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Preface

All three authors of the present book have long-standing experience in teach-
ing graduate courses in multivariate analysis (MVA). These experiences have
taught us that aside from distribution theory, projections and the singular
value decomposition (SVD) are the two most important concepts for un-
derstanding the basic mechanism of MVA. The former underlies the least
squares (LS) estimation in regression analysis, which is essentially a projec-
tion of one subspace onto another, and the latter underlies principal compo-
nent analysis (PCA), which seeks to find a subspace that captures the largest
variability in the original space. Other techniques may be considered some
combination of the two.

This book is about projections and SVD. A thorough discussion of gen-
eralized inverse (g-inverse) matrices is also given because it is closely related
to the former. The book provides systematic and in-depth accounts of these
concepts from a unified viewpoint of linear transformations in finite dimen-
sional vector spaces. More specifically, it shows that projection matrices
(projectors) and g-inverse matrices can be defined in various ways so that a
vector space is decomposed into a direct-sum of (disjoint) subspaces. This
book gives analogous decompositions of matrices and discusses their possible
applications.

This book consists of six chapters. Chapter 1 overviews the basic linear
algebra necessary to read this book. Chapter 2 introduces projection ma-
trices. The projection matrices discussed in this book are general oblique
projectors, whereas the more commonly used orthogonal projectors are spe-
cial cases of these. However, many of the properties that hold for orthogonal
projectors also hold for oblique projectors by imposing only modest addi-
tional conditions. This is shown in Chapter 3.

Chapter 3 first defines, for an n by m matrix A, a linear transformation
y = Ax that maps an element x in the m-dimensional Euclidean space Em

onto an element y in the n-dimensional Euclidean space En. Let Sp(A) =
{y|y = Ax} (the range or column space of A) and Ker(A) = {x|Ax = 0}
(the null space of A). Then, there exist an infinite number of the subspaces
V and W that satisfy

En = Sp(A)⊕W and Em = V ⊕Ker(A), (1)

where ⊕ indicates a direct-sum of two subspaces. Here, the correspondence
between V and Sp(A) is one-to-one (the dimensionalities of the two sub-
spaces coincide), and an inverse linear transformation from Sp(A) to V can

v
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be uniquely defined. Generalized inverse matrices are simply matrix repre-
sentations of the inverse transformation with the domain extended to En.
However, there are infinitely many ways in which the generalization can be
made, and thus there are infinitely many corresponding generalized inverses
A− of A. Among them, an inverse transformation in which W = Sp(A)⊥

(the ortho-complement subspace of Sp(A)) and V = Ker(A)⊥ = Sp(A′) (the
ortho-complement subspace of Ker(A)), which transforms any vector in W
to the zero vector in Ker(A), corresponds to the Moore-Penrose inverse.
Chapter 3 also shows a variety of g-inverses that can be formed depending
on the choice of V and W , and which portion of Ker(A) vectors in W are
mapped into.

Chapter 4 discusses generalized forms of oblique projectors and g-inverse
matrices, and gives their explicit representations when V is expressed in
terms of matrices.

Chapter 5 decomposes Sp(A) and Sp(A′) = Ker(A)⊥ into sums of mu-
tually orthogonal subspaces, namely

Sp(A) = E1

·⊕ E2

·⊕ · · · ·⊕ Er

and
Sp(A′) = F1

·⊕ F2

·⊕ · · · ·⊕ Fr,

where
·⊕ indicates an orthogonal direct-sum. It will be shown that Ej can

be mapped into Fj by y = Ax and that Fj can be mapped into Ej by
x = A′y. The singular value decomposition (SVD) is simply the matrix
representation of these transformations.

Chapter 6 demonstrates that the concepts given in the preceding chap-
ters play important roles in applied fields such as numerical computation
and multivariate analysis.

Some of the topics in this book may already have been treated by exist-
ing textbooks in linear algebra, but many others have been developed only
recently, and we believe that the book will be useful for many researchers,
practitioners, and students in applied mathematics, statistics, engineering,
behaviormetrics, and other fields.

This book requires some basic knowledge of linear algebra, a summary
of which is provided in Chapter 1. This, together with some determination
on the part of the reader, should be sufficient to understand the rest of
the book. The book should also serve as a useful reference on projectors,
generalized inverses, and SVD.

In writing this book, we have been heavily influenced by Rao and Mitra’s
(1971) seminal book on generalized inverses. We owe very much to Professor
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C. R. Rao for his many outstanding contributions to the theory of g-inverses
and projectors. This book is based on the original Japanese version of the
book by Yanai and Takeuchi published by Todai-Shuppankai (University of
Tokyo Press) in 1983. This new English edition by the three of us expands
the original version with new material.

January 2011 Haruo Yanai
Kei Takeuchi
Yoshio Takane
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Chapter 1

Fundamentals of Linear
Algebra

In this chapter, we give basic concepts and theorems of linear algebra that
are necessary in subsequent chapters.

1.1 Vectors and Matrices

1.1.1 Vectors

Sets of n real numbers a1, a2, · · · , an and b1, b2, · · · , bn, arranged in the fol-
lowing way, are called n-component column vectors:

a =




a1

a2
...

an




, b =




b1

b2
...

bn




. (1.1)

The real numbers a1, a2, · · · , an and b1, b2, · · · , bn are called elements or com-
ponents of a and b, respectively. These elements arranged horizontally,

a′ = (a1, a2, · · · , an), b′ = (b1, b2, · · · , bn),

||a|| =
√

a2
1 + a2

2 + · · ·+ a2
n. (1.2)

© Springer Science+Business Media, LLC 2011 

are called n-component row vectors.
We define the length of the n-component vector a to be
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2 CHAPTER 1. FUNDAMENTALS OF LINEAR ALGEBRA

This is also called a norm of vector a. We also define an inner product
between two vectors a and b to be

(a, b) = a1b1 + a2b2 + · · ·+ anbn. (1.3)

The inner product has the following properties:

(i) ||a||2 = (a, a),

(ii) ||a + b||2 = ||a||2 + ||b||2 + 2(a, b),

(iii) (aa, b) = (a, ab) = a(a, b), where a is a scalar,

(iv) ||a||2 = 0 ⇐⇒ a = 0, where ⇐⇒ indicates an equivalence (or “if and
only if”) relationship.

We define the distance between two vectors by

d(a, b) = ||a− b||. (1.4)

Clearly, d(a, b) ≥ 0 and

(i) d(a, b) = 0 ⇐⇒ a = b,

(ii) d(a, b) = d(b,a),

(iii) d(a, b) + d(b, c) ≥ d(a, c).

The three properties above are called the metric (or distance) axioms.

Theorem 1.1 The following properties hold:

(a, b)2 ≤ ||a||2||b||2, (1.5)

||a + b|| ≤ ||a||+ ||b||. (1.6)

Proof. (1.5): The following inequality holds for any real number t:

||a− tb||2 = ||a||2 − 2t(a, b) + t2||b||2 ≥ 0.

This implies
Discriminant = (a, b)2 − ||a||2||b||2 ≤ 0,

which establishes (1.5).
(1.6): (||a||+ ||b||)2−||a+b||2 = 2{||a|| · ||b||−(a, b)} ≥ 0, which implies

(1.6). Q.E.D.

Inequality (1.5) is called the Cauchy-Schwarz inequality, and (1.6) is called
the triangular inequality.
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For two n-component vectors a ( 6= 0) and b ( 6= 0), the angle between
them can be defined by the following definition.

Definition 1.1 For two vectors a and b, θ defined by

cos θ =
(a, b)

||a|| · ||b|| (1.7)

is called the angle between a and b.

1.1.2 Matrices

We call nm real numbers arranged in the following form a matrix:

A =




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm



. (1.8)

Numbers arranged horizontally are called rows of numbers, while those ar-
ranged vertically are called columns of numbers. The matrix A may be
regarded as consisting of n row vectors or m column vectors and is generally
referred to as an n by m matrix (an n × m matrix). When n = m, the
matrix A is called a square matrix. A square matrix of order n with unit
diagonal elements and zero off-diagonal elements, namely

In =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



,

is called an identity matrix.
Define m n-component vectors as

a1 =




a11

a21
...

an1




, a2 =




a12

a22
...

an2




, · · · , am =




a1m

a2m
...

anm




.

We may represent the m vectors collectively by

A = [a1, a2, · · · , am]. (1.9)
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The element of A in the ith row and jth column, denoted as aij , is often
referred to as the (i, j)th element of A. The matrix A is sometimes written
as A = [aij ]. The matrix obtained by interchanging rows and columns of A
is called the transposed matrix of A and denoted as A′.

Let A = [aik] and B = [bkj ] be n by m and m by p matrices, respectively.
Their product, C = [cij ], denoted as

C = AB, (1.10)

is defined by cij =
∑m

k=1 aikbkj . The matrix C is of order n by p. Note that

A′A = O ⇐⇒ A = O, (1.11)

where O is a zero matrix consisting of all zero elements.

Note An n-component column vector a is an n by 1 matrix. Its transpose a′

is a 1 by n matrix. The inner product between a and b and their norms can be
expressed as

(a, b) = a′b, ||a||2 = (a, a) = a′a, and ||b||2 = (b, b) = b′b.

Let A = [aij ] be a square matrix of order n. The trace of A is defined
as the sum of its diagonal elements. That is,

tr(A) = a11 + a22 + · · ·+ ann. (1.12)

Let c and d be any real numbers, and let A and B be square matrices of
the same order. Then the following properties hold:

tr(cA + dB) = ctr(A) + dtr(B) (1.13)

and
tr(AB) = tr(BA). (1.14)

Furthermore, for A (n×m) defined in (1.9),

||a1||2 + ||a2||2 + · · ·+ ||an||2 = tr(A′A). (1.15)

Clearly,

tr(A′A) =
n∑

i=1

m∑

j=1

a2
ij . (1.16)
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Thus,
tr(A′A) = 0 ⇐⇒ A = O. (1.17)

Also, when A′
1A1, A

′
2A2, · · · ,A′

mAm are matrices of the same order, we
have

tr(A′
1A1 + A′

2A2 + · · ·+ A′
mAm) = 0 ⇐⇒ Aj = O (j = 1, · · · ,m). (1.18)

Let A and B be n by m matrices. Then,

tr(A′A) =
n∑

i=1

m∑

j=1

a2
ij ,

tr(B′B) =
n∑

i=1

m∑

j=1

b2
ij ,

and

tr(A′B) =
n∑

i=1

m∑

j=1

aijbij ,

and Theorem 1.1 can be extended as follows.

Corollary 1

tr(A′B) ≤
√

tr(A′A)tr(B′B) (1.19)

and √
tr(A + B)′(A + B) ≤

√
tr(A′A) +

√
tr(B′B). (1.20)

Inequality (1.19) is a generalized form of the Cauchy-Schwarz inequality.

The definition of a norm in (1.2) can be generalized as follows. Let M
be a nonnegative-definite matrix (refer to the definition of a nonnegative-
definite matrix immediately before Theorem 1.12 in Section 1.4) of order n.
Then,

||a||2M = a′Ma. (1.21)

Furthermore, if the inner product between a and b is defined by

(a, b)M = a′Mb, (1.22)

the following two corollaries hold.
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Corollary 2
(a, b)M ≤ ||a||M ||b||M . (1.23)

Corollary 1 can further be generalized as follows.

Corollary 3

tr(A′MB) ≤
√

tr(A′MA)tr(B′MB) (1.24)

and
√

tr{(A + B)′M(A + B)} ≤
√

tr(A′MA) +
√

tr(B′MB). (1.25)

In addition, (1.15) can be generalized as

||a1||2M + ||a2||2M + · · ·+ ||am||2M = tr(A′MA). (1.26)

1.2 Vector Spaces and Subspaces

For m n-component vectors a1, a2, · · · ,am, the sum of these vectors multi-
plied respectively by constants α1, α2, · · · , αm,

f = α1a1 + α2a2 + · · ·+ αmam,

is called a linear combination of these vectors. The equation above can be ex-
pressed as f = Aa, where A is as defined in (1.9), and a′ = (α1, α2, · · · , αm).
Hence, the norm of the linear combination f is expressed as

||f ||2 = (f , f) = f ′f = (Aa)′(Aa) = a′A′Aa.

The m n-component vectors a1, a2, · · · , am are said to be linearly de-
pendent if

α1a1 + α2a2 + · · ·+ αmam = 0 (1.27)

holds for some α1, α2, · · · , αm not all of which are equal to zero. A set
of vectors are said to be linearly independent when they are not linearly
dependent; that is, when (1.27) holds, it must also hold that α1 = α2 =
· · · = αm = 0.

When a1,a2, · · · , am are linearly dependent, αj 6= 0 for some j. Let
αi 6= 0. From (1.27),

ai = β1a1 + · · ·+ βi−1ai−1 + βi+1ai+1 + βmam,
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where βk = −αk/αi (k = 1, · · · ,m; k 6= i). Conversely, if the equation
above holds, clearly a1, a2, · · · , am are linearly dependent. That is, a set
of vectors are linearly dependent if any one of them can be expressed as a
linear combination of the other vectors.

Let a1, a2, · · · ,am be linearly independent, and let

W =

{
d|d =

m∑

i=1

αiai

}
,

where the αi’s are scalars, denote the set of linear combinations of these
vectors. Then W is called a linear subspace of dimensionality m.

Definition 1.2 Let En denote the set of all n-component vectors. Suppose
that W ⊂ En (W is a subset of En) satisfies the following two conditions:
(1) If a ∈ W and b ∈ W , then a + b ∈ W .
(2) If a ∈ W , then αa ∈ W , where α is a scalar.
Then W is called a linear subspace or simply a subspace of En.

When there are r linearly independent vectors in W , while any set of
r + 1 vectors is linearly dependent, the dimensionality of W is said to be r
and is denoted as dim(W ) = r.

Let dim(W ) = r, and let a1,a2, · · · , ar denote a set of r linearly in-
dependent vectors in W . These vectors are called basis vectors spanning
(generating) the (sub)space W . This is written as

W = Sp(a1, a2, · · · , ar) = Sp(A), (1.28)

where A = [a1,a2, · · · , ar]. The maximum number of linearly independent
vectors is called the rank of the matrix A and is denoted as rank(A). The
following property holds:

dim(Sp(A)) = rank(A). (1.29)

The following theorem holds.

Theorem 1.2 Let a1,a2, · · · , ar denote a set of linearly independent vectors
in the r-dimensional subspace W . Then any vector in W can be expressed
uniquely as a linear combination of a1, a2, · · · , ar.

(Proof omitted.)
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The theorem above indicates that arbitrary vectors in a linear subspace can
be uniquely represented by linear combinations of its basis vectors. In gen-
eral, a set of basis vectors spanning a subspace are not uniquely determined.

If a1, a2, · · · ,ar are basis vectors and are mutually orthogonal, they
constitute an orthogonal basis. Let bj = aj/||aj ||. Then, ||bj || = 1
(j = 1, · · · , r). The normalized orthogonal basis vectors bj are called an
orthonormal basis. The orthonormality of b1, b2, · · · , br can be expressed as

(bi, bj) = δij ,

where δij is called Kronecker’s δ, defined by

δij =

{
1 if i = j
0 if i 6= j

.

Let x be an arbitrary vector in the subspace V spanned by b1, b2, · · · , br,
namely

x ∈ V = Sp(B) = Sp(b1, b2, · · · , br) ⊂ En.

Then x can be expressed as

x = (x, b1)b1 + (x, b2)b2 + · · ·+ (x, br)br. (1.30)

Since b1, b2, · · · , br are orthonormal, the squared norm of x can be expressed
as

||x||2 = (x, b1)2 + (x, b2)2 + · · ·+ (x, br)2. (1.31)

The formula above is called Parseval’s equality.
Next, we consider relationships between two subspaces. Let VA = Sp(A)

and VB = Sp(B) denote the subspaces spanned by two sets of vectors col-
lected in the form of matrices, A = [a1, a2, · · · ,ap] and B = [b1, b2, · · · , bq].
The subspace spanned by the set of vectors defined by the sum of vectors in
these subspaces is given by

VA + VB = {a + b|a ∈ VA, b ∈ VB}. (1.32)

The resultant subspace is denoted by

VA+B = VA + VB = Sp(A,B) (1.33)

and is called the sum space of VA and VB. The set of vectors common to
both VA and VB, namely

VA∩B = {x|x = Aα = Bβ for some α and β}, (1.34)
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also constitutes a linear subspace. Clearly,

VA+B ⊃ VA (or VB) ⊃ VA∩B. (1.35)

The subspace given in (1.34) is called the product space between VA and
VB and is written as

VA∩B = VA ∩ VB. (1.36)

When VA ∩ VB = {0} (that is, the product space between VA and VB has
only a zero vector), VA and VB are said to be disjoint. When this is the
case, VA+B is written as

VA+B = VA ⊕ VB (1.37)

and the sum space VA+B is said to be decomposable into the direct-sum of
VA and VB.

When the n-dimensional Euclidean space En is expressed by the direct-
sum of V and W , namely

En = V ⊕W, (1.38)

W is said to be a complementary subspace of V (or V is a complementary
subspace of W ) and is written as W = V c (respectively, V = W c). The
complementary subspace of Sp(A) is written as Sp(A)c. For a given V =
Sp(A), there are infinitely many possible complementary subspaces, W =
Sp(A)c.

Furthermore, when all vectors in V and all vectors in W are orthogonal,
W = V ⊥ (or V = W⊥) is called the ortho-complement subspace, which is
defined by

V ⊥ = {a|(a, b) = 0,∀b ∈ V }. (1.39)

The n-dimensional Euclidean space En expressed as the direct sum of r
disjoint subspaces Wj (j = 1, · · · , r) is written as

En = W1 ⊕W2 ⊕ · · · ⊕Wr. (1.40)

In particular, when Wi and Wj (i 6= j) are orthogonal, this is especially
written as

En = W1

·⊕ W2

·⊕ · · · ·⊕ Wr, (1.41)

where
·⊕ indicates an orthogonal direct-sum.

The following properties hold regarding the dimensionality of subspaces.

Theorem 1.3

dim(VA+B) = dim(VA) + dim(VB)− dim(VA∩B), (1.42)
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dim(VA ⊕ VB) = dim(VA) + dim(VB), (1.43)

dim(V c) = n− dim(V ). (1.44)

(Proof omitted.)

Suppose that the n-dimensional Euclidean space En can be expressed
as the direct-sum of V = Sp(A) and W = Sp(B), and let Ax + By = 0.
Then, Ax = −By ∈ Sp(A) ∩ Sp(B) = {0}, so that Ax = By = 0. This
can be extended as follows.

Theorem 1.4 The necessary and sufficient condition for the subspaces
W1 = Sp(A1),W2 = Sp(A2), · · · ,Wr = Sp(Ar) to be mutually disjoint is

A1a1 + A2a2 + · · ·+ Arar = 0 =⇒ Ajaj = 0 for all j = 1, · · · , r.

(Proof omitted.)

Corollary An arbitrary vector x ∈ W = W1 ⊕ · · · ⊕ Wr can uniquely be
expressed as

x = x1 + x2 + · · ·+ xr,

where xj ∈ Wj (j = 1, · · · , r).

Note Theorem 1.4 and its corollary indicate that the decomposition of a particu-
lar subspace into the direct-sum of disjoint subspaces is a natural extension of the
notion of linear independence among vectors.

The following theorem holds regarding implication relations between
subspaces.

Theorem 1.5 Let V1 and V2 be subspaces such that V1 ⊂ V2, and let W be
any subspace in En. Then,

V1 + (V2 ∩W ) = (V1 + W ) ∩ V2. (1.45)

Proof. Let y ∈ V1+(V2∩W ). Then y can be decomposed into y = y1+y2,
where y1 ∈ V1 and y2 ∈ V2 ∩W . Since V1 ⊂ V2, y1 ∈ V2, and since y2 ⊂ V2,
y = y1 + y2 ∈ V2. Also, y1 ∈ V1 ⊂ V1 + W , and y2 ∈ W ⊂ V1 + W , which
together imply y ∈ V1+W . Hence, y ∈ (V1+W )∩V2. Thus, V1+(V2∩W ) ⊂
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(V1 + W ) ∩ V2. If x ∈ (V1 + W ) ∩ V2, then x ∈ V1 + W and x ∈ V2. Thus,
x can be decomposed as x = x1 + y, where x1 ∈ V1 and y ∈ W . Then y =
x−x1 ∈ V2∩W =⇒ x ∈ V1+(V2∩W ) =⇒ (V1+W )∩V2 ⊂ V1+(V2∩W ), es-
tablishing (1.45). Q.E.D.

Corollary (a) For V1 ⊂ V2, there exists a subspace W̃ ⊂ V2 such that
V2 = V1 ⊕ W̃ .
(b) For V1 ⊂ V2,

V2 = V1

·⊕ (V2 ∩ V ⊥
1 ). (1.46)

Proof. (a): Let W be such that V1⊕W ⊃ V2, and set W̃ = V2∩W in (1.45).
(b): Set W = V ⊥

1 . Q.E.D.

Note Let V1 ⊂ V2, where V1 = Sp(A). Part (a) in the corollary above indicates
that we can choose B such that W = Sp(B) and V2 = Sp(A) ⊕ Sp(B). Part (b)
indicates that we can choose Sp(A) and Sp(B) to be orthogonal.

In addition, the following relationships hold among the subspaces V , W ,
and K in En:

V ⊃ W =⇒ W = V ∩W, (1.47)

V ⊃ W =⇒ V + K ⊃ W + K, (where K ∈ En), (1.48)

(V ∩W )⊥ = V ⊥ + W⊥, V ⊥ ∩W⊥ = (V + W )⊥, (1.49)

(V + W ) ∩K ⊇ (V ∩K) + (W ∩K), (1.50)

K + (V ∩W ) ⊆ (K + V ) ∩ (K + W ). (1.51)

Note In (1.50) and (1.51), the distributive law in set theory does not hold. For
the conditions for equalities to hold in (1.50) and (1.51), refer to Theorem 2.19.

1.3 Linear Transformations

A function φ that relates an m-component vector x to an n-component
vector y (that is, y = φ(x)) is often called a mapping or transformation.
In this book, we mainly use the latter terminology. When φ satisfies the
following properties for any two n-component vectors x and y, and for any
constant a, it is called a linear transformation:

(i) φ(ax) = aφ(x), (ii) φ(x + y) = φ(x) + φ(y). (1.52)
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If we combine the two properties above, we obtain

φ(α1x1 + α2x2 + · · ·+ αmxm) = α1φ(x1) + α2φ(x2) + · · ·+ αmφ(xm)

for m n-component vectors, x1, x2, · · · , xm, and m scalars, α1, α2, · · · , αm.

Theorem 1.6 A linear transformation φ that transforms an m-component
vector x into an n-component vector y can be represented by an n by m ma-
trix A = [a1, a2, · · · , am] that consists of m n-component vectors a1, a2, · · · ,
am. (Proof omitted.)

We now consider the dimensionality of the subspace generated by a linear
transformation of another subspace. Let W = Sp(A) denote the range of
y = Ax when x varies over the entire range of the m-dimensional space
Em. Then, if y ∈ W , αy = A(αx) ∈ W , and if y1, y2 ∈ W , y1 + y2 ∈ W .
Thus, W constitutes a linear subspace of dimensionality dim(W ) = rank(A)
spanned by m vectors, a1, a2, · · · , am.

When the domain of x is V , where V ⊂ Em and V 6= Em (that is, x
does not vary over the entire range of Em), the range of y is a subspace of
W defined above. Let

WV = {y|y = Ax, x ∈ V }. (1.53)

Then,
dim(WV ) ≤ min{rank(A),dim(W )} ≤ dim(Sp(A)). (1.54)

Note The WV above is sometimes written as WV = SpV (A). Let B represent the
matrix of basis vectors. Then WV can also be written as WV = Sp(AB).

We next consider the set of vectors x that satisfies Ax = 0 for a given
linear transformation A. We write this subspace as

Ker(A) = {x|Ax = 0}. (1.55)

Since A(αx) = 0, we have αx ∈ Ker(A). Also, if x,y ∈ Ker(A), we have
x + y ∈ Ker(A) since A(x + y) = 0. This implies Ker(A) constitutes a
subspace of Em, which represents a set of m-dimensional vectors that are
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mapped into the zero vector by the linear transformation A. It is called an
annihilation space or a kernel. Since BAx = 0, if A = 0, it follows that

Ker(A) ⊂ Ker(BA).

The following three theorems hold concerning the dimensionality of sub-
spaces.

Theorem 1.7 Let Ker(A′) = {y|A′y = 0} for y ∈ En. Then

Ker(A′) = Sp(A)⊥, (1.56)

where Sp(A)⊥ indicates the subspace in En orthogonal to Sp(A).

Proof. Let y1 ∈ Ker(A′) and y2 = Ax2 ∈ Sp(A). Then, y′1y2 = y′1Ax2 =
(A′y1)′x2 = 0. Thus, y1 ∈ Sp(A)⊥ =⇒ Ker(A′) ⊂ Sp(A)⊥. Conversely,
let y1 ∈ Sp(A)⊥. Then, because Ax2 ∈ Sp(A), y′1Ax2 = (A′y1)′x2 =
0 =⇒ A′y1 = 0 =⇒ y1 ∈ Ker(A′) =⇒ Sp(A′)⊥ ⊂ Ker(A′), establishing
Ker(A′) = Sp(A)⊥. Q.E.D.

Corollary
Ker(A) = Sp(A′)⊥, (1.57)

{Ker(A)}⊥ = Sp(A′). (1.58)

Theorem 1.8
rank(A) = rank(A′). (1.59)

Proof. We use (1.57) to show rank(A′) ≥ rank(A). An arbitrary x ∈ Em

can be expressed as x = x1 + x2, where x1 ∈ Sp(A′) and x2 ∈ Ker(A).
Thus, y = Ax = Ax1, and Sp(A) = SpV (A), where V = Sp(A′). Hence, it
holds that rank(A) = dim(Sp(A)) = dim(SpV (A)) ≤ dim(V ) = rank(A′).
Similarly, we can use (1.56) to show rank(A) ≥ rank(A′). (Refer to (1.53) for
SpV .) Q.E.D.

Theorem 1.9 Let A be an n by m matrix. Then,

dim(Ker(A)) = m− rank(A). (1.60)

Proof. Follows directly from (1.57) and (1.59). Q.E.D.
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Corollary
rank(A) = rank(A′A) = rank(AA′). (1.61)

In addition, the following results hold:

(i) Let A and B be p by n and p by q matrices, respectively, and [A,B]
denote a row block matrix obtained by putting A and B side by side. Then,

rank(A) + rank(B)− rank([A,B])
≤ rank(A′B) ≤ min(rank(A), rank(B)), (1.62)

where rank(A) + rank(B)− rank([A,B]) = dim(Sp(A) ∩ Sp(B)).

(ii) Let U and V be nonsingular matrices (see the next paragraph). Then,

rank(UAV ) = rank(A). (1.63)

(iii) Let A and B be matrices of the same order. Then,

rank(A + B) ≤ rank(A) + rank(B). (1.64)

(iv) Let A, B, and C be n by p, p by q, and q by r matrices. Then,

rank(ABC) ≥ rank(AB) + rank(BC)− rank(B). (1.65)

(See Marsaglia and Styan (1974) for other important rank formulas.)

Consider a linear transformation matrix A that transforms an n-compo-
nent vector x into another n-component vector y. The matrix A is a square
matrix of order n. A square matrix A of order n is said to be nonsingu-
lar (regular) when rank(A) = n. It is said to be a singular matrix when
rank(A) < n.

Theorem 1.10 Each of the following three conditions is necessary and suf-
ficient for a square matrix A to be nonsingular:

(i) There exists an x such that y = Ax for an arbitrary n-dimensional vec-
tor y.

(ii) The dimensionality of the annihilation space of A (Ker(A)) is zero; that
is, Ker(A) = {0}.
(iii) If Ax1 = Ax2, then x1 = x2. (Proof omitted.)
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As is clear from the theorem above, a linear transformation φ is one-
to-one if a square matrix A representing φ is nonsingular. This means
that Ax = 0 if and only if x = 0. The same thing can be expressed as
Ker(A) = {0}.

A square matrix A of order n can be considered as a collection of n n-
component vectors placed side by side, i.e., A = [a1, a2, · · · ,an]. We define
a function of these vectors by

ψ(a1, a2, · · · , an) = |A|.

When ψ is a scalar function that is linear with respect to each ai and such
that its sign is reversed when ai and aj (i 6= j) are interchanged, it is called
the determinant of a square matrix A and is denoted by |A| or sometimes
by det(A). The following relation holds:

ψ(a1, · · · , αai + βbi, · · · , an)
= αψ(a1, · · · , ai, · · · , an) + βψ(a1, · · · , bi, · · · , an).

If among the n vectors there exist two identical vectors, then

ψ(a1, · · · ,an) = 0.

More generally, when a1, a2, · · · , an are linearly dependent, |A| = 0.
Let A and B be square matrices of the same order. Then the determi-

nant of the product of the two matrices can be decomposed into the product
of the determinant of each matrix. That is,

|AB| = |A| · |B|.

According to Theorem 1.10, the x that satisfies y = Ax for a given y
and A is determined uniquely if rank(A) = n. Furthermore, if y = Ax,
then αy = A(αx), and if y1 = Ax1 and y2 = Ax2, then y1 + y2 =
A(x1 +x2). Hence, if we write the transformation that transforms y into x
as x = ϕ(y), this is a linear transformation. This transformation is called
the inverse transformation of y = Ax, and its representation by a matrix
is called the inverse matrix of A and is written as A−1. Let y = φ(x) be
a linear transformation, and let x = ϕ(y) be its inverse transformation.
Then, ϕ(φ(x)) = ϕ(y) = x, and φ(ϕ(y)) = φ(x) = y. The composite
transformations, ϕ(φ) and φ(ϕ), are both identity transformations. Hence,
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we have AA−1 = A−1A = In. The inverse matrix can also be defined as
the matrix whose product with A is equal to the identity matrix.

If A is regular (nonsingular), the following relation holds:

|A−1| = |A|−1.

If A and B are nonsingular matrices of the same order, then

(AB)−1 = B−1A−1.

Let A, B, C, and D be n by n, n by m, m by n, and m by m matrices,
respectively. If A and D are nonsingular, then

∣∣∣∣∣
A B
C D

∣∣∣∣∣ = |A||D −CA−1B| = |D||A−BD−1C|. (1.66)

Furthermore, the inverse of a symmetric matrix of the form

[
A B
B′ C

]
, if

(1.66) is nonzero and A and C are nonsingular, is given by
[

A B
B′ C

]−1

=

[
A−1 + FE−1F ′ −FE−1

−E−1F ′ E−1

]
, (1.67)

where E = C −B′A−1B and F = A−1B, or
[

A B
B′ C

]−1

=

[
H−1 −H−1G′

−GH−1 C−1 + GH−1G′

]
, (1.68)

where H = A−BC−1B′ and G = C−1B′.
In Chapter 3, we will discuss a generalized inverse of A representing an

inverse transformation x = ϕ(y) of the linear transformation y = Ax when
A is not square or when it is square but singular.

1.4 Eigenvalues and Eigenvectors

Definition 1.3 Let A be a square matrix of order n. A scalar λ and an
n-component vector x( 6= 0) that satisfy

Ax = λx (1.69)

are called an eigenvalue (or characteristic value) and an eigenvector (or
characteristic vector) of the matrix A, respectively. The matrix equation
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above determines an n-component vector x whose direction remains un-
changed by the linear transformation A.

The vector x that satisfies (1.69) is in the null space of the matrix Ã =
A−λIn because (A−λIn)x = 0. From Theorem 1.10, for the dimensionality
of this null space to be at least 1, its determinant has to be 0. That is,

|A− λIn| = 0.

Let the determinant on the left-hand side of the equation above be denoted
by

ψA(λ) =

∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

...
. . .

...
an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣
. (1.70)

The equation above is clearly a polynomial function of λ in which the co-
efficient on the highest-order term is equal to (−1)n, and it can be written
as

ψA(λ) = (−1)nλn + α1(−1)n−1λn−1 + · · ·+ αn, (1.71)

which is called the eigenpolynomial of A. The equation obtained by setting
the eigenpolynomial to zero (that is, ψA(λ) = 0) is called an eigenequation.
The eigenvalues of A are solutions (roots) of this eigenequation.

The following properties hold for the coefficients of the eigenpolynomial
of A. Setting λ = 0 in (1.71), we obtain

ψA(0) = αn = |A|.

In the expansion of |A−λIn|, all the terms except the product of the diagonal
elements, (a11 − λ), · · · (ann − λ), are of order at most n − 2. So α1, the
coefficient on λn−1, is equal to the coefficient on λn−1 in the product of the
diagonal elements (a11−λ) · · · (ann−λ); that is, (−1)n−1(a11+a22+· · ·+ann).
Hence, the following equality holds:

α1 = tr(A) = a11 + a22 + · · ·+ ann. (1.72)

Let A be a square matrix of order n not necessarily symmetric. Assume
that A has n distinct eigenvalues, λi (i = 1, · · · , n). Then ui that satisfies

Aui = λiui (i = 1, · · · , n) (1.73)
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is called a right eigenvector, and vi that satisfies

A′vi = λivi (i = 1, · · · , n) (1.74)

is called a left eigenvector. The following relations hold:

(ui, vj) = 0 (i 6= j), (1.75)

(ui, vi) 6= 0 (i = 1, · · · , n).

We may set ui and vi so that

u′ivi = 1. (1.76)

Let U and V be matrices of such ui’s and vi’s, that is,

U = [u1,u2, · · · , un], V = [v1, v2, · · · , vn].

Then, from (1.75) and (1.76), we have

V ′U = In. (1.77)

Furthermore, it follows that v′jAui = 0 (j 6= i) and v′jAuj = λjv
′
juj = λj ,

and we have

V ′AU =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




= ∆. (1.78)

Pre- and postmultiplying the equation above by U and V ′, respectively, and
noting that V ′U = In =⇒ UV ′ = In (note that V ′ = U−1), we obtain the
following theorem.

Theorem 1.11 Let λ1, λ2, · · · , λn denote the eigenvalues of A, which are
all assumed distinct, and let U = [u1, u2, · · · , un] and V = [v1, v2, · · · , vn]
denote the matrices of the right and left eigenvectors of A, respectively.
Then the following decompositions hold:

A = U∆V ′ (or A = U∆U−1)
= λ1u1v

′
1 + λ2u2v

′
2 + · · · , +λnunv′n (1.79)

and
In = UV ′ = u1v

′
1 + u2v

′
2 + · · · , +unv′n. (1.80)

(Proof omitted.)
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If A is symmetric (i.e., A = A′), the right eigenvector ui and the corre-
sponding left eigenvector vi coincide, and since (ui,uj) = 0, we obtain the
following corollary.

Corollary When A = A′ and λi are distinct, the following decompositions
hold:

A = U∆U ′

= λ1u1u
′
1 + λ2u2u

′
2 + · · ·+ λnunu′n (1.81)

and
In = u1u

′
1 + u2u

′
2 + · · ·+ unu′n. (1.82)

Decomposition (1.81) is called the spectral decomposition of the symmetric
matrix A.

When all the eigenvalues of a symmetric matrix A are positive, A is reg-
ular (nonsingular) and is called a positive-definite (pd) matrix. When they
are all nonnegative, A is said to be a nonnegative-definite (nnd) matrix.
The following theorem holds for an nnd matrix.

Theorem 1.12 The necessary and sufficient condition for a square matrix
A to be an nnd matrix is that there exists a matrix B such that

A = BB′. (1.83)

(Proof omitted.)

1.5 Vector and Matrix Derivatives

In multivariate analysis, we often need to find an extremum (a maximum
or minimum) of a scalar function of vectors and matrices. A necessary
condition for an extremum of a function is that its derivatives vanish at
a point corresponding to the extremum of the function. For this we need
derivatives of a function with respect to the vector or matrix argument.
Let f(x) denote a scalar function of the p-component vector x. Then the
derivative of f(x) with respect to x is defined by

fd(x) ≡ ∂f(x)/∂x = (∂f(x)/∂x1, ∂f(x)/∂x2, · · · , ∂f(x)/∂xp)′. (1.84)



20 CHAPTER 1. FUNDAMENTALS OF LINEAR ALGEBRA

Similarly, let f(X) denote a scalar function of the n by p matrix X. Then
its derivative with respect to X is defined as

fd(X) ≡ ∂f(X)
∂X

=




∂f(X)
∂x11

∂f(X)
∂x12

· · · ∂f(X)
∂x1p

∂f(X)
∂x21

∂f(X)
∂x22

· · · ∂f(X)
∂x2p

...
...

. . .
...

∂f(X)
∂xn1

∂f(X)
∂xn2

· · · ∂f(X)
∂xnp



. (1.85)

Below we give functions often used in multivariate analysis and their corre-
sponding derivatives.

Theorem 1.13 Let a be a constant vector, and let A and B be constant
matrices. Then,

(i) f(x) = x′a = a′x fd(x) = a,
(ii) f(x) = x′Ax fd(x) = (A + A′)x (= 2Ax if A′ = A),
(iii) f(X) = tr(X ′A) fd(X) = A,
(iv) f(X) = tr(AX) fd(X) = A′,
(v) f(X) = tr(X ′AX) fd(X) = (A + A′)X (= 2AX if A′ = A),
(vi) f(X) = tr(X ′AXB) fd(X) = AXB + A′XB′,
(vii) f(X) = log(|X|) fd(X) = X−1|X|.

Let f(x) and g(x) denote two scalar functions of x. Then the following
relations hold, as in the case in which x is a scalar:

∂(f(x) + g(x))
∂x

= fd(x) + gd(x), (1.86)

∂(f(x)g(x))
∂x

= fd(x)g(x) + f(x)gd(x), (1.87)

and
∂(f(x)/g(x))

∂x
=

fd(x)g(x)− f(x)gd(x)
g(x)2

. (1.88)

The relations above still hold when the vector x is replaced by a matrix X.
Let y = Xb+e denote a linear regression model where y is the vector of

observations on the criterion variable, X the matrix of predictor variables,
and b the vector of regression coefficients. The least squares (LS) estimate
of b that minimizes

f(b) = ||y −Xb||2 (1.89)
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is obtained by taking the first derivative of (1.89) with respect to b and
setting the result to zero. This derivative is

∂f(b)
∂b

= −2X ′y + 2X ′Xb = −2X ′(y −Xb), (1.90)

obtained by expanding f(b) and using (1.86). Similarly, let f(B) = ||Y −
XB||2. Then,

∂f(B)
∂B

= −2X ′(Y −XB). (1.91)

Let

h(x) ≡ λ =
x′Ax

x′x
, (1.92)

where A is a symmetric matrix. Then,

∂λ

∂x
=

2(Ax− λx)
x′x

(1.93)

using (1.88). Setting this to zero, we obtain Ax = λx, which is the
eigenequation involving A to be solved. Maximizing (1.92) with respect
to x is equivalent to maximizing x′Ax under the constraint that x′x = 1.
Using the Lagrange multiplier method to impose this restriction, we maxi-
mize

g(x) = x′Ax− λ(x′x− 1), (1.94)

where λ is the Lagrange multiplier. By differentiating (1.94) with respect
to x and λ, respectively, and setting the results to zero, we obtain

Ax− λx = 0 (1.95)

and
x′x− 1 = 0, (1.96)

from which we obtain a normalized eigenvector x. From (1.95) and (1.96),
we have λ = x′Ax, implying that x is the (normalized) eigenvector corre-
sponding to the largest eigenvalue of A.

Let f(b) be as defined in (1.89). This f(b) can be rewritten as a compos-
ite function f(g(b)) = g(b)′g(b), where g(b) = y −Xb is a vector function
of the vector b. The following chain rule holds for the derivative of f(g(b))
with respect to b:

∂f(g(b))
∂b

=
∂g(b)

∂b

∂f(g(b))
∂g(b)

. (1.97)



22 CHAPTER 1. FUNDAMENTALS OF LINEAR ALGEBRA

Applying this formula to f(b) defined in (1.89), we obtain

∂f(b)
∂b

= −X ′ · 2(y −Xb), (1.98)

where
∂g(b)

∂b
=

∂(y −Xb)
∂b

= −X ′. (1.99)

(This is like replacing a′ in (i) of Theorem 1.13 with −X.) Formula (1.98)
is essentially the same as (1.91), as it should be.

See Magnus and Neudecker (1988) for a more comprehensive account of
vector and matrix derivatives.

1.6 Exercises for Chapter 1

1. (a) Let A and C be square nonsingular matrices of orders n and m, respectively,
and let B be an n by m matrix. Show that

(A + BCB′)−1 = A−1 −A−1B(B′A−1B + C−1)−1B′A−1. (1.100)

(b) Let c be an n-component vector. Using the result above, show the following:

(A + cc′)−1 = A−1 −A−1cc′A−1/(1 + c′A−1c).

2. Let A =




1 2
2 1
3 3


 and B =




3 −2
1 3
2 5


. Obtain Sp(A) ∩ Sp(B).

3. Let M be a pd matrix. Show

{tr(A′B)}2 ≤ tr(A′MA)tr(B′M−1B).

4. Let En = V ⊕W . Answer true or false to the following statements:
(a) En = V ⊥ ⊕W⊥.
(b) x 6∈ V =⇒ x ∈ W .
(c) Let x ∈ V and x = x1 + x2. Then, x1 ∈ V and x2 ∈ V .
(d) Let V = Sp(A). Then V ∩Ker(A) = {0}.

5. Let En = V1 ⊕W1 = V2 ⊕W2. Show that

dim(V1 + V2) + dim(V1 ∩ V2) + dim(W1 + W2) + dim(W1 ∩W2) = 2n. (1.101)

6. (a) Let A be an n by m matrix, and let B be an m by p matrix. Show the
following:

Ker(AB) = Ker(B) ⇐⇒ Sp(B) ∩Ker(A) = {0}.
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(b) Let A be a square matrix. Show the following:

Ker(A) ∩ Sp(A) = {0} ⇐⇒ Ker(A) = Ker(A′).

7. Let A,B, and C be m by n, n by m, and r by m matrices, respectively.

(a) Show that rank
([

A AB
CA O

])
= rank(A) + rank(CAB).

(b) Show that

rank(A−ABA) = rank(A) + rank(In −BA)− n

= rank(A) + rank(Im −AB)−m,

8. Let A be an n by m matrix, and let B be an m by r matrix. Answer the
following questions:
(a) Let W1 = {x|Ax = 0 for all x ∈ Sp(B)} and W2 = {Ax|x ∈ Sp(B)}. Show
that dim(W1) + dim(W2) = rank(B).
(b) Use (a) to show that rank(AB) = rank(A)− dim(Sp(A′) ∩ Sp(B)⊥).

9. (a) Assume that the absolute values of the eigenvalues of A are all smaller than
unity. Show the following:

(In −A)−1 = In + A + A2 + · · · .

(b) Obtain B−1, where B =




1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1



.

(Hint: Set A =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



, and use the formula in part (a).)

10. Let A be an m by n matrix. If rank(A) = r, A can be expressed as A = MN ,
where M is an m by r matrix and N is an r by n matrix. (This is called a rank
decomposition of A.)

11. Let U and Ũ be matrices of basis vectors of En, and let V and Ṽ be the same
for Em. Then the following relations hold: Ũ = UT 1 for some T 1, and Ṽ = V T 2

for some T 2. Let A be the representation matrix with respect to U and V . Show
that the representation matrix with respect to Ũ and Ṽ is given by

Ã = T−1
1 A(T−1

2 )′.
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12. Consider a multiple regression equation y = Xβ + e, where y is the vector of
observations on the criterion variable, X the matrix of predictor variables, β the
vector of regression coefficients, and e the vector of disturbance terms. Show that
it can be assumed without loss of generality that β ∈ Sp(X ′).



Chapter 2

Projection Matrices

2.1 Definition

Definition 2.1 Let x ∈ En = V ⊕W . Then x can be uniquely decomposed
into

x = x1 + x2 (where x1 ∈ V and x2 ∈ W ).

The transformation that maps x into x1 is called the projection matrix (or
simply projector) onto V along W and is denoted as φ. This is a linear
transformation; that is,

φ(a1y1 + a2y2) = a1φ(y1) + a2φ(y2) (2.1)

for any y1, y2 ∈ En. This implies that it can be represented by a matrix.
This matrix is called a projection matrix and is denoted by P V ·W . The vec-
tor transformed by P V ·W (that is, x1 = P V ·W x) is called the projection (or
the projection vector) of x onto V along W .

Theorem 2.1 The necessary and sufficient condition for a square matrix
P of order n to be the projection matrix onto V = Sp(P ) along W = Ker(P )
is given by

P 2 = P . (2.2)

We need the following lemma to prove the theorem above.

Lemma 2.1 Let P be a square matrix of order n, and assume that (2.2)
holds. Then

En = Sp(P )⊕Ker(P ) (2.3)
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and
Ker(P ) = Sp(In − P ). (2.4)

Proof of Lemma 2.1. (2.3): Let x ∈ Sp(P ) and y ∈ Ker(P ). From
x = Pa, we have Px = P 2a = Pa = x and Py = 0. Hence, from
x+y = 0 ⇒ Px+Py = 0, we obtain Px = x = 0 ⇒ y = 0. Thus, Sp(P )∩
Ker(P ) = {0}. On the other hand, from dim(Sp(P )) + dim(Ker(P )) =
rank(P ) + (n− rank(P )) = n, we have En = Sp(P )⊕Ker(P ).

(2.4): We have Px = 0 ⇒ x = (In − P )x ⇒ Ker(P ) ⊂ Sp(In − P ) on
the one hand and P (In −P ) ⇒ Sp(In −P ) ⊂ Ker(P ) on the other. Thus,
Ker(P ) = Sp(In−P ). Q.E.D.

Note When (2.4) holds, P (In −P ) = O ⇒ P 2 = P . Thus, (2.2) is the necessary
and sufficient condition for (2.4).

Proof of Theorem 2.1. (Necessity) For ∀x ∈ En, y = Px ∈ V . Noting
that y = y + 0, we obtain

P (Px) = Py = y = Px =⇒ P 2x = Px =⇒ P 2 = P .

(Sufficiency) Let V = {y|y = Px,x ∈ En} and W = {y|y = (In −
P )x,x ∈ En}. From Lemma 2.1, V and W are disjoint. Then, an arbitrary
x ∈ En can be uniquely decomposed into x = Px + (In − P )x = x1 + x2

(where x1 ∈ V and x2 ∈ W ). From Definition 2.1, P is the projection matrix
onto V = Sp(P ) along W = Ker(P ). Q.E.D.

Let En = V ⊕W , and let x = x1 + x2, where x1 ∈ V and x2 ∈ W . Let
P W ·V denote the projector that transforms x into x2. Then,

P V ·W x + P W ·V x = (P V ·W + P W ·V )x. (2.5)

Because the equation above has to hold for any x ∈ En, it must hold that

In = P V ·W + P W ·V .

Let a square matrix P be the projection matrix onto V along W . Then,
Q = In − P satisfies Q2 = (In − P )2 = In − 2P + P 2 = In − P = Q,
indicating that Q is the projection matrix onto W along V . We also have

PQ = P (In − P ) = P − P 2 = O, (2.6)
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implying that Sp(Q) constitutes the null space of P (i.e., Sp(Q) = Ker(P )).
Similarly, QP = O, implying that Sp(P ) constitutes the null space of Q
(i.e., Sp(P ) = Ker(Q)).

Theorem 2.2 Let En = V ⊕W . The necessary and sufficient conditions
for a square matrix P of order n to be the projection matrix onto V along
W are:

(i) Px = x for ∀x ∈ V, (ii) Px = 0 for ∀x ∈ W. (2.7)

Proof. (Sufficiency) Let P V ·W and P W ·V denote the projection matrices
onto V along W and onto W along V , respectively. Premultiplying (2.5) by
P , we obtain P (P V ·W x) = P V ·W x, where PP W ·V x = 0 because of (i) and
(ii) above, and P V ·W x ∈ V and P W ·V x ∈ W . Since Px = P V ·W x holds
for any x, it must hold that P = P V ·W .

(Necessity) For any x ∈ V , we have x = x+0. Thus, Px = x. Similarly,
for any y ∈ W , we have y = 0+y, so that Py = 0. Q.E.D.

Example 2.1 In Figure 2.1,
−→
OA indicates the projection of z onto Sp(x)

along Sp(y) (that is,
−→
OA= P Sp(x)·Sp(y)z), where P Sp(x)·Sp(y) indicates the

projection matrix onto Sp(x) along Sp(y). Clearly,
−→
OB= (I2−P Sp(y)·Sp(x))

× z.

Sp(y) = {y}

Sp(x) = {x}
A

B

P {x}·{y}zO

z

Figure 2.1: Projection onto Sp(x) = {x} along Sp(y) = {y}.

Example 2.2 In Figure 2.2,
−→
OA indicates the projection of z onto V =

{x|x = α1x1+α2x2} along Sp(y) (that is,
−→
OA= P V ·Sp(y)z), where P V ·Sp(y)

indicates the projection matrix onto V along Sp(y).
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Sp(y) = {y}

V = {α1x1 + α2x2}

A

B

P V ·{y}zO

z

Figure 2.2: Projection onto a two-dimensional space V along Sp(y) = {y}.

Theorem 2.3 The necessary and sufficient condition for a square matrix
P of order n to be a projector onto V of dimensionality r (dim(V ) = r) is
given by

P = T∆rT
−1, (2.8)

where T is a square nonsingular matrix of order n and

∆r =




1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0




.

(There are r unities on the leading diagonals, 1 ≤ r ≤ n.)

Proof. (Necessity) Let En = V ⊕ W , and let A = [a1, a2, · · · , ar] and
B = [b1, b2, · · · bn−r] be matrices of linearly independent basis vectors span-
ning V and W , respectively. Let T = [A,B]. Then T is nonsingular,
since rank(A) + rank(B) = rank(T ). Hence, ∀x ∈ V and ∀y ∈ W can be
expressed as

x = Aα = [A,B]

(
α
0

)
= T

(
α
0

)
,

y = Aα = [A,B]

(
0
β

)
= T

(
0
β

)
.



2.1. DEFINITION 29

Thus, we obtain

Px = x =⇒ PT

(
α
0

)
= T

(
α
0

)
= T∆r

(
α
0

)
,

Py = 0 =⇒ PT

(
0
β

)
=

(
0
0

)
= T∆r

(
0
β

)
.

Adding the two equations above, we obtain

PT

(
α
β

)
= T∆r

(
α
β

)
.

Since

(
α
β

)
is an arbitrary vector in the n-dimensional space En, it follows

that
PT = T∆r =⇒ P = T∆rT

−1.

Furthermore, T can be an arbitrary nonsingular matrix since V = Sp(A)
and W = Sp(B) such that En = V ⊕W can be chosen arbitrarily.

(Sufficiency) P is a projection matrix, since P 2 = P , and rank(P ) = r
from Theorem 2.1. (Theorem 2.2 can also be used to prove the theorem
above.) Q.E.D.

Lemma 2.2 Let P be a projection matrix. Then,

rank(P ) = tr(P ). (2.9)

Proof. rank(P ) = rank(T∆rT
−1) = rank(∆r) = tr(T∆T−1) = tr(P ).

Q.E.D.

The following theorem holds.

Theorem 2.4 Let P be a square matrix of order n. Then the following
three statements are equivalent.

P 2 = P , (2.10)

rank(P ) + rank(In − P ) = n, (2.11)

En = Sp(P )⊕ Sp(In − P ). (2.12)

Proof. (2.10) → (2.11): It is clear from rank(P ) = tr(P ).



30 CHAPTER 2. PROJECTION MATRICES

(2.11) → (2.12): Let V = Sp(P ) and W = Sp(In −P ). Then, dim(V +
W ) = dim(V ) + dim(W ) − dim(V ∩ W ). Since x = Px + (In − P )x
for an arbitrary n-component vector x, we have En = V + W . Hence,
dim(V ∩W ) = 0 =⇒ V ∩W = {0}, establishing (2.12).

(2.12) → (2.10): Postmultiplying In = P + (In − P ) by P , we obtain
P = P 2 +(In−P )P , which implies P (In−P ) = (In−P )P . On the other
hand, we have P (In−P ) = O and (In−P )P = O because Sp(P (In−P )) ⊂
Sp(P ) and Sp((In − P )P ) ⊂ Sp(In − P ). Q.E.D.

Corollary
P 2 = P ⇐⇒ Ker(P ) = Sp(In − P ). (2.13)

Proof. (⇒): It is clear from Lemma 2.1.
(⇐): Ker(P ) = Sp(In−P ) ⇔ P (In−P ) = O ⇒ P 2 = P . Q.E.D.

2.2 Orthogonal Projection Matrices

Suppose we specify a subspace V in En. There are in general infinitely many
ways to choose its complement subspace V c = W . We will discuss some of
them in Chapter 4. In this section, we consider the case in which V and W
are orthogonal, that is, W = V ⊥.

Let x, y ∈ En, and let x and y be decomposed as x = x1 + x2 and
y = y1+y2, where x1, y1 ∈ V and x2, y2 ∈ W . Let P denote the projection
matrix onto V along V ⊥. Then, x1 = Px and y1 = Py. Since (x2, Py) =
(y2, Px) = 0, it must hold that

(x,Py) = (Px + x2, Py) = (Px, Py)
= (Px,Py + y2) = (Px,y) = (x, P ′y)

for any x and y, implying
P ′ = P . (2.14)

Theorem 2.5 The necessary and sufficient condition for a square matrix
P of order n to be an orthogonal projection matrix (an orthogonal projector)
is given by

(i) P 2 = P and (ii) P ′ = P .

Proof. (Necessity) That P 2 = P is clear from the definition of a projection
matrix. That P ′ = P is as shown above.

(Sufficiency) Let x = Pα ∈ Sp(P ). Then, Px = P 2α = Pα = x. Let
y ∈ Sp(P )⊥. Then, Py = 0 since (Px,y) = x′P ′y = x′Py = 0 must
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hold for an arbitrary x. From Theorem 2.2, P is the projection matrix
onto Sp(P ) along Sp(P )⊥; that is, the orthogonal projection matrix onto
Sp(P ). Q.E.D.

Definition 2.2 A projection matrix P such that P 2 = P and P ′ = P is
called an orthogonal projection matrix (projector). Furthermore, the vector
Px is called the orthogonal projection of x. The orthogonal projector P
is in fact the projection matrix onto Sp(P ) along Sp(P )⊥, but it is usually
referred to as the orthogonal projector onto Sp(P ). See Figure 2.3.

¡
¡ª

Qy (where Q = I − P )

Sp(A)⊥ = Sp(Q)

Py

Sp(A) = Sp(P )

y

Figure 2.3: Orthogonal projection.

Note A projection matrix that does not satisfy P ′ = P is called an oblique pro-
jector as opposed to an orthogonal projector.

