 
IC 50  for CMV susceptible strains ranges from 0.1 to 2.0 mg/L. No 
correlation exists as of yet between in vitro sensitivity and clinical 
response for ganciclovir.    Valganciclovir is a pro-drug of ganciclovir 
with enhanced bioavailability due to its active transport across the 
gastrointestinal wall via the intestinal peptide transporter PEPT1. 
Once across the membrane barrier, valganciclovir is hydrolyzed 
into ganciclovir and possesses the same pharmacodynamic proper-
ties as the parent drug ganciclovir [ 89 ,  90 ]. 

 A recent in vitro study utilizing a pharmacodynamic model 
demonstrated that a new dosing strategy for ganciclovir against 
CMV would optimize the antiviral effect while minimizing toxicity 
[ 91 ]. This study supported the fi ndings that ganciclovir exhibits 
concentration-dependent antiviral activity and toxicity. The study 
was carried out in vitro in lymphoblastoid cell cultures, with subse-
quent data analysis using a mathematical model to characterize 
ganciclovir pharmacodynamics. Briefl y, high doses of ganciclovir 
for short exposure time maximized antiviral effi cacy while limiting 
toxicity. Complete viral suppression was achieved at 20 mg/L. This 
concentration was associated with cellular toxicity, although, the 
toxicity was predicted to become signifi cant only after long-term 
exposure of ≥7 days. The model predicted that an optimal dosing 
regimen for ganciclovir in patients with stem cell transplant with 
normal renal function would translate to 10 mg/kg every 12 h for 
2 days, followed by doses 180, 192, 204, and 216 h after fi rst dose 
for a total of eight doses.  

    Pharmacokinetic parameters   differ among patients with solid organ 
transplant, HIV/AIDS or healthy volunteers. Primarily the time 
to achieve  C  max  was longer  in   transplant patients (3.0 ± 1 h) as 
 compared to healthy volunteers or patients with HIV/AIDS 
(1.6 ± 0.6 h). The AUCs achieved with doses of valganciclovir of 
450–900 mg were also 1.7–2.5 times higher in transplant patients 
compared to healthy volunteers and patients with HIV/AIDS. 
Consequently, the ganciclovir  t  1/2  is longer in transplant patients 
than in healthy volunteers and HIV/AIDS persons (4.7 ± 1.4 h vs. 
3.7 ± 1.1 h, respectively). The differences are most likely due to an 
increase in ganciclovir clearance of 13.6 ± 4.2 L/h in  healthy vol-
unteers and HIV/AIDS patients   compared to 8.0 ± 2.9 L/h in 
transplant patients. The terminal Vd was 50 ± 16 L in transplant 
patients and 71 ± 37 L in the healthy volunteer and HIV/AIDS 
cohort. Therefore, transplant patients who require ganciclovir or 
valganciclovir may benefi t from a reduced dose in order to achieve 
optimal concentrations as compared to patients with HIV/AIDS. 
In addition, valganciclovir bioavailability is on average 66 ± 10 %. 
Food intake may increase the AUC by 24–30 % which could 
account for the pharmacokinetic alterations [ 92 ]. 
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 It is important to understand the characteristics that infl uence 
the pharmacokinetic properties of ganciclovir and valganciclovir in 
different patient populations such as HIV/AIDS patients. For 
example, a study demonstrated that HIV patients with CMV reti-
nitis had a 40 % increase in ganciclovir clearance compared to 
patients who were only shedding virus in the urine. It is unclear 
whether the difference could be attributed to the infl ammatory 
state of the patients or perhaps interactions with concomitantly 
administered medications [ 93 ,  94 ]. 

 Ganciclovir is primarily eliminated via glomerular and tubular 
secretion, making the presence of renal impairment a signifi cant 
pharmacokinetic determinant. Approximately 85 % [73–99 %] of 
ganciclovir is recovered unchanged in the urine. With decreased 
renal function a parallel increase in AUC and  t  1/2  is expected. 
Weight may also infl uence ganciclovir’s pharmacokinetics as obese 
patients have been shown to have an increased absolute clearance 
and larger Vd than thinner patients. Heavier patients may require 
higher dosage or conversely smaller patients may need reduced 
dose of ganciclovir to achieve appropriate therapeutic concentra-
tions. While this may be important to prevent toxicity in patients 
with lower BMIs, most of the studies evaluating dosing in obese 
patients did not account for other confounding factors such as sex, 
age or race. This makes clear dosing recommendations based on 
weight impossible at this time [ 94 – 97 ]. 

   The use of ganciclovir in the prevention and treatment of CMV in 
solid organ transplant recipients was investigated in two prospective 
clinical trials [ 98 ,  99 ]. Steady-state peak and trough concentrations 
were measured and correlated with treatment outcomes. Among 
both the patients receiving prophylaxis ( n  = 43) and the treatment 
( n  = 25) groups, no correlation was found between ganciclovir 
serum concentrations, total dose or duration and CMV disease or 
relapse. Interestingly, two liver transplant recipients D+R− (donor 
positive, recipient negative) developed CMV disease and both had 
ganciclovir trough concentrations less than 0.31 mg/L [ 98 ]. 

 Later in 2005, Wiltshire and colleagues published the results 
of their study investigating the pharmacodynamics of oral ganci-
clovir and valganciclovir in solid organ transplant recipients. The 
authors aimed to establish the relationship between ganciclovir 
concentrations and prevention of CMV viremia, CMV disease, 
and the incidence of hematologic toxicity. The mean daily AUC 
was 46.3 ± 15.2 μg • h/mL with valganciclovir compared to 
28.0 ± 10.9 μg • h/mL with oral ganciclovir, an average 1.65-fold 
greater increase with valganciclovir (95 % CI 1.58–1.81) than oral 
ganciclovir. The difference in ganciclovir exposure between the 
two groups resulted in a signifi cant lower incidence of viremia dur-
ing the prophylactic period (2.9 % valganciclovir vs. 19.4 % oral 
ganciclovir;  P  = 0.001). Ganciclovir exposure resulting in an AUC 
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>45 μg • h/mL was associated with low incidence of viremia (3 %). 
This was characteristically achievable with valganciclovir although 
less than 10 % of patients on oral ganciclovir achieved such an 
AUC. After 100 days of prophylactic treatment, a logistic regres-
sion demonstrated that an AUC of 50 μg • h/mL predicted an 
average incidence of viremia of 1.3 %. An AUC of 25 μg • h/mL 
had an eightfold higher risk of viremia. The ganciclovir exposure 
did not predict the incidence of viremia in the post-prophylactic 
period at 4 and 12 months post-transplant. Additionally, most of 
the CMV disease reported in this study occurred between 3 and 6 
months post-transplant [ 99 ]. 

 A ganciclovir AUC greater than 50 mg • h/L appears to pre-
vent CMV viremia while trough concentrations below 0.31 mg/L 
are insuffi cient to prevent CMV disease in high risk liver transplant 
patients. However, further RCT are needed to confi rm these 
 fi ndings [ 98 ,  99 ]. 

 Foscarnet pharmacodynamics relationships were explored in a 
prospective study of asymptomatic patients with CMV viremia over 
a 10-day period. Subjects were randomized to receive one of four 
foscarnet dosing schemes: 15 mg/kg q8h, 30 mg/kg q8h, 45 mg/
kg q12h, or 90 mg/kg q12h. A signifi cant relationship was demon-
strated between both foscarnet peak concentrations and AUC with 
a decrease in the level of CMV antigenemia. Reduced CMV viremia 
was also correlated with foscarnet exposure. A foscarnet dose of 
45 mg/kg q12h corresponded to a 50 % decrease in CMV antigen-
emia. Toxicity was limited due to short courses of foscarnet, and 
CMV susceptibility to foscarnet was not altered after the 10-day 
course. This study was instrumental in promoting the use of higher 
doses of foscarnet during  induction   therapy for CMV disease [ 100 ].  

   Pharmacokinetic studies of ganciclovir conducted in newborns 
[ 101 ,  102 ] have shown that newborns have an increased clearance 
of ganciclovir in the fi rst 6 weeks of life, with a parallel decrease in 
AUC. Contrarily, oral valganciclovir’s AUC was only marginally 
decreased probably due to an increase in bioavailability by 32 % 
over the same period [ 101 ,  102 ]. Twenty-four newborns of whom 
18 had positive CMV viral load upon enrollment were studied by 
Kimberlin and colleagues. The authors targeted a ganciclovir 
AUC 0–12  of 27 mg • h/L in this population. The ganciclovir phar-
macokinetic parameters ( C  max ,  T  last ,  C  last , AUC 12 , and clearance) 
over the course of the 56 days of blood sampling were not corre-
lated with changes in the viral load. Ultimately the study showed 
that valganciclovir doses of 16 mg/kg provided ganciclovir con-
centration similar to IV ganciclovir 6 mg/kg in newborns [ 101 ]. 

 Trough values have also been investigated as a potential marker 
of effi cacy with ganciclovir. Twelve of 15 HIV patients with CMV 
retinitis treated with IV ganciclovir had trough concentrations 
below 0.6 mg/L. Of these six experienced treatment failure. Once 
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the dose was increased to achieve trough concentrations above 
0.6 mg/L, four of the patients who had previously failed responded 
to therapy [ 103 ]. In a cohort of 11 pediatric renal transplant 
patients receiving preemptive ganciclovir treatment, the mean 
trough concentration of 1.3 ± 0.8 mg/L was linked to good viro-
logic response. Only one patient out of 11 developed CMV disease 
and the patient was mistakenly administered too low of a dose 
(trough of 0.35 mg/L). The patient failed ganciclovir and the 
CMV strain when tested was ganciclovir-resistant [ 104 ]. Hence, 
with the limited data available supporting the use of ganciclovir 
trough concentrations to guide therapy, one can only conclude 
that concentrations below 0.6 mg/L are insuffi cient to treat CMV 
retinitis and concentrations above 1.3 mg/L appear to prevent 
CMV disease in  pediatric   renal transplant patients [ 103 ,  104 ]. 

 Foscarnet pharmacodynamic parameters were also studied in a 
subset of HIV patients with CMV retinitis. The study demon-
strated that foscarnet exposure was correlated with increased time 
to disease progression. AUC and  C  max  were both associated with 
delayed time to progression. Most important was the fi nding that 
patients with baseline positive CMV blood culture were more likely 
to benefi t from higher dosage as they were more likely to have 
rapid disease progression. Foscarnet nephrotoxicity has also been 
associated with increased drug exposure, which limits clinicians’ 
ability to signifi cantly adjust the dose upwardly [ 105 ].  

   AIDS patients with a history of CMV disease will continue on 
 ganciclovir (usually administered as valganciclovir) maintenance 
therapy until a signifi cant rebound is seen with CD4 cell count to 
prevent disease relapse. Fourteen patients with AIDS on mainte-
nance therapy for CMV retinitis had ganciclovir trough concentra-
tions measured and correlated with disease progression. Lower 
trough concentrations <0.6 mg/L appeared associated with an 
increased risk of disease progression although the fi ndings were not 
signifi cant [ 106 ]. Moreover, in a study looking at ganciclovir dose 
intensifi cation to prevent CMV relapse, average ganciclovir AUC 0–24  
was highly  predictive of time to CMV retinitis progression.  C  max  was 
also found to be a predictor of time to progression, however, in the 
multivariate model, only AUC 0–24  maintained a signifi cant predic-
tive value.  C  min  had no correlation with treatment outcome [ 107 ]. 
This data strengthens the evidence for ganciclovir total exposure 
over time as the best predictor of treatment outcomes. 

 A small study of nine patients  receiving   foscarnet as mainte-
nance therapy for CMV retinitis demonstrated an association 
between increased foscarnet AUC and a decreased risk of disease 
progression, although this was not statistically signifi cant [ 108 ].  

   Ganciclovir has been used for prophylaxis, and preemptive treat-
ment of CMV disease. Its use has often been limited by its adverse 
effects including hematologic, neurologic, and possibly hepatic 
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toxicity [ 89 ,  96 ]. A dose-dependent hematologic toxicity profi le 
has been demonstrated in vitro. Ganciclovir IC 50  ranged from 
0.7 to 4.8 mg/L in granulocyte-macrophage progenitors and 
0.4 to 7.4 mg/L for erythroid progenitors [ 109 ]. Despite these 
in vitro fi ndings, no clear correlation between ganciclovir serum 
concentrations and bone marrow suppression has been reported in 
clinical trials. In one study done in bone marrow transplant recipi-
ents, 3 of 5 patients who received IV ganciclovir developed bone 
marrow suppression with mean peak and trough plasma concentra-
tions exceeding 12.8 mg/L and 2.6 mg/L, respectively [ 110 ]. In 
contrast, neutropenia was reported with ganciclovir peak and trough 
 concentrations of 3.9 mg/L and 0.7 mg/L in one bone marrow 
transplant recipient. However when all 11 patients’ ganciclovir con-
centrations were taken into consideration, the authors found no cor-
relation between ganciclovir concentrations and bone marrow 
suppression [ 111 ].Other studies suggest similar lack of correlation 
between ganciclovir concentrations and bone marrow suppression 
[ 98 ,  112 ,  113 ]. In solid organ transplant patients, an increased 
ganciclovir AUC did not correlate with increased anemia and was 
only weakly associated with increased neutropenia and leucopenia 
[ 99 ]. Because of the inconsistencies among studies investigating 
the relationship between hematologic toxicity and ganciclovir 
serum concentrations, a toxic range cannot be established. Close 
monitoring however is  warranted   as these adverse events are com-
monly reported and treatment limiting. 

 Reports of ganciclovir associated neurotoxicity and hepatotox-
icity have been published [ 114 – 117 ]. Although neurotoxicity 
appears to be related to high ganciclovir plasma and CSF concen-
trations, the limited amount of data precludes an accurate descrip-
tion of toxic range [ 114 – 116 ].   

   Ganciclovir resistance in CMV is defi ned as an IC 50  >1.5–3 mg/L 
in vitro. Resistance has been attributed to two different mecha-
nisms: (1) alteration via point mutation or deletions in the 
 phosphotransferase encoded by the UL97 gene preventing phos-
phorylation of ganciclovir into ganciclovir monophosphate; and 
(2) alteration in the DNA polymerase UL54 gene. Alterations in 
the UL97 gene will confer resistance to ganciclovir alone while 
mutation in the UL54 gene will confer resistance to cidofovir as 
well as ganciclovir. Valganciclovir achieves higher serum concen-
trations and therefore would be expected to lead to a reduced rate 
of resistance when compared to oral ganciclovir. CMV strains resis-
tant to both ganciclovir and cidofovir usually remain sensitive to 
foscarnet, although cross-resistance to all three agents has been 
seen. Foscarnet resistance is attributed to mutations in the DNA 
polymerase and is defi ne as IC 50  >400 μmol/L in plaque reduction 
or >600 μmol/L in DNA hybridization assays. Resistance is rarely 
seen in naïve patients and tends to develop over the course of long 
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term therapy. For example, 7 % of patients with CMV retinitis 
developed ganciclovir resistance by 3 months (28 % by 9 months), 
37 % by 12 months with foscarnet, and 29 % by 3 months with 
cidofovir [ 89 ,  90 ,  118 ]. 

 In a study of solid organ transplant recipients who received 
100 days of valganciclovir or oral ganciclovir, the incidence of 
CMV UL97 mutation leading to ganciclovir resistance was 0 % in 
the valganciclovir group compared to 1.9 % in the oral ganciclovir 
group at the end of prophylaxis. The incidence of the UL97 muta-
tion 1 year after transplantation remained  at   0 % for valganciclovir 
but was 6 % for oral ganciclovir [ 99 ].   

4    Infl uenza Antiviral Agents 

 Currently, there are four antiviral agents approved in the USA 
for the  treatment and prevention   of infl uenza: the adamantanes 
or M-2 inhibitors amantadine (Symmetrel) and rimantadine 
(Flumadine), and the neuraminidase inhibitors zanamivir (Relenza) 
and oseltamivir (Tamifl u) [ 10 ]. Other  neuraminidase inhibitors   
like peramivir and laninamivir are not approved for use in the USA 
at this time. The utility of the adamantanes is limited mainly due to 
the development of resistance among infl uenza A strains. The 
CDC/ACIP and WHO no longer recommend the use of adaman-
tanes for treatment and chemoprophylaxis of infl uenza virus. 
Therefore, this pharmacodynamic overview will focus primarily on 
the neuraminidase inhibitors. 

     The adamantanes are tricyclic amines which hamper infl uenza A 
replication by inhibiting the action of M2 ion channel proteins. 
This hinders the pH changes necessary for viral uncoating and sub-
sequent ribonucleoprotein transport to the nucleus [ 90 ]. Adaman-
tanes do not exhibit antiviral activity against infl uenza B isolates. 

 Amantadine is well-absorbed orally and is available in tablet, 
capsule, and syrup preparations. Likewise, rimantadine is available 
as a tablet for oral administration. To date, no data is available to 
support a correlation between serum drug concentrations and 
antiviral effects. In vitro cell culture analyses have shown inhibitory 
levels for infl uenza A virus to range from 0.1 to 25.0 μg/mL for 
amantadine [ 90 ,  119 ] and from 0.1 to 0.4 μg/mL for rimantadine 
[ 90 ]. However, both agents are marketed with notations that 
quantitative relationships between susceptibility in cell culture and 
clinical response to therapy have not been established [ 119 ,  120 ]. 
Given the limited clinical utility of the adamantanes for treatment 
and chemoprophylaxis of infl uenza, it is unlikely that such data will 
be  further   pursued.  

4.1  Pharmaco-
dynamics

4.1.1   Adamantanes 
(M-2 Inhibitors)  
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   Neuraminidase inhibitors are structural analogues of  sialic acid  . 
As a class, they competitively inhibit the activity of  infl uenza   neur-
aminidases. Without cleavage of sialic acid residues, new virions 
remain bound to the infected host cell wall and viral spread is 
inhibited [ 121 ]. The neuraminidase inhibitors have antiviral activ-
ity against both infl uenza A and B. 

  Oseltamivir    and zanamivir      are the primary pharmaceutical 
options in this class of antivirals. Oseltamivir is available for oral 
administration as the ethyl ester prodrug oseltamivir phosphate. It 
is rapidly and extensively converted to the active form, oseltamivir 
carboxylate, via hepatic esterase hydrolysis [ 122 ]. Oseltamivir car-
boxylate in the  bloodstream   then distributes to both the upper and 
lower respiratory tract [ 123 ]. Due to poor oral bioavailability and 
rapid renal elimination, zanamivir is marketed as a dry powder for 
 oral inhalation   [ 124 ]. In healthy volunteers, 10 mg of zanamivir via 
inhalation achieved 13.2 % whole lung deposition with 77.6 % oro-
pharynx deposition [ 125 ].  Laninamivir octanoate   is a novel long-
acting neuraminidase inhibitor which only requires one intranasal 
administration. Within 24 h, the prodrug is converted in the lungs 
to the active metabolite laninamivir [ 126 ]. An unmet  medical need 
for a  parenteral formulation   has prompted ongoing investigations 
into oseltamivir and zanamivir [ 127 ] intravenous pharmacokinetics 
and effi cacy. In addition,  peramivir  , an investigational intravenous 
neuraminidase inhibitor, was made available for emergency use 
authorization during the 2009 H1N1 infl uenza pandemic [ 10 ]. 

 The susceptibility of various infl uenza A and B strains to 
 neuraminidase inhibitors has been investigated in several  in vitro 
analyses   [ 121 ,  123 ,  128 ]. Neuraminidase enzymatic assays utilize 
fl uorescence or  chemiluminescence   to quantify the activity of viral 
neuraminidase on a detectable substrate. Varying concentrations of 
the study compound are compared to a control in order to derive 
an inhibitory concentration. In comparison,  cell culture assays   
measure inhibition of viral plaque formation, a cytopathic effect or 
viral proteins to determine antiviral activity [ 129 ]. In vivo suscep-
tibilities have been shown to better correlate with enzymatic assays, 
and more variability is generally observed with culture assays [ 128 , 
 130 – 132 ]. In fact, both zanamivir  and oseltamivir      are marketed 
with the notation that a relationship between cell culture inhibi-
tion and inhibition of replication in humans has not been  established 
[ 124 ,  133 ]. The observed oseltamivir carboxylate concentration 
which reduces activity by 50 % (IC 50 ) range from 0.17 to 44 μg/L 
in cell culture, with a narrower range of 0.08 to 0.57 μg/L in 
neuraminidase enzymatic assays [ 121 ]. These values are similar to 
those of zanamivir against most strains, but oseltamivir  carboxylate   
displayed more potent activity against infl uenza A (H3N2) in both 
enzymatic and culture assays [ 128 ]. These agents are highly spe-
cifi c for infl uenza virus neuraminidase with little to no activity 
against neuraminidases from other viruses, bacteria or human liver 
microsomes observed in vitro [ 128 ]. 

4.1.2  Neuraminidase 
Inhibitors
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 The  effi cacy   of neuraminidase inhibitors has been tested in 
in vivo animal studies which confi rmed observations noted in the 
in vitro studies [ 128 ,  134 ]. Both ferret and mouse models have 
been used to demonstrate the effi cacy against infl uenza [ 129 ]. Oral 
administration of oseltamivir has produced sustained  plasma con-
centrations   in mice and ferrets. Mendel et al. evaluated the effi cacy 
of oseltamivir in infl uenza infected mice. Effi cacy was based on 
survival at 21 days post-infection as compared to untreated con-
trols.  Oseltamivir   administered for 5 days increased survival rates 
for mice infected with infl uenza A (H1N1, H3N2) and infl uenza 
B isolates. In addition, a decrease in virus titers was detected in the 
lungs of mice infected with infl uenza A H1N1 as compared to 
controls [ 128 ]. 

 The  PK-PD parameters   most predictive of effi cacy and resis-
tance have yet to be determined. Experimental infections trials 
were unable to demonstrate a dose–response effect in humans, 
most likely due to small sample sizes and variability in virus sensi-
tivity [ 123 ]. In fi eld trials, both the 75 mg and the 150 mg twice 
daily dosages elicited similar clinical effi cacy for treatment of com-
mon infl uenza [ 123 ]. It is assumed that adequate oseltamivir car-
boxylate exposure is achieved with 75 mg twice daily dosing, but 
the pharmacodynamics of oseltamivir carboxylate are not com-
pletely defi ned in in vivo studies. The PD variable linked to effi cacy 
of neuraminidase inhibitors against infl uenza was investigated in  in 
vitro hollow-fi ber infection models   [ 135 – 137 ]. The 24-h area 
under the concentration–time curve (AUC 0–24 ) to IC 50  or IC 90  was 
identifi ed as the PD index associated with oseltamivir carboxylate 
effi cacy [ 135 ]. Likewise, in a murine model of infl uenza infection, 
AUC was found to be the linked PD variable for peramivir [ 138 ]. 
Interestingly, the index predictive of intravenous zanamivir effi cacy 
was not AUC, but time above the 50 % effective concentration 
(EC 50 ) [ 137 ]. It was hypothesized that this fi nding was due to the 
short half-life of zanamivir (2.5 h). Therefore, a  dose fractionation   
study was performed including a simulated half-life similar to osel-
tamivir (8 h). In contrast to the 2.5 h half-life, viral inhibition was 
similar for all dosage regimens simulated with the 8 h half-life sug-
gesting that AUC 0–24 :EC 50  was the best PK-PD linked predictor at 
this half-life [ 137 ]. These results provide great insight into phar-
macodynamic indexes, but clinical confi rmation is still needed. 

 Currently available clinical trials contain suffi cient effi cacy data 
but lack concurrent plasma PK data. This is a major barrier in 
determining exposure–response relationships. Recently, a study 
group developed a population PK model from pooled clinical trial 
data in order to help determine the time course of oseltamivir car-
boxylate in adult and pediatric subjects [ 139 ]. With this model, 
patient demographics can be used to estimate the missing plasma 
concentration PK data in clinical trials. The study group used clini-
cal data from two phase two inoculation studies and applied the 
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predicted  oseltamivir carboxylate exposure data   to explore the 
exposure–response relationships for oseltamivir carboxylate effi -
cacy [ 140 ]. Their fi ndings suggested that a relationship between 
oseltamivir carboxylate AUC 0–24  and effi cacy did indeed exist. The 
researchers were, however, unable to determine if AUC alone was 
the exposure most associated with effi cacy ( C  min  or  C  max  could 
not be excluded). They also observed that a higher AUC 0–24  
(>14,000 ng • h/mL) than that achieved by approved oseltamivir 
dosing (~6000 ng • h/mL) was associated with greater effi cacy. 
Further studies are, however, still needed to determine the clinical 
applicability of such fi ndings.   

   The adamantanes are only active against infl uenza A and are associ-
ated with several toxic side effects. With the potential for rapid 
emergence of drug resistance, the value of this class for the treat-
ment of infl uenza is limited. Their role in therapy against infl uenza 
is therefore limited for use in combination therapy or prophylaxis 
in certain instances when a neuraminidase inhibitor cannot be 
used.  Amantadine   is also licensed for use in the treatment of 
Parkinson’s disease [ 119 ]. Conversely, the low rate of resistance 
and tolerability of the neuraminidase inhibitors makes them ideal 
fi rst line agents. The effectiveness of  oseltamivir   for prophylaxis 
and treatment of infl uenza has been shown in several clinical stud-
ies.  Randomized, control trials   in outpatient settings conducted 
primarily among subjects with mild infection demonstrate that 
both  zanamivir   and  oseltamivir   can reduce the duration of infl u-
enza A and B by approximately 1 day when administered within 
48 h of illness onset when compared against placebo [ 141 ]. 
Minimal to no benefi t was observed when treatment was initiated 
after this treatment window [ 10 ,  121 ,  122 ]. It is worth noting that 
recent observational studies in hospitalized patients have indicated 
a benefi t of antiviral treatment even if treatment is initiated more 
than 48 h and up to 96 h after onset of illness [ 142 – 144 ]. 

 Zanamivir is FDA approved for  treatment and prophylaxis   of 
adults with  infl uenza   A or B, but not for children under the age 
of 5 [ 124 ]. The recommended dosage for treatment is 10 mg (two 
inhalations) twice daily. The chemoprophylaxis dosing is 10 mg 
once daily. For both oseltamivir and zanamivir, treatment duration 
is 5 days and chemoprophylaxis duration is 10 days. Some studies 
have shown persistent viral shedding in critically ill and immuno-
compromised patients. In such cases, extending treatment dura-
tion is warranted. Oseltamivir is FDA approved for  treatment and 
chemoprophylaxis   of infl uenza in adults and children ≥1 year of 
age [ 133 ]. In 2012, the FDA expanded oseltamivir’s use to include 
treatment in children as young as 2 weeks old. The labeled dosing 
for oseltamivir in adults is 75 mg by mouth twice daily. However, 
some experts suggest that this may not be the most optimal dosing 
strategy in all populations. Studies of the 2009 H1N1 infl uenza 

4.2  Clinical 
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pandemic observed that obese and critically ill patients had worse 
clinical outcomes. This led to the proposal that an increased dose 
of oseltamivir (150 mg twice daily) should be considered in patients 
who are morbidly obese or critically ill [ 145 – 147 ]. While the safety 
of oseltamivir 150 mg twice daily dosing has been established 
[ 148 ], there is no data available to evaluate if higher oseltamivir 
doses are superior in reducing the severity or duration of infl uenza. 
Pharmacokinetic studies have concluded that oseltamivir carboxyl-
ate exposure (AUC) from 75 mg dosing is largely unchanged in 
obesity when compared to nonobese patients [ 149 ,  150 ]. Some 
experts suggest that there may be some benefi t to using higher 
doses in certain populations (H5N1 infection, critically ill, immu-
nocompromised). A recent review article of patients infected with 
avian infl uenza strain (H5N1) suggest that higher doses, along 
with an increased duration of 10 days, may be benefi cial due to the 
high levels of replication and the observation of progressive disease 
despite adequate treatment with standard dosing [ 151 ]. The absor-
ption and distribution of oseltamivir carboxylate is still quite uncer-
tain in critically ill patients. Additionally, prolonged shedding 
of infl uenza virus has been described in immunocompromised 
patients [ 10 ,  152 ,  153 ].    Considering the overall safety profi le  of   
oseltamivir, the acuity of illness in such patients, the lack of PD 
clinical data to guide optimal dosing and the uncertainty of sys-
temic exposure; it is reasonable to use higher doses of oseltamivir 
in these patient populations. 

 Since zanamivir is almost completely eliminated renally, per-
sons with renal impairment have higher serum AUCs [ 125 ]. It is 
likely that patients with renal disease would have a PK/PD index 
of AUC:EC and healthy individuals would have index of time 
above EC [ 137 ]. Oseltamivir phosphate (the oral pro-drug that is 
in the capsule) is metabolized to oseltamivir carboxylate that has a 
volume of distribution roughly equivalent to total body water. 
The active carboxylate metabolite has low protein binding and is 
excreted unchanged by  glomerular fi ltration and tubular secretion   
so serum concentration might be predicted to decrease moder-
ately. Therefore, it is recommended to adjust the dose of oseltami-
vir in patients with creatinine clearance less than 30 mL/min. 

 In early clinical trials investigating oseltamivir, approximately 
10–20 % of patients were reported to experience self-limiting 
adverse effects. The most often reported toxicity of oseltamivir was 
 gastrointestinal disturbance   [ 121 ]. These include nausea, vomiting 
and abdominal pain. Initially, no differences in rate of side effects 
were noted when increasing doses up to 1000 mg were adminis-
tered [ 123 ]. However, a recent surveillance study showed that 
adverse events could be correlated with increasing plasma concen-
trations (AUC) [ 154 ]. The intensity of the effects are typically 
mild to moderate, and are minimized when administered with 
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food. Some  neuropsychiatric side effects   have been reported, 
 however, postmarketing surveillance has since concluded that no 
important safety concerns need be mentioned for oseltamivir [ 155 ].  

   Infl uenza A resistance to  adamantanes   has steadily increased 
 worldwide since 2003. Resistance develops when single amino acid 
mutations occur at residues 27, 30 or 31 [ 130 ]. Adamantine resis-
tant isolates increased from 0.4 %, during the 1994–1995 season, 
to 12.3 % during 2003–2004 season [ 156 ]. Ninety-two percent 
of infl uenza A (H3N2) viruses during the 2005–2006 season 
 possessed a change in the M2 gene at position 31 which confers 
resistance [ 157 ]. Currently, all H3N2 and 2009 H1N1 viruses 
demonstrate resistance to adamantanes [ 141 ]. Resistance develops 
rapidly against adamantanes, and resistant isolates maintain  viru-
lence and transmissibility   [ 130 ,  158 ,  159 ]. For this reason, ada-
mantanes are not recommended for treatment or chemoprophylaxis 
of infl uenza A virus [ 10 ,  160 ]. 

 Development of resistance to the  neuraminidase inhibitors   is 
not as common [ 161 ], and transmission of resistance mutations is 
rare [ 162 ,  163 ]. However, neuraminidase inhibitor resistance has 
been reported to occur during treatment/prophylaxis and in the 
absence of drug pressure [ 15 ].  Oseltamivir   has become the most 
widely used neuraminidase inhibitor, making it vital to monitor 
resistance through ongoing surveillance. From 1999 to 2004, the 
incidence of oseltamivir resistance was reported as 0.33 % in adults 
and 4.0 % in children [ 164 ,  165 ]. Other studies have reported 
rates as high as 18 % in certain populations including  children and 
immunocompromised patients   [ 166 ,  167 ]. The most infamous 
account of oseltamivir resistance to date is the seasonal A (H1N1) 
with H274Y (H275Y in N1 numbering) neuraminidase mutation 
during the 2007–2008 and 2008–2009 infl uenza seasons where 
the majority of these strains were noted to be resistant [ 15 ]. Since 
then, the level of the resistant 2009 H1N1 pandemic strain has 
remained low in the USA (~1 %) [ 168 ]. Furthermore, greater 
than 99 % of all infl uenza strains circulating since 2009 have been 
oseltamivir susceptible [ 10 ]. 

 Mutations in infl uenza neuraminidase enzyme elicit resistance 
to neuraminidase inhibitors by either direct or indirect alteration of 
the catalytic site. This conformational change reduces the binding 
affi nity of neuraminidase inhibitors [ 169 ]. Neuraminidase muta-
tions generally lead to a less functional enzyme and therefore less 
fi t virus [ 169 ]. In vitro studies have also described  hemagglutinin 
receptor   mutations which can lead to resistance, but the clinical 
relevance is unknown [ 170 ]. The H274Y is the predominant neur-
aminidase mutation which confers resistance to oseltamivir [ 171 ]. 
Using a  fl uorimetry-based neuraminidase inhibition assay  , Pizzorno 
et al. determined that the H247Y mutation increases the oseltami-
vir IC 50  by almost 1000-fold. The mutations R292K and N294S 
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have also been associated with reduced oseltamivir sensitivity while 
S246N, I117V, and I222R in the 2009 H1N1 pandemic strain 
have been shown to have a synergistic resistance effect with H274Y 
[ 15 ]. The I222R substitution may even aid with the restoration of 
fi tness in H274Y mutants [ 172 ]. 

 Structurally, zanamivir does not contain a bulky side chain like 
oseltamivir so binding with the active site occurs in a different 
manner [ 169 ]. Therefore, neuraminidase mutations which cause 
resistance to oseltamivir do not confer resistance to zanamivir. 
Incidentally, all infl uenza A and B types remain susceptible to  zana-
mivir   [ 173 ], but infrequent utilization may also factor into this 
observation. Even so, zanamivir resistant infl uenza strains with 
Q136K, I222R/K, E119G/V, and D198G substitutions have 
been described in the literature so surveillance will continue to be 
important as the antiviral use increases [ 15 ]. Peramivir is structur-
ally similar to both oseltamivir and zanamivir, and hence mutations 
which affect their activity can also affect  peramivir   activity [ 15 ]. 
For example, Pizzorno et al. found H274Y to increase peramivir 
IC 50  by 661-fold as compared to wild-type virus. Of note, no 
laninamivir resistant mutations have been reported to date [ 172 ]. 

 Due to the ease of administration,  oseltamivir   remains the 
most utilized neuraminidase inhibitor today. Oseltamivir resistance 
is however a growing concern. The 2009 H1N1 pandemic high-
lighted the need for alternative therapies in these instances. 
 Laninamivir   as a single, long-acting inhalation has been shown to 
be as effective as oseltamivir for the treatment of infl uenza in adult 
patients (including oseltamivir-resistant infl uenza virus) [ 174 ], but 
it is not available for use in the USA. Zanamivir remains the most 
viable option for treatment of oseltamivir-resistant infl uenza. In 
cases where administration via inhalation is not feasible, parenteral 
administration is essential.  Intravenous formulations   of oseltamivir, 
peramivir, and zanamivir have been developed, but only zanamivir 
is currently available on a compassionate use basis for suspected/
confi rmed oseltamivir-resistant infl uenza.   

5    Conclusions 

 Until recently, most of the research related to viral resistance in 
relationship to drug exposure has been done with HIV and antiret-
roviral drugs. With the increased incidence of HSV and CMV 
resistant infections and a lack of treatment options more emphasis 
should be placed on optimizing the pharmacodynamics of antiviral 
drugs, such as acyclovir and ganciclovir/valganciclovir. A better 
understanding of the relationship between drug exposure and 
therapeutic outcomes including effi cacy and toxicity for all antiviral 
drugs would favor complete viral suppression which in return 
should lead to a decrease in resistance and minimize toxicity. 
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Similarly with infl uenza, new strategies will need to be developed 
to help combat the growing threat of NAI-resistant infl uenza. One 
such strategy currently being investigated is using the combination 
of amantadine, oseltamivir, and ribavirin [ 175 ]. Zanamivir intrave-
nously is likely to be approved in the future and an enhanced 
understanding of dose–response relationship in critically ill patients 
would be essential prior to marketing.     
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    Chapter 19   

 Pharmacodynamics of Antiretroviral Agents                     

     Kajal     B.     Larson     and     Edward     P.     Acosta      

  Abstract 

   The identifi cation of drug targets against the human immunodefi ciency virus has led to the development 
and approval of several antiretroviral agents. Drug monotherapy and non-adherence to prescribed regimen 
have led to the emergence of drug resistance and current drug regimens consisting of at least three drugs 
are recommended. The relationship between drug exposure or concentrations and response has been 
described for most agents, both as single agents and in combination with other drugs. The introduction 
of fi xed-dose formulation and the fact that new drugs are only tested in combination with other antiretro-
virals introduces issues in determining the exact pharmacodynamics of single agents. However, favorable 
responses such as viral suppression, now defi ned as HIV-1 RNA level <20–50 copies/mL, and restoration 
of immune function as evidenced by increased CD4+ cell counts, remain the benchmark in effi cacy com-
parison. Further, HIV-RNA levels, CD4+ cell counts, and resistance-associated mutations at baseline often 
predict virological failure or success of HIV drugs. Although therapeutic drug monitoring may have 
advantages in specifi c populations, it is not indicated for routine use and has limited utility for some drug 
classes such as nucleoside reverse transcriptase inhibitors and protease inhibitors.  

  Key words     Pharmacokinetics  ,   Pharmacodynamics  ,   Antiretrovirals  ,   Concentration–response  ,   Protease 
inhibitors  ,   Non-nucleoside reverse transcriptase inhibitors  

1       Overview of HIV Infection 

 In the early 1980s, several cases of a cellular-immune dysfunction 
were reported in the USA [ 1 ] and soon after, the term Acquired 
Immune Defi ciency Syndrome (AIDS) was coined. The patients pre-
sented with fever, rash, and lymphadenopathy and were more sus-
ceptible to opportunistic infections such as pneumocystis pneumonia 
and cytomegalovirus infections. In May 1983, the human immuno-
defi ciency virus ( HIV)   was isolated and later confi rmed to be the 
causative pathogen of AIDS. Two strains, HIV-1 and HIV- 2, are 
known to exist, with HIV-1 infections being more prevalent world-
wide and while HIV-2 is more common in some countries, this strain 
is less readily transmitted and pathogenic than HIV-1 [ 2 ,  3 ]. Dual 
infections with both strains have also been reported [ 4 ]. 
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 HIV is an  RNA retrovirus   ( Lentivirus  genus) that contains two 
single strands of RNA, enclosed by a nucleocapsid and an outer 
lipid  envelop  . Of the nine HIV genes, three genes, namely  gag ,  pol , 
and  env  are mainly responsible for the synthesis of structural pro-
teins needed for virus replication, including reverse transcriptase, 
protease, and integrase, which are known HIV drug targets. HIV 
targets  T cells   such as CD4+ lymphocytes, macrophages, and den-
dritic cells, by fi rst binding to the CD4 receptor through the viral 
glycoprotein gp120. This interaction is then followed by binding 
to a co-receptor, either  chemokine receptor 5 (CCR5)      or  chemo-
kine receptor 4 (CXCR4)     , which causes a conformational change 
in the viral envelope, activating gp41, a fusion peptide that allows 
viral entry into host cells. The  env  gene encodes the two  glycopro-
teins  , gp120 and gp41. Another receptor, integrin α-4 β-7, appears 
to be important for the attachment, of HIV-1 to dendritic cells in 
the gut, enabling the transport of HIV to lymphoid organs and 
infection of T-cells. Major HIV genes and proteins and their func-
tions are summarized  in   Table  1 .

   Table 1  
  Major HIV genes, proteins, and  functions     

 Gene  Protein(s)  Major function(s)  Notes 

 Gag  p24, p7, p6  Capsid protein  p24 antigen assay can be used 
to detect HIV infection  p17  Matrix protein 

 Pol  Reverse 
transcriptase 

 Transcribes viral RNA to DNA  Drug target 

 Integrase  Integrates viral  DNA   into host 
genome 

 Drug target 

 Protease  Cleaves viral polyproteins into 
functional units 

 Drug target 

 Vif  Vif  Degrades host cell defense protein 
APOBEC3G 

 Vpr  Vpr  Regulates nuclear import of 
pre- integration complex 

 Tat  Tat  Promotes transcription of viral DNA 

 Rev  Rev  Allows export of unspliced viral 
RNA from nucleus 

 Vpu  Vpu  Intracellular degradation of CD4 

 Env  gp120  Binds CD4, CCR5, CXCR4  Drug target 

 gp41  Promotes fusion of virus to host cell  Drug target 

 Nef  Nef  Downregulates  CD4   and other 
receptors 
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   Untreated HIV infection starts with primary infection fol-
lowed by dissemination of virus to lymphoid organs, clinical 
latency, elevated HIV expression, clinical disease, and death. After 
primary infection, there is a sharp decrease in the number of CD4 
T-cells in  peripheral blood  . An immune response to HIV ensues 
within 1 week to 3 months after infection, which results in a 
decrease in plasma viremia and an increase in CD4 cells. This is a 
phase of prolonged clinical latency, which can last for as long as 
10 years. During this time, viral replication is still active, with an 
estimated turnover of ten billion HIV particles. However, the 
immune system cannot completely clear the HIV infection and 
the virus- infected cells persist in the  lymph nodes  . Eventually, the 
patient starts to show symptoms as the CD4 T-cell count continues 
to decrease until it reaches a critical level below which there is a 
 substantial risk of opportunistic diseases. In untreated cases, death 
usually occurs within 2 years after the onset of clinical symptoms. 

  Sensitive assays   have been developed to detect HIV RNA in 
plasma and a single measurement of plasma viral load about 
6 months after infection can predict the subsequent risk of devel-
oping AIDS in untreated male patients, making RNA viral load a 
useful prognostic tool. High viral loads tend to correlate with rapid 
disease progression and poorer responses to treatment. In women, 
viral load has been suggested to be less predictive of progression to 
AIDS. Nonetheless, the plasma viral load appears to be the best 
predictor of long-term clinical outcome, whereas the CD4 lym-
phocyte counts are the best predictor of short-term risk of devel-
oping an opportunistic disease. Further, it has been shown that 
suppression of HIV-1 RNA to <20–50 copies/mL is a better pre-
dictor of durable virologic success than suppression to <400–500 
copies/mL [ 5 ].  Virologic effi cacy   is related to initial CD4 counts, 
which depends on unpredictable presentation of patients for care. 
In an attempt to reduce the variation in  drug effi cacy   which 
decreases the risk of disease progression, guidelines that strongly 
recommend ART initiation when CD4 count are less than 
350 cells/mm 3  or between 350 and 500 cell/mm 3  have been 
implemented [ 6 ].  

2     HIV Therapy 

 In 2012, there were 2.3 million new HIV infections worldwide 
[ 7 ]. Signifi cant advances in  ARV therapy   in the past three decades 
have reduced the mortality and morbidity due to AIDS, and there 
were about 35 million people living with HIV at the end of 2012 
[ 7 ]. There are currently 26 antiretroviral (ARV) drugs spanning six 
drug classes that are approved for the treatment of HIV with stan-
dard treatment consisting of a combination of at least three drugs 
from two different classes (HAART, highly active antiretroviral 
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therapy). Table  2  summarizes the recommended guidelines for the 
use of ARV drugs for the  treatment   of HIV infections (Current 
HIV treatment guidelines can be found at   https://aidsinfo.nih.
gov/contentfi les/lvguidelines/AdultandAdolescentGL.pdf    ).

3        General Pharmacodynamic Principles 

  Pharmacodynamics (PD)   is the study of the biochemical, molecular 
and/or physiological effects of a drug on the body, and defi nes the 
relationship between drug exposure and therapeutic effect. In HIV 
research, the most commonly used  parameters   to defi ne ARV suc-
cess or drug effi cacy are CD4 return, decrease in HIV RNA, and 
suppression of the viral antigen, p24. The development of sensitive 
drug assays has enabled the measurement of plasma drug concen-
trations, which are also used to determine PD relationships. 
However, ARV drug concentration at the site of action may be dif-
ferent from  plasma drug concentrations  . For example, nucleoside 
reverse transcriptase inhibitors (NRTIs) are activated intracellularly 
and therefore the concentration of the phosphorylated active enti-
ties could better describe the PD of NRTIs. PD relationships 
are intricately connected to drug concentrations, which can vary 
because of changes in pharmacokinetics (drug absorption, distribu-
tion, metabolism, and elimination) as shown  in      Figs.  1  and  2 . For 
example, raltegravir, an integrase inhibitor, has been shown to have 
high inter- and intra- patient variability [ 8 ] and protease inhibitors 
(PIs) are highly variable, presumably because of fl uctuations in 
plasma proteins, to which these drugs are highly bound. Drug con-
centration can also vary because of non-adherence to therapy, which 
leads to exposure of replicating virus to suboptimal drug concentra-
tion that will eventually lead to the selection of drug- resistant iso-
lates. In ARV therapy, cross-resistance, whereby the virus does not 
respond to some drugs from the same category can occur. In these 
situations, higher drug doses can be used to try to achieve an effect 
but in most cases, drug class switching is prescribed.

    In this chapter, we review the pharmacodynamics of antiretro-
virals in humans, including safety, effi cacy, and tolerability data and 
therapeutic drug monitoring.  

4     Nucleoside Reverse Transcriptase Inhibitors 

 Nucleoside reverse transcriptase inhibitors (NRTIs) are the oldest 
drug class in ARV therapy, with zidovudine being the fi rst drug 
approved by the US Food and Drug Administration (FDA) for the 
treatment of HIV. Agents in this class are activated by an intracel-
lular phosphorylation cascade and are incorporated into viral DNA. 
The viral enzyme reverse transcriptase cannot recognize the 
NRTI-bound DNA and chain elongation is stopped. 
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   Table 2  
  US  guidelines   for antiretroviral regimens in treatment-naïve patients [ 6 ]   

 Antiretroviral drugs  Dosing 

 Preferred regimens 

  Non-nucleoside reverse transcriptase regimen  

 Efavirenz/tenofovir/emtricitabine a   600/300/200 mg once a day 

  Protease inhibitor regimens  

 Atazanavir 
 Ritonavir 
 Tenofovir/emtricitabine a  

 300 mg once a day 
 100 mg once a day 
 300/200 mg once a day 

 Darunavir 
 Ritonavir 
 Abacavir/lamivudine a  

 800 mg once a day 
 100 mg once a day 
 300/200 mg once a day 

  Integrase inhibitor regimen  

  Raltegravir   
 Tenofovir/emtricitabine a  

 400 mg twice a day 
 300/200 mg once a day 

 Alternative regimens 

  Non-nucleoside reverse transcriptase regimen  

 Efavirenz 
 Abacavir/lamivudine a  

 600 mg once a day 
 600/300 mg once a day 

 Rilpivirine/tenofovir/emtricitabine a   25/300/200 mg once a day 

 Rilpivirine 
 Abacavir/lamivudine a  

 25 mg once a day 
 600/300 mg once a day 

  Protease inhibitor regimens  

  Atazanavir   
 Ritonavir 
 Abacavir/lamivudine a  

 300 mg once a day 
 100 mg once a day 
 600/300 mg once a day 

 Darunavir 
 Ritonavir 
 Abacavir/lamivudine a  

 800/100 mg once a day 
 100 mg once a day 
 600/300 mg once a day 

 Fosamprenavir/ritonavir 
 Abacavir/lamivudine a  or 
 Tenofovir/emtricitabine a  

 1400/200 mg once a day b  or 700/100 mg twice a day 
 600/300 mg once a day 
 300/200 mg once a day 

 Lopinavir/ritonavir a  
 Abacavir/lamivudine a  or 
 Tenofovir/emtricitabine a  

 400/100 mg twice daily or 800/200 mg once a day 
 600/300 mg once a day 
 300/200 mg once a day 

  Integrase inhibitor regimen  

 Elvitegravir/cobicistat/    
 tenofovir/emtricitabine a  

 150/150/300/200 mg once a day 

 Raltegravir 
 Abacavir/lamivudine a  

 400 mg twice a day 
 600/300 mg once a day 

   a Fixed dose combination 
  b Ritonavir can also be given at 100 mg once a day  
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  Fig. 1    Variability in  raltegravir concentrations   following 400 mg twice daily dosing in HIV-positive patients from 
≥6 to <19 years of age ( n  = 22).  Triangles  are individual raltegravir concentrations. Data are from Nachman S 
et al. Pharmacokinetics, safety, and 48-week effi cacy of oral raltegravir in HIV-1-infected children aged 2 
through 18 years.  Clinical Infectious Diseases , 2014;58:413–22       
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  Fig. 2    Variability in  lopinavir concentrations   in HIV-positive treatment-naïve patients. Individual total ( a ) and 
free ( b ) lopinavir concentrations are displayed in  circles. Solid line  is the population pharmacokinetic prediction 
of median concentration. The  dashed lines  are the 5th and 95th percentiles of the observed data and the 
 shaded areas  are the corresponding 95 % confi dence interval of the simulated data. Reproduced from K. Wang 
et al.  Clin Pharmacokinet  2014; 53: 361–71       

   Zidovudine was the fi rst ARV approved by the FDA for the treat-
ment of HIV infection in 1987. In one of the initial trials with 
 zidovudine     , 145 patients received zidovudine and 137 received 
placebo. Patients who received zidovudine had a statistically 
 signifi cant increase in CD4 cell counts compared to patients on 
placebo [ 9 ]. A high number of deaths were noted in the placebo 

4.1   Zidovudine
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group and the trial was stopped. Soon after the discovery of 
 zidovudine resistance, combination therapy was investigated in 
clinical trials. In a double-blind, randomized trial, during with 
treatment-naïve, HIV-infected patients received either lamivudine 
300 mg twice a day plus zidovudine 200 mg every 8 h or zidovu-
dine monotherapy, revealed that combination therapy led to a sig-
nifi cant increase in CD4 cell counts and decrease in HIV-1 viral 
load without any signifi cant differences in incidence or severity in 
safety events [ 10 ]. These results were similar to other studies, 
including one that compared combination zidovudine therapy 
to zidovudine monotherapy in zidovudine-experienced patients 
[ 11 – 13 ]. The effi cacy of zidovudine plus lamivudine was also 
shown to be superior compared to stavudine in the ACTG 302 
study, during which zidovudine-experienced patients had been 
switched to either stavudine or lamivudine plus zidovudine [ 14 ]. 
Nowadays,  zidovudine (300 mg) is available as a fi xed-dose com-
bination (FDC) with lamivudine (150 mg). 

