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Foreword

For many years in the past, few patients with prostate carcinoma were treated by
surgery.

Two were the main reasons. First, diagnosis often occurred at such an advanced
stage of the illness as to make radical treatment impossible. Second, the few patients
who underwent surgery were routinely left incontinent.

An alternative to less-than-adequate surgical treatment was hormonal therapy
which was the fruit of Huggins’ 1941 study. It offered a satisfactory cure, indeed
it is still efficacious at present. Hormonal therapy had the advantage of prolonged
patient survival while affording fairly good quality of life.

For a long time the clinical approach to prostate carcinoma has been based on
these fundamentals.

A preference for surgical treatment of prostate cancer began with the identifica-
tion of the prostate-specific antigen, used in a mostly efficacious but not completely
conclusive way, in efforts to isolate the illness in a precocious state. The decisive
surgical innovation, however, came about in the 1980s with the introduction of
techniques that made it possible to safeguard urinary continence in the first place
and secondly erectile function. Subsequently surgical therapy of prostate carcinoma
has exploded. Its merits are better cures for many patients than in the past and
innumerable resultant studies on all aspects of this disease.

The present volume is up-to-date and comprehensive as a treatise, but agile and
fluent as a manual. It considers prostate carcinoma in all its modern pathological as-
pects, from classical morphology to immunohistochemistry and molecular biology.

A clinician will gain from this text a comprehensible synthesis of the immense
and complex literature on the biology of the prostate cancer.

Additionally much attention is placed on arguments that have important clinical
implications as, for example, those on new specific markers of aggressive disease
(circulating cancer cells), metastatic dissemination, or irreversible castration resis-
tant disease.

The volume has also the merit of transmitting the enthusiasm of the young
research scientists, who co-authored the book, in regard to the preliminary results
of on-going research. Their hopes for future positive results with new medical
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viii Foreword

treatments, though not yet in hand, would obviate surgery for prostate cancer. Such
discovery would close the circle on how to treat the disease. It may prove that
prostate cancer surgery will lead eventually to more efficacious medical treatment—
the method described at the beginning of this foreword.

Full Professor of Urology Giulio Nicita
Clinica Urologica II, University of Florence
Department of Urology, University of Florence
Viale Pieraccini, 18, IT-50139 Florence, Italy
April 24, 2013



Preface

“Prostate Cancer: Towards the Molecular Pathology” is an ambitious title for an
extraordinarily complex subject. This title symbolizes the purpose to offer a virtual
journey on the bumpy roads that cross the morphological and molecular events
underlying the metamorphosis of prostate tissue from normal to cancerous.

This book does not pretend to be a comprehensive opera, but aims to provide a
description of the protean morphological, genetic and epigenetic events related to
this process, supplying a fil rouge which may help the reader to orientate into this
rapidly evolving field.

It is meant to propose a user-friendly approach to the integrated management
of patients with prostate cancer, whether the reader comes from a background of
urology, histopathology, molecular pathology, clinical and experimental oncology,
or radiotherapy.

The topics, included in the different chapters of the book, will demonstrate that
common morphological features may underlie different pathogenetic events, and
that the resulting picture derives, ultimately, from the complex and variable interplay
between a plethora of intersecting molecular pathways.

I am grateful to the friends and colleagues that authored these chapters.
They all shared my aim to offer their expertise to provide a synthetic, yet

representative, up-to-date text on the most debated questions and promising trends
concerning the morpho-molecular correlation in prostate cancer.

I wish to thank, also, the younger researchers who actively participated into this
project with outgoing passion. We all hope that this book will provide the reader,
whether clinician or laboratory worker, with the essential elements for a current
approach to prostate cancer.

Naples, Italy Stefania Staibano
March 28, 2013
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Sisto Perdonà Department of Urogynecologic Oncology, National Institute of
Tumors Fondazione “G. Pascale”, Naples, Italy

Maria Fiammetta Romano Department of Biochemistry and Medical
Biotechnology, Federico II University, Naples, Italy

Simona Romano Department of Biochemistry and Medical Biotechnology,
Federico II University, Naples, Italy

Daniela Russo Department of Advanced Biomedical Sciences, Pathology Section,
Faculty of Medicine and Surgery, University of Naples “Federico II”, Naples, Italy

Maria Siano Department of Advanced Biomedical Sciences, Pathology Section,
Faculty of Medicine and Surgery, University of Naples “Federico II”, Naples, Italy

Ester Simeone Unit of Melanoma, Cancer Immunotherapy and Innovative
Therapy, Department of Melanoma, National Institute of Tumors Fondazione
“G. Pascale”, Naples, Italy

Stefania Staibano Department of Advanced Biomedical Sciences, Pathology
Section, Faculty of Medicine and Surgery, University of Naples “Federico II”,
Naples, Italy

Silvia Varricchio Department of Advanced Biomedical Sciences, Pathology
Section, Faculty of Medicine and Surgery, University of Naples “Federico II”,
Naples, Italy

MariaLuisa Vecchione Department of Advanced Biomedical Sciences, Pathology
Section, Faculty of Medicine and Surgery, University of Naples “Federico II”,
Naples, Italy



Introduction

One more book on prostate cancer. Do we really need it, in a scenario crowded by
so many outstanding specific textbooks?

At first glance, “no, thanks” is the only reasonable answer.
However, every month the flow of Web references on prostate cancer biology

continues to steeply rise, leading to an endless overload of information.
So, a new book could attempt not only to fix the most significant news on this

tumor, but to guide the reader towards a new approach that originates from a strict
integration between surgical and molecular pathology, genetics and epigenetics,
equally acting in determining the overall biology of prostate cancer.

This wide-angle vision of the problem is essential, at least for two order of
pragmatic and therapeutic problems.

The first one derives from the remark that about 90 % of prostate cancers are
detected by means of screening, and most of patients actually die from other causes
(that is to say “with”, and not “for” the tumor), with up to two million survivors in
the United States alone. The expected costs of care for the next 5 years outnumber
$2 billions, so the search of a definitive consensus about the optimal screening and
treatment approaches is necessary to avoid unneeded therapies and expenses.

The latter resides in the observation that subsets of prostate cancer kill about 1 in
36 men in US, representing the sixth leading cause of death from all cancer in men
worldwide, and that we are still far to cure them. A lot of work is still needed to
correctly identify the patients to be treated with alternative individual therapies, and
to find the most effective combinations of drugs. These new promising therapeutic
agents could get us close to the goal to induce their permanent remission, strikingly
expanding the life expectancy of patients.

The approach chosen in this book to address the updated information on prostate
cancer morphology and biology was exquisitely pragmatic.

The 18 chapters begin with a concise overview of the background underlying
the treated specific topics, then they proceed with the main text body. Most of
the concepts related to molecular alterations have been graphically resumed and
simplified in diagrams and schemes, which can be found at the end of each chapter.
An on-line version of these graphics, supplying their step-by-step construction,
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xviii Introduction

is available on web (http://extras.springer.com). Morphology, as a rule, has been
illustrated with histologic images.

The references included in each chapter have been selected according to the state
of knowledge at the time of writing.

This book has represented an extraordinary cooperative working experience for
the authors, editor and publisher. We hope that it may have the power to spread, to
the reader, the enthusiastic sensation that we can really win the final battle against
prostate cancer.

http://extras.springer.com


Part I
Clues to Morphological Diagnosis

and Prognosis Evaluation



Chapter 1
Update on Diagnostic Criteria, on Biopsy
and Surgical Specimen: Preinvasive Lesions,
from Epithelial Cell Hyperplasia to Carcinoma
In Situ and Invasive Carcinoma – First-Line
Immuno-Phenotyping of Prostate Diseases

Massimo Mascolo, Daniela Russo, and Gaetano De Rosa

Abstract Prostate cancer (PCa) is the first most common malignant neoplasm
among men in Western countries and the fifth cause of cancer worldwide. Up
to date, there is no single tumor biomarker that accurately predicts patient’s
clinical outcome. On the basis of these considerations, an optimal characterization
of patients with PCa represents an increasingly exciting challenge for surgical
pathologists. The ability to discriminate between low and high aggressive PCa
represents an highly debated issue, which is critical for the therapeutic choices.
This chapter focuses on the recent findings about the prostate morphological and
immunohistochemical findings, with a brief reference to recent development of
molecular markers with diagnostic and/or prognostic relevance, in the hope of
guiding the approach to the pathological interpretation of prostate bioptic and
surgical tissue specimens.

Abbreviations

PCa Prostate cancer
PSA Prostatic specific antigen
DRE Digital Rectal Examination
TRUS Transrectal ultrasonography
PCA3 Prostate Cancer gene 3
HG-PIN High grade prostatic intraepithelial neoplasia
ASAP Atypical small acinar proliferation
TURP Transurethral resection of the prostate
BPH Benign prostatic hyperplasia

M. Mascolo (�) • D. Russo • G. De Rosa
Department of Advanced Biomedical Sciences, Pathology Section, Faculty of Medicine
and Surgery, University of Naples “Federico II”, via S. Pansini, n.5, Naples, Italy
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TUIP Transurethral incision of the prostate
EAU European Association of Urology
AMACR ’-methylacyl-CoA racemase, P504S
PSAP Prostate-specific acid phosphatase
PSMA Prostate-specific membrane antigen
P501S Prostein
PAP Human prostatic acid phosphatase
AP Acid phosphatase
GSTP1 The Glutathione S-transferase P1
CGA, GRN-A The Chromogranin A
PSCA The Prostate Stem Cell Antigen
EPCA The Early Prostate Cancer Antigen
Cav-1 The Caveolin-1
PCA3/DD3 The Prostate cancer antigen 3
TMPRSS2-ERG The Transmembrane protease serine 2-Ets Related Gene
GOLPH2 The Golgi phosphoprotein 2
DAB2IP The DAB2 interacting protein
FASN The Fatty acid synthase
PIN Prostatic intraepithelial neoplasia
AJCC/UICC The American Join Committee on Cancer/Union

Internationale Contre le Cancer
ISUP The International Society of Urological Pathology

Prostate cancer (PCa) is a major public health problem worldwide, being one of the
most common malignancy accounting about 900,000 estimated new cancers (Ferlay
et al. 2010; Center et al. 2012), and its incidence rate varies according to geographic
locations and race (Ferlay et al. 2010; Siegel et al. 2012). PCa, in fact, represents
the first most common malignant neoplasm (other than skin cancer) among men in
Western countries and the fifth worldwide (Ferlay et al. 2010; Parkin et al. 2010;
Siegel et al. 2012). Over the past two decades, the broad use of prostatic specific
antigen (PSA) in the individual and mass screening for PCa, combined to the
standardization of prostate needle biopsy methodology, has resulted in a significant
increase of early diagnosis and in a “stage migration”, leading to a progressive
reduction of “incurable” mortal carcinomas (Noldus et al. 2000; Jani et al. 2001;
Ung et al. 2002; Derweesh et al. 2004; Moore et al. 2009). Nevertheless, PCa with an
estimated 258,000 deaths per year in the world constitutes the sixth leading cause of
death from cancer, representing the second one in developed countries (Ferlay et al.
2010; Center et al. 2012; Siegel et al. 2012). The expected decrease of PCa mortality
is hypothesized to be the result of a higher therapeutic success rate due to an
increase of early stage PCa diagnosis and, especially, of the major ability to identify
patients with a higher risk of progression from the great majority of “insignificant”
neoplasms (Andriole et al. 2009; Schroder et al. 2009). An early diagnosis of more
aggressive PCa before that any symptoms of tumor progression are seen, allows,
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in fact, to adopt the most appropriate therapeutic management. Despite extensive
technical advances, to date, the efficacy of PSA or, generally speaking, of a single
tumor biomarker, to accurately predict patient’s clinical outcome is still limited
(Bjartell et al. 2011; Pomerantz et al. 2011). Basing on this consideration, the
best possible characterization of each patient with PCa represents an increasingly
exciting challenge for surgical pathologist. Its pivotal and not always comfortable
role is not only limited both in the cancer diagnosis, especially when the cancer
focus is small, but also and in the identification of patients with the greatest risk of
systemic progression (Montironi et al. 2011a). The ability to discriminate low from
high aggressive PCa represents today’s most debated issue, which influences the
therapeutic approach of single patient. Furthermore, recent data confirmed that PCa
with a combined Gleason score of 6 or less almost never metastasize to lymph nodes;
conversely PCa with at least one pattern of 4 or 5 can metastasize (Ross et al. 2012).
In fact, patients with high risk PCa have to be treated with conventional therapeutic
options, such as radical prostatectomy or radiotherapy, and the others with a
“watchful waiting strategy”, which consists in the active surveillance of the patient
by a close follow-up using serum PSA and repeated biopsies (Bill-Axelson et al.
2011; Montironi et al. 2011a), adopting the standard curative treatment only when
in these patients an upgrading at repeat biopsy is observed (Montironi et al. 2011a).
Prostate needle biopsy represents the primary approach in the establishment of a
definitive diagnosis of PCa. In developed countries, pathologists have to confront
in daily practise with a rising number of prostate biopsies. The objective of this
chapter is to provide a contemporary update of the current evidences regarding the
prostate morphological and immunohistochemical findings, with a brief reference
to recent development of molecular markers, in the hope of guiding pathologists
toward accurate interpretation of biopsies and prostatectomy. We discuss also
the surprising interactions between clinical and pathological characteristics, with
particular attention to their role in defining prognosis and therapeutic management
of PCa patients.

1.1 Physical Examination of Patients

PCa represents a heterogeneous disease, with different clinico-pathological presen-
tations and prognostic features. To provide the best management for patient with
PCa, obtain a complete clinical history is crucial, and it has to be supported by
imaging studies and integrated with histological, immunophenotypical and molec-
ular data. To date, no definitive cause for PCa development has been identified,
but three well established risk factors appear to have a role in its development:
age, ethnic group and heredity. The risk to develop PCa becomes, in fact, higher
in men over age 50, with nearly 65 % of cases occurring in men age 65 and
older, that live in developed countries, with a positive family history for cancer
(Quinn and Babb 2002; Siegel et al. 2012). African-Americans have the highest
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chance of developing PCa and twice the risk of dying for it, while Asian men
have the lowest risk (Gronberg 2003; Williams and Powell 2009; Kheirandish
and Chinegwundoh 2011). In addition, several exogenous factors including sexual
behaviour, use of alcohol, a high-fat diet and occupational exposure are considered
important in determining the risk of developing clinical PCa (Kolonel et al. 2004).
The majority of physicians try to obtain evidence of PCa through Digital Rectal
Examination (DRE), serum concentration of PSA, PSA velocity overtime, free/total
PSA ratio, and transrectal ultrasonography (TRUS) (Stamey et al. 1987; Partin
et al. 1993; Basler and Thompson 1998; Jacobsen et al. 1998; Mahon 2005). In
addition, the finding of PCA3 (Prostate Cancer gene 3), highly over-expressed in
patients affected by PCa, has been recently introduced into clinical routine as a
specific urine marker for PCa (Auprich et al. 2011). A needle baseline prostate
biopsy is performed if the results of DRE and/or PSA and/or TRUS are not within
normal range. Its main objective is to diagnose PCa; the histotype, the extent
and the grade of carcinoma in needle are, in fact, important findings in better
establishing the prognosis and the contemporary management of the patient, helping
to choose through a wide spectrum of potential therapeutic strategies available:
active surveillance, radiotherapy, adjuvant hormonal therapy and different types of
surgery.

1.2 Surgical Techniques: Needle Prostate Biopsy,
Transurethral Incision and Resection of the Prostate,
and Open or Radical Prostatectomy

A needle core prostate biopsy can be done, with similar adequate results, throughout
transperineal or tranrectal routes (Hara et al. 2008; Takenaka et al. 2008). The
decision to proceed to a needle biopsy is generally established on the basis of the
serum PSA kinetics and/or suspicious DRE and/or TRUS findings. A lesion guided
biopsy is performed on palpable nodules or TRUS identified lesion; conversely the
great majority of “invisible lesions” are generally detected by systematic TRUS
needle biopsy (El-Hakim and Moussa 2010). The first systematic bioptic approach
used was the sextant scheme (3 cores from each lobe: 1 from the base, the mid and
the apex) (Hodge et al. 1989). Then, to reduce the number of not diagnosed cancer, a
laterally directed biopsy method was proposed (Stamey 1995). The currently applied
strategy, also called “extended prostate biopsy”, is usually done with 18-gauge
biopsy needles and provides a minimum of 10 to a maximum of 18 cores (in
glands �50 cm3) (Eichler et al. 2006; Scattoni et al. 2008). Prostate tissues from
at least five regions, including the lateral peripheral zone and midline, are obtained.
The choice of the method to use depends mainly on the clinical (prostate size and
patient age) and laboratory data (PSA range) of the patient. Although multivariate
analysis revealed no significant difference between 18 and 22 cores compared to
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10–12 cores approach, the highest relative positive rate was reported with the 18–
22 biopsy scheme (Eichler et al. 2006). A repeat biopsy within 3–6 months is
indicated when a rising and/or persistent PSA and/or suspect DRE, high grade
prostatic intraepithelial neoplasia (HG-PIN) and atypical small acinar proliferation
(ASAP) are found (Epstein and Herawi 2006). Patients with sustained suspicion of
PCa, despite the second negative repeated biopsy, should be subjected to saturation
biopsy, an aggressive biopsy procedure with up to 45 cores obtained (Rabets et al.
2004; Walz et al. 2006). To date, prostate needle procedure provides a proper
evaluation of the posterior gland, the site where the majority of PCa develops.
Nevertheless, taking in consideration the microscopic anatomy of prostate (three
anatomically distinct glandular zones, peripheral, transition and central area, and the
anterior fibro-muscular stroma), this methodology needs to further improvements
to allow a more precise detection of the transition zone and the anterior localized
PCa (Fine and Reuter 2012). Finally, an extended repeat or a saturation biopsy is
strongly encouraged in young patients or healthy men with a strong suspicion of
cancer (Chun et al. 2010).

Transurethral resection of the prostate (TURP) is the most common surgical
method to treat conditions like obstructive prostatic hypertrophy, due to benign
prostatic hyperplasia (BPH), and is considered the primary choice in the treatment
for prostate sized 30–80 ml. This procedure removes the portion of the gland
immediately surrounding the urethra, including transition and periurethral zones, the
bladder neck and the anterior fibro-muscular stroma, through a urethral endoscopic
approach. Tissues from seminal vesicles, central and peripheral zones, are generally
untouched. The optimal number of chips required for an adequate histologic
examination is almost a full cassette for each 5 g of tissue (Henson et al. 1994;
Heidenreich et al. 2011).

Transurethral incision of the prostate (TUIP) is an endoscopic procedure reserved
to the treatment of smaller prostate (�30 g). It is associated with few complications,
such as fever, and, if applied to appropriate patients, it provides the same clinical
benefit as TURP, even if a higher long-term failure rate for this approach is described
(Orandi 1985).

The open prostatectomy represents the standard procedure for resecting larger
prostate (>80–100 ml). This surgical approach involves the removal of the inner
portion of the prostate through an incision under the lower abdominal area.

Finally, while TURP, TUIP and open prostatectomy, constitute the conventional
surgical options for BHP according to European Association of Urology (EAU)
guidelines, the radical prostatectomy is the most common surgical procedure for the
treatment of advanced PCa. It consists in the removal of the whole prostate gland
and, according to the clinic and imaging findings, of the seminal vesicles, deferent
ducts and loco-regional lymph nodes. The radical prostatectomy can be performed
through a retropubic or a perineal approach. The first allows the evaluation of lymph
node status also via frozen section before the complete removal of prostate; the
second does not permit this assessment.
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1.3 Histology

All specimens (needle core biopsies, TURP, enucleation, radical prostatectomy;
Fig. 1.1) must be fixed in 4 % formaldehyde solution and sent to the pathology
laboratory. Needle biopsy samples consist of thin cores taken from different prostate
sites. It is necessary to count all the cores, measure each core in length and, then,
carefully transfer each of them into separate tissue cassettes (up to 3 cores for each
cassette), paying particular attention not to crush the tissue (Iczkowski et al. 2002a).
Multiple tissue fragments constitutes TURP specimen; and measure their aggregate
dimension, register their weight and put the chips in separate cassettes (up to about
5 g for each cassette) is needed. The enucleation specimen is generally constituted
by either partially or totally not orientable nodules. Specimen size and weight must
be noted. Radical prostatectomy specimen must be oriented, measured in three
dimensions and weighted. It is important to evaluate the additional organs attached
(seminal vesicles, vas deferens, bladder neck), count and measure the lymph nodes.
To achieve an optimal fixation, samples have to be completely submerged in a
volume of formalin at least ten times their volume for about 24 h and those regarding
the radical prostatectomy, a proper fixation tank should contain at least 500 ml of
formalin.

1.3.1 Sampling

A fundamental task for the appropriate management of a patient with PCA is
the adequate sampling. Although PCa sampling protocols vary from laboratories,
depending on pathology’s own experience and laboratory management, some
sampling steps must be performed systematically. After inking the specimen, an
adequate sampling of a prostate removed for BHP requires serial sections of
whole gland at intervals of 3–4 mm in thickness. Unlike simple gland removal,
radical prostatectomy usually includes the seminal vesicles and vas deferens. These

Fig. 1.1 Prostate surgical samples: (a) prostate needle cores; (b) open prostatectomy; (c) radical
prostatectomy
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Fig. 1.2 Phases of radical prostatectomy sampling (a) sample of radical prostatectomy; (b) total
prostate sampling; (c) seminal vesicles previously removed

structures can be of variable size depending on the surgical technique used. After
fixation, the vesicles and the vas deferens must be removed and, the weight and
the three prostate dimensions, noted (Fig. 1.2). Then, it is necessary to ink the
specimen with at least two colours, so to distinguish the right from the left lobe.
This step is critical for the correct histologic evaluation of surgical margin tumor
involvement and it is performed by 99.6 % of European pathologists. In fact, the
presence of tumor on surgical margin increases the probability of cancer recurrence
after radical prostatectomy. At the ISUP consensus meeting, a full agreement on
the modified cone method as the best apex cutting protocol was reached. A section
is removed from the top, then, cut and embedded sagittally. After the sampling of
the apex has been carried out, the prostate is sectioned every 3–4 mm. If the tumor
is identified, a description with its location (e.g., posterior, postero-lateral, lateral,
anterior and apex, mid, base), size (greatest diameter) and consistency (e.g., firm,
fleshy) is necessary. It is also necessary to note the number, appearance and diameter
of lymph nodes, if received. The last section of the base should be treated like
the cone apex. The prostate sampling should be total but, if the partial embedding
method is applied, it must be documented in the pathology report.

1.3.2 Processing

From each formalin-fixed, paraffin embedded tissue block, serial sections of 4 �m
thickness are cut. The first two sections are stained with haematoxylin and eosin
(h&e; Fig. 1.3) for histological diagnosis. In unresolved cases, the remaining slides
may be used for immunohistochemistry.

1.3.3 Histology of PCa

PCa diagnosis depends on its presence in biopsy cores, TURP or prostate specimens.
Detection of all phases in prostate carcinogenesis, from normal to hyperplas-
tic to pre-neoplastic and, ultimately to cancer, may be identified in histologic
slides (Che et al. 2003; Chappell and McLoughlin 2005a, b). The needle biopsy
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Fig. 1.3 Haematoxylin and eosin slides of: (a) radical prostatectomy specimen; (b) open prosta-
tectomy; (c) needle core biopsy; (d) transurethral biopsy of prostate

Table 1.1 Pathognomonic criteria for cancer

Pathognomonic criteria
for cancer

Major criteria
for cancer Minor criteria for cancer Criteria against cancer

Perineural infiltration Architecture of
the glands

Intraluminar contents Corpora amylacea

Glomerulations Absence of
basal cells

Mitotic figures Atrophic cytoplasm

Mucinous fibroplasias Nuclear atypia Crystalloids Pale to clear cytoplasm
Mucin extravasation � Nuclear hyperchromasia �
� � Amphophilic cytoplasm �
� � Adjacent HG-PIN �

constitutes the most common tool for establishing a definitive diagnosis of PCa
(Humphrey 2007). The importance of prostate biopsy interpretation, especially
for early lesions, has been long recognized. A correct biopsy analysis requires a
methodical (from low, to medium, to high magnification) and thorough approach
evaluating several architectural and cytological features of glands. Both major and
minor criteria for the PCa diagnosis have been defined (Epstein 2004) (Table 1.1).
The glands’ architecture (infiltrative growth pattern, single or cords of atypical
cells, solid nests with or without necrosis), presence or absence of basal cells
and nuclear atypia (nuclear enlargement, hyperchromasia and prominent nucleoli)
are defined as major histological criteria (Fig. 1.4) (Totten et al. 1953; Helpap
1988; Algaba et al. 1996; Varma et al. 2002; Aydin et al. 2005). Intraluminar
mucin secretions and crystalloids, hyperchromatic nuclei, mitosis, amphophilic
cytoplasm and adjacent HG-PIN are, instead, considered as minor histological
criteria (Fig. 1.4) (Ro et al. 1986; Epstein and Fynheer 1992; Epstein 1995b;
Vesalainen et al. 1995; Henneberry et al. 1997). The presence of corpora amylacea,
an atrophic cytoplasm, or pale to clear cytoplasm, are to be considered features
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Fig. 1.4 Architectural and cytological features of PCa: (a) Architectural pattern of a Gleason 6
PCa; (b) Haematoxylin eosin staining; (c) Cytokeratin 34BE12 staining: note the absence of basal
cells; (d) Cytological features of PCa: note the difference of nuclear size and tumor cells with
nucleolus; (e) Intraluminar pink amorphous secretions; (f) Adjacent HG-PIN; (g) Glomerulation;
(h) Circumferentially perineural infiltration; (i) Corpora amylacea

against cancer. Whenever the histopathological diagnosis may be in doubt, serial
deeper cutting and immunohistochemistry are mandatory (Algaba et al. 1996;
Novis et al. 1999; Iczkowski 2006). Finally, suspicious lesions may be resolved by
intradepartmental and/or external consultation (Novis et al. 1999). In fact, in needle
prostate biopsy specimens, the pathologist encounters a wide spectrum of lesions,
including benign or hyperplastic glands, associated or not to inflammatory infiltrates
(acute or chronic or granulomatous prostatitis), atrophy, atypical adenomatous
hyperplasia, LG- and HG-PIN, adenocarcinoma, but especially the small atypical
focus represent a diagnostic challenge. In this case, the diagnosis is a difficult
task to accomplish: sometimes, cancer cannot be definitely diagnosed, due to the
lack of clear diagnostic morphological features of malignancy. Four findings are
considered pathognomonic of malignancy: perineural infiltration, glomerulations,
mucinous fibroplasias and mucin extravasation (Fig. 1.4). Perineural invasion is
seen in approximately 11–37 % of prostatic needle biopsies showing extensive
adenocarcinoma, but only in 0–3 % of cases with limited cancer (Humphrey 2007).
The glands should almost completely surround the nerve (Baisden et al. 1999).
Such findings must be distinguished from perineural indentation or intraneural
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involvement by benign prostate glands (Ali and Epstein 2005) and have been
associated with extraprostatic extension. Glomerulations consists of glands contain-
ing balls or tufts of cancer cells, resembling renal glomeruli, seen in approximately
3–15 % of prostatic needle biopsies (Pacelli et al. 1998; Baisden et al. 1999; Varma
et al. 2002). Mucinous fibroplasias, also named collagenous micronodules, is a rare
diagnostic finding in PCa (about 1–2 % of prostatic needle biopsies), which consists
of nodular aggregates of paucicellular hyalinised stroma, within or outside cancer
glands, often representing the organization of intraluminar mucin (McNeal et al.
1991; Thorson et al. 1998; Baisden et al. 1999).

1.4 Immunophenotyping of PCa

Immunohistochemistry has assumed an increasingly prominent role in diagnostic
prostate pathology. It is a very valuable and frequently used tool in the differential
diagnosis between PCa and its benign mimickers. Furthermore, this method permits
to discriminate poorly differentiated PCa from other malignant tumors such as
colonic and urothelial carcinomas, that secondarily involve or metastasize to the
prostate gland (Bates and Baithun 2002; Srigley 2004; Herawi et al. 2005; Chuang
et al. 2007; Osunkoya et al. 2007). The most commonly immunohistochemical
antibodies used to differentiate PCa from its benign mimickers are high molecular
weight cytokeratin, such as anti-cytokeratin 34BE12 or cytokeratins 5/6, p63 or in
alternative its homologue p53, and ’-methylacyl-CoA racemase, P504S (AMACR)
(Fig. 1.5) (Kahane et al. 1995; Wojno and Epstein 1995; Zhou et al. 2004). The
first two proteins are helpful for establish whether basal cells are present or not,
that is an important key difference between benign and malignant prostate glands.
In fact, the vast majority of invasive cancer does not present basal cells. However,
negative staining can be seen in 5–23 % of benign prostate glands. In addition a
fragmented basal cell layer can be detected in partial atrophy, adenosis and HG-
PIN. In these circumstances an immunostaining with AMACR must be added.
Racemase is a positive marker for PCa that complements negative basal cell staining
(Beach et al. 2002; Jiang et al. 2002; Luo et al. 2002; Rubin et al. 2002; Magi-
Galluzzi et al. 2003a). Nevertheless, AMACR may be also positive in HG-PIN
and, occasionally, in some PCa mimickers, such as atrophy and adenosis (Bjartell
et al. 2011). A staining cocktail obtained using these antibodies can improve the
diagnostic accuracy (Bjartell et al. 2011). Other markers helpful in discriminating
between benign and malignant acini are PSA, prostatic-acid phosphatise (PAP) and
S-100. To determinate the endocrine nature of the cancer we can use chromogranin
and neuron specific-enolase. It should be emphasized that immunohistochemical
staining are not necessary in each case of PCa. The most common antibodies
performed to distinguish PCa from other malignant tumors involving prostate are
cytokeratins 7 and 20, cytokeratin 34BE12, p63, prostate-specific antigen (PSA),
prostate-specific acid phosphatase (PSAP), prostate-specific membrane antigen
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Fig. 1.5 Gleason 6 (3 C 3) PCa: (a) Haematoxylin eosin staining; (b) AMACR staining (positive
granular cytoplasmic staining in the neoplastic glands); (c) Cytokeratin 34BE12 staining (absence
of basal cells in neoplastic glands); (d) P63 staining (absence of basal cells in neoplastic glands)

(PSMA), prostein (P501S), TTF-1 and CDX-2 (Kunju et al. 2006; Leite et al.
2008a). The wide availability of reliable antibodies helps to provide a reliable
diagnosis in most of the challenging cases.

1.5 Molecular Features

A tumor biomarker can be used to predict the prognosis and/or the clinical efficacy
of the antitumor drugs in patients with cancer (Madu and Lu 2010). Prognostic
biomarker gives informations on the tumor aggressiveness, helping to identify poor
from good prognosis cancer; predictive biomarkers express patient’s response to a
particular anticancer drug (sensitivity or resistance); pharmacodynamic biomarker
provides evidences of immediate pharmacological response to a drug, possibly
determining the proper dosage to use (Madu and Lu 2010). An ideal prostate
biomarker should be tissue specific, easy to measure in an accessible biological
fluid or tissue, useful in the early detection and monitoring of PCa and helpful to
distinguish PCa from normal or hyperplastic tissue (Madu and Lu 2010).
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1.5.1 Molecular Biomarkers in PCa Screening

Over the past 25 years, an increasing early diagnosis and a successfully reduction of
PCa death rate has been reached thanks to the wide diffusion of PSA screening pro-
gram. Despite its limitations, serum PSA (a serine protease with a molecular mass
of approximately 30 kDa that belongs to the human kallikrein proteases family)
remains, to date, the most useful marker for detecting, staging, and monitoring
PCa, especially in its early stage (Stamey et al. 1987; Partin et al. 1993). The main
advantages of the PSA testing are the superior sensitivity, a high degree of patient
acceptance and its cheapness; conversely, the main disadvantage is represented by
its variable ability to distinguish between benign conditions (BPH and prostatitis)
showing, in some cases, abnormal PSA values, and neoplastic diseases.

1.5.2 Biomarkers for the Diagnosis and Prognosis of PCa

A diagnostic marker for early detection of PCa should allow the accurate detection
of an early cancer or of lesions turning into cancer in about 100 % of cases. Biomark-
ers for PCa diagnosis and prognosis include DNA and RNA-based biomarkers, and
protein markers. The first described serum marker for PCa was the human prostatic
acid phosphatase (PAP), named also serum acid phosphatase (AP), even if it has
resulted not sensitive enough for PCa screening (Gutman and Gutman 1938; Bishop
et al. 1985; Veeramani et al. 2005). Currently PSA test has, in fact, replaced the
use of acid phosphatase determination, due to its more sensitivity and specificity.
This test measures levels of PSA in the blood, in both its form: free and complexed
with ’1-antichymotrypsin or ’2-macroglobulin. The ratio of free PSA in total PSA
can help differentiate PCa from benign processes when a slightly elevated serum
PSA value (from 4 to 10 ng/ml) is observed. Patients with a free PSA less than
10–25 % of the total PSA have, in fact, a higher probability to have PCa. To date,
none of the biological markers used is sensitive and specific enough to provide an
early diagnosis of PCa and to predict the natural course of the cancer. It is therefore
urgently necessary to characterize and identify novel and existing diagnostic and
prognostic markers starting from those reported below.

The ’-Methylacyl Coenzyme A Racemase (AMACR; diagnostic marker) plays
a key role in peroxisomal beta-oxidation of branched-chain fatty acids. It works as
a growth promoter, androgen independent, in PCa (Kuefer et al. 2002) and, unlike
normal or hyperplastic tissues, it has been demonstrated to be overexpressed in the
majority of PCa (Kristiansen 2012).

The Glutathione S-transferase P1 (GSTP1; diagnostic marker) plays an impor-
tant role in the detoxification. It is able to detect the presence of PIN and PCa and to
differentiate patients with hyperplastic from neoplastic prostate. Since GSTP1 gene
resulted hypermethylated in PCa, PCR detection of this gene in urine could be used
to better stratify patients undergoing prostate biopsy (Lin et al. 2001).
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The Chromogranin A (CGA, GRN-A; diagnostic and prognostic marker), an
acidic glycoprotein, is a marker of neuroendocrine differentiation, playing an im-
portant role in the resistance to androgen-deprivation therapy. It has been proposed
that its elevated expression in plasma and tissue could represent an independent
factor in hormone refractory PCa and be associated with decreased patient survival
(Deftos 1998; Kamiya et al. 2008; Berruti et al. 2010).

The Prostate-specific Membrane Antigen (PSMA; diagnostic and prognostic
marker) is a type 2 membrane glycoprotein selectively found in prostate tissues and
circulating PCa cells. It shows increasing levels of expression from hyperplastic
low-grade to high grade PCa. It is also overexpressed in PCa metastases (Bostwick
et al. 1998).

The Prostate Stem Cell Antigen (PSCA; prognostic marker) is a cell surface
glycoprotein predominantly prostate specific. Its high expression is associated
positively with adverse PCa features, such as increasing Gleason score, worsening
clinical and pathological stage and androgen-independence. PSCA may have the
potential to be a prognostic marker and a therapeutic target (Reiter et al. 1998;
Zhigang and Wenlv 2006).

The Early Prostate Cancer Antigen (EPCA; diagnostic and prognostic marker)
is a nuclear matrix protein, whose preoperative level predicts the increased risk for
the development of subsequent cancer in patients with HG-PIN and the presence of
incidental carcinoma in patients undergoing TURP for BPH (Zhao and Zeng 2010;
Zhao et al. 2010). Furthermore, recent studies have demonstrated that significantly
high preoperative serum EPCA levels are associated with PCa progression (Paul
et al. 2005; Zhao et al. 2011, 2012).

The B7-H3 (diagnostic and prognostic marker) first identified in 2001, is
a member of the B7-CD28 family, a group of proteins that enhances T cell
proliferation and IL-2 production (Zang et al. 2007). The B7-H3 was found
overexpressed in PCa compared to BPH, significatively linked to the PCa spread
and poor outcome (Yuan et al. 2011). Finally, the lack of change in its expression in
patients with androgen deprivation therapy makes the B7-H3 an attractive target for
new combined treatments (Roth et al. 2007; Chavin et al. 2009).

The Sarcosine (diagnostic and prognostic marker) is an N-methyl derivative
of glycine, strongly increased during PCa progression. Recently, serum and urine
levels of sarcosine have been proposed as useful indicators for the presence of PCa
(Sreekumar et al. 2009).

The Caveolin-1 (Cav-1; prognostic marker) is an integral membrane protein
of vesicular structures called caveolae, expressed in two isoforms (caveolin-1’

and caveolin-1“). Early and recent studies have shown that Cav-1 regulates many
signalling proteins involved in cell survival and angiogenic activities (Tahir et al.
2001). Cav-1 is secreted by PCa cells and its increased levels are associated with
PCa progression (Freeman et al. 2012).

The Prostate cancer antigen 3 (PCA3/DD3; diagnostic and prognostic marker) is
a non-coding mRNA segment from chromosome 9q21-22, found overexpressed in
the majority of PCa (de Kok et al. 2002; Hessels and Schalken 2009). To date, the
evaluation of urine PCA3 level, in combination with PSA kinetics values and DRE,
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is used to counsel or confirm biopsy indications, especially in the gray area of PSA
value ranging from 4 to 10 ng/ml (Rigau et al. 2010; Auprich et al. 2011). A PCA3
score >25 has been proposed as a strong indicator for tumor volume (Ploussard
et al. 2011).

The Transmembrane protease serine 2 (TMPRSS2-ERG Gene Fusion Rearrange-
ment; diagnostic marker) is an androgen-regulated type II transmembrane-bound
serine protease, located on chromosome 21. It was found expressed in normal
prostate and overexpressed in neoplastic prostate tissue, particularly in poorly
differentiated and untreated PCa cells. Fusions between the TMPRSS2 gene and
several oncogenes have been demonstrated in many PCa (Vest et al. 2010). In
particular, in early PCa it was demonstrated that the fusion between TMPRSS2 and
the transcription factor genes ERG and ETV1 resulted in an overexpression of ETS
family members in cancer cells and, consequently, in tumor progression (Kumar-
Sinha et al. 2008). Finally, the TMPRSS2/ERG gene fusion protein, combined with
PCA3 determination, increases the usefulness of serum PSA in predicting PCA
(Tomlins et al. 2011).

The Ki-67 (prognostic marker) was found progressively increased from benign
prostatic hyperplasia to adenosis, HG-PIN and high-grade cancers (Haussler et al.
1999). Furthermore, patients with high proliferation index showed a significant
higher incidence of metastatic PCa in the pelvic lymph nodes (Revelos et al. 2005).

The Golgi phosphoprotein 2 (GOLPH2; diagnostic marker) is a novel Golgi
membrane protein, that codes for type II Golgi membrane antigen GOLPH2/GP73.
In a recent study evaluating the expression of several potential PCa markers, an
increase in the levels of GOLPH2 was found (Kristiansen et al. 2008; Laxman et al.
2008).

The DAB2 interacting protein (DAB2IP; diagnostic marker) is a RasGTPase-
activating protein that acts as a tumor suppressor. The human DAB2IP gene has
frequently down-regulated in PCa cell lines (Chen et al. 2003).

1.5.3 Tissue Biomarkers

Basal cell markers represent, undoubtedly, the immunohistochemical cornerstone of
PCa diagnostics. Of all the immunohistochemical markers, in fact, high molecular
cytokeratins (CK34BE12, CK 5/6) and p63 are the best known and widely used
(Brawer et al. 1985). A wide range of other markers (P-cadherin, D2-40, CD109 or
BCL-2), that reliably label basal cells in the prostate, can be employed diagnosti-
cally (Jarrard et al. 1997; Ramos Soler et al. 2006; Hasegawa et al. 2007; Kuroda
et al. 2010) but, to demonstrate the prostatic origin of the tumor, several additional
markers have been proposed:

The Prostate-specific antigen (PSA), even if not entirely prostate-specific (also
detected in ovarian and breast carcinomas), is most commonly used to immunohis-
tochemically confirm the prostatic origin of metastatic cancers.

The Prostate-specific membrane antigen (PSMA) is a folate dehydrolase antigen
that is strongly expressed in most PCa and their metastases and has therefore been
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suggested as novel diagnostic marker. PSMA is generally up-regulated during PCa
progression; it is not prostate-specific and widely found in several cancers, such as
gastric and renal tumors and urothelial carcinomas (Wright et al. 1995).

The Prostein is located at the Golgi apparatus and it is androgen-regulated. Its
biological function is still unclear. Nonetheless, this protein has been successfully
used to discriminate, by immunohistochemistry, PCa from tumors of colon and
bladder (Xu et al. 2001; Kalos et al. 2004).

The homeobox gene NKX3.1 (chromosome 8p21.2) is an androgen-regulated
and mainly prostate-specific gene, which was observed primarily in secretory
prostatic benign and neoplastic epithelia. It is rarely found in benign testis and
invasive lobular carcinomas of the breast (Gelmann et al. 2003). Some authors
proposed NKX3.1 as new promising prognostic marker due to its loss in the high
grade PCa (Bowen et al. 2000; Bethel et al. 2006; Kristiansen 2012).

The Alpha-methylacyl-CoA racemase (AMACR) is found expressed in numer-
ous normal tissues, including liver, renal tubules and gallbladder epithelium, in
dysplastic tissues or malignant tumors such as colon and renal carcinoma, with the
highest level (>95 % of cases) described for PCa. In this malignancy it represents a
useful marker, reaching clinical value (Went et al. 2006; Kristiansen 2012).

The GOLM1 (GOLPH2, GP73) is a Golgi phosphoprotein of 73 kDa that was
first found expressed in hepatocellular disease, especially in liver carcinoma, whose
functions are still unknown. Several studies concerning PCa profiling have described
an overexpression of GOLM1 mRNA in these malignancies (Lapointe et al. 2004;
Kristiansen 2012).

The Fatty acid synthase (FASN) protein is encoded by the FASN gene located
on chromosome 17q25 and represents a crucial enzyme for the de novo synthesis
of fatty acids. FASN protein was found overexpressed in PCa, in which a close
concordance between AMACR and FASN expression has been observed (Shurbaji
et al. 1996; Tischler et al. 2010; Kristiansen 2012).

The truncated ERG product is found overexpressed in approximately 50 % of all
PCa cases harbouring TMPRSS2/ERG gene fusion and can be used as a diagnostic
marker since its antibody is commercially available (Miettinen et al. 2011).

1.6 Epithelial Prostatic Diseases

1.6.1 Normal Prostatic Epithelium

Normal prostate is composed of rounded and irregularly branching glands, medium
to large in size, embedded in a fibromuscular stroma (Fig. 1.6). The gland consists
of two cell layers: an inner layer constituted of differentiated secretory cells and
an outer layer, called basement membrane, containing mainly basal cells; several
intermediate cells are present between basal and secretory cells, and represent the
intermediate steps in basal to secretory cells differentiation. A minor cell population
is constituted by neuroendocrine cells.



18 M. Mascolo et al.

Fig. 1.6 Normal prostate tissue: (a) Haematoxylin eosin staining; (b) PSA staining (positive in
prostate tissue); (c) Cytokeratin 34 BE12 staining (highlighting basal cells); (d) P63 staining
(highlighting basal cells)

Fig. 1.7 Benign prostatic hyperplasia (a–c: from low, to medium, to high magnification)

1.6.2 Benign Prostatic Hyperplasia

Benign prostatic hyperplasia (BPH) is a benign disease, also named benign
prostatic hypertrophy, characterized by the proliferation of epithelial and stromal
compartments, resulting in cellular accumulation, glands enlargement and
stromal nodules (Fig. 1.7). It is generally caused by aging (50 % of men show
histopathological BPH by age 60, but the great majority by age 85) and it depends
on testosterone and dihydrotestosterone production.
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1.6.3 Prostatic Intraepithelial Neoplasia

Prostatic intraepithelial neoplasia (PIN) is defined as a neoplastic proliferation of
the epithelial cells confined to pre-existing prostatic ducts, ductules or acini and
it has been widely accepted as the main precursor of PCa (Dovey et al. 2005;
Ayala and Ro 2007; Chin et al. 2007; Godoy and Taneja 2008; Bostwick and
Cheng 2012). First described by McNeal in 1969 (McNeal 1969), it was named
PIN by Bostwick and Braver in 1987, and categorized into three grades: PIN 1,
PIN 2, and PIN 3, basing on the degree of prostatic cell changes, respectively
mild, moderate and severe (Bostwick et al. 2004; Ayala and Ro 2007). To date,
compelling evidence widely confirmed that only HG-PIN, corresponding to PIN 2
and 3, may precede PCa. Pathologists, in fact, do not routinely report low-grade PIN
(Bostwick and Cheng 2012). The isolated HG-PIN incidence is reported ranging
from 4.4 to 22.5 %, with an average of 9 % of prostate biopsies (Bostwick et al.
2004; Bostwick and Cheng 2012). Like PCa, HG-PIN tends to be more common
in prostate peripheral zones and to be multifocal (Haggman et al. 1997; Pierorazio
et al. 2007). The incidence of PCa detected in repeat biopsies following the previous
diagnosis of HG-PIN varies from 22 to 79 % (Borboroglu et al. 2000; Dovey et al.
2005; Gokden et al. 2005; Joniau et al. 2005; Moore et al. 2005; Herawi et al.
2006). Furthermore, the presence of multiple HG-PIN foci increases the probability
of concomitant PCa (Bostwick and Brawer 1987) Nonetheless, to date, no single
pathologic, molecular or clinical variable helps to identify patients at higher risk for
developing PCa among those with HG-PIN (Abdel-Khalek et al. 2004; Roscigno
et al. 2004; Singh et al. 2004; Chin et al. 2007; Loeb et al. 2007). Histologically,
HG-PIN is characterized by one or more large glands lined by pseudostratified
epithelium constituted by proliferating cells with morphologic features similar to
those found in PCa. The main difference between HG-PIN and PCa consists in
the integrity of basal cell layer: in fact, unlike HG-PIN where the basal layer is
present, in most cases fragmented, the PCa glands show an absent basal membrane
(Haggman et al. 1997). HG-PIN is characterized by increased cell size, typically
overlapping, large and hyperchromatic nuclei, changes in chromatin structure,
and more prominent nucleoli (Fig. 1.8). Rarely, HG-PIN can also present small,
neuroendocrine, mucinous, squamous, apocrine and signet ring cells differentiation,
this latter almost always associated with an adjacent invasive signet ring cell
carcinoma (Reyes et al. 1997; Montironi et al. 2007).

Several HG-PIN patterns have been described: the most frequent types show
a flat, stratified, branching, micropapillary or cribriform architecture, but other
unusual histologic patterns, such as foamy gland, signet-ring cells and mucinous
have rarely been seen (Bostwick et al. 1993a; Epstein 2009). HG-PIN can be
distinguished from PCa by immunohistochemical examination. In fact, unlike PCa,
HG-PIN is positive for both cytokeratin 34B12 and p63 antibodies, identifying a
basal membrane with interruptions (Bishara et al. 2004; Montironi et al. 2011b). In
difficult cases, the alpha-methylacyl-CoA racemase (AMACR) can be added; even
if it is frequently expressed in HG-PIN (Kumaresan et al. 2010; Montironi et al.
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Fig. 1.8 Low-grade versus high-grade prostatic intraepithelial neoplasia (LG-PIN on left side
vs HG-PIN on right side of the picture). (a–c) Haematoxylin eosin staining (from low, to medium,
to high magnification); (d–f) AMACR staining (from low, to medium, to high magnification):
AMACR is negative in LG-PIN; conversely HG-PIN shows a positive granular cytoplasmic stain-
ing for this; (g–i) p63 staining (from low, to medium, to high magnification): p63 staining shows
a continuous basal membrane in LG-PIN; conversely, in HG-PIN, p63 staining is fragmented,
highlighting a basal membrane with interruptions; (j–l) Cytokeratin 34 BE12 staining (from low,
to medium, to high magnification): note respectively a continuous basal membrane in LG-PIN and
a basal membrane with interruptions in HG-PIN

2011b). The prognostic significance of HG-PIN in clinical decision making remains
under discussion. In cases in which small atypical glands are adjacent to HG-PIN,
repeated biopsy is recommended within 3–6 months of the initial diagnosis (Naya
et al. 2004; Epstein and Herawi 2006; Girasole et al. 2006; Herawi et al. 2006;
Meyer et al. 2006; Netto and Epstein 2006; Schoenfield et al. 2007; Godoy and
Taneja 2008). The prognostic value of HG-PIN for diagnosing PCa depends on the
number of samples obtained during the first and subsequent biopsies and the time
interval between the biopsies. Conversely, clinical parameters such as serum PSA
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level, DRE and imaging studies are not as effective in identifying which patients
with HG-PIN are more likely to show carcinoma on repeated biopsy. Therefore,
repeated biopsies are generally recommended within a year of the initial diagnosis
of HG-PIN, particularly if it was shown in three or more cores (Naya et al. 2004;
Epstein and Herawi 2006; Girasole et al. 2006; Herawi et al. 2006; Meyer et al.
2006; Netto and Epstein 2006; Schoenfield et al. 2007; Godoy and Taneja 2008).
HG-PIN is considered an essential early step for prostate carcinogenesis, with
genetic and phenotypic alterations that are intermediate between the abnormalities
of normal tissue and cancer (Bostwick et al. 2004). Among these, the most frequent
are the increased expression of AMACR, Rb inactivation, loss of p27KIP1, PTEN,
hypermethylation of the promoter region of GSTP1 and the fusion of TMPRSS2-
ERG genes (Zynger and Yang 2009). Furthermore, approximately 20 % of HG-PIN
shows the TMPRSS2-ERG fusion gene abnormality, which is also observed in
approximately 50 % of PCa (Mosquera et al. 2008). Elevated expression of p16,
p53, Bcl-2, and MYC can be seen in both HG-PIN and PCa. A decreased expression
of NKX3.1 and p27 genes in both HGPIN and PCa has been described (Montironi et
al. 2011b). Proliferative index and apoptosis show a trend to increase from normal
through HG-PIN to PCa (Ananthanarayanan et al. 2006).

1.6.4 Atypical Small Acinar Proliferation (ASAP)

ASAP is not a histopathological entity, but mainly a diagnostic term, which
identifies the presence of a small foci of atypical glands with features highly
suggestive but not convincing for a definitive diagnosis of PCa (Fig. 1.9) (Cheville
et al. 1997; Iczkowski et al. 1997). Such lesions are identified in about 1.5–9 % of
prostate needle biopsy (Cheville et al. 1997; Iczkowski et al. 1997, 2002b; Ouyang
et al. 2001; Fadare et al. 2004). In these cases, the pathologist does not make
prudently a diagnosis of cancer, but raises the suspicion, so the biopsy has to be
remade within 3–6 months. It has been reported that the cancer detection rate varies
between 21 and 51 % on the second biopsy in patients with ASAP (Borboroglu
et al. 2000; Leite et al. 2008b). This finding significantly predicts the presence
of cancer verified, in fact, in the following biopsies (Brausi et al. 2004; Gupta et
al. 2004). Histologically ASAP is identified as a small size focus (less than two
dozen acini) with distorted acini characterized by the lack of convincing features
of malignancy (nuclear and nucleolar enlargement). Immunohistochemically, such
lesions are usually negative for high molecular weight cytokeratin and p63 and show
a focally, significant immunopositivity, for racemase.

1.6.5 Prostate Carcinoma

An adequate and accurate characterization of individual PCa is critical to define the
risk of tumor progression and to determine the best therapeutic approach and the
correct management of each single patient (Edge et al. 2010; Cheng et al. 2012).
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Fig. 1.9 Atypical small acinar proliferation (ASAP). (a–c) Haematoxylin eosin staining (from
low, to medium, to high magnification); (d–f) AMACR staining (from low, to medium, to high
magnification): ASAP shows a positive granular cytoplasmic positivity for AMACR; (g–i) p63
staining (from low, to medium, to high magnification): ASAP is negative for p63; (j–l) Cytokeratin
34 BE12 staining (from low, to medium, to high magnification): note the absence of basal cells in
atypical glands

The pathology report should provide detailed informations on tumor’s site (mono
o bilateral involvement), histotype (e.g. acinar adenocarcinoma, duct carcinoma,
signet ring cells carcinoma), histological grade (according to the modified Gleason
score, with primary and secondary patterns), extension depending on the type of
surgical specimens (needle, TURP, enucleation or radical prostatectomy), surgical
margin status (presence of carcinoma at inked margin, presence of extraprostatic
extension (extraprostatic adipose tissue), seminal vesicle invasion, number of total
and metastatic lymph nodes (Epstein et al. 2005a) and the staging according to
the 2010 revision of the American Join Committee on Cancer/Union Internationale
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Contre le Cancer (AJCC/UICC) for radical prostatectomy). It should also include
the presence of angioinvasion, perineural invasion and tumor necrosis that are
generally optional (Montironi et al. 2012b).

1.6.5.1 Prostate Carcinoma Variants

The large majority of PCa is represented by conventional acinar histotype (Eble et al.
2004; Humphrey 2012). Different variant of acinar carcinoma, such as foamy, at-
rophic, pseudohyperplastic, signet ring, oncocytic, colloid and lymphoepithelioma-
like, are anyway identified (Humphrey 2012). The remaining 5–10 % of PCa is
constituted by non acinar variants, such as sarcomatoid, ductal urothelial, squamous,
small-cell, basal cell and clear cell carcinoma (Humphrey 2012). These latter have
different clinical, biological and genetic features compared to acinar carcinoma,
including prognosis (Han et al. 2009; Humphrey 2012).

1.6.5.2 Grading

PCa should be graded according to the current Gleason score system, modified
by the International Society of Urological Pathology (ISUP), the most widespread
method of PCa grading significantly associated with prognosis (Srigley et al. 2005).
The Gleason score is the sum of the primary and secondary most common histologic
patterns in PCa, rated on a scale of 1–5, with 1 being the well differentiated and 5
the undifferentiated carcinomas (Fig. 1.10). A higher score is more likely to be seen
with disease not confined to the prostate and is correlated with poorer response to
treatment of localized disease.

In case of radical prostatectomy, if a higher tertiary pattern is seen, it should not
contribute to the final score as a secondary pattern, as this would probably result in
the over-grading of the tumor (Trock et al. 2009). The tertiary pattern would have to
be reported as the third most prevalent pattern of carcinoma.

Contrary to the recommendations for radical prostatectomy, for needle biopsy,
the lower-grade secondary pattern comprising <5 % of biopsy material should be
ignored (the primary and the secondary patterns are considered of equal grade), any
proportion of higher secondary pattern should be reported and, when present, the
tertiary higher pattern should contribute to the final score, referred as the secondary
pattern (Amin et al. 2005; Delahunt et al. 2012). In case of biopsy, the patterns 1
and 2 should not be reported.

1.6.5.3 Tumor Extent and Prostate Cancer Volume

One of the most important pathologic parameter in choosing therapeutic strategy
and determining the biological course of each PCa is provided by its extension
in prostate surgical samples, such as TURP, needle cores biopsy or prostatectomy
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Fig. 1.10 PCa grading (haematoxylin eosin staining). (a–c) Gleason 6 (3 C 3) PCa (from low,
to medium, to high magnification); (d–f) Gleason 7 (4 C 3) PCa (from low, to medium, to high
magnification); (g–i) Gleason 10 (5 C 5) PCa (from low, to medium, to high magnification)

(Montironi et al. 2012b). In core needle biopsy, the tumor extent is mainly reported
as millimetres of cancer per core or as percentage of cancer per core (Montironi
et al. 2012b). It is also registered as the number of tumor-infiltrated cores, fraction of
positive cores, total percentage of cancer in the entire specimen and total millimetres
of cancer among all cores (Montironi et al. 2012b).

PCa can discontinuously involve a single core. The two options generally used
are to measure it as if all separate cancer foci were one single continuous foci,
or collapse all foci and ignore the amount of intervening benign prostate tissue
(Fig. 1.11) (Karram et al. 2011; Montironi et al. 2012b). In radical prostatectomy
the tumor extent is reported as percentage of one or both prostatic lobes involved.

The prognostic value of PCa volume in radical prostatectomy is still discussed:
several studies showed its independent prognostic value, others denied it (Kikuchi
et al. 2004; van Oort et al. 2008; Yadav et al. 2009; Wolters et al. 2010).
Nevertheless, a cut-off value of 0.5 ml has proposed as significant to distinguish PCa
with a high risk of progression from the great majority of “insignificant” neoplasm
(Stamey et al. 2000). It may be useful to provide the size of the largest tumor nodule
identified.
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Fig. 1.11 PCa discontinuously involved a single core: (a) Haematoxylin eosin staining; (b)
AMACR staining (positive granular cytoplasmic staining in the neoplastic gland); (c) Cytokeratin
34 BE12 staining (absence of basal cells); (d) P63 staining (absence of basal cells)

1.6.5.4 Surgical Margin Status and Extraprostatic Extension

The necessity of providing the surgical margin status in radical prostatectomy spec-
imens and its predicting value is widely demonstrated; however, great variability
in its report by pathologists of different institutions still exists. The margin is
considered negative if the tumor is not present at the inked surface of the specimen;
conversely it is evaluated as positive if the neoplastic cells touch the inked tissue
(Fig. 1.12) (Epstein et al. 2005b). The presence of tumor at the margin must be
not considered as extraprostatic extension (Chuang and Epstein 2008). Surgical
margin status is a significant predictor of disease recurrence, independent of the
pathological stage (Kausik et al. 2002). In addition, it is recommended to provide
the tumor extent at the surgical margin (linear extent in millimetres, or number
of blocks with positive margin involvement) because significantly associated with
tumor recurrence (Epstein 1990; Epstein et al. 1996; Epstein and Sauvageot 1997).