Theorem 2.6 Let A = [a1, a2, · · · ,am], where a1, a2, · · · , am are linearly
independent. Then the orthogonal projector onto V = Sp(A) spanned by
a1,a2, · · · ,am is given by

P = A(A′A)−1A′. (2.15)

Proof. Let x1 ∈ Sp(A). From x1 = Aα, we obtain Px1 = x1 = Aα =
A(A′A)−1A′x1. On the other hand, let x2 ∈ Sp(A)⊥. Then, A′x2 = 0 =⇒
A(A′A)−1A′x2 = 0. Let x = x1 + x2. From Px2 = 0, we obtain Px =
A(A′A)−1A′x, and (2.15) follows because x is arbitrary.
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Let Q = In −P . Then Q is the orthogonal projector onto Sp(A)⊥, the
ortho-complement subspace of Sp(A).

Example 2.3 Let 1n = (1, 1, · · · , 1)′ (the vector with n ones). Let P M

denote the orthogonal projector onto VM = Sp(1n). Then,

P M = 1n(1′n1n)−11′n =




1
n · · · 1

n
...

. . .
...

1
n · · · 1

n


. (2.16)

The orthogonal projector onto V ⊥
M = Sp(1n)⊥, the ortho-complement sub-

space of Sp(1n), is given by

In − P M =




1− 1
n − 1

n · · · − 1
n

− 1
n 1− 1

n · · · − 1
n

...
...

. . .
...

− 1
n − 1

n · · · 1− 1
n



. (2.17)

Let
QM = In − P M . (2.18)

Clearly, P M and QM are both symmetric, and the following relation holds:

P 2
M = P M , Q2

M = QM , and P MQM = QMP M = O. (2.19)

Note The matrix QM in (2.18) is sometimes written as P⊥
M .

Example 2.4 Let

xR =




x1

x2
...

xn




, x =




x1 − x̄
x2 − x̄

...
xn − x̄




, where x̄ =
1
n

n∑

j=1

xj .

Then,
x = QMxR, (2.20)

and so
n∑

j=1

(xj − x̄)2 = ||x||2 = x′x = x′RQMxR.

The proof is omitted.
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2.3 Subspaces and Projection Matrices

In this section, we consider the relationships between subspaces and projec-
tors when the n-dimensional space En is decomposed into the sum of several
subspaces.

2.3.1 Decomposition into a direct-sum of disjoint subspaces

Lemma 2.3 When there exist two distinct ways of decomposing En,

En = V1 ⊕W1 = V2 ⊕W2, (2.21)

and if V1 ⊂ W2 or V2 ⊂ W1, the following relation holds:

En = (V1 ⊕ V2)⊕ (W1 ∩W2). (2.22)

Proof. When V1 ⊂ W2, Theorem 1.5 leads to the following relation:

V1 + (W1 ∩W2) = (V1 + W1) ∩W2 = En ∩W2 = W2.

Also from V1 ∩ (W1 ∩ W2) = (V1 ∩ W1) ∩ W2 = {0}, we have W2 = V1 ⊕
(W1 ∩W2). Hence the following relation holds:

En = V2 ⊕W2 = V2 ⊕ V1 ⊕ (W1 ∩W2) = (V1 ⊕ V2)⊕ (W1 ∩W2).

When V2 ⊂ W2, the same result follows by using W1 = V2 ⊕ (W1 ∩
W2). Q.E.D.

Corollary When V1 ⊂ V2 or W2 ⊂ W1,

En = (V1 ⊕W2)⊕ (V2 ∩W1). (2.23)

Proof. In the proof of Lemma 2.3, exchange the roles of W2 and V2. Q.E.D.

Theorem 2.7 Let P 1 and P 2 denote the projection matrices onto V1 along
W1 and onto V2 along W2, respectively. Then the following three statements
are equivalent:

(i) P 1 + P 2 is the projector onto V1 ⊕ V2 along W1 ∩W2.

(ii) P 1P 2 = P 2P 1 = O.

(iii) V1 ⊂ W2 and V2 ⊂ W1. (In this case, V1 and V2 are disjoint spaces.)

Proof. (i)→ (ii): From (P 1+P 2)2 = P 1+P 2, P 2
1 = P 1, and P 2

2 = P 2, we
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have P 1P 2 = −P 2P 1. Pre- and postmutiplying both sides by P 1, we obtain
P 1P 2 = −P 1P 2P 1 and P 1P 2P 1 = −P 2P 1, respectively, which imply
P 1P 2 = P 2P 1. This and P 1P 2 = −P 2P 1 lead to P 1P 2 = P 2P 1 = O.

(ii) → (iii): For an arbitrary vector x ∈ V1, P 1x = x because P 1x ∈ V1.
Hence, P 2P 1x = P 2x = 0, which implies x ∈ W2, and so V1 ⊂ W2. On
the other hand, when x ∈ V2, it follows that P 2x ∈ V2, and so P 1P 2x =
P 1x = 0, implying x ∈ W2. We thus have V2 ⊂ W2.

(iii) → (ii): For x ∈ En, P 1x ∈ V1, which implies (In−P 2)P 1x = P 1x,
which holds for any x. Thus, (In − P 2)P 1 = P 1, implying P 1P 2 = O.
We also have x ∈ En ⇒ P 2x ∈ V2 ⇒ (In − P 1)P 2x = P 2x, which again
holds for any x, which implies (In−P 1)P 2 = P 2 ⇒ P 1P 2 = O. Similarly,
P 2P 1 = O.

(ii) → (i): An arbitrary vector x ∈ (V1 ⊕ V2) can be decomposed into
x = x1 + x2, where x1 ∈ V1 and x2 ∈ V2. From P 1x2 = P 1P 2x = 0
and P 2x1 = P 2P 1x = 0, we have (P 1 + P 2)x = (P 1 + P 2)(x1 + x2) =
P 1x1 + P 2x2 = x1 + x2 = x. On the other hand, by noting that P 1 =
P 1(In − P 2) and P 2 = P 2(In − P 1) for any x ∈ (W1 ∩ W2), we have
(P 1 + P 2)x = P 1(In − P 2)x + P 2(In − P 1)x = 0. Since V1 ⊂ W2 and
V2 ⊂ W1, the decomposition on the right-hand side of (2.22) holds. Hence,
we know P 1 + P 2 is the projector onto V1⊕ V2 along W1 ∩W2 by Theorem
2.2. Q.E.D.

Note In the theorem above, P 1P 2 = O in (ii) does not imply P 2P 1 = O.
P 1P 2 = O corresponds with V2 ⊂ W1, and P 2P 1 = O with V1 ⊂ W2 in (iii). It
should be clear that V1 ⊂ W2 ⇐⇒ V2 ⊂ W1 does not hold.

Theorem 2.8 Given the decompositions of En in (2.21), the following three
statements are equivalent:

(i) P 2 − P 1 is the projector onto V2 ∩W1 along V1 ⊕W2.
(ii) P 1P 2 = P 2P 1 = P 1.
(iii) V1 ⊂ V2 and W2 ⊂ W1.

Proof. (i) → (ii): (P 2 − P 1)2 = P 2 − P 1 implies 2P 1 = P 1P 2 + P 2P 1.
Pre- and postmultiplying both sides by P 2, we obtain P 2P 1 = P 2P 1P 2

and P 1P 2 = P 2P 1P 2, respectively, which imply P 1P 2 = P 2P 1 = P 1.
(ii) → (iii): For ∀x ∈ En, P 1x ∈ V1, which implies P 1x = P 2P 1x ∈ V2,

which in turn implies V1 ⊂ V2. Let Qj = In − P j (j = 1, 2). Then,
P 1P 2 = P 1 implies Q1Q2 = Q2, and so Q2x ∈ W2, which implies Q2x =
Q1Q2x ∈ W1, which in turn implies W2 ⊂ W1.
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(iii) → (ii): From V1 ⊂ V2, for ∀x ∈ En, P 1x ∈ V1 ⊂ V2 ⇒ P 2(P 1x) =
P 1x ⇒ P 2P 1 = P 1. On the other hand, from W2 ⊂ W1, Q2x ∈ W2 ⊂ W1

for ∀x ∈ En ⇒ Q1Q2x = Q2x ⇒ Q1Q2Q2 ⇒ (In − P 1)(In − P 2) =
(In − P 2) ⇒ P 1P 2 = P 1.

(ii) → (i): For x ∈ (V2 ∩ W1), it holds that (P 2 − P 1)x = Q1P 2x =
Q1x = x. On the other hand, let x = y + z, where y ∈ V1 and z ∈ W2.
Then, (P 2 − P 1)x = (P 2 − P 1)y + (P 2 − P 1)z = P 2Q1y + Q1P 2z = 0.
Hence, P 2−P 1 is the projector onto V2∩W1 along V1⊕W2. Q.E.D.

Note As in Theorem 2.7, P 1P 2 = P 1 does not necessarily imply P 2P 1 = P 1.
Note that P 1P 2 = P 1 ⇐⇒ W2 ⊂ W1, and P 2P 1 = P 1 ⇐⇒ V1 ⊂ V2.

Theorem 2.9 When the decompositions in (2.21) and (2.22) hold, and if

P 1P 2 = P 2P 1, (2.24)

then P 1P 2 (or P 2P 1) is the projector onto V1 ∩ V2 along W1 + W2.

Proof. P 1P 2 = P 2P 1 implies (P 1P 2)2 = P 1P 2P 1P 2 = P 2
1P

2
2 = P 1P 2,

indicating that P 1P 2 is a projection matrix. On the other hand, let x ∈
V1 ∩ V2. Then, P 1(P 2x) = P 1x = x. Furthermore, let x ∈ W1 + W2

and x = x1 + x2, where x1 ∈ W1 and x2 ∈ W2. Then, P 1P 2x =
P 1P 2x1+P 1P 2x2 = P 2P 1x1+0 = 0. Since En = (V1∩V2)⊕(W1⊕W2) by
the corollary to Lemma 2.3, we know that P 1P 2 is the projector onto V1∩V2

along W1⊕W2. Q.E.D.

Note Using the theorem above, (ii) → (i) in Theorem 2.7 can also be proved as
follows: From P 1P 2 = O

Q1Q2 = (In − P 1)(In − P 2) = In − P 1 − P 2 = Q2Q1.

Hence, Q1Q2 is the projector onto W1∩W2 along V1⊕V2, and P 1+P 2 = In−Q1Q2

is the projector onto V1 ⊕ V2 along W1 ∩W2.

If we take W1 = V ⊥
1 and W2 = V ⊥

2 in the theorem above, P 1 and P 2

become orthogonal projectors.
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Theorem 2.10 Let P 1 and P 2 be the orthogonal projectors onto V1 and
V2, respectively. Then the following three statements are equivalent:

(i) P 1 + P 2 is the orthogonal projector onto V1

·⊕ V2.

(ii) P 1P 2 = P 2P 1 = O.

(iii) V1 and V2 are orthogonal.

Theorem 2.11 The following three statements are equivalent:

(i) P 2 − P 1 is the orthogonal projector onto V2 ∩ V ⊥
1 .

(ii) P 1P 2 = P 2P 1 = P 1.

(iii) V1 ⊂ V2.

The two theorems above can be proved by setting W1 = V ⊥
1 and W2 =

V ⊥
2 in Theorems 2.7 and 2.8.

Theorem 2.12 The necessary and sufficient condition for P 1P 2 to be the
orthogonal projector onto V1 ∩ V2 is (2.24).

Proof. Sufficiency is clear from Theorem 2.9. Necessity follows from P 1P 2

= (P 1P 2)′, which implies P 1P 2 = P 2P 1 since P 1P 2 is an orthogonal pro-
jector. Q.E.D.

We next present a theorem concerning projection matrices when En is
expressed as a direct-sum of m subspaces, namely

En = V1 ⊕ V2 ⊕ · · · ⊕ Vm. (2.25)

Theorem 2.13 Let P i (i = 1, · · · ,m) be square matrices that satisfy

P 1 + P 2 + · · ·+ P m = In. (2.26)

Then the following three statements are equivalent:

P iP j = O (i 6= j). (2.27)

P 2
i = P i (i = 1, · · ·m). (2.28)

rank(P 1) + rank(P 2) + · · ·+ rank(P m) = n. (2.29)
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Proof. (i) → (ii): Multiply (2.26) by P i.
(ii) → (iii): Use rank(P i) = tr(P i) when P 2

i = P i. Then,

m∑

i=1

rank(P i) =
m∑

i=1

tr(P i) = tr

(
m∑

i=1

P i

)
= tr(In) = n.

(iii) → (i), (ii): Let Vi = Sp(P i). From rank(P i) = dim(Vi), we obtain
dim(V1) + dim(V2) + · · ·dim(Vm) = n; that is, En is decomposed into the
sum of m disjoint subspaces as in (2.26). By postmultiplying (2.26) by P i,
we obtain

P 1P i + P 2P i + · · ·+ P i(P i − In) + · · ·+ P mP i = O.

Since Sp(P 1),Sp(P 2), · · · , Sp(P m) are disjoint, (2.27) and (2.28) hold from
Theorem 1.4. Q.E.D.

Note P i in Theorem 2.13 is a projection matrix. Let En = V1 ⊕ · · · ⊕ Vr, and let

V(i) = V1 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vr. (2.30)

Then, En = Vi⊕V(i). Let P i·(i) denote the projector onto Vi along V(i). This matrix
coincides with the P i that satisfies the four equations given in (2.26) through (2.29).

The following relations hold.

Corollary 1
P 1·(1) + P 2·(2) + · · ·+ P m·(m) = In, (2.31)

P 2
i·(i) = P i·(i) (i = 1, · · · ,m), (2.32)

P i·(i)P j·(j) = O (i 6= j). (2.33)

Corollary 2 Let P (i)·i denote the projector onto V(i) along Vi. Then the
following relation holds:

P (i)·i = P 1·(1) + · · ·+ P i−1·(i−1) + P i+1·(i+1) + · · ·+ P m·(m). (2.34)

Proof. The proof is straightforward by noting P i·(i)+P (i)·i = In. Q.E.D.
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Note The projection matrix P i·(i) onto Vi along V(i) is uniquely determined. As-
sume that there are two possible representations, P i·(i) and P ∗

i·(i). Then,

P 1·(1) + P 2·(2) + · · ·+ P m·(m) = P ∗
1·(1) + P ∗

2·(2) + · · ·+ P ∗
m·(m),

from which

(P 1·(1) − P ∗
1·(1)) + (P 2·(2) − P ∗

2·(2)) + · · ·+ (P m·(m) − P ∗
m·(m)) = O.

Each term in the equation above belongs to one of the respective subspaces V1, V2,

· · · , Vm, which are mutually disjoint. Hence, from Theorem 1.4, we obtain P i·(i) =
P ∗

i·(i). This indicates that when a direct-sum of En is given, an identity matrix In

of order n is decomposed accordingly, and the projection matrices that constitute
the decomposition are uniquely determined.

The following theorem due to Khatri (1968) generalizes Theorem 2.13.

Theorem 2.14 Let P i denote a square matrix of order n such that

P = P 1 + P 2 + · · ·+ P m. (2.35)

Consider the following four propositions:

(i) P 2
i = P i (i = 1, · · ·m),

(ii) P iP j = O (i 6= j), and rank(P 2
i ) = rank(P i),

(iii) P 2 = P ,

(iv) rank(P ) = rank(P 1) + · · ·+ rank(P m).

All other propositions can be derived from any two of (i), (ii), and (iii), and
(i) and (ii) can be derived from (iii) and (iv).

Proof. That (i) and (ii) imply (iii) is obvious. To show that (ii) and (iii)
imply (iv), we may use

P 2 = P 2
1 + P 2

2 + · · ·+ P 2
m and P 2 = P ,

which follow from (2.35).
(ii), (iii)→ (i): Postmultiplying (2.35) by P i, we obtain PP i = P 2

i , from
which it follows that P 3

i = P 2
i . On the other hand, rank(P 2

i ) = rank(P i)
implies that there exists W such that P 2

i W i = P i. Hence, P 3
i = P 2

i ⇒
P 3

i W i = P 2
i W i ⇒ P i(P 2

i W i) = P 2
i W ⇒ P 2

i = P i.
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(iii), (iv) → (i), (ii): We have Sp(P )⊕ Sp(In −P ) = En from P 2 = P .
Hence, by postmultiplying the identity

P 1 + P 2 + · · ·+ P m + (In − P ) = In

by P , we obtain P 2
i = P i, and P iP j = O (i 6= j). Q.E.D.

Next we consider the case in which subspaces have inclusion relationships
like the following.

Theorem 2.15 Let

En = Vk ⊃ Vk−1 ⊃ · · · ⊃ V2 ⊃ V1 = {0},

and let Wi denote a complement subspace of Vi. Let P i be the orthogonal
projector onto Vi along Wi, and let P ∗

i = P i − P i−1, where P 0 = O and
P k = In. Then the following relations hold:

(i) In = P ∗
1 + P ∗

2 + · · ·+ P ∗
k.

(ii) (P ∗
i )

2 = P ∗
i .

(iii) P ∗
i P

∗
j = P ∗

jP
∗
i = O (i 6= j).

(iv) P i is the projector onto Vi ∩Wi−1 along Vi−1 ⊕Wi.

Proof. (i): Obvious. (ii): Use P iP i−1 = P i−1P i = P i−1. (iii): It
follows from (P ∗

i )
2 = P ∗

i that rank(P ∗
i ) = tr(P ∗

i ) = tr(P i − P i−1) =
tr(P i) − tr(P i−1). Hence,

∑k
i=1 rank(P ∗

i ) = tr(P k) − tr(P 0) = n, from
which P ∗

i P
∗
j = O follows by Theorem 2.13. (iv): Clear from Theorem

2.8(i). Q.E.D.

Note The theorem above does not presuppose that P i is an orthogonal projec-
tor. However, if Wi = V ⊥

i , P i and P ∗
i are orthogonal projectors. The latter, in

particular, is the orthogonal projector onto Vi ∩ V ⊥
i−1.

2.3.2 Decomposition into nondisjoint subspaces

In this section, we present several theorems indicating how projectors are
decomposed when the corresponding subspaces are not necessarily disjoint.
We elucidate their meaning in connection with the commutativity of pro-
jectors.
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We first consider the case in which there are two direct-sum decomposi-
tions of En, namely

En = V1 ⊕W1 = V2 ⊕W2,

as given in (2.21). Let V12 = V1 ∩ V2 denote the product space between V1

and V2, and let V3 denote a complement subspace to V1 + V2 in En. Fur-
thermore, let P 1+2 denote the projection matrix onto V1+2 = V1 + V2 along
V3, and let P j (j = 1, 2) represent the projection matrix onto Vj (j = 1, 2)
along Wj (j = 1, 2). Then the following theorem holds.

Theorem 2.16 (i) The necessary and sufficient condition for P 1+2 = P 1+
P 2 − P 1P 2 is

(V1+2 ∩W2) ⊂ (V1 ⊕ V3). (2.36)

(ii) The necessary and sufficient condition for P 1+2 = P 1 + P 2 − P 2P 1 is

(V1+2 ∩W1) ⊂ (V2 ⊕ V3). (2.37)

Proof. (i): Since V1+2 ⊃ V1 and V1+2 ⊃ V2, P 1+2 − P 1 is the projector
onto V1+2 ∩W1 along V1 ⊕ V3 by Theorem 2.8. Hence, P 1+2P 1 = P 1 and
P 1+2P 2 = P 2. Similarly, P 1+2 −P 2 is the projector onto V1+2 ∩W2 along
V2 ⊕ V3. Hence, by Theorem 2.8,

P 1+2 − P 1 − P 2 + P 1P 2 = O ⇐⇒ (P 1+2 − P 1)(P 1+2 − P 2) = O.

Furthermore,

(P 1+2 − P 1)(P 1+2 − P 2) = O ⇐⇒ (V1+2 ∩W2) ⊂ (V1 ⊕ V3).

(ii): Similarly, P 1+2−P 1−P 2 + P 2P 1 = O ⇐⇒ (P 1+2−P 2)(P 1+2−
P 1) = O ⇐⇒ (V1+2∩W1) ⊂ (V2⊕V3). Q.E.D.

Corollary Assume that the decomposition (2.21) holds. The necessary and
sufficient condition for P 1P 2 = P 2P 1 is that both (2.36) and (2.37) hold.

The following theorem can readily be derived from the theorem above.

Theorem 2.17 Let En = (V1+V2)⊕V3, V1 = V11⊕V12, and V2 = V22⊕V12,
where V12 = V1 ∩ V2. Let P ∗

1+2 denote the projection matrix onto V1 + V2

along V3, and let P ∗
1 and P ∗

2 denote the projectors onto V1 along V3 ⊕ V22

and onto V2 along V3 ⊕ V11, respectively. Then,

P ∗
1P

∗
2 = P ∗

2P
∗
1 (2.38)
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and
P ∗

1+2 = P ∗
1 + P ∗

2 − P ∗
1P

∗
2. (2.39)

Proof. Since V11 ⊂ V1 and V22 ⊂ V2, we obtain

V1+2 ∩W2 = V11 ⊂ (V1 ⊕ V3) and V1+2 ∩W1 = V22 ⊂ (V2 ⊕ V3)

by setting W1 = V22 ⊕ V3 and W2 = V11 ⊕ V3 in Theorem 2.16.
Another proof. Let y = y1 + y2 + y12 + y3 ∈ En, where y1 ∈ V11,
y2 ∈ V22, y12 ∈ V12, and y3 ∈ V3. Then it suffices to show that (P ∗

1P
∗
2)y =

(P ∗
2P

∗
1)y. Q.E.D.

Let P j (j = 1, 2) denote the projection matrix onto Vj along Wj . As-
sume that En = V1⊕W1⊕V3 = V2⊕W2⊕V3 and V1 +V2 = V11⊕V22⊕V12

hold. However, W1 = V22 may not hold, even if V1 = V11 ⊕ V12. That is,
(2.38) and (2.39) hold only when we set W1 = V22 and W2 = V11.

Theorem 2.18 Let P 1 and P 2 be the orthogonal projectors onto V1 and
V2, respectively, and let P 1+2 denote the orthogonal projector onto V1+2.
Let V12 = V1 ∩ V2. Then the following three statements are equivalent:

(i) P 1P 2 = P 2P 1.
(ii) P 1+2 = P 1 + P 2 − P 1P 2.
(iii) V11 = V1 ∩ V ⊥

12 and V22 = V2 ∩ V ⊥
12 are orthogonal.

Proof. (i) → (ii): Obvious from Theorem 2.16.
(ii) → (iii): P 1+2 = P 1 + P 2 − P 1P 2 ⇒ (P 1+2 − P 1)(P 1+2 − P 2) =

(P 1+2 − P 2)(P 1+2 − P 1) = O ⇒ V11 and V22 are orthogonal.
(iii) → (i): Set V3 = (V1 +V2)⊥ in Theorem 2.17. Since V11 and V22, and

V1 and V22, are orthogonal, the result follows. Q.E.D.

When P 1, P 2, and P 1+2 are orthogonal projectors, the following corol-
lary holds.

Corollary P 1+2 = P 1 + P 2 − P 1P 2 ⇐⇒ P 1P 2 = P 2P 1.

2.3.3 Commutative projectors

In this section, we focus on orthogonal projectors and discuss the meaning
of Theorem 2.18 and its corollary. We also generalize the results to the case
in which there are three or more subspaces.
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Theorem 2.19 Let P j denote the orthogonal projector onto Vj. If P 1P 2 =
P 2P 1, P 1P 3 = P 3P 1, and P 2P 3 = P 3P 2, the following relations hold:

V1 + (V2 ∩ V3) = (V1 + V2) ∩ (V1 + V3), (2.40)

V2 + (V1 ∩ V3) = (V1 + V2) ∩ (V2 + V3), (2.41)

V3 + (V1 ∩ V2) = (V1 + V3) ∩ (V2 + V3). (2.42)

Proof. Let P 1+(2∩3) denote the orthogonal projector onto V1 + (V2 ∩ V3).
Then the orthogonal projector onto V2∩V3 is given by P 2P 3 (or by P 3P 2).
Since P 1P 2 = P 2P 1 ⇒ P 1P 2P 3 = P 2P 3P 1, we obtain

P 1+(2∩3) = P 1 + P 2P 3 − P 1P 2P 3

by Theorem 2.18. On the other hand, from P 1P 2 = P 2P 1 and P 1P 3 =
P 3P 1, the orthogonal projectors onto V1 + V2 and V1 + V3 are given by

P 1+2 = P 1 + P 2 − P 1P 2 and P 1+3 = P 1 + P 3 − P 1P 3,

respectively, and so P 1+2P 1+3 = P 1+3P 1+2 holds. Hence, the orthogonal
projector onto (V1 + V2) ∩ (V1 + V3) is given by

(P 1 + P 2 − P 1P 2)(P 1 + P 3 − P 1P 3) = P 1 + P 2P 3 − P 1P 2P 3,

which implies P 1+(2∩3) = P 1+2P 1+3. Since there is a one-to-one correspon-
dence between projectors and subspaces, (2.40) holds.

Relations (2.41) and (2.42) can be similarly proven by noting that (P 1 +
P 2 −P 1P 2)(P 2 + P 3 −P 2P 3) = P 2 + P 1P 3 −P 1P 2P 3 and (P 1 + P 3 −
P 1P 3)(P 2 + P 3 − P 2P 3) = P 3 + P 1P 2 − P 1P 2P 3, respectively.

Q.E.D.

The three identities from (2.40) to (2.42) indicate the distributive law of
subspaces, which holds only if the commutativity of orthogonal projectors
holds.

We now present a theorem on the decomposition of the orthogonal pro-
jectors defined on the sum space V1 + V2 + V3 of V1, V2, and V3.

Theorem 2.20 Let P 1+2+3 denote the orthogonal projector onto V1 +V2 +
V3, and let P 1, P 2, and P 3 denote the orthogonal projectors onto V1, V2,
and V3, respectively. Then a sufficient condition for the decomposition

P 1+2+3 = P 1 + P 2 + P 3 − P 1P 2 − P 2P 3 − P 3P 1 + P 1P 2P 3 (2.43)
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to hold is

P 1P 2 = P 2P 1, P 2P 3 = P 3P 2, and P 1P 3 = P 3P 1. (2.44)

Proof. P 1P 2 = P 2P 1 ⇒ P 1+2 = P 1 +P 2−P 1P 2 and P 2P 3 = P 3P 2 ⇒
P 2+3 = P 2 + P 3 −P 2P 3. We therefore have P 1+2P 2+3 = P 2+3P 1+2. We
also have P 1+2+3 = P (1+2)+(1+3), from which it follows that

P 1+2+3 = P (1+2)+(1+3) = P 1+2 + P 1+3 − P 1+2P 1+3

= (P 1 + P 2 − P 1P 2) + (P 1 + P 3 − P 1P 3)
−(P 2P 3 + P 1 − P 1P 2P 3)

= P 1 + P 2 + P 3 − P 1P 2 − P 2P 3 − P 1P 3 + P 1P 2P 3.

An alternative proof. From P 1P 2+3 = P 2+3P 1, we have P 1+2+3 = P 1+
P 2+3−P 1P 2+3. If we substitute P 2+3 = P 2+P 3−P 2P 3 into this equation,
we obtain (2.43). Q.E.D.

Assume that (2.44) holds, and let

P 1̃ = P 1 − P 1P 2 − P 1P 3 + P 1P 2P 3,

P 2̃ = P 2 − P 2P 3 − P 1P 2 + P 1P 2P 3,

P 3̃ = P 3 − P 1P 3 − P 2P 3 + P 1P 2P 3,

P 12(3) = P 1P 2 − P 1P 2P 3,

P13(2) = P 1P 3 − P 1P 2P 3,

P 23(1) = P 2P 3 − P 1P 2P 3,

and
P 123 = P 1P 2P 3.

Then,

P 1+2+3 = P 1̃ + P 2̃ + P 3̃ + P 12(3) + P 13(2) + P 23(1) + P 123. (2.45)

Additionally, all matrices on the right-hand side of (2.45) are orthogonal
projectors, which are also all mutually orthogonal.

Note Since P 1̃ = P 1(In − P 2+3), P 2̃ = P 2(In − P 1+3), P 3̃ = P 3(I − P 1+2),
P 12(3) = P 1P 2(In−P 3), P 13(2) = P 1P 3(In−P 2), and P 23(1) = P 2P 3(In−P 1),
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the decomposition of the projector P 1∪2∪3 corresponds with the decomposition of
the subspace V1 + V2 + V3

V1 + V2 + V3 = V1̃

·⊕ V2̃

·⊕ V3̃

·⊕ V12(3)

·⊕ V13(2)

·⊕ V23(1)

·⊕ V123, (2.46)

where V1̃ = V1 ∩ (V2 + V3)⊥, V2̃ = V2 ∩ (V1 + V3)⊥, V3̃ = V3 ∩ (V1 + V2)⊥,
V12(3) = V1 ∩ V2 ∩ V ⊥

3 , V13(2) = V1 ∩ V ⊥
2 ∩ V3, V23(1) = V ⊥

1 ∩ V2 ∩ V3, and
V123 = V1 ∩ V2 ∩ V3.

Theorem 2.20 can be generalized as follows.

Corollary Let V = V1+V2+· · ·+Vs (s ≥ 2). Let P V denote the orthogonal
projector onto V , and let P j denote the orthogonal projector onto Vj. A
sufficient condition for

P V =
s∑

j=1

P j −
∑

i<j

P iP j +
∑

i<j<k

P iP jP k + · · ·+ (−1)s−1P 1P 2P 3 · · ·P s

(2.47)
to hold is

P iP j = P jP i (i 6= j). (2.48)

2.3.4 Noncommutative projectors

We now consider the case in which two subspaces V1 and V2 and the cor-
responding projectors P 1 and P 2 are given but P 1P 2 = P 2P 1 does not
necessarily hold. Let Qj = In − P j (j = 1, 2). Then the following lemma
holds.

Lemma 2.4

V1 + V2 = Sp(P 1)⊕ Sp(Q1P 2) (2.49)
= Sp(Q2P 1)⊕ Sp(P 2). (2.50)

Proof. [P 1, Q1P 2] and [Q2P 1, P 2] can be expressed as

[P 1,Q1P 2] = [P 1,P 2]

[
In −P 2

O In

]
= [P 1,P 2]S

and

[Q2P 1, P 2] = [P 1, P 2]

[
In O
−P 1 In

]
= [P 1, P 2]T .
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Since S and T are nonsingular, we have

rank(P 1, P 2) = rank(P 1, Q1P 2) = rank(Q2P 1,P 1),

which implies

V1 + V2 = Sp(P 1, Q1P 2) = Sp(Q2P 1, P 2).

Furthermore, let P 1x + Q1P 2y = 0. Premultiplying both sides by P 1,
we obtain P 1x = 0 (since P 1Q1 = O), which implies Q1P 2y = 0. Hence,
Sp(P 1) and Sp(Q1P 2) give a direct-sum decomposition of V1 + V2, and so
do Sp(Q2P 1) and Sp(P 2). Q.E.D.

The following theorem follows from Lemma 2.4.

Theorem 2.21 Let En = (V1 + V2)⊕W . Furthermore, let

V2[1] = {x|x = Q1y,y ∈ V2} (2.51)

and
V1[2] = {x|x = Q2y, y ∈ V1}. (2.52)

Let Qj = In − P j (j = 1, 2), where P j is the orthogonal projector onto
Vj, and let P ∗, P ∗

1, P ∗
2, P 1[2], and P 2[1] denote the projectors onto V1 + V2

along W , onto V1 along V2[1]⊕W , onto V2 along V1[2]⊕W , onto V1[2] along
V2 ⊕W , and onto V2[1] along V1 ⊕W , respectively. Then,

P ∗ = P ∗
1 + P ∗

2[1] (2.53)

or
P ∗ = P ∗

1[2] + P ∗
2 (2.54)

holds.

Note When W = (V1 + V2)⊥, P ∗
j is the orthogonal projector onto Vj , while P ∗

j[i]

is the orthogonal projector onto Vj [i].

Corollary Let P denote the orthogonal projector onto V = V1 ⊕ V2, and
let P j (j = 1, 2) be the orthogonal projectors onto Vj. If Vi and Vj are
orthogonal, the following equation holds:

P = P 1 + P 2. (2.55)
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2.4 Norm of Projection Vectors

We now present theorems concerning the norm of the projection vector Px
(x ∈ En) obtained by projecting x onto Sp(P ) along Ker(P ) by P .

Lemma 2.5 P ′ = P and P 2 = P ⇐⇒ P ′P = P .
(The proof is trivial and hence omitted.)

Theorem 2.22 Let P denote a projection matrix (i.e., P 2 = P ). The
necessary and sufficient condition to have

||Px|| ≤ ||x|| (2.56)

for an arbitrary vector x is
P ′ = P . (2.57)

Proof. (Sufficiency) Let x be decomposed as x = Px + (In − P )x. We
have (Px)′(In − P )x = x′(P ′ − P ′P )x = 0 because P ′ = P ⇒ P ′P = P ′

from Lemma 2.5. Hence,

||x||2 = ||Px||2 + ||(In − P )x||2 ≥ ||Px||2.

(Necessity) By assumption, we have x′(In − P ′P )x ≥ 0, which implies
In−P ′P is nnd with all nonnegative eigenvalues. Let λ1, λ2, · · · , λn denote
the eigenvalues of P ′P . Then, 1 − λj ≥ 0 or 0 ≥ λj ≥ 1 (j = 1, · · · , n).
Hence,

∑n
j=1 λ2

j ≤
∑n

j=1 λj , which implies tr(P ′P )2 ≤ tr(P ′P ).
On the other hand, we have

(tr(P ′P ))2 = (tr(PP ′P ))2 ≤ tr(P ′P )tr(P ′P )2

from the generalized Schwarz inequality (set A′ = P and B = P ′P in
(1.19)) and P 2 = P . Hence, tr(P ′P ) ≤ tr(P ′P )2 ⇒ tr(P ′P ) = tr(P ′P )2,
from which it follows that tr{(P − P ′P )′(P − P ′P )} = tr{P ′P − P ′P −
P ′P + (P ′P )2} = tr{P ′P − (P ′P )2} = 0. Thus, P = P ′P ⇒ P ′ =
P . Q.E.D.

Corollary Let M be a symmetric pd matrix, and define the (squared) norm
of x by

||x||2M = x′Mx. (2.58)
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The necessary and sufficient condition for a projection matrix P (satisfying
P 2 = P ) to satisfy

||Px||2M ≤ ||x||2M (2.59)

for an arbitrary n-component vector x is given by

(MP )′ = MP . (2.60)

Proof. Let M = U∆2U ′ be the spectral decomposition of M , and let
M1/2 = ∆U ′. Then, M−1/2 = U∆−1. Define y = M1/2x, and let P̃ =
M1/2PM−1/2. Then, P̃

2
= P̃ , and (2.58) can be rewritten as ||P̃ y||2 ≤

||y||2. By Theorem 2.22, the necessary and sufficient condition for (2.59) to
hold is given by

P̃
2

= P̃ =⇒ (M1/2PM−1/2)′ = M1/2PM−1/2, (2.61)

leading to (2.60). Q.E.D.

Note The theorem above implies that with an oblique projector P (P 2 = P , but
P ′ 6= P ) it is possible to have ||Px|| ≥ ||x||. For example, let

P =
[

1 1
0 0

]
and x =

(
1
1

)
.

Then, ||Px|| = 2 and ||x|| = √
2.

Theorem 2.23 Let P 1 and P 2 denote the orthogonal projectors onto V1

and V2, respectively. Then, for an arbitrary x ∈ En, the following relations
hold:

||P 2P 1x|| ≤ ||P 1x|| ≤ ||x|| (2.62)

and, if V2 ⊂ V1,
||P 2x|| ≤ ||P 1x||. (2.63)

Proof. (2.62): Replace x by P 1x in Theorem 2.22.
(2.63): By Theorem 2.11, we have P 1P 2 = P 2, from which (2.63) fol-

lows immediately.

Let x1, x2, · · · , xp represent p n-component vectors in En, and define
X = [x1, x2, · · · ,xp]. From (1.15) and P = P ′P , the following identity
holds:

||Px1||2 + ||Px2||2 + · · ·+ ||Pxp||2 = tr(X ′PX). (2.64)
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The above identity and Theorem 2.23 lead to the following corollary.

Corollary

(i) If V2 ⊂ V1, tr(X ′P 2X) ≤ tr(X ′P 1X) ≤ tr(X ′X).

(ii) Let P denote an orthogonal projector onto an arbitrary subspace in En.
If V1 ⊃ V2,

tr(P 1P ) ≥ tr(P 2P ).

Proof. (i): Obvious from Theorem 2.23. (ii): We have tr(P jP ) = tr(P jP
2)

= tr(PP jP ) (j = 1, 2), and (P 1 − P 2)2 = P 1 − P 2, so that

tr(PP 1P )− tr(PP 2P ) = tr(SS′) ≥ 0,

where S = (P 1 − P 2)P . It follows that tr(P 1P ) ≥ tr(P 2P ).
Q.E.D.

We next present a theorem on the trace of two orthogonal projectors.

Theorem 2.24 Let P 1 and P 2 be orthogonal projectors of order n. Then
the following relations hold:

tr(P 1P 2) = tr(P 2P 1) ≤ min(tr(P 1), tr(P 2)). (2.65)

Proof. We have tr(P 1) − tr(P 1P 2) = tr(P 1(In − P 2)) = tr(P 1Q2) =
tr(P 1Q2P 1) = tr(S′S) ≥ 0, where S = Q2P 1, establishing tr(P 1) ≥
tr(P 1P 2). Similarly, (2.65) follows from tr(P 2) ≥ tr(P 1P 2) = tr(P 2P 1).

Q.E.D.

Note From (1.19), we obtain

tr(P 1P 2) ≤
√

tr(P 1)tr(P 2). (2.66)

However, (2.65) is more general than (2.66) because
√

tr(P 1)tr(P 2) ≥ min(tr(P 1),
tr(P 2)).
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2.5 Matrix Norm and Projection Matrices

Let A = [aij ] be an n by p matrix. We define its Euclidean norm (also called
the Frobenius norm) by

||A|| = {tr(A′A)}1/2 =

√√√√
n∑

i=1

p∑

j=1

a2
ij . (2.67)

Then the following four relations hold.

Lemma 2.6
||A|| ≥ 0. (2.68)

||CA|| ≤ ||C|| · ||A||, (2.69)

Let both A and B be n by p matrices. Then,

||A + B|| ≤ ||A||+ ||B||. (2.70)

Let U and V be orthogonal matrices of orders n and p, respectively. Then

||UAV || = ||A||. (2.71)

Proof. Relations (2.68) and (2.69) are trivial. Relation (2.70) follows im-
mediately from (1.20). Relation (2.71) is obvious from

tr(V ′A′U ′UAV ) = tr(A′AV V ′) = tr(A′A).

Q.E.D.

Note Let M be a symmetric nnd matrix of order n. Then the norm defined in
(2.67) can be generalized as

||A||M = {tr(A′MA)}1/2. (2.72)

This is called the norm of A with respect to M (sometimes called a metric matrix).
Properties analogous to those given in Lemma 2.6 hold for this generalized norm.

There are other possible definitions of the norm of A. For example,

(i) ||A||1 = maxj

∑n
i=1 |aij |,

(ii) ||A||2 = µ1(A), where µ1(A) is the largest singular value of A (see Chapter 5),
and
(iii) ||A||3 = maxi

∑p
j=1 |aij |.

All of these norms satisfy (2.68), (2.69), and (2.70). (However, only ||A||2 satisfies
(2.71).)
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Lemma 2.7 Let P and P̃ denote orthogonal projectors of orders n and p,
respectively. Then,

||PA|| ≤ ||A|| (2.73)

(the equality holds if and only if PA = A) and

||AP̃ || ≤ ||A|| (2.74)

(the equality holds if and only if AP̃ = A).

Proof. (2.73): Square both sides and subtract the right-hand side from the
left. Then,

tr(A′A)− tr(A′PA) = tr{A′(In − P )A}
= tr(A′QA) = tr(QA)′(QA) ≥ 0 (where Q = In − P ).

The two lemmas above lead to the following theorem.

Theorem 2.25 Let A be an n by p matrix, B and Y n by r matrices, and
C and X r by p matrices. Then,

||A−BX|| ≥ ||(In − P B)A||, (2.75)

where P B is the orthogonal projector onto Sp(B). The equality holds if and
only if BX = P BA. We also have

||A− Y C|| ≥ ||A(Ip − P C′)||, (2.76)

where P C′ is the orthogonal projector onto Sp(C ′). The equality holds if
and only if Y C = AP C′ . We also have

||A−BX − Y C|| ≥ ||(In − P B)A(Ip − P C′)||. (2.77)

The equality holds if and only if

P B(A− Y C) = BX and (In − P B)AP C′ = (In − P B)Y C (2.78)

The equality holds when QA = O ⇐⇒ PA = A.
(2.74): This can be proven similarly by noting that ||AP̃ ||2 =tr(P̃A′AP̃ )

= tr(AP̃A′) = ||P̃A′||2. The equality holds when Q̃A′ = O ⇐⇒ P̃A′ =
A′ ⇐⇒ AP̃ = A, where Q̃ = In−P̃ . Q.E.D.
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or

(A−BX)P C′ = Y C and P BA(Ip − P C′) = BX(In − P C′). (2.79)

Proof. (2.75): We have (In − P B)(A − BX) = A − BX − P BA +
BX = (In − P B)A. Since In − P B is an orthogonal projector, we have
||A−BX|| ≥ ||(In−P B)(A−BX)|| = ||(In−P B)A|| by (2.73) in Lemma
2.7. The equality holds when (In − P B)(A − BX) = A − BX, namely
P BA = BX.

(2.76): It suffices to use (A−Y C)(Ip−P C′) = A(Ip−P C′) and (2.74)
in Lemma 2.7. The equality holds when (A − Y C)(Ip − P C′) = A − Y C
holds, which implies Y C = AP C′ .

(2.77): ||A−BX−Y C|| ≥ ||(In−P B)(A−Y C)|| ≥ ||(In−P B)A(Ip−
P C′)|| or ||A−BX−Y C|| ≥ ||(A−BX)(Ip−P C′)|| ≥ ||(Ip−P B)A(Ip−
P C′)||. The first equality condition (2.78) follows from the first relation
above, and the second equality condition (2.79) follows from the second rela-
tion above. Q.E.D.

Note Relations (2.75), (2.76), and (2.77) can also be shown by the least squares
method. Here we show this only for (2.77). We have

||A−BX − Y C||2 = tr{(A−BX − Y C)′(A−BX − Y C)}
= tr(A− Y C)′(A− Y C)− 2tr(BX)′(A− Y C) + tr(BX)′(BX)

to be minimized. Differentiating the criterion above by X and setting the re-
sult to zero, we obtain B′(A − Y C) = B′BX. Premultiplying this equation by
B(B′B)−1, we obtain P B(A − Y C) = BX. Furthermore, we may expand the
criterion above as

tr(A−BX)′(A−BX)− 2tr(Y C(A−BX)′) + tr(Y C)(Y C)′.

Differentiating this criterion with respect to Y and setting the result equal to zero,
we obtain C(A − BX) = CC′Y ′ or (A − BX)C ′ = Y CC ′. Postmultiplying
the latter by (CC ′)−1C ′, we obtain (A−BX)P C′ = Y C. Substituting this into
P B(A − Y C) = BX, we obtain P BA(Ip − P C′) = BX(Ip − P C′) after some
simplification. If, on the other hand, BX = P B(A − Y C) is substituted into
(A − BX)P C′ = Y C, we obtain (In − P B)AP C′ = (In − P B)Y C. (In the
derivation above, the regular inverses can be replaced by the respective generalized
inverses. See the next chapter.)
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2.6 General Form of Projection Matrices

The projectors we have been discussing so far are based on Definition 2.1,
namely square matrices that satisfy P 2 = P (idempotency). In this section,
we introduce a generalized form of projection matrices that do not neces-
sarily satisfy P 2 = P , based on Rao (1974) and Rao and Yanai (1979).

Definition 2.3 Let V ⊂ En (but V 6= En) be decomposed as a direct-sum
of m subspaces, namely V = V1 ⊕ V2 ⊕ · · · ⊕ Vm. A square matrix P ∗

j of
order n that maps an arbitrary vector y in V into Vj is called the projection
matrix onto Vj along V(j) = V1 ⊕ · · · ⊕ Vj−1 ⊕ Vj+1 ⊕ · · · ⊕ Vm if and only if

P ∗
jx = x ∀x ∈ Vj (j = 1, · · · ,m) (2.80)

and
P ∗

jx = 0 ∀x ∈ V(j) (j = 1, · · · ,m). (2.81)

Let xj ∈ Vj . Then any x ∈ V can be expressed as

x = x1 + x2 + · · ·+ xm = (P ∗
1 + P ∗

2 + · · ·P ∗
m)x.

Premultiplying the equation above by P ∗
j , we obtain

P ∗
i P

∗
jx = 0 (i 6= j) and (P ∗

j )
2x = P ∗

jx (i = 1, · · · ,m) (2.82)

since Sp(P 1),Sp(P 2), · · · ,Sp(P m) are mutually disjoint. However, V does
not cover the entire En (x ∈ V 6= En), so (2.82) does not imply (P ∗

j )
2 = P ∗

j

or P ∗
i P

∗
j = O (i 6= j).

Let V1 and V2 ∈ E3 denote the subspaces spanned by e1 = (0, 0, 1)′ and
e2 = (0, 1, 0)′, respectively. Suppose

P ∗ =




a 0 0
b 0 0
c 0 1


.

Then, P ∗e1 = e1 and P ∗e2 = 0, so that P ∗ is the projector onto V1 along V2

according to Definition 2.3. However, (P ∗)2 6= P ∗ except when a = b = 0,
or a = 1 and c = 0. That is, when V does not cover the entire space En,
the projector P ∗

j in the sense of Definition 2.3 is not idempotent. However,
by specifying a complement subspace of V , we can construct an idempotent
matrix from P ∗

j as follows.
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Theorem 2.26 Let P ∗
j (j = 1, · · · , m) denote the projector in the sense of

Definition 2.3, and let P denote the projector onto V along Vm+1, where
V = V1⊕V2⊕· · ·⊕Vm is a subspace in En and where Vm+1 is a complement
subspace to V . Then,

P j = P ∗
jP (j = 1, · · ·m) and P m+1 = In − P (2.83)

are projectors (in the sense of Definition 2.1) onto Vj (j = 1, · · · ,m + 1)
along V ∗

(j) = V1 ⊕ · · · ⊕ Vj−1 ⊕ Vj+1 ⊕ · · · ⊕ Vm ⊕ Vm+1.

Proof. Let x ∈ V . If x ∈ Vj (j = 1, · · · ,m), we have P ∗
jPx = P ∗

jx = x.
On the other hand, if x ∈ Vi (i 6= j, i = 1, · · · ,m), we have P ∗

jPx = P ∗
jx =

0. Furthermore, if x ∈ Vm+1, we have P ∗
jPx = 0 (j = 1, · · · ,m). On the

other hand, if x ∈ V , we have P m+1x = (In − P )x = x − x = 0, and if
x ∈ Vm+1, P m+1x = (In − P )x = x− 0 = x. Hence, by Theorem 2.2, P j

(j = 1, · · · ,m + 1) is the projector onto Vj along V(j). Q.E.D.

2.7 Exercises for Chapter 2

1. Let Ã =
[

A1 O
O A2

]
and A =

[
A1

A2

]
. Show that P ÃP A = P A.

2. Let P A and P B denote the orthogonal projectors onto Sp(A) and Sp(B), re-
spectively. Show that the necessary and sufficient condition for Sp(A) = {Sp(A)∩
Sp(B)} ·⊕ {Sp(A) ∩ Sp(B)⊥} is P AP B = P BP A.

3. Let P be a square matrix of order n such that P 2 = P , and suppose

||Px|| = ||x||
for any n-component vector x. Show the following:
(i) When x ∈ (Ker(P ))⊥, Px = x.
(ii) P ′ = P .

4. Let Sp(A) = Sp(A1)
·⊕ · · · ·⊕ Sp(Am), and let P j (j = 1, · · · ,m) denote the

projector onto Sp(Aj). For ∀x ∈ En:
(i) Show that

||x||2 ≥ ||P 1x||2 + ||P 2x||2 + · · ·+ ||P mx||2. (2.84)

(Also, show that the equality holds if and only if Sp(A) = En.)
(ii) Show that Sp(Ai) and Sp(Aj) (i 6= j) are orthogonal if Sp(A) = Sp(A1) ⊕
Sp(A2)⊕ · · · ⊕ Sp(Am) and the inequality in (i) above holds.
(iii) Let P [j] = P 1 + P 2 + · · ·+ P j . Show that

||P [m]x|| ≥ ||P [m−1]x|| ≥ · · · ≥ ||P [2]x|| ≥ ||P [1]x||.
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5. Let En = V1 ⊕W1 = V2 ⊕W2 = V3 ⊕W3, and let P j denote the projector onto
Vj (j = 1, 2, 3) along Wj . Show the following:
(i) Let P iP j = O for i 6= j. Then, P 1 +P 2 +P 3 is the projector onto V1 +V2 +V3

along W1 ∩W2 ∩W3.
(ii) Let P 1P 2 = P 2P 1, P 1P 3 = P 3P 1, and P 2P 3 = P 3P 2. Then P 1P 2P 3 is
the projector onto V1 ∩ V2 ∩ V3 along W1 + W2 + W3.
(iii) Suppose that the three identities in (ii) hold, and let P 1+2+3 denote the pro-
jection matrix onto V1 + V2 + V3 along W1 ∩W2 ∩W3. Show that

P 1+2+3 = P 1 + P 2 + P 3 − P 1P 2 − P 2P 3 − P 1P 3 + P 1P 2P 3.

6. Show that
Q[A,B] = QAQQAB ,

where Q[A,B], QA, and QQAB are the orthogonal projectors onto the null space of
[A,B], onto the null space of A, and onto the null space of QAB, respectively.

7. (a) Show that
P X = P XA + P X(X′X)−1B ,

where P X , P XA, and P X(X′X)−1B are the orthogonal projectors onto Sp(X),
Sp(XA), and Sp(X(X ′X)−1B), respectively, and A and B are such that Ker(A′)
= Sp(B).
(b) Use the decomposition above to show that

P [X1,X2] = P X1 + P QX1X2 ,

where X = [X1,X2], P QX1X2 is the orthogonal projector onto Sp(QX1
X2), and

QX1
= I −X1(X ′

1X1)−1X ′
1.

8. Let En = V1 ⊕W1 = V2 ⊕W2, and let P 1 = P V1·W1 and P 2 = P V2·W2 be two
projectors (not necessarily orthogonal) of the same size. Show the following:
(a) The necessary and sufficient condition for P 1P 2 to be a projector is V12 ⊂
V2 ⊕ (W1 ∩W2), where V12 = Sp(P 1P 2) (Brown and Page, 1970).
(b) The condition in (a) is equivalent to V2 ⊂ V1⊕ (W1 ∩V2)⊕ (W1 ∩W2) (Werner,
1992).

9. Let A and B be n by a (n ≥ a) and n by b (n ≥ b) matrices, respectively. Let
P A and P B be the orthogonal projectors defined by A and B, and let QA and
QB be their orthogonal complements. Show that the following six statements are
equivalent: (1) P AP B = P BP A, (2) A′B = A′P BP AB, (3) (P AP B)2 = P AP B ,
(4) P [A,B] = P A + P B − P AP B , (5) A′QBQAB = O, and (6) rank(QAB) =
rank(B)− rank(A′B).



Chapter 3

Generalized Inverse Matrices

3.1 Definition through Linear Transformations

Let A be a square matrix of order n. If it is nonsingular, then Ker(A) = {0}
and, as mentioned earlier, the solution vector x in the equation y = Ax is
determined uniquely as x = A−1y. Here, A−1 is called the inverse (matrix)
of A defining the inverse transformation from y ∈ En to x ∈ Em, whereas
the matrix A represents a transformation from x to y. When A is n by m,
Ax = y has a solution if and only if y ∈ Sp(A). Even then, if Ker(A) 6= {0},
there are many solutions to the equation Ax = y due to the existence of x0

( 6= 0) such that Ax0 = 0, so that A(x + x0) = y. If y 6∈ Sp(A), there is no
solution vector to the equation Ax = y.

Assume that y ∈ Sp(A). Consider a linear transformation G such that
x = Gy is a solution to the (linear) equation Ax = y. The existence of such
a transformation can be verified as follows. Let rank(A) = dim(Sp(A)) = r,
and let y1, · · · , yr represent the basis vectors for Sp(A). Then there exists
an xi such that Axi = yi (i = 1, · · · , r). Let an arbitrary vector y ∈ Sp(A)
be represented as y = c1y1 + · · ·+ cryr, and consider the transformation of
y into x = c1x1 + · · ·+ crxr. This is a linear transformation and satisfies

Ax = c1Ax1 + · · ·+ crAxr = c1y1 + · · ·+ cryr = y.

Definition 3.1 Let A be an n by m matrix, and assume that y ∈ Sp(A).
If a solution to the linear equation Ax = y can be expressed as x = A−y,
an m by n matrix A− is called a generalized inverse (g-inverse) matrix of A.
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Theorem 3.1 The necessary and sufficient condition for an m by n matrix
A− to be a generalized inverse matrix of A is given by

AA−A = A. (3.1)

Proof. (Necessity) Let x = A−y denote a solution to Ax = y. Since
y ∈ Sp(A) can be expressed as y = Aα for some α, Ax = AA−y =
AA−Aα = Aα = y, which implies AA−A = A.

(Sufficiency) AA−A = A ⇒ AA−Aα = Aα. Define y = Aα. Then,
AA−y = y, from which a solution vector x = A−y is obtained. Q.E.D.

Property (3.1) was presented by Rao (1962) as the most comprehensive
property of a generalized inverse matrix and is often used as its definition.
Clearly, when A is square and nonsingular, the regular inverse A−1 of A
satisfies the property (3.1). This means that the regular inverse is a special
case of a generalized inverse. As is clear from the definition, generalized
inverse matrices can be defined even if A is not square.

Note Let a denote an arbitrary real number. A b that satisfies

aba = a

is given by b = a−1 when a 6= 0 and by b = k when a = 0, where k is any real
number. The equation above is a special case of (3.1), and a b that satisfies this
equation might be called a generalized reciprocal.

The defining property of a generalized inverse matrix given in (3.1) in-
dicates that, when y ∈ Sp(A), a linear transformation from y to x ∈ Em

is given by A−. However, even when y 6∈ Sp(A), A− can be defined as a
transformation from y to x as follows.

