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Preface

Abstract The topic of this contribution is the statistical analysis of climatological
time series. The data sets consist of monthly (and daily) temperature means and
precipitation amounts gained at German weather stations. Emphasis lies on the
methods of time series analysis, comprising plotting, modeling and predicting
climate values in the near future. Further, correlation analysis (including principal
components), spectral and wavelet analysis in the frequency domain and cate-
gorical data analysis are applied.

Introduction Within the context of the general climate discussion, the evaluation
of climate time series gains growing importance. Here we mainly use the monthly
data of temperature (mean) and precipitation (amount) from German weather
stations, raised over many years. We analyze the series by applying statistical
methods and describe the possible relevance of the results. First the climate series
(annual and seasonal data) will be considered in their own right, by employing
descriptive methods. Long-term trends—especially the opposed trends of
temperature in the nineteenth and twentieth century—are statistically tested. The
auto-correlations, that are the correlations of (yearly, seasonally, monthly, daily)
data, following each other in time, are calculated before and after a trend or a
seasonal component is removed. In the framework of correlation analysis, we use
principal components to structure climate variables from different stations. We
also formulate well-known folk (or country) sayings about weather in a statistical
language and check their legitimacy.

The notion of auto-correlation leads us to the problem, how to model the
evolution of the underlying data process. For annual data, we use ARMA-type
time series models, applied to the differenced series, with a subsequent residual
analysis to assess their adequacy. For the latter task, GARCH-type models can be
employed. In the present text, predictions of the next outcomes are understood as
forecasts: The prediction for time point t + 1 is strictly based on information up to
time t only (thus parameters must be estimated for each t anew). The ARMA-type
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modeling is compared with (left-sided) moving averages by using a goodness-of-fit
criterion calculated from the squared residuals.

Guided by the modeling of annual data, we similarly proceed with monthly
data. Here, it is the detrended series, to which we fit an ARMA-model. With this
method, the yearly seasonality can correctly be reproduced.

Daily records on temperature reveal a seasonal component—as known from monthly
data, such that the adjusting of the series is advisable. We study a spatial effect, namely
the cross-correlation between five German stations. Half of the daily precipitation
data consists of zeros; here we are led to logistic regression approaches, to categorical
data analysis and—with repect to heavy precipitation—to event-time analysis.

We continue with analyses in the frequency domain. Periodograms, spectral
density estimations, and wavelet analyses are applied to find and trace periodical
phenomena in the series.

Then, we present two approaches for predicting annual and monthly data,
which are quite different from those based on ARMA-type models, namely
growing polynomials and sin-/cos-approximations, respectively. Further, the one-
step predictions of the preceding sections are extended to l-step (i. e. l-years)
forecasts. This is done by the Box and Jenkins and by the Monte Carlo method.
Finally, specific features of temperature and of precipitation data are investigated
by means of multiple correlation coefficients.

The numerical analysis is performed by using the open-source package
R [cran.r-project.org].

An introductory manual as for instance the book of Dalgaard (2002) is useful. The
R codes are presented within complete programs. We have two kinds of comments.
If comments should appear in the output, they are standing between ‘‘…’’ signs.
If they are only directed to the reader of the program and should be ignored by the
program, they begin with the ] sign. Together with the read.table(…) com-
mand in program R 1.1, the programs are ready to run. Optionally the sink(…)
command in program R 2.1 can be employed (to divert the output to an external
file). The index lists the R commands with the page of their first occurrence.

This book addresses

• Students and lecturers in statistics and mathematics, who like to get knowledge
about statistical methods for time series (in a wide sense) on one side and about
an interesting and relevant field of application on the other

• Meteorologists and other scientists, who look for statistical tools to analyze
climate series and who need program codes to realize the work in R.

Programs, which are ready to run, and data sets on climatological series (both
provided on the author’s homepage) enable the reader to perform own exercises
and allow own applications.

www.math.lmu.de/*pruscha/ Helmut Pruscha
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Chapter 1
Climate Series

Basic informations on four German weather stations and on the climate series,
analyzed in the following chapters, are presented. The series consist of monthly
temperature and monthly precipitation records. From these records, we derive sea-
sonal and yearly data.

1.1 Weather Stations

Our data sets stem from the following four weather stations; further information can
be found in Table 1.1 and in the Appendix A.1.

Bremen. The city Bremen lies in the north German lowlands, 60 km away from
the North Sea. Weather records started in 1890.
Source: www.dwd.de/ (Climate Environment, Climatological Data).

Hohenpeißenberg. The mountain HoherPeißenberg (989 m) is situated between
Weilheim and Schongau (Bav.) and lies in the lee-area of the Alps. It is the place of
weather recording since 1781.
Source: www.dwd.de/ (Climate Environment, Climatological Data).
Further Grebe (1957), Attmannspacher (1981).

Karlsruhe. The town lies in west Germany in the upper Rhine lowlands. Weather
recording started in 1799, but stopped at the end of 2008.
Source: www.klimadiagramme.de (Klima in Karlsruhe).

Potsdam. Since 1893 we have weather records from this east German town near
Berlin.
Source: http://saekular.pik-potsdam.de (Klimazeitreihen).

R 1.1 The climate data HohenT, HohenP etc. are supposed to be stored in the
folderC:/CLIM in the format of text-files. Their form is reproduced in the Appendix
A.1 (additionally, separating lines - - - - - - - are used in A.1). The header consists
of the variable names
Year dcly jan feb mar apr may jun jul aug sep oct nov dec Tyear

resp. Pyear. Dcly is the repetition of the December value of the last year (to have

H. Pruscha, Statistical Analysis of Climate Series, 1
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2 1 Climate Series

Table 1.1 Survey of the four weather stations

Name Height (m) Geographical Geographical Start of Start of
latitude longitude temperature series precipitation series

Bremen 5 53◦02′ 08◦47′ 1890 1890
Hohenpeißenberg 977 47◦48′ 11◦00′ 1781 1879
Karlsruhe 112 49◦02′ 08◦21′ 1799 1876
Potsdam 81 52◦23′ 13◦03′ 1893 1893

the three winter months side by side). The data are loaded into the R program—
according to the special application—by one or several of the following commands
(T and Tp stand for temperature, P and Pr for precipitation).

hohenTp<- read.table("C:/CLIM/HohenT.txt",header=T)
hohenPr<- read.table("C:/CLIM/HohenP.txt",header=T)
karlsTp<- read.table("C:/CLIM/KarlsT.txt",header=T)
karlsPr<- read.table("C:/CLIM/KarlsP.txt",header=T)
potsdTp<- read.table("C:/CLIM/PotsdT.txt",header=T)
potsdPr<- read.table("C:/CLIM/PotsdP.txt",header=T)

and by analogy bremenTp, bremenPr.

1.2 Temperature Series

We have drawn two time series plots for each station: the annual temperature means
(upper plot) and the winter means (lower plot). The meteorological winter covers the
December (of the last year) and January, February (of the actual year). Winter data
are often considered as an indicator of general climate change; but see Sect. 8.4 for
a discussion. One finds the plots for

Bremen (1890–2010) in Fig. 1.1
Hohenpeißenberg (1781–2010) in Fig. 1.2
Karlsruhe (1799–2008) under the author’s homepage
Potsdam (1893–2010) in Fig. 1.3.

The temperature strongly decreased in the last recorded year, i.e., in 2010, as it
happens from time to time, for instance in the years 1987 and 1996 before.

R 1.2 Computation of some basic statistical measures that are
sample size length(), mean value mean(), standard deviation sqrt(var()),
correlation cor().
To explain, how a user built function() operates, the computation is done first
for the variable yearly temperature, then threefold—by means of the user function
printL—for the three variables yearly, winter, summer temperature.

http://dx.doi.org/10.1007/978-3-642-32084-2_8
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Fig. 1.1 Annual temperature means (top) and winter temperature means (bottom) in (◦C), Bremen,
1890–2010; with a fitted polynomial of fourth order (dashed line), with centered (11-years) moving
averages (inner solid line) and with the total average over all years (horizontal dashed-dotted line).
The mean values for 2011 are 10.14 (year) and 0.33 (winter)

The two last commands detach() and rm() are omitted in the following R
programs.

attach(hohenTp)

Y<- Tyear/100; "annual temperature means in Celsius"
N<- length(Y); meanY<- mean(Y); sdY<- sqrt(var(Y))
rhoY<- cor(Y[1:(N-1)],Y[2:N])
c("N Years"=N, "Mean"=meanY, "StDev"=sdY, "Autocor(1)"=rhoY)

#-------------------------------------------------------------



4 1 Climate Series

Table 1.2 Descriptive measures of the seasonal and the annual temperature data in (◦C), for the
four stations

Bremen n = 121 Hohenpeißenberg n = 230
m s r(1) m s r(1)

Winter 1.650 2.000 0.151 −1.366 1.730 0.076
Spring 8.449 0.988 0.175 5.571 1.322 0.165
Summer 16.769 0.973 0.111 14.259 1.079 0.208
Autumn 9.477 0.953 0.093 6.970 1.302 0.008
Year 9.119 0.749 0.350 6.359 0.845 0.296

Karlsruhe n = 210 Potsdam n = 118
m s r(1) m s r(1)

Winter 1.763 1.888 0.113 0.174 2.080 0.124
Spring 10.182 1.083 0.242 8.468 1.158 0.196
Summer 18.722 1.071 0.250 17.428 1.023 0.164
Autumn 10.192 1.029 0.046 8.921 1.074 0.081
Year 10.217 0.802 0.332 8.786 0.815 0.356

Mean m, standard deviation s, auto-correlation of first order r(1)

printL<- function(Y){
N<- length(Y); meanY<- mean(Y); sdY<- sqrt(var(Y))
rhoY<- cor(Y[1:(N-1)],Y[2:N])
#as last command of the function printL
c("N Years"=N, "Mean"=meanY, "StDev"=sdY, "Autocor(1)"=rhoY) }

Y<- Tyear/100; "annual temperature means in Celsius"
printL(Y)

Y<- (dcly+jan+feb)/30; "winter temperature means in Celsius"
printL(Y)

Y<- (jun+jul+aug)/30; "summer temperature means in Celsius"
printL(Y)

detach(hohenTp)
rm(list=objects()) #remove all objects from workspace

In our data sets, the Dec. value of the last year is repeated in each new line (under the
variable name dcly). If this is not the case, the winter temperature can be calculated
by R commands as follows. Note that the first value for dcly is put artificially as
the average of the first 10 dec values.

Y<- 1:N; Y[1]<- (mean(dec[1:10])+jan[1]+feb[1])/30
Y[2:N]<- (dec[1:(N-1)]+jan[2:N]+feb[2:N])/30

Table 1.2 offers the outcomes of some descriptive statistical measures that are
mean value (m), standard deviation (s), auto-correlation of first order (r(1)). The
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Fig. 1.2 Annual temperature means (top) and winter temperature means (bottom) in (◦C), Hohen-
peißenberg, 1781–2010; legend as in Fig. 1.1. The mean values for 2011 are 8.48 (year), which is
the highest value since 1781, and −0.93 (winter)

latter describes the correlation of two outcomes (of the same variable) immediately
following each other in time.

Discussion of the row Year: The annual mean values stand in a distinct order:
Karlsruhe > Bremen > Potsdam > Hohenpeißenberg. However, their oscillations
s are nearly of equal size (≈ 0.8 ◦C around the mean), and so are even the auto-
correlations r(1). That is, the correlation between the averages of two consecutive
years amounts to 0.29…0.36. We will see below, how much therefrom is owed to
the long-term trend of the series.

Discussion of the rows Winter. . . Autumn: The winter data have the largest oscil-
lations s (≈ 2 ◦C) and small auto-correlations r(1). (Even smaller are the r(1) values
of the autumn data, signalizing practically zero correlation.) The time series plots of
the winter series (especially the lower plots of Figs. 1.2, 1.3) reflect the s and r(1)
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Fig. 1.3 Annual temperature means (top) and winter temperature means (bottom) in (◦C), Potsdam,
1893–2010; legend as in Fig. 1.1. The mean values for 2011 are 10.14 (year) and −1.17 (winter)

values of the Table 1.2. In comparison with the upper plots of the annual means, they
show a higher fluctuation and a less distinct trend, coming nearer to the plot of a pure
random series (that is a series of uncorrelated variables).

R 1.3 Plot (by means of plot()) of annual temperature means, together with a
fitted polynomial of order four and with centered (11-years) moving averages; see
upper part of Fig. 1.2.

The polynomial is produced by the linear model commands lm and predict
and enters the plot by lines.

The postscript file is stored under C:/CLIM/HoTpYe.ps.
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Fig. 1.4 Annual precipitation amounts (top) and winter precipitation amounts (bottom) in (dm),
Hohenpeißenberg, 1879–2010; with a fitted polynomial of fourth order (dashed line), with centered
(11-years) moving averages (inner solid line) and with the total average over all years (horizontal
dashed-dotted line). The values for 2011 are 12.47 (year) and 1.36 (winter)

attach(hohenTp)
quot<- "Hohenpeissenberg, Temperature 1781-2010"; quot
postscript(file="C:/CLIM/HoTpYe.ps",height=6,width=16,horiz=F)

Y<- Tyear/100 # annual means in Celsius
Ja<- Year-1800 # to have smaller values
#fitting polynomial of order 4
J2<- Ja*Ja; J3<- J2*Ja; J4<- J3*Ja
tppol<- lm(Y˜Ja+J2+J3+J4)

#centered (11-years) moving averages
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Fig. 1.5 Annual precipitation amounts (top) and winter precipitation amounts (bottom) in (dm),
Karlsruhe, 1876–2008; same legend as in Fig. 1.4

N<- length(Y); p<- 10; m<- p/2
glD<- 1:N; su<- 1:N #glD, su vectors of dim N
for (t in (m+1):(N-m))
{su[t]<- 0
{ for (k in -(m-1):(m-1)) su[t]<- su[t]+ Y[t+k] }}
for (t in (m+1):(N-m))
{glD[t]<- 0 #weight 1/2 at the margins

glD[t]<- glD[t]+((Y[t-m]+Y[t+m])/2+su[t])/p}

ytext<- "Temperature [C]"; ttext<- "Temperature Year"
cabl<- c(4:8) #for horizontal lines
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Fig. 1.6 Annual precipitation amounts (top) and winter precipitation amounts (bottom) in (dm),
Potsdam, 1890–2010; same legend as in Fig. 1.4. The values for 2011 are 6.20 (year) and 1.30
(winter)

plot(Year,Y,type="l",lty=1,xlim=c(1780,2010),ylim=c(4.5,8.5),
xlab="Year",ylab=ytext,cex=1.3)

title(main=quot); text(1880,8.4,ttext,cex=1.2)
abline(h=cabl,lty=3); abline(h=mean(Y),lty=4)
#print total mean with 3 digits into the plot:
text(2010,mean(Y),round(mean(Y),3),cex=0.8)

lines(Year,predict(tppol),lty=2) #polynomial fitted
lines(Year[(m+1):(N-m)],glD[(m+1):(N-m)],lty=1) #moving aver.

dev.off() #output of the graphic
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Table 1.3 Descriptive measures of the seasonal and the annual precipitation amount h in (mm) for
the four stations

Bremen n = 121 Hohenpeißenberg n = 132
h s r(1) h s r(1)

Winter 152.4 51.7 −0.009 165.9 53.9 0.146
Spring 146.9 43.0 0.042 263.5 72.2 0.227
Summer 215.6 60.6 −0.113 454.2 94.3 −0.122
Autumn 168.1 50.1 −0.106 245.4 78.2 0.041
Year 682.8 106.7 0.052 1129.2 171.9 0.274

Karlsruhe n = 133 Potsdam n = 118
h s r(1) h s r(1)

Winter 167.9 54.5 −0.041 130.1 37.1 0.050
Spring 177.5 55.8 0.111 130.9 41.9 −0.021
Summer 227.7 69.5 −0.201 195.4 59.9 −0.017
Autumn 188.5 64.4 −0.013 133.8 43.7 −0.185
Year 761.7 135.3 0.009 590.5 96.0 −0.079

Standard deviation s, auto-correlation of first order r(1)

1.3 Precipitation Series

Again, we have drawn two time series plots for each station: the yearly precipitation
amounts (upper plot) and the winter amounts (lower plot). One finds the plots for

Bremen (1890–2010) under the author’s homepage
Hohenpeißenberg (1879–2010) in Fig. 1.4
Karlsruhe (1876–2008) in Fig. 1.5
Potsdam (1893–2010) in Fig. 1.6.

Table 1.3 offers the total precipitation amount (h) in (mm) height, standard deviation
(s), and auto-correlation of first order (r(1)).

The annual precipitation amount at the mountain Hohenpeißenberg is nearly twice
the amount in Potsdam. The oscillation values s stand in the same order as the
amounts h. That is different from the temperature results in Table 1.2, where all four
s values were nearly the same. Note that the precipitation scale has a genuine zero
point, but the temperature scale has none (which is relevant for us).

The winter (Bremen: spring) is the season with the least precipitation (the small-
est h) and with the smallest oscillation s (recall, that winter temperature had the
largest s). Unlike the annual amounts, the winter amounts do not differ very much
at the four stations.

While the precipitation series of winter and year in Bremen, Karlsruhe and
Potsdam—with their small r(1) coefficients—resemble pure random series, these
series at Hohenpeißenberg however do not (see also Sects. 3.3, 4.4 and 8.4).

http://dx.doi.org/10.1007/978-3-642-32084-2_3
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_8


Chapter 2
Trend and Season

Polynomials, moving averages and straight lines—the latter two describe the decrease
and increase of temperature in the last two centuries—are considered. The warming
in the last 20 years is substantiated. The effect of auto-correlation on standard signif-
icance tests is discussed. The study of monthly data gives rise to introduce the notion
of a seasonal component and of seasonally adjusted data. Finally, we plot the course
of oscillation (fluctuation) of a climate variable and search for trends or patterns.

2.1 Trend Polynomials. Moving Averages

A trend component describes the long-term variation of a time series.
A comparatively rough and little sophisticated method is to fit polynomials (of lower
order) to the whole time series Yt , t = 1, . . . , n, of observed annual data. Here,
n is the number of years. See Figs. 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6 for fourth-order
polynomials

pt = b0 + b1 · t + b2 · t2 + b3 · t3 + b4 · t4, t = 1, 2, . . . , n. (2.1)

The residuals from the fitted polynomial are given by et = Yt−pt . A goodness-of-fit
measure is calculated from the mean sum of the squared residuals (MSQ) by

RootMSQ =
√

1

n

∑n

t=1
e2

t .

The smaller the measure, the better the fit of the polynomial. Due to ē ≈ 0 the
measure RootMSQ is approximately equal to the standard deviation of the
residuals et . Table 2.1 shows that the RootMSQ- values decrease with increasing
order k. This decrease is very slow for precipitation and stronger for temperature.
For temperature at Hohenpeißenberg and in Karlsruhe, the biggest drop is from order

H. Pruscha, Statistical Analysis of Climate Series, 11
DOI: 10.1007/978-3-642-32084-2_2, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
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Table 2.1 Annual temperature means

Bremen Hohenpeißenberg
Temperature Precipitation Temperature Precipitation

k R r1 R r1 R r1 R r1

1 0.719 0.30 1.05 0.02 0.824 0.26 1.64 0.21
2 0.717 0.29 1.05 0.02 0.757 0.12 1.62 0.19
4 0.681 0.21 1.03 −0.00 0.754 0.11 1.62 0.18
6 0.675 0.20 1.01 −0.04 0.737 0.06 1.59 0.16

Karlsruhe Potsdam
Temperature Precipitation Temperature Precipitation

k R r1 R r1 R r1 R r1

1 0.790 0.31 1.35 0.01 0.733 0.21 0.95 −0.08
2 0.707 0.14 1.35 0.01 0.724 0.18 0.95 −0.08
4 0.692 0.11 1.34 0.00 0.712 0.15 0.95 −0.09
6 0.672 0.06 1.32 −0.05 0.702 0.14 0.95 −0.09

Order k of the polynomial and resulting goodness-of-fit R = RootMSQ. Further, the auto-
correlation r1 = re(1) of the residual series et is listed

k = 1 (straight line) to order k = 2 (parabola)—more than from k = 2 to 4, 6. For
temperature, the auto-correlations re(1) of the residuals are distinctly positive, mean-
ing that the fit pt+1 stays—by tendency—on the same side of the observed value as
the fit pt does. The same is true with precipitation only at Hohenpeißenberg.

The re(1)-values for precipitation in Bremen, Karlsruhe, and Potsdam are≈ 0, but
that was already the case with the r(1)-values of the original series Y , see Table 1.3.

Next, we compare the fitted polynomials (of order k = 1, 2, 3) for three stations.
For the sake of comparability, we take 116 years (1893–2008) only and center the
curves around Ȳ ; that is, we are plotting in Fig. 2.1 the values pt− Ȳ , t = 1, . . . , 116.
The curves run nearly identical over the 116 years. That is, the annual temperature
means—when approximated by polynomials—run remarkably parallel at the three
stations.

Further, Figs. 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6 contain—as trend curves—centered
moving averages mt over k = 11 years. Putting k = 2 ∗ l + 1, for estimating the
trend mt we form the time interval [t − l, t + l] of k points, with the time point t
as the center, and extend the average over the k years, but with weight 1/2 for the
endpoints; that is

mt = 1

2 ∗ l
·
[

1

2
· Yt−l + Yt−l+1 + · · · + Yt + · · · + Yt+l−1 + 1

2
· Yt+l

]
. (2.2)

Remark. The variables mt or pt , according to Eqs. (2.1) or (2.2), are predictions
(interpolations) for Yt . Note that they use information from observations before and
after time point t. Let us call this approach the standard regression approach for

http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
http://dx.doi.org/10.1007/978-3-642-32084-2_1
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Fig. 2.1 Fitting polynomials of order 1, 2, and 3 over the years 1893–2008, each time for the three
stations Hohenpeißenberg, Karlsruhe, Potsdam. Each curve is centered around the total mean Ȳ for
the station

prediction. Within the context of climatological time series (which are continuously
updated) a forecast approach for prediction seems to be more appropriate. Here,
for predicting Yt , only observations before time point t are employed. This is—
for instance—the case with left-sided moving averages, growing polynomials, or
autoregressive algorithms, which will follow in Chaps. 4, 5, and 8.

http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_5
http://dx.doi.org/10.1007/978-3-642-32084-2_8
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Fig. 2.2 Annual temperature means (◦C) Hohenpeißenberg, 1781–2010 (top), Karlsruhe,
1799–2008 (bottom); with straight lines fitted for each century and with the total mean (horizontal
line). Compare also Schönwiese (1995, Abb. 12)

2.2 Temperature: Last Two Centuries—Last Twenty Years

In this section, we study the long-term trend of temperature over the last two centuries.
For this investigation, only the series of Hohenpeißenberg and of Karlsruhe are long
enough. While temperature decreases in the nineteenth century, it increases in the
twentieth century, see Fig. 2.2.

The regression coefficients (slopes) b = b(Temp|Year) of the two—for each
century separately fitted—straight lines pt = a+ b·t are tested against the hypothesis



2.2 Temperature: Last Two Centuries—Last Twenty Years 15

Table 2.2 Statistical measures for the temperature (◦C) of the last two centuries

Hohenpeißenberg
Period n Mean value Standard deviation Regression b*100 Correlation r Test T

Nineteenth century 100 6.129 0.843 −0.763 −0.262 0.271
Twentieth century 100 6.445 0.747 1.006 0.390 0.423

Karlsruhe
Period n Mean value Standard deviation Regression b*100 Correlation r Test T

Nineteenth century 100 10.114 0.845 −1.079 −0.370 0.398
Twentieth century 100 10.219 0.689 0.988 0.416 0.457

The regression coefficient b is multiplied by 100, r is the dimension-free version of b, T the test
statistic (2.3)

of a zero slope. The level 0.01-bound for the test statistic T ,

T = |r|√
1− r2

, r = b · s(Year)

s(Temp)
, (2.3)

is t98,0.995/
√

98 = 0.265. Herein, the correlation coefficient r is the dimension-free
version of b.

1. As Table 2.2 informs us, the negative trend in the 19th century and the positive
trend in the twentieth century are statistically confirmed (at Hohenpeißenberg and
in Karlsruhe). The test assumes uncorrelated residuals et = Yt − pt . This can be
substantiated using the auto-correlation function of the et (not shown, but see Chap. 4
for similar analyses).

2. The total temperature means m1 and m2 of the two centuries do not differ very
much from each other and from the total mean m of the whole series, see Table 2.2.

The increase of temperature in the 20th century is statistically significant in Pots-
dam, too. In Bremen, however, we have a nearly horizontal trend line over this time
period (consult Fig. 2.3 and Table 2.3).

R 2.1 Plot of annual temperature means, together with straight lines fitted for the
nineteenth and twentieth century separately, see Fig. 2.2 (bottom). The straight line is
produced within the user function tempger (for lm and predict see also R 1.3).
The output is written and stored on the file C:/CLIM/Tempout.txt.

attach(karlsTp)

postscript(file="C:/CLIM/KarlsT12.ps",height=6,width=20,horiz=F)
sink("C:/CLIM/Tempout.txt") #Output on file Tempout.txt

quot<- "Karlsruhe, Temperature 1799-2008"; quot
Y<- Tyear/100; "annual means in Celsius"
cylim<- c(8.0,12.5); cabl<- c(8:12)
plot(Year,Y,type="l",lty=1,xlim=c(1790,2008),ylim=cylim,

xlab="Year",ylab="Temperature [C]",cex=1.3)

http://dx.doi.org/10.1007/978-3-642-32084-2_4
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Fig. 2.3 Annual temperature means (◦C). Bremen 1890–2010, Hohenpeißenberg 1781–2010 (here
1885–2010 is shown), Potsdam 1893–2010; with straight line fitted for the twentieth century. The
fitted line for the 20 years 1991–2010 is also shown
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Table 2.3 Statistical measures for the temperature (◦C) of the last century and of the last 20 years
1991–2010

Bremen
Period n Mean Standard Regression Correlation r Test T Upper

value deviation b*100 limit

Twentieth century 100 9.117 0.738 0.198 0.077 0.077
1991–2010 20 9.634 0.699 2.177 0.184 9.372 (16)

Hohenpeißenberg
Period n Mean Standard Regression Correlation r Test T Upper

value deviation b*100 limit

Twentieth century 100 6.445 0.747 1.006 0.390 0.423
1991–2010 20 7.370 0.699 2.677 0.226 6.553 (17)

Potsdam
Period n Mean Standard Regression Correlation r Test T Upper

value deviation b*100 limit

Twentieth century 100 8.732 0.804 0.860 0.310 0.326
1991–2010 20 9.542 0.730 2.919 0.237 9.066 (16)

The regression coefficient b is multiplied by 100, r is the dimension-free version of b, T the test
statistic (2.3). The upper limit refers to the 99 % confidence interval (2.4); in brackets the number
of years (out of 20) with a temperature mean above the upper limit

title(main=quot)
abline(h=cabl,lty=3); abline(h=mean(Y),lty=4)
text(2008,mean(Y),trunc(mean(Y)*1000)/1000,cex=0.8) #total mean

#---------------------------------------------------------------
tempger<- function(Year,Y,A,B){ #compute and plot straight line
Y0<- Y[A:B]; Year0<- Year[A:B]
tpger0<- lm(Y0˜Year0); tpg0<- summary(tpger0)
lines(Year0,predict(tpger0),lty=1) #plot fitted line
return(tpg0) #return summary
}

"19th century"
Jbeg<- 2; A1<- Jbeg+1; B1<- Jbeg+100;
tpg1<- tempger(Year,Y,A1,B1); tpg1 #print summary

"20th century"
A2<- Jbeg+101; B2<- Jbeg+200;
tpg2<- tempger(Year,Y,A2,B2); tpg2 #print summary

dev.off()

Output from R 2.1 Excerpt from results written on the file
C:/CLIM/Tempout.txt, for Karlsruhe, Temperature.
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The square root of R-squared = 0.137 equals the absolute value 0.370 of
the coefficient of correlation in Table 2.2. The t-value−3.945 divided by

√
98 equals

the absolute value 0.398 of the test statistic T.

"19th century"
Call: lm(formula = Y0 ˜ Year0)
Coefficients:

Estimate Std. Error t value Pr(> t|)
(Intercept) 30.07826 5.0611 5.943 4.29e-08 ***
Year0 -0.010788 0.002735 -3.945 0.00015 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.7894 on 98 degrees of freedom
Multiple R-squared: 0.137, Adjusted R-squared: 0.1282
F-statistic: 15.56 on 1 and 98 DF, p-value: 0.0001500

Effective Sample Size

When applying tests and confidence intervals to time series data, the effect of auto-
correlation should be taken into account. To compensate, the sample size n is to
be reduced to an effective sample size neff . As an example we treat the confidence
interval for the true mean value μ of a climate variable, let us say the long-term
temperature mean. On the basis of an observed mean value ȳ, a standard deviation
s and an auto-correlation function r(h), see Sect. 3.3 below, the (1 − α) ∗ 100 %
confidence interval (assuming a large n) is

ȳ− u0 · s√
neff
≤ μ ≤ ȳ + u0 · s√

neff
, u0 = u1−α/2, (2.4)

with uγ being the γ-quantile of the N(0, 1)-distribution, and with

neff = n

1+ 2 ·∑n−1
k=1(1− (k/n)) · r(k)

≈ n

1+ 2 ·∑n−1
k=1 r(k)

[n large];

see Brockwell and Davis (2006, Sect. 7.1), von Storch and Zwiers (1999, Sect. 6.6).
For an AR(1)-process with an auto-correlation r = r(1) of first order we have to put
r(k) = rk , cf. Appendix B.3, and obtain

neff = n · 1− r

1+ r
[n large]. (2.5)

The Last Twenty Years

We have the further result
3. The average m3 over the last 20 years is significantly larger than the twen-

tieth century mean m2 (and larger than the total mean m too; 0.01 level). That is

http://dx.doi.org/10.1007/978-3-642-32084-2_3
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immediately confirmed by a two sample test, even after a correction, due to auto-
correlation. The warming in the last two decades is well established by our data.

To make this result 3. more explicit, we construct a 99 % confidence interval
around the long-term temperature mean μ acc. to (2.4) (where the auto-correlation
is taken into regard). Then we count, how many of the last 20 yearly means lie above
the upper limit.

Example Hohenpeißenberg: With n = 230, r = 0.295, m = ȳ = 6.359, s = 0.844
we are led by Eq. (2.5) to neff = 125.21 and thus to a 99 % confidence interval
[6.165, 6.553].

For all three stations in Table 2.3, at least 16 of the last 20 yearly temperature
means lie above the upper 99 % confidence limit, reinforcing the result 3. above.
Among the exceptions are always the colder years 1991, 1996, 2010.

The winter temperatures show the same pattern, but in a weakened form. The fall
and the rise of the straight lines are no longer significant (see result 1.), at least 13
of the last 20 winter temperature means lie above the upper 99 % limit of (2.4) (see
result 3.). So, the warming in the winter months of the last decades is not so strongly
pronounced in our data.

2.3 Precipitation

The precipitation records start in the last quarter of the nineteenth century. To sketch
their course over the last 120 years, we divide this time period into three intervals,
namely

1891–1950 (Potsdam 1893–1950), 1951–1990 and 1991–2010 (Karlsruhe
1991–2008).

Then we calculate—for each time interval separately—the average of annual and
of winter amounts. Further, a parabola is fitted over the whole 120 years. Figure 2.4
and Table 2.4 reveal a general increase of precipitation toward the second half of the
last century. They show a drastic increase of the annual and the winter amounts from
the first to the second time interval at Hohenpeißenberg (weaker in Bremen and in the
winter data Karlsruhe), followed by a decrease to the third. The Table 2.4 reports the
corresponding 2-sample t-test statistics. Note that the standard deviations are roughly
between 1.0 (Po) and 1.7 (Ho) for the annual data, and between 0.4 and 0.5 for the
winter data, cf. Table 1.3. Taking the maximal value of 0.27 for the auto-correlation
into regard (and the correction formula in 2.2), the upper 5 % bound for the absolute
value of the t-test statistic is at most t34−2,0.975 = 2.04 (and at least u0.975 = 1.96,
of course). Thus, statistically significant changes are:

• from the first to the second time interval at Hohenpeißenberg (annual and winter
data) and in Bremen (annual data),
• from the second to the third interval at Hohenpeißenberg (winter data).

http://dx.doi.org/10.1007/978-3-642-32084-2_1
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Fig. 2.4 Annual (left) and winter (right) precipitation amounts (dm), averaged over each of the
3 sections of the time period 1891–2010 (Bremen, Hohenpeißenberg), 1891–2008 (Karlsruhe).
A parabola is fitted to the 120 yearly data. Notice that the y-axes on the right have the same range
1.4–2.0 (dm); the y-axes on the left have different ranges, but the ranges have the same width of
1.5 (dm)
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Table 2.4 The table gives the annual and the winter precipitation amounts in (dm), for the three
time intervals (1) 1891–1950, (2) 1951–1990, (3) 1991–2010, with the three mean values and with
the two 2-sample t-test statistics for the changes from (1) to (2) and from (2) to (3)

Station Mean 1 Mean 2 Mean 3 Test 1→ 2 Test 2→ 3

Bremen annual 6.623 7.057 7.014 2.23 −0.13
Bremen Winter 1.467 1.575 1.609 1.07 0.22
Hohenpb annual 10.95 11.97 11.48 2.92 −1.14
Hohenpb Winter 1.620 1.899 1.592 2.52 −2.42
Karlsruhe annual 7.582 7.599 7.683 0.06 0.22
Karlsruhe Winter 1.619 1.776 1.788 1.38 0.08
Potsdam annual 5.837 5.965 5.986 0.66 0.07
Potsdam Winter 1.249 1.336 1.384 1.11 0.47

2.4 Historical Temperature Variations

Statistical results are formal statements; they alone do not allow substantial state-
ments on the earth warming. Especially, a prolongation of the upward lines of Figs. 2.2
and 2.3 would be dubious. An inspection of temperature variability of the last mil-
lenniums reveals that a trend (on a shorter time scale) could turn out as part of the
normal variation of the climate system. See Schönwiese (1995), von Storch and
Zwiers (1999).

Figure 2.5 shows temperature variability of the last 8,000 years, adopted from
Schönwiese (1995), estimated by the method of oxygen-isotopes from Greenland’s
ice drill cores. Especially, we recognize distinctly cold and warm time periods,
denoted by A–E in Fig. 2.5.

2.5 Monthly Values

The march of temperature and of precipitation over the 12 months of the year is
plotted as histogram in Fig. 2.6. Hereby—for each specific month—the total average
of n monthly values is calculated (n the number of years). In the case of temperature
the histograms of the four stations (three are shown) show a rather similar form,
with a somewhat lowered and compressed form for Hohenpeißenberg. In the case of
precipitation, the wet months June and July at Hohenpeißenberg and the dry months
February, March, and October in Potsdam attract attention.

According to Malberg (2007) the histogram of precipitation in Fig. 2.6 at the sta-
tions Hohenpeißenberg and Potsdam reflects more a continental (and less an oceanic)
type of climate.

R 2.2 Six histograms of the total monthly averages for temperature and precipi-
tation at three stations, see Fig. 2.6. Within the user function monthTP the (user)
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Fig. 2.6 March of temperature in ◦C (top) and precipitation in mm (bottom) over the calendar year,
plotted for the three stations Hohenpeißenberg (until 2010), Karlsruhe (until 2008), Potsdam (until
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function plotTP is called. The latter produces a step function plot. Note that we put
plm[13] = plm[12]with respect to the last (twelfth) step. The x-axis (side=1)
with the initial letters is labeled by axis and labels. All six read.table com-
mands of R 1.1 are needed.

postscript(file="C:/CLIM/MonthTP.ps",height=8,width=20,horiz=F)
par(mfrow=c(2,3),pty="s") #2x3 pictures of square size

plotTP<- function(mo,ttext,cylim,tylab,cabl){
plmo<-c(mo,mo[12]) #plmo[13]: right corner of last step
x<- seq(0.5,12.5,by=1)
plot(x,plmo,type="s", #step function plot

xlim=c(0.5,12.5),ylim=cylim,xaxt="n",xlab="Month",ylab=tylab)
axis(side=1,at=c(1:12),

labels=c("J","F","M","A","M","J","J","A","S","O","N","D"))
title(main=ttext,cex=1.1); abline(h=cabl,lty=3)
}
monthTP<- function(mon12,ttext,cylim,tylab,cabl){
mon12.mat<- as.matrix(mon12) #mon12 as matrix
mon12.me<- colMeans(mon12) #monthly means
plotTP(mon12.me,ttext,cylim,tylab,cabl)
}
#-------------------------------------------------------------
cylim<- c(-2,20); tylab<- "Temperature [C]"
cabl<- c(0,5,10,15,20)
mon12<- data.frame(hohenTp[,3:14])/10 #select jan-dec
monthTP(mon12,"Temp. Hohenpeissenbg",cylim,tylab,cabl)
mon12<- data.frame(karlsTp[,3:14])/10
monthTP(mon12,"Temp. Karlsruhe",cylim,tylab,cabl)
mon12<- data.frame(potsdTp[,3:14])/10
monthTP(mon12,"Temp. Potsdam",cylim,tylab,cabl)

#----Similarly with precipitation-----------------------------

dev.off()

To judge a temperature value in a specific month, we have to compare it with the
value, which is predicted by the trend and by the seasonal component.

