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Preface 

This book is devoted to (a) multivariate models for non-normal re­
sponse, an area of probability and statistics with increasing activity 
and applications, and (b) dependence concepts that are useful for 
analysing properties of multivariate models. It also adds to the 
knowledge of the space of multivariate distributions. 

By a multivariate model, I mean a parametric statistical model 
for a multivariate response, possibly with covariates. Examples are 
models for multivariate or longitudinal count, binary and ordinal 
response data. My approach consists of the modelling of the uni­
variate margins followed by adding the appropriate dependence 
structure, with considerations of positive or negative dependence, 
and exchangeable, time series or general dependence structure. I 
find that dependence concepts and dependence analysis are neces­
sary to understand a model and when it might be applicable. This 
includes analysis of the range of dependence that a model permits 
and whether the dependence of the model increases as multivariate 
parameters increase. 

This book's special features include: 

• methods for constructions of multivariate non-normal distribu­
tions and copulas; 

• the topics of Frechet classes and dependence concepts; 

• an introduction to new statistical inference theory for multivari­
ate models - the method of inference functions for margins is 
presented in Chapter 10; 

• data analysis examples with comparisons of models, diagnostic 
checking and sensitivity analyses; 

• exercises and unsolved problems at the end of chapters; 

• some supplementary results in the Appendix, in order to make 
the book more self-contained. 



xvi PREFACE 

This book has minimal overlap with earlier books on bivariate and 
multivariate distributions. 

The methods and models of this book extend commonly used 
univariate models to multivariate models in which parameters of 
the models can be considered as univariate parameters or depend­
ence parameters, and allow one to make a variety of inferences as 
well as assess assumptions, do diagnostic checks, make model com­
parisons and perform sensitivity analyses. These are not all poss­
ible with the method of generalized estimating equations (GEEs), 
which is based on partly specified probability models. There have 
been many advances in research in multivariate non-normal distri­
butions since researchers proposed methods like the GEE approach 
partly because of a lack of existing models. The models and meth­
ods here are more general and more flexible, and less dependent 
on assumptions, than are GEEs. 

The topics in the book have been largely motivated by applica­
tions. Because of space limitations, I cover only the main concepts 
and ideas that can be used to construct and analyse multivari­
ate distributions and models. There is by no means an exhaustive 
coverage of what has appeared in the probability and statistics 
literature in multivariate models and dependence concepts, and 
there are no comparisons for analysis of multivariate or longitud­
inal non-normal response data with methods that do not fall within 
the theme of the 'multivariate' approach. Only the most relevant 
references are cited and these are mainly in the sections entitled 
'Bibliographic notes'. 

There is no real linear ordering of the material in this book, 
so that the more foundational results are given earlier. Different 
sections are cross-referenced in order that the reader can more 
easily move around non-linearly. Some features to help the reader 
are as follows. 

• Section 1.3 consists of notation, abbreviations and conventions 
used throughout. 

• Those sections that provide a basic introduction to multivariate 
models and dependence concepts are indicated with a 0 sym­
bol in the section title and those that are very advanced are 
indicated with a * symbol. 

• There is an appendix at the end to make the book more self­
contained. 

• The index is arranged so that the first page number listed is 
usually the definition of a term. 
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Audience 

This book is written for a number of audiences: (i) those who work 
with and analyse multivariate or longitudinal non-normal response 
data; (ii) those interested in methods for constructing multivariate 
non-normal distributions; (iii) researchers (or those who want to 
become researchers) in multivariate non-normal statistics; and (iv) 
those who need a reference for multivariate models and dependence 
concepts. 

This book can be read or used in several ways. The reader who 
is more interested in the theory and foundations can start from the 
beginning. The reader who is more interested in applications and 
how the theory applies can start with the examples of data analyses 
in Chapter 11, and then read the sections with the relevant theory 
for the multivariate models and inference. This book can also be 
used as a reference or as a starting point for further research (there 
are pointers throughout on further research that could be done, for 
example, in the exercises and unsolved problems). 

This book assumes that the reader has some background in 
mathematical statistics and probability. To implement or to ana­
lyse the models, the reader should be able to write out the prob­
ability distributions based on stochastic representations. Some­
times the model is given only in terms of stochastic representations 
because this takes less space and makes properties of the model 
more evident. In a few places, terminology from measure theory or 
other areas of mathematics is used; the usage is explained in the 
Appendix. 

This book could be used for a graduate course on multivariate 
non-normal statistics or as a supplementary book for courses in 
multivariate statistics, time series, categorical data, and longitud­
inal data analysis. 

Acknowledgments 
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CHAPTER 1 

Introduction 

This book is devoted to multivariate models for non-normal re­
sponse (e.g., binary, ordinal, count, extreme value), an area of prob­
ability and statistics with increasing activity and applications. It 
also contributes to the understanding of the space of multivariate 
distributions. Important ideas in the book include: 

• construction of multivariate models to cover various types of 
dependence structure; 

• development of dependence concepts and their use to analyse 
multivariate models; 

• use of stochastic representations, mixtures and latent variables 
to construct parametric models with nice dependence proper­
ties; 

• use of the copula as a summary of the dependence in a multi-
variate distribution, independent of the univariate margins; 

• Frechet classes with given marginal distributions; 

• time series models with given univariate margins; 

• the emphasis on properties of multivariates models to decide 
their applicability; 

• the estimation method of inference functions for margins, con­
sisting of parameter estimates from likelihoods of marginal dis­
tributions of a multivariate model, together with the jackknife 
method for standard error estimates; 

• comparison of models in examples of data analysis. 

In this first chapter, an overview of the book is given in Section 
1.1, the style and format are described in Section 1.2, notation and 
abbreviations are summarized in Section 1.3, some basic results 
are given in Sections 1.4 to 1.6, and a point of view for statistical 
modelling is set out in Section 1. 7. 



2 INTRODUCTION 

1.1 Overview and background 

This is a book on multivariate models in which there is a multivari­
ate response vector and possibly a vector of covariates, explanatory 
variables or factors. For a multivariate response, we will include the 
cases of 

(i) repeated measures, time series or longitudinal data, in which 
a response variable is measured sequentially at several points 
in time (with covariates possibly changing with time); 

(ii) measurements on m different variables; 

(iii) measurements of a variable for each member of a cluster, 
family or litter; 

(iv) combinations of (i), (ii) and (iii). 

Concrete examples are the following. 

1. For a study of the risk factors of cardiac surgery, binary re­
sponse variables measured after cardiac surgery are indicators 
of low-output syndrome and renal, neurological and pulmonary 
complications (these indirectly measure the quality of life af­
ter surgery), and covariates include age, sex, and indicators of 
chronic obstructive pulmonary disease, prior myocardial infarc­
tion, renal disease and diabetes. 

2. For an epidemiological study on the effects of air pollution on 
health, response variables which are measured daily are number 
of hospital emergency room visits (for respiratory, cardiac and 
other types of visits), absenteeism and mortality count (for com­
bined, respiratory and other causes of death). Inhalable particu­
late matter, ozone and organic dust are the principal pollutants 
of interest, and other covariates are meteorological variables. 

3. For extreme value inference concerning air quality in a region 
with several monitoring stations, measurements are daily max­
ima of hourly averaged concentrations of several pollutants (e.g., 
ozone, sulphur dioxide, oxides of nitrogen) at each station. 

4. For a study on the psychological effects over time after a disas­
ter, subjects are measured for stress (an ordinal response vari­
able) at several time points; one covariate is the distance from 
the site of the disaster. 

There is a well-developed theory for the case in which the multi­
variate response vector can be assumed to have a multivariate nor­
mal distribution. There is relatively little on multivariate models 
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for non-normal response variables, such as multivariate or longit­
udinal count, binary and ordinal response data. This is perhaps 
due to the mathematical intractability of reasonable models and 
computational problems in statistical inference with the models. 
The generalized estimating equation (GEE) approach with a partly 
specified model (some moments and/or marginal distributions but 
no joint distributions are specified) has been developed since the 
mid-1980s. However the GEE approach has several disadvantages, 
including limited types of inferences that can be made, and the 
lack of a clear accompanying means of diagnostic checking and 
assessment of implicit assumptions. 

This book concentrates on models that can be applied to non­
normal multivariate data, with one chapter devoted to multivariate 
discrete models, for use with binary, ordinal categorical or count 
data, another chapter devoted to multivariate extreme value mod­
els, etc. Rather than starting with a complex model that can cover 
many situations, we start by building from the simple cases. The 
simplest case is that of no covariates, and this reduces to the study 
of multivariate distributions (with given univariate margins). Then 
there are several approaches to allow for covariates, including let­
ting parameters in a family of multivariate distributions be func­
tions of the covariates. 

The study of multivariate distributions is not easy because one 
cannot just write down a family of functions and expect it to satisfy 
the necessary conditions for multivariate cumulative distribution 
functions (see the conditions in Section 1.4). We will mainly be 
constructing multivariate distributions through methods such as 
mixtures, latent variables and stochastic representations, to avoid 
the need for tedious and perhaps impossible checks on the necessary 
conditions. Different general methods to obtain families of multi­
variate distributions are given in Chapter 4, together with their 
dependence properties, and some parametric families are given 
in Chapter 5. (Nonparametric multivariate inference requires far 
more data than parametric multivariate inference; the 'curse of 
dimensionality' is a problem with the former.) Until recently, lit­
tle research had been done in the area of multivariate non-normal 
distributions. 

The approach of multivariate models in this book is that of gen­
eralizing univariate models or distributions, and obtaining models 
for which univariate margins belong to a given family. Time series 
models with univariate margins in a given family are a special case, 
in which there is a special dependence structure for the response 
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variables. This is different from defining a class of multivariate 
models or time series models and then asking what are the possible 
univariate margins (e.g., elliptically contoured distributions, which 
are discussed briefly in Section 4.9). The construction of multivari­
ate models becomes an existence problem if certain dependence 
structures are desired. 

Methods for obtaining a multivariate family include the follow­
ing. 

1. From a characterizing property of a parametric univariate fam­
ily, generalize to the multivariate case. Examples are min­
stable multivariate exponential distributions and multivariate 
distributions with univariate margins in a convolution-closed 
infinitely divisible class. 

2. For continuous variables, make use of the probability transfor­
mation, so that the multivariate dependence or structure is in­
dependent of univariate margins. The copula, which summar­
izes the dependence structure, is a multivariate distribution 
with uniform (0,1) margins. It is introduced and some of its 
properties studied in Section 1.6. 

For non-normal random variables, correlation is not the best 
measure of dependence. More generally useful dependence concepts 
are introduced in Chapter 2. These are necessary for analysing the 
type and range of dependence in a parametric family of multivari­
ate models. A parametric family has extra interpretability if some 
of the parameters can be identified as dependence or multivariate 
parameters. More specifically, for some general concept of positive 
and negative dependence, one would like to say that some range 
of the parameters corresponds to positive dependence and some 
to negative dependence, and furthermore, it would be desirable to 
have the amount of dependence increasing as parameters increase. 

Chapter 3 contains results on Frechet classes, including Frechet 
bounds, which sometimes are the most dependent multivariate dis­
tributions given knowledge of univariate margins and possibly some 
higher-dimensional margins. For a given parametric family, to know 
whether it is applicable to given situations, one needs to know the 
range of dependence that is covered. This can be compared relat­
ive to the Frechet bounds for the magnitude of dependence, and 
relative to the full range of { Oij : i < j} over all multivariate 
distributions, where Oij is a bivariate dependence measure for the 
(i,j) bivariate margin. From the latter, one can assess the type of 
dependence in a parametric family of multivariate distributions. 
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For example, special types of dependence pattern are: (i) permu­
tation symmetric or exchangeable, in which all bivariate margins 
are the same (and Dij does not depend on ( i, j) ); (ii) partially ex­
changeable, in which there are only a few distinct bivariate margins 
among the set of all bivariate margins; (iii) decreasing in depen­
dence with lag, suitable for time series or longitudinal data, in 
which the amount of dependence in a bivariate margin decreases 
as li - il increases. 

This book does not contain an encyclopaedic or exhaustive list of 
what have been proposed for families of multivariate distributions. 
The aim is to concentrate on techniques to obtain parametric fam­
ilies of models that (i) cover the types of dependence mentioned 
above, (ii) have parameters that are all interpretable, (iii) apply to 
multivariate discrete data (e.g., binary, ordinal, count) or multi­
variate non-normal continuous data (e.g., extreme value, exponen­
tial). The techniques as well as listings of parametric families are 
given in Chapters 4 to 9. Multivariate survival data are not covered 
other than the frailty models for survival times associated with 
members of clusters. Despite the literature on multivariate sur­
vival functions as models for lifetimes of components of a system, 
it is not clear what this means in practice when components are 
replaced or repaired - perhaps stochastic process models rather 
than multivariate models are more appropriate. 

The hardest part of statistical inference for multivariate non­
normal responses has been the multivariate modelling and the rel­
evant dependence concepts. Hence most of this book (Chapters 1 
to 9) is devoted to these topics, starting with simpler cases which 
can serve as building blocks for more complex models. Much of 
classical inference (e.g., sufficiency, ancillarity, unbiasedness), apart 
from asymptotic likelihood theory, does not apply to estimation in 
multivariate models. However, there are some new ideas associ­
ated with estimation and data analysis in multivariate models, in 
particular, parameter estimates from likelihoods of marginal distri­
butions of a multivariate model. Chapters 10 and 11 are devoted to 
inference, computing and data analysis (and comparisons of models 
for some real data sets). 

1.2 Style and format 

Each chapter is divided into sections, some of which have subsec­
tions. Most chapters have sections entitled 'Bibliographic notes', 
'Exercises' and 'Unsolved problems'. The exercises are roughly or-
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dered by level of difficulty, starting with more basic exercises. Some 
exercises contain material that supplements results in the text. 
Generally, background and references for each chapter are given in 
the sections on 'Bibliographic notes', with the complete citations 
in the References section at the end of the book. The mention of 
references and authors in the text is rare. There are results in this 
book that are definitely new, and other results that may be new; 
in the latter case, I do not know of any published references. Some 
results that are conjectured to be true or seem to be true based on 
some numerical experience are listed in the sections on 'Unsolved 
problems'. 

It will be observed that equations and theorems are numbered by 
chapter and not by section. Most theorems are combined together 
into subsections on dependence properties. Key words of definitions 
are given in bold face. 

To make the material in this book easier to read, ideas are pre­
sented in simpler cases and then extended to more general cases. 
This book is mostly self-contained, with some background mater­
ial in the Appendix, and has minimal overlap with other books on 
bivariate and multivariate distributions (because of the large void 
in knowledge about multivariate non-normal distributions). 

Short proofs of results are included if they are illuminating, and 
there are examples throughout the book to illustrate the import­
ant concepts. On the other hand, some things that may become 
repetitive or straightforward to check are left as exercises. The 
style of the book is partly influenced by the plan to keep it within 
a certain length. Sometimes, for example, in order to save space, 
only a stochastic representation and not a probability distribution 
1s g1ven. 

There is no real linear ordering of the material in this book, so 
that results that are more foundational are given earlier. Different 
sections of the book are cross-referenced in order that the reader 
can more easily move around non-linearly. Sections that provide a 
basic introduction to the topic of multivariate models and depend­
ence concepts are indicated with a 0 symbol and sections that are 
very advanced are indicated with a * symbol. 

This book can be read or used in several ways. The reader who is 
more interested in the theory and foundational issues and concepts 
can start from the beginning. The reader who is more interested 
in applications and how the theory applies can start with the ex­
amples of data analyses in Chapter 11, and then read the sections 
with the relevant theory for the multivariate models and inference. 
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This book can also be used as a reference or as a starting point for 
further research (there are pointers throughout on further research 
that could be done). 

1.3 Notation, abbreviations and conventions 

This section consists of notation, abbreviations and conventions 
that are used throughout the book. 

First, multivariate as an adjective refers to results that are 
valid in two or more dimensions. Bivariate as an adjective refers 
to results that are valid in two dimensions, but may not extend 
to higher dimensions, and similarly for trivariate. This usage is 
not always consistent in the statistical literature; there are papers 
which use the word multivariate but contain only bivariate results 
that are not extendible. 

Second, unless stated otherwise, a multivariate 'x' distribution 
means that all univariate margins are in the class 'x', e.g., multi­
variate Poisson or multivariate exponential. This is common usage 
in the statistical literature, but the property does not hold for all 
existing multivariate distributions that are named. 

Other items are enumerated below. 

1. Simplifying assumptions, such as existence of derivatives, are 
used at times for convenience of presentation of ideas and to 
avoid too much technical detail. 

2. All functions involved in integrals (or expectations) are as­
sumed measurable with respect to the appropriate measure. 

3. The words 'non-increasing' and 'non-decreasing' are not used; 
instead 'increasing', 'strictly increasing', 'decreasing' and 
'strictly decreasing' are used. 

4. cdf is the abbreviation for cumulative distribution func­
tion, pdf is the abbreviation for probability density func­
tion, and pmf is the abbreviation for probability mass 
function. 

5. rv is the abbreviation for random variable. 

6. iid is the abbreviation for independent and identically 
distributed. 

7. BVN and MVN are the abbreviations for bivariate normal 
and multivariate normal; BVSN and MVSN are used when 
the univariate margins are standard normal, i.e., zero mean 
vector and unit variances. 
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8. GEV is the abbreviation for the generalized extreme value 
(univariate) distribution. 

9. BEV and MEV are the abbreviations for bivariate extreme 
value and multivariate extreme value, respectively. 

10. MSMVE is the abbreviation for min-stable multivariate 
exponential; it is mainly used in Chapter 6. 

11. The abbreviations AR(p) for autoregressive of order p, 
MA( k) for moving average of order k, and ARMA for auto­
regressive moving average are used, mainly in Chapter 8. 

12. LT is the abbreviation for Laplace transform. Some results 
on Laplace transforms are given in the Appendix. All LTs 
in this book are assumed to have a limiting value of 0 at oo 
unless otherwise stated. 

13. ML and MLE are the abbreviations for maximum likeli­
hood and maximum likelihood estimate or estimation. 

14. IFM is the abbreviation for inference functions for mar­
gins. This is a method for the estimation of parameters in 
multivariate models that is based on the log-likelihoods of 
marginal distributions of the model. The theory is given in 
Chapter 10 and the method is used in Chapter 11. 

15. SE is the abbreviation for standard error. 

16. AIC is the abbreviation for Akaike information criterion. 

17. ~dis the symbol for Euclidean space of dimension d, and 
the real line is denoted by ~-

18. "" is the symbol for distributed as, 4 is the symbol for 
equality in distribution or stochastic equality, -+d is 
the symbol for convergence in distribution or law, s!n 
is the symbol for equality in sign, ~f is the symbol for 
defined as, j is the symbol for increasing, ! is the symbol 
for decreasing, j st ( !st) is the symbol for stochastically 
increasing (decreasing). 

19. --<, with possibly a subscript or superscript, is used to denote 
a partial ordering or pre-ordering. 

20. -<&t denotes the stochastic ordering for cdfs. For univariate 
cdfs F, F', F -<&t F' if F(x) ~ F'(x) for all x E ~;for mul­
tivariate cdfs, F -<"t F' if I g dF :S I g dF' for all increasing 
functions g for which the expectations exist. 

21. 0 is used for the empty set. 
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22. The cardinality of a finite set Sis denoted by lSI. 

23. The complement of a set or event A is denoted by A c unless 
indicated otherwise. 

24. The transpose of a vector or matrix is indicated with a su­
perscript T. Vectors are usually row vectors. Whether a vector 
is a row or column vector will be clear from the context. 

25. m is used for the dimension of the multivariate response 
vector or multivariate distribution. 

26. S = Sm is used for the set of non-empty subsets of { 1, ... , m}. 

27. Italic Latin upper-case letters, often X, Y, Z, usually with 
subscripts, are used for random variables; bold Latin upper­
case letters, often X, Y, Z, are used for random vectors. 

28. Bold Latin lower-case letters are used for vectors, and the 
components are written in italic form with subscripts, e.g., 
a=(al, ... ,am)· 

29. lm is used for an m-vector of 1s. 

30. Y = (Y1, ... , Ym) or y = (y1, ... , Ym) is used to denote are­
sponse vector. A vector of explanatory variables or covariates 
is usually denoted by x or z. 

31. Script Latin upper-case letters are used for classes of sets or 
functions, e.g., .C, :F. 

32. Greek lower-case letters, often with subscripts, are used for 
parameters of families of distributions, e.g., e, 6. Usually T 

is used for Kendall's tau, p for Spearman's rho or Pear­
son's correlation, A for tail dependence. Bold Greek let­
ters are used for parameter vectors, e.g., 8, JJ. 

33. ¢, t/J, often with subscripts, are used mainly for Laplace trans­
forms or strictly decreasing differentiable functions. Classes 
of such functions that are used are denoted by: 

.Cm={t/J:[O,oo)--+[0,1]1 ¢(0)=1,¢(oo)=O, 

(-1)iq;U)2:0, j=1, ... ,m}, (1.1) 

m = 1, 2, ... , oo, with .Coo being the class of Laplace trans­
forms (with 0 value at oo). Other classes are: 

.C~ = {w: [O,oo)--+ [O,oo) I w(O) = 0, w(oo) = oo, 

(-1)i-lw(j) 2:0, j = 1, ... ,n}, (1.2) 

n = 1, 2, ... , oo. The functions in .C~ are usually compositions 
of the form .,p-l o ¢with t/J, ¢ E .C1. 



10 INTRODUCTION 

34. The following notation is used for certain special distribu­
tions and random variables: U(a, b) for uniform on [a, b]; 
N(J.L, u2 ) for univariate normal with mean J.L and variance 
u2; Nm(JJ, :E) form-variate normal with mean vector JJ and 
covariance matrix :E; Gamma( a, u) for gamma with shape 
parameter a and scale parameter u (and mean au); NB ( (), p) 
for negative binomial with probability parameter p and 
mean (J(p- 1 - 1). 

35. F, G, H are the common symbols for a (multivariate) cdf; 
sometimes M is used as the cdf of a mixing variable. 

36. For an m-variate cdf F, the set of its marginal distribu­
tions is denoted by {Fs : S E Sm}i for a specific S, the 
subscript is written without braces, e.g., F1, F12, F123, etc. 

37. If the density of a cdf F and its margins exist, they are 
denoted by f and /s, S E S. 

38. Conditional cdfs and densities derived from a multivari­
ate cdf are written in the form Fs1 1s2 , fsds 2 i the latter is 
equivalent to /s1 us2 / fs 2 • 

39. The survival function corresponding to a cdf F is denoted 
by F; its margins are {Fs}. If (X1, ... , Xm) rv F, then 

F(x) = Pr(Xi >Xi, i = 1, ... ,m). 

For m = 1, F(x) = 1 - F(x). For m = 2, F(x1 , x2) = 
1- F1(x1)- F2(x2) + F(x1,x2); form= 3, F(x1,x2,x3) = 
1- F1(x1)- F2(x2)- F3(x3) + F12(x1, x2) + F13(x1, x3) + 
F23(x2, x3)- F(x1, x2, x3). For general m, 

F(x) = 1 + L(-1)18 1Fs(xj,j E S). (1.3) 
ses 

A related formula is: 

F(x) = 1 + L(-1)18 1F8 (x1,j E S). (1.4) 
SES 

40. For a univariate cdf F, F-1 denotes the quantile or inverse 
cdf. It is defined as usual to be left-continuous, i.e., F- 1(v) = 
inf { x : F ( x) ;:::: v}, 0 < v < 1. 

41. The symbol :F is used for Frechet classes given a set of 
margins, e.g., :F(F1, ... , Fm) denotes the class of multivariate 
distributions with the given univariate margins F1, ... , Fm 
and :F(F12 , F23 ) denotes the class of trivariate distributions 
with given (1,2) and (2,3) bivariate margins F12, F23· 
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1.4 Conditions for multivariate distribution functions 

This section consists of the conditions that a function must satisfy 
in order to be a multivariate cdf. The simpler bivariate case is 
presented first. 

To prove that a function F is a multivariate cdf, it is often neces­
sary to construct rvs Y1, ... , Ym through latent variables, mixtures 
and limits, etc., and then show that Y "' F. In general, it is dif­
ficult or impossible to show that a function F is a proper cdf by 
making use of the conditions given in this section; of course, lower­
dimensional cases are easier to handle analytically. 

1..4.1 Properties of a bivariate cdf F 

Necessary and sufficient conditions for a right-continuous function 
F on ~2 to be a bivariate cdf are: 

1. limx;-oo F(x1, x2) = 0, j = 1, 2; 

2. limx;-oo'v'j F(x1, x2) = 1; 

3. (rectangleinequality)forall(al,a2),(b1,b2)witha1 < b1,a2 < 
b2, 

Note the following observations: 

(i) IfF has second-order derivatives, then condition 3 is equi­
valent to fJ2Fjox 18x2 ~ 0. 

(ii) Conditions 1 and 2 imply that 0 ~ F ~ 1. 

(iii) Let a2 -+ -oo in (1.5); then F(b1, b2)- F(a1, b2) ~ 0 and 
F is increasing in the first variable. Similarly, from letting 
a1 -+ -oo, F is increasing in the second variable. 

(iv) The univariate margins F1,F2 of F(x1,x2) are obtained by 
letting x2 -+ oo and x1 -+ oo, respectively. 

1.4.2 Properties of a multivariate cdf F 

Necessary and sufficient conditions for a right-continuous function 
F on ~m to be a multivariate cdf are: 

1. limx;-oo F(x1, ... , Xm) = 0, j = 1, ... , m; 

2. limx;-oo'v'j F(x1, ... , Xm) = 1; 
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3. (rectangle inequality) for all (a1, ... ,am), (b1 , ... ,bm) with 
a; < b;, i = 1, ... , m, 

2 2 

L · · · L ( -1)i,+··+im F(xliu · · ·, Xmim) ~ 0, (1.6) 
i,:l im=l 

where Xjl = ai, Xj2 = bi. 
Note the following: 

(i) IfF has mth-order derivatives, then condition 3 is equivalent 
to omFjox1· · ·OXm ~ 0. 

(ii) Let a2, ... , am ---+ -oo in (1.6); then 

F(b1, b2, ... , bm)- F(a1, b2, ... , bm) ~ 0 

and F is increasing in the first variable. Similarly, by sym­
metry, F is increasing in the remaining variables. 

(iii) Let S E Sm. The margin Fs of F(x) is obtained by letting 
x; ---+ oo for i fl. S. 

1.5 Types of dependence 

As mentioned earlier, a multivariate model should be analysed for 
the types of dependence structure that it covers as well as the range 
of dependence. These dependence properties are important in order 
for one to know whether a particular model might be suitable for 
a given application or data set. Types of dependence include: (i) 
singularities on some curves or surfaces; (ii) positive and negative 
dependence; (iii) exchangeable dependence or flexible dependence; 
(iv) dependence decreasing with lag if there is a time index. 

Sometimes the type of dependence for a multivariate model and 
whether the model can be used in a specific instance can be under­
stood from stochastic representations and derivations of the model, 
so analysis of a model should include the search for one or more 
stochastic representations. 

1.6 Copulas 

For continuous multivariate distributions, the univariate marginals 
and the multivariate or dependence structure can be separated, and 
the multivariate structure can be represented by a copula. 

The copula is a multivariate distribution with all univariate 
margins being U(O, 1). Hence if C is a copula, then it is the dis-
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tribution of a multivariate uniform random vector. For an m­
variate distribution F E :F(F1, ... , Fm), with jth univariate mar­
gin Fj, the copula associated with F is a distribution function 
C: [0, 1)m-+ [0, 1) that satisfies 

F(x) = C(F1(x1), ... , Fm(xm)), X E ?Rm. (1.7) 

IfF is a continuous m-variate distribution function with univariate 
margins F1 , ... , F m, and quantile functions F1- 1, ... , F ;;:. 1, then 

C(u) = F(F1- 1(u1), ... , F,;; 1(um)) 

is the unique choice in ( 1. 7). This result essentially follows from two 
properties: (i) if H is a univariate cdf with inverse cdf n- 1 and 
U,...., U(O, 1), then n-1(U),...., H; (ii) if His a continuous univariate 
cdf and X,...., H, then H(X),...., U(O, 1). That is, if X......, F and F is 
continuous, then (F1(Xl), ... , Fm(Xm)),...., C, and if U,...., C, then 
(F1- 1(U1), ... , F;;,_ 1(Um)),...., F. 

The copula can be considered 'independent' of the univariate 
margins, since if C is a copula, then 

is a distribution (survival) function if G1, ... , Gm are all univariate 
distribution (survival) functions. lfC is parametrized by a (vector) 
parameter 8, then we call 8 a multivariate parameter. 

Example 1.1 For 6 > 0, the distribution 

F(x, y) = exp{ -[e-x+ e-Y- (eax + eay)- 1 /<~]}, -oo < x, y < oo, 

is obtained as a limiting distribution in Section 5.1. By letting 
y -+ oo and x -+ oo in turn, its univariate margins are F1 (x) = 
exp{-e-x} and F2(y) = exp{-e-Y}. By substituting u = F1(x) 
and v = F2(y), or x = -log(-logu) andy= -log(-logv), one 
obtains the copula 

C(u,v) = uvexp{[(-logu)-a + (-logvr<~t 1 1<~}, 

which is in the family B7 in Section 5.1. A bivariate survival func­
tion with exponential margins is G(s, t) = C( e-•, e-t) = exp{ -s­
t +(s-a+ r<~)- 1 1<~}. 0 

IfF is an m-variate distribution of discrete rvs, then the copula 
associated with F is not unique. The above argument does not 
work because if H is a non-continuous or discrete univariate cdf 
and X ,...., H, then H(X) does not have a U(O, 1) distribution. 
An example of a copula that satisfies ( 1. 7) in the discrete case is 
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given below. The main idea is that the copula is defined over a 
discrete grid of points and assumed to be conditionally uniform in 
between; it can be shown that this leads to a multivariate density 
with U(O, 1) margins. 

For the purely discrete case, let the points of support for the 
jth margin be Xj,i;, where ij is in the ordered index set Dj, j = 
1, ... , m. Suppose that each Dj is a consecutive sequence of inte­
gers. Let Fj ( ij) and /j ( ij) be the univariate cdf and pmf for the 
jth margin. Let P(it, ... , im) and p(it, ... , im) be the cdf and pmf 
for the joint m-variate distribution. A copula C associated with P 
satisfies 

P(it, ... , im) = C(Ft(it), ... , Fm(im)), i EDt X ···X Dm. 

To define the remaining values of C, suppose that Cis uniform in 
the rectangle Xt:$;j:$;m[Fj(ij- 1), Fj(ij )], i.e., the multivariate pdf 
of C in this rectangle is p(it, ... , im)/ f1}: 1 /j(ii ). For Ft (it -1) < 
u 1 ::; F1(it), integrating over the margins j = 2, ... , m leads to 

Hence the first univariate margin is U(O, 1); by symmetry, the other 
univariate margins can also be deduced to be U(O, 1). 

The non-uniqueness comes from the fact that the copula C sat­
isfying (1.7) need not be uniform over rectangles. The details are 
left as an exercise. 

We now move on to other properties of copulas. Since a copula 
Cis the distribution of a random vector, U = (Ut, ... , Um), where 
each Uj "' U(O, 1), C is a continuous function. However C need 
not be absolutely continuous (there may not be density with re­
spect to Lebesgue measure on !Rm), in which case it has a singular 
component. Often, in cases where C is not absolutely continuous, 
the singular component can be identified through a functional re­
lationship. For example, if Cu(u) = min{ut, ... , um}, defined as 
the Frechet upper bound copula in Section 3.1, then Cu is the 
distribution of U such that U1 = ... = Um; this is the functional 
relationship causing the singularity. (If necessary, please consult 
the Appendix for background on the concepts referred to here.) 

A copula is continuous and increasing, so right derivatives of 
first order, i.e., 8C(u)j8uj, j = 1, ... , m, exist. Hence if U "'C, 
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conditional distributions of the form 

C1, ... ,j-1,j+1, ... ,mlj(U1, ... , Uj-1, Uj+1> ... , UmlUj) 

exist, and C has a singular component if one or more of these 
conditional distributions has a jump discontinuity. A similar result 
holds if C has mixed derivatives of kth order everywhere, 2 ::; k < 
m. A bivariate result, for identifying the total mass of the singular 
component, is the following. 

Theorem 1.1 Let F be a continuous bivariate distribution with 
univariate margins F1 , F2 and conditional distribution F211 of the 

second variable given the first. Suppose that F211 ( ·lx) has jump dis­
continuities totalling a mass of a(x), and a(·) is continuous and 
positive on an interval. Then F has a singular component and the 

mass of the singular component is I a(x) dF1(x). A similar result 
holds for the conditional distribution F112 of the first variable given 
the second. 

Proof Let h11(-lx) be the derivative of F211Cix) where it exists. 
Because of the jump discontinuities, I /21 1 (yJx) dy = 1- a(x ). The 
conclusion follows. 0 

Example 1.2 Consider C(u1,u2) = [min{u1,u2}]9[u1u2]1- 9, 
where 0 < B :S 1 (this is the family B12 in Section 5.1). The 
conditional distribution is 

C (u iu ) _ { (1- B)u2u1 9, 0 :S u2 < u 1 , 
211 2 1 - 1-9 < < 1 u2 , u1 _ u2 _ . 

Therefore C211(·lx) has a jump discontinuity at x, a(x) = x1- 8 -

(1 - B)x1- 9 = Bx 1- 9 and the mass of the singular component is 
B/(2- B). If (U1, U2) "'C, the singular component corresponds to 
the relationship U1 = U2 occurring with probability B/(2- B). o 

Next, some results on associated copulas are given. Note that 
for a given m-variate copula, there are 2m - 1 associated copulas. 

Form= 2 and (U1, U2) "'C, the associated copulas come from 
the distributions of 

(1- U1, 1- U2), (U1, 1- U2) and (1- U1, U2). 

Hence they are 

and 

C'(u1, u2) = u1 + u2- 1 + C(1- u1, 1- u2), 

C"(u1, u2) = u1- C(u1, 1- u2) 
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So if a bivariate copula C is applied to survival functions F 1 , F 2 , 

the copula associated with C( F 1, F 2) is C'. The multivariate exten­
sion is obvious. If C is permutation-symmetric in the m arguments, 
then there are m distinct associated copulas. 

Copulas have many uses. In this book, they are used for con­
struction of models for various types of multivariate data; however, 
they can also be used for simple examples and counterexamples of 
dependence properties of rvs. Highlights of applications of copulas 
are the following. 

1. Parametric families of copulas with a logistic univariate margin 
are used to obtain multivariate logit models for multivariate 
binary or ordinal data with covariates (Sections 7.1.7, 7.3, 11.1, 
11.2). 

2. The extreme value limit of copulas is used to construct paramet­
ric families of extreme value copulas (Sections 6.2, 6.3); extreme 
value copulas with generalized extreme value univariate margins 
are models for multivariate maxima (Section 11.3). 

3. Copulas are used to construct Markov chains and k-dependent 
stationary time series with an arbitrary univariate margin (Sec­
tions 8.1, 8.2, 11.5, 11.6). 

1. 7 View of statistical modelling 

Statistical modelling usually means that one comes up with a 
simple (or mathematically tractable) model without knowledge of 
the physical aspects of the situation. The statistical model need 
not be 'real' and is not an end but a means of providing statist­
ical inferences, such as percentiles, exceedance probabilities, pre­
dictions and forecasts, etc. The availability of modern computers 
has been an important factor in the types of multivariate models 
that can now be used. My view of multivariate modelling, based 
on experience with multivariate data, is that models should try to 
capture important characteristics, such as the appropriate density 
shapes for the univariate margins and the appropriate dependence 
structure, and otherwise be as simple as possible. The parameters 
of the model should be in a form most suitable for easy inter­
pretation (e.g., a parameter is interpreted as either a dependence 
parameter or a univariate parameter but not some mixture); this 
form of parametrization also helps a lot in the estimation of the 
parameters, which must typically be done numerically. This and 
nt.hPr rlP~ir:~hiP nrnnPrt.iP~ fnr mnlt.iv:~.ri:~tP mnrlPI~ :~rP uivPn in SPr-
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tion 4.1. The properties of a multivariate model are a factor in 
whether the model is useful in a given situation. For a given data 
set, I usually like to carry out sensitivity analyses by comparing 
inferences from several models. If there is much sensitivity, then 
one must think a lot more about the assumptions in the models. 
The examples in Chapter 11 all involve comparisons of models for 
each data set. 

1.8 ·Bibliographic notes 

An early reference for copulas is Sklar (1959). The copula is called 
a uniform representation in Kimeldorf and Sampson (1975) and a 
dependence function in Galambos (1987) and Deheuvels (1978). A 
recent historical account of copulas is given in Schweizer (1991). 
Scarsini (1989) studies copulas for more general probability meas­
ures. 

Early books on bivariate and multivariate distributions are Mar­
dia (1970) and Johnson and Kotz (1972), and these do not mention 
copulas. More recent books on bivariate distributions are Hutchin­
son and Lai (1990) and Kocherlakota and Kocherlakota (1992). 

The ideas in Shaked and Shanthikumar (1993) may be useful 
in the construction of models for multivariate survival in reliabil­
ity theory. A recent book that includes the generalized estimating 
equations approach is Diggle, Liang and Zeger (1994). 

1. 9 Exercises 

1.1 For the following bivariate cdfs or survival functions, find 
the univariate margins and copula: 

(a) F(x,y;6) = 1-(c6x +e-26y -e-6(x+2y))l/6, x,y 2:: O, 
6 2:: 1. 

(b) F(x, y; 6) = exp{ -(e-6"' + e-6Y) 116}, -oo < x, y < oo, 
t5 2:: 1. 

(c) G(x,y;B,TJ) = (1 +x'1 + y'~) 1 1 8 , x,y 2::0, (} > 0, 'fJ > 0. 
(d) F(x, y) = (1 +e-x+ e-Yt 1, -oo < x, y < oo. 

1.2 Show that the family B10 in Section 5.1 consists of proper 
bivariate distributions if and only if lbl :::; 1. 

1.3 Write out the associated copulas for the family B10 in Sec­
tion 5.1. 
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1.4 Obtain the copula for the multivariate normal distribution. 
What are its parameters? 

1.5 Let 51,52 be two non-empty subsets of {1, ... , m}. 51 and 
52 can have empty or non-empty intersection. If Fl (Xi : i E 
51) and F2(Yi : j E 52) are cdfs, prove that the product 

F(zk: k E 51 U 52)= F1(zi : i E 5I)F2(Zj : j E 52) 

is a cdf. [Hint: in the case of a non-empty intersection, it 
may be useful to construct a stochastic representation.] 

1.6 Suppose {Fn} is a sequence of m-variate cdfs such that 
Fn ->d F. What conditions must be checked to show that F 
is a proper cdf? 

1.7 Find the mass of the singular component for the trivariate 
copula 

C(u1>u2,u3;6) = [min{ul,u2,u3W[u1u2u3F-o, 0 < 6 :S 1. 

1.8 Given a bivariate copula C, outline a general approach to 
simulating (U, V) from C? Extend this approach to a mul­
tivariate copula C. 

1.9 Find two copulas associated with the bivariate binary pair 
(Y1, Y2) with probabilities Pr(Y1 = Y2 = 0) = 0.25, Pr(Y1 = 
0, Y2 = 1) = Pr(Y1 = 1, Y2 = 0) = 0.15, Pr(Y1 = Y2 = 1) = 
0.45. For example, can a bivariate normal copula be used? 

1.10 Prove that the copula is not unique in the case of a multi­
variate distribution of discrete rvs. 

1.11 What is the most dependence that one can obtain for two 
dependent Bernoulli rvs, with respective parameters Pl, P2? 
What are the maximum and minimum possible correlations 
for two such rvs? 

1.12 Suppose two Bernoulli rvs Y1, Y2 depend on a covariate vec­
tor x. Consider a model in which Y1, Y2 have constant cor­
relation p over x. If (p1(x),p2(x)) = (Pr(Y1 = 1lx), Pr(Y2 = 
1lx)) takes on all values in (0, 1)2 as x varies, what are 
possible values for p? What if (p1(x),p2(x)) lies in a set 
{(1r1, 1r2) : 7rf :S 11"2 :S 1- (1- 1r1)a} as x varies, where 
a E (1,oo)? 



CHAPTER 2 

Basic concepts of ·dependence 

For non-normal random variables, Pearson's correlation and con­
cepts based on linearity are not necessarily the best concepts to 
work with. More generally useful concepts of positive and neg­
ative dependence and measures of monotone dependence are given 
in Section 2.1. Dependence (partial) orderings which compare the 
amount of (monotone) dependence in two different random vectors 
of the same length are studied in Section 2.2. Included are prop­
erties that should be satisfied in order for a partial ordering to be 
considered a dependence ordering. 

The dependence concepts that are presented in this chapter are 
those that are needed and used in analysis of multivariate models 
in subsequent chapters. There is no attempt to be exhaustive in 
mentioning all dependence concepts that have ever been proposed 
in the literature. Highlights of the important use of dependence 
concepts are the following. 
• The concepts of positive quadrant dependence (in Section 2.1.1) 

and the concordance ordering (in Section 2.2.1) are basic to 
the parametric families of copulas in Chapter 5 in determining 
whether a multivariate parameter is a dependence parameter. 
The concordance ordering is also used in Section 7.1.10 to ob­
tain the most negatively dependent multivariate exchangeable 
Bernoulli distribution. 

• The concept of stochastic increasing positive dependence (in 
Section 2.1.2) is a key concept in the analysis of the decrease in 
dependence with lag for stationary Markov chains (Section 8.5). 

• The concepts of TP2 dependence (in Section 2.1.5) and max­
infinite divisibility (in Section 2.1.8) are necessary for the 
method in Section 4.3 of constructing families of closed-form 
copulas with a wide range of dependence. 

• The concept of tail dependence (in Section 2.1.10) is crucial 
to the construction and analysis of multivariate extreme value 
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distributions and copulas. 

• Kendall's tau and Spearman's rho (in Section 2.1.9) are used as 
summary measures of dependence for bivariate copulas in Sec­
tion 5.1; Kendall's tau is also used for compatibility conditions 
in Sections 3.4 and 3.6. 

• The more stochastic increasing ordering (in Section 2.2.4) is use­
ful in the analysis of the Frechet classes in Sections 3.3 and 3.4, 
and in the analysis of the range of dependence of the construc­
tion method in Section 4.5. 

2.1 Dependence properties and measures 

Bivariate dependence concepts, properties and measures are easier 
to define and have appeared more often in the probability and 
statistics literature than multivariate counterparts. This section 
consists of a number of dependence concepts; for each, the bivariate 
version is given first, followed by the intuition behind it, and then a 
multivariate extension is given if there is one. Examples illustrating 
the concepts are combined together into a separate subsection. 

2.1.1 Positive quadrant and orthant dependence 0 

Let X= (X1 ,X2 ) be a bivariate random vector with cdf F. X or 
F is positive quadrant dependent (PQD) if 

Pr(X1 > a1, X2 > a2) 2: Pr(X1 >at) Pr(X2 > a2) Va1, a2 E ~. 
(2.1) 

Condition (2.1) is equivalent to 

Pr(X1 ~ a1, X2 ~ a2) 2: Pr(X1 ~at) Pr(X2 ~ a2) Va1, a2 E ~. 
(2.2) 

The reason why (2.1) or (2.2) is a positive dependence concept is 
that X 1 and X 2 are more likely to be large together or to be small 
together compared with Xi and X~, where X 1 4 Xi, X 2 4 X~, and 
Xf and X~ are independent of each other. Reasoning similarly, X 
or F is negative quadrant dependent (NQD) if the inequalities 
in (2.1) and (2.2) are reversed. 

For the multivariate extension, let X be a random m-vector ( m 2: 
2) with cdf F. X or F is positive upper orthant dependent 
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(PUOD) if 
m 

Pr(X; >a;, i = 1, ... ,m);::: ITPr(X; > ai) 'ria E ~m, (2.3) 
i=l 

and X or F is positive lower orthant dependent (PLOD) if 

m 

Pr(Xi ~a;, i = 1, ... , m);::: IT Pr(Xi ~ ai) 'ria E ~m. (2.4) 
i=l 

If both (2.3) and (2.4) hold, then X or F is positive orthant 
dependent (POD). Note that for the multivariate extension, (2.3) 
and (2.4) are not equivalent. 

Intuitively, (2.3) means that X 1, ... , Xm are more likely simul­
taneously to have large values, compared with a vector of independ­
ent rvs with the same corresponding univariate margins. If the 
inequalities in (2.3) and (2.4) are reversed, then the concepts of 
negative lower orthant dependence (NLOD), negative up­
per orthant dependence (NUOD) and negative orthant de­
pendence (NOD) result. 

2.1. 2 Stochastic increasing positive dependence 

Let X = (X 1, X 2) be a bivariate random vector with cdf F E 
F(F1, F2). X2 is stochastically increasing (SI) in X 1 or the 
conditional distribution F211 is stochastically increasing if 

Pr(X2 > X2 I xl =X!)= 1- F2ll(x2lx!) i X! 'rlx2. (2.5) 

By reversing the roles of the indices of 1 and 2, one has X 1 SI in X 2 

or F112 Sl. The reason why (2.5) is a positive dependence condition 
is that x2 is more likely to take on larger values as xl increases. 
By reversing the direction of monotonicity in (2.5) from j to L the 
stochastically decreasing (SD) condition results. 

There are two dependence concepts that could be considered as 
multivariate extensions of SI; they are positive dependence through 
the stochastic ordering and conditional increasing in sequence. 

Definition. The random vector (X 1, ... , Xm) is positive de­
pendent through the stochastic ordering (PDS) if {Xi : i f. 
j} conditional on Xj = x is increasing stochastically as x increases, 
for all j = 1, ... , m. 

Definition. The random vector (X1 , ... , Xm) is conditional 
increasing in sequence (CIS) if Xi is stochastically increasing 
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in xl,···,Xi-1 fori= 2, ... ,m, i.e., Pr(X; >X; I Xj = Xj,j = 
1, ... , i- 1) is increasing in x1, ... , x;_ 1 for all x;. 

Note that for m = 2, PDS is the same as X2 SI in X1 and X1 
SI in X 2, and CIS is the same as SI. 

2.1.3 Right-tail increasing and left-tail decreasing 

Let X = (X1, X2) be a bivariate random vector with cdf F E 
F(F1, F2). X2 is right-tail increasing (RTI) in X1 if 

Pr(X2 > X2 I x1 > xl) = F(x1, x2)/ F1(x!) i X1 Vx2. (2.6) 

Similarly, X2 is left-tail decreasing (LTD) in X1 if 

Pr(X2 :S X2 I xl :S xl) = F(x1, X2)/ F1(xl) ! X1 Vx2. (2.7) 

The reason why (2.6) and (2.7) are positive dependence conditions 
is that, for (2.6), x2 is more likely to take on larger values as x1 
increases, and, for (2.7), X2 is more likely to take on smaller values 
as X 1 decreases. Reversing the directions of the monotonicities lead 
to negative dependence conditions. 

A multivariate extension of RTI for an m-vector (X1, ... , Xm) 
is: X;, i E Ac, is RTI in Xj,j E A, if 

Pr(X;>x;,iEAciXi>xj,jEA) jxk,kEA, 

where A is a non-empty subset of {1, ... , m }. Similarly, there is a 
multivariate extension of LTD. 

2.1.4 Associated random variables 

Let X be a random m-vector. X is (positively) associated if the 
inequality 

E [g1 (X)g2(X)) ~ E [91 (X))E [g2(X)) (2.8) 
holds for all real-valued functions 91, 92 which are increasing (in 
each component) and are such that the expectations in (2.8) exist. 
Intuitively, this is a positive dependence condition for X because it 
means that two increasing functions of X have positive covariance 
whenever the covariance exists. 

It may appear impossible to check this condition of association 
directly given a cdf F for X. Where association of a random vector 
can be established, it is usually done by making use of a stochastic 
representation for X. One important consequence ofthe association 
condition is that it implies the POD condition; see Section 2.1.7 
on relationships between concepts of positive dependence. 
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For a random variable (with m = 1), inequality (2.8) holds when­
ever the expectations exist. 

Lemma 2.1 For a rv X, E [g1(X)g2(X)] ~ E [g1(X)]E [g2(X)] for 
all increasing real-valued functions 91, 92 such that the expectations 
exist. 

Proof For binary increasing functions gj(x) = I(ai,oo)(x), the left­
hand side of (2.8) becomes Pr(X > max{ a1, a2}) and the right­
hand side becomes Pr(X > a!) Pr(X > a2) so that inequality 
(2.8) holds and is equivalent to Cov [g1(X), g2(X)] ~ 0. For general 
increasing functions g1 , 92 such that the covariance exist, Hoeff­
ding's identity (see Exercise 2.15) leads to 

Cov [g1(X), 92(X)] (2.9) 1:1: Cov [l(s1,oo)(91(X)), l(s 2 ,oo)(92(X))] ds2ds1 

1:1: Cov [I(g;-1(•1),oo)(X), J(g;l(s,),oo)(X)] ds2ds1, 

and the integrand is always non-negative from the binary case. D 
There exists a definition for negative association but it will not 

be given here as it is not needed in subsequent chapters. 

2.1. 5 Total positivity of order 2 

A non-negative function bon A2 , where A C ~. is totally positive 
of order 2 (TP2) iffor all x1 < Yl, x2 < Y2, with Xi,Yj E A, 

(2.10) 

The 'order 2' part of the definition comes from writing the differ­
ence b(x1,x2)b(y1,Y2)- b(x1,Y2)b(y1,x2) as the determinant of a 
square matrix of order 2. Total positivity of higher orders involves 
the non-negativity of determinants of larger square matrices. If the 
inequality in (2.10) is reversed then b is reverse rule of order 2 
(RR2). 

For a bivariate cdf F with density /, three notions of positive 
dependence are: (i) f is TP2; (ii) F is TP2; (iii) F is TP2. The 
reasoning behind (i) as a positive dependence condition is that for 
x1 < Yl, X2 < Y2, f(x1,x2)f(Y1,Y2) ~ f(x1,Y2)f(y1,x2) means 
that it is more likely to have two pairs with components matching 
high-high and low-low than two pairs with components matching 
high-low and low-high. Similarly, f RR2 is a negative dependence 
condition. 
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It is shown later in Section 2.1.7 that f TP2 implies both F 
and F TP2, and either F TP2 or F TP2 implies that F is PQD. 
Hence both (ii) and (iii) are positive dependence conditions. A 
direct explanation for (ii) as a positive dependence condition is as 
follows. The condition ofF TP2 is given by: 

F(x1, x2)F(y1, Y2)- F(x1, Y2)F(y1, x2) ~ 0, Vx1 < Y1, x2 < Y2· 

This is equivalent to: 

F(x1, x2)[F(y1, Y2)- F(y1, x2)- F(x1, Y2) + F(x1, x2)] 
-[F(x1, Y2)- F(x1, x2)][F(y1, x2)- F(x1, x2)] ~ 0, (2.11) 

v Xl < Yl' X2 < Y2. 

If (X1,X2)......, F, then the inequality in (2.11) is the same as 

Pr(Xl ~ Xl,x2 ~ X2)Pr(xl < xl ~ Yl,X2 < x2 ~ Y2) 

-Pr(Xl ~ Xl,X2 < x2 ~ Y2)Pr(xl < xl ~ Yl,x2 ~ X2) ~ 0, 

for all x1 < Yl, x2 < Y2. This has an interpretation as before 
for high-high and low-low pairs versus high-low and low-high. 
Similarly, the inequality resulting from F TP2 can be written in 
the form of (2.11) with the survival function F replacing F. 

The conditions of F TP2 and F TP2 occur as necessary and 
sufficient conditions for a bivariate cdf or survival function to be 
max- or min-infinitely divisible; see Section 2.1.8. 

A multivariate extension of TP2 is the following. Let X be a 
random m-vector with density f. X or f is multivariate totally 
positive of order 2 (MTP2) if 

f(x V y)f(x 1\ y);::: f(x)f(y) (2.12) 

for all x, y E ~m, where 

x Vy (max{x1, yl}, max{x2, Y2}, ... , max{xm, Ym}), 

x 1\ y (min{x1, yl}, min{x2, Y2}, ... , min{xm, Ym} ). 

An important property of MTP2 is that if a density is MTP2, 
then so are all of its marginal densities of order 2 and higher (see 
the proof in Section 2.1.7). 

If the inequality in (2.12) is reversed, then f is multivariate 
reverse rule of order 2 (MRR2). This is a weak negative depend­
ence concept because, unlike MTP2, the property of MRR2 is not 
closed under the taking of margins. (An example of non-closure is 
given in Section 9.2.1.) 
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2.1.6 Positive function dependence 

Positive function dependence is a concept of dependence for the 
special case in which all univariate margins are the same, i.e., for 
:F(F1, ... , Fm), with F1 = · · · = Fm (= Fa, say). For the bivari­
ate case, let X 1 , X 2 be dependent rvs with cdf Fa and suppose 
(X17 X 2)"' F. Then (X1 , X 2) or F is positive function depend­
ent (PFD) if 

Cov [h(X!), h(X2 )] ~ 0, 'I real-valued h (2.13) 

such that the covariance exists. The multivariate extension with 
X 1 , ... ,Xm being dependent rvs with cdf Fa and (X1, .. . ,Xm)"' 
F is that (X1 , ... , Xm) is positive function dependent if 

m m 

E [IT h(Xi)] ~ ITE[h(Xi)], 1:/real-valued h 
i=l i=l 

(2.14) 

such that the expectations exist. If m is odd, then there is the 
further restriction that h be non-negative. 

In the statistical literature, this concept has been called 'pos­
itive dependence', but here we use the term 'positive function de­
pendence' in order to avoid confusion with the general notion of 
positive dependence (i.e., many definitions in Section 2.1 are con­
cepts of either positive or negative dependence). In Section 8.5, we 
show an application of positive function dependence to inference 
for stationary dependent sequences. 

Similar to the definition of association, it looks as if (2.13) and 
(2.14) would be difficult to establish analytically in general. Again, 
where PFD can be established, it is usually done by making use 
of a stochastic representation for X. For example, a condition that 
implies PFD in the bivariate case is positive dependent by mix­
ture, which means that F(x1, x2) (or F(x1, x2)) has the repres­
entation JG(xl; a)G(x2; a) dM(a) (or JG(xl; a)G(x2; a) dM(a)), 
where M is a mixing distribution and G(-; a) is an appropriately 
chosen family of distributions so that the representation holds. The 
proof is left as an exercise. 

2.1. 7 Relationships among dependence properties 

In this subsection, invariance results and results on relationships 
among dependence properties are given. The first theorem is trivial 
so its proof is omitted. 
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Theorem 2.2 All of the dependence properties in Sections 2.1.1 
to 2.1.6 are invariant with respect to strictly increasing transfor­
mations on the components of the random vector. For example, if 
(X1, X2) is PQD then so is (a1(Xl), a2(X2)) for strictly increasing 
functions a1, a2. 

Theorem 2.3 Relations in the bivariate case are: 

(a} TP2 density=:} SI =:} LTD, RTI; 

(b) LTD or RTI =:} association =:} PQD; 

(c) TP2 density =:} TP2 cdf and TP2 survival function; 

(d) TP2 cdf =:} LTD, and TP2 survival function =:} RTI. 

Proof TP2 density =:} SI: Let (X1, X2) "' F with density f. We 
need to show Pr(X2 > y I xl = x) ~ Pr(X2 > y I xl = x') for 
arbitrary x < x'. This is equivalent to showing 

ioo f(x,z)dz l:f(x',w)dw ~ ioo f(x',z)dz l:f(x,w)dw 

or 

1001: [f(x', z)f(x, w)- f(x, z)f(x', w)] dw dz 2: 0. 

But the left-hand side of the above inequality simplifies to 

100 
lyoo [f(x', z)f(x, w)- f(x, z)f(x', w)] dwdz 

and the integrand is non-negative for all (z, w) E (y, oo) x ( -oo, y] 
by the TP2 assumption. 

SI =:} RTI (SI =:}LTD is similar): Let x < x' and let (X1,X2)"' 
F. Since F2ll(x2lxl) = Pr(X2 > X2 I xl = x!) is increasing 
in x1, there is an inequality for the weighted averages when this 
conditional probability is weighted against the density of X 1, i.e., 

fxoo F211(x2lx!) dF1(x!) < J;' F2p(x2lx!) dF1(xl). 

F1(x) - F1(x') 

This inequality is the same as 

Pr(X2 > X2 I xl > x) ~ Pr(X2 > X2 I xl > x') 

and this is the RTI condition. 
LTD or RTI =:} association: The proof of this is lengthy and re­

quires technical details. It is omitted here but is given in Esary and 
Proschan (1972). We give instead a simple proof of the implication 
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'SI => association', since this gives an indication of how to work 
with the concept of associated rvs. 

SI => association: Let a and b be increasing functions on ~2 . 
Assuming that second-order moments exist, 

Cov [a(X1, X2), b(X1, X2)] = E {Cov [a(X1, X2), b(X1, X2) I X1]} 

+Cov(E[a(X1,X2) I X1],E[b(X1,X2) I X1]). (2.15) 

Let a*(X!) = E [a(X1, X2)IX1], b*(X!) = E [b(X1, X2)IX1]. Then 
a* and b* are increasing functions since a and b are increasing and 
X2 is SI in X1, so that the second term on the right of (2.15) is non­
negative, by Lemma 2.1 in Section 2.1.4. For the first term on the 
right of (2.15), a(x1,X2), b(x1,X2) are increasing in X2 for each 
fixed x 1 so that the conditional covariance is non-negative for each 
x 1 (again by Lemma 2.1). Hence unconditionally the expectation 
in the first term is non-negative. 

Association => PQD: The bivariate case is a special case of the 
multivariate result of 'association=> POD', which is proved in the 
next theorem. 

TP2 density => TP2 cdf (TP2 density => TP2 survival function 
is similar): Let (X 1, X 2) "' F with density f. Let x1 < Yl, x2 < Y2. 
Then f TP2 implies that 

j_x~ j_x~ 1:'1:2
[/(sl, s2)/(t1, t2)- /(sl, t2)/(t1, s2)]dt2dt1ds2ds1 

is non-negative or 

F(x1, x2)[F(y1, Y2)- F(y1, x2)- F(x1, Y2) + F(x1, x2)] 

2: [F(x1, Y2)- F(x1, x2)][F(y1, x2)- F(x1, x2)]. 

This is equivalent to the TP2 condition for the cdf (see inequality 
(2.11) in Section 2.1.5). 

TP2 cdf => LTD (TP2 survival function=> RTI is similar): Let 
Y2 -+ oo and suppose x1 < Yl; then the TP2 cdf condition im­
plies F(x1,x2)/F(x1,oo) 2: F(y1,x2)/F(y1,oo), which is the LTD 
condition. 0 

Theorem 2.4 Relations in the multivariate case are: 

(a) a random subvector of an associated random vector is asso-
ciated; 

{b) association => PUOD and PLOD; 

(c) PDS => PUOD and PLOD; 

{d) CIS => association. 
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Proof. (a) Let (X1, ... , Xm) be associated and x• =(X;., ... , Xik) 
be a subvector, with 1 ~ k < m and i1 < · · · < ik. Let g1, g2 be 
increasing functions on ~k. Then 

provided the expectations exist since Yl, Y2 can be considered as 
functions of X 1, ... , Xm. 

(b) Let (X1, ... , Xm) be associated. Fix real numbers a1, ... , am. 
Let g1(x1, ... , Xm-d = I(a1 ,oo)x···x(am_ 1 ,oo)(Xl, ... , Xm-1) and let 
Y2(xm) = I(am,oo)(xm)· Then g1,g2 are increasing functions. In­
equality (2.8) leads to 

Pr(Xi > ai, i ~ m) ~ Pr(Xi >a;, i ~ m- 1) Pr(Xm >am)· 

By (a) and making use of induction, 

Pr(Xi > ai, i ~ k) ~ Pr(Xi > ai, i ~ k- 1) Pr(Xk > ak) 

for k = m- 1, ... , 2. Therefore 
m 

Pr(Xi > ai, i = 1, ... ,m) ~ IJPr(Xi > ai) 
i=l 

or X is PUOD. 
Similarly, to show the conclusion of PLOD, use the functions 

g1(x1, ... , Xm-1) = -J(-oo,a1]x···x(-oo,am-d(xl, ... , Xm-d and 
Y2(xm) = -J(-oo,am](Xm)• 

(c) (X1, ... ,Xm) PDS implies 

Pr(X2 > X2, 0 0 0 'Xm > Xm I x1 = xl) 

~ Pr(X2 > X2, 0 0 0 'Xm > Xm I x1 = xi) 

for all x1 > x~ and for all x2, ... , Xm. Then 

Pr(X2 > X2, 0 0 .,Xm > Xm I x1 > x1) 

100 Pr(X2 > X2, 0 0 0' Xm > XmiX1 = z) dF1(z)/' roo dF1(z) 
x 1 }x1 

> 1~ Pr(X2 >x2, ... ,Xm >xmiXl =z)dFl(z)/1~ dF1(z) 
1 1 

Pr(X2 > X2, 0 0 0 ,Xm > Xm I x1 > xD, 

for all x1 > x~. Letting x~ ---+ -oo yields 

Pr(Xj > Xj, j ~ m) ~ Pr(X1 > xl) Pr(X2 > x2, ... , Xm > Xm)· 
(2.16) 
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Since a subset of a vector that is PDS is also PDS, (Xi, ... , Xm) 
is PDS for j = 2, ... , m - 1 and by induction Pr(Xj > xi, j = 
1, ... , m) ~ f]j=1 Pr(Xi > xi) or (X1, ... , Xm) is PUOD. 

The conclusion of PLOD follows similarly since (X1, ... , Xm) 
PDS implies Pr(X2 ~ X2, ... , Xm ~ Xm I x1 = x!) ~ Pr(X2 ~ 
X2, ... , Xm ~ Xm I x1 = xD for all X1 < X~. A similar inequality 
then holds conditional on X 1 ~ x1 and X 1 ~ x~. An inequality 
like (2.16) results by letting x~ --+ oo. 

(d) The proof is similar to that of 'SI => association' in the 
preceding theorem. 

D 
Note that as a consequence of part (d) of Theorem 2.4, independ­

ent rvs are associated since they clearly satisfy the CIS condition. 

Theorem 2.5 Let (X1, ... ,Xm) have density f which is MTP2. 
Then all of marginal densities off of order 2 and higher are also 
MTP2. 

Proof. This proof is modified from Karlin and Rinott (1980a). Sup­
pose densities for Xi exist relative to the measure v. Because of 
symmetry and induction, it suffices to show that the density of 
(X1, ... , Xm-d is MTP2, or that 

1 (f(xm-1, s)f(Ym-1, t) + f(xm-1, t)f(Ym-1, s)] dv(s) dv(t) 
s<t 

~ 1 [f(xm-1 VYm-1,s)f(xm-1 /\Ym-1,t) (2.17) 
s<t 

+f(xm-1 VYm-1,t)f(xm-1 /\Ym-1,s)) dv(s)dv(t) 

where Xm-1 = (x1, ... ,xm-d, Ym-1 = (Y1, .. ·,Ym-1)· (For the 
'discrete' case, the inequality 

1=t (f(xm-1, s)f(Ym-1, s) + f(xm-1, s)f(Ym-1, s)] dv(s) dv(t) 

~ 21.=/f(xm-1 VYm-1,s)f(xm-1 /\Ym-1,s)]dv(s)dv(t), 

follows easily from the MTP2 property of f.) In (2.17), let 

a= f(xm-1,s)f(Ym-1,t), b=f(xm-1,t)f(Ym-1,s), 

C = f(xm-1 VYm-1,s)f(xm-1 /\Ym-1,t), 

d = f(xm-1 VYm-1,t)f(xm-1 /\Ym-1,s), 

with s < t. From the MTP2 property for f, d ~ a, band ab ~ cd 
(the latter from matching up terms with s and t separately). Then 
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(c+d)-(a+b) = d- 1[(d-a)(d-b)+(cd-ab)] 2 0 and inequality 
(2.17) holds. 0 

2.1. 8 Max-infinite and min-infinite divisibility 

For a univariate cdf F, all positive powers yr (YY), 1 > 0, are cdfs 
(survival functions). This need not be the case for multivariate 
cdfs. In general, for an m-variate cdf F, yr (F"'~) is a cdf (survival 
function) for all 1 2 m - 1. If F"'~ is a cdf for all 1 > 0, then 
F is max-infinitely divisible (max-id), and ifF"'~ is a survival 
function for all 1 > 0, then F is min-infinitely divisible (min­
id). 

The explanations for these definitions are as follows. IfF is max­
id and X= (X1 , ... ,Xm),...., F, then for all positive integers n, 
F lfn . df If (X(n) x<n)) . - 1 "d 'th df 1s a c . il , ... , im , z - , ... , n, are n WI c 
F 11n, then 

X 4 (m?JCXj~), ... , m?xxi;;.)) 
' ' 

where the maxima are over the indices 1 to n. For min-id, replace 
max by min and cdf by survival function. 

The max-id and min-id conditions are equivalent respectively to 
being a TP2 cdf and TP2 survival function in the bivariate case, 
and hence they are (strong) dependence conditions. These proofs 
are given next and then conditions are given in the multivariate 
case. 

Theorem 2.6 Let F be a bivariate cdf. 
(a) F is max-id if and only ifF is TP2. 
(b) F is min-id if and only ifF is TP2. 

Proof. (a) Let R(x,y) = logF(x,y), so that R is increasing in 
x and y. Then F TP2 implies that for 8, t > 0, R(x + 8, y + t:) 2 
R(x, y+ t) + R(x + 8, y)- R(x, y). Since ez is convex and increasing 
inz,for1>0, 
e-yR(x,y+<) _ e-yR(x,y) < e-y[R(x,y+t)+R(x+O,y)-R(x,y)J _ e-yR(x+O,y) 

< e -yR(x+O,y+<) _ e -yR(x+O,y). 

This is equivalent to F"'~(x + 8, y+ t)- F"'~(x + 8, y)- F"'~(x, y+ t) + 
F"'~(x, y) 2 0 for all 1 > 0. Hence, from the rectangle inequality, 
F"'~ is a cdf for all 1 > 0. 

For the converse, ifF is max-id, then 
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for all 8, f, 1 > 0. Since w is continuous and differentiable and 
w(O) = 0, the right derivative of w(!) at 0 is non-negative. This 
leads to 

log [F(x + 8, y + f)F(x, y)] > 0 
F(x + 8, y)F(x, y +f) -

for all 8, f > 0. Equivalently, F is TP2. 
The proof of (b) is similar and is left as an exercise. 0 

For a multivariate distribution F to be max-id, a necessary con­
dition is that all bivariate margins are TP2. Hence max-id is a 
(strong) positive dependence condition. 

A general condition for max-id, which generalizes the above bi­
variate result to any dimension m, is given next. 

Theorem 2. 7 Let m ~ 2. Suppose F(x) is an m-variate distri­
bution with a density (with respect to Lebesgue measure) and let 
R = log F. For a subset S of { 1, ... , m}, let Rs denote the partial 
derivative of R with respect to x;, i E S. A necessary and sufficient 
condition for F to be max-id is that Rs ~ 0 for all (non-empty) 
subsets S of{l, ... ,m}. 

Proof. We look at the derivatives of H = F'Y = e'YR with respect 
to X1, .•. , Xm, i = 1, ... , m, and then permute indices. All of the 
derivatives must be non-negative for all/ > 0 ifF is max-id. The 
derivatives are: 

8Hjax1 = 1HR1, 
82 H jax18x2 = 12 H R1R2 + 1H R12, 

83 H jax18x28xa = 13 H R1R2Ra + 12 H[R1R23 + R2R1a+ 
RaR12] + 1H R12a, etc. 

For the non-negativity of a1 5 1Hjf1iES8x; for 1 > 0 arbitrarily 
small, a necessary condition is that Rs ~ 0. From the form of the 
derivatives above, it is clear that Rs ~ 0 for all S is a sufficient 
condition. 0 

For multivariate distributions which have special forms, simpler 
conditions can be obtained. These are obtained in Section 4.3 where 
mixtures of powers of a max-id or min-id multivariate distribution 
are used to obtain families of multivariate distributions. 

2.1.9 Kendall's tau and Spearman's rho 0 

Kendall's tau (denoted by r) and Spearman's rho (denoted by Ps or 
p) are bivariate measures of(monotone) dependence for continuous 
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variables that are (i) invariant with respect to strictly increasing 
transformations and (ii) equal to 1 for the bivariate Frechet up­
per bound (one variable is an increasing transform of the other) 
and -1 for the Frechet lower bound (one variable is a decreasing 
transform of the other). These two properties do not hold for Pear­
son's correlation, so that r and ps are more desirable as measures 
of association for multivariate non-normal distributions. Another 
property (Exercise 2.10) is that r and ps are increasing with re­
spect to the concordance ordering of Section 2.2.1. 

Definition. Let F be a continuous bivariate cdf and let (X1 ,X2), 
(X~, X~) be independent random pairs with distribution F. Then 
Kendall's tau is 

r= Pr((X1- Xf)(X2- X~)> 0)- Pr((X1- Xf)(X2- X~)< 0) 

= 2 Pr((X1- Xf)(X2- X~)> 0)- 1 = 4 J F dF- 1. 

Definition. Let F be a continuous bivariate cdf with univariate 
margins F1, F2 and let (X1, X2) ,...., F; then Spearman's rho is 
the correlation of F1(X1) and F2(X2). Since F1(X1) and F2(X2) 
are U(O, 1) rvs (under the assumption of continuity), their expect­
ations are 1/2, their variances are 1/12, and Spearman's rho is 

ps = 12 J J F1(x!)F2(x2) dF(x1, x2)- 3 = 12 J J F dF1dF2- 3. 

The condition (X1 -Xf)(X2 -X~)> 0 corresponds to (X1, X2), 
(X~, X~) being two concordant pairs in that one of the two pairs 
has the larger value for both components, and the condition (X1-
XD(X2 -X~) < 0 corresponds to (X1, X2), (Xf, X~) being two 
discordant pairs in that for each pair one component is larger than 
the corresponding component of the other pair and one is smaller. 
Hence Kendall's tau is the difference of the probability of two ran­
dom concordant pairs and the probability of two random discord­
ant pairs. If there is an increasing (decreasing) transform from one 
variable to the other, the probability of a concordant (discordant) 
pair is 1 and the probability of a discordant (concordant) pair is 0. 

Because r and ps are invariant to strictly increasing transfor­
mations, their definitions could be written in terms of the copula 
C associated with F. That is, 

r = 4 j CdC- 1 and 

ps 12 j j uvdC(u,v)-3= 12 j j C(u,v)dudv-3. 
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The relation to the sample version of Ps can now be seen. For 
bivariate data, ps is the rank correlation and the rank transforma­
tion is like the probability transform of a rv to U(O, 1). 

2.1.10 Tail dependence 0 

The concept of bivariate tail dependence relates to the amount of 
dependence in the upper-quadrant tail or lower-quadrant tail of a 
bivariate distribution. It is a concept that is relevant to depend­
ence in extreme values (which depends mainly on the tails) and in 
the derivation of multivariate extreme value distributions from the 
taking oflimits (see Chapter 6). Because ofinvariance to increasing 
transformations, the definition will be given in terms of copulas. 
The symbol used for a tail dependence parameter is .A. 

Definition. If a bivariate copula C is such that 

lim C(u, u)/(1- u) =.Au 
u.-1 

exists, then C has upper tail dependence if .Au E (0, 1) and no 
upper tail dependence if .Au = 0. Similarly, if 

lim C(u, u)ju =A£ 
u-o 

exists, C has lower tail dependence if A£ E (0, 1) and no lower 
tail dependence if AL = 0. 

The reasoning behind these definitions is as follows. Suppose 
(U1, U2)"" C. Then 

Au = lim Pr(U1 > u I u2 > u) = lim Pr(U2 > u I u1 > u). 
u.-1 u.-1 

A similar expression holds for A£. These expressions show that 
the parameters .Au, A£ are bounded between 0 and 1 inclusive. If 
.Au> 0 (.AL > 0), there is a positive probability that one of U1, U2 
takes values greater (less) than u given that the other is greater 
(less) than u for u arbitrarily close to 1 (0). 

2.1.11 Examples 

In this subsection, a few examples are used to illustrate the depend­
ence concepts in the preceding subsections. 

Example 2.1 Let f(x 1, x2; p) = (271")- 1(1- p2)-112 exp{ -~(xr 
+x~-2px1x2)/(1-p2 )}, -1 < p < 1, be the BVSN density. Then it 
is straightforward to show that f is TP2 (RR2) if and only if p ~ 0 
(p ~ 0). Also the conditional distribution of the second variable 
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given the first is F211(x2lx1) = <P((x2- px1)/~), and this is 
decreasing in x1 for all x2 if and only if p ~ 0. Hence this shows 
directly that F2p is stochastically increasing (decreasing) if p ~ 0 
(p:::; 0). 0 

Example 2.2 For the MVSN distribution with m x m correlation 
matrix R = (Pii ), the PDS condition is equivalent to Pii ~ 0 for all 
i,j. Also the association condition is equivalent to Pii ~ 0 for all 
i,j. Let A= R- 1 = (a;j); then the MTP2 condition is equivalent 
to a;i :::; 0 for all i -::J j. 

Proof Let (X1, ... , Xm) be MVSN with correlation matrix R = 
(Pii ). Note that the mean vector of (X2, 0 0 0, Xm) given x1 = X1 is 
(P12, ... , Plm)x1, so that the stochastic increasing property holds 
only if Pli ~ 0 for j = 2, ... , m. By permuting the indices, all 
correlations must be non-negative if (X1, ... , Xm) is PDS. 

The proof of association is non-trivial; see Joag-dev, Perlman 
and Pitt (1983). 

It is easy to show that the MVN density ifJR(x), with correlation 
matrix R, is TP2 in x;,Xj, for all i -::J j, if a;i:::; 0 for all i -::J j. 
This implies the MTP2 condition. D 

Example 2.3 Consider the family B5 of bivariate copulas in 
Section 5.1. With u = 1- u, v = 1- v, the family is 

(2.18) 

The corresponding family of densities is 

c(u, v; 8) = (u6 + v6 - [uv] 6 )-2+ 116 [uv] 6- 1[8- 1 + u6 + v6 - u;6~]. 

Note that the case of 8 = 1 corresponds to the independence copula 
C1(u, v) = uv. 

The conditional cdf, 

C211(viu; 8) = (1 + v6u- 6 - ~t1+1 / 6 [1- v6], (2.19) 

is decreasing in u for each v, so this proves directly that C211 is SI 
for each 8 ~ 1. 

The demonstration that the density c is TP2 reduces to showing 
that h(x, y) = (1- xy)-2+116(8- xy) is TP2 in 0 :::; x, y :::; 1 or 
that h0(s,t) = (1-e-s-t)-2+1/6(8-e-s-t) is TP2 in s,t ~ 0. The 
inequality ho(s1,t1)ho(s2,t2) ~ ho(s1,t2)ho(s2,t1) holds for 0 < 
s1 < s2, 0 < t1 < t2 ifg(x1+yl)+g(x2+Y2) ~ g(x1+Y2)+g(x2+Yd 
for 0 < x1 < x2, 0 < Yl < Y2, where g(z) = log(8- e-z) + 
( -2 + 1/8) log(1- e-z). But g(z) is convex for z > 0 and then the 
inequality follows from (x1 + Y2, x2 + yl)-<m(x1 + Y1, X2 + Y2) ( -<m 
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is the majorization ordering in Marshall and Olkin 1979; see also 
the Appendix). To show the convexity, g"(z) = -8ez(8ez -1)-2 + 
(2-1/8)ez(ez -1)- 2 = ez(8ez -1)- 2 (ez -1)- 2 (8-1)w(6, z), where 
w(8, z) = 28e2z -2ez -1 +6- 1 . Note that w(8, 0) = 6- 1 (26 -1)(6-
1) 2: 0 and awjaz = 48e2Z - 2ez 2: 0, so that g"(z) 2: 0 for all 
82:1. 

The upper and lower tail dependence parameters are respectively 
2-21/ 6 and 0, so that (2.18) has upper tail dependence for 6 > 1. 

The PFD property follows from Exercise 2.4 and results in Sec­
tions 4.2 and 5.1. 0 

Example 2.4 Consider the family B10 of bivariate copulas in 
Section 5.1: 

C(u, v; B)= uv[1 + 0(1- u)(1- v)], -1 ~ (} ~ 1. (2.20) 

This family is just a perturbation of the independence copula 
C1(u, v) = uv. The distribution in (2.20) is PQD (NQD) for 0 ~ 
(} ~ 1 ( -1 ~ (} ~ 0). It has a limited range of of dependence 
which is why it is not useful as a model; simple computations show 
that Kendall's tau is 2(} /9 and Spearman's rho is (} /3 so that T is 
bounded in absolute value by 2/9 and ps is bounded in absolute 
value by 1/3. 0 

Example 2.5 A family of bivariate exponential survival func­
tions due to Gumbel (1960b) is: 

X1 > 0, X2 > 0, 0 ~ (} ~ 1. 

This has negative quadrant dependence and limited range of de­
pendence so that it is not useful as a model. The amount of negative 
dependence increases as (} increases; for (} = 1, Kendall's tau and 
Spearman's rho are -0.361 and -0.524, respectively. 0 

2.2 Dependence orderings 

Positive dependence concepts such as PQD, SI and LTD, in the 
preceding section, result from comparing a bivariate or multivari­
ate random vector with a random vector of independent rvs with 
the same corresponding univariate distributions. That is, if F E 
:F(F1, ... , Fm), the class of m-variate distributions with given uni­
variate margins F1, ... , Fm, a positive dependence concept comes 
from comparing whether F is more positive dependent in some 
sense than the cdf IJj"=1 Fj. For example, the PUOD concept com­

pares Pr(X; >a;, i = 1, ... , m) for X"" F with X"" TIJ"=1 Fj. 
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However, for a parametric family of multivariate distributions, 
one would be interested in more information than just positive 
or negative dependence (or indeterminate type of dependence). A 
parameter in the family is interpretable as a dependence para­
meter if the amount of dependence is increasing (or decreasing) 
as the parameter increases. This is one motivation for comparing 
whether one multivariate cdf is more dependent than another cdf 
based on some dependence concept. Comparisons can be made 
via dependence orderings that are partial orderings within a class 
:F(F1, ... , Fm)· Because of the result (1.7) on copulas, dependence 
orderings or comparisons should hold the univariate margins fixed, 
at least in the continuous case. 

In this section, we first give the concordance ordering corres­
ponding to the dependence concept of PQD and POD. Then, we 
discuss and list the types of properties that would be desirable for 
a dependence ordering; one property is that the bivariate concord­
ance ordering should hold for all sets of corresponding bivariate 
margins. (There are references to the Frechet bounds, which are 
studied in detail in Chapter 3.) Following this, we list some depend­
ence orderings that generalize the concepts in Section 2.1. 

2.2.1 Concordance ordering 0 

We first give the definition of the concordance ordering in the bi­
variate case. 

Definition. Let F, F' E :F(F1, F2) where F1 and F2 are uni­
variate cdfs. F' is more concordant (or more PQD) than F, 
written F -<.cF', if 

(2.21) 

From the relation between a survival function and a cdf in the 
bivariate case (see equation (1.3)), (2.21) is equivalent to 

(2.22) 

Note that if (X1,X2)....., F and (Xf,X~)....., F', then the concord­
ance ordering means that 

Pr(X1 ~ x1,X2 ~ x2) ~ Pr(X~ ~ x1,X~ ~ x2) 'v'x1,x2 

and 



DEPENDENCE ORDERINGS 37 

For random vectors, we may use the notation (X1, X2)-<c(XL X2) 
instead of F -<cF'. 

In the multivariate case with dimension m 2: 3, the orderings of 
cdfs and survival functions are not equivalent (i.e., the multivariate 
extensions of (2.21) and (2.22) are not equivalent). Hence there are 
various versions that could be considered as simple multivariate 
dependence orderings. 

Definition. Let F, F' E :F(F1, ... , Fm) where F1, ... , Fm are 
univariate cdfs. F' is more PLOD than F, written F -<eLF', if 

F(x) ~ F'(x) 'v'x E ~m. 

F' is more PUOD than F, written F-<cuF', if 

F(x) ~ F'(x) 'v'x E ~m. 

(2.23) 

(2.24) 

F' is more concordant or more POD than F, written F-<cF', 
if both (2.23) and (2.24) hold. 

The use of the term concordant here means that if X' "' F' 
and X "' F, then the components of X' are more likely than those 
of X to take on small values (or large values) simultaneously. 

For the bivariate ordering in :F(F1, F2), the most concordant 
or maximal distribution is the Frechet upper bound Fu(x 1 , x2) = 
min{F1(xl), F2(x2)} and the most discordant or minimal distri­
bution is the Frechet lower bound FL(x1, x2) = max{O, F1(xl) + 
F2(x2)-l}. For the general multivariate ordering in :F(F1, ... , Fm), 
the maximal distribution is the Frechet upper bound Fu(x) = 
mini F;(x;). 

A nice property of the concordance ordering is that if F, F' are 
continuous bivariate distributions with Kendall taus r(F), r(F'), 
Spearman rhos ps(F), ps(F'), tail dependence parameters .>..(F), 
.>..(F'), and F-<cF', then r(F) ~ r(F'), ps(F) ~ Ps(F') and 
.>..(F) ~ .>..(F'). (The proof is left as an exercise.) The next the­
orem is a consequence of the -<c ordering that is used later and its 
proof is also left as an exercise. 

Theorem 2.8 Suppose that s1 , ... , sk are all non-negative increas­
ing or all non-negative decreasing functions on the real line and 
that F, F' are two m-variate cdfs. Let ¢(x1, ... , xm) = Ilj=l sj(Xj ). 
Then F -<cF' implies I¢ dF ~ I¢ dF' provided that the integrals 
exist. 

Other properties appear in the next subsection as part of an 
axiomatic approach for defining what properties are needed for an 
ordering on distributions to be considered a dependence ordering. 
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2.2.2 Axioms for a bivariate dependence ordering 

In this subsection, we list properties or axioms that an ordering 
of distributions should have in order that higher in the ordering 
means more positive dependence. 

Let -< be a bivariate dependence ordering (for cdfs in :F(F1, F2) 
or random vectors that have the same corresponding univariate 
marginal distributions). Desirable properties or axioms for -< are: 

Pl. (concordance) F-< F' implies F(x1, x2) ~ F'(x1, x2) for all 
x1, x2; 

P2. (transitivity) F-< F' and F'-< F" imply F-< F"; 
P3. (reflexivity) F -< F; 
P4. (equivalence) F-< F' and F'-< F imply F = F'; 
P5. (bounds) FL -< F -< Fu, where Fu is the Frechet upper 

bound and FL is the Frechet lower bound; 
P6. (invariance to limit in distribution) Fn -< F~, n = 1, 2, ... , 

and Fn -+d F, F~ -+d F' as n-+ oo, imply that F-< F'; 
P7. (invariance to order of indices) (X1, X2) -< (Xi, X~) implies 

(X2,Xt)-< (X~,Xf); 
P8. (invariance to increasing transforms) (X1 ,X2)-< (Xf,X~) 

implies (a(Xt), X 2 ) -< (a(Xf), X~) for all strictly increasing 
functions a; 

P9. (invariance to decreasing transforms) (X1 ,X2)-< (Xi,X~) 
implies (b(Xf), X~) -< (b(Xt), X2) for all strictly decreasing 
functions b. 

If property Pl is satisfied, then the bivariate dependence or­
dering is stronger than the concordance ordering -<c· Property P5 
implies that the Frechet upper (lower) bound is the most (least) 
dependent in the ordering. Properties P6 to P9 are fairly natural 
invariance requirements. 

An ordering that satisfies the nine properties is called a bivari­
ate positive dependence ordering (BPDO). The concordance 
ordering is a BPDO and it is the weakest one in that if F -< F' 
for any other BPDO -<, then F -<cF'. Other orderings are given in 
later subsections. 

2.2.3 Axioms for a multivariate dependence ordering 

In this subsection, we generalize the properties or axioms of the 
preceding subsection to the multivariate case. Let -< be a multi­
variate dependence ordering (for cdfs in :F(F1, ... , Fm) or random 
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vectors that have the same corresponding univariate marginal dis­
tributions) that is defined for all dimensions m ~ 2. Desirable 
properties or axioms for -<: are: 

Pl. (bivariate concordance) F -<: F' implies that, for all 1 :::; i < 
j:::; m, Fij(Xi,Xj):::; F[j(xi,xj) Vxi,Xj, where Fij,F[j are 
the ( i, j) bivariate margins; 

P2. (transitivity) F-<: F' and F'-<: F" imply F-<: F"; 
P3. (reflexivity) F -<: F; 
P4. (equivalence) F-<: F' and F'-<: F imply F = F'; 
P5. (bound) F -<: Fu, where Fu is the Frechet upper bound; 
P6. (invariance to limit in distribution) Fn -<: F~, n = 1, 2, ... , 

and Fn -+d F, F~ -+d F' as n--+ oo, imply that F-<: F'; 
P7. (invariance to order of indices) (X1, ... , Xm)-<: (X~, ... , x:n) 

implies (Xi,, ... , Xim) -<: (XI,, ... , XL) for all permutations 
(i1, ... , im) of (1, ... , m); 

P8. (in variance to i transforms) (X1, ... , Xm) -<: (XL ... , x:n) 
implies (a(Xl),X2, ... ,Xm)-<: (a(XD,X~, ... ,x:n) for all 
strictly increasing functions a; 

P9. (closure under marginals) (X1, .. . ,Xm)-<: (X~, ... ,x:n) im-
plies (Xi, ... ,Xik)-<: (XI,, ... ,XIk) for all i1 < ··· < ik> 
2:::; k < m. 

Note that bivariate property P5 does not extend completely be­
cause there is no Frechet lower bound in general for dimensions 
m ~ 3. Similarly, the use of a decreasing transformation to reverse 
the ordering of dependence does not extend to the multivariate 
case. So property P9 from the bivariate case is replaced by the 
natural property of closure under marginals. 

An ordering that satisfies these properties is called a multi­
variate positive dependence ordering (MPDO). The pair­
wise concordance ordering, which is defined next, satisfies all of 
the properties except for property P4. 

Definition. Let F, F' E :F(F1, ... , Fm), where F1, ... , Fm are 
univariate cdfs. F' is more pairwise concordant than F, written 
F-<:~w F', if, for all1:::; i < j:::; m, 

Fij(Xi,Xj):::; F[j(xi,Xj) V(xi,Xj) E 3?2 , 

where Fij, F[j are the ( i, j) bivariate margins ofF, F', respectively. 
It is simple to show that for any MPDO -<:, F -<: F' implies 

F -<:~w F'. It is also straightforward to show that -<:c, -<:cu and -<:cL 
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are MPDOs. An MPDO which is stronger than -<c is given in 
Section 2.2.5. It will be seen from the families of multivariate dis­
tributions given in Chapters 4 and 5 that the -<c ordering is dif­
ficult or impossible to show analytically, whereas -<~w and one of 
-<cu or -<cL is not difficult to establish. The reason can be seen 
in the formulas for obtaining a survival function from a cdf and 
vice versa (equations (1.3) and (1.4)). If one has a parametric fam­
ily F(x; 8) in :F(F1, ... , Fm) that is increasing in 8 for all x (so 
that the -<cL ordering holds), then the ordering in 8 holds for all 
marginal distributions, but this need not imply (analytically) that 
the survival functions are ordered because of the alternating signs 
in (1.3). Where the multivariate -<c ordering has been established, 
it is through stochastic representations (e.g., Theorems 2.21 and 
4.7 to 4.10). 

2. 2.4 More SI bivariate ordering * 

In this subsection, we define a bivariate ordering -<si such that if 
F E :F(F1, F2), then F1F2-<s1F is equivalent to F211 Sl. This or­
dering has been called the 'more regression dependent' or 'more 
monotone regression dependent' ordering in the statistical liter­
ature. There are several equivalent versions of the definition. Here 
we use the forms that will be the most useful in subsequent chap­
ters. Also we impose some conditions, such as F1, F2 continuous 
and differentiable, to avoid technicalities. 

Definition. Let (X1,X2) "' F, (X~,X~) "' F' with F,F' E 
:F(F1, F2). Let G = F211, G' = F~ 11 be the respective condi­
tional distributions of the second rv given the first. Suppose that 
G(x2lxl) and G'(x2lxl) are continuous in x2 for all x1. Then F~11 is 
more Slthan F211 (written F-<s1F' or F2p-<s1F~11 ) if,P(x1,x2) = 
G'-1(G(x21xl)lxl) is increasing in x1. (Note that ,P is increasing 
in x 2 since, for each fixed x1, it is a composition of increasing 
functions.) 

We go through a sequence of theorems to establish properties 
and equivalences for the -<si ordering. 

Theorem 2.9 Suppose X1 = X~, X1 "' F1, (X1, X2) "' F and 
(X~, X~)"' F'. Also suppose F211(x2lxl) and F~ 11 (x2lx1) are con­
tinuous in x2 for all x1 . Then a stochastic representation is 

(X~, X~) 4: (X1, ,P(X1, X2)) 

where ,P(x1, x2) = F~~1 (F211(x2lx1)lxl). 
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Proof. Let G = F211 and G' = F~ll" Given X1 = x1, X2,....., G(·ix!). 
Since G(x21x!) is continuous in x2, G(X2Ix!) is uniform conditional 
on xl = X!. Also if u ,....., U(O, 1), then, conditional on xl = X!, 

G'-1(U!x1) has distribution G'(x2ix!) by the continuity of this 
function in x2. Hence (X1, G'- 1(G(X2IX!)IX1)) 4 (X1, X~). D 

Note that by symmetry another stochastic relationship is 

(X1, X2) 4 (X~, ((X~, xm, 

where ((x1,x2) = F2!{(F~I 1 (x2lx!)lxl)· 
Theorem 2.10 With G = F2p, G' = F~ 11 , such that G(x2!x1) 
and G'( x21xl) are continuous in X2 for all x1, equivalent forms for 
F211-<siF~ 11 are the following: 

(a) For any z1 < Z2 and u, v in (0, 1), 

c-1(uiz2);:::: c-1(viz!) :::} c'-1(uiz2);:::: c'-1(viz1). 

(b) For any z1 < z2 and any y, y' with y in the support of G( ·lz!) 
and y' in the support of G'(-lz2), 

G(yiz!);:::: G'(y'iz!) :::} G(y!z2);:::: G'(y'lz2). (2.25) 

(c) ((x1,~2) .= F;j11 (F~ 11 (x2!x1)lx!) is increasing in x2 and de-
creaszng zn x1. 

Proof. We prove the equivalence of (a) and (b) in the case where 
G(x2!x1) and G'(x2lx!) are strictly increasing in x2. This assump­
tion can be relaxed with some extra technical details. 

For (b) :::} (a), the proof is by contradiction. Suppose (b) holds 
and (a) does not. Then there exist u, v, Zl < Z2 such that c-1( uiz2) 
;:::: c-1(vizl) and G'- 1(uiz2) < G'- 1(v!z!). Let y = c-1(viz!) 
andy' = G'-1(ulz2) so that v = G(yiz!) and u = G'(y'!z2). The 
inequalities become G- 1(u!z2) ;:::: y or G(yiz2) :S G'(y'!z2) and 
y' < G'-1(v!z!) or G'(y'iz!) < G(y!z!). From the assumption of 
strictly increasing G,G', there exists f > 0 such that G'(y'!z!) :S 
G(y- clz1) and G(y- clz2) < G'(y'!z2). This contradicts condition 
(b). 

The proof of (a) :::} (b) is similar. Suppose (a) holds and (b) does 
not. Then there exist y, y', z1 < z2 such that G(y!z!) ;:::: G'(y'izl) 
and G(y!z2) < G'(y'!z2). Let v = G(yiz!) and u = G'(y'!z2) so 
that y = c-1(vlzl) andy'= G'- 1(uiz2 ). The inequalities become 
v ;:::: G'(y'izl) or G'-1(viz1) ;:::: G'- 1(uiz2), and G(yiz2) < u or 
c-1( viz!) < c-1( uiz2). From the assumption of strictly increasing 
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G, G', there exists t > 0 such that c-1(vizt) ~ c-1(u- tlz2) and 
G'-1(vizt) > G'-1(u- tlz2). This contradicts condition (a). 

Next we show the equivalence of condition (b) and the definition 
of -<si, again under the assumption of strictly increasing condi­
tional cdfs. (This corrects part of the proof of Theorem 2.2 in 
Fang and Joe (1992).) Assume that (2.25) holds for z1 < z2 . Let 
,P(z, y) = G'-1(G(yiz)iz). It suffices to show that ,P(z, y) is in­
creasing in z. Let z1 < z2 and fix y. Let y' satisfy G(yizt) = 
G'(y'iz1). Then (2.25) implies that ,P(z2, y) = G'-1(G(yiz2)iz2) 2: 
G'- 1(C'(y'lz2)lz2) 2: y' = G'- 1(G'(y'Jzt)izt)= G'-1(G(yizt)izt) = 
,P(z1, y). 

For the converse, suppose that (2.25) does not hold for some 
y, y* and some z1 < z2. That is, 

G(yizt) 2: G'(y* lzt) and G(yiz2) < G'(y* iz2). 

Let y' satisfy G(yizt) = G'(y'Jz!) so that y' 2: y*. Then G(yiz2) < 
G'(y'iz2). Furthermore, 

,P(z1,y) = c'- 1(C(yJzt)Jz!) = G'- 1(G'(y'Jz!)izt) = y', 

and 

,P(z2,y) = G'- 1(G(yiz2)iz2) < G'- 1(G'(y'iz2)iz2) = y', 

so that ,P( z1 , y) > ,P(z2, y) and ,P is not increasing in z for all y. 
For the equivalence of condition (c) to the definition, we provide 

a proof in the case where ,P is strictly increasing and differen­
tiable. The general case then follows by a limit of approximations. 
The transformation from the definition is (x1, x2) -+ (x~, x~) = 
(x1, ,P(x1, x2)) and the inverse transformation is (xL x~)-+ (x1, x2) 
=(xi, ((xi, x~)). The Jacobian matrices ofthe two transformations 
are inverses of each other, i.e., 

where 'l/Jj, (j are the partial derivatives with respect to the jth 
variable, j = 1, 2. Hence (!(xL x~) = -,P1(x1, x2)N2(x1, x2) or (1 
and ,P1 are opposite in sign (i.e., the monotonicities of ( and ,P in 
the first variable x 1 are opposite in direction). 0 

Theorem 2.11 Let F E :F(F1, F2). Then F1F2-<s1F if and only 
if F211 is SI. 

Proof. F1F2-<s1F -¢::::? F2!11(F2(x2)lx1) j x1 Vx2 -¢::::? F2"j{(ulxl) 
j x1 V 0 < u < 1 -¢::::? F211(x2lxl)! x1 Vx2 -¢::::? F211 is SI. D 
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Theorem 2.12 F -<sr F' implies F -<cF'. 

Proof. Let (X1,X2)"' F, (X~,X~) "'F', with Xi 4xj, j = 1, 2. 

From Theorem 2.9, (X~,X~)4(X1,'¢'(X1,X2)) with ,P(x1,x2) = 
F~~1 (F2 1 1 (x2lxl)lx 1 ). The assumption here implies that '¢' is in­
creasing in both x1, x2. To prove the concordance ordering, we 
consider two cases. 

Case 1. Suppose that x1, x2 are such that ,P(x1, x2) ~ x2. Then 

F'(x1, x2) = Pr(X~ ~ x1, X~~ x2) 

Pr(X1 ~ x1, ,P(X1,X2) ~ x2) 

> Pr(X1 ~ x1, ,P(x1,X2) ~ x2) 

> Pr(Xl ~ Xl, x2 ~ X2) = F(xl, x2), 

where the last inequality results since x2 ~ X2 implies ,P(xl, X2) ~ 
,P(x1, x2) ~ x2 under the starting assumption. 

Case 2. Suppose that X1, X2 are such that '¢'( x1, x2) > x2. Then 
X2 > X2::} '¢'(x1,X2) 2 '¢'(x1,x2) > X2 or '¢'(x1,X2) ~ X2::} X2 ~ 
X2. Therefore, Pr(Xl > Xl, x2 ~ x2) 2 Pr(Xl > Xl, ,P(xl, X2) ~ 
x2) 2 Pr(X1 > x1,'¢'(X1,X2) ~ x2) = Pr(X~ > x1,X~ ~ x2), so 
that F(x1, x2) ~ F'(x1, x2). 0 

We next extend the definitions of -<sr in order to incorporate the 
Frechet upper and lower bounds in the ordering of distributions in 
:F(F1, F2). Then we comment on the properties of a BPDO, and 
whether they are satisfied for -<sr. 

The Frechet upper bound does not have continuous conditional 
cdfs but the condition in the definition of -<sr still holds. Let 
F E :F(F1, F2) and let F' = Fu be the Frechet upper bound 
in :F(F1, F2). Then F~11 (x2lx1) = 1 if x2 2 F2- 1 o F1(x1) and 0 

otherwise, and F~~1 (ulx1) = F2- 1 o F1(xl), 0 < u < 1. Hence 

,P(x1,x2) = F~~ 1 (F211(x2lx1)lx1) = F2- 1 o F1(xl) is increasing 

in x1. Furthermore, if (X1, X2) "' F and (XL X~) "' Fu, then 

(X~, X~) 4 (X1, F2- 1 o F1(Xl)). 
Next let F' E :F(F1, F2) and let F = FL be the Frechet lower 

bound in :F(F1, F2). If (X1, X2) "' FL and (Xi, X~) "' F', there 
is no stochastic representation for (X~, X~) in terms of (X1, X 2) 
because of the relationship X2 = F2- 1(1- F1(X1)). For incorpor­
ating the Frechet lower bound into the -<sr ordering, we make 
use of the equivalent condition (c) in Theorem 2.10. Note that 
F211(x2lx1) = 1 if x2 2 F2- 1(1- F1(x1)) and 0 otherwise, and 
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F2!{(ulxl) = F2 1(1- F1(xl)), 0 < u < 1. Hence 

((x1,x2) = F2!{(F~I 1 (x2lxl)lxl) = F2- 1(1- F1(xl)). 

Also (Xl,X2)4(XL((XLXm. 

Theorem 2.13 The (extended) --<si ordering satisfies all proper­
ties of a BP DO except for P7. P7 is not satisfied because the def­
inition of --<si is not symmetric in the two variables. P7 is satisfied 

within the subfamilies of permutation-symmetric distributions. 

An approach that is useful for showing the --<si ordering for a 
one-parameter family C(-; 8) of copulas, when C21 1( vlu; 8) does not 
have a closed-form inverse, is provided by the following theorem. 

Theorem 2.14 Let C( u, v; 8) be a family of bivariate copulas. Let 
B(u, v, 8) = g(C211(vlu; 8)), where g is an arbitrary strictly increas­
ing real-valued function. Assume that B is continuously differen­
tiable in all variables up to second order. The family C is increasing 

in --<si as 8 increases (i.e., C( u, v; 81)--<siC( u, v; 82) for 81 < 82) if 

EPB 8B 82B 8B 
8v8u 88 - 888u 8v 2: O. 

Proof. Let 81 < 82. Then C(u, v; 81)--<siC(u, v; 82) ifv*(u) = v*(82) 
= v* ( u; 81, 82, v) is increasing in u with v* being the root of 

B(u,v*,82) = B(u,v,81). (2.26) 

Taking the derivative of (2.26) with respect to u leads to 

{)B • 8B • 8v* 8B 
{)u (u,v ,82) + a;(u,v ,82) {)u (u) = ou (u,v,81). 

Since~~ 2: 0, ~~· 2: 0 if ~~(u,v*,82)- ~~(u,v,81) < 0 or if 

:;:,)u, v*(8), 8) ~ 0. This is equivalent to 

82B ov• 82B 
8v8u ( u, v*' 8) 88 + 888u ( u, v*' 8) ~ 0· (2·27) 

From (2.26), with 8 = 82, 8; 0• = - ~f / ~~. Hence (2.27) is equi­
valent to the condition in the statement of the theorem. D 

2.2.5 More TP2 bivariate orderings • 

This subsection is on orderings involving the TP2 condition. It 
is mainly included for theoretical interest and completeness. The 
orderings here are not used subsequently, whereas the more SI or­
dering is used; they are also difficult to check analytically. 
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Some notation is needed in order to present the orderings in 
a simple form. For intervals h, h of real numbers, the notation 
h < h means that x1 E h and x2 E h imply x1 < x2. If I = 
(a, b), J = (c, d) are intervals and F is a bivariate cdf, the notation 
F(I, J) is shorthand for the rectangle probability F(b, d)-F(a, d)­
F(b, c)+ F(a, c). 

Definition. Let F, F' E :F(F1, F2), where F1 and F2 are univari­
ate cdfs. F' is more TP2 than F with respect to rectangles 
(written F --<TPRF') if, for all intervals h, l2, J 1, h, with l1 < J 1, 
[2 < h, 

F(h, h)F(J1, h)F'(h, h)F'(J1, h) 
::::; F'(lt, l2)F'(h, h)F(I1, h)F(J1, h). (2.28) 

F' is more TP2 than F with respect to lower quadrants 
(written F--<TPLF') if(2.28) holds for all intervals h, h h, h with 
h < h, h < h and the extra restriction that h, l2 have lower 
limits of -oo. Similarly, F' is more TP2 than F with respect to 
upper quadrants (written F --<TPvF') if (2.28) holds for all in­
tervals h, h, It, J2 with h < J1, l2 <hand the extra restriction 
that It, h have upper limits of oo. 

For --<TPL and --<TPU, inequality (2.28) could be written respect­
ively as 

F( Xt, x2)[F(y1, Y2) - F(y1, x2) - F( Xt, Y2) + F(x1, x2)] 
·[F'(x1,Y2)- F'(x1,x2)][F'(y1,x2)- F'(x1,x2)] 

< F'(x1, x2)[F'(y1, Y2) - F'(Y1, x2) - F'(x1, Y2) + F'(x1, x2)] 
·[F(xt, Y2)- F(x1, x2)][F(y1, x2)- F(x1, x2)] 

and 

F(x1, x2)[F(y1, Y2)- F(y1, x2) - F(x1, Y2) + F(x1, x2)] 
·[F'(x1, x2)- F'(x1, Y2)][F'(x1, x2)- F'(y1, x2)] 

< F'(x1, x2)[F'(y1, Y2) - F'(Y1, x2) - F'(x1, Y2) + F'(x1, x2)] 
·[F(xl, x2)- F(x1, Y2)][F(x1, x2)- F(y1, x2)] 

where x1 < Yl, x2 < Y2· 
We go through a sequence of theorems to establish properties of 

the orderings. 

Theorem 2.15 Let FE :F(F1, F2) and suppose F has density f. 
Then F1F2--<TPRF if and only iff is TP2. 
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Proof For comparing F1F2 with F, (2.28) is equivalent to 

F(lt, h)F(h, lt) :S F(ft, lt)F(h J2). (2.29) 

Let x1 < Yl, x2 < Y2 and let f > 0 be sufficiently small. Let 
It= (xl, X1 +t), h = (Yl, Yl +t), lt = (x2, x2+t), h = (y2, Y2+t). 
Divide both sides of (2.29) by £ and let £ --+ 0 to get 

(2.30) 

so that F1F2-<TPRF implies that f is TP2. Iff is TP2, so that 
(2.30) holds for all x1 < Yl, x2 < Y2, then (2.29) holds for all 
It < h lt < h by integration. 0 

Theorem 2.16 F-<TPRF' ::} F-<TPuF' and F-<TPLF'. Both 
F -<TPU F' and F -<TPLF' ::} F -<cF'. 

Proof The first statement is obvious. For the second, take It = 
(-oo,x1], lt = (x1,oo), !2 = (-oo,x2], h = (x2,oo). Then (2.28) 
becomes 

F(x1, x2)F(x1, x2)(F1(xl)- F'(x1, x2))(F2(x2)- F'(x1, x2)) 
:S F'(x1, x2)F' (x1, x2)(F1 (xi) - F(x1, x2))(F2(x2) - F( X1, x2)), 

and this implies F(x1, x2) :S F'(x1, x2) since h(w) = log{[w(1-
F1-F2+w)]j[(F1-w)(F2 -w)]} is increasing in wE [max{O, F1 + 
F2 -1 }, min{F1, F2}) (its derivative is w- 1 + (1- F1 - F2 + w)-1 + 
(F1- w)-1 + (F2- w)-1 2: 0). D 

Remarks. Although a bivariate cdf F with TP2 density satis­
fies the SI property, the -<TPR, -<TPL and -<TPL orderings have 
not been shown to imply the -<s1 ordering. There is no obvious 
connection between the TP2 orderings and the -<s1 ordering. 

Theorem 2.17 -<TPR, -<TPL and -<TPU are BPDOs. 

Proof The proof for -<TPR is given in Kimeldorf and Sampson 
(1987). The proof for the other two orderings is very similar (see 
also Metry and Sampson 1991). 0 

2.2.6 Positive function dependence ordering* 

The ordering that generalizes the dependence concept of PFD is 
given in this subsection. 

Let the rvs X 1, ... , Xm, X~, ... , x:n have a common distribu­
tion, say F0 , and let X --- F, X' --- F'. Then X' or F' is more 
positive function dependent than X or F (written X-<prctX' or 
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F-<.prdF') if 

E [h(Xt) · · · h(Xm)] ::::; E [h(XD · · · h(X:,)] 

for all real-valued functions h such that the expectations exist. In 
the case of m odd, there is the extra constraint of h being non­
negative. 

This ordering has some applications to multivariate models, but 
the following results show that it is not a BPDO when m = 2. 
Also a result below shows that two multivariate distributions can 
be ordered in -<.c but not in -<.prd and vice versa. Generally, the 
-<.prd ordering is useful only for exchangeable and some partially 
exchangeable multivariate distributions. 

Theorem 2.18 Let Fa be a given univariate cdf and let F E 
:F(Fo, Fa). Furthermore, let Fu(x1, x2) =min{ Fa( xi), Fa(x2)} be 
the Frechet upper bound in :F. Then F -<.prdFu. 

Proof Let (X1,X2),..., F so that (X1,XI),..., Fu. Then E[h(X1)­
h(X2)j2 2:: 0 implies 2E [h2(Xl)] 2:: 2E [h(Xl)h(X2)]. 0 
Theorem 2.19 Let Fa be a given univariate cdf and consider the 
Frichet class :F(Fo, Fa); let FL(x1, x2) = max{O, F0 (x 1)+F0 (x2)-
1} be the Frichet lower bound. Then it is not true that FL-<.prdF 
for all F E :F(Fo, Fa). 

Proof. Let us simplify to the case where Fa is the cdf of a U(O, 1) 
rv. Let (U1, U2) ,..., F and then (U1, 1- Ut) ,..., F£. The -<.prd or­
dering would require E [h(Ut)h(1- Ut)] ::=; E [h(U1 )h(U2 )] for all 
h. However, with h(x) = x(1- x) on [0,1], E [U[(1- U1)2] = 1/30 
and, for U1, U2 independent, {E [U1(1- Ut)]p = 1/36. D 

Theorem 2.20 The -<.prd ordering need not imply the -<.c ordering, 
and vice versa. 