Extraprostatic extension is defined as the presence of cancer beyond the prostate
gland capsule, including anterior muscle, large neurovascular bundles, seminal
vesicle stroma and adipose tissue tumor infiltration (Edge et al. 2010). It is regarded
as one of the most important prognostic factor for PCa (Cheng et al. 1999). In a
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Fig. 1.12 Prostate surgical margin: (a, b) PCa is present at the inked surface of the specimen
(haematoxylin eosin staining; a: low magnification; b: high magnification)

needle biopsy specimen, the presence of adipose tissue within prostatic parenchyma
is extremely rare, but the recognition of tumor involvement of fat has to be inter-
preted as extraprostatic extension. A significant association between extraprostatic
extension on prostate cores and high-stage PCa in subsequently prostatectomy was
reported (Miller et al. 2010). Cancer involving the skeletal muscle on needle biopsy
specimen is not, instead, diagnostic of extraprostatic extension. Furthermore, the
presence of carcinoma in skeletal muscle on needle biopsy is not associated with
high grade PCa at subsequent radical prostatectomy (Ye et al. 2010). Seminal
vesicles stroma invasion must, conversely, be considered extraprostatic extension
(Fig. 1.13). However, it is important to distinguish between seminal vesicles from
ejaculatory ducts invasion, because the latter is not considered as extraprostatic
disease (Fine and Reuter 2012). A helpful criterion for differentiating seminal
vesicle from ejaculatory ducts is the presence of a coat of smooth muscle encircling
a central lumen, not recognizable in seminal vesicle.
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Fig. 1.13 Extraprostatic PCa extension (haematoxylin eosin staining): (a–c) Adipose tissue PCa
infiltration (from low, to medium, to high magnification); (d–f) Smooth muscle PCa infiltration
(from low, to medium, to high magnification); (g–i) Seminal vesicle stroma PCa infiltration (from
low, to medium, to high magnification)

1.6.5.5 The TNM Staging

To provide an accurate staging of PCa the 2010 revision of the American Join
Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) is
widely preferred. Its application allows the identification of patients at the greater
risk of progression and therefore is critical for the therapeutic approach and the
correct management of each patient with PCa (Cheng et al. 2012). The current TNM
staging system differs from previous 2002 version mainly for the definition of pT3a
stage, now including both extraprostatic extension and microscopic bladder neck
invasion (Edge et al. 2010; Cheng et al. 2012). The main debated issue of the 2010
modified version of the TNM system remains the stage pT2 and its subclassification
in T2a (half of a single lobe involvement), T2b (more than half lobe involvement)
and T2c (both lobes involvement, also focally) tumors, due to the tendency of
PCa to be multifocally (Cheng et al. 2005, 2012; Andreoiu and Cheng 2010).
The pathological staging (pTNM), mainly based on the evidence acquired from
surgery and from pathological evaluation, consists in the pathologic assessment of
the primary tumor (pT; size and eventual extension of the primary tumor beyond
the contour of the prostate gland), of the regional lymph nodes (pN) and of distant
metastasis (pM). The evaluation of local node status requires the removal of nodes
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adequate to validate the node metastasis absence (pN0). It is recommended to report
its location and extension, since its correlation to the risk of recurrence (Wheeler
et al. 1998; Marks et al. 2007).

1.6.5.6 Other Factors

Although the prognostic value and clinical usefulness of the following factors has
not been sufficiently established, it may be useful to note in pathologic report
perineural invasion, neuroendocrine differentiation, microvessel density, chromatin
texture, proliferation markers and prostate-specific antigen derivatives (Bostwick
et al. 2000; Srigley et al. 2005).

1.7 Mimickers

PCa mimickers are lesions of potential diagnostic difficulty that show architec-
tural and cytological features overlapping with PCa histopathologically, including
anatomic structures or inflammatory and reactive conditions (Srigley 2004; Hameed
and Humphrey 2010; Montironi et al. 2012a). PCa mimickers can be differentiated
by their growth patterns as small gland, large and cribriform gland or solid and
non glandular mimickers (Srigley 2004; Hameed and Humphrey 2010; Montironi
et al. 2012a). In the first subgroup are included the conditions that simulate low-
grade PCa (Gleason pattern � 3), further subdivided in lesions of prostatic epithelial
origin such as atrophy, atypical adenomatous hyperplasia, sclerosing adenosis and
basal cell hyperplasia and of non prostatic epithelial origin, such as ejaculatory ducts
epithelium and seminal vesicle, mesonephric remnants, nephrogenic adenoma,
mucinous metaplasia, Cowper and colonic glands. The large and cribriform pattern
mimickers encompass conditions as reactive epithelial atypia, basal cell or clear
cell cribriform hyperplasia, while the solid and non glandular pattern subgroup
includes granulomatous prostatitis, prostatic xanthoma, dense inflammation, signet
ring change in non epithelial cells and paraganglia (Srigley 2004; Hameed and
Humphrey 2010; Montironi et al. 2012a). Many of these lesions are readily
identifiable and separated from PCa on routine haematoxylin and eosin-stained sec-
tions. In challenging cases immunohistochemistry can be helpful (Paner et al. 2008).

1.7.1 Adenosis/Atypical Adenomatous Hyperplasia

Adenosis, also referred to as atypical adenomatous hyperplasia, is a common finding
in routine practice, easily encountered in TURP and prostatectomy samples, ranging
an incidence of about 20 % (Fig. 1.14) (Bostwick et al. 1993b; Gaudin and Epstein
1995; Cheng et al. 1998; Lotan and Epstein 2008). It is mainly localized near the
apex, the transitional zone and periurethral area. It consists of a well-circumscribed
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Fig. 1.14 Prostate adenosis: (a, b) Haematoxylin eosin staining (a: low magnification; b: high
magnification); (c, d) p63 and CK34BE12 staining (showing a discontinuous but present basal
layer)

proliferation of large complex glands, typical of hyperplasia, admixed with round
glands, with similar cytoplasmic and nuclear findings (crystalloids and basophilic
mucin occasionally present, small nuclei with fine chromatin, very small nucleoli).
These findings may be very helpful to distinguish this lesion from low-grade PCa. In
challenging cases, serial sections of suspicious foci and immunohistochemistry may
be useful; in fact anti-cytokeratin 34BE12 and p63 are used to show the presence of
an intact or fragmented basal cell layer. AMACR is often positive, so is not really
useful (Qian et al. 1995; Yang et al. 2002; Kunju et al. 2003; Shah et al. 2004).
Due to its overlapping features with low-grade PCa, this lesion has been considered
a potential precursor for low-grade cancer, but being not shown associated with
an increased risk of carcinoma on follow-up (Epstein 1995a), a close follow-up
may be suggested. When associated to PCa, this is generally a low-grade carcinoma
(Gleason score 2–4) (Helpap et al. 1997).

1.7.2 Atrophy and Post-atrophic Hyperplasia

Atrophy is a common microscopic finding, increasing in incidence with advancing
age. It consists of well formed, often little distorted, prostate glands, not particularly



30 M. Mascolo et al.

crowded, lined by flattened epithelium. Different forms of prostatic atrophy have
been described, which may coexist in the same prostate sample. It is most commonly
seen in the peripheral zone, but it can be observed also in the central and the
transitional zone. It is generally characterized by glands lined by secretory cells
showing a marked reduction in cytoplasm and hyperchromatic nuclei. At low
magnification, this finding, especially due to prominent acinar architecture and
cytoplasmic basophilia, can be misdiagnosed as a low-grade PCa. However, atrophy
lacks nuclear and nucleolar enlargement. The spectrum of atrophic conditions can be
divided into those conditions related or not to pharmacologic or surgical androgen
withdrawal. The first, relatively diffuse throughout the gland, occurs in response to
androgen withdrawal or androgen receptor blockade, and is associated to elevated
levels of apoptosis (Gleave et al. 1996; Matsushima et al. 1999; Szende et al. 1999).
The second, usually focal, is very common and divided into simple atrophy and
post-atrophic hyperplasia (Fig. 1.15) (Ruska et al. 1998). It also includes the partial
atrophy and the cystic atrophy (simple atrophy with cyst formation) (De Marzo
et al. 2006). These lesions usually occur in the setting of chronic and often acute
inflammation, and therefore referred as proliferative inflammatory atrophy by some
authors that proposed this entity as a lesion from which early prostate carcinogenesis
may develop.

1.7.3 Sclerosing Adenosis

The sclerosing adenosis is an incidental, but not rare, finding in TURP or prostate-
ctomy, generally involving the transition zone of the prostate. It consists in a well
demarcated proliferation of tightly packed glands and even single cells with signet
ring cell-like features in a dense spindle cell stroma (Jones et al. 1991; Sakamoto
et al. 1991; Grignon et al. 1992; Luque et al. 2003). It simulates a high grade PCa,
but the presence of a nodular circumscription, the lack of cell atypia and the presence
of a variably thickened basal cell layer and basal cell markers suggest a diagnosis of
sclerosing adenosis. Cheng and Bostwick (Cheng and Bostwick 2010) showed five
cases of atypical sclerosing adenosis, differing from normal by the presence of the
large nuclear size, macronucleoli and aneuploid DNA in most of cases. Both lesions
are considered benign and don’t require different therapeutic approach.

1.7.4 Radiation Atypia in Benign Prostatic Glands

Radiation induced atypia is characterized by few small to medium size glands,
often atrophic and with nuclear atypia (nuclear enlargement and prominent nucle-
oli), within a predominant fibrocellular stroma. These are frequently encountered
in the peripheral zone of the prostate, in follow-up biopsy or prostatectomy
following bachy- or radiotherapy for PCa (Magi-Galluzzi et al. 2003b; Bostwick
and Meiers 2007).
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Fig. 1.15 Post-atrophic hyperplasia: (a, b) haematoxylin eosin staining (a: low magnification;
b: high magnification)

1.8 Conclusion

Despite the advances of molecular pathology, histopathology remains a corner
stone of PCa diagnosis and management. Before making a PCa final diagnosis,
it is critical to consider the clinic-laboratory and imaging findings, the multiple
features on histological examination with haematoxylin and eosin, the wide range of
differential diagnosis and the overlapping staining immunohistochemical reactions.
In fact, only an appropriate use of clinicopathological features provides a correct
diagnostic and therapeutic management of PCa patient, positively contributing to
the reduction of PCa mortality rates. The increasing use of novel technologies
(imaging, immunohistochemistry, molecular methods) and their incorporation into
the clinical practise may led to an improvement of the accuracy of prognostic and
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predictive systems in order to achieve the goal of individualized therapy making the
pathologists the driving force behind the implementation of molecular method in
the diagnostic setting.
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Chapter 2
Molecular Determinants of Cancer-Related
Inflammation

Stefania Staibano

Abstract Tumor cells communicate with the cells of their microenvironment via a
series of molecular and cellular interactions to aid their progression to a malignant
state and ultimately their metastatic spread. Of the cells in the microenvironment
with a key role in cancer development, tumor associated macrophages (TAMs) are
among the most notable. Tumor cells release a range of chemokines, cytokines and
growth factors to attract macrophages, and these in turn release numerous factors
(e.g. VEGF, MMP-9 and EGF) that are implicated in invasion-promoting processes
such as tumor cell growth, flicking of the angiogenic switch and immunosuppression
(Rogers and Holen, J Transl Med 9:177, 2011).

2.1 Background and Aims

A long time ago, Virchow hypothesized the existence of an interplay between
inflammation and cancer (Balkwill and Mantovani 2001). Nowadays, it has been
accepted that at least 20 % of all human cancers (Vykhovanets et al. 2011) share
a common causative inflammatory background, and chronic inflammatory states
are emerging as having a relevant role also in prostate carcinogenesis. Histology
has confirmed the strong association between morphological evidence of chronic
inflammation, pre-malignant, and malignant changes in the prostatic epithelium
(MacLennan et al. 2006). Chronic inflammatory cells as lymphocytes, tumor-
associated macrophages (TAM), mast cells, dendritic cells, natural killer (NK)
cells, exert their defensive activity via a plethora of molecules, comprising pro-
inflammatory cytokines, growth factors, reactive oxygen species, interferons (IFNs)
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and proteases, membrane perforating agents, matrix metalloproteinase (MMP),
and enzymes like as cyclooxygenase-2 (COX-2). They in turn interact with tran-
scription factors as Nuclear Factor ›B (NF-›B) (Vendramini-Costa and Carvalho
2012). The hyperactivation of NF-›B maintains an inflammatory status in the
prostate(Vykhovanets et al. 2008), and is considered a potential molecular bridge
between inflammation and prostate cancer (Karin 2006).

Besides the underlying causative environmental and endogenous factors, the
stable umbalance of proinflammatory pathways active in chronic inflammation may
lead to the establishment of prostatic regenerative lesions ending to a peculiar type
of atrophy, defined as “proliferative inflammatory atrophy (PIA)”, which is thought
to contribute to the rise of risk for prostate cancer. The relationship between prostate
cancer onset and progression and inflammation is being explored at genetic and
epigenetic level (Vykhovanets et al. 2011).

Research in this area at present is particularly active, considering its possible
beneficial fall-out on population: as an example, we could imagine that the
administration of specific anti-inflammatory agents in men may reduce the risk of
prostate cancer development.

This chapter will present an overview of the recent knowledge on the role
of chronic inflammation in the pathogenesis and/or therapy outcome of prostate
preneoplastic lesions and prostate cancer.

Chronic inflammation is associated with the development of several cases of
head&neck, esophagus, stomach, colon, liver and urinary bladder cancer (Sugar
2006; Coghill et al. 2011). Besides its initiating causes (either infectious or
non-infectious inflammatory diseases, and/or environmental/epigenetic factors),
inflammation enhances cellular turnover of the injured cells, as the result of tissue
repair processes.

Epidemiological, genetic and molecular findings accumulating from more than
a decade, indicate that chronical prostatitis correlate with an increased risk of
prostate cancer (PCa), supporting the hypothesis that inflammation may be a cause
of neoplastic transformation also for prostatic tissue (Sfanos and De Marzo 2012).

Prostatitis is actually classified into four distinct entities (Murphy et al. 2009).

Category I: acute bacterial prostatitis, due to a uropathogen, often with systemic
symptoms.

Category II: chronic bacterial prostatitis due to recurrent episodes of documented
infections with the same uropathogen.

Category III: chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), lacking
a documented infection from uropathogens, ending with neurological injury with
or without pelvic floor dysfunction.

Category IV: asymptomatic inflammatory prostatitis, of uncertain clinical and
biological significance.

Acute prostatitis is infrequent; sometimes (in about 10 % of cases) it may result
in a chronic bacterial prostatitis and further 10 % into chronic pelvic pain syndrome
(Wagenlehner et al. 2013).
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Viruses, fungi, mycobacteria and parasites may cause prostatitis (De Marzo et al.
2007), but the microbial agents responsible of most cases of bacterial prostatitis are
represented by Escherichia coli, coagulase-negative Enterococcus spp. (de Kleijn
et al. 1997; Arnow and Flaherty 1997) and Corynebacterium glucuronolyticum.

Chronic non-bacterial prostatitis is much more frequent. They are underdiag-
nosed with respect to the infectious ones, so that an “histological prostatitis”
represents an accidental finding on biopsy for prostate cancer (Stimac et al. 2009;
Gui-zhong et al. 2011; Ugurlu et al. 2010; Fujita et al. 2011) or benign prostatic
hyperplasia (BPH) (Nickel et al. 1999; De Marzo et al. 2007).

The manifold non-infectious causes of prostate chronic inflammation encompass
(De Marzo et al. 2007; Sfanos and De Marzo 2012) hormonal alterations, that
may lead to architectural alterations predisposing prostatic tissue to inflammation
and physical trauma, particularly related to corpora amylacea, that are thought to
represent remnants of past acute inflammatory events, and are composed of organic
matrix comprising proteins involved in acute inflammation, such as lactoferrin,
myeloperoxidase and ’-defensins. These proteins, in turn, may induce the over-
expression of stress-proteins by prostate cells (Sfanos et al. 2009).

Other inducers of chronic inflammation are several urine metabolites, which
overactivate inflammatory cells in prostate tissue of patients suffering for urine
reflux, and dietary and/or environmental carcinogens, reaching the prostate through
urine reflux and/or blood.

Interestingly, racial and geographical difference in the incidence of prostatitis
have been reported and they paralleled those observed for prostate cancer, with the
highest prevalence in African American men and the lesser in Asian men. This,
further support the hypothesis of a causative role of inflammation in prostate cancer
pathogenesis (Wallace et al. 2008).

Indeed, bacterial and non-infectious chronic prostatitis may lead to prostate cell
hyperproliferation, and this event seems to be correlated with the emergence of
benign prostatic hyperplasia (BPH) (Nickel 2008).

Chronic inflammation is thought to induce the antigen-presenting capacity of
prostatic stromal cells, via the overproduction of the prostate growth-promoting
chemokine IL-8 induced by Th1 and Th17 cell-derived inflammatory cytokines
(Steiner et al. 2003).

Th17 cells belong to a CD4C effector T cell lineage which develops through
distinct cytokine signals [specifically interleukin (IL)-23] and produce IL-17.

Th17 cells mediate a number of autoimmune diseases, and seem to have a role in
inflammation-associated cancer (Weaver et al. 2006; Bettelli et al. 2007).

Long-lasting inflammation induces also the up-regulation of the vitamin D
receptor (VDR), which agonizes intra-prostatic androgen signalling by exerting
immunostimulating and co-inflammatory effects. BPH stromal cells express high
levels of VDR, further supporting the role of chronic inflammation in BPH patho-
genesis and their usefulness as therapeutic targets for pharmacological treatment
of BPH.

Moreover, chronic inflammation is responsible for the condition termed “Prolif-
erative inflammatory atrophy (PIA)”.
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Long-standing PIA gradually lost the function of cellular detoxification, by
silencing of glutathione-S transferase. This favor an increased susceptibility of
prostatic epithelial cells to genomic damage by inflammatory oxidants or nutri-
tional carcinogens, assisted by several other inflammation-induced proteins, as the
macrophage scavenger receptor 1 and Toll-like receptor-4.

Prostatitis-derived PIA, then, may gradually transitate to prostatic intraepithelial
neoplasia, and take a part in the multifactorial background leading to prostate cancer
(Wagenlehner et al. 2007).

PIA, is morphologically characterized by the presence of atrophic-regenerating
epithelial cells (De Marzo et al. 1999) that may occupy large regions of the prostate.
In these areas, it is frequent the finding of high-grade PIN, (De Marzo et al. 2007;
Nelson et al. 2003; Putzi and De Marzo 2000), with variable degree of transitions
between PIA, PIN and true prostate cancer (Putzi and De Marzo 2000; Wang et al.
2009b).

PIA has some of the hallmark gene expression changes found in prostate cancer
and PIN. For example, two genes which are highly expressed in normal prostate
epithelium and frequently down-regulated or absent in PIN and prostate cancer,
NKX3.1 and p27, are down-regulated in prostate atrophy (De Marzo et al. 1999,
2007; Bethel et al. 2006), showing, in turn, increased immunostaining for p53, Ki-
67, COX-2 and glutathione S-transferase-  (GSTP1), particularly in areas adjacent
to inflammation (Wang et al. 2009a).

As atrophy/PIA is highly prevalent in the peripheral zone of the prostate, it is
possible that a proportion of PIN and/or prostate cancer may originate in these areas
(Nakayama et al. 2003).

Recently it has been reported that chronic inflammation in benign tissue was
predictive of a higher risk for prostate cancer diagnosis and, specifically, with
higher-grade (Gleason score 7–10) disease. The risk of prostate cancer and high-
grade prostate cancer also increased with the number of biopsies that were found to
contain chronic inflammation

Moreover, several lines of evidence indicate that inflammation in and around
prostate cancer is associated with worse disease outcome (Karja et al. 2005;
Nonomura et al. 2011).

Among the major effectors of the dangerous potential of inflammation on cancer
predisposition are cytokines.

Besides many protean roles in immune system, hematopoiesis, and key biological
functions (Sun et al. 2007), these low-molecular weight molecules interact with
several types of cells and proteins within the tumor environment (De Marzo et al.
2007; Coussens and Werb 2002), and have been associated from long time with the
biology and prognosis of several cancer.

As an example, the production of cyclooxygenase (COX) enzymes due to
inflammation may alter the environment of precancerous tissues (Mantovani et al.
2008; Coussens and Werb 2002), being important in the pathogenesis of prostate
cancer (Wang and Dubois 2006).
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Interleukin-4 (IL-4), IL-6 and IL-10 are frequently elevated in blood of prostate
cancer patients and, increased levels of transforming growth factor beta (TGF“),
have been detected in serum and in primary and metastatic prostate cancer tissue
samples (Perry et al. 1997).

Whereas in normal cells, TGF“ stops cell proliferation, induces differentiation,
and/or apoptosis; in cancer cells, mutations of the TGF“ pathway confer resistance
to growth inhibition by TGF“, resulting in uncontrolled cell proliferation. The
increase of TGF“ production in cancer cells also stimulates angiogenesis and
suppresses the activities of infiltrating immune cells, thereby facilitating the tumor
to escape from immunosurveillance. On the other hand, prostate epithelial cancer
cells show loss-of-expression of T cell cytolytic promoting IL-7. This causes a
severe depletion of prostate-associated lymphocytes (Tang et al. 1997). As an
antagonistic relationship has been hypothesized between TGF “ and IL-7, it has
hypothesized that their level of expression may be used in combination with Gleason
score and pre-treatment PSA level to predict prognosis of prostate cancer patients
(Tang et al. 1997; Dubinett et al. 1995).

The preliminary results indicate that this addition, at least, doubled the prognostic
predictive ability in respect to the use of the sole Gleason score and pre-treatment
PSA (Dubinett et al. 1995; Schroten et al. 2012).

Several additional studies have focused, instead, on the specific targeting of
the IL-6 as alternative/adjunctive therapy in aggressive, therapy-resistant prostate
cancers.

IL-6 is a multifunctional cytokine produced by multiple cell types, including
macrophages, endothelial cells and T lymphocytes; it is involved in innate and
adaptive inflammatory processes, including acute-phase inflammatory response
(Hirano 1992).

When deregulated, IL-6 intervenes in multiple disease processes, including
autoimmune disorders, rheumatoid arthritis, osteoporosis, psoriasis, diabetes,
atherosclerosis and cancer (Ishihara and Hirano 2002; Kishimoto 2005).

In prostate cells, IL-6 contributes to the activation of androgen receptor (AR)
(Culig and Puhr 2012) High-grade prostatic intraepithelial neoplasia (PIN) and
prostate cancer cells (Hobisch et al. 2000) overexpress IL-6 and its receptor IL6-
R and, patients suffering from metastatic and hormone-refractory prostate cancers,
show high IL-6 plasmatic levels (Smith et al. 2001). The linking between IL-6 and
prostate cancer morbidity (Twillie et al. 1995), could reside on the stabilization of
an ‘epigenetic transformed’ state of prostate cancer cells, due to the cooperative
action of inflammation/IL-6 production, STAT3 and NF-›B activation (Iliopoulos
et al. 2009).

Recently, 6 mg/kg anti-IL-6 antibody CNTO328 were administered i.v. every
2 weeks for 12 cycles to 53 patients with castration-resistant prostate cancer pre-
treated with taxane chemotherapy. Tumor response was assessed after every three
cycles. Primary end- point was PSA response rate defined as a 50 % reduction.
Declining C-reactive protein levels during treatment may reflect biological activity.
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Fig. 2.1 Inflammatory background in prostate carcinogenesis. Chronic inflammation is considered
to influence the antigen-presenting capacity of prostatic stromal cells, by the overproduction
of the prostate growth promoting chemokine IL8, induced by Th1 and Th17 cells. The
stable unbalance of proinflammatory pathways activated in chronic inflammation may lead to
the formation of prostatic regenerative lesions, such as a peculiar type of atrophy, defined as
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Despite evidence of CNTO-mediated IL-6 inhibition, elevated baseline IL-6 levels
portended a poor prognosis (Sfanos and De Marzo 2012). These represent only
preliminary data but, considering the potential contribution of IL-6 to therapy
for progressing prostate cancers, this cytokine is actually regarded with particular
interest for applied prostate cancer research.

Interestingly, it has been found that serum concentrations of IL-6-family
cytokines were reduced significantly in animals fed with a tomato-enriched diet. As
well, the anti-inflammatory omega 3 PUFA has been associated with a decreased
risk of PC (Fradet et al. 2009).

Another inflammatory cytokine of possible significance, as potential media-
tor between prostatic inflammation pathways and prostate carcinogenesis, is the
macrophage inhibitory cytokine 1 (MIC-1), which belongs to the transforming
growth factor-“ (TGF-“) superfamily (Bootcov et al. 1997).

MIC-1, also known as prostate-derived factor (PDF) or growth differentiation
factor-15 (GDF-15), was first identified in activated macrophages (Bootcov et al.
1997) and has been associated with the progression of various types of diseases
(Fig. 2.1).

In cancer, macrophages migrate from the circulation into the tissue, and return to
the bloodstream or lymphatic system after having phagocytated tumor debris (Faber
et al. 2012).

Macrophages are essential in the processes of migration, invasion and tumor
metastasis (Stewart et al. 2004; Condeelis and Pollard 2006; Roorda et al. 2009).

As for IL-6, the increased expression of MIC-1 has been associated with a variety
of tumors, including breast, gastric, colorectal (Senapati et al. 2010; Breit et al.
2011) and prostate cancer and, high serum levels of MIC-1, have shown to predict
poor prognosis of prostate cancer patients (Nakamura et al. 2003; Cheung et al.
2004; Brown et al. 2009).

The MIC-1 gene has emerged as an ideal key candidate to explain the link
between macrophage-linked inflammation and prostate cancer pathogenesis (Karan
et al. 2009).

The expression of MIC-1 has been reported in conjunction of infiltrating lym-
phocytes in non-neoplastic human prostate tissues (Paralkar et al. 1998; Bostwick
et al. 2003). This has to be considered an early response to inflammation in prostate,
which, in the long-time, may enhance cell proliferation (Bootcov et al. 1997; Chen
et al. 2007).

J
Fig. 2.1 (continued) “proliferative inflammatory atrophy (PIA)”, that shows an increased suscep-
tibility of prostatic epithelial cells to genomic damage by inflammatory oxidants or nutritional
carcinogens, linked to the lost of cellular detoxification, caused by the silencing of glutathione S
transferase. Moreover, PIA shows the same gene expression changes found in prostate cancer and
PIN, such as downregulation of NKX3.1 and p27. Therefore, PIA gradually transitates to prostatic
intraepithelial neoplasia, and take part in the background leading to prostate cancer. Inflammation
influences cancer predisposition by production of cytokines. In particular, IL-6 regulates positively
the expression of androgen receptor (AR) and is overexpressed in PIN and prostate cancer cells
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Macrophages were identified in both epithelium and the stromal area of
inflammation-associated to human benign prostatic hyperplasia (BPH) tissues,
suggesting that they might play roles in BPH development. Yet the underlying
mechanisms remain unclear. New insights for alternative therapeutic approach to
counteract BPH via inflammatory signaling pathways (Lu et al. 2012), may thus be
provided.

The finding of an autocrine-paracrine positive loop between MIC-1, IL-1“

and TNF-’ in the human LNCaP prostate cancer cell line, has suggested that
MIC-1 overexpression could play a critical role also in the in the early stages of
prostate cancer development (Bootcov et al. 1997). The glandular and peri-glandular
CD68C macrophages accumulation in PIA lesions strength the link between the
macrophage-rich inflammatory microenvironment and prostate cancer development
(Vykhovanets et al. 2008).

This is further supported by the observation that (De Marzo et al. 2007; Platz and
De Marzo 2004) prostate cancer is frequently associated with an increased prostate
tissue susceptibility to inflammatory injury/infections.

Of additional interest, the overexpression of MIC-1 has been also described
during the progression to androgen-independent and metastatic prostate cancers,
associated with a poor outcome of patients. In PC3 cells, high levels of MIC-1
were associated with the acquisition of epithelial-mesenchymal transition, higher
invasive capacity and docetaxel resistance. These phenomena were in large extent
reversed through MIC-1, which proved also effective in promoting the docetaxel-
induced cytotoxic effects both on the stem cell-like side population and the non-side
population, thus suggesting a promising improving effect of MIC-1 downregulation
on the efficacy of current chemotherapies for aggressive prostate cancer (Mimeault
et al. 2013).

Moreover, in model studies, macrophages have shown to be sensitive to bis-
phosphonates, as do osteoclasts, which belong to the same cell lineage, reversing
their phenotype from pro-tumoral CD204(C) M2 to tumoricidal CD68(C) M1 upon
treatment with zoledronic acid (Rogers and Holen 2011; Fujii et al. 2013).

These exciting results necessitate of further validation on large series of cases.
Nevertheless, they indicate that also in prostate cancer, as it is progressively being
shown in most of solid cancers (Stewart et al. 2004), stromal cells and their products
are determinant for epithelial neoplastic transformation (Pupa et al. 2002). The
alteration of the tumor microenvironment homeostasis has a determinant impact on
tissue architecture, adhesion, apoptosis and cell proliferation regulation, favoring
the shifting toward oncogenic change (Stewart et al. 2004) and conditioning the
response to cytotoxic therapies and prognosis of patients.

The reciprocal interaction between the multiple effectors of inflammation could
be considered “the epigenetic framework for tumor progression” (Huang and Ingber
2006) and, as such, it represents a potentially modifiable scenario.

Dietary or medicinal intake of anti-inflammatory compounds, as NSAID (Jafari
et al. 2009), soy and green tea, are being increasingly proposed to reduce prostate
cancer risk by human epidemiology studies and in animal studies (Hsu et al. 2010).
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Similarly, in prostate cancer cell lines, the treatment with phytoestrogens genistein
and daidzein resulted in demethylation of GSTP1 and ephrin B2 (EPHB2) promoter
regions (Vardi et al. 2010) confirming that the protective effects of soy in prostate
cancer prevention may involve epigenetic modifications to DNA.

The promise that the malignant phenotype can be reversed through the correction
of tumor microenvironment features (Kenny and Bissell 2003), make this one of the
most promising and innovative experimental fields on prostate cancer treatment and,
the emerging data at this regard, could provide us with a more comprehensive view
of prostate cancerogenesis.
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Chapter 3
Apoptosis and Autophagy

Francesco Merolla

Abstract Defects in both apoptotic and non-apoptotic cell-death pathways are
strictly associated with tumorigenesis. In particular, resistance to apoptosis is
considered to be an hallmark of cancer cells. Defects in apoptosis underlie not only
tumorigenesis, but also resistance to cancer treatments.

A better definition of non-apoptotic and apoptotic cell-death pathways in-
teractions is needed. Since the first attempts of cell deaths classification, the
caspase-dependent, tolerogenic, programmed and physiological cell death instances
have been contrasted to their caspase-independent, immunogenic, accidental and
pathological counterparts. However, further investigation of non-apoptotic pathways
might provide new therapeutic strategies aimed at inducing the non-apoptotic death
of cancer cells.

In the present chapter, apoptotic and non-apoptotic cell death pathways are
discussed for what concern neoplastic transformation of prostate gland.

As most human neoplastic diseases, prostate cancers (most of them are adeno-
carcinomas) develop when the rates of cell division and cell death are no longer
equal, leading to uncontrolled tumor growth. Following the initial transformation
event, further mutations of a multitude of genes can lead to tumor progression and
metastasis. To date, several molecular signalling pathways have been found altered
in prostate cancer, such as, to cite some, the Androgen and Estrogen metabolism,
the cell cycle progression control, the MAPK signalling pathway, the maintenance
of the stability of the genome, the control of Apoptosis and Autophagy.
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Both apoptosis and autophagy are stress response mechanisms that have been
involved in neoplastic transformation of prostatic gland and that seem to be the
most affected especially in the latter stages of prostate cancer progression.

Apoptosis, the most common and well-defined form of programmed cell death
(PCD), is a crucial cellular process in normal and pathological conditions: its im-
portance during embryonic development and the maintenance of tissue homeostasis
of multicellular organisms has been assessed long ago (Meier et al. 2000). Dys-
regulation of apoptosis has been implicated in numerous pathological conditions,
including neurodegenerative diseases and autoimmunity, moreover its dysfunction
is de facto accepted as an hallmark of cancer (Hanahan and Weinberg 2000, 2011).

In mammalian cells, the apoptotic process is mediated by a family of cysteine
proteases known as the caspases (Alnemri et al. 1996). To keep the apoptotic
programme under control, caspases are initially expressed in cells as inactive
procaspase precursors. When initiator caspases—such as caspase-8 and caspase-
9—are activated by oligomerization, they cleave the precursor forms of effector
caspases, such as caspase-3, caspase-6 and caspase-7 (Salvesen and Dixit 1997;
Cryns and Yuan 1998; Thornberry and Lazebnik 1998). Activated effector caspases
in turn cleave a specific set of cellular substrates, resulting in the well-known
constellation of biochemical and morphological changes that are associated with
the apoptotic phenotype.

Autophagy is a process in which subcellular membranes undergo dynamic mor-
phological changes that lead to the degradation of cellular proteins and cytoplasmic
organelles. This process is an important physiological cellular response to stress or
starvation. Many studies have shed light on the involvement of autophagy in cancer,
but it is still unclear whether autophagy suppresses tumorigenesis or provides
cancer cells with a rescue mechanism under unfavourable conditions. In fact, while
apoptosis is clearly a primary cell death mechanism, there is much controversy about
the functional role of autophagy in life and death. Depending on the cellular context,
the cell line and the stimulus, autophagy either favours or counteracts cell death
signalling.

It is believed that multiple connections exist between autophagy and apoptosis,
and so the molecular interplay and functional relationship between their pathways
have gained considerable interest in normal and neoplastic condition.

In the present chapter, a review of recent literature about the strict relationship
between apoptosis, autophagy and prostate cancer is reported, with major emphasis
on the role of deregulated apoptosis and autophagy during prostate cancer progres-
sion and the therapeutic strategies based on these cellular processes.

3.1 The Biology of Prostate Cancer

Prostate cancer is generally regarded as multifocal, since primary tumors often
contain multiple independent histologic foci of cancer, that are often genetically
distinct (Aihara et al. 1994; Bostwick et al. 1998; Macintosh et al. 1998; Mehra et al.
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2007; Clark et al. 2008). In contrast, molecular and cytogenetic analyses show that
multiple metastases in the same patient are clonally related, indicating that advanced
prostate cancer is monoclonal (Mehra et al. 2008; Liu et al. 2009).

The prostate gland can be the site of multiple neoplastic transformation events,
many of which give rise only to latent prostate cancer that does not progress to
clinically detectable disease.

It is widely accepted that PIN represents a precursor for prostate cancer
(Bostwick 1989; DeMarzo et al. 2003). PIN is generally characterized at the
histological level by the appearance of luminal epithelial hyperplasia, reduction
in basal cells, enlargement of nuclei and nucleoli, cytoplasmic hyperchromasia,
and nuclear atypia; in addition, high-grade PIN lesions generally display marked
elevation of cellular proliferation markers (Bostwick 1989; Shappell et al. 2004). In
contrast with prostate cancer, however, basal cells are reduced in number in PIN,
but are not absent.

While evidence of major subtypes of prostate cancer is lacking at the histopatho-
logical level, recent genomic analyses have provided increasing evidence for
molecularly defined subtypes (Tomlins et al. 2008; Palanisamy et al. 2010; Taylor
et al. 2010). In particular, expression profiling analyses of prostate cancer specimens
have not strictly defined molecular signatures associated with distinct cancer
subtypes that specifically correlate with disease outcome (Singh et al. 2002;
Lapointe et al. 2004; Tomlins et al. 2007). However, oncogenomic pathway analyses
that integrate analyses of gene expression, copy number alterations, and exon
resequencing may provide a unified approach for distinguishing prostate cancer
subtypes and stratifying patient outcome (Taylor et al. 2010).

Although common sites of secondary metastasis for prostate cancer are lung,
liver, and pleura, if prostate cancer metastasizes, it invariably goes to bone, where
it forms characteristic osteoblastic lesions (Bubendorf et al. 2000; Logothetis and
Lin 2005).

The identification of key molecular alterations in prostate-cancer cells implicates
carcinogen defenses (GSTP1), growth-factor-signaling pathways (NKX3.1, PTEN,
and p27), and androgens (AR) as critical determinants of the phenotype of prostate-
cancer cells. NKX3.1, PTEN, and p27 regulate the growth and survival of prostate
cells in the normal prostate. Inadequate levels of PTEN and NKX3.1 lead to a
reduction in p27 levels and to increased proliferation and decreased apoptosis.
Androgen receptor (AR) is a transcription factor that is normally activated by its
androgen ligand. During androgen withdrawal therapy, the AR signal transduction
pathway also could be activated by amplification of the AR gene, by AR gene
mutations, or by altered activity of AR coactivators. Through these mechanisms,
tumor cells lead to the emergence of androgen-independent prostate cancer.

In order to elucidate the relationship between prostate cancer, apoptosis and
autophagy, we will focus on the following genes and signalling pathways, often
found involved in these tumors:

• PTEN
• AKT/mTOR and MAPK signalling pathways
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• p53
• Bcl2
• Beclin I

3.1.1 PTEN

PTEN (Tumor suppressors phosphatase and tensin-homolog deleted on chromo-
some 10) was originally identified as a tumor suppressor, is frequently mutated or
deleted in many cancers, including prostate (Salmena et al. 2008). The relevance
of PTEN loss for prostate cancer was initially inferred from its location on
chromosomal region 10q23, which frequently undergoes allelic loss in prostate
cancer, as well as by its reduction or loss of expression in prostate tumors (Wang
et al. 1998; Whang et al. 1998; McMenamin et al. 1999; Dong et al. 2007). Earlier
studies had generated conflicting data regarding whether both alleles of PTEN are
deleted in prostate cancer, or, if one allele is deleted, whether the remaining allele is
mutated, or if the expression of PTEN protein is reduced, inactivated, or altered in
subcellular localization. To resolve these issues, recent studies have investigated
PTEN copy number, mutational status, and/or protein expression in primary or
castration-resistant tumors using multiple experimental approaches (Verhagen et al.
2006; Schmitz et al. 2007; Sircar et al. 2009; Taylor et al. 2010). In combination with
the consensus of previous reports, these studies support the conclusion that PTEN
undergoes copy number loss as an early event in prostate carcinogenesis, and is
correlated with progression to aggressive, castration-resistant disease. Interestingly,
these studies have also suggested that low levels of PTEN activity may be retained
in prostate cancer—an observation that parallels the haploinsufficiency of NKX3.1
and the p27 cell cycle regulator (Gao et al. 2004; Abate-Shen et al. 2008), and which
may reflect the relative indolence of prostate tumors.

Analyses of Pten deletion in genetically engineered mouse models have un-
covered its cooperativity with inactivation of other key genes that are deregulated
in prostate tumorigenesis, and have also provided insights into new therapeutic
options for the treatment of prostate cancer. Germline loss of Pten in heterozygous
mutants or conditional deletion in the prostate epithelium results in PIN and/or
adenocarcinoma (Di Cristofano et al. 1998; Podsypanina et al. 1999; Trotman et al.
2003; Wang et al. 2003). Inactivation of Pten has been shown to cooperate with
loss of function of the Nkx3.1 homeobox gene, up-regulation of the c-Myc proto-
oncogene, or the TMPRSS-ERG fusion (Kim et al. 2002, 2009; Carver et al. 2009;
King et al. 2009). Notably, PTEN reduction or loss in prostate cancer predisposes to
the emergence of castration-resistant prostate cancer (Mulholland et al. 2006; Shen
and Abate-Shen 2007). In particular, perturbation of PTEN expression in human
prostate cancer cell lines or targeted deletion of Pten in mouse prostate cancers is
sufficient for the development of castration resistance (Lin et al. 2004; Bertram et al.
2006; Gao et al. 2006; Wu et al. 2006). While this may reflect the ability of PTEN
to interact directly with AR, the mechanistic details by which PTEN loss promotes
castration resistance remain to be resolved.
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3.1.2 Akt/mTOR and MAPK Signalling Pathways

Constitutive activation of the PI3K/AKT/mTOR axis is a survival mechanism
commonly encountered in human cancer. The abnormal activation of this pathway
can be ascribed to diverse cellular events, such as loss of PTEN, loss of tuberous
sclerosis complex (TSC) 1 and 2, amplification or mutation of class I PI3K,
overexpression of AKT, constitutive activation of tyrosine kinase growth factor
receptors and exposure to carcinogens. In prostate cancer, the up-regulation of the
Akt/mTOR signaling pathway has been mainly ascribed to the loss of function of
Pten gene, primarily through activation of Akt1 (Thomas et al. 2004; Chen et al.
2006b; Mulholland et al. 2006; Shen and Abate-Shen 2007). Nevertheless, up-
regulation of this pathway in prostate cancer can also take place through activating
mutations of Akt1 (Boormans et al. 2008), or through activation of the p110b
isoform of PI3K (Hill et al. 2010; Lee et al. 2010). The functional consequences
of Akt/mTOR pathway activation are particularly relevant for castration-resistant
prostate cancer, as has been shown in genetically engineered mouse models, in gain-
of-function studies with orthotopic grafting or tissue recombination models, as well
as in human cell lines (Majumder et al. 2003; Uzgare and Isaacs 2004; Gao et al.
2006; Xin et al. 2006). The consequences of Akt activation are mediated in part by
activation of NF-kB signaling via stimulation of IKK (Dan et al. 2008). Conversely,
functional studies in mouse models and correlative studies in human prostate cancer
have implicated deregulated NF-kB signaling in mediating androgen responsivity,
metastasis, and disease outcome (Fradet et al. 2004; Ismail et al. 2004; Lessard et al.
2006; Luo et al. 2007; Zhang et al. 2009).

Constitutive activation of the PI3K/AKT/mTOR axis result in autophagy sup-
pression; the relationship between the PI3K/AKT/mTOR pathway and autophagy is
also suggested by the findings that G-protein coupled receptor (GPCR) antagonists
to growth factor receptors (GFR), class I PI3K inhibitors such as lithium and carba-
mazepine, AKT inhibitors such as perifostine and AKT/PKB signaling inhibitor-2
(API-2), and mTOR inhibitors such as rapamycin, RAD-001 and CCI-779, result in
autophagy induction (Nicholson and Anderson 2002; Majumder and Sellers 2005;
Moretti et al. 2007).

Tumors with high metabolic demands, such as those with constitutively active
PI3K mutations, PTEN loss or AKT activation, would be expected to be dependent
on autophagy for energy homeostasis and survival. Thus, suppression of autophagy
by the PI3K signaling cascade presents a disadvantage that these rapidly proliferat-
ing tumor cells may have to overcome to remain viable, and leads to the prediction
that compensatory mechanisms, such as deregulated apoptosis and/or metabolism,
may be concurrently activated to counteract the negative implications of defective
autophagy on tumor cell survival.

In addition to Akt/mTOR signaling, Erk (p42/44) MAPK signaling is also
frequently activated in prostate cancer, particularly in advanced disease, and is often
coordinately deregulated together with Akt signaling (Abreu-Martin et al. 1999;
Gioeli et al. 1999; Paweletz et al. 2001; Malik et al. 2002; Thomas et al. 2004;
Kinkade et al. 2008). The mitogen-activated protein kinases (MAPKs) are the
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family of kinases that transduce signals from the cell membrane to the nucleus in
response to a wide range of stimuli, including stress. MAPKs are serine/threonine
kinases that, upon stimulation, phosphorylate their specific substrates at serine
and/or threonine residues. Such phosphorylation events can either positively or
negatively regulate substrate, and thus entire signalling cascade activity. Thus,
the MAPK signalling pathways modulate gene expression, mitosis, proliferation,
motility, metabolism, and programmed cell death ‘apoptosis’. It has been demon-
strated that constitutive activation of the MAPK ERK regulates the maturation
of autophagosomes (Corcelle et al. 2006); moreover, the oncogenic activation of
ras (rasV12), the upstream activator of ERK, has been also reported to induce
autophagic vacuolation (Chi et al. 1999; Pattingre et al. 2003).

Simultaneous activation of Akt/mTOR and Erk (p42/44) MAPK signalling
pathways promotes tumor progression and castration resistance in prostate cancer
cell lines and mouse models (Uzgare and Isaacs 2004; Gao et al. 2006), while
combinatorial inhibition of these pathways inhibits castration-resistant prostate
cancer in genetically engineered mice (Kinkade et al. 2008). In contrast with
Akt/mTOR signalling, the upstream events that lead to activation of Erk MAPK
signaling are less well defined, but are thought to be linked to aberrant growth factor
signaling (Gioeli 2005). Although mutations of RAS or RAF are rarely found in
human prostate cancer, the pathway is frequently perturbed in advanced prostate
cancers (Taylor et al. 2010). Notably, expression of activated forms of either Raf
or Ras in the mouse prostrate epithelium results in MAPK activation and promotes
cancer formation (Jeong et al. 2008; Pearson et al. 2009).

3.1.3 p53

p53 (also known as TP53, for tumor protein p53), is a tumor suppressor protein that
is encoded by the TP53 gene. p53 is crucial in multicellular organisms, where it
regulates the cell cycle and functions as a tumor suppressor. Because of its role in
conserving genome stability by preventing accumulation of mutations, p53 has been
also described as “the guardian of the genome”.

p53 plays many roles in anticancer function; among them:

• It can activate DNA repair proteins when DNA has sustained damage.
• It can induce growth arrest by holding the cell cycle at the G1/S regulation point

on DNA damage recognition (allowing for the DNA repair proteins to fix the
damage, so to permit the cell to continue the cell cycle).

• It can initiate apoptosis, the programmed cell death, if DNA damage proves to be
irreparable.

In unperturbed conditions, the p53 protein is continually produced and degraded
in the cell. The degradation of the p53 protein is associated with MDM2 binding.
In a negative feedback loop, MDM2 is itself induced by the p53 protein. However,
mutant p53 proteins often do not induce MDM2, and are thus able to accumulate at
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very high concentrations. Worse, mutant p53 protein itself can inhibit normal p53
protein levels.

Patients carrying germline mutations of the TP53 gene are most likely develop
tumors in early adulthood, a disease known as Li-Fraumeni syndrome. Somatic
mutations also occurs with a very high rate: more than 50 % of human tumors,
in fact, hold p53 mutations (Hollstein et al. 1991).

In prostate cancer, the frequency of p53 mutations seems to be lower than in other
cancers. A relatively minor role for p53 in prostate carcinogenesis is consistent with
the observation that Li-Fraumeni patients have a low incidence of prostate cancer
(Kleihues et al. 1997), although it has been hypothesize that they may die by other
carcinomas before they can develop prostate cancer.

Loss of chromosome 17p occurs in advanced stages of prostate cancer and
metastatic disease (Cher and Carroll 1994; Cher et al. 1996; Saric et al. 1999),
deleting a region that includes the p53 locus, but not BRCA1 (Brooks et al. 1996).
It is now generally accepted that mutations of p53 occur infrequently in early
invasive carcinoma (Henke et al. 1994; Voeller et al. 1994; Prendergast et al. 1996).
In contrast, p53 is mutated in advanced stages of prostate cancer, as well as in
recurrent and metastatic disease (Effert et al. 1993; Navone et al. 1993; Aprikian
et al. 1994; Eastham et al. 1995; Heidenberg et al. 1995). Moreover, several studies
indicate that p53 overexpression is a predictive factor for poor prognosis and disease
recurrence, particularly when detected in combination with Bcl2 (Thomas et al.
1993; Shurbaji et al. 1995; Bauer et al. 1996; Moul et al. 1996; Matsushima et al.
1997; Theodorescu et al. 1997; Brewster et al. 1999; Stackhouse et al. 1999).

p53 appears to have a dual role in autophagy regulation. Upon DNA damage,
hypoxia and oncogene activation, p53 has been shown to transactivate autophagy-
inducing genes and stimulate autophagy by inhibiting mTOR in an AMP-activated
protein kinase (AMPK)- and TSC1/TSC2-dependent manner. p53 also induces
autophagy via its direct target damage-regulated autophagy modulator (DRAM).
At the same time, however, genetic or pharmacologic inactivation of cytoplasmic
p53 also triggers autophagy, indicating that the non-nuclear p53 pool is a potent
autophagy repressor (Jones et al. 2005; Budanov and Karin 2008; Maiuri et al.
2009a, b; Feng and Levine 2010). Thus, autophagy is activated as a stress-mitigating
mechanism by both stress-mediated p53 induction and stress-exacerbating p53 loss.
The circumstances and the molecular pathways involved in the decision to use p53
for autophagy activation versus inhibition in cancer cells have not yet been deter-
mined. Plausibly, p53 loss, and thus autophagy induction, or negative regulation of
autophagy inhibition, may be one of the compensatory mechanisms that tumor cells
use to counter-balance the survival-undermining effects of autophagy suppression
by an activated PI3K/AKT/mTOR axis.

3.1.4 Bcl2

Bcl-2 (B-cell lymphoma 2) is the founding member of the Bcl-2 family of apoptosis
regulator proteins encoded by the BCL2 gene (Tsujimoto et al. 1984; Cleary
et al. 1986).



64 F. Merolla

So far, 15 mammalian family members were identified, which were divided into
three subfamilies:

1. Bcl-2 subfamily (pro-survival): Bcl-2, Bcl-XL, Bcl-w, Mcl-1 and A1;
2. Bax subfamily (pro-apoptotic): Bax, Bak and Bok;
3. BH3 subfamily (pro-apoptotic): Bad, Bid, Bik, Blk, Hrk, BNIP3 and BimL;

Additionally, several Bcl-2 homologs have been identified in viruses, among
others the adenovirus oncoprotein E1B-19 K.

A central checkpoint of apoptosis is the activation of Caspase-9 by mitochondria.
Bcl-2, and Bcl-XL, can bind to the C terminal part of Apaf-1 (to the CED-4 like
part and the WD-40 domain), thus inhibiting the association of Caspase-9 with
Apaf-1. The pro-survival proteins also seem to maintain organelle integrity since
Bcl-2 directly or indirectly prevents the release of cytochrome c from mitochondria.

Overexpression of Bcl2 in prostate carcinoma cells is a hallmark of advanced,
hormone-refractory disease, and may account for the resistance to apoptosis that
is characteristic of late stages (Colombel et al. 1993; McDonnell et al. 1997).
Although Bcl2 expression is restricted to basal cells in the normal prostate, forced
expression of Bcl2 in LnCAP prostate carcinoma cells protects against apoptosis
induced by androgen depletion (Raffo et al. 1995). Moreover, as is the case for
p53, Bcl2 expression may provide a prognostic marker that correlates with disease
outcome (Mackey et al. 1998). Indeed, several preliminary studies have examined
whether Bcl2 inactivation may prevent tumor recurrence (Miyake et al. 1999).
Overexpression of Bcl2 has been shown to confer resistance to chemotherapy in
prostate carcinoma cell lines (Tu et al. 1995), and current clinical efforts are aimed
at modulating the expression of Bcl2 (DiPaola and Aisner 1999).

3.1.5 Beclin-1 and the Crosstalk Between Apoptosis
and Autophagy

Apoptosis and autophagy share similarities in that both are self-degradative cellular
pathways activated under conditions of stress.

The potential for crosstalk between apoptosis and autophagy was first recognized
when Beclin 1 was initially identified as a Bcl-2-interacting protein. Regulators of
apoptosis, such as Bcl-2/Bcl-xL and the BH3-only proteins, interact with Beclin 1
and can modulate autophagy (Wang 2008). The anti-apoptotic protein Bcl-2 binds to
Beclin 1 under non-stress conditions and inhibits autophagy in the ER, whereas the
BH3-only protein Bad, BNIP3, and BH3 mimetics, such as ABT737, competitively
inhibit the interaction between Beclin 1 and Bcl-2/BclxL and stimulate autophagy
(Wang 2008). We can conclude that, up to our knowledge, positive regulators of
apoptosis also induce autophagy, which is reasonable given that both pathways are
activated under similar stress conditions. The cell fate, in response to metabolic
stress, is determined by the functional status and the interaction between the stress-
mitigating pathways of apoptosis and autophagy.
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In prostate cancer some data are available from cultured cell lines experiments.
It has been recently demonstrated that in PC3, prostate cancer cell lines, the
Ursolic Acid-induced autophagy is mediated through the Beclin-1 and Akt/mTOR
pathways. (Ursolic acid is a pentacyclic triterpenoid, that inhibit the growth of
cancer cells by cell cycle arrest and the stimulation of apoptosis). Inhibition of
autophagy by either 3-methyladenine or Beclin-1/Atg5 small interfering RNA
enhanced UA-induced apoptosis (Shin et al. 2012). Moreover, it has been shown
that autophagy is elevated in LNCaP cells under androgen deprivation conditions,
which results in increased cell viability (Li et al. 2008) (Fig. 3.1).

3.2 Non-apoptotic/Non-autophagic Cell Death
Pathways in Prostate Cancer

3.2.1 Anoikis

Anoikis (from a Greek word meaning “homelessness”) is defined as anchorage-
dependent programmed cell death. It can be considered an apoptotic process that is
induced by inadequate or inappropriate cell–matrix interactions. Anokis is used to
describe the apoptotic response elicited by the absence of cell-matrix interactions
(Frisch and Screaton 2001).

In prostate carcinoma cell lines, anoikis has been reported to be regulated by
Bcl2-independent pathways; mitochondrial DNA depletion in prostate epithelial
cells promotes anoikis resistance and invasion through activation of PI3K/Akt2.
Several papers propose Anoikis as a novel therapeutic target for prostate cancer
(Bondar and McConkey 2002; Garrison and Kyprianou 2004; Hasanuzzaman et al.
2007; Moro et al. 2009; Sakamoto and Kyprianou 2010).

3.2.2 Autoschizis

Autoschizis is a term derived from the Greek roots “auto” meaning self, and
“skhizein” to split. It indicates a recently described form of cancer cell death
characterized by a reduction in cell size due to the loss of cytoplasm through
self-excision. This process occurs without cell organelles loss, in absence of mor-
phologic degradation of the cells nucleus and nucleolus and without the formation
of apoptotic bodies and destruction of the cell membrane. The cell death results
from karyorrhexis and karyolysis. Autoschizis can be initiated via in vivo treatment
with Vitamin C (VC), synthetic Vitamin K (VK3) or a combination of both. The
treatment has been tested on various types of cancers with positive results (Jamison
et al. 2002)

A combination of vitamin C/K(3) has been reported to induce cell death by
autoschizis in prostate carcinoma cell lines (Taper et al. 2001; Lasalvia-Prisco et al.
2003; Gilloteaux et al. 2005; Tomasetti et al. 2010).
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3.2.3 Entosis

Entosis is a form of cell death that occurs when a cell dyes being engulfed by a
neighboring cell. The process was discovered by Overholtzer, et al. as reported in
Cell (Overholtzer et al. 2007).

Several works indicate entosis as a non-genetic cause of aneuploidy. Aneu-
ploidy is common in human tumors and is often indicative of aggressive disease.
Aneuploidy can result from cytokinesis failure, which produces binucleate cells
that generate aneuploid offspring with subsequent divisions. In cancers, disruption
of cytokinesis is known to result from genetic perturbations to mitotic pathways
or checkpoints. It has been described a non-genetic mechanism of cytokinesis
failure that occurs as a direct result of cell-in-cell formation by entosis. Live cells
internalized by entosis, which can persist through the cell cycle of host cells, disrupt
formation of the contractile ring during host cell division. As a result, cytokinesis
frequently fails, generating binucleate cells that produce aneuploid cell lineages
(White 2007; Janssen and Medema 2011; Krajcovic et al. 2011).

3.2.4 Excitotoxicity

The overactivation of receptors for the excitatory neurotransmitter glutamate
(glutamate receptors) such as the NMDA receptor and AMPA receptor can lead
to the so called Excitotoxicity, that is the pathological process by which nerve cells
are damaged and killed by excessive stimulation.

Excitotoxins like NMDA and kainic acid which bind to these receptors, as well
as pathologically high levels of glutamate, can cause excitotoxicity by allowing high
levels of calcium ions (Ca2C) to enter the cell. Ca2C influx into cells activates a
number of enzymes, including phospholipases, endonucleases, and proteases such
as calpain. These enzymes go on to damage cell structures such as components of
the cytoskeleton, membrane, and DNA.

Glutamate carboxypeptidase II (GCPII) is a membrane responsible for the
cleavage of N-acetyl-L-aspartyl-L-glutamate (NAAG) yielding free glutamate in
the synaptic cleft, and is implicated in various pathologic conditions associated
with glutamate excitotoxicity. The prostate form of GCPII, termed prostate-specific
membrane antigen (PSMA), is up-regulated in cancer and used as an effective
prostate cancer marker (Barinka et al. 2004; Ding et al. 2007).

3.2.5 Mitotic Catastrophe

Mitotic catastrophe is an event in which a cell is destroyed during mitosis. This
is believed by some to occur as a result of an attempt at aberrant chromosome
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segregation early in mitosis, or as a result of DNA damage later. Cells which fail to
go through a mitotic catastrophe after a mitotic failure are likely to create aneuploid
cells when they later reproduce, posing a risk of oncogenesis, potentially leading to
cancer.

Mitotic catastrophe thus may be conceived as a molecular device that prevents
aneuploidization, which may participate in oncogenesis. Mitotic catastrophe is
controlled by numerous molecular players, in particular, cell-cycle-specific kinases
(such as the cyclin B1-dependent kinase Cdk1, polo-like kinases and Aurora
kinases), cell-cycle checkpoint proteins, survivin, p53, caspases and members of
the Bcl-2 family (Castedo et al. 2004).

A large body of works show the correlation between mitotic catastrophe and
prostate cancer. Taxols, such as docetaxel, has been shown to induce cell death by
mitotic catastrophe, in prostate cancer cells, by concomitant activation of caspase
and lysosomal pathways; resistance to docetaxel has been proven as a complex
mechanism involving several genes, as shown by several genomic and proteomic
approaches (Fabbri et al. 2008; Mediavilla-Varela et al. 2009; Balasubramani et al.
2011; Desarnaud et al. 2011).