This comparison is illustrated by Fig. 2.7, which presents the 36 monthly tem-
perature means Yt of three succeeding years. The trend-component m̂t is gained by
building moving averages over 13 months, that is, by employing six preceding and
six following months. The seasonal component ŝt consists of the total averages of
each month, as shown in the histogram of Fig. 2.6 (left, top)—centered at a mean
value zero. The trend and season-component is then given by

Ŷt = m̂t + ŝt,



24 2 Trend and Season

Months July 2001 - June 2004, Hohenpeissenberg

T
em

pe
ra

tu
re

 [C
]

0 10 20 30 40

-5
0

5
10

15
20

Fig. 2.7 The 36 monthly temperature means Yt (×) at Hohenpeißenberg, July 2001–June 2004. In
addition, with a trend-component (inner solid line—) and trend+season-component (· · · ), as well
as residuals therefrom (o)

also called prediction for Yt . The residuals

et = Yt − Ŷt

reveal, for which months the trend- and seasonally adjusted temperature values are
too high (then with a positive residual) or too low (then with a negative residual).

The “record summer” 2003 (months no. 30–32 in Fig. 2.7) is salient because of
the above-average temperature values in June and August. Accordingly, the residual
values are distinctly positive. Cold months (in relation to trend+season) were Sep-
tember, November, and December 2001, as well as especially October 2003—the
latter with an extremely negative residual.

More sophisticated prediction/residual procedures for monthly data are presented
in Chap. 5.

2.6 Oscillation in Climate Series

Besides the trend, it is also the oscillation (fluctuation) of a climatological series,
in which we are interested. First, we want to visualize the oscillation of the annual
temperature and precipitation values. To this end, we build moving 10-years blocks
[t − 9, t], t = 10, . . . , n, calculate for each block the standard deviation sd(t) = σ̂(t)

http://dx.doi.org/10.1007/978-3-642-32084-2_5
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Fig. 2.8 Oscillation of annual climate values at Hohenpeißenberg. Standard deviation sd(t), cal-
culated for 10-years blocks [t − 9, t], plotted over years t. Further: smoothing by 20 years moving
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Fig. 2.10 Oscillation of (seasonally adjusted) monthly climate values, in Bremen and Potsdam.
Standard deviation sd(t), calculated for calendar year t, plotted over the years t. Further: smoothing
by 10 years moving averages (inner solid line), straight line fit for the last 100 years (dashed line)



28 2 Trend and Season

and plot sd(t) over the years t. For Hohenpeißenberg (Fig. 2.8), Karlsruhe (Fig. 2.9),
Bremen, and Potsdam (no Figs.), no definite common pattern can be detected,
neither in the yearly nor in the winter data. Time periods with higher fluctuation
follow those with lower fluctuation, without an apparent regularity and with little
agreement between the stations. At least one could recognize a general lower oscil-
lation around 1900 (except Fig. 2.8, middle). Further, perhaps against the expectation,
the oscillation in the last 10 or 20 years is not very high. In Sect. 4.4, the oscillation
in the annual precipitation series is analyzed by more sophisticated methods.

To quantify the oscillation of monthly climate values, we calculate for each
calendar year the standard deviation sd(t), that is the standard deviation of the
12—seasonally adjusted—temperature means and precipitation sums, respectively.
Once again, we plot sd(t) over the years t; see Fig. 2.10 for the stations Bremen and
Potsdam. We do not discover clear-cut patterns, but with respect to temperature, we
notice a good conformity of the Bremen and the Potsdam oscillation series sd(t).

The oscillation sd(t) shows no uniform trend over the last 100 years (see the
straight line fit in Figs. 2.8, 2.9 and 2.10). The sign of the slopes differ between the
four stations, and that is true for yearly and for winter temperature and precipitation,
as well as for monthly precipitation. Only in the cases of monthly temperature we
have an uniformly decreasing tendency (but the negative coefficients of slope are not
significantly different from zero).

http://dx.doi.org/10.1007/978-3-642-32084-2_4


Chapter 3
Correlation: From Yearly to Daily Data

Scatterplots and correlation coefficients are defined for a bivariate sample
(x1, y1), . . . , (xn, yn), where two variables, x and y, are measured n-times, each
time at the same object or at comparable objects. When considering a whole set of
variables, a matrix of pairwise correlations is established. Based on such a correlation
matrix, the multivariate procedure of principal components can introduce a structure
into the set of variables.

As special case the auto-correlation coefficient is considered, where x and y are
the same variable, but taken at different time points. The effect of seasonal and
trend components on auto-correlation is studied. We deal with the question, what
the auto-correlation tells us when making predictions for the next observation. In
this context, we also try to formulate folk- or country-sayings about weather in a
statistical language and to check their legitimacy.

3.1 Auto-Correlation Coefficient

How strong is an observation at time point t (named x) correlated with the observation
at the succeeding time point t + 1 (named y)? That is, we are dealing with the case,
that x and y are the same variable (e.g., temperature Tp) but observed at different
time points, symbolically

x = T p(t), y = T p(t + 1).

The scatterplot of Fig. 3.1 (left) presents the 12*230 monthly temperature means at
Hohenpeißenberg. The corresponding correlation coefficient is r = r(1) = 0.79;
thus, the auto-correlation of monthly temperature (at Hohenpeißenberg) amounts
to 0.79. The large value is owed to the seasonal effects, i.e., to the course of the
monthly temperatures over the calendar year. It contains, so to say, much redundant
information.

H. Pruscha, Statistical Analysis of Climate Series, 29
DOI: 10.1007/978-3-642-32084-2_3, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 3.1 Monthly temperature means TP = Y (◦C). Scatterplots Y (t + 1) over Y (t) with n =
12∗230−1 points; left Original (not adjusted) variables, with correlation r = 0.79; right Variables
after seasonal adjustment (i.e., after removal of monthly total averages), with correlation r = 0.15

Table 3.1 Auto-correlation r(1) = r(Yt , Yt+1) for climate variables (Hohenpeißenberg), without
(in parenthesis) and with adjustment

Temperature Precipitation
Succession n r(Yt , Yt+1) n r(Yt , Yt+1)

Year→ succeeding Year 229 (0.296) 0.116 131 (0.274) −0.186
Winter→ succeed. Wi 229 (0.076) 0.013 131 (0.146) −0.006
Summer→ succeed. Su 229 (0.208) 0.104 131 (−0.122) −0.172
Winter→ succeed. Su 229 (0.168) 0.100 131 (0.222) 0.171
Summer→ succeed. Wi 229 (0.057) −0.014 131 (−0.023) −0.098
Month→ succeed. Mo 2,759 (0.787) 0.153 1583 (0.379) 0.013
Day→ succeeding Day 1,460 (0.932) 0.825 1460 (0.271) 0.250

In order to adjust, we first calculate 12 seasonal effects by the total averages for
each month,

m jan, . . . , mdec, together forming the seasonal component.

Figure 2.6 shows the seasonal component for three stations in the form of histograms.
Then, we build seasonally adjusted data by subtracting from each monthly temper-
ature mean the corresponding seasonal effect. The scatterplot of Fig. 3.1 (right) is
based on these 12*230 adjusted monthly means, leading to the correlation coefficient
r = 0.15. This is much smaller than the r = 0.79 from above for the non-adjusted case.

Tables 3.1, 3.2, and 3.3 offer auto-correlations r(1) = r(Yt , Yt+1) of climate
variables Y for two successive time points. We deal with the variables

Y = yearly, quarterly, monthly, daily temperature, and precipitation.

http://dx.doi.org/10.1007/978-3-642-32084-2_2
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Table 3.2 Auto-correlation r(1) = r(Yt , Yt+1) for climate variables (Karlsruhe), without (in paren-
thesis) and with adjustment

Temperature Precipitation
Succession n r(Yt , Yt+1) n r(Yt , Yt+1)

Year→ succeeding Year 209 (0.332) 0.110 132 (0.009) 0.005
Winter→ succeed. Wi 209 (0.113) 0.060 132 (−0.041) −0.082
Summer→ succeed. Su 209 (0.250) 0.064 132 (−0.201) −0.230
Winter→ succeed. Su 209 (0.175) 0.121 132 (0.104) 0.127
Summer→ succeed. Wi 209 (0.119) 0.052 132 (−0.084) −0.067
Month→ succeed. Mo 2,519 (0.811) 0.197 1,595 (0.071) 0.029
Day→ succeeding Day 1,460 (0.962) 0.867 1,460 (0.162) 0.157

Table 3.3 Auto-correlation r(1) = r(Yt , Yt+1) for climate variables (Potsdam), without (in paren-
thesis) and with adjustment

Temperature Precipitation
Succession n r(Yt , Yt+1) n r(Yt , Yt+1)

Year→ succeeding Year 117 (0.356) 0.149 117 (−0.079) −0.087
Winter→ succeed. Wi 117 (0.124) 0.054 117 (0.050) −0.025
Summer→ succeed. Su 117 (0.164) −0.083 117 (−0.017) −0.039
Winter→ succeed. Su 117 (0.068) 0.008 117 (0.187) 0.230
Summer→ succeed. Wi 117 (0.125) 0.105 117 (0.041) 0.079
Month→ succeed. Mo 1,415 (0.818) 0.276 1,415 (0.091) 0.005
Day→ succeeding Day 1,460 (0.956) 0.857 1,460 (0.149) 0.142

The r(1) coefficients for day were gained from 365*4 consecutive daily temperature
and precipitation records of the years 2004–2007, see Sect. 6.1 and Appendix A.3.

R 3.1 Correlations of quarterly temperatures, after removal of a polynomial trend
of order 4. This is done simultaneously for the 4 seasons Wi, Sp, Su, Au by using
cbind. Note that variables A1<- A[1:(n-1)] and A2<- A[2:n] have a
time-lag of 1 year; cor(varlist) answers with pairwise correlations between
the members of varlist, in form of a (symmetrical) matrix.

attach(hohenTp)

n<- length(Year); options(digits=3)
Wi<- dcly+jan+feb; Sp<-mar+apr+may
Su<- jun+jul+aug; Au<- sep+oct+nov #no averaging necessary
Quar<- cbind(Wi,Sp,Su,Au) #binding Wi,Sp,Su,Au together

#Quar is a n x 4 matrix
"----Residuals from polynomials(4)-trend----"
Ja<- Year-1800; Ja2<- Ja*Ja; Ja3<- Ja2*Ja; Ja4<- Ja2*Ja2
Quares<- Quar-predict(lm(Quar˜Ja+Ja2+Ja3+Ja4)) #residuals

http://dx.doi.org/10.1007/978-3-642-32084-2_6
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"1 | 2 refers to preceding | succeeding year"
Quares1<- cbind(Quares[(1:(n-1)),(1:4)])
Quares2<- cbind(Quares[(2:n),(1:4)])

Quares<- cbind(Quares1,Quares2) #Quares is a (n-1) x 8 matrix
colnames(Quares)<- c("Wires1","Spres1","Sures1","Aures1",

"Wires2","Spres2","Sures2","Aures2")
cor(Quares) #cross tabulation of pairwise correlations

Output from R 3.1 Cross tabulation of correlation coefficients.
Examples: cor(Wires1,Sures1) refers to winter and to the direct following summer;
cor(Wires1, Sures2) to winter and to the summer of the next year.

"----Residuals from polynomials(4)-trend----"
Wires1 Spres1 Sures1 Aures1 Wires2 Spres2 Sures2 Aures2

Wires1 1.000 0.116 0.100 -0.077 0.013 0.080 0.028 0.039
Spres1 0.116 1.000 0.162 0.166 0.076 0.069 0.126 0.100
Sures1 0.100 0.162 1.000 0.214 -0.014 0.128 0.104 -0.046
Aures1 -0.077 0.166 0.214 1.000 0.077 0.021 0.184 -0.099
Wires2 0.013 0.076 -0.014 0.077 1.000 0.121 0.101 -0.074
Spres2 0.080 0.069 0.128 0.021 0.121 1.000 0.160 0.170
Sures2 0.028 0.126 0.104 0.184 0.101 0.160 1.000 0.215
Aures2 0.039 0.100 -0.046 -0.099 -0.074 0.170 0.215 1.000

Besides the auto-correlation r(1) of the non-adjusted variables (put in parenthesis)
we present the r(1) coefficient of the adjusted variables without parenthesis. Herein,
adjustment refers to the removal

• of a trend component, more precisely, of a polynomial of order 4 (for each variable
separately) in the case of year, quarter, and day. In the latter case, the polynomial
was drawn over the 365 days of the calendar year, see Fig. 6.2
• of the seasonal component in the case of month.

Note that the non-adjusted temperature variables do not have negative auto-
correlations (showing persistence), but some precipitation variables have (showing
a switch-over effect).

In the following, we discuss exclusively the outcomes for the adjusted series that
are the figures of Tables 3.1, 3.2, 3.3 not in parenthesis.

Temperature: As to be expected, the auto-correlation of the daily data is large.
Smaller are those in the case of month, year, quarter. The monthly auto-correlations
are larger than the yearly and the yearly are (with one exception) larger than the
quarterly values.

Precipitation: Only at the mountain Hohenpeißenberg the auto-correlation of
yearly data differs distinctly from zero. Here, the precipitation series has more
inner structure than the series of Karlsruhe or Potsdam; see also the complements
(Sect. 8.4). Completely different from the temperature situation, the auto-correlations
of the daily precipitation data are—perhaps against expectations—comparatively
small and that of the monthly data are nearly negligible.

http://dx.doi.org/10.1007/978-3-642-32084-2_6
http://dx.doi.org/10.1007/978-3-642-32084-2_8
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What is the relevance of a particular r(1) value, when we are at time t and the
immediately succeeding observation (at time t + 1) is to be predicted? This will be
discussed in Sect. 3.4.

3.2 Multivariate Analysis of Correlation Matrices

In the next step, a spatial aspect is included in our analysis. We consider the cli-
matological variables temperature (Tp) and precipitation (Pr) as well as the five
stations

Aachen (A), Bremen (B), Hohenpeissenberg (H), Karlsruhe (K), Potsdam (P)
(3.1)

in the years 1930–2008, see Appendix A.2. First, a 10 × 10 matrix of pairwise
correlations is established. Let the 10 variables be denoted by TpA, PrA, . . .,
TpP, PrP. The 10 × 10 correlation matrix consists of four parts: the correlations
between the five temperature variables (upper left) and between the five precipita-
tion variables (lower right); further the cross-correlations between them (upper right
and—symmetrically— lower left). In the latter two parts, we have mostly negative
values and much smaller absolute values than in the first two parts.

TpA TpB TpH TpK TpP PrA PrB PrH PrK PrP
TpA 1.000 0.877 0.924 0.916 0.912 -0.018 -0.025 -0.160 -0.098 -0.020
TpB 0.877 1.000 0.774 0.812 0.939 -0.053 -0.058 -0.132 -0.092 -0.039
TpH 0.924 0.774 1.000 0.885 0.884 0.042 0.010 -0.253 -0.159 -0.030
TpK 0.916 0.812 0.885 1.000 0.874 0.104 0.043 -0.017 -0.054 0.044
TpP 0.912 0.939 0.884 0.874 1.000 0.004 -0.026 -0.112 -0.147 -0.069
PrA -0.018 -0.053 0.042 0.104 0.004 1.000 0.608 0.466 0.509 0.579
PrB -0.025 -0.058 0.010 0.043 -0.025 0.608 1.000 0.414 0.462 0.684
PrH -0.160 -0.132 -0.253 -0.017 -0.112 0.466 0.414 1.000 0.430 0.432
PrK -0.098 -0.092 -0.159 -0.054 -0.147 0.509 0.462 0.430 1.000 0.483
PrP -0.020 -0.039 -0.030 0.044 -0.069 0.579 0.684 0.432 0.483 1.000

In order to summarize the information on correlation matrices and to structure
the set of variables, we employ principal component analysis. For this multivariate
procedure one may consult Morrison (1976), Hartung and Elpelt (1995), Fahrmeir
et al. (1996). A short outline of this analysis goes as follows.

We start with our p observation variables, now denoted by x1, . . . , x p; to each
belongs an observation vector of length n (denoted by x1, . . . , x p, too). In our case,
we have p = 10 (later also p = 5) and n = 79. We assume that the vectors x j

are already standardized (mean 0, variance 1). As usual, we arrange these p vectors
of length n in the form of an n × p data matrix X , i.e., X = (x1, x2, . . . , x p).
From this data, we derive the p × p correlation matrix R = (X� · X)/(n − 1). Let
λ1 ≥ · · · ≥ λp be the p positive eigenvalues of the matrix R and a1, . . . , ap the
corresponding (orthogonal) eigenvectors,

R · a j = λ j a j , j = 1, . . . , p,

http://dx.doi.org/10.1007/978-3-642-32084-2_3
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Fig. 3.2 Principal component
analysis; temperature and
precipitation in the years
1930–2008, at five stations
A,B,H,K,P as in (3.1). The
loadings of the observation
variables are plotted in the
plane, spanned by the first
two components. Analysis
is performed with the ten
variables TpA, TpB, TpH,
TpK, TpP (all lying in the
lower right corner) PrA, PrB,
PrH, PrK, PrP (upper left
corner)
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the vectors a j normalized to 1. Now we build certain linear combinations of the p
observation variables: the p vectors y j of length n, defined by

y j = X · a j , j = 1, . . . , p,

are called principal components (sometimes: principal factors). They are uncorre-
lated, with Var(y j ) = λ j for each j = 1, . . . , p. The value y ji is the j th factor score
for case i , i = 1, . . . , n. The p eigenvectors a j are arranged in the form of a p × p
matrix Λ,

Λ = (a1, a2, . . . , ap),

the elements Λk j = a jk are called loadings. The loading a jk (multiplied by
√

λ j )
equals the correlation between the (standardized) observation variable xk and the
principal component y j . This fact serves as basis for the interpretation of the loadings.

First, we apply principal component analysis to the 10 × 10 correlation matrix,
which is shown above. For each of the 10 climate variables TpA, PrA, . . ., TpP, PrP,
the first two components a1k, a2k of the loadings are plotted in Fig. 3.2. As it was to be
expected, the five temperature variables and the five precipitation variables are lying
strictly apart. Therefore, we apply the analysis to each of the two sets of variables
separately, i.e., first to the upper left and then to the lower right 5× 5 submatrix of
the 10× 10 correlation matrix.

Table 3.4 brings the 5 × 5 loading matrix Λ in the case of the five temperature
variables. The first component can be comprehended as a general factor of mag-
nitude. The second to fifth component describes differences between the stations:
the second distinguishes Bremen (−0.71) on one side and Hohenpeißenberg (0.51),
Karlsruhe (0.35) on the other. This is also expressed by Fig. 3.3 (left). The third
component differentiates between Hohenpeißenberg (−0.58) and Karlsruhe (0.78).
We will come back to this interpretation immediately.
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Table 3.4 Principle component analysis of the five temperature variables (Tp) at the stations
A,B,H,K,P as in (3.1)

Variable Component 1 Component 2 Component 3 Component 4 Component 5

TpA 0.458 0.143 −0.019 −0.776 0.409
TpB 0.435 −0.709 0.056 −0.155 −0.530
TpH 0.442 0.513 −0.581 0.145 −0.427
TpK 0.444 0.349 0.779 0.258 −0.094
TpP 0.456 −0.304 −0.229 0.536 0.600
Standard deviations 2.126 0.516 0.344 0.261 0.165
Proportions of variance 0.904 0.053 0.024 0.014 0.005

The loading matrix Λ is given, together with the standard deviations (that are the square roots of
the eigenvalues) and the proportions of variance, for each of the five components
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Fig. 3.3 Principal component analysis; temperature and precipitation in the years 1930–2008, at
five stations A, B, H, K, P as in (3.1). The loadings of the observation variables are plotted in the
plane, spanned by the first two components. Left Analysis with the five temperature variables TpA,
TpB, TpH, TpK, TpP. Right Analysis with the five precipitation variables PrA, PrB, PrH, PrK, PrP
(the first component with a negative sign)

Table 3.5 presents the analogous results for the five precipitation variables.
Here, the second component differentiates between (Bremen, Potsdam) and
(Hohenpeißenberg, Karlsruhe), see also Fig. 3.3 (right), the third between
Hohenpeißenberg and Karlsruhe.

In Fig. 3.4, the first two factor scores y1i , y2i of the 79 cases (years) are plotted,
for the five temperature variables (left) and for the five precipitation variables (right).
For selected cases, numerical values of factor scores 1, 2, and 3 are given below.
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Table 3.5 Principle component analysis of the five precipitation variables (Pr) at the stations
A,B,H,K,P as in (3.1)

Variable Component 1 Component 2 Component 3 Component 4 Component 5

PrA −0.470 −0.096 0.000 −0.859 0.180
PrB −0.473 −0.434 0.172 0.156 −0.730
PrH −0.392 0.756 0.506 0.125 −0.049
PrK −0.419 0.308 −0.834 0.172 −0.071
PrP −0.474 −0.369 0.137 0.440 0.653
Standard deviations 1.744 0.817 0.747 0.650 0.558
Proportions of variance 0.608 0.134 0.112 0.085 0.062

See legend to Table 3.4. The first component appears with a negative sign

Temperature Precipitation
No Score1 Score2 Score3 Score1 Score2 Score3
[1] 0.966 -0.338 0.162 -1.314 0.121 -1.380
[2] -2.570 -1.048 0.315 -1.108 0.105 -2.332
[3] -0.251 -1.047 -0.164 0.762 0.390 0.190
[4] -2.158 -0.897 0.340 1.889 1.493 0.571
[5] 2.863 -1.015 -0.247 2.634 0.090 0.228
[6] -0.029 -0.965 0.750 -0.900 -0.056 -0.174
[7] -0.365 0.104 0.448 -0.692 1.281 0.474
[8] 0.149 0.365 0.003 -0.337 0.537 0.650
[9] 0.270 -0.630 -0.347 0.319 0.307 -0.175
[10] -0.753 -0.455 0.101 -2.621 1.417 0.168
.... ....
[46] 1.187 -1.100 0.120 1.893 0.976 -0.876
.... ....
[70] 3.059 -0.443 0.445 0.163 2.801 0.180
[71] 4.011 0.343 0.278 -0.505 0.735 0.373
[72] 1.385 0.480 0.403 -2.040 -0.253 0.005
[73] 3.063 0.763 0.021 -4.055 -1.088 0.061
[74] 2.944 1.215 0.046 3.275 -0.778 -0.200
[75] 1.374 0.158 0.236 0.057 -0.969 0.367
[76] 1.635 0.046 0.394 0.865 -0.528 0.854
[77] 3.293 0.220 -0.018 0.693 0.575 -0.940
[78] 3.814 -0.074 0.134 -2.600 -0.925 0.803
[79] 2.747 0.018 0.090 -0.168 -0.430 -0.812

We will discuss some cases.

Temperature: Case No. 71 (year 2000) lies at the right border of Fig. 3.4 (left plot)
with a maximal score 1 value of 4.01, but the score 2 is near zero (0.34). Accordingly,
the temperature means of the year 2000 lie above the average—for all five stations
(see the data set in Sect. A.2).

Case No. 46 (1975) is situated at the bottom of that figure, with a score 2 of−1.10.
Accordingly in the year 1975, the temperature in Bremen is above the average, while
the contrary is the case at Hohenpeißenberg.
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Fig. 3.4 Principal component analysis; temperature and precipitation in the years 1930–2008 at
five stations A, B, H, K, P as in (3.1). The 79 cases (years) are plotted in the plane, spanned by the
first two factor scores. Left Analysis with the five temperature variables TpA, TpB, TpH, TpK, TpP.
Right Analysis with the five precipitation variables PrA, PrB, PrH, PrK, PrP (the first component
with a negative sign)

Case No. 74 (2003), at the upper border, has Hohenpeißenberg (and Karlsruhe)
far above the average, but Bremen only slightly.

Case No. 6 (1935) possesses a relatively large value of score 3. The temperature
mean at Hohenpeißenberg lies below the average, that of Karlsruhe exceeds it.

Precipitation: Case No. 73 (2002) lies at the left border of Fig. 3.4 (right
plot) with an extreme negative score 1 value of −4.05. Correspondingly, all five
precipitation amounts of the year 2002 lie above the average (see Sect. A.2).

Case No. 70 (1999), at the upper border of that figure, has the largest score 2 value
(2.80). The precipitation amount in Bremen in this year 1999 is below, the amount
at Hohenpeißenberg far above the average.

Case No. 2 (1931), with minimal negative score 3 value of −2.33, differentiates
the amounts at Hohenpeißenberg and Karlsruhe: The former lies below, the latter far
above the average.

R 3.2 Principal component analysis with five temperature variables
TpA,TpB,TpH,TpK,TpP.

The data set Years5 can be found in Appendix A.2. After building the correlation
matrix (cor), loadings (loadings) and factor scores (scores) are extracted from
principal components (princomp) and are plotted; compare Figs. 3.3 (left) and 3.4
(left).
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All5TP<- read.table("C:/CLIM/Years5.txt",header=T)
attach(All5TP)

postscript(file="C:/CLIM/All5T.ps",height=12,width=16,horiz=F)
par(mfrow=c(2,1),pty="s") #two square plots

quot<- "Temp. at 5 Stations A,B,H,K,P"; quot
all5T<-cbind(TpA,TpB,TpH,TpK,TpP)
txt<- c("A","B","H","K","P")
"Correlation matrix"; cor(all5T)
"Principal components"
all5T.pca<- princomp(all5T,cor=T); summary(all5T.pca)
load5T<- -loadings(all5T.pca) #minus sign for convenience
print(load5T,cutoff=0.01) #print only loadings |.| > 0.01
x<- load5T[,1]; y<- load5T[,2] #Comp 1, Comp 2 (out of 5)
plot(x,y,type="n",xlab="Comp. 1",ylab="Comp. 2")
text(x,y,txt,cex=0.9); title(main=quot,cex=0.8)
x<- -all5T.pca$scores[,1]; y<- -all5T.pca$scores[,2] #dim 79
plot(x,y,type="n",xlab="Factor Score 1",ylab="Factor Score 2")
text(x,y,"1":"79",cex=0.75); title(main=quot,cex=0.8)

dev.off()

Output from R 3.2 The variances (squared standard deviations) are the five eigen-
values of the 5× 5 correlation matrix R. Their sum is 5. The columns Components
1–5 of the matrixLoadings are the five (orthogonal) eigenvectors of R, normalized
to 1. Eigenvalues and eigenvectors can also be obtained by the R-commands R<-
cor(all5T) and
eigen(R)$values , eigen(R)$vectors

respectively.

"Principal components"
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation 2.126 0.5162 0.3441 0.2608 0.1652
Proportion of Variance 0.904 0.0533 0.0237 0.0136 0.0055
Cumulative Proportion 0.904 0.9572 0.9809 0.9945 1.0000

Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

TpA 0.458 0.143 -0.019 -0.776 0.409
TpB 0.435 -0.709 0.056 -0.155 -0.530
TpH 0.442 0.513 -0.581 0.145 -0.427
TpK 0.444 0.349 0.779 0.258 -0.094
TpP 0.456 -0.304 -0.229 0.536 0.600
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3.3 Auto-Correlation Function

The theoretical auto-covariance function γ(h), h = 1, 2, . . . (see Appendix B.1) is
estimated from the bivariate sample

(Y1, Yh+1), . . . , (Yn−h, Yn) (3.2)

of size n − h. On the basis of (3.2) the empirical auto-covariance γ̂(h) = c(h) is
calculated by

c(h) = 1

n

n−h∑
t=1

(Yt − Ȳ )(Yt+h − Ȳ ), h = 0, 1, . . . ,

with the total mean Ȳ = (1/n)
∑n

i=1 Yi .
Here, the estimator σ̂2 for the variance σ2 = Var(Yt ), that is

σ̂2 = c(0) = 1

n

n∑
t=1

(Yt − Ȳ )2,

has the factor 1/n and not—as usual in standard statistics—the factor 1/(n − 1).
The empirical auto-correlation ρ̂(h) = r(h) is gained by using c(h), namely by

r(h) = c(h)

c(0)
=

∑n−h
t=1 (Yt − Ȳ )(Yt+h − Ȳ )∑n

t=1(Yt − Ȳ )2
, h = 0, 1, . . . .

We have r(0) = 1 and |r(h)| ≤ 1. The quantities r(h), plotted over h = 1, 2, . . .,
are also called the correlogram of the time-series. It is recommended to perform
correlogram analysis in time series with n ≥ 50 only, and to evaluate r(h) only up
to a time lag h ≤ [n/4]; see Box & Jenkins (1976).

A test for a pure random series (or white noise process) is based on k values r(h),
h = 1, . . . , k, of the correlogram. The hypothesis

H0 : the time series is the realization of a white noise process

is rejected (level α) if, with the Bonferroni-bound bk = u1−β/2/
√

n, β = α/k,

at least one of the values |r(1)|, |r(2)|, . . . , |r(k)| exceeds bk .

The individual bound b1 = u1−α/2/
√

n is valid for a coefficient r(h) with a time lag
h specified in advance (for instance h = 1). Note that 5 % of the correlogram values
of a pure random series (where H0 is true!) exceeds—on the average—the individual
bounds ±b1 (when α = 0.05 was chosen).
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Table 3.6 Auto-correlation function (correlogram) of temperature series up to lag 12—omitting
h = 9, 10, 11; for Hohenpeißenberg 1781–2010, Karlsruhe 1799–2008 and Potsdam 1893–2010

Hohenpeißenberg Karlsruhe Potsdam
h rY (h) re(h) rW (h) rY (h) re(h) rW (h) rY (h) re(h) rW (h)

1 0.295 0.115 0.076 0.329 0.110 0.112 0.355 0.146 0.123
2 0.254 0.068 0.055 0.312 0.101 −0.003 0.232 −0.009 0.000
3 0.175 −0.022 0.050 0.227 0.001 0.005 0.025 −0.254 −0.113
4 0.213 0.033 −0.053 0.211 −0.014 −0.060 0.071 −0.167 −0.148
5 0.117 −0.080 0.036 0.223 0.006 −0.003 0.121 −0.080 0.051
6 0.150 −0.038 0.077 0.233 0.036 0.104 0.128 −0.069 0.021
7 0.148 −0.036 0.031 0.240 0.058 0.095 0.206 0.037 0.207
8 0.111 −0.070 −0.015 0.181 −0.011 −0.043 0.173 0.004 −0.053
... ... ... ... ... ... ... ... ... ...
12 0.113 −0.030 −0.043 0.087 −0.079 −0.055 0.004 −0.125 −0.005
b1 0.129 0.129 0.129 0.135 0.135 0.135 0.180 0.180 0.180
b12 0.189 0.189 0.189 0.198 0.198 0.198 0.264 0.264 0.264

Y = yearly data, W = winter data, e = Y− pol(4), the residuals of the yearly data from polynomial
trend (order 4). Individual (b1) and simultaneous (b12) bounds are added, α = 0.05

Annual Temperature and Precipitation

The correlogram r(h), h = 1, . . . , 12, of the n = 230 annual temperature means
of Hohenpeißenberg has three values above the simultaneous bound b12 and most
values above b1. These high (positive) auto-correlation values result from the trend
component of the series. If we remove a polynomial trend (of order 4) we have positive
and negative values, now all between the±b1 bounds, see Table 3.6 and Fig. 3.5. The
same phenomenon (even more drastically) can be reported from the Karlsruhe series
(Table 3.6, but no plots). As already observed in Sect. 1.2, the winter temperature
series are much nearer to a pure random series than the annual temperature series
are. This is now confirmed by the auto-correlation functions reproduced in Table 3.6
and Fig. 3.6.

The Karlsruhe series of annual precipitation (without any trend removal)
is—according to its correlogram in Table 3.7—close to a pure random series; the
same is true for Potsdam (see also Fig. 3.8). But this is different from Hohenpeißen-
berg, where the precipitation series—as already mentioned above in 3.1—has more
auto-correlation structure; see the correlogram in Table 3.7 and Fig. 3.7.

R 3.3 Auto-correlation function of a time series by means of acf, but no plot
is specified within acf (plot=F). A needle-plot as in Fig. 3.5 is produced by the
user function plotAcf. Horizontal lines b1 and b12 of individual and simultaneous
bounds are drawn.

attach(hohenTp)
quot<- "Hohenpeissenberg, Temperature, 1781-2010"; quot

http://dx.doi.org/10.1007/978-3-642-32084-2_1
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Fig. 3.5 Hohenpeißenberg, annual temperature means, 1781–2010. Top Auto-correlation function
(correlogram) of the time series. Bottom Auto-correlation function (correlogram) of the residuals
from polynomial trend (order 4). Individual (b1) and simultaneous (b12) bounds are drawn, α = 0.05

plotAcf<- function(ACF,maxl,cylim,b1,bm){ #Needle-Plot of ACF
plot(1:maxl,ACF,pch=16,ylim=cylim,xlab="lag",

ylab="Auto-correlation")
for (i in 1:maxl){

segments(i,0.0,i,ACF[i])} #Needles
abline(h=0,lty=3); abline(h=c(-b1,-bm,b1,bm),lty=2) #Bounds
text(maxl+0.1,b1+0.01,"b1",cex=0.7)
text(maxl+0.1,bm+0.01,"b",cex=0.7)
text(maxl+0.25,bm+0.01,maxl,cex=0.7)
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Fig. 3.6 Hohenpeißenberg, winter temperature means, 1781–2010. Auto-correlation function (cor-
relogram) of the time series. Individual (b1) and simultaneous (b12) bounds are drawn, α = 0.05

}

#Vector Y is the time series to be analyzed
Y<- Tyear/100; n<- length(Y); maxl<- 12 #maximal lag

subtxt<- "Auto-correlation function of time series"; subtxt
zacf<- acf(Y,lag.max=maxl,type="corr",plot=F) #no Plot

ACF<-zacf$acf[2:(maxl+1)]; ACF #Output of $r(1)...r(maxl)

postscript(file="C:/CLIM/Acf.ps",height=20,width=12,horiz=F)
par(mfrow=c(2,1))

cylim<- c(-0.2,0.33)
b1<- qnorm(0.975)/sqrt(n); bm<- qnorm(1-0.025/maxl)/sqrt(n)
plotAcf(ACF,maxl,cylim,b1,bm) #Produce Needle-Plot
title(main=quot); title(sub=subtxt,cex=0.7)

#---Analogously for the detrended series----------------------

dev.off()
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Fig. 3.7 Hohenpeißenberg, annual precipitation amounts, 1879–2010. Auto-correlation function
(correlogram) of the time series. Individual (b1) and simultaneous (b12) bounds are drawn, α = 0.05

2 4 6 8 10 12

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

lag

A
ut

o−
co

rr
el

at
io

n

b1

b12

Potsdam, Precipitation 1893 − 2010

Precipitation Year

Auto−correlation function of time series

Fig. 3.8 Potsdam, annual precipitation amounts, 1893–2010. Auto-correlation function (correl-
ogram) of the time series. Individual (b1) and simultaneous (b12) bounds are drawn, α = 0.05
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Table 3.7 Auto-correlation function (correlogram) of the annual precipitation amounts up to lag
12—omitting h = 9, 10, 11; for Hohenpeißenberg (H) 1879–2010, Karlsruhe (K) 1876–2008 and
Potsdam (P) 1893–2010

h 1 2 3 4 5 6 7 8 ... 12 b1 b12

H 0.273 0.215 0.156 0.05 0.05 0.02 −0.07 0.03 ... 0.12 0.17 0.25
K 0.009 −0.116 −0.023 0.03 −0.02 −0.05 −0.07 0.08 ... 0.03 0.17 0.25
P −0.078 −0.151 −0.084 0.04 −0.10 −0.03 0.08 −0.12 ... −0.02 0.18 0.26

Individual (b1) and simultaneous (b12) bounds are added, α = 0.05

Table 3.8 Conditional probabilities for exceeding threshold values (quantiles) Qγ , for γ =
0.50, 0.75, 0.90

Conditional probability Correlation ρ = ρX,Y

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

IP
(
Y > Qy

0.50|X > Qx
0.50

)
0.50 0.53 0.56 0.60 0.63 0.67 0.70 0.75

IP
(
Y > Qy

0.75|X > Qx
0.75

)
0.25 0.29 0.34 0.40 0.45 0.51 0.57 0.64

IP
(
Y > Qy

0.90|X > Qx
0.90

)
0.10 0.14 0.17 0.24 0.29 0.39 0.45 0.53

Each entry is calculated by means of 40,000 simulations of a pair (X, Y ) of two-dimensional
Gaussian random variables

3.4 Prediction of Above-Average Values

Assume that we have calculated a certain value for the auto-correlation r(1) =
r(Yt , Yt+1). Assume further, that we have just observed an above-average value of
Yt (or an extreme value of Yt ). What is the probability IP, that the next observation
Yt+1 will be above-average (extreme), too?

To tackle this problem, let X and Y denote two random variables, with the coeffi-
cient ρ = ρX,Y of the true correlation between them. We ask for the probability, that
an observation X , being greater than a certain threshold value Qx , is followed by
an observation Y , exceeding a Qy . If the X -value exceeds Qx , then Table 3.8 gives
(broken down according to the coefficient ρ) the probabilities IP for the event, that
the Y -value exceeds Qy . As threshold values we choose quantiles Qγ (also called
γ · 100 % percentiles), for γ = 0.5, 0.75, 0.90. These threshold values could also be
called: average value (more precisely an 50 % value), upper 25 % value, upper 10 %
value, respectively.
Examples:

1. Assume that X turns out to exceed Qx
0.50 (X being an upper 50 % value, shortly:

being above-average). Then the probability that Y is above-average, too, equals

50 % for ρ = 0; 60 % for ρ = 0.30; 70 % for ρ = 0.60.
2. If X exceeds Qx

0.90 (X being an upper 10 % value), then the probability that Y is
an upper 10 percent value, too, equals

10 % for ρ = 0; 24 % for ρ = 0.30; 45 % for ρ = 0.60.

