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Preface

This book is a brief introduction to applied Multidimensional Scaling (MDS). It
builds on our combined (over 75 years) experience in developing MDS methods
and programs, and in using them in substantive research. The book is related to the
much more comprehensive book ‘‘Modern Multidimensional Scaling’’ by Borg
and Groenen (published by Springer in 2005 in its 2nd edition), and you can use
the exercises presented there to test and deepen your understanding of MDS.1

The book is, however, not just an abbreviated discussion of MDS. Rather, it
chooses a particular perspective, stressing the issues that always come up when
MDS is used in substantive research, and presenting answers that are particularly
relevant for the substantive researcher:

• What is the purpose of MDS?
• How to generate or select data for MDS?
• How to pick a particular MDS model?
• How to find a best-possible MDS representation in a space of given

dimensionality?
• How to assess whether this solution is good enough?
• How to align MDS with substantive theory?
• How to avoid the many (minor or major) mistakes that MDS users tend to

make?
• How to use PROXSCAL (in SPSS) or SMACOF (in R) for running MDS?

Why should one be interested in MDS at all? One reason is that MDS is by now
an established method for doing data analysis. It belongs to the toolbox of psy-
chologists and social scientists, in particular, but it is also relevant for many other
substantive areas that deal with proximity data. There are numerous research
papers which use MDS. To understand them fully, one must know the method.

1 See also Patrick Groenen’s website people.few.eur.nl/groenen. It offers additional
information about this book, and it provides access to 24 data sets that are used to illustrate
different MDS models.
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Also, there are many publications that do not use MDS, but where MDS may
have been the better method to understand the data (or additional features of the
data) than main stream methods such as factor analysis. MDS is generally easy to
do, and all major statistics packages provide MDS modules, and so re-analyzing
published research via MDS to gain additional insights is often an interesting
option.

Then, psychologists in particular often study MDS because it originated as a
psychological model on how persons form judgments of similarity or preferential
choice. The model explains such judgments by a composition rule where the
differences of objects (real or virtual) on a number attributes are aggregated to an
overall judgment of the objects’ dissimilarity or to a value judgment, respectively.
This process can be formalized as a distance function in multidimensional space.
Much research has been devoted to study this model and its numerous variants,
and because of the fundamental nature of similarity and choice in psychology,
much of psychology’s history is connected to MDS models.

While MDS as a psychological model of judgment is an area that does not seem
to offer many new research questions, MDS as a data analysis method is far from
complete. Exploratory MDS as a method to visualize proximity data in low-
dimensional spaces is well developed, but confirmatory MDS, where theoretical
expectations or hypotheses are enforced onto the data representations as side
constraints, is a field where more developments are needed. What can be done
today by the user, is shown and illustrated in this book. What cannot be done, or
what is difficult to do with today’s software, also becomes clear, and so this may
serve also to stimulate further research on MDS.

vi Preface
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Chapter 1
First Steps

Abstract The basic ideas of MDS are introduced doing MDS by hand. Then, MDS is
done using a computer program. The goodness of the MDS configuration is evaluated
by correlating its distances with the data.

Keywords MDS configuration · Iteration · Proximities · Dimensional interpreta-
tion · Goodness of fit

The basic ideas of MDS are easily explained using a small example. Consider
Table 1.1. It contains correlations for the frequencies of different crimes in 50 U.S.
states. These correlations show, for example, that if there are many cases of assault in
a state, then there are also many cases of murder (r = 0.81). In contrast, the murder
rate is not correlated with the rate of larceny (r = 0.06).

We now scale these correlations via MDS. This means that we try to represent
the seven crimes by seven points in a geometric space so that any two points lie the
closer together the greater the correlation of the two crimes that they represent. For
this we proceed as follows.

We take seven cards, and write the name of one crime on each of them, from
Murder to Auto Theft. These cards are placed on a table in an arbitrary arrangement
as shown in Fig. 1.1. We then measure the distances among all cards (Fig. 1.2) and
compare these values with the correlations in Table 1.1. This comparison makes clear
that the configuration of cards in Fig. 1.1 does not represent the data in the desired
sense. For example, the cards Murder and Assault should be relatively close together,
because these crimes are correlated with 0.81, whereas the cards Murder and Larceny
should be farther apart, as these crimes are correlated with only 0.06. We therefore
try to move the cards repeatedly in small steps (“iteratively”) so that the distances
correspond more closely to the data. Figure 1.3 demonstrates in which directions the
cards should be shifted, by some small amounts, to improve the correspondence of
data and distances.

Since iterative modifications of a given configuration by hand can be fairly tedious
and since they do not guarantee that an optimal configuration is found in the end,

I. Borg et al., Applied Multidimensional Scaling, SpringerBriefs in Statistics, 1
DOI: 10.1007/978-3-642-31848-1_1, © The Author(s) 2013
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Table 1.1 Correlations of crime rates over 50 U.S. states

Crime Murder Rape Robbery Assault Burglary Larceny Auto theft

Murder 1.00 0.52 0.34 0.81 0.28 0.06 0.11
Rape 0.52 1.00 0.55 0.70 0.68 0.60 0.44
Robbery 0.34 0.55 1.00 0.56 0.62 0.44 0.62
Assault 0.81 0.70 0.56 1.00 0.52 0.32 0.33
Burglary 0.28 0.68 0.62 0.52 1.00 0.80 0.70
Larceny 0.06 0.60 0.44 0.32 0.80 1.00 0.55
Auto theft 0.11 0.44 0.62 0.33 0.70 0.55 1.00

we did not continue these iterations by hand but used an MDS computer program
instead. It reports the solution shown in Fig. 1.4.

One such MDS program is Proxscal, a module of Spss. To use Proxscal, we
first save the correlation matrix of Table 1.1 in a file that we call ‘CorrCrimes.sav’.
Then, we only need some clicks in Proxscal’s menus or, alternatively, the following
commands:

GET FILE=‘CorrCrimes.sav’.
PROXSCAL VARIABLES=Murder to AutoTheft

/PROXIMITIES=SIMILARITIES .

The PROXIMITIES sub-command informs the program that the data—called
proximities in this context, a generic term for both similarity and dissimilarity data—
must be interpreted as similarities. That is, small data values should be mapped into
large distances, and large data values into small distances. No further specifications
are needed. The program uses its default specifications to generate an MDS solution.
We will show later how these specifications can be changed by the user if desired.

Many other programs exist for MDS. One example with nice graphics is the MDS
module in Systat. Systat can be run using commands, or by clicking on various
options in a graphical user interface. Having loaded the data file with the correlations,
and then calling the MDS procedure, we get the menu in Fig. 1.5. In this menu, we
select the variables ‘Murder’, ‘Rape’, etc. and leave all other specifications as they
are, except the one for “Regression” (marked by the arrow on the left-hand side),
where we request that the MDS program should optimize the relation of data to
distances in the sense of a least-squares linear regression. (The default is ordinal
regression which is discussed later; see p. 37f)

Both computer programs—Proxscal in Spss and the MDS module of Systat—
generate essentially the same MDS solution for the correlations in Table 1.1. This
solution is not only optimal, but also quite good, as Fig. 1.6 shows: The relation of data
and distances is almost perfectly linear (r = − 0.99). Hence, the distances among
the points of Fig. 1.3 contain the same information as the correlations of Table 1.1.
Expressed differently, the data are properly visualized so that one can interpret the
distances as empirical evidence: The closer two points in the MDS plane, the higher
the correlation of the variables they represent.
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Fig. 1.4 MDS representation of the correla-
tions in Table 1.1 after several iterations

What has been gained by analyzing the crime data via MDS? First, instead of
21 different numerical indexes (i.e., correlations), we get a simple visual representa-
tion of the empirical interrelations. This allows us to actually see and, therefore, more
easily explore the structure of these data. As shown in Fig. 1.7, the various crimes
form certain neighborhoods in the MDS plane: Crimes where persons come to harm
are one such neighborhood, and property crimes form another neighborhood. This
visualizes, for example, that if the murder rate is high in a state, then assault and rape
also tend to be relatively frequent. The same applies to property crimes. Robbery lies
between these neighborhoods, possibly because violent crimes not only damage the
victims’ properties but also their bodies.
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Fig. 1.5 GUI for the MDS module of Systat

This interpretation builds primarily on the first principal axis.1 This axis corre-
sponds to the horizontal direction of the graph. (Most computer programs for MDS
automatically rotate their graphs so that the coordinate axes of MDS plots correspond
to principal axes.) The second principal axis is difficult to interpret in this example.
On this axis, Larceny and Robbery are farthest apart. Hence, these two crimes might
lead us to a meaningful interpretation of the second dimension. Yet, no compelling
interpretation seems to offer itself for this dimension: It may simply represent a por-
tion of the “error” component of the data. So, one can ask whether it may suffice
to represent the given data in a 1-dimensional MDS space. This is easy to answer:
One simply sets “Dimension=1” in the GUI in Fig. 1.5 and then repeats the MDS
analysis, leaving all other specifications as before, to get the desired solution.

Figure 1.8 shows the 1-dimensional solution. It closely reproduces the first prin-
cipal axis of Fig. 1.4. However, its distances correlate with only r = 0.88 with the
data, i.e. this MDS solution does not represent the data that well. This is also evi-
dent from the regression graph in Fig. 1.9, which has a much larger scatter than

1 The first principal axis is a straight line which runs through the point cloud so that it is closest
to the points. That is, the sum the (squared) distances of the points from this line is minimal. Or,
expressed differently: The variance of the projections of the points onto this line is maximal. The
second major axis is perpendicular to the first and explains the maximum of the remaining variance.
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Fig. 1.9 Relation of data in Table 1.1 and
distances in Fig. 1.9

the graph for the 2-dimensional MDS solution in Fig. 1.6. One should therefore be
cautious when interpreting this configuration, because it is partly misleading. For
example, Larceny and Auto Theft correlate much lower (r = 0.55) than Larceny and
Burglary (r = 0.80), but the configuration in Fig. 1.8 does not represent this differ-
ence correctly. Rather, the respective two distances are about equal in size.
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Summary

Multidimensional scaling (MDS) represents proximity data (i.e., measures of simi-
larity, closeness, relatedness etc.) as distances among points in a multidimensional
(typically: 2-dimensional) space. The scaling begins with some starting configura-
tion. Its points are then moved iteratively so that the fit between distances and data is
improved until no further improvement seems possible. Computer programs (such
as Systat or Proxscal) exist for that purpose. The more precisely the data cor-
respond to the distances in the MDS space, the better the MDS point configuration
represents the structure of the proximities. If the fit of the MDS solution is good, it
can be inspected visually in an attempt to interpret it in terms of content. A popular
approach for doing this is to look for dimensions, mostly principal axes, that make
sense in terms of what is known or assumed about the objects represented by the
points.



Chapter 2
The Purpose of MDS

Abstract The different purposes of MDS are explained: MDS as a psychological
model of similarity judgments; MDS for visualizing proximity data; and MDS for
testing structural hypotheses.

Keywords Latent dimension · Distance axiom · Minkowski distance · Euclidean
distance · City-block distance · Dominance metric · Partition · Facet · Radex ·
Cylindrex

Modern MDS is mainly used for general data analysis, especially for visualizing
data. This was not always so. Historically, MDS served a different purpose: It was a
psychological model of how persons form judgments about the similarity of objects.
In many modern MDS applications, traces of this original model can still be found
(e.g., in the way MDS solutions are interpreted or in the terminology used in MDS),
even if the scaling method is used as a mere statistical tool. In the following, we
begin by discussing a recent application that uses MDS as a visualization tool. Then,
we consider typical examples of the early days of MDS.

2.1 MDS for Visualizing Proximity Data

Over the recent years, MDS has been predominantly used as a tool for analyzing
proximity data of all kinds (e.g., correlations, similarity ratings, co-occurrence data).
Most of all, MDS serves to visualize such data, making them accessible to the eye of
the researcher. Let us consider a typical visualization application of MDS. Figure 2.1
shows a case from industrial psychology. Its 27 points represent 25 items and two
indexes from an employee survey in an international IT company (Liu et al. 2004).
Two examples for the items are: “All in all, I am satisfied with my pay”, and “I like
my work”, both employing a Likert-type response scale ranging from “fully agree”
to “fully disagree.” The two indexes are scale values that summarize the employees’
responses to a number of items that focus on their affective commitment to the

I. Borg et al., Applied Multidimensional Scaling, SpringerBriefs in Statistics, 7
DOI: 10.1007/978-3-642-31848-1_2, © The Author(s) 2013
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Fig. 2.1 MDS representation of the intercorrelations of 25 items and 2 indexes of an employee
survey in an international IT company. The grayed area around organizational commitment contains
likely drivers of commitment

company and on their general job satisfaction, respectively. The distance between
two points in Fig. 2.1 represents (quite precisely) the correlation of the respective
variables. As all variables are non-negatively intercorrelated, it is particularly easy
to interpret this MDS configuration: The closer two points, the higher the correlation
of the variables they represent. Hence, one notes, for example, that since “satisfied
with pay” and “satisfied with benefits” are close neighbors in the MDS plane (see
lower left-hand corner of the plot), employees rated these issues similarly: Those
who were satisfied with one job aspect where also satisfied with the other, and vice
versa. In contrast, being satisfied with pay is far from “encouraged to voice new
ideas” (see top of the plot), and, hence, these two items are essentially uncorrelated.

The value of this MDS configuration is based on the notion that a picture is worth
more than a 1,000 words or numbers. Indeed, most researchers and practitioners find
it much easier to study such a plot than studying a 27 × 27 correlation matrix with
its 351 coefficients. It is almost impossible to understand the structure of the data in
such large arrays of numbers, while their graphical display in an MDS plane can be
explored with considerably less effort.

The fact that 351 correlations can be represented by the distances of 27 points that
lie in a merely 2-dimensional space makes clear, moreover, that the data are highly
structured. Random data would require much higher-dimensional spaces. Hence, the
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persons who answered this employee survey must have generated their answers from
a consistent system of attitudes and opinions, and not by generating evasive random
ratings, because such ratings would not be so orderly interlocked.

The ratings also make sense psychologically, because items of similar content are
grouped in close neighborhoods in the MDS space. For example, the various items
related to management (e.g., trust management, trust management board, support
strategy) form such a neighborhood of items that received similar ratings in the
survey.

One also notes that the one point that represents general job satisfaction lies
somewhere in the central region of the point configuration. This central position
reflects the fact that general job satisfaction is positively correlated with each of
the 25 items of this survey. Items located more at the border of the MDS plot are
substantially and positively correlated with the items in their neighborhood, but not
with items opposite of them in the configuration. With them, they are essentially
uncorrelated.

The plot leads to many more insights. One notes, for example, that the employees
tend to be the more satisfied with their job overall the more they like their work and
the more they are satisfied with their opportunities for advancement. Satisfaction
with working conditions, in contrast, is a relatively poor predictor of general job
satisfaction in this company.

Because the company suffered from high turnover of its employees, the variable
‘organizational commitment’ was of particular interest in this survey. Management
wanted to know what could be done to reduce turnover. The MDS configuration can
be explored for answers to this question. One begins by studying the neighborhood
of the point representing ‘organizational commitment’ (see dark cloud around the
commitment point in Fig. 2.1), looking for items that offer themselves for action.
That is, one attempts to find points close to commitment that have low scores and
where actions that would improve these scores appear possible. Expressed in terms
of the MDS configuration, this can be understood as grabbing such a point and
then pulling it upwards so that the whole plane is lifted like a rubber sheet, first
of all in the neighborhood of commitment. Managers understand this notion and, if
guided properly, they are able to identify and discuss likely “drivers” of the variable of
interest efficiently and effectively. In the given configuration, one notes, for example,
that the employees’ commitment is strongly correlated with how they feel about their
opportunities for advancement (42 % are satisfied with them, see Borg 2008, p. 311f.);
with how much they like the work they do (69 % like it); with how satisfied they are
with the company overall (88 % satisfied); and, most of all, with how positive they feel
about “performance pays” (only 36 % positive). Thus, if one interprets this network
of correlations causally, with the variables in the neighborhood of commitment as
potential drivers of commitment, it appears that the employees’ commitment can
be enhanced most by improving the employees’ opinions about the performance-
dependency of their pay and about their advancement opportunities. Improving other
variables such as, for example, the employees’ attitudes towards management, is not
likely to impact organizational commitment that much.
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In this example, MDS serves to visualize the intercorrelations of the items. This
makes it possible for the user to see, explore, and discuss the whole structure of the
data. This can be useful even if the number of items is relatively large, because each
additional item adds just one new point to an MDS plot, while it adds as many new
coefficients to a correlation matrix as there are variables.

2.2 MDS for Uncovering Latent Dimensions of Judgment

One of the most fundamental issues of psychology is how subjective impressions of
similarity come about. Why does Julia look like Mike’s daughter? How come that a
Porsche appears to be more similar to a Ferrari than to a Cadillac? To explain such
judgments or perceptions, distance models offer themselves as natural candidates. In
such models, the various objects are first conceived as points in a psychological space
that is spanned by the subjective attributes of the objects. The distances among the
points then serve to generate overall impressions of greater or smaller similarity. Yet,
the problem with such models is that one hardly ever knows what attributes a person
assigns to the objects under consideration. This is where MDS comes in: With its
help, one attempts to infer these attributes from given global similarity judgments.

Let us consider an example that is typical for early MDS applications. Wish (1971)
wanted to know the attributes that people use when judging the similarity of different
countries. He conducted an experiment where 18 students were asked to rate each pair
of 12 different countries on their overall similarity. For these ratings, an answer scale
from “extremely dissimilar” (coded as ‘1’) to “extremely similar” (coded as ‘9’)
was offered to the respondents. No explanation was given on what was meant by
“similar”: “There were no instructions concerning the characteristics on which these
similarity judgments were to be made; this was information to discover rather than to
impose” (Kruskal and Wish 1978, p. 30). The observed similarity ratings, averaged
over the 18 respondents, is exhibited in Table 2.1.

An MDS analysis of these data with one of the major MDS programs, using
the usual default parameters,1 delivers the solution shown in Fig. 2.2. Older MDS
programs generate only the Cartesian coordinates of the points (as shown in Table
2.2 in columns “Dim. 1” and “Dim. 2”, respectively, together called coordinate
matrix, denoted as X in this book). Modern programs also yield graphical output as
in Fig. 2.2. The plot shows, for example, that the countries Jugoslavia and USSR are
represented by points that are close together. In Table 2.1 we find that the similarity
rating for these two countries is relatively high (=6.67, the largest value). So, this
relation is properly represented in the MDS plane. We note further that the points
representing Brazil and China are far from each other, and that their similarity rating
is small (=2.39). Thus, this relation is also properly represented in the MDS solution.

1 Most early MDS programs were set, by default, to deliver a 2-dimensional solution for data that
were assumed to have an ordinal scale level.
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Table 2.1 Mean similarity ratings for 12 countries (Wish 1971)
Country 1 2 3 4 5 6 7 8 9 10 11

Brazil 1 –
Congo 2 4.83 –
Cuba 3 5.28 4.56 –
Egypt 4 3.44 5.00 5.17 –
France 5 4.72 4.00 4.11 4.78 –
India 6 4.50 4.83 4.00 5.83 3.44 –
Israel 7 3.83 3.33 3.61 4.67 4.00 4.11 –
Japan 8 3.50 3.39 2.94 3.83 4.22 4.50 4.83 –
China 9 2.39 4.00 5.50 4.39 3.67 4.11 3.00 4.17 –
USSR 10 3.06 3.39 5.44 4.39 5.06 4.50 4.17 4.61 5.72 –
USA 11 5.39 2.39 3.17 3.33 5.94 4.28 5.94 6.06 2.56 5.00 –
Jugoslavia 12 3.17 3.50 5.11 4.28 4.72 4.00 4.44 4.28 5.06 6.67 3.56 –

Checking more of these correspondences suggests that the MDS solution is a proper
representation of the similarity data.

If we want to assume that the similarity ratings were indeed generated by a distance
model, and if we are willing to accept that the given MDS plane exhibits the essential
structure of the similarity data, we can proceed to interpret this psychological map.
That is, we now ask what psychologically meaningful “dimensions” span this space.
Formally, the map is spanned by what the computer program delivers in terms of
“Dimension 1” and “Dimension 2”. These dimensions are the principal axes of
the point configuration. However, one can also rotate these dimensions in any way
one wants (holding the configuration of points fixed), because any other system of
two coordinate axes also spans the plane. Hence, one has to look for a coordinate
system that is most plausible in psychological terms. Wish (1971) suggests that
rotating the coordinate system in Fig. 2.2 by 45◦ leads to dimensions that correspond
most to psychologically meaningful scales. On the diagonal from the North–West
to the South–East corner of Fig. 2.2, countries like Congo, Brazil, and India are on
one end, while countries like Japan, USA, and USSR are on the other end. On the
basis of what he knows about these countries, and assuming that the respondents
use a similar knowledge base, Wish interprets this opposition as “underdeveloped
versus developed”. The second dimension, the North–East to South–West diagonal,
is interpreted as “pro-Western versus pro-Communist”.

These interpretations are meant as hypotheses about the attributes that the respon-
dents (not the researcher!) use when they generate their similarity judgments. That
is, the respondents are assumed to look at each pair of countries, compute their dif-
ferences in terms of Underdeveloped/Developed and Pro-Western/Pro-Communist,
respectively, and then derive an overall distance from these two intra-dimensional
distances. Whether this explanation is indeed valid cannot be checked any further
with the given data. MDS only suggests that this is a model that is compatible with
the observations.
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Fig. 2.2 MDS representation of similarity ratings in Table 2.1

2.3 Distance Formulas as Models of Judgment

The above study on the subjective similarity of countries does not explain in detail
how an overall similarity judgment is generated based on the information in the
psychological space. A natural model that explicates how this can be done is a
distance formula based on the coordinates of the points. We will discuss this in the
context of an example.

Distances (also called metrics) are functions that assign a real value to two argu-
ments of elements from one set. They map all pairs of objects (i, j) of a set of objects
(here often “points”) onto real values. Distance functions—in the following denoted
as di j —have the following properties:

1. dii = d j j = 0 ≤ di j (Distances have nonnegative values; only the self-distance
is equal to zero.)

2. di j = d ji (Symmetry: The distance from i to j is the same as the distance from
j to i .)

3. dik ≤ di j + d jk (Triangle inequality: The distance from i to k via j is at least as
large as the direct “path” from i to k.)

One can check if given values for pairs of objects (such as the data in Table 2.1)
satisfy these properties. If they do, they are distances; if they do not, they are not
distances (even though they may be “approximate” distances).

A set M of objects together with a distance function d is called metric space.
A special case of a metric space is the Euclidean space. Its distance function does not
only satisfy the above distance axioms, but it can also be interpreted as the distance of
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Table 2.2 Coordinates X of points Fig. 2.2; Economic development and number of inhabitants
show further measurements on these countries in 1971

X Economic Number of
Country No. Dim. 1 Dim. 2 development inhabitants (Mio)

Brazil 1 0.08 1.28 3 87
Congo 2 −1.12 0.83 1 17
Cuba 3 −1.01 −0.13 3 8
Egypt 4 −0.56 0.08 3 30
France 5 0.42 0.19 8 51
India 6 −0.27 0.41 3 500
Israel 7 0.95 −0.20 7 3
Japan 8 0.96 −0.46 9 100
China 9 −0.80 −0.99 4 750
USSR 10 0.14 −0.84 7 235
USA 11 1.19 0.27 10 201
Jugoslavia 12 −0.01 −0.83 6 20

the points i and j of a multi-dimensional Cartesian space. That means that Euclidean
distances can be computed from the points’ Cartesian coordinates as

di j (X) =
√

(xi1 − x j1)2 + · · · + (xim − x jm)2, (2.1)

=
(

m∑
a=1

(xia − x ja)2

)1/2

, (2.2)

where X denotes a configuration of n points in m-dimensional space, and xia is the
value (“coordinate”) of point i on the coordinate axis a. This formula can be easily
generalized to a family of distance functions, the Minkowski distances:

di j (X) =
(

m∑
a=1

|xia − x ja |p

)1/p

, p ≥ 1. (2.3)

Setting p = 2, formula 2.3 becomes the Euclidean distance. For p = 1, one gets the
city-block distance. When p → ∞, the formula yields the dominance metric.