 The major side effects of zidovudine include dose-related mito-
chondrial toxicity and severe anemia and neutropenia. Although a 
zidovudine plus lamivudine combination is not a preferred agent in 
the USA [ 6 ], it is a preferred regimen in pregnant women in the 
USA [ 6 ] and has been recommended by the World Health 
Organization in cases where tenofovir, lamivudine (or emtric-
itabine),  and      efavirenz are contraindicated or not available [ 15 ].  

   Approved by the FDA in 1991, didanosine is an NRTI whose dos-
ing is based on body weight. Fatal and nonfatal adverse reactions 
have been observed with the use of didanosine and include pancre-
atitis, lactic acidosis, severe hepatomegaly with steatosis, hepatic 
toxicity, non-cirrhotic portal hypertension, peripheral neuropathy, 
retinal changes and optic neuritis, immune reconstitution syn-
drome, and fat redistribution. 

 In an early comparison of zidovudine with didanosine, patients 
who were switched to receive didanosine (either 750 or 500 mg 
per day) had better response than those who received zidovudine, 
with respect to CD4 cell counts and p24 antigen levels, suggesting 
that a change from zidovudine to didanosine may be favorable 
[ 16 ]. The long-term effi cacy of didanosine, stavudine, and nelfi na-
vir was compared to zidovudine, lamivudine, and nelfi navir in 
HIV-infected, treatment-naïve patients. The two arms had similar 
proportion of patients who achieved HIV RNA <400 copies/mL 
or experienced virologic failure. Further, a similar median increase 
in CD4 cell counts was observed in both groups, indicating that 
didanosine-containing therapy was noninferior to zidovudine plus 
lamivudine and nelfi navir [ 17 ,  18 ].  

4.2    Didanosine     

Antiretroviral Agents



476

    Stavudine      was approved for the treatment of HIV in 1994 but its 
use has become rare in developed countries and is being phased 
out in resource-limited settings because of concerns about 
 long-term cumulative toxicity. Further, tenofovir, zidovudine, or 
stavudine were compared as part of fi rst-line ARV therapy in 
resource-limited setting and while virologic suppression was simi-
lar for all agents, zidovudine had the lowest CD4 cell count rise 
and tenofovir had the least mortality [ 19 ]. In the USA, stavudine 
can be administered at 40 mg twice daily while the international 
dose is 30 mg twice daily, highlighting the lack of optimal dosing 
information. 

 The clinical effi cacy of monotherapy stavudine was investigated 
in a study in 822 HIV infected adults who were zidovudine- 
experienced [ 20 ]. While the authors found that stavudine was well 
tolerated, there were no signifi cant differences between stavudine 
or zidovudine monotherapy in the study population. In treatment- 
naïve and -experienced HIV-infected individuals, combination 
therapy (stavudine plus lamivudine) led to a decrease in HIV-1 
RNA and an increase in CD4 cell counts with 17 % of subjects 
experiencing grade 3 or 4 toxicity [ 21 ]. 

 Intermittent exposure to NRTIs was explored using high doses 
of stavudine in NRTI-experienced patients [ 22 ]. Patients received 
280 mg per day of stavudine for 4 weeks, a dosage predicted to 
achieve a steady-state concentration of 336 ng/mL. Stavudine 
treatment was discontinued for 4 weeks and started again for an 
additional 4 weeks. The authors found that this approach was well 
tolerated, with a decrease in viral load and increase in CD4 cell 
count. A signifi cant relationship was observed between stavudine 
exposure and change in viral load. Although an increase in viral 
load and a decrease in CD4 cell counts were seen when patients 
were not receiving stavudine (“off” cycles), resistance to study 
drugs was not likely as evidenced by detection of only one new 
NRTI resistance mutation in the study population. This work sug-
gested that intermittent treatment  with      ARVs could be a viable 
option for patients with treatment failure.  

   Lamivudine is a cytidine analog that has activity against both 
HIV-1 and HIV-2 and can also inhibit the reverse transcriptase of 
the Hepatitis B virus. Approved by the FDA in 1995, lamivudine 
can be administered at 300 mg once daily or 150 mg twice daily. 
Weight-based dosing of lamivudine in children 3 months and older 
is also approved. In 2004, lamivudine was approved as a combina-
tion pill with abacavir. As with other NRTIs, lamivudine resistance 
is of concern. Clinical trials have showed that in patients receiving 
lamivudine monotherapy or combination therapy with lamivudine 
plus zidovudine, most subjects became resistant to lamivudine 
within 12 weeks of treatment initiation. However, the combination 
treatment delayed the emergence of zidovudine resistance [ 23 ]. 

4.3   Stavudine

4.4    Lamivudine     
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Further, most lamivudine-resistant strains of HIV are cross- resistant 
to didanosine, and zalcitabine (an NRTI that is no longer 
manufactured). 

 Lamivudine has been studied extensively as part of combina-
tion regimens. In treatment-naïve adults, a lamivudine plus zid-
ovudine regimen had greater increases in CD4 cell counts and 
decreases in viral load compared to monotherapy with these agents 
at week 24, with sustained virologic effects at week 48 [ 10 ]. While 
the combination treatment delayed the emergence of zidovudine 
resistance, lamivudine resistance developed rapidly. At week 48 of 
treatment with twice-daily lamivudine and zidovudine as a combi-
nation tablet plus abacavir, 56 % of patients had achieved HIV-1 
RNA <50 copies/mL [ 24 ]. Further, the authors found that prior 
use of lamivudine or zidovudine and the presence of the reverse 
transcriptase mutation M184V did not have an effect on virolo-
gic outcome. In the ACTG trial A5202, where treatment-naïve 
patients were randomized to receive tenofovir-emtricitabine or 
abacavir-lamivudine, combined with efavirenz or atazanavir/ 
ritonavir, similar viral load declines at week 4 were observed in 
patients receiving tenofovir or lamivudine [ 25 ]. However, patients 
who had a high baseline viral load (≥100,000 copies/mL), 
increased virologic failure rates were observed in the lamivudine 
treatment group. In virologically suppressed patients who received 
lopinavir/ritonavir as part of their ARV regimen and had raised 
cholesterol levels, switching from lamivudine/abacavir to tenofo-
vir/emtricitabine led to improvements in fasting lipid profi les 
without a deterioration in virological control, suggesting that 
tenofovir/emtricitabine may have a superior safety profi le com-
pared to lamivudine/abacavir [ 26 ]. While lamivudine/abacavir is 
not one of the preferred ARV regimens in treatment naïve patients 
in the USA, emtricitabine and lamivudine can be switched as 
these two agents were found to be clinically equivalent [ 6 ,  27 ]. 
 Lamivudine/abacavir      remains an important, albeit alternative 
regimen.  

   In 1998, abacavir became the 15th ARV drug approved by the 
FDA. Abacavir exists as co-formulated pills, either with lamivudine 
or with zidovudine plus lamivudine. The major adverse effects 
associated with abacavir are hypersensitivity reaction, lactic acido-
sis, and severe hepatomegaly. Patients with the HLA-B*5701 allele 
have a signifi cantly increased risk for the hypersensitivity reaction, 
which is a multi-organ clinical syndrome and can be fatal. Screening 
for this specifi c allele is recommended prior to taking abacavir. 
Underlying heart conditions should be considered before starting 
treatment with abacavir as patients may be at an increased risk for 
myocardial infarction. 

 In a dose-ranging study in antiretroviral-naïve patients, the 
pharmacokinetics of abacavir were dose proportional over the 
doses studied [ 28 ]. While the incidence of adverse effects was not 
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correlated to abacavir exposure, a relationship was observed 
between nausea and maximum plasma concentration ( C  max ). 
Further,  C  max  and area under the concentration–time curve from 0 
to infi nity (AUC 0–∞ ) were signifi cantly associated with virologic 
and immunologic function. Only a small difference in the change 
in HIV-1 RNA levels when the dose was increased from 300 to 
600 mg was observed, suggesting that the appropriate dose of aba-
cavir is 300 mg twice a day. 

 The data from A5202 showed that patients with high viral 
loads had an increased risk for virologic failure when taking lami-
vudine/abacavir compared to tenofovir/emtricitabine. Therefore, 
similar  to      lamivudine, treatment with abacavir is not preferred over 
tenofovir/emtricitabine as an initial treatment regimen [ 6 ].  

   Similar to lamivudine, emtricitabine is a cytidine analog that has 
activity against HIV and hepatitis B infections. It was approved by 
the FDA for the treatment of HIV infections in 2003. Emtricitabine 
exists as a component of three fi xed-dose combinations, namely 
Truvada (tenofovir and emtricitabine), Atripla (tenofovir, emtric-
itabine, and efavirenz), and Stribild (elvitegravir, cobicistat, teno-
fovir, and emtricitabine). These combinations are advantageous 
because they lower pill burden and simplify dosing regimens. 
Emtricitabine in its co-formulated form is part of most of the pre-
ferred regimens in treatment-naïve, HIV-infected patients [ 6 ]. 

 Similar to most NRTIs, emtricitabine is phosphorylated intra-
cellularly to emtricitabine triphosphate, which is present at high 
concentration and has a long half-life in peripheral blood mono-
nuclear cells (PBMC) following 200 mg, once-daily dosing [ 29 ]. 
Further, HIV-1 RNA suppression was associated with emtric-
itabine triphosphate levels in these cells. In a 96-week safety and 
effi cacy comparison of efavirenz with either emtricitabine/tenofovir 
or lamivudine/abacavir, there were no signifi cant differences in 
virological failure and adverse events between the two regimens 
[ 30 ]. While patients on lamivudine/abacavir had greater increases 
in lipid profi les, patients on emtricitabine/tenofovir had greater 
decreases in bone density and increases in tubular dysfunction 
and bone turnover. In a different study, emtricitabine/tenofovir 
and lamivudine/abacavir both given with atazanavir/ritonavir had 
comparable effi cacy and safety profi les in the Japanese population 
[ 31 ]. In general, emtricitabine is a well-tolerated and effi cacious 
drug, recommended in combination with other ARVs.  

    Tenofovir      is a nucleotide reverse transcriptase inhibitor available 
for the treatment of HIV-1. Tenofovir disoproxil fumarate is 
cleaved by esterases to tenofovir, which is then phosphorylated 
intracellularly to tenofovir diphosphate. It was also approved for 
the treatment of hepatitis B. Used with emtricitabine, tenofovir is 
an essential component of all initial ARV regimens, irrespective of 
backbone. 
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 In an interaction study between abacavir and tenofovir, 
treatment- naïve patients received 7 days of abacavir or tenofovir 
monotherapy, followed by a 35-day washout period and 7 days of 
abacavir plus tenofovir dual therapy [ 32 ]. The authors found that 
the slopes of viral decay were similar during dual therapy and aba-
cavir monotherapy, leading the authors to conclude that the coad-
ministration of these drugs has a non-additive antiviral effect. 

 The major safety concerns with tenofovir are lactic acidosis, 
severe hepatomegaly, and post-treatment exacerbation of hepatitis 
B infections [ 33 ]. The use of  tenofovir   has been associated with 
greater decreases in bone mineral density and increases in bio-
chemical markers of bone metabolism, which suggest increased 
bone turnover. Serum parathyroid hormone and vitamin D con-
centrations were also elevated. Because tenofovir is renally elimi-
nated, its use is accompanied with renal toxicity concerns. Cases of 
renal impairment such as renal failure and Fanconi syndrome have 
been observed in patients using tenofovir. Estimated creatinine 
clearance assessments are recommended prior to initiation of and 
during therapy with tenofovir. A similar compound, tenofovir alaf-
enamide fumarate, has also been recently approved.   

5     Non-nucleoside Reverse Transcriptase Inhibitors 

 Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are 
important components of HAART with fi ve NNRTIs currently 
approved for HIV treatment in the USA. Similar to NRTIs, these 
drugs inhibit the HIV reverse transcriptase, but unlike the NRTIs, 
they bind to a site distinct from the active site of the enzyme. 
NNRTIs have no activity against HIV-2 strains, or HIV-1 strains 
in group O, which are usually only found in West and Central 
Africa [ 34 ]. NNRTIs are also metabolized by the cytochrome 
P450 (CYP) system of enzymes, which they can inhibit or induce 
and therefore can affect other drugs that also use  CYP enzymes  . 
 Glucuronidation   of NNRTIs has also been reported. In general, 
NNRTIs are safe and well-tolerated. Notable adverse events 
include hepatotoxicity and severe rash with nevirapine, central ner-
vous system effects with efavirenz. Most have a long plasma half- 
life, except for delavirdine, and are administered once daily. Because 
only a single mutation in the HIV reverse transcriptase enzyme is 
needed to create a resistant strain of the virus, NNRTIs are consid-
ered to have a low genetic barrier to resistance and cross-resistance. 
While resistance to second generation NNRTIs such as etravirine 
and rilpivirine can develop, they are rare and thus these agents have 
a higher genetic barrier to resistance and remain an important 
treatment option for patients with virologic failure. 
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   Nevirapine was the fi rst NNRTI to be approved in the USA in 
1996 for HIV-infected patients, 15 days and older [ 35 ]. With an 
oral bioavailability >90 %, nevirapine is widely distributed in tis-
sues, including central nervous system and breast milk and can 
cross the placenta. It is administered at 200 mg once a day for the 
fi rst 14 days of treatment, followed by 200 mg twice daily. This 
lead-in period has been shown to reduce the frequency of rash, 
which can be severe and life-threatening. Sex-related differences, 
such as elevated plasma concentration and lower clearance in 
women, and ethnicity-related differences, with higher drug con-
centrations in blacks compared to white patients, have been 
reported [ 35 ,  36 ]. Treatment with nevirapine is not recommended 
in adult women with CD4 cell counts >250 cell/mm 3  or adult 
men with CD4 cell counts >400 cells/mm 3  [ 35 ]. 

 In an initial Phase I/II evaluation of nevirapine alone and in 
combination with zidovudine in 62 HIV-infected patients with 
CD4 counts <400 mm 3 , suppression of p24 antigen and increase in 
CD4 cell counts were observed but by week 8, all patients devel-
oped resistance. The INCAS trial compared the virologic effects of 
various combinations of nevirapine, didanosine, and zidovudine in 
151 HIV-infected, ARV-naïve patients who had a CD4 cell count 
of 200–600 cells/mm 3  at baseline [ 37 ]. At week 8, plasma HIV-1 
RNA levels were decreased by log 2.18, 1.55, and 0.90 in the triple 
drug therapy, zidovudine plus didanosine, and zidovudine plus 
nevirapine groups, respectively. Further, the rates of disease pro-
gression or death were 12 % (6/51), 25 % (13/53), and 23 % 
(11/47) in the triple drug therapy, zidovudine plus didanosine, 
and zidovudine plus nevirapine groups, respectively. The authors 
concluded that the triple drug therapy containing nevirapine led to 
greater and sustained decrease in viral plasma load than the other 
drug combinations. In a subset of INCAS study patients ( n  = 15) 
who received at least 1 year of double or triple therapy, there was a 
statistically signifi cant negative correlation between magnitude of 
treatment effect and plasma and lymph node viral load, suggesting 
that combinations of ARV drugs that decreased plasma viremia can 
also reduce viral load in lymphoid tissues [ 38 ]. 

 BI 1090 was a large placebo- controlled     , double-blind, ran-
domized trial comparing nevirapine plus lamivudine to lamivudine 
only in 2249 HIV-infected, NNRTI-naïve patients. Patients had 
initial CD4 counts <200 cells/mm 3  (median count of 96 cells/
mm 3 ) and also received background therapy. At 48 weeks, 18 % of 
patients receiving nevirapine had an HIV-1 RNA <50 copies/mL 
compared to 2 % in the placebo group [ 35 ,  39 ]. The group also 
compared nevirapine/zidovudine/lamivudine to zidovudine/
lamivudine/placebo regimens and found that after 1 year, 45 % of 
patients on the nevirapine arm had plasma viral load <50 copies/
mL compared to 3 % in the placebo group [ 39 ]. Other clinical tri-
als such as the Spanish efavirenz versus nevirapine comparison 
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(SENC) and Atlantic also found that nevirapine-containing 
 regimens had good virological and immunological responses. The 
2NN study compared various doses of nevirapine alone, efavirenz 
alone, or nevirapine plus efavirenz in 1216 ARV-naïve, HIV- 
infected patients who also received stavudine and lamivudine. The 
authors found that there were no signifi cant differences between 
study groups, with regard to the proportions achieving plasma viral 
load of <50 copies/mL or increases in CD4 cell count [ 40 ]. Two 
of the 25 deaths during the trial were attributed to nevirapine. 
Overall, the authors found that ARV regimens that contained 
 nevirapine or efavirenz had  similar      effi cacy and that combining 
nevirapine with efavirenz led to more adverse events [ 40 ].  

   Delavirdine was approved in the USA in 1998 but is now rarely 
used. Unlike nevirapine and efavirenz, delavirdine does not induce 
CYP but has been shown to inhibit CYP3A4, and can therefore 
enhance the pharmacokinetics of protease inhibitors, which are all 
metabolized by CYP3A4. 

  Delavirdine      has been shown to have a mean half maximal 
inhibitory concentration (IC 50 ) of 0.038 μmol/L, and in vitro had 
an additive or synergistic ARV activity when combined with zid-
ovudine, didanosine, lamivudine, or zalcitabine. Several trials eval-
uated the effi cacy and safety of delavirdine. Similar to the nevirapine 
studies, delavirdine had superior virological responses when 
used in a triple-drug regimen compared to a dual-drug regimen. 
Protocol 0021 showed that at week 24, 61 % of patients who 
received the triple-drug combination had plasma viral load <40 
copies/mL compared with only 3 and 9 % of patients who received 
zidovudine plus delavirdine and zidovudine plus lamivudine, 
respectively [ 41 ]. Similar results were seen at week 52. The ACTG 
370 trial compared the virologic activity of continued lamivudine 
versus delavirdine switching when initiating protease inhibitor 
therapy in lamivudine experienced, HIV infected patients [ 42 ]. At 
week 48, 77 % of patients had achieved plasma viral load <50 cop-
ies/mL when on the delavirdine/zidovudine/indinavir regimen. 
This was signifi cantly higher than the lamivudine/zidovudine/
indinavir group (39 %,  p  = 0.005). While both groups had consid-
erable increases in CD4 cell counts, there were no statistically 
 differences in this outcome between the two groups. The better 
virologic suppression in the delavirdine arm can be attributed to 
the enhanced pharmacokinetics of indinavir in the presence of 
delavirdine [ 42 ]. A prospective, randomized 2 × 3 factorial study 
by ACTG 359 compared saquinavir with ritonavir or nelfi navir 
together with delavirdine, adefovir (a drug originally developed as 
an ARV but now only approved for hepatitis infections) or both in 
HIV infected adults, who experienced virologic failure on indinavir 
[ 43 ]. At week 16, 40 % (34/85) of patients in the pooled delavir-
dine groups had plasma viral load ≤500 copies/mL compared to 
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18 % (16/88) of patients in the pooled adefovir groups and 33 % 
(27/81) of patients in the pooled delavirdine plus adefovir groups. 
The authors concluded that adefovir decreased the systemic 
 concentrations of saquinavir and delavirdine, leading to inferior 
virological effect in patients receiving adefovir (with and without 
delavirdine) [ 43 ]. On the other hand, the superior virological 
effect seen in patients receiving delavirdine without adefovir could 
be attributed to the use of a new class of ARV drug and pharmaco-
kinetic  enhancement      of PIs by delavirdine [ 43 ].  

   Efavirenz was approved in the USA in 1998 and is the preferred 
NNRTI-based regimen, with tenofovir and emtricitabine in an 
FDC [ 6 ]. In HIV-infected patients at steady-state, pharmacoki-
netic parameters are dose proportional for 200, 400, and 600 mg 
efavirenz doses. However,  C  max  and AUC were less than propor-
tional at the 1600 mg efavirenz dose, suggesting reduced absorp-
tion at higher doses. The median plasma efavirenz concentration 
has been reported to be higher in women that in men; however, 
these changes were not clinically relevant and dose adjustments 
based on gender are not needed. More recently, pharmacogenetic 
variations were suggested to be partly responsible for differences 
in efavirenz pharmacokinetics between HIV infected patients in 
Tanzania and Ethiopia [ 44 ]. 

 The antiviral activity of efavirenz, in combination with indina-
vir or NRTIs has been investigated in 450 HIV-infected indivi-
duals [ 45 ]. Patients received efavirenz (600 mg once daily) plus 
zidovudine (300 mg twice daily) and lamivudine (150 mg twice 
daily), indinavir (800 mg every 8 h) plus zidovudine and lamivu-
dine, or efavirenz plus indinavir (1000 mg every 8 h). The authors 
found that at 48 weeks, 70 % of patients who received efavirenz/
NRTIs achieved a plasma viral load of <400 copies/mL compared 
to 48 % in the indinavir/NRTIs group [ 45 ]. Similarly, at week  48     , 
a signifi cantly higher number of patients on the efavirenz/NRTIs 
regimen achieved HIV-1 RNA levels <50 copies/mL compared to 
patients who received the indinavir/NRTIs regimen (90 % versus 
75 %,  p  < 0.05). CD4 cell counts were increased across all regimens 
without any signifi cant difference among the groups. In a study of 
1147 HIV-infected, treatment-naïve subjects, three regimens 
were compared: zidovudine/lamivudine/abacavir, zidovudine/
lamivudine/efavirenz, and zidovudine/lamivudine/abacavir/efa-
virenz [ 46 ]. The group found that more patients in the NRTI 
group had protocol-defi ned virologic failure compared to patients 
in the combined efavirenz group (21 % versus 11 %). Further, the 
time to virologic failure was signifi cantly shorter in the NRTI 
group and the authors concluded that in treatment-naïve patients, 
the abacavir/zidovudine/lamivudine regimen  was      virologically 
inferior to the efavirenz regimens [ 46 ].  
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   Considered a second-generation NNRTI because it is structurally 
different from the other agents in this class, etravirine has limited 
cross-resistance as it retains activity against HIV-1 isolates with 
K103N and Y181C mutations, which confer resistance to efavirenz 
and nevirapine, respectively. Etravirine is indicated for the treat-
ment of HIV-1 infection in treatment-experienced patients 6 years 
and older with viral strains resistant to an NNRTI and other ARV 
drugs. In adults, it is administered at 200 mg twice daily. Weight 
based dosing not exceeding the adult dose is recommended for 
pediatric patients. 

 The effect of etravirine exposure on virologic and immuno-
logic responses were evaluated in HIV-infected, treatment- 
experienced patients enrolled in two Phase III clinical trials [ 47 ]. 
The pharmacodynamic model identifi ed baseline CD4 count, fold 
change in viral susceptibility to darunavir and etravirine, baseline 
viral load, phenotypic sensitivity score, adherence, and use of enfu-
virtide as predictors of virologic response. However, pharmacoki-
netic exposure parameters for etravirine and darunavir were not 
prognostic factors for virologic response, and since their trials did 
not identify a relationship between the pharmacokinetics of etra-
virine and either effi cacy or safety, the use of therapeutic drug 
monitoring (TDM) is not warranted [ 47 ]. In the GRACE trial, the 
pharmacodynamics of darunavir and etravirine in HIV-infected, 
treatment-experienced adults was evaluated [ 48 ]. Gender or race 
did not affect etravirine or darunavir exposures [ 48 ]. The group 
reported that patients with etravirine AUC 0–12  and trough concen-
tration ( C  trough ) in the lowest quartiles had the smallest change in 
viral load and the lowest response rates compared with the other 
pharmacokinetic quartiles. Again, no relevant relationships were 
found between etravirine pharmacokinetic parameters and safety. 
Similar results were seen in the SENSE trial, which evaluated the 
pharmacodynamics of etravirine administered at 400 mg once daily 
to treatment-naïve, HIV- infected      adults [ 49 ].  

   Rilpivirine is the latest NNRTI drug developed and was approved 
in the USA in 2011. It is also available as a co-formulated pill, with 
tenofovir and emtricitabine (Complera®). It is indicated for the 
treatment of HIV-infected treatment adults with HIV-1 RNA 
≤100,000 copies/mL. Severe depressive disorders and hepatic 
adverse events have been reported, although most cases of hepatic 
events were in patients with underlying liver disease, such as hepa-
titis B or C coinfection [ 50 ]. 

 Two Phase II trials, ECHO and THRIVE, compared effi cacy 
of rilpivirine (25 mg once daily) to efavirenz (600 mg once daily) 
in treatment-naïve adults who also received two NRTIs [ 50 ,  51 ]. 
At 48 and 96 weeks, the rilpivirine arm was noninferior to the efa-
virenz arm. However, higher rates of virologic failure were observed 
in patients taking rilpivirine [ 51 – 53 ]. In patients with viral load 

5.4    Etravirine     

5.5    Rilpivirine     

Antiretroviral Agents



484

≤100,000 copies/mL, rilpivirine and efavirenz had similar antiviral 
effi cacy [ 50 ,  54 ], with similar frequencies of virological failure and 
NRTI resistance-associated mutations in both arms [ 54 ].  These      
fi ndings support the indication of rilpivirine in patients with HIV-1 
RNA ≤100,000 copies/mL [ 50 ].   

6     Protease Inhibitors 

 PIs inhibit the HIV protease enzyme by mimicking the natural 
substrate and binding to the active site of the enzyme. CYPs, in 
particular hepatic CYP3A4, are responsible for the metabolism of 
all PIs. Intestinal enterocytes express CYP3A4 and P-glycoprotein, 
which decrease the oral bioavailability of PIs [ 55 – 57 ]. Pharma-
cokinetic enhancement of PIs, where ritonavir or  cobicistat   is 
administered to increase PI drug concentration to improve the low 
oral bioavailability, decrease pill burden, alleviate strict dietary 
restrictions, and avoid low plasma trough concentrations, which 
are all limitations of PI therapy. Ritonavir was introduced to the 
market in 1996 as a protease inhibitor but was shown to be a 
potent CYP3A4 inhibitor, and quickly became the most common 
boosting agent used in ARV therapy. As a boosting agent, ritonavir 
is used at low doses, which reduce the risk of ritonavir-associated 
adverse side effects. Cobicistat is a potent and specifi c inhibitor of 
CYP3A [ 58 ] and has been shown to inhibit intestinal P-glycoprotein 
in vitro [ 59 ]. Unlike ritonavir, cobicistat does not have any ARV 
activity and acts solely as a pharmacokinetic enhancer. Cobicistat is 
approved in Europe and in the US as Stribild and Genvoya. 
Co-formulations of cobicistat-PIs  are   under investigation. 

 In a 20-month follow-up study, predictors of virological 
rebound in HIV-1 infected patients receiving PI regimens 
were found to include previous ARV treatment, CD4 cell count 
<500 × 10 6 /L, higher viral load baseline, low adherence, and dis-
continuation of therapy at 4 months [ 60 ]. While young age was 
also found to predict virological rebound [ 60 ,  61 ], more work is 
needed to fully understand the relationship between age and viro-
logical outcome. 

   Saquinavir, as a hard-gel capsule (Invirase) was the fi rst PI to be 
approved by the FDA in 1995. A soft-gel capsule (Fortovase) with 
improved bioavailability compared to the hard gel capsule was 
approved shortly after. However, the soft-gel capsule was discon-
tinued and saquinavir is now only available as the hard-gel capsule 
to be coadministered with ritonavir. 

 In early clinical trials, the effi cacy of high-dose saquinavir mono-
therapy was investigated in 40 HIV-infected adults, who received 
either 3600 or 7200 mg saquinavir per day for 24 weeks [ 62 ]. The 
authors found that patients receiving high-dose saquinavir had a 
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greater decrease in plasma HIV RNA levels and a greater increase in 
CD4 cell counts than the low-dose group. Further, a correlation 
between higher saquinavir exposure and greater reduction in plasma 
HIV RNA was found. With only four patients (20 %) developing 
resistance to saquinavir in the high-dose group, the authors con-
cluded that higher doses of saquinavir should be further investi-
gated. However, with the advent of ritonavir-boosting, high-dose 
saquinavir can be avoided. In a heterogeneous population (42 treat-
ment-naïve and 106 treatment-experienced), HIV- infected individ-
uals received saquinavir/ritonavir 1000/100 mg twice daily and 
61 % of patients had HIV RNA levels <400 copies/mL at week 48 
[ 63 ]. The  recommended      dose of saquinavir is 1000 mg twice daily 
in combination with ritonavir, 100 mg twice daily. 

 The safety and effi cacy of saquinavir as part of a fi ve-drug 
 regimen were studied in HIV infected adults who had failed on 
conventional triple ARV therapy [ 64 ]. When saquinavir, ritonavir, 
and efavirenz were added to the two NRTIs, a signifi cant increase 
in CD4 cell counts and a sustained reduction in plasma HIV RNA 
were observed at week 24. Further, the authors suggested that 
outcome of salvage therapy might be better predicted by measur-
ing phenotypic resistance instead of resistance mutations.  

   Approved in 1997 by the FDA, nelfi navir is indicated for patients 
as young as 2 years old. It is metabolized by CYP3A and CYP2C19, 
and can inhibit CYP3A. While the AUC of nelfi navir and its metab-
olite were increased in the presence of low-dose ritonavir [ 65 ,  66 ], 
the safety and effi cacy of a ritonavir-boosted nelfi navir regimen 
have not been studied and therefore nelfi navir is the one PI not 
used with ritonavir enhancement. Nelfi navir’s metabolite also has 
antiretroviral activity and therefore ritonavir boosting may not be 
needed. 

 In a monotherapy study in HIV-infected, PI-naïve men, nel-
fi navir was shown to be effi cacious [ 67 ]. Patients received nelfi na-
vir at either 300 mg three times a day ( n  = 10) or 600 mg twice a 
day ( n  = 10). Amongst patients who had a reduction in plasma HIV 
RNA of at least 1 log during the 28-day study time, a dose–response 
relationship was observed in four and six patients receiving the 
300 mg and the 600 mg doses, respectively. This was sustained in 
fi ve patients past the 28 days. Over longer periods of time (8–15 
months), virologic responses were sustained in six patients. 

 In the dose-ranging Agouron 511 study, ARV-naïve, HIV- 
infected patients ( n  = 297) received nelfi navir at 750 mg, 500 mg, 
or placebo, three times daily in addition to zidovudine and lamivu-
dine [ 68 ]. At week 24, plasma viral load <50 copies/mL was 
achieved in 55 % and 30 % of patients receiving 750 mg and 
500 mg, respectively. This was further sustained for an additional 
6 months, in 61 % and 37 % of patients receiving 750 mg and 
500 mg, respectively, indicating that the higher dose was better. 
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Increases in CD4 cell counts were greater among patients receiving 
nelfi navir triple therapy than zidovudine plus lamivudine, indicat-
ing superiority of nelfi navir plus zidovudine and lamivudine to 
 placebo plus zidovudine and lamivudine.       This supports the recom-
mended dose of nelfi navir, 750 mg three times a day [ 65 ]. Nelfi navir 
can also be administered at 1250 mg twice a day. 

 The effi cacy of nelfi navir in combination regimens has also 
been shown with a comparison between fosamprenavir/ritonavir 
(once daily) and nelfi navir (twice daily), in a background of abaca-
vir and lamivudine. At week 48, similar number of patients had 
HIV RNA <50 copies/mL (55 % fosamprenavir and 53 % nelfi na-
vir). However, more patients in the nelfi navir group experienced 
virological failure (17 % versus 7 %) [ 69 ]. Another study showed 
that compared to patients who received lopinavir/ritonavir plus 
stavudine and lamivudine, ARV-naïve patients receiving nelfi navir 
plus stavudine and lamivudine had a higher risk of losing virologic 
response ( p  < 0.001), which was associated with higher baseline 
viral  load      and CD4 counts [ 70 ].  

   Indinavir (Crixivan) is administered at 800 mg every 8 h for the 
treatment of HIV. Since high-fat meals reduce and delay absorp-
tion [ 71 ], administration of indinavir is recommended with lighter 
meals [ 72 ]. In a comparative study of fi ve initial PI-containing 
and nevirapine containing regimens, 63 % of patients ( n  = 690), 
achieved an undetectable viral load within 5 months of starting 
treatment with saquinavir, indinavir, nelfi navir, ritonavir, saquina-
vir plus ritonavir, or nevirapine [ 73 ]. Relative to saquinavir, viral 
load rebound and CD4 cell count responses were similar between 
all groups. Prior NRTI exposure was associated with viral load 
rebound and lower baseline viral load and CD4 cell count were 
associated with reduced CD4 response. Further, saquinavir was 
found to be inferior to the other regimens, while the use of nelfi na-
vir and indinavir was associated with the highest rates of achieving 
an undetectable viral load. 

 In a prospective study of 59 HIV-infected, treatment-experienced 
adults who were started on a salvage regimen with two NRTIs plus 
indinavir/ritonavir, 61 % of patients had a decrease in viral load 
with 38 % of patients achieving HIV RNA <50 copies/mL after 
24 weeks [ 74 ], indicating that ritonavir/indinavir 100/800 mg 
twice daily could elicit a signifi cant virologic response in patients 
with ARV treatment failure. This was also shown by Campo et al., 
who suggested that indinavir/ritonavir regimens could overcome 
indinavir resistance [ 75 ].  Although      patients receiving indinavir/
ritonavir are at a higher risk for nephrolithiasis  compared to 
unboosted indinavir [ 72 ], indinavir/ritonavir (400/100 mg twice 
daily) is an important component of ARV, especially in resource-
limited settings [ 76 ].  
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   An understanding of the acquisition of ritonavir-resistance 
 mutations led to the development lopinavir, which interacts differ-
ently with the HIV protease enzyme than ritonavir and is thus 
active against ritonavir-resistant strains of HIV-1. Today, lopinavir 
is available as a co-formulated pill with ritonavir, known as Kaletra. 
The effi cacy of lopinavir/ritonavir monotherapy for maintenance 
of HIV suppression has been shown. After 4 years of treatment, 
67 % of patients (14/21) maintained HIV RNA <50 copies/mL 
[ 77 ]. Five patients had virological rebound, which was resolved by 
the addition of two nucleosides. In a larger study ( n  = 197), 95 % 
and 82.3 % of patients maintained virological success at 48 and 96 
weeks [ 78 ], respectively, further supporting the use of lopinavir/
ritonavir monotherapy as a maintenance regimen. 

 Lopinavir is highly protein bound and since only unbound 
drug can exert a pharmacological action, the link between total and 
free lopinavir exposure and pharmacodynamics has been assessed. 
A pharmacokinetic–pharmacodynamic model was  developed using 
data from 35 treatment-naïve patients who received lopinavir/ 
ritonavir 400/100 mg twice daily [ 79 ]. This novel model-based 
approach enabled a more accurate determination of viral dynamic 
parameters such as  C  trough  values for the effective concentration at 
90 % (EC 90 ) and effective concentration at 95 % (EC 95 )       and virion 
clearance rate.  

   Atazanavir is a PI used in treatment-naïve and -experienced individu-
als with HIV-1 infection. Atazanavir is approved at 400 mg once daily, 
and the recommended dose of atazanavir/ritonavir is 300/100 mg 
once daily in both treatment-naïve and -experienced patients. 
Atazanavir/ritonavir plus tenofovir and emtricitabine is an alternative 
PI-based regimen in the USA (  https://aidsinfo.nih.gov/contentfi les/
lvguidelines/AdultandAdolescentGL.pdf    ). However, it is not recom-
mended for patients who require >20 mg omeprazole per day. 

 The pharmacokinetics and pharmacodynamics of atazanavir 
with and without ritonavir were investigated in 200 HIV-infected, 
treatment-naïve patients [ 80 ]. Atazanavir  C  trough  was fi ve times 
greater in the presence of ritonavir and the  C  trough  values of HIV 
EC 90  were achieved in 98 % and 100 % of patients on atazanavir 
(400 mg) and atazanavir/ritonavir (300/100 mg), respectively. 
The authors also found that atazanavir  C  trough  was associated with 
low HIV RNA but not with changes in CD4 cell count at week 48. 
Moreover, higher atazanavir  C  trough  was associated with increases in 
total bilirubin or jaundice, and modest increases in lipids were 
observed in the ritonavir group. Using logistic regression, the rela-
tionship between unboosted atazanavir pharmacokinetics and clin-
ical outcome was studied in HIV-infected, treatment-experienced 
adults [ 81 ]. Seven ( n  = 58) patients, who had been identifi ed as low 
absorbers, experienced virologic failure. Further, absorption rate 
and atazanavir  C  trough  were signifi cant predictors of virologic  failure, 
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suggesting that in this  population      twice daily administration of 
unboosted atazanavir may be warranted.  

   Fosamprenavir is the calcium phosphate ester prodrug of amprena-
vir, a PI that was discontinued due to the large capsule size, high 
pill burden, and complicated excipient requirements. Fosamprenavir 
is converted to amprenavir following ingestion [ 82 ,  83 ] and can be 
administered with or without ritonavir [ 84 ]. The effi cacy of fosam-
prenavir with and without ritonavir has been studied. In the 
TRIAD study, HIV-infected patients who had virologic failure 
with PI regimens, received fosamprenavir/ritonavir (700/100 mg 
twice daily,  n  = 24), fosamprenavir/ritonavir (1400/100 mg twice 
daily,  n  = 25), or fosamprenavir/lopinavir/ritonavir (1400/533/
133 mg twice daily,  n  = 25) [ 85 ]. At week 24, a  similar number of 
patients from each regimen achieved HIV RNA <50 copies/mL 
and the high-dose fosamprenavir regimen was not superior to 
the standard dose (700/100 mg twice daily) in this population. 
However, the authors found that lower baseline background drug 
resistance and higher fosamprenavir genotypic inhibitory quotient 
was associated with better antiviral responses. Nonetheless, fosam-
prenavir/ritonavir can be used in salvage therapy as shown by the 
sustained rate of virologic and  immunologic      responses at week 
96 in the study by Quercia et al. [ 86 ].  

   Tipranavir is a potent, non-peptidic PI that was approved by the 
FDA in 2005. Tipranavir has been shown to be active against HIV 
mutants that were resistant to other PIs, indicating a lack of PI 
cross-resistance to tipranavir [ 87 – 89 ]. In a 14-day trial, treatment- 
naïve patients received tipranavir (1200 mg twice daily) or tiprana-
vir/ritonavir (300/200 mg or 1200/200 mg twice daily) [ 90 ]. 
The group receiving tipranavir/ritonavir at 1200/200 mg had the 
largest drop in viral load with a 70-fold increase in tipranavir expo-
sure (compared to unboosted tipranavir), indicating that boosted 
tipranavir was effective. Similar results were also observed in 
treatment- experienced patients who received one of three dose 
combinations of tipranavir/ritonavir in addition to ARV regimens 
containing nevirapine, efavirenz, lamivudine, stavudine, or didano-
sine [ 91 ]. Following the addition of tipranavir/ritonavir, more 
patients achieved an HIV RNA <50 copies/mL (67.6 % compared 
to 40.4 %). Further, the long-term effi cacy of boosted tipranavir in 
patients failing multiple PI regimens has also been reported [ 92 ].  

   Darunavir, the latest addition to the PIs, is approved for the treat-
ment of HIV in combination with low-dose ritonavir. It is indi-
cated for treatment-naïve and -experienced adults with no darunavir 
resistance mutation at 800 mg with ritonavir 100 mg once daily 
with food. Patients with at least one darunavir resistance mutation 
receive 600 mg with ritonavir 100 mg twice daily with food. Once 
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daily darunavir/ritonavir plus tenofovir and emtricitabine is a 
 preferred PI-based regimen in the USA [ 6 ]. 

 When darunavir/ritonavir (800/100 mg) was compared to 
lopinavir/ritonavir (800/200 mg) in the ARTEMIS trial, a similar 
number of patients achieved HIV-1 RNA <50 copies/mL in both 
arms, although fewer discontinuations were seen in the darunavir/
ritonavir group [ 93 ,  94 ]. Moreover, earlier 96-week ARTEMIS 
results showed that virologic response rates to darunavir/ritonavir 
were similar across different genders, age groups, races, and coin-
fection status in treatment-naïve patients [ 95 ]. In treatment- 
experienced patients, 39 % of patients who received  darunavir/
ritonavir 600/100 mg twice daily achieved HIV-1 RNA <50 cop-
ies/mL compared to 9 % of patients who received investigator- 
selected control PI at week 96, indicating that twice daily 
darunavir/ritonavir was appropriate for this population [ 96 ]. 
Analysis of a subgroup of this trial at week 24 showed that  viro-
logic      response to darunavir was decreased when the fold change in 
half maximal effective concentration (EC 50 ) to darunavir at base-
line was >40, or when three or more darunavir resistance- associated 
mutations, in addition to other PI mutations, were present [ 97 ].   

7     Integrase Strand Transfer Inhibitors 

 The HIV-1 integrase enzyme catalyzes the insertion of viral DNA 
into the genome of the host cell, which is an essential step in 
the  viral life cycle  . While many inhibitors of the integrase enzyme 
were discovered, few had antiviral activity in cells and today, only 
three inhibitors are on the market. S/GSK1265744 is currently 
under development as a long acting inhibitor that would be admin-
istered monthly or quarterly. Overall, integrase inhibitors have 
potent HIV-1 activity with less drug interactions compared to 
NNRTIs and PIs. 

    Raltegravir   was the fi rst integrase inhibitor approved by the FDA in 
2007 in combination with other ARV drugs for the treatment of 
 HIV-infected adults  . In 2011, raltegravir was also approved for use 
in children and adolescents, ages 2–18 years [ 98 ] and additional 
studies in the pediatric population, especially in children less than 
2 years of age, are ongoing. Raltegravir, in combination with 
  tenofovir and emtricitabine   is one of the preferred regiments in 
treatment-naïve patients [ 6 ]. Raltegravir, available as a 400 mg 
fi lm-coated tablet, is administered orally twice daily. Raltegravir has 
been shown to be potent, with an in vitro 95 % inhibitory concen-
tration (IC 95 ) of 33 nM (0.014 mg/L) in 50 % human serum [ 99 ] 
and an apparent in vitro 50 % inhibitory concentration (IC 50 ) of 
2–7 nM (0.0008–0.003 mg/L)[ 100 ]. This compound is effective 
against both wild-type and multidrug-resistant HIV-1 (isolates 
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resistant to protease inhibitors, nucleoside reverse transcriptase 
inhibitors and non-nucleoside reverse transcriptase) and in both 
treatment- naïve and treatment-experienced HIV infected adults 
[ 99 ,  100 ]. Raltegravir is primarily metabolized by uridine diphos-
phate (UDP)-glucuronosyltransferase (UGT) 1A1 and does not 
induce or inhibit CYP enzymes. In patients who receive  rifampin  , 
an antituberculosis drug, and raltegravir, the recommended dose 
of raltegravir is 800 mg twice daily, due to the UGT1A1 inducing 
properties of rifampin that leads to decreased raltegravir exposures. 

 The pharmacokinetics and pharmacodynamics of once-daily 
raltegravir were compared to the twice-daily dose in treatment- 
naïve patients in a Phase III clinical trial, QDMRK. At 48 weeks, 
the authors found that daily exposures, measured as AUC 0–24 , were 
similar in both arms [ 101 ]. However, patients on the 800 mg once 
daily regimen had higher  C  max  and lower  C  trough  values compared to 
patients on the 400 mg twice daily arm [ 101 ]. Virologic response 
(HIV-1 RNA <50 copies/mL) was seen in 83 % and 87 % of 
patients receiving the once daily and twice daily regimen, respec-
tively [ 102 ]. The authors concluded that although both regimens 
had high response rates, once-daily dosing of raltegravir is not rec-
ommended over twice-daily dosing. While there was no signifi cant 
pharmacokinetic/pharmacodynamics association over the range of 
tested pharmacokinetic parameters in the twice daily arm, the 
authors found that virologic failure was associated with high base-
line viral load and lower  C  trough  values in the once daily arm [ 101 ]. 
Similar results were seen in a sub-study of  ANRS 139 TRIO 
trial  , which evaluated virological outcome in highly treatment- 
experienced patients receiving raltegravir (400 mg twice daily), 
etravirine (200 mg twice daily), and darunavir/ritonavir (600/100 
twice daily) [ 103 ]. The authors found that patients with virologic 
success ( n  = 61) had a baseline median HIV-1 DNA of 2.34 log 10  
copies/10 6  PBMC compared to 2.68 in patients with virologic 
failure ( n  = 11), which suggested that baseline HIV-1 DNA might 
predict virological response [ 103 ]. 

 The  effi cacy   of raltegravir (400 mg twice daily) was compared 
to efavirenz (600 mg once daily) in treatment-naïve patients, who 
had HIV-1 RNA >5000 copies/mL and also received tenofovir 
and emtricitabine in the STARTMRK trial [ 104 ]. At week 156, 
75.4 % of patients on raltegravir had viral loads <50 copies/mL 
compared to 68.1 % of patients in the efavirenz arm [ 104 ]. There 
was a greater increase in  CD4 cell   counts in patients in the raltegra-
vir arm compared to the efavirenz arm (332 versus 295 cells/mm 3 ) 
and the authors conclude that through 156 weeks, raltegravir was 
at least equivalent to efavirenz, with respect to  viral suppression 
and immune restoration   [ 104 ]. Similarly, Protocol 004 showed 
that at week 240, 68.8 % of patients (raltegravir, 400 mg twice 
daily) had HIV-1 RNA <50 copies/mL compared to 63.2 % of 
patients receiving efavirenz [ 105 ]. 
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  Nucleoside-sparing regimens   plus raltegravir have been evaluated. 
In the SPARTAN study, the effi cacy, safety, and resistance profi le of 
atazanavir (300 mg twice daily) plus raltegravir (400 mg twice 
daily) was compared to atazanavir/ritonavir (300/100 mg once 
daily) plus tenofovir/emtricitabine (300/200 mg once daily). 
Viral load <50 copies/mL was achieved in 74.6 % of patients in the 
raltegravir arm compared to 63.3 % in the non-raltegravir arm. The 
authors noted higher systemic exposure of  atazanavir   and higher 
incidence of grade 4 hyperbilirubinemia in the raltegravir- 
containing arm [ 106 ]. Six patients (out of 63) were considered to 
experience virologic failure on the  raltegravir arm, and   four of 
these had developed resistance to raltegravir. In contrast, only 1 
patient (out of 30) in the non-raltegravir treatment had virologic 
failure. Based on the observed resistance and adverse events results, 
the authors concluded that an atazanavir plus raltegravir regimen 
was not optimal. ACTG A5262 evaluated darunavir/ritonavir 
(800/100 mg once daily) plus raltegravir (400 mg twice daily) in 
treatment-naïve patients [ 107 ]. By week 48, virologic failure was 
seen in 26 % of patients which was associated with baseline viral 
load >100,000 copies/mL and a lower baseline CD4 cell count 
[ 107 ]. The KITE study evaluated the effi cacy and safety of switch-
ing patients from standard ARV care to a reverse transcriptase 
 sparing combination of  lopinavir/ritonavir   plus raltegravir in HIV-
infected patients with plasma viral load <50 copies/mL [ 108 ]. 
At week 48, 92 % and 88 % remained virologically suppressed while 
on the raltegravir and standard care regimens, respectively, and no 
differences in CD4 cell counts were observed between the two arms 
[ 108 ]. Similarly, switching from an enfuvirtide-based regimen to a 
raltegravir-based regimen was generally well tolerated and patients 
with multidrug resistance had sustained antiviral activity [ 109 ].  

   Elvitegravir was approved by the FDA in 2012 as a co-formulated 
product with cobicistat, tenofovir, and emtricitabine for treatment- 
naïve patients. This FDC is not recommended in patients with a 
creatinine clearance of <70 mL/min. Elvitegravir is metabolized 
by CYP3A4 and because ritonavir and cobicistat can inhibit 
CYP3A4, these agents can boost elvitegravir exposures. 

 A Phase III clinical trial compared the elvitegravir FDC to 
 efavirenz plus emtricitabine and tenofovir (also as an FDC) in 
treatment- naïve patients and found at week 48, 87.6 % of patients 
on the elvitegravir FDC had HIV RNA concentrations <50  copies/
mL compared to 84.1 % of patients on the efavirenz FDC, suggest-
ing noninferiority [ 110 ]. Similar effi cacy results were seen by 
Cohen et al., who also reported fewer central nervous system and 
psychiatric events in patients using the elvitegravir FDC compared 
to the efavirenz FDC [ 111 ]. A Phase III study compared the 
elvitegravir FDC to atazanavir/ritonavir plus tenofovir and emtric-
itabine and did not fi nd a statistical difference in RNA suppression 
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between the two arms and the authors concluded that the 
 elvitegravir FDC was noninferior to the atazanavir regimen [ 112 ]. 