Proof To get a simple example of a family of copulas C(-; 0) which 
is ordered by -<c but not by -<pfd, the symmetry in the two vari­
ables is eliminated. Let b1, b2 be functions on [0, 1] which satisfy 

f0
1 bj(u)du = 0, j = 1, 2, and fox b1(u)du J5 b2(v)dv 2:: 0 for all x, y 

in [0,1]. Then c(u, v; B) = 1 + Bb1(u)b2(v) is a proper density on 
[0, 1]2 for B in a neighbourhood of 0, and the cdfs C(·; B) are in­
creasing in -<.c as B increases. Now let b1, b2, h be piecewise constant 
with 

if 0::::; u < 0.5, 
if0.5::=;u::=;1, 

ifO::::; u < 0.25, 0.5::::; u < 0.75, 
if0.25::::; u < 0.5, 0.75::::; u::::; 1, 
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{ 
0 if 0:::; u < 0.25, 0.75:::; u:::; 1, 

h(u) = h2 if 0.25:::; u < 0.5, 
h3 if0.5:::; u < 0.75, 

and h2 =F h3. Then f0
1 f0

1 h(u)h(v)c(u,v;O)dudv = [(h2+h3)/4]2-
0[(h2- h3)/4J2 is decreasing in 0. 

The above example can be modified to get a family of copulas 
C(-; 0) which is ordered by -<prct but not by -<c· Let b be a function 
on [0,1] such that lbl :::; 1, and J0

1 b(s)ds = 0. Then c(u, v; 0) = 
1 + Ob( u )b( v) is a proper density for -1 :::; 0 :::; 1. Let h be an inte­
grable function on [0,1]. Note that J0

1 f0
1 h(u)h(v) c(u, v; 0) du dv = 

[f01 h(u)duj2 + O[f01 b(u)h(u)duj2 is increasing in 0, so that 

C(u, v; 0) = uv + 0 lv. b(s) ds lv b(t) dt 

is increasing in the -<prct ordering as 0 increases. Now let 

b( ) - { -1 if 0 < u < 0.25, 0.75 < u < 1, 
u - 1 if 0.25:::; u :::; 0.75, 

so that 

r { -X if 0 < X :::; 0.25, 
Jo b(s) ds = x- 0.5 if 0.25 < x:::; 0.75, 

o 1-x if0.75<x:Sl. 

For u = 1/8, v = 5/8, C(u, v; 0) = (5- 0)/64 is decreasing in 0, so 
that C(·; 0) is not increasing in the -<c ordering. 0 

2. 2. 7 Examples: bivariate 

This subsection consists of bivariate examples that illustrate the 
dependence orderings. 

Example 2.3 (continued). The family B5 of copulas in (2.18) is 
increasing in concordance as 8 increases and the limit is the Frechet 
upper bound as 8 ---> oo. To show the concordance ordering, one 
needs 8- 1 log(u6 +v6 -u6v6 ) to be decreasing in 8 for all 0 < u, v < 
1 or a log a + b log b - ab log( ab) - (a + b - ab) log( a + b - ab) :::; 0 
for all 0 < a, b < 1 (a = u6 , b = v6 , fJ 2::: 1). The last inequality 
follows from the majorization ordering (a, b)-<m(ab, a+ b- ab) and 
the convexity of the function w log w for w ~ 0. 

The family B5 satisfies the stronger -<si ordering as 8 increases. 
The following is a proof based on Theorem 2.14. Let B =log C211, 
where C211 is given in (2.19). Let U = u6 , V = v6 , U = 8Uj88 = 
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8- 1u log U, and V = 8- 1 V log V. Then 

B(u, v, 8) = ( -1+8-1) log(U+V -UV)+(1-8- 1) logU+log(1-V). 

Derivatives are: 
8 2 B _ (6-1)0UV 
8v8u - (U+V-UV)2uv' 
8B _ -1 1 (U+V-UV)+(!_ _ _i:_+(8-1_ 1)u(1-V)+V(l-U) 86 -52 og U 1-V U+V-UV ' 
82B _ V(U+V-UV)+(6-1)[UV-UV(l-V)) 
868u - u(U+V-UV)2 ' 
8B _ V[(1-U)(1-V)-6] 
8v - v(1-V)(U+V-UV)' 

The condition 82 B 8B - 82 B 8B simplifies to 8v8u 86 868u 8v 

(U + V- UV)- 3(uv)- 1[A1 + A2 + A3], 

where A1 = V 2(U + V - UV)[8 - (1 - U)(1 - V)]/(1 - V) ~ 0, 
A2 = -8-1(8-1)UV1og(U + V -UV) ~ 0 and A3 = (8-1)U(U + 
V- UV)V(1- V) = 8-1(8 -1)UV(U + V- UV)(1- V) log U ~ 0. 
The sum A2 + A3 can be negative. However A1 + A2 + A3 ~ 0 since 
V(U + V -UV)2 /(1- V)+U[-log(U + V -UV)+(U + V -UV)(1-
V) log U] ~ 0 for all 0 ~ U, V ~ 1. This last inequality has been 
verified by numerical computation and a study at the boundaries. 
0 

Example 2.6 The -<si ordering is shown for the family B3 in 
Section 5.1, using a direct application of the definition of -<si· 

Consider the family of copulas 

C( u, v; 8) = -8-1log[1-(1-e-6u )(1-e-6v )/(1-e-6 )], 0 ~ 8 < oo. 

Let 0 < 81 < 82. We show that C(·;81)-<s1C(-;82)- Let G(viu;8) 
= c211(vJu; 8) = [1- e-6- (1- e-6u)(1- e-6v)]-1e-6u(l- e-6v) 
= e-6u[(1- e-6)(1- e-6vt1- (1- e-6u)t1. Then 

?j!(u,v;81,82) = c-1(G(vJu;8!)Ju;82) 
__ .l..lo { 1 - 1-exp{-62} } 
- 62 g (w 1-1)exp{-6,u}+1 ' 

where w = G(vju;81). Here ?f!(u,v;81,82) is increasing in u since 
(w-1-1)e-62u = e(6t-62)u(1-e-6tv)-1(e-6tv -e-6t) is decreasing 
in u for fixed v. D 

Example 2.7 Numerical checks seem to indicate that the -<TPU 
(and -<TPL) ordering holds for the one-parameter families B1-B8 
of copulas in Section 5.1. Note that by numerical checks we mean 
that conditions are evaluated over a (fine) grid of values of the 
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relevant variables. The -<TPR ordering has been shown numerically 
and analytically not to hold for the families B2-B8, by comparing 
the special case of densities (intervals in the definition collapsed to 
points). The -<TPR ordering seems to hold for the BVN family from 
numerical tests. The -<si ordering holds for the families B1-B6; for 
the families B7 and BS the -<si ordering has not been checkable 
analytically. D 

Example 2.8 Let (XI, X2), (X~, X~) have BVSN distributions 
with respective correlations p, p' such that 0 ~ p < p1 ~ 1. Then 
(XI, X2)-<prd (XL X~). This result generalizes to equicorrelated 
MVN random vectors with positive correlations. 

Proof. Let g(u,v,w) = ~u+Jp'- pv+fow. Then we can 
write 

(XI,X2) 

(X~, X~) 

(g(UI, vi, w), g(U2, v2, W)), 

(g(UI, VI, W), g(U2, VI, W)), 

where UI,u2, VI, v2, Wareiidstandard normalrvs. Let h*(v,w) = 
E[h(g(UI, VI, W)) I VI= v, w = w]. Then 

E [h(X1)h(X2)] = E[h*(VI, W)h*(V2, W)] 

:S E{[h*(VI, W)f} = E [h(XDh(X~)], 
by making use of Theorem 2.18 for the inequality. D 

2.2.8 Examples: multivariate 

This subsection consists of multivariate examples that illustrate 
the dependence orderings. 

Example 2.9 The following is a result on the concordance or­
dering for elliptically contoured distributions, which include MVN 
distributions as a special case. 

Theorem 2.21 Let P be the set of non-negative definite correl­
ation matrices. Let Z have a spherically symmetric distribution, 
and let xT = AzT where AAT = E = ( CTij) is the Cholesky 
decomposition of E E P, with A lower triangular. Then, for all 
bE ?Rm, 

Pr(XI :S bi, ... , Xm ~ bm) 
is increasing in rTij for all i -:f j. 

(2.31) 

Proof. Since a spherically symmetric distribution is a mixture of 
distributions that are uniform on the surfaces of spheres of different 
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radii, it suffices to prove the result for the uniform distribution on 
the surface of a sphere with radius 1. 

In the bivariate case, the representation from the Cholesky de­
composition is X1 = Z1, X2 = pZ1 + (1- p2)112 Z2 asp varies from 
-1 to 1. Then Pr(X2 :S b2) = Pr(Z2 :S (b2 - pZ!)/(1- p2)112) 
is a constant; the line y = (b2 - px)/(1- p2)112 divides the cir­
cle x 2 + y2 = 1 in the same proportions for all p between -1 
and 1. Hence it is clear from a diagram that Pr(X1 = Z1 :S 
b1, Z2 :S (b2 - pZ!)/(1 - p2)112) is increasing in p because the 
slope -p/(1 - p2)112 is decreasing in p. Therefore the case m = 2 
has been proved. 

For m > 2, it suffices by symmetry to show that (2.31) is in­
creasing in p = D'm-1,m with other O'ij held fixed. Let Z be uni­
form on the surface of a sphere of radius 1. From the Cholesky 
decomposition, only am,m-1 and amm depend on p and am,m-1 = 
(p- :Lj=-;_2 am-1,jamj )/am-1,m-1 if am-1,m-1 > 0 and am,m-1 = 0 
if am-1,m-1 = 0 (in this case the upper (m- 1) X (m- 1) sub­
matrix of E is singular and p is fixed given the other O'ij ). If 
am-1,m-1 > 0, Pr(X1 :S b1, ... , Xm :S bm) becomes a weighted 
integral over z1, ... , Zm-2 of 

Pr(Zm-1 :S c1(z1, ... , Zm-2), p* Zm-1 + (1- p* 2)1/2 Zm 

:S c2(Z1, 0 0 0 , Zm-2) I (Z1' 0 0 0' Zm-2) = (z1' 0 0 0 ' Zm-2)), (2.32) 

where p* = am,m-1/ Dis increasing in p, and 

m-2 
c1(z1, ... ,Zm-2) = [bm-1- L am-1,jZj]/am-1,m-1 1 

j=1 

c2(z1, ... , Zm-2) = [bm- :Lj=-;_2 amjZj]/ D, D = [1- :Lj=-;_2 amjjl/ 2. 
Hence the monotonicity of (2.32) follows from the general m = 2 
case, since in (2.32), (Zm-1, Zm) has a density with circular con­
tours. D 

Example 2.10 Suppose F12, F13, F23 are compatible (1,2), (1,3) 
and (2,3) bivariate margins. Consider the set of trivariate cdfs 
:F(F12, F13, F23). IfF, F' E :F(F12, F13, F23) then F<.cvF' implies 
F' <-eLF so that F <.cF' implies that F = F'. This follows from the 
relationship between a trivariate cdf and survival function. 0 

Example 2.11 (Multivariate Frechet upper bound and <.pfd·) 

Suppose X is such that X14 · · · 4xm. Then X<.prd(X1, ... ,XI). 
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Proof. Consider the case where h is a non-negative function. First 
let X 1, ... , Xm be exchangeable rvs. Then it suffices to prove that 

(2.33) 

Note that h(Xj) are exchangeable rvs and then (2.33) follows from 
Muirhead's theorem (Marshall and Olkin 1979, p. 87). For the non­
exchangeable case, note that if X "' F and F has density f relative 
to some measure, then the F can be symmetrized to F* with den­
sity f*(x) = (m!)-1 I::"" f(x""( 1), ... , x""(m)), where the sum is over 
the permutations of { 1, ... , m}. If X* "' F*, then 

E [h(X;) ... h(X;,)] = E [h(X!) ... h(Xm)]. 

Hence in general, X~pfd(X1, ... ,X1). 
Next consider the case where m is even and h can have positive 

and negative values. It is necessary to show (2.33) above for ar­
bitrary h. Similarly to the proof in Theorem 2.18, we start with 
E {[h(X1) · · · h(Xm/2)- h(Xm/2+1) · · · h(Xm)f} ~ 0. We can as­
sume (by symmetrization) that X1, ... , Xm are exchangeable rvs. 
Then E [h(X!) · · · h(Xm)] :::; E [h2(X!) · · · h2(Xm;2 )]. The latter 
term is dominated by E [hm(Xl)] from the preceding case. D 

2.3 Bibliographic notes 

Early references for the concepts of PQD, POD, SI, RTI, LTD, 
TP2 density, association and CIS are Barlow and Proschan (1981), 
Lehmann (1966), Esary and Proschan (1972) and Esary, Proschan 
and Walkup (1967). Papers that include negative association, not 
used in this book, are Alam and Saxena (1981) and Joag-dev and 
Proschan (1983). A reference for multivariate dependence concepts 
is Block and Ting (1981). A reference for the concept of PDS is 
Block, Savits and Shaked (1985). The multivariate extension of 
LTD is from Alzaid and Proschan (1994). For the concept of TP2 
survival functions and generalizations, see Shaked (1977a). Shaked 
(1977a) shows that the condition of a TP2 bivariate survival func­
tion is the same as an earlier definition of right corner set in­
creasing (RCSI) in Harris (1970). The relation between min-id and 
TP2 surivival functions is proved in Marshall and Olkin (1990). 
The concepts of MTP2 and MRR2 are from Karlin and Rinott 
(1980a; 198Gb). Results on max-id and min-id are from Joe and 
Hu (1996). For further results for max-id for bivariate distribu­
tions, see Balkema and Resnick (1977). 

Original references for Spearman's rho and Kendall's tau are 
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Spearman (1904) and Kendall (1938); a later reference with con­
nections to copulas is Schweizer and Wolff (1981). The concept of 
tail dependence is from Joe (1993). 

The axioms of a bivariate positive dependence ordering and a 
framework for positive dependence are given in Kimeldorf and 
Sampson (1987; 1989). The bivariate concordance ordering is pre­
sented in Yanagimoto and Okamoto (1969), Tchen (1980) and 
Cambanis, Simons and Stout (1976), and the multivariate concord­
ance ordering is presented in Joe (1990c). The more SI ordering, 
although called the more regression dependent or more mono­
tone regression dependent ordering, is studied in Yanagimoto and 
Okamoto (1969), Schriever (1986; 1987) and Fang and Joe (1992). 
Schriever has a more associated ordering and a different equiva­
lent condition for the more SI ordering; these are not given here 
because they are not needed for the results in this book. The more 
TP2 orderings are studied in Kimeldorf and Sampson (1987) and 
Metry and Sampson (1991); the latter has more versions of more 
TP2 orderings than given in this chapter. 

Property P9 in Section 2.2.2 is an extension of Kimeldorf and 
Sampson (1987) from a sign change to a decreasing transforma­
tion. Section 2.2.3 consists of new results. However, the usefulness 
of multivariate positive dependence orderings other than the vari­
ations of the concordance ordering seems to be limited because of 
the difficulty of analytic checking. Theorem 2.14 is new, and the 
proof of Theorem 2.21 is from Joe (1990c). 

The PFD condition and orderings, known as positive dependence 
and more positive dependent, respectively, are studied in Rinott 
and Pollak (1980), Gieser and Moore (1983) and Tong (1989). 
Related ideas, including positive dependence by mixtures, are in 
Shaked (1977b; 1979). 

A comprehensive reference for stochastic orderings is Shaked 
and Shanthikumar (1994). A reference on total positivity is Karlin 
(1968). Dependence concepts have many other applications besides 
those in this book; several dependence concepts arise from reliabil­
ity (see Barlow and Proschan 1981) and Boland eta/. (1996) study 
dependence properties of order statistics. 

2.4 Exercises 

2.1 Show the equivalence of (2.1) and (2.2). 

2.2 Show that (2.3) and (2.4) are not equivalent for m > 2. 
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2.3 Show by means of counterexamples that there are no other 
implications among the bivariate positive dependence con­
cepts of PQD, SI, LTD, RTI, associated, TP2 density and 
TP2 cdf. 

2.4 Show that if F(x1, x2) = J0
00 G(x1; a)G(x2; a) dM(a), then 

F is PFD. 

2.5 For an m-variate cdf F, show that F"~ (F"~) is a cdf (survival 
function) for all 1 2:: m- 1. 

2.6 Suppose FE :F(F1, F2) has a covariance of 0 but F # F1F2. 
Prove that F is neither PQD nor NQD. 

2.7 For a bivariate copula C, let C'( u1, u2) = u1 +u2 -1 +C(1-
u1, 1- u2), C"(u1, u2) = u1- C(u1, 1- u2) be two of the 
associated copulas. Show that if Cis PQD, then C' is PQD 
and C" is NQD. Show that if C has upper tail dependence, 
then C' has lower tail dependence. 

2.8 For the bivariate normal density with correlation p, establish 
the condition for a TP2 density and association. 

2.9 Let (X1 , X 2 ) have a BVSN distribution with correlation p < 
1. Show that Pr(X2 > X I x1 > x)-+ 0 as X-+ 00 so that 
the BVN copula does not have tail dependence for p < 1. 

2.10 Let F -<cF', where F, F' are continuous cdfs. Show that the 
Kendall tau, Spearman rho and tail dependence values for 
F' are respectively greater than or equal to those of F. 

2.11 Prove Theorem 2.8. 

2.12 Let C(u, v; 8) = (u- 6 + v- 6 - 1)-116 , 0 ~ 8 < oo. This 
is the bivariate family B4 of copulas in Section 5.1. Check 
whether the dependence concepts in Section 2.1 hold. Also 
check whether C is increasing with respect to the -<c and 
-<s1 orderings as 8 increases. 

2.13 For a bivariate cdf F, prove that F TP2 is equivalent to F 
being min-id. (Marshall and Olkin 1990) 

2.14 For the bivariate normal density with correlation p, show 
that Kendall's tau is r = (2/';r) arcsin(p) and Spearman's rho 
is ps = (6j1r) arcsin(p/2). (See Kepner, Harper and Keith 
1989, for the quadrant probability calculation.) 

2.15 Let (X1,X2),...., F, where FE :F(F1,F2), and suppose that 
the covariance of X 1, X2 exists. Hoeffding's identity, which 
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lS 

Cov (X1, X2) = 1:1: [F(x1, x2)-F1(x!)F2(x2)] dx2dx1, 

is used in (2.9). Verify it. [Hint: use the positive and negative 
parts of a rv.] (Hoeffding 1940; Shea 1983) 

2.16 Find an example of a random vector (X1,X2,X3) which is 
not PFD but has pairs (X1, X2), (X1, X3), (X2, X3) that are 
are PFD. Also find an example where (X1, X2, X3) is PFD 
but (X1, X2) is not PFD. [Hint: consider trivariate families 
that are like the family B10 in Section 5.1.] 

2.17 Prove that if an m-variate density f is MTP2, then its cdf 
F and survival function Fare also MTP2. 

2.18 Let X1, X2 be continuous rvs such that X2 is RTI in X1 and 
X2 is LTD in X1. Prove that the Spearman rho value for 
X1,X2 is larger than the Kendall tau value. 

(Caperaa and Genest 1993) 

2.19 (Interpretation of I;-1 for a MVN distribution, see Example 
2. 2.) Let A = ( a;j) be the inverse of the m-dimensional 
correlation or covariance matrix :E. Let I;(uv) be the ma­
trix obtained from :E by removing the uth, vth rows and 
columns. Let O'ij·r be the partial covariance of the ith and 
jth variables given the remaining m- 2 variables. Show that 
a;j = -O'ij·ri:E(ij)II:EI-1 fori :f. j, so that X,....., N(O, :E) has 
MTP2 density if and only if, for all i :f. j, the partial correl­
ation of X;, Xj given any subset of the remaining variables 
is non-negative. 

2.20 Show that the orderings --<c, --<cu and --<cL are MPDOs. 
2.21 Let F, F' E :F(Fo, ... , Fo) be m-variate distributions, with 

respective continuous densities J, f'. Prove that a necessary 
condition for F.-<prdF' is that f(x, ... ,x) ~ f'(x, ... ,x) for 
all x in the support of Fo. 

2.22 Let <l>3(-; P12, P13, P23) be the family of trivariate standard 
normal cdfs with means 0 and correlations Pij. If Pij ~ 0, i < 
j, and ifthe inequality P12P23 ~ P13 ~ 1-IP12-P231 does not 
hold, then show that <l>3(-; P12, P13, P23) and <l>3(-; P12, P13 + 
f, P23) are not ordered by --<prd, where f > 0 is arbitrarily 
small. 

2.23 Let F, F' E :F(F1, F2) be such that F.-<cF'. Let F211, F~ 11 be 
the corresponding conditional distributions. For a fixed x2, 
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show that the number of sign changes of the function s = 
F2p(x2l·)- F~ 11 (x2l·) is odd and s(x1) is negative (positive) 
for x1 near XL (xu), the lower (upper) end point of support. 

2.24 Show by means of a counterexample that the converse of the 
result in the preceding exercise is not true. 

2.25 Let F, F' E :F(F1, F2) and let F211, F~ 11 be the (continuous) 
conditional distributions. Suppose F -<s1F'. Show that there 
is a function b( x2) such that F211( x2lx1)- F~ 11 (x2lx!) 2: 0 if 
and only if b( x2) ::; x1. 

2.26 Let F, F' E :F(F1, F2) and let F211, F~11 be the (continuous) 
conditional distributions. Suppose that there is a function 
b(x2) such that F211(x2lx!)- F~11 (x2lx!) 2: 0 if and only if 
b(x2) :S x1. Show that F-<cF'. 

2.27 Consider the ordering for F, F' E :F( F1, F2) defined by F -< 
F' if there exists a real-valued function b( x2) such that 
F211(x2lx!) - F~ 11 (x2!x!) 2: 0 if and only if b(x2) :S x1. 
Show that -< is not transitive. 

2.5 Unsolved problems 

2.1 Verify or disprove the -<TPR ordering for the BVN family. 

2.2 Verify or disprove the -<TPL and -<TPU orderings for the 
families B1 to B8 in Section 5.1. 

2.3 Consider the ordering with definition F -< F' if J '1jJ dF ::; 
J '1jJ dF' for all L-superadditive functions 1/J. A real-valued 
function '1jJ on ~m is L-superadditive or lattice super­
additive if 

1/J(x V y) + 1/J(x 1\ y) 2: '1/J(x) + '1/J(y), Vx, y E ~m. 

Is this an MPDO for m 2: 3? It is equivalent to the concord­
ance ordering for m = 2 (Tchen 1980). For m 2: 4, the L­
superadditive ordering is strictly stronger, and form= 3 it is 
unknown if the L-superadditive ordering is strictly stronger. 

(Joe 1990c) 



CHAPTER 3 

Frechet classes 

This chapter is concerned with results on the extremes of and 
bounds on Frechet classes (or classes of multivariate distribu­
tions with some given margins). If the indices of the margins being 
fixed are overlapping, then one first has to determine whether the 
margins are compatible. Section 3.1 is devoted to the class of m­
variate distributions :F( F1, ... , F m), in which the univariate mar­
gins F1 , ... , Fm are given or fixed. Subsequent sections are devoted 
to other Frechet classes, starting with classes of trivariate distribu­
tions with some fixed bivariate margins. Specifically, :F(F12, F3 ), 

F(F12, F13), F(F12, F13, F23), :F(F;i, 1 s; i < j s; m), etc., are 
studied. For something like F(F12 , F13), it is assumed that the 
first univariate margin of F12 and F13 are the same. The study of 
the class :F(F;j, 1 s; i < j s; m) is important but not easy; one 
first has to determine if the set of bivariate margins are compatible 
and, if so, come up with methods to construct a multivariate dis­
tribution with the given margins. Some non-compatibility results 
for :F( F;j, 1 s; i < j s; m) are based on the set { D;j : i < j}, where 
D;j is a measure of bivariate association for F;j. 

We can also consider Frechet classes of survival functions given 
marginal survival functions, e.g., :F(Fl, ... ,Fm), :F(F12,F13), 
:F(F12, F13, F23). In some cases, because of the relationship be­
tween multivariate cdfs and survival functions, an upper (lower) 
bound cdf becomes a lower (upper) bound survival function. 

For a given Frechet class :F, natural questions to ask are the 
following. 

1. What are the bounds for the multivariate distributions in :F? 

2. Do the bounds correspond to proper multivariate distributions, 
and if so, is there a stochastic representation or interpretation 
of the extremes? 

3. Are the bounds sharp if they do not correspond to proper 
multivariate distributions? 
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4. What are simple members of :F? 
5. Can one construct parametric subfamilies in F with desirable 

properties? 

The results in this chapter mainly concern 1 to 4, and later 
chapters deal with 5. The discussion of the classes F(F12 , F13), 
F(F12,F13,F23) and :F(F;j,1:::; i < j:::; m) is crucial to the de­
velopment of the construction methods in Sections 4.5, 4.7 and 
4.8. 

3.1 F(F1, ... , Fm) o 

Let F1, ... , Fm be given univariate distribution functions, each of 
which can be continuous or non-continuous. The Frechet bounds for 
F = F(F1, ... , Fm) are given by the inequalities in the following 
theorem. They depend on simple inequalities involving probabil­
ities of sets. 

Theorem 3.1 Let FE F(F1, ... , Fm)· Then for all x E ~m, 

max{O, F1(x!) + · · · + Fm(xm)- (m- 1)}:::; F(x):::; m.inFj(Xj)· 
3 

Proof. Let p; = Pr(A;), where A; = {X; :::; x;} with X; ,..._, F;, 
i = 1, ... , m. Then from Lemma 3.8 below, 

max{O,p1 + · · · + Pm- (m- 1)}:::; Pr(A1 n · · · n Am):::; m.inpi. 
3 

D 

Let the Frechet upper bound, minj Fj(Xj ), be denoted by Fu(x) 
and let the Frechet lower bound, max{O, F1(x1) + · · · + Fm(xm)­
(m- 1)}, be denoted by FL(x). 

Theorem 3.2 The Frechet upper bound Fu is a cdf 

Proof. Let Xj "" Fj, j = 1, ... , m. If one of the univariate cdfs is 
continuous, say F1, then Fu is the joint distribution of X with the 
stochastic representation Xj = Fj- 1(F1(X!)), j = 2, ... , m. 

If all univariate cdfs have some discontinuity points, then ap­
proximate F1 by a sequence F1n such that F1n -+d F1 (this is al­
ways possible by, for example, convoluting X1 with a N(O, n-1) rv). 
From the preceding paragraph, min{Fln(x!), F2(x2), ... , Fm(xm)} 
is a cdf for all n, and the rectangle inequality (1.6) holds for 
it. Hence the rectangle inequality holds for minj Fj(xj) for all 
(x1, ... , Xm, x1 + h1, ... , Xm + hm) such that x1,x1 + h1 are con­
tinuity points of F1. For the remaining case where x1 (or x1 + h!) 
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is not a continuity point of F1 , a limit based on Xlk (x1 + hlk) 
decreasing to x1 ( x1 +hi) can be used. The other necessary condi­
tions for a multivariate cdf can easily be checked for minj Fj ( x j), 
hence Fu is always a cdf. D 

Theorem 3.3 The Frechet lower bound FL is a cdf for m = 2. 

Proof. The proof is similar to that in the preceding theorem. Let 
Xj "" Fj, j = 1, 2. If at least one of the Fj is continuous, say F1 , 

then FL(x1, x2) = max{O, F1(x!) + F2(x2)- 1} is the joint distri­
bution of X1,X2 with the stochastic represention X2 = F2- 1(1-
F1(XI)). If neither F1 nor F2 is continuous, the idea in the second 
paragraph of the preceding proof works. Alternatively the rectangle 
inequality (1.5) can be checked directly for the few cases. D 

With replacement by U(O, 1) margins and survival functions, the 
following two results are easily obtained. 

Theorem 3.4 The copula of the Frechet upper bound is Cu(u) = 
min{ u1, ... , um}. Form = 2, the copula of the Frechet lower bound 
is CL(u) = max{O, u1 + u2- 1}. 

Theorem 3.5 The upper bound for :F(F1 , ... , F m) is Gu(x) = 
minj { Fj(Xj)} and the lower bound is GL(x) = max{O, Lj Fj(Xj )­
( m - 1)}. Gu is the survival function of Fu, and when FL is a 
proper cdf, G L is the survival function for FL. 

Proof. The bounds are proved in a similar way to before. The 
proof of the relationships between Gu, Fu and G L, FL is left as 
an exercise. An identity that can be used is 

max z· = ""'(-1)15 1+1 minz·. 
1< "<m J L..,; iES J 
_J_ SESm 

D 

For m ~ 3, FL is in general not a proper cdf. An example for 
illustration is given next before further results are obtained. 

Example 3.1 Consider the symmetric situation with F1 , F2 , F3 

each corresponding to a Bernouilli rv with parameter p. That is, 
Fj ( x) = 0 if x < 0, Fj ( x) = q = 1 - p if 0 :::; x < 1 and Fj ( x) = 1 
if x ~ 1. Then FL is a cdf if and only if p :::; 1/3 or p ~ 2/3. 

Proof. For p ~ 2/3, the positive probability masses are 

Pr( {(1, 1, 0)}) = Pr( {(1, 0, 1)}) = Pr( {(0, 1, 1)}) = q 

and Pr( {(1, 1, 1)}) = 1- 3q. For p:::; 1/3, the positive masses are 

Pr( {(1, 0, 0)}) = Pr( {(0, 1, 0)}) = Pr( {(0, 0, 1)}) = p 
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and Pr( {(0, 0, 0)}) = 1 - 3p. 
For 1/3 < p < 2/3, F = FL satisfies F(O, 0, 0) = 0, F(1, 0, 0) = 

F(O, 1, 0) = F(O, 0, 1) = max{O, 1- 2p}, F(1, 1, 0) = F(1, 0, 1) = 
F(O, 1, 1) = 1 - p, F(1, 1, 1) = 1. Hence F(1, 1, 1)- F(1, 1, 0)­
F(1, 0, 1)-F(O, 1, 1)+F(O, 0, 1)+F(O, 1, O)+F(1, 0, 0) equals 1-3p 
if p ~ t and equals 3p - 2 if p > t. Since both of these quantities 
are negative, the rectangle inequality (1.6) does not hold. 0 

Continuing with this example, FL can be shown to be sharp 
for 1/3 < p < 2/3. For p ~ t, the distribution F with positive 
masses Pr( {(0, 1, 0)} = Pr( {(1, 0, 1)}) = 1- p and Pr( {(1, 1, 1)}) = 
2p - 1 takes care of the lower bound at six vertices of the cube: 
F(1, 1, 0) = F(1, 0, 1) = F(O, 1, 1) = 1- p, F(1, 0, 0) = F(O, 0, 1) = 
0 and F(O, 0, 0) = 0. By permuting the indices, FL(O, 1, 0) = 
0 can also be achieved. Next suppose p < t· The distribution 
F with positive masses Pr( {(0, 1, 0)} = Pr( {(1, 0, 1)}) = p and 
Pr ( { ( 0, 0, 0)}) = 1-2p takes care of the lower bound at five vertices 
of the cube: F(1, 1, 0) = F(1, 0, 1) = F(O, 1, 1) = 1- p, F(1, 0, 0) = 
F(O, 0, 1) = 1- 2p. By permuting the indices, FL(O, 1, 0) = 1- 2p 
can also be achieved. Finally, the distribution F' with positive 
masses Pr( {(0, 1, 0)}) = Pr({(1, 0, 0)}) = Pr( {(0, 0, 1)}) = (1-p)/2 
and Pr( {(1, 1, 1)}) = (3p-1)/2 takes care oflower bound at (0,0,0): 
F'(O, 0, 0) = 0. D 

Next we obtain conditions for FL to be a cdffor m = 3 (and then 
we generalize the result to m > 3). Suppose all univariate margins 
Fj are not degenerate. Clearly, FL is not a cdf if F1, F2, F3 are 
continuous. (In this case, by applying the probability transform, 
Fi can be taken to be U(O, 1), and if (U1, U2, U3) "'FL, then all 
three bivariate margins are two-dimensional Frechet lower bounds. 
Hence U1 + U2 = U1 + U3 = U2 + U3 = 1 from Theorems 3.3 
and 3.4, leading to a contradiction.) Similarly, if one of the three 
distributions is continuous, say F1, then FL cannot be a cdf. (If 
(X1, X2, X3) "'FL, then Xj = pi-1(1- F1(X!)), j = 2, 3; X2, X3 
are then positively associated and this is a contradiction.) Hence 
a necessary condition is that each Fj has a discrete component. 

Theorem 3.6 A necessary and sufficient condition for the Frechet 
lower bound FL of :F(F1 , F2, F3) to be a cdf is that either 

(a} F1(x!) + F2(x2) + F3(x3) < 1 whenever 0 < Fj(Xj) < 1, 
j = 1, 2, 3; or 

(b) F1(x!) + F2(x2) + F3(x3) > 2 whenever 0 < Fj(Xj) < 1, 
j = 1,2,3. 
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Nate that (a) and (b) cannot both occur together. 

Proof Let Xj < xj, Pj = F(xj), pj = F(xj), j = 1,2,3. Also let 
(Y)+ = max{O, y}. 

First we prove the sufficiency of (a). The rectangle condition 
(1.6) for FL leads to 

(p~ + p~ + p~ - 2)+ - (p~ + p~ + Pa - 2)+ - (p~ + P2 + p~ - 2)+ 

-(Pl + p~ + P~ - 2)+ + (p~ + P2 + Pa - 2)+ + (Pl + P~ + Pa - 2)+ 

+(Pl + P2 + P~- 2)+- (Pl + P2 + Pa- 2)+· (3.1) 
Assume that (x1,x2,x3) satisfies condition (a). If p~,p~,p~ < 1, 
then (3.1) becomes 0 since each term is 0. If p~ = 1, p~,p~ < 1, 
then (3.1) is still 0 because p~ + p~ :S Pl + p~ + p~ :S 1 from (a) 
and hence p~ + p; + p~ :S 2. If p~ = p; = 1, p~ < 1, then (3.1) 
becomes p~ - p3 2: 0 since only the first two terms are non-zero. If 
p~ = p~ = p~ = 1, then (3.1) becomes 1- Pa- P2- P1 2: 0. Each 
of the remaining cases is symmetric to one of these. Hence FL is a 
cdf. 

Next we prove the sufficiency of (b). Assume that ( x~ , x;, x~) 
satisfies condition (b). If Pl,P2,P3 > 0, then (3.1) becomes 0 since 
all of the terms are non-negative. If Pl = 0, P2,P3 > 0, then the 
four terms with P1 are 0 and (3.1) becomes 0. If P1 = P2 = 0, 
Pa > 0, then only the first two terms may be non-zero and (3.1) 
becomes Ps- Pa 2: 0. Each of the remaining cases is symmetric to 
one of these. Hence FL is a cdf. 

Finally we prove the necessity of (a) or (b). If neither (a) nor (b) 
holds then there is a vector ( x 1 , x2, xa) such that 1 < Pl + P2 + Pa < 
2, 0 <Pi < 1, j = 1,2,3. Let Pi = p~ = p~ = 1. Then (3.1) 
simplifies to 

1-pl-P2-Pa+(Pl +p2-1)++(Pl +pa-1)++(P2+Pa-1)+· (3.2) 

This will be shown to be negative in all cases and hence FL is not a 
cdf.lfpi+Pj :S 1 for all three pairs, then (3.2) is 1-pl-P2-P3 < 0. 
If Pl +P2 2: 1, P1 +Pa :S 1, P2+Pa :S 1, then (3.2) becomes -pa < 0. 
If Pl + P2 2: 1, Pl + Pa 2: 1, P2 + Pa :S 1, then (3.2) becomes 
Pl - 1 < 0. If Pi +Pi 2: 1 for all three pairs, then (3.2) becomes 
P1 + P2 + Pa - 2 < 0. 0 

The generalization to higher dimensions is as follows. The ideas 
are clearer in the proof of the special case of m = 3. 

Theorem 3. 7 A necessary and sufficient condition for the Frechet 
lower bound FL of :F(F1, ... , Fm) to be a cdf is that either 
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(a) L,jFi(xj) ~ 1 whenever 0 < Fj(Xj) < 1, j = 1, ... ,m; or 

{b) LjFj(Xj) 2:: m-1 whenever 0 < Fj(xj) < 1, j = 1, ... ,m. 

Proof Let Xj < xj, Pjo = F(xj) and Pil = F(xj), j = 1, ... , m. 
Let (Y)+ = max{O, y} as before. 

First we prove the sufficiency of (a). The rectangle condition 
(1.6) for FL leads to 

2::: ( -1r-l:jfj [l;:Pi•i- (m- 1)) +. (3.3) 
(f,, ... ,fm):fj=O or 1 J 

Assume that (x1, ... , xm) satisfies condition (a). Then by elimin­
ating the zero terms in (3.3), we get: 

(pu + .. · + Pml- (m- 1))+ 

(Plo + P21 + · · · + Pml - (m- 1))+ 

(Pu + P2o + Pal + · · · + Pm1 - ( m - 1) )+ - · · · 

(pu + · · · + Pm-1,1 + Pmo- (m- 1))+. (3.4) 

(Note that from (a), a term is zero if two probabilities in it are less 
than 1.) If Pll = · · · = Pm1 = 1, then (3.4) becomes 1-Plo- · · ·­
Pmo 2:: 0. If P11 = · · · = Pm-1,1 = 1, Pm1 < 1, then (3.4) becomes 
Pml- Pmo 2:: 0. If at least two of the Pmj are less than 1, then (3.4) 
is zero. Hence FL is a cdf. 

Next we prove the sufficiency of (b). Assume that (x~, ... , x:,) 
satisfies condition (b). If Pjo > 0 for all j, then (3.3) is zero. If 
at most m- 2 of the Pjo are zero, then (3.3) is zero because the 
signs ( -1 )m-l:i 'i of p;o, Pi1 for the non-zero terms balance out for 
all i. If P1o = · · · = Pm-1,0 = 0 and Pmo > 0, then (3.3) becomes 
Pml - Pmo 2:: 0. If P10 = · · · = Pmo = 0, then (3.3) becomes 
Pu + · · · + Pml- (m- 1) 2:: 0. Hence FL is a cdf. 

Finally, for the necessity of (a) or (b), we will use induction with 
the m = 3 case from the previous theorem as the starting point. 
Suppose m 2:: 4 and the result is true for all dimensions less than m. 
Suppose there is a point (Yl, ... , Ym) such that 1 < Lj Fj (Yj) < 
m - 1 and 0 < Fj (Yi) < 1 for all j. 

If FL is a cdfthen its lower-dimensional margins are also Frechet 
lower bounds. Hence, by the induction hypothesis, it is not possible 
that 1 < Lj Fj(Yj)- F;(y;) < m- 2 for any i. Therefore for each 
i, either L· Fj(Yj)- F;(y;) ~ 1 or Lj Fj(Yj)- F;(y;) 2:: m- 2. 
The same direction for the inequality must hold for all i because 
if, for example, F2(Y2) + · · · + Fm(Ym) 2:: m- 2 with i = 1 then 
L,j'=2 Fj(Yj)- F;'(Yi') > m- 3 for i' = 2, ... , m and hence it is 
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impossible for F1 (y1) + I:j'=2 Fj (Yj) - F;' (Yi') :::; 1 to hold. 
If I:· Fj(Yj)- F;(y;) ::=; 1 for all i, then take (x1, .. . ,xm) = 

(y1 , ••• : Ym) and (x~, ... , x~) = ( oo, ... , oo ). The rectangle condi­
tion (3.3) becomes 1 - P1o - · · · - Pmo = 1 - I:j Fj (Yj) < 0 since 
Pia+ Pi'O:::; 1 for all if i'. 

If I:. Fj (Yj) - F; (y;) 2: m - 2 for all i and m is odd, then take 
(x1, ... 3,xm) = (y1, ... ,ym) and (xi, ... ,x~) = (oo, ... ,oo). The 
only zero term in (3.3) is when f.j = 0 for all j and hence (3.3) 
becomes ( -1r[(m- 1)- P1o- · · ·- Pmo] < 0. If I:j Fj(Yi)­
F;(yi) 2: m- 2 for all i and m is even, then take (x1, ... , Xm) = 
(-oo,y2, ... ,ym) and (x~, ... ,x~) = (y1,oo, ... ,oo). All of the 
terms in (3.3) with t 1 = 0 are zero and the term with t1 = 1, 
f.j = 0, j > 2, is also zero. Hence (3.3) becomes 

:L (-1)m-1-I:j=2fj [:LPjfj- (m -1)L 
f:fj=O or 1, 3 
j>l,fl=l 

= (-1r-1[m-1-p11-P2o- ···-Pmo] 
= (-1)m-l[m-1-Fl(y!)-···-Fm(Ym)]<O. 

Hence the necessity of (a) or (b) has been proved for dimension 
m. 0 

An interpretation of the preceding theorem is the following. Con­
dition (a) means that there is a finite upper support point ej for 
Fj, and ei is a point of mass of Fj, j = 1, ... , m. The masses 
1- F(ei-) are such that I:i [1- F(ei- )] 2: m- 1. Similarly, con­
dition (b) means that there is a finite lower support point ej for 
Fj, j = 1, ... , m, such that I:j F(ej) 2: m- 1. 

The next theorem concerns the sharpness of the Frechet lower 
bound for m 2: 3. The following lemma is used. 
Lemma 3.8 Let A1, ... , Am be events such that Pr(A;) =a;, i = 
1, ... ,m. Then 

max{ 0, L ai - (m- 1)} :::; Pr(A1 n · · · n Am) :::; m.inaj 
. 3 

3 

and the bounds are sharp. 
Let A? be the complement of A; and let A} =A;, i = 1, ... , m. 

Then it is possible to assign probabilities to 

A11 n · · · n A~, t; = 0 or 1, i = 1, ... , m, 

(in a continuous way over a;) such that Pr(A1 n · · · n Am) 
max{O, I:j aj- (m- 1)} and a;= I:n,=l Pr(A? n · · · n A:,m ). 
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Proof. The second inequality follows from the law of inclusion, 
and the first inequality follows from the law of addition applied to 
the complement: Pr(A1 n · · · n Am) = 1- Pr(A~ U · · · U A~J 2: 
1-Lj Pr(AJ). The upper bound is sharp from the case where one 
event is a subset of the remaining events. There are two cases to 
consider for the sharpness of the lower bound. Let b; = 1 - a;, 
i = 1, ... ,m. 

The first case is 2:::::1 a; 2: m- 1 or 2:::::1 b; :::; 1. The events A? 
can then be made incompatible. Hence Pr(A~U· · ·UA~) = 2:::::1 b;, 
Pr(A1 n · · · n Am) = 2:::::1 a;- (m- 1), Pr(ni=l, ... ,m,i;tjA;) = 
2:::::1 a;- aj- (m- 2), Pr((ni=l, ... ,m,i;tjA;) n AJ) = 1- aj, j = 
1, ... , m, and Pr(A~' n · · · n A~) = 0 if at least two of the f; are 
zero. 

Next suppose there is an integer 1 :::; k < m such I::=l b; :::; 1, 

2::::,:-11 b; > 1. The events A~, ... , A~ can be made into incompat­
ible events, and an event E, incompatible with A~, ... , A~, with 

probability 1 - I:~=l b; can be added. Let D be an event, incom­

patible with E, with probability 2::::,:-11 b;- 1. Then define A~+l = 
E U D; this has probability bk+l· Define the remaining events 
Ak+2, ... , An to be independent of each other and of A1, ... , Ak+l· 
Then Pr(A1n· · ·nAk+!) = Pr(A1n· ··nAn)= 0, Pr(A1n· · ·nAkn 

A~+l) = Pr(E) = 2::::=1 a;-(k-1), Pr((ni=l, ... ,k+l,i;tjA;)nAJ) = 
Pr(AJ n D0 ), j = 1, ... , k, where D0 is the complement of D, 

Pr((ni=l, ... ,k,i;tjA;) n AJ n A~+1 ) = Pr(AJ n D), j = 1, ... , k, and 

Pr(A~' n · · · n A~k:1') = 0 if 2::::=1 (1 - f;) 2: 2. Finally, Pr(A~' n 
· · · n A'm)- Pr(A'' n · · · n A'k+') · IJm a''(1- a·) 1-'' D m - 1 k+l i=k+2 i ' · 

Theorem 3.9 If the cdfs F1, ... , Fm are continuous, then the Fre­
chet lower bound FL (y) is sharp at each y E ~m. 

Proof. Without loss of generality, take F; to be U(O, 1) for each i. 
(This is possible since one can always transform from the U(O, 1) 
cdf to a general continuous Fj.) 

Let U1 , ... , Um be U(O, 1) rvs with a joint distribution to be 
defined constructively. Fix (Yl, ... , Ym) with 0 < y; < 1. Let A; = 
{U; :::; y;}, i = 1, ... , m. Other notation is the same as in Lemma 
3.8. By Lemma 3.8, it is possible to assign probabilities to the 
regions A~'n· · ·nA~ such that Pr(A1n· · ·nAm) = max{O, Lj Yi­
(m- 1)}. Next assign probabilities uniformly within each region 
A~' n · · · n A~. Then the resulting univariate margins of the U; 
are in fact uniform on (0,1) and hence FL is sharp at (y1, ... , Ym)· 
The uniform distribution can be established as follows for U1, and 



then the other margins are also uniform by symmetry: 
• Pr(Ul :S xi) = Le,, ... ,em (xi/yl) Pr(Al n A;2 n ... n A:,;n) 

(xi/yl)Pr(Al) = x1, 0 :S x1 :S Yl, 
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• Pr(Ul :S x!) = Yl + Le,, ... ,em [(xl- yl)/(1- y!)] Pr(A~ n A~2 n 
... n A~)= Yl + [(xl- y!)/(1- y!)] Pr(A~) =X!, Yl < Xl :S 1. 

D 
By approximating discrete distributions by a sequence of contin­

uous distributions, the Frechet lower bound should in general be 
sharp. 

3.2 :F(F12, F1a) 

In this section, we obtain some results on the class oftrivariate dis­
tributions :F = :F(F12, F1a) for which the (1,2) and (1,3) bivariate 
margins are given or fixed. We assume that the conditional distri­
butions F211 and F311 are well defined. :F is always non-empty since 
it contains the trivariate distribution which is such that the second 
and third variables are conditionally independent given the first, 
i.e., the cdf defined by F(x) = I~~ F2ll(x21Y)Fall(xaiY) dF1(y). 
Similarly, perfect conditional positive and negative dependence 
lead to the Frechet bounds in :F. The ideas in this section are 
extended to the method of mixtures of conditional distributions in 
Section 4.5. 

Theorem 3.10 The Frechet upper bound of :F = :F(F12 , F13) is 
given by Fu(x) =I~~ min{F211(x2IY), Fall(xaly)} dF1(y) and the 
Frechet lower bound is given by FL(x) =I~~ max{O, F211(x2IY) + 
Fall(xaiY)- 1} dF1(y), and both of these bounds are proper cdfs. 

Proof Let FE :F. Then write F(x) =I~~ F2a11(x2, xaiY) dF1(y), 
where F2311 is the bivariate conditional distribution of the second 
and third variables given the first. The results follow from Theo­
rems 3.1 to 3.3. D 

The above theorem extends to the Frechet class :F consisting 
of m-variate distributions given two different (m- I)-dimensional 
margins (these two marginal distributions have m - 2 variables 
in common). For example, F E :F(Fl···m-1, Fl···m-2,m), can be 
written in the form: 

Jxl JXm-2 
F(x) = · · · Fm-l,mll···m-2(Xm-1, XmiYl> · · ·, Ym-2) 

-oo -oo 

·Fl···m-2(dyl, ... , dYm-2). 
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The bivariate conditional distribution can be bounded by the bi­
variate Frechet upper and lower bounds. 

For the Frechet class of survival functions :.F(F12 , F 1s) and its 
extensions, the Frechet bounds GL, Gu satisfy GL = FL and Gu = 
Fu. 

In this section, we obtain some results on the class of trivariate 
distributions :F = :F(F12, Fs) for which the (1,2) bivariate margin 
and the univariate margin for third variable are given or fixed. 

Similar to Theorem 3.1, an upper bound of the class :F is Fu(x) = 
min{F12(x1, x2), Fs(xs)}. In general, Fu is not a proper distribu­
tion. The simple intuitive proof is that the (1,3) and (2,3) mar­
gins are both bivariate Frechet upper bounds so that Fu cannot 
be a proper distribution unless F12 is a bivariate Frechet upper 
bound distribution. As an illustration, we also use the rectan­
gle condition of Section 1.4.2 to show that Fu is in general not 
a cdf, when F12 and F3 are continuous. Let the arguments be 
x1 < xi, x2 < x~, xs < x~, and let F12 = F12(x1, x2), F12' = 
F12(x1, x~), F1'2 = F12(x~, x2), F1'2' = F12(x~, x~), Fs = Fs(xs), 
F3, = F3(x~). We assume without loss of generality that F3, > F3 
and Fl'2' > Fl'2 > F12' > F12· Because F12(·, ·)is a proper distri­
bution, F1'2'- F112- F12' + F12 ~ 0. There are 15 ways of ordering 
Fs', Fs, F1'2', F1'2, F12', F12 that could be considered. One of them 
is F1'2' > F1'2 > Fs' > F12' > Fs > F12, in which case the rectan­
gle condition leads to Fs'- Fs'- F12'- Fs + Fs + Fs + F12- F12 < 0. 

A lower bound for :F is FL(x) = max{O, F12(x1, x2)+Fs(xs)-1}. 
It is left as an exercise to show that this is not a cdf in general. 
The intuitive argument is that the (1,3) and (2,3) margins of FL 
are bivariate Frechet lower bounds, so that FL is a proper cdf only 
if F12 is the Frechet upper bound. 

These results clearly extend to :F(Fs1 , ••• , Fsk), where S1, ... , Sk 
is a partition of {1, ... , m} with IS; I ~ 2 for at least one i. The 
Fnkhet bounds are generally not proper cdfs. 

Next we go on to other results for :F = :F(F12, Fs) when F1 = Fs 
and F12 is continuous, such as the extremal elements of the set, and 
the concordance and more SI orderings on :F. 

If F32 is chosen so that Fs2-<cF12 and F123 is the Frechet upper 
bound given F12, Fs2, then F123 E :F(F12, Fs) and F123 is smaller 
than F{23(x1, x2, xs) = F12(x1 1\ xs, x2) in the concordance or­
dering. Note that F{ 23 is the Frechet upper bound given F12, Fs2 
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when F32 = F12 and it is in :F(F12, F3) when F1 = F3. The 
prooffollows from F123(x1, x2, x3):::; min{F12(x1, x2), F32(x3, x2)} 
and F32(x3, x2) :::; F12(x3, x2), and similar inequalities for the sur­
vival functions. If F32 is chosen so that F12-<s1F32 and F123 is the 
Frechet upper bound given F12, F32, then for X,...., F123, there is the 
stochastic relation X 3 = g(X1, X2) with g (strictly) increasing in 
its two arguments. Note that Pr(Xl:::; Xl, x2:::; X2, g(Xl,X2):::; 
X3) = Pr(Xl:::; Xl, x2:::; x2) = F12(xl,x2) ifg(xl,x2):::; X3, and 
this is larger than F12(x1 1\ x3, x2) when X3 < x1. The inequality 
g( x1, x2) < X3 < x1 holds if x2 is sufficiently small and x1 is suffi­
ciently large. Hence, the distribution of (X1, X2, g(X1, X2)) is not 
dominated by F{ 23 . 

The above results suggest that when F1 = F3, maximal elements 
in :F include those for which F32 is strictly larger than F12 in the -<c 
or -<si ordering and F123 is the Frechet upper bound in :F(F12, F23). 

We show next that if F12-<s1F32-<siF~2 (with strict inequalities) 
and F112(·ly), F3l2(·1y), F~12 (·1Y) are continuous for ally, then the 
Frechet upper bounds 

and 

are not comparable in the -<c ordering, i.e., neither function domin­
ates the other uniformly over ~3 . (If F32 and F~2 are both strictly 
more concordant than F12 but are themselves not ordered by con­
cordance, then the trivariate distributions F123, F{23 are clearly not 
ordered by concordance.) The assumptions imply that F32(x3,x2):::; 
F~2 (x3, x2) for all x3, x2, so it remains to show that there exists 
(x1, x2, x3) such that F{23(x1, x2, x3) < F123(x1, x2, x3). From The­
orem 2.10, if x1, X3 are fixed, there exist Yo, y~, y~ such that 

[F112(x1IY)- F3l2(x31Y)](y- Yo) 2:: 0, 

[F112(x1IY)- F~l2(x31Y)](y- y~) 2:: 0, 

[F3I2(x31Y)- F~l2(x31Y)](y- y~) 2:: 0. 

Therefore if Yo, Yb, y~ are bounded away from the upper and lower 
end points of support, then F112(x1IY) < F312(x31Y) < F~12 (x31Y) 
for y small enough (less than min{yo,y~,y~}) and F112(x1IY) > 
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F3J2(x31Y) > F~12 (x31Y) for y large enough. If y~ <Yo, then 

ly~ 1Yo 
F123(x1, Yo, x3) = -oo F112(x1IY) dF2(y) + y~ F112(x1IY) dF2(y) 

> ly~ F112(x1IY) dF2(y)+ 1~o F~l2(x31Y) dF2(y) = F{23(x1, Yo, x3). 

The conditions where y~ < y0 can be investigated. 
For illustration, consider the special case of BVN distributions 

for F12, F32, F~2 . Let F12, F32, F~2 be BVSN with correlations 0 ~ 
P12 < P32 < p~2 . Then for x1,x3 fixed, Yo = [x3jl- pr2 -
X1 )1- P~2l/[P32jl- PI2-P12Jl- P~2] andY~= [x3jl- PI2-
Xl )1- p~22]/[p~2)1- PI2 -p12Jl- p~22 ]. Hence y~ < Yo for some 
choices of X1, x3, e.g., x1 = 0 < xa. 

The general approach for finding x1, xa such that y~ < y0 is as 
follows. F112( x1IY) is increasing in x1 for ally, so that if x1 is chosen 
to be small enough relative to xa, then Yo, Yo > y~. If F3J2(xaiY) > 
F~12 (xaiY) for y > Y~ and F112(x1IY) < FaJ2(xaiY), F~12 (x31Y) for 
y < y~, then F112(x1l·) must intersect F~12 (xal·) before FaJ2(xal·) 
or y~ <YO· 

If one weakens the assumption of F12-<s1Fa2-<siF~2 to F12-<c 
Fa2-<cF~2 , then the above argument is essentially still valid; details 
are a bit messier because the conditional distributions can have 
more crossings. 

Similarly, minimal distributions in :F can be studied. 

In this section, we study classes of trivariate distributions with 
three given bivariate margins, i.e., :F = :F(F12 , F13, F23). Here there 
is clearly a need to check for compatibility of the three bivariate 
margins, if they are arbitrary. For example, if the F12 , F13, F23 are 
BVSN cdfs with respective correlations P12, P13, P23, then the com­
patibility condition is that the correlation matrix with these Pii 
is non-negative definite. Assuming that the three bivariate mar­
gins are compatible, we can obtain upper and lower bounds in 
a simple form and study them in the continuous case (all bi­
variate margins continuous). We show that these bounds are in 
general not proper cdfs, but we do obtain some conditions for 
which they are proper cdfs. We also obtain some conditions for 
which there is a unique F E :F. Note also a difference compared 
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to the class F( F1, ... , F m) in that an upper (lower) bound cdf 
for F = F(F12 , F13, F23) becomes a lower (upper) bound survival 
distribution for F = F(F12, F13, F23). Compatibility conditions, 
based on the bounds and other criteria, are also given. Some ex­
tensions are given in Section 3.6 on F( F;j, 1 :::; i < j :::; m). 

The results of this section and their extensions in Section 3.5 are 
crucial to the understanding of the construction method in Section 
4.8. 

3.4.1 Bounds 

In this subsection, we obtain and analyse upper and lower bounds 
for F = F(F12, F13, F23). 

Theorem 3.11 Let a1 = F12, a2 = F13, a3 = F23, a4 = 1- F1-
F2-F3+F12+F13+F23, b1 = F12+F13-F1, b2 = F12+F23-F2, 
b3 = F13 + F23- F3. A lower bound is FL = max{O, b1, b2, b3} and 
an upper bound is Fu = min{a1, a2, a3, a4}. For F12, F13, F23 to be 
compatible, FL :::; Fu must hold everywhere. 

Proof. The last statement is obvious. Suppose F12, F13, F23 are 
compatible and let F E F. Clearly, F :::; min{F12, F13, F23}. The 
fourth term a4 in Fu comes from F = 1 - F1 - F2 - F3 + F12 + 
F13 + F23- F; since F ~ 0, F:::; a4. For the lower bound, suppose 
X"' F. Then for a permutation (i,j, k) of (1,2,3), 0 :::; Pr(X; :::; 
x;,Xj > Xj, xk > Xk) = F;- F;j- F;k +For F ~ Fij + F;k- F;. 

D 

The bounds in Theorem 3.11 will be called the Frechet bounds 
because they are simple and the analysis in Section 3.4.2 shows 
that for some choices of F12, F13, F23 they can both be equal to the 
unique distribution in F(F12, F13, F23). 

Both of the bounds FL, Fu have the right bivariate margins as 
F1 -+ 1, F2 -+ 1, F3-+ 1. From analysis of the derivatives of first, 
second and third order, a requirement (in the continuous differen­
tiable case) for the upper bound to be a proper distribution is that 
F211 + F311 - 1 ~ 0, F112 + F312- 1 ~ 0, F113 + F213- 1 ~ 0 when 
a4 :::; min{F12, F13, F23}. Similarly, a requirement for the lower 
bound to be a proper distribution is that F211 + F311 -1 ~ 0 when 
F12+F13-F1 = FL, F112+F312-1 ~ 0 when F12+F23-F2 = FL, 
and F113 + F213 - 1 ~ 0 when F13 + F23 - F3 = FL. These are 
necessary conditions, and other necessary conditions which come 
from the rectangle inequality (1.6) are studied below. 
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As an example, consider the case of pairwise independence (Fij = 
F;Fj for i < j). For the upper bound, note that if a4 ::::; F12 , then 
(1-F3)(1-Fl -F2) :S 0, which implies F1 +F2-1 = F113+F213-1 2: 
0. Similarly the other two requirements are met when a 4 is the 
minimum. For the lower bound, supposing FL = F1 ( F2 + F3 - 1) 2: 
0, then F211 + F311 - 1 = F2 + F3 - 1 2: 0; the other cases are 
covered by symmetry. However some other conditions are not met, 
with details given below. 

A general analysis is given for the upper bound. Let X ""' F with 
F E :F. The condition 

1- F1- F2- F3 + F12 + F13 + F23 :S min{F12, F13, F23}, (3.5) 

when evaluated at (x1,x2,x3), implies that 

1 - F; - Fi - Fk + F;i + F;k :S 0, (3.6) 

for all permutations (i,j, k) of (1,2,3). Inequality (3.6) is equivalent 
to 

P. - p.. Fk - F·k 
J •J + ' - 1 > 0 
1-F; 1-F; - ' 

which in terms of probabilities for the rvs is 

Pr(Xj ::::; Xj I X; > x;) + Pr(Xk::::; Xk I X;> x;)- 1 2: 0. (3.7) 

Note that (3.7) holds for all permutations (i,j,k) of (1,2,3) if 
x;, Xj, Xk are sufficiently large. The conditions that (3.5) must im­
ply in order for the Fnkhet upper bound to be a distribution are 

(3.8) 

for all permutations ( i, j, k) of (1,2,3). In terms of probabilities for 
the rvs, (3.8) is 

Pr(Xj ::::; Xj I X; = x;) + Pr(Xk ::::; Xk I X; = x;)- 1 2: 0. (3.9) 

If the bivariate margins are such that each conditional distribution 
Fili, i =/: j, is SI, then (3. 7) implies (3.9). If they are such that each 
conditional distribution Fili, i =/: j, is strictly SD, then one can 
come up with values of (x1, x2, x3) for which (3.7) does not imply 
(3.9). The reasoning is that if Xi is SI (SD) in X;, then 

Pr(Xj ::::; Xj I X;= x;) 2: (:S) Pr(Xj ::::; Xj I X;> x;). 

The proof is that 

Pr(Xj ::::; Xj I X; > x;) [F;(x;)t 1 1~ Fii;(Xj jy) dF;(y) 

< (2:) Fil;(xi jx;) 
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if Fili(xiiY) is decreasing (increasing) in y. 
A similar analysis can be given for the lower bound. FL cannot 

be identically equal to 0. If FL = F;j + F;k - F; ~ 0, evaluated at 
(x1, x2, x3), for some permutation (i,j, k) of (1, 2, 3), then in terms 
of probabilities for the rvs, 

Pr(Xj ~ Xj I X; ~ x;) + Pr(Xk ~ xk I X; ~ x;)- 1 ~ 0. (3.10) 

The condition that (3.10) must imply in order for the Frechet lower 
bound to be a distribution is (3.8) or (3.9). Using a similar argu­
ment to above, if the bivariate margins are such that each condi­
tional distribution F;li• i =/= j, is SD, then (3.10) implies (3.9), and if 
each conditional distribution is SI, then one can come up with val­
ues of (x1, x 2 , x 3 ) for which (3.10) does not imply (3.9). This follows 
because Pr(Xj ~ Xj IX; ~ x;) = [F;(x;)]-1 J~~ Fili(Xj IY) dF;(y) ~ 
(~)Fjli(Xj lx;) if Fili(Xj IY) is increasing (decreasing) in y. 

A summary here is that if the bivariate margins are all SI (SD), 
then the Frechet lower (upper) bound is not a proper distribution. 

Next we study another condition which essentially shows that 
FL and Fu are not proper distributions when all bivariate margins 
are PQD. 

For the upper bound, consider first the case where the three 
bivariate margins are the same (and symmetric), and consider the 
rectangle condition based on the cube with corners ( x, x, x) and 
(x', x 1, x') and x' = x + f for a small f > 0. Let F = F1(x), 
F' = F1(x'), G12 = F12(x, x), Gb = F12(x, x') = F12(x', x), Cf'2 = 
F12(x',x'). Then a4 = 1-3F+3G12 > G12 if1-3F+2G12 > 0. If 
F12 is PQD, then G12 ~ F 2 and 1- 3F + 2G12 ~ 1- 3F + 2F2 = 
(1-F)(1-2F) > 0 ifF<~· Suppose F, F' < ~and E is sufficiently 
small; then the rectangle 'probability' is Cf'2- 3Gb+ 3G12- G12 = 
(Gf'2-2Gf2+G12)+(G12-Gf 2) < 0, since the second negative term 
dominates when the expression is divided by t 2 and E-+ 0. For the 
more general case of arbitrary bivariate margins, take x1, x2, x 3 so 
that F12, F13, F23 are equal and small. 

Now for the lower bound, consider again the symmetric case 
and use the same notation. The lower bound is greater than zero 
if 2G12 - F > 0. If F12 is PQD, 2G12 - F ~ F(2F- 1) > 0 if 
F > t· Suppose F > t and E is sufficiently small; then the rectangle 
'probability' is (2Cf'2 - F')- 3[Gf2 + max{Cf'2 - F',Gf 2 - F}] + 
3[Gb + max{Gb- F', G12- F}]- (2G12- F)= 2Cf'2 - 3Gb+ 
G12- F' + F since F- G12 ~ F'- Gb, F- Gb ~ F'- Cf'2 
always hold (the probabilities correspond to Pr(X1 ~ x, X2 > x'), 
Pr(X1 ~ x',X2 > x') in the latter case). Next, 2Cf'2-3Cf2+G12-
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F' + F = 2(Cf'2- 2Cf2 + C12) + [(F- C12)- (F'- Cb)] < 0, since 
the second negative term dominates when the expression is divided 
by f 2 and f --+ 0. For the more general case of arbitrary bivariate 
margins, take Xt, x2, Xg so that F12 + F13- F1, F12 + F23- F2, 
F13 + F23 - F3 are equal or approximately equal and greater than 
0. 

3.4.2 Uniqueness 

In this subsection, we study the cases where the three bivariate 
margins F12, F13, F23 uniquely determine a trivariate distribution 
F, and analyse whether the Frechet bounds FL and Fu are equal 
to F. 

Examples are the following. 

1. Suppose all three bivariate margins are Frechet upper bounds. 
The unique trivariate distribution in :F(F12, F1g, F23) is F = 
min{Ft, F2, Fg}. For F1 :S F2 :S Fg, the upper bound is Fu = 
min{Ft, F1, F2, 1- Fg + Ft} = F1 and the lower bound is 
FL = max{O, F1, F1, F1 + F2- Fg} =Ft. After considering all 
cases, by symmetry, F = FL = Fu. 

2. Suppose two bivariate margins are Frechet lower bounds and 
one is a Frechet upper bound. Assume F12 = min{F1, F2}, 
F13 = max{O, F1 + Fg- 1}, F23 = max{O, F2 + Fg- 1}. The 
unique trivariate distribution in :F is F =max{O, min{F1, F2}+ 
F3 - 1}. Cases to consider are: 

(a) F1 :S F2 :S 1- Fg: Fu = min{F~,O,O, 1- F2- Fg} = 0 
and FL = max{O, 0, F1- F2, -Fg} = 0; 

(b) F1 :S 1- Fg :S F2: Fu = min{F1,0,F2 + Fg -1,0} = 0 
and FL = max{O, 0, Ft + Fg- 1, F2- 1} = 0; 

(c) 1- Fg :S Ft :S F2: Fu = min{Ft, Ft + Fg- 1, F2 + F3-
1, Ft +F3 -1} = Ft +Fg-1 and FL = max{O, F1 +Fg-
1, Ft + Fg - 1, Ft + F2 + Fg - 2} = Ft + Fg - 1. 

Other cases are covered by symmetry. Hence F = FL = Fu. 

General results on when there is a unique FE :Fare given next. 
We assume that the univariate margins are all continuous, so that 
they could be taken to be U(O, 1) without loss of generality. Let 
x1 < x~, x2 < x~, x3 < x~ be support points of the univariate 
margins F1, F2, Fg, respectively. Let F = F123 E :F(F12, F13, F23). 
Let P123, P1'23, ... , P1'2'3' be the masses or accumulated density val­
ues in neighbourhoods of (xt,X2,x3),(x~,x2,x3), ... ,(x~,x~,x~), 
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respectively. The eight triplets can be viewed as being on the cor­
ners of a cube. If all of the eight probabilities are positive, then one 
can make small shifts of masses or density to get a new trivariate 
disribution with the same bivariate margins. The shifts are: 

P123---+ P123 + f, P1'2'3---+ P1'2'3 + f, P1'23'---+ P1'23' + f, 

P12'3' ---+ P12'3' + f, P1'23---+ P1'23- f, P12'3-+ P12'3- f, 

P123' ---+ P123' - f, P1'2'3' ---+ P1'2'3' - f, 

where f is small enough in absolute value that all of the new prob­
abilities exceed zero. 

If at least one of P123, P1'2'3, P1'23', P12'3' is zero and at least one 
of P1'23,P12'3,P123',Pl'2'3' is zero, no matter what are the choices 
of Xj,xj, j = 1,2,3, then F is the unique distribution with the 
given bivariate margins. For U(O, 1) margins, examples where this 
occur are: 

(a) the mass is totally on one of the four diagonals of the unit 
cube (corresponding to the case where each bivariate margin 
is a Frechet upper or lower bound); 

(b) the mass is on one of the planes Xi = Xj or Xi+ Xj = 1, i =f: j 
(corresponding to the case where one of the bivariate margins 
is the Frechet upper or lower bound and one of the bivariate 
margins could be any copula); 

(c) the mass is on the surface y3 = g(y1, y2), where g is strictly 
increasing in Yl, Y2 (this happens in the case where F12 , F32 
are such that F12-<srF32 and F is the Frechet upper bound 
given F12, F32; the function g(y1, Y2) is F3""ji(Fli2(YIIY2)1Y2)), 
or g is strictly decreasing in Yl, Y2; 

(d) the mass is on the surface Y3 = g(yl, Y2), where g is strictly 
decreasing in Yl and strictly increasing in Y2 (this happens in 
the case where F12, F32 are such that F12, F32 are SI and F is 
the Frechet lower bound given F12, F32 ; the function g(y1, y2) 
is F;ji(l - F112(YIIY2)IY2)), or g is strictly increasing in Y1 
and strictly decreasing in Y2. 

Consider the cube with the eight points from { x1, xi} x { x2, x~} x 
{x3, x~}. The proof for example (c) with strict increase is as fol­
lows: if ( x1, x2, x3) and ( x~, x~, x~) are on the surface, then there 
can be no mass or density on the other six vertices of the cube; 
if (x1, x2, x3), (xi, x2, x~) and possibly (x1, x~, x~), by appropriate 
choice of x~, are on the surface, then there can be no mass or 
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density on the other five vertices of the cube. The proof for ex­
ample (d) with strict increase in Y2 and strict decrease in Y1 is: if 
(x1, x2, x3) and (x1, x~, x~) are on the surface, then there can be no 
mass or density on (x1, x~, x3), (xi, x2, x3), (x1, x2, x~), (xi, x2, x~) 
and (xi,x~,x~); if (xi,x2,x3) and (xi,x~,x~) are on the surface, 
then there can be no mass or density on (x1, x2, x3), (x1, x~, x3), 
(xi,x~,x3), (xi,x2,x~) and (x1,x~,x~). 

In the case in which the mass is on the surface Y3 = g(yl, Y2) 
and no monotonicity in y2 exists, no general conclusion can be 
drawn. The specific g would have to be studied to check what 
happens on cubes. This is because if there are masses at (x1, x2, x3) 
and (xi, x~, x3), then there is the possibility of masses at both 
(xi,x2,x~) and (xl,x~,x~). 

Now we look at the Frechet bounds where there is a unique 
F E :F. In the case F13 = min{F1, F3} with U(O, 1) univariate 
margins, F12 = F32· If F1 ~ F3, then Fu = min{F12, F23, F1 1\ 

F3, 1 - F2 - F3 + F23 + F12} = F12 and FL = max{O, F12, F12 + 
(F23 - F2), F1 + F23- F3} = F12 since F12 - F1 - F23 + F3 = 
Pr(Xl ~ X3, x2 > x2)- Pr(Xl ~ X!, x2 > X2) 2: 0. The case 
F1 2: F3 can be handled symmetrically. Hence FL = Fu and these 
must equal the unique trivariate distribution in :F. 

Next consider the case F13 = max{O, F1 + F3- 1} with U(O, 1) 
margins, so that F23(x2, X3) = F2(x2)- F12(1- x3, x2). If F1 + 
F3 - 1 ~ 0, then Fu = F13 = 0 and FL = 0 since F12 + F23- F2 = 
F12(x1, x2)- F12(1- x3, x2) ~ 0. If F1 + F3- 1 > 0, then Fu = 
min{F1 + F3 -1 = x1 + X3- 1, F12, F2(x2)- F12(1- X3, x2), F12 + 
F23- F2 = F12(x1, x2)- F12(1- X3, x2)} = F12(x1, x2)- F12(1-
x3, x2) and FL = max{O, F12 + F3- 1, F23 + F1- 1, F12(x1, x2)­
F12(1-x3, x2)} = F12(x1, x2)-F12(1-x3, x2) since F12+F23-F2 2: 
F23 + F1 - 1 if F1 + F2 - 1 ~ F12· Again FL = Fu and these must 
equal the unique trivariate distribution in :F. 

Next consider the case F12 -:j:. F32, with F13 coming from the 
Frechet upper bound given F12, F32· From case (c) above, there is 
a unique F E :F. If Flj2-<siF3j2, then from Theorem 2.10, for fixed 
x1,x3, there exists Yo(xl,x3) such that 

Let 

(3.11) 

(3.12) 
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Then from (3.11) and (3.12), F(x) = F12(x1, x2) if x2 :S Yo(xl, x3) 
and 

F(x) = ly~ F112 dF2 + 1~2 
F312 dF2 

1Yo F112 dF2 + 100 
F312 dF2 -100 

F312 dF2 
-oo Yo X2 

F13(x1, x3)- [F3(x3)- F23(x2, x3)] 

if x2 ~ Yo(xl, x3). Hence Fu = F12(x1, x2) if x2 :S Yo(xb x3) and 
FL = F13(x1,x3) + F23(x2,x3)- F3(x3) if x2 ~ yo(x1,x3), and 
one of the bounds is always reached. If x2 > Yo(x1,x3), then F = 
F13 + F23- F3 is less than F13, F23 and F12 = J~:, F211dF2. Also 
F13 + F23- F3 < 1 - F1 - F2 - F3 + F12 + F13 + F23 is equivalent 
to 0 < 1 - F1 - F2 + F12 so that F = FL < Fu in this case. 
If x2 < Yo(x1,x3), then F = F12 is greater than F12 + F13- F1 
and F12 + F23- F2. Also F > F13 + F23 - F3 is equivalent to 
Pr(Xl > X!, x2 > X2, x3 :S X3) > 0 so that FL < Fu = Fin this 
case. This illustrates examples where there is a unique F E :F but 
neither FL nor Fu is equal to F. 

3.4. 3 Compatibility conditions 

For F = :F( F12, F13, F23), compatibility conditions for F12, F13, F23 
are obtained by considering two of the three bivariate margins to 
be arbitrary, and the third bivariate margin to have constraints 
given the other two. Throughout this subsection, ( i, j, k) will de­
note a permutation of (1, 2, 3). Methods for obtaining compatibility 
conditions are: 

(i) comparison of Fjk with the Frechet bounds in :F(F;j, F;,.,); 
(ii) sets of bivariate Kendall's tau (712, 713, 723) in the continuous 

case; 

(iii) sets of bivariate tail dependence parameters (A12, A13, A23). 
For method (i), we make use of results from Section 3.2 to get 

(three) inequalities of the form: 

j_: max{O, F;li + F,.,u- 1} dFi :SF;,., :S j_: min{F;u, F,.,u} dFi. 

In practice, for given F12, F13, F23, these inequalities can only be 
checked numerically over a grid of points. 

Next consider the range of possible vectors ((12, ( 23 , ( 13), where 
(j k is a measure of dependence for the (j, k) bivariate margin. We 
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derive results only for ( = r, Kendall's tau, and ( = A, the upper 
tail dependence parameter, but the ideas can be applied to other 
bivariate measures of association. 

Theorem 3.12 Let FE :F(F12, F23, F13) and suppose Fjk, j < k, 
are continuous. Let Tjk = Tkj be the value of Kendall's tau for Fjk, 

j ::f k. Then the inequality 

-1 + lr.·· + T·kl < T.·k < 1-lr.··- T·kl· ZJ J _ Z _ ZJ J (3.13) 

holds for all permutations ( i, j, k) of (1, 2, 3) and the bounds are 
sharp. Therefore if Fij are bivariate margins such that Tij is the 
Kendall tau value for F;j, 1 :::; i < j :::; 3, and (3.13) does not 
hold for some (i,j, k), then the three bivariate margins are not 
compatible. 

Proof. The proof of (3.13) will be given in the case of ( i, j, k) = 
(1, 2, 3). The other inequalities follow by permuting indices. Let 
(X31 , X.2, X 3 3), s = 1, 2, be independent random vectors from F. 
Then Tjk = 2'fJjk- 1, 1:::; j < k:::; 3, where 

'fJik = Pr((Xlj- X2i)(Xlk- X2k) > 0). 

Then 

"113 = Pr((Xu- X21)(X12- X22)2(X13- X23) > O) 

= Pr((Xu- X2!)(X12- X22) > 0, (X12- X22)(X13- X23) > 0) 

+Pr((Xu-X2!)(X12-X22) < O,(X12-X22)(X13-X23) < 0). 

Hence, from Lemma 3.8, an upper bound for "113 is min{ "112, "123} + 
min{1- TJ12 , 1- "123} and a lower bound is max{O, "112 + "123 -1} + 
max{O, (1- "112) + (1- "123)- 1}. After substituting for Tjk and 
simplifying, inequality (3.13) results. The sharpness follows from 
the special trivariate normal case given next. 

For the BVN distribution, r = (2/7r) arcsin(p) (Exercise 2.14). 
Hence, for the trivariate normal distributions, the constraint -1 :::; 
P13·2 :::; 1 (for the partial correlation) is the same as 

P12P23-[(1-pi2)(1-p~3)F/2 :::; P13:::; P12P23+[(1-pi2)(1-p~3)] 1 1 2 

or 

- cos(t1r(r12 + T23)):::; sin(t1rr13):::; cos(t1r(r12- T23)) 

or equivalently (3.13) with (i, j, k) = (1, 2, 3). 0 
Theorem 3.13 Let (Xs 1 , X 82 , X 3 3), s = 1, 2, be independent ran­
dom vectors from the continuous distribution F. For a permuta­
tion (i,j,k) of {1,2,3}, let the events E1,E2 be defined as {(Xli-



77 

X 2;)(Xli - X2j) > 0} and {(Xlk - X2k)(X1i - X2j) > 0}, re­
spectively. The upper bound in {3.13} is attained if E1 C E2 or 
E 2 C Et, and the lower bound in {3.13} is attained if E1 C E2 or 
E2 C Ef or Ef C E2 or E2 C E1 {equivalently, E1 n E2 = 0 or 
E]_ n E2 = 0). 

Proof. The proof in the preceding theorem for (3.13) is based on 

max{O, Pr(E1) + Pr(E2)- 1} + max{O, Pr(Ei') + Pr(E~)- 1} 

:::; Pr(E1 n E2) + Pr(Ef n E~) 
:::; min{Pr(El), Pr(E2)} + min{Pr(Ei'), Pr(E~)}. 

The conclusion follows. D 

Unlike Kendall's tau, it does not appear possible to obtain closed­
form sharp bounds for the range of A;k given A;j, Aj k. However, 
simple bounds can be obtained. 

Theorem 3.14 Let F E :F(F12, F23, F13). Let AJk = Akj be the 
upper tail dependence parameter value for Fj k, j f. k. Then the 
inequality 

max{O A .. + A·k- 1} < A·k < 1-IA .. - A·kl ' ') ) - ' - 'J ) (3.14) 

holds for all permutations (i,j,k) of{1,2,3). Hence if F;j are bi­
variate margins such that >.;j is the upper tail dependence value for 
F;j, 1 :::; i < j :::; 3, and {3.14} does not hold for some ( i, j, k ), then 
the three bivariate margins are not compatible. 

Proof. The proof of (3.14) will be given in the case of (i,j,k) = 
(1, 2, 3). The other inequalities follow by permuting indices. Let C 
be the copula associated with F and, for i < j, let C;j be the ( i, j) 
bivariate margin of C. Let U = (U1, U2, U3 )"" C. Then 

Pr(U3 > u I ul > u) 
Pr{U3 > u, u2 > u I ul > u) + Pr(U3 > u, u2:::; u I ul > u) 
Pr(U3 > u, ul > u I u2 > u) + Pr(U3 > u, u2:::; u I ul > u) 

< min{Pr(Ul > u I u2 > u), Pr(U3 > u I u2 > u)} 

+1- Pr(U2 > u I ul > u). 

By taking limits as u-+ 1, A13 :::; min{ A12, A23} + 1- A12· Similarly, 
by interchanging the subscripts 1 and 3, A13 :::; min{A12, A2g} + 1-
A23· From combining these two upper bounds, A13:::; 1-IA12-A231· 
For the lower bound on A13 , 
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Pr(U3 > u I u1 > u) = Pr(U3 > u, u1 > u)/ Pr(U2 > u) 
2: Pr(U3 > u, u1 > u I u2 > u) 
2: max{O, Pr(U3 > u I u2 > u) + Pr(U1 > u I u2 > u)- 1}. 

By taking the limit as u -+ 1, the lower bound in (3.14) obtains. 
D 

To end this subsection, we give two examples of applications of 
the preceding two theorems. 

Example 3.2 Consider the bivariate family B4 of copulas in 
Section 5.1: C(u, v; 6) = (u- 6 + v- 6 - 1)-116 , 0 ~ 6 < oo. From 
Theorem 4.3, the Kendall tau associated with this copula is r = 
6/(6+2). Now consider C;j = C(·; 6;j ), 1 ~ i < j ~ 3, so that Tij = 
6;j/(6;j + 2) or 6;j = 2T;j/(1- Tij). From Theorem 3.12, if 612 = 
623 = 6, then bounds on 613 for compatibility are max{O, 6/2-1} ~ 
613 < oo. In Section 5.3, there is a construction of a trivariate 
family of copulas with bivariate margins in B4 with parameters of 
the form (612, 613, 623) = (6, 8, 6) with 8 2: 6; so far, no trivariate 
distribution with max{O, 6/2- 1} ~ (} ~ 6 has been constructed. 
0 

Example 3.3 Consider the bivariate family B5 of copulas in 
Section 5.1: C(u,v;8) = 1- (u6 +it- [uv] 6 ) 116 , 1 ~ 8 < oo, 
where u = 1 - u, v = 1 - v. From Example 2.3, the upper tail 
dependence parameter is .A= 2-2116 . Now consider C;j = C(·; 6;i ), 
1 ~ i < j ~ 3, so that Aij = 2- 2116•i or 8;i = [log 2]/[log(2- Aij )]. 
From Theorem 3.14, if 812 = 623 = 8, then bounds on 613 for 
compatibility are max{1, [log2]/[log(21+1/ 6 -1)]} ~ 813 < oo. The 
construction in Section 5.3 covers the multivariate extension of B5 
as well, so there is a trivariate distribution with bivariate margins 
in B5 with parameters of the form ( 612, 613, 623) = ( 8, 8, 6) with 
B2:6.D 

3.5 :F(F123, F124, F134, F234) * 

The results of Section 3.4 can be extended to Frechet class of 
4-variate distributions with given trivariate margins. Bounds of 
:F = :F(F123, F124, F134, F234) are a simple extension of the bounds 
in Section 3.4, and they extend to the Frechet class of m-variate 
distributions given the set of m margins of dimension ( m- 1). The 
2m- 1 terms involved in each of the bounds FL, Fu appear with the 
method in Section 4.8 for constructing a multivariate distribution 
based on bivariate margins. As in Section 3.4, the bounds FL, Fu 
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are referred to as the Frechet bounds. 
The bounds can be obtained based on the non-negativity of the 

16 orthant probabilities in four dimensions. Let a1 = F1 - F12 -
F1a - F14 + F12a + F124 + F1a4, a2 = F2 - F12 - F2a - F24 + 
F12a + F124 + F2a4, aa = Fa- F1a- F23- Fa4 + F12a + F1a4 + F2a4, 
a4 = F4- F14- F24- Fa4 + F124 + F1a4 + F2a4. The Frechet upper 
bound Fu is · 

(3.15) 

Let a;i = Fijk +Fiji- F;j, fori < j and k =J l =J i,j, and let 
ao = F12a + F124 + F1a4 + F2a4 - F12 - F1a - F14 - F2a - F24 -
Fa4 + F1 + F2 + Fa + F4 - 1. The Frechet lower bound FL is 

(3.16) 

For F12a, F124, F1a4, F2a4 to be compatible, FL :::; Fu must hold ev­
erywhere. Let (i, j, k, l) be a permutation of (1, 2, 3, 4). Conditions 
for the upper bound to be a proper distribution (in the continuous 
differentiable case) include: 

• if a;= Fu, then 1- Fili- Fkli- F11i + Fikli +Filii+ Fklli ~ 0 
and Fklii+Fllii-1 ~ 0, Filik+F!Iik-1 ~ 0, Fili!+Fklil-1 ~ 0. 

Conditions for the lower bound to be a proper distribution include: 

• ifa;i = FL > 0, then Fikli+Filli-Fili ~ 0, Fikli+Filli-Fili ~ 0 
and Fklii + Filii - 1 ~ 0; 

• if a0 = FL > 0, then for all permutations ( i, j, k, l), Fj kli +Filii+ 
Fklli- Fili- Fkli- Flli + 1 ~ 0, Fklii +Filii - 1 ~ 0. 

3.6 :F(F;j, 1 :::; i < j :::; m) • 

In this section, we consider extensions from Section 3.4 tom-variate 
distributions given the set of m(m- 1)/2 bivariate margins. The 
Frechet class is :F = :F(F;j, 1 :::; i < j :::; m). There are many 
conditions needed for the compatibility of F;j, 1 :::; i < j :::; m. 
Clearly for each triple ( i1, i2, ia) from { 1, ... , m}, the compatibility 
conditions from Section 3.4 must hold for :F(F; 1;, F; 1; 3 , F;2 ; 3 ). For 
example, if Tik = Tki is the Kendall tau value for Fik, j < k, then 

(3.17) 

for all triples (i1, i2, ia). 
However we have not successfully obtained extensions of (3.17) or 

(3.14) that depend on r(r-1)/2 bivariate margins with 4:::; r:::; m. 
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3. 7 General :F(Fs : 5 E S*), S* C Sm * 

In this section, let S* C Sm. We state a condition on S* which 
ensures that :F(Fs: 5 E S*) is non-empty. Let k =IS* I~ 2. The 
condition is that there is an enumeration 5 1 , ... , 5k of S* such that 

5i n (Ui<j5i) E Ui<i2 5', j = 2, ... , k, 

where 25 • denotes a power set (all subsets of the set in the expo­
nent). 

Example 3.4 Cases to illustrate this result are the following. 

1. Let m = 5, k = 3, 51= {1,2,3}, 52= {2,3,4}, 53= {1,4,5}. 
Then 52 n 51 = {2, 3} c 51 but 53 n (51 U 52)= {1, 4} is not a 
subset of either 51 or 52. A similar situation occurs for the other 
two relevant indexings of the three sets: 52 n(51 U53) = {2, 3, 4} 
is not a subset of 51 or 53, and 51 n (52 u 53)= {1, 2, 3} is not 
a subset of 52 or 53. Hence the compatibility of Fs 1 , Fs2 , Fs3 

need not hold in general, and further checks would have to be 
done for specific given margins. 

2. Let m = 7, k = 4, 51 = {1,2,3}, 52 = {2,3,4,5}, 53 = 
{3, 5, 6}, S4 = {3, 6, 7}. Then S3 n (S1 u S2) = {3, 5} C S2 
and 54 n (51 U S2 U 53) = {3, 6} c 53. A simple construction 
of F1 ... 7 E :F(Fs,, i = 1, 2, 3, 4) is as follows. First take the con­
ditional distributions F1123 and F45123 and use conditional in­
dependence to construct F12345 =I F1123F45123 dF23· From this 
F12345 and F356, next take Fl24l35 and F6l35 and use conditional 
independence to construct F123455 =I F124I35F6I35 dF35· Finally, 
take the conditional distributions F 1245136 and F7136 to construct 
F1234567 = I F1245I36F7I36 dF36· 
In the first case, one cannot simply construct F 1234 from the 

conditional independence of F1123 and F4l23 because there is no 
guarantee that the (1,4) margin of this distribution is the same as 
the (1,4) margin of F145· D 

3.8 Bibliographic notes 

Early papers on Frechet classes and bounds include Frechet (1935; 
1951; 1957). For an alternative direct proof of Theorem 3.2 based 
on the rectangle inequality, see Dall'Aglio (1972). The main idea 
there is based on Fj = Fj(Xj ), FJ = Fj(xj), Xj < xj, j = 1, ... , m, 
with F1 S F2 S · · · S Fm. The notation is a bit cumbersome. 
Theorems 3.4 and 3.5 and their proofs are based on Dall'Aglio 
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(1972). The results in Section 3.4.3 on sets of bivariate Kendall tau 
or tail dependence parameters are from Joe (1996a). The result in 
Section 3.7 is from Kellerer (1964). Results such as Theorem 3.9 
and results in Sections 3.3, 3.4 and 3.5 are probably new (at least 
in the method of presentation). 

3.9 Exercises 

3.1 If F1 = F2 are continuous univariate cdfs of rvs that are 
symmetric about zero, what is the stochastic representation 
for the Frechet lower bound in :F(F1, F2)? 

3.2 For j = 1, 2, let Fj be the cdf for the Binomial (2, Pi) distri­
bution. For some special cases of Pl, P2, deduce the pmf for 
the Frechet upper and lower bounds. Of the nine probability 
masses, what is the minimum number of zeros in the Frechet 
bounds? 

3.3 Let U......, U(O, 1). Compute the correlation of U and a(U) for 
the following real-valued monotone functions a: a(u) = ua, 
a> 0; a(u) = (1- u).B, f3 > 0; a(u) = e-ru, -oo < r < oo, 
r =f 0. Note that (U, a(U)) has the Frechet upper or lower 
bound copula. 

3.4 For the bivariate Frechet upper bound (respectively, the 
lower bound), show by taking appropriate univariate mar­
gins F1, F2 that the correlation can take any value in the 
interval (0,1] (respectively, [-1, 0)). 

3.5 Establish the identity 

max z· = "(-1)1SI+l minz· 
l<"<m J L...J iES J> 
_J_ SES,.. 

and prove Theorem 3.5. 

3.6 In the bivariate case, show that the Frechet upper bound 
has TP2 cdf and survival function, and the Frechet lower 
bound has RR2 cdf and survival function. 

3.7 Do some checks (possibly numerical) on compatibility con­
ditions for parameters for trivariate distributions with bi­
variate margins in one of the families B2-B7 in Section 5.1. 

3.8 Show that the lower Frechet bound for :F = :F(F12 , F3 ), 

FL(x) = max{O, F12(x1, x2) + Fa(xa)- 1}, is not a cdf in 
general. 
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3.9 For a bivariate copula C, with (U1, U2) ....., C, Blomqvist's 
q can be defined as 2 Pr((U1 - ~)(U2- ~) > 0)- 1. Now 
let FE :F(C12, C13, C23), where C;j, i < j, are compatible 
bivariate copulas. Let qij be Blomqvist 's q for Cij, i < j. 
Show that 

-1 + 1% + qjkl ~ qik ~ 1- lqij- qikl 

for all permutations (i, j, k) of (1,2,3). 

3.10 For the bounds of :F(F123, F124, F134, F234), do an analysis 
similar to that on the bounds of :F(F12, F13, F23). 

3.11 Generalize the bounds for the classes :F(F12 , F13, F23 ) and 
:F(F123, F124, F134, F234) to the Frechet class of m-variate 
distributions given the set of m margins of dimension ( m-1). 

3.10 Unsolved problems 

3.1 Improve on the Frechet lower bound for exchangeable rvs. See 
Scarsini (1985) for partial results. 

3.2 Improve on the Frechet lower bound for (strongly) station­
ary sequences of rvs. That is, given a stationary sequence 
X 1 ,X2 , ... with univariate margin F0 , what is an improved 
lower bound for the cdf of X;, Xi+k, k 2:: 1? 

3.3 Consider :F(Fij : 1 ~ i < j ~ m). For i < j, let Tij be 
the Kendall tau value for Fij and let Aij be the upper tail 
dependence value for Fij. Obtain better results for bounds or 
compatibility for sets of Tij and Aij, 1 ~ i < j ~ m, m > 3. 

3.4 Obtain better compatibility conditions for {Fij : 1 ~ i < 
j ~ m} to be the set of bivariate margins of an m-variate 
distribution. 

3.5 SupposeS* does not satisfy the condition in Section 3.7. Ob­
tain some compatibility conditions (preferably checkable) for 
{ Fs : S E S*} to correspond to marginal distributions of a 
multivariate distribution. 



CHAPTER 4 

Construction of multivariate 
distributions 

In this chapter, some methods for construction of multivariate dis­
tributions are given, with different approaches separated into dif­
ferent sections. As mentioned in Chapter 1, one cannot just write 
down a parametric family of functions with the right boundary 
properties and expect them to satisfy the rectangle condition of a 
multivariate cdf. Generally a family of multivariate distributions 
must be constructed through methods such as mixtures, stochastic 
representations and limits. The methods in Sections 4.2 to 4.6 and 
Section 4.9 are based on mixtures and stochastic representations. 
Families of multivariate extreme value distributions (see Chapter 
6) are often obtained through the extreme value limit. The meth­
ods in Sections 4.7 and 4.8 consist of constructions of m-variate 
objects given the set of m(m- 1)/2 bivariate margins. 

Families of bivariate distributions are easier to obtain and the 
bivariate rectangle condition can usually be checked analytically. 
There has been much more in the statistics and probability liter­
ature on families of bivariate distributions (e.g., the book on bi­
variate continuous distributions by Hutchinson and Lai 1990, and 
the book on bivariate discrete distributions by Kocherlakota and 
Kocherlakota 1992), but many of the families do not have obvious 
or nice multivariate generalizations. Parametric families of bivari­
ate copulas that have nice properties are summarized in Section 
5.1. Nice properties include a range of dependence covering inde­
pendence and the Frechet upper bound, and extendibility to higher 
dimensions. Desirable properties are given in Section 4.1 below. 

A summary of the highlights of this chapter is the following. 

• Laplace transforms play an important role in construction of 
copulas; they are linked to the mixing distributions. 

• Section 4.3 has mixtures of max-id distributions that lead to 
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parametric families of copulas with wide dependence structure 
and closed-form cdfs. 

• Copulas with closed-form cdfs and having the property of all 
bivariate margins in the same one-parameter family have limited 
dependence structures (Section 4.2). 

• Extensions of LT families are used in Section 4.4 to extend fam­
ilies of copulas to include negative dependence. 

• Mixtures of conditional distributions in Section 4.5 generalize 
the MVN family. 

• Objects with given bivariate margins are proposed in Sections 
4.7 and 4.8, although it is unknown under what conditions they 
are proper distributions. 

4.1 Desirable properties of a multivariate model 0 

Some desirable properties for a parametric family of multivariate 
distributions are: 

A. interpretability, which could mean something like a mixture, 
stochastic or latent variable representation; 

B. the closure property under the taking of margins, in partic­
ular the bivariate margins belonging to the same parametric 
family (this is especially important if, in statistical modelling, 
one thinks first about appropriate univariate margins, then 
bivariate and sequentially to higher-order margins); 

C. a flexible and wide range of dependence (with type of depend­
ence structure depending on applications); 

D. a closed-form representation of the cdf and density (a closed­
form cdf is useful if the data are discrete and a continuous 
latent random vector is used), and if not closed-form, then 
a cdf and density that are computationally feasible to work 
with. 

A stronger version of property B is that not only do margins 
belong to the same parametric (dimension-independent) family but 
also all parameters are associated with or are expressed in some 
marginal distribution. We refer to this as property B'. 

Generally, it is not possible to satisfy all of these desirable prop­
erties, in which case one must decide on the relative importance of 
the properties and give up one or more of them. Actually another 
property that could be given up is the additive property of the 
probability measure associated with a multivariate distribution; 
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see Section 4.7 for multivariate objects that have given bivariate 
margins. 

The properties are discussed below for some examples. 

1. MVN distributions satisfy properties A, B and C but do not 
have closed-form cdfs. The latter is an inconvenience when a 
MVN latent vector is used such as in the multivariate probit 
model (see Sections 7.1.7 and 7.3). For high dimensions, good 
approximations can be used in place of time-consuming numer­
ical integrations for evaluation of the MVN cdf. 

2. The families of partially exchangeable copulas given in Section 
4.2 do not satisfy property C, but satisfy the other properties. 

3. The copulas in Section 4.5 satisfy property C and can lead to 
extreme value copulas, but have only partial closure under the 
taking of margins, and can be computationally harder to work 
with as the dimension increases. 

4. The multivariate Poisson and other distributions in Section 4.6 
satisfy property B but not property B'. 

There is no known multivariate family that has all of the prop­
erties but the family of MVN distributions may be the closest. 
Because of its wide range of dependence, it is used as a latent 
distribution in multivariate models. 

Using theory from this chapter, some parametric families of mul­
tivariate copulas with a wide range of dependence are given in 
Chapter 5. The starting point for construction of multivariate cop­
ulas are the MVN copula and bivariate families of copulas, and 
things like mixtures, latent variables and stochastic representa­
tions. The models in Sections 4.3, 4.5, 4.7 and 4.8 build on bivariate 
families of copulas. Within each section or construction method, it 
is stated which of the properties A to D are satisfied. 

4.2 Laplace transforms and mixtures of powers 0 

To illustrate the main ideas in the use of Laplace transforms (LTs) 
and mixtures of powers of univariate cdfs or survival functions to 
construct multivariate distributions, we start with the univariate 
and bivariate cases. Let M be a univariate cdf of a positive rv (so 
that M(O) = 0) and let ¢J be the Laplace transform of M, i.e., 

f/J(s) = 100 e-swdM(w), s:::: 0. 
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Some properties of LTs are given in the Appendix. Note that 
throughout this book, unless otherwise stated, LTs correspond to 
positive rvs (no mass at 0). The reasoning is given in the next 
paragraph. 

For an arbitrary univariate cdf F, there exists a unique cdf G 
such that 

F(x) = fooo Ga(x)dM(a) = ¢(-logG(x)). (4.1) 

Rewriting (4.1) leads toG = exp{ -¢-1(F)}. (If M has positive 
mass 7ro at 0, then lim8 -+oo ¢(s) = 7ro, and (4.1) cannot be solved for 
G(x) when F(x) < 1r0 .) There is a similar relationship for survival 
functions: 

F(x) = fooo Ha(x) dM(a) =¢(-log H(x)), 

if H = exp{ -¢-1(F)}. 
Next consider the bivariate class :F(F1 , F2). For j = 1, 2, let 

Gj = exp{ -¢-1(Fj )}. Then the following is a cdf in :F(F1 , F2): 

loo GfG~dM(a) = ¢(-logG1-logG2) = ¢(¢-1(Fr)+¢- 1(F2)). 

(4.2) 

The copula (which obtains from taking U(O, 1) cdfs for F1,F2) is 

C(u1, u2) = ¢(r1(ul) + ¢-1(u2)). (4.3) 

This rather simple form has been called an Archimedean copula. 
For (4.3) to have closed form, both¢ and ¢-1 need to have closed 
forms; there are plenty of examples satisfying this and other nice 
properties (see the Appendix). One could construct other bivariate 
distributions from general mixtures of the form 

j G1(x1, a) G2(x2; a) dM(a), 

but other than Gj(·; a) in the form of powers, closed-form cop­
ulas are generally not obtained. These mixtures usually result in 
distributions with positive dependence; see Exercise 4.1 for some 
conditions. 

Similarly, one could work with survival functions to get 

1oo HfH~dM(a)= ¢(-logH1-logH2)= ¢(r1(Fl)+¢-1(F2)), 

where Hj = exp{ -¢-1(Fj )}, j = 1, 2. This is an associated copula 
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of ( 4.3); see Section 1.6. For multivariate extensions, we use the cdfs 
rather than survival functions, but keep in mind that there are the 
associated copulas. 

With m univariate cdfs F1 , ... , Fm, a simple extension is to the 
multivariate cdf F = ¢("£j=1 ¢- 1(Fj)), with Archimedean cop­
ula 

m . 

C(u) = ¢(Lr 1(ui)). (4.4) 
j=l 

This multivariate copula is permutation-symmetric in the m argu­
ments so that it is a distribution for exchangeable U(O, 1) rvs. 

To get more general types of dependence, extensions which are 
written in the form of copulas are: 

C(u) = laoo K(exp{ -a¢-1(ul)}, ... , exp{ -a¢-1(um)}) dM(a), 

(4.5) 

C(u) = laoo · · ·la00 K(Gf', ... , G~."') Mm(dal, ... , dam), (4.6) 

where K is a multivariate copula, Gj(uj) = exp{-¢j 1(uj)} and 
Mm is a multivariate distribution such that jth univariate margin 
has LT ¢j, j = 1, ... ,m. 

Because we do not have multivariate families of copulas with 
a wide range of dependence structure, ( 4.5) is not immediately 
useful. So with K in ( 4.6) being the independence copula, for ( 4.6) 
to be useful in getting copulas that are not permutation-symmetric, 
convenient choices of Mm must be made in order to simplify the 
multivariate integral and get a simple form for the copula. 

Examples of these choices are given next. The result is that if LTs 
are chosen so that certain conditions are satisfied, then multivariate 
copulas can be obtained such that each bivariate margin has the 
form of (4.3) for some LT. However, the number of distinct LTs 
among the m(m-1)/2 bivariate margins is only m-1, so that the 
resulting dependence structure is one of partial exchangeability. 

The construction makes use of Theorem A.1 in the Appendix. 
Let .C~ be the class of infinitely differentiable increasing functions 
from [O,oo) onto [O,oo), with alternating signs for the derivatives; 
see (1.2) in Section 1.3. 

The general multivariate result is notationally complex, so we in­
dicate the pattern and conditions from the trivariate and 4-variate 
extensions of ( 4.3). The trivariate generalization of ( 4.3) is: 

C(u) = 1/;(1/J- 1 o ¢[r1(ul) + ¢-1(u2)] + 1/;-1(u3)), (4.7) 
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where ¢, <P are LTs and v = .,p- 1 o <P E £'"ex,. Note that (4.7) has 
(1,2) bivariate margin of the form (4.3) with LT ¢,and (1,3) and 
(2,3) bivariate margins of the form (4.3) with LT ¢. Also (4.4) is 
a special case of ( 4. 7) when ¢ = ¢. The mixture representation for 
(4.7) that generalizes (4.2) is 

C(u) = 100100 Gf(ul) G~(u2) dM2(j3; a) G~(u3) dM1(a), (4.8) 

where G1 = G2 = exp{ -¢-1} and G3 = exp{ -¢-1 }, M 1 is the 
distribution corresponding to ¢, M2 ( ·; a) being the distribution 
with LT Xa, and Xa is defined by x;; 1(z) = v-1(-a-1logz). 

The derivation is as follows. Equation ( 4. 7) has the formal rep­
resentation 

fooo Gf2(u1, u2) G~(u3) dM1(a), 

where M 1 and G3 are as defined above, and 

In the bivariate case, the power of a cdf need not be a cdf so 
that it must be proved that G!2 is a cdf. We show this by giv­
ing Fa = G!2 the mixture representation in ( 4.8). The univariate 
margins of Fa are Fja(uj) = exp{-a¢-1(uj)}, j = 1,2. Hence 
Uj = ¢(-a-1logFja), j = 1,2, 

Fa= exp{ -a v[v- 1( -a-1log F1a) + v-1( -a-1log F2a)]} 

and 

v-1( -a-1logFa) = v-1( -a-1logFla) + v-1( -a-1logF2a)· 

With Xa defined as above, 

(4.9) 

Therefore X a = e-av = X a, where X = X1· From ( 4.2) and ( 4.3), 
(4.9) is a cdf for all a > 0 if Xa is a LT for all a > 0 or if 
v E £"oo (using Theorem A.1). The representation (4.8) holds with 
M 2 (-; a) being the distribution with LT xa and, for all a > 0 and 
j = 1,2, Gj = exp{-x;;1(Fja)} = exp{-v- 1(-a-qogFja)} = 
exp{ -v-1 o .,p-1} = exp{ -¢-1 }. 

There are two generalizations or nestings of LTs for four di­
mensions. In higher dimensions, there are many possible nestings. 
At each level of nesting of LTs, </Jr within ¢. say, the condition 
<P-; 1 o <Pr E £"oo must be satisfied in order for the result to be a 
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multivariate distribution. Let 1/;, ¢>, ( be LTs. The first LT repres­
entation is 

C(u) = 1/; [ 1/;-1ocf>(r1o((C1 ( ul)+C 1 ( u2)) +r1( u3)) +1/J- 1( u4)], 
(4.10) 

where 1/;- 1 o ¢>and ¢>- 1 o (are in .C~. A second distinct LT repres­
entation is 

C(u) = 1/J( 1/;-1 ocf>[r1( u1)+r 1( u2)] +1/J-1o([C1( u3)+C1( u4)l), 
(4.11) 

where 1/;- 1 ocf> and 1/;- 1 o( are in .C~. Note that all trivariate margins 
of (4.10) and (4.11) have form (4.7) and all bivariate margins of 
(4.10) and (4.11) have form (4.3). Clearly the idea of (4.10) and 
( 4.11) generalizes to higher dimensions. 

The mixture representions for (4.10) and (4.11) have the respect­
ive forms: 

1oo 1oo 1oo G{G~ dM3(1; ;3) G~ dM2(!3; a) G~ dM1(a) 

and 

1oo 1oo G~Gg dM2(j3; a) 1oo G~GJ dM3(1; a) dM1(a). 

With reference to the properties in Section 4.1, ( 4.4), ( 4. 7), ( 4.10) 
and ( 4.11) are interpretable from their mixture form, they are 
closed under the taking of margins, but have a limited type of 
positive dependence. They have closed-form cdfs if families for the 
LTs are chosen appropriately; see Sections 5.1 to 5.3. 

4.2.1 Dependence properties* 

In this subsection, we analyse how the various bivariate margins of 
(4.7), (4.10), (4.11), etc., compare with each other in the concord­
ance ordering. One key result is that all of these constructions pro­
duce positively dependent random vectors only. (Generalizations to 
achieve negative dependence are given in Section 4.4.) Other pos­
itive dependence results for the various constructions are obtained, 
and some results on the multivariate concordance and PFD order­
ings for (4.7), (4.10), (4.11) and their generalizations are given. 

Theorem 4.1 Let C;(u1, u2) = c/>;(c/>i 1(ut) + c/>i 1(u2)), where c/>; 
is a LT, i = 1,2. Then C1-<cC2 if and only ifw = ¢>2 1 o ¢> 1 is 
superadditive (w(x + y) :2: w(x) + w(y) for all x, y :2: 0). Similarly, 
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for the multivariate extensions, C;m(u) = t/>;(2:::7= 1 4>i 1(uj)), i = 
1, 2, C1m-<cLC2m if and only ifw is superadditive. Since w(O) = 0, 
sufficient conditions for w to be superadditive are w convex and w 
star-shaped with respect to the origin (w(x)/x increasing in x). 

Proof. Let Uj = t/>1(xj), j = 1,2. Then 

C1-<cC2 
'¢:> w(4>1 1(u1) + 4>1 1(u2)) ~ 4>2 1(ul) + 4>2 1(u2) VO :S u1, u2 :S 1 
{:::} w(x1 + x2) ~ w(x!) + w(x2) Vx1, x2 ~ 0. 

The sufficient conditions for superadditivity are left as an exercise. 
0 

Corollary 4.2 Let C;(u1, u2) = tPi(t/>i 1(u1) + 4>i1(u2)), where tPi 
is a LT, i = 1, 2. Suppose v = 4>1 1 o t/>2 E .C~, then C1-<cC2. 

Proof. v has non-negative first derivative and non-positive second 
derivative, and satisfies v(O) = 0. Therefore vis concave and v- 1 = 
4>2 1 o t/>1 is convex, and the preceding theorem applies. 0 

As a result of this corollary, the trivariate copula in ( 4. 7) has 
a (1,2) bivariate margin copula which is more concordant than 
the (1,3) and (2,3) bivariate margin copulas (which are identi­
cal). However, there are applications, such as the construction of a 
second-order Markov chain time series (see Section 8.1), in which 
one would like the two bivariate margins that are identical to be 
more concordant than the third margin. Trivariate copulas with 
this property are constructed in Section 4.3. Similarly, for (4.10), 
( 4.11) and their multivariate extensions, bivariate copulas, asso­
ciated with LTs that are more nested, are larger in concordance 
than those that are less nested. For example, for (4.11), the (1,2) 
and (3,4) bivariate margins are more concordant than the remain­
ing four bivariate margins (but there need not be any concordance 
ordering between these two margins). 