Let V = Sp(A), and let W̃ = Ker(A) denote the null space of A.
Furthermore, let W and Ṽ denote complement subspaces of V and W̃ , re-
spectively. Then,

En = V ⊕W and Em = Ṽ ⊕ W̃ . (3.2)

Let y = y1 + y2 be a decomposition of an arbitrary vector y ∈ En, where
y1 ∈ V and y2 ∈ W , and let x = x1 + x2 be a decomposition of x ∈ Em,
where x1 ∈ Ṽ and x2 ∈ W̃ . The transformation that maps y to x by
mapping y1 to x1 and y2 to x2 is a linear transformation from En to Em.
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We have Ax = A(x1 +x2) = Ax1 = y1 ∈ V = Sp(A). This transformation
from V to Ṽ is one-to-one, and so is the inverse transformation from Ṽ to V .
Hence, this inverse transformation from Ṽ to V is uniquely determined. Let
this inverse transformation be denoted by x1 = φ−V (y1). We then arbitrarily
choose a linear transformation from W̃ to W in such a way that x2 =
φ−M (y2). We define a transformation φ− that maps y ∈ En to x ∈ Em by

x = Φ−V (y1) + φ−M (y2) = φ−(y). (3.3)

We define the matrix representation of this linear transformation φ−, namely
A−, as a generalized inverse matrix of A. As is clear from this definition,
there is some arbitrariness in the choice of A− due to the arbitrariness in
the choice of W , Ṽ , and Φ−M . (See Figure 3.1.)

W̃ = Ker(A)

x

x1

x2

Ṽ

W

y

y1

y2

V = Sp(A)

¾
φ−V (y1)

¾
x = φ−(y) = A−y

¾ φ−M (y2)

Figure 3.1: Geometric representation of a generalized inverse A−. V and
W̃ are determined uniquely by A, but W and Ṽ are arbitrary except that
they satisfy (3.2). There is also some arbitrariness in the choice of φ−M .

Lemma 3.1 If y1 ∈ V and y2 ∈ W ,

φ−V (y1) = A−y1 and Φ−M (y2) = A−y2. (3.4)

Proof. Substitute y1 = y1+0 and y2 = 0+y2 in (3.3). Q.E.D.

Conversely, the following statement holds.

Theorem 3.2 Let A− be a generalized inverse of A, and let V = Sp(A)
and W̃ = Ker(A). Then there exist decompositions En = V ⊕ W and
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Em = Ṽ ⊕ W̃ . Let y ∈ En be decomposed as y = y1 + y2, where y1 ∈ V
and y2 ∈ W . Furthermore, let

x = A−y = x1 + x2 (where x1 ∈ Ṽ , x2 ∈ W̃ ). (3.5)

Then,
x1 = A−y1 and x2 = A−y2. (3.6)

Proof. Let En = V ⊕ W be an arbitrary direct-sum decomposition of
En. Let Sp(A−

V ) = Ṽ denote the image of V by φ−V . Since y ∈ Sp(A)
for any y such that y = y1 + y2, where y1 ∈ V and y2 ∈ W , we have
A−y1 = x1 ∈ Ṽ and Ax1 = y1. Also, if y1 6= 0, then y1 = Ax1 6= 0,
and so x1 6∈ W̃ or Ṽ ∩ W̃ = {0}. Furthermore, if x1 and x̃1 ∈ V but
x1 6= x̃1, then x1 − x̃1 6∈ W̃ , so that A(x1 − x̃1) 6= 0, which implies
Ax1 6= Ax̃1. Hence, the correspondence between V and Ṽ is one-to-one. Be-
cause dim(Ṽ ) = dim(V ) implies dim(W̃ ) = m−rank(A), we obtain Ṽ ⊕W̃ =
Em. Q.E.D.

Theorem 3.3 Let En = V ⊕W and Em = Ṽ ⊕ W̃ , where V = Sp(A) and
W = Ker(A). Let an arbitrary vector y ∈ En be decomposed as y = y1+y2,
where y1 ∈ V and y2 ∈ W . Suppose

A−y = A−y1 + A−y2 = x1 + x2 (3.7)

holds, where x1 ∈ Ṽ and x2 ∈ W̃ . Then the following three statements are
equivalent:

(i) A− is a generalized inverse of A.

(ii) AA− is the projector onto V along W .

(iii) A−A is the projector onto Ṽ along W̃ .

Proof. (i) → (ii): Since A− is a generalized inverse of A, we have A−y1 =
x1 and A−y2 = x2 by Theorem 3.2. Premultiplying (3.7) by A and taking
(3.6) into account, we obtain

AA−y1 = Ax1 = y1 and AA−y2 = Ax2 = 0,

establishing (ii) by Theorem 2.2.
(ii) → (iii): Ax1 = y1 ⇒ A−Ax1 = A−y1 = x1. On the other hand, for

x2 ∈ W̃ , we have Ax2 = 0 ⇒ A−Ax2 = 0, establishing (iii) by Theorem
2.2.
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(iii) → (i): Decompose y = y1 + y2, where y1 ∈ V and y2 ∈ W . Then,

A−y = A−y1 + A−y2 = x1 + x2,

where x1 ∈ Ṽ and x2 ∈ W̃ . Hence, A−Ax1 = x1 ⇒ A−y1 = x1 and
so A−y2 = x2. From the properties of a generalized inverse matrix shown
in Lemma 3.1 and Theorem 3.2, it is clear that A− is a generalized inverse of
A. Q.E.D.

3.2 General Properties

We examine various properties of a generalized inverse matrix A− that sat-
isfies (3.1).

3.2.1 Properties of generalized inverse matrices

Theorem 3.4 Let H = AA−, and let F = A−A. Then the following
relations hold:

H2 = H and F 2 = F , (3.8)

rank(H) = rank(F ) = rank(A), (3.9)

rank(A−) ≥ rank(A), (3.10)

rank(A−AA−) = rank(A). (3.11)

Proof. (3.8): Clear from the definition of generalized inverses.
(3.9): rank(A) ≥ rank(AA−) = rank(H), and rank(A) = rank(AA−A)

= rank(HA) ≤ rank(H), from which it follows that rank(A) = rank(H).
rank(F ) = rank(A) can be similarly proven.

(3.10): rank(A) = rank(AA−A) ≤ rank(AA−) ≤ rank(A−).
(3.11): rank(A−AA) ≤ rank(A−A). We also have rank(A−AA−) ≥

rank(A−AA−A) = rank(A−A), so that rank(A−AA−) = rank(A−A) =
rank(A). Q.E.D.

Example 3.1 Find a generalized inverse of A =

[
1 1
1 1

]
.

Solution. Let A− =

[
a b
c d

]
. From

[
1 1
1 1

] [
a b
c d

] [
1 1
1 1

]
=

[
1 1
1 1

]
,
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we must have a + b + c + d = 1. Hence,

A− =

[
a b
c 1− a− b− c

]
,

where a, b, and c are arbitrary.

Note As is clear from the example above, the generalized inverse A− of A is in
general not uniquely determined. When A− is not unique, the set of generalized

inverses of A is sometimes denoted as {A−}. For example, let A =
[

1 1
1 1

]
,

A1 =

[
1
4

1
4

1
4

1
4

]
, and A2 =

[
2 1

−1 −1

]
. Then, A1, A2 ∈ {A−}.

We next derive several basic theorems regarding A−.

Theorem 3.5 The following relations hold for a generalized inverse A− of
A:

{(A−)′} = {(A′)−}, (3.12)

A(A′A)−A′A = A, (3.13)

(A(A′A)−A′)′ = A(A′A)−A′. (3.14)

Proof. (3.12): AA−A = A ⇒ A′(A−)′A′ = A′. Hence, {(A−)′} ⊂
{(A′)−}. On the other hand, A′(A′)−A′ = A′, and so ((A′)−)′ ∈ {A−} ⇒
{(A′)−} ⊂ {(A−)′}. Thus, {(A−)′} = {(A′)−}.

(3.13): Let G = (In −A(A′A)−A′)A = A(In − (A′A)−A′A). Then,

G′G = (In − (A′A)−A′A)′(A′A−A′A(A′A)−A′A) = O.

Hence, G = O, leading to (3.13).
(3.14): Let G denote a generalized inverse of A′A. Then G′ is also a

generalized inverse of A′A, and S = (G + G′)/2 is a symmetric generalized
inverse of A′A. Let H = ASA′ − A(A′A)−A′. Then, using (3.13), we
obtain

H ′H = (ASA′ −A(A′A)−A′)′(ASA′ −A(A′A)−A′)
= (AS −A(A′A)−)′(A′ASA′ −A′A(A′A)−A′) = O.

Hence, H = O, leading to (3.14). Q.E.D.
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Corollary Let
P A = A(A′A)−A′ (3.15)

and
P A′ = A′(AA′)−A. (3.16)

Then P A and P A′ are the orthogonal projectors onto Sp(A) and Sp(A′).

Note If Sp(A) = Sp(Ã), then P A = P Ã. This implies that P A only depends
on Sp(A) but not the basis vectors spanning Sp(A). Hence, P A would have been
more accurately denoted as P Sp(A). However, to avoid notational clutter, we retain
the notation P A.

3.2.2 Representation of subspaces by generalized inverses

We start with the following lemma.

Lemma 3.2 Let A− denote an arbitrary generalized inverse of A. Then,

V = Sp(A) = Sp(AA−). (3.17)

Proof. That Sp(A) ⊃ Sp(AA−) is clear. On the other hand, from rank(A
×A−) ≥ rank(AA−A) = rank(A), we have Sp(AA−) ⊃ Sp(A) ⇒ Sp(A) =
Sp(AA−). Q.E.D.

Theorem 3.6 Using a generalized inverse A of A−, we can express any
complement subspace W of V = Sp(A) as

W = Sp(In −AA−). (3.18)

Proof. (Sufficiency) Let AA−x + (In −AA−)y = 0. Premultiplying both
sides by AA−, we obtain AA−x = 0, which implies (In − AA−)y = 0.
On the other hand, let P = AA−. Then, P 2 = P , and so rank(AA−) +
rank(In −AA−) = n. Hence, En = V ⊕W .

(Necessity) Let P = AA−. Then P 2 = P . From Lemma 2.1, the null
(annihilation) space of P is given by Sp(In −P ). Hence, Sp(P ) ∩ Sp(In −
P ) = {0}, and Sp(In−P ) gives a general expression for a complement sub-
space of Sp(P ), establishing (3.18). Q.E.D.
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Like Lemma 2.1, the following theorem is extremely useful in under-
standing generalized inverses in relation to linear transformations.

Lemma 3.3
Ker(A) = Ker(A−A), (3.19)

Ker(A) = Sp(In −A−A), (3.20)

and a complement space of W̃ = Ker(A) is given by

Ṽ = Sp(A−A), (3.21)

where A− is a generalized inverse of A.

Proof. (3.19): Ax = 0 ⇒ A−Ax = 0 ⇒ Ker(A) ⊂ Ker(A−A). On the
other hand, A−Ax = 0 ⇒ AA−Ax = Ax = 0 ⇒ Ker(A−A) ⊂ Ker(A).
Hence, Ker(A) = Ker(AA−).

(3.20): Use (3.19) and (2.4) in Lemma 2.1.
(3.21): Note that (Im −A−A)2 = Im −A−A. From Theorem 3.6, we

obtain {Ker(A)}c = Sp(Im−(Im−A−A)) = Sp(A−A). Q.E.D.

From Theorem 3.6 and Lemma 3.3, we obtain the following theorem.

Theorem 3.7 Let A be an m by n matrix. Then,

Sp(AA−)⊕ Sp(In −AA−) = En, (3.22)

Sp(A−A)⊕ Sp(Im −A−A) = Em. (3.23)

Proof. Clear from Ker(AA−) = Sp(In−AA−) and Ker(A−A) = Sp(Im−
A−A). Q.E.D.

Note Equation (3.22) corresponds to En = V ⊕ W , and (3.23) corresponds to
Em = Ṽ ⊕ W̃ . A complement subspace W = Sp(In − AA−) of V = Sp(A) =
Sp(AA−) in En is not uniquely determined. However, the null space (kernel) of A,
W̃ = Sp(Im−A−A) = Sp(Im−A′(AA′)−A) = Sp(A′)⊥, is uniquely determined,
although a complement subspace of W̃ , namely Ṽ = Sp(A−A), is not uniquely
determined. (See Example 3.2.)

Note Equation (3.23) means

rank(A−A) + rank(Im −A−A) = m
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and that (1.55) in Theorem 1.9 holds from rank(A−A) = rank(A) and rank(Im −
A−A) = dim(Sp(Im −A−A)) = dim(Ker(A)).

Example 3.2 Let A =

[
1 1
1 1

]
. Find (i) W = Sp(I2 −AA−), (ii) W̃ =

Sp(I2 −A−A), and (iii) Ṽ = Sp(A−A).

Solution (i): From Example 3.1,

A− =

[
a b
c 1− a− b− c

]
.

Hence,

I2 −AA− =

[
1 0
0 1

]
−

[
1 1
1 1

] [
a b
c 1− a− b− c

]

=

[
1 0
0 1

]
−

[
a + c 1− a− c
a + c 1− a− b− c

]

=

[
1− a− c −(1− a− c)
−(a + c) a + c

]
.

Let x = 1− (a + c). Then W = Sp(I2 −AA−) is the unidimensional space
spanned by vector (x, x − 1)′. (Since x can take any value, Sp(I2 −AA−)
is not uniquely determined.)

(ii): We have

I2 −A−A =

[
1− a− b −(a + b)

−(1− a− b) a + b

]

=

[
1 −1

−1 1

] [
1− a− b 0

0 a + b

]
.

Hence, W̃ = Sp(I2 −A−A) is the unidimensional space Y = −X spanned
by (1,−1)′, which is uniquely determined.

(iii): We have

A−A =

[
a b
c 1− a− b− c

] [
1 1
1 1

]

=

[
a + b a + b

1− a− b 1− a− b

]
.
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Let a + b = x. Then Sp(A−A) is generated by the two-component vector
(x, 1− x)′. Since x can take any value, it is not uniquely determined.

Note Sp(A) is spanned by (1, 1)′, and so it is represented by a line Y = X pass-
ing through the origin. Its complement subspace is a line connecting (0,0) and an
arbitrary point P1(X,X − 1) on Y = X − 1 (Figure 3.2).

Note Since W̃ = Ker(A) = {(1,−1)′}, Ṽ = Sp(A−A) is represented by a line
connecting the origin and an arbitrary point P2(X, 1 −X) on the line Y = 1 −X

(Figure 3.3).

1 

−1 

0 

Y

XW = Sp(I2 −AA−)

@
@R

V = Sp(A)

@R

Y = X Y = X − 1

P1(X, X − 1)

Figure 3.2: Representation of
E2 = V ⊕W by a line.

1 

1 

0 

Y

X

Y = −X

Y = 1−X

W̃ = Ker(A)

¡µ
Ṽ = Sp(A−A)

P2(X, 1−X)

¡ª

Figure 3.3: Representation of
E2 = Ṽ ⊕ W̃ by a line.

3.2.3 Generalized inverses and linear equations

We use theorems in the previous section to represent solutions to linear
equations in terms of generalized inverse matrices.

Theorem 3.8 Let Ax = b, and suppose b ∈ Sp(A). Then,

x = A−b + (Im −A−A)z, (3.24)

where z is an arbitrary m-component vector.

Proof. Let b ∈ Sp(A) and x1 = A−b. Then, Ax1 = b. On the other hand,
from (3.20), a solution to Ax0 = 0 is given by x0 = (Im−A−A)z. Equation
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(3.24) is obtained by x = x1 +x0. Conversely, it is clear that (3.24) satisfies
Ax = b. Q.E.D.

Corollary The necessary and sufficient condition for Ax = b to have a
solution is

AA−b = b. (3.25)

Proof. The sufficiency is obvious. The necessity can be shown by substitut-
ing Ax = b into AA−Ax = Ax. Q.E.D.

The corollary above can be generalized as follows.

Theorem 3.9 The necessary and sufficient condition for

AXB = C (3.26)

to have a solution is
AA−CB−B = C. (3.27)

Proof. The sufficiency can be shown by setting X = A−CB− in (3.26).
The necessity can be shown by pre- and postmultiplying AXB = C by
AA− and B−B, respectively, to obtain AA−AXBB−B = AXB =
AA−CB−B. Q.E.D.

Note Let A, B, and C be n by p, q by r, and n by r matrices, respectively.
Then X is a p by q matrix. When q = r, and B is the identity matrix of order
q, the necessary and sufficient condition for AX = C to have a general solution
X = A−C + (Ip −A−A)Z, where Z is an arbitrary square matrix of order p, is
given by AA−C = C. When, on the other hand, n = p, and A is the identity
matrix of order p, the necessary and sufficient condition for XB = C to have a
general solution X = CB−+Z(Iq−BB−), where Z is an arbitrary square matrix
of order q, is given by CB−B = C.

Clearly,
X = A−CB− (3.28)

is a solution to (3.26). In addition,

X = A−CB− + (Ip −A−A)Z1 + Z2(Iq −BB−) (3.29)
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also satisfies (3.26), which can be derived from

X1 = (Ip −A−A)Z1 and X2 = Z2(Iq −BB−),

which satisfy AX1 = O and X2B = O, respectively. Furthermore,

X = A−CB− + Z −A−AZBB− (3.30)

also satisfies (3.26), which is obtained by setting Z2 = A−AZ and Z1 = Z
in (3.29). If we use A for both B and C in the equation above, we obtain
the following theorem.

Theorem 3.10 Let A− denote a generalized inverse of an n by m matrix
A. Then,

G = A− + Z −A−AZAA− (3.31)

and
G = A− + Z1(In −AA−) + (Im −A−A)Z2 (3.32)

are both generalized inverses of A, where Z, Z1, and Z2 are arbitrary m by
n matrices. (Proof omitted.)

We give a fundamental theorem on inclusion relations between subspaces
and the corresponding generalized inverses.

Theorem 3.11
Sp(A) ⊃ Sp(B) =⇒ AA−B = B (3.33)

and
Sp(A′) ⊃ Sp(B′) =⇒ BA−A = B. (3.34)

Proof. (3.33): Sp(A) ⊃ Sp(B) implies that there exists a W such that
B = AW . Hence, AA−B = AA−AW = AW = B.

(3.34): We have A′(A′)−B′ = B′ from (3.33). Transposing both sides,
we obtain B = B((A′)−)′A, from which we obtain B = BA−A because
(A′)− = (A−)′ from (3.12) in Theorem 3.5. Q.E.D.

Theorem 3.12 When Sp(A+B) ⊃ Sp(B) and Sp(A′+B′) ⊃ Sp(B′), the
following statements hold (Rao and Mitra, 1971):

A(A + B)−B = B(A + B)−A, (3.35)
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A− + B− ∈ {(A(A + B)−B)−}, (3.36)

and
Sp(A) ∩ Sp(B) = Sp(A(A + B)−B). (3.37)

Proof. (3.35): This is clear from the following relation:

A(A + B)−B = (A + B −B)(A + B)−B

= (A + B)(A + B)−B −B(A + B)−(A + B)
+B(A + B)−A

= B −B + B(A + B)−A = B(A + B)−A.

(3.36): Clear from

A(A + B)−B(A− + B−)A(A + B)−B

= (B(A + B)−AA− + A(A + B)−BB−)A(A + B)−B

= B(A + B)−A(A + B)−B + A(A + B)−B(A + B)−A

= B(A + B)−A(A + B)−B + A(A + B)−A(A + B)−B

= (A + B)(A + B)−A(A + B)−B = A(A + B)−B.

(3.37): That Sp(A(A + B)−B) ⊂ Sp(A) ∩ Sp(B) is clear from A(A +
B)−B = B(A + B)−A. On the other hand, let Sp(A)∩ Sp(B) = Sp(AX|
AX = BY ), where X = (A+B)−B and Y = (A+B)−A. Then, Sp(A)∩
Sp(B) ⊂ Sp(AX)∩Sp(BY ) = Sp(A(A+B)−B). Q.E.D.

Statement (3.35) is called the parallel sum of matrices A and B.

3.2.4 Generalized inverses of partitioned square matrices

In Section 1.4, we showed that the (regular) inverse of a symmetric nonsin-
gular matrix

M =

[
A B
B′ C

]
(3.38)

is given by (1.71) or (1.72). In this section, we consider a generalized inverse
of M that may be singular.

Lemma 3.4 Let A be symmetric and such that Sp(A) ⊃ Sp(B). Then the
following propositions hold:

AA−B = B, (3.39)
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B′A−A = B′, (3.40)

and
(B′A−B)′ = B′A−B (B′A−B is symmetric). (3.41)

Proof. Propositions (3.39) and (3.40) are clear from Theorem 3.11.
(3.41): Let B = AW . Then, B′A−B = W ′A′A−AW = W ′AA−AW

= W ′AW , which is symmetric. Q.E.D.

Theorem 3.13 Let

H =

[
X Y
Y ′ Z

]
(3.42)

represent a symmetric generalized inverse of M defined in (3.38). If Sp(A)
⊃ Sp(B), X, Y , and Z satisfy

A = AXA + BY ′A + AY B′ + BZB′, (3.43)

(AY + BZ)D = O, where D = C −B′A−B, (3.44)

and
Z = D− = (C −B′A−B)−, (3.45)

and if Sp(C) ⊃ Sp(B′), they satisfy

C = (B′X + CY ′)B + (B′Y + CZ)C, (3.46)

(AX + BY ′)E = O, where E = A−BC−B′, (3.47)

and
X = E− = (A−BC−B′)−. (3.48)

Proof. From MHM = M , we obtain

(AX + BY ′)A + (AY + BZ)B′ = A, (3.49)

(AX + BY ′)B + (AY + BZ)C = B, (3.50)

and
(B′X + CY ′)B + (B′Y + CZ)C = C. (3.51)

Postmultiply (3.49) by A−B and subtract it from (3.50). Then, by noting
AA−B = B, we obtain (AY + BZ)(C − B′A−B) = O, which implies
(AY + BZ)D = O, so that

AY D = −BZD. (3.52)
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Premultiply (3.50) by B′A− and subtract it from (3.51). We obtain

D(Y ′B + ZC − Ip) = O (3.53)

by noting B′A−A = B′, D′ = D ((3.40) in Lemma 3.4), C = C ′, and
Z = Z ′. Hence, we have D = CZD + B′Y D = CZ ′D + B′A−AY D.
We substitute (3.52) into this to obtain D = CZD −B′A−BZD = (C −
B′A−B)ZD = DZD, implying Z = D−, from which (3.43), (3.44), and
(3.45) follow. Equations (3.46), (3.47), and (3.48) follow similarly by deriv-
ing equations analogous to (3.52) and (3.53) by (3.50) − BC−× (3.51), and
(3.49)− (3.50)×C−B′. Q.E.D.

Corollary 1 H defined in (3.42) can be expressed as
[

A− + A−BD−B′A− −A−BD−

−D−B′A− D−

]
, (3.54)

where D = C −B′A−B, or by
[

E− −E−BC−

−C−B′E− C− + C−B′E−BC−

]
, (3.55)

where E = A−BC−B′.

Proof. It is clear from AY D = −BZD and AA−B = B that Y =
−A−BZ is a solution. Hence, AY B′ = −AA−BZB′ = −BZB′, and
BY ′A = B(AY )′ = B(−AA−BZ)′ = −BZB′. Substituting these into
(3.43) yields

A = AXA−BZB′ = AXA−BD−B′.

The equation above shows that X = A− + A−BD−B′A− satisfies (3.43),
indicating that (3.54) gives an expression for H. Equation (3.55) can be de-
rived similarly using (3.46) through (3.48). Q.E.D.

Corollary 2 Let

F =

[
C1 C2

C ′
2 −C3

]
(3.56)

be a generalized inverse of

N =

[
A B
B′ O

]
.
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When Sp(A) ⊃ Sp(B), we have

C1 = A− −A−B(B′A−B)−B′A−,

C2 = A−B(B′A−B)−, (3.57)
C3 = (B′A−B)−.

We omit the case in which Sp(A) ⊃ Sp(B) does not necessarily hold in
Theorem 3.13. (This is a little complicated but is left as an exercise for the
reader.) Let

F̃ =

[
C̃1 C̃2

C̃
′
2 −C̃3

]

be a generalized inverse of N defined above. Then,

C̃1 = T− − T−B(B′T−B)−B′T−,

C̃2 = T−B(B′T−B)−, (3.58)
C̃3 = −U + (B′T−B)−,

where T = A + BUB′, and U is an arbitrary matrix such that Sp(T ) ⊃
Sp(A) and Sp(T ) ⊃ Sp(B) (Rao, 1973).

3.3 A Variety of Generalized Inverse Matrices

As is clear from (3.46) in Theorem 3.13, a generalized inverse A− of a given
matrix A is not uniquely determined. The definition of the generalized in-
verse given in Theorem 3.2 allows arbitrariness in

(i) the choice of the complement space W of V ,

(ii) the choice of the complement space Ṽ of W̃ , and

(iii) the choice of the subspace W̃r of W̃ , including the choice of its dimen-
sionality r,

despite the fact that W̃ = Ker(A) is uniquely determined for V = Sp(A).
Let W in (i) and Ṽ in (ii) above be chosen so that En = V ⊕ W and
Em = Ṽ ⊕ W̃ , respectively. Then AA− is the projector onto V along W ,
and A−A is the projector onto Ṽ along W̃ . That is,

AA− = P V ·W (3.59)

and
A−A = P Ṽ ·W̃ . (3.60)
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3.3.1 Reflexive generalized inverse matrices

By the method presented in the previous section, we know AA− is the
projector onto V along W (i.e., P V ·W ), and A−A is the projector onto Ṽ
along W̃ (i.e., P Ṽ ·W̃ ). However, φ−(y), an inverse transformation of an
arbitrary n-component vector y ∈ En, is not uniquely determined because
there is some arbitrariness in the choice of φ−M (y2) = A−y2 ∈ Ker(A),
where y2 is such that

y = y1 + y2,

y1 ∈ V , and y2 ∈ W . Hence, an A− that satisfies P V ·W = AA− and
P W ·V = A−A is not uniquely determined. We therefore consider the condi-
tion under which A− is uniquely determined for a given A and that satisfies
the conditions above.

For an arbitrary y ∈ En, we have y1 = AA−y ∈ Sp(A) and y2 =
(In −AA−)y ∈ Sp(A)c. Let A− be an arbitrary generalized inverse of A.
From Theorem 3.2, we have

x = A−Ay = A−y1 + A−y2

= A−(AA−y) + A−(In −AA−)y
= (A−A)A−y + (In −A−A)A−y = x1 + x2, (3.61)

where x1 ∈ Ṽ = Sp(A−A) and x2 ∈ W̃ = Ker(A) = Sp(In −AA−). On
the other hand,

W̃r = Sp((Im −A−A)A−) ⊂ Sp(Im −A−A) = Ker(A). (3.62)

Hence, A− transforms y1 ∈ Sp(A) into x1 ∈ Sp(A−A), and y2 ∈ Sp(In −
AA−) into x2 ∈ W = Ker(A). However, the latter mapping is not surjec-
tive. This allows an arbitrary choice of the dimensionality r in W̃r ⊂ W̃ =
Ker(A). Let r = 0, namely W̃r = {0}. Then, (Im −A−A)A− = O, and it
follows that

A−AA− = A−. (3.63)

Definition 3.2 A generalized inverse A− that satisfies both (3.1) and (3.63)
is called a reflexive g-inverse matrix of A and is denoted as A−

r .

As is clear from the proof of Theorem 3.3, A− that satisfies

x2 = A−y2 = 0 (3.64)
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is a reflexive g-inverse of A, which transforms y ∈ V = Sp(A) into x1 ∈
Ṽ = Sp(A−A) since A−y = A−y1 + A−y2 = A−y1 = x1. Furthermore,
A−

r is uniquely determined only if W such that En = V ⊕W and Ṽ such
that Em = Ṽ ⊕ W̃ are simultaneously determined. In general, A−

r is not
uniquely determined because of the arbitrariness in the choice of W and Ṽ .

Note That A−y = 0 ⇔ A−AA− = A− can be shown as follows. From Theorem
3.2, we have AA−y1 = y1 ⇒ A−AA−y1 = A−y1. Furthermore, since AA−y2 =
0 ⇒ A−AA−y2 = 0, we have A−AA−(y1 + y2) = A−y1, the left-hand side of
which is equal to A−AA−y. If we add A−y2 to the right-hand side, we obtain
A−y1 + A−y2 = A−y, and so A−AA−y = A−y. Since this has to hold for any
y, it must hold that A−AA− = A−.

Conversely, from Lemma 3.2, we have y2 = (In −AA−)y. Thus, A−AA− =
A− ⇒ A−y2 = A−(In −AA−)y = 0.

Theorem 3.14 The following relation holds for a generalized inverse A−

that satisfies (3.1):

A−AA− = A− ⇐⇒ rank(A) = rank(A−). (3.65)

Proof. (⇒): Clear from (3.11).
(⇐): Decompose A− as A− = (Im − A−A)A− + A−AA−. Since

Sp(Im − A−A) ∩ Sp(A−A) = {0}, we have rank(A−) = rank((Im −
A−A)A−) + rank(A−AA−). From rank(A−AA−) = rank(A), we ob-
tain rank((Im − A−A)A−) = 0 ⇒ (Im − A−A)A− = O, which implies
A−AA− = A−. Q.E.D.

Example 3.3 Let

A =

[
A11 A12

A21 A22

]
,

where A11 is of order r and nonsingular. Let the rank of A be r. Then,

G =

[
A−1

11 O
O O

]

is a reflexive g-inverse of A because rank(G) = rank(A) = r, and

AGA =

[
A11 A12

A21 A21A
−1
11 A12,

]
,
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where A21A
−1
11 A12 = A22, and so AGA = A, since

[
A11

A21

]
W =

[
A12

A22

]
,

and so A11W = A12 and A21W = A22. For example,

A =




3 2 1
2 2 2
1 2 3




is a symmetric matrix of rank 2. One expression of a reflexive g-inverse A−
r

of A is given by



[
3 2
2 2

]−1
0
0(

0 0
)

0


 =




1 −1 0
−1 3

2 0
0 0 0


.

Example 3.4 Obtain a reflexive g-inverse A−
r of A =

[
1 1
1 1

]
.

AA−
r A = A implies a + b + c + d = 1. An additional condition may be

derived from [
a b
c d

] [
1 1
1 1

] [
a b
c d

]
=

[
a b
c d

]
.

It may also be derived from rank(A) = 1, which implies rank(A−
r ) = 1. It

follows that det(A−
r ) = ad− bc = 0. A set of a, b, c, and d that satisfies both

a + b + c + d = 1 and ad− bc = 0 defines a 2 by 2 square matrix A−
r .

3.3.2 Minimum norm generalized inverse matrices

Let Em be decomposed as Em = Ṽ ⊕ W̃ , where W̃ = Ker(A), in Definition
3.3. If we choose Ṽ = W̃⊥ (that is, when Ṽ and W̃ are orthogonal), A−A =
P Ṽ ·W̃ becomes an orthogonal projector, and it holds that

(A−A)′ = A−A. (3.66)

Since Ṽ = Sp(A−A) and W̃ = Sp(Im −A−A) from Lemmas 3.1 and 3.2,
(3.66) can also be derived from

(A−A)′(Im −A−A) = O ⇐⇒ (A−A)′ = A−A. (3.67)

Let Ax = y be a linear equation, where y ∈ Sp(A). Since y1 = Ax ∈
Sp(A) implies y = y1 + y2 = y1 + 0 = y1, we obtain

x̃ = A−y = A−y1 = A−Ax. (3.68)
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Let P = A−A be a projection matrix, and let P ∗ denote an orthogonal
projector that satisfies P ′ = P . From Theorem 2.22, we have

P ′ = P ⇐⇒ ||x̃|| = ||Px|| ≤ ||x||, (3.69)

which indicates that the norm of x takes a minimum value ||x|| = ||P ∗y||
when P ′ = P . That is, although infinitely many solutions exist for x in the
linear equation Ax = y, where y ∈ Sp(A) and A is an n by m matrix of
rank(A) < m, x = A−y gives a solution associated with the minimum sum
of squares of elements when A− satisfies (3.66).

Definition 3.3 An A− that satisfies both AA−A = A and (A−A)′ = A−A
is called a minimum norm g-inverse of A, and is denoted by A−

m (Rao and
Mitra, 1971).

The following theorem holds for a minimum norm g-inverse A−
m.

Theorem 3.15 The following three conditions are equivalent:

A−
mA = (A−

mA)′ and AA−
mA = A, (3.70)

A−
mAA′ = A′, (3.71)

A−
mA = A′(AA′)−A. (3.72)

Proof. (3.70) ⇒ (3.71): (AA−
mA)′ = A′ ⇒ (A−

mA)′A′ = A′ ⇒ A−
mAA′ =

A′.
(3.71) ⇒ (3.72): Postmultiply both sides of A−

mAA′ = A′ by (AA′)−A.
(3.72) ⇒ (3.70): Use A′(AA′)−AA′ = A′, and (A′(AA′)−A)′ = A′(A

×A′)−A obtained by replacing A by A′ in Theorem 3.5. Q.E.D.

Note Since (A−
mA)′(Im − A−

mA) = O, A−
mA = A′(AA′)−A is the orthogonal

projector onto Sp(A′).

When either one of the conditions in Theorem 3.15 holds, Ṽ and W̃ are
ortho-complementary subspaces of each other in the direct-sum decompo-
sition Em = Ṽ ∩W̃ . In this case, Ṽ = Sp(A−

mA) = Sp(A′) holds from (3.72).
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Note By Theorem 3.15, one expression for A−
m is given by A′(AA′)−. In this

case, rank(A−
m) = rank(A) holds. Let Z be an arbitrary m by n matrix. Then the

following relation holds:

A−
m = A′(AA′)− + Z[In −AA′(AA′)−]. (3.73)

Let x = A−
mb be a solution to Ax = b. Then, AA′(AA′)−b = AA′(AA′)−Ax =

Ax = b. Hence, we obtain
x = A′(AA′)−b. (3.74)

The first term in (3.73) belongs to Ṽ = Sp(A′) and the second term to W̃ = Ṽ ⊥, and
we have in general Sp(A−

m) ⊃ Sp(A′), or rank(A−
m) ≥ rank(A′). A minimum norm

g-inverse that satisfies rank(A−
m) = rank(A) is called a minimum norm reflexive

g-inverse and is denoted by

A−
mr = A′(AA′)−. (3.75)

Note Equation (3.74) can also be obtained directly by finding x that minimizes x′x
under Ax = b. Let λ = (λ1, λ2, · · · , λp)′ denote a vector of Lagrange multipliers,
and define

f(x,λ) =
1
2
x′x− (Ax− b)′λ.

Differentiating f with respect to (the elements of) x and setting the results to zero,
we obtain x = A′λ. Substituting this into Ax = b, we obtain b = AA′λ, from
which λ = (AA′)−b + [In − (AA′)−(AA′)]z is derived, where z is an arbitrary
m-component vector. Hence, we obtain x = A′(AA′)−b.

The solution above amounts to obtaining x that satisfies both x = A′λ
and Ax = b, that is, to solving the simultaneous equation

[
Im A′

A O

] [
x
−λ

]
=

[
0
b

]

for the unknown vector

[
x
−λ

]
.

Let [
Im A
A′ O

]−
=

[
C1 C2

C ′
2 C3

]
.

From Sp(Im) ⊃ Sp(A) and the corollary of Theorem 3.13, we obtain (3.74)
because C2 = A′(AA′)−.
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Example 3.5 Solving a simultaneous equation in three unknowns,

x + y − 2z = 2, x− 2y + z = −1, −2x + y + z = −1,

we obtain
x = k + 1, y = k + 1, and z = k.

We therefore have

x2 + y2 + z2 = (k + 1)2 + (k + 1)2 + k2

= 3k2 + 4k + 2 = 3
(

k +
2
3

)2

+
2
3
≥ 2

3
.

Hence, the solution obtained by setting k = −2
3 (that is, x = 1

3 , y = 1
3 , and

z = −2
3) minimizes x2 + y2 + z2.

Let us derive the solution above via a minimum norm g-inverse. Let
Ax = y denote the simultaneous equation above in three unknowns. Then,

A =




1 1 −2
1 −2 1

−2 1 1


, x =




x
y
z


, and b =




2
−1
−1


.

A minimum norm reflexive g-inverse of A, on the other hand, is, according
to (3.75), given by

A−
mr = A′(AA′)− =

1
3




1 1 0
0 −1 0

−1 0 0


.

Hence,

x = A−
mrb =

(
1
3
,
1
3
,−2

3

)′
.

(Verify that the A−
mr above satisfies AA−

mrA = A, (A−
mrA)′ = A−

mrA, and
A−

mrAA−
mr = A−

mr.)

3.3.3 Least squares generalized inverse matrices

As has already been mentioned, the necessary and sufficient condition for
the simultaneous equation Ax = y to have a solution is y ∈ Sp(A). When,
on the other hand, y 6∈ Sp(A), no solution vector x exists. We therefore
consider obtaining x∗ that satisfies

||y −Ax∗||2 = min
x∈Em

||y −Ax||2. (3.76)
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Let y = y0 + y1, where y ∈ En, y0 ∈ V = Sp(A), and y1 ∈ W =
Sp(In − AA−). Then a solution vector to Ax = y0 can be expressed as
x = A−y0 using an arbitrary g-inverse A−. Since y0 = y − y1, we have
x = A−y0 = A−(y − y1) = A−y − A−y1. Furthermore, since y1 =
(In −AA−)y, we have

Ax = AA−y −AA−(In −AA−)y = AA−y.

Let P A denote the orthogonal projector onto Sp(A). From

||Ax− y||2 =
||(In −AA−)y||2 ≥ ||(In − P A)(In −AA−)y||2 = ||(In − P A)y||2,

A− that minimizes ||Ax− y|| satisfies AA− = P A. That is,

(AA−)′ = AA−. (3.77)

In this case, V and W are orthogonal, and the projector onto V along W ,
P V ·W = P V ·V ⊥ = AA−, becomes an orthogonal projector.

Definition 3.4 A generalized inverse A− that satisfies both AA−A = A
and (AA′)′ = AA− is called a least squares g-inverse matrix of A and is
denoted as A−

` (Rao and Mitra, 1971).

The following theorem holds for a least squares g-inverse.

Theorem 3.16 The following three conditions are equivalent:

AA−
` A = A and (AA−

` )′ = AA−
` , (3.78)

A′AA−
` = A′, (3.79)

AA−
` = A(A′A)−A′. (3.80)

Proof. (3.78) ⇒ (3.79): (AA−
` A)′ = A′ ⇒ A′(AA−

` )′ = A′ ⇒ A′AA−
` =

A′.
(3.79) ⇒ (3.80): Premultiply both sides of A′AA−

` = A′ by A(A′A)−,
and use the result in Theorem 3.5.

(3.80) ⇒ (3.78): Similarly, clear from Theorem 3.5. Q.E.D.
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Similarly to a minimum norm g-inverse A−
m, a general form of a least

squares g-inverse is given by

A−
` = (A′A)−A′ + [Im − (A′A)−A′A]Z, (3.81)

where Z is an arbitrary m by n matrix. In this case, we generally have
rank(A−

` ) ≥ rank(A). A least squares reflexive g-inverse that satisfies
rank(A−

` ) = rank(A) is given by

A−
`r = (A′A)−A′. (3.82)

We next prove a theorem that shows the relationship between a least
squares g-inverse and a minimum norm g-inverse.

Theorem 3.17
{(A′)−m} = {(A−

` )}. (3.83)

Proof. AA−
` A = A ⇒ A′(A−

` )′A′ = A′. Furthermore, (AA−
` )′ =

AA−
` ⇒ (A−

` )′A′ = ((A−
` )′A′)′. Hence, from Theorem 3.15, (A−

` )′ ∈
{(A′)−m}. On the other hand, from A′(A′)−mA′ = A′ and ((A′)−mA′)′ =
(A′)−mA′, we have

A((A′)−m)′ = (A((A′)−m)′)′.

Hence,
((A′)−m)′ ∈ {A−

` } ⇒ (A′)−m ∈ {(A−
` )′},

resulting in (3.83). Q.E.D.

Example 3.6 The simultaneous equations x + y = 2, x − 2y = 1, and
−2x + y = 0 obviously have no solution. Let

A =




1 1
1 −2

−2 1


, z =

[
x
y

]
, and b =




2
1
0


.

The z that minimizes ||b−Ax||2 is given by

z = A−
`rb = (A′A)−A′b.

In this case, we have

A−
`r =

1
3

[
1 0 −1
1 −1 0

]
.
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Hence,

z =

[
x
y

]
=

1
3

[
2
1

]
, Az =




1
0

−1


.

The minimum is given by ||b−Az||2 = (2−1)2 +(1−0)2 +(0− (−1))2 = 3.

3.3.4 The Moore-Penrose generalized inverse matrix

The kinds of generalized inverses discussed so far, reflexive g-inverses, min-
imum norm g-inverses, and least squares g-inverses, are not uniquely deter-
mined for a given matrix A. However, A− that satisfies (3.59) and (3.60)
is determinable under the direct-sum decompositions En = V ⊕ W and
Em = Ṽ ⊕ W̃ , so that if A− is a reflexive g-inverse (i.e., A−AA− = A−),
it can be uniquely determined. If in addition W = V ⊥ and Ṽ = W̃⊥, then
clearly (3.66) and (3.77) hold, and the following definition can be given.

Definition 3.5 Matrix A+ that satisfies all of the following conditions
is called the Moore-Penrose g-inverse matrix of A (Moore, 1920; Penrose,
1955), hereafter called merely the Moore-Penrose inverse:

AA+A = A, (3.84)

A+AA+ = A+, (3.85)

(AA+)′ = AA+, (3.86)

(A+A)′ = A+A. (3.87)

From the properties given in (3.86) and (3.87), we have (AA+)′(In−AA+) =
O and (A+A)′(Im −A+A) = O, and so

P A = AA+ and P A+ = A+A (3.88)

are the orthogonal projectors onto Sp(A) and Sp(A+), respectively. (Note
that (A+)+ = A.) This means that the Moore-Penrose inverse can also be
defined through (3.88). The definition using (3.84) through (3.87) was given
by Penrose (1955), and the one using (3.88) was given by Moore (1920). If
the reflexivity does not hold (i.e., A+AA+ 6= A+), P A+ = A+A is the
orthogonal projector onto Sp(A′) but not necessarily onto Sp(A+). This
may be summarized in the following theorem.
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Theorem 3.18 Let P A, P A′, and P G be the orthogonal projectors onto
Sp(A), Sp(A′), and Sp(G), respectively. Then,

(i) AG = P A, GA = P G ⇐⇒ AGA = A, GAG = G,
(AG)′ = AG, (GA)′ = GA.

(ii) AG = P A, GA = P A′ ⇐⇒ AGA = A, (AG)′ = AG, (GA)′ = GA.

(Proof omitted.)

Theorem 3.19 The necessary and sufficient condition for A− in x = A−b
to minimize ||Ax− b|| is A− = A+.

Proof. (Sufficiency) The x that minimizes ||Ax− b|| can be expressed as

x = A+b + (Im −A+A)z, (3.89)

where z is an arbitrary m-component vector.
Furthermore, from (3.20) we have Sp(Im −A+A) = Ker(A), and from

the fact that A+ is a reflexive g-inverse, we have Sp(A+) = Sp(A+A).
From the fact that A+ is also a minimum norm g-inverse, we have Em =
Sp(A+)

·⊕ Sp(Im − A+A), which together imply that the two vectors in
(3.89), A+b and (Im −A+A)b, are mutually orthogonal. We thus obtain

||x||2 = ||A+b||2 + ||(Im −A+A)z||2 ≥ ||A+b||2, (3.90)

indicating that ||A+b||2 does not exceed ||x||2.
(Necessity) Assume that A+b gives the minimum norm ||x|| among all

possible x’s. Then A+ that satisfies

||A+b||2 ≤ ||x||2 = ||A+b + (Im −A+A)z||2

also satisfies

(A+)′(Im −A+A) = O ⇐⇒ (A+)′A+A = (A+)′.

Hence, by pre- and postmultiplying both sides of (A+)′A+A = (A+)′ by
(AA+− In)′ and A+, respectively, we obtain (A+AA+−A+)′(A+AA+−
A+) = O after some manipulation. Furthermore, by premultiplying both
sides of (A+)′A+A = (A+)′ by A′, we obtain (A+A)′ = A+A. The remain-
ing two conditions, AA+A = A and (A′A+)′ = AA+, can be derived from
the fact that A+ is also a least squares g-inverse. Q.E.D.
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We next introduce a theorem that shows the uniqueness of the Moore-
Penrose inverse.

Theorem 3.20 The Moore-Penrose inverse of A that satisfies the four con-
ditions (3.84) through (3.87) in Definition 3.5 is uniquely determined.

Proof. Let X and Y represent the Moore-Penrose inverses of A. Then,
X = XAX = (XA)′X = A′X ′X = A′Y ′A′X ′X = A′Y ′XAX =
A′Y ′X = Y AX = Y AY AX = Y Y ′A′X ′A′ = Y Y ′A′ = Y AY = Y .
(This proof is due to Kalman (1976).) Q.E.D.

We now consider expressions of the Moore-Penrose inverse.

Theorem 3.21 The Moore-Penrose inverse of A can be expressed as

A+ = A′A(A′AA′A)−A′. (3.91)

Proof. Since x = A+b minimizes ||b −Ax||, it satisfies the normal equa-
tion A′Ax = A′b. To minimize ||x||2 under this condition, we consider
f(x,λ) = x′x − 2λ′(AA − A′b), where λ = (λ1, λ2, · · · , λm)′ is a vector
of Lagrangean multipliers. We differentiate f with respect to x, set the re-
sult to zero, and obtain x = A′Aλ ⇒ A′Aλ = A+b. Premultiplying both
sides of this equation by A′A(A′AA′A)−A′A, we obtain A′AA+ = A′ and
A′A(A′AA′A)−A′AA′ = A′, leading to A′Aλ = A′A(A′AA′A)−A′b =
x, thereby establishing (3.91). Q.E.D.

Note Since Ax = AA+b implies A′Ax = A′AA+b = A′b, it is also possible to
minimize x′x subject to the condition that A′Ax = A′b. Let λ̃ = (λ̃1, λ̃2, · · · , λ̃m)′,
and define f(x, λ) = x′x− 2λ′(A′Ax−A′b). Differentiating f with respect to x
and λ, and setting the results to zero, we obtain x = A′Aλ and A′Ax = b.

Combining these two equations, we obtain
[

Im A′A
A′A O

] [
x
λ

]
=

[
0

A′b

]
.

Solving this equation using the corollary of Theorem 3.13, we also obtain (3.91).

Corollary
A+ = A′(AA′)−A(A′A)−A′. (3.92)

Proof. We use the fact that (A′A)−A′(AA′)−A(A′A)− is a g-inverse of
A′AA′A, which can be seen from

A′AA′A(A′A)−A′(AA′)−A(A′A)−A′AA′A
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= A′AA′(AA′)−A(A′A)−A′AA′A
= A′A(A′A)−A′AA′A = A′AA′A.

Q.E.D.

Example 3.7 Find A−
` , A−

m, and A+ for A =

[
1 1
1 1

]
.

Let A− =

[
a b
c d

]
. From AA−A = A, we obtain a + b + c + d = 1. A

least squares g-inverse A−
` is given by

A−
` =

[
a b

1
2 − a 1

2 − b

]
.

This is because
[

1 1
1 1

] [
a b
c d

]
=

[
a + c b + d
a + c b + d

]

is symmetric, which implies a+c = b+d. This, combined with a+b+c+d = 1,
yields c = 1

2 − a and d = 1
2 − b.

Similarly, a minimum norm g-inverse A−
m is given by

A−
m =

[
a 1

2 − a

c 1
2 − c

]
.

This derives from the fact that
[

a b
c d

] [
1 1
1 1

]
=

[
a + b a + b
c + d c + d

]

is symmetric, which implies a+b = c+d. This, combined with a+b+c+d = 1,
yields b = 1

2 − a and d = 1
2 − c. A reflexive g-inverse has to satisfy ad = bc

from Example 3.4.
The Moore-Penrose inverse should satisfy all of the conditions above,

and it is given by

A+ =

[
1
4

1
4

1
4

1
4

]
.

The Moore-Penrose inverse A+ can also be calculated as follows instead
of using (3.91) and (3.92). Let x = A+b for ∀b ∈ En. From (3.91), x ∈
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Sp(A′), and so there exists x such that x = A′z for some z. Hence, A′b =
A′z. Premultiplying both sides of this equation by A′A, we obtain A′b =
A′Ax from A′AA+ = A′. Thus, by canceling out z from

A′Ax = A′b and x = A′z,

we obtain x = A+b.

Example 3.8 Find A+ for A =

[
2 1 3
4 2 6

]
.

Let x = (x1, x2, x3)′ and b = (b1, b2)′. Because A′A =




20 10 30
10 5 15
30 15 45


,

we obtain
10x1 + 5x2 + 15x3 = b1 + 2b2 (3.93)

from A′Ax = A′b. Furthermore, from x = A′z, we have x1 = 2z1 + 4z2,
x2 = z1 + 2z2, and x3 = 3z1 + 6z2. Hence,

x1 = 2x2, x3 = 3x2. (3.94)

Substituting (3.94) into (3.93), we obtain

x2 =
1
70

(b1 + 2b2). (3.95)

Hence, we have

x1 =
2
70

(b1 + 2b2), x3 =
3
70

(b1 + 2b2),

and so 


x1

x2

x3


 =

1
70




2 4
1 2
3 6




(
b1

b2

)
,

leading to

A+ =
1
70




2 4
1 2
3 6


.

We now show how to obtain the Moore-Penrose inverse of A using (3.92)
when an n by m matrix A admits a rank decomposition A = BC, where
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rank(B) = rank(C) = r = rank(A). Substituting A = BC into (3.92), we
obtain

A+ = C ′B′(BCC ′B′)−BC(C ′B′BC)−C ′B′.

Note that B′B and CC ′ are nonsingular matrices of order r and that
B′(BB′)−B and C(C ′C)−C ′ are both identity matrices. We thus have

(BB′)−B(CC ′)−B′(BB′)− ∈ {(BCC ′B′)−}

and
(C ′C)−C ′(B′B)−C(C ′C)− ∈ {(C ′B′BC)−},

so that
A+ = C ′(CC ′)−1(B′B)−1B′, (3.96)

where A = BC.

The following theorem is derived from the fact that A(A′A)−A′ = In

if rank(A) = n(≤ m) and A′(AA′)−A = Im if rank(A) = m(≤ n).

Theorem 3.22 If rank(A) = n ≤ m,

A+ = A′(AA′)−1 = A−
mr, (3.97)

and if rank(A) = m ≤ n,

A+ = (A′A)−1A = A−
`r. (3.98)

(Proof omitted.)

Note Another expression of the Moore-Penrose inverse is given by

A+ = A−
mrAA−

`r = A−
mAA−

` . (3.99)

This can be derived from the decomposition:

A− = [A−
mA + (Im −A−

mA)]A−[AA−
` + (In −AA−

` )]
= A−

mAA−
` + (Im −A−

mA)A−(In −AA−
` ).

(It is left as an exercise for the reader to verify that the formula above satisfies the
four conditions given in Definition 3.5.)
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3.4 Exercises for Chapter 3

1. (a) Find A−
mr when A =

[
1 2 3
2 3 1

]
.

(b) Find A−
`r when A =




1 2
2 1
1 1


.

(c) Find A+ when A =




2 −1 −1
−1 2 −1
−1 −1 2


 .

2. Show that the necessary and sufficient condition for (Ker(P ))c = Ker(I −P ) to
hold is P 2 = P .

3. Let A be an n by m matrix. Show that B is an m by n g-inverse of A if any
one of the following conditions holds:
(i) rank(Im −BA) = m− rank(A).
(ii) rank(BA) = rank(A) and (BA)2 = BA.
(iii) rank(AB) = rank(A) and (AB)2 = AB.

4. Show the following:
(i) rank(AB) = rank(A) ⇐⇒ B(AB)− ∈ {A−}.
(ii) rank(CAD) = rank(A) ⇐⇒ D(CAD)−C ∈ {A−}.

5. (i) Show that the necessary and sufficient condition for B−A− to be a general-
ized inverse of AB is (A−ABB−)2 = A−ABB−.
(ii) Show that {(AB)−m} = {B−

mA−
m} when A−

mABB′ is symmetric.
(iii) Show that (QAB)(QAB)−` = P B − P AP B when P AP B = P BP A, where
P A = A(A′A)−A′, P B = B(B′B)−B′, QA = I − P A, and QB = I − P B .

6. Show that the following three conditions are equivalent:
(i) A ∈ {A−}.
(ii) A2 = A4 and rank(A) = rank(A2).
(iii) A3 = A.

7. Show the following:
(i) [A, B][A, B]−A = A.
(ii) (AA′ + BB′)(AA′ + BB′)−A = A.

8. Show that A− −A−U(I + V A−U)−V A− is a generalized inverse of A + UV
when V = W 1A and U = AW 2 for some W 1 and W 2.

9. Let A be an n by m matrix of rank r, and let B and C be nonsingular ma-
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trices of orders n and m, respectively, such that BAC =
[

Ir O
O O

]
. Show that

G = C

[
Ir O
O E

]
B is a generalized inverse of A with rank(G) = r + rank(E).

10. Let A be an n by m matrix. Show that the minimum of ||x − QA′α||2
with respect to α is equal to x′P A′x, where x ∈ Em, P A′ = A′(AA′)−A, and
QA′ = I − P A′ .

11. Show that B = A+, where B = A−
mAA−

` .

12. Let P 1 and P 2 be the orthogonal projectors onto V1 ∈ En and V2 ∈ En,
respectively, and let P 1∩2 be the orthogonal projectors onto V1 ∩ V2. Show the
following (Ben-Israel and Greville, 1974):

P 1∩2 = 2P 1(P 1 + P 2)+P 2

= 2P 2(P 1 + P 2)+P 1.

13. Let G (a transformation matrix from W to V ) be a g-inverse of a transfor-
mation matrix A from V to W that satisfies the equation AGA = A. Define
N = G−GAG, M = Sp(G−N), and L = Ker(G−N). Show that the following
propositions hold:
(i) AN = NA = O.
(ii) M ∩Ker(A) = {0} and M ⊕Ker(A) = V .
(iii) L ∩ Sp(A) = {0} and L⊕ Sp(A) = W .

14. Let A, M , and L be matrices of orders n×m, n× q, and m× r, respectively,
such that rank(M ′AL) = rank(A). Show that the following three statements are
equivalent:
(i) rank(M ′A) = rank(A).
(ii) HA = A, where H = A(M ′A)−M ′.
(iii) Sp(A)⊕Ker(H) = En.



Chapter 4

Explicit Representations

In this chapter, we present explicit representations of the projection matrix
P V ·W and generalized inverse (g-inverse) matrices given in Chapters 2 and
3, respectively, when basis vectors are given that generate V = Sp(A) and
W = Sp(B), where En = V ⊕W .