 The effi cacy and safety of elvitegravir (150 mg once daily; 
85 mg if given with atazanavir or ritonavir/lopinavir) were com-
pared to raltegravir (400 mg twice daily) in a ritonavir-boosted PI 
backbone in treatment-experienced patients [ 113 ]. Similar viro-
logic response (HIV-1 RNA <50 copies/mL) were observed in 
both arms, suggesting noninferiority. Three elvitegravir patients 
had serious events (seven in the raltegravir arm), with two elvite-
gravir patient deaths (eight in the raltegravir arm). Because of the 
similar effi cacy profi les, the authors suggested that elvitegravir use 
may improve patients’ adherence since elvitegravir can be given 
once  daily      whereas raltegravir requires twice daily dosing.  

   Dolutegravir is the latest addition to this drug class and was 
approved by the FDA in 2013. A second generation integrase 
inhibitor, dolutegravir is primarily metabolized by UGT1A1 and is 
not considered an inhibitor or inducer of CYP3A [ 114 ]. While 
patients who are resistant to elvitegravir also have raltegravir 
 resistance [ 115 ], dolutegravir has limited cross-resistance with 
raltegravir [ 116 – 118 ]. 

 The SPRING-1 trial was a dose ranging study of dolutegravir 
(10, 25 or 50 mg once daily) compared to efavirenz (600 mg once 
daily) in combination with two NRTIs in treatment-naïve patients 
[ 119 ]. At 96 weeks, the 50 mg dose of dolutegravir led to the 
highest proportion of patients with virological success (HIV RNA 
<50 copies/mL). Further, more patients receiving dolutegravir 
(including the lowest dose) achieved virological success compared 
to patients receiving efavirenz [ 119 ]. The SPRING-2 trial com-
pared dolutegravir (50 mg once daily) to raltegravir (400 mg twice 
daily) in an NRTI background, in treatment-naïve, HIV-infected 
adults [ 120 ]. Similar viral suppression (81 % on dolutegravir and 
76 % on raltegravir) and restoration of CD4 cell counts between 
the two regimens indicated that dolutegravir was noninferior to 
raltegravir at week 96 [ 120 ]. At week 48 of the SINGLE trial, a 
signifi cantly higher proportion of treatment-naïve patients who 
received dolutegravir, abacavir, and lamivudine achieved virologic 
success compared to patients who received efavirenz, tenofovir, 
and emtricitabine [ 121 ]. The dolutegravir arm had a shorter 
median time to viral suppression than the efavirenz arm (28 versus 
84 days,  p  < 0.001) and greater increases in CD4 cell counts 
( p  < 0.001). While rash and neuropsychiatric events were more 
common in the efavirenz group, insomnia was more common in 
the dolutegravir group. Taken together, these data indicated that 
the dolutegravir regimen was superior to the efavirenz regimen. 
Similar results supporting the superiority of dolutegravir regimens 
were described in the SAILING trial, where once daily dolutegravir 
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with investigator selected background therapy had a greater 
 virological effect compared twice daily raltegravir in treatment- 
experienced adults [ 122 ]. In a cohort of patients with documented 
raltegravir resistance, week 24 data showed that dolutegravir at 
50 mg twice daily had a greater virologic effect than at 50 mg once 
daily, demonstrating the lack of cross-resistance between dolute-
gravir and raltegravir [ 117 ]. To further confi rm the results, the 
VIKING-3 study was designed and enrolled patients with docu-
mented raltegravir and/or elvitegravir resistance. Multivariate 
analyses showed that response (day 8) was affected by baseline 
HIV-1 RNA, dolutegravir phenotype, integrase inhibitor geno-
type, and pre-dose dolutegravir concentration (day 8) [ 118 ]. For 
week 24 response, baseline genotypic or phenotypic integrase 
inhibitor resistance and viral load but not pre-dose dolutegravir 
concentrations  were      signifi cant prognostic factors.   

8      Fusion Inhibitor   

 Enfuvirtide (T20) is a synthetic peptide that mimics the second 
heptad repeat (HR)-2 sequence of gp41 [ 123 ]. Enfuvirtide binds 
to HR-1, thereby blocking the formation of a six-helix bundle, 
which is essential for viral fusion to the host cell [ 124 ]. Enfuvirtide 
is indicated for the treatment of HIV infection in treatment- 
experienced patients. It is administered as a subcutaneous injection 
in the upper arm, anterior thigh, or abdomen, twice daily at a rec-
ommended adult dose of 90 mg [ 123 ]. Enfuvirtide resistance has 
been shown to appear within the fi rst 14 days of treatment in four 
patients who received an intermediate dose of 30 mg twice a day 
[ 125 ] and mutations were most common in the HR-1 domain of 
the gp41 gene, between codons 38 and 45 [ 126 ]. 

 A four-way crossover study in 12 HIV-infected patients, 
who received four single doses of enfuvirtide showed that an 
inverse Gaussian density function-input model linked to a two- 
compartment open distribution model with fi rst-order elimination 
from the central compartment was found to best describe the phar-
macokinetics of this drug [ 127 ]. Enfuvirtide  has   been shown to 
have a dose-related antiviral response with a maximal antiviral 
effect using the 90 mg twice daily dose [ 128 – 132 ]. Using data 
from two Phase III clinical trials, the relationship between pharma-
cokinetic exposure and plasma HIV-1 RNA levels in treatment- 
experienced, HIV-infected patients was investigated [ 133 ]. At 
week 24, the AUC 0–12  and  C  max  were comparable between respond-
ers and nonresponders, an effect that was independent on the phe-
notypic sensitivity score, which is a measure of the number of drugs 
to which the virus is sensitive. These results indicated that virologic 
failure was not related to low enfuvirtide exposure. Further, using 
an empiric 2-parameter maximum effect ( E  max ) model to describe 
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the exposure–response relationship of enfuvirtide, the authors 
found that when the  E  max  model used AUC 0–12  as exposure, the 
model predicted that at week 24, the 90 mg twice-daily dose 
achieved 73 % and 92 % of maximal effect in patients with func-
tional monotherapy and combination therapy, respectively. These 
results were similar when the model used  C  trough  as a measure of 
exposure. No difference in treatment effi cacy was seen between 
males and females and the AUC 0–12  was not related to the fre-
quency of adverse events [ 133 ]. In a pediatric study, a population 
viral pharmacodynamics model was built but no statistically signifi -
cant relationship was seen between pharmacokinetic-based  expo-
sure   measure and virologic response measure [ 134 ].  

9      Entry Inhibitor   

 Maraviroc is the only member in the entry inhibitor class of drugs 
and was approved in the USA and Europe in 2007. Maraviroc 
selectively and reversibly binds to the host cell CCR5 receptor, 
which is also the binding partner of viral gp120 and thus HIV can-
not bind to and enter T-cells. Because HIV can use another recep-
tor, CXCR4, to enter the cell, a HIV tropism test is needed prior 
to initiating maraviroc therapy. 

 The MOTIVATE 1 and 2 studies evaluated the safety and effi -
cacy of maraviroc or placebo in treatment-experienced adults who 
were also receiving an optimized background regimen. At week 
96, 39 % of patients who received maraviroc 300 mg once daily 
had viral load <50 copies/mL compared 41 % of patients (maravi-
roc 150 mg twice daily) [ 135 ]. While increased CD4 counts were 
seen with both once daily and twice daily regimens, these increases 
were signifi cant between patients who received maraviroc com-
pared to those who receive placebo. The authors concluded that 
maraviroc-containing regimens maintained durable responses in 
the population studied through 96 weeks of treatment. In a sub-
group multivariate analysis of the MOTIVATE trials, race (or 
 ethnic group), clade, viral load at screening, baseline CD4 cell 
count, overall susceptibility score, and fi rst use of enfuvirtide were 
associated with virologic response at week 48 [ 136 ]. In the sub-
group analyses, changes in viral tropism were investigated. In 
patients with mixed tropism, the rate of virologic suppression was 
greater in the maraviroc arm than in the placebo arm. Further, the 
median time to failure of twice-daily maraviroc was 98 days in 
CXCR4 patients compared to 149 days in CCR5 patients. Data 
from the MOTIVATE studies were also used to assess exposure–
response relationship using a generalized additive model. The 
authors found that treatment success was associated with maravi-
roc treatment, high-weighted overall susceptibility to background 
treatment, absence of an undetectable maraviroc concentration 
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(measure of adherence), high CD4 count at baseline, low viral 
load, race, absence of non-R5 baseline tropism, and absence of 
fosamprenavir. The authors also concluded that the doses of mara-
viroc used in the MOTIVATE studies produced concentrations 
high on the  concentration–response      curve and thus no concentra-
tion–response relationships were found after prognostic factors 
were taken into account [ 137 ].  

10     Therapeutic Drug Monitoring 

 Therapeutic drug monitoring (TDM) of ARV, which is the adjust-
ment of a patient’s dosage regimen based on in vivo drug concen-
tration, is a practice that is increasingly being used, especially in the 
USA and Europe, even though its clinical utility is debatable. As 
such, TDM of ARV agents is not recommended for routine use [ 6 ], 
largely because of the lack of evidence showing that TDM improves 
 clinical and virologic outcomes  . The characteristics of drugs ame-
nable to TDM are summarized  in   Table  3 .

   Understanding the relationship between drug exposure or 
concentration and viral and immunological outcomes is essential in 
guiding TDM use in HIV-infected individuals. For most ARVs, 
sensitive and specifi c assays are available for detection of plasma 

   Table 3  
   Characteristics   of drugs applicable to therapeutic drug monitoring (taken 
from Acosta el al., CID 2000)   

  Pharmacological  

 Pharmacokinetic data concerning the drug are available 

 Plasma concentration of the drug refl ects the concentration at the site of 
action 

 Narrow range between therapeutic and toxic concentrations 

 Pharmacological effect is related to the drug concentration 

  Clinical  

 Clinical studies have documented the therapeutic range of the drug 

 Signifi cant between-patient variability in drug absorption and disposition 

 Lack of an effect may be detrimental to the patient 

  Analytical  

 A sensitive drug assay is available 

 The assay has acceptable accuracy and precision with high specifi city 

 Analysis time is short, required sample volume is small, and cost is 
minimal 

Antiretroviral Agents



496

concentrations. However, because  NRTIs   are activated intracellularly, 
plasma concentration may not be a good surrogate for drug con-
centration at site of action and therefore TDM is of limited use for 
this drug class.  Intra-patient and inter-patient   can produce subop-
timal plasma trough concentrations, which can lead to the selec-
tion of drug-resistant mutants. Pharmacokinetic boosting of PIs 
can reduce but not eliminate inter-patient variability. However, the 
effect of ritonavir varies depending on the coadministered PI. For 
example, when  ritonavir   affects the fi rst pass effect, increases in 
AUC,  C  max , and  C  min  but not half-life are observed. When ritonavir 
affects hepatic clearance of PIs,  C  max  increases are small, but AUC, 
 C  min  and half-life are considerably increased. Irrespective, the 
boosting properties of ritonavir and cobicistat are likely to reduce 
the risk of suboptimal PI concentration, which may render TDM 
for PI regimen pointless. Some ARVs are highly protein bound 
and therefore, changes in overall binding could affect total drug 
concentration and active (unbound) drug concentration (Fig.  3 ). 
Patients, who are not adherent to their ARV regimen with respect 
to pill count, dietary requirements, or dosing frequency, could 
have low plasma drug concentrations, which could be misinter-
preted as a pharmacokinetic effect and lead to an unnecessary 
increased dosage. For some ARVs, there is a lack of established 
therapeutic ranges for ARV drug concentrations needed to achieve 
virologic success. This is especially true for PIs and NNRTIs, which 
have absorption, metabolic, and tolerability issues that limit the 
ability to determination of maximally tolerated doses. Moreover, 
the pharmacokinetic parameter that best defi nes therapeutic and 
toxic exposures of the ARVs has yet to be determined for many of 
the ARVs. Because of the ease on the patient and investigator, 
 C  trough  is mostly used for determination of effi cacy, which can be 

  Fig. 3    Representative maximum effect ( E  max ) curve ( a ) illustrating an inhibitory  E  max  concentration–response 
relationship. Change in the concentration–effect curve ( b ) caused by protein binding that shifts the 90 % 
inhibitory concentration (IC 90 ) and a higher total drug concentration is required in the presence of increasing 
plasma protein concentrations to elicit the same pharmacological effect. Reproduced from E.P. Acosta et al. 
 Clin Infect Dis  2000; 30(Suppl 2): S151–9       
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tricky for drugs with multiple dosing schedules. On the other 
hand, AUC is most demanding in the clinical setting as multiple 
blood draws are required and can be costly. Nonetheless, TDM can 
be useful when dealing with special  populations      such as the hepatic 
impaired, children, women, ethnic groups, and pregnant women, 
which have age-related, metabolic, and physiological changes that 
can alter ARV exposure.

11        Summary and Conclusions 

 Use of ARV drugs for the treatment of HIV infection has consider-
ably decreased mortality and morbidity. The pharmacodynamics of 
ARVs are mostly studied in the context of effi cacy as demonstrated 
by viral suppression and immune function restoration. Because 
HIV infections cannot be cured, life-long treatment with ARVs are 
needed and will likely result in increased drug resistance, which 
justifi es the use of triple or quadruple drug combinations and the 
need for appropriate concentration– and dose–response curves. 
While routine TDM of ARV drugs is not currently recommended, 
special population may benefi t from TDM.     
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Beta- Lactam Program in the Hospital Setting                     
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  Abstract 

   The increasing prevalence of antimicrobial resistance coupled with the paucity of novel antimicrobial ther-
apies calls for the optimization of currently available anti-infective agents. Continuous (CI) and prolonged 
infusions (PI) are infusion techniques used to optimize the percentage of the dosing interval that free drug 
concentrations remain above the minimum inhibitory concentration or  f  T% > MIC.  f  T% > MIC is the rec-
ognized pharmacodynamic driver of effi cacy for time-dependent antibiotics such as beta-lactams. A grow-
ing body of evidence, including pharmacokinetic-pharmacodynamic modeling, pharmacoeconomic 
analyses, and clinical and microbiologic outcome studies, supports the utility of CI and PI dosing as an 
alternative administration technique compared to traditional intermittent infusion. Consequently, CI and 
PI dosing regimens are of utmost interest to antimicrobial stewardship programs at both large academic 
and small community hospitals. The aim of this chapter is to provide a comprehensive review of the theo-
retical advantages, available clinical studies, and process by which an institution can implement a successful 
CI and PI protocol of beta-lactam antibiotics.  

  Key words     Antimicrobial stewardship  ,   Beta-lactam  ,   Continuous-infusion  ,   Extended-infusion  , 
  Monte-Carlo simulation  ,   Pharmacokinetic-pharmacodynamic model  ,   Prolonged-infusion  

1      Introduction 

   The prolonged or continuous infusion of beta-lactam antibiotics 
has become an increasingly utilized therapeutic modality to opti-
mize the pharmacodynamics of this popular antibiotic class. 
Prospective and retrospective studies have demonstrated improve-
ments in clinical success for these dosing modalities,  with            mortality 
benefi ts particularly observed in patients of higher acuity [ 1 ]. 
Continuous (CI) and prolonged infusions (PI) are also advocated 
for the treatment of  multidrug-resistant (MDR)      organisms by the 
 Infectious Diseases Society of America (IDSA)      and  Society for 
Healthcare Epidemiology of America (SHEA)      Guidelines for 
Antimicrobial Stewardship [ 2 ]. Although many hospitals and 

1.1  Needs 
 Assessment  
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health systems have implemented continuous or prolonged 
 infusion administration protocols for some beta-lactam antibiot-
ics, there is variable uptake of these dosing strategies within the 
USA [ 3 ]. There are many institution-specifi c concerns to navigate 
and critical data to be considered when implementing a CI and PI 
protocol, but most organizations are able to implement these dos-
ing strategies and realize their clinical benefi t when effort is dedi-
cated      [ 1 ,  4 ,  5 ]. Importantly, implementation of a successful CI 
and PI protocol has been shown to be achievable at both large 
academic and small community hospitals [ 5 – 7 ]. Partnering with 
key stakeholders, selecting the best institution-specifi c agents, and 
measuring and delivering clinical and pharmacoeconomic out-
comes are essential for success. This chapter discusses the justifi ca-
tion and evidence for alternative administration techniques of 
beta-lactams and outlines the process by which an institution can 
implement a successful continuous infusion or prolonged infusion 
protocol.   

2    Materials 

   In regard to CI and PI administration, the primary objective of 
these alternate administration techniques is to optimize the PK-PD 
of beta- lactams. Specifi cally, the goal is to maximize the proportion 
of the dosing interval that target site concentrations of free drug 
remain above the minimum inhibitory concentration (MIC), or 
 f    T% > MIC. The goal  f    T% > MIC for each beta-lactam will vary 
according to known pharmacodynamic effects of the individual 
agent. Administration of beta-lactams by CI and PI will increase 
the likelihood of reaching those goals, which is also referred to as 
the  probability of target attainment (PTA)     . To that end, this sec-
tion reviews the evidence that CI and PI administration can achieve 
improved PTA for beta-lactam antibiotics. 

   Beta-lactams are among the oldest classes of antimicrobials used in 
modern clinical practice. Some of the fi rst formal investigations 
into the PK-PD profi le of beta-lactams were conducted by Harry 
Eagle in the early 1950s using animal models of infection and 
in vitro techniques, laying the foundation for future investigations. 
Eagle and colleagues described the relationship between the 
 f    T% > MIC (“the aggregate time penicillin remains at effectively 
bactericidal levels,” as he called it) and bacterial killing as early as 
1950 [ 8 ]. Despite this knowledge, much of the clinical practice has 
lagged behind: relying on intermittent infusion dosing of beta- 
lactams. Subsequently, additional investigations using animal 
 studies and hollow fi ber models have more accurately classifi ed the 
PK-PD profi les of various beta-lactams. The interested reader is 

2.1  Background/
Evidence/Review 
Published Data

2.1.1  Beta- Lactam   
 PK-PD  

Shawn H. MacVane et al.



509

referred to a more in-depth treatment of the history of animal 
infection model development and validation [ 9 – 14 ]. 

 While beta-lactams are often classifi ed as “concentration- 
independent” drugs, several studies have found that outcomes 
improve when  drug concentrations   are fourfold higher than the 
MIC for a prolonged period [ 15 ,  16 ]. As illustrated in Fig.  1 , the 
impact of increasing drug concentrations of a typical beta-lactam 
on the log-kill profi le becomes attenuated at approximately 
4 × MIC. Once this threshold is achieved, minimal additional kill is 
observed with increasing multiples of the MIC,  and antibacterial 
effects   predominantly become time dependent. The three primary 
classes of beta-lactams have differing general requirements for 
 f    T% > MIC to achieve optimal arrest of bacterial growth. Penicillins 
have been observed to require 29–34 %  f    T% > MIC, cephalospo-
rins have been observed to require approximately 35–53 % 
 f    T% > MIC, and carbapenems have been observed to require 
approximately 20–26 %  f    T% > MIC for bacteriostasis in a neutro-
penic murine thigh model of infection [ 17 ]. In the clinical setting, 
similar  f    T% > MIC requirements for effi cacy have been observed in 
patients treated with beta-lactams for acute otitis media [ 18 ]. 
However, for more severe infections such as hospital-acquired 
pneumonia, clinical effi cacy of beta-lactams in patients has better 
correlated with the bactericidal (1 to 2-log reduction) exposures 
from animal infection models (50–70 %  f    T% > MIC), particularly 
against  Gram-negative bacteria   [ 19 – 21 ]. While the above targets 

  Fig. 1    Log-kill profi le of beta-lactams at varying concentrations in multiples of the minimum inhibitory concen-
tration (MIC). Originally published in Scheetz MH, Hurt KM, Noskin GA, Oliphant CM. Applying antimicrobial 
pharmacodynamics to resistant gram-negative pathogens. Am J Health Syst Pharm. © 2006, American Society 
of Health-System Pharmacists, Inc. All rights reserved. Reprinted with permission       
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provide a general guide, the specifi c  f    T% > MIC necessary for opti-
mal killing is dependent on the beta-lactam in question, the infec-
tious organism, and host factors (i.e., the presence of neutropenia) 
[ 17 ,  22 ]. As the selection of a given beta-lactam for an institutional 
CI and PI protocol will depend on formulary status and contract 
pricing, discussion of specifi c beta-lactams will be limited to agents 
for which signifi cant evidence exists.

   Both the agent-specifi c pharmacokinetic parameters (i.e., pro-
tein binding, total body clearance) and the pathogen MIC infl u-
ence the  f    T% > MIC; yet only maximization of PTA can be 
controlled by the clinician through manipulation of the dosing 
regimen as the pathogen MIC cannot be altered. Therefore, the 
clinician wishing to optimize  f    T% > MIC for a known infection 
with a given MIC may choose to administer a beta-lactam by CI or 
PI, to administer a beta-lactam with similar activity to the  patient’s   
current regimen with a longer comparative half-life, or to adminis-
ter the same beta-lactam initially chosen at a more dose dense 
(greater frequency) or dose intense (higher dose) [ 22 ]. The choice 
between these options will center on the patient’s clinical status, 
the patient’s disposition, and the local institution’s capacity to 
administer beta-lactams in alternate fashions. In the following sec-
tion, evidence to support the selection of a CI or  PI   dosing scheme 
over increasing dose intensity is described.  

   Of the available methods of maximizing  f    T% > MIC, the focus of 
this chapter is on the use of CI and PI  administration techniques     . 
A PI regimen extends (or prolongs) the traditional infusion time in 
the approved product labeling (usually 30 min for most beta- 
lactams). The resulting single-dose concentration time profi le pro-
duces a blunted peak ( C  max ) and a delayed time to trough ( C  min ). 
CI and PI regiments generally increase in  f    T% > MIC, which is 
illustrated in Fig.  2 . Similarly, CI regimens will produce even 
greater reductions in  C  max  and with signifi cant increases in 
 f    T% > MIC (Fig.  2 ).

   Prospective studies evaluating CI and PI demonstrate clinical 
outcomes that range from no benefi t to  mortality benefi t   con-
ferred. Importantly, few studies have identifi ed substantial risk to 
using a CI or PI approach. In spite of the theoretical benefi t that 
CI and PI dosing regimens are expected to provide, the observed 
impact on clinical outcomes tends to be most profound in the criti-
cally ill patients. A potential explanation for why observed out-
comes sometimes fail to correspond with the predicted benefi t is 
the “ Hawthorne effect  ,” wherein compliance with a given CI and 
PI protocol appears high during the period surrounding the imple-
mentation and then later regresses to baseline levels of noncompli-
ance. Several studies have described successful implementation of 
CI and PI protocols during the observation period [ 6 ,  7 ,  23 ], but 
long-term follow-up studies are less prevalent. It is prudent to 

2.1.2   Administration 
Techniques   to Optimize 
Beta- Lactam PK-PD
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continue to monitor compliance after implementation to mitigate 
any regression to baseline noncompliance levels in order to control 
variability in the  f    T% > MIC patients’ experience.  

   Mathematical modeling strategies for prediction of clinical out-
comes for beta-lactams have been frequently employed in recent 
years. These techniques have been termed “ex vivo” or “in silico” 
to differentiate that these analyses are being performed as com-
puter simulations. As noted above, beta-lactams frequently exhibit 
predictable pharmacokinetic disposition owing to renal and hepatic 
clearance mechanisms and relatively modest tissue distribution 
profi les. Pharmacokinetic disposition is frequently characterized by 
a structural model in which pharmacokinetic parameters can be 
estimated [ 24 ]. Often a two-compartment model is utilized for 
beta-lactams if the goal is to describe serum concentrations, where 
the serum is represented by the central compartment and the 
peripheral space represents all other distributive spaces. 

 Once a structural model is fi t to the patient data, estimates for 
the individual parameters can be obtained and potentially improved 
if patient covariates are included in the model. The values for the 
parameters and their associated variation and covariation can be 

2.1.3  Ex Vivo (Monte 
Carlo Simulation)  Data   
to Support CI/PI 
Beta-Lactams

  Fig. 2    Effect of prolonged and continuous infusion piperacillin-tazobactam on the concentration-time curve as 
compared with traditional 0.5-h infusion. Scheetz MH. Data on fi le. Simulated mean based on 200 subjects 
with median covariance matrix and creatinine clearance of 45 mL/min       
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simulated to create a fi ctitious population that displays an amplifi -
cation of the variability seen in the original sample group. For 
example, if 1000 patients are to be simulated, each patient in the 
simulation will be assigned parameter estimates based on known 
parameter variance and covariance. Once the fi ctitious population 
has parameters defi ned for each subject, this population is “given” 
a test dose and scheme for the beta-lactam in question. In this 
example, 1000 individual concentration time profi les are generated 
for the population (Fig.  3 ). Each individual patient pharmacoki-
netic exposure is then compared to the goal for the given beta- 
lactam for the organism in question (e.g.,  f    T% > MIC of 40 %, see 
Chap.   1    ). That is, the probability that the target is attained (PTA) 
is calculated as a percentage of the number of subjects that exceeded 
the minimum  f    T% > MIC criterion (Fig.  4 ). To analyze these fi g-
ures, one can determine the MIC at which the PTA becomes unde-
sirable. By convention, this percentage is usually set at an arbitrary 
value of 90 % to provide acceptable effi cacy for populations of 
patients. One can review Monte Carlo output and identify the 
highest MIC for which the PTA still exceeds 90 %. This MIC can 
generally be considered the PK-PD breakpoint for the drug- 
organism pair. That is, when treating patients with MICs above 
this value and the designated drug dosing scheme, clinical failure 
rates can be expected to increase. In the fi gure provided, 500 mg 
of ceftazidime for hemodialysis patients every 48 h could be 

  Fig. 3    One-thousand individual concentration-time profi les derived from mathematical modeling of ceftazi-
dime 2000 mg post-dialysis. Scheetz MH. Unpublished data from: Antimicrob Agents Chemother. 2013 Dec; 
57(12):5854–9       

 

Shawn H. MacVane et al.

SpringerLink:ChapterTarget


513

predicted as an effi cacious regimen up to and including pathogen 
MICs of 4 mg/L. A large number of studies conducted using 
methods similar to those presented above have demonstrated the 
computer-simulated and theoretic benefi ts conferred by extended 
infusion to increase the  f    T% > MIC compared to intermittent infu-
sion. The interested reader is referred to several articles that 
 describe       these processes in greater depth [ 24 – 36 ].

       The predicted benefi ts of  computer simulations   have been borne out 
in several clinical studies, further providing proof for the principle of 
maximizing  f    T% > MIC. In one of the most impactful studies to 
date, Dulhunty and colleagues conducted a prospective trial evaluat-
ing the benefi t of CI administration of beta-lactam antibiotics com-
pared to traditional intermittent administration [ 5 ]. The authors 
compared  clinical and pharmacokinetic outcomes   among patients 
receiving piperacillin-tazobactam, meropenem, or ticarcillin-clavula-
nate administered by CI or traditional intermittent infusion. Patients 
in the CI group showed improvements in  plasma antibiotic concen-
trations         above the MIC (81.8 % vs. 28.6 %;  p  = 0.001), clinical cure 
on the test of cure date (76.7 % vs. 50 %;  p  = 0.032), and clinical cure 
on the test of cure date among patients not considered treatment 
failures (70 % vs. 43.3 %;  p  = 0.037). In another large prospective 
multinational study, Roberts and colleagues evaluated the impact of 
achievement of PK-PD indices among critically ill patients receiving 
beta-lactam antibiotics [ 37 ]. The authors evaluated the proportion 
of clinical cures without change or escalation in antibiotic therapy 
according to the achieved  f    T% > MIC of at least 50 % or at least 

2.1.4  Clinical Studies 
Showing a Benefi t for CI 
and PI Dosing and Relevant 
Methods

  Fig. 4    Probability of target attainment (PTA) of ceftazidime in dialysis. Scheetz MH. Data from: Antimicrob 
Agents Chemother. 2013 Dec;57(12):5854–9       
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100 % of the dosing interval. Total infection-related mortality was 
observed in 8.9 % in the study population. Within the study popula-
tion, 50 %  f    T% > MIC was achieved in 93 % of patients receiving PI 
dosing schemes but only 80 % of those receiving intermittent infu-
sions. In their  multivariate model  , the authors found that increasing 
the achieved  f    T% > MIC between 50 and 100 % was associated with 
a 54 % improvement in the odds of achieving a positive clinical out-
come adjusting for severity of illness measures (adjusted odds ratio 
[aOR] = 1.02; 95 % CI: 1.01–1.04 and aOR = 1.56; 95 % CI 1.15–
2.13, respectively).  

 Lodise and colleagues conducted a retrospective cohort study 
of patients receiving either a standard infusion regimen (3.375 g 
intravenously over 30 minutes every 4 or 6 h) or a PI regimen 
(3.375 g intravenously over 4 h every 8 h) of piperacillin- tazobactam 
[ 1 ]. The authors identifi ed a target beta-lactam, in this case piper-
acillin-tazobactam, which would be an ideal candidate for evalua-
tion in a PI and CI paradigm.  After implementing the PI program, 
they retrospectively reviewed the impact on clinical outcomes. The 
authors utilized binary recursive partitioning with  classifi cation and 
regression tree analysis (CART)         to identify a difference in the binary 
outcome of 14-day mortality and  length of stay (LOS)      according to 
baseline predictors. A difference in 14-day mortality (5.2 % vs. 21.5 % 
mortality;  p  = 0.001) and LOS (median 18 days vs. 27.5 days; 
 p  = 0.02) was observed according to a difference in the subjects’ 
APACHE II score, with the observed split identifi ed between an 
APACHE II score of <17 and ≥17. Among patients with an 
APACHE II score <17, the authors did not fi nd signifi cant differ-
ences in the incidence of 14-day mortality or LOS. Among patients 
with an APACHE II score ≥17, the authors found a lower inci-
dence of 14- day   mortality (12.2 % vs. 31.6 %;  p  = 0.04) and a shorter 
median LOS (21 days vs. 38 days;  p  = 0.02) among patients receiv-
ing a PI compared to the standard infusion regimen. 

 Differences in clinical outcomes have also been observed with 
PI dosing of  cefepime  . Bauer and colleagues conducted a retrospec-
tive, quasi-experimental, study of patients receiving either a stan-
dard infusion regimen (2 g intravenously over 30 min every 8 h) or 
a PI regimen (2 g intravenously over 4 h every 8 h) of  cefepime   [ 4 ]. 
The authors selected a subset of the study population that had a 
documented respiratory or bloodstream infection with   Pseudomonas 
aeruginosa    in which to evaluate the outcomes of inpatient mortal-
ity, median hospital and  intensive care unit (ICU)      LOS, and median 
hospital cost during treatment with intravenous cefepime. Within 
the subgroup of patients with a positive clinical culture growing 
 Pseudomonas aeruginosa , a lower incidence of inpatient mortality 
(3 % vs. 20 %;  p  = 0.03) and a shorter ICU LOS (8 days vs. 18.5 days; 
 p  = 0.04) were observed among patients receiving PI compared to 
standard infusion regimens. No signifi cant differences were 
observed in median hospital LOS (14.5 days vs. 11 days;  p  = 0.36) 
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or median hospital costs ($28,048 vs. $51,231;  p  = 0.13) between 
PI and standard infusion regimens. The authors conducted a multi-
variate logistic regression analysis to determine the confounder-
adjusted risk of inpatient mortality. Candidate predictors signifi cant 
in the univariate analysis included cefepime infusion type, ICU sta-
tus at culture, and APACHE II score. The fi nal multivariate model 
for inpatient mortality included  cefepime   infusion type (aOR = 0.06; 
95 % confi dence interval [95 % CI]: 0.001–0.64), ICU status at 
culture (aOR = 8.88; 95 % CI: 1.45–100.85), and APACHE II 
score (aOR = 1.13; 95 % CI: 1.03–1.27). 

 The  benefi ts   of PI beta-lactam administration have also been 
explored in a large, multicenter, retrospective cohort study by Yost 
and colleagues [ 38 ]. The authors aggregated data from 14 study 
centers for 359 patients receiving either a standard infusion regi-
men of a comparator agent or a PI regimen (3.375 g intravenously 
over 4 h every 8 h, dose adjusted if CrCl < 20 mL/min) of 
 piperacillin- tazobactam  . Comparator agents included standard 
infusions of intravenous cefepime, ceftazidime, imipenem- 
cilastatin, meropenem, doripenem, or piperacillin-tazobactam. 
While groups were not evenly balanced with EI patients receiving 
fewer aminoglycosides ( p  = 0.01) and having fewer pseudomonal 
infections ( p  = 0.01), the study demonstrated decreased in-hospital 
mortality in the EI piperacillin-tazobactam group vs. those receiv-
ing comparator antibiotics (9.7 % vs. 17.9 %,  p  = 0.02). 

 Falagas and colleagues conducted a meta-analysis of  clinical 
outcomes   associated with CI and PI administration of  carbapenems 
and piperacillin-tazobactam   [ 39 ]. The authors aggregated data 
from 14 studies that included 1229 patients that received either 
standard infusion or CI or PI administration of  piperacillin- 
tazobactam   ( n  = 806) or a carbapenem ( n  = 302). Meropenem was 
the most frequently utilized carbapenem. The majority of included 
studies (8/14) included only patients with  Gram-negative infec-
tions  . The authors found a signifi cant reduction in mortality in the 
pooled analysis among patients receiving CI and PI administration 
compared to standard infusion (relative risk [RR] = 0.59; 95 % CI: 
0.41–0.83). This mortality benefi t was observed among patients 
receiving CI administration (RR = 0.50; 95 % CI: 0.26–0.96) and 
PI administration (RR = 0.63; 95 % CI: 0.41–0.95) compared to 
standard infusion. The authors did not fi nd a difference in clinical 
cure between standard infusion and CI and PI administration in the 
pooled analysis (RR = 1.13; 95 % CI: 0.99–1.28). A table summa-
rizing several of the higher profi le publications is included (Tables  1  
and  2 ). In summary, many of the most notable  publications point 
towards clinical benefi ts of CI/PI. Patients most likely to benefi t 
are those with increased  comorbidities and organisms   with elevated 
MICs. The interested reader is referred to a more complete review 
of the published literature on clinical outcomes associated with  CI 
and PI      administration of beta-lactams [ 40 ,  41 ].
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       Favorable pharmacoeconomic outcomes are possible with CI and 
PI administration of beta-lactams. In fact, 29–52 % of institutions 
cite cost as a rationale for the use of CI and PI compared to stan-
dard infusion beta-lactam schemes [ 3 ]. In  cost-benefi t analyses  , 
improvements can be realized by either decreasing the numerator 
(i.e., direct costs) or increasing positive outcomes in the denomi-
nator. Thus, pharmacoeconomic support for CI and PI beta- lactam 
infusion schemes can be divided into improvements in drug acqui-
sition or administration costs and improvements in patient out-
comes, which translate into favorable cost-benefi t measures such as 
 quality-adjusted life years (QALYS)        . 

 First, daily doses of beta-lactams can be decreased without 
decreasing attainment of  pharmacodynamic parameters   (e.g., 
 f    T% > MIC) as previously described. Optimal schemes not only 
retain similar target goals, but rather improve  f    T% > MIC while 
utilizing less drug. For instance, in one of the more commonly 
cited clinical effi cacy studies for PI piperacillin-tazobactam [ 1 ], the 
authors were able to cut the number of 3.375 g  piperacillin- 
tazobactam   doses in half (i.e., cut from 6 doses per day to 3 doses 
per day) by increasing the infusion time from 30 min to 4 h. This 
less frequent PI administration improved the probability of target 
attainment (i.e.,  f    T% > MIC of 50 %) from less than 50–100 % for 
MICs of 16 mg/L. This intervention alone was responsible for an 
estimated $68,000–135,000 reduction in drug acquisition cost 
during the fi rst year of implementation at Albany Medical Center 
Hospital. As previously noted, mortality was also decreased with 
this scheme. Others have documented that PI schemes for piper-
acillin-tazobactam can be cost saving and effi cacious [ 42 ]. In this 
study and others, costs were saved with CI and PI administration 
by decreasing pharmacist preparatory time and nursing administra-
tion time. In another example, CI administration of piperacillin-
tazobactam decreased median labor costs (nursing administration 
and pharmacy preparation time) by 75 % [ 43 ]. Similarly for the 
 carbapenems   in the setting of hospital-acquired pneumonia, 
meropenem 500 mg every 6 h given as a 3-h infusion was associ-
ated with a 34 % cost decrease compared to 1 g every 8 h as a 1-h 
infusion (i.e., mean $684.06 vs. $1038.83, respectively) [ 44 ]. 
Clinical outcomes did not differ for these patients. 

 In other instances, using the most appropriate antimicrobial 
based on PK-PD principles may require more costly agents at 
higher doses than traditional infusions [ 45 ]. Particularly in settings 
where drug resistance is frequent, the use of higher doses of CI or 
PI may be necessary to achieve pharmacodynamic targets at a high 
rate. Due to the high prevalence of MDR   P. aeruginosa    in one 
hospital’s ICUs, high-dosed PI cefepime, 2 g every 8 h as a 3-h 
infusion, was required to achieved the goal pharmacodynamic tar-
get (50 % ƒT > MIC) for the empiric therapy of VAP in their clini-
cal pathway [ 46 ]. Although higher doses of more expensive 

2.1.5   Pharmaco- 
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antibiotics were used during Hartford Hospital’s VAP clinical 
pathway, the attributable reduction in infection-related length of 
stay resulted in nearly $40,000 per patient reduction in the cost of 
care, with comparable overall antibiotic cost [ 47 ]. Reductions in 
length of stay and the utilization of healthcare resources have a 
greater impact on cost of care. 

 The ability to demonstrate an  economic benefi t   certainly 
improves the sustainability for the program. However, achieving 
these measures should never adversely affect patient care. While 
decreased antibiotic expenditures, the so-called low-hanging fruit, 
may be the most obtainable measure and provide the initial justifi -
cation for use of dose-optimized infusion schemes, quality  measures 
that impact patient care and outcomes should always be investi-
gated [ 48 ]. 

  Cost-effectiveness analyses   are a method of comparing two 
treatment strategies for both cost and effi cacy simultaneously. 
Strong dominance is a principle that defi nes an intervention that is 
both more effective and less costly [ 49 ]. In these situations, select-
ing the most appropriate strategy does not require application of 
further principles. While we are not aware that  cost-effectiveness 
analyses   have been performed to compare CI and PI administra-
tion schemes to traditional intermittent infusions, the increased 
effi cacy and decreased costs likely mean that CI and PI dosing 
schemes dominate intermittent infusions for beta-lactams and 
should be employed whenever possible. Such effects will hopefully 
be directly confi rmed in the future.   

     Continuous or prolonged infusions of beta-lactams are rational 
approaches to the optimal administration of these agents as previ-
ously described. However, little guidance exists on how to proceed 
with implementation of these dosing schemes into practice [ 50 ]. 
Such direction is only briefl y outlined in the method’s section of 
some research papers on the topic, leaving a signifi cant knowledge 
gap for the fi rst-time program implementer. Furthermore, the 
approach used to construct a dose-optimized program at a major 
academic medical center may be different and thus not applicable 
to a remote, critical-access community hospital. Taking the afore-
mentioned challenges into account, it is no wonder that despite 
the recognized benefi ts, CI or PI beta-lactam dosing strategies are 
still not employed in most institutions. 

 As each institution may have varying needs and resources, an 
individualized approach is warranted to gather useful information 
on how the application of dose-optimized strategies will benefi t 
one’s hospital and its patients. For example, at institutions with 
signifi cant rates of resistance to commonly utilized agents, pre-
scribers may be forced to otherwise consider the use of older, more 
toxic antibiotics as the new standard of care. In this instance, the 
availability of CI or PI programs may provide additional treatment 

2.2  Implementing 
a Continuous or 
Extended Infusion 
Beta- Lactam Program

2.2.1   Institution-Specifi c 
Needs  
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opportunities by improving the likelihood of achieving bactericidal 
exposure for beta-lactams in situations where traditional infusions 
would fail to provide adequate exposures. In contrast, CI and PI 
may also provide value in settings where standard beta-lactams 
infusions remain highly effi cacious due to low levels of resistance 
[ 51 ]. In such a scenario, there is a theoretic possibility of decreased 
or slowed progression of resistance. 

 To effectively implement a CI or PI program fi rst requires 
knowledge of relevant antibiotic susceptibility data for commonly 
isolated local pathogens, an appreciation of where the greatest 
benefi t will be achieved (e.g., implementing hospital-wide vs. unit- 
specifi c vs. selected patient populations), an ability to interpret the 
pharmacokinetic and pharmacodynamic literature in order to iden-
tify the optimal antibiotic and dosing regimen for one’s popula-
tion, and a capacity to collaborate with a multidisciplinary team to 
implement the program. Heinrich and colleagues detailed a com-
prehensive example of their experience with developing and imple-
menting a hospital-wide pharmacist-led piperacillin-tazobactam PI 
guideline at a 500-bed academic medical center [ 6 ]. These authors 
evaluated and considered their institution size, patient population 
(children were excluded at their institution due to lack of data in 
this population), medication workfl ow (ordering, distribution, dis-
pensing, and documentation) process, technology level (CPOE, 
eMAR), and availability of resources (infusion pumps, etc.) when 
devising their rollout plan. With a better view of the scope of avail-
able resources and identifying barriers to implementation at one’s 
facility,    key contributors can be recruited to begin cohesive plan-
ning and development of the protocol. 

   It is the authors’ advice to utilize local MIC data, when available, 
to make informed decisions regarding the appropriate application 
of dose-optimized infusion strategies. Information displayed on 
 antibiograms   is essential for the selection of empiric antimicrobial 
therapy as susceptibility patterns can vary considerably between 
countries, from hospital to hospital, and even among units or 
wards within the same hospital [ 52 ]. The importance of institution- 
specifi c data was elegantly shown by Rello and colleagues, who 
retrospectively compared the etiology of microorganisms collected 
from patients with VAP from three different institutions. Their 
examination revealed signifi cant variations in the etiologies and 
susceptibility (inconsistent rates of MDR strains) among microor-
ganisms implicated in VAP according to institution. Substantial 
differences were observed between sites for all groups of organ-
isms, including drug-resistant bacteria such as MRSA,   Pseudomonas 
aeruginosa , and  Acinetobacter baumannii    [ 52 ]. The authors sug-
gested that antimicrobial therapy should be tailored based on 
institution- specifi c fi ndings vs. general recommendations put forth 
in guidelines [ 52 ]. Therefore, while regional or national 

 Applying Local Resistance 
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surveillance data may provide useful information on general trends 
of resistance over time, these resources should only be used to 
guide empirical therapy in the absence of institution-specifi c sus-
ceptibility, and preferably MIC data. 

 One  hospital population   that may benefi t most from CI or PI 
regimens includes patients admitted to the ICU. It has been 
reported that  antimicrobial resistance pathogens   are more fre-
quently seen in ICU rather than non-ICU locations [ 53 ]. An alter-
native approach to a single antibiogram for the entire institution is 
the construction of antibiograms from distinctive units within the 
institution targeting the most common pathogens. For example, 
distinguishing collection isolates based on hospital location (medi-
cal vs. surgical), acuity of illness (ICU vs. non-ICU), or disease- 
specifi c (cardiac vs. transplant vs. neurosurgery ICU) characteristics 
may offer additional information to be used for the best applica-
tion of dose-optimized strategies. Use of unit-specifi c  antibiograms   
has been proven superior at selecting appropriate empiric antimi-
crobial therapy as compared with hospital-wide antibiograms [ 53 –
 55 ]. Binkley and colleagues compared susceptibility patterns over 
a 3-year period (a total of nearly 10,000 isolates) between unit- 
specifi c (general medicine and surgical wards, oncology, and medi-
cal and surgical ICU) and hospital-wide generated antibiograms 
[ 54 ]. They found that using a hospital-wide antibiogram substan-
tially under-reported and over-reported the rates of resistant iso-
lates compared with ICU- and non-ICU-specifi c antibiograms, 
respectively. For instance, rates of methicillin resistance were 20 % 
higher in the medical ICU than in the hospital overall, which 
would likely have a signifi cant impact on the selection of empiric 
antimicrobials. 

 A similar scenario might infl uence the choice of the optimal 
beta-lactam antibiotic regimen. For example, a difference in the 
epidemiology and resistance patterns of  P. aeruginosa  isolates 
between three ICUs (medical, surgical, and neurosurgical) was 
described at one medical center [ 56 ]. This observation was the 
basis for the use of different prolonged infusion regimens depend-
ing on the patient’s ICU location for the empiric treatment of VAP 
when developing a clinical pathway at this hospital. MICs were 
conducted by E-test methodology against  P. aeruginosa  isolates 
collected over the past 12 months and separated by ICU location. 
The difference in beta-lactam MICs against   P. aeruginosa       across 
the three ICUs required high-dose PI  cefepime      (2 g every 8 h as a 
3-h infusion) for the surgical and neurotrauma ICU, because it 
produced the highest CFR against isolates collected in this unit. In 
contrast, for the medical ICU where cefepime MICs were higher 
due to resistance, a high-dose, prolonged infusion meropenem 
regimen (2 g every 8 h as a 3-h infusion) was selected for empiric 
therapy [ 46 ,  47 ]. Notably, CI or PI  piperacillin-tazobactam   
resulted in lower CFRs among these ICUs; therefore, it was 
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reserved for treatment once pathogen and susceptibility data were 
available on a patient-to-patient basis. As a result of this approach, 
the knowledge of susceptibility patterns on a unit-specifi c level 
allowed for informed decisions on the selection of empiric antimi-
crobial agent and dose(s), leading to signifi cant reductions in 
infection-related mortality, length of stay, and overall costs without 
signifi cantly increasing the drug budget [ 47 ]. A number of other 
studies have seen improved patient outcomes when utilizing a local 
antibiogram to guide antibiotic choice [ 57 – 59 ]. In the event that 
local MIC data is not available, the antibiogram along with pub-
lished PTA literature can be used to estimate CFRs for the institu-
tion. This strategy assumes that the antibiotic MIC for against the 
target organism is equivalent to the respective susceptible, inter-
mediate, and resistant breakpoints. For instance, if 65 %, 25 %, and 
10 % of the  P. aeruginosa  are susceptible (≤8 mg/L), intermediate 
(≤16 mg/L), and resistant (≥32 mg/L) to cefepime at one’s insti-
tution, respectively, the CFR can be calculated under the assump-
tion that 65 %, 25 %, and 10 % of the population has  cefepime   MIC 
of 8 mg/L, 16 mg/L, and 32 mg/L, respectively. The least desir-
able approach is to assume that the local MIC distribution is com-
parable to the national data when extrapolating susceptibilities 
from surveillance studies to determine CFRs. 

 In certain scenarios, the  application   of CI and PI may fail to 
produce suffi cient improvement in exposure for beta-lactams. This 
might be the case when the antibiotic MIC is very high (i.e., sev-
eral dilutions above the resistance breakpoint), when the underly-
ing comorbidities of a patient cause him or her to eliminate an 
antibiotic quicker than anticipated, or a combination of both [ 60 , 
 61 ]. For instance, while PI  piperacillin-tazobactam   (3.375 g q8h as 
a 4-h infusion) can dramatically improve the PTA for organisms 
with a MIC of ≤16 mg/L as compared with traditional 30-min 
dosing regimens, PTAs are suboptimal at MICs of 32 and 64 
mg/L, MICs for  P. aeruginosa , which until recently were defi ned 
as susceptible to this antibiotic [ 62 ]. Additionally, recent data sug-
gests that in patients with preserved or enhanced renal clearance 
(CrCl ≥ 100 mL/min), PI  piperacillin-tazobactam   (3.375 g q8h as 
a 4-h infusion) also provides suboptimal exposures at MICs of 16 
mg/L (PTA = 0.73 for CrCl of 100 mL/min vs. PTA = 0.90 for 
CrCl of 60 mL/min), and thus a more aggressive dosing regimen 
(4 g of piperacillin administered for 3 h every 6 h) or an alternative 
agent should be considered [ 36 ,  63 ]. Thus, a one-size-fi ts-all 
approach may not be optimal for all hospitals and patients settings 
where alternative agents should be considered.  

   Once MIC/susceptibility data have been considered and the spe-
cifi c antibiotic/dosing regimen selected for implementation, the 
protocol team should assess whether to implement the program 
hospital-wide, or only in specifi c units or patient populations. As 
the potential benefi t of CI or PI regimens may vary depending on 
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the patient population and the MIC of the infecting pathogen, 
dose-optimized regimens may not be applicable or appropriate for 
all patients, as many infections can be treated effectively with stan-
dard dosing regimens. Therefore, the greatest benefi t of dose- 
optimized infusions may be realized in those with elevated 
morbidity and those most likely to be infected with the highest 
MIC organism [ 1 ]. This makes patients in the ICU and those with 
burns or cystic fi brosis an attractive target population for initial 
rollout of programs. Education can be focused towards caregivers 
of these populations, and compliance can be more easily tracked. 
Although targeted in its application, use of CI or PI beta-lactams 
only in very specifi c populations, however, may cause confusion 
and errors across the rest of the hospital. For instance, what hap-
pens when patients are transferred out of the ICU and are still 
receiving an optimized dosing regimen? The use of both standard 
and optimized dosing regimens may also complicate education of 
prescribers and nursing staff, particularly for those with overlap-
ping coverage between different units in the hospital, or when 
patients are transferred to outside institutions [ 64 ]. Moreover, 
since a variety of organisms can unpredictably cause infection 
among a diverse population of patients, some patients that were 
not initially targeted may be excluded from the potential benefi ts 
of CI or PI. In contrast, a hospital-wide implementation requires 
signifi cantly greater resources for education, availability of “smart” 
pumps (if utilized), and to ensure compliance across the entire 
institution. At Hartford Hospital, piperacillin-tazobactam is 
administered as a CI across the entire hospital population, with the 
exception of patients with severe renal dysfunction or those with 
intravenous line compatibility concerns. This decision was based 
on the antibiotic’s popular use across medical and surgical wards 
and similarities in piperacillin-tazobactam MICs against  P. aerugi-
nosa  between ICU and non-ICU populations. A similar approach 
is employed for PI doripenem. However, PI cefepime is only 
 utilized in the ICUs because of only marginal increases in CFR 
against isolates collected outside of the ICU. 