The types of dependence that are possible from (4.7), (4.10), 
( 4.11) and their generalizations are similar to those from hierar­
chical or random effects normal models. Analogies to (4.7), (4.10), 
(4.11) are respectively: 

(i) Y1 = J.l + 6 + f1, Y2 = J.l + 6 + f2, Y3 = J.l + 6 + f3, with 
J.l, 6, 6, f1, e2, f3 independent zero mean normal rvs with re-

:::::::i:::: :~:;::,':,,::~:I [aa p ~ -v p~ r 
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(ii) Y1 = J.l + 6 + A1 + f1, Y2 = J.l + 6 + A1 + f2, Ya = J.l + 
6 + A2 +fa, Y4 = J.l +6 + Aa + f4, with J.l, ~;,A;, f; being 
independent zero mean normal rvs, J.l with variance a, ~i 
with variance /3, A; with variance 1 and f; with variance 
1- a- f3- I· The correlation matrix for (Y1, Y2, Ya, Y4) is 

[ 
1 a+/3+1 a+/3 a] 

a+/3+1 1 a+f3·a 
a+/3 a+/3 1 a · 

a a a 1 

(iii) Y1 = J.l + 6 + f1, Y2 = J.l + 6 + f2, Ya = J.l + 6 +fa, Y4 = 
J.t+6+f4, with J.l, ~;, f; being independent zero mean normal 
rvs, J.l with variance a, 6 with variance /31, 6 with variance 
/32 and f; with variance 1 -a- /3j (j = 1 for i = 1, 2 and 
j = 2 fori= 3, 4). The correlation matrix for (Y1, Y2, Ya, Y4) 

. [ a 1 !31 a i /31 ~ ~ ] 
1S 1 j3 . a a a+ 2 

a a a+/32 1 

Next we give some results on association, Kendall's tau, positive 
dependence and dependence orderings. 

Theorem 4.3 For the copula (4.3), Kendall's tau can be written 
as the one-dimensional integral: 

r1 c/J-1(t) rXJ , 
r=4}0 (cjJ- 1)'(t)dt+1=1-4}0 s[c/J(s)] 2ds. 

Proof. This proof is a modification of that in Genest and MacKay 
(1986), making use of the present notation. From Section 2.1.9, 
Kendall's tau is 

r = 41
1

1
1 

C(u1, u2) dC(u1, u2)- 1. 

The double integral (without the factor of 4) becomes 

1
1

1
1 

c/J(r1(ul) + r 1(u2)) . c/J"(r1(ul) + r 1(u2)) 

(4.12) 

Make the transformation z = c/J(¢J- 1(ul) + c/J- 1(u2)), t = u1 with 
Jacobian 8~Jz·2) equal to c/J'(c/J- 1(u!) +c/J- 1(u2)) · [c/J' o¢J-1(u2)]- 1. 

1, 2 

Since z::; t from the Frechet upper bound, (4.12) becomes 
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fo1 11 z <P" 0 <P- 1(z)[<P' 0 r 1(z)]-1[<P' 0 r 1(t)]-1 dt dz 

11 z<P" 0 r 1(z)[<P' 0 r 1(z)t 1[-<P-1(z)] dz 

fooo s <fJ(s) · <P"(s) ds. 

With integration by parts, this becomes 

s<{J(s)·<P'(s)[ -100 [</J(s)+s</J'(s)]<P'(s)ds = ~-100 s[<fJ'(sWds. 

The conclusion of the theorem follows. 0 

Theorem 4.4 The copula in (4.3} has TP2 density. Hence it is 
also PQD. 

Proof This follows easily from the mixture representation. With 
U(O, 1) margins in (4.2), G1, G2 are differentiable, say with respect­
ive densities 91, 92· Hence C(u1, u2) = J0

00 Gf(ui)G~(u2) dM(a) 
has density 

c(u1, u2) = a 2g1(u1)g2(u2) fooo Gf- 1 (ui)G~- 1 (u2) dM(a). 

In the integrand, cr-1(ui) and G~- 1 (u2 ) are TP2, so the integral 
is TP2 from the total positivity results in Karlin (1968). (D(x, z) = 
J A(x, y)B(y, z) du(y) is TP2 in x, z if A is TP2 in x, y and B is 
TP2 in y, z and O" is a sigma-finite measure.) The property of PQD 
follows from Theorem 2.3. D 

Theorem 4.5 The copula in (4.6) is associated if K and Mm are 
cdfs of associated rvs. 

Proof K(x) associated implies K(Gf 1 , ••• ,G!m) is associated for 
all ( a 1, ... , am) E (0, oo )m, because association is invariant to 
(strictly) increasing transforms on rvs. Let U "' K and A "' Mm, 
with U, A independent. Then a stochastic representation of a ran­
dom vector with the distribution in ( 4.6) is 

(X1, ... ,Xm) = (G!1(U{/A 1 ), ••• ,G;;/(U;,(Am)). 

We show that X is associated using the usual conditioning argu­
ment. Let h1 (X), h2(X) be increasing functions in X. Assuming 
the covariance exists, then 

Cov (h1(X), h2(X)) = E [Cov (h1(X), h2(X) I A)] 

+ Cov (E [h1(X) I A], E [h1(X) I A]). 
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The first term is non-negative given each A, because of the first 

statement in this proof. Since Gj 1(Uf/Ai) is increasing in Aj for 
each j and h1 , h2 are increasing, E [h;(X)IA], i = 1, 2, are increas­
ing in A. Therefore the second term is non-negative because A is 
associated. D 

Theorem 4.6 Suppose 'lj;, ¢ are LTs .such that ,p- 1 o ¢ E .C~. 
Let C1(u) = 'I/J(l::j=1 ,p-1(uj)) and C2(u) = ¢(2::}:1 ¢-1(uj)) 
be as defined in (4-4). Then C1-<prctC2. If'lj;(s) = e-s, so that 
C1(u) = Cr(u) = Tij=1 Uj, then Cr-<prctC2 (without needing fur­
ther conditions). 

Proof. Let G1(u) = exp{-,P-1(u)}, G2(u) = exp{-¢- 1(u)}, 0 ~ 
u ~ 1, with respective densities 91 ,92 . Let M..p, Me/> be the distribu­
tions with respective LTs 'lj;, ¢,and let Mv(-; o:) be the distribution 
with LT exp{-o:v}, where v = ,p- 1 o¢. Then it is straightforward 
to verify that 

C2(u) = 100100 II cg(uj) dMv(f3; o:) dM.p(o:) 
0 0 j 

and 

C1(u) = 1oo lJ Gf(ui) dM..p(o:), 
J 

with Gf(u) = f0
00 cg(u) dMv(f3; o:) (see Theorem A.3). The dens­

ities c1, C2 of c1, c2 are obtained by replacing G~ by (JG~- 1 92 in 
the integrals defining C2 and Gf. Let h be a bounded function on 
[0,1], with an extra non-negativity constraint if m is odd; let U 
have density c1 and U' have density c2 . Then 

E [j] h(U;)] = 100 [100 h*(f3)dMv(f3;o:)]m dM..p(o:) (4.13) 

where h*({J) = {3 f0
1 cg- 1(u) 92(u) h(u) du. From Theorem 2.18 

and Example 2.11, the right-hand side of (4.13) is dominated by 

1oo 1oo [h*({3)]mdMv(f3; o:) dM.p(o:) = E rD, h(U!)]. 

The case of h unbounded and integrable can be handled by taking 
a limit. Hence U-<prctU' or C1-<prctC2. 

Finally, let 1/;( s) = e-s. Then the above condition becomes -log¢ 
E .C~. However, the condition is actually not needed. Let U ,...., 
C2. It suffices to prove that E [f17:1 h(Ui)] ~ {E [h(Ut)]}m for all 



94 CONSTRUCTION OF MULTIVARIATE DISTRIBUTIONS 

bounded h (with an extra non-negativity constraint if m is odd), 
or 

where k(a) = a f0
1 G~- 1 (u)g2(u)h(u) du. This follows from Ex­

ample 2.11 and inequality (2.33) (with independent rvs on the left­
hand side of (2.33)). 

D 

Theorem 4. 7 Suppose 'lj;, ¢ are LTs such that 'lj;- 1 o ¢ E .C:'x,. Let 
C1, C2 be as defined in the preceding theorem. Then C1-<.cC2. 

Proof. Let U....., C1. U'....., C2. To establish the concordance order­
ing, it is necessary to show that 

Pr(Uj :::; aj, j = 1, ... , m) :::; Pr(Uj :::; aj, j = 1, ... , m) (4.14) 

and 

Pr(Uj > aj,j = 1, ... , m) ~ Pr(Uj > aj,j = 1, ... , m) (4.15) 

for all a E (0, 1)m. From the representations in the preceding proof, 
the left-hand sides of (4.14) and (4.15) have the form 

(4.16) 

and the right-hand sides have the form 

1oo 1oo r}] kj(/1)] dMv(/1; a) dM.p(a), ( 4.17) 

where ki(/1) = cg(ai) for (4.14) and ki(/1) = 1-Gg(ai) for (4.15). 
The kj(/1) are decreasing in /12: 0 in the former case and increasing 
in the latter case. A (bounded) decreasing function in [0, oo) can 
be taken as a limit of finite sums of the form Li Ci I[o,z;] for positive 
constants Ci, z;; similarly, an increasing function can be taken as a 
limit of finite sums of the form L; c;/(z;,oo) for positive constants 
c;,zi. Since the quantities in (4.16) and (4.17) are linear in each 
kj (j3), to show that the quantity in ( 4.16) is less than or equal to 
that in ( 4.17), it suffices to prove the inequality with kj ((1) replaced 
by I[o,yj](/1), j = 1, ... , m, or by l(yj,oo)(/1), j = 1, ... , m, where 
Yi are positive constants. Fix a and let B 1 , ... , Bm be iid with 
distribution M 11 (-; a). Then (4.14) and (4.15) follow since Pr(Bj :::; 
Yj,j = 1, ... ,m) ~ Pr(B1 ~ minjYj) = minjPr(Bj ~ Yi) and 
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Pr(Bj > Yi, j = 1, ... , m) ::=; Pr(B1 > maxi Yi) = mini Pr(Bj > 
Yi) by the Frechet upper bound inequality. D 

Theorem 4.8 Suppose 1/J, c/Jl, ¢2 are LTs such that (a) v; = ,p-l o 
¢; E .C"oo, i = 1, 2, and (b) ¢1 1 o <P2 E .C"oo. Let C; be as defined in 
(4. 7) with¢=¢;, i = 1, 2. Then C1-<cC2. 

Proof. Fore= ,P,¢1,¢2, let GE = exp{-e- 1} and let ME denote 
the cdf with LT e. Let v = ¢11 o </J2 and let M v ( ·; {3) denote the 
distribution with LT exp{ -f3v }. For J1. = v1, v2, let Mil(-; a) denote 
the distribution with LT exp{ -aJJ}. Then using Theorem A.3, 
representations for cl' c2 are: 

fooo fooo G~, (ul) G~, (u2) dMv,(f3; a) G~(us) dM.p(a), 

1oo 1oo a;2 (ul) a;2 (u2) dMv2(!; a) G~(us) dM.p(a), 

with G~(u) =It a;2dMv2(1; a), G~, (u) = fo00 a;2dMv(!; {3) and 

fooo 100 h"~ dMv(/;{3)dMv,(f3;a) = 100 h"~ dMv2(/;a) 

for all positive constants h. 
Let U,...., C1, U',...., C2. The concordance ordering is proved in a 

similar way to the preceding theorem; it is necessary to show 

Pr(Uj ::=; aj,j = 1,2,3) ::=; Pr(UJ ::=; aj,j = 1,2,3) (4.18) 

and 

Pr(Uj > aj,j = 1,2,3) ::=; Pr(UJ > aj,j = 1,2,3) (4.19) 

for all a E (0, 1)3 . From the representations given above, the left­
hand sides of (4.18) and (4.19) have the form 

fooo[1 00 (! kl(!)dMv(!; {3)) U k2(1)dMv(1; {3)) dMv,(f3; a)] 
· (100 

ks(!) dMv2(!; a)) dM.p(a), 

and the right-hand sides have the form 

100 [100 (100 
kl(!)k2(!)dMv(!;f3)) dMv,(f3;a)] 

· (100 ks(!)dMv2(!;a)) dM.p(a), 
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where ki('Y) = G~2 (ai) for (4.18) and ki('Y) = 1- G~2 (aj) for 
(4.19). The kj('Y) are decreasing in 1 ~ 0 in the former case and 
increasing in the latter case. Inequalities (4.18) and (4.19) now 
follow from 

(100 
k1 ( 'Y) dMv ( 1;{J)) (100 

k2( 'Y) dMv( 1; P)) 
:::; 1oo k1('Y)k2(!)dMv(!;P) 

for all P; this last inequality comes from (Z1 , Z2)-<c(Z1 , Zl), where 
Z1,Z2 are iid with distribution Mv(-;P). D 

Theorem 4.9 Suppose ,P1, ,P2, ¢are LTs such that (a) w; = ,P£ 1 o 
¢ E .C"cx,, i = 1, 2, and (b) ,P11 o ,P2 E .C"cx,. Let C; be as defined in 
(4. 7) with 'ljJ = ,P;, i = 1, 2. Then C1-<cC2. 

Proof. The proof follows the methods of the preceding theorem. 
Using the same notation, a result that is needed for the upper 
orthant probabilities is that 

h1 ( !) = 1- G~, ( a1) - G~, (a2) + exp{ -1w2( ¢-1(a1) + r 1(a2))} 
(4.20) 

is increasing in 1. A proof of this that generalizes to higher dimen­
sions is the following. 

One can write h1 ( 1) = Jt (1- G!(a1))(1- G!(a2)) dMw,(P; 1). 
Since (1-G~(a1))(1-G!(a2 )) is increasing in P > 0 and Mw,(P; 1) 
is stochastically increasing in 1 > 0 (Theorem A.3), then h1(1) is 
increasing in 1 > 0. D 

Theorem 4.10 Suppose ,P1, ,P2, ¢, ( are LTs such that w; = ,P£1 o 
¢ E .C"cx, i = 1, 2, v = ,P11 o ,P2 E .C"cx, and ¢-1 o ( E .C"cx,. Let C; be 
as defined in (4.10} with 'ljJ = ,P;, i = 1, 2. Then C1-<cC2. 

Proof We use similar notation to the preceding two proofs. Rep­
resentations for Cj are 

C1(u) = 100 (100 100100 
G((ul)G((u2) dMq,-•o((!;P) G~(ua) 

dMw,(P;TJ)dMv(TJ;a)) · (100 G~2 (u4)dMv(TJ;a)) dM,p,(a), 

C2(u) = 100100 (100 100 G((ul)G((u2)dMq,-•o((!;P)G~(ua) 

dMw,(P; TJ)) · G~,(u4) dMv(TJ; a) dM,p,(a). 
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Let U ......, C1 , U' ......, C2. The harder step for establishing the 
concordance ordering is the inequality for the upper orthant prob­
abilities. These are: 

Pr(Uj>aj,j=1,2,3,4)= (4.21) 
J0

00 (f000 hl(ry)dMv(TJ; o:)) (f0
00 h2(ry)dMv(1]; o:)) dMI/J,(o:), 

Pr(Uj >aj,j= 1,2,3,4)= 

J0
00 (f000 hl(TJ)h2(TJ)dMv(TJ; o:)) dMI/J, (a:), 

where h2(11) = 1- G~2 (a4) and 

(4.22) 

h1(11) = 100100 
(1- Gl(a1))(1- Gl(a2)) dM.p-•o(('y;/3) 

·(1- G~(a3))dMw2 (/3; ry). 

Similar to the proof that (4.20) is increasing, f0
00 (1- Gl(a1))(1-

Gl(a2))dM.p-•od!;f3) is increasing in {3. Also 1- G~(a3) is in­
creasing in {3, so that h1(ry) is increasing in 1] > 0. Trivially, h2(11) 
is increasing in 11 > 0. Therefore, by Lemma 2.1, 

100 
hl(TJ) dMv(TJ; o:) 100 

h2(1]) dMv(TJ; o:) 

~ 100 hl(TJ) h2(TJ) dMv(TJ; o:), 

and (4.21) is less than or equal to (4.22) for all a. 0 

The ideas in the above theorems generalize for multivariate ex­
tensions of (4.7), (4.10) and (4.11) (even though the notation is 
messy for the general case). 

4.2.2 Frailty and proportional hazards 

If survival functions Fj are substituted into the arguments in ( 4.4), 
then one gets 

Similarly, survival functions can be substituted into (4.7), (4.10), 
( 4.11) and their extensions. These models have been used for mul­
tivariate survival data in a familial or cluster setting; the para­
meter o: is interpreted as a frailty parameter. These models also 
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have a proportional hazards interpretation since Ha(F;(x;)) = 
exp{ -a7P- 1(F;(x;))} is a family with cumulative hazard propor­
tional to A(x;) = 7P- 1 (F;(x;)), where 7P is the LT of M; the pro­
portionality constant a of the proportional hazards is random with 
distribution M. If there are m = 2 subjects in a cluster with sur­
vival times T1 , T2, then Pr(T1 > t 1 , T2 > t 2 ) becomes 

loo e-a[A(tt)+A(t2)] dM(a) = 7P(A(t!) + A(t2)). 

4.3 Mixtures of max-id distributions 

Let M be the cdf of a positive rv and let its LT be 7P. Another 
extension of (4.2) and (4.4) is: 

F = 1oo HadM(a) = 7P(-logH) (4.23) 

where H is a max-id m-variate distribution. (See Section 2.1.8 for 
max-id.) Section 4.3.1 consists of conditions for max-id so that 
we know about possible choices of H in ( 4.23). Section 4.3.2 is 
devoted to dependence properties of ( 4.23). Some special cases are 
given next before these subsections. 

We look at cases of ( 4.23) that can lead to parametric fam­
ilies of multivariate distributions or copulas with closed-form cdfs, 
flexible dependence structure and partial closure under the taking 
of margins. Specific parametric families are given in Section 5.5. 

Let K;j, 1 ~ i < j ~ m, be bivariate copulas that are max-id. 
Let H 1 , ... , H m be univariate cdfs. Consider the mixture: 

oo m 1 II K;j(H;, Hj) II H;;adM(a) 
0 1$;i<j~m i=l 

m 

=7P(- L logK;j(H;,Hj)-I:v;logH;), (4.24) 
1$;i<j~m i=l 

where usually the v; are non-negative, though they can be nega­
tive if some of the copulas K;j correspond to independence. This 
special construction builds on bivariate copulas, of which there are 
several parametric families with nice properties in Section 5.1. The 
univariate margins of (4.24) are 

F; = 7P(-(v; + m -1)logH;). 

Hence ( 4.24) is a copula, if H;( u;) is chosen to be exp{ -p;7P- 1( u;)} 
with p; = (v; + m- 1)-1 , i = 1, ... , m. With these substitutions, 
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the copula is 

C(u) = 1P(- LlogK;j(e-P•.P- 1 (u•),e-Pi'r 1 (ui)) 
i<j 

m 

+ L:v;p;7P- 1(u;)). 
i=1 

99 

(4.25) 

An interpretation is that the LT 7P leads to a minimal level of (pair­
wise) dependence, the copulas K;j add some individual pairwise 
dependence beyond the global dependence, and the parameters v; 
lead to bivariate and multivariate asymmetry (the asymmetries are 
represented through vi/ ( v; + Vj), i -:j:. j). Also the parameters v; are 
included in order that the family ( 4.25) is closed under margins. 
For example, if Hm-+ 1 in (4.24), then (4.24) becomes 

m-1 
r)Q IT K;j(H;,Hj) IT H}v'+ 1)adM(a) 

Jo 1<i<j<m-1 i=1 

m-1 
= 1P(- L logKij(H;, Hj)- L(v; + 1) logH;), 

1~i<j~m-1 i=1 
and the resulting marginal copula is 

cl...m-1(u) = 1P(- L logK;j(e-P•.P-l(u;>, e-Pi.P-l(uj)) 

19<j~m-1 

m-1 
+ L(v;+1)p;7P-1(u;)). 

i=1 
(Hence the 'parameters' K;j remain the same but the parameters 
vi change with taking margins; this can be shown notationally by 

v}m- 1) = v}m) + 1 and V;( 2) = v}m) + m- 2.) The (i,j) bivariate 
marginal copula of ( 4.25) is 

C;j(u;, Uj) = 7P( -logK;j(e-P•.P- 1 (u;), e-Pi.P- 1 (ui)) 

+(v; + m- 2)p;7P-1( u;) +(vi + m- 2)Pi1P- 1 ( Uj )) . ( 4.26) 

The copula ( 4.26) is more concordant than 

C.p(u;, uj) = 7P(7P- 1(u;) + 7P- 1(uj)), (4.27) 

and it increases in concordance as K;j increases in concordance; 
this explains the above interpretation for 7P and K;j. These results 
are proved in Section 4.3.2. 
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Interesting and useful special cases of (4.23) and (4.24) are the 
following. 

1. Let m = 3, KI3(x, y) = xy, VI = v2 = v3 = 0, KI2(u, v) = 
K23( u, v) = K( u, v), where]{ is symmetric in u, v. Then ( 4.24) 
becomes 

( 4.28) 

with copula 

C(u) = 1/J( -log K(e-0.5•r'(u,)' e-0.5•r'(u,)) 

-logK(e-0.5•r'(u3), e-0.5·.p-'(u,)) + t'l/J-I(ui) + t1/J-I(u3)); 
(4.29) 

if HI, H2, H3 are chosen appropriately so that the univariate 
margins of (4.28) are all the same, then the (1,2) and (2,3) bi­
variate margins of ( 4.28) are the same and are more concordant 
than the (1,3) margin. Hence this model would be appropriate 
for generating a second-order stationary Markov chain. 

2. Let m = 3, J{I3(x, y) = xy, VI= v3 = -1, v2 = 0, KI2(u, v) = 
K23(v, u) = K(u, v). Then (4.24) becomes 

100 Ko:(H1, H2)Ko:(H3, H2) dM(a), 

with copula 

C(u) = 1/J( -log K( e-•r'(ut)' e-0.51/>-'(u,)) 

-log K( e-11>-' (u3), e-0·511>-'(u 2 ))). ( 4.30) 

The (1,2) and (3,2) bivariate margins of (4.30) are the same 
and are more concordant than the (1,3) margin; with j = 1, 3, 
they are 

1/J( -log K( e-r'(u;), e-0·511>-'(u,)) + t'l/J-I ( u2)). 

3. Let VI = v2 = -1, v3 = · · · = Vm = 0, KI2(x, y) = xy, 
PI= P2 = (m-2)-I, P3 = · · · =Pm = (m-1)- 1 . Then (4.24) 
becomes 
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with copula 

C(u) = ~(- L logK;j(e-P••r'(u•l,e-Pi.P-'(u;))). 
1<i<j<m, 
((j);e(i,2) 

(4.31) 
If~ is a one-parameter family of LTs and each K;j is a one­
parameter family of copulas, then this is a family with m( m-
1)/2 parameters. The labelling is such that the indices 1,2 
are assigned to the pair of variables with the least amount 
of pairwise dependence. The (1,2) bivariate margin has the 
copula in (4.27). 

With reference to the properties in Section 4.1, (4.25) is inter­
pretable from its mixture form, is in part closed under the tak­
ing of margins, has a wide range of positive dependence, and has 
closed-form cdf if parametric families for ~ and K;j are chosen 
appropriately (see Section 5.5). 

4.3.1 Max-infinite divisibility conditions 

In this subsection, we obtain conditions for the distributions in 
Section 4.2 to be max-id, so that we have candidates for ( 4.23) 
and (4.24). 

First, with LT ~, we consider the Archimedean copula C(u) = 
~("'£j= 1 ~- 1 (uj)). Then C'Y(u) = exp{'Y0'("'£}:1 x(uj))}, where 
x = ~- 1 and 0' =log~. Note that 0'1 = ~~/~, 0'11 = (~"~­
~'2);~2, 0''" = [2 (~')3 _ 3~~~~~~ + ~2~'"JN3, 0'(4) = [-6(~')4 + 
12~(~')2~"-4~2~/~///_3~2(~")2+~3~(4)JN4. With X~= x'(u;), 
the mth-order mixed derivatives c1 ... m of C"Y for m = 2, 3, ... are: 
• C12 = e"Y<1XiX~[/20'12 + /0'"], 
• c123 = e"Yaxix~x~[/3 0'13 + 3/20'10'11 + /0'111 ], etc. 
From the pattern of the derivatives, C"Y is max-id for up to dimen­
sion m if -0' E £":r., and C'Y is max-id for all m if -0' E £~,where 
.C":n, m ~ 1, are defined in (1.2) of Section 1.3. 

Next we turn to max-id for the partially symmetric copulas in 
Section 4.2. For the trivariate case, let 

C(u) 
def 

~( ~-1 0 <P(<rl(ul) + rl(u2)) + ~-l(u3)) 

~(w(x(ul) + x(u2)) + x(u3)). 

Let H = C"Y and let 0' =log~, so that 

H(u) = exp{ 'Y O"(w(x(ul) + x(u2)) + x(u3)) }. 
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Suppose w E .q and -log .,P E .q. Then the mixed derivatives up 
to third order are non-negative since each term of the derivatives 
is non-negative. The derivatives are: 
• {)HI OU3 = 'Y H x~rr', 
• 82 Hlau1au3 = 1Hxix~[1rr'2w' + rr"w'], 
• 83 HI 0U10U20U3 = 'Y H xix~x~[,2 rr'3w'2 + 3!rr' rr"w'2 + /rY12w" + 

rr"' w12 + rr" w"]. 
For higher-dimensional copulas in this class, write 

C(u) = exp{'Yrr(w1 o w2 o · · · o wk(· · ·) + · · ·)} 
and let X~ = xH u;). Suppose -log .,P = -rr E .c:n and the w; are 
in .C~; for sufficiently large n; (greater than or equal to the num­
ber of terms in the argument of w;). Then the copula is max-id. As 
above, differentiation of a term will lead to terms that are each non­
negative. For example, differentiation of H = C"~ in a term with 
respect to u; leads to a factor like 'Y H rr' wi · · · w~ x~ ~ 0, differentia­
tion of [rr<ny in a term leads to a factor i[rr<il]l- 1rrU+1)wi · · ·W~X~ 
which has the same sign as [rr<il]L, and differentiation of w~j) in a 

term leads to a factor w2i+1)wl+l · · ·w~x~ which has the same sign 
as w~j). 

More generally, consider 

F(u) =¢(-log K(u)) 

where K is max-id and -log .,P E .c:n. We use Theorem 2. 7 to 
prove that F is also max-id. Let rr = log .,P and K = log K, so that 
F = ¢(-log K) = exp{ rr( -K)}. Let H = exp{'"yrr( -K)}, and let Ks 
denote the partial derivative of K with respect to u;, i E S. Then 
• 8Hiau1 = -1Hrr'K1 ~ 0, 
• 82 Hlau1au2 = 12 Hrr'2K1K2 + 1Hrr" K1K2- 1Hrr' K12 ~ 0, etc., 
since each term is non-negative. The pattern of derivatives of each 
term being non-negative continues for higher-order partial derivat­
ives of H. For example, differentiation of H in a term with respect 
to u; leads to a factor like -1 H rr' K; ~ 0, differentiation of [ rr<ny 
in a term leads to a factor -£[ rr<ny- 1 rrU +1) K; which has the same 
sign as [ rrU )]l, and differentiation of Ks in a term leads to a non­
negative factor. 

4.3.2 Dependence properties* 

This section consists mainly of results on concordance and tail 
dependence. 
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Theorem 4.11 The bivariate copula (4.26} is increasing in -<c as 
K;j increases in -<c· Hence (a) (4.25) is increasing in -<gw, and 
(b) the bivariate copula given in (4.26) is more concordant than 
that given in (4.27). 

Proof. The proof of the first statement is easy. Then (a) follows 
from results in Sections 2.2.1 and 2.2.3, and (b) follows because 
K;j max-id implies it is TP2 and hence PQD (see Section 2.1.7). 

D 

Let K be a bivariate copula and 1/J be a LT. With (i,j) = (1,2) 
and m = 2, ( 4.26) becomes 

C(ul,u2) = 1/J(-logK(e-P••r'(u,),e-P2.P-'(u2)) 

where ZII,ll2 ~ 0 are arbitrary and p; = (v; + 1)-1, i = 1,2. 

Theorem 4.12 If 1/J'(O) is finite, the copula 

C.p(u, v) = 1/;(1f;- 1 (u) + 1j;- 1(v)) 

(4.32) 

in (4.27) does not have upper tail dependence. If C.p has upper tail 
dependence, then 1/J'(O) = -oo and the tail dependence parameter 
zs 

.Xu= 2- 2lim[1f;'(2s)N' (s)]. 
S-+0 

( 4.33) 

Proof. We begin by writing: 

lim C.p(u, u)/(1- u) = lim[1- 2u + 1/;(21f;- 1 (u))]/(1- u) 
u~l u~l 

= 2-2 lim 1f;'(21f;- 1 (u))N'(1f;- 1 (u)) = 2- 2lim[1f;'(2s)N'(s)]. 
ti-+l S-+0 

If 1/;'(0) E ( -oo, 0), then the limit is zero and C.p does not have up­
per tail dependence. 1/J' (0) cannot equal 0 because it is the negative 
of the expectation of a positive rv. The rest of the result follows. 

D 

Theorem 4.13 The copula (4.32) has upper tail dependence only 
if either 1/J'(O) = -oo or K has upper tail dependence or both. (The 
details of the tail dependence parameter are in the proof) 

Proof. Suppose that the copula K in ( 4.32) has upper tail depend­
ence parameter f3 E [0, 1] (/3 = 0 implies no tail dependence). We 
consider first the case Pl = P2 or v1 = v2. Subsequently, for the 
case of Pl f:: P2, bounds will be obtained. 



104 CONSTRUCTION OF MULTIVARIATE DISTRIBUTIONS 

For x less than and close to 1, K(x,x) ,..._ ,8(1- x) so that 
K(x, x) ,..._ 2x- 1 + ,8(1 - x) = 1- (2- ,8)(1 - x). Let P1 
P2 = p = (v + 1)-1. Then for u near 1, 

-log[K(e-p.p-l(u), e-p.p-l(u))] + 2vp¢-1(u) 

-log[1- (2- ,8)(1- e-p.p- 1 (u))] + 2vp'l/J- 1(u) 
"' -log[1- (2- ,B)p'ifJ- 1(u)] + 2vp¢-1(u) 

,..._ (2- ,B)p'l/J-1 (u) + 2vp'l/J- 1(u) = 'Y ¢- 1(u), 

where 1 = [2(v + 1)- ,B]p = 2- /3/(v + 1) E [1, 2). Hence, for u 
near 1, 

[1- 2u + C(u, u))/(1- u) ,..._ [1- 2u + '1/J('Y¢- 1 (u))]/(1- u) 

"' 2 - 1'1/J' ( 1'1/J- 1 ( u)) N' ( '1/J- 1 ( u)) 
and the upper tail dependence parameter of C in (4.32) is .Au = 
2-1 lims-+o 'l/J'('Y8)N'(8). 

If C.p does not have upper tail dependence, then .Au = 2 - 'Y = 
/3/(v + 1) and C has upper tail dependence if and only if K has 
upper tail dependence (and the tail dependence parameter of K is 
larger since v 2: 0). 

If C.p has upper tail dependence, then 'Y1ims-+o'l/J'(J8)/¢'(8) 
should be increasing and .Au decreasing as 1 increases or as v 
increases (this follows from Theorem 4.14 below and Theorem 
2.3( d)). If j3 = 0 so that 1 = 2, then bu = 2- 2lim,_0 ¢'(28)/'1/J' (8) 
is the tail dependence parameter of C.p. If ,B = 1 and v = 0 so that 
'Y = 1, then .Au = 1. Hence the tail dependence parameter of ( 4.32) 
is greater than or equal to that of C.p. 

For the asymmetric case with P1 ::; P2 (v1 ?: v2), 

K(e-P2tP- 1 (u), e-P2tP- 1 (u))::; K(e-PltP- 1 (u), e-P2tP- 1 (u)) 

::; K ( e-PltP- 1 (u), e-PltP- 1 (u)) 

so that from above, the tail dependence parameter .Au is bounded 
as follows: 

2 - /2 lim ¢' ( 12 8) N' ( 8) ::; .Au ::; 2 - /1 lim ¢' ( /1 8) / '1/J' ( 8), s-o s-o 
where /i = (2- ,B)j(v; + 1) + vl/(v1 + 1) + v2/(v2 + 1), i = 1, 2. 
Note that /1 ::; /2. 0 

For the next theorem, LTD1 refers to the second variable LTD 
in the first variable and LTD2 refers to the first variable LTD in 
the second variable. 
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Theorem 4.14 Let C be as given in (4-32}. (a) Then C increases 
in concordance as p1 increases (from 0 to 1} and v1 decreases if K 
satisfies the LTD1 property. (b) Also C increases in concordance as 
p 2 increases and v2 decreases if K satisfies the LTD2 property. (c) 
If P1 = P2 = p and v1 = v2 = v, then C increases in concordance 
asp increases if K satisfies both LTD1 and LTD2. 

Proof. Details will mainly be given for case (a). Let 0 < p~ = 
(vf + 1)-1 < P1:::; 1 and vf > v1 ~ 0. Then withy= e-P2 •r'(u2 ), 

,P ( -logK(e-P~•r'(u,),y) + v~p~,P- 1 (u1) + V2P21/J- 1(u2)) 

:::; ,P (-log K(e-p,,p-'(u,), y) + V1P1 ,p-1( ul) + V2P2tP- 1( u2)) , 

for all u1, u2, if 

K(e-P~•r'(ut), y) e-v;p~•r'(u,):::; K(e-p,,p-'(u,), y) e-v,p,,p-'(u,), 

for all u1, y, or if (with x = e-t/J-'(u,) and v = v1, v' = vD 

K(x1f(v'+1), y) xv'/(v'+l):::; K(x1f(v+l), y) xvf(v+1) 1 Vx, y E (0, 1). 

This is the same as K( x 11(v+l), y) X 11 /(v+1) decreasing in v ~ 0 for 
all x,y or K(x1-e,y)xe = [K(x 1-e,y)jx1-e]x decreasing in e E 
[0, 1]. Finally, this is the same as the LTD1 condition of K(z, y)j z 
decreasing in z for all y. 

For (c), the concordance ordering is equivalent to 

{K(x1-E, y1-E)j[x1-Ey1-{]} xy leE [0, 1] 

for all x, y. This follows from the LTD1 and LTD2 conditions be­
cause if 0 :::; e < e :::; 1, then the conditions imply 

K(x1-E',y1-E')xE'ye' < K(x 1-e,y1-E')xEye' 
:::; K(xl-E,y1-{)xEy( 

D 

Note that from Theorems 2.6 and 2.3(d), if K is max-id, then it 
satisfies the LTD1 and LTD2 conditions. 

Analagous results for lower tail dependence are given next. 

Theorem 4.15 The copula Ct/i(u,v) = ,P(,P-1(u) + ,p- 1(v)) has 
lower tail dependence parameter equal to 

A£= 2 lim [,P'(2s)N'(s)]. 
S-+DO 

(4.34) 

Proof. The proof is similar to that of Theorem 4.12 and is left as 
an exerc1se. D 
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Theorem 4.16 If PI = P2 = p {and v1 = v2 = v) in {4.32} and 
the lower tail dependence parameter of K is f3 E (0, 1], then the 
lower tail dependence parameter of C in {4.32) is 

AL = 1 lim t/J'(-logf3+1s)/V;'(s), (4.35) 
S-+00 

where 1 = p(1 + 2v) :2: 1. If the lower tail dependence parameter of 
K is 0, then the lower tail dependence parameter of C is less than 
the right-hand side of {4.35) for all f3 > 0 {with 1 = p(1 + 2v)). 
If the behaviour at the lower tail is K ( x, x) "' f3xr as x -+ 0 with 
r > 1, then the lower tail dependence parameter of C is given by 
(4.35) with 1 = p(r + 2v) :2: 1. 

Proof. This is left as an exercise. 0 
Illustrations of tail dependence for the LT families LTA to LTD 

(in the Appendix) are given in the following examples. 

Example 4.1 Upper tail dependence for ( 4.3) with different 
families of LTs. 

LTA. t/J'(s) = -0-1s118- 1exp{-s118} and t/J'(O) = -oo. The 
limit in (4.33) is Au = 2- 2lim8 _.o[t/J'(2s)/V;'(s)] = 2-
2.21/8-1 = 2-21/8. 

LTB. t/J'(s) = -8-1(1 + s)-119 - 1 and t/J'(O) = -8-1. So Au= 0. 

LTC. t/J' ( s) = -0-1 (1- e-• )119-le-• and t/J' (0) = -oo. The limit 
in ( 4.33) is Au = 2 - 2119 . 

LTD. t/J'(s) = -8-1(1- e- 9 )e-• /[1- (1- e- 9 )e-•] and t/J'(O) = 
-8- 1e9(1- e- 9 ). So Au= 0. 

Example 4.2 Lower tail dependence for ( 4.3) with different 
families of LTs. 

LTA. From (4.34), AL = 2lim8 _. 00 [t/J'(2s)/V;'(s)] = 
lims-+oo 2118 exp{ -(2118 - 1 )s118} = 0. 

LTB. AL = lim8 _. 00 2(1 + s(1 + s]-1 )-1/8- 1 = 2-1/8. 

LTC. AL = lims-+oo 2(1 + e-•)118-le-• = 0. 

LTD. A£= lim8 _. 00 2e-•[1-(1-e-8)c"]/[1-(1-e-8)e- 2•] = 0. 

0 

Example 4.3 Lower tail dependence for ( 4.32) with v1 = v2 = v 
for different families of LTs. 

LTA. The limit in (4.35) is lims 1[-s-1 logf3 + 'YJl/8- 1 exp{s118} 
·exp{-[-logf3+1sJll8} =A£. Ifv > 0 so that 1 > 1 then 
AL = 0, and if 1 = 1 (and v = 0, r = 1) and f3 > 0, then 
AL = 1 for 8 > 1 and A£ = f3 for 8 = 1. 
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LTB. The limit in (4.35) becomes lim, 1b + (1- ''i -log,8)(1 + 
8)-1]-1/9- 1 = ,-119 =A£. If v = 0 and r = 1, then 1 = 1 
and A£ = 1. If r = 2, as for the case of the independence 
copula, then 1 = 2 and A£ = 2- 119 , the same as the copula 
B4 with parameter B. If 1 :S r < 2, then 1 :S 1 < 2 and 
there is more lower tail dependence than the copula B4 
with parameter B. For example, let /{ be the copula B6 
with parameter 8 ~ 1; then K(x, x)....., xr with r = 2116 so 
that A£ = 2- 1/(96 ) if v = 0 and p = 1 (and 1 = r). If/{ 
is the copula B7 with parameter 8 > 0, then K(x, x)....., xr 
with r = 2- 2- 116 . If/{ is the copula B3 with parameter 
-oo < 8 < oo, then K(x, x) ....., -8- 1 log[1- Px2 /(1-
e- 6)] ....., 8x2 /(1 - e- 6) and 1 = 2. Note that the copula 
families B3, B4, B6, B7 are in Section 5.1. 

LTC. The limit in ( 4.35) is A£= lims 1[(1- ,Be-'Y• )/ (1-e-•)Jl/8- 1 

·,Be-(-y-1)•. This is 0 if1 > 1 and ,8 if1 = 1. 

LTD. The limit in (4.35) is A£= lims ,Be-('Y- 1)•[1-(1-c8 )e-•JI 
[1- (1- e- 8),8e-'Y']. This is 0 if 1 > 1 and ,8 if 1 = 1. 

0 

From Theorem 4.11, the (1,2) and (3,2) bivariate margins of 
(4.29) and (4.30) are more concordant than the (1,3) margin. This 
is different from ( 4. 7) in which the bivariate margin that is different 
is more concordant than the other two. In ( 4.30), the dependence of 
the (1,2) and (3,2) margins increases in concordance as/{ increases 
in concordance. Letting /{ be the Frechet upper bound leads to the 
greatest possible dependence for these two bivariate margins. In 
fact, in this limiting case, the upper bound of the inequality (3.13) 
on Kendall's tau is attained. 

Theorem 4.17 Let /{ be the bivariate Frechet upper bound in 
(4.30}, to obtain 

C(u)=1f(maxN-1(ul), ~1/1- 1 (u2)} + maxN-1(u3), ~1f- 1 (u2)}). 

Let 7;j be the Kendall tau value for the ( i, j) bivariate margin. Then 
712 = 723 > 713 and the upper bound 712 = 1- (723- 713) of {3.13} 
is attained. 

Proof In Theorem 3.13, let (i,j,k) = (1,3,2) and let X,X' be 
independent triples with cdfC. Let E1 = {(X1-XD(X3-X~) > 0} 
and E2 = {(X2 - X~)(X3 -X~) > 0}. Let 7 = 712 = 723· By 
Theorem 3.13, the upper bound in (3.13), 7 = 1 - 7 + 7 13 , is 
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attained if E1 C E2. A representation for Cis 

100 
min{Hf(ul), Hf(u2)} min{Hf(u3), Hf(u2)} dM(o:), 

with G1(-;o:)~f Hf = Hg = exp{-o:'¢>-1} and G2(-;o:)~f Hf = 
exp{-to:'¢>-1}. Note that 

G!1( G2( u; o:); o:) = Tt>(t¢-1( u)) ~f b( u), 

independently of o:. Hence for X, X', there is the representation 

X1 = b(X21), X3 = b(X22), X2 = max{X21, X22}, 

X~ = b(X~ 1 ), X~= b(X~2 ), X~ = max{X~1 , X~2 }, 
where X21, X22 are independent with distribution Hf given o:, 
X~1 , X~2 are independent with distribution Hf' given o:1 , and o:, o:1 

are independent rvs with distribution M. Since b is strictly increas­
ing, xl >XL x3 >X~ implies Xn > x~l> x22 > x~2> which im­
plies X2 >X~ and (X2- X~)(X3- X~) > 0. The same conclusion 
holds starting from x1 <XL x3 <X~ and hence E1 c E2. D 

4.4 Generalizations of functional forms 

Extensions to multivariate distributions with negative dependence 
usually come from extending functional forms, especially when 
mixture and stochastic representations do not extend. An example 
to illustrate this is the MVN distribution with exchangeable de­
pendence structure. If the equicorrelation parameter is p, then, for 
p 2: 0, a stochastic representation is 

}j = .JP Zo + ~ Zj, j = 1, ... , m, 

where Zo, Z1, ... , Zm are iid N(O, 1) rvs. This does not extend to 
the range of negative dependence. 

Larger classes of functions, generalizing LTs, are Cm, m 2: 1, 
which are defined in (1.1) in Section 1.3. Related classes of func­
tions are C~, n 2: 1, which were also used in Section 4.3.1. With the 
classes Cm and C~, multivariate distributions with some negative 
dependence can be obtained. The multivariate distributions in the 
two preceding sections have positive dependence only. 

We extend the permutation-symmetric copulas, then the par­
tially symmetric copulas of Section 4.2, and finally the copulas 
with general dependence structures in Section 4.3. We get copulas 
with negatively dependent bivariate margins. Hence we get families 
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of multivariate copulas with a wider range of dependence; however, 
the extensions do not necessarily have a mixture representation. 

Consider a copula of the general form ( 4.4): 

C(u) = ¢(f=r1(ui)), (4.36) 
i=l 

where ¢ : [0, oo) -+ [0, 1] is strictly decreasing and continuously 
differentiable (of all orders), and ¢(0) = 1, ¢(oo) = 0. Then it is 
easily verified that a necessary and sufficient condition for ( 4.36) 
to be a proper distribution is that ( -1)i ¢Ci) 2': 0, j = 1, ... , m, i.e., 
the derivatives are alternating in sign up to order m, or¢ E Cm. If 
( 4.36) is a copula for all m, then ¢ must be completely monotone 
and hence be a LT. 

One can extend ( 4.36) further by allowing strictly decreasing 
functions ¢ which are defined from [0, B] onto [0,1] for some 0 < 
B < oo and satisfy ¢(B) = 0. For ( 4.36), ¢ is defined to be 0 on 
(B, oo). If¢ is continuously differentiable in (0, B) and the deriva­
tives alternate in sign up to order m, then ( 4.36) is a proper dis­
tribution. In Section 5.4, there is one example of a family with ¢ 
in this extended class. However this extension of Cm is not use­
ful for applications because the support of ( 4.36) is not all of 
(0, 1)m. (Note that ¢(2:~1 ¢-1(u;)) = 0 if 2:~ 1 ¢-1(u;) > B 
or if u1, ... , Um are all sufficiently close to 0.) 

In ( 4.36), C has negative lower orthant dependence (NLOD) if 
m 

L:¢-1(uj) 2': cr1(ul· .. urn) 
j=l 

or if 
m 

L:cr1(e-zi) 2': ¢-1(exp{-z1- · · ·- zm}) 
j=l 

for Zj 2': 0, j = 1, ... ,m. Let 7J(z) = ¢- 1(e-z), z > 0; then the 
condition on ¢ is equivalent to 1] being subadditive. Since 7J(O) = 0 
and 1J is increasing, the subadditivity condition will be satisfied 
if 1J is concave. The concavity of 1J is equivalent to the convexity 
of 7]- 1 = -log¢ and the subadditivity of 1] is equivalent to the 
superadditivity of -log¢. If C is NLOD, then note that all of its 
bivariate margins are NQD. Similarly, C is PLOD if 1] is super­
additive or if -log¢ is subadditive. 

Now let C1, C2 be two copulas of the form (4.36) based on dif­
ferent functions ¢1, ¢2. In terms of the functions ¢;, C2 is more 
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PLOD than C1 if and only if w = c/J2 1 o c/J 1 is superadditive. (The 
result in Theorem 4.1 still holds.) 

Next consider copulas with the functional forms of (4.7), (4.10), 
(4.11), where the functions c/J,,P,( are in Ln for some n (to be 
determined). What other conditions are needed for these to be 
proper copulas? These can be seen from taking derivatives up to 
the dimension of the copula. 

From the derivatives, sufficient conditions are that the compo­
sition of the form ,p-1 o c/J is in £~ with n being the number of 
summands in the argument of this function. Specifically, for ( 4. 7) 
in the notation C(u) = ,P(w(x1(u!) + X1(u2)) + X2(ua)), 

• 8Cf8ua = ,P'x~, 
• 82Cj8u28ua = ,P"x~w'x~(u2), and 

• 8aCj8u18u28ua = [,P"'x2w'2 + ,P"x2w"]x~(u2)x~(u!). 
These derivatives are non-negative if ,P E £a, c/J E £ 1, and w = 
,p-1 o c/J E £2. Similarly, ( 4.11) is a copula if ,P E £ 4, ¢, ( E £ 1, and 
,p-1 o ¢, ,p-1 o ( E £2, and (4.10) is a copula if ,P E £4, ¢ E £a, 
( E £1. ,p- 1 o ¢ E £3 and ¢- 1 o( E £2. 

Let ,P, ¢ E £ 1. If ,p- 1 o ¢ E £2, ,P E £a and -log ,P is convex or 
superadditive, then the (1,3) and (2,3) bivariate margins of ( 4. 7) 
are NQD. If also -log¢ is convex or superadditive, then the (1,2) 
bivariate margin is NQD but it is more concordant than the (1,3) 
margin. That is, a non-permutation-symmetric trivariate copula 
with all NQD bivariate margins results. Similar analyses apply in 
higher dimensions. Note that if ,P, ¢ are not in £ 00 or if ,p- 1 o ¢, 
etc., are not in£~, then (4.7), (4.10), (4.11) and their extensions 
do not have representations as mixtures. 

More generally, from (4.23) in Section 4.3, F(u) = ,P( -log H(u)) 
is a multivariate cdf if H is max-id and -log ,P E £~. This form 
includes (4.7), (4.10), (4.11) and their multivariate extensions as 
special cases. Copulas with all bivariate margins distinct can be 
obtained and copulas with some NQD bivariate margins can result 
if -log ,P is convex. Hence the general form allows a fairly wide 
range of dependence structures. 

Specific parametric families illustrating the ideas in this section 
are given in Section 5.4. These families better satisfy property C 
in Section 4.1, because of attaining a wider range of dependence 
including negative dependence; this is done at the expense of prop­
erty A, as the mixture representation is lost. 

Next we consider multivariate copulas that are mixtures of inte­
ger powers of multivariate distributions. Suppose ,P is the LT of a 
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distribution with support on the positive integers. Then the mul­
tivariate family, F = 1/J( -log H), in ( 4.23) extends to arbitrary 
H (not necessary max-id) since a representation is 2::::=1 7rnHn, 
where 1rn is the probability mass at the integer n for the distribu­
tion M with LT '1/J. Some of the LTs in the Appendix have support 
on the positive integers. 

Now take the form of ( 4.24). If K;j is chosen to be NQD, then the 
(i, j) bivariate margin of ( 4.24) is less concordant than C.p( u, v) = 
1jJ('IjJ- 1 (u) + 'ljJ- 1(v)). That is, bivariate margins of (4.24) can be 
either more dependent or less dependent than C.p instead of being 
just more dependent for the general LT. This possibility should 
add extra flexibility for modelling, but from the results in Section 
4.3.2 on tail dependence no new multivariate extreme value copulas 
come from allowing negative dependence in the K;j. 

When m = 2, P1 = P2 = 1, 111 = 112 = 0 and ]{ = K12 is the 
Frechet lower bound, ( 4.24) becomes 

C(u1, u2) = 1/J( -log(e_.p-'(u,) + e-.p-'(u 2)- 1)+), 

where (Y)+ = max{O, y}. This is NQD if and only if 

(e_.p-'(u,) + e-.p-'(uo)- 1)+ ~ e-.p-'(u,u,) 

for all 0 ~ u1 , u2 ~ 1. (Note that PQD is not possible because 
C(u, u) = 0 if u is such that 0 < e-.p-'(u) < t.) Let g(z) = 
exp{-t/J- 1 (e-z)}; then the NQD condition becomes g(z1 )+g(z2 )::; 

g(z1 + z2) + 1 for all z1, z2 > 0. Finally, let h(z) = 1- g(z) so that 
h(O) = 0 and h( oo) = 1 and h is increasing. The condition becomes 
h( z1 + z2) ~ h( zt) + h( z2) for all z1, z2 > 0 or h is subadditive. The 
condition of subadditivity is satisfied here if h is concave or anti­
star-shaped (the region below the curve y = h( x) is star-shaped 
with respect to the origin). The anti-star-shaped condition can be 
written as z- 1h(z) decreasing in z. 

An example is the family LTD in which 1/J(s) = -B- 1 log[1 -
ce-s], where c = 1- e-8 , (} > 0. Then exp{-t/J- 1(t)} = c- 1(1-
e-8t) and h(z) = c- 1[exp{-Be-z}- e-8]. The second derivative 
is h"(z) = c- 1(}e-z exp{ -Be-z} (Be-z - 1) and this is uniformly 
non-positive if 0 < (} ~ 1. 

4.5 Mixtures of conditional distributions 

One main object in this section is to construct families of k-variate 
distributions based on two given ( k - 1 )-dimensional margins 
(which must have k - 2 variables in common), e.g., F(F12 , F23 ), 
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:F(Ft, ... ,k-1, F2, ... ,k). The families can be made to interpolate be­
tween perfect conditional negative dependence and perfect condi­
tional positive dependence with conditional independence in the 
middle. That is, this is an extension of Theorem 3.10 in Sec­
tion 3.2. If one is given F12, F23, ... , Fm-l,m, m 2: 3, one can 
build an m-variate distribution starting with trivariate distribu­
tions Fi,i+l,i+2 E :F(Fi,i+l• Fi+l,i+2), then 4-variate distributions 
from F;, ... ,i+3 E :F(Fi,i+l,i+2> Fi+l.i+2,i+3), etc. There is a bivari­
ate copula C;j associated with the ( i, j) bivariate margin of the 
m-variate distributon. For (i,j) with li- il > 1, C;j measures 
the amount of conditional dependence in the ith and jth variables, 
given those variables with indices in between. Hence this is another 
construction method that builds on bivariate copulas. 

For m = 3, the trivariate family is 

F123(y) = ly~ C13(F112(Yllz2), F312(Y3Iz2)) F2(dz2), (4.37) 

where F112, F312 are conditional cdfs obtained from F12, F23. By 
construction, ( 4.37) is a proper trivariate distribution with univari­
ate margins F1, F2, F3, (1,2) bivariate margin F12, and (2,3) bivari­
ate margin F23· C13 can be interpreted as a copula representing the 
amount of conditional dependence (in the first and third univariate 
margins given the second). C13(u1, u 3 ) = u1u3 corresponds to con­
ditional independence and c13(ul,u3) = min{ul,u3} corresponds 
to perfect conditional positive dependence. 

For m = 4, define F234 in a similar way to F123 (by adding 1 
to all subscripts in (4.37)). Note that F123, F234 have a common 
bivariate margin F23. The 4-variate family is 

F1234(y) = ly~ ly~ C14(Fli23(Yllz), F4I23(Y41z)) F23(dz2, dz3), 

( 4.38) 

where F1123, F4123 are conditional cdfs obtained from F123, F234, 
and z = (z2, z3). 

This can be extended recursively. Assuming Fl···m-1, F2···m have 
been defined with a common ( m- 2)-dimensional margin F2···m-1, 
the m-variate family is 

Fl···m(Y) = ly~ · · ·lY~- 1 
Clm (Fll2···m-l(Yllz2, · · ·, Zm-d, 

Fml2···m-l(Ymlz2, ... , Zm-d) · F2···m-1(dz2, ... , dzm_l), (4.39) 

where Fll2···m-l, Fml2···m-1 are conditional cdfs obtained from 
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F1···m-1, F2···m· 
Similar to ( 4.37)-( 4.39), one can define a family of m-variate 

distributions through survival functions, F s. Let F i = 1 - Fj be 
the univariate survival functions. The bivariate margins with con­
secutive indices are Fj,J+1(Yj,Yi+d = CJ,i+1(Fj(Yj),FJ+1(YJ+l)), 
where c~ "+1 is the copula linking the univariate survival functions J,J 
to the bivariate survival function. The m-variate case is like ( 4.39) 
with all F replaced by F and the integrals having lower limits Yi, 
j = 2, ... , m- 1, and upper limits oo. This leads to 

F1···m(Y) = 100 
•• ·100 c;m (F1J2···m-1(Y11z2, ... ' Zm-1), 

Y2 Ym-1 

F mJ2···m-1 (Ym lz2, ... , Zm-1)) ·F2···m-1 (dz2, ... , dzm-d· ( 4.40) 
It is straightforward to show that this family is the same as that 
from (4.37)-(4.39) with C}k(u, v) = u + v- 1 + Cjk(l- u, 1- v) 
or Cjk(u, v) = u + v- 1 + C}k(l- u, 1- v). 

Models ( 4.39) and ( 4.40) are a unifying method for constructing 
multivariate distributions with a given copula for each bivariate 
margin. The MVN family is a special case of ( 4.39). Other special 
cases are given in Sections 5.5 and 6.3. 

Example 4.4 (MVN.) Let Fj = ~. j = 1, ... , m, where~ is the 
standard normal cdf. For j < k, let Cjk = Fe;k(~- 1 (uj), ~- 1 (uk)), 
where Feik is the BVSN cdf with correlation Bjk· Then for (4.39), 
with k- j > 1, Bjk = Pik·(i+1, ... ,k-1) is the partial correlation 
of variables j and k given variables j + 1, ... , k - 1. This type of 
parametrization, which is not unique because of the indexing, of 
the MVN distribution may be useful for some applications because 
each (}ik can be in the range ( -1, 1) and there is no constraint 
similar to that of a positive definite matrix. 

Proof. Starting with Fj,j+1 being BVN, we show that if Fj, ... ,J+n-2 
(2 < n :::; m, j:::; m- n + 2) are (n- I)-dimensional MVN, then 
Fj, ... ,J+n-1 (j:::; m- n + 1) are n-dimensional MVN. It suffices to 
show that F1, ... ,m in (4.39) is MVN assuming that F1, ... ,m- 1 and 
F2, ... ,m are MVN, for m ~ 3. 

Let ~n, t/Jn respectively denote the MVN cdf and pdf with zero 
mean vector and covariance matrix 0. Let 

R~r [ 1 P1m], 
P1m 1 

E12] and 
En 

be the covariance matrices associated with C1m, F1, ... ,m- 1 and 
F2, ... ,m, respectively. Also let an = [1- E12E2"21 E21] 112 , amm = 
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[1- :Em2:E2"tE2mJ112 and Z2 = (z2, ... ,Zm-1), z = (z1, ... ,zm)· 
With BVN copulas and univariate standard normal margins, ( 4.39) 
simplifies to 

Jx, ... j"'m-1 n. (X1 - z2E21 Xm- Z2E2m) A. ( ) d 
-¥R , 'f'E22 Z2 Z2. 

-oo -oo au amm 

( 4.41) 
Writing <I>R as an integral, (4.41) becomes 

( )-1"' 1 
•• ·J"'m A. (Z1- Z2E21 Zm- Z2E2m) A. ( )d auamm 'f'R , 'f'E22 Z2 z. 

-oo -oo au amm 

( 4.42) 
Clearly, the integrand of ( 4.42) is a constant multi pied by the expo­
nential of a quadratic form in z1, ... , Zm, so that ( 4.42) corresponds 
to an m-dimensional MVN cdf. Let the covariance matrix of the 
resulting MVN distribution be denoted by 

~:: l 
The squared reciprocal in ( 4.42) of (27r)mf 2 times the constant is 
IE22I(1- Pim)ai1a;,m; it is also equal to 

o-1m] _ [ E12] r;-1 [E 1 :Em2 22 21 

Hence (1-Pim)aila;,m = aila;,m -(lT1m-E12E2lE2m)2 or Pim = 
{(o-1m- E12E221E2m)/[auamm]p. Since lT1m must be increasing 
as P1m increases, P1m = (o-1m- E12E2"21E2m)/[auammL which is 
the partial correlation of the variables 1 and m given variables 
2, ... ,m -1. 0 

Example 4.5 A special case consists of the multivariate distri­
butions arising from a first-order Markov chain based on a copula 
C and a marginal distribution F. That is, Cj,j+1 = C for all j and 
Cj k corresponds to the independence copula if k - j > 1. In this 
case, for m ~ 4, ( 4.39) can be more simply written as 

F1, ... ,m(Y) = ly~ · · ·lY~- 1 F112(Y1Iz2) 

·Fmlm-1(Ym lzm-d F2, ... ,m-1(dz2, · · ·, dzm_l), 
with transition distribution Fili-1(xiiXi-1) = B(F(xi_l), F(xi)), 
where B(u, v) = 8C(u, v)/8u. These Markov chains are studied 
further in Section 8.1. 0 
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Special parametric families from this construction method are 
given in Section 5.5. With reference to the properties in Section 4.1, 
these families have interpretability and a wide range of dependence, 
closure only for some margins, densities without integrals through 
the recursions but no simple forms for cdfs (the behaviour is similar 
to MVN distributions). 

4.5.1 Dependence properties • 

It should be clear from the construction method of ( 4.37)-( 4.39) 
(and from the MVN example) that a wide range of dependence 
can result, by allowing the copulas Cjk, j < k, to range from the 
Frechet lower bound to the Frechet upper bound. A result for the 
trivariate case shows that the bounds for the Kendall tau values 
r12, T13, T23 in (3.13) of Section 3.4.3 can be achieved when the 
Frechet bounds are used in (4.37). 

Theorem 4.18 Let F123 be defined as in (4.37). Let Tjk be the 
Kendall tau value for the (j, k) bivariate margin, j < k. If C1a 
in {4.37) is the Frichet upper bound copula and F12-<-s1Fa2 {that 
is, F~i(Fli2(YliY2)1Y2) is {strictly) increasing in Y2), then T13 = 
1-1r12- T2al. Similarly, ifC13 is the Frichet lower bound copula 
and F3"ji(l-Fli2(Yl!Y2)IY2) is (strictly) increasing in Y2, then T13 = 
-1 + h2 + T231. 

Proof. Let (Xtl, Xt2, Xta), t = 1, 2, be independent random vectors 
from the distribution F123. With C1a being the Frechet upper and 
lower bound, ( 4.37) becomes respectively 

and 

FL(Y) = j_Y~ max{F112(Y1Iz) + Fai2(Yalz)- 1, 0} F2(dz). 

For Fu, representations for the two vectors are X1a = r(X11 ,X12) 
and x23 = r(X21, x22) where r(xl, X2) = Fa!i(Fll2(xllx2)lx2)· Let 
E1, E2 be as defined in Theorem 3.13 with (i,j, k) = (1, 2, 3). The 
function r is increasing in x1, and if r is also increasing in x 2 , then 
(Xu-X21)(X12-X22) > 0 implies (X1a-X2a)(X12-X22) > 0 or 
E1 C E2, and the upper bound in (3.13) is attained. For FL, rep­
resentations are X1a = s(Xu, X12) and X23 = s(X21, X22), where 
s(x1, x2) = F3"ji(l- F112(xdx2)lx2). If s is increasing in x2, then 
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(Xu- X21)(X12- X22) < 0 implies (X13- X23)(X12- X22) > 0. 
That is, E1 C E2, and hence the lower bound in (3.13) is at­
tained. A sufficient condition for s to satisfy the given condition is 
that both F112(·iy) and F3l2(·iy) are Sl. More generally, the condi­
tion on s is equivalent to the --<si ordering on F:2 and F32 , where 
F:2(x, y) = F2(y)- F12(F1- 1(1- F1(x)), y). D 

The next results concern concordance and tail dependence. 

Theorem 4.19 As Cjk increases in concordance, with other bi­
variate margins held fixed, then Fj .. ·k increases in the --<cL ordering 
and hence Fj k increases in concordance. 

Proof. This is obvious. 0 

It can be checked (for example, with the MVN family) that a 
stronger concordance property such as 'F13 increases in concord­
ance as c12 increases in concordance' does not hold. 

Theorem 4.20 For the trivariate distribution given in (4.37), if 
c12 and c23 have upper tail dependence and some regularity con­
ditions hold, then F13 has upper tail dependence. For the general 
m-dimensional distribution in (4.39}, if Cj,j+l, j = 1, ... , m- 1, 
have upper tail dependence and some regularity conditions hold, 
then Fj k, k - j > 1, all have upper tail dependence. {The tail de­
pendence conditions appear in the proof). 

Proof. To stress ideas and concepts, we assume the existence of 
derivatives and other regularity conditions as needed. Some equi­
valent conditions for bivariate tail dependence are given first. Some­
times it is more convenient to be working with exponential margins 
than uniform margins. For a bivariate copula C, let 

G(x, y) = C(1- e-x, 1- e-Y). ( 4.43) 

The definition of upper tail dependence in Section 2.1.10 becomes 

e"'G(x, x)-+ A E (0, 1], x-+ oo. 

Now assuming that G has derivatives up to second order, let 
G112(xly) = eY I'JG~;·y) and G112 = 1 - G112· Then 

e"'G(x,x) = e"' 100 Gll2(xiy)e-Ydy = 100 G112(xlx + v)e-vdv. 

Assuming that e"' G( x, x) converges as x -+ oo and that 

( 4.44) 
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for all v (v < 0 is needed below), where a is continuous and a:::; 1, 
then by the bounded convergence theorem, 

exG(x,x)-+ 100 a(v)e-vdv. 

Tail dependence holds if and only if a is not identically 0 almost 
surely (a.s.) on (0, oo). 

Now let g be the density of G. Then 

exG(x, x) = ex 100 100 
g(y1, Y2) dy1 dy2 

100 100 exg(x+v1,x+v2)dv1dv2. (4.45) 

Assuming that 

ex g( x + v1, x + v2) -+ b( v1, v2) 

and that the Lebesgue dominated convergence theorem can be used 
in (4.45), 

ex G(x, x)-+ 100100 b(v1, v2) dv1 dv2 

and tail dependence holds if and only if b is not identically 0 ( a.s.) 
on (O,oo)2 . 

Next suppose that C12, C23 have upper tail dependence and that 
the Lebesgue dominated convergence theorem can be applied to 
( 4.46) below. Then F13 in ( 4.37) has upper tail dependence and 
the tail dependence parameter is given in ( 4.4 7). 

Let F12, F2a be defined as in ( 4.43) with C12, C2a, respectively. 
Let a be defined as in (4.44) with subscripts 12 or 32 for the (1,2) or 
(3,2) bivariate margin, respectively. Putting exponential margins 
in ( 4.37) leads to 

F123(y) = 1Y2 C1a(Flj2(Y1Iz2), Faj2(Yalz2)) e-z2 dz2 

and 

F1a(x, x) = 1- F1(x)- Fa(x) + F1a(x, x) 

1-100 Flj2(xjz)e-zdz -100 Faj2(xjz)e-z dz 

+ 100 
C1a(F1j2(xjz), Fa12(xjz)) e-z dz 

100 C1a(F112(xlz), Fa12(xjz)) e-z dz. 
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Hence 

e"' F13(x, x) =I: c13(F112(xlx + v), F3l2(xlx + v)) e-v dv (4.46) 

-I: C13(1- a12(v), 1- a32(v)) e-v dv ( 4.47) 

assuming the Lebesgue dominated convergence theorem can be 

used and a12, a32 are the limits for F112, F31 2 as in (4.44). 
Next for the multivariate extension. Suppose that Cj,j+1, j = 

1, ... , m- 1, have upper tail dependence and that all copulas Cjk 
have densities. For ( 4.39) with exponential univariate margins, sup­
pose for j, k, with k > j, that the following pointwise convergences 
hold as x-+ oo: 

(a) Fili+1, ... ,k(xlx + Vj+1, ... , x + vk) -+ aj,j+1, ... ,k( Vj+1, ... , vk), 

(b) Fklj, ... ,k-1(xlx + Vj, ... , X+ Vk-d -+ ak,j, ... ,k-1 ( Vj, ... , Vk_!), 

(c) e"' /i, ... ,k(X + Vj, ... , X+ Vk)-+ bj, ... ,k(Vj, ... , Vk), 

and that the functions on the right-hand sides of (a), (b), (c) are not 
identically 0 (a.s.). The remainder of the proof, which is omitted, 
makes use of these limits in an inductive manner. The Lebesgue 
dominated convergence theorem is assume to hold for the limits of 
integrals with terms from (a), (b) and (c). D 

For the result in the above theorem, positive dependence for the 
copula Cjk, k- j > 1, is not necessary. For example, even if C13 
corresponds to the Frechet lower bound, F13 can have upper tail 
dependence - under regularity conditions, the tail dependence 
parameter is A13 = J~00 e-vmax{a12(v) +a32(v) -1,0}dv. The 
assumptions given in above theorem are not really too strong since 
they do hold in special cases such as those in Section 6.3.1. 

4.6 Convolution-closed infinitely divisible class 0 

For parametric families of univariate distributions that are convolu­
tion-closed and infinitely divisible, there is a multivariate extension 
that makes use of these properties. It leads to positively dependent 
multivariate distributions only. These distributions are applied to 
time series models for count data, etc., in Section 8.4. 

A family Fe is convolution-closed if Y; ,....., Fe;, i = 1, 2, and 
Y1, Y2 independent implies the convolution Y1 + Y2 ,....., F11 , where 'TJ 

is a function of 01 , 02 , usually the sum. A univariate distribution 
F is infinitely divisible if Y ,....., F and for all positive integers 
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n, there exists a distribution F(n) and iid rvs Ynl, ... , Ynn with 

distribution F(n) such that Y 4 Ynl + · · · + Ynn· If Fe, B > 0, is a 
convolution-closed infinitely divisible parametric family such that 

Fe 1 *Fe, = Fe 1 +9 2 , where * is the convolution operator, then FJn) 
can be taken to be Fe;n· It is assumed that Fa corresponds to the 
degenerate distribution at 0. 

Examples of convolution-closed infinitely divisible parametric 
families are Poisson (B), Gamma(B, a-) with a- fixed, and N(O, B); 
others are given in Section 8.4. A convolution-closed parametric 
family that is not infinitely divisible is Binomial ( B, p) with p fixed. 
A parametric family that is infinitely divisible but not convolution­
closed is the lognormal family. 

Definition. Let Zs, S E Sm, be 2m- 1 independent rvs in the 
family Fe such that Zs has parameter Bs 2: 0 (if the parameter is 
zero, the random variable is also zero). The stochastic representa­
tion for a family of multivariate distributions with univariate 
margins in a given convolution-closed infinitely divisible 
class, parametrized by { B s : S E Sm}, is 

Xi= L Zs, j= 1, ... ,m; 
S:jES 

X1 has distribution F11i, where 'f/j = Lsesm:JES Bs. 

( 4.48) 

In the bivariate case, the stochastic representation becomes 

( 4.49) 

where Z1, Z2, Z12 are independent rvs in the family Fe with re­
spective parameters B1, B2, B12. For j = 1, 2, the distribution of X1 
is Fei+e 12 • 

The parameters of the above family can be interpreted as mul­
tiples of multivariate cumulants, which are defined next. 

Definition. Let (X1, ... , Xm) "' H, with moment generating 
function M(t1, ... , tm) = E (exp[t1X1 + · ·+tmXm]) and cumulant 
generating function /{ ( t) = log M ( t). The multivariate mixed 
cumulant of mth order is 

{)ffif{ 
Kl2···m = a a (o, ... , 0). 

t1 · · · tm 
When m = 2, the bivariate mixed cumulant K 12 is a covariance. 
Similarly, if Sis a non-empty subset of {1, ... , m }, one can obtain 
the mixed cumulant Ks of order lSI from the marginal distribu­
tion H s. The set { Ks : S E Sm} contains information about the 
dependence in H. 
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For a convolution-closed infinitely divisible family of cdfs F8 , 

let Ke be the corresponding family of cumulant functions. As­
suming that enough moments exist, the rth cumulant of Fe is 

K~r) ~f K~r)(O), the rth derivative evaluated at 0. Since Ke(t) = 
N K8JN(t) for all positive integers N, there are constants 'Yr such 

that K~r) = 'YrB, r = 1, 2, .... The joint cumulant generating 
function of (X1,X2) in (4.49) is K(t1,t2) = Ke 1 ,82 ,8 12 (tl,t2) = 
Ke 1 (tt) +Ke2 (t2) + Ke 12 (tl + t2). Hence the bivariate cumulant is 
K12 = K(82), the second cumulant of Z12· For ( 4.48), the joint cumu-

12 

lant generating function of (X1, ... , Xm) is K(t) = K(t; Bs, S E 
Sm) = Es Ke 5 (l:;es t;). Hence the mth-order mixed cumulant is 

Kl···m = K~7.~·m' the mth cumulant of Zl···m· 

With reference to the properties in Section 4.1, these families of 
distributions are interpretable, closed under the taking of margins, 
have a wide range of positive dependence, but the densities and cdfs 
involve multi-dimensional sums or integrals that grow quickly in 
dimension as m increases. See Exercise 4.16 on an algorithm to find 
rvs of the form (4.48) that yield a given (non-negative) covariance 
matrix, when all univariate margins are in a given family in the 
convolution-closed infinitely divisible class. 

Replacing the summation symbol + by the minimum symbol/\, 
one can define multivariate families from Fe that are closed under 
independent minima. This is the main idea in Marshall and Olkin 
(1967), for exponential distributions, and Arnold (1967). See also 
Chapter 6 on min-stable multivariate exponential distributions. 

4. 7 Multivariate distributions given bivariate margins 

In preceding sections, families of multivariate distributions, some 
with a wide range of dependence structure, have been constructed. 
However, no method has been given that constructs a multivariate 
cdf from the set of bivariate margins. In this section we mention 
some approximate methods. One method, based on regression with 
binary variables, is a formula for constructing a multivariate ob­
ject that has the right bivariate margins, but it cannot be shown 
analytically that the object is a proper cdf (it has been shown nu­
merically in some cases). A second method is based on maximum 
entropy given the bivariate densities; this method generally does 
not have closed form and must be computed numerically as an ap­
proximation. These two methods are outlined in the following two 
subsections. A third method is given in Section 4.8. 
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4. 7.1 Regression with binary variables 

Let m ;::: 3 be the dimension and let X "' F with only the bivariate 
margins F;j, 1 ::; i < j ::; m, known. What is constructed in this 
subsection can be thought of as an approximation to F based on 
the set of bivariate margins. The approximation should be good 
when F is approximately maximum entropy given the bivariate 
margins or the information about F is contained almost entirely 
in the bivariate margins. For multivariate probabilities concerning 
X, we need rectangle probabilities of the form 

(4.50) 

This can be decomposed as the product of conditional probabil­
ities: 

( 4.51) 

. n;=3Pr(wk < xk::; Xk I Wj < Xj::; Xj,j = 1, ... ,k-1). 

Let I; = I( w; < X; :S x;), i = 1, ... , m, where I(A) denotes the 
indicator of the event A. Note that E (I;) = F; ( x;) - F; ( w;). 

The first step is an approximation of 

Pr(wk < xk::; Xk I W1 < x1::; X1, ... ,Wk-1 < Xk-1::; Xk-1) 

= E(Ik I h = 1, .. . ,Ik-1 = 1) ( 4.52) 

by 

E (h)+ f221n1/(1- E (h), ... , 1- E(h-l))T, (4.53) 

where f221 is a row vector consisting of the entries Cov ( Ik, I;) = 
E(Idi)-E(Ik)E(I;),i= l, ... ,k-1,andf211 isa(k-1)x(k-1) 
matrix with (i, j) element Cov (I;, Ij) = E (I;Ij)- E (I;)E (Ij ), 1 ::; 
i,j :S k- 1. Note that E(I;Ij) = Pr(w; <X; :S x;,wi <Xi :S 
Xj) = F;j(X;, Xj)-Fij(X;, Wj)-F;j(W;, Xj)+F;j(W;, Wj)· It is easily 
verified that ( 4.52) and ( 4.53) are identical if k = 2. The use of 
( 4.53) as an approximation to ( 4.52) is analogous to the formula 

E (Y2IY1 = yl) = JJ2 + :E21:Ei/(Y1- JJt) 

for a MVN random vector (Yf, Yff with mean vector (JJ[, JJf)T 

and covariance matrix [ ~~~ ~~~] . 
Expression (4.53) can be substituted into (4.51) to get one ap­

proximation to ( 4.50). However, the decomposition into conditional 
probabilities is not unique and different decompositions lead to dif­
ferent approximations in general. That is, ( 4.50) is also equivalent 
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to 

Pr( w; 1 < X; 1 :::; x; 1 , w;, <X;, :::; x;,) 

· I1~=3 Pr(w;k < X;k:::; x;k I w;i < X;i:::; x;i,j = 1, . .. ,k -1), 

where (i1, ... ,im) is a permutation of (1, ... ,m) with i1 < i2. 
There are m!/2 permutations that could be considered. For each 
permutation, an approximation of the form ( 4.53) can be used for 
each conditional probability. An overall approximation, denoted by 
P = P(w,x), for (4.50) is the average of the m!/2 approximations. 
For a permutation, if ( 4.53) happens to exceed 1 or be less than 0, 
it is replaced by 1 or 0, respectively. 

A conjecture is that the approximation should be reasonable if 
the dependence is not too large and if the multivariate distribution 
is close to maximum entropy given the bivariate margins. 

Another use of the approximation formula given a set of bivariate 
margins is for computing multivariate probabilities. The bivariate 
margins of P are as given (take Wk, Xk to be -oo, oo except for 
k = i, j), but the additivity property of a probability measure is 
not satisfied. Hence, to get a formula here for a multivariate object 
given the set of bivariate margins, we are giving up the additivity 
property. For some applications, this may be acceptable. 

Next let Wj ---+ -oo, j = 1, ... , m, so that P = P(x) is an 
approximate cdf; it has the bivariate margins F;j, i < j, but need 
not correspond to a proper probability measure. The formula P in 
the trivariate case for lower orthant probabilities can be written 
explicitly by expanding the matrix inverse. 

With m = k = 3 in (4.51)-(4.53), one gets 

( ) def 
D F12, F1a, F23 = F12Fa 

+ F12[(F1a- F1Fa)(1- F2)(F2- F12) 

+(F2a- F2Fa)(1- FI)(F1- F12)] / 

[F1F2(l- F1- F2 + F12) + F12(F1F2- F12)], 

where the arguments are x1, x2, xa. This looks like a perturbation of 
F12F3; it can be shown that convergence as F; ---+ 1, i = 1, 2, 3, leads 
to the right bivariate margins (use !'Hospital's rule for i = 1, 2). 
This can now be averaged over the three permutations to get 

P = [D(F12, F1a, F2a) + D(F1a, F12, F2a) + D(F2a, F12, F1a)] /3. 
(4.54) 

This is a reasonably simple formula for a trivariate object with 
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bivariate margins F12, F1a, F23· 

It can be shown analytically that (4.54) is a trivariate distri­
bution in some cases. For example, it is correct for independence 
and Frechet upper bound margins, and combinations of Frechet 
upper/lower bounds for the bivariate margins. Some numerical 
computations in the trivariate case seem to suggest that P is a 
proper cdf if F;j is not too far away from F;Fj for all i < j. Ex­
pression ( 4.54) can have negative rectangle 'probabilities' for small 
rectangles, but the use of P(w, x) leads always to non-negative 
'probabilities' (that are not additive). 

4. 7.2 Maximum entropy given bivariate margins • 

Generally maximum entropy problems refer to maximizing 

-J flogf dv, 

subject to some constraints on J, where f is a density with respect 
to the measure v. The maximum entropy density can be inter­
preted as the density that is 'smoothest' given the constraints. In 
this subsection, we apply ideas of maximum entropy to the case 
where constraints are the given bivariate margins. The Appendix 
has some background results on maximum entropy. 

For simplicity of notation, consider first the trivariate discrete 
case. Let Pijk, 1 :::=; i :::=; I, 1 :::=; j :::=; J, 1 :::=; k :::=; K, be a trivariate 
discrete pmf. The solution (if one exists) to the maximum entropy 
problem of maximizing - L; i k Pii k logp;j k subject to L; Pii k = 
m+i k V j, k, Lj Pii k = m;+k Vi,' k, Lk Pii k = m;i+ Vi, j, has the form 

Piik = exp{A+ikAi+kAii+} 

for some constants A+jk. Ai+k, Aii+· This can easily be shown using 
the Lagrange multiplier method. The extension to the multivariate 
discrete case is straightforward. 

To generalize to the continuous multivariate pdfs with given 
compatible bivariate margins, the method of calculus of variations 
can be used. The maximum entropy problem becomes that of max­
imizing- J f(x) log f(x) dx subject to J f(x) dx-i,-i = f;i(x;, Xj) 
for all 1 :::=; i < j :::; m, where Iii is the ( i, j) bivariate marginal pdf 
and X-i,-i is x without the ith and jth components. 

To determine the solution, let J (E) = J (!( x) + Eg( x)) log(!( x) + 
Eg(x)) dx. Then for the maximum entropy solution f = r, we must 
have J'(O) = 0 for all functions g(x) satisfying J g(x) dx-i,-j = 0 
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for all i,j. This reduces to J g(x)logf*(x)dx = 0 for all such g. 

(Note that J"(O) = f[g 2(x)/ f*(x)] dx.) It is then easily verified 
that the solution f* has the form f*(x) = f};,j h;j(x;,xj) for a set 
of functions h;j, where h;j is positive whenever /;j is positive. 

An example (possibly the only one) where the conditions can be 
verified is the MVN density. The MVSN density with correlations 
Pii, 1 :::; i < j :::; m, is a maximum entropy density given BVSN 
margins /;j with respective correlations Pii (that result in a positive 
definite correlation matrix), since it can be decomposed into the 
form of the density in the preceding paragraph. For example, with 
~- 1 = (pii) and f(x) = Bexp{-t l:Piix;xj}, take h;j(x;,xj) = 
B 2f[m(m- 1)lexp{-t(m-1)-1[piix1+piixJ]-piix;xj} for 1:::; i < 
j:::; m. 

In the discrete trivariate case, the maximum entropy solution 
can be put in the form Pij/c = a;j/3ik/jk for non-negative constants 
a;j, /3;1c, 'Yi 1c. These can be solved numerically with the proportional 
iterative rescaling method. The iteration has the form: 

(r+1) /" /3(r) (r) 
aij = Pii+ L...J ik 'Yj 1c ' /3(r+1) _ . /" (r+l) (r) 

ik - P•+k L...J aij 'Yj 1c , 
/c j 

(r+1) _ . /" (r+1)/3(r+l) 
'Yjk - P+Jk L...J aii ik , 

i 

starting with a~?) = f3~?) = ... /?) = N- 1 for example For a set 
~ ~ I~ l ' 

of three bivariate margins c12, c13, c23 in the form of copulas, 
discretization can be applied to bivariate copulas to get an ap­
proximation to the continuous ( trivariate) maximum entropy dens­
ity. Numerical experience is that the convergence is usually fast, 
with more iterations required as the dependence in c12, c13, c23 
increases or as these copulas become more different. This numer­
ical approximation generalizes to higher dimensions, but computa­
tional complexity increases exponentially with the dimension m. 

4 .. 8 Molenberghs and Lesaffre construction 

In this section, we extend the ideas in Molenberghs and Lessafre 
(1994). Let F;j, 1 :::; i < j :::; m, be given (compatible) bivariate 
margins, not necessary Plackett distributions as in the cited refer­
ence. We build up trivariate objects Fit;2; 3 , 1 :::; i1 < i2 < i3 :::; m, 
first and then extend to multivariate objects in higher dimensions, 
one dimension at a time. There are applications for multivariate 
binary and ordinal data (see Chapters 7 and 11). 
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Let a1 = F12, a2 = F13, a3 = F23, a4 = 1 - F1 - F2 - F3 + 
F12 + F13 + F23, b1 = F12 + F13- F1, b2 = F12 + F23- F2, b3 = 
F13 + F23 - F3. A trivariate object F123 can be constructed from 
the F12, F13, F23 as a solution to the 'product ratio' 

'ljJ = 'lj;123 = F123{F123- b!)(F123- b2)(F123- b3) . (4.55) 
(a1- F123)(a2- F123)(a3- F123)(a4- F123) 

The eight terms in (4.55) must be non-negative, so that a constraint 
on the bivariate margins is that b::; a, where b = max{O, b1, b2, b3} 
and a= min{ a1, a2, a3, a4}. Note that these are the Frechet bounds 
for :F(F12 , F13, F23) (see Section 3.4). Interpretations for the ratio 
(4.55) are given below. 

Note that ( 4.55) must be solved pointwise for each x E 3?3 in 
order to get F123(x). If the solution yields a proper cdf F123 and 
X "' F123, then for a given x, the ratio can be expressed in terms 
of orthant probabilities. With 1j = 1(Xj > Xj ), j = 1, 2, 3, let 

PO++= F1 = Ft(xt) = Pr(lt = 0), 

P+D+ = F2 = F2(x2), 

P++O = F3 = F3(x3), 

POD+= F12 = F12(x1, x2) = Pr(lt = 12 = 0), 

Po+o = F13, P+OO = F23, and 

Pooo = z = F123 = Pr(I1 = 12 = 1a = 0). 

Then 

P1oo = Pr(lt = 1,12 = 13 = 0) = F23- z, 

Po1o = Pr(I2 = 1,lt = 13 = 0) = F13- z, 

Pool= Pr(I3 = 1,/t = 12 = 0) = F12- z, 

Puo = Pr(I1 = h = 1, h = 0) = F3- F13- F23 + z, 

P1o1 = Pr(lt = 13 = 1, h = 0) = F2- F12- F23 + z, 

Pou = Pr{I2 = 13 = 1, It = 0) = F1- F12- F13 + z, and 

Ptu = Pr(lt = 12 = /3 = 1) = 1- F1- F2- F3 + F12 + Ft3+ 

F23- z. 

Hence (4.55) is the same as 

'lj;l23 = [FoooPouPtolPllo)/[pootPOlOPlOOPlll) · 

Equation ( 4.55) can be written so that z = F123 is the root of 

'lj;(a1- z)(a2- z)(a3- z)(a4- z)- z(z- b1)(z- b2)(z- b3) d~f h(z). 
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h(z) has exactly one root in the interval [b, a], by checking the end­
point values and the monotonicity. Clearly, h(b) > 0, h(a) < 0 and 
h'(z) < 0, if b < a. However, what has not been shown is that 
the solution results in a proper cdf, i.e., the non-negativity of the 
rectangle evaluations in (1.6). Even the monotonicity of F123 has 
not been shown. 

In (4.55), the indices (1,2,3) can be replaced by (i1,i2,i3), so 
that, for example, the parameters 'l/J123, 'l/J124, ¢134, ¢234 in ( 4.55) 
correspond to the four trivariate margins of a 4-variate distribution. 
For m 2: 4, the extension can be made for the multivariate object 
F1 ... m given m compatible (m- !)-dimensional marginals, defined 
through the 'product ratio', which has 2m- 1 orthant probabilities 
in the numerator and 2m-1 orthant probabilities in the denomi­
nator. Assuming that the result is a proper cdf and X ,..., F1 ... m, 
define Ij = I(Xj > Xj ), j = 1, ... , m. The terms in the numerator 
have r = m mod 2 Ij equal to 0 and the terms in the denominator 
haver= (m- 1) mod 2 Ij equal to 0. 

For example, for m = 4, with z = F1234, the 'product ratio' is: 

z(z- ao) nl<i<j<4(z- a;j) 
¢1234 = 4 , 

(F123- z)(F124- z)(F134- z)(F234- z) f];=1 (a;- z) 

where the a; and a;j are defined near the equations (3.15) and 
(3.16). 

Next we turn to some interpretations of ( 4.55); these extend to 
higher dimensions but the notation is cumbersome. 

A first interpretation of ( 4.55) is in terms of cross-product ra­
tios for bivariate Bernoulli distributions: with probabilities 11'rs = 
Pr(Y1 = r, Y2 = s), r, s = 0, 1, for a random binary pair (Y1, Y2), 
the cross-product (odds) ratio is 71'oa71'11/[11'a171'1a]. A continuous bi­
variate distribution can be discretized into bivariate binary distri­
butions for pairs of cutoff points so that there is a cross-product 
ratio associated with each pair. 'l/J123 is the ratio of cross-product 
ratios of conditional bivariate distributions, and F123 is defined so 
that this ratio is constant over x, i.e., 

- F12l3[1 - F1l3 - F2l3 + F12l3l I 
¢123= ][ l [F113- F1213 F213- F1213 

F12l3'[1 - F1l3' - F2l3' + F12l3'] 

[Fll3' - F12I3'][F2I3'- F12l3'] ' 
(4.56) 

where the first (numerator) cross-product ratio is conditional on 
X3 ~ x3 and the second (denominator) cross-product ratio is con-
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ditional on X 3 > x3 . The second ratio can be simplified to 

F 12 -F12, [1- F,-F13 _ F,-F,, + FI2-FI2'] 
1-F3 1-F3 1-F, 1-F, 

(F12- F123)(1- Ft- F2- F3 + F12 + F13 + F23- F123) 
(Ft - F12- F13 + F123)(F2- F12- F23 + F123) 

The first cross-product ratio simplifies to 

F123(F3- F13- F23 + F123) 
(Ft3- F123)(F23- F123) 
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so that (4.56) simplifies to (4.55). Note that that (4.55) is symmet­
ric in the three bivariate margins and ( 4.56) is not. 

A second, maximum entropy, interpretation of 7/J in ( 4.55) can be 
given, based on the binary variables /1, h, !3. Let Pr1 r2 r3 , rj = 0, 1, 
j = 1, 2, 3, be defined as earlier. Consider the problem of maximiz­
ing the entropy H(z) =- Lr,,r2 ,r,=O,l Pr1 r2 r3 logpr1 r2 r3 subject to 
the constraints of the three bivariate margins. (See the Appendix 
for some background on maximum entropy.) z is constrained so 
that each of the eight probabilities Pr1 r2 r3 is non-negative. Then 
H'(z) = 0 if and only if log z - logpoot - logpoto - logp1oo + 
logpou + logp101 + logpuo- logpu1 =log 7/J = 0 or 7/J = 1. 

Hence the interpretation of the parameter 7/J = 1/J123 is that 7/J = 1 
for the maximum entropy trivariate Bernoulli distribution given 
the three bivariate binary margins, and 7/J > 1 [7/J < 1] for a larger 
[smaller] Pooo (and a smaller [larger] P111) compared with the max­
imum entropy distribution. Note that a different maximum entropy 
trivariate Bernoulli distribution results for each x. This intepreta­
tion extends to higher dimensions. For the ratio 7jJ1234 involving 4-
variate probabilities, 7/J1234 = 1 for the maximum entropy 4-variate 
Bernoulli distribution given the four trivariate margins. 

In ( 4.55), the Frechet lower and upper bounds of :F(F12, F13, F23) 
are attained as 7/J __. 0 and 7/J __. oo, respectively. It is analytically 
shown in Section 3.4 that these Frechet bounds are generally not 
proper distributions, and this is also true for the multivariate ex­
tension. This suggests that ( 4.55) and its extensions do not yield 
proper distributions if 7/J is too small or too large (and this has been 
verified numerically). In any case, the useful thing about these for­
mulas is that they are multivariate objects with margins equal to 
those given even if rectangle inequalities are not always satisfied. 
For example, ( 4.55) could be considered as a formula of an object 
that has bivariate margins F12, F13, F23· 
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With reference to the properties in Section 4.1, these distribu­
tions are partially interpretable, can have closure under the tak­
ing of margins, have a wide range of dependence, and have cdfs 
that are not in closed form but not time-consuming to compute 
from recursions. It may be difficult to code the recursion for higher 
dimensions. The 'objects' from the construction can be used for 
multivariate binary and ordinal data but not continuous data as 
the densities do not have a simple form. 

4.9 Spherically symmetric families: univariate margins 

In this section, we work in an opposite direction from the other sec­
tions in this chapter. Given the easily constructed class of spheric­
ally symmetric distributions (which extend to elliptically contoured 
distributions), we study the possible univariate margins in this 
class (note that LTs reoccur). This then provides some information 
on when the class might be useful. With reference to the properties 
in Section 4.1, they are all satisfied except for a closed-form cdf, 
but the class of possible univariate margins is limited. 

Spherically symmetric distributions are mixtures of distri­
butions that are uniform on surfaces of hyperspheres (with varying 
radii). Their densities have contours that are spheres. If a density 
exists with respect to Lebesgue measure, then the density has the 
form h(xT x) for a non-negative function h. 

The first result below is on the univariate margins of uniform 
distributions on unit hyperspheres. 

Theorem 4.21 Suppose that Z is uniform on the surface of the 
unit hypersphere { z : z[ + ... + z! = 1}. Then the marginal distri­
bution of Z1 has density 

9m(u) = [B(t, m;l )] -\1- u2)(m-3)/ 2 , lui::::; 1, (4.57) 

where B is the beta function. More generally, for 1 ::::; k < m, 
(Z1, ... , Zk) has density 

( ) r(m/2) (1-u2-·. ·-u2)(m-k-2)/2 
9m,k u1, ... ,uk = fk(~)f((m-k)/2) 1 k · 

(4.58) 

Proof Consider first the marginal distribution of Z[. This is the 
same as the conditional distribution of z[ given z[ + ... + z;. = 1' 
when Z 1 , ... ,Zm are iid N(0,1) rvs. Since Z[ has the chi-square 
distribution with one degree of freedom or the Gamma(~, 2) dis­
tribution, the conditional distribution is Beta ( ~' m;- 1 ). Hence the 
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density of zl is 

The generalization is left as an exercise. D 

The density ( 4.57) is increasing in u > 0 if m = 2, constant 
in u if m = 3, and decreasing in u > 0 if m ~ 4. Therefore, 
univariate marginal densities of spherically symmetric distributions 
are mixtures of densities of the form r- 1gm(ujr)I(-r,r)(u), with 
Ym given in (4.57). Let Mm be the set of possible univariate 
margins of spherically symmetric distributions of dimension 
m; then a density fm,l in Mm has the form 

where G( r) is the probability that the radius is less than or equal 
to r (we are assuming that G has no mass at zero). 

Let G be the distribution of the radial direction of the spher­
ically symmetric distribution. If the spherically symmetric dis­
tribution has density ¢m(xTx), where x = (x1, ... ,xm?, then 
G(r) = J~ ¢m(t2 )Smtm-ldt, where Sm = 27rm/2 /f(m/2) is the 
surface area of the unit hypersphere in ~m. Hence the necessary 
condition (on ¢m) of 

laoo ¢m(x2) Xm-ldx = laoo ¢m(Y) ym/2-ldy < 00 

anses. Let R have the distribution G and let U be uniform on 
the surface of the unit hypersphere in ~m; then a stochastic rep­
resentation for X with density ¢m(xTx) is X = RU. From this 
representation, X1 has moments of order k if R has moments of 
order k (k > 0 can be a non-integer). The necessary condition is 
J0

00 rk dG(r) < oo or J0
00 rk+m-l¢m(r2) dr < oo. 

Next we return to the study of Mm for all m ~ 2. Lower­
dimensional marginals of a spherically symmetric distribution are 
spherically symmetric so that Mm C Mm-1 for m ~ 3. Also 
lower-dimensional marginals always have densities with respect to 
Lebesgue measure, even if the spherically symmetric distribution 
has mass on some surfaces of hyperspheres. If there is a density in 
~m and if 1/Jj (xi+···+ xJ) is the marginal density of (X1 , ... , Xj) 
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for 2 ~ j < m, then 

</Jj(Y2) =I:··· I: <Pm(Y2 + xJ+l + · · · + x~) dxj+l · · ·dxm. 

(4.60) 

If the spherically symmetric distribution has mass on some surfaces 
of m-dimensional hyperspheres, say mass Pi for the radius of r;, 
i = 1, 2, ... , and if <Pm is the absolutely continuous part of the 
density, then 

</Jj(Y2) =I:··· I: <Pm(Y2 + xJ+l + · · · + x~) dxj+l · · · dxm 

+I:: Pi rii u':r,,j(Y2 /ri) l[o,rn(Y2 ), 

i 

where g':r, k(z) obtains from the right-hand side of (4.58), with ar­
gument z' in place of ui + · · · + u~. 

From ( 4.59) and ( 4.57), densities in Mm form ? 3 are decreasing 
on [O,oo) (and symmetric about zero). Form= 3, all symmetric 
densities that are decreasing on [0, oo) are in M3. From ( 4.57) and 
its derivation, Um(u) = [B(t, m2 1 )]- 1(1-u2 )Cm- 3 )/ 2 I[- 1 ,q(u) is in 
Mm but not in Mm+l· More generally, if a spherically symmetric 
distribution has mass on some surfaces of m-dimensional hyper­
spheres, then its univariate marginal density is not in Mm+1 . 

An interesting problem is the characterization of 

Moo= n::'= 1Mn. 

This can be studied using a recursion formula for <Pm-2 from <Pm· 
Let A be the upper bound of support for the radial variable; A 
could be finite or infinite. From the above, we can suppose that 
there is no mass at the point A. For j = m- 2 in (4.60), making 
a polar coordinate transform from (xm-1, Xm) to (s, B) leads to 

~~ 1A <Pm-2(Y2) = 271" Jo <Pm(Y2 + s2 ) s ds = 271" Y <Pm( u2) u du. 

Hence </J~_ 2 (y2 ) = -71" <Pm(Y2 ) or <Pm(Y2 ) = -7r- 1 </J~_ 2 (y2 ). If m = 
2j + 1 is an odd integer greater than 2, then by recursion, 

,/, - ( l)j -j ,~,(j) 
'1'2j+l - - 71" '1'1 , (4.61) 

where <Plj) is the jth derivative of ¢1 and <P1 (y2) f(y) is the 
univariate marginal density. (Note that the recursion in ( 4.61) still 
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holds for lower-dimensional margins if a spherically symmetric dis­
tribution has mass on some surfaces of hyperspheres.) For example, 
if ¢1(w) = (27rt 112e-wl2 for the standard normal density, then 
tP2j+l(w) = (27r)-i- 112e-wl2, and if ¢1(w) = cv(1 + wlv)-(v+1)12 
for the t distribution with v degrees of freedom, then ¢2J+1(w) = 
Cv'lr-i [[1{=1 ( t + 2~~1 )](1 + WI 1/ )-(v+2i+1)/2. 

Since the left-hand side tP2i +1 of ( 4.61) is non-negative for a 
proper density, if f(y) = ¢1(Y2) is in Moo, then ¢1 is completely 
monotone (see the Appendix for the definition). If A = oo and 
¢1 > 0 on [0, oo ), then it is a multiple of a LT of a non-negative 
rv and has the form ¢1(w) = ¢1(0) J0

00 e-xwdP(x), where Pis the 
cdf of the non-negative rv. Hence 

(4.62) 

is a scale mixture of normal densities with mean 0. There are some 
conditions for the mixingdistribution P in order that f E M 00 • 

From (4.62) and the necessary condition for the radial density, 
J0

00 wi-112¢2J+1(w) dw < oo implies 

1oo xi 1oo wJ-1/2e-xw dwdP(x) 

= f0
00 xi f(j + t)x-i- 112 dP(x) < oo 

or f0
00 x- 112dP(x) < oo. Also ¢ 2H 1(w) = 1r-j J0= xie-xwdP(x) < 

oo for all j 2:: 1, which implies that the jth integer moment of the 
mixing distribution P must exist in order for ¢2J+1(0) to be finite. 
Equation ( 4.62) can be written more clearly as a scale mixture of 
normal densities, i.e., 

(4.63) 

for a distribution Q. If X has density f(y) = ¢1(y2), (4.63) cor­
responds to the stochastic representation X = Z IS, where Z is 
standard normal and Sis a positive rv with distribution Q. Now 

¢2J+1(w) = 7r-i(27r)-112100 exp{-twa2}(a212)iadQ(a) 

and ¢2J+1(0) is finite only if the moment of order 2j + 1 of Q is 
finite. The condition f0

00 wi- 112¢2J+1(w)dw < oo becomes 

100
(a 2 l2)i a r(j + t )(a2 12)-i - 112dQ(a) = V2 r(j + t) < 00 
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so that it is always satisfied. 
Hence a density in Moo which is positive everywhere must be a 

scale mixture of normal densities. It is easily verified directly that 
if X= Z/S where Z1, ... , Zm are iid N(O, 1) and Sis a positive rv, 
then X has a spherically symmetric distribution and the univariate 
marginal density is that of Zl/ S for all m. The density of X is 

where Fs is the cdf of S and the univariate marginal is 

(211r 1/ 2100 aexp{-~a2 x2}dF5 (a). 

For example, for the t distribution with v degrees of freedom, 
S = JfJTV, where U ,..,._X~· Since Ufv ,..,._ Gamma(v/2, 2/v), the 
density of Sis fs(a) = 2 [f(v/2)]-1(v/2) 1112a11 -1e- 11 a 2 /2. 

Now suppose 0 < A < oo. What are the completely monotone 
functions <h in this case? It turns out there are none if the re­
quirements of (-1)i¢/i) > 0 on [O,A) and tj>U)(A) = 0, j 2: 1, are 
to be met. We next show that tj>U)(A) = 0 is needed to extend 
to densities of higher dimensions by making use of the recursion 
formula. 

If the m-variate density tf>m is given, the ( m- 1 )-variate density 
tPm-1 satisfies 

r...a:r::v 
tPm-1(v) = 2 Jo tPm(v + x2) dx. 

Taking the derivative, 

4>~- 1 ( v) = 21..; A 2
-v 4>~( v + x2) dx- tPm(A2) (A2 - v)-112. 

Then tPm+2 = -<P'mf-;r 2: 0 and tPm+1 = -<P'm_tf-;r 2: 0 are together 
possible only if tf>m(A2) = 0. (This condition is automatically sat­
isfied if A = oo.) Therefore if one tries to extend for a function 

4>1 on [O,A] by defining tP2i+l = (-1)i-;r-itf>ij) as in (4.61), then a 

necessary additional condition is tf>lj)(A) = 0, j 2: 1. 

Example 4.6 A few cases are listed to illustrate the ideas in 
the two preceding paragraphs. 

1. (Uniform on surface of hypersphere of dimension m > 3.) Let 
tj> 1(w) = [B(~, m;1 )t1(1- w)Cm-a)/2. If m = 2n + 1 is odd, 
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then the derivatives of ¢;1 alternate in sign up to the ( n -
1)th derivative and the nth derivative is a constant, and hence 
(4.61) cannot be extended beyond dimension m. If m = 2n 
is even, then the derivatives of ¢;1 alternate in sign up to the 

(n- 1)th derivative and then do not change sign, r/J~j)(1) = 0 

for j < n -1, and r/J~n-l)(1) = oo, and hence (4.61) cannot be 
extended beyond dimension m. 

2. Let ¢; 1(w) = c13(1- w)f3, 0 < w < 1, where f3 > 0. The deriv­
atives of ¢;1 alternate in sign up to the [f]]th derivative, where 

[/3] is the ceiling integer function. Also r/J~j)(1) = 0 for j < [/3]. 
Hence I(Y) = r/J1(y2 ) is in M2[t3]+1 and at most M2[i3]+3· 

3. Let r/J1(w) = ca(1- w"'), 0 < w < 1, where 0 < a < 1. The 
derivatives vf r/J1 alternate in sign, but r/J1 ( w) = -acawa- 1 = 
-aca =J 0 when w = 1. 

D 

Next we return to some conditions for a density to be in Mm. 
Because of the boundary condition for density with support on 
a bounded interval, consider only densities that are continuously 
differentiable up to some order (for bounded support, this means 
the density and its derivatives at the end point of support are 
0). From (4.61), l(y) = r/J1(y2 ) is in M2n+1 but not M2n+3 if 

(-1)i¢;~j);:::: 0, j = 1, ... ,n, and (-1)n+lq;~n+ 1 )(w) < 0 for some 

w. Since one also has the recursion rP2j +2 = ( -1 )i 1r-i r/J~j) for a 
spherically symmetric distribution in 2j + 2 dimensions, I(Y) 
rP1(Y2) E M2 is in M2n but not M2n+2 if ( -1)i ¢;~) ;:::: 0, j = 
1, ... , n- 1, and ( -1)nq;~n)(w) < 0 for some w. 

Example 4. 7 For some symmetric densities I which are de­
creasing on [0, oo), we check for the largest m such that I E M m. 

1. la(x) = Ca exp{ -lxla}, -oo < x < oo, where a > 0, and 
rPl(w) = Caexp{-wa/2}, w ;:::: 0. For 0 :S: a :S: 2, r/J1 is a 
multiple of a LT so that Ia E Moo. In particular, for a= 1, the 
double exponential density is in Moo. The second derivative of 
r/J1 is ca( a/2)waf2- 2 exp{ -w"'l2 }[aw"'l2 /2 + (1- a/2)]; it can 
be negative if a > 2 and w is near 0. Therefore for a > 2, Ia is 
not in M 5. rP2 can be obtained from rP3 using ( 4.60) and then 
rP4 = -1r- 1 ¢;~. It has been checked numerically that ¢;4 ( w) is 
not non-negative for all w ;:::: 0 when a > 2, so that Ia is also 
not in M 4 for a> 2. 

2. (Logistic.) l(x) = e-x /(1 + e-x)2 is in Jv!oo, and r/J1(w) = 
(e..fW/ 2 + c,Jwf 2 )- 2 = (2 + eVw + e-v'w)- 1 1s a LT. If X has a 
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D 

standard logistic distribution and Z,..., N(O, 1), then X 4 Z/V, 
where V has density 

00 

g(v) = 2 L) -1)k- 1k2v-3 exp{ -k2 /(2v2)}. 

k=l 

(2V)- 1 has the asymptotic distribution of the Kolmogorov dis­
tance statistic. 

4.10 Other approaches 

Other approaches that have been used for constructing multivari­
ate families but which are not discussed or used in this book are: 

(i) multivariate generalizations of univariate moment or proba­
bility generating functions, e.g., several families of multivari­
ate gamma distributions in Krishnaiah (1985) and compound 
bivariate Poisson distributions in Kocherlakota (1988); 

(ii) multivariate characteristic functions, e.g., multivariate stable 
distributions in Press (1972); 

(iii) multivariate functional equations generalizing those satisfied 
by univariate distributions, e.g., families of multivariate ex­
ponential survival functions in Ghurye and Marshall (1984) 
and Marshall and Olkin (1991); 

(iv) infinite series expansions - there are some for the bivari­
ate case without multivariate extensions, e.g., the bivariate 
gamma distribution of Kibble (1941) and other distributions 
in Lancaster (1969). 

4.11 Bibliographic notes 

Variations of the property of closure of multivariate models under 
the taking of margins are presented in Xu (1996). This includes the 
concept of model parameters being marginally expressible, which 
is given in Section 4.1, as well as the concept of parameters being 
expressible from or appearing in univariate and bivariate margins. 

The families in Section 4.2 are from Marshall and Olkin (1988) 
and Joe (1993); the dependence results in Theorems 4.6 to 4.10 are 
new (thanks are due toT. Hu for help in the completion of these 
proofs). See Genest and MacKay (1986) for some background on 
bivariate Archimedean copulas and results on orderings of these 
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copulas. In the literature for Archimedean copulas, sometimes ¢ 
(or some other symbol) denotes a LT (or a function in C!) and 
sometimes it denotes the inverse of a function in this class, so 
the reader should be careful in using these results. Frailty models 
for a special type of multivariate survival data in the familial or 
cluster setting are studied in Oakes (1989), Hougaard (1986) and 
Hougaard, Harvald and Holm (1992). 

References are Joe and Hu (1996) for Section 4.3, Joe (1996a) for 
Section 4.5, Joe (1996b) for Section 4.6 and Joe (1995) for Section 
4.7.1. The special case of the multivariate Poisson distribution is 
given in Teicher (1954). The application in Joe (1995) is for the 
MVN distribution; an improved approximation based on having all 
of the trivariate and 4-variate margins is also given. A reference for 
Section 4.8 is Molenberghs and Lesaffre (1994); this does not prove 
that the multivariate extension is a proper distribution, and neither 
does Plackett (1965) for the bivariate case. A reference for Section 
4.9 is Kelker (1970); see also Chapter 2 of Fang, Kotz and Ng (1990) 
for a different treatment. A reference for the infinite divisibility 
of the lognormal distribution is Thorin (1977). See Andrews and 
Mallows (1974) and Stefanski (1991) for the logistic distribution 
as a scale mixture of normals. 

For results and construction methods for multivariate distribu­
tions with given non-overlapping multivariate margins, see Marco 
and Ruiz-Rivas (1992), Genest, Molina and Lallena (1995) and Li, 
Scarsini and Shaked (1996). 

4.12 Exercises 

4.1 Let M be a univariate cdf. Let G1 (·; a) and G2(-; a) be fam­
ilies of distributions indexed by a real-valued parameter a. 
Define F(x1, xz) = J G1(x1; a)G2(xz; a) dM(a). 

(a) Show that if G1 and G2 are both stochastically increas­
ing or both stochastically decreasing as a increases, 
then F is positively dependent in several senses (e.g., 
association, PQD). 

(b) Show that if G1 increases stochastically and G2 de­
creases stochastically as a increases, then F is neg­
atively dependent in the sense of NQD. 