4.1 Projection Matrices

We begin with the following lemma.

Lemma 4.1 The following equalities hold if Sp(A) ∩ Sp(B) = {0}, where
Sp(A) and Sp(B) are subspaces of En:

rank(A) = rank(QBA) = rank(A′QBA), (4.1)

where QB = In − P B,

rank(B) = rank(QAB) = rank(B′QAB), (4.2)

where QA = In − P A, and

A(A′QBA)−A′QBA = A and B(B′QAB)−B′QAB = B. (4.3)

Proof. (4.1) and (4.2): Let A and B be n by p and n by q matrices,
respectively, and let

[QBA,B] = [A−B(B′B)−B′A,B]

= [A,B]

[
Ip O

−(B′B)−B′A Iq

]
= [A,B]T .
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Then T is a square matrix of order p+q, and det|T | 6= 0. Hence, Sp[QBA,B]
= Sp[A,B]. On the other hand, QBAx = By ⇒ 0 = P BQBAx =
P BBy ⇒ By = 0 ⇒ QBAx = 0, which implies that Sp(B) and Sp(QBA)
are disjoint. Since Sp(A) and Sp(B) are also disjoint, we obtain rank(A) =
rank(QBA). That rank(QBA) = rank((QBA)′QBA) is clear from Theorem
1.8. Equality (4.2) can be proven similarly.

(4.3): From (4.1), Sp(A′) = Sp(A′QBA) implies that there exists a W
such that A′ = A′QBAW . Hence, we have

W ′A′QBA(A′QBA)−A′QBA = W ′A′QBA = A.

The second half of (4.3) can be proven similarly. Q.E.D.

Corollary Let C denote a matrix having the same number of columns m
as A, and let Sp(C ′) ∩ Sp(A′) = {0}. Then the following relations hold:

rank(A) = rank(AQC′) = rank(AQC′A
′) (4.4)

and
AQC′A

′(AQC′A
′)−A = A, (4.5)

where QC′ = Im−C ′(CC ′)−C. (Proof omitted.)

Theorem 4.1 Let En ⊃ V ⊕W , where V = Sp(A) and W = Sp(B). A
general form of the projector P ∗

A·B onto V along W is given by

P ∗
A·B = A(Q∗

BA)−Q∗
B + Z(In −Q∗

BA(Q∗
BA)−)Q∗

B, (4.6)

where Q∗
B = In −BB− (with B− being an arbitrary g-inverse of B) and

Z is an arbitrary square matrix of order n. Equation (4.6) can alternatively
be expressed as

P ∗
A·B = A(A′QBA)−A′QB + Z(In −QBA(A′QBA)−A′)QB, (4.7)

where QB = In − P B and P B is the orthogonal projector onto Sp(B).

Proof. P ∗
A·B satisfies P ∗

A·BA = A and P ∗
A·BB = O. The latter implies

P ∗
A·BB = KQ∗

B for some K, a square matrix of order n. Substituting this
into the former, we obtain KQ∗

BA = A. Hence,

K = A(Q∗
BA)− + Z[In − (Q∗

BA)(Q∗
BA)−],
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from which (4.6) follows. To derive (4.7) from (4.6), we use the fact that
(A′QBA)−A′ is a g-inverse of Q∗

BA when Q∗
B = QB. (This can be shown

by the relation given in (4.3).) Q.E.D.

Corollary 1 When En = Sp(A)⊕ Sp(B), the projector P A·B onto Sp(A)
along Sp(B) can be expressed as

P A·B = A(Q∗
BA)−Q∗

B, (4.8)

where Q∗
B = In −BB−,

P A·B = A(A′QBA)−A′QB, (4.9)

where QB = In − P B, or

P A·B = AA′(AA′ + BB′)−1. (4.10)

Proof. (4.8): Let the second term in (4.7) be denoted by T . Then it is
clear that TA = O and TB = O imply T = O.

(4.9): Let T denote the same as above. We have TB = O, and

TA = Z(In −QBA(A′QBA)−A′)QBA

= Z(QBA−QBA(A′QBA)−A′QBA)
= Z(QBA−QBA) = O.

(Use (4.3).) We obtain (4.9) since T [A,B] = O implies T = O.
(4.10): By the definition of a projection matrix (Theorem 2.2), P A·BA =

A and P A·BB = O, which imply P A·BAA′ = AA′ and P A·BBB′ = O.
Hence,

P A·B(AA′ + BB′) = AA′.

On the other hand, we have

rank(AA′ + BB′) = rank

(
[A,B]

[
A′

B′

])
= n

since rank[A,B] = rank(A)+rank(B) = n. This means AA′+BB′ is non-
singular, so that its regular inverse exists, and (4.10) follows. Q.E.D.

Corollary 2 Let Em = Sp(A′)⊕Sp(C ′). The projector P A′·C′ onto Sp(A′)
along Sp(C ′) is given by

P A′·C′ = A′(AQC′A
′)−AQC′ , (4.11)
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where QC′ = Im −C ′(CC ′)−C, or

P A′·C′ = A′A(A′A + C ′C)−1. (4.12)

Note Let [A, B] be a square matrix. Then, it holds that rank[A, B] = rank(A)+
rank(B), which implies that the regular inverse exists for [A, B]. In this case, we
have

P A·B = [A, O][A, B]−1 and P B·A = [O.B][A, B]−1. (4.13)

Example 4.1 Let A =




1 4
2 1
2 1


 and B =




0
0
1


. Then, [A,B]−1 =

−1
7




1 −4 0
−2 1 0

0 7 −7


. It follows from (4.13) that

P A·B = −1
7




1 4 0
2 1 0
2 1 0







1 −4 0
−2 1 0

0 7 −7


 =




1 0 0
0 1 0
0 1 0




and

P B·A = −1
7




0 0 0
0 0 0
0 0 1







1 −4 0
−2 1 0

0 7 −7


 =




0 0 0
0 0 0
0 −1 1


.

(Verify that P 2
A·B = P A·B, P 2

B·A = P B·A, P A·B + P B·A = I3, and P A·B
× P B·A = P B·AP A·B = O.)

Let Ã =




1 0
0 1
0 1


. From




1 0 0
0 1 0
0 1 1



−1

=




1 0 0
0 1 0
0 −1 1


, we obtain

P Ã·B =




1 0 0
0 1 0
0 1 0







1 0 0
0 1 0
0 −1 1


 =




1 0 0
0 1 0
0 1 0


.

On the other hand, since



1 4
2 1
2 1


 =




1 0
0 1
0 1




[
1 4
2 1

]
,
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and so Sp(A) = Sp(Ã), we have

En = Sp(A)⊕ Sp(B) = Sp(Ã)⊕ Sp(B), (4.14)

so that P A·B = P Ã·B. (See the note preceding Theorem 2.14.)

Corollary 2 Let En = Sp(A) ⊕ Sp(B), and let Sp(A) = Sp(Ã) and
Sp(B) = Sp(B̃). Then,

P Ã·B̃ = P A·B. (4.15)

It is clear that

P A = A(A′A)−A′ = Ã(Ã
′
Ã)−Ã

′
= P Ã

follows as a special case of (4.15) when Sp(B) = Sp(A)⊥. The P A above
can also be expressed as

P A = P AA′ = AA′(AA′AA′)−AA′ (4.16)

since Sp(A) = Sp(AA′).

Note As is clear from (4.15), P A·B is not a function of the column vectors in A

and B themselves but rather depends on the subspaces Sp(A) and Sp(B) spanned
by the column vectors of A and B. Hence, logically P A·B should be denoted as
P Sp(A), Sp(B). However, as for P A and P B , we keep using the notation P A·B in-
stead of P Sp(A), Sp(B) for simplicity.

Note Since

[A, B]
[

A′

B′

]
= AA′ + BB′,

we obtain, using (4.16),

P A+B = (AA′ + BB′)(AA′ + BB′)−` (4.17)
= AA′(AA′ + BB′)−` + BB′(AA′ + BB′)−` ,

where A−
` indicates a least squares g-inverse of A.

If Sp(A) and Sp(B) are disjoint and cover the entire space of En, we have
(AA′ + BB′)−` = (AA′ + BB′)−1 and, from (4.17), we obtain

P A·B = AA′(AA′ + BB′)−1 and P B·A = BB′(AA′ + BB′)−1.
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Theorem 4.2 Let P [A,B] denote the orthogonal projector onto Sp[A,B] =
Sp(A) + Sp(B), namely

P [A,B] = [A,B]

[
A′A A′B
B′A B′B

]− [
A′

B′

]
. (4.18)

If Sp(A) and Sp(B) are disjoint and cover the entire space En, the following
decomposition holds:

P [A,B] = P A·B +P B·A = A(A′QBA)−A′QB +B(B′QAB)−B′QA. (4.19)

Proof. The decomposition of P [A,B] follows from Theorem 2.13, while the
representations of P A·B and P B·A follow from Corollary 1 of Theorem 4.1.

Q.E.D.

Corollary 1 Let En = Sp(A)⊕ Sp(B). Then,

In = A(A′QBA)−A′QB + B(B′QAB)−B′QA. (4.20)

(Proof omitted.)
Corollary 2 Let En = Sp(A)⊕ Sp(B). Then,

QA = QAB(B′QAB)−B′QA (4.21)

and
QB = QBA(A′QBA)−A′QB. (4.22)

Proof. Formula (4.21) can be derived by premultiplying (4.20) by QA, and
(4.22) can be obtained by premultiplying it by QB. Q.E.D.

Corollary 3 Let Em = Sp(A′)⊕ Sp(C ′). Then,

QA′ = QA′C
′(CQA′C

′)−CQA′ (4.23)

and
QC′ = QC′A

′(AQC′A
′)−AQC′ . (4.24)

Proof. The proof is similar to that of Corollary 2. Q.E.D.

Theorem 4.1 can be generalized as follows:
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Theorem 4.3 Let V ⊂ En and

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr, (4.25)

where Vj = Sp(Aj). Let P ∗
j·(j) denote a projector onto Vj along V(j) =

V1 ⊕ · · · ⊕ Vj−1 ⊕ Vj+1 ⊕ · · · ⊕ Vr. Then, the equation

P ∗
j·(j) = Aj(A′

jQ(j)Aj)−A′
jQ(j)

+Z[In − (Q(j)Aj)(A′
jQ(j)Aj)−A′

j ]Q(j) (4.26)

holds, where Q(j) = In − P (j), P (j) is the orthogonal projector onto V(j),
and Z is an arbitrary square matrix of order n. (Proof omitted.)

Note If V1⊕V2⊕ · · · ⊕Vr = En, the second term in (4.26) will be null. Let P j·(j)
denote the projector onto Vj along V(j). Then,

P j·(j) = Aj(A′
jQ(j)Aj)−A′

jQ(j). (4.27)

Let A = [A1, A2, · · · , Ar] be a nonsingular matrix of order n. Then,

P j·(j) = AjA
′
j(A1A

′
1 + · · ·+ ArA

′
r)
−1 (4.28)

can be derived in a manner similar to (4.10).

Let us again consider the case in which V = V1 ⊕ V2 ⊕ · · · ⊕ Vr ⊂ En.
Let P V denote the orthogonal projector onto V = V1 ⊕ V2 ⊕ · · · ⊕ Vr =
Sp(A1)⊕ Sp(A2)⊕ · · · ⊕ Sp(Ar). Then,

P ∗
j·(j)P V = Aj(A′

jQ(j)Aj)−A′
jQ(j) = P j·(j). (4.29)

If (4.25) holds, P V y ∈ V for ∀y ∈ En, so that

(P ∗
1·(1) + P ∗

2·(2) + · · ·+ P ∗
r·(r))P V y = P V y.

Since y is an arbitrary vector, the following theorem can be derived from
(4.29).

Theorem 4.4 Assume that (4.25) holds, and let P j·(j) denote the projector

onto Vj along V(j)

·⊕ V ⊥. Then,

P V = P 1·(1) + P 2·(2) + · · ·+ P r·(r), (4.30)
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where P j·(j) = Aj(A′
jQ(j)Aj)−A′

jQ(j). (Proof omitted.)

Note An alternative way of deriving (4.30 is as follows. Consider

En = V1 ⊕ V2 ⊕ · · · ⊕ Vr ⊕ V ⊥, (4.31)

where V = V1 ⊕ · · · ⊕ Vr. Let Vj = Sp(Aj) and V ⊥ = Sp(B). Then the projector
onto Vj along V1 ⊕ · · · ⊕ Vj−1 ⊕ Vj+1 ⊕ · · · ⊕ Vr ⊕ V ⊥ is given by

P j·(j)+B = Aj(A′
jQ(j)+BAj)−A′

jQ(j)+B , (4.32)

where Q(j)+B = In − P (j)+B and P (j)+B is the orthogonal projector onto V(j)

·⊕
V ⊥. Since Vj = Sp(Aj) (j = 1, · · · r) and V ⊥ = Sp(B) are orthogonal, we have
A′

jB = O and A′
(j)B = O, so that

A′
jQ(j)+B = A′

j(In − P (j)+B) = A′
j(In − P (j) − P B)

= A′
j(In − P (j)) = A′

jQ(j) (4.33)

and
P j·(j)+B = Aj(A′

jQ(j)Aj)−A′
jQ(j) = P j·(j). (4.34)

Hence, when VA = V1 ⊕ V2 ⊕ · · · ⊕ Vr and VB are orthogonal, from now on we call
the projector P j·(j)+B onto Vj along V(j)

·⊕ VB merely the projector onto Vj along
V(j). However, when VA = Sp(A) = Sp(A1) ⊕ · · · ⊕ Sp(Ar) and VB = Sp(B) are
not orthogonal, we obtain the decomposition

P A·B = P 1·(1)+B + P 2·(2)+B + · · ·+ P r·(r)+B (4.35)

from P A·B + P B·A = In, where P j·(j)+B is as given in (4.34).
Additionally, let A′ = [A′

1,A
′
2, · · · , A′

r] and Ṽj = Sp(A′
j), and let

Em = Ṽ1 ⊕ Ṽ2 ⊕ · · · ⊕ Ṽr.

Let P̃ j·(j) denote the projector onto Ṽj along V(j). Then,

P̃ j·(j) = A′
j(AjQ̃(j)A

′
j)
−AjQ̃(j), (4.36)

where Q̃(j) = Im− P̃ (j) and P̃ (j) is the orthogonal projector onto Ṽ(j) = Sp(A′
1)⊕

· · ·⊕Sp(A′
j−1)⊕Sp(A′

j+1)⊕· · ·⊕Sp(A′
r), and A′

(j) = [A′
1, · · · , A′

j−1,A
′
j+1, · · ·A′

r].

4.2 Decompositions of Projection Matrices

Let VA = Sp(A) and VB = Sp(B) be two nondisjoint subspaces, and let the
corresponding projectors P A and P B be noncommutative. Then the space
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V = VA + VB can be decomposed in two ways, as shown in Lemma 2.4.
Here we first consider a decomposition of the orthogonal projector P A∪B

onto Sp[A,B]. Let P A and P B denote the orthogonal projectors onto VA

and VB, and let QA = In−P A and QB = In−P B denote their orthogonal
complements. From Lemma 2.4, the following theorem can be derived.

Theorem 4.5

P [A,B] = P A + P B[A] (4.37)
= P B + P A[B], (4.38)

where
P A[B] = QBA(QBA)−` = QBA(A′QBA)−A′QB

and
P B[A] = QAB(QAB)−` = QAB(B′QAB)−B′QA.

Proof. (QAB)′A = B′QAA = O and (QBA)′B = A′QBB = O. Hence,
VA = Sp(A) and VB[A] = Sp(QBA) are orthogonal, VB = Sp(B) and
VA[B] = Sp(QAB) are orthogonal, and (4.37) and (4.38) follow. The expres-
sions for P A[B] and P B[A] are clear from (3.78). Q.E.D.

Note P A[B] and P B[A] are often denoted as P QBA and P QAB , respectively.

Note Decompositions (4.37) and (4.38) can also be derived by direct computation.
Let

M =
[

A′A A′B
B′A B′B

]
.

A generalized inverse of M is then given by
[

(A′A)− + (A′A)−ABD−B′A(A′A)− −(A′A)−A′BD−

−D−B′A(A′A)− D−

]
,

where D = B′B −B′A(A′A)−A′B, using (3.44), since Sp(A′B) ⊂ Sp(A′A) ⊂
Sp(A′). Let P A = A(A′A)−A′. Then,

P [A,B] = P A + P ABD−B′P A − P ABD−B′ −BD−B′P A + BD−B′

= P A + (In − P A)BD−B′(In − P A)
= P A + QAB(B′QAB)−B′QA = P A + P B[A].
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Corollary Let A and B be matrices with m columns, and let Ṽ1 = Sp(A′)
and Ṽ2 = Sp(B′). Then the orthogonal projector onto Ṽ1 + Ṽ2 is given by

P [A′,B′] = [A′,B′]

[
AA′ AB′

BA′ BB′

]− [
A
B

]
,

which is decomposed as

P [A′,B′] = P A′ + P B′[A′] (4.39)
= P B′ + P A′[B′], (4.40)

where

P B′[A′] = (QA′B
′)(QA′B

′)−` = QA′B
′(BQA′B

′)−BQA′

and
P A′[B′] = (QB′A

′)(QB′A
′)−` = QB′A

′(AQB′A
′)−AQB′ ,

and QA′ = Im−P A′ and QB′ = Im−P B′, where P A′ and P B′ are orthog-
onal projectors onto Sp(A′) and Sp(B′), respectively.

(Proof omitted.)

Note The following equations can be derived from (3.72).

P [A′,B′] =
[

A
B

]−

m

[
A
B

]
,

P B′[A′] = (BQA′)
−
m(BQA′),

and
P A′[B′] = (AQB′)

−
m(AQB′).

Theorem 4.6 Let En = (VA + VB) ⊕ VC , where VC = Sp(C), and let
P [A,B]·C denote the projector onto VA +VB along VC . Then P [A,B]·C can be
decomposed as follows:

P [A,B]·C = P A·C + P B[A]·C (4.41)
= P B·C + P A[B]·C , (4.42)

where
P A·C = A(A′QCA)−A′QC ,
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P B·C = B(B′QCB)−B′QC ,

P B[A]·C = P QAB·C = QAB(B′QAQCQAB)−B′QAQC ,

and
P A[B]·C = P QBA·C = QBA(A′QBQCQBA)−A′QBQC .

Proof. From Lemma 2.4, we have

VA + VB = Sp(A)
·⊕ Sp(QAB) = Sp(B)

·⊕ Sp(QBA).

We then use Theorem 2.21. Q.E.D.

Note As has been stated in Theorem 2.18, when P AP B = P BP A, we have
QBP A = P AQB , so that QBAA−

` QBA = QBP AQBA = QBP AA = QBA
and QBAA−

` = P A − P AP B = (QBAA−
` )′. Hence, A−

` ∈ {(QBA)−` }, and so
QAB(QAB)−` = P A − P AP B , leading to

P AP B = P BP A ⇐⇒ P [A,B] = P A + P B − P AP B . (4.43)

Corollary 1 P [A,B] = P A ⇐⇒ Sp(B) ⊂ Sp(A).

Proof. (⇐): From Sp(B) ⊂ Sp(A), B = AW for some W . In (4.37),
QAB = (I − P A)B = (I − P A)AW = O. From OO−

` O = O, we obtain
P [A,B] = P A.

(⇒): From (4.37), (QAB)(QAB)−` = O. Postmultiplying by QAB,
we obtain QAB = O, which implies QAP B = O, which in turn implies
P AP B = P B. By Theorem 2.11, we have Sp(B) ⊂ Sp(A).

Q.E.D.

Corollary 2 When Sp(B) ⊂ Sp(A),

P A[B] = QBA(A′QBA)−A′QB = P A − P B. (4.44)

(Proof omitted.)

Let V1 = Sp(A1), · · · , Vr = Sp(Ar) be r subspaces that are not necessar-
ily disjoint. Then Theorem 4.5 can be generalized as follows.
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Theorem 4.7 Let P denote the orthogonal projector onto V = V1 + V2 +
· · ·+ Vr. Then,

P = P 1 + P 2[1] + P 3[2] + · · ·+ P r[r−1], (4.45)

where P j[j−1] indicates the orthogonal projector onto the space Vj[j−1] =
{x|x = Q[j−1]y, y ∈ En}, Q[j−1] = In − P [j−1], and P [j−1] is the orthogo-
nal projector onto Sp(A1) + Sp(A2) + · · ·+ Sp(Aj−1).

(Proof omitted.)

Note The terms in the decomposition given in (4.45) correspond with Sp(A1), Sp
(A2), · · · , Sp(Ar) in that order. Rearranging these subspaces, we obtain r! different
decompositions of P .

4.3 The Method of Least Squares

Explicit representations of projectors associated with subspaces given in
Section 4.1 can also be derived by the method of least squares (LS).

Let A represent an n by m matrix, and let b ∈ En be a vector that does
not necessarily belong to Sp(A). Then x that minimizes ||b−Ax||2 should
satisfy the normal equation A′Ax = A′b. Premultiplying both sides of this
equation by A(A′A)−, we obtain

Ax = P Ab,

where P A = A(A′A)−A′ = AA−
` . The following lemma can be immedi-

ately derived from the equation above.

Lemma 4.2
min

x
||b−Ax||2 = ||b− P Ab||2. (4.46)

(Proof omitted.)

Let
||x||2M = x′Mx (4.47)

denote a pseudo-norm, where M is an nnd matrix such that

rank(A′MA) = rank(A) = rank(A′M). (4.48)
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Then the following theorem holds.

Theorem 4.8 minx ||b−Ax||2M = ||b− P A/Mb||2M , where

P A/M = A(A′MA)−A′M . (4.49)

Proof. Since M is nnd, there exists an N such that M = NN ′. Hence,

||b− P A/Mb||2M = (b−Ax)′N ′N(b−Ax) = ||Nb−NAx||2.

By Lemma 4.2, x that minimizes the criterion above satisfies

N ′(NA)x = N ′NA(A′N ′NA)−A′N ′Nb,

that is, MAx = MA(A′MA)−A′Mb. Premultiplying both sides of this
equation by A(A′MA)−A′, we obtain

Ax = P A/Mb

since A(A′MA)−A′MA = A by (4.48).

An alternative proof. Differentiating f(x) = (b−Ax)′M(b−Ax) with
respect to x and setting the results equal to zero, we obtain

1
2

∂f

∂x
= A′MAx−A′Mb = 0.

Premultiplying both sides by A(A′MA)−, we obtain the desired result.
Q.E.D.

Corollary Let Sp(A) and Sp(B) be disjoint, and let QB = In−P B. Then

min
x
||b−Ax||2QB

= ||b− P A·Bb||2QB
(4.50)

or
min

x
||b−Ax||2QB

= ||b− P A[B]b||2QB
, (4.51)

where P A·B = A(A′QBA)−A′QB and P A[B] = QBA(A′QBA)−A′QB.

Proof. (4.50): Clear from rank(A′QBA) = rank(A).
(4.51): Clear from QBP A·B = P A[B]. Q.E.D.

Hence, P A·B, the projector onto Sp(A) along Sp(B), can be regarded as the
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orthogonal projector onto Sp(A) associated with the pseudo-norm ||x||QB
.

(See Figure 4.1.) Furthermore, since A′QA = O,

P A·B = A(A′QBA)−A′QB = A(A′Q∗A)−A′Q∗,

where Q∗ = QA + QB, and so rank(Q∗) = n. Hence, P A·B is also con-
sidered as the orthogonal projector onto Sp(A) associated with the norm
||x||Q∗ characterized by the pd matrix Q∗. (See Figure 4.1.)

Theorem 4.9 Consider P A/M as defined in (4.49). Then (4.52) and (4.53)
hold, or (4.54) holds:

P 2
A/M = P A/M , (4.52)

(MP A/M )′ = MP A/M , (4.53)

P ′
A/MMP A/M = MP A/M = P ′

A/MM . (4.54)

(Proof omitted.)

Definition 4.1 When M satisfies (4.47), a square matrix P A/M that sat-
isfies (4.52) and (4.53), or (4.54) is called the orthogonal projector onto
Sp(A) with respect to the pseudo-norm ||x||M = (x′Mx)1/2.

It is clear from the definition above that In − P A·B is the orthogonal
projector onto Sp(A)⊥ with respect to the pseudo-norm ||x|||M .

Note When M does not satisfy (4.48), we generally have Sp(P A/M ) ⊂ Sp(A),
and consequently P A/M is not a mapping onto the entire space of A. In this case,
P A/M is said to be a projector into Sp(A).

We next consider minimizing ||b − Ax||2 with respect to x under the
constraint that Cx = d, where C and d 6= b are a given matrix and a
vector. The following lemma holds.

Lemma 4.3

min
Cx=d

||b−Ax|| = min
x
||b−AC−d−AQC′z||, (4.55)
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Sp(B)

Sp(B)⊥

Sp(A)P A·Bb

P B·Ab

@
@R

b

Figure 4.1: Geometric representation of the projection vector P A·Bb.

where QC′ is the orthogonal projector onto Sp(C ′)⊥ and z is an arbitrary
m-component vector.

Proof. Use the fact that Cx = d implies x = C−d+QC′z. Q.E.D.

The following theorem can be derived from the lemma above and Theo-
rem 2.25.

Theorem 4.10 When

min
Cx=d

||b−Ax|| = ||(In − P AQC′ )(b−AC−d)||

holds,

x = C−d + QC′(QC′A
′AQC′)

−QC′A
′(b−AC−d), (4.56)

where P AQC′ is the orthogonal projector onto Sp(AQC′).
(Proof omitted.)

4.4 Extended Definitions

Let
En = V ⊕W = Sp(A)⊕ (In −AA−)

and
Em = Ṽ ⊕ W̃ = Sp(A−A)⊕ Sp(Im −A−A).
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A reflexive g-inverse A−
r , a minimum norm g-inverse A−

m, and a least squares
g-inverse A−

` discussed in Chapter 3, as shown in Figure 4.2, correspond to:

(i) ∀y ∈ W , A−y = 0 −→ A−
r ,

(ii) V and W are orthogonal −→ A−
` ,

(iii) Ṽ and W̃ are orthogonal −→ A−
m,

and furthermore the Moore-Penrose g-inverse A+ follows when all of the
conditions above are satisfied. In this section, we consider the situations in
which V and W , and Ṽ and W̃ , are not necessarily orthogonal, and define
generalized forms of g-inverses, which include A−

m, A−
` , and A+ as their

special cases.

W̃

x = xe

Ṽ

W

yye

yA

V

A−r

(1) A reflexive g-inverse

W̃ W

x

Ṽ
y

V

A−mr

6

A−m

(2) A minimum norm g-inverse
(W is arbitrary)

W̃

x

W

y

Ṽ V

A−
`r

A−
`

(3) A least squares g-inverse
(V is arbitrary)

W̃ W = V ⊥

A+

Ṽ = W̃⊥ V

y

0

(4) The Moore-Penrose inverse

Figure 4.2: Geometric representation of the projection vector P A·Bb.

For convenience, we start with a generalized form of least squares g-
inverse, followed by minimum norm g-inverse and Moore-Penrose inverse.
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4.4.1 A generalized form of least squares g-inverse

We consider the case in which a complement subspace of V = Sp(A) ∈ En

is given as W = Sp(B). Let us obtain x that minimizes ||b−Ax||2QB
when

b 6∈ Sp(A). According to Theorem 4.8 and its corollary, such an x should
satisfy

Ax = P A·Bb = A(A′QBA)−A′QBb. (4.57)

Let A− be an arbitrary g-inverse of A, and substitute x = A−b into (4.57).
We obtain

AA−b = A(A′QBA)−A′QBb.

This has to hold for any b ∈ En, and so

AA− = A(A′QBA)−A′QB (4.58)

must hold. Premultiplying the equation above by A′QB, we further obtain,
by (4.2),

A′QBAA− = A′QB. (4.59)

Let an A− that satisfies (4.58) or (4.59) be written as A−
`(B). Then the

following theorem holds.

Theorem 4.11 The following three conditions concerning A−
`(B) are equiv-

alent:
AA−

`(B)A = A and (QBAA−
`(B))

′ = QBAA−
`(B), (4.60)

A′QBAA−
`(B) = A′QB, (4.61)

AA−
`(B) = A(A′QBA)−A′QB. (4.62)

Proof. (4.60) → (4.61): AA−
`(B)A = A ⇒ QBAA−

`(B)A = QBA. Trans-
posing both sides, we obtain A′(QBAA−

`(B))
′ = A′QB, the left-hand side of

which is equal to A′QBA−
`(B) due to the second equation in (4.60).

(4.61) → (4.62): Premultiply both sides by A(A′QBA)− and use (4.3).
(4.62) → (4.60): Premultiplying both sides by A, we obtain AA−

`(B)A =
A. That QBAA−

`(B) is symmetric is clear from (4.21) and (4.22).
Q.E.D.

The three conditions in Theorem 4.11 indicate that AA−
`(B) is the pro-

jector onto Sp(A) along Sp(B) when En = Sp(A)⊕ Sp(B).
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Definition 4.2 A g-inverse A−
`(B) that satisfies either one of the three con-

ditions in Theorem 4.11 is called a B-constrained least squares g-inverse (a
generalized form of the least squares g-inverse) of A.

A general expression of A−
`(B) is, from Theorem 4.11, given by

A−
`(B) = (A′QBA)−A′QB + [Im − (A′QBA)−(A′QBA)]Z, (4.63)

where Z is an arbitrary m by n matrix. Let A−
`r(B) denote an A−

`(B) that
satisfies the condition for reflexivity, namely A−

`r(B)AA−
`r(B) = A−

`r(B) or
rank(A−

`r(B)) = rank(A). Then,

A−
`r(B) = (A′QBA)−A′QB. (4.64)

Note When B is such that Sp(B) = Sp(A)⊥, A−
`(B) reduces to A−

` and A−
`r(B)

reduces to A−
`r.

Note When M is a pd matrix of order n,

A−
`(M) = (A′MA)−A′M (4.65)

is a g-inverse of A that satisfies AA−
`(M)A = A, and (MAA−

`(M))
′ = MAA−

`(M).
This g-inverse is defined such that it minimizes ||Ax−b||2M . If M is not pd, A−

`(M)

is not necessarily a g-inverse of A.

Let A = [A1,A2, · · · ,As] such that the Aj ’s are disjoint, namely

Sp(A) = Sp(A1)⊕ Sp(A2)⊕ · · · ⊕ Sp(As), (4.66)

and let
A(j) = [A1, · · · , Aj−1, Aj+1, · · · , As].

Then an A(j)-constrained g-inverse of A is given by

A−
j(j) = (A′

jQ(j)Aj)−A′
jQ(j) + [Ip − (A′

jQ(j)Aj)−(A′
jQ(j)Aj)]Z, (4.67)

where Q(j) = In−P (j) and P (j) is the orthogonal projector onto Sp(A(j)).
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The existence of the A−
j(j) above is guaranteed by the following theorem.

Theorem 4.12 A necessary and sufficient condition for A = [A1, A2, · · · ,
As] to satisfy (4.66) is that a g-inverse Y of A satisfies

AiY iAi = Ai and AiY iAj = O (i 6= j), (4.68)

where Y = [Y ′
1, Y

′
2, · · · , Y ′

s]
′.

Proof. (Necessity) Substituting A = [A1,A2, · · · ,As] and Y ′ = [Y ′
1, Y

′
2,

· · · , Y ′
s] into AY A = A and expanding, we obtain, for an arbitrary i =

1, · · · , s,

A1Y 1Ai + A2Y 2Ai + · · ·+ AiY iAi + · · ·+ AsY sAi = Ai,

that is,

A1Y 1Ai + A2Y 2Ai + · · ·+ Ai(Y iAi − I) + · · ·+ AsY sAi = O.

Since Sp(Ai) ∩ Sp(Aj) = {0}, (4.68) holds by Theorem 1.4.
(Sufficiency) Premultiplying A1x1+A2x2+· · ·+Asxs = 0 by AiY i that

satisfies (4.68), we obtain Aixi = 0. Hence, Sp(A1),Sp(A2), · · · , Sp(As) are
disjoint, and Sp(A) is a direct-sum of these subspaces.

Q.E.D.

Let
A(j) = [A1, · · · , Aj−1, Aj+1, · · · , As]

as in Theorem 4.12. Then, Sp(A(j))⊕ Sp(Aj) = Sp(A), and so there exists
Aj such that

AjA
−
j(j)Aj = Aj and AjA

−
j(j)Ai = O (i 6= j). (4.69)

A−
j(j) is an A(j)-constrained g-inverse of Aj .

Let En = Sp(A)⊕ Sp(B). There exist X and Y such that

AXA = A, AXB = O,

BY B = B, BY A = O.

However, X is identical to A−
`(B), and Y is identical to B−

`(A).
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Corollary A necessary and sufficient condition for A′ =




A′
1

A′
2

...
A′

s




to satisfy

Sp(A′) = Sp(A′
1)⊕ Sp(A′

2)⊕ · · · ⊕ Sp(A′
s)

is that a g-inverse Z = [Z1, Z2, · · · , Zs] of A satisfy

AiZiAi = Ai and AiZjAj = O (i 6= j). (4.70)

Proof. AZA = A ⇒ A′Z ′A′ = A′. By Theorem 4.12, A′
iZ

′
iA

′
i = A′

i and
A′

jZ
′
jA

′
i = O (j 6= i). Transposing these equations, we obtain (4.70).

Q.E.D.

4.4.2 A generalized form of minimum norm g-inverse

When s = 2 and Sp(A′) = Em, namely Em = Ṽ ⊕W̃ where Ṽ = Sp(A′
1) and

W̃ = Sp(A′
2), let a g-inverse of A = [A′

1, A
′
2]
′ be denoted by Z = [Z1, Z2]

as in the corollary to Theorem 4.12. The existence of Z1 and Z2 that satisfy

A1Z1A1 = A1, A1Z2A2 = O, A2Z2A2 = A2, and A2Z1A1 = O
(4.71)

is assured. Let A and C denote m by n1 and m by n2 (n1+n2 ≥ n) matrices
such that

AA−A = A and CA−A = O. (4.72)

Assume that A′W 1 + C ′W 2 = O. Then, (AA−A)′W 1 + (CA−A)′W 2 =
O, and so A′W 1 = O, which implies C ′W 2 = O. That is, Sp(A′) and
Sp(C ′) are disjoint, and so we may assume Em = Sp(A′)⊕ Sp(C ′). Taking
the transpose of (4.72), we obtain

A′(A−)′A′ = A′ and A′(A−)′C ′ = O. (4.73)

Hence,
A′(A−)′ = P A′·C′ = A′(AQC′A

′)−AQC′ , (4.74)

where QC′ = Im−C ′(CC ′)−C, is the projector onto Sp(A′) along Sp(C ′).
Since {((AQC′A

′)−)′} = {(AQC′A
′)−}, this leads to

A−A = QC′A
′(AQC′A

′)−A. (4.75)
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Let A−
m(C) denote an A− that satisfies (4.74) or (4.75). Then,

A−
m(C) = QC′A

′(AQC′A
′)− + Z̃[In − (AQC′A

′)(AQC′A
′)−],

where Z̃ is an arbitrary m by n matrix. Furthermore, let A−
mr(C) denote

an A−
m(C) that satisfies the reflexivity, namely A−

mr(C)AA−
mr(C) = A−

mr(C).
Then,

A−
mr(C) = QC′A

′(AQC′A
′)−. (4.76)

By Corollary 2 of Theorem 4.1, the following theorem can be derived.

Theorem 4.13 The following three conditions are equivalent:

AA−
m(C)A = A and A−

m(C)AA−
m(C) = A−

m(C), (4.77)

A−
m(C)AQC′A

′ = QC′A
′, (4.78)

A−
m(C)A = QC′A

′(AQC′A
′)−A. (4.79)

Proof. The proof is similar to that of Theorem 4.9. (Use Corollary 2 of The-
orem 4.1 and Corollary 3 of Theorem 4.2.) Q.E.D.

Definition 4.3 A g-inverse A−
m(C) that satisfies one of the conditions in

Theorem 4.13 is called a C-constrained minimum norm g-inverse of A.

Note A−
m(C) is a generalized form of A−

m, and when Sp(C ′) = Sp(A′)⊥, it reduces
to A−

m.

Lemma 4.4 Let Em = Sp(A′)⊕ Sp(C ′). Then,

Em = Sp(QC′)⊕ Sp(QA′). (4.80)

Proof. Let QC′x + QA′y = 0. Premultiplying both sides by QC′A
′(AQC′

× A′)−A, we obtain QC′ = QC′A
′(AQC′A

′)−AQC′ from (4.24), which
implies QC′x = 0 and QA′y = 0. That is, Sp(QC′) and Sp(QA′) are dis-
joint. On the other hand, rank(QC′) + rank(QA′) = (m− rank(C)) + (m−
rank(A)) = 2m−m = m, leading to (4.80). Q.E.D.
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Theorem 4.14 When (4.80) holds, A−
m(C)A is the projector onto Ṽ =

Sp(QC′) = Ker(C ′) along W̃ = Sp(QA′) = Ker(A′).

Proof. When A−
m(C)A is the projector onto Sp(QC′) along Sp(QA′), we

have, from the definition of a projector in (4.9),

P QC′ ·QA′ = QC′(QC′P A′QC′)
−QC′P A′ . (4.81)

From

P A′(P A′QC′P A′)−P A′QC′(QC′P A′QC′)
− ∈ {(QC′P A′QC′)

−}
and (4.20), we have

QC′(QC′P A′QC′)
−QC′P A′ + QA′(QA′P C′QA′)

−QA′P C′ = Im. (4.82)

Premultiplying the equation above by P A′ , we obtain

P A′QC′(QC′P A′QC′)
−QC′P A′ = P A′ ,

which implies

P QC′ ·QA′ = QC′P A′(P A′QC′P A′)−P A′QC′(QC′P A′QC′)
−QC′P A′

= QC′P A′(P A′QC′P A′)−P A′ = QC′A
′(AQC′A

′)−A

= A−
m(C)A, (4.83)

establishing Theorem 4.14. Q.E.D.

Corollary
(P QC′ ·QA′ )

′ = P A′·C′ . (4.84)

(Proof omitted.)

Note From Theorem 4.14, we have A−
m(C)A = P Ṽ ·W̃ when (4.80) holds. This

means that A−
m(C) is constrained by Sp(C ′) (not C ′ itself), so that it should have

been written as A−
m(Ṽ )

. Hence, if Em = Ṽ ⊕ W̃ , where Ṽ = Sp(A−A) and

W̃ = Sp(Im −A−A) = Sp(Im − P A′) = Sp(QA′), we have

Ṽ = Sp(QC′) (4.85)

by choosing C ′ such that Sp(A′)⊕ Sp(C ′) = Em.
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Note One reason that A−
m(C′) is a generalized form of a minimum norm g-inverse

A−
m is that x = A−

m(C′)b is obtained as a solution that minimizes ||P QC′ ·QA′x||2
under the constraint Ax = b.

Note Let N be a pd matrix of order m. Then,

A−
m(N) = NA′(ANA′)− (4.86)

is a g-inverse that satisfies AA−
m(N)A = A and (A−

m(N)AN)′ = A−
m(N)AN . This

g-inverse can be derived as the one minimizing ||x||2N subject to the constraint that
b = Ax.

We now give a generalization of Theorem 3.17.

Theorem 4.15
{(A′)−m(B′)} = {(A−

`(B))
′}. (4.87)

Proof. From Theorem 4.11, AA−
`(B)A = A implies A′(A−

`(B))
′A′ = A′. On

the other hand, we have

(QBAA−
`(B))

′ = QBAA−
`(B) ⇒ (A−

`(B))
′A′QB = [(A−

`(B))
′A′QB]′.

Hence, from Theorem 4.13, A−
`(B) ∈ {(A′)−m(B′)}. From Theorems 4.11 and

4.13, (A′)−m(B′) ∈ {A−
`(B))

′}, leading to (4.87). Q.E.D.

Example 4.2 (i) When A =

[
1 1
1 1

]
and B =

(
1
2

)
, find A−

`(B) and

A−
`r(B).

(ii) When A =

[
1 1
1 1

]
and C = (1, 2), find A−

m(C) and A−
mr(C).

Solution. (i): Since En = Sp(A) ⊕ Sp(B), AA−
`(B) is the projector onto

Sp(A) along Sp(B), so we obtain P A·B by (4.10). We have

(AA′ + BB′)−1 =

[
3 4
4 6

]−1

=
1
2

[
6 −4

−4 3

]
,

from which we obtain

P A·B = AA′(AA′ + BB′)−1 =

[
2 −1
2 −1

]
.
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Let

A−
`(B) =

[
a b
c d

]
.

From

[
1 1
1 1

] [
a b
c d

]
=

[
2 −1
2 −1

]
, we have a + c = 2 and b + d = −1.

Hence,

A−
`(B) =

[
a b

2− a −1− b

]
.

Furthermore, from rank(A−
`r(B)) = rank(A), we have a(−1− b) = b(2− a),

from which it follows that b = −1
2a and

A−
`r(B) =

[
a −1

2a

2− a −1 + 1
2a

]
.

(ii): Note that Sp(A′)⊕ Sp(C ′) = E2. By (4.50), (4.51), and (4.10),

A−
m(C)A = (P A′·C′)′ = (A′A + C ′C)−1A′A

and

A′A(A′A + C ′C)−1 =
1
3

[
2 1
2 1

]
.

Let

A−
m(C) =

[
e f
g h

]
.

From [
e f
g h

] [
1 1
1 1

]
=

1
3

[
2 2
1 1

]
,

we obtain e + f = 2
3 and g + h = 1

3 . Hence,

A−
m(C) =

[
e 2

3 − e

g 1
3 − g

]
.

Furthermore,

A−
mr(C) =

[
e 2

3 − e
1
2e 1

3 − 1
2e

]
.
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4.4.3 A generalized form of the Moore-Penrose inverse

Let
En = V ⊕W = Sp(A)⊕ Sp(B) (4.88)

and
Em = Ṽ ⊕ W̃ = Sp(QC′)⊕ Sp(QA′), (4.89)

where the complement subspace W = Sp(B) of V = Sp(A) and the comple-
ment subspace Ṽ = Sp(QC′) of W̃ = Ker(A) = Sp(QA′) are prescribed. Let
A+

B·C denote a transformation matrix from y ∈ En to x ∈ Ṽ = Sp(QC′).
(This matrix should ideally be written as A+

W ·Ṽ .) Since A+
B·C is a reflexive

g-inverse of A, it holds that

AA+
B·CA = A (4.90)

and
A+

B·CAA+
B·C = A+

B·C . (4.91)

Furthermore, from Theorem 3.3, AA+
B·C is clearly the projector onto V =

Sp(A) along W = Sp(B), and A+
B·CA is the projector onto Ṽ = Sp(QC′)

along W̃ = Ker(A) = Sp(QA′). Hence, from Theorems 4.11 and 4.13, the
following relations hold:

(QBAA+
B·C)′ = QBAA+

B·C (4.92)

and
(A+

B·CAQC′)
′ = A+

B·CAQC′ . (4.93)

Additionally, from the four equations above,

CA+
B·C = O and A+

B·CB = O (4.94)

hold.
When W = V ⊥ and Ṽ = W̃⊥, the four equations (4.90) through (4.93)

reduce to the four conditions for the Moore-Penrose inverse of A.

Definition 4.4 A g-inverse A+
B·C that satisfies the four equations (4.90)

through (4.93) is called the B, C-constrained Moore-Penrose inverse of A.
(See Figure 4.3.)

Theorem 4.16 Let an m by n matrix A be given, and let the subspaces
W = Sp(B) and W̃ = Sp(QC′) be given such that En = Sp(A)⊕Sp(B) and
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W̃ = Ker(A) = Sp(QA′)

x
Ṽ = Sp(QC′)

A+
B·C

W = Sp(B)

y

y1

y2

V = Sp(A)

³³³³³³³³³³³³³³³³³³³³)

³³³³³³³³³³³³³³³³³³³³)

Figure 4.3: Spatial representation of the Moore-Penrose inverse.

Em = Sp(QA′)⊕ Sp(QC′). Then A+
B·C is uniquely determined by B and C

that generate W and W̃ .

Proof. By (4.94), it holds that

QC′A
+
B·C = A+

B·C and A+
B·CQB = A+

B·C .

Hence, the four equations (4.90) through (4.93) can be rewritten as

(QBAQC′)A
+
B·C(QBAQC′) = QBAQC′ ,

A+
B·C(QBAQC′)A

+
B·C = A+

B·C , (4.95)

((QBAQC′)A
+
B·C)′ = (QBAQC′)A

+
B·C ,

and
(A+

B·C(QBAQC′))
′ = A+

B·C(QBAQC′).

This indicates that A+
B·C is the Moore-Penrose inverse of AB·C = QBAQC′ .

Since QB and QC′ are the orthogonal projectors onto Sp(B)⊥ and Sp(C ′)⊥,
respectively, A+

B·C is uniquely determined by arbitrary B̃ and C̃ such that
Sp(B) = Sp(B̃) and Sp(C ′) = Sp(C̃

′
). This indicates that AB·C is unique.

A+
B·C is also unique, since the Moore-Penrose inverse is uniquely determined.

Q.E.D.

Note It should be clear from the description above that A+
B·C that satisfies The-

orem 4.16 generalizes the Moore-Penrose inverse given in Chapter 3. The Moore-
Penrose inverse A+ corresponds with a linear transformation from En to Ṽ when
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En = V
·⊕ W and Em = Ṽ

·⊕ W̃ . It is sort of an “orthogonalized” g-inverse, while
A+

B·C is an “oblique” g-inverse in the sense that W = Sp(B) and Ṽ = Sp(QC′) are
not orthogonal to V and W̃ , respectively.

We now consider a representation of the generalized form of the Moore-
Penrose inverse A+

B·C .

Lemma 4.5
AA+

B·C = P A·B (4.96)

and
A+

B·CA = P QC′ ·QA′ = (P A′·C′)′. (4.97)

Proof. (4.96): Clear from Theorem 4.1.
(4.97): Use Theorem 4.14 and (4.81). Q.E.D.

Theorem 4.17 A+
B·C can be expressed as

A+
B·C = Q∗

C′(AQ∗
C′)

−A(Q∗
BA)−Q∗

B, (4.98)

where Q∗
C′ = Im −C ′(C ′)− and Q∗

B = In −BB−,

A+
B·C = QC′A

′(AQC′A
′)−A(A′QBA)−A′QB, (4.99)

and
A+

B·C = (A′A + C ′C)−1A′AA′(AA′ + BB′)−1. (4.100)

Proof. From Lemma 4.5, it holds that A+
B·CAA+

B·C = A+
B·CP A·B =

(P A′·C′)′A+
B·C = A+

B·C . Apply Theorem 4.1 and its corollary.
Q.E.D.

Corollary (i) When Sp(B) = Sp(A)⊥,

A+
B·C = QC′A

′(AQC′A
′)−A(A′A)−A′ (4.101)

= (A′A + C ′C)−1A′. (4.102)

(The A+
B·C above is denoted as A+

m(C).)

(ii) When Sp(C ′) = Sp(A′)⊥,

A+
B·C = A′(AA′)−A(A′QBA)−A′QB (4.103)

= A′(AA′ + BB′)−1. (4.104)
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(The A+
B·C above is denoted as A+

`(B).)

(iii) When Sp(B) = Sp(A)⊥ and Sp(C ′) = Sp(A′)⊥,

A+
B·C = A′(AA′)−A(A′A)−A′ = A+. (4.105)

(Proof omitted.)

Note When rank(A) = n, A+
m(C) = A+

mr(C), and when rank(A) = m, A+
`(B) =

A+
`r(B), but they do not hold generally. However, A+ in (4.105) always coincides

with A+ in (3.92).

Theorem 4.18 The vector x that minimizes ||P QC′ ·QA′x||2 among those
that minimize ||Ax− b||2QB

is given by x = A+
B·Cb.

Proof. Since x minimizes ||Ax− b||2QB
, it satisfies the normal equation

A′QBAx = A′QBb. (4.106)

To minimize the norm ||P QC′ ·QA′x||2 subject to (4.106), we define

f(x,λ) =
1
2
x′P̃

′
P̃ x− λ′(A′QBAx−A′QBb),

where λ is a vector of Lagrangean multipliers and P̃ = P QC′ ·QA′ . Differen-
tiating f with respect to x and setting the results to zero, we obtain

P̃
′
P̃ x = A′QBAλ. (4.107)

Putting together (4.106) and (4.107) in one equation, we obtain
[

P̃
′
P̃ A′QBA

A′QBA O

] (
x
λ

)
=

(
0

A′QBb

)
.

Hence,

(
x
λ

)
=

[
P̃
′
P̃ A′QBA

A′QBA O

]−1 (
0

A′QBb

)

=

[
C1 C2

C ′
2 −C3

] (
0

A′QBb

)
.
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Since P̃
′
P̃ = A′(AQC′A

′)−A and P̃QC′ is the projector onto Sp(A′) along
Sp(C ′), we have Sp(P̃

′
P̃QC′) = Sp(A), which implies Sp(P̃

′
P̃ ) = Sp(A′) =

Sp(A′QBA). Hence, by (3.57), we obtain

x = C2A
′QBb

= (P̃
′
P̃ )−A′QBA(A′QBA(P̃

′
P̃ )−A′QBA)−A′QBb.

We then use

QC′A
′(AQC′A

′)−AQC′ ∈ {(A′(AQC′A
′)−A)−} = {(P̃ ′

P̃ )−}
to establish

x = QC′A
′QBA(A′QBAQC′A

′QBA)−A′QBb. (4.108)

Furthermore, by noting that

(A′QBA)−A′(AQC′A
′)−A(A′QBA)− ∈ {(A′QBAQC′A

′QBA)−},
we obtain

x = QC′A
′(AQC′A

′)−A(A′QBA)−A′QBb

= A+
B·Cb. (4.109)

Q.E.D.

From the result above, Theorem 4.4 can be generalized as follows.

Theorem 4.19 Let Sp(A) = Sp(A1) ⊕ · · · ⊕ Sp(Ar). If there exists a
matrix Cj such that Sp(A′

j) ⊕ Sp(C ′
j) = Ekj , where kj is the number of

columns in Aj, then

P A = A1(A1)+A(1)·C1
+ · · ·+ Ar(Ar)+A(r)·Cr

, (4.110)

where A(j) = [A1, · · · , Aj−1, Aj+1, · · · ,Ar].

Proof. Clear from Theorem 4.4 and Aj(Aj)+A(j)·Cj
= P j·(j). (See (4.27).)

Q.E.D.

Example 4.3 Find A+
B·C when A =

[
1 1
1 1

]
, B =

(
1
2

)
, and C = (1, 2).

Solution. Since Sp(A) ⊕ Sp(B) = E2 and Sp(A′) ⊕ Sp(C ′) = E2, A+
B·C
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can be defined. To find A+
B·C , we set e in A−

mr(C) and a in A−
`r(B) equal to

each other in Example 4.2. Then A−
mr(C) = A−

`r(B) and a = e = 4
3 , leading

to

A+
B·C =

1
3

[
4 −2
2 −1

]
.

An alternative solution. We calculate A+
B·C directly using (4.100).

A′A + C ′C =

[
1 1
1 1

]2

+

(
1

−2

)
(1,−2) =

[
3 0
0 6

]
,

and

AA′ + BB′ =

[
1 1
1 1

]2

+

(
1
2

)
(1, 2) =

[
3 4
4 6

]
.

Hence, we obtain

[
3 0
0 6

]−1 [
1 1
1 1

]3 [
3 4
4 6

]−1

=
1
3

[
4 −2
2 −1

]
.

(Verify that the A+
B·C above satisfies the four conditions (4.90) through

(4.93).)

Note To be able to define A+
B·C , A should be n by m of rank r(< min(n,m)), B

should be n by s of rank n− r(≤ s), and C should be t by m of rank m− r(≤ t).

Theorem 4.20 Let Sp(A′)⊕Sp(C ′) = Em. If d = 0, (4.56) reduces to the
equation

x = A+
m(C)b, (4.111)

where A+
m(C) is as given in (4.101) and (4.102).

Proof. Since A′(AQC′A
′)−AQC′A

′ = A′, we have

(QC′A
′AQC′)A

′(AQC′A
′)−A(A′A)−A′(A′QC′A)−A(QC′A

′AQC′)
= QC′A

′A(A′A)−A′(AQC′A
′)−AQC′A

′AQC′ = QC′A
′AQC′ ,

which indicates that

G = A′(AQC′A
′)−A(A′A)−A′(AQC′A

′)−A
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is a g-inverse of QC′A
′AQC′ . Hence, we have

x = QC′GQC′A
′b

= QC′A
′(AQC′A

′)−A(A′A)−A′(AQC′A
′)−AQC′A

′b
= QC′A

′(AQC′A
′)−A(A′A)−A′b.

This leads to (4.111) by noting (4.101). Q.E.D.

Example 4.3 Let b and two items, each consisting of three categories, be
given as follows:

b =




72
48
40
48
28
48
40
28




, Ã =




0 1 0 1 0 0
0 1 0 1 0 0
1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 0 0 1
1 0 0 1 0 0
0 0 1 0 1 0




.

Subtracting column means from the elements, we obtain

A = QMÃ =
1
8




−2 −3 5 4 −2 −2
−2 5 −3 4 −2 −2

6 −3 −3 −4 −2 6
−2 5 −3 4 −2 −2
−2 −3 5 −4 6 −2
−2 5 −3 −4 −2 6

6 −3 −3 4 −2 −2
−2 −3 5 −4 6 −2




= [a1, a2, · · · , a6],

where QM = I8 − 1
811′. Note that rank(A) = rank(Ã) − 2. Since α =

(α1, α2, α3)′ and β = (β1, β2, β3)′ that minimize

||b− α1a1 − α2a2 − α3a3 − β1a4 − β2a5 − β3a6||2

cannot be determined uniquely, we add the condition that C

(
α
β

)
= 0

and obtain (
α̂

β̂

)
= (A′A + C ′C)−1A′b.
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We vary the elements of C in three ways and obtain solutions:

(a) C =

[
1 1 1 0 0 0
0 0 0 1 1 1

]
→ α̂ =



−1.67
−0.67

2.33


, β̂ =




1.83
−3.67

1.83


.

(b) C =

[
2 1 1 0 0 0
0 0 0 1 2 2

]
→ α̂ =



−1.24
−0.24

2.74


, β̂ =




2.19
−3.29

2.19


.

(c) C =

[
1 1 1 1 1 1
1 −1 1 −1 1 −1

]
→ α̂ =




1.33
2.33
5.33


, β̂ =



−1.16
−6.67
−1.16


.

Note The method above is equivalent to the method of obtaining weight coeffi-
cients called Quantification Method I (Hayashi, 1952). Note that different solutions
are obtained depending on the constraints imposed on α and β.