 It may be reasonable to pilot the program in select units or 
fl oors within the institution, such as one or two ICUs, prior to 
implementing hospital-wide [ 23 ]. This strategy may identify barri-
ers to the implementation process that may be informative to 
improving the plan for hospital-wide implementation. It is impor-
tant to collect information during this pilot period to evaluate the 
compliance and identify problem areas with the program. Priority 
should be given to areas with adequate staffi ng  to   educate and 
direct the fi rst-time users of the program. 

   While both CI and PI administration can increase the likelihood of 
achieving the requisite pharmacodynamic target, both methods 
should be evaluated to determine their respective CFR using your 
own local MIC distributions [ 34 ]. In the event that prolonged and 

 Continuous vs. Prolonged 
Infusions
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continuous infusions provide similar likelihoods of bactericidal 
exposure, the determining factor becomes dependent on the pref-
erence for once-daily administration (continuous) vs. availability of 
intravenous access (prolonged) [ 34 ]. There are advantages and 
limitations to each method of administration (Table  3 ). The pri-
mary disadvantages to administering beta-lactams via CI are that 
some agents, such as carbapenems and ampicillin, have limited sta-
bility at room temperature; furthermore, some agents are incom-
patible with other commonly used medications in the hospital (see 
section on “Practical Considerations” below). Additionally, the 
necessity for a dedicated IV line may make many institutions reluc-
tant to employ continuous infusions. In contrast, PI regimens still 
require multiple daily doses and can also interfere with other drugs 
when compatibility is an issue. A continuous infusion may require 
the administration of a loading dose to get concentrations to steady 
state quickly, while PI is initiated as such with the initial dose. For 
instance in Fig.  2b , the time to fi rst achieving a concentration of 8 
mg/L for intermittent infusion, prolonged infusion, and continu-
ous infusion is 2 min, 9 min, and 1.5 h, respectively. Regardless of 
the selected administration method, the inclusion and exclusion 
criteria for their use must be explicitly defi ned to minimize confu-
sion and potentially serious complications if patients are given 
inappropriate regimens.

        The focus of CI or PI antimicrobials is to maximize favorable clini-
cal outcomes while minimizing adverse effects. While there is no 
“one way” to develop and implement dose-optimized infusion 
program, there are standard tactics that have successfully been used 
by many healthcare facilities [ 1 ,  6 ,  23 ]. To implement the program 
in an organized and profi cient manner, it is recommended to 

2.2.2  Protocol/Guideline 
Development

   Table 3  
  Pros and cons of dose-optimized infusion administration techniques   

 Type  Advantages  Disadvantages 

 Extended 
or prolonged infusions 

 • Less frequent administration 
(compared with intermittent) 

 • Timing of administration 
for non-compatible drugs 

 • Same dose/delivery package 
as intermittent doses 

 • Labor and supplies 

 • Daily antibiotic-free interval  • Administration resources 
 • Ambulatory patient 

 Continuous infusions  • Reduced costs for labor, supplies, 
and administration 

 • Stability and drug waste 

 • Once-daily administration  • Dedicated line 
 • Compatibility issues 
 • Ambulatory patient 
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consider the areas outlined under this section. Note that these 
principles are not specifi c to CI or PI of beta-lactams, but are uni-
versal global initiatives and pillars of patient care for most health-
care systems. 

   When preparing to implement a dose-optimized infusion strategy, 
the buy-in should incorporate members throughout the institu-
tion, not solely infectious disease practitioners. One of the prob-
lems healthcare institutions often face in implementing effective 
dose-optimized regimens includes communicating their goals with 
hospital administrators. Buy-in from senior institutional leadership 
is a necessary key to success. Hospital administration provides the 
authority, payment, and infrastructure necessary for the program. 

 A core team should be responsible for establishing, drafting, 
and managing the dose optimization program. Potential members 
to include in the team are providers (infectious diseases, critical 
care, pulmonary, surgery, and emergency medicine), nursing, 
pharmacy, clinical microbiology, information technology, and 
administration, among other specialties. Each of these departments 
is vital to provide unifi ed comprehension of the goals and imple-
mentation plan for the program. Team members should meet on a 
regular basis in an effort to direct and focus the program to ensure 
success. This team can also be responsible for addressing the feasi-
bility of implementation and any technological or practical issues 
that may arise. 

 A member of the team should be designated as a “point” per-
son that is dedicated to the supervision of the program, its devel-
opment, and implementation. Since this program pertains to novel 
administration of an antibiotic, a pharmacist or physician with 
 specifi c training or interest in infectious diseases often fulfi ls this 
role. Although a single representative may be branded as the 
“leader,” infectious disease physicians, pharmacy, and administra-
tion must each pledge complete support and buy-in during the 
early phases of development. The program has limited chance of 
success without backing from essential personnel. Consideration 
may also be given to having other hospital committees that might 
be affected by implementation (e.g., infection control, steward-
ship, IV therapy, nursing education) offer comments or have the 
opportunity to ask questions. This universal approach maximizes 
the likelihood of approval at Pharmacy and Therapeutics Committee 
and  minimizes   opportunities for errors/protocol noncompliance 
during implementation.  

   When transitioning to CI or PI strategies, whether on an institu-
tional or unit-specifi c basis, awareness of the technological capa-
bilities can enhance the likelihood of a smooth conversion. 
Likewise, technologies such as  computerized provider order entry 
(CPOE)     ,  electronic medical records (EMR)     , and computer-based 

 Key  Personnel 
and Committees  

 The Role of  Technology  
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surveillance can minimize errors related to prescribing, transcrib-
ing, and documenting of administration type. 

 Many institutions that have successfully implemented dose- 
optimized infusion programs obtained input and support from 
information technology during program development [ 1 ,  6 ,  23 , 
 46 ]. CPOE can increase compliance by defaulting to the desired 
administration method (dose, frequency, and rate) for the specifi c 
approved use and can also decrease medical errors [ 65 ]. For exam-
ple, if a PI regimen is only to be used for the treatment of infec-
tions in the ICU, then a specifi c critical order set can be designed 
that houses the PI line item, in essence preventing prescribers from 
ordering the dosing regimen for a patient outside of the ICU. Some 
CPOE systems can also generate electronic alerts to remind clini-
cians about dose-optimized regimens when they order select anti-
microbials. The use of these computerized decision support 
programs has been associated with improved patient outcomes and 
reduced costs of care [ 66 ,  67 ]. 

 The availability of infusion pumps equipped with medication 
libraries and other software to alert users of potential errors should 
also make for a simpler transition to CI or PI. Universally referred 
to as “smart pumps,” this technology allows the operator to create 
a library of medications with dosing guidelines. By defi ning specifi c 
concentrations and dosages, these guidelines can be used with CI 
and PI to tailor antibiotic delivery to the exact requirements of 
certain patient populations based on various factors (location, 
severity of illness, bodyweight). This technology has been shown 
to improve the accuracy of IV infusions and reduce administration 
errors [ 68 ,  69 ]. However, these infusion pumps are not infallible, 
as the user can still potentially choose the wrong medication from 
the stock or the medication library [ 70 ]. Integration of smart 
pumps with other medication error aversion technologies such as 
barcode scanning and dosage limits can improve the accuracy of 
device programming and further reduce  administration   errors.  

  
 The  physical and chemical characteristics   of the antimicrobial must 
be considered before CI or PI can be applied. Patients undergoing 
antimicrobial therapy may concurrently be receiving a wide range of 
other drug treatments requiring intravenous access. While PI will 
occupy access for approximately 50 % of the dosing interval, con-
tinuous infusions will require either a dedicated line or consideration 
for the compatibility of concomitantly administered medications. 
Fortunately, a recent report showed that  vancomycin and piperacil-
lin-tazobactam  , two of the three most commonly prescribed antimi-
crobials in US hospitals, are compatible during Y-site injection at 
concentrations commonly used during prolonged infusions [ 71 ]. 

 An important consideration regarding CI and PI is the bag vol-
ume and pump settings, to ensure complete and precise administra-
tion. Dead space volume, from failing to fl ush the line following the 

 Practical Considerations
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 antibiotic infusion  , can result in a 40 % loss of the prescribed dose if 
prepared in 50 mL containers [ 64 ]. In response, one group of 
authors modifi ed their extended infusion protocol to mandate a 
minimum container volume of 250 mL for non-ICU patients [ 64 ]. 
For patients in the ICU or requiring fl uid restrictions, alternative 
pumps with less dead space can be used. Lam and colleagues calcu-
lated the residual tubing volumes for commonly used infusion 
pump models [ 72 ]. Use of  microbore tubing   to reduce infusion 
dead space, increasing the infusion volume to account for less than 
10 mL of volume lost, or alternative pumps that can safely adminis-
ter infusion line residuals were proposed solutions.   

     Education is considered an essential and important component of 
any program requiring a change in behavior of clinical practice [ 73 , 
 74 ]. To do this effectively, the program must be straightforward, 
succinct, and easily accessible. Ideally, evidence-based medicine, as 
described above, should be provided. Print materials can augment 
your message and should be available to tackle common concerns 
and provide reinforcement. However, simply providing access to 
this information is unlikely to result in complete understanding 
[ 75 ]. Passive education on its own will only have a marginal effect 
[ 76 ]. Conducting in-service training to advise staff on the new pro-
cedure is recommended. Furthermore, the impact of CI and PI on 
clinical and economic outcomes should be provided in these educa-
tion sessions. The better understanding the team has of the transi-
tion, the more likely protocol noncompliance will be minimized.  

   To communicate effectively, the message should be tailored to the 
audience and focused on areas that will infl uence their task. For 
instance, when introducing PI  piperacillin-tazobactam   at the  Ohio 
State University Medical Center (OSUMC)     , Goff and colleagues 
envisioned that the nursing staff may be displeased that PI would 
require approximately 12 h of dedicated line access throughout the 
day [ 77 ]. Therefore, they emphasized the improved mortality rates 
seen with PI at other institutions, rather than the pharmacody-
namic benefi ts, when presenting the PI method to nursing staff. 
This was in line with the nursing staffs’ dedication to patient care. 
In contrast, a discussion on the infl uence of optimized regimens of 
the emergence of resistant subpopulations of bacteria may be bet-
ter suited for the infectious disease practitioners and clinical micro-
biologists. Gearing your presentation towards the concerns of your 
audience can drastically improve your chances of earning their sup-
port. A well-illustrated example of the process of transitioning of 
alterative dosing schemes into practice was demonstrated at  Albany 
Medical Center Hospital     , where Lodise and colleagues applied 
dose-optimized infusion techniques to cefepime, meropenem, and 
piperacillin-tazobactam. The authors nicely highlight each step of 
the process from early idea generation to the eventual implementa-
tion [ 1 ,  29 ,  78 ].     

2.2.3  Disseminating 
the Program to Staff

  Education  

 Knowing Your  Audience  
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3    Notes 

    Dose-optimized regimens   are commonly utilized as a part of anti-
microbial stewardship programs [ 45 ,  50 ,  77 ]. In line with other 
stewardship initiatives, periodic audits should be performed to 
evaluate compliance with the program, to track and identify unex-
pected issues, and to generate data in continued support of the 
dosing regimen. 

   A variety of methods and measures have been used to show value, 
including a number of  process and outcome metrics   [ 48 ]. Although 
process measures have repeatedly been shown to evaluate quality 
of care, they fail to explain the implications on  patient outcomes  . 
Likewise, outcome measures are not without shortcomings, as 
they do not reliably detect the effect on quality of care. Therefore, 
both process and outcome measures should be identifi ed to deter-
mine the impact of the program intervention. 

 Selection of an appropriate and meaningful measure can be 
challenging. Demonstrating a link between process and outcome 
is crucial to assuring providers and administration that an observed 
benefi t is attributed to the studied intervention. Despite the docu-
mented benefi ts of dose-optimized infusion strategies, unfortu-
nately, endpoints are often chosen with nearly unobtainable goals, 
particularly in studies with a small number of observations and 
multiple infection types. The chief example is the endpoint of 
mortality, which is notably the clinical outcome of greatest impor-
tance. However, impact on mortality is usually multifactorial and 
diffi cult to show a causal relationship with a single intervention. 
Additionally, due to the complex nature of  mortality  , the differ-
ence is seldom large enough to reach statistical signifi cance, even 
when making an effort to control for confounding factors. For 
example, the sickest patients who receive the highest quality care 
are still the most likely to die. Therefore, while mortality may still 
be an appropriate outcome measure for studying optimized beta-
lactam therapy in ICU patients with MDR infections, it is also 
advantageous to select measures that are sensitive to changes in 
practice (i.e., antimicrobial resistance rates, adverse medication 
events, length of stay) [ 79 ]. Many programs have also focused on 
outcomes such as clinical response, length of stay, hospitalization 
costs, development of  superinfections  , as well as emergence and 
rates of resistance. 

 Common process measures include but are not limited to 
program compliance (number and percentage of use), antibiotic 
utilization (quantity used, duration of therapy), and antibiotic 
 expenditures   (cost savings). Note that antibiotic expenditures are 
considered process measures as they are directly related to the 

3.1  Improving the 
Program through 
Reassessment and 
Modifi cations: The 
Role of Antibiotic 
Stewardship

3.1.1  Evaluating 
the Program: Process 
and Outcome Measures
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quantity of antibiotic prescribed, whereas total hospitalization 
costs are outcome measures because if a patient does better with an 
intervention, it can result in substantial, cross-departmental savings 
[ 48 ]. Pharmacy expenditures, particularly related to drug acquisi-
tion, are a budgetary item of high scrutiny for potential cost reduc-
tions. Under certain circumstances, CI or PI will require lower 
total daily doses than standard dosing regimens, reducing the cost 
of therapy. It is important to note that fi nancial outcomes need to 
account for the change in cost over time and should adjust for the 
annual infl ation rate [ 80 ]. Due to  piperacillin-tazobactam  ’s broad 
spectrum of activity and popular use, it is often the chosen anti-
biotic for the fi rst attempt to prolong infusions for beta- lactams. 
However, similar observations have been described with the use 
of continuous infusions [ 42 ,  81 ,  82 ], and as previously noted less 
frequent dose administration and less pharmacy and nursing time 
may represent an additional cost savings by reducing their time 
requirements. 

 There are two common methods to evaluate drug consump-
tion,  defi ned daily doses (DDD)      and days of therapy ( DOT)     . 
 DDD   is calculated as the total number of grams of antibiotic 
consumed divided by the number of grams in an average daily 
dose, while DOT is simply the number of days the individual 
patient receives the antibiotic of interest. As the total amount of 
administered dose is reduced in PI regimens, corresponding 
reductions in DDDs will be observed. However, DOT will remain 
largely unchanged. 

 Lastly, although measuring the impact of PI on  clinical and 
economic outcomes      has been well described, the effect on the 
development of resistance is not as clearly defi ned due to the 
dynamic process and multifactorial nature of antimicrobial resis-
tance. However, dosing regimens that are designed to attain phar-
macodynamic targets will also likely reduce the probability of the 
emergence of resistance [ 51 ].   

   Implementing a program for administering  antimicrobial agents   by 
continuous or extended infusion does not come without chal-
lenges. Several barriers exist to successful implementation [ 83 ]. 
These may include lack of provider participation or opposition, 
limited fi nancial resources, personnel restraints, resistance for col-
laborative efforts from administration, and low perceived value 
compared to alternative efforts. The use of  dose-optimized infu-
sion strategies   requires a change in traditionally prescribing prac-
tices. It may be diffi cult to change these practices; however, steps 
can be taken to alleviate concerns [ 84 ]. Possible solutions to over-
come these obstacles are  listed   in Table  4 .

3.2  Potential 
Barriers and Proposed 
Solutions
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4        Conclusion 

 Optimizing the administration of beta-lactam antibiotics through 
CI and PI administration is feasible and increasingly necessary as 
antimicrobial resistance increases. We have shown that institutions 
interested in implementing these protocols may fi nd useful evi-
dence and guidance in the literature. Local susceptibility data and 
institutional antimicrobial use guidelines are needed to select 
agents for appropriate empiric use. Implementation of a CI or PI 
protocol will require a multidisciplinary and multifaceted approach 
in order to assure successful and safe rollout. Measuring the impact 
of a protocol can be diffi cult, but minimally the observed cost 

   Table 4  
  Challenges and possible solutions of  continuous and prolonged infusion programs     

 Challenges of continuous and 
prolonged infusions  Solution strategies 

 • Limited resources  • Determine goals of the program and availability of 
resources 

 • Present impact of potential clinical and economic benefi ts 
to administration 

 • Lack of interest and buy-
in for providers 

 • Tailor your message towards the values of your audience 
 • Provide evidence-based literature 
 • Involve doubtful providers as team members of the 

program development 

 • Provider push-back 
and compliance issues 

 • Automatic substitution (Pharmacy and Therapeutics 
Committee) 

 • Discuss opportunities to improve patient care and cost 

 • Inappropriate/improper 
use of the protocol 

 • Defi ne inclusion and exclusion criteria of the population 
for use 

 • Implement dosing protocols via computerized software 

 • Confusion  with   program 
procedure 

 • Conduct education prior to implementation 
 • Devise an initial rollout plan with a “hotline” for questions 

and troubleshooting 

 • Errors  • Involve information technology to create electronic alerts 
 • Incorporate into computerized provider order entry 
 • Use reminders (product labels, standardized volumes, 

programmable infusion pumps) 

 • Challenges sustaining the program 
over time 

 • Plan continuing education sessions 
 • Post reminders in newsletters and fl yers 
 • Reevaluate local MIC data to ensure optimal drug 

selection 
 • Perform audits and collect outcome/process data to 

demonstrate benefi t at your institution 
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    Chapter 21   

 Pharmacodynamic Considerations in Critically Ill Patients                     

     Mahipal     G.     Sinnollareddy     and     Jason     A.     Roberts      

  Abstract 

   Sepsis and related changes lead to an array of physiological changes in critically ill patients. As with all other 
interventional measures, early and appropriate antibiotic regimen is important for control of sepsis-related 
changes. Antibiotic dosing based on the information from less severely patients results in suboptimal dos-
ing. Therefore, it is important to consider ICU patients as a separate cohort for drug dosing. It is impor-
tant to understand the variability and quantitatively determine doses required to improve clinical and 
microbiological outcomes.  

  Key words     Pharmacokinetics  ,   Pharmacodynamics  ,   Dosing  ,   Antibiotics  ,   Sepsis  ,   Septic shock  , 
  Hypoalbuminemia  ,   Acute kidney injury  ,   Renal replacement therapy  ,   Augmented renal clearance  

1      Introduction 

 Infections and related  sepsis   are few of the most prevalent issues in 
critically ill patients [ 1 – 3 ]. Sepsis occurs as a result of complex 
interactions of pathogenic microorganisms and a subsequent 
plethora of host responses that cumulatively cause mortality rates 
up to 25–30 % for severe sepsis and 40–70 % for  septic shock   [ 4 ]. 
At any one time, 50 % of patients in intensive care units (ICU) are 
diagnosed with an infection and are receiving treatment with  anti-
biotics   [ 5 ]. Source control of the pathogen and early and appropri-
ate broad-spectrum antibiotics along with other measures are vital 
clinical interventions for sepsis [ 6 ]. One of the essential compo-
nents of the effective antibiotic therapy that can be modifi ed by the 
clinician is optimization of dose. Adequate dosing in critically ill 
patients is of paramount importance not only because early and 
appropriate antibiotic therapy is proven to improve clinical out-
comes but also because inadequate dosing will lead to emergence 
of resistance [ 7 – 9 ]. Due to an escalation of the incidence of bacte-
ria resistant to currently available antibiotics and lack of develop-
ment of new antibiotics with novel mechanisms to overcome 
resistance, optimal use of the current armamentarium is essential. 
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Rational development and dosing of antibiotics could be achieved, 
especially in critically ill, with the application of pharmacokinetic 
(PK) and pharmacodynamic (PD) concepts. This chapter aims to 
discuss the PK/PD issues in relation to antibiotics relevant to ICU 
patients.  

2    Altered Pathophysiology and Pharmacokinetics 

 Antibiotic  dosing   in the critically ill is generally based on the PK 
data obtained in healthy volunteers or moderately ill patients. 
These regimens do not generally account for various pathophysi-
ological changes that occur in critically ill patients with sepsis and/
or septic shock [ 10 ,  11 ]. Altered pathophysiology leads to signifi -
cant changes in primary PK parameters—clearance (CL) and vol-
ume of distribution (Vd)—which in turn affect the plasma and 
infection site concentrations. As shown in Fig  1 , PK changes in 
critically ill patients can occur with or without organ dysfunction 
and depend on both pathophysiological and drug-related ( hydro-
philicity   and protein binding) factors as well as patient factors.

Sepsis/
Critical illness

Factors 
affecting Vd 
(thus plasma 

and tissue 
conc.)

Factors 
affecting CL 
(thus plasma 

and tissue 
conc.)

Physiological      
related

Drug related 

Physiological      
related

Drug related

RRT

Renal failure

Hepatic failure

ARC

Hydrophilic

Lipophilic

Fluid shifts

Hypo
albuminemia

pH changes

Hydrophilic

Lipophilic

Acute CL changes
(Important on Day2 and thereafter 
to adjust maintenance doses)
Adjust maintenance doses based on 
TDM and PK/PD targets using PK 
first principles or Bayesian 
forecasting if available 

Acute Vd changes
(Important on Day1  to obtain 
prompt PK/PD targets)
Higher loading doses are required 
for hydrophilic antibiotics (beta-
lactams, aminoglycosides etc.)

Loading doses may not be 
required 

  Fig. 1    Physiological and drug-related factors leading to PK changes that affect drug  dosing   and suggested 
dosing strategies.  CL  clearance,  Vd  volume of distribution,  RRT  renal replacement therapy,  ARC  augmented 
renal clearance,  TDM  therapeutic drug monitoring,  PK  pharmacokinetics,  PD  pharmacodynamics       
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3       Distribution Changes 

   The toxins released during the pathogenesis of  sepsis   can cause 
endothelial damage, increased capillary permeability, and maldis-
tribution of  blood fl ow  . This capillary leak results in fl uid shifts 
from the intravascular to the interstitial space. These changes result 
in an increased Vd leading to lower plasma and infection site con-
centrations of  hydrophilic antibiotics   (e.g., beta-lactams, amino-
glycosides) which in general have lower Vd  an  d intracellular 
penetration than that of  lipophilic antibiotics  . This has been dem-
onstrated for beta-lactam antibiotics with many critically ill patients 
not achieving desired PK/PD targets with conventional doses [ 12 , 
 13 ]. On the other hand, antibiotics with greater lipophilicity (e.g., 
fl uoroquinolones, macrolides) have a higher volume of distribu-
tion and intracellular penetration as a characteristic feature and are 
not greatly affected by the fl uid shifts [ 14 ]. Therefore, it is a fea-
ture of critically ill patients that higher loading doses may be 
required for hydrophilic antimicrobials to reach PK/PD targets 
promptly.  

   Critical illness  res  ults in reduced microvascular perfusion leading 
to impaired distribution of antibiotics into the interstitial fl uid. 
Reduced perfusion will affect different organs differently depend-
ing on the phase of the sepsis [ 15 ]. Since most of the bacterial and 
fungal infections are extracellular, diminished perfusion may result 
in suboptimal interstitial fl uid (ISF) exposures of antimicrobials. 
This has been demonstrated in a few studies comparing the plasma 
and ISF concentrations of beta-lactams using the microdialysis 
technique where several fold decreases in ISF concentrations have 
been observed in critically ill patients compared to healthy  volu  n-
teers [ 16 ,  17 ].  

   Reduced serum albumin concentrations are frequently observed in 
critically ill patients. This will result in increased free drug concen-
trations in plasma and thus also in tissue ISF. However, because of 
the dilutional effect caused by fl uid shifts and free drug available 
for clearance, ISF concentrations remain low. This effect is consid-
ered signifi cant, in particular, for highly protein-bound hydrophilic 
antimicrobials like ceftriaxone and fl ucloxacillin [ 16 – 18 ].   

4    Clearance Changes 

   Acute kidney injury (AKI) is a common complication in critically 
ill patients with an incidence as high as 42 % reported in patients 
with severe sepsis or septic  shock   [ 19 ]. Two-thirds of these patients 
require renal replacement therapy (RRT) resulting in hospital 
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mortality rates as high as 60 % [ 20 ]. Changes in Vd during AKI 
could be due to one of the three reasons—because of the sepsis- 
related changes as discussed above, secondly because of increased 
 extravascular fl uid   volume secondary to reduced urinary output, 
and thirdly displacement of  drug molecules   by accumulated ure-
mic molecules. Higher loading doses may be required for  hydro-
philic drugs   to account for this increased Vd [ 20 ]. As the fl uid 
overload is corrected, drug doses may need to be adjusted 
accordingly. 

 Renal excretion of a drug can occur through a combination of 
three processes—glomerular fi ltration, tubular secretion, and 
tubular reabsorption. AKI is not only associated with decreased 
 glomerular fi ltration   but also with impairment of tubular secretion 
and reabsorption. Therefore, it is important to consider the effects 
of tubular secretion and reabsorption in deciding the  dosing   regi-
mens. For example, approximately 80 % of fl uconazole is reab-
sorbed in the proximal tubule in patients with normal renal 
function. In critically ill patients undergoing RRT, reabsorption 
might be reduced leading to greater clearance, thus requiring 
higher or at least standard doses (not dose adjusted for renal dys-
function) of  fl uconazole   [ 20 ,  21 ]. 

 Accurate estimation of renal function is critical in ICU setting 
for optimal drug dosing. Due to non-steady-state concentrations 
of creatinine in critically ill, traditional methods (Cockroft-Gault 
and Modifi cation of Diet in Renal Disease equations) may lead to 
inaccurate estimation of renal function.  Urinary creatinine clear-
ance (CrCL)      should be used to estimate renal function, where pos-
sible. If not, the Jelliffe equation should be considered instead of 
traditional equations [ 22 ]. The product information is useful for 
the dosing recommendations but care must be taken to assess renal 
function accurately.  

   RRT is the commonly employed therapeutic measure for the treat-
ment of severe AKI in critically ill patients. RRT has evolved over 
the years to meet the needs of individual patients.  Continuous 
renal replacement therapy (CRRT)      is more commonly used in the 
management of AKI patients in the critical care setting because of 
a greater  hemodynamic intolerance   of these patients to the 
 traditional  intermittent hemodialysis (IHD)   [ 23 ]. CRRT includes 
three primary modalities— continuous veno-venous hemodialysis 
(CVVHD)     ,  continuous veno-venous hemofi ltration (CVVHF)  , 
and continuous veno-venous hemodiafi ltration (CVVHDF). A 
hybrid technique called  sustained low-effi ciency daily dialysis/
diafi ltration (SLED/SLED- f )     , also known as slow low-effi ciency 
dialysis and extended daily dialysis, has been developed recently 
and combines the advantages of both intermittent hemodialysis 
and CRRT [ 24 ]. Drug clearance during RRT is infl uenced by the 
patient, drug, and the RRT settings [ 25 ]. 

4.2  Renal 
Replacement Therapy
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 In general the daily effi ciency of solute removal depends on the 
type of technique used and could be ranked as follows: 

 CVVHDF > CVVHF > CVVHD > SLED > IHD 
 Although IHD has the greatest clearance per unit of time, the 

short duration means that over the course of 24 h, the total solute 
removed is the least with this mode. 

 Accurate drug dosing in critically ill patients on RRT is extremely 
diffi cult because of the concurrent changes that occur in critical ill-
ness as well as changes associated with RRT [ 26 ]. It is further com-
plicated by the fact that the approach to use RRTs varies across 
different ICUs leading to variability in drug clearances. Moreover, a 
recent systematic review concluded that published PK studies using 
various RRT modalities did not report suffi cient data to guide effec-
tive  drug dosing   [ 27 ]. The empirical approach to dosing in CRRT 
failed to achieve required trough concentrations in almost 25 % dos-
ing intervals in a recent multicenter PK study [ 26 ]. Rational 
approaches based on the PK/PD of  antibiotics   and fi rst principles of 
PK have been suggested until more robust studies encompassing 
different RRT settings and PK variability are conducted [ 25 ].  

   On the other hand,    increased cardiac output due to various inter-
ventions to maintain hemodynamic stability in the early phases of 
severe sepsis/septic shock could lead to enhanced excretion of 
renally eliminated antibiotics leading to subtherapeutic concentra-
tions [ 28 ,  29 ]. This phenomenon is termed augmented renal clear-
ance (ARC) and has been increasingly recognized in subsets of 
critically ill patients. These patients have an apparent normal serum 
creatinine concentration and are most commonly young patients 
presenting with trauma and without any prior comorbidities or 
organ dysfunction [ 30 – 32 ].  

   Hepatic  impairmen  t in the critically ill could result from infectious 
causes, hypoperfusion or drug toxicity. Unlike renal function, 
methods to quantitate hepatic impairment in acute clinical setting 
do not exist. Thus evaluation of residual hepatic function is mainly 
based on clinical parameters. As discussed above, a reduction in 
albumin concentrations due to hepatic impairment can lead to PK 
changes of highly protein-bound drugs. Because of the subjective 
nature of drug dosing in acute liver impairment, it may be neces-
sary to choose an alternative antibiotic if in doubt about the effect 
of hepatic dysfunction and when drug toxicity is anticipated.   

5    Antibacterial Classes 

 Different antibiotic classes have different bacterial kill  characteris-
tics  . These relationships have been determined from in vitro stud-
ies and describe the antibiotic exposure required for maximal 
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activity [ 33 ]. Sometimes, these in vitro study fi ndings have been 
replicated in animal in vivo studies as well as in clinical PD studies 
including studies in critically ill patients. For each  antibiotic  , it is 
the free (or unbound) concentration that is responsible for antibi-
otic effect. The beta-lactam group of antibiotics exhibit a time- 
dependent activity with the time the free (or unbound) antibiotic 
concentration remains above the  minimum inhibitory concentra-
tion (MIC)   of the pathogen ( f T >MIC ) which is the best predictor of 
effi cacy [ 34 ]. In contrast,  aminoglycosides   have a concentration- 
dependent activity where bacterial killing is determined by the 
ratio of maximum concentration to MIC ( C  max /MIC) [ 35 ]. In the 
case of  fl uoroquinolones  , the ratio of free antibiotic area under the 
concentration-time curve to MIC ( f AUC 0–24 /MIC), which is a 
function of both concentration- and time-dependent activity, is 
predictive of effi cacy [ 36 ]. Below, the specifi c PK/PD characteris-
tics for antibiotic classes that are likely to be altered in critically ill 
patients are discussed. Table  1  outlines the PK/PD indices, 
expected changes with critical illness, and  dosing   strategies for 
antibiotics commonly used in ICUs. For more detailed discussions 
about PD for each class of antibiotic, refer to the corresponding 
chapters.

       Beta-lactams are probably the most studied antibiotics in critically 
ill patients given their broad spectrum of activity. Given that  f T >MIC  
is the optimal PD index for beta-lactams, maintaining free drug 
concentrations above the MIC should be the aim of treatment. 
Several clinical studies have sought to confi rm the fi ndings from 
the dynamic in vitro and animal in vivo data but have described 
different % f T >MIC  values for maximal clinical effects [ 37 – 43 ]. Most 
of these studies have looked at the clinical PD of beta-lactams 
against  Gram-negative pathogens  . Some have reported that 
 T  >4–6 × MIC  has to be maintained for the 100 % of the dosing interval 
[ 39 ,  44 ] whereas others have suggested a target of 60 %  f T >MIC  
depending on the outcome sought (clinical cure versus decreased 
bacterial resistance) [ 43 ]. It is unlikely that the actual % f T >MIC  from 
the preclinical studies is incorrect, rather than that the clinical stud-
ies include a broad range of isolates where accurate MIC data may 
not be available, or may include patients with infection site PK that 
is not well represented by plasma PK. 

 Of the available studies, two in particular have evaluated PK/
PD specifi cally in critically ill patients in ICU and will be high-
lighted here. McKinnon et al. [ 38 ] found that both AUC 0–24 /MIC 
and  T  >MIC  were predictive of clinical and bacteriological success for 
ceftazidime and  cefepime  . A  T  >MIC  of 100 % (measured as total 
concentration, not unbound concentration) was found to be asso-
ciated with higher rates of bacteriological eradication and clinical 
cure compared to a  T  >MIC  less than 100 % (97 % vs. 44 % and 82 % 
vs. 33 %, respectively). In a more recent Defi ning Antibiotic Levels 
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in ICU patients (DALI) study—a multicenter prospective point- 
prevalence PK study—higher PK/PD target of 100 %  f T >MIC  was 
associated with a higher likelihood of a positive clinical outcome 
compared to 50 %  f T >MIC  (odds ratio: 1.02; 95 % CI: 1.01, 1.04, 
and 1.56; 95 % CI: 1.15, 2.13, respectively). This hypothesis- 
generating study also raises an interesting question whether achiev-
ing higher magnitude of PK/PD ratios at 50 %  f T >MIC  will improve 
clinical outcomes in less severely ill patients (Acute Physiology and 
Chronic Health Evaluation [APACHE] II scores < 14) [ 45 ]. 

 In agreement with the PK/PD index,  continuous infusion 
(CI)   has been proposed as a mode of administration for beta- 
lactams to increase % f T >MIC . Mouton and den Hollander [ 46 ] using 

   Table 1  
  PK/PD indices, expected PK changes, and  dosing   strategies for commonly used antibiotics in ICUs   

 PK/PD target 

 Expected PK 
changes 

 LD 
required  Maintenance doses 

 Increased 
Vd  ARC 

 Penicillin 
antibiotics 

 Yes  Yes a   Only with 
CI 

 Adjust based on renal 
function 

 Vancomycin  Total AUC 0–24 /
MIC > 400 

 Yes  Yes a   Yes  Adjust based on renal 
function using TDM 
approach 

 Gentamicin   C  max /MIC 8–10  Yes  Yes b   Yes  Adjust based on renal 
function using TDM 
approach 

  Ciprofl oxac   in  Total AUC 0–24 /
MIC > 125 

 No  Yes c   No  Dose reduction may not be 
necessary 

 Linezolid  Total AUC 0–24 /MIC 
of 80–120 and 
100 %  T  >MIC  

 No  Yes c   No  Dose reduction is not 
necessary 

 Daptomycin  Total AUC 0–24 /
MIC 788–1460 

 Yes  Yes a   May be 
useful 

 Adjust based on renal 
function and toxic effects 

 Colistin   f AUC 0–24 /
MIC 37–46 d  

 Yes  May be c   Yes  Adjust based on renal 
function and 
nephrotoxicity 

  See discussion for loading doses in the corresponding section 
  LD  loading dose 
  a Demonstrated 
  b Likely 
  c Poorly understood 
  d No clinical data  

Pharmacodynamic Considerations in Critically Ill Patients
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an in vitro infection model have shown that doses administered by 
CI that achieve concentrations near the MIC did not provide bac-
teriological advantages in the absence of immune function. 
However, when concentrations are maintained at 4 × MIC, CI is 
associated with more extensive bacteriological eradication. Others 
have confi rmed this fi nding, i.e., steady-state concentration has to 
be maintained at 4 × MIC with CI in the absence of immune func-
tion or with higher inoculum size [ 47 – 51 ]. These levels may not 
be safely achievable in patients with highly resistant pathogens 
(MIC 64 μg/ml) due to concerns about the toxicity [ 52 ]. 

 In summary, the beta-lactam PK/PD target exposures for crit-
ically ill patients are yet to be clearly defi ned. Indeed, different 
targets for CI and bolus dosing therapy are likely to be necessary. 
Until further clinical validation data is available, for bolus dosing 
100 %  f T >MIC  is suggested and 100 %  f T >4 × MIC  for CI therapy. In less 
critically ill patients, targets of higher ratios of 50 %  f T >MIC  appear 
likely to produce acceptable positive clinical outcomes.  

   Beta-lactams exhibit wide  va  riations in PK among critically ill 
patients. Prolonged infusion (PI) has (CI and extended infusion, 
EI) been proposed as a way to maximize the PK/PD target attain-
ment while minimizing the PK variations. A few studies have been 
conducted in critically ill patients that have compared beta-lactam 
PK by PI and bolus dosing [ 53 ,  54 ]. With the use of PI strategy, 
the percentage of the time above the MIC for beta-lactams could 
be maintained for longer durations at the same time avoiding the 
higher peak concentrations which appear to offer no clinical ben-
efi t with the beta-lactams. 

 The DALI study authors have reported that patients in PI group 
are three times more likely to achieve the predefi ned  PK/PD target 
(50 %  f T >MIC ) compared to bolus group [ 45 ]. A few studies have 
used population PK modeling combined with Monte Carlo simula-
tions (MCS) to compare the PK/PD target attainment among CI, 
EI, and bolus dosing in critically ill—sepsis, surgical, neutropenic, 
and ventilator-associated pneumonia patients. It should be noted 
that the chosen PK/PD targets have not been consistent across the 
studies. Rafati et al. [ 55 ] have reported a 100 %  T  >MIC  with CI of 
piperacillin/tazobactam (8 g/day) compared to 62 %  T  >MIC  with 
bolus dosing (3 g tds) against Gram-negative pathogens with an 
MIC of 16 mg/L. Another study comparing the CI, EI, and bolus 
dosing of piperacillin/tazobactam against  P. aeruginosa  found that 
EI and CI attained 90 %  T  >MIC  for an MIC of 32 mg/L whereas 
bolus dosing only achieved 90 %  T  >MIC  for a lower MIC of 8 mg/L 
[ 56 ]. Both EI and CI have attained similar higher PD targets com-
pared to bolus dosing in this study demonstrating the equivalence of 
EI and CI. Similarly, in critically ill patients  wi  th nosocomial pneu-
monia, Sakka et al. [ 57 ] reported that CI of imipenem/cilastatin 
would achieve PK/PD targets (40 %  f T >MIC ) for 90 % of organisms 

5.1.2  Dosing Strategies 
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with an MIC of 2–4 mg/L whereas for bolus dosing the corre-
sponding MIC would be 1–2 mg/L. This improved PK/PD target 
attainment was despite the use of 33 % lower doses in CI group. 
Similarly others have reported a better PK/PD target attainment 
with EI compared to bolus dosing [ 58 ,  59 ]. 

 Given that most infections occur in the ISF of tissue, CI may 
provide a favorable beta-lactam exposure at the target site of infec-
tion compared with bolus dosing. Roberts et al. [ 60 ,  61 ] reported 
that both piperacillin/tazobactam and meropenem have a bet-
ter PK/PD exposure in subcutaneous tissue with CI compared 
to bolus dosing. Similarly, Buijk et al. [ 62 ] have shown that CI 
(4.5 g/day) of ceftazidime achieved >90 %  T  >4 × MIC  in peritoneal 
fl uid compared to 44 %  T  >4 × MIC  with bolus dosing (1.5 g tds) in 
patients with severe intra-abdominal infections. Boselli et al. [ 63 ] 
have shown that bolus dosing of piperacillin/tazobactam 4/0.5 g 
given every 8 h or CI of 12/1.5 g/day was not enough to achieve 
target alveolar antibiotic concentrations for ventilator-associated 
pneumonia in critically ill patients and suggested that a higher 
dose of 16/2 g/day is required to reach the target concentra-
tions. It should be noted that there are no prospective studies 
evaluating the beta-lactam infection site concentrations and clini-
cal outcomes. 

 In general, CI and EI of beta-lactams will provide superior 
achievement of PK/PD targets in plasma and ISF for less suscep-
tible bacteria than bolus dosing avoiding the high peak concentra-
tions, which are  tho  ught not to be advantageous.  

   Based on the PK/PD index  assoc  iated with beta-lactam activity, 
time dependency, using PI, either CI or EI, has been advocated as 
a strategy to increase the  f T >MIC . Preclinical (in vitro and animal 
in vivo) and PK/PD studies conducted in humans to date have 
shown that PI of beta-lactam antibiotics would provide an increased 
likelihood of achieving target  f T >MIC  compared with bolus dosing 
[ 64 – 67 ]. To date, 11 randomized controlled trials have compared 
the clinical outcome benefi ts of PI (all were CI) and the bolus dos-
ing of beta-lactams in critically ill patients [ 55 ,  68 – 77 ]. In addi-
tion, observational and retrospective cohort studies have also been 
conducted and together demonstrate that PI strategy is likely to be 
benefi cial in certain patient groups, in particular the critically ill 
[ 42 ,  78 – 82 ]. Three papers have meta-analyzed the available ran-
domized control trials (RCT) (including critically ill and non- 
critically ill patients) for clinical and mortality benefi ts of antibiotics 
by CI and bolus dosing [ 83 – 85 ]. Recent meta-analyses have 
focused on beta-lactams alone and found no difference in clinical 
cure or mortality between CI and bolus dosing in hospitalized 
patients [ 83 ,  84 ]. However, these meta-analyses did have wide 
confi dence intervals suggesting that a clinically relevant difference 
between the two administration strategies may still exist. 

5.1.3  Clinical Outcome
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Methodological issues with RCTs included in the above meta- 
analyses [ 86 ,  87 ] and mortality and clinical cure benefi ts observed 
in a specifi c subset of critically ill patients in observational cohort 
studies have led to conduct of two recent meta-analyses [ 88 ,  89 ] 
that included RCTs as well as observational studies. One of them 
specifi cally looked at piperacillin-tazobactam and carbapenems 
whereas the other analyzed all penicillin class antibiotics as well as 
vancomycin and linezolid with subgroup analysis for piperacillin- 
tazobactam and carbapenems. It is important to highlight that 
both analyses largely comprised of critically ill patients with compa-
rable doses in both arms in contrast to previous meta-analyses. 
Both analyses pointed towards improved clinical benefi ts with PI 
concluding the need for a well-designed multicenter RCT pow-
ered enough to detect outcome benefi ts. No serious adverse effects 
have been  rep  orted in the clinical studies to date [ 84 ].   

   Vancomycin is commonly used for  methicillin-resistant  S. aureus  
(MRSA)      infections. Consensus from in vitro, animal, and human 
PD studies is that AUC 0–24 /MIC is the PK/PD index associated 
with clinical effi cacy [ 90 ]. Current Infectious Diseases Society of 
America (IDSA) consensus guidelines recommend to target trough 
concentrations of 15–20 mg/L with intermittent 12-hourly i.v. 
dosing in order to achieve an AUC 0–24 /MIC ≥400 for vancomycin 
for pathogens with an MIC ≤1 mg/L [ 91 ]. This particular AUC 0–

24 /MIC was derived from a cohort of hospitalized patients with   S. 
aureus    pneumonia (methicillin-sensitive  S. aureus  and MRSA; 
largely ventilator-associated pneumonia patients). Patients with an 
AUC 0–24 /MIC ≥345 and AUC 0–24 /MIC ≥866 (MIC determined 
using broth micro-dilution method, BMD) had superior clinical 
and microbiological response, respectively [ 92 ]. This study 
excluded patients with endocarditis, osteomyelitis, and central ner-
vous system infections. A few other studies have examined this 
relationship but included different infections and MIC determina-
tion methods and reported slightly different cutoff AUC 0–24 /MIC 
values. One study has reported that an AUC 0–24 /MIC >373 (MIC 
using BMD) is associated with improved attributable mortality in 
 S. aureus  bacteremia patients [ 93 ] whereas another reported an 
AUC 0–24 /MIC >211 (MIC using E-test method) with improved 
attributable mortality in patients with bacteremia and  infective 
endocarditis   [ 94 ]. 

 Vancomycin PK studies in ICU patients have reported a Vd 
twice that observed in normal patients (0.7–0.8 L/kg) [ 95 – 97 ]. 
Standard traditional doses (1 g every 12 h) would achieve the tar-
get  AUC 0–24 /MIC   only if the MIC is ≤0.5 in a patient with CrCL 
>100 ml/min and an average weight (defi ned as 80 kg) [ 91 ]. This 
may be similar or even worse in ICU patients considering the pos-
sible PK changes that occur in these patients. Two studies have 
described the doses necessary to achieve the recommended PK/

5.2  Vancomycin
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PD targets in ICU patients [ 95 ,  96 ]. One of them suggested doses 
in the range of ≥3 g to achieve a high probability for target attain-
ment (PTA) for  S. aureus  with an MIC 1 mg/L in patients with 
conserved renal function [ 95 ]. In the other study, standard doses 
were able to reach the target AUC 0–24 /MIC in only 30 % of patients 
younger than 65 years and with a CrCL >60 ml/min for   S. aureus    
with an MIC of 1 mg/L. However, in older patients with a 
CrCL < 60 ml/min, 96 % will achieve the targets. Doses up to, and 
exceeding, 5 g would be necessary to achieve approximately a 90 % 
probability of attaining PK/PD targets in patients <65 years while 
doses up to 4 g are required in patients older than 65 years that 
have a CrCL >60 ml/min [ 96 ]. These data highlight the need for 
the use of higher than traditional doses, particularly when dosing 
in patients with suspected ARC [ 98 ]. 

 With the need for considerably higher doses in some patients, 
there is renewed interest in exposure-toxicity relationship of van-
comycin. A recent  meta-analysis   has concluded that higher trough 
concentrations ≥15 mg/L were associated with increased risk of 
nephrotoxicity relative to low troughs (<15 mg/L) (OR, 3.12; 
95 % CI, 1.81–5.37;  p  < 0.01) with greatest risk when concentra-
tions were ≥20 mg/L. This highlights the need for more careful 
monitoring of at-risk patients with high trough concentrations. 
Critically ill patients receiving therapy for ≥7 days or on concomi-
tant  nephrotoxic drugs   are at increased risk of renal injury [ 99 ]. 

 In critically ill patients, loading doses of vancomycin were fi rst 
proposed in 2001 to rapidly achieve PK/PD targets [ 100 ]. 
Consensus guidelines have recommended a loading dose of 25–30 
mg/kg to achieve target trough concentration promptly which is 
necessary in critically ill patients [ 91 ]. However, it is not univer-
sally practiced across ICUs worldwide. Moreover, loading doses 
required to achieve prompt PK/PD targets are not well established 
in critically ill patients. In a study by Li et al. a median loading dose 
of 20 mg/kg has helped achieve a median  AUC 0–24 /MIC   of 366 in 
the fi rst 24 h in a cohort of ICU patients [ 101 ]. It is likely that 
loading doses as recommended by consensus guidelines would 
achieve the target trough concentration in ICU patients. CI of 
vancomycin has been proposed as a strategy to optimize attain-
ment of PK/PD targets because of this drug’s time-dependent kill 
characteristics. Although it was not shown to be clinically superior 
to bolus dosing [ 102 ], CI could be useful to maintain steady con-
centrations and provide better tissue penetration in diffi cult-to- 
treat infections [ 102 ]. A loading dose of 30–35 mg/kg and a 
maintenance dose of at least 35 mg/kg have been suggested to 
rapidly achieve and maintain a trough concentration of 20 mg/L 
in a patient with CrCl of 100 ml/min/1.73 m 2  [ 103 ]. Dosage 
regimens need to be carefully adjusted, in patients with renal 
impairment, following the loading dose due to expected longer 
half-life. 
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 Evidence is emerging for improved survival if PK/PD targets 
are maintained and need for higher doses in critically ill patients to 
achieve those targets [ 93 ,  94 ]. With increased risk of  nephrotoxic-
ity   at such high concentrations, PK/PD-guided dosing would be 
an invaluable tool while carefully monitoring renal function in at- 
risk patients.  

   Gentamicin is a concentration-dependent antibiotic widely used 
for severe  Gram-negative infections   in critically ill patients. Two 
PK/PD parameters have been associated with gentamicin effi cacy. 
Human PD studies have shown that an AUC 0–24 /MIC of 80–120 
or a  C  max /MIC of 8–10 is associated with improved outcomes 
[ 104 ]. High-dose extended interval dosing regimens are now 
widely accepted in clinical practice, except for endocarditis, in 
order to reduce nephrotoxicity associated with  aminoglycosides   
whilst improving PK/PD target attainment [ 105 ]. Furthermore, 
Kashuba et al. have shown, using logistic regression, that achieving 
a  C  max /MIC ≥ 10 within the fi rst 48 h of treatment in patients with 
nosocomial pneumonia has led to a 90 % probability of clinical cure 
[ 106 ,  107 ]. 