3.2.6 Necrosis and Oncosis

Necrosis does not indicate a form of cell death but refers to changes secondary to
cell death by any mechanism, including apoptosis. The term oncosis (derived from
ónkos, meaning swelling) was proposed in 1910 by von Reckling-hausen precisely
to mean cell death with swelling. Oncosis leads to necrosis with karyolysis and
stands in contrast to apoptosis, which leads to necrosis with karyorhexis and cell
shrinkage (Majno and Joris 1995).

Some compounds, such as Kahalalide F, a marine-derived compound, have been
reported to induce oncosis in human prostate cancer cells (Suarez et al. 2003).

3.2.7 Paraptosis

Paraptosis, which has been observed in a variety of cell types in response to insulin
derived growth factor 1 receptor, differs from apoptosis because of the lack of
fragmentation of the cell, its nucleus, and its DNA, and from necrosis due to its
requirement for new RNA and protein synthesis.

Paraptosis, like apoptosis, does indeed involve a caspase, caspase-9. Compounds
able to modulate the proteasome along with Hsp90 protein, were also able to induce
prostate carcinoma cell lines death by paraptosis (Wang et al. 2012).
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3.3 Other Cell Death Pathways

3.3.1 Parthanatos

Parthanatos is a form of cell death that often occurs as a result of ischemia
reperfusion injury. This form of cell death is distinct from apoptosis, necrosis, or
autophagy and is being referred to also as PARP1-dependent cell death [poly(ADP-
ribose) polymerase 1-dependent cell death]. Although it shows some features of
cell death by apoptosis, it is not associated with the formation of apoptotic bodies.
Parthanatos also differs from autophagy in that it does not involve the formation of
autophagic vacuoles and lysosomal degradation (David et al. 2009).

3.4 Therapeutic Implications

The requirement of the mTORC2 complex as well as the p110b isoform of PI3K
for tumor formation following Pten loss suggests that these signaling compo-
nents may provide additional and/or alternative targets for therapeutic intervention
(Jia et al. 2008; Guertin et al. 2009). Moreover, the observation that complete
inactivation of Pten in mouse prostate tumors leads to cellular senescence (Chen
et al. 2006a) has led to the idea that novel therapeutic approaches might promote
senescence for selective targeting of prostate tumor cells through knockdown of Pten
function (Alimonti et al. 2010) or targeting of Skp2 (Lin et al. 2010). Furthermore, a
small percentage of aggressive prostate tumors contains a translocation of B-RAF or
C-RAF that results in activation (Palanisamy et al. 2010). This let envisage a further
therapeutical approach based on the pharmacological inhibition of RAF kinase.

Finally, several novel prostate cancer cells killing strategies are based on different
cell death pathways, especially apoptosis and autophagy, that have been proved to be
an interesting field of investigation in order to find efficient therapeutic approaches
for androgen-resistant and metastatic prostate carcinomas.
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Chapter 4
Androgen Receptor and Steroidogenesis
Pathway Control

Simona Romano, Rita Bisogni, and Maria Fiammetta Romano

Abstract Prostate cancer is the most common male malignancy and the leading
cause of mortality in western countries. Androgens, the hormones that regulate
prostate development and physiology, play a pivotal role also in the maintenance
and progression of prostate cancer (Chen et al, Curr Opin Pharmacol, 8:440–448,
2008). Approximately 80–90 % of these tumors are dependent on androgen at initial
diagnosis. Therapies that counteract androgen, by reducing its levels, blocking it, or
antagonizing the androgen receptor (AR) and its target genes, represent the mainstay
of treatment for prostate cancer (Chen et al, Curr Opin Pharmacol, 8:440–448,
2008). However, androgen ablation therapy ultimately fails because prostate cancer
progresses to a hormone refractory state.

This chapter focuses on the role of AR-coactivators in prostate cancerogenesis.

AR is expressed throughout prostate cancer progression, and it persists in the
majority of patients with hormone refractory disease (Chen et al. 2008). The AR
gene is a member of the steroid hormone receptor family of genes and is located
on the long (q) arm of the X chromosome at position 12 (Xq11-12) (McEwan
2004). The eight exons of the AR gene code for functionally distinct regions of the
protein are similar to the modular structure of other steroid hormone receptor genes.
The first exon codes for the N-terminal domain (NTD), that is the transcriptional
regulatory region of the protein; exons 2 and 3 code for the central DNA-binding
domain (DBD); and exons 4 through 8 code for the C-terminal LBD (ligand binding
domain) (McEwan 2004). At least 85 mutations in the AR gene have been associated
with prostate cancer (McEwan 2004). Almost all of these mutations are somatic,
which means they develop during a person’s life and occur only in certain cells
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(in this case, cells in the prostate). Somatic mutations are not inherited and are
not passed to future generations. Most AR mutations are capable of transcriptional
activity, thereby excluding that loss of AR function is a major cause of androgen
ablation failure in prostate cancer therapy. Instead, increasing evidence suggests that
a disregulation of AR activity, due to alteration in co-regulators and/or mutations
of AR, can enable the receptor to become transcriptionally active in the absence
of ligands. This article presents an overview of such co-regulators, with particular
focus on the FK506 binding protein (FKBP51), an important factor in the androgen
superchaperone receptor complex, which according to recent studies, is a crucial
element in prostate cancer biology and progression.

4.1 The Superchaperone Receptor Complex
of Steroid Hormone

Similar to all steroid hormones, androgens derive from the precursor pregnenolone,
which is produced directly from cholesterol. In humans and other vertebrates,
androgens are made primarily in the male testes, female ovaries, and adrenal
glands. All the steroid hormones exert their action by passing through the plasma
membrane and binding to intracellular receptors. The steroid hormone-receptor (SR)
complexes exert their action by binding to specific nucleotide sequences in the DNA
of responsive genes. These DNA sequences are identified as hormone response
elements. The interaction of steroid-receptor complexes with DNA leads to gene
transcription.

In absence of the ligand hormone, inactive SR is maintained in a heterocomplex
with several molecular chaperones and co-chaperones, including Hsp90, p23,
FKBP51 and FKBP52, in a step-wise manner. The receptor is first delivered by
Hsp70 to Hsp90 through the Hsp organizing protein (Hop), which binds both
chaperones through two separate tetratricopeptide repeat (TPR) motifs. Notably,
TPR motif is a flexible, mutable domain of fundamental biological importance in
coordinating interactions among proteins. The Hsp70 interacting protein, Hip, is
also involved in the dynamics of formation of this intermediate receptor complex.
Hsp90 has ATPase activity that is stimulated by binding with the steroid receptor
and inhibited by Hop (McLaughlin et al. 2002). ATP-binding weakens the affinity
of Hsp90 for Hop. The Hsp90-ATP-bound form is stabilized by p23, a small
acidic protein generally involved in the stabilization of client protein -Hsp90
complexes. Detachment of Hop (and HSP70) allows for the recruitment of other
TPR proteins: the immunophilins FKBP52, FKBP51, and Cyclophilin 40 (Cyp40),
or the serine-threonine protein phosphatase 5 (PP5). Finally, this assembly and
maturation process produces a large, oligomeric steroid hormone-Hsp90 complex
with high hormone binding affinity. Hsp90 and co-chaperones maintain the SR in
a particular structural conformation that is highly responsive to hormones. Hsp90
is required for high affinity ligand binding because it contacts directly with the
hormone-binding domain of the receptor. In the absence of this chaperone, the SR
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affinity for hormones is reduced by 100-fold (Fang et al. 1996). The activity of
the folding complex is also determined by the TPR protein occupying the acceptor
site on Hsp90. Binding of different immunophilins (FKBP51, FKBP52, or Cyp40)
diversifies the response mediated by the receptor and affects the receptor’s ability to
bind ligand. In addition, immunophilins have a variable ability to bind to the motor
protein dynein, thus inducing transport to the nucleus and modifying transcription
of target genes. FKBP52 and Cyp-40 bind dynein, whereas FKBP51 does not bind
or binds it very weakly (Pratta et al. 2004).

In the glucocorticoid receptor (GR), the FKBP52-containing superchaperone
complexes facilitate dimerization and nuclear transport of the GR. In a different way,
the FKBP51-containing complexes attenuate the glucocorticoid binding, resulting
in attenuation of the glucocorticoid action. Glucocorticoids up-regulate the gene for
FKBP51, which provides a mechanism for desensitization of cells after an initial
exposure to the hormone (Cheung and Smith 2000). FKBP51 reduces estrogen-,
progesterone-, and mineralcorticoid-receptor transcriptional activities, but for AR,
the situation is quite different.

In the AR superchaperone complexes, the FKBP51 increases the amount of
hormone-bound receptor (Ni et al. 2010), which strengthens the androgenic signals.
Androgens cause upregulation of FKBP51 expression through a direct binding of
AR to enhancer elements in the FKBP51 gene, creating an auto-regulatory pathway
designed to increase androgen sensitivity. These facts position FKBP51 as an
interesting and potentially important candidate in the etiology of prostate cancer.
Elevated levels of FKBP51 in human prostate cancer samples correspond with this
concept (Fig. 4.1).

4.2 The FK506 Binding Protein 51 (FKBP51)

FKBP51 is a member of the FK506 binding proteins (FKBP), which belongs to
the protein family of immunophilins (Dornan et al. 2003; Fischer and Aumüller
2003; Somarelli et al. 2008). This protein family also includes cyclophilins,
the intracellular targets of cyclosporin A. FKBPs derive their name from their
ability to bind immunosuppressant agents like rapamycin and FK506 (Fischer
and Aumüller 2003). FKBP51 maps to chromosome 6 (6p21.31). This gene,
isolated from human and mouse genomic DNA in 2003 (Scammell et al. 2001;
Hubler et al. 2003; Cioffi et al. 2011), has 13 exons and 12 introns spanning
more than 150 kb. FKBP51 contains an N-terminal FK1 domain responsible for
peptidyl-prolyl cis-trans isomerase activity (PPIase), catalyzing the isomerization
of peptidyl-prolyl imide bonds, from cis to trans, in protein substrates (Dornan et al.
2003; Fischer and Aumüller 2003). FKBP51 also has a PPIase-like FK2 domain,
which shares 32 % sequence homology with FK1 and exhibits no PPIase activity.
At the C-terminal, FKBP51 contains three TPR units of a 34-amino acids, for
protein/protein interaction. FKBP51 expression appeared first to be restricted to
T lymphocytes (Baughman et al. 1995). However, subsequent studies in humans
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Fig. 4.1 Chaperones and co-chaperones in AR activity control. In the absence of the ligand
hormone, inactive AR is maintained in a heterocomplex with several molecular chaperones and co-
chaperones, including Hsp90, p23, FKBP51 and FKBP52, in a step-wise manner. The AR receptor
is first delivered by Hsp70 to Hsp90 through the Hsp organizing protein (Hop). The Hsp90-ATP-
bound form is stabilized by p23, a small acidic protein generally involved in the stabilization of
client protein-Hsp90 complexes. Detachment of Hop (and HSP70) allows for the recruitment of
FKBP51. Hsp90 and FKBP51 maintain the SR in a particular structural conformation that is highly
responsive to hormones. Hsp90 is required for high affinity ligand binding

confirmed that while FKBP51 is abundantly expressed in T lymphocytes, it is also
expressed in several other tissues (Baughman et al. 1997). Thanks to its multiple
domains, FKBP51 is able to exert a wide variety of cellular functions, including
protein folding, improvement of kinase performance, steroid receptor signaling,
and transcription (Romano et al. 2011). Increasing evidence indicate that enhanced
expression of FKBP51 sustains cell survival and growth in both non-neoplastic and
neoplastic conditions (Vittorioso et al. 1998; Liu et al. 2007; Menicanin et al. 2009).
FKBP51 has a specialized role and is preferentially expressed in mitotically active
cells in the very early phases of differentiation (Liu et al. 2007; Menicanin et al.
2009; Yeh et al. 1995). FKBP51 is among the top gene candidates expressed during
early mesenchymal differentiation into the three mesodermal lineages, namely, os-
teogenesis, chondrogenesis, and adipogenesis (Menicanin et al. 2009). At this stage,
FKBP51 is co-expressed with the zinc-finger protein, ZNF145, which regulates cell
cycle progression (Menicanin et al. 2009; Yeh et al. 1995; Zhang et al. 1999). The
concept that FKBP51 is an essential factor for cell proliferation is also supported
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by studies on myeloproliferative disorders (Komura et al. 2003, 2005; Periyasamy
et al. 2007). Overexpression of FKBP51 in this disorder regulates the growth factor
independence of megakaryocyte progenitors (Komura et al. 2003). Finally, several
lines of evidence involve FKBP51 hyperexpression in carcinogenesis and tumor
growth (reviewed in Romano et al. 2010b, 2011).

4.3 FKBP51 and Prostate Cancer

Recent studies (Ni et al. 2010; Febbo et al. 2005; Makkonen et al. 2009; Periyasamy
et al. 2010) point to deregulated FKBP51 as a prime factor in the etiology of
androgen-dependent prostate cancer. Febbo et al. found that FKBP51 is regulated
by androgens and physically associates with the AR before ligand binding in the
androgen-dependent prostate cancer cell line LNCaP and prostate tumor tissue
(Febbo et al. 2005). According to Makkonen et al. AR induces FKBP51 more
rapidly and more strongly than does PSA, the classical AR target in prostate
(Makkonen et al. 2009). Periyasamy et al. found FKBP51 upregulated in association
with cyclophilin Cyp40 in prostate cancer (Periyasamy et al. 2010). In androgen-
dependent tumor cell lines, FKBP51 hyperexpression increased androgen receptor
transcriptional activity in the presence and absence of androgens, while knockdown
of FKBP51 dramatically decreased androgen dependent gene transcription and
proliferation (Periyasamy et al. 2010). FK506, the immune suppressant macrolide
produced by Streptomyces tsukubaensis (Dornan et al. 2003), showed similar
inhibitory effects on androgen-induced growth of prostate cancer cells (Periyasamy
et al. 2010). In a study that compared AR-positive prostate cancer cells to two AR-
negative prostate cancer cell lines (DU145 and PC-3), an inhibitory effect of FK506
on growth was only found in the androgen-dependent cells treated with androgens
(Periyasamy et al. 2007), suggesting that the effect of FK506 requires hormone
binding.

Notably, FK506 typically binds to the FK domain of FKBP51 and inhibits
peptidyl prolyl isomerase (PPIase) activity (Dornan et al. 2003). Although the role
of the FKBP51 PPIase function has not yet been determined in AR signaling, evi-
dence suggests that FK506 inhibited the ligand-induced activity of AR (Periyasamy
et al. 2010). The fact that hyperexpression of FKBP51 increases AR transcriptional
activity even in the absence of hormone ligand (Ni et al. 2010; Periyasamy et al.
2010) suggests a role for FKBP51 in enhancing AR activity, which is not affected
by FK506.

Though androgen ablation remains the backbone of prostate cancer treatment,
patients develop resistance to this therapy and progress to castration-resistant
prostate cancer with an attendant poor prognosis. Mechanisms that drive from
androgen-dependent prostate cancer to castration-resistant prostate cancer are
currently unknown. AR is expressed in castration-resistant prostate cancer and
may function in an androgen-independent manner through autocrine signaling or
crosstalk with other prosurvival and proliferative pathways (Attard et al. 2009;
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Montgomery et al. 2008). According to (Periyasamy et al. 2010), androgen-
bound AR regulates FKBP51 expression, creating a feed-forward mechanism
that could amplify AR signaling under the low-hormone conditions that occur
during androgen ablation. A study employing xenograph animal models, androgen-
independent tumors, which arose from androgen-dependent tumors, had higher
levels of FKBP51, suggesting that continued activation of AR despite androgen
deprivation may be sustained, at least partly, by the continued FKBP51 expression
in some prostate cancers following castration (Velasco et al. 2004).

Available immunohistochemistry data shows an appreciable homogeneous ex-
pression of FKBP51 in normal prostates and in benign prostatic hyperplasia
(Staibano et al. 2011), but to a lesser extent in prostate cancer specimens (Febbo
et al. 2005; Staibano et al. 2011; Romano et al. 2010a). According to Febbo et al.
(2005), any significant difference in immunohistochemical staining for FKBP51 of
malignant prostate epithelium between samples from individuals with or without
previous androgen ablation was found, whereas the protein expression decreased
in normal prostate epithelial cells following castration. A more intense signal for
FKBP51 in tumors with a high Gleason grade, in respect to the well-differentiated
ones, was instead described by (Staibano et al. 2011). The intracellular localization
of the protein resulted in both cytoplasmatic and nuclear signal, with a prevalent
nuclear shifting in more aggressive tumors (Staibano et al. 2001; Romano et al.
2010a). Taken together, these findings support a pathogenetic role for FKBP51 in
tumor progression and suggest this protein can be a promising prognostic marker
for prostate cancer.

In conclusion, the overall data underlines a crucial role for FKBP51, a protein
that enhances androgen signaling, in the pathogenesis and progression of prostate
cancer. The central role of this molecule in tumor growth has been defined clearly
in androgen-sensitive prostate cancer (Ni et al. 2010; Febbo et al. 2005; Makkonen
et al. 2009; Periyasamy et al. 2010; Stechschulte and Sanchez 2011). Increasing
evidence points to FKBP51 as a useful target for innovative therapies that block the
androgen-receptor signaling axis in endocrine-dependent prostate cancer (reviewed
in Stechschulte and Sanchez 2011). A deregulated AR signal can persist also in
androgen-insensitive tumors (Amler et al. 2000; Madan et al. 2011; Chmelar et al.
2007; Hobisch et al. 1995). However, even if FKBP51 appears to increase the
transcriptional activity of AR in the absence of hormones (Febbo et al. 2005;
Makkonen et al. 2009; Periyasamy et al. 2010), further studies are needed to clarify
the efficacy of effectively blocking FKBP51 in castration resistant prostate cancers.
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Chapter 5
Neuroendocrine Differentiation
in Prostate Cancer

Renato Franco, Paolo Chieffi, Sisto Perdonà, Gaetano Facchini,
and Michele Caraglia

Abstract Neuroendocrine differentiation (ND) is widely observed in prostate
cancer (PC). Its role in clinical practice is controversial, but preclinical and clinical
evidences underline the association of ND with poor prognosis in PC patients.
Neuroendocrine (NE) cells could condition the PC progression, mainly stimulating
the PC exocrine neoplastic cells proliferation through the production of paracrine
growth factors. Thus, the castrated adapted neoplastic cells are favored to outgrowth
through an androgen receptor independent mechanism. Moreover proportion of NE
cells in PC increases because of tumor treatment, mainly androgen deprivation
therapy, enormously amplifying the promotion of the PC exocrine component
growth stimulated by neuroendocrine paracrine growth factors.

This chapter provides an overview of the most relevant clinical studies demon-
strating a significant correlation between ND and PC behavior, indicating that ND
could represent a prognostic parameter in PC, and strongly suggesting that NE cells
in a castrate resistant patients could be targeted through specific treatment.
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Abbreviations

ND Neuroendocrine differentiation
NE Neuroendocrine
PC Prostate cancer
PSA The prostate specific antigen
CGA ChromograninA
NSE Neuron-specific enolase
VIP Vasoactive intestinal peptide
GRP Bombesin/gastrin releasing peptide
aHCG Alpha-human chorionic gonadotropin
PTHrP Parathyroid hormonerelated protein
VEGF Vascular endothelial growth factor
SCC Small cell carcinomas
PIN Prostatic intraepithelial neoplasia
AMACR Alpha-methylacyl-CoA racemase
ADT Androgen deprivation therapy
uPA Urokinase-type plasminogen activator
PAI-1 Plasminogen activator inhibitor-1
MMP Metalloprotease
MDV Microvascular density
MAPKs Mitogen activated protein kinases
PKA Cyclic AMP-dependent protein kinase
PI3K Phosphatidylinositol 3-kinase
CDK Cyclin-dependent kinase
CGB Chromogranin B
CGC Chromogranin C
ProGRP Progastrin-releasing peptide
BPH Prostatic hyperplasia
PS Performance status
PET Positron emission tomography
FDG F18-fluorodeoxyglucose
DTPA Diethylenetriaminepentaacetic acid
DTX Docetaxel
OS Overall survival
TTP Time to progression
DOTA 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid
PTP Protein tyrosine phosphatase

5.1 Distribution and Origin of NE Cells in Normal Gland

The normal human prostate ducts and acini epithelium is composed of two
layers cells, including luminal secretory, basal and neuroendocrine (NE) cells
(di Sant’Agnese 1992, 1998; Cohen et al. 1994).
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Specificity of NE cells has been systematically defined during the 1980s.
Thus NE cells have been described as an important component of the prostate
(di Sant’Agnese 1992; Berruti et al. 2000).

The origin of these cells in normal prostate is not completely known. In fact
different theories about their ontogenesis have been proposed. The most recent
studies have postulated that NE, basal and secretory luminal cells originate from
a common endodermal pluripotent stem cell (Huss et al. 2004). Thus, it has
been hypotized that stem cells in multiple stem cell units (Isaacs and Coffey
1989; Bonkhoff et al. 1994; Bonkhoff 1996) with an unlimited self-renewal ability
provide, with an unlimited self- renewal ability, progeny able to differentiate
into either transit-amplifying or NE cells (Bonkhoff et al. 1994; Bonkhoff 1996).
The luminal secretory cells or basal cells derive subsequently from the transit-
amplifying cells. According to this theory, the prostate specific antigen (PSA) has
been demonstrated also in NE cells, suggesting the same common precursor of
secretory cell (Aprikian et al. 1993). Moreover, the expression of CD44, a marker
of lymphocytes and cancer stem cells, has been observed in cells of NE phenotype
(Palapattu et al. 2009). On the other hand NE cells could be represent a specific cell
lineage of neural crest origin, substantially distinct from urogenital sinus- derived
prostate secretory and basal cells (Pearse and Takor 1979).

NE cells are not homogenously distributed in the prostate glands, being con-
sistently found in the periurethral ducts and veru montanum regions. NE cells are
generally more numerous in the transition and the peripheral zones than in the
central zone (Sant’Agnese 1998).

NE cells are normally not identifiable on standard stained histological sections.
They are only recognized by electron microscopy or immunohistochemical staining
for NE markers, being chromogranin A (CGA) and synaptophysin the most
common.

As scattered or small groups, the distribution of NE cells according to electron
microscopy studies could be in two different manner: (i) open, with cells directly
extended to gland lumen; and (ii) closed, with cell dendritic-like processes extend-
ing between adjacent cells, on the basal lamina and strictly related to stromal nerves
(Kamiya et al. 2008).

Intracinar and intraductal prostatic NE cells secrete serotonin and many other
neuropeptides. Prostatic NE cells contain dense-core cytoplasmic granules with
variable sizes and morphologies, storing peptide hormones and pro-hormones
and recognizable by electron microscopy. The products contained in neurose-
cretory granules are either as a single typology or as mix of different pep-
tides such as CGA, chromogranin B (CGB), somatostatin, neuron-specific eno-
lase (NSE), parathyroid hormone-related protein (PTHrP), bombesin, thyroid-
stimulating hormone and calcitonin gene family (calcitonin, katacalcin, and cal-
citonin gene-related peptide), vasoactive intestinal peptide (VIP), neuropeptide Y,
alpha-human chorionic gonadotropin (aHCG), bombesin/gastrin releasing peptide
(GRP), thyroid stimulating hormone-like peptide, adrenomedullin, cholecystokinin,
and vascular endothelial growth factor (VEGF) (Huang and di Sant’Agnese 2002)
(Table 5.1).
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Table 5.1 Main
characteristics
of neuroendocrine cell
in normal prostate

General characteristics
Androgen-receptor negative
Non-proliferating
PSA-negative
Bcl-2-negative
Express intermediate and luminal cytokeratins

Functional roles
Regulation of cell growth and differentiation
Regulation of homeostasis
Regulation of prostatic secretion

Products
Calcitonin gene family
Chromogranin A
Chromogranin B
Cholecystokinin (CCK)
Gastrin-releasing peptide
Histamine
Neuron-specific enolase
Neuropeptide Y
Parathyroid hormone-related protein
Proadrenomedullin N-terminal peptide
Serotonin
Somatostatin
TSH-like peptide
Vascular endothelial growth factor

Receptors
Gastrin releasing peptide (GRPR)
Serotonin (5HTR1A,B)
Somatostatin (SSTR 1–5)
Calcitonin (hCTR-2)
Cholecystokinin
Neuropeptide Y
Vasoactive intestinal peptide
PTHrp receptor (highly expressed in bone

metastases from prostate)

Also NE peptides receptors have been identified on NE prostate cells, including
receptors for serotonin (5HT1a) (Abdul et al. 1994), bombesin/GRP (GRPR) (Mark-
walder and Reubi 1999), neurotensin (Seethalakshmi et al. 1997), somatostatin
(SSTR1-5) (Dizeyi et al. 2002), cholecytokinin, Neuropeptide Y and calcitonin
(Wu et al. 1996). Thus, through a complex network of NE peptides and respective
receptors on exocrine cells in prostate gland, NE cells may control the growth,
differentiation and secretory activity of the prostatic epithelium through a paracrine
mechanism. In addition, the activity of the NE cells activity may be regulated by the
neural network.
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5.2 Physiopathology of ND in PC

NE cells are also present in PC. Rarely, NE cells are the only neoplastic component
in prostatic carcinoma, such as carcinoid tumors and small cell carcinomas (SCC).
A component of SCC or carcinoid could be also associated to conventional adeno-
carcinoma. More commonly, however, conventional adenocarcinoma are associated
by scattered NE cells and distributed as single or grouped elements.

5.2.1 SCC and Carcinoid Tumors

Pure SCC of the prostate represent no more than 1 % of all prostate carcinomas.
They have a very aggressive behavior, being often locally advanced or metastatic
at diagnosis (Erasmus et al. 2002). It is occasionally associated with paraneoplastic
syndromes (Kawai et al. 2003). Rarely, SCC has been observed in conventional
adenocarcinoma patients treated with hormonal therapy (Tanaka et al. 2001). Indeed
SCC is more commonly a component of mixed tumors with conventional adeno-
carcinoma. Histologically, prostate SCC is similar to lung SCC, being constituted
both by neoplastic small cells in a solid growth pattern, with fine cromatin and
common nuclear crushing. Necrosis and high mitotic index is commonly observed
(Yao et al. 2006). Immunohistochemical study can greatly help in diagnosis of
this rare tumor. In fact neoplastic cells are commonly positive for one or more
neuroendocrine markers, such as chromogranin, synaptophysin, CD56 or NSE.
Dot-like positivity for Cytokeratin is commonly observed (Kawai et al. 2003).
Differently from conventional prostate adenocarcinoma, prostate SCC does not
express Androgen Receptor. Thus hormonal therapy is not adequate in the treatment
of such tumors while chemotherapy may be responsible of initial clinical response
(Helpap 2002).

Carcinoid is a very rare tumor in prostate. Microscopically all neoplastic cells
show complete ND and the organoid pattern of growth is similar to neuroendocrine
tumors of other districts. Also carcinoid could be part of mixed tumor with
conventional adenocarcinoma. (Ghannoum et al. 2004).

5.2.2 Focal ND in PC

Focal ND occurs in conventional prostatic adenocarcinomas. As in normal prostate,
NE cells are not distinguishable from other cancer cells, unless immunohistochem-
ical staining for NE markers are used. Also in PC CGA is usually considered
sensitive and specific. Some NE cells seem to be present in all conventional
adenocarcinoma, but only about 5–10 % contain a large number of NE cells
(Abrahamsson et al. 1987). They are described in a large spectrum of prostatic
neoplasia, from prostatic intraepithelial neoplasia (PIN) (Bostwick et al. 1994) to
metastatic disease (Bostwick et al. 2002).
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5.3 The Origin of NE Cells in PC

The biological features of PC NE cells suggest that these cells are different from
normal prostate NE cells.

Some observational evidences suggest that the cells are more similar to secretory
cells that normal NE cells. As normal NE cells, PC NE cells do not express
Androgen Receptor (AR) and PSA, normally present in secretory component
(Huang et al. 2006). Also neuron-like processes of normal NE are often not observed
in PC NE cells (Xing et al. 2001). Immunohistochemical studies have demonstrated
that normally expressed basal cell markers of normal NE cells are not expressed
by PC NE cells, such as p63 and cytokeratin 5 (Huang et al. 2006). On the
contrary, they are positive for luminal secretory cells markers such as cytokeratin
18 (van Bokhoven et al. 2003). Also alpha-methylacyl-CoA racemase (AMACR),
an enzyme involved in the ß-oxidation of fatty acids, expressed in PC non NE cells
rather than in normal prostatic secretory cells, has been demonstrated in PC NE cells
(Huang et al. 2006). In addition anti-apoptotic Bcl-2 protein is normally expressed
by PC NE cells but not by normal NE (Segal et al. 1994). Finally genetic analysis
support that PC NE cells are similar to PC secretive cells and not to normal NE
(Sauer et al. 2006).

All these considerations have led to the frequent use of the term ‘NE-like’ PC
cell to define this neoplastic population (Yuan et al. 2007). Thus the theory that PC
NE cells derive from neural crest cells has been finally abandoned (Schron et al.
1984). Two main hypotheses justifying neuroendocrine differentiation in PC are
taken into account, transdifferentiation and origin from a common neoplastic stem
cell (Bonkhoff et al. 1995).

The transdifferentiation model seems to occur as in response to hormonal and
growth factor microenvironmental changes. In fact it has been supported by in
vitro experiments on LNCaP cells, an androgen-dependent cell line, developing ND
through induction by androgen deprivation or other agents increasing intracellular
levels of cAMP such as epinephrine (Cox et al. 2000) interleukin-6, (Deeble et al.
2001) and genistein (Pinski et al. 2006). Moreover, in vivo androgen deprivation
can stimulate PC ND either in the animal model or in humans. In fact, an increase
percentage of NE cells has been demonstrated in matched tumor samples collected
from patients with early PC before and after androgen deprivation therapy (ADT)
(Ahlgren et al. 2000). In patients with advanced PC a relative increase of CgA
serum levels has been documented after ADT (Berruti et al. 2005). Antineoplastic
treatment, not only androgen deprivation, seems to be responsible of ND in PC. In
fact, fractionated ionizing radiation (IR) can stimulate ND in vitro in LNCaP (Deng
et al. 2008) and docetaxel (DTX) can induce in animal model ND with the same
relevance of the androgen deprivation. It has to be emphasized that both therapies
are used in the treatment of castration resistant patients (Tang et al. 2009).

Recently, it has been demonstrated that human PC cell lines express the stem
cell marker CD44 (Palapattu et al. 2009) as well as human PC tissues were highly
positive for CD44 both in secretive and NE component. These evidences could
suggest that PC NE cell and PCA secretive cells share the same potential progenitor.
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Moreover, the ND in PC is not a stable phenotype. In fact NE trans-differentiation
in vitro is a reversible phenomenon, as the neoplastic population could lose its
neuroendocrine phenotype after the removal of the inducing agents (Palapattu
et al. 2009).

Different signaling pathways are involved in the ND of PC. PI3K-AKT-mTOR
pathway seem the main involved pathway (Wu and Huang 2007). The Notch
signaling pathway, and specifically of hASH1 (human achaete-scute homolog-1
transcription factor) have been also demonstrated to be as responsible of ND setting
(Guillemot et al. 1993). Finally, all treatments responsible of in vitro NE trans-
differentiation in LNCaP cells caused deregulated expression of a unique set of
genes (Mori et al. 2009).

5.4 The Function of NE Cells in PC

As NE tumor cells do not express AR, their growth is androgen independent.
Therefore, they continue to survive and perform their functions in a milieu devoid
of androgens, building a fine network of autocrine and paracrine relationships with
the rest of the tumor, providing androgen-independent growth. In fact LNCaP
xenografts, being androgen-dependent, cannot normally grow in castrated mice,
while they can grow when also NE cells from a mouse NE tumor (NE-10) are trans-
planted in the castrated hosts (Jin et al. 2004). In vitro studies have demonstrated that
NE cells products could favor growth and invasiveness of PC cell lines (Jongsma
et al. 2000). Neuropeptides are active on different pathways, up-regulating proteins
critical for tumor growth, invasiveness, angiogenesis and metastasis. PC NE cells
may promote androgen-independent PC growth through the production of paracrine
signals interacting with the secretory PC cells by AR dependent or independent
mechanisms. In fact, one of the main pathway activated by neuropeptides is the same
activated by androgens. It has been demonstrated that NF-kB pathway activated
by neuropeptides could promote cancer growth AR pathway (Jin et al. 2008).
Neuropeptides could act on G protein-coupled receptors, overexpressed in PC, and
then aberrantly activate AR pathway even in the absence of androgens. The same
authors through the development of gastrin related peptide (GRP) overexpressing
LNCaP model demonstrated that this cell line showed androgen independent growth
and an enhanced motility in vitro. Furthermore, in castrated nude mice, LNCaP-
GRP derived tumors were very aggressive, and produced GRP, PSA and nuclear AR.
Chromatin immune-precipitation studies of LNCaP-GRP suggested AR recruitment
to the cognate promoter also in the absence of androgens (Jin et al. 2008).

The network of protein related to local invasion proteolytic enzyme urokinase-
type plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) and
metalloprotease (MMP) are stimulated by bombesin (Festuccia et al. 1998).
Bombesin and MMP-9 are highly expressed in high grade carcinoma (Ishimaru
et al. 2002). Other MMPs are activated by neuropeptides (Sehgal and Thompson
1999). GRP increases MT1-MMP in androgen independent cell lines DU-145,
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amplifying their ability of Matrigel invasion (Nagakawa et al. 1999). Finally MMPs
are highly expressed by androgen independent respect than androgen dependent
cell lines.

Cytokines and their own receptors could contribute to androgen independent PC
growth in androgen independent manner. IL-8 is normally overexpressed by PCa
NE cells and its receptors CXCR1 has been demonstrated on PCa secretory cells
(Huang et al. 2005). IL-8 promotes androgen independent growth and migration of
LNCaP cells, a model of the in vivo paracrine mechanism of androgen independent
growth and invasion (Lee et al. 2004).

Resistance to apoptosis of PCa is partially conferred by PC NE cells. Survivin
is highly expressed by PC NE cells, subsequently more resistant to stress and then
to apoptosis (Xing et al. 2001). Bcl-2, the most relevant anti-apoptotic agent, is not
expressed by PC NE cells, but it is demonstrated in PC non NE cells, above all in
those closest to PC NSE positive NE cells suggesting that apoptosis resistance in
PC cells could be induced by NE cells neuropeptides (Segal et al. 1994). Finally
bombesin and calcitonin are able to prevent apoptosis in PC cell lines (Salido et al.
2000, 2004; Vilches et al. 2004).

Neovascularization is also promoted by PC NE cells, mainly through VEGF and
IL-8 (Chevalier et al. 2002) In particular, VEGF and neovascularization have been
significantly reduced in prostate surgical sample of patients previously treated with
complete androgen blockade, except in the areas with PC NE cells (Mazzucchelli
et al. 2002). Moreover, the number of NE cells are predictor of neovascularization
(Grobholz et al. 2000).

Finally VEGF expression seems to be significantly related to microvascular
density (MVD), high tumor stage, high Gleason grade and shorter disease free
survival (Borre et al. 2000). Some neuropeptides are involved in stimulation of
proangiogenic factors VEGF and IL-8 in vitro model. Bombesin activates the
expression of such factors in PC-3 cells, probably through NF- kB pathway (Levine
et al. 2003). Instead calcitonin appears to stimulate vessel formation by acting
directly on endothelial cells. CGA fragment 286–301, representing the C-terminal of
pancreastatin, induced the invasive ability of PC-3 and DU-145 PC cell lines. CGA
(286–301) also increased the haptotactic migration of these cells and the production
of urokinase type plasminogen activator (Nagakawa et al. 1999). Through invasion
assay, it has been demonstrated that gastrin-releasing peptide, calcitonin gene-
related peptide, and parathyroid hormone-related protein increased invasive ability
of PCa cells (Nagakawa et al. 2001).

5.5 Molecular Mechanisms of ND

NE phenotype is inversely correlated to active AR signaling (Wright et al. 2003).
These data could explain increased ND, during inhibition of AR signaling, both
in patients with androgen blockade and in LNCaP cell line in androgen-deprived
media, through different mechanism, requiring activation of multiple protein, such



5 Neuroendocrine Differentiation in Prostate Cancer 95

as ERK (Wu et al. 2006). Thus, androgen deprivation is the main stimulator
of ND, but it is not the only one. In fact, each factor determining increase of
intracytoplasmic cAMP and then of cAMP-dependent kinase activity could favour
ND in vitro model, such as epinephrine and forskolin, IL-6, IL-1 (Albrecht et al.
2004). IL-6 induced ND involving the protein tyrosine kinase pathway (Chung
et al. 2000), JAK-STAT signaling, mitogen activated protein kinases (MAPKs),
cyclic AMP-dependent protein kinase (PKA) phosphatidylinositol 3-kinase (PI3K)
induction of cyclin-dependent kinase (CDK) inhibitor p27 (Kip1) and inhibition
of CDKs (Mori et al. 1999). IL-6 induced ND in PC is irreversible respect to
epinephrine induced ND and the aggressive phenotype in vitro and in vivo model
seems to be related to IL-6 concentration used to treat LNCaP cells (Wang et al.
2004). Also induction of NFkB signaling, as inhibition of proinflammatoy enzyme
COX-2 does, could promote ND (Meyer-Siegler 2001). Moreover inhibition of FGF
signaling could induce ND in PC cells of transgenic mice promotes ND.

Recently, the activation of phosphatidylinositol 3-kinase-AKT-mammalian target
of rapamycin (PI3K-AKT-mTOR) pathway has been demonstrated as to be essential
for ND in PC (Wu et al. 2006). In fact ND of LNCaP is induced also through
activation of the PI3K-AKT-mTOR signaling pathways. Moreover, Rapamycin, an
inhibitor of mTOR, significantly inhibited the expression of NSE in LNCaP cells
induced by androgen withdrawal. Recently, it has been demonstrated that also
irradiation of LNCaP can promote ND, through nuclear increasing of CREB, a
transcription factor potentially enhancer of ND, and cytoplasmic accumulation of
the transcription factor potentially suppressor of NED ATF2 (Deng et al. 2008).
Protocadherin-PC, a member of protocadherin gene family, has been shown to be as
critical for ND of PC through Wnt signaling activation (Yang et al. 2009).

Heparin binding epidermal growth factor (HB-EGF) activates ND through the
involvement of mitogen-activated protein kinase (MAPK) signaling pathway (Kim
et al. 2002).

Also autocrine neuropeptides themselves could be directly involved in ND. In
fact, it has been documented that VIP, commonly secreted by PC NE cells, induces
ND through activation of ERK, PKA and PI-3-kinase pathways (Collado et al.
2004, 2005).

5.6 NE Differentiation and Hormone-Refractory
Prostate Cancer

AR is normally present in both prostate stromal and secretory cells and, the
androgen, acts in different manner in the two compartment. In fact, on stromal cells,
it favors andromedins secretion, supporting the survival and proliferation of luminal
secretary epithelial cells (Isaacs 2008), while in luminal secretory cells the androgen
suppresses the cell growth through expression of p27Kip1 expression (Waltregny
et al. 2001). Clinically, the long-term treatment of patients with androgen depriva-
tion is responsible of the castration-resistant state. This condition has to be partially
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Fig. 5.1 Neuroendocrine cells in PCa. NE phenotype is inversely correlated to active AR
signaling and, therefore, androgen deprivation is the main stimulator of NED that play a pivotal
role in conversion to androgen independent growth of Pca. Thus since androgen deprivation
depresses the growth of cancer cells, the main effect of treatment occurs on the stromal cells. The
paracrine role of stromal cells, sensible to androgen deprivation, could be gradually substituted
by NE insensible to androgen deprivation and able to secrete a large variety of neuropeptides
and cytokines promoting survival and proliferation of neoplastic epithelial cells. Neuropeptides
are active on different pathways, upregulating proteins critical for tumor growth, invasiveness,
angiogenesis and metastasis

attributable to the alteration of AR signaling, including AR gene amplification,
responsible of a response to low levels of circulating androgens, AR mutations,
causing AR pathway activation through antiandrogens or weak androgens, the local
synthesis/concentration of androgens, AR activation through growth factors/kinase
pathways, and/or changes in AR coregulators (Scher and Sawyers 2005). The most
relevant role in the conversion to androgen independent growth of PC seems to be
played by ND. Thus, since androgen deprivation depresses the growth of cancer
cells growth, translating the normal model to PC model, it can be assumed that
the main effect of treatment occurs on the stromal cells, rather than the neoplastic
secretory compartment. Neither AR mutation in secretory neoplastic cells, recorded
in only 10 % of cases, could be justify a real change of activity in those cells
(Buchanan et al. 2001). The paracrine role of stromal cells, sensible to Androgen
deprivation, could be gradually substituted by NE cells insensible to androgen
deprivation and able to secrete a large variety of neuropeptides and cytokines
promoting survival and proliferation of neoplastic epithelial cells (Fig. 5.1).
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5.7 The Diagnosis of Neuroendocrine Prostate Cancer

5.7.1 Serological Markers

The identification of neuroendocrine markers in the PC patients serum represents
a more complete indicator and more objective quantification of ND of tumors,
because it corresponds to the entire primary tumor and its associated metastases.

Herein, we list the most relevant serological markers associate to ND:
CGA. This marker is a tumor cell population product, and sometimes, the clue

to diagnose special subtypes, such as pure small cell prostate cancer. CGA is an
excellent marker for ND in tumors and its measurement is also useful to identify
prostatic carcinoma in patients with not elevated PSA. Angelsen and co-workers
(1997) showed that the number of CGA-positive NE cells in tumoral tissue signifi-
cantly related with serum CGA levels in patients with prostatic carcinoma. However
elevated serum CGA level could be observed in unrelated tumor conditions, such as
in patients with impaired renal function or in those receiving omeprazole treatment
for peptic ulcer. Kadmon and co-workers (1991) reported elevated plasma CGA
levels in 48 % patients with metastatic PC. Similarly, (Logothetis and Hoosi 1992)
found also elevated plasma bombesin levels in 47 % of PC patients treated for
androgen-independent growth.

Kadmon observed among advanced stage of PC patients a relative low frequency
of high CGA levels (17 %) respect to 33 % of patients with normal conventional
PSA and PAP markers, suggesting that high CGA patients was not representative
of usual progressive tumor status (Kadmon et al. 1991). The fact that prostatic
carcinomas expressed neuropeptide markers (CgA, 17 %; NSE, 15 %) before
any endocrine therapy suggests that neuroendocrine products may induce PC
progression independently of androgen withdrawal. Data by Deftos et al. (1996),
and a more recent by Kimura and co-workers (1997), demonstrated that CGA could
be an useful marker in advanced disease. Tarle and Rados (1991) found that elevated
plasma NSE levels was observed more frequently in untreated PC patients with
localized tumors (28.6 %) than in untreated subjects with disseminated disease
(10.7 %).

In a comparison study of serum levels of CGA, pancreastatin, a breakdown
product of CGA, c CBG (Angelsen et al. 1997) and chromogranin C (CGC) (Schmid
et al. 1994), CGA appears to be the best marker of neuroendocrine prostate tumor
activity.

Recently, plasma CGA was assessed by ELISA in 14 patients with Castration
resistant PC (CRPC) receiving 3-weekly docetaxel. Increased plasma CgA was
observed in 64.3 % of patients. No correlation between baseline CGA and PSA
has been observed. Two patients with PSA < 10 ng/ml had elevated CGA. Baseline
CGA was not conditioned by clinical parameters such as presence of metastasis,
metastasis sites and time to develop CRPC status. Seven patients (50 %) showed
PSA-response and five (36 %) CGA-response. In two patients PSA response and
CGA response were discordant. Compared to men with normal baseline CGA,
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a higher proportion of those with elevated baseline CGA had PSA response
(55 % vs 40 %), symptomatic response (66 % vs 40 %) and radiological response
(55 % vs 20 %). Two patients with symptomatic response had only CGA response.
Three patients with disease progression, despite PSA response, had increasing CGA.
On the basis of these results, CGA and PSA have been proposed as complementary
tumor biomarkers in castration resistant prostate cancer and CGA may be useful to
predict the response to therapy with DTX. Increased serum CGA during therapy
may be associated with poor prognosis, whereas CGA response is likely to be
associated with clinical response (Sarkar et al. 2010). Moreover, in a series of
135 patients with prostatic carcinoma and 28 with benign prostatic hyperplasia
plasma CGA, NSE and other neuroendocrine biomarkers have been analyzed and
compared to clinical and pathological stages of disease. Particularly elevated levels
of CGA were detected in 15 % of patients with PC, before any treatment, but
elevation of plasma CGA and NSE levels was observed respectively in 55 and
30 % of the patients during hormone resistant prostate cancer progression. In
addition log-rank analysis in stage D3 patients revealed a statistically significant
difference between positive and negative CGA groups These data confirmed the
role of CGA and, at a lesser extent, of NSE in predicting the prognosis of PC
patients even if their role as markers of ND still need additional investigations.
Finally, serum NSE and plasma CGA were evaluated in 141 patients with prostatic
hyperplasia (BPH), 54 patients with PIN, and 159 patients with Pca; 119 patients
were bearing hormone-naive disease and 40 were bearing hormone-refractory
disease. Supernormal CGA was observed more frequently in Stage D2 disease
patients (45.5 %) compared with Stage D1 (33.3 %), Stage C disease (16.7 %),
Stage A/B disease (18.8 %), PIN (25.9 %), and BPH (17.0 %) patients (P < 0.02).
Supernormal NSE did not show differences in any of the patient subgroups stages.
Elevated CGA was observed in 36.0 % of metastatic patients with hormone-naive
disease and in 45.0 % of metastatic patients with hormone-refractory disease,
although without statistical significance. Supernormal NSE and CgA values were
observed as predictors for poor prognosis in patients with hormone-refractory
disease. Significant decreased baseline CgA values has been observed in 1 of 12
patients who received luteinizing hormone-releasing hormone analogs and in 2 of
12 patients receiving chemotherapy. Elevated CGA levels correlated with poor prog-
nosis and were scarcely influenced by either endocrine therapy or chemotherapy
(Berruti et al. 2000).

Gastrin-releasing peptide (GRP), a 27 amino acids neuropeptides, seems to
play a role as an autocrine/paracrine growth factor in several cancers. Progastrin-
releasing peptide (ProGRP), comprehending three different subtypes of precursors
for GRP, has a longer half-life than GRP, with levels similar to GRP itself. The
values show excellent sensitivity and correlation with the therapeutic response
in neuroendocrine tumors. Indeed ProGRP is mainly used in clinical diagnosis
and follow-up of small cell lung cancer. ProGRP levels have also been observed
to be elevated in other tumors with neuroendocrine features, such as colorectal,
thyroid, and breast cancer. In 60 patients with benign BPH and 200 with PCa,
increased ProGRP value was significantly observed in the androgen-independent
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group (P < 0.0001). In a subset of patients, the ProGRP levels increased transiently
when the cancer shifts to became androgen independent status, but remained
unchanged or decreased at the androgen-dependent stage. In addition positive
ProGRP immunostaining occurred in a different distribution in tumoral tissues when
comparing to CGA immunostaining. The clinical results confirm the existence of a
regulatory mechanism for GRP, demonstrated in cell lines. These findings suggest
that GRP is a growth factor potentially upregulated by androgens but it does not
rely principally on androgen modulation (Yashi et al. 2003). Subsequently, serum
ProGRP status was determined in 460 men with benign and malignant prostatic
diseases, chronic renal failure, and healthy controls. The increased serum of ProGRP
was observed in patients with the progression of PC into metastatic and androgen-
independent stages. In addition multivariate analysis demonstrated that Performance
Status (PS), serum ProGRP, and nadir PSA held an independent predictive value
for Progression Free Survival (P < 0.05). Finally Serum ProGRP was the most
significant predictor among pre-treatment factors in this model (P D 0.0094) (Yashi
et al. 2003).

5.7.2 Immunohistochemistry

The role of immunohistochemistry in the last decades has been directed to the
definition of potential prediction of androgen resistant status related to ND. In this
setting, however, no univoque method of interpretation has been used and multiple
neuroendocrine markers have been proposed. The methods of evaluation of ND in
PC are mainly based of definition of percentage of positive cells (Berruti et al. 2010)
The definition of cut off also remain less characterized. An interesting paper defined
as how critical for prognosis, the number of NE cells per hot spot area and the pattern
of CGA positivity are. In fact, tumors with more than 30 CGA positive cells for hot
spot area have a significant worse prognosis than those tumors with less than 30
CGA positive cells for host spot area. In addition, cases with large clusters of NE
cells were significantly more aggressive compared to tumors with no cluster or small
clusters of NE cells (Grobholz et al. 2005). Although many immunohistochemical
markers have been proposed in order to correctly define the ND in PC, CGA remains
the most reliable. NE cells were are more common in higher grade and stage disease,
but no difference of 5-year survival between patients with NE cell-positive and -
negative tumors have been recorded (Allen et al. 1995). However, McWilliam et al.
(1997) found that ND correlates with high grade tumor, bone metastasis and shorter
patient survival. In addition, Weinstein et al. (1996) reported that ND determined
through immunohistochemistry using CGA represented an independent prognostic
factor for biochemical progression in clinical organ-confined PC treated by radical
prostatectomy. Moreover Kokubo et al. (2005) demonstrated that 22 % of stage
D2 PC showed immunohistochemical CGA overexpression and that CGA staining
significantly related to shorter time to recurrence after hormone therapy. Finally,
Kamiya and co-workers (2008) demonstrated that positive staining for independent
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CGA and combined CGA with NSE after hormone therapy in stage D2 PC was
significantly related to shorter overall survival (OS) representing, also, independent
factors in multivariate analysis. Also when the CGA expression was assessed on
PC biopsies seems to be a new predictive marker of early resistance to ADT
(Berruti et al. 2010).

5.8 Imaging of Neuroendocrine Prostate Cancer

5.8.1 PET

Positron emission tomography (PET) is a new imaging modality which has
been widely used for the detection of metastasis in various malignancies. F18-
fluorodeoxyglucose (FDG), the most common radiotracer, is used for glycolysis
evaluation and glucose transporter expression, because most of malignant tumors
show increased glucose metabolism. Unfortunately, the use of FDG-PET is not
common PCa because of low rate of glycolysis of the tumor cells. In addition,
physiologic urinary excretion of FDG does not allow a good visualization of
the pelvis (Powles et al. 2007). Indeed Liu et al. found only 4 % sensitivity for
identification of primary PCa though FDG-PET (Liu et al. 2001).

But an increased sensitivity for detecting Pca has been obtained through using
continuous bladder irrigation (Oyama et al. 2001). FDG-PET could be used to
identify local recurrence and distant metastases in patients with increasing PSA after
definite local therapy for PCa (Schoder et al. 2005).

In addition, Morris et al. reported that using PSA levels, bone scintigraphy
and soft tissue imaging as references, FDG-PET might be a promising outcome
measure after chemotherapy in prostate cancer (Morris et al. 2005). Recently,
a case was reported showing FDG PET-CT intense uptake in neuroendocrine
tumor of the prostate with multiple metastases (Liu 2008). In fact, the cells
with ND secrete a variety of factors that can influence growth patterns and
metabolic pathways involved in this process and the tumor has different biological
behaviour.

5.8.2 Peptide Imaging (PET or Scintigraphic Detection)

Alternatively, neuroendocrine tumors of the prostate can be imaged through the use
of probes of the receptors specifically expressed by prostate cancer cells behaving
neuroendocrine phenotype. These receptors bind peptides that play a modulator role
also in numerous cancers (Reubi 2003; Reubi et al. 2005). This is the key reason
or the use of regulatory peptide receptors in cancer imaging in recent times. The
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first, and currently best, example of targeted peptide receptors is represented by
the somatostatin receptors, discovered to be overexpressed in mot neuroendocrine
tumors (Reubi 2003).

Somatostatin. In somatostatin-based cancer imaging, a stable somatostatin ana-
log linked to a chelator that can bind radioactive metals such as 111In, 99mTc,
or 68Ga, is injected intravenously. The tracer will selectively bind to somatostatin
receptors if the patient cancer contains somatostatin receptors in large amounts.
The internalization of ligands lead to a radioactivity accumulation in the tumor,
compared with the rest of the organs. Normally, rapid and specific uptake is
observed in the tumor, and concomitantly in the kidney and bladder, because of
predominant urinary radioligands excretion.

The first commercially available agent was 111 the In- diethylenetriaminepen-
taacetic acid (DTPA)0-octreotide, but its binding affinity to sst2 is moderate and it
is not a suitable chelator for b-emitters such as 90Y and 177Lu. For these radiometals,
it is better to use the macrocyclic chelator 1, 4, 7, 10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA), because of the formation of stable metal com-
plexes. The most frequently used DOTA-coupled, somatostatin-based radiopeptides
are [DOTA0, Tyr3]-octreotide (DOTATOC) and [DOTA0, Tyr3, Thr8]-octreotide
(DOTATATE) (Rufini et al. 2006). In order to improve tracer pharmacokinetics
coupling octreotide and octreotate has been developed (Schottelius et al. 2004).
6-Hydrazinopyridine-3-carboxylic acid-TATE (HYNIC-TATE), HYNIC-TOC, and
N4-TATE were designed for high-specific-activity labeling with 99mTc, demonstrat-
ing relevant additional compounds in octreotide backbone clinical practice (Rufini
et al. 2006).

Bombesin. Bombesin-based ligands with high affinity for gastrin-releasing pep-
tide (GRP) receptors have been developed. An early report used a 99mTc-based
ligand, RP 527, an N3S chelator coupled to bombesin demonstrated identification
of primary prostate cancers and their metastases (Van de Wiele et al. 2008).
177Lu-AMBA is a more recently developed analog, with possible diagnostic and
therapeutic applications (Lantry et al. 2006). Another bombesin agonist has been
developed with high affinity to all 3 bombesin receptors with possibly broader
indications (Zhang et al. 2004). 99mTc-demobesin is an interesting compound, that
does not internalize significantly into PC-3 tumor cells but ableto label in vivo
GRP-R–expressing PC-3 tumors more intensely and for a longer time than the best
available GRP-R agonists (Cescato et al. 2008). This extends the paradigm shift on
tumor imaging observed earlier with somatostatin antagonists to GRP-R.

Several of these new bombesin-based radiopeptides are conjugated to DOTA
and can be labeled with 68Ga. PET studies with a 68Ga-labeled bombesin analog
were performed in 11 patients with prostate cancer (Hofmann et al. 2004). Primary
tumors were visible in all patients, being the smallest tumor size 5 mm and a plateau
of tumor uptake at 15–25 min after injection. Lymph node metastases have been
found in three of these patients. However, in four patients a significant nonspecific
enrichment has been observed in the upper abdomen, probably due to the pancreas
uptake.
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5.9 Therapy of Neuroendocrine-Differentiated
Prostate Cancers

5.9.1 ND and New Treatment Modalities

Despite the initial efficacy of androgen ablation therapies, hormone refractory stage
is the normal evolution of PC. Nowadays, a truly hormone-refractory condition
is considered when the patient no longer responds to any of the second-line
hormonal alternatives. This disease phase often parallels ND in PC. Currently
chemotherapy represents the only non-experimental option available. Recently, it
was demonstrated that 3-weekly schedule of DTX and prednisone is the standard
first-line chemotherapy hormone-refractory PC phase, with a positive impact on
OS and time to progression (TTP) (Facchini et al. 2010). But response duration
with current chemotherapies is often short. Therefore, novel therapeutic options are
needed.

Thus novel approaches currently being tested in early clinical trials include
angiogenesis inhibitors, immunological therapies, gene therapy, differentiation
therapies and interference in growth-factor-mediated pathways.

5.9.2 Somatostatin Analogues

Newly developed somatostatin analogues could be useful in the treatment of
PC (Hansson and Abrahamsson 2003). Potential mechanisms of antitumor action
include the suppression of circulating levels of trophic hormones and growth
factors as well as direct effect on tumoral growth, involving autocrine/paracrine
mechanisms.

Somatostatin family include regulatory peptides produced by normal neuroen-
docrine, inflammatory and immune cells, but also by many tumor activated cells.

Exogenously administration of somatostatin induces a wide range of effects on
multiple target sites. Thus selective non-peptide agonists have been developed for
four of the somatostatin receptors (SSTR) subtypes. Main somatostatin effect is the
prevention of cell proliferation through inducing cell cycle arrest and apoptosis.
These effects are mediated by SSTR expressed by tumor cells and by non-tumor-
cells, secreting hormones and growth factors promoting tumor cell growth. Four
SSTRs induce cell cycle arrest via protein tyrosine phosphatase (PTP)-dependent
modulation of MAPK, associated with induction of retinoblastoma tumor suppres-
sor protein and p21. In addition SSTR3 triggers apoptosis, through activation of
p53 and the pro-apoptotic protein BAX. Thus it seems that somatostatin plays an
important role in tumor development and in the future there may be a potential role
for somatostatin analogues in the treatment of the PC (Hansson and Abrahamsson
2003). In this view, recently 38 stage D3 PC patients (mean age 71.8 ˙ 5.9 years)
have continued to receive androgen ablation therapy in combination with oral
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dexamethasone (4 mg daily for the first month of treatment, tapered down to
1 mg daily by the fourth month, with 1 mg daily maintenance dose thereafter)
and somatostatin analog (20 mg octreotide i.m. injections every 28 days). Twenty-
three of those thirty-eight patients (60.5 %) had partial responses (PR, �50 % PSA
decline), 9 (21.1 %) had stable disease and 7 (18.4 %) had disease progression. In
47.7 % (18 of 38) of patients, serum PSA levels decreased with treatment but did
not return to their respective baselines until the end of follow-up (or death from
non-prostate cancer-related causes). All patients reported significant and durable
improvement of bone pain and PS (for a median duration of 14 months; 95 %
CI, 9–19 months). In addition a statistically significant (P < 0.01) reduction of
serum insulin-like growth factor-1 levels was recorded in patients with response
to the combination therapy (Koutsilieris et al. 2004). On the basis of this latter
study, a randomized controlled clinical trial of 38 stage D3 patients (mean age
72.8 ˙ 6.8 years) has been performed in order to compare the combination of
somatostatin analog (octreotide 20 mg i.m. every 28 days) and oral dexamethasone
(4 mg daily for 1 month, gradually reduced to 1 mg daily by the fourth month, with a
1 mg daily maintenance dose thereafter) plus zoledronate (4 mg i.v. every 4 weeks)
vs. zoledronate only. All patients in both arms remained in basic androgen blockade.
Partial responses (PR, > or D50 % PSA decline) was recorded in 13 out of 20
patients with combination therapy vs. none with zoledronate (Mitsiades et al. 2006).