Theorem 4.21 Let Sp(A)⊕Sp(B) = En and Sp(A′)⊕Sp(B′) = Em. The
vector x that minimizes ||y−Ax||2QB

subject to the constraint that Cx = 0
is given by

x = A+
B·Cy, (4.112)

where A+
B·C is given by (4.98) through (4.100).

Proof. From the corollary of Theorem 4.8, we have minx ||y −Ax||2QB
=

||P A·By||2QB
. Using the fact that P A·B = AA+

B·C , we obtain Ax = AA+
B·Cy.

Premultiplying both sides of this by A+
B·C , we obtain (A+

B·CA)QC′ = QC′ ,
leading to x = A+

B·Cy. Q.E.D.

4.4.4 Optimal g-inverses

The generalized form of the Moore-Penrose inverse A+
B·C discussed in the

previous subsection minimizes ||x||2QC′
among all x’s that minimize ||Ax−

b||2QB
. In this subsection, we obtain x that minimizes

||Ax− b||2QB
+ ||x||2QC′

= (Ax− b)′QB(Ax− b) + x′QC′x

= x′(A′QBA + QC′)x− x′A′QBb− b′QBAx + b′QBb. (4.113)
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Differentiating the criterion above with respect to x and setting the results
to zero gives

(A′QBA + QC′)x = A′QBb. (4.114)

Assuming that the regular inverse exists for A′QBA + QC′ , we obtain

x = A+
Q(B)⊕Q(C)b, (4.115)

where
A+

Q(B)⊕Q(C) = (A′QBA + QC′)
−1A′QB. (4.116)

Let G denote A+
Q(B)⊕Q(C) above. Then the following theorem holds.

Theorem 4.22
rank(G) = rank(A), (4.117)

(QC′GA)′ = QC′GA, (4.118)

and
(QBAG)′ = QBAG. (4.119)

Proof. (4.117): Since Sp(A) and Sp(B) are disjoint, we have rank(G) =
rank(AQB) = rank(A′) = rank(A).

4.118): We have

QC′GA = QC′(A
′QBA + QC′)

−1A′QBA

= (QC′ + A′QBA−A′QBA)
×(A′QBA + QC′)

−1A′QBA

= A′QBA−A′QBA(A′QBA + QC′)
−1A′QBA.

Since QB and QC′ are symmetric, the equation above is also symmetric.
(4.119): QBAG = QBA(A′QBA)+QC′)−1A′QB is clearly symmetric.

Q.E.D.

Corollary Sp(QC′GA) = Sp(QC′) ∩ Sp(A′QBA).

Proof. This is clear from (3.37) and the fact that QC′(A
′QBA+QC′)−1A′

×QBA is a parallel sum of QC′ and A′QBA. Q.E.D.

Note Since A−AGA = A(A′QBA+QC′)−1QC′ , G is not a g-inverse of A. The
three properties in Theorem 3.22 are, however, very similar to those for the general
form of the Moore-Penrose inverse A+

B·C . Mitra (1975) called

A+
M⊕N = (A′MA + N)−1A′M (4.120)
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an optimal inverse (instead of (4.116)), where M and N are pd matrices of orders
n and p, respectively. Note that x = A+

M⊕Nb minimizes

||Ax− b||2M + ||x||2N . (4.121)

If (4.120) is denoted by G, (4.118) becomes (NGA)′ = NGA and (4.119) becomes
(MAG)′ = MAG. Additionally, it holds that

(A′)+N⊕M = A+
M−1⊕N−1 . (4.122)

Note If we set M = In and N = λIp in (4.120), where λ is a small positive scalar
called a ridge parameter, we obtain

A+
In⊕Ip

= (A′A + λIp)−1A′, (4.123)

which is often called the Tikhonov regularized inverse (Tikhonov and Arsenin,
1977). Using (4.123), Takane and Yanai (2008) defined a ridge operator RX(λ)
by

RX(λ) = AA+
In⊕Ip

= A(A′A + λIp)−1A′, (4.124)

which has many properties similar to an orthogonal projector. Let

MX(λ) = In + λ(XX ′)+. (4.125)

(This is called a ridge metric matrix.) Then A′A+λIp can be rewritten as A′A+
λIp = A′MX(λ)A, so that the ridge operator defined above can be rewritten as

RX(λ) = A(A′MX(λ)A)−1A′. (4.126)

Takane and Yanai (2008) considered a variety of decompositions of ridge operators
analogous to those for orthogonal projectors such as those given in Theorems 2.10,
2.16, 4.2, and 4.5.

4.5 Exercises for Chapter 4

1. Find A−
mr(C) when A =

[
1 2 3
2 3 1

]
and C = (1, 1, 1).

2. Let A =




1 2
2 1
1 1


.

(i) Find A−
`r(B) when B =




1
1
1


.
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(ii) Find A−
`r(B̃)

when B̃ =




1
a
b


, and verify that A−

`r(B̃)
= A−`r when a = −3

and b = 1.

3. Let A =




2 −1 −1
−1 2 −1
−1 −1 2


, B = (1, 2, 1)′, and C = (2, 1, 1). Then, Sp(A) ⊕

Sp(B) = E3 and Sp(A′)⊕ Sp(C ′) = E3. Obtain A+
B·C .

4. Let Sp(A)⊕ Sp(B), and let P A and P B denote the orthogonal projectors onto
Sp(A) and Sp(B).
(i) Show that In − P AP B is nonsingular.
(ii) Show that (In − P AP B)−1P A = P A(In − P BP A)−1.
(iii) Show that (In − P AP B)−1P A(In − P AP B)−1 is the projector onto Sp(A)
along Sp(B).

5. Let Sp(A′)⊕ Sp(C ′) ⊂ Em. Show that x that minimizes ||Ax− b||2 under the
constraint that Cx = 0 is given by

x = (A′A + C ′C + D′D)−1A′b,

where D is an arbitrary matrix that satisfies Sp(D′) = (Sp(A′)⊕ Sp(C ′))c.

6. Let A be an n by m matrix, and let G be an nnd matrix of order n such that
En = Sp(A)⊕ Sp(GZ), where Sp(Z) = Sp(A)⊥. Show that the relation

P A·TZ = P A/T−1

holds, where the right-hand side is the projector defined by the pseudo-norm
||x||2 = x′T−1x given in (4.49). Furthermore, T is given by T = G + AUA′,
where U is an arbitrary matrix of order m satisfying Sp(T ) = Sp(G) + Sp(A).

7. Let A be an n by m matrix, and let M be an nnd matrix of order n such that
rank(A′MA) = rank(A). Show the following:
(i) En = Sp(A)⊕ Sp(A′M).
(ii) P A/M = A(A′MA)−A′M is the projector onto Sp(A) along Ker(A′M).
(iii) Let M = QB . Show that Ker(A′M) = Sp(B) and P A/QB

= P A·B =
A(A′QBA)−A′QB , when En = Sp(A)⊕ Sp(B).

8. Let En = Sp(A)⊕ Sp(B) = Sp(A)⊕ Sp(B̃) and Em = Sp(A′)⊕ Sp(C ′). Show
that

A+

B̃·CAA+
B·C = A+

B·C .

9. Let M be a symmetric pd matrix of order n, and let A and B be n by r and n
by n− r matrices having full column rank such that Ker(A′) = Sp(B). Show that

M−1 = M−1A(A′M−1A)−1A′M−1 + B(B′MB)−1B′. (4.127)
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(The formula above is often called Khatri’s (1966) lemma. See also Khatri (1990).)

10. Let A be an n by m matrix, and let V ⊂ Em and W ⊂ En be two subspaces.
Consider the following four conditions:
(a) G maps an arbitrary vector in En to V .
(b) G′ maps an arbitrary vector in Em to W .
(c) GA is an identity transformation when its domain is restricted to V .
(d) (AG)′ is an identity transformation when its domain is restricted to W .
(i) Let V = Sp(H) and

rank(AH) = rank(H) = rank(A), (4.128)

and let G satisfy conditions (a) and (c) above. Show that

G = H(AH)− (4.129)

is a g-inverse of A.
(ii) Let W = Sp(F ′) and

rank(FA) = rank(F ) = rank(A), (4.130)

and let G satisfy conditions (b) and (d) above. Show that

G = (FA)−F (4.131)

is a g-inverse of A.
(iii) Let V = Sp(H) and W = Sp(F ′), and

rank(FAH) = rank(H) = rank(F ) = rank(A), (4.132)

and let G satisfy all of the conditions (a) through (d). Show that

G = H(FAH)−F (4.133)

is a g-inverse of A.
(The g-inverses defined this way are called constrained g-inverses (Rao and Mitra,
1971).)
(iv) Show the following:

In (i), let Em = Sp(A′) ⊕ Sp(C ′) and H = Ip − C ′(CC ′)−C. Then (4.128)
and

G = A−
mr(C) (4.134)

hold.
In (ii), let En = Sp(A)⊕Sp(B) and F = In−B(B′B)−B′. Then (4.130) and

G = A−
`r(B) (4.135)

hold.
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In (iii), let Em = Sp(A′)⊕Sp(C ′), En = Sp(A)⊕Sp(B), H = Ip−C ′(CC ′)−C,
and F = In −B(B′B)−B′. Then (4.132) and

G = A+
B·C (4.136)

hold.
(v) Assume that FAH is square and nonsingular. Show that

rank(A−AH(FAH)−1FA)
= rank(A)− rank(AH(FAH)−1FA) (4.137)
= rank(A)− rank(FAH). (4.138)

This rank formula is often called the Wedderburn-Guttman theorem (Guttman,
1944, 1952, 1957; see also Takane and Yanai, 2005).

11. Show the following:
(i) P +

A/M = P MAP A, where P A/M = A(A′MA)−A′M , P MA = MA(A′M2A)−

A′M , and P A = A(A′A)−A′.
(ii) (MP A/M )+ = P MAM−P MA, where Sp(A) ⊂ Sp(M), which may be assumed
without loss of generality.
(iii) Q+

A/M = QAQMA, where QA/M = I − P A/M , QA = I − P A, and QMA =
I − P MA.
(iv) (MQA/M )+ = QAM+QA, where Sp(A) ⊂ Sp(M) = Sp(M+), which may be
assumed without loss of generality.

12. Show that minimizing

φ(B) = ||Y −XB||2 + λ||B||2

with respect to B leads to

B̂ = (X ′X + λI)−1X ′Y ,

where (X ′X + λI)−1X ′ is the Tikhonov regularized inverse defined in (4.123).
(Regression analysis that involves a minimization of the criterion above is called
ridge regression (Hoerl and Kennard, 1970).)
13. Show that:
(i) RX(λ)MX(λ)RX(λ) = RX(λ) (i.e., MX(λ) ∈ {RX(λ)−}), where RX(λ) and
MX(λ) are as defined in (4.124) (and rewritten as in (4.126) and (4.125), respec-
tively.
(ii) RX(λ)+ = MX(λ).



Chapter 5

Singular Value
Decomposition (SVD)

5.1 Definition through Linear Transformations

In the previous section, we utilized the orthogonal direct-sum decomposi-
tions

En = V1

·⊕ W1 and Em = V2

·⊕ W2, (5.1)

where V1 = Sp(A), W1 = V ⊥
1 , W2 = Ker(A), and V2 = W⊥

2 , to define the
Moore-Penrose inverse A+ of the n by m matrix A in y = Ax, a linear
transformation from Em to En. Let A′ be a matrix that represents a linear
transformation x = A′y from En to Em. Then the following theorem holds.

Theorem 5.1

(i) V2 = Sp(A′) = Sp(A′A).

(ii) The transformation y = Ax from V2 to V1 and the transformation x =
A′y from V1 to V2 are one-to-one.

(iii) Let f(x) = A′Ax be a transformation from V2 to V2, and let

SpV2
(A′A) = {f(x) = A′Ax|x ∈ V2} (5.2)

denote the image space of f(x) when x moves around within V2. Then,

SpV2
(A′A) = V2, (5.3)

and the transformation from V2 to V2 is one-to-one.
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Note Since V2 = Sp(A′), SpV2
(A′A) is often written as SpA′(A

′A). We may also
use the matrix and the subspace interchangeably as in SpV1

(V2) or SpA(V2), and
so on.

Proof of Theorem 5.1 (i): Clear from the corollary of Theorem 1.9 and
Lemma 3.1.

(ii): From rank(A′A) = rank(A), we have dim(V1) = dim(V2), from
which it follows that the transformations y = Ax from V2 to V1 and x = A′y
from V1 to V2 are both one-to-one.

(iii): For an arbitrary x ∈ Em, let x = x1 + x2, where x1 ∈ V2 and
x2 ∈ W2. Then, z = A′Ax = A′Ax1 ∈ SpV2

(A′A). Hence, SpV2
(A′A) =

Sp(A′A) = Sp(A′) = V2. Also, A′Ax1 = AAx2 ⇒ A′A(x2 − x1) =
0 ⇒ x2 − x1 ∈ Ker(A′A) = Ker(A) = Wr. Hence, x1 = x2 if x1, x2 ∈
V2. Q.E.D.

Let y = Tx be an arbitrary linear transformation from En to En (i.e.,
T is a square matrix of order n), and let V = {Tx|x ∈ V } be a subspace of
En (V ⊂ En). Then V is said to be invariant over T . Hence, V2 = Sp(A′) is
invariant over A′A. Let y = Tx be a linear transformation from Em to En,
and let its conjugate transpose x = T ′y be a linear transformation from En

to Em. When the two subspaces V1 ⊂ En and V2 ⊂ Em satisfy

V1 = {y|y = Tx,x ∈ V2} (5.4)

and
V2 = {x|x = T ′y,y ∈ V1}, (5.5)

V1 and V2 are said to be bi-invariant. (Clearly, V1 and V2 defined above are
bi-invariant with respect to A and A′, where A is an n by m matrix.)

Let us now consider making V11 and V21, which are subspaces of V1 and
V2, respectively, bi-invariant. That is,

SpV1
(V21) = V11 and SpV2

(V11) = V21. (5.6)

Since dim(V11) = dim(V21), let us consider the case of minimum dimension-
ality, namely dim(V11) = dim(V21) = 1. This means that we are looking
for

Ax = c1y and A′y = c2x, (5.7)

where x ∈ Em, y ∈ En, and c1 and c2 are nonzero constants. One possible
pair of such vectors, x and y, can be obtained as follows.
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Lemma 5.1

max
x

φ(x) = max
x

||Ax||2
||x||2 = λ1(A′A), (5.8)

where λ1(A′A) is the largest eigenvalue of A′A.

Proof. Since φ(x) is continuous with respect to (each element of) x and is
bounded, it takes its maximum and minimum values on the surface of the
sphere c = {x|||x|| = 1}. Maximizing φ(x) with respect to x is equivalent
to maximizing its numerator x′A′Ax subject to the constraint that ||x||2 =
x′x = 1, which may be done via the Lagrange multiplier method. Define

f(x, λ) = x′A′Ax− λ(x′x− 1),

where λ is a Lagrange multiplier. Differentiating f with respect to (each
element of) x and setting the result to zero, we obtain

1
2

∂f

∂x
= A′Ax− λx = 0.

Premultiplying the equation above by x′, we obtain

x′A′Ax = λx′x = λ.

This shows that the maximum of φ(x) corresponds with the largest eigen-
value λ1 of A′A (often denoted as λ1(A′A)). Q.E.D.

Let x1 denote a vector that maximizes ||Ax||2/||x||2, and let y1 = Ax.
Then,

A′y1 = A′Ax1 = λ1x1, (5.9)

which indicates that x1 and y1 constitute a solution that satisfies (5.7). Let
V11 = {cy1} and V21 = {dx1}, where c and d are arbitrary real numbers. Let
V ∗

11 and V ∗
21 denote the sets of vectors orthogonal to yi and xi in V1 and V2,

respectively. Then, Ax∗ ∈ V ∗
11 if x∗ ∈ V ∗

21 since y′1Ax∗ = λ1x
′
1x

∗ = 0. Also,
A′y∗ ∈ V ∗

21 if y∗ ∈ V ∗
11, since x′1A

′y∗ = y′y∗ = 0. Hence, SpA(V ∗
21) ⊂ V ∗

11

and SpA′(V ∗
11) ⊂ V ∗

21, which implies V11

·⊕ V ∗
11 = V1 and V21

·⊕ V ∗
21 = V2.

Hence, we have SpA(V2) = V1 and SpA′(V1) = V2, and so SpA(V21) = V11

and SpA′(V11) = V21. We now let

A1 = A− y1x
′
1. (5.10)

Then, if x∗ ∈ V ∗
21,

A1x
∗ = Ax∗ − y1x

′
1x

∗ = Ax∗
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and
A1x1 = Ax1 − y1x

′
1x1 = y1 − y1 = 0,

which indicate that A1 defines the same transformation as A from V ∗
21 to

V ∗
11 and that V21 is the subspace of the null space of A1 (i.e., Ker(A1)).

Similarly, since

y∗ ∈ V ∗
11 =⇒ A′

1y
∗ = A′y∗ − x1y

′
1y
∗ = A′y∗

and
y1 ∈ V11 =⇒ A′

1y1 = A′y1 − x1y
′
1y1 = λx1 − λx1 = 0,

A′
1 defines the same transformation as A′ from V ∗

11 to V ∗
21. The null space

of A1 is given by V11

·⊕ W1, whose dimensionality is equal to dim(W1) + 1.
Hence rank(A1) = rank(A)− 1.

Similarly, let x2 denote a vector that maximizes ||A1x||2/||x||2, and let
A1x2 = Ax2 = y2. Then, A′y2 = λ2y2, where λ2 is the second largest
eigenvalue of A′A. Define

V22 = {cx2} and V12 = {dy2},
where c and d are arbitrary real numbers. Then, SpA(V22) = V12 and
SpA′(V12) = V22, implying that V22 and V12 are bi-invariant with respect
to A as well. We also have x2 ∈ V ∗

21 and y2 ∈ V ∗
11, so that x′1x2 = 0 and

y′1y2 = 0. Let us next define

A2 = A1 − y2x
′
2 = A− y1x

′
1 − y2x

′
2. (5.11)

Then, rank(A2) = rank(A)− 2.
Applying the same operation repeatedly, we obtain a matrix with all

elements being zero, namely a zero matrix, O. That is,

A− y1x
′
1 − · · · − yrx

′
r = O

or
A = y1x

′
1 + · · ·+ yrx

′
r. (5.12)

Here, x1, x2, · · · , xr and y1, y2, · · ·yr constitute orthogonal basis vectors for
V2 = Sp(A′) and V1 = Sp(A), respectively, and it holds that

Axj = yj and A′yj = λxj (j = 1, · · · , r), (5.13)

where λ1 > λ2 > · · · > λr > 0 are nonzero eigenvalues of A′A (or of AA′).
Since

||yj ||2 = y′jyj = y′jAxj = λjx
′
jxj = λj > 0,
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there exists µj =
√

λj such that λ2
j = µj (µj > 0). Let y∗j = yj/µj . Then,

Axj = yj = µjy
∗
j (5.14)

and
A′y∗j = λjxj/µj = µjxj . (5.15)

Hence, from (5.12), we obtain

A = µ1y
∗
1x

′
1 + · · · ,+µry

∗
rx

′
r.

Let uj = y∗j (j = 1, · · · , r) and vj = xj (j = 1, · · · , r), meaning

V [r] = [v1,v2, · · · ,vr] and U [r] = [u1,u2, · · · , ur], (5.16)

and let

∆r =




µ1 0 · · · 0
0 µ2 · · · 0
...

...
. . .

...
0 0 · · · µr




. (5.17)

Then the following theorem can be derived.

Theorem 5.2 An n by m matrix A of rank r can be decomposed as

A = µ1u1v
′
1 + µ2u2v

′
2 + · · ·+ µrurv

′
r (5.18)

= U [r]∆rV
′
[r], (5.19)

where λj = µ2
j (j = 1, · · · , r) are nonzero eigenvalues of A′A. (It is assumed

that there are no identical eigenvalues.)

Corollary 1 Vectors vj and uj (j = 1, · · · , r) that satisfy (5.18) also satisfy
the equations

Avj = µjuj and A′uj = µjvj , (5.20)

A′Avj = λjvj and Avj = µjuj , (5.21)

and
AA′uj = λjuj and A′uj = µjvj . (5.22)

Proof. (5.20): Postmultiplying (5.18) by vj , we obtain Avj = µjuj , and
by postmultiplying the transpose A′ of (5.18) by vj , we obtain A′uj =
µjvj . Q.E.D.
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Corollary 2 When A′A = AA′, matrix A is called a normal matrix. A
normal matrix can be decomposed as

A = µ1u1u
′
1 + µ2u2u

′
2 + · · ·+ µruru

′
r.

Proof. It is clear from (5.21) and (5.22) that uj = vj when A′A = AA′.
Q.E.D.

Definition 5.1 Decomposition (5.18) (and (5.19)) is called the singular
value decomposition (SVD) of the matrix A, where µj indicates the jth
largest singular value of A and is often denoted as µj = µj(A).

Note that U [r] and V [r] are columnwise orthogonal, that is,

U ′
[r]U [r] = V ′

[r]V [r] = Ir. (5.23)

Furthermore, we can add U [0] = [ur+1, · · · , un] to U [r], where U [0] is an
n by n − r columnwise orthogonal matrix (U ′

[0]U [0] = In−r) that is also
orthogonal to U [r] (U ′

[r]U [0] = O). The resultant matrix U = [U [r], U [0]]
is fully orthogonal (U ′U = UU ′ = In). Similarly, we can add an m by
m−r columnwise orthogonal matrix V [0] = [vr+1, · · · , vm] to V [r] to form a
fully orthogonal matrix V = [V [r],V [0]]. A complete form of singular value
decomposition (SVD) may thus be expressed as

A = U∆V ′, (5.24)

where
U ′U = UU ′ = In and V ′V = V V ′ = Im, (5.25)

and

∆ =

[
∆r O
O O

]
, (5.26)

where ∆r is as given in (5.17). (In contrast, (5.19) is called the compact (or
incomplete) form of SVD.) Premultiplying (5.24) by U ′, we obtain

U ′A = ∆V ′ or A′U = V ∆,

and by postmultiplying (5.24) by V , we obtain

AV = U∆.
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Pre- and postmultiplying (5.24) by U ′ and V , respectively, we obtain

U ′AV = ∆. (5.27)

When all nonzero (positive) singular values of A (or nonzero eigenvalues
of A′A) are distinct, U [r] and V [r] are determined uniquely. However, V [0]

and U [0] consist of orthonormal basis vectors in Ker(A) and Sp(A)⊥ =
Ker(A′), respectively, and consequently they are not uniquely determined.

Let us now consider the linear transformation y = Ax. From (5.24) and
(5.25), we have

y = U∆V ′x or U ′y = ∆V ′x.

Let ỹ = U ′y and x̃ = V ′x. Then,

ỹ = ∆x̃. (5.28)

This indicates that the linear transformation y = Ax can be viewed, from
the perspective of singular value decomposition, as three successive linear
transformations,

x
V ′−→ x̃

∆−→ ỹ
U−→ y,

an orthogonal transformation (V ′) from x to x̃, followed by a diagonal trans-
formation (∆) that only multiplies the elements of x̃ by some constants to
obtain ỹ, which is further orthogonally transformed (by U) to obtain y.
Note that (5.28) indicates that the transformation matrix corresponding to
A is given by ∆ when the basis vectors spanning En and Em are chosen to
be U and V , respectively.

Example 5.1 Find the singular value decomposition of

A =




−2 1 1
1 −2 1
1 1 −2

−2 1 1


.

Solution. From A′A =




10 −5 −5
−5 7 −2
−5 −2 7


, we obtain

φ(λ) = |λI3 −A′A| = (λ− 15)(λ− 9)λ = 0.
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Hence, the eigenvalues of A′A are given by λ1 = 15, λ2 = 9, and λ3 = 0,
and so the singular values of the matrix A are given by µ1 =

√
15, µ2 = 3,

and µ3 = 0. We thus obtain

∆2 =

[ √
15 0
0 3

]
.

Furthermore, from A′AV [2] = V [2]∆
2
2 and U [2] = AV [2]∆

−1
2 , we obtain

U [2] =




√
2
5 0

−
√

1
10

√
2

2

−
√

1
10 −

√
2

2√
2
5 0




and V [2] =




− 2√
6

0
1√
6

− 1√
2

1√
6

1√
2


.

Thus the SVD of A is given by

A =
√

15




√
2
5

− 1√
10

− 1√
10√
2
5




(
− 2√

6
,

1√
6
,

1√
6

)
+ 3




0
√

2
2

−
√

2
2

0




(
0,− 1√

2
,

1√
2

)

=
√

15




− 2√
15

1√
15

1√
15

1√
15

− 1
2
√

15
− 1

2
√

15
1√
15

− 1
2
√

15
− 1

2
√

15

− 2√
15

1√
15

1√
15




+ 3




0 0 0
0 −1

2
1
2

0 1
2 −1

2

0 0 0



.

Example 5.2 We apply the SVD to 10 by 10 data matrices below (the two
matrices together show the Chinese characters for “matrix”).
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Data matrix A

0 0 0 1 0 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 1 1 1 1 1
0 1 1 0 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0

,

Data matrix B

1 1 1 1 1 0 1 0 0 1
0 1 0 0 0 0 1 0 0 1
0 1 1 1 1 0 1 0 0 1
0 1 0 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0 0 1
0 1 1 1 1 0 1 0 0 1
0 1 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 1 0 0 1
0 1 1 1 1 0 1 1 1 1

.

We display

Aj(and Bj) = µ1u1v
′
1 + µ2u2v

′
2 + · · ·+ µjujv

′
j

in Figure 5.1. (Elements of Aj larger than .8 are indicated by “*”, those
between .6 and .8 are indicated by “+”, and those below .6 are left blank.) In
the figure, µj is the jth largest singular value and Sj indicates the cumulative
contribution up to the jth term defined by

Sj = (λ1 + λ2 + · · ·+ λj)/(λ1 + λ2 + · · ·+ λ10)× 100(%).

With the coding scheme above, A can be “perfectly” recovered by the first
five terms, while B is “almost perfectly” recovered except that in four places
“*” is replaced by “+”. This result indicates that by analyzing the pattern
of data using SVD, a more economical transmission of information is possi-
ble than with the original data.

(1) A1 (2) A2 (3) A3 (4) A4 (5) A5

* * + **+** * **+** * **+** * *****+ + + +* * * * * ** * + *+ ***** + * ***** * * ***** * * *****+ * * * +* * +* + ** ** * * * * * + * * * * *+ + * * * * * * * *+ + * * * * * * * *+ + * * * * * * * *+ + * * * * * * * *

µ1 = 4.24 µ2 = 2.62 µ3 = 1.69 µ4 = 1.11 µ5 = 0.77
S1 = 60.06 S2 = 82.96 S3 = 92.47 S4 = 96.59 S5 = 98.57

Figure 5.1: Data matrices A and B and their SVDs. (The µj is the singular
value and Sj is the cumulative percentage of contribution.)
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(6) B1 (7) B2 (8) B3 (9) A4 (10) A5

*++* * * **** * * **** * * +**** * * ***** * *+ + + + + + + * * * + * * + * * +*++* * * **** * * **** * * **** * * **** * ** * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * **++* * * **** * * **** * * **** * * **** * *+ + + + + * + * + * + * + * + * + * + *+ + * * * * * *+ + + + + * + * + * + * + * + * + * + **++* * * **** * * **** * * **** **** **** ****

µ1 = 6.07 µ2 = 2.06 µ3 = 1.30 µ4 = 1.25 µ5 = 1.00
S1 = 80.13 S2 = 88.97 S3 = 92.66 S4 = 96.05 S5 = 98.23

Figure 5.1: (Continued.)

5.2 SVD and Projectors

In this section, we discuss principles underlying the SVD in more detail.

Lemma 5.2 Let

P i = uiu
′
i, P̃ i = viv

′
i, and Qi = uiv

′
i. (5.29)

Then the following relations hold:

P 2
i = P i, P iP j = O (i 6= j), (5.30)

P̃
2
i = P̃ i, P̃ iP̃ j = O (i 6= j), (5.31)

QiQ
′
i = P i, Q′

iQi = P̃ i, (5.32)

Q′
iQj = O (i 6= j), QiQ

′
j = O (i 6= j), (5.33)

and
P ′

iQi = Qi, P̃ iQ
′
i = Q′

i. (5.34)

(Proof omitted.)

As is clear from the results above, P j and P̃ j are both orthogonal pro-
jectors of rank 1. When r < min(n,m), neither P 1 + P 2 + · · · + P r = In

nor P̃ 1 + P̃ 2 + · · ·+ P̃ r = Im holds. Instead, the following lemma holds.



5.2. SVD AND PROJECTORS 135

Lemma 5.3 Let V1 = Sp(A), V2 = Sp(A′), V1j = Sp(uj), and V2j =
Sp(vj), and let P 1j and P 2j be the orthogonal projectors onto V1j and V2j,
respectively. Then the following relations hold:

V1 = V11

·⊕ V12

·⊕ · · · ·⊕ V1r,

V2 = V21

·⊕ V22

·⊕ · · · ·⊕ V2r, (5.35)

and

P A = P 11 + P 12 + · · ·+ P 1r,

P A′ = P 21 + P 22 + · · ·+ P 2r. (5.36)

(Proof omitted.)

Theorem 5.3 Matrix A can be decomposed as follows using P j, P̃ j, and
Qj that satisfy (5.30) through (5.34):

A = (P 1 + P 2 + · · ·+ P r)A, (5.37)

A′ = (P̃ 1 + P̃ 2 + · · ·+ P̃ r)A′, (5.38)

A = µ1Q1 + µ2Q2 + · · ·+ µrQr. (5.39)

Proof. (5.37) and (5.38): Clear from Lemma 5.3 and the fact that A =
P AA and A′ = P A′A

′.
(5.39): Note that A = (P 1 + P 2 + · · · + P r)A(P̃ 1 + P̃ 2 + · · · + P̃ r)

and that P jAP̃ i = uj(u′jAvi)v′i = µiuj(u′jvi)v′i = δijµi (where δij is the
Kronecker delta that takes the value of unity when i = j and zero otherwise).
Hence, we have

A = P 1AP̃ 1 + P 2AP̃ 2 + · · ·+ P rAP̃ r

= u1(u′1Av1)v′1 + u2(u′2Av2)v′2 + · · ·+ ur(u′rAvr)v′r
= µ1u1v

′
1 + µ2u2v

′
2 + · · ·+ µrurv

′
r

= µ1Q1 + µ2Q2 + · · ·+ µrQr.

Q.E.D.
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Let F and G be matrices of orthonormal basis vectors for V1 = Sp(A)
and V2 = Sp(A′), respectively. Since F ′F = Ir and G′G = Ir,

P A = P F = F (F ′F )−1F ′ = FF ′ and P A′ = P G = G(G′G)−1G′ = GG′.

Hence,
A = P F AP G = F (F ′AG)G′. (5.40)

If we choose F and G in such a way that F ′AG is diagonal, we obtain the
SVD of A.

Corollary (i) When x ∈ Sp(A),

x = (u1, x)u1 + (u2, x)u2 + · · ·+ (ur, x)ur

and
||x||2 = (u1, x)2 + (u2, x)2 + · · ·+ (ur, x)2. (5.41)

(ii) When y ∈ Sp(A′),

y = (v1, y)v1 + (v2, y)v2 + · · ·+ (vr, y)vr

and
||y||2 = (v1, y)2 + (v2,y)2 + · · ·+ (vr, y)2. (5.42)

(A proof is omitted.)

Equations (5.41) and (5.42) correspond with Parseval’s equality.
We now present a theorem concerning decompositions of symmetric ma-

trices A′A and AA′.

Theorem 5.4 Using the decompositions given in (5.30) through (5.34),
AA′ and A′A can be decomposed as

AA′ = λ1P 1 + λ2P 2 + · · ·+ λrP r (5.43)

and
A′A = λ1P̃ 1 + λ2P̃ 2 + · · ·+ λrP̃ r, (5.44)

where λj = µ2
j is the jth largest eigenvalue of A′A (or AA′).

Proof. Use (5.37) and (5.38), and the fact that QiQ
′
i = P i, G′

iGi = P̃ i,
Q′

iQj = O (i 6= j), and GiG
′
j = O (i 6= j). Q.E.D.
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Decompositions (5.43) and (5.44) above are called the spectral decom-
positions of A′A and AA′, respectively. Theorem 5.4 can further be gener-
alized as follows.

Theorem 5.5 Let f denote an arbitrary polynomial function of the matrix
B = A′A, and let λ1, λ2, · · · , λr denote nonzero (positive) eigenvalues of B.
Then,

f(B) = f(λ1)P̃ 1 + f(λ2)P̃ 2 + · · ·+ f(λr)P̃ r. (5.45)

Proof. Let s be an arbitrary natural number. From Lemma 5.2 and the
fact that P̃

2
i = P̃ i and P̃ iP̃ j = O (i 6= j), it follows that

Bs = (λ1P̃ 1 + λ2P̃ 2 + · · ·+ λrP̃ r)s

= λs
1P̃ 1 + λs

2P̃ 2 + · · ·+ λs
rP̃ r.

Let s1 and s2 be two distinct natural numbers. Then,

vBs1 + wBs2 =
r∑

j=1

(vλs1
j + wλs2

j )P̃ j ,

establishing (5.45). Q.E.D.

Corollary Let A be an n by m matrix (n ≥ m). If f(B) = f(A′A) is
nonsingular,

(f(B))−1 = f(λ1)−1P̃ 1 + f(λ2)−1P̃ 2 + · · ·+ f(λr)−1P̃ r. (5.46)

Proof. Since A′A is nonsingular,

P̃ 1 + P̃ 2 + · · ·+ P̃ r = Im,

assuming that the m eigenvalues λ1, λ2, · · · , λm are all distinct. Then,

(f(λ1)P̃ 1 + f(λ2)P̃ 2 + · · ·+ f(λr)P̃ r)
(f(λ1)−1P̃ 1 + f(λ2)−1P̃ 2 + · · ·+ f(λr)−1P̃ r) = Im,

leading to (5.46). Q.E.D.
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Note If the matrix A′A has identical roots, let λ1, λ2, · · · , λs (s < r) denote distinct
eigenvalues with their multiplicities indicated by n1, n2, · · · , ns (n1 +n2 + · · ·+ns =
r). Let U i denote the matrix of ni eigenvectors corresponding to λi. (The Sp(U i)
constitutes the eigenspace corresponding to λi.) Furthermore, let

P i = U iU
′
i, P̃ i = V iV

′
i, and Qi = U iV

′
i,

analogous to (5.29). Then Lemma 5.3 and Theorems 5.3, 5.4, and 5.5 hold as
stated. Note that P i and P̃ i are orthogonal projectors of rank ni, however.

5.3 SVD and Generalized Inverse Matrices

We consider how generalized inverses of the matrix A can be expressed in
terms of its SVD given in (5.25).

Lemma 5.4 Let the SVD of an n by m matrix A be given by (5.25), and
let S1, S2, and S3 be arbitrary r by n− r, m− r by r, and m− r by n− r
matrices, respectively. Then a generalized inverse of A is given by

A− = V

[
∆r S1

S2 S3

]
U ′. (5.47)

Proof. Substituting A = U∆V ′ into AA−A = A, we obtain U∆V ′A−U
∆V ′ = U∆V ′. Let V ′A−U = A∗. Then, ∆A∗∆ = ∆, namely A∗ = ∆−,
and so A− = V ∆−U ′. Let

∆− =

[
∆11 ∆12

∆21 ∆22

]
,

where ∆11 is r by r, ∆12 is r by n− r, ∆21 is m− r by r, and ∆22 is m− r
by n− r. Then, since ∆ is as given in (5.26), we have

∆∆−∆ =

[
∆r O
O O

]
= ∆.

Hence, we have ∆r∆11∆r = ∆r. Since ∆r is a nonsingular matrix of order
r, ∆11 = ∆−1

r , and the remaining submatrices can be arbitrary. Q.E.D.

The following theorem is readily derived from Lemma 5.4.
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Theorem 5.6 We have

A−
r = V

[
∆−1

r S1

S2 S3

]
U ′, (5.48)

where S3 = S2∆rS1 and S1 and S2 are arbitrary r by n− r and m− r by
r matrices, respectively;

A−
m = V

[
∆−1

r T 1

O T 2

]
U ′, (5.49)

where T 1 and T 2 are arbitrary r by n − r and m − r by n − r matrices,
respectively;

A−
` = V

[
∆−1

r O
W 1 W 2

]
U ′, (5.50)

where W 1 and W 2 are arbitrary m− r by r and m− r by n− r matrices,
respectively, and

A+ = V

[
∆−1

r O
O O

]
U ′ (5.51)

or
A+ =

1
µ1

v1u
′
1 +

1
µ2

v2u
′
2 + · · ·+ 1

µr
vru

′
r. (5.52)

Proof. (5.48): rank(A−
r ) = rank(A). Since U and V are nonsingular,

rank(A−
r ) = rank

[
∆−1

r S1

S2 S3

]
= rank

[
∆−1

r

S2

]
= rank(∆−

r ).

By Example 3.3, we must have S3 = S2∆rS1.
(5.49): Since A−

mA is symmetric, we have

V

[
∆−1

r S1

S2 S3

]
U ′U∆V ′ =

[
∆−1

r S1

S2 S3

] [
∆r O
O O

]
V ′

= V

[
Ir O

S2∆r O

]
V ′.

To make the matrix above symmetric, it must be that S2 = O.
(5.50): Since AA−

` is symmetric,

AA−
` = U

[
∆−1

r S1∆r

O O

]
U ′,

and so it must be that S1 = O.
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(5.51): Since A+ should satisfy (5.48), (5.49), and (5.50), it holds that
S3 = O. Q.E.D.

5.4 Some Properties of Singular Values

As is clear from the argument given in Section 5.1, the following two lemmas
hold concerning the singular value µj(A) of an n by m matrix A and the
eigenvalue λj(A′A) of A′A (or AA′).

Lemma 5.5

max
x

||Ax||
||x|| = µ1(A). (5.53)

Proof. Clear from Lemma 5.1. Q.E.D.

Lemma 5.6 Let V 1 = [v1,v2, · · · ,vs] (s < r) represent the matrix of
eigenvectors of A′A corresponding to the s largest eigenvalues. Then,

max
V ′1x=0

x′A′Ax

x′x
= λs+1(A′A) (5.54)

and
max
V ′1x=0

||Ax||
||x|| = µs+1(A). (5.55)

Proof. (5.54): From V ′
1x = 0, we can express x as x = (Im− (V ′

1)
−V ′

1)z,
where z is an arbitrary m-component vector. On the other hand, V ′

1V 1 =
Is, which implies V ′

1V 1V
′
1 = V ′

1, which in turn implies V 1 ∈ {(V ′
1)
−}.

That is, x = (Im − V 1V
′
1)z. Let V 2 = [vs+1, · · · , vr],

∆2
1 =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λs



, and ∆2

2 =




λs+1 0 · · · 0
0 λs+2 · · · 0
...

...
. . .

...
0 0 · · · λr



.

From A′A = V 1∆2
1V

′
1 + V 2∆2

2V
′
2, we obtain

x′A′Ax = z′V 2∆2
2V

′
2z = λs+1a

2
s+1 + · · ·+ λra

2
r

and
x′x = z′V 2V

′
2z = a2

s+1 + · · ·+ a2
r ,

where z′V 2 = (as+1, · · · , ar).
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When a1, a2, · · · , ar are all positive and b1 ≥ b2 ≥ · · · ≥ br > 0, it holds
that

b1 ≥ a1b1 + a2b2 + · · ·+ arbr

a1 + a2 + · · ·+ ar
≥ br, (5.56)

which implies

λr ≥ x′A′Ax

x′x
=

∑r
j=s+1 λj ||aj ||2∑r

j=s+1 ||aj ||2 ≥ λs+1.

(5.55): This is clear from the proof above by noting that µ2
j = λj and

µj > 0. Q.E.D.

An alternative proof. Using the SVD of the matrix A, we can give a
more direct proof. Since x ∈ Sp(V 2), it can be expressed as

x = αs+1vs+1 + · · ·+ αrvr = V 2αs,

where αs+1, · · · , αr are appropriate weights. Using the SVD of A in (5.18),
we obtain

Ax = αs+1µs+1us+1 + · · ·+ αrµrur.

On the other hand, since (ui, uj) = 0 and (vi, vj) = 0 (i 6= j), we have

||Ax||2
||x||2 =

α2
s+1µ

2
s+1 + · · ·+ α2

rµ
2
r

α2
s+1 + · · ·+ α2

r

,

and so

µ2
r ≤

||Ax||2
||x||2 ≤ µ2

s+1 ⇒ µr ≤ ||Ax||
||x|| ≤ µs+1

by noting µs+1 ≥ µs+2 ≥ · · · ≥ µr and using (5.56). Q.E.D.
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Corollary If we replace V 1 by an arbitrary n by s matrix B in (5.55),

µs+1(A) ≤ max
B′x=0

||Ax||
||x|| ≤ µ1(A). (5.57)

Proof. The second inequality is obvious. The first inequality can be shown
as follows. Since B′x = 0, x can be expressed as x = (Im − (B′)−B′)z =
(Im−P B′)z for an arbitrary m-component vector z. Let B′ = [v1, · · · , vs].
Use

x′A′Ax = z′(I − P B′)A′A(I − P B′)z

= z′(
r∑

j=s+1

λjvjv
′
j)z.

Q.E.D.

The following theorem can be derived from the lemma and the corollary
above.

Theorem 5.7 Let

C =

[
C11 C12

C21 C22

]
,

where C11 and C22 are square matrices of orders k and m− k, respectively,
and C12 and C21 are k by m − k and m − k by k matrices, respectively.
Then,

λj(C) ≥ λj(C11), j = 1, · · · , k. (5.58)

Proof. Let ej denote an m-component vector with the jth element being
unity and all other elements being zero, and let B = [ek+1, · · · , em]. Then
B′x = 0 implies x = 0 (k+1 ≤ j ≤ m). Let 0 denote the m−k-component
zero vector, and let y = (z′,0′)′. Then,

max
B′x=0

x′Cx

x′x
= max

y

y′Cy

y′y
= max

z

z′C11z

z′z
.

Let V j denote the matrix of eigenvectors corresponding to the j largest
eigenvalues of C, and let V k (k < j) denote the matrix of eigenvectors of
C corresponding to the k largest eigenvalues. Then,

λj+1(C) = max
V ′j x=0

x′Cx

x′x
≥ max

V ′j x=0,B′x=0

x′Cx

x′x
= max

V ′
k
x=0

z′C11z

z′z
≥ λj+1(C11).

Q.E.D.
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Corollary Let

C =

[
C11 C12

C21 C22

]
=

[
A′

1A1 A′
1A2

A′
2A1 A′

2A2

]
.

Then,

µj(C) ≥ µj(A1) and µj(C) ≥ µj(A2)

for j = 1, · · · , k.

Proof. Use the fact that λj(C) ≥ λj(C11) = λj(A′
1A1) and that λj(C) ≥

λj(C22) = λj(A′
2A2). Q.E.D.

Lemma 5.7 Let A be an n by m matrix, and let B be an m by n matrix.
Then the following relation holds for nonzero eigenvalues of AB and BA:

λj(AB) = λj(BA). (5.59)

(Proof omitted.)

The following corollary is derived from Lemma 5.7.

Corollary Let T denote an orthogonal matrix of order m (i.e., T ′T =
TT ′ = Im). Then,

λj(T ′A′AT ) = λj(A′A) (j = 1, · · · ,m). (5.60)

Proof. λj(T ′A′AT ) = λj(A′ATT ′) = λj(A′A). Q.E.D.

Let T r be a columnwise orthogonal matrix (i.e., T ′
rT r = Ir). The fol-

lowing inequality holds.
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Lemma 5.8 λj(T ′
rA

′AT r) ≤ λj(A′A) for j = 1, · · · , r.
Proof. Let T o be such that T = [T r, T o] is fully orthogonal (i.e., T ′T =
TT ′ = In). Then,

T ′A′AT =

[
T ′

rA
′AT r T rA

′AT o

T ′
oA

′AT r T ′
oA

′AT o

]
.

Hence, from Theorem 5.7 and Lemma 5.6, we obtain

λj(A′A) = λj(T ′A′AT ) ≥ λj(T ′
rA

′AT r).

Q.E.D.

Let V [r] denote the matrix of eigenvectors of A′A corresponding to the r
largest eigenvalues, and let T r = V [r] in the lemma above. Then,

V ′
[r]V ∆2

rV
′V [r] = ∆2

r =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λr



.

That is, the equality holds in the lemma above when λj(∆2
[r]) = λj(A′A)

for j = 1, · · · , r.
Let V (r) denote the matrix of eigenvectors of A′A corresponding to the

r smallest eigenvalues. We have

V ′
(r)V ∆2

rV
′V (r) = ∆2

(r) =




λm−r+1 0 · · · 0
0 λm−r+2 · · · 0
...

...
. . .

...
0 0 · · · λm



.

Hence, λj(∆2
(r)) = λm−r+j(A′A), and the following theorem holds.

Theorem 5.8 Let A be an n by m matrix, and let T r be an m by r column-
wise orthogonal matrix. Then,

λm−r+j(A′A) ≤ λj(T ′
rA

′AT r) ≤ λj(A′A). (5.61)

(Proof omitted.)
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The inequalities above hold even if we replace A′A by any symmetric
matrix, as is clear from the proof above. (Theorem 5.8 is called the Poincaré
Separation Theorem.)

The following result can be derived from the theorem above (Rao, 1979).

Corollary Let A be an n by m matrix, and let B and C denote n by r
and m by k matrices, respectively, such that B′B = Ir and C ′C = Ik.
Furthermore, let µj(A) represent the jth largest singular value of A. Then,

µj+t(A) ≤ µj(B′AC) ≤ µj(A) for j = 1, · · · , min(r, k), (5.62)

where t = m + n− r − k.

Proof. The second inequality holds because µ2
j (B

′AC) = λj(B′ACC ′A′B)
≤ λj(ACC ′A′) = λj(C ′A′AC) ≤ λj(A′A) = µ2

j (A). The first inequal-
ity holds because µ2

j (B
′AC) = λj(B′ACC ′A′B) ≥ λj+m−r(ACC ′A′) =

λj+m−r(C ′A′AC) ≥ λt+j(A′A) = µ2
j+t(A). Q.E.D.

The following theorem is derived from the result above.

Theorem 5.9 (i) Let P denote an orthogonal projector of order m and
rank k. Then,

λm−k+j(A′A) ≤ λj(A′PA) ≤ λj(A′A), j = 1, · · · , k. (5.63)

(ii) Let P 1 denote an orthogonal projector of order n and rank r, and let P 2

denote an orthogonal projector of order m and rank k. Then,

µj+t(A) ≤ µj(P 1AP 2) ≤ µj(A), j = 1, · · · ,min(k, r), (5.64)

where t = m− r + n− k.

Proof. (i): Decompose P as P = T kT
′
k, where T ′

kT k = Ik. Since
P 2 = P , we obtain λj(A′PA) = λj(PAA′P ) = λj(T kT

′
kAA′T kT

′
k) =

λj(T ′
kAA′T kT

′
kT k) = λj(T ′

kAA′T k) ≤ λj(AA′) = λ(A′A).
(ii): Let P 1 = T rT

′
r, where T ′

rT r = Ir, and let P 2 = T kT
′
k, where

T ′
kT k = Ik. The rest is similar to (i). Q.E.D.

The following result is derived from the theorem above (Rao, 1980).
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Corollary If A′A−B′B ≥ O,

µj(A) ≥ µj(B) for j = 1, · · · , r; r = min(rank(A), rank(B)).

Proof. Let A′A−B′B = C ′C. Then,

A′A = B′B + C ′C = [B′,C ′]

[
B
C

]

≥ [B′,C ′]

[
I O
O O

] [
B
C

]
= B′B.

Since

[
I O
O O

]
is an orthogonal projection matrix, the theorem above ap-

plies and µj(A) ≥ µj(B) follows. Q.E.D.

Example 5.3 Let XR denote a data matrix of raw scores, and let X denote
a matrix of mean deviation scores. From (2.18), we have X = QMXR, and

XR = P MXR + QMXR = P MXR + X.

Since X ′
RXR = X ′

RP MXR +X ′X, we obtain λj(X ′
RXR) ≥ λj(X ′X) (or

µj(XR) ≥ µj(X)). Let

XR =




0 1 2 3 4
2 1 1 2 0
0 2 1 0 2
0 1 2 2 1
3 1 2 0 3
4 3 3 2 7



.

Then,

X =




−1.5 −0.5 1/6 1.5 7/6
0.5 −0.5 −5/6 0.5 −17/6

−1.5 0.5 −5/6 −1.5 −5/6
−1.5 −0.5 1/6 0.5 −11/6

1.5 −0.5 1/6 −1.5 1/6
2.5 1.5 7/6 0.5 25/6




and

µ1(XR) = 4.813, µ1(X) = 3.936,
µ2(XR) = 3.953, µ2(X) = 3.309,
µ3(XR) = 3.724, µ3(X) = 2.671,
µ4(XR) = 1.645, µ4(X) = 1.171,
µ5(XR) = 1.066, µ5(X) = 0.471.

Clearly, µj(XR) ≥ µj(X) holds.
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The following theorem is derived from Theorem 5.9 and its corollary.

Theorem 5.10 Let A denote an n by m matrix of rank r, and let B
denote a matrix of the same size but of rank k (k < r). Furthermore,
let A = U∆rV

′ denote the SVD of A, where U = [u1, u2, · · · ,ur], V =
[v1, v2, · · · , vr], and ∆r = diag(µ1, µ2, · · · , µr). Then,

µj(A−B) ≥ µj+k(A), if j + k ≤ r, (5.65)
≥ 0, if j + k > r,

where the equality in (5.65) holds when

B = µ1u1v
′
1 + µ2u2v

′
2 + · · · , µkukv

′
k. (5.66)

Proof. (5.65): Let P B denote the orthogonal projector onto Sp(B). Then,
(A−B)′(In−P B)(A−B) = A′(In−P B)A, and we obtain, using Theorem
5.9,

µ2
j (A−B) = λj [(A−B)′(A−B)] ≥ λj [A′(In − P B)A]

≥ λj+k(A′A) = µ2
j+k(A), (5.67)

when k + j ≤ r.
(5.65): The first inequality in (5.67) can be replaced by an equality when

A − B = (In − P B)A, which implies B = P BA. Let In − P B = TT ′,
where T is an n by r− k matrix such that T ′T = Ir−k. Using the fact that
T = [uk+1, · · · , ur] = U r−k holds when the second equality in (5.67) holds,
we obtain

B = P BA = (In −U r−kU
′
r−k)A

= U [k]U
′
[k]U∆rV

′

= U [k]

[
Ik O
O O

] [
∆[k] O

O ∆(r−k)

]
V ′

= U [k]∆[k]V
′
[k]. (5.68)

Q.E.D.
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Theorem 5.10 implies

λj [(A−B)′(A−B)] ≥ λj+k(A′A) for j + k ≥ r. (5.69)

Let A and B be n by m matrices of ranks r and k (< r), respectively. Then,

tr(A−B)′(A−B) ≥ λk+1(A′A) + · · ·+ λr(A′A) (5.70)

holds. The equality holds in the inequality above when B is given by (5.68).

5.5 Exercises for Chapter 5

1. Apply the SVD to A =




1 −2
−2 1

1 1


, and obtain A+.

2. Show that the maximum value of (x′Ay)2 under the condition ||x|| = ||y|| = 1
is equal to the square of the largest singular value of A.

3. Show that λj(A+A′) ≤ 2µj(A) for an arbitrary square matrix A, where λj(A)
and µj(A) are the jth largest eigenvalue and singular value of A, respectively.

4. Let A = U∆V ′ denote the SVD of an arbitrary n by m matrix A, and let S
and T be orthogonal matrices of orders n and m, respectively. Show that the SVD
of Ã = SAT is given by Ã = Ũ∆Ṽ

′
, where Ũ = SU and Ṽ = TV .

5. Let
A = λ1P 1 + λ2P 2 + · · ·+ λnP n

denote the spectral decomposition of A, where P 2
i = P i and P iP j = O (i 6= j).

Define
eA = I + A +

1
2
A2 +

1
3!

A3 + · · · .

Show that
eA = eλ1P 1 + eλ2P 2 + · · · , +eλnP n.

6. Show that the necessary and sufficient condition for all the singular values of A
to be unity is A′ ∈ {A−}.

7. Let A, B, C, X, and Y be as defined in Theorem 2.25. Show the following:
(i) µj(A−BX) ≥ µj((In − P B)A).
(ii) µj(A− Y C) ≥ µj(A(In − P C′)).
(iii) µj(A−BX − Y C) ≥ µj [(In − P B)A(In − P C′)].
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8. Let B denote an orthogonal projector of rank r. Show that

r∑

i=1

λn−i+1 ≤ tr(AB) ≤
r∑

i=1

λi,

where A is a symmetric matrix of order n having eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.

9. Using the SVD of A, show that, among the x’s that minimize ||y −Ax||2, the
x that minimizes ||x||2 is given by x = A′y.

10. Let A be a given n by p matrix whose SVD is given by A = U∆V ′, and let
φ(B) = ||A − B||2. Show that B that minimizes φ(B) subject to rank(B) = k
(< p) is obtained by

B = Uk∆kV ′
k,

where Uk, ∆k, and V k are portions of U , ∆, and V pertaining to the k largest
singular values of A.

11. Let A and B be two matrices of the same size. Show that the orthogonal
matrix T of order p that minimizes φ(T ) = ||B −AT ||2 is obtained by

T = UV ′,

where A′B = U∆V ′ is the SVD of A′B. (This problem is called the orthogonal
Procrustes rotation problem (Schönemann, 1966). The matrix B is called a target
matrix, and A is the matrix to be rotated into a best match with B.)