As a model for judgments of (dis-)similarity, the city-block distance (p = 1)
seems to be the most plausible “composition rule”, at least in case of “analyzable”
stimuli with “obvious and compelling” dimensions (Torgerson 1958, p. 254). It claims
that a person’s judgment is formed by first assessing the distance of the respective
two objects on each of the m dimensions of the psychological space, and then adding
these intra-dimensional distances to arrive at an overall judgment of dissimilarity.

If one interprets formula (2.3) literally, then it suggests for p = 2 that the person
first squares each intra-dimensional distance, then sums the resulting values, and
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Fig. 2.3 Three circles with the same radius in the city-block plane, the Euclidean plane, and the
dominance plane, respectively

finally takes the square root. This appears hardly plausible. However, one can also
interpret the formula somewhat differently. That is, the parameter p of the distance
formula can be seen as a weight function: For values of p > 1, relatively large intra-
dimensional distances have an over-proportional influence on the global judgment,
and when p → ∞, only the largest intra-dimensional distance matters. Indeed, for
p-values as small as 10, the global distance is almost equal to the largest intra-
dimensional distance.2 Thus, one could hypothesize that when it becomes more
difficult to make a judgment (e.g., because of time pressure), persons tend to pay
attention to the largest intra-dimensional distances only, ignoring dimensions where
the objects do not differ much. This corresponds, formally, to choosing a large p
value. In the limit, only the largest intra-dimensional distance matters.

Another line of argumentation is that city-block composition rules make sense
only for analyzable stimuli with their obvious and compelling dimensions (such as
geometric figures like rectangles, for example), whereas for “integral” stimuli (such
as color patches, for example), the Euclidean distance that expresses the length of
the direct path through the psychological space is more adequate (Garner 1974).

Choosing parameters other than p = 2 has surprising consequences, though: It
generates geometries that differ substantially from those we are familiar with. What
we know, and what is called the natural geometry, is Euclidean geometry. It is natural
because distances and structures in Euclidean geometry are as they “should” be. A
circle, for example, is “round”. If p �= 1, circles do not seem to be round. In the
city-block plane (with simple orthogonal coordinate axes3), for example, a circle
looks like a square that sits on one of its corners (see left panel of Fig. 2.3). Yet, this
geometrical figure is indeed a circle, because it is the set of all points that have the
same distance from their midpoint M . The reason for its peculiar-looking shape is
that the distances of any two points in the city-block plane correspond to the length of
a path between these points that can run only in North–South or West–East directions,

2 This is easy to see from an example: If point i has the coordinates (0, 0) and j the coordinates
(3, 2), we get the intra-dimensional distances |0 − 3| = 3 and |0 − 2| = 2, respectively. The overall
distance di j , with p = 1, is thus equal to 2 + 3 = 5.00. For p = 2, the overall distance is 3.61. For
p = 10, it is equal to 3.01.
3 For the consequences of choosing other coordinate systems and for the many peculiar laws of
such “taxicab geometries”, see http://taxicabgeometry.net.

http://taxicabgeometry.net.
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Table 2.3 Dissimilarity ratings for rectangles of Fig. 2.4; ratings are means over 16 subjects and
2 replications
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2 4.33
3 6.12 4.07
4 7.21 5.62 3.24
5 2.38 5.76 7.12 7.57
6 4.52 2.52 5.48 6.86 4.10
7 6.00 4.52 3.38 5.21 6.10 4.31
8 7.76 6.21 4.40 3.12 6.83 5.45 4.00
9 3.36 6.14 7.14 8.10 2.00 4.71 6.52 7.71

10 5.93 4.24 6.07 6.93 5.00 2.81 5.43 5.67 4.38
11 6.71 5.60 4.29 5.90 6.86 4.50 2.64 5.21 6.26 3.60
12 7.88 6.31 5.48 5.00 7.83 5.55 4.43 2.69 7.21 5.83 3.60
13 3.69 6.98 7.98 8.45 2.60 5.95 7.69 7.86 1.60 4.31 6.95 7.43
14 5.86 4.55 6.64 7.17 4.86 2.88 5.40 6.50 4.14 1.19 3.79 5.88 4.17
15 7.36 5.88 4.55 6.79 6.93 4.50 3.50 5.55 5.95 3.95 1.48 4.60 6.07 4.02
16 8.36 7.02 5.86 5.40 7.57 5.86 4.52 3.50 6.86 5.17 3.71 1.62 7.07 5.26 3.45
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Fig. 2.5 MDS configuration with city-block
distances for data of Table 2.3 (points) and
design configuration of Fig. 2.4 (squares) fit-
ted to MDS configuration

but never along diagonals—just like walking from A to B in Manhattan, where the
distance may be “two blocks West and three blocks North”. Hence the name city-
block distance. For points that lie on a line parallel to one of the coordinate axes, all
Minkowski distances are equal (see points M and i in Fig. 2.3); otherwise, they are
not equal. If you walk from M to j (or to j ′ or j ′′, respectively) on a Euclidean path
(“as the crow flies”), the distance is shorter than choosing the city-block path which
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runs around the corner. The shortest path corresponds to the dominance distance:
The largest intra-dimensional difference will get you from M to the other points.
This is important for the MDS user because it shows that rotating the coordinate
axes generally changes all Minkowski distances, except Euclidean distances.

To see how the distance formula can serve as a model of judgment, consider an
experiment by Borg and Leutner (1983). They constructed rectangles on the basis of
the grid design in Fig. 2.4. Each point in this grid defines one rectangle. Rectangle
6, for example, had a width of 4.25 cm and a height of 1.25 cm; rectangle 4 was
3.00 cm wide and 2.75 cm tall. A total of 21 persons rated (twice) the similarity of
each pair of these 16 rectangles (see example in Fig. 2.4, lower panel) on a 10-point
answer scale ranging from “0=equal, identical” to “9=very different”. The means
of these ratings over persons and replications are shown in Table 2.3.

The MDS representation (using city-block distances) of these ratings is the grid
of solid points in Fig. 2.5. From what we discussed above, we know that this config-
uration must not be rotated relative to the given coordinate axes, because rotations
would change its (city-block) distances and, since the MDS representation in Fig. 2.5
is the best-possible data representation, it would deteriorate the correspondence of
MDS distances and data.

If one allows for some re-scaling of the width and height coordinates of the
rectangles, one can fit the design configuration quite well to the MDS configuration
(see grid of dashed lines in Fig. 2.5). The optimal re-scaling makes psychological
sense: It exhibits a logarithmic shrinkage of the grid lines from left to right and from
bottom to top, as expected by psychophysical theory.

The deviations of the re-scaled design configuration and the MDS configura-
tion do not appear to be systematic. Hence, one may conclude that the subjects have
indeed generated their similarity ratings by a composition rule that corresponds to the
city-block distance formula (including a logarithmic re-scaling of intra-dimensional
distances according to the Weber–Fechner law). The MDS solution also shows that
differences in the rectangles’ heights are psychologically more important for simi-
larity judgments than differences in the rectangles’ widths.

2.4 MDS for Testing Structural Hypotheses

A frequent application of MDS is using it to test structural hypotheses. In the follow-
ing, we discuss a typical case from intelligence diagnostics (Guttman and Levy 1991).
Here, persons are asked to solve several test items. The items can be classified on the
basis of their content into different categories of two design factors, called facets in
this context. Some test items require the testee to solve computational problems with
numbers and numerical operations. Other items ask for geometrical solutions where
figures have to be rotated in 3-dimensional space or pictures have to be completed.
Other test items require applying learned rules, while still others have to be solved
by finding such rules. One can always code test items in terms of such facets, but the
facets are truly interesting only if they exert some control over the observations, i.e.
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Table 2.4 Intercorrelations of eight intelligence test items, together with codings on two facets
Format Requirement Item 1 2 3 4 5 6 7 8

N A 1 1.00 0.67 0.40 0.19 0.12 0.25 0.26 0.39
N A 2 0.67 1.00 0.50 0.26 0.20 0.28 0.26 0.38
N I 3 0.40 0.50 1.00 0.52 0.39 0.31 0.18 0.24
G I 4 0.19 0.26 0.52 1.00 0.55 0.49 0.25 0.22
G I 5 0.12 0.20 0.39 0.55 1.00 0.46 0.29 0.14
G A 6 0.25 0.28 0.31 0.49 0.46 1.00 0.42 0.38
G A 7 0.26 0.26 0.18 0.25 0.29 0.42 1.00 0.40
G A 8 0.39 0.38 0.24 0.22 0.14 0.38 0.40 1.00

if the distinctions they make are mirrored somehow in corresponding effects on the
data side. The data in our small example are the intercorrelations of eight intelligence
test items shown in Table 2.4. The items are coded in terms of the facets “Format =
{N(umerical), G(eometrical)}” and “Requirement = {A(pply), I(nfer)}”.

A 2-dimensional MDS representation of the data in Table 2.4 is shown in Fig. 2.6.
We now ask if the facets Format and Requirement surface in some way in this plane.
For the facet Format we find that the plane can indeed be partitioned by a straight
line such that all points labeled as “G” are on one side, and all “N” points on the
other (Fig. 2.7). Similarly, using the codings for the facet Requirement, the plane can
be partitioned into two subregions, an A- and an I-region. For the Requirement facet,
we have drawn the partitioning line in a curved way, anticipating test items of a third
kind on this facet: Guttman and Levy (1991) extent the facet Requirement by adding
the element “Learning”. They also extent the facet Format by adding “Verbal”.

For the intercorrelations of items in this 3 × 3 design, that is, for items coded in
terms of two 3-element facets, MDS leads to structures with a partitioning system as
shown in Fig. 2.8. This pattern, termed radex, is often found for items that combine
a qualitative facet (such as Format) and an ordered facet (such as Requirement).
For the universe of typical intelligence test items, Guttman and Levy (1991) suggest
yet another facet, called Communication. It distinguishes among Oral, Manual, or
Paper-and-Pencil items. If there are test items of all 3 × 3 × 3 types, MDS leads to a
3-dimensional cylindrex structure as shown in Fig. 2.9. Such a cylindrex shows, for
example, that the items of the type Infer have relatively high intercorrelations (given
a certain mode of Communication), irrespective of their Format. It is interesting to
see that Apply is “in between” Infer and Learn. We also note that our small sample
of test items of Table 2.4 fits perfectly into the larger structure of the universe of
intelligence test items.
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2.5 Summary

Originally, MDS was a psychological model for how persons arrive at judgments of
similarity. The model claims that the objects of interest can be understood as points
in a space spanned by the objects’ subjective attributes, and that similarity judgments
are generated by computing the distance of two points from their coordinates, i.e. by
summing the intra-dimensional differences of any two objects over the dimensions of
the space. Different variants of Minkowski distances imply that the intra-dimensional
differences are weighted by their magnitude in the summing process. Today, MDS is
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used primarily for visualizing proximity data so that their structure becomes accessi-
ble to the researcher’s eye for exploration or for testing certain hypotheses. Structural
hypotheses are often based on content-based classifications of the variables of inter-
est in one or more ways. Such classifications should then surface in the MDS space
in corresponding (ordered or unordered) regions. Certain types of regionalities (e.g.,
radexes) are often found in empirical research.
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Chapter 3
The Goodness of an MDS Solution

Abstract Ways to assess the goodness of an MDS solution are discussed. The Stress
measure and some of its variants are introduced. Criteria for evaluating Stress are
presented.

Keywords Stress · Disparity · Shepard diagram · Stress-1 · Stress-norm · S-Stress

MDS always searches for coordinate values of n points in m dimensions (i.e., for
an n × m coordinate matrix X) whose distances represent the given proximities as
precisely as possible (“optimally”). In the following, we will discuss exactly how
the goodness of an MDS solution can be measured.

3.1 Fit Indices and Loss Functions

The goodness of an MDS solution is visualized in a Shepard diagram, a scatter plot of
the data (proximities) versus the corresponding distances in MDS space. Figure 3.1
exhibits the Shepard diagram for the country similarity data discussed in Sect. 2.2.
The plot shows that the distances of the MDS solution in Fig. 2.2 become smaller, in
general, if the corresponding proximities of Table 2.1 become greater. The closeness
of this regression trend can be measured, for example, by computing a correlation
coefficient as an index of fit. Alternatively, one can formulate a loss function that
shows how much data information is lost in the MDS representation. Geometrically,
this loss corresponds to the (vertical) scatter of the points in a Shepard diagram about
a regression line that is optimally fitted to the points.

The regression line in Fig. 3.1 is not the usual linear one, but a monotone step
function, because we used ordinal MDS to scale these data.1 Ordinal MDS attempts

1 More precisely, it is “weakly monotonically descending”, where “weak” means that it admits hor-
izontal steps. A “strictly” monotonically descending function, in contrast, always runs downwards
from left to right. Strictness is theoretically more desirable but mathematically more complicated
and practically irrelevant because the angle of descent can be arbitrarily small.

I. Borg et al., Applied Multidimensional Scaling, SpringerBriefs in Statistics, 21
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Fig. 3.1 Shepard diagram for
the MDS solution in Fig. 2.2.
The vertical distance between
a point and the regression
line gives the error of the
corresponding distance in the
MDS representation
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to map the proximities into distances so that the greater the proximity of two objects
i and j , the smaller the distance of the corresponding points i und j in MDS space.
Differences, ratios, or other metric properties of the data are ignored in ordinal MDS,
because they are not considered important or reliable under this model.

In the Shepard diagram in Fig. 3.1, the loss of information of the MDS repre-
sentation can be measured as the sum of squared distances of the points from the
regression line in the vertical direction (residuals, errors),

∑

i< j

e2
ij =

∑

i< j

(
f (pij) − dij(X)

)2
, (3.1)

for all non-missing proximities pij. Missing proximities are skipped. The dij(X)’s
are distances (computed by formula 2.3 for the configuration X) and the f (pij)’s are
disparities, i.e. proximities optimally re-scaled (within the bounds set by the scale
level assigned to the data) so that they approximate the distances as much as possible.
Expressed more technically, disparities are computed by regression (of type f ) of
the proximities onto the distances so that f (pij) = d̂ij while minimizing (3.1). The
distances dij(X) are Euclidean distances in most MDS applications, computed by
formula (2.1).

Since (3.1) is minimized both over both X and the d̂ijs, an obvious but trivial
solution is to choose X = 0 and all d̂ij = 0. To avoid this, (3.1) needs to be normalized.
This can be done by dividing (3.1) by the sum of the squared distances. Doing so
and taking the square root2 gives the usual Stress-1 loss function of MDS:

2 The square root has no deeper meaning here; its purpose is to make the resulting values less
condensed by introducing more scatter.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Stress-1 =
√∑

i< j

(
dij(X) − d̂ij

)2
/
∑

i< j

d2
ij(X). (3.2)

This normalization has the advantage that the Stress values do not depend on the size
of configuration X.

3.2 Evaluating Stress

A perfect MDS solution has Stress-1 = 0. If this is true then the distances of the
MDS configuration represent the data precisely (in the desired sense). The MDS
solution in Fig. 2.2 has a Stress-1 value of 0.19. Hence, it represents the data only
“approximately”.

This leads to the question whether approximately correct is also good enough.
What is often considered as the “nullest of all null” answers to this question is that
the observed Stress-1 must be clearly (e.g., two standard deviations) smaller than the
Stress-1 value expected for random data. If this is not true, then it is impossible to
interpret the MDS distances in any meaningful sense because then the distances are
not reliably related to the data. In this case, the points in MDS space are not fixed;
rather, they can be moved around more or less arbitrarily without affecting the Stress.

In practical applications, however, one almost always finds that the observed
Stress-1 value is clearly smaller than most Stress-1 values that can expected for
random data. For example, for n = 12 points in m = 2 dimension, Figs. 3.2 and 3.3
show that the expected random Stress-1 is about 0.24, with a standard deviation of
0.012 (according to a simulation study by Spence and Ogilvie (1973)). The Stress-1
value for the MDS solution in Fig. 2.2 is 0.19, and thus it is clearly smaller than
random Stress-1.

Another question in this context is whether increasing the dimensionality of an
MDS solution leads to “significantly” smaller Stress values. To answer this question,
one first computes MDS solutions in, say, 1-, 2-, 3-, and higher-dimensional spaces
and then checks how the Stress values decrease when the dimensionality of the
MDS solution is increased. One way to evaluate these values is to compare them
with Stress values for random data and look for an elbow in the decreasing Stress-
versus-dimensionality function, similar to scree tests in factor analysis. As simulation
studies show (Spence and Graef 1974), the elbow indicates the dimensionality where
additional dimensions represent only random components of the data. In real (not
simulated) data, however, elbows are rarely pronounced. Rather, when the MDS
dimensionality is increased, the Stress values typically tend to drop smoothly just
like the values of an exponential decay function.

Evaluating a given Stress value is a complex matter. It involves a number of
different parameters and considerations:

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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• The number of point (n). The greater n, the larger the expected Stress (because the
number of distances in an MDS solution grows almost quadratically as a function
of n).

• The dimensionality of the MDS solution (m). The greater m, the smaller the
expected Stress (because higher-dimensional spaces offer more freedom for an
optimal positioning of points).

• The error component of the data. The greater the noise in the data, the larger the
expected Stress (random data require maximal dimensionality).

• The MDS model. Metric (e.g., linear) MDS leads to higher Stress values than
ordinal MDS because more restrictive models leave less freedom for choosing
optimal d̂ij values.

• The number of ties when using the primary approach to ties in ordinal MDS
(see Sect. 5.1). The more ties (=equal values) in the proximities, the smaller the
expected Stress. The reason is that the primary approach to ties does not require
that ties be mapped into equal distances, so MDS has more freedom to find an
optimal solution.

• The proportion of missing proximities (missing data). The more data are missing,
the easier it is to find an MDS solution with small Stress.

http://dx.doi.org/10.1007/978-3-642-31848-1_5
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• Outliers and other special cases. Different points contribute differently to the total
Stress; eliminating particular points or setting certain data as missing (e.g., because
they are errors), can reduce the total Stress considerably.

3.3 Variants of the Stress Measure

The Stress in formula 3.2 is called Stress-1 or “Kruskal’s Stress”. If you read about
Stress in publications, and if no further specifications are made, then you may assume
that this is what is meant by “Stress”.

Besides Stress-1, various other versions exist for Stress. One such variant is used
in Proxscal, i.e. normalized Stress,

Stress-norm =
∑

i< j

(
dij(X) − d̂ij

)2
/
∑

i< j

d̂2
ij .

This Stress variant differs from Stress-1 by using (a) in its denominator the sum of
squared d-hats, not the sum of squared distances; and (b) by omitting the final square
root transformation. It is nice to know, however, that when convergence is reached
for an MDS solution, then normalized Stress is equal to the square of Stress-1:

Stress-norm = Stress-12.

In the literature, one usually reports Stress-1. One reason is tradition, another one is
that Stress-1 values for good and for poor MDS solutions, respectively, are numer-
ically more different and, thus, easier to discriminate. However, both Stress mea-
sures are zero if the MDS solution is perfect, and larger values indicate poorer
data-distance fit.

From normalized Stress, two further variants can be derived. One of them is
Dispersion Accounted For (DAF). DAF is equal to 1 − Stress-norm. It measures
the proportion of the sum of squared disparities accounted for by the distances.
The second measure is Tucker’s congruence coefficient, c = 1 − √

DAF. It can
be interpreted similarly as the usual correlation coefficient, except that it does not
extract the overall mean out of the distances and the d̂ij’s.

Occasionally, one also encounters S-Stress (squared Stress),

S-Stress =
∑

i< j

(
d2

ij(X) − d̂2
ij

)2
/
∑

i< j

d̂4
ij,

which is used in the MDS program Alscal, an alternative MDS module in Spss.
Compared to Stress-1, S-Stress weights the fit of large distances much more heavily
than the fit of small distances. Hence, in a program that minimizes S-Stress, small
distances do not matter much in finding an optimal solution. This may be a sensible
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choice for particular data, but as a general approach we do not recommend to use
S-Stress and Alscal with this automatic built-in weighting.

The weighting in S-Stress can also be inverted for MDS, that is, using greater
weightings for small rather than large distances. However, to do such weightings
automatically is not recommended in general MDS. Hence, minimizing normalized
Stress or Stress-1 is the criterion of choice for standard MDS, because it treats small
and large distances equally.

3.4 Summary

The formal goodness of an MDS solution can be measured by different indices.
The common way to do this is by computing the solution’s Stress. Stress is a loss
function: It is zero when the solution is perfect; otherwise, it is greater than zero. Stress
aggregates into one measure the deviations of the points from the regression line in
a data-versus-distances plot (Shepard diagram). The type of regression depends on
the scale level of the data: For ordinal data, one chooses ordinal regression; for data
on an interval scale, linear regression is the proper form. When evaluating the Stress
value of a particular MDS solution, the user must assess it in the context of various
parameters and contingencies such as the number of points, the dimensionality of the
MDS space, the rigidity of the particular MDS model, and the reliability of the data.
A minimum criterion for an acceptably low Stress value is that it is clearly smaller
than the Stress expected for random data.
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Chapter 4
Proximities

Abstract The data for MDS, proximities, are discussed. Proximities can be collected
directly as judgments of similarity; proximities can be derived from data vectors;
proximities may result from converting other indices; and co-occurrence data are yet
another popular form of proximities.

Keywords Similarity ratings · Sorting method · Feature model · LCJ model ·
Co-occurrence data ·S-coefficient · Jaccard coefficient ·Simple matching coefficient

A major advantage of MDS over related structural analysis methods (such as, e.g.,
factor analysis) is that MDS can handle very different data as long as these data can
be interpreted as indexes of similarity or dissimilarity. Collectively, such indexes are
called proximities. They can be collected either directly (e.g., as numerical ratings
of similarity) or they can be derived from other data (e.g., correlations).

4.1 Direct Proximities

In Sect. 2.2, we discussed a study where the similarity of different countries was
assessed by asking persons to directly rate all pairs of 12 different countries on a
9-point response scale. More concretely, each pair of countries (e.g., “Japan–China”)
was presented to the respondents, together with a rating scale with nine categories
numbered from 1 to 9 and labeled as “very different” (for category 1) to “very similar”
(for category 9). This method generated 66 pairwise ratings per person, enough data
to scale each single person via MDS.

A similar procedure was used in Sect. 2.3, where a sample of subjects was asked
to judge the pairwise similarities of 16 different rectangles on a 10-point rating scale
ranging from “0=equal, identical” to “9=very different”.

Pairwise similarity ratings can become difficult for the respondents. The rating
scale may be too fine-grained (or too coarse) for some respondents so that their
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ratings become unreliable. Market researchers, therefore, typically prefer a sorting
method over ratings, where the testees work with a deck of cards. Each card exhibits
exactly one pair of objects (e.g., the pair “Japan–China”). The testees are asked to
sort the cards such that the card with the most similar pair is on top of the stack, and
the card showing the most dissimilar pair at the bottom. Since complete sortings of
all cards are often too difficult, the sorting can be simplified: the testees are asked to
begin by sorting the cards into only two stacks, one for the “similar” pairs of objects,
and one for the “dissimilar” pairs. For each stack, this two-stacks sorting is repeated
several times until the testees feel that they cannot reliably split the remaining stacks
any further. One then numbers the various stacks and assigns these stack numbers to
the pairs in the respective stacks. Thus, pairs that belong to the same stack receive
the same proximity value.

These examples show that collecting direct proximities can be done on the basis of
relatively simple judgments. However, pairwise ratings and card sortings also have
their drawbacks. They can both lead to an excessively large number of pairs that
must be judged by the subjects. For the n = 12 countries of the study in Sect. 2.2,
for example, each subject had to rate 66 different pairs of countries. That seems
acceptable, but for n = 20 countries, say, the number of different pairs goes up
to n · (n − 1)/2 = 190. Assessing that many pairs (without any replications!) is a
challenge even for a very motivated test person. To alleviate this problem, various
designs for reducing the number of pair comparisons were developed. It was found
that a random sample of all possible pairs is not only a simple but also a good method
of reduction: One collects only data on the pairs that belong to the sample, and sets
the proximities of all other pairs to “missing”.

Spence and Domoney (1974) showed in extensive simulation studies that the
proportion of missing data can be as high as 80 % and (ordinal) MDS is still able
to recover an underlying MDS configuration quite precisely. One should realize,
however, that these simulations made a number of simplifying assumptions that
cannot automatically be taken for granted in real applications. The simulations first
defined some random configuration in m-dimensional space. The distances among its
points were then superimposed with random noise and taken as proximities. Finally,
certain proximities were eliminated either randomly or per systematic design. The
m-dimensional MDS configurations computed from these data were then compared
with the m-dimensional configurations that served to generate the data. The preci-
sion with which MDS was able to reconstruct the original configurations from the
proximities was found to depend on the proportion of missing data; on the proportion
of random noise superimposed onto the distances; and on the number of points. In
all simulated cases, the dimensionality of the MDS solution was equal to the true
dimensionality, and the number of points was relatively large from an MDS user’s
point of view (i.e., 32 or more). Under these conditions, MDS was able to tolerate
large proportions of missing data. If, for example, one third of the proximities is
missing and the error component is equal to 15 %, then the MDS distances can be
expected to correlate with r = 0.97 with the original distances!