In the sequel, X and Y will denote climate variables, where X is followed by Y .
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Table 3.9 Hit ratios of the rules 1–6

Ex X → Y r(X, Y ) IP % [Y♦ȳ|X♦x̄]a
Hohen Berlin (%) Hohen (%) Brem (%) Karls (%)

1 Tp Dec Tp Jan 0.13 0.54 [> | >] 70 56 58 58
1 Tp Dec Tp Feb 0.11 0.53 [> | >] 60 55 62 62
2 Tp Sep Tp Oct 0.14 0.54 [> | >] 62 57 56 55

0.54 [< | <] 62 52 48 54
3 Tp Nov Tp May 0.04 0.51 [> | >] 50 52 52 55

Pr Nov Pr May −0.02 0.50 [> | >] 50 43 42 42
4 Tp Aug Tp Feb 0.08 0.53 [> | >] 73 52 62 56

Pr Aug Pr Feb 0.04 0.51 [> | >] 50 47 40 50
5 Tp Sum Tp Win 0.06 0.51 [> | >] – 53 62 54

0.49 [< | >] – 47 38 46
Pr Sum Pr Win −0.02 0.50 [> | >] – 42 40 41

0.50 [< | >] – 58 60 59
6 Tp Win Tp Sum 0.16 0.55 [> | >] – 55 56 51

0.55 [< | <] – 62 52 55
0.45 [> | <] – 38 48 45

Pr Win Pr Sum 0.22 0.57 [> | >] – 62 48 50
0.43 [> | <] – 42 52 43

Explanations in the text
a♦ stands for a “>” or a “<” sign

Application to Climate Data

Once again, only the results for the adjusted series, that are the figures in Tables 3.1,
3.2 and 3.3 not in parenthesis, are discussed.

The absolute value of most auto-correlations r(1) falls into the interval from 0.0
to 0.2. Hence the ratio of hits—when observing an above-average climate value and
predicting the same for the next observation—lies between 50 and 56 %, according to
Table 3.8. (This is to compare with 50 %, when predicting ‘above average’ indepen-
dently of the present observation.) These modest chances of a successful prediction
will find their empirical counterparts in Table 3.9.

The daily temperatures, with r(1) > 0.70, have a hit ratio >75 % for the prediction
above-average→ above-average. If we have an upper 10 % day, then we can predict
the same for the next day with success probability above 53 % (to compare with
10 %).

The auto-correlation coefficients r(1) of the daily precipitation amounts, listed in
Tables 3.1, 3.2 and 3.3, are not very meaningful, since the half of all days is without
any precipitation. If we introduce the dichotomy (Prec > 0 or Prec = 0, if there is
or there is no precipitation), we obtain for the 365*4 days of the years 2004–2007 at
Hohenpeißenberg and in Karlsruhe the following 2× 2 frequency tables.
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Hohenpeißenberg Succeeding day
∑

present day Prec = 0 Prec > 0

Prec = 0 493 225 718
0.687 0.313 1.0

Prec > 0 225 516 741
0.304 0.696 1.0∑
718 741 1459
0.492 0.508 1.0

Karlsruhe Succeeding day
∑

present day Prec = 0 Prec > 0

Prec = 0 536 243 779
0.688 0.312 1.0

Prec > 0 243 437 680
0.357 0.643 1.0∑
779 680 1459
0.534 0.466 1.0

Evaluating the relative frequencies of the tables, we can report the following results
(simplifying “precipitation” to “rain”).

If a day keeps dry, we can say the same for the next day with a hit ratio of≈ 69 %
[Hohenpeißenberg and Karlsruhe].

If a day is rainy, we can predict rain for the following day with hit ratios of≈ 70 %
[Hohenpeißenberg] resp. ≈ 64 %[Karlsruhe].
That is, we have the percentages

prediction dry→ dry: ≈ 69 % [Hohenpeißenberg] ≈ 69 % [Karlsruhe]
prediction rainy→ rainy: ≈ 70 % [Hohenpeißenberg] ≈ 64 % [Karlsruhe].

When evaluating “weather rules” concerning temperature and precipitation, numeri-
cal schemes of the type of Tables 3.1, 3.2 and 3.3 or of the above 2×2 tables become
important.
The analysis of daily precipitation data is continued in Sects. 6.3, 6.4 and 6.5.

3.5 Folk Sayings

Folk (or country) sayings about weather relate to
a particular region (presumably not covered here)
a particular time epoch (here centuries are involved)

and to the crop (Malberg 2003). The former weather observers (from the country or
from
monasteries) without modern measuring, recording, and evaluation equipments were
pioneers of weather forecasting.

The following sayings are selected from Malberg (2003) and from popular sources.
We kept the German language, but we have transcribed them in Table 3.9.

http://dx.doi.org/10.1007/978-3-642-32084-2_6
http://dx.doi.org/10.1007/978-3-642-32084-2_6
http://dx.doi.org/10.1007/978-3-642-32084-2_6
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Persistence rules
Ex. 1: Ist Dezember lind→ der ganze Winter ein Kind
Ex. 2: Kühler September→ kalter Oktober
Six-months rules
Ex. 3: Der Mai kommt gezogen← wie der November verflogen
Ex. 4: Wie der August war→ wird der künftige Februar
Yearly-balance rules
Ex. 5: Wenn der Sommer warm ist→ so der Winter kalt
Ex. 6: Wenn der Winter kalt ist→ so der Sommer warm

The columns of Table 3.9 present

• transcription of the weather rules 1–6, with Tp standing for temperature and Pr for
precipitation
• correlation coefficient r = r(X, Y ) from the Hohenpeißenberg data
• conditional probability IP(Y > Qy

0.5|X > Qx
0.5), belonging to the r -value accord-

ing to Table 3.8
• percentage % [Y > ȳ|X > x̄] of cases with an above-average X -value, in which

an above-average Y -value follows. This is given for Berlin-Dahlem 1908–1987
(Malberg 2003), Hohenpeißenberg, Bremen, Karlsruhe.

Rule 2 aims at the percentage % [Y < ȳ|X < x̄], rule 5 at % [Y < ȳ|X > x̄],
rule 6 at % [Y > ȳ|X < x̄]. These percentages are presented, too, in addition to the
percentage % [Y > ȳ|X > x̄].

The hit ratios, gained from the Hohenpeißenberg and from the Karlsruhe data, are
rather poor and cannot confirm the rules (Bremen performs only slightly better). At
most the persistence rules find a weak confirmation. In some cases another version
of the rule (Ex. 2) or even the opposite rule (Ex. 5, Ex. 6) are proposed by our data.

With one or two exceptions the Berlin-Dahlem series brings higher hit ratios than
the series from Hohenpeißenberg or Bremen, Karlsruhe. The reason could be, that
the Dahlem series is shorter and is perhaps (climatically) nearer to the place of origin
of the rules.

Note that the theoretical IP values from Table 3.8, given here for the r -values of the
station Hohenpeißenberg, are consistent with the empirical percentages in Table 3.9,
evaluated for temperature at the station Hohenpeißenberg.

R 3.4 Calculating the hit ratios for the weather rules 1 and 2, by applying the
user function CondFrequ. For the n-dimensional vector x = (x(1), . . . , x(n)),
x[condition] selects thex-components x(i) for those cases i , wherecondition
is fulfilled. So x0 contains the x-values for cases, where x is above-average, yx0 the
y-values for cases, where y and x are above-average.

attach(hohenTp)
#Number of cases with above-/below-average values
CondFrequ<- function(x,y){ #Conditional frequencies y|x
x0<- x[x > mean(x)]
yx0<- y[x > mean(x) & y > mean(y)]
x1<- x[x < mean(x)]
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yx1<- y[x < mean(x) & y < mean(y)]
c("x>"=length(x0),"x>&y>"=length(yx0),

"y>|x>"= length(yx0)/length(x0),
"x<"=length(x1),"x<&y<"=length(yx1),

"y<|x<"=length(yx1)/length(x1)) }
#----------------------------------------------------------
"x=Dec -> y=Jan"
x<- dcly/10; y <- jan/10
c("mean(x)"=mean(x),"mean(y)"=mean(y),"cor(x,y)"=cor(x,y))
CondFrequ(x,y)

"x=Sep -> y=Oct"
x<- sep/10; y <- oct/10
c("mean(x)"=mean(x),"mean(y)"=mean(y),"cor(x,y)"=cor(x,y))
CondFrequ(x,y)

Output from R 3.4 y > |x > resp. y < |x < denotes the relative number of
cases with above-average values resp. below-average values, followed by cases of
the same kind.

Example: We have 63/112 = 0.5625.

"x=Dec -> y=Jan"
mean(x) mean(y) cor(x,y)
-0.9461 -1.9639 0.1316

x> x>&y> y>|x> x< x<&y< y<|x<
112.00 63.00 0.5625 118.00 58.00 0.4915

"x=Sep -> y=Oct"
mean(x) mean(y) cor(x,y)
11.6557 7.1461 0.1391

x> x>&y> y>|x> x< x<&y< y<|x<
120.00 68.00 0.5667 110.00 57.00 0.5182



Chapter 4
Model and Prediction: Yearly Data

In the following we discuss statistical models, which are supposed (i) to describe
the mechanism how a climate series evolves, and which can support (ii) the predic-
tion of climate values in the next year(s). Time series models of the ARMA-type,
as described in the Appendix B.3, will stand in the center of our analysis. These
models are applied to the series of differences of consecutive time series values; this
“differenced” series is considered as sufficiently “trendfree”.

Predictions are calculated as real forecasts: The prediction for the time point t
is based on information up to time t − 1 only. Residuals from the predictions are
formed and analyzed by means of auto-correlation functions and by GARCH-models.
The sum of squared residuals serves as a goodness-of-fit measure. On the basis of
this measure, the ARMA-models are compared with (left-sided) moving averages.
Finally, the annual precipitation series are investigated by means of GARCH-models.

4.1 Differences, Prediction, Summation

Let Y be the time series of N yearly climate records; that is, we have the data Y (t),
t = 1, . . . , N . In connection with time series models and prediction, the trend of
the series is preferably removed by forming differences of consecutive time series
values. From the series Y we thus arrive at the differenced series X , with

X (t) = Y (t)− Y (t − 1) , t = 2, . . . , N , [X (1) = 0]. (4.1)

Table 4.1 shows that the yearly changes X of temperature have mean ≈ 0 and an
average deviation (from the mean 0) of ≈ 1 (◦C), at all four stations. The first order
auto-correlations r(1) of the differences X lie in the range −0.4 . . .−0.5. After an
increase of temperature follows—by tendency—an immediate decrease in the next
year, and vice versa; see also the upper plots of Figs. 4.1, 4.2.

H. Pruscha, Statistical Analysis of Climate Series, 49
DOI: 10.1007/978-3-642-32084-2_4, © Springer-Verlag Berlin Heidelberg 2013
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Table 4.1 Differences X of temperature means (◦C) in consecutive years

Station N Mean Standard deviation r (1) r (2) r (3)

Bremen 121 0.003 0.856 –0.384 0.060 –0.162
Hohenpeißenberg 230 –0.004 1.002 –0.465 0.021 –0.076
Karlsruhe 210 0.011 0.921 –0.489 0.057 –0.052
Potsdam 118 0.002 0.926 –0.402 0.074 –0.200

Mean value, standard deviation and the first 3 auto-correlation coefficients of X are given
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Fig. 4.1 Hohenpeißenberg, annual temperature means, 1781–2010. Top Differenced time series,
with ARMA-predictions (dashed line) and with residual values (as circles o). Bottom Time series
of annual temperature means (◦C), together with the ARIMA-prediction (dashed line). The last 50
years are shown

We now consider the differenced time series X (t) as sufficiently “trendfree” and
try to fit an ARMA(p,q)-model. Such a model obeys the equation

X (t) =αp X (t − p)+ · · · + α2 X (t − 2)+ α1 X (t − 1)

+ βqe(t − q)+ · · · + β2e(t − 2)+ β1e(t − 1)+ e(t), (4.2)
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Fig. 4.2 Potsdam, annual temperature means, 1893–2010. Legend as in Fig. 4.1

with error (residual) variables e(t). For each time point t we can calculate a prognosis
X̂(t) for the next observation X (t), called ARMA-prediction. This is done on the basis
of the preceding observations X (t−1), X (t−2), . . . .The prognosis X̂(t) is computed
as in Eq. (4.2), but setting e(t) zero, while the other variables e(t − 1), e(t − 2), . . .

are recursively gained as described around Eq. (B.13) in the Appendix. We have then
the ARMA-prediction

X̂(t) = αp X (t − p)+ · · · + α2 X (t − 2)+ α1 X (t − 1)

+ βq e(t − q)+ · · · + β2 e(t − 2)+ β1 e(t − 1). (4.3)

Equation (4.3) constitutes the Box & Jenkins forecast formula for time lead l = 1,
see Eq. (B.18) (setting there T = t − 1; l-steps forecasts follow in Sect. 8.2).

From the differenced series X we get back the original series Y by recursive
summation (also called integration): Y (t) = Y (t − 1) + X (t). The prediction Ŷ (t)
for Y (t) is gained by

http://dx.doi.org/10.1007/978-3-642-32084-2_8
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Ŷ (t) = Y (t − 1)+ X̂(t) , t = 2, . . . , N ; Ŷ (1) = Y (1).

Note that the residuals fulfill the equation

X (t)− X̂(t) = Y (t)− Ŷ (t).

This procedure is called the ARIMA-method, the variables Ŷ (t) are referred to as
ARIMA-predictions for Y (t).

Updating, Goodness-of-Fit

The calculation of X̂(t) has to be based on the information up to time t − 1, so that
we have to demand the same for the estimates of the coefficients αi , β j appearing
in Eq. (4.3). For this reason, we estimate αi , β j for each time point t (greater than a
starting value t0) anew, namely on the basis of the data

X (1), . . . , X (t − 1), t ≥ t0 + 1. (4.4)

For the estimation procedure we need a minimum sample size t0; thus we have the
X̂(t) at our disposal only from t0 onwards. However, the estimation of the α and β

uses the series from the beginning (time point 1) upwards. The coefficients estimated
on the basis of (4.4) could be denoted by α

[1,t−1]
i , β[1,t−1]

j instead of αi , β j (we write
α, β for the unknown coefficients as well as for their estimates). The goodness of
the prediction and hence the goodness-of-fit of the ARMA-model is assessed by the
principle of residual-sum-of-squares. More detailed, we build the mean value of the
squared residuals (MSQ) and extract then the square root, that is

RootMSQ =
√

(1/N0) ·
∑N

t=t0+1

(
X (t)− X̂(t)

)2
, N0 = N − t0. (4.5)

The smaller the RootMSQ value, the better is the fit of the model. Due to X (t) −
X̂(t) = Y (t) − Ŷ (t), the prediction Ŷ (t) for Y (t) is as good as the prediction X̂(t)
for X (t), namely by (4.5)

RootMSQ =
√

(1/N0) ·
∑N

t=t0+1

(
Y (t)− Ŷ (t)

)2
. (4.6)

Finally, we can build the standardized RootMSQ measure rsq, i.e.,

rsq = RootMSQ

sd(X)
, (4.7)

with the standard deviation sd(X) of the N0 values of the differenced series X (t),
t = t0 + 1, . . . , N .
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Table 4.2 ARIMA-method for the annual temperature means (◦C)

Order ARMA-coefficients Root ARIMA-prediction
sd p, q αi β j MSQ 2008–2010 2011

B 3, 1 0.228, 0.076, −0.193 −0.863 0.805 10.11, 9.96, 9.85 9.33
0.897 obs: 10.10, 9.98, 8.34 10.14

H 2, 2 −0.639, 0.105 −0.18, −0.67 0.762 7.49, 7.48, 7.52 7.26
0.981 obs: 7.74, 7.72, 6.38 8.48

P 4, 0 −0.56,−0.31,−0.41,−0.27 0.869 10.15, 10.01, 9.79 9.27
0.963 obs: 10.22, 9.63, 8.32 10.14

2006–2008 2009
K 3, 1 0.001, −0.02,−0.12 −0.809 0.687 11.32, 11.47, 11.53 11.49

0.844 obs: 11.61, 11.84, 11.59

Coefficients (calculated from the whole series), goodness-of-fit, predictions for the years
2008–2011 (Karlsruhe: 2006–2009), with actually observed values beneath. Further: sd = sd(X)
denotes the standard deviation of the N0 = N − t0 values of the differenced series X (t),
t = t0 + 1, . . . , N . B Bremen, H Hohenpeißenberg, K Karlsruhe, P Potsdam

4.2 ARIMA Method for Yearly Temperature Means

Now Y (t) denotes the temperature mean of the year t and X (t)—according to
Eq. (4.1)—the differenced series, i.e., the series of the yearly changes, see Figs. 4.1
and 4.2 (upper plots). It is the time series X to which an ARMA(p,q)-model is applied.

We choose (for the prediction) the starting year t0 = [N/5] and order numbers
(p, q) as small as possible, such that an increase of these numbers brings no essential
improvement of the goodness measure RootMSQ. For the Hohenpeißenberg data we
get p = q = 2 and therefore the ARMA(2,2)-model

X (t) = α2 X (t − 2)+ α1 X (t − 1)+ β2e(t − 2)+ β1e(t − 1)+ e(t) (4.8)

(for Bremen and Karlsruhe we obtain p = 3, q = 1, and for Potsdam p = 4, q = 0).
Table 4.2 shows the estimated coefficients αi = α

[1,N ]
i and β j = β

[1,N ]
j for the whole

series (used to produce the forecast for the year 2011; Karlsruhe: 2009). As a rule, at
least one α and one β are significantly different from zero. Further, the table offers
the forecasts for the three years 2008–2010 as well as for the year 2011, each time
on the basis of the preceding years. For Karlsruhe, we have predictions for the years
2006–2009 instead of 2008–2011. The prognoses for 2008 are quite good (exception
Hohenpb); the relatively low temperatures of the year 2010 are overestimated by
our prediction, compare also Figs. 4.1 and 4.2 (lower plots). These plots also show
the smoothing character of the ARIMA-predictions. For a clearer presentation we
confine ourselves to the reproduction of the last 50 years (but for calculating the
coefficients α, β, the series was used from its beginning, of course). In contrast to the
overestimated 2010-values, the comparatively high temperature means of the year
2011 are underestimated.
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We derive the standardized RootMSQ measures (4.7) for annual temperature from
Table 4.2 and obtain the following rsq-values, which are better for Hohenpeißenberg
and Karlsruhe than for Bremen and Potsdam:

Bremen 0.897, Hohenpb. 0.777, Karlsruhe 0.814, Potsdam 0.903

Remark A: We repeat that the RootMSQ-values 0.805, 0.762, 0.869, 0.687 for the
four stations were calculated with predictions X̂(t), gained from Eq. (4.3) with coef-
ficients α

[1,t−1]
i , β[1,t−1]

j . This was described above around (4.4). Let us call this pro-
cedure the forecast approach in regression analysis. In standard regression analysis
the coefficients αi = α

[1,N ]
i , β j = β

[1,N ]
j are computed only once for the whole

series and are used for each X̂(t), t = 1, . . . , N , according to (4.3). Here, in the
standard approach, we could take a t0-value as small as t0 = max(p, q). For the sake
of comparability however, we choose once again t0 = [N/5] as starting point for the
predictions. We arrive at the following RootMSQ-values

Bremen Hohenpeißenberg Karlsruhe Potsdam

(p, q) RootMSQ (3,1) 0.729 (2,2) 0.732 (3,1) 0.658 (4,0) 0.807

within standard regression, all four values being smaller than those of Table 4.2: The
ARMA-model fits better, when combined with the standard approach of regression
analysis. But that approach violates the forecast principle, advocated (e.g., around
(4.4)) and applied throughout this text. To repeat, this principle seems to be more
appropriate for (yearly updated) climate series.

R 4.1 Yearly temperature data: Differencing, ARMA-model for the differenced
series, prediction for the differenced series and for the integrated series (=ARIMA-
prediction), residual analysis. Note that the ARIMA-residuals are identical with
the residuals of the detrended series, which can be checked by the supplementary
program part. The forecast regression method is realized by the user functionarmat.
Herein, for each t = t0, . . . , N , theR functionarma operates on the data vector Y (s),
s = 1, . . . , t , and parma[t+1] contains the prediction on the basis of Y[1:t].

attach(bremenTp)
quot<- "Bremen, Temperature, 1890-2010"; quot

library(TSA) #see Cran-Software-Packages
#---------------------------------------------------------------
armat<- function(Y,n,tst,ma,mb){ #forecast regression approach
#parmat vect of dim n+1,components 1,..,tst filled with mean val
parmat<- 1:(n+1); parmat[1:tst]<- mean(Y[1:tst])

for(t in tst:n) {
art<- arma(Y[1:t],order=c(ma,mb))
coef<- art$coef; resi<- art$residuals
parma<- coef[ma+mb+1] #intercept theta
a<- rep(0,times=12); b<- a; mc<- pmax(ma,mb)
if (ma > 0) for (m in 1:ma){a[m]<- coef[m]} #alpha-coeff.
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if (mb > 0) for (m in 1:mb){b[m]<- coef[ma+m]} #beta-coeff.
for (m in 1:mc){parma<- parma + a[m]*Y[t+1-m] + b[m]*resi[t+1-m]}
parmat[t+1]<- parma
}
return(parmat) } #return prediction vector parmat

#---------------Data preparation, Differencing-------------------
mon12<- data.frame(bremenTp[,3:14])/10; #select jan-dec
Yje<- rowMeans(mon12) #more precise than Yje<- Tyear/100
N<- length(Year); Dy<- Yje
Dy[1]<- 0; Dy[2:N]<- Yje[2:N]-Yje[1:(N-1)] #Dy differenced series

ma<- 3; mb<- 1; tst<- trunc(N/5); ts1<- tst+1
c("ArOrder"=ma,"MAOrder"=mb,"Start"=tst,"Ncut"=N-tst,

"StdevDYcut"=sqrt(var(Dy[ts1:N])))

# ---------- ARIMA(p,q)-model and ARIMA-prediction----- ---------
# a) Differenced series Dy---------------------
darma<- arma(Dy,order=c(ma,mb)); "Results for whole diff series"
summary(darma) #for output only
"Forecast regression approach, differenced series"
parmat<- armat(Dy,N,tst,ma,mb) #vector i=1:(N+1)
pred<- parmat[ts1:N]; dres<- Dy[ts1:N]-pred #vector i=1:(N-(tst))
msq<- mean(dres*dres)
c("MeanDres"=mean(dres),"StdDres"=sqrt(var(dres)),

"MSQ (differenced)"=msq,"RootMSQ"=sqrt(msq))

"Auto-correlations of residuals, differenced series"
acf(dres,lag.max=8,type="corr",plot=F)

# b) Integrated series YIarma----------------------
YIarma<- Yje; YIarma[2:N]<- Yje[1:(N-1)]+parmat[2:N] #vect i=1:N
"Observations and ARIMA-predictions for last decade"
Yje[(N-9):N]; YIarma[(N-9):(N)]
c("Forecast NewYear"= Yje[N],parmat[N+1],Yje[N]+parmat[N+1])

Supplement

"Test: ARIMA-residuals = ARMA-residuals of differenced series"
"Test: same MSQ and auto-corr values as above"
YIres<- Yje - YIarma #YIres[ts1..] = dres[1...]
YIrer<- YIres[ts1:N]; misq<- mean(YIrer*YIrer)
c("MSQ (integrated)"=misq,"RootMSQ"=sqrt(misq))
"Auto-correlations of ARIMA-residuals"
acf(YIrer,lag.max=8,type="corr",plot=F)

Output from R 4.1 ARMA-output for differenced series, ARIMA-prediction for
the integrated series. Residuals with RootMSQ-value and auto-correlation function.
Bremen, Temperature 1890–2010.
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"Results for whole diff series"
Model: ARMA(3,1), Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
ar1 0.22830 0.10372 2.20 0.028 *
ar2 0.07624 0.09927 0.77 0.442
ar3 -0.19291 0.09659 -2.00 0.046 *
ma1 -0.86357 0.05999 -14.39 <2e-16 ***
intercept 0.01167 0.00969 1.20 0.229

"Forecast regression approach, differenced series"
MeanDres StdDres MSQ (differenced) RootMSQ
-0.07175 0.80571 0.64763 0.80475

"Auto-correlations of residuals, differenced series"
1 2 3 4 5 6 7 8

0.114 0.049 -0.122 -0.097 -0.025 -0.091 -0.020 -0.058

"Observations and ARIMA-predictions for last decade"
9.400 9.900 9.5333 9.625 9.658 10.192 10.542 10.100 9.983 8.342
9.856 9.424 9.5494 9.687 9.594 9.693 9.887 10.114 9.960 9.852

Forecast NewYear 8.34167 + 0.99195 = 9.33362

Comparison with Moving Averages

Alternatively, prediction according to the method of left-sided moving averages can
be chosen. As prediction Ŷ (t) (for Y (t) at time point t) we take the average of the
preceding observations Y (t−1), Y (t−2), . . . , Y (t−k). The number k of the “depth”
of averaging denotes the number of lagged variables and hence the number of years
involved in the average. For the reason of comparability, we choose here a starting
point t0 = [N/5], too. Once again by Eq. (4.6) we calculate the goodness of this
prediction method. Table 4.3 demonstrates, that for a depth k smaller than 5 (Po.),
6 (Ho.), 7 (Br.,Ka.) the RootMSQ-values of the ARIMA-method are not improved.
Notice that the latter method only needed p + q = 4 lagged variables. In the case
of Potsdam, the autoregressive model of order p = 4 performs only little better than
the—closely related—(left-sided) moving averages with k = 4.

4.3 ARIMA-Residuals: Auto-Correlation, GARCH Model

Having calculated the ARIMA-predictions Ŷ (t) for Y (t), t = t0+1, . . . , N , we then
build residuals

e(t) = Y (t)− Ŷ (t), t = t0 + 1, . . . , N , (4.9)
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Table 4.3 Left-sided moving averages for annual temperature means

Depth RootMSQ
k Bremen Hohenpeißenberg Karlsruhe Potsdam

4 0.839 0.794 0.722 0.885
5 0.830 0.780 0.708 0.865
6 0.818 0.761 0.695 0.851
7 0.800 0.756 0.679 0.832
8 0.794 0.753 0.678 0.819
ARIMA (p, q) (3, 1) 0.805 (2, 2) 0.762 (3, 1) 0.687 (4, 0) 0.869

Depth k of averaging and the resulting goodness-of-fit RootMSQ are listed. The latter is given for
the ARIMA-method, too (see Table 4.2)

Table 4.4 Auto-correlation function re(h), up to time lag h = 8 (years), of the ARIMA-residuals
e(t), together with individual bounds b1 and simultaneous bounds b8 [level 0.05]

re(1) re(2) re(3) re(4) re(5) re(6) re(7) re(8) b1 b8

B 0.114 0.049 –0.122 –0.10 –0.02 –0.09 –0.02 –0.06 0.199 0.278
H –0.123 0.103 –0.118 0.02 –0.03 0.05 0.02 –0.02 0.144 0.201
K 0.136 0.027 –0.089 –0.17 –0.10 –0.01 –0.01 –0.03 0.151 0.211
P 0.102 –0.039 –0.149 –0.20 –0.23 –0.09 0.02 0.06 0.201 0.281

Annual temperature means at the stations B Bremen, H Hohenpeißenberg, K Karlsruhe, P Potsdam

from these predictions; see Figs. 4.1 and 4.2 (upper plots). Note that we already used
these residuals in Eq. (4.6); as stated above we also have e(t) = X (t)− X̂(t). We ask
now for the structure of the residual time series e(t), t = t0 + 1, . . . , N . The values
of the auto-correlation function re(h), h = 1, . . . , 8, are close to zero, cf. Table 4.4.
The bound for the maximum of |re(h)|, h = 1, . . . , 8 (i.e., the simultaneous bound
with respect to the hypothesis of a pure random series), already used in 3.3, equals

b8 = u1−0.025/8/
√

N0 [significance level 0.05, N0 = N − t0],

and is not exceeded; even the bound b1 = u0.975/
√

N0 for an individual |re(h)| is
exceeded only one times (re(5) for Potsdam). We can assume, that the series e(t)
consists of uncorrelated variables, for each of the four stations.

Next we ask, whether the (true) variances of the ARIMA-residuals e(t) are con-
stant over time—or whether periods of stronger and periods of minor oscillation
alternate. To this end, we calculate—moving in 5-years time blocks [t − 4, t]—
the empirical variances σ̂ 2(t) of the e(t − 4), . . . , e(t). The roots σ̂ (t), plotted in
Fig. 4.3, form an oscillating line around the value 0.76 (see the RootMSQ-value for
Hohenpeißenberg in Table 4.2), but a definite answer to the above question can not
be given. A possibly varying oscillation of the series e(t) may be explained by a
GARCH-structure, which we are going to define next.
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Fig. 4.3 Hohenpeißenberg, annual temperature means, 1781–2010. Time series of ARIMA-
residuals (zigzag line), standard deviation σ̂ of left-sided moving (5-years) blocks (dashed line),
GARCH-predictions for σ (solid line around 0.76)

GARCH-Modeling the Residuals

A zero-mean process of uncorrelated variables Z(t) is called a GARCH(p,q)-process
(p, q ≥ 0), if the (conditional) variance σ 2(t) of Z(t), given the information up to
time t − 1, fulfills the ARMA(p,q)-type equation

σ 2(t) = αp Z2(t − p)+ · · · + α2 Z2(t − 2)+ α1 Z2(t − 1)+ α0

+ βqσ 2(t − q)+ · · · + β1σ
2(t − 1), t = 1, 2, . . . , (4.10)

(α’s, β’s nonnegative; see Kreiß and Neuhaus (2006); Cryer and Chan (2008)).
The GARCH-process Z(t) can iteratively be generated by the equation

Z(t) = σ(t) · ε(t), t = 1, 2, . . . ,

where σ(t) obeys Eq. (4.10) and where ε(t) is a pure (0,1)-random series (indepen-
dently distributed).

Order numbers (p, q) are to be determined (here p = 3, q = 1) and p + q + 1
coefficients α, β must be estimated. Then we build predictions σ̂ 2(t) for the series
σ 2(t) in this way: Let the time point t be fixed. Having observed the preceding
Z(t − 1), Z(t − 2), . . . , and having already computed σ̂ 2(t − 1), σ̂ 2(t − 2), . . . ,

then we put σ̂ 2(t) according to Eq. (4.10), but with σ 2(t − s) replaced by σ̂ 2(t − s).
Here the first q σ̂ 2-values must be predefined, for instance by the empirical variance of
the time series Z . We are calling σ̂ 2(t) the GARCH-prediction for the variance σ 2(t).
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Now we apply this method to our data and put Z(t) = e(t), the (uncorre-
lated) ARIMA-residuals from Eq. (4.9). For the Hohenpeißenberg series we estimate
the coefficients αi and β1 of the GARCH(3,1)-model, and calculate the GARCH-
predictions σ̂ 2(t), see Fig. 4.3. By means of the GARCH-residuals

ε̂(t) = e(t)/σ̂ (t)

we check the adequacy of the model: The mean and variance of ε̂(t) are ≈ 0 and 1,
resp., and the auto-correlation function rε̂ (h) runs near along the zero line, namely
with values 0.013, 0.007,−0.014, 0.028, . . . ,−0.057, for h = 1, 2, 3, 4, . . . , 8.

Thus, the GARCH-model fits well to our series e(t) of ARIMA-residuals.
The coefficients, the standard error of their estimation, and their quotient, i.e., the

t-test statistic, are

α0 α1 α2 α3 β1

Coefficient 0.495 0.0260 0.0703 0.000 0.060
Standard error 10.7 0.107 0.580 1.50 20.3
t-test 0.243 0.121 0.000 0.003

With very small t-values and corresponding P-values near 1, the value zero for
the coefficients α1, α2, α3, β1 is plausible, and thus a constant σ(t)-series can be
assumed. Accordingly, the GARCH-predictions for σ(t) reproduce in essence the
horizontal line 0.76, see Fig. 4.3 and the RootMSQ-value in Table 4.2. This means
that we can consider e(t) as a series of uncorrelated variables with (conditionally and
unconditionally) constant variance σ 2(t) = σ 2, i.e., as a (0, σ 2)-white noise process.
From there we can state, that the differenced sequence X (t) can sufficiently well be
fitted by an ARMA-model, since the latter demands a white noise error process.

R 4.2 GARCH-model for the time series of ARIMA-residuals, that are the residu-
als from the ARIMA(2,2)-trend acc. to Sect. 4.2 (stored in the file HoT22Res.txt,
with two variables Year, Y). Estimations for the coefficients of the GARCH(3,1)-
model by the R-function garch, GARCH-prediction for σ(t) twice, one time per
R-function fitted.values, one time –in the supplement– per user function
garchpr with identical results. Further: empirical estimation of σ(t) by means of
calculating the standard deviation in moving time blocks. The plot produces Fig. 4.3.

library(TSA) #see Cran-software-packages
Htpres<- read.table("C:/CLIM/HoT22Res.txt",header=T)
attach(Htpres)
quot<- "Hohenpberg, Temp 1781-2010, Residuals from trend"; quot
N<- length(Year); sde<- sqrt(var(Y))
c("Mean Y"=mean(Y),"Stdev Y"=sde,"Number Years"=N)

#---------R function garch-------------------------------------
ma<- 3; mb<- 1; mc<- pmax(ma,mb)+1 #GARCH-order ma,mb <= 4
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c("ma"=ma, "mb"=mb, "mc"=mc)
ord<- c(mb,ma) #reversed order input
zgarch<- garch(Y,order=ord,maxiter=40)
summary(zgarch) #a.o. diagnostic tests

#---------GARCH-prediction, sigma(t) estimation---------------
"Spre GARCH-prediction for sigma(t)"
Spre<- zgarch$fitted.values #$vector of dim N
"GARCH(p,q)-prediction, last ten values"; Spre[(N-9):N]
#Shat emp. estimator for sigma(t), moving blocks of length ka
ka<- 5; Shat<- rep(1,times=N)
for(t in ka:N) {Shat[t]<- sqrt(var(Y[(t-ka+1):t]))}
"Sigma(t)-estimation, last ten values"; Shat[(N-9):N]

#----------GARCH-residuals epsilon------------------------------
res<- Y/Spre; eps<- res[mc:N]
c("Mean epsilon"=mean(eps),"Stdev epsilon"=sqrt(var(eps)))
racf<- acf(eps,lag.max=8,type="corr",plot=F)
"Auto-correlations of GARCH-residuals epsilon"; racf$acf[1:8] #$

#--------Plot---------------------------------------------------
postscript(file="C:/CLIM/GARCHmod.ps",height=6,width=16,horiz=F)
cylim<-c(-1.5,1.5); ytext<- "Temperature [C]"
plot(Year,Y,type="l",lty=1,xlim=c(1780,2010),

ylim=cylim, xlab="Year",ylab=ytext,cex=1.3)
title(main=quot)
lines(Year[mc:N],Spre[mc:N],type="l",lty=1)
lines(Year[mc:N],Shat[mc:N],type="l",lty=2)
abline(h=c(-1,0,1),lty =3)

dev.off()

Supplement

garchpr<- function(y,n,a,ma,b,mb,sde){ #GARCH prediction
ys<- rep(sde,times=n) #vector of dim n
mc<- pmax(ma,mb)+1
for (t in mc:n){
suma<- a[1]; sumb<- 0 #a[1] constant term
for (m in 1:(mc-1)){
suma<- suma + a[m+1]*y[t-m]ˆ2
sumb<- sumb + b[m]*ys[t-m]ˆ2}
ys[t]<- sqrt(suma+sumb)}
return(ys) #return prediction vector ys
}

a<- rep(0,times=5); b<- rep(0,times=4)
for (m in 1:(ma+1)) {a[m]<- zgarch$coef[m]} #$a[1] constant
if (mb > 0) {for (m in 1:mb) {b[m]<-zgarch$coef[m+ma+1]}} #$

"Calculation of GARCH-prediction per user function garchpr"
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spre<- garchpr(Y,N,a,ma,b,mb,sde)
"GARCH(p,q)-prediction, last ten values, user function"
spre[(N-9):N] #spre[ ] = Spre[ ]

Output from R 4.2 GARCH-results for the residual series from the ARIMA(2,2)-
prediction. Hohenpeißenberg 1781–2010.

"Hohenpberg, Temp 1781-2010, Residuals from trend"
Mean Y Stdev Y Number Years
0.0060 0.76663 230

ma mb mc
3 1 4 Model: GARCH(1,3)

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

a0 4.948e-01 1.071e+01 0.046 0.963
a1 2.598e-02 1.070e-01 0.243 0.808
a2 7.034e-02 5.804e-01 0.121 0.904
a3 1.192e-14 1.495e+00 7.97e-15 1.000
b1 5.979e-02 2.031e+01 0.003 0.998

"GARCH(p,q)-prediction, last ten values"
0.7538 0.7907 0.7462 0.786 0.7737 0.7336 0.739 0.755 0.7444 0.7313
"Sigma(t)-estimation, last ten values"
0.4752 0.516 0.527 0.6676 0.6522 0.647 0.5833 0.4669 0.3883 0.7276

Mean epsilon Stdev epsilon
0.00506 1.00802

"Auto-correlations of GARCH-residuals epsilon"
0.01264 0.00718 -0.01449 0.0278 -0.0519 -0.0205 -0.0096 -0.0567

4.4 Yearly Precipitation Amounts

In what follows, Y (t) denotes the precipitation amount in the year t . From Y we pass
to the series X by building differences, where X (t) = Y (t)−Y (t−1), t = 2, . . . , N ,
X (1) = 0, see Figs. 4.4 and 4.5 (upper plots).

Table 4.5 shows that the mean yearly change X equals ≈ 0, and has an average
deviation (from the mean 0) of ≈ 1.4...2.0 (dm). The auto-correlations r(1) lie in
the range –0.4 ... –0.5. An increase of precipitation is immediately followed by a
decrease, by tendency, and vice versa.