 Signifi cantly increased Vd (0.4–0.8 L/kg) has been observed 
in critically ill patients with sepsis and septic  shock  . Cardiac index, 
APACHE II score, body weight, and female gender have been 
associated with an increased Vd [ 108 – 111 ]. These changes in Vd 
tend to decrease over time in critically ill patients as disease severity 
decreases and may return to values reported in non-ICU patients. 
Accordingly, Goncalves-Pereira et al. [ 110 ] have reported that 
only 66 % and 31 % of patients were able to attain a  C  max  of at least 
16 mg/L and above 20 mg/L, respectively, with a median fi rst 
dose of 7.4 mg/kg. Similar fi ndings have been reported in a retro-
spective study [ 111 ]. The authors have shown, using MCS, that 
only 20 % of patients were able to achieve a  C  max /MIC (MIC 2) of 
10 with a dose of 7 mg/kg. This study has reported a mean Vd of 
0.8 L/kg. One study in surgical trauma patients reported Vd simi-
lar to other hospitalized patients (0.3 L/kg) and a dose of 7 mg/
kg was suffi cient to achieve a  C  max  of 22.4 ± 5.9 mg/L [ 112 ]. Buijk 
et al. [ 108 ] in a cohort of septic shock patients have reported a 
mean  C  max  of 18.5 mg/L. However, statistically signifi cant differ-
ences in Vd (0.4 ± 0.1 L/kg vs. 0.3 ± 0.1 L/kg,  p  = 0.004) and  C  max  
(18.5 ± 5.6 mg/L vs. 21.3 ± 7.2 mg/L,  p  = 0.03) were observed 
between septic shock and non-shock patients. Therefore, evidence 
is confl icting as to whether critically ill patients will require higher 
loading doses to increase the probability of target attainment with 
MICs ≥1. However, it is clear from studies that doses ≥7 mg/kg 
may be required in a cohort of critically ill patients with larger Vd 
to attain the target PK/PD index. However, it will be a challenge 
in clinical practice, without any readily available measures to iden-
tify such patients.  

5.3  Gentamicin
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   Ciprofl oxacin is a  lipophilic antibiotic   with activity against Gram- 
negative pathogens. It is widely used in ICUs as an empirical therapy 
in combination with beta-lactams. Ciprofl oxacin is a concentration-
dependent antibiotic with some time-dependent activity. Early stud-
ies have suggested a  C  max /MIC around 8–10 for bacterial eradication. 
However, Forrest et al. [ 36 ] in a cohort of seriously ill patients with 
lower respiratory tract infections have reported that an AUC 0–24 /
MIC > 125 was associated with better clinical and microbiological 
outcomes (80 % vs. 42 % and 82 % vs. 26 %, respectively). Higher 
AUC 0–24 /MICs were associated with rapid microbiological eradica-
tion and prevent the emergence of bacterial resistance, particularly in 
the critical care environment [ 113 ]. 

 Unlike  hydrophilic antibiotics  , ciprofl oxacin Vd was not 
increased in critically ill patients with severe  sepsis   and intra- 
abdominal infections [ 14 ,  114 – 116 ]. On the contrary, except in 
poly-trauma patients, it is interesting to note that Vd was smaller 
compared to non-ICU patients. The reasons for this remain 
unknown. Lipman et al. [ 114 ] have studied PK of ciprofl oxacin in 
severe sepsis patients on days D0, D2, and D7 and reported that 
1200 mg/day was able to achieve an AUC 0–24 /MIC > 125 for bac-
teria with an MIC up to 0.3 mg/L. There was no evidence of signifi -
cant accumulation over 7 days in patients with CrCL > 60 ml/min. 
Forrest et al. [ 36 ] have also raised the same concern that 1200 mg/
day may not be able to achieve an AUC 0–24 /MIC > 125 for organ-
isms with MIC of 0.5 mg/L. Higher doses or combination therapy 
will be required if treating an organism with MIC ≥ 0.5 mg/L. More 
recent studies [ 115 ,  116 ] using MCS have echoed the earlier results 
published by Lipman et al. and Forrest et al. Some authors have sug-
gested that in view of maintaining clinical effi cacy and observed 
variations in AUC 0–24 , dose reduction is not necessary in renal 
impairment as higher doses have been used without any signifi cant 
adverse effects and signifi cant accumulation has not been reported.  

   Linezolid is a  hydrophilic antibiotic   with Vd close to total body 
water (≈50 L) with 31 % protein binding and good distribution into 
major tissues including  epithelial lining fl uid  , central nervous sys-
tem, bone, muscle, and synovial fl uid [ 117 ]. The clinical PD of line-
zolid were studied by Rayner et al. [ 118 ] in patients enrolled in a 
compassionate-use program. One-third of the patients were treated 
in ICU and had signifi cantly reduced serum albumin concentra-
tions. Consistent with in vitro and in vivo studies, authors have 
reported that linezolid effi cacy is associated with both AUC 0–24 /
MIC and  T  >MIC . An AUC 0–24 /MIC of 80–120 and 100 %  T  >MIC  have 
been proposed to attain high probability of bacterial eradication and 
clinical cure in bacteremia, skin and skin structure infections, and 
lower respiratory tract infections. The authors have highlighted that 
 T  >MIC  has to be 100 % for higher success rate and correlation was 
present between AUC 0–24 /MIC and  T  >MIC  ( r  2  = 0.87). 

5.4  Ciprofl oxacin

5.5  Linezolid
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 The linezolid Vd has been reported to be similar to non-ICU 
patients across all studies involving critically ill patients [ 119 – 123 ]. 
Thus, it can be concluded that linezolid may not require a loading 
dose. However, it should be noted that the reported Vd has wider 
standard deviations indicating large variability among patients. 
Whitehouse et al. [ 120 ] have reported that 600 mg given twice a 
day is adequate enough to achieve  C  min  above 4 mg/L for the 
entire  dosing   interval and PK was not signifi cantly different from 
healthy volunteers. However, interindividual variability was very 
high at 70 % in the population PK model. Dong et al. [ 119 ] have 
observed similar interindividual variability in a study involving crit-
ically ill patients. Thallinger et al. [ 121 ] and Buerger et al. [ 123 ] 
have examined the effect of severe sepsis and septic  shock   on  inter-
stitial fl uid (ISF)   penetration in adipose and subcutaneous tissue. 
Thallinger et al. [ 121 ] have reported the effects after a single dose 
whereas Buerger et al. [ 123 ] have monitored concentrations up to 
72 h (days 1 and 3). It is interesting to note that in the former 
study, 600 mg dose is suffi cient to achieve 100 %  T  >MIC  in both 
plasma and ISF whereas in the latter only 40 % of patients have 
achieved more than 80 %  f T >MIC  and none of the patients have 
achieved the required  f AUC 0–24 /MIC. It was suggested that 
600 mg given three-times-a-day dosing would be required to meet 
the targets for an organism with an MIC 4 mg/L. 

 In accordance with PK/PD index associated with effi cacy, CI 
of linezolid has been proposed and compared with bolus dosing. 
Adembri et al. [ 122 ] have compared both regimens (600 g BD vs. 
300 mg bolus followed by CI of 900 mg/day 1 and 1200 mg/day 
from day 2) in septic patients and monitored concentrations for 72 
h. In bolus group, 50 % of the patients were reported to have a 
 C  min  < 1 mg/L. In CI group starting from 6 h, concentrations were 
signifi cantly higher than bolus group and above 4 mg/L. The 6-h 
delay may be due to use of an inadequate loading dose. Similarly, 
attainment of AUC 0–24 /MIC targets was signifi cantly higher with 
CI than bolus dosing. Similarly, Boselli et al. [ 124 ,  125 ] have stud-
ied plasma and  epithelial lining fl uid   concentrations in ventilator- 
associated pneumonia patients with both bolus and CI regimens. 
They have reported that bolus dosing was able to achieve the 
required targets ( C  min  > 4 mg/L) for only about 75 % of the 12-h 
dosing interval whereas it was 100 % with CI. From the above 
results, it may be the case that CI or more frequent dosing would 
be required in the initial phases of severe sepsis or septic shock to 
achieve required PK/PD targets and infection site concentrations.  

   Daptomycin is a  hydrophilic antibiotic   with Vd close to 0.1 L/kg 
with approximately 92 % protein binding. In vivo PD studies have 
revealed that either AUC 0–24 /MIC or  C  max /MIC is the PK/PD 
parameter associated with optimal outcomes. Soon et al. [ 126 ] have 
analyzed the data from phase 1, 2, and 3 studies, using MCS, and 
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reported that an AUC 0–24 /MIC of 388–537, 588–750, and 788–
1460 was associated with bacteriostasis, 1-log kill, and bactericidal 
activity, respectively, against four strains of   S. aureus    with an MIC of 
0.5 mg/L, which are in close agreement with in vivo PD studies. 

 Prospective PK studies of daptomycin in ICU patients with  sep-
sis   have not been conducted to date. However, two studies involv-
ing neutropenic and other hospitalized patients (40 % were present 
in ICU with severe sepsis or septic  shock  ) have observed a Vd at 
least twice as much as healthy volunteers and as high as 0.5 L/kg 
with large interindividual variability [ 127 ,  128 ]. Few other studies 
have supported this fi nding [ 29 ,  129 ]. Therefore, critically ill 
patients with severe sepsis or septic shock may have a signifi cantly 
increased Vd. Three studies have examined daptomycin PK/PD in 
hospitalized patients [ 127 – 129 ]. Bubalo et al. [ 127 ] have studied 
neutropenic patients and concluded that 6 mg/kg was only suffi -
cient to achieve concentrations required for bacteriostatic effect of 
daptomycin with organisms up to MIC of 0.5 mg/L. Only 34 % of 
patients have reached concentrations required for bactericidal effect 
with 6 mg/kg dose. Di Paolo et al. [ 129 ] have reported that 90 % 
and 75 % of patients have achieved AUC 0–24 /MIC targets required 
for bacteriostatic and bactericidal effects, respectively, higher than 
reported by Bubalo et al. However, Di Paolo et al. have not reported 
MICs in their study and almost two- thirds of the patients have 
received doses >6 mg/kg. Combining the data from phase 1, 2, 
and 3 studies, Soon et al. have shown that 6 mg/kg doses are only 
able to achieve bacteriostatic activity and up to 12 mg/kg doses 
were required for bactericidal activity for pathogens with an MIC of 
1 mg/L. These differences among Soon et al. [ 126 ] and other 
studies mentioned above for bacteriostasis may be due to different 
levels of sickness severity of patients involved in phase 1 and 2 stud-
ies. It should be mentioned that Bubalo et al. and Di Paolo et al. 
studies involved a small subset of critically ill patients. However, 
these fi ndings may not be generalized to ICU patients with severe 
sepsis and septic shock. The probability of target attainment may be 
much lower in ICU patients if standard doses are used. 

 A recent study by Falcone et al. [ 29 ] including sepsis and non- 
sepsis patients (unknown whether present in ICU or not) has 
shown that daptomycin doses at 6 or 8 mg/kg lead to lower expo-
sure in patients with MRSA bacteremia. Interesting fi nding from 
this study was that a higher proportion of patients with sepsis have 
augmented CL compared to non-sepsis patients (100 % vs. 24 %; 
CL—1.81 ± 0.409 L/h vs. 0.75 ± 0.17 L/h). It is already known 
that a group of ICU patients (younger patients with trauma and 
normal organ function) exhibit this phenomenon called 
ARC. However, in Falcone et al. study, mean age was 68 ± 14 years 
with a mean estimated CrCL of 63.7 ml/min. They have sug-
gested, based on MCS, a fi xed dose of 750 mg in sepsis patients 
rather than a dose of 10 mg/kg based on the incidence of 
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estimated differences in toxicity (% probability of  C  min  > 24.3 
mg/L—1.26 vs. 2.64) as both regimens have yielded a similar 
cumulative fraction response. Fixed dose simulations were con-
ducted based on the observation that body weight is not a predic-
tor of variability for daptomycin CL. Considering the delay in 
attaining the steady-state (approximately 3 days) and signifi cantly 
larger Vd in above studies, loading doses may be of utility for dap-
tomycin. However, studies looking at differences in day 1 and later 
concentrations have not been conducted which may demonstrate 
whether loading doses are required. Higher doses up to 12 mg/kg 
have been used safely without any increase in  creatinine kinase   and 
 peripheral neuropathy   [ 130 – 132 ].  

   Colistin is a  hydrophilic polymyxin antibiotic   active against Gram- 
negative bacteria. It was discovered in 1940s; its clinical use 
declined and was then phased out in 1970s due to a high incidence 
of nephrotoxicity and  neurotoxicity  . Due to emergence of 
multidrug- resistant bacteria and a lack of emerging antibiotics with 
novel mechanisms of activity, polymyxins have reemerged as a last 
resource or salvage therapy in critically ill patients. Colistin is a 
concentration-dependent antibiotic and  f AUC 0–24 /MIC is the best 
PK/PD parameter associated with effi cacy. Magnitude of PK/PD 
index is variable depending on the bacteriostatic or bactericidal 
effect, bacterial species, and site of infection. In general, a value of 
16–23 is required for bacteriostatic and 37–46 is required for bac-
tericidal effect [ 133 ,  134 ]. However, clinical studies have focused 
on maintaining concentrations above the MIC. For detailed infor-
mation on terminology used for  colistimethate sodium   (CMS, pro-
drug of colistin) and colistin dosing units refer to Li et al. [ 135 ]. 

 Colistin and CMS PK/PD have been studied extensively over the 
last decade [ 136 ,  137 ]. Colistin Vd was signifi cantly increased in criti-
cally ill patients compared to young healthy volunteers (0.17 L/kg vs. 
0.3–2.0 L/kg) [ 138 – 145 ]. This is consistent with its limited distribu-
tion to extracellular fl uid based on its physicochemical properties. In 
contrast, its half-life was prolonged, probably due to an increased Vd, 
compared to healthy volunteers (3 ± 0.6 h vs. 4–18.5 h). 

 Early PK studies [ 142 ,  143 ,  145 ] in critically ill patients using 
2–3 million IU of CMS every 8–12 h have resulted in steady-state 
 C  max  around 2–3 mg/L and obtained steady-state after 2–3 days. 
This, along with slow conversion of CMS to colistin, has led to 
suboptimal exposure (below 2 mg/L, MIC breakpoint) in major-
ity of critically ill patients. Based upon these considerations, using 
population PK and MCS approach, Plachouras et al. [ 145 ], 
Mohamed et al. [ 144 ], and Garonzik et al. [ 140 ] have suggested 
higher maintenance doses along with loading dose to achieve 
desired plasma steady-state concentrations of formed colistin. 
Plachouras et al. have suggested a loading dose of 9 or 12 million 
IU followed by 4.5 million IU of CMS given twice daily whereas 
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Mohamed et al. have recommended a loading dose of 6–9 million 
IU. A more recent population PK study [ 140 ] involving 105 criti-
cally ill patients (16 on RRT) with varying renal function has devel-
oped dosing guidelines to achieve desired  steady-state plasma   
concentrations of formed colistin. Average steady-state concentra-
tions ranged from 0.5 to 9.4 mg/L with a median concentration 
of 2.4 mg/L in the study patients. CrCL has been identifi ed as an 
important covariate for the clearance of CMS as well as formed 
colistin. Loading and maintenance dosing nomogram was devel-
oped using body weight and CrCl as covariates, respectively, for 
patients receiving RRTs and not receiving RRTs. The authors have 
pointed out that with the current recommended doses, it is unlikely 
to achieve desired concentrations especially in patients with 
CrCl > 70 ml/min/1.73 m 2  and MIC ≥1 mg/L. It was recom-
mended to use colistin as part of a combination therapy in such 
situations. Caution must be exercised when dosing colistin since 
incidence of nephrotoxicity is approximately 50 % with the cur-
rently recommended doses [ 146 ,  147 ]. 

 It is important to note that the dosing recommendations sug-
gested by Plachouras et al. [ 145 ] were validated in a preliminary 
study by Dalfi no et al. [ 148 ] in a cohort of 28 critically ill patients. 
The authors have reported a clinical cure rate of 82 % and nephro-
toxicity rate of 18 %. Despite a few limitations, this study has dem-
onstrated that PK/PD-based dose optimization would improve 
the outcomes while minimizing toxicity.   

6    Conclusion 

 PK/PD of antibiotics can be highly variable in critically ill patients. 
It is necessary to adjust dosing during initial stages of treatment to 
account for physiological changes that leads to increased Vd and 
augmented clearances. Maintenance doses need to be adjusted 
based on organ function to maximize effi cacy and minimize toxic-
ity. It may be necessary in some cases to utilize prolonged infusion 
strategies to improve PK/PD target attainment and infection site 
concentrations.     

   References 

    1.    Angus DC, Linde-Zwirble WT, Lidicker J, 
Clermont G, Carcillo J, Pinsky MR (2001) 
Epidemiology of severe sepsis in the United 
States: analysis of incidence, outcome, and 
associated costs of care. Crit Care Med 
29(7):1303–1310  

   2.    Martin GS, Mannino DM, Eaton S, Moss M 
(2003) The epidemiology of sepsis in the 

United States from 1979 through 2000. N 
Engl J Med 348(16):1546–1554  

    3.    Vincent JL, Sakr Y, Sprung CL, Ranieri VM, 
Reinhart K, Gerlach H et al (2006) Sepsis in 
European intensive care units: results of the 
SOAP study. Crit Care Med 34(2):344–353  

    4.    Russell JA (2006) Management of sepsis. N 
Engl J Med 355(16):1699–1713  

Pharmacodynamic Considerations in Critically Ill Patients



554

    5.    Vincent JL, Rello J, Marshall J, Silva E, 
Anzueto A, Martin CD et al (2009) 
International study of the prevalence and out-
comes of infection in intensive care units. 
JAMA 302(21):2323–2329  

    6.    Dellinger RP, Levy MM, Carlet JM, Bion J, 
Parker MM, Jaeschke R et al (2008) Surviving 
Sepsis Campaign: international guidelines for 
management of severe sepsis and septic shock: 
2008. Crit Care Med 36(1):296–327  

    7.    Kumar A, Roberts D, Wood KE, Light B, 
Parrillo JE, Sharma S et al (2006) Duration of 
hypotension before initiation of effective anti-
microbial therapy is the critical determinant 
of survival in human septic shock. Crit Care 
Med 34(6):1589–1596  

   8.    Roberts JA, Kruger P, Paterson DL, Lipman 
J (2008) Antibiotic resistance--what’s dosing 
got to do with it? Crit Care Med 
36(8):2433–2440  

    9.    Drusano GL (2003) Prevention of resistance: 
a goal for dose selection for antimicrobial 
agents. Clin Infect Dis 36(Suppl 1):S42–S50  

    10.    Roberts JA, Lipman J (2006) Antibacterial 
dosing in intensive care: pharmacokinetics, 
degree of disease and pharmacodynamics of 
sepsis. Clin Pharmacokinet 45(8):755–773  

    11.    Roberts JA, Lipman J (2009) Pharmacokinetic 
issues for antibiotics in the critically ill patient. 
Crit Care Med 37(3):840–851  

    12.    Roberts JA, Ulldemolins M, Roberts MS, 
McWhinney B, Ungerer J, Paterson DL et al 
(2010) Therapeutic drug monitoring of beta- 
lactams in critically ill patients: proof of con-
cept. Int J Antimicrob Agents 
36(4):332–339  

    13.    Taccone FS, Laterre P-F, Dugernier T, 
Spapen H, Delattre I, Wittebole X et al 
(2010) Insuffi cient beta-lactam concentra-
tions in the early phase of severe sepsis and 
septic shock. Crit Care 14(4):R126  

     14.    Gous A, Lipman J, Scribante J, Tshukutsoane 
S, Hon H, Pinder M et al (2005) Fluid shifts 
have no infl uence on ciprofl oxacin pharmaco-
kinetics in intensive care patients with intra- 
abdominal sepsis. Int J Antimicrob Agents 
26(1):50–55  

    15.    Ulldemolins M, Roberts JA, Lipman J, Rello 
J (2011) Antibiotic dosing in multiple organ 
dysfunction syndrome. Chest 
139(5):1210–1220  

     16.    Ulldemolins M, Roberts JA, Wallis SC, Rello 
J, Lipman J (2010) Flucloxacillin dosing in 
critically ill patients with hypoalbuminaemia: 
special emphasis on unbound pharmacokinet-
ics. J Antimicrob Chemother 
65(8):1771–1778  

    17.    Ulldemolins M, Roberts JA, Rello J, Paterson 
DL, Lipman J (2011) The effects of hypoal-

buminaemia on optimizing antibacterial dos-
ing in critically ill patients. Clin Pharmacokinet 
50(2):99–110  

    18.    Joynt GM, Lipman J, Gomersall CD, Young 
RJ, Wong EL, Gin T (2001) The pharmaco-
kinetics of once-daily dosing of ceftriaxone in 
critically ill patients. J Antimicrob Chemother 
47(4):421–429  

    19.    Schrier RW, Wang W (2004) Acute renal fail-
ure and sepsis. N Engl J Med 
351(2):159–169  

      20.    Eyler RF, Mueller BA (2011) Antibiotic dos-
ing in critically ill patients with acute kidney 
injury. Nat Rev Nephrol 7(4):226–235  

    21.    Jezequel SG (1994) Fluconazole: interspecies 
scaling and allometric relationships of phar-
macokinetic properties. J Pharm Pharmacol 
46(3):196–199  

    22.    Martin JH, Fay MF, Udy A, Roberts J, 
Kirkpatrick C, Ungerer J et al (2011) Pitfalls 
of using estimations of glomerular fi ltration 
rate in an intensive care population. Int Med 
J 41(7):537–543  

    23.    Prowle JR, Bellomo R (2010) Continuous 
renal replacement therapy: recent advances 
and future research. Nat Rev Nephrol 
6(9):521–529  

    24.    Baldwin I, Bellomo R, Naka T, Koch B, Fealy 
N (2007) A pilot randomized controlled 
comparison of extended daily dialysis with fi l-
tration and continuous veno-venous hemofi l-
tration: fl uid removal and hemodynamics. Int 
J Artif Organs 30(12):1083–1089  

     25.    Choi G, Gomersall CD, Tian Q, Joynt GM, 
Freebairn R, Lipman J (2009) Principles of 
antibacterial dosing in continuous renal 
replacement therapy. Crit Care Med 
37(7):2268–2282  

     26.    Roberts DM, Roberts JA, Roberts MS, Liu X, 
Nair P, Cole L et al (2012) Variability of anti-
biotic concentrations in critically ill patients 
receiving continuous renal replacement ther-
apy: a multicentre pharmacokinetic study. 
Crit Care Med 40(5):1523–1528  

    27.    Li AM, Gomersall CD, Choi G, Tian Q, Joynt 
GM, Lipman J (2009) A systematic review of 
antibiotic dosing regimens for septic patients 
receiving continuous renal replacement ther-
apy: do current studies supply suffi cient data? 
J Antimicrob Chemother 64(5):929–937  

    28.    Udy AA, Varghese JV, Altukroni M, Briscoe 
S, McWhinney B, Ungerer J et al (2011) Sub- 
therapeutic initial β-lactam concentrations in 
select critically ill patients: association between 
augmented renal clearance and low trough 
drug concentrations. Chest 42(1):30–39  

      29.    Falcone M, Russo A, Venditti M, Novelli A, 
Pai MP (2013) Considerations for higher 
doses of daptomycin in critically ill patients 

Mahipal G. Sinnollareddy and Jason A. Roberts



555

with methicillin-resistant Staphylococcus 
aureus bacteremia. Clin Infect Dis 
57(11):1568–1576  

    30.    Udy AA, Putt MT, Shanmugathasan S, 
Roberts JA, Lipman J (2010) Augmented 
renal clearance in the Intensive Care Unit: an 
illustrative case series. Int J Antimicrob 
Agents 35(6):606–608  

   31.    Udy AA, Roberts JA, Boots RJ, Paterson DL, 
Lipman J (2010) Augmented renal clearance: 
implications for antibacterial dosing in the 
critically ill. Clin Pharmacokinet 49(1):1–16  

    32.    Udy AA, Roberts JA, Lipman J (2011) 
Implications of augmented renal clearance in 
critically ill patients. Nat Rev Nephrol 
7(9):539–543  

    33.    Nicolau DP (2003) Optimizing outcomes 
with antimicrobial therapy through pharma-
codynamic profi ling. J Infect Chemother 
9(4):292–296  

    34.    Craig WA (1998) Pharmacokinetic/pharma-
codynamic parameters: rationale for antibac-
terial dosing of mice and men. Clin Infect Dis 
26(1):1–10  

    35.    Moore RD, Smith CR, Lietman PS (1984) 
Association of aminoglycoside plasma levels 
with therapeutic outcome in gram-negative 
pneumonia. Am J Med 77(4):657–662  

      36.    Forrest A, Nix DE, Ballow CH, Goss TF, 
Birmingham MC, Schentag JJ (1993) 
Pharmacodynamics of intravenous ciprofl oxa-
cin in seriously ill patients. Antimicrob Agents 
Chemother 37(5):1073–1081  

    37.    Lee SY, Kuti JL, Nicolau DP (2007) Cefepime 
pharmacodynamics in patients with extended 
spectrum beta-lactamase (ESBL) and non- 
ESBL infections. J Infect 54(5):463–468  

    38.    McKinnon PS, Paladino JA, Schentag JJ 
(2008) Evaluation of area under the inhibi-
tory curve (AUIC) and time above the mini-
mum inhibitory concentration (T > MIC) as 
predictors of outcome for cefepime and 
ceftazidime in serious bacterial infections. Int 
J Antimicrob Agents 31(4):345–351  

    39.    Tam VH, McKinnon PS, Akins RL, Rybak 
MJ, Drusano GL (2002) Pharmacodynamics 
of cefepime in patients with Gram-negative 
infections. J Antimicrob Chemother 
50(3):425–428  

   40.    Li C, Du X, Kuti JL, Nicolau DP (2007) 
Clinical pharmacodynamics of meropenem in 
patients with lower respiratory tract infec-
tions. Antimicrob Agents Chemother 
51(5):1725–1730  

   41.    Ariano RE, Nyhlén A, Donnelly JP, Sitar DS, 
Harding GK, Zelenitsky SA (2005) 
Pharmacokinetics and pharmacodynamics of 
meropenem in febrile neutropenic patients 
with bacteremia. Ann Pharmacother 39(1):
32–38  

    42.    Lodise TP, Lomaestro B, Drusano GL (2007) 
Piperacillin-tazobactam for Pseudomonas 
aeruginosa infection: clinical implications of 
an extended-infusion dosing strategy. Clin 
Infect Dis 44(3):357–363  

     43.    Crandon JL, Bulik CC, Kuti JL, Nicolau DP 
(2010) Clinical pharmacodynamics of 
cefepime in patients infected with 
Pseudomonas aeruginosa. Antimicrob Agents 
Chemother 54(3):1111–1116  

    44.    Manduru M, Mihm LB, White RL, Friedrich 
LV, Flume PA, Bosso JA (1997) In vitro 
pharmacodynamics of ceftazidime against 
Pseudomonas aeruginosa isolates from cystic 
fi brosis patients. Antimicrob Agents 
Chemother 41(9):2053–2056  

     45.    Roberts JA, Paul SK, Akova M, Bassetti M, 
De Waele JJ, Dimopoulos G et al (2014) 
DALI: Defi ning Antibiotic Levels in Intensive 
care unit patients: are current beta-lactam 
antibiotic doses suffi cient for critically ill 
patients? Clin Infect Dis 58:1072. 
doi:  10.1093/cid/ciu027      

    46.    Mouton JW, den Hollander JG (1994) Killing 
of Pseudomonas aeruginosa during continu-
ous and intermittent infusion of ceftazidime in 
an in vitro pharmacokinetic model. Antimicrob 
Agents Chemother 38(5):931–936  

    47.    Cappelletty DM, Kang SL, Palmer SM, Rybak 
MJ (1995) Pharmacodynamics of ceftazidime 
administered as continuous infusion or inter-
mittent bolus alone and in combination with 
single daily-dose amikacin against 
Pseudomonas aeruginosa in an in vitro infec-
tion model. Antimicrob Agents Chemother 
39(8):1797–1801  

   48.    Tessier PR, Nicolau DP, Onyeji CO, 
Nightingale CH (1999) Pharmacodynamics 
of intermittent- and continuous-infusion 
cefepime alone and in combination with 
once-daily tobramycin against Pseudomonas 
aeruginosa in an in vitro infection model. 
Chemotherapy 45(4):284–295  

   49.    Alou L, Aguilar L, Sevillano D, Giménez MJ, 
Echeverría O, Gómez-Lus ML et al (2005) Is 
there a pharmacodynamic need for the use of 
continuous versus intermittent infusion with 
ceftazidime against Pseudomonas aeruginosa? 
An in vitro pharmacodynamic model. 
J Antimicrob Chemother 55(2):209–213  

   50.    Robaux MA, Dube L, Caillon J, Bugnon D, 
Kergueris MF, Navas D et al (2001) In vivo 
effi cacy of continuous infusion versus inter-
mittent dosing of ceftazidime alone or in 
combination with amikacin relative to human 
kinetic profi les in a Pseudomonas aeruginosa 
rabbit endocarditis model. J Antimicrob 
Chemother 47(5):617–622  

    51.    Navas D, Caillon J, Gras-Le Guen C, 
Jacqueline C, Kergueris MF, Bugnon D et al 

Pharmacodynamic Considerations in Critically Ill Patients

http://dx.doi.org/10.1093/cid/ciu027


556

(2004) Comparison of in vivo intrinsic activ-
ity of cefepime and imipenem in a 
Pseudomonas aeruginosa rabbit endocarditis 
model: effect of combination with tobramy-
cin simulating human serum pharmacokinet-
ics. J Antimicrob Chemother 54(4):767–771  

    52.    Moriyama B, Henning SA, Childs R, Holland 
SM, Anderson VL, Morris JC et al (2010) 
High-dose continuous infusion beta-lactam 
antibiotics for the treatment of resistant 
Pseudomonas aeruginosa infections in 
 immunocompromised patients. Ann 
Pharmacother 44(5):929–935  

    53.    Abdul-Aziz M, Staatz C, Kirkpatrick CM, 
Lipman J, Roberts JA (2011) Continuous 
infusion vs. bolus dosing: implications for 
beta-lactam antibiotics. Minerva Anestesiol 
78(1):94–104  

    54.    Kasiakou SK, Lawrence KR, Choulis N, 
Falagas ME (2005) Continuous versus inter-
mittent intravenous administration of anti-
bacterials with time-dependent action: a 
systematic review of pharmacokinetic and 
pharmacodynamic parameters. Drugs 
65(17):2499–2511  

     55.    Rafati MR, Rouini MR, Mojtahedzadeh M, 
Najafi  A, Tavakoli H, Gholami K et al (2006) 
Clinical effi cacy of continuous infusion of 
piperacillin compared with intermittent dos-
ing in septic critically ill patients. Int 
J Antimicrob Agents 28(2):122–127  

    56.    Kim A, Sutherland CA, Kuti JL, Nicolau DP 
(2007) Optimal dosing of piperacillin- 
tazobactam for the treatment of Pseudomonas 
aeruginosa infections: prolonged or continu-
ous infusion? Pharmacotherapy 
27(11):1490–1497  

    57.    Sakka SG, Glauner AK, Bulitta JB, Kinzig- 
Schippers M, Pfi ster W, Drusano GL et al 
(2007) Population pharmacokinetics and 
pharmacodynamics of continuous versus 
short-term infusion of imipenem-cilastatin in 
critically ill patients in a randomized, con-
trolled trial. Antimicrob Agents Chemother 
51(9):3304–3310  

    58.    Jaruratanasirikul S, Sudsai T (2009) 
Comparison of the pharmacodynamics of imi-
penem in patients with ventilator-associated 
pneumonia following administration by 2 or 
0.5 h infusion. J Antimicrob Chemother 
63(3):560–563  

    59.    Jaruratanasirikul S, Sriwiriyajan S, Punyo 
J (2005) Comparison of the pharmacody-
namics of meropenem in patients with 
ventilator- associated pneumonia following 
administration by 3-hour infusion or bolus 
injection. Antimicrob Agents Chemother 
49(4):1337–1339  

    60.    Roberts JA, Kirkpatrick CM, Roberts MS, 
Robertson TA, Dalley AJ, Lipman J (2009) 

Meropenem dosing in critically ill patients 
with sepsis and without renal dysfunction: 
intermittent bolus versus continuous adminis-
tration? Monte Carlo dosing simulations and 
subcutaneous tissue distribution. J Antimicrob 
Chemother 64(1):142–150  

    61.    Roberts JA, Roberts MS, Robertson TA, 
Dalley AJ, Lipman J (2009) Piperacillin pen-
etration into tissue of critically ill patients with 
sepsis--bolus versus continuous administra-
tion? Crit Care Med 37(3):926–933  

    62.    Buijk SL, Gyssens IC, Mouton JW, Van Vliet 
A, Verbrugh HA, Bruining HA (2002) 
Pharmacokinetics of ceftazidime in serum and 
peritoneal exudate during continuous versus 
intermittent administration to patients with 
severe intra-abdominal infections. 
J Antimicrob Chemother 49(1):121–128  

    63.    Boselli E, Breilh D, Cannesson M, Xuereb F, 
Rimmelé T, Chassard D et al (2004) Steady- 
state plasma and intrapulmonary concentra-
tions of piperacillin/tazobactam 4 g/0.5 g 
administered to critically ill patients with 
severe nosocomial pneumonia. Intensive Care 
Med 30(5):976–979  

    64.    Craig WA (2003) Basic pharmacodynamics of 
antibacterials with clinical applications to the 
use of beta-lactams, glycopeptides, and line-
zolid. Infect Dis Clin North Am 
17(3):479–501  

   65.    MacGowan A (2011) Revisiting Beta- 
lactams - PK/PD improves dosing of old anti-
biotics. Curr Opin Pharmacol 
11(5):470–476  

   66.    Mouton JW, Vinks AA (2007) Continuous 
infusion of beta-lactams. Curr Opin Crit Care 
13(5):598–606  

    67.    Drusano GL (2004) Antimicrobial pharma-
codynamics: critical interactions of ‘bug and 
drug’. Nat Rev Microbiol 2(4):289–300  

    68.    Angus BJ, Smith MD, Suputtamongkol Y, 
Mattie H, Walsh AL, Wuthiekanun V et al 
(2000) Pharmacokinetic-pharmacodynamic 
evaluation of ceftazidime continuous infusion 
vs intermittent bolus injection in septicaemic 
melioidosis. Br J Clin Pharmacol 
50(2):184–191  

   69.    Georges B, Conil JM, Cougot P, Decun JF, 
Archambaud M, Seguin T et al (2005) 
Cefepime in critically ill patients: continuous 
infusion vs. an intermittent dosing regimen. 
Int J Clin Pharmacol Ther 43(8):360–369  

   70.    Hanes SD, Wood GC, Herring V, Croce MA, 
Fabian TC, Pritchard E et al (2000) 
Intermittent and continuous ceftazidime 
infusion for critically ill trauma patients. Am 
J Surg 179(6):436–440  

   71.    Kojika M, Sato N, Hakozaki M, Suzuki Y, 
Takahasi G, Endo S et al (2005) A prelimi-
nary study of the administration of carbape-

Mahipal G. Sinnollareddy and Jason A. Roberts



557

nem antibiotics in sepsis patients on the basis 
of the administration time. Jpn J Antibiot 
58(5):452–457  

   72.    Lagast H, Meunier-Carpentier F, Klastersky 
J (1983) Treatment of gram-negative bacil-
lary septicemia with cefoperazone. Eur J Clin 
Microbiol 2(6):554–558  

   73.    Lau WK, Mercer D, Itani KM, Nicolau DP, 
Kuti JL, Mansfi eld D et al (2006) 
Randomized, open-label, comparative study 
of piperacillin- tazobactam administered by 
continuous infusion versus intermittent infu-
sion for treatment of hospitalized patients 
with complicated intra-abdominal infection. 
Antimicrob Agents Chemother 
50(11):3556–3561  

   74.    Nicolau DP, McNabb J, Lacy MK, Quintiliani 
R, Nightingale CH (2001) Continuous ver-
sus intermittent administration of ceftazidime 
in intensive care unit patients with nosoco-
mial pneumonia. Int J Antimicrob Agents 
17(6):497–504  

   75.    Roberts JA, Boots R, Rickard CM, Thomas P, 
Quinn J, Roberts DM et al (2007) Is continu-
ous infusion ceftriaxone better than once-a- 
day dosing in intensive care? A randomized 
controlled pilot study. J Antimicrob 
Chemother 59(2):285–291  

   76.    Chastre J, Wunderink R, Prokocimer P, Lee 
M, Kaniga K, Friedland I (2008) Effi cacy and 
safety of intravenous infusion of doripenem 
versus imipenem in ventilator-associated 
pneumonia: a multicenter, randomized study. 
Crit Care Med 36(4):1089–1096  

    77.    Dulhunty JM, Roberts JA, Davis JS, Webb 
SA, Bellomo R, Gomersall C et al (2013) 
Continuous infusion of beta-lactam antibiot-
ics in severe sepsis: a multicenter double- 
blind, randomized controlled trial. Clin Infect 
Dis 56(2):236–244  

    78.    Patel GW, Patel N, Lat A, Trombley K, 
Enbawe S, Manor K et al (2009) Outcomes 
of extended infusion piperacillin/tazobactam 
for documented Gram-negative infections. 
Diagn Microbiol Infect Dis 64(2):236–240  

   79.    Patel N, Scheetz MH, Drusano GL, Lodise 
TP (2010) Determination of antibiotic dos-
age adjustments in patients with renal impair-
ment: elements for success. J Antimicrob 
Chemother 65(11):2285–2290  

   80.    Patel N, Scheetz MH, Drusano GL, Lodise 
TP (2010) Identifi cation of optimal renal 
dosage adjustments for traditional and 
extended-infusion piperacillin-tazobactam 
dosing regimens in hospitalized patients. 
Antimicrob Agents Chemother 
54(1):460–465  

   81.    Lorente L, Lorenzo L, Martín MM, Jiménez 
A, Mora ML (2006) Meropenem by continu-
ous versus intermittent infusion in ventilator- 

associated pneumonia due to gram-negative 
bacilli. Ann Pharmacother 40(2):219–223  

    82.    Lorente L, Jiménez A, Martín MM, Iribarren 
JL, Jiménez JJ, Mora ML (2009) Clinical cure 
of ventilator-associated pneumonia treated 
with piperacillin/tazobactam administered by 
continuous or intermittent infusion. Int 
J Antimicrob Agents 33(5):464–468  

     83.    Roberts JA, Webb S, Paterson D, Ho KM, 
Lipman J (2009) A systematic review on clini-
cal benefi ts of continuous administration of 
beta-lactam antibiotics. Crit Care Med 
37(6):2071–2078  

     84.    Tamma PD, Putcha N, Suh YD, Van 
Arendonk KJ, Rinke ML (2011) Does pro-
longed β-lactam infusions improve clinical 
outcomes compared to intermittent infu-
sions? A meta-analysis and systematic review 
of randomized, controlled trials. BMC Infect 
Dis 11:181  

    85.    Kasiakou SK, Sermaides GJ, Michalopoulos 
A, Soteriades ES, Falagas ME (2005) 
Continuous versus intermittent intravenous 
administration of antibiotics: a meta-analysis 
of randomised controlled trials. Lancet Infect 
Dis 5(9):581–589  

    86.    Sinnollareddy MG, Roberts MS, Lipman J, 
Roberts JA (2012) beta-lactam pharmacoki-
netics and pharmacodynamics in critically ill 
patients and strategies for dose optimization: 
a structured review. Clin Exp Pharmacol 
Physiol 39(6):489–496  

    87.    Drusano GL, Lodise TP (2013) Saving lives 
with optimal antimicrobial chemotherapy. 
Clin Infect Dis 56(2):245–247  

    88.    Falagas ME, Tansarli GS, Ikawa K, Vardakas 
KZ (2013) Clinical outcomes with extended 
or continuous versus short-term intravenous 
infusion of carbapenems and piperacillin/
tazobactam: a systematic review and meta- 
analysis. Clin Infect Dis 56(2):272–282  

    89.    Chant C, Leung A, Friedrich JO (2013) 
Optimal dosing of antibiotics in critically ill 
patients by using continuous/extended infu-
sions: a systematic review and meta-analysis. 
Crit Care 17(6):R279  

    90.    Vandecasteele SJ, De Vriese AS, Tacconelli E 
(2013) The pharmacokinetics and pharmaco-
dynamics of vancomycin in clinical practice: 
evidence and uncertainties. J Antimicrob 
Chemother 68(4):743–748  

      91.    Rybak M, Lomaestro B, Rotschafer JC, 
Moellering R Jr, Craig W, Billeter M et al 
(2009) Therapeutic monitoring of vancomy-
cin in adult patients: a consensus review of the 
American Society of Health-System 
Pharmacists, the Infectious Diseases Society 
of America, and the Society of Infectious 
Diseases Pharmacists. Am J Health Syst 
Pharm 66(1):82–98  

Pharmacodynamic Considerations in Critically Ill Patients



558

    92.    Moise PA, Forrest A, Bhavnani SM, 
Birmingham MC, Schentag JJ (2000) Area 
under the inhibitory curve and a pneumonia 
scoring system for predicting outcomes of 
vancomycin therapy for respiratory infections 
by Staphylococcus aureus. Am J Health Syst 
Pharm 57(Suppl 2):S4–S9  

     93.    Holmes NE, Turnidge JD, Munckhof WJ, 
Robinson JO, Korman TM, O’Sullivan MV 
et al (2013) Vancomycin AUC/MIC ratio 
and 30-day mortality in patients with 
Staphylococcus aureus bacteremia. 
Antimicrob Agents Chemother 57(4):
1654–1663  

     94.    Brown J, Brown K, Forrest A (2012) 
Vancomycin AUC24/MIC ratio in patients 
with complicated bacteremia and infective 
endocarditis due to methicillin-resistant 
Staphylococcus aureus and its association 
with attributable mortality during hospitaliza-
tion. Antimicrob Agents Chemother 
56(2):634–638  

      95.   del Mar Fernandez de Gatta Garcia M, Revilla 
N, Calvo MV, Dominguez-Gil A, Sanchez 
Navarro A (2007) Pharmacokinetic/pharma-
codynamic analysis of vancomycin in ICU 
patients. Intensive Care Med 33(2): 279–85  

     96.    Revilla N, Martin-Suarez A, Perez MP, 
Gonzalez FM, Fernandez de Gatta Mdel M 
(2010) Vancomycin dosing assessment in 
intensive care unit patients based on a popula-
tion pharmacokinetic/pharmacodynamic 
simulation. Br J Clin Pharmacol 
70(2):201–212  

    97.    Llopis-Salvia P, Jimenez-Torres NV (2006) 
Population pharmacokinetic parameters of 
vancomycin in critically ill patients. J Clin 
Pharm Ther 31(5):447–454  

    98.    Baptista JP, Sousa E, Martins PJ, Pimentel JM 
(2012) Augmented renal clearance in septic 
patients and implications for vancomycin 
optimisation. Int J Antimicrob Agents 
39(5):420–423  

    99.    van Hal SJ, Paterson DL, Lodise TP (2013) 
Systematic review and meta-analysis of 
vancomycin- induced nephrotoxicity associ-
ated with dosing schedules that maintain 
troughs between 15 and 20 milligrams per 
liter. Antimicrob Agents Chemother 
57(2):734–744  

    100.    Wang JT, Fang CT, Chen YC, Chang SC 
(2001) Necessity of a loading dose when 
using vancomycin in critically ill patients. 
J Antimicrob Chemother 47(2):246  

    101.    Li J, Udy AA, Kirkpatrick CM, Lipman J, 
Roberts JA (2012) Improving vancomycin 
prescription in critical illness through a drug 
use evaluation process: a weight-based dosing 
intervention study. Int J Antimicrob Agents 
39(1):69–72  

     102.    Cataldo MA, Tacconelli E, Grilli E, Pea F, 
Petrosillo N (2012) Continuous versus inter-
mittent infusion of vancomycin for the treat-
ment of Gram-positive infections: systematic 
review and meta-analysis. J Antimicrob 
Chemother 67(1):17–24  

    103.    Roberts JA, Taccone FS, Udy AA, Vincent 
JL, Jacobs F, Lipman J (2011) Vancomycin 
dosing in critically ill patients: robust meth-
ods for improved continuous-infusion regi-
mens. Antimicrob Agents Chemother 
55(6):2704–2709  

    104.    Turnidge J (2003) Pharmacodynamics and 
dosing of aminoglycosides. Infect Dis Clin 
North Am 17(3):503–528, v  

    105.    Munckhof WJ, Grayson ML, Turnidge JD 
(1996) A meta-analysis of studies on the 
safety and effi cacy of aminoglycosides given 
either once daily or as divided doses. 
J Antimicrob Chemother 37(4):645–663  

    106.    Kashuba ADM, Bertino JS, Nafziger AN 
(1998) Dosing of aminoglycosides to rapidly 
attain pharmacodynamic goals and hasten 
therapeutic response by using individualized 
pharmacokinetic monitoring of patients with 
pneumonia caused by gram-negative organ-
isms. Antimicrob Agents Chemother 
42(7):1842–1844  

    107.    Kashuba ADM, Nafziger AN, Drusano GL, 
Bertino JS (1999) Optimizing aminoglyco-
side therapy for nosocomial pneumonia 
caused by gram-negative bacteria. Antimicrob 
Agents Chemother 43(3):623–629  

     108.    Buijk SE, Mouton JW, Gyssens IC, Verbrugh 
HA, Bruining HA (2002) Experience with a 
once-daily dosing program of aminoglyco-
sides in critically ill patients. Intensive Care 
Med 28(7):936–942  

   109.    Tang GJ, Tang JJ, Lin BS, Kong CW, Lee TY 
(1999) Factors affecting gentamicin pharma-
cokinetics in septic patients. Acta Anaesthesiol 
Scand 43(7):726–730  

    110.    Goncalves-Pereira J, Martins A, Povoa P 
(2010) Pharmacokinetics of gentamicin in 
critically ill patients: pilot study evaluating the 
fi rst dose. Clin Microbiol Infect 
16(8):1258–1263  

     111.    Rea RS, Capitano B, Bies R, Bigos KL, Smith 
R, Lee H (2008) Suboptimal aminoglycoside 
dosing in critically ill patients. Ther Drug 
Monit 30(6):674–681  

    112.    Finnell DL, Davis GA, Cropp CD, Ensom 
MH (1998) Validation of the Hartford 
nomogram in trauma surgery patients. Ann 
Pharmacother 32(4):417–421  

    113.    Thomas JK, Forrest A, Bhavnani SM, Hyatt 
JM, Cheng A, Ballow CH et al (1998) 
Pharmacodynamic evaluation of factors asso-
ciated with the development of bacterial resis-
tance in acutely ill patients during therapy. 