What results generalize to m dimensions with 

F(x) = J G1(x1; a)·· ·Gm(xm; a) dM(a)? 
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4.2 Let H be a univariate cdf. Show that Ho: is stochastically 
increasing in a > 0. 

4.3 Show that (4.4) is invariant to scale changes in the LT. That 
is, if in (4.4) ifJ(s) is replaced by the function l/J*(s) = ifJ(sju) 
for u > 0, then the same copula results. 

4.4 In Section 4.6, take Fe to be the family of Poisson distribu­
tions. Obtain the pmfs for the bivariate and trivariate Pois­
son distributions with the representations given by ( 4.48) 
and (4.49). 

4.5 Show that the multivariate Poisson distribution (Section 
4.6) satisfies property B of Section 4.1 but not property B'. 

4.6 In ( 4.37), let F12, F23 be copulas in the family B10 with para­
meters 012,023 respectively and let c13 be the independence 
copula. Obtain F123 and its (1,3) bivariate margin. Extend 
this to a result for (4.39). (Joe 1996a) 

4.7 For the partially symmetric copulas in Section 4.2, show 
that there are three distinct forms for m = 5 that generalize 
(4.7), (4.10) and (4.11). How many distinct forms are there 
for dimension m = 6? 

4.8 In (4.3), substitute in the Poisson LT '1/J(s) = e- 8 exp{Oe-•}, 
0 > 0. Even though ¢-1 is defined only on [e- 8 , 1], show that 
( 4.3) leads to the function 

u1u2 exp{0-1logu1logu2}. 

Show that this is not a proper cdf, even though it has the 
U(O, 1) margins (compare (5.18) in Section 5.4). 

4.9 Show that the distribl!tion ( 4.40) is equivalent to that from 
(4.37)-(4.39) with C}k(u, v) = u + v -1 + Cjk(l- u, 1- v). 

4.10 For the distribution in ( 4.37), show that a stronger concord­
ance property such as 'F13 increases in concordance as C12 
increases in concordance' does not hold. 

4.11 Derive (4.58). 

4.12 Let g be an increasing function on [0, oo) satisfying g( 0) = 0. 
Show that g convex implies that g is star-shaped (x- 1g(x) 
increasing in x) which in turns implies that g is superadditive 
(g(x1 + x2) ~ g(xl) + g(x2) for all x1, x2 ~ 0). 

4.13 Obtain the tail dependence parameters for ( 4.3) for other 
families of LTs (in the Appendix). 
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4.14 Analyse the concordance properties of ( 4.4) with m = 2 and 
the LT family LTM in (4.4). 

4.15 Consider the function 

F(u, v, w) = '1/Ja(t/J-;; 1 o tPo(t/J'i 1(u) + t/J'i 1(v)) 

+t/;;; 1 o tP!3(tP/3 1(u) + t/J/3 1(w))- t/;;; 1(u)), 

where '1/Je is a family of LTs. Let C(u, v; B) = t/Je(t/J8 1(u) + 
t/J; 1(v)). Show that F(u, v, w) is a formula with bivariate 
margins C( v, w; a), C( u, w; /3), C( u, v; 6) as u, v, w respect­
ively tend to 1, but that it is not a proper copula in general. 

4.16 Suppose we want to generate rvs with a multivariate dis­
tribution of the form (4.48) with a given (feasible) covari­
ance matrix E when all univariate margins are in a family 
Fe that is in the convolution-closed infinitely divisible class. 
Assume that Fe has been rescaled so that the variance is 1 
when B = 1, or that Fe is parametrized by the variance. Let 
X;"" Fa,, i = 1, ... ,m, and let Zs ""Fe5 , S E Sm. Then 
a;= B; + 2:s:iES,ISI2:: 2 Bs and cr;;' = l:s:i,i'ES Bs fori i= i'. 
The algorithm whicli follows yields the desired constants as 
well as determining whether a given covariance matrix is 
possible with form (4.48). Verify the details. 

(a) Let n = E = (w;;,). Set~- mini<i'Wii'· If I> 0, set 
B{l, ... ,m} = 1, S = {1, ... ,m}, and go to step (c). 

(b) If min;<i' wii' = 0, set 1 <- min{ Wii' : Wii' > 0, i < i'}. 
If 1 = Wkk' > 0, let S be a maximal set that contains 
k, k', with maximal meaning that if j, j' E S, then 
Wjj' > 0. Set Bs =I· If 1 = 0, go to step (d). 

(c) Set n- O-le, where c = (cii') with Cii = I(i E S), 
and Cii' = I( i, i' E S) for i i= i'. If n is such that 
Wii' > [wiiwi'i' ]11 2 , for some i i= i', then the initial 
matrix E is not feasible. Otherwise, go to step (b). 

(d) Set a; =w;;, i= 1, ... ,m. 

4.17 If f E Mm has cdf F and finite second moments, and 
h(x; E) = IEI- 1¢m(xTE- 1x) is the corresponding family 
of elliptically contoured distributions, then the full range of 
correlation matrices (of order m) is possible. If the distri­
bution F cannot result from the location-scale transform 
of a density in Mm, then the full range of correlation ma­
trices, in the class :F( F, ... , F) of m-variate distributions 
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with all univariate margins equal to F, cannot be achieved. 
The full range of correlation matrices for all dimensions is 
achievable only iff E M 00 • As an example, the full range 
for U( -1, 1) and U(O, 1) margins is possible for dimension 3 
but not m > 3. 

4.18 Modify Theorem 4.17 to obtain a family of trivariate copulas 
such that (i) the (1,2) and (3,2) bivariate margins are the 
same and are negatively dependent; (ii) the (1,3) bivariate 
margin is positively dependent; and (iii) the Kendall tau 
value r12 = r23 is the most negative possible given r13· 

4.19 Prove the results in Theorems 4.15 and 4.16 on lower tail 
dependence. (Joe and Hu 1996) 

4.20 Let C(u) = ¢("'£.j=1 q;- 1(uj)) as in (4.4). 

(a) Show that Cis MTP2 if and only if log¢ is L-super­
additive (see Unsolved Problem 2.4 for the definition of 
L-superadditive). Note that because ¢is differentiable, 
the condition is equivalent to 82log(¢(x + y))/8x8y 2: 
0. 

(b) Show that the density of C is MTP2 if and only if 
( -1)mq;(m)(x + y) is TP2 in x, y. 

(c) Check whether the LT families in the Appendix lead to 
families of copulas with the MTP2 property for either 
the cdf or the density. 

4.21 Do some analysis on ( 4.54) with various bivariate margins 
including the Frechet bounds. 

4.13 Unsolved problems 

4.1 Find parametric families of copulas that satisfy all of the 
desirable properties in Section 4.1. 

4.2 Obtain conditions for ( 4.54) and extensions to be proper cdfs. 

4.3 Obtain conditions for ( 4.55) and extensions to be proper cdfs. 

4.4 Prove or disprove the -<prd ordering for C1 and C2 in Theo-
rems 4.8, 4.9 and 4.10. 



CHAPTER 5 

Parametric families of copulas 

This chapter is intended as a reference of useful parametric families 
of copulas together with their properties. The inclusion of proper­
ties is important because, in a given situation or application, the 
choice of appropriate models can depend on the properties. 

Many of the parametric families of multivariate copulas make 
use of the theory in Chapter 4, and are useful for multivariate 
models in subsequent chapters. Some of the families are also re­
ferred to earlier in this book. A summary of the sections, including 
the highlights, is the following. Section 5.1 consists of bivariate 
one-parameter families of copulas with nice dependence proper­
ties and Section 5.2 consists of two-parameter families of copulas; 
these families can be used to build multivariate copulas. Section 5.3 
has multivariate extensions to symmetric and partially symmetric 
copulas; these are the only known class of parametric families of 
copulas that have closed-form cdfs, are closed under the taking of 
margins (in the stronger sense of property B' in Section 4.1), and 
extrapolate between the independence and Frechet upper bound 
copulas. Section 5.4 has extensions of families in Sections 5.1 to 
5.3 to include negative dependence. Section 5.5 consists of para­
metric families of copulas that cover general dependence structures, 
including some that have closed-form cdfs. 

5.1 Bivariate one-parameter families 0 

Listed in the first part of this section are known simple one-para­
meter families of copulas that: (i) interpolate between indepen­
dence and Frechet upper bound; (ii) are absolutely continuous; 
and (iii) have support on all of (0, 1 )2 • Also these families are sym­
metric in the two arguments. If these conditions are relaxed, there 
are (infinitely) many other one-parameter families, and a few are 
listed in the last part of this section. One-parameter families of 
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copulas are parsimonious models that are good starting points for 
modelling. They are useful for bivariate data, as well as a compo­
nent of the multivariate copulas in Sections 4.3, 4.5, 4.7 and 4.8, 
and of the first-order Markov time series in Sections 8.1 and 11.6. 

The notation C{ u, v; 8) is used for a family of copulas, with the 
dependence parameter 8 increasing as the dependence increases. 
The original source of each family of copulas is given, as well as the 
density and some properties. Besides dependence properties, other 
properties include reflection symmetry, extreme value copula, ex­
istence of a LT so that the family has form {4.3), and multivariate 
extendibility. Reflection symmetry for a copula C means that 
if (U, V) .....- C, then {1- U, 1- V) .....- C; this property is convenient 
for latent variable models for multivariate binary data. A bivari­
ate copula Cis an extreme value copula if C(ut, vt) = ct(u, v) 
for all t > 0. After transferring to unit exponential survival mar­
gins, with G(x,y) = C(e-x,e-Y), the extreme value copulas are 
easily recognized from A(x, y) =-log G(x, y) being homogeneous 
of order 1, i.e., A(tx, ty) = tA(x, y) for all t > 0. {With details 
in Chapter 6, a G of this form is a min-stable bivariate expo­
nential distribution.) Some families of extreme value copulas are 
obtained as the extreme value limits of other families (see Chapter 
6). The extreme value limits from the lower and upper orthant 
tails are the copulas associated with the limits of 

respectively, where C*(u, v) = u + v- 1 + C{1- u, 1- v). 
The verification of the dependence properties and the limits at 

the end points of the parameter space are left as exercises. Depend­
ence properties that are conjectured but not proved are listed in 
the section on unsolved problems. A visual representation of what 
tail dependence means for the contours of the density with N(O, 1) 
margins is given in Figures 5.1 and 5.2 for the copulas B3 and B6 
with parameter values corresponding to a Kendall tau value of 0.5. 

The following notation is used in several families: u = 1 - u, 
v = 1- v, u = -logu, v = -logv. Also Cu,CI,CL are used for 
the Frechet upper bound, independence and Frechet lower bound 
copulas, respectively. 

Family Bl. Bivariate normal. For 0 :::; 8 :::; 1, C(u, v; 8) = 
1!>6 (1!>- 1{u), q>- 1(v)), where II> is the N(O, 1) cdf, q>-l is the func­
tional inverse of II> and II> 6 is the BVSN cdf with correlation 8. With 
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x = c~>- 1 (u), y = c~>- 1 (v), the density is 

c(u, v; 6) = (1- 62)- 112 exp{ -H1- 62)- 1 [x2 + y2 - 26xy]} 

·exp{Hx2 + y2]}. 
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Properties. Increasing in -<c, increasing in -<si, TP2 density, re­
flection symmetry, multivariate extension, extension to negative 
dependence. Cu for 6 = 1, C1 for 6 = 0, CL for 6 = -1. A non­
standard upper extreme value limit leads to family B8. 

Family B2. Plackett (1965). For 0::; 6 < oo, 

C(u, v; 6) = t1J- 1{1 + 17(u + v)- [(1 + 17(u + v)) 2 - 467]uv] 112}, 

where 1J = 6 - 1. The density is 

c(u, v; 6) = [(1 + 17(u + v)) 2 - 467Juvr3/ 26[1 + 17(u + v- 2uv)]. 

Properties. Increasing in -<c, increasing in -<s1, SI, reflection sym­
metry, extension to negative dependence. Cu for 6 -+ oo, C1 for 
6-+ 1, CL for 6-+ 0. 

Family B3. Frank (1979). For 0 ::; 6 < oo, 

C(u, v; 6) = -6- 1 log([1J- (1- e- 6u)(1- e- 6v)]/1J), 

where 1J = 1 - e- 6 • The density is 

c(u, v; 6) = 61Je- 6(u+v) /[1J- {1- e- 6u)(1- e- 6v)f 

Properties. Increasing in -<c, increasing in -<si, TP2 density, 
reflection symmetry, partial multivariate extension, extension to 
negative dependence, mixture of powers with LT 1/J(s; 6) = 
-6-1 log[1 - (1- e- 6 )e-•] (family LTD in the Appendix). Cu for 
6 -+ oo, C1 for 6-+ 0, CL for 6 -+ -oo. 

Family B4. Kimeldorf and Sampson (1975). For 0::; 6 < 
oo, 

The density is 

c(u, v; 6) = (1 + 6)[uvr 6- 1(u- 6 + v- 6 - 1)-2-1/6. 

Properties. Increasing in -<c, increasing in -<si, TP2 density, 
lower tail dependence, partial multivariate extension, extension 
to negative dependence, mixture of powers with LT 1/J(s; 6) = 
(1 + s)- 116 (family LTB). Cu for 6 -+ oo, C1 for 6 -+ 0. The 
lower extreme value limit leads to family B7. 

Family B5. Joe (1993). For 1 ::; 6 < oo, 

C( u, v; 6) = 1 - ('it + v6 - :;iv6 ) 116 • 
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The density is 

c( u, v; 8) = (u6 + v6- u6v6)-2+1/6u6-1v6-1 [8 -1 + u6 + v6- u6v6]. 

Properties. Increasing in --<c, increasing in --<si, TP2 density, 
upper tail dependence, partial multivariate extension, mixture of 
powers with LT 1/J(s; 8) = 1- (1- e-&)116 (family LTC). Cu for 
8 --+ oo, C1 for 8 = 1. The upper extreme value limit leads to 
family B6. 

Family B6. Gumbel (1960a). For 1 :S 8 < oo, 

C( u, v; 8) = exp{ -( u6 + ii6 ) 116}. 

The density is 

( . ) - ( . c)( )-1 (uii)6- 1 [(-6 -6)1/6 c l cu,v,8 -Cu,v,u uv (u6+ii6)2_ 116 u +v +u-1. 

Properties. Increasing in --<c, increasing in --<si, TP2 density, up­
per tail dependence, extreme value copula, partial multivariate ex­
tension, mixture of powers with LT ,P(s;8) = exp{-s116} (family 
LTA). Cu for 8--+ oo, C1 for 8 = 1. 

Family B7. Galambos (1975). For 0 $ 8 < oo, 

C(u, v; 8) = uvexp{(u-6 + ii- 6 )- 116}. 

The density is 

c(u, v; 8) = [C(u, v; 8)/uv] · [1- (u- 6 +ii-6)-1- 116(-u-6- 1 +ii-6- 1) 

+(u-6 + v-6)-2-116(uii)-6-1{1 + 8 + (u-6 + ii-6)-1/6}]. 

Properties. Increasing in --<c, SI, upper tail dependence, extreme 
value copula, partial multivariate extension. Cu for 8 --+ oo, C1 for 
8 -o. 

Family B8. Hiisler and Reiss (1989). Let ci> be defined as 
in family Bl. For 8 ;::: 0, 

C( u, v; 8) = exp{ -ucl>( 8-1 + t8log[u/ii]) - vel>( 8- 1 + t8log[ii ju])}. 

With z = ujv, the density is 

c(u,v;8) = (uv)- 1C(u,v;8) · [c~>(8- 1 + t8logz- 1)<I>(8-1+ ~8logz) 
+~8ii- 1 tjJ(8- 1 + ~cSlogz)], 

where tjJ is the standard normal univariate density. 
Properties. Increasing in --<c, SI, upper tail dependence, extreme 

value copula, multivariate extension. Cu for 8 --+ oo, C1 for 8 --+ 0. 
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Figure 5.1. Contours of density for family B3 with normal margins, {j = 
5.7. 

A few remarks on the families are the following. 

1. A proof of reflection symmetry for the family B3 is as follows. 
The property is equivalent to c(u, v; 6) = c(1 - u, 1- v; 8), 
0 < u,v < 1. Let x = e-cu, y = e-cv, 1 = e- 0 . The non­
constant part of the density is xyj[x + y- xy-1F. The changes 
u ---* 1 - u and v ---* 1 - v become x ---* /X - 1 and y ---* 'YY- 1 and 
it is straightforward to check that 'Y2x- 1y- 1 /['Yx- 1 + 'YY- 1 -

1 2x- 1y- 1 - 1J2 = xyj[x + y- xy- IF· Frank (1979) showed 
that the family B3 of copulas are the only ones of the form 
¢(¢- 1(u) + ,p- 1(v)) that have the reflection symmetry prop­
erty. The reflection symmetry property does not hold for the 
permutation-symmetric multivariate extension of the family B3 
(see Section 7.1.7). 

2. Suppose (U, V) is a bivariate U(O, 1) random pair; the Plackett 
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Figure 5.2. Contours of density for family B6 with normal margins, 8 = 
2. 

family B2 is constructed from the cross-product ratio: 

Pr(U < u, V < v) Pr(U > u, V > v) 
Pr(U ~ u, V > v) Pr(U > u, V ~ v) 

= C(u, v)[l- u- v + C(u, v)] = 8, 
[u- C(u, v)][v- C(u, v)] -

for all u, v E (0, 1), where 8 > 0. Perhaps amazingly, this leads 
to a distribution for all 8 > 0, with special cases as given ear­
lier. The above equation is quadratic inC; the appropriate root 
of the quadratic is given in the preceding list. The proof that 
the second-order mixed derivative is non-negative is left as an 
exercise. The property of reflection symmetry for this copula is 
clear from the above derivation from the cross-product ratio. 

3. We illustrate extreme value limits in some cases. To check that 
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a limit is a proper distribution, one needs to check the boundary 
conditions but not the rectangle condition in Section 1.4.1. 

Bl. Let an,bn be sequences ofreals such that <I>n(an+bnx)-+ 
exp{ -e-x}. Then 

2 

<t>;(an + bnxl, an+ bnx2)-+ IT exp{ -e-x;} 
j=l 

if the correlation p is less than 1. An interpretation is 
that for BVN distributions, the tails are asymptotically 
independent. 

B5. With exponential margins, F(x, y) = C(l-e-x, 1-e-Y; 8) 
= 1- [e-ox + e-oy- e-oxe-oypfo and 

Fn(x + logn, y+ logn),..... [1- n-1(e-ox + e-6Y) 116t 
-+ exp{-(e-ox + e-oy)lfo} 

The copula of the limiting BEV distribution is in the fam­
ily B6; in min-stable bivariate exponential form G(x, y; 8) 
= exp{ -A(x, y; 8)}, with A(x, y; 8) = (x 0 + y0 )1fo. 

B4. With exponential margins, F(x, y) = C(1-e-x, 1-e-Y; 8) 
= [(1- e-x)-6 + (1- cY)-6 - lJ- 116 and 

Fn(x +log n, y +log n),..... [1 + 8n-1(e-"' + e-Y)]-nfo 

-+ exp{ -e-x- e-Y}. 

Hence the upper extreme value limit is the independence 
copula. For the lower extreme value limit, we apply the 
copula to exponential survival margins, i.e., F(x, y) = l­
e-x- e-Y + (e 6x + e6Y -1)-116 • Then Fn(x + logn,y+ 
logn) ,..... [1- n-1e-x- n-1e-Y + n-1(e0x + e0Y)-lfo]n 
-+ exp{-e-x- e-Y + (e0x + e6Y)- 116}, and the copula of 
the limiting BEV distribution is in the family B7. 

B8. This is obtained from a non-standard extreme value limit 
for the BVN distribution. To get a limit which is not the 
independence copula, the correlation in Bl is allowed to 
increase to 1; i.e., lim <I>~J an + bnxl, an + bnx2), with Pn 
increasing to 1 at an appropriate rate, leads to the family 
B8. There is a multivariate extension from this extreme 
value limit for the MVN distribution and it has a para­
meter for each bivariate margin. 
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Table 5.1. Parameter values corresponding to given Kendall tau values 

T B1 B2 B3 B4 B5 B6 B7 B8 

0 0 1 0 0 1 1 0 0 
0.1 0.156 1.57 0.91 0.22 1.19 1.11 0.34 0.66 
0.2 0.309 2.48 1.86 0.50 1.44 1.25 0.51 0.87 
0.3 0.454 4.00 2.92 0.86 1.77 1.43 0.70 1.11 
0.4 0.588 6.60 4.16 1.33 2.21 1.67 0.95 1.41 
0.5 0.707 11.4 5.74 2.00 2.86 2.00 1.28 1.80 
0.6 0.809 21.1 7.93 3.00 3.83 2.50 1.79 2.39 
0.7 0.891 44.1 11.4 4.67 5.46 3.33 2.62 3.34 
0.8 0.951 115. 18.2 8.00 8.77 5.00 4.29 5.24 
0.9 0.988 530. 20.9 18.0 14.4 10.0 9.30 10.9 
1 1 00 00 00 00 00 00 00 

To give an indication of the amount of dependence that exists 
as the 8 increases for the families B1 to B8, the values of 8 that 
correspond to Kendall tau and Spearman rho values from 0 to 1 in 
steps of 0.1 are given in Tables 5.1 and 5.2, respectively. Theorem 
4.3 applies to yield a simple form for r for the families B4 and B6, 
with r = 8/(8 + 2), 8 2: 0, and r = (8- 1)/8, 8 2: 1, respectively. 
Also there is a simple form for r and ps for the BVN distribution 
(see Exercise 2.14). All other values ofT and ps were obtained by 
one- or two-dimensional numerical integration, or by Monte Carlo 
simulation. These tables suggest that Spearman's rho is greater 
than Kendall's tau for these families (see Exercise 2.18). 

We list below the conditional distributions C211 ( vlu) = ~~ ( u, v) 
corresponding to the families B2 to B8. These are useful for simu­
lating random pairs from the copula families, among other things. 
If U, Q are independent random U(O, 1) variates, then (U, V) = 
(U, C~i(QIU)) has distribution C. If C~i does not exist in closed 

form, then v = C~i(qiu) can be obtained from the equation q = 
Cm ( vlu) using a numerical root-finding routine. Of the families 
B2 to B8, C~i has closed form only for the families B3 and B4. 
With the notation ii = -log u, v = -log v, the list of conditional 
distributions c2ll is: 

B2. C211(vlu; 8) = t- H11u + 1- (17 + 2)v]/[(1 + 1J(u + v))2 -
481]uvjll 2 ; 
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Table 5.2. Parameter values corresponding to given Spearman rho values 

Ps B1 B2 B3 B4 B5 B6 B7 B8 

0 0 1 0 0 1 1 0 0 
0.1 0.105 1.35 0.60 0.14 1.12 1.07 0.28 0.58 
0.2 0.209 1.84 1.22 0.31 1.27 1.16 0.40 0.73 
0.3 0.313 2.52 1.88 0.51 1.46 1.26 0.51 0.88 
0.4 0.416 3.54 2.61 0.76 1.69 1.38 0.65 1.05 
0.5 0.518 5.12 3.45 1.06 1.99 1.54 0.81 1.24 
0.6 0.618 7.76 4.47 1.51 2.39 1.75 1.03 1.50 
0.7 0.717 12.7 5.82 2.14 3.00 2.07 1.34 1.86 
0.8 0.813 24.2 7.90 3.19 4.03 2.58 1.86 2.45 
0.9 0.908 66.1 12.2 5.56 6.37 3.73 3.01 3.73 
1 1 00 00 00 00 00 00 00 

B3. C211(vlu; 6) = e-6u[(1- e-6)(1- e- 6v)- 1 - (1- e-6u)]-l, 
C~i(qlu; 6) = -6-1log{1- (1- e-6)/[(q-1 - 1)e-6u + 1]}; 

B4. C211(vlu; 6) = [1 + u6(v- 5 - 1)]-1-1/6, 
c~:(qlu; 6) = [(q-6/(1+6)- 1)u-5 + 1J-1f6; 

B5. c211(vlu;8) = [1+(1-v)5(1-u)-5-(1-v)5]-1+1/5[1-(1-
v)6]; 

B6. C211(vlu; 6) = u-1 exp{ -(u6 + v6 ) 115 }. [1 + (vju) 6]-1+1/6; 

B7. C2p( vlu; 6) = v exp{( -u- 6 +v-6)-116}{1-[1+(u/ii)6J-1-1/6}; 

B8. C2 p(vlu; 6) = C(u, v; 6) · u-1<!>(8- 1 + t6log(u/ii)). 

A few one-parameter families of bivariate copulas that are not as 
simple or do not have properties that are as nice as those already 
listed are given in the remainder of this section. 

Family B9. Raftery (1984; 1985). For 0:::; 8:::; 1, 

C(u, v; 8) = B(u 1\ v, u V v; 8), 

where 

B(x, y; 8) = x _ [~ ~ ~] x1/(1-6)[y-5/(1-5) _ y1/(1-5)]. 

The density is c( u, v; 6) = b( u 1\ v, u V v; 8) where 

b(x, y; 6) = (1 _ 62)-1x6/(1-6)(6y-1/(1-6) + y6/(1-6)). 
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Properties. Increasing in -<c, lower tail dependence, C1 for 8--+ 0, 
Cu for 8 = 1. 

Family BlO. Morgenstern (1956). For -1 ~ 8 ~ 1, 

C(u, v; 8) = uv[1 + 8(1- u)(1- v)]. 

The density is 

c(u, v; 8) = 1 + 8(1- 2u)(1- 2v). 

Properties. Increasing in -<c, increasing in -<sr, TP2 density for 
8 ~ 0, reflection symmetry, positive dependence for 8 > 0 and neg­
ative dependence for 8 < 0, C1 for 8 = 0, multivariate extension. 

Family Bll. For 0 ~ 8 ~ 1, 

C(u, v;8) = 8min{u, v} + (1- 8)uv. 

Properties. Increasing in -<c, reflection symmetry, C1 for 8 = 0, 
Cu for 8 = 1, multivariate extension, singular component with 
mass 8. 

Family Bl2. For 0 ~ 8 ~ 1, 

C(u,v;8) = [min{u,v}]6[uvp- 6• 

Properties. Increasing in -<c, reflection symmetry, C1 for 8 = 0, 
Cu for 8 = 1, multivariate extension, singular component with 
mass 8/(2- 8). 

Remarks on these additional families are the following. 

1. The family B9 has not been included with the preceding eight 
one-parameter families of bivariate copulas because its form is 
not quite as simple (it is a function of u V v and u 1\ v). 
The derivation of the family B9 is from a bivariate exponential 
distribution based on the stochastic representation: 

where I, Z1, Z2, Z12 are independent rvs, the Zs have unit ex­
ponential distributions, and I "' Bernoulli ( 8). This leads to the 
bivariate exponential survival function: 

G( . 8)- 1+6 ' - ' {
e-x_ 1-6 e-x/(1-6)[ey6/(1-6) _ e-Y/(1-o)] x > y 

x, y, - -y _ 1-o -y/(1-o)[ :r:o/(1-6) _ -:r:/(1-6)] < e 1+6 e e e , x _ y. 

and it becomes the given copula after the transform to U(O, 1) 
margins. The derivation of G from the representation comes 
from the sum of integrals: (1- 8)e-(x+y)/(1- 6) + 8 J; exp{ -(x-
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z)/(1- 8)} exp{ -(y- z)/(1- 8)}e-z dz+8 J: exp{ -(y- z)/(1-
8)}e-z dz + 8 JY00 e-z dz, if x ~ y. 

By extending the stochastic representation, the -<c ordering can 
be proved (see Exercise 5.8 for some details). 
The multivariate extension in Raftery (1984) covers a wide range 
of dependence but the parameters are not easily interpretable. 

2. The family B10 is convenient for illustrating dependence con­
cepts because of its simple form. However, because of its limited 
range of dependence (see Example 2.4), it is not a useful model 
for data. A convenient multivariate extension is: 

C(u; 8jk, 1 ~ j < k ~ m) = u1 .. · Um [ 1+ L 8jk(1-Uj )(1-uk)]. 
i<k 

(5.2) 

Constraints include l8i k I ~ 1 for all j, k and there are also other 
joint inequality constraints in the parameters to achieve a non­
negative density (see Exercise 5.7). 

3. The families Bll and B12 have limited applications because of 
the singular component. Possibly they have more uses for dis­
crete univariate margins. The family B12 is the copula associ­
ated with the Marshall-Olkin bivariate exponential distribution 
when both univariate margins have the same mean. The mass 
of the singularity can be computed using Theorem 1.1. 

5.2 Bivariate two-parameter families 

Two-parameter families might be used to capture more than one 
type of dependence. Examples are one parameter for upper tail 
dependence and one for concordance, or one parameter for up­
per tail dependence and one for lower tail dependence. One gen­
eral approach for two-parameter families is the use of ( 4.32) with 
v1 = v2 = 0 (see (5.3) below). From the tail dependence results in 
Section 4.3.2, the use of the LT families LTA, LTB, LTC leads to 
copulas with tail dependence; the properties of the copulas for LTC 
are similar to those for LTA. The examples given in this section 
show various possible types of behaviour for upper and lower tail 
dependence. 

Below are some two-parameter bivariate families of the form 

C(u,v) = 1/>(-logK(e-IP-'(u),e-•r'(v))), (5.3) 

where I< is max-id and 1/> is a LT. Two-parameter families result 
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if K is parametrized by a parameter 8 and 1j; is parametrized by a 
parameter () (denoted by ?j;9). If K is increasing in concordance as 
8 increases, then clearly C increases in concordance as 8 increases 
with () fixed. The concordance ordering for 8 fixed and () varying is 
harder to check. If K has the form of an Archimedean copula ( 4.3), 
then, from (5.3), C also has the form of an Archimedean copula. 
That is, if K(x, y; 8) = ¢.s(¢6 1 (x) + ¢6 1(y)) for a family 1/>.s, then 

C( u, v; B, 8) = ?j;9 (-log ¢o[¢6 1 ( e-.Pi" 1 (u)) + ¢> 6 1 ( e-.Pi" 1 (v))]) 

= 7}9,o(7J8,~(u) + 7J8,~(v)), (5.4) 

where 7J9,o(8) = ?j;9(-log¢,s(8)). For 8 fixed and B2 > B1 with 
'T/i = 'T/9;,6, i = 1, 2, the concordance ordering of C(-; ()1, 8) and 
C(-; () 2 , 8) could be established by showing that w = 7J2 1 o 'f/1 is 
superadditive (Theorem 4.1). 

Family BBl. In (5.3), let K be the family B6 and let 1j; be the 
family LTB. Then the resulting two-parameter family of the form 
(5.4) is 

C(u,v;B,8) = {1+[(u-9 -1)6 +(v-9 -1)6] 116}-119 

= 'TJ('TJ- 1(u) + 'TJ- 1(v)), () > 0, 8 ~ 1, (5.5) 

where 'TJ(8) = 'T/9,6(8) = (1 + 8116)- 119 (family LTE in the Ap­
pendix). 

Some properties of the family of copulas (5.5) are: 

(a) The family B4 is a subfamily when 8 = 1, and the family B6 
is obtained as () -+ 0. C1 obtains as () -+ 0 and 8 -+ 1 and Cu 
obtains as () -+ oo or 8 -+ oo. 

(b) The lower tail dependence parameter is 2- 11(69 ), while the 
upper tail dependence parameter is 2- 2116, independent of 
B. The extreme value limits from the lower and upper tails 
are the families B7 and B6, respectively. 

(c) Concordance increases as () increases because w ( 8) /8 is in­
creasing, where w(8) = 7Je2~0 ('TJ9 1 ,.s(8)) = [(1 + 8116)P- 1]6, 

B1 < B2, and p = B2/B1 > 1. 

Family BB2. In (5.3), let K be the family B4 and let 1j; be the 
family LTB. Then the two-parameter family of the form (5.4) is 

C( u, v; B, 8 [ 1 + 8-1log ( eo(u-8 -p -t=eo(v-8 -1) - 1) r1/9 

7J(7J- 1(u) + 7J- 1(v)), B, 8 > 0, (5.6) 
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where TJ(s) = TJ9,6(s) = [1 + b- 1 log(l + s)]- 119 (family LTF in the 
Appendix). 

Some properties of the family of copulas (5.6) are: 
(a) C1 obtains as 8--+ 0, Cu obtains as 8--+ oo orb--+ oo. The 

limit as b --+ 0 leads to the family B4. 

(b) The lower tail dependence parameter is 1, while there is no 
upper tail dependence. 

(c) Concordance increases as 8 increases because w is convex, 
where w(s) = TJ8,~o(TJ91,o(s)) = exp{b([l + b- 1 log(l + s)]P-
1)}- 1, 81 < 82, and p = 82/81 > 1. 

Family BB3. In (5.3), let J{ be the family B4 and let 1/J be the 
family LTA. Then the two-parameter family of the form (5.4) is 

C(u,v;8,b) = exp{ -[b- 1 log(e 6118 +e0ii 8 -1)]1/9 } 

= TJ(TJ- 1 (u) + TJ- 1(v)), 8:2: l,b > 0, (5.7) 

where TJ(s) = TJ9,0(s) = exp{ -[b- 1 log (1 + s)FI9} (family LTG in 
the Appendix), u = -logu and v = -logv. 

Some properties of the family of copulas (5.7) are: 

(a) The family B4 is a subfamily when 8 = 1, and the family B6 
is obtained as b --+ 0. Cu obtains as 8 --+ oo or b --+ oo. 

(b) The lower tail dependence parameter is 2- 1/ 0 when 8 = 1 and 
1 when 8 > 1, while the upper tail dependence parameter is 
2- 2119 , independent of b. The upper extreme value limit is 
the family B6. 

(c) Concordance increases as 8 increases if and only if 

-Db- 1 log(Djb) + [e 6x x log x + e6Y y log y]j(e6x + e6Y -1) :::; 0 

for all x, y > 0 and b > 0, where D = log(e6x + e0Y - 1). 
This condition holds from numerical checks but has not been 
confirmed analytically. With a change of parametrization to 
( 8' Q) with Q = b119 ' the family of copulas has been shown to 
be increasing in concordance with both parameters 8 and a. 

Family BB4. In (5.3), let I< be the family B7 and let 1/J be the 
family LTB. Then the two-parameter family is 

C(u, v; 8, b)= ( u- 9 + v- 9 - 1- [(u- 11 - It6+ (v- 11 - 1)-6ti rt, 
8 :2: 0, b > 0. (5.8) 

Some properties of the family of copulas (5.8) are: 
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(a) The family B4 is obtained when 8 --> 0, and the family B7 
obtains as 0 --> 0. Cu obtains as 0--> oo or 8 --> oo. 

(b) The lower tail dependence parameter is (2-2- 116)- 118 , while 
the upper tail dependence parameter is 2- 1/ 0 , independent 
of 0. The lower extreme value limit leads to the min-stable 
bivariate exponential family exp{ -A(x, y)}, with A(x, y) = 
x + y- [x- 8 + y-8 - (x86 + y86 )-116t 118 and this is a two­
parameter extension of the family B7. The upper extreme 
value limit is the family B7. 

(c) Concordance increases as 0 increase if and only if[x + y-1-
((x- 1)-6 + (y- 1)-6)- 116]log[x + y- 1- ((x- 1)-6 + (y-
1)-6)- 116] -x log x-y log y+[(x-1)- 6 +(y-1)- 6]- 116- 1[(x-
1)-0 x log x + (y - 1)-0 y log y] ~ 0 for all x, y > 1 and 8 > 0. 
This condition holds from numerical checks but has not been 
confirmed analytically. 

Family BB5. In (5.3), let K be the family B7 and let 1/J be the 
family LTA. Then the two-parameter family is 

C( u, v; 0, 8) = exp{ -[u9 + v9 - ( u- 96 + v- 96 )-116p19}, (5.9) 

0 ~ 1, 8 > 0, where u = -logu, v = -logv. 
Some properties of the family of copulas (5.9) are: 

(a) The family B6 is obtained when 8 --> 0 and the family B7 is 
obtained when 0 = 1. Cu obtains as 0 --> oo or 8 --> oo. 

(b) The lower tail dependence parameter is 0 and the upper tail 
dependence parameter is 2 - (2 - 2- 116) 118 . The upper ex­
treme value limit leads to the min-stable bivariate exponen­
tial family exp{ -A(x, y)}, with A(x, y) = [x9 + y9 - (x- 96 + 
y-8o)-1fo]lf8, and this is a two-parameter extension of the 
family B6. 

(c) Concordance increases as 0 increases if and only if [ x + y -
(x- 6 +y-6 )- 116]1og[x+y-(x-6 +y-6)-116]-x log x-y logy+ 
(x- 6 + y-6)-116- 1(x- 6 log x + y- 6 logy) ~ 0 for all x, y > 0 
and 8 > 0. This condition holds from numerical checks but 
has not been confirmed analytically. 

Family BB6. In (5.3), let K be the family B6 and let 1/J be the 
family LTC. Then the two-parameter family of form (5.4) is 

1 

C( u, v; 0, 8)= 1- (1-exp {-[(-log(1-u9))6+(-log(1-v9 ))6] t}) 8 

= 17(17- 1 (u) + 77- 1(v)), 0 ~ 1, 8 ~ 1, (5.10) 
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where u = 1 - u, v = 1 - v and 7J(s) = 1]9,6(s) = 1 - [1 -
exp{ -s116 }]119 (family LTH in the Appendix). 

Some properties of the family of copulas (5.10) are: 
(a) The family B6 is obtained when(}= 1, and the family B5 is 

obtained when fJ = 1. Cu obtains as (} -+ oo or fJ -+ oo. 

(b) The lower tail dependence parameter is 0, and the upper tail 
dependence parameter is 2- 211(96). The upper extreme value 
limit is the family B6. 

(c) Concordance increases as (} increases because w( s) is convex 
in s > 0, where w(s) = 1Je2~6 (1J9,,6(s)) = [u(s116W, B1 < B2, 
and u(t) = -log(1 - [1- e-t]P), with p = B2/B1 > 1. 

Family BB7. In (5.3), let K be the family B4 and let ,P be the 
family LTC. Then the two-parameter family of the form (5.4) is 

C(u, v; B, o) = 1- (1- [(1- u9)-6 + (1- v-9)- 6 - 1r116f 19 

= 1J(1J-1(u) + 7]- 1(v)), (} ~ 1, fJ > 0, (5.11) 

where 7J(s) = 1]9,6(s) = 1- [1- (1 + s)-116]119 (family LTI in the 
Appendix). 

Some properties of the family of copulas (5.11) are: 
(a) The family B4 is obtained when(}= 1, and the family B5 is 

obtained as fJ -+ 0. Cu obtains as (} -+ oo or {J -+ oo. 

(b) The lower tail dependence parameter is 2- 1/ 6 , independent 
of (}, and the upper tail dependence parameter is 2 - 2119 , 

independent of o. The extreme value limits from the lower 
and upper tails are, respectively, the families B7 and B6. 

(c) Concordance increases as (} increases when {J ::; 1; the proof is 
non-trivial. It is conjectured that concordance is also increas­
ing in (} when fJ > 1. 

Other two-parameter families of copulas of the form ( 4.3) are 
based on two-parameter families of LTs that do not come from a 
composition of the form (5.4). 

Family BBS. A family of copulas based on a two-parameter 
family of LTs, 1/>(s) = o- 1[1- {1- [1- (1- 8)9]e-sp19], (} ~ 1, 
0 < 8 ::; 1 (family LTJ in the Appendix), is: 

C(u, v; B, o)=8- 1[1-{1-[1-(1-o)9t 1[1-(1-ou)9][1-(1-8v)9]}t], 
(5.12) 

(} ~ 1, 0 ::; fJ ::; 1. Some properties of the family of copulas ( 5.12) 
are: 
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(a) C1 obtains as 8 --+ 0 or B --+ 1. The family B5 is obtained 
when 8 = 1, and the family B3 is obtained as B --+ oo with 
1 = 1- (1- 8)8 held constant (or with 8 = 1- (1- 1)118 ). 

(b) The family is derived as a power mixture family with the 
above LT. The family does not have tail dependence except 
when 8 = 1. It extends to the multivariate case for each fixed 
8. 

(c) Concordance increases as () or 8 increases. The proof of the 
concordance ordering is non-trivial. 

Family BB9. From the two-parameter family of LTs, ¢(s) = 
exp{ -(a8 +s)118 +a}, a~ 0, B ~ 1 (family LTL in the Appendix), 
the two-parameter family of copulas is 

C(u, v; B, a)= exp{ -[(a- logu)8 +(a -log v) 8 - a8Pf1J +a}, 
(5.13) 

() ~ 1, a > 0. Some properties of the family of copulas (5.13) are: 

(a) C1 obtains as a--+ oo or for()= 1, and Cu obtains as B--+ oo. 
The family B6 is a subfamily when a= 0. 

(b) Concordance increases as either () increases or a decreases. 

The next example is one of a two-parameter family in which 
concordance is not monotone in both parameters. It is not clear if 
the concordance ordering in two parameters can be obtained after 
making a parameter change. For example, with a reparametrization 
of LTL to exp{ -(8 + s) 118 + 8118 }, the reparametrization of (5.13) 
is not always increasing in concordance in B for fixed 8. 

Family BBlO. The LT of the negative binomial distribution 
is ¢(s) = [(1 - B)e-• /(1 - Be-•)]<> = [(1 - B)f(e• - B)]<>, where 
0 :S B < 1 and a > 0 (family LTM in the Appendix). The inverse 
is ¢- 1(t) = log[(1- B)r 11<> + B]. The family of copulas is 

C(u, v; 8, a)= uv[1- B(1- u11°)(1- v11<>)t<>, (5.14) 

0 :S () :S 1, a > 0. Some properties of the family of copulas (5.14) 
are: 

(a) C1 obtains as a--+ oo; Cu obtains as a--+ 0 when()= 1, but 
C1 obtains as a --+ 0 for 0 < () < 1. 

(b) Concordance increases as B increases for a fixed a. The con­
cordance is decreasing in a for B = 1. For 0 < B < 1 fixed, 
there is no concordance ordering as a increases. 
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5.3 Multivariate copulas with partial symmetry 

A multivariate parametric family of copulas is an extension of a 
(one-parameter) bivariate family if: (i) all bivariate marginal cop­
ulas of the multivariate copula are in the given bivariate family; 
and (ii) all multivariate marginal copulas of order 3 to m- 1 have 
the same multivariate form. 

There is no proven general multivariate extension of a bivari­
ate parametric family that has a dependence parameter for each 
bivariate margin (but see Section 4.8). This section has the mul­
tivariate extension for copulas having the forms in Section 4.2. 
After possibly permuting the indices, the form of the multivariate 
extension is that the ( i, j) bivariate margin has parameter 6;j, with 
6;i = f3a,,ai if {a;, ... , ai} is the smallest cluster of consecutive in­
dices that contain indices i and j. There are m - 1 parameters 
with the form f3a,b, a < b, and the f3a,b satisfy /3a 1 ,b 1 2:: f3a,,b, if 
a2 ::; a1 < b1 ::; b2. There are no constraints for f3a 1 ,b1 and f3a,,b, if 
b1 < a2 or b2 < a1. The labelling for the m - 1 parameters f3a,b is 
such that a1 < a2 ::; b1 < b2 or a2 < a1 ::; b2 < b1 is not allowed. 
That is, clusters (of indices) are hierarchical or nested, and cannot 
overlap. (Compare the data analysis technique of hierarchical clus­
tering; see also the comparison with hierarchical normal models in 
Section 4.2.1.) 

Examples are: 

• m = 3. Parameters /31,2 2:: /31,3 with 612 = /31,2, 613 = 623 = /31,3· 

• m = 4. Parameters /31,2 2:: /31,3 2:: /31,4 with 612 = /31,2, 613 = 
823 = /31,3, and 814 = 824 = 834 = /31,4· 

• m = 4. Parameters /31,2,/33,4 2:: /31,4 with 612 = /31,2, 634 = /33,4, 

and 613 = 814 = 623 = 624 = !31,4· 

• m 2:: 5. There are three different structural forms for m = 5. 
The number of different clustering forms increases rapidly with 
m. 

The permutation-symmetric subcase obtains when all of the f3a,b 
are the same. 

Below we list some ( trivariate) families with this partially sym­
metric dependence structure; this will suggest the form of the 
higher-dimensional copulas, without the tedious notation of the 
latter. In referring to properties of parametric families of copulas, 
an m-variate copula is a multivariate extreme value (MEV) 
copula if 
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After converting to unit exponential survival margins, with G(x) = 
C(e-x1 , ••• , e-xm ), the MEV copulas are easily recognized from 
A(x) = -log G(x) being homogeneous of order 1, i.e., A(tx) = 
tA(x) for all t > 0. Extreme value limits (upper and lower) 
refer to the limit of 

[K(1- n-1e-x 1 , ••• , 1- n- 1e-xm )r, n- oo, 

where K is either C or the associated copula C* when C is applied 
to survival functions (see Section 1.6). 

For the families LTA, LTB, LTC and LTD of LTs </>e, the prop­
erty of ¢91

1 o </>e 2 E .C~, 81 < 82, is satisfied using results in the 
Appendix. Therefore the constructions in Section 4.2 apply to yield 
copulas of the form (4.7), (4.10) and (4.11) and their extensions. 
The increasing in concordance property for these parametric fam­
ilies follows from theorems in Section 4.2.1. Hence the -<c ordering 
holds but its verification is not easy; however, the -<~w ordering 
follows easily from the -<c ordering of the bivariate margins. 

For the trivariate case, with fh = !31,3 ~ fJ1,2 = 82, copulas have 
the form 

(5.15) 

Theorems 4.8 and 4.9 then imply that (5.15) is increasing in con­
cordance as 81 or 82 increase with 81 ~ 82. 

Family M3. A generalization of family B3. Let 4>e(s) = 
-8- 1 log[1- (1 - e-8 )e- 3 ], 8 ~ 0 (family LTD in the Appendix). 
For 81 < 82 , the family (5.15) becomes 

C(u; 81, 82 ) = -811 log{ 1- c1 1 (1- [1- c2 1(1- e- 82u 1 ) 

·(1- e-B2u2Wt/82) (1- e-81u3)}, 

where c1 = 1 - e-81 and c2 = 1 - e- 82 . 

Family M4. A generalization of family B4. Let 4>9(s) 
(1 + s)- 118 , 8 ~ 0 (family LTB in the Appendix). For 81 ~ 82 , the 
family (5.15) becomes 

C(u1, u2, u3; 81, 82) = [(u1 82 + u2 82 - 1)81182 + u;; 81 - 1t1181 

The lower extreme value limit of this family is the family M7 which 
generalizes B7 (see Section 6.3.1). 

Family M5. Generalization of families B5 and BBB. With 
o fixed in (0,1), the family BBS has the same multivariate gener­
alization. Let ¢8 (s) = o- 1[1- (1 - c(8)e-•) 118], 8 ~ 1, where 
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c(6) = 1- (1- 6)8 (family LTJ in the Appendix). For 61 < 62, the 
family (5.15) becomes 

C(u; 61, 62) 6-1 ( 1- [1- {1- [1- A(u1, 62) 

·A( u2, 62)/ c(62)]81 /1J 2 }A( ua, 61)/ c( 61)) 1181 ), 

where A(u, B)= 1- (1- 8u) 8 . The limit as 8--+ 1leads to 

C(u; 81, B2) = 1- {[vf2 (1- v~2 ) + v~2 ] 8d82 (1- v~1 ) + v~ 1 } 1/ 81 , 
(5.16) 

where Vj = 1- Uj, j = 1,2,3. The copula resulting from the 
extreme value limit of (5.16) is the family M6. 

Family M6. A generalization of family B6. Let ¢1J(s) = 
exp{ -s118}, B ~ 1 (family LTA in the the Appendix). For 81 < 82, 
the family (5.15) becomes 

C(u; B1, B2) = exp{- ([(-log u1)82 + (-log u2) 82 ]8d 82 

+(-log ua)81 ) 1181 }. 

The generalization of the family B7 to M7 is given in Section 
6.3.1. 

5.4 Extensions to negative dependence • 

In this section, we use the theory of Section 4.4 to extend some 
families in the previous two sections to negative dependence. The 
extension comes from extending families of LTs ¢1J to functions in 
Cn for different n (see (1.1) in Section 1.3). From Section 4.4, a 
condition needed for negative dependence is the subadditivity of 
the function rJ(z) = ¢-1(e-z), with concavity of rJ or equivalently 
convexity of 'T]- 1 = -log¢ being a sufficient condition. 

Details are shown for several parametric families to study the 
range of negative dependence that can be achieved with theory of 
Section 4.4. It is not known what is the most negative dependence 
that can be obtained with this approach. A number of the tedious 
calculations were done with the aid of symbolic manipulation soft­
ware. 

Family M4E. Extension of B4, M4 and LTB. Write the 
gammafamilyofLTs as ¢(s) = ¢1J(s) = (1+Bs)-118, B > 0. The LT 
¢o(s) = e-s is obtained as B--+ 0, and the family ¢1J extends to 6 < 
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Table 5.3. Most negative values ofT and ps for family M4E and MVN. 

m Am r PS r(MVN) ps(MVN) 

2 1 -1 -1 -1 -1 
3 1/2 -0.3333 -0.4667 -0.3333 -0.4826 
4 1/3 -0.2000 -0.2930 -0.2163 -0.3198 
5 1/4 -0.1429 -0.2119 -0.1609 -0.2394 
6 1/5 -0.1111 -0.1656 -0.1282 -0.1913 
7 1/6 -0.0909 -0.1359 -0.1066 -0.1593 

0 by writing l/Je(s) = (1 + Bs):t: 1/ 8 , B < 0, where (z)+ = max{O, z }. 
(The extended family l/Je is the family of generalized Pareto survival 
functions.) Let .X= -B so that ¢J6 (s) = (1- .Xs) 11A, 0 ~ s ~.x-I, 
.X > 0. The function 7J(z) = ¢J01(e-z) equals .x- 1(1- e-.).z) and 
has second derivative 77"(z) = -.Xe-.).z ~ 0, so that it is concave. 
It is easily verified that 

(-1)i¢J~j)(s)= [rr(l-k..\)](1-..\s)-i+11'\ j=1,2, ... , 
k=O 

and this is non-negative if and only if,\ ~ (j -1 )- 1 . Hence l/Je E Cm 
and (4.4) exists ifB ~ -(m-1)- 1 =-Am. The Frechet lower bound 
obtains for,\= 1 (8 = -1). 

Table 5.3lists the bivariate Kendall tau and Spearman rho values 
for the most negatively dependent permutation-symmetric copula 
of form ( 4.4) from this family of l/Je in the cases m = 2, ... , 7. 
The Kendall tau value is -.X/(2 - .X). For comparison, the val­
ues of r, ps for the most negatively dependent exchangeable MVN 
distributions are given in the last two columns of Table 5.3. The 
formulas are r = ~ arcsin(pm) and ps = ~ arcsin(pm/2), with 
Pm = -(m- 1t1 . The extended family has a good range of ex­
changeable negative dependence compared with the MVN distri­
butions but the drawback is that zero density exists in a certain 
region (see Section 4.4). 

Family M3E. Extension of B3, M3 and LTD. The loga­
rithmic series family of LTs is ¢J6(s) = -B- 1 log[1- (1- e- 6 )e-•] 
forB> 0. The limit as B ~ 0 is l/Jo(s) = e-•. The family extends to 
functions in £ 1 for all negative parameter values; in this case, write 
¢J8 (s) = ,\- 1 log[l +(e.).- l)e-•], with .X= -8 > 0. Then ¢J01(t) = 
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Table 5.4. Most negative values ofT and ps for family M3E. 

m Ym Am T Ps 

2 00 00 -1 -1 
3 1 0.69315 -0.0766 -0.1148 
4 0.26795 0.23740 -0.0264 -0.0395 
5 0.10102 0.09624 -0.0107 -0.0160 
6 0.04310 0.04219 -0.0047 -0.0070 

-log[(e>-.t_1)/(e>-.-1)] and 77(z) = ¢8 1(e-z) = -log[(exppe-z}-
1)/(e>-.- 1)]. It is straightforward to obtain 77'(z) = (exppe-z}-
1t1Ae-z exp{Ae-z} ~ 0 and 7J11(z) = (exp{Ae-z}- 1)-2Ae-z 
· exp{Ae-z }[1 + Ae-z - exp{ Ae-z}] ::; 0. Therefore 7] is concave. 

Next we study ( -1)i <P~j)(s). Let y = (e>-. -1)e-s so that dyjds = 
-y. Then 

( -1)i <P~i)(s) = A- 1 Ai(Y)/(1 + y)i, j = 1, 2, ... , 

where Aj(Y) is a polynomial in y (of degree j- 1 for j ~ 2). The 
recursion for the Aj is 

Ai+l(Y) = y[(1 + y)Aj(y)- jAj(y)], 

with A1(y) = A2(y) = y. If Aj(Y) = E{:i ajkYk, j ~ 2, it can 
be shown that aj+1,1 = aj1 = 1, ai+1,j = -aj,j-1 = (-1)i by 
induction, and ai+1,k = kajk- (j + 1- k)aj,k-1 for 2::; k::; j -1. 
The polynomials Aj (y) are positive for y near zero, with the first 
positive root of Aj decreasing as j increases. Let Yi be this root 
and let Aj = log(1 + Yj ). Then <Pe E .Cm if A ::; Am. For m = 2, 
A2(y) = y so that Y2 = A2 = oo. That is, bivariate copulas of 
the form ( 4.3) exist for the entire extended parameter range. The 
Frechet lower bound copula obtains as (} -+ -oo (A -+ oo). In Table 
5.4, for m = 2, ... , 6, are listed Ym, Am and the bivariate Kendall 
tau and Spearman rho values for the most negatively dependent 
permutation-symmetric copula of the form ( 4.4) from this family 
of <Pe. From the table, this family does not allow much extension 
into the negatively dependent range for m ~ 3; the range is much 
smaller than that of the family M4E. 

Next we consider partially symmetric copulas of the form ( 4. 7), 
( 4.10) and ( 4.11 ). Let w = ¢81

1 o </Je2 with B1 < B2. With p = Bt/B2, 
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Table 5.5. Lower bounds (LB) on parameters for functions in .c; (family 
M3E). 

01: -1 -2 -3 -4 -5 -6 
02(LB): -1 -1.11 -1.00 -0.89 -0.81 -0.75 

For 01 ~ 0, w is in C"oo. For 01 = -A < 0, consider the three cases of: 
(i) 02 > 0; (ii) 82 = 0; and (iii) 82 < 0. For (i), p < 0, 0 < e2 < 1 and 
w(s) = -log[(1- y)P- 1] +log led, withy= e2e-• ~ e2 (dyfds = 
-y). For (ii), w(s) = -log( eY -1)+log( e>. -1), withy= Ae-• ~ A. 
For (iii), p > 1, e1, e2 < 0 and w(s) = -log[(1 + y)P- 1] +log le1!, 
with y = -c2e-• ~ le2l· 

The analysis of w is not simple. For (ii), w'(s) = yeY f(eY- 1) = 
y/(1- e-Y) ~ 0, w"(s) = y(1- e-Y)-2[(y + 1)e-Y- 1], w"'(s) = 
y(l-e-Y)-3 [e- 2Y(y2+3y+l)+e-Y (y2 -3y-2)+ 1]. w"(s) ~ 0 since 
y + 1 ~ eY. w"'(s) ~ 0 if and only if e-2Y(y2 + 3y + 1) + e-Y(y2 -
3y- 2) + 1 ~ 0, or g(y) = y2 + 3y + 1 + eY(y2 - 3y- 2) + e2Y ~ 0. 

Since g(O) = 0 and g'(y) ~ 2y + 3 + eY(2y2 + y- 3) ~f g1(y), it 
suffices to show g1(y) ~ 0. This is true since g1(0) = gi(O) = 0 and 
g~ > 0. 

For (i), let w1 = ¢9/ o¢Jo and w2 = ¢01 o¢e, where ¢o(s) = e-•. 
Then w = w1 o w2. Let y = -01e-•. Then wi = y/(1 - e-Y) ~ 0, 
w~ = -yeY(eY- 1)-2(eY- y -1]::::; 0, w~' = yeY(eY- 1)-3 [y2(1 + 
eY)+3y(1-eY)+(1-eY)2] ~ 0 and (-1)i- 1 w~j) ~ O,j ~ 1. Hence it 
follows that w' = w~ (w2)w~ ~ 0, w" = w~(w2)(w~) 2 +w~ (w2 )w~ ~ 0 
and w"' ~ 0. 

For (iii), w'(s) = py(1+y)P- 1 /[(1+y)P -1] ~ 0, w"(s) = -py(1+ 
y)P- 2((1+y)P-1]- 2[(1+y)P-1-py] andw"'(s) = py(1+y)P- 3 [(1+ 
y)P -1J-3[(1- y)z2 + z(p2y2 + (2- 3p)y- 2) + (p2y2 + (3p-1)y+ 1)] 
where z = (1+y)P. w"(s) ~ 0 since (1+y)P-1-py = p(p-1)y5/2 ~ 
0 for some 0 ~ y0 ~ y. w"'(s) ---+ 0 as y ---+ 0 (or s ---+ oo) and 
w"'(s) > 0 for y near 0. A conjecture based on some numerical 
computations is that w"'(s) ~ 0 for all s ~ 0 if w"'(O) ~ 0. 

For fixed 81, there should be a lower bound on the possible value 
of 82 so that w E £;. These values are given in Table 5.5 for a few 
cases; they were obtained numerically. 
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Extension of B6, M6 and LTA. The positive stable LTs 
¢J 9(s) = exp{ -s119 }, () ~ 1, extend to decreasing functions in £1 
for 0 < () < 1. The second derivative of ¢J9 is 

<P~(s) = exp{ -s119}As>.- 2 [>.s>.- A+ 1], 

where A = o- 1 . This derivative can be negative near s = 0 if() < 1 
or A > 1, so that ¢J9 ft £2 for 0 < () < 1. Hence no copulas of the 
form ( 4.3) result from the extension. 

Extension ofB5, M5 and LTC. Let the LT family be ¢J9(s) = 
1-(1-e-• )119 , () ~ 1. This can be extended to decreasing functions 
in £1 for 0 < () < 1. Then 7J(z) = ¢J- 1(e-z) = -log[1-(1-e-z)9], 
7J1(z) = 0(1- e-z)9 - 1e-z /[1- (1- e-z)9] and 

7]11 (z) = [1- (1- e-Z)9t 20(1- e-z )9- 2e-z { (1- e-Z)9 + oe-z - 1}. 

The term g(w) = (1- w)9 +Ow -1 is non-positive, for w = e-z E 
[0, 1], since g(O) = 0 and g'(w) = 0[1- (1- w) 9- 1] ~ 0 for 0 < 
w, () < 1. Therefore 7J is concave. Withy= e-s, dyjds = -y and 
A = o- 1 , the second derivative of ¢J9 is 

</J~(s) = Ay(1- y)>.- 2 (1- Ay), 

and this can be less than 0 if A > 1 ( () < 1). Therefore for this 
family of ¢J9, there are no negatively dependent copulas for ( 4.3). 

We study one more family that has more negative dependence 
than the family M3E. 

Family MB9E. Extension of family BB9 and LTL. A two­
parameter LT family is </J(s) = <Pe,a(s) = exp{-(a9 + s) 118 +a}, 
() ~ 1, a~ 0. This can be extended into a family in £ 1 for() > 0, 
a~ 0. Let A= o- 1 . H(s) = -log</J(s) = (a 8 + s)>.- a is convex 
for 0 < () < 1. With y = a 8 + s ~ a 8 , the first four derivatives of 
<P are: 

<P'(s) = -</J(s)Ay>.- 1 ~ 0; <P"(s) = ¢J(s)Ay>.- 2 [Ay>.- A+ 1]; 

</J"'(s) = -¢J(s)Ay>.-3 [A 2y2>.- 3A(A- 1)y>. + (..\- 1)(..\- 2)]; 

¢JC4)(s) = ¢J(s)..\y>.- 4 [A 3 y3>.- 6A2(A- 1)y2>. 

+A(..\- 1)(7..\- ll)y>.- (..\- 1)(A- 2)(..\- 3)]. 

<P"(s) ~ 0 for all s ~ 0, if ..\(a- 1) + 1 ~ 0. If 0 < ,\ ~ 1, 
then <P9,a E £2 for all a > 0, and if ,\ > 1, then </J9,a E £ 2 for 
a ~ 1 - () = 1 - ,\ - 1. The third and fourth derivatives are harder 
to analyse. Let z = y>-. The roots of ,\2 z2 -3A(A-1)z+(A-1)(A-2) 
in <P"' are [3(,\- 1) ± J(..\- 1)(5,\- 1)]/(2..\). If the roots are real 
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Table 5.6. Lower boundary values of a for given 8 for family MB9E. 

o-1: 1 2 3 4 5 00 

£2: 0 0.5 0.6667 0.75 0.80 1 
£3: 0 1.5 1.8819 2.0687 2.1798 2.6180 
£4: 0 2.7247 3.3333 3.6287 3.8037 4.4909 

(.A < 1/5 or A 2: 1), let z0 be larger root with the + sign. Then 
¢'" :::; 0 for all s 2: 0 if a 2: zo or if both roots are complex. If 
0 <A :::; 1/5, zo < 0 :::; a. If A> 1, zo is positive so that there is 
a lower bound on a in order that 1/Je,o: E £ 3 . Similarly, the lower 
bound on a for £ 4 can be computed numerically. For some selected 
values of .A > 1, a table of the lower bounds on a for 1/Je,o: to be in 
£2, £3,£4 is given in Table 5.6. 

For 0 < (J < 1 and a 2: 1-0, C(u, v) = ¢(¢- 1(u) + ¢-1(v)) is a 
copula with negative dependence. The formula is 

C(u, v) = exp{ -[(a -logu)9 +(a -log v)9 - a9FI 9 +a}, (5.17) 

and as (J ---+ 0, the copula becomes 

C(u,v) = uvexp{-a- 1 (logu)(logv)}, a 2: 1. (5.18) 

The distribution in (5.17) is increasing in concordance as (J in­
creases for all fixed a, and it is decreasing (increasing) in concor­
dance as a increases for fixed (J 2: 1 (8 :::; 1). Expression (5.18) 
represents the family of copulas for the family of bivariate expo­
nential distributions in Example 2.5. Note that (5.17) does not 
depend on a for (} = 1 (the independence copula). The distribu­
tion in (5.18) is increasing in concordance as a increases and the 
independence copula obtains as a ---+ oo; (5.18) has the form of 
(4.3) with '1/Jo:(s) = exp{a(1- e8 )}, a 2: 1. This family offunctions 
in £ 2 comes from a limit of 1/Je,o: as 8 ___, 0 if scaling is done with the 
limit, i.e., it is the limit of 1/Je,o:( a9 Os) = exp{ -a(1 + Os )119 + a}. 

For (5.18), the Kendall tau and Spearman rho values correspond­
ing to the a values in the last column of Table 5.6 are given in Table 
5.7. These are the smallest possible values for the permutation­
symmetric copulas ( 4.4) with ¢ in this family. For m = 3, 4, a 
greater range of negative dependence obtains compared with fam­
ily M3E. 

It is not known how to find LT families with extensions such 
that (4.4) has positive density on (0, 1)m and has more negative 
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Table 5.7. Most negative values ofT and ps for family MB9E. 

m a T Ps 
2 1 -0.3613 -0.5240 
3 2.6180 -0.1637 -0.2435 
4 4.4909 -0.1010 -0.1511 

dependence than the examples given in this section. Also unknown 
are results that can quantify the range of negative dependence that 
can be achieved with the approach of Section 4.4. 

5.5 Multivariate copulas with general dependence 

In this section, we list five families of parametric multivariate cop­
ulas that have flexible general positive dependence structure. Some 
are extensions of families in Section 5.2. The ideas of Sections 4.4, 
4.5 and 5.4 can be used to extend some of them into the range 
of negatively dependent bivariate margins. The first three families 
are based on the theory of Seeton 4.3 and have closed-form cdfs; 
two are families of extreme value copulas, and in the third a lim­
iting family of extreme value copulas is obtained in Section 6.3.1. 
Repeating from Section 5.3, an m-variate copula Cis a (multivari­
ate) extreme value copula if C( uL ... ' u!r,) = ct( u1' ... ' Um) for 
all t > 0. The last two families are based on Section 4.5 and their 
extreme value limits are also given in Section 6.3.1. 

Family MMl. In (4.25), let Kij be the family B6 with para­
meter Oij and let t/J be the family LTA with parameter 0. The result 
is the family: for()~ 1 and D;j ~ 1, i < j, 

(5.19) 
where Zj = -loguj, Vj ~ 0, Pi= (vj +m-1)-1, j = 1, ... ,m. 
This is a family of extreme value copulas since the exponent in 
(5.19) is homogeneous of order 1 as a function of z1, ... , Zm. The 
bivariate margins are: 

exp{ _ [((p;zf)o;i + (pjzJ)6;i)1fo;i 

+(v; + m- 2)p;zf + (vj + m- 2)pj zJ] 119 }. 
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When p; = Pi = 1 or v; = Vj = 2 - m, this bivariate copula 
corresponds to the family B6. The tail dependence parameter is 
Aii = 2- [(pf'i + pJ'i)116•; + (v; + m- 2)p; +(vi+ m- 2)piJ118; 
it increases as O;i or B increases. Further tail dependence analysis 
of this family is given in Section 6.3.1. 

Family MM2. In {4.25), let K;i be the family B7 with para­
meter O;j and let tjJ be the family LTB with parameter B. Let 
ui = Pi(uj8 - 1), Pi = (vi+ m- 1)-1 , vi 2: 0, j = 1, ... , m. 
The result is the family: forB> 0 and O;j > 0, i < j, 

C(u)= [fu;8-(m-1)- L (u;6•;+uj6';)-1f6•;r1/8. 
i=1 1$i<i$m 

(5.20) 
The special case [I:;~ 1 u;8 - {m- 1)]- 118 arises as Pi ___. 0, j = 
1, ... , m. The bivariate margins are: 

G-·(u· u·) = [u-:-8 + u-:-8 _ 1- (u-:6;; + u-:6;;)-1/6;;]-1/8 
1J 1' J • J • J • 

When p; = Pi = 1, this bivariate copula corresponds to the family 
BB4. This copula has both lower and upper tail dependence. Using 
the approximations uj 8 - 1 ~ B{1 - Uj) and Uj ~ PiB(1 - Uj) 

as ui ___. 1, j = 1, ... , m, the upper tail dependence parameters 

can be computed as Aii,U = (p; 6'i + pj6'i )- 116•;. The lower tail 

dependence parameters are >.;i,L = [2- (p; 6•i + pj6'i)-1/6•;]-1/8. 
The tail dependence parameters are increasing as 6;i increases. The 
upper tail dependence parameters do not depend on B; the lower 
tail dependence parameters increase as B increases. 

The upper tail extreme value limit is 

exp{- :Le-Xi + L(P;6•;e6ijXi + Pj6'ie6;;x;r1/6;;}· 
i i<i 

It is not so interesting as it does not depend on B. The lower tail 
extreme value limit is more interesting. It is similar to (5.19) and 
generalizes the family B7 (see the family MM8 in Section 6.3.1). 

Family MM3. In {4.25), let K;i be the family B7 with para­
meter 6;i and let tjJ be the family LTA with parameter B. Let zi = 
-logui, Pi= (vi+ m -1)- 1 , vi 2:0, j = 1, ... ,m. The result is 
the family of extreme value copulas: 

m 1/8 
C( ) - { [" 8 "( -6;; -86;; + -6;; -86;;)-1/6;;] } u - exp - L..J zi - L..J P; z; pi zi , 

j=1 i<i 
(5.21) 
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() > 0 and 8;j > 0, i < j. 
The bivariate margins are: 

C .. ( . ·) _ {-[ ~+ ~ -( -:-6;1 -:-96;1+p-:-6;j z-:-96;i)-1/6•i]1f8} ,3 u,, u3 - exp z, z3 p, z, J J • 

(5.22) 

When Pi =Pi = 1, this bivariate copula corresponds to the family 
BB5. The upper tail dependence parameter for (5.22) is Aij = 
2- [2- (p; 6'i +pj6'i )-116•1]118. It is increasing as 6ij or() increases. 

Form= 3, with 613-+ 0, 612 = 623 = 6, v1 = v3 = -1, v2 = 0, 
P1 = P3 = 1, P2 = t, (5.21) becomes 

C(u)=exp{ -[zf +z~ +z~ -(z!86+26z;- 86 )- k -(z3 80+26 z;- 86 )- k]t }. 
(5.23) 

The bivariate margins of (5.23) are Cj2( Uj, u2) = exp{ -[zJ + z~­
(zj 80 +26z;- 86 )- 116Jll 8 }, j = 1,3, and c13(u1,u3) = exp{-(zf + 
zg) 118 }. The tail dependence parameters are Aj2 = 2- [2- (1 + 
26)- 116]11 8 , j = 1, 3, and A13 = 2 - 2119 . As 6 -+ oo, Aj2 -+ 
2- (1.5)1/8. 

Family MM4. Cop.sider the construction in ( 4.37)-( 4.39) for 
mixtures of conditional distributions with the associated copulas 
in the family B4, i.e., Cij( u;, Uj) = C( u;, Uj; 6ij) = u;+ui -1+[(1-
Ui)-6•i + (1- Uj )-6•i -1]- 116•1, 6;j > 0, 1 :$ i < j :$ m. From The­
orem 4.20, the resulting copula family has upper tail dependence 
for each bivariate margin and has a wide range of dependence. This 
family leads to a family of MEV distributions (see Section 6.3.1). 

Family MM5. Consider the construction in ( 4.37)-( 4.39) for 
mixtures of conditional distributions with the family B5 for the 
bivariate copulas, i.e., C;j = C(·;8ij), Dij 2: 1, is in the family B5 
for all 1 :$ i < j :$ m. The resulting copula family has similar 
dependence properties to the family MM4, and it also leads to a 
family of MEV distributions. 

From Theorem 4.11, 4.14 and results in Section 5.1, the families 
MM1-MM3 are increasing in the --<~w ordering as the 6;j increase or 
Vj decrease; it is conjectured (with support from numerical checks) 
that they also increase in --<~was() increases. For the families MM4-
MM5, for i < j with j - i 2: 2, the conditional dependence of the 
ith and jth variables, given variables i + 1, ... , j - 1, increases as 
{jij increases; the --<~w ordering need not hold as the 8;i increase, 
but the ( i, j) bivariate margin increases in concordance for {jii in­
creasing (Theorem 4.19). 
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As can be seen from the parametric families in this section, one 
motivation for the development of the theory in Chapter 4 has been 
the construction of parametric families of MEV distributions with 
general dependence structure. There is more on the topic of MEV 
distributions in the next chapter. 

5.6 Bibliographic notes 

For the families B1 to B8, refer to Joe (1993) for some background 
and multivariate extensions. Without all of the properties of Sec­
tion 5.1, there are many parametric families of bivariate copulas; 
see Hutchinson and Lai (1990) for a fairly exhaustive compilation. 
B3 has been studied in Nelsen (1986) and Genest (1987), and B4 
has been studied in Clayton (1978), Cook and Johnson (1981), 
and Oakes (1982). B12 is studied in Cuadras and Auge (1981) and 
Nelsen ( 1991). Of the properties in Section 5.1, one of the hardest 
to check is the SI ordering. This property is shown in Fang and Joe 
(1992) for some families of copulas, and is included in the examples 
in Section 2.2.7 for others; for B2, Theorem 2.14 can be applied 
with symbolic manipulation software. 

The families in Sections 5.2 to 5.5 are mainly from Joe and Hu 
(1996) and Joe (1994; 1996a). The extension to negative depend­
ence for the bivariate case has been known for B4; see Ruiz-Rivas 
(1981) and Genest and MacKay (1986). Regarding M3E, this model 
has been used in Meester and MacKay (1994), but without men­
tioning that there is a limit to the range of the parameter space 
for negative dependence. For a more general multivariate version 
ofB10 than (5.2), see Johnson and Kotz (1975) and Shaked (1975). 

5. 7 Exercises 

5.1 Verify directly the SI property for the families B2 to B7 (in 
the range of positive dependence). 

5.2 For the family B2, show that u-C( u, v; B) = C( u, 1-v; B- 1 ). 

For the family B3, show that u-C(u, v; B)= C(u, 1-v; -B). 
(See Sections 7.1.7 and 1.6 for the interpretation.) 

5.3 Verify the density for the Plackett copula in the family B2 
and show that it is non-negative. 

5.4 For the family Bll with copula C( u, v; 6) = 6( u 1\ v) + (1 -
6)uv, 0 ~ 6 ~ 1, show that if (U, V) "" C(·; 6) and Y1 = 
I(U ~ x), Y2 = I(V ~ x), then the correlation of Y1, Y2 
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is 8 for any 0 < x < 1. Does this property hold for other 
families? 

5.5 Verify the properties listed for the families B1-B8. Also ver­
ify the copulas (independence or Frechet bounds) that are 
obtained at the end points of the parameter ranges. 

5.6 Verify the properties listed for the families BB1-BB10. 

5.7 For the multivariate copula in (5.2), show for m = 3 that 
the constraints on the parameters are: 

-1:::; 812,813,823:::; 1, 

-1 + 1812 + 8231 :::; 813:::; 1 -1812- 8231· 

Determine the constraints on the parameters for m = 4. 

5.8 Prove that the family B9 is increasing in -<c, by filling in de­
tails in the following (proof due toT. Hu). Let Z1, Z2, Z3, Z4, 
Z12, Zb W12, Wi2 be rvs with unit exponential distribu­
tions. Let 10 , ] 0,, 111 , 1; be Bernoulli rvs with respective para­
meters 8, 8', 'TJ, "'·Let F(·; 8) be the bivariate exponential cdf 
for the stochastic representation in (5.1): 

X1 = (1- 8)Z1 + loZ12, X2 = (1- 8)Z2 + l 0Z12, (5.24) 

where 10 , Z1, Z2, Z12 are independent. Suppose 8' > 8 > 0 
and set 'fJ = (8'- 8)/(1- 8). Let (Y1, Y2) ,...... F(·; 8') with 
stochastic representation: 

Y1 = (1- 8')Z3 + Ia'Z;2, Y2 = (1- 8')Z4 + Ia'Z;2, 

where Io', Z3, Z4, Zt2 are independent. Substitute Z1 = (1-
TJ)Z3 + 111 W12, Z2 = (1- TJ)Z4 + I;Wi2 into (5.24) to get 

X1 = (1- 8')Z3 + [(1- 8)111 W12 + IoZ12], 
X2 = (1- 8')Z4 + [(1- 8)I;Wi2 + loZ12], (5.25) 

with la,l11 ,I;,z3,Z4, W12, Wi2,Z12 independent. Also, 

Y1 (1- 8')Z3 + [(1- 8)111 W12 + IaZ12], 
Y2 = (1- 8')Z4 + [(1- 8)111 W12 + 10Zl2], (5.26) 

since (1- 8)111 W12 + loZ12 4 Ia'Zt2 (this can be shown us­
ing moment generating functions). Using the representations 
(5.25) and (5.26), it follows that (X1,X2)-<c(Y1, Y2) or that 
F(·; 8)-<cF(-; 8'). 

5.9 For specific cases of (5.15) for the families M3, M4 and M6, 
show that (5.15) is not a proper copula if 81 > 82. 
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5.10 Study the two-parameter family of Archimedean copulas 
based on the family LTK in the Appendix. 

5.11 Study the multivariate and negative dependent extensions of 
the family BB8 of bivariate copulas by extending the families 
LTJ, LTK of LTs to Cm. 

5.12 Verify the details below which show that the property of a 
TP2 density does not hold for 8 > 2 for the family B2. Let 
c( u, v; 8) be the density of the family B2. Consider 

{5.27) 

for ui < u2, VI < v2. This expression is negative when 8 > 2, 
Ut, u2 are close to zero and VI, v2 are close to 1. Let v = 1-v; 
expanding c to second order near u = 0, v = 1 leads to 

c(u, v; 8) ~ 8-I[1 + 2p(u + v) + 3l(u2 + v2 ) + auv], 

where p = (8- 1)/8 and a= 48-2{2P- 58+ 3). Therefore 
(5.27) is equal in sign to {4p2 - a)(ui - u2)(vi - v2) 

48-2(8- 1){2- 8)(ui- u2)(v1- v2). 

5.8 Unsolved problems 

5.1 Verify or disprove the property of a TP2 density for the fam­
ilies B7 and B8. Numerical checks seem to suggest that the 
property holds. 

5.2 Numerical checks seem to suggest that the property of a TP2 
density holds for 1 < 8 ::; 2 for the family B2. Also, numeri­
cally it appears that the property of a TP2 cdf holds for the 
family B2. Can these properties be shown analytically? 

5.3 Find other parametric families of Laplace transforms that can 
lead to interesting copulas. 

5.4 For the families BB3, BB4 and BB5, show analytically the 
properties of the concordance ordering. 

5.5 Find a parametric family of copulas of the form { 4.4) that 
have positive density on [0, 1]m and more negative depend­
ence than the families M3E and MB9E for m ;:::: 3. 

5.6 This problem may be helpful to solve the preceding problem. 
Find the infimum ofT= 1- 4f0

00 s[4>'(s)Fds {the value of 
Kendall's tau from Theorem 4.3) subject to 4> ELm. 



CHAPTER 6 

Multivariate extreme value 
distributions 

This chapter is devoted to multivariate extreme value (MEV) mod­
els and their applications. A main goal is the construction of para­
metric families of MEV distributions with wide dependence struc­
ture. A typical example that provides some motivation for MEV 
models is given in Section 11.3. 

A summary of the sections, including the highlights, is the follow­
ing. Section 6.1 gives the brief background from univariate extreme 
theory that is relevant to statistical inference. Section 6.2 contains 
the background in MEV theory, including Pickand's representa­
tion and characterization for min-stable multivariate exponential 
(MSMVE) distributions, and shows the contrast between MEV 
limit theory and MVN limit theory. To relate to earlier chapters, 
we show that MEV distributions are one setting for naturally using 
copulas and exploiting the properties of copulas. Section 6.3 con­
tains parametric families of MEV copulas in the form of MSMVE 
distributions; seVf~ral families are derived from the extreme value 
limit of families of copulas that are given in Chapter 5. Section 
6.4 is on the point process modelling approach for inference with 
multivariate extremes. Section 6.5 is on choice models and the use 
of MEV models in the psychology and econometrics literatures. 
Section 6.6 is devoted to mixtures of MEV distributions, which 
include max-geometric stable multivariate distributions. 

6.1 Background: univariate extremes 

Let X 1, X2, ... be iid rv's with continuous distribution function F. 
Let Sn = X1 + · · ·+Xn, Mn = max{X1, ... ,Xn} = X1 V · · ·V Xn, 
and Ln = min{ X 1, ... , Xn} = X 1/\ · · ·I\ Xn. Paralleling the central 
limit theorem and stable laws based on Sn, one can consider the 
possible limiting distributions for (Mn -an)/bn and (Ln -cn)/dn as 
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n-> oo for suitably chosen sequences {an}, {bn}, {en}, {dn}. (The 
sequences need not be unique.) One needs only to study the case 
of maxima as the theory for minima is similar due to the identity 
min{X1, ... , Xn} =-max{ -X1, ... , -Xn}· 

The main well-known result or the 'three-types' theorem, with 
contributions from Fisher, Tippett, von Mises, Gnedenko and de 
Haan, is that the only possible limits are the location-scale families 
based on the cdfs: 

1. Ho(x) = exp{ -e-x}, -oo < x < oo (Gumbel or extreme value 
distribution); 

2. H1(x; B)= exp{ -x-8 }, x > 0, B > 0 (Frechet distribution); 

3. H_ 1(x; B) = exp{ -( -x)8 }, x < 0, B > 0 (Weibull distribu­
tion). 

Necessary and sufficient conditions are given in books on extreme 
value theory, for example, Galambos (1987) and Resnick (1987). F 
is said to be in the domain of attraction of the Gumbel, Frechet 
or Wei bull distribution if one of these distributions is the extreme 
value limit. 

By reflection, the possible limits for minima are the location-
scale families based on the cdfs: 

1. H;(x) = 1- H0 (-x) = 1- exp{-ex}, -oo < x < oo; 

2. Ht(x; B)= 1- H1( -x; B)= 1- exp{ -( -x)-8 }, x < 0, B > 0; 
3. H~ 1 (x;B) = 1- H-1(-x;B) = 1-exp{-x8}, x > O,B > 0. 

After location/scale changes, the three types can be combined 
into the generalized extreme value (GEV) family: 

H(x; 1) = exp{-(1 + 1x)+1h}, -oo < x < oo, -oo < 1 < oo, 

where (Y)+ = max{O, y}. !-> 0 yields Ho(x), 1 > 0 yields H1(1 + 
1x; 1h), and 1 < 0 yields H_1(-1-1x; -1h). 

Example 6.1 (Some special cases.) Note that Pr((Mn -an)/bn ~ 
z) = Pr(Mn ~ an+ bnz) = Fn(an + bnz). For illustration, some 
examples are the following. 

(a) Exponential. F(x) = 1 -e-x, x > 0. Let an = logn = 
F-1(1- n- 1), bn = 1; then Fn(an + bnz) = (1- n- 1e-z)n-> 
exp{ -e-z}, -oo < z < oo, the Gumbel distribution. 

(b) Pareto. F(x) = 1- x- 1h, x > 1, 1 > 0. The tail gets heavier 
as 1 increases. Let an = 0, bn = n"Y = F-1(1 - n- 1 ); then 
Fn(an + bnz) = (1- n-lz- 1h)n-> exp{ -z-1h}, z > 0, the 
Frechet distribution. 
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(c) Beta. F(x) = 1- (1- x)- 1h, 0 < x < 1, 'Y < 0. The tail 
gets heavier as 1 increases or -1 decreases and the upper 
end point of support is finite. Let an = 1, bn = n'Y = 1-
F-1(1- n- 1 ); then Fn(an + bnz) = [1- n- 1( -z)-1h]n --+ 

exp{ -( -z)- 1h}, z < 0, the Weibull distribution. 

(d) F(x) = 1- (logx)- 1, x > e. This has a heavier tail than 
the Pareto distributions and there is no extreme value limit 
based on linearity. 

0 

Since Pareto distributions are heavier-tailed than exponential 
distributions which in turn are heavier-tailed than distributions 
with finite upper end point of support, 1 can be interpreted as a 
tail parameter that is larger for a heavier tail. For another example, 
the domain of attraction for a normal distribution is the Gumbel 
distribution but the sequences of constants are not simple in form 
(see the references cited earlier). 

An application of univariate extreme value theory is as follows. 
For data M1n, ... , Mkn consisting of (approximately) iid maxima 
based on n observations each, the three-parameter GEV model 
H((y- J.L)Iu;'Y) is used as an approximation Fn(y), assuming n 
is sufficiently large. From this, an approximation for the tail prob­
ability F(y), y large, is 

1- F(y) ~ 1- H1fn((y- J.L)Iu; 'Y) 

~ -logH1fn((y-J.L)Iu;'Y) 

= n-1(1+'Y[Y-J.L]Iu)~1h, 

and for a large threshold T, 

1- F(x + T) ~ [1 + 1(x + T- J.L)Iu] - 1h = (1 I *)-1h 
1-F(T) 1+!(T-J.L)Iu + +1x u + ' 

where u* = 1 + 1(T- J.L) I u. This is the generalized Pareto approx­
imation to the conditional tail distribution of a distribution that is 
in the domain of attraction of an extreme value distribution. The 
multivariate extension of this is given in Section 6.4. 

A data analysis error is to fit a parametric family to data and 
extrapolate to extreme such as the 99th percentile. For these ex­
treme value inferences, it is better to apply extreme value theory 
and the generalized Pareto distribution to the largest data values 
(say, less than the top 10%). 
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6.2 Multivariate extreme value theory 

Let (X;l, ... ,X;m) be iid random vectors with distribution F, 
i = 1, 2, .... Let Mjn = max1:5i:5n X;j, j = 1, ... , m, be the com-
ponentwise maxima. From a sample of vectors of maxima, one can 
make inferences about the upper tail of F using multivariate ex­
treme value theory. 

MEV distributions come from limits (in law) of ((Mln -a1n)fb1n, 
... , (Mmn- Umn)/bmn)· If a limiting distribution exists, then each 
univariate margin must be in the GEV family. The multivariate 
limiting distribution can then be written in the form 

C(H(z1; ''fl), ... , H(zm; rm)), 

where H(zj; rj) are GEV distributions and C is a multivariate 
copula. Further properties of MEV distributions and a method 
for constructing MEV distributions are given after the following 
univariate result on transforms and extremes. 

Lemma 6.1 Let X 1, X 2, . . . be iid with distribution function F 
and let r(X;) = XJ, i = 1, 2, ... , be iid with distribution function 
F*, where r is strictly increasing. Let Mn = max{Xt, ... ,Xn}, 
M~ = max{Xi, ... ,X~}. Suppose Pr((Mn- an)/bn :S z)--+ H(z) 
and Pr((M~- a~)/b~ :=:; z*)--+ H*(z*), where H and H* are ex­
treme value distributions. Note that Pr((M; - a~)/b~ ~ z*) = 
Pr(Mn ~ r- 1 (a~ + b~z*)) = Pr((Mn- an)/bn ~ [r- 1 (a~ + b~z*)­
an]/bn)· Hence limn[r- 1 (a~ + b~z*)- an]/bn exists. Let s(z*) be 
the limit. Then H*(z*) = H(s(z*)). 

Now, returning to the multivariate setting, let (Mln, ... , Mmn) 
be a vector of componentwise maxima of the iid random vectors 
(X;1, ... , X;m) from F, and suppose 

G(z) = limFn(aln + btnZl, ... , Umn + bmnZm) 
n 

where C is a copula. Let ri be a strictly increasing transform of 
the Xii, and let the transformed variables and maxima be Xii 
and M]n· Suppose the transforms are such that (M]n- ajn)fb}n 
converges in distribution as n--+ oo for all j. Let 
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for a copula C*. Also, by Lemma 6.1, 

limPr((Mjn- ajn)/bjn ~ [rj 1(a}n + b}nzJ)- ajn]/bjn, 'r/j) n 

= G*(z*) = C(H(s1(z;); ·n), ... , H(sm(z;,.); 'Ym)) 
for some functions s1, ... ,sm. Hence H(sj(zj);'Yi) = H(zj;!j), 
j = 1, ... , m, and C = C*. The importance of this result is for 
obtaining MEV distributions through the taking of limits, since 
one can take univariate margins and constants ajn, bjn that lead 
to easier calculations (see Section 6.2.2). 

The next result gives conditions that MEV copulas must satisfy 
and shows the relationship to MSMVE distributions, which are 
defined below. 

Suppose (6.1) holds and let k be a positive integer. Then the 
sequences ajn, bjn, j = 1, ... , m, are such that 

limPr(M1,kn ~ a1n + b1nZ1, ... , Mm,kn ~ amn + bmnZm) n 

Also 

Pr(M1,kn ~ a1n + b1nZ1, ... , Mm,lcn ~ amn + bmnZm) 

=Pr([Mj,kn-aj,lcn]/bj,lcn ~ [ajn+bjnZj -aj,lcn]/bj,lcn, 1 ~ j ~ m) 
--+ G([z1- J.td/0"1, ... , [zm- J.l.m]/O"m) 
= G(H([z1- J.td/0"1; /1), ... , H([zm- J.l.m]/O"m; /m)) (6.3) 

for some constants J.l.i, O"j, and Pr(Mj,lcn ~ ajn +bjnZj)--+ Hlc(zj, /j) 
for each j. Hence 

Glc (z) = C*( Hk ( z1; 1!), ... , Hlc(z~c; /lc)) (6.4) 

for some copula C*. From univariate extreme value theory, it fol­
lows that Hlc(zj;/j) = H([zj- J.l.i]/O"j;/j) for each j, and hence 
C = C* from matching equations (6.2), (6.3) and (6.4). 

Next, let Uj = H(zi, 'Yi ). Then from (6.2) and (6.4) 

Ck(u1, ... , um) = C(ut, ... , u:;.J, k = 1, 2, ... 

or 
C( 1/r 1/r) c1/r( ) u1 , .. . ,um = u, r = 1,2, .... 

Hence 

clcfr(u) = Clc(u~lr, ... ,u;t) = C(u~lr, ... ,u~r) 
for all positive integers k, r. This can be extended to 

C(ui, ... , u~) = ct(u) 'r/t > 0, 



174 MULTIVARIATE EXTREME VALUE DISTRIBUTIONS 

by continuity and approximation of a real number by a sequence of 
rational numbers. Let D(y) = C(e-Y1 , ••• , e-Ym) be a multivariate 
distribution with unit exponential survival margins. Then 

C(e-tYl, ... , e-tym) = D(ty) = ct( e-Yl, ... , e-Ym) = vt (y). 

Hence A = -log D satisfies A(ty) = tA(y) which implies that D 
is a MSMVE survival function as given in Theorem 6.2 below. 

Definition. Let X be an m-dimensional random vector with 
survival function G. Suppose xi is exponential with mean Vi, i = 
1, ... , m. X (or G) is min-stable multivariate exponential 
(MSMVE) if for all w E (0, oo)m, min{Xl/wl, ... , Xm/wm} = 
(Xtfwl) 1\ ···I\ (Xmfwm) has an exponential distribution. 

Note that the property of closure under weighted minima is ana­
logous to the property of closure under linear combinations for 
the MVN family, with the operator 1\ replacing the + operator. 
The explanation of the term 'stable' is given later in this section. 
The next theorem shows that MSMVE distributions have survival 
functions G such that - log G is homogeneous of order 1. 

Theorem 6.2 Let G be a MSMVE survival function. Then A = 
-logG is homogeneous of order 1, i.e., A(tx) = tA(x) for all 
t > 0, x E (0, oo )m. Conversely, if G is a multivariate exponential 
survival function and -log G is homogeneous of order 1, then G 
is MSMVE. 

Proof. Let X be MSMVE with survival function G. From the def­
inition, for w E (0, oo r, 
Pr(m.inXj/Wj > t) = Pr(Xj >twj, 1~ j ~ m) = G(tw) = e-tA(w) 

J 

for a constant A which depends on w. Hence A( w) = -log G( w) 
for all w (by letting t = 1). Therefore A( tw) = -log G( tw) = 
tA(w) for all t > 0 and wE (O,oo)m. 

The converse is easy to prove, based on the preceding paragraph. 
0 

Survival functions satisfying the homogeneity condition of The­
orem 6.2 can be obtained from some families in Chapter 5, after 
substituting exponential survival margins into the copulas. The 
next two theorems show that the class of MSMVE distributions 
is infinite-dimensional (this is a contrast to the finite-dimensional 
MVN family that arises from limit theory of sums of random 
vectors with finite second moments). However for statistical in­
ference, parametric inference is easier than nonparametric infer-
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ence for the multi-dimensional situation, so that a goal is to find 
finite-dimensional parametric subfamilies that cover well the en­
tire family represented by (6.5). Parametric families of MSMVE 
distributions, equivalently MEV copulas, are given in Section 6.3. 

Theorem 6.3 {The Pickands representation of a min-stable mul­
tivariate exponential distribution). Let G(x) be a survival func­
tion with univariate exponential margins. G satisfies -log G(tx) = 
-t log G(x) for all t > 0 if and only if G has the representation 

-logG(x)= f [m.ax(q;x;)]dU(q), x;20,i=1, ... ,m, Jsm 1$•$m 
(6.5) 

where Sm = {q: q; 2 O,i = 1, ... ,m, 2:::;q; = 1} is them­
dimensional unit simplex and U is a finite measure on Sm. 

Proof. This is a result of Pickands and an alternative statement of 
Theorem 5.4.5 of Galambos (1987); the proof is given in Galambos 
(1987). 0 

Remarks. If X has an exponential distribution with mean 1, then 
Y = 1/ X has a Frechet distribution with cdf exp{ -y-1 }, y > 0. 
For maxima, sometimes it is more convenient to work with the 
representation for a max-stable multivariate Frechet distri­
bution. This has cdf: 

F(y)=exp{- { [m.ax(q;yi 1 )]dU(q)}, y;2:0,i=l, ... ,m, Jsm 1$•$m 
(6.6) 

with Sm and U as defined above. 

In the bivariate case, a simplification of the characterization is 
possible; the condition involves convexity. 

Theorem 6.4 Suppose B is a continuous non-negative function 
on [0, 1] with B(O) = B(1) = 1. Suppose that B has right and 
left derivatives up to second order except for at most a countable 
number of points. Then G(x, y) = exp{ -(x + y)B(xj(x + y))} is 
a bivariate exponential survival function if and only if B is convex 
and max{ w, 1 - w} ~ B( w) ~ 1 for 0 ~ w ~ 1. 

Proof The first-order derivatives are -8Gjox = G(x, y)[B(w) + 
(1- w)B'(w)] and -8Gjoy = G(x, y)[B(w)- wB'(w)], with w = 
xj(x + y). These equations hold for right and left derivatives. 
Because G must be decreasing in x, y in order to be a survival 
function, necessary conditions are: (i) B(w) + (1- w)B'(w) 2 0 
and B(w)- wB'(w) 2 0, for all w E [0, 1]; and (ii) B'(w+) 2 
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B' ( w-) if B' is discontinuous at w. Note that (ii) follows from 
- &G (x y+) < - &G (x y-) and - &G (x+ y) < - &G (x- y) Hence 

&x ' - &x ' &y ' - &y ' · 

B'(O) 2: -1 and B'(1) ::; 1. The second-order mixed derivative 
(treat as right and left derivatives if B' is not continuous every­
where) is G{[B + (1 - w)B'][B- wB'] + (1 - w)wB" /(x + y)}. 
This must be non-negative in order for G to be a survival function. 
Letting x, y--+- 0 with xf(x+y)--+- wE (0, 1), a necessary condition 
is B"(w) 2: 0 whenever B' is continuous at w. Putting everything 
together, B must be convex and max{ w, 1 - w} ::; B( w) ::; 1. 

Next for sufficiency, from convexity and the lower boundary 
constraint, B'(w) 2: (B(w)- 1)/w 2: (1- w- 1)/w = -1 and 
B'(w) ::; (1 - B(w))/(1 - w) ::; (1 - w)/(1 - w) = 1. Hence 
B(w)+(1-w)B'(w) 2: (1-w)-(1-w) = 0 and B(w)-wB'(w) 2: 
w - w = 0 and the first-order derivatives have the right signs. If B 
has a corner at point w0 with B' ( w0 +) 2: B' ( w0-) (this must be 
the direction of the inequality from the convexity condition), then 
the first-order monotonicity is fine. Therefore if B' is continuous, 
the second-order mixed derivative is non-negative if B" 2: 0. If B 
has some corners, so that G has a singular component, then the 
above second-order mixed derivative is non-negative and the abso­
lutely continuous component is fine. Hence G is a survival function. 

0 

Theorem 6.5 Let G be given by the preceding theorem. If B has a 
corner point (or more than one), then G has a singular component. 

Proof. The survival function Gtl2(xly) is given by 

eYG(x, y) [B(_,~y)- "'~YB'(_,~y)]. 

If B has a corner point at woE (0, 1) so that B'(wo+) > B'(wo-), 
then G112(xly) has ajump discontinuity at x = woy/(1-wo), when 
w0 = xj(x+y). The conclusion now follows from Theorem 1.1. 0 

From earlier in this section, MSMVE distributions have MEV 
copulas. When the copulas take on univariate GEV cdfs, the results 
are MEV distributions for maxima (which can arise as extreme 
value limits). When the copulas take on GEV survival margins for 
minima, the results are MEV survival functions for minima. 

The MEV distribution is max-stable (min-stable) for multivari­
ate maxima (minima). (A multivariate distribution F is max­
stable if for each t > 0, Ft(x) = F(au + buxt, ... , amt + bmtXm) 
for some vectors at, bt, and it is min-stable if for each t > 0, 
Ft(x) = F(att + bttXt, ... , amt + bmtXm) for some vectors at, bt. 
With t being a positive integer n, this means that the vector of 
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componentwise maxima (minima) has the same distribution up to 
location-scale changes.) If G(x) = e-A(x) and A is homogeneous 
of order 1, then at(x) = G(tx) so that the min-stability property 
holds. 

The final result in this section concerns the density of a MSMVE 
survival function. Note that maximum likelihood estimation for the 
MEV or MSMVE models requires the density. 

If G = e-A is a survival function, then the density g, which is 
( -1 r times the mth-order mixed derivative, is 

[ 
k 01PdA ] g(z) = exp{ -A(z)} L ( -1)m-k II Il· az· (z) ' 

{P1 , ... ,Pk}E'P i=l JEP; J 

where P is the set of partitions of { 1, ... , m}. From this, we have 
the following theorem. 

Theorem 6.6 For j = 1, ... , m, let aj, bj be reals with oo:::; aj < 
bj :::; oo. Let G be a function from xj= 1 ( ai, bj) to [0, 1], which is de­
creasing in each of them arguments and satisfies (a) limzi-+bj G(z) 
= 0 and (b) limzi-+aj'v'j G(z) = 1. Let A = -log G. Then G is a 
survival function if for every subset S E Sm, 

alBIA 
(-1) 1+1 5 1 (z) ~ 0 Vz. 

IliES OZj 

6. 2.1 Dependence properties 

MSMVE distributions are max-id (since if G is MSMVE then 
Gt(x) = G(tx), t > 0), and hence so are MEV copulas. By The­
orem 2.6, MEV copulas are positively dependent, being TP2 , for 
example, when m = 2. Furthermore, the stronger positive depend­
ence property of association holds. 

Theorem 6. 7 lfC is an MEV copula, then Cis associated. Hence 
any MEV distribution is associated. 

Proof. This is summarized from Proposition 5.1 of Marshall and 
Olkin (1983). 

Because the dependence concept of association is preserved un­
der strictly increasing or decreasing transformations of variables, it 
suffices to show that MSMVE distributions are associated. Because 
association is preserved under limits in distribution, and because 
of Pickand's representation (Theorem 6.3), it suffices to show asso­
ciation in the case where U ( q) in ( 6.5) consists of a finite number 
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of masses. For this case, suppose qk = (qkl, ... , qkm), k = 1, ... , r, 
are the support points with respective masses ak > 0. Then (6.5) 
becomes 

r 

A(x) = 2:.:: ak m.ax qkjXj. 
k=l 1~J~m 

(6.7) 

Hence e-A is the distribution of X with Xj = min19~r akjZk, 
where akj = (qkjak)-1, and Z1, ... , Zr are iid exponential rvs with 
mean 1. Note that 

Pr(Xj > Xj,j = 1, ... , m) = Pr(Zk > m.ax Xj/akj, k = 1, ... , r) 
1~J~m 

r 

= exp{- 2:.:: m.ax Xj/akj }. 
k=l 1~J~m 

Since ( Z 1 , ... , Zr) is associated by Theorem 2 .4( d) and X consists 
of increasing functions of independent rvs, X is associated. D 

The next result shows that for a bivariate copula with tail de­
pendence, the extreme value limit has the same tail dependence 
parameter A. Hence, the BEV limit is not the independence cop­
ula. In Section 5.1, the BEV limits are indicated for those families 
that have tail dependence. The result also applies to the bivariate 
margins of a multivariate copula. 

Theorem 6.8 Let C be a bivariate copula and let F(x 1, x2 ) = 
C(1- e-x,, 1- e-x,). Suppose limu .... 1 C(u, u)/(1- u) =A, where 
A E (0, 1] and lim,,.... 00 Fn(x1 + logn,x2 + logn) = H(x1,x2) = 
exp{ -TJ(x1 , x2)} with univariate margins exp{ -e-x1 }, j = 1, 2. 
Let C*(u1 , u2) = H( -log[-logul], -log[-logu2]). Then 

lim c* ( u' u) I ( 1 - u) = A. 
u--1 

Proof. From (6.9) below, 

TJ(x, x) = lim n[1- F(x + logn, x + logn)] 
n .... oo 

lim n[e-x-!ogn + e-x-!ogn- F(x + logn, X+ logn)] 
n .... oo 

Now, with u = -log[-logu], 

c* ( u, u)/(1- u) [1- 2u + exp{ -TJ( u, u)}]/(1- u) 
"' [1- 2u + u2->.]/(1- u)---+ A 

asu---+1. D 
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6.2.2 Extreme value limit results 

In this subsection, to avoid technicalities, limits are written under 
the assumption that they exist. In particular applications, one does 
have to check for their existence. General conditions for existence of 
limits can be found in Galambos (1987, Chapter 5), Resnick (1987, 
Chapter 5) and Marshall and Olkin (1983). Note that to check that 
a limit is a proper distribution, one needs to check the boundary 
conditions but not the rectangle condition of Section 1.4.2. 

Theorem 6.9 Let (M1n, ... , Mmn) be a vector of maxima from 
iid random vectors (X;1, ... , X;m) from F and suppose 

Fn(aln + b1nZ1, ... , amn + bmnZm) 
=limn Pr(Mln :S a1n + b1nZ1, ... , Mmn :S amn + bmnZm) 

converges weakly to H(z). Suppose the limits 

lim nFs(ajn + bjnZj,j E 5) = rs(zj,j E 5) 
n-+oo 

are finite for all 5 E Sm. If 

exp{ L (-1)1 8 lrs(zj,j E 5)} 
SESm 

is a non-degenerate distribution function, then it is equal to H. 

Proof This is part of Theorem 5.3.1 in Galambos (1987). An out­
line of the proof is as follows. We use the notation an + bnz for the 
vector (a1n+b1nZ1, ... , amn+bmnZm)· If z is such that Fn(an+bnz) 
converges to a value in (0,1), then F(an + bnz)--+ 1. Hence, 

Fn(an +bnz) = exp{ n logF(an +bnz)}""' exp{ -n[1-F(an +bnz)]}. 

The conclusion now follows with the use of equation (1.4). D 

A general approach for deriving MEV distributions is based on a 
family of copulas. From earlier results in this section, the univariate 
margins can be conveniently taken to be exponential with mean 1 
in order to derive the limiting MEV distribution, since the MEV 
copula that results does not depend on the univariate margins. Let 
the starting multivariate exponential distribution be denoted by 
F. The limiting MEV distribution is 

lim Fn(x1 +log n, ... , Xm +log n); 
n-+oo 

(6.8) 

the linear transform Xj + logn comes from Example 6.1. This can 
be converted to a MSMVE survival distribution with the trans­
forms Zj = e-xi, j = 1, ... , m, of the Gumbel univariate margins. 
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If F has bivariate tail dependence then the limit has dependent 
margins. If F does not have bivariate tail dependence such as for 
the MVN distribution or copula, then the limiting MEV distribu­
tion corresponds to the independence copula. IfF is a member of a 
parametric family, then a parametric family of MEV distributions 
can result. 

From the preceding theorem and its proof, (6.8) is the same as 

exp{- lim n(1- F(xt + logn, ... , Xm + logn)]}, (6.9) 
n-+oo 

or 
m 

exp{-L.>-x'+ 2:: (-1)1 51li~nFs(xj+logn,jES)}. 
i=l SESm,ISI~2 

(6.10) 
Let X "' F. Another form is based on using the identity 

m 

1 - F(x) = 2:: Pr(X; > x;) 
i=l 

- I:t$;j<k$;mPr(Xj > Xj,Xk > Xk,Xi ~ x;,j < i < k), 

in (6.9). With limnexp{-x; -logn} = exp{-x;}, i = 1, ... ,m, 

(j,i+l (xi, Xj+t) ~r }!,.n;!, n(1- Fj,j+t(Xj +log n, Xj+t +log n)], 

and 

Xk > Xk + logn,X; ~X;+ logn, j < i < k), 

for j < k, k - j > 1, then 

lim n(1- F(x +log n)] = '""'exp{ -xi}-'""' (jk(Xj, ... , Xk) 
n-+ oo L.J L.J 

i j<k 
(6.11) 

is the exponent in (6.9). Special cases are given below and in the 
next section. 

For example, consider application to the limiting MEV distri­
bution for ( 4.39) in Section 4.5. If 1 - Cj k has simple form for all 
j < k, then for (4.39), 

1- Ft, ... ,m(x) = 1- F2, ... ,m-1(x2, ... , Xm-1) (6.12) 
fX 2 ••• fXm-l [1- C (F F )] dF + Jo Jo lm ll2, ... ,m-l• ml2, ... ,m-1 2, ... ,m-1, 

so that a recursion formula is possible for the limit in the exponent 
of (6.8). Let M =log n and z = (z2, ... , Zm-1). Then n times the 
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integral in (6.12), with argument x + M, leads to: 

r2+M rm-1+M 
n Jo · · · Jo [1- C1m(F112, ... ,m-1(x1 + Mjz), 

FmJ2, ... ,m-1(Xm + Mjz))] · h, ... ,m-1(z) dz2 · · · dzm-1 

=Jx2 · · j_Xm-1 [1-C1m(F1J2, ... ,m-1(xl +Mjv2+M, ... , Vm-l+M), 
-M -M 

FmJ2, ... ,m-l(Xm + Mlv2 + M, ... , Vm-1 + M))] 

·eM h, ... ,m-l(v2 + M, ... , Vm-1 + M) dv2 · · · dvm-1 

-+ 1: · · ·lx~- 1 [1- Clm(1- a1,2 ... ,m-1(v2- x1, ... , Vm-1- xi), 

1- am,2 ... ,m-l(v2- Xm, ... , Vm-1- Xm))] 

·b2, ... ,m-1(v2, ... , Vm-d dv2 · · · dvm-1 (6.13) 
under conditions similar to those in Theorem 4.20 (note that the 
functions a1,2 ... ,m-1, am,2 ... ,m-1 and b2, ... ,m-l are defined in the 
proof of Theorem 4.20). For 1 :S j < k :S m with k - j > 1, 
let 'T/Jk(XJ, ... , xk) be the limit similar to (6.13) starting with Cjk 
instead of C1m, and for 1 :S j < m, let 

'T}j,j+l(xj, Xj+l) = J~.IIJo n[1- Fj,j+l(Xj + logn, Xj+l +log n)]. 

Then limn[l- F1, ... ,m(x + logn)], in the exponent of (6.9), is 

{ 'L';'l12 'T}i,m+l-i(x;, ... , Xm+1-i) m even, 
'L-~:'1- 1 )/ 2 'TJi,m+1-i(x;, ... , Xm+l-i) +exp{-X(m+l)/2} m odd. 

(6.14) 
A simpler form of the limit may result from (6.11), with 

limnPr(Xj > Xj+logn,Xk > Xk+logn,X; :S x;+logn,j < i < k) 

=JXj+1. · .rk-1 cJk(F11H1, ... ,k-1(x1+MivH1 +M, ... , vk-1+M), -M J_M 
Fkli+1, ... ,k-1(xk + Mlvi+1 + M, ... , Vk-1 + M)) 

·eM fHl, ... ,k-1(vH1 + M, ... , Vk-1 + M) dvi+1 · · · dvk-1 

-+ jx;+1 · · ·Jxk-1 Cjk(1- aJ,J+1, ... ,k-1(vJ+1- Xj, ... , Vk-1- Xj), 
-oo -oo 

1- ak,j+1, ... ,k-1(Vj+l- Xk, ... , Vk-1- Xk)) 

·bi+1, ... ,k-1( Vj+l, ... , Vk-1) dvi+1 · · · dvk-1 
= (jk(Xj, · ·., Xk)· (6.15) 
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The functions ai,i+1, ... ,k-1, ak,j+l, ... ,k-1 and bi+l, ... ,k- 1 are defined 
in the proof of Theorem 4.20. 