We fit an ARMA(p,q)-model to the differenced series X . As order numbers we
get p = 3, q = 1 and therefore the ARMA(3,1)-model

X (t) = α3 X (t − 3)+ α2 X (t − 2)+ α1 X (t − 1)+ β1e(t − 1)+ e(t). (4.11)
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Fig. 4.4 Hohenpeißenberg, annual precipitation amounts 1879–2010. Top Differenced time series,
together with the ARMA-prediction (dashed line) and with residual values (as circles o). Bottom
Time series of annual precipitation amounts (dm), together with the ARIMA-prediction (dashed
line). The last 50 years are shown

Once again, we have chosen t0 = [N/5] as starting time point for estimating the coef-
ficients αi = α

[1,t−1]
i and β1 = β

[1,t−1]
1 , t = t0+1, . . . , N . They were used to calcu-

late the prediction X̂(t) from t0+1 onwards. Table 4.6 presents the estimated coeffi-
cients αi = α

[1,N ]
i and β1 = β

[1,N ]
1 for the whole series; the coefficient β1 is signifi-

cantly different from zero (and that for all four stations)—but only one single αi (α2)
at one single station (Po.). Further, the prognoses Ŷ (t) for the three years 2008–2010
as well as for the year 2011 are listed, each time on the basis of the preceding years.
For Karlsruhe, we have predictions for the years 2006–2009 instead of 2008–2011.

The ARIMA-prediction changes steadily from above to below the actually
observed value, see Figs. 4.4 and 4.5 (lower plots). In other words: The precip-
itation time series oscillates heavily around a medium line (built by the predic-
tions). Note that we had recently some relatively dry years (e.g., Bremen 2010,
Hohenp. 2008 and 2009), which are overestimated by the prediction. The residuals
e(t) = Y (t)− Ŷ (t) from the predictions are shown in the upper plots of these figures.
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Fig. 4.5 Karlsruhe, annual precipitation amounts 1876–2008. Legend as in Fig. 4.4

Table 4.5 Differences X of precipitation amounts (dm) in consecutive years

Station N Mean Standard deviation r(1) r(2) r(3)

Bremen 121 –0.006 1.464 –0.397 –0.167 –0.037
Hohenpeißenberg 132 0.005 2.072 –0.458 –0.002 0.030
Karlsruhe 133 0.014 1.900 –0.430 –0.114 0.025
Potsdam 118 0.013 1.406 –0.462 –0.068 –0.033

Mean value, standard deviation and the first 3 auto-correlation coefficients of X are given

The auto-correlations re(h), h = 1, . . . , 8, of the residuals were calculated (but not
reproduced in a Table). The bound b1 for an individual |re(h)| is exceeded in no
case (significance level 0.05). The residual series e(t) can be comprehended as a
pure random series, confirming the applied ARIMA-model. We abstain here from a
GARCH application to the residual series.

As in Sect. 4.2, we compare the ARIMA-method with the left-sided moving aver-
ages, see Table 4.7. The latter needs a depth of 4 (Ho: 2; Ka: 6) to beat the former
method. This means that here—in the case of annual precipitation—the method of
left-sided moving averages is on a par with the ARIMA approach.
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Table 4.6 ARIMA-method for the annual precipitation amounts (dm)

Order ARMA-coefficients Root ARIMA-prediction
sd p, q αi β1 MSQ 2008–2010 2011

B 3, 1 −0.096,−0.238,−0.117 −0.873 1.178 7.51, 7.12, 7.15 7.30
1.408 obs: 7.00, 6.45, 5.60 6.22

H 3, 1 0.115, 0.077, 0.012 −0.930 1.900 12.17, 11.91, 11.57 11.66
2.203 obs: 10.42, 10.28, 11.43 12.47

P 3, 1 −0.128,−0.094,−0.040 −0.995 1.126 5.87, 5.95, 6.01 6.09
1.409 obs: 5.75, 5.98, 6.58 6.20

2006–2008 2009
K 3, 1 0.046, −0.163,−0.062, −0.943 1.530 7.76, 8.00, 7.58 7.61

1.950 obs: 8.51, 7.83, 8.33 –

Coefficients, goodness-of-fit, predictions for the years 2008–2011 (Karlsruhe: 2006–2009), with
actually observed values beneath. Further: sd = sd(X) denotes the standard deviation of the N0 =
N − t0 values of the differenced series X (t), t = t0 + 1, . . . , N . B Bremen, H Hohenpeißenberg,
K Karlsruhe, P Potsdam

Table 4.7 Left-sided moving averages for annual precipitation amounts

Depth RootMSQ
k Bremen Hohenpeißenberg Karlsruhe Potsdam

3 1.260 1.877 1.662 1.186
4 1.156 1.895 1.567 1.116
5 1.120 1.883 1.533 1.106
6 1.131 1.884 1.527 1.077
7 1.129 1.907 1.516 1.053
8 1.129 1.901 1.478 1.058
ARIMA (p, q) (3, 1) 1.178 (3, 1) 1.900 (3, 1) 1.530 (3, 1) 1.126

Depth k of averaging and the resulting goodness-of-fit RootMSQ are listed. The latter is given for
the ARIMA-method, too (see Table 4.6)

We derive the standardized RootMSQ measures (4.7) for annual precipitation from
Table 4.6,

Bremen 0.836, Hohenpeißenberg 0.862, Karlsruhe 0.784, Potsdam 0.800.

These rsq-values do not differ much from station to station, nor do they differ much
from the rsq-values in Sect. 4.2 for temperature.

GARCH-Modeling the Annual Precipitation

The poor significance of the AR-coefficients αi in Table 4.6 corresponds with the
result of Table 3.7. It leads us once again to the question, whether the yearly
precipitation series Y (t) is (close to) a pure random process. Let us suppose now, that
Y (t) forms a series of uncorrelated variables, having a conditional variance σ 2(t) –
given the information up to time t−1. We build the centered process X (t) = Y (t)−Ȳ

http://dx.doi.org/10.1007/978-3-642-32084-2_3
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Table 4.8 GARCH-modeling of the annual precipitation amounts (dm)

GARCH-coefficients Mean Auto-correlations re Max Bound
α1, α2, α3 β1 σ̂ (t) re(1), re(2), re(3) |re(h)| b1 b8

B 0.000, 0.021, 0.127 0.098 1.069 0.059, −0.097, −0.016 0.203 0.180 0.252
H 0.051, 0.000, 0.044 0.081 1.702 0.270, 0.213, 0.156 0.270 0.173 0.242
K 0.041, 0.000, 0.070 0.051 1.325 0.002, −0.130, −0.004 0.130 0.172 0.240
P 0.094, 0.000, 0.043 0.053 0.956 −0.066,−0.150,−0.095 0.150 0.183 0.255

Coefficients αi and β1 are presented (the constant term α0 is 0.871, 2.38, 1.47, 0.742 for B,H,K,P,
resp.). Further, the mean of the predicted standard deviations σ̂ (t), the first 3 auto-correlations of the
residual series e = X/σ̂ , with max |re(h)| out of the 8 values for h = 1, . . . , 8, and the individual and
simultaneous statistical bounds b1 and b8 are given. B Bremen, H Hohenpeißenberg, K Karlsruhe,
P Potsdam
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Fig. 4.6 Bremen, annual precipitation amounts 1890–2010, centered (zigzag line). GARCH-
prediction for σ(t) (inner solid line) and standard deviation of left sided moving (5-years) blocks
(dashed line)

and write down a GARCH-model of order (3,1), that is cf. Sect. 4.3

X (t) = σ(t) · ε(t) , t = 1, 2, . . .

σ 2(t) = α3 X2(t − 3) +α2 X2(t − 2)+ α1 X2(t − 1)+ α0 + β1σ
2(t − 1). (4.12)

Other order numbers, like (2,2) or (1,3) instead of (3,1), lead to the same results.
Table 4.8 brings the estimated GARCH-coefficients. By means of these estimations
one calculates the GARCH-predictions σ̂ (t). Note that the mean value of these
predictions—see Table 4.8—is close to the standard deviation of the process Y (t)
(sY = 1.067, 1.719, 1.353, 0.960 for B,H,K,P, resp., acc. to Table 1.3) and close to
the square root of

α0/(1− α1 − α2 − α3 − β1) ,

http://dx.doi.org/10.1007/978-3-642-32084-2_1
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Fig. 4.7 Hohenpeißenberg, annual precipitation amounts 1879–2010, centered. Legend as in
Fig. 4.6

the latter fact follows from the theory of GARCH-models. For the GARCH-residuals
(see the first equation in (4.12))

ε̂(t) = e(t) = X (t)

σ̂ (t)
,

we obtain (mean,variance) ≈ (0,1), as the model demands. Further, we compute for
e(t) the auto-correlation function re(h), h = 1, . . . , 8. Except for Hohenpeißenberg,
the |re(h)|-values are small and not significantly different from zero. Hence, for
Bremen, Karlsruhe, and Potsdam, the GARCH-residuals e(t) can be assumed to
form a series of uncorrelated variables. So the GARCH-model seems to fit well in
these cases, and this supports the assumption of uncorrelated X (t) (and hence Y (t)),
which is part of the GARCH definition.

For the precipitation series, we find out once more a proximity to the pure random
series (exception: Hohenpeißenberg, see Fig. 4.7).

The coefficients αi and β1 in Table 4.8 are small and not significantly different
from zero (all t-values smaller than 0.9). This means that we can assume a nearly con-
stant (conditional) variance σ 2(t) ≈ V ar(X). That corresponds with the GARCH-
predictions σ̂ (t) in Figs. 4.6 and 4.7, varying little around the horizontal line, built
by the standard deviation sX = sY .



Chapter 5
Model and Prediction: Monthly Data

For the investigation of monthly climate data, we first estimate a trend by the
ARIMA- or by the moving average-method of Chap. 4. Then we remove the trend
and apply the ARMA- or moving average-method once again, now to the detrended
series. In Sect. 8.3 we will present a sin-/cos-approach to monthly data.

5.1 Trend+ARMA Method for Monthly Temperature Means

In order to model the monthly temperature means Y (t), we start with the decompo-
sition

Y (t) = m(t)+ X (t), t = 1, 2, . . . , (5.1)

where t counts the successive months, m(t) denotes the long-term trend, and where
X (t) is the remainder series. We estimate the trend by the ARIMA-method of
Sect. 4.1: The variable m(t) is the ARIMA-prediction of the yearly temperature
mean (see Table 4.2 and Figs. 4.1, 4.2); m(t) will be called ARIMA-trend, and is the
same for all 12 months t of the same year. The detrended series

X (t) = Y (t)− m(t), t = 1, 2, . . . ,

is shown in the upper plots of Figs. 5.1 and 5.2. We fit an ARMA(p, q)-model to the
series X (t), with p = 3, q = 2 for Hohenpeißenberg, and p = 2, q = 3 for Bremen,
Karlsruhe and Potsdam (these p, q-values finally turned out to be sufficiently large).
In the latter case, we are faced with the model

X (t) = α2 X (t − 2)+ α1 X (t − 1)+ β3e(t − 3)+ β2e(t − 2)+ β1e(t − 1)+ e(t) .

To fit the model, we estimate coefficients αi = α
[1,t−t]
i , β j = β

[1,t−1]
j (for each

month t anew) and calculate the prediction X̂(t), t = t0 + 1, . . . , M , by analogy
with Sect. 4.1; M = N ∗12 is the number of months, N the number of years. Hereby,

H. Pruscha, Statistical Analysis of Climate Series, 67
DOI: 10.1007/978-3-642-32084-2_5, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_8
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4


68 5 Model and Prediction: Monthly Data

0 20 40 60 80 100 120

−
10

−
5

0
5

10

Months 2001−2010

T
em

pe
ra

tu
re

 [C
]

Hohenpeissenberg, Temperature 1781−2010

0 20 40 60 80 100 120

0
5

10
15

20

Months 2001−2010

T
em

pe
ra

tu
re

 [C
]

p,q = 32

p,q =32

Fig. 5.1 Hohenpeißenberg, monthly temperature means 1781–2010. Top Detrended time series,
together with the ARMA-prediction (dashed line) and with the residual values (as circles o). Bot-
tom Monthly temperature means (◦C), together with the ARIMA-trend (inner solid line) and the
trend+ARMA-prediction (dashed line). The last 10 years are shown

we choose t0 = [N/5] ∗ 12 as starting month for the prediction. In Table 5.1 one can
find the estimated coefficients αi = α

[1,M]
i and β j = β

[1,M]
j ; (nearly) all of them are

significantly different from zero.
If we consider the AR(2) part of the ARMA-model separately and apply Eq.

(B.10) of the Appendix in order to find the period T , where the spectral density is
maximal, we get successively

cos(ω) = 0.866, ω = 0.5236, T = 2 · π/ω = 12.00 (months)

for Bremen, Karlsruhe and Potsdam (T = 11.54 for Hohenp.). The yearly periodicity
of temperature is correctly reproduced by our ARMA-model.

The ARMA-predictions X̂(t) for X (t) are plotted in the upper parts of Figs. 5.1,
5.2, too. By means of X̂(t) we gain back the original (trend-affected) series, more
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Fig. 5.2 Potsdam, monthly temperature means 1893–2010. Same legend as in Fig. 5.1

precisely: the ARIMA-trend+ARMA-prediction Ŷ (t) for Y (t). We put

Ŷ (t) = m(t)+ X̂(t), t = 1, 2, . . . , (5.2)

compare the lower plots of Figs. 5.1, 5.2, where the predictions Ŷ (t) are portrayed,
together with the actual observations Y (t). Table 5.1 presents the goodness-of-fit
values RootMSQ according to Eq. (4.6)—replacing N by M = N ∗ 12—and the
predictions for Oct. 2010 to Jan. 2011 (Karlsruhe: Oct. 2008 to Jan. 2009). With only
4+5 parameters these ARIMA-trend+ARMA-predictions Ŷ (t) run close to the actual
observed values Y (t). They cannot, however, follow extremely warm summers or
cold winters. To give examples, we point to the “record summer” 2003, mentioned
in Sect. 2.5 above (in Fig. 5.1 around the month no. 31), or to the relatively cold
months Jan. 2009, Jan. 2010, Dec. 2010. For the latter, compare the predictions 2.49,
0.63, 1.46 (◦C) with the actual observed values −3.3,−2.5,−4.4 (◦C) in Bremen,
Hohenpeißenberg, and Potsdam, respectively (Table 5.1).

http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_2
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Table 5.1 The ARIMA-trend+ARMA-method for monthly temperature means (◦C)

Order ARMA-coefficients Root Prediction Jan
sd p, q αi β j MSQ Oct–Dec 2010 2011

B 2, 3 1.732, −1.000 −1.40, 0.50, 0.24 1.906 10.22, 6.01, 2.49 −1.17
6.242 obs: 9.4, 4.9, −3.3 2.3

H 3, 2 1.77, −1.07, 0.04 −1.726, 0.994 2.141 8.37, 4.04, 0.63 −1.33
6.497 obs: 6.8, 3.1, −2.5 −1.0

P 2, 3 1.732, −1.00 −1.48, 0.58, 0.23 2.013 9.57, 4.63, 1.46 −1.91
7.103 obs: 7.9, 4.7, −4.4 1.1

Oct–Dec 2008 2009
K 2, 3 1.732, −1.00 −1.51, 0.63, 0.18 1.909 11.11, 6.81, 3.70 2.13

6.808 obs: 10.9, 7.3, 2.4 −1.3

Coefficients, goodness-of-fit, prediction for Oct.–Dec. 2010, Jan. 2011 (Karlsruhe Oct.–Dec. 2008,
Jan. 2009), with the actually observed value beneath. Further: sd denotes the standard deviation
of the N ∗ 12 − t0 values of the detrended series. B Bremen, H Hohenpeißenberg, K Karlsruhe,
P Potsdam

As in Eq. (4.7), we build the standardized RootMSQ measure

rsq = RootMSQ/sd(X),

with the standard deviation sd(X) of the N ∗12− t0 monthly values of the detrended
series X . We obtain rsq =

0.305 (Bremen), 0.330 (Hohenp.), 0.280 (Karlsr.), 0.283 (Potsd.), (5.3)

which is about the same level for the four stations.

R 5.1 Monthly temperature data. Trend removal, ARMA-modeling for the
detrended series, prediction for the detrended series and for the (original) series
with trend, residual analysis. The trend Ytr is the yearly trend according to 4.2,
stored in the file PoT40Pre.txt. For the sake of simplicity, the method of stan-
dard regression analysis, mentioned in 4.2, Remark A above, is adopted to monthly
data and applied here: The coefficients are estimated only once (from the whole
series) and then used for predicting the detrended series and the (original) series
with trend, by means of Ydfit[t] and YIarma[t], resp.

library(TSA) #see Cran-sofware-packages
attach(potsdTp)
#-------Data preparation, trend removal-----------------------
"Monthly temperature means Potsdam 1893-2010"
mon12<- data.frame(potsdTp[,3:14])/10 #selecting jan-dec
NYear<- length(Tyear); M<- NYear*12
c("Number Years"=NYear,"Number Months M"=M)
detach(potsdTp)

http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
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#Read the yearly trend Ytr, twelvefold as Ytre
potsdPr<- read.table("C:/CLIM/PoT40tPr.txt",header=T)
attach(potsdPr) #contains variable Ytr
Ytre<- 1:M #Ytre vector of dim M
for(m in (1:M)){j<- trunc((m-1)/12)+1;Ytre[m]<- Ytr[j]}
#Instead of the last two lines:
#twelve<- rep(12,times=NYear); Ytre<- rep(Ytr,twelve)
YtreN1<- 9.2743 #Forecast New Year from R 4.1 (Table 4.2)

Yobs<- as.matrix(t(mon12)) #t=transpose, as 12 x NYear matrix
dim(Yobs)<- c(M,1) #as M-dim vector
Yde<- Yobs - Ytre #detrending
ma<- 2; mb<- 3 ; mc<- pmax(ma,mb) #ARMA order <= 6
tst<- trunc(NYear/5)*12; ts1<-tst+1 #Start for prediction

#------ARMA-model for detrended monthly data------------------
#---a) Estimation-----------------------------
Ydarma<- arma(Yde,order=c(ma,mb))
Ydcoef<- Ydarma$coef; Yds2<- Ydarma$css
Ydfit<- Ydarma$fitted.values; Ydres<- Ydarma$residuals
c("Start at"=tst,"ArOrder"=ma,"MAOrder"=mb,"Cond.SSQ"=Yds2)
summary(Ydarma)

a<- rep(0,times=6); b<- rep(0,times=6)
if (ma > 0) for (m in 1:ma){a[m]<- Ydcoef[m]}
if (mb > 0) for (m in 1:mb){b[m]<- Ydcoef[ma+m]}
theta<- Ydcoef[ma+mb+1] #intercept

#---b) Prediction------------------------------
"ARMA-prediction for the detrended series, last 12 months"

Ydfit[(M-11):M]
YdarmaNJ<- theta
for (m in 1:mc) {YdarmaNJ<-

YdarmaNJ+a[m]*Yde[M+1-m]+b[m]*Ydres[M+1-m]}
c("Forecast Jan_NewYear, detrended series"=YdarmaNJ)
# (Original) series with trend
YIarma<- Ytre; YIarma[ts1:M]<- Ytre[ts1:M]+Ydfit[ts1:M]
Yres<- Yobs - YIarma
"ARMA-prediction for the series with trend,last 12 months"

YIarma[(M-11):M]
"Forecast Jan_NewYear, series with trend"
c(YtreN1,YdarmaNJ,YdarmaNJ+YtreN1)

#---c) Residual analysis---------------------
Yrer<- Yres[ts1:M]; msq<- mean(Yrer*Yrer)
c("Mean Yres"=mean(Yrer),"Std Yres"=sqrt(var(Yrer)),

"MSQ"=msq,"RootMSQ"=sqrt(msq))
racf<-acf(Yrer,lag.max=8,type="corr",plot=F)$acf #$no Plot
"Autocorrelation of residual series"; racf[1:8]
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Output from R 5.1 ARMA-output for the detrended series, prediction for the
detrended series and for the (original) time series with trend, residual analysis with
RootMSQ-value and auto-correlation function. The standard regression approach
was chosen. With the exception of re(1) = 0.031 instead of 0.001, see Table 5.3, the
results here are similar to those from the forecast regression approach. Notice that
Cond.SSQ/(M-6) = 3.84 ≈MSQ.

"Monthly temperature means Potsdam 1893-2010"
Number Years Number Months M

118 1416
Start at ArOrder MAOrder Cond.SSQ

276 2 3 5420

Model: ARMA(2,3)
Coefficient(s):

Estimate Std. Error t value Pr(>|t|)
ar1 1.732206 0.000211 8209.70 <2e-16 ***
ar2 -1.000223 0.000210 -4759.75 <2e-16 ***
ma1 -1.476013 0.023814 -61.98 <2e-16 ***
ma2 0.578910 0.040879 14.16 <2e-16 ***
ma3 0.230042 0.024017 9.58 <2e-16 ***
intercept 0.004332 0.017266 0.25 0.8

sigmaˆ2 estimated as 3.84, Cond.Sum-of-Squares = 5420, AIC = 5935

"ARMA-prediction for the detrended series, last 12 months"
-10.154 -9.419 -5.022 -0.077 4.756 7.539 9.771 9.181 4.762 -0.287
-5.171 -8.349
Forecast Jan_NewYear, detrended series -11.185

"ARMA-prediction for the series with trend,last 12 months"
-0.365 0.371 4.768 9.712 14.545 17.328 19.560 18.970 14.551 9.502
4.619 1.440
"Forecast Jan_NewYear, series with trend" 9.274-11.185 = -1.911
Mean Yres Std Yres MSQ RootMSQ
-0.0291 2.0009 4.0010 2.0003

"Autocorrelation of residual series"
0.03114 0.12581 0.04704 0.04800 0.03702 0.02462 0.08007 0.05606

5.2 Comparisons with Moving Averages and Lag-12
Differences

On the basis of approach (5.1), we can alternatively choose the method of left-
sided moving averages, applied twofold, for estimating the trend m(t) as well as
for predicting the detrended series X (t). We estimate the trend m(t) by building the
average of the preceding observations
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Table 5.2 The MA-trend+MA-method for monthly temperature means

Depth (years) RootMSQ
k Bremen Hohenp. Karlsruhe Potsdam

5 2.143 2.343 2.091 2.294
10 2.013 2.217 1.963 2.141
15 1.973 2.178 1.929 2.103
20 1.950 2.154 1.906 2.083
25 1.931 2.141 1.899 2.061
ARIMA-trend+ARMA 1.906 2.141 1.909 2.013
ARIMA(lag12) 2.181 2.543 2.301 2.325

Depth k of the left-sided moving average and the resulting goodness-of-fit values RootMSQ. The
latter is listed for the ARIMA-trend+ARMA-method (cf. Table 5.1) and for the ARIMA(lag12)-
method, too

Y (t − 1), Y (t − 2), . . . , Y (t − k ∗ 12)

(MA-trend). The averaging comprises k ∗ 12 months, k indicates the number of the
employed years (“depth”). As prediction X̂(t) for the variable X (t), we take the
average of the preceding detrended observations

Y (t − 12)−m(t − 12), Y (t − 24)−m(t − 24) . . . . , Y (t − k ∗ 12)−m(t − k ∗ 12) .

Here, the average is taken over the (detrended) climate values of the same calendar
month in k preceding years. Again, we gain the prediction Ŷ (t) for Y (t) according
to Eq. (5.2). Then, by Eq. (4.6), with N replaced by M = N ∗ 12, we compute
the goodness of this prediction method (called MA-trend+MA-method). The starting
month for prediction is once again t0 = [N/5] ∗ 12. Table 5.2 shows that for no
depth smaller than k = 19 (years) the RootMSQ values of the ARIMA-trend+ARMA-
method are attained. Recall that the latter prediction method needs only 4 + 5 = 9
lagged variables, thus seeming to be superior to the MA-trend+MA-method.

Another alternative procedure resembles the ARIMA-method of Sect. 4.1. Instead
of using differences Y (t)−Y (t−1) of two consecutive variables (lag-1 differences),
however, we form lag-12 differences that are differences

X (t) = Y (t)− Y (t − 12), t = 13, 14, . . . ,

of two observations being separated by twelve months. We fit an AR(12)-model
to this differenced process X (t), and determine the goodness-of-fit by Eq. (4.5)
or—equivalently—Eq. (4.6), with N replaced by M . We will use the short-hand nota-
tion ARIMA(lag12). Table 5.2 shows that this procedure is inferior to the method
ARIMA-trend+ARMA and to the method MA-trend+MA as well.

http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
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Table 5.3 Auto-correlation function re(h), up to time lag h = 8 (months), of the ARIMA-
trend+ARMA-residuals; together with individual and simultaneous bounds b1 and b8, resp. [level
0.01]

re(1) re(2) re(3) re(4) re(5) re(6) re(7) re(8) b1 b8

Br 0.005 0.083 0.039 0.04 0.06 0.06 0.10 0.07 0.075 0.095
Ho 0.029 0.039 –0.014 –0.00 0.00 0.03 0.01 –0.01 0.055 0.069
Ka –0.061 0.067 –0.022 0.02 0.06 0.06 0.05 0.02 0.057 0.072
Po 0.001 0.135 0.045 0.06 0.04 0.03 0.08 0.06 0.076 0.096

Monthly temperature means at the stations Br Bremen, Ho Hohenpeißenberg, Ka Karlsruhe, Po
Potsdam

Table 5.4 The ARIMA-trend+ARMA-method for the monthly precipitation amounts (cm)

Order ARMA-coefficients Root Prediction
sd p, q αi β j MSQ Oct–Dec 2010 Jan 2011

B 2,2 0.624, −0.245 −0.496, 0.229 3.104 6.23, 5.63, 5.64 4.56
3.106 obs: 3.71, 5.62, 3.26 3.48

H 2, 2 1.732, −0.999 −1.707, 0.971 4.710 9.30, 6.46, 4.71 4.15
5.955 obs: 6.24, 4.54, 6.96 5.32

P 4, 0 0.12, 0.05, −0.04, −0.00 2.945 6.12, 4.66, 4.91 5.59
2.946 obs: 1.84, 9.28, 7.28 3.90

Oct–Dec 2008 2009
K 3, 1 −0.200, 0.07, 0.02 0.295 3.621 6.36, 6.77, 6.53 6.45

3.632 obs: 10.70, 6.04, 6.28 –

Coefficients, goodness-of-fit, predictions for Oct.–Dec. 2010, Jan. 2011 (Karlsruhe Oct.–Dec. 2008,
Jan. 2009), with actually observed values beneath. Further: sd denotes the standard deviation of
the N ∗ 12 − t0 values of the detrended series. B Bremen, H Hohenpeißenberg, K Karlsruhe,
P Potsdam

5.3 Residual Analysis: Auto-Correlation

Denoting once again by M = N ∗ 12 the total number of months and by Ŷ (t) the
ARIMA-trend+ARMA–prediction for Y (t), t = t0 + 1, . . . , M , we compute by

e(t) = Y (t)− Ŷ (t), t = t0 + 1, . . . , M,

the residuals from the prediction; compare Sect. 5.1 and the upper plots in Figs. 5.1
and 5.2. Which structure has this residual time series e(t), t = t0 + 1, . . . , M? Its
auto-correlation function re(h), h = 1, . . . , 8, consists of values more or less near
zero, cf. Table 5.3, with the exceptions of re(7) (Bremen) and re(2) (Potsdam). It is
particularly the auto-correlation re(1) of first order (that is the correlation between
e(t), e(t + 1) in two immediately succeeding months), which turns out to be satis-
factorily small. The simultaneous bound b8 = u1−0.005/8/

√
M0, see also Sect. 3.3,

is exceeded (little) in the two cases mentioned above. Due to the large values of
M0 = M − t0, we choose the significance level 0.01 instead of 0.05. The prediction
method ARIMA-trend+ARMA leaves behind residuals, which are little correlated and

http://dx.doi.org/10.1007/978-3-642-32084-2_3


5.3 Residual Analysis: Auto-Correlation 75

0 20 40 60 80 100 120

−
5

0
5

10

Months 2001−2010

P
re

ci
pi

ta
tio

n 
[c

m
]

Hohenpeissenberg, Precipitation 1879−2010

p,q = 22

0 20 40 60 80 100 120

0
5

10
15

20

Months 2001−2010

P
re

ci
pi

ta
tio

n 
[c

m
]

p,q = 22

Fig. 5.3 Hohenpeißenberg, monthly precipitation amounts, 1879–2010. Top Detrended time series,
together with the ARMA-prediction (dashed line) and with the residual values (as circles o). Bottom
Monthly precipitation amounts (cm), together with the ARIMA-trend (inner solid line) and the
trend+ARMA-prediction (dashed line). The last 10 years are shown

thus do fulfill the demand on residual variables e(t). This statement is not true with
respect to the method MA-trend+MA of moving averages (Sect. 5.2). Here, for all
four stations, the auto-correlations re(1) are too large, namely for a depth of k = 15,

re(1) = 0.284, 0.112, 0.144 and 0.262 for Br, Ho, Ka and Po, resp..

5.4 Monthly Precipitation Amounts

Table 5.4 is dedicated to monthly precipitation amounts and constructed by analogy
to Table 5.1 for monthly temperature means. Some predictions are far away from the
actual observed values. Figures 5.3 and 5.4 reveal the reason: Our forecast proce-
dures cannot cope with the large (random) oscillations of the monthly precipitation
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Fig. 5.4 Potsdam, monthly precipitation amounts, 1893–2010. Same legend as in Fig. 5.3

series. This is especially true for Potsdam (and Bremen, Karlsruhe, no plots), and is
somewhat weaker the case for Hohenpeißenberg. This statement is confirmed when
forming the standardized RootMSQ measure rsq. With the standard deviation sd(X)
of the N ∗12− t0 values of the detrended series X , we have rsq = RootMSQ/sd(X) =

0.999 (Bremen), 0.791 (Hohenp.), 0.996 (Karlsr.), 0.999 (Potsd.). (5.4)

As expected, the rsq value of Hohenpeißenberg is smaller than that of the other
three stations; their value near 1 indicates a nearly total indetermination. But all four
values (5.4) are much larger than the corresponding values (5.3) for monthly temper-
ature, showing once more (after Sect. 3.1) that the process of monthly precipitation
is much more irregular than that of monthly temperature (see Sect. 8.4 for a further
discussion).

http://dx.doi.org/10.1007/978-3-642-32084-2_3
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Chapter 6
Analysis of Daily Data

We start with basic informations on the daily temperature and precipitation data
from five German stations, collected over the years 2004–2010; see Appendix A.3.
Besides Bremen, Hohenpeißenberg and Potsdam, see Table 1.1, we include in our
analysis: The westernmost German city Aachen (202 m, 50◦47’, 06◦05’) in the mid-
dle Rhineland and Würzburg (268 m, 49◦46’, 09◦57’) upon the river Main.

The 29th Feb 2004 and 2008 were canceled (to produce plots like Figs. 6.1 or 6.7).
Thus, we have selected 7*365=2555 days. We had to drop the station Karlsruhe
covering the years until 2008 only.

First, we are interested in the spatial aspect of the data. That is the question, how
the observations at the single stations are cross-correlated. With respect to temper-
ature, we employ the cross-correlation function from time series analysis. When
dealing with precipitation, methods from categorical data analysis seem to be more
appropriate. The reason is, that we have many days without any precipitation (about
half the days, see Table 6.1). Here, logistic regression and contingency table analysis
are applied.

Days with heavy rainfall are treated as rare events and are investigated with
methods of event-time analysis. Here, we use intensity functions and the model of
an inhomogeneous Poisson process.

6.1 Series of Daily Climate Records

Table 6.1 shows that the temperature series have a high auto-correlation r(1), which
decreases slightly (by 0.1), when seasonally adjusted. The precipitation series have
a small r(1) value, staying nearly the same after adjustment.

As it is the case with yearly precipitation (see Tables 3.1, 3.2, 3.3), Hohenpeißen-
berg’s daily precipitation series has the largest auto-correlation coefficients. Thus it
may contain more inner correlation structure than the others.

H. Pruscha, Statistical Analysis of Climate Series, 77
DOI: 10.1007/978-3-642-32084-2_6, © Springer-Verlag Berlin Heidelberg 2013
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Table 6.1 Descriptive measures of the daily temperature (◦C) and precipitation (mm) data for five
stations and seven years 2004–2010; mean m, standard deviation sd , auto-correlations r(1) and
re(1) of order 1, without and with seasonal adjustment, respectively

Station Temperature Precipitation

m sd r(1) re(1) W % m sd r(1) re(1)

Aachen 10.58 6.91 0.949 0.841 47.0 2.26 4.60 0.149 0.148
Bremen 9.82 6.93 0.951 0.837 48.6 1.84 3.87 0.166 0.161
Hohenpeißenberg 7.45 7.85 0.929 0.813 48.3 3.06 6.54 0.263 0.240
Potsdam 9.69 7.86 0.959 0.850 51.8 1.70 3.79 0.164 0.160
Würzburg 9.99 7.73 0.960 0.855 52.1 1.69 4.02 0.181 0.175

W % stands for the percentage of days without precipitation

For the sake of clearness, the plots over the calendar days are restricted to the
four years 2004–2007 (thus presenting four points for each day). The course of
temperature over the year possesses a strong seasonal component, see upper parts in
Figs. 6.1, 6.2, 6.3. This is different from precipitation (lower plots), where we observe
only a weak summer effect (which is stronger at Hohenpeißenberg); compare also
Fig. 2.6 for monthly temperature and precipitation.

As a consequence, we will analyze the daily temperature data only in the season-
ally adjusted form (in the next section). This is done by removing a polynomial(4)
spanned over the 365 calendar days (see upper plots of Figs. 6.1, 6.2, 6.3). The pre-
cipitation data, however, will be let unaltered (in Sects. 6.3 and 6.4).

6.2 Temperature: Cross-Correlation Between Stations

Let us assume that we have the bivariate sample

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) (6.1)

of two time series Xt and Yt . We gain an estimator cxy(h) for the cross-covariance
γxy(h) (see Appendix B.1) according to the following equations. For positive and
for negative time lags h we put

cxy(h) =
{ 1

n

∑n−h
t=1 (Xt − X̄)(Yt+h − Ȳ ) for h = 0, 1, 2, . . . ,

1
n

∑n
t=1+|h| (Xt − X̄)(Yt−|h| − Ȳ ) for h = −1,−2, . . . .

Hereby, |h| should not exceed [n/4], acc. to Box & Jenkins (1976), and

X̄ = 1

n

n∑
t=1

Xt and Ȳ = 1

n

n∑
t=1

Yt

http://dx.doi.org/10.1007/978-3-642-32084-2_2
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Fig. 6.1 Daily Temperature (top) and Precipitation (bottom) in Aachen 2004–2007, plotted over
the 365 Calendar Days. A fitted polynomial of order 4 (smooth line) and a 11-days moving average
(oscillating line) are drawn. The precipitation amount is truncated at 30 mm

denote the mean values of the x- and y-sample, resp. From the coefficients cxy(h)

we get the empirical cross-correlation function or cross-correlogram rxy(h), h = 0,

±1,±2, . . ., by

rxy(h) = cxy(h)

sx · sy
, sx =

√
cxx (0), sy =

√
cyy(0) ;

sx and sy are the standard deviations of the x- and y-sample. We have

cxy(−h) = cyx (h), rxy(−h) = ryx (h), |rxy(h)| ≤ 1 ;
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Fig. 6.2 Daily Temperature (top) and Precipitation (bottom) at Hohenpeißenberg 2004–2007. Same
legend as in Fig. 6.1

rxy(0) is the usual correlation coefficient of the bivariate sample (6.1), and rxx (h) =
rx (h) is the auto-correlation of the x-sample with time lag h, as used in Sect. 3.3.

Table 6.2 presents cross-correlograms rxy(h) for daily temperature (seasonally
adjusted), with x = Aachen (and then with x = Potsdam), and with y = Aachen,...,
Würzburg, for positive time lags h = 0, . . . , 8 (days).

Daily temperatures are positively correlated between all stations, but with
decreasing values for increasing time lags. The rxy-values for Aachen→ Potsdam
and Potsdam→ Aachen are presented in the first plot of Fig. 6.4. The Aachen→
Potsdam values lie above those of Potsdam → Aachen, more or less clearly up
to a time lag of 4 or 5 days. Note that the first curve represents the west→ east,

http://dx.doi.org/10.1007/978-3-642-32084-2_3
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Fig. 6.3 Daily Temperature (top) and Precipitation (bottom) in Potsdam 2004–2007. Same legend
as in Fig. 6.1

the second the reversed direction. The same phenomenon can be observed for Bre-
men→ Potsdam (and reversed) as well as for Aachen→Würzburg (and reversed).
So we can state, that the prevailing wind direction is reflected.

The cross-correlations between Bremen and Hohenpeißenberg are low and not
(strongly) affected by the choice of direction (fourth plot in Fig. 6.4). The cross-
correlations between a station and Hohenpeißenberg are smaller—from time lag 2
(Würzburg: 3) onwards—than between that station and any other station, see e.g.,
Table 6.2, demonstrating the somewhat special position of this mountain station.
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Table 6.2 Cross-correlation coefficients rxy(h), h = 0, . . . , 8 (days) for daily temperature (sea-
sonally adjusted), in the years 2004–2010

x = Aachen→
y =

Lag Aachen Bremen Hohenp. Potsdam Würzburg Lag

0 1.000 0.885 0.816 0.815 0.857 0
1 0.841 0.809 0.773 0.813 0.839 1
2 0.644 0.642 0.603 0.680 0.691 2
3 0.513 0.518 0.462 0.556 0.557 3
4 0.424 0.445 0.368 0.472 0.464 4
5 0.362 0.390 0.298 0.412 0.401 5
6 0.315 0.348 0.253 0.360 0.347 6
7 0.275 0.311 0.222 0.323 0.307 7
8 0.240 0.279 0.199 0.291 0.273 8

x = Potsdam→
y =

Lag Aachen Bremen Hohenp. Potsdam Würzburg Lag

0 0.815 0.917 0.738 1.000 0.866 0
1 0.677 0.756 0.638 0.850 0.778 1
2 0.555 0.608 0.514 0.680 0.638 2
3 0.475 0.519 0.423 0.571 0.533 3
4 0.420 0.462 0.363 0.499 0.466 4
5 0.374 0.417 0.320 0.446 0.419 5
6 0.332 0.380 0.284 0.405 0.376 6
7 0.291 0.343 0.255 0.369 0.343 7
8 0.253 0.313 0.219 0.337 0.308 8

With x = Aachen and x = Potsdam, and with all five stations as y. In the special case x = y we
are faced with auto-correlation coefficients

6.3 Precipitation: Logistic Regression

We reduce the amount of daily precipitation (“Precip.”) to the two alternatives
“Precip.=0” and “Precip. > 0”. Accordingly, with the dichotomous variable Z ,
we have cases with Z = 0 and with Z = 1. The logistic regression approach models
the probability π for Z = 1, see Appendix C.1.