Mahipal G. Sinnollareddy and Jason A. Roberts



559

Antimicrob Agents Chemother 
42(3):521–527  

     114.    Lipman J, Scribante J, Gous AG, Hon H, 
Tshukutsoane S (1998) Pharmacokinetic pro-
fi les of high-dose intravenous ciprofl oxacin in 
severe sepsis. The Baragwanath Ciprofl oxacin 
Study Group. Antimicrob Agents Chemother 
42(9):2235–2239  

    115.    van Zanten AR, Polderman KH, van 
Geijlswijk IM, van der Meer GY, Schouten 
MA, Girbes AR (2008) Ciprofl oxacin phar-
macokinetics in critically ill patients: a pro-
spective cohort study. J Crit Care 
23(3):422–430  

     116.    Conil JM, Georges B, de Lussy A, Khachman 
D, Seguin T, Ruiz S et al (2008) Ciprofl oxacin 
use in critically ill patients: pharmacokinetic 
and pharmacodynamic approaches. Int 
J Antimicrob Agents 32(6):505–510  

    117.    Dryden MS (2011) Linezolid pharmacoki-
netics and pharmacodynamics in clinical treat-
ment. J Antimicrob Chemother 66(Suppl 
4):iv7–iv15  

    118.    Rayner CR, Forrest A, Meagher AK, 
Birmingham MC, Schentag JJ (2003) Clinical 
pharmacodynamics of linezolid in seriously ill 
patients treated in a compassionate use pro-
gramme. Clin Pharmacokinet 
42(15):1411–1423  

     119.    Dong H, Wang X, Dong Y, Lei J, Li H, You 
H et al (2011) Clinical pharmacokinetic/
pharmacodynamic profi le of linezolid in 
severely ill intensive care unit patients. Int 
J Antimicrob Agents 38(4):296–300  

    120.    Whitehouse T, Cepeda JA, Shulman R, 
Aarons L, Nalda-Molina R, Tobin C et al 
(2005) Pharmacokinetic studies of linezolid 
and teicoplanin in the critically ill. 
J Antimicrob Chemother 55(3):333–340  

     121.    Thallinger C, Buerger C, Plock N, Kljucar S, 
Wuenscher S, Sauermann R et al (2008) 
Effect of severity of sepsis on tissue concentra-
tions of linezolid. J Antimicrob Chemother 
61(1):173–176  

    122.    Adembri C, Fallani S, Cassetta MI, Arrigucci 
S, Ottaviano A, Pecile P et al (2008) Linezolid 
pharmacokinetic/pharmacodynamic profi le 
in critically ill septic patients: intermittent ver-
sus continuous infusion. Int J Antimicrob 
Agents 31(2):122–129  

      123.    Buerger C, Plock N, Dehghanyar P, Joukhadar 
C, Kloft C (2006) Pharmacokinetics of 
unbound linezolid in plasma and tissue inter-
stitium of critically ill patients after multiple 
dosing using microdialysis. Antimicrob 
Agents Chemother 50(7):2455–2463  

    124.    Boselli E, Breilh D, Caillault-Sergent A, 
Djabarouti S, Guillaume C, Xuereb F et al 
(2012) Alveolar diffusion and pharmacoki-
netics of linezolid administered in continuous 

infusion to critically ill patients with ventilator- 
associated pneumonia. J Antimicrob 
Chemother 67(5):1207–1210  

    125.    Boselli E, Breilh D, Rimmele T, Djabarouti S, 
Toutain J, Chassard D et al (2005) 
Pharmacokinetics and intrapulmonary concen-
trations of linezolid administered to critically ill 
patients with ventilator-associated pneumonia. 
Crit Care Med 33(7):1529–1533  

     126.    Soon RL, Turner SJ, Forrest A, Tsuji BT, 
Brown J (2013) Pharmacokinetic/pharmaco-
dynamic evaluation of the effi cacy and safety 
of daptomycin against Staphylococcus aureus. 
Int J Antimicrob Agents 42(1):53–58  

      127.    Bubalo JS, Munar MY, Cherala G, Hayes- 
Lattin B, Maziarz R (2009) Daptomycin 
pharmacokinetics in adult oncology patients 
with neutropenic fever. Antimicrob Agents 
Chemother 53(2):428–434  

    128.    Falcone M, Russo A, Cassetta MI, Lappa A, 
Tritapepe L, d’Ettorre G et al (2013) 
Variability of pharmacokinetic parameters in 
patients receiving different dosages of dapto-
mycin: is therapeutic drug monitoring neces-
sary? J Infect Chemother 19(4):732–739  

      129.    Di Paolo A, Tascini C, Polillo M, Gemignani 
G, Nielsen EI, Bocci G et al (2013) Population 
pharmacokinetics of daptomycin in patients 
affected by severe Gram-positive infections. 
Int J Antimicrob Agents 42(3):250–255  

    130.    Gould IM, Miro JM, Rybak MJ (2013) 
Daptomycin: the role of high-dose and com-
bination therapy for Gram-positive infections. 
Int J Antimicrob Agents 42(3):202–210  

   131.    Parra-Ruiz J, Duenas-Gutierrez C, Tomas- 
Jimenez C, Linares-Palomino JP, Garrido- 
Gomez J, Hernandez-Quero J (2012) Safety 
analysis of high dose (>6 mg/kg/day) dapto-
mycin in patients with concomitant statin 
therapy. Eur J Clin Microbiol Infect Dis 
31(8):1771–1774  

    132.    Lai CC, Sheng WH, Wang JT, Cheng A, 
Chuang YC, Chen YC et al (2013) Safety and 
effi cacy of high-dose daptomycin as salvage 
therapy for severe gram-positive bacterial sep-
sis in hospitalized adult patients. BMC Infect 
Dis 13:66  

    133.    Dudhani RV, Turnidge JD, Coulthard K, 
Milne RW, Rayner CR, Li J et al (2010) 
Elucidation of the pharmacokinetic/pharma-
codynamic determinant of colistin activity 
against Pseudomonas aeruginosa in murine 
thigh and lung infection models. Antimicrob 
Agents Chemother 54(3):1117–1124  

    134.    Dudhani RV, Turnidge JD, Nation RL, Li 
J (2010) fAUC/MIC is the most predictive 
pharmacokinetic/pharmacodynamic index of 
colistin against Acinetobacter baumannii in 
murine thigh and lung infection models. 
J Antimicrob Chemother 65(9):1984–1990  

Pharmacodynamic Considerations in Critically Ill Patients



560

    135.    Li J, Nation RL, Turnidge JD, Milne RW, 
Coulthard K, Rayner CR et al (2006) Colistin: 
the re-emerging antibiotic for multidrug- 
resistant Gram-negative bacterial infections. 
Lancet Infect Dis 6(9):589–601  

    136.    Bergen PJ, Landersdorfer CB, Lee HJ, Li J, 
Nation RL (2012) ‘Old’ antibiotics for 
emerging multidrug-resistant bacteria. Curr 
Opin Infect Dis 25(6):626–633  

    137.    Bergen PJ, Landersdorfer CB, Zhang J, Zhao 
M, Lee HJ, Nation RL et al (2012) 
Pharmacokinetics and pharmacodynamics of 
‘old’ polymyxins: what is new? Diagn 
Microbiol Infect Dis 74(3):213–223  

    138.    Bergen PJ, Li J, Nation RL (2011) Dosing of 
colistin-back to basic PK/PD. Curr Opin 
Pharmacol 11(5):464–469  

   139.    Bode-Boger SM, Schopp B, Troger U, 
Martens-Lobenhoffer J, Kalousis K, Mailander 
P (2013) Intravenous colistin in a patient with 
serious burns and borderline syndrome: the 
benefi ts of therapeutic drug monitoring. Int 
J Antimicrob Agents 42(4):357–360  

     140.    Garonzik SM, Li J, Thamlikitkul V, Paterson 
DL, Shoham S, Jacob J et al (2011) 
Population pharmacokinetics of colistin 
methanesulfonate and formed colistin in criti-
cally ill patients from a multicenter study pro-
vide dosing suggestions for various categories 
of patients. Antimicrob Agents Chemother 
55(7):3284–3294  

   141.    Imberti R, Cusato M, Accetta G, Marino V, 
Procaccio F, Del Gaudio A et al (2012) 
Pharmacokinetics of colistin in cerebrospinal 
fl uid after intraventricular administration of 
colistin methanesulfonate. Antimicrob Agents 
Chemother 56(8):4416–4421  

    142.    Imberti R, Cusato M, Villani P, Carnevale L, 
Iotti GA, Langer M et al (2010) Steady-state 
pharmacokinetics and BAL concentration of 
colistin in critically Ill patients after IV colistin 
methanesulfonate administration. Chest 
138(6):1333–1339  

    143.    Markou N, Markantonis SL, Dimitrakis E, 
Panidis D, Boutzouka E, Karatzas S et al 
(2008) Colistin serum concentrations after 
intravenous administration in critically ill 
patients with serious multidrug-resistant, 
gram-negative bacilli infections: a prospec-
tive, open-label, uncontrolled study. Clin 
Ther 30(1):143–151  

    144.    Mohamed AF, Karaiskos I, Plachouras D, 
Karvanen M, Pontikis K, Jansson B et al 
(2012) Application of a loading dose of colis-
tin methanesulfonate in critically ill patients: 
population pharmacokinetics, protein bind-
ing, and prediction of bacterial kill. 
Antimicrob Agents Chemother 
56(8):4241–4249  

       145.    Plachouras D, Karvanen M, Friberg LE, 
Papadomichelakis E, Antoniadou A, Tsangaris 
I et al (2009) Population pharmacokinetic 
analysis of colistin methanesulfonate and 
colistin after intravenous administration in 
critically ill patients with infections caused by 
gram-negative bacteria. Antimicrob Agents 
Chemother 53(8):3430–3436  

    146.    Hartzell JD, Neff R, Ake J, Howard R, Olson 
S, Paolino K et al (2009) Nephrotoxicity 
associated with intravenous colistin (colisti-
methate sodium) treatment at a tertiary care 
medical center. Clin Infect Dis 
48(12):1724–1728  

    147.    Akajagbor DS, Wilson SL, Shere-Wolfe KD, 
Dakum P, Charurat ME, Gilliam BL (2013) 
Higher incidence of acute kidney injury with 
intravenous colistimethate sodium compared 
with polymyxin B in critically ill patients at a 
tertiary care medical center. Clin Infect Dis 
57(9):1300–1303  

    148.    Dalfi no L, Puntillo F, Mosca A, Monno R, 
Spada ML, Coppolecchia S et al (2012) 
High- dose, extended-interval colistin admin-
istration in critically ill patients: is this the 
right dosing strategy? A preliminary study. 
Clin Infect Dis 54(12):1720–1726    

Mahipal G. Sinnollareddy and Jason A. Roberts



561

John C. Rotschafer et al. (eds.), Antibiotic Pharmacodynamics, Methods in Pharmacology and Toxicology,
DOI 10.1007/978-1-4939-3323-5_22, © Springer Science+Business Media New York 2016

Chapter 22

Pharmacodynamic Considerations and Special 
Populations: Pediatrics

Jennifer Le and John S. Bradley

Abstract

The complexity of infectious disease pharmacotherapy intensifies in pediatric patients since two pertinent 
elements must be accounted for—the immunologic and physiologic developmental processes that occur 
with age. Physiologic development may alter the pharmacokinetics of a drug with enhanced clearance to 
potentially result in subtherapeutic responses, while overexposure may have consequences for adverse 
events, especially in young, rapidly growing neonates and infants. Understanding the pharmacokinetic 
variability stemming from age-related physiologic maturation and the pharmacodynamic target effect (or 
desired response) can assist the clinician in selecting the ideal antimicrobial agent and dosing regimen. This 
chapter presents the following: (1) the factors (including physiologic maturation, organ function, and size) 
that contribute to pharmacokinetic alterations that occur with age; (2) the impact of immunologic devel-
opment on microbiologic and clinical outcomes; (3) the unique exposure-response relationship, or the 
pharmacodynamic index for antimicrobial agents in pediatrics; (4) critical review of specific antibacterial 
agents with recent information in the literature (including beta-lactams, aminoglycosides, and vancomy-
cin); and (5) overcoming challenges to pharmacokinetic-pharmacodynamic studies in pediatrics.

Key words Pharmacokinetic, Pharmacodynamic, Pediatrics, Neonates, Antimicrobials, Vancomycin, 
Monte Carlo simulation, Beta-lactams, Vancomycin, Aminoglycosides, Antibiotics

1  Introduction

The amalgamation of information pertaining to the antimicrobial 
agent (drug), pathogen (bug), and patient is critical in optimizing 
pharmacotherapy for infectious diseases. In addition to appropriate 
antimicrobial selection based on the susceptibility of the pathogen 
and the site of infection, the complexity of infectious disease 
 pharmacotherapy intensifies in pediatric patients since two other 
pertinent elements must be accounted for—the immunologic and 
physiologic developmental processes that occur with age. Com-
pared with adults with intact immune system, the immune system 
of neonates and infants is immature, potentially altering the 
observed response to antimicrobial therapy. Physiologic develop-
ment may alter the pharmacokinetics (PK) of a drug to potentially 
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result in subtherapeutic responses. Understanding the PK variability 
stemming from age-related physiologic maturation and the phar-
macodynamic (PD) target effect (or desired response) can assist 
the clinician in selecting the ideal antimicrobial agent and dosing 
regimen [1].

Pediatric drug dosing is generally individualized to the child 
based on age and body size; therefore, appreciating age and weight 
is an imperative step towards dosing any drug in a child. Both age 
and weight are demographic indicators of growth and develop-
ment that are tangible and easily retrievable. In particular, age 
 confers information on physiologic maturation and organ func-
tion. The broad age spectrum within the pediatric population con-
tributes to a considerable variation in a drug’s PK, with disparities 
detected even between the five distinct pediatric age groups 
(Table 1). This underscores the intricacy in drug dosing (usually by 
altering the actual dose and/or frequency depending on the drug’s 
PD exposure target) and the unequivocal need for age-specific 
 dosing in the pediatric population. In this chapter, the PK-PD 
principles that affect different pediatric age groups and specific 
antimicrobial agents are presented.

2  Age-Specific Pharmacokinetic Variability

Physiologic maturation, organ function, and size are the principle 
contributors to PK variability. Maturation and organ function are 
largely determined by age in the pediatric population (assuming 
the absence of disease conditions that may be associated with 
altered organ function such as cystic fibrosis). The physiologic 
maturation that affects a drug’s PK occurs mainly during the neo-
natal and infant periods, albeit some age-related changes continue 
into childhood (Table 2). Per se, age correlates reasonably well 
with the maturation of drug clearance, and significantly contributes 
to appropriate drug dosing in neonates, infants, and young chil-
dren, but becomes less helpful in late childhood and adolescence. 

Table 1 

Pediatric age groups

Group Age range

Premature neonate <37 weeks’ gestation

Neonates <1 month of life

Infants 1–12 months old

Children 1–12 years old

Adolescents 13–18 years old

Pediatrics Birth to 18 years old

Jennifer Le and John S. Bradley
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The most striking developmental changes occur within the first 
year of life, which involves a rapid surge in renal function due to an 
increase in renal blood flow within the first 2 weeks of life [2, 3]. 
Notably, this developmental process does not occur linearly with 
age, resulting in a plateau of drug dosing expressed in milligram or 
gram per kilogram (e.g., increasing drug dosages up to a certain 
age when it then decreases). Furthermore, a drug’s PK may not be 
solely dependent on postnatal age, particularly in the extremely 
premature neonates, because nephrogenesis, which contributes to 
increasing glomerular filtration rate in utero, requires completion 
of 36 weeks’ gestation [2, 3]. The use of postnatal age alone, as 
compared to postmenstrual age which incorporates both gesta-
tional and postnatal age, as an indicator for the maturation of drug 
elimination is therefore unacceptable for premature neonates [4].

Analogous to the maturation of renal function, hepatic func-
tion also advances with age. Two exceptions are the enhanced 
activities of methyltransferase and sulfotransferase in the neonate 
and infant, respectively (Table 2). Maturation of various hepatic 
clearance pathways occurs at different rates for the first months to 
years of life, further complicating any calculations of dosages for 
drugs metabolized by the liver. In addition to the maturation of 
renal and hepatic function, significant developmental alteration in 
body composition occurs during the first few months of life. 
Compared to adults, the total body water content in full-term neo-
nates and infants is higher (75 % versus 60 %), thus leading to 
enhanced distribution of water-soluble drugs like gentamicin 
(0.5 L/kg vs. 0.3 L/kg) [5, 6].

As an indicator of body size, total body weight is a common 
and appropriate measure to use for drug dosing in normal-sized 
children. Pediatric drug doses cannot be normalized directly from 
an adult dose using total body weight (i.e., adult dose in milligram 
per kilogram) since drug elimination, particularly via the renal 
route, is nonlinear to weight [7]. This nonlinear relationship 
between weight and drug CL underestimates CL in children and 
yet overestimates it in adults. However, a child’s body size can be 
referenced to a 70-kg adult using allometric scaling with a coeffi-
cient of 1 for volume (Vd) and 0.75 for clearance (CL; Eqs. (1) 
and (2)) [4]. The accuracy of this allometric method for the pre-
diction of CL appears to be suboptimal in neonates and young 
infants, but reasonable for application in children >5 years of age, 
including those with cystic fibrosis [8, 9]. Improved accuracy for 
CL prediction has been suggested by using an exponent of 1 (or 
no exponent) in neonates and infants ≤1 year old, and referencing 
by age (instead of weight) to 20-year-old adult in children between 
1 and 5 years old (Eq. (3)) [10]. Nonetheless, the optimal 
 allometric scaling (i.e., exponent value) should be derived for each 

Pharmacodynamic Considerations and Special Populations: Pediatrics
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individual drug through population-based PK-PD studies, which 
are essential for age-specific dosing in the various pediatric age 
groups:

 V VChild Adult ChildWeight kg= ´ ( )/ 70  (1)

 CL CL Weight kgChild Adult Child= ´ ( )/ .70 0 75

 (2)

 CL CL Age yearsChild Adult Child= ´ ( )/ 20 X

 (3)

X is the exponent obtained from the log-log plot of clearance and 
age for a given drug.

Obesity has become a global public health challenge, with an 
estimated 45 million affected children under 5 years of age in 
2010 [11]. Despite exhibiting minimal metabolic activity, exces-
sive amounts of adipose tissue can significantly influence body 
size to inflict changes in a drug’s PK and therefore its dosing 
[12]. Using total body weight is not always acceptable for drug 
dosing in overweight or obese children since the excess weight is 
disproportional in amounts of lean body and fat mass [13]. With 
this extensive deviation in fat affecting body composition, other 
measurements are necessary to improve drug dosing specifically 
in obese children. Indirect measures of body composition consist 
of body surface area, body mass index (BMI), ideal body weight, 
and adjusted body weight (Table 3). These measures can be 
applied to an obese child (although its selection is dependent on 
the drug’s properties) and easily estimated by the clinician using 
a child’s height, weight, or girth. Great interest in lean body 
mass (which is a measure of fat-free mass that incorporates vital 
organs, extracellular fluid, bones, and muscles) has emerged in 
recent years, but its application is encumbered by the need to 
estimate BMI-for-age Z-scores and population ancestry (Table 3) 
[14]. The application of these indirect measures is limited in neo-
nates and infants.

For systemic drugs, PK alterations are represented by two 
primary physiologic-based parameters that govern dosing—Vd 
and CL. The Vd correlates to the total amount of drug distrib-
uted throughout the body (including tissues), and determines 
the initial or loading dose. It is driven by the characteristics of 
the drug as well as body composition. For example, a drug’s 
hydrophilicity, which is the affinity to concentrate in water, will 
dictate the extent of drug distribution into tissues. Hydrophilic 
drugs (e.g., aminoglycosides and linezolid) distribute mainly in 
the extracellular fluid compartment and thus generally have small 
Vd compared with drugs that also distribute intracellularly. 

Jennifer Le and John S. Bradley
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Neonates and young infants have increased total body and 
 extracellular water content; therefore, the Vd of aminoglycosides 
and linezolid are enhanced and consequently higher loading 
doses (in mg/kg) are required to achieve peak concentrations 
similar to those targeted in adults [15, 16].

In addition to total body water content, plasma protein bind-
ing affects the Vd. Neonates, infants, and young children have 
decreases in both the concentration and the affinity of certain pro-
teins (e.g., albumin and alpha-1-acid glycoprotein) to bind to 
drugs. Accordingly, the amount of free drug (which is the pharma-
cologically active) may increase, particularly if the drug undergoes 
saturable elimination. This reduction in plasma protein binding 
becomes clinically relevant when interpreting measured drug con-
centrations, with normal total drug concentrations yet increased 
unbound concentrations.

Albumin binds to endogenous substances (like bilirubin) and 
certain antibiotics (including sulfonamides, ceftriaxone, and other 
beta-lactams). With decreased albumin binding, sulfonamides and 
ceftriaxone compete and displace bilirubin from albumin binding, 
resulting in a toxic effect called kernicterus observed only in neo-
nates and young infants [17].

Clearance accounts for both metabolism and elimination of 
a drug from the body, and is the main determinant for mainte-
nance doses. Unaffected directly by a drug’s chemical property, 
CL is regulated by the metabolic capacity and perfusion to cer-
tain organs responsible for drug elimination, primarily the liver 
and kidneys. The liver is the body’s primary source for drug 
metabolism. While most microsomal cytochrome P450 enzymes 
responsible for metabolism are present at birth, the activities of 
these enzymes are reduced during infancy and require time for 
maturation (Table 2). Consequently, the metabolic CL is lower 
in neonates and infants than adults. The immature hepatic 
metabolism, particularly the glucuronidation reaction, is respon-
sible for the reduced CL of chloramphenicol, resulting in toxic 
drug accumulation and a condition called “gray baby syndrome” 
observed exclusively in  preemies and infants when doses exceed 
50–100 mg/kg [18]. The immature metabolic CL parallels renal 
elimination, including reduced glomerular filtration, tubular 
secretion, and reabsorption (Table 2). Many antibiotics, includ-
ing beta-lactams, aminoglycosides, and vancomycin, are elimi-
nated primarily via glomerular filtration (Table 4). For example, 
the lack of mature renal function decreases CL of gentamicin, 
prolonging its expected half-life from ~2 h reported in adults to 
~10 h in premature infants and resulting in higher trough con-
centrations to potentially increase the risk for toxicity if dosing 
intervals remain unadjusted [16].

Jennifer Le and John S. Bradley
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3  Immunologic Development Impact on Microbiologic and Clinical Outcomes

The innate and adaptive immune responses are indispensible in 
supporting the eradication of microbiologic pathogens causing 
infections. Comprised of physical barriers (i.e., skin and mucosal 
surfaces), antimicrobial peptides, phagocytes (e.g., neutrophils and 
macrophages), the complement enzymatic system, natural killer 
cells, and other cells or proteins, the innate immune system embod-
ies the first line of host defense against infection. Components of 
the innate immune system form throughout the different stages of 
fetal development, with maturation ensuing birth [19, 20]. For 
example, the bone marrow commences production of phagocytic 
cells during the first trimester of pregnancy and antimicrobial pep-
tides that possess activity against Gram-negative bacteria and fun-
gal pathogens originate from the vernix caseosa during the third 
trimester [20]. In neonates at full-term birth, the peripheral neu-
trophil count is elevated, resulting in levels even higher than those 
of adults. However, this neutrophil elevation is accompanied by 
reduced phagocytic and bactericidal functional capacity, which hin-
ders response to active infection and potentially increases suscepti-
bility to pneumonia, cellulitis, and multifocal infections [21–23]. 
In addition, the underdeveloped skin of infants with very low birth 
weights (i.e., <1000 g) contributes to their vulnerability to infec-
tions due to decreased function as a barrier to invasive infection.

The complement system provides innate immunity through 
direct binding to nonspecific pathogenic surfaces. However, it can 
also enhance specific humoral immunity and facilitate phagocyto-
sis. While formation initiates during third trimester, most serum 
proteins of the complement system (except for C7) take 18 months 
from birth to reach adult concentrations, and their concentrations, 
including those of C9, correlate with gestational age [24]. Low 
levels of C9 and C5a have been associated with ineffective bacteri-
cidal activity against E. coli and increased risk of infection to group 
B streptococcus in neonates, respectively [25, 26].

Lymphocyte function development is also delayed in neonates, 
increasing susceptibility to viral infections including herpes viruses 
and enteroviruses. Cytotoxic natural killer cells, also part of innate 
immunity, develop during the first trimester. Prematurity before 
36 weeks contributes to the diminished activity of natural killer 
cells, although corticosteroid treatment for preterm labor increases 
their rate of maturation [27, 28]. The cytotoxic activity of these 
cells matures by 6 months of age and 10 % of peripheral blood 
lymphocytes in adults are composed of natural killer cells [29]. 
With their antiviral activity, natural killer cells protect infants 
against herpes simplex virus infection and human immunodefi-
ciency virus transmission. In addition, mutation in natural killer 
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cells has resulted in a form of severe combined immunodeficiency 
with defects in both natural killer cells and T lymphocytes [27].

The deficiencies evident in the innate immunity of neonates and 
infants, especially if premature, make them vulnerable to infections 
that can lead to significant morbidity and mortality. Upon incom-
plete or inadequate protection to infection by the innate immunity, 
the adaptive immune system subsequently responds by activating 
effector B- and T-lymphocytes to facilitate production of pathogen-
specific antibodies and immunologic memory, respectively. These 
are two very crucial functions of the adaptive immune response.

Although B-lymphocytes are fully developed at birth, the 
gamut of antibodies in neonates is only fractional due to their lim-
ited exposure to pathogens early in life. As such, transplacental 
transfer of passively acquired maternal antibodies, which initiates 
during second trimester but ensues primarily during third trimes-
ter, is a critical accompaniment to this narrow gamut [27]. In con-
trast to neonates born at full term, the levels of serum 
immunoglobulin G (IgG) antibodies (which protect against group 
B streptococcal infection) in preemies are low due to the decreased 
transplacental transfer that peaks in the third trimester [30]. 
Another component of humoral (or antibody-mediated) immunity 
is the active production of antibodies (including IgG, IgM, and 
lastly IgA) that begins during gestation but does not achieve matu-
ration until 6–8 years of age [27]. If exposed, term infants can 
produce antibodies within the first few days of life, although their 
response is attenuated with lower levels than adults [31].

Despite its abundance, the naïve population of T-lymphocytes 
in neonates exhibits limited functional capacity, including decreased 
development of immunologic memory and cytokine production. 
These immature T-lymphocytes contribute to the increased sus-
ceptibility to infections caused by viruses and other intracellular 
pathogens, such as Toxoplasma gondii and Listeria. Maturation of 
T-lymphocytes occurs by 7 years of age [32].

In addition to the immature immunity evident in premature 
neonates and infants, congenital abnormalities and immune defi-
ciencies (including those acquired by medication use) contribute 
to the vulnerability of children to infections. Immunosuppression 
may occur in children with hematologic/oncologic cancers, rheu-
matologic conditions, and inflammatory bowel disease with the 
use of chemotherapeutic agents, tumor necrosis factors, and other 
immune modulators. For any of the conditions noted above in 
which the host component of response to infection is decreased, 
the drug exposure that is expected to result in a microbiologic and 
clinical cure may be greater than that demonstrated in normal 
hosts.

Pharmacodynamic Considerations and Special Populations: Pediatrics



580

4  Pharmacodynamics and Monte Carlo Simulation

To successfully treat or cure an infection, which is the desired effect 
for infectious disease pharmacotherapy, utilizing the PD property 
of an antimicrobial agent can facilitate optimization of therapy by 
maximizing drug exposure to inhibit or eradicate the pathogens, 
or to potentially suppress the development of resistance [33]. 
Depending on the antibiotic, the drug concentration of interest 
(specifically, the active unbound moiety) can be the peak, trough, 
or average concentration, or exposure over a period of time (i.e., 
area-under-time-concentration curve over 24 h [AUC24]) (refer to 
Chaps. 8, 9, and 11–17). In addition to free drug concentrations, 
PD exposure calculations most often incorporate a pathogen- 
specific susceptibility component via the minimum inhibitory con-
centration (MIC).

The predictability of the exposure-response relationship for an 
antimicrobial agent differs between pediatrics and adults. Although 
underlying genetic and clinical factors may alter response, a stan-
dard antibiotic dose will generally provide a baseline exposure to 
elicit a predictable clinical response in adults. In contrast, substan-
tial variability exists in exposure to an antibiotic across the pediatric 
age spectrum since it is largely affected by the child’s stage of phys-
iologic and immunologic maturation. These physiologic and 
immunologic differences make a drug’s exposure less predictable 
in a child than an adult [2]. Once the exposure is adjusted in chil-
dren to achieve equivalence to adults, antimicrobial effects (micro-
biologic and clinical cure) can be assumed to be similar in 
pediatrics.

A PD exposure target or index for microbiologic and clinical 
cure (or even for resistance suppression) must be explicitly defined 
in order to identify the best dosing regimen derived from Monte 
Carlo simulations that incorporate age-specific PK data. The PD 
indices incorporate drug exposure and microbiologic susceptibility 
and consist of peak concentration over MIC (Cmax/MIC), area- 
under- time-concentration curve within 24 h over MIC (AUC24/
MIC), and time that free drug concentrations remain above the 
MIC (fT > MIC) (refer to Chaps. 8, 9, and 11–17). Unfortunately, 
the derivation of PD exposure targets has been primarily from pre-
clinical models and limited clinical studies [33]. Even amongst the 
few human clinical investigations, most data were collected retro-
spectively, and in adult patients rather than in children. There are 
no well-designed, published studies to date in the USA that vali-
date PD targets for antimicrobial agents in actual pediatric patients. 
While the number of pediatric PK studies is increasing, it is also 
important to document the PD target and consequent dose 
required for cure over the entire spectrum of pediatric ages. The 
PD targets will ideally account for protein binding and immuno-
logic developmental changes that occur with age.
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5  Antibacterial Agents

In the sections that follow, specific antibacterial agents are pre-
sented to illustrate the application of PK-PD properties to opti-
mize infectious disease pharmacotherapy. The selection of the 
specific antibiotic was based on its PD features, including 
concentration- dependent, time-dependent, and post-antibiotic 
effects. Only antibiotics with adequate number of PK-PD evalua-
tions in pediatrics were critically reviewed. Otherwise, the PD 
properties of antibiotics with absent to limited PK-PD studies are 
described in Table 4.

The most extensively studied class of antibiotics that have been 
evaluated for their PK-PD properties in pediatrics is the beta- 
lactam, primarily because of their long-standing safety profile and 
their mixed spectrum of antibacterial activity (i.e., some agents 
possess broad activity while others have a narrow spectrum). 
Exhibiting time-dependent bactericidal effects with minimal post- 
antibiotic activity and increasing the infusion time or the dosing 
frequency optimize the use of beta-lactams (Table 4). While both 
strategies exploit the PD property of time-dependent killing, 
extending the infusion time (even towards continuous infusion) 
has been evaluated more than increased dosing frequency (i.e., 
from every 6–4 h) for its practicality in the clinical setting, espe-
cially in certain pediatric patients with prematurity, cystic fibrosis, 
or hematologic/oncologic disorders that necessitate the use of 
multiple other medications.

Using the Monte Carlo method to assess how often the 
required exposure can be achieved with various dosing regimens 
against pathogens with varying susceptibilities, simulations were 
performed in children between 1 and 12 years of age using beta- 
lactams active against Pseudomonas aeruginosa (including cefepime, 
ceftazidime, imipenem/cilastatin, meropenem, and piperacillin/
tazobactam) [34–36]. For bactericidal exposures, the PD targets 
based on the fT > MIC were ≥40 % for carbapenems and ≥50 % for 
penicillins or cephalosporins. Lower thresholds of ≥20 % fT > MIC 
for carbapenems and ≥30 % fT > MIC for penicillins or cephalo-
sporins may be appropriate PD targets for bacteriostatic activity. 
These studies demonstrated that prolongation of infusion time 
from 30 min to 3 h significantly improved the probability of target 
attainment (PTA) to >90 % to achieve the bactericidal fT > MIC 
target for all studied antibiotics [35, 36]. Similar results were 
observed for continuous infusion. Specifically in critically ill chil-
dren 1–6 years old, piperacillin/tazobactam 400 mg/kg/day 
administered as a 3-h infusion in four divided doses, or as a 24-h 
continuous infusion was required to achieve optimal PTA against 
all susceptible Gram-negative bacteria [36]. Although CL was 
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similar, these critically ill young children had increased Vd of 
piperacillin (0.51 L/kg versus ~0.28 L/kg in non-critically ill chil-
dren), potentially due to their underlying disease states and third-
fluid spacing (i.e., increased extracellular fluids observed in 
third-fluid spacing increases the Vd, especially for water-soluble 
drugs) [36, 37].

Increasing the dose alone, without optimizing the PD prop-
erty by increasing infusion time, may not always achieve adequate 
drug exposure, depending on the susceptibilities of the pathogen 
that are based on the distribution of MICs in the population of 
pathogens that is expected to cause the infection. For example, 
increasing the meropenem dose from 20 to 40 mg/kg, adminis-
tered every 8 h using 30-min infusions, resulted in a low PTA of 
58 % at one institution with elevated MICs amongst the P. aerugi-
nosa isolates [34]. In this scenario, increasing the dose alone is not 
recommended for serious resistant infections. In contrast, the rich 
capillary bed and small volume of the interstitial fluid of the middle 
ear facilitate access of antibiotics, resulting in blunted peaks and 
high trough concentrations, and delayed CL from the middle ear 
[38]. Consequently, increased doses of amoxicillin at 75–90 mg/
kg/day administered twice daily and ceftriaxone 50 mg/kg as a 
single intramuscular dose achieve adequate antibiotic concentra-
tions in the middle ear to successfully treat acute otitis media 
caused by penicillin-resistant S. pneumoniae [38–40]. This high-
lights the importance of incorporating the PD property of the 
drug, institution-specific MIC data, and PK of the drug at the site 
of infection to optimize empiric antimicrobial therapy to achieve 
the desired response.

In recent years, emerging interest in elucidating age-related 
PK alterations, with the most extreme differences in preterm 
infants and neonates, has resulted in several population-based 
PK-PD evaluations in this population [41–46]. One central theme 
from these studies was the construction of dosing strategies pru-
dently based on gestational and postnatal age to account for the 
pronounced age-related PK alterations that exist in neonates [42, 
43, 45, 46]. In addition, higher PD targets (i.e., >60 % fT > MIC 
for meropenem and >75 % fT > MIC for ampicillin and piperacillin) 
were employed by study investigators who assumed that this degree 
of antibiotic exposure was necessary for microbiologic and clinical 
efficacy in neonates who possess deficiencies in their immune 
response system [41, 43, 46].

Meropenem was evaluated in two studies for its bactericidal 
effect against nosocomial Gram-negative pathogens, including P. 
aeruginosa, in preterm and full-term neonates <2 months old with 
gestational ages of 23–42 weeks [43, 44]. Post-conceptional or 
post-menstrual age, weight, and serum creatinine were identified 
as important covariates for predicting meropenem CL, which 
increased in neonates who were older by gestational age and 
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chronologic age. Meropenem 20 mg/kg every 8 h, infused over 
30 min, achieved >90 % PTA [43]. For less susceptible organisms 
with MIC of 4–8 μg/mL, meropenem 40 mg/kg every 8 h, using 
prolonged 4-h infusions, was preferable [43, 44]. For the treat-
ment of meningitis in neonates, meropenem concentrations in the 
cerebrospinal fluid (CSF) vary from 4.1 to 34.6 μg/mL (which is 
70 % [range 5–148 %] penetration) [45]. These CSF concentra-
tions were obtained during routine clinical care as “test-of-cure” 
samples without accounting for the time after infusion. As such, 
data are not available to construct CSF concentration-time curves 
during the dosing interval. However, in experimental animal mod-
els, the peak CSF concentrations of beta-lactam antibiotics were 
less than and were delayed a few hours after the peak serum con-
centrations. Furthermore, failure in the treatment of pathogens 
that are susceptible in vitro has not been routinely reported in neo-
nates. This CSF range of concentrations will be different for older 
infants and children, and specifically timed CSF collections follow-
ing an IV dose have also not been available in studies of pediatric 
meningitis.

Meropenem and piperacillin were evaluated in premature and 
term infants ≤90 days old with suspected or complicated intra- 
abdominal infections [41, 45]. Approximately 85 % of 200 infants 
treated with meropenem 20–30 mg/kg every 8 or 12 h (exact dose 
based on gestational age and postnatal age) experienced therapeu-
tic success. Overall, meropenem was well tolerated [42]. While 
50 % of infants experienced adverse events (including 6 % sepsis, 
5 % seizures, 5 % elevated conjugated bilirubin, and 5 % hypokale-
mia), none were probably or definitely related to meropenem [45]. 
Similar to meropenem, piperacillin CL increased with advancing 
gestational age at birth, but decreased by 60 % when serum creati-
nine was ≥1.2 mg/dL [41]. Administration of piperacillin 
80–100 mg/kg every 8 h did not meet PD target for P. aeruginosa 
in ~70 % of infants, implying that the current dosing per standard 
of care is inadequate and further studies are warranted [41].

In addition to premature infants, children with cystic fibrosis 
have altered PK that may necessitate different dosing strategies. In 
fact, patients with cystic fibrosis have increased CL (e.g., aztreo-
nam 100 mL/min versus 76 mL/min in healthy subjects, p < 0.01), 
albeit Vd appears to remain constant [9, 47]. The application of 
the PD property of antimicrobial agents is especially pertinent in 
this population to prevent subtherapeutic dosing. In one study 
that demonstrated the importance of optimizing the PD property 
of beta-lactams, prolonged infusion by 4 or 5 h or continuous infu-
sion of ceftazidime 6 g per day (weight-adjusted for 70 kg) signifi-
cantly improved the PTA of ≥65 % fT > MIC. In contrast to a 
30-min infusion that achieved ≥90 % PTA for only pathogens with 
MIC ≤ 1 μg/mL, extended or continuous infusions increased the 
MIC attainment to ≤8–12 μg/mL [9]. Enhanced MIC attainment 
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proves invaluable in patients with cystic fibrosis who are frequently 
exposed to antibiotics for both acute and chronic respiratory infec-
tions, and have increased antibiotic resistance rates [48, 49].

In another study of patients with cystic fibrosis, ticarcillin- 
clavulanate 100 mg/kg every 6 h (which was higher than the 
approved package labeling by Food and Drug Administration) 
achieved bactericidal and bacteriostatic activity against P. aerugi-
nosa at MICs of 16 μg/mL and 32 μg/mL, respectively [50]. 
Drug safety did not appear to be an issue at this dose. In addition, 
aztreonam 1000 mg every 8 h achieved 50–60 % fT > MIC at MIC 
of 4 mg/L and 1–2 mg/L for healthy subjects and patients with 
cystic fibrosis, respectively [47]. Due to the increased CL, patients 
with cystic fibrosis should be monitored closely for therapeutic 
response, with the potential need to adjust the dosing regimen 
based on the antibiotic PD feature.

One aggressive proposed PD target, that is not supported by 
animal model or human clinical data, for P. aeruginosa infections 
specifically in patients with immune-compromised status is main-
taining drug concentrations at 100 % fT > 6 times the MIC [51, 
52]. Using this unvalidated PD target, piperacillin/tazobactam 
350–400 mg/kg/day infused continuously, after a loading dose of 
100 mg/kg, was necessary to achieve >99 % PTA at MIC of 
4 mg/L in adolescents with febrile neutropenia [51]. Notably, 
piperacillin/tazobactam at the standard dose of 300 mg/kg/day 
achieved only ~85 % PTA, which was deemed inappropriate for 
patients at high risk for serious infections (e.g., recent intensive 
chemotherapy, predicted prolonged and profound neutropenia, or 
fever >39 °C) and potentially treatment failure. Some studies in 
adults have evaluated 100 % fT > MIC as the PD target to improve 
clinical cure and microbiologic eradication using cefepime, piper-
acillin/tazobactam, meropenem, and ceftobiprole [53, 54].

In summary, the studies in different pediatric groups have 
demonstrated an enhancement of PD target attainment using fre-
quent dosing, and extended or continuous infusions of beta- 
lactams, which may be advantageous for patients who are critically 
ill (including premature neonates), are immunocompromised, 
have cystic fibrosis, or are infected with pathogens exhibiting high 
MICs. Nonetheless, more well-designed prospective clinical trials 
in pediatrics are necessary since one systematic review concluded 
that limited clinical evidence exists to support the use of extended 
or continuous infusion of beta-lactam antibiotics [55]. Furthermore, 
the correlation between achievement of the PD target and clinical 
outcomes in pediatrics is limited. One Phase 3 study conducted in 
Japanese pediatric patients demonstrated that meropenem 40 mg/
kg, administered as 4-h infusions, every 8 h, was effective against 
P. aeruginosa with MIC ≥ 2 μg/mL. In this study, the 97 % PTA 
for 50 % fT > MIC was correlated to both microbiological and clin-
ical efficacy at 97 % and 96 %, respectively [56]. This is the only 
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study, to our knowledge, that directly connected a PD target to 
microbiological and clinical outcomes in pediatrics. In another 
study of children with bacteremia caused by P. aeruginosa, those 
with elevated MICs experienced a threefold increase in mortality 
[57]. This compellingly suggests consideration for an alternative 
antibiotic administration strategy or perhaps therapy, especially 
when piperacillin MIC is ≥32 μg/mL since standard dosing rec-
ommendations administered as 30-min infusions do not success-
fully achieve bactericidal PTA of ≥50 % fT > MIC [36, 57].

Confronted with insufficient pediatric studies, adult data must 
be extrapolated to formulate a recommendation for the use of 
extended or continuous infusions of beta-lactam antibiotics. The 
use of adult data assumes that the PK-PD targets and the interplay 
between the bacteria and the antibiotic are consistent in pediatrics. 
One study in adults documented clinical and economic benefits 
associated with a 4-h infusion of cefepime for P. aeruginosa bacte-
remia and pneumonia [58]. Significant reductions in mortality 
(20 % versus 3 %, p = 0.03) and stay in the intensive care unit 
(18.5 days versus 8 days, p = 0.04) were observed in those who 
received extended infusion. In addition, a trend towards decreases 
in both the length of hospital stay by 3.5 days and hospital costs by 
$23,183 per patient was reported with extended infusion.

The aminoglycosides that have been most examined in pediatrics 
are gentamicin and tobramcyin. Displaying concentration- 
dependent bactericidal activity with substantial post-antibiotic sub- 
MIC and post-antibiotic leukocyte enhancement effects, clinical 
response to these antibiotics in adults is enhanced when the maxi-
mum or peak concentration (Cmax)/MIC ratio is 8–10 using tra-
ditional multiple-daily dosing (Table 4) [59, 60]. Optimizing these 
PD features and potentially minimizing adaptive resistance by 
complete elimination of the drug before the subsequent dose, the 
extended-interval (or once-daily) dosing strategy has been evalu-
ated in children with cystic fibrosis, febrile neutropenia, and neo-
nates [60–64]. Extended-interval dosing of aminoglycosides 
permits administration of large doses, as single daily doses, to 
achieve peak concentrations high enough to augment efficacy 
against certain bacteria (including those that are less susceptible 
with MIC > 1 μg/mL) [65, 66]. Capitalizing on the post- antibiotic 
effects, integrating a drug-free interval allows serum aminoglyco-
side concentrations to fall below the MIC of susceptible organ-
isms, usually <1 μg/mL, and yet preserve bacterial growth 
inhibition. Furthermore, the extended-interval strategy may 
reduce nephrotoxicity since it allots sufficient time for complete 
elimination of the drug prior to re-administration [62, 66]. 
However, compared to once-daily dosing, traditional multiple- 
daily dosing has been associated with decreased resistance patterns, 

5.2  Aminoglycosides

Pharmacodynamic Considerations and Special Populations: Pediatrics



586

albeit resistance suppression of P. aeruginosa has been observed 
with increased Cmax/MIC target at 30 for gentamicin [64, 67].

Patients with cystic fibrosis experience pulmonary infections 
frequently caused by P. aeruginosa throughout their lifetime that 
necessitate the repeated use of intravenous aminoglycosides, either 
as monotherapy or in combination therapy. Theoretically, extended- 
interval dosing is a rational strategy for patients with cystic fibrosis 
for the following reasons: they have increased drug Vd and CL 
requiring higher doses; adequate antibiotic concentrations are dif-
ficult to achieve in the epithelial lining fluid and mucosal surfaces 
where the infection is present; and the bacteria that infect this pop-
ulation often have decreased antibiotic susceptibility owing to fre-
quent exposure [64].

In a meta-analysis evaluating four randomized, controlled 
studies consisting of a total of 328 pediatric and adult subjects with 
cystic fibrosis, the efficacy and safety of traditional thrice-daily dos-
ing of tobramycin at 10 or 15 mg/kg/day (or the dose last known 
to give satisfactory concentrations) were compared to extended- 
interval dosing [63]. The lack of significant differences in pulmo-
nary function, nutritional status, time to first pulmonary 
exacerbation after treatment course, and ototoxicity between the 
two dosing strategies may have been confounded by the use of 
concurrent antibiotics, primarily ceftazidime. However, less 
 nephrotoxicity (defined by a smaller rise in concentrations of serum 
creatinine and urinary renal biomarkers, such as N-acetyl-β-d glu-
cosaminidase and α-1-microglobulin) was demonstrated in chil-
dren receiving the extended-interval dosing strategy.

The Cystic Fibrosis Foundation supports extended-interval 
dosing as the preferred strategy for aminoglycosides [68]. 
Tobramycin 10 mg/kg/day administered once daily can be used 
empirically to achieve Cmax of 20–40 μg/mL, trough concentra-
tions of <1 μg/mL, and AUC24 of 60–120 mg h/L; and amikacin 
30–35 mg/kg/day, to target Cmax of 80–120 μg/mL, trough 
concentrations of <1 μg/mL, and AUC24 of 235 ± 110 mg h/L 
(total drug concentrations reported) [64]. These once-daily dos-
ing regimens achieve the PD index of Cmax/MIC ≥ 10 for high 
MICs, specifically of at least 2 μg/mL for tobramycin and at least 
4 μg/mL for amikacin. The clinical significance of targeted AUC 
monitoring for aminoglycosides requires further investigation. 
Dose fractionation studies indicate that AUC/MIC may be cor-
related to resistance development among P. aeruginosa isolates 
[60, 67].

While tobramycin and amikacin are the primary aminoglyco-
sides used to treat pulmonary infections caused by P. aeruginosa in 
cystic fibrosis, gentamicin is more widely used for the treatment of 
suspected or proven bacterial sepsis in neonates. Gentamicin is bac-
tericidal against Gram-negative bacteria, with synergy in combina-
tion with beta-lactams that can be documented in vitro (although 
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the defined clinical benefit to combination therapy is not well 
established). Gentamicin acts synergistically both in vitro and 
in vivo against most enterococci when combined with beta-lactam 
antibiotics. The PK of gentamicin in neonates are influenced by 
multiple factors, including age (gestational and postnatal, or post- 
conceptional), weight, and renal function. Individualized dosing 
strategies are especially advantageous in premature neonates since 
their drug PK are not always predictable and can be highly variable 
depending on gestational and postnatal age. In a multicenter study 
of neonatal intensive care units, individualized dose optimization, 
along with therapeutic drug monitoring, subjugated nomogram- 
based dosing in rapidly achieving therapeutic concentrations with 
reduction in both the need for gentamicin concentrations and dos-
ing adjustments [69].

The PD targets for gentamicin in neonates are Cmax of 
5–10 μg/mL for efficacy (assuming MIC ≤ 1 μg/mL) and trough 
concentrations <1–2 μg/mL to minimize toxicity [62]. “Once-a- 
day” dosing in neonates (or even 36–48 h in preemies) is logical 
since gentamicin’s half-life is prolonged due largely to their imma-
ture renal function and, to a lesser extent, increased Vd [61]. If 
once-a-day dosing achieves therapeutic peak concentrations while 
minimizing toxic trough concentrations, the need for frequent 
dosing and drug monitoring may be circumvented, which is con-
venient for neonates who usually receive gentamicin for sepsis 
pending culture results for a limited 48–72 h. One meta-analysis of 
11 randomized or quasi-randomized controlled trials (N = 574) 
compared once-a-day versus multiple-daily dosing strategies, both 
with initial loading doses, in neonates <28 days of life [62]. 
Although the efficacy for proven sepsis was similar, once-a-day dos-
ing significantly improved attainment of peak concentrations 
≥5 μg/mL and trough concentrations <2 μg/mL in neonates, 
especially those >32 weeks’ gestation. Ototoxicity and nephrotox-
icity, with the latter determined by changes in serum creatinine and 
renal biomarkers (including urinary beta-2-microglobulin and 
aminopeptidase), were also comparable between the once-a-day 
versus multiple-daily dosing strategies.

In children with febrile neutropenia due to cancer chemother-
apy or stem cell transplantation, gentamicin or tobramycin doses of 
6–10.5 mg/kg/day, depending on age, were required to achieve 
Cmax/MIC ~ 10 to treat infections caused by P. aeruginosa [70–
72]. Significant findings from these studies underscore the impor-
tance of age-based dosing (with higher mg/kg dose for younger 
children), the preference for once-daily (versus thrice-daily) admin-
istration to maximize efficacy and minimize nephrotoxicity, and 
the utility of loading doses to achieve therapeutic peak concentra-
tions early in the course of therapy (which may be beneficial in this 
population with minimal post-antibiotic leukocyte enhancement 
due to their immunocompromised status).
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The most concerning adverse effects that limit the clinical use 
of aminoglycosides are nephrotoxicity and ototoxicity. 
Nephrotoxicity occurs through the internalization and subsequent 
accumulation of aminoglycosides in the proximal renal tubular epi-
thelial cells. Exposure to high, intermittent drug concentrations 
using once-daily dosing, in contrast to the frequent exposure at 
low concentrations with multiple-daily dosing, elicits saturation of 
the uptake process to thereby increase excretion of the drug prod-
ucts that have not been internalized [60, 62]. Consequently, once- 
daily dosing decreases nephrotoxicity. This advantage of once-daily 
has been documented in prospective randomized trials and in one 
study that suggested a slower rate of increase in the urinary 
N-acetyl-d-glucosaminidase:creatinine ratio, which is a sensitive 
indicator of nephrotoxicity, using once-daily gentamicin dosing in 
neonates [60, 73, 74]. Furthermore, individualized PK dosing 
with therapeutic monitoring and drug discontinuation within 
9 days of therapy also minimizes the risk of nephrotoxicity [66, 73, 
75]. The occurrence of ototoxicity, which is caused by irreversible 
damage of cochlear and vestibular hair cells from the production of 
free radicals, is independent of the frequency of aminoglycoside 
administration [60, 76].

Vancomycin exhibits time-dependent bactericidal activity similar to 
beta-lactam antibiotics (Table 4). In contrast, vancomycin also 
inhibits bacterial growth after serum concentrations fall below the 
MIC, with this so-called post-antibiotic effect (PAE) lasting 0.7–
2.6 h for Staphylococcus aureus and 4.3–6.5 h for Staphylococcus 
epidermidis [77]. Using the PK-PD properties of vancomycin, 
improved clinical outcomes for invasive methicillin-resistant S. 
aureus (MRSA) infections have been correlated to an AUC/MIC 
ratio ≥ 400, which is a minimum concentration of 15–20 μg/mL 
when the MIC is 1 μg/mL in adults [78, 79]. However, two inde-
pendent studies using Bayesian estimation and Monte Carlo simu-
lations suggest lower trough concentrations of 8–10 μg/mL when 
the MIC is ≤1 μg/mL (evaluated using broth microdilution and 
E-test methods) for pediatrics >3 months of age [80, 81]. This 
reiterates the fact that “kids are not just small adults” and the 
urgent need for additional PK-PD studies specific for this vulnera-
ble population. In particular, PD data to associate improved out-
comes with attainment of vancomycin AUC/MIC ≥ 400 in 
pediatrics are insufficient [82].