It was recently proposed as therapy of ND in hormone-independent PC, a
combination of oestrogens and somatostatin analogues. The combination of ethinyl
estradiol and the somatostatin analogue lanreotide, binding 3/5 SSTRs, showed
a favourable toxicity profile and offered objective and symptomatic responses in
patients with refractoriness to conventional hormonal therapy strategies. In addition
a higher median OS was observed (Sciarra et al. 2003).

5.9.3 Serotonin Antagonists

NE cells produce and secrete 5-HT, a biogenic amine, neurotransmitter and potent
mitogen associated with tumor growth. 5-HT receptors (5-HTR), such as 5-HTR1
and 5-HTR4, are overexpressed in hormone refractory PC tissues and in PC cell
lines. Recently promising results have been demonstrated with the use of 5-HTR
antagonists (Abrahamsson et al. 1986).

5.9.4 Bombesin Antagonists

Bombesin produces androgen-dependent growth and invasiveness of PC cells.
Bombesin also carries metastatic potential in androgen-insensitive PC. Therefore,
bombesin-like antagonists could become an effective treatment option in the future
(Hansson and Abrahamsson 2003; Levine et al. 2003).
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5.9.5 Cytokines

Recently, IL-6, an inflammatory cytokine that not only regulates the immune
response, but also modulates cancer cell growth, differentiation and survival has
been proposed as a possible target in the treatment of androgen resistant PC
patients. Recently 53 patients with castration-resistant PC pre- treated with taxane
chemotherapy were treated with 6 mg/kg anti-IL-6 antibody, CNTO328 i.v. every
2 weeks for 12 cycles. Two patients (3.8 %; 95 % CI, 0.5–13.0 %) had PSA
response. None of the 31 patients with measurable disease had a RECIST (Response
Evaluation Criteria in Solid Tumors) response but 7 (23 %) had stable disease. After
a median follow-up of 14.8 months, the median progression-free survival (PFS) was
1.6 months (95 % CI, 1.6–1.7) and median OS was 11.6 months (95 % CI, 7.5–19.0).
Thirty-two out of thirty-eight patients had C-reactive protein plasma levels decline
at 6 weeks. In conclusion, CNTO328 resulted in a PSA response rate of 3.8 %
and a RECIST stable disease rate of 23 %, while declining C- reactive protein
levels during treatment may reflect biological activity. Despite evidence of CNTO-
mediated IL-6 inhibition, elevated baseline IL-6 levels portended a poor prognosis.

In another open-label phase II trial mitoxantrone/prednisone (M/P) with and
without CNTO328 was performed in metastatic patients with castration-resistant
PC who have had received DTX- based chemotherapy. This trial concluded that
while CNTO328 plus M/P appeared well tolerated, improvement in outcomes was
not demonstrable (Fizazi et al. 2012).

In conclusion, recent progress in terms of PC research, especially the role of
ND in PC has lead to the development of entirely new therapeutic modalities for
hormone-refractory PC.
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Chapter 6
Metastatic Dissemination

Stefania Staibano

Abstract In spite of recent developments in diagnosis, staging and treatment, most
patients with advanced prostate cancer will ultimately progress from androgen-
sensitive to an irreversible castration-resistant disease. These androgen-independent
cancers frequently give rise to widespread metastasis, dramatically reducing the
median survival of patients (Tannock et al, N Engl J Med, 351(15):1502–1512,
2004) and accounting for more than 32, 000 deaths/year in USA (Jemal et al, CA
Cancer J Clin, 60:277–300, 2010), which correspond to over 90 % of PC related
mortality (Man, Gardner, Int J Biol Sci, 4(4):246–258, 2008).

It is a common belief that cancer metastasis result from a multi-stage nonrandom
process characterized by intricate interactions between cancer cells and the host
microenvironment, leading to the detachment of cancer cells from their tissue of
origin, their dissemination through the bloodstream and to invasion of the target
metastatic site (Patel et al, Future Oncol, 7(11):1285–1297, 2011).

Metastasis represents yet one of the most enigmatic aspects of prostate cancer
pathogenesis, in which a cascade of proteolytic enzymes, inflammatory cytokines,
growth factors, activated oncogenes, oxidative stress and hypoxia linked proteins
and adhesion molecules, orchestrate a continuous loop that enable migrating cancer
cells detached from the primary tumor bulk, to survive and proliferate in an adverse
remote body microenvironment.

In this chapter, we discuss the nature and alterations of the signaling pathways
involved in the development of prostate cancer metastasis, reporting the current
status of knowledge on the changes occurring either in prostate cancer cells and
in tumor-associated stromal tissue, with particular emphasis to the process of
epithelial-mesenchymal transition (“phenotypic plasticity”) and to the role of cancer
stem cells in prostate cancer progression and metastasis.
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We will highlight, also, the emerging data concerning new therapeutic targets for
treatment of metastatic prostate cancer that, while deserving further inquiry, look
very promising to improve our chances to successful approach the advanced disease
or, even, primarily reduce the risk of metastasis from castration-resistant prostate
cancer (Vashisht, Bagler, PLoS One, 7(11):e49401, 2012).

Metastases represent the most fearful evolution of advanced/systemic prostate
cancer progressed into a castration-resistance state after first-instance deprivation
therapy.

Before the onset of metastasis, prostate cancer is usually characterized by a long
latency period, in which genetic (Nguyen and Massague 2007; Zhao et al. 2013)
and epigenetic (Rodenhiser 2009) cellular alterations lead to changes in cancer cells
molecular phenotype, with the gain of both cytoskeletal motility and the ability to
detach from the tissue of origin. The acquired abilities of epithelial prostate cancer
cells are critically boosted by activated prostatic stromal cells, as tumor-associated
macrophages (TAMs), cancer-associated fibroblasts (CAFs) and endothelial cells
(Wang et al. 2013).

Besides their role in tumor-associated angiogenesis, CD31/CD34-positive en-
dothelial cells lining microvessels decrease upon castration, increasing instead when
prostate cancer progress to castration-resistance. Recently, it has shown in vitro
that endothelial cells secrete high levels of IL-6. This cytokine down-regulates
AR and activates the TGFbeta/MMP9 signaling pathway in prostate cancer cells,
contributing then to their invasive and metastasizing ability (Wang et al. 2013).

TAMs produce several migration-stimulating factors, as CXCL12, IL-6 and TNF
(Allavena et al. 2008). Activated CAFs mostly exhibit a myofibroblastic phenotype
induced either by the direct physical contact with cancer cells and via the hyper-
stimulation, by several tumor- and hypoxia associated growth factors, as EGF, FGF,
IGF, VEGF. CAFs overproduce TGFbeta (Roodman 2004), which intervene in ECM
remodeling (Allavena et al. 2008) and in the induction of epithelial-mesenchymal
transition (EMT) (Yilmaz and Christofori 2009) of metastasizing cells.

Extracellular matrix proteins, facilitating either tumor growth and metastasis,
continuously accumulate in tumor stroma. This is the case for versican, a large
proteoglycan associated with metastasis and poor outcome of prostate cancer
and several solid malignant cancers. It has been shown to regulate cancer cell
adhesion, proliferation, migration, angiogenesis, invasion and metastasis mainly
through physical interactions mediated by chondroitin and dermatan sulfate side
chains; looking particularly attractive as a possible adjunctive therapeutic target for
aggressive prostate cancers (Du et al. 2013).

Even a disturbance of the interplay between the electrical and metabolic activity
of prostate cells seems to play a role in the gain of propensity to metastasize of
prostate cancer. It has been, in fact, recently reported that an altered expression
of connexins, which form intercellular channels involved in gap-junction-mediated
intercellular coupling, might be correlated with the invasive potential of cancer cells
(Czyz̈ et al. 2012). This finding, however, deserves further investigation.
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The acquired EMT ability of prostate cancer cells leading to the detachment from
the bulk of primary cancer, is conditioned by the dramatic loss of adhesion proteins,
as E-cadherin (Yates 2011; Lazari et al. 2013) and their regulating transcriptional
inducers, as the SAM Pointed Domain ETS transcription Factor (SPDEF) (Pal et al.
2013), and by the increase of their transcriptional repressors, as the Wilms’ tumor
gene (WT1) (Brett et al. 2013). Recently, the altered expression of the human
metastasis-associated gene 1 (MTA1) has been found strictly associated with the
pAkt/E-cadherin pathway regulation and with metastatic prostate cancer (Wang
et al. 2012), and, a combined testing strategy for detecting MTA1 and E-cadherin,
has been proposed for selecting high-risk prostate cancer patients (Fan et al. 2012).

Before permeating blood vessels, detached tumor cells have to escape anoikis and
gain survival benefits (Hu et al. 2012). The anoikis-resistance and EMT properties of
prostate tumor cells are mediated by several molecular players, including members
of the Notch signaling pathway, as well of the Akt survival pathway including the
early-recruited focal adhesion player tallin. Tallin mediates integrin activation and
induces downstream survival pathways resulting in the promotion of cancer cells
progression to metastasis (Desiniotis and Kyprianou 2011).

Both Notch-related proteins and tallin appear, then, as promising candidate as
either prognostic markers and therapeutic targets in metastasizing prostate cancers.

To survive in the bloodstream, prostate cancer cells activate multiple survival
pathways, comprising the overexpression of several members of the anti-apoptotic
Bcl-2 protein family, combined with the inactivation of the FADD death receptor
pathway, or the lack of expression of pro-apoptotic effector proteins as Bax and
caspases (Igney and Krammer 2002).

Moreover, circulating prostate cancer cells may activate survivin expression and
undergo to autophagy, to survive in the absence of sufficient extracellular nutrients
(Roca et al. 2008).

While metastasizing prostate cancer cells may optionally variously localize in
several body sites, as lung and liver, they invariably hit the bone (Osanto and Van
Poppel 2012) (Fig. 6.1).

In bone-metastasizing cancers, the CG-protein-coupled calcium sensing receptor
(CaSR), which is primarily involved in the feedback regulation of extracellular free
ionised calcium (Ca2C), may act as an oncogene, associating also with cancer
progression. In prostate cancer, its altered expression seems to facilitate bone
metastasis (Brennan et al. 2012).

Disseminated prostate cancer cells (DPCC) reaching the bone marrow occupy
the same bone niche in which hematopoietic stem cells reside in a quiescent state
(Taichman 2005). This has led to the concept that DPCCs behave as “parasites” of
the hematopoietic niche.

DPCCs which evade immune attack and/or chemotherapy cytotoxicity may
outlive for a variable time in bone marrow of patients after radical prostatectomy
or chemotherapy (Morgan et al. 2009; Pfitzenmaier et al. 2007), in an auto-induced
reversible state of growth arrest, the so-called “tumor-dormancy” (Townson and
Chambers 2006; Aguirre-Ghiso 2007; Shiozawa et al. 2008b; Joyce and Pollard
2009). This underlies the troublesome unresolved phenomenon of “minimal residual
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disease”, responsible for most cases of prostate cancer recurrence and therapy
failure. The overall regulation of this process is still under active investigation but
it has been now accepted that it involves prostate cancer stem cells (PCSC). From
the first appearance on the scenario of cancer metastasis of solid tumors, in 2003
(Al-Hajj et al. 2003), a definitive consensus about their origin and specific markers
has not been reached yet.

Several putative surface markers, in fact, are shared also by normal stem cells
(Patrawala et al. 2007; Collins et al. 2005) as well as by different solid tumors.
This is the case for CD133/prominin-1 and CD44 (Patrawala et al. 2007) that have
been found expressed in CSC of lung, breast, colon, ovarian and head and neck
squamous cell carcinomas (Cui et al. 2011; Chu et al. 2009; Shi et al. 2010). As
well, CD133, CD44, integrins, Sca-1, and breast cancer resistance protein (BRCP)
are expressed either in PCSC and in normal prostate stem cells (Yu et al. 2012;
Tang et al. 2007); Oct-3/4, beta-catenin and SMO are stemness markers expressed
by most of normal and neoplastic stem cells (Patrawala et al. 2006). In addition,
there is still a considerable variance among the different antibodies available for
the detection of stem cells markers and this may explain, almost partially, the
presence of some overlaps or discrepancies between the many existing studies on
this topic.

Encouraging results indicate that ALDH1A1, a member of ALDH family of
proteins involved in the intracellular production of retinoic acid, could be considered
as a promising marker of stemness for prostate cancer cells (Li et al. 2010).
ALDH1A1 overexpressing prostate cancer cells display, in fact, high migration and
clonogenic ability in vitro and metastatic ability in vivo (van den Hoogen et al.
2010). As well, a second member of the ALDH family, ALDH7A1, seems to be
involved in the bone metastasis formation (van den Hoogen et al. 2010), since its
knockdown results in inhibition of experimentally induced intra-bone metastasis.

J
Fig. 6.1 The signaling pathways involved in the development of prostate cancer bone metas-
tasis. Metastasis result from interactions between cancer cells and the host microenvironment
that enable them to detach from the primary tumor bulk, disseminate through the bloodstream
and invade of metastatic site. These steps are regulated by a cascade of proteolytic enzymes,
inflammatory cytokines, growth factors, activated oncogenes, oxidative stress and hypoxia linked
proteins, and adhesion molecules. Activated stromal cells, as tumor-associated macrophages
(TAMs), cancer-associated fibroblasts (CAFs), and endothelial cells, favor the entire process: TAMs
produce several migration-stimulating factors as CXCL12, IL-6, and TNF; CAFs intervene in ECM
remodeling and in the induction of epithelial-mesenchymal transition (EMT) of metastasizing cells.
Circulating cells activate multiple survival pathways, as the overexpression of several members
of the anti-apoptotic Bcl2 protein family and the activation of survivin expression. Disseminated
prostate cancer cells (DPCC) reaching the bone marrow occupy a bone niche and, when evade
immune attack and/or chemotherapy cytotoxicity, may outlive for a variable time in an auto-
induced reversible state of growth arrest, the so-called “tumor-dormancy”. Dormant DPCCs give
rise to bone metastatic lesions by re-entering the cell cycle and proliferating. The causative factors
leading to this process are still a matter of investigation, but it seems involve prostate cancer stem
cells (PCSC)
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It has become clear, however, that the existence of a single reliable marker of
PCSCs doesn’t exist and a definite combination of markers expression may, instead,
identify the metastatic profile of PCSC (Eaton et al. 2010). To support this idea,
it has been shown that the co-expression of CD166 (epithelial stem cell marker)
(Dalerba et al. 2007), CD151 (marker of stem-like tumor stromal cells) and the
tumor rejection antigen/TRA-1-60 (Draper et al. 2002) identifies prostate cancer
cells with high ability in sphere formation in vitro and generating, in vivo, tumors
capable of self-renewal and differentiation, consistent with stem cells properties.

Moreover, it has been reported that the signature for stem cell markers may
also vary between metastasis and primitive tumors with different Gleason grade
(Castellón et al. 2012).

Traditionally, prostate CSC have been thought to derive from the basal cel layer,
which express most of the known markers of stemness, as CD133, CD44, CD117,
Tert, p63 (Tsujimura et al. 2002). Several findings support this hypothesis. As an
example, it emerged that normal basal cells of human prostate can initiate prostate
cancer in immunocompromised mice (Goldstein et al. 2010) and primary cells
FACS-sorted confirmed the basal cell origin for prostate cancer (Goldstein et al.
2010; Lawson et al. 2010).

On the other side, there are line of evidence that, in several instances, PCSC
could have originated from prostate luminal-cells. For instance, a genetic lineage-
marking study has shown that rare prostate luminal cells express the androgen/AR-
regulated transcriptional co-activator Nkx3-1 in absence of androgens (castration-
resistant Nkx3-1-expressing cells, CARNs). CARNs show stem-cell properties, as
they are self-renewing and reproduce prostate ducts in renal graft, and cause HGPIN
and cancer following Pten deletion (Wang et al. 2009).

Besides their origin, PCSC are considered as the guest actors in the bone
marrow metastasis phase (Colombel et al. 2012). They have, in fact, the necessary
characteristics for survive and reproduce in the bone microenvironment.

The bone marrow niche, in turn, is critical for the progression from localized
disease to distant metastases (Chung et al. 2005; Cher et al. 2006; Morrissey and
Vessella 2007; Karlou et al. 2010). The niche is composed by the endothelia of
sinusoids (Kiel and Morrison 2008; Doan and Chute 2012), osteoblasts, adipocytes,
mesenchymal stem cells, and contains a soluble extracellular matrix rich in growth
factors, cytokines (Bussard et al. 2008) and nutrients, useful for cancer cell survival.
In addition, it contains adhesion molecules (Taichman 2005; Yin and Li 2006; Arai
et al. 2009) as annexin II (Shiozawa et al. 2008a), which interact with tumor cells
and local osteoblasts and fibroblasts to provide the framework for the stable homing
of prostate cancer cells (Shiozawa et al. 2008b).

Among the several cytokines actively secreted by osteoblast, a pivotal role seems
to be played by CXCL12, also known as stromal cell derived factor-1, with its
receptors CXCR4 and CXCR7. These two receptors are strongly expressed by
DPCC. The binding of CXCR4 and CXCR7 of prostate cancer cells with CXCL12
induces the expression of several adhesion molecules, which enhance their binding
to the bone niche (Sun et al. 2005, 2007).
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This finding may have relevant implication on therapy, as it has been shown
that molecular antagonists of the CXC4R, as the small molecule AMD3100 and
the G-CSF analog Filgrastim is able to mobilize metastasizing prostate cancer cells
from the bone marrow niche.

Another protein responsible for the reversible cell-cycle arrest of DPCC is the
fibroblast secreted annexin II (Anxa2) which operates with its receptor Anxa2R
in a manner similar to the CXCL12/CXCR4-CXCR7 pathway (Jung et al. 2007;
Shiozawa et al. 2008a).

The degree of expression of either CXCR4 and CXCR7 by prostate cancer cells
has been found to correlate with a poor outcome of patients (Sun et al. 2003; Wang
et al. 2008; Shiozawa et al. 2008b; Mai et al. 2000). All these considerations have
rendered the targeting of bone marrow niche molecules a particularly active and
attractive research field.

Several reports indicate that the alteration of multiple other signaling pathways
accounting for the tumorigenic potential of PCSC may be used to control them.

For instance, targeting NF-kB with small molecule inhibitors may block sphere
generation in vitro and tumor-initiation in vivo, by purified naı̈ve stem-like human
prostatic cells (Rajasekhar et al. 2011), thus supporting the reported adverse
prognostic significance in terms of biochemical recurrence risk of the presence of
NF-kB stained cells in positive margins of radical prostatectomy specimens (Ross
et al. 2004). Similarly, the therapeutic use of WNT inhibitors has been shown to
reduce the self-renewal of PCSC and improve the outcome of patients harbouring
tumors co-expressing Wnt3a, nuclear beta-catenin, keratin 18, CD133 and CD44
(Bisson and Prowse 2009).

Moreover, the colonization of the skeleton by prostate cancer cells is mediated
also by collagen type I, the most represented bone protein, mainly through the
binding with the increased expression of integrin ’(2)“(1). This integrin has been
found elevated in PCa bone metastatic lesions compared to either primary tumors or
their soft tissue metastases suggesting it is needed for the selective metastatization
to the bone (Sottnik et al. 2013).

Dormant DPCCs give rise to bone metastatic lesions by re-entering the cell cycle
and proliferating. The causative factors leading to this process are still a matter of
investigation.

The striking propensity to localize to the bone is shared also by other “big
killers”, as lung and breast cancer (Patel et al. 2011). However, these other
cancer types give rise to osteolytic (bone resorbing) bone marrow metastases,
while prostate cancer can produce predominantly osteoblastic lesions (Zetter 1990;
Jacobs 1983; Chappard et al. 2011), via the inhibition of osteoblast apoptosis and
the increase of osteoblast proliferation and metabolism, induced by parathyroid
hormone (PTH), PTH-related protein and bone morphogenic proteins BMP (Keller
et al. 2001). In addition, the expression of BMP may lead to the osteoblastic
differentiation of bone mesenchymal stem cells creating an autocrine and paracrine
feedback loop between the prostate cancer epithelial cell and the bone microenvi-
ronment.
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In contrast to the rapid progress being made in the development of anti-osteolytic
therapies, the treatment of osteosclerotic MBD remains restricted to palliative radio-
therapy for symptomatic solitary lesions and systemic taxane-based chemotherapy
for widespread multiple lesions (Sturge et al. 2011). Thus, new therapeutic strategies
focused on the complex pathology of osteoblastic bone-forming metastases of
prostate cancer are urgently needed and promising results start to emerge from
current preclinical studies.

The “lethal phenotype” of metastatic castrate-resistant prostate cancer depends,
then, from the bi-directional action of cancer epithelial cells in the bone and host
stromal response to tumor cells (Loberg et al. 2005).

Elucidating the bidirectional interactions between the cancer cell and host bone
microenvironment is now an important area of prostate cancer research (Efstathiou
and Logothetis 2010).

By a clinical point-of-view, these osteoblastic metastases cause bone pain, and
are constituted by disorganized neo-synthetized, unstructured “woven” bone which,
similarly to that observed also for osteolytic lesions, frequently give rise to painful
fractures (Roudier et al. 2003, 2008; Eastham 2007).

The progressive filling of bone marrow by metastatic prostate cancer cells cause
myelophtisis, leukoerythroblastic anemia (Eriksson et al. 1972; Shamdas et al.
1993), up to bone marrow failure (Spivak 1994). These phenomena are thought to
be caused, at least in part, by the physical displacement out of their bone marrow
niches of hematopoietic stem cells by prostate cancer cells. HPCs displaced in
the bloodstream might then undergo to forced, but incomplete, differentiation into
lineage-specific nonfunctional progenitors (Shiozawa et al. 2011).

Patients with bone-metastatic prostate cancer experience a significative higher
risk of death for disease when compared with patients without skeletal involvement
(Norgaard et al. 2010).

The rationale for this bone-forming activity could reside in its possible contribute
to support availability of bone niches for the successful homing and expansion of
metastasizing prostate cancer cells.

The last decade has registered significant advancement in the identification of the
steps involved in the multilayered process of prostate cancer metastasis but further
translational studies are needed, to shed new light on several fundamental questions:

– Do hormone receptors have a relevant role in the induction and establishment of
prostate cancer metastasis?

Mounting evidence indicates that androgen receptor (AR) signaling continues
to play a critical role in the growth of advanced PC despite androgen deprivation
(Zheng et al. 2013). Recent data indicate that convergence of oncogenic and
hormone receptor pathways promotes the metastatic phenotype (Augello et al.
2013). However, the downstream AR target genes involved in progression of
castration-resistance are largely unknown. It has been reported that cyclin D1b,
a splice variant of cyclin D1 exerting a highly oncogenic function in human
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cancers, promote AR-mediated activation of genes associated with metastatic
phenotype in tumor xenograft models of prostate cancer (Augello et al. 2013).

Moreover, Jin HJ and colleagues showed that the AR pathway induces
prostate cell growth also via the induction of the synthesis of FoxA1 (Jin et al.
2013). However, this protein, which is a transcription factor essential for the
prostate lineage-specific gene expression, inhibits cell motility and epithelial-
to-mesenchymal transition (EMT) through AR-independent mechanism opposite
to the action of AR signaling, thus behaving as an inhibitor of prostate cancer
metastasis. In orthotopic mouse models, FoxA1 has been found up-regulated in
localized prostate cancer and down-regulated in EMT bearing metastatic prostate
cancer cells. Then, FoxA1 may be considered an AR-independent metastasis
inhibitor that, following mutations, can contribute instead to prostate cancer
progression.

WNT7B, as a direct AR target gene highly expressed in castration-resistant
prostate cancer (CRPC), suggests that AR-regulated WNT7B signaling is critical
for the growth of CRPC and development of the osteoblastic bone response
characteristic of advanced PC (Zheng et al. 2013). WNT7B is necessary for the
growth of PC cells and this effect is enhanced under androgen-deprived condi-
tions; it promotes the androgen-independent growth of CRPC cells likely through
the activation of protein kinase C isozymes, induces osteoblast differentiation
in vitro through a direct cell-cell interaction, and is upregulated in human PC
xenografts that cause an osteoblastic reaction when grown in bone. Contrasting
data still exist about the real significance of AR reactivation in castration-resistant
prostate cancer cells and its relevance for prostate cancer stem cell biology (Miki
et al. 2007; Collins et al. 2005; Rajasekhar et al. 2011; Patrawala et al. 2006).

– MicroRNAs (miRs) function as either oncogenes or tumor suppressor genes
in cancer (Zhu et al. 2013). Early reports suggest that in androgen-dependent
prostate cancer cells, they may play a role in tumor development, progression,
evolution to metastasis, response to therapy, and prognosis (Qu et al. 2013) In
prostate epithelial EP156T cells, miR-182 and miR-203 have been really shown
to induce MET features and growth factor independent cell growth.

On the opposite side, elevated serum levels of miR-141 have been found
related with the presence of bone prostate cancer metastasis, without significant
correspondence with either Gleason score of primary tumor or PSA value. By
converse, miR-141 showed a positive correlation with serum alkaline phos-
phatase levels (Zhang et al. 2013).

However, more data are required before we reach a comprehensive knowledge
about their definite roles in androgen-independent, bone metastasizing prostate
cancer (Brennan et al. 2012).

The better understanding of the molecular phenotype of PCSC and DPCC could
provide novel therapeutic strategies, allowing the targeting of bone metastatic
prostate cancer cells, before they exit dormancy and become lethal (Patel et al.
2011).
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Early profiling studies have evidenced the role of miRNA expression in prostate
CSC (Liu et al. 2011), revealing that they specifically target several stem cells
markers in prostate cancer. As an example, the overexpression of miR-34A leads
to the decrease of CD44C prostate cancer cells, inhibiting tumor development
and metastasis, thus appearing as a promising potential new therapeutic tool for
neutralize the killing potential of PSCS.

– Recently, it has been suggested that infiltrating immune cells facilitate tumor
stem cell proliferation. Moreover, it has been proposed that aberrant immune
cell infiltration preferentially associates with tumor capsular areas showing
distinct degenerative alterations. Tumor-associated lymphocytes might cause
focal disruption of prostate cancer capsule, favoring, then, tumor cell budding
and metastasis (Jiang et al. 2013).

This finding deserves further evaluation, as it may have a relevant impact on
our knowledge of the prostate cancer metastasis causative events. It suggests, in
fact, that the aberrant immune cell infiltration may have the same destructive im-
pact of cancer cells on the lining capsule, offering in turn a selective proliferative
advantage to prostate cancer stem cells proximal to these focal disruptions.

Moreover, it will be also clarified if the selective tumor-associated im-
munoreactive infiltrate may have a causative role even for the early onset of
aggressive prostate cancer at young ages, typically originating in healthy men
with morphologically normal prostate (Man and Gardner 2008).

Overall, the understanding of the molecular background of prostate cancerogen-
esis has already changed our way to look at prostate cancer.

The growing flow of information concerning the bidirectional interactions
between the epithelial cancer cells, tumor-associated stroma, and host bone mi-
croenvironment has become an impressively active area of prostate cancer research
(Efstathiou and Logothetis 2010). The stromal-interacting pathways represent
exciting targets for new molecular niche-directed therapies, which in the next future
will guide our efforts to fight metastatic prostate cancer.
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Chapter 7
Resistance to Castration – Resistance to Drugs

Stefania Staibano

Abstract Up to 70 % of newly diagnosed patients with advanced prostate cancer
(PCa) will progress to castration-resistant prostate cancer (CRPC) and, in most cases
(from 50 to 70 %), will develop hematogenous bone metastasis. Once PCa cells
spread to the skeleton, cancer-related death becomes inevitable, with a death burden
of more than 28,000 cases in 2012, in the United States (Semenas et al, Curr Drug
Target, 13(10):1308–1323, 2012).

To date, therapeutic regimens are unable to revert this fatal progression (Semenas
et al, Curr Drug Target, 13(10):1308–1323, 2012).

Thus, PCa bone metastatic prostate cancer still represents a major clinical
challenge.

Prostate cancer biology is tightly linked to AR, which regulates epithelial
proliferation and suppresses apoptosis both in normal and in cancer prostate tissue,
and is involved in the progression of the disease toward a castration-resistant
state (Hodgson et al, World J Urol, 30(3):279–285, 2012). Our knowledge of the
molecular mechanisms, responsible for the acquired resistance to ADT in prostate
cancer, has exponentially progressed during the last years. For instance, we have
recently learnt that it may be associated with the occurrence of AR splicing variants
(Hu et al. 2011).

Surgical castration has shown to induce regression of advanced disease
40-years before the cloning of androgen receptor (AR) (Huggins et al, Arch Surg,
43:209–223, 1941; Lubahn et al, Science, 240:327–330, 1988).

Since then, hormonal therapy was held over as the main available therapeutic
option for aggressive prostate cancers. In the last decade, however, chemotherapy
was introduced to targeting the epithelium of metastatic, hormone-resistant prostate
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cancer (Pinto et al, Tumour Biol, 33(2):421–426, 2012; Hodgson et al, World J Urol,
30(3):279–285, 2012). The cytotoxic conventional drug Docetaxel was approved by
the Food and Drug Administration in 2004, and still represents the standard first-
line treatment for patients with castration-resistant prostate cancer (CRPC) (Sartor
et al, Oncologist, 16(11):1487–1497, 2011). It produces sensible palliative effects
on bone-metastasis-related symptoms, but prolongs only modestly the survival of
patients (Hodgson et al, World J Urol, 30(3):279–285, 2012; Tannock et al, N Engl
J Med, 351:1502–1512, 2004; Petrylak et al, N Engl J Med, 351:1513–1520, 2004).
Docetaxel acts mainly by inducing apoptosis of target epithelial cells. The common
intrinsic defects of mCRPC in apoptosis pathways, such as BCL-2 overexpression
and/or phosphatase and tensin homolog (PTEN) loss (Mathew, Dipaola, J Urol,
178:S36–S41, 2007; Galsky, Vogelzang, Ann Oncol, 21:2135–2144, 2010), may
constitute the rationale of the unsatisfactory rate of cure attributable to this drug
(Srigley et al, Histopathology, 60(1):153–165, 2012). In recent years, similar
effects on survival have been demonstrated also for several other chemotherapeutic
agents, such as mitoxantrone, etoposide, cisplatinum, vinblastine–estramustine and
taclitaxel.

Following progression after treatment with docetaxel, new cabazitaxel
(XRP6258)-prednisone treatment regimens have led to a significantly longer
overall survival, and other novel agents are currently being evaluated, including
the cell-based immunotherapy sipuleucel-T, the androgen biosynthesis inhibitors
abiraterone acetate and MDV3100, the chemotherapic Cabazitaxel, as well as the
radionuclide alpharadin/Radium 223 (bone microenvironment targeting agents)
(Sartor et al, Oncologist, 16(11):1487–1497, 2011; Liu et al, Front Endocrinol
(Lausanne), 3:72, 2012; Antonarakis, Armstrong, Prostate Cancer Prostatic Dis,
14(3):206–218, 2011). To date, they seem to offer a survival advantage to patients,
and look promising to improve the prognosis of metastatic CRPC.

However, the real clinical benefit of these systemic therapies remains still
transient, probably due also to the well-known clonal heterogeneity of advanced
prostate cancers, and the overall survival of patients that holds frustratingly steady.

The high cost of these therapies and the increasing complexity of clinical
decision making, further underscore the need to multiply the efforts to develop
more potent chemotherapy agents and/or novel AR/inhibitors agents that may better
overcome resistance mechanisms to existing therapies (Liu et al, Front Endocrinol
(Lausanne), 2012; Hodgson et al, World J Urol, 30(3):279–285, 2012; Armstrong,
George, Urol Oncol, 26:430–437, 2008; Schrijvers et al, Adv Ther, 27:285–296,
2010).

Several recently developed drug candidates, directed against the metastatic
cancer microenvironments or niches, show promising results in this direction
(Hodgson et al, World J Urol, 30(3):279–285, 2012).

The efficacy of the standard-of-care therapeutic intervention directed to mCRPC
will be greatly improved by our increasing understanding of molecular mechanisms
of the acquired resistance to ADT and chemotherapy, which is expected to pro-
vide valuable insights also to new unfailing biomarkers of resistance, therapeutic
response and disease progression of prostate cancer, allowing us to personalize the
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Fig. 7.1 Therapy modifications. (a) and (b) Two examples of therapy-modified neoplastic cells
characterized by nuclear pyknosis, hyperchromasia, cytoplasmic clearing and vacuolation. Chronic
inflammation usually flanks epithelial tumor changes

therapy for the single patients with mCRPC (Liu et al, Front Endocrinol (Lausanne),
3:72, 2012; Antonarakis and Armstrong, Prostate Cancer Prostatic Dis, 14(3):206–
218, 2011).

The knowledge of the molecular mechanisms underpinning prostate cancer
progression is changing dramatically our therapeutic approach to its advanced,
metastasizing phase, opening up the chance to design and develop novel agents
targeting the multiple pathways responsible for the lethal cancer phenotype, in
a more efficient and safer manner (Corcoran and Gleave, Histopathology, 60(1):
216–231, 2012).

During the last decade, the landscape of treatment of prostate cancer has registered
dramatic changes, due to the progressive advances in molecular biology. However,
the acquired resistance to AR- and/or chemotherapy, so far, represents the unre-
solved cause of treatment failure in metastatic castration-resistant prostate cancers
(Sun et al. 2012; El-Amm and Aragon-Ching 2013).

From the early seminal studies of Huggins and Hodges (1941) demonstrating the
androgen-dependent nature of prostate cancer, maximal androgen blockade therapy
still constitutes the cornerstone for the initial treatment for advanced disease (el-
Rayes and Hussain 2002; Beekman and Hussain 2008) and, its fall-out on clinical
response of patients, endlessly continues to be a matter of study (Srigley et al. 2012).

The effects androgen deprivation therapy (ADT) has on prostate tissue are strictly
related to its duration, and become strikingly evident after 3 months of treatment.
They are constituted by the overall decrease in number of the epithelial cancer cells,
either clustered in small, atrophic glands, or present as thin cords/individual tumor
cells. Therapy-modified neoplastic cells are, in fact, characterized by nuclear pykno-
sis, hyperchromasia, cytoplasmic clearing and vacuolation. Chronic inflammation
usually flanks epithelial tumor changes (Humphrey 2003; Petraki and Sfikas 2007;
Têtu 2008; Evans et al. 2011; Têtu et al. 1991; Bullock et al. 2002; Vallancourt et al.
1996; Civantos et al. 1995; Armas et al. 1994) (Fig. 7.1).
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The rationale for ADT is that the competitive binding of the androgen receptors
causes the block of testosterone-driven proliferation of prostate cancer cells, leading
to apoptosis and clinical remission for about 18–36 months (Pienta and Bradley
2006; Beekman and Hussain 2008).

FDA-approved AR inhibitors for ADT lead to the achievement of castrate levels
of circulating testosterone, corresponding to at least <50 ng/dL (Morote et al. 2007).
Gonadal suppression can also be further supported by medical therapy targeting the
hypothalamic-pituitary-testicular axis, such as the synthetic gonadotropin-releasing
hormone (GnRH) agonists, which bind to GnRH pituitary receptors. This binding
results in an initially increased luteinizing hormone (LH) and follicle stimulating
hormone (FSH) surge, causing a transient elevation of circulating testosterone,
but leads, from one to two weeks after the onset of therapy, to GnRH receptors
down-regulation, decreased LH and FSH production, followed by the final drop of
testosterone to castrate level.

Several approaches to ADT have been proposed, since its introduction in the
clinics. They range from surgical to pharmacological gonadal suppression, from
monotherapy to combined ADT (Tannock et al. 2004), from early to delayed, from
intermittent to continuous, and from primary gonadal suppression to peripheral
blockade (Beekman and Hussain 2008) both at high and low doses (Chodak et al.
1995; Scher et al. 1997; Tyrrell et al. 2005).

Randomized phase III trials actually indicate that primary gonadal suppression,
by continuous androgen deprivation therapy dosing, seems reliable as the standard
for treating advanced prostate cancers (Langenhuijsen et al. 2013).

To date, besides the substantial absence of well-designed randomized trials
analyzing the overall survival of patients, the most widely spread treatment, in
this scenario, is the hormonal therapy with LH-RH analogues considering that
the attractive alternative hormonal treatments (intermittent treatment, antiandrogen
monotherapy, or antiandrogen plus 5 alpha reductase inhibitors) should be still
evaluated with caution due to the short time experience (Antolin et al. 2012).

However, to date, patients receiving androgen deprivation therapy develop
castration-resistant prostate cancer (CRPC) recurrences and, a surprisingly frequent
finding shows that, even with stable castrate levels of serum testosterone, prostate
cancer bone metastases continue to rely on androgen signaling for their growth
(Scher and Sawyers 2005; Montgomery et al. 2008).

Starting from the hypothesis that progression to castration resistance is a function
of permanent androgen withdrawal, it has been postulated then that intermittent
regimens of androgen deprivation therapy, exposing prostate cancer cells period-
ically to androgens, may help maintain their androgen sensitive/dependent state.
This approach is attractive, as it may minimize adverse side-effects of long-standing
androgen deprivation.

Once again, clinical evidences frequently disregard the expected results. This
could be due to the finding that AR-dependent signaling almost always occurs
in CRPC, but it shows a substantial functional heterogeneity in tumor tissue
(Antonarakis and Armstrong 2011).
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Potential pathogenetic mechanisms could be represented by intratumoral AR
amplification, further (second) mutations in the AR gene, that allow activation; low
androgen levels or other endogenous steroids; truncated or alternatively spliced AR
transcripts; constitutively activated AR; changes in levels of AR cofactors involved
in ligand-independent activation of AR signaling; increased expression of en-
zymes involved in androgen synthesis; androgen synthesis by CYP17-independent
pathways (and genetic changes in the CYP17A gene preventing its inhibition by
the CYP17 inhibitors abiraterone and Orteronel (TAK-700)) (Antonarakis and
Armstrong 2011); intracellular conversion of adrenal androgens to testosterone and
dihydrotestosterone (Mostaghel et al. 2009); vicious loops mediated by cytokines
and growth factors (Scher and Sawyers 2005; Debes and Tindall 2004; Feldman
and Feldman 2001; Mohler 2008; Taplin 2008).

In other words, all these postulated processes allow prostate cancer cells
metabolism to shift from endocrine “physiological” sources of androgens (testes
and adrenal glands) to paracrine, autocrine, and intracrine aberrant, intratumoral
sources.

Even considering these eveniences, tumors may still respond to the agents that
block AR signaling within the tumor microenvironment. Second-generation AR-
antagonists are available, including MDV3100.

MDV3100 is an oral non-steroidal AR antagonist with a binding affinity for the
AR, which is five times greater than that of bicalutamide and shows a strong activity
as AR-antagonist in castration-resistant tumors, even in the setting of overexpressed
or constitutively activated AR. In addition, it does not exhibit any measurable
agonistic activity, and reduces the AR translocation from the cytoplasm into the
nucleus, with resultant tumoricidal activity as opposed to the cytostatic activity that
first-generation anti-androgens (Antonarakis and Armstrong 2011).

Some additional androgen receptor (AR)-directed therapies with higher receptor
affinity and specificity are currently under evaluation in clinical trials, and hold
promises, in the near future, to improve the outcome of patients with advanced
prostate cancer.

Prostate cancers with lower AR activity, or those exposed to prolonged periods
of androgen suppression, may show up-regulation of other oncogenic pathways,
including Src kinase (Park et al. 2008), clusterin, epithelial to mesenchymal
transition pathways, PI3K, c-MET and others (Antonarakis and Armstrong 2011).

This has fueled the preclinical and clinical exploration of myriad molecular
targets comprising alternative oncogenic pathways, targeting angiogenesis, tumor
microenvironment, cell growth and proliferation, apoptosis, cell nutrition, DNA
repair and epigenetic regulation (Hodgson et al. 2012).

So, we now hold a growing number of epithelial, stromal and epithelial-stromal
targeting therapeutics. Specific biomarkers permit quantization and localization of
therapy-induced effects within each compartment. For example, PSA levels reflect
modulation of cancer epithelial cells, bone-specific alkaline phosphatase (BAP)
levels reflect modulation of osteoblast activity, and urinary N-telopeptide (uNTx)
levels reflect modulation of osteoclast activity (Cook et al. 2006).
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The first therapy regimens with mitoxantrone and prednisone, was established in
1996 (NCCN 2011; Tannock et al. 2004). From 2004, the standard chemotherapy
for the first-line treatment of patients with metastatic CRPC considers the use of
docetaxel and prednisone (Petrylak et al. 2004; Tannock et al. 2004; Pinto et al.
2012).

At the time of writing we have great expectations concerningthe results of a
randomized phase III trial comprising 1,500 patients with progressing mCRPC. The
trial was performed comparing standard-schedule docetaxel and prednisone with
and without the multi-targeted kinase inhibitor dasatinib, a molecule active against
Src signaling. Src is a non-receptor tyrosine kinase that, in prostate cancer cells,
is associated with testosterone-mediated cell proliferation; its overexpression is
considered an important mediator of the transition to androgen-independent growth
(Lee et al. 2001, 2004).

Src phosphorylation induces, in addition, the expression of pro-angiogenic
factors, including VEGF, which, in turn, can activate Src also in endothelial
cells, mediating the increases in vessels permeability and tumor-associated neo-
angiogenesis (Park et al. 2007; Araujo and Logothetis 2010; Agarwal et al. 2012).

Among the therapeutic agents specifically targeting tumor microenvironment,
several have shown target effects, but none has demonstrated yet any beneficial
impact on disease progression or overall patients survival (Saad et al. 2002; Mathew
et al. 2007; Carducci et al. 2007), when used as monotherapy in patients with
mCRPC. This was the case of zoledronic acid (osteoclast inhibitor), imatinib (mul-
titarget tyrosine kinase inhibitor), and atrasentan (selective endothelin, a receptor
antagonist, which inhibits osteoblast proliferation).

The use of the osteoclast suppressor humanized monoclonal IgG2 antibody,
Denosumab, significantly extended bone metastasis free survival by 4.3 months
compared with placebo, delaying the onset of radiation to the bone. Denosumab
is directed against RANKL (Schwarz and Ritchlin 2007), the receptor activator of
NF-›B ligand, which is produced by bone marrow stromal cells and osteoblasts
and stimulates osteoclasts differentiation, activation, and survival, RANKL is
overexpressed by bone metastatic prostate cancer epithelial cells. The rationale of
this therapeutic approach resides in the concept that, although prostate cancer bone
metastases are osteoblastic, the development of these lesions involves an osteolytic
response mediated by osteoclasts. However, the overall survival of patients was
similar in both arms of the trial (Fizazi et al. 2011).

Endothelin antagonists represent another promising new class of stromal-
targeting agents (Pinto et al. 2012). They are directed against the Endothelin-1
(ET-1) signalling peptide, which is involved in prostate cancer progression. ET-1
binds to and activates the ETA receptor, which is overexpressed on prostate cancer
cells and osteoblasts surface. ET-1 is overexpressed in prostate cancer cells as
compared with benign tissue, and ETA activation in tumors, has been shown to
promote tumor cell proliferation and invasion, pro-angiogenic factors secretion,
and apoptosis resistance (Nelson et al. 1996, 2003). In osteoblasts, ETA activation
promotes proliferation, survival, invasion, secretion of pro-angiogenic factors,
resistance to apoptosis, and generation of osteoblastic metastatic disease (Guise
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et al. 2003). In preclinical models, several newly-generated inhibitors of ET-1
signalling have shown to inhibit tumor cell proliferation and invasion, as well as the
metastases development (Growcott 2009).

Nevertheless, the real improvement of patients survival, as well as the eventual
correct protocol regimen, are still to be clarified (Pinto et al. 2012).

Thus, at present, stromal-targeting agents are commonly used in combination
with epithelial-targeting chemotherapics.

Among the multiple self-protective molecular mechanisms acting in mCRPC,
it has recently emerged the role of clusterin (Antonarakis and Armstrong 2011).
Clusterin (CLU) is a stress-induced chaperone protein overexpressed in prostate
tumors treated with androgen ablation or chemotherapy (Mita et al. 2009; de Bono
et al. 2010; Zoubeidi et al. 2010). It is considered of importance in the cytoprotective
defense from radio- and chemotherapy of the mCRPC (Tiligata et al. 2002).

Overexpression of CLU in prostate cancer is linked to the emergence of the
treatment-resistant phenotype. In animal models, it is consistently up-regulated in
castration-resistant regrowth (Miyake et al. 2000). In human tissue, the expression
of CLU increases in hormone-naı̈ve prostate cancer with increasing Gleason grade,
and is up-regulated within weeks of androgen withdrawal (July et al. 2002). CLU
binds to (and stabilizes) a wide variety of client proteins, and promotes cell
survival and transformation through multiple mechanisms, including activation of
the extracellular signal-related kinase (ERK) and Akt pathways, inhibition of ER
stress, suppression of Bax activity, and release of nuclear factor kappaB (NF-›B)
inhibition (Zoubeidi et al. 2010).

Expression of CLU is up-regulated by a number of different mechanisms,
including stress-activated transcription factors (e.g. heat-shock factor-1), in response
to endoplasmic reticulum (ER) stress, and as a downstream response to cytokines
and insulin-like growth factor-1 receptor (Zellweger et al. 2001).

In prostate cancer cell lines, inhibition of clusterin resulted associated with
a greater susceptibility to cytotoxic agents and radiation (Gleave et al. 2001;
Zellweger et al. 2002). Therapeutic approaches with second-generation antisense
anti-clusterin oligonucleotides (custirsen, OGX-011) (Chi et al. 2008), have
produced the increase of sensitivity to androgen deprivation as well as chemotherapy
in prostate cancer cell lines and xenograft models (Beer et al. 2004; Berthold et al.
2005).

Evaluation of OGX-011 in prostate cancer continues in a large phase III trial
(SYNERGY) that is currently accruing. An anticipated 800 men with mCRPC
will be randomized to treatment with standard-schedule docetaxel and prednisone,
with or without OGX-011 640 mg by weekly intravenous infusion, until disease
progression, unacceptable toxicity, or the completion of ten cycles. The primary
endpoint is overall survival, and study completion is expected in early 2014
(Fig. 7.2).

Very interestingly, chemotherapy with genotoxic chemotherapy (mitoxantrone
and docetaxel) has been shown to generate a response in micro-environmental
stromal cells, promoting prostate cancer cell growth and resistance to subsequent
cycles of treatment. This stromal response is due to DNA damage in fibroblasts
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Fig. 7.2 Novel therapies designed to target non-ARmediated pathways: chaperone proteins.
Clusterin, a chaperone protein, in prostate cancer cell lines, if overexpressed, results in androgen-
independent growth, while clusterin gene silencing induces apoptosis and reduction in growth. Its
expression is upregulated in patients with prostate cancer who have received androgen-deprivation
therapy. Custirsen (OGX-011) is an antisense inhibitor of clusterin that acts suppressing clusterin
expression in tumor tissue, when administered to patients with localized prostate cancer

and smooth muscle cells leading to a “30-fold” overproduction of WNT16B, which
is secreted (and interacts) with adjacent prostate cancer cells, facilitating their
proliferation, invasion, and therapy resistance (Sun et al. 2012) (Fig. 7.3).

7.1 What Considerations Can Be Drawn Basing
on This Information?

Without any doubt, recent advances in the knowledge of prostate tumor biology,
have lead us to no longer consider prostate cancer as a disease arising only
from abnormally proliferating epithelial cells, but rather as the result of intricate
interactions between prostate cancer epithelial and stromal cells. This has produced
remarkable achievements in the development of therapy, particularly for metastatic
castrate-resistant prostate cancer.
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Fig. 7.3 Therapies designed to target AR-mediated pathways. Persistent AR activation is an
important mediator of disease progression in CRPC and mechanisms involved include AR gene
amplification or overexpression; AR gene mutation; enhanced AR signal transduction mediated via
coactivators; and endocrine or autocrine activation of the AR, for example, by adrenal androgens
or intratumoral production of dihydrotestosterone (DHT). AR-directed approaches include drugs
that antagonize the AR or that reduce of androgen precursors. Among AR antagonists are included
bicalutamide and flutamide, that inhibit the binding between AR and testosterone, and MDV3100,
which exert its function by inhibiting interaction between testosterone and AR and between
AR-testosterone complex and the ARE-sequences on DNA. Therapies that decrease androgen
production are also being developed. Abiraterone acetate is a selective and irreversible inhibitor of
cytochrome P450 (CYP450)c17, involved in androgen synthesis. TAK-700 is a novel CYP450c17
inhibitor similar to abiraterone

The goal of the next-coming therapy, then, will be to disrupt the crosstalk
between epithelial and cancer cells and their microenvironment, through the use of
new drugs targeting multiple signaling pathways, from androgen receptor signaling,
to kinase receptor signaling, and immune surveillance. At last, we now hold a
paramount variety of targets that can be manipulated to overcome AR- and chemo-
resistance, and different strategies emerge for inhibiting their function.

The increasing knowledge of the crystal structures of the ligand-sites, or specific
domains, of each protein active in the induction and maintenance of prostate
cancer aggressiveness and therapy resistance, allows the progression of design
and synthesis of novel inhibitors. By converse, in other instances the inhibition of
metastasizing ability of cancer cells may be reached through the targeted disruption
of protein transcription with antisense oligonucleotides.

In addition, new therapies may also consider the charming chance of a different
delivery of the “old” drugs (Batist 2007; Gabizon et al. 2003; Ewer et al. 2004;
Koukourakis et al. 2000). For instance, therapeutic nanoparticles targeted against
the prostate-specific membrane antigen (PSMA) protein, which is expressed on the
surface of prostate tumor cells that accumulate in tumors while bypassing healthy
cells, have shown promising results in ongoing clinical trials.
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Nanoparticles homing docetaxel have been designed at Massachusetts Institute
of Technology (MIT) and Brigham and Women’s Hospital in Boston, and the early
results have shown their selective accumulation at tumor sites, without side-effects,
producing tumors shrunk even at lower drug doses than those usually administered
(Corcoran and Gleave 2012).

There is great expectation on the successful therapeutic effect of an impressive
number of new drugs in the near future, which could be safer and more manageable
than old cytotoxic agents, and then could be used also at the earliest phases of
prostate cancer, before it becomes lethal.

However, despite impressive preclinical activity, to date, most targeted therapies
have failed in early clinical development (Corcoran and Gleave 2012). Pathway
redundancy, target mutation, difficulty with drug delivery, toxicity, or overestimation
of a target’s importance in preclinical models, could all be responsible for this. Since
international guidelines are obviously lacking, the gamble is, therefore, either to
identify the more reliable targets to be translated into clinically useful drugs, and to
design a rational approach to optimal treatment sequencing or even a combination
therapy with these drugs (El-Amm and Aragon-Ching 2013).

Notwithstanding the several new therapies that have been shown to extend
survival of mCRPC patients, but none of these approaches are curative, and annual
mortality rates, from prostate cancer in the Western Countries, remain unacceptably
high (Antonarakis and Armstrong 2011).

J
Fig. 7.4 Alterations in AR function in PCa and the development of CRPC. Following
androgen ablation, increased AR levels and a dramatic shift in AR function is observed ultimately
leading to the development of CRPC. AR binding sites (AR cistrome) are frequently marked
by specific chromatin modifications introduced by pioneer factors as FOXA1, prior to hormone
treatment. FOXA1 ablation causes massive reprogramming of the AR cistrome and consequentially
its function with a survival and growth advantage. Androgens promote proliferation through signals
that modulate critical regulators of the cell cycle. For the most part, the AR regulates the cell
cycle through induction of signals that regulate G1-S phase transition through the promotion of
G1 cyclin-dependant kinases (CDKs) and inhibition of the retinoblastoma (Rb) tumor suppressor
gene. AR coregulators, such as SRC3, stimulate or decrease AR activity in a promoter specific
manner. Elevated levels of SRC-3 are expressed in primary tumors. To activate AR transcriptional
activity, SRC-3 coactivates AP1 that positively regulates Akt levels, leading to increase in
proliferation and reduced apoptosis. Moreover, SRC-3 stimulates cellular motility by activating
focal adhesion kinase signaling and invasion by activating AR-dependent expression of matrix
metalloproteinases 2 and 13. IL-6 potentiate AR function and increased levels are associated
with androgen independent growth, resistance to chemotherapeutic drugs and neuroendocrine
differentiation. Continuous activation of the NF-kB pathway inhibits prostate regression following
castration, maintains nuclear AR and sustains epithelial proliferation. TGF-b and AR signaling
cooperate to maintain the differentiated state of the stroma in the benign prostate. In malignant
epithelial cells, AR suppresses TGF-b receptor II (TbR-II) transcription and reduces TGF-b1 driven
apoptosis, suggesting that AR action in malignant epithelial cells provides a growth advantage
by suppressing TGF mediated pathways. CTC have the same TMPSS2-ERG fusion status as
primary tumor and its expression is significantly increased by AR signaling. Overexpression
of the oncogenic transcription factor ERG causes expression of epigenetic factors such as the
methyltransferase EZH2 that epigenetically silences differentiating factors and tumor suppressors
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The imperative goal for advanced prostate cancer therapy will be to successfully
hit the specific driver mutations responsible for AR- and/or drug-resistance of
advanced, metastasizing prostate cancer (Gerlinger et al. 2012). Many questions of
interest have still to be properly addressed. The first refers to the optimal treatment
of heterogeneous tumors harbouring different levels of the target mutation, which
deserves to set up new personalized treatment algorithms based on the results of the
genetic profiling of patients ( Dora Dias-Santagata et al. 2010). In addition, we have
to be aware that AR inhibition/chemotherapeutic drugs, as well as radiation therapy,
may induce new advantageous mutations in prostate cancer cells, which after an
initial positive clinical response, may increase again their survival and resistance
(Semenas et al. 2012).

The future direction of prostate cancer care, then, will rely not only on our ability
to detect and hit the molecular patterns responsible for the AR/chemotherapy-
resistant phenotype of advanced, metastasizing cancers, but also on the chance to
really personalize and potentially change therapy when resistance eventually recurs
(Fig. 7.4).
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Chapter 8
Crossroads of Signaling Pathways

Stefania Staibano

Abstract As studies on PC progression continue to uncover a growing number
of crosstalks and co-occurrences of mutations and epigenetic alterations, new drugs
are getting approved bringing significant changes in the treatment paradigm of these
tumors.

This chapter recapitulates the best known examples of molecular interactions
potentially targetable to achieve these therapeutic evolutionary changes, to allow a
better control of PC which, in 2012 alone, has still killed more than 28,000 men,
in USA (Siegel et al, CA Cancer J Clin, 62:10–29, 2012; El-Amm, Aragon-Ching,
Ther Adv Med Oncol, 5(1):25–40, 2013).

8.1 Background and Aims

Prostate cancer (PC) is a multifocal disease, composed by several independent
tumor foci that may show different degrees of molecular alterations. The hetero-
geneous nature of PC which, at a molecular level, derives from the crosstalk of
multiple signal transductions variously acting in promoting growth, survival and
therapy-resistance of PC cells (Pittoni et al. 2011).

The development of new therapeutic strategies, particularly focused toward
castration-resistant prostate cancer (CRPC), relies on a better understanding of the
resistance pathways selectively adopted from prostate cancer cells (El-Amm and
Aragon-Ching 2013).

Recently, it has been shown that androgens residual from androgen-deprivation
therapy may indirectly favor cancer growth, with a progressive increase of the
PSA levels, via the over-expression of many HIF-1 dependent, hypoxia-inducible
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genes. The interplay between hypoxia and AR, further cross-talks with several
oxidative stress mediators, cytokines, growth factors, DNA-repair pathways, and
epigenetic regulators, in a cooperative effort to ensure the survival of neoplastic cells
in a highly adverse metabolic (and environmental) background. These interacting
signaling mechanisms, indeed, may either potentiate or counteract each other,
leading alternatively to cell death or adaptation and radio-chemoresistance. It thus
becomes apparent that resistance to therapy can be overcome only through a proper
therapeutic manipulation of the right factor(s) that, in turn, will influence the others,
triggering PC cells death (Marignol et al. 2008).

As an example, it has been surprisingly shown that cell death can be induced
in castration-resistant tumors “still” via AR, which can modulate apoptosis and
autophagy if targeted in conjunction with PKA pathway members (Attar et al. 2009).

As well, considering that AR is largely expressed in tumor microenvironmental
stromal cells, drugs targeting AR signaling in PC cells give rise to a therapeutic
favourable effect also on the stromal compartments, as AR is largely expressed in
tumor microenvironmental stromal cells (Mantalaris et al. 2001).

Thus, a favourable response to AR targeting will encompass both reductions in
serum PSA and bone-specific, osteoblast derived, alkaline phosphatase.

Overall, mounting evidence suggest that the cell fate, in response to therapeutic
attack, depends on a plethora of variable factors, ranging from metabolic stress,
functional status of cells, the interaction level between the stress-response pathways,
paracrine mediators produced by tumor microenvironment, and the epigenetic
interactions on DNA damage response and DNA repair (Murr 2010).

During these last years, the efforts of the scientific community have been focused
on the correct interpretation of the complementary pathways which could kill radio-
and chemoresistant cancer cells.

The end-point of such a program will require carefully designed clinical trials,
a rigorous patient selection and retrospective analyses of clinical, pathological, and
follow-up data.