Denoting by Yt the precipitation amount at day t , we build the dichotomous
variable Zt . The probability for Zt = 1 (that is for the event “Precip. > 0” at day
t or “Yt > 0”) is abbreviated by

πt = IP(Zt = 1) , t = 1, . . . , n. (6.2)

Using regressor variables, that are the lagged precipitation amounts with a time lag
of one and two days, we form the linear regression terms

ηt (α) = α0 + α1 · Yt−1 + α2 · Yt−2 , t = 1, . . . , n, (6.3)
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Fig. 6.4 Cross-correlation functions between stations, for daily temperature, 2004–2010. The series
are seasonally adjusted. In each of the four plots, the two curves refer to the two directions “x → y”
and “y → x”. Aa Aachen, Br Bremen, Ho Hohenpeißenberg, Po Potsdam, Wu Würzburg

(Y−1, Y0 artificially). Here, α = (α0,α1,α2) is the vector of unknown parameters.
With the η-terms from Eq. (6.3), the logistic regression model is constituted by the
equation

πt (α) = exp(ηt (α))

1+ exp(ηt (α))
= 1

1+ exp(−ηt (α))
, t = 1, . . . , n . (6.4)

The parameters αi are estimated by the maximum-likelihood method, cf. Appendix
C.1. They are given in Table 6.3, together with the (negative) log-likelihood. All α1
(and mostα2) values differ significantly from zero. The estimated coefficientsαi were
used to calculate the predicted probabilities π̂t according to (6.4). The calculation
of π̂t has to be based on the information up to time t − 1 (forecast approach of
prediction). For this reason, we estimate the coefficients αi for each time point t
(greater than a starting value t0) anew, as already done in 4.1 and 5.1 for yearly and
monthly data. As a minimum sample for the estimation procedure we choose the
days of the first year, i.e., we put t0 = 365 (so that we have the π̂t at our disposal
only from t0 onwards, that are for n − t0 = 2190 cases). Further, on the basis of the
predicted probabilities, we determine the number P % of correctly classified cases:

http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_5
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Table 6.3 Logistic regression for the daily precipitation amounts in the years 2004–2010, with
lagged precipitation variables as regressors (truncated by 40 mm)

Station Coefficients Neg. Predicting Obs

α0 α1 α2 log-likeli Median P % π̂ Ẑ h

Aachen −0.2440 0.1707 0.0219 1415.9 0.460 65.7 % 0.448 0 10
Bremen −0.3301 0.1891 0.0558 1423.4 0.446 64.8 % 0.435 0 2
Hohenpeißenberg −0.2118 0.1032 0.0041 1453.0 0.450 64.9 % 0.447 0 9
Potsdam −0.3768 0.1381 0.0571 1449.8 0.417 64.0 % 0.419 1 1
Würzburg −0.3523 0.1336 0.0429 1457.3 0.420 64.2 % 0.416 0 2

Coefficients, neg. log-likelihood, median of predicted probabilities and percentage P of correctly
classified cases are given. Further: the predicted probability π̂ for the 1.1.2011 and the corresponding
dichotomous variable Ẑ , together with the observed amount h (1/10 mm) at the 1.1.2011

Using the median med of all π̂t -values, we classify (predict) case t as Precip.=0, if
π̂t ≤med, and as Precip. > 0, if π̂t > med. Then we count, how often this prediction
agrees with the actual observation Zt . For Hohenpeißenberg for example, the result
of this count is given in the following 2× 2-table.

Predicted as

Observed Prec=0 Prec>0
∑

Prec=0 693 367 1060
0.654 0.346 1.0

Prec>0 402 728 1130
0.356 0.644 1.0∑
1095 1095 2190

We have 693 + 728 = 1421 correctly predicted (classified) cases, that are
1421/2190*100 = 64.9 %. That is to be compared with 50 %, when coin tossing
is applied, or—slightly better—with 1130/2190*100 = 51.6 %, when one always
predicts the more frequent alternative, that is here “Precip. > 0”.
The last three columns of Table 6.3 deal with the day 1.1.2011. The predicted proba-
bility π̂ is calculated for that day acc. to (6.4) and the corresponding Ẑ value is derived
(if π̂ ≤ (>) median, then Ẑ = 0(= 1)). A comparison with the actual observed pre-
cipitation amount h (at the 1.1.2011) yields only one correct classification and leads
to the suggestion, that the prediction approach is here more useful for assessing the
goodness-of-fit of the model than for gaining practical forecasts for each single day.

Since the coefficients α1,α2 as well as the regressors assume non-negative values,
the predicted probabilities for the event “Precip.>0” exceed the bound

1

1+ e−α0
> 0.4 [for all five stations],
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Fig. 6.5 Aachen, 2004–2010. Daily Precipitation. Histogram of predicted probabilities for the
event “Precip.>0”, separately for cases without (Precip.=0, left) and with (Precip.>0, right)
precipitation
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Fig. 6.6 Hohenpeißenberg, 2004–2010. Daily Precipitation. Same legend as in Fig. 6.5

see Figs. 6.5 and 6.6. The cases with “Precip. = 0” (left plot) have relatively more
often low values (of the predicted probability) near the lower bound than the cases
with “Precip.>0” (right plot) have it.

Next, in Figs. 6.7 and 6.8, we plot the dichotomous observations Zt and the pre-
dicted probabilities π̂t (for the event “Precip. > 0”) over the calendar days of the
year. Due to the large oscillation of both quantities, we build centered (21-days)
moving averages. In these plots, a familiar seasonal pattern cannot be discovered.
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Fig. 6.8 Hohenpeißenberg, 2004–2010. Daily Precipitation. Same Legend as in Fig. 6.7

For all five stations, the observation curve sharply declines to a minimum in the
months Apr., Sept., and Oct.: These are preferentially periods of dry days. We have
such a minimum—in minor form—in the beginning of Jan., too. The curve of pre-
dictions accompanies that of observations more or less synchronously, better to see
for Bremen (Fig. 6.7), worse for Hohenpeißenberg (Fig. 6.8).
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R 6.1 Logistic Regression for daily precipitation data, by means of the R function
glm. The criterion “amount of precipitation” (Prec) is divided into two categories
(family=binomial), i.e., “Prec=0” and “Prec > 0”. Regressor variables are
the lagged precipitation amounts, lag=1 and lag=2 (days). Further, histograms
(hist) of the predicted probabilities for “Prec > 0” are established, see Fig. 6.5,
and classification results w.r.to correctly classified cases are printed. An excerpt from
the file Days5.txt, the daily temperature and precipitation data at five stations,
can be found in Appendix A.3.

days<- read.table("C:/CLIM/Days5.txt",header=T)
attach(days)

postscript(file="C:/CLIM/Days.ps",height=6,width=16,horiz=F)
par(mfrow=c(1,2))

#---------------Data------------------------------------------
quot<- "Aachen 2004-2010, Daily Precipitation"; quot
Pr<- pmin(PrAa/10,40) #Prec truncated by 40 [mm]
n<- length(Pr)

#---------------Logistic Regression---------------------------
"Logistic Regression, Two Alternatives"
"Predicted Prob (Prec >0)), Numerical (lagged) Variables PX,PY"
PX<- Pr; PX[3:n]<- Pr[1:(n-2)] #PX[1:2] artificial
PY<- Pr; PY[2:n]<- Pr[1:(n-1)] #PY[1] artificial

tst<- 365; ts1<- tst+1; c("N Days"=n,"t start"=tst)

Pr01<- pmin(Pr*10,1) #Numerical variable, alternatives 0,1
Q<- Pr; logli<- 0 #Q vector of dim n
for(t in ts1:n){
prec.log<- glm(Pr01[1:t]˜PY[1:t]+PX[1:t],family=binomial)
pred<- fitted(prec.log) #Predicted probabilities
Q[t]<- pred[t] #Forecast Approach
phat<- pmax(pmin(Q[t],0.999),0.001); y<- Pr01[t]
logli<- logli + y*log(phat) + (1 - y)*log(1-phat)
}
c("LogLikelih_Forecast"=logli)
"Output for t=n"
summary(prec.log)

#--------------Histograms--------------------------------------
predt<- Q[ts1:n]; Prn<- Pr01[ts1:n] #vectors of dim n-tst
pred0<- predt[Prn==0]; pred1<- predt[Prn==1]

#2 Histograms for predicted probabilities
xtext<- "Predict Prob(Prec >0)"
hist(pred0,xlim=c(0,1),ylim=c(0,600),xlab=xtext,ylab="Frequency")
title(sub="Days with Precip =0")
hist(pred1,xlim=c(0,1),ylim=c(0,600),xlab=xtext,ylab="Frequency")



88 6 Analysis of Daily Data

title(sub="Days with Precip >0")

#--------------Classification----------------------------------
med<- median(predt) #Median of predicted probs
"Correctly classified Cases for t=ts1:n [Forecast Approach]"
case00<-Prn[Prn==0 & predt<=med];case11<-Prn[Prn==1 & predt>med]
corrt<- length(case00) + length(case11) #Number of correct cases
casen<- length(pred0) + length(pred1) #casen= n-tst
c("Median"=med,"Correct00"=length(case00),"from"=length(pred0),

"Correct11"=length(case11),"from"=length(pred1))
c("Total"=corrt,"from"=casen,"Percent"=(corrt/casen)*100)

dev.off()

When augmenting the regression term (6.3) by further lagged precipitation vari-
ables (lags 3 and 4) or by lagged temperature variables, the goodness-of-fit of
the model (log-likelihood, percentage of correct classification) is not essentially
improved.

6.4 Precipitation: Categorical Data Analysis

This section offers contingency-table analysis, for the homogeneity problem (when
comparing the five stations), and for the independence problem (when cross-
correlating the stations).

Comparing the Five Stations by Contingency Tables

The amount of daily precipitation, measured in [mm] height, is divided into six
categories, by dividing the interval [0,∞) into the six non-overlapping intervals

1 2 3 4 5 6
[0] (0, 1.0] (1, 2.5] (2.5, 5] (5, 10] (10,∞)

, . . . (6.5)

In Table 6.4 the number of cases, falling into the single intervals, is listed for each
station, together with the relative frequencies (which add up to 1).
We are now going to test the hypothesis H0 of homogeneity. H0 asserts that the
distribution of the precipitation amount over the six categories is identical for the
five stations, see Appendix C.2. Under H0 we expect the following frequencies and
relative frequencies for each station.
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Table 6.4 Daily precipitation amounts (mm) at five stations in the years 2004–2010, categorized

Station m=6 intervals Sums

[0] (0, 1.0] (1, 2.5] (2.5, 5] (5, 10] (10,∞)

Aachen 1201 430 281 265 237 141 2555
0.470 0.168 0.110 0.104 0.093 0.055 1

Bremen 1242 497 285 221 201 109 2555
0.486 0.195 0.112 0.086 0.079 0.043 1

Hohenpeißenberg 1235 348 247 247 240 238 2555
0.483 0.136 0.097 0.097 0.094 0.093 1

Potsdam 1324 486 233 227 193 92 2555
0.518 0.190 0.091 0.089 0.076 0.036 1

Würzburg 1330 501 250 207 154 113 2555
0.521 0.196 0.098 0.081 0.060 0.044 1

Sums 6332 2262 1296 1167 1025 693 12775
0.496 0.177 0.101 0.091 0.080 0.054 1

The number of cases, falling into the single intervals, is given, together with the relative frequencies
beneath

m=6 intervals Sums

[0] (0, 1.0] (1, 2.5] (2.5, 5] (5, 10] (10,∞)

1266.4 452.4 259.2 233.4 205.0 138.6 2555
0.496 0.177 0.101 0.091 0.080 0.054 1

From Table 6.4 we derive Pearson’s χ2-test statistic χ̂2
12775 = 187.1. This value

has to be compared with the quantile χ2
20,0.99 = 37.57 of the χ2

20-distribution [DF
= (5− 1) ∗ (6− 1) = 20, α = 0.01], such that the hypothesis H0 of homogeneity
is rejected. W.r.to the distribution of precipitation, there are significant differences
between the five stations. Table 6.4 reveals that the first category [0] is especially
frequent in Potsdam and Würzburg, the second category seldom and the last category
frequent at Hohenpeißenberg, the third frequent in Aachen and Bremen.

In a further step of the analysis we ask, between which stations—in particular—
the difference is significant. For this, we form all ten 2× 6-subtables from Table 6.4
and calculate the test statistic χ̂2

5110 with 1 ∗ 5 DF. We choose the subtable for the
comparison (Potsdam,Würzburg) as an example.

Station m=6 intervals Sums

[0] (0, 1.0] (1, 2.5] (2.5, 5] (5, 10] (10,∞)

Potsdam 1324 486 233 227 193 92 2555
0.518 0.190 0.091 0.089 0.076 0.036 1

Würzburg 1330 501 250 207 154 113 2555
0.521 0.196 0.098 0.081 0.060 0.044 1

Sums 2654 987 483 434 347 205 5110
0.519 0.193 0.095 0.085 0.068 0.040 1
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For this subtable we obtain the test statistic χ̂2
5110 = 8.30. Since 8.30 is smaller

than the quantile χ2
5,0.999 = 20.52, the hypothesis of homogeneity in the subtable

is not rejected. The distributions of the precipitation amount for the two stations
(Potsdam,Würzburg) do not differ significantly. Note, that we use the Bonferroni
correction 1− 0.01/10 = 0.999, due to the 10 simultaneous pair comparisons.

Pearson’s χ2-test is applied to all 10 pair comparisons and is presented in the
following symmetric scheme. Each value of the χ̂2

5110-test statistic has to be compared
with the quantile χ2

5,0.999 = 20.52 and, if exceeding it, is marked by a double
asterisk (**).

Aachen Bremen Hohenp. Potsdam Würzburg

Aachen – 16.60 36.78** 31.64** 41.63**
Bremen 16.60 – 81.86** 9.64 12.07
Hohenpeißenberg 36.78** 81.86** – 96.88** 97.92**
Potsdam 31.64** 9.64 96.88** – 8.30
Würzburg 41.63** 12.07 97.92** 8.30 –

Besides the comparison (Aachen, Potsdam) between the most western and the most
eastern of the five stations, the comparison (Aachen, Würzburg) and all four com-
parisons with the mountain station Hohenpeißenberg turn out to be significant.

Cross-Correlation by Contingency Tables

The correlations of daily temperatures between the five stations were calculated—in
Sect. 6.2—by means of the cross-correlation function from time series analysis. Since
daily precipitation—with its frequent value 0—is no genuinely metric variable, we
employ here once again contingency-table methods. This time we are dealing with
the independence problem, see Appendix C.2. We divide the range [0,∞) of precip-
itation amount once again into the six intervals (6.5) introduced above. Let us denote
the amount at station a and at day t , categorized into 1, . . . , 6, by Y a

t .
Analogously, the amount at station b at day s is then Y b

s . We will put s = t + h,
with the time difference of h days.

Now we can form a 6 × 6 contingency table, where the entry ni j of the table
denotes the number of days t , where

Y a
t = i and Y b

t+h = j, t = 1, . . . , n − h; i, j = 1, . . . , 6,

that is, where the amount at station a falls into category i and the amount at station
b (h days later) into category j . As examples, we choose a = Aachen, b = Potsdam,
h = 1 and a = Potsdam, b = Aachen, h = 1. Then we have the two contingency
tables shown below. We will report Pearson’s χ2-test statistic χ̂2

m (m = 2555 − h)
as well as Cramér’s V ,
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V =
√

χ̂2
m

m · 5 , 0 ≤ V ≤ 1 ;

V serves us as a substitute for the correlation coefficient.

a=Aachen→ b =Potsdam
Y b

t+1

Y a
t [0] (0, 1.0] (1, 2.5] (2.5, 5] (5, 10] (10,∞) Sums

[0] 825 180 67 60 48 21 1201
(0, 1.0] 191 94 42 43 36 23 429
(1, 2.5] 111 65 38 32 23 12 281
(2.5, 5] 86 70 42 31 29 7 265
(5, 10] 71 54 25 35 36 16 237
(10,∞) 39 23 19 26 21 13 141

We obtain Pearson’s test statistic χ̂2
2554 = 336.7 with 25 degrees of freedom; one

calculates V = √336.7/(5 ∗ 2554) = 0.162.

a=Potsdam→ b=Aachen
Y b

t+1

Y a
t [0] (0, 1.0] (1, 2.5] (2.5, 5] (5, 10] (10,∞) Sums

[0] 768 185 112 110 92 57 1324
(0, 1.0] 197 92 61 57 49 29 485
(1, 2.5] 89 49 37 23 26 9 233
(2.5, 5] 76 47 31 25 30 18 227
(5, 10] 51 37 26 36 26 17 193
(10,∞) 20 19 14 14 14 11 92

We obtain the test statistic χ̂2
2554 = 171.6 with 25 DF, from where one derives

V = √171.6/(5 ∗ 2554) = 0.116.
Letting h run from 0 to 8 days, we arrive at the following two lists of V-values,

which are visualized in Fig. 6.9, second plot.

Lag (days) 0 1 2 3 4 5 6 7 8

Aa→ Po 0.196 0.162 0.101 0.072 0.058 0.043 0.055 0.051 0.038
Po→ Aa 0.196 0.116 0.075 0.070 0.057 0.043 0.039 0.050 0.042

We observe here the same phenomenon, which we have already noticed with daily
temperature data (in Fig. 6.4). The cross-correlation curve for the west-east direction
(the main wind direction) lies above that for the reversed direction, up to a time lag of
2 or 4 days (Fig. 6.9). In the case of Bremen-Würzburg, there is no clear preference
for one of the two curves.
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R 6.2 Categorical Data Analysis for daily precipitation. Cross-correlation between
stations (up to a time lag of 8 days) by contingency tables (table), Pearson’s χ2

statistic and Cramér’s V . This is done by chisq.test and by the user functions
Vabba, Vau, plotCrosV. The latter produces a plot for two stations A and
B and for cross-correlations A→ B and B→ A, to be seen in Fig. 6.9. Instead of
chisq.test the user function ChiSqu in the supplement can also be used.

The precipitation amount is divided into 6 categories by the R command cut.

days<- read.table("C:/CLIM/Days5.txt",header=T)
attach(days)
postscript(file="C:/CLIM/DaysCros.ps",height=6,width=16,horiz=F)
#par(mfrow=c(2,2)) #for further plots

#---------------------------------------------------------------
Vau<- function(Xa,Xb,m,n,l){ #Cramer’s V of an mxm table YaxYb
Ya<- Xa[1:(n-l)]; Yb<- Xb[(1+l):n] #time lag l
chi2<-chisq.test(Ya,Yb)$statistic #Pearson’s $chiˆ2 statistic
#or with the user function ChiSqu:
#tab<- table(Ya,Yb); chi2<- ChiSqu(tab,m,m)
Vau<- sqrt(chi2/((n-l)*(m-1)))
return(Vau)
}

Vabba<- function(Pra,Prb,m,n,brk,lx){ #cross corr fuction
Preca<- pmin(Pra/10,100); Precb<- pmin(Prb/10,100)
Prca<- cut(Preca,brk) #Categorical variable Prca
Prcb<- cut(Precb,brk) #Categorical variable Prcb
Vab<- 1:(lx+1); Vba<- 1:(lx+1)
for(l in 0:lx){
Vab[l+1]<- Vau(Prca,Prcb,m,n,l)
Vba[l+1]<- Vau(Prcb,Prca,m,n,l) }
return(cbind(Vab,Vba)) #cbind produces an (lx+1)x2 matrix
}

plotCrosV<- function(mx,cra,crb,yc,xtxt,ytxt,ttxt,Stab,Stba){
plot(0:mx,cra,type="l",lty=1,xlim=c(0,mx),ylim=yc,

xlab="day lag",ylab="Cramers V")
points(0:mx,cra,pch=16); title(main=ttxt,cex=0.6)
lines(0:mx,crb,lty=2); points(0:mx,crb,pch=4)
legend(xtxt,ytxt,legend=c(Stab,Stba),lty=c(1,2))
}

#---------------------------------------------------------------
ttxt<- "Daily Precipitation 2004--2010"; ttxt
n<- length(Year)
m<- 6; brk<-c(-1,0,1,2.5,5,10,100) #6 categories
"6 Classes: [0],(0,1],(1,2.5],(2.5,5],(5,10],(10,100])"
yc<- c(0.0,0.26); xtxt<- 5; ytxt<- 0.25 #plotting parameters
lx<- 8 #maximal time lag
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Pra<- PrAa; Prb<- PrHo
Stab<- "Aa -> Ho"; Stba<- "Ho -> Aa"
V<- Vabba(Pra,Prb,m,n,brk,lx)
Vab<- V[,1]; Vba<- V[,2] #1. and 2. column of matrix V
Stab; Vab; Stba; Vba
plotCrosV(lx,Vab,Vba,yc,xtxt,ytxt,ttxt,Stab,Stba)

#Continue with: Pra<- PrAa; Prb<- PrPo etc.
dev.off()

Supplement

ChiSqu<- function(mat,k,m) #Pearson’s chiˆ2 of a kxm matrix mat
{n<- sum(mat); ch2<- 0
for(i in 1:k){ni<- sum(mat[i,]) #row sums
for(j in 1:m){nj<- sum(mat[,j]) #column sums
eij<- ni*nj/n #expected frequencies
ch2<- ch2+(mat[i,j] - eij)ˆ2/eij}}
return(ch2)
}
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Fig. 6.9 Cross-correlations between stations by means of Cramér’s V for contingency tables.
Daily Precipitation, 2004–2010. In each of the four plots, the two curves relate to the two directions
“x → y” and “y → x”. Aa Aachen, Br Bremen, Ho Hohenpeißenberg, Po Potsdam, Wu Würzburg
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6.5 Heavy Precipitation: Event-Time Analysis

In event-time analysis the focus of attention lies on the occurrences of a certain kind
of event; in the following it will be the occurrences of daily precipitation heights
above a predefined bound B (mm). We write down the time points (here: days) t1,
t2, . . . , tn when such an event occurs.

t1 t2 t3 t4 t5 t6 . . .
time axis t

In what follows, it is the sample t1, t2, . . . , tn of n event-times (also called occurrence
times) which is analyzed. Our main tools of analysis will be intensity functions and
(inhomogeneous) Poisson processes.

Counting Processes and Intensity Processes

The basic object in event-time analysis is a non-negative random function λ(t),
t ≥ 0, called intensity function (or intensity process). For λ(t) we presuppose (a
certain kind of) continuity, and for the integrated intensity function

Λ(t) =
∫ t

0
λ(s) ds

we assume Λ(t) < ∞ for all t ≥ 0. We further define the counting process Nt ,
t ≥ 0, by the number of events, occurring in the time interval [0, t]. For s ≤ t , the
increment Nt −Ns is the number of events in the interval (s, t]. The relation between
the (observable) counting process and the (unknown) intensity process is

λ(t) = lim
h→0

1

h
IE(Nt+h − Nt |Ft ) = lim

h→0

1

h
IP(Nt+h − Nt ≥ 1|Ft ) , (6.6)

Ft being a theoretical concept of the “information before time t”. The second equa-
tion of (6.6) is proven in counting process theory. An interpretation: λ(t) gives the
tendency that an event occurs around time point t (similar to the concept of a density
function in probability theory; but the intensity function is not normalized to have
integral 1). Further the equation IE(Nt ) = IE(Λ(t)) is valid.

Guided by Eq. (6.6), we can derive a nonparametric curve estimator for λ(t) on
the basis of a sample t1, t2, . . . , tn by

λ̂(t) = 1

h
·

n∑
i=1

K

(
t − ti

h

)
, (6.7)
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where K is a kernel and h is a positive band (window) width; see Andersen et al.
(1993), II 4.1, IV 2.1.
Two examples: The Gaussian kernel and the rectangular kernel, respectively, are

K (s) = 1√
2π

exp

(
−1

2
s2

)
, λ̂(t) = 1√

2πh

n∑
i=1

exp

(
− (t − ti )2

2h2

)

K (s) =
{

1/2 |s| ≤ 1

0 else
, λ̂(t) = 1

2h
�{ i : t − h ≤ ti ≤ t + h } ,

the latter being an empirical counterpart to (6.6).

Poisson Processes

An inhomogeneous Poisson process has a deterministic intensity function λ(t) and
the properties

1. For all s ≤ t , the increment Nt−Ns is independent of the realization (Nu, u ≤ s)
of the process up to time s.

2. For all s ≤ t , the increment Nt − Ns is Poisson distributed with parameter
Λ(s, t) = Λ(t)−Λ(s) = ∫ t

s λ(u)du, i.e.,

IP(Nt − Ns = k) = (Λ(s, t))k

k! · exp(−Λ(s, t)).

3. For each k, the waiting time Sk = Tk+1−Tk till the next event has (conditionally)
an exponential distribution, i.e.,

Qk(s) = IP(Sk ≤ s|(T1, . . . , Tk)) = 1− exp(−Λ(Tk, Tk + s)).

Hereby, we interpret the sample (t1, . . . , tn) as a realization of random variables
(T1, . . . , Tn). See Cox and Lewis (1966) or Snyder (1975) for more information and
for important applications.

As likelihood of a sample (t1, t2, . . . , tn) of n occurrence times within a (prede-
fined) time interval [0, tb], we write down

f (t1, . . . , tn) =
(

n∏
i=1

g(ti−1, ti )

)
· exp(−Λ(tn, tb)). (6.8)

Hereby we have set t0 = 0 and

g(ti−1, ti ) = λ(ti ) · exp
(−Λ(ti−1, ti )

)
.
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The last factor in (6.8) is the probability that there is no event between tn and tb.
Eq. (6.8) amounts to

f (t1, . . . , tn) =
(

n∏
i=1

λ(ti )

)
· exp(−Λ(tb)) , Λ(tb) =

tb∫

0

λ(s)ds ,

from where we obtain the log-likelihood function

�n = log f (t1, . . . , tn) =
n∑

i=1

log λ(ti ) − Λ(tb) ; (6.9)

see also Andersen et al. (1993), II 7.2. We call the process a homogeneous Poisson
process, if the intensity function is constant over time: λ(t) = λ for all t . Here, we
have in property 3

Qk(s) = Q(s) = 1− exp(−λ · s),

such that in this special case the waiting time Sk = Tk+1 − Tk is independent of the
last event time Tk . The log-likelihood function (6.9) becomes �n = n · log λ− tb ·λ.

Statistics and Application to Daily Precipitation Data

As announced above, the time index t = 1, 2, . . . counts the successive days, from the
starting point t = 1, that is the 1st January 2004, onwards, up to t = tb = 2555, that
is the 31st December 2010 (29th February canceled). The events of interest are daily
precipitation heights above B = 15 mm at the stations Aachen, Bremen, Potsdam,
Würzburg, and above B = 20 mm at Hohenpeißenberg. With a sample of n events, at
the days t1, t2, . . . , tn , the above formulas (6.7) and (6.9) are applied. First, we provide
nonparametric curve estimators (6.7) for the unknown intensity function λ(t), using
a Gaussian kernel with band width h = 40 days. Figures 6.10 and 6.11 (top) present
the estimated intensity curves for Hohenpeißenberg and Würzburg, demonstrating
the existence of a strong yearly periodicity (seasonality) and of a weaker trend.
Therefore, when establishing a parametric intensity, we incorporate into the function
a (quadratic) trend term and a (sin/cos) seasonal term. With five parameters

θ = (a, b1, b2, c, d)

we define the intensity function λ(t) for the full model by

λ(θ, t) = exp
(
a + m((b1, b2), t)+ s((c, d), t)

)
,

m((b1, b2), t) = m(t) = b1 · t + b2 · t2 ,

s((c, d), t) = s(t) = c · sin(ωt)+ d · cos(ωt) ,

(6.10)
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λ(t) = exp(a+b*t+b2*t^2+c*sin(2*pi*t/365)+d*cos())
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Fig. 6.10 Hohenpeißenberg, Daily Precipitation, 2004–2010. Event-time analysis for days with
precipitation amount > 20 mm. Top Nonparametric curve estimation of the intensity function acc.
to Eq. (6.7), by using a Gaussian kernel and a band width b = 40 days. Bottom Parametric estimation
of the intensity function for the full model (solid line) acc. to (Eq. 6.10) and for the submodel with
quadratic trend term only (dashed line) acc. to (Eq. 6.11)

where ω = (2 · π)/365. Further, for testing purposes, we also apply sub-models
possessing the intensity functions

λa(a, t) =λa(t) = exp(a) [constant intensity model],

λm((a, b1, b2), t) =λm(t) = exp
(
a + m((b1, b2), t)

)
[trend model],

λs((a, c, d), t) =λs(t) = exp
(
a + s((c, d), t)

)
[seasonal model].

(6.11)

The constant intensity model belongs to a homogeneous Poisson process. The use
of the exponential function exp guarantees us the positivity of the intensities.
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Fig. 6.11 Würzburg, Daily Precipitation, 2004–2010. Event-time analysis for days with precipita-
tion amount >15 mm. Legend as in Fig. 6.10

According to the four intensity functions λa , λm , λs , λ, presented above, we have
four log-likelihood functions

�a , �m , �s , �

for the homogeneous (constant intensity) model, the trend model, the seasonal model
[see Eq. (6.11)] and for the full model (6.10), respectively. The unknown parame-
ters θ are estimated by maximizing the log-likelihood function (6.9), resulting in an
ML-estimator for θ. This is done numerically by a grid-search method and by numer-
ical integration to get Λ(tb). In the homogeneous (constant intensity) model, the
ML-estimator of the constant a is

a = log(λ̂) = log(n/tb) .
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Table 6.5 Event-time analysis for days with precipitation amount above B mm, at the stations
Aachen, Bremen, Hohenpeißenberg, Potsdam, Würzburg, 2004–2010

Sta. B n ln λ̂ (a, b1 · 103, b2 · 107, c, d) T(a:m) T(a:s) T(m) T(s)

Aa 15 70 −3.597 (−3.61, 0.11, −0.83, −0.32, −0.33) 0.30 6.75 6.91 0.46
Br 15 55 −3.838 (−4.49, 0.83, −2.82, −0.60, −0.65) 1.49 18.98 18.62 1.13
Ho 20 72 −3.569 (−4.41, 0.66, −3.02, −0.29, −1.70) 1.79 68.74 68.69 1.74
Po 15 41 −4.132 (−5.12, 1.42, −4.74, −0.40, −0.73) 2.66 12.88 12.61 2.39
Wu 15 47 −3.996 (−3.68, −1.18, 4.18, −0.76, −0.75) 1.70 21.36 21.89 2.23

The parameters θ of the full model λ(θ, t) acc. to Eq. (6.10) and the log-LR test statistics (6.12),
(6.13) to test the submodels are presented

By means of the log-likelihood ratio (log-LR) test statistics

T (a : m) = 2 · (�m − �a) , T (a : s) = 2 · (�s − �a) , (6.12)

we test the hypotheses H0 of a homogeneous (constant intensity) model within the
larger models with quadratic trend and with seasonality, respectively. Under H0, they
are χ2-distributed with 2 DF (for larger n).

By means of the log-LR test statistics

T (m) = 2 · (�− �m) , T (s) = 2 · (�− �s) , (6.13)

we test the hypotheses H0 of a quadratic trend model and of a seasonal model,
respectively, within the full model (6.10). Under H0, they are χ2-distributed with 2
DF (for larger n). The χ2

2,1−α-quantiles are

α = 0.10 : 4.605, α = 0.05 : 5.992, α = 0.01 : 9.210 .

Table 6.5 reports the four test statistics for the five stations. The extension of the
constant intensity by a quadratic term is not significant, neither is it the extension
of the sin/cos term to the full term by the quadratic term, according to test statistics
T(a:m) and T(s), respectively. This is different from the sin/cos term, which forms a
significant extension of the constant intensity (see T(a:s)) and significantly extends
the quadratic term to the full term (see T(m)). The significance level is α = 0.01
(Aachen: 0.05). Although not so evident from the lower plots in Figs. 6.1, 6.2, 6.3,
the yearly periodicity (seasonality) is very strong (and dominates the trend) in the
series of days with heavy precipitation.

Figures 6.10 and 6.11 (bottom) show the intensity functions λ(θ, t) for the full
model, according to Eq. (6.10), and for the submodel with the quadratic trend term
only, i. e. λm(t) = λm((a, b1, b2), t) cf. Eq. (6.11), plotted over the seven years 2004–
2010. At the stations Aachen, Bremen, Potsdam (no Figs.) and Hohenpeißenberg the
intensity curves λm(t) are concave, with a decrease in the last 2 or 3 years. That is
different from Würzburg, where the curve is convex (with a positive coefficient b2
and an increase in the last 3 years).
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R 6.3 Event-time analysis for days with precipitation amount above B mm: Non-
parametric estimation of the intensity function by kernel method and plot of the result-
ing curve estimator, as in Figs. 6.10 and 6.11 (top). The choice is between the Gaussian
and the rectangular kernel (user functions gauss and rectang, resp.) In the plot
a margin is provided by means of the logical vector red of dimension ndelt, tak-
ing here the values FALSE FALSE FALSE TRUE ... TRUE FALSE FALSE
FALSE FALSE. Data are read from fileC:/CLIM/eventAa.txt in the form of a
vector (n, t x(1), . . . , t x(n)); t x being the occurrence times of the n events in Aachen
in the years 2004–2010. We have B = 15, n = 70 and t x is the vector

12 19 127 190 203 222 225 265 266 278 322 351 385 406
408 480 591 616 623 660 845 870 876 877 946 956 963 1053
1075 1112 1113 1254 1256 1264 1280 1315 1316 1328 1365 1371 1397 1409
1435 1539 1555 1564 1615 1623 1643 1651 1669 1675 1715 1733 1738 1866
1872 1932 1987 2049 2108 2316 2321 2336 2417 2428 2506 2507 2543 2547

postscript(file="C:/CLIM/Intfunc.ps",height=6,width=16,horiz=F)

#--------------------------------------------------------------
gauss<- function(t,x,b){ #Gauss kernel
c<- sqrt(2*pi)
fun<- (1/c)*exp(-(t-x)ˆ2/(2*b*b))
return(fun)
}
rectang<- function(t,x,b){ #Rectangular kernel
fun<- 0
if({t-b <= x} & {x<= t+b}) fun<- 1/2
return(fun)
}

#--------------------------------------------------------------
quot<- "Aachen 2004--2010. Daily Precipitation"; quot

xx<- scan("C:/CLIM/eventAa.txt")
n<- xx[1]; tx<- xx[2:(n+1)]; tb<- 2555
c("n"=n,"Right end"=tb,"lambda"=n/tb,"log lambda"=log(n/tb))

"Nonparametric kernel estimation"
#Curve evaluated at ndelt points
ndelt<-200; delt<- tb/ndelt; bh<- 40 #bh bandwidth
tt<- delt*(1:ndelt); int<- 1:ndelt #vectors of dim ndelt

for(j in 1:ndelt){ kern<- 0
for(i in 1:n){ #choose:gauss( ) or rectang( ):
kern<- kern + gauss(tt[j],tx[i],bh)}
int[j]<- (1/bh)*kern}

d<- bh; red<- tt>d & tt<tb-d #logical vector, margin width d
ttr<- tt[red]; intr<- int[red]
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c("ndelt"=ndelt,"delta"=delt,"bandwith"=bh,
"mean int"=mean(intr))

plot(ttr,intr,type="l",lty=1,xlab="Days (Occurrence times +)",
ylab="Nonparametric Intensity Function")

title(main=quot)
abline(h=n/tb,lty=2)
text(tb+10,n/tb,"l",font=5) #Greek lambda
abline(v=365*(1:7),lty=3)
text(tx,min(intr),"+",cex=0.8) #mark occurrence times

dev.off()

Output from R 6.3 Notice: We have mean int ≈ λ = 70
2555 .

"Aachen 2004--2010. Daily Precipitation".

n Right end lambda log lambda
70.0 2555.0 0.02739 -3.59731

"Nonparametric kernel estimation"

ndelt delta bandwith mean int
200.0 12.7750 40.0 0.02672



Chapter 7
Spectral Analysis

The analysis in the frequency domain, which now follows, is guided by the idea, that
the “oscillation” of the observed series is produced by an overlapping of periodic
(sin, cos) functions.

To detect “hidden” periodicities, we employ periodograms and smoothed peri-
odograms, considered as estimators for the spectral density of the time series, see
Appendix B.2. The problems with periodograms in the presence of a trend and with
periodograms after the removal of the trend are discussed. Further, simultaneous
statistical bounds are used to assess peaks of the (smoothed) periodograms. Wavelet
analysis is able to trace periodicities which vary in the course of the ongoing process.
So if the periodogram has large values at several period lengths, then it is sometimes
possible to allocate them to different parts of the underlying time interval.

7.1 Periodogram, Raw and Smoothed

To describe periodical phenomena in time series Yt , t = 1, . . . , n, we
employ—equivalently—

• the number k, k = 1, . . . , n/2; i.e. the number of cycles in the time interval [0, n],
• the period length T = Tk = n/k,
• the angular frequency ω = ωk = (2π/n) · k.

The periodogram is calculated by using the n Fourier coefficients of the time series.
These coefficients

a0, a1, . . . , an/2, b1, . . . , bn/2−1

H. Pruscha, Statistical Analysis of Climate Series, 103
DOI: 10.1007/978-3-642-32084-2_7, © Springer-Verlag Berlin Heidelberg 2013



104 7 Spectral Analysis

(n supposed to be even) are gained by the formulas

a0 = 2
n

n∑
t=1

Yt = 2 Ȳ , an/2 = 1
n

n∑
t=1

(−1)t Yt ,

ak = 2
n

n∑
t=1

Yt cos(ωk t) , k = 1, . . . , n/2− 1 ,

bk = 2
n

n∑
t=1

Yt sin(ωk t) , k = 1, . . . , n/2− 1 .