6.3 Parametric families 

A MEV distribution with univariate margins transformed to expo­
nential survival functions becomes a MSMVE distribution. Let G 
be a min-stable m-dimensional exponential survival function. From 
Theorem 6.2, the exponent A = -log G satisfies 

A(tz) = tA(z) 'Vt > 0. (6.16) 

Let Gs be a marginal survival function of G, with S E Sm. Then 
Gs(zs) = exp{ -As(zs )}, where As is obtained from A by setting 
Zj = 0 for j ~ S. The notation in this section is such that the 
arguments of A are shown through a subset S when more than one 
A is used. 

In this section, in terms of the exponent A, we list some paramet­
ric families of MSMVE distributions that interpolate from indepen­
dence to the Frechet upper bound. As mentioned in Section 4.1, 
desirable properties are a wide range of dependence structure and 
closure under the taking of margins, etc. The families in Section 
6.3.1 are such that each parameter has a dependence interpreta­
tion. Most of these families make use of the methods of construction 
in Chapter 4 and Section 6.2. Other parametric families are given 
in Section 6.3.2; for these the interpretation of parameters may not 
be as straightforward. 

6.3.1 Dependence families 

This subsection includes a listing of parameter families of MSMVE 
distributions with good dependence properties and is intended as 
a reference of useful parametric MSMVE families. We start with 
three one-parameter bivariate families and then go on to families 
that could be considered as multivariate extensions. 

The three bivariate families B6, B7 and B8 in Section 5.1 are 
families of MEV copulas; in the min-stable exponential form, the 
exponents -log G are: 

A(z1,z2;8) (zf+z4) 116 , 8~1, 

A(z1,z2;8) z1 + z2- (zi" 6 + z:; 6 )- 116 , 8 ~ 0, 

A(z1, z2, 8) z1 c1>(8- 1 + ~8[log(zt/z2)]) 

+z2cl>(8- 1 + k8[1og(z2/zt)]), 8 ~ 0. 

(6.17) 

(6.18) 

(6.19) 
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The independence case (A( z1, z2) = z1 + z2) obtains when 8 = 1, 0 
and 0 in (6.17), (6.18) and (6.19), respectively; the Frechet upper 
bound (A(z1 ,z2) = max{z1,z2}) obtains when 8 = oo in all these 
cases. 

Multivariate extensions of these bivariate models are given next 
together with some discussion and interpretations. Equation (6.19) 
derives from a (non-standard) extreme value limit of the BVN dis­
tribution and has a multivariate extension with a parameter for 
each bivariate margin. Equations (6.17) and (6.18) have two dif­
ferent parallel multivariate extensions, although the extension of 
having the bivariate family with a different parameter for each bi­
variate margin does not exist (or has not been constructed). The 
extensions that have been obtained satisfy different properties: (i) 
each bivariate margin is in the family (6.17) or (6.18), but there 
are only m-1 distinct bivariate parameters among the m(m-1)/2 
bivariate margins (see Section 5.3); (ii) m- 1 of the m(m- 1)/2 
bivariate margins are in the family (6.17) or (6.18), with differ­
ent parameters possible, and the remaining bivariate margins are 
not of the same form, but overall there is a flexible dependence 
structure. 

Family MS. The multivariate extension of (6.19) is closed under 
margins and has (6.19) with parameter 8;j = 8j; for the (i,j) bi­
variate margin. The dependence structure is like that of the MVN 
(except that there is no negative dependence). Let a;j = bi/, i =P j. 
Let Pkij = [alk + a]k- a7i]/[2a;kajk] for i, j, k distinct. A sym­
metric form is given followed by a recursive (non-symmetric) form; 
the latter is more suitable for numerical computations in maximum 
likelihood estimation. 

The symmetric form is: 

Al···m(z;8;j,1::=;i<j::=;m)=zl+···+zm- L {z;+zj 
l~i<j~m 

-z;4>(8ij 1 + ~{jij[log(z;/zj)])- Zj4>(8;j 1 + ~8;j[log(zi/z;)])} 

+ L (-1)1S1+1rs(z;,i E S;8;j,i < j,i,j E S), 
S:ISI2::3 

where for S = {i1, ... , ik} with i1 < · · · < ik, 

rs(z;, i E S; b;j, i < j, i,j E S) 

= J;;k ~k-1 (log(y/ Zi;) + 2{j~~ik, j = 1, ... , k- 1; f) dy, 
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~k- 1 (-; f) is the MVN survival function with covariance matrix 
f, and f = f(8i;,i;,j,j' = 1, ... , k- 1) is the (k- 1) X (k- 1) 
matrix with (j, j') element equal to 2( 8;2; + 8;2 i - 8;~ ) for 

1' k ,, ' k 1' J/ 

1 ~ j,j' ~ k -1, and 8;i1 is defined as zero for all i. 
Proof. See Hiisler and Reiss (1989). The derivation was essentially 
based on Theorem 6.9 with the correlation parameters of a MVN 
distribution approaching 1. The sequences ajn =an, bjn = bn come 
from univariate extreme value theory. D 

With parameters listed in lexicographic order, the exponent, in 
recursive form for m 2: 3, is: 

A1 .. ·m(z; 812, ... , 8m-1,m) 

= A1,-··,m-1 (z1, ... , Zm-1; 812, ... , 8m-2,m-d+ (6.20) 

1zm <I>m-1(8;~.!, + k8;,m[log(;7 )], i ~ m- 1; (Pmij )i<j~m-d dq. 

By permuting the indices of (6.20), alternative representations are 
possible. The constraints on the 8;i are that they are non-negative 
and the covariances matrices in all possible representations are 
positive definite. 
Proof. The proof of the simpler form of the three-dimensional case 
is given here. The proofs for higher dimensions are similar. 

Form= 3, 

A123(z1, z2, z3; 812,813, 823) = z1 + z2 - B2(z1, z2; 812) + Z3 

-B2(z1, z3; 813) - B2( z2, z3; 823) + B3(z1, z2, z3; 812, 813, 823), 
(6.21) 

where 

B2(x1,x2;8) = 1x2 ~(8- 1 + k8log(qjx1))dq 

= x1 + x2- x1 <I>( 8-1 + k8[log(xtf x2)])- x2<I>( 8-1 + k8[log(x2/ x1)]) 

and 
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and 1z' ~2 ( -oo, 8il + t823[log( qf z2)]; P312) dq 

respectively, and hence the last four terms of (6.21) simplify to the 
last term in (6.20) when m = 3. 0 

For the first generalization of (6.17) and (6.18), a derivation is 
given for a specific choice of clustering; the proof in general is 
the same, but there is no simple notation to cover all cases (see 
Section 5.3). We give one general form of clustering, followed by 
the second possibility for m = 4. The general form consists of root 
clusters {1, 2} and {j+1}, j = 2, ... , m-1, and derived hierarchical 
clusters {1, ... , k }, k = 3, ... , m. In the notation of Section 5.3, the 
parameters are written as /31,2, /31,3, ... , f31,m· 

Family M6. (This is a continuation of family M6 in Section 
5.3.) With A12 given by (6.17), the exponent, in recursive form, 
for m 2: 3, is: 

(6.22) 

([A ( {3 {3 )]{31m+ fJ1 m)1/f31,m 1, ... ,m-1 Z1, ... ,Zm-1; 1,2, ... , 1,m-1 ' Zm' , 

/31,2 2: /31,3 2: · · · 2: f31,m 2: 1. 

The other case for m = 4 has root clusters {1, 2} and {3, 4}, and 
the derived hierarchical cluster {1, 2, 3, 4}; the parameters are {31,2, 
/33,4, /31,4· The exponent is 

((zf1,2 + z~1,2)f31,4/fJ1,2 + (z:'·4 + z~'·4)f3 1 , 4 ff33 , 4 ) 11!31·4 , 

1 :S !31,4 :S !31,2, /33,4· 

(6.23) 

Family M7. (A generalization of family B7.) The way to use a 
model that generalizes (6.17) to get one that generalizes (6.18) is 
as follows. The generalization of (6.18) is a sum of terms, with a 
term for each non-empty subset of z1, ... , Zm. The sign of a term 
is ( -1 )1 8 1+1 for a subset S. The last term with all m variables 
can be obtained from (6.22) by changing all {3 to -{3. The term 
with variables Zi, i E S, can be obtained from this last term by 
crossing out variables Zi' with i' (/. S and then simplifying. For 
example, with the right-hand side of (6.22) now denoted by B1 ... m, 
and with the same clusters as in (6.22), the generalization of(6.18) 
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has exponent Ai ... m given by 
1 

A* ( (3 (3 ) """ """ (z-:!31,h + z-:f31,i2)- fl1,h 
1 .. ·m z; 1,2, · · ·' 1,m = L...J Zj- L...J 11 12 

j h<h 

fJ1,2 2:: · · · 2:: fJ1,m 2:: 0. (6.24) 

Similarly, there is an extension of (6.18) with dependence structure 
analagous to the model in (6.23). 

The derivation of (6.24) and its extensions comes from the lower 
extreme value limit of the family M4 (or the upper extreme value 
limit applied to the associated copula of M4 when survival func­
tions are used for the univariate arguments), using Theorem 6.9 
and (6.10). 

For 1 ~it < h ~ m, the bivariate margin of (6.22) (respectively 
model (6.24)) is family (6.17) ((6.18)) with parameter 8hh = f31,h· 

Hence for fixed 1 < k ~ m, the bivariate dependence between vari­
ables j and k is the same for all j < k. Also the bivariate depend­
ence is decreasing with k. Hence to use (6.22), (6.23), (6.24) and 
their extensions, the variables have to be indexed in an appropriate 
order. All higher-order margins (for m 2:: 3) of (6.22) and (6.24) 
are within the same family. For model (6.23), the (1,2), (3,4) bi­
variate margins are (6.17) with parameters (31,2 , (33 ,4 respectively, 
and the remaining four bivariate margins have parameter (31 ,4 . The 
trivariate margins of (6.23) are in the family (6.22). 

Next we turn to the second generalization of (6.17) and (6.18), 
which has m(m- 1)/2 distinct bivariate dependence parameters, 
with m- 1 of the m(m- 1)/2 bivariate margins being (6.17) or 
(6.18). For some parameter vectors, the remaining bivariate mar­
gins are close to (6.17) or (6.18). The models that have these prop­

erties are given for m = 3 and 4 dimensions explicitly rather than 
in a general form because the form of the model is too complex. The 
general multivariate version can be obtained following the steps in 
Section 6.2.2, especially (6.14) and (6.11) respectively for general­
izations of (6.17) and (6.18). 

Family MM6. This family comes from the upper extreme value 
limit of the family MM5 (see Section 5.5) and some of the bivariate 
margins have the form of (6.17). With lexicographic ordering of the 
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parameters, the exponents for m = 3, 4 are: 

A123(z1, z2, z3; 012,013, 023) (6.25) 
_ z + J-logz,[71913 + 7191 , _ 719,, 719,•]1f9 13 e-v 2 dv - 2 -00 '112 '132 '112 '132 2' 

where 'f/12 = TJ(z1,e-v 2 ,012), 'f/32 = TJ(z3,e-v 2 ,023) and TJ(s,t,O) = 
1- [1 + (sjt) 9t 1+119 ; and 

A ( . 0 0 ) _ ( 823 + 9,,)1/9,, 1234 z, 12, · · ., 34 - Z2 z3 (6.26) 

where 'f/123 = 'fJ1('f/12, TJ32, 013), 'f/432 = TJ 1('f/43, TJh, 024), TJ'(s, t, 0) = 
1- [(sjt)9 + 1- s9]-1+119(1- s9), TJ32 = TJ(e-v•,e-v 2 ,023), 'f/43 = 
TJ(Z4,e-v•,034) and TJ2 3 = TJ(e-v•,e-v•,023)· 

In (6.25) and (6.26), the Oij are greater than or equal to 1. The 
models are such that the (j, j + 1) margins, j = 1, ... , m- 1, are 
in the family (6.17) with parameters Oj,j+1 . The remaining para­
meters have interpretations in terms of conditional dependence. 
The (1, 2, 3) and (2, 3, 4) margins of (6.26) are (6.25) with respect­
ive parameter vectors (012, 013, 023) and (023, 024, 034). The para­
meter 013 measures the amount of conditional dependence of the 
first and third univariate margins given the second, and 024 has 
a similar interpretation. A larger value of the parameter means 
more conditional dependence. Similarly, 014 measures the amount 
of conditional dependence of the first and fourth univariate mar­
gins given the second and third margins. Numerical comparisons 
indicate that the (j, j') bivariate margins with j' - j > 1 become 
closer to (6.17) as the parameters, Ojj', j'- j > 1, get closer to 
1. This suggests that one way to assign variables to the indices 
1, ... , m is such that the strengths of dependence for the resulting 
adjacent variables are greater. 

Family MM7. This family comes from the upper extreme value 
limit of the family MM4 (see Section 5.5) and some of the bivariate 
margins have the form of (6.18). With lexicographic ordering of the 
parameters, the exponents form= 3, 4 are: 

A123(z1, z2, z3; 012,013, 023) = z1 + z2 + Z3- (z18' 2 + z2 812 )-11812 

1-1ogz2 

-(z2e,, +z3e23)-1f8,,- -oo [TJ12e,, +TJ3! .. -1t1/B .. e-v,dv2, 

(6.27) 
with 'f/12 = TJ(z1,e-v•,012), 'f/32 = TJ(Z3,e-v 2 ,023) and TJ(s,t,O) = 
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j -logz3 
-(z;834 + z.t834)-1/834 _ -oo [172"124 + 774124 _ 1r1/824e-v3dv3 

J-logz2~-logz3 

-(1 + B23) -oo -oo [171::r + 1741r- 1t11814 

·(e823v2 + e823v3)-2-1/823e823(v2+v3) dv2dv3, (6.28) 

where 17123 = 77'(7712,77~2 ,B13), 17432 = 77'(1743,77;3,B24), 17'(s,t,B) = 
[(s/t)-8 + 1- t8J-1-1/8, 17~2 = 17(e-v3, e-v2, B23), 1743 = 17(Z4, e-v3, 
B34), 11h = 17(e-v2,e-v3,B23) and 1723 = 17(z2,e-v3,B23). 

In (6.27) and (6.28), the Bii are greater than or equal to 0. The 
interpretation of the parameters and the relations for the different 
dimensions are the same as for the models in (6.25) and {6.26). 

Remarks. Equations (6.25) and (6.26) are of the form (6.14) and 
the family of copulas used for ( 4.37)-( 4.39) in Section 4.5 is the 
family B5, i.e., C(u1, u2; B) = 1- [(1- u!)8 + (1- u2)8 - (1-
u!)8(1- u2 ) 8 jll8 , B ?: 1. Equations (6.27) and (6.28) are of the 
form (6.11) and (6.15) and the family of copulas used for (4.37)­
( 4.39) is the associated copulas of the family B4, i.e., C( u1 , u2 , B) = 
u1 + u2- 1 + [(1- u1)-8 + (1- u2)-8 - 1]-118 , B?: 0. The details 
are mostly straightforward but care must be taken in dominating 
the integral to use the Lebesgue dominated convergence theorem 
before collecting terms and arriving at the terms in (6.25)-{6.28). 
The two families of copulas are chosen because in the bivariate case 
they have extreme value limits corresponding to (6.17) and (6.18), 
respectively. 

Next, the families MM1 and MM3 from Section 5.5 are listed 
here in the form of the exponent of the MSMVE distribution. The 
family MM8 is also listed and derives from the lower extreme value 
limit of the family MM2 in Section 5.5. 

Family MMl. In MSMVE form, the exponent is: 

m 1/8 
A1 ... m(z) = [ L ((p;zf)o;; + (pjzJ) 6ii) 11o;; + L:v;p;zf] , 

l:$i<j :Sm i=l 

(6.29) 
where p; = (v; + m- 1)- 1 . The (i, j) bivariate margin is: 

A;j(z;,zj) = [((p;zf)o;; + (pjzJ)o;;)1fo;; 

+(v; + m- 2)p;zf +(vi+ m- 2)pjzJ] 118 . 
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Table 6.1. Tail dependence parameters in a special trivariate case of 
family MM1. 

(} 2- 21/11 3 - 2(1.5)1111 

1 0 0 
1.25 0.259 0.234 
1.5 0.413 0.379 
1.75 0.514 0.479 

2 0.586 0.551 
2.5 0.680 0.648 
3 0.740 0.711 
4 0.811 0.787 
6 0.878 0.860 
8 0.909 0.896 
00 1 1 

With m = 2, p; = Pi = 1 or v; = Vj = 0, this is the exponent 
in the family B6. The upper tail dependence parameter is Aij = 
2- [(pf'i +pJ'i )1fo;; + (v;+m- 2)p; +(vi+ m- 2)pjJ11 11 ; it increases 
as 8;j or (} increases. 

In a special case of m = 3, we check for the range of dependence 
that is possible for the bivariate tail dependence parameters. With 
813 = 1, 812 = 823 = 8, v1 = V3 = -1, v2 = 0, and Pl = P3 = 1, 
P2 = t, (6.29) and (4.25) become 

A123(z1,z2,z3) = [(T 0 z~ 6 +zf6 ) 1 1 6 +(T 6 z~ 6 +zg6 ) 1 1 6 ] 1111 • (6.30) 

The bivariate margins are Aj 2(zj, z2 ) = [(2- 6 z~ 0 +zJD) 116 +!z~Jll 11 , 
j = 1, 3, and A13(z1, z3 ) = (zf + z~) 1 1 11 • The bivariate tail depend­
ence parameters are >.12 = >.23 = 2 - [(2-o + 1 )116 + tFI9 and 
>.13 = 2-21111 • As 8 --. oo, >.12 = >.23 --. 2- (1.5)1/ 11 • A comparison 
of >. 13 with the non-sharp lower bound max{O, >.12 + >.23 - 1} = 
max{O, 3- 2(1.5)1111 } is given in Table 6.1. The table shows that 
there is a lot of flexibility in how small >.13 can get given >.12 = >.23. 
Also from Theorem 4.17, (6.30) has a wide range for the triple of 
bivariate Kendall taus. 

Family MM8. (Lower extreme value limitoffamily MM2.) The 
lower tail extreme value limit of the family MM2 is given below; 
it is analogous to (6.29) and generalizes the family B7. Let Cs 
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denote the margin of C in (5.20) with indices in S E Sm. Using 
Theorem 6.9, the function rs(z;, i E S) is defined as the limit of 
nCs(n- 1e-z•,i E S) as n ___.. oo, with z; > 0, i = 1, ... ,m. It is 
straightforward to verify that 

1 

( "ES) ["' -8 "' ( -6•i 86'i+ -6•i 86'i)--f-:-]-s rs z;, t = L.,; z; - L.,; P; z; Pj z1 •1 • 

iES i<j,iES,jES 

The limiting MEV copula has exponent 

A1···m(z)=z1+···+zm+ L (-1)1SI+ 1rs(z;,iES). (6.31) 
SES,ISI2:2 

Many of the dependence properties of this family are the same as 
for the family MM2. 

Some special cases are given next. Form= 2, with v1 = v2 = 0, 
(and hence P1 = P2 = 1) and 8 = 812, (6.31) becomes A(z1, z2) = 
z1 + z2- [z1 8 + z:; 8- (zf 6 + z~ 6 )- 1 1 6]- 1 1 8 which appears from the 
BEV limit in the family BB4. 

Form= 3, with 813 ___.. 0, 812 = 823 = 8, v1 = V3 = -1, v2 = 0, 
(6.31) becomes 

A123(z) = z1 + z2 + Z3- (z1 8 + z;;8)-118 

[z!8 + z:;8 _ (zf6 + 26z~6)-1f6r1/8 
[z;;8 + z:;8 _ (z~6 + 26 z~6)-1f6]-1f8 

+ [z!9 + z:;8 + z;;B _ (zf6 + 26 z~6)-1f6 

-(z~6 + 26 z~6)-1/6r1/8 0 

The bivariate margins (by letting one of the z; go to zero in turn) 
are Aj2(ZJ, z2) = Zj + z2 - [zj 8 + z;8 - (zJ6 + 2°z~ 0 )-1foJ-1f8, 

j = 1,3, and A13(z1,z3) = z1 + Z3- (z1 9 + z;; 9)- 118. The cor­
responding tail dependence parameters, 2 - A;k(1, 1), are Aj2 = 
[2- (1 + 26)- 116J- 119 , j = 1, 3, and ).. 13 = 2- 119 . As b ___.. oo, 
.>.. 12 = )..32 ___.. (1.5)- 118 • The calculations, given in Table 6.2, show 
that ).. 13 is close to the non-sharp lower bound max{O, .>..12 + .>..23-

1} = max{0,2(1.5)- 118 -1} = L9, for part of the range of B. 

Family MM3. In MSMVE form, the exponent is 

A ( ) _ [~ ~ _ "' ( -:oii -:8o;i + -:oii -:9o;i)-1f6;i] 118 
1···m Z - L.,; z, L.,; p1 Z1 p1 z1 • 

i=1 1~i<j~m 

(6.32) 
Note that the v; appear only implicitly in the p;. 
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Table 6.2. Tail dependence parameters in a special trivariate case of 
family MM8. 

() 2-1/9 L9 

0 0 0 
0.25 0.0625 0 
0.5 0.250 0 
0.75 0.397 0.165 

1 0.500 0.333 
1.5 0.630 0.526 
2 0.707 0.633 
3 0.794 0.747 
4 0.841 0.807 
5 0.871 0.844 

00 1 1 

In a special trivariate case, the tail dependence analysis is similar 
to the family MM1, because from Section 5.5, .\13 = 2- 2119, and 
as 8 --+ oo, .\12 = .\23 --+ 2- (1.5)119, and these are the same as for 
the family MM 1. 

6.3.2 Other parametric families 

This subsection is devoted to existing parametric families where 
parameters are not all dependence parameters and individual 
parameters are harder to interpret. 

An alternative representation, from de Haan (1984), for MSMVE 
distributions has the exponent A = -log G in the form: 

A(z) = { 1 [ m.ax Zj9j(v)] dv, 
} 0 1~J~m 

(6.33) 

where the 9j are pdfs on [0, 1]. (This essentially follows from the 
definition of MSMVE and a limit on (6.7) as r--+ oo, with akqkj 
being (multiples) of 9j(vk) for some points Vk in (0,1).) The families 
B6 and B7 (or (6.17) and (6.18)) can be unified with this form with 
91(v) = (1- a)v-a, 92(v) = (1- ,8)(1- v)-!3, with 0 <a= ,8 < 1 
for (6.17) and a = ,8 < 0 for (6.18). With a, ,8 both less than 
1, a two-parameter extension of (6.17) and (6.18) obtains. But its 
interpretation is not as easy; the magnitude of the difference of a 
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and f3 measures asymmetry, and the average of a and f3 measures 
dependence. For a > 0, f3 > 0, expansion of the integral in (6.33) 
leads to 

A12(z1, z2; a, f3) = (z1 + z2)B(z2/(z1 + z2); a, /3), 0 <a, f3 < 1, 
(6.34) 

where B(w;a,f3) = (1- w)u1-"' + w(1- u) 1-.6, 0 ~ w ~ 1, and 
u = u( w; a, f3) is the root of the equation (1- a )(1- w)(1- u).6-
(1- f3)wu"' = 0. For a = -aa < 0, f3 = -f3a < 0, one obtains 

A~2 (z1, z2; a a, f3a) = (z1 + z2)B* (z2/(z1 + z2); a a, f3a), a a, f3a > 0, 
(6.35) 

where B*(w;aa,f3a) = 1-w(1-u)l+.6o_(1-w)ul+"'o, 0 ~ w ~ 1, 
and u = u(w; aa, f3a) is the root of the equation (1+aa)(1-w)u"'0 -

(1 + f3a)w(1- u).6o = 0. There is an obvious multivariate extension 
of (6.34) and (6.35), using more Yi of the same form in (6.33). 

The distributions from (6.34) are increasing in concordance as 
a or f3 decreases for a, f3 > 0; the Frtkhet upper bound obtains in 
the limit as a = f3 ---+ 0 and independence obtains as a = f3 ---+ 1. 
The distributions from (6.35) are also increasing in concordance as 
a 0 or f30 decreases; the Fnkhet upper bound obtains in the limit 
as aa = f30 ---+ 0 and independence obtains as aa = f3a ---+ oo. 
Independence obtains more generally as one of a, f3 (or a 0 , f30 ) is 
fixed and the other approaches 1 ( oo). Different limits occur as one 
of the parameters approaches 0, for example, as f3 ---+ 0 in (6.34), 
or as /30 ---+ 0 in (6.35). 

Next we list the family of Marshall-Olkin (1967) multivariate 
exponential distributions and some of its extensions. Let S be an 
index variable over S = Sm. Let as > 0 for each S and let vs = 
ET:SCT aT. For lSI = 1, simplifying notation such as a; and 11; will 
be used. ForSE S, let Zs be an exponential rv with rate parameter 
as (mean a 51), and suppose { Zs} is a set of independent rvs. For 
j = 1, ... ,m, let Xj = min{Zs: j E S}. 

As before, let the survival function be G = e-A. The exponent 
A of the Marshall-Olkin distribution is 

A(x; as, S E S) = ~as rp.axx; = ~ ( -1)ISI+lvs rpinx;. 
D •ES L...J •ES ses ses 

(6.36) 

The exponent in the last term in (6.36) can be rearranged to get 

A(x; as, S E S) =I: asas(x;, i E S), 
ses 

(6.37) 
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where 
as(x;, xES)= L ( -1)1TI+l[~tpx;]. 

TCS 

(6.38) 

The derivation from the stochastic representation is left as an ex­
ercise. 

General families of MSMVE distributions can have the form of 
(6.37), where as is replaced by something other than (6.38) or 
as = max;Es x;. These include 

A(x;as,S E S,8) = L as(L:xt) 116
, (6.39) 

SES iES 

where 1 ::::; 8 ::::; oo, with 8 = oo meaning (6.39) is equivalent to 
(6.36), and 

A(x; as, S E S, 8) L( -1)1SI+1vs [L x;<~]-1/.5 
SES iES 

L asas(x;, i E S; 8), (6.40) 
SES 

where 
as(x;, i E S; 8) = L ( -1)1TI+1 [L x;6r 116 

TCS iET 

generalizes (6.38) and 0 ::::; 8 ::::; oo, with 8 = oo meaning that 
(6.40) is equivalent to (6.36). Note that if 8 = 1 in (6.39) or if 
8 -+ 0 in (6.40), then G becomes a product of the univariate mar­
gins, i.e., exp{- 2::~ 1 v;x;}. Hence 8 in both (6.39) and (6.40) is 
a global dependence parameter and as or vs for lSI ~ 2 are para­
meters indicating the strength of dependence for the variables inS. 
The univariate survival functions for (6.36), (6.39) and (6.40) are 
Gj(Xj) = exp{ -VjXj }, j = 1, ... , m, and each family has k-variate 
(2 ::::; k < m) marginal survival functions of the same form. By 
rescaling, one gets MSMVE distributions with unit means for the 
univariate margins. Special cases of (6.39) and (6.40) include the 
families B6 and B7 and their permutation-symmetric extensions 
(take as= 0 if S ::f. {1, ... , m} and a{l, ... ,m} = 1). 

Another approach is to use Pickand's representation with para­
metric families of densities on the simplex Sm. An example is the 
Dirichlet distribution (or beta distribution form= 2). After rescal­
ing to get unit exponential margins, the exponent is: 

A(z) =ism 1~~)wizifvj}f(a+) }][wji-1 /f(aj)] dw, 
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where O'.j > 0, j = 1, ... , m, are the parameters of the Dirichlet 
distribution, a+ = a1 +···+am, and Vj = O'.j fa+, j = 1, ... , m. 
The independence and Frechet upper bound copulas obtain when 
a+ goes to 0 and oo respectively, with a;j a+ ---+ 1r; > 0, z = 
1, ... , m. For the bivariate case, there is the simplification to 

A(z1, z2) = zl[1- B(y; a1 + 1, a2)] + z2B(y; a1, a2 + 1), 

where y = (z2/v2)/[zl/v1 + z2/v2] and B is the incomplete beta 
function. The interpretation of the parameters of the Dirichlet dis­
tribution in the resulting MSMVE distribution is not simple. 

6.4 Point process approach * 

Inference with multivariate extremes can be in the form of compon­
entwise maxima (or minima), in which case the models in the pre­
vious section can be used directly. In addition, there is a point 
process approach for inference with multivariate tail probabilities; 
this may be more natural if data are not in the form of maxima. 
The background for this approach is given in this section. 

Let (Xil, ... , X;m) be iid random vectors from the distribution 
F, i = 1, 2, .... Let Z;j = t i ( X;j) be (one-to-one) transforms such 
that Pr(Z;j > z)....., z- 1, as z---+ oo. (This is essentially a transform 
to a tail that is like the Frechet distribution with parameter of 
1.) Let Mjn = max19:=:;n Z;j, j = 1, ... , m, be the componentwise 
maxima. 

Let Pn denote the point process in lRn from { n - 1 Z1 , ... , n - 1 Zn}. 
From multivariate extreme value theory, under some regularity 
conditions, Pn converges weakly to a non-homogeneous Poisson 
process on [0, oo )m\ {(0, ... , 0)} as n ---+ oo, with the intensity meas­
ure A of the limiting process satisfying A( B /c) = cA( B) for all 
c > 0 and all measureable sets B that are bounded away from the 
origin. Let 

V(z) = A({[(O,z1) X··· X (O,zmW}), 

so that Vis homogeneous of order -1, i.e., V(cz) = c-1V(z) for 
all c > 0, z E (0, oo )m. 

If A(w) is a possible exponent of a MSMVE distribution, then 
V(z) = A(z1 1, ... , z;;;1) is a possible intensity measure function. 

Proof. Let M}n = Mj~1 = min1:=:;i:=:;n Z;j1, j = 1, ... , m. Then for 
X> 0, 
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or for w > 0, Pr(M}n ~ wjn) -+ e-w as n -+ oo. If the sequence 
n (M{n, ... , M:r,n) converges in distribution as n -+ oo, then the 
limiting distribution is in the MSMVE class, say with exponent 
A(w), and n- 1(M1n, ... , Mmn) converges in distribution to a max­
stable multivariate Frechet distribution ( cf. (6.6)), with exponent 
A( -1 -1) z1 ' ... ' Zm . 

Next we look at the limit by taking a point process approach. 
Let B = [(0, z!) X··· X (0, zmW· Then 

Pr(n-1Z; fl. B, i = 1, ... , n)-+ e-A(B) = e-V(z), (6.41) 

since the event on the left-hand side of (6.41) involves a count of 
0 for the point process Pn and the limiting count is a Poisson rv 
with mean A( B); this follows from the limiting non-homogeneous 
Poisson process result. However the left-hand side of (6.41) is also 
Pr(n- 1Mjn ~ Zj,j = 1, ... ,m). Hence V(z) = A(z1 1 , ... ,z;;;1). 

D 
The method of maximum likelihood can be used to obtain estim­

ates of model parameters, including parameters of the functions tj 
used to transform to the form of the assumed univariate tail. 

Assuming that the point process does not have mass in lower­
dimensional spaces (otherwise, see the references in Section 6.7), 
the likelihood given the transformed data is as follows. Let x; = 
(x;1, ... , Xim), i = 1, ... , n, denote the original data and let z; = 
(z;1, ... , Zim), i = 1, ... , n, denote the transformed data which have 
the required tail frequency distribution. The x; are iid realizations 
of a random vector X and the z; are treated as iid realizations of a 
random vector Z. If the n-1z; which lie in a set B are a realization 
of a non-homogeneous Poisson point process with measure A(-; 9) 
and intensity function .A(-; 9), where 9 is a parameter vector, then 
the likelihood for 9 is 

L(9) = [ IT .A(n-1z;;9)] exp{-A(B;9)}. 
i:z;/nEB 

Note that ( -1 )m times the mixed derivative of V is the intensity 
function associated with the non-homogeneous Poisson process. Let 
f}1, ... , fJm be vectors of univariate marginal parameters. Then we 
may write z; = (tl(x;l;f]I), ... ,tm(X;m;fJm)), i = 1, ... ,n, where 
t1, ... , tm are strictly increasing transformations. The full likeli­
hood for 9, f]1, ... , fJm (with asymptotic approximations) is then 

L(9, fJ1, ... , fJm) = exp{ -A(B; 9)} 
·Tix,:z;/nEB[.A(n- 1z;;9)Tij=ln-l ~ (x;j;f1j)]. 

(6.42) 
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A weak assumption is that univariate distributions are in the 
domain of attraction of a GEV distribution. Then the transforma­
tions of the variables come from assuming that the upper tails are 
generalized Pareto with unknown parameters, with the remainder 
of the distributions being arbitrary but known or estimated with 
an empirical distribution (alternatively rank approximations can 
be used for the remainder). 

This leads to the following transformations for the tj. Assume 
that the sample size n is large. For j = 1, ... , m, assume that 
the cdf of Xj is known below the threshold Uj and conditionally 
generalized Pareto with unknown parameters fJj = ( 'Yi, O"j) above 
the thresholds. That is, the jth cdf is 

Xj ~ Uj, 

Xj2:Uj, 

where Y+ = max{O, y}. The transformation Zj of Xj is such that 
Zj has the Frechet distribution G(z) = exp{-1/z}, z > 0. Note 
that G(z)"' 1-1/z for z large, as required from the point process 
derivation. Therefore, 

Zi = ti(Xj) = [-1ogFi(Xi;'1i)]-I, Xi= Fi- 1 (exp{-1/Zi};'7i) 

and, for Xi 2:: Uj, Zj = [-log{1- (1- Fj(uj))(1 + 'Yi[(Xj­

ui)/O"j])+ 1hi}]- 1. For Xj > Uj, fJti/fJxi evaluated at z = ti(xi) 
becomes O"j 1z2(1- e- 1/z) 1+1'i(1- Fj(Uj))-1'ie 11z. 

For (6.42), there is a simplification if B = ( xj=dO, n- 1tj ( Uj )W, 
since in this case ti depends on fJj only if Xij > Uj. 

The intensity function is ..\(z) = (-1)mfJmV/f18zj. For (6.29) 
and (6.32), V is of the form D(, with D in turn taking the form 
2::~ 1 D; + Li<i Dij· For (6.31), ..\ comes from the last term 
( -1)m+lr{l, ... ,m} and r{l, ... ,m} has the form D( of the preceding 
sentence. The mixed derivative of V can then be obtained from the 
derivatives of the D; and D;j and ..\ obtains in a reasonable form. 
Let Dji = D;j fori< j, and let 

and 

W; = fJD = fJD; + 2: fJD;i Vi 
fJz; fJz; ·-~.. fJz; 

1r' 
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The mth-order mixed derivative of D( is 
~v m 

-:-----::-- = (((- 1) · · · ((- m + 1)D(-m II W; (6.43) 
az1 · · · azm · 1=1 

+ (((- 1) ... ((- m + 2)D(-m+l (I: Wij II wk) 
i<j kf.i,j 

+ ( ... ((- m + 3)D(-m+2 (L:*wil,h W;2,h II wk)' 
kf.it,i2,h.h 

where 2::* is over the set {i1 < j1,i2 < h,i1 < i2}. Note that the 
third term on the right-hand side of (6.43) is null if m < 4. 

6.5 Choice models 

In this section, we illustrate the use of MEV distributions for choice 
models. This is just one of many possible families for choice models 
that has appeared in the econometrics and mathematical psychol­
ogy literature. One of its advantages is that closed-form choice 
probabilities obtain if a closed-form parametric family of MEV 
distributions is used. 

In general, a choice model form items consists of an absolutely 
continuous multivariate distribution for rvs X 1, ... , Xm, where Xj 
is a utility or merit rv associated with the jth option or item. (The 
assumption of absolute continuity is needed here to eliminate the 
possibility of a positive probability of ties among weighted maxima 
or minima.) A choice probability has the form 7rj,S = Pr(Xj > 
X;, i E S, i =/= j), where S E Sm, lSI ~ 2; 7rj,S is interpreted as the 
probability that option j is the preferred or chosen option among 
the choice set S of options. 

Additional notation and background ideas are needed before we 
get to the calculation of choice probabilities for MEV distributions. 

Let G(x) = e-A(x) be an absolutely continuous min-stable m­
variate exponential survival function and let X "' G. For j = 
1, ... , m, let Aj be the partial derivative of A with respect to x j. 
(We retain the notation of Section 6.3, with As denoting the S­
margin of A for lSI ~ 2, so that As,j for j E S refers to the 
jth partial derivative of As.) Then -aGfaxi = GAj. By writing 
A(x) = x1A(1, x2/x1, ... , xmfxl) (cf. condition (6.16)), -aGfax1 
is also equal to 

m 

c[A(1, X2/Xl, ... ' Xm/xl)- L(x;/xl)A;(1, x2/xl, ... ' Xm/xd]. 
i=2 
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Therefore 
m 

A1(x) = A(xjxt)- L)xdxt)A;(xjxt) = A1(xjxt). 
i=2 

That is, A1(x) depends only on the ratios xifx1 and is homogen­
eous of order 0. Similarly, for j = 2, ... , m, A;(x) depends only on 
the ratios x;fx;, i = 1, ... , m. 

Conditional survival functions are Pr(X; > x;, i ::j:. iiX; = x;) = 
-exi{)Gjax1 = exiGAi, j = 1, ... , m. Let X* =min{X1, ... , Xm}. 
Then 

Pr(X* > t, X* =X;) = 100 e-A(xlm) A;(xlm) dx (6.44) 

= hoo e-xA(lm)A;(lm)dx = [A;(lm)/A(lm)]e-tA(lm). 

(This shows that L:j=1 A;(lm) = A(lm).) But the right-hand side 
of (6.44) is also equal to Pr(X* = X;) Pr(X* > t), so that the 
events {X* = X;} and {X* > t} are independent for all j. How­
ever, this independence criterion does not characterize MSMVE 
distributions among the class of multivariate exponential distri­
butions. If (X1, ... , Xm) is a vector of exchangeable exponential 
rvs, then Pr(X* > t, X* = X;) = m- 1 Pr(X* > t) = Pr(X* = 
X;) Pr(X* > t) for all j by symmetry. 

Now suppose that e-A is a MSMVE survival function and V has 
the MEV distribution F(x) = exp{-A(e-x', ... ,e-xm)}. Suppose 
also that there are location parameters J.li, which are merit para­
meters, associated with the jth option, j = 1, ... , m, and option 
j is preferred to the other m - 1 options if Vj + J.li 2: Vi + f-li 
for all i ::j:. j. Let 7rj, j = 1, ... , m, be the probability that the jth 
option is preferred (or chosen). These are the choice probabilities 
with a MEV distribution as a choice model when the choice set is 
S = {1, ... ,m}. Let w; = e~-'i and Z; = e-vi, j = 1, ... ,m, and 
let J.lii = J.li - J.li, w;; = el-'ii = wi/w; for i, j = 1, ... , m. Then 

1r1 7rl,{l, ... ,m} = Pr(V1 >Vi+ /-lil, i = 2, ... , m) 

Pr(Vi < vl- f-lil, 2 ~ i ~ m) = Pr(Z; > Wilzl, 2 ~ i ~ m). 

Using properties of MSMVE distributions, 

7rl 100 e-A(z,w21Z, ... ,Wm!Z) Al (1, wn, ... , Wmt) dz 

A1(1, W21, ... , Wmt)/A(1, W21, ... , Wmt) 

A1(w)j[w1 1 A(w)] = w1A1(w)jA(w). 
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Similarly, 

11"j = 7rj,{l, ... ,m} = WjAj(w)jA(w), (6.45) 

j = 2, ... , m. For other S E Sm, probabilities 7rj,S have a similar 
form with As,j, As replacing Aj, A in ( 6.45), since the class of 
MSMVE distributions is closed under margins. 

Logit-type probabilities result when the permutation-symmetric 
copula M6 is used (see case 1 in Example 6.2 below). Other choice 
models occur from other MEV copulas. Note that the models de­
riving from max-stable MEV distributions are convenient in that 
closed-form expressions are obtained for the choice probabilities 
1rj,S· The parameters J.tj can be functions of covariates when the 
options have a factorial or regression structure. 

Example 6.2 Some cases, using MSMVE distributions from 
Section 6.3.1, are: 

1. A(z) = (zf + · · · + z~) 1 1 8 , B 2:: 1. Then 

Aj(z) = (zf + · · · + z~)-1+ 1 1 8 zj-1, 

and, from (6.45), 

m 

7rj = wjf(wf + · · ·+w~) = e8 ~-'i /L_e8 ~-'', j = 1, ... ,m. 
i=l 

and 

11"j = [wj-wj8(w18 +w28)-1-1/8]/[wl+w2-(w18 +w28)-ll8]. 

3. A(z1,z2,z3) = [(zf + zn618 + z~jll 6 , with 1:5:8:5: B. Then, 

7rj = { wfj( wf + w~)} · { ( wf + w~) 618 /[( wf + w~) 61 8 + w~l}, 

j = 1, 2, and 11"3 = wV[(wf + w~) 61 8 + w~]. 
D 

In the remainder of this section, we look further at a generalized 
'independence' criterion. Let c1, ... , Cm be positive constants and 
let X*(c) = min{Xi/ci : i = 1, ... , m}. This is equivalent to the 
maximum of the shifted extreme value rvs given above. If X is 
MSMVE with survival function G, then the events {X*(c) > t} 
and {X*(c) = Xj/cj} are independent. Since G = e-A, where A 
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is homogeneous of order 1, it is straightforward to obtain: 

Pr(X*(c) > t,X*(c) = Xi/ci) 

100 exp{-A( ~ . . . .£zzr.E::)}A-( ~ • . . .£zzr.E::) dx 
t Cj J J Cj j Cj J J Cj 

Cj 

[Aj( Z:-, ... , ~ )/A(Z:-, ... , ~ )] exp{ -citA(Z:-, ... , ~)} 
J J 1 1 ] J 

Cj[Aj(c)/A(c)] exp{-tA(c)} 

Pr(X*(c) = Xifci) Pr(X*(c) > t), 

j = 1, ... , m. (Hence 2::::,1 c;A;(c) =A( c) for all c E (0, oo)m.) 
The generalized 'independence' criterion need not hold for other 

exchangeable exponential rvs. This can be verified directly for some 
specific cases (e.g., with the copula B10). 

The theorem below shows that the above is a characterization 
of MSMVE distributions. 

Theorem 6.10 If X is (absolutely continuous) multivariate ex­
ponential and {milli X;jc; > t} is independent of {min; X;jc; = 
Xi/ci} for alit> 0, j E {1, ... , m}, c E (0, oo)m, then X must be 
min-stable multivariate exponential. 

Proof. The proof follows that in Robertson and Strauss (1981) for 
the most part. 

Let G(x) be the survival function of X, let Gi = -aGjaxj, 
j = 1, ... , m, and let X*(c) ={min; X;jc;}. Then 

Pr(X*(c) > t, X*(c) = Xj fci) = 100 Gj(clx/ci, ... , Cmx/ci) dx 
c;t 

= Cj 100 
Gj(clx, ... , CmX) dx, j = 1, ... , m, (6.46) 

Pr(X*(c) = Xj/ci) = Cj 100 
Gj(c1x, .. . ,cmx)dx, j = 1, ... ,m. 

If 

Pr(X*(c) > t,X*(c)=Xifci) = Pr(~*(c)=Xj/ci)Pr(X*(c) > t) 

for all t, j, then for i -=/= j, 

Pr(X* (c) > t, X*( c) = X;jc;)/ Pr(X* (c) > t, X*( c) = Xj fci) 

= Pr(X*(c) = X;jc;)/Pr(X*(c) = Xi/ci) (6.47) 

does not depend on t. Let the right-hand side of (6.47) be denoted 
by Pij (c). Then Pii is increasing as c; increases and decreasing as 
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ci increases. Differentiating ratios of the right-hand side of (6.46) 
implies 

(c;G;(c1t, ... , cmt)]/[cjGj(clt, ... , Cmt)] = Pij(c), \ft. (6.48) 

Rewrite (6.48) as 

c;G;(clt, ... ,cmt)=cjGj(clt, ... ,cmt)p;i(c), \ft. (6.49) 

Let Gtk = aGtfaxk = -82Gj8xtOXk, for 1 :S £, k :S m. Then 
differentiation of (6.49) with respect to t yields c; I:;=l ckGik = 
Pij(c)cj I:~1 ckGjk or 

m m 

Gj L CkGik = G; L CkGjk· (6.50) 
k=l k=l 

Lett= 1; then (6.50) holds for all arguments c E (0, oo )m. This im­
plies Lk ckGik(c)jG;(c) = 7J(c) for some function 7J that does not 
depend on the index i, or Lk ckGik( c) = 7J( c)G;( c), i = 1, ... , m. 
This has a solution only if 7J(c) = <P'(G(c)) for some function <P 

with first derivative <P', and then by integration 

L ckGk(c) = <P(G(c)). (6.51) 
k 

(The proof is as follows: Let L(c) = Lk ckGk(c); then L;(c) = 
Lk ckGik(c) = 7J(c)G;(c), i = 1, ... , m, so that L;Gj- G;Lj = 0 
for all if j. Hence the Jacobian a(G,L)/a(c;,ci) vanishes for 
all i f j. For m = 2, this means that L and G are functionally 
related. For m 2: 3, let C-ij or X-ii be c or x respectively without 
the ith and jth components. Then there are functions tPij( u, X-ii ), 
i < j, such that L(c) = tPij(G(c),c_ij) for all i < j and Lk 
a:~;· Gk + ~!',! · I(k f i,j). Hence fork f i,j, 

~·Gk+ ¥x; Gk 
a<P•t • G· - G; 
au ' 

only if ~~:; = 0. This implies that tPii = <P for all i < j and 
that G and L are functionally related.) Since G;k :S 0, G; > 0, 
i, k = 1, ... , m, then <P' :S 0 and <P 2: 0. 

Replace Ck now by Xk. The first-order partial differential equa­
tion (6.51) can be solved by the method of characteristics (Bluman 
and Cole 1974) to get the only possible solutions. This means first 
solving 

dx1 dxm dG 
X1 - Xm - <P( G)' 
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to get independent solutions u1(x) = a1, ... ,um(x) =am, where 
a1, ... , am are constants, so that the solution to (6.51) has the form 

f3(u1, ... , um) = 0 or Um = o:(u1, ... , Um-1) for some functions 
o:, /3. From solving dxdx1 = dxi+I/Xi+l, one has u; = x;+I/x1 = 
a;, i = 1, ... , m- 1. From solving dxdx1 = dG/ljJ(G), one gets 
Um = ((G)/x1 = am, where log((G) is the anti-derivative of 
[tfo(G)]-1. Since¢''~ 0, then (is a decreasing function. Therefore 

((G(x))/x1 = o:(x2/x1, ... , xmfx!), or 

((G(x)) = x1o:(x2/x1, ... , Xm/x1) = A(x) 

where A is a homogeneous function of order 1, or 

G(x) = C 1 o A(x) = ~(A(x)) (6.52) 

with~= (-1. The homogeneity condition means that A has mar­
gin A(O, ... , 0, x;, 0, ... , 0) = b;x; for a constant b;, i = 1, ... , m. 
To get exponential survival distributions as margins, (-1(t) = e-t 
or (( s) = -logs, and hence G is a MSMVE distribution. D 

Other solutions G to (6.51) (or other survival functions with the 
generalized independence property) have the form of (6.52) with 
some other decreasing function 1/J. Sufficient conditions are: (i) 1/J 
is a LT (see Section 4.3); (ii) -logtjl E .C';.. (see Section 4.4); and 
(iii) tP E .Cm (see (1.1) in Section 1.3) if A satisfies 

alBIA 
( -1) 1+1 8 1 f1 (x) ~ 0 TIS E Sm. 

iES ax; 

We return to this in the next section. 

6.6 Mixtures of MEV distributions * 

In this section, we study the class of mixtures of powers of a MEV 
distribution. This is a special case of the larger class of mixtures of 
powers of a max-id distribution, as given in Section 4.3. This class 
has some closure properties that the larger class need not have. It 
is these closure properties and other properties that make the class 

interesting. 
The three types of univariate extreme value margins are Gum­

bel, Weibull and Frechet (see Section 6.1). Since maxima can be 
transformed into minima and vice versa, we will consider Weibull 
survival margins with minima, and Frechet and Gumbel margins 
with maxima so that we can work on either [0, oo) or ( -oo, oo) for 
each univariate margin. Without loss of generality, we assume that 
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the univariate margins are identical and standardized. As shown 
in Section 6.2.1, a property of a MEV distribution G is that all 
positive powers of G are also distributions. 

Let G be a min-stable m-variate exponential survival function 
with unit exponential margins and let A = -log G. Since A is 
homogeneous of order 1, A( x1, ... , Xm) = x j if all arguments are 
zero except Xj, and Gt(x) = exp{ -tA(x)} = exp{ -A(tx)} is a 
survival function for all t > 0. 

By making the transformations Xj ---+ xj, with a > 0, the result­
ing min-stable m-variate Weibull survival function is 

G1(x; a)= exp{ -A(xf, ... , x~)}. (6.53) 

If X has the distribution in (6.53), then 

Pr(min{Xl/cl, ... , Xm/cm} > t) = exp{ -A((tc1Y", ... , (tern)")} 

= exp{ -t"' A(cf, ... , c~)}, t > 0, 

for all c E (0, oo)m. That is, min{Xl/c1, ... , Xm/cm} has a scaled 
Wei bull distribution for all c E (0, oo )m. 

Similar results hold for transforms to other extreme value mar­
gins. By making the transformations Xj ---+ xj/3, with f3 > 0, the 
resulting max-stable m-variate Frechet distribution function is 

G2(x; f3) = exp{ -A(x!13 , ••• , x;;!)}. (6.54) 

If X has the distribution in (6.54), then 

( { Xl Xm} ) _ -/3 -/3 Pr max c1 , ... , Cm ~ t - exp{ -A((tcl) , ... , (tern) )} 

= exp{ -rf3 A( c!13 , ••• , c;;;13 )}, t > 0, 

for all c E (0, oo)m. That is, max{Xl/c1, ... , Xm/cm} has a scaled 
Frechet distribution for all c E (0, oo )m. 

By making the transformations Xj ---+ e-xi, the resulting max­
stable m-variate Gumbel distribution function is 

G3(x) = exp{ -A(e-311 , ••• , e-xm )}. (6.55) 

If X has the distribution in (6.55), then 

Pr(max{X1-c1, ... , Xm-Cm} ~ t) = exp{-e-t A(e-c1 , ••• , e-cm )}, 

-oo < t < oo, for all c E (O,oo)m. That is, max{X1-c1, .. . ,Xm­
Cm}, a maximum of shifted random variables, has a location-shifted 
Gumbel distribution for all c E (0, oo )m. The weighting is done 
with additive rather than multiplicative constants in this case. 
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Note that a positive power of (6.53), (6.54) or (6.55) is a survival 
or distribution function since either a scale or location shift occurs. 
By taking mixtures of powers of one of these MEV distributions, 
we get distributions with other univariate margins which satisfy 
the closure property of weighted minima or maxima in the same 
scale or location family. Let M be the distribution function of a 
positive rv and let its LT be ,P. The mixtures of powers of (6.53), 
(6.54) and (6.55) lead to: 

100 
exp{ -!A(xf, ... , x~)}dM(!) = ,P(A(xf, ... , x~)), (6.56) 

100 exp{-!A(x!~, ... , x;;/)}dM(!) = ,P(A(x!~, ... , x;;P)) 

(6.57) 
and 

100 exp{ -!A(e-"' 1 , ••• , e-xm )}dM( 1) = ,P(A(e-"'1 , ••• , e-xm )) . 

(6.58) 

The univariate survival margins in (6.56) are ,P(xj) and the uni­

variate cdfs in (6.57), (6.58) are respectively ,P(xj/3) and ,P(e-xi). If 
X has the distribution in (6.56), min1<i<m{X;/c;} has the survival 
function ,P([t/u(c)]"'), t > 0, with u(c) = [A(cf, ... , c~)]- 1 /a. If 
X has the distribution in (6.57), max1<i<m{X;/ci} has the dis­

tribution ,P([t/7J(c)]-~), t > 0, with 7J(c) ~ [A(c!~, ... ,c;;l)]ll~, 
and if Y has the distribution in (6.58), max1<i<m{Yi- ci} has 
the distribution ,P(exp{-[t- J.t(c)]}), -oo < t < -oo, with J.t(c) = 
log A(e-c1 , ••• , e-cm ). 

A special case of (6.58) or (6.57) arises when ,P(s) = (1+s)- 1. For 
H = e-A being a general max-stable distribution, F = J H'"Y dM( 1) 
is a max-geometric stable distribution. A multivariate distribution 
F is max-geometric infinitely divisible if for X ,...., F, then for 
any 0 < p < 1, there exist iid random vectors Xp,i, independent of 

Np, such that x4 max;~N, Xp,i (with componentwise maxima), 
where Np is a geometric rv with parameter p (Pr(Np = k) = 
p(1 - p)k-1, k = 1, 2, ... ), and F is max-geometric stable (a 
stronger property) iffor all 0 < p < 1, Xp,1 is in the location-scale 
family generated by F. Hence as a consequence of this definition, 
F f[p+(1-p)F] must be in the location-scale family generated by F 
for any 0 < p < 1. It is easy to show that this property is satisfied if 
F(x) = [1 + -x1 , ••• , e-xm )]-1 where A(ils homogeneous of order 
1. With H being the Gumbel distribution and ,P(s) = (1 + s)- 1 , 
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the univariate margins of (6.58) become the logistic distribution 
(1 + e-xi)- 1 and F is a max-geometric stable multivariate logistic 
distribution. 

In the remainder of this section, some dependence properties and 
characterizations are given. 

Theorem 6.11 Let F = J0
00 H"~ dM ( r) be the survival function or 

distribution function given in (6.56}, (6.57} or (6.58). Then F is 
the distribution of associated rvs. 

Proof. The proof is similar to that of Theorem 4.5 and is left as 
an exercise. 0 

We mentioned above that (6.58) could result in multivariate dis­
tributions with univariate logistic marginals with the choice of the 
LT ,P(s) = (1 + s)-1. However, for logistic margins, only strictly 
positively dependent multivariate distributions can result; it is eas­
ily checked that the multivariate distribution with independent 
univariate logistic margins does not satisfy the property of clo­
sure under weighted maxima. This division of independence versus 
positive dependence is true in general. We show below that multi­
variate distributions with the independence copula can arise from 
(6.56), (6.57) and (6.58) only ifthe univariate margins are Weibull, 
Frechet and Gumbel, respectively. 

Theorem 6.12 Suppose that ,P(A(xf, ... , x!)) in {6.56} is equal 
to Tij=1 ,P( xj) for all x E (0, oo )m. Then all possible solutions are 
covered by taking ,P( s) = exp{-As11"} for some positive constants 
A and u. 

Proof Let X1, ... , Xm be iid with survival function F(x) = ,P(xa). 
-2 -

Then F (t) = Pr(X1 > t, X2 > t) = ,P((ta)a) = F(ta) for all 
t > 0, where a a = A(1, 1, 0, ... , 0) is a constant (exceeding 1). Let 
r(t) = -logF(t). Then r(O) = 0, r(oo) = oo, r is increasing and 
2r(t) = r(at) for all t > 0. Let u be a constant satisfying a = 2" 
so that 2"r"(t) = ar"(t) = r"(at). Next, let 'TJ(t) = r"(t) so that 
a'TJ(t) = 'TJ( at) for all t > 0. Since the LT ,P is differentiable, 'fJ is 
differentiable and a'TJ'(t) = a'TJ'(at) for all t > 0. The conditions on 
r and 'fJ then imply that 'f/1 is a constant and 'fJ is linearly increasing. 
Since 'fJ(O) = 0, 'TJ(t) = A"t for a positive constant A. Hence r(t) = 
Atlfu and u =log a/ log 2, or F(t) = exp{ -At11"} for some positive 
constants u, A. 0 

Theorem 6.13 Suppose ,P(A(x~Jj, ... , x;;/)) in (6.57) is equal to 
Tij=l ,P(xj13 ) for all X E (0, 00 r. Then all possible solutions are 



206 MULTIVARIATE EXTREME VALUE DISTRIBUTIONS 

covered by taking 1/;(s) = exp{-.As1fq} for some positive constants 
.A and 0'. 

Proof. The proof is accomplished by a similar argument to that of 
the above theorem. We omit the details. D 

Theorem 6.14 Suppose 1/;(A(e-"' 1 , ••• , e-xm)) in (6.58) is equal 
to Tij=1 1/;( e-"'1) for all x E ~m. Then all possible solutions are 
covered by taking 1/;(s) = exp{-.As1fq} for some positive constants 
.A and 0'. 

Proof. Let X have the distribution 1/;(A(e-"' 1 , ••• , e-xm )). Set }j = 
exp{-X;/a}, j = 1, ... ,m, where a> 0. Then (Y1, ... ,Ym) has 
the survival function 

Pr(}j > Yi> 1 ~ j ~ m) = Pr(X1 <-a logy1, ... , Xm < -alogym) 

= 1/;(A(yf, ... , y~)) 

for all y E (0, oo )m. If X1, X2, ... , Xm are independent with sur­
vival function 1/;(e-"'), then Y1, Y2, ... , Ym are independent with 
survival function 1j;(y01 ). From the proof of Theorem 6.12, we get 
that 1/;(s) = exp{ -.As1fq} for some positive constants .A, 0'. This 
completes the proof. 0 

Choice probability properties from Section 6.5 hold for (6.56) to 
(6.58). The independence criterion also holds for scale mixtures of 
MSMVE distributions, i.e., survival functions of the form F(x) = 
f0

00 e--rA(x)dM( 1) where M is the distribution of a non-negative 
rv r. If X,...., F and X*= min{X1, ... , Xm}, then for j = 1, ... , m, 

Pr(X* > t, X* =X;) = loo Pr(X* > t, X* =X; I r = 1) dM( 1) 

= A; (lm) {oo e--ytA(lm) dM( 1) = Pr(X* =Xi) Pr(X* > t). 
A(lm) Jo 

Also the same probability as (6.45) results if (V1, ... , Vm) ,...., F with 
F given by J0

00 exp{ -IA(e-"'1 , .•• , e-xm )}dM('Y). 

6. 7 Bibliographic notes 

Books on extreme value theory include Galambos (1987) and Res­
nick (1987). Representations of multivariate extreme value distri­
butions are given in Pickands (1981), Deheuvels (1983) and de 
Haan (1984). For copulas and multivariate extreme value distri­
butions, see also Deheuvels (1978). The definition of min-stable 
multivariate exponential is from Pickands (1981). 
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References for the BEV and MEV families in Section 6.3.1 are 
Hiisler and Reiss {1989), Tawn {1988; 1990), Joe {1994; 1996a). 
The family B6 (and its extension to M6) is called a logistic model 
in Tiago de Oliveira {1980) and Tawn {1988; 1990). The adject­
ive 'logistic' comes from the fact that the difference of dependent 
Gumbel or extreme value rvs with the copula family B6 has the 
logistic distribution; this also relates to the choice model results in 
Section 6.5. The models are not called logistic here because logistic 
regression comes up later in the book. 

References for the families in Section 6.3.2 are Smith {1990), 
Joe {1990a; 1993) and Coles and Tawn {1991). The models of Joe 
{1990a) have not been successful in fitting multivariate extreme 
value data, partly because the parameters as of (6.39) and (6.40) 
are not interpretable as solely dependence parameters. 

For the point process approach, see Joe, Smith and Weissman 
{1992) for the bivariate case and Coles and Tawn (1991) for the 
multivariate case. The presentation in Section 6.4 is a little bit 
different from that in Coles and Tawn, where the densities of the 
point process measure are emphasized more. 

References for choice models are McFadden {1974; 1981). See 
the comment in McFadden (1974, p. 108) on the general difficulty 
of specifying a joint distribution in order to get closed-form choice 
probabilities. For a property of coverage of choice probabilities from 
MEV choice models, see Dagsvik {1995). 

The results from Section 6.6 are mainly from Joe and Hu {1996). 
See Rachev and Resnick {1991) for max-geometric multivariate dis­
tributions and Arnold {1996) for max-geometric multivariate logis­
tic distributions. 

6.8 Exercises 

6.1 Find the parameter of the extreme value distribution in which 
the t distribution with 11 degrees of freedom is in the do­
main of attraction. The t distribution has density of the form: 
f(x) = c11 (1 + x2 /v)-(v+l)/2. [Hint: approximate the tail of 
the density and hence the survival distribution, and then com­
pare with Example 6.1.] 

6.2 If e-A(z) and e-B(z) are MSMVE survival functions, show 
that e-aA(z)-,BB(z) is also MSMVE for all a, j3 > 0. 

6.3 Derive the survival function for the Marshall-Olkin multivari­
ate exponential distribution from the stochastic representa-
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tion in Section 6.3.2. 

6.4 If X = (X1, ... , Xm) is MSMVE, then show that Z with 
Zj = min1:5i:5m aijX;, a1cj ~ 0, k, j = 1, ... , m, is MSMVE. 

6.5 Consider the min-stable trivariate exponential survival func­
tion G = e-A with A(z1, z2, z3) = [(zf + z~) 6 1 9 + z~]116 . Show 
that G is not a proper survival function if 6 > B ~ 1. 

6.6 Take the extreme value limit of the bivariate copulas in the 
families B2 to B6 and B9 to Bll in Section 5.1. 

6.7 Prove Theorem 6.11. 

6.8 Verify that the extreme value limits for the families MM4, 
MM5 and MM2 are respectively the families MM6, MM7 and 
MM8. 

6.9 Suppose (V1, ... , Vm, T) has an absolutely continuous MEV 
distribution, 

F( ) - { A( -Xl -Xm -Xm+l )} x1, ... , Xm, Xm+l - exp - e , ... , e , e , 

where T is a threshold random variable and the Vj have a 
similar interpretation to that in Section 6.5. Let S be a non­
empty subset of {1, ... , m}. Show that 

Pr(nig{Vi + Jlj} > r > ~~~{V; + p;}) 

has closed form based on A and its margins. This is an ex­
ample of a subset choice probability. [Hint: start with m = 3, 4 
to see the pattern.] 

(A.J.J. Marley, personal communication, 1996) 

6.9 Unsolved problems 

6.1 Find other approaches to deriving parametricfamiliesofMEV 
copulas with better dependence and closure properties. 

6.2 Conjecture: For a multivariate distribution of the form (6.58), 
the only possible symmetric univariate distributions that can 
result over all LTs 1/J are the scaled logistic distributions. This 
is equivalent to showing that 

1/J(s) = 1 -1/J(s- 1 ), Vs > 0, 

holds only for the LTs 1/J(s) = (1 + s116)-1, 6 ~ 1. 



CHAPTER 7 

Multivariate discrete 
distributions 

This chapter is devoted to multivariate discrete distributions for bi­
nary, count, ordinal categorical and nominal categorical responses 
(Sections 7.1 to 7.4, respectively), and extensions to models that 
include covariates. Included are models that could be considered 
as multivariate logit models for multivariate binary and ordinal re­
sponse data. Dependence structures that are covered are exchange­
able and general dependence, with both positive and negative de­
pendence. The time series dependence structure is discussed in 
Chapter 8; it can be obtained from some models as a special case 
of the general dependence structure. The data analyses in Sections 
11.1 and 11.2 make use of the theory in this chapter. 

Approaches for multivariate models include: 

(a) mixtures over Bernoulli or Poisson parameters for multivari­
ate binary or count data; 

(b) latent variable models from copulas with discrete probability 
distributions for the univariate margins; 

(c) conditional independence models and random effects models. 

The types of models that can be constructed depend on the re­
sponse type. For some types of models, it is not possible to sepa­
rate out the dependence from the univariate parameters, i.e., the 
range of dependence depends on the univariate margins. Because 
of the discreteness, this separation may not be as critical. 

7.1 Multivariate binary 

An exchangeable multivariate binary model may be reasonable for 
some familial or cluster data, where the same binary variable is 
measured for each member of a family or cluster. If there is no 
reason to assume exchangeable dependence, then one should use a 
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Table 7.1. Bivariate Bernoulli distribution 

0 1 

0 Poo Pol Po+ 
1 P1o Pll PI+ 

P+O P+l 1 

model that can cover as general a dependence structure as possible. 
An example is the measurement of a vector of different binary 
outcomes (at the same time) on each individual in a study. In 
this section, we start with simple models for multivariate binary 
response and proceed to more complex models. 

7.1.1 Bivariate Bernoulli and binomial 0 

Table 7.1 shows the natural bivariate Bernoulli or binary distri­
bution. In it, Pr(Y1 = 1, Y2 = 1) = Pu, Pr(Y1 = 1) = PI+ = 
11"1, Pr(Y2 = 1) = P+l = 1r2, etc. The bivariate Bernoulli dis­
tribution can be parametrized to have two univariate parameters 
1r1, 1r2, and one bivariate parameter Pll (or the correlation p = 
(pu-11"111"2)/V11"1(1-11"1)11"2(1- 1r2) ). From the Frechet bound in­
equalities in Section 3.1, 

so that 

max{O, 11"1 + 11"2- 1} ~ Pu ~ min{7rt, 1r2}, 

11"min(1- 11"max) 

11"max(1- 11"min)' 
(7.1) 

where 1fj = 1- 11"j, j = 1,2, 11"min = min{7rl,7r2}, and 11"max = 
max{ 1r1, 1r2}. Because the range depends on the univariate margin 
parameters, the correlation is not a good dependence measure to 
use except possibly for the case 11"1 = 11"2. 

For the bivariate binomial, let (Yi1, Yi2), i = 1, ... , n, be iid with 

the distribution in Table 7.1. Then (S1, S2)~f (L~=l ¥;1, L~=l ¥;2) 
has a bivariate binomial distribution with pmf 

81,82 = 0,1, ... ,n. 
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7.1.2 General multivariate Bernoulli 0 

Let (Y1 , ... , Y m) be a multivariate binary vector with the dis­
tribution Pr(}j = Yj,j = 1, ... , m) = p(y), Yi = 0 or 1, j = 
1, ... , m. This has 2m -1 parameters and generalizes the bivariate 
Bernoulli distribution; it is the most general possible. Note that 
}j "' Bernoulli ( 7rj ), where 

1 

2:: p(y), 
Yt=O Y;-t =0 Yi+t=O Ym=O 

with Yi = 1 for each y in the sum. The sum Y1 + · · · + Ym 1s a 
correlated binomial rv. 

This model can be considered as a special case of a multinomial 
distribution. It has too many parameters for applications, unless 
one has a sufficiently large sample (the sense of 'large' depends on 
m). Hence it is useful to obtain parametric subfamilies which can 
cover different types of dependence pattern. 

7.1.3 Exchangeable mixture model 0 

We start with a fairly general model for exchangeable binary rvs. 
This comes from a conditional independence or mixture model in 
which the Bernoulli parameter p is random with some density, and 
given p, the m binary rvs }j are conditionally iid. The model is 

f(y) = Pr(}j = Yj,j = 1, ... ,m) = 11 pk(1-p)m-kdG(p), (7.2) 

where k = 2:}=1 Yi, each Yi is 0 or 1, and G is a distribution with 
support on [0,1). 

Properties of (7.2) are the following. 

1. Marginal probabilities include 1r = Pr(}j = 1) = J0
1 p dG(p), 

j = 1, ... , m, and TJ = Pr(}j = 1, }j, = 1) = f0
1 p2dG(p), 

j =f j'. Then for j =f j', Cov(}j, }j,) = TJ- 1r2 = Var(P) ~ 0, 
where Pis a rv with cdf G. That is, only positive dependence 
is possible. The case of zero covariance can occur only if G is 
degenerate, in which case Y1, ... , Ym are independent. 

2. The pairwise correlation is ( TJ-7r2)/( 1r -1r2). It can vary from 0 
to 1. The correlation of 1 (or Frechet upper bound) is achieved 
only if G has support on the points 0 and 1, since this is the 
only case in which TJ = 1r. 
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If G is a Beta (a, (3) distribution, with density 

g(p) = [B(a, (3)]-1pa-1(1- p)/3-1, 0 < P < 1, 

then (7.2) becomes 

f(y; a, (3, m) = B(a + k, (3 + m- k)/ B(a, (3), (7.3) 

a two-parameter family (reparametrization to one parameter for 
marginal probability and one for equicorrelation is possible). Fur­
thermore, 71" = af(a + (3), 1J = a(a + 1)/[(a + (J)(a + (3 + 1)], 
and the correlation is p = (a+ (3 + 1)-1. Hence correlation of 
1 or the Frechet upper bound is achieved if a, (3 -+ 0 such that 
af(a + (3)-+ 71". If g is a Beta(a,(J) density, then Lj }j has a 
Beta-binomial (a, (3) distribution. 

In some cases, such as when G is the beta distribution, the func­
tional form, but not the mixture representation, of (7.2) can be 
extended to include negative dependence. 

With the parameters 1r for the probability of occurrence of a 1 
and p for correlation, the extension of (7.3) is given in Theorem 
7.1. It is shown in Theorem 7.2 that p = (1 + ,-1 )- 1 , where 1 is 
the parameter in (7.4) below. 

Theorem 7.1 The function 

n k-1[ 0 ] nm-k-1[(1 ) 0 ] 

!( . 71" m) = i-0 71" + Z/ i-O - 71" + Z/ (7.4) 
y, , ,, nm-1[1 0 ] , 

i=O + Z/ 

k=O, ... ,m, Y1+···Ym=k, Yi=0,1Vj, 

with 0 < 71" < 1, -oo < 1 < oo, is the pmf of m exchangeable 
binary rvs, if 71" + (m- 1)1 2: 0 and (1 - 1r) + (m- 1)1 2: 0 (or 
1 2: -(m- 1)-1 min{1r, 1- 1r}}. 

Proof. The conditions on 71", /,mare clearly necessary in order for 
(7.4) to be non-negative for k = 0, ... , m. Let fs be equal to 
(';:) times the right-hand side of (7.4); we will show that fs is 
the pmf of a rv S which is a count made from m draws in an 
urn model. Expression (7.4) then results if, given S = k, binary 
variables Y1 , ... , Y m are defined so that k of the m }j are randomly 
chosen to have unit values and the remainder are given zero values. 

Consider an urn with two types of matter, called type 1 and type 
2. There are m draws and each draw results in either type 1 or type 
2. Then fs is the probability distribution of the total number of 
draws of type 1 in the m draws, when the following sequential 
scheme is used. Start with 1r units of type 1 and 1-71" units of type 
2. For r = 1, ... , m- 1, after the rth draw, 1 units of type j are 



MULTIVARIATE BINARY 213 

added if the rth draw was type j, j = 1, 2. (If 1 < 0, this means that 
a negative amount is added or something is subtracted.) Let Ir be 
the number of draws of type 1 in the first r draws. The probability 
of type 1 is 1r on the first draw. The probability of type 1 on draw 
r + 1 (r = 1, ... , m- 1) conditional on Ir, is (1r + lr'Y)/(1 + r1), 
and the probability of type 2 is hence [(1-7r) + (r- Ir hJ/(1 + r-y). 
Putting everything together, the probability of exactly k draws of 
type 1 in m draws is 

( m) 1r(1r + 1) · · · (1r + [k- 1]'Y)(1-7r) · · · (1- 1r + [m- k- 1]!) 
k 1(1+'Y) .. ·(1+[m-1]'Y) ' 

(7.5) 
and this is the same as Is. Note that all sequences with exactly k 
draws of type 1 have the same probability. D 

We show four special cases of Is, which in the above proof is 
defined to be (';;) times the right-hand side of (7.4). These are the 
beta-binomial, hypergeometric, binomial and P6lya-Eggenberger 
distributions. 

From (7.3), the beta-binomial pmf is ls(k) = (';;)B(o: + k, f3 + 
m- k)/B(o:,/3), k = 0, ... ,m, o:,/3 > 0. This can be expanded as: 

( m) I1~::-o1[7r(p-1- 1) + i] n:~k-1[(1- 7r)(p-1 - 1) + i] 
k n:~1 [p-1 _ 1 + iJ 

= (m) I17-=-a1 [7r + h'J TI~~k- 1 [(1- 1r) + h'J 
k I1~~ 1 [1+i,J ' 

where 1r = o:/8, 8 = o: + f3 = ,-1 , 1 = (p- 1 - 1)-1 > 0 (or 
a = 1r(p-1 - 1) = 1r1-1 and f3 = (1- 1r)'y- 1 ). In this case, p = 
(1 + ,-1 )-1 = (1 + 8)-1 is the pairwise equicorrelation parameter 
for the m binary rvs that lead to the beta-binomial distribution. 

We continue with the same definitions of 8, o:, (3. If 1 is negative, 
then p is negative and the hypergeometric distribution becomes a 
special case of Is if o: and f3 are positive integers. The hypergeo­
metric distribution, with o: items of type 1, f3 items of type 2 and 
m draws without replacement, has pmf 

( m) o:! (3! (8- m)! 
k (o:-k)!(/3-m+k)! 8! ' k=0,1, ... ,m. 

This can be rewritten as: 

(m) I1~::-a1 [7r- i/8] TI~~k- 1 [1- 1r- i/8] 
k !1~~ 1 [1- i/8] ' 
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and this is the same as (7.5) with 'Y = -1/B. The Bernoulli vari­
ables, Y1, ... , Ym, with }j being the indicator variable for whether 
the jth draw is of type 1, have pairwise equicorrelation parameter 
P = -(B- 1)-1 = (1 + 'Y-1 )-1. 

The binomial distribution is a special case when 'Y = 0. This is 
well known to be at the boundary of the families of beta-binomial 
and hypergeometric distributions. 

The P6lya-Eggenberger distribution is 

( m) b(b + s) · · · (b + [k- 1]s)w(w + s) · · · (w + [m- k- 1]s) 
k (b+w)(b+w+s)···(b+w+[m-1]s) ' 

k = 0, ... , m, where b, w are the starting number of black and 
white balls in the urn, and s is the number of additional balls 
added, of the same colour as the rth draw, after the rth draw. 
Letting b, w, s--+ oo such that bj(b + w)--+ 1r and sj(b + w) --+ "f, 
then (7 .5) results. 

Theorem 7.2 For (7.4), the univariate marginal distributions are 
Bernoulli{1r ), and the equicorrelation parameter is (1 + 'Y- 1 )- 1 . 

Proof. Let (E, ... , Ym) have the pmf in (7.4) and let S = L. }j 
have the pmf, denoted by Is(·; 1r, "f, m), in (7.5). Then E (}j) = 
m-1E(S), j = 1, ... ,m, and 

Cov (}j, }j') = [Var(S)- mVar(Yl)]/[m(m- 1)], j f. j', 
by exchangeability. Using the standard method, 

m ( 1r+"f "/ ) E (S) = m1r ~Is k- 1; -1-, -1 -, m- 1 = m1r, 
k=1 + 'Y + 'Y 

and 

E [S(S- 1)] = m(m- 1)1r(1r + "!)(1 + 'Y)-1 

-1~ ( 7r+2'Y 'Y ) = m(m-1)7r(7r+'Y)(1+"f) L...J Is k-2; -1 - 2-, 12' m-2 . 
k=2 + 'Y + 'Y 

Therefore, E (}j) = 1r and }j is Bernoulli ( 1r) since it is binary. 
Next, after some elementary algebra, Var (S) = m1r(1 - 1r)(1 + 
m'Y)/(1 + 'Y) and Cov (Y1, Y2) = 1r(1 - 1r)'Y /(1 +"f). Finally, the 
correlation p of }j , Yj for j f. j' is 'Y / ( 1 + 'Y) = ( 1 + 'Y- 1) - 1 . 0 

Theorem 7.3 The family in (7.4) is closed under the taking of 
margms. 
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Proof. This result is obvious for the cases of 1 = 0 (independent 
case) and 1 > 0 (from the mixture construction). For the gen­
eral proof, let (7.5) be denoted by Js(·;1r,1,m). Without loss of 
generality, we show that if (Y1, ... , Ym) has a pmf of the form 
(7.4), then so does (Y1, ... , Ym-1)· The pmf of (Y1, ... , Ym-1) at 
(y1, ... , Ym-1) when k = Y1 + ... + Ym-_1 is 

(7) -1 fs(k; 1r,1, m) + (k: 1) -1 fs(k + 1; 1r,1, m) 

_ (m-1)-1/ (k· _ 1)[(1-7r)+(m-k-1)t)+[7r+kl) 
- k 5 ,1f,l,m 1+(m-1)t 

( 1)-1 = m: Js(k;1r,1,m-1). 

D 

How does the family (7.4) do in terms of range of negative de­
pendence? Some comparisons are made with other multivariate 
exchangeable Bernoulli distributions in Section 7.1.10. 

7.1.4 Extensions to include covariates 

We consider extensions of models in Section 7.1.3 to include co­
variates. Exchangeable dependence may be reasonable for familial 
data such as when (Y1, ... , Ym) are responses from the same fam­
ily or cluster. If there is a covariate x common to the family, then 
model parameters can be functions of x. If covariates Xj exist at 
the individual level within a family, then one can consider models 
that are modifications of models with exchangeable dependence. 

For notational convenience in the following models, xs are col­
umn vectors and f3s are row vectors. 

If covariates are at the cluster level, an extension of (7.3) is: 

{1 m Jn IT pYi (1- p)1-Yi. [B(a1 (x), a2(x))r1pa,(x)-1(1- p)a,(x)-1dp 
0 i=1 

= B(a1(x) + Y+, a2(x) + m- Y+)f B(a1(x), a2(x)), 

for some choices of a1(x), a2(x), where Y+ = L::~ 1 Yi· For example, 
if a1(x) = B1e/J,x, a2(x) = B2ef32 x, then Pr(}j = 1lx) = 1r(x) = 
a1(x)j[a1(x) + a2(x)), 

log[7r(x)/(1-7r(x) )] = log a1 (x)-log a2(x) = log[Bt/02)+(/31 -/32)x 



216 MULTIVARIATE DISCRETE DISTRIBUTIONS 

and 

p(x) = (o:1(x) + o:2(x) + 1)-1 = (B1efl 1x + B2efl2x + 1)-1. 

If covariates are at the individual level, there could be many 
modifications or extensions, one of which is given below. 

With covariate Xj for the jth individual, j = 1, ... , m, an exten­
sion of (7.3) is: 

11ft [h(xj ,p))Yi(1-h(xj, p)F-y; ·[B(o:l, o:2)t1Pat-~1-p)a2-ldp, 
0 j=l 

(7.6) 
for some function h with range in [0,1]. An example is h(x,p) = 
pexp{ -fix}. Since only one-dimensional integrations are required, 
model (7.6) is fairly easy to work with computationally. A larger 
family of functions is h(x,p) = F(F- 1(p) + {3x), where F is a 
univariate cdf. Note that if {3 = 0 or x = 0, then (7.3) obtains. 
If F(z) = exp{ -e-z}, then F- 1(p) = -log[-logp] and h(x, p) = 
exp{ -e-flx( -logp)} = pexp{ -fix}. If F(z) = (1+e-z)-1 is logistic, 
then h(x,p) = (1 + ce-flx)-1, where c = (1- p)fp. 

For the case of h(x, p) = pexp{ -fix}, expected values and covari-
ances of the }j are easily obtained. Calculations are: 

(a) E (}j) = B( o:1 + e-flx;, o:2)/ B( o:1, o:2) = E (r?); 

(b) E (Yj Yk) = B( 0:1 + e-flx; + e-flxk, 0:2)/ B( 0:1, 0:2), j f. k; 
(c) Cov (}j, Yk) = [B( 0:1 + e-flx; + e-flxk, o:2)B( 0:1, 0:2)- B( 0:1 + 

e-flx;, o:2)B(o:1 + e-flxk, 0:2)]/ B2(o:1, 0:2). 

Note that 

E (}j) = [f(o:1 + e-flx;)/f(o:l + 0:2 + e-flx;)][f(o:l + o:2)/f(o:!)] 

and f(o:1 + t)/f(o:1 + 0:2 + t) is decreasing in t > 0, so that E (}j) 
is increasing in {3xj. Furthermore, E (Yj) -+ 0 as {3xj -+ -oo and 
E (}j) -+ 1 as Pxi -+ oo. 

7.1.5 Other exchangeable models 

There are many other possible exchangeable models for multivari­
ate binary data, including those which are special cases of the gen­
eral dependence models in Section 7.1.7. Simple exponential family 
models also exist but they have some undesirable properties. We 
analyse an exponential family model here and illustrate the typ­
ical problem of non-closure that exists in general for non-normal 
multivariate exponential family models. 
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Let 
m 

f(y; ''fl, /2) = [c(/1, /2)r1 exp{ /1 LYi + /2 L YiYi' }. (7.7) 
j=1 j <i' 

for y E {0, 1 }m, where c is a normalizing constant and -oo < 
11, 12 < oo. Let Y be a random vector with this pmf. The marginal 
pmfs are not of the same form and the parameter 1r = Pr(}j = 1) 
depends on both 11 and /2. For example, 

m-1 

Pr(}j = Yj , 1 S j S m - 1) = [ 1 + exp { /1 + /2 L Yi } ) 
j=1 

m-1 

·[c(/1,/2)r1exp{/1 LYi +12 L YiYi'}· 
j=1 i<i'<m 

This non-closure property may make this model and other expo­
nential family models harder to use. Because 1r does not have simple 
form, the extension to include covariates is not easy. However the 
parameters /1, /2 can be given interpretations: 

for j =f j', and 

Pr(}j = 1, YJ' = 1, Yk = Yk, k =f j,j') 
Pr(}j = 1, }j' = 0, Yk = Yk,k =f j,j') 

Pr(}j = 0, YJ' = 0, Yk = Yk. k =f j, j') 
Pr(}j = 0, }j' = 1, Yk = Yk> k =f j,j')' 

e'Yl = Pr(}j = 1, Yk = 0, k =f j). 
Pr(}j = 0, Yk = 0, k =f j) 

Next we study some dependence properties including the range 
of dependence. For i = 0, ... , m, let ai = ai( 11, 12) = exp{ iJ1 + 
i(i -1)12/2} and let Pi= c-1a; = /(Y;/1,/2) when i = 2:::}:1 Yi· 
With this notation, c( /1, /2) = L~o (7) ai. Then 7r; = Pr(}j = 
1) = 2:::~ 1 (7~/)p; and 1r12 = Pr(Y1 = 1, Y2 = 1) = 2:::~2 (7~22)p;. 
Let h(/1,/2) = 2:::~ 1 (7~/)p; = [2:::~ 1 (7~/)a;(/1,/2)]/c(/1,/2)· 

We show below that h is strictly increasing in 11, 12 • For fixed 12, 
h-+ 0 as /1-+ -oo (since P1, ... ,pm-+ 0, Po-+ 1) and h-+ 1 as 
/1 -+ oo (since Pm-+ 1 and Po, ... ,Pm-1-+ 0). Hence for a fixed 1r 

and /2, there exists a unique t(J2 ,1r) such that 1r = h(t(12 ,1r),!2 ), 

and t is decreasing in /2. The model (7. 7) could be reparametrized 
in terms of 1r and /2. With this new parametrization 12 can be 
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considered a dependence parameter since 71"12 = 7!"12( 7r >Y2) is in­
creasing in /2. Furthermore, the Frechet upper bound obtains in 
the limit as /2 - oo and the most negative exchangeable multi­
variate binary distribution obtains in the limit as /2 - -oo. The 
former restllt is shown in the next paragraph and the latter result 
is proved in Section 7.1.10 (in order to compare with other ex­
changeable multivariate binary distributions). Also when 12 = 0, 
the distribution has independence of the univariate margins. 

For /2- oo, let /2 =Nand /1 "'-Hm-1)N +f with N- oo 
and f a fixed real; then i'Y1 + i(i- 1)12/2 = if+ ti(i- m)N, 
ao = 1, ai "' exp{if + ti(i- m)N}, i = 1, ... , m. Hence am "' 
emf and ai - 0, i = 1, ... , m- 1. Therefore Po - 1/(1 + emf), 
Pi - 0, i = 1, ... , m- 1 and Pm - emf /(1 +emf). By choosing 
f appropriately h( /1, 12) "' Pm can have a limiting value of any 
7r E (0, 1). 

Now we prove that h is increasing in /1, /2. Since Oai I 0/1 = iai 
and oai/0/2 = i(i- 1)ai/2, then 

(7.8) 

and 

It is straightforward to show that both (7.8) and (7.9) are positive. 
Finally, we outline the proof that 11"12( 7r, /2) is increasing in /2; the 
details of this result are more tedious. Let 

h*('Y1,/2) = ~ (7 ~22)Pi = [~ (7 ~ 22)ai(/1,/2)]jc('Y1,/2), 

so that 11"12(11", 12) = h*(t(12, 7r), 12). Then 

811"12/8,2 [oh* ;o,1][otfo,2] + [oh* /812] (7.10) 

[oh* ;o,1][-ohfo'Y2]/[ohfo'Yd + [oh* fo12] 
s~ 
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With the help of symbolic manipulation software, this can be shown 
to be non-negative. 

7.1.6 Mixture models 0 

A mixture model that generalizes (7.2) to a general dependence 
structure is: 

f(y) = f ITP]j(l- Pi)l-y; G(dp), 
J[O,l)m j=l 

(7.11) 

where G is a cdf with support in [0, 1]m. Compared with (7.2), 
this generalization has m distinct probability parameters that are 
mixed instead of one. 

To get a parametric family with flexible dependence structure, 
one choice for G is the multivariate logit-normal family; P is mul­
tivariate logit-normal with parameters p and~= (ujk), if 

(log[Pl/(1- PI)], ... , log[Pm/(1- Pm)]) "'Nm(Jl, ~). (7.12) 

The univariate logit-normal density with parameters J.t, o-2 is: 

¢>( {log[p/(1- p)]- p}/u) · [up(1- p)t 1 , 0 < p < 1, 

where ¢> is the standard normal pdf. This univariate family has 
the approximate shapes of the family of beta densities; the density 
is unimodal if u is small and U -shaped if u is sufficiently large 
(except the density approaches 0 at the end points of 0 and 1). 
The log of the density is a constant plus -tu- 2{log[pj(1- p)]­
p}2 -logo- -log[p(1- p)] and this has derivative equal in sign to 
-{log[p/(1- p)]- p} +u2(2p-1). Hence the above description of 
the density follows. 

IfP has cdf GandY has the pmfin (7.11), then E (}j) = E (Pj ), 
Var(}j) = Var(Pj) + E[Pj(1- Pj)] = E(Pi)[1- E(Pj)], j = 
1, ... , m, and Cov (}j, Yk) = Cov (Pj, Pk), j -=f. k. Hence the model 
is not identifiable, unless some univariate parameters are fixed, e.g., 
uJi. For further analysis of this model, we assume that O"jj = o-2 

for all j. In this case, J.ti is the parameter for the jth univariate 
margin and the correlation Pik = O"jk/o-2 is the parameter for the 
(j, k) bivariate margin for j -=f. k. 

Let ~ = o-2 R, where R is a correlation matrix, and let Z "' 
Nm(O, R). Assuming (7.12), a stochastic representation for P is 
Pi = [1 + exp{ -(o-Zi + J.ti )}]- 1, j = 1, ... , m. The resulting mul­
tivariate binary distribution in (7.11) has univariate parameters 
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7rj = E(Pj) = Pr(}j = 1), and 

m 

Pr(}j = Yi,j = 1, ... , m) = E [IT Pji(l- Pi) 1-Yi] 
i=1 

m 

= E {II[1 + exp{(1- 2yi )(uZi + Jli )}]-1 }. (7.13) 
i=1 

Marginal distributions of (7 .11) have a similar form. For 1 ::; j ::; m, 
7ri is an increasing function of Jli with u 2 fixed. As u2 -+ oo with Jli 
fixed, 7ri -+ t, and as u2 -+ 0 with Jli fixed, 7ri -+ (1+e-~<i )-1. The 
(j, k) correlation of (7 .11) is Corr (}j , Yk) = [Pr(}j = Yi , Yk = Yk)-
7ri7rk]/ V7ri(1- 7ri )7rk(1- 7rk)· For fixed Jli and 7ri, i = 1, ... , m, 
Corr (}j, Yk) increases as Pi k increases. A wider range exists for 
Corr (}j, Yk) as u 2 increases. For example, as u2 -+ 0, Corr (}j, Yk) 
goes to 0 for all j f:. k. Hence for application of model (7.11), it 
might be best to fix u 2 at a large enough value in order to allow a 
wide range of dependence. 

The multivariate probit model (see the next subsection) is in­
cluded as a special limiting case of (7 .11). Let J.li = Vj u, j = 
1, ... , m. Then as u2 -+ oo, the limit of (7.13) is 

Pr((-1)YiZi < -(-1)Yivi, j = 1, ... ,m). 

A given 1ri is achieved in the limit if vi is chosen to be <J>- 1( 1ri) 
where <I> is the standard normal cdf. 

A special case of (7.11), which compares with (7.6) and the model 
in Exercise 4 .1 , is 

J ft { [pi(a))Yi[1- Pi(a)F-Yi} dM(a), 
i=1 

(7.14) 

where M is the distribution of a rv A. If Y has the distribution 
in (7.14), then Y1, ... , Ym are conditionally independent given A. 
If the functions Pi(-) belong to the same parametric family p(·; 8), 
then (7.14) can be written as 

j IT { [p(a; 8i)]Yi[1- p(a; 8i)F-Yi} dM(a), 
i=1 

(7.15) 

Conaway (1990) has a model ofform (7.15), with M being a gamma 
distribution and -log[-logp(a; 8)] =a+ 8. 
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7.1. 7 Latent variable models 0 

A general approach is to assume that there is a continuous la­
tent vector, or equivalently the latent variable model comes 
from the discretization of a continuous m-variate family F ( ·; 9) E 
F(Fa, ... , Fa). We use a stochastic representation to present the 
model. Let Z,.... F, with each Zj ,.... Fa. Define a binary random vec­
tor Y with }j = I(Zj $ aj ), j = 1, ... , m. This corresponds to a 
discretization ofF or Z, and Z is a latent vector. (Alternatively, one 
could define }j = I(Zj > aj ), but the former usage corresponds to 
that in univariate logistic and pro bit regression.) There are m uni­
variate parameters: aj for cutoff points or 7rj = Fa(aj) for binary 
probability parameters. The number of dependence parameters is 
equal to the dimension of 9. IfF(-; 9u) is the Frechet upper bound, 
then the distribution of Y is the Frechet upper bound with uni­
variate Bernoulli ( 7rj) margins. If there is a covariate vector x, then 
the parameters l¥j and 9 can depend on x. 

To generalize the probit model for a binary response to a mul­
tivariate probit model, Fa is the standard normal cdf and F is 
a MVSN cdf with correlation matrix R = 9 (with m(m - 1)/2 
parameters). The multivariate binary probabilities are: 

Pr(}j = Yi , j = 1, ... , m) 

= Pr((-1)1-Yi Zj $ ( -1)1-Yiaj, j = 1, ... , m), (7.16) 

for y E {0, l}m, where Z,.... Nm(O, R). 
Usually, in the multivariate probit model, l¥j is linear in the 

covariates and 9 is constant over the covariates. Extensions such 
that the correlation matrix is a function of the covariates are not 
easy. An example is given in the next subsection, and other possible 
extensions are also left as an unsolved problem. 

To generalize the logit model or logistic regression to a mul­
tivariate logit model, Fa is the (standard) logistic distribution, 
Fa(z) = (1+e-z)- 1, and afamilyofmultivariatelogistic distribu­
tions is needed for F. There is no obvious or natural choice, but 
candidates are F = C(Fa, ... , Fa; 9) for families of copulas C( ·; 9) 
with a wide range of dependence. Additional desirable properties to 
yield a multivariate logit model are: (i) closed form for the copulas 
(since one reason for the popularity of the logit model in compar­
ison to the probit model is the closed form of the former); and (ii) 
reflection symmetry. 

For the bivariate case, perhaps the families B2 and B3 of cop­
ulas are better because of the reflection symmetry property. These 
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families of copulas C have the possibly desirable property of 
C(u1, u2; 8) = u1 + u2 - 1 + C(l- u1, 1 - u2; 8), which means 
that the latent variable model does not depend on the orientation 
of the discretization, i.e., }j = I(Zj ::; ai) and }j = I(Zj > ai) 
are equivalent in use. Also they extend to negative dependence, 
and if (U, V) "' C( ·; 8), then (U, 1 - V) has a copula within the 
same family, since u- C( u, 1 - v; 8) = C( u, v; 8-1) for the family 
B2 and u - C( u, 1 - v; 8) = C( u, v; -8) for the family B3. There 
are no known extensions of these families that have similar invari­
ant properties in higher dimensions. Hence possible copulas in the 
multivariate case are those from Section 4.3 or 5.5 that have a wide 
range of dependence, or from the construction in Section 4.8. 

To get a model with copulas with the exchangeable type of de­
pendence, one can consider Archimedean copulas. With '1/J( s) = 
-8-1log(l- [1- e- 8]e- 3 ), 8 > 0, the permutation-symmetric ex­
tension of the family B3 is 

m IJ.(l _ e-8ui) 
C{u;8) = 'I/J(~'I/J- 1 {uj)) = -8-1log(l- ({ _ e- 8 )m-1 ). 

;=1 
(7.17) 

This extension does not have the property of reflection sym­

metry, which would hold if U"' C and U 41- U. We show the 
lack of the property form= 3, and this then follows also form> 3. 

We now refer to the copula in (7 .17) as Cm to show explicitly 
the dimension m. We will show that 

Ca(l- u1, 1- u2, 1- ua) = u1 + u2 + ua- 2 + C2(l- u1, 1- u2) 

+C2(l-u1, 1- ua) +C2(l- u2, 1- ua)- Ca(l- u1, 1- u2, 1- ua) 
(7.18) 

is not the same as (7.17). Let a= 1- e- 8 • Expanding (7.17) and 
(7.18) about u = 0 when u1 = u2 = ua = u, leads to: 

• C3 ( u, u, u) "' -8-1 log[l - 83u3 / a 2] "' 82u3 f a 2; 

• 1- e-8(1-u) "'a- (1- a)8u[l + 8u/2 + 82u2 /6]; 

• 1 - (1 - e- 8(1-u))2 fa "' e- 8 [1 + 28u + 82(2a- l)a-1u2 + 
(3a )- 103 ( 4a - 3)u3]; 

• C2(l- u, 1- u)"' 1- 2u + Ba- 1u2 - 82a-1u3 ; 

• 1- {1- e-8(l-u))3 fa 2 "' e- 8 [1 + 3Bu + 3B2a-1( -2 + 3a)u2 /2 + 
B3a-2{2- lOa+ 9a2)u3 /2]; 

• Ca(l- u, 1- u, 1- u)"' 1- 3u + 38a- 1u2 - 82a-2(4a + l)u3 ; 
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• C3(1- u, 1- u, 1- u)......, 3u- 2+3[1- 2u+Bo:- 1u2- B2o:-1u3]­
[1- 3u + 3Bo:- 1u2 - B2o:- 2(4o: + 1)u3] = B2o:- 2u3(1 + o:) = 
B2o:-2u3(2- e-9). 

Since 2- e- 9 > 1 forB> 0, C3(1- u, 1- u, 1- u) > C3(u,u,u) 
for B > 0 and u near 0. The inequality is reversed for the range 
of negative B for which C3 is a negatively dependent copula (see 
the family M3E in Section 5.4). For the expansions, a result that 
is used is 

with b1 = a1, b2 = a2- ai/2, b3 = a3- a1a2 + aV3. 
The generalization of (7 .17) to allow for a more flexible depend­

ence structure is obtained by substituting a family of max-id cop­
ulas for the K;j in (4.25) or (4.31) with this 1/J. The result is 

m 

C(u)=-B-1log[1-(1-e- 11 ) IT K;j(u;,ui)ITur•], (7.19) 
l~i<j~m i=l 

where Uj = [(1 - e-llui)/(1- e- 11 )]Pi, Pi = (vj + m- 1)-1, j = 
1, ... , m. Also other families of LTs, such as LTA, LTB LTC in the 
Appendix, can be used in (4.25) or (4.31), so that many combina­
tions of families for 'ljJ and K;j exist. 

Another choice for the distribution of the latent random vector 
is the multivariate copula with general dependence structure from 
the Molenberghs and Lesaffre construction in Section 4.8 with bi­
variate copulas in the family B2 or B3. Actually the multivariate 
objects in Section 4.8 have not been proved to be proper multi­
variate copulas, but they can be used for the parameter range that 
leads to positive orthant probabilities for the resulting probabilities 
for the multivariate binary vector. With the choice of the bivariate 
copula family B2 or B3, and with parameters 1/Js = 1 for lSI 2: 3, 
the property of reflection symmetry holds. 

For all of these models, for the extensions to include covariates, 
the univariate cutoff parameters can be made linear in the covariate 
as in logistic regression, and the dependence parameters of the 
multivariate copulas could be taken as constant or as functions of 
the covariates (as in the multivariate pro bit model, the latter may 
not be easy or obvious to specify). 

For applications of the models in this section, see Sections 11.1 
and 11.2. 
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7.1.8 Random effects models 

This subsection combines some of the ideas in the preceding two 
subsections, by introducing random effects in which parameters 
of a simpler model are assumed random. The resulting models 
could be considered as mixture models as well as random effects 
models. This type of model is reasonable if subjects each have out­
comes that follow the simple model but with different parameters. 

Let Y be an m-variate binary vector. Suppose }j = I(Zj ~ aj) 
where the aj are random, the Zj have distribution F0 , and the }j 
are conditionally independent given the ai. Hence 

Pr(}j = 1, 'Vj) = f Fo(a!) · · · Fo(am) G(da1, ... , dam), 
}~m 

where G is the cdf of (a1, ... , am)· 
For the case of a covariate column vector x, write }j = I(Zj ~ 

aj + fJjx), where the ai and {3j are random and the }j are condi­
tionally independent given the aj and {3j. (The {3j are row vectors.) 
Then 

Pr(Yl = 1, ... , Ym = 1) = j F(al + /11x) · · · F(am + Pmx) 

·G(da1, ... , dam, d/11, ... , d/1m)· 

In the remainder of this subsection, we specialize to the case 
of a MVN latent vector. First consider the case of no covariates. 
If Z1, ... , Zm are iid N(O, 1) and (a1, ... , am) ......, N(JJ, D) with 
n = (wii ), then }j = I(Zj ~ J.li ), where (Z~, ... , z:n) is MVN with 
zero mean vector and covariance matrix :E = (<Tij), <Tjj = 1 +wii• 
j = 1' ... 'm, and <Tij = Wij' i I- j. As the parameters JJ, n vary, all 
MVN distributions are possible for the latent vector (Zf, ... , z:n) 
(by letting J.li, Wij be arbitrarily large). 

Next consider the case of a scalar covariate and m ~ 2. Suppose 
Z ......, Nm(O,R) where R = (Pii)· Let }j = I(Zi ~ ai + /3jx), 
j = 1, ... , m, with 

(a f3) "' N2m ( ( JJ v) ' ( r~ ci'o)) ' 
independently of Z, where a= (a1, .. . ,am), fJ = (/31, .. . ,f3m), 
and n = (Wij), no = (wlj), r = (lij) are m X m matrices. Then 
for j = 1, ... , m, }j = I(Zj ~ J.li + lljx), with 

Var(Zj) = <Tjj(x) = 1 +wii + x2wjj + 2X/jj· 
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The covariance of Zi, Zj for i =/= j is 

Cov(Zf,Zj) = u;j(x) = Pij +w;j + x2wij + x('Yij +/ji). 

This model is equivalent to the stochastic representation }j 
I(Zj' ~ (Jli +vix )/ Jujj(x )), where Zj' have variances of 1 and the 
correlation of (Zi', Zj') is Uij(x )/ y'uii(x )ujj(X ). The special case of 
0 = 0° = r = 0 leads to the usual multivariate probit model. The 
univariate margins are <P((Jlj + Vjx)/Jujj(x)) so that the cutoff 
points are non-linear functions of x and do not necessarily have 
limits of 0,1 as x --+ ±oo. This model has a lot of parameters, but 
some of the latent covariances can be set to 0 for simplification. 

Note that the derivations given above lead to 'natural' forms for 
correlation matrices that are functions of the covariates, but also to 
univariate margins that are not probit models. However, one could 
still consider a multivariate probit model with covariates with a 
correlation matrix of the form in the preceding paragraph. 

7.1.9 Other general dependence models 

There are many other possible models for multivariate binary re­
sponse. For example, the exponential family models of Section 7 .1.5 
can be generalized to accommodate more general dependence, but 
still have the undesirable property of non-closure under the taking 
of margins. An exponential family for a multivariate binary re­
sponse with covariates is derived in Section 9.2.3 from conditional 
logistic regressions. Another approach comes from a representation 
of the multivariate Bernoulli distribution; this is given below with 
the bivariate case first. 

Let P(Yl, Y2) = Pr(Y1 = Y1, Y2 = Y2) and let Pl (y!) = Pr(Y1 = 
y!), P2(Y2) = Pr(Y2 = Y2), Yl, Y2 = 0, 1. If the correlation is fixed 
asp, then for Yl, Y2 = 0, 1, 

p(y,,y,;p)=p,(y,)p,(y,){ I+ p [X<~~~~~)][;"'(~;;~~)]}. 
(7.20) 

This parametrization may not be very desirable because from (7.1) 

max{ -J P1(1)p2(1)/[pl(O)p2(0)], -VPl (O)p2(0)j[p1(1)p2(1)]} ~ p 

~min{ VP1(1)p2(0)/[pl(O)p2(1)], VP1(0)p2(1)/[p1(1)p2(0)]}. 
There are further modelling problems if Pi(Yj;x), j = 1,2, are 
functions of the covariate vector x (either p depends on x or it is 
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constant over x with further constraints). 
Next let p(y) = Pr(}j = Yi, j = 1, ... , m), and let Pi (Yj) 

Pr(}j = Yj), 'lrj = Pj(1) and Zj = (Yj -7rj)/V7rj(1-7rj), j 
1, ... , m. A multivariate extension of (7.20) is 

m 

p(y; m, ps, S E Sm) = II 7rJi (1- 'lrj )1-Yi { 1 + 2::: Ps II Zk }. 
i=1 S:ISI?:2 kES 

(7.21) 

There are constraints on the parameters ps in order that (7.21) is 
non-negative for ally, but all multivariate Bernoulli distributions 
have this representation. It is straightforward to show that (7.21) 
is closed under margins with no change to the parameters {ps}. 
For example, 

p(y1, ... , Ym-1, 0; m,ps, SESm)+P(Y1, ... , Ym-1, 1; m, ps, SESm) 

= p(y1, ... , Ym-1; m- 1, Ps, S E Sm_l). 

Let Zj = (}j- 7rj)/J7rj(1-7rj), j = 1, ... ,m. From the closure 
property, it follows that for S with lSI 2: 2, 

E [II zk] = E* [II zk{ 1 + LPT II Zr }] = ps, 
kES kES T rET 

where E • is an expectation assuming the }j are independent Ber­
noulli rvs with respective parameters 'lrj (and hence Z1, ... , Zm are 
independent rvs with mean 0 and variance 1). In particular, the 
parameter ps is the correlation of }j, YJ' if S = {j, j'}. 

There are too many parameters for (7.21) to be useful as a model 
for multivariate binary data, unless m is small, such as 2 or 3. 
Also it may not be a convenient form for extensions to include 
covariates. However, its closure property makes it better than an 
exponential family model with high-order moment terms. If (7.21) 
is truncated after the bivariate or trivariate terms (i.e., lSI :::; 2 
or lSI :::; 3), the result may not cover much range of dependence. 
For example, for the Frechet upper bound when the univariate 
margins all have a mean of 1r, the representation (7.21) hasps = 
[(1- 7r)ISI-1 + 7riSI-1( -1)ISI]j[7r(1- 7r)]l8 1/2- 1 (the details are left 
as an exercise). 

7.1.10 Comparisons 

In this subsection, we make some comparisons of the multivari­
ate binary distributions in the preceding subsections. The first is a 
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comparison of the most negatively dependent distribution among 
exchangeable families of multivariate Bernoulli distributions. For 
this comparison, we derive the most negatively dependent distri­
bution among all multivariate exchangeable Bernoulli distributions 
with marginal probability 1r (of getting a 1). A second comparison 
is for the trivariate case and considers the range of one bivariate 
margin given the other two bivariate margins are fixed; this uses 
the bounds of the Frechet class :F(F12, F23) in Section 3.2. A third 
comparison for the trivariate case considers the range of the trivari­
ate margin given the three bivariate margins; this uses the bounds 
of the Frechet class :F(F12, F13, F23) in Section 3.4. For both the 
second and third comparisons, summaries are given for the trivari­
ate probit model. Other (numerical) comparisons of these types 
can be done for the models in Section 7.1, although we do not do 
so because of space considerations. 

For the most negatively dependent multivariate exchangeable 
Bernoulli distribution, first suppose that m = 3. We give more 
details for the trivariate case, as the solution in this case led to the 
conjecture of the solution in the multivariate case. Let 1f = 1 - 1r. 

Consider the three-way table, such that the (1,2), (1,3) and (2,3) 
. . . [ 7f2 + (} 1f'1f - (} ] . • b1vanate margms are _ (} 2 (} . Then for the tnvanate 

1f'1f'- 1f' + 
distribution with /ijk = Pr(Y1 = i, Y2 = j, Y3 = k), the bivariate 
constraints lead to fooo = x, fool= fo10 = !1oo = 1f2+B-x, !au= 
!Io1 = /uo = 7r7f-7f2-2B+x, !Iu = 7r2+7f2-7r7f+3B-x. The non­
negativity of each term implies x 2: 0, x- (} :::; 7f2, x- 2(} ;::: 7f2 -1r1f 
and x - 3(} :::; 1r2 + 7f2 - 1r1f. An analysis of the inequalities in an 
( x, B) graph leads to a minimum of (} = ( 1r1f- 1r2 - 7f2) /3 ( x = 0), 
a correlation of !(1- 1rj1f -1fj1r), if 1/3:::; 1f:::; 2/3; to(}= -1r2 
(x = 37f- 2), a correlation of -1rj1f if 1f > 2/3; and to(}= -7f2 
(x = 0), a correlation of -1fj1r if7f < 1/3. 