In the rapidly evolving field of prostate cancer therapy, new drugs are being
used; as well, new insights indicating possible different rational approaches to
the treatment sequencing with “old” drugs are being proposed. The search for
novel biomarkers, useful for the individualized prediction of treatment response and
outcome of PC patients, is actively on. This is a particularly complex investigational
field (considering that the malignant phenotype of prostate cancer cells results from
a highly variable combination of functional, genetic and epigenetic defects in cell
cycle metabolism, checkpoint control and DNA-repair pathways, working together
to render PC a lethal disease). The real challenge lies not only in detecting all these
alterations, but also in defining the multiple layers of their reciprocal intersection
(Sarwar and Persson 2011).

We are thus requested to critically review our knowledge about the role of the
plethora of molecular guests acting on the scenario of prostate cancer progression,
which comprises both epithelial and stromal cells, both contributing to tumor
heterogeneity and growth dynamics (Cho-Chung 1989, 1990; Camps et al. 1990;
Cunha et al. 1996).
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That prostate cancer development and growth is dependent on androgens and
can be suppressed by androgen ablation monotherapy is an old concept (Zhu and
Kyprianou 2008).

The appearance of androgen-independent prostate tumor growth, leading to
cancer recurrence and highly metastatic disease, is a well-known phenomenon as
well (Wang et al. 2007).

During the entire life-span of prostate cancer, the androgen axis actively cross-
talks with a plethora of growth factors, driving the shift of prostate cancer
cell toward survival and invasion advantage. Androgenic control of growth and
differentiation is tightly regulated in both stromal and epithelial cells (Sar et al.
1990).

This explain why the successful treatment of PC with drugs targeting (AR)
signaling (defined as Epithelial-Stromal Targeting Agents), leads to reduction in
either serum PSA and bone-specific alkaline phosphatase (Mantalaris et al. 2001;
Niu et al. 2010).

A poor clinical outcome for prostate cancer patients has been associated, instead,
with low-AR levels in the stromal microenvironment (Henshall et al. 2001), and
this finding has been proposed as one of the mechanisms involved in the emergence
of androgen-independent cancer (Dayyani et al. 2011). The propulsive effect
of androgens on prostate epithelial cell proliferation and survival are indirectly
regulated by paracrine mediators produced by stromal cells, such as insulin-like
growth factor (IGF), fibroblast growth factor (FGF), epidermal growth factor (EGF),
(Cunha and Donjacour 1989), vascular endothelial growth factor (VEGF) and
transforming growth factor-“ (TGF-“) (Byrne et al. 1996).

The epidermal growth factor-1 (EGF) and its receptor (EGFR), (Russell et al.
1998) are frequently up-regulated in advanced stages of PC (Di Lorenzo et al. 2002)
Targeting EGFR with monoclonal antibodies or with tyrosine kinase inhibitors,
suppresses growth and invasion of androgen-dependent and -independent prostate
cancer cells in vitro, leading to the conclusion that the multi-crossed signals
between EGF/EGFR and androgen signaling is crucial for the acquisition and the
maintenance of androgen sensitivity (Bonaccorsi et al. 2004; Festuccia et al. 2005;
Leotoing et al. 2007).

Both AR and EGF can activate MAPK and, in a ‘functional-symmetry’, the
EGF-activated MAPK/extracellular signaling-regulated kinase kinase-1 (MEKK1)
cascade. This allows EGF to interfere with AR function, modulating the androgen
response and blocking androgen-dependent transcription in differentiated cells.
MAPK extracellular kinase (MEK) inhibition reverses the EGF-mediated AR down-
regulation in differentiated cells (Peterziel et al. 1999).

The alteration of this EGF–AR interplay is an important contributor to prostate
tumor progression. The modulation of AR signaling activity by ERBB2 (HER-
2/neu), a lead member of the EGFR family of receptor tyrosine kinases, has been
found correlated with prostate cancer progression to cell growth of androgen-
independent metastatic disease (Heinlein and Chang 2004), in vitro and in vivo
(Craft et al. 1999; Yeh et al. 1999; Mellinghoff et al. 2004; Liu et al. 2005).



146 S. Staibano

Similar positive feedbacks with AR activity in prostate cancer cells have been
described also for several other growth factors (Orio et al. 2002). Evidence supports
a strict interaction between AR and the IGF signaling. The high IGF1 signaling
in prostate cancer cells (HepG2 and LNCaP cells) (Wu et al. 2007) likely depends
upon AR up-regulation of IGF1 receptor expression and/or, alternatively, upon the
modulation of IGF-binding proteins (IGFBPs), which, in turn, are up-regulated by
either androgens and IGF1 in androgen-responsive human fibroblasts (Yoshizawa
and Ogikubo 2006) IGF1 enhances AR transactivation under low/absent androgen
levels (Culig et al. 1994; Orio et al. 2002) and promotes prostate tumor cell
proliferation (Burfeind et al. 1996). According to several reports, high IGF1 levels
in the serum can be considered a marker of an increased risk of prostate cancer
(Pollak et al. 1998; Wolk et al. 1998).

Even more data concern the cross-talks between AR and Transforming growth
factor-“ (TGF“). This ubiquitous cytokine, for instance, contributes to the regulation
of proliferation, growth and differentiation of prostate stromal and epithelial cells.

Cofilin and prohibitin, two novel signaling effectors of TGFB1, that serve as
potential intracellular effectors of its apoptotic action, were identified in human
prostate cancer cells (Zhu et al. 2006). Androgens can inhibit TGFB1-induced
apoptosis in prostate cancer cells (Chipuk et al. 2002) via the AR-associated
protein 55 (ARA55/Hic-5; LIM protein superfamily). Overexpression of ARA55
inhibits TGFB-mediated up-regulation of SMAD transcriptional activity in rat
prostate epithelial cells, as well as human prostate cells, via an interaction between
ARA55 and SMAD3 (Wang et al. 2005). Cancer cells become refractory to the
growth inhibitory activity of TGFB due to the loss (or mutation) of transmembrane
receptors or intracellular TGFB signaling effectors during tumor initiation (Akhurst
and Derynck 2001). In advanced prostate cancer and in PC bone metastasis, TGFB
is over-expressed and TGFB1 ligand overexpression results in pro-oncogenic rather
than growth suppressive effect (Coffey et al. 1986; Roberts et al. 1986; Derynck and
Zhang 2003; Zhu and Kyprianou 2005).

The androgenic-mediated TGFB enhancement seems to play a role on the
epithelial-mesenchymal transition (EMT) in metastasizing cancers (Zavadil and
Bottinger 2005), with a further interplay with E-cadherin. The effects of TGFB1
expression on stromal cell proliferation and differentiation, depend on the specific
stromal cell type, microenvironment, and interactions with other growth factor
(Sporn and Roberts 1992). AR and TGFB1 levels significantly correlate in the
stromal component of prostatic intraepithelial neoplasia (Cardillo et al. 2000). Very
interestingly, TGFB1 triggers the AR translocation from nucleus to cytoplasm in
prostate stromal cells underlying to myodifferentiation (Gerdes et al. 1998, 2004),
while androgens enhance TGFB1-mediated proliferation of prostatic smooth muscle
cells (Salm et al. 2000).

Prostate cancer progression toward androgen-independent disease has been
linked also to changes in the expression of several members of the FGF family,
characterized by a broad spectrum of functions on cell differentiation, migration,
and angiogenesis (Ornitz and Itoh 2001). FGF2 can stimulate also the proliferation
of prostate stromal cells, in a synergistic fashion with DHT (Niu et al. 2001).
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The synthesis of FGF2 and FGF7 in prostate epithelial cells seems to be mainly
regulated by estrogen receptors (ER), whereas ER act in coordination with AR to
mediate the synthesis of these growth factors in stromal cells. Androgen deple-
tion rapidly reduces stromal IGF1 expression, after castration, favoring PC cells
apoptosis (Ohlson et al. 2007). AR can otherwise directly influence the expression
of FGF1, FGF2, FGF8, and FGF10 in either prostate tumor epithelial cells and
stromal cells (Saric and Shain 1998; Nakano et al. 1999; Rosini et al. 2002), while
a paracrine secretion of FGF10 exert a positive feedback on AR, up-regulating
its expression (Memarzadeh et al. 2007). In response to FGFs, AR potentiates
FGF-induced survival of prostate cancer cells, possibly through BCL-2 induction,
allowing the escape of selected clones from androgenic control (Rosini et al. 2002;
Gonzalez-Herrera et al. 2006).

Among the cross-actions between AR and the multifunctional growth factor
signaling pathways, the interplay between the cellular responses to androgen
and hypoxia is emerging as a further key phenomenon in the developing of
androgen-independent, metastasizing prostate cancer cell clones (Marignol et al.
2008). In prostate cells, androgens and hypoxia share several regulatory molecular
mechanisms: both androgens and hypoxia, in fact, due to the presence of a hypoxia-
responsive region in the human PSA promoter, can induce in fact PSA expression
(Horii et al. 2007).

It has been then hypothesized that hypoxia, mainly through the hypoxia-inducible
factor (HIF1A), may facilitate PC progression through the cross-talk with AR.
To further support this idea, it has been recently reported that residual androgens
following androgen deprivation induce the expression of hypoxia-inducible genes
and stimulate cancer re-growth (Marignol et al. 2008).

This is of particular interest if we consider that, as for most solid cancers,
hypoxia is a common feature of prostate tumors. Then, targeting hypoxia looks as a
very appealing complementary strategy for the management of aggressive prostate
cancers.

The ‘hypoxia-response’ signaling system up-regulates the expression of a a wide
spectrum of effectors that increase the ability of tumor cells to turn poor oxygenation
into survival advantage (Anastasiadis et al. 2003) and radio- and chemoresistance
(Zhou et al. 2006).

In response to the decrease in the micro-environmental oxygen (Ellis et al.
2009) HIF-1’ regulates gene expression of several genes involved in multiple
physiological responses, such as erythropoiesis and glycolysis (short term solutions)
and angiogenesis (long term solution) (Semenza 1998), via the expression of VEGF
(Delongchamps et al. 2006).

VEGF, is “the” angiogenic cytokine, driving endothelial cell proliferation and
migration, and vessel assembly (Fong et al. 1995). The expression of HIF1, AR
and VEGF expression are tightly correlated (Boddy et al. 2005; Banham et al.
2007). So, AR regulates angiogenesis in androgen-sensitive PC through the HIF1-
induced VEGF increase (Boddy et al. 2005). Following androgen-deprivation, the
intracellular reactive oxygen species induce, instead, the direct up-regulation of
VEGF-C, which favor AR transactivation mediated by the AR co-activator BAG-1L
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(Rinaldo et al. 2007). Clonal selection for cells with higher expression of HIF-1a
and/or apoptotic resistance pathways contributes to determine cell specific responses
to hypoxia (Zhou et al. 2006).

HIF-1’ over-expression/hyperfunction may be induced by genetic loss of ex-
pression/function of pVHL (Ivan and Kaelin 2001, p 53; An et al. 1998) and/or
PTEN (Zundel et al. 2000) leading to the activation of PI3K/AKT/mTOR pathway
(Zundel et al. 2000; Stiehl et al. 2002) which, in turn, plays a well-known role
in proliferation, survival and metastatic ability of hormone independent prostate
cancers, as demonstrated by the correlation between elevated phosphorylated AKT
and high Gleason grade of PC (Yuan et al. 2007). HIF-1’ may be induced, in
addition, by several cytokines and growth factors including insulin (Zelzer et al.
1998), insulin like growth factors (Feldser et al. 1999), P42/44 mitogen activated
kinase (MAPK) (Richard et al. 1999).

Furthermore, alternative mechanisms to those mentioned above have been
identified which include the tumor microenvironment (Weidemann and Johnson
2008) and mutations within the ODD domain of HIF-1’ (Mabjeesh and Amir 2007).
This eloquently explain why targeting only one member of the hypoxia-related
angiogenetic pathway is insufficient to permanently inhibit tumor angiogenesis and
why tumor cells, treated with a mono-drug therapy, develop resistance by selection
of ‘hypoxia resistant’ cells or by activating alternate angiogenic pathways (Kerbel
and Folkman 2002).

To further complicate this scenario, under severe hypoxia, radio-/chemo-
resistance and clonal selection may develop as a response of opposing signals
delivered by survival and death pathways that allow selection of cells that have a
growth advantage either genetically or epigenetically determined (Zhou et al. 2006).

Post-translational epigenetic modifications, including acetylation mediated
by histone acetyltransferases (HATS) and deacetylation by histone deacetylases
(HDACs), have been shown to be critical to HIF-1’ signaling (Ellis et al. 2009).

HIF-1’ signaling up-regulates the activity of HDACs. Then, HDAC inhibitors
are emerging as a new class of anti-angiogenetic cancer therapeutics.

However, the anti-angiogenic properties of HDACI have been associated also
with the alteration of numerous pro- and anti-angiogenic genes (Liu et al. 2006)
other than HIF-1’ and VEGF. They encompass FGF, angiopoietin, tunica intima
endothelial kinase 2 (TIE2), endothelial nitric oxide synthase (eNOS) (Qian et al.
2004; Rossig et al. 2002, p 53), pVHL, thrombospondin 1 (Kim et al. 2001;
Kwon et al. 2002; Sasakawa et al. 2003; Kang et al. 2008, p 21)WAF1/CIP1, and
survivin (Qian et al. 2004). Even for HDACI, monotherapy has shown limited
responses in the clinic, but it seems very promising, as a part of combination
therapies. Pre-clinical and clinical studies indicate that HDACI have positive effects
on the expression of pro- and anti-angiogenic genes, suggesting their useful role in
reinforcing the actions of anti-VEGF therapies.

As it has been largely shown in the past decade, the intricate molecular
cross-talks underlying the malignant phenotype and the emergence of androgen-
independent prostate tumors encompass the expression and functional defects in
HR, single-strand break- (DNA-ssb) repair, MMR and base-excision repair (BER).
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Prostate cancer cell lines (Chen et al. 2003; Yeh et al. 2001) have been found to be
defective in mismatch–repair (MMR), and up to 23 % of prostate cancers display a
high level of microsatellite instability associated with mutations in MMR genes and
deficient MMR protein expression (Norris et al. 2007; Prtilo et al. 2005; Sun et al.
2006).

This, in turn, may lead to high mutation rates among microsatellites, ending in a
mutator phenotype.

As well, DNA polymorphisms in BER- or DNA-ssb repair associated Xrcc1,
Ogg1 and DNA polymerase-b genes have been associated with higher risk for
prostate cancer (Chen et al. 2003; Rybicki et al. 2004; Xu et al. 2002).

Most of the molecular therapies targeting the key control pathways involved in
prostate cancerogenesis and progression may indirectly influence the DNA-dsb
repair activity of neoplastic cells. This has been observed for therapies inhibiting
EGFR, IGFR, HDAC and proteasome pathways (Ma et al. 2003; Chinnaiyan et
al. 2005; Dittmann et al. 2005a, b) have documented that the radiosensitization
mediated by inhibiting EGFR can be related with the altered DNA-PKcs expression,
function and cytoplasmic sequestration; as well, an increased DNA-dsbs (Rochester
et al. 2005) has been shown to be induced by the inhibition of IGF-1R, via
the altered ATM activation, and could be used in combination with radiotherapy
(Choudhury et al. 2006) in hypoxic cancers. By converse, the RAS-mediated tumor
cell radioresistance could be linked to the augmented DNA-dsb repair (Chang et al.
2005) induced by the use of farnesyl transferase inhibitors (FTIs) via the increase
of Ku80 expression.

An additional crosstalk involves DNA-repair genes in human cancers. It
concerns the occurrence of silencing DNA repair genes such as MLH1 and
O-6-methylguanine-DNA methyltransferase (MGMT) leading to microsatellite
instability and a failure to repair DNA lesions (Jones and Baylin 2002). This
phenomenon is still a matter of investigation in PC.

Another intriguing example of molecular co-sharing in PC is represented by the
c-kit receptor (Pittoni et al. 2011). c-Kit receptor is normally expressed by prostate
stem cells, that apparently require the c-Kit signaling for prostate regeneration
(Leong et al. 2008) in humans, after hormone ablation, c-Kit expression may be
observed in a considerable percentage of high-risk prostate cancer cells (Di Lorenzo
et al. 2004) and in 10–30 % of this subset of prostate cancers NE differentiation
occurs.

In normal prostate, a resident stromal population of mast-cells (MCs), also
express the c-kit receptor (Leong et al. 2008).

It was initially thought that MCs can promote tumor growth of WD adenocarci-
noma synthetizing MMP-9. MMP-9 has been indicated to correlate with progression
of prostate tumor in humans (Castellano et al. 2008). As an ECM-degrading
enzyme, it facilitates cell migration and invasion of tumor cells, allowing also the
cleavage and activation of growth factors concurrently acting in tumor progression.
In addition, peritumoral MCs were shown to stimulate prostate tumor growth in rats
by providing proangiogenic factors (Johansson et al. 2010).
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For these reasons, it was hypothesized that targeting MCs would be considered
useful to counteract the growth of prostate cancers.

However, it was demonstrated, both in mouse and in humans, that poorly-
differentiated prostate tumors with features of EMT show an autocrine production
of MMP-9 and are devoid of infiltrating MCs.

This implies that MC inactivation would be ineffective when used in therapy
for advanced and poorly-differentiated PC, and lead to the intriguing consideration
that MC may contribute to the maintenance of prostate stem cell homeostasis
and counteract NE tumor formation, serving as “natural decoys” that sequester
stimulating growth factors, thus limiting c-Kit signaling in prostate cancer stem cells
(Pittoni et al. 2011).

This hypothesis strongly discourages the idea of MC inhibition in PC. Otherwise,
the therapeutic use of c-Kit tyrosine kinase inhibitors, such as imatinib, would
instead offer the advantage of targeting both adenocarcinoma-promoting MCs
(stroma targeting) and NE tumor variants (tumor targeting (Pittoni et al. 2010).

Overall, prostate cancerogenesis emerges as an extremely complex field, involv-
ing genetic and epigenetic alterations with multiple layers of merging.

We are still far away to use molecular classifications to unequivocally define
different prognostic subcategories of prostate cancer. Key questions remain to
be answered before the full range of mutations and genetic alterations will be
elucidated.

Nevertheless, it is likely that, as for most of human cancers, also in PC the
genes with a high incidence of mutation frequently participate to the evenience of
abnormal epigenetic events, and this co-occurrence may be related, for instance,
to the abnormal expansion of neoplastic stem cell population (Coussens and Werb
2002; Meng and Riordan 2006) which, in turn, may further select the addiction
of oncogenic gene mutations, which drive PC cells to invasion, metastasis, and
resistance to therapy.

Our knowledge of the intricated cross-links between genetic and epigenetic
events occurring in PC has registered exciting progresses during the last decade.

The role of the three-dimensional texture and regulation of chromatin function
in PC has been partially uncovered, and this has led to hypothesize the therapeutic
use of drugs and small molecules such as HDAC inhibitors or DNA methylating and
demethylating agents, acting as epigenetic modulators, as alternative or complemen-
tary tools for fighting aggressive PC (Murr 2010). The emerging data confirm that
prostate carcinogenesis bases upon a definite group of interconnecting key signaling
pathways.

Large scales of studies and carefully designed clinical trials will be required to
validate novel effective therapeutic strategies for the treatment of PC.

The availability of next-generation sequencing will provide us with a broad
genotyping platform which contribute to further refine our notions, shortening
the time occurring to set-up multi-faceted molecular strategies tailored against
the multiple molecular alterations responsible for the killing ability of advanced,
androgen-independent, prostate cancers (Dias-Santagata et al. 2010) (Fig. 8.1).
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Fig. 8.1 Crossroads of molecular pathways involved in PCa. In this picture the most frequent
intersections between the major molecular pathways promoting growth, survival, invasiveness,
metastasis and therapy-resistance of PC cells, potentially targetable for therapeutic strategies are
summarized
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Chapter 9
Gene Polymorphisms

Maria Siano, MariaLuisa Vecchione, and Gennaro Ilardi

Abstract Over the last decade, the explosive advances in sequencing and
genotyping technologies fueled by major financial investments in basic science,
have evidenced that hundreds of genes harboring variations contribute to human
cancers and that genetic variability may influence patients’ responses to post-
surgical treatments (Hamburg and Collins, N Engl J Med 363(4):301–304, 2010).

Several studies have reported the association between one or multiple single
nucleotide polymorphisms (SNPs) in multiple pathways linked to prostate cancer
onset and progression (Sfanos and De Marzo, Histopathology (1):199–215, 2012).

For instance, a SNP (GG genotype) in the promoter region of alpha-1-
antichymotrypsin (ACT), an acute-phase protein up-regulated in inflammatory
conditions, has been reported as linked to the increased risk of prostate cancer
(Licastro et al., Anticancer Res 28:395–399, 2008). Moreover, a correlation between
circulating levels of PSA and the ACT GG genotype was reported in younger
prostate cancer patients too. ACT is of particular interest because is bound, in men,
to most of circulating PSA.

As well, the association between increased risk for prostate cancer or aggressive
prostate cancer and the IL10–1082GG variant of IL-10 has been recently reported
(Zabaleta et al., Carcinogenesis 29:573–578, 2008; Zabaleta et al., Carcinogenesis
30:1358–1362, 2009).

In addition, SNPs between multiple different cytokines have been investigated as
a potential source of increased risk of prostate cancer (Zabaleta et al., Carcinogen-
esis 29:573–578, 2008; Zabaleta et al., Carcinogenesis 30:1358–1362, 2009; Kwon
et al., Cancer Epidemiol Biomarkers Prev 20:923–933, 2011).
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143 SNPs in 16 inflammation-related genes [CXC ligand 12 (CXCL12), IL-4,
IL-6, IL-6ST, prostaglandin-endoperoxide synthase 2 (PTGS2), signal transducer
and activator of transcription 3 (STAT3), TNF, protein kinase B (AKT1), CXCR4,
IL-6R, IL-8, IL-10, nuclear factor kappa B (NF›B), phosphatidylinositol 3-kinase
(PIK3)R1, PTGS1 and vascular endothelial growth factor (VEGF)] have been
examined in a case–control study of African American versus Caucasian men
(Kwon et al., Cancer Epidemiol Biomarkers Prev 20:923–933, 2011).

SNPs in IL-4, IL-6ST, PTGS2 and STAT3 resulted independently associated with
prostate cancer susceptibility, while SNPs in AKT1, PIK3R1 and STAT3 were as-
sociated with aggressive prostate cancer. Overall, men carrying multiple ‘high-risk’
alleles have been found at an elevated risk for prostate cancer development. These
studies strongly support the importance of inflammatory pathways in conferring
prostate cancer risk.

A multitude of emerging findings support the increasing efforts of the scientific
community to look at the molecular background of prostate cancer as the key brick
to develop new therapies targeted to the patient, for its “molecularly unique” tumor.

Obviously, the ultimate goal of this exciting line of research will be to develop
genetic tests readily and safely transferable to clinical use for the diagnosis and
prediction of patients’ responses to therapy.

The way to reach this objective is sprinkled by many obstacles. We are still
unaware of the real clinical significance of several genetic markers and the available
data concerning the side-effects of the existing gene-based therapies are far away to
be conclusive.

Nevertheless, the endlessly mounting reports on this topic are very encouraging,
for their promising relevance in prostate cancer patients therapeutic management.

Prostate cancer (PCa) is the most commonly diagnosed cancer in men in the United
States, with estimated 241,740 new cases and 28,170 deaths, representing the second
leading cause of cancer deaths (Siegel et al. 2012). In the last decades, its incidence
has been increasing (AIHW – Australian Institute of Health and Welfare and AACR-
Australasian Association of Cancer Registries 2007; Parkin et al. 2003). The use of
prostate specific antigen (PSA) for screening and the availability of extended pattern
biopsy techniques have allowed us to diagnose the majority of tumors in an early
stage, being of low grade, limited volume and clinically localized (Cooperberg et al.
2003). However, etiology remains still poorly understood. Several risk factors have
been reported but the only well-established are advanced age, family history, with
a risk of disease in first-degree relatives of cases approximately two fold greater
that in the general population (Carter et al. 2006; Edwards and Eeles 2004; Johns
and Houlston 2003), and racial/ethnic background (Crawford 2006). The reason for
the large variation among different ethnic groups, with the highest reported rates in
african-americans and the lowest in Chinese (Ritchey et al. 2005), is until unknown,
but inherited susceptibility, environmental exposure, lifestyle and hormonal levels
have been involved (Mononen et al. 2006; Chang et al. 2011).
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Actually, prognostic prevision for patients with PCa is based upon clinical and
pathological measures, such as PSA levels, Gleason’s grade and tumor stage, that
are incorporated in a variety of nomograms helping to predict a poor prognosis and
the potential for recurrence and/or death for disease (Shariat et al. 2008; Cheng
et al. 2010). However, despite these prognostic measures, most men diagnosed
with PCa undergo radical prostatectomy or radiotherapy, with important effects
on the quality of life (Cheng et al. 2010). In fact, while the PCa incidence
continues to increase, due to the ability to diagnose the tumor in a very early
stage, the death rate is unvariated (Ries et al. 2000), indicating that indolent form
of the neoplasia are increasingly diagnosed and treated (Gallagher et al. 2010),
highlighting the importance of sparing men from overtreatment. The aggressiveness
of prostate tumors varies substantially, with some tumors remaining indolent and
others becoming life-threatening, suggesting that individual variation contributes
to tumor aggressiveness. Therefore, it is mandatory to identify specific additional
markers, to integrate into prediction models, that could allow to distinguish tumors
that will likely recur, progress and be life-threatening from those that may have not
impact on morbidity or mortality, once treated (Cheng et al. 2010).

To date, prognostic models in localized cancers do not incorporate genetic
susceptibility (Lughezzani et al. 2010), ignoring that it has been shown to be
correlated not only with cancer risk, but also with disease aggressiveness (Cornu
et al. 2011; Burmester et al. 2004). For example, germline mutations correlate
not only with PC risk, but also with its clinical outcome (Gallagher et al. 2010).
It seems to be the case for BRCA mutations, which have resulted associated with
higher grade of prostate cancer and worse clinical outcome (Kote-Jarai et al. 2008;
Kirchhoff et al. 2004).

Moreover, genome-wide association studies (GWAS), linkage analyses and
fine-mapping techniques have shown that several single nucleotide polymorphism
(SNPs) could predict PCa risk and, in few studies, aggressiveness (Fitzgerald et al.
2009; Helfand et al. 2010), providing useful information at the time of diagnosis or
during initial disease.

However, Pca have a multicausal etiology with multiple risk variants (genetic
and environmental) acting synergistically to influence cancer-susceptibility. There-
fore, single-gene approaches could be of limited value in predicting risk and a
comprehensive approach is required, such as a method that integrate multiple
polymorphism involved in the same pathway. Combining multiple SNPs, could
amplify the predictive power (Beuten et al. 2009).

9.1 Single Nucleotide Polymorphism in Prostate Cancer

A single nucleotide polymorphism (SNP) is defined as an inherited mutation present
in more than 1 % of the population. These markers can be analyzed from any normal
tissue.
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Association studies and genome-wide association studies in multiple case
families, attempting to identify the heritable component of prostate cancer basing
on candidate gene, have suggested numerous prostate cancer susceptibility genes
and loci. However, the incapability of reproducing results obtained by linkage and
associations studies, suggests that PCa is genetically complex and involves multiple
common low-penetrance genes in its predisposition (Schaid 2004).

GWAS, allowing to genotype hundreds of thousands of SNPs simultaneously
and, therefore, to screen the complete genome for common genetic variants associ-
ated with a disease, represents a successfull method in identifying genomic low-risk
susceptibility regions (Chung et al. 2010; Aly et al. 2011). The first susceptibility
region identified was at chromosome 8q24 (Gudmundsson et al. 2007; Haiman et al.
2007; Zheng et al. 2007; Ghoussaini et al. 2008; Yeager et al. 2008, 2009; Al Olama
et al. 2009), but many more cancer susceptibility variants have been (and many more
will be) discovered.

Moreover, several studies have explored the capability of well-known prostate
cancer risk variants in discerning between less aggressive and more aggressive
disease (Aly et al. 2011). Overall, results are contrasting; in fact, while some studies
report a strong association for some of these variants with more aggressive tumor,
others do not. For example, two large replication studies, from PRACTICAL (Kote-
Jarai et al. 2008) and from Fitzgerald and co. (2009), evaluated the association
between a series of genetic variants and aggressiveness in PCa, but no correlation
was found between any of the evaluated variant and disease behaviour. On the
contrary, Bao et al. (2010) in a study evaluating 20 SNPs, previously identified asso-
ciated to prostate cancer, discovered that they might have a cumulative association
with disease aggressiveness.

To date, several pathways and chromosomal loci have been involved in tumor
development and/or progression in prostate cancer and corresponding SNPs have
been identified.

9.2 Androgen Pathway

Androgens are essential in the development, growth and secretory functions of
the prostate gland (Beuten et al. 2009). Free testosterone is converted into di-
hydrotestosterone (DHT) that binds to the androgen receptor (AR) so forming
a complex that, in association with cofactor and transcription factors, induces
androgen-regulated expression of genes involved in cellular proliferation and dif-
ferentiation. Risk factors can include both highly penetrant susceptibility genes and
low-penetrant genes (with higher frequencies in the population). In prostate cancer
cases, due to their hormone dependence, genetic alterations involving low-penetrant
and moderate-penetrant alleles in genes involved in prostatic functional pathways,
such as androgen hormones and their metabolizing enzymes, are the most likely
natural candidates for conferring susceptibility to this cancer (Beuten et al. 2009;
Mononen and Schleutker 2009). Polymorphism and variants of these genes are



9 Gene Polymorphisms 165

distributed differently across the population groups and, since variation in their DNA
sequence could alter protein function and result variability in disease risk, they reach
an increasing interest (Coughlin and Hall 2002). However, many studies evaluating
the role of genes involved in androgen pathway have reported conflicting results,
attributable to population differences and biological, technical or statistical factors
(Beuten et al. 2009). Moreover, considering that the endogenous factors affecting
the functional genome may be different, it is important to define the polymorphic
spectrum of genes implicated in cancer causation in different populations. For
several reported associations it is still uncertain whether the variants have a causal
role in PCa. The majority of prostate cancer cases are unlikely to be explained
by allelic variability at a single locus of major susceptibility genes while genetic
polymorphism seems to be more important (Coughlin and Hall 2002). Moreover,
prostate carcinogenesis is a multistep process involving a multifactorial interplay
between genetic and environmental factors; as a result, the effect of individual
SNPs is unlikely to be substantial and may be of limited value in predicting risk. A
comprehensive approach is required, such as the pathway based multigenic method
integrating multiple polymorphism that interact in the same pathway. Combining
multiple low-penetrant to modestly penetrant SNPs may amplify predictive power
(Beuten et al. 2009).

9.2.1 CYP Subfamily 11A1 Enzyme

This enzyme is located on 15q23-q24 and catalyze the first step in the androgen
synthesis pathway. Polymorphism in a repeated sequence at the 50 UTR has
been associated with an increased risk of metastatic disease and high grade PCa
(Kumazawa et al. 2004), but other studies have failed to confirm these results
(Douglas et al. 2005; Cunningham et al. 2007).

9.2.2 Androgen Receptor

Androgen receptor is coded by the AR gene on Xq11.2-q12. Its transactivation
domain has two highly polymorphic trinucleotide repeat segments, including CAG
and GGN in exon 1. A positive correlation has been reported between GGN length
and AR transcriptional activity, while an inverse correlation has been demonstrated
for CAG. Longer CAG repeat length has also been described to reduce the
expression of AR mRNA and protein and inhibit androgen receptor transactivation
in cultured prostate epithelial cells, suggesting that a decreased number of this repeat
may render prostate tissue more vulnerable to long-term androgen stimulation,
leading to increased proliferative activity, which in turn may increase the rate of
somatic mutations. However, several groups have tried to establish the role of the
variation in CAG repeat length in regard to PCa risk (Linja and Visakorpi 2004),



166 M. Siano et al.

with conflicting results. In a meta-analysis of 19 studies, an increased risk was
observed in patients with shorter CAG repeats (Zeegers et al. 2004) while Lindstrom
et al. (2006), in a study in a Swedish population, obtained the opposite result.
Moreover, recent observations support an etiological role of genetic interactions
between polymorphism that act together with CAG repeats. The distribution of GGN
length polymorphism was, instead, noted to be significantly different among racial
groups, suggesting a possible association between these repeat microsatellites and
PCa development. Several studies substained that risk of PCa was higher in man
with a short GGN repeat, but no association was observed in more recent studies
(Mononen and Schleutker 2009). A germline mutation (R726L) is located in the
ligand binding domain of AR, causing altered binding and transactivation properties.
This mutation was reported to increase the PCa risk but, in a recent study, this
association did not persist (Mononen and Schleutker 2009).

9.2.3 Steroid 5alpha-Reductase Type II

This enzyme is encoded by a gene located on chromosome 2p23 and converts
testosterone into dihydrotestosterone. The polymorphism A49T has been shown to
increase the activity of the enzyme substantially in vitro (Makridakis et al. 1999),
but have been reported data in vivo substaining that men with this polymorphism
show lower concentration of a metabolite of DHT than men with homozygous WT
allele. In detail, a significant association of this polymorphism and PCa risk for
clinically advanced disease has been reported for African-American carriers, while
the variant is absent in low-risk population (Hsing et al. 2001). However, a meta-
analysis estimated that in European descent, the fraction of PCa attributable to A49T
is less than 1 % (Ntais et al. 2003).

Another variant, V89L, is associated with decreased 5alpha-reductase activity
in vitro and in vivo. It is mostly common in Chinese and Japanese and in men in
Greenland, who have an extremely low incidence of PCa (Hsing et al. 2001).

The polymorphic TA dinucleotide repeat is located on the 30-UTR region and
the functional consequences are due to the instability of mRNA transcripts, but no
significative association with PCa risk was found (Mononen and Schleutker 2009).

9.2.4 Luteinizing Hormone (LH)

LH is an alpha-beta heterodimer in which the alpha unit is common to glycoprotein
hormones and the subunit beta, coded by the gene LHB on 9q13 and determines
biological specificity. The variant LHB-V, carrying two mutations (W8R and I15T),
has higher bioactivity and shorter half-life than WT protein. No such association
has been demonstrated with PCa risk (Mononen and Schleutker 2009).
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9.2.5 CYP Subfamily 17A Enzyme

CYP17A1, located on chromosome 10q24.3, encodes for the enzyme P450c17alpha
that regulates the activity of two enzymes at key points in the testosterone
biosynthesis. A single base pair change (�34T>C) has been described that create
an additional binding site for the transcription factor Sp-1 which may cause an
increased transcription of the enzyme and enhanced steroid hormone production.
Contradictory results have been reported concerning the potential role in PCa cases
but, in a meta-analysis, no overall effect of this variant have been observed (Ntais
et al. 2003).

9.2.6 HSD3B Family

B1 and B2 genes are located on 1p13.1 and express three enzymes involved in
androgen biosynthesis and in the conversion of active DHT into inactive metabolites
in steroid target tissues. The N367T variant in HSD3B1 has been found to increase
the PCa risk in Caucasian men but has no effect on clinical behavior. A higher risk
for PCa, moreover, has been found when a second variant on 30-UTR of HSD3B2
(rs1819698) was present (Chang et al. 2002).

9.2.7 3Alpha-Hydroxysteroid Dehydrogenase

These enzymes regulate the transactivation of the AR and play a critical role in the
hepatic clearance of steroid hormones, protecting against excess circulating steroid
hormone. AKR1C3 (HSD17B5) is a gene that encodes for an enzyme that catalyzes
the conversion of androstenedione to testosterone and of DHT to androstenediol; it
is not expressed in epithelial cells but over expressed in prostatic carcinomas. The
studies regarding the role of two polymorphism (Q5H and P180S) in PCa etiology
have not found any association (Mononen et al. 2006; Berndt et al. 2007). Another
polymorphism (E77G) was found in Caucasian but not in Asian individuals and was
associated with lower serum testosterone (Jakobsson et al. 2007).

9.2.8 HSD17B Family

This gene family encodes for 17betaHSDs which play a pivotal role in the
production of steroid hormones. The isoform 1 polymorphisms have shown no
association with PCa risk or tumor stage. HSD17B2 gene (16q24) is expressed
in normal prostate, BPH and PCa, with the highest levels in BPH; it is involved
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in conversion of active androgens in less active forms, protecting prostate from
excessive sex hormone action. An association with the loss of heterozygosity at
chromosomal region 16q24.1-16q24.2, that includes the HSD17B2 gene, has been
correlated with aggressive forms of PCa, but not with cancer risk (Cunningham
et al. 2007). Instead, a missense substitution G289S in the HSD17B3 gene, that is
expressed exclusively in testis, seemed to confer a significant increase in PCa risk
in a single study but, this result, has not been confirmed in others study (Margiotti
et al. 2002).

9.2.9 CYP Subfamily 19A Enzyme

The CYP19A1 gene encodes for the aromatase. The mutation T201M showed a bor-
derline significant increase in PCa in unselected cases and association with clinically
less significant form in stratified analysis (Mononen et al. 2006). Polymorphism
R264C, instead, showed a tendency in increased risk of high grade carcinoma but,
this feature, has not been confirmed in others studies (Modugno et al. 2001; Suzuki
et al. 2003). Overall, these two polymorphism showed no significant changes in
protein activity or level compared to WT forms. Polymorphism in (TTTA) repeat
showed, in several studies, no association with pathological grade or stage, patient
age and preoperative PSA levels and contrasting results regarding to association
with PCa risk (Mononen and Schleutker 2009).

9.2.10 CYP3A Locus

The CYP3A locus consists of four genes including the isoforms 3A4, 3A5, 3A7 and
3A43, located on chromosome 7q21.1.

CYP3A4 has a role in testosterone deactivation. The CYP3A4*1B polymorphism
has been reported to disrupt a transcriptional regulatory element in the 50 regulatory
region. This alteration shows ethnic/geographic differences, reflecting the highest
frequence of PCa in African-American men. Contradictory reports exist regarding
the association with clinical stage and grade (Mononen and Schleutker 2009).

CYP3A5 catalyzes 6beta-hydroxylation of testosterone. The CYP3A5*1 form
is more common in African-Americans than in Caucasian or Asian men. Some
studies suggest that CYP3A4*1B is in linkage disequilibrium with CYP3A5*1,
with association with a risk of more aggressive PCa (Rebbeck et al. 1998; Paris
et al. 1999).

CYP3A43 is the most recent member of the family. Its variant, CYP3A43*3,
has been shown to be a risk factor in familial cases. Stone et al. (2005) observed
that African-American homozygous for this variant are at increased risk for PCa
compared to those homozygous for others variants.
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9.2.11 UGT2B15

It is an enzyme, located in the luminal cells, that catalyze conjugation of steroids
by glucuronidation and the resulting products are water soluble and more easily
excreted from the body. Its gene is located on chromosome 14q13-q21.1. A single
base pair change results in an aminoacid change at residue 85 from aspartic to
tyrosine (D85Y) originating an Y85 isoform more efficient and, thus, a lower
androgen exposure. For this reason, the D85 allele has been correlated to increased
PCa risk and aggressiveness (Mononen and Schleutker 2009).

9.2.12 Sex Hormone Binding Globulin

This protein regulates levels of free plasma androgens and mediate the androgen
and estrogen signaling at the cell membrane. Its gene is located on 17p13-p12. Two
variants, D356N and -67G>A have been studied. Only patients heterozygous for
D356N showed a slight association with PCa risk, with greater risk in patient <65
years aged compared to WT carriers, while -67G>A variant did not show clear
association with PCa risk (Berndt et al. 2007).

9.2.13 Sulfotransferase 2A1 (SULT2A1)

Sulfotransferase 2A1 is a protein expressed in the liver, adrenal cortex and
small intestine, member of the SULT family that includes enzymes involved in
regulation of activity of adrenal androgens, via their inactivation by sulfation,
protecting against the mitogenic effects of androgens. Three gene alterations,
A63P, L227E and A261T, have been described for this gene, present only in
African-American patients, but they have not been associated with PCa (Mononen
and Schleutker 2009).

9.3 Repair Genes

Genomic stability and integrity are essential for the maintenance of an accu-
rate DNA replication. In fact, endogenous processes and exogenous factors that
cause DNA disruptions and, consequently, gene rearrangements, translocations,
amplifications and deletions may participate in cancer development (Ritchey et al.
2005). DNA repair mechanisms protect human genome from damages caused
by endogenous and exogenous agents (Hirata et al. 2007). Several DNA repair
pathways, involved in repairing different type of DNA damage, exist: base excision
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repair (BER) removes simple base modifications (such as single-strand breaks,
oxidative DNA damage and alkylation); nucleotide excision repair (NER) removes
larger lesions; alkyltransferase reverse DNA damage by transferring alkyl groups
from damaged DNA; homologous recombination repair pathway repair double-
stranded DNA breaks (Ritchey et al. 2005). Only few studies have investigated
the role of polymorphisms in DNA-repair genes in prostate carcinogenesis. Ritchey
et al. (2005) investigated SNPs in four genes (XRCC1, XRCC3, MGMT and XPD)
in a Chinese population and their combined effects with a number of risk factors
previously reported. They found that variants of XRCC1 (�399) and of MGMT
(�84) are independently associated with prostate cancer risk, while no associations
were observed for XRCC3 (�241), XPD (�751) or MGMT (�143) variants. Hirata
et al. (2007), examined the association between XRCC1(Arg194Trp, Arg399Gln),
XPC Lys939Gln and XRCC1G6721T polymorphisms in a series of prostate cancer
and their relation to smoking status. They demonstrated that XRCC1Arg194Trp
variants are more frequent in PCa patients compared to normal controls and, for
the first time, reported inverse correlation between XPC variants and PCa risk.
Moreover, in this study, the combined effect on variants of these two genes with
an increase in PCa risk was evaluated (Hirata et al. 2007).

Mismatch repair (MMR) genes activity may be associated with cancer; mutations
in these genes (MLH1, MSH2, MSH3, MSH6, PMS1 and PMS2) can lead to
microsatellites instability (MSI) and inability in repair DNA damage during DNA
replication. Some studies have correlated the reduction or loss of MMR protein
expression with PCa, either in tissue that in cell lines (Boyer et al. 1995; Leach
et al. 2000; Yeh et al. 2001; Chen et al. 2001, 2003; Norris et al. 2007) and those
regarding the association between MLH1 polymorphism and PCa risk have reached
conflicting results (Burmester et al. 2004; Fredriksson et al. 2006). However, in a
recent study, Landeberg et al. have described a polymorphism in MLH1 associated
with a modest increase in overall PCa risk, a more aggressive disease and risk of
recurrence (Langeberg et al. 2010).

9.4 Cell Cycle Control

Alterations in cell cycle regulation play a central role in malignancies and con-
tributes to an increased risk of metastatic disease; in fact the lack of cell’s ability
to respond appropriately to DNA damage and potential carcinogenic events (Kibel
and Isaacs 2000; Tomlins et al. 2007) causes accumulation of genetic defects,
which could promote the tumor growth and the development of a more aggres-
sive phenotype (Elledge 1996). Polymorphism in genes of cell cycle regulators
have been already described for several malignancies (such as breast, colorectal
carcinoma, bladder cancer, head and neck, lung and prostate cancer); in particular,
they have been associated with carcinoma development polymorphisms in TP53,
CCND1, CDKN1A, CDKN1B, CDKN2A and MDM2 genes (Kibel et al. 2008). In
summary, signals affecting cell cycle progression converge on two main pathways,
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the Arf/MDM2/p53/p21 and the INK4a/cdk4/pRb/E2F axis (Dianat et al. 2009).
Several studies have investigated the role of SNPs of cell cycle control genes
in determining risk of cancer and/or cancer prognosis in prostate. Two recent
studies have investigated the role of polymorphisms in TP53, CCND1, CDKN1A,
CDKN1B, CDKN2A, MDM2, p21, PTEN, GNAS1 and Bcl-2 in prostate cancer
and has emerged MDM2 as the most promising allele associated to PCa, especially
with advanced stage, in androgen-independent disease and in patients younger at
diagnosis, while specific GNAS1 and Bcl-2 polymorphisms have been associated
with biochemical recurrence (Kibel et al. 2008; Hirata et al. 2009).

9.5 Angiogenesis

In general, angiogenesis is required for the growth of cancers from microscopic to
clinically relevant, in cancerogenesis, in the development of tumor characteristics
and in clinical outcome (Jacobs et al. 2008). Like all others solid tumors, the
progressive growth and metastasis of prostate cancer are angiogenesis-dependent.
Tumor angiogenesis is related to an “angiogenic switch” that origins from an excess
of pro-angiogenic molecules over anti-angiogenic factors produced from tumor and
stroma cells (Sfar et al. 2009). Vascular endothelial growth factor (VEGF) plays
a pivotal role in angiogenesis (Nicholson and Theodorescu 2004), as a specific
endothelial mitogen and increasing endothelial cells permeability, migration and
chemotaxis, in an autocrine and/or paracrine manner (Ferrara and Davis-Smyth
1997). Hypoxia inducible factor 1 (HIF1A) is a transcriptional factor that induces
transcription of VEGF; its activity is inhibited by the hypoxia inducible factor 1
alpha subunit inhibitor (HIF1AN) (Stolze et al. 2004). Epidermal growth factor
(EGF) activates several pro-oncogenic intracellular pathways, inducing prolifer-
ation, differentiation and tumorigenesis in epithelial cells (Dianat et al. 2009);
moreover it has been described to increase VEGF expression in prostate cancer
cell lines (Ravindranath et al. 2001). Nitric oxide is an important factor involved in
both carcinogenesis mediated by angiogenesis and tumorigenesis inhibition through
induction of cell death. Three isoforms of enzymes for its synthesis exist: the
neuronal (NOS1), the inducible (NOS2) and the endothelial (NOS3). The inducible
isoform expression is regulated by a series of transcription factors, proinflammatory
cytokines (that increase its expression) and anti-inflammatory cytokines (that down-
regulate its expression) (Dianat et al. 2009). Matrix metalloproteinase 2 (MMP2)
and 9 (MMP9) degrade basement membranes and extracellular matrix, required
for new vessel formation and tumor invasion (Yoon et al. 2003; Stetler-Stevenson
et al. 1993; Murphy and Gravilovic 1999). The production of MMP9 and other
proteases by prostate cancer cells and stromal cells facilitates the degradation of
ECM, resulting in tumor invasion and subsequent metastasis. Moreover, it has been
demonstrated that MMP9 triggers VEGF release from extracellular stores, facilitat-
ing the angiogenic switch. Thrombospondin-1 (TSP1) acts as antiangiogenic factor
by multiple mechanism, such as inhibition of endothelial cells proliferation and
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migration, induction of endothelial cells apoptosis, inhibition of MMP3-dependent
activation of pro-MMP9 and interaction with VEGF (Sfar et al. 2009). Several
studies have been conducted to investigate the role of SNPs in angiogenesis-related
genes. For VEGF, a significantly increased risk of prostate cancer associated with
the VEGF-634 (GCCCC) polymorphism has emerged, and the C allele seems to
be associated with an aggressive phenotype, defined by the histological grade;
similarly, the -460T allele has been associated to an increased risk of cancer,
without statistically significant differences in grade or stage and between patients
responders to hormonal therapy and hormone-refractory patients (Lin et al. 2003);
however, contrasting results have been reported. The CC and TC genotypes of the
polymorphism were associated with significantly higher rates of PSA recurrence
after RP higher than the TT genotypes. On the contrary, patients with metastatic
disease presenting the TT genotype had significantly worse survival compared to
the CC and TC genotypes (Langsenlehner et al. 2008). Regarding the NOS3 gene
polymorphism, two sites at intron 4 and exon 7 have been investigated and the a-
allele has resulted associated with prostate cancer risk and more frequent in patients
with high-grade tumor, indicating its role in more advanced disease. The Glu-
Asp298 polymorphism at exon 7 did not show significative association with PCa
risk, but patients were younger than patients with no polymorphism and a difference
was observed between patients with localized or advanced disease (Medeiros et al.
2002). In a study conducted by Lee et al., investigating four SNPs in NOS2 gene
locus (�2892T/C, C14 C/T, C88T/G and C524G/A) and five for NOS3 gene locus
(�762c/t, -43c/t, -26a/g, -63g/t, -62g/t), all SNPs, except NOS2-2892T/C, were sig-
nificantly associated with cancer risk, with a certain relation, for some variants, with
ethnic groups (Lee et al. 2009). For EGF, the functional polymorphism at C61G/A
resulted associated with cancer risk, with an higher age-adjusted risk of metastatic
disease and with higher Gleason’s grade tumor, without significative differences
in response or resistance to hormone-deprivation therapy (Teixeira et al. 2008).
One HIF1A SNP(P582S) was associated with advanced and overall prostate cancer
but contrasting results have been also reported. Three SNPs in MMP2 were also
associated with advanced and overall prostate cancer, while the homozygous variant
of the P41A SNP in HIF1AN has been associated with a statistically significant
reduction in risk of advanced prostate cancer (Jacobs et al. 2008). In a study from
Sfar et al., although they have previously reported that the SNP 8831A/G in TSP1
gene was not significantly associated with prostate cancer risk, a significant impact
in prostate cancer risk has been observed by combining the high-risk genotypes of
VEGF (1154G/A and VEGF-634G/c) and TSP1 SNPs (Sfar et al. 2009).

9.6 Chromosomal Loci

Several GWAS have been conducted to detect chromosomal loci as genetic risk
factors of prostate cancer. A recent meta-analysis (Liu et al. 2011) of 21 GWASs was
made to improve the power to detect PCa risk loci. 37 SNPs have been reported in
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more than one study impacting PCa susceptibility which have significance to public
health and, among these, 9 were significantly associated with PCa. Moreover, 14
were independent risk loci for PCa.

8q24 is the most frequently involved chromosomal region in prostate tumors and
the rs1447295 is its most reported SNP. Genes closest to 8q24 are FAM84B, a breast
cancer membrane-associated protein, and the oncogene c-MYC. In PCa c-MYC is
overexpressed while its reduction inhibits tumor growth. It has been hypothesized
that the risk variant in 8q24 modifies c-MYC regulation, predisposing to genomic
instability and has been associated with aggressive tumors, hormone independence
and poor prognosis.

The SNP rs10486567 on chromosome 7 occurs in the second intron of the
JAZF zinc finger 1 gene (JAZF1) that encodes for a transcriptional repressor
of NR2C2 (highly expressed in prostate tissue, interacts with androgen receptor
to repress its target gene expression). In a study from Gallagher et al. (2010),
this SNP resulted associated with biochemical recurrence and castration-resistant
metastases.

On chromosome 10 two SNPs (rs10993994 and rs7920517) have been identified
in the region containing the microsemino-protein beta gene (MSMB) that encodes
PSP94, a member of the immunoglobulin binding factor family synthesized by
epithelial cells in prostate and secreted in seminal plasma. Loss of PSP94 is
associated with recurrence after prostatectomy, while MSMB is silenced by EZH2
in androgen-insensitive PCa. Therefore, variants in MSMB gene may represent a
genetic risk marker for PCa.

A SNP (rs2735839) is located between the KLK2 and KLK3 genes, that have
been reported to influence the PCa risk. SNPs in the promoter region of KLK3 and
it has been associated with PSA concentrations and, in some cases, with risk of PCa
and with stage of disease. rs4430796 and rs7501939 SNPs are located on 17q12
in the first and second intron of HNF1B gene, which encodes for a transcription
factor.

rs4962416 falls in the fifth intron of the CTBP2 gene that encodes for a
transcriptional corepressor activated under metabolic stress, highly expressed in
prostate tissue. Its expression is associated with decreased PTEN expression and
activation of the posphatidylinositol3-kinase pathway.

The SNPs rs5945619 and rs5945572 are highly correlated. The former is on Xp
between NUDT10 and NUDT11 genes, while the latter downstream of the NUDT11
gene, that encodes isoform of diphosphoinositol polyphosphate phosphohydrolase
that determines the rate of phosphorylation in DNA repair, stress responses and
apoptosis. These genes showed an association with PSA concentration and with
increased PCa risk.

rs9623117 and rs7291619 are on 22q13 and are in linkage disequilibrium. They
occurs within the TNRC6B gene that encodes a protein that mediate miRNA-
guided mRNA cleavage. Its expression is suppressed in hormone-refractory
metastatic PCa compared to prostate carcinoma and genetic variation and may
alter the levels of mRNA species under its control and, therefore, contribute to
carcinogenesis.
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9.7 Cell Adhesion Genes

The E-cadherin gene (CDH1) is located on 16q22.1; its aberrant expression has been
associated with malignant transformation of prostatic epithelium, metastatic poten-
tial and poor prognosis. The -160C/A polymorphism (A-allele) in gene promoter
causes a reduction in transcriptional activity. Several studies have investigated the
role of the A-allele in predisposition to, origin and progression of prostate cancer,
with contrasting results. In fact, some Authors report that the A-allele frequency
is higher in patients with prostate cancer than in control subjects, its association
with a higher stage and that its frequency is higher among European American
(Verhage et al. 2002; Kamoto et al. 2005; Bonilla et al. 2006), while others have
described contrary results. However, a recent meta-analysis concluded that the
A-allele carriers have an increased risk of prostate cancers, in both European and
Asian populations (Qiu et al. 2009).

CTNND2 (delta-cadherin) is a junction-associated protein, located on 5p15. It
favors cellular spreading by disrupting the E-cadherin-based adherens junction;
its expression is up-regulated in the majority of prostatic adenocarcinomas and is
correlated with higher Gleason scores (Lu et al. 2005).

Intercellular adhesion molecules (iCAMs) are a group of protein involved in cell
adhesion and signaling and play an important role in the development of several
cancers, such as prostate cancer. In fact, their altered expression may lead to tissue
architectural destruction and distant metastasis. Two gene polymorphism (�9A/C
and K469E) have been described to be associated with PCa risk in men with a
positive family history (Chen et al. 2006).

9.8 Vitamin D Pathway Genes

Several studies have examinated whether polymorphism in the vitamin D receptor
(VDR) gene are related to prostate cancer risk, but with conflicting results. Some
lines of evidence suggest that vitamin D can influence PCa risk (Coughlin and
Hall 2002). In prostate cancer, vitamin D exerts an anticancer action as well as
a reduction of metastatic potential, inducing increases in apoptosis, inhibition of
cell cycle progression and interaction with the insulin-like growth factor axis. The
antiproliferative effects of activated vitamin D are mediated trough a pathway
involving VDRs; therefore, polymorphism in VDR gene could affect the binding
of biological active vitamin D and modulate its antiproliferative effects. Loci of
more extensively studied SNPs are Cdx2, Fokl, Bmsl, Apal, Taql and the poly-A
microsatellite but no significative associations between these polymorphism and
tumor characteristics was found.



9 Gene Polymorphisms 175

9.9 THE FAS/FASL Pathway

Apoptosis, by modulating the elimination of unwanted or dangerous cells, plays
an essential role in cellular homeostasis. Deregulation of this mechanism, with
the consequent acquisition of resistance to apoptotic stimuli and alterations in the
apoptotic pathway, may lead to development of cancer (Lima et al. 2008). The
FAS/FASL system is one of the major pathways that regulate apoptosis. FAS is a
cell-surface receptor which interacts with its ligand FASL, both members of the TNF
superfamily. Decreased expression of FAS and/or increased expression of FASL
reduce the tumor-cell apoptosis, favoring malignant progression. Polymorphism in
the FAS or FASL gene have been associated with a high risk of several types of
cancer, as for bladder (Li et al. 2006a), cervical cancer (Lai et al. 2003, 2005;
Ueda et al. 2006), cutaneous melanoma (Li et al. 2006b), esophageal and head
and neck squamous cell carcinoma (Sun et al. 2004; Zhang et al. 2006), lung
and nasopharyngeal cancer (Bel Hadj Jrad et al. 2006; Wang et al. 2003; Zhang
et al. 2005). Lima et al., in 2008, have, for the first time, investigated the role of
polymorphisms in the FAS/FASL pathway in prostate carcinoma, with particular
attention to -670A/G polymorphism. From this study emerged that this isoform may
influence the PCa development, in fact, individuals carrying AG and GG genotypes
present statistically significant protection for extracapsular invasion. The Authors
explained these results considering that two form of FAS exist and derived from
alternative splicing of the same gene: a soluble form with anti-apoptotic effect
and a membrane-bound form, with pro-apoptotic properties. In previous studies,
overexpression of the soluble form had been correlated to more aggressive form of
PCa. In this study, Lima indicate that the reduction of Fas caused by G allele reduces
the sFAS expression levels, preventing the antiapoptotic effect of this protein.
However, others studies are needed to evaluate the role of polymorphism in this
pathway in the PCa prognosis.

9.10 Translational Relevance

Information on prostate cancer risk has a relevant impact on clinical and public
health. To date, only family history can help in identifying men with a genetic
predisposition to prostate cancer. The recent technological advances, however, allow
to investigate thousands of single nucleotide polymorphisms (SNPs) across the
genome, to search for specific genetic markers associated with risk of developing
this disease. Furthermore, several linkage and genome-wide association studies have
identified several polymorphisms that influence cancer risk (Salinas et al. 2009),
leading to hypothesize the development of genetic tests to predict risk. To date,
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none of the SNP associations reported has resulted useful in this kind of prevision
and SNP genotypes alone are of limited value for predicting risk of developing
prostate cancer or more aggressive disease. Therefore, further studies are necessary
to understand if these genetic variants may be of real utility in risk stratification and
in communicating risk-based information to individuals interested in early detection
and prostate cancer prevention (Salinas et al. 2009). However, though modest, the
potential of risk estimation for “single SNP” is mandatory combine various SNP
variants for use in a clinical setting and for the development of a clinical tool
(nomogram) that could help to integrate the information into practice (Nam et al.
2009). The identification of the effects of SNPs on gene expression and on the
pathogenesis of patients, could assist in diagnosis, prognosis and tailored patient
management (Huppi and Chandramouli 2004).