(7.1)

We define the periodogram I (ωk), k = 1, 2, . . . , n/2, by using the sum of the
squared Fourier coefficients ak , bk , more precisely by the equations

I (ωk) = n

4π
· (a2

k + b2
k ) , k = 1, 2, . . . , n/2− 1,

I (ωn/2) = I (π) = n

π
· a2

n/2 . (7.2)

It is plotted over k = 1, 2, . . . , n/2, respectively over T = n, n/2, . . . , 2. It informs
us, how strong a cycle with number k is involved in the oscillation of the time
series. The plot of the periodogram generally looks very “jagged”. By smoothing the
periodogram we arrive at an estimator f̂ (ω) for the spectral density f (ω) of the
time series; see the Appendix B.2.

A simple method of smoothing is the application of the so-called discrete Daniel
window: moving averages are built over 2M + 1 values of the periodogram, M
values left and M values right of ωk , leading to a special version of the spectral
density estimator, namely to

f̂ (ωk) = 1

2M + 1
· (I (ωk−M )+ · · · + I (ωk)+ · · · + I (ωk+M )

)
.

We worked with M = 5, that is with 2M + 1 = 11 points, throughout.
The periodogram I (ω)—and hence f̂ (ω) too—is often standardized in the sense,

that we divide it by s2, the empirical variance of the time series.

7.2 Statistical Bounds

We start with reporting a central result. The ratios

(i)
I (ω)

f (ω)
and (ii) ν · f̂ (ω)

f (ω)
, ω = 2 · π

T
,

where f (ω) is the (true) spectral density of the time series, have asymptotically
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(i) an exponential distribution (with parameter 1) and
(ii) a χ2

ν-distribution (with ν degrees of freedom),

respectively. It is ν = 4 ·M + 2 in the case of the discrete Daniel window, which we
are using here.

Recall, that we have f (ω) = σ2/π for a white noise process, also called pure
random series. From there we derive simultaneous bounds bl and Bl ,

bl = − 1

π
· ln (α

l

)
, Bl = 1

π ν
· χ2

ν,1−α/ l , ν = 4 M + 2 , (7.3)

see Brockwell and Davis (2006, 10.3–10.5). They refer to the standardized peri-
odogram (the bl ’s) and spectral density estimation (the Bl ’s) of a pure random series,
with the same variance as the observed time series Yt . In Eq. (7.3) we have denoted
the γ-quantile of the χ2-distribution with ν degrees of freedom by χ2

ν,γ . The meaning
of these bounds is the following (for the standardized periodogram as example; in
what follows we often suppress the attribute “standardized”). The probability that
the maximum of l periodogram values (at l points ωk resp. Tk , fixed in advance)
of a pure random series exceeds the bound bl , approximately amounts to α (here
α = 0.05). The Bonferroni-correction in (7.3), that is α/ l instead of α, refers to the
fact, that we base a rejection of the hypothesis of a pure random series not on the
periodogram value at one single point, but on the values at several (namely l) points.
In any case, the individual l = 1-bound is too low: note, that 5 % of the periodogram
values of a pure random series lies—on the average—above the bound b1.

Somewhat arbitrarily, we will speak of weak significance (of significance) of a
periodogram value or of a smoothed periodogram value, if the b4 or B4 bound (the
b12 or B12 bound) is exceeded. In the following figures, these bounds bl and Bl ,
l = 1, 4, 12, are drawn as horizontal lines.

AR(1)-Correction. Trend Removal

If we take the auto-correlation r = r(1) of the time series into account, we correct
these bounds by a factor λ(ω). More precisely: under the assumption of an AR(1)-
process, we have to multiply bl and Bl by

λ(ω) = 1− r2

1− 2r cos ω + r2 , ω = 2 · π
T

, (7.4)

arriving at the AR(1)-adjusted bounds

bl(ω) = bl · λ(ω) and Bl(ω) = Bl · λ(ω).

To give an argument: s2

π ·λ(ω) is an estimator of the spectral density f (ω) of an AR(1)-
process; see Eq. (B.7). This AR(1)-correction declares high spectral values, which are
due to the AR(1) structure only [see the figure beside Eq. (B.7)], as non-significant. In
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Fig. 7.1 Hohenpeißenberg. Annual temperature means. The standardized periodogram (zigzag
line) and smoothed periodogram (inner solid line) of the time series. The bounds b1, b4, b12 for the
periodogram (. . .) and B1, B4, B12 for the smoothed periodogram (–·–·–·–) are drawn as horizontal
lines. The corresponding AR(1)-adjusted bounds b1(ω), b4(ω), b12(ω) (. . .) enter the plot as S-type
curves in increasing order (no labels). The same is the case for the AR(1)-adjusted bounds B1(ω),
B4(ω), B12(ω) (–·–·–·–). For the periodogram and for the curves b4(ω) and b12(ω), the truncated
values at k = 1 can be found at the upper border

the case of r(1) > 0, these are spectral values for small ω- (large T -) values. Further
in this case, spectral values for large ω- (small T -) values may become significant
by such a correction. See also Schönwiese (2006, 14.6) in connection with climate
applications.

Starting with Sect. 7.3, we do not analyze the observed series, but the series of
residuals from a polynomial trend (here polynomials of order four were employed).
Without this trend removal long-term fluctuations (T ≥ 20 years or more) may
dominate the periodogram- or spectral density plot, with trend removal they enter
the plots in a weakened form only. Of course, the removal of a trend component may
also remove true periodicities from the series.

The r = r(1)-values of the climate series after trend adjustment are very
small—according to Tables 3.1 and 3.2, such that the correction term λ(ω) in Eq. (7.4)
is approximately 1. Therefore, in detrended series, the AR(1)-correction will not be
performed.

http://dx.doi.org/10.1007/978-3-642-32084-2_3
http://dx.doi.org/10.1007/978-3-642-32084-2_3
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Fig. 7.2 Hohenpeißenberg. Annual temperature means (detrended). The standardized periodogram
(zigzag line) and the standardized smoothed periodogram (inner solid line) of the time series of
residuals from polynomial(4)-trend. The bounds b1, b4, b12 for the periodogram ( . . . ) and B1,
B4, B12 for the smoothed periodogram (– ·– ·– ·–) are drawn as horizontal lines. The periodogram
shows peaks (>b1) at the periods of T =17.7, 15.3, 12.8, 7.9, 3.4, 2.3 (years)

Yearly Temperature

In Fig. 7.1 we find periodogram and smoothed periodogram (i.e. spectral density
estimation with discrete Daniel window) for annual temperature means at Hohen-
peißenberg. With respect to the horizontal lines b4 and b12, we have the significant
period of T = 230 years (k = 1) and the weakly significant period T = 15.3
(k = 15). The peak at this period is very sharp and small, so that here the smoothed
periodogram does not exceed the horizontal bound B4. Now we have an auto-
correlation r = r(1) = 0.29, which is distinctly different from zero. Therefore,
we correct the bounds bl and Bl by the factor λ(ω) as in Eq. (7.4) and obtain the
S-type curves bl(ω) and Bl(ω) of the figure. The period T = 230 is still significant,
but no other peak exceeds b4(ω). Looking at the smoothed periodogram, it is now
the period of T = 2.2 years, where the curve reaches the bound B4(ω) and shows
therefore weak significance.

Detrended series. Periodogram analysis of the series after the removal of the
polynomial(4)-trend is shown in Fig. 7.2. The significant peak at T = 230 from
Fig. 7.1 disappears and—instead—we have non-significant periodogram peaks at
periods T = 115 and 46. We can state that in Fig. 7.1 the whole trend component
is interpreted as one long cycle of T = 230 years. Notice that the rest of the peri-
odogram keeps more or less unaltered when the trend component is removed.
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Fig. 7.3 Hohenpeißenberg. Winter temperature means (detrended). Legend as in Fig. 7.2. The
periodogram shows peaks (>b1) at the periods of T = 15.3, 5.8, 4.6, 2.6, 2.3 (years)

7.3 Yearly and Winter Temperature, Detrended

We remind that from now on the time series are trend-adjusted in the sense, that the
residuals from a polynomial(4)-trend are built. Further: periodogram values above
the horizontal line b4 are called weakly significant, above b12 significant.

The periodograms of the Figs. 7.2, 7.3, 7.4, and 7.5 show peaks at various period
lengths T .

For the yearly Hohenpeißenberg temperature means we notice larger periodogram
values at longer periods (weakly significant at≈15 years), see Fig. 7.2. Whether this
is a true cycle or remainder of a trend, not successfully removed, is a matter of
interpretation or may be clarified by further analyses. The non-significant period
T ≈ 2.3 had attained weak significance in Fig. 7.1, with regard to (the smoothed
periodogram and) the AR(1)-corrected bounds. We have the problem, which peri-
odogram version—without trend removal but with AR(1)-adjustment or with trend
removal and without AR(1)-adjustment—should be preferred.

The periodogram of the Hohenpeißenberg winter series has maximum values,
which are weakly significant, see Fig. 7.3. It is only the longest cycle of 15.3 years
which is present in the yearly data, too.

For the Potsdam series of yearly data, we observe a significant peak at T = 7.9;
the smoothed version confirms the interval 6 ≤ T ≤ 12. This peak is also
present in the periodogram of the Potsdam winter series. Here, the smoothed ver-
sion distinguishes the same interval [6, 12], but at a lower level (Figs. 7.4, 7.5). The
wavelet analysis will draw a more differentiated picture. The T = 15.3 cycle of
the Hohenpeißenberg periodograms in Figs. 7.2 and 7.3 may be comprehended as
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Fig. 7.4 Potsdam. Annual temperature means (detrended). Legend as in Fig. 7.2. The periodogram
shows peaks (>b1) at the periods of T = 7.9, 5.6, 4.5 (years) The maximum value is 3.06
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Fig. 7.5 Potsdam. Winter temperature means (detrended). Legend as in Fig. 7.2. The periodogram
shows peaks (>b1) at the periods of T = 7.9, 5.6, 4.5 (years). The maximum value is 2.23

the double cycle of Potsdam’s T = 7.9. For Potsdam, but not for Hohenpeißen-
berg, the periodograms of the annual and of the winter temperature series exhibit
great similarity.

In the periodograms of the temperature series, so far discussed, there is a side-peak
at T = 2.2 . . . 2.3 years (except in Fig. 7.4). A possible meteorological explanation
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Fig. 7.6 Hohenpeißenberg. Annual precipitation (detrended). Legend as in Fig. 7.2. The peri-
odogram shows peaks (>b1) at the periods T = 22, 14.7, 11, 2.75 (years)

is the quasi-biannual (26 months) periodical oscillation (QBO) of the wind direction
between east and west in the tropical stratosphere [see Schönwiese (1974), or Malberg
(2007)]. A more trivial explanation is that of a possible artifact. The polynomial
smoothing technique may leave behind a “zigzag” in the detrended series, creating a
T = 2 cycle.

7.4 Precipitation. Summary

The periodogram of Hohenpeißenberg’s annual precipitation series in Fig. 7.6 has
a (nearly) significant peak at T = 22 years and a further peak at the half
period length of T = 11 years. The smoothed version attains the B12 signifi-
cance line between T = 13 and 20, which confirms the importance of the two
peaks.

The periodogram of Fig. 7.7 for winter precipitation shows a narrow signif-
icant peak at T ≈ 4 years. The smoothed version distributes it over the—not
significant—interval [3.3, 4.3]; the wavelet analysis will shed more light on this
point. Possibly, this period of 4 years is an (approximate) doubling of the number 2
(or 2.2), mentioned above. Note that the periodograms of the annual and of the winter
precipitation series (for Hohenpeißenberg) exhibit no great resemblances. The same
is true for Potsdam, as now follows, as well as for Bremen and Karlsruhe (no Figs.,
but see Table 7.1, right half).
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Fig. 7.7 Hohenpeißenberg. Winter precipitation (detrended). Legend as in Fig. 7.2. The peri-
odogram shows peaks (>b1) at the periods T = 22, 3.9, 2.5, 2.4 (years)

Table 7.1 Periodogram analysis of annual and winter temperature and precipitation series
(detrended)

Station Temperature Precipitation

Bremen Year 8.1, 7.6 4.7, 4.5, 4.2
Winter 8.1, 7.6, 5.8, 2.3, 2.2 6.4, 4.8, 4.2, 3.3

Hohenpeißenberg Year 17.7, 15.3, 12.8, 7.9, 3.4, 2.3 22, 14.7, 11, 2.8
Winter 15.3, 5.8, 4.6, 2.6, 2.3 22, 3.9, 2.5, 2.4

Karlsruhe Year 105, 8.4, 7.8, 2.2 4.6, 4.2, 3.4
Winter 8.4, 7.8, 5.5, 3.5, 3.1, 2.3 3.5, 3.2

Potsdam Year 7.9, 5.6, 4.5 6.6, 4.2, 3.3, 2.3, 2.1
Winter 7.9, 5.6, 4.5 9.8, 2.0

Presented are the period lengths T (years) with a periodogram value exceeding the bound b1. If the
bound b4 [b12] is exceeded, the figure is underlined, e.g., 4.2 [put in boldface, e.g., 8.1]

The periodogram of the Potsdam annual precipitation series shows a weak signif-
icant peak at T = 2.3 years (no Fig.). The plot in Fig. 7.8 of the winter precipitation
has no significant values for T > 2. The largest value at the right margin (corre-
sponding to T = 2) is perhaps a further hint at the meteorological phenomenon or
at the artifact of the polynomial smoothing technique, both mentioned above at the
end of 7.3
Summary. A summary of the preceding results is given in Table 7.1 (detrended
series are considered only). The cycles with T ≈ 8 years in the yearly and the winter
temperature series Potsdam and Bremen are statistically significant; the same is true
for the period T ≈ 4 years in the winter precipitation series Hohenpeißenberg. The
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Fig. 7.8 Potsdam. Winter precipitation (detrended). Legend as in Fig. 7.2. The periodogram shows
a peak (>b1) at the period T = 9.8 (years) as well as a larger value at the right margin

Karlsruhe series contain one significant period, namely T = 105 years for annual
temperatures (which one could also interpret as a long-time trend).
It is difficult to derive general statements (on periodicities in our climate series) from
the Table 7.1 and the Figs. 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8. First of all, one has to
mention the cycle of T ≈ 2.2 years, discussed above. Then, in temperature series,
there is a tendency for T ≈ 8 and for T = 5.5 . . . 5.8 years cycles. In precipitation
series, T ≈ 4 and T ≈ 3.3 often appear in Table 7.1. These findings partly agree
with those in Schönwiese (1974).

Once again, we want to point to some inherent problems of our analysis. Without
trend removal, long-time periods may dominate (without belonging to true cycles);
with trend removal, true cycles can be destroyed. Further, the assessment of signifi-
cance in (smoothed) periodograms is not free from arbitrariness, nor is it the choice
between the two versions, periodogram and smoothed periodogram.

R 7.1 Computation of the periodogram of the time series Y [1], . . . , Y [n] by cal-
culating the Fourier coefficients a[k] and b[k], k = 1, . . . , n/2. Plot of the (standard-
ized) periodogram by means of the user function plotP, together with simultane-
ous bounds, see Fig. 7.7. Beneath the cycle numbers “k” we write the corresponding
period lengths “T” by mtext(..,line 2,..).

attach(hohenPr)
postscript(file="C:/CLIM/Hpgram.ps",height=6,width=15,horiz=F)
quot<-"Hohenpeissenberg, Precip. Winter (Resid.) 1879-2010";quot

#---------------------------------------------------------------
plotP<- function(k,z,nh,tylab,yli,bc,bct,lte,xte){
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plot(k,z,type="l",lty=1,xlim=c(0,nh),ylim=yli,ylab=tylab,xlab="")
segments(1,bc,nh-4,bc,lty=2) #Drawing simultaneous bounds
text(nh,bc,bct,cex=0.7)
#T-values as text on the bottom margin (side=1,line=2)
mtext(lte,side=1,line=2,at=xte[1:7])
mtext(c("k","T"),side=1,line=c(1,2),at=xte[8])
}
#----------Preparation of the vector Y, to be analyzed ---------
Y1<- (dcly+jan+feb)/1000 #Amount of precipitation winter [dm]
Ja<- Year-1900; Ja2<- Ja*Ja; Ja3<- Ja2*Ja; Ja4<- Ja2*Ja2
Y<- Y1 - predict(lm(Y1˜Ja+Ja2+Ja3+Ja4)) #Removal of polyn.trend
n<- length(Y); nh<- round(n/2); SD2<- var(Y)

#Calculate periodogram via Fourier-coefficients a,b
seq<-1:nh; pg<-seq #vectors of dim nh
for (k in 1:nh)
{a<- 0; b<- 0; omk<- 2*pi*k/n
for (i in 1:n)
{a<- a+ Y[i]*cos(omk*i)
b<- b+ Y[i]*sin(omk*i)
pg[k]<- (a*a+b*b)/(n*pi)}
}

#-------------Plotting the periodogram--------------------------
Pgr<- pg/SD2 #Standardizing
tylab<- "Periodogram R(k)ˆ2*n/(4 pi sˆ2)"
#Simultaneous bounds b_l=-ln(alpha/l)/pi, l=1,4,12
bc<- -log(0.05/c(1,4,12))/pi #3 bounds b_1,b_4,b_12
bct<- c("b_1","b_4","b_12")
lte<- c("26.4","13.2","6.6","4.4","3.3","2.6","2.2")
xte<- c(5,10,20,30,40,50,60,70)
yli<- c(0.0,1.8)

plotP(seq,Pgr,nh,tylab,yli,bc,bct,lte,xte)
title(main=quot)

dev.off()

7.5 Wavelet Analysis

The cycles existing in a time series may have period lengths which vary in the course
of time. By means of wavelet analysis a spectrum can be established for each of the
ongoing time points. So we are able to trace the period lengths with maximal spectral
value along the time axis.

We choose a very specific wavelet method: Periodogram analysis is performed
within a Gaussian type window, which is moving from time point to time point
(Morlet wavelets). The wavelet spectrum is defined by
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W (t, s) = A2(t, s)+ B2(t, s) , t = 1, . . . , n − 1, 0 < s < n. (7.5)

With the abbreviations

a(η) = cos(2πη), b(η) = sin(2πη), f (η) = e−η2/2 ,

the cos and sin terms in Eq. (7.5) are given by

A(t, s) = c0 · 1√
s
·

n∑
t ′=1

a(η(t ′, t, s)) · f (η(t ′, t, s)) · Yt ′

B(t, s) = c0 · 1√
s
·

n∑
t ′=1

b(η(t ′, t, s)) · f (η(t ′, t, s)) · Yt ′ , (7.6)

see Torrence and Compo (1998). Hereby we have set c0 = 1/ 4
√

π and

η(t ′, t, s) = t − t ′

s
.

Using the normalizing factor c(s) = 1
4√π
· 1√

s
from Eq. (7.6), we find that the

function

g(t, s) = c(s) · exp
(
− 1

2

( t − t0
s

)2)
fulfills

∫ ∞
−∞

g2(t, s) dt = 1 .

The wavelet spectrum W (t, Tj ) is evaluated at all time points t = 1, . . . , n− 1 and
at certain periods s = s j = Tj . With constants s0 and δ, these periods are

s j = Tj = s0 · 2 j ·δ , j = 0, . . . , J − 1.

We have the inverse relation

j = 1

δ
· log2

( s j

s0

)
.

Guided by the last equation, we put

J =
[ 1

δ
· log2

( n

s0

) ]
.

As constants we choose here s0 = 2, δ = 0.5. So we have the selected periods

T0 = s0 = 2, T1 = 2 · √2, T2 = 4, . . . , TJ−1 = n/
√

2 ,
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Fig. 7.9 Potsdam. Winter temperature. Wavelet spectrum W at six time points, equally spaced
over the time interval [0, n], n = 116, i.e., at t = 17, 33, . . . , 100. The spectra are plotted in a
normalized form W/ max W ∈ [0, 1]; the maximal spectral values max W are given for each of the
six time points, that are (9.837, . . . , 16.95)

the latter, if n is a power of 2. Wavelet spectra, each showing W (t, Tj ) for six
time points t , equally spaced within the interval [0, n], are presented in Figs. 7.9
and 7.11.

In the upper parts of Figs. 7.10 and 7.12, the index number j (m) = j (t, m) is
plotted over t = 1, . . . , n − 1, where Tj (m) is the period of maximal spectral value
W (t, Tj ). This period T = Tj (m) is called dominant period (periodicity) in the
following. The lower plot presents the averaged spectrum, that is
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Fig. 7.10 Potsdam. Winter temperature. Upper plots Number j (m), where the wavelet spectrum
has the maximum value, for time points t, 0 ≤ t ≤ n− 1. Lower plot Wavelet spectra are averaged
over all time points t and plotted in the normalized form W/ max W ∈ [0, 1]. The maximal spectral
value max W is 16.4

1

n − 1
·
∑n−1

t=1
W (t, Tj ) , j = 0, . . . , J − 1 ,

which can be compared with the (smoothed) periodograms of Sect. 7.1 (In our cal-
culus we have neglected the constant factor c0).
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Detrended Winter Data

We will apply the wavelet method, presented above, to Potsdam’s winter temperature
and to Hohenpeißenberg’s winter precipitation. In both cases we are dealing with the
series after removal of a polynomial(4)-trend.

Potsdam, winter temperature: The diagrams of Figs. 7.5 and 7.10 (lower plot)
distinguish the period of T = 8 years (that is j = 4). However, it is present—
as dominant period—in the third quarter (and partly in the fourth quarter) of the
time interval [0, n] only; at other times we have peaks at varying period lengths
(Fig. 7.9 and upper parts of Fig. 7.10). The wavelet analysis here reveals, in which
time intervals the cycle of T = 8 years is really present and in which not.

Hohenpeißenberg, winter precipitation: The periodogram of Fig. 7.7 has a max-
imal peak at period length T = 4 years, and a side-peak at T = 22. The wavelet
analysis reverses the roles, clearly expressed by Fig. 7.12 (lower plot). The period
of T = 4 (that is j = 2) is present—as dominant period—only at the beginning
and then at scattered succeeding time points (Fig. 7.11 and upper parts of Fig. 7.12);
mostly, the period length T = 22.6 ( j = 7) is dominant.

R 7.2 Morlet wavelet spectrum w[k, j], k = 1, . . . , n − 1, j = 1, . . . , J , of
the time series Y [1], . . . , Y [n], by means of the user function Wspectr (in the
following the constant factor c0 is omitted). The vector Y is read from C:/CLIM/
HoPrWi.txt, containing the (detrended) winter precipitation amounts at Hohen-
peißenberg. The (n − 1) × J matrix w is written on C:/CLIM/WaveOut.txt
and serves as input for further plotting and evaluation programs (by which Figs. 7.9,
7.10, 7.11, and 7.12 were produced).

Y<- scan("C:/CLIM/HoPrWi.txt")
n<- length(Y)

#----------Morlet Wavelet Spectrum----------------------------
Wspectr<- function(Y,n,s,J,t0,om){
spec<- 1:J #spec vector of dim J
for (j in 1:J){ sumc<- 0; sums<- 0
for (i in 1:n){ tij<- (t0 - i)/s[j]
sumc<- sumc + Y[i]*cos(om*tij)*exp(-0.5*(tijˆ2))
sums<- sums + Y[i]*sin(om*tij)*exp(-0.5*(tijˆ2)) }
spec[j]<- (sumcˆ2 + sumsˆ2)/s[j]}
return(spec)
}

#-------------------------------------------------------------
om<- 2*pi; dj<- 0.50; s0<- 2 #Wavelet parameters
J<- trunc((1/dj)*log2(n/s0))
jot<- 0:(J-1); s<- s0*2ˆ(jot*dj) #jot,s vectors of dim J
c("om"=om,"dj"=dj,"s0"=s0,"J"=J)
"Vector s of length J"; s
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Fig. 7.11 Hohenpeißenberg. Winter precipitation. Wavelet spectrum W at six time points, equally
spaced over the time interval [0, n], n = 130, i.e. at t = 19, 37, . . . , 112. The spectra are plotted in
the normalized form W/ max W ∈ [0, 1]; the maximal spectral values max W are given for each of
the six time points, that are (0.93, . . . , 0.992)

sink("C:/CLIM/WaveOut.txt")
w<- 1:((n-1)*J); dim(w)<- c((n-1),J) #w matrix of dim (n-1)xJ
for(k in 1:(n-1)){ spec<- Wspectr(Y,n,s,J,k,om)
w[k,]<- spec
write(w[k,],ncolumns=6,file="")
}

Output from R 7.2 Wavelet analysis for n = 132 winter precipitation amounts
(detrended). The vector s consists of the selected J = 12 period lengths T . From the
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Fig. 7.12 Hohenpeißenberg. Winter precipitation. Upper plots Number j (m), where the wavelet
spectrum has the maximum value, for time points t, 0 ≤ t ≤ n−1. Lower plot Wavelet spectra are
averaged over all time points t and then plotted in the normalized form W/ max W ∈ [0, 1]. The
maximal spectral value max W is 1.14

(n − 1) × J matrix w, we reproduce here the first and the last 3 rows, each having
12 components.

om dj s0 J
6.283 0.50 2.00 12.00

"Vector s of length J"
2.000 2.828 4.000 5.657 8.000 11.314
16.000 22.627 32.000 45.255 64.000 90.510
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WaveOut.txt
0.2636 0.0828 0.1084 0.0602 0.1301 0.1138
0.0185 0.0107 0.1998 0.2454 0.0921 0.0100
0.3567 0.1555 0.1715 0.0473 0.1381 0.1254
0.0191 0.0130 0.2141 0.2548 0.0943 0.0102
0.2931 0.2551 0.2540 0.0286 0.1415 0.1369
0.0196 0.0157 0.2290 0.2644 0.0966 0.0103
... ...
0.0450 0.0648 0.0350 0.1857 0.0050 0.1588
0.2664 0.3468 0.0263 0.0592 0.0688 0.0095
0.0190 0.0637 0.0137 0.1409 0.0062 0.1409
0.2454 0.3188 0.0245 0.0558 0.0669 0.0093
0.0013 0.0525 0.0046 0.1043 0.0076 0.1238
0.2248 0.2924 0.0228 0.0526 0.0650 0.0092



Chapter 8
Complements

First we state that the separation of the trend/season component on one side and of
the auto-correlation structure on the other side is crucial in our analysis. With regard
to the latter: handling the detrended series or the differenced series by ARMA-type
models was worked out in Chaps. 4 and 5. It should be mentioned that we have both
aspects in mind, the modeling of the observed series and the predicting of climate
values in the near future.

Alternatively to the ARMA-methods of Chaps. 4 and 5, we deal in this chapter
with two approaches (growing polynomials, sin-/cos-approximation), which work
without the separation mentioned above. With respect to annual data we introduce
polynomials over growing time intervals, calculated for each interval anew. With
respect to monthly data we approximate sin/cos functions, taking the sinusoidal
form of the monthly temperature series for granted.

In addition, the 1-step predictions of Chap. 4 are extended to l-steps forecasts,
l = 2, 3, . . . the number of years ahead.

We close with two special topics, the characterization of temperature versus pre-
cipitation variables and the relationship between winter and yearly data.

8.1 Annual Data: Growing Polynomials

According to the forecast approach, observations only up to time t − 1 are allowed
for predicting a climate variable Y (t) at time t . Accordingly, with regard to ARMA-
equation (B.11), we did not proceed as usual, namely to estimate the α’s and β’s only
once—for the whole sample. Rather, we proceeded step-by-step and estimated the
coefficients for each time point t anew. Further, the moving averages were left-sided
in the sense that only observations before time points t were involved. Polynomials,
drawn only once, over the whole time interval t = 1, . . . , N , however, were not
qualified as an estimation and prediction method in Chaps. 4 and 5.

H. Pruscha, Statistical Analysis of Climate Series, 121
DOI: 10.1007/978-3-642-32084-2_8, © Springer-Verlag Berlin Heidelberg 2013
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Table 8.1 Growing polynomial-prediction for annual temperature data, with RootMSQ-values for
order numbers m = 1, . . . , 4, and with the first three auto-correlation coefficients of the residual
series in the case of m = 2

Station RootMSQ Auto-correlation of residuals
m = 1 m = 2 m = 3 m = 4 ARIMA re(1) re(2) re(3)

Bremen 0.793 0.824 0.838 0.900 0.805 0.231 0.103 −0.181
Hohenpeißenberg 0.813 0.750 0.779 0.817 0.762 0.028 0.042 −0.069
Karlsruhe 0.792 0.705 0.723 0.759 0.687 0.155 0.105 −0.026
Potsdam 0.801 0.826 0.862 0.937 0.869 0.189 0.052 −0.228

For predicting annual climate variables, a possible alternative is the following
method of polynomials over growing intervals (shortly: growing polynomials). For
each t = 1, . . . , N anew, we fit the polynomial term

p[t−1]
t ′ = a[t−1]

0 + a[t−1]
1 · t ′ + · · · + a[t−1]

m · (t ′)m, t ′ = 1, . . . , t − 1,

of order m to the series Y (t ′), t ′ = 1, . . . , t − 1. The growing polynomial-prediction
for Y (t) is then given by

Ŷ (t) = p[t−1]
t , t = t0 + 1, . . . , N ,

(once again, we choose t0 = [N/5] as the starting point for the predictions). Table 8.1
reports the RootMSQ-values for order numbers m = 1, . . . , 4. Further, the first three
auto-correlation coefficients re(1), re(2), re(3) of the residual series

e(t) = Y (t)− Ŷ (t), t = t0 + 1, . . . , N ,

in the case of m = 2 are given. The coefficients |re(h)| are (except for Hohen-
peißenberg) in general larger than those of the ARMA-residuals of Table 4.4, and
not sufficiently small in order to belong to a pure random series. According to the
goodness-of-fit measure RootMSQ, the growing polynomials of order m = 2 perform
better than those of order m = 3 or 4. A comparison of Figs. 8.2 and 8.3 reveals the
reason: the m = 4 prediction follows closer the last year observation, i.e., it generally
deviates more from the central course of the series (than the m = 2 prediction does),
which turns out to be disadvantageous here. Figure 8.1 demonstrates this point in
detail for polynomials over the years 1781–1988 (shown from 1960 onwards), with
predictions for the year 1989.

The goodness-of-fit of this method is (for m = 1 or 2; except Karlsruhe) something
better than that of the ARIMA-method, cf. Table 4.2. Its drawback: It gives no insight
into the structure of the process. Further, when extending the method from 1-year
to l-years predictions (as we do in the next section), it shows the disadvantage of
polynomial extrapolation: the monotone and convex/concave divergence.

http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
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Fig. 8.1 Annual temperature means, observed (solid zigzag line), with predictions by growing
polynomials of degrees 2 and 4 (dashed-dotted line and dashed line, resp., labels on the r.h.s.).
Two polynomials (of orders 2 and 4) over the range 1781–1988 (solid lines, labels on the l.h.s.) are
drawn, with predictions for the year 1989 (x). The last 50 years are shown

R 8.1 Fitting polynomials (order 4) over growing intervals [0, t], t = tst, . . . , n
(growing polynomials), and prediction for the time point t+1 with the user function
polypre.

attach(hohenTp)

#---------------------------------------------------------------
polypre<- function(Y,n,x1,x2,x3,x4,tst){
polpr<- 1:(n+1) #vector of dim n+1
polpr[1:tst]<- mean(Y[1:tst])
for (t in tst:n)
{poly<-lm(Y[1:t]˜x1[1:t]+x2[1:t]+x3[1:t]+x4[1:t])
b<-poly$coefficients #$b vector of dim 5
t1<-t+1
polpr[t1]<-b[1]+b[2]*x1[t1]+b[3]*x2[t1]+b[4]*x3[t1]+b[5]*x4[t1]
}
return(polpr)
}

#----Preparing the input of function polypre--------------------
n<- length(Year); tst<- trunc(n/5); ts1<-tst+1
Y<-Tyear/100
x1<-1:(n+1)-n/2; x2<-x1*x1; x3<-x2*x1; x4<-x2*x2

Ypred<- polypre(Y,n,x1,x2,x3,x4,tst)
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Fig. 8.2 Annual temperature means, observed (solid line) and predicted by growing polynomials
of degree 2 (dashed-dotted line). The last 50 years are shown
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"Poly_t-prediction last decade"; Ypred[(n-9):n]
Ypre<-Ypred[ts1:n]; Yres<-Y[ts1:n]-Ypre; MSQ<-mean(Yres*Yres)
c("std Res"=sqrt(var(Yres)), "MSQ"=MSQ,"rootMSQ"=sqrt(MSQ))

8.2 Annual Data: ARIMA l-Years Forecast

The ARIMA-prediction for the year 2011, on the basis of observations up to year
2010 (as done in Chap. 4), will now be called1-step forecast. Box and Jenkins (1976)
gave forecast formulas for l-steps (here: for l years) ahead, when an ARMA-model
is assumed; see Eqs. (B.18)–(B.20).

Let us denote by

X (t) = Y (t)− Y (t − 1), t = 2, . . . , N , [X (1) = 0]

as in Sect. 4.1 the differenced series, i.e., the series of the annual changes in the
temperature mean. An ARMA(p, q) model is fitted to X (t), yielding coefficients
αi = α[1,N ]

i and β j = β[1,N ]
j . Using these coefficients, forecasts X̂ N (1), . . . , X̂ N (l)

for the variables X (N + 1), . . . , X (N + l) are calculated (put T = N and Y = X
in (B.18)–(B.20)). Then the ARIMA-forecasts for the integrated process Y (t) are
iteratively gained by

ŶN (1) = Y (N )+ X̂ N (1), . . . , ŶN (l) = ŶN (l − 1)+ X̂ N (l). (8.1)

The results, gained below with Monte Carlo simulations, will justify this approach
to a certain extent. Figures 8.4 and 8.5 present the ARIMA-forecasts (8.1), together
with lower and upper interval boundaries for α = 0.2, 0.4, gained by the Monte
Carlo method. It should be noted that these forecast intervals are intervals for a
single random variable and are not to be mixed up with confidence intervals: from
there the relatively large α values and the relatively large intervals around the ŶN ’s.

Instead of using the Box–Jenkins forecast function, we now apply the Monte
Carlo method to gain forecasts, together with (1− α)-probability intervals. For this
purpose, one uses the recursive ARIMA-equations

X (N + k) = αp X (N + k − p)+ · · · + α1 X (N + k − 1)

+ βqe(N + k − q)+ · · · + β1e(N + k − 1)+ e(N + k),

Y (N + k) = Y (N + k − 1)+ X (N + k), k = 1, . . . , l. (8.2)

Hereby, the error terms e(t), t ≤ N , have to be iteratively calculated, and e(N +
1), . . . , e(N + l) are drawn as N (0, s2

e)-distributed random numbers; s2
e being the

variance of the e(t), t ≤ N . Further, variables X (t) up to time point N are observa-
tions (here: differences thereof), variables X (t) after N are calculated by Eq. (8.2).
This yields us one single Monte Carlo simulation of an ARIMA-forecast. Doing

http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
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Fig. 8.4 Hohenpeißenberg, temperature 1781–2010. Time series of annual means (◦C) (solid zigzag
line), together with the ARIMA-predictions up to year 2010 (dashed line; the last 40 years are
shown). Subsequently, ARIMA-forecasts (8.1) acc. to Box and Jenkins for the next 10 years 2011
till 2020 (solid line), together with Monte Carlo forecast boundaries
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Fig. 8.5 Potsdam, temperature 1893–2010. Time series of annual means. Same legend as in Fig. 8.4

this MC times (we worked with MC = 20000), we build—for each k = 1, . . . , l
separately—the mean value Ỹ (N + k) and quantiles

Q̃β(N + k), β = 0.10, 0.20, 0.80, 0.90.

We consider the Monte Carlo quantile curves as being close to the “true” quantile
curves.

Figures 8.6 and 8.7 tell us that the Box–Jenkins function ŶN (k), k = 1, . . . , l,
gained from one single application, is nearly identical with the Monte Carlo forecast
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Fig. 8.6 Hohenpeißenberg, temperature 1781–2010. The ARIMA-forecasts for the next 10 years
2011 till 2020, together with forecast boundaries: the mean and the quantiles of 20000 Monte-Carlo
repetitions (dashed-dotted lines), the Box–Jenkins forecast function (8.1) (solid line)
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Fig. 8.7 Potsdam, temperature 1893–2010. The ARIMA-forecasts for the next 10 years 2011 till
2020. Same legend as in Fig. 8.6

function Ỹ (N + k) (gained from many replications of Eq. (8.2)). This is due to
the linearity of Eq. (8.2) and of the conditional expectation (B.15). As one expects
on account of the second part of Eq. (8.2), the “true” interval bounds Q̃β(N + k),
k = 1, . . . , l, slowly diverge.
Remark. The Monte Carlo forecast method will be especially valuable, when a
nonlinear equation governs the evolution of the process.

R 8.2 Box–Jenkins forecast method, by using the two user functions epsilon,
forec. The time series vector Y is read from C:/CLIM/TimeS.txt, here the
yearly temperature series of Hohenpeißenberg. It is transformed into the series X
by differencing. (If the vector Y needs no differencing, then the lines ending with
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�−− � should be omitted, and we have X = Y, Xfore = Yfore). In forec,
new error terms are entering as zeros, in monca—see R 8.3 below—they are drawn
as random numbers.