Chapter 6

Various Applications

6.1 Linear Regression Analysis

6.1.1 The method of least squares and multiple regression
analysis

Linear regression analysis represents the criterion variable y by the sum of a
linear combination of p predictor variables x1, x2, · · · , xp and an error term
ε,

yj = α + β1x1j + · · ·+ βpxpj + εj (j = 1, · · · , n), (6.1)

where j indexes cases (observation units, subjects, etc.) and n indicates
the total number of cases, and where α and βi (i = 1, · · · , p) are regres-
sion coefficients (parameters) to be estimated. Assume first that the error
terms ε1, ε2, · · · , εn are mutually independent with an equal variance σ2. We
may obtain the estimates a, b1, · · · , bp of the regression coefficients using the
method of least squares (LS) that minimizes

n∑

j=1

(yj − a1 − b1x1j − · · · − bpxpj)2. (6.2)

Differentiating (6.2) with respect to a and setting the results to zero, we
obtain

a = ȳ − b1x̄1 − · · · − bpx̄p. (6.3)

Substituting this into (6.2), we may rewrite (6.2) as

||y − b1xx − b2x2 − · · · − bpxp||2 = ||y −Xb||2, (6.4)
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where X = [x1,x2, · · · , xp] and xi is the vector of mean deviation scores.
The b = (b1, b2, · · · , bp)′ that minimizes the criterion above is obtained by
solving

P Xy = Xb, (6.5)

where P X is the orthogonal projector onto Sp(X) and

b = X−
` y + (Ip −X−

` X)z,

where z is an arbitrary p-component vector. Assume that x1, x2, · · · , xp are
linearly independent. From (4.30), we get

P X = P 1·(1) + P 2·(2) + · · ·+ P p·(p),

where P j·(j) is the projector onto Sp(xj) along Sp(X(j))
·⊕ Sp(X)⊥, where

Sp(X(j)) = Sp([x1, · · · , xj−1, xj+1, · · · ,xp]). From (4.27), we obtain

bjxj = P j·(j)y = xj(x′jQ(j)xj)−1x′jQ(j)y, (6.6)

where Q(j) is the orthogonal projector onto Sp(X(j))⊥ and the estimate bj

of the parameter βj is given by

bj = (x′jQ(j)xj)−1x′jQ(j)y = (xj)−`(X(j))
y, (6.7)

where (xj)−`(X(j))
is a X(j)-constrained (least squares) g-inverse of xj . Let

x̃j = Q(j)xj . The formula above can be rewritten as

bj = (x̃j , y)/||x̃j ||2. (6.8)

This indicates that bj represents the regression coefficient when the effects of
X(j) are eliminated from xj ; that is, it can be considered as the regression
coefficient for x̃j as the explanatory variable. In this sense, it is called the
partial regression coefficient. It is interesting to note that bj is obtained by
minimizing

||y − bjxj ||2Q(j)
= (y − bjxj)′Q(j)(y − bjxj). (6.9)

(See Figure 6.1.)
When the vectors in X = [x1,x2, · · · , xp] are not linearly independent,

we may choose X1, X2, · · · ,Xm in such a way that Sp(X) is a direct-sum
of the m subspaces Sp(Xj). That is,

Sp(X) = Sp(X1)⊕ Sp(X2)⊕ · · · ⊕ Sp(Xm) (m < p). (6.10)
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0 

Sp(X(j))

y

Sp(X(j))⊥

xj+1

xp

xj−1

x1

‖ y − bjxj ‖Q(j)

HHY

xj
bjxj

Figure 6.1: Geometric representation of a partial correlation coefficient.

Let bj denote the vector of partial regression coefficients corresponding to
Xj . Then, Xjbj = P Xj ·X(j)

; that is,

Xjbj = Xj(X ′
jQ(j)Xj)−X ′

jQ(j)y, (6.11)

where Q(j) is the orthogonal projector onto Sp(X1) ⊕ · · · ⊕ Sp(Xj−1) ⊕
Sp(Xj+1)⊕ · · · ⊕ Sp(Xm).

If X ′
jXj is nonsingular,

bj = (X ′
jQ(j)Xj)−1X ′

jQ(j)y = (Xj)−1
`(X(j))

y, (6.12)

where (Xj)−1
`(X(j))

is the X(j)-constrained least squares g-inverse of Xj . If,

on the other hand, X ′
jXj is singular, bj is not uniquely determined. In this

case, bj may be constrained to satisfy

Cjbj = 0 ⇔ bj = QCj
z, (6.13)

where z is arbitrary and Cj is such that Ekj = Sp(X ′
j) ⊕ Sp(C ′

j) and
kj = rank(Xj) + rank(Cj). From (4.97), we obtain

Xjbj = P Xj ·X(j)
y = Xj(Xj)+X(j)·Cj

y. (6.14)

Premultiplying the equation above by (Xj)+X(j)·Cj
, we obtain

bj = (Xj)+X(j)·Cj
y

= (X ′
jXj + C ′

jCj)−1X ′
jXjX

′
j(XjX

′
j + X(j)X

′
(j))

−1y. (6.15)
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6.1.2 Multiple correlation coefficients and their partitions

The correlation between the criterion variable y and its estimate ŷ obtained
as described above (this is the same as the correlation between yR and ŷR,
where R indicates raw scores) is given by

ryŷ = (y, ŷ)/(||y|| · ||ŷ||) = (y, Xb)/(||y|| · ||Xb||)
= (y, P Xy)/(||y|| · ||P Xy||)
= ||P Xy||/||y|| (6.16)

since ŷ = Xb = P Xy. It is clear from (2.56) that ryŷ does not exceed 1.
It is equal to 1 only when P xy = y, that is, when y ∈ Sp(X). The ryŷ

is often denoted as RX·y, which is called the multiple correlation coefficient
in predicting the criterion variable y from the set of predictor variables
X = [x1, x2, · · · ,xp]. Its square, R2

X·y, is often called the coefficient of
determination, and can be expanded as

R2
X·y = y′X(X ′X)−X ′y/y′y

= c′XyC
−
XXcXy/s2

y

= r′XyR
−
XXrXy,

where cXy and rXy are the covariance and the correlation vectors between X
and y, respectively, CXX and RXX are covariance and correlation matrices
of X, respectively, and s2

y is the variance of y. When p = 2, R2
X·y is expressed

as

R2
X·y = (ryx1 , ryx2)

[
1 rx1x2

rx2x1 1

]−(
ryx1

ryx2

)
.

If rx1x2 6= 1, R2
X·y can further be expressed as

R2
X·y =

r2
yx1

+ r2
yx2

− 2rx1x2ryx1ryx2

1− r2
x1x2

.

The multiple regression coefficient RX·y satisfies the following relation.

Theorem 6.1 If Sp(X) ⊃ Sp(X1),

RX·y ≥ RX1·y. (6.17)
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Proof. Use (6.16) and (2.63). Q.E.D.

Theorem 6.2 Let X = [X1, X2], that is, Sp(X) = Sp(X1) + Sp(X2).
Then,

R2
X·y = R2

X1·y + R2
X2[X1]·y, (6.18)

where R2
X2[X1]·y indicates the coefficient of determination (or the square of

the multiple correlation coefficient) in predicting the criterion variable y
from the predictor variables QX1

X2, where QX1
= In − P X1.

Proof. Use the decomposition given in (4.37); that is, P X = P X1∪X2 =
P X1+P X2[X1]. Q.E.D.

Let us expand R2
X2[X1]·y. Let QX1

denote the orthogonal projector onto
Sp(X1)⊥, and P QX1

X2 the orthogonal projector onto Sp(QX1
X2). Then,

R2
X2[X1]·y = y′P QX1

X2y/y′y

= y′QX1
X2(X ′

2QX1
X2)−X ′

2QX1
y/y′y

= (c02 − c01C
−
11c12)(C22 −C21C

−
11C12)−

×(c20 −C21C
−
11c10)/s2

y, (6.19)

where ci0 (ci0 = c′0i) is the vector of covariances between Xi and y, and
Cij is the matrix of covariances between Xi and Xj . The formula above
can also be stated in terms of correlation vectors and matrices:

R2
X2[X1]·y = (r02 − r01R

−
11r12)(R22 −R21R

−
11R12)−(r20 −R21R

−
11r10).

The R2
X2[X1]·y is sometimes called a partial coefficient of determination.

When R2
X2[X1]·y = 0, y′P X2[X1]y = 0 ⇔ P X2[X1]y = 0 ⇔ X ′

2QX1
y =

0 ⇔ c20 = C21C
−
11c10 ⇔ r20 = R21R

−
11r10. This means that the partial

correlation coefficients between y and X2 eliminating the effects of X1 are
zero.

Let X = [x1, x2] and Y = y. If r2
x1x2

6= 1,

R2
x1x2·y =

r2
yx1

+ r2
yx2

− 2rx1x2ryx1ryx2

1− r2
x1x2

= r2
yx1

+
(ryx2 − ryx1rx1x2)

2

1− r2
x1x2

.
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Hence, R2
x1x2·y = r2

yx1
when ryx2 = ryx1rx1x2 ; that is, when the partial

correlation between y and x2 eliminating the effect of x1 is zero.
Let X be partitioned into m subsets, namely Sp(X) = Sp(X1) + · · ·+

Sp(Xm). Then the following decomposition holds:

R2
X·y = R2

X1·y + R2
X2[X1]·y + R2

X3[X1X2]·y + · · ·+ R2
Xm[X1X2···Xm−1]·y. (6.20)

The decomposition of the form above exists in m! different ways depend-
ing on how the m subsets of variables are ordered. The forward inclusion
method for variable selection in multiple regression analysis selects the vari-
able sets Xj1, Xj2, and Xj3 in such a way that R2

Xj1·y, RXj2[Xj1]·y, and
R2

Xj3[Xj1Xj2]·y are successively maximized.

Note When Xj = xj in (6.20), Rxj [x1x2···xj−1]·y is the correlation between xj and
y eliminating the effects of X [j−1] = [x1, x2, · · · ,xj−1] from the former. This is
called the part correlation, and is different from the partial correlation between xj

and y eliminating the effects of X [j−1] from both, which is equal to the correlation
between QX[j−1]

xj and QX[j−1]
y.

6.1.3 The Gauss-Markov model

In the previous subsection, we described the method of estimating parame-
ters in linear regression analysis from a geometric point of view, while in this
subsection we treat n variables yi (i = 1, · · · , n) as random variables from a
certain population. In this context, it is not necessary to relate explanatory
variables x1, · · · , xp to the matrix RXX of correlation coefficients or regard
x1, · · · ,xp as vectors having zero means. We may consequently deal with

y = β1x1 + · · ·+ βpxp + ε = Xβ + ε, (6.21)

derived from (6.1) by setting α = 0. We assume that the error term εj

(j = 1, · · · , n) in the regression equation has zero expectation, namely

E(ε) = 0, (6.22)

and the covariance matrix Cov(εi, εj) = σ2gij . Let G = [gij ]. Then,

V(ε) = E(εε′) = σ2G, (6.23)

where G is a pd matrix of order n. It follows that

E(y) = Xβ (6.24)
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and
V(y) = E(y −Xβ)(y −Xβ)′ = σ2G. (6.25)

The random vector y that satisfies the conditions above is generally said to
follow the Gauss-Markov model (y,Xβ, σ2G).

Assume that rank(X) = p and that G is nonsingular. Then there exists
a nonsingular matrix T of order n such that G = TT ′. Let ỹ = T−1y,
X̃ = T−1X, and ε̃ = T−1ε. Then, (6.21) can be rewritten as

ỹ = X̃β + ε̃ (6.26)

and
V(ε̃) = V(T−1ε) = T−1V(ε)(T−1)′ = σ2In.

Hence, the least squares estimate of β is given by

β̂ = (X̃
′
X̃)−1X̃

′
ỹ = (X ′G−1X)−1X ′Gy. (6.27)

(See the previous section for the least squares method.) The estimate of β
can also be obtained more directly by minimizing

||y −Xβ)||2G−1 = (y −Xβ)′G−1(y −Xβ). (6.28)

The β̂ obtained by minimizing (6.28) (identical to the one given in (6.27))
is called the generalized least squares estimate of β. We obtain as the
prediction vector

Xβ̂ = X(X ′G−1X)−1X ′G−1y = P X/G−1y. (6.29)

Lemma 6.1 For β̂ given in (6.27), it holds that

E(β̂) = β (6.30)

and
V(β̂) = σ2(X ′G−1X)−1. (6.31)

Proof. (6.30): Since β̂ = (X ′G−1X)−1X ′G−1y = (X ′G−1X)−1X ′G−1

× (Xβ + ε) = β + (X ′G−1X)−1X ′G−1ε, and E(ε) = 0, we get E(β̂) = β.
(6.31): From β̂ − β = (X ′G−1X)−1X ′G−1ε, we have V(β̂) = E(β̂ −

β)(β̂−β)′ = (X ′G−1X)−1X ′G−1E(εε′)G−1X(X ′G−1X)−1 = σ2(X ′G−1

X)−1X ′G−1GG−1X(X ′G−1X)−1 = σ2(X ′G−1X)−1. Q.E.D.
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Theorem 6.3 Let β̂
∗

denote an arbitrary linear unbiased estimator of β.
Then V(β̂

∗
)−V(β̂) is an nnd matrix.

Proof. Let S be a p by n matrix such that β̂
∗

= Sy. Then, β = E(β̂
∗
) =

SE(y) = SXβ ⇒ SX = Ip. Let P X/G−1 = X(X ′G−1X)−1X ′G−1 and
QX/G−1 = In − P X/G−1 . From

E(P X/G−1(y −Xβ)(y −Xβ)′Q′
X/G−1) = P X/G−1V(y)Q′

X/G−1

= σ2X(X ′G−1X)−1X ′G−1G(In −G−1X(X ′G−1X)−1X ′) = O,

we obtain

V(β̂
∗
) = V(Sy) = SV(y)S′ = SV(P X/G−1y + QX/G−1y)S′

= SV(P X/G−1y)S′ + SV(QX/G−1y)S′.

Since the first term in the equation above is equal to

SV(P X/G−1y)S′

= (SX(X ′G−1X)−1X ′G−1GG−1X ′(X ′G−1X)−1X ′S′)σ2

= σ2(X ′G−1X)−1 = V(β̂),

and since the second term is nnd, V(β̂
∗
)−V(β̂) is also nnd. Q.E.D.

This indicates that the generalized least squares estimator β̂ given in
(6.27) is unbiased and has a minimum variance. Among linear unbiased
estimators, the one having the minimum variance is called the best linear
unbiased estimator (BLUE), and Theorem 6.3 is called the Gauss-Markov
Theorem.

Lemma 6.2 Let
d′y = d1y1 + d2y2 + · · ·+ dnyn

represent a linear combination of n random variables in y = (y1, y2, · · · , yn)′.
Then the following four conditions are equivalent:

d′y is an unbiased estimator of c′β, (6.32)

c ∈ Sp(X ′), (6.33)

c′X−X = c′, (6.34)

c′(X ′X)−X ′X = c′. (6.35)
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Proof. (6.32) → (6.33): Since E(d′y) = d′E(y) = d′Xβ = c′β has to hold
for any β, it must hold that d′X = c′ ⇒ c = X ′d ⇒ c ∈ Sp(X ′).

(6.33) → (6.34): Since c ∈ Sp(X ′), and an arbitrary projector onto
Sp(X ′) can be expressed as X ′(X ′)−, we have X ′(X ′)−c = c. Note that
(X−)′ ∈ {(X ′)−} since XX−X = X ⇒ X ′(X−)′X ′ = X ′, from which it
follows that X ′(X ′)−c = c ⇒ X ′(X−)′c = c ⇒ c′ = c′X−X.

(6.34) → (6.35): Use the fact that (X ′X)−X ′ ∈ {X−} since X(X ′X)−

X ′X = X by (3.13).
(6.35) → (6.33): This is trivial. (Transpose both sides.)
(6.33)→ (6.32): Set c = X ′d. Q.E.D.

When any one of the four conditions in Lemma 6.2 is satisfied, a linear
combination c′β of β is said to be unbiased-estimable or simply estimable.
Clearly, Xβ is estimable, and so if β̂ is the BLUE of β, Xβ̂ is the BLUE
of Xβ.

Let us now derive the BLUE Xβ̂ of Xβ when the covariance matrix G
of the error terms ε = (ε1, ε2, · · · , εn)′ is not necessarily nonsingular.

Theorem 6.4 When G in the Gauss-Markov model is not necessarily non-
singular, the BLUE of Xβ can be expressed as

Xβ̂ = Py, (6.36)

where P is a square matrix that satisfies

PX = X (6.37)

and
PGZ = O, (6.38)

where Z is such that Sp(Z) = Sp(X)⊥.

Proof. First, let Py denote an unbiased estimator of Xβ. Then, E(Py) =
PE(y) = PXβ = Xβ ⇒ PX = X. On the other hand, since

V(Py) = E(Py −Xβ)(Py −Xβ)′ = E(Pεε′P ′)
= PV(ε)P ′ = σ2PGP ′,

the sum of the variances of the elements of Py is equal to σ2tr(PGP ′). To
minimize tr(PGP ′) subject to PX = X, we define

f(P , L) =
1
2
tr(PGP ′)− tr((PX −X)L),
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where L is a matrix of Lagrangean multipliers. We differentiate f with
respect to P and set the results equal to zero,

GP ′ = XL ⇒ Z ′GP ′ = Z ′XL = O ⇒ PGZ = O,

showing that the BLUE of Xβ can be expressed as Py using P satisfying
(6.37) and (6.38). Q.E.D.

Lemma 6.3 The following relations hold:

Sp([X,G]) = Sp(X)⊕ Sp(GZ), (6.39)

where Z is such that Sp(Z) = Sp(X)⊥, and

y ∈ Sp([X,G]) with probability 1. (6.40)

Proof. (6.39): Xa + GZb = 0 ⇒ Z ′Xa + Z ′GZb = Z ′GZb = 0 ⇒
GZb = 0, and, by Theorem 1.4, Sp(X) and Sp(GZ) are disjoint.

(6.40): There exists a vector w that satisfies w′G = 0′ and w′X = 0′.
Let w ∈ Sp([X, G]). Then, E(w′y) = 0 and V(w′y) = σ2w′Gw = 0, im-
plying that w′y = 0 with probability 1. Q.E.D.

The lemma above indicates that Sp(X) and Sp(GZ) are disjoint. Let
P X·GZ denote the projector onto Sp(X) along Sp(GZ) when Sp(X) ⊕
Sp(GZ) = En. Then,

P X·GZ = X(X ′(In − P GZ)X)−X ′(In − P GZ). (6.41)

On the other hand, let Z = In − P X . We have

P GZ·X = GZ(ZG(In − P X)GZ)−ZG(In − P X)
= GZ(ZGZGZ)−ZGZ.

Since Sp(X)⊕Sp(GZ) = En, it holds that dim(Sp(GZ)) = dim(Sp(Z)) ⇒
rank(GZ) = rank(Z), and so Z(ZGZ)−ZGZ = Z. This indicates that
(ZGZ)−Z(ZGZ)− is a g-inverse of the symmetric matrix ZGZGZ, and
so we obtain

P GZ·X = GZ(ZGZ)−Z. (6.42)

Let T be
T = XUX ′ + G, (6.43)
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where U is an arbitrary matrix such that rank(T ) = rank([X, G]). Then,
P X·GZGZ = O ⇒ P X·GZ(G+XUX ′)Z = P X·GZTZ = O ⇒ P X·GZT =
KX ′ ⇒ P X·GZ = KX ′T−1. Substituting this into P X·GZX = X, we
obtain KX ′T−1X = X ⇒ K = X(X ′T−1X)−, and so

P X·GZ = X(X ′T−1X)−X ′T−1, (6.44)

where T is as defined in (6.43). The following theorem can be derived.

Theorem 6.5 Let Sp([X, G]) = En, and let β̂ denote the BLUE of β.
Then, ỹ = Xβ̂ is given by one of the following expressions:

(i) X(X ′QGZX)−X ′QGZy,

(ii) (In −GZ(ZGZ)−Z)y,

(iii) X(X ′T−1X)−X ′T−1y.

(Proof omitted.)

Corollary Let A be an arbitrary square matrix of order n. When Sp(X)⊕
Sp(G) does not cover the entire space of En, a generalized projection onto
Sp(X) along Sp(GZ) is given by

(i) In −GZ(ZGZ)−Z + A(In −ZGZ(ZGZ)−)Z,

(ii) X(X ′T−X)−X ′T− + A(In − TT−).

(Proof omitted.)

6.2 Analysis of Variance

6.2.1 One-way design

In the regression models discussed in the previous section, the criterion vari-
able y and the explanatory variables x1, x2, · · · , xm both are usually continu-
ous. In this section, we consider the situation in which one of the m predictor
variables takes the value of one and the remaining m − 1 variables are all
zeroes. That is, when the subject (the case) k belongs to group j,

xkj = 1 and xki = 0 (i 6= j; i = 1, · · · ,m; k = 1, · · · , n). (6.45)
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Such variables are called dummy variables. Let nj subjects belong to group
j (and

∑m
j=1 nj = n). Define

x1 x2 · · · xm

G =




1 0 · · · 0
...

...
. . .

...
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
...

...
. . .

...
0 0 · · · 1




. (6.46)

(There are ones in the first n1 rows in the first column, in the next n2 rows
in the second column, and so on, and in the last nm rows in the last column.)
A matrix of the form above is called a matrix of dummy variables.

The G above indicates which one of m groups (corresponding to columns)
each of n subjects (corresponding to rows) belongs to. A subject (row)
belongs to the group indicated by one in a column. Consequently, the row
sums are equal to one, that is,

G1m = 1n. (6.47)

Let yij (i = 1, · · · ,m; j = 1, · · · , nj) denote an observation in a survey
obtained from one of n subjects belonging to one of m groups. In accor-
dance with the assumption made in (6.45), a one-way analysis of variance
(ANOVA) model can be written as

yij = µ + αi + εij , (6.48)

where µ is the population mean, αi is the main effect of the ith level (ith
group) of the factor, and εij is the error (disturbance) term. We estimate µ
by the sample mean x̄, and so if each yij has been “centered” in such a way
that its mean is equal to 0, we may write (6.48) as

yij = αi + εij . (6.49)

Estimating the parameter vector α = (α1, α2, · · · , αm)′ by the least squares
(LS) method, we obtain

min
α
||y −Gα||2 = ||(In − P G)y||2, (6.50)
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where P G denotes the orthogonal projector onto Sp(G). Let α̂ denote the
α that satisfies the equation above. Then,

P Gy = Gα̂. (6.51)

Premultiplying both sides of the equation above by (G′G)−1G′, we obtain

α̂ = (G′G)−1G′y. (6.52)

Noting that

(G′G)−1 =




1
n1

0 · · · 0

0 1
n2

· · · 0
...

...
. . .

...
0 0 · · · 1

nm



, and G′y =




∑
j y1j∑
j y2j
...∑

j ymj




,

we obtain

α̂ =




ȳ1

ȳ2
...

ȳm




.

Let yR denote the vector of raw observations that may not have zero mean.
Then, by y = QMyR, where QM = In − (1/n)1n1′n, we have

α̂ =




ȳ1 − ȳ
ȳ2 − ȳ

...
ȳm − ȳ




. (6.53)

The vector of observations y is decomposed as

y = P Gy + (In − P G)y,

and because P G(In − P G) = O, the total variation in y is decomposed
into the sum of between-group (the first term on the right-hand side of the
equation below) and within-group (the second term) variations according to

y′y = y′P Gy + y′(In − P G)y. (6.54)
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6.2.2 Two-way design

Consider the situation in which subjects are classified by two factors such as
gender and age group. The model in such cases is called a two-way ANOVA
model. Let us assume that there are m1 and m2 levels in the two factors,
and define matrices of dummy variables G1 and G2 of size n by m1 and n
by m2, respectively. Clearly, it holds that

G11m1 = G21m2 = 1n. (6.55)

Let Vj = Sp(Gj) (j = 1, 2). Let P 1+2 denote the orthogonal projector onto
V1+V2, and let P j (j = 1, 2) denote the orthogonal projector onto Vj . Then,
if P 1P 2 = P 2P 1,

P 1+2 = (P 1 − P 1P 2) + (P 2 − P 1P 2) + P 1P 2 (6.56)

by Theorem 2.18. Here, P 1P 2 = P 2P 1 is the orthogonal projector onto
V1∩V2 = Sp(G1)∩Sp(G2) and Sp(G1)∩Sp(G2) = Sp(1n). Let P 0 = 1n1′n/n
denote the orthogonal projector onto Sp(1n). Then,

P 1P 2 = P 0 ⇔ G′
1G2 =

1
n

(G′
11n1′nG2), (6.57)

where

G′
1G2 =




n11 n12 · · · n1m2

n21 n22 · · · n2m2

...
...

. . .
...

nm11 nm12 · · · nm1m2



,

G′
11n =




n1.

n2.
...

nm1.




, and G′
21n =




n.1

n.2
...

n.m2




.

Here ni. =
∑

j nij , n.j =
∑

i nij , and nij is the number of subjects in the ith
level of factor 1 and in the jth level of factor 2. (In the standard ANOVA ter-
minology, nij indicates the cell size of the (i, j)th cell.) The (i, j)th element
of (6.57) can be written as

nij =
1
n

ni.n.j , (i = 1, · · · ,m1; j = 1, · · · ,m2). (6.58)

Let y denote the vector of observations on the criterion variable in mean
deviation form, and let yR denote the vector of raw scores. Then P 0y =
P 0QMyR = P 0(In − P 0)yR = 0, and so

y = P 1y + P 2y + (In − P 1 − P 2)y.
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Hence, the total variation can be decomposed into

y′y = y′P 1y + y′P 2y + y′(In − P 1 − P 2)y. (6.59)

When (6.58) does not hold, we have from Theorem 4.5

P 1+2 = P 1 + P 2[1]

= P 2 + P 1[2],

where P 2[1] = Q1G2(G′
2Q1G2)−G′

2Q1, P 1[2] = Q2G1(G′
1Q2G1)−G′

1Q2,
and Qj = I − P j (j = 1, 2). In this case, the total variation is decomposed
as

y′y = y′P 1y + y′P 2[1]y + y′(In − P 1+2)y (6.60)

or
y′y = y′P 2y + y′P 1[2]y + y′(In − P 1+2)y. (6.61)

The first term in (6.60), y′P 1y, represents the main effect of factor 1 under
the assumption that there is no main effect of factor 2, and is called the
unadjusted sum of squares, while the second term, y′P 2[1]y, represents the
main effect of factor 2 after the main effect of factor 1 is eliminated, and is
called the adjusted sum of squares. The third term is the residual sum of
squares. From (6.60) and (6.61), it follows that

y′P 2[1]y = y′P 2y + y′P 1[2]y − y′P 1y.

Let us now introduce a matrix of dummy variables G12 having factorial
combinations of all levels of factor 1 and factor 2. There are m1m2 levels
represented in this matrix, where m1 and m2 are the number of levels of the
two factors. Let P 12 denote the orthogonal projector onto Sp(G12). Since
Sp(G12) ⊃ Sp(G1) and Sp(G12) ⊃ Sp(G2), we have

P 12P 1 = P 1 and P 12P 2 = P 2. (6.62)

Note Suppose that there are two and three levels in factors 1 and 2, respectively.
Assume further that factor 1 represents gender and factor 2 represents level of
education. Let m and f stand for male and female, and let e, j, and s stand for
elementary, junior high, and senior high schools, respectively. Then G1, G2, and
G12 might look like



166 CHAPTER 6. VARIOUS APPLICATIONS

m m m f f f
m f e j s e j s e j s

G1 =




1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




, G2 =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




, and G12 =




1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1




.

It is clear that Sp(G12) ⊃ Sp(G1) and Sp(G12) ⊃ Sp(G2).

From Theorem 2.18, we have

P 12 = (P 12 − P 1+2) + (P 1+2 − P 0) + P 0. (6.63)

The three terms on the right-hand side of the equation above are mutually
orthogonal. Let

P 1⊗2 = P 12 − P 1+2 (6.64)

and
P 1⊕2 = P 1+2 − P 0 (6.65)

denote the first two terms in (6.63). Then (6.64) represents interaction
effects between factors 1 and 2 and (6.65) the main effects of the two factors.

6.2.3 Three-way design

Let us now consider the three-way ANOVA model in which there is a third
factor with m3 levels in addition to factors 1 and 2 with m1 and m2 levels.
Let G3 denote the matrix of dummy variables corresponding to the third
factor. Let P 3 denote the orthogonal projector onto V3 = Sp(G3), and let
P 1+2+3 denote the orthogonal projector onto V1 +V2 +V3. Then, under the
condition that

P 1P 2 = P 2P 1, P 1P 3 = P 3P 1, and P 2P 3 = P 3P 2,

the decomposition in (2.43) holds. Let

Sp(G1) ∩ Sp(G2) = Sp(G1) ∩ Sp(G3) = Sp(G2) ∩ Sp(G3) = Sp(1n).
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Then,
P 1P 2 = P 2P 3 = P 1P 3 = P 0, (6.66)

where P 0 = 1
n1n1′n. Hence, (2.43) reduces to

P 1+2+3 = (P 1 − P 0) + (P 2 − P 0) + (P 3 − P 0) + P 0. (6.67)

Thus, the total variation in y is decomposed as

y′y = y′P 1y + y′P 2y + y′P 3y + y′(In − P 1 − P 2 − P 3)y. (6.68)

Equation (6.66) means

nij. =
1
n

ni..n.j. (i = 1, · · · ,m1; j = 1, · · · ,m2), (6.69)

ni.k =
1
n

ni..n..k, (i = 1, · · · ,m1; k = 1, · · · , m3), (6.70)

n.jk =
1
n

n.j.n..k, (j = 1, · · · ,m2; k = 1, · · · ,m3), (6.71)

where nijk is the number of replicated observations in the (i, j, k)th cell,
nij. =

∑
k nijk, ni.k =

∑
j nijk, n.jk =

∑
i nijk, ni.. =

∑
j,k nijk, n.j. =∑

i,k nijk, and n..k =
∑

i,j nijk.
When (6.69) through (6.71) do not hold, the decomposition

y′y = y′P iy + y′P j[i]y + y′P k[ij]y + y′(In − P 1+2+3)y (6.72)

holds, where i, j, and k can take any one of the values 1, 2, and 3 (so there
will be six different decompositions, depending on which indices take which
values) and where P j[i] and P k[ij] are orthogonal projectors onto Sp(QiGj)
and Sp(Qi+jGk).

Following the note just before (6.63), construct matrices of dummy vari-
ables, G12, G13, and G23, and their respective orthogonal projectors, P 12,
P 13, and P 23. Assume further that

Sp(G12) ∩ Sp(G23) = Sp(G2), Sp(G13) ∩ Sp(G23) = Sp(G3),

and
Sp(G12) ∩ Sp(G13) = Sp(G1).

Then,
P 12P 13 = P 1, P 12P 23 = P 2, and P 13P 23 = P 3. (6.73)
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Let P [3] = P 12+13+23 denote the orthogonal projector onto Sp(G12) +
Sp(G13) + Sp(G23). By Theorem 2.20 and (2.43), it holds under (6.73)
that

P [3] = P 1⊗2 + P 2⊗3 + P 1⊗3 + P 1̃ + P 2̃ + P 3̃ + P 0, (6.74)

where P i⊗j = P ij − P i − P j + P 0 and P ĩ = P i − P 0. Hence, the total
variation in y is decomposed as

y′y = y′P 1⊗2y + y′P 2⊗3y

+ y′P 1⊗3y + y′P 1̃y + y′P 2̃y + y′P 3̃y + y′(In − P [3])y.

Equation (6.73) corresponds with

nijk =
1

ni..
nij.ni.k =

1
n.j.

nij.n.jk =
1

n..k
ni.kn.jk, (6.75)

but since
nijk =

1
n2

ni..n.j.n..k (6.76)

follows from (6.69) through (6.71), the necessary and sufficient condition for
the decomposition in (6.74) to hold is that (6.69) through (6.71) and (6.76)
hold simultaneously.

6.2.4 Cochran’s theorem

Let us assume that each element of an n-component random vector of crite-
rion variables y = (y1, y2, · · · , yn)′ has zero mean and unit variance, and is
distributed independently of the others; that is, y follows the multivariate
normal distribution N (0, In) with E(y) = 0 and V(y) = In. It is well
known that

||y||2 = y2
1 + y2

2 + · · ·+ y2
n

follows the chi-square distribution with n degrees of freedom (df).

Lemma 6.4 Let y ∼ N (0, I) (that is, the n-component vector y = (y1, y2,
· · · , yn)′ follows the multivariate normal distribution with mean 0 and vari-
ance I), and let A be symmetric (i.e., A′ = A). Then, the necessary and
sufficient condition for

Q =
∑

i

∑

j

aijyiyj = y′Ay
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to follow the chi-square distribution with k = rank(A) degrees of freedom is

A2 = A. (6.77)

Proof. (Necessity) The moment generating function for y′Ay is given by

φ(t) = E(etQ) =
∫
· · ·

∫ 1
(2π)n/2

exp
{

(y′Ay)t− 1
2
y′y

}
dy1 · · · dyn

= |In − 2tA|−1/2 =
n∏

i=1

(1− 2tλi)−1/2,

where λi is the ith largest eigenvalue of A. From A2 = A and rank(A) = k,
we have λ1 = λ2 = · · · = λk = 1 and λk+1 = · · · = λn = 0. Hence,
φ(t) = (1 − 2t)−

1
2
k, which indicates that φ(t) is the moment generating

function of the chi-square distribution with k degrees of freedom.
(Sufficiency) φ(t) = (1 − 2t)−k/2 =

∏n
i=1(1 − 2λit)−1/2 ⇒ λi = 1 (i =

1, · · · , k), λi = 0 (i = k+1, · · · , n), which implies A2 = A. Q.E.D.

Let us now consider the case in which y ∼ N (0, σ2G). Let rank(G) = r.
Then there exists an n by r matrix T such that G = TT ′. Define z so
that y = Tz. Then, z ∼ N (0, σ2Ir). Hence, the necessary and sufficient
condition for

Q = y′Ay = z′(T ′AT )z

to follow the chi-square distribution is (T ′AT )2 = T ′AT from Lemma 6.4.
Pre- and postmultiplying both sides of this equation by T and T ′, respec-
tively, we obtain

GAGAG = GAG ⇒ (GA)3 = (GA)2.

We also have

rank(T ′AT ) = tr(T ′AT ) = tr(ATT ′) = tr(AG),

from which the following lemma can be derived.

Lemma 6.5 Let y ∼ N (0, σ2G). The necessary and sufficient condition
for Q = y′Ay to follow the chi-square distribution with k = tr(AG) degrees
of freedom is

GAGAG = GAG (6.78)
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or
(GA)3 = (GA)2. (6.79)

(A proof is omitted.)

Lemma 6.6 Let A and B be square matrices. The necessary and sufficient
condition for y′Ay and y′By to be mutually independent is

AB = O, if y ∼ N (0, σ2In), (6.80)

or
GAGBG = O, if y ∼ N (0, σ2G). (6.81)

Proof. (6.80): Let Q1 = y′Ay and Q2 = y′By. Their joint moment
generating function is given by φ(A,B) = |In − 2At1 − 2Bt2|−1/2, while
their marginal moment functions are given by φ(A) = |In − 2At1|−1/2 and
φ(B) = |In − 2Bt2|−1/2, so that φ(A,B) = φ(A)φ(B), which is equivalent
to AB = O.

(6.81): Let G = TT ′, and introduce z such that y = Tz and z ∼
N (0, σ2In). The necessary and sufficient condition for y′Ay = z′T ′ATz
and y′By = z′T ′BTz to be independent is given, from (6.80), by

T ′ATT ′BT = O ⇔ GAGBG = O.

Q.E.D.

From these lemmas and Theorem 2.13, the following theorem, called
Cochran’s Theorem, can be derived.

Theorem 6.7 Let y ∼ N (0, σ2In), and let P j (j = 1, · · · , k) be a square
matrix of order n such that

P 1 + P 2 + · · ·+ P k = In.

The necessary and sufficient condition for the quadratic forms y′P 1y, y′P 2

× y, · · · , y′P ky to be independently distributed according to the chi-square
distribution with degrees of freedom equal to n1 = tr(P 1), n2 = tr(P 2), · · · , nk

= tr(P k), respectively, is that one of the following conditions holds:

P iP j = O, (i 6= j), (6.82)

P 2
j = P j , (6.83)
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rank(P 1) + rank(P 2) + · · ·+ rank(P k) = n. (6.84)

(Proof omitted.)

Corollary Let y ∼ N (0, σ2G), and let P j (j = 1, · · · , k) be such that

P 1 + P 2 + · · ·+ P k = In.

The necessary and sufficient condition for the quadratic form y′P jy (j =
1, · · · , k) to be independently distributed according to the chi-square distribu-
tion with kj = tr(GP jG) degrees of freedom is that one of the three condi-
tions (6.85) through (6.87) plus the fourth condition (6.88) simultaneously
hold:

GP iGP jG = O, (i 6= j), (6.85)

(GP j)3 = (GP j)2, (6.86)

rank(GP 1G) + · · ·+ rank(GP kG) = rank(G2), (6.87)

G3 = G2. (6.88)

Proof. Transform

y′y = y′P 1y + y′P 2y + · · ·+ y′P ky

by y = Tz, where T is such that G = TT ′ and z ∼ N (0, σ2In). Then, use

z′T ′Tz = z′T ′P 1Tz + z′T ′P 2Tz + · · ·+ z′T ′P kTz.

Q.E.D.

Note When the population mean of y is not zero, namely y ∼ N (µ, σ2In), The-
orem 6.7 can be modified by replacing the “condition that y′P jy follows the in-
dependent chi-square” with the “condition that y′P jy follows the independent
noncentral chi-square with the noncentrality parameter µ′P jµ,” and everything
else holds the same. A similar modification can be made for y ∼ N (µ, σ2G) in the
corollary to Theorem 6.7.

6.3 Multivariate Analysis

Utilizing the notion of projection matrices, relationships among various tech-
niques of multivariate analysis, methods for variable selection, and so on can
be systematically investigated.
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6.3.1 Canonical correlation analysis

Let X = [x1, x2, · · · , xp] and Y = [y1, y2, · · · , yq] denote matrices of obser-
vations on two sets of variables. It is not necessarily assumed that vectors
in those matrices are linearly independent, although it is assumed that they
are columnwise centered. We consider forming two sets of linear composite
scores,

f = a1x1 + a2x2 + · · ·+ apxp = Xa

and
g = b1y1 + b2y2 + · · ·+ bqyq = Y b,

in such a way that their correlation

rfg = (f , g)/(||f || · ||g||)
= (Xa,Y b)/(||Xa|| · ||Y b||)

is maximized. This is equivalent to maximizing a′X ′Y b subject to the
constraints that

a′X ′Xa = b′Y ′Y b = 1. (6.89)

We define

f(a, b, λ1, λ2)

= a′X ′Y b− λ1

2
(a′X ′Xa− 1)− λ2

2
(b′Y ′Y b− 1),

differentiate it with respect to a and b, and set the result equal to zero.
Then the following two equations can be derived:

X ′Y b = λ1X
′Xa and Y ′Xa = λ2Y

′Y b. (6.90)

Premultiplying the equations above by a′ and b′, respectively, we obtain
λ1 = λ2 by (6.89). We may let λ1 = λ2 =

√
λ. Furthermore, by premulti-

plying (6.90) by X(X ′X)− and Y (Y ′Y )−, respectively, we get

P XY b =
√

λXa and P Y Xa =
√

λY b, (6.91)

where P X = X(X ′X)−X ′ and P Y = Y (Y ′Y )−Y ′ are the orthogonal
projectors onto Sp(X) and Sp(Y ), respectively. The linear composites that
are to be obtained should satisfy the relationships depicted in Figure 6.2.

Substituting one equation into the other in (6.91), we obtain

(P XP Y )Xa = λXa (6.92)
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Figure 6.2: Vector representation of canonical correlation analysis. (The

vectors
−→
0H ′ and

−→
0H are, respectively, P Y Xa and P XY b, and the angle

between the two vectors is designated as θ.)

or
(P Y P X)Y b = λY b. (6.93)

Theorem 6.8 No eigenvalues of P XP Y are larger than 1.

Proof. Since P Y is an orthogonal projector, its eigenvalues are either 1 or
0. Let λj(A) denote the jth eigenvalue of A. From Theorem 5.9, we have

1 ≥ λj(P X) = λj(P XP X) ≥ λj(P XP Y P X) = λj(P XP Y ).

Q.E.D.

Let λ1, λ2, · · · , λr denote all the positive eigenvalues that satisfy (6.93).
Then

tr(P XP Y ) = tr(P Y P X) = λ1 + λ2 + · · ·+ λr ≤ r.

Furthermore, from a′X ′Y b =
√

λ, the canonical correlation coefficient de-
fined as the largest correlation between f = Xa and g = Y b is equal to
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the square root of the largest eigenvalue of (6.92) or (6.93) (that is,
√

λ),
which is also the largest singular value of P XP Y . When a and b are the
eigenvectors that satisfy (6.92) or (6.93), f = Xa and g = Y b are called
canonical variates. Let ZX and ZY denote matrices of standardized scores
corresponding to X and Y . Then, Sp(X) = Sp(ZX) and Sp(Y ) = Sp(ZY ),
so that tr(P XP Y ) = tr(P ZX

P ZY
), and the sum of squares of canonical cor-

relations is equal to

R2
X·Y = tr(P XP Y ) = tr(P ZX

P ZY
) = tr(RY XR−

XXRXY R−
Y Y ), (6.94)

where RXX , RXY , and RY Y are correlation matrices for X, between X
and Y , and for Y , respectively.

The following theorem is derived from Theorem 2.24.

Theorem 6.9 Let r = min(rank(X), rank(Y )). Then,

D2
XY = tr(P XP Y ) ≤ r, (6.95)

where D2
XY is called the generalized coefficient of determination and indi-

cates the overall strength of the relationship between X and Y .
(Proof omitted.)

When Y consists of a single variable y,

D2
XY = tr(P XP y) = y′P Xy/y′y = R2

X·y
coincides with the coefficient of determination, which is equal to the squared
multiple correlation coefficient in multiple regression analysis in which X
contains the explanatory variables and y is the criterion variable. When X
also consists of a single variable x,

D2
XY = tr(P xP y) = (x, y)2/(||x||2||y||2) = r2

xy; (6.96)

that is, D2
XY is equal to the square of the correlation coefficient between x

and y.

Note The tr(P xP y) above gives the most general expression of the squared cor-
relation coefficient when both x and y are mean centered. When the variance of
either x or y is zero, or both variances are zero, we have x and/or y = 0, and a
g-inverse of zero can be an arbitrary number, so

r2
xy = tr(P xP y) = tr(x(x′x)−x′y(y′y)−y′)

= k(x′y)2 = 0,

where k is arbitrary. That is, rxy = 0.
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Assume that there are r positive eigenvalues that satisfy (6.92), and let

XA = [Xa1, Xa2, · · · ,Xar] and Y B = [Y b1, Y b2, · · · , Y br]

denote the corresponding r pairs of canonical variates. Then the following
two properties hold (Yanai, 1981).

Theorem 6.10
P XA = (P XP Y )(P XP Y )−` (6.97)

and
P Y B = (P Y P X)(P Y P X)−` . (6.98)

Proof. From (6.92), Sp(XA) ⊃ Sp(P XP Y ). On the other hand, from
rank(P XP Y ) = rank(XA) = r, we have Sp(XA) = Sp(P XP Y ). By the
note given after the corollary to Theorem 2.13, (6.97) holds; (6.98) is similar.

Q.E.D.

The theorem above leads to the following.

Theorem 6.11
P XAP Y = P XP Y , (6.99)

P XP Y B = P XP Y , (6.100)

and
P XAP Y B = P XP Y . (6.101)

Proof. (6.99): From Sp(XA) ⊂ Sp(X), P XAP X = P XA, from which
it follows that P XAP Y = P XAP XP Y = (P XP Y )(P XP Y )−` P XP Y =
P XP Y .

(6.100): Noting that A′AA−
` = A′, we obtain P XP Y B = P XP Y P Y B

= (P Y P X)′(P Y P X)(P Y P X)−` = (P Y P X)′ = P XP Y .
(6.101): P XAP Y B =P XAP Y P Y B =P XP Y P Y B =P XP Y B =P XP Y .

Q.E.D.

Corollary 1

(P X − P XA)P Y = O and (P Y − P Y B)P X = O,

and
(P X − P XA)(P Y − P Y B) = O.

(Proof omitted.)



176 CHAPTER 6. VARIOUS APPLICATIONS

The corollary above indicates that VX[XA] and VY , VX and VY [Y B], and
VX[XA] and VY [Y B] are mutually orthogonal, where VX[XA] = Sp(X) ∩
Sp(XA)⊥ and VY [Y B] = Sp(Y )∩Sp(Y B)⊥. However, Sp(XA) and Sp(Y B)
are not orthogonal, and their degree of relationship is indicated by the size
of the canonical correlation coefficients (ρc). (See Figure 6.3(c).)

VX = Sp(X)VY = Sp(XA)

@@R
ρc = 1

VY = Sp(Y ) VX = Sp(Y B)

¡¡ª
ρc = 1

(a) PXA = P Y

(Sp(X) ⊃ Sp(Y ))
(b) PX = P Y B

(Sp(Y ) ⊃ Sp(X))

Sp(XA)Sp(Y B)
0 < ρc < 1

6

VY [Y B] VX[XA]

ρc = 0

?

VY [Y B] VX[XA]ρc = 0

?

Sp(XA) = Sp(Y B)
ρc = 1

A
AK

(c) PXAP Y B = PXP Y (d) PXA = P Y B

Figure 6.3: Geometric representation of canonical correlation analysis.

Corollary 2
P XA = P Y B ⇔ P XP Y = P Y P X , (6.102)

P XA = P Y ⇔ P XP Y = P Y , (6.103)

and
P X = P Y B ⇔ P XP Y = P X . (6.104)

Proof. A proof is straightforward using (6.97) and (6.98), and (6.99)
through (6.101). (It is left as an exercise.) Q.E.D.

In all of the three cases above, all the canonical correlations (ρc) between
X and Y are equal to one. In the case of (6.102), however, zero canonical
correlations may exist. These should be clear from Figures 6.3(d), (a), and
(b), depicting the situations corresponding to (6.102), (6.103), and (6.104),
respectively.
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We next show a theorem concerning a decomposition of canonical corre-
lation coefficients.

Theorem 6.12 Let X and Y both be decomposed into two subsets, namely
X = [X1, X2] and Y = [Y 3, Y 4]. Then, the sum of squares of canonical
correlations between X and Y , namely R2

X·Y = tr(P XP Y ), is decomposed
as

tr(P XP Y ) = R2
1·3 + R2

2[1]·3 + R2
1·4[3] + R2

2[1]·4[3], (6.105)

where

R2
1·3 = tr(P 1P 3) = tr(R−

11R13R
−
33R31),

R2
2[1]·3 = tr(P 2[1]P 3)

= tr[(R32 −R31R
−
11R12)(R22 −R21R

−
11R12)−

×(R23 −R21R
−
11R13)R−

33],
R2

1·4[3] = tr(P 1P 4[3])

= tr[(R14 −R13R
−
33R34)(R44 −R43R

−
33R34)−

×(R41 −R43R
−
33R31)R−

11],
R2

2[1]·4[3] = tr(P 2[1]P 4[3])

= tr[(R22 −R21R
−
11R12)−S(R44 −R43R

−
33R34)−S′],

where S = R24 −R21R
−
11R14 −R23R

−
33R34 + R21R

−
11R13R

−
33R34.

Proof. From (4.33), we have

tr(P XP Y ) = tr((P 1 + P 2[1])(P 3 + P 4[3])),

from which Theorem 6.12 follows immediately. To obtain an explicit expres-
sion of the right-hand side of (6.105), note that

P 2[1] = QX1
X2(X ′

2QX1
X2)−X ′

2QX1

and
P 4[3] = QY3

Y 4(Y ′
4QY3

Y 4)−Y ′
4QY3

.

Q.E.D.

Corollary Let X = [x1, x2] and Y = [y3,y4]. If r2
x1x2

6= 1 and r2
y3y4

6= 1,
then

tr(P XP Y ) = r2
1·3 + r2

2[1]·3 + r2
1·4[3] + r2

2[1]·4[3], (6.106)
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where
r2[1]·3 =

rx2y3 − rx1x2rx1y3√
1− r2

x1x2

, (6.107)

r1·4[3] =
rx1y4 − rx1y3ry3y4√

1− r2
y3y4

, (6.108)

and

r2[1]·4[3] =
rx2y4 − rx1x2rx1y4 − rx2y3ry3y4 + rx1x2ry3y4rx1y3√

(1− r2
x1x2

)(1− r2
y3y4

)
. (6.109)

(Proof omitted.)

Note Coefficients (6.107) and (6.108) are called part correlation coefficients, and
(6.109) is called a bipartial correlation coefficient. Furthermore, R2

2[1]·3 and R2
1·4[3]

in (6.105) correspond with squared part canonical correlations, and R2
2[1]·4[3] with

a bipartial canonical correlation.

To perform the forward variable selection in canonical correlation analy-
sis using (6.105), let R2

[j+1]·[k+1] denote the sum of squared canonical corre-
lation coefficients between X [j+1] = [xj+1, X [j]] and Y [k+1] = [yk+1, Y [k]],
where X [j] = [x1,x2, · · · , xj ] and Y [k] = [y1, y2, · · · ,yk]. We decompose
R2

[j+1]·[k+1] as

R2
[j+1]·[k+1] = R2

[j]·[k] + R2
j+1[j]·k + R2

j·k+1[k] + R2
j+1[j]·k+1[k] (6.110)

and choose xj+1 and yk+1 so as to maximize R2
j+1[j]·k and R2

j·k+1[k].

Example 6.1 We have applied canonical correlation analysis to X =
[x1,x2, · · · , x10] and Y = [y1, y2, · · · , y10]. We present ten canonical corre-
lation coefficients in Table 6.1, the corresponding weight vectors to derive
canonical variates in Table 6.2, and the results obtained by the forward se-
lection procedure above in Table 6.3. The A, B, and C in Table 6.3 indicate
R2

j+1[j]·k, R2
j·k+1[k], and R2

j+1[j]·k+1[k] (Yanai, 1980), respectively.

6.3.2 Canonical discriminant analysis

Let us now replace one of the two sets of variables in canonical correlation
analysis, say Y , by an n by m matrix of dummy variables defined in (1.54).



6.3. MULTIVARIATE ANALYSIS 179

Table 6.1: Canonical correlations.

1 2 3 4 5
Coeff. 0.831 0.671 0.545 0.470 0.249
Cum. 0.831 1.501 2.046 2.516 2.765

6 7 8 9 10
Coeff. 0.119 0.090 0.052 0.030 0.002
Cum. 2.884 2.974 3.025 3.056 3.058

Define the centering operator QM = In − P M (defined earlier in (2.18)),
where P M = 1

n1n1′n with 1n being the n-component vector of ones. The
QM is the orthogonal projector onto the null space of 1n, and let

G̃ = QMG. (6.111)

Let P G̃ denote the orthogonal projector onto Sp(G̃). From Sp(G) ⊃ Sp(1n),
we have

P G̃ = P G − P M

by Theorem 2.11. Let XR denote a data matrix of raw scores (not column-
wise centered, and consequently column means are not necessarily zero).
From (2.20), we have

X = QMXR.

Applying canonical correlation analysis to X and G̃, we obtain

(P XP G̃)Xa = λXa (6.112)

by (6.92). Since P G − P M = P G − P GP M = P GQM , we have P G̃Xa =
P GQMQMXRa = P GXa, so that (6.112) can be rewritten as

(P XP G)Xa = λXa.

Premultiplying both sides of the equation above by X ′, we obtain

(X ′P GX)a = λX ′Xa. (6.113)

Since X ′P GX = X ′
RQMP GQMXR = X ′

R(P G−P M )XR, CA = X ′P GX
/n represents the between-group covariance matrix. Let CXX = X ′X/n
denote the total covariance matrix. Then, (6.113) can be further rewritten
as

CAa = λCXXa. (6.114)



180 CHAPTER 6. VARIOUS APPLICATIONS

Table 6.2: Weight vectors corresponding to the first eight canonical variates.

1 2 3 4 5 6 7 8
x1 −.272 .144 −.068 −.508 −.196 −.243 .036 .218
x2 .155 .249 −.007 −.020 .702 −.416 .335 .453
x3 .105 .681 .464 .218 −.390 .097 .258 −.309
x4 .460 −.353 −.638 .086 −.434 −.048 .652 .021
x5 .169 −.358 .915 .063 −.091 −.549 .279 .576
x6 −.139 .385 −.172 −.365 −.499 .351 −.043 .851
x7 .483 −.074 .500 −.598 .259 .016 .149 −.711
x8 −.419 −.175 −.356 .282 .526 .872 .362 −.224
x9 −.368 .225 .259 .138 .280 −.360 −.147 −.571

x10 .254 .102 .006 .353 .498 .146 −.338 .668

y1 −.071 .174 −.140 .054 .253 .135 −.045 .612
y2 .348 .262 −.250 .125 .203 −1.225 −.082 −.215
y3 .177 .364 .231 .201 −.469 −.111 −.607 .668
y4 −.036 .052 −.111 −.152 −.036 −.057 .186 .228
y5 .156 .377 −.038 −.428 .073 −.311 .015 −.491
y6 .024 −.259 .238 .041 −.052 .085 .037 .403
y7 −.425 −.564 .383 −.121 .047 −.213 −.099 .603
y8 −.095 −.019 .058 .009 .083 .056 −.022 −.289
y9 −.358 −.232 .105 .205 −.007 .513 1.426 −.284

y10 .249 .050 .074 −.066 .328 .560 .190 −.426

This is called canonical discriminant analysis. In general, (6.114) has
rank(CA) = m − 1 positive eigenvalues as solutions. The eigenvalue λ in
(6.114) is equal to s2

fA
/s2

f = ||P GXa||2/||Xa||2, where s2
fA

= a′CAa is
the between-group variance of the composite variable f = Xa and s2

f =
||Xa||2/n = a′(X ′X/n)a = a′CXXa is the total variance of f . λ is clearly
smaller than 1 (see (2.56)).

Let CXX = Q∆2Q′ denote the spectral decomposition of CXX . Substi-
tuting this into (6.114) and premultiplying both sides by ∆−1Q′, and since
Q′Q = QQ′ = Ip, we obtain

(∆−1Q′CAQ∆−1)∆Q′a = λ∆Q′a,

from which it can be seen that λ is an eigenvalue of ∆−1Q′CAQ∆−1 and
that its square root is a singular value of P GXQ∆−1.
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Table 6.3: Forward variable selection in canonical correlation analysis.

Step X Y A B C Cum. sum
1 x5 y7 – – – 0.312
2 x2 y6 .190 .059 .220 0.781
3 x10 y3 .160 .149 .047 1.137
4 x8 y9 .126 .162 .029 1.454
5 x7 y1 .143 .084 .000 1.681
6 x4 y10 .139 .153 .038 2.012
7 x2 y5 .089 .296 .027 2.423
8 x1 y4 .148 .152 .064 2.786
9 x6 y8 .134 .038 .000 2.957
10 x9 y2 .080 .200 .000 3.057

When the number of groups to be discriminated is 2 in (6.114) (that is,
when m = 2), CA becomes a matrix of rank 1, and its nonzero eigenvalue
is given by

λ =
n1n2

n2
(x̄1 − x̄2)′C−

XX(x̄1 − x̄2), (6.115)

where x̄1 and x̄2 are mean vectors of p variables in groups 1 and 2, respec-
tively. See Takeuchi, Yanai, and Mukherjee (1982, pp. 162–165).