Therefore, men so identified to be at higher risk of prostate cancer may choose
to begin PSA based screening at an earlier age and take preventive measures, such
as an accurate diet and lifestyle or chemoprevention. For example, finasteride is
a chemopreventive agent for prostate cancer which has been described to reduce
prostate cancer risk by 25 % (Thompson et al. 2003). The preventive effect might be
stronger among men resulted at higher risk basing upon a polygenic model (Wray
et al. 2008). In fact, even if the effect is the same for men with high or low risk
for prostate cancer, the net gain would be larger for men at higher risk who may
choose to adhere earlier to a chemoprevention regimen. In any case, the potential
clinical utility of this approach has to be tested in a clinical trial. However, the
major limitation emerged from studies is that genetic prediction models do not
distinguish aggressive from non-aggressive cancer, and therefore may exasperate
the potential problem of over-diagnosis and over-treatment of prostate cancer.
Nonetheless, chemoprevention could decrease the number of men developing any
prostate cancer. Once more, the benefits and risks of this type of risk prediction
model needs to be further evaluated.
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Chapter 10
Expression Signature

Stefania Staibano and Angela Celetti

Abstract The prostate gland can be the site of multiple neoplastic transformation
events, many of which give rise only to latent prostate cancer that does not progress
to clinically detectable disease.

While evidence of major subtypes of prostate cancer is lacking at the
histopathological level, recent genomic analyses have provided increasing evidence
for molecularly defined subtypes (Tomlins et al., Neoplasia 10(2):177–188,
2008; Palanisamy et al., Nat Med 16(7):793–798, 2010; Taylor et al., Cancer
Cell 18(1):11–22, 2010) but expression profiling analyses of tumor specimens
have not strictly defined molecular signatures associated with distinct subtypes
that specifically correlate with disease outcome (Singh et al., J Androl
23(5):652–660, 2002a; Singh et al., Cancer Cell 1: 203–209, 2002b; Lapointe
et al., Proc Natl Acad Sci USA 101(3):811–886, 2004; Tomlins et al., Nat Genet
39(1):41–51, 2007a; Tomlins et al., Nature 448(7153), 595–599, 2007b). However,
oncogenomic pathway analyses that integrate analyses of gene expression, copy
number alterations, and exon resequencing may provide a unified approach for
distinguishing prostate cancer subtypes and stratifying patient outcome (Taylor
et al., Cancer Cell 18(1):11–22, 2010).

Integrating “omics” analyses with epigenetics will probably allow the identi-
fication of true different subtypes of prostate cancers characterized by divergent
biological behavior and/or response to therapy.
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This chapter aims to summarize the most exciting data emerging from recent
genetic and translational studies on prostate cancer, potentially shedding new light
on surprising aspects concerning its biology and extremely promising for the
generation of more effective and safe new molecular therapies.

10.1 Advances in Prostate Cancer Genomics

Stefania Staibano (�)

It is hard to summarize the spectacular advances made in cancer genomics in the
last few years.

The emergence of Next Generation DNA and exome sequencing of malignant
tumors is revealing thousands of mutations in every tumor type, many of which
seem unique to each prostate cancer patient. This confirms that the word “cancer”
is a figurative umbrella covering incredible spectra of diseases. This biological
complexity justify the extraordinary hurdle to translate the results of basic research
into real benefit for the single cancer patient (Barbieri et al. 2012).

A group of genes strongly correlates with prostate tumor differentiation stage,
according to the Gleason score (Singh et al. 2002a). The gene expression data
generated by DNA micro-arrays profiles predict with accuracy the patient evolution
after prostatectomy. These data support the notion that the PCa clinical behavior is
related to specific differences in gene expression profile that are detectable at the
time of diagnosis.

This looks particularly promising also for the identification of new targets for
therapy.

As an example, it has been found that the transmembrane serine protease called
hepsin is specifically over-expressed in non-metastatic carcinoma cells, and PCa cell
lines overexpressing hepsin show a dramatic reduction in growth and invasion, and
increase of apoptosis. It has been then hypothesized that the decrease/loss of hepsin
expression could be related with a poor prognosis of PCa and then hepsin could
represent a potential target for prostate cancer gene therapy (Magee et al. 2001).

An integrated analysis of 218 primary and metastatic prostate cancers, 12 cell
lines and xenografts, performed by assessment of DNA copy number, mRNA
expression, and focused exon resequencing identified as expected, changes in the
PI3K and androgen receptor (AR) pathways in nearly all metastatic samples and in
a number of primary cancer tissue (Taylor et al. 2010).

Unexpectly, the nuclear receptor coactivator NCOA2 gene on the 8q13 was found
mutated and acting as an oncogene in 11 % of primary tumors. NCOA2 and other
regulators of nuclear receptor function such as NCOR2, are involved in AR pathway
molecular signaling. This finding is of relevance, because it extends the potential
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importance of AR pathway perturbation even to disease initiation, while AR gene
amplification or mutation is generally restricted to metastatic, castration-resistant
disease (Tomlins et al. 2007a, b).

Several other emerging candidate cancer genes are SPTA1 and ADAM18.
ADAM18 encodes a disintegrin and metalloprotease domain family member
involved in sperm function. ADAM proteins exert key cell–cell and cell–matrix
interactions.

In addition, HSPA2, HSPA5 and HSP90AB1, heat shock genes encoding Hsp70
and Hsp90 isoforms, which form a chaperone complex, and the potassium channel
genes KCNQ3 and KCNT1, with putative negative tumor cell growth regulating
activity, have been found to harbor point-mutation in a percentage of prostate cancer.
Their functional significance, however, is still to be determined (Barbieri et al.
2012).

Anyhow, it has emerged that overall somatic point mutations and protein-altering
point mutations are uncommon in prostate cancer if compared with other malignant
tumor types, such as glioblastoma, lung cancer and melanoma (Barbieri et al. 2012;
Taylor et al. 2010; Kumar et al. 2011; Gimba and Barcinski 2003; Greenman et al.
2007; Pleasance et al. 2010a, b).

In addition, no single gene emerged as commonly mutated. TP53 and PTEN,
which act as prostate cancer tumor suppressors (Dong 2006; Pourmand et al. 2007),
showed preferentially copy-number loss rather than point mutation.

The genomic and clinical outcome data from one of this study population are
made available as a public resource, with the aim that it may contribute to define
clusters of low- and high-risk disease beyond Gleason score of tumors (Taylor et al.
2010).

Novel adaptive clinical trial designs, linking oncogenomic (genomic and pro-
teomic) alterations to treatment response and survival, are needed to translate
molecular advances into clinical practice.

Nowaday, they have already changed our understanding of prostate cancer, with a
progressive shift to a omics-based disease stratification approach and to molecularly
guided therapeutic intervention modalities.

Definition of genetic and translational context will provide the data sets required
to derive new classification schemes and the generation of a “biological road map”
of prostate cancer, favoring the formulation of treatments tailored on patient specific
tumor biology (Johnston and Lawler 2012). The end-point of this process will
be the transition from the poorly understood, clinically heterogeneous prostate
cancer superfamily to a collection of homogeneous molecular subtypes with the
development of biomarkers able to distinguishing aggressive from indolent disease
(Barbieri et al. 2012).

This approach holds promise as a way to maximize the benefit of targeted
treatments while minimizing unnecessary side effects, with a predictable positive
implications also for health economics (Johnston and Lawler 2012).
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10.2 Interplay Between Genetic and Epigenetic
Events in Prostate Cancer

Angela Celetti (�)

The interplay between genetic and epigenetic events has a causative role in the
development and progression of prostate cancer. In fact, loss or gains of several
chromosomes have been reported at chromosomes 8p and 8q, loss at 5q, 6q,10q,
13q, 16q, 18 and gains at 1q, 3q, 7 and Xq12, as indicated in Fig. 10.1 (Ribeiro
et al. 2006; Sun et al. 2007). Which genes might be affected by these genetic
events on each chromosome is still object of investigation. For example gains and
amplification at chromosome 8q may lead to overexpression of myc with increase
in the proliferation of the epithelial prostate neoplastic cells. On the other hand loss
of genes at 8p may determine the loss of the NKX3A gene whose activity consists
in the regulation of prostate epithelial development (Fig. 10.1).

In the most aggressive histotypes, the loss of function of PTEN, RB1 and TP53
tumor suppressors, by allelic loss or mutation, has been found in advanced stage of
the disease. Alterations of autocrine and paracrine growth factor signaling pathways
are also very common, even if RAS mutations have been rarely reported, so far.

In more than half of the prostate cancers, chromosomal rearrangements involving
oncogenic transcription factors of the ETS family have been reported (Kumar-Sinha
et al. 2008; Tomlins et al 2005).

The major translocation reported involves chromosome 21 and creates a fusion
gene, in which the androgen-responsive TMPRSS2 promoter induces the expression
of the ERG transcription factor (Tomlins et al. 2005). Two different mechanisms,
an internal deletion within the chromosome or a chromosomal rearrangement, in
which a fragment of the chromosome 21, separating the two genes, is translocated
elsewhere, could be envisaged at the basis of the translocation.

One of the genes involved in the chromosomal translocation, TMPRSS2
(androgen-regulated trans-membrane protease, serine 2), encodes for a serine

Fig. 10.1 Models of prostate cancer progression
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Fig. 10.2 Isoforms described to date of the TMRSS2-ERG fusion genes that give the idea of great
instability of this rearrangement

protease secreted by prostate epithelial cells in an androgen-dependent manner
(Afar et al. 2001), the other, ERG or ETV1, identified as member of the ETS family
of oncogenes (Tomlins et al. 2005), has been previously classified as the most
commonly overexpressed proto-oncogene in prostate cancer (72 % of all prostate
cancer) (Petrovics et al. 2005). Both intra-chromosomal and inter-chromosomal
genetic rearrangements create a fusion transcript involving ETS family members,
whose activity is regulated by post-translational modifications.

The TMPRSS2 and ERG genes are roughly 3 megabases (Mb) distant on
chromosome 21. In more than half of samples, fusion is the result of the deletion
of the intervening DNA sequence, but fusion may also occur by a translocation
(Yoshimoto et al. 2006; Tu et al. 2007). The exact points of DNA rupture, and
the exons conserved in the fusion product, vary between patients and more than
20 TMPRSS2:ERG variants have been reported so far (Tomlins et al. 2005, 2006;
Clark et al. 2007; Liu et al. 2007). Then, a nomenclature lists the variant transcripts,
depending on which exons of the genes are involved (Clark et al. 2007). The most
frequent variants result from the recombination between either exon 1 or exon 2
of TMPRSSR2 and exon 4 of ERG genes. Rarely, exons 2–5 have been reported.
The fusion transcript including exon 1 of TMPRSS2 and exon 4 of ERG is one
of the most described and identified as the T1/E4 following the above mentioned
nomenclature (Clark et al. 2007) with a rate of up to 86 % among the reported
fusions (Wang et al. 2006) (Fig. 10.2).
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Fig. 10.3 ERG regulated prostate cancer pathways

The list of genes and the variants, involved in fusion transcripts, is continuously
enlarging. In fact, new members of the ETS gene family (ETV4 and ETV5) have
been reported in a few cases of prostate cancer (Tomlins et al. 2006; Helgeson et al.
2008). On the 50 side of the translocation, new partners have also been described.
A chimeric product derived from a variant isoform of TMPRSS2, which mapped
4 kb upstream of the more common start site has been reported (Lapointe et al.
2007). About 50 fusion partners for ETV1, comprising SLC5A3, HERV-K22q11.23,
C15orf21, and HNRPA2B1 have been involved (Tomlins et al. 2007a, b; Helgeson
et al. 2008). SLC5A3 recombine to ETV5, as well as to ETV1, but not to ERG
(Tomlins et al. 2007a, b; Helgeson et al. 2008). Two additional fusion partners of
ETV4 kallikrein 2 (KLK2) and calcium-activated nucleotidase 1 (CANT1) have
been also reported (Hermans et al. 2008) (Fig. 10.3).

Overall, members of the ETS family are overexpressed in most prostate cancers
and alternative mechanisms to gene fusions can be also envisaged. In fact, overex-
pression of ERG, in absence of fusion has been reported as well, but the underlying
genetic mechanisms was not determined (Petrovics et al. 2005; Cai et al. 2007).
Interestingly, androgen-dependent cases have been reported where the expression of
androgen receptor and PSA levels are associated to the presence of TMPRSS2:ERG
fusion transcript and to overexpression of the ERG gene. However, some androgen-
independent cancers were found to harbour the TMPRSS2:ERG fusion transcript,
in absence of the androgen receptor. Nevertheless, these tumors might have been
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dependent from androgens at the beginning of the transformation process. FlI-1 and
ETV4 have been found overexpressed in androgen-independent advanced prostate
tumors.

Among the ETV1 fusion partners originally reported (Tomlins et al. 2007a, b)
three of them, TMPRSS2, SLC5A3, and HERV-K22q11.23, appear to be androgen-
responsive and two, C15orf21 and HNRPA2B1, drive the constitutive overexpres-
sion of ETV1 in the absence of androgen stimulation. In the next future, the interplay
between clinical studies and the molecular biology understanding of the tumor
should help to distinguish the course of the disease, in cases of cancer with different
fusion proteins, and should help to correlate the response to androgen ablation
treatments.

Fusion oncogenes of this type may explain how androgens come to drive cell
proliferation in prostate cancers, instead of promoting cell differentiation, favouring
cell survival and maintaining regulating secretory function as in the normal prostate
gland.

Nevertheless, several parallel pathways of genetic alterations may exist in
prostate cancer and key genetic changes may determine the aggressiveness of the
single tumor. Even if it is true that prostate cancers develop through several steps,
a better understanding of the sequential genetic events could help us to perform an
early diagnosis and to select a personalized therapy.

10.2.1 Characterisation of TMPRSS2erg Protein

The TMPRSS2-ERG gene fusion generates a chimeric transcript that combine
the prostate-specific promoter of the TMPRSS2 gene to the ERG oncogene open
reading frame (ORF). Thus, the protein sequences have been predicted from the
sequence of the fusion ORFs. Among the various fusion transcripts identified from
the cDNA sequence, some are predicted to generate premature stop codons and to
encode for a truncated protein, not functional. In some other cases, non-aminoacid
sequence derived from TMPTSS2 is integrated in the hybrid ORF and therefore a
fusion protein is not created (Clark et al. 2007).

10.2.2 Prevalence of Fusion Product Among Unselected
Prostate Cancer Cases

The presence of a gene fusion product can be determined with different methods,
like RT-PCR, that detect the level of RNA expression, like FISH, which measure the
inappropriate juxtaposition of non-adjacent sequences or the breakage of a single
gene and fusion to different chromosome sites, or like the array technology that
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reveal the imbalance expression of individual exons. The assay used, the volume of
cancer, the number of foci analysed and the number of chimeric variants studied
in the screening panel may affect the rate and quality of the fusions reported
so far. Moreover, a single cancer may have distinct foci that harbour different
rearrangements involving separate genes, or no rearrangement at all. These data
suggest that most of prostate cancers (more than 70 %) carry a fusion product
(Hermans et al. 2006; Perner et al. 2006; Soller et al. 2006; Rajput et al. 2007;
Tu et al. 2007; Nam et al. 2007). Since the number of variant species is continuously
enlarging and the detection methods become always more sensitive, the proportion
of prostate cancer samples containing more than one variant is predicted to increase
progressively. Moreover, the heterogeneity of TMPRSS2:ERG gene fusion may
account for the distinct foci of cancer that occur within a multifocal prostate cancer,
which might represent different malignant clones and could, then, limit and delay
the transfer to clinical use of the fusion products as putative biomarkers. Even if
a complete characterization of the fusion products identified so far is still missing,
an aggressive clinical behaviour has been reported together with the presence of
blue-tinged mucin, a cribriform growth pattern, macronucleoli, intraductal tumor
spread, and signet-ring cell features. Nevertheless, Gleason grade or stage, or PSA
levels has not been associated with a particular type of fusion gene, yet (Perner et al.
2006; Wang et al. 2006; Lapointe et al. 2007; Rajput et al. 2007; Tu et al. 2007).

10.2.3 Clinical Significance of TMPRSS2:Erg Gene Fusion

Histologic grade (measured by the Gleason scoring system), tumor stage and PSA
level at diagnosis are considered reliable prognostic factors for men with localised
prostate cancer, so far. Men with tumors of higher grade (Gleason 8–10), stage (T3–
T4), or PSA level (420 ng/ml) experience relatively high rates of progression to
metastasis, when compared with men with tumors of lower grade, local stage, or
low PSA level. Novel biomarkers are urgently needed in order to help to select
specific treatments for individuals.

In conclusion, the original discovery by Tomlins et al. in 2005 of a frequent
genetic event in prostate cancers has highlighted the role of chromosomal rear-
rangements in the aetiologies of common solid tumors. The importance of this
genetic fusion have been confirmed and the classes of fusion genes, that are now
considered among the most frequent recurrent rearrangements in cancer, have been
enlarging. The consequence of the various chimeric transcripts is the overexpression
of a member of the ETS family of oncogenes that tend to lose the androgen
dependence in advanced disease after an initial phase of androgen control, lost
later in advanced disease. The activation of this pathway may be causative to
prostate carcinogenesis, but the clinical implication of the various fusion products
is still under characterization. All the efforts are, in fact, now focalized to classify
patients with different risk, identify a screening test and finally target the ETS family
oncogene to open the way to novel molecular therapies.
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Chapter 11
Mapping Prostate Cancer Aggressiveness Loci

Maria Siano, Silvia Varricchio, and Gennaro Ilardi

Abstract Non-metastatic primary prostate cancers frequently contain multiple
independent histologic foci of cancer, and appear as truly multifocal tumors, since
these different foci are often genetically distinct (Aihara et al., Urology 43:60–
66, 1994; Bostwick et al., Cancer 83:1995–2002,1998; Macintosh et al., Cancer
Res 58:23–28, 1998; Mehra et al., Cancer Res 67:7991–7995, 2007; Clark et al.,
Oncogene 27:1993–2003, 2008). By converse, multiple metastases in the same
patient are clonally related, indicating that advanced prostate cancer is monoclonal
both at molecular and cytogenetic level (Mehra et al., Cancer Res 68:3584–3590,
2008; Liu et al. 2009).

Genomics will hopefully allow the sub-typing of prostate cancer for diagnostic
purposes, overcoming the limits of morphology to prognostically evaluate this
tumor (Taylor et al., Cancer Cell 18(1):11–22, 2010). The major part of studies
searching for genetic variants correlated with prostate cancer, have yielded prefer-
entially results indicating that several genetic loci impact early stages of prostate
cancer development. Few data exist, to date, on the existence of loci unequivocally
correlated with prostate cancer progression (Liu et al., Front Endocrinol (Lausanne)
3:72, 2012).

Recently, however, integrative genomic analysis techniques identified copy num-
ber variation as a biomarker predictive of prostate cancer outcome (Ding et al., Na-
ture 470(7333):269–273, 2011), and comparative oncogenomics have derived a
four-gene signature and an additional pathway-representative fourteen-gene panel
that resulted better prognostic biomarkers with respect to PSA (Ding et al., Nature
470(7333):269–273, 2011). Moreover, the use of a five-SNP panel was found useful
to predict the aggressive behavior of prostate cancer (Lin et al., Cancer Epidemiol
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Biomarkers Prev 20:954–961, 2011). Thus, the advancement of genetic techniques
has opened up the promising scenario of a next coming mapping of prostate cancer
aggressiveness loci.

According to the most recent scientific data, prostate cancer can be regarded as a
collection of cancer subtypes, each characterized by a different set of molecular
and/or genetic alterations (Barbieri et al. 2012). Numerous genomic rearrange-
ments are frequent in tumor cells, and are frequently responsible for a growth
advantage. In addition, inherited genetic variants both in the form of SNPs
and CNVs can predispose to disease progression, potentially favouring specific
somatic events. Prostate cancer has resulted attributable to hereditary factors
more frequently that most of the other solid tumors, so the germline risk factors
may predispose to prostate cancer development or even to its aggressive form
(Lichtenstein et al. 2000).

Specifically, genetic defects was estimated as 42 %, and a number of them likely
may have a role in modulating prostate cancer progression.

Single nucleotide polymorphisms (SNPs) represent the most common source
of genetic variation among humans. Several variants are associated with disease
progression and adverse outcome (Cheng et al. 2010; Holt et al. 2008, 2010; Huang
et al. 2010; Nguyen et al. 2010; Wright et al. 2010; Gallagher et al. 2010).

Lin. et al., in 2011, reported for the first time the independent association with
PCa-specific mortality for five SNPs involving ARVCF, LEPR, CRY1, RNASEL
and IL4 genes (Lin et al. 2011).

A series of previous studies, both genome-wide association studies (GWAS)
and family linkage analyses, reported on multiple independent (SNPs) as PCa risk
markers. In 2006, Amundadottir et al. (2006) and Freedman et al. (2006) detected
PCa risk SNPs in three regions of 8q24 using linkage analysis followed by fine-
mapping in an Icelandic family (Amundadottir et al. 2006) and using an admixture
scan approach in West African ancestry men. Multiple other loci have subsequently
been identified (Eeles et al. 2008, 2009; Thomas et al. 2008) and replicated (Zheng
et al. 2008). On one hand, the data clearly reflect the strong genetic component
involved in PCa incidence. On the other hand, the modest reported effects of the
risk SNPs diminish their suitability in disease detection applications. In addition, it
has been extremely challenging to demonstrate a functional role for these risk SNPs,
which are most often outside gene coding areas.

Most of the studies on the correlation between inherited genetic variants and
prostate cancer biology, have indicated then that several genetic loci impact early
stages of prostate cancer development, rather than its metastasizing phase. In some
instances, a clusterization of several genetic loci has been shown in prostate cancer
patients, but its biological effects are still unclarified.

However, in the last few years, several reports have indicated that this eveniences
could be more frequent than it has been previously thought.

8q24 is the most frequently involved chromosomal region in prostate tumors and
the rs1447295 is its most reported SNP. The genes closest to 8q24 are FAM84B,
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a breast cancer membrane-associated protein, and the oncogene c-MYC. In PCa
c-MYC is over-expressed while its reduction inhibits tumor growth; it has been
hypothesized that the risk variant in 8q24 modifies c-MYC regulation, predisposing
to genomic instability associated with aggressive tumors, hormone independence
and poor prognosis (Sturge et al. 2011).

Nine out twenty-six prostate cancer susceptibility loci have been recently
associated with prostate cancer progression after accounting for known predictors
of prostate cancer outcomes like PSA, Gleason score, stage, and primary treatment
(Sturge et al. 2011).

Five loci (ITGA6, NUDT10/NUDT11, KIAA1211, SLCC22A3, HNF1B/TCF)
were found as independent factors predictive for progression. The strongest associ-
ation was observed at the ITGA6 locus, that encodes for alpha 6 integrin, involved
in important features of tumor invasion, cell adhesion, migration, and signaling
(Xu et al. 2008). The predictive relevance of this locus has been recently outlined
in a follow-up study, and in a further study, outlining its association with a poor
prognosis of prostate cancer (Eeles et al. 2009). This association may relate to
pleiotropy in the biological effects of alpha 6 integrin. Alteration in integrin function
may affect, as a result of genetic variations, cell adhesion and migration activity
(Eeles et al. 2009). Prostate tumors persistently express alpha 6 integrin, which
in preclinical studies has been linked to increased tumor cell invasion, migration,
and metastasis, supporting the role of ITGA6 locus in prostate cancer progression
(Abhijit et al. 2011).

The SNP rs10486567 on chromosome 7 occurs in the second intron of the JAZF
zinc finger 1 gene (JAZF1) that encodes for a transcriptional repressor of NR2C2
(highly expressed in prostate tissue, interacts with androgen receptor to repress its
target gene expression). In a study from Gallagher et al. (2010), this SNP resulted
associated with biochemical recurrence and castration-resistant metastases.

On chromosome 10 two SNPs (rs10993994 and rs7920517) have been identified
in the region containing the microsemino-protein beta gene (MSMB) that encodes
PSP94, a member of the immunoglobulin binding factor family synthesized by
epithelial cells in prostate and secreted in seminal plasma. Loss of PSP94 is
associated with recurrence after prostatectomy, while, in androgen-insensitive PCa,
MSMB is silenced by EZH2. Leading to the conclusion that variants in MSMB gene
may represent a genetic risk marker for PCa.

A SNP (rs2735839) is located between the KLK2 and KLK3genes, that have
been reported to influence the PCa risk. SNPs in the promoter region of KLK3 have
been associated with PSA concentrations, and, in some cases, with PCa risk and
stage of disease (Kader et al. 2009).

rs4962416 falls in the fifth intron of the CTBP2 gene, that encodes for a
transcriptional co-repressor activated under metabolic stress, highly expressed in
prostate tissue. Its expression is associated with decreased PTEN expression and
posphatidylinositol3-kinase pathway activation.

rs9623117 and rs7291619 are on 22q13 and are in linkage disequilibrium. They
occurs within the TNRC6B gene that encode a protein that mediate miRNA-guided
mRNA cleavage. Its expression is suppressed in hormone-refractory metastatic PCa
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compared to prostate carcinoma and genetic variation may alter the levels of mRNA
species under its control and, therefore, contribute to carcinogenesis(for an extensive
discussion on these topics see Chap. 9).

The second most common source of variation among humans regards copy
number variants (CNVs), (Feuk et al. 2006; Freeman et al. 2006) defined as copy
number changes – gains or losses – of stretches of DNA between a few hundred
bases to several Mb wide. Similar to SNPs, CNVs are seen commonly in the
genome of healthy individuals (Redon et al. 2006; McCarroll et al. 2008) and confer
susceptibility to diseases such as Alzheimer’s disease, Parkinson’s disease, mental
retardation, autism, bipolar disorder and schizophrenia (Stankiewicz and Lupski
2010; Zhang et al. 2009).

The occurrence rates of SNPs and CNVs are different, where CNVs have higher
rates of occurrences, suggesting that these two types of polymorphisms potentially
carry different information (Korbel et al. 2008).

Among recurrent non-synonymous mutations, the most common in prostate
cancer involves SPOP, a gene encoding for the substrate-recognition component
of a Cullin3-based E3-ubiquitin ligase (Nagai et al. 1997; Hernandez-Munoz et al.
2005). Mutations in SPOP have been reported originally in three recent sequencing
studies (Kan et al. 2010; Berger et al. 2011; Zhuang et al. 2009). With an incidence
ranging from 6 to 13 % of human prostate cancers.

Structural analysis suggests that these mutations will inactivate SPOP function
by disrupting SPOP–substrate interaction, and this in prostate cell lines resulted
in increased invasion and altered gene expression; evidence of this expression
signature was identified also in primary tumor displaying characteristic somatic
copy number aberrations. This could be the starting point for the identification of a
new distinct molecular class of PCa.

Overall, the chance to incorporate genomic analysis into prostate cancer screen-
ing could lead in the next future to the formulation of risk-stratified population
screening, including a polygenic risk profile. Basing on the emerging data, it may
allow us to more efficiently subtyping prostate cancer by a prognostic point-of-view
with respect to the current age-stratified screening (Chowdhury et al. 2013).
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Chapter 12
Epigenetic Mechanisms: Histone Acetylation,
DNA Methylation, miRNA, Chromatin
Modifiers

Angela Celetti

Abstract In prostate cancer DNA methylation have been recorded as one of the
main epigenetic event. More than 50 genes, in fact, have been found hypermethy-
lated in prostate cancer (Li et al., Biochim Biophys Acta 1704:87–102, 2004; Nelson
et al., Front Biosci 12:4254–4266, 2007). However, only a small number of genes,
e.g. RASSF1A, RARB2, APC, and GSTP1 (Florl et al., Br J Cancer 91:985–994,
2004) or GSTP1, APC and MDR1 (Enokida et al., Clin Cancer Res 11:6582–
6588, 2005) can help to discriminate between benign and cancerous changes in
the prostate, by hypermethylation assay. The assays for genes hypermethylated in a
fraction of the cases may help to distinguish different subgroups of prostate cancer,
even if the low sensitivity of the assay is mostly dependent on the amount of DNA
obtained by the primary sample (biopsy, serum, urine). Then, the reliability of this
tests, unfortunately, is still low (Li et al., Biochim Biophys Acta 1704:87–102,
2004).

Hypermethylation at some genes may be dynamic during tumor progression, as
in the case of the ESR2 gene encoding the estrogen receptor (Zhu et al. 2004).
Otherwise, methylation at some genes is varying, affecting the methylation-specific
PCR assays. Hypermethylation of genes like GSTP1, detected in high percentage
of prostate cancers, occur at an early stage of cancer development and is detected
in the best-established precursor lesion of prostate cancer, high-grade prostatic in-
traepithelial neoplasia (HG-PIN). The specificity of genes methylation in carcinoma
is confirmed by the weak methylation of the same genes in morphologically benign
adjacent areas. A “field effect” which may promote the onset of carcinomas has also
been reported (Florl et al. 2004; Aitchinson et al. 2007).
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Fig. 12.1 Epigenetic contribution to prostate initiation, progression and metastasis

Interestingly, methylation of DLC1 gene is more frequent in samples from older
men and is associated with decreased expression (Guan et al. 2006; Hornstein
et al. 2008). Genes with this expression pattern may contribute to the first step of
prostate transformation. Understanding the mean of coordinate hypermethylation of
a group of genes at the onset of prostate cancer will reveal important insights into
the etiology of the disease. A model that mimic the hypermethylation pattern of a
defined group of genes in human prostate cancers is still in need of characterization.
However, cadmium, a known prostate carcinogen, has been reported to induce
hypermethylation of several genes (Benbrahim-Tallaa et al. 2007) and also viruses
have been implicated in hypermethylation of few genes in prostate cancer (Liu et al.
2005; Morey et al. 2008).

Thus, early phase of prostate cancer development are associated with hyperme-
thylation of specific genes, whereas global DNA hypomethylation has been linked
to cancer progression. Indeed, metastatic cases are characterized by pronounced
decreases in methylcytosine content and in particular hypomethylation of LINE-1
retrotransposons, usually methylated in normal cells (Florl et al. 2004). Hypomethy-
lation is mainly recorded in metastatic cases suggesting that the mechanisms
maintaining methylation at retroelements and other normally methylated sequences
are affected during prostate cancer progression (Fig. 12.1).
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12.1 Polycombs and DNA Methylation in Prostate Cancer

EZH2 high levels were detected in metastatic prostate cancers suggesting a link
between polycombs and prostate cancer (Varambally et al. 2002; Hoffman et al.
2007; Bracken et al. 2003; Saramaki et al. 2006; Berezovska et al. 2006). Loss of
negative regulators of EZH2, like RB1, microRNAs miR26 (Sander et al. 2008)
and miR101 (Varambally et al. 2002), or gene amplification in metastatic cases
(Saramaki et al. 2006; Berezovska et al. 2006) may account for the EZH2 increase.

The polycomb group (PcG) proteins have originally been discovered in
Drosophila melanogaster as repressors of homeotic genes. Polycomb proteins
are organized in two distinct multiprotein complexes, PRC1 and PRC2 (Figure 5).
PRC2 is thought to initiate silencing. The complex include EED, SUZ12, EZH1
and the histone methyltransferase (HMT) EZH2, which can trimethylate histone H3
lysine 27 (H3K27) and in some cases add two methyl groups to H3K9. Methylation
of H3K27 allows recruitment of the PRC1 complex which is implicated in stable
maintenance of gene repression. PRC1 components are members of the polycomb
and polyhomeotic family (CBX/HPC and EDR/HPH), RING1A, RING1B, YY1
and BMI-1, which ubiquitinates histone H2A at K119 (Fig. 12.2).

A cell type-specific composition of PcG complexes (Gunster et al. 2001),
with related differences in specificity, is suggested to explain differences in the
expression of the various components between tissues and to identify specific cell
types and developmental stages.

Fig. 12.2 Epigenetic gene silencing by Polycomb protein complexes
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Fig. 12.3 Relationship between epigenetic changes and prostate cancer progression

For example, BMI is a marker of proliferation (Berezovska et al. 2006;
van Leenders et al. 2007) and in prostate cancer is associated to higher stage of
prostate cancer (Hoffman et al. 2007). Furthermore, PcG proteins like EZH2 and
BMI-1 are considered crucial for the maintenance of adult multipotent stem cells
(Valk-Lingbeek et al. 2004) (Fig. 12.3).

In prostate cancer, increased expression of EZH2, but not of other epigenetic
regulators like BMI-1 and DNMTs, has been reported to correlate with the number
of hypermethylated genes (Hoffman et al. 2007). Notably, not all hypermethylated
genes are PcG targets nor do all PcG targets become hypermethylated. DNA hy-
permethylation in prostate cancer seems not particularly dependent from Polycomb
genes. Overall, over-expression of EZH2 and modifications of polycomb complexes
are associated with prostate cancer progression.

12.2 Epigenetics of the Androgen Response
in Prostate Cancer

Growth of prostate cancers is dependent on androgens that signal through the andro-
gen receptor. Fusion oncogenes, that contain androgen-responsive promoters, may
be responsible of this dependency, in addition to the well known effect of androgens
on function and survival of prostate epithelial cells. Therefore, anti-androgenic
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treatment represent a milestone of prostate cancer therapy. Unfortunately, cancers
may become resistant to this therapy by several mechanisms (Feldman and Feldman
2001). Nevertheless, other oncogenic signals may account for some metastatic,
hormone-refractory cancers that do not contain androgen-responsive fusion genes.
Still, AR promoter hypermethylation (Jarrard et al. 1998) may respond of some
advanced stage prostate cancers. Lower androgen availability may be imputated
to AR overexpression for gene amplification, to AR point mutations that affect
ligand binding specificity, or to increased activity of signaling pathways that allow
ligand-independent AR activity. More than 100 co-regulators have been described
so far for the AR (Heemers and Tindall 2007) and they, through interaction with
the transcriptional activation domains, may mediate, allow or inhibit activation
of transcription by AR without directly binding to DNA. In addition, specific
transcription factors, like FOXA1/HNF3, HOXB13, and GATA-3, bind to DNA and
influence AR activity. Finally, b-Catenin, as coregulator, may facilitate AR transport
to the nucleus, whereas ARNIP, may target the receptor for degradation.

Well-known AR coregulators include chromatin remodeling complex compo-
nents, such as BRG1 and BAF57, protein acetylases, such as the steroid hormone
coactivators SRC1, SRC 2 and SRC 3, p300, CBP and PCAF, deacetylases,
including SIRT1 and several class I and II HDACs, protein methylases, such as
PRMT1, PRMT5, and G9a, and demethylases, such as LSD1 and Jumonji-domain
proteins (Heemers and Tindall 2007). Of note, some of these enzymes, especially
acetylases and deacetylases, may modify the AR itself in addition to histones.

Recently, histone demethylases have been recognized as AR coregulators and the
mechanisms of action is reported in the Fig. 12.4.

Importantly, increased expression of LSD1 (Metzger et al. 2005) and JARID1B
(Xiang et al. 2007) has been associated to prostate cancer advanced stages and could
account for resistance to anti-androgenic therapy (Fig. 12.4).

In general, androgen signaling is necessary at least in the first step of the
neoplastic process to induce prostate cancer proliferation and could contribute to
select for further modifications in AR coregulators. Moreover, additional effects,
beside the androgen signaling, could account for further advantages to the growing
tumors. In the prostate epithelial cell, few genes are dependent on androgens through
the AR, therefore we can believe that modifications in some AR coregulators that
modify chromatin in prostate cancer cells might drive the proliferative process.

12.3 Future Developments and Present Conclusions

The epigenetic changes that occur in prostate cancer are still unknown. In the
next future, genome-wide analysis will contribute to a better understanding of
altered methylation in prostate cancer. An important question is to understand if



206 A. Celetti

Me1
Me2
Me3

Me1
Me2
Me3

Me1
Me2
Me3

Me1
Me2
Me3

K9

K9

K9

K9

AR AR

AR

and/or

AR AR

ARAR

AR

LSD1

LSD1

LSD1

X

?

JHDM2

JHDM2

JHDM2

Current Opinion in Genetics & Development

Ligand

K9 K9

K9 K9

K9

a

b

c

d

Fig. 12.4 Demethylases
regulate the transcriptional
activity of the androgen
receptor. LSD1 specifically
associates with chromatin on
the promoter regions of
androgen receptor (AR) target
genes in either the absence or
the presence of ligand (a).
Chromatin association is
independent of the presence
of the androgen receptor.
Once the ligand-activated
androgen receptor
translocates to the nucleus
and binds to the ARE, LSD1
and AR form a
transcriptionally active
multi-protein complex that
demethylates H3K9me1 and
H3K9me2 but fail to
demethylate H3K9me3 (b). In
addition, the ligand-activated
AR recruits a second
demethylase, JHJDM2, which
in concert with LSD1
regulates demethylation of
H3K9me2, but never
H3K9me1 or H3K9me3 (c).
Given that ligand-dependent
activation of AR target genes
is associated with
demethylation of H3K9me3,
there must be additional
demethylases that remove
H3K9 trimethyl marks (d)



12 Epigenetic Mechanisms: Histone Acetylation, DNA Methylation. . . 207

methylation changes in individual cancers are related or not to some particular
group of chromosomal or genetic defects in prostate cancer. In addition, large-
scale analyses of chromatin structure will contribute to understand which aberrant
androgen action and modifications in coregulators could contribute to chromatin
changes at individual genes and genome-wide.

Changes in microRNAs can be considered other epigenetic events that could
contribute to prostate cancer even if they are subject to epigenetic regulation
themselves. We already reported that the polycomb protein EZH2 is negatively
regulated by miR-26a (Sander et al. 2008) and by miR101, which is often lost in
prostate cancer (Varambally et al. 2008). Moreover, Polycomb components have
been reported to bind to miR gene clusters (Guil and Esteller 2009; Marson et al.
2008). Interestingly, deregulated expression of microRNAs in prostate cancers
(Ozen et al. 2008; Porkka et al. 2007; Ambs et al. 2008) which may affect important
cancer-related genes like RAS, BCL-2, CCND1, WNT3A, E2F1 and CDKN1A
have been reported. Moreover, differential miR expression patterns could help to
discern between benign tissues and carcinoma, androgen-dependent and androgen-
refractory tumors (Porkka et al. 2007) organ-confined tumors and extraprostatic
disease (Ambs et al. 2008). Thus, a more accurate analysis of miR expressions in
prostate tissues and identification of their targets may allow the identifications of
molecular markers in order to improve personalized therapy decisions. In particular,
crucial microRNAs could represent targets for small molecule therapies and re-
expression of miRNA could result in growth arrest and apoptosis (Bonci et al. 2008).

Interestingly, changes in polycomb complexes, may also account for the estab-
lishment of a more embryonal-like cancer stem cell (Rajasekhar and Begemann
2007), that represent a novel issue in the prostate field research. The stem cells
of normal prostate tissue are thought to give rise to essentially three cell types,
basal, luminal (secretory) and neuroendocrine cells. By contrast, prostatic cancer
stem cells can give rise to a limited number of aberrant phenotypes, such as luminal
secretory cells, characterized by PSA expression and lack of GSTP1, a variable
proportion of neuroendocrine cells, and under some conditions cells mimicking
osteoblasts, which may uncover the ability of the prostate cancer cells to metastasize
to bones (Koeneman et al. 1999) (Fig. 12.5).

CD133 antigen positivity identifies prostate cancer stem cells that also express
the androgen receptor (Vander Griend et al. 2008). In this way we could hypothesize
that androgens could support cancer stem cells also on the basis of androgen-
regulated fusion oncogenes, while basal cells, which lack the AR, do not contribute
to prostate cancers. The epigenetic changes in prostate cancer, i.e. consistent
hypermethylation of a specific set of genes and aberrant polycomb activity, could
also contribute to limit the aberrant differentiation potential of the cancer stem cells,
in concert to chromosomal alterations.
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Overall, prostate cancer development is a multifactorial and multisequential
process, driven by genetic changes with the contribution of abnormal epigenetic
regulation. In the next future diagnostic and therapeutic procedures that would
take into considerations the genetic and the epigenetic alterations may allow an
optimized treatment of each affected patient.
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Chapter 13
Molecular Markers for Patient Selection
and Stratification: Personalized Prognostic
Predictive Models

Stefania Staibano

Abstract The emerging data from US statistics on prostate cancer screening
(Carlsson et al., J Clin Oncol 30(21):2581–2584, 2012; Brawley, Ann Intern Med
157(2):135–136, 2012) and the early results of the 11-year follow-up European
Randomized Study of Screening for Prostate Cancer (ERSPC) involving eight
countries (Belgium, Finland, France, Italy, Netherlands, Spain, Sweden and Switzer-
land), have evidenced that the main downside to large-scale PSA screening is
over-diagnosis of biologically “indolent” cancers. They constitute about 30 % of
detected cancers, and cause the facing of patients with the side effects of unnec-
essary treatment. Currently, the only way for men suffering for these “biologically
insignificant” prostate cancers to delay unnecessary therapies is to offer them an
Active Surveillance programme based upon regular check-up schedules.

It seems evident that there is an urgent need to find new reliable molecular
markers able to predict the biological aggressiveness of each case of prostate cancer,
in order to (Hamburg and Collins, N Engl J Med 363(11):1092, 2010) warrant the
successful establishment and performance of personalized medicine. This, in turn,
necessitate of substantial investments in infrastructure and standards, which may
hasten a thorough understanding of the genetic basis of this disease.

Currently, clinical decision for prostate cancer mostly depends on the initial
diagnosis on tumor biopsy. This approach has some weak points in terms of
representativity of the mutational background of the entire tumor bulk, due to the
frequent intratumor heterogeneity. Quite obviously, the primary tumor likely often
lacks several genomic alterations that will characterize the metastatic deposits.
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For this reason, new surrogate biomarkers, such as circulating cancer cells
(CCC), and microRNA, could represent biological samples which may add impor-
tant “prognostic” information to histological diagnosis and PSA.

Genetic and epigenetic profiling and next-generation sequencing (NGS) of
matched primary localized prostate cancers and mCRPC, are improving our knowl-
edge of the multistage and highly heterogeneous nature of prostate cancer.

Besides AR splicing variants in CRPC, several new putative NGS-driven prostate
cancer biomarker are being discovered, and sophisticated computational algorithms
and systems biology approach are currently being explored to aid in the identifica-
tion of the driving oncogenic events that change a subset of primary prostate cancers
in the lethal bone-metastasizing CRPC. Where biomarkers will guide the clinical
decision

This chapter aims to provide an up-date on existing and potential biomarkers
predictive for CRPC, with the hope that they may soon aid in patients selection and
prostate cancer treatment.

Screening procedures for prostate cancer detection with prostate specific antigen
(PSA), have led to a profound stage migration, with the majority of prostate tumors
detected today being of low grade, limited volume and clinically localized. To date,
new reliable biochemical criteria for selecting men harbouring tumors most likely to
progress following treatments and thus should receive the most aggressive treatment
are lacking, this raising the possibility of overtreatment of patients with otherwise
non-aggressive prostate cancer (Aggarwal and Ryan 2011; Merino et al. 2011).

Clinical and pathological features such as Gleason grade and tumor stage, are
currently used to predict which prostate tumors have poor prognosis and the highest
potential for recurrence and/or death (Merino et al. 2011).

To date, online nomograms predicting the outcomes of prostate cancer therapy
following surgery and radiation therapy are available. The two most widely used are
the Kattan nomograms (Kattan et al. 1997, 1998, 2000, 2001) and the Partin tables,
(Partin et al. 1993, 2001) incorporating istopathological features, PSA levels, age,
and treatment type to predict biochemical and overall outcome following therapy.

With such prognostic tools, most men diagnosed with this disease undergo radi-
cal prostatectomy or radiation treatment even when these treatment are unnecessary,
suffering from side effects that have a relevant fall-out on quality of life.

In the last few years, the evolution of imaging in prostate cancer care has
registered a rapid evolution, and new-generation FDG-PET imaging shows an
increasing rate of correspondence with Gleason grade, clinical stage, and serum
PSA level (Jadvar 2009).

Immuno-PET imaging for antibody drug conjugates offers exciting potential
diagnostic applications (Nakajima et al. 2011). Similarly to FDG-PET for that con-
cerning glucose methabolism, other metabolomics, as citrate, polyamines, lactate,
choline, and creatine, may be detected by HHR-MAS spectroscopy of biopsy tissues
and this looks very promising as reliable non-invasive prostate cancer detection
based on cancer cells metabolic changes (Spratlin et al. 2009; Roberts et al. 2011),
in addition to sarcosine and alanine (Tessem et al. 2008; Sreekumar et al. 2009).
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The recent advancement in omics-based technology has provided unprecedented
opportunities to look to the intricate signaling networks crosstalking in prostate
cancer.

Moreover, the increasing availability of micro-dissected tumor tissue has sensibly
clarified the different but complementary role of epithelial prostate cancer cells and
tumor stromal cells in determining cancer aggressiveness and resistance to therapy
(Liu et al. 2012).

Novel biomarkers that might have prognostic significance have been then
identified and in the major part of cases are still under evaluation.

This is the case for the tight junctional proteins Claudins, involved either in
paracellular transport and signal transduction (Szász et al. 2010). Claudins control
also a broader range of processes, like cell growth, and promote carcinogenesis
and cancer progression in several solid tumors. In prostate cancer they seem to
have prognostic value. Szasz et al. showed in fact that different claudin expression
levels may variably influence clinical behaviour of the tumor. Claudin-1 was found
almost absent in patients with clinically advanced or metastatic disease, that in turn
showed high levels of claudin-4. A further study on 141 prostatic adenocarcinomas,
reported a variable immunohistochemical expression of claudins, with claudin-3
and -4 overexpressed in metastatic disease (Szász et al. 2010).

Another study showed instead the expression of claudin-1 in benign prostatic
hyperplasia and prostatic intraepithelial neoplasia, and has been proposed as a
novel marker for benign prostatic lesions. Further studies on more representative
series of patients are needed before translating these findings in clinical practice
(Fu et al. 2012).

The possible role of several cytokines specifically found elevated both in local
and metastatic prostate cancer samples, like interleukin-4 (IL-4), IL-6 and IL-10,
transforming growth factor beta (TGF“) serum levels, and TGF“1 have been found
elevated (Schroten et al. 2012) has been discussed elsewhere in this book.

Particular interest has been generated by the reports signaling that the activation
of Telomerase enzyme looks as a critical step in cell immortality and aggressiveness
of prostate cancer cells. As it is well known, Telomerase is a ribonucleoprotein
comprised of an integral RNA template (hTR) and a reverse transcriptase protein
component (hTERT). The progressive shortening of telomeres is considered a major
cause of cellular senescence. PCa show a relevant increased telomerase activity from
the stage of in situ neoplasia (Gimba and Barcinski 2003).

This indicates that malignant prostate cells become able of bypassing senescence,
reactivate telomerase. This leads to stabilization of telomere ends and continued
cellular proliferation.

For this reason, the finding of high telomerase expression (about tenfold with
respect to normal epithelial prostate cells) in prostate biopsies is considered strongly
suggestive for malignant conversion, in addition to PSA levels, and is detected in
90 % of prostate carcinomas (Nanni et al. 2002; Akalin et al. 2001).

By converse, the absence of telomerase expression may be considered as a strong
indicator of benign lesions (Akalin et al. 2001).
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Most of the proposed new markers for prostate cancer patient selection and
stratification are constituted by secreted proteins, detectable at tumor tissue level
and/or in the bloodstream of patients.

However, the National Cancer Institute defines a biomarker as “a biological
molecule found in blood, other body fluids, or tissues that is a sign of a normal
or abnormal process, or of a condition or disease.” Based on these postulates,
then, also cells, molecules involved in epigenetic regulation, DNA or RNA, may be
considered as candidate biomarkers, which can influence therapy selection and/or
may be determinant for the generation of new drugs (Liu et al. 2012).

In line with this idea, methylated genes eventually present in tumor biopsy sam-
ples and urine samples from prostate cancer patients. including GSTP1, DNMT3A2,
and EZH2, reflecting alteration in epigenetic regulation of cancer cells, have been
proposed as attractive biomarkers for prostate cancer (Liu et al. 2012; Lofton-
Day et al. 2008; Cairns et al. 2001; Rosenbaum et al. 2005). Assays for these
are commercially available, although they awaits definitive approval by regulatory
agencies (Fernandez et al. 2011).

As well, attempts to stratify prostate cancers on the basis of RNA signature and
histology have been recently made, but they yielded disappointing results (Hegde
et al. 2007).

However, Tomlins et al. (2011) demonstrated that urine PCA3, a prostate cancer-
specific non-coding mRNA, when co-found with urine TMPRSS2:ERG fusion
transcript, enhances the predictive value of serum PSA for prostate cancer risk
and clinically relevant cancer on biopsy. As it has been reported elsewhere in
this book, non-coding microRNAs (miRNAs) are single-stranded, highly conserved
short RNA molecules, that repress gene expression in a sequence- dependent manner
(Tomlins et al. 2011).

Deregulated miRNA expression correlates in several cases with clinically ag-
gressive or metastatic cancers (Tavazoie et al. 2008; Bryant et al. 2012). Changes
in circulating, and are also detected in exosomes, membrane vesicles secreted by
normal and neoplastic cells and detectable in almost all biological physiological
and malignant fluids (Valadi et al. 2007; Mitchell et al. 2008).

miRNA levels have been demonstrated to associate with prostate cancer.
Br. J. Cancer 106, 768–774., and circulating miR-141 has been found to identify
prostate cancer patients from healthy men (Mitchell et al. 2008).

miR-21 predicted the resistance to docetaxel-based chemotherapy in patients
with mCRPC (Zhang et al. 2011) and increased levels of exosomes–associated
miRNA were found in blood of patients with late-stage prostate cancer (Duijvesz
et al. 2011).

Currently, microRNA gene signatures are being evaluated in clinical trials, and
the research on these molecules is actively on, also because they resist to formalin-
fixation and paraffin-embedding of archival prostate tissue, appearing then as an
ideal candidate as a cancer biomarker to be used in a diagnostic daily context.

Lastly, also circulating cancer cells (CCCs) Alix-Panabières (2012) have been
proposed as a new biomarker for prostate cancer. Evidence exists that when the
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CTC number is solid cancers is reduced to fewer than five cells per 7.5 ml of
blood, survival outcomes often improve, and this finding may influence treatment
decisions.

The quantification and typization of CCCs in the peripheral blood and dis-
seminated cancer cells (DCCs) in bone marrow may then provide important
prognostic information and might help to monitor response to therapy of patients
with metastatic castration-resistant prostate cancer (Delacruz 2012).

The challenges of interpreting such a number of highly complex data sets has
lead several research groups to generate mathematical models of the individual
natural history of prostate cancer, to elaborate with a more objective detail the in-
dividual natural history of cancer and retrospectively assess the effects of treatment
(Hanin 2013).

That a stratified screening for prostate cancer incorporating genomic may be
weighted by scientific, ethical, and logistical implications is a matter of fact. For
instance, the use of genetic data may lead to discrimination against high-risk
individuals by insurers, or constitute a hard ethical burden for the tutors in the case
of genetic testing of minors (Chowdhury et al. 2013).

For these considerations, it will be imperative to unequivocally recognize the
pros and cons of such a delicate personalized screening, before we choose it instead
of existing screening methods.

Even considering these problems, it seems evident that sending off a tumor
sample for a broad screening of genetic aberrations, instead of just a single
test, may increase the chance of finding the right therapy for the right patient,
likely expanding his survival. The search for new prognostic and/or diagnostic
biomarkers is currently in an extraordinary phase of intense investigation, fueled by
the increasing knowledge of the molecular processes that underlie prostate cancer
progression.
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Chapter 14
Targeting Tumor Angiogenesis

Stefania Staibano and Paolo Antonio Ascierto

Abstract Four decades after the seminal work of Judah Folkman, in 1971, cancer
therapies based on the suppression of neo-angiogenesis (Folkman, N Engl J Med
285:1182–1186, 1971) are becoming a reality (Verheul et al., Clin Cancer Res
14(11):3589–3597, 2008).

The shift toward the up-regulation of pro-angiogenic factors secretion from both
tumor and stroma, results from the interplay between endothelial cell activation,
proliferation, extracellular matrix degradation, migration, canalization. It leads to
the generation of a chaotic vascular vessels network in prostate cancer tissue
(Ahmed and Bicknell, Method Mol Biol 467:3–24, 2009), which can be detected
also by modern imaging techniques based on magnetic resonance, ultrasound, and
nuclear imaging through targeting of key angiogenic factors (Russo et al., BJU Int
110(11 Pt C):E794–E808, 2012).

This hopefully will lead to further improvements in prostate cancer diagnosis
and staging. Preclinical evidence indicates that angiogenesis inhibitors can improve
the efficacy of conventional cytotoxic agents mainly by normalizing tumor blood
flow, thus improving drug delivery. Although significant biological activity of
most vascular growth factors-interfering agents is demonstrated in preclinical
models, single-agent activity is almost universally poor (Aragon-Ching et al.,
J Oncol 2010:361836, 2010). Due to the redundancy within the signalling pathways
that promote angiogenesis, combining anti-angiogenic agents with different

S. Staibano (�)
Department of Advanced Biomedical Sciences, Pathology Section, Faculty of Medicine
and Surgery, University of Naples “Federico II”, via S. Pansini, n.5, Naples, Italy
e-mail: staibano@unina.it

P.A. Ascierto
Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Department
of Melanoma, National Institute of Tumors Fondazione “G. Pascale”, Via Mariano
Semmola 1, 80131 Naples, Italy
e-mail: paolo.ascierto@gmail.com

S. Staibano (ed.), Prostate Cancer: Shifting from Morphology to Biology,
DOI 10.1007/978-94-007-7149-9 14, © Springer ScienceCBusiness Media Dordrecht 2013

221

mailto:staibano@unina.it
mailto:paolo.ascierto@gmail.com


222 S. Staibano

mechanisms of action seems likely to significatively potentiate their therapeutic
efficacy (Corcoran and Gleave 2012; Ellis and Hicklin, Nat Rev Cancer 8:
579–591, 2008; Verheul et al., Cancer Chemother Pharmacol 60:29–39, 2007).

14.1 Prostate Tumor Microenvironment, Hypoxia
and Tumor Neoangiogenesis

Stefania Staibano (�)

Prostate cancer-associated angiogenesis is a well recognised process (Russo et al.
2012).

Microvessel density (MVD) usually is higher in primary tumors of patients
with metastatic disease compared with localised prostate cancers (Weidner et al.
1993; Fregene et al. 1993; Strohmeyer et al. 2000; Gravdal et al. 2009). As
well, higher MVD correlates with advanced pathological stage (Lee et al. 2004),
increased PSA levels (Lee et al. 2001a, b), higher tumor grade (Park et al. 2007),
increased metastatic potential (Aragon-Ching and Dahut 2009; Park et al. 2007),
and decreased survival of patients (Park et al. 2007; Lee et al. 2001a, b).

Moreover, tumor blood vessels show multiple structural and functional abnor-
malities (Russo et al. 2012), increased tortuosity, blind ends and high cellular
proliferation rate, leading to dysfunctional and heterogeneous tumor tissue micro-
circulation, with frequent avascular tumor areas, hypoxia, acidosis, and glucose
deprivation (Shannon et al. 2003; Teicher et al. 1990; Vaupel et al. 1989; Airley
et al. 2000; Brown 1999; Folkman 1971).

This results in a net efflux of fluid into the interstitial space, devoted of functional
lymphatics, so that it distends the extracellular matrix and increases the interstitial
pressure (An et al. 1998).

All these features are associated with metastatic risk (Siim et al. 1996; Wang
et al. 1992; Peters et al. 2001).

VEGF is a 46-kDa dimeric protein also known as a vascular permeability factor
(VPF), and represents the most potent growth factor acting in stimulating cell
proliferation, angiogenesis and lymphangiogenesis (Ferrer et al. 1998; Shweiki et al.
1995). VEGF, in prostate cancer progression, is regulated by hypoxia (Shweiki et al.
1992, 1995; Minchenko et al. 1994; Walker et al. 1994), cytokines, and androgens;
moreover, several oncogenes, as Ras-, Raf-, and Src, the inactivation of tumor-
suppressor genes as p53 and von Hippel – Lindau (Ravi et al. 2000) concur to its
modulation.

VEGF immunohistochemical expression is highest in metastatic prostatic cancer
tissue, but it does not predict prostate cancer progression (Botelho et al. 2010), nor
correlates with VEGF expression and clinical and pathological features of tumors
(Shariat et al. 2004).
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VEGF acts in a paracrine manner by binding its receptors (VEGF-R1 and VEGF-
R2) expressed on the surface of endothelial cells. VEGF binding activates the
receptor’s tyrosine kinase activity, and via the stimulation of several molecular
pathways, as ERK and Akt, leads to vasodilatation, increased vascular permeability,
cell proliferation, degradation and invasion of the underlying stroma (Aragon-Ching
and Dahut 2009).

However, these vascular growth factors have multiple functions. As an example,
prostate cancer cells overexpress also the VEGF receptor (VEGFR), so VEGF
and VEGFR reciprocally act in an autocrine manner promoting, besides neo-
angiogenesis, prostate cancer cell proliferation and survival (Jackson et al. 2002).
In addition, it inhibits tumor cell apoptosis by inducing the expression of the anti-
apoptotic protein Bcl-2 (Pidgeon et al. 2001).

Addition of VEGF inhibitors to antiandrogen therapy results in increased oxygen
delivery to hypoxic tumors areas and thus further potentiates radiation therapy (Zhu
and Kyprianou 2008).

Prostate tumor cells respond to hypoxia with the over-transcription of the
hypoxia-inducible factor-1a (HIF-1) (Rang et al. 1999), which in turn overstimulates
VEGF production and leads to neo-angiogenesis (Cvetkovic et al. 2001). VEGF
production and signaling is partly dependent on mTOR induced expression of
HIF-1a (Treins et al. 2002).