Y<- scan("C:/CLIM/TimeS.txt")
"Hohenpeissenberg, Temperature, 1781-2010" #--#
library(TSA) #see CRAN software-packages

#-------------------------------------------------------------
epsilon<- function(y,n,mc,theta,a,b){ #error terms recursively
ypr<- rep(mean(y),times=n); eps<- rep(0,times=n) #ve. of dim n
for (t in (mc+1):n){
Suma<- theta; Sumb<- 0
for (m in 1:mc){
Suma<- Suma+a[m]*y[t-m]; Sumb<- Sumb+b[m]*eps[t-m]}
ypr[t]<- Suma + Sumb
eps[t]<- y[t] - ypr[t]}
return(eps)
}

forec<- function(y,e,n,mc,theta,a,b,la){ #BJ forecast function
fore<- rep(mean(y),times=la) #vector of dim la
ep<- e, yp<- y #vectors of dim n
for(j in 1:la){fore[j]<- theta
for(k in 1:mc){fore[j]<- fore[j]+a[k]*yp[n-k+1]+b[k]*ep[n-k+1]}
yp[1:(n-1)]<- yp[2:n]; yp[n]<- fore[j]
ep[1:(n-1)]<- ep[2:n]; ep[n]<- 0 #new error term = 0
}
return(fore)
}

#------Data---------------------------------------------------
N<-length(Y); X<- Y #Y = time series
X[1]<-0; X[2:N]<-Y[2:N]-Y[1:(N-1)] #X=differenced series #--#
ma<- 2; mb<-2; mc<- max(ma,mb) #mc maximal 6
c("ArOrder"=ma,"MAOrder"=mb)

# ---------- ARMA(p,q)-Model for series X --------------------
xarma<- arma(X,order=c(ma,mb))
summary(xarma)

xcoef<- xarma$coef #$vector of dim ma+mb+1
#Coefficients a,b,theta
a<- rep(0,times=6); b<- rep(0,times=6)
if (ma > 0) {for (m in 1:ma){a[m]<- xcoef[m]}}
if (mb > 0) {for (m in 1:mb){b[m]<- xcoef[ma+m]}}
theta<- xcoef[ma+mb+1]

epsil<- epsilon(X,N,mc,theta,a,b) #user function: error terms

#--------Forecasting acc. to Box&Jenkins-----------------------
la<-10
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#user function forec: ARMA forecast function Xfore
Xfore<-forec(X,epsil,N,mc,theta,a,b,la)
"Box&Jenkins ARMA forecast vector (X series)"
Xfore; Yfore<- Xfore

#ARIMA forecast function Yfore (integrated series) #--#
Yfore<- Y[N] + Xfore #--#
if(la > 1) for(j in 2:la){Yfore[j]<-Yfore[j-1]+Xfore[j]} #--#
"Box&Jenkins ARIMA forecast vector (Y series)"; Yfore #--#

Output from R 8.2 The coefficients αi = α[1,N ]
i , β j = β[1,N ]

j , given below, are
computed for the whole series, see Table 4.2. Recall that X denotes the differenced,
Y the integrated series. A plot of the forecast vector can be found in Fig. 8.4.

"Hohenpeissenberg, Temperature, 1781-2010"
ArOrder MAOrder

2 2
Model: ARMA(2,2)

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

ar1 -0.63915 0.14671 -4.36 1.3e-05 ***
ar2 0.10524 0.06780 1.55 0.12
ma1 -0.17896 0.14223 -1.26 0.21
ma2 -0.67221 0.13493 -4.98 6.3e-07 ***
intercept 0.00834 0.00788 1.06 0.29

"Box&Jenkins ARMA forecast vector (X series)"
0.8886 0.050 0.0698 -0.031 0.0355 -0.0176 0.0233 -0.0084 0.016
-0.0029
"Box&Jenkins ARIMA forecast vector (Y series)"
7.2636 7.3138 7.3836 7.3526 7.3881 7.3705 7.3938 7.3854 7.4016
7.3987

R 8.3 Monte-Carlo forecast method, by using the two user functions epsilon,
monca. The time series vector Y is read from C:/CLIM/TimeS.txt, here the
yearly temperature series of Hohenpeißenberg. It is transformed into the series X by
differencing. (If the vector Y needs no differencing, then the lines ending with �−−�

should be omitted, and we have X = Y, Xmonca = Ymonca). In the program
R 8.2 above, function forec, new error terms are entered as zeros, in monca they
are drawn as random numbers rnorm.

Y<- scan("C:/CLIM/TimeS.txt")
"Hohenpeissenberg, Temperature, 1781-2010" #--#
library(TSA) #see CRAN software-packages

#--------------------------------------------------------------
epsilon<- function(y,n,mc,theta,a,b){ #error terms recursively
ypr<- rep(mean(y),times=n); eps<- rep(0,times=n) #ve. of dim n

http://dx.doi.org/10.1007/978-3-642-32084-2_4
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for (t in (mc+1):n){
Suma<- theta; Sumb<- 0
for (m in 1:mc){
Suma<- Suma+a[m]*y[t-m]; Sumb<- Sumb+b[m]*eps[t-m]}
ypr[t]<- Suma + Sumb
eps[t]<- y[t] - ypr[t]}
return(eps)
}

monca<- function(y,e,n,mc,theta,a,b,la,se){ #MC simulation
monc<- rep(mean(y),times=la)
ep<- e ; yp<- y; eps<- rnorm(la) #la N(0,1) random numbers
for(j in 1:la){monc[j]<- theta+eps[j]*se
for(k in 1:mc){monc[j]<- monc[j]+a[k]*yp[n-k+1]+b[k]*ep[n-k+1]}
yp[1:(n-1)]<- yp[2:n]; yp[n]<- monc[j]
ep[1:(n-1)]<- ep[2:n]; ep[n]<- eps[j]*se #new error term
}
return(monc)
}

#------Data---------------------------------------------------
N<-length(Y); X<- Y #Y = time series
X[1]<-0; X[2:N]<-Y[2:N]-Y[1:(N-1)] #X=differenced series #--#
ma<- 2; mb<-2; mc<- max(ma,mb) #mc maximal 6
c("ArOrder"=ma,"MAOrder"=mb)

# ---------- ARMA(p,q)-Model for series X --------------------
xarma<- arma(X,order=c(ma,mb))
summary(xarma)

xcoef<- xarma$coef #$vector of dim ma+mb+1
#Coefficients a,b,theta
a<- rep(0,times=6); b<- rep(0,times=6)
if (ma > 0) {for (m in 1:ma){a[m]<- xcoef[m]}}
if (mb > 0) {for (m in 1:mb){b[m]<- xcoef[ma+m]}}
theta<- xcoef[ma+mb+1]

epsil<- epsilon(X,N,mc,theta,a,b) #user function: error terms
se<- sqrt(var(epsil[(mc+1):N])) #error terms from mc+1 onw.
c("Mean Epsilon"=mean(epsil[(mc+1):N]), "StdDev Epsilon"=se)

#--------Forecasting acc. to Monte Carlo-----------------------
la<- 10; MC<- 20000; c("Monte Carlo Repetitions"=MC)
Xmonca<-1:(MC*la); dim(Xmonca)<- c(MC,la) #MCxla matrix Xmonca
#user function monca: 1 Monte-Carlo repetition
for (m in 1:MC){
montc<- monca(X,epsil,N,mc,theta,a,b,la,se)
Xmonca[m,]<- montc }
Ymonca<- Xmonca

#Monte Carlo simulations Ymonca (integrated series) #--#
Ymonca<- Y[N] + Xmonca #--#
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if(la>1) for(j in (2:la)) #--#
{Ymonca[,j]<- Ymonca[,(j-1)]+Xmonca[,j]} #--#

meYmonca<- colMeans(Ymonca)
"Monte Carlo mean vector (Y series)"; meYmonca
quan<- 1:(4*la); dim(quan)<- c(4,la) #4 x la matrix quan
alph<- c(0.10,0.20,0.80,0.90)
for(j in 1:la){
quan[,j] <- quantile(Ymonca[,j],alph) } #empirical quantiles

"Monte Carlo quantile vectors, levels 0.10, 0.20, 0.80, 0.90"
quan[,]

Output from R 8.3 The coefficients αi = α[1,N ]
i , β j = β[1,N ]

j , given below, are
computed for the whole series, see Table 4.2. A plot of the following vectors can be
found in Fig. 8.6.

"Hohenpeissenberg, Temperature, 1781-2010"
ArOrder MAOrder

2 2
Model: ARMA(2,2)

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

ar1 -0.63915 0.14671 -4.36 1.3e-05 ***
ar2 0.10524 0.06780 1.55 0.12
ma1 -0.17896 0.14223 -1.26 0.21
ma2 -0.67221 0.13493 -4.98 6.3e-07 ***
intercept 0.00834 0.00788 1.06 0.29

Mean Epsilon StdDev Epsilon
0.0059 0.7700

Monte Carlo Repetitions 20000
"Monte Carlo mean vector (Y series)"
7.2729 7.3195 7.3814 7.3539 7.3930 7.3766 7.4043 7.3851 7.4008
7.3977

"Monte Carlo quantile vectors, levels 0.10, 0.20, 0.80, 0.90"
6.341 6.358 6.425 6.402 6.414 6.417 6.409 6.397 6.419 6.412
6.659 6.683 6.759 6.717 6.752 6.744 6.760 6.738 6.750 6.756
7.890 7.949 8.010 7.979 8.026 8.018 8.059 8.039 8.054 8.045
8.212 8.268 8.340 8.310 8.377 8.359 8.386 8.370 8.389 8.378

http://dx.doi.org/10.1007/978-3-642-32084-2_4
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Table 8.2 Sin-/cos-modeling for monthly temperature data

Station a[1,M] b[1,M] RootMSQ re(1) re(2) re(3)

Bremen −4.719 −6.921 1.930 (1.906) 0.293 0.132 0.082
Hohenpeißenberg −5.029 −7.109 2.136 (2.141) 0.130 0.048 −0.010
Karlsruhe −4.705 −8.050 1.908 (1.909) 0.172 0.061 −0.010
Potsdam −5.033 −8.084 2.076 (2.013) 0.293 0.159 0.096

Coefficients, goodness-of-fit measure RootMSQ (in parenthesis the values for ARMA) and the first
three auto-correlation coefficients of the residual series

Table 8.3 Sin-/cos-modeling for monthly precipitation data

Station a[1,M] b[1,M] RootMSQ re(1) re(2) re(3)

Bremen −0.993 −0.686 2.995 (3.104) 0.039 0.013 0.008
Hohenpeißenberg −2.345 −4.741 4.644 (4.710) 0.064 −0.006 −0.005
Karlsruhe −0.707 −0.823 3.569 (3.621) 0.067 0.039 0.005
Potsdam −0.704 −0.907 2.850 (2.945) 0.058 −0.007 −0.028

Caption as in Table 8.2

8.3 Monthly Data: Sin-/Cos-Modeling

For predicting monthly climate variables one has to tune the estimation of the trend
and of the seasonal component. The succession of the ARIMA-method for the yearly
trend and of the ARMA-method for the detrended series (as done in Chap. 5) leaves
behind residuals which are close to a random series; see Table 5.3 above. This is not
the case with the following method (which, however, shows a very good fit).

Like the ARIMA-trend + ARMA method of Chap. 5, the present method uses the
yearly trend estimation by ARIMA. As an alternative to ARMA we now apply sin
and cos functions for modeling and predicting. For each time point (month) t anew,
t = 1, . . . , M = 12 ∗ N , we fit the harmonic term

s[t−1]
t ′ = a[1,t−1] · sin

(
ω · t ′)+ b[1,t−1] · cos

(
ω · t ′), t ′ = 1, . . . , t − 1,

to the detrended series X (t ′), t ′ = 1, . . . , t − 1, where ω = (2 ·π)/12. The sin-/cos-
prediction for X (t) is then given by

X̂(t) = s[t−1]
t , t = t0 + 1, . . . , M,

(analogously to Chap. 5, we choose t0 = [N/5] ∗ 12 as starting point for the predic-
tions). Tables 8.2 and 8.3 report the coefficients a[1,M], b[1,M], calculated from the
whole series, the RootMSQ-values and the first three auto-correlation coefficients
re(1), re(2), re(3) of the residual series

e(t) = X (t)− X̂(t), t = t0 + 1, . . . , M.

http://dx.doi.org/10.1007/978-3-642-32084-2_5
http://dx.doi.org/10.1007/978-3-642-32084-2_5
http://dx.doi.org/10.1007/978-3-642-32084-2_5
http://dx.doi.org/10.1007/978-3-642-32084-2_5
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Fig. 8.8 Hohenpeißenberg, 1781–2010. Monthly temperature means (◦C) (solid zigzag line), to-
gether with trend (inner solid line) and trend+sin-/cos-prediction (dashed-dotted line). The last
10 years are shown
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Fig. 8.9 Potsdam, 1893–2010. Same legend as in Fig. 8.8

The RootMSQ-values of the Tables 5.1 and 5.4 are added in parenthesis. For temper-
ature, the first coefficient re(1) is rather large and significantly different from zero,
which rejects the assumption of a pure random series e(t).

The goodness of fit of this sin-/cos-prediction is very satisfactory and quite
close to (and mostly slightly better than) that of the ARMA-method (see also
Figs. 8.8, 8.9, 8.10 and 8.11 for time series plots). It involves only two unknown

http://dx.doi.org/10.1007/978-3-642-32084-2_5
http://dx.doi.org/10.1007/978-3-642-32084-2_5


8.3 Monthly Data: Sin-/Cos-Modeling 135

0 20 40 60 80 100 120

0
5

10
15

20

Months 2001−2010

P
re

ci
pi

ta
tio

n 
[c

m
]

Hohenpeissenberg, Precipitation, 1879−2010

Sinusoid degree 2

Fig. 8.10 Hohenpeißenberg, 1879–2010. Monthly precipitation amounts (cm) (solid zigzag line),
together with trend (inner solid line) and trend+sin-/cos-prediction (dashed-dotted line). The last
10 years are shown
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Fig. 8.11 Potsdam, 1893–2010. Same legend as in Fig. 8.10

coefficients—instead of four or five (as ARMA does in Chap. 5)—for fitting the
detrended series. But one has to take into account, that the sin-/cos-model uses in-
formation about the sinusoidal form of the seasonal component of temperature and
precipitation, and may be less suitable for other climate variables. ARMA-modeling
is, much more than the sin-/cos-approach, a universal method.

http://dx.doi.org/10.1007/978-3-642-32084-2_5
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Table 8.4 Correlation analysis for annual climate data on temperature (Temp.) and precipitation
(Prec.), with lagged variables

Station r(Y, Y 1) r(Y, (Y 1 . . . Y 6)) r(Y, (Y 1 . . . Y 6, Z1 . . . Z6))

Y=Temp. Y=Prec. Y=Temp. Y=Prec. Y=Temp. Y=Prec.
Z=Prec. Z=Temp.

Bremen 0.349 0.052 0.350 0.258 0.375 0.283
Hohenpeißenberg 0.296 0.274 0.375 0.319 0.539 0.359
Karlsruhe 0.332 0.009 0.455 0.136 0.665 0.238
Potsdam 0.356 −0.079 0.401 0.262 0.427 0.287

Coefficients of correlation and of multiple correlation are presented

A comparison of Figs. 8.8, 8.9 with Figs. 8.10, 8.11 shows that the model fits much
better in the case of temperature than in the case of precipitation. The reason is the
seasonal component, which is more distinct for the first than for the second climate
variable.

This topic, i.e., temperature versus precipitation data, has already been discussed
in Sects. 3.1 and 5.4, and will be further elaborated in the next section.

8.4 Further Topics

Temperature ↔ Precipitation

Our correlation and prediction analysis has revealed, that

(PT) precipitation is more irregular and closer to a pure random
phenomenon than temperature is;

see also von Storch and Navarra (1993). This statement is also confirmed by
Table 8.4, where the coefficients of correlation r(Y, Y 1) and of multiple correla-
tion r(Y, (Y 1 . . . Y 6)) are presented. In this table, Y stands for annual temperature
or for annual precipitation, and by Y 1–Y 6 we denote lagged variables, from lag = 1
to 6 years. If Y is, for example, the annual temperature mean, then Y 1, Y 2, . . . , Y 6
are the annual temperature means one, two, . . . , six years before.

In Bremen, Karlsruhe, and Potsdam, the correlations between temperature vari-
ables are larger than those between precipitation variables; in Karlsruhe and Potsdam
they are even distinctly larger. If precipitation (Y=Prec.) is correlated with the set
(Y 1 . . . Y 6, Z1 . . . Z6), comprising the lagged precipitation variables Y 1 . . . Y 6 and
the lagged temperature variables Z1 . . . Z6, the coefficient remains—nevertheless—
(far) below that of temperature (Y = Temp.), when correlated with the lagged tem-
perature variables; compare the last column with the third (numerical) column.

The exception is Hohenpeißenberg, the station in the foreland of the Alps. Here,
in comparison with the other three stations, the level of correlation for precipitation
(Y=Prec.) is larger and—with regard to r(Y, Y 1) and r(Y, (Y 1 . . . Y 6))—closer to
that for temperature (Y=Temp.).

http://dx.doi.org/10.1007/978-3-642-32084-2_3
http://dx.doi.org/10.1007/978-3-642-32084-2_5
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Table 8.5 Correlation analysis for monthly climate data, seasonally adjusted, on temperature
(Temp.) and precipitation (Prec.), with lagged variables

Station r(Y, Y 1) r(Y, (Y 1 . . . Y 6)) r(Y, (Y 1 . . . Y 6, Z1 . . . Z6))

Y=Temp. Y=Prec. Y=Temp. Y=Prec. Y=Temp. Y=Prec.
Z=Prec. Z=Temp.

Bremen 0.272 0.027 0.283 0.043 0.287 0.074
Hohenpeißenberg 0.153 0.013 0.177 0.057 0.200 0.106
Karlsruhe 0.197 0.029 0.223 0.047 0.252 0.066
Potsdam 0.276 0.005 0.288 0.050 0.298 0.061

Coefficients of correlation and of multiple correlation are presented

Analogously with Table 8.4, the Table 8.5 shows the (multiple) correlation coef-
ficients for (seasonally adjusted) monthly climate data. Once again, they are much
smaller for precipitation than for temperature. A special role of Hohenpeißenberg’s
precipitation data can be detected (at most) in the last column.

Results on the standardized RootMSQ value rsq—obtained in Chap. 5 for the
trend + ARMA approach—substantiate the statement (PT) above. We have found in
(5.3) and (5.4)

Monthly data rsq-values

Bremen Hohenp. Karlsruhe Potsdam

Temperature 0.305 0.330 0.280 0.283
Precipitation 0.999 0.791 0.996 0.999

The rsq coefficient as a measure of goodness of fit is much better for monthly tem-
perature than for monthly precipitation; and for the latter, it is better in the case
of Hohenpeißenberg than in the case of the other three stations. By analogy with
standard regression analysis we can write

rsq2 = 1− R2,

where R2 is called coefficient of determination (and where R turns out to be a
coefficient of multiple correlation). The value R2 ≈ 0 for the monthly precipitation
data of Bremen, Karlsruhe, and Potsdam signalizes nearly total indetermination in
these series.

For annual series these R2-values are more balanced than for monthly data (see
Sects. 4.2 and 4.4) with values roughly in the interval 0.2 . . . 0.4, for both, temperature
and precipitation.

http://dx.doi.org/10.1007/978-3-642-32084-2_5
http://dx.doi.org/10.1007/978-3-642-32084-2_5
http://dx.doi.org/10.1007/978-3-642-32084-2_5
http://dx.doi.org/10.1007/978-3-642-32084-2_4
http://dx.doi.org/10.1007/978-3-642-32084-2_4
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Table 8.6 Correlation coefficient r between climate variables, referring to winter and remaining
year (i.e., here, the year from March to November), together with the level 0.05-bound b1

Hohenpeißenberg Karlsruhe Potsdam
n(T p) = 230 n(T p) = 210 n(T p) = 118
n(Pr) = 132 n(Pr) = 133 n(Pr) = 118
r r b1 r r b1 r r b1

TpWi → TpYe− (0.161) 0.068 0.13 (0.175) 0.107 0.14 (0.194) 0.167 0.18
PrWi → PrYe− (0.281) 0.228 0.17 (0.059) 0.072 0.17 (0.116) 0.145 0.18
TpWi → PrYe− (0.195) 0.150 0.17 (0.080) 0.089 0.17 (0.091) 0.113 0.18
PrWi → TpYe− (0.033) −0.07 0.17 (0.050) −0.08 0.17 (0.068) 0.000 0.18

Variables are winter temperature (TpWi), winter precipitation (PrWi), temperature (TpYe−), and
precipitation (PrYe−) of the remaining year; without trend removal (in parenthesis) and with trend
removal

Table 8.7 Cross-correlation function for two pairs of variables, referring to (winter, remaining
Year), after trend removal

Time lag 0 1 2 3 4 5 6 7 8

TpWi → TpYe− 0.068 0.075 0.077 −0.026 −0.022 −0.042 −0.034 −0.07 −0.01
PrWi → PrYe− 0.228 0.062 0.057 0.050 0.083 −0.079 −0.119 −0.16 0.02

The pairs are (TpWi,TpYe−) and (PrWi,PrYe−), the time lags are 0, 1, . . . , 8 years. Hohenpeißen-
berg. The simultaneous bounds are b8 = 0.180 and 0.238, resp. See also the caption of Table 8.6

Winter ↔ (Remaining) Year

Winter data are often considered as an indicator of the general climate development.
In the following, we consider climatic variables, referring to

winter, that are the months of December last year, January, February, and

remaining year, that are March to November.

Looking in Table 8.6 for significant correlations (after trend removal), we find one
single case only, namely in the Hohenpeißenberg series

precipitation winter→ precipitation remaining year (r = 0.228).

Next, we extend the correlation coefficients of Table 8.6 to cross-correlation func-
tions, measuring over time lags of 1, 2, . . . , 8 years. We learn from Table 8.7, that
then the significance—named above—disappears.

Looking back on Chaps. 2 and 7
The spectral analysis methods have been applied both to winter data and to annual
data (now covering the whole year). A real correspondence between them has been
discovered only in one case: the Potsdam annual and winter temperature series have
the same significant cycle of T = 7.8 years, cf. Figs. 7.4 and 7.5. Additionally, in
the Hohenpeißenberg winter and annual temperature series, that is in Figs. 7.2 and
7.3, we have the same weak significant cycle of T = 15.3 years (possibly a doubling

http://dx.doi.org/10.1007/978-3-642-32084-2_2
http://dx.doi.org/10.1007/978-3-642-32084-2_7
http://dx.doi.org/10.1007/978-3-642-32084-2_7
http://dx.doi.org/10.1007/978-3-642-32084-2_7
http://dx.doi.org/10.1007/978-3-642-32084-2_7
http://dx.doi.org/10.1007/978-3-642-32084-2_7
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of the Potsdam cycle). See also Pruscha (1986) for more spectral functions of winter
and of annual climate data.

The development of the winter temperature in the last two centuries is less distinct
than that of the yearly temperature. The warming in the winter months of the last
decades is present, but it is modest compared with the corresponding yearly warming
(see end of Sect. 2.2).

So we have to state that winter data alone are a weak indicator of the climate in
the whole year and also—presumably—of the general climate development.

http://dx.doi.org/10.1007/978-3-642-32084-2_2


Appendix A
Excerpt from Climate Data Sets

We present excerpts from data sets, used in the preceding text. First the monthly
temperature means of the years 1781–2010 and precipitation amounts of the years
1879–2010 at the station Hohenpeißenberg are given. These files are used in the
program R 1.1 under the names HohenT.txt and HohenP.txt, resp. Then for
five stations each, the annual temperature means and precipitation amounts (of the
years 1930–2008) and the daily temperature and precipitation records (of the years
2004–2010) are reproduced. These files are named Years5.txt and Days5.txt
in the R programs of Chaps. 3 and 6, respectively.

Complete data sets can be found under www.math.lmu.de/~pruscha/

A.1 Hohenpeißenberg Data

Monthly temperature means in 1/10 ◦C and yearly temperature means in 1/100 ◦C.
The latter mean value is simply the average over the twelve monthly values (multi-
plied by 10). A time series plot of the yearly and of the winter means can be found
in Fig. 1.2 and further analyses of these data in Fricke (2006), Pruscha (2006). In
the column dcly the December value of the last year is repeated—to have the three
meteorological winter months side by side. The dcly value for the year 1781 is the
average of the ten Dec. values 1781–1790.

Year dcly jan feb mar apr may jun jul aug sep oct nov dec Tyear
----------------------------------------------------------------
1781 -18 -18 -10 24 87 122 145 154 166 126 44 15 12 723
1782 12 -10 -54 0 38 94 156 176 144 108 36 -28 -23 531
1783 -23 7 3 -4 64 108 131 163 144 118 82 12 -24 670
1784 -24 -53 -46 0 21 128 132 152 136 143 23 12 -47 501
1785 -47 6 -65 -60 13 91 117 131 131 141 60 23 -19 474
1786 -19 -1 -30 -5 71 91 139 118 123 94 35 -5 -10 517
1787 -10 -35 8 33 38 72 141 143 161 120 93 18 39 693
1788 39 -19 21 23 56 116 148 176 140 135 56 -6 -105 618

H. Pruscha, Statistical Analysis of Climate Series, 141
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1789 -105 -10 -5 -34 74 131 110 147 144 110 65 4 12 623
1790 12 -6 9 16 38 120 144 135 157 109 85 28 -11 687
1791 -11 9 -18 20 89 97 130 148 164 110 72 14 10 704
1792 10 -9 -20 37 78 91 138 154 158 98 81 21 -15 677
1793 -15 -34 9 26 44 88 126 181 175 114 101 41 10 734
1794 10 -16 30 59 101 108 142 184 140 95 64 35 -25 764
1795 -25 -71 -4 16 90 109 143 122 158 138 122 -0 29 710
1796 29 61 -13 -13 44 106 132 154 145 142 58 8 -25 666
..... .....
1990 25 17 51 55 37 120 124 151 165 104 100 18 -17 771
1991 -17 -14 -27 50 42 61 119 168 166 141 58 25 -22 639
1992 -22 -4 9 28 53 125 136 164 191 124 51 49 1 773
1993 1 22 -18 14 81 125 138 139 150 112 61 -9 18 694
1994 18 5 1 61 46 106 145 189 170 117 75 62 12 824
1995 12 -20 30 5 61 104 111 181 146 98 113 20 -18 693
1996 -18 -16 -32 -12 61 98 141 140 139 80 73 27 -21 565
1997 -21 -10 27 45 37 110 128 139 170 133 62 37 11 741
1998 11 5 34 18 64 115 149 152 161 109 73 -10 2 727
1999 2 20 -32 36 60 122 125 161 155 146 78 5 -1 729
2000 -1 -20 19 25 83 126 157 129 172 126 86 46 33 818
2001 33 -0 8 43 43 131 123 163 170 87 128 0 -37 716
2002 -37 7 32 48 56 113 167 155 154 99 76 54 12 811
2003 12 -23 -38 48 63 127 193 172 207 125 43 58 13 823
2004 13 -21 2 19 71 90 134 153 164 126 102 16 4 717
2005 4 -9 -39 23 70 113 154 157 134 132 106 23 -28 697
2006 -28 -23 -25 -3 61 109 150 198 121 155 117 64 27 793
2007 27 22 29 36 112 121 151 155 149 103 68 10 -1 796
2008 -1 25 27 16 53 127 150 155 157 102 85 36 -4 774
2009 -4 -27 -17 9 101 127 129 163 177 133 73 68 -9 773
2010 -9 -46 -12 20 71 85 143 177 146 107 68 31 -25 638

Monthly and yearly precipitation amounts in 1/10 mm height, the latter being the
sum of the twelve monthly amounts. Once again, the Dec. value of the last year is
repeated at the beginning of the next line. A time series plot of the yearly and of the
winter amounts can be found in Fig. 1.4.

Year dcly jan feb mar apr may jun jul aug sep oct nov dec Pyear
----------------------------------------------------------------------------
1879 578 254 619 272 1071 1039 1009 1473 1457 1645 685 861 393 10778
1880 393 385 253 315 967 1203 1991 1870 1212 997 1784 473 907 12357
1881 907 188 232 448 809 1332 1404 885 1490 1173 828 263 202 9254
1882 202 186 88 400 696 952 1565 1802 1314 1275 788 896 501 10463
1883 501 310 127 421 504 1179 2096 2020 835 1152 526 614 684 10468
1884 684 649 202 412 1164 440 1846 1957 1130 534 1360 268 432 10394
1885 432 100 277 643 285 1185 1437 1644 925 1366 761 462 968 10053
1886 968 244 171 436 828 625 2214 972 2288 382 430 436 682 9708
1887 682 145 125 888 291 1712 435 1550 718 699 647 637 952 8799
1888 952 431 667 494 1438 690 1575 1288 1733 1887 607 211 55 11076
1889 55 174 1084 502 701 1151 1738 1408 1019 1610 678 696 260 11021
1890 260 344 137 327 718 698 1426 2045 2265 1251 708 639 107 10665
1891 107 549 142 706 807 1217 741 1947 1111 1032 373 463 619 9707
1892 619 802 628 342 1236 851 1855 1886 624 1982 1091 297 278 11872
1893 278 805 678 308 28 948 754 2495 368 827 537 898 300 8946
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1894 300 159 312 570 973 1537 1000 1307 1257 906 951 137 317 9426
1895 317 351 215 552 657 1312 1386 976 1307 217 690 606 881 9150
1896 881 496 118 951 1453 2067 1275 1002 2473 1518 355 167 196 12071
... ...
1990 547 332 1062 640 1050 1617 2370 1921 1733 1183 1158 796 509 14371
1991 509 482 176 519 766 1503 1984 1216 599 861 328 694 651 9779
1992 651 88 707 1228 821 166 1557 1605 1371 713 961 1993 531 11741
1993 531 618 275 493 583 1376 1587 3465 2168 1032 767 376 719 13459
1994 719 688 328 862 1104 1073 783 1419 1201 938 497 733 836 10462
1995 836 450 526 713 1035 1070 2173 1169 2133 568 385 1059 905 12186
1996 905 138 314 588 597 1353 1018 1532 1849 1018 1082 920 417 10826
1997 417 18 585 673 934 425 1724 2404 457 319 947 189 956 9631
1998 956 398 280 1012 474 569 1389 1174 666 1632 1496 923 404 10417
1999 404 598 1187 474 927 3507 1625 1560 1194 1357 423 1341 1097 15290
2000 1097 300 802 1514 549 1537 1422 1743 2006 1413 997 551 275 13109
2001 275 681 664 1162 1107 628 2183 967 1626 1621 345 1018 773 12775
2002 773 103 685 992 723 952 1541 1509 1908 2203 821 1342 606 13385
2003 606 670 513 327 265 817 800 1504 815 450 1352 485 371 8369
2004 371 1127 431 677 547 1009 1573 1712 857 944 769 509 455 10610
2005 455 551 740 431 1191 1310 693 1840 2522 593 454 432 547 11304
2006 547 400 395 1025 1601 1123 1524 293 2453 690 679 504 433 11120
2007 433 608 520 488 173 2377 1079 2117 2065 1627 421 726 769 12970
2008 769 414 141 694 1546 942 879 1700 1709 701 735 510 448 10419
2009 448 243 700 746 269 1421 2092 1021 737 793 796 711 751 10280
2010 751 425 425 310 389 1289 1846 1880 2424 673 624 454 696 11435

A.2 Annual Data from Five Stations

Annual temperature means (Tp) in 1/100 ◦C and precipitation amounts (Pr) in
1/10 mm height, at the five stations.

Aachen (A), Bremen (B), Hohenpeißenberg (H), Karlsruhe (K), Potsdam (P),
for the years 1930–2008. Note that the Karlsruhe data end with the year 2008. The
total average of each of the ten variables is added below.

No Year TpA PrA TpB PrB TpH PrH TpK PrK TpP PrP
-------------------------------------------------------------
1 1930 1019 9525 986 6394 690 11401 1078 9884 920 6912
2 1931 898 7904 898 6384 519 10716 942 11204 807 7274
3 1932 964 7930 982 6792 634 11855 998 7116 901 4996
4 1933 918 6202 913 5355 543 13019 960 6662 802 5067
5 1934 1061 6463 1075 5540 748 10295 1107 5905 1044 4909
6 1935 976 9380 983 7240 597 11968 1063 8195 897 6172
7 1936 961 8892 900 7029 642 14187 1068 7965 887 5407
8 1937 999 7912 903 6874 688 13285 1060 7395 898 6369
9 1938 992 7461 956 7151 665 11878 1016 7934 943 5438

10 1939 972 7865 912 8102 609 15819 1008 9984 886 7208
11 1940 845 7743 721 8090 516 13464 881 8660 664 5896
12 1941 885 7188 799 7491 516 12239 893 9350 719 6618
13 1942 899 7492 789 6242 603 9145 891 7363 754 5096
14 1943 1021 7450 948 5943 737 7762 1069 6363 935 4421
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15 1944 915 8829 918 7390 566 13902 979 6460 904 5349
16 1945 1059 8164 927 7065 717 9877 1013 6719 941 6070
17 1946 967 7674 898 6068 673 10323 1002 6859 884 5394
18 1947 1056 8405 920 6615 751 8674 1032 7107 867 5873
19 1948 1056 9255 1011 6550 745 10030 1018 6840 979 6327
20 1949 1068 7201 985 7388 734 10390 1060 4854 982 5104
21 1950 983 8018 926 7786 714 9551 1019 9314 906 6023
22 1951 990 8374 938 8205 703 10955 1022 8315 939 5788
23 1952 915 9995 845 7553 616 11850 1016 8786 818 5468
24 1953 1003 6238 975 6663 713 9583 1033 5310 986 4828
25 1954 929 8598 849 7960 559 13098 973 7272 812 6961
26 1955 914 7541 842 7486 583 12927 947 7450 802 6889
27 1956 828 9378 771 8531 488 12672 871 6766 723 7206
28 1957 1000 9213 940 7799 681 11802 1033 8205 902 5700
29 1958 959 8664 891 8130 645 11714 1022 8733 856 7111
30 1959 1067 5305 983 4044 746 9100 1086 4561 958 4972
31 1960 980 9210 919 7774 651 12339 1053 7644 869 6704
32 1961 1039 10025 952 8845 767 10598 1100 7958 929 7606
33 1962 833 8303 777 7008 553 10632 936 5787 764 5135
34 1963 835 6811 773 6058 568 11614 909 5763 785 4684
35 1964 967 6991 873 5802 650 11805 1056 5065 848 5014
36 1965 894 10963 823 8748 547 15045 956 10224 800 6331
37 1966 983 11211 902 8280 668 14956 1065 8058 892 7199
38 1967 1012 7685 987 7875 689 12242 1069 7186 957 6951
39 1968 939 8012 916 7841 618 12071 988 10005 875 6172
40 1969 958 7231 875 6492 596 10675 971 7900 795 5837
41 1970 943 8414 858 7617 588 12594 986 8552 799 6255
42 1971 995 5954 957 5653 669 10475 1028 4621 921 5298
43 1972 933 6915 885 6505 638 9024 947 6602 840 4997
44 1973 975 7164 953 6277 591 11161 1008 7559 883 4919
45 1974 1006 9673 998 7846 661 13089 1087 7614 943 7155
46 1975 1019 6134 1022 6172 660 11154 1063 8203 970 4286
47 1976 1040 5405 959 5776 658 9136 1078 6483 879 3746
48 1977 1013 8171 974 6383 699 13266 1073 6999 911 6611
49 1978 939 7118 861 7258 581 13260 970 9625 847 6244
50 1979 922 8939 773 6407 633 15194 1018 6957 807 5827
51 1980 937 8423 833 6652 567 12091 968 8330 778 6469
52 1981 965 10106 869 7976 645 14493 1028 10145 868 7888
53 1982 1058 9492 934 5900 733 12165 1072 9124 962 4068
54 1983 1042 8125 966 7079 739 11375 1093 7119 978 6421
55 1984 965 9838 870 6591 620 10465 990 8294 842 5548
56 1985 882 7743 792 6953 609 11550 939 6958 809 4918
57 1986 939 9096 853 6360 643 11243 1013 9030 845 7305
58 1987 898 9541 788 6690 619 11904 978 8102 762 6913
59 1988 1049 9359 972 7352 713 13450 1114 9352 951 5679
60 1989 1118 8085 1011 6461 795 11844 1123 6323 1026 4704
61 1990 1103 7548 1026 7271 771 14371 1154 6974 1017 6789
62 1991 999 6828 909 5311 639 9779 1069 5255 895 5006
63 1992 1065 8888 1013 6917 773 11741 1142 8354 989 5689
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64 1993 995 8770 892 9088 694 13459 1089 8469 887 6556
65 1994 1119 7675 1004 7986 824 10462 1213 8062 995 7065
66 1995 1077 7207 961 6910 693 12186 1123 9108 929 6025
67 1996 888 6266 774 4460 565 10826 970 6909 748 4460
68 1997 1059 6581 953 6209 741 9631 1103 7884 942 4951
69 1998 1051 9088 957 8931 727 10417 1131 6767 950 6243
70 1999 1105 8358 1042 5634 729 15290 1162 8416 1026 4525
71 2000 1117 9463 1038 6452 818 13109 1216 7558 1047 5863
72 2001 1048 9460 940 8396 716 12775 1129 8731 933 6700
73 2002 1113 9453 990 10617 811 13385 1170 9816 980 7890
74 2003 1103 6335 953 6143 823 8369 1184 5663 981 4189
75 2004 1033 8888 962 7104 717 10610 1113 6610 941 6330
76 2005 1072 7164 966 6777 697 11304 1119 6031 955 6342
77 2006 1116 7993 1019 5993 793 11120 1161 8506 1017 5307
78 2007 1120 9669 1054 8300 796 12970 1184 7829 1046 8259
79 2008 1048 9092 1010 6997 774 10419 1159 8332 1024 5751
-------------------------------------------------------------
mean 993 8166 921 7012 668 11729 1043 7650 896 5920

A.3 Daily Data from Five Stations

Daily temperature means (Tp) in 1/10 ◦C and precipitation amounts (Pr) in
1/10 mm height, at the five stations

Aachen (Aa), Bremen (Br), Hohenpeißenberg (Ho), Potsdam (Po),
Würzburg (Wu),

for the years 2004–2010. The variable No denotes the calendar day in the year,
running from 1 to 365. To have 365 calendar days pro each year, the 29th February
2004 and 2008 have been deleted. (For the four years 2004–2007, the daily records
of Karlsruhe have also been used, but not reproduced here).