One can improve the robustness of MDS by paying particular attention to col-
lecting proximities for pairs of objects that seem very dissimilar rather than similar,

http://dx.doi.org/10.1007/978-3-642-31848-1_2
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because one thus has proximities for the large distances and they are particularly
important for the precision of recovery (Graef and Spence 1979).

The labor involved in data collection can be further reduced by simplifying the
individual similarity judgments. Rather than asking for graded ratings on, say, a
10-point scale, one may offer only two response categories, “similar” (1) and “not
similar” (0) for each pair of objects. Summing such dichotomous data over repli-
cations or over respondents leads to confusion frequencies or, after dividing by the
number of cases, to confusion probabilities. Yet, such aggregations are not necessar-
ily required. Green and Wind (1973) showed in a simulation study that robust MDS
is possible using coarse data—given advantageous side constraints such as scaling
in the true dimensionality and having many points. The study shows, though, that
some grading of the data is better than 1–0 data, but very fine grading has essentially
no effect on the robustness of MDS. Hence, if one collects direct proximities, it is
not necessary to measure up to many decimals (if that is possible at all); rather, nine
or ten scale values are sufficient for MDS.

4.2 Derived Proximities

Direct proximities are rather rare in practice. Most applications of MDS are based on
proximity indices derived from pairs of data vectors. One example are the proximities
used in Chap. 1, where the correlations of the frequencies of different crimes in 50
U.S. states were taken as proximities of these crimes.

Indexes for the similarity of data profiles are often used in market research. Assume
we want to assess the subjective similarity of different cars. Proximities could be
generated by first asking a sample of test persons to rate the cars we are interested
in on such attributes as design, fuel consumption, costs, and performance. Then, the
correlations of the ratings of the test persons for each pair of cars can be taken as an
indicator of perceived similarity.

Instead of using correlation coefficients, one can also consider measuring profile
similarity by the Euclidean or by the city-block distance. Such distances can differ
substantially from correlations. If two data profiles have the same “shape” of ups and
downs so that their values differ by an additive constant c only, their correlation is
equal to 1, but their distance is not equal to zero but rather equal to c. Conversely, two
profiles with the same distance c can correlate with 0 if, for example, their profiles are
not parallel but if they cross in the form of an X (Borg and Staufenbiel 2007). Hence,
whether one wants to use a correlation or a distance for measuring the proximity of
profiles, must be carefully considered. If additive constants are not reliable because
the data are at most on an interval scale, distances of profiles are not meaningful.

Besides Minkowski distances, many other distance functions are used in data
analysis. An interesting case is discussed by Restle (1959). In his feature models of
similarity, he defines the distance between two psychological objects as the relative
proportion of the elements in their mental representations that are specific for each
object. That is, for example, if a person associates with Japan the features X, Y, and

http://dx.doi.org/10.1007/978-3-642-31848-1_1
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Z, and with China A, B, X, and Z, then their psychological distance is 3/5 = 0.6,
because there is a total of five different mental elements and three of them (Y, A,
and B) are specific ones.

4.3 Proximities from Index Conversions

Proximities can sometimes be generated by theory-guided conversions of given mea-
surements on pairs of objects. Here is one example. Glushko (1975) was interested
in assessing the psychological “goodness” of dot patterns. He constructed a set of
different patterns and printed each possible pair on a separate card. Twenty subjects
were then asked to indicate which pattern in each pair is the “better” one. The pattern
judged “better” in a pair received a score of 1, the other one a 0. These scores were
summed over all subjects. A dissimilarity measure was constructed from these sums
by subtracting 10 (i.e., the expected value for each pair of patterns if all 20 subjects
decide their preferences randomly) from each sum and then taking the absolute value
of this difference.

Borg (1988) used a different conversion to turn dominance probabilities into
proximities. In the older psychological literature, many data sets are reported where
N persons are asked to judge which object in a pair of objects possesses more of
a certain property. For example, considering crimes, the persons decide if murder
is “more serious” than arson or not. Or, for paintings, is picture A “prettier” than
picture B? The object chosen by the subjects receives a score of 1; the other object
is rated as 0. If one then adds these “dominance” scores over all N subjects, and
divides by N , dominance probabilities, wij, are generated. These probabilities can be
scaled by using Thurstone’s Law-of-Comparative-Judgment procedure (Thurstone
1927). It assumes that each wij is related to the distance di j on a 1-dimensional scale
by a cumulative normal function. This rather strong assumption can be replaced
by a weaker model that gives the data more room to speak for themselves: this
model simply postulates that the dominance probabilities are related to distances
by a monotonically increasing function, without specifying the exact form of this
function. To find the function that best satisfies this model, ordinal MDS can be used.
First, however, one needs to convert the dominance probabilities into dissimilarities
via δij = |wij − 0.5|. Then, the distances generated by ordinal MDS are plotted
against the wij probabilities. If Thurstone’s model is correct, the regression trend
should form an S-shaped function running from the lower left-hand side to the upper
right-hand side.

More examples for index conversions are discussed in Borg and Groenen (2005).
We do not pursue this topic here any further, because the two examples above should
have made clear that it makes no sense to report such conversions one after the other
in statistical textbooks. Rather, they always require substantive-theoretical consider-
ations that can be quite specific for the particular setting.
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Table 4.1 Frequencies of
four combinations of events
X and Y

X = 1 X = 0 Sum

Y = 1 a b a + b
Y = 0 c d c + d

Sum a + c b + d a + b + c + d

4.4 Co-Occurrence Data

An interesting special case of proximities are co-occurrence data. Here is one exam-
ple. Coxon and Jones (1978) studied the categories that people use to classify occu-
pations. Their subjects were asked to sort a set of 32 occupational titles (such as
barman, statistician, and actor) on the basis of their overall similarity into as many
or as few groups as they wished. The result of this sorting can be expressed, for each
subject, by a 32 × 32 incidence matrix, with an entry of 1 wherever its row and
columns entries are sorted into the same group, and 0 elsewhere.

The incidence matrix in the example above is a data matrix of directly collected
same-different proximities. This is not always true for co-occurrence data, as the fol-
lowing study by England and Ruiz-Quintanilla (1994) demonstrates. These authors
studied “the meaning of working”. For that purpose, they asked large samples of
persons to consider a variety of statements such as “if it is physically strenuous” or
“if you have to do it”, and check those statements that would define work for them.
The similarity of two statements (within the context of work) was then defined as
the frequency with which these statements were both checked by each of the respon-
dents. Note that here the similarity of two statements was never assessed directly.
Rather, it was defined by the researchers. No person in these surveys was ever asked
to judge the “similarity” or the “difference” of two statements.

Co-occurrence data are typically aggregated over persons. This is done by first
adding the various combinations of occurrence, non-occurrence, and co-occurrence
of any two events of the set of events of interest. Assume that X und Y are two such
events of interest. Each event either occurs, or it does not occur. We denote this by
X = 1 and by X = 0, respectively. There are four possible cases of the events X and
Y to occur or to not occur. We denote the frequencies of these cases as a, b, c, and d,
respectively, as shown in Table 4.1.

On the basis of Table 4.1, one can define an amazing number of different similarity
measures. The two most prominent ones in a system of such coefficients proposed
by Gower (1985) are

S2 = a/(a + b + c + d),

the frequency of events where both X and Y occur, relative to the frequency of all
possible combinations of X and Y (= a + b + c + d). Another coefficient is

S3 = a/(a + b + c),
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the frequency of a joint occurrence of X and Y , relative to the frequency of cases
where at least one of the events X and Y occurs (Jaccard similarity index).

Choosing a particular S-index over another such index can have dramatic conse-
quences. Bilsky et al. (1994) report a study on different behaviors exhibited in family
conflicts, ranging from calm discussions to physical assault. The intention was to find
out in which psychologically meaningful ways such behaviors can be scaled. They
conducted a survey asking which of a list of different conflict behaviors had occurred
in the respondent’s family in the last five years. If one assesses the similarities of
the reported behaviors by using S3, then an MDS generates a 1-dimensional scale
on which the behaviors are arrayed from low to high aggression. This order makes
psychological sense. If one uses S2, however, then this simple solution falls apart.
The reason is that the very aggressive behaviors are also relatively rare, which inflates
d so that these behaviors become highly dissimilar in the S2 sense.

Of the many further variants of S-coefficients (Gower 1985; Cox and Cox 2000;
Borg and Groenen 2005) we here mention the simple matching coefficient,

S4 = (a + d)/(a + b + c + d),

which interprets both the joint occurrence and the joint non-occurrence of events as
a sign of similarity. In the above example of conflict behaviors, S4 would assess the
rare forms of behavior as similar because they are rare.

4.5 The Gravity Model for Co-Occurrences

Direct analyses of co-occurrence data through MDS can yield uninteresting solutions
if some of the objects are much more popular than others. One way to correct for
such differential popularity of objects is the gravity model.1 Consider the following
example. We took Canadian newspapers that appeared in the time period between
June and September 2009 and searched for articles that contained the word “aborigi-
nal.” A total of 92 articles was found. In these articles, we determined the frequencies
of other meaningful2 words (e.g., “tribal”, “moose”, “arctic”, and “health”), and then
counted the co-occurrences of the most frequent 112 words on our list of words.

Not surprisingly, a few words co-occur much more often than most others in
the context of “aboriginal”. Examples are “nations” (813 co-occurrences), “first”
(460 co-occurrences), “communities” (266 co-occurrences), and “government” (214
co-occurrences). To avoid that these words dominate an MDS representation of co-
occurrence data, we use the gravity model. Let cij be the elements in the co-occurrence
matrix, and let its diagonal contain the sum of the co-occurrences (cii = ∑

j �=i cij)
as a measure of the popularity of each word i . Then, the gravity model defines the

1 The gravity model is based on a Newtonian law from physics that models the gravity forces
between large masses such as the earth and the moon.
2 Words such as “and”, “but”, “they” etc. were omitted.
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Fig. 4.1 Ordinal MDS solution (Proxscal with Ties = Keep) for the gravity model using
co-occurrences of 112 words that appear together with word “aboriginal” in 92 Canadian newspaper
articles

dissimilarity of words i and j as

δij =
√

cii cjj

cij
, if cij > 0. (4.1)

In (4.1), 1/cij transforms the similarity measure of co-occurrences into a dissimilarity
measure, the multiplication by cii c j j standardizes the measure for the popularities
of the respective words, and the square root follows from the physical law, but is
immaterial for ordinal MDS.

Formula (4.1) leaves open what to do if two words do not co-occur, that is, if
cij = 0. For such i j , we define δij to be missing so that these values are skipped by the
Stress function. This adaptation is important as most co-occurrences in our example
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are zero. Without this adaptation, the 97 % zero co-occurrences would dominate the
scaling, yielding an uninformative result (see Sect. 7.12).

The solution using the gravity model is given in Fig. 4.1. It has a low Stress of
0.024. To interpret it, one can focus on groups of words at the periphery of the
plot. The words in the center have a similar pattern of relative co-occurrences with
the outlying words. One notes that the word “grand” on the left side is associated
relatively often with “supreme”, “federal”, and “treaties”. At the right-hand side in
the middle, words such as “youth”, “child”, “examining”, “church”, and “health”
co-occur relatively often. Some words such as “nation” and “tobacco” are far from
each other. They are also far from other words which indicates that they do not occur
very often. To the right above the middle, many co-occurrences arise around the
words “hunters”, “hunt”, “illegal”, and “burnt”. These associations may stem from
articles on illegal hunting. Other groups of words could be identified and studied
similarly.

4.6 Summary

MDS builds on proximity data. Many data qualify as proximity data. In psycho-
logical research, proximities are often collected directly by asking persons to rate
the perceived similarity of objects of interest on a numerical rating scale. A pop-
ular alternative is sorting a stack of cards, with one card per object pair, in terms
of the objects’ similarity. Proximities can also be derived from other measures. The
inter-correlations of the variables in a typical person-by-variables data matrix, for
example, is a popular example. Sometimes, proximities can be constructed by con-
verting other measures on pairs of objects such as, for example, probabilities with
which object i dominates object j . Yet another form of proximity data are measures
that build on co-occurrence data, where the frequencies with which the events i and j ,
respectively, occur or do not occur at time t are combined into an index of
co-occurrence such as Gower’s S-indexes or the Jaccard index. For co-occurrence
data with very skewed distributions, the gravity model offers one possibility to gen-
erate dissimilarities that lead to meaningful MDS solutions.
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Chapter 5
Variants of Different MDS Models

Abstract Various form of MDS are discussed: Ordinal MDS, metric MDS, MDS
with different distance functions, MDS for more than one proximity value per dis-
tance, MDS for asymmetric proximities, individual differences MDS models, and
unfolding.

Keywords Ordinal MDS · Interval MDS · Ratio MDS · Drift-vector model ·
Indscal · Idioscal · Unfolding

MDS is really a family of related models. They all have in common that they map
proximities into distances between points of an m-dimensional space. What leads to
different models are different assumptions about the scale level of the proximities on
the data side, and using different distances on the side of the geometry of the model.
These choices allow the user to use MDS for many forms of data and for a variety
of purposes.

5.1 Ordinal and Metric MDS

A main difference of various MDS models is the scale level that the models assume
for the proximities. The most popular MDS model in research publications using
MDS has been ordinal MDS, sometimes also—less precisely—called non-metric
MDS. Ordinal MDS builds on the premise that the proximities pij are on an ordinal
scale. That is, only their ranks are taken as reliable and valid information. Therefore,
the task of ordinal MDS is to generate an m-dimensional configuration X so that
the distances over X are ordered as closely as possible as the proximities. Expressed
differently, the rank order of the distances should optimally correspond to the rank
order of the data. Hence, in ordinal MDS, the function

f : pij → dij(X) (5.1)

I. Borg et al., Applied Multidimensional Scaling, SpringerBriefs in Statistics, 37
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is monotone so that
f : pij < pkl → dij(X) ≤ dkl(X) (5.2)

for all pairs i and j, and k and l, respectively, for which data (here assumed to
be dissimilarities) are given. Proximities that are not defined (“missing data”) are
skipped by these formulas. That is, if pij is missing, it imposes no restriction onto
the MDS solution so that the distance dij(X) can be chosen arbitrarily.

An important distinction between two forms of ordinal MDS results from how
it treats ties (equal data values). The default in most programs is that ties can be
broken in the MDS solution, that is, equal proximities need not be mapped into equal
distances. This is called the primary approach to ties. The secondary approach to
ties (“keep ties tied”) leads to an additional requirement for ordinal MDS, namely

f : pij = pkl → dij(X) = dkl(X). (5.3)

The primary approach to ties is usually more meaningful in terms of the data.
Consider, for example, the data discussed in Sect. 2.2, where subjects had to judge
the similarity of different countries on 9-point rating scales. Here, ties are unavoidable
for formal reasons, because the rating scale had only nine different levels: with 66
different pairs of countries, this will automatically lead to the same proximity values
for some pairs, whether or not the subject really feels that the respective countries
are “exactly” equally similar. Moreover, no respondent can really make reliable
distinctions on a 66-point scale. Also, each single judgment is more or less fuzzy, so
that equal ratings should not be interpreted too closely.

A second class of MDS models, called metric MDS, goes back to the begin-
nings of MDS in the 1950s (Torgerson 1952). Such models specify an analytic
(usually monotone) function for f rather than requiring that f must be only “some”
monotone function. Specifying analytic mapping functions for f has the advantage
that it becomes easier to develop the mathematical properties of such models. More-
over, metric MDS also avoids some technical problems of ordinal MDS such as,
in particular, degenerate solutions (see Sect. 7.7). Their disadvantage is that they
require data on a higher scale level. Moreover, they typically lead to solutions with a
poorer fit to the data, because it is generally more difficult to represent data in more
restrictive models.

The standard model of metric MDS is interval MDS, where

pij → a + b · pij = dij(X). (5.4)

Interval MDS wants to preserve the data linearly in the distances. This makes sense
only if the data are taken as interval-scaled. That is, it is assumed that no meaningful
information of the data is lost if they are scaled by multiplying them by an arbitrary
constant b (except, of course, by b = 0) or by adding any constant a to each data value.
All statements about the data that remain invariant under such linear transformations
are considered meaningful; all other statements (e.g., statements about the ratio of
certain data values) are not meaningful.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
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More MDS models follow easily by choosing other mapping functions f (e.g.,
an exponential function). However, if f is not at least weakly monotone, then such
functions do not lead to easily interpretable results.

A popular MDS model that is “stronger” than interval MDS is ratio MDS, often
considered the most restrictive model in MDS. It drops the additive constant a of
interval MDS as an admissible transformation and searches for a solution that pre-
serves the proximities up to a scaling factor b (b �= 0).

The researcher chooses a particular MDS model f for a variety of reasons. One
important criterion is the scale level he or she assigns to the data. If theoretical
or empirical reasons speak for a certain scale level, then it usually makes sense
to pick a corresponding MDS model. In practice, however, one often scales given
proximities with both ordinal and interval MDS: Ordinal MDS normally leads to
smaller Stress values, but it can also over-fit the data (rather than smoothing out
noise in the distances) and, occasionally, it can lead to largely meaningless degenerate
solutions (see Sect. 7.7).

5.2 Euclidean and Other Distances

A second criterion for classifying MDS models is choosing a particular distance
function. In psychology, the family of Minkowski metrics (specified in formula 2.3)
used to be popular for modeling subjective similarity judgments of different types of
stimuli (analyzable vs. integral stimuli) under different conditions (such as different
degrees of time pressure). However, applications of MDS in the current literature
almost always use Euclidean distances as these are the only ones that correspond to
the natural notion of distance between points “as the crow flies”.

Euclidean distances, as all other Minkowski distances, imply a flat geometry. In
special cases, it can be useful to construct MDS representations in curved spaces.
As an example, one can think of distances on a sphere. Here, the distance between
two points is the shortest path (“geodesic path”) in the 2-dimensional curved space
(i.e., on the sphere), which is the length of a cord spanned between two points
over the surface of the sphere. Curved geometries can sometimes be useful (e.g., in
psychophysics), but they are never used in general data analysis situations.

5.3 Scaling Replicated Proximities

In older applications of MDS, there is always exactly one data value per distance, or
a missing value. Hence, the data can always be shown in the lower half of a proximity
matrix as, for example, in Tables 2.1 and 2.3. Often, such matrices are generated by
averaging the data of N persons and/or by aggregating data over several replications.

Modern MDS programs allow the user to skip such pre-processings of the data.
They allow using not just one proximity (pij) for each distance dij but two or more

data values (p(k)
ij , k = 1, 2, . . .). Instead of one data matrix, one can therefore think

http://dx.doi.org/10.1007/978-3-642-31848-1_7
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Fig. 5.1 Data cube that
consists of complete proximity
matrices for N persons

Person 1

Person 2
Person 3

Person N

of the data as a “data cube”, as shown in Fig. 5.1. The values in such a data cube
could first be averaged over all persons, and then averaged once more over the two
halves of the resulting complete matrix. The data in Table 2.3 were generated in this
fashion. Alternatively, one could inform the MDS program that what we have here is
one complete data matrix for each of N persons, and that we want the program to find
a solution where each dij represents, as precisely as possible, up to N ·2 proximities,
where the “up to” means that missing data are possible. Only the main diagonals in
each proximity matrix can never impact the MDS solution because dii = 0, for any i ,
is always true in any distance geometry.

5.4 MDS of Asymmetric Proximities

Distances are always symmetric, i.e. it always holds that dij = d ji , for all i, j .
Therefore, proximities that are not symmetric cannot be represented in MDS models.
However, as long as the asymmetries in the data are just error-based, no real prob-
lem arises because MDS can smooth out such asymmetries or because the user has
eliminated or at least reduced them by first averaging corresponding data values.

Asymmetries can, however, be reliable and valid pieces of information. Examples
are the asymmetries in an import-export matrix, where country X imports more
from county Y than vice versa. Another example is a social network that can be
studied in terms of how much each person i “likes” the other person j . Such liking
measurements can, of course, also be asymmetric, and this can be very meaningful.

A simple approach of dealing with asymmetric proximities in the MDS context is
the drift vector model. The model requires the user to first form two matrices from the
proximity matrix P. First, the symmetric component of P is computed by averaging
corresponding cells, S = (P + P′)/2, with elements sij = (pij + p ji )/2. This matrix
is then scaled as usual with MDS. The rest of the proximities, A = P − S, with
elements aij = pij − sij, is the skew-symmetric component of P. It can be represented
within the MDS solution for S by attaching an arrow on each point i that points

http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Fig. 5.2 Vector field over an MDS solution;
dashed arrows are resultants
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Fig. 5.3 Vector field reduced to positive
asymmetries

towards point j or away from point j , depending on the sign of the asymmetry. The
length of this arrow is chosen as k · |aij|, with k some scaling factor (e.g., k = 1). To
simplify this display and to reduce the number of arrows, one can plot the resultant
of all arrows emanating from each point i .

We demonstrate this model using a small example. Let P be a matrix of similarity
values (e.g., measures on how much person i likes person j, j = 1, . . . , 4):

P =

⎡

⎢⎢⎣

0 4 6 13
5 0 37 21
4 38 0 16
8 31 18 0

⎤

⎥⎥⎦ = S + A

=

⎡

⎢⎢⎣

0.0 4.5 5.0 10.5
4.5 0.0 37.5 26.0
5.0 37.5 0.0 17.0

10.5 26.0 17.0 0.0

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0.0 −0.5 −2.0 2.5
0.5 0.0 0.5 −5.0
2.0 −0.5 0.0 −1.0

−2.5 5.0 1.0 0.0

⎤

⎥⎥⎦ . (5.5)

For S, interval MDS yields the point configuration in Fig. 5.2. In this plot, we
insert the values of A as arrows. On point 1, we draw an arrow with a length of
2.5 units pointing towards point 4; additionally, we add an arrow of length 0.5 that
points away from point 2; and, finally, we attach another arrow of length 2.0 pointing
away from point 3. The resultant of these three arrows is the drift vector, represented
by the dashed arrow on point 1. For the remaining points, we proceed analogously.

The vector field display can be simplified in various ways. Figure 5.3 exhibits
only the arrows that are positively pointing from i to j . One notices in this plot that
persons 2 and 3 like each other a lot, and also symmetrically (because the points i
and j are so close, and because the drift vector is so short). For persons 4 and 2,
the mutual affection is clearly smaller and, moreover, it is also quite asymmetric.
Otherwise, one notices a peculiar circular structure of the asymmetries from 1 to 4,
from 4 to 2, and from 3 to 1.

http://dx.doi.org/10.1007/978-3-642-31848-1_5
http://dx.doi.org/10.1007/978-3-642-31848-1_5
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Fig. 5.4 Illustration of the dimensional weighting model

One can experiment somewhat with how one wants to represent the asymmetries
(e.g., show all arrows, only resultants, only positive vectors; use different scale fac-
tors for lengths of arrows). However, since there are presently no simple computer
programs for such experiments, they entail a lot of cumbersome work. Nevertheless,
the result may be worth the effort, because the resulting vector field can reveal asym-
metries (over the symmetric base structure) that may be hard to detect in the data
matrix.

5.5 Modeling Individual Differences in MDS

A popular variant of MDS is the dimensional weighting model, often called the
Indscal model (Carroll and Chang 1970). The basic idea of this “model of subjective
metrics” (Schönemann and Borg 1983) is illustrated schematically in Fig. 5.4. The
plots show the psychological spaces of two individuals. The spaces are different, but
they can both be generated from one common space by appropriate weightings of the
dimensions X and Y . In contrast to the usual MDS solutions that can be arbitrarily
rotated, the dimensions in the Indscal model are fixed, in general.

If one drops this restriction of common dimensions for all individuals, a more
general model arises that allows for person-specific (idiosyncratic) rotations of the
common space (Idioscal model). The consequence of allowing for a rotation of the
common space before stretchings or compressions is that the point grid in Fig. 5.4
will be sheared, in general.