HIF-1a is hydroxylated at the proline residue and degraded by interaction with
the von Hipple-Lindau protein complex and proteosome machinery (Semenza 2003;
Forsythe et al. 1996) in normoxic conditions. In prostate cells, androgens can
activate HIF-1 through an autocrine loop, and HIF-1 interacts with AR on PSA
gene promoter, thereby activating its expression (Zhong et al. 2008).

Under hypoxic conditions, as in advanced prostate cancer, HIF-1a protein is
stabilized and translocated into the nucleus for specific gene expression regulation
including VEGF, and regulates intracellular pH, metabolism, cell invasion and
autophagy, preventing death of aggressive cancer cells (Pouyssegur et al. 2006).

HIF-1a is then a preferential target for the development of anticancer drugs (Pili
and Donehower 2003).

Histone deacetylase (HDAC) inhibitors have shown an anti-angiogenic activ-
ity mediated in part by HIF-1a down-regulation in both tumor and endothelial
cells, with the consequent down-regulation of VEGF and other HIF-1a regulated
angiogenesis-related genes (Qian et al. 2004). Class II HDAC are important mod-
ifiers of HIF-1a. Recently, it has been reported that the HDAC inhibitor LBH589
reduced tumor growth and angiogenesis in a preclinical prostate cancer model (Qian
et al. 2006a, b).

Prostate cancer cells overexpress also TGF “, which promotes either extracellular
matrix production and angiogenesis (Russell et al. 1998), favouring also osteoblastic
bone metastases in experimental systems. The increase of TGF “ RI is associated
with high-grade and higher clinical stage of prostate cancer.

TGF“ RI expression correlates with tumor vascularity, tumor grade, and metasta-
sis (Wikström et al. 2001). On the opposite side, TGF “ RIII expression is decreased
or lost in most human prostate cancers, where it correlates with advanced tumor
stage and high risk of PSA recurrence.
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The occurrence of intraepithelial prostate cancer correlates instead with the loss
of TGF “ RII responsiveness in stromal fibroblasts. Thus, partially blocking TGF“

through angiogenesis inhibitors, e.g. angiostatin and endostatin could potentially
reverse the continuous stimulation of tumor angiogenesis (Deryugina and Quigley
2006).

Prostate cancer has the ability to produce MMPs, TGF“; and cyclooxygenase 2
(COX-2).

Several endogenous inhibitors of angiogenesis have also been described in
prostate cancer, namely angiostatin, endostatin, PSA, TSP1, interleukin 8, and
interferons.

Overall, the microenvironment of prostate cancer is a critical determinant in
cancer genesis (Chung et al. 2005).

14.2 Targeting the Angiogenic Pathways
in Castration-resistant Prostate Cancer

Paolo Antonio Ascierto (�)

Monoclonal antibody Bevacizumab is a recombinant humanized IgG1 monoclonal
antibody with high affinity and specificity for all VEGF-A isoforms. Upon
binding to soluble VEGF-A, bevacizumab limits ligand binding to EC receptors
VEGFR-1 and VEGFR-2, thus blocking pro-angiogenic intracellular signals
transduction.

In a phase II study, Reese et al. evaluated bevacizumab at 10 mg/kg every 14 days
for 6 cycles in 15 chemotherapy-naı̈ve patients with CRPC. No objective responses
were showed.

But there was a PSA decline (less than 50 %) in 27 % of patients. Antibodies
to VEGF slow tumor proliferation in prostate cancer xenograft models, especially
when combined with chemotherapy (Gross et al. 2009; Antonarakis and Armstrong
2011).

Despite strong preclinical rationale, a phase III randomized study in men with
chemotherapy-untreated CRPC (CALGB 90401) failed to show a survival advan-
tage with the anti-VEGF antibody bevacizumab when combined with docetaxel
compared with docetaxel used alone (22.6 vs 21.5 months), although significant im-
provements were seen with respect to PSA responses (70 vs 58 %) and radiographic
responses (53 vs 42 %), as well as progression-free survival (9.9 vs 7.5 months)
(George et al. 2011).

However, these results do not indicate that antiangiogenic therapies may never
have a role in the treatment of CRPC, as much of this failure may be explained
by an imbalance of treatment-related toxicities (cardiovascular events, neutropenic
complications) in this older population with multiple co-morbidities. To this end,
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it was reported that the presence and number of co-morbidities (for example,
cardiovascular disease, hypertension, diabetes, renal disease, liver disease) among
patients in the CALGB 90401 trial significantly correlated with survival, and that
there was an increase in the average number of co-morbidities in the docetaxel-
bevacizumab arm (Wu et al. 2005).

Future development of this and other antiangiogenic agents may rely on
combinations with other classes of angiogenesis inhibitors or other chemother-
apeutic drugs whose toxicities do not overlap, and will require careful patient
selection for those men most likely to benefit and not be harmed by this class of
agents.

Combinations of bevacizumab with other agents were also evaluated. The phase
II trial CALGB 90006 enrolled 79 patients with metastatic CRPC patients who were
treated with docetaxel (70 mg/mq every 21 days), bevacizumab (15 mg/kg every
21 days) and estramustine (280 mg on days 1–5 of the 21 day cycle).

Promising results were showed with a median PFS of 8 months and a median
OS of 24 months, with a PSA decline (higher than 50 %) in 75 % of patients (epub.
theoncologist.com) (Sturge et al. 2011).

In a phase III trial with metastatic CRPC, 1,050 patients were randomized to
receive docetaxel (75 mg/mq every 21 days), prednisone (5 mg twice daily) and
either bevacizumab (15 mg/kg every 21 days) or placebo.

This study showed, despite an improvement in the secondary endpoints of
progression-free survival (PFS), measurable disease response and post-therapy PSA
decline, but the combination with bevacizumab was not statistically significant
for OS (22.6 vs 21.5 months). Furthermore, there was higher toxicity in the
experimental arm (epub.theoncologist.com).

Other combinations of bevacizumab with other drugs (cytotoxin agents and
immunotherapy) didn’t show results and further studies are needed. Sunitinib is
an oral TKI targeted to all three VEGFR isoforms as well as PDGF“ and KIT,
currently approved for renal cell carcinoma (Powles et al. 2011) and gastrointestinal
stromal tumor. Several phase II studies of sunitinib were conducted in patients with
metastatic CRPC, both in chemotherapy-naı̈ve patients and in post-docetaxel setting
(epub.theoncologist.com).

Also a multicenter, randomized, double-blind phase III trial comparing sunitinib
plus prednisone versus prednisone alone (NCT00676650) in patients with post
docetaxel progressive metastatic CRPC was conducted. But This trial has been
recently interrupted prematurely since the combination of sunitinib with prednisone
didn’t improve OS when compared to prednisone alone.

Aflibercept is a recombinant fusion protein of the extracellular domain of human
VEGF-R1 and VEGF-R2 and the Fc portion of human IgG. It acts as a ‘VEGF trap’
or decoy receptor, binding free ligand and preventing it from interacting with and
activating membrane-bound receptor. As expected, it potently binds all naturally
occurring ligands of VEGF-R1 and VEGF-R2, including VEGF-A, VEGF-B, and
placental growth factor, and so may be anticipated to possess greater anti-angiogenic
activity than bevacizumab. In phase I trials, the combination of aflibercept and
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docetaxel was shown to be safe and well tolerated, and the combination is now under
evaluation in a large phase III trial (VENICE study) in patients with mCRPC.51
This study has completed accrual of approximately 1,200 patients, and is expected
to report in mid-2012, with overall survival as the primary endpoint (Corcoran and
Gleave 2012).

Other immunomodulatory-antiangiogenic agents like Thalidomide have been
studied. The best data on thalidomide were in combination with other cytotoxic
agents. Weekly docetaxel (30 mg/mq weekly for 3 out every 4 weeks) with
or without thalidomide (200 mg/day) has been evaluated in chemotherapy-naı̈ve
metastatic CRPC. The combination arm was favored in terms of PSA decline
(53 versus 37 % experiencing >50 % decrease in PSA) and PFS (5.9 versus
3.7 months). The most frequent adverse events were fatigue, peripheral neuropathy
and constipation. Furthermore the combination arm may increase thromboembolic
events and requires prophylactic anticoagulant therapy. Lenalidomide is an analog
of thalidomide that has been evaluated in CRPC patients showing lower toxicity
than thalidomide and a better antiangiogenic effect (Merino et al. 2011).

A phase I–II trial evaluating efficacy and tolerability of lenalidomide has been
conducted and it compared lenalidomide 5 versus 25 mg/day, administered during
6 months, or until progression, in 60 patients, without hormonal therapy, after PSA
relapse. Main toxicity was neutropenia, thrombotic events, asthenia and rash, with
more grades 3–4 events in the 25 mg dose arm. Despite higher toxicity, PSA decline
curve was favourable to patients receiving the 25 mg/day dose. The first results of
a phase II trial combining bevacizumab, lenalidomide, docetaxel and prednisone in
CRPC patients were presented at ASCO meeting 2011.

Among 24 patients who had completed four or more cycles, 22 patients had
a >50 % PSA decline, and 20 patients had >75 % PSA decline, 14 patients,
with measurable disease, showed 2 RC, 9 PR and 3 SD (overall response rate of
78.6 %). Therefore this combination seems to be associated with a high response
rate with manageable toxicity. A phase III trial comparing different doses of
lenalidomide combined with docetaxel-prednisone versus placebo is, however,
currently underway (Merino et al. 2011).

Although one might conclude from these studies that antiangiogenic therapies
are ineffective in mCRPC, we believe these negative data highlight an important
biologic principle in prostate cancer angiogenesis that should inform the design
of future trials (Antonarakis and Armstrong 2011). Specifically, the bone marrow
microenvironment contains multiple proangiogenic factors in addition to VEGF
including PDGF, basic fibroblast growth factor (bFGF), interleukin 8, and other
soluble cytokines. This multiplicity of angiogenic pathways creates “redundancy”
and the potential for “tumor escape” from antiangiogenic therapies and suggests
that blocking multiple pathways simultaneously, rather than VEGF alone, may be
necessary to effectively block angiogenesis in mCRPC. In support of this, our
experience with clinical trials suggests that blocking PDGF and VEGF simul-
taneously (with sunitinib) is more potent in eliciting PSA responses in patients
with mCRPC than blocking either VEGF alone (with bevacizumab) or PDGF
alone (with imatinib) (Chi et al. 2005). Reflecting these data, studies are currently
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Fig. 14.1 Therapies targeting angiogenic pathway. Vascular endothelial growth factor (VEGF)
and its receptors (VEGFR-1, VEGFR-2 and VEGFR-3) provide for new vessel formation and
their maintenance. VEGF expression is markedly higher in prostate cancer specimens compared
to non-neoplastic prostatic tissue controls and plasma VEGF levels are significantly higher with
metastatic versus localized disease. Bevacizumab is a recombinant humanized IgG1 monoclonal
antibody with high affinity and specificity for all isoforms of VEGF-A. It binds to soluble VEGF-A
limiting ligand binding to EC receptors VEGFR-1 and VEGFR-2 and blocking the transduction of
proangiogenic intracellular signals. Sorafenib, sunitinib and Cediranib are multitargeted receptor
tyrosine kinase inhibitors (TKI), that exerts their antiangiogenic effect targeting, respectively,
RAF kinase, VEGFR-2 and platelet-derived growth factor receptor (PDGFR-“), the three VEGFR
isoforms, PDGF“ and KIT, and VEGFR 1 and 2

underway using tyrosine kinase inhibitors that target multiple angiogenic pathways
(e.g., TKI258, which potently blocks VEGF, PDGF, and bFGF) (ClinicalTrials.gov
identifier: NCT00831792), or alternatively, combine agents that block angiogenesis
through different mechanisms (e.g., combining bevacizumab plus lenalidomide). In
addition, in a recent phase I/II study combining sunitinib and docetaxel for the
treatment of mCRPC in the frontline setting, patients demonstrated reductions in
both PSA levels and tumor burden that were more substantial than a historical cohort
of patients receiving docetaxel alone (Fig. 14.1) (Sowery et al. 2008).

The observation that both bevacizumab and sunitinib have shown prolongation
of progression-free survival without differences in overall survival also raises
the possibility that sustained suppression of angiogenesis is required to affect
overall survival (Antonarakis and Armstrong 2011; Dayyani et al. 2011). Enhanced



228 P.A. Ascierto

tumor growth following cessation of antiangiogenic therapy has been described, a
“rebound” phenomenon that could influence overall survival (Chi et al. 2009). To
address these limitations, it may be necessary to continue antiangiogenic therapy
beyond standard definitions of disease progression to observe a beneficial impact on
overall survival.

There are many question to be answered to optimize antiangiogenic therapy for
advanced prostate cancers.

– The role of several angiogenic regulator factors is still poor understood. As an ex-
ample, we currently know that the prostate-specific membrane antigen (PSMA)
expression in tumor-associated neovasculature is necessary for angiogenesis and
endothelial cell invasion, but we are unaware of its real role in angiogenesis
(Gordon et al. 2008).

– As well, VEGF activation is probably mediated by other still unknown transcrip-
tion factors such as the Activator protein 1 (AP-1) transcription factor complex
(Shih and Claffey 1998).

– Further studies will also address the predictive role of expression of HIF-
1 alpha, VEGF, and other angiogenic growth factors in patients treated with
radiotherapy alone. These patients, in fact, lack the beneficial effect on tumor
vascularization exerted by a neoadjuvant androgen deprivation. Therefore, the
angiogenic markers may be even more important in this subgroup of patients
(Vergis et al. 2008).

Anyhow, it is a matter of fact that almost all the key regulators of angiogenesis
are upregulated in prostate cancer, particularly in the castration-resistant setting, and
this undoubtedly has a great relevance for the gain of prostate cancer aggressiveness.
This strongly stimulates the search for new reliable marks for effectively targeting
prostate cancer angiogenesis.
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Chapter 15
Efficacy of Signal Transduction Inhibition
in Advanced Prostate Cancer

Stefania Staibano

Abstract The overall survival of patients with metastatic Castration-resistant
Prostate Cancer (CRPC) is discouraging low (Attar et al., Clin Cancer Res 15:3251–
3255, 2009).

CRPC exhibit tremendous heterogeneity and complexity, reflecting the dysregu-
lation of multiple patterns, mutations, and pathways, combined in a different manner
in each patient. Of course, the impact of this heterogeneity on outcome and response
to therapy is tremendous. It is therefore an urgent need to identify the multiple
cellular pathways cooperatively promoting progression of the single cases of CRPC
for successfully therapeutically target them. Several molecular pathways have been
implicated in prostate cancer progression from localized androgen-sensitive disease
to lethal CRPC.

In this article, we will review some of the recent findings on signal transduction
studies performed to identify novel targets and alternative chances of therapeutic
intervention for advanced prostate cancer.

A wide range of prostate cancer models are currently available, including a new
orthotopic prostate model involving the bioluminescent cell line PC3M, which
allows the visualization of injected prostate cancer cells in vivo, in nude mice, by
means of a bioluminescent spectrum imaging system (Kumari 2012).

However, despite these resources and the extensive research, the molecular
mechanism underlying the progression of CRPC is still poorly understood.
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An increasing number of molecules belonging to the classical and “alternative”
pathways have been proposed for new target therapies or are currently matter for
active research. It may be then useful to take a wide shot over the current research
on this topic (Sarwar and Persson 2011).

Growth and differentiation of normal prostate epithelial cells are largely driven
by androgens, acting through the androgen receptor (AR), encoded by the AR gene,
located on chromosome Xq11-q13. In its inactive form, the AR protein resides
in the cytoplasm of epithelial prostate cells, bound to chaperone molecules, such
as the heat-shock proteins (HSP) (Edwards and Bartlett 2005). Upon androgens
binding, conformational changes occur that allow to the androgen-AR complex to
dissociate from the HSP-complex, form a homodimer, and rapidly reach the nucleus,
where it binds to specific nuclear DNA-sequences (androgen-responsive elements)
to stimulate transcription of androgen-regulated genes. This transcription is then
modulated by the action of several co-activator and co-repressor factors (Edwards
and Bartlett 2005). The growth and differentiation of benign prostate epithelial
cells are also indirectly dependent on the stromal compartment. The binding of
androgen to AR to stromal cells induces, in fact, the release of soluble peptides
(andromedins) which in turn goes across the basement membrane and reaches the
prostatic epithelial secretory compartment (the “paracrine” pathway) (Cunha 2008).

In androgen-dependent prostate cancer, AR promotes cell proliferation through
the regulation of G1/S transition, only in the presence of androgens (Comstock
and Knudsen 2007). Malignant prostate cancer cells can grow instead in androgen-
depleted conditions, irrespective of the availability of paracrine stromal growth
factors, passing to an “autocrine” pathway of growth factor synthesis and secretion
(Gao et al. 2001; Vander Griend et al. 2010).

In other terms, the testosterone-AR pathway is bypassed, and prostate cancer
cells find alternative ways to continue the AR-mediated functions.

After an initial response to ADT, then, prostate cancer cell growth becomes
independent of the plasma testosterone level, and the onset of CRPC is followed by
treatment failure on chemotherapy-based therapy and further clinical progression of
disease in the vast majority of cases. In androgen-independent prostate cancer cells,
AR up-regulates M-phase cell cycle genes, as the UBE2C gene, which inactivates
the M-phase checkpoint (Wang et al. 2009). UBE2C activation is driven also by
the concurrent histone H3K4 methylation and FoxA1 transcription factor binding
(Wang et al. 2009).

Thus, AR continue to drive prostate cancer growth and progression even in
androgen-independent CRPC (Scher and Sawyers 2005; Attard et al. 2008; Ang
et al. 2009). Common changes in AR signaling during progression to CRPC
comprise AR overexpression despite low circulating androgens (Chen et al. 2004;
Haag et al. 2005; Linja et al. 2001; Holzbeierlein et al. 2004) coupled with high
Intratumoral levels of androgens due the ability of tumor cells to independently
synthesize androgens de novo (Locke et al. 2008; Montgomery et al. 2008).

In addition, AR-overexpressing CRPC cells may become hypersensitive to
reduced levels of androgens (Waltering et al. 2009; Kawata et al. 2010) and/or
mutations in the AR (Taplin et al. 2003) splice variants, or changes in coregulatory
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proteins may occur (Sun et al. 2010; Urbanucci et al. 2008). A plethora of molecular
pathways cooperate to the development of prostate cancer metastasizing ability.

Epidermal growth factor (EGF), interleukin-6 (IL-6), the neuropeptide includ-
ing bombesin and gastrin releasing peptides can activate AR in the absence of
androgen in prostate cancer cell lines (Malinowska et al. 2009; Kung and Evans
2009; Grossmann et al. 2001). Accumulating evidence suggests that deregulation
of multiple AR-independent pathways, such as the phosphatidylinositol 3-kinase
(PI3-K)-Akt/mTOR pathway, may contribute to the progression to CRPC (Li et al.
2005; Catz and Johnson 2003; Nelson et al. 2007).

15.1 PI3K/Akt/Pathway

Upregulation of the phosphoinositide-3-kinase (PI3K)–Akt–mammalian target of
rapamycin (mTOR) pathway has been detected in various tumors, including prostate
cancer (Morgan et al. 2009) PI3K is activated by several extracellular receptors,
including EGF receptor and insulin-like growth factor-1 receptor (IGF-1R), in
addition to intracellular oncogenes such as RAS (LoPiccolo et al. 2008). In turn,
activated PI3K induces Akt to phosphorylate and activate mTOR, which promotes
cell division. PI3K activation is regulated by tumor suppressor phosphatase and
tensin homolog (PTEN), and loss of PTEN function has been detected in prostate
cancer (Cairns et al. 1997; McMenamin et al. 1999). Preclinical studies suggest that
loss of PTEN function and/or activation of the PI3K–Akt–mTOR pathway can result
in androgen-independent prostate cancer growth (Shen and Abate-Shen 2007; Jiao
et al. 2007). Furthermore, deletion of PTEN has been associated with earlier disease
progression in patients with prostate cancer (Schmitz et al. 2007; Yoshimoto et al.
2007) and greater AR expression and cancer-associated mortality in patients with
CRPC (Sircar et al. 2009; Antonarakis and Armstrong 2011).

Several mTOR inhibitors have been developed. mTOR inhibitors show modest
single-agent activity in advanced CRPC; however, their use combined with doc-
etaxel was shown to be able to reverse or delay chemotherapy resistance in prostate
cancer cell lines, particularly in patients who have activation of the Akt pathway
as a result of PTEN mutation/loss or other genetic alteration) (Antonarakis and
Armstrong 2011).

Limitations of the use of single-agent mTOR inhibitors include feedback up-
regulation of upstream survival signals (such as PI3K) and the lack of induction of
apoptosis or prolonged cytostasis due to the activation of other oncogenic pathways.

Several mTOR inhibitors have then entered human clinical testing in combination
with other agents. Among these, everolimus (RAD001) was shown to inhibit the
growth of prostate cancer cells in mouse bone, and this effect was potentiated
by combination treatment with docetaxel and zoledronic acid. In a phase I dose-
escalation trial on everolimus plus docetaxel chemotherapy-naı̈ve patients with
metastatic CRPC and a positive fluorodeoxyglucose positron emission tomography
scan, no dose-limiting toxicities have been found. In a phase I trial on everolimus



236 S. Staibano

plus docetaxel and bevacizumab metastatic chemotherapy-naı̈ve CRPC patients,
50 % PSA declines were seen in 10 patients over 12. In a phase II, single-arm,
Simon two-stage study on 19 patients with CRPC of everolimus monotherapy, most
of whom docetaxel refractory, the median TTP was 85 days and no PSA or tumor
responses were recorded. In preclinical studies, temsirolimus (CCI-779) inhibited
the growth of prostate cancer cell lines and xenografts, and had greater activity in
combination with docetaxel. In addition, phase I studies of ridaforolimus (AP23573)
on patients with advanced solid tumors, have successfully been completed. A
single-arm, phase II trial of ridaforolimus monotherapy in taxane-resistant CRPC
patients has completed enrollment and results are pending (ClinicalTrials.gov
Identifier, NCT00110188) (Antonarakis and Armstrong 2011). Toxicities of mTOR
agents include maculopapular rash, hypertriglyceridemia, hyperglycemia, allergic
reactions, mucositis, pneumonitis and thrombocytopenia.

15.2 Chaperone Proteins

Chaperone (heat-shock) proteins have antiapoptotic properties and are an estab-
lished target for anticancer therapy. Although heat-shock protein 90 (HSP90) was
an early focus for study, no HSP90 inhibitor has so far proved to be therapeutically
viable for prostate cancer, although work is still ongoing . Clusterin, an alternative
chaperone protein, is a novel target. In prostate cancer cell lines, clusterin over-
expression resulted in androgen-independent growth and clusterin gene silencing,
induced apoptosis and significantly reduced growth. Clusterin expression is upreg-
ulated in patients with prostate cancer who have undergone androgen-deprivation
therapy (ADT). Custirsen (OGX-011) is an antisense inhibitor of clusterin that
suppresses clusterin expression in tumor tissue when administered to patients
with localized prostate cancer. In vitro, instead, custirsen was found to resensitize
docetaxel-refractory prostate cancer cell lines to docetaxel. A randomized phase
II study of docetaxel plus prednisone with or without custirsen in patients with
metastatic CRPC (nD82) has been completed, and showed a longer median overall
survival time in the custirsen arm (24 versus 17 months; HR, 0.61; pD.06), although
PSA rates and tumor response were similar 58. Based on these findings, phase III
trials of OGX-011 plus docetaxel and prednisone are planned (Antonarakis and
Armstrong 2011).

15.3 IGF-1R Pathway

Insulin-like growth factor receptor-1 (IGF-1R) and its ligands have antiapoptotic
and transforming activities, and IGF-1R–mediated signaling can be detected during
several stages of metastasis, including adhesion, migration, and invasion. In vitro
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models suggest that increased IGF-1R expression in prostate cancer cells can
lead to androgen independence. In a recent study, using frozen tissue specimens,
IGF-1R was more frequently expressed in stromal tissue surrounding malignant
than in surrounding nonmalignant tissue and in high-grade tumors than in low-
grade ones. Studies of IGF-1R ligands have provided further evidence of the
oncogenic role of IGF signaling. In transgenic mice expressing human IGF-1 in
the basal prostate epithelium, spontaneous tumorigenesis was seen. In a study of
prostatic tumor tissue, IGF-1 and IGF-2 expression was higher in high-grade than
in low-grade tumors. Furthermore, in a meta-analysis of clinical studies, elevated
circulating IGF-1 concentrations were associated with a greater risk for prostate
cancer (Antonarakis and Armstrong 2011).

Therapeutic monoclonal antibodies that bind to the extracellular domain of IGF-
1R can potently inhibit the function of this receptor. In prostate cancer cell lines
and in xenograft models, such antibodies have been shown to inhibit growth of both
androgen-dependent and -independent tumors.

Three monoclonal antibodies against IGF-1R, cixutumumab (IMC-A12), figitu-
mumab (CP-751,871), and AMG-479, are being assessed in CRPC patients and
have demonstrated good tolerability in phase I studies. Further studies on IGF-
1R antibodies are in progress (Antonarakis and Armstrong 2011). Cixutumumab
specifically targets IGF-1R, inhibiting ligand binding and IGF signaling. Toxicities
with this agent included fatigue, hyperglycemia, thrombocytopenia, hyperkalemia
and muscle spasms. The development of figitumumab was suspended after an
unexpected finding of a higher treatment-related mortality rate when this agent was
added to standard chemotherapy (Antonarakis and Armstrong 2011).

15.4 MET

Aberrant activation or overexpression of MET is a common event in castration-
resistant bone metastasizing prostate cancer, where it is associated with prolifer-
ation, invasion and angiogenesis. MET protein is a transmembrane receptor with a
only one known ligand, the hepatocyte growth factor. Androgen suppression induces
increased MET expression. Cabozantinib (XL184) is an oral potent inhibitor of
MET and VEGFR. It has shown antiangiogenic, antiproliferative and anti-invasive
effects in preclinical systems, and improvements in bone scans in 95 % of men with
osseous metastases from CRPC.

Toxic side-effects from Cabozantinib include fatigue, diarrhea, anorexia, emesis
and hypertension. Confirmatory controlled trials to assess the overall clinical benefit
of this agent as well as the appropriate schedule for long-term use are needed, as well
as further investigation of its intra-bone activity through novel imaging techniques
(18F-positron emission tomography) or pharmacodynamic studies (Antonarakis and
Armstrong 2011).
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15.5 Src Pathway

Src and other members of the Src-family kinases (SFKs) are nonreceptor tyrosine
kinases that transduce signals from a range of upstream proteins, including receptors
for epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and
vascular endothelial growth factor (VEGF) (Chang et al. 2007). In addition to the es-
tablished role of growth factor receptors in prostate cancer oncogenesis, preclinical
studies have shown that Src and SFKs are highly active and/or overexpressed during
prostate tumor growth and metastasis (Fizazi 2007). Src is also required during
osteoclast functioning (Araujo and Logothetis 2009). In a recent study of tumor
sampling from patients with CRPC, SFK activity was elevated in approximately
30 % of cases and patients with greater SFK activity had a significantly shorter
overall survival. Dasatinib is a potent inhibitor of Src and SFKs that suppress
proliferation of prostate cancer cell lines, and inhibit adhesion, migration and
invasion (Antonarakis and Armstrong 2011) (Fig. 15.1).

It has shown preclinical antitumor and antimetastatic activity against prostate
cancer cells and antiosteoclast activity (Nam et al. 2005; Vandyke et al. 2009).
Dasatinib is an oral inhibitor of multiple oncogenic kinases including Src. In
experimental models, dasatinib In addition, dasatinib reduced tumor growth and
lymph node involvement in a prostate cancer mouse xenograft model (Antonarakis
and Armstrong 2011).

In a phase II trial of dasatinib monotherapy on 47 patients metastatic
chemotherapy-naı̈ve CRPC, 6 % had a 50 % reduction in PSA, 12 of 23 patients
with RECIST-evaluable disease had SD, and 23 of 41 patients with bone metastases
at baseline had no new bone lesions at week 12 (Yu et al. 2009). In a phase I/II
study of dasatinib plus docetaxel and prednisone in chemotherapy-naı̈ve patients
with CRPC, 49 % of evaluable patients had a 50 % PSA decline and 58 % had a
RECIST PR. Bone scans showed size and/or number of lesions reduction in 28 % of
patients and no new lesions in 69 % of patients (Araujo et al. 2009). These findings
led to a randomized, placebo-controlled phase III trial of dasatinib plus docetaxel
therapy. Adverse effects of dasatinib include diarrhea, nausea, fatigue and fluid
retention.

Saracatinib (AZD0530) is another oral Src inhibitor in clinical development. In
preclinical studies, saracatinib blocked proliferation and migration in a range of
prostate cancer cell lines, including androgen-independent xenografts (Chang et al.
2008; Yang et al. 2009). Saracatinib has also shown antiosteoclast activity in vitro
and in vivo (de Vries et al. 2009; Evans et al. 2011). In an initial phase II, single-
arm, Simon two-stage trial of saracatinib monotherapy in patients with advanced
CRPC, 5 of the 28 patients evaluated had a slight decline in PSA, though no patient
achieved a 30 % decline and the median progression-free survival interval was
8 weeks.
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Fig. 15.1 Novel therapies designed to target non-AR mediated pathways. In addition to
AR-mediated pathways, evidence suggests that several alternative signaling pathways may also
be involved in prostate cancer disease progression. In this picture we report three pathways:
Src-family kinases (SFKs) (left side), phosphoinositide-3-kinase (PI3K)–Akt–mammalian target
of rapamycin (mTOR) (middle) and IGF-1R (right side). The Src-family kinases (SFKs) are
nonreceptor tyrosine kinases that transduce signals from receptors for several growth factors and
are highly active and/or overexpressed during prostate tumor growth and metastasis. This pathway
is blocked by dasatinib and saracatinib (AZD0530). Upregulation of PI3K-Akt-mTOR pathway has
been detected in various tumors. PI3K is activated by several extracellular receptors, including EGF
receptor and insulin-like growth factor-1 receptor (IGF-1R). Activated PI3K induces activation
of mTOR, which promotes cell division. Everolimus (RAD001) and ridaforolimus (AP23573)
have been developed as mTOR inhibitors. IGF-1R has antiapoptotic and transforming activities
and is involved in the development of metastasis, adhesion, migration, and invasion. Increased
IGF-1R expression in prostate cancer cells can lead to androgen independence. Three monoclonal
antibodies against IGF-1R, cixutumumab (IMC-A12), figitumumab (CP-751,871), and AMG-479,
are being assessed in CRPC patients

15.6 PKA Pathway

The activated protein kinase A (PKA) is a serine/threonine kinase that reversibly
phosphorylates numerous cytoplasmatic and nuclear proteins and it is strictly
dependent on cAMP for its activity (Chin et al. 2002). PKA regulates the intra-
cellular calcium intake, cell proliferation, inflammation and transcription (Francis
and Corbin 1999) in addition, it regulates AR expression mainly by modulating its
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subcellular localization, and activate AR target genes in the absence of androgen
or at low-androgen levels. This kinase is involved in the progression of prostate
cancer through activation of protein kinase B (PKB) and expression of Bcl-2. It
may induces also neuroendocrine differentiation of cancer cells. PKA then exerts a
control on AR function.

The selective inhibition of PKA by H89 led to the cytoplasmic sequestration AR
in the presence of a synthetic androgen in LNCaP cells. However, the possible role
of PKA-driven nuclear entry in the progression of CRPC has still to be investigated.

PKA exerts its effects on several key transcriptional factors, as the cAMP
response element (CRE)-binding protein 1 (CREB/CREB1). PKA phosphorylates
CREB at serine 133 (Sands and Palmer 2008) Phosphorylated CREB (pCREB)
modulates the expression of a large number of genes involved in cell growth
and survival (Mayr and Montminy 2001; Sakamoto and Frank 2009), and its
overexpression is a common event in several malignant tumors and in prostate
cancer (Xiao et al. 2010). The activated CREB has been involved in bone prostate
cancer metastasis, that display positive immunostaining for pCREB, unlike normal
prostate tissue (Wu et al. 2007). Of even more interest, CREB exerts its pro-
metastatic activity also by modulating the expression of multiple genes required for
angiogenesis, as VEGF and HIF-1 (Wu et al. 2007). The expression of several PKA
subunits have been examined in prostate cancer cell lines (Neary et al. 2004; Cho
et al. 2002) and in prostate cancer specimens (Khor et al. 2008). Overexpression of
PKARI’; subunit resulted correlated with the induction and up-regulation of genes
required for proliferation and tumor progression in the aggressive PC3M cells (Cho
et al. 2002). Moreover, it predicted outcome in prostate cancer patients treated with
radiotherapy (RT) with or without short-term androgen deprivation therapy, and was
also associated with metastatic disease.

It has still to be determined the specific role of the different PKA subunits such
as AKAPs as novel biomarkers for predicting treatment response and outcome of
CRPC. The transcription factor CREB1 appeared to be a potential therapeutic target
(Chien et al. 2011). Preclinical and laboratory studies have shown that the combined
targeting AR and PKA pathways inhibited growth of PCa cells. Further studies on
larger series of cases are needed to confirm these preliminary data.

15.7 Immunotherapy

Although prostate cancer was not historically considered to be a particularly im-
mune responsive cancer, recently clinical trials have demonstrated immunotherapy
to be a good therapeutic strategy to improve overall survival (OS) in prostate
cancer (Cha and Fong 2011). The most important studies include sipuleucel-T and
PROSTVAC-VF, both determine a potentiation of immune system to target prostate
proteins (Cha and Fong 2011). Before talking about these important results in
the treatment of CRPC, let’s explain the main immunogenic mechanisms shared
by many tumors and also by prostate cancer are here briefly explained. Typical
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adaptive immune response sequence may be the following: first, the activation of
antigen presenting cells (APCs) in presence of a target antigen presence; second,
presentation of the antigen presentation to T cells; third, the targeting of antigen
by activated T cells; and fourth, the down-regulation of T-cell response. The goal
of the immunotherapy is to promote this effectors response against cancerous cells.
Also co-stimulation by the B7 family of ligands on APCs interacting with the CD28
receptor on T cells delivers an important signal for activation. In the setting of
malignancy there are several mechanisms of immune escape that lead tumor growth.
For instance, Tumor cells can avoid maturation of DCs or prevent the expression
of co- stimulatory molecules necessary for T-cell activation. MHC expression and
peptide processing can be down-regulated to block the recognition by cytotoxic T
cells. Sipuleucel T is one of the most important antigen targeted prostate cancer
immunotherapy and it has been recently approved for the treatment of asymptomatic
or minimally symptomatic HRPC.

Sipuleucel-T is an autologous cellular immunotherapy whose mechanism of ac-
tion consists of stimulation of the patient’s own immune system. Three randomized,
double-blind, placebo-controlled phase III clinical trials of sipuleucel-T in patients
with metastatic castration-resistant prostate cancer have shown improvement in
overall survival vs control. The most important one that demonstrated a benefit is the
IMPACT trial (Immunotherapy for Prostate Adenocarcinoma Treatment; D9902B).
This was, a randomized, double-blind, placebo controlled phase III trial that enrolled
512 men. It showed a 4.1-month improvement in median OS (25.8 v 21.7 months)
with no effect on TTP (14.6 v 14.4 weeks) (Lubaroff 2012). Survival benefit was
showed despite a crossover design for placebo treated patients. Most frequent
toxicities were infusion-related chills (54 %), nausea (28 %), fever (29 %), headache
(16 %), and fatigue (39 %) within the first few days of treatment, although a trend
toward increased but infrequent cerebrovascular events (2.4 v 1.8 %; P 1.0) was
observed. ProstVac-VF is a PSA-directed vaccine approach, that was shown in early-
phase trials demonstrated safety, induction of PSA-specific immune responses, and
reduction in PSA velocity (Lubaroff 2012).

A phase II trial with PROSTVAC-VF in men with asymptomatic CRPC was
conducted. This trial failed the primary end point of progression-free survival (PFS;
3.7 months in control arm v 3.8 months in treatment arm), but OS greatly favoured
patients who received PROSTVAC-VF (25.1 v 16.6 months), with a 43 % reduction
in death and 8.5-month improvement in median OS at 3 years post study. A phase
III clinical trial in minimally symptomatic CRPC has been planned. Another tumor
cell vaccines in prostate cancer is GVAX, which consists of two allogeneic prostate
cancer cell lines (LNCaP and PC3) engineered to express GM-CSF. This approach
could presumably deliver multiple antigens. Two phase III trials, one with GVAX
alone and the other in combination with docetaxel, failed to show improvements in
OS in patients treated with docetaxel plus prednisone (Lubaroff 2012). The reasons
for failure are not clear, but probably for many variables that had not been addressed
at the phase II level. Although there is preclinical evidence suggesting chemotherapy
can induce immunomodulatory effects that may potentiate immunotherapy, how
GVAX should be combined with docetaxel was not addressed before the phase III
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trial. Finally, the use of docetaxel in the control arms of both trials may not have
been appropriate given the different kinetics of response seen with immunotherapies
(Kantoff et al. 2010).

Another kind of immunologic approach is targeting immune checkpoint block-
ade. CTLA4 is a receptor on activated T cells that normally serves to inhibit further
T-cell activation (Gerritsen and Sharma 2012). Ipilimumab (Yervoy; Bristol-Myers
Squibb, New York, NY) is a humanized immunoglobulin G1 kappa monoclonal
antibody that targets CTLA4. Two randomized phase III trials of Ipilimumab are un-
derway in mCRPC; in the first trial (NCT00861614), patients who have progressed
on docetaxel chemotherapy are randomized to low-dose palliative radiation therapy
followed by Ipilimumab (10 mg/kg every 3 weeks for 4 doses) or to placebo.

A second trial, (NCT01057810), is enrolling patients with asymptomatic or
minimally symptomatic chemotherapy-naive mCPRC, randomizing patients to
either Ipilimumab or to placebo. The primary endpoint for both of these trials is
overall survival, so mature data are not expected to be available for several years.
Furthermore, some combination with Ipilimumab have been tested, such as with
GM-CSF, demonstrating PSA responses as well as objective tumor responses in
CRPC, with docetaxel, PROSTVAC-VF, and GVAX, with some clinical responses
obtained. Interesting is Androgen ablation in combination with ipilimumab, and a
phase II trial with this rationale has been designed (Gerritsen and Sharma 2012).
Initial results show that the concurrent administration of ipilimumab with androgen
ablation may have a synergistic action. In fact, patients in the combination arm had
undetectable PSA by 3 months compared with the androgen ablation only group
(55 versus 38 %). The timing of androgen ablation, in combination with other
therapies, may prove to be crucial (Fig. 15.2).

15.8 Conclusion

Immunotherapy is an important part of the treatment for prostate cancer, but it
has to be improved. Trial design continues to evolve in light of the biologic
properties of immunologic agents. More agents become available to treat advanced
prostate disease, the best clinical setting and how to administer immunotherapy
will need to be investigated. For now, sipuleucel-T and PROSTVAC-VF have been
primarily evaluated in patients with CRPC, yet immunotherapies should be more
immunologically efficacious in earlier stages of disease (Gerritsen and Sharma
2012). Biochemical relapse after definitive therapy represents one setting in which
these therapies should could be tested. A challenge will be to clarify the right
combination and timing of the different therapeutic approaches described.

Application of guidelines to evaluate immune-mediated tumor responses
radiographically and standardize cellular immune response assays may improve
trial design and interpretation of results. A further goal will be to evaluate the
possible efficacy of sipuleucel-T and PROSTVAC-VF also in earlier stages of
disease, besides CRPC.
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Fig. 15.2 Immunotherapy of prostate cancer. Tumors, and also prostate cancer, share
immunogenic mechanisms. An immune response develops through a sequence of events, such
as activation of antigen presenting cells (APCs) in the presence of a target antigen; presentation of
the antigen to T cells; targeting of antigen by activated T cells; downregulation of T-cell response.
The goal of immunotherapy is to promote this response against cancerous cells. Sipuleucel-T
is a personalized cellular therapy that uses ex vivo antigen presentation to induce an antitumor
immune response. PROSTVAC-VF is a viral vaccine that consists of a combination of recombinant
vaccinia and fowlpox viruses that encode PSA and a triad of T-cell costimulatory molecules
composed of lymphocyte function–associated antigen 3, intercellular adhesion molecule 1, and
B7-1 (collectively labeled as TRICOM). This combination promotes tumor immunity

Anyhow, the rational current approach to prostate cancer therapy cannot overlook
the biologic heterogeneity of CRPC and the biologic status of each individual
tumor. Assessing gene expression and signaling activity will be soon fundamental to
correctly design and direct a real individualized treatment. The better understanding
of the molecular mechanisms underlying the progression of CRPC and treatment
resistance is already full of promise.
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Chapter 16
Therapeutic Targeting of the Bone
Pre-metastatic Niche

Ester Simeone, Antonio Maria Grimaldi, Paolo Antonio Ascierto,
Francesco Merolla, Gennaro Ilardi, Maria Siano, and Stefania Staibano

Abstract Most of relevant strategies designed for therapeutic targeting the highly
lethal, bone-metastasizing and AR-resistant prostate cancers, have been reported
and discussed elsewhere in this book. In this chapter, we aim to provide an overview
of the rationale underlying the proposal of most of promising new therapeutic
alternatives, most of which are still the early phase of evaluation.

Once more, we strongly wish to outline that the deeper understanding of the
intricate crosstalks between the manifold molecular pathways responsible for the
gain of invasive and metastasizing abilities of tumor cells, is giving rise to a previ-
ously unthinkable picture of the complex prostate cancer biology. A new, fascinating
therapeutic era is opening up for the treatment of advanced prostate cancers.

16.1 Mechanisms of Bone Metastasis Onset

Ester Simeone (�) • Antonio Maria Grimaldi • Paolo Antonio Ascierto

Bone metastases are the most frequent event in patients with advanced prostate
cancer. They confer a high level of morbidity to patients, with a 5-year survival
rate of 25 % and median survival of approximately 40 months. The molecular basis
for the development of resistance to treatment is linked to some critical changes
in the bone microenvironment that can confer on an advantage on cancer cell
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survival and proliferation (Bussard et al. 2008). These microenvironment-linked
resistance mechanisms have just led us to consider new strategies to therapeutic
bone- targeting.

The concept of “seed and soil”, proposed by Stephen Paget in 1889, hypothesized
the existence of an interplay between the metastatic properties of cancer cells
(seed) and the favourable properties of the stromal/bone microenvironment (soil),
conditioning the selective homing and growth of cancer cells. The “soil” must
provide favourable conditions for cancers cells to successfully survive, clonally
expand, and establish a nourishing vasculature (Bussard et al. 2008).

Further, the extension of this concept by David Lynch and colleagues, led to the
formulation of the metastatic niche model. According to this hypothesis, the for-
mation of a favourable microenvironment, (so-called “premetastatic niche”), before
the tumor cells reach the metastatic destination, is critical for their engraftment.
These niches facilitate then the formation of micrometastasis, and their subsequent
transition into macrometastasis (Bussard et al. 2008).

Bone is an extremely metabolically active tissue. In order to maintain skeletal
integrity, it undergoes continuous dynamic remodelling by sequential phases of
bone resorption, mediated by osteoclasts, followed by osteoblast-mediated bone
formation. The functions of osteoclasts and osteoblasts are tightly regulated in
physiological conditions, to secure a perfect final balance between bone formation
and degradation. To maintain skeletal homeostasis, multi-directional cross-talks
among osteoblasts, osteoclasts, and hematopoietic cells are the rule. They take place
through the mediation of systemic hormones and local bone-derived growth fac-
tors, including parathyroid hormone (PTH), 1,25-dihy-droxyvitaminD3, thyroxine,
prostaglandins, bone morphogenic proteins (BMPs), TGF“, IGF, and IL-1 and IL-6,
in response to mechanical stresses and hormonal changes (Thudi et al. 2011; Kaplan
et al. 2006).

Osteoblasts produce several local and systemic factors that are important for
bone regulation, including receptors for PTH, prostaglandins, estrogen, vitamin D3,
and PDGF, FGF and TG. Importantly, osteoblasts are intimately involved also in
osteoclast differentiation, which involves the RANK/RANKL pathway.

RANKL production is influenced by osteotropic factors such as parathyroid
hormone, 1,25-dihydroxyvitamin D, and prostaglandins. Crosstalks with the Wnt
pathway allow a higher-layer control of osteoblast functions and bone formation.
Current data indicate that the activation of Wnt/“beta-catenin signaling is a major
responsible for the increased bone mass. In particular, the overexpression of Wnt10b
over-expression in animal models increases bone mass, while the over-expression of
Wnt7B and beta-catenin in osteoblastic precursor cells induces their differentiation
into mature osteoblasts (Thudi et al. 2011).

Vascular endothelial growth factor (VEGF) and its receptors (VEGFR-1,
VEGFR-2 and VEGFR-3) provide for new vessel formation and their maintenance.
VEGF also plays a crucial role within bone and bone marrow, with autocrine and
paracrine mechanism. In the early metastatic bone modifications, hematopoietic
progenitor cells (HPC) seem to have a main role. HPC and osteoprogenitor
cells both express VEGFR-1, while endothelial progenitor cells (EPC) express
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VEGFR-2. Pre-metastatic niches are particularly rich in tumor-derived VEGFA,
placental growth factor (PlGF), and TGF“, in response to which tumor-associated
immune cells, such as HPC and macrophages cluster, prepare the “soil” for the
imminent arrival adhesion and invasion of the tumor cell in the future metastatic
sites (Schroten et al. 2012).

Accumulation of clusters of myeloid cells, fibronectin, growth factors and matrix
remodelling proteins accelerate the micrometastatic process. The bone microenvi-
ronment is per se an important source of growth factors like TGF“, IGF- 1, FGF,
PDGF, BMPs, cytokines, chemokines, calcium ions, and cell adhesion molecules
that contribute to make it a fertile soil conducive for the growth and proliferation of
metastatic cancer cells. Moreover, the marrow stromal cells act also be in concert
with the tumor cells in the homing, differentiation and proliferation processes, via
the production of vascular cellular adhesion molecule-1 (VCAM-1), cadherin (11)
and fibronectin. Thus, bones become a highly favourable microenvironments for
prostate cancer cells, promoting their cell growth and proliferation (Schroten et al.
2012; Thudi et al. 2011).

Physical factors such as hypoxia, acidic pH, and high extracellular calcium
concentrations also contribute to create this permissive environment for tumor
growth. In order to continue this symbiotic relationship, cytokines and growth
factors produced by cancer cells directly or indirectly impact osteoclastic bone
resorption. This bidirectional interaction between the cancer cells and bone mi-
croenvironments results in the creation of a “vicious loop” that increases bone
destruction to ultimately facilitate the establishment of cancer metastases in the
bone.

The humanized RANKL monoclonal Denosumab, approved by FDA on Novem-
ber 2010 for the treatment of solid tumors with metastatic bone disease (MBD),
or the tyrosine kinase SRC/BCR-ABL inhibitor dasatinib, already introduced in
clinical trials, have been discussed elsewhere in this book.

16.2 Molecular Therapies for Metastasizing Disease

Francesco Merolla (�) • Gennaro Ilardi • Maria Siano • Stefania Staibano

An impressive number of other new possible drugs and/or targets for alternative
molecular therapies for metastasizing disease is actively in progress (Thudi et al.
2011).

Recently, the results of the ZEUS study indicated that we should reserve the use
of potent osteoclast inhibition—with either zoledronic acid or denosumab—for men
with bone metastatic prostate cancer (Smith et al. 2012).

Rather than preventing bone metastasis, zoledronic acid and denosumab have
both been shown to significantly reduce the incidence of skeletal events, such as
pathologic fractures and spinal cord compression, while the metastasis-free survival
resulted only modestly prolonged by about 4 months in these patients.
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A great deal of research has recently concerned the role of hypoxia-related
factors HIF-1’ and HIF-2’ in prostate cancer progression (Mimeault and Ba-
tra 2013). Experimental evidences have revealed that they are key regulators
of the adaptation of prostate bone-metastasis-initiating cells and corresponding
differentiated progenies to oxygen and nutrient deprivation. HIFs are strongly
induced by the niche-overexpressed (EGFR), insulin-like growth factor-1 recep-
tor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-
“ receptors (TGF-“Rs) and Notch, as well as by their downstream signalling
elements such as phosphatidylinositol 30-kinase (PI3K)/Akt/molecular target of
rapamycin (mTOR).

Activated HIFs, in turn, induce and sustain the expression of induced
pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2),
glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated
molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist,
microRNAs and, once more, VEGF.

This extraordinary melting of gene products create a powerful substrate which
sustain self-renewal ability, survival, and treatment resistance of metastasizing
prostate cancer cells.

On multivariate analysis, HIF1’ recently emerged as an independent risk factor
for progression to metastatic PC and development of CRPC in patients on androgen-
deprivation therapy. No one prostate cancer not expressing HIF1’ give rise to
metastasis or developed CRPC (Ranasinghe et al. 2013).

Targeting of HIF signalling network represents then a very promising strategy to
eradicate not only the bulk of prostate cancer, but also to directly hit bone-metastatic
cancer cells, to prevent disease relapse and to increase the responsiveness of CRPCs
to chemotherapy. Moreover, expression of HIF1’ is a strong candidate for future
new molecular screenings for the assessment of the risk to develop CRPC.

Among the possible tools for new screening tests aimed to the identification of
the metastatic prostate cancer compartment, it has been proposed also the “old”
member of the intermediate filament family of proteins, vimentin (Satelli and Li
2011).

Vimentin, is physiologically expressed in normal mesenchymal cells, where it
maintain cellular integrity and provide resistance against stress. As well, this protein
is overexpressed in prostate epithelial cancer, in which it correlates with high tumor
growth, invasion, poor prognosis, and has been recognized also as a marker for
epithelial-mesenchymal transition (EMT).

For these reasons, vimentin seem to be attractive for prostate cancer therapy,
and this is particularly interesting, considering the recent discovery of a vimentin-
binding mini-peptide of potential use for therapy. Further researches on this topic
are in progress.

An atypical isoform of trypsin, PRSS3/mesotrypsin, represents another promis-
ing target for therapy of bone-metastasizing cancer cells. Its over-expression has
been found associated with breast, lung, pancreatic cancers. In primary prostate
tumors, it has shown prognostic significance, indicating systemic progression
following prostatectomy. Mouse orthotopic model with bioluminescent imaging
has confirmed that PRSS3/mesotrypsin is critical for prostate cancer metastasis.
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To further support this idea, silencing of PRSS3 inhibits anchorage-independent
growth of prostate cancer cells in soft agar assays, and suppresses invasiveness
in Matrigel transwell assays and three-dimensional (3D) cell culture models. By
converse, the treatment with recombinant mesotrypsin directly promotes an invasive
cellular phenotype in prostate cancer cells.

This has fueled the search for new inhibitors of mesotrypsin activity to be used
to suppress prostate cancer cell invasion (Hockla et al. 2012).

Maspin (mammary serine protease inhibitor) expression, has been correlated
instead with a better prognosis in prostate, as well as in most of malignant solid
tumors, as bladder, lung, gastric, colorectal, head and neck, thyroid and melanoma.
In all these tumors, however, maspin is frequently down-regulated.

Maspin is a member of the serine protease superfamily, and a selectively
increased adhesion by the presence of maspin may contribute to the inhibition
of tumor metastasis. Possible therapeutic approaches could be to re-activate the
system that inhibits the expression of maspin, identifying activating substances or
possibly introducing maspin in cancer cell, up-regulating maspin to reduce the risk
of metastasis.

However, the finding that maspin is usually over-expressed in pancreatic, gall-
bladder, colorectal, and thyroid cancers indicates that it may play different roles
in human cancers, this deserving further studies to better define all the possible
therapeutic implication of targeting maspin (Berardi et al. 2013).

Besides multiple reports indicating the association between the aberrant expres-
sion of EGF receptors with hormone-refractory and metastatic prostate cancer, to
date the molecular mechanism linking EGF signaling to prostate cancer metastasis
remains unclarified. Experimental models of PCa metastasis showed that EGF could
induce epithelial-mesenchymal transition (EMT) and increase invasiveness, also
through the extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent phospho-
rylation, ubiquitination, and degradation of the epithelial protein lost in neoplasm
(EPLIN), a putative suppressor of EMT and tumor metastasis. Pharmacological
inhibition of the ERK1/2 pathway effectively antagonized EGF-induced EPLIN
degradation. This indicates that blockade of EGF signaling could be useful to
prevent and/or retard prostate cancer metastasis (Zhang et al. 2012).

As well, there was found a tendency for upregulation of the EGFR family
members HER2, and EGFR and downregulation of HER3 in the prostate cancer
lymph node metastases in comparison to the primary tumors. This indicate the
existence of a rationale supporting possible combined strategies for EGFR- and
HER2-targeted therapy of metastasizing prostate cancers, and further studies con-
cerning this eveniences are in progress (Carlsson et al. 2013).

Of a particular interest, a role in predicting metastasis has been emerged also
for non-cancerous prostate cancer, from several recent studies in vitro and on
prostatectomy tumor tissue (Bijnsdorp et al. 2012).

The cell-communication protein connexin-26 (Cx26) has been suggested as a
marker to predict the development of metastasis, when expressed in the adjacent
noncancerous tissues (rather than cancer tissues) of prostatectomy sections. It
appears then promising for select patients who may benefit from adjuvant therapy
to decrease the risk of metastasis.
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Fig. 16.1 Therapeutic targeting of the bone pre-metastatic niche. In the bone, the formation
of a conducive microenvironment, called “premetastatic niche”, before the tumor cells arrive at
the metastatic destination, is critical for engraftment of the disseminated tumor cells and facilitate
formation of micrometastasis, and subsequent transition into macrometastasis. To maintain skeletal
homeostasis, cross-talk among osteoblasts and osteoclasts is necessary and it is possible through
systemic hormones and local bone-derived growth factors, in response to mechanical stresses
and hormonal changes. There is a bidirectional interaction between the cancer cells and bone
microenvironment, mediated by production and release of growth factors like TGF“, IGF-1, FGF,
PDGF, BMPs, cytokines, chemokines, calcium ions, and cell adhesion molecules resulting in the
creation of a “vicious cycle” that increases bone destruction, ultimately resulting in establishment
of cancer metastases in the bone. Genetic ablation of Src results in osteopetrosis, with a decrease in
osteoclast-mediated bone resorption and increased osteoblast differentiation and bone formation.
TGF-“1 controls bone homeostasis coordinating the bone formation to sites where old bone
degradation is occurring. Endhotelin-1 (ET-1) is a potent vasoconstrictor, that binds to its receptors
A or B; it stimulates osteoblasts, causing the secretion of growth factors, with increase in tumor
cells proliferation and ET-1 production, thus maintaining disease progression. Wnt signaling has
a fundamental role in normal osteogenesis; the overexpression of Wnt or a deficiency in Wnt
antagonist Dickkopf-related protein 1 (DKK1) result in an increase in bone formation. DKK-1
has been reported to be downregulated in prostate cancer patients in advanced stage, providing
a strong basis for the further exploration of the Wnt signaling pathway as a future target in the
treatment of bone metastasis in prostate cancer. In this figure, are briefly represented mechanism
of action of some drugs, affecting the osteogenic pathway; in detail, denosumab is a RANKL
monoclonal antibody; dasatinib and saracatinib inhibit SRC pathway; GC1008 is a monoclonal
antibody directed against all three isoforms of TGF-“; Atrasentan and zibotentan are oral ET-A
receptor antagonist
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Moreover, circulating bone marrow-derived CD90, CD73, and CD105-
expressing Mesenchymal Stem Cells (BM-MSCs) have been found to show an
innate tropism for tumor tissue in response to the inflammatory microenvironment
of prostate cancer tissue. MSCs represent 0.01–1.1 % of the total cells present in
core biopsies from primary human prostatectomies. They not only may contribute
to prostate carcinogenesis, but may also potentially be used to deliver cytotoxic or
imaging agents for therapeutic and/or diagnostic purposes (Brennen et al. 2013).

The intriguing role of miRNAs in prostate cancer progression has been discussed
elsewhere in this book. Nevertheless, we would further outline that they looks very
promising as “multifunctional” tools for prostate cancer.

They act, in fact, either in suppressing or promoting prostate cancer growth,
metastasis, and in maintaining the pluripotency of prostate cancer stem cells.

The low expression of miR-335 was significantly associated with high Glea-
son Score (P D 0.04), advanced clinical stage (P D 0.04), and positive metastasis
(P D 0.02), but not with prognosis in PCa patients. By converse, overwhelming
evidence establishes the role of microRNAs as essential actors in the metastasis gen-
eration of prostate cancers. Specific microRNAs then appear particularly attractive
to be manipulated, either by mimicking or inhibition, to hit metastasizing prostate
cancer cells. However, a lot of work is needed, to better understand their role in
prostate physiology and cancer, before they may enter the clinics (Fang and Gao
2013; Xiong et al. 2013; Fenderico et al. 2013).

Overall, a great workload is still necessary to reach definitive data about new
molecular therapeutic strategies toward metastatic prostate cancer, however, the
works are actively on, and the endlessly emerging data are extremely exciting
(Fig. 16.1).
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Chapter 17
Counteracting Hypoxia in Radio-Resistant
Metastatic Lesions

Stefania Staibano

Abstract The identification of hypoxia-regulated genes and proteins, has provided
the basis for the generation of new hypoxia-targeted drugs, conceived to re-
oxygenate hypoxic tumor areas. In patients with advanced metastasizing prostate
cancer (PC), these kinds of drugs are expected to optimize the effect of radiotherapy,
reducing also its side effects. Immunohistochemistry, DNA, proteomic and, tissue
array profiling, are increasingly providing us with exciting data, that could lead to
the formulation of pre-treatment multimarker tests able to identify the individualized
tumor response profiles to radiotherapy, basing on the specific cancer tissue hypoxia
pattern and degree (Bussink et al., Radiother Oncol 67:3–15, 2003).