Let both X and Y in canonical correlation analysis be matrices of
dummy variables. (Denote them by G1 and G2.) Let

G̃1 = QMG1 and G̃2 = QMG2

denote the columnwise centered matrices corresponding to G1 and G2.
Then, since P G̃1

= P G1−P M = P G1QM and P G̃2
= P G2−P M = P G2QM ,

the sum of squared canonical correlation coefficients is given by

s = tr(P G̃1
P G̃2

) = tr(P G1QMP G2QM ) = tr(SS′), (6.116)

where S = (G′
1G1)−1/2G′

1QMG2(G′
2G2)−1/2.

Let S = [sij ], G′
1G2 = [nij ], ni. =

∑
j nij , and n.j =

∑
i nij . Since

sij =
nij − 1

nni.n.j√
ni.
√

n.j
,
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we obtain

s =
∑

i

∑

j

s2
ij =

1
n





∑

i

∑

j

(
nij − 1

nni.n.j

)2

1
nni.n.j





=
1
n

χ2. (6.117)

This indicates that (6.116) is equal to 1/n times the chi-square statistic
often used in tests for contingency tables. Let µ1(S), µ2(S), · · · denote the
singular values of S. From (6.116), we obtain

χ2 = n
∑

j

µ2
j (S). (6.118)

6.3.3 Principal component analysis

In this subsection, we describe the relationship between principal component
analysis (PCA) and singular value decomposition (SVD), and extend the
former in several ways using projectors.

Let A = [a1, a2, · · · , ap], where Sp(A) ⊂ En. Let P f denote the orthog-
onal projector onto Sp(f), where f is a linear combination of the columns
of A,

f = w1a1 + w2a2 + · · ·+ wpap = Aw, (6.119)

and let P faj denote the projection of aj onto Sp(f). The sum of squared
norms of the latter is given by

s =
p∑

j=1

||P faj ||2 =
p∑

j=1

a′jP faj = tr(A′P fA)

= tr(A′f(f ′f)−1f ′A) = f ′AA′f/f ′f = ||A′f ||2/||f ||2.

Lemma 5.1 indicates that f maximizing the equation above is obtained
by solving

AA′f = λf . (6.120)

This implies that the maximum value of s is given by the maximum eigen-
value of AA′ (or of A′A). Substituting f = Aw into the equation above,
and premultiplying both sides by A′, we obtain

(A′A)2w = λ(A′A)w. (6.121)

If A′A is nonsingular, we further obtain

(A′A)w = λw. (6.122)
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If we substitute f = Aw into the equation above, we obtain

A′f = λw. (6.123)

Let µ1 > µ2 > · · · > µp denote the singular values of A. (It is assumed
that they are distinct.) Let λ1 > λ2 > · · · > λp (λj = µ2

j ) denote the eigen-
values of A′A, and let w1, w2, · · · , wp denote the corresponding normalized
eigenvectors of A′A. Then the p linear combinations

f1 = Aw1 = w11a1 + w12a2 + · · ·+ w1pap

f2 = Aw2 = w21a1 + w22a2 + · · ·+ w2pap

...
fp = Awp = wp1a1 + wp2a2 + · · ·+ wppap

are respectively called the first principal component, the second principal
component, and so on.

The norm of each vector is given by

||f j || =
√

w′
jA

′Awj = µj , (j = 1, · · · , p), (6.124)

which is equal to the corresponding singular value. The sum of squares of
||f j || is

||f1||2 + ||f2||2 + · · ·+ ||fp||2 = λ1 + λ2 + · · ·+ λp = tr(A′A).

Let f̃ j = f j/||f j ||. Then f̃ j is a vector of length one, and the SVD of A is,
by (5.18) and (5.19), given by

A = µ1f̃1w
′
1 + µ2f̃2w

′
2 + · · ·+ µpf̃pw

′
p (6.125)

from the viewpoint of PCA. Noting that f j = µj f̃ j (j = 1, · · · , p), the
equation above can be rewritten as

A = f1w
′
1 + f2w

′
2 + · · ·+ fpw

′
p. (6.126)

Let
b = A′f = A′Aw,

where A′A is assumed singular. From (6.121), we have

(A′A)b = λb.
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If we normalize the principal component vector f j , the SVD of A is given
by

A = f1b
′
1 + f2b

′
2 + · · ·+ f rb

′
r, (6.127)

where r = rank(A), and bj = A′f j since ||b|| =
√

f ′A′Af =
√

λ = µ.

Note The method presented above concerns a general theory of PCA. In practice,
we take A = [a1, a2, · · · , ap] as the matrix of mean centered scores. We then
calculate the covariance matrix S = A′A/n between p variables and solve the
eigenequation

Sw = λw. (6.128)

Hence, the variance (s2
fj

) of principal component scores f j is equal to the eigenvalue
λj , and the standard deviation (sfj ) is equal to the singular value µj . If the scores
are standardized, the variance-covariance matrix S is replaced by the correlation
matrix R.

Note Equations (6.119) and (6.123) can be rewritten as

µj f̃ j = Awj and A′f̃ j = µjwj .

They correspond to the basic equations of the SVD of A in (5.18) (or (5.19))
and (5.24), and are derived from maximizing (f̃ , Aw) subject to ||f̃ ||2 = 1 and
||w||2 = 1.

Let A denote an n by m matrix whose element aij indicates the joint frequency
of category i and category j of two categorical variables, X and Y . Let xi and yj

denote the weights assigned to the categories. The correlation between X and Y
can be expressed as

rXY =

∑
i

∑
j aijxiyj − nx̄ȳ

√∑
i ai.x2

i − nx̄2
√∑

j a.jy2
j − nȳ2

,

where x̄ =
∑

i ai.xi/n and ȳ =
∑

j a.jyj/n are the means of X and Y . Let us obtain
x = (x1, x2, · · · , xn)′ and y = (y1, y2, · · · , ym)′ that maximize rXY subject to the
constraints that the means are x̄ = ȳ = 0 and the variances are

∑
i ai.x

2
i /n = 1

and
∑

j a.jy
2
j /n = 1. Define the diagonal matrices DX and DY of orders n and m,

respectively, as

DX =




a1. 0 · · · 0
0 a2. · · · 0
...

...
. . .

...
0 0 · · · an.


 and DY =




a.1 0 · · · 0
0 a.2 · · · 0
...

...
. . .

...
0 0 · · · a.m


,
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where ai. =
∑

j aij and a.j =
∑

i aij . The problem reduces to that of maximizing
x′Ay subject to the constraints

x′DXx = y′DY y = 1.

Differentiating

f(x,y) = x′Ay − λ

2
(x′DXx− 1)− µ

2
(y′DY y − 1)

with respect to x and y and setting the results equal to zero, we obtain

Ay = λDXx and A′x = µDY y. (6.129)

(It can be easily verified that λ = µ, so µ is used for λ hereafter.) Let

D
−1/2
X =




1/
√

a1. 0 · · · 0
0 1/

√
a2. · · · 0

...
...

. . .
...

0 0 · · · 1/
√

an.




and

D
−1/2
Y =




1/
√

a.1 0 · · · 0
0 1/

√
a.2 · · · 0

...
...

. . .
...

0 0 · · · 1/
√

a.m


.

Let
Ã = D

−1/2
X AD

−1/2
Y ,

and let x̃ and ỹ be such that x = D
−1/2
X x̃ and y = D

−1/2
Y ỹ. Then, (6.129) can be

rewritten as
Ãỹ = µx̃ and Ã

′
x̃ = µỹ, (6.130)

and the SVD of Ã can be written as

Ã = µ1x̃1ỹ
′
1 + µ2x̃2ỹ

′
2 + · · ·+ µrx̃rỹ

′
r, (6.131)

where r = min(n,m) and where µ1 = 1, x1 = 1n, and y1 = 1m.
The method described above is a multivariate data analysis technique called

optimal scaling or dual scaling (Nishisato, 1980).

Let us obtain F = [f1, f2, · · · , f r], where r = rank(A), that maximizes

s =
p∑

j=1

||P F aj ||2, (6.132)
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where P F is the orthogonal projector onto Sp(F ) and aj is the jth column
vector of A = [a1, a2, · · · , ap]. The criterion above can be rewritten as

s = tr(A′P F A) = tr{(F ′F )−1F ′AA′F },

and so, for maximizing this under the restriction that F ′F = Ir, we intro-
duce

f(F , L) = tr(F ′AA′F )− tr{(F ′F − Ir)L},
where L is a symmetric matrix of Lagrangean multipliers. Differentiating
f(F , L) with respect to F and setting the results equal to zero, we obtain

AA′F = FL. (6.133)

Since L is symmetric, it can be decomposed as L = V ∆2
rV

′, where r =
rank(A′A), by spectral decomposition. Substituting this into (6.133), we
obtain

AA′F = FV ∆2
rV

′ ⇒ AA′(FV ) = (FV )∆2
r.

Since FV is columnwise orthogonal, we let F̃ = FV . F̃ is the matrix
of eigenvectors of AA′ corresponding to the r largest eigenvalues, so the
maximum of s is given by

tr(F ′AA′F ) = tr(F ′AA′FV V ′)
= tr(V ′F ′AA′FV ) = tr(V ′F ′FV ∆2

r)
= tr(V ′V ∆2

r) = tr(∆2
r) = λ1 + λ2 + · · ·+ λr. (6.134)

Hence, the r principal component vectors F = F̃ V ′ are not the set of
eigenvectors corresponding to the r largest eigenvalues of the symmetric
matrix AA′ but a linear combination of those eigenvectors. That is, Sp(F )
is the subspace spanned by the r principal components.

In practice, it is advisable to compute F by solving

A′A(A′F̃ ) = (A′F̃ )∆2
r, (6.135)

obtained by pre- and postmultiplying (6.133) by A′ and V , respectively.
Note that s in (6.132) is equal to the sum of squared norms of the

projection of aj onto Sp(F ), as depicted in Figure 6.4(a). The sum of
squared lengths of the perpendicular line from the head of the vector aj to
its projection onto Sp(F ),

s̃ =
p∑

j=1

||QF aj ||2,
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Sp(F )

a1

a2

ap

QFa1

¡¡ª QFa2

¡ª

QFap

(a) General case
by (6.135)

Sp(B)

Sp(B)⊥

a1

a2

ap

QF ·Bap
@

@I
Sp(F )

QF ·Ba1

PPPq

QF ·Ba2

¡
¡ª

(b) By (6.137)

a1

a2

ap

Sp(C)

Sp(A)

(c) By (6.141)

Figure 6.4: Three methods of PCA.

where Qf = In − P F , is equal to

s̃ = tr(A′QF A) = tr(A− P F A)′(A− P F A)
= tr(A− FF ′A)′(A− FF ′A) = tr(A′A)− s,

where s is as given in (6.134), due to the constraint that F ′F = Ir. Hence,
maximizing s in (6.132) is equivalent to minimizing s̃, and the minimum of
s̃ is given by λr+1 + λr+2 + · · ·+ λp.

Let us now extend the PCA in two ways. First of all, suppose that Sp(B)
is given, which is not necessarily orthogonal to Sp(A) but disjoint with it,
as illustrated in Figure 6.4(b). We express the projection of aj onto Sp(F )
(Sp(F ) ⊂ Sp(A)) as P F ·Baj , where

P F ·B = F (F ′QBF )−F ′QB

is the projector onto Sp(F ) along Sp(B) (see (4.9)). The residual vector is
obtained by aj −P F ·Baj = QF ·Baj . (This is the vector connecting the tip
of the vector P F ·Baj to the tip of the vector aj .) Since

p∑

j=1

||QF ·Baj ||2QB
= tr(A′QBQ′

F ·BQF ·BQBA)

= tr(A′QBA)− tr(A′P F [B]A), (6.136)

we obtain F that maximizes

s̃2 = tr(A′P F [B]A) = tr(A′QBF (F ′QBF )−F ′QBA)
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under the restriction that F ′QBF = Ir. Maximizing s̃2 = tr(A′QBFF ′QB

A) = tr(F ′QBAA′QBF ) under the same restriction reduces to solving the
eigenequation

(QBAA′QB)F̃ = F̃∆2
r,

where F̃ = FV (V is an orthogonal matrix of order r), or

(A′QBA)(A′QBF̃ ) = (A′QBF̃ )∆2
r, (6.137)

obtained by premultiplying the eigenequation above by A′QB. The derived
F̃ represents the principal components of A eliminating the effects of B.

Let W = A′QBF̃ . Let the normalized vectors of W and F̃ be denoted
by w1, w2, · · · , wr and f̃1, f̃2, · · · , f̃ r, and let the diagonal elements of ∆2

r

be denoted by µ2
1, µ

2
2, · · · , µ2

r. Then,

QBA = µ1f̃1w
′
1 + µ2f̃2w

′
2 + · · ·+ µrf̃ rw

′
r, (6.138)

where µj (j = 1, · · · , r) is the positive square root of µ2
j .

The other method involves the projection of vectors C = [c1, c2, · · · , cs]
in Sp(C), not necessarily contained in Sp(A), onto Sp(F )(⊂ Sp(A)) spanned
by the principal components. We minimize

s2 =
s∑

j=1

||QF cj ||2 = tr(C ′QF C) = tr(C ′C)− tr(C ′P F C) (6.139)

with respect to F , but minimizing the criterion above is obviously equivalent
to maximizing

s̃2 = tr(C ′P F C) = tr(C ′F (F ′F )−1F ′C). (6.140)

Let F = AW , where W is an n by r matrix of weights. Then, (6.140) can
be rewritten as

s̃2 = tr(C ′AW (W ′A′AW )−1W ′A′C)
= tr(W ′A′CC ′AW (W ′A′AW )−1),

which is to be maximized with respect to W subject to the restriction that
W ′A′AW = Ir. This leads to the following generalized eigenequation to
be solved.

(A′CCA)WT = A′AWT∆2
r.

Premultiplying both sides of the equation above by C ′A(A′A)−, we can
reduce the generalized eigenproblem to an ordinary one:

(C ′P AC)(C ′AWT ) = (C ′AWT )∆2
r. (6.141)
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The eigenvectors C ′AWT of C ′P AC are equal to the product of C ′ and
the principal components F = AWT . The PCA by (6.137) and (6.140)
is sometimes called redundancy analysis (RA; Van den Wollenberg, 1977)
or PCA of instrumental variables (Rao, 1964). Takane and his collabora-
tors (Takane and Shibayama, 1991; Takane and Hunter, 2001) developed a
comprehensive method called CPCA (constrained PCA), which subsumes
a number of representative techniques in multivariate analysis discussed in
this book, including RA as a special case.

6.3.4 Distance and projection matrices

In this subsection, we represent distances in the n-dimensional Euclidean
space from a variety of angles using projection matrices.

Lemma 6.7 Let ej denote an n-component vector in which only the jth
element is unity and all other elements are zero. Then,

1
2n

n∑

i=1

n∑

j=1

(ei − ej)(ei − ej)′ = QM . (6.142)

Proof.
n∑

i=1

n∑

j=1

(ei − ej)(ei − ej)′

= n
n∑

i=1

eie
′
i + n

n∑

j=1

eje
′
j − 2

n∑

i=1

ei




n∑

j=1

ej



′

= 2nIn − 21n1′n = 2n
(

In − 1
n
1n1′n

)
= 2nQM .

Q.E.D.

Example 6.2 That 1
n

∑
i<j(xi − xj)2 =

∑n
i=1(xi − x̄)2 can be shown as

follows using the result given above.
Let xR = (x1, x2, · · · , xn)′. Then, xj = (xR, ej), and so
∑

i<j

(xi − xj)2 =
1
2

∑

i

∑

j

x′R(ei − ej)(ei − ej)′xR

=
1
2
x′R


∑

i

∑

j

(ei − ej)(ei − ej)′

 xR = nx′RQMxR
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= nx′x = n||x||2 = n
n∑

i=1

(xi − x̄)2.

We next consider the situation in which a matrix of raw scores on p
variables is given:

XR =




x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp



.

Let
x̃j = (xj1, xj2, · · · , xjp)′

denote the p-component vector pertaining to the jth subject’s scores. Then,

xj = X ′
Rej . (6.143)

Hence, the squared Euclidean distance between subjects i and j can be
expressed as

d2
XR

(ei, ej) =
p∑

k=1

(xik − xjk)2

= ||x̃i − x̃j ||2 = (ei − ej)′XRX ′
R(ei − ej). (6.144)

Let X = QMXR represent the transformation that turns the matrix of
raw scores XR into the matrix X of mean deviation scores. We have

(ei − ej)′X = (ei − ej)′QMXR = (ei − ej)′XR,

and so

d2
XR

(ei, ej) = d2
X(ei, ej) = (ei − ej)′XX ′(ei − ej), (6.145)

from which the following theorem can be derived.

Theorem 6.13
n∑

i=1

n∑

j=1

d2
XR

(ei, ej) = ntr(X ′X). (6.146)
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Proof. Use the fact that
n∑

i=1

n∑

j=1

d2
XR

(ei, ej)

=
1
2
tr



(XX ′)

∑

i

∑

j

(ei − ej)(ei − ej)′




= ntr(XX ′QM ) = ntr(QMXX ′) = ntr(XX ′).

Q.E.D.

Corollary Let f = x1a1 + x2a2 + · · ·+ xpap = Xa. Then,
∑

i<j

d2
f (ei, ej) = ntr(ff ′) = ntr(a′X ′Xa). (6.147)

(Proof omitted.)

Let D(2) = [d2
ij ], where d2

ij = d2
XR

(ei, ej) as defined in (6.145). Then,
e′iXX ′ei represents the ith diagonal element of the matrix XX ′ and e′iXX ′

× ej represents its (i, j)th element. Hence,

D(2) = diag(XX ′)1n1′n − 2XX ′ + 1n1′ndiag(XX ′), (6.148)

where diag(A) indicates the diagonal matrix with the diagonal elements of
A as its diagonal entries. Pre- and postmultiplying the formula above by
QM = In − 1

n1n1′n, we obtain

S = −1
2
QMD(2)QM = XX ′ ≥ O (6.149)

since QM1n = 0. (6.149) indicates that S is nnd.

Note Let D(2) = [d2
ij ] and S = [sij ]. Then,

sij = −1
2
(d2

ij − d̄2
i. − d̄2

.j + d̄2
..),

where d̄2
i. = 1

n

∑
j d2

ij , d̄2
.j = 1

n

∑
i d2

ij , and d̄2
.. = 1

n2

∑
i,j d2

ij .
The transformation (6.149) that turns D(2) into S is called the Young-House-

holder transformation. It indicates that the n points corresponding to the n rows
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and columns of S can be embedded in a Euclidean space of dimensionality rank(S),
which is equal to the number of positive eigenvalues of S. This method of embed-
ding points in a Euclidean space is called metric multidimensional scaling (MDS)
(Torgerson, 1958).

We now consider the situation in which n subjects are classified into m
groups. Each group has nj subjects with

∑
j nj = n. Denote the matrix of

dummy variables defined in (6.46) by

G = [g1, g2, · · · , gm], (6.150)

where gj is an n-component vector of ones and zeroes. Assume that

||gj ||2 = nj and (gi, gj) = 0 (i 6= j).

Let
hj = gj(g

′
jgj)

−1.

Then the vector of group means of the jth group,

mj = (x̄j1, x̄j2, · · · , x̄jp)′,

on p variables can be expressed as

mj = X ′
Rgj(g

′
jgj)

−1 = X ′
Rhj . (6.151)

Thus, the squared Euclidean distance between means of groups i and j is
given by

d2
X(gi, gj) = (hi − hj)′XX ′(hi − hj). (6.152)

Hence, the following lemma is obtained.

Lemma 6.8

1
2n

∑

i,j

ninj(hi − hj)(hi − hj)′ = P G − P M , (6.153)

where P G is the orthogonal projector onto Sp(G).

Proof. Use the definition of the vector hj , nj = g′jgj , and the fact that
P G = P g1 + P g2 + · · ·+ P gm . Q.E.D.
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Theorem 6.14

1
n

∑

i<j

ninjd
2
X(gi, gj) = tr(X ′P GX). (6.154)

(Proof omitted.)

Note Dividing (6.146) by n, we obtain the trace of the variance-covariance ma-
trix C, which is equal to the sum of variances of the p variables, and by dividing
(6.154) by n, we obtain the trace of the between-group covariance matrix CA, which
is equal to the sum of the between-group variances of the p variables.

In general, even if X is columnwise standardized, correlations among the
p variables in X have a grave impact on distances among the n subjects.
To adjust for the effects of correlations, it is often useful to introduce a
generalized distance between subjects i and j defined by

d̃2
X(ei, ej) = (ei − ej)′P X(ei − ej) (6.155)

(Takeuchi, Yanai, and Mukherjee, 1982, pp. 389–391). Note that the p
columns of X are not necessarily linearly independent. By Lemma 6.7, we
have

1
n

∑

i<j

d̃2
X(ei, ej) = tr(P X). (6.156)

Furthermore, from (6.153), the generalized distance between the means of
groups i and j, namely

d̃2
X(gi, gj) = (hi − hj)′P X(hi − hj)

=
1
n

(mi −mj)′C−
XX(mi −mj),

satisfies ∑

i<j

d̃2
X(gi, gj) = tr(P XP G) = tr(C−

XXCA).

Let A = [a1, a2, · · · , am−1] denote the matrix of eigenvectors correspond-
ing to the positive eigenvalues in the matrix equation (6.113) for canonical
discriminant analysis. We assume that a′jX

′Xaj = 1 and a′jX
′Xai = 0

(j 6= i), that is, A′X ′XA = Im−1. Then the following relation holds.
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Lemma 6.9
P XAP G = P XP G. (6.157)

Proof. Since canonical discriminant analysis is equivalent to canonical
correlation analysis between G̃ = QMG and X, it follows from Theo-
rem 6.11 that P XAP G̃ = P XP G̃. It also holds that P G̃ = QMP G, and
X ′QM = (QMX)′ = X ′, from which the proposition in the lemma follows
immediately. Q.E.D.

The following theorem can be derived from the result given above (Yanai,
1981).

Theorem 6.15

(X ′X)AA′(mi −mj) = mi −mj , (6.158)

where mj is the group mean vector, as defined in (6.151).

Proof. Postmultiplying both sides of P XAP G = P XP G by hi − hj , we
obtain P XAP G(hi−hj) = P XP G(hi−hj). Since Sp(G) ⊃ Sp(gi), P Ggi =
gi implies P Ghi = hi, which in turn implies

P XA(hi − hj) = P X(hi − hj).

Premultiplying the equation above by X ′, we obtain (6.158) by noting that
A′X ′XA = Ir and (6.151). Q.E.D.

Corollary

(mi −mj)′AA′(mi −mj) = (mi −mj)′(X ′X)−(mi −mj). (6.159)

Proof. Premultiply (6.158) by (hi−hj)′X(X ′X)− = (mi−mj)′(X ′X)−.
Q.E.D.

The left-hand side of (6.159) is equal to d2
XA(gi, gj), and the right-hand

side is equal to d2
X(gi, gj). Hence, in general, it holds that

d2
XA(gi, gj) = d̃2

X(gi, gj).

That is, between-group distances defined on the canonical variates XA ob-
tained by canonical discriminant analysis coincide with generalized distances
based on the matrix X of mean deviation scores.
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Assume that the second set of variables exists in the form of Z. Let
XZ⊥ = QZX, where QZ = Ir−Z(Z ′Z)−Z ′, denote the matrix of predictor
variables from which the effects of Z are eliminated. Let XÃ denote the
matrix of discriminant scores obtained, using XZ⊥ as the predictor variables.
The relations

(X ′QZX)ÃÃ
′
(m̃i − m̃j) = m̃i − m̃j

and

(m̃i − m̃j)′ÃÃ
′
(m̃i − m̃j) = (m̃i − m̃j)′(X ′QZX)−(m̃i − m̃j)

hold, where m̃i = mi·X −X ′Z(Z ′Z)−mi·Z (mi·X and mi·Z are vectors of
group means of X and Z, respectively).

6.4 Linear Simultaneous Equations

As a method to obtain the solution vector x for a linear simultaneous equa-
tion Ax = b or for a normal equation A′Ax = A′b derived in the context of
multiple regression analysis, a sweep-out method called the Gauss-Doolittle
method is well known. In this section, we discuss other methods for solving
linear simultaneous equations based on the QR decomposition of A.

6.4.1 QR decomposition by the Gram-Schmidt
orthogonalization method

Assume that m linearly independent vectors, a1, a2, · · · , am, in En are given
(these vectors are collected to form a matrix A), and let P [j] denote the
orthogonal projector onto Sp([a1, a2, · · · , aj ]) = Sp(a1) ⊕ Sp(a2) ⊕ · · · ⊕
Sp(aj). Construct a sequence of vectors as follows:

t1 = a1/||a1||
t2 = (a2 − P [1]a2)/||a2 − P [1]a2||
t3 = (a3 − P [2]a3)/||a3 − P [2]a3||

... (6.160)
tj = (aj − P [j−1]aj)/||aj − P [j−1]aj ||

...
tm = (am − P [m−1]am)/||am − P [m−1]am||.

This way of generating orthonormal basis vectors is called the Gram-Schmidt
orthogonalization method.
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Let i > j. From Theorem 2.11, it holds that P [i]P [j] = P [j]. Hence, we
have

(ti, tj) = (ai − P [i−1]ai)′(aj − P [j−1]aj)
= a′iaj − a′iP [j−1]aj − a′iP [i−1]aj + a′iP [i−1]P [j−1]aj

= a′iaj − a′iaj = 0.

Furthermore, it is clear that ||tj || = 1, so we obtain a set of orthonormal
basis vectors.

Let P tj denote the orthogonal projector onto Sp(tj). Since Sp(A) =

Sp([a1, a2, · · · , am]) = Sp(t1)
·⊕ Sp(t2)

·⊕ · · · ·⊕ Sp(tm),

P [j] = P t1 + P t2 + · · ·+ P tj = t1t
′
1 + t2t

′
2 + · · ·+ tjt

′
j .

Substituting this into (6.160), we obtain

tj = (aj − (aj , t1)t1 − (aj , t2)t2 − · · · − (aj , tj−1)tj−1)/Rjj , (6.161)

where Rjj = ||aj − (aj , t1)t1 − (aj , t2)t2 − · · · − (aj , tj−1)tj−1||. Let Rji =
(ai, tj). Then,

aj = R1jt1 + R2jt2 + · · ·+ Rj−1tj−1 + Rjjtj

for j = 1, · · · ,m. Let Q = [t1, t2, · · · , tm] and

R =




R11 R12 · · · R1m

0 R22 · · · R2m
...

...
. . .

...
0 0 · · · Rmm



.

Then Q is an n by m matrix such that Q′Q = Im, R is an upper triangular
matrix of order m, and A is decomposed as

A = [a1, a2, · · · , am] = QR. (6.162)

The factorization above is called the (compact) QR decomposition by the
Gram-Schmidt orthogonalization. It follows that

A+ = R−1Q′. (6.163)
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6.4.2 QR decomposition by the Householder transformation

Lemma 6.10 Let t1 be a vector of unit length. Then, Q1 = (In− 2t1t
′
1) is

an orthogonal matrix.

Proof. Q2
1 = (In−2t1t

′
1)

2 = In−2t1t
′
1−2t1t

′
1+4t1t

′
1t1t

′
1 = In. Since Q1 is

symmetric, Q′
1Q1 = Q2

1 = In. Q.E.D.

Let
Q̃2 = In−1 − 2t2t

′
2,

where t2 is an (n− 1)-component vector of unit length. It follows that the
square matrix of order n

Q2 =

[
1 0′

0 Q̃2

]

is orthogonal (i.e., Q2
2 = Q′

2Q2 = In). More generally, define

Q̃j = In−j+1 − 2tjt
′
j ,

where tj is an (n− j +1)-component vector of unit length. Then the square
matrix of order n defined by

Qj =

[
Ij−1 O

O Q̃j

]
, j = 2, · · · , n,

is an orthogonal matrix. Hence, it holds that

Q′
1Q

′
2 · · ·Q′

p−1Q
′
pQpQp−1 · · ·Q2Q1 = In. (6.164)

Let
Aj = QjQj−1 · · ·Q2Q1A, (6.165)

and determine t1, t2, · · · , tj in such a way that

Aj =




a1.1(j) a1.2(j) · · · a1.j(j) a1.j+1(j) · · · a1.m(j)

0 a2.2(j) · · · a2.j(j) a2.j+1(j) · · · a2.m(j)
...

...
. . .

...
...

. . .
...

0 0 · · · aj.j(j) aj.j+1(j) · · · aj.m(j)

0 0 · · · 0 aj+1.j+1(j) · · · aj+1.m(j)
...

...
. . .

...
...

. . .
...

0 0 · · · 0 an.j+1(j) · · · an.m(j)




.
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First, let A = [a1, a2, · · · ,am] and A(1) =Q1A=[a1(1),a2(1), · · · , am(1)].
Let us determine Q1 so that a1(1) = Q1a1 has a nonzero element only in
the first element. (All other elements are zero.) Let b1 = a1(1). We have

Q1a1 = b1 ⇒ (In − 2t1t
′
1)a1 = b1.

Hence, a1 − b1 = 2t1k1, where k1 = t′1a1. Since Q1 is orthogonal, ||a1|| =
||b1||. Hence, b1 = (a1·1(1), 0, 0, · · · , 0)′, where a1·1(1) = ||a1|| (assuming that
a1·1(1) > 0). Also, since ||a1 − b1||2 = 4k2

1||t1||2 = 4k2
1, it follows that

k1 =
√
||a1||(||a1|| − a1·1(1))/2, and so

t1 = (a11 − ||a1||, a21, · · · , an1)′/(2k1). (6.166)

To obtain tj for j ≥ 2, let a(j) = (aj·j(j−1), aj+1·j(j−1), · · · , an·j(j−1)′ be
the (n − j + 1)-component vector obtained by eliminating the first j − 1
elements from the jth column vector aj(j−1) in the n by m matrix A(j−1).
Using a similar procedure to obtain t1 in (6.166), we obtain

tj = (aj·j(j−1) − ||b1||, aj+1·j(j−1), · · · , an·j(j−1))
′/(2kj), (6.167)

where kj =
√
||a(j)||(||a(j)|| − aj·j(j−1))/2.

Construct Q̃j and Qj using t1, t2, · · · , tm, and obtain Q = Q1Q2 · · ·Qm.
Then Q′A is an upper triangular matrix R. Premultiplying by Q, we obtain
A = QR, which is the QR decomposition of A.

Note Let a and b be two n-component vectors having the same norm, and let

t = (b− a)/||b− a||
and

S = In − 2tt′. (6.168)

It can be easily shown that the symmetric matrix S satisfies

Sa = b and Sb = a. (6.169)

This type of transformation is called the Householder transformation (or reflection).

Example 6.3 Apply the QR decomposition to the matrix

A =




1 1 1 1
1 −3 2 4
1 −2 −3 7
1 −2 −4 10


.
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Since a1 = (1, 1, 1, 1)′, we have t1 = (−1, 1, 1, 1)′/2, and it follows that

Q1 =
1
2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1


 and Q1A =




2 −3 −2 11
0 1 5 −6
0 2 0 −3
0 2 1 0


.

Next, since a(2) = (1, 2, 2)′, we obtain t2 = (−1, 1, 1)′/
√

3. Hence,

Q̃2 =
1
3




1 2 2
2 1 −2
2 −2 1


 and Q2 =




1 0 0 0
0
0
0

Q̃2


,

and so

Q2Q1A =




2 −3 −2 11
0 3 1 4
0 0 4 −5
0 0 3 −2


.

Next, since a(3) = (4, 3)′, we obtain t3 = (−1, 3)′/
√

10. Hence,

Q̃3 =
1
5

[
4 3
3 −4

]
and Q̃3

[
4 −5
3 −2

]
=

[
5 −5.2
0 −1.4

]
.

Putting this all together, we obtain

Q = Q1Q2Q3 =
1
30




15 25 7 −1
15 −15 21 −3
15 −5 −11 23
15 −5 −17 −19




and

R =




2 −3 −2 11
0 3 1 4
0 0 5 −5.2
0 0 0 −1.4


.

It can be confirmed that A = QR, and Q is orthogonal.

Note To get the inverse of A, we obtain

R−1 =




.5 .5 1/10 −2.129
0 1/3 −1/20 0.705
0 0 1/5 0.743
0 0 0 0.714


.
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Since A−1 = R−1Q′, we obtain

A−1 =




0.619 −0.143 1.762 −1.228
0.286 −0.143 −0.571 0.429
0.071 0.214 −0.643 0.357
0.024 0.071 −0.548 0.452


.

Note The description above assumed that A is square and nonsingular. When A
is a tall matrix, the QR decomposition takes the form of

A =
[

Q Q0

] [
R
O

]
= Q∗R∗ = QR,

where Q∗ =
[

Q Q0

]
, R∗ =

[
R
O

]
, and Q0 is the matrix of orthogonal basis

vectors spanning Ker(A′). (The matrix Q0 usually is not unique.) The Q∗R∗

is called sometimes the complete QR decomposition of A, and QR is called the
compact (or incomplete) QR decomposition. When A is singular, R is truncated
at the bottom to form an upper echelon matrix.

6.4.3 Decomposition by projectors

A simultaneous linear equation Ax = b, where A is an n by m matrix,
has a solution if b ∈ Sp(A). If we decompose A using QR decomposition
described in the previous subsection, we obtain

QRx = b ⇒ x = R−1Q′b.

The QR decomposition can be interpreted geometrically as obtaining a
set of basis vectors Q = [q1, q2, · · · , qm] in the subspace Sp(A) in such a
way that the coefficient matrix R is upper triangular. However, this is not
an absolute requirement for solving the equation. It is possible to define a
set of arbitrary orthonormal basis vectors, f1 = Aw1, f2 = Aw2, · · · , fm =
Awm, directly on Sp(A). Since these vectors are orthogonal, the orthogonal
projector P A onto Sp(A) can be expressed as

P A = P f1 + P f2 + · · ·+ P fm . (6.170)

Pre- and postmultiplying the equation above by A′ and Ax = b, respec-
tively, we obtain

A′Ax = A′(P f1 + P f2 + · · ·+ P fm)b
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since A′P A = A′. If A′A is nonsingular, the equation above can be rewrit-
ten as

x = w1(f ′1f1)
−1f ′1b+w2(f ′2f2)

−1f ′2b+ · · ·+wm(f ′mfm)−1f ′mb. (6.171)

The equation above can further be rewritten as

x = w1f
′
1b + w2f

′
2b + · · ·+ wmf ′mb = WF ′b, (6.172)

where F = [f1, f2, · · · , fm], since f ′if i = 1 (i = 1, · · · ,m), assuming that
the f j ’s constitute a set of orthonormal basis vectors.

One way of obtaining f1, f2, · · · , fm is by the Gram-Schmidt method as
described above. In this case, F = AW ⇒ A = FW−1, so that F = Q
and W−1 = R in (6.172).

Another way of obtaining a set of orthonormal basis vectors is via sin-
gular value decomposition (SVD). Let µ1, µ2, · · · , µm denote the positive
singular values of A, where the SVD of A is obtained by (5.18). Then,
wj = µjvj and f j = uj , so that the solution vector in (6.171) can be
expressed as

x =
1
µ1

v1u
′
1b +

1
µ2

v2u
′
2b + · · ·+ 1

µm
vmu′mb. (6.173)

Let A = QR be the QR decomposition of A, and let B = A′A. We
have

B = R′Q′QR = R′R.

This is called the Cholesky decomposition of B. Let B = [bij ] and R = [rij ].
Since bij =

∑i
k=1 rkirkj , we have

r11 =
√

b11, r1j = b1j/r11, (j = 2, · · · ,m),

rjj =


bjj −

j−1∑

k=1

r2
kj




1/2

, (j = 2, · · · ,m),

rij =


bij −

j−1∑

k=1

rkirkj


 /rjj , (i < j).

6.5 Exercises for Chapter 6

1. Show that R2
X·y = R2

X̃·y if Sp(X) = Sp(X̃).
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2. Show that 1 − R2
X·y = (1 − r2

x1y)(1 − rx2y|x1)
2 · · · (1 − r2

xpy|x1x2···xp−1
), where

rxjy|x1x2···xj−1 is the correlation between xj and y eliminating the effects due to
x1, x2, · · · , xj−1.

3. Show that the necessary and sufficient condition for Ly to be the BLUE of
E(L′y) in the Gauss-Markov model (y, Xβ, σ2G) is

GL ∈ Sp(X).

4. Show that the BLUE of e′β in the Gauss-Markov model (y, Xβ, σ2G) is e′β̂,
where β̂ is an unbiased estimator of β.

5. Show that, in the Gauss-Markov model above, an estimator for fσ2, where
f = rank(X, G)− rank(X), is given by one of the following:
(i) y′Z(ZGZ)−Zy.
(ii) y′T−(In − P X/T−)y, where T = G + XUX ′ and rank(T ) = rank([G, X]).

6. For G = [g1, g2, · · · , gm] given in (6.46):

(i) Show that QMG(G′QMG)−G′QM = QMG̃(G̃
′
QMG̃)−1G̃QM , where G̃ is a

matrix obtained by eliminating an arbitrary column from G.
(ii) Show that minα ||y − G∗α||2 = y′(In − G̃(G̃

′
QMG̃)−1G̃

′
)y, where G∗ =

[G,1n], α is an (m + 1)-component vector of weights, and y is an n-component
vector with zero mean.

7. Define the projectors

P x[G] = QGx(x′QGx)−1x′QG

and
P Dx[G] = QGDx(D′

xQGDx)−1D′
xQG

using x =




x1

x2

...
xm


, Dx =




x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xm


, y =




y1

y2

...
ym


, and the matrix

of dummy variables G given in (6.46). Assume that xj and yj have the same size
nj . Show that the following relations hold:
(i) P x[G]P Dx[G] = P x[G].
(ii) P xP Dx[G] = P xP x[G].
(iii) minb ||y − bx||2QG

= ||y − P x[G]y||2QG
.

(iv) minb ||y −Dxb||2QG
= ||y − P Dx[G]y||2QG

.
(v) Show that β̂ixi = P Dx[G]y and β̂xi = P x[G]y, where β = β1 = β2 = · · · = βm

in the least squares estimation in the linear model yij = αi + βixij + εij , where
1 ≥ i ≥ m and 1 ≥ j ≥ ni.
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8. Let X = UX∆XV ′
X and Y = UY ∆Y V ′

Y represent the SVDs of X and Y .
Show that the singular values of the matrix S = ∆−1

X UXCXY U ′
Y ∆−1

Y are equal
to the canonical correlations between X and Y .

9. Let QZXA and QZY B denote the canonical variates corresponding to QZX
and QZY . Show that (Yanai, 1980):
(i) P XA·Z = (P X·ZP Y ·Z)(P X·ZP Y ·Z)−`(Z).

(ii) P Y B·Z = (PY ·ZP X·Z)(P Y ·ZP X·Z)−`(Z).

(iii) P XA·ZP Y B·Z = P XA·ZP Y ·Z = P X·ZP Y B·Z = P X·ZP Y ·Z .

10. Let X and Y be n by p and n by q matrices, respectively, and let

R =
[

RXX RXY

RY X RY Y

]
and RR− =

[
S11 S12

S21 S22

]
.

Show the following:
(i) Sp(Ip −RR−) = Ker([X, Y ]).
(ii) (Ip − S11)X ′QY = O, and (Iq − S22)Y ′QX = O.
(iii) If Sp(X) and Sp(Y ) are disjoint, S11X

′ = X ′, S12Y
′ = O, S21X

′ = O, and
S22Y

′ = Y ′.

11. Let Z = [z1, z2, · · · , zp] denote the matrix of columnwise standardized scores,
and let F = [f1, f2, · · · , fr] denote the matrix of common factors in the factor
analysis model (r < p). Show the following:
(i) 1

n ||P F zj ||2 = h2
j , where h2

j is called the communality of the variable j.
(ii) tr(P F P Z) ≤ r.
(iii) h2

j ≥ ||P Z(j)zj ||2, where Z(j) = [z1, · · · ,zj−1, zj+1, · · · ,zp].

12. Show that limk→∞(P XP Y )k = P Z if Sp(X) ∩ Sp(Y ) = Sp(Z).

13. Consider the perturbations ∆x and ∆b of X and b in the linear equation
Ax = b, that is, A(x + ∆x) = b + ∆b. Show that

||∆x||
||x|| ≤ Cond(A)

||∆b||
||b|| ,

where Cond(A) indicates the ratio of the largest singular value µmax(A) of A to
the smallest singular value µmin(A) of A and is called the condition number.



Chapter 7

Answers to Exercises

7.1 Chapter 1

1. (a) Premultiplying the right-hand side by A + BCB′, we obtain

(A + BCB′)[A−1 −A−1B(B′A−1B + C−1)−1B′A−1]
= I −B(B′A−1B + C−1)−1B′A−1 + BCB′A−1

−BCB′A−1B(B′A−1B + C−1)−1B′A−1

= I + B[C − (I + CB′A−1B)(B′A−1B + C−1)−1]B′A−1

= I + B[C −C(C−1 + B′A−1B)(B′A−1B + C−1)−1]B′A−1

= I.

(b) In (a) above, set C = I and B = c.
2. To obtain x1 = (x1, x2)′ and x2 = (x3, x4)′ that satisfy Ax1 = Bx2, we solve

x1 + 2x2 − 3x3 + 2x4 = 0,

2x1 + x2 − x3 − 3x4 = 0,

3x1 + 3x2 − 2x3 − 5x4 = 0.

Then, x1 = 2x4, x2 = x4, and x3 = 2x4. Hence, Ax1 = Bx2 = (4x4, 5x4, 9x4)′ =
x4(4, 5, 9)′. Let d = (4, 5, 9)′. We have Sp(A) ∩ Sp(B) = {x|x = αd}, where α is
an arbitrary nonzero real number.
3. Since M is a pd matrix, we have M = T∆2T ′ = (T∆)(T∆)′ = SS′, where S
is a nonsingular matrix. Let Ã = S′A and B̃ = S−1B. From (1.19),

[tr(Ã
′
B̃)]2 ≤ tr(Ã

′
Ã)tr(B̃

′
B̃).

On the other hand, Ã
′
B̃ = A′SS−1B = A′B, Ã

′
Ã = A′SS′A = A′MA, and

B̃
′
B̃ = B′(S′)−1S−1B = B′(SS′)−1B = B′M−1B, leading to the given formula.

4. (a) Correct.
(b) Incorrect. Let x ∈ En. Then x can be decomposed as x = x1 + x2, where
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x1 ∈ V and x2 ∈ W . That is, x is necessarily contained in neither V nor W . Even
if x 6∈ V , x ∈ W is not necessarily true. In general, x ∈ V ⊕W . Try, for example,

V =
{(

1
0

)}
, W =

{(
0
1

)}
, and x =

(
1
1

)
.

(c) Incorrect. Even if x ∈ V , it is possible that x = x1 + x2, where x1 ∈ Ṽ and
x2 ∈ W̃ , and En = Ṽ ⊕ W̃ is an arbitrary decomposition of En.
(d) Incorrect. V ∩ Ker(A) = {0} is equivalent to rank(A) = rank(A2). For

example, for A =
[

0 1
0 0

]
, Sp(A) = Ker(A) = Sp

{(
1
0

)}
.

5. dim(V1+V2) = dim(V1)+dim(V2)−dim(V1∩V2) and dim(W1+W2) = dim(W1)+
dim(W2) − dim(W1 ∩W2). On the other hand, dim(V1) + dim(W1) = dim(V2) +
dim(W2) = n, from which (1.87) follows.
6. (a) (⇒): Let y ∈ Ker(A) and Bx = y = 0. From ABx = Ay = 0, we obtain
Ay = 0, which implies ABx = 0. On the other hand, from Ker(AB) = Ker(B),
we have ABx = 0, which implies Bx = 0. Hence, we have Sp(B)∩Ker(A) = {0}
by Theorem 1.4.

(⇐): ABx = 0 implies Bx ∈ Ker(A). On the other hand, Bx = 0 from
Sp(B) ∩Ker(A) = {0}. Thus, Ker(AB) ⊂ Ker(B). Clearly, Ker(AB) ⊃ Ker(B),
so that Ker(AB) = Ker(B).
(b) Setting B = A in (a) above, we obtain

Ker(A) ∩ Sp(A) = {0} ⇔ Ker(A) = Ker(A2).

On the other hand, we must have rank(A) = rank(A2) from dim(Ker(A)) = n −
rank(A), from which the given formula follows.

7. (a) The given equation follows from
[

Im O
−C Ip

] [
A AB

CA O

] [
In −B
O Im

]

=
[

A O
O −CAB

]
.

(b) Let E =
[

In In −BA
A O

]
. From (a) above, it follows that

[
In O
−A Im

]
E

[
In −(In −BA)
O In

]
=

[
In O
O −A(In −BA)

]
.

Thus, rank(E) = n + rank(A−ABA).
On the other hand,

rank(E) = rank
{[

In −B
O Im

] [
O In −BA
A O

] [
In O
−In In

]}

= rank
[

O In −BA
A O

]
= rank(A) + rank(In −BA).

Hence, rank(A−ABA) = rank(A)+rank(In−BA)−n is established. The other
formula can be derived similarly. This method of proof is called the matrix rank
method, which was used by Guttman (1944) and Khatri (1961), but it was later
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greatly amplified by Tian and his collaborators (e.g., Tian, 1998, 2002; Tian and
Styan, 2009).
8. (a) Assume that the basis vectors [e1, · · · , ep, ep+1, · · · , eq] for Sp(B) are ob-
tained by expanding the basis vectors [e1, · · · , ep] for W1. We are to prove that
[Aep+1, · · · ,Aeq] are basis vectors for W2 = Sp(AB).

For y ∈ W2, there exists x ∈ Sp(B) such that y = Ax. Let x = c1e1+· · ·+cqeq.
Since Aei = 0 for i = 1, · · · , p, we have y = Ax = cp+1Aep+1 + · · ·+ cqAeq. That
is, an arbitrary y ∈ W2 can be expressed as a sum of Aei (i = p+1, · · · , q). On the
other hand, let cp+1Aep+1 + · · ·+ cqAeq = 0. Then A(cp+1ep+1 + · · ·+ cqeq) = 0
implies cp+1ep+1+· · · cqeq ∈ W1. Hence, b1e1+· · ·+bpep+cp+1ep+1+· · ·+cqeq = 0.
Since e1, · · · eq are linearly independent, we must have b1 = · · · = bp = cp+1 = · · · =
cq = 0. That is, cp+1Aep+1 + · · · + cqAeq = 0 implies cp=1 = · · · = cq, which in
turn implies that [Aep+1, · · · ,Aeq] constitutes basis vectors for Sp(AB).
(b) From (a) above, rank(AB) = rank(B)− dim[Sp(B) ∩Ker(A)], and so

rank(AB) = rank(B′A′) = rank(A′)− dim{Sp(A′) ∩Ker(B′)}
= rank(A)− dim{Sp(A′) ∩ Sp(B)⊥}.

9. (I −A)(I + A + A2 + · · · + An−1) = I −An. Since Ax = λx does not have
λ = 1 as a solution, I −A is nonsingular, from which it follows that

(I −A)−1(I −An) = I + A + A2 + · · ·+ An−1.

Let A = T 1∆T ′
2 be the spectral decomposition of A, where T 1 and T 2 are orthog-

onal matrices and ∆ is a diagonal matrix with λj (0 < λj < 1) as the jth diagonal
element. Then, An = T 1∆nT ′

2, which goes to O as n →∞, from which the given
formula follows immediately.

(b) Let A =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



. Then, A2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



,

A3 =




0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



, A4 =




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



, and A5 = O. That is, the

eigenvalues of A are all zero, and so

B = I5 + A + A2 + A3 + A4 + A5 = (I5 −A)−1.

Hence,

B−1 = I5 −A =




1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1



.
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Note that if we let x = (x1, x2, x3, x4, x5)′, then

Bx =




x1 + x2 + x3 + x4 + x5

x2 + x3 + x4 + x5

x3 + x4 + x5

x4 + x5

x5




and B−1x =




x1 − x2

x2 − x3

x3 − x4

x4 − x5

x5




.

This indicates that Bx is analogous to integration (summation) and B−1x is anal-
ogous to differentiation (taking differences).
10. Choose M as constituting a set of basis vectors for Sp(A).
11. From UAV ′ = ŨT−1

1 A(T−1
2 )′Ṽ

′
, we obtain Ã = T−1

1 A(T−1
2 )′.

12. Assume β 6∈ Sp(X ′). Then β can be decomposed into β = β0 + β1, where
β0 ∈ Ker(X) and β1 ∈ Sp(X ′). Hence, Xβ = Xβ0 + Xβ1 = Xβ1. We may set
β = β1 without loss of generality.

7.2 Chapter 2

1. Sp(Ã) = Sp
[

A1 O
O A2

]
= Sp

[
A1

O

]
·⊕ Sp

[
O
A2

]
⊃ Sp

[
A1

A2

]
. Hence

P ÃP A = P A.
2. (Sufficiency) P AP B = P BP A implies P A(I − P B) = (I − P B)P A. Hence,
P AP B and P A(I − P B) are the orthogonal projectors onto Sp(A) ∩ Sp(B) and
Sp(A) ∩ Sp(B)⊥, respectively. Furthermore, since P AP BP A(I − P B) = P A(I −
P B)P AP B = O, the distributive law between subspaces holds, and

(Sp(A) ∩ Sp(B))
·⊕ (Sp(A) ∩ Sp(B)⊥) = Sp(A) ∩ (Sp(B)

·⊕ Sp(B)⊥) = Sp(A).

(Necessity) P A = P AP B + P A(I − P B), and note that P AP B = P BP A is
the necessary and sufficient condition for P AP B to be the orthogonal projector
onto Sp(A) ∩ Sp(B) and for P A(I − P B) to be the orthogonal projector onto
Sp(A) ∩ Sp(B)⊥.
3. (i) Let x ∈ (Ker(P ))⊥. Then x is decomposed as x = Px+(I−P )x = x1 +x2,
where x2 ∈ Ker(P ). Since Px = x− (I − P )x and (x, (I − P )x) = 0, we obtain

||x||2 ≥ ||Px||2 = ||x||2 + ||(I − P )x||2 ≥ ||x||2.

Hence, ||Px||2 = ||x||2 ⇒ (x− Px)′(x− Px) = 0 ⇒ x = Px.
(ii) From (i) above, Ker(P )⊥ ⊂ Sp(P ). On the other hand, let x ∈ Sp(P ),

and let x = x1 + x2, where x1 ∈ Ker(P )⊥ and x2 ∈ Ker(P ). Then, x = Px =
Px1 + Px2 = Px1 = x1. Hence,

Sp(P ) ⊂ Ker(P )⊥ ⇒ Sp(P ) = Ker(P )⊥ ⇒ Sp(P )⊥ = Ker(P ).
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That is, P is the projector onto Sp(P ) along Sp(P ), and so P ′ = P . (This proof
follows Yoshida (1981, p. 84).)
4. (i)

||x||2 = ||P Ax + (I − P A)x||2 ≥ ||P Ax||2 = ||P 1x + · · ·+ P mx||2
= ||P 1x||2 + · · ·+ ||P mx||2.

The equality holds when I − P A = O ⇒ P A = I, i.e., when Sp(A) = En.
(ii) Let xj ∈ Sp(Aj). Then, P jxj = xj . From (2.84), ||P 1xj ||2 + · · · +

||P j−1xj ||2 + ||P j+1xj ||2 + · · · + ||P mxj ||2 = 0 ⇒ ||P jxi|| = 0 ⇒ P jxi = 0 ⇒
(P j)′xi = 0 for i 6= j, which implies that Sp(Ai) and Sp(Aj) are orthogonal.

(iii) From P j(P 1 + P 2 + · · ·P j−1) = 0, we have ||P (j)x||2 = ||P (j−1)x +
P jx||2 = ||P (j−1)x||2 + ||P jx||2, which implies ||P (j)x|| ≥ ||P (j−1)x|| for j =
2, · · · ,m.
5. (i) By Theorem 2.8, P 1 + P 2 is the projector onto V1 + V2 along W1 ∩W2. On
the other hand, since P 3(P 1 + P 2) = O and (P 1 + P 2)P 3 = O, (P 1 + P 2) + P 3

is the projector onto V1 + V2 + V3 along W1 ∩W2 ∩W3, again by Theorem 2.8.
(ii) P 1P 2 is the projector onto V1 ∩ V2 along W1 + W2. On the other hand,

since (P 1P 2)P 3 = P 3(P 1P 2), P 1P 2P 3 is the projector onto V1 ∩ V2 ∩ V3 along
W1 + W2 + W3. (Note, however, that P 1P 2 = P 2P 1, P 1P 3 = P 3P 1, or P 2P 3 =
P 3P 2 may not hold even if P 1P 2P 3 is a projector.)

(iii) I−P 1+2+3 is the projector onto W1∩W2∩W3 along V1 +V2 +V3. On the
other hand, since I −P j (j = 1, 2, 3) is the projector onto Wj along Vj , we obtain
I − P 1+2+3 = (I − P 1)(I − P 2)(I − P 3) from (ii) above, leading to the equation
to be shown.
6. Q[A,B] = I − P A − P QAB = QA − P QAB = QA −QAP QAB = QAQQAB .
7. (a) It is clear that XA and X(X ′X)−1B are orthogonal to each other (i.e.,
A′X ′X(X ′X)−1B = O) and that they jointly span Sp(X). (Note that when X ′X
is singular, (X ′X)−1 can be replaced by a generalized inverse of X ′X, provided
that B ∈ Sp(X ′). See Takane and Yanai (1999) for more details.)

(b) Set A and B equal to selection matrices such that XA = X1 and XB =
X2. Then, X(X ′X)−1B = QX2

X1.
8. (a) Note first that (i) (P 1P 2)2 = P 1P 2 is equivalent to (ii) P 1Q2P 1P 2 =
O, (iii) P 1Q2Q1P 2 = O, and (iv) P 1P 2Q1P 2 = O, where Q1 = I − P 1 and
Q2 = I − P2. The (ii) indicates that (P 1P 2)2 = P 1P 2 holds if and only if
Sp(Q2P 1P 2) ⊂ W1 ∩W2.

(⇐) That V12 ∈ V2 ⊕ (W1 ∩ W2) implies Sp(Q2P 1P 2) ∈ W1 ∩ W2 is trivial.
(Obviously, it is not in V2.)

(⇒) Conversely, assume that Sp(Q2P 1P 2) ∈ W1 ∩W2, and let y ∈ V12. Then,
y = P 1P 2y = P 2P 1P 2y + Q2P 1P 2y = P 2y + Q2P 1P 2y ∈ V2 ⊕ (W1 ∩ W2).
(See Groß and Trenkler (1998).)