Based on a population-based PK study evaluating sparse sam-
pling in a large cohort of 702 pediatric subjects >3 months old, 
important covariates contributing to vancomycin CL were weight, 
age, and serum creatinine, which cumulatively account for devel-
opmental and renal maturation [81]. The study investigators 
uncovered two significant findings: (1) vancomycin 60–70 mg/
kg/day was necessary to achieve 75 % PTA for AUC/MIC ≥ 400, 

5.3  Vancomycin
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depending on age, serum creatinine, and MIC distribution (which 
was determined using E-tests); and (2) targeted exposure using 
vancomycin AUC/MIC, compared with trough concentrations, is 
a more realistic target in children. Since vancomycin is eliminated 
primarily via glomerular filtration with some active tubular secre-
tion, a less frequent dosing at 15 mg/kg every 8 h (i.e., 45 mg/
kg/day) may be more appropriate as empiric dosing for older chil-
dren with acute renal insufficiency, who may require close moni-
toring since recovery of renal function may occur during therapy 
[83, 84]. Higher doses of 90–100 mg/kg/day did not achieve 
90 % PTA when >30 % of MRSA isolates had MICs > 1 μg/mL 
evaluated by E-tests, and produced excessively high AUCs of 840–
940 mg-h/L with concentrations exceeding 20 μg/mL [81]. This 
unwarranted and potentially toxic exposure is concerning in light 
of recent evidence to suggest the increased risks of nephrotoxicity 
when trough concentrations are ≥15 μg/mL and doses are 
≥10 mg/kg in children [85, 86]. Incorporating age-related devel-
opmental changes and MIC data are crucial to optimize vancomy-
cin use since PK studies in pediatrics (excluding neonates) 
correlated lower trough concentrations to achieve  AUC/
MIC ≥ 400 and PD data linking to clinical outcomes are 
minuscule.

Several population-based PK studies with Bayesian estimation 
have evaluated dose optimization of vancomycin in preterm and 
full-term neonates [87–89]. Depending on serum creatinine and 
post-menstrual age, maintenance doses ranging from 15 to 60 mg/
kg/day administered intermittently every 8–24 h, or as continuous 
infusions, have been suggested to achieve trough concentrations of 
15–20 μg/mL (up to 25 μg/mL targeted in some studies) [87–
90]. Notably, these studies did not evaluate PTA by AUC/
MIC ≥ 400, which is the PD target best linked to successful treat-
ment outcomes in adults based on limited data. The correlation 
between AUC/MIC and trough concentrations, with assessment 
of clinical benefits, should be evaluated in neonates, especially with 
recent evidence to suggest lower trough concentrations to achieve 
AUC/MIC ≥ 400 in pediatrics >3 months of age. Furthermore, 
the incidence of nephrotoxicity in neonates at higher trough con-
centrations has not been studied, albeit the risk appears minimal 
with low exposure [84]. While efficacy appears comparable to 
intermittent administration, continuous infusion has been investi-
gated in neonates in several studies and may offer a few advantages 
that have been reported in adults, including decreased risk of 
nephrotoxicity, early attainment of target concentrations, and 
reduced variability in the total daily dose [91, 92].

The inherent feasibility of monitoring trough concentrations 
in clinical practice is challenged by recent PK data to suggest that 
trough concentrations needed to achieve the PD vancomycin 
exposure target of AUC/MIC ≥ 400 in children differ from adults 
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[80, 81]. With little evidence to support targeting trough concen-
trations for treatment success in children, it is prudent to monitor 
vancomycin exposure by AUC (with MIC when available) since it 
is a more achievable target, and to prevent excessive dosing, fre-
quent dosing adjustments, and potentially adverse effects [80, 81, 
93]. The performance of the one-sample strategy (i.e., trough con-
centrations) for therapeutic drug monitoring to estimate AUC has 
not been well studied in children, despite its frequent use at pedi-
atric hospitals [94]. Using Bayesian analysis, a recent study of 138 
pediatric subjects demonstrated improved accuracy and precision 
using the two-sample strategy (i.e., both peak and trough concen-
trations), compared to trough concentrations alone, for AUC esti-
mations [95].

6  Overcoming Challenges to Pharmacokinetic-Pharmacodynamic Studies

The most conspicuous, inherent challenge of pediatric PK-PD 
studies surrounds the ethnics and logistics of obtaining blood 
 samples (encompassing both the number and volume) sufficient 
enough to accurately estimate and validate PK-PD parameters in 
this vulnerable population. Several measures may be implemented 
to overcome this challenge: sparse sampling, dried blood spot 
technique, and opportunistic study design. In contrast to the tra-
ditional intensive approach, sparse sampling reduces the number of 
blood draws, and, with the application of population-based model-
ing, still derive both individual and population PK estimates with 
inter-subject, intra-subject, and unexplained residual variabilities 
[96]. Sparse sampling is more appropriate and practical in pediat-
rics, with its reduced blood sampling albeit a requirement for a 
larger sample size; its application is appearing more in recently 
published studies [41, 46, 81, 95, 97].

Dried blood spot is a sampling technique that utilizes an 
ultralow volume (i.e., 30 μL of whole blood, which is 20 times 
lower than traditional venous or arterial samples) to evaluate the 
PK of drugs that are stable in this medium. In addition, dried 
blood spots eliminate the need for centrifugation or freezing of 
samples and measure drug concentration in whole blood. Using 
this technique, the estimates and precision of metronidazole PK 
parameters for premature infants were similar between plasma and 
dried blood spot samples [98]. Furthermore, the dried blood spot 
samples were 15 % lower than plasma. Limited pediatric PK studies 
currently utilize this technique [98, 99]. Future studies should 
explore this sampling strategy.

The opportunistic study design is attractive in pediatric research 
since it capitalizes on several aspects of standard clinical care. The 
opportunistic design may (1) employ a drug that is already pre-
scribed by clinical indication, (2) coincide blood collection for PK 
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samples with routine labs to minimize pricking, (3) utilize scav-
enged samples to maximize the use of drawn blood which would 
otherwise be wasted, and (4) obtain data on drug concentrations 
already measured by the clinical laboratory. In aggregate, this 
design curtails research-related costs, and improves parental con-
sent since these activities are part of routine care and thus per-
ceived as minimal risk. Opportunistic studies can provide 
preliminary data critical to the design of Phase I–III trials and 
enhance the dosing of currently marketed antimicrobial agents in 
children [46, 81, 100].

7  Conclusion

The fundamental physiologic and immunologic differences 
between pediatrics and adults produce variability in responses to 
antimicrobial agents, thereby potentially leading to undesired sub-
therapeutic and unanticipated toxic effects in pediatrics. This 
underscores the importance of understanding the physiologic and 
immunologic changes that occur with growth and development. 
Regulatory agencies are requiring more advanced antimicrobial 
PK-PD data for investigational drugs. Minimally, PK data are now 
required for pediatrics for any agent that seeks approval from the 
FDA for use in adults. However, PK/PD outcome data are virtu-
ally nonexistent in children. This dearth of PK-PD studies in pedi-
atrics is a serious challenge for rational drug dosing, emphasizing 
that adequate pediatric research is essential for the future.
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    Chapter 23   

 Pharmacodynamics and Obesity                     

     Manjunath     P.     Pai       

  Abstract 

   Five hundred million adults meet the current defi nition of obesity worldwide. This high global prevalence 
of obesity offers unique challenges to the selection of the optimal antimicrobial dose. Early phase clinical 
trials tend to exclude obese healthy volunteers, while late phase clinical trials are not adequately powered 
to identify potential differences in the clinical outcomes in this population. The interaction of obesity on 
antimicrobial directed pathogen–host response is also not well described. Hence, dose selection in this 
population relies on the desire to achieve pharmacokinetic bioequivalence across the clinical body weight 
distribution. Pharmacodynamic data supporting well-defi ned doses that optimize outcomes in the obese 
population are limited. Specifi c recommendations for antimicrobial dosing should be established through 
consensus guidance with endorsement from international societies that advocate for the appropriate use of 
antimicrobials.  

  Key words     Allometry  ,   Antibiotic  ,   Antimicrobial  ,   Body mass index  ,   Dosing  ,   Infection  ,   Weight  ,   Obese  , 
  Overweight  ,   Pharmacokinetics  

1        Defi nition   and Prevalence of Obesity 

 Obesity is currently defi ned based on a body mass index ( BMI     ) 
≥30 kg/m 2 , which is the weight of the person in kilograms divided 
by their height in squared meters [ 1 ]. An estimated 500 million 
(60 % female) adults meet this defi nition of obesity worldwide [ 1 ]. 
Figure  1  illustrates the top ten countries/regions of the world with 
the highest prevalence of obesity [ 2 ]. As evident from this chart, 
obesity is no longer a disease that is limited to developed nations. 
The Micronesian nations of Nauru, Tonga, Samoa, Cook Islands, 
Palau, and other federated states within this region have an adult 
prevalence of obesity that exceeds 50 % of their population. Egypt, 
Kuwait, Saudi Arabia, and the United Arab Emirates have rates of 
obesity that impact a quarter to a third of their adult population 
[ 2 ]. Sedentary lifestyles and access to energy-dense foods are rec-
ognized to be primary contributors to this explosion in the preva-
lence of obesity over the past generation [ 1 ]. In the USA, the adult 
prevalence of obesity appears to have stabilized at 35 % over the 
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past decade though the proportion of patients with extreme 
obesity (BMI ≥ 40 kg/m 2 ) continues to rise [ 3 ]. This later term 
“extreme obesity” is also referred to as “ morbid obesity  ,” categori-
cally defi ned as Class III obesity, and has taken additional defi ni-
tions such as “ super obesity  ” (BMI ≥ 50 kg/m 2 ) [ 1 ,  4 ,  5 ]. This 
shift in the adult weight distribution has clear consequences to our 
current methods of dose translation across body size. The average 
adult in the USA weighs 81 kg, and most adults are expected to 
exist within a 50–100 kg weight range [ 6 ]. To date, the heaviest 
human on record weighed 635 kg (1400 lb) [ 7 ]. So from a clinical 
perspective, the potential need to select the right dose of an 
 antimicrobial   for an infected patient that is up to eightfold larger 
than the average is a clear possibility but still an extreme reality. 
The more likely scenario in the clinical setting is to expect extremely 
obese adults between an approximately 100–250 kg range that are 
1.2–3.1-fold larger than the average adult.

2        Association of Obesity and  Infection   

 Obesity is associated with comorbidities such as type 2 diabetes 
(“ diabesity  ”) that can predispose these patients to worse clinical 
outcomes secondary to infection [ 8 ]. However, this correlation 
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between obesity and diabetes makes identifi cation of the indepen-
dent effects of obesity and infection diffi cult to tease out. 
Epidemiologic studies have found obesity to be a signifi cant risk 
factor of  post-surgical skin and skin structure infections (SSTIs)   
[ 9 – 16 ]. Case–control studies have demonstrated that the risk of 
developing cellulitis increase in patients that are obese [ 17 ,  18 ]. 
Pregnant obese women are more likely to have a Caesarean section 
for delivery and have a higher risk for developing a post-surgical 
SSTI [ 9 ]. Disrupted  macrocirculation and microcirculation  , 
decreased wound healing, and  lymphedema   are key physiological 
factors that may infl uence this association between SSTIs and obe-
sity [ 18 ]. Physical factors of high adiposity with skin-folding can 
lead to intertriginous skin barrier disruptions that provide a route 
for bacterial invasion [ 19 ]. 

 Extreme obesity compromises the ability to obtain  vascular 
access and respiratory intubation   that may be required emergently 
[ 20 ,  21 ]. This is particularly problematic during acute trauma 
where an emergent venous “cut down” procedure may be required 
to establish vascular access [ 22 ]. Obese patient require greater ele-
vation of their head, neck and shoulders to permit laryngoscope 
viewing during intubation [ 22 ]. These factors may contribute to 
the observation that critically ill trauma patients who are obese 
have a twofold increased risk of developing bloodstream and respi-
ratory tract infections [ 23 ]. Although this is the case, obesity may 
not be a negative risk factor for sepsis-related outcomes and mor-
tality. Trends for a lower risk of mortality have been seen as a func-
tion of  increasing    BMI   strata [ 24 – 26 ]. However, an explanation 
for this improved probability of survival is unclear and is part of the 
commonly referred to “obesity paradox” [ 27 ]. 

 Despite this lack of  clear   association between obesity and 
 sepsis- related mortality  , the adipose tissue is increasingly recog-
nized to contribute to the formation of various  infl ammatory 
mediators   such as the adipokines [ 28 ]. Leptin, adipokine, resistin, 
omentin, and visfatin are key  adipokines   that have been shown to 
contribute to tissue-level cross talk between  adipocytes and leuco-
cytes   [ 29 ]. Altered  T-cell proliferation  , reduced macrophage dif-
ferentiation, decreased natural killer cell activity, and decreased 
antigen presentation of dendritic cells have been documented as 
potential consequence of altered adipokine secretion [ 28 ]. The 
potential  pro-infl ammatory effects   of obesity and resultant poor 
outcomes were documented during the 2009 H1N1 infl uenza 
pandemic [ 30 ]. Approximately 50 % of adults hospitalized in 
California during the 2009 H1N1 infl uenza pandemic were obese 
[ 31 ]. Additional studies have demonstrated obese patients hospi-
talized with the H1N1 infl uenza strain had longer lengths of stay 
when admitted to the intensive care unit [ 32 ]. A potential 
  age- dependent effect   has been suggested by one epidemiologic 
study, where obesity was identifi ed as a risk factor for poor H1N1 
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infl uenza related outcomes among adults <60 years of age [ 33 ]. 
An animal model of diet-induced obesity has also demonstrated 
higher rates of mortality in obese relative to lean animals infected 
with the H1N1 strain [ 34 ]. Similar to this poor-prognostic profi le 
between obesity and infl uenza, the prognosis is worse in obese 
patients with  chronic Hepatitis C virus (HCV) infection   [ 35 ]. 
 Hepatic steatosis   and fi brosis is more common in obese nondia-
betic compared to normal weight patients with HCV [ 36 ]. 
Response to  antiviral therapy   has also been shown to be impaired 
in obese relative to nonobese patients with HCV [ 36 ]. Taken 
together,    we are unlikely to establish a clear correlation between 
obesity and all forms of infection related morbidity and mortality. 
There are likely to be disease- related, sex-related, age-related, and 
potentially polymorphic differences in the adipokine-related genes 
that contribute to obesity- related effects on infection outcomes 
[ 37 ]. In addition to these pathogen and host related factors, poten-
tial alterations in antimicrobial pharmacology could impact the 
outcomes of obese individuals with active infections.  

3     Current  Antimicrobial Dosing Paradigm   in Obesity 

  Antimicrobials are   currently dosed by three major approaches 
when considering body size [ 38 ]. The underlying basis for dose 
modifi cation for body size (if necessary) is the achievement of bio-
equivalent exposure of the antimicrobial across the body size dis-
tribution [ 38 ]. From this perspective, let us consider the dosing 
paradigms. The fi rst is the use of fi xed-based dosing that does not 
include dose modifi cation for body-size, an example of such an 
approach would be the dosing of levofl oxacin (e.g., 750 mg/day) 
[ 39 ]. The second is the application of a weight-stratifi ed fi xed-
dosing approach, such as the use of 1000 mg dose of ribavirin in 
patients <75 kg and 1200 mg in patients ≥75 kg [ 40 ]. The third is 
weight based dosing that can include a fi xed mg/kg dosing recom-
mendation irrespective of body size, such as use of 10 mg/kg of 
telavancin based on total body weight [ 41 ]. From a drug dosing 
paradigm perspective, use of a fi xed-dose could theoretically lead 
to under dosing and weight-based (mg/kg) dosing could lead to 
over dosing in extremely obese patients [ 38 ]. Table  1 , includes a 
summary of key antimicrobial classes and agents that are dosed on 
a fi xed and weight basis in adults.

   Some drugs have both weight and fi xed dosing recommenda-
tions that can be a cause of confusion in clinical practice. A key 
example of this dosing paradigm contradiction is vancomycin. The 
vancomycin product label recommends doses that are on a fi xed- 
dose basis, 500 mg every 6 h or 1000 mg every 12 h [ 42 ]. However, 
treatment guidelines recommend that vancomycin doses should be 
based on a 15–20 mg/kg per dose basis [ 43 ]. The fortunate 
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availability of therapeutic drug monitoring (TDM) to modify this 
empiric recommendation makes this contradiction less of an issue 
for vancomycin compared to drugs that do not have accessible 
TDM. The more important issue at hand is whether obesity leads 
to alterations in the concentration–time profi le that  will   adversely 
affect the pharmacodynamic profi le  of   the antimicrobial.  

4     Obesity  and Pharmacodynamic Bioequivalence   

 The antimicrobial concentration–time profi le is often character-
ized through measurement of plasma or serum concentra-
tions after the administration of single or multiple intravenous 
or oral antimicrobial doses. Chapter   1     reviews the general 

   Table 1  
  Summary of  the   typical dosing paradigm for major antimicrobial classes and individual drugs for 
drug classes with limited representative agents   

 Fixed doses  Fixed and weight based doses  Weight based doses 

 Beta-lactams  Vancomycin  Aminoglycosides 

 Tetracyclines  Trimethoprim/sulfamethoxazole  Polymyxin (B and E) 

 Glycyclines  Antituberculosis agents  Teicoplanin 

 Macrolides  Voriconazole  Quinupristin-Dalfopristin 

 Lincosamides  Acyclovir  Daptomycin 

 Nitroimidazole  Ganciclovir  Telavancin 

 Oxazolidinone  Ribavirin  Polyenes 

 Dalbavancin  Flucytosine 

 Dapsone  Foscarnet 

 Fluoroquinolones      

 Nitrofurantoin 

 Fosfomycin 

 Triazoles 

 Valacyclovir 

 Valganciclovir 

 Oseltamivir 

 NRTIs 

 NNRTIs 

 Protease inhibitors      
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pharmacokinetic and pharmacodynamic (PK-PD) principles that 
are used to optimize drug dose selection by antimicrobial class. We 
broadly expect antimicrobials to follow concentration-dependent 
or time- dependent PK-PD [ 44 ]. Concentration-dependent antimi-
crobials are optimized by ensuring that the maximum-concentra-
tion ( C  max ) and the closely correlated parameter of area under the 
curve (AUC) achieve a certain target value. Time-dependent anti-
microbials are optimized by ensuring that the concentration profi le 
remains above a concentration threshold for a specifi ed duration of 
the dosing interval. Classifi cation of specifi c antimicrobials based 
on these  PK- PD indices   is detailed in an excellent review [ 45 ]. 

 From this perspective,  an   increase in the volume of distribution 
of a drug in an obese person without a resultant change in drug 
clearance will lead to a lowering of the  C  max  but no signifi cant 
change in the AUC. This aforementioned change in Vd but not 
CL will lead to an extension in the elimination half-life. Figure  2  
illustrates the expected serum concentration–time profi le in a nor-
mal (60 kg) and obese (120 kg) individual if the Vd doubles but 
the CL does not change. So, in the case of a time-dependent anti-
microbial, the percent time above a threshold may actually increase 
in the setting of extreme obesity. Figure  2  includes an arbitrary 
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threshold of 4 mg/L, which shows concentrations above this 
value for 100 % of dosing interval in the obese individual but not 
the normal weight individual. This may not be apparent with single 
dose administration but will be the case with multiple dose admin-
istration. Studies that have looked at the use of beta-lactams for 
surgical prophylaxis have shown lower concentrations that neces-
sitate doubling the dose for example [ 46 – 49 ]. Although this may 
be reasonable because surgical prophylaxis often includes a single 
dose or limited term use, these perceived pharmacodynamic ben-
efi ts may not extend to multiple dose administration. Alternatively, 
the potential role of a loading dose in obese individual followed by 
the same maintenance dose (as normal weight) could achieve phar-
macodynamic bioequivalence.

   Alternatively, Fig.  3  illustrates the similar type of case as Fig.  2  
but now assumes the Vd remains the same, while the CL increases 
by 50 % (typical scenario). Under this scenario the time below the 
threshold concentration declines and the AUC is lower in the 
obese compared to the normal weight scenario. This scenario rep-
resents a potential dosing problem for both concentration- 
dependent and time-dependent antimicrobials. Under this 
scenario, pharmacodynamic bioequivalence between the obese and 
normal weight individual can be achieved by increasing the dose 
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from 600 to 900 mg (50 % increase) and maintain the dosing 
interval (every 12 h) that may be desirable for a concentration- 
dependent agent. Alternatively, the dose could be maintained at 
600 mg and the frequency of administration increased to every 
8 h for a time-dependent agent.    The integrated serum concentra-
tion–time profi le (i.e., AUC) will be correlated to the tissue 
 concentration–time profi le. However, a key limitation of this form 
of assessment of pharmacodynamic bioequivalence is that it assumes 
that the serum concentration profi le refl ects the tissue- concentration 
profi le. The shape of the tissue concentration–time profi le in poorly 
perfused tissue like the adipose may not be similar to concentra-
tions in the bloodstream [ 50 ,  51 ]. This is relevant because the 
optimal drug PK-PD profi le must be achieved at the target site(s) 
of infection.

5        Obesity and Antimicrobial Tissue  Concentrations   

 Collection of samples to measure tissue concentrations of antimi-
crobial at the site of infection is not easy to accomplish in the clini-
cal setting. The most accessible tissue for such evaluation includes 
the skin and  skin structure tissue  , adipose tissue and muscle. Direct 
tissue collections from such sources may include sample collection 
during surgical procedures using tissue samples that are to be 
discarded [ 52 ]. These discarded samples may represent  necrotic 
material   that has been excised, or samples that include blood and 
other tissues, and represent evaluation for a single point in time. 
Hence,  direct soft tissue evaluation   for concentration–time infor-
mation requires sampling from multiple patients, cannot distin-
guish tissue form  vascular and interstitial concentrations  , and is 
confounded by signifi cant heterogeneity in the sampling method-
ology [ 52 ]. 

 The most viable alternative that has emerged over the last three 
decades includes the use of  microdialysis   [ 53 ]. This procedure 
requires surgical implantation of a microprobe that has a  semiper-
meable membrane   of variable porosity into the tissue of interest. 
 Dialysis fl uid   can then be passed through the inlet of the probe at 
a relatively slow rate of infusion and sample collected through the 
outlet. Multiple  protocols   exist to calibrate the probe for each indi-
vidual implantation, and once established can be used to translate 
the dialysate concentration to the tissue interstitial concentration. 
As expected from this procedure, the dialysate permits only free 
(unbound)  drug concentration measurements   and so comparison 
of these microdialysis measurements should be made to free 
serum/plasma concentrations for fair comparison. This approach 
has been used to characterize the tissue concentration time profi le 
antimicrobials in the skin and skin structure of obese and diabetic 
patients. 
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 Brill and colleague recently completed a noteworthy study of 
subcutaneous pharmacokinetics of  cefazolin   in eight morbidly 
obese (107–175 kg) and seven nonobese patients (72–109 kg) 
who received a single 2 g intravenous bolus injection dose prior to 
surgery [ 54 ]. A subcutaneous  microdialysis   catheter was implanted 
and calibrated 3 h prior to the surgery and used to sample the 
interstitial space for 4 h  post cefazolin dosing  . The area under the 
time-unbound concentration curve ( f AUC 0–4 h ) was signifi cantly 
lower in the microdialysate samples but not the plasma samples 
when comparing the morbidly obese to normal weight subjects. 
As a consequence the subcutaneous tissue penetration ratio 
( f AUC 0–4 h tissue / f AUC 0–4 h plasma ) was 0.70 (0.68–0.83) in the mor-
bidly obese compared to 1.02 (0.85–1.41) in the nonobese 
patients [ 54 ]. These results suggest that potential bioequivalence 
demonstrated by measurement of plasma concentrations may not 
be refl ective of target tissue concentrations that are relevant for 
the effective surgical prophylactic use of  cefazolin  . The clinical 
implications of these results remain to be defi ned. However, mod-
eling and simulations generated from these data suggest that the 
probability of target attainment declines sharply against potential 
pathogens with MIC values >2 mg/L especially if surgical proce-
dures are likely to exceed a 3 h duration of time. A review of the 
population pharmacokinetic model parameters suggests that the 
CL is not dependent on weight, while weight impacts the Vd. 
However, this relationship between Vd and weight is not propor-
tionate such that a 150 kg patient is expected to have an approxi-
mately 50 % higher value than a 75 kg patient. Hence this change 
in the PK profi le of cefazolin may more closely match the scenario 
illustrated in Fig.  2 . The impact of obesity may be relevant with 
the fi rst dose (surgical prophylaxis) but may not be clinically rele-
vant with multiple doses (treatment of SSTI). Thus, clinical prac-
tice guideline recommendations to consider use of a 3 g dose of 
cefazolin in patients’ ≥120 kg and consideration for redosing after 
4 h from the initial dose is well founded [ 55 ]. 

 Similar to this study, evaluations of  cefoxitin   abdominal 
subcutaneous tissue concentrations are lower in obese relative to 
nonobese volunteers and patients [ 47 ].  Microdialysis   data dem-
onstrate  superimposable subcutaneous cefoxitin concentration  –
time profi les in obese versus nonobese volunteers even though 
obese patients received twice the dose (2 g versus 1 g). 
Furthermore, direct tissue sampling at the time of surgical inci-
sion and closure were lower in the obese relative to nonobese 
patients [ 47 ]. These data support the use of a 2 g dose of cefoxi-
tin in obese adult patients for surgical prophylaxis. Contrary to 
these fi ndings, the tissue concentration–time profi le of  ertape-
nem   has not been shown to be vastly affected in obese versus 
nonobese patients [ 56 ]. Dose recommendations above 1 g has 
been suggested for moderately susceptible strains associated with 
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diabetic foot infections but have not been recommended by 
guidelines for surgical prophylaxis [ 57 ]. 

 Antimicrobial tissue concentrations for  non-skin and skin 
structure sites   have not been evaluated systematically among obese 
patients. As an example, a literature search for key terms “epithelial 
lining fl uid” and “obese” revealed no relevant results using 
“PubMed” or “Google” as key search engines. Hence the poten-
tial effects of obesity on pulmonary tissue penetration of antimi-
crobials have not been characterized. This is relevant because 
extreme obesity is known to adversely impact the mechanics of 
breathing [ 58 ]. Severely obese patients have been shown to have 
reduced  end-tidal functional residual capacity   and expiratory 
reserve volume in the upright and supine positions [ 58 ]. These 
altered mechanics can contribute to an increased risk of  aspiration 
pneumonia   especially post-surgically for gastric bypass or lap-band 
procedures that are performed as surgical weight-loss intervention 
[ 59 ]. Thus there is a paucity of target-site tissue concentration data 
in the extremely obese population. Hence  dose selection   based on 
inference from serum/plasma concentration–time data for non- 
bacteremia related infections should recognize this potential limi-
tation when comparing obese to nonobese patients.  

6     Obesity and Initial Dose Selection 

 We expect obese patients to require larger doses than average 
sized patients but that these doses are not necessarily proportion-
ate to their total body weight [ 38 ]. So the  empiric approach   to 
initial dose selection may occur through consideration of  body 
size  .  Weight and height   are the measured body size parameters 
that can be translated into alternate body size descriptors such as 
adjusted body weight, lean body weight, or body surface area 
[ 38 ]. These alternate body size descriptors are semantically differ-
ent but serve a singular purpose as scalars. They prevent the com-
putation of values that are more than 2.5-fold different between a 
50 kg patient and a 250 kg patient (that is fi vefold different) [ 38 , 
 60 ]. These body size descriptors prevent computation of doses 
that would be erroneously high in an obese individual if they were 
dosed on total body weight. For example, a 150 kg (69 in.) male 
patient would have an adjusted body weight of approximately 
100 kg. So dosing a 75 kg patient based on a 10 mg/kg basis 
would yield a dose of 750 mg, and 1000 mg in the 150 kg patient 
(dosed on 100 kg adjusted body weight basis). So the 150 kg 
patient will receive a dose that is 33 % higher than the average 
dose calculated in a 75 kg patient. 

 This alternate  body size descriptor method   of dose scaling 
would be comparable to calculating the dose by  allometry      [ 61 ], 
where the dose could be computed based on:
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   Obese Patient Dose = Average Dose × (Obese Patient Weight/
Average Weight)  β      

 Where  β  is often a value of 0.5–0.75 [ 38 ]. So in the above 
scenario an average dose of 750 mg (75 kg patient) would be 
translated to an initial dose of 1060–1260 mg. For an orally admin-
istered drug, the dosage will likely be based on the available formu-
lation, while for intravenously administered drugs the vial size and 
drug cost (use two 500 mg vials instead of wasting a third vial to 
deliver the 60 mg marginal dose) will be factored into the dose 
selection. The third alternative is to create dosing recommenda-
tions that include a range such as 7.5–10 mg/kg with the caveat 
that lower mg/kg doses are required in bigger patients. So if 7.5 
mg/kg were selected instead of 10 mg/kg, the dose in the 150 kg 
patient would be computed as 1125 mg (well within the expected 
range). 

 As shown above, a reasonable approach would be to use the 
 empiric population average dose   (that is expected to be based on a 
60–90 kg individual) and increase that dose by at least 50 % (40–
70 %) for an individual that is up to twice that size (120–180 kg). 
So an average initial  antimicrobial dose   of 500 mg could be empiri-
cally and reasonably translated to 750 mg in an extremely obese 
patient. If a patient is up to three times (180–270 kg) the size of 
an average patient then doubling the average dose (1000 mg) 
would be reasonable. The aforementioned dose increment of 
 cefazolin   from 2 to 3 g is a clear example of this principle [ 56 ]. The 
subsequent maintenance doses require consideration of  physio-
logic clearance mechanisms   that may be patient and extrinsic factor 
dependent. Ultimately, body size may explain some but not all of 
the interindividual variability of a given PK parameter [ 62 ]. 
However, in the absence of alternate objective clinical measures, 
initial dose selection based on this general approach is not an 
unreasonable starting point.  

7     Obesity and Maintenance Dose Selection 

 Selection of an optimal maintenance dose of an antimicrobial is 
dependent on individual  drug CL  . Interindividual variability in 
drug CL is a function of numerous variables such as age, sex, 
weight, kidney function, liver function, drug–drug interactions, 
drug–food interactions, and pharmacogenomic polymorphisms 
[ 63 ]. More recently, the  gut microbiome   (or more broadly the 
metagenome) is recognized to infl uence  drug metabolism and 
body size   that may impact dose selection [ 64 ,  65 ]. As listed above, 
these covariates can be delineated as  modifi able   (e.g., kidney func-
tion) and non-modifi able (age, sex, pharmacogenomics polymor-
phisms, etc.) parameters. Estimates of kidney function incorporate 
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the parameters of age, sex, and weight and so serve as composite 
variable that often predicts the CL of antimicrobials that are elimi-
nated by the kidneys [ 62 ].  Liver function   is a more diffi cult param-
eter to objectively quantify and so closer attention is required when 
considering the antimicrobial metabolic pathway. To date, obesity 
has primarily been shown to affect the  cytochrome P450 (CYP)   
2E1 isoenzymes system that is not a major pathway of drug metab-
olism [ 66 ,  67 ]. Higher  drug CL   values have been documented 
with other CYP systems but this average change is not substantially 
above that expected from simple allometric scaling [ 67 ]. Higher 
drug CL values have been shown for substrates of CYP2C9 and 
CYP2C19 in obese subjects [ 67 ]. However, these  isoenzymes sys-
tems   are known to demonstrate signifi cant genetic polymorphisms 
that make the association between obesity and the function of 
CYP2C9 and CYP2C19 spurious [ 68 ]. 

 Let us take the example of the  antifungal voriconazole  , an 
agent with highly unpredictable PK that is metabolized in part by 
CYP2C19 [ 69 ]. Several loss of function (LoF *1 to *10) alleles 
and a one gain of function (GoF *17) allele has been reported in 
the literature to date [ 70 ]. Recent surveillance of the “normal” or 
the population dominant profi le among white ( n  = 357), African 
American ( n  = 149), Hispanic ( n  = 346), and Ashkenazi Jewish 
( n  = 342) patients indicated that 39–58 % have the CYP2C19*1/*1 
genotype [ 70 ]. About 24 % of individuals in this survey carried a 
*17 allele (extensive metabolizers) and 3.1 % carried two *17 
alleles with no defi ciency alleles (ultrarapid metabolizers) [ 70 ]. As 
expected, the exposure of voriconazole for a given dose will be 
signifi cantly lower in individuals with CYP2C19 GoF alleles rela-
tive to those with LoF alleles. Population PK analysis of voricon-
azole has shown that current dosing regimens result in 
subtherapeutic exposures in patients that do not have  CYP2C19 
LoF alleles   [ 71 ]. The dosing of this agent is currently recom-
mended based on weight and as a fi xed dose regimen [ 72 ]. Body 
size has no direct relationship to the CYP2C19 phenotype hence 
dosing on this parameter cannot ensure adequate exposure. Obese 
patients should not have dose adjustments made to voriconazole 
simply on body size [ 72 ]. Similarly, simply characterizing an indi-
vidual genotype does not guarantee a predictable phenotype in the 
clinical milieu of  drug–drug interactions  . As an example, omepra-
zole is a potent inhibitor of CYP2C9 and CYP2C19 that can boost 
the concentrations of voriconazole in patients that may have 
CYP2C19 GoF alleles to essentially have a profi le that is consistent 
with the “normal” wild-type phenotype [ 73 ]. Hence, the  “essential 
role of  TDM  ” is now recognized as the only way to ensure that the 
maintenance dose of  voriconazole   is correct in any given patients 
irrespective of their body size [ 71 ]. 

 In contrast to liver function assessment,  kidney function   can be 
objectively quantifi ed to provide an estimate of the  glomerular 
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fi ltration rate (GFR)  . Drug clearance mechanisms are also depen-
dent on  renal tubular secretion and reabsorption   [ 74 ]. Various 
renal tubular transporters of the solute like carrier and  ATPase 
Binding Cassette   families have been identifi ed but their role and 
functional changes in the setting of obesity are not well known 
[ 75 ,  76 ]. To date limited infl uence of obesity on renal tubular 
transport has been shown relative to the more easily measurable 
effects of obesity on  GFR   [ 68 ,  69 ]. Tubular secretion (organic 
anion transporter) of the activated form of the antiviral agent osel-
tamivir (carboxylate metabolite) plays a major role in the elimina-
tion of this agent through urine [ 77 ]. Several studies have now 
shown that the CL of this agent is not enhanced in obese adults 
[ 78 – 81 ]. This is consistent with the observation in animal models 
of diet induced obesity that have shown reduced organic anion 
transport in the liver but not the kidneys [ 82 ].  Kidney biopsy data   
from obese (non-diabetic) subjects show a 94 % higher Bowman’s 
space volume, and a 33 % higher cross-sectional area of the proxi-
mal tubular epithelium [ 83 ]. These changes in renal histology can 
be attributed to  glomerular hyperfi ltration   in the extremely obese 
population. In these comparisons the average GFR is 1.62-fold 
higher despite an approximately twofold change in body size 
(137 kg versus 70 kg adult) that is consistent with  allometry      [ 84 ]. 
Hence scaling kidney function to total body weight will overesti-
mate the GFR in obese patients [ 60 ]. 

 Similar to selection of alternate body size descriptors to dose 
antimicrobials, these descriptors have been used to scale the esti-
mate of kidney function [ 60 ]. A single point measurement of the 
endogenous  biomarker serum creatinine   is used to estimate  GFR   
(staging disease) or  creatinine clearance (CLcr)   for drug dosing. 
The critical point to recognize is that use of serum creatinine in 
this manner leads to a cross-sectional “estimate” of kidney func-
tion even if urine is collected to “measure” CLcr. Measurement 
and translation of serum creatinine to CLcr relies on the major 
assumption that the rate of production and rate of elimination of 
this byproduct of  skeletal muscle metabolism   is under homeostasis. 
Patients that are acutely infected or have had traumatic injuries are 
not under a stable homeostatic state. As a consequence translation 
of serum creatinine to CLcr is fundamentally limited. This point 
estimate of kidney function is a snapshot in time of an estimate of 
kidney function that may or may not refl ect the evolving kidney 
function in an acutely ill patient. 

 With this point in mind, clinical trials that ultimately defi ne the 
dose of an antimicrobial rely on a population level defi ned dose 
that should maximize the probability of effect and minimize the 
probability of toxicity. Dose modifi cation for kidney function is 
typically based on the  PK evaluation   of a cohort of non-infected 
individual with renal impairment [ 74 ]. This method of study leads 
to the dose recommendations that may suggest dose reduction 
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when the point estimate of CLcr is below a specifi c threshold such 
as <60 mL/min. So as an example a dose of 250 mg may be 
recommended in patients with CLcr <60 mL/min to match the 
average AUC in adults with CLcr ≥60 mL/min dosed with 500 
mg/day [ 74 ]. The mathematical model that often relates CLcr to 
drug CL can be a nonlinear (power function) or a linear function 
(slope and intercept). The relationship of CLcr to  drug CL   is con-
tinuous but is stratifi ed into categories by PK modelers to simplify 
the dose selection process [ 74 ]. Unfortunately, these models are 
not used to project doses above the average range, i.e., should the 
dose be increased for a sub-population of patients with CLcr >120 
mL/min as an example? If obese patients have higher  GFR   or if 
this renal function augmented during acute illness should they not 
require higher doses [ 85 ,  86 ]? The answer is obviously yes [ 87 – 89 ]. 
The problem is that we lack clinical tools such as TDM or systems 
to measure (and not estimate) GFR with exogenous substrates to 
make that judgment for an individual patient. 

 As a consequence the maintenance dose that is selected for a 
given patient should be based on the acuity of illness, type of infec-
tion, and clinical judgment on the evolving nature of the medical 
case. If the patient is critically ill, then the risk of preventing under-
exposure outweighs the risk of overexposure. The potential degree 
of renal function augmentation could be discerned through alter-
nate means. Research groups have shown that  aminoglycoside CL   
closely refl ects GFR [ 90 ,  91 ]. Because TDM is widely applied to 
dose aminoglycosides, the information gained from this assessment 
could serve as a pharmacologic biomarker of augmented kidney 
 function  . This approach has recently been applied to improve the 
dosing of beta-lactams by using information gained from TDM of 
amikacin in patients treated in the Intensive Care Unit setting 
[ 92 ]. In the absence of TDM,  pharmacologic biomarkers  , easily 
measurable responses, or product label guidance, the selection of 
the maintenance dose in an obese individual is left to clinical 
intuition. 

 In the case of an  SSTI   such as cellulitis, a lack of clear response 
within 48–72 h of therapy would prompt clinical consideration of 
the use of higher maintenance dose or an alternate agent. As an 
example, selection of a 600 mg every 8 h regimen of  linezolid   is 
reasonable if an obese adult does not appear to be responding after 
48 h of therapy at an acceptable rate with the standard 600 mg 
every 12 h regimen. We do not perform  TDM   to optimize the 
dose of linezolid because an assay to measure this agent is not read-
ily available (as is the case for most drugs). Ironically, population 
PK models that have evaluated linezolid have demonstrated that 
the interindividual variability in the PK of this agent is far greater 
than that observed with vancomycin and aminoglycosides that 
suggests TDM may be necessary [ 93 ]. Similarly, selection of higher 
weight based regimens of agents such as daptomycin will in theory 
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lead to higher exposures in obese patients [ 87 ]. Recent data suggest 
that the CL of  daptomycin   may be augmented and return to a 
“normal” state over time in the critically ill [ 87 – 89 ]. The presence 
of such a physiologic phenomenon would imply that the mainte-
nance dose should be temporarily increased for the fi rst 72–96 h 
and then returned to normal doses after this period [ 88 ,  89 ]. 
Evaluation of this titrated maintenance dosing strategy is often not 
studied through prospective clinical trial design. However, it rep-
resents an important consideration for drug dosing that is inde-
pendent of body size as the sole consideration of  antimicrobial   
dose selection.  

8     Obesity and Specifying Antimicrobial Dosage Recommendations 

  Obesity   is not recognized by regulatory bodies as a “special popu-
lation” to mandate Phase I pharmacokinetic studies in this popula-
tion to ensure that the dosing paradigm is correct [ 38 ,  94 ]. 
Additionally, specifi c guidelines to mandate post hoc analysis of 
Phase 3 studies that likely include obese relative to nonobese study 
participants do not currently exist [ 38 ]. Hence a potential signal 
for poor outcomes (safety or effi cacy) in this population may not 
be apparent until the antimicrobial is used in the general popula-
tion of obese patients. This should be unacceptable to the public 
because at least a third of the adult population meet the defi nition 
of obesity [ 3 ]. This issue is not limited to antimicrobials and per-
haps is of greater concern for agents with a low  therapeutic index   
such as cancer chemotherapy agents and anticoagulants [ 38 ]. 
Hence specifi c dose recommendations that may be derived from 
small pharmacokinetic studies are useful to identify a “signal” but 
cannot refl ect the full picture that would be derived from large 
prospective randomized controlled trials. 

 Given that this review is focused on antimicrobials, we should 
refl ect on the key point that few novel antibiotics have been intro-
duced in the USA since 1980. These  novel antibiotics   include line-
zolid, telithromycin, ertapenem, daptomycin, doripenem, 
tigecycline, telavancin, ceftaroline fosamil, fi daxomicin, and beda-
quiline [ 95 ]. 

 Currently, product label recommendations for dosing of these 
newer agents in obesity only exist for  daptomycin  , where no spe-
cifi c adjustment for obesity is recommended. However, the  popu-
lation PK model   that is the basis of the dosing of this agent at a 4 
mg/kg basis did not demonstrate an independent relationship 
between  drug CL and weight   [ 96 ]. The clearance of daptomycin 
was higher in patients with active infection relative to healthy vol-
unteers and this relationship was modeled in part as a function of 
body temperature. Literature generated post-approval of this agent 
has shown: (1) the CL of this agent to not increase in proportion 
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to total body weight; (2) the CL of this agent may be altered during 
acute illness; and (3) use of a fi xed dose may reduce interindividual 
variability in daptomycin AUC than weight based dosing [ 89 ]. 
The natural solution to correct this potential mislabeled approach 
to dosing daptomycin would be the prospective comparison of a 
fi xed dosing regimen to weight based dosing. However, there is no 
incentive to a manufacturer to retract a specifi c dosing paradigm 
especially when the patent life of that agent is likely to sunset before 
this information enters the public space. 

 Very similar to this discordant dosing scenario is the case of 
 telavancin dosing  . In preclinical trials of telavancin, doses of ≥50 
mg/kg/day in rats and of ≥25 mg/kg/day in dogs were associ-
ated with renal injury [ 97 ]. These doses in animals represented a 
human dose equivalent of 8 mg/kg/day (allometry based on the 
rat) and 13.5 mg/kg/day (allometry based on the dog) that is well 
within the currently approved human dose of 10 mg/kg/day. 
These projections led the US  FDA clinical pharmacology   reviewer 
to conclude, “The signifi cant nonclinical toxicity fi ndings (renal, 
hepatic, and reproductive toxicities) observed with systemic 
exposure levels to the drug similar to those seen in clinical studies 
suggest that clinical use of the drug may not be safe” [ 97 ] Given 
that this drug is dosed on  body weight  , dosing obese patients on a 
10 mg/kg/day basis should lead to higher exposures because drug 
CL does not increase in proportion to total body weight.  Post hoc 
analysis   demonstrated that renal events occurred at a rate that was 
approximately threefold higher in patients with  SSTI   treated with 
telavancin if their BMI ≥ 35 kg/m 2  compared to patients  with 
  BMI < 35 kg/m 2  [ 98 ]. Higher rates of renal adverse events have 
also been observed in clinical practice, and the potential basis for 
this observation has been published [ 99 ,  100 ]. Despite clear 
evidence to suggest that  telavancin dosing   may not be PD bio-
equivalent when dosed on a weight basis in obese adults, no fur-
ther studies or changes in the labeling of this agent have occurred 
since its regulatory approval. An incentive to mandate a labeling 
change or further studies can only occur through public advocacy 
or from societies responsible for establishing guidelines for  drug 
dosing   in the public interest [ 38 ]. 

 Several reviews exist in the literature on the dosing of drugs in 
obesity including specifi c reviews on antimicrobials [ 66 ,  67 ,  101 –
 103 ]. Over the past decade, specifi c studies have been performed 
to characterize the PK of antimicrobials in this population [ 66 , 
 67 ]. These studies have involved the evaluation of small cohorts of 
healthy volunteers and have in large part supported and in some 
cases challenged the existing  dosing paradigm  . Whether or not 
these studies are suffi cient to be translatable from healthy obese 
volunteers to infected obese patients is less clear. Further work in 
this domain is clearly needed to ensure that dosing recommendations 
that are suggested in this population are based on a systematic 
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evaluation of the data to date that integrate outcome related 
information [ 104 ]. A specifi c consensus panel of experts that can 
critically review the available literature in this domain should be 
convened to establish dosage recommendations for specific 
antimicrobials in this now common population of  obese 
patients  .  

9     Summary and Future Directions 

 Obesity is a global phenomenon that has exploded in prevalence 
due to increased access to energy rich diets and sedentary lifestyles. 
This modifi cation in the human weight distribution has directly 
impacted our dosing paradigm which in the case of antimicrobials 
has in part been based on weight. We expect obese patients to 
require larger doses but recognize that defi ning maintenance doses 
on total body weight to not be bioequivalent by PK-PD analysis. 
An array of alternate body size descriptors have been developed 
over time to correct for this overestimation problem with total 
body weight dosing. These body size descriptors obey principles 
that are aligned with simple allometry. A universal approach to 
antimicrobial dosing cannot be established because the pharmaco-
dynamic characteristics of the agent may or may not be signifi -
cantly impacted by body size. Most product labels do not provide 
guidance for antimicrobial dosing in obesity. Clinical trials with 
newer antimicrobial agents are likely to include or have included 
obese patients that create an opportunity to model and simulate 
alternate dosing approaches in this population. Specifi c recom-
mendations for antimicrobial dosing can only be established 
through consensus guidance with endorsement from international 
societies that advocate for the appropriate use of antimicrobials.     
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    Chapter 24   

 Drug Development Process and Regulatory Science                     

     Evelyn     J.     Ellis-Grosse      and     Jogarao     Gobburu     

  Abstract 

   The pursuit of antimicrobial drug development has been met with reluctance by many large pharmaceuti-
cal companies. In part, this has been due to the enormous resources required to meet regulatory standards, 
the risk of failure, and the current perception of regulatory uncertainty. This comes at a time when rates of 
antimicrobial resistance are on the rise across the globe, and there is a critical need for antimicrobial ther-
apy. In this review, emphasis has been placed on the regulatory incentives to enhance antimicrobial drug 
development, and the value of pharmacokinetics-pharmacodynamics (PK-PD) principles from early devel-
opment of an antimicrobial agent through late stage and post-approval/life cycle management strategies 
in accordance with recent guidelines. This demonstrates the potential to not only streamline the develop-
ment process, driving down costs and time, but also improve the likelihood of regulatory success, making 
antibiotic drug development more viable and these needed agents available to the therapeutic 
armamentarium.  

  Key words     Antibiotic drug development  ,   FDA  ,   EMA/ICH  ,   In vivo modeling  ,   PK-PD  , 
  Pharmacometrics  ,   Regulatory initiatives  

1      Regulatory Initiatives Pertinent to PK-PD 

   The Food and Drug Administration ( FDA  )   ,  European Medicines 
Agency (EMA)  , and International Conference on  Harmonisation   
of Technical Requirements for Registration of Pharmaceuticals for 
Human Use (ICH) have issued a number of guidance documents 
for industry to clarify for sponsors how to implement the expo-
sure–response paradigm. The 1999 FDA Guidance for Industry on 
Population Pharmacokinetics discusses how to design and execute 
collection of sparse pharmacokinetic (PK) data from late-phase 
clinical trials, as well as how to analyze population pharmacokinetic 
data using modeling applications [ 1 ]. EMA published Guidelines 
on Reporting the Results of Population Pharmacokinetic Analyses 
[ 2 ]. In contrast to the FDA guidance on how to conduct a popula-
tion PK analyses, the EMA guidance provides points to consider 
when presenting the results in order to provide a level of detail to 
enable a secondary evaluation by a regulatory assessor. 

1.1   Health Authority 
Guidance Documents  
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 The value of understanding the exposure–response relation-
ship has been acknowledged in several regulatory documents, 
such as the ICH E4: Dose Response Information to Support 
Drug Registration and the Guidance on Clinical Evidence of 
Effectiveness [ 3 ,  4 ]. However, it was not until 2003 that the  FDA   
stressed the importance of exposure–response trials in regulatory 
decision making by issuing the Guidance for Industry on 
Exposure–Response Relationships [ 5 ]. Moreover, in a landmark 
report describing challenges and opportunities on the critical path 
to new medical products (the Critical Path Initiative), the FDA 
recognized the importance of model-based drug development as 
a way to improve decision making for effectiveness and safety [ 6 ]. 
Figure  1  presents  the   various phases of drug development and the 
role of PK-PD analyses.

      Recent initiatives and emerging regulatory considerations with 
respect to accelerating  anti-infective drug development programs   
for important indications, for medical countermeasure needs, and 
to identify more effi cient clinical endpoints are discussed in this 
section. 

  Antibiotics refl ect   a critical advancement in the medical arsenal 
not simply from a treatment point of view but also from routine 
surgical procedures to organ transplants and cancer treatment. Yet 
the pipeline of new antibiotics is abysmal. Antibiotics generate 
small revenue compared with “blockbuster” drugs such as those 
chronic therapies used for high blood pressure or cholesterol, 
which may be taken daily by millions of patients. Therefore, there 

1.2  Recent Initiatives
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  Fig. 1    Role and utility of PK-PD analyses in the various stages of drug development (preclinical through post- 
approval and life cycle management)       
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is little incentive for manufacturers to develop new antibiotics. 
Many major pharmaceutical companies have abandoned their 
investment in developing new antibiotics and instead are focusing 
their resources on medicines with the potential of producing 
greater profi ts.  Drug-resistant bacteria   are spreading. According to 
a 2013 report by the  Centers for Disease Control and Prevention 
(CDC)  , more than two million people develop resistant infections, 
and more than 23,000 die as a result [ 7 ]. 