No Day Mo Year TpAa PrAa TpBr PrBr TpHo PrHo TpPo PrPo TpWu PrWu
-----------------------------------------------------------------

1 1 1 2004 -11 10 -32 0 -39 12 -31 0 -2 0
2 2 1 2004 -21 0 -13 0 -63 1 -29 0 -27 0
3 3 1 2004 -45 0 -19 0 -91 0 -48 0 -45 0
4 4 1 2004 -7 10 -14 10 -77 8 -57 2 -39 7
5 5 1 2004 32 6 -18 8 -31 31 -75 0 5 2
6 6 1 2004 58 22 20 58 -5 74 -65 100 15 43
7 7 1 2004 64 0 41 0 6 33 22 2 34 0
8 8 1 2004 48 47 26 67 24 16 14 0 14 36
9 9 1 2004 57 29 45 5 13 73 3 2 42 81
10 10 1 2004 54 3 47 7 -5 0 14 9 37 1
11 11 1 2004 92 69 66 81 43 109 29 99 65 94
12 12 1 2004 51 230 48 15 29 68 29 7 51 118
13 13 1 2004 74 60 56 103 51 153 31 60 63 110
14 14 1 2004 51 96 49 56 18 13 46 37 56 24
15 15 1 2004 34 22 42 31 -20 34 18 24 31 7
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16 16 1 2004 57 31 47 85 0 57 26 67 39 19
17 17 1 2004 42 40 42 37 -3 110 40 46 37 0
18 18 1 2004 11 0 -7 7 -20 35 -5 0 1 0
19 19 1 2004 27 274 32 106 -37 42 -7 59 -13 54
20 20 1 2004 39 10 11 0 -16 119 -1 1 16 1
21 21 1 2004 -3 0 -13 0 -66 5 -22 0 -9 0
22 22 1 2004 13 1 -17 0 -77 0 -60 0 -48 0
23 23 1 2004 32 0 7 0 -67 0 -78 0 -39 0
24 24 1 2004 28 27 2 17 -22 64 -79 1 -45 12
25 25 1 2004 31 0 27 6 -27 5 -76 5 2 4
26 26 1 2004 2 0 12 6 -38 12 -50 1 -1 6
27 27 1 2004 -10 7 -23 17 -23 31 -40 0 -17 14
28 28 1 2004 1 36 -1 15 -56 5 -32 0 -14 1
29 29 1 2004 -6 8 -10 25 -60 17 -15 12 -6 0
30 30 1 2004 9 0 18 17 -39 0 1 4 -5 0
31 31 1 2004 69 5 51 102 32 0 25 48 40 0
32 1 2 2004 100 32 83 84 56 0 78 128 97 0
33 2 2 2004 110 104 95 24 68 0 74 76 101 35
34 3 2 2004 128 0 122 2 70 0 91 44 103 0
35 4 2 2004 143 0 131 16 89 0 121 0 103 0
36 5 2 2004 131 0 129 0 105 0 130 32 115 0
... ...

330 26 11 2010 -1 0 -22 1 -41 23 -11 1 1 3
331 27 11 2010 -7 0 -52 0 -51 0 -30 0 -19 5
332 28 11 2010 -23 0 -43 0 -24 46 -31 0 -11 0
333 29 11 2010 -26 59 -9 0 -44 12 -16 0 -17 58
334 30 11 2010 -22 2 -30 0 -65 0 -44 0 -29 0
335 1 12 2010 -61 7 -73 0 -67 40 -90 70 -60 28
336 2 12 2010 -64 6 -50 12 -50 0 -100 10 -82 1
337 3 12 2010 -42 0 -41 0 -65 0 -84 0 -94 9
338 4 12 2010 -19 66 -30 27 -71 0 -70 4 -61 0
339 5 12 2010 11 109 12 2 9 38 -14 5 -17 16
340 6 12 2010 -5 0 9 0 25 127 -2 0 5 102
341 7 12 2010 -24 9 -18 0 73 5 -33 3 7 89
342 8 12 2010 -16 46 -27 24 85 69 -24 95 8 245
343 9 12 2010 5 62 -2 19 -37 20 -18 8 -8 27
344 10 12 2010 24 4 -16 81 -43 71 -25 64 4 23
345 11 12 2010 45 7 61 43 -14 16 31 48 27 13
346 12 12 2010 23 20 9 0 -22 58 3 6 24 8
347 13 12 2010 -34 21 -34 12 -81 1 -38 7 -35 0
348 14 12 2010 -32 2 -36 0 -95 26 -24 53 -53 0
349 15 12 2010 -26 15 -53 0 -100 12 -39 11 -41 12
350 16 12 2010 -13 64 -30 38 -92 2 -50 34 -54 39
351 17 12 2010 -30 2 -38 8 -54 8 -40 34 -32 1
352 18 12 2010 -40 7 -61 0 -74 0 -80 0 -64 24
353 19 12 2010 -8 160 -82 9 -8 3 -102 63 -10 56
354 20 12 2010 -39 15 -69 0 15 8 -60 12 0 90
355 21 12 2010 0 2 -105 0 38 0 -81 0 -4 65
356 22 12 2010 3 75 -45 22 68 0 -37 19 17 7
357 23 12 2010 -25 171 -17 5 100 7 -1 4 22 0
358 24 12 2010 -35 46 -25 0 -16 101 -8 100 -2 164
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359 25 12 2010 -60 4 -78 8 -75 22 -54 13 -55 28
360 26 12 2010 -12 10 -33 0 -89 1 -77 15 -93 18
361 27 12 2010 -3 0 -14 6 -65 0 -38 48 -43 0
362 28 12 2010 9 0 -43 0 -19 46 -68 0 -49 0
363 29 12 2010 16 0 -68 0 -8 15 -93 0 -60 0
364 30 12 2010 5 1 -47 9 -8 0 -97 6 -65 0
365 31 12 2010 -1 2 13 1 -30 0 3 1 -32 1



Appendix B
Some Aspects of Time Series

In the foregoing text emphasis has been placed on methods from time series analysis.
In this chapter, we first present two important topics, the correlation function and
the spectral density function of a time series. Statistical estimation methods for these
functions are given in Sects. 3.3 and 7.1, 7.2. Then we introduce the well-known
family of ARMA-models and the Box-Jenkins forecast approach.

Mathematical background material and important applications can be found in
von Storch and Zwiers (1999, Chap. IV), Brockwell and Davis (2006), Falk (2011),
Kreiß and Neuhaus (2006).

B.1 Auto- and Cross-Correlation Function

Let a time series Yt , t = 1, 2, . . ., be given. Assume that the expectations μ = E(Yt )

and the covariances

Cov(Yt , Yt+h) = E
(
(Yt − μ)(Yt+h − μ)

)

do not depend on the time point t . Then the time series Yt , t = 1, 2, . . ., is called
stationary. Many time series methods require stationarity. Under stationarity we can
define the auto-covariance function

γ(h) = Cov(Yt , Yt+h), for all t = 1, 2, . . . ; h = 0, 1, . . . ,

where h = (t + h)− t is called time lag. In the special case h = 0 we have

γ(0) = E(Yt − μ)2 = σ2 , for all t = 1, 2, . . . [variance of Yt ],

where σ2 > 0 is always assumed. Under stationarity the auto-correlations
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ρ(Yt , Yt+h) = Cov(Yt , Yt+h)√
Var(Yt ) · Var(Yt+h)

, t = 1, 2, . . . , h = 0, 1, . . . ,

do not depend on t and are denoted by ρ(h). By means of γ(h) the auto-correlation
function ρ(h), h = 0, 1, . . . , can be written as

ρ(h) = γ(h)

γ(0)
, h = 0, 1, . . . .

The figure shows a typical auto-correlation function over 10 time-lags. We expand
the functions by γ(−h) = γ(h), ρ(−h) = ρ(h) in a symmetrical way. For the
auto-correlation ρ(h), h ∈ Z, one has

ρ(0) = 1, −1 ≤ ρ(h) ≤ 1.

For a pure (μ,σ2)-random series, that is a pure random series with expectation
μ and variance σ2, we have

γ(h) =
{

σ2 for h = 0

0 else
, ρ(h) =

{
1 for h = 0

0 else .

Cross-Correlation

Now, two stationary time series Xt and Yt are given. First we have for each process

an expectation, μx and μy ,
a variance, σ2

x and σ2
y ,

an auto-covariance function, γxx (h) and γyy(h), where

γxx (0) = σ2
x , γyy(0) = σ2

y, γxx (−h) = γxx (h), γyy(−h) = γyy(h).
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The two processes are connected by the cross-covariance function

γxy(h) = Cov(Xt , Yt+h), h ∈ Z, γxy(−h) = γyx (h) ,

respectively by the cross-correlation function

ρxy(h) = ρ(Xt , Yt+h), h ∈ Z,

where one can write

ρxy(h) = γxy(h)

σx · σy
.

We have
ρxy(−h) = ρyx (h)

and |ρxy(h)| ≤ 1.

Different from the auto-correlation function, the cross-correlation function is not
symmetrical and does not necessarily assume the value 1 for h = 0.

B.2 Spectral Density Function

By means of frequency analysis the oscillation of a time series is decomposed into
harmonic components of different frequencies. The idea is that the observed series is
a superposition of cyclical components with different circular frequencies ω, varying
between 0 and π. Instead of ω one also uses the

frequency ν = ω/(2π), which lies in the interval [0, 1/2],
length of period T = 1/ν = 2π/ω, which is greater or equal to 2.

For stationary processes the most important quantity here is the spectral density
f (ω), 0 ≤ ω ≤ π, also called spectrum. It is connected with the auto-covariance
function γ(h), h ∈ Z, by the equations
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γ(h) =
∫ π

0
f (ω) cos(hω) dω , h = . . . ,−1, 0, 1, . . . (B.1)

f (ω) = 1

π

∞∑
h=−∞

γ(h) cos(hω) , 0 ≤ ω ≤ π ;

γ and f constitute a pair of Fourier transforms. Observe that in the special case h = 0
the equation

γ(0) = σ2 =
∫ π

0
f (ω) dω (B.2)

expresses a decomposition of the variance into the components f (ω). Due to the
symmetry of the cosine function, i.e. cos(−x) = cos x , we can write f (ω) in the form

f (ω) = 1

π

(
γ(0)+ 2

∞∑
h=1

γ(h) cos(hω)

)
.

We tacitly assume that
∑∞

h=1 |γ(h)| < ∞, which is the case for the important
examples of time series.

For the pure (μ,σ2)-random series the spectral density is constant on the interval
[0,π], that is

f (ω) = σ2

π
, 0 ≤ ω ≤ π .

Here, all circular frequencies of the interval [0,π] deliver the same contribution to
the variance σ2 of the time series. It is this fact, why a pure random series is called
white noise.

B.3 ARMA Models

In this section we present an important class of time series models, the class of
ARMA-models. Further, a certain variant, the ARIMA-model, is introduced. AR
stands for autoregressive, MA for moving average, I for integrated. To avoid conflicts
with a lower time bound, we extend the time range of a (stationary) process to Z =
{. . . ,−2,−1, 0, 1, 2, . . .}.

B.3.1 Moving Average Processes

A time series Yt , t ∈ Z, is called moving average process of order q or MA(q)-
process, if

Yt = βq et−q + · · · + β2 et−2 + β1 et−1 + et , t ∈ Z . (B.3)
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Here, et , t ∈ Z, is a pure (0,σ2
e )-random series, β1, β2, . . ., βq are (unknown)

parameters and q ≥ 0 is a given integer number.
An MA(q)-process is a stationary process with expectation 0. Its variance is,

setting β0 = 1,

σ2 = γ(0) = σ2
e

q∑
j=0

β2
j .

The auto-covariance function γ(h) and the auto-correlation function ρ(h) are 0 for
|h| > q.

MA(1): For q = 1 Eq. (B.3) reduces to Yt = β et−1 + et for all t ∈ Z.
For the MA(1)-process we obtain σ2 = γ(0) = σ2

e (1+ β2), as well as

ρ(1) = β

1+ β2 , ρ(h) = 0 for |h| > 1.

The spectral density for the MA(1)-process is

f (ω) = σ2
e

π

(
1+ 2β cos ω + β2) .

The figure shows the (normalized) MA(1)-spectral density for β = −0.5, 0, 0.5.

0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

0.5

0

-0.5

ω

B.3.2 Autoregressive Processes

A time series Yt , t ∈ Z, is called autoregressive process of order p or
AR(p)-process, if

Yt = αpYt−p + · · · + α2Yt−2 + α1Yt−1 + et , t ∈ Z . (B.4)
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Here, et , t ∈ Z, is a pure (0,σ2
e )-random series (further: et independent of Yt−1,

Yt−2, ...). The coefficients α1, α2, . . ., αp are (unknown) parameters and p ≥ 0 is
a given integer number. An AR(p)-process is not necessarily a stationary process.
Rather, this is true under the assumption, that the“stationarity condition”

the absolute values of all zeros of the polynomial

α(s) = 1− α1 s − · · · − αp s pare greater than 1

is fulfilled. Under this condition the process can be represented in the form of an
MA(∞)-process

Yt =
∞∑
j=0

β j et− j , (B.5)

with certain coefficients β j [β0 = 1]. We have E Yt = 0 for all t ∈ Z, and σ2 =
σ2

e
∑∞

j=0 β2
j , with the β’s from Eq. (B.5).

The first p auto-covariances and -correlations can be gained from the so-called
Yule-Walker equations, and for h > p recursively from

γ(h) = αp γ(h − p)+ · · · + α1 γ(h − 1) , (B.6)

ρ(h) = αp ρ(h − p)+ · · · + α1 ρ(h − 1) .

AR(1)-Processes

For the AR(1)-process Eq. (B.4) reduces to Yt = α Yt−1+et , t ∈ Z. The stationarity
condition is −1 < α < 1. The MA(∞)-representation (B.5) of the stationary
AR(1)-process amounts to

Yt =
∑∞

j=0
α j et− j .

The auto-covariance function and auto-correlation function are

γ(h) = σ2
e

αh

1− α2 , h = 0, 1, . . . , especially σ2 = γ(0) = σ2
e

1− α2 ,

ρ(h) = αh, h = 0, 1, . . . (therefore ρ(h) = α|h| for all h ∈ Z).

As spectral density of an AR(1)-process we obtain

f (ω) = 1

π
· σ2

e

1− 2α cos ω + α2 . (B.7)

For α > 0 long-wave (low-frequency) cycles are dominant, for α < 0 short-wave
(high-frequency) cycles.
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The figure shows the (normalized) AR(1)-spectral density for α = −0.5, 0, 0.5.

AR(2)-Processes

For an AR(2)-process, that is Yt = α2Yt−2 + α1Yt−1 + et , t ∈ Z, the stationarity
conditions are

α1 + α2 < 1, −α1 + α2 < 1, α2 > −1. (B.8)

From the Yule-Walker equations we get the first two auto-correlations

ρ(1) = α1

1− α2
, ρ(2) = α2

1

1− α2
+ α2 . (B.9)

Further auto-correlation coefficients can be recursively calculated from

ρ(h) = α2 ρ(h − 2)+ α1 ρ(h − 1), h > 2.

The spectral density of the AR(2)-process is

f (ω) = 1

π
· σ2

e

1+ α2
1 − 2α1(1− α2) cos ω − 2α2 cos(2ω)+ α2

2

.

For α2 < 0, more precisely α2
1+ 4α2 < 0, the spectral density f (ω) shows a distinct

peak within the interval (0,π).
The AR(2)-process is a suitable model for time series with a cyclic component. This
maximum value of f (ω) is attained for an ω ∈ (0,π), for which

cos ω = − α1(1− α2)

4α2
(B.10)

holds, under the assumption that the real number on the right side lies in the interval
(−1, 1).
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The figure shows the (normalized) AR(2)-spectral density for α2 = −0.5 and α1 =
−1, 0, 1.

B.3.3 ARMA and ARIMA Processes

The combination of AR(p)- and MA(q)-terms yields an ARMA(p, q)-process. Such
a process is given by the following equation,

Yt = αpYt−p+· · ·+α2Yt−2+α1Yt−1+βq et−q+· · ·+β2 et−2+β1 et−1+et (B.11)

for all t ∈ Z. Here we assume, that the coefficients αi fulfill the stationarity condition.
An ARMA(p, 0) [ARMA(0, q)]-process is an AR(p) [MA(q)]-process.

The first q auto-correlations ρ(1), . . . , ρ(q) depend on the αi and on the β j . For
h > q, p the ρ(h) are recursively calculated acc. to (B.6), solely employing the αi ,

ρ(h) = αp ρ(h − p)+ · · · + α1 ρ(h − 1), h > q, p.

ARMA(1, 1)-Processes

For an ARMA(1, 1)-process

Yt = α Yt−1 + β et−1 + et , t ∈ Z , |α| < 1,

we have

γ(0) = σ2 = σ2
e

1+ 2αβ + β2

1− α2 ,

γ(1) = σ2
e

(1+ αβ)(α+ β)

1− α2 , γ(h) = α γ(h − 1), if h ≥ 2,
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from where ρ(1) = (1+ αβ)(α+ β)/(1+ 2αβ + β2). The spectral density is

f (ω) = σ2
e

π
· 1+ 2β cos ω + β2

1− 2α cos ω + α2 =
π

σ2
e
· fAR(1)(ω) · fMA(1)(ω) .

Differencing a Time Series

In the context of modeling and predicting, a trend in the time series Y1, . . . , Yn is
often removed by building differences of two succeeding variables. The differenced
time series then is ∇Y2, . . . ,∇Yn , with

∇Yt = Yt − Yt−1, t = 2, . . . , n.

We gain back the original time series Yt from the differenced series ∇Yt by
means of summation (“integration”). Starting with an initial value Y1 one recursively
calculates

Y2 = Y1 + ∇Y2, . . . , Yn = Yn−1 + ∇Yn .

If necessary the time series ∇Yt must be differenced once more, in order to arrive at
a stationary series. Differences of order d are recursively and explicitly defined and
calculated by

∇dYt = ∇(∇d−1Yt ) =
d∑

j=0

(−1) j
(

d

j

)
Yt− j , t = d + 1, . . . , n.

ARIMA-Processes

A time series Yt , t ∈ Z, is called an ARIMA-process of order (p, d, q) or an ARIMA(p,
d, q)-process, if the process Xt of its dth differences, that is

Xt = ∇dYt , t ∈ Z ,

forms an ARMA(p,q)-process. An ARIMA(p, 0, q)-process is an ARMA(p, q)-
process.
(i) ARIMA(1, 1, 1): Xt = Yt − Yt−1 forms an ARMA(1, 1)-process, i.e. Xt fulfills
the equation

Xt = αXt−1 + βet−1 + et .

Then the ARIMA(1, 1, 1)-process Yt possesses the representation

Yt = α′1 Yt−1 + α′2 Yt−2 + β et−1 + et , α′1 = 1+ α, α′2 = −α .
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Due to α′1 + α′2 = 1, the stationarity condition from B 3.2 is violated and Yt builds
no stationary ARMA(2,1)-process.
(ii) ARIMA(2,1,0)-process: Xt = Yt − Yt−1 is an ARMA(2,0)-process, i.e.

Xt = α1 Xt−1 + α2 Xt−2 + et .

Hence the ARIMA(2,1,0)-process Yt has the form

Yt = α′1 Yt−1+α′2 Yt−2+α′3 Yt−3+et , α′1 = 1+α1,α
′
2 = α2−α1,α

′
3 = −α2 .

As in (i) the stationarity condition is violated, because the equation α′1+α′2+α′3 = 1
is true.

Mean Value Correction

If the stationary ARMA-process Yt has mean value μ = E(Yt ) for all t ∈ Z, then
we need an additional term θ0 to write the model Eq. (B.11) in the form

Yt = αpYt−p+· · ·+α2Yt−2+α1Yt−1+ θ0 +βq et−q+· · ·+β2 et−2+β1 et−1+et .

(B.12)
Applying E to both sides of (B.12), we obtain

θ0 = (1− α1 − · · · − αp) · μ .

Residuals

Let a realization Y1, Y2, . . . , Yn of an ARMA(p, q)-process be given. To calculate
the residuals, we rewrite Eq. (B.12) with the residual variable et on the left side,

et = Yt −
(
αpYt−p + · · · + α1Yt−1

) − θ0 −
(
βq et−q + · · · + β1 et−1

)
(B.13)

for t = 1, . . . , n. Here, the first q residual values e and the first p observation values
Y must be predefined (e.g. by e = 0 and Y = Ȳ ), and further residual values must
be recursively gained from Eq. (B.13).
Ex. ARMA(2,2): After defining e−1, e0 and Y−1, Y0, one calculates successively

e1 = Y1 − (α2Y−1 + α1Y0)− θ0 − (β2 e−1 + β1 e0)

e2 = Y2 − (α2Y0 + α1Y1)− θ0 − (β2 e0 + β1 e1)

. . . . . .

en = Yn − (α2Yn−2 + α1Yn−1)− θ0 − (β2 en−2 + β1 en−1) .
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Residual-Sum-of-Squares. Estimation

Note that the residual variable et in Eq. (B.13) depends on the unknown parameters
μ,α,β. In order to get estimations of these parameters, one builds the residual-sum-
of-squares

Sn(μ,α,β) =
n∑

t=1

e2
t , (B.14)

and tries to find those values for the μ,α,β, which minimize (B.14) (least-squares-
or LS-method).

B.4 Predicting in ARMA Models

General scheme. We start from an observation of a time series up to a fixed time
point T , that is from the sample

Y1, Y2, . . . , YT . [past]
We want to make a prognosis (prediction, forecast) of future values

YT+1, YT+2, . . . . [future]
This prognosis is denoted by

ŶT (1), ŶT (2), . . ., [forecast]
the error of the prognosis by

ŶT (1)− YT+1, ŶT (2)− YT+2, . . . . [forecast-errors]

The function ŶT (l), l = 1, 2, . . ., is called forecast-function at time point T for
time lead l = 1, 2, . . ..

The forecast-function is derived under the following principles:

1. ŶT (l) is a function of the observations Y1, Y2, . . . , YT

2. Among all those functions, ŶT (l) is the one with the smallest mean squared error

E
(
ŶT (l)− YT+l

)2
.

This (in the sense of 1. and 2.) best predictor for YT+l turns out to be the conditional
expectation of YT+l , given the observations Y1, Y2, . . . , YT up to time point T ,

ŶT (l) = E
(
YT+l |Y1, . . . , YT

)
. (B.15)
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B.4.1 Box-Jenkins Forecast-Formulas

If we have a stationary ARMA(p, q)-process with mean value μ, that is cf. Eq. (B.12)

Yt = α1 Yt−1 + · · · + αp Yt−p + θ0 + β1 et−1 + · · · + βq et−q + et , (B.16)

with θ0 = (1− α1 − · · · − αp) · μ, then the equation for the time point T + l is

YT+l = α1YT+l−1 + · · · + αpYT+l−p + θ0 + β1eT+l−1 + · · · + βqeT+l−q + eT+l .

(B.17)

By building conditional expectations (B.15) on the left and right sides we get

ŶT (l) = α1 ET [YT+l−1] + · · · + αp ET [YT+l−p] + θ0

+ β1 ET [eT+l−1] + · · · + βq ET [eT+l−q ] + ET [eT+l ] .

Hereby we have denoted, for Z = Y or Z = e, by

ET [Z ] = E(Z |Y1, . . . , YT )

the conditional expectation of Z , given the observations Y1, . . . , YT . One determines
the ET [.]-values according to the following scheme:

Time points up to (including) T Time points after T

ET [YT− j ] = YT− j j ≥ 0 ET [YT+ j ] = ŶT ( j) j ≥ 1
ET [eT− j ] = eT− j j ≥ 0 ET [eT+ j ] = 0 j ≥ 1

Therefore, the Box and Jenkins (1976) forecast-function can be calculated step-by-
step according to Eq. (B.17), obeying the prescriptions

• at time points t up to T :
let the variables et and Yt unaltered
• at time points t after T :

set the et ’s to zero and replace the Yt ’s by their predictors Ŷ .

Hence we have for l = 1

ŶT (1) = α1 YT + · · · + αp YT−p+1 + θ0 + β1 eT + · · · + βq eT−q+1 . (B.18)

For 1 < l < p and < q:

ŶT (l) =α1 ŶT (l − 1)+ · · · + αl−1 ŶT (1)+ αl YT + · · · + αp YT−p+l (B.19)

+ θ0 + βl eT + · · · + βq eT−q+l .
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For l > p and > q:

ŶT (l) = α1 ŶT (l − 1)+ · · · + αp ŶT (l − p)+ θ0 , (B.20)

which is the AR(p)-formula, without error term and with predictors Ŷ instead of
observations Y . If an MA-term is present in Eq. (B.16), the unknown error terms
eT−q+1, eT−q+2, . . ., eT in (B.18) and (B.19) must be recursively calculated from
Y1, . . ., YT according to Eq. (B.13).
Example: ARMA(2,1)-process Yt = α1 Yt−1 + α2 Yt−2 + β et−1 + θ0 + et .

ŶT (1) = α1 YT + α2 YT−1 + θ0 + β eT

ŶT (2) = α1 ŶT (1)+ α2 YT + θ0

ŶT (3) = α1 ŶT (2)+ α2 ŶT (1)+ θ0 , and so on.

B.4.2 Forecast-Error and -Interval

First we need the MA(∞)-representation

Yt =
∞∑
j=1

c j et− j + et (B.21)

of the stationary ARMA-process. For the AR(1)-process, e.g., we have

c j = α j , j ≥ 1.

From Eq. (B.21) we gain the l-step forecast and the forecast-error,

ŶT (l) =
∞∑
j=l

c j eT+l− j , ŶT (l)− YT+l = −
l−1∑
j=0

c j eT+l− j ,

[c0 = 1], respectively. The expectation and the variance of the forecast-error are

E
(
ŶT (l)− YT+l

) = 0 ,

Var
(
ŶT (l)− YT+l

) = (1+ c2
1 + · · · + c2

l−1) · σ2
e = V (l).

For l →∞ the quantity V (l) converges towards σ2
e ·

∑∞
j=0 c2

j = σ2, that is

V (l) → Var(Yt ) , if l →∞ .



162 Appendix B: Some Aspects of Time Series

A forecast-interval for YT+l at level 1− α has the form

ŶT (l)− u1−α/2 ·
√

V̂ (l) ≤ YT+l ≤ ŶT (l)+ u1−α/2 ·
√

V̂ (l), (B.22)

with
√

V̂ (l) = σ̂e ·
√

1+ ĉ2
1 + · · · + ĉ2

l−1. Hereby, ĉ j and σ̂e denote estimates for c j

and σe, respectively, and we have stipulated that the error variables et are normally

distributed.
√

V̂ (l) can be approximated by the standard deviation σ̂ of the time
series.

With a probability (approximately) 1− α, a future value YT+l lies in the interval
(B.22).



Appendix C
Categorical Data Analysis

The investigation of daily precipitation amounts leads us to data analysis with cat-
egorical variables. The reason is the frequent occurrence of days with amount zero
(days without precipitation). If the criterion variable Y is binary, and we are interested
in the dependence of Y on regressor variables x1, . . . , xm, then the logistic regres-
sion model is often applied. If we are faced with a two-way frequency (contingency)
table, then questions of independence or of homogeneity arise: Independence of the
(categorical) row and column variables or homogeneity of the rows (defining certain
groups).

For mathematical background material and further applications one may consult
Agresti (1990), Andersen (1990), Pruscha (1996).

C.1 Binary Logistic Regression

We want to analyze a binary (dichotomous) criterion Y , assuming only the values 0
and 1, in dependence on regressors x1, . . . , xm . Then the linear model of regression
is no longer directly applicable: the range of the expectation of Y is the interval [0, 1],
but not the range of the linear combinations

η = β0 + β1x1 + β2x2 + · · · + βm xm

of the regressor variables. To confine the regression term to the interval [0, 1], we
transform η by a so-called response function F(x), x ∈ R, F being monotonous and
having values in the interval [0, 1]. We are led to the approach

E(Y ) = P(Y = 1) = F(η) .

Possible choices for F are the cumulative N(0,1)-distribution function (probit
analysis) and the so-called logistic function (logistic regression); the latter case is
outlined in the following.

H. Pruscha, Statistical Analysis of Climate Series, 163
DOI: 10.1007/978-3-642-32084-2, © Springer-Verlag Berlin Heidelberg 2013
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Fig. C.1 The logistic function F(t) = et/(1+ et ), its derivative function F ′(t) = F(t)(1− F(t))
and its inverse function logit(s)

Model and Likelihood

The logistic regression model uses the logistic response function

F(t) = et

1+ et
= 1

1+ e−t
, t ∈ R ,

see Fig. C.1, which has the so-called logit function as inverse,

Logit(s) = ln
( s

1− s

)
, 0 < s < 1 .

For the case no. i , the values of the criterion variable Y (0 or 1) and of the m regressor
variables are denoted by

Yi , x1i , x2i , . . . , xmi , i = 1, . . . , n . (C.1)

The random variables Y1, . . . , Yn are presupposed to be independent. Let β =
(β0,β1, . . . ,βm) be the p-dimensional vector of unknown parameters (p = m + 1),
then we have for case no. i the linear regression term

ηi (β) = β0 + β1x1i + · · · + βm xmi , i = 1, . . . , n. (C.2)

Let us write
πi (β) = P(Yi = 1)

for the probability, that we will observe the event Yi = 1.Then we formulate the
model of binary logistic regression by

πi (β) = F
(
ηi (β)

) = 1

1+ exp (−ηi (β))
, i = 1, . . . , n . (C.3)
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Equivalently to (C.3): The Logit(πi ), πi = πi (β), is subjected to the linear equation

ln
( πi

1− πi

)
= ηi (β) [ηi (β) as in (C.2)]. (C.4)

Likelihood

The unknown parameters β j are estimated from the sample (C.1) according to the
method of maximum-likelihood (ML). Starting from the

Likelihood
n∏

i=1

(
πYi

i · (1− πi )
(1−Yi )

)
of the sample (C.1),

we arrive—by taking logarithm—via Eq. (C.4) at the log-likelihood function

�n =
n∑

i=1

(
Yi · ηi + ln(1− πi )

)
, (C.5)

or, making in (C.5) the dependence on β explicit,

�n(β) =
n∑

i=1

(
Yi · ηi (β)− ln(1+ eηi (β))

)
. (C.6)

As estimator β̂ for the parameter vector β, one chooses the ML-estimator, defined by

�n(β̂) = max �n(β) ,

where the maximum is taken over all β = (β0, . . . ,βm). Plugging the estimator β̂
into Eq. (C.3), we arrive at the predicted probability for case i , that is

π̂i = πi (β̂) .

Classification Table

As a way to check the goodness of fit of model (C.3), we establish a so-called
classification table. To this end, we choose a cut point c, 0 < c < 1, and the case i
is predicted (is classified as belonging) to

group 0 if π̂i ≤ c or group 1 if π̂i > c.

With respect to the actually observed value Yi (0 or 1), this assignment can be called
correct or incorrect.
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In the following classification table we have N0 + N1 = n. The percentage

Classified as
Observed 0 1

∑
Y = 0 N00 N01 N0
Y = 1 N10 N11 N1

N00 + N11

n
· 100 %

of correctly classified cases serves us as a goodness-of-fit measure for the model.
The choice of the cut point c: Often the value c = 0.5 is taken. A more appropriate
choice seems to be the median m̂ of all n values π̂i (i.e.: 50 % of the π̂i -values are
smaller (or equal) and 50 % are greater than m̂).

More informative is a plot with two histograms of the values π̂i , separated with
respect to the N0 cases, where Y = 0, and the N1 cases, where Y = 1; compare
Figs. 6.5, 6.6.

C.2 Contingency Tables

Chi-square, Cramér’s V

A contingency table consists of I × J frequencies ni j , organized in a table with I
rows and J columns.

1 2 . . . J
∑

1 n11 n12 . . . n1J n1•
2 n21 n22 . . . n2J n2•
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

I nI 1 nI 2 . . . nI J nI•∑
n•1 n•2 . . . n•J n•• = n

I × J -frequency table (ni j )

The row sums are denoted by ni•, the column sums by n• j . The total sum is n = n••.
Contingency tables arise in two different situations, which will be studied in the

following under the headings “Homogeneity problem” and “Independence problem”.
In both cases we formulate a hypothesis H0, namely the hypotheses of homogeneity
and of independence, respectively. With the so-called expected frequencies

ei j = ni• · n• j

n
, (C.7)
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we will employ Pearson’s χ2-test statistic

χ̂2
n =

I∑
i=1

J∑
j=1

(
ni j − ei j

)2

ei j
= n ·

⎛
⎝ I∑

i=1

J∑
j=1

n2
i j

ni• n• j
− 1

⎞
⎠ (C.8)

in order to check H0. The number

f = (I − 1)(J − 1) (C.9)

is called the degrees of freedom (DF) of the table. In the following, χ2
f and χ2

f,γ denote

the χ2-distribution with f degrees of freedom and its γ-quantile, respectively; see
(C.11) and (C.12) below.

From the test statistic χ̂2
n we derive Cramér’s V by the equation

V =
√

χ̂2
n

n · (K − 1)
, K = min(I, J ) . (C.10)

One can show that 0 ≤ V ≤ 1 is valid.

Homogeneity Problem

Now the I alternatives, which form the rows of the contingency table (ni j ), represent
I predefined groups. The J columns of the table stand for J alternatives, which are
the possible realizations of a categorical variable Y .

In each of the I groups we have (unknown) underlying positive numbers, denoting
the probabilities for the occurrence of the events Y = j , j = 1, . . . , J . Let these
probabilities in group i be

pi1, pi2, . . . , pi J [allpi j > 0,
∑J

j=1
pi j = 1],

i = 1, . . . , I . That is, we have an underlying I × J -probability table; in each row of
the table stands a vector with positive probabilities, adding up to 1.

Alternative
1 2 . . . J

∑
Group 1 p11 p12 . . . p1J 1
Group 2 p21 p22 . . . p2J 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Group I pI 1 pI 2 . . . pI J 1

I × J -probability table (pi j )



168 Appendix C: Categorical Data Analysis

The hypothesis H0 of homogeneity asserts the equality of the I probability vectors.
Under H0, the probabilities for the single alternatives do not differ from group to
group,

H0 : pi j = pi ′ j , i, i ′ = 1, . . . , I, j = 1, . . . , J.

Let the sample sizes n1, . . . , nI for the groups 1, . . . , I be given. Assume that we
have counted the frequencies

ni1, . . . , ni J in group i

[∑J

j=1
ni j = ni• = ni

]
,

i = 1, . . . , I . The set of these frequencies constitutes a contingency table (ni j ),
with the total frequency n = n••. Using the (under H0) expected frequencies ei j ,
as given in (C.7), we build the test statistic χ̂2

n as in Eq. (C.8), which is under H0
asymptotically χ2

f -distributed. Here, f denotes the DF according to Eq. (C.9).
The hypothesis H0 of homogeneity is rejected, if

χ̂2
n > χ2

f,1−α (C.11)

(significance level α, n supposed to be large).
If H0 is rejected, the question arises, which groups among the I groups are re-

sponsible. To answer this, we perform multiple comparisons between all B = (I
2

)
pairs of two groups. The groups i, k (i 
= k) differ significantly, if the test statistic
χ̂2

ni+nk
of the 2× J table

1 2 . . . J
∑

i ni1 ni2 . . . ni J ni•
k nk1 nk2 . . . nk J nk•∑

ni1 + nk1 ni2 + nk2 . . . ni J + nk J ni + nk

2× J -frequency table

exceeds the quantile χ2
J−1,1−β of the χ2

J−1-distribution, where β = α/B is the
Bonferroni correction of α.

Independence Problem

Now we have two variables, X and Y , where
X may assume I alternative values i = 1, . . . , I

and
Y may assume J alternative values j = 1, . . . , J .

Let πi j the probability that we observe X = i and Y = j ,

πi j = P(X = i, Y = j) [all πi j > 0,

I∑
i=1

J∑
j=1

πi j = 1].
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Let a bivariate sample (x1, y1), . . . , (xn, yn) of the pair (X, Y ) be given. We
determine the number ni j of times that the pair (i, j) occurs in this sample. This
leads to an I × J -contingency table (ni j ), as presented above.

The hypothesis H0 asserts the independence of the variables X and Y . H0 can be
written by means of the probabilities πi j and of the marginal probabilities

πi• = P(X = i), π• j = P(Y = j)

in the form

H0 : πi j = πi• · π• j , i = 1, . . . , I, j = 1, . . . , J .

The Pearson test statistic χ̂2
n cf. Eq. (C.8), where the ei j are once again the (under

H0) expected frequencies (C.7), is under H0 asymptotically χ2
f -distributed, with f

being the DF acc. to Eq. (C.9). Thus H0 is rejected, if

χ̂2
n > χ2

f,1−α (C.12)

(level α, n supposed to be large). From the test statistic χ̂2
n one derives Cramér’s V

as in Eq. (C.10). V plays the role of a correlation coefficient between the categorical
variables X and Y . Indeed, the maximal value V = 1 is assumed, when each column
(if J ≥ I ) resp. each row (if I ≥ J ) of the table (ni j ) contains only one single
frequency greater 0 (with the rest being zero).

Remark

In the two subsections above we are faced with two different underlying situations
(I univariate samples and one bivariate sample, resp.) and we have to check two
different hypotheses (homogeneity and independence hypothesis, resp.). Neverthe-
less, we can use—in (C.11) and in (C.12)—the same procedure with the same test
statistic. This fact is highly appreciated from the practitioner’s point of view, since
in applications the two situations often merge into each other.
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