Hence for 1f 2: 2/3 or 1r :::; 1/3, the non-zero probabilities are 
fooo = 37f- 2 = 1- 37r, /oo1 = /o10 = /10o = 1r. This is a Frechet 
lower bound distribution, and also if X is the number of 1s among 
Y1, Y2, Y3, then X has a (generalized) hypergeometric distribution. 
If 1r = n-1 where n 2: 3 is an integer, then the hypergeometric 
distribution is (!)(~=D/(~), k = 0, 1, or respectively, (n- 3)/n = 
1 - 37r and 3/n = 37r. If 1r is not the reciprocal of an integer, then 

( 1) (n -1) · · ·(n- 3 + k)/n(n -1)(n- 2) 
k ( k)' ' k = 0, 1, 3- . 3! 

leads to the same distribution as in the preceding sentence. Sim-
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ilarly, if 1r > 2/3, the non-zero probabilities are fi 11 = 37r - 2, 
lou = !Io1 = /uo = 1 - 1r. If 1/3 < 1r < 2/3, the non-zero 
probabilities are /oo1 = /o10 = /100 = 2/3 - 1r and lou = !Io1 = 
/ 110 = 1r - 1/3. There is no Frechet lower bound distribution for 
1r in this range (see Example 3.1). Also, there is no relation to a 
hypergeometric distribution except when 1r = t· 

For the general multivariate situation, the most negatively de­
pendent m-variate exchangeable binary distribution has pmf 

{ 
(r + 1- m7r)/(';.'), if I>i = r, 

/i1i2· .. ;m= (m7r-r)/{/;1), ifl:ij=r+1, (7.22) 
0, otherwise, 

when r :::; m1r < r + 1. Let Y be such that k ... ;m = P(Y1 = 
i1, .. ·, Ym = im)· Then E (Y1Y2) = r(2m7r- r -1)/[m(m -1)] and 
the pairwise correlation of rvs is 

p = [m(: _ 1) (2m7r- r- 1)- 1r2] /[7r(1- 1r)]. 

An outline of the proof is as follows. To obtain f correspond­
ing to a most negatively dependent distribution (in the multivari-
ate concordance ordering), one should minimize fo ... o followed by 
f 0 ... 01. etc., as well as minimize fi ... l followed by fi ... lo, etc. Hence 
/; 1 ; 2 ... ;m is non-zero for at most two distinct values of 2: ij; the 
distinct values are unique for a given 1r. 

Next we show that (7.22) is at the boundary of the exponential 
family model (7.7) in Section 7.1.5. Using the notation there, (7.22) 
obtains when 12 ---+ -oo. The proof is divided into cases with 1r E 
[rjm, (r + 1)/m), r = 0, 1, ... , m- 1. Let f be a (fixed) real. 

(a) First suppose 12 = -N and /1 ---+ f, with N ---+ oo. Then 
a; ---+ 0 for i = 2, ... , m, ao = 1 and a1 ---+ e'. Hence c ---+ 

1 +me', Po ---+ [1 + me']- 1, PI ---+ e' /[1 +me'] and h( 11, 12) "' 
p1 ---+ e'/[1 +me']= 1r. As f varies from -oo to oo, 1r can be 
in the range (0, m-1) for this case (of r = 0). 

(b) For r > 0, suppose /2 =-Nand /1 "'rN + f, with N---+ oo. 
Then a; "'exp{if + N[ri- i(i- 1)/2]}, i = 0, ... , m. Since 
ri- i(i- 1)/2 is maximized at r(r + 1)/2 for i = r and 
r + 1, then p; ---+ 0 for i ::/= r, r + 1, Pr ---+ [(';') + V;\)e']- 1 , 

Pr+1---+ e'[(';.') + (r~1)e'J- 1 and 

( m- 1) (m-1) (';'~11)+(m; 1)e' 
h(/1,/2)"' r- 1 Pr+ r Pr+1"' (';.')+C~1 )e' =7r. 

(7.23) 
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Table 7.2. Correlations of most negatively dependent multivariate ex-
changeable Bernoulli distributions within some parametric families. 

m 7r (7.22) (7.4) (7.16) 

3 0.1 -0.111 -0.053 -0.103 
3 0.2 -0.250 -0.111 -0.197 
3 0.3 -0.429 -0.176 -0.271 
3 0.4 -0.389 -0.250 -0.317 
3 0.5 -0.333 -0.333 -0.333 

4 0.1 -0.111 -0.034 -0.083 
4 0.2 -0.250 -0.071 -0.143 
4 0.3 -0.270 -0.111 -0.184 
4 0.4 -0.250 -0.154 -0.208 
4 0.5 -0.333 -0.200 -0.216 

5 0.1 -0.111 -0.026 -0.068 
5 0.2 -0.250 -0.053 -0.111 
5 0.3 -0.190 -0.081 -0.139 
5 0.4 -0.250 -0.111 -0.155 
5 0.5 -0.200 -0.143 -0.161 

The right-hand side of (7.23) is an increasing function off so 
that 1r can be in the range [r/m, (r + 1)/m]. 

Hence the form of the limiting cases with /2 -+ -oo is the same as 
(7.22). 

We next compare the negative dependence of other models to 
(7.22). Table 7.2lists the correlation of the most negatively depen­
dent multivariate exchangeable Bernoulli distribution for certain 
values of m and 1r, as well as the correlation of the most negatively 
dependent distribution in the family (7.4) and in the multivariate 
probit model (7.16). For the probit model, the correlation in Table 
7.2 comes from using -( m - 1 )- 1 for the latent equicorrelation 
parameter. There is symmetry about 0.5, in that the correlations 
for 1r are the same as those for 1 - 1r, so Table 7.2 has only 1r in 
the range of 0 to 0.5. The table shows that the multivariate probit 
model attains a greater range of negative dependence than (7.4). 

A second comparison is made in the trivariate case for the range 
of the third bivariate margin given the other two bivariate margins. 
Some calculations are done with the trivariate probit model. Let 
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Table 7.3. Bounds for 1r13 = P13(1, 1} given 1r1, 1r2, 1r3, 1r12, 11"23: nonpara-
metric versus trivariate probit. 

Nonpar. Pro bit 

71"1 71"2 71"3 71"12 71"23 L u 7rL• 7ru. 71"13 7r 13 13 13 

0.3 0.3 0.3 0.090 0.090 0.000 0.300 0.000 0.300 
0.3 0.3 0.3 0.157 0.157 0.014 0.300 0.033 0.300 
0.3 0.3 0.3 0.115 0.211 0.026 0.204 0.041 0.200 
0.3 0.3 0.3 0.033 0.033 0.000 0.300 0.033 0.300 
0.3 0.3 0.3 0.066 0.005 0.000 0.239 0.042 0.200 
0.3 0.3 0.3 0.033 0.157 0.000 0.176 0.000 0.157 

0.5 0.5 0.5 0.250 0.250 0.000 0.500 0.000 0.500 
0.5 0.5 0.5 0.333 0.333 0.166 0.500 0.166 0.500 
0.5 0.5 0.5 0.282 0.398 0.180 0.384 0.180 0.384 
0.5 0.5 0.5 0.167 0.167 0.166 0.500 0.166 0.500 
0.5 0.5 0.5 0.218 0.102 0.384 0.500 0.180 0.384 
0.5 0.5 0.5 0.167 0.333 0.000 0.334 0.000 0.334 

0.1 0.5 0.7 0.050 0.350 0.000 0.100 0.000 0.100 
0.1 0.5 0.7 0.084 0.422 0.006 0.100 0.035 0.100 
0.1 0.5 0.7 0.064 0.471 0.035 0.100 0.040 0.100 
0.1 0.5 0.7 0.016 0.278 0.006 0.100 0.035 0.100 
0.1 0.5 0.7 0.036 0.229 0.035 0.100 0.040 0.100 
0.1 0.5 0.7 0.010 0.422 0.000 0.100 0.000 0.094 

(Y1, Y2, Y3) be a trivariate binary random vector, and, for j f:. k, let 

Pik(Yj,Yk) = Pr{}j = Yj, Yk = Yk) and 11"jk = Pik(1, 1). Given 7rj = 
Pr{}j = 1), j = 1, 2, 3, and 11"12, 11"23, we compare the maximum and 
minimum value of 1r13 for the pro bit model with the non parametric 

bounds. Let Pj12(Yi IY2) = Pr{}j = Yi IY2 = Y2) for j = 1, 3; these 
can be written in terms of 1r1, 1r2, 11"3, 11"12, 71"23· Using Theorem 3.10, 
the nonparametric bounds are: 

1 

1rf3 def l)P112{1Iy) + P312{1ly)- 1]+ Pr{Y2 = y) 5 1r13 
y=O 

1 

< L min{P112{1Iy),p3l2(1ly)} Pr(Y2 = Y) ~ 1rf3· 
y=O 
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Table 7.4. Bounds for P123(1, 1, 1) given 11"1, 11"2, 11"3, 11"12, 11"13, 11"23: non-
parametric versus trivariate probit. 

11"1 11"2 11"3 11"12 11"13 11"23 L 71"123 11"123 7rf23 

0.3 0.3 0.3 0.090 0.090 0.090 0.000 0.027 0.090 
0.3 0.3 0.3 0.157 0.157 0.157 0.014 0.101 0.157 
0.3 0.3 0.3 0.115 0.100 0.211 0.026 0.078 0.100 
0.3 0.3 0.3 0.033 0.100 0.033 0.000 0.002 0.033 
0.3 0.3 0.3 0.066 0.100 0.005 0.000 0.001 0.005 
0.3 0.3 0.3 0.033 0.100 0.157 0.000 0.025 0.033 

0.5 0.5 0.5 0.250 0.250 0.250 0.000 0.125 0.250 
0.5 0.5 0.5 0.333 0.333 0.333 0.166 0.250 0.333 
0.5 0.5 0.5 0.282 0.282 0.398 0.180 0.231 0.282 
0.5 0.5 0.5 0.167 0.333 0.167 0.000 0.083 0.167 
0.5 0.5 0.5 0.218 0.282 0.102 0.000 0.051 0.102 
0.5 0.5 0.5 0.167 0.167 0.333 0.000 0.083 0.167 

0.1 0.5 0.7 0.050 0.070 0.350 0.020 0.035 0.050 
0.1 0.5 0.7 0.084 0.080 0.422 0.064 0.071 0.080 
0.1 0.5 0.7 0.064 0.070 0.471 0.035 0.058 0.064 
0.1 0.5 0.7 0.016 0.080 0.278 0.000 0.009 0.016 
0.1 0.5 0.7 0.036 0.070 0.229 0.006 0.012 0.035 
0.1 0.5 0.7 0.016 0.050 0.422 0.000 0.012 0.016 

The bounds 1rf; and 1rf3* within the trivariate probit distributions 
come from using the bounds for p13 in the inequality: 

P12P32- V1- Pi2V1- P~2 ~ P13 ~ P12P32 + V1- Pi2V1- P~21 
where ai = <I>- 1(7rj), j = 1,2,3, and Pi2 is the unique root of 
<l>2(aj, a2; Pj2) = 11"j2, j = 1, 3, with <1>2 being the BVSN cdf. 
The bounds for 11"13 are given in Table 7.3 for selected values of 
1r1, 1r2, 11"3, 1r12, 11"23· The values suggest that the trivariate pro­
bit model achieves a wide range of (bivariate) dependence among 
trivariate Bernoulli distributions. 

A third comparison is made for the range of the trivariate distri­
bution given the three bivariate margins. We again use the trivari­
ate probit model to illustrate the comparisons and use the same 
notation as before. Let P123(Y1, Y2, Y3) = Pr(Y1 = Y1, Y2 = Y2, Y3 = 
y3). Given 11"j = Pr(}j = 1), j = 1, 2, 3, and compatible prob-
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abilities 1r12 = P12(1, 1), 11"13 = P13(1, 1), and 11"23 = P23(1, 1), we 
compare the value of 11"123 = P123(1, 1, 1) for the probit model with 
the nonparametric bounds. From the proof of Theorem 3.11, sharp 
bounds on 11"123 are 

. { } def u 
1r123 ~ mm 1r12, 11"13, 11"23, 1 - 1r1- 11"2 - 11"3 + 1r12 + 11"13 + 11"23 = 7r 123· 

However, for the trivariate probit model, there is a unique value 
of 1r123 given 11"1, 1r2, 11"3, 11"12, 11"13, 11"23, since the given quantities 
uniquely determine the parameters o:1, o:2, o:3, P12, P13 and P23 of 
the trivariate pro bit distribution. Hence the trivariate (and the 
general multivariate) probit model does not allow a range of third­
and higher-order dependence. The bounds for 1r123 are given in 
Table 7.4 for selected values of 11"1, 1r2, 11"3, 11"12, 11"13, 11"23· 

7.2 Multivariate count 

Models for univariate count data are the Poisson distributions and 
larger families that include the Poisson distributions. One such 
family combines the negative binomial, Poisson and two-parameter 
binomial distributions into a two-parameter family. For distribu­
tions for count data, an important summary is the index of dis­
persion or variance to mean ratio. This is 1 for Poisson distribu­
tions; if it is larger (less) than 1, then the distribution is said to be 
overdispersed (underdispersed) relative to Poisson. 

Models for multivariate count data include mixture models and 
copula-based models. 

7.2.1 Background for univariate count data 0 

Let the negative binomial, Poisson and two-parameter binomial be 
parametrized by the mean J.L and v, where D = v + 1 is the index 
of dispersion. Then the negative binomial distribution has pmf: 

f(k . J.L v) = f(k + J.Lfv) vk(1 + v)-k-pfv k 0 
' ' k!f(J.Lfv) ' = ' 1, ... ; 

it has mean J.L = 8qfp, variance 0"2 = 8qfp2 and v = p- 1 - 1. The 
two-parameter binomial distribution has mean J.L = np, vanance 
0" 2 = npq and v = -p; its pmf is 

. _ f(1- J.L/v) k -k-pfv 
f(k,J.L,V)- k!f(1 -k-J.Lfv)(-v) (1+v) , 
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k = 0, 1, ... , -J.L/11. These can be combined together as one family 
(including the Poisson distribution when v = 0), if written as 

f(k; J.L, 11) = (k!)- 1 J.L(J.L + 11) · · · (J.L + [k- 1]11)(1 + 11)-k-Jjlv, 

k = 0, 1, ... , min{=, -J.L/11 }. 
The negative binomial distribution obtains as a Gamma(J.L/11, 11) 

mixture of Poisson distributions. That is, let Y "' Poisson (a) given 
A= a and A"' Gamma(J.L/11, 11). Then for y = 0, 1, ... , 

Pr(Y = y) = =-:-----:--:-11- Jj I" e- a I" --da l oo aJjlv-1 e-aay 

0 f(J.L/11) y! 

f(y + J.L/11) Y(l + )-y-Jjlv 
y!f(J.L/11) II II . 

Other mixing distributions for overdispersed Poisson models in­
clude the lognormal and inverse Gaussian distributions. More gen­
erally, consider f(y) = J000 [y!J- 1aYe-adM(a), y = 0, 1, ... , where 
M is a distribution function on (0, = ). Let A"' M and let Y have 
the pmf f. Then E(Y) = E(A) and Var(Y) = E[Var(YIA)] + 
Var [E (YIA)] = E (A)+ Var (A). Hence D = Var (Y)/E (Y) 2: 1, 
with equality only when A has a degenerate distribution. Therefore 
general mixtures of Poisson distributions are overdispersed relative 
to Poisson. 

Another model with overdispersion is the generalized Poisson 
family (see Problem 7.2). 

7.2.2 Multivariate Poisson ° 
A natural bivariate Poisson distribution has the stochastic rep­
resentation (Y1, Y2) 4 (Z1 + Z12, Z2 + Z12), where Z1, Z2, Z12 are 
independent Poisson rvs with parameters fh, 82, 812, respectively. 
This, together with its m-variate extension to a construction based 
on 2m - 1 independent Poisson rvs, is a special case of the mul­
tivariate models given in Section 4.6. A Markov chain time series 
model based on this multivariate distribution is given in Section 
8.4, with a data analysis example in Section 11.5. 

Other multivariate Poisson distributions obtain from copulas 
with univariate Poisson margins. These may not as interpretable, 
but copula-based models with appropriate families of parametric 
copulas can cover a wide range of dependence, including negative 
dependence, whereas the bivariate and multivariate Poisson distri­
butions from Section 4.6 have positive dependence only. 
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7.2.3 Mixture models and overdispersed Poisson ° 
In this subsection, we parallel the development in Section 7.1, with 
mixtures of independent Poisson rvs instead of Bernoulli rvs to ob­
tain multivariate distributions. We start with exchangeable mix­
tures and then go on to general mixtures. 

An exchangeable mixture model is: 

f(y) = tXJ fr [e-a a~~] dM(a). 
lo i=1 Y; · 

(7.24) 

The main drawback with this model is that the univariate mar­
gins cannot be separated from the dependence. (For the mixture 
of Bernoulli distributions, the problem did not occur because a 
mixture of Bernoulli distributions is still Bernoulli.) If A "' M, 
then for (7.24), E (}j) = E (A), Var (}j) = E (A) + Var {A), j = 
1, ... , m, and Cov (}j, }j1) = Var (A), j "I j'. The equicorrelation 
parameter is p = Var (A)/[E (A)+ Var (A)] = D/(1 +D), where 
D = Var (}j )/E (}j ). Hence the correlation is increasing as the 
index of dispersion D increases. 

For example, if M is the Gamma(B, u) distribution, (7.24) is a 
multivariate negative binomial distribution with pmf 

!( ) = f(B + Y+) -9( -1 + )-9-y+ 
y r( 8) fl Yi ( u m ' 

Yi=O,l, ... , 

where Y+ = I:j=1 Yi. The expectations, variances and covariances 
are: E(}j) = Bu, Var(}j) = 8u(u + 1), Cov(}j, Yj1) = Var(A) = 
8u2 . Therefore p = Corr (}j, }j 1) = u / ( u + 1), j "# j', and both 
D = u + 1 and p are increasing as u increases. 

One can also take gamma mixtures of an exchangeable multi­
variate Poisson distribution in order to get an exchangeable nega­
tive binomial multivariate distribution. Take Y given A = a to 
have the stochastic representation Z + Zo, where Zj are inde­
pendent Poisson ( a8j) rvs, j = 0, 1, ... , m, 81 = ... = Bm = 8 
and A"' Gamma(J.t/ll, v). Then the pmf of Y is: 

~ ~~-~/vf(y+- [m- 1)i + J.tfv) I}~ rrm /}YJ-i 

f(y) = t;o" (m8 + 80 + 1/v)Y+-(m- 1 )'+~/vf(J.t/v) iT i=1 (Yi - i)!' 

(7.25) 
where Y+ = I:j=1 Yi, Ymin = min{y1, ... , Ym}. 

With (7.25), E(}j) = (8+8o)J.t, Var(}j) = (8+8o) 2J.tv+(8+8o)J.t 
and Cov (}j, }j 1) = ( 8 + 80 ) 2 J.tll + 80 J.t, j -:p j'. The sum 8 + Bo can 
be taken to be 1 without loss of generality. Then D = v + 1 and 
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p = Corr (Yj, Yj,) = (v + 00 )/(v + 1), j -::j:. j', where 0:::; Bo :::; 1. 
This family is still quite restricted in the range of dependence; 
the confounding between the index of dispersion and the range of 
dependence has not been eliminated. 

A mixture model, which includes (7.24) and allows the univariate 
margins to be different, is: 

100 IT { exp{ -1(a, (}i )}[1(a, (}i )]Yi /Yi! }dM(a), 
0 j=1 

(7.26) 

where 1( a, B) ~ 0 and M is the mixing distribution of a rv A. If 
Y has the distribution in (7 .26), then Y1, ... , Y m are conditionally 
independent given A; compare (7.15) and Exercise 4.1. 

To get a model with greater flexibility in dependence structure 
and indices of dispersion, consider using an m-variate mixing dis­
tribution. This leads to the pmf 

f(y) = { fr [e-ai a~:] G(da1, ... , dam)· (7.27) 
J[o,oo )m j =1 Y; · 

A concordance study is not possible but through conditional ex­
pectations one can study correlations. Let (A1, ... , Am)"' G, and 
suppose (Y1, ... , Ym) has pmf f. Then E (Yj) = E (Aj ), Var (Yj) = 
Var (Ai) + E (Aj ), j = 1, ... , m, and Cov (Yj, Yk) = Cov (Aj, Ak), 
j -::j:. k. Therefore the correlation of Yj, Yk is 

Cov(Aj,Ak) 
Pik = [Var(AJ)+E(Ai)]li2[Var(Ak)+E(Ak)Jll2" 

Hence negatively correlated Aj imply negatively correlated }j but 
to a lesser extent. The upper limit Pik --> 1 is reached if Aj = Ak 
and Var (Aj )/E (Aj)--> oo. 

The choice of multivariate lognormal mixing distribution for G 
is a special case, with a wide range of dependence. This leads to 
the multivariate Poisson-lognormal distribution. Let 

g(8; JJ, E)= (27r)-mi2(B1 ... Bm)-11EI-1/2 

·exp{-t(log8-p)E-1(log8-JJ?}, Bj >0, 1:Sj:Sm, 

be the m-variate lognormal density, with mean vector JJ and co­
variance matrix E = (O"ij), where logO= (logB1, ... ,logBm)· The 
multivariate Poisson-lognormal distribution is 

Pr(Y1 = Y1, ... , Ym = Ym) = f(y; JJ, E) 

= Jro,oo )m TIJ=1 P(Yi; a j) · g( 01; JJ, E) dOt, (7.28) 
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Yi = 0, 1, 2, ... , j = 1, ... , m, where p(y; o:) = e-ao:y fy!. There is 
no simpler form, but moments have closed forms: 

E (}j) = exp{J.tj + tuii} ~f /3j, Var (}j) = /3j + /3] [exp( O"jj) - 1], 

Cov (}j, Yo~:) = /3j {3.~; [exp( O"j .~:) - 1], j f:. k. 

The (j, k) correlation Pik is 

~(eq;k- 1) 
Pi k = -vr.[=:=1 +====::f3;=i (;=e7q ;=; =_=:1~) ];:;::[ 1:=+===;:;/3.~::,(;=eq=k=k =_=:1~) l 

The range of correlations depends on the univariate parameters 
J.li, O"jj, j = 1, ... , m. For example, if J.li = J.lk = J.l, O"jj = uu = o-2 , 

O"j k = wo-2, /3j = {3.~; = {3, then 

f3[e-q 2 - 1] f3[eq 2 - 1] 
--=-..,....---,---=-.,.- < p . k < ---'--=--,----,--=--
1 + {3( eq2 - 1) - 3 - 1 + {3( eq2 - 1 )" 

A multivariate gamma distribution would be needed to get a 
multivariate distribution in (7.27) with negative binomial margins, 
but there is no known multivariate gamma distribution with con­
venient form for the pdf or cdf that leads to a simple form for 
(7.27). 

For addition of a covariate vector x, the parameters of the mixing 
distribution G can depend on x. For example, for the multivariate 
Poisson-lognormal distribution, JJ can depend on x, say through a 
linear function. As for the multivariate probit model, the depend­
ence of the covariance matrix E on x is harder to specify. 

7.2.4 Other models 

The mixture models in the preceding subsection have univariate 
margins and an amount of dependence that depends on the mixing 
distribution. Although perhaps not as interpretable, copula mod­
els with dependence separated from the univariate margins (say, 
negative binomial or generalized Poisson) could be used as models 
for multivariate count data. The parametric families of copulas in 
Chapter 5 could be used. 

7.3 Multivariate models for ordinal responses 0 

Latent variable models from Section 7 .1. 7 generalize with more cut­
off points and so can also be used for ordinal categorical response 
variables. These models also are physically meaningful because one 
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can usually assume that there is a continuous latent variable associ­
ated with an ordinal categorical variable. A data analysis example 
with latent variable models for a multivariate ordinal response is 
given in Section 11.2. 

The other models for a multivariate binary response vector do 
not extend to a multivariate ordinal random vector. One could mix 
multinomial distributions, but the ordinal feature of the categorical 
variable would not be used; such models are given in the next 
section on multivariate models for nominal responses. 

For a latent variable model, we discretize a continuous m­
variate family F(-; 6) E :F(Fo, ... , Fo). We first use a stochastic 
representation to define the model. Let Z"" F, with each Z; ""Fo. 
Define a random vector Y of ordinal categorical components with 
}j = k ifaj,k-1 < Zj :S aj,k, k = 1, .. . ,rj, where Tj is the number 
of categories of the jth variable, j = 1, ... , m. (Without loss of 
generality, assume <Yj,o = -oo and ai,ri = oo for all j.) From this 
definition, 

There are :Lj=1(rj- 1) univariate parameters or cutoff points. 
Univariate probability parameters are 7rjk = Fo(aj,k)- Fo(aj,k-d, 
k = 1, ... , Tj - 1, j = 1, ... , m. The number of dependence para­
meters is the dimension of (J. 

If there is a covariate vector x, then the parameters aj,k and (J 
can depend on x, with the constraint that a;,k-1(x) < <Yj,k(x). 

To generalize the pro bit model to a multivariate pro bit model, 
F0 is the standard normal cdf and F is a MVSN cdf with correl­
ation matrix R = (J (with m( m- 1) /2 parameters). Usually, in the 
multivariate probit model, <Yj,k is linear in the covariates (this is 
acceptable with different regression coefficients for different cutoff 
points of the same variable if the range ofx is not too large) and (J is 
constant over the covariates. A multivariate logit model obtains 
if F0 is the logistic cdf. 

7.4 Multivariate models for nominal responses 

Classes of models that extend those in Section 7.1 are mixtures 
of multinomial distributions. A multinomial distribution could in­
clude something like a bivariate Bernoulli distribution, since the 
categories, which could be labelled as (0,0), (0,1), (1,0), (1,1), are 
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not ordered. Consider first the exchangeable case in which the nom-
inal rvs Y1, ... , Y m take values of 1, ... , r for categories 1 to r (with 
r > 2). Let Ij/c = I(yj = k), j = 1, ... , m, k = 1, ... , r. Then a 
multivariate model is 

f(y) = J fr TI>!jk G(dp), 
j=11c=1 

where G is a distribution on the simplex Sr = {p : L:~= 1 Pi = 
1,pi ~ 0}. 

A possible mixing distribution G is the Dirichlet distribution 
with density {f(a1 +· · ·+ar)/[f(al) · · ·f(ar)]} I1~= 1 p~k- 1 . This 
leads to 

( ) Il~-1 Il~~~ 1 (a~c + £) { } f y;a1, ... ,ar,m = m-1 , Yi E 1, ... ,r, 
Ilt=O (a+ + £) 

where s~c = L:j=1 Ij/c is the number of occurrences of category 

k among the m responses, a+ = L:~=l a1c and a null product is 
defined to be 1. Analogous to (7.4) and with a similar proof, this 
extends to 

( ) n~-~ n;~~ 1 (7rlc +£1) 
fy;7r1,···,7rr,l,m = (l+l)···(l+[m-1]1)' (7.29) 

where the parameters satisfy 1r1c ~ 0 and 1r1c + (m- 1)1 ~ 0, 
k = 1, ... , r, and L:~=l 1r1c = 1. 

With the coefficient C 1 .~. 8 J in front of the right-hand side of 
(7.29), the Dirichlet-multinomial distribution obtains for 1 > 0, the 
multinomial distribution obtains for 1 = 0 and some multivariate 
hypergeometric and multivariate P6lya-Eggenberger distributions 
obtain for 1 < 0. 

A model for nominal rvs Y1, ... , Y m with the same r categories, 
but without necessarily the same univariate margins, is 

f(y) = j IT IT[p~c(a,Oj)Vik dM(a), 
j=llc=l 

(7.30) 

where L:~= 1 p~c(a,O) = 1 for all a and 0. This model generalizes 
(7.15) and has conditional independence. If A has distribution M 
and Y has the distribution in (7.30), then (7.30) is equivalent to 

Pr(Y1 = Y1, ... , Ym = Ym) = j fi Pr(Yj = Yj J A= a) dM(a), 
j=1 
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where Pr(}j = k I A= a)= Pk(a, Bj ). 
For a general dependence model, with rj categories for the nom­

inal variable }j, one can use a more general mixing distribution. Let 
Ijk = I(yj = k), j = 1, ... , m, k = 1, ... , rj. Then a multivariate 
model is 

m rj 

J(y) = j II II p~{,k G(dp1, ... , dpm), 
j=lk=l 

where Pi = (Pjl, ... , Pir,) and G is a distribution on the product 
of simplices Sr1 X · · · X Sr"'. 

7.5 Bibliographic notes 

An early paper on the analysis of multivariate binary data is Cox 
(1972). Prentice (1986) has the extension of the beta-binomial 
distribution without mention of the hypergeometric and P6lya­
Eggenberger distributions; see Johnson and Kotz (1977) for the 
latter. The representation in Section 7.1.9 is given in Bahadur 
(1961). The most negatively dependent exchangeable multivariate 
Bernoulli distribution in Section 7.1.10 was obtained by T. Hu. 

References for the multivariate probit model are Ashford and 
Sowden (1970) and Lesaffre and Molenberghs (1991) for binary 
responses, and Anderson and Pemberton (1985) for ordinal re­
sponses. Meester and MacKay (1994) make use of the exchangeble 
extension of the copula family B3 as a latent variable distribution 
for clustered correlated ordinal response. More on multivariate log­
istic distributions can be found in Arnold (1991; 1996). 

Connolly and Liang (1988) generalize (7.3) to include covariates 
for the case of cluster or familial data, with the exponential family 
type model: Aexp{logj(y;a1,a2,m)+ L::;(.B;xi)yi}, where A is a 
normalizing constant and f is given by (7.3). 

The gamma mixture of bivariate Poisson distributions is given 
in Kocherlakota and Kocherlakota (1992). See Aitchison and Ho 
(1989) for the multivariate Poisson-lognormal distribution. A uni­
fication of mixture and random effects models for count and binary 
data is given in Xu (1996). 

Section 7.2 has multivariate negative binomial distributions that 
arise from the generalization of gamma mixtures of Poisson distri­
butions. Other multivariate negative binomial distributions come 
from multivariate waiting times that generalize the waiting time to 
the rth success; see Marshall and Olkin (1985) and Kocherlakota 
and Kocherlakota (1992). Also there are multivariate negative bi-
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nomial distributions that come from generalizing the univariate 
probability generating function; see for example Doss (1979). 

Form= 2, McCloud and Darroch (1995) have the model (7.30) 
in Section 7.4 with a special form for Pk (a, Oi). 

There are other classes of models for multivariate binary and 
discrete data in the statistics literature. They are not mentioned 
here because they do not fit within the framework of the approach 
in this book. One class that may overlap is that in Glonek and 
McCullagh (1995). In the bivariate case, their model is equivalent 
to the use of the copula B2 in Section 5.1 with the dependence para­
meter linear in covariates. Their multivariate extension appears 
to overlap with that of Molenberghs and Lesaffre (1994), but the 
approach is different from that in Section 7.1.7. The framework 
of generalized linear models (McCullagh and Neider 1989) is not 
used, as it is tied to exponential families and does not seem to lead 
to a unified approach for models for multivariate responses. 

7.6 Exercises 

7.1 Show that any bivariate Bernoulli distribution obtains as a 
latent variable model with the family B3 of copulas (with 
extension to negative dependence), but that not all trivariate 
Bernoulli distributions obtain as latent variable models from 
the trivariate family M3 of copulas in Section 5.3. 

7.2 Consider a non-homogeneous Poisson process N in ~2 with 
intensity function A and mean value function p. Let R1 , R2 

be regions in ~2 with non-empty intersection. For j = 1, 2, 
let }j = N ( Rj) be the count of the process in region Rj. 
What is the joint distribution of (Y1, Y2)? 

7.3 Verify the derivation of the first- and second-order moments 
for the multivariate Poisson-lognormal distribution. 

7.4 Study the range of dependence for the multivariate Poisson­
lognormal distribution. 

7.5 Consider a bivariate Poisson distribution with the BVN cop­
ula with correlation p and univariate Poisson(J.Lj) margins, 
j = 1, 2. Let (Y1 , Y2 ) be a random pair with this distribu­
tion. Investigate (analytically and computationally) how the 
correlation of Y1, Y2 varies as p, /Jl, /J2 vary. For p = -1, how 
does the correlation of Y1, Y2 vary with /Jl, f.L2 and what is 
the minimum correlation? 

7.6 Verify the special cases of the family in (7.29). 
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7.7 Show that (7.21) is closed under margins. 

7.8 For the Frechet upper bound when the univariate margins 
are Bernoulli{1r), show that the representation (7.21) has 

Ps = [(1 _ 7r)ISI-l + 7riSI-l( _ 1)ISI]j[1r(1 - 7r)]ISI/2-l, 

for S E Sm, lSI~ 2. 

7.9 Compare different choices of the bivariate family K;j in 
{7.19). Are there other choices of LTs and bivariate cop­
ulas in {4.25) or {4.31) that would be lead to a suitable 
multivariate copula for the latent random vector for binary 
rvs? 

7.10 Show that (7.8), (7.9) and (7.10) are non-negative. 

7.11 Do a dependence analysis of latent variable multivariate bi­
nary models that come from using the Molenberghs-Lesaffre 
construction with the bivariate family B2 or B3; obtain a 
summary comparable to that in Table 7.3. 

7.12 (Construction of a negatively dependent bivariate Poisson 
distribution.) Let f{yl,Y2;nl,n2,Poo,pol,Pl0,Pl1) be a bi­
variate binomial pmf with univariate Binomial ( ni, 7rj) mar­
gins, j = 1,2, where 1r1 = P10+Pu, 1r2 =Pol +pu. (Assume 
that a Binomial(0,1r) distribution means a degenerate distri­
bution at 0.) Let N1, N2 be random variables taking values 
on the non-negative integers. Suppose that Pr(Y1 = y1, Y2 = 
Y2l N1 = n1,N2 = n2) = f(Yl,Y2;nl,n2,Poo,Pol,Pl0,Pl1)· 

(a) Show that if Nj,...., Poisson(Bj), j = 1,2, with N1 inde-
pendent of N2 , then }j,...., Poisson(B7rj), j = 1,2. 

(b) Show that if Poo, Pol, PlO, Pu are such that the bivari­
ate binomial distribution is negatively dependent for all 
n1, n2, then the unconditional distribution of (Y1, Y2) is 
negatively dependent (say, as measured by the covari­
ance or correlation). 

(c) One possible bivariate binomial distribution has the 
stochastic representation: 

n1An2 n 1 

(51' 52)= L (Xil, X;2) + I(nl > n2) ( L xil, 0) 
i=l i=n 2 +1 

n2 

+I(n1<n2)(o, L X;2), 
i=nt+l 
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where {Xi!, X; 2 ), i = 1, 2, ... , are iid bivariate Bernoulli 
random pairs with parameters Poo, Pol, Plo, Pu (see Sec­
tion 7.1.1). Obtain the pmffor this distribution. 

(d) Show that ifpu-7r17r2 < 0, then the distribution in (c) 
has negative correlation. 

7.13 Study the dependence structure of the models in (7.14) or 
(7.15). 

7.14 Study the dependence structure of the model in (7.26). 

7. 7 Unsolved problems 

7.1 The generalized Poisson distribution {see Consull989, for 
details) has pmf: 

f(x) = B(B + TJX)"'- 1e_8_,., fx!, x = 0, 1, ... , (} > 0, TJ 2: 0. 

This is based on the identity e8 = L::o(i!)-1B(B+iTJ)i-le-i". 
An unknown property is whether this family of distributions 
is a mixture of Poisson distributions (when TJ > 0, (} > 0). 

7.2 Consider a multivariate probit model in which the correl­
ation matrix depends on the covariates. What are choices of 
functions for the correlation matrix? Or, what are functional 
forms that guarantee a positive definite correlation matrix in 
the range of the covariates? [Note that one example is given 
in Section 7.1.8.] 

7.3 Let }j = I(Zi:::; o:j), j = 1, 2, with {Z1, Z2) being BVSN with 
correlation p. Let PB(o:1,o:2;p) be the correlation ofY1,Y2. 
Numerically the behaviour of PB is as follows: 

(i) for p > 0, PB(o:, o:, p) decreases as Jo:J increases; 

(ii) for p < 0, PB < 0 and IPB(o:,o:,p)J decreases as Jo:J 
increases; 

(iii) for p > 0, PB ( 0:1, 0:2, p) is unimodal in o:2 with o:1 fixed 
and the mode is between 0 and 0:1; 

(iv) for p < 0, IPB(o:1,o:2,p)j is unimodal in 0:2 with 0:1 
fixed and the mode is between 0 and -0:1. 

Establish these properties analytically. Note that these results 
imply that for p > 0, PB(o:b 0:2, p) is maximized at o:1 = 0:2 = 
0 with a value of~ arcsin(p) {see Exercise 2.14). 



CHAPTER 8 

Multivariate models with serial 
dependence 

In this chapter, we present some (multivariate) models for time 
series, longitudinal or repeated measures (over time) data when 
the response variable can be discrete, continuous or categorical. 
The multivariate dependence structure is time series dependence 
or dependence decreasing with lag. Stationary time series mod­
els that allow arbitrary univariate margins are first studied and 
then generalized to the non-stationary case, in which there are 
time-dependent or time-independent covariates or time trends. It 
is considerations of having univariate margins in given families that 
make the models here different from the approach of much of the 
research in the time series literature. 

For time series with normal rvs, standard models are autore­
gressive (AR) and moving average (MA) models. These can be 
generalized for the convolution-closed infinitely divisible class (see 
Section 8.4). In allowing for time series models with arbitrary uni­
variate margins, autoregressive is replaced by Markov and moving 
average is replaced by k-dependent (only rvs that are separated by 
a lag of k or less are dependent). These are studied in Sections 8.1 
and 8.2, respectively. In particular, the case of Markov of order 1 
as a replacement for autoregressive of order 1 is a simple starting 
point, and these types of models can be constructed from families 
of bivariate copulas. For these Markov models, general results on 
the decrease in dependence with lags are given in Section 8.5. 

In Section 8.3, latent variable models, mainly based on the MVN 
distribution with correlation matrix of the form of stationary auto­
regressive moving average (ARMA) time series, are considered. 

The models in this chapter are applied in the data analysis ex­
amples in Sections 11.4, 11.5 and 11.6. 

The following is a summary of the main ideas of the chapter. 
Let {Yi : t = 1, 2, ... } denote a stationary time series. For Markov 
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models, let { <t} be an iid sequence of rvs such that <t is independent 
of {Yt-1, Yt-2, ... }. A classification is: 

(a) Markov of order 1: yt = g(Yt-1, <t) for some real-valued func­
tion g; 

(b) AR(l): yt = aYt-1 + <t, where a is a scalar; 

(c) convolution-closed infinitely divisible univariate margin: yt = 
At(Yt-d + <t, where At are independent realizations of a 
stochastic operator. 

For !-dependent models, let { Et} be an iid sequence of rvs. A clas­
sification is: 

(a) !-dependent: yt = h(<t, <t-d for some real-valued function h; 

(b) MA(l): yt = <t + f3<t- 1 , where f3 is an appropriate scalar; 

(c) convolution-closed infinitely divisible univariate margin: yt = 
<t + At(<t-d; where At are independent realizations of a 
stochastic operator. 

Obviously, given yt ,...... F, the possible choices of <t depend on F. 

8.1 Markov chain models 

For time series with non-normal response variables, one possible 
class of models consists of Markov chains, with the simple case 
being those of order 1. If the order of the Markov chain is not 
mentioned, then it may be taken to be 1. 

8.1.1 Stationary time series based on copulas 0 

A (stationary) Markov chain of first order with any given univari­
ate margin can be constructed from a bivariate copula. (This is 
an important application of copulas.) This is a generalization of 
the normal AR(l) time series to those which admit any possible 
univariate margin, since the normal AR(l) time series arises as a 
special case with the bivariate normal copula and a univariate nor­
mal margin. A Markov chain of second order, with any given uni­
variate margin, can be constructed from a trivariate copula which 
has the property that the (1,2) and (2,3) bivariate margins are the 
same. This generalizes the AR(2) normal time series. Extensions 
to Markov chains of higher order require multivariate copulas with 
the obvious constraints on the margins. 

The description of the stationary Markov chain time series based 
on a (twice differentiable) bivariate copula C(u, v) is given next, 



MARKOV CHAIN MODELS 245 

separately for the absolutely continuous case and the discrete case 
of non-negative integers. Let the time series be denoted by Y1 ,Y2, ... 
or{yt:t=1,2, ... }. 

(a) Absolutely continuous case. Suppose yt ...., F, where F is a 
continuous univariate cdf with density f. Then F12(x, y) = 
C(F(x), F(y)) is a bivariate distribution with univariate mar­
gins both equal to F. Let C211(vlu) = (8Cj8u)(u, v) denote 
the conditional distribution of the copula. The transition dis­
tribution of {Yt} is 

H(YtiYt-1) =Pr(yt ~ Yti"Yt-1 = Yt-d = C2p(F(yt)IF(Yt-1)). 

(b) Discrete case. Suppose yt takes values on the non-negative 
integers. Let F and f be the cdf and pmf, respectively. As 
above, F12(x, y) = C(F(x), F(y)) is a bivariate distribution 
with univariate margins both equal to F. The transition dis­
tribution of {Yt} is 

H(YtiYt-1) = Pr(yt ~ Yt I Yt-1 = Yt-d 

= [C(F(Yt-d, F(yt))- C(F(Yt-1- 1), F(yt))] I f(Yt-d· 

If a bivariate distribution in F12 E :F(F, F) is not conveniently 
specified through a copula, then the equivalent of (a) or (b) can still 
be obtained directly from F12· This is done in Section 8.4 for mul­
tivariate distributions with univariate margins in a convolution­
closed infinitely divisible class. 

If a parametric family of copulas, such as one of those in Section 
5.1, that interpolates between independence and the Frechet upper 
bound is chosen, then one has a parametric family of time series 
models, which includes an iid sequence at one boundary and a 
perfectly dependent (or persistent) sequence at the other boundary. 

Stationary Markov chains of order m - 1 can be constructed 
from an m-variate copula C that satisfies the following conditions: 
(i) the bivariate margins C;j are such that Ci,i+l = C1,1+L, £ = 
1, ... , m- 2, i = 2, ... , m- £; (ii) the higher-dimensional margins 
are such that C;,, ... ,ik = C1h-i,+1, ... ,ik-h+1 for 1 ~ i1 < · · · < 
ik ~ m, 3 ~ k ~ m-1; and (iii) Cis differentiable in its first m-1 
arguments. 

For the trivariate case, these conditions become C12 = C23 . Can­
didates for families of trivariate copulas with these conditions are 
in Sections 4.3 and 4.5. 

If F1···m = C(F, ... , F) is an m-variate cdf, such that F is ab­
solutely continuous and C is a copula with the above properties, 
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then the transition cdf of the stationary Markov chain is: 

( I ) a(F(Yt-m+t), ... , F(yt)) 
H Yt Yt-m+l, ... , Yt-1 = b(F( ) F( )) , Yt-m+l , ... , Yt-1 

where 

and 
8m-lcl···m-l 

b(u1, ... ,um-d= 8 8 (ul, ... ,Um-d, 
U! ... Um-1 

with cl···m-1 being an (m- !)-dimensional marginal of c. 

8.1.2 Binary time series 

We look at simple Markov chains of order 1 for binary time series, 
and consider several ways to extend these to include covariates. Of 
particular interest is how logistic regression can be incorporated. 
The models that can be constructed depend on the nature of the 
data, such as whether: (i) there is one time series, or time series for 
many different subjects; (ii) the time series are short, moderate­
length or long, and equal or unequal in length, if there are many 
different subjects; and (iii) covariates are time-varying or time­
independent. 

We start with the simple stationary case with the marginal prob­
ability of 1 being p = 1 - q. Consider the Markov chain based on 
the bivariate distribution 

P= [Poo Pol]= [q 2 +B p~-B], 
P1o Pu pq - B p + B 

where - min{p2 , q2 } ~ B ~ pq (B is the covariance). The transition 

matrix is 

H=[Poio PliO]=[q+Bfq p-Bfq]. 
Poll Plll q-8/p p+Bfp 

If {Yi} is a stationary Markov chain with transition matrix H, the 
joint distribution of (Y1, Yj) is Pi= PHi- 2 = Pj_ 1H, j ~ 3, with 

[ q
2 + B · 1 pq - B · 1 ] 

P2 = P. Suppose Pj-1 has the form _ 83.- 2 + 8~- ; then 
pq j-l p j-1 

p. H- [q 2 +Bi-1B/(pq) pq-Bj-18/(pq)] 
J-l - pq- Bi_ 1Bf(pq) p2 + Bi-18/(pq) ' 

so that Pj has the same form as Pj-1 with Bj = Bj-18/(pq). Since 
82 = B, then Bi = Bi- 1 f(pq)i- 2 , j ~ 3. Note that ifO < B < pq then 
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the dependence on Pj is decreasing as j increases. More specifically, 
ei f(pq) is the correlation and its absolute value is decreasing geo­
metrically. In the form of a fixed lag 1 correlation p, the transition 
matrix is H = [ 1 - p( 1 - p) p(l - p) ] . 

(1-p)q p+pq 
To get a parametric family of models, one can take P to come 

from a family of discretized bivariate copulas, i.e., Poo = C(o:, o:; c5) 
or p11 = C(o:, o:; c5) for some o: for a family C(·; c5). For this model, 
the correlation p of two binary variables will not be constant over 
o: (or marginal probability p) unless Cis the family Bll in Section 
5.1 with C(u, v; p) = pmin{ u, v} + (1- p)uv. 

If the Markov chain depends on a time-independent covariate 
vector x, then one can have p = p(x) and p = p(x). If pis constant 
over x, then p111 = (1- p)p(x) +pis increasing as p(x) increases. 
For example, with a logistic regression margin, p(x) = ea+fJx /(1 + 
e01+fJx), where x is a column vector and {3 is a row vector, 

Pr(Yt = 1 I Yi-1 = 0, x) = (1- p)ea+fJx /(1 + ea+fJx) 

and 

Pr(yt = 1 I Yi-1 = 1, x) = (p + ea+fJx)/(1 + ea+fJx). 

The constraint on p is that p ~ -e01+fJx for all x. Note that the 
conditional probabilities are not logits. 

For the situation in which there are time-dependent covariates 
or there is non-stationarity, we can look at transition matrices 
that take (1, ePx1 )/(1 + ePx1 ) to (1, ePx2 )/(1 + ePx2 ), or (q 1 ,p1) 

to (q2, P2)· With the correlation p fixed, the transition matrix 

[ 1-a a] . has the form 1 _ b b , w1th a = P2 - PVP1P2q2/q1 and b = 

P2 + p-jq1q2P2/P1· Therefore if P1,P2 depend on time-varying co­
variates, the transition probabilities depend on the covariates at 
the current and next time points. This may be reasonable, but the 
assumption of the correlation being fixed over all possible marginal 
probabilities is unlikely to be so. 

Next consider the situation of specified conditional probabilities 
with covariates that are not time-varying. If one requires the con­
ditional probabilities to be logits, then what is the marginal sta­
tionary probability p(x) = Pr(Yi = llx)? Let P;l;(x) = Pr(Yt = j I 
Yt-1 = i, x), i, j = 0, 1. Suppose log[p1ly(x)/Poly(x)] = o:+f3x+'YY· 
(This form is chosen so that P111(x)- p11o(x) has the same sign for 
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all x.) The transition matrix (Pilj(x)) is 

[ 1/(1 + ea+Px) ea+Px /(1 + ea+Px) ] 
1/(1 + ea+r+Px) ea+-y+Px /(1 + ea+-y+Px) · 

The condition 1 > 0 corresponds to positive serial dependence and 
1 < 0 corresponds to negative serial dependence of lag 1. The 
stationary probability p(x) satisfies 

ea+Px ea+-y+Px 
(1 - p(x)) 1 + ea+Px + p(x) 1 + ea+-y+IJx = p(x), 

so that 

p(x) Pllo(x)/[pllo(x) + Po11(x)] 

ea+Px(l + ea+-y+Px)/(1 + 2ea+Px + e2a+-y+2Px). 

Hence the marginal probability is not logit or close to logit. Let 
b = ea+Px and c = e'Y. Then p(x) increases as {3x increases since 

Pllo(x)/Poll(x) = b(1 +bc)/(1 +b) is the product of two terms that 
are increasing in b. 

Note that in general, any two of the functions p(x), p110 (x), 
p111(x) determine the third for a stationary binary Markov chain 
with time-independent covariate (assuming compatibility). Altern­
atively, p(x) and the correlation (or another dependence measure) 

p(x) determine Pllo(x), P111(x). 
We next consider what might be done if there are observed bi­

nary time series on many subjects. The type of modelling that is 
possible might depend on the lengths of the series (see the begin­
ning of Chapter 10). If one has a long stationary binary time series 
for each subject, one could estimate the parameters, such asp and 
p, by subject, and then regress these on the covariate vector x be­
fore combining everything. Another possibility is a Markov chain 
random effects model, with parameters that vary with subjects. If 
there are many subjects and short series, it might be harder to 
use a random effects model, and one possibility for an initial data 
analysis is to aggregate subjects by clustering of covariates and 
estimate parameters within each group (cluster). 

8.1.3 Categorical response 

If the response is a categorical variable, either nominal or ordinal, 
then the ideas in the preceding subsections can be extended to a 
Markov chain with more than two states. That is, one can start 
with a stationary Markov chain and then make modifications to 
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include covariates. If there are r categories for the categorical re­
sponse, then the transition matrix has potentially r( r - 1) para­
meters if there are no covariates, and more parameters if there are 
covariates. If the response is ordinal, it may be possible to reduce 
the number of dependence parameters by using a copula-based 
Markov chain model, as given in Section 8.1.1. 

In the statistical literature, Markov models have been commonly 
used, but not usually with considerations of both the univariate 
marginal distributions and the transitional probabilities. The spe­
cific details of the modelling depend on the nature of the data and 
the types of inferences of interest. Factors include: (i) whether the 
data are aggregated at each time point or consist of individual time 
series; and (ii) whether a stationarity assumption can be made or 
whether there is non-stationarity such as a progression through a 
sequence of states. 

8.1.4 Extreme value behaviour 

This subsection is concerned with extreme value dependence be­
haviour for stationary Markov chains with state space ~- This be­
haviour is relevant for extreme value inference from time series. 

If the bivariate copula has (upper) tail dependence (see Section 
2.1.10), then the time series {Yt} with continuous univariate mar­
gin F has clustering of observations above high thresholds (extreme 
value dependence). The property of upper tail dependence implies 
that the extremal index f3 of the time series is less than 1 (in fact, 
less than 1- A, where A is the upper tail dependence parameter). 
The extremal index can be interpreted roughly as the reciprocal 
of the mean length of clusters of consecutive values above high 
thresholds. More rigorously, for a stationary dependent sequence, 
the extremal index is defined as 

f3~f lim -logFn(Yn)/[-nlogF(yn)] 
n-+oo 

with Yn l oo at an appropriate rate, where F is the univariate 
marginal cdf and Fn is the distribution of max{yt, ... , Yi+n-d 
With this definition, Fn(Y) ~ pnf3(y) for large y and n. For ARMA 
normal time series, the extremal index is f3 = 1. See the two simu­
lated time series in Figure 8.1 for a comparison of an AR(l) normal 
time series and a time series with a normal univariate margin based 
on the copula C'(u, v; 6) = u + v- 1 + C(1- u, 1- v; 6), where 
C is in the family B4 ( C' has upper tail dependence) with param­
eter chosen so that the Kendall tau value is approximately that 
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of the BVN distribution with a correlation of 0.75. The property 
of tail dependence shows itself clearly. Markov chain models based 
on bivariate copulas with tail dependence can be used to model a 
variety of extreme value (clustering) behaviour. 

For the Markov chains based on bivariate copulas, we will use 
the function 

f3n(Y) =-log Fn(Y)/[-n log F(y)] 

and the limit /3 = limn-+oo liilly-+oo f3n(Y) as the measures of (up­
per) extreme value dependence or clustering. Properties of f3n(Y), 
including inequalities, bounds, limits and monotonicities, which re­
late to (serial) dependence in the stationary sequence, are studied 
as they help in determining what patterns are possible for f3n(y). 

For a stationary dependent sequence {Yt} with univariate margin 
F, let a1(y) = F(y) and let 

a;(y) = Pr(Y; ~ y I Y1 ~ y, ... , Yi-1 ~ y) (8.1) 

fori= 2, 3, .... Then Fn(Y) = TI7=1 a;(y) and 
n 

f3n(Y) = n-1 2:)-loga;(y)]/[-loga1(Y)]. 
i=1 

It should be intuitive that a;(y) converges as i --+ oo, especially if 
the sequence {Yt} does not have long-range dependence. If a;(y) 
converges to a 00 (y), then 

f3n(Y)--+ [-logaoo(Y)]/[-loga1(Y)]~f f3oo(y), n--+ 00. 

A dependence condition implying the monotonicity (and hence 
convergence) of a;(y) in i is given below. 

A rough connection between the extremal index and reciprocal 
cluster size of large exceedances comes from the following results. 
We begin with the inequality: 

/3r(Y) > [1- Fr(Y)]/[r(1- F(y))] (8.2) 

(1- F(y)) + (F(y) -F2(y)) + ... + (Fr-l(Y) -Fr(Y)) 
r(1- F(y)) 

> (Fr-1(Y)- Fr(Y))/(1- F(y)). 

The first inequality comes from [-log a]/[-logb] > (1-a)/(1-b) if 
0 <a< b < 1; the difference of the two quantities in this inequality 
gets smaller as a, b increase towards 1. The second inequality comes 
from the sequence Fi-1(y)-F;(y) = Pr(Y1 > y, Y2 ~ y, ... , Y; ~ y) 
decreasing in i. For fixed r and y, with r large, Leadbetter (1983) 
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Figure 8.1. Comparison of extreme value properties for Markov chains 
based on different bivariate copulas; parameters are (a) p = 0.75 and (b) 
8 = 2.34. 
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interprets the reciprocal of the second term in (8.2) as the expected 
number of exceedances above y in a block of r consecutive yt given 
that at least one of the Yi exceeds y. That is, 

r(1- F(y)) E l::{;j- 1 I(Yi > y) = i~1 

1- Fr(Y) Pr(A) L...J Pr(}'i > y I A) 
i=j 

E l::{;j- 1 I( {Yi > y} n A) 
Pr(A) 

where A is the event {max{}j, ... , YJ+r-d > y}. The exceedances 
in a block can be considered as a cluster. 

Properties of f3n(y): 
(a) (Bound based on a positive or negative dependence condi­

tion.) If the positive dependence condition Fn ;::: pn holds for 
all n, then f3n(Y) :S 1. Similarly, f3n(Y) ;::: 1 if {Yt} exhibits 
enough negative dependence such that Fn :::; pn. 

(b) (Bounds on f3n(y): f3n(Y) can be larger than 1 but not (3.) 
From the Frechet upper and lower bounds for a multivariate 
distribution with given univariate margins, max{O, nF(y) -
(n- 1)} :$ Fn(Y) :$ F(y). The upper bound results when 
Yi = Y1 for all i. The lower bound is probably quite crude 
when considered as a bound for multivariate distributions 
that come from stationary dependence sequences. From these 
bounds, f3n(Y) 2:: n- 1, f3n(Y) :$ -log(np-n+1)/[-n logp] if y 
is such that F(y) = p > 1-n- 1 (and there is no upper bound 
ifF(y) :S 1-n-1). Sincelimp_1 -log(np-n+1)/[-nlogp] = 
1, then limsupy-+oo f3n(Y) :S 1. 

(c) (Monotonicity of ai(Y) in i.) If Fn+1(Y) ;::: Fn(y)F(y) for all 
n, then an(Y) ;::: a1(y) for all n (and hence f3n(Y) :S 1 for all 
n). The preceding statement is also valid with all inequalities 
reversed. Under some stronger positive dependence assump­
tions, a;(y) is increasing in i (which implies that f3n(Y) is 
decreasing inn). Similarly, there are negative dependence as­
sumptions for which a;(y) is decreasing in i. Sufficient condi­
tions for monotonicity of a;(y) are given in Glaz and Johnson 
(1984). By Theorem 2.3 of Glaz and Johnson, a;(y) is increas­
ing in i for all y, iffor all n the density fn of (Y1, ... , Yn) is 
MTP2. 

Next are two examples where ai(Y) is monotone in i. 

Example 8.1 If (Y1, ... , Yn) is MVN with covariance matrix :En 
and inverse covariance matrix An = :E~ 1 = ( aii), then a necessary 
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and sufficient condition for the density of (Y1, ... , Yn) to be MTP2 
is that all off-diagonal elements of An are non-positive. For {Yi} 
being a stationary AR(l) normal sequence with lag 1 autocorre­
lation p > 0, An has the form an = ann = (1 - p2)-1, a;; = 
(1 + p2 )/(1 - p2 ) for 2 :S i :S n- 1, ai,i+1 = ai+1,i = -p/(1- p2 ), 

i = 1, ... , n- 1, and a;j = 0 for li- il 2: 2. Hence the MTP2 
condition holds and a;(y) is increasing in i for ally. 0 

Example 8.2 Let {yt} be a Markov chain of order 1 with contin­
uous marginal distribution F. Let h(Yt-1, Yt) = P(YtiYt-t) be the 
transition pdf. From Proposition 3.10 in Karlin and Rinott (1980a), 
the density ofY1, ... , Yn is MTP2 for all n if his TP2. Let C be the 
bivariate copula associated with (Yi-1, yt). Then his TP2 if the 
density c of C is TP2 since h(Yt-1, Yt) = c(F(Yt-d, F(yt))f(yt). 
The property of TP2 density holds for a number of the families of 
bivariate copulas in Section 5 .1. 

8.2 k-dependent time series models 

MA( k) normal time series models are examples of k-dependent se­
quences. In this section, we look at k-dependent sequences, based 
on copulas, that allow for arbitrary univariate margins. These mod­
els are probably less useful for applications compared with Markov 
models; however, they are included for theoretical completeness. 

8.2.1 1-dependent series associated with copulas 

Let C( u, v) be a bivariate copula with conditional distribution 
C211(viu) = fJC(u, v)fau. The inverse conditional distribution is 
denoted by C~i(siu). Let F be a (continuous) univariate cdf and 
let to, t1, ... be a sequence of iid U(O, 1) rvs. (The development 
could be extended to discrete distributions F.) A !-dependent se­
quence with stationary distribution F is: 

(8.3) 

where 

h(u, v) = F- 1 [C~i(viu)]. 

The marginal distribution is: 

Pr(F- 1 [C~i(ttltt-t)] :S y) = Pr(tt :S C211(F(y)itt-t)) 

= f 0
1Pr(tt :S C211(F(y)iu)) du = f;c211(F(y)iu) du = F(y). 
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The joint distribution of (Yt- 1, yt), Pr(yt_1 :::; x, yt :::; y), becomes 

Pr(it-1:::; C2j1(F(x)kt-2), it:::; C2p(F(y)iit-d) 

1111 
Pr(u2:::; C211(F(x)lu!), it:::; C211(F(y)lu2)) du2du1 

{1 {C211 (F(x)lu,) 

Jo Jo C211(F(y)lu2) du2du1 

11 
C(C211(F(x)lu), F(y)) du. (8.4) 

For the independence copula, note that yt = F-1 (it), t ;:::: 1, is 
an iid sequence. For a BVN copula C(u, v) = cflp(cfl-1(u), q,- 1(v)), 

C2j1(vlu) = cfl([cfl- 1(v) - pcfl- 1 (u))/~), and C~i(siu) = 

cfl(pcfl- 1(u) + ~ q,- 1(s)). IfF= cfl, the sequence becomes 

Yt = pat-1 +~at, 

where at are iid N(O, 1) rvs. The lag 1 correlation is p~, 
which reaches a maximum oft when p = Jf and a minimum of 

,....t when p = -JI. The joint distribution from (8.4) is 

11 cllp([x- pcfl- 1(u)]/~, y) du 

1: cllp((x- pz)j~, y) dcfl(z) 

Pr( ~X+ pZ :::; x, Y :::; y), (8.5) 

where (X, Y, Z) is normal with covanance matrix [~ i ~]· 
0 0 1 

Hence the bivariate distribution in (8.5) is a BVSN distribution 

with correlation p~. 
For the upper Frechet bound copula, C2p(vlu) = 0 if v < u 

and 1 if v ;:::: u. Hence C~i(siu) = u and the sequence reduces 

to yt = F- 1 (it-!), an iid sequence. For the lower Frechet bound 
copula, C211(vlu) = 0 if v < 1- u and 1 if v ;:::: 1- u. Hence 

C~i(siu) = 1- u and the sequence reduces to yt = F- 1(1- it_!), 
another iid sequence. 

Not all !-dependent stationary sequences have a copula repres­
entation. One example consists of the MA sequences in Section 
8.4.2 with univariate margins in the convolution-closed infinitely 
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divisible class. Another example is that if e1, 6, ... are iid, then 
the sequence Xt = max{et, et+d, t = 1, 2, ... , does not have the 
form of (8.3). 

Next we state some properties of the distribution in (8.4). If the 
copula C is PQD, then the distribution in (8.4) pointwise exceeds 

f0
1 C211(F(x)iu)F(y)du = F(x)F(y) so that (8.4) is also PQD. Sim­

ilarly, (8.4) is NQD if C is NQD. A comparison of the copula 

in (8.4) and Cis as follows. Let C*(x, y) = f0
1 C(C211(xlu), y) du 

be the copula in (8.4). Notice that fo1 c2ll(xiu) du = X so that 
if C(-; y) is concave for all y, then C*(x, y) :S C(x, y) for all 
0 :S x, y :S 1. This follows because the condition of concavity is the 
same as C211(yiu) decreasing in u for ally, or equivalently C211(·iu) 
is SI as u increases. Similarly, if C211(·iu) is stochastically decreas­
ing as u increases, then C*(x, y) ~ C(x, y) for all 0 :S x, y :S 1. 

8.2.2 Higher-order copulas 

Let C be a trivariate copula that is differentiable with respect to 
the first two arguments. For stationary 2-dependent sequences with 
univariate margin F, based on a trivariate copula C, the general­
ization of (8.4) is: 

yt = h( ft-2, ft-1, ft), t = 1, 2, 0 0 0' (8.6) 

where 

h(u1, u2, u3) = F-1(C3ji2(u31ut, C~i(u2iul))). 

It is easily checked that the special case of the independence copula 
leads to an iid sequence. 

Let :E = (Pij) be a trivariate correlation matrix. For the trivari­
ate normal copula, C(u) = <'h(<l>-1(ul), <l>- 1(u2), <l>- 1(u3)), 

c3ll2(v31vl,v2) = <1>([<1>- 1(v3)- al<l>- 1(vl)- a2<1>- 1(v2)]/a3), 

where a1 = (Pt3- Pt2P23)/(1- PI2), a2 = (P23- P12Pt3)/(1- PI2), 
a3 = [(1-Pt2-PI3-P~3+2Pt2Pt3P23)/(1-pr2 )]1/ 2 . The model (8.6) 
becomes equivalent to Yi =(at+ a2P12)Zt-2 + a2vll- Pt2 Zt-1 + 
a3Zt, where Zt are iid N(O, 1) rvs. If P12 = P13 = P23 = p--+ 1, 
then a1 = a2 --+ t, a3 --+ 0 and Yi = Zt-2· 

The generalization of (8.6) to k-dependent sequences based on a 
( k + 1 )-dimensional copula C that is differentiable with respect to 
the first k arguments is obvious. 
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Table 8.1. Correlations for binary discretization of extreme 1-dependent 
normal sequences. 

p or q 0.1 0.2 0.25 0.3 0.4 0.5 
6 = 0.5 0.249 0.295 0.308 0.318 0.330 0.333 

6 = -0.5 -0.103 -0.197 -0.237 -0.271 -0.317 -0.333 

8.2.3 1-dependent binary series 

In this subsection, we study some special forms for !-dependent 
stationary binary time series {yt}, in order to obtain bounds on 
the maximum and minimum lag 1 correlations, as a function of p = 
Pr(yt = 1) = 1 - q. This then provides a comparison for studying 
the range of dependence of !-dependent binary time series. 

From consideration of the non-negative definite correlation ma­
trix for an infinite !-dependent stationary sequence, the maximum 
correlation is less than or equal to ~ and the minimum correlation 
is greater than or equal to-~. We have the exact maximum and 
minimum only for some p values and leave the other cases as an 
unsolved problem. The extension to k-dependent stationary binary 
series is also left as an unsolved problem; for the generalization, one 
has to consider an appropriate quantification of 'most dependent' 
and 'least dependent' over lags. 

Candidates to consider for obtaining bounds are the discretiza­
tions of the extreme !-dependent normal sequences { Zt} that have 
lag 1 correlations 6 = ±~; i.e., yt = I(Zt > <1>- 1(1- p)), with 
0 < p < 1. For Bernoulli (p) margins, the lag 1 correlation of {yt} 
is [<1>6(<1>- 1(q), <l>-1(q))- q2]j(pq) with q = 1- p and 6 = ~or -~. 
This leads to the correlation values in Table 8.1 (there is symmetry 
about p = q = ~ ). 

Next we consider some !-dependent sequences given by: 

(a) yt = I(max{et,et-d > s); 
(b) yt = I(min{et,et-d > s); 
(c) yt = /(max{l-et-l,et} > s); 

(d) yt = I(min{l- et-bet} > s). 
In (a) and (b), et are iid continuous rvs, and in (c) and (d), et are 
iid U(O, 1) rvs. In each case, with 0 < p < 1 fixed, scan be chosen 
so that yt is Bernoulli (p). Let P2 = Pr(yt = yt+l = 1), so that the 
correlation is p = (p2 - p2)j(p- p2). 
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Table 8.2. Maximum correlations over the 1-dependent binary sequences 
in {a} and (b). 

p or q 
p 

0.1 
0.487 

0.2 
0.472 

0.25 
0.464 

0.3 
0.456 

0.4 
0.436 

0.5 
0.414 

Table 8.3. Minimum correlations over the 1-dependent binary sequences 
in (c) and {d). 

p or q 
p 

0.1 0.2 0.25 0.3 0.4 0.5 
-0.111 -0.250 -0.333 -0.292 -0.225 -0.172 

For (a), P2 = 1-212 +13 with 1 = (1-p)112. For (b), p2 = p312 • 

For (a) with p :::; ! and (b) with p ~ ! , the correlations exceed 
those in Table 8.1; these are given in Table 8.2 (there is symmetry 
in the maximum correlations about p = q = !)· 

For (c), p = 1- s2 if s = (1- p)112, p2 = 1- 2s2 if s:::;! and 
p2 = 1- 2s2 + s2(2s- 1) if s ~ !· For s :::; ! or p ~ 0.75, this 
leads top= -s2 /(1- s2 ) = -(1- p)jp. For (d), p = (1- s)2 if 
s = l-p112, P2 = 0 if s ~! andp2 = (1-s)2(1-2s) ifs:::; !-For 
s ~ ! or p:::; 0.25, this leads top= -p/(1- p). Table 8.3 has the 
minimum correlations that are possible from (c) and (d) (there is 
symmetry in the minimum correlations about p = q = !). 

An upper bound on the maximum correlation and a lower bound 
on the minimum correlation for a !-dependent stationary binary 
sequence can be obtained by considering three-way tables, four­
way tables, etc., with appropriate margins. Consider the three­
way table such that the (1,2) and (2,3) bivariate margins are 

[q2 +8
8 p~- 88 ] and the (1,3) bivariate margin is [q2 p~]· 

pq- p+ pqp 
Then for the trivariate distribution with Pijk = Pr(yt = i, Yf+l = 
j, Yt+2 = k), the bivariate constraints lead to Pooo = x, Pool = 
PlOD = q2 + 8- x, PolO = q2 - x, Pou = Puo = pq- q2 - 8 + x, 
P101 = pq- q2 - 28 + x, P111 = p2 + q2 - pq + 28- x. The non­
negativity of each term implies 0 :::; x :::; q2, q2 - pq :::; x - 8 :::; q2, 
q2 - pq :::; x - 28 :::; q2 - pq + p2 . The maximum and minimum of 
8 are now reduced to linear programming problems. The inequal­
ities can be drawn in the (x, 8) plane. The maximum is 8 = !pq 
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Table 8.4. Bounds on extreme correlations for 1-dependent binary se­
quences. 

p or q 
UB (max) 
LB (max) 
UB (min) 
LB (min) 

0.1 
0.5 

0.487 
-0.111 
-0.111 

0.2 
0.5 

0.472 
-0.250 
-0.250 

0.25 
0.5 

0.464 
-0.333 
-0.333 

0.3 
0.5 

0.456 
-0.292 
-0.429 

0.4 
0.5 

0.436 
-0.317 
-0.5 

0.5 
0.5 

0.414 
-0.333 
-0.5 

(when x = q2 on the line x- 28 = q2 - pq), and the maximum 
correlation is ~. The graph for the case q < ~ and q ~ p2 leads 
to the minimum 8 value of -q2 (correlation equal to -qjp), from 
the intersection of x = 0 and x - 8 = q2 . The graph for the case 
q < ~ and q > p2 leads to the minimum 8 value of H -q2 + pq- p2) 

(correlation equal to H1- qfp- pfq)), from the intersection of 
x = 0 and x- 28 = q2 - pq + p2 • The graph for the case q 2: ~ 
and p ~ q2 leads to the minimum 8 value of -p2 (correlation 
equal to -pfq), from the intersection of x- 28 = q2 - pq + p2 and 
x- {) = q2 - pq (x = q2 + pq- p 2 ). The graph for the case q 2: t 
and p > q2 leads to the minimum 8 value of H -q2 + pq- p2 ) (cor­
relation equal to ~(1- qfp- pfq)), from the intersection of x = 0 
and x - 28 = q2 - pq + p2 . The constraint p = q2 corresponds to 
q = ( -1 + VS)/2 = 0.618 and p = (3- VS)/2. The bound for the 
minimum correlation is - ~ at q = t and dips below - ~ for q from 
1/3 to 2/3. 

A summary for all of the bounds is given in the Table 8.4. Note 
that the sequences from (c) with p 2: 0.75 and for (d) with p ~ 0.25 
attain the lower bound on the lag 1 correlation. The derivation of 
sharp bounds in the remaining cases is left as an unsolved problem. 

8.3 Latent variable models 

Models from Chapter 7 that have the MVN distribution, as a mix­
ing distribution or for latent variables, can be used for longitud­
inal data, if the correlation or covariance matrices have patterns 
of correlations depending on lags, i.e., Pij = 'Yii-il for i -:f j, for 
a sequence /'k. Examples are the multivariate Poisson-lognormal 
distribution, the multivariate logit-normal distribution, and the 
discretization of ARMA normal time series for binary and or­
dinal response (equivalently, multivariate pro bit model with pat-
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terned covariance matrix). Simple patterned matrices that could 
be used for initial modelling are the AR{1) and AR{2) correlation 
structures. For AR{ 1), Pii = pli -il for some -1 < p < 1. For 
AR{2), Pii = Pli-il• with Pk being the autocorrelation of lag k; 
the autocorrelations satisfy Pk = tPlPk-1 + tP2Pik-2i> k ~ 3, where 
tPl = P1{1- P2)/{1- pi), tP2 = (P2- pi)/(1- pi), and are deter­
mined from p1 ,p2 . Note that if yt = I(Zt ~a), where {Zt} is a 
dependent AR sequence, then {Yi} is not a Markov chain. 

8.4 Convolution-closed infinitely divisible class 

A unified approach for time series models with non-negative serial 
dependence can be obtained for the case where the response vari­
able has a distribution in the convolution-closed infinitely divisible 
class. The class includes Poisson, negative binomial (with fixed 
probability parameter), gamma (with fixed scale parameter), gen­
eralized Poisson (with one fixed parameter), inverse Gaussian (with 
one fixed parameter) and normal. The models are the same as or 
have similar form to the autoregressive moving average (ARMA) 
time series models in the case of a normal univariate margin, but 
only a subclass of the ARMA normal models is obtained. Following 
the usage in the statistical literature, we will refer to the models 
here as ARMA models for non-normal distributions. A Poisson, 
negative binomial or generalized Poisson margin can he used for 
count data and a gamma or inverse Gaussian margin can be used 
for a positive response variable. 

Stationary first-order Markov or AR{1) time series models are 
stochastically described in Section 8.4.1, along with some prop­
erties and interesting special cases. Extensions to AR(p), MA(q) 
and ARMA models are covered in subsequent subsections. A non­
stationary extension is mentioned briefly in Section 8.4.4. 

The ideas in this section do not seem to extend to models with 
negative dependence for lags. 

8.4.1 Stationary AR(J) time series 0 

The theory here is a special case of the stationary Markov chain 
time series in Section 8.1.1; the joint distribution of a consecut­
ive pair of observations has one of the bivariate distributions in 
Section 4.6. However, the time series models are best presented 
through stochastic representations rather than through transition 
probabilities. 
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Let Fe, 8 > 0, be a convolution-closed infinitely divisible para­
metric family such that Fe 1 * Fe2 = Fe 1 +92 , where * is the convolu­
tion operator. It is assumed that Fa corresponds to the degenerate 
distribution at 0. For Zj "" Fei, j = 1, 2, with Z1 , Z2 independent, 
let Gel,e2,Z be the distribution of z1 given that z1 +Z2 = z. Let A 
be a random operator such that A(Y) given Y = y has distribu­
tion Gae,(1-a)e,y, and A(Y) ""Fae when Y ""Fe. (In later subsec­
tions, the operator is denoted by A(-; a) to show the dependence 
on a:.) A stationary time series with margin Fe and autocorrelation 
0 < a < 1 (of lag 1) can now be constructed as 

(8.7) 

where the innovations tt are iid with distribution F(l-a)e, yt ""Fe 
for all t, and {At : t ~ 1} are independent replications of the 
operator A. (The term innovation is used because tt need not 
have a mean of 0; rather tt is new or innovative at timet.) 

Here is the intuition reasoning behind the operator A(·). A con­
secutive pair (Yt-1, Yt) has a common latent or unobserved com­
ponent x12 through the representation: 

Yt-1 = X12 + x1, Yt = X12 + x2, 

where X12,X1,X2 are independent rvs with distributions F01e, 
F(l-a)e, F(l-a)e, respectively. The operator A(Yt-1) 'recovers' the 
unobserved X12i hence the distribution of A(y) given Yt-1 = y 
must be the same as the distribution of x12 given x12 + x1 = y. 

Interesting examples are the following. 

(a) If Fe is Gamma(8,e) withe fixed, then Gae,c1-a)e,y is the 
distribution of y times a Beta ( aB, ( 1 - a )B) rv. That is, the 
model could be represented as 

Yt = AtYt-1 + tt, (8.8) 

where the At are iid Beta (a:B, (1- a:)B) rvs and the tt are iid 
Gamma((1- a)8,e) rvs. 

(b) If Fe is N(O, 8), then G01e,(1-a)e,y is N(ay, a:(1-a:)8), and the 
usual normal AR(l) model results, since A(Y) ~ N(O, aO). 

(c) If Fe is Poisson (B), then G01e,(1-a)e,y is Binomial(y, a:). 

(d) If Fe is Negative Binomial(B,p), as given in (8.10) below, with 
p fixed, then G01e,(1-a)e,y is Beta-binomial(y, a:B, (1- a:)B) 
(with pmf given in (8.11) below). 



CONVOLUTION-CLOSED INFINITELY DIVISIBLE CLASS 261 

(e) If Fe is inverse Gaussian with parameters 0, .A (.A fixed), mean 
0, variance O.A 2 , and density of the form 

fe(y) = (21ry:)l/2 .A exp{ -02 /(2y.A2)-y/(2.A2 )+0f.A2 }, y > 0, 

(8.9) 

then the inverse Gaussian subfamily is infinitely divisible. The 
density of Gae,(1-a)e,y is given in (8.12) below. 

(f) If Fe is generalized Poisson with parameters 0, 'TJ ('TJ 2: 0 fixed) 
and density of the form 

fe(Y) = 0(0 + 'TJY)Y- 1e-e-'IY jy!, y = 0, 1, ... , 

then the generalized Poisson subfamily is infinitely divisible, 
and Gae,(1-a)e,y is a quasi-binomial distribution (given in 
(8.13) below). 

By relaxing the condition of infinite divisibility, one gets the 
following additional interesting example. 

(g) If Fe is Binomial ( 0, p) and a is restricted to a multiple of B- 1 , 

then Gae,(1-a)e,y is Hypergeometric (aB, (1- a)B, y) (the pmf 
is given in (8.14) below). 

The models in (c), (d), (f) and (g) could be used for count data, 
with (d) and (f) for overdispersed counts relative to Poisson, and 
(g) for underdispersed counts relative to Poisson. The model in (g) 
might be useful for inferences when B is large and unknown. 

Some details for the specific examples of interest are given next. 

(b) (Normal.) Let Zj "'N(O,Bj) independently, j = 1,2. Let tjJ 
denote the standard normal density. Then the density of Z1 , 

given that z1 + z2 = y, is 

(B1B2)- 112tjJ(wf..;B0t/J((y- w)j..;e;.) 
(B1 + B2) 112t/J(yfvfB1 + B2) 

[Bj(B1B2)FI 2t/J((w- ay)fva(1- a)B), 

with B = B1 + B2, a= Bl/B. Equivalently, z1 I z1 + z2 = y is 
N(ay, a(1-a )B). Hence, for (8.7), a stochastic representation 
is Yi = aYi-1 + Wt + ft, where Wt are iid N(O, a(1 - a )B) 
independently of the { ft}, and Wt + ft are iid N(O, (1- a 2 )B). 

(d) (Negative binomial and beta-binomial.) For the negative bi­
nomial (NB) distribution with parameters B, p, we mean the 
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distribution with pmf 

f(k;8,p)={f(8+k)/[k!f(8)]}lqk, k=0,1, ... , q=1-p. 
(8.10) 

If Z1 "'NB(81,p), Z2 "'NB(82,p), and Z1,Z2 are independ­
ent rvs, then 

Pr(Z1 = k 1 Z1 + Z2 = y) = f(k; 81 'p)f(y- k; 82 'P) 
f(y; 81 + 82,p) 

_ (y) B( 81 + k, 82 + y - k) 
- k B(81,82) ' k=0, 1, ... ,y. (8.11) 

This is the beta-binomial pmf, which is a Beta ( 81, 82) mixture 
of Binomial (y, p) distributions. 

(e) (Inverse Gaussian.) Let Z1, Z2 be independent inverse Gauss­
ian rvs with respective parameters 81, 82. Using (8.9), the 
conditional density of z1 given z1 + z2 = y, fel(w)fe2(y­
w)/ /e 1 +e2 (y), simplifies to 

(2 )-1/2[ y ] 312 8182 
7r w(y-w) .A(81+ll2) 

0 {--1- [ti. + ..!1_- (91+92)2]} exp 2.>.2 w y-w y ' (8.12) 

for 0 < w < y. From this, the conditional density for ZI/(Z1+ 
Z2) given Z1 + Z2 = y depends on y, so that there is not a 
simpler stochastic representation for (8.7), as for the case of 
gamma margins. 

(f) (Generalized Poisson and quasi-binomial.) Let Z1, Z2 be in­
dependent generalized Poisson rvs with respective parameters 
81, 82. The conditional density of Z1 given Z1 + Z2 = y is the 
quasi-binomial distribution with pmf given by 

= (y)p(1-p) [p+(k]k-1 [1-p+((y-k)]y-k-1 
Yk k 1 + (y 1 + (y 1 + (y ' 

(8.13) 

k = 0, 1, ... , y, where p = 81/(81 + 82), ( = 7J/(81 + 82). 

(g) (Binomial and hypergeometric.) If Z1 "' Binomial ( 81, p) and 
Z2 "' Binomial(82,p), and Z1, Z2 are independent, then Z1 
given z1 + z2 = y is hypergeometric with pmf 
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where 0 = 01 + 02 . To make this appear similar to the beta­
binomial distribution, the pmf can be rewritten as 

(y) 01! 02! (0- y)! 
Yk= k (B1 -k)!(B2-y+k)! 0! . 

(8.14) 

Theorem 8.1 Properties of the process {8. 7) are the following. 
(a) The process is Markov of order 1 and is time-reversible. 
(b) If Fe has moments of second order, then the autocorrelation 

of lag j is ai, j = 1, 2, .... 

(c) An iid sequence is obtained if a-+ 0 and a perfectly dependent 
sequence is obtained if a -+ 1. 

Proof. The proofs are left as exercises. D 

The final result of this subsection concerns the bivariate margins 
for the AR(1) time series. For the Poisson margin, the bivariate dis­
tribution of (Y1, YJH) is the standard (and most natural) bivariate 
Poisson distribution (see Section 7.2.2). 

Theorem 8.2 For the AR{l} Poisson time series of the form 
(8. 7), the bivariate distribution of (Y1, YJ+1) is bivariate Poisson 
with parameters 0, 0, ai 0, i.e., the pmf is 

yAz e-A,, Af2 e-A, +A., (A1 - A12)y-k e-A,+A,, (A2 - A12y-k 

L k! (y- k)! (z- k)! . ' 
k=O 

y, z = 0, 1, ... , with A 1 = A2 = 0, A 12 = ai 0. 

Proof. The proof is based on a stochastic representation. Let ft, 

t ~ 2, be iid Poisson ( ( 1 -a )B) rvs, and let Dj ki be iid Bernoulli (a) 
rvs which are independent of the ft and Y1 . Then the Poisson AR( 1) 
series of the form (8.7) can be represented as: 

• y2 = I:i~1 821i + f2, 

• y3 = I:i~1 821i83li + I::~1 832i + f3, 

•... ' 
• YJ+1 = I:i~1 821i · · · Dj+1,1i + 2::{=2 2:::~ 1 8k+1,ki · · · 8i+1,ki + 

fj+1· 

Since the rvs Y1, f2, ... , fj+l are independent, YJ+1 is stoch­
astically equal to AJ +1 (Y1) + f, where f is independent of Y1 and 
Aj +1 (y) has the Binomial (y, ai) distribution. Hence (Y1 , Yj +1) has 
distribution similar in form to the distribution of (Y1 , Y2 ) with a 
replaced by ai . D 
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Remark. There is not a similar result for the negative binomial 
or gamma distributions. For example, using (8.8) as the stochastic 
representation for the gamma AR(1) time series, Ys = AsA2Y1 + 
A3€ 2 +t3 , where A2, As are iid Beta (o:B, (1- o:)B) rvs, independent 
ofY1, €2, €3. AsA2Y1 is stochastically equal to A*Y1 with A* having 
a Beta ( o:2B, ( 1 - o:2 )B) distribution, and A3f2 + €3 is stochastically 
equal to f*, a Gamma(1- o:2, e) rv. The pair (Y1, A*Y1 + f*) has a 
form stochastically equal to that in (4.49) in Section 4.6 (assuming 
Y1, A* and f* are independent), but (Y1, Ys) does not since AsA2Y1 
and Asf2 + f3 are dependent. 

8.4.2 Moving average models 

There are versions of the models in preceding subsection for sta­
tionary moving average (MA) models. For the MA(1) models, if 
Y,...., Fe and 0 < f3 < 1, let A(Y; (3) denote a rv that, given Y = y, 
has distribution G{3e,(l-f3)e,y· Let ft, t = 0, 1, 2, ... , be iid rvs with 
distribution F11 • An MA(1) time series with marginal distribution 
Fe has the form 

Yt=ft+At(ft-l;o:), t=1,2, ... , (8.15) 

where 0 ~ o: ~ 1 and 'fJ = Bl(o: + 1). As before, At, t ~ 1, 
are independent operators. Assuming that Fe has finite second 
moment ()(!'2 , Cov(Yt,Yt+!) = Cov(E(ftlft], E(At+l(ft;o:)jft]) = 
Cov ( ft, O:<:t) = O:'f](J'2 = o:B(J'2 I ( o: + 1), and the correlation is o: I ( o: + 
1) which is bounded above by t (when o: = 1, 'fJ = Bl2). The lower 
bound is 0 when o: = 0. 

The MA(q) model, with Yt,...., Fe, has the form 
q 

Yi = 2:: At,J( <:t-i; o:i ), 
j=O 

where o:0 = 1, 0 ~ O:j ~ 1, j = 1, ... , q, <:t are iid with distribution 
F11 and () = 'fJ L:6 O:j. The operators At,j are independent over t 

and j. 
For 1 ~ k ~ q, the autocovariances and autocorrelations are 

q 

Cov (Yi, Yi+k) = Cov (2:: At,j(<:t-ji O:j), 
j=O 

q-k q-k 

2:: At+k,i'+k(ft-i'i o:i'+k)) = 2:: O:jO:J+k'f/(!'2 

j'=-k j=O 
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and 'L;j:,~ O!jO!j+k/ L:;J=o O!j, respectively. 

Combining the ideas for the AR(1) and MA(q) models, one can 
get an ARMA(1,q) model. This has the form 

q 

Wt-q + LAt,j(ct+l-i;aj), t ~ 1, 
j=1 

At(Wt-1; ,13) + ft, t ~ 1- q, 

(8.16) 

where {Wt} is the autoregressive component, Wt ,.... F-y, 0 ~ ,13 ~ 1, 
0 ~ O!j ~ 1, j = 1, ... ,q, ft are iid with distribution FIJ, ft is 
independent of Wt-1, Wt-2, ... , At,j, At are independent operators 
over different t,j, r = TJ/(1-,13) and TJ = IJ/[(1-,B)- 1+ 'Li ail· Note 
that this form of the ARMA model is not the same as the usual one 
for an ARMA time series with normal rvs. In general, convolution 
of dependent rvs, each with distribution in the family Fe, need 
not result in arvin the same family. In (8.16), the autoregressive 
component Wt-q is independent of ft, ... , ft-q+l in order that yt 
is the sum of independent rvs and yt "' Fe. 

The form of the autocorrelation function for (8.16) has a 
simple form, like that for the usual ARMA(1,q) normal model, only 
in cases where the operators have an additive property, as given 
below. Let Pi be the autocorrelation of lag j. If the decomposition 

Cov (A(X1 + X2; ,81), A*(Y; ,82)) 

= Cov (A(X1; ,81), A*(Y; ,82)) + Cov (A(X2; ,81), A*(Y; ,82)) 

makes sense for independent operators A, A* and arbitrary ,81, ,82 E 
(0, 1), then a formula (with the proof left as an exercise) is: 

q-k q 
Pk = [,akr+TJ I: aiai+k +TJ I: ,ai-q+k-1ai] / o, k = 1, ... , q, 

i=1 i=q-k+1 

Pq+k = ,Bpq+k-1, k = 1, 2, .... 

8.4.3 Higher-order autoregressive models 

The generalization of the AR(1) models to AR(p), p > 1, is not as 
straightforward. There is the possibility of more than one general­
ization. Our extension is based on the multivariate generalization 
of a family of univariate distributions in the convolution-closed 
infinitely divisible class. That is, the joint distribution of p + 1 
consecutive observations has one of the multivariate distributions 
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in Section 4.6. These higher-order AR models do not have con­
ditional linearity except for the special case of the normal dis­
tribution. We next state the general AR(2) model that extends 
(8.7). From this, the extension to AR(p), p > 2, is straightforward 
conceptually, although the notation is a bit cumbersome. The ex­
tension to ARMA(p, q) models then combines the ideas in (8.16) 
and (8.17). Note again that the AR models are examples ofthe sta­
tionary Markov chain time series models in Section 8.1.1; stochastic 
representations can be given for the transition probabilities. 

For the AR(2) model, we make use of the distribution of Z13 + 
Z23+Z123 given Z1 +Z12+Z13+Z123 = Y1, Z2+Z12+Z23+Z123 = 
Y2, where Z1, Z2, Z12, Z13, Z23, Z123 have distributions in the family 
F with respective parameters ()- 01 -02- ()3, ()- 2()1 - ()3, 01, 02, 01, 
()3 (0 is defined so that the first two parameters are non-negative). 
Let this distribution be denoted by Ge 1 .92,e3 ,e,y 1 ,y2 and let a rv 
with this distribution be denoted by A(y1, Y2)· Let ft be iid rvs 
with distribution Fe-e 1 -e2 -e3 • The AR(2) time series is defined as 

yt = At(Yi-2, Yt-1) + ft, t = 3, 4, ... , (8.17) 

where At, t ;::: 3, are independent replicates of the operator A. To 
get a stationary series, let Y1 ,...... Fe and Y2 = A2(Y!) + f2, where 
A2(Y) has distribution Ge 1+B 3 ,e-e1 -e3 ,y (from Section 8.4.1) and 
f2,...... Fe-e 1 -e3 • By construction yt ....... Fe. 

Here is some of the intuition reasoning behind the operator A(·). 
A consecutive triple (Yi-2, Yi-1. Yi) has common latent or unob­
served components x123, x12, x13, x23 through the representa­
tion: 

Yi-2 X123 + X12 + X13 + x1, 

Yi-1 X123 + X12 + X23 + x2, 

Yt X123 + X13 + X23 + x3, 

where x123,x12,x13,x23,x1,x2,x3 are independent with dis­
tributions corresponding to the Zs defined above. The operator 
A(Yi-2, Yi-1) 'recovers' the unobserved sum X123 + X13 + X23; 
hence the distribution of A(y1, Y2) given Yi-2 = Y1 and Yi-1 = Y2 
must be the same as the distribution of x123 + x13 + x23 given 
X123 + X12 + X13 + X1 = Y1 and X123 + X12 + X23 + X2 = Y2· 

By comparison with the stochastic representation of (Yi-2, Yi-1, 
yt) in the AR(1) model of Section 8.4.1, the AR(1) model is a spe­
cial case of (8.17) when ( ()1, 02, 03 ) has the form ( Oa[1- a], 0, Oa2), 

where 0 < a < 1. The details are left as an exercise. 
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Let ( 1 = (}- B1- B2- B3, (2 = (}- 2(}1- B3. Let fe be the density 
of Fe with respect to the measure v. The density g associated with 
Ge 1 ,e2 ,e3,e ,y 1 ,y2 1s: 

g(x) = 111 fe3(u)fel (v)fe 1 (w)fe,(x-u-v)k(Y1 -x+v-w) 

.f(,(Y2- u- v- w) dvdvdv jh(y1, Y2), 
where h is the joint density of (Z1 + Z12 + Z13 + Z123, Z2 + Z12 + 
Z23 + Z123). This density does not simplify unless Fe is the normal 
family (with parameter (} for the variance). 

In the special case of the normal margin, let X = Z13+Z23+Z123, 
Y1 = Z1 + Z12 + Z13 + Z123, Y2 = Z2 + Z12 + Z23 + Z123. The 

:::::~i::b,:::::,~::;;~J[l ,,r;.,, f'm] ~:~::, ,;~0= ~:: 
82 81 81 + (}2 

(}3, 82 = B2 + (}3. The conditional distribution of X given Y1 = Y1, 
Y2 = Y2 is normal with mean c1Y1 +c2Y2 and variance V = 81 +B2-
c182-c281, where c1 = (B82-8f)j(B2-8f), c2 = 81(B-82)/(B2-8f). 

d Therefore, A(Y1, Y2) = c1 Y1 + c2Y2 + W, where W ,_ N(O, V), and 
Var (A(Y1, Y2)) = (ci + cDB + 2c1c281 + V = 81 + B2. Also one can 
verify that Cov(Y3, Y2) = Cov(c1Y1 + c2Y2, Y2) = c181 + c2B = 81 
and Cov (Y3, YI) = c1B + c281 = 82. 

Properties that are discussed briefly are: (i) multivariate cumu­
lants; (ii) time reversibility; and (iii) no general form for the auto­
correlation function. 

(i) For the model (8.17), the parameters are related to multivari­
ate cumulants (see Section 4.6). There are constants 12,13 
such that x:12 = 12(B1 + B3), K13 = 12(B2 + B3), x:123 = /3(}3, 
where x:12, x:13, x:123 are respectively the mixed cumulants of 
(Yt, Yt+1), (Yt, Yt+2) and (Yt, Yt+b Yt+2)· 

(ii) By construction, the joint distribution of (Yt, Yt+l, Yt+2) is 
the same as that of (Z1 + Z12 + Z13 + Z123, Z2 + Z12 + Z23 + 
Z123, Z3 + Z13 + Z23 + Z123), where Z1, Z2, Z3, Z12, Z13, Z23, 
z123 have distributions with respective parameters (1' (2, (I, 
B1, B2, B1, B3. The joint density of (Yt, Yt+1, Yt+2) is 

h23(y1, Y2, Y3) = 11 i 1 fe3(u)fel (v)fel (w)fe 2 (x) 

·/(1 (Y1- u- v- x)f(,(Y2- u- v- w)/(1 (Y3- u- w- x) 
dv(x) dv(w) dv(v) dv(u). 
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This density is symmetric in Y1, Y3 so that the process {Yt} 
is time-reversible. 

(iii) The approach for the AR(l) and MA(q) models of using con­
ditional expectations to obtain the autocorrelation function 
does not work for (8.17) because there is no general result 
for the conditional expectation E (Yi+2IYi, Yi+1)· This con­
ditional expectation is non-linear in general and would have 
to be evaluated separately for different families {Fe}. 

8.4.4 Models for longitudinal data 

In this subsection, we first indicate one approach to obtaining a 
non-stationary extension of the AR(1) model in (8.7). In some 
applications, the parameter () may depend on time. There could be 
a time trend, or the time series may consist of repeated measures 
or longitudinal data with the parameter () depending on (time­
varying) covariates. In the former case, we could have the model 
Ot = g(t) for a positive-valued function g, and in the latter case, 
we could have the model Ot = g(xt), where g is positive-valued 
and Xt is the covariate (column) vector at timet. For covariates, a 
convenient choice of g to ensure that Ot is non-negative is g(xt) = 
exp{,Bo + ,Bxt} for a constant .Bo and a row vector ,8. 

Because yt, At(Yt-1; a), ft in (8.7) are in the same convolution­
closed family, (8.7) can be adapted to a changing(), as follows: 

Yi = At(Yi-1; a)+ ft, (8.18) 

with yt ,...., Fat> ft ,...., F!J., 'f/t = Ot - aOt-1 2: 0. In particular, if F 
corresponds to the Poisson, generalized Poisson, negative binomial 
or binomial distribution, (8.18) is a potential model for longitudinal 
count data with covariates. 

Similarly, one can extend (8.17) as follows. We use the distribu­
tion of Z13 + Z23 + Z123 given Z1 + Z12 + Z13 + Z123 = Y1, Z2 + 
Z12 + Z23 + Z123 = Y2, where Z1, Z2, Z12, Z13, Z23, Z123 have distri­
butions in the family F with respective parameters()- 01-02-03, 

()' - 01 - Oi - ()3, 01, 02, Oi, ()3 ( (), ()' are defined so that the first two 
parameters are non-negative). Let this distribution be denoted by 
Ge 1 ,8' ,82 ,8,,8,8',y1 ,y2 and let a rv with this distribution be denoted 
by ACy1, Y2; 6) withe= (01, Oi, 02, 03, 0, 0'). Let a1, a2, a3 be non­
negative constants such that 0 ::; a1 + a2 + a3 < 1; a3 is a mea­
sure of dependence in three consecutive observations Yi-2, Yi-1, Yi, 
while a 1 is a measure of extra dependence in two consecutive ob­
servations Yi-1, yt, and a2 is a measure of extra dependence in two 
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observations lagged by 2, Yt-2, yt. Fort 2: 1, let Yt "'Fet> and for 
t 2: 3, let ft have distribution Fe 1-8u-821 -e3., with Blt = a1Bt-1, 
B2t = a2Bt-2, B3t = a3 min{ Bt-l, Bt-2}, and Bt- (}lt- (}2t- B3t 2: 0. 
The AR(2) non-stationary time series is defined as 

Yt=At(Yt-2,rt-1;6t)+Et, t=3,4, ... , (8.19) 

where At, t 2: 3, are independent operators with parameter vectors 

6t = (a10t-2, a1Bt-1, a20t-2, a3min{Bt-l>Bt-2}, Bt-2, Bt-d· 

The start of the time series for Y1, Y2 is the same as (8.18). 
The models presented here are used in the data analysis example 

in Section 11.5. Alternative ways of making the parameters depend 
on covariates are possible, particularly when univariate marginal 
family, such as the negative binomial or generalized Poisson, has 
another parameter besides (}, which can depend on the covariate. 
For example, for count data, a statistical modelling consideration 
is the variance to mean relationship. 

8.4.5 Other non-normal time series models 

There are other classes of stationary non-normal time series models 
that exist in the probability and statistics literature, but they do 
not necessarily have nice extensions to non-stationary time series 
(because of unusual innovation rvs) or to higher-order autoregres­
sion (stationary univariate margin does not have simple form). 

One general approach is for univariate distributions in the class 
of self-decomposable distributions, a subset of infinitely divisible 
continuous distributions. The main drawback of these models is 
that the distribution of the innovation term in the time series can 
have a mass at 0, leading to a singularity that is usually not reas­
onable for modelling time series of continuous response variables. 

A rv Y is in the self-decomposable class if for every 0 < a < 1, 
there exists a rv f = E( a), independent of Y, such that a Y + E( a) 
is equal in distribution to Y. 

If Yt, t 2: 1, have the same distribution as Y, the time series is 

Yt = aYt-1 + ft, t = 1,2, ... , 

where Et are iid with the appropriate distribution. {Yt} is iid if 
a -+ 0 and perfectly dependent if a -+ 1. 

Some special cases are the following. 

(a) If Y is Exponential (1), then, with probability a, Et is zero, 
and with probability 1- a, ft is an Exponential(!) rv. 
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(b) If Y is Gamma ( 0, 1), and 0 is a positive integer, then with 
probability a 9 , ft is zero, and with probability pi (1 ::; j::; 0), 
ft is a Gamma(j, 1) rv, where the Pi are probabilities from a 
Binomial(O, 1- a) distribution. 

(c) IfY is Gamma(O, 1), and 0 is not a integer, then with prob­
ability a9 , ft is zero, and with probability Pi (j 2: 1), ft 

is a Gamma(j, a) rv, where the Pi are probabilities from a 
NB(O, a) distribution (Pi = {f(O + j)/[j! f(O)]}a 9(1- aY). 

(d) IfY is N(O,u2), the usual normal AR(1) time series results. 

Note that, for examples (a) to (c), yt = ayt_ 1 with positive 
probability. This is an undesirable property as one does not expect 
this behaviour for time series encountered in practice. This shows 
that linearity (Yt linear in yt_!) is not an appropriate assumption 
to use in general for non-normal rvs. 

There are time series models for discrete response variables, 
based on operators different from those in Section 8.4.1. For ex­
ample, there is an operator for the negative binomial distribution 
in the following model. Let {yt} be a sequence of NB( 0, p) rvs. An 
autoregressive-like sequence satisfies 

Yt=a*Yt-l+Et, t=1,2, ... , 

where a * Y given Y = y is a Binomial (y, a) rv and ft has the 
probability generating function g(1 - s) = [a+ (1 - a)>.j(>. + 
s)JB, where ).. = p/(1- p). If 0 is a positive integer, then Et is a 
Binomial(O, 1- a) mixture of NB(j,p) distributions (j = 0, ... , 0) 
and ft is zero with positive probability. 

8.5 Markov chains: dependence properties * 

It may be intuitive that the dependence decreases with lag for sta­
tionary Markov chains, i.e., for a stationary Markov chain, {Yt}, 
(Yi, Yi+i) has less dependence as j increases. In this section, con­
ditions for which this is true for first-order Markov chains are ob­
tained. Different notions of dependence are considered, some of 
which depend on the form of the state space of the Markov chain. 

In applications to Markov chain models it is useful to know 
the conditions needed for the behaviour of decrease in dependence 
with lag for different notions of dependence. This behaviour then 
roughly holds for Markov chains not starting in a stationary dis­
tribution, if the convergence to the stationary distribution is fast. 

The following notation will be used. The distribution of yt is F. 
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If the state space is the real line or the integers and the correspond­
ing measure is Lebesgue or counting measure, then the density is 
denoted by f if it exists. For m 2: 2, the bivariate distribution for 
Y1, Ym is denoted by F1m or Fyl>y and its density is denoted by 
flm if it exists. In addition, let F(2)(Y1, Y2) = F(yi)F(y2); this is 
the limit of F1m as m -+ oo. The transition distribution, which is 
F211 , is also denoted by H(-J·); its density, if it exists, is denoted 
by h(-J·). 

We now prove a sequence of dependence results. The first result 
involves the bivariate concordance ordering, i.e., (Y1, Ym) decreas­
ing in concordance as m increases. This then implies that meas­
ures of association for Y1, Ym, such as Spearman's correlation and 
Kendall's tau, decrease as m increases (see Exercise 2.10). Since the 
concordance ordering is a positive dependence ordering, a positive 
dependence requirement is required on the transition distribution. 
A sufficient condition is SI, and from counterexamples it can be 
shown that it cannot be weakened to PQD, LTD or RTI (the de­
tails are left as an exercise). 

Theorem 8.3 Let Y1 , Y2, . . . be a stationary Markov chain with 
state space in ~- If H is SI, then (a) }j l st Y1, j = 2, 3, ... , and 
{b} F(2)-<.c · · · -<cF1m -<c · · · -<cF13-<cF12· 

Proof. (a) By Lemma 5.4.8 of Barlow and Proschan (1981), since 
His SI, there is an increasing function g(-, ·)such that 

d 
(YJ-1, }j) = (YJ-1, g(}j-1, Ui )), j > 1, 

where U2, U3, ... is a sequence of independent rvs with Ui inde­
pendent of }j -1. Let 91 (y, u2) = g(y, u2) and recursively define 

9k(y, u2, ... , Uk+1) = 9(9k-1(Y, u2, ... , uk), Uk+!), k > 1. 

By induction, 9k is increasing in each of its arguments. From the 
structure of the Markov chain, 

d 
YJ=9j-1(Y1,U2,···,Ui), j2:2. 

Hence }j l st Y1 for all j 2: 2. 
(b) For a first-order Markov chain, Y1 and Y m are conditionally 

independent given Ym-1· Hence, 

F1,m(u, v) Pr(Y1 S u, Ym S v) 

i~=-oo 1: FymiYm-l (viz) Fy1 ,Ym-l (dy1, dz) 
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1~ 1: H(vlz) F1,m-1(dy1, dz) 

< 1~ 1: H(vlz) F1,m-2(dy1, dz) 

Pr(Y1 ~ u, Ym-1 ~ v) = Fl,m-l(u, v), 

if (Y1, Ym-d-<c(Yl, Ym-2), since His SI and the function ¢(Yl, z) = 
H(vlz)I(-oo,u](Yi) satisfies the condition of Theorem 2.8. To start 
the induction, we need F13( u, v) ~ F 12( u, v) for all u, v. But 

F13(u, v) = 1~=-oo 1: H(viz) F12(dy1, dz) 

= E [H(viY2)1(-oo,uJ(Yi)] ~ E [H(viYi)l(-oo,u](Yi)] = F12(u, v), 

since (Y1, Y2)-<c(Yl, Y1). D 

If the transition distribution is negatively dependent, then in­
tuitively one may have the property that (Y1, Ym) is negatively 
dependent if m is even and positively dependent if m is odd with 
the overall dependence decreasing in m. A sufficient condition for 
this is given in next theorem. 

Theorem 8.4 Let Y1, Y2, ... be a stationary Markov chain with 
state space in ~. If H is stochastically decreasing then 

(a) Y2n !st Y1 and Y2n+1 j st Y1, n = 1, 2, ... , and 

{b) F12-<cF14-<c · · · -<cF(2)-<c · · · -<cFls-<cF13· 

Proof. Note that Y1, Y3, Ys, ... is a Markov chain with transition 
kernel H*(yix) = Pr(Y3 ~ yiY1 = x). The second parts of (a) and 
(b) now follow from parts (a) and (b) of Theorem 8.3 if H* is Sl. A 
stochastic representation argument that shows that H* is SI is as 
follows. Similar to Lemma 5.4.8 of Barlow and Proschan (1981 ), H 
stochastically decreasing implies that there exists a function g such 

that Y24g(Y1,U2), Y34g(Y2,U3), where (i) U2,U3 are independ­
ent rvs and are respectively independent of Y1, Y2, and (ii) g( u, v) 
is decreasing in u and increasing in v. Hence Y3 4 g(g(Y1, U2), U3) 
and Y3 ist Y1. 

Similarly, Y2, Y4, ... is a Markov chain with transition kernel 
H*(yix). Hence Y2n ist Y2 from part (a) of Theorem 8.3. From 
Lemma 5.4.8 of Barlow and Proschan (1981), there is an increasing 

function 92n in two real arguments such that Y2n 4 92n(Y2, U2n)· 
d 

Hence Y2n = 92n(g(Yl, U2), U2n) and Y2n lst Y1 and the first half of 
(a) is established. 
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Finally, the proof of the first half of (b) is similar to the proof 
of Theorem 8.3. Since two rvs in a first-order Markov chain are 
conditionally independent given intermediate rvs in the sequence, 
Y1 and Y2n are conditionally independent given Y2n-2· Now 

F1,2n(u, v) Pr(Y1 :'S u, Y2n :'S v) 

1~=-oo I: Fy2niY2n-2(viz) Fyt,Y2n-2(dyl, dz) 

luoo J~oo H*(viz) F1,2n-2(dy1, dz) 

> l~ J~oo H*(viz) F1,2n-4(dyl, dz) 

Pr(Y1 :'S u, Y2n-2 :'S v) = F1,2n-2(u, v) 

if (Y1, Y2n-4)-<c(Yl, Y2n-2) since H* is SI and the function 
¢J(Yl, z) = H* (viz )I( -oo,uj(yl) satisfies the condition of Theorem 
2.8. To start the induction, we need F14 ~ F12· Now 

F14(u, v) = 1~=-oo 1: H(viz) F13(dy1, dz) 

= E [H(viY3) 1(-oo,uJ(Yl)] ~ E [H(viYl) 1(-oo,uJ(Yl)] = F12(u, v), 
since (Y1, Y3)-<c(Yl, Yl) and -H(viz) 1(-oo,uj(yl) is lattice super­
additive in y1 ,z (see Tchen 1980, for this condition). 

Finally, F1,2n-<cF(2)-<cF1,2n+l follows from (a) and Theorem 
2.3. 0 

The next result is valid for arbitrary state spaces whenever all 
densities exist (including marginal and transition densities). The 
notion of dependence used is a measure of dependence based on 
directed divergence. Let p, q be probability densities on a space 
1l with measure v, and let '!j; be a convex function on [0, oo ), strictly 
convex at 1 and satisfying '!j;(l) = 0. Then the 'lj;-divergence of p 
from q is 

I.p(p,q) = l q'!j;(pfq)dv. (8.20) 

A measure of bivariate dependence is obtained when q is the prod­
uct of univariate marginal densities and p has these univariate mar­
gins. The special case '!j;(u) = ulogu leads to the relative entropy 
measure of dependence. The next theorem concerns the decrease in 
lag with dependence for measures of dependence based on (8.20). 
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Theorem 8.5 Let Y1, Y2, ... be a stationary Markov chain on a 
state space 1t with measure 11. Let f be the density of Y1 and let 
hm be the density of Y1, Ym. For a fixed convex function 1/J on 
[0, oo ), strictly convex at 1 and satisfying .,P(1) = 0, let 

81m = L f(x)f(y) 1/J(/lm(x, y)f[f(x)f(y)l) dv(x)dv(y) 

form = 2, 3, .... Then 81m decreases as m increases. 

Proof. With the conditional density h(m-l)(yjz)=hm(z,y)ff(z), 

81m = L f(z) L f(y) 1/J(h(m-l)(yjz)/ f(y)) dv(y)dv(z). 