Expressed more formally, the Indscal model says that

dijk(X) =
√√√√

m∑

a=1

wak(xia − x ja)2 , wak > 0, (5.6)

http://dx.doi.org/10.1007/978-3-642-31848-1_5
http://dx.doi.org/10.1007/978-3-642-31848-1_5
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Fig. 5.5 Dimensional weights for 18 persons in an Indscal analysis of the country similarity data
from Sect. 2.2; points represent hawks, squares are doves, and stars are moderates

where the parameter k = 1, . . . , N stands for different individuals or cases. The
weight wak can be interpreted as the salience of dimension a for person k (Horan
1969).

Kruskal and Wish (1978) used this model to scale the raw data that led to the
proximities in Table 2.1. Instead of first averaging the ratings over the 18 subjects of
their experiment, they analyzed these ratings directly with a three-mode MDS, namely
the Indscal model. This type of MDS yields a solution for the common space that
is quite similar to the configuration shown in Fig. 2.2. The only real difference is
that it is rotated by some 45◦ so that its X and Y axes closely correspond to the
dimensions Wish (1971) had used in Sect. 2.2 for interpreting the MDS solution of
the averaged proximities: Pro-Western versus Pro-Communist (X dimension) and
Economic Development (Y dimension). The weights computed by Indscal for the
18 students are shown in Fig. 5.5. This plot (called the subject space in Indscal)
shows that person 11 strongly compresses the common space along the Y axis or,
expressed differently, strongly over-weights the X dimension. That is, this person
pays relatively little attention to Economic Development in his or her judgments of
similarity or, conversely, pays relatively much attention to the countries’ political
alignment. For person 4, the opposite is true. This interpretation is buttressed by
additional data on these persons. On the basis of a question on the Vietnam war, the
students were sorted into three groups: Hawks, doves, and moderates. These groups
appear in the subject space in the expected regions of weights.1

The Indscal procedure is easily over-interpreted if used naively. One delicate
issue is the question whether the fit of the model would be clearly worse if all

1 The distance of a point i from the origin in Indscal’s subject space represents the goodness of the
Indscal solution for person i . Figure 5.5 therefore exhibits that, for example, the data of person 1
are only relatively poorly explained by the Indscal solution, while the opposite is true for persons
10, 7, or 11.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_5
http://dx.doi.org/10.1007/978-3-642-31848-1_5
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dimension weights would be set to the same value. Borg and Lingoes (1978) report an
example where the dimension weights scatter substantially even though they explain
very little additional variance over unit weights. Hence, very different weights may
represent very little variance, and then the unique orientation of the dimensions is
not very strong either.

The dimension weights depend on the particular dimension system of the common
space. Yet, one cannot infer from Fig. 5.5 that person 11 weights the countries’
political alignment six times as strongly as their economic development. The reason
is that the norming of the common space is arbitrary. That is, if the common space
is stretched or compressed along its dimensions, different weights entail for each
person while the overall fit of the MDS solution remains the same. What one can
interpret in Fig. 5.5, for example, is that person 11 weights the horizontal dimension
more than person 10, since this relation remains invariant under horizontal or vertical
compressions or stretchings of the common space.

The idea of the dimension weighting model can also be realized in a more step-
wise approach which avoids some of the interpretational problems. To do this, one
first scales each of the given N data matrices individually by MDS. One then uses Pro-
crustean transformations to fit the N resulting configurations to each other by admis-
sible transformations (rotations, reflections, size adjustments, and translations) and
computes the average configuration as the “common” configuration (centroid con-
figuration). In this configuration, one then identifies the dimensions that, if weighted,
optimally explain the individual MDS solutions. This hierarchical approach is used
by the program Pindis2 (Lingoes and Borg 1978). It allows to user to check, in par-
ticular, how much variance is explained by using individual dimension weights over
setting all weights equal for all individuals. For more information on Procrustean
analysis, we refer to Borg and Groenen (2005).

The dimension weighting model is interesting but, in practice, it rarely leads to
MDS solutions that are convincing in terms of fitting the data or in terms of sub-
stantive theory as in the case of Doves and Hawks above.3 A more general reason
for this finding is that such dimensional approaches to individual differences scaling
are often inappropriate psychological models for judgments of similarity. Research
has shown that different persons may generate very different “dimensionalizations”
of even the simplest stimuli where the dimensions seem obvious and compelling
apriorily (Schönemann 1994). In addition, they may use different distance functions
or functions that do not even satisfy the basic axioms of distances (e.g., in asym-
metric judgments; see Tversky 1977). However, formulating and studying models
like Indscal have greatly contributed to today’s more refined understanding of the
psychology of similarity judgments.

2 This program is included in the NewMDSX package.
3 Note also that if the number of points is small and the dimensionality is high (e.g., if n = 5 and
m = 3), the model has many free parameters which help to generate a good model fit. For theory
construction, such special cases are usually of little interest.

http://dx.doi.org/10.1007/978-3-642-31848-1_5
http://dx.doi.org/10.1007/978-3-642-31848-1_5
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5.6 Unfolding

Another popular family of MDS models is called Unfolding, a model for dominance
data,4 in particular for preference data of N persons for n objects. The small example
in Table 5.1 illustrates this case with data of five persons and four political parties.
The scores are preference scores, ranging from 4 (= high) to 1 (= low). Person 3
has the strongest preference for party A, in second place comes party D, then C,
and finally B. Such a data matrix can be understood as a special case of a proximity
matrix where (a) the data express how close a particular person is to a particular
party, and (b) where entire blocks of data are missing, namely the proximities among
the parties, and also the proximities among the persons. Using regular MDS to scale
these data, we get 5 + 4 = 9 points, 5 for the persons, and 4 for the parties, as shown
in Fig. 5.6. The points representing the persons are called ideal points in unfolding,
because they are the points of maximal preference in space: The closer a party to

Table 5.1 Fictitious preference values of 5
persons for 4 parties

5

4

3

2
1

D

CB

A

Fig. 5.6 Ordinal unfolding solution for the
preference data in Table 5.1

the ideal point of a person, the stronger this person’s preference for this party. The
distances between a person’s ideal point and the various object points thus represent
this person’s perceived preference intensities. Hence, folding the unfolding plane of
Fig. 5.6 in the ideal point of a person5 leads to the person’s preference scores (ratings,
ranks, etc.) for the various parties. Folding the plane in another point generates other
preference scores.

4 Such data express the extent to which i dominates j in some sense. For example, dominance
could mean “X is better than Y by x units”, “I would vote for A rather than for B”, or “I agree most
with X”.
5 Just like folding an umbrella, or like picking up a handkerchief at this point.
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As a psychological model of preference, the unfolding model rests on the strong
assumption that all persons share the same perception of the objects. They may differ
only in what they find ideal. Thus, all persons should agree where to place each party
on a left-right continuum, but some persons are conservative, others are left-wingers.
This assumption can be quite wrong, of course. Analyzing data from German voters,
Borg and Staufenbiel (2007) showed that some voters located the German Liberals to
the right of the Conservatives, while other voters swapped the order of these parties.
If the two groups of voters are thrown into one single unfolding analysis, a hard-
to-interpret 2-dimensional solution is needed to represent these data. If, however,
the two groups are analyzed separately (“multiple unfolding”), unfolding leads to
a 1-dimensional solution for each group, where the Liberals are to the left of the
Conservatives in one data set, and to the right in the other. In other words, the multi-
dimensional unfolding representation for the German voting preferences appears to
be an aggregation artifact that does not properly represent the preferential space of
any single person.

From a geometric point-of-view, unfolding can easily lead to unstable solutions.
This is so because the model rests on data that constrain only a sub-set of the distances,
namely the distances among ideal points and object points, but not the distances
among ideal points and also not the distances among object points (see Table 5.1).

Moreover, in real data, object points and ideal points are often not thoroughly
mixed. That is, many preference orders that are theoretically possible do not appear
at all or only very infrequently, because most persons prefer or reject the same objects.
This can lead to major indeterminacies of the unfolding solution, where single points
can be moved around arbitrarily in ample solution regions without affecting the Stress
at all (see Borg and Groenen 2005).

Still another problem is that the risk to obtain degenerate solutions can be con-
siderable in both ordinal and interval unfolding. The solutions, then, show pecu-
liar patterns where all distances between ideal points and objects are essentially
equal. Such undesirable solutions are sometimes easily recognized, for example,
if the person points are all located on a circular arc, while the object points are
lumped together in the center of the circle. To avoid this problem, most MDS pro-
grams use a modified Stress function in unfolding, Stress-2, which slightly mod-
ifies the denominator of formula 3.2 to

∑
i< j (dij(X) − d)2. Although Stress-2

seems to reduce the degeneracy problem, it does not make it impossible (see, e.g.,
Carroll 1980). However, a systematic approach that avoids degenerate solutions was
proposed by Busing, Groenen and Heiser (2005) and implemented in the Prefscal
module of Spss. It penalizes the loss function whenever the MDS configuration tends
to be modified in the optimization process into the direction of equal distances. We
recommend this program in case of linear and ordinal unfolding.

In unfolding, one should also consider if one really wants to assume that the data
are comparable across rows. In our small demo example, one may doubt that the
preferential value “4” of person 1 is truly equal to the “4” of person 2. If one does not
want to assume that equal data values have the same meaning, one should not request
that the distance from ideal point 1 to point D must have the exact same value as the
distance from ideal point 2 to point A. Rather, one may feel that only the preference

http://dx.doi.org/10.1007/978-3-642-31848-1_3
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values within in each row can be compared among themselves. This would require a
row-conditional unfolding analysis: Splitting the data matrix into horizontal stripes
of the lower diagonal block in Table 5.1, allows the unfolding program to choose a
different monotone mapping for each row, for example (in case of a linear unfolding
model) d1D ≈ a1 + b1 · 4 for person 1, and d2A ≈ a2 + b2 · 4 for person 2, so
that it is generally true that d1D �= d2A. Such conditionalities may be theoretically
desirable, but mathematically they lead to problems, because they further reduce
what is already reduced in unfolding, i.e. the constraints that the data exert onto
the distances of the MDS representation. For row-conditional unfolding, one should
therefore have “plenty” of data (rule of thumb: at least 15 persons, all with different
preference profiles).

5.7 Summary

MDS is a family of different models. They differ in the way they map proximities
into distances, and in the distance functions they employ. The various mapping func-
tions optimally preserve certain properties of the data such as the ranks of the data
in ordinal MDS, the relative differences of any two data values in interval MDS, or
the ratios of the data in ratio MDS. Typically, Euclidean distances are chosen as the
targets in MDS. City-block distances or dominance metrics are also used in psycho-
logical modeling. Some MDS models allow using multiple proximities per distance.
Asymmetric proximities can be handled by the drift-vector model: It represents their
symmetric part by the distances of an MDS configuration, and their skew-symmetric
part by drift vectors attached to the points. A popular MDS model is Indscal which
represents a set of N proximity matrices, one for each of N individuals, by one
common MDS space and by N sets of weights for its dimensions. Another special
MDS model is unfolding. It uses preference data, representing N persons by N ideal
points in a joint space together with the points for the different choice objects.
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Chapter 6
Confirmatory MDS

Abstract Different forms of confirmatory MDS are introduced, from weak forms
with external starting configurations, to enforcing theoretical constraints onto the
MDS point coordinates or onto certain regions of the MDS space.

Keywords Confirmatory MDS · External scales · Dimensional constraints ·
Shearing · Axial partition · Penalty function

The MDS models discussed so far impose no particular restrictions onto the MDS
configurations: The MDS computer programs are free to position the points any-
where in space as long as this reduces the cofigurations’ Stress values. This type of
exploratory MDS lets the data “speak for themselves”. If one has specific hypothe-
ses about the structure of the data in MDS space, however, one may be less inter-
ested in blindly minimizing Stress, but rather in finding an MDS solution that is
not only Stress-optimal but also theory-consistent. In confirmatory MDS, additional
constraints derived from substantive theory are imposed onto the solution. In case of
a dimensional theory, for example, one may request that the points form a particular
grid of points (as in Fig. 5.4) and then check how precisely such a solution would
represent the given data.

In practice, one often assumes that if the solution of an exploratory MDS closely
approximates the configuration that is expected for theoretical reasons, then a per-
fectly theory-consistent structure has a Stress value that is only “somewhat” higher.
If, however, exploratory MDS does not lead to a solution that comes close to what
one predicts for theoretical reasons, then it is impossible to tell if a theory-consistent
solution with a reasonably low Stress value exists or not. Borg and Groenen (2005,
p. 230) report an example for data similar to those used in Sect. 2.3 (this one using
ellipses rather than rectangles) where the minimal-Stress MDS solution is radically
different from a theory-compatible solution but both solutions have almost the same
Stress. Whether this is true or not, must be tested by enforcing the theory onto the
MDS solution, that is, by confirmatory MDS.

Confirmatory MDS comprises various approaches that allow the user to formulate
external constraints that are imposed onto the dimensions of the MDS configuration;

I. Borg et al., Applied Multidimensional Scaling, SpringerBriefs in Statistics, 49
DOI: 10.1007/978-3-642-31848-1_6, © The Author(s) 2013
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onto clusters of its points; onto certain partitions of the configuration; or onto the
distribution of its points on geometric figures such as circles. Such additional con-
straints can be strictly enforced in some MDS procedures, while other programs only
systematically push the iterations into directions that approximate such solutions.

6.1 Weak Confirmatory MDS

A weak confirmatory MDS approach is running the MDS with a user-defined external
starting configuration that is set up on the basis of theoretical considerations rather
than leaving it to the program to choose its own starting configuration. This makes
it more likely to obtain an MDS solution that is similar to the theory based starting
configuration. As an example, consider the case discussed in Sect. 2.3, where we had
a clear hypothesis on how judgments on the similarity of different rectangles are
generated, that is, by a city-block composition rule based on a log-transform of the
design configuration in Fig. 2.4. If one leaves it to MDS to generate its own starting
configuration, the program does so on formal grounds. It is blind to the content
of the data, as it knows nothing about substantive theory. Hence, this information
is not taken into account when setting up a starting configuration. The researcher,
moreover, is often not interested to run an MDS analysis that blindly grinds out a
minimal Stress solution but rather in finding out how well his/her theory (with an
optimal scaling of all free parameters) explains the data. Hence, pushing the MDS
solution into this direction from the start makes sense in terms of theory building,
wether or not the theory is accepted in the end.

One can also fit given MDS solutions to theory-based target configurations. In the
above case of rectangles, the design configuration of Fig. 2.4, appropriately stretched
or compressed along its dimensions, can serve as a target in Procrustean transfor-
mations of an MDS configuration for the rectangle data in Table 2.3 (see Sect. 7.8
for Procrustean transformations). However, with its default starting configuration,
an exploratory MDS is not pushed from the start into a theory-generated direction so
that a combination of using a theory-derived starting configuration with subsequent
Procrustean transformations promises to be more effective for theory testing and
development.

Providing an external starting configuration can also help to make a set of different
MDS solutions more similar. An application example is a study by Dichtl et al. (1980).
These authors used a common space (in the sense of the Indscal model in Fig. 5.4)
as the starting configuration in five different MDS analyses of data on consumer
perceptions of various automobiles collected year after year for five years. Using a
common starting configuration for each of the MDS scalings makes it more likely
that the solutions are more comparable by reducing irrelevant differences such as
rotations in space.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_7
http://dx.doi.org/10.1007/978-3-642-31848-1_5
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Table 6.1 Coordinates of the
stimuli (rectangles) in design
of Fig. 2.4

Rectangle Width Height

1 3.00 0.50
2 3.00 1.25
3 3.00 2.00
4 3.00 2.75
5 4.25 0.50
.
.
.

.

.

.
.
.
.

15 6.75 2.00
16 6.75 2.75

6.2 External Side Constraints on the Point Coordinates

A strict confirmatory MDS approach enforces a solution that fully satisfies the exter-
nal constraints. The Stress value is optimized, but its absolute value does not matter.
Stress, therefore, may reach high values, which tells the user that the data are not
compatible with the particular theoretical model.

As an application example, we use the rectangle study from Sect. 2.3. Exploratory
MDS of the data of Table 2.3 leads to a solution that closely approximates the grid
of the design configuration (Fig. 2.5). We now employ confirmatory MDS to enforce
such a grid onto the solution and then check if this leads to a Stress value that
is still acceptably low. For this scaling, we use Proxscal, an MDS program in
Spss. Proxscal allows the user to request that an MDS solution X is generated by
optimally scaling the column vectors in Y. In our example, the columns of Y are the
coordinates of the points in the design grid, i.e. the columns “Width” and “Height”
in Table 6.1.

To run Proxscal, we first store the external scales in the file “RectangleDesign.
sav” and the proximities of Table 2.3 in “RectanglesData.sav”. We then request for the
MDS solution that the dimensions of X must be generated from the columns of Y,
allowing ordinal re-scalings of the coordinate values that preserve ties. The com-
mands for this MDS job in Proxscal are:

GET FILE=‘RectangleData.sav’.
PROXSCAL VARIABLES=Rectangle1 to Rechtangle16

/TRANSFORMATION=ORDINAL
/RESTRICTIONS=VARIABLES (‘RectangleDesign.sav’)
Width(ORDINAL(KEEPTIES))
Height(ORDINAL(KEEPTIES)).

With these commands, Proxscal yields the solution in Fig. 6.1. It is almost
perfectly theory-compatible except for the slight shearing of the point grid which
cannot be suppressed in the present version of Proxscal.1 The increment in Stress

1 The unavoidable shearing can become extreme with other data. It can make the solutions essentially
worthless. Presently, you can only cross your fingers and hope that shearings do not become so
strong.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Fig. 6.1 Ordinal MDS solution based on
ordinally re-scaled coordinates of rectangles
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Fig. 6.2 Ordinal MDS solution based on lin-
early re-scaled coordinates of rectangles

compared to the Stress of an exploratory MDS2 is very small (0.102, compared to
0.092). One can conclude, therefore, that the jitter of the grid in Fig. 2.5 does not
help to explain the data markedly better. Rather, it seems that it essentially represents
some of the error contained in the data. Hence, there is no reason to reject the theory
that the dissimilarity judgments for the rectangles are generated by a composition
rule that can be modeled by a (Euclidean or city-block) distance formula operating
on the rectangles’ width and height coordinates.

To see what happens if the external scales are treated as interval scales, we now
set Width (INTERVAL) and Height (INTERVAL) in the Proxscal com-
mands. This entails that the program is restricted to homogeneous stretchings or
compressions of the external scales or, expressed differently, to simple dimensional
weightings (plus shearings, as before). Under this condition the Stress grows only
slightly to 0.120, but the successively smaller compressions of the grid along its
dimensions under the ordinal constraints (Fig. 6.1) is more desirable in terms of
psychophysical theory (i.e., the Weber–Fechner law) than the even spacings in the
interval case (Fig. 6.2).

Enforcing dimensional structures onto an MDS solution can be described by
the equation X = YC, with X the MDS solution, Y the external scales, and C a
matrix of parameters to be chosen such that the distances of X minimize the MDS
model’s Stress. The matrix C represents a linear transformation of the configura-
tion Y. Any linear transformation can be decomposed into rotations and dimensional
strechings/compressions of Y. Algebraically, this means that C can be “diagonalized”
by singular value decomposition into the product PMQ, where P and Q represent

2 The MDS solution in Fig. 2.5 was generated by Systat using city-block distances which Prox-
scal does not offer. If Euclidean distances are used in the exploratory MDS, however, the solution
is almost identical to the one shown in Fig. 2.5, with almost the same Stress value of 0.090.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Fig. 6.3 Ordinal MDS solu-
tion with external constraints
on the distances that enforce
an orthogonal grid
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rotations and M a diagonal matrix of dimension weights. Thus, C first rotates the
configuration Y in some way, then stretches and/or compresses this rotated con-
figuration along its dimensions, and finally rotates the result once more. If C is a
diagonal matrix, then the column vectors of Y are weighted directly. If C is not
diagonal, then Y is first rotated and then dimensionally weighted, and this is what
causes the shearing in Figs. 6.2 and 6.1, respectively.3 Thus, to avoid the shearing,
C must be diagonal.

The possibility to constrain C to be diagonal is offered only by the Smacof
program (described in detail in Sect. 9.2). However, when enforcing this constraint,
Smacof does not allow the user to also set the scale level of the external scales to
“ordinal”. So, a solution with orthogonal dimensions that are optimally scaled in an
ordinal sense cannot be generated by the present version of Smacof either.

A completely different approach to impose external constraints onto the MDS
solution is to focus on the distances of the MDS configuration, not on its coordinates.
If, for example, one requests for the rectangle data that d(1, 6) = d(2, 5), d(6, 11) =
d(7, 10) and d(11, 16) = d(12, 15) must hold in the MDS solution, shearings of the
point grid are avoided. To guarantee that a grid is generated in the first place, one can
additionally enforce that some of the horizontal grid distances be equally long, i.e. that
d(1, 5) = d(2, 6) = d(3, 7) = d(4, 8), d(5, 9) = d(6, 10) = d(7, 11) = d(8, 12),
and d(9, 13) = d(10, 14) = d(11, 15) = d(12, 16). Similarly, for the vertical
distances it should hold that d(1, 2) = d(5, 6) = d(9, 10) = d(13, 14), d(2, 3) =
d(6, 7) = d(10, 11) = d(14, 15), and d(3, 4) = d(7, 8) = d(11, 12) = d(15, 16).
Combined this amounts to nine sets of restrictions that can be imposed on the MDS
configuration by the program Cmda (Borg and Lingoes 1980).4

The way Cmda proceeds is as follows. First, the various restrictions are formu-
lated in terms of pseudo data, p′(i, j), that express the constraints numerically. One
defines, for example, for p′(1, 6) and for p′(2, 5) the same pseudo-data value (e.g.,

3 To see this graphically, first rotate any of the configurations in Fig. 5.4 by 30◦, say, and then stretch
or compress it along the X - and the Y -axis.
4 Cmda is, unfortunately, an old MS-DOS program that is not easy to use. A more user-friendly
version that allows one to impose external constraints onto the MDS distances does not exist.

http://dx.doi.org/10.1007/978-3-642-31848-1_9
http://dx.doi.org/10.1007/978-3-642-31848-1_5
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3 or 7); similarly, one sets p′(6, 11) = p′(7, 10) = 5, for example; etc., for each of
the nine sets of restrictions. Then, MDS is set to use the secondary approach to ties
(“keep ties”) but only conditionally within each set so that the equality of pseudo
data is to be preserved within each set only.5 Given some starting configuration, one
can then minimize the configuration’s Stress not just relative to the proximities, as
usual, but also relative to the pseudo data. Cmda begins its iterations by focussing
on the proximities only, and then successively shifts more and more weight onto the
pseudo data when computing the combined total Stress. In the end, only the pseudo
data count. This means that an initially exploratory MDS is penalized more and more
for deviations from the external constraints.6

The solution that Cmda yields after 100 iterations is shown in Fig. 6.3. It obviously
closely approximates the desired orthogonal grid. Its Stress value is 0.108, which is
only minimally larger than the Stress (0.102) obtained for the sheared solution in
Fig. 6.1. The shear, therefore, explains almost no additional variance and, thus, can
be discarded as substantively meaningless.

6.3 Regional Axial Restrictions

One can use the methods discussed above to solve confirmatory MDS problems that
arise quite frequently in applied research, that is, impose particular axial partitions
onto the MDS solution. Here is an example. Rothkopf (1957) studied to what extent
test persons confused different acoustic Morse signals. He used 36 different signals,
the 26 letters of the alphabet, and the natural numbers from 0 to 9. The signal for A,
for example, is “di” (a beep with a duration of 0.05 s), followed by a pause (0.05 s)
and then by “da” (0.15 s). We code this as 1–2 or 12 for di-da.

The symmetrized confusion probabilities collected for these signals from
hundreds of test persons can be represented quite well in a 2-dimensional MDS
configuration (Fig. 6.4). The partitioning lines were inserted by hand. They cut the
plane in two ways, related to two facets: The nine solid lines discriminate the sig-
nals into classes of signals with the same total duration (from 0.05 to 0.95 s); the
five dashed lines separate the signals on the basis of their composition (e.g., sig-
nals containing only long beeps are all on the right-hand side). The pattern of these
partitioning lines is not very simple, though, but partially rather curvy and hard to
describe. Particulary the dashed lines are so twisted that the pattern of the emerging
regions does not exhibit a simple law of formation. Rather, the partitioning seems
over-fitted. The substantive researcher, therefore, would probably not bet that it can
be completely replicated with new data.