As an example, the recent discovery of the role of microRNA in PC tumor
genesis points towards (Kulshreshtha et al., Cell Cycle 6(12):1426–1431, 2007)
the, Inactivation of miRs affected by hypoxia as a promising synergistic therapeutic
strategy for the radiotherapy-refractory subset of metastatic PC (Kulshreshtha et al.,
Cell Death Differ 15:667–671, 2008).

This chapter aims to give an outlook of the main hot-topics concerning the new
trends of hypoxia-targeted molecular therapies for advanced metastasizing prostate
cancers.

17.1 Background

Radiation therapy produces, in most cases, a durable disease control of prostate
cancer. According to a recent study on 3,546 patients, the 10-year disease-free
survival rates of patients treated with radiation is 75 %, similar to that registered
for radical prostatectomy, without all the inconveniences and complications linked
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to surgical intervention. However, a subset of prostate cancers can recur, in a great
extent (>75 %) in the first 5 years after treatment, and in about 5 % during or even
after the 10-year follow-up (Critz et al. 2013).

These recurrent cancers are aggressive, metastasizing and radio-resistant. Ioniz-
ing radiations exert their therapeutic effects on tumors mainly via the production
of cytotoxic reactive oxygen species (ROS), leading to irreversible DNA damage
(Morales et al. 1998), and cell death (Wilson and Hay 2011).

This accounts, for a large extent, for the resistance to radiotherapy showed
by metastasizing solid tumors, characterized by the frequent presence of multiple
hypoxic areas (Moeller and Dewhirst 2006).

In hypoxic tumors, ROS down-regulate the permeability of the mitochondrial
outer membrane, shutting-down the mitochondria-driven apoptosis (Moll et al.
2006; Kroemer 2006).

In addition, ROS activate PI3K (stabilizing HIF-1a and favoring the up-
regulation of glycolysis with anaerobic ATP production) (Muzandu et al. 2005;
Kaelin 2005).

Tumor hypoxia is due to the presence of dysfunctional, abnormal blood vessels
and artero-venous shunts responsible for the overall low and heterogeneous blood-
flow. Besides low oxygen tension, cells of malignant tumors have to face also high
extracellular hydrostatic pressure and low pH (Helmlinger et al. 1997; Jain 1999).
A growing body of data indicates that the correction of these tumor microenviron-
ment alterations may mitigate, or even reverse, the malignant phenotype of cancers
(Kenny and Bissell 2003). Successful approaches have been developed to counteract
tumor hypoxia, as (Bussink et al. 2003) the use of radio- or chemotherapy combined
with hyperbaric oxygen or hypoxic cell sensitizers (Henk 1986; Overgaard et al.
1998; Watson et al. 1978).

Several phase III trials are currently investigating new strategies. However,
most of these treatments showed an increase in side-effects. To date, treatments
targeting tumor hypoxia, widely accepted in clinical practice, are unavailable. This
is particularly challenging for advanced, metastatic prostate cancer (PC) which,
as previously outlined, frequently shows a poor response to radiotherapy, with an
overall worse outcome for most patients. There is the urgent need to reliably predict
the risk of tumor recurrence after radiotherapy, to enable the selection of high-risk
PC patients that would be candidates for treatment with novel investigational agents.
Recently, it has been shown that PC, in spite of a median blood flow three times
higher than in normal prostate (NP), exhibits mean pO2 values fewer than one fourth
than in NP, with an extremely heterogeneous distribution of intratumor oxygen,
independent from clinical or pathological features (Vaupel and Kelleher 2013).

In solid cancers, when the tumor’s bulk exceeds 1 mm3 in volume, neoplastic
cell growth progressively overcomes neo-angiogenesis (Shannon et al. 2003).

Tumor blood vessels, surrounded by a rapidly remodeling connective tissue,
become leakier than the vessels of the corresponding healthy tissue, and allow
serum proteins to infiltrate extracellular matrix, contributing to the elevation of
interstitial pressure (Dvorak 1986). Thus, a hypoxic tumor environment takes place
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(Huang et al. 1998b); the intrinsic structural and functional abnormalities lead to
repeated shut-down of the tumor microvessels, with a parallel decrease of oxygen
gradients and nutrients, and, even, to the local reversion of blood flow (acute
hypoxia) (Vaupel et al. 1989, 2001; Dewhirst et al. 1999). At the same time, the
increase in diffusion distances results in chronic hypoxia, leaving cells chronically
deprived of oxygen and nutrients (Vaupel et al. 2001).

Acute, chronic, and, also, regions of intermediate hypoxia, are common findings
in advanced metastasizing cancers. Tumor cells react to the hypoxic environment
through the paroxysmal activation of physiological responses: up-regulating the
expression of a network of gene products that advantage to tumor growth in this
adverse conditions and favour resistance to radiotherapy (Anastasiadis et al. 2003).

The frequent resistance to radiation therapy, of hypoxic cancer cells, is largely
thought to be caused by the lack of oxygen as a source of radiation induced
radicals. As a rule, in normal cells, the highly reactive free radicals produced by
radiation induce cell death through the generation of DNA double-strand breaks.
The presence of oxygen stabilise the free radicals, further increasing DNA damage
and impairing the DNA repair (Höckel and Vaupel 2001; Horsman and Overgaard
2002; Isa et al. 2006).

Intratumoral oxygen levels are, then, directly correlated with the cytotoxic effects
of radiation. By converse, hypoxia induces rapid changes in cancer cells gene
expression, altering proliferation kinetics by inhibiting DNA repair and apoptosis.
Moreover, it increases anaerobic glycolysis that ensures the fast proliferation of
hypoxic tumor cells (Harrison and Blackwell 2004; Wouters et al. 2004).

This has been recently demonstrated in human soft tissue sarcomas, in which the
more hypoxic tumors showed the fastest proliferating tumor cells (Nordsmark et al.
1996; Bussink et al. 1999; Kennedy et al. 1997; Ljungkvist et al. 2002; Schmaltz
et al. 1998; Webster et al. 1995).

All these changes facilitate the onset of radiation resistance and/or cytotoxic
drugs treatment, up to a level three times greater than non-hypoxic cancer cells.
Tumor hypoxia, then, represents a major cause of treatment failure and poor
outcome of human malignancies and, thus, is to be considered for prognostic
evaluation of tumors and therapeutic options for cancer patients (Lundgren et al.
2007; Le and Courter 2008).

The modification of tumor hypoxia significantly improved radiotherapy outcome
in several tumor types, as head and neck carcinomas (Overgaard and Horsman
1996).

Based on immunohistochemistry and direct oxygen-electrode measurements,
hypoxia may be detected in 30–90 % of prostate cancers. The presence of hypoxic
regions has been associated with radio-resistance and poor clinical outcome, of
prostate cancer patients, representing a very troublesome concern, for the treatment
of this tumor (Thomlinson and Gray 1955; Höckel et al. 1991).

Radiation therapy (RT) is commonly used as a primary treatment for prostate
cancer, sometimes combined with neoadjuvant and adjuvant hormone therapy
(Srigley et al. 2012).
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Patients with locally advanced PC, in fact, frequently develop relapse after RT.
In addition, recurrence, morbidity, and toxicity, often, complicate radiotherapy, used
either as the primary radical treatment of prostate cancer, or as an adjunctive therapy
after radical prostatectomy, or palliative therapy.

Recently, it has been confirmed that hypoxia correlates with tumor stage
and long-term biochemical outcome, in prostate cancer patients treated with
brachytherapy. Several molecules have been proposed as specific biomarkers of the
hypoxia-induced response of prostate cancer cells. Among these, Hypoxia inducible
factor-1 (HIF-1), VEGF, and osteopontin are among the most frequently reported as
overexpressed in aggressive prostate cancers (Huang et al. 2012)

The pathways activated by ionising radiation and hypoxia, include also several
pro-caspases, anti-apoptotic proteins and the transcription factor NFKB (Rugo
and Schiestl 2004; Gilbert and Knox 1997; Chresta et al. 1996; Romashkova and
Makarov 1999).

However, HIF-1 is the only DNA regulatory element truly regulated by oxygen.

17.2 HIF-1

HIF-1 consists of alpha and beta subunits. This transcription factor becomes
activated during alpha/beta dimerisation, bounding to p300 to form a complex. This
active complex rapidly targets the so-called “hypoxia- response element (HRE)” of
more than 60 hypoxia-inducible genes such as erythropoietin (Epo), VEGF, glucose
transporter-1 (GLUT-1) (Semenza et al. 1991; Shweiki et al. 1992; Levy et al. 1996;
Bashan et al. 1992), and multidrug resistance (MDR) gene, (Comerford et al. 2002).

In prostate cells, HIF-1 expression has been shown to be induced under normoxic
conditions (Park et al. 2007). In normal prostatic tissue, HIF-1 probably acts as an
intrinsic defender of prostate cells against a zinc-rich environment. Normal prostate
tissue and prostatic fluid are, in fact, extremely rich of zinc (Costello et al. 2005),
(1,000–3,000 and 9,000 mol/kg, respectively), and this may explain the ability of
prostate cells to stabilize HIFs (Ku et al. 2010).

HIF-1 beta is constitutively expressed in all normal cell types, whereas HIF-
1 alpha is rapidly post-transcriptionally hydroxylated in the presence of oxygen
(Yasuda 2008), and targeted for ubiquitation, a process directly mediated by the
von Hippel-Lindau (VHL) tumor suppressor ubiquitin-ligase protein (Maxwell et al.
1999).

HIF-1’ is overexpressed in 70 % of human cancers and their metastases provided
the first clinical evidence supporting the role played by HIF-1 in human cancer
progression (Zhong et al. 1999).

Expression of HIF-1 alpha, assessed by immunohistochemistry, has been recently
shown to predict tumor aggressiveness of several primary malignant tumors,
(Koukourakis et al. 2002; Aebersold et al. 2001) including prostate cancer, and has
been found overexpressed also in their corresponding metastases (Zhong et al. 1999;
Lekas et al. 2006).
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Several other reports confirmed the association between the immunohistochem-
ical overexpression of HIF-1alpha, increased prostate cancer patient mortality and
radiotherapy failure (Aebersold et al. 2001; Quintero et al. 2004).

Evidences on rat and human prostate cell lines have further supported this.
Very intriguingly, knocking down HIF- 1’ expression with small interfering RNA
(siRNA), sensitizes to radiation the androgen independent, highly metastatic PC3
cell line, enhancing their apoptotic rate. HIF-1’ siRNA transfection resulted in a
significant decrease in the G0/G1 phase, with an accompanied cell cycle arrest at
the proliferative phase. It is common knowledge that cells at the proliferative phase
are more sensitive to therapy, including irradiation, than in the resting phase. The
increase in both interphase death and reproductive death after irradiation, apoptotic
potential, and cell cycle arrest (at the proliferative phase) contribute to its radio-
sensitizing effect (Huang et al. 2012).

HIF-1’ inhibition looks, then, promising as an effective molecular therapy to
sensitize PC to RT. Hormone-independent prostate cancers have mutations in a
critical regulatory domain of the HIF-1’ protein, oxygen-dependent degradation
domain, which may have a great relevance for the development of therapeutic
androgen blockade (Anastasiadis et al. 2002) resistance. HIF-1’ inhibition might
have more anti-apoptotic effect in hormonal-independent prostate cancers. This
however deserves further confirmatory studies.

17.3 miRNA

The hypoxia-inducible factor-1 seems to be involved also in determining a particular
kind of hypoxic signature of prostate cancer cells, constituted by a specific mark
on microRNA profiles (hypoxia-regulated microRNAs, HRMs). In eukaryotic cells,
microRNAs regulate the expression of most genes, participating in cell differenti-
ation, proliferation, metabolism and death (Bartel 2004; Calin et al. 2004, 2005)
through translational repression and/or mRNA degradation (Cheng et al. 2005;
Croce and Calin 2005).

Sensible microRNA changes have been described in human cancers, sometimes
correlated with the clinico-pathological features of tumors (Iorio et al. 2005;
Yanaihara et al. 2006).

To date, the pathogenetic events underlying this phenomenon are largely un-
known. However, there are evidence that miRNA take a part in the hypoxia-mediated
gene repression, contributing to cell survival in low-oxygen conditions. Specific
microRNA patterns are a signature of normal and/or neoplastic hypoxic cells. They
include miR-23, -24, -26, -27, -103, -107, -181, -210, and -213; miR-26, -107, and
-210 are also overexpressed in a variety of human hypoxic tumors, in which they are
thought to have a role in tumor-genesis, via the decrease of proapoptotic signaling
(Volinia et al. 2006).

The great number of HRMs that are overexpressed in hypoxic tumors suggests
that hypoxia represents a driving force leading to microRNA alterations in cancer.
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Besides HIF-1, additional transcription factors responsive to hypoxia/anoxia, such
as p53 and NF-kB, may induce the expression of several specific microRNAs
(Yanaihara et al. 2006; Zhao et al. 2005).

As well, VEGF is considered a potential target for a series of hypoxia-responsive
candidate regulatory microRNAs, as miR-16, miR-20, let-7b, miR-17-5p, miR-
27, miR-106, miR-107, miR-193, miR-210, miR-320 and miR-361. The patterns
of microRNA alterations reported in cancer versus normal tissues, is likely the
consequence of the alteration of complex interacting molecular pathways induced,
at least in part, by hypoxia. These different patterns, however, are relatively scarce,
if compared with the plethora of genes and proteins commonly altered in tumors. To
date, a definitive explanation of this phenomenon does not exist. In the meantime,
this could be facilitating the possible future applications of miRNA for cancer
therapy. The recent availability of microRNA derivatives with increased half life and
binding efficiency, such as AMOs (anti microRNA oligonucleotides), LNAs (locked
nucleic acids) and antagomirs represents potentially important developments for
such purpose (Kulshreshtha et al. 2007; Weiler et al. 2006; Orom et al. 2006;
Krutzfeldt et al. 2007).

It has to be pointed out that, in any case, multiple microRNAs are involved in
the hypoxic response, this implying that the various attempts of therapies miRNA-
specific should be performed through the simultaneous combination of several
selected microRNAs (Bartel 2004).

This strategy could improve the outcome of conventional therapies, as early
studies have recently reported. In prostate cancers, as in a large number of other
tumors with different histogenesis (breast, lung, colon, stomach), specific alterations
of microRNA expression have been identified. Very interesting, in prostate cancer,
miR-210 seems to be an interesting marker of chronic hypoxia, irrespective of the
androgen dependency and should, therefore, be tested as a prognostic marker in high
risk prostate cancer patients (Volinia et al. 2006).

Considering that, recently, miR-210 has been detected in serum of lymphoma
patients as well as in sera of patients with solid tumors, the hypothesis of the future
development of non-invasive cancer new diagnostic tests utilizing miRNAs, could
be considered as feasible (Crosby et al. 2009).

17.4 VEGF

The Vascular Endothelial Growth Factor (VEGF) is a master growth factor driving
angiogenesis and tumor cell growth, promoting the increase of blood vessel
permeability, endothelial cell growth, proliferation, migration, and differentiation
(Senger et al. 1983; Ferrara 1995; Hicklin and Ellis 2005). It is regulated by a
plethora of cytokine growth factors (EGF, PDGF, bFGF, TGFalpha). Tumor hypoxia
directly up-regulates VEGF transcription through the increase of HIF-1 alpha levels
(Pugh and Ratcliffe 2003; Harris 2002).
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Recent studies demonstrated that the increasing levels of hypoxia correlated
with the highest tumor expression of VEGF (Cvetkovic et al. 2001) and predicted
biochemical failure after radiotherapy, showing an independent prognostic value
(Movsas et al. 2002; Moeller and Dewhirst 2006).

This implies that the VEGF expression directly reflects tumor hypoxia and
reduced radiosensitivity of prostate tumor cells (Gray et al. 1953).

This observation could justify the hypothesis that the assessment of tumor
VEGF expression on pretreatment diagnostic biopsies, may identify with reasonable
probability patients non-responder to radiotherapy, that need to be treated with
more aggressive radiation treatments and/or anti-angiogenic or hypoxia-targeted
drugs. Further studies on prostate cancer treated with radiotherapy or radical
prostatectomy showed that biochemical failure might be better predicted by the
increased expression of both HIF-1 alpha and VEGF, independently of T stage,
Gleason score, and PSA levels. HIF-1alpha and VEGF, then, are both to be
considered very promising as new therapeutic targets for aggressive prostate cancers
(Kimbro and Simons 2006; Semenza 2003; Rohwer and Cramer 2011).

The protein kinases inhibitors (TKIs) are the ideal candidates for this purpose.
They block the tyrosine kinase-dependent pathways in a mono-specific manner (one
TKI directed against a single type of TK) or can be directed toward several tyrosine
kinase receptors, thus being able to inhibit multiple signaling pathways. The use of
multikinase inhibitors, like Sunitinib and sorafenib, that interfere with several HIF-
1 related signaling pathways (i.e. VEGFR/PDGFR) (Merino et al. 2011; Nilsson
et al. 2010), is showing encouraging results, even combined with small molecules
targeting HIF-1 (Nordgren and Tavassoli 2011).

As for traditional therapies, also in this case, the combination of molecule
targeted toward different targets seems to produce a positive, synergistic, effect
in counteracting aggressive cancer cells. Even in localised prostate cancers, the
extent of tumor hypoxia (Parker et al. 2004) seems to be correlated with long-
term poor outcome of prostate cancer patients (Denhardt and Guo 1993; Shweiki
et al. 1992), when the immunohistochemical over-expression of HIF-1 alpha and
VEGF is found associated with the hypoxia-induced secreted phosphoglycoprotein
osteopontin (Zhong et al. 1999; Strohmeyer et al. 2004; Forootan et al. 2006).

Further investigations are needed to evaluate the better way to therapeutically
regulate the multi-layer cross-talks between HIF-1alpha and VEGF pathways in
hypoxic prostate cancers. Several aspects of these interactions are still matter of
active investigation. Among these, the role of the reciprocal interactions between
HIF-1, VEGF and the androgen/androgen receptor axis is of particular relevance.
Androgens influence tumor vasculature through several mechanisms, enclosing a
paracrine signalling mediated through androgen receptors expressed by endothelial
cells (Godoy et al. 2008, 2011).

Hypoxia induces androgen hypersensitivity. The transition from androgen-
dependence to androgen-independence is a key event in prostate cancer. Patients
with clinically localized prostate cancer showed a reduction in the hypoxic fraction
following androgen withdrawal (Milosevic et al. 2007) that appear to correlate
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with downregulation of VEGF expression (Aslan et al. 2005), Tumor hypoxia
progressively decreases due to the “normalization” of prostate cancer vasculature
allowed by the down-regulation of VEGF (Shweiki et al. 1992; Overgaard et al.
2005).

Quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE
MRI) detected an increased and highly functional vascular network in experimental
prostate tumors after ADT, which was confirmed by quantitative analysis of
fluorescent immunohistochemistry qIHC. However, long-term androgen deprivation
induces transient acute hypoxia, and this may be involved in the transition to
androgen independence (Rothermund et al. 2005; Park et al. 2006).

Anti-androgens bind to AR in the tumor, but have affinity for pituitary and
hypothalamus receptors, stimulating over-secretion of androgens; moreover, in
recurrent prostate cancers, an increased expression, stability and translocation of the
AR takes place, making tumor cells hypersensible to the growth-promoting effect
of dehydrotestoterone (DHT) that, in turn, stabilizes HIF-1a, contributing to the
hypoxic response (Mabjeesh et al. 2003; Bakin et al. 2003).

The chronic activation of the androgen receptor (AR) has also shown to
upregulate HIF-1 alpha and VEGF in prostate cells through the autocrine receptor
tyrosine kinase receptor/PIP3K/AKT-1/mTor signaling (Culig and Bartsch 2006).
A prolonged androgen withdrawal leads, as side-effect, to the over-activation of Akt
signalling, increasing the ultimate apoptosis-resistance of prostate cancer cells. This
partially explains why hormone-resistant prostate cancers are also resistant to most
other forms of therapy, comprising the inhibition of PI3K-mediated response (Pfeil
et al. 2004).

Although apoptosis is not the main biological effect of ionising radiation,
apoptosis resistance has been correlated with radiation therapy failure and proposed
as an effective marker for the radioresponse of prostate tumors (Szostak and
Kyprianou 2000; Zhivotovsky et al. 1999; Wang et al. 2004).

In prostate cancer cells as in radical prostatectomy specimens (as detected by
immunochemistry), Bcl-2 overexpression was positively associated with a high risk
of biochemical failure in clinically localized prostate cancer, and poor therapeutic
response to radiation therapy (Xie et al. 2006; Revelos et al. 2005; Huang et al.
1998a; Scherr et al. 1999).

These findings indicate that AR-induced HIFs-VEGF-overactivation may repre-
sent a potential source of pitfall for experimental trials utilizing VEGF sequestrants,
as Bevacizumab, in patients with hormone- resistant prostate cancer.

All these aspects have to be considered to achieve a beneficial combination
therapy based upon RT, anti-angiogenic/vascular disrupting therapy, and ADT, in
advanced PC. Indeed, strategies aimed at restoring apoptosis pathways in prostate
tumor cells seem a pivotal feature of new radiotherapy treatment protocols. The
ultimate question that still arises after about two decades of intensive research,
concerns the nature, hierarchy and timing of the prevalent acquired mechanisms
of radio-resistance in metastasizing, hypoxic prostate cancers. Pathway redundancy,
molecular crossing-over and the progressive selection of hypoxic-resistant tumor
cells are among the most promising pathogenetic factors for this phenomenon.
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Fig. 17.1 Hypoxia regulated genes and proteins. The main mechanism of action of ionizing
radiations in the therapy of tumors is the production of cytotoxic reactive oxygen species (ROS),
leading to irreversible DNA damage and cell death. ROS activate PI3K that drives the stabilization
of HIF-1a and the up-regulation of glycolysis. Hypoxia modifies gene expression of cancer cells,
causing inhibition of DNA repair and apoptosis and increases anaerobic glycolysis which favors
the proliferation of hypoxic tumor cells. Moreover, ionising radiation and hypoxia regulate the
expression of several pro-caspases and anti-apoptotic proteins. HIF-1 is the most reliable marker
of hypoxia. It targets hypoxia-inducible genes and is involved in determining a specific mark on
microRNA profiles (hypoxia-regulated microRNAs, HRMs). miRNA take a part in the hypoxia-
mediated gene repression, contributing to cell survival in low-oxygen conditions
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It seems likely that the plethora of hypoxia-induced transcription factors, operating
in hypoxic prostate cancers, may lead to radio-resistance also through the generation
or expansion of cancer stem cells.

Moreover, it has recently been shown that, under hypoxic conditions, prostate
cancer cell lines interact with p16ink4a via HIF1-alpha, preventing cells entering the
senescent state and thereby increasing tumor radioresistance. The existing data are
still far to be conclusive. Nevertheless, Hypoxia is now recognized as a major factor
driving malignant progression and resistance to treatments of a considerable amount
of prostate cancer and the impressive amount of reports in the recent literature
support the hypothesis that, counteracting hypoxia through its molecular mediators,
is a valid way to fight aggressive prostate cancers. The incomplete comprehension
of the molecular events responsible for the cellular reaction to hypoxia, can be
reasonable considered as the principal responsible of the variable failure of the
majority of the treatment proposed. For instance, still unexploited is the role of
a homologous member of the HIF family, : HIF-2. HIF-1 and HIF-2, differ in
their transactivation domains, this suggesting that may regulate distinct target genes
(Hu et al. 2003; Koukourakis et al. 2006).

As well, the inter-relations between the different members of hypoxia-related
pathways should be interpreted further, to optimize the therapeutic approach. As
an example, the first attempts of antiangiogenic therapies have produced, as a final
effect, an elevated tumor hypoxia with HIF-alpha up-regulation and further gain-of-
aggressiveness and radio-resistance of tumors. Furthermore, the use of molecules
interacting with most of physiological processes, frequently leads to a relevant
toxicity as medium (or long) term side effect. However, the time in which targeting
hypoxia will be routinely addressed in the management of aggressive prostate
cancer, is rapidly coming in (Fig. 17.1).
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Höckel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine

cervix: evaluation by computerized O2 tension measurements. Cancer Res 51:6098–6102
Horsman MR, Overgaard J (2002) The oxygen effect and tumour microenvironment. In: Steel GG

(ed) Basic clinical radiobiology. Arnold, London, pp 158–168
Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible

factor 1’ (HIF-1’) and HIF-2’ in hypoxic gene regulation. Mol Cell Biol 23:9361–9374
Huang A, Gandour-Edwards R, Rosenthal SA, Siders DB, Deitch RW, White RW (1998a) p53

and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy.
Urology 51:346–351

Huang LE, Jie GU, Schau M, Bunn HF (1998b) Regulation of hypoxia-inducible factor-1a is
mediated by an O2-dependent degradation domain via the ubiquitinproteasome pathway. Proc
Natl Acad Sci USA 95:7989–7992

Huang Y, Yu J, Yan C, Hou J, Pu J, Zhang G, Fu Z, Wang X (2012) Effect of small interfering
RNA targeting hypoxia-inducible factor-1’ on radiosensitivity of PC3 cell line. Urology
79(3):744.e17–744.e24

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M,
Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA,
Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human
breast cancer. Cancer Res 65:7065–7070

Isa AY, Ward TH, West CML, Slevin NJ, Homer JJ (2006) Hypoxia in head and neck cancer.
Br J Radiol 79:791–798

Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng
1:241–263

Kaelin WG Jr (2005) ROS: really involved in oxygen sensing. Cell Metab 1:357–358
Kennedy AS, Raleigh JA, Perez GM et al (1997) Proliferation and hypoxia in human squamous

cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int J Radiat
Oncol Biol Phys 37:897–905

Kenny PA, Bissell MJ (2003) Tumor reversion: correction of malignant behavior by microenviron-
mental cues. Int J Cancer 107:688–695

Kimbro KS, Simons JW (2006) Hypoxia-inducible factor-1 in human breast and prostate cancer.
Endocr Relat Cancer 13:739–749

Koukourakis MI, Giatromanolaki A, Sivridis E et al (2002) Hypoxiainducible factor (HIF1A
and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck
cancer. Int J Radiat Oncol Biol Phys 53:1192–1202

Koukourakis MI, Bentzen SM, Giatromanolaki A et al (2006) Endogenous markers of two separate
hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are
associated with radiotherapy failure in head and neck cancer patients recruited in the CHART
randomized trial. J Clin Oncol 24:727–735



17 Counteracting Hypoxia in Radio-Resistant Metastatic Lesions 267

Kroemer G (2006) Mitochondria in cancer. Oncogene 25:4630–4632
Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M (2007)

Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res
35:2885–2892

Ku JH, Seo SY, Kwak C et al (2010) The role of survivin and Bcl-2 in zinc-induced apoptosis in
prostate cancer cells. Urol Oncol 30:562–568

Kulshreshtha R, Ferracin M, Negrini M, Calin GA, Davuluri RV, Ivan M (2007) Regulation of
microRNA expression the hypoxic component. Cell Cycle 6(12):1426–1431

Kulshreshtha R, Davuluri RV, Calin GA, Ivan MA (2008) microRNA component of the hypoxic
response. Cell Death Differ 15:667–671

Le QT, Courter D (2008) Clinical biomarkers for hypoxia targeting. Cancer Metastasis Rev
27(3):351–362

Lekas A, Lazaris AC, Deliveliotis C, Chrisofos M, Zoubouli C, Lapas D et al (2006) The expression
of hypoxia-inducible factor- 1alpha (HIF-1alpha) and angiogenesis markers in hyperplastic and
malignant prostate tissue. Anticancer Res 26:2989–2993

Levy AP, Levy NS, Goldberg MA (1996) Hypoxia-inducible protein binding to vascular endothe-
lial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem
271:25492–25497

Ljungkvist ASE, Bussink J, Rijken PFJW, Kaanders JHAM, van der Kogel AJ, Denekamp J (2002)
Vascular architecture, hypoxia, and proliferation in the first passage of xenografts of human
head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 54:215–228

Lundgren K, Holm C, Landberg G (2007) Hypoxia and breast cancer: prognostic and therapeutic
implications. Cell Mol Life Sci 64(24):3233–3247

Mabjeesh NJ, Willard MT, Frederickson CE, Zhong H, Simons JW (2003) Androgens stim-
ulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase recep-
tor/phosphatidylinositol 30-kinase/protein kinase B in prostate cancer cells. Clin Cancer Res
9:2416–2425

Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets
hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275
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Chapter 18
“Synthetic Lethality”: Molecular Co-targeting
to Restore the DNA Repair Mechanisms
in Prostate Cancer Cells

Gennaro Ilardi and Stefania Staibano

Abstract Resistance to anticancer radiation treatment has a strong negative impact
upon morbidity and mortality related to prostate cancer (Liu et al., Radiother Oncol
88(2):258–268, 2008).

This justifies the great interest in the advancing efforts toward the design of
new molecularly-targeted agents which could improve the therapeutic ratio for
aggressive prostate cancers via tumor radio-sensitization (Fan et al., Cancer Res
64(23):8526–8533, 2004).

Tumor progression of prostate cancer is associated, as in most of human
malignancies, with the sequential loss of function of genes that normally protect
against DNA damage.

Malignant prostate cells respond to both endogenous and exogenous DNA
damage through complex signaling responses. Due to a specific genetic background,
or in an acquired manner during tumor progression, PC cell clones show defect in
either DNA single-strand break (SSB) and/or double-strand break (DSB) repair,
and/or base damage repair (Stewart et al., Biochem Pharmacol 81(2):203–210,
2011), DSBs are the principal responsible for cell killing due to ionizing radiation
(Ward 1988).

A defective DNA double-strand break repair increases genetic instability of PC
cells, could be considered as part of their “mutator” phenotype (Tyson et al., Prostate
67:1601–1613, 2007).

During the last decades, it has emerged the concept of “synthetic lethality”
(Chalmers et al., Semin Radiat Oncol 20(4):274–281, 2010).

This concept derives from the observation that the use of a single inhibitor
of a DNA repair enzyme leads to the selective killing of tumor cells, bearing a
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second DNA repair defect (Bryant et al., Nature 434(7035):913–917, 2005; Jones
and Plummer, Br J Radiol 81(Spec No 1):S2–S5, 2008; Fong et al., N Engl J Med
361:123–134, 2009).

To this end, PARP inhibitors are the well-known class of drugs that have recently
been proposed to reach synthetic lethality in DNA repair-defective, radio-resistant
prostate tumors.

This chapter aims to provide a framework for understanding the recent thera-
peutic trends designed to overcome radioresistance in prostate cancer via synthetic
lethality, we review what it is actually known about the structures and functions of
the members of the PARP family of enzymes, outlining a series of open questions
that should be addressed in the short time to better guide the development (and
the safe clinical use) of PARP inhibitors as new anticancer agents for prostate
cancer (Cybulski et al., Cancer Res 64:1215–1219, 2004; Stewart et al., Biochem
Pharmacol 81(2):203–210, 2011).

Radiotherapy, either in the form of external beam radiotherapy or brachytherapy,
still represents a key therapeutic option for localized or locally advanced prostate
cancers.

The effectiveness of radiotherapy is strongly influenced by the occurrence of
adverse effects on surrounding normal tissues, ranging from radiation-induced
cystitis and/or proctitis, up to erectile dysfunction (Stewart et al. 2011; Barreto-
Andrade et al. 2011).

This acute and chronic by-stander toxicity has been greatly reduced with the
introduction of the intensity-modulated radiation therapy (IMRT), which allows a
more specific targeting of the tumor area.

Despite the advances in radiotherapy techniques (Esgueva et al. 2012; Meng et al.
2005) up to 30 % of radio-treated (Pollack et al. 2003) (intermediate and high risk
Zelefsky et al. 2006; Bill-Axelson et al. 2005) prostate cancer patients experience a
very aggressive, metastatic disease (Esgueva et al. 2012).

Radioresistance of PC cells is thought to be due to complex inter-relationships
between intrinsic genetic and micro-environmental factors (Bristow and Hill 1998;
Bristow et al. 2007).

This scenario is further complicated by the significant variability in normal tissue
reactions to the radiation-induced DNA damage among prostate cancer patients.

Ionizing radiation kills eukaryotic cells mainly through the induction of DNA-
double-strand breaks (DNA-DSBs) (Ward 1988) and, with a lesser extent, (Bristow
et al. 2007) via DNA single-strand breaks (DNA-SSBs), alteration/loss of DNA
bases or DNA-DNA/DNA-protein cross-links (Chalmers et al. 2010).

The ratio of SSBs and DSBs generated by therapeutic ionizing radiation is about
25:1, but DNA double-strand breaks (DSBs) are by far the most potent inducers of
cancer cell death (Chalmers et al. 2010).

DNA damage detection and repair require several well-characterized epige-
netic events, represented, in first instance, by the relaxation of chromatin and
phosphorylation of histone H2AX on the chromatin area lining the DNA lesions,



18 “Synthetic Lethality”: Molecular Co-targeting to Restore. . . 273

followed either by methylation/acetylation, depending on the specific damaged
residue (Escargueil et al. 2008).

DSBs result from the collision of base damage or SSBs with the advancing
replication fork, and represent the most cytotoxic lesions (Curtin 2012).

They are usually repaired through two interacting pathways: the homologous
recombination (HR) and the non-homologous end joining (NHEJ)-one.

HR utilizes the undamaged sister chromatid (or chromosomal homologue) as a
template (Sonoda et al. 2006). This means that HR can take place only in S and
G2 phases (Bertrand and Saintigny 2004) operating then during DNA replication
(Bernstein et al. 2002; Hansen and Kelly 2000; Hoeijmakers 2001).

NHEJ rapidly binds directly to broken DNA ends during all phases of the cell
cycle (Weterings and van Gent 2004; Collis et al. 2005; Riballo et al. 2004; Fan
et al. 2004; Rothkamm et al. 2003; Willers et al. 2004) but it lacks the ability to
restore any DNA that is lost during the breakage event or subsequent processing,
thus resulting in error prone (Sonoda et al. 2006; Chalmers et al. 2010).

These two DNA repair pathways are hyper-activated in normal cells in response
to radiation-induced DNA damage (Bromfield et al. 2003).

The non-repair or mis-repair of radiotherapy-induced DNA-DSBs, due to the
inhibition of HR or NHEJ, leads to chromosomal deletions, translocations and
rearrangements (Bertrand et al. 2004; Bindra and Glazer 2005; Guirouilh-Barbat
et al. 2004; Richardson et al. 2004), favouring the onset of genetic instability (Collis
et al. 2005; Weterings and van Gent 2004) DNA-DSBs repair has been found to be
defective in prostate cancer cell lines (Yuan et al. 1999; Collis et al. 2002; Trzeciak
et al. 2004; Fan et al. 2004).

Furthermore, models of prostate carcinogenesis have shown the association
with increased levels of chromosomal aberrations and instability can drive the
progression from high-grade PIN to PC (Elliott and Jasin 2002; Pihan et al. 2001;
Vukovic et al. 2003). Accumulating evidences indicate that the defective DNA
double-strand break repair could be considered as part of the “mutator” phenotype
of PC cells (Loeb et al. 2003; Bristow et al. 2007).

This has particular relevance, if we consider that the fractionated prostate
radiotherapy protocols lead to the generation of a huge number of DNA-DSBs.

During the last few years, in order to overcome PC aggressiveness and radioresis-
tance (Overgaard 2007; Wouters et al. 2002), in fact a positive trend toward multiple
promising kinds of “combined” therapeutic approaches has been registered.

Intriguing therapeutic approaches to radiosensitize hypoxic, metastasizing and
highly lethal PC cells are focusing on the concept of “synthetic lethality”. This
definition refers to a situation where the simultaneous presence of two genes
mutation results in cell death, whereas each mutation per se does not impair cell
viability (Curtin 2012).

This phenomenon has inspired new fascinating chances for cancer treatment.
The most promising clinical translations of synthetic lethality concern can-

cers with specific defects in the HR-mediated repair of double-strand breaks
(Antonarakis and Armstrong 2011), as the tumor suppressors BRCA1 and BRCA2
mutant, hereditary breast or ovarian cancers (Venkitaraman 2002).
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These tumors represent the first successful examples of treatments based on the
use of a single inhibitor of a DNA repair enzyme to selectively kill tumor cells with
a second complementary DNA repair pathway defect (Fong et al. 2009; Bryant et al.
2005).

The absolute requirement of HR for DSB repair results in an extreme dependency
of BRCA-mutated tumors on PARP-1 action and BER to maintain genomic integrity
(Chalmers et al. 2010; Saleh-Gohari et al. 2005).

PARP-1 is the prototypical member of the “poly(ADP-ribose) polymerases
(PARPs) superfamily”, highly active in protecting cells from endogenous and/or
therapeutically induced DNA damage (Curtin 2012).

This large family of enzymes is characterized by the “PARP signature” (GenBank
XP 037275 residues 796–1014 de Murcia and Ménissier de Murcia 1994): a 50-
amino acid sequence within the enzymatic domain, which catalyzes the cleavage of
NAD C into nicotinamide and ADP-ribose. This latter is used to synthesize long,
branching, negatively charged polymers, which are then covalently attached to a
variety of partner nuclear proteins, as core histones, linker histone H1 (Giner et al.
1992; Grube et al. 1991), HMG proteins, topoisomerases I and II, DNA helicases,
single-strandbreak repair (SSBR) and base-excision repair (BER) factors, various
transcription factors and PARP-1 itself, involved in DNA damage signalling and
repair (Pleschke et al. 2000; Ruf et al. 1996; Oliver et al. 2004), proximally to the
DNA breaks.

This poly(ADP-ribosyl)ation leads to the loosening of chromatin structure
(Schreiber et al. 2006) allowing the spatial organization of DNA repair through the
exposure to the cellular DNA repair machinery (Grube et al. 1991).

PARP-1 is a 113-kDa nuclear protein that accounts for at least 80 % of human
cellular PARP activity. It is a highly conserved, multifunctional enzyme (Schreiber
et al. 2006), with a modular structure (Pfieffer et al. 1999). Under normal conditions,
PARP-1 is found associated with histones, DNA and other chromatin associated
factors.

In response to DNA damage, it acts as a molecular sensor for DNA-breaks
through two zinc-finger motifs, referred to as zf-PARP (Tulin et al. 2002; Menissier
et al. 1997), undergoing conformational change and becoming activated.

The binding to DNA breaks, either single-strand break (SSB) and double-strand
break (DSB), rapidly stimulated its catalytic activity more than 500-fold. PARP1,
as well as his isoenzyme PARP2, acts in SSBs repair mostly by activating base-
excision repair (BER).

PARP-1–deficient (or inhibited) cells show, in fact, reduced BER activity
(Dantzer et al. 2000) and hypersensitivity to SSB-inducing agents (Horton and
Wilson 2007).

If PARP-1 fails to promote SSBs repair, replication forks collapse, converting the
DNA damage into replication-associated DSBs, which PARP-1 and PARP-2 attempt
to repair either via HR and NHEJ (Chalmers et al. 2010).

The success of PARPs action is strictly dependent upon the extent of the DNA
damage. This is due to the transient action of PARP-1 and 2, caused by the
rapid degradation of poly-ADP chains due to the poly(ADP-ribose) glycohydrolase
(D’Amours et al. 1999).
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The half-life of polyADPribose ranges from seconds to minutes, and the
hyperactivation of PARP1 consumes the cell pool of NAD C to generate
pADPr, lowering cellular energy. So, low-to-moderate DNA damage triggers
polyADPribose-dependent DNA repair (Rouleau et al. 2010).

As a complementary effect, pADPr diminishes the affinity for DNA of PARP1,
which is then removed from DNA, favouring the post-repair chromatin compaction
(Timinszky et al. 2009; Ogata et al. 1980).

In case of excessive DNA damage, PARP1 hyperactivation leads to the excessive
NAD C consumption (Juarez-Salinas et al. 1979; Berger et al. 1986; Carson et al.
1988), inducing the catastrophic events that trigger cell death through mechanisms
ranging from parthanatos (David et al. 2009; Andrabi et al. 2006), which is directly
driven by the longest pADPr chains, to necrosis (Berger et al. 1986; Carson et al.
1988; Zong et al. 2004) or to the establishment of an autophagic state (Huang et al.
2009; Huang and Shen 2009; Munoz-Gamez et al. 2009) of damaged cells.

Due to its fundamental role in DNA-repair, PARP-1 has been identified as
the ideal therapeutic target to either specifically kill cancer cells lacking HRR
function, and increase the efficacy of radio/chemotherapy in terms of selective tumor
cytotoxicity (Farmer et al. 2005; Bryant et al. 2005).

Consistently with these postulates, PARP inhibition in (Bryant et al. 2005)
BRCA1 and/or BRCA2-mutated cancer cell (Antonarakis and Armstrong 2011)
leads to accumulation of single-strand DNA breaks and (Chalmers et al. 2010)
impairs the efficient resolution of collapsed replication forks, impeding the release
of PARP molecules from damaged sites, leading to double-strand DNA breaks at
replication forks (Antonarakis and Armstrong 2011).

The result is chromosomal instability, cell cycle arrest and subsequent apoptosis
caused by the persistence of DNA lesions (Bryant et al. 2005). In other words, the
synthetic lethality has been reached.

This synthetic lethality approach has been validated in a multitude of preclinical
models, in vitro and in vivo (Bryant et al. 2005; Farmer et al. 2005), and
several PARP inhibitors (olaparib-AZD2281, 3-AB, ISQ, NU1025, KU0058684
or AG14361) have shown promising results, when used as single-agents against
BRCA1- or BRCA2-mutant tumors in clinical testing (Carnell et al. 2006), and
promises, as radio-sensitizers in these tumors (Bristow et al. 2007). However,
BRCA2 and BRCA1 germ-line mutation carriers have a higher risk to develop PC
respect to the normal population. Respectively, prostate cancer relative risk ranges
from 2.5 to 7.5 in BRCA2-mutated and <2.0 in BRCA1-carriers; a data particularly
significant in tumors diagnosed in younger patients (between ages 40 and 45) (Dong
2006; Levy-Lahad and Friedman 2007).

However, these subsets of PC are relatively poorly differentiated, with poor
prognosis (Horsburgh et al. 2005). Additionally, a new BRCA2-interacting protein,
PALB2, has been found to be associated with an increased risk of prostate cancer
(Erkko et al. 2007).

Olaparib was the first PARP inhibitor to reach human clinical testing in patients
with BRCA1/2-mutated tumors. In a phase I study, oral olaparib allowed a >50 %
PSA drop with resolution of bone metastases in a man with BRCA2-related CRPC



276 G. Ilardi and S. Staibano

(Antonarakis and Armstrong 2011). Nevertheless, BRCA1 and BRCA2 mutations
are not considered a major cause of familial or sporadic prostate cancer. A number
of other mutations that decrease HR and NHEJ DNA repair responses, that can
also sensitize PC cells for synthetic lethality induced by PARP inhibitors, are in
fact being increasingly detected (Barreto-Andrade et al. 2011; Plummer et al. 2008;
Miknyoczki et al. 2003; Calabrese et al. 2003). They include the phosphatase and
tensin homolog gene (PTEN) that is located on chromosome 10, frequently deleted
in human cancers and commonly inactivated in prostate cancer (Delaney et al.
2000).

PTEN is a tumor suppressor which, besides inactivating the P13-K/AKT path-
way, controls chromosomal integrity and regulates the expression of the repair
protein Rad51, reducing the incidence of spontaneous double strand breaks (Shen
et al. 2007).

PTEN-deficient tumors exhibit genomic instability due to the down-regulation of
Rad51 and the impaired homologous recombination, and result extremely sensitive
to PARP inhibitors (Antonarakis and Armstrong 2011).

This sounds of even particular interest, if we consider that, during PC progression
the impairment of DNA repair processes mediated by tumor hypoxia greatly
contributes to the increase of the genetic instability of prostate cancer (Fan et al.
2004).

Hypoxia, in fact, occurs in 30–90 % of prostate tumors (Chan et al. 2007; Stewart
et al. 2010).

Chronic hypoxia, down-regulates the expression and function of many of the
DNA-dsb-associated genes, as RAD51 decreasing homologous recombination and
DNA double-strand break repair (Vaupel and Mayer 2007).

Thus contributing to the overall genetic instability and aggressiveness of prostate
cancer cells.

Tumor hypoxia is indeed progressively emerging as a common feature of prostate
tumors associated with poor prognosis.

In-line with these findings, hypoxia-induced metastatic lesions are characterized
by gene amplification, point mutation, hyper-mutagenesis and a large amount of
DNA strand breaks (Tannock et al. 2005).

Thus, it is becoming increasingly clear that multiple approaches may be hypoth-
esized to overcome radio-resistance of PC cells.

Targeting the hypoxic response has been shown to sensitize PC cells to ionizing
radiation in vitro (Russell et al. 2003; Slupianek et al. 2001) and may be effective
as a complement to radiotherapy of prostate cancer patients. The first attempts
of RAD51 expression inhibition by imatinib mesylate (Gleevec) have provided
encouraging results (Bristow et al. 2007).

As well, treatment with ABT-888 (Veliparib) has shown some efficacy in PTEN
defective PC-3 prostate cancer cells (Barreto-Andrade et al. 2011; Mendes-Pereira
et al. 2009).

In addition, ABT-888 enhanced the antitumor activity of TMZ in orthotopic
human breast and prostate xenografts.
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Radiosensitization in vivo has also been demonstrated using several PARPi:
AG14361, GPI 15427, ABT-88 and E7016; all showed good radio-sensitization
against colon, head and neck, lung and prostate cancer xenografts (Donawho et al.
2007; Calabrese et al. 2004a, b; Palma et al. 2009; Barreto-Andrade et al. 2011).

It could be then hypothesized that PARPi could be successfully used as
monotherapy to achieve tumor control, and/or as radio-sensitizers of PTEN-
deficient prostate tumors (Barreto-Andrade et al. 2011; Curtin 2012).

A further, extremely interesting, finding derives from a recent report indicating
that PARPi can increase the vascular perfusion of tumors through direct vasoactive
effects, thus increasing their oxygenation and radio-sensitivity (Liu et al. 2008),
leading us to conclude that it may be possible that some PARP inhibitors could
induce short-term, vasodilatory effects by virtue of their structural similarities to
nicotinamide.

Nicotinamide, a weak PARPi, inhibits contraction of vascular smooth muscle,
and its utility in combination with carbogen is being tested in radiotherapy clinical
trials (Horsman 1995).

Recently, the AG14361 PARPi was shown to improve intra-tumoral perfusion
and possibly reduce tumor hypoxia in mouse xenografts (Calabrese et al. 2004b).
Additionally, pharmacological inhibition of PARP has been recently demonstrated
to impair HIF-1a induction and angiogenesis (Martin-Oliva et al. 2006; Rajesh et al.
2006a, b).

ABT-888 has been shown to inhibit endothelial tubule formation as well as
decreased tumor vascular density (Albert et al. 2007).

This could enhance tumor growth delay after radiotherapy by increasing tumor
blood flow, enhancing drug penetration, and increasing oxygen concentrations to
offset hypoxic cell radio-resistance. Vasoactive properties and/or anti-endothelial
effects have also been documented for AG14361 and ABT888 (Albert et al. 2007;
Calabrese et al. 2004a, b; Ali et al. 2009).

Accumulating clinical evidence indicates, in addition, that the short-term use
of PARP inhibitors would be extremely well tolerated, even in patients who have
undergone multiple previous cytotoxic therapies (Curtin 2012).

Several small-molecule PARP1 and PARP2 inhibitors are currently in preclinical
and clinical trials, alone or in combination with DNA-damaging agents (Rodon et al.
2009; Rouleau et al. 2010).

The use of radio-sensitizers to target recognition and repair of DNA damage is
becoming an emerging strategy to improve the efficacy of radiotherapy at lower IR
doses (Ljungman 2009).

PARP is activated by ionizing radiation (IR) and chemotherapy agents, and this
has provided the rationale to examine the combined effects of PARP inhibitors and
genotoxic therapy in tumor models and in clinical trials (Donawho et al. 2007;
Plummer et al. 2008; Powell et al. 2010).

Several aspects concerning the use of PARPi as radiosensitizers for PC are still
to be better elucidated. Here we will briefly examine the most debated ones.
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1. PARP inhibition has been shown to radiosensitize mainly replicating cells
through the increase of unrepaired DSB (Noel et al. 2006; Dungey et al. 2008).

This favors the increase of the therapeutic index of radiation therapy in highly
replicating tumors (Kastan and Bartek 2004) as recently demonstrated in vivo, in
colon, head and neck, lung and prostate cancer xenografts using several PARPi,
as ABT-88, AG14361, E7016, GPI 15427 (Donawho et al. 2007; Calabrese et al.
2004a, b; Palma et al. 2009; Barreto-Andrade et al. 2011).

However, the long-term success of radiation therapy of PC depends upon the
eradication of mostly non-replicating tumor stem cells, that constitute up to 1 %
of total tumor cells (Wong and Hill 1998).

As it is well-known, cancer stem cells typically reside in hypoxic niches.
Some PARPi, such as ABT-888, have shown the ability to radio-sensitize in

vivo also hypoxic tumor clonogens.
It seems, then, that at least some PARPi could improve the therapeutic ratio

of clinical radiotherapy by overcoming both oxic and hypoxic radioresistance.
These findings are still to be confirmed on large case–control studies.

Nevertheless, they look very promising. Moreover, these PARPi would be used
also as a complement for new biological imaging-guided hypoxic tumor regions-
targeted, high doses-radiotherapy (“dose painting”) (Liu et al. 2008) and, some
evidences, show that radiotherapy may induce prostate cancer cell death also
through a terminal growth arrest (Schwarze et al. 2001). As indicated by the
overexpression of markers of senescence, such as p21WAF1/Cip1 and p16INK4a
(Stein et al. 1999), therapy-induced senescence is increasingly being reported as
an alternative mode of cell death.

It can result from several inducers, including accumulation of unrepaired
DNA damage and is proposed to contribute to tumor control following treatment
with cytotoxic agents (Roninson 2003; Lleonart et al. 2009). Some results in PC-
3 cells and tumors have suggested that accelerated senescence may be a factor
in the therapeutic response of some human tumors to IR combined with PARP
inhibition (Efimova et al. 2010).

A terminal growth arrest should probably be considered an adjunctive end-
point and novel therapeutic approach for radiotherapy of prostate carcinoma.
PARP inhibitors are among the favorite candidates for inducing this purpose.

However, this point still deserves consideration in clinical trials and, mainly
due to the lack of reliable senescence-inducing agents, this area constitutes an
open field for further research (Barreto-Andrade et al. 2011).

2. First generation PARP inhibitors have produced defects in lymphocytes and
muscle cells differentiation in several cases. This side-effect may be due to the
need of inhibit >90 % of PARP activity to produce a therapeutic impair of DNA
repair (Satoh et al. 1994; Farzaneh et al. 1982; Johnstone and Williams 1982).

However, the third generation of highly potent and specific PARP inhibitors
has not produced these adverse effects, suggesting that they might have been only
a result of an off-target effect specific for the first type of inhibitors.
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However, given the high potency of the new generation of PARPi, the systemic
effects of near-complete PARP inhibition should be tested with additional studies
on animal model (105. Konishi et al. 1986; Takahashi et al. 1984).

As an example, PARP1 is required either for the protection of the cardio-
vascular system and for the development of memory (Pacher and Szabo 2007;
Goldberg et al. 2009).

As well, long-term PARP1 inhibition could also lead to secondary malignan-
cies, particularly when inhibitors are administered with DNA damaging agents.
This hypothesis is supported by several reports. Recently, a high incidence of
cancers in mice knocked-out for Parp1 has been reported (Morrison et al. 1997;
Tong et al. 2002, 2003).

Reasonably, in each case the risk of occurrence of secondary tumors should
be challenged against the chance of improving the therapeutic ratio of currently
lethal cancers (Bristow et al. 2007).

The better understanding of both acute and late effects of therapeutic DNA
repair inhibition may allow oncologists to focus on the possible way to prevent
second malignancies in PARPi-treated patients, by chemopreventive strategies or
alternative pathway activation.

Studies on large collections of tumor specimens will be essential to evaluate,
in situ, new potential targets for complementary therapies (Antonarakis and
Armstrong 2011).

Lastly, it will be interesting to see how durable will be the response rates of
patients treated with PARPi.

It appears worrisome, in fact, that resistance to PARP inhibitors has been
described in BRCA1- or BRCA2-deficient cancer cells, following to the reacti-
vation of these genes by secondary mutations (Ashworth 2008; Sakai et al. 2008;
Edwards et al. 2008).

3. Little is actually known about the effects of inhibiting PARPs other than PARP-1
and 2 (Rouleau et al. 2010).

Among the 17 members of the ‘PARP superfamily’ identified to date, only
PARP3, V-PARP and Tankyrase-1 and -2 (TNKS-1 and -2) have the ADP-ribose
polymerizing activity (Hakame et al. 2008) PARP-3 co-operate with PARP-1 in
the response to DNA double strand breaks (Boehler et al. 2011).

Tankyrases (TNKS) 1 and 2 are involved in telomere maintenance
(Midorikawa et al. 2006) and V-PARP is associated with large ribonuclear protein
structures (cytoplasmic vaults), which are amplified in some drug resistance
models (Cohen-Armon et al. 2004; Kickhoefer et al. 1999; Fang et al. 2006).

A potentially specific tankyrase inhibitor, XAV-939, has been identified, rais-
ing the possibility that BRCA1- or BRCA2-mutant tumors might be successfully
targeted without inhibiting PARP1 (Ju et al. 2004).

To date, however, it is unclear to what extent the inhibition of other PARPs
contributes to the cellular effects of PARP inhibitors. Only a few studies exist.
Moreover, specific inhibitors of all the different PARP-family members are still
incompletely available (Curtin 2005).
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Fig. 18.1 “Synthetic lethality” in the therapy of PCa. Ionizing radiation kills eukaryotic cells
through the induction of DNA- double-strand breaks (DNA-dsbs) that represent the most cytotoxic
lesions. They are usually repaired through the homologous recombination (HR) and the non-
homologous end joining (NHEJ) pathways that, in fact, result hyper-activated in normal cells in
response to radiation-induced DNA damage. The non-repair of radiotherapy-induced DNA-dsbs
causes genomic instability. The term “synthetic lethality” refers to a condition of simultaneous
presence of mutation of two genes resulting in cell death. The most promising clinical translations
of synthetic lethality concern cancers with specific defects in the HR-mediated repair of double-
strand breaks that results in an extreme dependency of tumors on PARP1 action and BER to
maintain genomic integrity. Basing on its fundamental role in DNA-repair, PARP-1 represents the
ideal therapeutic target to kill cancer cells with loss of HRR function and to increase the efficacy
of radio/chemotherapy. PARP inhibition leads to chromosomal instability, cell cycle arrest and
apoptosis caused by the persistence of DNA lesions



18 “Synthetic Lethality”: Molecular Co-targeting to Restore. . . 281

This topic, in any case, will certainly be a matter of intense investigation in
the near future.

At present, the prediction of radio-responsiveness of prostate cancer is based
upon the pre-treatment PSA level/doubling time, Gleason score and T-stage (Nichol
et al. 2005).

Novel therapeutic approaches, differentially targeting HR and/or NHEJ DNA-
dsb repair, could necessitate of new identifiers of DNA repair (i.e., single nucleotide
polymorphisms (SNPs), protein expression, functional assays for DNA damage
sensing and repair) related to normal and tumor radio-sensitivity, to drive for
individual prostate cancer therapy (Bristow et al. 2007).

These tests may result useful as biomarkers of the genetic instability, malignant
progression and aggressiveness of tumor (Choudhury et al. 2006).

This approach may protect normal tissues, allowing the delivery of high doses of
radiation and DNA repair inhibitors exclusively on tumor areas targeted by hypoxic
signals from MRI, CT or PET-based imaging.

This is an exciting time for oncologists, radio-therapists and pathologist now able
to surf over the mounting data concerning the molecular interactions responsible for
DNA repair, to discover and apply new therapies based upon a direct collaboration
between basic science, industry, academia, and regulatory agencies.

The chances to achieve a new integrative and interdisciplinary approach to
prostate cancer patient care, based upon translational oncology, are indeed rapidly
becoming reality.

We are now almost ready to take on the challenge to apply next-generation
discovered biomarkers able to drive a successful control of previously untreatable,
radio-resistant prostate cancers (Fig. 18.1).
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Concluding Remarks

The recent explosion of “translational” molecular-based technologies has
dramatically enhanced our ability to subclassify cancers based on their genetic
context. This represents the apotheosis for current biology, which is based upon
the “molecular reductionist” approach linking clinical research with molecular
diagnostics and histopathology, or next generation “omics” technologies with
bioinformatics and drug discovery, in order to maximize the benefits for the cancer
patient.

Pathology is rapidly changing, embracing the new biological knowledge and
tools. Its new, adjunctive role, is to validate new disease stratification and targeted
therapeutic interventions derived from the endless flow of information provided by
basic research. However, our first challenge is in our evolving concept of cancer.
Hopefully, we now have to think to prostate cancer considering that it represents
the results of a global disturbance of the dynamic cellular network of molecularly-
driven, multidirectional flow of information connecting prostate epithelial cells
each other and with their external microenvironment. We cannot continue to look
separately to genetic alterations, epimutations, or stromal alterations occurring in
prostate cancer tissue. Gene profiling is now possible on impressively small amounts
of tissue or on single cells, allowing heterogeneity to be assessed at the regional and
cellular level. New agents with therapeutic potential continue to arise.

The translational value of these discoveries is currently being tested in controlled
preclinical studies and clinical trials.

Personalized genetic and epigenetic therapy for prostate cancer is being taken to
a new level.

Nevertheless, prostate cancer may represents the end-stage of multiple chronic
stressful events and that stressful life can affect cancer growth and metastasis by
modulating nervous, endocrine, and immune systems, as pointed out by a recent
report in animal models The key challenge, then, will be to step back and consider
prostate cancer by an holistic point-of-view, to cure the patient with his cancer, not
simply a cancer.

S. Staibano (ed.), Prostate Cancer: Shifting from Morphology to Biology,
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