Hence 81m ~ 81,m+1 if for all z E 1£, m ~ 2, 

L f(y) 1/J(h(m-l)(yjz)/ f(y)) dv(y) 

~ J?t f(y) 1/J( h(m)(yJz)/ f(y)) dv(y). (8.21) 

This inequality obtains from results in Joe (1990b) as follows. 
The function k(x, y) = h(yJx) on 1t x 1t satisfies k(x, y) ~ 0, 

J k(x, y) dv(y) = 1 for all x, J f(x)k(x, y) dv(x) = f(y) for all 
y, and h(m)(yjz) = J h(m-l)(xJz)k(x, y) dv(x) for all y, z. Hence 
h(m)(·lz) is r-majorized by h(m-l)(.Jz) with respect to f (the in­
terpretation is that h(m)(·Jz) is closer to f than h(m-l)(·Jz)) and 
(8.21) holds. 0 

The next result is for a state space that is discrete and finite. 
The dependence measure is the Goodman-Kruskal A and no other 
conditions are needed for the decrease in dependence with lag. 

Theorem 8.6 Let Y1 , Y2, ... be a stationary Markov chain with a 
finite discrete state space 1t {of unordered states). Let hm denote 
the joint pmf for Y1, Y m and let f denote the pmf for each Yi. Let 
Alm be the Goodman-Kruskal A for Y1, Ym, i.e., 

\ _ LiE'Hhm(i,*)-f(*) 
Alm - 1 _ f( *) , m = 2, 3, ... , 

where f(*) = maxjE'H f(j) and hm(i, *) = maxjE'H hm(i,j). Then 
Alm is decreasing in m. 

Proof. This is straightforward and left as an exercise. 0 

The next two results strengthen the conclusion of Theorems 8.3 
and 8.4 to the -<si ordering. The stronger dependence conditions 
that are needed are the TP2 and RR2 conditions, respectively. 
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Theorem 8. 7 Let {Yi : i = 1, 2, ... } be a stationary Markov chain 
with state space lR and let !12 denote the density of (Y1, Y2). If 
!12(x1. x2) is TP2 in x1, x2, then for n 2: 2, 

F(2)-<siF1,n+1-<s1F1n -<si · · · -<s1F12. 

Proof. Let Fmlj, fmlj denote the conditional distribution and pdf 
of Ym given }j. For any real y, y', 

Since f12(Y1, Y2) is TP2 in Y1, Y2, f211(ulx) is TP2 in u and x. 
By the variation diminishing property (Karlin 1968), the one sign 
change of F21 1(ylu)- I(-oo,y'J(u) in u implies that the number of 
sign changes of Fa11(ylx) - F211(Y' lx) in x is at most one, and if 
there is a sign change it is from - to + as x goes from -oo to oo. 
By Theorem 2.10, F1a-<s1F12· 

Now we proceed by induction. Let n 2: 3 and suppose that 
F1n -<s1F1,n-1-<SI · · · -<s1F12· Then 

By induction and using Theorem 2.10, Fnl1(yiu)- Fn-111 (y' iu) has 
at most one sign change in u. Using the same argument as before, 
Fn+111(ylx)- Fni1(Y'Ix) has at most one sign change in x (from­
to +) as x goes from -oo to oo, and F1,nH-<s1F1n. 

Finally, the proof of F(2)-<siF1,n+1 follows from Theorems 8.3, 
2.3(a) and 2.11. D 

Theorem 8.8 Let {Yi : i = 1, 2, ... } be a stationary Markov chain 
with state space lR and let !12 denote the density of (Y1, Y2). If 
!12(Y1, Y2) is RR2 in Y1, Y2, then for n 2: 1, 

F1,2n -<si F1 ,2n+2-<SI p(2) -<s1F1 ,2n+a-<siF1 ,2n+1· 

Proof Let Fmli• fmli be as defined in the proof of Theorem 8.7. 

Let !la(Y1, Ya) = f~oo fl12(Y1IY2)fa12(YaiY2) dF(y2). By the basic 
composition theorem of Karlin (1968), ha(Y1, Ya) is TP2 in Y1, Y3· 
Since {Y2n+l : n = 0, 1, 2, ... } is a Markov chain (based on the 
bivariate density ha), the second half of the conclusion follows 
from Theorem 8.7. The proof of the first half is similar to the 
proof of Theorem 8.7. We have 
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F2nl1(yix)- F2(n+1)11(Y'Ix) I: [F2n-111(ylu)- F2n+li1(Y'Iu)] f211(ulx) du 

I: [F2n-111(YI- u)- F2n+111(Y'I- u)] f211( -ulx) du. 

By assumption, !211(-ulx) is TP2 in u and x. Applying the varia­
tion diminishing theorem of Karlin (1968) and Theorem 2.10 com­
pletes the proof. D 

Next we compare two Markov chains with different transition 
probabilities. 

Theorem 8.9 Let F, F' be two bivariate distributions in :F(F1. F1) 

and suppose that F -<.cF'. Suppose that the conditional distributions 
F211. F~11 , F112, F{ 12 are all SI. Let Y1, Y2, ... be a Markov chain with 
transition distribution F211 and let Y{, Y~, . . . be a Markov chain 
with transition distribution F~ 11 (both with state space in 3?). Then 
(Y1, Yj)-<.c(Y{, Yj) for j = 2, 3, .... 

Proof. Let F211 = 1- F211, F~ 11 = 1- F~11 , etc .. 
First consider j = 3. Fix u1, ua. Then 

Pr(Y{ > u1, Y~ > ua)- Pr(Y1 > u1, Ya > ua) I: [F~ 12(udv)F~ 11 (uaiv)- F112(udv)F211(ualv)] dF1(v) 

I: F~ 12(udv)[F~ 11 (ualv)- F211(ua!v)] dF1(v) 

+ i: [F~I 2 (udv)- F112(udv)] F211(ualv) dF1(v). 

The last two summands are similar so we only show that the first 
is non-negative. Using Exercise 2.23, suppose that there are 2r- 1 
sign changes (r ~ 1) in F2p(YI·)- F~ 11 (yl·). Let the locations of 
the changes be denoted by b;, i = 1, ... , 2r- 1. Let bo = -oo, 
b2r = oo. Then I: F~l 2 (u11v)[F~11 (ualv)- F211(ualv)) dF1(v) 

~ 1~~~ F~ 12 (u11v)[F~ 11 (ualv)- F21 1(ualv)] dF1(v) 

> t F~1 2 (u1lb2i-1) 1:;2~ 2 [F~ 11 (ualv)- F211(ualv)] dF1(v). 
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This is 0 if r = 1, and for r ~ 2 it is 

r 

L { [F~ 12 (u1!b2i-l)- F~ 12 (ullb2i-a)) 
i=2 

·1:_
2 
[F~11 (ualv)- F2ll(ualv)) dF1(v)} ~ 0 

since F~ 12 ( u1lb2i-1) - F~ 12 ( u1lb2i-a) ~ 0 from the SI assumption 
and the integral is non-negative from the concordance assumption. 

Now we proceed by induction. Let j ~ 4. Suppose we have 
(Y2, YmHc(Y2, Y~) form~ j. Let Fm, FJ 12 denote the conditional 
distributions of }j given Y2 and Yj given Y~, respectively. Then 

Pr(Y{ > u1, Yj > Uj)- Pr(Y1 > u1, }j > Uj) 

= f~oo[F~I 2 (uliv)Fj 12(uilv)- Fll2(uliv)Fm(uilv)] dF1(v). 

The above argument can be applied to conclude that this difference 
of probabilities is non-negative, since Fj 12 and Fi1 2 are also SI, 
(Y2, }j Hc(Y2, Yj) by induction, and Exercise 2.23 can be applied 

to Fj 12 - Fm. D 

Finally, we have a result involving the PFD concept (see Sec­
tion 2.1.6) that is relevant to likelihood inference for dependent 
sequences. Mainly, we show that (asymptotic) standard errors com­
puted based on an assumption of time independence for a station­
ary time series are too small when in fact there is time dependence 
(in the form of Markov chains which satisfy certain conditions). 
An example with data that illustrates this is given in Section 11.6. 

Given (differentiable) parametric families of bivariate copulas 
C{-; 6) and univariate cdfs F(·; 8), 

G(x,y;6,8) = C(F(x;8),F(y;8);6) 

is a bivariate family with univariate margins F. For the Markov 
chain based on G, the Markov transition density is 

h(yix; 8, 6) a2G(x, y; 6, 8) /aF(x; 8) 
axay ax 

c(F(x; 8), F(y; 8); 6) f(y; 8), 

where c(u,v;6) = a2C(u,v;6)jauav and f(y;8) = aF(y;8)jay. 
The likelihood for observations Yl, ... , Yn based on this transition 
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density is f(Yl; 6) f1~=2 h(Yt IYt-1; 6, 6). The log-likelihood is 

n n 

L(6,6) = Llogf(Yt;6)+ Llogc(F(Yt-1;6),F(yt;6);6). (8.22) 
t=l t=2 

Assuming that the standard regularity conditions hold, then from 
Billingsley {1961) (see also Section 10.4), the maximum likelihood 
estimate (MLE) of (6, 6) from (8.22) is asymptotically normal and 
the inverse Hessian matrix (matrix of second-order derivatives) for 

L evaluated at the MLE (6,0) is the inverse Fisher information, 
and it can be used for SEs for functions of 6 such as quantiles. 

For comparison, we also consider the MLE of 6 and its asymp­
totic covariance matrix based on the log-likelihood 

n 

L(6) = Llogf(yt;6), (8.23) 
t=l 

i.e., the log-likelihood assuming data are iid from the density f(·; 6). 
Theoretically, if the true dependence structure for the sequence is 
Markov with any of the families B1, B3, B4, B5, B6, B7 of cop­
ulas in Section 5.1, then the use of (8.23) for maximum likelihood 
estimation leads to SEs that are too small, although the MLE of 
0 from (8.23) is consistent. An outline of the proof of this result 
is given below. We conjecture this result to be true for the family 
B2 and for other models for the time dependence. It is similar to 
the well-known property for the variance of a sample mean- the 
variance is larger with positive dependence of the rvs than with 
independence because of the additional positive covariance terms. 

Proof. Let Y1, ... , Yn be a stationary dependent sequence. Suppose 
the marginal density is in the parametric family f(y; 6), where 9 
is a column vector, and let F(y; 9) be the family of cdfs. Assume 
that the usual regularity conditions of asymptotic likelihood the­
ory hold (see Serfling, 1980). Let £(6; y) = log f(y; 6), S(6; y) = 
8£(9; y)/89 (the score vector) and Si = S(9; Yi). Let I(9) = 
-E[82f(6;Yi)f8989T] = Var(Si) be the Fisher information ma­
trix. 

The asymptotic normality for iJ comes from the approximation 

where z- 1(9) is the matrix inverse of I(6). Let g(9) be a real­
valued function. From the delta (Taylor expansion) method for a 
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function of the parameter, 

n112(g(O)- g(8)) ~ (8gj88)Tz- 1(8) [n- 112 Lsi]. 
The asymptotic variance of n112(g(O) - g(8)) for an independent 
sequence is (8gj88fi- 1(8)(8gj88). The asymptotic variance of 
n1f2(g(O) - g(8)) for a dependent sequence is 

(8gj88f'I- 1(8)(8gj88) + n- 1 L Cov (B;, B;' ), 
i¢i 1 

where B; = (8gj88fi- 1(8) S; = (8gj88f'I- 1(8) 8(8; ¥;), i 
1, ... , n. Therefore, for all real-valued g, from the PFD condition, 
the asymptotic variance of g(O) is greater than under independence 
if, for all i -:p i', 

Cov(h(Y;),h(Y;')) ~ 0, 't/ real-valued h (8.24) 

such that the covariances exist (compare Gieser and Moore, 1983). 
Now suppose {Y;} is a reversible Markov chain based on a copula 

C that satisfies C(u, v) = C(v, u) for all u, v. The joint distribu­
tion of Y;, Y;+l is C(F(y;; 8), F(y;+1 ; 8)). If (8.24) is satisfied for 
Y;, Yi+b then it is satisfied for Y;, Yi+i for all j ~ 2. The proof is 
by induction on the lag j: 

Cov (h(Y;), h(Yi+i )) = E{ Cov (h(Y;), h(Yi+i) I Yi+1, ... , Yi+i -1)} 

+ Cov (E [h(Y;) I Y;+l, ... , Yi+i-1], E [h(Y;+j) I Yi+1, ... , Yi+i-d) 

= 0 + Cov (a(Y;H), a(Y;+i-1)) ~ 0, (8.25) 

where a(y) = E[h(Y;) I Yi-1 = y] = E[h(Y;) I Yi+1 = y]. The first 
term in (8.25) is 0 since two rvs in a Markov chain are conditionally 
independent given intermediate rvs in the sequence. The second 
term follows from the Markov property and reversibility. 

For the families B3-B6, (8.24) follows from Theorem 4.6. For the 
family B1, the positive dependence by mixture condition in Section 
2.1.6 can be used to obtain (8.24) (Exercise 8.3). For the family 
B7, (8.24) can be shown via an extreme value limit (Exercise 8.13). 

D 

In conclusion, for some Markov time series based on bivariate 
copulas, the estimation of the univariate parameter 8 from the 
likelihood, assuming independence, leads to a consistent estimate of 
8 but the SEs of functions of 8 are too small. The main result used 
is the positive dependence condition in (8.24). Since (8.24) may 
hold even for non-Markov models or Markov models of order more 
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than 1, we can expect more generally that SEs are too small when 
there is positive dependence in the time series and the likelihood 
assuming independence is used for estimation. 
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mann (1994) and Gottschau (1994). For longitudinal data, another 
class of Markov-like models uses previous responses as covariates. 
Some references for this approach are Bonney (1987) and Fahrmeir 
and Kaufman (1987). These models do not consider the joint dis­
tribution of subsets of {Yt}. 

References for the extremal index relevant to the material in 
this chapter are Leadbetter, Lindgren and Rootzen (1983), O'Brien 
(1987), Smith (1992) and Smith and Weissman (1994). 

Some references for non-normal AR and ARMA models are Joe 
(1996b), McKenzie (1988), Lewis, McKenzie and Hugus (1989), 
Al-Osh and Alzaid (1993; 1994) and Alzaid and Al-Osh (1993). In 
Section 8.4.4, with a negative binomial margin, the dependence of 
the parameters on the covariates is different from that in Lawless 
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and McKenzie (1986). 

Further results on the decrease in dependence with lag for sta­
tionary Markov chains are given in Fang, Hu and Joe (1994) and 
Hu and Joe (1995). Theorems 8.7 and 8.8 are due toT. Hu; he also 
assisted in the proof of Theorem 8.9, which is new. 
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8. 7 Exercises 

8.1 Obtain the transition density for a stationary Markov chain 
associated with the trivariate copula ( 4.29) in Section 4.3, 
when K is in the family B6 and 1/J is in the LT family LTA. 

8.2 Let Y1 , Y2 , ... be the Markov chain based on the copula fam­
ily B10. Obtain the copula for (Y1 , Ym), m > 1. [Hint: use 
induction and show that it is within the same family B10.] 

8.3 Show that the BVN distribution with positive correlation 
has a representation of the form J P( u; a)P( v; a) dM(a) for 
appropriately chosen P, M. 

8.4 In (S.4), consider a 1-dependent series based on the copula 
family B10 in Section 5.1. What is the copula for (Y1, Y2)? 

8.5 Study the tail dependence properties of the 1-dependent 
series associated with copulas in Section 8.2.1. 

8.6 Prove the properties in Theorem 8.1 for AR(1) time series 
with univariate margin in the convolution-closed infinitely 
divisible class. (Joe 1996b) 

8.7 Show that the AR(1) model in Section 8.4.1 is a special case 
of the AR(2) model in Section 8.4.3 when (fh, B2 , B3 ) has the 
form (Ba[1- a], 0, Ba2), where 0 <a< 1. 

8.8 Relating to Section 8.1.4, let {Yt} be a stationary AR(d) 
(d 2: 2) normal sequence. Let Pk be the autocorrelation 
coefficient of lag k, let I;11 be the d x d correlation ma­
trix with Pli-il in the (i,j) position for i :f. j, and let 
I;12 = (pd, Pd-1, ... , pl)T be a column vector of length d. 
The coefficients of I;i}I;12 = ( ¢d, ... , ¢2, ¢!)T are the co-
efficients in the linear representation Yt = L.1=l ¢; Yt-i + 
Et. Show that a necessary and sufficient condition for the 
density of (Y1, ... , Yn) to be MTP2 for all n > d is that 
¢i 2: 0, i = 1, ... , d (which is equivalent to the partial 
autocorrelations 1r1, ... , 7rd of {Yt} being non-negative), and 
¢i- L.f:;~ ¢i¢Hi 2: 0, i = 1, ... , d- 1. [Hint: let An be the 
inverse correlation matrix for Y1 , ... , Yn. Obtain conditions 
for all of the off-diagonal elements of An to be non-positive.] 

8.9 Prove Theorem 8.6. (Fang, Hu and Joe 1994) 

8.10 For stationary AR(p) normal sequences, obtain conditions 
for the autocorrelations to be decreasing with lag. 

(Fang, Hu and Joe 1994) 
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8.11 If the SI condition of Theorem 8.3 is weakened to PQD, 
LTD or RTI, then the conclusion need not hold. Show this 
through counterexamples. (Fang, Hu and Joe 1994) 

8.12 Construct a Poisson time series with negative autocorrel­
ation of lag 1 based on the bivariate Poisson distribution in 
Exercise 7.12. 

8.13 Prove the PFD property for the Markov chain based on the 
copula family B7 (a result due toT. Hu). [Hint: from Section 
8.5, it suffices to prove the PFD property for the family 
B7. The idea is to use a stochastic representation from the 
extreme value limit of the copula family B4, since the PFD 
property is closed under weak convergence.] 

8.8 Unsolved problems 

8.1 Conjecture: Assuming that {Yt} is a stationary sequence with 
marginal distribution F, the sequence ai(Y) defined by (8.1) 
converges as i-+ oo, under minimal conditions. 

8.2 Find the maximum and minimum lag 1 correlation for 1-
dependent stationary binary sequences with marginal prob­
ability p for the occurrence of a 1. (See Section 8.2.3.) 

8.3 For k 2: 1, among k-dependent stationary binary sequences 
with marginal probability p for the occurrence of a 1, find the 
most and least dependent sequences. 

8.4 Can the approach for AR models with univariate margins in 
the convolution-closed infinitely divisible class be extended to 
allow for negative autocorrelations? 

8.5 Prove (or disprove) the PFD property for the Markov chain 
based on the copula family B2 (see Section 8.5). 

8.6 Extend some of the results in Section 8.5 on decrease in de­
pendence with lag to higher-order stationary Markov chains. 

8. 7 Prove some results on the -<pfd ordering for (Yt, }j) associated 
with a Markov chain from a bivariate copula, i.e., stronger 
results than PFD. 

8.8 Develop some theory for spatial processes with given univari­
ate margins. 



CHAPTER 9 

Models from given conditional 
distributions 

This chapter complements and supplements Chapters 3 and 4, in 
that we study the construction of multivariate models from fam­
ilies of conditional distributions (with compatibility conditions on 
the conditional distributions). This approach has been considered 
in the statistical literature partly because of the difficulty of con­
struction of families of multivariate distributions with given mar­
gins. The type of dependence that can arise is surprising in some 
cases. 

Examples that are illustrated in some detail are: (i) conditional 
distributions in exponential families; and (ii) multivariate binary 
response with conditional logistic regressions. The examples are in 
Section 9.2, following some theory in Section 9.1. The model of 
type (ii) is applied in the data analysis example in Section 11.1. 

9.1 Conditional specifications and compatibility 
conditions 

Throughout this section, we assume that all densities exist with 
respect to appropriate measure spaces. 

Consider first the bivariate case. Suppose the conditional dens­
ities il12(·ly) are given for ally and f211(·lxo) is given for a partic­
ular value xa. Assume that ill2(xoiY) > 0 for ally. Then for the 
joint density 1!2, 

f ( ) fl12(xly)f211(Yixo) 
12 X, y ex: f ( I ) , 112 xo y 

(9.1) 

with the proportionality constant equal to 



284 MODELS FROM GIVEN CONDITIONAL DISTRIBUTIONS 

where v is the appropriate measure. That is, for two rvs, the set 
of conditional densities given one variable, plus one conditional 
density given the other variable, determines the joint bivariate dis­
tribution. 

Now if the conditional densities 1112( ·IY) are given for all y and 
h11(·lx) are given for all x, then from (9.1) a condition for com­
patibility is that 

fi12(xly)f211 (ylxl) /fi12(xjy)f211 (ylx2) = fi12(x2IY)h11 (ylx!) 

l112(x1IY) l112(x2IY) l112(xdy)f211(Yix2) 
(9.2) 

does not depend on x, y for all choices of x1 # x2. (Another com­
patibility condition is that there exist non-negative functions a( x), 
b(y) such that a(x)hll(Yix) = b(y)l112(xly) for all x, y.) 

As an example, consider exponential conditional distributions: 
l112(xly) = Al(y)c""•(y)x, hll(Yix) = A2(x)e-.>.2 (x)y, x,y > 0, 
A1(y), A2(x) ~ 0. Condition (9.2) becomes 

[ A2( xt)j A2( x2)] e -.>..(y )[x2-x.] e -y[.>.2(x1 )-.>.2(x2)], 

and this is independent of x, y if and only if At, A2 are linearly non­
decreasing with a common slope (A2(x) = a+1x, At(Y) = f3+/Y, 
a,/3,/ ~ 0). 

The trivariate extension is as follows. Suppose the conditional 
densities 11123(-ly, z) are given for ally, z, h113(·lxo, z) are given 
for all z and a fixed xo, and fa1 12(·lxo, Yo) is given for some fixed 
y0 (and the same xo as for /21 13). Assume that ltl23(xoiY, z) > 0 for 
ally, z and f21 13(y0 jxo, z) > 0 for all z. Then for the joint density 
lt23, 

I ( ) fi123(xly, z)hlt3(Yixo, z)fa112(zlxo, Yo) 
123 x, y, z ex I ( I )f ( I ) , 1123 xo y, z 2113 Yo xo, z 

with the proportionality constant equal to !t2(xo, Yo). If the con­
ditional densities l1123(-ly, z) are given for ally, z, hlt3(·1x, z) are 
given for all x, z, and fa1 12(·lx, y) are given for all x, y, then a con­
dition for compatibility is that 

ltl23(x21Y, z)hlt3(Y21x2, z)l2ll3(YIXt, z)falt2(zlxt, yt) 

l1123( x1IY, Z )/2p3(Yt!Xt, z)f21t3(YIX2, Z )fa112(zjx2, Y2) 

does not depend on x,y,z for all choices of(xt,Yt) # (x2,Y2)· 
The ideas in the preceding paragraph clearly extend to higher 

dimensions, when one has the set of conditional distributions of 
each variable given the remainder. The result is as follows and the 
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proof is left as an exercise. Let A-·m be the joint density of rvs 
Y1, ... , Y m and let filr be the conditional density of Yi given the 
remaining variables }j, j :f. i. Then 

f () I1~ 1 filr(Y;Jy~, ... ,y?_l,Yi+l,····Ym) (9.3) 
l···m Y CX: Tim f, ( 0 I 0 0 ) i=l ilr Y; Yl, ... ,yi-l>Yi+l,···•Ym 

for a given y 0 for which all of the conditional densities in the above 
expression are positive. The compatibility condition for given sets 
of conditional densities filr is that 

I1~1 filr(Y;Jy~, · · ·' Y?-1, Yi+1, · · ·' Ym) 
TI~1 filr(Y?Jy~, · · ·' Y?-1, Yi+1> · · ·' Ym) 

TI~1 filr(z?lz~, · · ·, z?-1, Yi+l, · · ·, Ym) 
TI~1 filr(Y;Jz~, · · ·, zf-1, Yi+l, · · ·, Ym) 

does not depend on y for y 0 :f. z0 • 

(9.4) 

Note that results symmetric to (9.3) and (9.4), with the indices 
of y permuted, also hold. This symmetry is useful for getting a 
general form in cases of specific conditional distributions. 

More generally, one can consider other sets of conditional distri­
butions. A result from Gelman and Speed (1993) is the following. 
Let z1 , ... , Zm be dummy variables associated with random vari-
ables Z1, ... , Zm. If a set of conditional densities uniquely deter-
mines a joint density, then there is a permutation (Yl, ... , Ym) of 
(z1, ... , Zm) such that the set is of the form {f;IA;u{k:k>i}(Y;IYt, 
f E A;, Yi+l, ... , Ym) : i = 1, ... , m}, where A; is a subset, poss­
ibly non-empty, of {1, ... , i-1}. Unless all of the sets A; are empty, 
the conditional densities must be checked for consistency. 

9.2 Examples 

We illustrate the theory from the previous section with a few ex­
amples: exponential conditional densities, exponential family con­
ditional densities, binary conditional densities that are logistic re­
gressions, and more general binary conditional densities. The model 
with conditional logistic regressions is used in Section 11.1. 

9.2.1 Conditional exponential density 

Let y -i denote y with the ith element y; deleted. Suppose Y is an 
m-dimensional random vector of non-negative rvs, with conditional 
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densities of the form: 

fiJr(YdY -i) = A;(y -d e->.;(y _,) 11', 1 ~ i ~ m, Yl, ... , Ym ~ 0, 

with the functions A; being positive and differentiable. The com­
patibility condition (9.4) simplifies to 

m 

l:(y;- yf) A;(y~, · · ·, Yf-1, Yi+l, · · ·, Ym) 
i=l 

m 

+ l:(zf - y;) A;(z~, ... , zf-1, Yi+l, ... , Ym) (9.5) 
i=l 

not depending on y for y 0 # z0 . Expression (9.5) actually does not 
depend on Yl because terms with y1 cancel out. The terms of (9.5) 
with Y2 are 

(z~ - y~) A1 (y2, ... , Ym) + (Y2- yg) A2(y~, Y3, · .. , Ym) 

+(zg - Y2) A2(z~, Y3, ... , Ym)· 
Hence differentiation of (9.5) with respect to Y2 followed by equat­
ing to 0 leads to: 

a.X1 ( ) -X2(zr, Y3, ... , Ym) - -X2(Y~, Y3, ... , Ym) 
~ Y2, · · .,ym = 0 0 · 
uy2 Z1- Y1 

Since the left-hand side does not depend on y~, zr, A2(y _2) must 
be linear in Yl, i.e., -X2(Y-2) = ody3, ... , Ym) + 'Y2(Y3, ... , Ym) Yl 
for some functions a2, /2· Hence by integration, 

Al(y_l) = a1(y3, · · ·, Ym) + 'Y2(Y3, · · ·, Ym) Y2 (9.6) 

for some function a1. By symmetry, Al(Y-d must have the linear 
form of (9.6) when Y2 is exchanged with Yi, j 2: 3. Hence A1 1s 
multilinear in Y2, ... , Ym with the form: 

A1(Y-d=a1+ I: fJ1siTYi· 
SC{2, ... ,m} jES 

By symmetry, A; has the form: 

A;(y -d = a; + I: /3;s IJ Yi · 
SC{l, ... ,m}\{i} jES 

Finally we can substitute back into (9.5) to check on the condi­
tions for the a and f3 coefficients in order to achieve compatibility. 
From comparing coefficients of terms of the form 

0 0 
Y1 · · 'Y; Yi+l · · 'Yk d 0 0 an z1 · · ·Z;Yi+l ·· 'Yk, 
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one can determine that the constraints on the f3s are that, for 
all i, S with i fl. S, the value of f3;s depends only on the indices in 
SU{ i}. For example, if m 2: 3, the coefficient of Y~Y2Y3 is /3213-/3123 
and this must be zero in order that (9.5) does not depend on y for 
any y 0 # z0 • 

From (9.3), the multivariate density fl. .. m(Y) of Y has the form 
proportional to: 

m 

exp{- l:(Yi- Y?) [a;+ 2: f3{i}us II yJ II Yi] } 
i=1 SC{1, ... ,m}\{i} jES,j<i jES,j>i 

ex: exp{- 2: /S II Yi} (9.7) 
SESm jES 

for some constants /S, S E Sm. In order that (9. 7) is a proper dens­
ity (with finite integral), the parameters /S must be non-negative, 
and, for each i, there is a set S containing i such that /S > 0. 

If fl. .. m(Y) = Aexp{-l:sesm 'YSTijesYj}, where A is a nor­
malizing constant, then it is straightforward to verify that the 
conditional densities are exponential. That is, with a null prod­
uct being equal to 1, 

!:- ( ·I ·)- fl. .. m(Y) 
•lr y, Y-· - A(l:s:iES /S TijeS, Yi )-1 exp{ -L:s:i~s'YS njES Yj} 

#i 

i = l, ... ,m. 
We next show that (9.7) has negative dependence in the sense 

of RR2 (see Section 2.1.5). For the bivariate case, (9.7) becomes 

f12(Y1, Y2) = Aexp{ -11Y1- /2Y2- /12Y1Y2}, Y1, Y2 > 0, (9.8) 

for 11, 12, 112 2: 0. For 112 > 0, this density is RR2 so that it 
has negative dependence. The univariate margins of (9.8) have the 
form /i(Yj) ex: {13-j + /12Yj)- 1exp{-/jYj}· More generally, for 
m 2: 3, the density is MRR2 or RR2 in any two variables with the 
remainder fixed, but this condition does not imply that all bivariate 
margins are RR2. An analysis of the trivariate case shows that it 
is possible for one bivariate margin to be TP2 (but not all three). 
Form= 3, (9.7) becomes 

ft23(Y) = Aexp{-'YtYt- 'Y2Y2- 'YaYa- 'Y12Y1Y2- 'YtaYtYa 

-'Y23Y2Y3- /123Y1Y2Y3}, 
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for Y1, Y2, Y3 > 0. The (1,2) bivariate margin has density 

h2(Y1,Y2) = A(73+713Y1 +723Y2+/123Y1Y2)-1 

· exp{ -11Y1 - /2Y2 - /12Y1Y2}· 

It is straightforward to show that ( /3 + /13Y1 + /23Y2 + /123Y1Y2)- 1 

is RR2 if /3/123 2:: /13/23 and TP2 if /3/123 ~ /13/23· Since the 
exponential term is RR2, /3/123 2:: /13/23 is a sufficient condition 
for !12 to be RR2. If /12 = 0 and /3/123 < /13/23, then !12 is TP2. 
Symmetric conditions (by interchanging subscripts) hold for the 
(1,3) and (2,3) bivariate marginal densities !13, /23. For example, 
if /12 = /3 = /123 = 0 and /1 = 12 = /13 = /23 = 1, then !12 is 
TP2, and !13, /23 are RR2. 

This example of negative dependence arising from conditional 
densities within a given family is not unusual. Another example is 
given in the next subsection. 

9.2.2 Conditional exponential families 

Let family j (for j = 1, ... , m) be the exponential family 

Ui(y;8i) = ri(Y)/3j(8i)exp{8J <J.i(Y)}, 

where (Ji and Qj are column vectors of length lj. Let (Y1, ... , Ym) 
be our random vector. Suppose we want to consider the model 
where the density of }j given Y; = y;, i E {1, ... ,m}\{j}, is in 
the family j with parameter 8i(Y-j), where Y-i is y with the jth 
element deleted. The joint density f then must necessarily be of 
the form 

m 

f(y)= II r;(y;)exp{ B + Lar q;(y;) + L q~ (Yit)M;t;2q;2(y;2) 
i=1 i it <i2 

l;t l;2 £;3 

+ L L L L Miti2ia(k1,k2,k3)qitktqi2k2qi 3 k3 + · ·· 
it <i2<ia kt=1 k2=1 ka=1 

it lm 

+ L ··· L M1···m(k1,·••,km)q1kt ···qmkm}, (9.9) 
kt=1 km=1 

for suitable choices of vectors a;, matrices M;t;2, and higher-order 
arrays Mit ... ; i, i1 < · · · < ij, 3 ~ j ~ m; the term B is a normal­
izing constant. 

The proof of the sufficiency of the form (9.9) is not difficult. If 
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(9.9) holds, then 

f112, ... ,m(Y1IY2, · · ·, Ym) = f(y)[r2(Y2) · · · rm(Ym)t 1 

m 

· exp{ -B'(y2, ... , Ym)- Laf q;(yi) 
i=2 

- L quy;JM;l;2q;2(y;2)- .. ·} 
2~il <i2 

= r1 (Y1) exp {-B' (Y2, ... , Ym) + tif (Y2, ... , Ym )q1 (Y1)}, 

where 
m 

81(Y2, ... ,ym)=a1+ LM1jQj(Yj)+··· 
i=2 

l2 lm 

+ L · · · L M1···m(-, k2, ... , km) q2k2 • • • qmkm· 
k2=1 km=1 

289 

By symmetry, one can obtain the other conditional distributions. 

We outline the proof of necessity form= 2. From (9.2), we want 
hi2(YiiY2)i211(Y21Yl)/[fli2(Y1IY2)hi1(Y21Yi)] to be independent of 
Y2 for all Y1 ::J Yi. This reduces to the condition of 

8f(y2)[Q1(Yi)- Q1(Yl)] + [82(Y1)- 82(Yi)f Q2(Y2) (9.10) 

being independent of Y2. Hence if 81 and 82 are not constant func­
tions, they must be of the form: 

for some matrices M12 , M21 with respective dimensions £1 x £2 
and £2 X £1. Furthermore, after substitution of these functions into 
(9.10), one must have M12 = Mi;. in order for (9.10) to be inde­
pendent of y2 • Now apply (9.1) to get 

f(Y1, Y2) ex hi2(Y1IY2)f211 (Y21YD/ fl12(Y~ IY2) 

_ r1(yl),B1(81(Y2)) exp{[af + qi(Y2)Mf;]q1(Y1)} 
- r1(yi),B1(81(Y2)) exp{[af + qrcy2)M[;]q1(yi)} 

·r2(Y2),82(82(y~)) exp{[ai + qf (yr)M12]q2(Y2)} 

ex r1(yl)r2(Y2) exp{ af Q1 (yl) + ai Q2(Y2) + qf (yl)M12q2(Y2)}. 
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Some special cases are the following. 

1. (Normal.) m = 2, qj(Y) = (y, y2f, rj = 1, j = 1, 2. Then (9.9) 
has the form 

f(Y1, Y2) = exp{B + auy1 + a12Yi + a21Y2 + a22Y~ + /11Y1Y2 

(9.11) 
Some constraints are needed on the parameters in order to get 
a density, including /22 ~ 0. The univariate margins of this 
density do not have a simple form. 

2. (Poisson.) m = 2, qj(Y) = y, rj(Y) = (y!)- 1, j = 1, 2. Then 
(9.9) has the form 

f(Y1, Y2) = [y1!Y2!J- 1 exp{B + a1Y1 + a2Y2 + /Y1Y2}, (9.12) 

for Y1, Y2 = 0, 1, ... , where 1 must be non-positive. Again the 
density has the RR2 property. The univariate margin has the 
form It (yt) = [Y1 !]-1 exp{ B + a1 Y1 + e<>~+'YYl}. 

9.2.3 Conditional binary: logistic regressions 

In this section, we suppose that there is a multivariate binary re­
sponse vector Y and a covariate (column) vector x (say of dimen­
sion r). These are measured for each subject. We look at condi­
tions for which Pr(}j = liYk = Yk, k ::J j, x) = G(aj + /3jx + 
}:k;Cj /jkYk), j = 1, ... , m, for some cdf G, where the f3j are row 
vectors of length r. The case of G being the logistic distribution, 
leading to conditional logistic regressions, is studied before the gen­
eral case. 

Consider first the case of two binary response variables Y1, Y2 
and a covariate vector x. Suppose that Y1 conditional on x and 
Y2 = Y2 is logit and that Y2 conditional on x and Y1 = Y1 is logit, 
I.e., 

. [Pr(Y1 = 1IY2 = Y2, x)] 
log1t[Pr(Y1 = liY2 = Y2,x)] =log Pr(Y1 = OIY2 = y2,x) 

= a1 + P1x + /12Y2, (9.13) 

. [Pr(Y2 = 1IY1 = Y1,x)] 
log1t[Pr(Y2 = 1IY1 = Y1,x)] =log Pr(Y2 = OIY1 = y1,x) 

= a2 + P2x + /2lYl· (9.14) 

What are necessary and sufficient conditions for (9.13) and (9.14) 
to be compatible conditional distributions? The answer, from (9.2), 
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is that the conditional distributions are compatible if and only if 
112 =121 , in which case the joint distribution, from (9.1), is: 

P12(Y1, Y2lx) = [c(x)]-1 exp{(a1 +P1x)y1 +(a2+P2x)y2+/12Y1Y2}, 
(9.15) 

where c(x) = 1+exp{a1 +f31x}+exp{a2+f32x}+exp{(a1 +a2)+ 
({31 + P2)x + /12}. 

The model as given in (9.13)-(9.15) generalizes for dimension m. 
For the general multivariate case with binary response variables 
Y1, ... , Y m, suppose that for j = 1, ... , m, Yj conditional on x and 
Yk = y;, k =f. j, is logit with parameters ai, {3i, 'Yi k, k =f. j. That is, 
for j = 1, ... , m, 

logit [Pr(Yj = 11Yk = Yk, k =f. j, x)] = aj +f3ix+ L /jkYk· (9.16) 
k"f.j 

The necessary and sufficient conditions for compatibility of the 
conditional distributions are /ij = /ji, i =f. j. The resulting joint 
distribution is 

m 

P1 ... m(Yix) = [c(x)r1 exp{L(a; + {3;x)y; + L /iiYiYi }, 
i=1 19<i~m 

(9.17) 
Yi = 0, 1,' j = 1, ... , m, with normalizing constant 

1 1 rn 

c(x) = L · · · L exp{L(a; + /3;x)y; + L /ijYiYj }· 
Y1=0 Ym=D i=1 i<j 

Proof. For k = 1, ... , m, let P-k(·lx) be the marginal distribution 
of (Y1, ... , Yk-1, Yk+1, ... , Ym)· Given the model (9.17) with /ij = 
/ji, i =f. j, we have 

P-k(Y1, · · ·, Yk-1. Yk+1, ... , Ymlx) · c(x) 

exp{ (ak + {3kx) + L(a; + {3;x)y; + L /kjYi 
i# j# 

+ L /ijYiYj} + exp{L(a; + {3;x)y; + L /ijYiYj} 
i<j,i,j# i# i<j,i,j# 

exp{L(a; + f3;x)y; + L /iiYiYi} 
i# i<j,i,j# 

· [ 1 + exp{ ak + {3kx + L /kjYi}]. 
j# 
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Hence, we obtain 

exp{Li#(o:; + Pix)yi + Lt~i<j~m,i,j# /ijYiYj} 
1 

1 + exp{ O:k + Pkx + Lj# 'YkiYi} 

exp{(o:k + Pkx + LNk /kiYi )yk} 

1 + exp{ O:k + Pkx + Lj# /kiYi} · 

This equation indicates that the conditional probability distribu­
tions Pr(Yk = Yk I }j = Yi, j # k, x) for k = 1, ... , m are logistic 
regressions. 

Next we turn to the proof of the necessity. The notation /iir is 
used for the pmf of }j given x and the rest of the Ys. From (9.3) 

Pr(Yt = Yl, ... , Y m = Ym I X) 

f1Jr(Y1IY2, · · ·, Ym, x) f2Jr(Y21Y~, Y3, · · ·, Ym, x) 
ex: ftlr(Y~ IY2, · · ·, Ym, x) hlr(Y~ IY~, Y3, · · ·, Ym, x) 

falr(Y31Y~, Y~, Y4,, · · ., Ym, x) 
hlr(Ygly~, y~, Y4, · · ·, Ym, x) 

fmlr(Ym IY~' ... 'Y~-1> x) 
fmlr(Y~Iy~, · · ·, Y~-1> x) 

for a fixed and arbitrary y 0 • This simplifies to 

Pr(Y1 = Yl, .. · , Y m = Ym I X) 

TI~1 exp{(o:; +P;x+ Lj<i'YiiYJ + Lj>i'YiiYi)Yd 

ex: I1~1 exp{(o:; + f3;x + Lj<i 'YiiYJ + Lj>i /ijYj )y?} 
m 

ex: exp{L ( O:i +Pix+ L /ij Yi) Yi 
i=l i>i 

m 

+ L [ (2::: /ijYJ )Yi- (2::: /ijYi )Y?] }. 
i=l i<i i>i 

Take y~ = · · · = y~ = 0 to obtain 
m 

(9.18) 

Pr(Yt = Yl, ... , Ym = Ymlx) ex: exp{L(o:; + {3;x + L /ijYj )Yi }, 
i=l i >i 

the form of the joint probability distribution. 
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For the condition for compatibility, take the ratio of (9.18) with 
y 0 and y*; the ratio should not depend on Y1 , ... , Ym. It is 

R( . 0 *) _ exp{L7::1 O::; <i 'Yi;YJ)y; - 2:7::1 (L;>; 'YiiYi )y?} 
y,y ,y - exp{L7::1(Lj<i'YiiYJ)Yi- L7::1(L;>;'YiiYi)Yi} 

exp{2:7::1 (L;>; 'YiiYi )yp- 2:7::1 (Li>i 'YiiYi )y?} 
- exp{L7::1 (Li>i 'YiiYi )Yi - 2:7::1 (Li>i 'YiiYi )Yi} 

m 

= exp{L [L('Yii- Iii )Yi] (Y?- yi) }. (9.19) 
i=1 j>i 

In (9.19), one can take appropriate values for yp, Yi, e.g., y* = 
(0, ... , 0) and y 0 = (0, ... , 0, 1, 1), (0, ... , 0, 1, 1, 1), ... , (1, ... , 1). 
The first choice of y 0 yields exp{('Ym,m-1- 'Ym-1,m)Ym} and this 
is independent of Y1, ... , Ym only if 'Ym-1,m = 'Ym,m-1. The other 
choices yield the other inequalities. Alternatively, the symmetry in 
the variables and parameters then implies that 'Yii = /ji for all 
i i= j. 0 

The parameters /ij have interpretations as conditional log-odds 
ratios since 

{ .. } _ Pr(Yi = 1, }j = 1, Y.~; = Yk, k ::/= i, j I x) 
exp 1'1 - Pr(Yi = 1, }j = 0, Y.~; = y.~;, k ::/= i,j I x) 

Pr(Y; = 0, Yj = 0, Y.~; = Yk, k ::j; i, j I x) 
Pr(Yi = 0, }j = 1, Y.~: = y.~;,k ::/= i,j I x) 
Pr(Yi = 1, }j = 11 x, Y.~; = y.~;,k ::/= i,j) 
Pr(Y; = 1, }j = 0 I x, Y.~: = y.~;,k ::/= i,j) 
Pr(Y; = 0, }j = 0 I x, Y.~; = y.~;,k ::/= i,j) 
Pr(Y; = 0, }j = 11 x, Y.~: = y,~;, k ::/= i,j)' 

For m = 2, there are no Y.~; so that 112 is also the unconditional 
log-odds ratio of P12(·lx) and it is constant over x. Form~ 3, let 
11'ij (y;, Yi lx) be the ( i, j) bivariate marginal distribution of (9.17). 
The unconditional log-odds ratio of 11'ij will depend on x. For 
notational simplicity and without loss of generality, we write the 
log-odds ratio only for the case of (i,j) = (1, 2). Let 

1 1 m 

qm(Yl,Y2,x) = L .. · L exp{L[o:k +,8.~;x+'YlkY1 +!2kY2]Yk 
y,=O Ym=O k=3 

+ L /kk'YkYk' }· 
3~k<k' 
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Then 
2 

( I ) qm(Yl,Y2,x) {~( f3 ) } 1r12 Yl, Y2 X = c(x) exp t;:. O:j + jX Yj + r12Y1Y2 

and the log-odds ratio is 

r12log{[qm(1, 1, x)qm(O, 0, x)]/[qm(1, 0, x)qm(O, 1, x)]}. 

If x has dimension r, then model ( 9 .17) is an exponential family 
model [c(O, x)]-1 exp{ tl s} with 'sufficient' statistic vector 

ST = (y1, 0 0 °' Ym, Y1Y2, 0 0 °' Ym-1Ym, XkYj, 1::; k::; r, 1::; j::; m). 

Given data of the form (Yi1, ... , Yim, Xi!, ... , Xir ), i = 1, ... , n, and 
corresponding vectors s;, the sufficient statistic vector is 2::~ 1 s;. 
The estimate of 0 can be obtained using the Newton-Raphson 
method for an exponential family log-likelihood. 

Note that the exponential family model (9.17) is not closed under 
margins. This is typical of multivariate exponential family models 
that are not multivariate normal. 

9.2.4 Binary: other conditional models 

The use of conditional logistic regressions leads to simple compat­
ibility conditions and a multivariate distribution in the exponential 
family. With other forms for the conditional binary distributions, 
the analysis is not simple. This is illustrated for the bivariate and 
trivariate cases. 

For the bivariate case, without covariates, suppose 

fi12(Y1IY2) = (p1(Y2)]Y 1 (q1(Y2w-Y 1 , 

!211 (Y2IY!) = (p2(y!)]Y2 (q2(y!)jl-Y2 , 

for Yb Y2 = 0, 1, qj = 1-pj, j = 1, 2. From (9.2), the compatibility 
condition simplifies to 

(p1 (y2)Y~-y~ (q1 (Y2)]Y~ -z~ [P2~ypq2(zp] Y2 
P2~z1)q2(Y1) 

independent of y2 for all choice of y~, z~. Since y2 takes only values 
of 0 and 1, this means 
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This is an identity if zr = y~ so the compatibility comes from the 
case in which z~, y~ are different, say z~ = 1, y~ = 0. This leads to 
the condition: 

(9.20) 

i.e., there are three degrees of freedom in the choice of the 
parameters P1(0),p1(1),P2(0),p2(1) of the conditional binary dis­
tributions. 

If the pi are written in the formp1(Y2) = G(a1 +112Y2), P2(Y!) = 
G(a2 + 121 y!), where G need not be the logistic cdf, then the 
compatibility condition (9.20) becomes 

G(a2 + 121) 
1- G(a2 + 12!) 

G(a2) 1- G(a!) G(a1 + 112) (9 21) 
1- G(a2) G(a!) 1- G(a1 + 112)" · 

With G, a 1, a2, 112 fixed, there is a single value of 121 that solves 
(9.21) since the left-hand side of (9.21) is strictly increasing in 121 . 
Unlike the case of the logistic distribution, the solution need not 
be 121 = 112. With the addition of covariates to a model based on 
G, the analysis and compatibility conditions are left as a problem. 

The trivariate case without covariates does not lend itself to a 
simple analysis. Suppose 

ilir(YdY2, Ya) = [p1 (Y2, Ya)JY 1 [q1(Y2, Ya)] 1-y 1 , 

hir(Y2iY1,Ya) = [p2(Y1,Ya)]Y2 [q2(Y1,Ya)F-Y2 , 

fair(YaiY1, Y2) = [pa(Y1, Y2)]Y 3 [qa(Y1, Y2w-y,. 
From (9.4), one gets 

. [P1(Y2, Ya)] z~-y~ [P2(zr, Ya)] zg-y2 

q1(y2,ya) q2(zr,ya) 

independent of Y2, Ya for all y 0 , z0 . Hence the compatibility condi­
tions come from substituting (y2, Ya) equal to (0, 0), (0, 1), (1, 0) 
and (1, 1) and equating. The remaining analysis is left as an un­
solved problem. 

Enough evidence has been presented in this section to show 
that conditional logistic regressions are a very convenient choice 
for mathematical tractibility. 



296 MODELS FROM GIVEN CONDITIONAL DISTRIBUTIONS 

9.3 Bibliographic notes 

Models which are based on compatible conditional distributions 
in given parametric families are the main topic of the book by 
Arnold, Castillo and Sarabia (1992). Papers on this topic include 
Arnold and Strauss (1988; 1991), Arnold and Press (1989) and 
Arnold (1990); the paper by Arnold and Strauss (1988) has more 
details on distributions with conditional exponential densities, and 
Arnold (1990) has more details on negatively dependent distribu­
tions. The approach in this chapter that is different is the use of 
the compatibility condition that generalizes that in Gelman and 
Speed (1993). Another reference following that of Gelman and 
Speed (1993) is Arnold, Castillo and Sarabia (1995). The model 
in Section 9.2.3 for multivariate binary data based on compatible 
conditionally specified logistic regressions is given in Joe and Liu 
(1996). 

9.4 Exercises 

9.1 Prove the multivariate extension in Section 9.1, given by (9.3) 
and (9.4). 

9.2 What are the constraints on the parameters for (9.11) to be 
a density? 

9.3 For the bivariate density in (9.12) with conditional Poisson 
margins, show that 1 must be non-positive. [Hint: check on 
the convergence of L:Y f(y, y).] 

9.4 Study other cases with conditionally specified densities in 
given parametric families. 

(Arnold, Castillo and Sarabia 1992) 

9.5 Generalize (9.17) when there are the additional interaction 
terms in the logistic regressions in (9.16): x Ilkes Yk. lSI ~ 1, 
and Ilkes Yk, lSI ~ 2, where S is a non-empty subset of 
{ 1 , ... , m} \ {j}. 

9.6 Complete the details in Section 9.2.2. 

9.5 Unsolved problems 

9.1 Do a further analysis of conditionally specified binary regres­
sions, when the latent distribution is not logistic. 



CHAPTER 10 

Statistical inference and 
computation 

This chapter is devoted to statistical inference theory and data 
analysis methods for multivariate models, and numerical methods 
for the estimation of parameters for these models. 

For almost all of the multivariate models in this book, much 
of the classical statistical inference theory is not applicable. This 
includes exponential family results, sufficient statistics, ancillary 
statistics, minimum variance unbiased estimators, etc. One should 
not expect estimators with closed forms, rather one should assume 
that numerical methods are needed to get estimates. Practically 
the only theory that can be applied is the asymptotic maximum 
likelihood (ML) theory. But this can be applied in a way that 
leads to simpler computations and greater robustness, especially 
for multivariate models where different parameters are associated 
with different marginal distributions. For these models, which in­
clude copula-based models in which univariate parameters are sep­
arated from multivariate parameters, rather than maximizing the 
multivariate log-likelihood in all of the parameters together, one 
can estimate different parameters from log-likelihoods associated 
with different marginal distributions of the multivariate distribu­
tion. This theory is developed in Section 10.1. It can be considered 
as part of estimating equation or inference function theory, with 
each inference function being a score function from a likelihood of 
a marginal distribution. This is the new statistical inference theory 
that comes from multivariate non-normal models. It has not been 
studied in the statistical literature, and it is not needed for the 
MVN distribution, because estimation for the MVN distribution 
has a closure property under the taking of margins that generally 
does not hold (see Exercise 10.1). 

For multivariate data, initial data analysis often starts with 
univariate analyses, then bivariate analyses, and finally higher-
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dimensional multivariate analyses. Can multivariate modelling fol­
low the same steps? The inference method in Section 10.1 is an 
attempt to follow a similar sequence for the multivariate models 
which have the property that all parameters are associated with 
marginal distributions- see Section 4.1. 

Next we comment on statistical inference for models for longit­
udinal data which fit within the multivariate framework. Longit­
udinal or repeated measures data can appear in many different 
forms, with three cases being: 

(a) short time series (of the same length) on many different sub­
jects; 

(b) a single long time series; 

(c) moderate-length or long time series (with possibly different 
lengths) on many different subjects. 

These cases will be used to illustrate the different methods, mod­
els and analyses that might be appropriate. For case (a), if the 
lengths of the time series are all the same and the observation 
times are all the same (either in an absolute or relative sense), 
then this can be treated as multivariate data where reasonable 
models to try would have dependence decreasing with lag. Such 
models are given in Chapter 8. For case (b), there is no replica­
tion over units so asymptotic theory depends on ergodicity-related 
results. Markov chain models might be appropriate, including the 
autoregressive models in Section 8.4. For case (c), a random effects 
type of model might be appropriate. If parameter estimates can 
be obtained for each subject, the estimation of the parameters for 
the random effects distribution might be done in a second stage. 
Of course, as mentioned in Section 1.7, appropriate models and 
methods depend on inferences of interest. Examples for all three 
types of longitudinal data are given in Chapter 11. 

Subsections of Section 10.1 are devoted to the asymptotic covari­
ance matrix, estimation of standard errors, asymptotic efficiency, 
and assessment of estimation consistency for the method of us­
ing inference functions that are derived from the log-likelihoods of 
marginal distributions. Also there are several examples illustrating 
this method. In Section 10.2, some results in Section 10.1 are ex­
tended to the inclusion of covariates in the model. Also there are 
extensions to situations in which there are parameters common to 
more than one margin. Section 10.3 is on choice and comparison of 
models through (penalized) log-likelihoods and predictive ability. 
Section 10.4 has some results on inference for Markov chains. Sec-
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tion 10.5 comments on research needed for Bayesian methods to 
be applied to multivariate models. Section 10.6 discusses numerical 
methods, especially numerical optimization. 

10.1 Estimation from likelihoods of margins 0 

In this section, we study the estimation of parameters of a copula­
based multivariate model, based on the likelihoods of marginal 
distributions of the model. Following terminology of McLeish and 
Small (1988) and Xu (1996), we call this the method of inference 
functions for margins or IFM method. The inference or estim­
ating functions are score functions of likelihoods of marginal dis­
tributions. The method actually applies to a larger class of models 
that have certain closure properties for the parameters (see Section 
4.1). Here we assume that we have iid observations. The extension 
to include covariates is given in Section 10.2. 

Consider a copula-based parametric model for the random vector 
Y, with cdf 

F(y; 011, ... , Olm, 8) = C(F1(Y1; at!}, ... , Fm(Ym; atm); 8), (10.1) 

where F1, ... , Fm are univariate cdfs with respective parameters 
011, ... , Olm, and C is a family of copulas parametrized by a 
parameter 8. We assume that C has a density c (mixed derivative 
of order m). The vector Y could be discrete or continuous. In the 
former case, the joint pmf f( ·; 011, ... , Olm, 8) for Y can be derived 
from the cdf in (10.1), and we let the univariate marginal pmfs be 
denoted by /I, ... , fm; in the latter case, we assume that Fj has 
density /j for j = 1, ... , m, and that Y has density 

m 

f(y; 011, ·. ·, Olm, 8) = c(F1(Y1; 011), ... , Fm(Ym; Olm); 8) IT /j (Yj; Olj)· 

j=1 

For a sample of size n, with observed random vectors y 1 , ... , y n, 

we can consider the m log-likelihood functions for the univariate 
margins, 

n 

Lj(Otj) = l:)og/j(y;j;Otj), j = 1, ... ,m, 
i=1 

and the log-likelihood function for the joint distribution, 
n 

L(8, 011, ... , Olm) = L log f(Yi; 011, ... , Olm, 8). (10.2) 
i=1 
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A simple case of the IFM method consists of doing m separate 
optimizations of the univariate likelihoods, followed by an optim­
ization of the multivariate likelihood as a function of the depend­
ence parameter vector. More specifically, 

(a) the log-likelihoods Lj of them univariate margins are separ­
ately maximized to get estimates a1, ... , am; 

(b) the function L( 8, a1 , ... , am) is maximized over 8 to get 0. 
That is, under regularity conditions, ( a1, ... , am, 0) is the solution 
of 

(10.3) 

This procedure is computationally simpler than estimating all 
parameters a1, ... ,am,8 simultaneously from Lin (10.2). A nu­
merical optimization with many parameters is much more time­
consuming compared with several numerical optimizations, each 
with fewer parameters. 

If the copula model (10.1) has further structure such as a para­
meter associated with each bivariate margin, simplifications of the 
second step (b) can be made, so that no numerical optimization 
with a large number of parameters is needed. For example, with a 
MVN latent distribution, there is a simplification shown in Section 
10.1.4; the correlation parameters can be estimated from separate 
likelihoods of the bivariate margins. 

If it is possible to maximize L to get estimates &1, ... , &m, iJ, 
then one could compare these with the estimates a1, ... , am, 8 as 
an estimation consistency check to evaluate the adequacy of fit of 
the copula. For comparison with the IFM method, the MLE refers 
to ( &1, ... , &m, 0). Under regularity conditions, this comes from 
solving 

( {)Lj oa1, ... , oLj oam, oLj 88) = 0; (10.4) 

contrast with (10.3). Note for MVN distributions, consisting of 
the MVN copula with correlation matrix 8 = R and N(J.lj, a}) 
univariate margins ( Qj = (J.lj, a})), that &j = aj, j = 1, ... , m, and 

0 = 0. The equivalence of the estimators generally does not hold. 
Possibly because the MVN distribution is dominant in multivariate 
statistics, attention has not been given to variations of maximum 
likelihood estimation for multivariate models. 

Since it is computationally easier to obtain ( a1 , ... , am, 0), a 
natural question is its asymptotic relative efficiency compared with 
( &1, ... , &m, 0). Apart from efficiency considerations, the former 
set of estimates provides a good starting point for the latter if one 
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needs and can compute ( &1, ... , &m, 0). Approximations leading to 
the asymptotic distribution of (cit, ... , am, 0) are given in Section 
10.1.1. Then, one can (numerically) compare the asymptotic co­
variance matrices of ( a1, ... , am, 0) and ( &1, ... , &m, 0). Also an 
estimate of the covariance matrix of ( a1' ... 'am' 0) can be ob­
tained. The theory is a special case of using a set of estimating 
equations to estimate a vector of parameters. 

10.1.1 Asymptotic covariance matrix 

Throughout this subsection, we assume that the usual regularity 
conditions (see Serfl.ing, 1980) for asymptotic maximum likelihood 
theory hold for the multivariate model as well as for all of its mar­
gins. For the IFM method, there is a set of inference or estimating 
functions in which each function is a score function or the (partial) 
derivative of a log-likelihood of some marginal density. 

Let fJ = ( t:t1, ... , l:tm, 8) be the row vector of parameters and let 
g be a row vector of functions with the same dimension as q. For 
example, g could be the vector in the summands on the left-hand 
side of (10.3). The vector of inference functions is L~= 1 g(y;, q). 

Let Y,Y1, ... ,Yn be iid with the density f(-;q). Suppose the 
vector of estimating equations for the estimator ij is 

n 

Eg(Y;,ij) = 0. (10.5) 
i=1 

Let ogT I a, be the matrix with (j, k) component 09j (y',) I O'f/k' 
where 9i is the jth component of g and 'f/k is the kth component 
of '1· From an expansion of (10.5) similar to the derivation of the 
asymptotic distribution of an MLE, under the regularity condi­
tions, the asymptotic distribution of n112(ij- qf is equivalent to 
that of 

n 

{ -E [ogT (Y, 'l)loq]} -1 n-1/2 L gT (Y;' q). (10.6) 
i=1 

Hence it has the same asymptotic distribution as 

{ -E [ogr(v, q)loq]} - 1z, 

where Z "'N(O, Cov (g(Y, q))). That is, the asymptotic covariance 
matrix of n112(ij- qf, called the inverse Godambe information 
matrix, is 
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where 

Dg = E [ogT(Y,fJ)/ofJ], Mg = E [gT(Y,fJ)g(Y,fJ)]. 

(If ij is the MLE and l =log/, then g = olfofJ, ogT(Y,fJ)/ofJ 
= 82£/ofJT OfJ, and this is the standard result for the MLE.) 

Estimation of the asymptotic covariance matrix n-1 V of ij in­
volves -E[ogT(Y,fJ)/ofJ] and hence the need to compute many 
derivatives (which can be tedious both analytically and in the cod­
ing for a computer program if symbolic manipulation cannot be 
used). This can be avoided by making using of the jackknife to 
estimate n- 1 V. Let ij(i) be the estimator of fJ with the ith obser­
vation Y; deleted, i = 1, ... , n. Assuming ij and the ij(i) are row 
vectors, the jackknife estimator of n-1 Vis 

n 
""(-(i) -)T(-(i) -) L...J'I -fJ fJ -fJ. 
i=1 

Proof. The (non-rigourous) justification of this comes from substi­
tuting an analogy of (10.6) for ij(i) to get 

(ij(i) - fJ)T ~ { -E [ogT (Y, fJ)/ofJ]} -\n- 1)-1 I: gT (Y k, fJ) 

~ {-E[8gT(Y,fJ)/ofJ]}-1(n -1)-1 

·[n{-E[ogT(Y,fJ)/ofJ]}(ij- 'If- gT(Y;,fJ)] 

n(n- 1)- 1 ('1- 'If 

-( n - 1 )- 1 {-E [ogT (Y, fJ)/ ofJ]} - 1gT (Y;, fJ), 

so that 

(ij(i)- ijf ~ -n-1{ -E [ogT (Y' fJ)/ ofJ]} -1gT (Y;' fJ) + Ov(n-3/2). 

Finally, 

D 

n 

~)f1(i)- ij)T (ij(i) - ij) ~ n-2{ -E [ogT (Y, fJ)/ofJ] r1 

n 

·[I: gT (Yi, fJ) g(Y;, fJ)] · { -E [ogT (Y, fJ)/ofJf} - 1 

i=1 

~ n-1 { -E [ogT (Y, fJ)/ofJ]} - 1Cov (g(Y, fJ)) 

·{ -E [ogT (Y, fJ)/ofJ]Trl + Op(n-3/2) 

n- 1v + Ov(n-312 ). 
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Actually, if each inference function is the partial derivative of a 
log-likelihood function of some marginal density, then the vector 
g need not be explicitly obtained for numerical computation of 
ij. From the log-likelihoods and a quasi-Newton routine (see Sec­
tion 10.5) for maximizing the log-likelihoods, the components of ij 
can be obtained sequentially, beginning with the components corre­
sponding to univariate p<!.rameters. The jackknife method can then 
be used for the estimation of the asymptotic covariance matrix of 
the estimators. Hence, with the combination of the quasi-Newton 
routine and the jackknife method, one can avoid taking analytic 
derivatives of log-likelihoods. 

For large samples, the jackknife can be modified into estimates 
from deletions of more than one observation at a time in order to 
reduce the total amount of computation time. Suppose n = n1 n2, 
with n2 groups or blocks of n1; n2 estimators can be obtained with 
the kth estimate based on n - n1 observations after deleting the 
n1 observations in the kth block. (It is probably best to randomize 
the n observations into the n2 blocks. The disadvantage is that 
the jackknife estimates depend on the randomization. However, 
reasonable estimates for SEs should obtain and there are approx­
imations in estimating SEs for any method.) Note that the simple 
(delete-one) jackknife has n1 = 1. 

Let ij(k) be the estimator of fJ with the kth block deleted, k = 
1, ... , n2. For the asymptotic approximation, think of n1 as fixed 
with n2 -> oo. Assuming ij and the ij(k) are row vectors, the jack­
knife estimator of n - 1 V is 

n2 

"(-(k) -)T(-(k) -) L...J'I -t] 'I -t]. 
k=l 

Proof. Let Bk consist of the indices in the kth block of observations 
to be deleted. Substitute an analogy of (10.6) for ij(k) to get 

(ij(k)_'lf ~ {-E[8gr(Y,fJ)/ofJl}-\n-n1)-1 Lgr(Y;,fJ) 

~ { -E [agT (Y, fJ)/at]]} - 1(n- ni)-1 

. [n{ -E [agr (Y, '1)/afJ]}(ij- 'If- L gr (Y;, 'I)] 
iEBk 

= _n_(iJ-'If __ 1_{ -E [agT(Y, fJ)/8t]Jr1 "gT(Y;, fJ), 
n - n1 n - n1 L....i 

iEBk 
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so that 

(ij(k)- ijf ~ -(n- nl)-1{ -E[8gT(Y,f1)/8'7l} -1 L gT(Y;,f1) 
iEBk 

Hence, 

L(ii(k)- ijf (ij(k)- ij) ~ (n- n1)- 2 { -E [ogT (Y, '1)/8'1]} - 1 

k 
n 

[L::gT(Y;,f1)g(Y;,f1) + L L gT(Y;,f1)g(Y;,,f1)] 
i=1 k i;ti',i,i'EBk 

{ -E [ogT (Y, '1)/8'1f} - 1. 

The term (n-nt)- 2 2:::7=1 gT(Y;,f1)g(Y;,f1) is Op(n- 1 ). Ifn1 > 1, 
it also dominates the other term 

(n-n1)- 2 L L gT(Y;,f1)g(Y;,,f1), 
k i;ti' ,i,i' EBk 

which asymptotically is 

(n- n1)- 2{ n2E [ L gT(Yi, '7) g(Yi'• '7)] + Op(n~/2)} 
i;Ci',19,i'~nl 

or Op(n- 312 ) since the expectation is zero and n2 , n--+ oo. D 

The jackknife method can also be used for estimates offunctions 
of parameters (such as probabilities of being in some category or 
probabilities of exceedances). The delta or Taylor method requires 
partial derivatives (ofthe function with respect to the parameters) 
and the jackknife method eliminates the need for this. As before, let 
ij(k) be the estimator of '7 with the kth block deleted, k = 1, ... , n 2 , 

and let ij be the estimator based on the entire sample. Let b(f1) 
be a (real-valued) quantity of interest. In addition to b(ij), the 
estimates b(ij(k)), k = 1, ... , n2, from the subsamples are obtained. 
The jackknife estimate of the SE of b(ij) is 

{f:[b(ij(k))- b(ij)]2} 1/2. 
k=1 

What the jackknife approach means for the computation se­
quence is that one should maintain a table of the parameter estim­
ates for the full sample and each jackknife subsample. Then one 
can use this table for computing estimates of one or more functions 
of the parameters, together with the corresponding SEs. 
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10.1.2 Efficiency 

The efficiency of the IFM method relative to the ML method (e.g., 
comparison of (10.3) and (10.4)) for multivariate models can be 
assessed using various methods. One comparison of efficiency is 
through the asymptotic covariance matrices of the MLE and the 
estimator from the IFM method. Another comparison consists of 
Monte Carlo simulations to compare the two estimators (through 
mean squared errors, etc.). Both methods are difficult, because of 
the general intractability of the asymptotic covariance matrices, 
and the computation time needed to obtain the MLE based on the 
likelihood in all of the univariate and multivariate parameters. N ev­
ertheless, comparisons of various types are made in Xu (1996) for 
a number of multivariate models. All of these comparisons suggest 
that the IFM method is highly efficient compared with maximum 
likelihood. Intuitively, we expect the IFM method to be quite ef­
ficient because it depends heavily on maximum likelihood, albeit 
from likelihoods of marginal distributions. 

Examples of models for which asymptotic covariance matrices 
were compared are: 

(a) the trivariate probit model for binary data with cutoff points 
of zero and unknown correlation parameters; 

(b) the trivariate pro bit model for binary data with general known 
cutoff points and unknown correlation parameters; 

(c) the latent variable model for binary data with a trivariate 
copula having bivariate margins in the family B10 in Section 
5.1. 

Examples of models for which Monte Carlo simulations were 
used for comparisons are: 

(a) the multivariate probit model for binary data, up to m = 4 
with covariates; 

(b) the multivariate probit model for ordinal data, up to m = 4 
without covariates; 

(c) the multivariate Poisson model based on the MVN copula. 

In almost all of the simulations, the relative efficiency, as meas­
ured by the ratio of the mean squared errors of the IFM estimator 
to the MLE, is close to 1. 
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10.1.3 Estimation consistency 

There are several ways to assess the adequacy of fit of a multivari­
ate copula-based model. One approach is comparison of estimates 
from higher-order margins and lower-order margins. This compar­
ison will be called the estimation consistency check. A rough 
assessment could be based on differences of the estimators relative 
to the SEs or on a likelihood interval. 

In general terms, the estimation consistency check is the follow­
ing. Let 

be a family of m-variate distributions with margins F5(y5; Otj, j E 
S, 65 ), S E Sm, lSI 2: 2, where (J is the multivariate parameter and 
Otj is the parameter for the jth univariate margin. Note that 65 is 
uniquely determined from 6 and S. Let S1 and S2 be two subsets 
with St being a proper subset of S2 and IStl 2: 2. Then (J 51 = 
a( (J 52 ) for a function a. Let the data be Y;, i = 1, ... , n. Assume 
that the univariate parameters are known, or are estimated based 
on individual univariate likelihoods and then assumed known. For 
k = 1, 2, let iJ5k be the estimator using the IFM method based on 
the Y;,5k = (Y;j: j E Sk), i = 1, .. . ,n. Then in general, 651 and 
a(iJ52 ) are different. The closeness ofiJ51 and a(iJ52 ) for all St,S2 

with S1 c S2 is a necessary (but not sufficient) indication that the 
model F(y; Ott, ... , Otm, 6) is an adequate fit to the data. A rough 
SE for 651 - a(B52 ) could be obtained from the jackknife method 
if needed, or one could use SEs from the separate optimizations. 
Another method of assessing the closeness is to check if a( iJ 52 ) is 
in the likelihood-based confidence interval for 651 ; this interval is 

where x;s,l-a is the upper Ot quantile of a chi-square distribution 
with P5 degrees offreedom, P5 is the dimension of 65, and L(-; St) 
is the log-likelihood based on the density of F(y5 1 ; Otj, j E St, 851 ). 

There are variations on the use of estimation consistency for 
comparisons of parameter estimates from likelihoods of different 
margins. Some of these are mentioned in the specific examples in 
the next subsection and in Chapter 11. See also the end of the next 
subsection for another consistency check that could be done. 
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1 0.1.4 Examples 

This subsection consists of examples to illustrate the theory de­
scribed earlier in this section. 

Example 10.1 (Multivariate probit model with no covariates.) 
The model for the multivariate binary response vector Y is }j = 
I(Zi :S ai ), j = 1, ... , m, where Z .....- Nm(O, R), and 8 = R = (Pik) 
is a correlation matrix. Let the data be y; = (Yil, ... , Yim), i = 
1, ... , n. For j = 1, ... , m, let Ni(O) and Ni(1) be the number of 
Os and 1s among Yli, ... , Yni. For 1 :S j < k :S m, let Nik(i1, i2) be 
the frequency of ( i1, i2) among the pairs (Yli, Ylk), ... , (Yni, Ynk), 
for (i1, i2) equal to (0,0), (0,1), (1,0) and (1,1). From maximizing 
the jth univariate likelihood, 

Lj ( ai) = [<I>( ai )]Nj(1)[1 - <I>( ai )]Nj(O), 

(xi = <I>- 1(Ni(1)/n), j = 1, ... , m. For this example, one canes­
timate the dependence parameters from maximizing separate bi­
variate likelihoods L j k (Pi k) = L j k (Pi k , a i, a k) rather than using 
the m-variate log-likelihood L in (10.2). Let <l>p be the BVSN cdf 
with correlation p. Then 

Ljk(Pi ,aj,ak) k 

[<I> (a. ak)]Njk(ll)[<I>(a ·)-<I> (a. ak)]Njk(lO) Pjk J' J Pjk J ' 

·[<I>(ak)- <l>Pjk (ai, ak)]Njk(Ol) 

·[1- <I>(ai)- <I>(ak) + <l>Pjk (ai, ak)]Njk(OO), 

and Pik is the root p of Njk(ll)/n = <I>p(O:j,O:k)· 
The maximization of the bivariate likelihood Ljk jointly in the 

parameters ai, ai, Pi k leads to the same estimates as above. An 
assessment of the estimation consistency of the multivariate pro bit 
model can be made from comparisons of estimators from trivariate 
likelihoods Ljk& in the parameters ai,ak,as,Pjk,Pis,Pk&· 

Another check that could be done is the positive definiteness of 
the matrix R = (Jiik)· It is possible that R is not positive definite, 
especially if the true correlation matrix R is close t.o being singular. 

Possibly one may be considering a simple correlation structure 
from the nature of the variables or perhaps the correlation estim­
ates suggest a simple structure. Examples are an exchangeable cor­
relation matrix with all correlations equal top, and an AR(1) cor­
relation matrix with the (j, k) component equal to pli -kl for some 
p. For these cases, see Section 10.2.2. 0 



308 STATISTICAL INFERENCE AND COMPUTATION 

Example 10.2 (Multivariate probit model with covariates.) Let 
the data be (Y;,x;), i = 1, ... ,n, where Y; is an m-variate re­
sponse vector and x; is a covariate (column) vector. The multi­
variate probit model has stochastic representation Yii = I(Z;i ~ 
/3io + f3ix;), where Z; are iid Nm(O, R), R = (Pik) and the Pi are 
row vectors. With 'Yi = (f3io,/3i), the jth univariate likelihood is 

n 

Lj ( 'Yi) = II [ ~(f3io +Pix;)] Y•i [ 1 - ~(f3io +Pix;)] 1-Y•i. 
i=1 

The maximization of Lj leads to ;yi. For 1 ~ j < k ~ m, the (j, k) 
bivariate likelihood is: 

n 

Lj k(Pi k. 'Yi' "Yk) = II { [~ Pik (f3io +Pix;, f3ko + flkxi )]1(Y•;=Y•k= 1) 

i=1 

[~(f3io + flix;)- ~Pik(f3jo +Pix;, f3ko + Pkx;)f<Y•;=1·Y•k=o) 

[~(f3ko + Pkx;)- ~Pik(f3io +Pix;, f3k0 + fJkx;)] 1(Y•;=O,y;k= 1) 

[1- ~(f3io +Pix;) - ~(f3ko + Pkx;) 

+~Pik (f3io +Pix;, f3ko + Pkx;)f<Y•i=Y•k=O) }· 

The maximization of L j k (Pi k, 1 i , 1 k) in Pi k leads to f>i k. An as­
sessment of the estimation consistency can be made from a bivari­
ate likelihood in the parameters /3i 0 , f3ko, Pi, Pk> Pik or a trivariate 
likelihood in the parameters /3io,f3ko,f3.o,fJi,fJklfJs, Pik,Pis,Pks· 
Again, see Section 10.2.2 if some of the parameters (regression or 
correlation) can be assumed to be the same. D 

Example 10.3 (Multivariate Poisson-lognormal distribution.) 
Suppose we have a random sample of iid random vectors y;, i = 
1, ... , n, from the density (7.28) in Section 7.2.3. Let Oti = (J.li, uii ), 
j = 1, ... , m. The jth univariate marginal density is 

l oo e->.; ).~i 

/j(yi;ai) = ~ exp{-Hlog>..i- J.li) 2 /uii}d>..i. 
o Yi! 21ruii >..i 

The (j, k) bivariate marginal density is 

1oo 1oo e->.; ).~i e->.k .xtk 

/ik(Yi' Yk; Oti' Otk, Pik) = . I 
o o Yi!yk!27r>..j>..kyuiiukk-uJk 

exp{ -t(1- P]k)- 1 [(log.\i- J.li) 2 fuJi+ (log.\k- J.lk) 2 /ukk 

-2pjk(log >..i - J.li )(log >..k- J.lk)/ y'uiiG'kk]} d>..jdAk, 
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where Pik = Uik/JuiiUkk· Suppose Oti = (fli,iTii) obtains from 
maximizing Li (ai) = I:?=1 log fi(Yii; ai ), and given the estimates 
of the univariate parameters, Pik obtains from maximizing 

n 

Lik(Pik,Oti,Oik) = ''I)og/jk(Yij,Yik;Oii,Oik,Pik) 
i=1 

as a function of Pi k. The log-likelihood maximizations are straight­
forward using a quasi-Newton routine, with good starting points, 
which in this case can come from method of moments estimates. 
Let Yi, sJ be the sample mean and sample variance for the jth uni­
variate margin, and let ri k be the (j, k) sample correlation. Based 
on the expected values given in Section 7.2.3, for Li, the method 
of moments estimates are 

uJi = log([sJ- Yi]/fl] + 1), ilJ = logyi- tuJi, 

and, for Ljk, the method of moments estimate is 

uJk = log(riksisk/[YiYk] + 1). 
Assessment of estimation consistency can come from compar­

isons of bivariate and trivariate likelihoods with the univariate 
parameters already estimated. The trivariate log-likelihoods, with 
three-dimensional integrations, would be time-consuming to max­
imize but should be possible. 

The comments for a special correlation structure from Example 
10.1, and the extensions to include covariates in Example 10.2, 
apply here as well. 0 

Example 10.4 (MEV model with partially exchangeable de­
pendence structure.) We illustrate some ideas for models from Sec­
tion 4.2 using the family M6 in the trivariate case. In the MSMVE 
form, the exponent is 

A(z;,B1,2 ,,e1,3) = ((z~1.2 + z~l,2)fJ 1 , 3ffJ 1 , 2 + z:l,3)1/fJ1,3, 

with ,81,2 2: ,81,3 2: 1. The bivariate margins have exponents in the 
family B6, A(w1,w2) = (wf + w~) 1 1 6 , with parameters ,81,2, ,81,3 , 
,81,3 for the (1,2), (1,3), (2,3) bivariate margins, respectively. For 
trivariate extreme value data (maxima), (Yil> Yi2> Yi3), i = 1, ... , n, 
one can maximize separate GEV univariate log-likelihoods Li to 
get parameter estimates Pi, iTi, 1i, j = 1, 2, 3. Then one can trans­
form the univariate margins to exponential survival functions with 
Zii = (1 + 'Yi[Yii - Jl.j]/ui)~ 1 h;, substituting in the estimated 
parameters. Next, fJ1,2, (31,3 can be estimated from the bivariate 
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log-likelihoods and the model M6 may be plausible if the estimates 
from the (1,3) and (2,3) bivariate likelihoods are about the same 
and smaller than the estimate from the (1,2) bivariate likelihood. If 
the estimates from the bivariate likelihoods have the right pattern, 
one could go on to the trivariate likelihood (with given jij, Uj, ;:;'j). 

The survival function of the family M6 has closed form so that 
the density can be obtained by symbolic manipulation software in 
the form of Fortran or C code for use with a quasi-Newton routine 
for numerical maximization of the log-likelihood. This comment 
applies to any MEV or MSMVE model with closed-form cdf or 
survival function. 0 

Example 10.5 (MEV model MM6 or MM7.) Consider the tri­
variate case, with GEV univariate margins. After the transform 
to Zij, given in Example 10.4, one can estimate the multivariate 
parameters. Because of the asymmetry in the variables, one has 
to decide which variables go with which indices. Once this is de­
cided, the parameters 812,823 can be estimated from the (1,2) and 
(2,3) bivariate log-likelihoods and then the parameter 813 can be 
estimated from the (1,2,3) trivariate log-likelihood. If there is no 
natural order to the indices, one could compare the trivariate log­
likelihood values, evaluated at estimated parameters, for the three 
distinct ways of assigning indices to variables. 0 

Example 10.6 (MEV model M8.) The univariate parameters 
can be estimated from the GEV log-likelihoods. After the trans­
form to Zij, given in Example 10.4, the parameter Djk, 1 ~ j < k ~ 
m, can be estimated from the (j, k) bivariate log-likelihood to get 
8i k. For estimation consistency, comparisons can be made with the 
estimates from the trivariate log-likelihoods (with the univariate 
parameters fixed). 0 

Example 10.7 (Molenberghs-Lesaffre construction of Section 
4.8.) Assume that the bivariate margins all belong to a common 
parametric family of copulas, such as the family B2 or B3. Also 
assume that the parameters '1/Js, S E Sm, lSI ~ 3, are in a range 
such that the construction in Section 4.8leads to proper multivari­
ate distributions. Suppose that the multivariate copula is used as a 
latent variable model for multivariate binary or ordinal responses 
with a logistic distribution (compare the model in Section 7 .1. 7). 

A sequence for estimation of parameters is: first, the univari­
ate parameters for the separate univariate logistic or ordinal re­
gressions; second, the bivariate parameters from separate bivari­
ate log-likelihoods; and then the parameters '1/Js, for dimensions 
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lSI ;?: 3. For each multivariate log-likelihood, estimates from lower­
order margins are used, so that it involves only the maximization 
over one variable. For trivariate and higher-order margins, a rea­
sonable starting point for the numerical optimization is 1, because 
of the maximum entropy interpretation in Section 4.8 and because 
this leads to reflection symmetry as discussed in Section 7 .1. 7. D 

Example 10.8 (Families MM1-MM3 with vs equal to 0.) For 
the use of these multivariate families of copulas, the sequence of 
estimation of parameters is: first, the univariate parameters from 
univariate log-likelihoods; second, bivariate analysis to determine 
degrees of bivariate dependence; and then the multivariate para­
meters from the multivariate log-likelihood with the univariate 
parameters given. D 

As noted in Example 10.1, with the same possibility for other 
multivariate models, when dependence parameters are estimated 
based on bivariate or lower-dimensional margins, then one should 
check if the set of estimators is compatible for the model. For 
example, for any model with the MVN as a latent distribution, 
one needs to check if the estimated correlations from the bivariate 
margins lead to a positive definite matrix. If the sample size is 
sufficiently large, then non-compatibility would not be expected to 
be a problem, unless the vector of dependence parameters is near 
the boundary of the parameter space. 

10.2 Extensions 

In this section, we outline extensions of the results in the pre­
ceding section to include covariates (e.g., the multivariate probit 
model with covariates) and to situations for which parameters are 
common to more than one margin (e.g., the multivariate probit 
model with AR(1) dependence structure). 

10.2.1 Covariates 

Under certain regularity conditions, the results of Section 10.1 ex­
tend to the inclusion of covariates. There are two ways of looking 
at the asymptotics: one is a more standard approach to extend 
from the iid case to the independent, non-identically distributed 
case and the other is to view the response vector and covariate 
vector pair (Y;, x;) as iid. An outline of the asymptotic results is 
given below. 
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There are common ways of extending many univariate distribu­
tions to include covariates (often, transformations of parameters 
are linear functions of some functions of covariates). A difficult 
modelling question may be whether dependence parameters should 
be functions of covariates. If so, what are natural functions to 
choose? This is not even clear for the multivariate probit model. 
For data analysis, one could split the covariate space into several 
clusters or subgroups, and then do a separate estimation of de­
pendence parameters by clusters. If there are only binary (or cate­
gorical) predictor variables, then one could do estimation for each 
combination if the resulting (sub )sample sizes are large enough. 

Inclusion of covariates: approach 1 
Assume that we have independent, non-identically distributed 

random vectors Y;, i = 1, ... ,n, withY; having density f(·;f'J;), 
f'J; = f'J( x;, 'Y) for a function fJ and a parameter function 'Y. The 
necessary conditions for the asymptotic results depend somewhat 
on the specific models. However, we indicate the general types of 
conditions that must hold. 

For something like (10.1), we assume that each component of 
fJ = ( a1, ... , £tm, 8) is a function of x, more specifically, £tj = 
aj(X,'Yj), j = l, ... ,m, and 8 = t(x,'Ym+l), with a1, ... ,am,t 
having components that are each functions of linear combinations 
of the functions of the components of x. We assume that the in­
ference function vector has a component for each parameter in 
'Y= ('Yl,···,'Ym,'Ym+l)· 

We explain the notation here for Examples 10.1 and 10.2. With 
no covariates, fJ = ( a1, ... , am, 8), where ai is the cutoff point 
for the jth univariate margin, and 6 = R = (Pi k) is a correlation 
matrix. With covariates, £tj = ai (x, /3jo, {Ji) = /3jo + {Jix, j = 
1, ... ,m, and t(x,8) = 8, so that 'Y = (f310,/31 , ... ,f3mo,f3m,8) 
with 'Yj = (/3jo,f3j) and 'Ym+l = 8. 

For (10.1), in place of f(y;al, ... ,£tm,8) and /j(yj,£tj) in the 
case of no covariates, we now have the densities 

and 

In a simple case, the estimate .Y from the IFM method has compon-
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ent ;yj coming from the maximization of 
n 

Lj ('Yj) = L log !Yilx(Yij lx;; 'Yj ), j = 1, ... , m, (10. 7) 
i=1 

and 1m+1 comes from the maximization of L(11, ... , 1m, 'Ym+1) in 
'Ym+1, where 

n 

(10.8) 
i=1 

Alternatively, the components of 'Ym+1 may be estimated from log­
likelihoods of lower-dimensional margins such as in Example 10.2. 
In any case, let l::g(y;,x;,'Y) be the vector of inference functions 
from partial derivatives of log-likelihood functions of margins. 

Conditions for the asymptotic results to hold have the following 
sense: 

(a) mixed derivatives of g of first and second order are dominated 
by integrable functions; 

(b) products of these derivatives are uniformly integrable; 

(c) the functions a1, ... , am, t are twice continuously differen­
tiable with first- and second-order derivatives bounded away 
from zero; 

(d) covariates are uniformly bounded, and the sample covariance 
matrix of the covariates x; is strictly positive definite; 

(e) a Lindeberg-Feller type condition holds. 
References for these types of conditions and proofs of asymptotic 
normality are Bradley and Gart (1962) and Hoadley (1971). 

Assuming that the conditions hold, then the asymptotic normal­
ity result has the form: 

n-1/2vn-1/2(1- 'Y)T -+d N(O, I), 

where V. = D-1 M (D- 1)T with n n n n 
n 

Dn = n-1 LE [agT(Y;,x;,'Y)/87] 
i=1 

and 
n 

Mn = n-1 LE [gT(Y;,x;,'Y)g(Y;,x;,'Y)]. 
i=1 

Details for the case of multivariate discrete models are given in 
Xu (1996); the results generalize to the continuous case when the 
assumptions hold. 
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Inclusion of covariates: approach 2. 
A second approach to asymptotics allows for parameters to be 

more general functions of the covariates, and treats the covari­
ates as realizations of random vectors. This approach assumes a 
joint distribution for response vector and covariates, with the para­
meters for the marginal distribution of the covariate vector treated 
as nuisance parameters. This assumption might be reasonable for 
a random sample of subjects in which x; and Y; are observed to­
gether. 

Similar to the preceding approach to the inclusion of covariates, 
we write the conditional density as 

fYix(Yix;'Y) = f(Yi'l(x,'Y)). 

Let Z; = (Y;, x;), i = 1, ... , n. These are treated as iid random 
vectors from the density 

fz(z;'Y) = fYix(YIXi'Y)fx(x;w). (10.9) 

For inference, we are interested in 'Y and 'l(x, 'Y), and not in w. 
Marginal distributions of (10.9) are: 

hilx(Yilx;'Yj)fx(x;w), j = 1, ... ,m. 

If w is treated as a nuisance parameter, then the log-likelihood 
in 'Y from (10.10) below is essentially the same as that in the first 
approach. 

Let 'Y, Otj, aj, 9, t be the same as before, except that aj, j = 
1, ... , m, and t could be more general functions of the covariate 
vector x. The vector estimate from the IFM method has component 
i'i coming from the maximization of 

n 

Lj('Yj) = l:)og[h;lx(Yii lx;;'Yj)/x(x;;w)], j = 1, ... , m, 
i=l 

(10.10) 

and i'm+l coming from the maximization of L(i'1 , ... ,i'm, 'Ym+d 
in 'Ym+l, where 

n 

L('Y) = :Llog[fYix(Y;Ix;;'Y)fx(x;;w)]. (10.11) 
i=l 

Note that optimization of (10.7) and (10.10), and of (10.8) and 
(10.11), is the same. Alternatively, the components of 'Ym+l may 
be estimated from log-likelihoods of lower-dimensional margins. In 
any case, let I: g(y;, x;, 'Y) be the vector of inference functions 
based on partial derivatives of log-likelihood functions of margins. 
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Assuming that the standard regularity conditions hold for /z and 
its margins, then the asymptotic theory for the iid case holds for the 
estimates using the IFM method in Section 10.1. The asymptotic 
normality result is 

n- 112(1'- -yf -+d N(O, V), 

where V = D-g 1Mg(D-g 1f, with Dg = E[8gT(Y,x,-y)j8-y], M8 = 
E [gT (Y, x, 'Y) g(Y, x, -y)]. 

The asymptotic covariance matrices for n- 112(1'- -yf may be 
different in the two asymptotic approaches. However, the inference 
functions are the same. The use of the empirical distribution func­
tion to estimate the inverse Godambe information matrix or the 
use of the jackknife would lead to the same standard error estim­
ates in the two approaches. 

10.2.2 Parameters common to more than one margin 

There are situations in which a parameter can appear in more 
than one margin. Examples are special dependence structures; for 
the exchangeable dependence structure a parameter is common 
to all bivariate margins, and for the AR(1) dependence structure 
for a latent MVN distribution each bivariate margin has a para­
meter which is the power of the lag 1 correlation parameter. Other 
examples arise when different univariate margins have a common 
parameter; e.g., in a repeated measures study with short time series 
over a short period of time, it may be reasonable to assume common 
regression coefficients for the different time points. 

There are several ways in which the theory of Section 10.1 can 
be extended: 

(a) use higher-dimensional margins; 

(b) average or weight the estimators from the log-likelihoods of 
the margins with the common parameter; 

(c) create inference functions based on the sum oflog-likelihoods 
of the margins that have the common parameter. 

If a dependence parameter appears in more than one bivariate 
margin, one possibility is to go directly to the m-dimensional mul­
tivariate log-likelihood with the univariate parameters given. For 
the exchangeable dependence structure, this is usually easy to do 
computationally, but for the AR(1) dependence structure for the 
MVN copula it is harder, and one of the other two approaches may 
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be computationally easier. For all of these methods, under regular­
ity conditions, the use of the jackknife approach to obtain standard 
errors of estimates of parameters is still valid. 

Details, including some comparisons of efficiency, are given in 
Xu (1996). 

10.3 Choice and comparison of models 

Choices of models might depend on what are the most useful sum­
maries at the initial data analysis stage and what are the inferences 
or predictions of interest. It may be a good idea to try more than 
one statistical model in order to check on the sensitivity of infer­
ences to model assumptions. Also one should do diagnostic checks 
on the adequacy of fit of models. The (internal) estimation consist­
ency check is one method mentioned in Section 10.1.3. There are 
several other ways to compare the adequacy of models. 

One method of comparing fits of different models consists of us­
ing log-likelihoods L or Akaike information criterion (AIC) values 
L- np, where np is the number of parameters in a model. Note 
that in this form (rather than -2L + 2np), we are using the AIC 
as a penalized log-likelihood, with the penalty being the number 
of parameters. The method is useful even if models are not nested 
within each other. AIC values can be evaluated from the multi­
variate log-likelihood with the estimates obtained using the IFM 
method. This means that one has the log-likelihoods or AIC values 
at points that should be near the MLE and one does not have to 
do time-consuming multi-parameter numerical optimizations. 

A second, possibly more relevant, comparison is the predictive 
ability of the models. This would be based on some comparisons 
of 'observed' summaries from the data and 'predicted' summaries 
from the models. The best choice of 'observed' and 'predicted' sum­
maries depends on the data, the study and the inferences of inter­
est. In the case of a multivariate discrete response, the summaries 
could be frequencies, possibly collapsed over categories. See Chap­
ter 11 for comparisons used in different examples. 

If several different models lead to similar inferences and have 
similar predictive ability then this is reassuring. If there is much 
sensitivity to the different models, then there is further work to do 
as one must think more about the assumptions in the models, or 
check for influential observations, etc., that might be affecting the 
models. 
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10.4 Inference for Markov chains 

This section concerns inference for long time series that may be 
modelled using a Markov chain. 

For Markov chains of first order, results are given in Billingsley 
(1961). Essentially, under certain regularity conditions, the asymp­
totic likelihood theory and numerical ML from the iid case can be 
extended. An outline of the regularity conditions and asymptotic 
results is given below. The extension to the case where transition 
probabilities depend on covariates should also be possible, by mak­
ing use of the first approach in Section 10.2.1. 

Notation used in this section is as follows. 

1. {Yi : t = 1, 2, ... } is a Markov chain of order 1 with state 
spaceY. 

2. h(Yt IYt-1; 8) is a family of transition densities (with respect 
to a measure v) with column vector parameter 8 of dimension 
r in the parameter space e. 

3. There exists a stationary distribution with density /(·; 8) 
(with respect to the measure v). 

4. i(8;Yt-1,Yt) = logh(YtiYt-1;8). 
5. With the observed Markov chain Y1, ... , Yn, the log-likelihood 

function is taken to be Ln(8) = 2::~=2 i(8; Yt-1. Yt) for asymp­
totic analysis, since asymptotically the likelihood contribu­
tion of the first observation y1 does not matter (for a specific 
example, this could be included if relevant). 

6. oil o8 is the (column) vector of partial derivatives oil oBu, 
u = 1, ... , r, and the components are denoted more simply 
by i~.~. 

7. fPil[88o8T] is the matrix of second-order partial derivatives, 
with components denoted by iuv. 

8. Third-order (mixed) derivatives are denoted by iuvw. 
9. Similar notation for derivatives is used for other functions of 

8. 

10. E, means expectation assuming that the true parameter value 
is 8 and Y1 starts with a stationary distribution. 

Note that for applications, the measure v is usually taken to be 
Lebesgue measure on a Euclidean space or counting measure. 

Regularity conditions are the following. 

(a) The maximum 6 of Ln(8) is assumed to satisfy 8Lnlo8 = 0. 
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(b) All states of the Markov chain communicate with each other 
(meaning that there are no transient states). 

(c) The set of y for which h(ylx; 9) is positive does not depend on 
9. 

(d) hu, huv, huvw, u, v, w = 1, ... , r, exist and are continuous in 9 
(and hence the same is true for lu, luv, luvw). 

(e) For 9 E 9, there exists a neighbourhood N, of 9 such that for 
all u, v, wand x, 

{ { sup Jhu(Yix; 9')J} v(dy) < oo, 
}y I'ENs 

{ {sup Jhuv(Yix;9')J} v(dy) < oo, 
}y I'ENs 

E, [sup lluvw(9', Y1, Y2)1] < oo. 
I' ENs 

(f) For u = 1, ... , r, Es[llu(9; Y1, Y2)! 2] < oo, and :E(9) = (uuv(9)) 
is a non-singular r x r matrix with 

(g) h(-lx;9) is absolutely continuous with respect to !(·;9). 

With the given regularity conditions, asymptotic results are the 
following. There exists a root On of fJLnfa9 = 0 such that On 
converges in probability to the true 9 and the asymptotic distri­
bution of n- 112(0n- 9) is N(O, :E- 1(9)). Also log-likelihood ratios 
for hypotheses involving nested models for the parameter 9 have 
asymptotic null chi-square distributions. The proof involves the use 
of ergodicity and a martingale central limit theorem. 

A practical implication of the asymptotic result for numerical 
ML is that, as in the iid case, the negative inverse Hessian of Ln(9) 
evaluated at the MLE 0 can be used as an estimated covariance 
matrix of 0. That is, for large n, 

_ [{)2 Ln(9) 1·1 -1 = _ [{)2 Lt £(9; Yt-1, Yt) 1·1 -1 

{)9{)9T I {)9{)9T I 

is an approximation to n - 1 :E-1 ( 0). 
The theory in Billingsley (1961) should apply for higher-order 

Markov chains, assuming that the order of Markov chain is known. 
One can perhaps either extend the proof and conditions for a first­
order Markov chain to a transition density h(xtiXt-k, ... , Xt-1), or 
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change a kth-order Markov chain with state space Y to a first-order 
Markov chain with state space Yk. 

For comparison of Markov chains with different orders the AIC 
can be used, but note that log-likelihood ratios do not have asymp­
totic null chi-square distributions in this case, because a lower­
order Markov chain will have parameters at the boundary of the 
parameter space of a higher-order Markov chain. 

10.5 Comments on Bayesian methods 

This section briefly discusses how multivariate models could be 
used and compared using Bayesian methods. 

For a given parametric multivariate model and a prior distri­
bution on the vector of parameters, one could compute the pos­
terior distribution of the parameter vector and then make infer­
ences and predictions. The computations would be more difficult 
than the likelihood-based estimating equation approach of Sections 
10.1, 10.2 and 10.4. Also there has been little research on how one 
might choose a prior to reflect prior opinions about the dependence 
structure and the strength of dependence. 

Furthermore, in order to compare different multivariate mod­
els, more research is needed in Bayesian model comparisons. A 
consistent way would be needed to convert opinions about the _de­
pendence structure as well as the univariate margins into priors 
of parameter vectors of (non-nested) models. For example, for two 
substantially different multivariate models, each covering a wide 
dependence structure, to be consistent, one would want the prior 
distributions for the parameter vectors of the two models to be 
similar in the probabilistic assessment of ((12(x), ... , (m-l,m(x)), 
where (jk(x), j-:/: k, is a bivariate dependence measure for (}j, Yk) 
as a function of the covariate x. 

10.6 Numerical methods 

A traditional approach for numerical optimization is the Newton­
Raphson method, which requires first- and second-order derivatives 
of the objective function (which for applications in this book is the 
log-likelihood function). This is the preferred method if the deriv­
atives can easily be analytically obtained and coded in a program, 
as in the case of the log-likelihood of an exponential family model. 
Modern symbolic manipulation software, such as Maple and Math­
ematica, may be useful since they can output equations in the form 
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of Fortran or C code. 

Many multivariate models, such as those based on copulas, are 
specified via the cdf. The likelihood involves either a mixed derivat­
ive of the cdf to get a pdf or a discretization of the cdf to get a pmf 
if the cdf is used for a latent variable model. To get the derivatives 
of the parameters after this may be possible but tedious. 

A numerical method that is useful for many multivariate models 
in this book is the quasi-Newton optimization (usually minimiza­
tion) routine. This requires that only the objective function (say, 
negative log-likelihood) is coded; the gradients are computed nu­
merically and the inverse Hessian matrix of second-order derivat­
ives is updated after each iteration. An example of a quasi-Newton 
routine is that in Nash (1990); this is useful for statistical applic­
ations because it outputs the estimated inverse Hessian at the (lo­
cal) optimum- this corresponds to the estimated asymptotic co­
variance matrix of the parameters for an objective function that is 
a log-likelihood. 

For all numerical optimization methods, a good starting point is 
important. In general, an objective function may have more than 
one local optimum. Having a good starting point based on a simple 
method is better than trying many random starting points. Having 
a model with interpretable parameters makes it easier to have a 
good starting point. (This is a reason for the emphasis of multivari­
ate models with interpretable parameters - numerical estimation 
is easier.) Note also that computational complexity is increasing 
linearly to quadratically in the number of parameters. 

A quasi-Newton routine works fine if the objective function can 
be computed to arbitrary precision, say t:o. The numerical gradients 
are then based on a step size f > t:o (more specifically, one should 
have f > 10t:0). A precision of even three or four significant digits 
may be difficult to attain if the objective function involves a multi­
dimensional integral; one-dimensional numerical integrals are usu­
ally no problem and even two-dimensional numerical integrals can 
be computed quite quickly to around six digits of precision, but 
there is a problem of computation time in trying to achieve many 
digits of precision for numerical integrals of dimension 3 or more. 
There is a need for research into numerical optimization methods 
for imprecisely computed objective functions. 

For numerical integration, methods include Romberg and adapt­
ive integration, and Monte Carlo simulation, with the latter being 
especially useful for high-dimensional integrals. 
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10.7 Bibliographic notes 

Sections 10.1 and 10.2 consist of material from Xu's (1996) doc­
toral thesis; this has the rigourous details for the asymptotics of 
the estimation method of inference functions for margins (IFM) 
and the associated jackknife method for estimation of standard er­
rors, as well as assessment of efficiency and simulation results for 
various discrete multivariate models. Also Joe and Xu (1996) has 
an introduction to the IFM method, with some simulation results 
to demonstrate efficiency and some examples with data sets. The 
concept of estimation consistency is from Joe (1994). 

A reference for the jackknife is Miller (1974), and references 
for the theory of estimating and inference functions are Godambe 
(1991) and McLeish and Small (1988). A one-step jackknife with 
estimating equations is used in a context of clustered survival data 
in Lipsitz, Dear and Zhao (1994). Concerning existence and unique­
ness of the MLE for the multivariate probit model, see Lesaffre and 
Kaufmann (1992). 

In Section 10.3, a reference for the AIC is Sakamoto, Ishiguro and 
Kitagawa (1986), and initial data analysis is used in the sense of 
Chatfield (1995). The main reference for Section 10.4 is Billingsley 
(1961). 

Quasi-Newton optimization methods are also known as vari­
able metric methods. An example is the compact routine in Nash 
(1990). It is available in several programming languages. My ex­
perience with it is good. References for symbolic manipulation soft­
ware are Char et al. (1991) and Abell and Braselton (1992). 

For numerical integration, I have used the Romberg integration 
method in Davis and Rabinowitz (1984) (good for two to about 
four dimensions) and the adaptive integration method of Berntsen, 
Espelid and Genz (1991) (useable for up to nine to ten dimensions, 
but requires more and more memory as the dimension increases). 
A reference for approximating integrals in statistics is Evans and 
Swartz (1995). For computing the MVN cdf, a Fortran program is 
given in Schervish (1984); see Genz (1992) for other computational 
methods and Joe (1995) for good approximation methods for the 
MVN cdf and rectangle probabilities. 

10.8 Exercises 

10.1 Let H(y; 9) be a family of m-variate distribution functions, 
with() being a column vector parameter. Let Yi, i = 1, ... , n, 
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be a random sample from H(y; 8). Let {Hs(ys; 8s) : S E 
Sm} be the set of marginal distributions. Let S1 and S2 

be two subsets, with S1 being a proper subset of S2. Then 
8s, = a(8s2 ) for a function a. For k = 1, 2, let ilsk be the 
MLE based on the Y;,sk = (Y;j : j E S~c), i = 1, ... , n. 
Then, in general, ils, and a(ils2 ) are different. Verify this 
by studying the likelihood equations for some multivariate 
models. Show that they are the same for the MVN family. 

10.2 Show that the regularity conditions in Section 10.4 apply 
to the Markov chain copula models in Section 8.1 (provided 
univariate margins satisfy the usual regularity conditions) 
and to the AR(1) models in Section 8.4.1. 

10.3 Extend the asymptotic results of Section 10.4 (and obtain 
some regularity conditions) to the case where Markov chain 
transition probabilities depend on covariates (which are pos­
sibly time-varying). 

10.9 Unsolved problems 

10.1 Study further examples in which analytic calculations to as­

sess the efficiency of the IFM method can be performed. 

10.2 Study further examples which permit analytic calculations 
to compare the estimation methods in Section 10.2.2. 



CHAPTER 11 

Data analysis and comparison of 
models 

In this chapter, models are applied to and compared on some real 
data sets. We illustrate the estimation procedures of Chapter 10, 
as well as much of the theory and models in Chapters 4 to 9. 
The examples show the stages of initial data analysis, modelling, 
inference and diagnostic checking. Models are compared on the 
adequacy of predictions. See Section 1. 7 on a view of statistical 
modelling. 

A summary of the first six sections in this chapter is the follow­
ing. 

• Section 11.1 involves a cardiac surgery data set consisting of a 
multivariate binary response with covariates. Models that are 
compared are the multivariate probit model, various multivari­
ate logit models, and the model with conditional logistic regres­
sions. See Sections 7.1.7 and 9.2.3 for the models. 

• Section 11.2 involves a data set from a stress study consisting 
of a multivariate/longitudinal ordinal reponse with a binary co­
variate. Models that are compared are the multivariate probit 
model and various multivariate logit models. See Sections 7.1.7 
and 7.3 for the models. 

• Section 11.3 involves an air quality data set consisting of multi­
variate extremes of ozone concentrations over time. MEV models 
and theory from Sections 6.1 to 6.3 are used. 

• Section 11.4 involves a data set, arising from a medical study, 
with longitudinal binary time series. Markov models (Section 
8.1) with and without random effects are compared. 

• Section 11.5 involves a data set of longitudinal counts with co­
variates, arising from a study of the health effects of pollution. 
Models that are compared are the AR(1) and AR(2) Poisson and 
negative binomial time series models and Markov chain models 
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based on bivariate and trivariate copulas. See Sections 8.4 and 
8.1 for the models and theory. 

• Section 11.6 involves a time series data set of daily air qual­
ity measurements to show the effects of assuming iid data for 
inference when in fact there is serial dependence. 

11.1 Example with multivariate binary response data 

In this section, several models for multivariate binary response data 
with covariates are applied to a data set from cardiac surgery. MCR 
(Merged, Multi-Center, Multi-Specialty Clinical Registries) is a 
data base developed by Health Data Research Institute (Portland, 
Oregon) in which information of patients who had heart-related 
surgery was recorded. The data set is large so we use a random sub­
set of the data (5000 subjects) for a detailed analysis; this is large 
enough to check predictions from the models, and computations 
can still be done in a reasonable time. The main response vari­
able is an indicator of survival 30 days after surgery, but there are 
also other binary response variables that are known immediately 
after surgery. These dependent variables include for indicators of 
(mild or severe) renal complications (REC), pulmonary complic­
ations (PUC), neurological complications (NEC) and low-output 
syndrome (LOS). The complication variables are related to the 
quality of life after surgery. Zhang (1993) gives further documen­
tation of the data set and some initial data analysis. We concen­
trate on multivariate models for the four response variables REC, 
PUC, NEC and LOS. The analyses in Zhang (1993) suggest that, 
among the many possible predictor variables, the more important 
predictors or risk factors for the complication variables are: AGE 
(in years), SEX (0 for male, 1 for female), and indicators of prior 
myocardial infarction (PMI), diabetes (DIA), renal disease (REN) 
and chronic obstructive pulmonary disease (COP). 

In the models below, we use these six pre-operation variables as 
covariates for all four response variables, even though one could 
have simpler final models in which not all covariates are used for 
all responses. 

Summaries from the initial data. analysis are given in tabular 
form. By way of a univariate summary, Table 11.1 has the per­
centages of 1s for the binary response and predictor variables. The 
age variable ranges from below 20 to 90 with a mean of 63 and 
a standard deviation of 11. Table 11.2 has the frequencies of 4-
vectors for (REC, PUC, NEC, LOS) when ignoring the effects of 
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Table 11.1. Cardiac surgery data. Percentages for binary variables. 

Variable 

REC 
PUC 
NEC 
LOS 

SEX 
PMI 
DIA 
REN 
COP 

1s 

224 
1394 
350 
472 

1403 
2086 
637 
168 
364 

Percentage 

4.5 
27.9 
7.0 
9.4 

28.1 
41.7 
12.7 
3.4 
7.3 

the covariates. Table 11.3 has the pairwise log-odds ratio for the 
response variables, ignoring the covariates; it gives some indication 
of the dependence in the response variables, in addition to Table 
11.2. 

Multivariate binary response models that were used to model 
the data are the following. 

1. The multivariate probit model from Section 7.1.7. 

2. The multivariate logit model from Section 7.1.7: 

(a) with the construction in Section 4.8 using bivariate cop­
ulas from the family B2; 

(b) with the construction in Section 4.8 using bivariate cop­
ulas from the family B3; 

(c) with copulas from Section 4.3 that are mixtures ofmax-id 
distributions. 

3. The conditionally specified logistic regression model from Sec­
tion 9.2.3. 

4. The multivariate logit model with the permutation-symmetric 
copula M3. 

For the models in (2c), parametric families of copulas of the form 
( 4.25) were tried with .,P( ·; 8) in one of the LT families LTA, LTB, 
LTC, LTD, and with K;j(-) = K(·; b;j) in one of the bivariate 
copula families B3 to B7. The summaries below are given only for 
a choice with a high AIC value. Model ( 4) is used to compare a 
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Table 11.2. Cardiac surgery data. Frequencies of the response vector 
(REG, PUC, NEG, LOS). 

Vector 

0000 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
11 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

Frequency Rel. freq. 

3172 0.6344 
163 0.0326 
141 0.0282 

19 0.0038 
984 0.1968 
164 0.0328 
95 0.0190 
38 0.0076 
70 0.0140 
19 0.0038 
14 0.0028 
8 0.0016 

38 0.0076 
40 0.0080 
14 0.0028 
21 0.0042 

Table 11.3. Cardiac surgery data. Pairwise log-odds ratios for REG, 
PUC, NEG, LOS. 