5 Note that Cmda does not only allow the user to impose equality constraints, as in this example.
Order constraints are also possible, for example requesting d(1,5) > d(5,9) > d(9,13). Moreover,
Cmda can handle equality constraints both under the primary and also under the secondary approach
to ties.
6 Proxscal, in contrast, begins from the start with a configuration that perfectly satisfies the external
restrictions, and then successively optimizes its fit to the proximities.
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Table 6.2 Two external scales for regional restrictions on an MDS representation of Morse signals
(duration and type), together with ordinally equivalent internal scales

r1 r2 z1 z2 X
Duration Type External External Internal Internal

Signal scale 1 scale 2 scale 1 scale 2

1 0.05 1 1 1 1.0 2.1
11 0.15 1 2 1 2.2 2.2
2 0.15 2 2 5 1.9 4.7
21 0.25 1 = 2 3 3 → 2.5 2.9
12 0.25 1 = 2 3 3 3.0 3.3
111 0.25 1 3 1 3.3 2.0
.
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.

22222 0.95 2 9 5 27 4.8

We now want to straighten the two sets of partitioning lines. For that purpose we
again use the X = YC restriction. To generate the scales in Y, we use the signals’
codes r1 and r2, as shown in Table 6.2. For the external scale 1, r1, we simply use the
lengths of the signals, shown in Fig. 6.4 by the black boxes. If we allow for an ordinal
re-scaling of these values in y1, then we might also choose other values instead of
the duration values, for example the values shown in z1.

For the second scale, we use r2 (or, equivalently, z2). Column r2 assigns values
to each signal that correspond to the region shown on the upper boundary of Fig. 6.4,
numbered from 1 to 5 for the boxes labeled as “1”, “1 > 2”, “1 = 2”, “2 > 1”, and
“2” (r2), respectively.

We also specify that we want to use the primary approach to ties so that ties in the
external scale values can be broken in the signals’ internal scale values. That is, signals
with the same codes on the internal scale must fall into stripes or bands (not lines)
that are ordered as the external scale values. This is illustrated in Table 6.2. Here, the
“2” of the external scale is mapped into the values 2.2 and 1.9, respectively. These
coordinate values of X are different, but they are both greater than the coordinate
values that correspond to “1” on the external scale, and smaller than all coordinate
values that correspond to “3” on the external scale (= 2.5, 3, 3.3).

With these constraints, MDS7 delivers the solution in Fig. 6.5. The simple-to-
interpret MDS solution has almost the same overall Stress as the exploratory MDS
solution in Fig. 6.4 (0.21 vs. 0.18). Upon closer investigation one notes, however,
that the confirmatory solution moved only few points by more than a small amount.
Particularly point 1 (at the bottom, to the right) was moved a lot so that the substantive
researcher may want to study this signal (and its relationship to other stimuli such
as signal 2) more closely. Overall, though, the simpler and, probably, also more
replicable solution in Fig. 6.5 appears to be the better springboard for further research.

7 The present version of Proxscal (in SPSS 20) does not properly handle ordinal re-scalings of
external scales if the primary approach to ties is chosen. The solution in Fig. 6.5 was generated by
an experimental MDS program written by Patrick Groenen in MATLAB.
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6.4 Challenges of Confirmatory MDS

The challenges of confirmatory MDS for applied researchers consist of first formulat-
ing their theoretical expectations so that they can be expressed mathematically in, say,
a penalty function, a pseudo-data matrix, or a system of equations that can be solved
by an existing confirmatory MDS program. Confirmatory MDS, therefore, is often
much harder than exploratory MDS, because it requires the user to not only develop
explicit theories but also translate them into a proper computational language. So far,
the MDS programs accessible to the general user can handle only relatively simple
confirmatory analyses. As we showed above, dimensional restrictions are relatively
easy to test, while confirmatory MDS analyses with regional restrictions are typically
difficult to set up and solve (Groenen and Van der Lans 2004). Computer programs
that allow all forms of restrictions (combined, in addition, with particular MDS mod-
els, certain missing data patterns, or distances other than Euclidean distances) do not
exist yet. Rather, in such cases, a suitable MDS algorithm must be programmed ad
hoc.

If the users succeed to generate a confirmatory MDS solution, a number of addi-
tional challenges await them. They have to evaluate not only the absolute Stress
values as described in Chap. 3, but also the Stress increment resulting from adding
the particular external constraints to the MDS analysis. Typically, such evaluations
amount to deciding whether the Stress increment is “substantial” or not, given the
number of points, the dimensionality of the MDS space, the MDS model, the dis-
tance function, and the quality of the data (error level). These and further criteria are
summarized by Lingoes and Borg (1983) in a quasi-statistical decision procedure.

An important additional criterion is the strength of the external constraints.
These constraints may be easy to satisfy for a given number of points in a given

http://dx.doi.org/10.1007/978-3-642-31848-1_3
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dimensionality, but they may also be quite demanding. An approach for assessing
this question is described in Borg et al. (2011). They use data from an experiment
where a sample of employees assess 54 organizational culture themes (such as ‘being
competitive’, ‘working long hours’, or ‘being careful’) in terms of how important
they are for them personally. The correlations of these importance ratings are repre-
sented in a theory-compatible MDS solution, where the 54 points are forced into the
quadrants of a 2-dimensional coordinate system on the basis of apriori codings of the
items derived from the Theory of Universals in Values (TUV). The strength of the
external constraints is assessed by studying the Stress values that result from running
1,000 different confirmatory MDS analyses, each one using a random permutation
of these codings. It is found that the theory-based assignment of the codes to the
54 items does indeed lead to a Stress value that is smaller than any of the Stress
values that result if random permutations of the codings are enforced onto the MDS
solution. Hence, the codings are not trivial in the sense that random assignments
of the codings would lead to equally good MDS solutions when enforced onto the
configuration.

At the end of the day, however, assessing confirmatory MDS solutions is more
than a mere statistical issue. Rather, it must be embedded into a process of cumulative
theory construction where formal models are constructed and modified over time in
partnership with substantive theory and empirical observations.

6.5 Summary

MDS is mostly used in an exploratory way where the points are positioned in space
such that the resulting distances optimally represent the data. Confirmatory MDS
enforces additional structure onto the MDS configuration, or it at least tries to push
the solution into the direction of a theoretically expected structure. Confirmatory
MDS solutions may be quite different from solutions that are Stress-optimal in the
exploratory sense, but they can have Stress values that are not much worse than
exploratory solutions. However, their Stress values may also be much higher or
unacceptably high so that the theory must be rejected. Without confirmatory MDS,
such questions cannot be answered. One way to push an MDS solution towards a
theoretical structure is using a theory-derived starting configuration. To enforce a
theory-compatible outcome, one must use special MDS methods. In case of dimen-
sional expectations, theoretical structures can be strictly enforced in Proxscal or
in Smacof by optimally re-scaling a theoretical coordinate system, and in Cmda by
penalizing various sub-sets of distances if they deviate from predicted patterns. Axial
regionalities can also be enforced onto an MDS space, but more general patterns (such
as radexes) are difficult to specify.
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Chapter 7
Typical Mistakes in MDS

Abstract Various mistakes that users tend to make when using MDS are discussed,
from conceptual fuzziness, over using MDS for the wrong type of data, or using
MDS programs with suboptimal specifications, to misinterpreting MDS solutions.

Keywords Global optimum · Local optimum · Termination criterion · Starting
configuration · Degenerate solution · Dimensional interpretation · Regional inter-
pretation · Procrustean transformation

We now discuss some of the most frequent mistakes that (new but also experienced)
users of MDS tend to make in practice. These mistakes can easily lead to suboptimal
MDS solutions, and to wrong or at least naive interpretations of MDS solutions.

7.1 Using the Term MDS Too Generally

The term multidimensional scaling is normally reserved for the models discussed
in this book. However, some people denote any technique that gives a visual repre-
sentation in low-dimensional space (such as principal components analysis or corre-
spondence analysis) as a “multidimensional scaling” procedure. Yet, each of these
techniques differs in what it exactly shows in the visualization and how its plots should
be interpreted. Using the term MDS in a very general way can therefore blur these
differences, leading to confusion and misinterpretations. We highly recommend to
reserve the term multidimensional scaling for models that display proximities among
objects of interest by distances between points in a low-dimensional space and not
use the term for anything else.

I. Borg et al., Applied Multidimensional Scaling, SpringerBriefs in Statistics, 59
DOI: 10.1007/978-3-642-31848-1_7, © The Author(s) 2013
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7.2 Using the Distance Notion Too Loosely

The notion of distance is often used quite loosely. For example, numerous pub-
lications and manuals are calling dissimilarity data “distances” or “distance-like”
measures. This can lead to confusion about the purpose and the processes of MDS.
What MDS always does is representing proximities, as precisely as possible, as dis-
tances. Distances, therefore, always exist on the model side of MDS, but rarely ever
on its data side. The distances on the model side, moreover, are special distances,
i.e. Minkowski distances or, actually, one particular kind of Minkowski distances
(mostly city-block distances or Euclidean distances).

Proximities are distances if, and only if, they satisfy the distance axioms presented
on p. 14. In most applications, however, not all of the axioms can always be tested.
One reason is that typically one does not have all the data that are needed for such tests.
For example, one rarely collects data both on the similarity of i with j , and also on
the similarity of j with i . So, symmetry cannot be checked, and simply assuming that
pi j would be equal to p ji if both were collected can be quite wrong in many contexts
(see, e.g., Tversky 1977). Another reason is that the scale level of the data may be too
weak to test the distance axioms. With proximities on an interval scale, for example,
the triangle inequality can always be satisfied by an admissible transformation, i.e. by
adding an additive constant to all values that is large enough to reverse the inequality
that is most violated. Hence, in many applications, the given proximities can be
converted into values that do not violate the testable distance axioms. However, that
does not make them distances, let alone Minkowski distances. Indeed, that the data
can be admissibly transformed into (a particular variety of) Minkowski distances in
an m-dimensional space is a hypothesis that is tested by MDS.

7.3 Assigning the Wrong Polarity to Proximities

A frequent beginner’s mistake is to scale proximities with the wrong polarity. This
means that the data are similarities, but that MDS treats them as if they were dissimi-
larities, or vice versa. MDS then generates an uninterpretable solution with very high
Stress. If the proximities are read as data into an MDS program rather than being
computed within the program or its surrounding statistics package (e.g., as correla-
tions of variables), then the MDS program cannot know how to interpret these indices
and, therefore, works with its default interpretation of the polarity of the data (usu-
ally: dissimilarities). Yet, correlations, for example, are similarities, because greater
correlation coefficients indicate higher similarity and thus should be represented by
small distances. If the user incorrectly specifies the data type, or if the program
works with an incorrect default definition, then MDS cannot generate meaningful
solutions.
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7.4 Using Too Few Iterations

Almost all MDS programs have suboptimal default specifications. In particular, they
typically terminate the iterations of their optimization algorithms too early, that is,
before the process has actually converged at a local minimum. This premature termi-
nation is caused by setting the termination criteria too defensively. Many programs
set the maximum number of iterations to 100 or less, a specification that dates back
to the times when computing was slow and expensive. For example, the GUI box
of Systat in Fig. 1.5 shows that, per default, this MDS program allows at most 50
iterations. The iterations are also stopped if the Stress does not go down by more
than 0.005 per iteration. However, one can show that very small Stress reductions
do not always mean that all points remain essentially fixed in further iterations. We
therefore recommend to always clearly change these default values to allow the pro-
gram to work longer. Instead of a maximum of 50 one can easily require 500 or even
1,000 iterations. The convergence criterion, in turn, could be set to 0.000001, that is,
to a very small value indeed. The only disadvantage of such extreme specifications
is that the program may run a few seconds longer.

7.5 Using the Wrong Starting Configuration

All MDS programs automatically generate a (“rational”) starting configuration if
the user does not import an external starting configuration into the program. It is
a common fallacy to assume that internally generated starting configurations will
always lead to optimal MDS solutions. For example, we have found in many tests that
the default starting configuration used in Proxscal (called “Simplex”) is often not
optimal. We recommend to use the option Initial=Torgerson (see Fig. 9.8) instead.
Yet, no starting configuration—rational or user-provided—always guarantees the
best-possible final solution, and so the user should try out some sensible alternatives
before accepting a particular MDS solution all too early as the final solution.

Random starting configurations can also be used in MDS. Indeed, many random
configurations can be used without much effort. For example, for the solution in
Fig. 1.8 we used Proxscal with the option Random=1,000, i.e. we asked the pro-
gram to repeat the scaling with 1,000 different random starting configurations and
then report the solution with the lowest Stress value. That only took seconds with
this small data set.

7.6 Doing Nothing to Avoid Suboptimal Local Minima

An MDS solution is almost always found through series of small movements of the
points so that the Stress value goes down. The algorithms used today for computing
such iterations are guaranteed to find a local minimum solution, that is, a configuration

http://dx.doi.org/10.1007/978-3-642-31848-1_1
http://dx.doi.org/10.1007/978-3-642-31848-1_9
http://dx.doi.org/10.1007/978-3-642-31848-1_1
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Fig. 7.1 Two local minima solutions of ordinal MDS of the data in Table 1.1; panel a exhibits the
global minimum with Stress = 0; panel b is a local minimum with Stress = 0.089

where any small movements of the points will lead to higher Stress values. The
problem is that the iterations have to begin with some starting configuration, and
depending on this configuration they may end up in different local minima (if they
exist).

We illustrate this problem using the data of Table 1.1. The ordinal MDS solution in
Fig. 7.1 has a Stress value of 0. Now, we take this configuration, swap the positions of
Auto Theft and Larceny, and then use this configuration as the starting configuration
for another ordinal MDS. This MDS ends up in a different local minimum that has
Stress=0.089 (Fig. 7.1b). Thus, depending on the starting configuration, the MDS
program may report different MDS solutions.

MDS always attempts to find the local minimum with the smallest possible Stress,
i.e. the global minimum. MDS users can do their share to help find this global mini-
mum by keeping an eye on the following issues:

• A good starting configuration is the best way to avoid suboptimal local minima. If
you have a theory, then a user-defined configuration (as, e.g., described in Sect. 6.1)
is what you should always use. If you do not have a theory, you must leave it to the
MDS program to define its own starting configuration. In that case, we recommend
using the solution of classical MDS (also known as the Torgerson solution) as a
start.

• Another precaution against suboptimal local minima is using multiple random
starts. As modern MDS programs are extremely fast, one can easily require the
program to repeat the scaling with a very large number of different random starts
(e.g., with 1,000 or more).

• City-block distances increase the risk to end up in suboptimal local minima. Gen-
eral MDS programs are particularly sensitive in this regard. There exist MDS

http://dx.doi.org/10.1007/978-3-642-31848-1_1
http://dx.doi.org/10.1007/978-3-642-31848-1_1
http://dx.doi.org/10.1007/978-3-642-31848-1_6
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programs that are optimized for city-block distances, but they are hard to obtain
and typically require expert support for using them.

• The greater the dimensionality of the MDS space, the smaller the risk for subopti-
mal local minima. Even if you want, say, a 2-dimensional MDS solution, using the
space spanned by the first two principal components of the 3-dimensional MDS
solution may, therefore, serve as a good starting configuration.

• Suboptimal local minima are particularly likely in case of 1-dimensional MDS.
Standard programs almost never find the global minimum. If you must do
1-dimensional MDS, you want to consider using an MDS program that is spe-
cialized for this case. Again, such programs are not easily accessible and may be
difficult to use.

7.7 Not Recognizing Degeneracy in Ordinal MDS

Of all MDS models, ordinal MDS is the model that is used most often. It requires
data that are only on an ordinal scale level, but it nevertheless produces stable metric
solutions. The reasons for this apparent paradox is that the function (5.2) defines an
order relation for each pair of distances, and this quickly leads to a huge number of
restrictions on the configuration. With just n = 12 objects (as in the country similarity
example in Fig. 2.2), there are 12 points and n(n − 1)/2 = 12 · 11/2 = 66 = k
distances. Hence, there are k(k − 1)/2 = 66 · 65/2 = 2.145 order relations that
ordinal MDS must bring in agreement with the data. With n = 20 objects, we arrive
at 17.955 restrictions, with n = 50 at 749.700!

Inspite of so many restrictions, ordinal MDS can run into a special problem that
the user should keep an eye on, i.e. it can lead to a degenerate solution. We illustrate
this problem with the following example. Table 7.1 exhibits the intercorrelations of
eight test items of the Kennedy Institute Phonics Test (KIPT), a test for reading skills
(Guthrie 1973). If we scale these data by ordinal MDS in the plane, we obtain the
configuration shown in Fig. 7.2. Its Stress value is almost zero, so this MDS solution
seems practically perfect. Yet, the Shepard diagram in Fig. 7.3 reveals a peculiar
relation of data and distances. Although the data scatter evenly over the interval
from 0.44 to 0.94, they are not represented by distances with a similar distribution,
but rather by two clearly distinct classes of distances so that the regression line has
essentially just one step.

One notes in the MDS configuration that the program positioned the points in three
clusters that have the same distance from each other. This configuration represents all
large correlations (r ≥ 0.78) by similarly small distances, and all large correlations
(r < 0.72) by essentially the same large distance. This solution correctly displays
one of the data relations,1 but it takes advantage of the freedom to position the points
in ordinal MDS to an extent that is most likely not intended by the user, because one

1 The correlations of test items from two of the subgroups {NP,...,NR}, {SLP} and {CCR, ILR},
respectively, are always smaller than the correlations of test items from the same group.

http://dx.doi.org/10.1007/978-3-642-31848-1_5
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Table 7.1 Correlations (lower half) of some test items of the KIPT and their ranks (upper half)
np lvp svp ccp nr slp ccr ilr

Nonsense word production (np) – 9 4 1 6 19 10 12
Long vowel production (lvp) 0.78 – 1 7 5 21 20 22
Short vowel production (svp) 0.87 0.94 – 3 2 17 16 23
Consonant cluster production (ccp) 0.94 0.83 0.90 – 7 14 11 16
Nonsense word recognition (nr) 0.84 0.85 0.91 0.83 – 17 15 18
Single letter production (slp) 0.53 0.47 0.56 0.60 0.56 – 13 16
Consonant cluster recognition(ccr) 0.72 0.48 0.57 0.69 0.59 0.62 – 8
Initial letter recognition (ilr) 0.66 0.45 0.44 0.57 0.55 0.57 0.82 –
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Fig. 7.2 Ordinal MDS configuration for
data of Table 7.1
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would probably not want to assume that the differences in the size of the correlations
have no real meaning at all. In other words, one would prefer a mapping of data into
distances that is not so discrete but somewhat more smooth and continuous.

The excellent Stress value of the solution in Fig. 7.2 is, moreover, deceptive. The
large and the small distances, respectively, can be re-ordered arbitrarily as long as
all within-block similarities remain greater than all between-block similarities. Any
such reordering will have almost no effect on the Stress value. Indeed, one can drive
the Stress infinitely close to zero by collapsing the three point clusters more and more
into three single points so that one ends up with a perfect equilateral triangle.

The reason for the degenerate solution is that the data have a peculiar structure.
They form three subgroups, with high within- and low between-correlations. From
the point-of-view of ordinal MDS, such data can always be perfectly represented by
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an equilateral triangle. Of course, the data structure here is a contrived case, selected
to demonstrate the degeneracy issue. In practice, one should rarely find such cases,
but they become more likely if the number of variables is small (n ≤ 8).

If the Shepard diagram suggests that the MDS solution is degenerate, then the
easiest next step for the user is testing a stronger MDS model and compare the
solutions. Using interval MDS with the above data yields the solution in Fig. 7.4. It
too shows the three clusters of test items, but it does not contract them as much as the
ordinal MDS solution. Its Shepard diagram (Fig. 7.5) makes clear that the interval
solution preserves a linear relationship of the data in Table 7.1 to the distances in
Fig. 7.4.

One may not want to enforce linearity onto this mapping but only smoothness.
For that case, some MDS programs such as Proxscal offer spline functions, that is,
smooth “elastic” functions (i.e., piecewise polynomial functions of degree k) that are
set to run through a number of evenly spread out “knots” (Borg and Groenen 2005).
The user of MDS does not have to understand the mathematics of this method: it
is simple to use and one can always check the results graphically, particularly the
resulting regression function in the Shepard diagram.

7.8 Meaningless Comparisons of Different MDS Solutions

A frequent issue in MDS applications is comparing two or more MDS solutions.
Consider a simple case. Figure 7.6 (left panel) exhibits an MDS representation of
correlations among 13 items on work values, collected for a representative West
German sample in 1991 (Table 7.2, lower half). The items ask the respondents to
rate different themes in their work life (such as ‘high income’ or ‘good chances for
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Table 7.2 Intercorrelations of 13 work values (with ERG codings) assessed in the ALLBUS 1991
(lower/upper half: West-/East-Germany; decimal points omitted)
Work value ERG 1 2 3 4 5 6 7 8 9 10 11 12 13

1 Interesting work G 47 43 38 28 37 29 28 27 16 15 21 28
2 Independent work G 51 53 31 27 34 23 25 28 25 16 15 26
3 Work with responsibility G 42 57 39 32 42 38 38 41 24 16 09 25
4 Meaningful and sensible work R 37 30 33 20 33 38 44 29 24 13 08 33
5 Good chances for advancement E 28 29 33 18 43 19 25 15 39 52 27 34
6 Recognized and respected work E 18 23 34 24 43 37 39 29 37 29 21 35
7 Work helping others R 20 19 31 33 17 32 48 49 16 10 14 26
8 Work useful for society R 20 17 28 40 18 37 56 32 23 16 18 30
9 Contact with other people R 31 34 39 31 21 24 43 34 16 11 10 19

10 Secure position E 14 17 18 19 39 37 24 25 17 40 18 38
11 High income E 20 26 25 05 54 32 05 08 11 32 27 29
12 Work with much spare time E 25 22 13 09 19 30 13 18 19 16 30 25
13 Healthy working conditions E 32 31 23 37 25 20 25 23 24 33 16 23

advancement’) on a scale from “not important” to “very important” to them person-
ally. The MDS configuration of the correlations shows three types of neighborhoods
that can be predicted from the ERG theory by Alderfer (1972). (For the meaning of
E, R, and G, see Sect. 7.10.)

Borg and Braun (1996) wanted to know how West Germans differ from East
Germans in their work values, in particular in terms of how they structure work
values. They first scaled the lower half of Table 7.2 via MDS and obtained Fig. 7.6.
One can repeat this for the East German data, and then compare the two MDS
configurations.

When comparing two MDS configurations, one must pay attention to discard
meaningless differences. Such differences are those that can be eliminated by admis-
sible transformations, that is, by rigid transformations (rotations, reflections, and
translations) and by global enlargements or shrinkages of the MDS configurations,
together called similarity transformations. Similarity transformations preserve the
geometric “shape” of the configuration: a figure such as a star or a triangle remains
a star or a triangle, for example, but it may be larger, smaller, rotated, reflected, or
shifted in space. Similarity transformations do not change the ratio of the distances
in a configuration and, therefore, they do not change the configuration’s relation-
ship to the data (i.e., Stress). Thus, differences between two configurations that can
be eliminated by similarity transformations cannot possibly be meaningful, because
they are not anchored in the data.

The similarity transformations that remove meaningless differences as much as
possible are called Procrustean transformations (Gower and Dijksterhuis 2004). One
begins by picking one “pleasing” configuration as the fixed target. Then, all other
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Fig. 7.6 West- and East-German structures of work values, both with partitions based on the ERG
theory

configurations are optimally fitted to this target, one by one.2 Differences that remain
after Procrustean fittings are meaningful and interpretable.

Procrustean transformations rest on the assumption that the given MDS config-
urations must not be changed. This restriction too should be anchored in the data.
In case of the East- and West-German work value structures, it is only partly true.
Figure 7.6 shows in the left panel the West German structure, and in the right panel
the East German MDS result. The two configurations look quite similar. However,
this similarity depends to some extent on how the MDS was done, and not on the
data only: when computing the East-German configuration, the West-German MDS
solution was used as a starting configuration so that the MDS program would begin
from a position that corresponds to the hypothesis “both configurations are equal”.
If one leaves it to the MDS program to pick its own starting configuration (by one
method or another), then this can lead to solutions that differ substantially. What
remains the same in all these solutions, however, is that they all exhibit the same
three groups of work values (E, R, and G, respectively). This finding is interesting
in itself. It can be taken an indication that only this structural aspect is robustly data-
driven. When comparing the East- and West-German MDS solutions, the stability of

2 Unfortunately, few statistics packages offer Procrustean transformations and if they do (such as
Systat, for example), then the proper modules can be difficult to find and use. If the users have a
program for matrix algebra (e.g., MatLab or R), they can quite easily compute Procrustean fittings
themselves. Let X be the target configuration and Y the configuration to be fitted. Then, compute
C = X′ZY, and find for it the singular value decomposition C = P�Q′. (In the centering matrix
Z = I − n−111′, I is the identity matrix and 1 is a vector of ones.) The optimal rotation/reflection
for Y is done by T = QP′; the optimal central dilation factor is s = trace(X′ZYT)/trace(Y′ZY);
the optimal translation vector is t = n−1(X − sYT)′1. Hence, the solution is Ŷ = sYT + 1t′ (Borg
and Groenen 2005).
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this meta-structural feature of the MDS solutions is, therefore, more important than
simple point-by-point correspondences.