 The Food and Drug Administration Safety and Innovation Act 
( FDASIA  )   , signed into law on July 9, 2012, expands the FDA’s 
authorities to advance public health. Generating Antibiotic 
Incentives Now (GAIN), which is part of FDASIA, provides incen-
tives for the development of antibacterial and antifungal drugs 
intended to treat serious and life-threatening infections [ 8 ]. Under 
GAIN, a sponsor may be granted a  qualifi ed infectious disease prod-
uct  (  QIDP )      designation for a drug that meets the criteria outlined 
in the statute. A drug that receives a  QIDP   designation is eligible 
for fast track designation and, upon submission of an NDA or sup-
plement for that designated use, will receive a priority review. 
Upon approval of an application for a QIDP, a 5-year extension 
will be added to any exclusivity granted with that approval. This 
additional period of exclusivity increases the potential for profi ts 
from new antibiotics by giving innovative companies more time to 
recoup their investment costs. As of October 2013, there are 16 
programs designated QIDP and two New Drug Applications (dal-
bavancin and tedizolid for acute bacterial skin and skin structure 
infections) submitted to FDA for review and were approved for 
clinical use. 

  FDASIA   also provides FDA with a new expedited drug devel-
opment tool, known as the “ breakthrough therapy  .” This new des-
ignation helps FDA assist drug developers to expedite the 
development and review of new drugs with preliminary clinical 
evidence that indicates that the drug may offer a substantial 
improvement over available therapies for patients with serious or 
 life-threatening diseases  . A breakthrough therapy designation per-
mits sponsors to engage FDA more frequently for timely advice as 
well as more intensive FDA guidance on an effi cient drug develop-
ment program. In our opinion, the latter is a more attractive offer 
to sponsor companies. The development program for the break-
through therapy could be considerably shorter than for other 
drugs intended to treat the disease being studied. During these 
interactions, the agency may suggest, or a sponsor can propose, 
alternative clinical trial designs (e.g., adaptive designs, an enrich-
ment strategy, use of historical controls) that may result in smaller 
trials or more effi cient trials that require less time to complete. 
Such trial designs could also help minimize the number of patients 
exposed to a potentially less effi cacious treatment (i.e., the control 
group treated with available therapy). 

Drug Development Process and Regulatory Science
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 For the evaluation of new drug and biologic products as counter-
measures for chemical, biological, radiological, and nuclear threats, 
an innovative regulatory approach was needed. The “Animal Rule” 
was published in 2002 which applies only “when adequate and well-
controlled clinical studies in humans cannot be ethically conducted 
and fi eld effi cacy studies are not feasible” [ 9 ]. The importance of 
 translational pharmacology   and utility of PK-PD in this arena have 
been underscored by FDA for other emerging infections [ 10 ]. 

 Effi cacy endpoints for previous registrational trials of antimi-
crobials for acute bacterial skin and skin structure infections 
( ABSSSIs  ) and community-acquired bacterial pneumonia ( CABP        ) 
were based on nonstandardized, clinician-based observations and 
decisions, as well as on patient reports. More quantifi able, repro-
ducible, and externally verifi able endpoints could improve the 
design of future non-inferiority trials. The Foundation for the 
National Institutes of Health’s scientifi c project team identifi ed 
early response endpoints to anchor non-inferiority hypotheses in 
ABSSSI and CABP registrational trials [ 11 ]. The  EMA   has also 
shown a willingness to examine alternative methods, such as those 
based upon pharmacometrics, for evaluating no-treatment effect 
for the analysis of active comparator clinical studies: “Historical 
data are often used to estimate the no-treatment effect but the 
relevance of these data to current medical practise may be ques-
tionable. Sponsors are encouraged to explore alternative and 
emerging methods for estimating the no-treatment effect (e.g., 
using pharmacometric-based  approaches  )” [ 12 ]. This encourages 
an integrated drug development approach further underscoring a 
pivotal role for PK-PD approaches [ 13 ]. 

 Traditionally,  antibacterial agents   have been studied in large 
non-inferiority clinical trials that focus on patient populations with 
a wide range of disease symptoms and severity. Clinical trials of 
disease state or site of infection (e.g., pneumonia, intra-abdominal 
infection) have been the focus to establish requisite safety and effi -
cacy. However, recent alternative development and design 
approaches have been proposed that bring fl exibility to sponsors’ 
registrational data requirements by highlighting comprehensive 
pharmacologic understandings and PK-PD  principles  . 

 The four-tiered approach proposes a regulatory framework 
that allows either disease-based or pathogen-based label indica-
tions [ 14 ]. Such a framework is considered within the bounds of 
present FDA and EMA regulatory approaches, making it amenable 
to international harmonization [ 15 ,  16 ]. For this proposed 
approach, required data for registration would vary by tier:

 ●    Tier A is a site of infection or disease-focused  approach  . Two 
large, well-controlled, adequately powered phase 3 clinical tri-
als would be required for the initial indication, and data would 
be generated for a range of susceptible pathogens. This 
approach is consistent with the “traditional” paradigm for  anti-
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biotic drug development   in which PK-PD is considered sec-
ondary to clinical trial data.  

 ●   Tier B intends to reduce the  risks and limitations   associated with 
smaller clinical datasets. One phase 3 study, plus small compara-
tive and descriptive studies relying equally on the totality of data 
(pharmacology, microbiology, clinical trial, and PK-PD), would 
be generated. This approach would be well suited for broad-spec-
trum agents that work in a variety of mixed infection settings.  

 ●   Tier C is a  pathogen-focused approach  . The range of feasible 
studies for a less common pathogen or mechanism of resis-
tance would be limited to small prospective comparative trials, 
open-label datasets, and historical data. This approach would 
rely equally on totality of data (pharmacology, microbiological, 
clinical trial, and PK-PD) and provides an approach that would 
be well suited for narrow-spectrum agents.  

 ●   Tier D encompasses the  animal rule  , as discussed previously, 
which is applied when acquisition of any clinical effi cacy data 
pre-market is neither ethical nor feasible (e.g., anthrax) and 
there is reliance on PK-PD principles.    

 While this proposal brings the welcome step toward fl exibility 
of development approaches, regulatory consensus is emerging. 
The recent draft guidance for industry entitled “Antibacterial 
Therapies for Patients With Unmet Medical Need for the Treatment 
of Serious Bacterial Diseases” acknowledges FDA’s emerging con-
siderations of limited data for a registrational approach [ 17 ]. 
Importantly, this draft guidance underscores FDA’s fl exibility to 
work with sponsors to achieve feasible studies and development 
programs utilizing the strengths of PK-PD to meet the urgent 
need of new antibiotics for the medical community. 

 Lastly, conduct of superiority trials for infections caused by 
highly  antibiotic-resistant bacteria   represents a new, and as yet, 
untested paradigm for antibacterial drug development [ 18 ,  19 ]. If 
all available therapies are inadequately effective, such as for extreme 
drug-resistant organisms or unacceptably toxic, superiority of an 
investigational agent to the comparator agent is ethical to study, 
since available effective therapy is not being denied to patients. 
Such advances in the selection of endpoints may facilitate more 
effi cient trials and generation of better effi cacy evidence.   

2    Implementing a Prospective PK-PD Program 

   The regulatory environment is beginning to acknowledge that our 
understanding and application of PK-PD principles to that of  anti-
microbial drug development   have evolved and grown exponen-
tially into a reliable tool. This is largely due to the expanded utility 

2.1  Evolution 
to Revolution
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of in vitro data coupled with laboratory models of infection 
 permitting early exploration of exposure–response relationships. 
A variety of laboratory evaluations exist to facilitate an understand-
ing of the PK-PD index and the magnitude best associated with 
effi cacy including in vitro time-kill, PAE studies, in vitro infection 
models, and  in vivo infection models  . As the major  PD marker   has 
relied on antimicrobial MIC data, these relationships have played 
an essential role in the identifi cation of well-characterized PK-PD 
indices that are associated with effi cacy for many classes of antibiot-
ics [ 20 – 22 ]. Patient-derived data across multiple infectious disease 
indications has demonstrated concordance among relationships 
identifi ed from the non-clinical studies. This knowledge evolution 
has led to a revolution in the application and regulatory acceptance 
of PK-PD analyses to antibacterial drug development [ 23 ]. 

 PK-PD data derived from early  animal models   have indeed 
been shown to forecast the regulatory approval of an antimicrobial 
agent [ 24 ]. Figure  2  provides the relationship between the regula-
tory approval and the probability of  preclinical   PK-PD target 
attainment. In review of community- and hospital-acquired bacte-
rial pneumonia, antibiotics were identifi ed ( n  = 17) in which 14 
received regulatory approval and 6 failed ( p  = 0.011).

  Fig. 2    Relationship between the regulatory approval and the probability of 
 preclinical PK-PD target attainment (1996–2011) [ 24 ]       
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   Several examples of the utility of PK-PD throughout the drug 
development and regulatory process are available in the literature. 
This includes lead candidate selection and early characterization 
through regulatory approval and setting interpretive criteria (e.g., 
breakpoints), to an application for potential use of informing clini-
cal study design. Table  1  provides a small sampling of such study 
exemplars demonstrating how key understandings of  antimicrobial 
agents   may evolve with the continued application throughout the 
different phases of  antimicrobial drug development   [ 25 – 40 ].

   There has been a recent and growing appreciation of the 
potential value of incorporating the principles gained from non- 
clinical models of infection into all stages of clinical drug develop-
ment for antimicrobial agents. As evidenced above, this appreciation 
has reached the attention of various regulatory authorities that 
now recommend investigations of the PK-PD relationship for anti-
bacterial agents to be included as a driver of drug development 
programs. The integration of PK-PD relationships derived from 

   Table 1  
  PK-PD investigational exemplars during the phases of drug  development     

 Phase/drug  Impact to development program 

 Preclinical (phase 0) 
 Tigecycline [ 25 ]  Using an in vivo model (mouse thigh model), these data support the lead 

candidate selection and established estimates for the PK-PD indices 
(e.g., driver for effi cacy) for future evaluation and dose selection. 

 Ceftolozane/
tazobactam [ 26 ] 

 The in vitro dose fractionation (e.g., hollow fi ber model) study provided 
data to support the selection of ceftolozane-tazobactam dosing regimens 
that would minimize the potential for on-therapy drug resistance 
amplifi cation. 

 Oritavancin [ 27 ]     Pharmacodynamic data suggested that a single dose of oritavancin at 
1200 mg would be effi cacious in humans. Simulation of this dose in 
neutropenic mice was highly effective in methicillin-sensitive  S. aureus  and 
MRSA thigh and bacteremia infections and pneumococcal lung infections. 

 P-873 [ 28 ]  From an in vivo animal infection model, these data support the lead 
candidate selection and established estimates for the PK-PD indices. 

 Early clinical 
 Tigecycline [ 29 ]  These data provided estimates of the PK-PD relationship, bridging animal 

data to phase 1 PK obtained in healthy volunteers, underscoring the 
evaluation of covariates affecting the PK-PD relationship. 

 Fusidic acid [ 30 ]  PK-PD data provided a basis for the administration of front-loaded dosing 
regimens of sodium fusidate which would allow for effective 
concentrations to be achieved early in therapy, optimizing effi cacy. 

 Ceftaroline [ 31 ]  Population PK data were integrated enabling a model to evaluate dose 
adjustments for patients with renal impairment and generate ceftaroline 
exposures for use in pharmacokinetic-pharmacodynamic assessments of 
effi cacy in patients with ABSSSI or CABP. 

(continued)
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 preclinical infection models   can be used to identify and select lead 
drug candidates and set initial effi cacy targets [ 22 ,  24 ]. With the 
expansion of well-characterized models and the use of a variety of 
challenging bacterial strains, integration with phase 1 pharmacoki-
netic data provides an early opportunity to optimize antimicrobial 
dosing regimens for phase 2 and 3 studies [ 26 ,  36 ,  41 ,  42 ]. The 
early integration of such knowledge increases the probability of 
successfully selecting clinically effi cacious dosing regimens for late-
phase development [ 30 ] as well as an early opportunity for evalua-
tion of patient covariates that may impact drug disposition [ 29 ] 
and/or the requirements for dosing modifi cations [ 31 ] to success-
fully position a phase 3 study. 

Table 1
(continued)

 Phase/drug  Impact to development program 

 Late clinical/registration 
 Ceftaroline [ 32 ]     These data utilized exposures in a murine infection model simulating the 

human dose of 600 mg i.v. every 12 h to demonstrate that the 
pharmacodynamic targets against MRSA and MSSA were achievable 
supporting the US FDA breakpoints. 

 Tigecycline [ 33 ]  This phase 3 exposure–response analysis supported registrational effi cacy 
and the dosing justifi cation for patients with complicated skin-skin 
structure Infections. 

 Linezolid [ 34 ]  This in vitro study established a pharmacodynamically optimized regimen 
for linezolid to treat  B. anthracis  and prevent resistance emergence at 
lower dosages. The authors concluded that the lower dosage for the 
pharmacodynamically optimized regimen may decrease drug toxicity and 
improve patient compliance. 

 Ceftaroline [ 35 ]  Results of these analyses, which suggested that in vitro susceptibility test 
interpretive criteria defi ning susceptibility, provide support for current 
FDA and CLSI breakpoints. Further, recommendations for dose 
adjustments for patients with renal impairment were also supported by 
the results of these analyses. 

 Post-approval/life cycle management 
 Tigecycline [ 36 ]     These analyses demonstrate the utility of frequentist and Bayesian 

pharmacometric-based analyses for the determination of the estimation 
of “treatment effect” to inform study design using contemporary trial 
endpoints. 

 Tigecycline [ 37 ]  This analysis retrospectively focuses on the PK-PD data needed to guide 
dosing regimen decisions for patients with hospital-acquired bacterial 
pneumonia or ventilator-associated bacterial pneumonia. Early 
consideration of these data in development programs will reduce risk not 
only to sponsors but also, most importantly, to the patients enrolled in 
the clinical trials. 

 Carbapenem and 
ceftazidime [ 38 ] 

 Utilizing an in vivo infection model, data suggest carbapenems may not be a 
reliable treatment for treating the emerging problematic microorganisms 
(such as OXA-48, KPC, and NDM-1). The authors suggest that genotype 
may better predict the activity of the carbapenems than the phenotypic 
profi le  when   selecting appropriate antimicrobial therapy. 
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 A cohesive pharmacologic story utilizing PK-PD analyses of 
late-stage or clinical registration studies further allows for the refi ne-
ment and validation of dose regimen selection decisions, including 
those in special patient groups (e.g., renal or hepatic impairment) 
[ 33 ,  34 ]. Importantly, the target attainment analyses have become 
a cornerstone for determining the susceptibility breakpoints relat-
ing outcome to the MIC of a  microorganism   treated in a clinical 
study, and also for those microorganisms anticipated in a disease 
state but sparsely procured [ 32 ,  35 ]. Indeed, for select agents (e.g., 
those of bioterrorism concern), no human testing may ethically be 
performed. Instead, animal models and PK-PD relationships are 
utilized to ascertain the dosing recommendations, effectiveness, 
and ultimate approval of a suitable antimicrobial agent [ 34 ]. 

 Adequately positioned, PK-PD information gained through-
out development programs continues to produce meaningful data. 
Continued reevaluation, application, and analyses from animal 
studies through registration studies can be utilized to support 
additional programs during life cycle management.  In vivo infec-
tion models   can renew an evaluation of existing antibiotic dosing 
regimens, particularly against emerging problematic organisms. 
This provides a cost-effective and a meaningful way to determine 
the continued utility of these antimicrobial agents [ 38 ]. Further, 
broader based applications have used PK-PD to improve the evalu-
ation models to reduce risk associated with dosing variability in 
differing patient subtypes assisting drug developers in scrutinizing 
emerging data to improve dosing requirements in particular dis-
ease states [ 37 ]. Lastly,  pharmacometric approaches   are being con-
sidered of value in more contemporary study design issues. 
Application of Bayesian methods has demonstrated that value is 
the utility of PK-PD approaches to estimate a contemporary “treat-
ment effect” to provide a more informed non-inferiority study 
design [ 36 ]. Further several key regulatory decisions driven by 
pharmacometrics strategy in the area of anti-infectives as well as 
other areas are well documented [ 37 ,  38 ] and continue to emerge 
[ 12 ,  17 ] enabling low-risk and streamlined development.      
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    Chapter 25   

 Antibiotic Stewardship and Applications 
of Pharmacodynamics                     

     Elizabeth     D.     Hermsen      and     Lynne     Fehrenbacher     

  Abstract 

   The need for antimicrobial stewardship is driven by a combination of increased antimicrobial resistance, 
frequent inappropriate use of antibiotics, and a sparse antibiotic pipeline. Antimicrobial stewardship pro-
grams (ASPs) are advocated as a mechanism to optimize the use of antibiotics and minimize the negative 
consequences of such use. Various resources are needed to support an ASP, and ASPs may use a combina-
tion of core and supplemental strategies to improve patient outcomes and public health. Pharmacodynamics 
can be applied in ASPs through the formulary decision-making process, patient-specifi c dosing recom-
mendations, and institution-wide dosing protocols.  

  Key words     Antimicrobial stewardship  ,   Pharmacodynamics  ,   Formulary  ,   Dose optimization  ,   Vancomycin  , 
  Aminoglycosides  ,   Fluoroquinolones  ,   Extended infusion  

1      Introduction 

 Antimicrobial resistance is increasing and has detrimental effects 
on patients and healthcare systems [ 1 ,  2 ]. According to the World 
Health Organization, antimicrobial use is a primary driver of  anti-
microbial resistance   [ 3 ]. Particularly troublesome is the fact that 
studies consistently report that up to half of all antibiotic use is 
inappropriate [ 4 ]. The problem of antimicrobial resistance and 
inappropriate antibiotic use is compounded by a reduction in the 
number of novel antimicrobials introduced to market over the last 
few decades, with no clear recovery predicted in the near future [ 5 , 
 6 ]. This triad of increasing antimicrobial resistance, widespread 
inappropriate use of antibiotics, and lack of new antibiotics empha-
sizes the need for antimicrobial stewardship in order to preserve 
our current antimicrobial arsenal. 

 Antimicrobial stewardship is a systematic, rational approach to 
optimizing antimicrobial use in order to maximize clinical cure or 
prevention of infection and minimize unintended consequences of 
antimicrobial use, including antimicrobial resistance, adverse 
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events, and cost [ 4 ]. An appreciation of antimicrobial  pharmaco-
dynamics   in the context of antimicrobial stewardship efforts is of 
utmost importance in order to ensure appropriate antimicrobial 
selection and dosing. Pharmacodynamics can be applied by antimi-
crobial stewardship programs (ASPs) in a number of ways, includ-
ing formulary decisions and dose optimization, on both a 
patient-specifi c and institution-wide level. This chapter addresses 
ASPs in the acute care hospital setting because this setting has been 
the primary focus for ASPs to date, although ASPs are now expand-
ing into nontraditional settings such as skilled nursing facilities, 
ambulatory care clinics, and outpatient infusion centers, among 
others.  

2    Development of an Antimicrobial Stewardship Program 

   When designing and building an ASP, it is important to identify 
core members and an effi cient process to develop and move initia-
tives forward.  The Infectious Diseases Society of America (IDSA)   
and the  Society for Healthcare Epidemiology of America (SHEA)   
Guidelines for Developing an Institutional Program to Enhance 
Antimicrobial Stewardship published in 2007 suggest that core 
team members include an  infectious disease (ID)   physician and an 
ID-trained pharmacist [ 4 ]. While the  IDSA/SHEA guidelines   
state that the core members should be compensated for their time, 
in the cost-conscious environment of healthcare, the implementa-
tion of new ASPs often occurs despite limited resource allocation. 
In the 2012 policy statement on antimicrobial stewardship, IDSA, 
SHEA, and the  Pediatric Infectious Diseases Society (PIDS)   rec-
ognized that stewardship teams may vary in structure based upon 
institution size, organizational structure, and specialized personnel 
[ 7 ]. The policy statement recommends that core members include 
a physician, a pharmacist, an infection preventionist, and a clinical 
microbiologist, with at least one of the core members having stew-
ardship training ( see   Note 1 ). 

 In addition to the  core members  , several supporting members 
and key collaborative relationships help optimize the ASP ( see  
Table  1 ). The core personnel often develop an antimicrobial sub-
committee to the Pharmacy & Therapeutics (P&T) Committee 
that helps to vet various antimicrobial-related initiatives, policies, 
and formulary requests. The ID physician typically serves as the 
committee chair with the ID pharmacist in a co-chair or secretary 
role. The composition of the subcommittee usually includes a mul-
tidisciplinary (e.g., medical, pharmacy, nursing, laboratory staff) 
group of those who are high antibiotic users and/or are likely to 
be affected by various ASP initiatives. In addition to development 
of an antimicrobial subcommittee, a clinical microbiologist can 
offer insight regarding incorporation of available laboratory 

2.1   Resources
  Needed
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technology, such as automated susceptibility testing and rapid 
diagnostic assays, into stewardship initiatives and also can assist 
with development of the antibiogram(s). Informatics support can 
help develop reports that the ASP can use to identify opportunities 
for initiative development, provide metrics to ensure that interven-
tions are data driven, and assist in measuring  the   impact of the ASP 
on various outcomes. Since a key component of reducing antibi-
otic burden is avoiding  hospital-acquired infections   and  nosoco-
mial transmission of resistant organisms  , an infection preventionist 
and hospital epidemiologist offer valuable insight into local epide-
miology and the potential impact of the ASP on the  antibiogram  . 
If possible, allocation of administrative assistant, data analyst, and/
or research assistant time will help increase the amount of time the 
ASP personnel have for planning, managing, and executing the 
clinical, educational, and investigational aspects of the ASP. While 
ASP personnel are the thought leaders and designers for optimiz-
ing antimicrobial use within an institution, best practice cannot be 
achieved without committed partnerships with medical, nursing, 
pharmacy, laboratory, and other supportive staff.

   Recognizing that resources are often limited, and site-specifi c 
ASP design is imperative to the success of a program, the Centers 
for Disease Control and Prevention ( CDC        ) published their recom-
mended core elements of an ASP [ 8 ] ( see  Table  2 ). Designed to be 
a companion to the prior ASP guiding publications, the CDC doc-
ument refl ected on experiences of existing and successful ASPs to 
formulate the core elements. A checklist document included in the 
materials helps sites assess gaps in their existing ASP structure and 
focus, as well as provides a baseline assessment for  sites   looking to 
build a new ASP.

      A sense of urgency for antimicrobial stewardship is reiterated 
by the CDC Threat Report 2013, which discusses the detri-
mental effects of antibiotic resistance [ 1 ]. The CDC identifies 

2.2  Core 
and Supplemental 
Strategies

   Table 1  
   Antimicrobial   stewardship program team members   

 Essential core members  Ideal additional team members  Key adjunct relationships 

 (IDSA 2007) 
 Infectious disease physician(s) 
 Infectious disease pharmacist(s) 

 Clinical microbiologist 
 Hospital/health-system 

epidemiologist 
 Infection preventionist 
 Data analyst/IT support 
 Administrative assistant  support   

 Hospital/health-system 
administration 

 Health-system 
communications team 

 Pharmacy & Therapeutics 
Committee 
 Medical staff 
 Nursing staff 
 Pharmacist staff 

 (SHEA/IDSA/PIDS 2012) a  
 Physician 
 Pharmacist 
 Infection preventionist 
 Clinical microbiologist 

   a At least one core member with stewardship training  

Pharmacodynamics in Antimicrobial Stewardship
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antimicrobial stewardship as one of the four core components 
to prevent antibiotic resistance. While ASP needs and goals will 
vary by institution, the  IDSA/SHEA guidelines   suggest two 
active  core strategies   for stewardship endeavors: (1) prospec-
tive audit and feedback and (2) formulary restriction and 
authorization [ 4 ]. There are several examples in the literature 
that illustrate reduced antimicrobial consumption and expendi-
tures and decreased rates of   Clostridium difficile  infection   and 
resistant pathogens after implementing these core strategies 
[ 9 – 13 ]. 

 Prospective audit and feedback rely on review of patient infor-
mation by ASP personnel to identify patient-specifi c opportunities 
for antimicrobial therapy  optimization  . This intervention is not to 
be considered a formal ID consult, rather a supporting service to 
enhance appropriate therapies. Patient review may be triggered by 
clinical decision support systems, established internal reports, and/
or microbiology culture result review. The ASP personnel discuss 
the patient case and make suggestions to the managing medical 
team. Creating a collaborative environment for discussions that 
focus on evidence-based practice, patient safety, and minimization 
of collateral damage from antimicrobials helps keep this recom-
mendation patient centered with a positive team effect. Barriers to 
this approach include the misconceptions that the ASP is attempt-
ing to take away the autonomy of the prescribing physician, gener-
ate consults for ID physicians, or serve as the “ antibiotic police  .” It 
is important to remember that the suggestions being provided to 
the managing medical team are unsolicited, which lends to the 
potential for an antagonistic interaction. Polite persistence over 
time and offering physicians the opportunity to review ASP 

   Table 2  
    CDC   Core elements of hospital antimicrobial stewardship programs [ 8 ]   

 Leadership 
commitment 

 Dedicating necessary human, fi nancial, and information technology resources. 

 Accountability  Appointing a single leader responsible for program outcomes. Experience with 
successful programs shows that a physician leader is effective. 

 Drug expertise  Appointing a single pharmacist leader responsible for working to improve 
antibiotic use. 

 Action  Implementing at least one recommended action, such as systemic evaluation of 
ongoing treatment need after a set period of initial treatment (i.e., 
“antibiotic time-out” after 48 h). 

 Tracking  Monitoring antibiotic prescribing and resistance patterns. 

 Reporting  Regular reporting information on antibiotic use and resistance to doctors, 
nurses, and relevant staff. 

 Education  Educating clinicians about resistance and optimal prescribing.    
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metrics, ask questions, or proactively participate in ASP initiatives 
can help engage providers and overcome negative perceptions sur-
rounding this recommended core strategy. 

 In contrast to prospective  audit and feedback  , which tends to 
be dynamic and relies on concurrent patient review and personal 
interaction, formulary restriction and authorization are often 
incorporated into formal policy. Execution of these methods can 
vary considerably depending on resources, infrastructure, and 
institutional culture. With respect to  antimicrobial formulary 
restriction  , ASPs identify certain antimicrobials that are considered 
restricted and require authorization for use. The reasons for restric-
tion may include a high frequency of or potential for inappropriate 
use or collateral damage, safety/toxicity concerns, or cost, among 
others. The use of such agents may be restricted to only the ASP 
personnel or may include selected specialty services (e.g., ID, criti-
cal care, oncology). ASP personnel develop agent- or class-specifi c 
prescribing criteria to outline what is deemed appropriate and 
inappropriate use within their institution. These criteria are typi-
cally endorsed by the P&T Committee and implemented as policy 
or clinical guidelines. 

 Because delays in the initiation of appropriate antimicrobial 
therapy can have detrimental effects on patient outcomes [ 14 ], 
most prescribing criteria include the ability for prescribers to order 
the agent with a time window (24–48 h) for review by the ASP 
personnel or  clinical pharmacist and authorization  . While this 
approach may be considered a form of concurrent audit and feed-
back, it formalizes what is deemed to be appropriate or inappropri-
ate and may allow for autonomous action based on  P&T-approved 
policies  . In contrast, some restriction policies require preauthoriza-
tion, meaning that no drug will be dispensed until authorized 
(usually by an ID physician or ASP personnel). This  method   relies 
on a structure that includes individuals who are (1) trained to eval-
uate whether using the agent in a selected patient is appropriate, 
(2) able to make recommendations on the spot for alternative 
agents if therapy is not appropriate, and (3) available to be reached 
in a timely manner at all hours and days of the week. The most 
common practice setting where preauthorization occurs is in aca-
demic teaching institutions where ID fellows are incorporated into 
call coverage. For smaller hospitals and those predominantly served 
by private practice ID physicians, this model becomes more  diffi cult 
to support. In many cases, a single fi rst dose will be dispensed 
before offi cial preauthorization is received in order to avoid a delay 
in antibiotic administration. 

 When monitoring the effectiveness of formulary restriction 
and authorization, the ASP should assess whether restricting a cer-
tain antimicrobial agent or class results in an associated increase in 
use of alternate agents. As this occurs, the program should evaluate 
the potential impact on selective pressure that simply shifts from 
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one agent to another as a result of restriction. Even when formu-
lary  restriction and authorization programs   are optimized, timely 
reevaluation of therapy and targeted de-escalation are imperative. 
The  CDC   recommends taking an antibiotic “time-out” for this 
purpose [ 8 ]. Available data should be reviewed at hour 48 of ther-
apy and the following key questions should be asked in order to 
more appropriately focus  antimicrobial therapy  : (1) Does this 
patient have an infection that will respond to antibiotics? (2) If so, 
is the patient on the right antibiotic(s), dose, and route of admin-
istration? (3) Can a more targeted antibiotic be used to treat the 
infection? (4) How long should the patient receive the antibiotic(s)? 
Incorporating time-outs into the culture of antimicrobial adminis-
tration, in a fashion similar to many surgical and high-risk medica-
tion use procedures, also helps promote a sense of responsibility 
and awareness that all caregivers should be involved in optimizing 
antimicrobial use. 

 Several more passive,  supplemental strategies   are recom-
mended to augment the active core strategies of successful ASPs. 
Education is essential for the required change of culture that is 
needed for a sustainable program. Providing educational opportu-
nities with varied target audiences helps keep ASP initiatives a pri-
ority for all who are involved. Focusing education on areas that the 
ASP has identifi ed as targets for practice improvement, presenting 
evidence-based practice guideline updates, patient case, and les-
sons learned discussions are all forums that will expand knowledge 
and engagement for caregivers. While important, education is not 
recommended as a sole stewardship intervention due to the vari-
able and often temporary impact it yields. Likewise, in taking the 
lead to develop hospital or health-system-specifi c infection treat-
ment protocols and clinical guidelines, the ASP can ensure that 
current organism trends, appropriate agents, and dose optimiza-
tion considerations for special patient populations are incorpo-
rated. Avoiding redundant therapies, such as anaerobic 
double-coverage, developing parenteral to oral conversion pro-
grams, and streamlining the antimicrobial de-escalation process are 
also recommended arenas for ASP focus. 

 As part of the  policy statement recommendations  , IDSA/
SHEA/PIDS identifi ed two primary issues of importance: (1) 
benchmarking of antimicrobial use within and between institutions 
and (2) development of clear, well-defi ned, and validated process 
or outcome measures that may be utilized to assess clinical impact 
of ASPs [ 7 ]. The organizations call for standardized defi nitions of 
appropriate and inappropriate antimicrobial use, standardized data 
collection tools, and well-designed, patient-centered outcome 
research. Currently, IDSA and SHEA have again partnered to 
develop clinical practice guidelines on antimicrobial stewardship 
that focus on presenting different approaches to antimicrobial 
stewardship in various healthcare settings, with a focus on helping 
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institutions individualize programs based on resources (projected 
publication 2015).  

   The core and supplemental personnel and strategies must be con-
sidered by healthcare providers devising a plan for an ASP. The 
following steps should be taken when developing an ASP:

    1.    Identify key stakeholders at the institution. Examples include 
but are not limited to ID physicians, pharmacists, clinical 
microbiologists, infection preventionists, hospitalists, high 
users of antimicrobials (e.g., critical care, oncology), and hos-
pital and pharmacy administrators.   

   2.    Build buy-in among stakeholders. Garnering support should 
focus on patient outcomes and quality improvement. Hospital- 
specifi c data should be used whenever possible. For example, 
resistance rates at the hospital, according to the antibiogram or 
infection prevention databases, could be compared to pub-
lished data.   

   3.    Determine the core and supplemental strategies that will be 
used. Consideration must be given to the human and fi nancial 
resources available and the information technology infrastruc-
ture, as this may dictate which strategies are most amenable to 
the institution.   

   4.    Delineate the goals and outcome measures of the program. A 
variety of outcome measures may be evaluated by an 
ASP. Outcomes can typically be categorized into four central 
themes: improved patient outcomes, improved patient safety, 
reduced antimicrobial resistance, and reduced antimicrobial 
and overall cost.   

   5.    Draft a formal proposal. The formal proposal should include 
the following sections: background, program goals and strate-
gies, required up-front and anticipated future personnel, out-
come measures, and fi nancial justifi cation ( see   Note 2 ).   

   6.    Take the formal proposal to stakeholders for approval of pro-
gram. After approval of the program is received,    the imple-
mentation process can begin ( see   Note 3 ).       

3    Considerations for  Pharmacodynamics   in Antimicrobial Stewardship 

 The core ASP personnel, as discussed above, include an ID physi-
cian and an ID pharmacist. Both of these individuals have special-
ized training in ID and antibiotics. This specialized training lends 
to the application of antibiotic pharmacodynamics in the conduct 
of an ASP through formulary decision making, patient-specifi c 
dose optimization, and institution-wide dose optimization 
protocols. 

2.3  Steps 
for  Developing   
an Antimicrobial 
Stewardship Program

Pharmacodynamics in Antimicrobial Stewardship
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   An example of how pharmacodynamics can be applied to formu-
lary decision making is when considering the relevance of the 
potency of antimicrobials within the same class. More specifi cally, 
 ciprofl oxacin   is generally regarded as more potent than  levofl oxa-
cin   against  Pseudomonas aeruginosa . This purported advantage 
has the potential to infl uence the decision of which fl uoroquino-
lone to include on an institutional formulary. However, when 
considering the pharmacodynamics of the two  fl uoroquinolones  , 
the clinical relevance of this increased potency [i.e., lower mini-
mum inhibitory concentration (MIC)] is minimal. 
 Fluoroquinolones   are concentration- dependent antibiotics with 
the  area under the concentration curve (AUC)      to MIC or peak-
to-MIC ratios as the pharmacodynamic parameters that best cor-
relate with outcome.  AUC/MIC ratios   of 100–125 or peak/
MIC ratios of >10 are suggested for clinical and microbiological 
success and prevention of bacterial resistance [ 15 ]. Although the 
MIC of ciprofl oxacin for  P. aeruginosa  is typically twofold lower 
than that of levofl oxacin, the AUC is also typically twofold lower. 
Thus, using a hypothetical example of a  P. aeruginosa  isolate with 
a levofl oxacin MIC of 0.5 mg/L and a ciprofl oxacin MIC of 
0.25 mg/L (twofold lower), and a levofl oxacin-free AUC of 
50 mg h/L versus a ciprofl oxacin- free AUC of 22 mg h/L (two-
fold lower), the resulting AUC/MIC ratios are not appreciably 
different (100 versus 88, respectively). A simple table illustrating 
this concept can be constructed to inform the P&T Committee’s 
decision ( see  Table  3 ).

   Another example of how pharmacodynamics can be applied to 
formulary decision making is with regard to the dosing frequency 
of antimicrobials. Less frequent dosing may increase patient adher-
ence and thus increase the likelihood of pharmacodynamic target 
attainment. This concept is more directly applicable to patients 
receiving antimicrobial therapy outside of the hospital setting 
because adherence should be 100 % while hospitalized, but is still 
relevant to hospital formularies as patients may be  discharged   from 
the hospital for continued administration of the inpatient 
antimicrobial.  

3.1   Formulary 
Decision Making  

   Table 3  
  Illustrative example of AUC/MIC comparison of ciprofl oxacin and  levofl oxacin     

 Drug 

 Free AUC 24  
(mg h/L)  MIC (mg/L) 

   2  1  0.5  0.25  0.125 

 Ciprofl oxacin  22  11  22  44   88   177 

 Levofl oxacin  50  25  50   100   200  400 
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   One pillar of antimicrobial stewardship is ensuring appropriate 
antibiotic dosing with consideration of infection-, patient-, and 
pathogen-specifi c factors. Authors of other chapters in this text 
have presented detailed information about the pharmacodynamics 
of antibacterial agents and have highlighted how they can be 
altered in special patient populations such as the critically ill, pedi-
atric, and obese. The ASP often plays a role in bridging the data 
from in vitro/animal studies and Monte Carlo analyses to bedside 
clinical application. 

   Most hospitals and health systems have an established pharmacoki-
netic consult or dosing service for vancomycin and aminoglyco-
sides. For vancomycin, an AUC/MIC ratio of ≥400 is suggested 
to optimize the chance for successful therapy outcomes. While this 
recommendation was originally based on a single study in pneu-
monia patients, it is used to justify trough targets in other disease 
states in the absence of randomized trials [ 16 ]. An additional site- 
specifi c analysis of bacteremia supported this target, while another 
correlated low  AUC/MIC ratios   (<211) with higher rates of 
attributable mortality [ 17 ,  18 ]. Since obtaining multiple vancomy-
cin random levels in the clinical setting is expensive and often not 
operationally practical, trough monitoring is used as a surrogate 
marker for AUC [ 19 ]. Vancomycin trough levels of 15 mg/L cor-
relate with an AUC/MIC ratio of 400 if the organism MIC is 
≤1 mg/L. While widely used as a surrogate, more data are needed 
to know whether this is truly the optimal method of managing 
vancomycin therapy [ 20 ]. 

 The  ASP      plays  an   important role in connecting microbiology 
trends that may impact probability of target attainment with clini-
cal dosing protocols. For example, through trending vancomycin 
MIC distributions for an institution’s  S. aureus  isolates, the ASP 
can assess for increasing MICs over time (MIC “creep”) and iden-
tify cases where vancomycin may no longer be appropriate empiric 
therapy, despite optimized protocols, due to the inability to reach 
the pharmacodynamic target. A confounding variable in assessing 
vancomycin MIC trends is the discordance noted depending on 
the methodology used as well  as   incongruence in the literature. 
For example one recent study suggested that the Etest method 
overestimates the MIC when compared to automated susceptibil-
ity testing methods while another recent study suggests that this is 
not the case [ 21 ,  22 ]. Additional study is needed to further eluci-
date vancomycin MIC discordance and the potential clinical impact 
it may have when using AUC/MIC as an outcome predictor. Of 
note, the AUC/MIC threshold of 400 was established using broth 
microdilution for the MIC determination, and studies have shown 
that the threshold should be adjusted when using other suscepti-
bility testing methods [ 17 ,  23 ]. The ASP should ascertain which 

3.2  Patient-Specifi c 
 Dose Optimization  

3.2.1   Vancomycin      
and  Aminoglycosides  
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methods are used locally and understand the potential impact of 
interpreting vancomycin MIC data from those methods. 

 With respect to  aminoglycosides  , a goal peak/MIC ratio of 
≥10 is desired. Implementing and optimizing use of an extended 
interval dosing protocol (e.g., Hartford nomogram) for appropri-
ate patient populations maximize the peak/MIC ratio [ 24 ]. When 
trending aminoglycoside MICs for  P. aeruginosa , the ASP might 
direct empiric prescribing toward tobramycin if gentamicin MICs 
routinely approach 4 mcg/ml or greater as a peak/MIC ratio of 
≥10 will be diffi cult to achieve even with extended interval dosing. 
Finally, in partnering with the pharmacy department, the ASP can 
serve as  a   supporting/reviewing  body      that tracks protocol adher-
ence and target level achievement and can recommend ideas for 
protocol and  process   improvement.   

   In contrast to patient-specifi c dosing recommendations, the ASP 
can also apply pharmacodynamics to the development and imple-
mentation of institution-wide dosing protocols, such as extended 
infusion of  beta-lactams   or renal dosage adjustments ( see   Note 4 ). 

   The pharmacodynamic parameter that best correlates with optimal 
activity of beta-lactams is the proportion of the dosing interval that 
the free drug concentration remains above the MIC for the infect-
ing organism ( T >MIC). One mechanism to optimize the  T >MIC 
is to extend the infusion of the drug. Monte Carlo simulations 
have shown that a piperacillin/tazobactam dose of 3.375 g every 
8 h given via a 4-h infusion achieves over 90 % probability of target 
attainment against  P. aeruginosa  up to an MIC of 16 mg/L versus 
an MIC of only 1 mg/L for the standard dose of 3.375 g every 6 h 
given via a 30-min infusion [ 25 ]. However, the need for an 
extended infusion protocol should fi rst be established by evaluat-
ing the  MIC   distribution of problematic pathogens, such as  P. 
aeruginosa , in an individual institution. If the MICs seen in the 
local environment are not elevated, an  extended infusion protocol 
may   not be worth the logistical challenges often encountered dur-
ing implementation and maintenance of an institution-wide policy, 
but rather extended infusion could be used on a case-by-case basis 
if the isolate’s MIC is elevated. 

 Some of the  logistical   challenges of an institution-wide 
extended infusion protocol include quality of care considerations, 
such as ensuring infusions are given over the extended timeframe, 
residual volume in the infusion tubing, and compatibility issues. In 
the case of  piperacillin/tazobactam  , if the extended infusion dose 
of 3.375 g every 8 h is accidentally administered via the standard 
30-min infusion, the patient will receive a  subtherapeutic dose  . 
Thus, building pre-programmed infusion times into libraries of 
infusion pumps when a particular drug is selected can help avoid 
this problem. Caregiver education, particularly of the nursing staff, 

3.3  Institution-Wide 
Dose Optimization

3.3.1  Extended Infusion 
of  Beta-Lactams  
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is vital and should include background information supporting the 
need for the extended infusion protocol, the specifi c details of the 
protocol, and contact information for questions. The resources 
necessary for such education, both human and fi nancial, should 
not be underestimated as the education must be provided to all 
staff, including full-time and part-time, during all shifts and must 
be enduring to allow for education of new employees. Additionally, 
consideration must be given to the residual volume in the infusion 
tubing at the end of the infusion. If the volume is signifi cant and 
this is not accounted for, the patient will receive subtherapeutic 
dosing. In order to account for residual volume, the dose can be 
increased, or the line must be fl ushed. For example, when admin-
istering piperacillin/tazobactam with the Alaris ®  pump 
(CareFusion, San Diego, CA), approximately 20 mL remains in 
the tubing after the end of the infusion. If the dose is increased to 
4.5 g rather than 3.375 g, given in 100 mL total volume, the 
patient will receive a dose of approximately 3.6 g when accounting 
for the residual volume of 20 mL [4.5 g − (4.5 g × 0.2) = 3.6 g]. 
Lastly, when administering a medication over an extended infu-
sion, compatibility with other  intravenous medications   or fl uids 
becomes an issue. Compatibility issues can be handled in three 
ways: (1) co-administration in the same  intravenous   catheter if 
compatibility has been confi rmed; (2) adjustment of medication 
administration times to avoid co-administration if the two agents 
are incompatible; or (3) placement  of   additional intravascular 
catheters.  

    Renal dysfunction   is known to affect the clearance of renally elimi-
nated medications, and it is well understood that dosage adjust-
ment is often necessary in the setting of renal insufficiency. 
Pharmacists are responsible for ensuring that the ordered dose of a 
medication is appropriate for the patient’s renal status, not only at 
the time the drug is initially ordered but also for the duration of 
therapy as renal function may change throughout the hospitaliza-
tion. If a dosage change is warranted, pharmacists call the pre-
scriber to recommend the change. However, an institution-wide 
protocol allowing pharmacists to automatically adjust the dosing 
of antibiotics according to renal function can make this process 
more efficient. Although changes in renal function and drug elimi-
nation are typically regarded as pharmacokinetic issues, the impor-
tance of pharmacodynamic considerations should not be overlooked 
when creating an institution-wide renal dosing protocol. For 
example, the recommended  ciprofloxacin   dose for patients receiv-
ing hemodialysis is 250 mg orally or 200 mg intravenously every 
12 h (standard doses: 500 mg orally, 400 mg intravenously every 
12 h) [ 26 ]. However, because  fluoroquinolones   are concentration-
dependent antibiotics, the pharmacodynamics can be optimized by 
maintaining the dose but extending the interval (i.e., 500 mg 

3.3.2   Renal Dosage 
Adjustment  
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orally or 400 mg intravenously every 24 h) rather than decreasing 
the dose and maintaining the interval. This type of modification 
may not be possible with all antibiotics due to dose-dependent 
toxicities.    

4    Notes 

     1.    In order to accommodate the need for additional   ID-trained 
pharmacists   beyond what is possible with currently available 
residency and fellowship training programs, two certifi cate 
programs have been developed. Both the Society of Infectious 
Diseases Pharmacists ( SIDP  )    and the  Making a Difference in 
Infectious Diseases Pharmacotherapy (MAD-ID)   organization 
offer antimicrobial stewardship certifi cation that helps to pre-
pare pharmacists for ASP-focused practice.   

   2.    Background should include the impact of  antimicrobial resis-
tance   on patient outcomes and costs, a brief review of key anti-
microbial stewardship literature, and recent, relevant policies, 
regulations, and/or legislation [e.g., Centers for Medicare and 
Medicaid Services ( CMS  ) Readmission Reduction program or 
reimbursement changes for catheter-associated urinary tract 
infections or bloodstream infections] and how antimicrobial 
stewardship may help. With regard to personnel, inclusion of 
necessary compensation as well as future plans for additional 
personnel is recommended. When outlining the goals and out-
comes, the period of review should be defi ned. For example, 
how often will the outcome measures be assessed? Garnering 
support from hospital or health-system administration early in 
the process is essential, and regular reporting to appropriate 
administrators ensures that program successes are transparent 
at a high level. Efforts should be made to integrate the ASP 
personnel into the committee infrastructure of the institution 
(e.g., Infection Prevention, Quality & Patient Safety, Pharmacy 
& Therapeutics) because this will help ensure continued enthu-
siasm and support for the program. As this relationship builds, 
and data-driven results are available, proposals for continued 
or additional funding for the ASP should be presented to lead-
ership. For ASPs that encompass more than a single institu-
tion, collaborating with the health system’s internal 
communications personnel may assist with disseminating key 
information to leaders across multiple campuses. The initial 
fi nancial justifi cation should strive to promote cost avoidance 
as opposed to direct cost savings as an acceptable method of 
showing the value of an ASP to hospital administration. 
Although  length of stay (LOS)         may be a useful outcome mea-
sure, a promise to reduce LOS should not be used for fi nancial 
justifi cation of developing an ASP.   
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   3.    Key questions to consider during  implementation   of an ASP 
include the following:
   (a)    What are the most obtainable targets (e.g., “low-hanging 

fruit”), and what are the top priorities at your institution 
for action?   

  (b)    Who are the physician and hospital administrator champi-
ons who will serve as resources to assist with medical staff 
relationship development?   

  (c)    What information technology infrastructure is available? 
Do you have access to real-time data? What type of reports 
can be generated/queries can be conducted? Do you need 
information technology personnel support?   

  (d)    During what hours will ASP personnel be available? If not 
around the clock, what happens with antimicrobial 
stewardship- related issues that arise during off hours? 
Who will provide coverage in the absence of ASP person-
nel (e.g., vacation, professional meeting attendance)?   

  (e)    How will recommendations be communicated to provid-
ers? If communication is placed in the patient medical 
record, will the communication be a permanent part of the 
medical record? What is the course of action if the provider 
does not respond (i.e., a page/phone call is not returned, 
communication in medical record is not addressed)?   

  (f)    Will the ASP have any prescriptive authority, and if so in 
what situations?   

  (g)    How will interventions be documented and tracked?   
  (h)    What outcomes will be reported, to whom, in what 

format(s), and how often? Will ASP meeting minutes be 
provided to anyone outside of the  ASP   team, and if so to 
whom?    

      4.    The steps involved in the development and implementation of 
an  institution-wide dosing protocol   include the following:
   (a)    Gather evidence. Collect internal data to demonstrate the 

need for the protocol, and summarize published literature 
to provide supporting rationale for the protocol. Seeking 
insight from external institutions that have implemented a 
similar protocol may also be helpful.   

  (b)    Identify key stakeholders and collaborate to develop the 
protocol. Consider not only those stakeholders who will 
support the protocol but also those who will be affected 
by the protocol and/or may not be in favor of the proto-
col. Involvement of “naysayers” early in the process may 
cause a delay but ultimately is benefi cial in building buy-
in, anticipating problems, and overcoming barriers as early 
as possible.   

Pharmacodynamics in Antimicrobial Stewardship
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  (c)    Take the protocol through the necessary committee infra-
structure for approval. Consideration should be given to 
integrating the protocol into a decision support algorithm 
within the electronic medical record, which may add to 
the necessary committees for approval but also will likely 
improve adherence to the protocol.   

  (d)    Once approved, educate the staff on the new protocol. 
This should include broad-based, general education, such 
as institution-wide newsletters or e-mails, and targeted 
education to those groups likely to be directly affected 
(e.g.,    pharmacists and prescribers). Development of 
enduring materials is helpful to allow for reeducation, if 
necessary, and education of new staff members as they are 
hired. The importance of this step should not be 
underestimated.   

  (e)    Launch the protocol. Select a go-live date and include this 
date in the staff education. Ensure that all supporting 
materials (e.g., pre-programmed infusion pumps, compat-
ibility tables, dosing reference tables, electronic orders) 
are in place and functioning prior to go-live.   

  (f)    In the fi rst weeks to months, provide active support and 
feedback to protocol users. Ensure that there is a contact 
available to help troubleshoot as all become profi cient in 
applying the new process.   

  (g)    Review the protocol on a regular basis and revise as neces-
sary based  on   changing internal or external data or 
practices.    
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