Pair Odds Log-odds (SE) 

REC, PUC 2.78 1.02 (0.14) 
REC,NEC 5.22 1.65 (0.17) 
REC,LOS 7.40 2.00 (0.15) 
PUC,NEC 2.58 0.95 (0.11) 
PUC, LOS 3.78 1.33 (0.10) 
NEC,LOS 3.60 1.28 (0.14) 
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simple permutation-symmetric copula model with the other models 
which all allow a general dependence structure. 

For model (3), which is an exponential family model, all para­
meter estimates were obtained using the Newton-Raphson iter­
ative method. For every other model referred to in the preced­
ing paragraph, the IFM method from Section 10.1 was used; uni­
variate (regression) parameters were estimated from separate uni­
variate likelihoods (using the Newton-Raphson method), and bi­
variate and multivariate parameters were estimated from bivari­
ate, trivariate, or 4-variate likelihoods, using a quasi-Newton rou­
tine, with univariate parameters fixed as estimated from the separ­
ate univariate likelihoods. That is, for models (1), (2a), (2b), (4), 
there are separate quasi-Newton optimizations of log-likelihoods 
for each parameter (see the examples in Section 10.1.4). Estim­
ation for model (2c) involves a quasi-Newton optimization in up 
to seven dependence parameters simultaneously (if the Vj are as­
sumed zero or fixed, and there is a parameter associated with '1/J and 
one for each K;j ), since its parameters cannot be assigned to lower­
dimensional margins. (Note that the parameter of '1/J for model (2c) 
represents a general minimum level of dependence and the remain­
ing parameters, indexed by bivariate margins, represent bivariate 
dependence exceeding the minimum dependence). Model (2c) has 
the advantage of being a copula with a closed-form cdf; this leads 
to faster computation of probabilities of the form Pr(Y = ylx). 

For standard errors (SEs) of parameter estimates and prediction 
probabilities, the delta method was used for model (3) (see Exercise 
11.1) and otherwise the jackknife method from Section 10.1.1 was 
used with 50 groups of 100. 

Summaries of the modelling process are given in several tables. 
Table 11.4 contains the estimates and SEs of the regression para­
meters for the univariate probit and logit models for the four bi­
nary responses. It is well known that the univariate probit and 
logit models are comparable; in Table 11.4, the ratios of estimates 
of a single regression parameter are roughly equal to the ratios 
of standard deviations of the standard normal and logistic distri­
butions. Table 11.5 contains estimates and SEs of the bivariate 
dependence parameters for models in (1), (2a) and (2b); it also 
has the trivariate and 4-variate parameters for models (2a) and 
(2b). For models (2a) and (2b), theSEs as well as the comparisons 
of the trivariate and 4-variate log-likelihoods at a parameter value 
of 1 and at the estimate from the IFM method suggest that one 
could simplify to models with higher-order dependence parameters 
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Table 11.4. Cardiac surgery data. Estimates of regression parameters for 
univariate marginal probit and logistic regressions. 

Response: Pro bit Logit 
covariate Estimate (SE) Estimate (SE) 

1. REC: 
constant -3.33 (0.24) -6.61 (0.56) 
AGE 0.021 (0.004) 0.048 (0.008) 
SEX 0.135 (0.084) 0.294 (0.179) 
PMI 0.085 (0.073) 0.170 (0.156) 
DIA 0.133 (0.085) 0.277 (0.177) 
REN 1.11 (0.12) 2.09 (0.22) 
COP 0.228 (0.127) 0.448 (0.262) 

2. PUC: 
constant -1.29 (0.13) -2.15 (0.23) 
AGE 0.010 (0.002) 0.017 (0.004) 
SEX 0.053 (0.058) 0.088 (0.098) 
PMI 0.017 (0.049) 0.028 (0.081) 
DIA 0.296 (0.062) 0.488 (0.099) 
REN -0.017 (0.139) -0.028 (0.232) 
COP 0.222 (0.088) 0.365 (0.145) 

3. NEC: 
constant -3.47 (0.28) -6.90 (0.61) 
AGE 0.030 (0.004) 0.064 (0.008) 
SEX -0.049 (0.059) -0.115 (0.116) 
PMI 0.049 (0.056) 0.120 (0.114) 
DIA 0.132 (0.085) 0.248 (0.167) 
REN 0.328 (0.107) 0.582 (0.187) 
COP 0.138 (0.087) 0.271 (0.169) 

4. LOS: 
constant -2.78 (0.20) -5.18 (0.44) 
AGE 0.019 (0.003) 0.039 (0.006) 
SEX 0.252 (0.057) 0.487 (0.107) 
PMI 0.179 (0.060) 0.343 (0.115) 
DIA 0.081 (0.073) 0.164 (0.138) 
REN 0.417 (0.157) 0.748 (0.281) 
COP 0.297 (0.078) 0.559 (0.143) 
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Table 11.5. Cardiac surgery data. Estimates of dependence parameters 
in models {1}, (2a}, {2b}; Y =(REC,PUC,NEC,LOS}. 

Margin (1) (2a) (2b) 
Estimate (SE) Estimate (SE) Estimate (SE) 

12 0.269 (0.052) 2.56 (0.48) 1.99 (0.43) 
13 0.366 (0.050) 3.91 (0.76) 3.20 (0.56) 
14 0.470 (0.050) 5.78 (1.14) 4.31 (0.66) 
23 0.265 (0.043) 2.34 (0.34) 1. 78 (0.32) 
24 0.387 (0.076) 3.52 (0.80) 2.74 (0.58) 
34 0.296 (0.040) 2.90 (0.44) 2.41 (0.41) 

123 0.84 (0.30) 0.85 (0.31) 
124 1.19 (0.46) 1.19 (0.46) 
134 0.80 (0.20) 0.82 (0.20) 
234 1.03 (0.42) 1.03 (0.42) 
1234 0.62 (0.48) 0.62 (0.48) 

Table 11.6. Cardiac surgery data. Log-likelihoods associated with depend­
ence parameters in models {1}, {2a}, (2b}; Y =(REC,PUC,NEC,LOS). 

Margin (1) (2a) (2b) 

12 -3730.6 -3732.2 -3732.3 
13 -2005.9 -2008.8 -2009.6 
14 -2268.0 -2272.3 -2274.5 
23 -4093.7 -4094.2 -4094.4 
24 -4337.0 -4337.0 -4337.1 
34 -2671.9 -2670.3 -2670.4 

123 -4885.9 -4886.8 
124 -5105.6 -5107.8 
134 -3431.3 -3434.0 
234 -5494.4 -5494.6 
1234 -6248.4 -6251.1 
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Table 11.7. Cardiac surgery data. Estimates of dependence para­
meters in model {2c}, 1/J from family LTB, K;j from family B6; 
Y =(REC,PUC,NEC,LOS). 

Parameter Estimate (SE) 

(} 0.21 (0.03) 
612 1 (-) 
613 1.07 (0.10) 
614 1.69 (0.38) 
623 1 (-) 
624 1.37 (0.18) 
634 1 (-) 

Table 11.8. Cardiac surgery data. Conditionally specified logistic regres­
sion model {9), regression parameter estimates and standard errors. 

x \ y REC PUC NEC LOS 

const. -6.01 (0.52) -1.86 (0.16) -6.70 (0.44) -5.01 (0.36) 
AGE 0.031 (0.008) 0.010 (0.003) 0.056 (0.007) 0.027 (0.005) 
SEX 0.18 (0.16) 0.03 (0.07) -0.21 (0.13) 0.48 (0.11) 
PMI 0.07 (0.15) -0.02 (0.07) 0.07 (0.12) 0.33 {0.10) 
DIA 0.15 {0.20) 0.48 (0.09) 0.14 {0.16) -0.01 (0.14) 
REN 2.05 {0.21) -0.35 {0.19) 0.16 {0.26) 0.28 (0.23) 
COP 0.23 {0.23) 0.28 {0.12) 0.11 (0.20) 0.43 {0.16) 

Table 11.9. Cardiac surgery data. Conditionally specified logistic regres­
sion model {9}, dependence parameter estimates and standard errors. 

Pair (Yi, Yi') 

REC,PUC 
REC,NEC 
REC,LOS 
PUC,NEC 
PUC, LOS 
NEC,LOS 

1 (SE) 

0.56 (0.15) 
1.03 {0.19) 
1.48 {0.17) 
0.67 (0.12) 
1.14 {0.10) 
0.68 {0.15) 
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being 1 (see Section 4.8 on the maximum entropy interpretation in 
this case). Table 11.6 contains the log-likelihoods of the bivariate 
parameters of the models in (1), (2a) and (2b). This and Table 11.5 
suggest that the models are comparable; their conclusions about 
which bivariate margins are more dependent or less dependent are 
the same. Table 11.7 contains the parameter estimates and SEs 
for a model of the form (2c) with a high log-likelihood value. For 
comparison, the estimate of the dependence parameter for model 
( 4), with a permutation-symmetric copula, is 2.28. Tables 11.8 and 
11.9 contain parameter estimates and their SEs for model (3). 

For the 20 parametric families of the form ( 4.25) that were tried, 
generally some dependence parameter {jij (corresponding to Kij) 
reached either the lower bound (independence copula) or the upper 
bound (Frechet upper bound copula) in the estimation. This causes 
a problem with SEs of estimates but not for AIC values or predic­
tion probabilities. (The asymptotic theory of Chapter 10 does not 
strictly apply to the SE calculations when parameter values are on 
the boundary, but using the jackknife with some dependence values 
fixed at boundary values, the resulting SEs for prediction probabil­
ities are similar to those obtained from other models.) For model 
(2c) for this data set, the log-likelihood values were affected greatly 
by the choice of the LT family¢(·; B), but not by the family of bi­
variate copulas K(·;8ij)· The 'best' fit was with LT family J,TB; 
for the summaries in the tables, we use the bivariate copula family 
B6 for K ( ·; {jii). Because some {jii were approaching the boundaries 
for the numerical optimization with seven parameters, we simplify 
the model and numerical computations with 812 = 823 = 834 = 1, 
Z11 = Z14 = -1 and Z12 = Z13 = -2. (That is, we assume a com­
mon level of dependence for the (1,2), (2,3) and (3,4) bivariate 
margins and a higher level of dependence for the remaining three 
bivariate margins- compare Tables 11.3 and 11.5.) The jackknife 
estimates of SEs for model (2c) used much more computer time 
than the other models because of a multi-parameter optimization 
(versus many one-dimensional optimizations in the other models). 

Turning to inferences and predicted probabilities, Table 11.10 
contains estimates of probabilities of the form 

Pr(}j = Yj,j = 1,2,3,41 x) 

for various y and x, from most of the models listed earlier. (Com­
parisons with 'observed' frequencies are given in Table 11.12.) To 
save space, for each line the entries for model (2b ), which are very 
close to those of (2a), are not given, and only the maximum estim-
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Table 11.10. Cardiac surgery data. Estimates of Pr(Y = y I x) from 
various models; Y = (REG, PUC, NEG, LOS), x =(AGE, SEX, PM!, 
DIA, REN, COP). 

X y Pro b. 
(1) (2a) (2c) (3) 

Max 
(4) ind. SE 

(80,0,0,0,0,0) 1111 0.006 0.007 0.006 0.009 0.002 0.000 0.002 
(80,0,0,0,0,0) 0000 0.567 0.562 0.558 0.560 0.570 0.496 0.038 
(80,1,1,1,1,1) 1111 0.118 0.162 0.116 0.249 0.145 0.061 0.053 
(80,1,1,1,1,1) 0000 0.168 0.162 0.106 0.120 0.165 0.053 0.041 
(50,0,0,0,0,0) 1111 0.000 0.000 0.001 0.000 0.000 0.000 0.000 
(50,0,0,0,0,0) 0000 0.753 0.746 0.754 0.738 0.746 0.729 0.027 
(50,1,1,1,1,1) 1111 0.020 0.020 0.015 0.022 0.012 0.002 0.009 
(50,1,1,1,1,1) 0000 0.380 0.402 0.370 0.425 0.407 0.286 0.059 
(63,0,0,0,0,0) 0000 0.685 0.680 0.687 0.679 0.681 0.648 0.032 
(63,0,1,0,0,0) 0000 0.664 0.661 0.666 0.663 0.662 0.621 0.037 
(63,0,0,1,0,0) 0000 0.584 0.581 0.584 0.581 0.585 0.541 0.049 
(63,0,0,0,0,1) 0000 0.590 0.591 0.592 0.598 0.594 0.541 0.047 
(63,0,1,1,0,0) 0000 0.564 0.562 0.563 0.566 0.566 0.513 0.053 
(63,1,0,0,0,0) 0000 0.653 0.651 0.655 0.654 0.651 0.608 0.028 
(63,1,1,0,0,0) 0000 0.627 0.626 0.628 0.630 0.627 0.574 0.038 
(63,1,0,1,0,0) 0000 0.552 0.551 0.551 0.556 0.554 0.499 0.043 
(75,0,0,0,0,0) 0000 0.605 0.601 0.602 0.602 0.606 0.547 0.037 
(75,1,0,0,0,0) 0000 0.571 0.569 0.566 0.572 0.574 0.501 0.030 
(63,0,0,0,0,0) 0100 0.195 0.197 0.195 0.197 0.192 0.218 0.027 
(63,0,0,0,0,0) 0101 0.023 0.022 0.023 0.022 0.023 0.014 0.007 
(63,0,0,0,0,0) 0001 0.022 0.025 0.021 0.025 0.026 0.041 0.004 
(63,0,0,0,0,0) 1000 0.008 0.011 0.009 0.011 0.010 0.017 0.002 
(63,0,0,0,0,0) 0010 0.026 0.027 0.025 0.028 0.023 0.037 0.004 

ated SE over models (1), (2a), (2b), (2c), (3) is given. Actually the 
SEs are quite close to each other. The selected x and y values in 
Table 11.10 are extremes in the covariate space, or common values 
in the data set. Tables 11.10 and 11.12 suggest that the simple ex­
changeable dependence model is adequate for predictive purposes, 
since the prediction probabilities are comparable with those from 
the models with general dependence structure, when the SEs are 
considered, and they are comparable with the 'observed' frequen­
cies. The large divergences in estimated probabilities occur only 
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Table 11.11. Cardiac surgery data. Log-likelihoods and AIC values. 

Model Log-lik AIC 

(1) -6245.6 -6279.6 
(2a) -6248.3 -6287.3 
(2b) -6251.1 -6290.1 
(2c) -6242.7 -6277.7 
(3) -6250.3 -6284.3 
(4) -6286.0 -6315.0 
indep. -6448.9 -6476.9 

in the cases in which the vector x is at the extreme of the covari­
ate space. For another comparison, the prediction probabilities for 
the multivariate logit model with the independence copula are also 
given in Table 11.10. This shows that the assumption of independ­
ence leads to poor estimated probabilities in several cases. 

Hence for this data set, a simple exchangeable dependence model 
appears adequate for prediction probabilities. There is no reason 
to expect this in general. An explanation may be that the de­
pendences in the bivariate margins are different but not different 
enough to make a difference in prediction probabilities. Another 
possibility may be the dominance of the response vector (0,0,0,0). 
The comparison of exchangeable versus general dependence models 
can be investigated further through other examples. 

Table 11.11 contains log-likelihoods and AIC values for all of the 
models; the AIC value for a model is the log-likelihood, evaluated 
at the IFM estimate (MLE for model (3)), minus the number of 
parameters in the model. For model (1), the second-order version 
of the approximation of Section 4.7.1 was used for faster compu­
tations. Note also that we do not do the fuller analysis of AIC 
values based on different sets of covariates. (Some analyses showed 
that the six covariates yield a wider range of univariate predictive 
probabilities, Pr(}j = Yilx), j = 1,2,3,4, than the best set offive 
covariates, and also that for model (3) the six-covariate case had 
the largest AIC value.) The AIC values for models (1), (2a), (2b), 
(2c) and (3) are comparable and that for model ( 4) is much smaller. 
A conclusion from Tables 11.10 and 11.11 is that the AIC values 
separate out the models more than the predictive probabilities. 

Finally, we mention some diagnostic checks. For models (1), (2a), 
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Table 11.12. Cardiac surgery data. Observed frequencies for compar-
ison with Table 11.10 (match in x space for ages within 10 years}; 
Y =(REC,PUC,NEC,LOS}, x=(AGE,SEX,PMI,DIA,REN,COP). 

X n* y Prop. Freq. (probit) 

(80,0,0,0,0,0) 410 (1,1,1,1) 0.012 0.006 
(80,0,0,0,0,0) 410 (0,0,0,0) 0.583 0.567 
(80,1,1,1,1,1) 0 (1,1,1,1) 0.118 
(80, 1' 1,1' 1,1) 0 (0,0,0,0) 0.168 
(50,0,0,0,0,0) 636 (1,1,1,1) 0.000 0.000 
(50,0,0,0,0,0) 636 (0,0,0,0) 0.761 0.753 
(50,1,1,1,1,1) 0 (1,1,1,1) 0.020 
(50,1,1,1,1,1) 0 (0,0,0,0) 0.380 
(63,0,0,0,0,0) 738 (0,0,0,0) 0.690 0.685 
(63,0,1,0,0,0) 555 (0,0,0,0) 0.669 0.664 
(63,0,0,1,0,0) 114 (0,0,0,0) 0.570 0.584 
(63,0,0,0,0,1) 89 (0,0,0,0) 0.584 0.590 
(63,0,1,1,0,0) 129 (0,0,0,0) 0.519 0.564 
(63,1,0,0,0,0) 456 (0,0,0,0) 0.664 0.653 
(63,1,1,0,0,0) 208 (0,0,0,0) 0.620 0.627 
(63,1,0,1,0,0) 75 (0,0,0,0) 0.520 0.552 
(75,0,0,0,0,0) 732 (0,0,0,0) 0.619 0.605 
(75,1,0,0,0,0) 407 (0,0,0,0) 0.602 0.571 
(63,0,0,0,0,0) 1069 (0,1,0,0) 0.195 0.195 
(63,0,0,0,0,0) 1069 (0,1,0,1) 0.021 0.023 
(63,0,0,0,0,0) 1069 (0,0,0,1) 0.022 0.022 
(63,0,0,0,0,0) 1069 (1,0,0,0) 0.011 0.008 
(63,0,0,0,0,0) 1069 (0,0,1,0) 0.024 0.026 

(2b ), comparisons were made between the estimates of the de­
pendence parameters based on one-parameter likelihoods and on 
the multivariate likelihoods with the univariate parameters fixed 
(this is an example of the estimation consistency check in Section 
10.1.3). These were about the same, with the former likelihoods be­
ing much faster to compute. For model (3), the check of /jk = /kj 

was done based on separate logistic regressions with dependent 
variables being covariates for other dependent variables; the estim­
ates from the separate logistic regressions were quite close to the 
MLEs (and were good starting points for the ML estimation). 
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Table 11.13. Cardiac surgery data. Dependence parameters for subsets, 
multivariate probit model; Y =(REC,PUC,NEC,LOS). 

Subset n* Margin 
1,2 1,3 1,4 2,3 2,4 3,4 

all 5000 0.269 0.367 0.479 0.265 0.387 0.296 

AGE> 63 2621 0.301 0.344 0.459 0.204 0.407 0.312 
AGE~ 63 2379 0.192 0.433 0.496 0.393 0.351 0.248 
FEMALE 1403 0.266 0.273 0.429 0.268 0.364 0.300 
PMI=1 2086 0.250 0.406 0.460 0.259 0.383 0.326 
5 binary 1628 0.311 0.377 0.502 0.259 0.396 0.253 
vars =0 

A rough assessment of observed versus predicted frequencies was 
done as follows. We can compute the sample relative frequency for 
a given y over the subset of subjects with a covariate vector near 
a given x. Since all the covariates except for age are discrete, we 
consider 'near a given x' as meaning 'age within 10 years' (the 
use of 7 in place of 10 led to similar results). Table 11.12 has the 
observed frequency and the subset size n* for each x; it also repeats 
the predicted frequencies from model (1) for easier comparisons 
with Table 11.10. 

Table 11.13 contains dependence parameters for the multivariate 
probit model for several subsets, chosen by limiting the range of 
the covariate space; the estimates of univariate parameters from 
all 5000 subjects were used. The dependence parameters from the 
subsets are generally close to those from all 5000 subjects, with 
the largest divergences from the subset of AGE~ 63. This type of 
analysis could also be done for the other models. It is done here to 
illustrate what might be done in general for the multivariate binary 
models used in this section, even though Table 11.10 suggests that 
this is not needed for this data set. 

Conclusions: The models have similar predictive abilities and in­
ferences for this data set. The IFM method, which allows reduction 
to one-dimensional numerical optimizations in models ( 1), ( 2a) and 
(2b), and the use of jackknife estimates of SEs were quite important 
in allowing estimation and inference to be done computationally 
quickly. 
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11.2 Example with multivariate ordinal response data 

In this section, several models for multivariate ordinal response 
data are applied to a longitudinal data set in Fienberg et al. (1985) 
and Conaway (1989), which comes from a study on the psycholo­
gical effects of the accident at the Three Mile Island nuclear power 
plant in 1979. We use multivariate probit and logit models (or, 
equivalently, copula models with univariate normal or logistic mar­
gins). These are different from the models used in the cited papers; 
they are used to highlight features in the data that are not as clear 
from the other models. 

The study focuses on the changes in levels of stress of mothers 
of young children living within 10 miles of the plant. Four waves of 
interviews were conducted in 1979, 1980, 1981 and 1982, and one 
variable measured at each time point is the level of stress ( categor­
ized as low, medium, or high from a composite score of a 90-item 
checklist). Hence stress is treated as an ordinal response variable 
with three categories, now labelled as L, M, H. There were 268 
mothers in the study, and they were stratified into two groups, 
those living within 5 miles of the plant, and those living between 
5 and 10 miles from the plant. There were 115 mothers in the first 
group and 153 in the second group. 

Over the four time points and three levels of the ordinal response 
variable, there are 81 possible 4-tuples of the form LLLL to HHHH. 
Table 11.14 lists the frequencies of the 4-tuples by group (based 
on distance); only the 35 four-tuples with non-zero frequency in 
at least one of the two groups are listed. The table shows that 
there is only one subject with a big change in the stress level (L 
to H or H to L) from one year to another; 42% of the subjects 
are categorized into the same stress level in all four years. The 
frequencies by univariate margin (or by year) are given in Table 
11.15. The medium stress category predominates and there is a 
higher relative frequency of subjects in the high stress category for 
the group within 5 miles of the plant compared with the group 
exceeding 5 miles. Table 11.15 shows that there are no big changes 
over time, but there is a small trend towards lower stress levels for 
the group exceeding 5 miles. 

Next we consider some multivariate models for the data. Be­
cause the single covariate, distance, is dichotomous, we fit latent 
multivariate distributions, separately by the value of the categor­
ized distance. With this approach, one does not have (initially) 
to think about the how the univariate and dependence parameters 
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Table 11.14. Stress data. Stress levels for 4 years following accident at 
Three Mile Island, four-tuples with non-zero frequencies. 

Distance (miles) 
4-tuple <5 >5 

LLLL 2 1 
LLLM 0 2 
LLML 2 2 
LLMM 3 0 
LMLL 0 1 
LMLM 1 0 
LMML 2 0 
LMMM 4 3 
MLLL 5 4 
MLLM 1 4 
MLML 1 5 
MLMM 4 15 
MLMH 0 1 
MMLL 3 2 
MMLM 2 2 
MMML 2 6 
MMMM 38 53 
MMMH 4 6 
MMHM 2 5 
MMHH 3 1 
MHMM 2 1 
MHMH 0 1 
MHHM 1 3 
MHHH 1 1 
HLLH 0 1 
HMML 0 1 
HMMM 4 13 
HMMH 3 0 
HMHM 1 0 
HMHH 4 0 
HHML 1 1 
HHMM 2 7 
HHMH 0 2 
HHHM 5 2 
HH HH 12 7 
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Table 11.15. Stress data. Univariate marginal (and relative) frequencies. 

Year 

Outcomes 1979 1980 1981 1982 

< 5 mi. 

L 14 (0.122) 18 (0.157) 14 (0.122) 18 (0.157) 
M 69 (0.600) 73 (0.635) 72 (0.626) 70 (0.609) 
H 32 (0.278) 24 (0.209) 29 (0.252) 27 (0.235) 

> 5 mi. 

L 9 (0.059) 35 (0.229) 17 (0.111) 23 (0.150) 
M 110 (0.719) 93 (0.608) 117 (0.765) 110 (0.719) 
H 34 (0.222) 25 (0.163) 19 (0.124) 20 (0.131) 

all 

L 23 (0.086) 53 (0.198) 31 (0.116) 41 (0.153) 
M 179 (0.668) 166 (0.619) 189 (0.705) 180 (0.672) 
H 66 (0.246) 49 (0.183) 48 (0.179) 47 (0.175) 

are functions of the covariate. For continuous covariates, this would 
have to be done; for example, should the regression coefficients for 
different cutpoints of a single ordinal response variable be the same 
or different? The comparison of models is not as detailed as in the 
multivariate binary response example in Section 11.1. We leave as 
exercises other comparisons and checks of whether simpler mod­
els are adequate fits to the data, for example, one could consider 
Markov or exchangeable dependence structure, or common univari­
ate parameters for different time points and/or groups. 

Multivariate ordinal response models that were used to model 
the data are the following. 

1. The multivariate probit model from Sections 7.1.7 and 7.3. 

2. The multivariate logit model from Sections 7.1.7 and 7.3: 

(a) with the construction in Section 4.8 using bivariate cop­
ulas from the family B2; 

(b) with the construction in Section 4.8 using bivariate cop­
ulas from the family B3; 
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Table 11.16. Stress data. Estimates of cutpoints for probit and logistic 
models, by distance category and year. 

Pro bit Logit 
Distance, year Estimate (SE) Estimate (SE) 

< 5 mi., 1979: 
au -1.16 (0.16) -1.98 (0.29) 
a12 0.59 (0.13) 0.95 (0.21) 

1980: 
a21 -1.01 (0.14) -1.68 (0.26) 
a22 0.81 (0.13) 1.33 (0.23) 

1981: 
a31 -1.17 (0.16) -1.98 (0.29) 
a32 0.67 (0.13) 1.09 (0.22) 

1982: 
a41 -1.01 (0.14) -1.68 (0.26) 
a42 0.73 (0.13) 1.18 (0.22) 

> 5 mi., 1979: 
au -1.57 (0.17) -2.77 (0.36) 
a12 0.76 (0.11) 1.25 (0.20) 

1980: 
a21 -0.74 (0.11) -1.22 (0.19) 
a22 0.98 (0.12) 1.63 (0.22) 

1981: 
a31 -1.22 (0.14) -2.10 (0.26) 
a32 1.15 (0.13) 1.95 (0.25) 

1982: 
a41 -1.04 (0.13) -1.73 (0.23) 
a42 1.12 (0.13) 1.89 (0.25) 

(c) with copulas from Section 4.3 that are mixtures of max-id 
distributions. 

That is, models of the form F(·; 6) = C(Fa, Fa, Fa, Fa; 6) for the 
latent vector Z with univariate margins Fa were used. For the jth 
ordinal variable, the category k obtains if aj,k-1 < Zj ~ aj,k· For 
model (1), Fa is the standard normal distribution, and for model 
(2), Fa is the standard logistic distribution. For the models in (2c), 
parametric families of copulas of the form ( 4.25) were tried with 
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Table 11.17. Stress data. Estimates of dependence parameters in models 
{1}, {2a}, {2b}, by distance category. 

Margin (1) (2a) (2b) 
Estimate (SE) Estimate (SE) Estimate (SE) 

< 5 mi.: 
12 0.785 (0.060) 17.9 (7.5) 8.4 (1.8) 
13 0.696 (0.067) 10.4 (3. 7) 6.4 (1.2) 
14 0.653 (0.086) 9.6 (3.7) 5.5 (1.3) 
23 0.806 (0.059) 20.8 (9.1) 9.1 (2.0) 
24 0.636 (0.096) 9.1 (3.7) 5.3 (1.4) 
34 0.844 (0.052) 27.0 (12.3) 10.2 (2.3) 

123 0.67 (1.59) 0.61 (1.15) 
124 1.27 (1.73) 1.25 (1.57) 
134 1.03 (2.06) 0.80 (1.23) 
234 0.60 (0.81) 0.51 (0.65) 

> 5 mi.: 
12 0.678 (0.079) 13.8 (6.3) 6.4 (1. 7) 
13 0.463 (0.111) 5.0 (2.1) 3.6 (1.2) 
14 0.436 (0.108) 4.6 (1.9) 3.3 (1.1) 
23 0.750 (0.066) 16.7 (7.2) 8.2 (1.8) 
24 0.510 (0.104) 6.6 (2.6) 3.9 (1.1) 
34 0.562 (0.116) 8.5 (3.5) 5.1 (1.7) 

123 0.10 (0.16) 0.14 (0.30) 
124 1.36 (1.74) 1.66 (2.05) 
134 0.30 (0.36) 0.36 (0.40) 
234 0.16 (0.18) 0.17 (0.19) 

.,P( ·;B) in one of the LT families LTA, LTB, LTC, LTD, and with 
/{ii ( ·) = /{ ( ·; 8ii) in one of the bivariate copulas families B3 to B7. 
The summaries below are given only for the choice that led to the 
best AIC value for both groups (categorized by distance). 

For the models referred to in the preceding paragraph, the IFM 
method in Section 10.1 was used; univariate parameters were es­
timated from separate univariate likelihoods (leading to &j,k = 
F0- 1(nik/n), where n is the sample size and nik is the number in 
the jth univariate margin that are in the kth category or below), 
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Table 11.18. Stress data. Estimates of dependence parameters in model 
{2c}; t/J from family LTA, K;j from family B7. 

< 5 mi. > 5 mi. 
Parameter Estimate (SE) Estimate (SE) 

(} 1.93 (0.20) 1.47 (0.12) 
612 0.75 (0.45) 0.85 (0.29) 
613 0 (-) 0 (-) 
614 0 (-) 0 (-) 
623 1.21 (1.02) 1.62 (1.91) 
624 0 (-) 0 (-) 
634 1.21 (0.79) 0.22 (0.21) 

Table 11.19. Stress data. Comparisons of log-likelihood and AIC values, 
with given univariate parameters. 

< 5 mi. > 5 mi. 
Model Log-lik AIC Model Log-lik AIC 

(1) -323.7 -337.7 (1) -417.1 -431.1 
(2a) -325.6 -343.6 (2a) -413.5 -431.5 
(2b) -323.1 -341.1 (2b) -415.7 -433.7 
(2c) -323.8 -338.8 (2c) -416.4 -431.4 

and bivariate and multivariate parameters were estimated from bi­
variate, trivariate, or 4-variate likelihoods, using a quasi-Newton 
routine, with univariate parameters fixed as estimated from the 
separate univariate likelihoods. This is similar to the use of these 
models in Section 11.1. For SEs of parameter estimates, the (delete­
one) jackknife method from Section 10.1.1 was used. 

Summaries of the modelling process are given in several tables. 
Table 11.16 has estimates and SEs of univariate parameters. Tables 
11.17 and 11.18 have estimates and SEs of dependence parameters. 
For models (2a) and (2b ), the 4-variate parameter was taken to 
be 1 (for numerical stability in the estimation consistency check). 
The models (2a) and (2b) allow one to assess whether there is 
multivariate structure beyond that given in the set of bivariate 
margins. For both groups, two of the trivariate parameters are 
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Table 11.20. Stress data. Observed versus expected frequencies for several 
models, < 5 mi. group. 

4-tuple Observed Expected 
(1) (2a) (2b) (2c) 

LLLL 2 4.9 4.9 4.4 3.3 
LLML 2 1.0 1.1 1.2 1.1 
LLMM 3 2.3 2.0 2.1 2.4 
LMLM 1 0.2 0.1 0.2 0.4 
LMML 2 1.0 0.7 0.7 1.5 
LMMM 4 2.6 2.8 3.4 2.8 
ML LL 5 2.2 2.1 2.0 2.4 
MLLM 1 1.3 1.4 1.6 1.4 
MLML 1 0.8 0.6 0.7 1.2 
MLMM 4 4.1 3.9 4.6 4.4 
MMLL 3 2.2 2.0 2.3 2.3 
MMLM 2 1.2 1.3 1.7 1.8 
MMML 2 4.7 4.5 5.4 4.5 
MMMM 38 35.9 37.1 34.7 37.4 
MMMH 4 3.8 3.2 3.8 3.0 
MMHM 2 3.0 3.1 3.3 2.5 
MMHH 3 3.7 3.4 3.4 3.2 
MHMM 2 2.1 2.1 2.4 1.3 
MHHM 1 1.5 1.2 1.0 1.7 
MHHH 1 1.8 1.5 1.3 1.0 
HMMM 4 6.9 6.7 7.1 6.7 
HMMH 3 2.0 2.0 1.7 1.3 
HMHM 1 1.2 0.8 0.4 1.1 
HMHH 4 3.2 3.0 3.4 2.7 
HHML 1 0.1 0.1 0.1 0.1 
HHMM 2 3.0 2.5 2.6 2.4 
HHHM 5 3.3 3.0 3.6 1.9 
HH HH 12 10.9 12.0 12.3 14.2 
others 0 4.1 5.9 3.5 4.9 
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Table 11.21. Stress data. Observed versus expected frequencies for several 
models, > 5 mi. group. 

4-tuple Observed Expected 
(1) (2a) (2b) (2c) 

LLLL 1 2.0 1.6 1.4 1.0 
LLLM 2 1.1 1.0 1.0 1.3 
LLML 2 1.4 1.8 1.8 1.2 
LMLL 1 0.0 0.2 0.1 0.1 
LMMM 3 1.2 1.2 1.6 1.7 
MLLL 4 4.5 4.7 4.6 2.9 
MLLM 4 5.2 4.8 5.8 5.1 
MLML 5 3.9 4.7 4.5 4.8 
MLMM 15 13.1 11.9 12.4 14.6 
MLMH 1 0.6 0.6 0.6 0.7 
MMLL 2 1.2 1.5 1.6 1.5 
MMLM 2 2.1 1.4 1.3 3.4 
MMML 6 7.8 6.1 7.2 8.2 
MMMM 53 51.3 53.9 50.2 52.7 
MMMH 6 5.7 6.0 6.5 4.8 
MMHM 5 3.7 5.1 5.6 2.6 
MMHH 1 1.5 0.7 0.7 0.6 
MHMM 1 3.9 4.0 4.8 3.0 
MHMH 1 0.8 0.9 1.0 0.5 
MHHM 3 2.7 1.3 1.4 2.5 
MHHH 1 1.6 1.2 1.2 0.6 
HLLH 1 0.0 0.0 0.0 0.0 
HMML 1 0.9 0.7 0.7 0.8 
HMMM 13 12.0 12.1 12.5 10.5 
HHML 1 0.2 0.3 0.2 0.3 
HHMM 7 5.7 6.2 6.2 5.2 
HHMH 2 2.1 0.8 0.6 2.0 
HHHM 2 3.6 3.2 3.6 2.7 
HH HH 7 4.0 6.4 5.6 7.3 
others 0 9.2 8.7 8.3 10.3 
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significantly below 1. For model (2c), the 'best' fit of the form ( 4.25) 
was with the LT family LTA and the bivariate copula family B7, 
with 613 = 614 = 624 = 0, v1 = v4 = -2 and v2 = V3 = -1. For the 
20 parametric families of the form ( 4.25) that were tried, generally 
some dependence parameter 6ij (corresponding to I<ij) reached 
either the lower bound (independence copula) or the upper bound 
(Frechet upper bound copula) in the estimation. This causes a 
problem with SEs of estimates but not for AIC values or prediction 
probabilities (see the comment about this in Section 11.1). For 
the SE estimates in Table 11.18, the jackknife subsample with the 
observation HLLH deleted led to substantially different estimates 
of the 6ij so that this case is not included in the reported SE 
calculation. 

As would be expected, the dependence parameters for consecut­
ive years are larger. In comparisons of the two groups ( < 5 mi. and 
> 5 mi.), the dependence parameters are larger for the first group. 
This means that the mothers in the first group are probably more 
consistent over time in the original90-item checklist; there could be 
a number of reasons for this. The estimation consistency check from 
Section 10.1.3 was done; for example, in model (1), the estimates of 
the correlation parameters based on a 4-variate likelihood were very 
close to those in Table 11.17 (the maximum absolute difference was 
0.018). Table 11.19 has the log-likelihoods and AIC values for four 
models, evaluated at the IFM estimates. Tables 11.20 and 11.21 
contain expected frequencies from the models for comparisons with 
the observed frequencies. Tables 11.19, 11.20 and 11.21 show that 
the four models are comparable in fit. 

11.3 Example with multivariate extremes 

In this section, we describe modelling and inference with multivari­
ate extremes for an air quality data set with ozone concentrations 
from a regional network of monitoring stations. 

The data consist of daily maxima of hourly averages of ozone 
concentrations - in parts per billion (ppb) - collected over six 
years {1983-1988) from 24 air quality monitoring stations in the 
southern Ontario region. Some stations were eliminated because of 
excessive missing data. For ease of illustration of some multivariate 
ideas, we use nine stations that altogether have very few missing 
values over the six years. (See Figure 11.1(a) for a map showing the 
latitudes and longitudes of the nine monitoring stations, with the 
indexing used for the analysis.) We illustrate inferences concern-
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ing the probability that k or more stations of a group in a region 
will have annual maxima in exceedance of a certain threshold over 
a year. For these inferences, we convert the data to weekly max­
ima (consecutive weekly maxima are much less serially dependent 
than daily maxima). The sample size then is large enough for some 
asymptotic inference. 

Ozone concentrations have two patt"erns, one diurnal and one 
annual. Over the course of a day, the largest values of hourly aver­
ages almost always occur in the afternoon to early evening. Hence 
a daily maximum ozone concentration is roughly the maximum 
of about six or seven hourly averages and a weekly maximum is 
the maximum of 40+ (weakly dependent) hourly averages. (Note 
that the asymptotic extreme value theory extends from maxima 
of independent observations to maxima of weakly dependent ob­
servations.) Daily maximum ozone concentrations have an annual 
cyclic pattern with higher values for the summer months and lower 
values for the winter months. An exploratory data analysis of the 
weekly maxima derived from the present data set shows that the 
'high' period consists of weeks 23 to 33 inclusive of the year, and 
this extends to weeks 17 to 40 allowing for a slow drop-off at both 
ends of the period. This pattern can be seen in Table 11.22, in 
which averages are obtained over all years and stations for a given 
week (14 to 43) of the year, and standard deviations are over years 
for the averages of stations per year. See also Figure ll.l(b) for 
the time series of the weekly maxima, averaged over stations, for' 
the six years; this suggests that there are no time trends over the 
s1x years. 

For further analyses, we use data from weeks 17 to 40 inclusive 
of the year, and assume that annual maxima always occur in this 
period. For the univariate analysis, we assume a GEV model (see 
Section 6.1) for each station with the location parameter depending 
on the week of the year as a piecewise linear function. That is, for 
the jth station, the parameters of the GEV model are ( 'Yi, J.ti, u;) 
with 

{ 
J.tj- /31;(23- t), 17 ~ t ~ 22, 

J.tj=J.tj(t)= J.tj, 23~t~33, 
J.tj- f32;(t- 33), 34 ~ t ~ 40, 

where tis an index for the week of the year. (We had also tried hav­
ing the scale parameter depend on the location parameter through 
a function u; (t) = v; [J.t; (t)]"'i but the estimated o:; was usually 0 
or very close to 0.) The parameters (/;, J.tj, u;, /31;, (32;) were es-
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Figure 11.1. Plots for ozone data 
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Table 11.22. Ozone data. Average of weekly maximum ozone concentra-
tions by weeks over years and stations. 

Week Average SD Week Average SD 

14 51.0 8.4 29 81.7 10.6 
15 48.0 5.7 30 86.9 5.6 
16 50.4 7.6 31 80.6 13.2 
17 66.4 7.9 32 78.7 12.2 
18 56.8 10.6 33 81.5 8.3 
19 65.0 10.3 34 72.2 9.7 
20 67.2 9.9 35 60.2 14.4 
21 69.5 5.6 36 68.7 15.5 
22 72.2 8.5 37 64.7 8.7 
23 81.6 12.3 38 55.8 16.4 
24 80.5 19.2 39 54.0 11.2 
25 84.8 21.0 40 55.1 8.9 
26 84.9 11.6 41 40.8 9.0 
27 75.6 9.8 42 36.8 4.7 
28 85.7 23.7 43 41.4 8.4 

timated separately for each j using numerical ML with a quasi­
Newton routine, and then were fixed for estimating bivariate and 
multivariate parameters using the IFM method in Section 10.1. For 
multivariate extreme value data, GEV margins were transformed 
to exponential survival margins, so that MSMVE models could be 
used (see the examples in Section 10.1.4). If the ith observation 
vector is (ti, Yil, ... , Yi9), where ti is an index for the week, the 
transformed vector is Zi, with Zij = [1 + .::fi (Yii - Pi (ti)) / Uj t l/"'u. 

In order to assess the dependence pattern among the stations, we 
initially fitted the bivariate family B8 separately to each of the 36 
bivariate margins (since the family B8 extends to the multivariate 
family M8 which has all bivariate margins in the family B8 with 
possibly different parameter values). Applying the IFM method 
with bivariate margins, the bivariate parameters were estimated 
with a quasi-Newton routine, and are given in Table 11.23 (the 
(j, k) entry, with j < k, corresponds to the station pair (j, k)). The 
estimated SEs, with the univariate parameters assumed fixed, are 
in the range 0.10 to 0.14. 
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Table 11.23. Ozone data. Bivariate dependence parameters for station 
pairs using model B8. 

Stn 1 2 3 4 5 6 7 8 9 
1 1.33 1.48 1.71 0.81 0.94 1.13 1.07 1.02 
2 1.38 1.18 0.78 0.81 0.90 0.86 0.78 
3 1.85 0.74 0.76 0.80 1.04 1.00 
4 0.77 0.78 0.88 1.16 1.04 
5 1.49 0.68 0.82 0.85 
6 0.67 0.94 0.90 
7 0.86 0.82 
8 1.05 

In matching the values in Table 11.23 to the map in Figure 
11.1(a), the larger dependence parameter values occur for pairs 
of stations that are closer to each other (a cluster of four in the 
middle and another cluster of two off to the side); otherwise there 
seems to be roughly a common (lower) dependence level for the 
remaining pairs. The overall dependence pattern suggests the use 
of the family MM1 in the form given next. 

We use model MM1 with a parameter() for the minimal depend­
ence level (over pairs) and additional parameters bj k for the pairs 
of stations in the set B = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (5, 6)}; 
this set consists of the pairs with a higher level of dependence. 
With 1/J(s) = exp{ -s8 } in the family LTA, and Kjk being bivariate 
copulas in the family B6, then following ( 4.24) and ( 4.25) in Section 
4.3, we write the copula in the form 

9 

1/J (- L log Kjk(Hj, Hk)- L log Hj) 
(j,k)EB j=7 

9 

= 1/J(- L 1ogKjk(e-P;•r'(u;),e-PkiP-1 (uk)) + L'l/J-l(uj)) 
(j,k)EB j=7 

= 1/J( L [(pjzj) 6ik + (pkzZ} 6ik] 116ik + z~ + z: + zg), (11.1) 
(j,k)EB 

where Zj = -loguj, j = 1, ... , 9, and Pl = P3 = 1/3, P2 = P4 = 
1/2, Ps = P6 = 1. Model (11.1) is a copula as a function of u 
and a MSMVE survival function as a function of z. It has seven 
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dependence parameters. (The model with an additional parameter 
624 was not an improvement on this one.) 

A simpler model than (11.1) that was also tried was the permuta­
tion-symmetric form of the family M6. In MSMVE form, this is 

exp{- [t zjr19 }. (11.2) 
j=l 

For likelihood inference with (11.1) and (11.2), the densities were 
obtained using symbolic manipulation software, and then applying 
the IFM method in Section 10.1, the dependence parameters were 
estimated with a quasi-Newton routine (much more computer time 
was spent in the symbolic differentiation). SEs were obtained using 
the jackknife approach of Section 10.1.1, with 36 subsamples (of 
140) from dividing the 144 observation vectors into random blocks 
offour. Table 11.24 consists of the log-likelihoods at the estimated 
parameter vectors, and estimates and SEs for the dependence para­
meters and some of the univariate parameters. 

The log-likelihoods or AIC values suggest that model MM1 is a 
much better fit to the data than model M6. Next we show how they 
compare for the inference of the probability that at least one (or 
two) of the nine stations exceeds a threshold in a year (assuming no 
change in the ozone levels due to stricter air quality requirements). 
The concentration of 120 ppb for ozone is used in some air quality 
standards for the annual maximum and a tolerable range for an 
hourly average is 80 to 150 ppb. In Table 11.25, the probability 
inferences with SEs are given for thresholds of 120, 130, 150 and 160 
ppb. A reason for considering probabilities of 'at least k stations 
exceeding a threshold', with k > 1, is because this can assess if 
an exceedance is more local or global over a region. Let Fa be the 
cdf for a vector of annual maxima and let F(-; t) be the cdf for a 
vector of weekly maxima in week t. Based on the aforementioned 
assumptions, the probability that at least one station exceeds a 
threshold T in a year is 

40 

P1 = 1- Fa(Tlg) = 1- II F(Tlg;t), 
t=17 

and the probability that at least two stations exceed T is 

m 

P2 = 1-~ Fa(Tij) + (m- 1)Fa(Tlm), 
j=l 



350 DATA ANALYSIS AND COMPARISON OF MODELS 

Table 11.24. Ozone data. Parameter estimates and log-likelihoods. 

Model Estimate (SE) Log-lik 

M6 B: 1.31 (0.04) -1085.5 

MM1 B: 1.29 (0.04) -1016.1 
612: 1.41 (0.40) 
613: 1.43 (0.65) 
614: 2.59 (0.68) 
623: 1.66 (0.56) 
634: 2.48 (0.44) 
6ss: 1.39 (0.12) 

univariate /'1: -0.06 (0.07) 
jji: 72.6 (2.5) 
0"1: 17.4 (1.6) 
f3u: 4.49 (0. 73) 
!321: 5.77 (0.87) 

univariate /'9: -.15 (0.06) 
p;: 79.3 (3.2) 
0"9: 19.8 (1.4) 
!319: 2.57 (0.90) 
!329: 3.34 (1.01) 

with m = 9 and ij being a vector of 1s except for an oo in the 
jth position. If either (11.1) or (11.2) is denoted as exp{ -A(z)}, 
then F(y;t) is exp{-A(z1(Y1,t), ... ,z9(Y9,t))}, with Zj(Yj,t) = 
[1 +'Yi(Yi- {.tj(t))/friJ- 11ii. 

With the same value of B, the cdf in (11.1) is more PLOD and 
higher in the -<~w ordering than the cdfin (11.2). This explains why 
the point estimate for P1 is smaller for model MM1 than for model 
M6. However, the point estimates in Table 11.25 are quite close for 
the two models, when theSEs are considered. The SEs show that 
there is not a lot of precision in the probability estimates which 
are in the middle range; there is less uncertainty for thresholds 
that have probability near zero or near one of being exceeded. 
With weak positive serial dependence by week, the probabilities of 
exceedance in a year are a little smaller. 
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Table 11.25. Ozone data. Probability of at least one (two) stations having 
an annual maximum exceeding T. 

T M6 
P1 (SE) 

120 0.979 (0.022) 
130 0.84 (0.11) 
150 0.34 (0.15) 
160 0.19 (0.11) 

MM1 
P1 (SE) 

0.974 (0.025) 
0.81 (0.11). 
0.31 (0.13) 
0.17 (0.10) 

M6 
P2 (SE) 

0.894 (0.083) 
0.58 (0.18) 
0.11 (0.07) 

0.050 (0.039) 

MM1 
P2 (SE) 

0.879 (0.082) 
0.57 (0.17) 
0.14 (0.09) 

0.068 (0.053) 

Table 11.26. Ozone data. Observed and expected cdfs (models M6 and 
MM1} for the weekly maxima over all nine stations. 

X M6 MM1 Observed 

70 0.059 0.064 0.104 
80 0.159 0.169 0.236 
85 0.236 0.248 0.313 
90 0.329 0.344 0.382 
95 0.433 0.448 0.486 

100 0.539 0.554 0.569 
105 0.638 0.652 0.667 
110 0.725 0.737 0.736 
120 0.854 0.862 0.833 
130 0.928 0.933 0.903 
170 0.995 0.996 0.993 

Finally, we illustrate one diagnostic check of the MEV models, 
although many other diagnostic checks could be made. We compare 
in Table 11.26 the observed and expected relative frequencies of 
weeks for which the maximum weekly maxima over all nine stations 
is less than or equal to x for various x values; using the preceding 
notation, this is (24)- 1 I:i~17 F(x19 ; t). As a function of x, the 
curves of expected frequencies for models M6 and MM1 cross with 
the curve of observed frequencies, with the curve from MM1 being 
closer to that of the observed frequencies for a wider range (for the 
probability). For the inferences and diagnostics considered here, 
the simpler exchangeable dependence model does about as well, 
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even though it is a worse fit using the AIC. However, for other 
inferences and other data, the more complex models may perform 
much better. 

11.4 Example with longitudinal binary data 

In this section, models are fitted to a data set with binary time 
series of length 4 to 16 for different subjects. Markov models with 
and without random effects are used, and model parameters are 
compared for two treatment groups. The models are used to sum­
marize how the two groups are different in the response variable. 

The data, consisting of a binary time series for each subject, are 
given in Table 11.27; there are two treatment groups labelled A and 
B, the time unit is a week and the binary response is an indicator 
of bacteriuria (bacteria in the urine) for the week. The subjects 
are acutely spinal cord injured patients with chronic urinary tract 
infections. Retaining only those patients with at least four weeks of 
observation, there were 36 subjects on each of two treatments for 
bacteriuria. Patients were in the study for at most 16 weeks. For 
treatment A, patients were treated for all episodes of bacteriuria. 
For treatment B, patients were treated for episodes of bacteriuria, 
only if they were accompanied by two specific symptoms. Patients 
were assigned randomly to the two treatment groups; patients en­
tered the study with bacteriuria, so that the first response for each 
patient is 1. Note that having bacteriuria for a longer period of time 
does not necessarily mean that the patient is sicker. See Gribble, 
McCallum and Schechter (1988) for some background. 

In Table 11.27, a few (11) missing values were imputed. For 
treatment A, the imputed value was 0 in five cases; for treatment 
B, in six cases, the imputed value was 1, if among a long string 
of 1s, and 0 otherwise. The inferences are not really affected by 
these few imputed values. The imputation is done for simplicity (so 
that missing data did not have to be considered in the computer 
programming). 

From other information collected for the study, treatment B sub­
jects would often get one 'bug' in their urinary tract and not get 
rid of it for some time, whereas for treatment A subjects bacteria 
were removed so did not stay around for a lengthy period. 

Summary statistics, by subject, are given in Table 11.28 for the 
proportions of weeks without bacteriuria, not including the first 
week in the study. Over all subjects, the proportions of weeks 
without bacteriuria are 0.616 and 0.322 for treatments A and B, 
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Table 11.27. Bacteriuria data. Binary weekly time series data; response 
is indicator of bacteriuria. 

Treatment A Treatment B 
Weeks Series Weeks Series 

13 1001010100101 9 111100011 
5 10001 16 1111111111111111 

16 1010010010101010 15 111111111111001 
9 101000101 15 100011111110111 

15 100011010111111 16 1111111111010000 
16 1100100010101001 16 1111100111111111 
9 100010101 16 1000011110111001 
4 1000 12 111000111011 

16 1001000000100010 16 1110111111111111 
7 1010011 4 1110 

10 1010110101 10 1011111111 
10 1001010101 16 1011111111111111 
6 100110 16 1111111100000110 

14 10100011010100 6 100010 
5 10010 16 1001111011011111 

16 1000101100100100 5 10011 
16 1010100110110100 12 111111100000 
16 1000100010000000 16 1000111111111000 
16 1010001010011001 16 1111001100011111 
12 101000011011 16 1001111111111111 
15 101000111011101 16 1000000000000000 
10 1001000100 16 1100111111100111 
16 1000101001110001 6 100100 
16 1010001010010011 11 11111100000 
13 1010101001001 12 100111110100 
16 1000101010100010 10 1111111111 
10 1010001001 16 1111111110111111 
12 100010110101 16 1111101110111111 
6 111000 6 110011 

16 1001000010100010 16 1100000110010000 
11 10000101001 15 100001111111111 
9 110011011 15 100011110101001 

15 100101100010001 16 1111110011111111 
14 11010011001010 16 1111000101111111 
8 10010010 10 1100000111 
6 100100 7 1111000 
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Table 11.28. Bacteriuria data. Summary statistics for proportions of 
weeks without bacteriuria. 

Treatment Mean SD Min Q1 Med Q3 Max 

A 0.628 0.132 0.357 0.551 0.600 0.707 1 
B 0.349 0.236 0 0.133 0.333 0.483 1 

respectively. Hence it appears that treatment A is effective in treat­
ing bacterial infection of the urinary tract. 

From the initial analysis of the data, a Markov chain model 
of order 1 seems reasonable. Table 11.29 summarizes the trans­
ition frequencies to state 1 by subject; it seems to indicate that 
there is enough variability in the transition probabilities to con­
sider a random effects model, e.g., transition probabilities Pol, 
Pu are random over subjects with Beta (ak. f3k) distributions, and 
7rk = f3k/(ak + f3k) and 'T/k = (ak + f3k)- 1, k = 0, 1. The shapes of 
the histograms of the four columns of proportions in Table 11.29 
suggest that the beta distributions are a reasonable model to try, 
but of course other distributions could be used for a random effects 
model. 

Other models that were tried have no random effects or different 
order for the Markov chain. The models are: 

1. Markov chains of order 1 with random effects; 

2. Markov chains of order 1 with no random effects; 

3. Markov chains of order 2 with no random effects (parameters 
Pi1 i2 1, i1, i2 = 0, 1); 

4. iid observations after first week, no random effects (parameter 
P1 for probability of 1). 

Note that for the Markov chain models with no random effects, 
the MLE of the transition probability Pil or p;1 ; 2 1 comes from 
n;,l/(ni,l + n;,o) or n; 1; 2 ,1/(nhi2 ,1 + n; 1 ; 2 ,o), where n81 , 82 is the 
number of transitions (over all subjects in a treatment group) to 
state s2 given the recent past s1 . For model (1), MLEs were estim­
ated separately for two treatment groups, using a quasi-Newton 
routine. For model (3), the SEs also came from using a quasi­
Newton routine. Parameter estimates, SEs and log-likelihoods are 
given in Table 11.30. The main interpretations of the results in 
Table 11.30 are the following. 
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Table 11.29. Bacteriuria data. Transition proportions to the state of 1, 

by subject. 

Trt A Trt A Trt B Trt B 
0--->1 1---> 1 0--->1 1---> 1 

0.714 0.000 0.333 0.800 
0.333 0.000 0.500 1.000 
0.750 0.000 0.500 0.917 
0.600 0.000 0.500 0.800 
0.600 0.667 0.250 0.818 
0.556 0.167 0.500 0.923 
0.600 0.000 0.429 0.625 
0.000 0.000 0.500 0.714 
0.273 0.000 1.000 0.929 
0.667 0.333 0.500 0.667 
1.000 0.200 1.000 0.875 
0.800 0.000 1.000 0.929 
0.500 0.333 0.200 0.800 
0.571 0.167 0.333 0.000 
0.500 0.000 0.750 0.727 
0.444 0.167 0.500 0.500 
0.714 0.250 0.000 0.857 
0.167 0.000 0.200 0.800 
0.556 0.167 0.400 0.800 
0.500 0.400 0.500 0.923 
0.667 0.500 0.000 0.000 
0.333 0.000 0.500 0.818 
0.444 0.333 0.333 0.000 
0.556 0.167 0.000 0.833 
0.714 0.000 0.500 0.571 
0.556 0.000 0.500 1.000 
0.500 0.000 1.000 0.929 
0.667 0.200 1.000 0.846 
0.000 0.667 0.500 0.667 
0.400 0.000 0.200 0.400 
0.429 0.000 0.250 0.900 
0.667 0.600 0.571 0.429 
0.444 0.200 0.500 0.923 
0.667 0.286 0.500 0.818 
0.500 0.000 0.200 0.750 
0.333 0.000 0.000 0.750 
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Table 11.30. Bacteriuria data. Estimates and log-likelihoods for the mod-
els. 

Model Treatment A Treatment B 
Estimates (SEs) Log-lik Estimates (SEs) Log-lik 

(1) 7ro: 0.528 (0.035) -235.5 7ro: 0.366 (0.055) -226.4 
'f/O: 0.000 (0.039) 'f/o: 0.083 (0.079) 
71"1: 0.208 (0.040) 71"1: 0.809 (0.028) 
'f/1: 0.063 (0.085) 'f/1: 0.019 (0.039) 

{2) Po1: 0.520 {0.034) -237.0 Po1: 0.347 (0.042) -227.4 
pu: 0.200 {0.031) Pu: 0.816 (0.022) 

{3) Poo1: 0.596 (0.049) -233.3 Poo1: 0.378 (0.056) -221.9 
Pou: 0.208 {0.040) Pou: 0.805 (0.062) 
P1o1: 0.460 {0.045) P101: 0.302 {0.063) 
P111: 0.286 (0.086) P111: 0.851 {0.024) 

{4) P1: 0.384 {0.025) -347.4 Pl: 0.678 {0.022) -271.4 

(a) Although there is some variability in the transition propor­
tions from state to state, the variability is not more than 
that expected from a model with no random effects. {How­
ever, with longer time series, we would expect that a ran­
dom effects model would be needed to explain variability in 
such summaries as in Table 11.29.) The parameters, 'f/o, 'f/1, 
are not significantly different from 0 so that the degenerate 
model with Pol, Pu set at single values suffices to explain the 
variability in the data. (This conclusion of no random effects 
could be checked with a sensitivity analysis by using an al­
ternative random effects model; e.g., two-component mixture 
models for the transition probabilities to state 1. This is left 
as an exercise.) 

(b) Markov chains of order 1 are good fits to the data; the Markov 
chains of order 2 are slightly better fits and the iid model in 
( 4) is a much worse fit to the data. 

From model {2), treatment B patients are much more likely to 
remain in state 1 if they are already in this state: p~~) - P~1) = 
0.616, with SE of 0.038. They are also less likely to go from state 
0 to state 1: p~~)- p~1) = -0.173, with SE of 0.054. This latter 
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summary may be an indication that treatment A is not necessarily 
better. 

The analyses in this section are fairly straightforward. The ideas 
of Markov chains and random effects generalize to data which 
consist of equally spaced time series for many subjects, provided 
lengths of time series are sufficiently long. 

11.5 Example with longitudinal count data 

In this section, several models are applied to a data set of longitud­
inal counts, which comes from daily totals over individual binary 
time series for many subjects. A description of the study and data 
set is given next before the explanation for treating the data set 
as a single count time series rather than many binary time series. 

There have been many recent studies with the aim of assess­
ing pollution effects on human health. Such studies are not easy 
to do. For this particular study, details are given in Vedal et al. 
(1997). The population consists of elementary school children in 
Port Alberni, BC, Canada, a small town of about 30 000 with pulp 
and paper as the main industry causing ambient particulate pol­
lution. The children were classified into asthmatic, non-asthmatic 
and slight abnormality. These groups constituted a census for the 
study, and a control group was randomly chosen to match them. 
After receiving instruction and feedback, the children filled in di­
aries at home. The analysis here combines all four groups in order 
to have a larger sample size for making initial inferences. 

Binary variables to be measured daily were indicators of cough 
(S1), phlegm (S2), burning, aching or redness of the eyes (S3), 
runny or stuffed nose (S4), sore throat (S5), wheezing (S6), chest 
tightness {S7) and shortness of breath {S8). There were other con­
tinuous response variables which will not be considered here. Co­
variates for the study included daily temperature (TEMP), hu­
midity, indicator of precipitation and concentration of PM10 from 
two different stations (labelled as PM10A and PM10B). PM10 is 
particulate matter of diameter 10 J.Lm and below. 

Altogether there were 208 subjects and the period of study was 
from September 1990 to March 1992. However, there was a break 
in July and August 1991 so that the number of days for the study 
was 493. 

There were missing data for most subjects, i.e., only a few had 
the daily data for all 493 days. The proportions of days with symp­
toms varied greatly from subject to subject; see Figure 11.2 for a 
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Figure 11.2. Health effects data. Histogram of proportions of days by 
subjects with at least one symptom. 

histogram of the proportions of days by subject with at least one 
of the eight symptoms. These two features make (random effects) 
modelling of many binary series difficult. 

The initial data analysis indicated that the assumption that data 
are missing at random is acceptable, i.e., there is no suggestion that 
subjects with a tendency to more symptoms had more days with 
missing data. This assessment is based on plots and correlations (a) 
by subject, of the proportions Ps of days with at least one symptom 
and the number of observed days, and (b) by day t, of the numbers 
nt of subjects observed and the average Ls p 8 I(s obs. on day t)fnt 
of proportions among the observed subjects. The correlation in (a) 
is -0.058 and that in (b) is -0.013. 

There appears not be enough power in the study to show effects 
of pollutants on specific individuals; hence we use totals by day, as 
explained next. 
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Figure 11.3. Health effects data. Daily count time series plot for symptom 
1 (cough). 

Because the proportions are widely varying by subject and be­
cause missing data appear to be missing at random, we can con­
sider the Poisson distribution as a model for yt, the daily total 
number of subjects with a given symptom. (Essentially this model 
comes from the Poisson approximation to the sum of dependent 
Bernoulli rvs with different probability parameters.) The series yt 
is serially dependent with an expectation that is a function of nt 
and covariates. 

Summary statistics (means, standard deviations and quartiles) 
are given in the Table 11.31 for response variables and covariates 
that are used, including some grouped symptom variables G1, G2, 
G3 and G4. For a subject on a given day, G 1 is the indicator 
of whether symptom 1 or 2 occurs, G2 that of whether symp­
tom 3, 4 or 5 occurs, G3 that of whether symptom 6, 7 or 8 oc-
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curs, and G4 that of whether at least one of the eight symptoms 
occurs. Figure 11.3 shows the time series of total daily counts 
for symptom 1. In Table 11.31, temperature is measured in de­
grees Celsius. The variable humidity is not used for further anal­
ysis because it is moderately negatively correlated with temper­
ature and it had missing values during weekends in 1992. Also a 
few values of PM10 were missing and were estimated from the 
expectation-maximization (EM) algorithm. For the models given 
below, a scaled temperature (SCTEMP) variable was used, with 
definition SCTEMP=(TEMP-10.3)/6.35 (based on mean and 
standard deviation over a longer period of time than that for this 
study). Finally, the variable names beginning with CUM are ex­
plained below. 

Count time series models, with incorporation of covariates, that 
were used to model the data are: 

1. the AR(1) Poisson time series model in Sections 8.4.1 and 
8.4.4; 

2. the AR{2) Poisson time series model in Sections 8.4.3 and 
8.4.4; 

3. the AR(1) negative binomial time series model in Sections 8.4.1 
and 8.4.4; 

4. Markov chain models based on bivariate and trivariate copula 
models (Sections 8.1 and 4.3). 

For all these models, Ot in Section 8.4.4 is taken as exp{,80 + 
,Bxt} for various choices of the covariate vector Xt (which is time­
dependent). The first covariate is log nt because of the tendency 
to have higher daily counts of occurrences of symptoms for days 
with more subjects reporting. The model in {1) was the first one 
tried, since the initial data analysis showed strong lag 1 correlation 
but not significant overdispersion relative to Poisson (as indicated, 
for example, by the ratios of sample variances to sample means for 
the response variables in Table 11.31). The model in {2) allows for 
stronger dependence than AR(1) for lags of order 2 or more. The 
model in (3) provides a model-based method to check on whether 
one needs to account for overdispersion relative to Poisson. The 
main focus will be in the models in items (1) to (3) because the 
AR models are more interpretable for Poisson and negative bino­
mial margins, and conclusions are similar with the various models. 
However, we also want to illustrate the use of copula-based Markov 
chain time series models which may be more suitable for other ap-
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Table 11.31. Health effects data. Summary statistics (over days). 

Variable Mean SD Min Q1 Med Q3 Max 

nt 105 25 59 83 107 122 157 
S1 8.6 3.8 0 6 8 11 21 
S2 4.9 2.5 0 3 5 6 13 
S3 1.5 1.3 0 1 1 2 7 
S4 10.6 3.5 1 8 10 13 23 
S5 4.4 2.2 0 3 4 6 13 
S6 2.4 1.5 0 1 2 3 7 
S7 1.9 1.3 0 1 2 3 8 
S8 3.2 1.7 0 2 3 4 10 

G1 10.7 4.3 1 8 10 13 24 
G2 13.3 4.2 2 10 13 16 27 
G3 5.2 2.3 0 4 5 7 15 
G4 19.8 6.3 6 15 19 24 40 

TEMP 7.8 5.3 -8.4 4.4 7.2 11.6 20.2 
SCTEMP -0.40 0.84 -2.95 -0.93 -0.49 0.20 1.56 
PM10A 17.4 9.5 0.5 11 16 22 67 
PM10B 25.7 19.3 0.2 14 22 30 159 

CUM4A 17.3 6.6 3.5 13.5 16.8 20.7 45.0 
CUM5A 17.3 6.3 3.6 13.7 16.6 20.3 41.4 
CUM6A 17.3 6.0 3.7 13.8 16.8 20.1 37.3 
CUM7A 17.3 5.8 3.8 14.0 16.9 20.0 36.9 
CUM4B 25.6 16.1 5.7 15.9 22.2 29.0 116 
CUM5B 25.6 15.7 7.4 15.8 22.1 28.9 111 
CUM6B 25.6 15.3 8.3 15.9 22.2 28.8 106 
CUM7B 25.5 15.0 8.3 15.8 22.1 28.3 99.2 

plications. The use of ( 4) and comparisons with the other models 
(1) to (3) are made at the end of this section. 

MLEs were obtained using a quasi-Newton routine. (See Sec­
tion 10.4 on the asymptotic properties of MLEs of parameters of 
Markov chains.) Good starting points for the regression coefficients 
come from the Poisson regression model, yt "' Poisson (exp{,B0 + 
Pxt}), t = 1, 2, ... , assuming independent rvs over days (because 
this is an exponential family model, numerical estimates are easily 
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Table 11.32. Health effects data. Correlations of measurements at the 
two monitoring stations. 

Variable 

log PMlO 
log CUM2 
log CUM3 
log CUM4 
log CUM5 
log CUM6 
log CUM7 

Correlation 

0.576 
0.716 
0.720 
0.725 
0.729 
0.731 
0.732 

obtained using a Newton-Raphson routine). For the autoregres­
sive parameters, initial estimates can come from autocorrelations 
- the lag 1 correlation for the AR(l) model, and ti1 ::::::: jh - ti3, 
ti2 ::::::: iJ2 - ti3 for the AR(2) model, with jh, iJ2 being the auto­
correlations of lags 1 and 2, and ti3 > 0 chosen so that all initial 
estimates are positive. SEs and the asymptotic covariance matrix 
of the parameters were obtained from the quasi-Newton routine. 

The models were tried for several of the response variables, in 
particular the responses 81, 84, G3, G4, with the larger averaged 
counts. Different choices and transforms of the covariates were 
used, including averaged cumulative PM10 concentrations over the 
past k days. These variables are denoted as CUMkA and CUMkB, 
and some descriptive statistics for them are given in Table 11.31. 
For the PM10 concentrations and their cumulative lags, the log 
transform was used because of the skewness of their distributions. 
Table 11.32 shows the correlations between transformed PM10 con­
centrations from stations A and B. 

The main conclusions about covariates and models are the fol­
lowing. 

(a) The PM10 concentration seems to have a contribution to­
wards increased counts for some of the symptom variables 
(81, 84, G4) through the averaged cumulative concentration 
over about 4 to 7 days. For 81, the averaged cumulative con­
centration from station B is a better predictor, and for 84, 
that from station A is better. For G3, no additional covariate 
is very good as a predictor. For G4, the averaged cumulative 
concentrations from both stations have about the same pre-
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dictive value, with that from station A being a little better; 
the lags from the two stations are highly correlated and there 
is no model improvement with two lags as covariates. 

(b) Temperature as a single covariate (without pollutant vari­
ables) is significant only for some of the response variables. 
Another covariate that was considered was an indicator of 
regular school day (versus weekend or holiday). This indic­
ated a tendency of marginally higher counts on school days 
but the variable was not significant except with the response 
variable G3 and it had no effect on the conclusion concerning 
PM10 referred to in (a). 

(c) The AR(2) model is not a big improvement on AR(1); there 
is an increase in log-likelihood, but not much improvement in 
predictive ability (see below). 

(d) Negative binomial response variable models which allow for 
overdispersion relative to Poisson are not an improvement 
in model fit (the overdispersion parameter v = u2 / Jl. - 1 is 
estimated at zero or near zero in all cases). 

The conclusions in (a) and (b) correspond roughly to the cor­
relations between daily proportions of a symptom response variable 
and the covariates listed in Table 11.31. The better predictors have 
a correlation of 0.20 to 0.35 with the daily proportions. The con­
clusions are similar to those of Vedal et al. (1997), based on other 
statistical methods. 

Table 11.33 contains log-likelihoods and estimates for the four 
response variables S1, S4, G3, G4, with corresponding sets of co­
variates that are roughly the best fits found. For comparison, the 
summaries for the AR(1) models with only lognt as the covariate 
are given for S1 and G4, and the summaries with AR(2) models 
are given for all four reponses. 

The fitted parameters for the AR(2) models suggest some de­
pendence at lag 2 beyond that expected from an AR(1) model; in 
other words, they show slightly more positive serial dependence 
than that for an AR( 1) model. This is mainly through latent vari­
ables that are associated with every triple of consecutive obser­
vations since the parameter a3 for this three-way dependence is 
quite positive, whereas the dependence parameter a 2 for pairs of 
observations separated by a lag of 2 is zero or near zero. 

We give an intepretation of the rate of increased counts of symp­
toms as PM10 concentration increases. This is based on the AR(1) 
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Table 11.33. Health effects data. Estimates and log-likelihoods for some 
AR{t) and AR{2} Poisson models. 

y Mod. Xk f3k (SE) Dep. par. Log-lik 

S1 AR1 const. -2.79 (0.60) a = 0.63 (0.02) -1118.6 
lognt 1.06 (0.13) 

S1 AR1 const. -3.45 (0.61) a = 0.62 (0.02) -1110.2 
lognt 1.07 (0.12) 
SCTEMP -0.024 (0.029) 
logCUM4B 0.191 (0.055) 

S1 AR2 const. -3.56 (0.80) a1 = 0.16 (0.04) -1104.9 
lognt 1.07 (0.12) a2 = 0.00 (0.04) 
SCTEMP -0.023 (0.025) a3 = 0.49 (0.06) 
logCUM4B 0.190 (0.053) 

S4 AR1 const. -2.27 (0.58) a= 0.66 (0.02) -1114.7 
lognt 0.93 (0.11) 
SCTEMP 0.024 (0.025) 
logCUM7A 0.120 (0.069) 

S4 AR2 const. -2.62 (0.67) a1 = 0.18 (0.05) -1109.2 
lognt 1.01 (0.13) a2 = 0.05 (0.05) 
SCTEMP 0.022 (0.025) a3 = 0.49 (0.06) 
logCUM7A 0.107 (0.077) 

G3 AR1 const. -1.05 (0.74) a= 0.45 (0.04) -1028.7 
lognt 0.57 (0.14) 
SCTEMP 0.034 (0.038) 
logCUM5A 0.031 (0.083) 

G3 AR2 const. -1.81 (0.88) a1 = 0.15 (0.07) -1016.0 
lognt 0.75 (0.17) a2 = 0.10 (0.07) 
SCTEMP 0.032 (0.033) a3 = 0.32 (0.08) 
log CUM5A -0.011 (0.083) 

G4 AR1 const. -1.90 (0.38) a = 0.62 (0.03) -1297.5 
lognt 1.05 (0.08) 

G4 AR1 const. -2.39 (0.42) a = 0.62 (0.03) -1293.7 
lognt 1.08 (0.08) 
SCTEMP -0.004 (0.020) 
logCUM7A 0.126 (0.050) 

G4 AR2 const. -2.60 (0.44) a1 = 0.24 (0.06) -1290.9 
lognt 1.13 (0.09) a2 = 0.08 (0.06) 
SCTEMP -0.004 (0.019) a3 = 0.39 (0.07) 
logCUM7A 0.112 (0.050) 
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Table 11.34. Health effects data. Comparisons of observed versus pre-
dieted values by models. 

Response Model Cor( obs,pred) RMS( obs-pred) 

S1 ARO 0.584 3.06 
S1 AR1 0.781 2.35 
S1 AR2 0.786 2.33 

S4 ARO 0.584 2.87 
S4 AR1 0.748 2.35 
S4 AR2 0.754 2.33 

G3 ARO 0.283 2.19 
G3 AR1 0.495 1.98 
G3 AR2 0.531 1.94 

G4 ARO 0.756 4.13 
G4 AR1 0.846 3.37 
G4 AR2 0.848 3.35 

models; the result is similar for the AR(2) models because the 
regression coefficients for the averaged cumulative concentrations 
do not differ much. The approximate 95% confidence intervals for 
the ratio of the symptom count at the third quartile of averaged 
cumulative concentration to that at the median are the following: 

(a) for S1, (1.02, 1.08); 
(b) for S4, (1.00, 1.04); 
(c) for G4, (1.00, 1.04). 

That is, there is suggestion of a slight increase (point estimates of 
2% for S4 and G4, 5% for S 1) in expected counts of some symptoms 
as the (averaged cumulative) concentrations ofPM10 increase from 
the median to the upper quartile. 

The final assessment of the models is the predictive ability; this 
is mainly a comparison of the improvements of the AR(1) and 
AR(2) models over a Poisson regression model with the same co­
variates and no serial dependence. Let f)t be the predictive value. 
For the Poisson regression model, f)t = exp{Po + /ht}. For the 
AR(1) model, f)t = UYt-1 + (Bt- &Bt-d, with Bt = exp{Po + Pxt}. 
For the AR(2) model, f)t = E [At(Yt-2, Yt-1)] + (Bt - &tBt-1 -
&2Bt-2- &amin{Bt-1,Bt-2}); the expected value of the operator 
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Figure 11.4. Health effects data. Predicted versus observed values for 
different models for the Sl count data. 
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At in (8.19) does not simplify analytically (as for the AR(1) model), 
but it can be computed numerically from the probability distribu­
tion associated with At. 

Table 11.34 contains the correlations of Yt versus fit for the 
four response variables in Table 11.33, and the root mean squared 
(RMS) error for prediction, {2=[=1 (Yt - f;t) 2 jTp12 , with T = 493. 
Plots of predicted versus observed values for the three models for 
the S1 response are given in Figure 11.4. These show that the 
AR(1) is a big improvement on the Poisson regression model (which 
does not make use of the previous observations) based on the cri­
terion of predictive ability, and that the AR(2) model does not 
improve much on the AR(1) model. An alternative to AR models 
are Poisson regression models with lagged counts as covariates; an 
advantage of the former over the latter is that predictions both 
with and without previous observed counts can be made more eas­
ily with the AR models. 

To end this section, for illustration, we also apply some Markov 
chain copula models to the data set. However, for this data set, we 
think the AR models have more interpretability. 

For a Markov chain of order 1, let C(·; TJ) be a bivariate copula. 
With F(-; B) being the Poisson cdf, a bivariate Poisson cdf obtains 
from Ft(Yt-1, Yt) = C(F(Yt-1; Bt-d, F(yt; Bt); TJ). The transition 
density associated with this bivariate distribution is 

ht(yjx) = Pr(Yt = y I Yt-1 = x) 

_ Ft(x, y)- Ft(x, y- 1)- Ft(x- 1, y) + Ft(x- 1, y- 1) 
- f(x;Bt-d 

where f( ·;B) is the Poisson pmf. Note that Bt is varying with time 
(because of time-varying covariates), and the transition density 
also depends on time. 

For a Markov chain of order 2, we consider trivariate copulas 
C(·; TJ, 8) of the form 

C(u; TJ, 8) = 'ljJ'1 ( L { -logK(e-o.s.p;;lCui), e-o.s.p;;l(u2); 8) 
j=1,3 

which is ( 4.29) in Section 4.3. A trivariate Poisson cdf obtains from 

Ft(Yt-2, Yt-1, Yt) = C(F(Yt-2; Bt-2), F(Yt-1; Bt-d, F(yt; Bt); TJ, 8). 
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Table 11.35. Health effects data. Estimates and log-likelihoods for Markov 
chain models with Poisson margins. 

y Mod. x1c Dep. par. Log-lik 

S1 MC1/ const. -2.90 (0.52) 'fJ = 1.65 (0.07) -1132.1 
B6 lognt 0.98 (0.10) 

SCTEMP -0.038 (0.028) 
logCUM4B 0.159 (0.053) 

S1 MC2/ const. -3.33 (0.43) 'fJ = 1.46 (0.07) -1127.6 
MM1 lognt 1.05 (0.09) 8 = 1.30 (0.09) 

SCTEMP -0.006 (0.030) 
logCUM4B 0.198 (.049) 

S4 MC1/ const. -2.33 (0.49) 'fJ = 1.86 (0.09) -1115.8 
B6 log nt 0.96 (0.09) 

SCTEMP 0.026 (0.023) 
log CUM7 A 0.095 (0.059) 

S4 MC2/ const. -2.61 (0.35) 'fJ = 1.57 (0.08) -1109.0 
MM1 log nt 1.02 (0.07) 8 = 1.56 (0.12) 

SCTEMP 0.035 (0.023) 
log CUM7 A 0.097 (0.055) 

G3 MC1/ const. -0.92 (0.63) 'fJ = 1.39 (0.06) -1035.1 
B6 lognt 0.53 (0.12) 

SCTEMP 0.040 (0.031) 
log CUM5A 0.046 (0.066) 

G3 MC2/ const. -1.32 (0.51) 'fJ = 1.35 (0.06) -1020.2 
MM1 lognt 0.65 (0.10) 8 = 1.11 (0.08) 

SCTEMP 0.036 (0.032) 
logCUM5A 0.001 (0.066) 

G4 MC1/ const. -2.23 (0.38) 'fJ = 1.70 (0.08) -1298.1 
B6 lognt 1.07 (0.07) 

SCTEMP -0.014 (0.017) 
logCUM7A 0.096 (0.043) 

G4 MC2/ const. -2.45 (0.31) 'rJ = 1.42 (0.06) -1296.1 
MM1 lognt 1.11 (0.06) 8 = 1.54 (0.07) 

SCTEMP -0.005 (0.018) 
logCUM7A 0.111 (0.043) 
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The transition density is 

ht(Yiw, x) = Pr(Yt = y I It-2 = w, It-1 = x) 

= {Ft(w,x,y)- Ft(w,x,y-1)- Ft(w,x -1,y) 

+Ft(w, x- 1, y- 1)- Ft(w- 1, x, y) + Ft(w- 1, x, y- 1) 

+Ft(w -1,x -1,y)- Ft(w -1,x -1,y-1)}/{Ft(w,x,oo) 

-Ft(w, x- 1, oo)- Ft(w- 1, x, oo) + Ft(w- 1, x- 1, oo) }. 

Families of copulas that were tried were B6 for a first-order 
Markov chain and MM1 (K in the family B6 and 1/J in the family 
LTA) for a second-order Markov chain. The family B6 was chosen 
because in a situation like for these data, one might have extreme 
value dependence (see Section 8.1.4). With Bt depending on co­
variates as before, Table 11.35 has parameter estimates and log­
likelihoods that can be compared with Table 11.33. Comparisons 
of log-likelihoods and AIC values suggest that the AR models are 
slightly better fits. From the regression coefficients, the conclusion 
about the effects of the pollutants is similar to before. 

11.6 Example of inference for serially correlated data 

In this section, we show through a simple example how the as­
sumption of independent observations for serially correlated data 
may lead to SEs that are too small. The example illustrates the 
results at the end of Section 8.5. 

We use a time series which consists of daily air quality measure­
ments. Marginal distributions, such as lognormal, gamma, Wei bull, 
or generalized gamma, etc., are commonly used (see Holland and 
Fitz-Simons 1982; Jakeman, Taylor and Simpson 1986; Marani, 
Lavagnini and Buttazzoni 1986; and references therein), and usu­
ally inferences are made assuming that the measurements are iid 
when in fact they are serially correlated. The SEs, computed as­
suming positive serial dependence, for parameters and quantiles of 
the marginal distribution, and for exceedances of thresholds, are 
usually larger than would be obtained with an assumption of iid 
observations. A Markov chain time series model based on a copula 
can be used as a means to get SEs that take into account the pos­
itive serial dependence. Different copulas can be used to check for 
sensitivity of the particular assumption for dependence. 

We use the daily maxima of hourly averaged N02 concentra­
tions (in ppm) from October 1984 to September 1986 at an air 
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Table 11.36. N02 data. Estimates of parameters under various depend-
ence models. 

Model it u Log-lik. Median UQ 
(SE) (SE) (SE) (SE) 

indep. -3.224 0.371 511.9 0.0398 0.0511 
(0.028) (0.020) (0.0011) (0.0016) 

B1 -3.223 0.372 530.0 0.0398 0.0512 
(0.044) (0.024) (0.0018) (0.0024) 

B2 -3.219 0.372 530.8 0.0400 0.0514 
(0.040) (0.021) (0.0016) (0.0021) 

B3 -3.222 0.373 531.3 0.0403 0.0518 
(0.041) (0.021) (0.0016) (0.0022) 

B4 -3.233 0.375 525.5 0.0395 0.0508 
(0.039) (0.024) (0.0016) (0.0024) 

B5 -3.222 0.384 522.9 0.0399 0.0516 
(0.044) (0.026) (0.0017) (0.0027) 

B6 -3.208 0.383 527.0 0.0404 0.0524 
(0.046) (0.026) (0.0018) (0.0027) 

B7 -3.211 0.382 527.2 0.0403 0.0522 
(0.043) (0.026) (0.0017) (0.0026) 

quality monitoring station in the Greater Vancouver Regional Dis­
trict. The range of the data is 0.014 to 0.145 ppm. The data were 
separated into four separate time periods so that checks could be 
made for trends and seasonal effects. Exploratory plots did not 
show any seasonal patterns or trends and the lognormal distribu­
tion appeared to be acceptable for the marginal distribution. The 
density of the two-parameter lognormal distribution is: 

1 
f(x; J-L, u) = (21r)l/2ux exp{ -t[(log x- J-L)/uF}, x > 0, 

-oo < J-L < oo, u > 0. For the (second) period from April to 
September 1985, the estimates of the parameters J-L, u (mean and 
standard deviation oflogarithm of concentration) and their SEs are 
given in Table 11.36 for various models. The models are Markov 
chain stationary time series based on the families of copulas B 1-
B7 in Section 5.1, as well as the model of iid observations. The 
MLEs and corresponding SEs were computed using a quasi-Newton 
routine. 



DISCUSSION 371 

From Table 11.36, estimates of f-L, u are not sensitive to the cop­
ula used for the transition density, but the SEs for the MLEs are 
too small (especially for {L) from the likelihood assuming independ­
ence observations. The substantially larger log-likelihoods as well 
as the estimates of the dependence parameter 6 for the copulas 
suggest that serial dependence is significant (for example, the cor­
relation parameter in the BVN copula in the family B1 is 0.430). 
The estimates (and corresponding SEs) for the median and the 
upper quartile (UQ) of the concentration are also given in Table 
11.36. Again theSEs based on the likelihood assuming independent 
observations are too small; compared with one of the likelihoods 
assuming dependence, the SEs are at least 25% too small and hence 
suggest more accuracy than really exists. 

11.7 Discussion 

In this chapter, different models are compared on several multivari­
ate and longitudinal data sets. Different models seem to provide 
similar conclusions and predictions if they have the same qualit­
ative features, such as the range of dependence covered. The fit­
ting of different models also provides a sensitivity analysis. This is 
important because there is the common question of whether infer­
ences (e.g., SEs) are valid after fitting many models and choosing 
one that is best under some criteria. If the inferences and predic­
tions are not sensitive to the choice of models with similar qualit­
ative features, then one could end up choosing the model that is 
in some ways more convenient, or one could report the inferences 
from more than one model to show the lack of sensitivity. 

More experience and research are needed to assess whether de­
pendence parameters should be functions of covariates, and if so, 
how to develop functional forms naturally. This is less of a prob­
lem for the conditional specified logistic regression model of Section 
9.2.3, since diagnostic methods for logistic regression can be used. 
However, this latter model has the disadvantage of not being closed 
under the taking of margins. 

In practice, missing data can occur. The examples here mainly 
illustrate ideas without the complication of missing data, although 
there were a few missing data in some of the examples. Provided 
missing data can be assumed to be missing at random, the IFM 
method can still be used. For example, a multivariate response 
vector with some components missing can be included in the like­
lihoods of margins corresponding to the non-missing components. 
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This, in fact, was the procedure used in the multivariate extremes 
example in Section 11.3. 

11.8 Exercises 

11.1 Write the conditionally specified logistic regression model in 
the form 

Pr(Y = y I x; 8) = [c(8, x)t 1 exp{L Oasa(Y, x) }, 
a 

where c(8, x) = Ly'=O,l;j=l, ... ,m exp{La Oasa(Y', x)}, and 
1 

8 has dimension m(r+1)+m(m-1)/2, r being the dimension 
of the covariate vector x. Given x and y, let g( 8) = Pr(Y = 
ylx; 8). For the delta method, the partial derivatives of g are 
needed to evaluate the SE of the probability. Show that 

:: = g(8){ sa(Y, x)- L sa(y', x) Pr(Y = y' I x; 8) }· 
a y' 

11.2 Write a computer program for estimation with the IFM 
method for a multivariate logit model with some closed-form 
copula family. 

11.3 For the multivariate ordinal data set in Section 11.2, do fur­
ther analysis, e.g., fit models with fewer univariate 
parameters and possibly Markov dependence structure. 

11.4 For the copulas in (11.1) and (11.2) with the same value of 
0, show that (11.1) is more PLOD. 
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Section A.1 presents properties of and results on Laplace trans­
forms that are used in the construction of multivariate models, as 
well as a listing of parametric families of Laplace transforms use­
ful for this purpose. Section A.2 consists of other definitions and 
background results that help to make the book more self-contained; 
topics include types of distribution functions and densities, convex 
functions and inequalities, and maximum entropy. 

A.l Laplace transforms 

In this section, results on and properties of Laplace transforms 
(LTs) are summarized. A good reference is Feller (1971). 

For a non-negative rv with cdf M, the Laplace transform¢ = 
¢ M is defined as 

¢(s) = 100 e-swdM(w), s 2: 0, 

so that ¢( -t) is the moment generating function of M. If 7ro is 
the mass of Mat 0, then lim8 ...., 00 ¢(s) = ¢(oo) = 1!'0 . We assume 
throughout that LTs correspond to positive rvs, or that ¢( oo) = 0. 
(This is because applications require that exp{-¢- 1(F(x))} is a 
proper cdfwhen F is a univariate cdf.) Clearly¢ is continuous and 
strictly decreasing, and ¢(0) = 1. Therefore the functional inverse 
¢- 1 is strictly decreasing and satisfies ¢- 1(0) = oo, ¢-1(1) = 0. 
Furthermore, ¢ has continuous derviatives of all orders and the 
derivatives alternate in sign, i.e., ( -1)i¢(i)(s) 2: 0 for all s 2: 0, 
where ¢(i) is the ith derivative. The property of alternating signs 
in the derivatives is called the completely monotone property. 
LTs can be characterized as completely monotone functions on 
[0, oo) with a value of 1 at 0. 

Other completely monotone functions are important in the con­
struction of multivariate copulas based on one or more LTs. Let 
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£'"oc, be the class of infinitely differentiable increasing functions of 
[0, oo) onto [0, oo), with alternating signs for the derivatives (see 
(1.2) in Section 1.3). 

The property of -log x E £'"oc, for a LT X means that x is the 
LT of an infinitely divisible rv. This is summarized in the theorem 
below. 

Theorem A.l Let x be a LT. Then X0 is completely monotone 
for all a > 0 if and only if -log X = v E £'"oc,. 

Proof First suppose that v E £'"oc,. Then it is easily checked that 
dx 0 (s)/ds ~ 0 and that, by induction, the derivative of each sum­
mand of ( -l)k(dkxa(s)fdsk) is opposite in sign. Hence sufficiency 
has been proved. 

Next we show necessity. Let rr = -1.1. The first two derivatives 
of X0 are (x 0 )' = arr'xa and (X0 )( 2) = arr"xa + a 2 ( rr') 2 X0 , which 
has the form 

a rr(k)Xa + a2xa L ckl(s) am•l 
l 

for k = 2, with mkl being non-negative integers for all £. Suppose 
the kth derivative of X0 has this form; then the (k + l)th derivat­
ive of X0 is arr<k+ 1)xa + a 2rr(k)rr'xa + a 3rr'x 0 Lt Ckt(s)am•l + 
a 2xa Lt c~l(s)amkl, which has the form 

a rr(k+1)Xa + a2xa L Ck+1,l( s) am•+,,l' 
l 

where mk+1,l ~ 0 for all f. Therefore 1im0 _. 0 (xa)(k)ja = rr(k) for 
k ~ 1. Hence the complete monotonicity of rr = -v is necessary 
for xa to be completely monotone for all a near 0. 0 

The importance of the above theorem is that it provides an in­
direct way to verify the complete monotonicity of X0 , a > 0. For 
some results (in Chapter 4) on multivariate distributions to hold, 
conditions of the form 'ljJ o 1/J- 1 E £'"oc, or exp{ -'lj;- 1 o rjJ} being the 
LT of an infinitely divisible rv are needed. 

Theorem A.2 If 'ljJ is a LT such that -log'lj; E £'"oc, and rjJ is 
another LT, then 17(s) = ¢(-log'lj;(s)) is a LT. 

Proof The proof can be obtained by straightforward differentia­
tion. With the assumptions on ¢ and -log 'lj;, the derivatives of 
each term of 1J(k) become opposite in sign. 0 

Some one-parameter families of LTs ¢9(s) that are used in Chap­
ters 4, 5, 6 are: 
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LTA. (positive stable) exp{ -s118 }, 0 2: 1; 

LTB. (gamma) (1 + s)- 118 , 0 2: 0; 

LTC. (power series) 1- (1- e-•) 118 , 0 2: 1; 

LTD. (logarithmic series) -0- 1 log[1- (1- e-8 )e-•], 0 > 0. 

The corresponding functional inverses <P; 1(t) are: 

LTA. (-logt)8 ; 

LTB. r 8 -1; 

LTC. -log[1- (1- t) 8]; 

LTD. -log[(1- c 8t)/(1- e- 8 )]. 
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For the family LTD, the rv with the given LT has mass (1 -
e- 8 )i /(iO) on the integer i, i = 1, 2, .... Similarly for the family 
LTC, the mass is o- 1 for i = 1 and o- 1 TI~::~ (j- o- 1) for i = 
2, 3, 0 0 00 

For the LT families LTA to LTD </J8, the condition of -log </J8 E 
£~ is satisfied. The proof is direct for LTA and LTB. The prooffor 
LTC and LTD comes from showing that <P't is a LT for all a > 0, 
or that e• </J8 ( s) is the LT of an infinitely divisible distribution with 
support on the non-negative integers, and then applying Theorem 
A.l. For LTC, a Taylor expansion for e"<jJ9(s) yields I::,o p;e-i•, 
with Pi = TI~=l (kO- 1)/[(i + 1)! Oi+1] (the null product is 1 for 
i = 0). The ratio Pi/Pi-1 fori 2: 1 is o- 1(i0 -1)/(i + 1) = 1- (1 + 
o- 1) / ( i + 1) and this is increasing in i so, by the sufficient condition 
in Warde and Katti (1971 ), the infinite divisibility property follows. 
For LTD, a Taylor expansion for e"</;9(s) yields L::,0p;e-i•, with 
Pi = ci+1 /[O(i + 1)] with c = 1- e-8. The ratio Pi/Pi-1 for i 2: 1 
is ci/(i + 1) which is increasing in i. 

We next show that v = </J91
1 o </;9 2 E £~, 81 < 82, for the four 

families LTA to LTD. For LTA, v(s) = sP, where p = 01/02 , so 
that it is easy to show that v E £~.For LTB, v(s) = (1 + s)P -1, 
where p = 81/82, and again v E £~follows easily. For LTC, x(s) = 
exp{ -v(s)} = 1- (1- e-•y, where p = 01/02 :::; 1, is within the 
family LTC. Hence, v E £~ follows from the preceding paragraph. 
For LTD, x(s) = exp{ -v(s)} = (1- [1- ce-•JP)/(1- e- 81 ), where 
p = 81/82 and c = 1- e- 82 • This is similar to the family LTC and, 
using the approach of the preceding paragraph, xa is a LT for all 
a> 0. Hence, by Theorem A.1, v E £~. 

The next theorem has results on cdfs deriving from LTs, when 
'lj;, <P are LTs such that ,p- 1 o <P E £~. 
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Theorem A.3 Suppose '1/J, cjJ are LTs such that 

Xa = exp{ -a('!j;- 1 o c/J)} 

is a LT for all a > 0. Let G1(u) = exp{ -¢-1(u)}, G 2(u) 
exp{-c/J-1(u)}, 0 :::; u :::; 1, let M.p be the distribution with LT 

'1/J, and let M.p-1 0 q,(-; a) be the distribution with LT Xa· Then 

Gf(u) = 1oo cg(u) dM1fi-1oq,(/3; a). (A.1) 

Also, for a2 > a1 > 0, 

M1fi-1o¢(·; a1) -<'t M.p-1 0 q,(-; a2) 

Proof. By the definitions of M.p-1 0 q,, the right-hand side of (A.1) 

is Xa(-logG2(u)) = Xa o c/J- 1(u) = exp{-a'!j;- 1(u)} = Gf(u). 
The second result follows immediately from the assumption that 
exp{ -'lj;- 1 o cjJ} is the LT of an infinitely divisible distribution with 
support on the positive real line. 0 

By making use of Theorem A.2, combinations of LTs of the form 
c/J(-log'!j;(s)), with cjJ from a one-parameter family of LTs and '1/J 

from another, lead to two-parameter families of LTs. Some of these 
two-parameter families that appear in Section 5.2 are: 

LTE. (1 + s116)- 119 , 8 ~ 1, 8 > 0; 

LTF. [1 + 8-IIog(1 + s)]- 119 , 8, 8 > 0; 

LTG. exp{ -[8-~Iog(1 + s)jll9 }, 8 > 0, 8 ~ 1; 

LTH. 1- [1- exp{ -s116}j1/9 , 8, 8 ~ 1; 

LTI. 1- [1- (1 + s)- 116jll 9 , 8 > 0, 8 ~ 1. 

Other multi-parameter families of LTs that are used are: 

LTJ. 6- 1 [1- {1- [1- (1- 6) 8]e-•p19], 8 ~ 1, 0 < 6 :S 1 (LT 
of a discrete power series distribution on positive integers 
with mass Pi = [1- (1- 8)9]/(88) fori= 1 and [1- (1-

6)9 ]i[IJ~::iU- 8-1 )]/[88i!] fori> 1); 

LTK. {3-1 { 1- [1- (1 + /3)-C]e-•} -l/(- {3-1, ( ~ 0, j3 > 0 (LT 

of a discrete power series distribution on positive integers 
with mass [1 - (1 + /3)-C]i[IJ~:,~(l + j()]/[/3(ii!] on the 
integer i ~ 1); 

LTL. exp{ -(a9 +s)119 +a}, a~ 0, 8 ~ 1 (two-parameter family 
that includes LTA); 

LTM. [(1- 8)e-• /(1- 8e-•)]" = [(1- 8)/(e•- 8)]", 0:::; 8 < 1, 
a > 0 (LT of a negative binomial distribution). 



OTHER BACKGROUND RESULTS 

The corresponding functional inverses are: 

LTE. (r 9 - 1)6 ; 

LTF. exp{6(r9 - 1)}- 1; 

LTG. exp{6(-logt)8 } -1; 

LTH. { -log[1- (1 - t) 9]V; 

LTI. [1- (1- t) 9J- 6 - 1; 

LTJ. -log{(1- (1- 6t)9]j[1- (1- 6) 9]}; 

LTK. -log{[1- (1 + ,Bt)-'J/[1- (1 + .Bt']}; 
LTL. (a -logt)9 - a9 ; 

LTM. log[(1- B)r 11a + B]. 
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Note that the family LTJ is a two-parameter generalization of 
LTC; LTC obtains when 6 = 1. Also note that LTK has the same 
form as LTJ with ,B = -6, (=-B. 

A.2 Other background results 

This section consists of background definitions and results that 
are used in a few places in the book. The subsection topics are 
types of distribution functions and densities, convex functions and 
inequalities, and maximum entropy. 

A.2.1 Types of distribution functions and densities 

This subsection contains the key result concerning the three com­
ponents of a distribution function (see, for example, Chung 1974), 
and explains the relevance to the multivariate models in this book. 
Also explained is the usage of the word 'density'. Some examples 
are used to illustrate the concepts. 

Let F be a cdf on ~m. Then F can be written as a mixture with 
three components: 

(A.2) 

where Fd, F8 , Fa are cdfs from respectively the discrete, singular 
and absolutely continuous components, with corresponding 
probabilities Pd, p., Pa such that Pd + Ps + Pa = 1. The first compo­
nent PdFd comes from the point masses ofF and the third compo­
nent comes from integrating the mixed mth-order right derivative 
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f* of F (this exists because a cdf F is right continuous and in­
creasing). Hence, 

PaFa(x) = 1: · · · [x~ f*(z) dz. 

For statistical modelling, the singular part has no practical im­
portance for univariate distributions; however, it has importance 
for multivariate distributions since it exists when there are func­
tional relationships among rvs. For example, if X has a singular 
MVN distribution, then there is a vector a and a constant b such 
that aXT = b (with probability 1); in this case, the covariance 
matrix of X is not positive definite, i.e., it has at least one zero 
eigenvalue. Another simple example of a random vector that has a 
distribution with a singular component is when there is a positive 
probability of ties among subsets of its variables. 

A simple bivariate example to illustrate the decomposition (A.2) 
is as follows. Let X 1, X2 be respectively the cumulative amount of 
summer rainfall in a certain location after the end of the first and 
second weeks of the summer. Suppose that the amount of rainfall 
in a summer week is 0 with probability 0.05 and an exponential 
rv with a mean of 1 em if there is rainfall. Also suppose that the 
amount of rainfall is independent for different weeks. Then 

• Pr(X1 = X2 = 0) = 0.0025; 

• Pr(X1 = X2 > 0) = 0.0475; 

• Pr(X2 > X1 = 0) = 0.0475; 

• Pr(X2 > X1 > 0) = 0.9025. 

For (A.2), Pd = 0.0025, Fd(x1, x2) equals 1 if x1, x2 2: 0 and is 0 
otherwise. Also p8 = 0.095 with F.(x 1, x2) = t(l- e-(x1Ax2)) + 
t(l- e-x2), x1, x2 2: 0. Finally, Pa = 0.9025, Fa(xl, x2) = 1-
e-x 1 - x1e-x2 for x2 > x1 > 0, and Fa(xl, x2) = 1- e-x2 - x2e-x2 

for x1 2: x2 > 0, with density fa(xl, x2) = e-x2 for x2 > x1 > 0 
and fa(xl, x2) = 0 for x1 2: x2 > 0. 

Next we go on to the types of densities. Let v be a measure on 
~m. In this book, a measure is usually either counting measure for 
a discrete random vector or Lebesgue measure for a continuous ran­
dom vector. The density function f with respect to v is either the 
probability mass function (pmf) for a discrete random vector or the 
probability density function (pdf) for a continuous random vector 
(ifF is absolutely continuous with respect to Lebesgue measure). 
The reader who is unfamiliar with measures and measure spaces 
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can take this to be the definition of a density. If F is continuous 
but not absolutely continuous, then F does not have a density 
with respect to Lebesgue measure, but its absolutely continuous 
component Fa does have a density. Let F be the cdf of a random 
vector X, and let h be a real-valued function. The notation for 
the expected value that covers random vectors of all types is: 

E (h(X)] = J h dF = J h f dv. 

The middle integral can also be considered as a Riemann-Stieltjes 
integraL In the discrete case, I h dF = Ex h(x)f(x), where the 
summation is over the points of mass of X. In the absolutely con­
tinuous case, I h dF = I h(x)f(x) dx. 

A.2.2 Convex functions and inequalities 

This subsection has results on convexity and convex functions. Re­
lated topics like star-shaped sets and functions, majorization and 
inequalities are also covered. References are Roberts and Varberg 
(1973), Rockafellar (1970) and Marshall and Olkin (1979). 

We start with some basic definitions and results. 
A set A in ~d is convex if line segments joining points in A are 

also in A, or equivalently, x, y E A implies AX+ (1 - A)y E A for 
all 0 < A < 1. A set A in ~d is star-shaped with respect to a 
point x 0 E A if, for other points y E A, the line segment joining 
xo andy is in A, or equivalently, y E A implies AXo + (1- A)y E A 
for all 0 < A < 1. 

Let g : A -+ ~ be a real-valued function with domain A being 
an open convex subset of ~d, d ~ 1. Then g is a convex function 
if 

g(Ax + (1- A)y) ~ Ag(x) + (1- A)g(y), VO <A< 1, x, yEA, 
(A.3) 

or if the set {(x, z) : z 2: g(x), x E A} is a convex set, or equi­
valently, the region above the surface of g is a convex set. g is 
strictly convex if the inequality in (A.3) is strict (or one can 
replace ~ with <). g is a concave function if -g is convex. g is 
star-shaped if the region above the surface of g is star-shaped 
with respect to an appropriate point. For example, a real-valued 
function g defined on [0, oo) and satisfying g(O) = 0 is usually said 
to be star-shaped if the region above the curve of g is star-shaped 
with respect to the origin. This is equivalent to g(x)jx increasing 
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in x > 0. 
If d = 1, in which case A is an (open) interval of the real line, 

then a convex function g has the following properties: 

(a) g is continuous and has right and left derivatives (say, g~, g'_) 
at each point; 

(b) g~, g'_ are increasing and g~ ( x) ~ g'_ ( x) for all x E A; 

(c) if g~ = g'_ and the second derivative g" exists at x, then 
g"(x) ~ 0. 

If d ~ 2, a convex function g(x) on A is a convex function of 
one parameter on each line segment within A. From this, it follows 
that if g has derivatives of second order, then the Hessian matrix 
H(x) = (fPgjox/}xi) of second-order derivatives is non-negative 
definite for all x E A (i.e., zT H(x) z ~ 0 for all z E ~d). 

We end this subsection with some inequalities for convex func­
tions and give a definition of the majorization of vectors. Let g be 
a convex function on (a, b). Let a< Yl :::; x1 :::; x2 :::; Y2 < b be such 
that x1 + x2 = Yl + Y2· Then 

g(xl) + g(x2):::; g(yl) + g(y2). 

More generally, 
n n 

(A.4) 
i=l i=l 

ifx is majorized by y or (x1, ... ,xn)~m(Yl,· . . ,yn) (i.e., 

n n k k 

LXi = LYi and L X[i]:::; LY[i] (k = 1, ... , n- 1), 
i=l i=l i=l i=l 

where X[l) ~ · · · ~ X[n] and Y[l) ~ · · · ~ Y[n] are the ordered x; and 
y;, respectively). An alternative definition of the majorization 
of vectors x, y is that the inequality (A.4) holds for all convex 
continuous functions g. 

A.2.3 Maximum entropy 

This subsection contains some results on and examples of the con­
cept of maximum entropy. References are Section 13.2 of Kagan, 
Linnik and Rao (1973) and Soofi (1994). 

Maximum entropy is an approach to obtaining a density given 
partial information on a random variable or random vector, such 
as region of support, moments, expected values of certain func­
tions, or marginal densities. The approach uses the information in 
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a minimal sense. Densities that are obtained are 'smoothest' or 
closest to uniform given the constraints. If the measure is v and X 
is a random vector with support on R C ~m, then the maximum 
entropy density f maximizes 

-L f(x) log f(x) dv, 

subject to the constraints. 
The most common usage of maximum entropy densities is when 

the constraints are in the form of expected values or moments. For 
example, if X= (XI, ... , Xm) is a random vector with support on 
R = xj=I(aj,bj), and E[hk(X)] = J.lk, k = 1, ... ,K, are compat­
ible constraints, then the maximum entropy density has the form: 

K 

f(x) =A exp{:~:::>khk(x) }, (A.5) 
k=I 

where A is a normalizing constant and AI, ... , AK are chosen so 
that the constraints are satisfied. The derivation of (A.5) can be 
obtained by the method of calculus of variations (or the method of 
Lagrange multipliers in the discrete case), or by using the inequal­
ity J R g log[g / f] dv ~ 0 for densities /, g on R. 

Special cases are the following. 

(a) bj - ai is finite, j = 1, ... , m, /{ = 0: (A.5) is the uniform 
density on R. 

(b) m = 1, R = [0, oo), /{ = 1, hi(x) = x: (A.5) is a one­
parameter exponential density. 

(c) m = 1, R = ( -oo, oo), /{ = 2, hi(x) = x, h2(x) == x2: (A.5) 
is a two-parameter normal density. 

(d) R == ~m, /{ = m + m(m + 1)/2, hj(x) = Xj, hm+j(x) = xJ, 
j:::::: 1, ... ,m, h2m+I(x):::::: XIX2, ... , hK:::::: Xm-IXm: (A.5) is 
a multivariate normal density. 

(e) m == 1, R == [0, oo), /{ == 2, hi(x) == x, h2(x) == logx: (A.5) is 
a two-parameter gamma density. 

(f) m == 1, R = [0, 1], /{ = 2, hi(x) == logx, h2(x) = log(1- x): 
(A.5) is a two-parameter beta density. 

Another use of maximum entropy is when the constraints are 
of the form of marginal densities. The maximum entropy distribu­
tion in the Frechet class :F(Fr, ... , Fm) of m-variate distributions 
with univariate cdfs FI, ... , Fm and corresponding pdfs /r, ... .fm 
is Tij=I Fj, and this has density Tij=I /j. An interpretation is 
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that the distribution constructed from independence of the uni­
variate margins is the most 'random' and uses the information 
of the univariate margins in a minimal sense. For another sim­
ilar example, consider the Frechet class :F(F12, F13) of trivariate 
distributions with given bivariate margins F12, F13 and densities 
h2,/13,h,h,!J. The maximum entropy density is !12!13/h = 
h1d311h, which represents conditional independence of the second 
and third variables given the first variable. Again, the derivation of 
these maximum entropy densities can be obtained by the method 
of calculus of variations or Lagrange multipliers, or by using in­
equalities. 

A.3 Bibliographic notes 

The results and most of the LT families are given in Joe (1993) and 
Joe and Hu (1996). The extension of the LT family LTJ to LTK is 
due toT. Hu. On links between entropy, convexity and majoriza­
tion, see Joe (1987; 1990b ). The results in the last paragraph of 
Section A.2.3 can be found in Joe (1987). 
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