7.9 Evaluating Stress Mechanically

A frequent mistake of recipients of MDS results is that they are often all too quick in
rejecting an MDS solution because its Stress seems “too high”. The Stress value is,
however, merely a technical index, a target criterion for the optimization algorithm of
the MDS program. An MDS solution can be robust and replicable, even if its Stress
value is high. Stress, moreover, is substantively blind (Guttman 1977), that is, it says
nothing about the compatibility of a content theory with the MDS configuration, or
about its interpretability.

Stress, moreover, is a summative index for all proximities. It does not inform
the user how well a particular proximity value is represented in the given MDS
space. Consider the example in Fig. 2.2. This configuration does not represent all
proximities equally good. This is made clear by the Shepard diagram in Fig. 3.1
where one notes an outlier point, with coordinates (3.44, 0.80), in the lower left-
hand corner. This outlier contributes over-proportionally to the total Stress because
it lies—measured in the vertical direction (“error”)—very far from the regression
line. Substantively, the value 3.44 is the average similarity rating for the pair ‘Egypt
versus Brazil’ in Table 2.1. The distance of the points Egypt and Brazil in Fig. 2.2
is therefore represented relatively poorly in the MDS solution. That can have many
reasons. One possibility is that the test persons found it particularly difficult to judge
the overall similarity of these two countries, thus introducing measurement error.
Another possibility is that the test persons used other or additional or individually
different attributes when comparing these countries than what they used for the other
countries.

On a higher level of aggregation, one can ask how good each single object is repre-
sented in an MDS configuration. This is measured by Stress per point (SPP), which is
simply the average of the squared error terms for each point. For the country similar-
ity data represented in Fig. 2.2, and using Smacof as described on p.100ff., one gets
all SPP values, sorted and rounded, by the command round(sort(res.wish
$spp, decreasing = TRUE), 3) :

FRANCE BRAZIL ISRAEL CUBA INDIA JAPAN EGYPT
0.054 0.052 0.042 0.041 0.040 0.040 0.036
CONGO CHINA USA YUGOSLAV RUSSIA
0.021 0.020 0.019 0.014 0.008

One can also plot these results by

plot(res.wish, plot.type = "stressplot", main = "Stress Plot",
+ ylab = "Stress Contribution (\%)", ylim = c(0, 15),
xlim=c(0,13))

This command generates Fig. 7.7. It exhibits that France and Brazil contribute
most to the overall Stress. It also shows that France and Brazil are not true outliers

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_3
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Fig. 7.7 Stress-per-point values for all variables of country similarity experiment

in the distribution of the countries’ SPP values, and so there is no pressing need to
ponder about reasons why these two countries seem particularly difficult to compare
with the other countries, or why our 2-dimensional composition rule for generating
similarity judgments for countries does not seem to hold for these countries.

Not all MDS programs compute SPP values (or similar point-fit measures). How-
ever, most programs allow saving the configuration’s distances so that one can com-
pute appropriate point-fit measures with standard data analysis programs (e.g., the
correlation between the proximities and the corresponding MDS distances).

A simple way to deal with ill-fitting points is to eliminate them from the analysis.
This is a popular approach, based on the rationale that such points have a special
relation to the other points that needs additional considerations. Another solution is
to increase the dimensionality of the space so that these points can move into the
extra space and form new distances. The rationale in this case is that the proximities
of the objects represented by these points to the other points are based on additional
dimensions that are not relevant in other comparisons.
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In any case, accepting or rejecting an MDS representation on the basis of overall
Stress only can be too simple. This is easy to see from an example. Consider Fig. 7.6.
If we increase the dimensionality of this solution to m = 3, the Stress goes down
from 0.17 to 0.09. If we proceed in the same way in case of Fig. 2.2, we get the same
reduction in Stress. However, in the latter case, the reduction in Stress is caused by
essentially two points only. That is, “healthy working conditions” and, in particular,
“spare time” clearly move out of the plane in Fig. 7.6 into the third dimension. In the
former case, all points jitter (some more, some less) about the plane, which looks as
if the third dimension is capturing essentially only unsystematic variance contained
in the data (“noise”).

For data with large noise components, therefore, low-dimensional MDS solu-
tions can have high Stress values, but they may still be better in terms of theory or
replicability than higher-dimensional solutions with lower Stress values. In that case,
a low-dimensional solution may be an effective data smoother that brings out the
true structure of the data more clearly than an over-fitted higher-dimensional MDS
representation.

7.10 Always Interpreting “the Dimensions”

Interpreting an MDS solution can be understood as projecting given or assumed
content knowledge onto the MDS configuration. The country similarity example of
Sect. 2.1 demonstrates how this is typically done: what one interprets are dimensions.
MDS users often automatically ask for the meaning of “the” dimensions, by which
they often mean the axes of the plot that the MDS program delivers. These axes
are almost always the principal axes of the solution space, in Fig. 2.2 labeled as
“Dimension 1” and “Dimension 2”, respectively. Yet, this dimension system can
be arbitrarily rotated and reflected, and oblique dimensions would also span the
plane. Hence, users do not have to interpret the dimensions offered by the MDS
program, but they could look for m dimensions (in m-dimensional space) that are
more meaningful.

Then, there is no natural law that guarantees that dimensions must always be
meaningful. Thus, one should be open for other ways of interpreting MDS solutions.
One possibility is to look for meaningful directions rather than for dimensions. There
can be more than m meaningful directions in m-dimensional space. Like dimensions,
each of them can be conceived as an internal scale. It is generated by perpendicularly
projecting the points onto a directed line, adding a “ruler” to this line to generate
measurements, and then studying the distribution of the points’ dimensional values.
To avoid messy plots, one can run all internal scales through a common point such
as the centroid of the configuration. Points to the left of this anchor point are given
negative scale values; those to the right of it receive positive values. To interpret the
internal scale, one studies the point distribution with a focus on content questions
such as these: What points lie at the extremes of the scale? How do they differ in
terms of content? What is the attribute where they differ most? Why are the points

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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i, j, . . . so close together? What do they have in common? Answering such questions
gives meaning to the scale.

Additional data can be helpful in such interpretations. We show this for the coun-
try similarity example. Table 2.2 exhibits the coordinates of the MDS solution in
Fig. 2.2 and the countries’ values on two external scales, Economic Development
and Number of Inhabitants. These scales can be fitted into the MDS space. Geomet-
rically, this fitting can be thought of as rotating a line (running through the origin)
in space until the points’ projections correlate maximally with their external scale
values. Computationally, the best-fitting line is found by multiple regression, where
the external scale is the criterion and the coordinate vectors are the predictors. For
example, Economic Development = additive constant c + b1 · Dim.1 + b2 · Dim.2,
where ba is the regression weight of dimension a and “Dim.1” and “Dim.2” are the
coordinate vectors in Table 2.2. For this equation, any statistics program yields as the
optimal solution3 b1 = 3.27 and b2 = −1.45. With these weights, the best-fitting
line can be drawn. It runs through the origin of the coordinate system, and through the
point with the X -coordinate 3.27 and the Y -coordinate −1.45 (Fig. 7.8, left panel).

The points’ projections onto this line correlate with the external scale values
with r = 0.96. Thus, Economic Development could indeed be an attribute that
underlies the respondents’ judgments of similarity. The Number of Inhabitants scale,
in contrast, cannot be embedded that well into the MDS solution (r = 0.39).4 This
property, therefore, cannot really explain the country similarity ratings (if one accepts
the 2-dimensional MDS solution as the proper representation of the true similarities).

Directions are but special cases of regions. Regions are sub-sets of points of an
MDS space that are connected (i.e., each pair of points in a region can be joined
by a curve whose points lie completely within this region), non-overlapping, and
exhaustive (i.e, each point lies in exactly one region). For interpretational purposes,
we ask to what extent certain classifications or orderings of the objects on the basis
of content facets correspond to regions of the MDS space. Expressed differently, we
ask whether the MDS configuration can be partitioned into substantively meaningful
regions, and, if so, how these regions can be described.

An example for such a partitioning is shown in Fig. 7.6. Here, the different objects
(“work values”) were first classified into three categories on the basis of a theory
by Alderfer (1972): work values related to outcomes that satisfy existential-material
needs (E), social-relational needs (R), or cognitive-growth needs (G). This ERG
typology surfaces in MDS space in certain neighborhoods that can be separated
from each other by cutting the plane in a wedge-like fashion. The same type of
partitioning is possible both in the West-German and also in the East-German MDS
plane. Hence, the two solutions are equivalent in the ERG sense (Borg and Braun
1996).

3 The optimal weights are the non-standardized or raw weights of the multiple regression solution
(betas).
4 That this scale cannot be easily fitted into the MDS solution can be seen, for example, from the
closeness of the points representing Israel and the USA, two countries with vastly different numbers
of inhabitants.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Fig. 7.8 MDS configuration of Fig. 2.2 with fitted external scales (left panel) and with hierarchical
clusters (right panel)

Partitioning an MDS space is done facet by facet. For each facet Fi , one generates
a facet diagram. This is simply a copy of the MDS configuration where each point
is replaced by the code that indicates to which category of Fi the respective point
belongs. One then checks to what extent and in which way this facet diagram can be
partitioned into regions that contain only codes of one particular type. The emerging
regions should be as “simple” as possible, e.g. with straight partitioning lines. This
is desirable because simple partitions can also be characterized by simple laws of
formation that promise to be more robust and replicable than complicated patterns
that are fitted too closely to the particular data and its noise.

Although there exist computer programs that yield partitions for facet diagrams
that are optimal in some sense (Borg and Shye 1995), it is typically more fruitful for
the user to work with pencil and eraser on a print-out of the facet diagram. This way,
partitioning lines can be drawn, re-drawn, and simplified in an open-eyed fashion,
paying attention to content and substantive theory. One may decide, for example, to
admit some incorrect placements of points in wrong regions, because simple overall
patterns with some errors are better than perfect partitions with overly complicated
partitions.

Three prototypical regionalities that often arise in practice are shown in Fig. 7.9:
axial, modular, and polar partitions. Axial and modular partitions are either based
on ordered facets, or they suggest ordered facets. Polar partitions, in contrast, are
typically related to unordered (nominal) facets. Of course, if the sectors in a polar
partition are arranged similarly in many replications, then one should think about
reasons for this circular order.

Regionalizations—simple ones, in particular—become unlikely to result by
chance if the number of points goes up. That is easy to see from a thought experiment.
Assume you take a set of n ping-pong balls and label some of them with “a”, others

http://dx.doi.org/10.1007/978-3-642-31848-1_2
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with “b”, and still others with “c”. Then, throw them all into a bucket, mix them
thoroughly, and pour the bucket onto the floor. After the balls come to their parking
positions, try to partition the resulting configuration into regions. This will be diffi-
cult or even impossible if one wants simple regions as in Fig. 7.9. It is even less likely
that the regionality that one finds in one case can be replicated when the experiment
is repeated. A simple regional pattern, therefore, suggests a lawful relationship of
the facet on which it is based and the MDS representation of the proximities: the
facet seems to structure the observations. This notion becomes even more powerful
if an MDS configuration can be partitioned by more than one facet at the same time
so that the different organizational patterns can be stacked on top of each other as,
for example, in the radex in Fig. 2.8.

An MDS solution can be partitioned, in principle, by as many facets as the user
can think of. There is no fixed relation between the number of facets and the dimen-
sionality of the space. This is different for dimensions: in an m-dimensional space,
one always seeks to interpret exactly m dimensions. A dimensional interpretation
corresponds to a combination of m axial facets (see Fig. 7.9, left panel), each gener-
ating an ordered set of (infinitely) narrow bands with linear boundary lines so that a
linear mesh (as, e.g., in Fig. 6.5) is generated.

Regions are sometimes confused with clusters. Clusters, however, are but special
cases of regions. They are often defined as lumps (or chains) of points surrounded
by empty space so that each point in a cluster is always closer to at least one point
within the cluster than to any point not in the cluster (Guttman 1977). Clustering in
that sense is not required for perfect regions. Regions are like countries that cut a
continent like Europe into pieces. Malmö/Sweden, for example, is much closer to
Copenhagen/Denmark—both are connected by a bridge—than to any large Swedish
city, so the Swedish cities do not form a cluster on the European map, but they are
all in the same region.

Clusters, moreover, are formal constructs, while regions are based on substan-
tive thinking that is often expressed via facets. Nevertheless, one can always cluster
proximities and then check how the resulting clusters organize the points of an MDS

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_6
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solution, as demonstrated in Fig. 7.8 (right panel) for the country similarity data. The
various contour lines show that cluster analysis found two major clusters, containing
the Western and the Communist countries, respectively, plus a two element cluster
with Egypt and India, plus a singleton for the Congo. These clusters, when projected
onto the diagonal from South-West to North-East, corresponds roughly to the dimen-
sion Pro-Western versus Pro-Communist found by Wish (1971). Note, however, that
cluster analysis is not particularly robust in the sense that different amalgamation
criteria can lead to vastly different clusters.5 Cluster analysis, therefore, is not a
method for “validating” an MDS solution or interpretation, as some writers argue.
Rather, cluster analysis typically just leads to groupings of points that tend to surface
similarly in MDS solutions.6

7.11 Poorly Dealing with Disturbing Points

A frequent problem in MDS applications is what to do with points that do not fit
into an interpretation. A typical case is a configuration that cannot be partitioned in
a theoretically pleasing way because one or a few points are positioned such that
they prevent simple partitioning lines. In such cases, one may decide to interpret the
solution with overlapping regions, or stick to the partitioning notion and generate
rather curvy partitioning lines (as, e.g., in Fig. 6.4). A third solution is to draw a best-
possible partitioning system that admits some classification errors, where some points
remain in regions to which they do not belong. Probably the most common approach,
however, is to eliminate such points from the MDS configuration by “explaining them
away” in substantive terms. This method is popular in scaling in general. In scale
construction, for example, items that do not fit into a unidimensional structure are
systematically eliminated. Reasons why these points do not belong to the universe
of the other points are easily found if needed.7

A completely different way to deal with disturbing points is asking how much
Stress goes up if one shifts these points in space such that simple partitioning becomes
possible. The easiest way to answer this question is the following. Take the coordinate
matrix X of the MDS solution, replace the coordinates values of the disturbing points
with “should”-coordinates (i.e., coordinates that put this point into a position where
it is not disturbing anymore), and use this modified X as a starting configuration for a
new MDS analysis, setting the number of iterations to zero. The MDS program then

5 To generate Fig. 7.8, we used hierarchical single-linkage cluster analysis. Choosing the “average”
criterion leads to a solution where the Congo does not remain a singleton, but it is included into
one cluster together with Egypt and India.
6 Cluster analysis identifies cluster structures in the total space of the data: if there are clear clusters
in this space, then the major clusters also tend to appear in the plane spanned by the first two
principal axes of this space or in an MDS plane.
7 Guttman (1977) comments on this: “To say that one ‘wants to construct’ a scale... towards some-
thing ... is almost analogous to saying that one ‘wants’ the world to be flat... To throw away items
that do not ‘fit’ unidimensionally is like throwing away evidence that the world is round” (p. 105).

http://dx.doi.org/10.1007/978-3-642-31848-1_6
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computes the Stress value for the modified X, without changing it. The increment
in Stress can be used to evaluate the consequences of moving some selected points
so that simple partitionings become possible. If this increment is small, one would
probably prefer the solution that allows a substantively simple interpretation over
the optimal-Stress solution. The rationale is that it promises to be better replicable,
being based on a substantive law of formation, than the solution that represents the
given set of data with minimal Stress.

A formally better solution of the problem of ill-placed points is using confirmatory
MDS. However, confirmatory MDS with regional restrictions can be quite difficult
to formulate and to implement (see Chap. 6). Hence, before trying to do this, a
simple shift-and-see approach yields a quick answer that is often sufficient. Some
movements of a small number of points normally do not affect the overall Stress very
much. This does not mean, however, that one should not study disturbing points more
closely in substantive-theoretical ways and also test to what extent their locations
replicate with new data.

7.12 Scaling Almost Equal Proximities

Proximity data cannot always be represented in a space of low dimensionality. This is
true, for example, if the data have a large error component or if they are simply random
data. A second instance that is less obvious is data that are essentially constant.

As an example, consider the co-occurrence of 112 words (such as “tribal”,
“moose”, “arctic”, and “health”) from Sect. 4.5. Using these co-occurrences as
proximities in ordinal MDS (with the secondary approach to ties), we obtain the
2-dimensional solution in Fig. 7.10. It looks interesting at first sight, but its Stress
value is 0.41, a high value. Moreover, on closer inspection, the points seem to be
spread out evenly within a round cloud, which seems artificial, not data-driven.
The transformation plot in Fig. 7.11—a data-versus-disparities plot—is conspicuous
since it exhibits a regression relation with only very few steps. Looking more closely,
one notes that most disparities are numerically very similar, that is, they are all in the
interval from 0.93 to 1.00. Turning to the data, one finds that most of the word pairs
(99.6 %) do not occur together, so their co-occurrence value is equal to zero. These
data are all mapped (by using ordinal MDS with the secondary approach to ties) into
the same large disparity (= 1). The remaining part of the regression line in Fig. 7.11,
therefore, is based on merely 0.4 % of the data. The histogram in Fig. 7.12 confirms
this clearly: the overwhelming proportion of the disparities is exactly equal (= 1),
except for a few that have either the value 0.93 or 0.96.

If most of the data are equal, then their MDS representation is not informative.
Indeed, if all data are equal, Buja et al. (1994) have shown that 2-dimensional (ratio-)
MDS leads to points that all lie on concentric circles (Fig. 7.13, right panel), similar
to Fig. 7.10. Moreover, the points of this solution can all be interchanged without
affecting the Stress. In a 1-dimensional space, a solution as in Fig. 7.13 (left panel)

http://dx.doi.org/10.1007/978-3-642-31848-1_6
http://dx.doi.org/10.1007/978-3-642-31848-1_4
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Fig. 7.10 Ordinal MDS solution (Proxscal with Ties=Keep) for the co-occurrences of 112 words
with word “aboriginal” in Canadian newspaper articles

is found. In 3-dimensional or higher space, all points are evenly distributed on a
hypersphere.

In case of a very small data matrix (and, therefore, very few points) the Stress
value can become zero. With only 3 points, a perfect solution is obtained if the points
form the corners of an equilateral triangle (similar to Fig. 7.2). In 3 dimensions,
4 points forming the corners of a regular tetrahedron form a perfect solution.

These considerations show that users should keep an eye on the case of almost
equal proximities or disparities. In particular, they must look closely at the units of the
Y axis of the Shepard diagram: if most of these values are almost equal, then caution
is needed. Most computer program choose an origin for the Y axis that magnifies
the range of the observed values. If the origin of Y in a transformation plot is zero
as in Fig. 7.11, then the almost-equal problem becomes obvious immediately. Also
investigate the distribution of the proximities or disparities, preferably in a histogram
like in Fig. 7.12. If the histogram shows that the disparities are all close together and
much different from zero, then one can expect the 2D solution of concentric circles
to occur.
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Fig. 7.13 MDS-solutions for constant dissimilarities (n = 30): 1-dimensional solutions (left),
2-dimensional solution (right)

Another way to diagnose peculiarities in the data is scaling them with differ-
ent MDS models. In the above, we used ordinal MDS preserving ties (secondary
approach). Interval MDS yields almost the same result. However, if ordinal MDS is
used with the primary approach to ties—which allows to untie ties in the distances—
a radically different solution is obtained, where most of the points cluster in one
point, and a few points scatter about this cluster. Stress, moreover, is just 0.09, much
smaller than for the other MDS representations. If different MDS models yield such
vastly different results, then something is almost always wrong. With well-structured
data, different MDS models yield solutions that do not differ much.
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7.13 Over-Interpreting Dimension Weights

A popular MDS model is Indscal. It not only scales a whole battery of proximity
matrices in just one computer run, but it also models inter-individual differences
by a common space with individual dimension weights. Moreover, the dimensions
identified by Indscal are uniquely oriented so that it appears that this model does
indeed find “the” dimensions of the MDS space.

Unexperienced users of Indscal tend to over-interpret these properties. First,
they should know that the uniqueness of Indscal’s dimensions may be quite weak,
that is, other dimensions may explain almost as much variance. Indscal simply
finds the best orientation of the dimension system and also the best weights, but it
does not inform the user how much unit weights would explain, for example. Users
may feel that if the weights reported by Indscal scatter a lot, then they also explain
much variance, but this is a fallacy: The scatter of the weights (about the origin) is
not related to the explained variance (for an example, see Borg and Lingoes 1978).
However, the larger the weights, the better the fit.

Second, the dimension weights are always dependent on the norming of the com-
mon space. This is easy to see from an example. Consider Fig. 5.4, where the common
space is scaled so that the sums of the squared projections of the points onto the axes
X and Y , respectively, are equal. This generates the squarish grid. Weighting the
Y dimension of this common space with the factor 2 leads to the individual space
1 in Fig. 5.4; analogously, weighting the X dimension with the factor 2 yields the
individual space 2. This seems to suggest that, for person 1, the Y dimension is twice
as important as the X dimension, while the opposite is true for person 2. This inter-
pretation of the dimension weight depends, however, on the norming of the common
space, and this norming is not data-driven but arbitrarily chosen by the programmer.
If the common space is stretched or compressed along its dimensions, then the model
fit remains the same, provided one compensates for such transformations by choos-
ing proper dimension weights. Thus, one cannot tell from the Indscal weights if
person 1 finds dimension Y “twice as important” or, indeed, not even “more impor-
tant” than X , but only that this person finds Y more important than person 2. The
dimension weights, therefore, cannot be compared intra-individually over the various
dimensions. What can be compared is the order of the weights of different persons
for the same dimension. What can also be compared is the order of the dimension
weights that different persons have for different dimensions. For example, person 16
always weights the dimension “Pro-Western versus Pro-Communist” in Fig. 5.5 more
than the dimension “Economic development” compared to person 12, irrespective
of the norming of the common space (Schönemann and Borg 1983). Therefore, for
the 2-dimensional case, users sometimes report “flattened weights” that collapse the
two weights onto one scale.8 Such weights make it easier to test hypotheses about
differences in the salience of the dimensions for different groups of persons. For

8 Flattened weights are computed differently. Alscal in Spss first rescales the dimension weights
of each person such that they add to 1.00; it then drops dimension 2 and subtracts the mean from
each weight for dimension 1. This yields the flattened weights.

http://dx.doi.org/10.1007/978-3-642-31848-1_5
http://dx.doi.org/10.1007/978-3-642-31848-1_5
http://dx.doi.org/10.1007/978-3-642-31848-1_5
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example, women with bulimic symptoms, when looking at photographic pictures of
other women, pay more attention to body size than to facial expressions; for women
without bulimic symptoms, the opposite is true (Viken et al. 2010).

7.14 Unevenly Stretching MDS Plots

Some MDS programs produce plots of the configuration X where the axes are scaled
differently. That is, the units of the X- and the Y-axis of the plot are not the same
which means that the configuration is stretched along one of the coordinate axes. The
reason for changing the plot’s “aspect ratio” is to unclutter the configuration. MDS
users sometimes also use dimension-wise stretchings of the plots, or of regions of the
plots, to make the configuration as big as possible on their output devices. However,
such uneven stretchings almost always lead to misinterpretations, because the more
two points lie on a line that is parallel to the stretched axis, the more their distance is
actually smaller than it appears to be. The plot, therefore, can be quite misleading.
Hence, users should always check if the configuration plots provided by the MDS
program use the same units on the axes. If not, the plots should be redone with
equal units. To do this in Smacof, for example, one simply sets asp=1 in the plot
command (see p. 100). Users should also make sure that their printing devices are
not set to “stretch to page” which, in landscape view, will automatically distort the
plots. Such fittings militate against the very purpose of MDS to optimally visualize
proximity data.