(b) Let y ∈ V2. Then, P 2y = y and y = P 1y + P 2Q1y + Q2Q1y = P 1y +
P 2Q1P 2y + Q2Q1P 2y. However, P 1y ∈ V1, P 2Q1P 2y ∈ W1 ∩ V2 because of
(iv) in (a), and Q2Q1P 2y ∈ W1 ∩W2 because of (iii) in (a), implying that V2 ∈
V1 ⊕ (W1 ∩ V2)⊕ (W1 ∩W2).
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Conversely, let y ∈ En. Then, P 2y ∈ V2. Let P 2y = y1 + y2 + y3, where
y1 ∈ V1, y2 ∈ W1 ∩ V2, and y3 ∈ W1 ∩W2. We have (P 1P 2P 1)P 2y = P 1P 2y1 =
P 1P 2(y1 +y2 +y3) = P 1P 2y, implying (i) in (a). (See Takane and Yanai (1999).)
9. (1) → (2): Pre- and postmultiplying both sides of (1) by A and B, respectively,
yields (2).

(2)→ (3): Pre- and postmultiplying both sides of (2) by A(A′A)− and (B′B)−

×B′, respectively, yields (3).
(3)→ (2): Pre- and postmultiplying both sides of (3) by A′ and B, respectively,

yields (2).
(1) → (4): Observe that (1) implies that P AP B is the orthogonal projector

onto Sp(A)∩Sp(B), and QAQB = (I−P A)(I−P B) = I−P A−P B +P AP B =
I − P A − P B + P BP A = QBQA is the orthogonal projector onto Sp(A)⊥ ∩
Sp(B)⊥ = (Sp(A) ∪ Sp(B))⊥, showing that I − P [A,B] = (I − P A)(I − P B) =
I − P A − P B + P AP B , from which (4) follows immediately.

(4) → (1): Since P A, P B , and P [A,B] are all symmetric, (1) follows immedi-
ately.

(3) → (5): Pre- and postmultiplying (3) by B′ and B, respectively, yields
B′P AB = B′P AP BP AB. Substituting P A = I −QA and P B = I −QB into
this yields B′QAQBQAB = O, which implies QBQAB = O, which in turn implies
A′QBQAB = O.

(5) → (6): 0 = rank(A′QBQAB) = rank(QBQAB) = rank(QBP AB) =
rank([B, P AB])−rank(B) = rank(P AB)+rank(QPABB)−rank(B) = rank(A′B)
+ rank(QAB) − rank(B), establishing (6). Note that we used rank([X,Y ]) =
rank(X)+rank(QXY ) to establish the fourth and fifth equalities, and that we used
QPABB = (I−P PAB)B = B−P AB(B′P AB)−B′P AB = QAB to establish the
sixth equality.

(6) → (1): We first note that (6) is equivalent to rank(A′B) = rank(A) +
rank(B) − rank([A, B]), which implies 0 = rank(A′B) − rank(A) − rank(B) +
rank([A, B]), which in turn implies (5). (The second equality is due to Bak-
salary and Styan (1990).) Furthermore, (5) implies (2) since O = A′QBQAB =
A′P BP AB − A′B. Combined with the previous result that (2) implies (3), we
know that (5) also implies (3). That is, P AP B and P BP A are both idempotent.
Now consider tr((P AP B − P BP A)′(P AP B − P AP B)), which is equal to 0, thus
implying P AP B = P BP A.

There are many other equivalent conditions for the commutativity of two or-
thogonal projectors. See Baksalary (1987) for some of them.

7.3 Chapter 3

1. (a) (A−
mr)

′ = 1
12

[ −2 1 4
4 1 −2

]
. (Use A−

mr = (AA′)−A.)

(b) A−
`r = 1

11

[ −4 7 1
7 −4 1

]
. (Use A−

`r = (A′A)−A′.)
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(c) A+ = 1
9




2 −1 −1
−1 2 −1
−1 −1 2


.

2. (⇐): From P 2 = P , we have En = Sp(P )⊕Sp(I−P ). We also have Ker(P ) =
Sp(I − P ) and Ker(I − P ) = Sp(P ). Hence, En = Ker(P )⊕Ker(I − P ).

(⇒): Let rank(P ) = r. Then, dim(Ker(P )) = n−r, and dim(Ker(I−P )) = r.
Let x ∈ Ker(I−P ). Then, (I−P )x = 0 ⇒ x = Px. Hence, Sp(P ) ⊃ Ker(I−P ).
Also, dim(Sp(P )) = dim(Ker(I − P )) = r, which implies Sp(P ) = Ker(I − P ),
and so (I − P )P = O ⇒ P 2 = P .
3. (i) Since (Im −BA)(Im −A−A) = Im −A−A, Ker(A) = Sp(Im −A−A) =
Sp{(Im−BA)(Im−A−A)}. Also, since m = rank(A)+dim(Ker(A)), rank(Im−
BA) = dim(Ker(A)) = rank(Im−A−A). Hence, from Sp(Im−A−A) = Sp{(Im−
BA)(Im −A−A)} ⊂ Sp(Im −BA), we have Sp(Im −BA) = Sp(Im −A−A) ⇒
Im − BA = (Im − A−A)W . Premultiplying both sides by A, we obtain A −
ABA = O ⇒ A = ABA, which indicates that B = A−.

(Another proof) rank(BA) ≤ rank(A) ⇒ rank(Im −BA) ≤ m− rank(BA).
Also, rank(Im −BA) + rank(BA) ≥ m ⇒ rank(Im −BA) + rank(BA) = m ⇒
rank(BA) = rank(A) ⇒ (BA)2 = BA. We then use (ii) below.

(ii) From rank(BA) = rank(A), we have Sp(A′) = Sp(A′B′). Hence, for some
K we have A = KBA. Premultiplying (BA)2 = BABA = BA by K, we obtain
KBABA = KBA, from which it follows that ABA = A.

(iii) From rank(AB) = rank(A), we have Sp(AB) = Sp(A). Hence, for some
L, A = ABL. Postmultiplying both sides of (AB)2 = AB by L, we obtain
ABABL = ABL, from which we obtain ABA = A.
4. (i) (⇒): From rank(AB) = rank(A), A = ABK for some K. Hence,
AB(AB)−A = AB(AB)−ABK = ABK = A, which shows B(AB)− ∈ {A−}.

(⇐): From B(AB)− ∈ {A−}, AB(AB)−A = A, and rank(AB(AB)−A) ≤
rank(AB). On the other hand, rank(AB(AB)−A) ≥ rank(AB(AB)−AB) =
rank(AB). Thus, rank(AB(AB)−A) = rank(AB).

(ii) (⇒): rank(A) = rank(CAD) = rank{(CAD)(CAD)−} = rank(AD(CA
×D)−C). Hence, AD(CAD)−C = AK for some K, and so AD(CAD)−CAD
× (CAD)−C = AD(CAD)−CAK = AD(CAD)−C, from which it follows
that D(CAD)−C ∈ {A−}. Finally, the given equation is obtained by noting
(CAD)(CAD)−C = C ⇒ CAK = C.

(⇐): rank(AA−) = rank(AD(CAD)−C) = rank(A). Let H = AD(CAD)−

C. Then, H2 = AD(CAD)−CAD(CAD)−C = AD(CAD)−C = H, which
implies rank(H) = tr(H). Hence, rank(AD(CAD)−C) = tr(AD(CAD)−C) =
tr(CAD(CAD)−) = rank(CAD(CAD)−) = rank(CAD), that is, rank(A) =
rank(CAD).
5. (i) (Necessity) AB(B−A−)AB = AB. Premultiplying and postmultiplying
both sides by A− and B−, respectively, leads to (A−ABB−)2 = A−ABB−.

(Sufficiency) Pre- and postmultiply both sides of A−ABB−A−ABB− =
A−ABB− by A and B, respectively.

(ii) (A−
mABB′)′ = BB′A−

mA = A−
mABB′. That is, A−

mA and BB′ are com-
mutative. Hence, ABB−

mA−
mAB = ABB−

mA−
mABB−

mB = ABB−
mA−

mABB′×
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(B−
m)′ = ABB−

mBB′A−
mA(B−

m)′ = ABB′A−
mA(B−

m)′ = AA−
mABB′(B−

m)′ =
AB, and so (1) B−

mA−
m ∈ {(AB)−}. Next, (B−

mA−
mAB)′ = B′A−

mA(B−
m)′ =

B−
mBB′A−

mA(B−
m)′ = B−

mA−
mABB′(B−

m)′ = B−
mA−

mAB(B−
mB)′ = B−

mA−
mAB

B−
mB = B−

mA−
mAB, so that (2) B−

mA−
mAB is symmetric. Combining (1) and (2)

and considering the definition of a minimum norm g-inverse, we have {B−
mA−

m} =
{(AB)−m}.

(iii) When P AP B = P BP A, QAP B = P BQA. In this case, (QAB)′QABB−
`

= B′QAP B = B′P BQA = B′QA, and so B−
` ∈ {(QAB)−` }. Hence, (QAB)(QA×

B)−` = QAP B = P B − P AP B .
6. (i) → (ii) From A2 = AA−, we have rank(A2) = rank(AA−) = rank(A).
Furthermore, A2 = AA− ⇒ A4 = (AA−)2 = AA− = A2.

(ii) → (iii) From rank(A) = rank(A2), we have A = A2D for some D. Hence,
A = A2D = A4D = A2(A2D) = A3.

(iii) → (i) From AAA = A, A ∈ {A−}. (The matrix A having this property
is called a tripotent matrix, whose eigenvalues are either −1, 0, or 1. See Rao and
Mitra (1971) for details.)

7. (i) Since A = [A, B]
[

I
O

]
, [A, B][A, B]−A = [A, B][A, B]−[A, B]

[
I
O

]
=

A.
(ii) AA′+BB′ = FF ′, where F = [A,B]. Furthermore, since A = [A,B]×[

I
O

]
= F

[
I
O

]
, (AA′ + BB′)(AA′ + BB′)−A = FF ′(FF ′)−F

[
I
O

]
=

F

[
I
O

]
= A.

8. From V = W 1A, we have V = V A−A and from U = AW 2, we have
U = AA−U . It then follows that

(A + UV ){A− −A−U(I + V A−U)−V A−}(A + UV )
= (A + UV )A−(A + UV )− (AA−U + UV A−U)(I + V A−U)

(V A−A + V A−UV )
= A + 2UV + UV A−UV −U(I + V A−U)V
= A + UV .

9. A = B−1

[
Ir O
O O

]
C−1, and AGA = B−1

[
Ir O
O O

]
C−1C

[
Ir O
O E

]
B×

B−1

[
Ir O
O O

]
C−1 = B−1

[
Ir O
O O

]
C−1. Hence, G ∈ {A−}. It is clear that

rank(G) = r + rank(E).
10. Let QA′a denote an arbitrary vector in Sp(QA′) = Sp(A′)⊥. The vector
QA′a that minimizes ||x − QA′a||2 is given by the orthogonal projection of x
onto Sp(A′)⊥, namely QA′x. In this case, the minimum attained is given by
||x − QA′x||2 = ||(I − QA′)x||2 = ||P A′x||2 = x′P A′x. (This is equivalent to
obtaining the minimum of x′x subject to Ax = b, that is, obtaining a minimum
norm g-inverse as a least squares g-inverse of QA′ .)
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11. (i) ABA = AA−
mAA−

` A = A.
(ii) BAB = A−

mAA−
` AA−

mAA−
` = A−

mAA−
` = B.

(iii) (BA)′ = (A−
mAA−

` A)′ = (A−
mA)′ = A−

mA = BA.
(iv) (AB)′ = (AA−

mAA−
` )′ = (AA−

` )′ = AA−
` = AB.

By (i) through (iv), B = A−
mAA−

` is the Moore-Penrose inverse of A.
12. Let P 1+2 denote the orthogonal projector onto V1 + V2. Since V1 + V2 ⊃ V2,

(1) P 1+2P 2 = P 2 = P 2P 1+2.

On the other hand, P 1+2 = [P 1,P 2]
[

P 1

P 2

] [
[P 1,P 2]

[
P 1

P 2

]]+

= (P 1+P 2)(P 1

+ P 2)+.
Similarly, we obtain

P 1+2 = (P 1 + P 2)+(P 1 + P 2),

and so, by substituting this into (1),

(P 1 + P 2)(P 1 + P 2)+P 2 = P 2 = P 2(P 1 + P 2)+(P 1 + P 2),

by which we have 2P 1(P 1 + P 2)+P 2 = 2P 2(P 1 + P 2)+P 1 (which is set to H).
Clearly, Sp(H) ⊂ V1 ∩ V2. Hence,

H = P 1∩2H = P 1∩2(P 1(P 1 + P 2)+P 2 + P 2(P 1 + P 2)+P 1)
= P 1∩2(P 1 + P 2)+(P 1 + P 2) = P 1∩2P 1+2 = P 1∩2.

Therefore,
P 1∩2 = 2P 1(P 1 + P 2)+P 2 = 2P 2(P 1 + P 2)+P 1.

(This proof is due to Ben-Israel and Greville (1974).)
13. (i): Trivial.

(ii): Let v ∈ V belong to both M and Ker(A). It follows that Ax = 0,
and x = (G − N)y for some y. Then, A(G − N)y = AGAGy = AGy =
0. Premultiplying both sides by G′, we obtain 0 = GAGy = (G − N)y = x,
indicating M ∩Ker(A) = {0}. Let x ∈ V . It follows that x = GAx + (I −GA)x,
where (I − GA)x ∈ Ker(A), since A(I − GA)x = 0 and GAx = (G − A)x ∈
Sp(G−N). Hence, M ⊕Ker(A) = V .

(iii): This can be proven in a manner similar to (2). Note that G satisfying
(1) N = G−GAG, (2) M = Sp(G−N), and (3) L = Ker(G−N) exists and is
called the LMN-inverse or the Rao-Yanai inverse (Rao and Yanai, 1985).

The proofs given above are due to Rao and Rao (1998).
14. We first show a lemma by Mitra (1968; Theorem 2.1).

Lemma Let A, M , and B be as introduced in Question 14. Then the following
two statements are equivalent:
(i) AGA = A, where G = L(M ′AL)−M ′.
(ii) rank(M ′AL) = rank(A).
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Proof. (i) ⇒ (ii): A = AGA = AGAGA. Hence, rank(A) = rank(AGAGA) =
rank(AL(M ′AL)−M ′AL(M ′AL)−M ′A), which implies rank(M ′AL) ≥ rank
(A). Trivially, rank(A) ≥ rank(M ′AL), and so rank(A) = rank(M ′AL).

(ii) ⇒ (i): Condition (ii) implies that rank(A) = rank(M ′A) = rank(AL) =
rank(M ′AL). This in turn implies that A can be expressed as A = BM ′A =
ALC for some B and C. Thus, AL(M ′AL)−M ′A = BM ′AL(M ′AL)−M ′AL
×C = BM ′ALC = A. Q.E.D.

We now prove the equivalence of the three conditions in Question 14.
(i) ⇔ (ii): This follows from Mitra’s lemma above by setting L = I.
(ii) ⇒ (iii): Let x ∈ Sp(A) ⊕ Ker(H). Then, Hx = 0 and x = Az for some

z. Hence, 0 = HAz = Az = x, which implies Sp(A) and Ker(H) are disjoint.
Condition (iii) immediately follows since rank(H) = rank(A).

(iii) ⇒ (ii): It can be readily verified that H2A = HA. This implies H(I −
H)A = O, which in turn implies Sp((I −H)A) ⊂ Ker(H). Since (I −H)A =
A(I − L(M ′AL)−M ′A), Sp((I −H)A is also a subset of Sp(A). Since Ker(H)
and Sp(A) are disjoint, this implies (I −H)A = O, namely HA = A.

The propositions in this question are given as Theorem 2.1 in Yanai (1990).
See also Theorems 3.1, 3.2, and 3.3 in the same article.

7.4 Chapter 4

1. We use (4.77). We have QC′ = I3 − 1
3




1
1
1


 (1, 1, 1) = 1

3




2 −1 −1
−1 2 −1
−1 −1 2


,

QC′A
′ = 1

3




2 −1 −1
−1 2 −1
−1 −1 2







1 2
2 3
3 1


 = 1

3



−3 0

0 3
3 −3


, and

A(QC′A
′) = 1

3

[
1 2 3
2 3 1

] 

−3 0

0 3
3 −3


 = 1

3

[
6 −3

−3 6

]
=

[
2 −1

−1 2

]
.

Hence,

A−mr(C) = QC′A
′(AQC′A

′)−1

=
1
3



−3 0

0 3
3 −3




[
2 −1

−1 2

]−1

=
1
9



−3 0

0 3
3 −3




[
2 1
1 2

]

=
1
3



−2 −1

1 2
1 −1


.

2. We use (4.65).
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(i) QB = I3 − P B = I3 − 1
3




1 1 1
1 1 1
1 1 1


 = 1

3




2 −1 −1
−1 2 −1
−1 −1 2


, and

A′QBA = 1
3

[
1 2 1
2 1 1

] 


2 −1 −1
−1 2 −1
−1 −1 2







1 2
2 1
1 1


 = 1

3

[
2 −1

−1 2

]
.

Thus,

A−
`r(B) = (A′QBA)−1A′QB = 3

[
2 −1

−1 2

]−1

× 1
3

[ −1 2 −1
2 −1 −1

]

=
1
3

[
2 1
1 2

] [ −1 2 −1
2 −1 −1

]

=
[

0 1 −1
1 0 −1

]
.

(ii) We have

QB̃ = I3 − P B̃ = I3 − 1
1 + a2 + b2




1 a b
a a2 ab
b ab b2




=
1

1 + a2 + b2




a2 + b2 −a −b
−a 1 + b2 −ab
−b −ab 1 + a2


,

from which the equation

A′QB̃A =
1

1 + a2 + b2

[
f1 f2

f2 f3

]

can be derived, where f1 = 2a2 + 5b2 − 4ab− 4a− 2b + 5, f2 = 3a2 + 4b2 − 3ab−
5a− 3b + 3, and f3 = 5a2 + 5b2 − 2ab− 4a− 4b + 2. Hence,

QB̃ = I3 − P B̃ = I3 − 1
2 + a2




1 1 a
1 1 a
a a a2




=
1

2 + a2




1 + a2 −1 −a
−1 1 + a2 −a
−a −a 2


,

A′QB̃A =
1

2 + a2

[
e1 e2

e2 e1

]
, and A′QB̃ =

1
2 + a2

[
g1 g2 g3

g2 g1 g3

]
,

where e1 = 5a2 − 6a + 3, e2 = 4a2 − 6a + 1, g1 = a2 − a− 1, g2 = 2a2 − a + 1, and
g3 = 2− 3a. Hence, when a 6= 2

3 ,

A−
`r(B̃)

= (A′QB̃A)−1A′QB̃
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=
1

(2 + a2)(3a− 2)2

[
e1 −e2

−e2 e1

] [
g1 g2 g3

g2 g1 g3

]

=
1

(2 + a2)(3a− 2)2

[
h1 h2 h3

h2 h1 h3

]
,

where h1 = −3a4 + 5a3 − 8a2 + 10a − 4, h2 = 6a4 − 7a3 + 14a2 − 14a + 4, and
h3 = (2− 3a)(a2 + 2). Furthermore, when a = −3 in the equation above,

A−
`r(B̃)

=
1
11

[ −4 7 1
7 −4 1

]
.

Hence, by letting E = A−
`r(B̃)

, we have AEA = A and (AE)′ = AE, and so

A−
`r(B̃)

= A−
` .

3. We use (4.101). We have

(A′A + C ′C)−1 =
1

432




45 19 19
19 69 21
19 21 69


,

and

(AA′ + BB′)−1 =
1

432




69 9 21
9 45 9

21 9 69


.

Furthermore,

A′AA′ = 9




2 −1 −1
−1 2 −1
−1 −1 2


,

so that

A+
B·C = (A′A + C ′C)−1A′AA′(AA′ + BB′)−1

=




12.75 −8.25 −7.5
−11.25 24.75 −4.5
−14.25 −8.25 19.5


.

(The Moore-Penrose inverse of Question 1(c) in Chapter 3 can also be calculated
using the same formula.)
4. (i) (I − P AP B)a = 0 implies a = P AP Ba. On the other hand, from ||a||2 =
||P AP Ba||2 ≤ ||P Ba||2 ≤ ||a||2, we have ||P Ba||2 = ||a||2, which implies a′a =
a′P Aa. Hence, ||a−P Ba||2 = a′a−a′P Ba−a′P Ba+a′P Ba = a′a−a′P Ba =
0 → a = P Ba. That is, a = P Ba = P Aa, and so a ∈ Sp(A) ∩ Sp(B) = {0} ⇒
a = 0. Hence, I − P AP B is nonsingular.

(ii) Clear from P A(I − P BP A) = (I − P AP B)P A.
(iii) (I−P AP B)−1P A(I−P AP B)P A = (I−P AP B)−1(I−P AP B)P A = P A

and (I−P AP B)−1P A(I−P AP B)P B = O. Hence, (I−P AP B)−1P A(I−P AP B)
is the projector onto Sp(A) = Sp(P A) along Sp(B) = Sp(P B).
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5. Sp(A′)⊕Sp(C ′)⊕Sp(D′) = Em. Let E be such that Sp(E′) = Sp(C ′)⊕Sp(D′).

Then, E =
[

C
D

]
. From Theorem 4.20, the x that minimizes ||Ax− b||2 subject

to Ex = 0 is obtained by

x = (A′A + E′E)−1A′b = (A′A + C ′C + D′D)−1A′b.

This x can take various values depending on the choice of Sp(D′).
6. Let P A/T− = A(A′T−A)−A′T− be denoted by P ∗. Since T is symmetric,

(P ∗)′T−A = T−A(A′T−A)−A′T−A = T−A.

7. (i) Let y ∈ Ker(A′M). Then, Ax + y = 0 ⇒ A′MAx + A′My = 0 ⇒
A′MAx = 0 ⇒ A(A′MA)−AMAx = Ax = 0 ⇒ y = 0. Hence, Sp(A)
and Ker(A′M) are disjoint. On the other hand, dim(Ker(A′M)) = rank(In −
(AM)−AM) = n−m, showing that En = Sp(A)⊕Ker(A′M).

(ii) Clear from P A/MA = A and P A/M (In − (A′M)−A′M) = O.
(iii) Let M = QB . Then, Ker(A′QB) = Sp(In − (A′QB)−A′QB). Since

A(A′QBA)− ∈ {(A′QB)−}, Ker(A′QB) = Sp(In −A(A′QBA)−A′QB) = Sp(B
× (B′QAB)−B′QA) = Sp(B). Thus, Ker(A′QB) = Sp(B) and T−P ∗A =
T−A ⇒ TT−P ∗A = TT−A. On the other hand,

Sp(T ) = Sp(G) + Sp(A) ⇒ Sp(T ) ⊃ Sp(A) ⇒ TT−P ∗A = TT−A,

which implies
P ∗A = A. (7.1)

Also, (P ∗)′T− = T−A(A′T−A)−A′T− = T−P ∗ ⇒ TP ∗T− = TT−P ∗ =
P ∗ ⇒ TP ∗T− = TZ = P ∗TZ = P ∗GZ and T (P ∗)′T−TZ = T (P ∗)′Z =
TT−A(A′T−A)−A′Z = O, which implies

P ∗TZ = O. (7.2)

Combining (7.1) and (7.2) above and the definition of a projection matrix (Theorem
2.2), we have P ∗ = P A·TZ .

By the symmetry of A,

µmax(A) = (λmax(A′A))1/2 = (λmax(A2))1/2 = λmax(A).

Similarly, µmin(A) = λmin(A), µmax(A) = 2.005, and µmin(A) = 4.9987 × 10−4.
Thus, we have cond(A) = µmax/µmin = 4002, indicating that A is nearly singular.
(See Question 13 in Chapter 6 for more details on cond(A).)
8. Let y = y1+y2, where y ∈ En, y1 ∈ Sp(A) and y2 ∈ Sp(B). Then, AA+

B·Cy1 =
y1 and AA+

B·Cy2 = 0. Hence, A+

B̃·CAA+
B·Cy = A+

B̃·Cy1 = x1, where x1 ∈
Sp(QC′).

On the other hand, since A+
B·Cy = x1, we have A+

B̃·CAA+
B·Cy = A+

B·Cy1,
leading to the given equation.
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(An alternative proof.)

A+

B̃·CAA+
B·C

= QC′A
′(AQC′A

′)−A(A′QB̃A)−A′QB̃AQC′A
′(AQC′A

′)−

A(A′QBA)−A′QB

= QC′A
′(AQC′A

′)−A(A′QB̃A)−A′QB = A+
B·C .

9. Let K1/2 denote the symmetric square root factor of K (i.e., K1/2K1/2 = K

and K−1/2K−1/2 = K−1). Similarly, let S1 and S2 be symmetric square root
factors of A′K−1A and B′KB, respectively. Define C = [K−1/2AS

−1/2
1 , K1/2B

×S
−1/2
2 ]. Then C is square and C ′C = I, and so CC ′ = K−1/2AS−1A′K−1/2 +

K1/2BS−1
2 B′K1/2 = I. Pre- and postmultiplying both sides, we obtain Khatri’s

lemma.
10. (i) Let W = Sp(F ′) and V = Sp(H). From (a), we have Gx ∈ Sp(H),
which implies Sp(G) ⊂ Sp(H), so that G = HX for some X. From (c), we have
GAH = H ⇒ HXAH = H ⇒ AHXAH = AH, from which it follows that
X = (AH)− and G = H(AH)−. Thus, AGA = AH(AH)−A. On the other
hand, from rank(A) = rank(AH), we have A = AHW for some W . Hence,
AGA = AH(AH)−AHW = AHW = A, which implies that G = H(AH)− is
a g-inverse of A.

(ii) Sp(G′) ⊂ Sp(F ′) ⇒ G′ = F ′X ′ ⇒ G = XF . Hence, (AG)′F ′ = F ′ ⇒
FAG = F ⇒ FAXF = F ⇒ FAXFA = FA ⇒ X = (FA)−. This and
(4.126) lead to (4.127), similarly to (i).

(iii) The G that satisfies (a) and (d) should be expressed as G = HX. By
(AG)′F ′ = F ′ ⇒ FAHX = F ,

(1) G = H(FAH)−F + H(I − (FAH)−FAH)Z1.

The G that satisfies (b) and (c) can be expressed as G = XF . By GAH = H ⇒
XFAH = H,

(2) G = H(FAH)−F + Z2(I − FAH(FAH)−)F .

(Z1 and Z2 are arbitrary square matrices of orders n and m, respectively.) From
rank(FAH) = rank(H), the second term in (1) is null, and from rank(F ) =
rank(FAH), the second term in (2) is null. In this case, clearly AH(FAH)−FA=
A, and G in (4.129) is a g-inverse of A.

(iv) (4.130): Since Im −C ′(CC ′)−C = QC′ , we have G = QC′(AQC′)−. In
this case, rank(AQC′) = rank(A), so that AQC′(AQC′)−A = A. Furthermore,
CQC′(AQC′)−A = O. Since A−A that satisfies (4.73) also satisfies (4.75), GA =
A−

m(C)A. On the other hand, since rank(G) = rank(A), G = A−
mr(C).

(4.131): Let G = (FA)−F = (QBA)−QB . Then, AGA = A and AGB = O,
from which AG = AA−

`(B). Furthermore, rank(G) = rank(A), which leads to
G = A−

`r(B).
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(4.132): G = QC′(QBAQC′)−QB , from which AGA = AQC′(QBAQC′)−QB

× A. Let G∗ = A′(AQC′A
′)−A(A′QBA)−A′. Then, QBAQC′G

∗QBAQC′ =
QBAQC′ , indicating that G∗ ∈ {(QBAQC′)−}. Hence, AQC′GQBA = AQC′A

′

(AQC′A
′)−A(A′QBA)−A′QBA = A. Hence, AGA = A. The relation GAG =

G can be similarly proven.
Next,

QBAG = QBAQC′(QBAQC′)
−QB

= QBAQC′A
′(AQC′A

′)−A(A′QBA)−A′QB

= QBA(A′QBA)−A′QB

= P A[B].

Similarly, GAQC′ = QC′A
′(AQC′A

′)−AQC′ = P A′[C′]. That is, both QBAG
and GAQC′ are symmetric. Hence, by Definition 4.4, G coincides with the B−,
C-constrained Moore-Penrose inverse A+

B·C .
(v) We use the matrix rank method to show (4.138). (See the answer to Ques-

tion 7 in Chapter 1 for a brief introduction to the matrix rank method.) Define

M =
[

FAH FA
AH A

]
. Pre- and postmultiplying M by

[
I O

−AH(FAH)−1 I

]

and
[

I −(FAH)−1FA
O I

]
, respectively, we obtain

[
FAH O

O A1

]
, where A1 =

A−AH(FAH)−1FA, indicating that

rank(M) = rank(FAH) + rank(A1). (7.3)

On the other hand, pre- and postmultiplying M by
[

I −F
O I

]
and

[
I O
−H I

]
,

respectively, we obtain
[

O O
O A

]
, indicating that rank(M) = rank(A). Combining

this result with (7.3), we obtain (4.138). That rank(FAH) = rank(AH(FAH)−1

× FA) is trivial.

11. It is straightforward to verify that these Moore-Penrose inverses satisfy the
four Penrose conditions in Definition 3.5. The following relations are useful in
this process: (1) P A/MP A = P A and P AP A/M = P A/M (or, more generally,
P A/MP A/N = P A/N , where N is nnd and such that rank(NA) = rank(A)), (2)
QA/MQA = QA/M and QAQA/M = QA (or, more generally, QA/MQA/N = QA/M ,
where N is as introduced in (1)), (3) P A/MP MA = P A/M and P MAP A/M =
P MA, and (4) QA/MQMA = QMA and QMAQA/M = QA/M .

12. Differentiating φ(B) with respect to the elements of B and setting the result
to zero, we obtain

1
2

∂φ(B)
∂B

= −X ′(Y −XB̂) + λB̂ = O,

from which the result follows immediately.
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13. (i) RX(λ)MX(λ)RX(λ) = X(X ′MX(λ)X)−1X ′MX(λ)X(X ′MX(λ)X)−1

X ′ = RX(λ).
(ii) The (i) above indicates that MX(λ) is a g-inverse of RX(λ). That MX(λ)

satisfies the three other Penrose conditions can be readily verified.

7.5 Chapter 5

1. Since A′A =
[

6 −3
−3 6

]
, its eigenvalues are 9 and 3. Consequently, the

singular values of A are 3 and
√

3. The normalized eigenvectors corresponding to

the eigenvalues 9 and 3 are, respectively, u1 =
(√

2
2 ,−

√
2

2

)′
and u2 =

(√
2

2 ,
√

2
2

)′
.

Hence,

v1 =
1√
9
Au1 =

1
3




1 −2
−2 1

1 1




( √
2

2

−
√

2
2

)
=
√

2
2




1
−1

0


,

and

v2 =
1√
3
Au2 =

1√
3




1 −2
−2 1

1 1




( √
2

2√
2

2

)
=
√

6
6



−1
−1

2


.

The SVD of A is thus given by

A =




1 −2
−2 1

1 1




= 3




√
2

2

−
√

2
2

0




(√
2

2
,−
√

2
2

)
+
√

3



−
√

6
6

−
√

6
6√
6

3




(√
2

2
,

√
2

2

)

=




3
2 − 3

2

− 3
2

3
2

0 0


 +



−1

2 − 1
2

− 1
2 − 1

2

1 1


.

According to (5.52), the Moore-Penrose inverse of A is given by

A+ =
1
3

( √
2

2

−
√

2
2

)(√
2

2
,−
√

2
2

, 0

)
+

1√
3

( √
2

2√
2

2

)(
−
√

6
6

,−
√

6
6

,

√
6

3

)

=
1
3

[
0 −1 1

−1 0 1

]
.
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(An alternative solution) From rank(A) = 2, A′(AA′)−A = I2. Using A+ =
(A′A)−1A′ in (3.98),

A+ =
[

6 −3
−3 6

]−1 [
1 −2 1

−2 1 1

]
=

1
9

[
2 1
1 2

] [
1 −2 1

−2 1 1

]

=
1
3

[
0 −1 1

−1 0 1

]
.

2. Differentiating f(x, y) = (x′Ay)2 − λ1(x′x − 1) − λ2(y′y − 1) with respect to
x and y, and setting the results equal to zero, we obtain

(x′Ay)Ay = λ1x (7.4)

and
(x′Ay)A′x = λ2y. (7.5)

Premultiplying (7.4) and (7.5) by x′ and y′, respectively, we obtain (x′Ay)2 =
λ1 = λ2 since ||x||2 = ||y||2 = 1. Let λ1 = λ2 = µ2. Then (1) and (2) become
Ay = µx and A′x = µy, respectively. Since µ2 = (x′Ay)2, the maximum of
(x′Ay)2 is equal to the square of the largest singular value µ(A) of A.
3. (A+A′)2 = (A+A′)′(A+A′) = (AA′+A′A)+A2 +(A′)2 and (A−A′)′(A−
A′) = AA′ + A′A−A2 − (A′)2. Hence,

AA′ + A′A =
1
2
{(A + A′)′(A + A′) + (A−A′)′(A−A′)}.

Noting that λj(AA′) = λj(A′A) by Corollary 1 of Theorem 5.9, λj(A′A) ≥
1
4λj(A + A′)2 ⇒ 4µ2

j (A) ≥ λ2
j (A + A′) ⇒ 2µj(A) ≥ λj(A + A′).

4. Ã
′
Ã = T ′A′S′SAT = T ′A′AT . Since λj(T ′A′AT ) = λj(A′A) from the

corollary to Lemma 5.7, µj(Ã) = µj(A). Hence, by substituting A = U∆V ′ into
Ã = SAT , we obtain Ã = SU∆(T ′V )′, where (SU)′(SU) = U ′S′SU = U ′U =
In and (T ′V )′(T ′V ) = V ′TT ′V = V ′V = Im. Setting Ũ = SV and Ṽ = T ′V ,
we have Ã = Ũ∆Ṽ

′
.

5. Let k be an integer. Then,

Ak = λk
1P k

1 + λk
2P k

2 + · · ·+ λk
nP k

n = λk
1P 1 + λk

2P 2 + · · ·+ λk
nP n.

Since I = P 1 + P 2 + · · ·+ P n,

eA = I + A +
1
2
A2 +

1
6
A3 + · · ·

=
n∑

j=1

{(
1 + λj +

1
2
λ2

j +
1
6
λ3

j + · · ·
)

P j

}
=

n∑

j=1

eλj P j .

6. (Necessity) Let A′ ∈ {A−}. Then AA′ is a projector whose eigenvalues are
either 1 or 0. That is, nonzero eigenvalues of A are 1.
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(Sufficiency) Let A = U∆rV
′ denote the SVD of A, where ∆r is a diagonal

matrix of order r (where r = rank(A)) with unit diagonal elements (i.e., ∆r = Ir).
Hence, AA′A = U∆rV

′V ∆rU
′U∆rV

′ = U∆3
rV

′ = U∆rV
′ = A.

7. (i) Use Theorem 5.9 and the fact that (In − P B)(A − BX) = (A − BX) −
P BA + BX = (In − P B)A.

(ii) Use Theorem 5.9 and the fact that (Ip−P C′)A′C ′Y ′ = (Ip−P C′)A′, that
µj(A(Ip − P C′)) = µj((Ip − P C′)A′), and that µj(A− Y C) = µj(C ′Y ′ −A′).

(iii) µj(A−BX−Y C) ≥ µj{(I−P B)(A−Y C)} ≥ µj{(I−P B)(A−Y C)(I−
P C′)}.
8. Use tr(AB) ≤ tr(A) on the right-hand side and Theorem 5.9 on the left-hand
side.
9. Let A = U∆V ′ denote the SVD of an n by m (n ≥ m) matrix A. Then,

||y −Ax||2 = ||U ′y −U ′U∆V ′x||2

= ||U ′y −∆(V ′x)||2 = ||ỹ −∆x̃||2 =
m∑

j=1

(ỹj − λj x̃j)2 +
n∑

j=m+1

ỹ2
j ,

where we used the fact that ∆ =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




. Hence, if rank(A) = m,

the equation above takes a minimum Q =
∑n

j=m+1 ỹ2
j when x̃j = ỹj

λj
(1 ≤ j ≤ m).

If, on the other hand, rank(A) = r < m, it takes the minimum value Q when
x̃j = ỹj

λj
(1 ≤ j ≤ r) and x̃j = zj (r + 1 ≤ j ≤ m), where zj is an arbitrary

constant. Since x̃ = V ′x and x = V x̃, so that ||x||2 = x̃′V ′V x̃ = ||x̃||2, ||x||2
takes a minimum value when zj = 0 (r + 1 ≤ j ≤ m). The x obtained this way
coincides with x = A+y, where A+ is the Moore-Penrose inverse of A.
10. We follow Eckart and Young’s (1936) original proof, which is quite intriguing.
However, it requires somewhat advanced knowledge in linear algebra:

(1) For a full orthogonal matrix U , an infinitesimal change in U can be repre-
sented as KU for some skew-symmetric matrix K.

(2) Let K be a skew-symmetric matrix. Then, tr(SK) = 0 ⇐⇒ S = S′.
(3) In this problem, both BA′ and A′B are symmetric.
(4) Both BA′ and A′B are symmetric if and only if both A and B are diago-

nalizable by the same pair of orthogonals, i.e., A = U∆AV ′ and B = U∆BV ′.
(5) φ(B) = ||∆A −∆B ||2, where ∆B is a diagonal matrix of rank k.

Let us now elaborate on the above:
(1) Since U is fully orthogonal, we have UU ′ = I. Let an infinitesimal change in

U be denoted as dU . Then, dUU ′+UdU ′ = O, which implies dUU ′ = K, where
K is skew-symmetric. Postmultiplying both sides by U , we obtain dU = KU .
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(2) Let S be a symmetric matrix. Then, tr(SK) = −tr(SK), which implies
tr(SK) = 0. Conversely, if tr(SK) = 0, then tr((S − S′)K) = 0. Since S − S′ is
skew-symmetric as well as K, the only way this can hold is for S − S′ = O.

(3) φ(B) can be expanded as φ(B) = ||A||2−2tr(A′B)+||B||2. Let B = U∆BV ′

be the SVD of B. Then, φ(B) = ||A||2 − 2tr(A′U∆BV ′) + ||∆B ||2. The change
in φ(B) as a result of an infinitesimal change in U has to be 0 at a minimum
of φ. This implies that tr(A′dU∆V ′) = tr(A′KU∆BV ′) = tr(U∆BV ′A′K) =
tr(BA′K) = 0, i.e., BA′ must be symmetric. By a similar line of argument for V ,
A′B must also be symmetric.

(4) If A and B are diagonalizable by the same pair of orthonormals (i.e., if
A = U∆AV ′ and B = U∆BV ′), then we have BA′ = U∆BV ′V ∆AU = UDU ′

(symmetric) and A′B = V ∆AU ′U∆BV ′ = V DV ′ (symmetric). Conversely, let
both BA′ and A′B be symmetric. Then, BA′ = UD1U

′, and A′B = V D1V
′

for some orthogonal matrices U and V and diagonal matrices D1 and D2. We
have UD2

1U
′ = (BA′)2 = B(A′B)A′ = BV D2V

′A′. Pre- and postmultiplying
both sides by U ′ and U , respectively, we obtain D2

1 = (U ′BV )D2(V ′A′U). This
implies that both U ′BV and V ′A′U are diagonal, or A = U∆V ′ and B =
U∆BV ′ for some diagonal matrices ∆A and ∆B .

(5) Let the columns of U or V be permuted and reflected so that the diagonal
elements of ∆A are all positive and in descending order of magnitude. Then,
φ(B) = ||∆A − ∆B ||2, where ∆B is a diagonal matrix of rank k. Hence, φ(B)
is minimized when ∆B is a diagonal matrix with the leading k diagonal elements
equal to those in ∆A and the rest equal to zero. See ten Berge (1993) for an
alternative proof.
11. We use the Lagrangean multiplier method to impose the orthogonality con-
straint on T (i.e., T ′T = TT ′ = I). To minimize φ(T , S) = ||B − AT ||2 +
tr(S(T ′T−I)), where S is a symmetric matrix of Lagrangean multipliers, we differ-
entiate φ with respect to T and set the result to zero. We obtain 1

2
∂φ

∂T = −A′(B−
AT )+TS = O. Premultiplying both sides by T ′, we obtain T ′A′AT +S = T ′A′B.
This indicates that T ′A′B is symmetric since the left-hand side is obviously sym-
metric. That is, T ′A′B = B′AT or A′B = TB′AT . Let the SVD of A′B be
denoted as A′B = U∆V ′. Then, U∆V ′ = TV ∆U ′T , from which T = UV ′

follows immediately.

7.6 Chapter 6

1. From Sp(X) = Sp(X̃), it follows that P X = P X̃ . Hence, R2
X·y = y′P Xy

y′y =
y′P X̃y

y′y = R2
X̃·y.

2. We first prove the case in which X = [x1,x2]. We have

1−R2
X·y =

y′y − y′P Xy

y′y
=

(
y′y − y′P x1y

y′y

)(
y′y − y′P x1x2y

y′y − y′P x1y

)
.
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The first factor on the right-hand side is equal to 1− r2
x1y, and the second factor is

equal to

1− y′Qx1
x2(x′2Qx1

x2)−1x′2Qx1
y

y′Qx1
y

= 1− ||Qx1
x2||2

||Qx1
y||2||Qx1

x2||2 = 1− r2
x2y|x1

since P x1x2 = P x1 + Qx1
x2(x′2Qx1

x2)−1x′2Qx1
.

Let
Xj+1 = [x1,x2, · · · , xj , xj+1] = [Xj , xj+1].

Then, P Xj+1 = P Xj + QXj
xj+1(x′j+1QXj

xj+1)−1x′j+1QXj
, and so

1−R2
Xj+1·y = (1−R2

Xj ·y)

(
1− (QXj

xj+1, QXj
y)

||QXj
xj+1||||QXj

y||

)

= (1−R2
Xj ·y)(1− r2

xj+1y|x1x2···xj
),

leading to the given equation.
3. (⇒) Let K′y denote an unbiased estimator of E(L′y) = L′Xβ. Then, E(K ′y) =
K ′Xβ = L′Xβ for ∀β ∈ Ep. Hence, (K − L)′X = O, and (K − L)′ = P ′(I −
XX−) ⇒ K′ = L′+P ′(I−XX−), where P is arbitrary. V(K ′y) = σ2K ′GK =
σ2||L + (I −XX−)′P ||2G. Since V(L′y) ≤ V(K ′y) holds for arbitrary P , we have
(I −XX−)GL = O, which implies GL ∈ Sp(X).

(⇐) It suffices to show the reverse of the above. Let K′y denote an unbiased
estimator of E(L′y). Then, 1

σ2 V(K ′y) = ||L+(I−XX−)′P ||2G = tr(L′GL+P (I−
XX−)′G(I−XX−)′P +2P ′(I−XX−)GL). When GL ∈ Sp(X), the third term
in the trace is a zero matrix and the second term is nnd. Hence, V(L′y) ≤ V(K ′y).
4. Let `′y denote the BLUE of an estimable function e′β. Then, E(`′y) = `′Xβ =
e′β for ∀β ∈ Ep, which implies that X ′` = e, and V(`′y) = σ2`′G` = σ2||`||2G is
a minimum. Hence, ` = (X ′)−m(G)e. Let Y ′ = (X ′)−m(G). Then,

{
X ′Y ′X ′ = X ′

GY ′X ′ = (XY )G ⇐⇒
{

XY X = X
XY G = G(XY )′ ,

where G(XY )′ = P XG(XY )′ and P X is the orthogonal projector onto Sp(X).
Transposing both sides, we obtain XY G = XY GP X ⇒ XY GQX = O. Hence,
Z = QXZ for Z such that Sp(Z) = Sp(X)⊥, and so

XY GZ = O.

The above shows that Y is a GZ-constrained g-inverse of X, denoted as X−
`(GZ).

That is, `′y = e′Y y = e′X−
`(GZ)y.

5. Choose Z = QX = In − P X , which is symmetric. Then,
(i) E(y′Z ′(ZGZ)−Zy) = E{tr(Z(ZGZ)−Zyy′)}

= tr{Z(ZGZ)−ZE(yy′)}
= tr{Z(ZGZ)−Z(Xββ′X ′ + σ2G)}
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= σ2tr(Z(ZGZ)−ZG) (since ZX = O)
= σ2tr{(ZG)(ZG)−}
= σ2tr(P GZ).

On the other hand, tr(P GZ) = rank([X, G]) − rank(X) = f since Sp(X) ⊕
Sp(G) = Sp(X)⊕ Sp(GZ), establishing the proposition.

(ii) From y ∈ Sp([X, G]), it suffices to show the equivalence between TZ(ZG
×Z)−ZT and TT−(I − P X/T−)T . Let T = XW 1 + (GZ)W 2. Then,

TZ(ZGZ)−ZT = TZ(ZGZ)−Z(XW 1 + GZW 2)
= TZ(ZGZ)−ZGZW 2

= GZ(ZGZ)−ZGZW 2 = GZW 2,

where we used T = G + XUX ′ to derive the second-to-last equality.
Furthermore, from the result of Exercise 6 in Chapter 4, TT−(I−P X/T−)T =

TT−P GZ·XT , and the last equality follows from T = XW 1 + (GZ)W 2.
6. (i) Let G∗ = [G,1n]. Since Sp(1n) ⊂ Sp(G),

P G∗ = P G = P M + QMG(G′QMG)−G′QM . (7.6)

On the other hand, let G̃ = [g1, g2, · · · , gm−1]. Then, Sp([G̃,1n]) = Sp(G). There-
fore, P G = P G̃∪1 = P M + QM G̃(G̃′QMG̃)−G̃QM .

(ii) minα ||y −G∗α||2 = ||y −P G∗y||2, and P G∗ = P G. Let yR be a vector of
raw scores. Then, y = QMy, so using (7.6) we obtain

||y − P G∗y||2 = ||y − P Gy||2

= ||y − P My −QMG̃(G̃
′
QMG̃)−1G̃

′
QMy||2

= y′(I − G̃(G̃QMG̃)−1G̃
′
)y.

Note that P My = 0 and QMy = y, since y is a vector of deviation scores from the
means.
7. (i) Clear from Sp(QGDx) ⊃ Sp(QGx).

(ii) P xP Dx[G] = x(x′x)−1x′QGDx(D′
xQGDx)−1D′

xQG

= x(x′x)−11′nD′
xQGDx(D′

xQGDx)−1D′
xQG

= x(x′x)−11′nD′
xQG = P xQG.

Noting that P xP x[G] = x(x′x)−1x′QGx(x′QGx)−1x′QG = P xQG leads to the
given equation.

(iii) and (iv) Use (4.47b) in the corollary to Theorem 4.8.
(v) Let ai and bi denote the estimates of parameters αi and βi in the model

yij = αi + βixij + εij . Let

f(ai, bi) =
m∑

i=1

ni∑

j=1

(yij − ai − bixij)2.
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To minimize f defined above, we differentiate f with respect to ai and set the result
equal to zero. We obtain ai = ȳi − bix̄i. Using the result in (iv), we obtain

f(b) =
m∑

i=1

ni∑

j=1

{(yij − ȳi)− bi(xij − x̄i)}2 = ||y −Dxb||2QG
≥ ||y − P Dx[G]y||2QG

.

Let b denote the estimate of βi under the restriction that βi = β (i = 1, · · · , m).
Then,

f(b) =
m∑

i=1

ni∑

j=1

{(yij − ȳi)− b(xij − x̄i)}2 = ||y − bx||2QG
≥ ||y − P x[G]y||2QG

,

leading to the given equation.
8. From

SS′ = ∆−1
X UXCXY U ′

Y ∆−2
Y UY CY XU ′

X∆−1
X

= ∆−1
X UXCXY C−1

Y Y CY XU ′
X∆−1

X ,

we have (SS′)a = (∆−1
X UXCXY C−1

Y Y CY XU ′
X∆−1

X )∆XUX ã = λ∆XUX ã, where
ã = U ′

X∆−1
X a. Premultiplying both sides by U ′

X∆X , we obtain CXY C−1
Y Y CY X ã

= λCXX ã. The λ is an eigenvalue of SS′, and the equation above is the eigenequa-
tion for canonical correlation analysis, so that the singular values of S correspond
to the canonical correlation coefficients between X and Y .
9. Let XA and Y B denote the matrices of canonical variates corresponding to X
and Y , respectively. Furthermore, let ρ1, ρ2, · · · , ρr represent r canonical correla-
tions when rank(XA) = rank(Y B) = r. In this case, if dim(Sp(Z)) = m (m ≤ r),
m canonical correlations are 1. Let XA1 and Y B1 denote the canonical variates
corresponding to the unit canonical correlations, and let XA2 and Y B2 be the
canonical variates corresponding to the canonical correlations less than 1. Then,
by Theorem 6.11, we have

P XP Y = P XAP Y B = P XA1P Y B1 + P XA2P Y B2 .

From Sp(XA1) = Sp(Y B1), we have

P XA1 = P Y B2 = P Z ,

where Z is such that Sp(Z) = Sp(X)∩Sp(Y ). Hence, P XP Y = P Z +P XA2P Y B2 .
Since A′

2X
′XA2 = B′

2Y
′Y B2 = Ir−m, we also have P XA2P Y B2 = XA2(A′

2X
′

× Y B2)B′
2Y

′ ⇒ (P XA2P Y B2)
k = XA2(A′

2X
′Y B2)kB′

2Y
′. Since

A′
2XY B2 =




ρm+1 0 · · · 0
0 ρm+2 · · · 0
...

...
. . .

...
0 0 · · · ρr


,
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where 0 < ρj < 1 (j = m+1, · · · , r), we obtain limk→∞(P XA2P Y B2)
k = O, leading

to the given equation.
10. (i) From

[
X ′X X ′Y
Y ′X Y ′Y

]
=

[
X ′

Y ′

] [
X Y

]
=

[
X ′

Y ′

] [
X ′

Y ′

]′
,

RR− =
[

X ′

Y ′

] [
X ′

Y ′

]−
. From (3.12), {(RR−)′} = {[X,Y ]−[X, Y ]}, and so

Sp{(Ip+q −RR−)′} = Sp{(Ip+q − [X,Y ]−[X, Y ])}.

(ii) From
[

X ′

Y ′

] [
X ′

Y ′

]− [
X ′

Y ′

]
=

[
X ′

Y ′

]
, RR−

[
X ′

Y ′

]
=

[
X ′

Y ′

]
. It

follows that S11X
′ + S12Y

′ = X ′ ⇒ S12Y
′ = (Ip − S11)X ′. Premultiply both

sides by QY .
(iii) From (ii), (Ip − S11)X ′ = S12Y

′ ⇒ X(Ip − S11)′ = Y S′12. Similarly,
(Ip − S22)Y ′ = S21X

′ ⇒ Y (Iq − S22) = XS′21. Use Theorem 1.4.
11. (i) Define the factor analysis model as

zj = aj1f1 + aj2f2 + · · ·+ ajrfr + ujvj (j = 1, · · · , p),

where zj is a vector of standardized scores, f i is a vector of common factor scores,
aji is the factor loading of the jth variable on the ith common factor, vj is the
vector of unique factors, and uj is the unique factor loading for variable j. The
model above can be rewritten as

Z = FA′ + V U

using matrix notation. Hence,

1
n
||P F zj ||2 =

1
n

z′jF
(

1
n

F ′F
)−1 (

1
n

F ′zj

)

=
1
n

(F ′zj)′(F ′zj) = a′jaj =
r∑

i=1

a2
ji = h2

j .

(ii) tr(P F P Z) ≤ min(rank(F ), rank(Z)) = rank(F ) = r.
(iii) Hj = [F , Z(j)] ⇒ R2

Hj ·zj
= 1

n ||P Hj zj ||2 = 1
n ||(P F + P Z(j)[F ]zj ||2. On

the other hand, from 1
nZ ′

(j)QF zj = 1
n (Z ′

(j)zj − Z ′
(j)P F zj) = rj − A′aj = 0,

R2
Hj ·zj

= h2
j . From P Hj = P Z(j) + P F [Z(j)], R2

Hj ·zj
= R2

Z(j)·zj
+ S, where S ≥ O.

Hence, R2
Z(j)·zj

≤ hj . (See Takeuchi, Yanai, and Mukherjee (1982, p. 288) for more
details.)
12. (i) Use the fact that Sp(P X·ZP Y ·Z) = Sp(XA) from (P X·ZP Y ·Z)XA =
XA∆.
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(ii) Use the fact that Sp(P Y ·ZP X·Z) = Sp(Y B) from (P Y ·ZP X·Z)Y B =
Y B∆.

(iii) P XA·ZP X·Z = XA(A′X ′QZXA)−A′X ′QZX(X ′QZX)−XQZ

= XA(A′X ′QZXA)−A′X ′QZ = P XA·Z .
Hence, P XA·ZP Y ·Z = P XA·ZP X·ZP Y ·Z = P X·ZP Y ·Z .

We next show that P X·ZP Y B·Z = P X·ZP Y ·Z . Similar to the proof of P XA·Z
P Y ·Z = P X·ZP Y ·Z above, we have P Y B·ZP X·Z = P Y ·ZP X·Z . Premultiplying
both sides by QZ , we get

P Y B[Z]P X[Z] = P Y [Z]P X[Z],

and, by transposition, we obtain

P X[Z]P Y [Z] = P Y [Z]P X[Z].

Premultiplying both sides by X(X ′QZX)−X ′, we obtain P X·ZP Y ·Z = P X·Z ×
P Y B·Z , from which it follows that

P XA·ZP Y B·Z = P XA·ZP X·ZP Y B·Z = P XA·ZP X·ZP Y ·Z
= P XA·ZP Y ·Z = P X·ZP Y ·Z .

13.
Ax = b ⇒ ||A||||x|| ≥ ||b||. (7.7)

From A(x + ∆x) = b + ∆b,

A∆x = ∆b → ∆x = A−1∆b ⇒ ||∆x|| ≤ ||A−1||||∆b||. (7.8)

From (7.7) and (7.8),
||∆x||
||x|| ≤ ||A||||A−1||||∆b||

||b|| .

Let ||A|| and ||A−1|| be represented by the largest singular values of A and A−1,
respectively, that is, ||A|| = µmax(A) and ||A−1|| = (µmin(A))−1, from which the
assertion follows immediately.

Note Let

A =
[

1 1
1 1.001

]
and b =

(
4

4.002

)
.

The solution to Ax = b is x = (2, 2)′. Let ∆b = (0, 0.001)′. Then the solution to
A(x + ∆x) = b + ∆b is x + ∆x = (1, 3)′. Notably, ∆x is much larger than ∆b.
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