7.15 Summary

MDS users occasionally get confused as a consequence of using key concepts too
vaguely. In particular, they subsume all models that somehow map data into a multi-
dimensional space under the notion of MDS, or they use the concept of distance all
too loosely. Some technical mistakes are also common. For example, not specifying
the proper polarity of proximities so that the MDS program uses similarity data as
dissimilarity data, or vice versa, leads to scaling problems. Another simple mistake is
making MDS programs terminate their iterations too early, or not studying the effects
of using different starting configurations. Once aware of these mistakes, they can be
easily avoided. Another mistake is overlooking degenerate solutions in ordinal MDS.
They can be avoided by using stronger MDS models. A rather frequent mistake is
always asking for the meaning of “the” dimensions: Dimensions are but a special case
of regions, and other meaningful patterns may also exist in an MDS configuration.
Simply discarding disturbing points from an MDS solution is also too mechanical:
Sometimes, such points can be shifted without affecting the Stress very much. Then,
when comparing different MDS solutions, one should first get rid of meaningless
differences via Procrustean transformations. Moreover, data that are almost all equal
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can lead to meaningless MDS solutions; and interpreting the results of scaling the
Indscal model requires much care, because the individual weights may not explain
much variance even if they scatter substantially and because the weights themselves
are contingent on how one norms the common space. Finally, MDS configuration
plots should always be done with equal units on the axes.
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Chapter 8
MDS Algorithms

Abstract Two types of solutions for MDS are discussed. If the proximities are
Euclidean distances, classical MDS yields an easy algebraic solution. In most MDS
applications, iterative methods are needed, because they admit many types of data
and distances. They use a two-phase optimization algorithm, moving the points in
MDS space in small steps while holding the data or their transforms fixed, and vice
versa, until convergence is reached.

Keywords Classical MDS · Iterative MDS algorithm · Disparity · Two-phase
algorithm · Rational starting configuration · Majorization · Smacof

For most MDS models, a best-possible solution X cannot be found by simply solv-
ing a system of equations. The conditions for MDS solutions are so complicated,
in general, that they are algebraically untractable. MDS solutions must, therefore,
be approximated iteratively, using intelligent search procedures (algorithms) that
reduce the Stress by repeatedly moving the points somewhat to new locations and
by successively re-scaling the proximities until a Stress-minimum is found.

Algorithms of this kind are not needed if one wants to assume or if one can prove
that the dissimilarity data δi j —possibly derived first from inverting similarity data—
are Euclidean distances. In this case, classical MDS can be used to find the MDS
solution X analytically.

8.1 Classical MDS

Classical MDS—also known as Torgerson scaling and as Torgerson–Gower scal-
ing— works as follows:

1. Square the dissimilarity data: �(2).

I. Borg et al., Applied Multidimensional Scaling, SpringerBriefs in Statistics, 81
DOI: 10.1007/978-3-642-31848-1_8, © The Author(s) 2013
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2. Convert the squared dissimilarities to scalar products through double centering1

of �(2): B� = − 1
2 Z�(2)Z, where Z = E − n−111′, and where E is the unit

matrix (with all elements in the main diagonal equal to 1, and all others equal to 0)
and 1 a vector with a 1 in each of its cells.

3. Compute the eigen-decomposition B� = Q�Q′.
4. Take the first m eigenvalues greater than 0 (=�+) and the corresponding first m

columns of Q (=Q+). The solution of classical MDS is X = Q+�
1/2
+ .

We demonstrate these steps with a small numerical example:

�=

⎡

⎢⎢⎣

0 4.05 8.25 5.57
4.05 0 2.54 2.69
8.25 2.54 0 2.11
5.57 2.69 2.11 0

⎤

⎥⎥⎦, which leads to �(2) =

⎡

⎢⎢⎣

0.00 16.40 68.06 31.02
16.40 0.00 6.45 7.24
68.06 6.45 0.00 4.45
31.02 7.24 4.45 0.00

⎤

⎥⎥⎦.

In the second step we compute

B� = −1

2
Z�(2)Z

= −1

2

⎡

⎢⎢⎢⎢⎣

3
4 − 1

4 − 1
4 − 1

4

− 1
4

3
4 − 1

4 − 1
4

− 1
4 − 1

4
3
4 − 1

4

− 1
4 − 1

4 − 1
4

3
4

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

0.00 16.40 68.06 31.02
16.40 0.00 6.45 7.24
68.06 6.45 0.00 4.45
31.02 7.24 4.45 0.00

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

3
4 − 1

4 − 1
4 − 1

4

− 1
4

3
4 − 1

4 − 1
4

− 1
4 − 1

4
3
4 − 1

4

− 1
4 − 1

4 − 1
4

3
4

⎤

⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎣

20.52 1.64 −18.08 −4.09
1.64 −0.83 2.05 −2.87

−18.08 2.05 11.39 4.63
− 4.09 −2.87 4.63 2.33

⎤

⎥⎥⎦ .

In the third step we compute the eigen-decomposition of B� = Q�Q′ with

Q =

⎡

⎢⎢⎣

0.77 0.04 0.50 −0.39
0.01 −0.61 0.50 0.61

−0.61 −0.19 0.50 −0.59
−0.18 0.76 0.50 0.37

⎤

⎥⎥⎦ and � =

⎡

⎢⎢⎣

35.71 0.00 0.00 0.00
0.00 3.27 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 −5.57

⎤

⎥⎥⎦ .

In the fourth step, this yield the MDS configuration

1 This means that the centroid of the MDS configuration becomes the origin. The coordinates of X,
thus, should sum to 0 in each column of X. This does not carry any consequences for the distances
of X, that is, any other point could also serve as the origin. However, one point must be picked as
an origin to compute scalar products.
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X = Q+�
1/2
+

=

⎡

⎢⎢⎣

0.77 0.04
0.01 −0.61

−0.61 −0.19
−0.18 0.76

⎤

⎥⎥⎦

[
5.98 0.00
0.00 1.81

]
=

⎡

⎢⎢⎣

4.62 0.07
0.09 −1.11

−3.63 −0.34
−1.08 1.38

⎤

⎥⎥⎦ .

To check the goodness of this solution, we compare its distances with the given
dissimilarities, �. The distances are

D =

⎡

⎢⎢⎣

0.00 4.68 8.26 3.60
4.68 0.00 5.85 2.75
8.26 5.85 0.00 3.08
3.80 2.75 3.08 0.00

⎤

⎥⎥⎦ , so that � − D =

⎡

⎢⎢⎣

0.00 −0.63 −0.01 1.97
−0.63 0.00 −3.31 −0.06
−0.01 −3.31 0.00 −0.97

1.77 −0.06 −0.97 0.00

⎤

⎥⎥⎦.

In this example, the distances among the points of the MDS configuration con-
structed by classical MDS are only approximately equal to the given dissimilarity
data. The reason for this result is that the dissimilarities in � are not Euclidean dis-
tances, as classical MDS assumes. Mathematicians would have noticed that in the
third step above, because if the dissimilarities are Euclidean distances, then all eigen-
values are non-negative. If negative eigenvalues occur, one may decide to “explain
them away” as caused by “error” in the dissimilarities, provided that these negative
eigenvalues are relatively small. In the above example, however, this assumption
appears hard to justify, because the one negative eigenvalue (=−5.57) is rather large.

Why would one even want to assume that dissimilarity data are Euclidean dis-
tances (except for an error component)? The justification must come from the way the
data are generated or collected. If persons are asked directly for ratings on pairwise
dissimilarities, then it may be plausible to hypothesize that the observed numerical
responses are at least distance-like values. Data as in Tables 2.1 and 2.3 could, there-
fore, be scaled directly using classical MDS. The procedure will show to what extent
the data are indeed Euclidean distances.

Correlations as in Table 1.1, however, are definitely not Euclidean distances, but
rather scalar products by construction. Thus, in this case, one should skip steps 1 and 2
in the above, and begin directly with step 3. This amounts to running a principal
component analysis. An alternative approach is to first convert the scalar products to
distances. In case of correlations, this conversion is di j = √

2 − 2ri j .
In case of larger errors (as in the example above), classical MDS quickly reaches

its limits as a useful method. It generates a best-possible solution, but it does so
minimizing a criterion known as Strain which is not as easily interpretable as Stress.
Moreover, in most applications, the data are at best on an interval scale level. Hence,
one would not want to interpret the data directly as distances, but rather allow for an
optimal re-scaling when mapping them into distances.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_1


84 8 MDS Algorithms

Hold
distances

fixed

Hold
disparities

fixed

Move points to
generate new
coordinates

Optimal scaling
of proximities to

generate disparities

Stop? Print MDS
solution

No Yes

Starting
configuration

Fig. 8.1 Principles of an iterative MDS algorithm

8.2 Iterative MDS Algorithms

Iterative MDS algorithms are more flexible than classical MDS. They find a Stress-
optimal MDS configuration and, in doing so, they re-scale the data optimally within
the constraints of their scale level. However, iterative algorithms cannot guarantee to
always find the global optimum solution, because their small-step improvements may
get stuck in local minima. The user, therefore, should keep an eye on this possibility
(see p. 63f for suggestions on how to avoid local minima solutions).

Iterative MDS algorithms proceed in two phases (see Fig. 8.1). In each phase one
set of parameters (distances or disparities, respectively) is taken as fixed values, while
the other set of arguments is modified in such a way that Stress is reduced:

1. The disparities (i.e., the admissibly transformed proximities) are fixed; the points
in MDS space are moved (i.e., Xt is changed to become Xt+1) so that the distances
of Xt+1 minimize the Stress function.

2. The MDS configuration, X, is fixed; the disparities are re-scaled within the
bounds of their scale level so that the Stress function is minimized (optimal
scaling).

If, after t phases, this ping-pong process does not reduce the Stress value by more
than some fixed amount (e.g., 0.0005) the search algorithm is stopped and Xt is taken
as the optimal solution.

Phase 1 amounts to a difficult mathematical problem with n · m unknown para-
meters, the values of X. To solve it, various optimization algorithms have been
developed. The presently best algorithm is the Smacof procedure (De Leeuw and
Heiser 1980; Borg and Groenen 2005), because it guarantees in practical situations
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that the iterations will converge to at least a local Stress minimum.2 Other criteria
can also be used to assess the quality of MDS algorithms (Basalaj 2001).

Phase 2 poses a relatively easy problem. In interval MDS, one solves the problem
via linear regression. It finds the additive and multiplicative coefficients that linearly
transform proximities into disparities such that Stress is minimized for the given dis-
tances. For other MDS models, appropriate regression procedures are also available
(e.g., monotone regression for ordinal MDS).

These issues are purely mathematical ones. Users of MDS need not be concerned
with them. They should simply use MDS programs like drivers use their cars: Drivers
have to know how to drive, but they do not have to understand the physics of com-
bustion engines. Drivers, however, should also know how to run a car (e.g., making
sure that it has enough gas), and MDS users must feed the programs properly and
set the right options to get where they want to go, i.e. to obtain optimal solutions.

An important option is picking a good starting configuration. All MDS programs
offer a few alternatives that users can try out to see if they all lead to the same
solution. Proxscal, for example, allows its users to repeat the MDS process with
many different random starting configurations, or pick a particular rational starting
configuration (e.g., one that results from using classical MDS),3 or use an external
user-constructed starting configuration.

We recommend to always actively influence the choice of the starting configu-
ration rather than leaving it to the MDS program to construct such a configuration
internally. Often, a good choice is using a starting configuration constructed on
substantive-theoretical grounds. One example is the configuration in Table 6.1 as a
starting configuration when scaling the rectangle data in Table 2.3. If such an exter-
nal configuration can be formulated, one should at least test it out in case the MDS
program does not arrive at the expected solution with its internal options.

Depending on the particular MDS program, various “technical” options are always
offered to MDS users. These options can strongly impact the final MDS solution,
because they often prevent the algorithm from terminating its iterations even though
Stress can be further improved. In the GUI window of Systat’s MDS program
shown in Fig. 1.5, for example, the user can set the maximum number of iterations
and define a numerical criterion of convergence. For historical reasons (i.e., to save
time and costs), the default values for these parameters are universally set much
too defensively in all MDS programs so that the iterations are terminated too early.
Users should set these parameters such that the program can do as many iterations
as necessary to reduce Stress (see Sect. 7.4, p. 67). Computing time is not an issue
with modern MDS programs.

2 Smacof is an acronym for “Scaling by MAjorizing a COmplicated Function” (De Leeuw and
Heiser 1980). The optimization method used by Smacof is called “Majorization” (De Leeuw 1977;
Groenen 1993). The basic idea of this method is that a complicated goal function (i.e., Stress within
the MDS context) is approximated in each iteration by a less complicated function which is easier
to optimize. For more details on how this method is used to solve MDS problems, see De Leeuw
and Mair (2009) or Borg and Groenen (2005).
3 Such options are sometimes called Kruskal, Guttman, Young or Torgerson, depending on
their respective inventors or authors (see also Figs. 1.5, 9.8 and Sect. 7.5).

http://dx.doi.org/10.1007/978-3-642-31848-1_6
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_1
http://dx.doi.org/10.1007/978-3-642-31848-1_7
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_9
http://dx.doi.org/10.1007/978-3-642-31848-1_7
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8.3 Summary

If the data are Euclidean distances (apart from error), classical MDS is a convenient
algebraic method to do MDS. It converts the data to scalar products, and then finds the
MDS configuration by eigen-decomposition. Iterative algorithms are more flexible:
They allow optimal re-scalings of the data, and different varieties of Minkowski
distances, not just Euclidean distances. Such programs begin by defining or using
a starting configuration, and then modify it by small point movements reducing its
Stress. The distances of this configuration are then used as targets for an optimal
re-scaling of the data (thereby generating disparities) within the bounds of the data’s
scale level. This process of modifying the MDS configuration (with fixed disparities)
and re-scaling the disparities (with fixed distances) is repeated until it converges. The
presently best algorithm for moving the points is Smacof; re-scaling the data is done
by regression.
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Chapter 9
Computer Programs for MDS

Abstract Two modern programs for MDS are described: Proxscal, an Spss mod-
ule, and Smacof, an R-package. Commands and/or GUI menus are presented and
illustrated with practical applications.

Keywords Proxscal · PrefScal · Smacof · SmacofSym · SmacofIndDiff ·
SmacofRect · SmacofConstraint · Alscal · Permap

In this chapter we turn to computer programs for MDS. Such programs are contained
in all major statistics packages. In Spss there are even two MDS modules. No single
MDS program is generally superior to all others, and none offers all MDS models
discussed in this book. Most MDS programs allow the user to do both ordinal MDS
and also interval MDS. Some can also handle the Indscal model or varieties of this
model. Few offer confirmatory MDS that allows the user to impose additional geo-
metric restrictions onto the MDS solution. Only one, Permap, offers the possibility
to directly interact with the program dynamically.

9.1 Proxscal

The MDS program that may be accessible to most users and that also offers many
MDS models together with technically up-to-date solution algorithms is Proxscal.
It is one of the two MDS modules in Spss. Proxscal contains all of the popu-
lar models (ratio MDS, interval MDS, ordinal MDS; Indscal and related models;
weights for each proximity; a variety of different starting configurations; numerous
options for output, plots, and saving results), but also some forms of confirmatory
MDS (using external scales, enforcing axial regions). However, all MDS models
in Proxscal offer only Euclidean distances; no Shepard plots are generated (only
related plots such as transformation plots); and unfolding is cumbersome to run.1

1 For unfolding, we recommend a specialized program, called Prefscal, which is also a module
of Spss.

I. Borg et al., Applied Multidimensional Scaling, SpringerBriefs in Statistics, 87
DOI: 10.1007/978-3-642-31848-1_9, © The Author(s) 2013
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Fig. 9.1 Starting menu of Proxscal Fig. 9.2 Cardinal GUI menu of Proxscal

The user can interact with Proxscal via graphical menus or via commands.
Menus are sufficient for most users. Moreover, they may be easier to use for beginners,
and they print out the commands for later usage when applications need to be more
fine-tuned and better documented. In the following, we look at both ways to use the
program.

9.1.1 Proxscal by Menus

The starting menu of Proxscal (in Spss 20) is shown in Fig. 9.1 for the example
discussed in Sect. 2.2. The program assumes that the user already imported the data
of Table 2.2 into Spss so that a file with this data matrix exists. This file is to be
analyzed with MDS. Hence, no proximities have to be generated within Spss. The
user, therefore, checks the button in the upper left-hand corner, informing the program
that the data are proximities.

If one begins with the usual “person × variable” data matrix of a social scientist,
proximities must first be generated. Proxscal offers a few options for doing this
if one checks the button “Create...”. However, other modules in Spss are usually
better suited for generating proximities (e.g., intercorrelation routines). In this case,
one first stores the proximities in some file, and then opens this file for MDS with
Proxscal.

The remaining options in Fig. 9.1 are relevant only if one has more than just one
data set, e.g. in case of Indscal modeling or if one has replicated proximities. If so,
one can stack the k proximity matrices in an (k · n) × n matrix as shown in Table 9.1
for a stack of three 3 × 3 proximity matrices. In order to keep track of the data,

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Table 9.1 Stacking
proximity matrices into one
super-matrix

SourceID V1 V2 V3

1 0.0
1 2.3 0.0
1 3.2 1.7 0.0
2 0.0
2 2.2 0.0
2 2.9 2.1 0.0
3 0.0
3 3.2 0.0
. . . . . . . . . 0.0

Fig. 9.3 Window with important model
specification and data definitions for an MDS
analysis of Table 2.1

Fig. 9.4 Important non-default specifica-
tions of the options of Proxscal

an additional variable is needed (here called “SourceID”) that denotes the different
matrices.

Figure 9.2 shows the main menu of Proxscal. In the upper right-hand corner,
you find a set of buttons that call options for running an MDS analysis of the given
proximities. The most important ones are subsumed under the Model button. If you
check this button, the menu in Fig. 9.3 appears.

For the data of Table 2.2, we have to check in the lower left-hand corner of the
menu in Fig. 9.3 that the data are Similarities. (The default setting is Dissimilarities. If
you forget to set this properly, an MDS solution is computed that makes no sense and
that has a very high Stress value. Sometimes, one notices only then that something
must have been misspecified.)

The menu, moreover, offers the user to specify the type of regression that the
MDS program should use. For our example data, we specify that we want ordinal
MDS, with the primary approach to ties (“untie”).

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Then, in the lower right-hand corner, we specify the dimensionality of the MDS
solutions. The default settings lead to just one 2-dimensional solution. If you want
higher dimensionalities as well, simply change Maximum to a higher value (e.g.,
6). Note that unidimensional scaling solutions tend to have many local minima.
Therefore, it is not recommended to set Maximum to 1 unless precautions are taken
against local minima such as multiple random starts.

In the Shape box, we inform the program about the format of the proximity
matrix. In our example, we have a lower triangular matrix, as shown in Table 2.1.
Note though that Proxscal assumes for this specification that the main diagonal
exists, as in Table 9.1! Since the values in the main diagonal are not relevant for
MDS, these diagonal elements can be filled with any values.

The box in the upper left-hand corner of Fig. 9.3 is relevant only if you have more
than 1 proximity matrix. If so, the option Weighted Euclidean yields an Indscal
solution. In case of replicated data that are to be mapped into one distance each, you
choose Identity.

Finally, the options of the Proxscal algorithm should be changed, because their
defaults often lead to nonoptimal MDS solutions. Figure 9.4 shows how the options
need to be set. First, change the initial configuration to Torgerson, that is, the classical
scaling solution discussed in Sect. 8.1. Then, use stricter iteration criteria by setting
Stress convergence and Minimum stress to 0.000001 or smaller and Maximum iterations
to at least 1,000.

Leaving the rest of the buttons in this menu on their default settings, we can return
to the cardinal menu in Fig. 9.2 via the “Continue” button. There, we click on “OK”,
and Proxscal will generate an MDS solution.

We now show how to formulate external restrictions on the dimensions of an
MDS solution via the Proxscal menus. To demonstrate this, we use the rectangle
data in Table 2.3, setting all values in the main diagonal to 0. In the cardinal menu
in Fig. 9.2, we click on Model to get to the menu that offers options on how the data
should be transformed. In this menu (see Fig. 9.3) we inform the program that the
data are dissimilarities; that they are stored in a lower triangular matrix; and that we
want to run ordinal MDS with the primary approach to ties. Continue brings us back
to the cardinal menu.

In the cardinal menu, we click on Restrictions. This brings us to the menu in
Fig. 9.5. There, in the center of the window, we click on File and type the name of the
Spss file that contains the external scales (formulated as shown in Table 6.1) into the
space to the right of this button. Then, in the box on the left-hand side, we pick the
variables that should serve as external scales, that is, “Width” and “Height”. Finally,
we request in the lower right-hand corner that these scales should be interpreted as
ordinal scales and that the secondary approach to ties (keep ties) is to be used by the
program.

We also want to use an external starting configuration for the MDS of the rec-
tangle data. The window in Fig. 9.6 shows how to read this into Proxscal. We
check Custom and write the name of the file with the external starting configuration
(as shown in Table 6.1) into the window in the middle of the menu (here:“C:
\Documents a..\rectangle_design.sav”) that contains the design configuration of the

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_8
http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_6
http://dx.doi.org/10.1007/978-3-642-31848-1_6
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Fig. 9.5 External scales for confirmatory
MDS that yields Fig. 6.1

Fig. 9.6 Reading an external starting con-
figuration into Proxscal

rectangles. Its values are the physical coordinates of the rectangles used in the experi-
ment. For the starting configuration, we select the variables “Width” and “Height” for
the X - and Y -coordinates. With these specifications, the program yields the solution
shown in Fig. 6.2.

9.1.2 Proxscal by Commands

These options (and more, like the spline transformation) can be set within Spss
syntax. Proxscal prints these syntax commands so that beginners can learn the
syntax by using the menu. For example, the Spss syntax that goes with the data of
Table 2.2 and that is specified by the GUI menus of the previous subsection is given
by the following:

PROXSCAL VARIABLES=BRAZIL CONGO CUBA EGYPT FRANCE
INDIA ISRAEL JAPAN CHINA RUSSIA USA YUGOSLAV
/SHAPE=LOWER
/INITIAL=TORGERSON
/TRANSFORMATION=ORDINAL(KEEPTIES)
/PROXIMITIES=SIMILARITIES
/ACCELERATION=NONE
/CRITERIA=DIMENSIONS(2,2) MAXITER(1000) DIFFSTRESS

(.000001) MINSTRESS(.000001)
/PRINT=COMMON STRESS
/PLOT=COMMON.

http://dx.doi.org/10.1007/978-3-642-31848-1_6
http://dx.doi.org/10.1007/978-3-642-31848-1_6
http://dx.doi.org/10.1007/978-3-642-31848-1_2
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Fig. 9.7 Proxscal subcommands and keywords (1 of 2). All subcommands beginning with “/”
are optional: Default settings are printed boldface. Keywords stacked in grey fields are alternatives

The subcommands of Proxscal are presented in Figs. 9.7 and 9.8. Most keywords
are self-explanatory, but they are also described more explicitly below.2

2 Note that Proxscal has two default presets: (1) If the proximities are dissimilarities, then ratio
MDS is the default transformation; for similarities, interval MDS is the default. (2) For ordinal MDS,
the secondary approach to ties (Keepties) is preset. Most other MDS programs (like Systat, MdsX,
or Statistica) use ordinal MDS with the primary approach to ties as their default MDS model.
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Fig. 9.8 Proxscal subcommands and keywords (2 of 2)

Procedure and Variables

• proxscal should be followed by a list of variables that indicates where the prox-
imities can be found.

• /proximities specifies whether the data are dissimilarities (default) or simi-
larities.
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Data and Weights

• /shape specifies the form of the data matrix. Note that in case of lower or upper
the main diagonal must exist (but it can contain any values, including missing
values). both takes the symmetric part of the data matrix.

• /table allows the user to specify the proximities pi j in a column. For sorting
these values into a proximity matrix, the program needs two extra variables that
specify the row index i and the column index j of pi j . In case of three-way MDS,
an additional third variable is needed to indicate to which matrix k (“Source”) the
proximity belongs (see Fig. 5.5). The value labels of the row/column/source index
variables are used to label the points in the plots.

• /weights allows specifying nonnegative weights for the proximities. For example,
weights can be used to indicate how much you trust each proximity. If your prox-
imity matrix consists of 15 variables (V1 to V15, then you specify /weights =
V1 to V15. The weights are then found at variables V1 to V15. If the proxim-
ities are in a single column (through the /table subcommand), then the weights
should also be in a single column. Thus, the weights take the same form as the
proximities.

MDS Model

• /transformation sets the admissible transformation of the proximities.
• /model specifies how to process more than just one data matrix. In the identity

model, all proximity matrices are represented by a single MDS configuration.
This option can be useful if the proximity matrices are mere replications of each
other. The weighted model (Indscal) consists of a single common configuration
whose columns (dimensions) are weighted differently for each proximity matrix k.
generalized computes the Idioscal model that not only includes individual
dimension weightings but also individual rotations of the common space before
dimension weighting.

• /condition gives the conditionality of the transformations. In case of more than
one proximity matrix, matrix indicates that every matrix receives its own optimal
transformation. Under unconditional there is only a single transformation that is
used for all proximity matrices. For example, for unconditional interval MDS,
the transformations for all proximity matrices have the same intercept and slope.

• /restrictions lets you restrict the coordinates of the MDS configuration. The
coordinates keyword allows you to specify variables whose non-missing values
are used as fixed coordinates. The keyword variables makes the MDS coordinates
a linear combination of the variables you specify. Note that these variables can
also be transformed. To really restrict the coordinates it is better to choose only
a few variables and have a strict transformation such as interval. With too much
freedom (too many variables or free transformations), the restricted solution will
not differ much from the unrestricted MDS solution.

http://dx.doi.org/10.1007/978-3-642-31848-1_5
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Algorithm (Technical)

• /initial specifies the type of start configuration. simplex is default and does
one iteration in a high dimensional configuration with all distances between the
points being the same, followed by a reduction of the space to the dimensionality
specified by the maximum-number-of-dimensions criterion. This solution is used
to start the iterations. The simplex choice often leads to local minima with high
Stress values. It is better to select Torgerson that computes a classical MDS
solution often leading to solutions with good Stress values. random(n) computes
N MDS solutions each starting with a different random start configuration and
reports the solution with the lowest Stress. For small MDS matrices (say up to 30
objects) one can easily compute 10,000 random starts.

• /criteria specifies the required dimensionalities and sets the stopping criteria of
the iterative algorithm. dimensions(dmin,dmax) specifies the minimal and max-
imal dimensionality of the MDS solutions. Note that Proxscal shows the table of
coordinates for the lowest dimensionality. The coordinates for other dimension-
alities can be obtained by opening the table and selecting the dimensionality you
want. The default of diffstress(.0001) is may not strict enough to ensure stop-
ping at a local minimum. Therefore, it is is better to set diffstress(.000001)
to make the program stop if the change in Stress of two subsequent iterations is
less than .000001. maxiter(1000) sets the maximum number of iterations
to 1,000. minstress(.0001) stops the algorithm whenever the Stress is below
.0001.

Output

• /print offers various print options: input prints the matrix of proximities, random
prints the random number seed and Stress value of each random start (in case
you use random starts), history shows the sequence of Stress values over the
iterations, stress gives different variants of Stress, decomposition prints the
decomposition of Stress for every object and every source (can be informative to
find outliers), common prints the coordinates of the common space (X), distances
prints the distances between the points (one per source), weights prints the weights
for Indscal models, transformations prints the matrix of the disparities; if
variables was specified on the restrictions subcommand, then variables
prints the transformed variables of the external starting configuration, plus their
regression weights, and correlations prints the correlations between the external
scales and the MDS dimensions.

• /plot controls the diagrams of Proxscal. The default plots are the MDS configu-
ration (common) and the dimensions weights (weights) in case of Indscal. Other
plots are scree plots of Stress-versus-dimensionality (stress), distances-versus-
disparities (residuals), and proximities-versus-disparities (transformation).
Shepard-diagrams are (so far) not available in Proxscal. You can also request
plots of the individual spaces in case you used individual differences scaling, or
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transformation plots of the external variables specified on the variable list (if
you used external variables/scales).

• /outfile allows you to save results to a file. The coordinates are saved by the
common keyword, the weights for a weighted or generalized Euclidean three-
way MDS by weights, the distances by distance, the pseudo distances or d-hats
by transformations, and for restricted MDS, the transformed variables by
variables.

9.2 The R Package SMACOF

R (R Development Core Team 2011) is a programming language as well as a sta-
tistical software environment.3 R is available for free on Comprehensive R Archive
Network (CRAN). The base package implements basic statistical and mathematical
methods and functions. It can be extended by various packages that offer additional
methodologies.

To install the base package, the following steps need to be carried out:

• Go to http://CRAN.R-project.org.
• Use the link “Download and Install R”.
• Specify the operating system (OS) of your computer: R runs under MS Windows,

Mac OS, and various Linux distributions.
• Then, follow the remaining download instructions and install R.

R provides efficient handling of vectors and matrices. A key feature of R is that
outputs of statistical analyses are stored as R objects such as lists or matrices. The
user can access these objects for further processing (very useful, in particular, for
simulation studies). R also provides a powerful plot engine that allows for flexible
customization of graphical output in publication quality. R is Open Source and issued
under the GNU Public License (GPL), so the user has full access to the source code.

In order to work efficiently with R, an appropriate editor is required. There are sev-
eral good editors available; we suggest RStudio; see http://rstudio.org and Verzani
(2011).

We also recommend the R-package Rcmdr (Fox 2005) as a GUI for doing basic
statistics and data manipulations in the R environment (see below on how to install
R packages).

3 As introductory books we suggest Venables and Smith (2002) (general introduction), Dalgaard
(2008) and Everitt and Hothorn (2009) (introductory statistics with R).

http://CRAN.R-project.org
http://rstudio.org
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9.2.1 General Remarks on Smacof

The Smacof package (De Leeuw and Mair 2009) is available on CRAN. It imple-
ments several MDS models which we introduce in the following sections. After
launching the R console, the smacof package (as all other R packages as well) can
be installed as follows:

R> install.packages("smacof")

The package installation needs to be done only once, unless you update the R
version. Each time the R console is launched, the package needs to be loaded into
working memory.

R> library("smacof")

At this point all functions implemented in smacof are available to the user. For
a general package overview, the line

R> help("smacof")

opens the (HTML based) package documentation.
The smacof package provides the following MDS methods (including the cor-

responding function names):

• smacofSym(): Simple MDS on a symmetric dissimilarity matrix
• smacofIndDiff(): MDS for individual differences scaling (3-way MDS)
• smacofRect(): Unfolding models
• smacofConstraint(): Confirmatory MDS
• smacofSphere.primal()undsmacofSphere.dual(): Spherical MDS

In general, an R function has various arguments which allow for corresponding
parameter settings. Some of them are set to default values. As an example, consider
the argument metric which is contained in all smacof functions. If metric =
TRUE (default value), interval MDS is computed; if metric = FALSE, ordinal
MDS is performed.

Basically, all smacof functions require dissimilarity matrices as input, except
smacofRect() (for further details see below). If the data are given as a “person ×
variable” matrix (here denoted as M), a corresponding dissimilarity matrix can be
computed using the dist(M) command. Using the method argument, different
distance measures can be chosen. The default setting is the Euclidean distance.

There are several ways to import data into R. If the data are stored in Excel,
Spss, Systat or similar formats, the foreign package can be considered which
provides various utility functions. For Excel files in particular, it is suggested to save
the spreadsheet as a csv file and then use the command read.csv() to import it
into R. This function uses several default settings which the user may have to change
depending on the Excel configuration. For instance, the following specification

read.csv(file, header = TRUE, sep = ",", ...)
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implies that the first line contains the variable names and the variables are separated
by a comma.

An Spss file (here called XYZ.sav) can be imported directly using read.spss
("XYZ.sav") from the foreign package. If the file is not located in the R
working directory, the user can specify a path such as read.spss("c:/data/
XYZ.sav").4

The results of R functions are typically stored as objects that belong to a certain
class. In smacof, the resulting objects belong to the class smacof and certain
sub-classes. For each of these classes, methods for representing the output and for
plotting MDS results are provided. As an example for objects of the class smacof,
there is the plot.smacof() method which is called by using the plot() com-
mand (see example on p. 100). It allows plotting the MDS configuration (argu-
ment plot.type = "confplot"; set as default), residuals (plot.type =
"resplot"), Shepard diagrams (plot.type ="Shepard"), and stress decom-
positions (plot.type = "stressplot").

The following subsections focus on computing some MDS variants implemented
in the smacof package.

9.2.2 SmacofSym

Let us start with symmetric Smacof for simple ordinal MDS. As an example, we use
the Wish data of Table 2.1. These data are already contained in the smacof package
and, therefore, they can be loaded using

R> data("wish")

If the data are similarity values, as is true for the Wish data, they first need to
be transformed into dissimilarity values. The smacof package provides a utility
function called sim2diss()with the method argument. For this example, we set
method = 7which means that all similarities are converted into dissimilarities by
subtraction from 7:

R> wish.new <- sim2diss(wish, method = 7) ## convert similarities
R> wish.new ## dissimilarities as input

BRAZIL CONGO CUBA EGYPT FRANCE INDIA ISRAEL JAPAN CHINA RUSSIA USA
CONGO 2.17
CUBA 1.72 2.44
EGYPT 3.56 2.00 1.83
FRANCE 2.28 3.00 2.89 2.22
INDIA 2.50 2.17 3.00 1.17 3.56
ISRAEL 3.17 3.67 3.39 2.33 3.00 2.89
JAPAN 3.50 3.61 4.06 3.17 2.78 2.50 2.17
CHINA 4.61 3.00 1.50 2.61 3.33 2.89 4.00 2.83
RUSSIA 3.94 3.61 1.56 2.61 1.94 2.50 2.83 2.39 1.28
USA 1.61 4.61 3.83 3.67 1.06 2.72 1.06 0.94 4.44 2.00
YUGOSLAV 3.83 3.50 1.89 2.72 2.28 3.00 2.56 2.72 1.94 0.33 3.44

4 For Windows user it is important to note that R always requires forward slashes when quoting a
path.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
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This matrix of dissimilarities is assigned as an argument to the function
smacofSym().5

R> res.wish <- smacofSym(delta = wish.new, metric = FALSE)
## do MDS

The results are stored in the object res.wish. Some basic information can be
accessed by just typing in the name of the object:

R> res.wish #Basic Output

This command prints out the following information6:

Call: smacofSym(delta = wish.new, metric = FALSE)

Model: Symmetric SMACOF
Number of objects: 12

Nonmetric stress: 0.0349866
Number of iterations: 59

All relevant Smacof outputs are stored as single objects within the output list.
The names of the list elements can be obtained by the names() command.

R> names(res.wish) #Output Objects
[1] "delta" "obsdiss" "confdiss" "conf" "stress.m" "stress.nm"
[7] "spp" "ndim" "model" "niter" "nobj" "metric"

[13] "call"

The elements are:

• delta: Dissimilarity matrix
• obsdiss: Proximities (normalized dissimilarity matrix)
• confdiss: Proximities computed from the MDS solution
• conf: Configuration (coordinates) of the MDS solution (X)
• stress.m: Metric stress in case of interval MDS
• stress.nm: Non-metric stress in case of ordinal MDS
• spp: Stress per point
• ndim: Number of dimensions
• model: Type of Smacof model (e.g. SmacofSym)
• niter: Number of iterations
• nobj: Number of objects
• metric: The value of the metric argument (e.g. FALSE)
• call: The full smacof call

5 The data do not need to be stored as an object of class dist. They can also be provided as a
symmetric matrix, alternatively.
6 Note that Smacof reports squared Stress-1 values. So, Nonmetric stress: 0.0349866
is actually equal to Stress-1 = 0.187.
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As always in R, such list outputs can be accessed using the $ operator. For example,
the fitted dissimilarity matrix can be accessed using

R> res.wish$confdiss

or, rounded to two decimal digits, by

R> round(res.wish$confdiss, 2)

BRAZIL CONGO CUBA EGYPT FRANCE INDIA ISRAEL JAPAN CHINA RUSSIA USA
CONGO 0.95
CUBA 1.24 0.70
EGYPT 0.81 0.47 0.44
FRANCE 0.82 1.12 0.88 0.67
INDIA 0.51 0.56 0.74 0.30 0.63
ISRAEL 0.78 1.45 1.35 1.06 0.49 0.89
JAPAN 1.24 1.66 1.31 1.20 0.54 1.16 0.54
CHINA 1.60 1.16 0.47 0.85 1.00 1.12 1.49 1.27
RUSSIA 1.40 1.37 0.79 0.91 0.61 1.05 1.02 0.69 0.60
USA 1.00 1.60 1.41 1.18 0.54 1.05 0.23 0.35 1.48 0.95
YUGOSLAV 1.44 1.33 0.72 0.90 0.67 1.06 1.11 0.80 0.50 0.11 1.05

As mentioned above, this dissimilarity matrix is now an R object and can be used
for further computations or to produce plots.

The Smacof package offers several relevant plots. A simple plot of the resulting
configuration can be produced using

R> plot(res.wish, main = "SMACOF Configuration", xlab = "Dimension 1",
+ ylab = "Dimension 2", xlim = c(-0.9, 0.7), asp = 1,
+ label.conf = list(TRUE, 2, 1), type = "p", pch = 16)

R offers numerous arguments for customizing plots (see help(plot) and
help(par)). In the above command, we set a plot title using the main argu-
ment; specify labels for the X - and Y -axis using xlab and ylab, respectively; use
xlim to specify the range of the X -axis of the plot; asp=1 defines an aspect ratio of
1 which implies that both dimensions are scaled in the same way; and label.conf
says that the points are to be labeled (TRUE), with labels to the left (=2) of the points,
and in black (=1) color. The two remaining arguments of the above plot() func-
tion are shown in their default settings: type="p" requires a plot of points (not
"l" for lines, for example); and pch=16 chooses a particular kind of solid point
as the symbol for the points in the plot. The resulting configuration plot is shown in
Fig. 9.9.

Some important parameters of smacofSym models and subsequent MDS vari-
ants are the following:

• Number of dimensions: Default is ndim = 2; depending on the dimensionality
of the solution, this argument can be set correspondingly (from 1 up to the number
of variables).

• MDS type: Default is metric = TRUE, i.e. an interval MDS is computed;
metric = FALSE leads to ordinal MDS.

• Weight matrix: Default is weightmat = NULL; if the user wants to assign
weights, a weight matrix can be provided through this argument.
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Fig. 9.9 Smacof configura-
tion for country similarity data
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• Starting configuration: Default is init = NULL (Torgerson scaling); through
this argument an optional starting configuration can be specified.

• Maximum number of iterations: Default is itmax = 1000 which can be mod-
ified by the user.

• Convergence criterion: Default is eps = 1e-6; it can be decreased in order to
increase the precision.

• Stress printout: Default verbose = FALSE, i.e. only the final stress value will
be printed; verbose = TRUE prints the stress for each iteration.

Additional arguments are explained in the corresponding help files.

9.2.3 SmacofIndDiff

In this section we focus on MDS modeling of individual differences. The correspond-
ing R function issmacofIndDiff(). Using the constraint argument, various
restrictions can be imposed onto the configurations. Examples are the Indscal and
the Idioscal models from Sect. 5.5. To illustrate the computation of these models
in R, we use the data from Table 7.2, i.e. correlations of 13 working values in former
East and West Germany, respectively. In R, the underlying data are organized as a
list of length two. Each list element consists of a correlation matrix.

Let us assume that we need to import the data from two separate csv files. Subse-
quently, they have to be organized as a list. The following steps are required:

east <- read.csv("east.csv")
west <- read.csv("west.csv")
EW <- list(east, west)

http://dx.doi.org/10.1007/978-3-642-31848-1_5
http://dx.doi.org/10.1007/978-3-642-31848-1_7
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However, these data are already contained in the smacof package. They have
the following structure:

R> data("EW_eng")

R> EW_eng
$east

int. ind. resp. sens. advc. resp. help usef. other secu. pay spare safe
int. .47
ind. .43 .53
sens. .38 .31 .39
advc. .28 .27 .32 .20
resp. .37 .34 .42 .33 .43
help .29 .23 .38 .38 .19 .37
usef. .28 .25 .38 .44 .25 .39 .48
other .27 .28 .41 .29 .15 .29 .49 .32
secu. .16 .25 .24 .24 .39 .37 .16 .23 .16
pay .15 .16 .16 .13 .52 .29 .10 .16 .11 .40
spare .21 .15 .09 .08 .27 .21 .14 .18 .10 .18 .27
safe .28 .26 .25 .33 .34 .35 .26 .30 .19 .38 .29 .25
$west

int. ind. resp. sens. advc. resp. help usef. other secu. pay spare safe
int. .51
ind. .42 .57
sens. .37 .30 .33
advc. .28 .29 .33 .18
resp. .18 .23 .34 .24 .43
help .20 .19 .31 .33 .17 .32
usef. .20 .17 .28 .40 .18 .37 .56
other .31 .34 .39 .31 .21 .24 .43 .34
secu. .14 .17 .18 .19 .39 .37 .24 .25 .17
pay .20 .26 .25 .05 .54 .32 .05 .08 .11 .32
spare .25 .22 .13 .09 .19 .30 .13 .18 .19 .16 .30
safe .32 .31 .23 .37 .25 .20 .25 .23 .24 .33 .16 .23

Since these values are correlations, they first need to be converted to dissimilarities.
Again, we use thesim2diss() function wheremethod = "corr" is the default
value. Each correlation r is thereby transformed to

√
1 − r . We then compute an

Indscal solution and an Idioscal solution, respectively, for these data:

R> eastwest <- lapply(EW_eng, sim2diss)
R> res.indscal <- smacofIndDiff(delta = eastwest, constraint = "indscal")
R> res.idioscal <- smacofIndDiff(delta = eastwest, constraint = "idioscal")

For both models we can produce the configuration plots in a single plot device:

par(mfrow=c(1,2)) #2 plots, figure 9.10
plot(res.indscal, main = "INDSCAL Configuration",
+ xlab = "Dimension 1", ylab = "Dimension 2", asp = 1,
+ xlim = c(-1, 1), ylim = c(-1, 1), type = "p", pch = 16,
+ label.conf = list(TRUE, 1, 1))
plot(res.idioscal, main = "IDIOSCAL Configuration",
+ xlab = "Dimension 1", ylab = "Dimension 2", asp = 1,
+ xlim = c(-1, 1), ylim = c(-1, 1), type = "p", pch = 16,
+ label.conf = list(TRUE, 1, 1))

The argument xlim scales the X -axis, ylim the Y -axis. The resulting plots (the
configurations are highly similar for both models) are shown in Fig. 9.10.
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Fig. 9.10 INDSCAL and IDIOSCAL configurations for work values

9.2.4 SmacofRect

Unfolding models can be computed by means of the function smacofRect()
(rectangular Smacof). As mentioned above, the input data for unfolding is not a
dissimilarity matrix but rather a n × k matrix of preferences. To give an example, we
use the artificial data from Table 5.1.

R> data("partypref")
R> partypref

A B C D
1 1 3 2 4
2 4 2 3 1
3 4 1 2 3
4 4 1 3 2
5 3 2 1 4

http://dx.doi.org/10.1007/978-3-642-31848-1_5
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preferences unfolding solution

Note that for this Smacof variant the data must be stored as a “matrix” and not,
as above, as an “object” of class dist. For the party-preferences data, we need
to take into account that the larger a value, the larger the preference for a party.
The function smacofRect() interprets preference values in the opposite way, i.e.,
1 for the strongest preference and, in this example, 4 for the weakest. Therefore, we
first transform the data matrix as follows:

R> partypref_rev <- 5 - partypref

After this conversion we compute the unfolding model. As graphic output, we plot
the joint configuration of persons and objects in a common space (Fig. 9.11). Fur-
thermore, a Shepard diagram is produced (Fig. 9.12).

R> res.rect <- smacofRect(delta = partypref_rev)
R> par(mfrow = c(1, 2))
##fig 9.11
plot(res.rect, joint = TRUE, main = "Unfolding Configuration",
+ xlab = "Dimension 1", ylab = "Dimension 2", asp = 1)
##fig 9.12
plot(res.rect, plot.type = "Shepard", main = "Shepard Diagram",
+ xlab = "Preferences (Data)", ylab = "Distances (Unfolding)", asp = 1)

9.2.5 SmacofConstraint

Finally, we present an application of confirmatory MDS. We use the rectangle data
from Table 2.3 with the corresponding external scales from Table 6.1. We restrict the
C matrix to be diagonal, using the argument constraintwhich allows for several
restrictions.7

7 Note that Smacof reports squared Stress-1 values. So, Metric stress: 0.03265856 is
actually equal to Stress-1 = 0.181.

http://dx.doi.org/10.1007/978-3-642-31848-1_2
http://dx.doi.org/10.1007/978-3-642-31848-1_6
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R> data("rectangles")
R> data("rect_constr")
R> res.constr <- smacofConstraint(rectangles, external = rect_constr,
+ constraint = "diagonal", metric = TRUE)
R> res.constr

Call: smacofConstraint(delta = rectangles, constraint
= "diagonal", external = rect_constr, metric = FALSE)

Model: SMACOF constraint
Number of objects: 16

Metric stress: 0.03265856
Number of iterations: 13

Plots for the MDS configuration (forced into an orthogonal grid of points) and for
the Stress per point (SPP) values of all rectangles, respectively, can be produced by
the following commands:

par(mfrow = c(1, 2))
plot(res.constr, main = "Metric MDS (orthog.)", xlab = "Dimension 1",
+ ylab = "Dimension 2", asp = 1)
plot(res.constr, plot.type = "stressplot", main = "Stress per point",
+ xlab = "Rectangle", ylab = "Stress Contribution (\%)")

9.2.6 Final Remarks

The sections above cover only a fraction of Smacof’s functions and options. Espe-
cially for confirmatory MDS, Smacof allows for highly flexible specifications of
constraints. Details can be found in the corresponding help files.

For all MDS variants, solutions with higher dimensionality can be computed.
For 3D solutions, dynamic 3D configuration plots are available. The package
also does MDS on the surface of a sphere using smacofSphere.primal()
and smacofSphere.dual(), an option that is not that relevant for general
data analysis.

Further technical details, more comprehensive descriptions of functions, options,
and arguments, as well as additional examples can be found in De Leeuw and Mair
(2009). In the following section we quote a few additional R packages for MDS
computations.

9.3 Other Programs for MDS

Proxscal and Smacof are not the only programs for MDS. All major statistics
packages offer MDS modules. Examples are Systat, Stata, SAS or Xlstat, an
add-in for Excel. Within R, the MASS package offers functions for classical MDS.
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Other packages (such as vegan (Oksanen et al. 2007), labdsv (Roberts 2006),
ecodist (Goslee and Urban 2007), and ggobi in R (Maechler 2005)) have built-
in functions for ordinal and interval MDS. MDS for individual differences can also
be done with SensoMineR (Husson and Le 2007). Spss offers even a second MDS
module, called Alscal, a program that is older than Proxscal.

Not all of these MDS programs offer different MDS models. This makes it impos-
sible for the users to scale their data with different MDS models in order to check
the effects of such choices (e.g., in case of degeneracy). Also, with some of the MDS
programs, it is not clear whether they always converge to local Stress optima. If
convergence is not guaranteed, then the MDS program’s algorithm must be stopped
after k iterations by using ad-hoc criteria (e.g., if k is greater than 50, say, or if Stress
is not being reduced by more than 0.005; see Fig. 1.5), but it cannot be forced into a
local minimum by setting very demanding stopping criteria.

Large mathematics packages such as MatLab also offer MDS, although only in
statistics modules that have to be bought additionally. However, they allow users to
program certain MDS analyses themselves. For example, in MatLab, Procrustean
problems can be solved with a few commands, and publication-ready graphics can
be generated and modified interactively in WYSIWYG.

Besides such commercial software for MDS, there also exist some freeware pro-
grams. A particularly interesting example is Permap, which is also the only truly
interactive MDS program. In Permap, one can, for example, use the mouse to move
single points on the computer screen to a different location: The program then
immediately responds by dynamically shifting the points of this “starting config-
uration” into optimal positions. This is great for actually seeing how the iterative
processes works. It also allows one to easily check if manually re-locating single
points always ends up with the same final configuration.

For further information on these and other MDS programs, including detailed
descriptions and comparisons, see Borg and Groenen (2005). Data sets for MDS
applications and web addresses for MDS programs can be found on Patrick Groenen’s
website, http://people.few.eur.nl/groenen/.
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